xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 2209fda3)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <linux/psi.h>
59 #include <net/sock.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/cgroup.h>
63 
64 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
65 					 MAX_CFTYPE_NAME + 2)
66 /* let's not notify more than 100 times per second */
67 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
68 
69 /*
70  * cgroup_mutex is the master lock.  Any modification to cgroup or its
71  * hierarchy must be performed while holding it.
72  *
73  * css_set_lock protects task->cgroups pointer, the list of css_set
74  * objects, and the chain of tasks off each css_set.
75  *
76  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
77  * cgroup.h can use them for lockdep annotations.
78  */
79 DEFINE_MUTEX(cgroup_mutex);
80 DEFINE_SPINLOCK(css_set_lock);
81 
82 #ifdef CONFIG_PROVE_RCU
83 EXPORT_SYMBOL_GPL(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(css_set_lock);
85 #endif
86 
87 DEFINE_SPINLOCK(trace_cgroup_path_lock);
88 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
89 
90 /*
91  * Protects cgroup_idr and css_idr so that IDs can be released without
92  * grabbing cgroup_mutex.
93  */
94 static DEFINE_SPINLOCK(cgroup_idr_lock);
95 
96 /*
97  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
98  * against file removal/re-creation across css hiding.
99  */
100 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
101 
102 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
103 
104 #define cgroup_assert_mutex_or_rcu_locked()				\
105 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
106 			   !lockdep_is_held(&cgroup_mutex),		\
107 			   "cgroup_mutex or RCU read lock required");
108 
109 /*
110  * cgroup destruction makes heavy use of work items and there can be a lot
111  * of concurrent destructions.  Use a separate workqueue so that cgroup
112  * destruction work items don't end up filling up max_active of system_wq
113  * which may lead to deadlock.
114  */
115 static struct workqueue_struct *cgroup_destroy_wq;
116 
117 /* generate an array of cgroup subsystem pointers */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
119 struct cgroup_subsys *cgroup_subsys[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123 
124 /* array of cgroup subsystem names */
125 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126 static const char *cgroup_subsys_name[] = {
127 #include <linux/cgroup_subsys.h>
128 };
129 #undef SUBSYS
130 
131 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
132 #define SUBSYS(_x)								\
133 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
134 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
135 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
136 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
137 #include <linux/cgroup_subsys.h>
138 #undef SUBSYS
139 
140 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
141 static struct static_key_true *cgroup_subsys_enabled_key[] = {
142 #include <linux/cgroup_subsys.h>
143 };
144 #undef SUBSYS
145 
146 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
147 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
148 #include <linux/cgroup_subsys.h>
149 };
150 #undef SUBSYS
151 
152 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
153 
154 /*
155  * The default hierarchy, reserved for the subsystems that are otherwise
156  * unattached - it never has more than a single cgroup, and all tasks are
157  * part of that cgroup.
158  */
159 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
160 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
161 
162 /*
163  * The default hierarchy always exists but is hidden until mounted for the
164  * first time.  This is for backward compatibility.
165  */
166 static bool cgrp_dfl_visible;
167 
168 /* some controllers are not supported in the default hierarchy */
169 static u16 cgrp_dfl_inhibit_ss_mask;
170 
171 /* some controllers are implicitly enabled on the default hierarchy */
172 static u16 cgrp_dfl_implicit_ss_mask;
173 
174 /* some controllers can be threaded on the default hierarchy */
175 static u16 cgrp_dfl_threaded_ss_mask;
176 
177 /* The list of hierarchy roots */
178 LIST_HEAD(cgroup_roots);
179 static int cgroup_root_count;
180 
181 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
182 static DEFINE_IDR(cgroup_hierarchy_idr);
183 
184 /*
185  * Assign a monotonically increasing serial number to csses.  It guarantees
186  * cgroups with bigger numbers are newer than those with smaller numbers.
187  * Also, as csses are always appended to the parent's ->children list, it
188  * guarantees that sibling csses are always sorted in the ascending serial
189  * number order on the list.  Protected by cgroup_mutex.
190  */
191 static u64 css_serial_nr_next = 1;
192 
193 /*
194  * These bitmasks identify subsystems with specific features to avoid
195  * having to do iterative checks repeatedly.
196  */
197 static u16 have_fork_callback __read_mostly;
198 static u16 have_exit_callback __read_mostly;
199 static u16 have_free_callback __read_mostly;
200 static u16 have_canfork_callback __read_mostly;
201 
202 /* cgroup namespace for init task */
203 struct cgroup_namespace init_cgroup_ns = {
204 	.count		= REFCOUNT_INIT(2),
205 	.user_ns	= &init_user_ns,
206 	.ns.ops		= &cgroupns_operations,
207 	.ns.inum	= PROC_CGROUP_INIT_INO,
208 	.root_cset	= &init_css_set,
209 };
210 
211 static struct file_system_type cgroup2_fs_type;
212 static struct cftype cgroup_base_files[];
213 
214 static int cgroup_apply_control(struct cgroup *cgrp);
215 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
216 static void css_task_iter_advance(struct css_task_iter *it);
217 static int cgroup_destroy_locked(struct cgroup *cgrp);
218 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
219 					      struct cgroup_subsys *ss);
220 static void css_release(struct percpu_ref *ref);
221 static void kill_css(struct cgroup_subsys_state *css);
222 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
223 			      struct cgroup *cgrp, struct cftype cfts[],
224 			      bool is_add);
225 
226 /**
227  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
228  * @ssid: subsys ID of interest
229  *
230  * cgroup_subsys_enabled() can only be used with literal subsys names which
231  * is fine for individual subsystems but unsuitable for cgroup core.  This
232  * is slower static_key_enabled() based test indexed by @ssid.
233  */
234 bool cgroup_ssid_enabled(int ssid)
235 {
236 	if (CGROUP_SUBSYS_COUNT == 0)
237 		return false;
238 
239 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241 
242 /**
243  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244  * @cgrp: the cgroup of interest
245  *
246  * The default hierarchy is the v2 interface of cgroup and this function
247  * can be used to test whether a cgroup is on the default hierarchy for
248  * cases where a subsystem should behave differnetly depending on the
249  * interface version.
250  *
251  * The set of behaviors which change on the default hierarchy are still
252  * being determined and the mount option is prefixed with __DEVEL__.
253  *
254  * List of changed behaviors:
255  *
256  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257  *   and "name" are disallowed.
258  *
259  * - When mounting an existing superblock, mount options should match.
260  *
261  * - Remount is disallowed.
262  *
263  * - rename(2) is disallowed.
264  *
265  * - "tasks" is removed.  Everything should be at process granularity.  Use
266  *   "cgroup.procs" instead.
267  *
268  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
269  *   recycled inbetween reads.
270  *
271  * - "release_agent" and "notify_on_release" are removed.  Replacement
272  *   notification mechanism will be implemented.
273  *
274  * - "cgroup.clone_children" is removed.
275  *
276  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
277  *   and its descendants contain no task; otherwise, 1.  The file also
278  *   generates kernfs notification which can be monitored through poll and
279  *   [di]notify when the value of the file changes.
280  *
281  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282  *   take masks of ancestors with non-empty cpus/mems, instead of being
283  *   moved to an ancestor.
284  *
285  * - cpuset: a task can be moved into an empty cpuset, and again it takes
286  *   masks of ancestors.
287  *
288  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289  *   is not created.
290  *
291  * - blkcg: blk-throttle becomes properly hierarchical.
292  *
293  * - debug: disallowed on the default hierarchy.
294  */
295 bool cgroup_on_dfl(const struct cgroup *cgrp)
296 {
297 	return cgrp->root == &cgrp_dfl_root;
298 }
299 
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 			    gfp_t gfp_mask)
303 {
304 	int ret;
305 
306 	idr_preload(gfp_mask);
307 	spin_lock_bh(&cgroup_idr_lock);
308 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
309 	spin_unlock_bh(&cgroup_idr_lock);
310 	idr_preload_end();
311 	return ret;
312 }
313 
314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315 {
316 	void *ret;
317 
318 	spin_lock_bh(&cgroup_idr_lock);
319 	ret = idr_replace(idr, ptr, id);
320 	spin_unlock_bh(&cgroup_idr_lock);
321 	return ret;
322 }
323 
324 static void cgroup_idr_remove(struct idr *idr, int id)
325 {
326 	spin_lock_bh(&cgroup_idr_lock);
327 	idr_remove(idr, id);
328 	spin_unlock_bh(&cgroup_idr_lock);
329 }
330 
331 static bool cgroup_has_tasks(struct cgroup *cgrp)
332 {
333 	return cgrp->nr_populated_csets;
334 }
335 
336 bool cgroup_is_threaded(struct cgroup *cgrp)
337 {
338 	return cgrp->dom_cgrp != cgrp;
339 }
340 
341 /* can @cgrp host both domain and threaded children? */
342 static bool cgroup_is_mixable(struct cgroup *cgrp)
343 {
344 	/*
345 	 * Root isn't under domain level resource control exempting it from
346 	 * the no-internal-process constraint, so it can serve as a thread
347 	 * root and a parent of resource domains at the same time.
348 	 */
349 	return !cgroup_parent(cgrp);
350 }
351 
352 /* can @cgrp become a thread root? should always be true for a thread root */
353 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
354 {
355 	/* mixables don't care */
356 	if (cgroup_is_mixable(cgrp))
357 		return true;
358 
359 	/* domain roots can't be nested under threaded */
360 	if (cgroup_is_threaded(cgrp))
361 		return false;
362 
363 	/* can only have either domain or threaded children */
364 	if (cgrp->nr_populated_domain_children)
365 		return false;
366 
367 	/* and no domain controllers can be enabled */
368 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
369 		return false;
370 
371 	return true;
372 }
373 
374 /* is @cgrp root of a threaded subtree? */
375 bool cgroup_is_thread_root(struct cgroup *cgrp)
376 {
377 	/* thread root should be a domain */
378 	if (cgroup_is_threaded(cgrp))
379 		return false;
380 
381 	/* a domain w/ threaded children is a thread root */
382 	if (cgrp->nr_threaded_children)
383 		return true;
384 
385 	/*
386 	 * A domain which has tasks and explicit threaded controllers
387 	 * enabled is a thread root.
388 	 */
389 	if (cgroup_has_tasks(cgrp) &&
390 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
391 		return true;
392 
393 	return false;
394 }
395 
396 /* a domain which isn't connected to the root w/o brekage can't be used */
397 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
398 {
399 	/* the cgroup itself can be a thread root */
400 	if (cgroup_is_threaded(cgrp))
401 		return false;
402 
403 	/* but the ancestors can't be unless mixable */
404 	while ((cgrp = cgroup_parent(cgrp))) {
405 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
406 			return false;
407 		if (cgroup_is_threaded(cgrp))
408 			return false;
409 	}
410 
411 	return true;
412 }
413 
414 /* subsystems visibly enabled on a cgroup */
415 static u16 cgroup_control(struct cgroup *cgrp)
416 {
417 	struct cgroup *parent = cgroup_parent(cgrp);
418 	u16 root_ss_mask = cgrp->root->subsys_mask;
419 
420 	if (parent) {
421 		u16 ss_mask = parent->subtree_control;
422 
423 		/* threaded cgroups can only have threaded controllers */
424 		if (cgroup_is_threaded(cgrp))
425 			ss_mask &= cgrp_dfl_threaded_ss_mask;
426 		return ss_mask;
427 	}
428 
429 	if (cgroup_on_dfl(cgrp))
430 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
431 				  cgrp_dfl_implicit_ss_mask);
432 	return root_ss_mask;
433 }
434 
435 /* subsystems enabled on a cgroup */
436 static u16 cgroup_ss_mask(struct cgroup *cgrp)
437 {
438 	struct cgroup *parent = cgroup_parent(cgrp);
439 
440 	if (parent) {
441 		u16 ss_mask = parent->subtree_ss_mask;
442 
443 		/* threaded cgroups can only have threaded controllers */
444 		if (cgroup_is_threaded(cgrp))
445 			ss_mask &= cgrp_dfl_threaded_ss_mask;
446 		return ss_mask;
447 	}
448 
449 	return cgrp->root->subsys_mask;
450 }
451 
452 /**
453  * cgroup_css - obtain a cgroup's css for the specified subsystem
454  * @cgrp: the cgroup of interest
455  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
456  *
457  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
458  * function must be called either under cgroup_mutex or rcu_read_lock() and
459  * the caller is responsible for pinning the returned css if it wants to
460  * keep accessing it outside the said locks.  This function may return
461  * %NULL if @cgrp doesn't have @subsys_id enabled.
462  */
463 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
464 					      struct cgroup_subsys *ss)
465 {
466 	if (ss)
467 		return rcu_dereference_check(cgrp->subsys[ss->id],
468 					lockdep_is_held(&cgroup_mutex));
469 	else
470 		return &cgrp->self;
471 }
472 
473 /**
474  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
475  * @cgrp: the cgroup of interest
476  * @ss: the subsystem of interest
477  *
478  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
479  * or is offline, %NULL is returned.
480  */
481 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
482 						     struct cgroup_subsys *ss)
483 {
484 	struct cgroup_subsys_state *css;
485 
486 	rcu_read_lock();
487 	css = cgroup_css(cgrp, ss);
488 	if (!css || !css_tryget_online(css))
489 		css = NULL;
490 	rcu_read_unlock();
491 
492 	return css;
493 }
494 
495 /**
496  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
497  * @cgrp: the cgroup of interest
498  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
499  *
500  * Similar to cgroup_css() but returns the effective css, which is defined
501  * as the matching css of the nearest ancestor including self which has @ss
502  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
503  * function is guaranteed to return non-NULL css.
504  */
505 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
506 							struct cgroup_subsys *ss)
507 {
508 	lockdep_assert_held(&cgroup_mutex);
509 
510 	if (!ss)
511 		return &cgrp->self;
512 
513 	/*
514 	 * This function is used while updating css associations and thus
515 	 * can't test the csses directly.  Test ss_mask.
516 	 */
517 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
518 		cgrp = cgroup_parent(cgrp);
519 		if (!cgrp)
520 			return NULL;
521 	}
522 
523 	return cgroup_css(cgrp, ss);
524 }
525 
526 /**
527  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
528  * @cgrp: the cgroup of interest
529  * @ss: the subsystem of interest
530  *
531  * Find and get the effective css of @cgrp for @ss.  The effective css is
532  * defined as the matching css of the nearest ancestor including self which
533  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
534  * the root css is returned, so this function always returns a valid css.
535  *
536  * The returned css is not guaranteed to be online, and therefore it is the
537  * callers responsiblity to tryget a reference for it.
538  */
539 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
540 					 struct cgroup_subsys *ss)
541 {
542 	struct cgroup_subsys_state *css;
543 
544 	do {
545 		css = cgroup_css(cgrp, ss);
546 
547 		if (css)
548 			return css;
549 		cgrp = cgroup_parent(cgrp);
550 	} while (cgrp);
551 
552 	return init_css_set.subsys[ss->id];
553 }
554 
555 /**
556  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
557  * @cgrp: the cgroup of interest
558  * @ss: the subsystem of interest
559  *
560  * Find and get the effective css of @cgrp for @ss.  The effective css is
561  * defined as the matching css of the nearest ancestor including self which
562  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
563  * the root css is returned, so this function always returns a valid css.
564  * The returned css must be put using css_put().
565  */
566 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
567 					     struct cgroup_subsys *ss)
568 {
569 	struct cgroup_subsys_state *css;
570 
571 	rcu_read_lock();
572 
573 	do {
574 		css = cgroup_css(cgrp, ss);
575 
576 		if (css && css_tryget_online(css))
577 			goto out_unlock;
578 		cgrp = cgroup_parent(cgrp);
579 	} while (cgrp);
580 
581 	css = init_css_set.subsys[ss->id];
582 	css_get(css);
583 out_unlock:
584 	rcu_read_unlock();
585 	return css;
586 }
587 
588 static void cgroup_get_live(struct cgroup *cgrp)
589 {
590 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
591 	css_get(&cgrp->self);
592 }
593 
594 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
595 {
596 	struct cgroup *cgrp = of->kn->parent->priv;
597 	struct cftype *cft = of_cft(of);
598 
599 	/*
600 	 * This is open and unprotected implementation of cgroup_css().
601 	 * seq_css() is only called from a kernfs file operation which has
602 	 * an active reference on the file.  Because all the subsystem
603 	 * files are drained before a css is disassociated with a cgroup,
604 	 * the matching css from the cgroup's subsys table is guaranteed to
605 	 * be and stay valid until the enclosing operation is complete.
606 	 */
607 	if (cft->ss)
608 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
609 	else
610 		return &cgrp->self;
611 }
612 EXPORT_SYMBOL_GPL(of_css);
613 
614 /**
615  * for_each_css - iterate all css's of a cgroup
616  * @css: the iteration cursor
617  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
618  * @cgrp: the target cgroup to iterate css's of
619  *
620  * Should be called under cgroup_[tree_]mutex.
621  */
622 #define for_each_css(css, ssid, cgrp)					\
623 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
624 		if (!((css) = rcu_dereference_check(			\
625 				(cgrp)->subsys[(ssid)],			\
626 				lockdep_is_held(&cgroup_mutex)))) { }	\
627 		else
628 
629 /**
630  * for_each_e_css - iterate all effective css's of a cgroup
631  * @css: the iteration cursor
632  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
633  * @cgrp: the target cgroup to iterate css's of
634  *
635  * Should be called under cgroup_[tree_]mutex.
636  */
637 #define for_each_e_css(css, ssid, cgrp)					    \
638 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
639 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
640 						   cgroup_subsys[(ssid)]))) \
641 			;						    \
642 		else
643 
644 /**
645  * do_each_subsys_mask - filter for_each_subsys with a bitmask
646  * @ss: the iteration cursor
647  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
648  * @ss_mask: the bitmask
649  *
650  * The block will only run for cases where the ssid-th bit (1 << ssid) of
651  * @ss_mask is set.
652  */
653 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
654 	unsigned long __ss_mask = (ss_mask);				\
655 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
656 		(ssid) = 0;						\
657 		break;							\
658 	}								\
659 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
660 		(ss) = cgroup_subsys[ssid];				\
661 		{
662 
663 #define while_each_subsys_mask()					\
664 		}							\
665 	}								\
666 } while (false)
667 
668 /* iterate over child cgrps, lock should be held throughout iteration */
669 #define cgroup_for_each_live_child(child, cgrp)				\
670 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
671 		if (({ lockdep_assert_held(&cgroup_mutex);		\
672 		       cgroup_is_dead(child); }))			\
673 			;						\
674 		else
675 
676 /* walk live descendants in preorder */
677 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
678 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
679 		if (({ lockdep_assert_held(&cgroup_mutex);		\
680 		       (dsct) = (d_css)->cgroup;			\
681 		       cgroup_is_dead(dsct); }))			\
682 			;						\
683 		else
684 
685 /* walk live descendants in postorder */
686 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
687 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
688 		if (({ lockdep_assert_held(&cgroup_mutex);		\
689 		       (dsct) = (d_css)->cgroup;			\
690 		       cgroup_is_dead(dsct); }))			\
691 			;						\
692 		else
693 
694 /*
695  * The default css_set - used by init and its children prior to any
696  * hierarchies being mounted. It contains a pointer to the root state
697  * for each subsystem. Also used to anchor the list of css_sets. Not
698  * reference-counted, to improve performance when child cgroups
699  * haven't been created.
700  */
701 struct css_set init_css_set = {
702 	.refcount		= REFCOUNT_INIT(1),
703 	.dom_cset		= &init_css_set,
704 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
705 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
706 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
707 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
708 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
709 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
710 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
711 
712 	/*
713 	 * The following field is re-initialized when this cset gets linked
714 	 * in cgroup_init().  However, let's initialize the field
715 	 * statically too so that the default cgroup can be accessed safely
716 	 * early during boot.
717 	 */
718 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
719 };
720 
721 static int css_set_count	= 1;	/* 1 for init_css_set */
722 
723 static bool css_set_threaded(struct css_set *cset)
724 {
725 	return cset->dom_cset != cset;
726 }
727 
728 /**
729  * css_set_populated - does a css_set contain any tasks?
730  * @cset: target css_set
731  *
732  * css_set_populated() should be the same as !!cset->nr_tasks at steady
733  * state. However, css_set_populated() can be called while a task is being
734  * added to or removed from the linked list before the nr_tasks is
735  * properly updated. Hence, we can't just look at ->nr_tasks here.
736  */
737 static bool css_set_populated(struct css_set *cset)
738 {
739 	lockdep_assert_held(&css_set_lock);
740 
741 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
742 }
743 
744 /**
745  * cgroup_update_populated - update the populated count of a cgroup
746  * @cgrp: the target cgroup
747  * @populated: inc or dec populated count
748  *
749  * One of the css_sets associated with @cgrp is either getting its first
750  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
751  * count is propagated towards root so that a given cgroup's
752  * nr_populated_children is zero iff none of its descendants contain any
753  * tasks.
754  *
755  * @cgrp's interface file "cgroup.populated" is zero if both
756  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
757  * 1 otherwise.  When the sum changes from or to zero, userland is notified
758  * that the content of the interface file has changed.  This can be used to
759  * detect when @cgrp and its descendants become populated or empty.
760  */
761 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
762 {
763 	struct cgroup *child = NULL;
764 	int adj = populated ? 1 : -1;
765 
766 	lockdep_assert_held(&css_set_lock);
767 
768 	do {
769 		bool was_populated = cgroup_is_populated(cgrp);
770 
771 		if (!child) {
772 			cgrp->nr_populated_csets += adj;
773 		} else {
774 			if (cgroup_is_threaded(child))
775 				cgrp->nr_populated_threaded_children += adj;
776 			else
777 				cgrp->nr_populated_domain_children += adj;
778 		}
779 
780 		if (was_populated == cgroup_is_populated(cgrp))
781 			break;
782 
783 		cgroup1_check_for_release(cgrp);
784 		cgroup_file_notify(&cgrp->events_file);
785 
786 		child = cgrp;
787 		cgrp = cgroup_parent(cgrp);
788 	} while (cgrp);
789 }
790 
791 /**
792  * css_set_update_populated - update populated state of a css_set
793  * @cset: target css_set
794  * @populated: whether @cset is populated or depopulated
795  *
796  * @cset is either getting the first task or losing the last.  Update the
797  * populated counters of all associated cgroups accordingly.
798  */
799 static void css_set_update_populated(struct css_set *cset, bool populated)
800 {
801 	struct cgrp_cset_link *link;
802 
803 	lockdep_assert_held(&css_set_lock);
804 
805 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
806 		cgroup_update_populated(link->cgrp, populated);
807 }
808 
809 /**
810  * css_set_move_task - move a task from one css_set to another
811  * @task: task being moved
812  * @from_cset: css_set @task currently belongs to (may be NULL)
813  * @to_cset: new css_set @task is being moved to (may be NULL)
814  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
815  *
816  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
817  * css_set, @from_cset can be NULL.  If @task is being disassociated
818  * instead of moved, @to_cset can be NULL.
819  *
820  * This function automatically handles populated counter updates and
821  * css_task_iter adjustments but the caller is responsible for managing
822  * @from_cset and @to_cset's reference counts.
823  */
824 static void css_set_move_task(struct task_struct *task,
825 			      struct css_set *from_cset, struct css_set *to_cset,
826 			      bool use_mg_tasks)
827 {
828 	lockdep_assert_held(&css_set_lock);
829 
830 	if (to_cset && !css_set_populated(to_cset))
831 		css_set_update_populated(to_cset, true);
832 
833 	if (from_cset) {
834 		struct css_task_iter *it, *pos;
835 
836 		WARN_ON_ONCE(list_empty(&task->cg_list));
837 
838 		/*
839 		 * @task is leaving, advance task iterators which are
840 		 * pointing to it so that they can resume at the next
841 		 * position.  Advancing an iterator might remove it from
842 		 * the list, use safe walk.  See css_task_iter_advance*()
843 		 * for details.
844 		 */
845 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
846 					 iters_node)
847 			if (it->task_pos == &task->cg_list)
848 				css_task_iter_advance(it);
849 
850 		list_del_init(&task->cg_list);
851 		if (!css_set_populated(from_cset))
852 			css_set_update_populated(from_cset, false);
853 	} else {
854 		WARN_ON_ONCE(!list_empty(&task->cg_list));
855 	}
856 
857 	if (to_cset) {
858 		/*
859 		 * We are synchronized through cgroup_threadgroup_rwsem
860 		 * against PF_EXITING setting such that we can't race
861 		 * against cgroup_exit() changing the css_set to
862 		 * init_css_set and dropping the old one.
863 		 */
864 		WARN_ON_ONCE(task->flags & PF_EXITING);
865 
866 		cgroup_move_task(task, to_cset);
867 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
868 							     &to_cset->tasks);
869 	}
870 }
871 
872 /*
873  * hash table for cgroup groups. This improves the performance to find
874  * an existing css_set. This hash doesn't (currently) take into
875  * account cgroups in empty hierarchies.
876  */
877 #define CSS_SET_HASH_BITS	7
878 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
879 
880 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
881 {
882 	unsigned long key = 0UL;
883 	struct cgroup_subsys *ss;
884 	int i;
885 
886 	for_each_subsys(ss, i)
887 		key += (unsigned long)css[i];
888 	key = (key >> 16) ^ key;
889 
890 	return key;
891 }
892 
893 void put_css_set_locked(struct css_set *cset)
894 {
895 	struct cgrp_cset_link *link, *tmp_link;
896 	struct cgroup_subsys *ss;
897 	int ssid;
898 
899 	lockdep_assert_held(&css_set_lock);
900 
901 	if (!refcount_dec_and_test(&cset->refcount))
902 		return;
903 
904 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
905 
906 	/* This css_set is dead. unlink it and release cgroup and css refs */
907 	for_each_subsys(ss, ssid) {
908 		list_del(&cset->e_cset_node[ssid]);
909 		css_put(cset->subsys[ssid]);
910 	}
911 	hash_del(&cset->hlist);
912 	css_set_count--;
913 
914 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
915 		list_del(&link->cset_link);
916 		list_del(&link->cgrp_link);
917 		if (cgroup_parent(link->cgrp))
918 			cgroup_put(link->cgrp);
919 		kfree(link);
920 	}
921 
922 	if (css_set_threaded(cset)) {
923 		list_del(&cset->threaded_csets_node);
924 		put_css_set_locked(cset->dom_cset);
925 	}
926 
927 	kfree_rcu(cset, rcu_head);
928 }
929 
930 /**
931  * compare_css_sets - helper function for find_existing_css_set().
932  * @cset: candidate css_set being tested
933  * @old_cset: existing css_set for a task
934  * @new_cgrp: cgroup that's being entered by the task
935  * @template: desired set of css pointers in css_set (pre-calculated)
936  *
937  * Returns true if "cset" matches "old_cset" except for the hierarchy
938  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
939  */
940 static bool compare_css_sets(struct css_set *cset,
941 			     struct css_set *old_cset,
942 			     struct cgroup *new_cgrp,
943 			     struct cgroup_subsys_state *template[])
944 {
945 	struct cgroup *new_dfl_cgrp;
946 	struct list_head *l1, *l2;
947 
948 	/*
949 	 * On the default hierarchy, there can be csets which are
950 	 * associated with the same set of cgroups but different csses.
951 	 * Let's first ensure that csses match.
952 	 */
953 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
954 		return false;
955 
956 
957 	/* @cset's domain should match the default cgroup's */
958 	if (cgroup_on_dfl(new_cgrp))
959 		new_dfl_cgrp = new_cgrp;
960 	else
961 		new_dfl_cgrp = old_cset->dfl_cgrp;
962 
963 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
964 		return false;
965 
966 	/*
967 	 * Compare cgroup pointers in order to distinguish between
968 	 * different cgroups in hierarchies.  As different cgroups may
969 	 * share the same effective css, this comparison is always
970 	 * necessary.
971 	 */
972 	l1 = &cset->cgrp_links;
973 	l2 = &old_cset->cgrp_links;
974 	while (1) {
975 		struct cgrp_cset_link *link1, *link2;
976 		struct cgroup *cgrp1, *cgrp2;
977 
978 		l1 = l1->next;
979 		l2 = l2->next;
980 		/* See if we reached the end - both lists are equal length. */
981 		if (l1 == &cset->cgrp_links) {
982 			BUG_ON(l2 != &old_cset->cgrp_links);
983 			break;
984 		} else {
985 			BUG_ON(l2 == &old_cset->cgrp_links);
986 		}
987 		/* Locate the cgroups associated with these links. */
988 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
989 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
990 		cgrp1 = link1->cgrp;
991 		cgrp2 = link2->cgrp;
992 		/* Hierarchies should be linked in the same order. */
993 		BUG_ON(cgrp1->root != cgrp2->root);
994 
995 		/*
996 		 * If this hierarchy is the hierarchy of the cgroup
997 		 * that's changing, then we need to check that this
998 		 * css_set points to the new cgroup; if it's any other
999 		 * hierarchy, then this css_set should point to the
1000 		 * same cgroup as the old css_set.
1001 		 */
1002 		if (cgrp1->root == new_cgrp->root) {
1003 			if (cgrp1 != new_cgrp)
1004 				return false;
1005 		} else {
1006 			if (cgrp1 != cgrp2)
1007 				return false;
1008 		}
1009 	}
1010 	return true;
1011 }
1012 
1013 /**
1014  * find_existing_css_set - init css array and find the matching css_set
1015  * @old_cset: the css_set that we're using before the cgroup transition
1016  * @cgrp: the cgroup that we're moving into
1017  * @template: out param for the new set of csses, should be clear on entry
1018  */
1019 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1020 					struct cgroup *cgrp,
1021 					struct cgroup_subsys_state *template[])
1022 {
1023 	struct cgroup_root *root = cgrp->root;
1024 	struct cgroup_subsys *ss;
1025 	struct css_set *cset;
1026 	unsigned long key;
1027 	int i;
1028 
1029 	/*
1030 	 * Build the set of subsystem state objects that we want to see in the
1031 	 * new css_set. while subsystems can change globally, the entries here
1032 	 * won't change, so no need for locking.
1033 	 */
1034 	for_each_subsys(ss, i) {
1035 		if (root->subsys_mask & (1UL << i)) {
1036 			/*
1037 			 * @ss is in this hierarchy, so we want the
1038 			 * effective css from @cgrp.
1039 			 */
1040 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1041 		} else {
1042 			/*
1043 			 * @ss is not in this hierarchy, so we don't want
1044 			 * to change the css.
1045 			 */
1046 			template[i] = old_cset->subsys[i];
1047 		}
1048 	}
1049 
1050 	key = css_set_hash(template);
1051 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1052 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1053 			continue;
1054 
1055 		/* This css_set matches what we need */
1056 		return cset;
1057 	}
1058 
1059 	/* No existing cgroup group matched */
1060 	return NULL;
1061 }
1062 
1063 static void free_cgrp_cset_links(struct list_head *links_to_free)
1064 {
1065 	struct cgrp_cset_link *link, *tmp_link;
1066 
1067 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1068 		list_del(&link->cset_link);
1069 		kfree(link);
1070 	}
1071 }
1072 
1073 /**
1074  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1075  * @count: the number of links to allocate
1076  * @tmp_links: list_head the allocated links are put on
1077  *
1078  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1079  * through ->cset_link.  Returns 0 on success or -errno.
1080  */
1081 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1082 {
1083 	struct cgrp_cset_link *link;
1084 	int i;
1085 
1086 	INIT_LIST_HEAD(tmp_links);
1087 
1088 	for (i = 0; i < count; i++) {
1089 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1090 		if (!link) {
1091 			free_cgrp_cset_links(tmp_links);
1092 			return -ENOMEM;
1093 		}
1094 		list_add(&link->cset_link, tmp_links);
1095 	}
1096 	return 0;
1097 }
1098 
1099 /**
1100  * link_css_set - a helper function to link a css_set to a cgroup
1101  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1102  * @cset: the css_set to be linked
1103  * @cgrp: the destination cgroup
1104  */
1105 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1106 			 struct cgroup *cgrp)
1107 {
1108 	struct cgrp_cset_link *link;
1109 
1110 	BUG_ON(list_empty(tmp_links));
1111 
1112 	if (cgroup_on_dfl(cgrp))
1113 		cset->dfl_cgrp = cgrp;
1114 
1115 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1116 	link->cset = cset;
1117 	link->cgrp = cgrp;
1118 
1119 	/*
1120 	 * Always add links to the tail of the lists so that the lists are
1121 	 * in choronological order.
1122 	 */
1123 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1124 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1125 
1126 	if (cgroup_parent(cgrp))
1127 		cgroup_get_live(cgrp);
1128 }
1129 
1130 /**
1131  * find_css_set - return a new css_set with one cgroup updated
1132  * @old_cset: the baseline css_set
1133  * @cgrp: the cgroup to be updated
1134  *
1135  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1136  * substituted into the appropriate hierarchy.
1137  */
1138 static struct css_set *find_css_set(struct css_set *old_cset,
1139 				    struct cgroup *cgrp)
1140 {
1141 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1142 	struct css_set *cset;
1143 	struct list_head tmp_links;
1144 	struct cgrp_cset_link *link;
1145 	struct cgroup_subsys *ss;
1146 	unsigned long key;
1147 	int ssid;
1148 
1149 	lockdep_assert_held(&cgroup_mutex);
1150 
1151 	/* First see if we already have a cgroup group that matches
1152 	 * the desired set */
1153 	spin_lock_irq(&css_set_lock);
1154 	cset = find_existing_css_set(old_cset, cgrp, template);
1155 	if (cset)
1156 		get_css_set(cset);
1157 	spin_unlock_irq(&css_set_lock);
1158 
1159 	if (cset)
1160 		return cset;
1161 
1162 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1163 	if (!cset)
1164 		return NULL;
1165 
1166 	/* Allocate all the cgrp_cset_link objects that we'll need */
1167 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1168 		kfree(cset);
1169 		return NULL;
1170 	}
1171 
1172 	refcount_set(&cset->refcount, 1);
1173 	cset->dom_cset = cset;
1174 	INIT_LIST_HEAD(&cset->tasks);
1175 	INIT_LIST_HEAD(&cset->mg_tasks);
1176 	INIT_LIST_HEAD(&cset->task_iters);
1177 	INIT_LIST_HEAD(&cset->threaded_csets);
1178 	INIT_HLIST_NODE(&cset->hlist);
1179 	INIT_LIST_HEAD(&cset->cgrp_links);
1180 	INIT_LIST_HEAD(&cset->mg_preload_node);
1181 	INIT_LIST_HEAD(&cset->mg_node);
1182 
1183 	/* Copy the set of subsystem state objects generated in
1184 	 * find_existing_css_set() */
1185 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1186 
1187 	spin_lock_irq(&css_set_lock);
1188 	/* Add reference counts and links from the new css_set. */
1189 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1190 		struct cgroup *c = link->cgrp;
1191 
1192 		if (c->root == cgrp->root)
1193 			c = cgrp;
1194 		link_css_set(&tmp_links, cset, c);
1195 	}
1196 
1197 	BUG_ON(!list_empty(&tmp_links));
1198 
1199 	css_set_count++;
1200 
1201 	/* Add @cset to the hash table */
1202 	key = css_set_hash(cset->subsys);
1203 	hash_add(css_set_table, &cset->hlist, key);
1204 
1205 	for_each_subsys(ss, ssid) {
1206 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1207 
1208 		list_add_tail(&cset->e_cset_node[ssid],
1209 			      &css->cgroup->e_csets[ssid]);
1210 		css_get(css);
1211 	}
1212 
1213 	spin_unlock_irq(&css_set_lock);
1214 
1215 	/*
1216 	 * If @cset should be threaded, look up the matching dom_cset and
1217 	 * link them up.  We first fully initialize @cset then look for the
1218 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1219 	 * to stay empty until we return.
1220 	 */
1221 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1222 		struct css_set *dcset;
1223 
1224 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1225 		if (!dcset) {
1226 			put_css_set(cset);
1227 			return NULL;
1228 		}
1229 
1230 		spin_lock_irq(&css_set_lock);
1231 		cset->dom_cset = dcset;
1232 		list_add_tail(&cset->threaded_csets_node,
1233 			      &dcset->threaded_csets);
1234 		spin_unlock_irq(&css_set_lock);
1235 	}
1236 
1237 	return cset;
1238 }
1239 
1240 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1241 {
1242 	struct cgroup *root_cgrp = kf_root->kn->priv;
1243 
1244 	return root_cgrp->root;
1245 }
1246 
1247 static int cgroup_init_root_id(struct cgroup_root *root)
1248 {
1249 	int id;
1250 
1251 	lockdep_assert_held(&cgroup_mutex);
1252 
1253 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1254 	if (id < 0)
1255 		return id;
1256 
1257 	root->hierarchy_id = id;
1258 	return 0;
1259 }
1260 
1261 static void cgroup_exit_root_id(struct cgroup_root *root)
1262 {
1263 	lockdep_assert_held(&cgroup_mutex);
1264 
1265 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1266 }
1267 
1268 void cgroup_free_root(struct cgroup_root *root)
1269 {
1270 	if (root) {
1271 		idr_destroy(&root->cgroup_idr);
1272 		kfree(root);
1273 	}
1274 }
1275 
1276 static void cgroup_destroy_root(struct cgroup_root *root)
1277 {
1278 	struct cgroup *cgrp = &root->cgrp;
1279 	struct cgrp_cset_link *link, *tmp_link;
1280 
1281 	trace_cgroup_destroy_root(root);
1282 
1283 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1284 
1285 	BUG_ON(atomic_read(&root->nr_cgrps));
1286 	BUG_ON(!list_empty(&cgrp->self.children));
1287 
1288 	/* Rebind all subsystems back to the default hierarchy */
1289 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1290 
1291 	/*
1292 	 * Release all the links from cset_links to this hierarchy's
1293 	 * root cgroup
1294 	 */
1295 	spin_lock_irq(&css_set_lock);
1296 
1297 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1298 		list_del(&link->cset_link);
1299 		list_del(&link->cgrp_link);
1300 		kfree(link);
1301 	}
1302 
1303 	spin_unlock_irq(&css_set_lock);
1304 
1305 	if (!list_empty(&root->root_list)) {
1306 		list_del(&root->root_list);
1307 		cgroup_root_count--;
1308 	}
1309 
1310 	cgroup_exit_root_id(root);
1311 
1312 	mutex_unlock(&cgroup_mutex);
1313 
1314 	kernfs_destroy_root(root->kf_root);
1315 	cgroup_free_root(root);
1316 }
1317 
1318 /*
1319  * look up cgroup associated with current task's cgroup namespace on the
1320  * specified hierarchy
1321  */
1322 static struct cgroup *
1323 current_cgns_cgroup_from_root(struct cgroup_root *root)
1324 {
1325 	struct cgroup *res = NULL;
1326 	struct css_set *cset;
1327 
1328 	lockdep_assert_held(&css_set_lock);
1329 
1330 	rcu_read_lock();
1331 
1332 	cset = current->nsproxy->cgroup_ns->root_cset;
1333 	if (cset == &init_css_set) {
1334 		res = &root->cgrp;
1335 	} else {
1336 		struct cgrp_cset_link *link;
1337 
1338 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1339 			struct cgroup *c = link->cgrp;
1340 
1341 			if (c->root == root) {
1342 				res = c;
1343 				break;
1344 			}
1345 		}
1346 	}
1347 	rcu_read_unlock();
1348 
1349 	BUG_ON(!res);
1350 	return res;
1351 }
1352 
1353 /* look up cgroup associated with given css_set on the specified hierarchy */
1354 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1355 					    struct cgroup_root *root)
1356 {
1357 	struct cgroup *res = NULL;
1358 
1359 	lockdep_assert_held(&cgroup_mutex);
1360 	lockdep_assert_held(&css_set_lock);
1361 
1362 	if (cset == &init_css_set) {
1363 		res = &root->cgrp;
1364 	} else if (root == &cgrp_dfl_root) {
1365 		res = cset->dfl_cgrp;
1366 	} else {
1367 		struct cgrp_cset_link *link;
1368 
1369 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1370 			struct cgroup *c = link->cgrp;
1371 
1372 			if (c->root == root) {
1373 				res = c;
1374 				break;
1375 			}
1376 		}
1377 	}
1378 
1379 	BUG_ON(!res);
1380 	return res;
1381 }
1382 
1383 /*
1384  * Return the cgroup for "task" from the given hierarchy. Must be
1385  * called with cgroup_mutex and css_set_lock held.
1386  */
1387 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1388 				     struct cgroup_root *root)
1389 {
1390 	/*
1391 	 * No need to lock the task - since we hold cgroup_mutex the
1392 	 * task can't change groups, so the only thing that can happen
1393 	 * is that it exits and its css is set back to init_css_set.
1394 	 */
1395 	return cset_cgroup_from_root(task_css_set(task), root);
1396 }
1397 
1398 /*
1399  * A task must hold cgroup_mutex to modify cgroups.
1400  *
1401  * Any task can increment and decrement the count field without lock.
1402  * So in general, code holding cgroup_mutex can't rely on the count
1403  * field not changing.  However, if the count goes to zero, then only
1404  * cgroup_attach_task() can increment it again.  Because a count of zero
1405  * means that no tasks are currently attached, therefore there is no
1406  * way a task attached to that cgroup can fork (the other way to
1407  * increment the count).  So code holding cgroup_mutex can safely
1408  * assume that if the count is zero, it will stay zero. Similarly, if
1409  * a task holds cgroup_mutex on a cgroup with zero count, it
1410  * knows that the cgroup won't be removed, as cgroup_rmdir()
1411  * needs that mutex.
1412  *
1413  * A cgroup can only be deleted if both its 'count' of using tasks
1414  * is zero, and its list of 'children' cgroups is empty.  Since all
1415  * tasks in the system use _some_ cgroup, and since there is always at
1416  * least one task in the system (init, pid == 1), therefore, root cgroup
1417  * always has either children cgroups and/or using tasks.  So we don't
1418  * need a special hack to ensure that root cgroup cannot be deleted.
1419  *
1420  * P.S.  One more locking exception.  RCU is used to guard the
1421  * update of a tasks cgroup pointer by cgroup_attach_task()
1422  */
1423 
1424 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1425 
1426 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1427 			      char *buf)
1428 {
1429 	struct cgroup_subsys *ss = cft->ss;
1430 
1431 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1432 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1433 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1434 			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1435 			 cft->name);
1436 	else
1437 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1438 	return buf;
1439 }
1440 
1441 /**
1442  * cgroup_file_mode - deduce file mode of a control file
1443  * @cft: the control file in question
1444  *
1445  * S_IRUGO for read, S_IWUSR for write.
1446  */
1447 static umode_t cgroup_file_mode(const struct cftype *cft)
1448 {
1449 	umode_t mode = 0;
1450 
1451 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1452 		mode |= S_IRUGO;
1453 
1454 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1455 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1456 			mode |= S_IWUGO;
1457 		else
1458 			mode |= S_IWUSR;
1459 	}
1460 
1461 	return mode;
1462 }
1463 
1464 /**
1465  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1466  * @subtree_control: the new subtree_control mask to consider
1467  * @this_ss_mask: available subsystems
1468  *
1469  * On the default hierarchy, a subsystem may request other subsystems to be
1470  * enabled together through its ->depends_on mask.  In such cases, more
1471  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1472  *
1473  * This function calculates which subsystems need to be enabled if
1474  * @subtree_control is to be applied while restricted to @this_ss_mask.
1475  */
1476 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1477 {
1478 	u16 cur_ss_mask = subtree_control;
1479 	struct cgroup_subsys *ss;
1480 	int ssid;
1481 
1482 	lockdep_assert_held(&cgroup_mutex);
1483 
1484 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1485 
1486 	while (true) {
1487 		u16 new_ss_mask = cur_ss_mask;
1488 
1489 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1490 			new_ss_mask |= ss->depends_on;
1491 		} while_each_subsys_mask();
1492 
1493 		/*
1494 		 * Mask out subsystems which aren't available.  This can
1495 		 * happen only if some depended-upon subsystems were bound
1496 		 * to non-default hierarchies.
1497 		 */
1498 		new_ss_mask &= this_ss_mask;
1499 
1500 		if (new_ss_mask == cur_ss_mask)
1501 			break;
1502 		cur_ss_mask = new_ss_mask;
1503 	}
1504 
1505 	return cur_ss_mask;
1506 }
1507 
1508 /**
1509  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1510  * @kn: the kernfs_node being serviced
1511  *
1512  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1513  * the method finishes if locking succeeded.  Note that once this function
1514  * returns the cgroup returned by cgroup_kn_lock_live() may become
1515  * inaccessible any time.  If the caller intends to continue to access the
1516  * cgroup, it should pin it before invoking this function.
1517  */
1518 void cgroup_kn_unlock(struct kernfs_node *kn)
1519 {
1520 	struct cgroup *cgrp;
1521 
1522 	if (kernfs_type(kn) == KERNFS_DIR)
1523 		cgrp = kn->priv;
1524 	else
1525 		cgrp = kn->parent->priv;
1526 
1527 	mutex_unlock(&cgroup_mutex);
1528 
1529 	kernfs_unbreak_active_protection(kn);
1530 	cgroup_put(cgrp);
1531 }
1532 
1533 /**
1534  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1535  * @kn: the kernfs_node being serviced
1536  * @drain_offline: perform offline draining on the cgroup
1537  *
1538  * This helper is to be used by a cgroup kernfs method currently servicing
1539  * @kn.  It breaks the active protection, performs cgroup locking and
1540  * verifies that the associated cgroup is alive.  Returns the cgroup if
1541  * alive; otherwise, %NULL.  A successful return should be undone by a
1542  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1543  * cgroup is drained of offlining csses before return.
1544  *
1545  * Any cgroup kernfs method implementation which requires locking the
1546  * associated cgroup should use this helper.  It avoids nesting cgroup
1547  * locking under kernfs active protection and allows all kernfs operations
1548  * including self-removal.
1549  */
1550 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1551 {
1552 	struct cgroup *cgrp;
1553 
1554 	if (kernfs_type(kn) == KERNFS_DIR)
1555 		cgrp = kn->priv;
1556 	else
1557 		cgrp = kn->parent->priv;
1558 
1559 	/*
1560 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1561 	 * active_ref.  cgroup liveliness check alone provides enough
1562 	 * protection against removal.  Ensure @cgrp stays accessible and
1563 	 * break the active_ref protection.
1564 	 */
1565 	if (!cgroup_tryget(cgrp))
1566 		return NULL;
1567 	kernfs_break_active_protection(kn);
1568 
1569 	if (drain_offline)
1570 		cgroup_lock_and_drain_offline(cgrp);
1571 	else
1572 		mutex_lock(&cgroup_mutex);
1573 
1574 	if (!cgroup_is_dead(cgrp))
1575 		return cgrp;
1576 
1577 	cgroup_kn_unlock(kn);
1578 	return NULL;
1579 }
1580 
1581 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1582 {
1583 	char name[CGROUP_FILE_NAME_MAX];
1584 
1585 	lockdep_assert_held(&cgroup_mutex);
1586 
1587 	if (cft->file_offset) {
1588 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1589 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1590 
1591 		spin_lock_irq(&cgroup_file_kn_lock);
1592 		cfile->kn = NULL;
1593 		spin_unlock_irq(&cgroup_file_kn_lock);
1594 
1595 		del_timer_sync(&cfile->notify_timer);
1596 	}
1597 
1598 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1599 }
1600 
1601 /**
1602  * css_clear_dir - remove subsys files in a cgroup directory
1603  * @css: taget css
1604  */
1605 static void css_clear_dir(struct cgroup_subsys_state *css)
1606 {
1607 	struct cgroup *cgrp = css->cgroup;
1608 	struct cftype *cfts;
1609 
1610 	if (!(css->flags & CSS_VISIBLE))
1611 		return;
1612 
1613 	css->flags &= ~CSS_VISIBLE;
1614 
1615 	if (!css->ss) {
1616 		if (cgroup_on_dfl(cgrp))
1617 			cfts = cgroup_base_files;
1618 		else
1619 			cfts = cgroup1_base_files;
1620 
1621 		cgroup_addrm_files(css, cgrp, cfts, false);
1622 	} else {
1623 		list_for_each_entry(cfts, &css->ss->cfts, node)
1624 			cgroup_addrm_files(css, cgrp, cfts, false);
1625 	}
1626 }
1627 
1628 /**
1629  * css_populate_dir - create subsys files in a cgroup directory
1630  * @css: target css
1631  *
1632  * On failure, no file is added.
1633  */
1634 static int css_populate_dir(struct cgroup_subsys_state *css)
1635 {
1636 	struct cgroup *cgrp = css->cgroup;
1637 	struct cftype *cfts, *failed_cfts;
1638 	int ret;
1639 
1640 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1641 		return 0;
1642 
1643 	if (!css->ss) {
1644 		if (cgroup_on_dfl(cgrp))
1645 			cfts = cgroup_base_files;
1646 		else
1647 			cfts = cgroup1_base_files;
1648 
1649 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1650 		if (ret < 0)
1651 			return ret;
1652 	} else {
1653 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1654 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1655 			if (ret < 0) {
1656 				failed_cfts = cfts;
1657 				goto err;
1658 			}
1659 		}
1660 	}
1661 
1662 	css->flags |= CSS_VISIBLE;
1663 
1664 	return 0;
1665 err:
1666 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1667 		if (cfts == failed_cfts)
1668 			break;
1669 		cgroup_addrm_files(css, cgrp, cfts, false);
1670 	}
1671 	return ret;
1672 }
1673 
1674 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1675 {
1676 	struct cgroup *dcgrp = &dst_root->cgrp;
1677 	struct cgroup_subsys *ss;
1678 	int ssid, i, ret;
1679 
1680 	lockdep_assert_held(&cgroup_mutex);
1681 
1682 	do_each_subsys_mask(ss, ssid, ss_mask) {
1683 		/*
1684 		 * If @ss has non-root csses attached to it, can't move.
1685 		 * If @ss is an implicit controller, it is exempt from this
1686 		 * rule and can be stolen.
1687 		 */
1688 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1689 		    !ss->implicit_on_dfl)
1690 			return -EBUSY;
1691 
1692 		/* can't move between two non-dummy roots either */
1693 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1694 			return -EBUSY;
1695 	} while_each_subsys_mask();
1696 
1697 	do_each_subsys_mask(ss, ssid, ss_mask) {
1698 		struct cgroup_root *src_root = ss->root;
1699 		struct cgroup *scgrp = &src_root->cgrp;
1700 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1701 		struct css_set *cset;
1702 
1703 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1704 
1705 		/* disable from the source */
1706 		src_root->subsys_mask &= ~(1 << ssid);
1707 		WARN_ON(cgroup_apply_control(scgrp));
1708 		cgroup_finalize_control(scgrp, 0);
1709 
1710 		/* rebind */
1711 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1712 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1713 		ss->root = dst_root;
1714 		css->cgroup = dcgrp;
1715 
1716 		spin_lock_irq(&css_set_lock);
1717 		hash_for_each(css_set_table, i, cset, hlist)
1718 			list_move_tail(&cset->e_cset_node[ss->id],
1719 				       &dcgrp->e_csets[ss->id]);
1720 		spin_unlock_irq(&css_set_lock);
1721 
1722 		/* default hierarchy doesn't enable controllers by default */
1723 		dst_root->subsys_mask |= 1 << ssid;
1724 		if (dst_root == &cgrp_dfl_root) {
1725 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1726 		} else {
1727 			dcgrp->subtree_control |= 1 << ssid;
1728 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1729 		}
1730 
1731 		ret = cgroup_apply_control(dcgrp);
1732 		if (ret)
1733 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1734 				ss->name, ret);
1735 
1736 		if (ss->bind)
1737 			ss->bind(css);
1738 	} while_each_subsys_mask();
1739 
1740 	kernfs_activate(dcgrp->kn);
1741 	return 0;
1742 }
1743 
1744 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1745 		     struct kernfs_root *kf_root)
1746 {
1747 	int len = 0;
1748 	char *buf = NULL;
1749 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1750 	struct cgroup *ns_cgroup;
1751 
1752 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1753 	if (!buf)
1754 		return -ENOMEM;
1755 
1756 	spin_lock_irq(&css_set_lock);
1757 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1758 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1759 	spin_unlock_irq(&css_set_lock);
1760 
1761 	if (len >= PATH_MAX)
1762 		len = -ERANGE;
1763 	else if (len > 0) {
1764 		seq_escape(sf, buf, " \t\n\\");
1765 		len = 0;
1766 	}
1767 	kfree(buf);
1768 	return len;
1769 }
1770 
1771 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1772 {
1773 	char *token;
1774 
1775 	*root_flags = 0;
1776 
1777 	if (!data)
1778 		return 0;
1779 
1780 	while ((token = strsep(&data, ",")) != NULL) {
1781 		if (!strcmp(token, "nsdelegate")) {
1782 			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1783 			continue;
1784 		}
1785 
1786 		pr_err("cgroup2: unknown option \"%s\"\n", token);
1787 		return -EINVAL;
1788 	}
1789 
1790 	return 0;
1791 }
1792 
1793 static void apply_cgroup_root_flags(unsigned int root_flags)
1794 {
1795 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1796 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1797 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1798 		else
1799 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1800 	}
1801 }
1802 
1803 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1804 {
1805 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1806 		seq_puts(seq, ",nsdelegate");
1807 	return 0;
1808 }
1809 
1810 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1811 {
1812 	unsigned int root_flags;
1813 	int ret;
1814 
1815 	ret = parse_cgroup_root_flags(data, &root_flags);
1816 	if (ret)
1817 		return ret;
1818 
1819 	apply_cgroup_root_flags(root_flags);
1820 	return 0;
1821 }
1822 
1823 /*
1824  * To reduce the fork() overhead for systems that are not actually using
1825  * their cgroups capability, we don't maintain the lists running through
1826  * each css_set to its tasks until we see the list actually used - in other
1827  * words after the first mount.
1828  */
1829 static bool use_task_css_set_links __read_mostly;
1830 
1831 static void cgroup_enable_task_cg_lists(void)
1832 {
1833 	struct task_struct *p, *g;
1834 
1835 	/*
1836 	 * We need tasklist_lock because RCU is not safe against
1837 	 * while_each_thread(). Besides, a forking task that has passed
1838 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1839 	 * is not guaranteed to have its child immediately visible in the
1840 	 * tasklist if we walk through it with RCU.
1841 	 */
1842 	read_lock(&tasklist_lock);
1843 	spin_lock_irq(&css_set_lock);
1844 
1845 	if (use_task_css_set_links)
1846 		goto out_unlock;
1847 
1848 	use_task_css_set_links = true;
1849 
1850 	do_each_thread(g, p) {
1851 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1852 			     task_css_set(p) != &init_css_set);
1853 
1854 		/*
1855 		 * We should check if the process is exiting, otherwise
1856 		 * it will race with cgroup_exit() in that the list
1857 		 * entry won't be deleted though the process has exited.
1858 		 * Do it while holding siglock so that we don't end up
1859 		 * racing against cgroup_exit().
1860 		 *
1861 		 * Interrupts were already disabled while acquiring
1862 		 * the css_set_lock, so we do not need to disable it
1863 		 * again when acquiring the sighand->siglock here.
1864 		 */
1865 		spin_lock(&p->sighand->siglock);
1866 		if (!(p->flags & PF_EXITING)) {
1867 			struct css_set *cset = task_css_set(p);
1868 
1869 			if (!css_set_populated(cset))
1870 				css_set_update_populated(cset, true);
1871 			list_add_tail(&p->cg_list, &cset->tasks);
1872 			get_css_set(cset);
1873 			cset->nr_tasks++;
1874 		}
1875 		spin_unlock(&p->sighand->siglock);
1876 	} while_each_thread(g, p);
1877 out_unlock:
1878 	spin_unlock_irq(&css_set_lock);
1879 	read_unlock(&tasklist_lock);
1880 }
1881 
1882 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1883 {
1884 	struct cgroup_subsys *ss;
1885 	int ssid;
1886 
1887 	INIT_LIST_HEAD(&cgrp->self.sibling);
1888 	INIT_LIST_HEAD(&cgrp->self.children);
1889 	INIT_LIST_HEAD(&cgrp->cset_links);
1890 	INIT_LIST_HEAD(&cgrp->pidlists);
1891 	mutex_init(&cgrp->pidlist_mutex);
1892 	cgrp->self.cgroup = cgrp;
1893 	cgrp->self.flags |= CSS_ONLINE;
1894 	cgrp->dom_cgrp = cgrp;
1895 	cgrp->max_descendants = INT_MAX;
1896 	cgrp->max_depth = INT_MAX;
1897 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1898 	prev_cputime_init(&cgrp->prev_cputime);
1899 
1900 	for_each_subsys(ss, ssid)
1901 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1902 
1903 	init_waitqueue_head(&cgrp->offline_waitq);
1904 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1905 }
1906 
1907 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1908 {
1909 	struct cgroup *cgrp = &root->cgrp;
1910 
1911 	INIT_LIST_HEAD(&root->root_list);
1912 	atomic_set(&root->nr_cgrps, 1);
1913 	cgrp->root = root;
1914 	init_cgroup_housekeeping(cgrp);
1915 	idr_init(&root->cgroup_idr);
1916 
1917 	root->flags = opts->flags;
1918 	if (opts->release_agent)
1919 		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1920 	if (opts->name)
1921 		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1922 	if (opts->cpuset_clone_children)
1923 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1924 }
1925 
1926 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1927 {
1928 	LIST_HEAD(tmp_links);
1929 	struct cgroup *root_cgrp = &root->cgrp;
1930 	struct kernfs_syscall_ops *kf_sops;
1931 	struct css_set *cset;
1932 	int i, ret;
1933 
1934 	lockdep_assert_held(&cgroup_mutex);
1935 
1936 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1937 	if (ret < 0)
1938 		goto out;
1939 	root_cgrp->id = ret;
1940 	root_cgrp->ancestor_ids[0] = ret;
1941 
1942 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1943 			      ref_flags, GFP_KERNEL);
1944 	if (ret)
1945 		goto out;
1946 
1947 	/*
1948 	 * We're accessing css_set_count without locking css_set_lock here,
1949 	 * but that's OK - it can only be increased by someone holding
1950 	 * cgroup_lock, and that's us.  Later rebinding may disable
1951 	 * controllers on the default hierarchy and thus create new csets,
1952 	 * which can't be more than the existing ones.  Allocate 2x.
1953 	 */
1954 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1955 	if (ret)
1956 		goto cancel_ref;
1957 
1958 	ret = cgroup_init_root_id(root);
1959 	if (ret)
1960 		goto cancel_ref;
1961 
1962 	kf_sops = root == &cgrp_dfl_root ?
1963 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1964 
1965 	root->kf_root = kernfs_create_root(kf_sops,
1966 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1967 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1968 					   root_cgrp);
1969 	if (IS_ERR(root->kf_root)) {
1970 		ret = PTR_ERR(root->kf_root);
1971 		goto exit_root_id;
1972 	}
1973 	root_cgrp->kn = root->kf_root->kn;
1974 
1975 	ret = css_populate_dir(&root_cgrp->self);
1976 	if (ret)
1977 		goto destroy_root;
1978 
1979 	ret = rebind_subsystems(root, ss_mask);
1980 	if (ret)
1981 		goto destroy_root;
1982 
1983 	ret = cgroup_bpf_inherit(root_cgrp);
1984 	WARN_ON_ONCE(ret);
1985 
1986 	trace_cgroup_setup_root(root);
1987 
1988 	/*
1989 	 * There must be no failure case after here, since rebinding takes
1990 	 * care of subsystems' refcounts, which are explicitly dropped in
1991 	 * the failure exit path.
1992 	 */
1993 	list_add(&root->root_list, &cgroup_roots);
1994 	cgroup_root_count++;
1995 
1996 	/*
1997 	 * Link the root cgroup in this hierarchy into all the css_set
1998 	 * objects.
1999 	 */
2000 	spin_lock_irq(&css_set_lock);
2001 	hash_for_each(css_set_table, i, cset, hlist) {
2002 		link_css_set(&tmp_links, cset, root_cgrp);
2003 		if (css_set_populated(cset))
2004 			cgroup_update_populated(root_cgrp, true);
2005 	}
2006 	spin_unlock_irq(&css_set_lock);
2007 
2008 	BUG_ON(!list_empty(&root_cgrp->self.children));
2009 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2010 
2011 	kernfs_activate(root_cgrp->kn);
2012 	ret = 0;
2013 	goto out;
2014 
2015 destroy_root:
2016 	kernfs_destroy_root(root->kf_root);
2017 	root->kf_root = NULL;
2018 exit_root_id:
2019 	cgroup_exit_root_id(root);
2020 cancel_ref:
2021 	percpu_ref_exit(&root_cgrp->self.refcnt);
2022 out:
2023 	free_cgrp_cset_links(&tmp_links);
2024 	return ret;
2025 }
2026 
2027 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
2028 			       struct cgroup_root *root, unsigned long magic,
2029 			       struct cgroup_namespace *ns)
2030 {
2031 	struct dentry *dentry;
2032 	bool new_sb;
2033 
2034 	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2035 
2036 	/*
2037 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2038 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2039 	 */
2040 	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2041 		struct dentry *nsdentry;
2042 		struct cgroup *cgrp;
2043 
2044 		mutex_lock(&cgroup_mutex);
2045 		spin_lock_irq(&css_set_lock);
2046 
2047 		cgrp = cset_cgroup_from_root(ns->root_cset, root);
2048 
2049 		spin_unlock_irq(&css_set_lock);
2050 		mutex_unlock(&cgroup_mutex);
2051 
2052 		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2053 		dput(dentry);
2054 		dentry = nsdentry;
2055 	}
2056 
2057 	if (IS_ERR(dentry) || !new_sb)
2058 		cgroup_put(&root->cgrp);
2059 
2060 	return dentry;
2061 }
2062 
2063 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2064 			 int flags, const char *unused_dev_name,
2065 			 void *data)
2066 {
2067 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2068 	struct dentry *dentry;
2069 	int ret;
2070 
2071 	get_cgroup_ns(ns);
2072 
2073 	/* Check if the caller has permission to mount. */
2074 	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2075 		put_cgroup_ns(ns);
2076 		return ERR_PTR(-EPERM);
2077 	}
2078 
2079 	/*
2080 	 * The first time anyone tries to mount a cgroup, enable the list
2081 	 * linking each css_set to its tasks and fix up all existing tasks.
2082 	 */
2083 	if (!use_task_css_set_links)
2084 		cgroup_enable_task_cg_lists();
2085 
2086 	if (fs_type == &cgroup2_fs_type) {
2087 		unsigned int root_flags;
2088 
2089 		ret = parse_cgroup_root_flags(data, &root_flags);
2090 		if (ret) {
2091 			put_cgroup_ns(ns);
2092 			return ERR_PTR(ret);
2093 		}
2094 
2095 		cgrp_dfl_visible = true;
2096 		cgroup_get_live(&cgrp_dfl_root.cgrp);
2097 
2098 		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2099 					 CGROUP2_SUPER_MAGIC, ns);
2100 		if (!IS_ERR(dentry))
2101 			apply_cgroup_root_flags(root_flags);
2102 	} else {
2103 		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2104 				       CGROUP_SUPER_MAGIC, ns);
2105 	}
2106 
2107 	put_cgroup_ns(ns);
2108 	return dentry;
2109 }
2110 
2111 static void cgroup_kill_sb(struct super_block *sb)
2112 {
2113 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2114 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2115 
2116 	/*
2117 	 * If @root doesn't have any mounts or children, start killing it.
2118 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2119 	 * cgroup_mount() may wait for @root's release.
2120 	 *
2121 	 * And don't kill the default root.
2122 	 */
2123 	if (!list_empty(&root->cgrp.self.children) ||
2124 	    root == &cgrp_dfl_root)
2125 		cgroup_put(&root->cgrp);
2126 	else
2127 		percpu_ref_kill(&root->cgrp.self.refcnt);
2128 
2129 	kernfs_kill_sb(sb);
2130 }
2131 
2132 struct file_system_type cgroup_fs_type = {
2133 	.name = "cgroup",
2134 	.mount = cgroup_mount,
2135 	.kill_sb = cgroup_kill_sb,
2136 	.fs_flags = FS_USERNS_MOUNT,
2137 };
2138 
2139 static struct file_system_type cgroup2_fs_type = {
2140 	.name = "cgroup2",
2141 	.mount = cgroup_mount,
2142 	.kill_sb = cgroup_kill_sb,
2143 	.fs_flags = FS_USERNS_MOUNT,
2144 };
2145 
2146 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2147 			  struct cgroup_namespace *ns)
2148 {
2149 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2150 
2151 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2152 }
2153 
2154 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2155 		   struct cgroup_namespace *ns)
2156 {
2157 	int ret;
2158 
2159 	mutex_lock(&cgroup_mutex);
2160 	spin_lock_irq(&css_set_lock);
2161 
2162 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2163 
2164 	spin_unlock_irq(&css_set_lock);
2165 	mutex_unlock(&cgroup_mutex);
2166 
2167 	return ret;
2168 }
2169 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2170 
2171 /**
2172  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2173  * @task: target task
2174  * @buf: the buffer to write the path into
2175  * @buflen: the length of the buffer
2176  *
2177  * Determine @task's cgroup on the first (the one with the lowest non-zero
2178  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2179  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2180  * cgroup controller callbacks.
2181  *
2182  * Return value is the same as kernfs_path().
2183  */
2184 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2185 {
2186 	struct cgroup_root *root;
2187 	struct cgroup *cgrp;
2188 	int hierarchy_id = 1;
2189 	int ret;
2190 
2191 	mutex_lock(&cgroup_mutex);
2192 	spin_lock_irq(&css_set_lock);
2193 
2194 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2195 
2196 	if (root) {
2197 		cgrp = task_cgroup_from_root(task, root);
2198 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2199 	} else {
2200 		/* if no hierarchy exists, everyone is in "/" */
2201 		ret = strlcpy(buf, "/", buflen);
2202 	}
2203 
2204 	spin_unlock_irq(&css_set_lock);
2205 	mutex_unlock(&cgroup_mutex);
2206 	return ret;
2207 }
2208 EXPORT_SYMBOL_GPL(task_cgroup_path);
2209 
2210 /**
2211  * cgroup_migrate_add_task - add a migration target task to a migration context
2212  * @task: target task
2213  * @mgctx: target migration context
2214  *
2215  * Add @task, which is a migration target, to @mgctx->tset.  This function
2216  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2217  * should have been added as a migration source and @task->cg_list will be
2218  * moved from the css_set's tasks list to mg_tasks one.
2219  */
2220 static void cgroup_migrate_add_task(struct task_struct *task,
2221 				    struct cgroup_mgctx *mgctx)
2222 {
2223 	struct css_set *cset;
2224 
2225 	lockdep_assert_held(&css_set_lock);
2226 
2227 	/* @task either already exited or can't exit until the end */
2228 	if (task->flags & PF_EXITING)
2229 		return;
2230 
2231 	/* leave @task alone if post_fork() hasn't linked it yet */
2232 	if (list_empty(&task->cg_list))
2233 		return;
2234 
2235 	cset = task_css_set(task);
2236 	if (!cset->mg_src_cgrp)
2237 		return;
2238 
2239 	mgctx->tset.nr_tasks++;
2240 
2241 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2242 	if (list_empty(&cset->mg_node))
2243 		list_add_tail(&cset->mg_node,
2244 			      &mgctx->tset.src_csets);
2245 	if (list_empty(&cset->mg_dst_cset->mg_node))
2246 		list_add_tail(&cset->mg_dst_cset->mg_node,
2247 			      &mgctx->tset.dst_csets);
2248 }
2249 
2250 /**
2251  * cgroup_taskset_first - reset taskset and return the first task
2252  * @tset: taskset of interest
2253  * @dst_cssp: output variable for the destination css
2254  *
2255  * @tset iteration is initialized and the first task is returned.
2256  */
2257 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2258 					 struct cgroup_subsys_state **dst_cssp)
2259 {
2260 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2261 	tset->cur_task = NULL;
2262 
2263 	return cgroup_taskset_next(tset, dst_cssp);
2264 }
2265 
2266 /**
2267  * cgroup_taskset_next - iterate to the next task in taskset
2268  * @tset: taskset of interest
2269  * @dst_cssp: output variable for the destination css
2270  *
2271  * Return the next task in @tset.  Iteration must have been initialized
2272  * with cgroup_taskset_first().
2273  */
2274 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2275 					struct cgroup_subsys_state **dst_cssp)
2276 {
2277 	struct css_set *cset = tset->cur_cset;
2278 	struct task_struct *task = tset->cur_task;
2279 
2280 	while (&cset->mg_node != tset->csets) {
2281 		if (!task)
2282 			task = list_first_entry(&cset->mg_tasks,
2283 						struct task_struct, cg_list);
2284 		else
2285 			task = list_next_entry(task, cg_list);
2286 
2287 		if (&task->cg_list != &cset->mg_tasks) {
2288 			tset->cur_cset = cset;
2289 			tset->cur_task = task;
2290 
2291 			/*
2292 			 * This function may be called both before and
2293 			 * after cgroup_taskset_migrate().  The two cases
2294 			 * can be distinguished by looking at whether @cset
2295 			 * has its ->mg_dst_cset set.
2296 			 */
2297 			if (cset->mg_dst_cset)
2298 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2299 			else
2300 				*dst_cssp = cset->subsys[tset->ssid];
2301 
2302 			return task;
2303 		}
2304 
2305 		cset = list_next_entry(cset, mg_node);
2306 		task = NULL;
2307 	}
2308 
2309 	return NULL;
2310 }
2311 
2312 /**
2313  * cgroup_taskset_migrate - migrate a taskset
2314  * @mgctx: migration context
2315  *
2316  * Migrate tasks in @mgctx as setup by migration preparation functions.
2317  * This function fails iff one of the ->can_attach callbacks fails and
2318  * guarantees that either all or none of the tasks in @mgctx are migrated.
2319  * @mgctx is consumed regardless of success.
2320  */
2321 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2322 {
2323 	struct cgroup_taskset *tset = &mgctx->tset;
2324 	struct cgroup_subsys *ss;
2325 	struct task_struct *task, *tmp_task;
2326 	struct css_set *cset, *tmp_cset;
2327 	int ssid, failed_ssid, ret;
2328 
2329 	/* check that we can legitimately attach to the cgroup */
2330 	if (tset->nr_tasks) {
2331 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2332 			if (ss->can_attach) {
2333 				tset->ssid = ssid;
2334 				ret = ss->can_attach(tset);
2335 				if (ret) {
2336 					failed_ssid = ssid;
2337 					goto out_cancel_attach;
2338 				}
2339 			}
2340 		} while_each_subsys_mask();
2341 	}
2342 
2343 	/*
2344 	 * Now that we're guaranteed success, proceed to move all tasks to
2345 	 * the new cgroup.  There are no failure cases after here, so this
2346 	 * is the commit point.
2347 	 */
2348 	spin_lock_irq(&css_set_lock);
2349 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2350 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2351 			struct css_set *from_cset = task_css_set(task);
2352 			struct css_set *to_cset = cset->mg_dst_cset;
2353 
2354 			get_css_set(to_cset);
2355 			to_cset->nr_tasks++;
2356 			css_set_move_task(task, from_cset, to_cset, true);
2357 			put_css_set_locked(from_cset);
2358 			from_cset->nr_tasks--;
2359 		}
2360 	}
2361 	spin_unlock_irq(&css_set_lock);
2362 
2363 	/*
2364 	 * Migration is committed, all target tasks are now on dst_csets.
2365 	 * Nothing is sensitive to fork() after this point.  Notify
2366 	 * controllers that migration is complete.
2367 	 */
2368 	tset->csets = &tset->dst_csets;
2369 
2370 	if (tset->nr_tasks) {
2371 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2372 			if (ss->attach) {
2373 				tset->ssid = ssid;
2374 				ss->attach(tset);
2375 			}
2376 		} while_each_subsys_mask();
2377 	}
2378 
2379 	ret = 0;
2380 	goto out_release_tset;
2381 
2382 out_cancel_attach:
2383 	if (tset->nr_tasks) {
2384 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2385 			if (ssid == failed_ssid)
2386 				break;
2387 			if (ss->cancel_attach) {
2388 				tset->ssid = ssid;
2389 				ss->cancel_attach(tset);
2390 			}
2391 		} while_each_subsys_mask();
2392 	}
2393 out_release_tset:
2394 	spin_lock_irq(&css_set_lock);
2395 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2396 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2397 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2398 		list_del_init(&cset->mg_node);
2399 	}
2400 	spin_unlock_irq(&css_set_lock);
2401 
2402 	/*
2403 	 * Re-initialize the cgroup_taskset structure in case it is reused
2404 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2405 	 * iteration.
2406 	 */
2407 	tset->nr_tasks = 0;
2408 	tset->csets    = &tset->src_csets;
2409 	return ret;
2410 }
2411 
2412 /**
2413  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2414  * @dst_cgrp: destination cgroup to test
2415  *
2416  * On the default hierarchy, except for the mixable, (possible) thread root
2417  * and threaded cgroups, subtree_control must be zero for migration
2418  * destination cgroups with tasks so that child cgroups don't compete
2419  * against tasks.
2420  */
2421 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2422 {
2423 	/* v1 doesn't have any restriction */
2424 	if (!cgroup_on_dfl(dst_cgrp))
2425 		return 0;
2426 
2427 	/* verify @dst_cgrp can host resources */
2428 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2429 		return -EOPNOTSUPP;
2430 
2431 	/* mixables don't care */
2432 	if (cgroup_is_mixable(dst_cgrp))
2433 		return 0;
2434 
2435 	/*
2436 	 * If @dst_cgrp is already or can become a thread root or is
2437 	 * threaded, it doesn't matter.
2438 	 */
2439 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2440 		return 0;
2441 
2442 	/* apply no-internal-process constraint */
2443 	if (dst_cgrp->subtree_control)
2444 		return -EBUSY;
2445 
2446 	return 0;
2447 }
2448 
2449 /**
2450  * cgroup_migrate_finish - cleanup after attach
2451  * @mgctx: migration context
2452  *
2453  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2454  * those functions for details.
2455  */
2456 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2457 {
2458 	LIST_HEAD(preloaded);
2459 	struct css_set *cset, *tmp_cset;
2460 
2461 	lockdep_assert_held(&cgroup_mutex);
2462 
2463 	spin_lock_irq(&css_set_lock);
2464 
2465 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2466 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2467 
2468 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2469 		cset->mg_src_cgrp = NULL;
2470 		cset->mg_dst_cgrp = NULL;
2471 		cset->mg_dst_cset = NULL;
2472 		list_del_init(&cset->mg_preload_node);
2473 		put_css_set_locked(cset);
2474 	}
2475 
2476 	spin_unlock_irq(&css_set_lock);
2477 }
2478 
2479 /**
2480  * cgroup_migrate_add_src - add a migration source css_set
2481  * @src_cset: the source css_set to add
2482  * @dst_cgrp: the destination cgroup
2483  * @mgctx: migration context
2484  *
2485  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2486  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2487  * up by cgroup_migrate_finish().
2488  *
2489  * This function may be called without holding cgroup_threadgroup_rwsem
2490  * even if the target is a process.  Threads may be created and destroyed
2491  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2492  * into play and the preloaded css_sets are guaranteed to cover all
2493  * migrations.
2494  */
2495 void cgroup_migrate_add_src(struct css_set *src_cset,
2496 			    struct cgroup *dst_cgrp,
2497 			    struct cgroup_mgctx *mgctx)
2498 {
2499 	struct cgroup *src_cgrp;
2500 
2501 	lockdep_assert_held(&cgroup_mutex);
2502 	lockdep_assert_held(&css_set_lock);
2503 
2504 	/*
2505 	 * If ->dead, @src_set is associated with one or more dead cgroups
2506 	 * and doesn't contain any migratable tasks.  Ignore it early so
2507 	 * that the rest of migration path doesn't get confused by it.
2508 	 */
2509 	if (src_cset->dead)
2510 		return;
2511 
2512 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2513 
2514 	if (!list_empty(&src_cset->mg_preload_node))
2515 		return;
2516 
2517 	WARN_ON(src_cset->mg_src_cgrp);
2518 	WARN_ON(src_cset->mg_dst_cgrp);
2519 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2520 	WARN_ON(!list_empty(&src_cset->mg_node));
2521 
2522 	src_cset->mg_src_cgrp = src_cgrp;
2523 	src_cset->mg_dst_cgrp = dst_cgrp;
2524 	get_css_set(src_cset);
2525 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2526 }
2527 
2528 /**
2529  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2530  * @mgctx: migration context
2531  *
2532  * Tasks are about to be moved and all the source css_sets have been
2533  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2534  * pins all destination css_sets, links each to its source, and append them
2535  * to @mgctx->preloaded_dst_csets.
2536  *
2537  * This function must be called after cgroup_migrate_add_src() has been
2538  * called on each migration source css_set.  After migration is performed
2539  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2540  * @mgctx.
2541  */
2542 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2543 {
2544 	struct css_set *src_cset, *tmp_cset;
2545 
2546 	lockdep_assert_held(&cgroup_mutex);
2547 
2548 	/* look up the dst cset for each src cset and link it to src */
2549 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2550 				 mg_preload_node) {
2551 		struct css_set *dst_cset;
2552 		struct cgroup_subsys *ss;
2553 		int ssid;
2554 
2555 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2556 		if (!dst_cset)
2557 			goto err;
2558 
2559 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2560 
2561 		/*
2562 		 * If src cset equals dst, it's noop.  Drop the src.
2563 		 * cgroup_migrate() will skip the cset too.  Note that we
2564 		 * can't handle src == dst as some nodes are used by both.
2565 		 */
2566 		if (src_cset == dst_cset) {
2567 			src_cset->mg_src_cgrp = NULL;
2568 			src_cset->mg_dst_cgrp = NULL;
2569 			list_del_init(&src_cset->mg_preload_node);
2570 			put_css_set(src_cset);
2571 			put_css_set(dst_cset);
2572 			continue;
2573 		}
2574 
2575 		src_cset->mg_dst_cset = dst_cset;
2576 
2577 		if (list_empty(&dst_cset->mg_preload_node))
2578 			list_add_tail(&dst_cset->mg_preload_node,
2579 				      &mgctx->preloaded_dst_csets);
2580 		else
2581 			put_css_set(dst_cset);
2582 
2583 		for_each_subsys(ss, ssid)
2584 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2585 				mgctx->ss_mask |= 1 << ssid;
2586 	}
2587 
2588 	return 0;
2589 err:
2590 	cgroup_migrate_finish(mgctx);
2591 	return -ENOMEM;
2592 }
2593 
2594 /**
2595  * cgroup_migrate - migrate a process or task to a cgroup
2596  * @leader: the leader of the process or the task to migrate
2597  * @threadgroup: whether @leader points to the whole process or a single task
2598  * @mgctx: migration context
2599  *
2600  * Migrate a process or task denoted by @leader.  If migrating a process,
2601  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2602  * responsible for invoking cgroup_migrate_add_src() and
2603  * cgroup_migrate_prepare_dst() on the targets before invoking this
2604  * function and following up with cgroup_migrate_finish().
2605  *
2606  * As long as a controller's ->can_attach() doesn't fail, this function is
2607  * guaranteed to succeed.  This means that, excluding ->can_attach()
2608  * failure, when migrating multiple targets, the success or failure can be
2609  * decided for all targets by invoking group_migrate_prepare_dst() before
2610  * actually starting migrating.
2611  */
2612 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2613 		   struct cgroup_mgctx *mgctx)
2614 {
2615 	struct task_struct *task;
2616 
2617 	/*
2618 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2619 	 * already PF_EXITING could be freed from underneath us unless we
2620 	 * take an rcu_read_lock.
2621 	 */
2622 	spin_lock_irq(&css_set_lock);
2623 	rcu_read_lock();
2624 	task = leader;
2625 	do {
2626 		cgroup_migrate_add_task(task, mgctx);
2627 		if (!threadgroup)
2628 			break;
2629 	} while_each_thread(leader, task);
2630 	rcu_read_unlock();
2631 	spin_unlock_irq(&css_set_lock);
2632 
2633 	return cgroup_migrate_execute(mgctx);
2634 }
2635 
2636 /**
2637  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2638  * @dst_cgrp: the cgroup to attach to
2639  * @leader: the task or the leader of the threadgroup to be attached
2640  * @threadgroup: attach the whole threadgroup?
2641  *
2642  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2643  */
2644 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2645 		       bool threadgroup)
2646 {
2647 	DEFINE_CGROUP_MGCTX(mgctx);
2648 	struct task_struct *task;
2649 	int ret;
2650 
2651 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2652 	if (ret)
2653 		return ret;
2654 
2655 	/* look up all src csets */
2656 	spin_lock_irq(&css_set_lock);
2657 	rcu_read_lock();
2658 	task = leader;
2659 	do {
2660 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2661 		if (!threadgroup)
2662 			break;
2663 	} while_each_thread(leader, task);
2664 	rcu_read_unlock();
2665 	spin_unlock_irq(&css_set_lock);
2666 
2667 	/* prepare dst csets and commit */
2668 	ret = cgroup_migrate_prepare_dst(&mgctx);
2669 	if (!ret)
2670 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2671 
2672 	cgroup_migrate_finish(&mgctx);
2673 
2674 	if (!ret)
2675 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2676 
2677 	return ret;
2678 }
2679 
2680 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2681 	__acquires(&cgroup_threadgroup_rwsem)
2682 {
2683 	struct task_struct *tsk;
2684 	pid_t pid;
2685 
2686 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2687 		return ERR_PTR(-EINVAL);
2688 
2689 	percpu_down_write(&cgroup_threadgroup_rwsem);
2690 
2691 	rcu_read_lock();
2692 	if (pid) {
2693 		tsk = find_task_by_vpid(pid);
2694 		if (!tsk) {
2695 			tsk = ERR_PTR(-ESRCH);
2696 			goto out_unlock_threadgroup;
2697 		}
2698 	} else {
2699 		tsk = current;
2700 	}
2701 
2702 	if (threadgroup)
2703 		tsk = tsk->group_leader;
2704 
2705 	/*
2706 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2707 	 * If userland migrates such a kthread to a non-root cgroup, it can
2708 	 * become trapped in a cpuset, or RT kthread may be born in a
2709 	 * cgroup with no rt_runtime allocated.  Just say no.
2710 	 */
2711 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2712 		tsk = ERR_PTR(-EINVAL);
2713 		goto out_unlock_threadgroup;
2714 	}
2715 
2716 	get_task_struct(tsk);
2717 	goto out_unlock_rcu;
2718 
2719 out_unlock_threadgroup:
2720 	percpu_up_write(&cgroup_threadgroup_rwsem);
2721 out_unlock_rcu:
2722 	rcu_read_unlock();
2723 	return tsk;
2724 }
2725 
2726 void cgroup_procs_write_finish(struct task_struct *task)
2727 	__releases(&cgroup_threadgroup_rwsem)
2728 {
2729 	struct cgroup_subsys *ss;
2730 	int ssid;
2731 
2732 	/* release reference from cgroup_procs_write_start() */
2733 	put_task_struct(task);
2734 
2735 	percpu_up_write(&cgroup_threadgroup_rwsem);
2736 	for_each_subsys(ss, ssid)
2737 		if (ss->post_attach)
2738 			ss->post_attach();
2739 }
2740 
2741 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2742 {
2743 	struct cgroup_subsys *ss;
2744 	bool printed = false;
2745 	int ssid;
2746 
2747 	do_each_subsys_mask(ss, ssid, ss_mask) {
2748 		if (printed)
2749 			seq_putc(seq, ' ');
2750 		seq_printf(seq, "%s", ss->name);
2751 		printed = true;
2752 	} while_each_subsys_mask();
2753 	if (printed)
2754 		seq_putc(seq, '\n');
2755 }
2756 
2757 /* show controllers which are enabled from the parent */
2758 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2759 {
2760 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2761 
2762 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2763 	return 0;
2764 }
2765 
2766 /* show controllers which are enabled for a given cgroup's children */
2767 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2768 {
2769 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2770 
2771 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2772 	return 0;
2773 }
2774 
2775 /**
2776  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2777  * @cgrp: root of the subtree to update csses for
2778  *
2779  * @cgrp's control masks have changed and its subtree's css associations
2780  * need to be updated accordingly.  This function looks up all css_sets
2781  * which are attached to the subtree, creates the matching updated css_sets
2782  * and migrates the tasks to the new ones.
2783  */
2784 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2785 {
2786 	DEFINE_CGROUP_MGCTX(mgctx);
2787 	struct cgroup_subsys_state *d_css;
2788 	struct cgroup *dsct;
2789 	struct css_set *src_cset;
2790 	int ret;
2791 
2792 	lockdep_assert_held(&cgroup_mutex);
2793 
2794 	percpu_down_write(&cgroup_threadgroup_rwsem);
2795 
2796 	/* look up all csses currently attached to @cgrp's subtree */
2797 	spin_lock_irq(&css_set_lock);
2798 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2799 		struct cgrp_cset_link *link;
2800 
2801 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2802 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2803 	}
2804 	spin_unlock_irq(&css_set_lock);
2805 
2806 	/* NULL dst indicates self on default hierarchy */
2807 	ret = cgroup_migrate_prepare_dst(&mgctx);
2808 	if (ret)
2809 		goto out_finish;
2810 
2811 	spin_lock_irq(&css_set_lock);
2812 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2813 		struct task_struct *task, *ntask;
2814 
2815 		/* all tasks in src_csets need to be migrated */
2816 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2817 			cgroup_migrate_add_task(task, &mgctx);
2818 	}
2819 	spin_unlock_irq(&css_set_lock);
2820 
2821 	ret = cgroup_migrate_execute(&mgctx);
2822 out_finish:
2823 	cgroup_migrate_finish(&mgctx);
2824 	percpu_up_write(&cgroup_threadgroup_rwsem);
2825 	return ret;
2826 }
2827 
2828 /**
2829  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2830  * @cgrp: root of the target subtree
2831  *
2832  * Because css offlining is asynchronous, userland may try to re-enable a
2833  * controller while the previous css is still around.  This function grabs
2834  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2835  */
2836 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2837 	__acquires(&cgroup_mutex)
2838 {
2839 	struct cgroup *dsct;
2840 	struct cgroup_subsys_state *d_css;
2841 	struct cgroup_subsys *ss;
2842 	int ssid;
2843 
2844 restart:
2845 	mutex_lock(&cgroup_mutex);
2846 
2847 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2848 		for_each_subsys(ss, ssid) {
2849 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2850 			DEFINE_WAIT(wait);
2851 
2852 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2853 				continue;
2854 
2855 			cgroup_get_live(dsct);
2856 			prepare_to_wait(&dsct->offline_waitq, &wait,
2857 					TASK_UNINTERRUPTIBLE);
2858 
2859 			mutex_unlock(&cgroup_mutex);
2860 			schedule();
2861 			finish_wait(&dsct->offline_waitq, &wait);
2862 
2863 			cgroup_put(dsct);
2864 			goto restart;
2865 		}
2866 	}
2867 }
2868 
2869 /**
2870  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2871  * @cgrp: root of the target subtree
2872  *
2873  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2874  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2875  * itself.
2876  */
2877 static void cgroup_save_control(struct cgroup *cgrp)
2878 {
2879 	struct cgroup *dsct;
2880 	struct cgroup_subsys_state *d_css;
2881 
2882 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2883 		dsct->old_subtree_control = dsct->subtree_control;
2884 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2885 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2886 	}
2887 }
2888 
2889 /**
2890  * cgroup_propagate_control - refresh control masks of a subtree
2891  * @cgrp: root of the target subtree
2892  *
2893  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2894  * ->subtree_control and propagate controller availability through the
2895  * subtree so that descendants don't have unavailable controllers enabled.
2896  */
2897 static void cgroup_propagate_control(struct cgroup *cgrp)
2898 {
2899 	struct cgroup *dsct;
2900 	struct cgroup_subsys_state *d_css;
2901 
2902 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2903 		dsct->subtree_control &= cgroup_control(dsct);
2904 		dsct->subtree_ss_mask =
2905 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2906 						    cgroup_ss_mask(dsct));
2907 	}
2908 }
2909 
2910 /**
2911  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2912  * @cgrp: root of the target subtree
2913  *
2914  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2915  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2916  * itself.
2917  */
2918 static void cgroup_restore_control(struct cgroup *cgrp)
2919 {
2920 	struct cgroup *dsct;
2921 	struct cgroup_subsys_state *d_css;
2922 
2923 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2924 		dsct->subtree_control = dsct->old_subtree_control;
2925 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2926 		dsct->dom_cgrp = dsct->old_dom_cgrp;
2927 	}
2928 }
2929 
2930 static bool css_visible(struct cgroup_subsys_state *css)
2931 {
2932 	struct cgroup_subsys *ss = css->ss;
2933 	struct cgroup *cgrp = css->cgroup;
2934 
2935 	if (cgroup_control(cgrp) & (1 << ss->id))
2936 		return true;
2937 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2938 		return false;
2939 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2940 }
2941 
2942 /**
2943  * cgroup_apply_control_enable - enable or show csses according to control
2944  * @cgrp: root of the target subtree
2945  *
2946  * Walk @cgrp's subtree and create new csses or make the existing ones
2947  * visible.  A css is created invisible if it's being implicitly enabled
2948  * through dependency.  An invisible css is made visible when the userland
2949  * explicitly enables it.
2950  *
2951  * Returns 0 on success, -errno on failure.  On failure, csses which have
2952  * been processed already aren't cleaned up.  The caller is responsible for
2953  * cleaning up with cgroup_apply_control_disable().
2954  */
2955 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2956 {
2957 	struct cgroup *dsct;
2958 	struct cgroup_subsys_state *d_css;
2959 	struct cgroup_subsys *ss;
2960 	int ssid, ret;
2961 
2962 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2963 		for_each_subsys(ss, ssid) {
2964 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2965 
2966 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2967 
2968 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2969 				continue;
2970 
2971 			if (!css) {
2972 				css = css_create(dsct, ss);
2973 				if (IS_ERR(css))
2974 					return PTR_ERR(css);
2975 			}
2976 
2977 			if (css_visible(css)) {
2978 				ret = css_populate_dir(css);
2979 				if (ret)
2980 					return ret;
2981 			}
2982 		}
2983 	}
2984 
2985 	return 0;
2986 }
2987 
2988 /**
2989  * cgroup_apply_control_disable - kill or hide csses according to control
2990  * @cgrp: root of the target subtree
2991  *
2992  * Walk @cgrp's subtree and kill and hide csses so that they match
2993  * cgroup_ss_mask() and cgroup_visible_mask().
2994  *
2995  * A css is hidden when the userland requests it to be disabled while other
2996  * subsystems are still depending on it.  The css must not actively control
2997  * resources and be in the vanilla state if it's made visible again later.
2998  * Controllers which may be depended upon should provide ->css_reset() for
2999  * this purpose.
3000  */
3001 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3002 {
3003 	struct cgroup *dsct;
3004 	struct cgroup_subsys_state *d_css;
3005 	struct cgroup_subsys *ss;
3006 	int ssid;
3007 
3008 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3009 		for_each_subsys(ss, ssid) {
3010 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3011 
3012 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3013 
3014 			if (!css)
3015 				continue;
3016 
3017 			if (css->parent &&
3018 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3019 				kill_css(css);
3020 			} else if (!css_visible(css)) {
3021 				css_clear_dir(css);
3022 				if (ss->css_reset)
3023 					ss->css_reset(css);
3024 			}
3025 		}
3026 	}
3027 }
3028 
3029 /**
3030  * cgroup_apply_control - apply control mask updates to the subtree
3031  * @cgrp: root of the target subtree
3032  *
3033  * subsystems can be enabled and disabled in a subtree using the following
3034  * steps.
3035  *
3036  * 1. Call cgroup_save_control() to stash the current state.
3037  * 2. Update ->subtree_control masks in the subtree as desired.
3038  * 3. Call cgroup_apply_control() to apply the changes.
3039  * 4. Optionally perform other related operations.
3040  * 5. Call cgroup_finalize_control() to finish up.
3041  *
3042  * This function implements step 3 and propagates the mask changes
3043  * throughout @cgrp's subtree, updates csses accordingly and perform
3044  * process migrations.
3045  */
3046 static int cgroup_apply_control(struct cgroup *cgrp)
3047 {
3048 	int ret;
3049 
3050 	cgroup_propagate_control(cgrp);
3051 
3052 	ret = cgroup_apply_control_enable(cgrp);
3053 	if (ret)
3054 		return ret;
3055 
3056 	/*
3057 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3058 	 * making the following cgroup_update_dfl_csses() properly update
3059 	 * css associations of all tasks in the subtree.
3060 	 */
3061 	ret = cgroup_update_dfl_csses(cgrp);
3062 	if (ret)
3063 		return ret;
3064 
3065 	return 0;
3066 }
3067 
3068 /**
3069  * cgroup_finalize_control - finalize control mask update
3070  * @cgrp: root of the target subtree
3071  * @ret: the result of the update
3072  *
3073  * Finalize control mask update.  See cgroup_apply_control() for more info.
3074  */
3075 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3076 {
3077 	if (ret) {
3078 		cgroup_restore_control(cgrp);
3079 		cgroup_propagate_control(cgrp);
3080 	}
3081 
3082 	cgroup_apply_control_disable(cgrp);
3083 }
3084 
3085 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3086 {
3087 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3088 
3089 	/* if nothing is getting enabled, nothing to worry about */
3090 	if (!enable)
3091 		return 0;
3092 
3093 	/* can @cgrp host any resources? */
3094 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3095 		return -EOPNOTSUPP;
3096 
3097 	/* mixables don't care */
3098 	if (cgroup_is_mixable(cgrp))
3099 		return 0;
3100 
3101 	if (domain_enable) {
3102 		/* can't enable domain controllers inside a thread subtree */
3103 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3104 			return -EOPNOTSUPP;
3105 	} else {
3106 		/*
3107 		 * Threaded controllers can handle internal competitions
3108 		 * and are always allowed inside a (prospective) thread
3109 		 * subtree.
3110 		 */
3111 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3112 			return 0;
3113 	}
3114 
3115 	/*
3116 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3117 	 * child cgroups competing against tasks.
3118 	 */
3119 	if (cgroup_has_tasks(cgrp))
3120 		return -EBUSY;
3121 
3122 	return 0;
3123 }
3124 
3125 /* change the enabled child controllers for a cgroup in the default hierarchy */
3126 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3127 					    char *buf, size_t nbytes,
3128 					    loff_t off)
3129 {
3130 	u16 enable = 0, disable = 0;
3131 	struct cgroup *cgrp, *child;
3132 	struct cgroup_subsys *ss;
3133 	char *tok;
3134 	int ssid, ret;
3135 
3136 	/*
3137 	 * Parse input - space separated list of subsystem names prefixed
3138 	 * with either + or -.
3139 	 */
3140 	buf = strstrip(buf);
3141 	while ((tok = strsep(&buf, " "))) {
3142 		if (tok[0] == '\0')
3143 			continue;
3144 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3145 			if (!cgroup_ssid_enabled(ssid) ||
3146 			    strcmp(tok + 1, ss->name))
3147 				continue;
3148 
3149 			if (*tok == '+') {
3150 				enable |= 1 << ssid;
3151 				disable &= ~(1 << ssid);
3152 			} else if (*tok == '-') {
3153 				disable |= 1 << ssid;
3154 				enable &= ~(1 << ssid);
3155 			} else {
3156 				return -EINVAL;
3157 			}
3158 			break;
3159 		} while_each_subsys_mask();
3160 		if (ssid == CGROUP_SUBSYS_COUNT)
3161 			return -EINVAL;
3162 	}
3163 
3164 	cgrp = cgroup_kn_lock_live(of->kn, true);
3165 	if (!cgrp)
3166 		return -ENODEV;
3167 
3168 	for_each_subsys(ss, ssid) {
3169 		if (enable & (1 << ssid)) {
3170 			if (cgrp->subtree_control & (1 << ssid)) {
3171 				enable &= ~(1 << ssid);
3172 				continue;
3173 			}
3174 
3175 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3176 				ret = -ENOENT;
3177 				goto out_unlock;
3178 			}
3179 		} else if (disable & (1 << ssid)) {
3180 			if (!(cgrp->subtree_control & (1 << ssid))) {
3181 				disable &= ~(1 << ssid);
3182 				continue;
3183 			}
3184 
3185 			/* a child has it enabled? */
3186 			cgroup_for_each_live_child(child, cgrp) {
3187 				if (child->subtree_control & (1 << ssid)) {
3188 					ret = -EBUSY;
3189 					goto out_unlock;
3190 				}
3191 			}
3192 		}
3193 	}
3194 
3195 	if (!enable && !disable) {
3196 		ret = 0;
3197 		goto out_unlock;
3198 	}
3199 
3200 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3201 	if (ret)
3202 		goto out_unlock;
3203 
3204 	/* save and update control masks and prepare csses */
3205 	cgroup_save_control(cgrp);
3206 
3207 	cgrp->subtree_control |= enable;
3208 	cgrp->subtree_control &= ~disable;
3209 
3210 	ret = cgroup_apply_control(cgrp);
3211 	cgroup_finalize_control(cgrp, ret);
3212 	if (ret)
3213 		goto out_unlock;
3214 
3215 	kernfs_activate(cgrp->kn);
3216 out_unlock:
3217 	cgroup_kn_unlock(of->kn);
3218 	return ret ?: nbytes;
3219 }
3220 
3221 /**
3222  * cgroup_enable_threaded - make @cgrp threaded
3223  * @cgrp: the target cgroup
3224  *
3225  * Called when "threaded" is written to the cgroup.type interface file and
3226  * tries to make @cgrp threaded and join the parent's resource domain.
3227  * This function is never called on the root cgroup as cgroup.type doesn't
3228  * exist on it.
3229  */
3230 static int cgroup_enable_threaded(struct cgroup *cgrp)
3231 {
3232 	struct cgroup *parent = cgroup_parent(cgrp);
3233 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3234 	struct cgroup *dsct;
3235 	struct cgroup_subsys_state *d_css;
3236 	int ret;
3237 
3238 	lockdep_assert_held(&cgroup_mutex);
3239 
3240 	/* noop if already threaded */
3241 	if (cgroup_is_threaded(cgrp))
3242 		return 0;
3243 
3244 	/*
3245 	 * If @cgroup is populated or has domain controllers enabled, it
3246 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3247 	 * test can catch the same conditions, that's only when @parent is
3248 	 * not mixable, so let's check it explicitly.
3249 	 */
3250 	if (cgroup_is_populated(cgrp) ||
3251 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3252 		return -EOPNOTSUPP;
3253 
3254 	/* we're joining the parent's domain, ensure its validity */
3255 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3256 	    !cgroup_can_be_thread_root(dom_cgrp))
3257 		return -EOPNOTSUPP;
3258 
3259 	/*
3260 	 * The following shouldn't cause actual migrations and should
3261 	 * always succeed.
3262 	 */
3263 	cgroup_save_control(cgrp);
3264 
3265 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3266 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3267 			dsct->dom_cgrp = dom_cgrp;
3268 
3269 	ret = cgroup_apply_control(cgrp);
3270 	if (!ret)
3271 		parent->nr_threaded_children++;
3272 
3273 	cgroup_finalize_control(cgrp, ret);
3274 	return ret;
3275 }
3276 
3277 static int cgroup_type_show(struct seq_file *seq, void *v)
3278 {
3279 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3280 
3281 	if (cgroup_is_threaded(cgrp))
3282 		seq_puts(seq, "threaded\n");
3283 	else if (!cgroup_is_valid_domain(cgrp))
3284 		seq_puts(seq, "domain invalid\n");
3285 	else if (cgroup_is_thread_root(cgrp))
3286 		seq_puts(seq, "domain threaded\n");
3287 	else
3288 		seq_puts(seq, "domain\n");
3289 
3290 	return 0;
3291 }
3292 
3293 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3294 				 size_t nbytes, loff_t off)
3295 {
3296 	struct cgroup *cgrp;
3297 	int ret;
3298 
3299 	/* only switching to threaded mode is supported */
3300 	if (strcmp(strstrip(buf), "threaded"))
3301 		return -EINVAL;
3302 
3303 	cgrp = cgroup_kn_lock_live(of->kn, false);
3304 	if (!cgrp)
3305 		return -ENOENT;
3306 
3307 	/* threaded can only be enabled */
3308 	ret = cgroup_enable_threaded(cgrp);
3309 
3310 	cgroup_kn_unlock(of->kn);
3311 	return ret ?: nbytes;
3312 }
3313 
3314 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3315 {
3316 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3317 	int descendants = READ_ONCE(cgrp->max_descendants);
3318 
3319 	if (descendants == INT_MAX)
3320 		seq_puts(seq, "max\n");
3321 	else
3322 		seq_printf(seq, "%d\n", descendants);
3323 
3324 	return 0;
3325 }
3326 
3327 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3328 					   char *buf, size_t nbytes, loff_t off)
3329 {
3330 	struct cgroup *cgrp;
3331 	int descendants;
3332 	ssize_t ret;
3333 
3334 	buf = strstrip(buf);
3335 	if (!strcmp(buf, "max")) {
3336 		descendants = INT_MAX;
3337 	} else {
3338 		ret = kstrtoint(buf, 0, &descendants);
3339 		if (ret)
3340 			return ret;
3341 	}
3342 
3343 	if (descendants < 0)
3344 		return -ERANGE;
3345 
3346 	cgrp = cgroup_kn_lock_live(of->kn, false);
3347 	if (!cgrp)
3348 		return -ENOENT;
3349 
3350 	cgrp->max_descendants = descendants;
3351 
3352 	cgroup_kn_unlock(of->kn);
3353 
3354 	return nbytes;
3355 }
3356 
3357 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3358 {
3359 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3360 	int depth = READ_ONCE(cgrp->max_depth);
3361 
3362 	if (depth == INT_MAX)
3363 		seq_puts(seq, "max\n");
3364 	else
3365 		seq_printf(seq, "%d\n", depth);
3366 
3367 	return 0;
3368 }
3369 
3370 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3371 				      char *buf, size_t nbytes, loff_t off)
3372 {
3373 	struct cgroup *cgrp;
3374 	ssize_t ret;
3375 	int depth;
3376 
3377 	buf = strstrip(buf);
3378 	if (!strcmp(buf, "max")) {
3379 		depth = INT_MAX;
3380 	} else {
3381 		ret = kstrtoint(buf, 0, &depth);
3382 		if (ret)
3383 			return ret;
3384 	}
3385 
3386 	if (depth < 0)
3387 		return -ERANGE;
3388 
3389 	cgrp = cgroup_kn_lock_live(of->kn, false);
3390 	if (!cgrp)
3391 		return -ENOENT;
3392 
3393 	cgrp->max_depth = depth;
3394 
3395 	cgroup_kn_unlock(of->kn);
3396 
3397 	return nbytes;
3398 }
3399 
3400 static int cgroup_events_show(struct seq_file *seq, void *v)
3401 {
3402 	seq_printf(seq, "populated %d\n",
3403 		   cgroup_is_populated(seq_css(seq)->cgroup));
3404 	return 0;
3405 }
3406 
3407 static int cgroup_stat_show(struct seq_file *seq, void *v)
3408 {
3409 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3410 
3411 	seq_printf(seq, "nr_descendants %d\n",
3412 		   cgroup->nr_descendants);
3413 	seq_printf(seq, "nr_dying_descendants %d\n",
3414 		   cgroup->nr_dying_descendants);
3415 
3416 	return 0;
3417 }
3418 
3419 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3420 						 struct cgroup *cgrp, int ssid)
3421 {
3422 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3423 	struct cgroup_subsys_state *css;
3424 	int ret;
3425 
3426 	if (!ss->css_extra_stat_show)
3427 		return 0;
3428 
3429 	css = cgroup_tryget_css(cgrp, ss);
3430 	if (!css)
3431 		return 0;
3432 
3433 	ret = ss->css_extra_stat_show(seq, css);
3434 	css_put(css);
3435 	return ret;
3436 }
3437 
3438 static int cpu_stat_show(struct seq_file *seq, void *v)
3439 {
3440 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3441 	int ret = 0;
3442 
3443 	cgroup_base_stat_cputime_show(seq);
3444 #ifdef CONFIG_CGROUP_SCHED
3445 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3446 #endif
3447 	return ret;
3448 }
3449 
3450 #ifdef CONFIG_PSI
3451 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3452 {
3453 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO);
3454 }
3455 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3456 {
3457 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM);
3458 }
3459 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3460 {
3461 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU);
3462 }
3463 #endif
3464 
3465 static int cgroup_file_open(struct kernfs_open_file *of)
3466 {
3467 	struct cftype *cft = of->kn->priv;
3468 
3469 	if (cft->open)
3470 		return cft->open(of);
3471 	return 0;
3472 }
3473 
3474 static void cgroup_file_release(struct kernfs_open_file *of)
3475 {
3476 	struct cftype *cft = of->kn->priv;
3477 
3478 	if (cft->release)
3479 		cft->release(of);
3480 }
3481 
3482 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3483 				 size_t nbytes, loff_t off)
3484 {
3485 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3486 	struct cgroup *cgrp = of->kn->parent->priv;
3487 	struct cftype *cft = of->kn->priv;
3488 	struct cgroup_subsys_state *css;
3489 	int ret;
3490 
3491 	/*
3492 	 * If namespaces are delegation boundaries, disallow writes to
3493 	 * files in an non-init namespace root from inside the namespace
3494 	 * except for the files explicitly marked delegatable -
3495 	 * cgroup.procs and cgroup.subtree_control.
3496 	 */
3497 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3498 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3499 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3500 		return -EPERM;
3501 
3502 	if (cft->write)
3503 		return cft->write(of, buf, nbytes, off);
3504 
3505 	/*
3506 	 * kernfs guarantees that a file isn't deleted with operations in
3507 	 * flight, which means that the matching css is and stays alive and
3508 	 * doesn't need to be pinned.  The RCU locking is not necessary
3509 	 * either.  It's just for the convenience of using cgroup_css().
3510 	 */
3511 	rcu_read_lock();
3512 	css = cgroup_css(cgrp, cft->ss);
3513 	rcu_read_unlock();
3514 
3515 	if (cft->write_u64) {
3516 		unsigned long long v;
3517 		ret = kstrtoull(buf, 0, &v);
3518 		if (!ret)
3519 			ret = cft->write_u64(css, cft, v);
3520 	} else if (cft->write_s64) {
3521 		long long v;
3522 		ret = kstrtoll(buf, 0, &v);
3523 		if (!ret)
3524 			ret = cft->write_s64(css, cft, v);
3525 	} else {
3526 		ret = -EINVAL;
3527 	}
3528 
3529 	return ret ?: nbytes;
3530 }
3531 
3532 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3533 {
3534 	return seq_cft(seq)->seq_start(seq, ppos);
3535 }
3536 
3537 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3538 {
3539 	return seq_cft(seq)->seq_next(seq, v, ppos);
3540 }
3541 
3542 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3543 {
3544 	if (seq_cft(seq)->seq_stop)
3545 		seq_cft(seq)->seq_stop(seq, v);
3546 }
3547 
3548 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3549 {
3550 	struct cftype *cft = seq_cft(m);
3551 	struct cgroup_subsys_state *css = seq_css(m);
3552 
3553 	if (cft->seq_show)
3554 		return cft->seq_show(m, arg);
3555 
3556 	if (cft->read_u64)
3557 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3558 	else if (cft->read_s64)
3559 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3560 	else
3561 		return -EINVAL;
3562 	return 0;
3563 }
3564 
3565 static struct kernfs_ops cgroup_kf_single_ops = {
3566 	.atomic_write_len	= PAGE_SIZE,
3567 	.open			= cgroup_file_open,
3568 	.release		= cgroup_file_release,
3569 	.write			= cgroup_file_write,
3570 	.seq_show		= cgroup_seqfile_show,
3571 };
3572 
3573 static struct kernfs_ops cgroup_kf_ops = {
3574 	.atomic_write_len	= PAGE_SIZE,
3575 	.open			= cgroup_file_open,
3576 	.release		= cgroup_file_release,
3577 	.write			= cgroup_file_write,
3578 	.seq_start		= cgroup_seqfile_start,
3579 	.seq_next		= cgroup_seqfile_next,
3580 	.seq_stop		= cgroup_seqfile_stop,
3581 	.seq_show		= cgroup_seqfile_show,
3582 };
3583 
3584 /* set uid and gid of cgroup dirs and files to that of the creator */
3585 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3586 {
3587 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3588 			       .ia_uid = current_fsuid(),
3589 			       .ia_gid = current_fsgid(), };
3590 
3591 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3592 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3593 		return 0;
3594 
3595 	return kernfs_setattr(kn, &iattr);
3596 }
3597 
3598 static void cgroup_file_notify_timer(struct timer_list *timer)
3599 {
3600 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3601 					notify_timer));
3602 }
3603 
3604 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3605 			   struct cftype *cft)
3606 {
3607 	char name[CGROUP_FILE_NAME_MAX];
3608 	struct kernfs_node *kn;
3609 	struct lock_class_key *key = NULL;
3610 	int ret;
3611 
3612 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3613 	key = &cft->lockdep_key;
3614 #endif
3615 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3616 				  cgroup_file_mode(cft),
3617 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3618 				  0, cft->kf_ops, cft,
3619 				  NULL, key);
3620 	if (IS_ERR(kn))
3621 		return PTR_ERR(kn);
3622 
3623 	ret = cgroup_kn_set_ugid(kn);
3624 	if (ret) {
3625 		kernfs_remove(kn);
3626 		return ret;
3627 	}
3628 
3629 	if (cft->file_offset) {
3630 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3631 
3632 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3633 
3634 		spin_lock_irq(&cgroup_file_kn_lock);
3635 		cfile->kn = kn;
3636 		spin_unlock_irq(&cgroup_file_kn_lock);
3637 	}
3638 
3639 	return 0;
3640 }
3641 
3642 /**
3643  * cgroup_addrm_files - add or remove files to a cgroup directory
3644  * @css: the target css
3645  * @cgrp: the target cgroup (usually css->cgroup)
3646  * @cfts: array of cftypes to be added
3647  * @is_add: whether to add or remove
3648  *
3649  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3650  * For removals, this function never fails.
3651  */
3652 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3653 			      struct cgroup *cgrp, struct cftype cfts[],
3654 			      bool is_add)
3655 {
3656 	struct cftype *cft, *cft_end = NULL;
3657 	int ret = 0;
3658 
3659 	lockdep_assert_held(&cgroup_mutex);
3660 
3661 restart:
3662 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3663 		/* does cft->flags tell us to skip this file on @cgrp? */
3664 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3665 			continue;
3666 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3667 			continue;
3668 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3669 			continue;
3670 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3671 			continue;
3672 
3673 		if (is_add) {
3674 			ret = cgroup_add_file(css, cgrp, cft);
3675 			if (ret) {
3676 				pr_warn("%s: failed to add %s, err=%d\n",
3677 					__func__, cft->name, ret);
3678 				cft_end = cft;
3679 				is_add = false;
3680 				goto restart;
3681 			}
3682 		} else {
3683 			cgroup_rm_file(cgrp, cft);
3684 		}
3685 	}
3686 	return ret;
3687 }
3688 
3689 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3690 {
3691 	struct cgroup_subsys *ss = cfts[0].ss;
3692 	struct cgroup *root = &ss->root->cgrp;
3693 	struct cgroup_subsys_state *css;
3694 	int ret = 0;
3695 
3696 	lockdep_assert_held(&cgroup_mutex);
3697 
3698 	/* add/rm files for all cgroups created before */
3699 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3700 		struct cgroup *cgrp = css->cgroup;
3701 
3702 		if (!(css->flags & CSS_VISIBLE))
3703 			continue;
3704 
3705 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3706 		if (ret)
3707 			break;
3708 	}
3709 
3710 	if (is_add && !ret)
3711 		kernfs_activate(root->kn);
3712 	return ret;
3713 }
3714 
3715 static void cgroup_exit_cftypes(struct cftype *cfts)
3716 {
3717 	struct cftype *cft;
3718 
3719 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3720 		/* free copy for custom atomic_write_len, see init_cftypes() */
3721 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3722 			kfree(cft->kf_ops);
3723 		cft->kf_ops = NULL;
3724 		cft->ss = NULL;
3725 
3726 		/* revert flags set by cgroup core while adding @cfts */
3727 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3728 	}
3729 }
3730 
3731 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3732 {
3733 	struct cftype *cft;
3734 
3735 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3736 		struct kernfs_ops *kf_ops;
3737 
3738 		WARN_ON(cft->ss || cft->kf_ops);
3739 
3740 		if (cft->seq_start)
3741 			kf_ops = &cgroup_kf_ops;
3742 		else
3743 			kf_ops = &cgroup_kf_single_ops;
3744 
3745 		/*
3746 		 * Ugh... if @cft wants a custom max_write_len, we need to
3747 		 * make a copy of kf_ops to set its atomic_write_len.
3748 		 */
3749 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3750 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3751 			if (!kf_ops) {
3752 				cgroup_exit_cftypes(cfts);
3753 				return -ENOMEM;
3754 			}
3755 			kf_ops->atomic_write_len = cft->max_write_len;
3756 		}
3757 
3758 		cft->kf_ops = kf_ops;
3759 		cft->ss = ss;
3760 	}
3761 
3762 	return 0;
3763 }
3764 
3765 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3766 {
3767 	lockdep_assert_held(&cgroup_mutex);
3768 
3769 	if (!cfts || !cfts[0].ss)
3770 		return -ENOENT;
3771 
3772 	list_del(&cfts->node);
3773 	cgroup_apply_cftypes(cfts, false);
3774 	cgroup_exit_cftypes(cfts);
3775 	return 0;
3776 }
3777 
3778 /**
3779  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3780  * @cfts: zero-length name terminated array of cftypes
3781  *
3782  * Unregister @cfts.  Files described by @cfts are removed from all
3783  * existing cgroups and all future cgroups won't have them either.  This
3784  * function can be called anytime whether @cfts' subsys is attached or not.
3785  *
3786  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3787  * registered.
3788  */
3789 int cgroup_rm_cftypes(struct cftype *cfts)
3790 {
3791 	int ret;
3792 
3793 	mutex_lock(&cgroup_mutex);
3794 	ret = cgroup_rm_cftypes_locked(cfts);
3795 	mutex_unlock(&cgroup_mutex);
3796 	return ret;
3797 }
3798 
3799 /**
3800  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3801  * @ss: target cgroup subsystem
3802  * @cfts: zero-length name terminated array of cftypes
3803  *
3804  * Register @cfts to @ss.  Files described by @cfts are created for all
3805  * existing cgroups to which @ss is attached and all future cgroups will
3806  * have them too.  This function can be called anytime whether @ss is
3807  * attached or not.
3808  *
3809  * Returns 0 on successful registration, -errno on failure.  Note that this
3810  * function currently returns 0 as long as @cfts registration is successful
3811  * even if some file creation attempts on existing cgroups fail.
3812  */
3813 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3814 {
3815 	int ret;
3816 
3817 	if (!cgroup_ssid_enabled(ss->id))
3818 		return 0;
3819 
3820 	if (!cfts || cfts[0].name[0] == '\0')
3821 		return 0;
3822 
3823 	ret = cgroup_init_cftypes(ss, cfts);
3824 	if (ret)
3825 		return ret;
3826 
3827 	mutex_lock(&cgroup_mutex);
3828 
3829 	list_add_tail(&cfts->node, &ss->cfts);
3830 	ret = cgroup_apply_cftypes(cfts, true);
3831 	if (ret)
3832 		cgroup_rm_cftypes_locked(cfts);
3833 
3834 	mutex_unlock(&cgroup_mutex);
3835 	return ret;
3836 }
3837 
3838 /**
3839  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3840  * @ss: target cgroup subsystem
3841  * @cfts: zero-length name terminated array of cftypes
3842  *
3843  * Similar to cgroup_add_cftypes() but the added files are only used for
3844  * the default hierarchy.
3845  */
3846 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3847 {
3848 	struct cftype *cft;
3849 
3850 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3851 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3852 	return cgroup_add_cftypes(ss, cfts);
3853 }
3854 
3855 /**
3856  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3857  * @ss: target cgroup subsystem
3858  * @cfts: zero-length name terminated array of cftypes
3859  *
3860  * Similar to cgroup_add_cftypes() but the added files are only used for
3861  * the legacy hierarchies.
3862  */
3863 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3864 {
3865 	struct cftype *cft;
3866 
3867 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3868 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3869 	return cgroup_add_cftypes(ss, cfts);
3870 }
3871 
3872 /**
3873  * cgroup_file_notify - generate a file modified event for a cgroup_file
3874  * @cfile: target cgroup_file
3875  *
3876  * @cfile must have been obtained by setting cftype->file_offset.
3877  */
3878 void cgroup_file_notify(struct cgroup_file *cfile)
3879 {
3880 	unsigned long flags;
3881 
3882 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3883 	if (cfile->kn) {
3884 		unsigned long last = cfile->notified_at;
3885 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3886 
3887 		if (time_in_range(jiffies, last, next)) {
3888 			timer_reduce(&cfile->notify_timer, next);
3889 		} else {
3890 			kernfs_notify(cfile->kn);
3891 			cfile->notified_at = jiffies;
3892 		}
3893 	}
3894 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3895 }
3896 
3897 /**
3898  * css_next_child - find the next child of a given css
3899  * @pos: the current position (%NULL to initiate traversal)
3900  * @parent: css whose children to walk
3901  *
3902  * This function returns the next child of @parent and should be called
3903  * under either cgroup_mutex or RCU read lock.  The only requirement is
3904  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3905  * be returned regardless of their states.
3906  *
3907  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3908  * css which finished ->css_online() is guaranteed to be visible in the
3909  * future iterations and will stay visible until the last reference is put.
3910  * A css which hasn't finished ->css_online() or already finished
3911  * ->css_offline() may show up during traversal.  It's each subsystem's
3912  * responsibility to synchronize against on/offlining.
3913  */
3914 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3915 					   struct cgroup_subsys_state *parent)
3916 {
3917 	struct cgroup_subsys_state *next;
3918 
3919 	cgroup_assert_mutex_or_rcu_locked();
3920 
3921 	/*
3922 	 * @pos could already have been unlinked from the sibling list.
3923 	 * Once a cgroup is removed, its ->sibling.next is no longer
3924 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3925 	 * @pos is taken off list, at which time its next pointer is valid,
3926 	 * and, as releases are serialized, the one pointed to by the next
3927 	 * pointer is guaranteed to not have started release yet.  This
3928 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3929 	 * critical section, the one pointed to by its next pointer is
3930 	 * guaranteed to not have finished its RCU grace period even if we
3931 	 * have dropped rcu_read_lock() inbetween iterations.
3932 	 *
3933 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3934 	 * dereferenced; however, as each css is given a monotonically
3935 	 * increasing unique serial number and always appended to the
3936 	 * sibling list, the next one can be found by walking the parent's
3937 	 * children until the first css with higher serial number than
3938 	 * @pos's.  While this path can be slower, it happens iff iteration
3939 	 * races against release and the race window is very small.
3940 	 */
3941 	if (!pos) {
3942 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3943 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3944 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3945 	} else {
3946 		list_for_each_entry_rcu(next, &parent->children, sibling)
3947 			if (next->serial_nr > pos->serial_nr)
3948 				break;
3949 	}
3950 
3951 	/*
3952 	 * @next, if not pointing to the head, can be dereferenced and is
3953 	 * the next sibling.
3954 	 */
3955 	if (&next->sibling != &parent->children)
3956 		return next;
3957 	return NULL;
3958 }
3959 
3960 /**
3961  * css_next_descendant_pre - find the next descendant for pre-order walk
3962  * @pos: the current position (%NULL to initiate traversal)
3963  * @root: css whose descendants to walk
3964  *
3965  * To be used by css_for_each_descendant_pre().  Find the next descendant
3966  * to visit for pre-order traversal of @root's descendants.  @root is
3967  * included in the iteration and the first node to be visited.
3968  *
3969  * While this function requires cgroup_mutex or RCU read locking, it
3970  * doesn't require the whole traversal to be contained in a single critical
3971  * section.  This function will return the correct next descendant as long
3972  * as both @pos and @root are accessible and @pos is a descendant of @root.
3973  *
3974  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3975  * css which finished ->css_online() is guaranteed to be visible in the
3976  * future iterations and will stay visible until the last reference is put.
3977  * A css which hasn't finished ->css_online() or already finished
3978  * ->css_offline() may show up during traversal.  It's each subsystem's
3979  * responsibility to synchronize against on/offlining.
3980  */
3981 struct cgroup_subsys_state *
3982 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3983 			struct cgroup_subsys_state *root)
3984 {
3985 	struct cgroup_subsys_state *next;
3986 
3987 	cgroup_assert_mutex_or_rcu_locked();
3988 
3989 	/* if first iteration, visit @root */
3990 	if (!pos)
3991 		return root;
3992 
3993 	/* visit the first child if exists */
3994 	next = css_next_child(NULL, pos);
3995 	if (next)
3996 		return next;
3997 
3998 	/* no child, visit my or the closest ancestor's next sibling */
3999 	while (pos != root) {
4000 		next = css_next_child(pos, pos->parent);
4001 		if (next)
4002 			return next;
4003 		pos = pos->parent;
4004 	}
4005 
4006 	return NULL;
4007 }
4008 
4009 /**
4010  * css_rightmost_descendant - return the rightmost descendant of a css
4011  * @pos: css of interest
4012  *
4013  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4014  * is returned.  This can be used during pre-order traversal to skip
4015  * subtree of @pos.
4016  *
4017  * While this function requires cgroup_mutex or RCU read locking, it
4018  * doesn't require the whole traversal to be contained in a single critical
4019  * section.  This function will return the correct rightmost descendant as
4020  * long as @pos is accessible.
4021  */
4022 struct cgroup_subsys_state *
4023 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4024 {
4025 	struct cgroup_subsys_state *last, *tmp;
4026 
4027 	cgroup_assert_mutex_or_rcu_locked();
4028 
4029 	do {
4030 		last = pos;
4031 		/* ->prev isn't RCU safe, walk ->next till the end */
4032 		pos = NULL;
4033 		css_for_each_child(tmp, last)
4034 			pos = tmp;
4035 	} while (pos);
4036 
4037 	return last;
4038 }
4039 
4040 static struct cgroup_subsys_state *
4041 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4042 {
4043 	struct cgroup_subsys_state *last;
4044 
4045 	do {
4046 		last = pos;
4047 		pos = css_next_child(NULL, pos);
4048 	} while (pos);
4049 
4050 	return last;
4051 }
4052 
4053 /**
4054  * css_next_descendant_post - find the next descendant for post-order walk
4055  * @pos: the current position (%NULL to initiate traversal)
4056  * @root: css whose descendants to walk
4057  *
4058  * To be used by css_for_each_descendant_post().  Find the next descendant
4059  * to visit for post-order traversal of @root's descendants.  @root is
4060  * included in the iteration and the last node to be visited.
4061  *
4062  * While this function requires cgroup_mutex or RCU read locking, it
4063  * doesn't require the whole traversal to be contained in a single critical
4064  * section.  This function will return the correct next descendant as long
4065  * as both @pos and @cgroup are accessible and @pos is a descendant of
4066  * @cgroup.
4067  *
4068  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4069  * css which finished ->css_online() is guaranteed to be visible in the
4070  * future iterations and will stay visible until the last reference is put.
4071  * A css which hasn't finished ->css_online() or already finished
4072  * ->css_offline() may show up during traversal.  It's each subsystem's
4073  * responsibility to synchronize against on/offlining.
4074  */
4075 struct cgroup_subsys_state *
4076 css_next_descendant_post(struct cgroup_subsys_state *pos,
4077 			 struct cgroup_subsys_state *root)
4078 {
4079 	struct cgroup_subsys_state *next;
4080 
4081 	cgroup_assert_mutex_or_rcu_locked();
4082 
4083 	/* if first iteration, visit leftmost descendant which may be @root */
4084 	if (!pos)
4085 		return css_leftmost_descendant(root);
4086 
4087 	/* if we visited @root, we're done */
4088 	if (pos == root)
4089 		return NULL;
4090 
4091 	/* if there's an unvisited sibling, visit its leftmost descendant */
4092 	next = css_next_child(pos, pos->parent);
4093 	if (next)
4094 		return css_leftmost_descendant(next);
4095 
4096 	/* no sibling left, visit parent */
4097 	return pos->parent;
4098 }
4099 
4100 /**
4101  * css_has_online_children - does a css have online children
4102  * @css: the target css
4103  *
4104  * Returns %true if @css has any online children; otherwise, %false.  This
4105  * function can be called from any context but the caller is responsible
4106  * for synchronizing against on/offlining as necessary.
4107  */
4108 bool css_has_online_children(struct cgroup_subsys_state *css)
4109 {
4110 	struct cgroup_subsys_state *child;
4111 	bool ret = false;
4112 
4113 	rcu_read_lock();
4114 	css_for_each_child(child, css) {
4115 		if (child->flags & CSS_ONLINE) {
4116 			ret = true;
4117 			break;
4118 		}
4119 	}
4120 	rcu_read_unlock();
4121 	return ret;
4122 }
4123 
4124 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4125 {
4126 	struct list_head *l;
4127 	struct cgrp_cset_link *link;
4128 	struct css_set *cset;
4129 
4130 	lockdep_assert_held(&css_set_lock);
4131 
4132 	/* find the next threaded cset */
4133 	if (it->tcset_pos) {
4134 		l = it->tcset_pos->next;
4135 
4136 		if (l != it->tcset_head) {
4137 			it->tcset_pos = l;
4138 			return container_of(l, struct css_set,
4139 					    threaded_csets_node);
4140 		}
4141 
4142 		it->tcset_pos = NULL;
4143 	}
4144 
4145 	/* find the next cset */
4146 	l = it->cset_pos;
4147 	l = l->next;
4148 	if (l == it->cset_head) {
4149 		it->cset_pos = NULL;
4150 		return NULL;
4151 	}
4152 
4153 	if (it->ss) {
4154 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4155 	} else {
4156 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4157 		cset = link->cset;
4158 	}
4159 
4160 	it->cset_pos = l;
4161 
4162 	/* initialize threaded css_set walking */
4163 	if (it->flags & CSS_TASK_ITER_THREADED) {
4164 		if (it->cur_dcset)
4165 			put_css_set_locked(it->cur_dcset);
4166 		it->cur_dcset = cset;
4167 		get_css_set(cset);
4168 
4169 		it->tcset_head = &cset->threaded_csets;
4170 		it->tcset_pos = &cset->threaded_csets;
4171 	}
4172 
4173 	return cset;
4174 }
4175 
4176 /**
4177  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4178  * @it: the iterator to advance
4179  *
4180  * Advance @it to the next css_set to walk.
4181  */
4182 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4183 {
4184 	struct css_set *cset;
4185 
4186 	lockdep_assert_held(&css_set_lock);
4187 
4188 	/* Advance to the next non-empty css_set */
4189 	do {
4190 		cset = css_task_iter_next_css_set(it);
4191 		if (!cset) {
4192 			it->task_pos = NULL;
4193 			return;
4194 		}
4195 	} while (!css_set_populated(cset));
4196 
4197 	if (!list_empty(&cset->tasks))
4198 		it->task_pos = cset->tasks.next;
4199 	else
4200 		it->task_pos = cset->mg_tasks.next;
4201 
4202 	it->tasks_head = &cset->tasks;
4203 	it->mg_tasks_head = &cset->mg_tasks;
4204 
4205 	/*
4206 	 * We don't keep css_sets locked across iteration steps and thus
4207 	 * need to take steps to ensure that iteration can be resumed after
4208 	 * the lock is re-acquired.  Iteration is performed at two levels -
4209 	 * css_sets and tasks in them.
4210 	 *
4211 	 * Once created, a css_set never leaves its cgroup lists, so a
4212 	 * pinned css_set is guaranteed to stay put and we can resume
4213 	 * iteration afterwards.
4214 	 *
4215 	 * Tasks may leave @cset across iteration steps.  This is resolved
4216 	 * by registering each iterator with the css_set currently being
4217 	 * walked and making css_set_move_task() advance iterators whose
4218 	 * next task is leaving.
4219 	 */
4220 	if (it->cur_cset) {
4221 		list_del(&it->iters_node);
4222 		put_css_set_locked(it->cur_cset);
4223 	}
4224 	get_css_set(cset);
4225 	it->cur_cset = cset;
4226 	list_add(&it->iters_node, &cset->task_iters);
4227 }
4228 
4229 static void css_task_iter_advance(struct css_task_iter *it)
4230 {
4231 	struct list_head *next;
4232 
4233 	lockdep_assert_held(&css_set_lock);
4234 repeat:
4235 	/*
4236 	 * Advance iterator to find next entry.  cset->tasks is consumed
4237 	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4238 	 * next cset.
4239 	 */
4240 	next = it->task_pos->next;
4241 
4242 	if (next == it->tasks_head)
4243 		next = it->mg_tasks_head->next;
4244 
4245 	if (next == it->mg_tasks_head)
4246 		css_task_iter_advance_css_set(it);
4247 	else
4248 		it->task_pos = next;
4249 
4250 	/* if PROCS, skip over tasks which aren't group leaders */
4251 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4252 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4253 					    cg_list)))
4254 		goto repeat;
4255 }
4256 
4257 /**
4258  * css_task_iter_start - initiate task iteration
4259  * @css: the css to walk tasks of
4260  * @flags: CSS_TASK_ITER_* flags
4261  * @it: the task iterator to use
4262  *
4263  * Initiate iteration through the tasks of @css.  The caller can call
4264  * css_task_iter_next() to walk through the tasks until the function
4265  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4266  * called.
4267  */
4268 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4269 			 struct css_task_iter *it)
4270 {
4271 	/* no one should try to iterate before mounting cgroups */
4272 	WARN_ON_ONCE(!use_task_css_set_links);
4273 
4274 	memset(it, 0, sizeof(*it));
4275 
4276 	spin_lock_irq(&css_set_lock);
4277 
4278 	it->ss = css->ss;
4279 	it->flags = flags;
4280 
4281 	if (it->ss)
4282 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4283 	else
4284 		it->cset_pos = &css->cgroup->cset_links;
4285 
4286 	it->cset_head = it->cset_pos;
4287 
4288 	css_task_iter_advance_css_set(it);
4289 
4290 	spin_unlock_irq(&css_set_lock);
4291 }
4292 
4293 /**
4294  * css_task_iter_next - return the next task for the iterator
4295  * @it: the task iterator being iterated
4296  *
4297  * The "next" function for task iteration.  @it should have been
4298  * initialized via css_task_iter_start().  Returns NULL when the iteration
4299  * reaches the end.
4300  */
4301 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4302 {
4303 	if (it->cur_task) {
4304 		put_task_struct(it->cur_task);
4305 		it->cur_task = NULL;
4306 	}
4307 
4308 	spin_lock_irq(&css_set_lock);
4309 
4310 	if (it->task_pos) {
4311 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4312 					  cg_list);
4313 		get_task_struct(it->cur_task);
4314 		css_task_iter_advance(it);
4315 	}
4316 
4317 	spin_unlock_irq(&css_set_lock);
4318 
4319 	return it->cur_task;
4320 }
4321 
4322 /**
4323  * css_task_iter_end - finish task iteration
4324  * @it: the task iterator to finish
4325  *
4326  * Finish task iteration started by css_task_iter_start().
4327  */
4328 void css_task_iter_end(struct css_task_iter *it)
4329 {
4330 	if (it->cur_cset) {
4331 		spin_lock_irq(&css_set_lock);
4332 		list_del(&it->iters_node);
4333 		put_css_set_locked(it->cur_cset);
4334 		spin_unlock_irq(&css_set_lock);
4335 	}
4336 
4337 	if (it->cur_dcset)
4338 		put_css_set(it->cur_dcset);
4339 
4340 	if (it->cur_task)
4341 		put_task_struct(it->cur_task);
4342 }
4343 
4344 static void cgroup_procs_release(struct kernfs_open_file *of)
4345 {
4346 	if (of->priv) {
4347 		css_task_iter_end(of->priv);
4348 		kfree(of->priv);
4349 	}
4350 }
4351 
4352 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4353 {
4354 	struct kernfs_open_file *of = s->private;
4355 	struct css_task_iter *it = of->priv;
4356 
4357 	return css_task_iter_next(it);
4358 }
4359 
4360 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4361 				  unsigned int iter_flags)
4362 {
4363 	struct kernfs_open_file *of = s->private;
4364 	struct cgroup *cgrp = seq_css(s)->cgroup;
4365 	struct css_task_iter *it = of->priv;
4366 
4367 	/*
4368 	 * When a seq_file is seeked, it's always traversed sequentially
4369 	 * from position 0, so we can simply keep iterating on !0 *pos.
4370 	 */
4371 	if (!it) {
4372 		if (WARN_ON_ONCE((*pos)++))
4373 			return ERR_PTR(-EINVAL);
4374 
4375 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4376 		if (!it)
4377 			return ERR_PTR(-ENOMEM);
4378 		of->priv = it;
4379 		css_task_iter_start(&cgrp->self, iter_flags, it);
4380 	} else if (!(*pos)++) {
4381 		css_task_iter_end(it);
4382 		css_task_iter_start(&cgrp->self, iter_flags, it);
4383 	}
4384 
4385 	return cgroup_procs_next(s, NULL, NULL);
4386 }
4387 
4388 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4389 {
4390 	struct cgroup *cgrp = seq_css(s)->cgroup;
4391 
4392 	/*
4393 	 * All processes of a threaded subtree belong to the domain cgroup
4394 	 * of the subtree.  Only threads can be distributed across the
4395 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4396 	 * They're always empty anyway.
4397 	 */
4398 	if (cgroup_is_threaded(cgrp))
4399 		return ERR_PTR(-EOPNOTSUPP);
4400 
4401 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4402 					    CSS_TASK_ITER_THREADED);
4403 }
4404 
4405 static int cgroup_procs_show(struct seq_file *s, void *v)
4406 {
4407 	seq_printf(s, "%d\n", task_pid_vnr(v));
4408 	return 0;
4409 }
4410 
4411 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4412 					 struct cgroup *dst_cgrp,
4413 					 struct super_block *sb)
4414 {
4415 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4416 	struct cgroup *com_cgrp = src_cgrp;
4417 	struct inode *inode;
4418 	int ret;
4419 
4420 	lockdep_assert_held(&cgroup_mutex);
4421 
4422 	/* find the common ancestor */
4423 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4424 		com_cgrp = cgroup_parent(com_cgrp);
4425 
4426 	/* %current should be authorized to migrate to the common ancestor */
4427 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4428 	if (!inode)
4429 		return -ENOMEM;
4430 
4431 	ret = inode_permission(inode, MAY_WRITE);
4432 	iput(inode);
4433 	if (ret)
4434 		return ret;
4435 
4436 	/*
4437 	 * If namespaces are delegation boundaries, %current must be able
4438 	 * to see both source and destination cgroups from its namespace.
4439 	 */
4440 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4441 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4442 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4443 		return -ENOENT;
4444 
4445 	return 0;
4446 }
4447 
4448 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4449 				  char *buf, size_t nbytes, loff_t off)
4450 {
4451 	struct cgroup *src_cgrp, *dst_cgrp;
4452 	struct task_struct *task;
4453 	ssize_t ret;
4454 
4455 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4456 	if (!dst_cgrp)
4457 		return -ENODEV;
4458 
4459 	task = cgroup_procs_write_start(buf, true);
4460 	ret = PTR_ERR_OR_ZERO(task);
4461 	if (ret)
4462 		goto out_unlock;
4463 
4464 	/* find the source cgroup */
4465 	spin_lock_irq(&css_set_lock);
4466 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4467 	spin_unlock_irq(&css_set_lock);
4468 
4469 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4470 					    of->file->f_path.dentry->d_sb);
4471 	if (ret)
4472 		goto out_finish;
4473 
4474 	ret = cgroup_attach_task(dst_cgrp, task, true);
4475 
4476 out_finish:
4477 	cgroup_procs_write_finish(task);
4478 out_unlock:
4479 	cgroup_kn_unlock(of->kn);
4480 
4481 	return ret ?: nbytes;
4482 }
4483 
4484 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4485 {
4486 	return __cgroup_procs_start(s, pos, 0);
4487 }
4488 
4489 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4490 				    char *buf, size_t nbytes, loff_t off)
4491 {
4492 	struct cgroup *src_cgrp, *dst_cgrp;
4493 	struct task_struct *task;
4494 	ssize_t ret;
4495 
4496 	buf = strstrip(buf);
4497 
4498 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4499 	if (!dst_cgrp)
4500 		return -ENODEV;
4501 
4502 	task = cgroup_procs_write_start(buf, false);
4503 	ret = PTR_ERR_OR_ZERO(task);
4504 	if (ret)
4505 		goto out_unlock;
4506 
4507 	/* find the source cgroup */
4508 	spin_lock_irq(&css_set_lock);
4509 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4510 	spin_unlock_irq(&css_set_lock);
4511 
4512 	/* thread migrations follow the cgroup.procs delegation rule */
4513 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4514 					    of->file->f_path.dentry->d_sb);
4515 	if (ret)
4516 		goto out_finish;
4517 
4518 	/* and must be contained in the same domain */
4519 	ret = -EOPNOTSUPP;
4520 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4521 		goto out_finish;
4522 
4523 	ret = cgroup_attach_task(dst_cgrp, task, false);
4524 
4525 out_finish:
4526 	cgroup_procs_write_finish(task);
4527 out_unlock:
4528 	cgroup_kn_unlock(of->kn);
4529 
4530 	return ret ?: nbytes;
4531 }
4532 
4533 /* cgroup core interface files for the default hierarchy */
4534 static struct cftype cgroup_base_files[] = {
4535 	{
4536 		.name = "cgroup.type",
4537 		.flags = CFTYPE_NOT_ON_ROOT,
4538 		.seq_show = cgroup_type_show,
4539 		.write = cgroup_type_write,
4540 	},
4541 	{
4542 		.name = "cgroup.procs",
4543 		.flags = CFTYPE_NS_DELEGATABLE,
4544 		.file_offset = offsetof(struct cgroup, procs_file),
4545 		.release = cgroup_procs_release,
4546 		.seq_start = cgroup_procs_start,
4547 		.seq_next = cgroup_procs_next,
4548 		.seq_show = cgroup_procs_show,
4549 		.write = cgroup_procs_write,
4550 	},
4551 	{
4552 		.name = "cgroup.threads",
4553 		.flags = CFTYPE_NS_DELEGATABLE,
4554 		.release = cgroup_procs_release,
4555 		.seq_start = cgroup_threads_start,
4556 		.seq_next = cgroup_procs_next,
4557 		.seq_show = cgroup_procs_show,
4558 		.write = cgroup_threads_write,
4559 	},
4560 	{
4561 		.name = "cgroup.controllers",
4562 		.seq_show = cgroup_controllers_show,
4563 	},
4564 	{
4565 		.name = "cgroup.subtree_control",
4566 		.flags = CFTYPE_NS_DELEGATABLE,
4567 		.seq_show = cgroup_subtree_control_show,
4568 		.write = cgroup_subtree_control_write,
4569 	},
4570 	{
4571 		.name = "cgroup.events",
4572 		.flags = CFTYPE_NOT_ON_ROOT,
4573 		.file_offset = offsetof(struct cgroup, events_file),
4574 		.seq_show = cgroup_events_show,
4575 	},
4576 	{
4577 		.name = "cgroup.max.descendants",
4578 		.seq_show = cgroup_max_descendants_show,
4579 		.write = cgroup_max_descendants_write,
4580 	},
4581 	{
4582 		.name = "cgroup.max.depth",
4583 		.seq_show = cgroup_max_depth_show,
4584 		.write = cgroup_max_depth_write,
4585 	},
4586 	{
4587 		.name = "cgroup.stat",
4588 		.seq_show = cgroup_stat_show,
4589 	},
4590 	{
4591 		.name = "cpu.stat",
4592 		.flags = CFTYPE_NOT_ON_ROOT,
4593 		.seq_show = cpu_stat_show,
4594 	},
4595 #ifdef CONFIG_PSI
4596 	{
4597 		.name = "io.pressure",
4598 		.flags = CFTYPE_NOT_ON_ROOT,
4599 		.seq_show = cgroup_io_pressure_show,
4600 	},
4601 	{
4602 		.name = "memory.pressure",
4603 		.flags = CFTYPE_NOT_ON_ROOT,
4604 		.seq_show = cgroup_memory_pressure_show,
4605 	},
4606 	{
4607 		.name = "cpu.pressure",
4608 		.flags = CFTYPE_NOT_ON_ROOT,
4609 		.seq_show = cgroup_cpu_pressure_show,
4610 	},
4611 #endif
4612 	{ }	/* terminate */
4613 };
4614 
4615 /*
4616  * css destruction is four-stage process.
4617  *
4618  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4619  *    Implemented in kill_css().
4620  *
4621  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4622  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4623  *    offlined by invoking offline_css().  After offlining, the base ref is
4624  *    put.  Implemented in css_killed_work_fn().
4625  *
4626  * 3. When the percpu_ref reaches zero, the only possible remaining
4627  *    accessors are inside RCU read sections.  css_release() schedules the
4628  *    RCU callback.
4629  *
4630  * 4. After the grace period, the css can be freed.  Implemented in
4631  *    css_free_work_fn().
4632  *
4633  * It is actually hairier because both step 2 and 4 require process context
4634  * and thus involve punting to css->destroy_work adding two additional
4635  * steps to the already complex sequence.
4636  */
4637 static void css_free_rwork_fn(struct work_struct *work)
4638 {
4639 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4640 				struct cgroup_subsys_state, destroy_rwork);
4641 	struct cgroup_subsys *ss = css->ss;
4642 	struct cgroup *cgrp = css->cgroup;
4643 
4644 	percpu_ref_exit(&css->refcnt);
4645 
4646 	if (ss) {
4647 		/* css free path */
4648 		struct cgroup_subsys_state *parent = css->parent;
4649 		int id = css->id;
4650 
4651 		ss->css_free(css);
4652 		cgroup_idr_remove(&ss->css_idr, id);
4653 		cgroup_put(cgrp);
4654 
4655 		if (parent)
4656 			css_put(parent);
4657 	} else {
4658 		/* cgroup free path */
4659 		atomic_dec(&cgrp->root->nr_cgrps);
4660 		cgroup1_pidlist_destroy_all(cgrp);
4661 		cancel_work_sync(&cgrp->release_agent_work);
4662 
4663 		if (cgroup_parent(cgrp)) {
4664 			/*
4665 			 * We get a ref to the parent, and put the ref when
4666 			 * this cgroup is being freed, so it's guaranteed
4667 			 * that the parent won't be destroyed before its
4668 			 * children.
4669 			 */
4670 			cgroup_put(cgroup_parent(cgrp));
4671 			kernfs_put(cgrp->kn);
4672 			psi_cgroup_free(cgrp);
4673 			if (cgroup_on_dfl(cgrp))
4674 				cgroup_rstat_exit(cgrp);
4675 			kfree(cgrp);
4676 		} else {
4677 			/*
4678 			 * This is root cgroup's refcnt reaching zero,
4679 			 * which indicates that the root should be
4680 			 * released.
4681 			 */
4682 			cgroup_destroy_root(cgrp->root);
4683 		}
4684 	}
4685 }
4686 
4687 static void css_release_work_fn(struct work_struct *work)
4688 {
4689 	struct cgroup_subsys_state *css =
4690 		container_of(work, struct cgroup_subsys_state, destroy_work);
4691 	struct cgroup_subsys *ss = css->ss;
4692 	struct cgroup *cgrp = css->cgroup;
4693 
4694 	mutex_lock(&cgroup_mutex);
4695 
4696 	css->flags |= CSS_RELEASED;
4697 	list_del_rcu(&css->sibling);
4698 
4699 	if (ss) {
4700 		/* css release path */
4701 		if (!list_empty(&css->rstat_css_node)) {
4702 			cgroup_rstat_flush(cgrp);
4703 			list_del_rcu(&css->rstat_css_node);
4704 		}
4705 
4706 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4707 		if (ss->css_released)
4708 			ss->css_released(css);
4709 	} else {
4710 		struct cgroup *tcgrp;
4711 
4712 		/* cgroup release path */
4713 		TRACE_CGROUP_PATH(release, cgrp);
4714 
4715 		if (cgroup_on_dfl(cgrp))
4716 			cgroup_rstat_flush(cgrp);
4717 
4718 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4719 		     tcgrp = cgroup_parent(tcgrp))
4720 			tcgrp->nr_dying_descendants--;
4721 
4722 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4723 		cgrp->id = -1;
4724 
4725 		/*
4726 		 * There are two control paths which try to determine
4727 		 * cgroup from dentry without going through kernfs -
4728 		 * cgroupstats_build() and css_tryget_online_from_dir().
4729 		 * Those are supported by RCU protecting clearing of
4730 		 * cgrp->kn->priv backpointer.
4731 		 */
4732 		if (cgrp->kn)
4733 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4734 					 NULL);
4735 
4736 		cgroup_bpf_put(cgrp);
4737 	}
4738 
4739 	mutex_unlock(&cgroup_mutex);
4740 
4741 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4742 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4743 }
4744 
4745 static void css_release(struct percpu_ref *ref)
4746 {
4747 	struct cgroup_subsys_state *css =
4748 		container_of(ref, struct cgroup_subsys_state, refcnt);
4749 
4750 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4751 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4752 }
4753 
4754 static void init_and_link_css(struct cgroup_subsys_state *css,
4755 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4756 {
4757 	lockdep_assert_held(&cgroup_mutex);
4758 
4759 	cgroup_get_live(cgrp);
4760 
4761 	memset(css, 0, sizeof(*css));
4762 	css->cgroup = cgrp;
4763 	css->ss = ss;
4764 	css->id = -1;
4765 	INIT_LIST_HEAD(&css->sibling);
4766 	INIT_LIST_HEAD(&css->children);
4767 	INIT_LIST_HEAD(&css->rstat_css_node);
4768 	css->serial_nr = css_serial_nr_next++;
4769 	atomic_set(&css->online_cnt, 0);
4770 
4771 	if (cgroup_parent(cgrp)) {
4772 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4773 		css_get(css->parent);
4774 	}
4775 
4776 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4777 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4778 
4779 	BUG_ON(cgroup_css(cgrp, ss));
4780 }
4781 
4782 /* invoke ->css_online() on a new CSS and mark it online if successful */
4783 static int online_css(struct cgroup_subsys_state *css)
4784 {
4785 	struct cgroup_subsys *ss = css->ss;
4786 	int ret = 0;
4787 
4788 	lockdep_assert_held(&cgroup_mutex);
4789 
4790 	if (ss->css_online)
4791 		ret = ss->css_online(css);
4792 	if (!ret) {
4793 		css->flags |= CSS_ONLINE;
4794 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4795 
4796 		atomic_inc(&css->online_cnt);
4797 		if (css->parent)
4798 			atomic_inc(&css->parent->online_cnt);
4799 	}
4800 	return ret;
4801 }
4802 
4803 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4804 static void offline_css(struct cgroup_subsys_state *css)
4805 {
4806 	struct cgroup_subsys *ss = css->ss;
4807 
4808 	lockdep_assert_held(&cgroup_mutex);
4809 
4810 	if (!(css->flags & CSS_ONLINE))
4811 		return;
4812 
4813 	if (ss->css_offline)
4814 		ss->css_offline(css);
4815 
4816 	css->flags &= ~CSS_ONLINE;
4817 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4818 
4819 	wake_up_all(&css->cgroup->offline_waitq);
4820 }
4821 
4822 /**
4823  * css_create - create a cgroup_subsys_state
4824  * @cgrp: the cgroup new css will be associated with
4825  * @ss: the subsys of new css
4826  *
4827  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4828  * css is online and installed in @cgrp.  This function doesn't create the
4829  * interface files.  Returns 0 on success, -errno on failure.
4830  */
4831 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4832 					      struct cgroup_subsys *ss)
4833 {
4834 	struct cgroup *parent = cgroup_parent(cgrp);
4835 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4836 	struct cgroup_subsys_state *css;
4837 	int err;
4838 
4839 	lockdep_assert_held(&cgroup_mutex);
4840 
4841 	css = ss->css_alloc(parent_css);
4842 	if (!css)
4843 		css = ERR_PTR(-ENOMEM);
4844 	if (IS_ERR(css))
4845 		return css;
4846 
4847 	init_and_link_css(css, ss, cgrp);
4848 
4849 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4850 	if (err)
4851 		goto err_free_css;
4852 
4853 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4854 	if (err < 0)
4855 		goto err_free_css;
4856 	css->id = err;
4857 
4858 	/* @css is ready to be brought online now, make it visible */
4859 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4860 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4861 
4862 	err = online_css(css);
4863 	if (err)
4864 		goto err_list_del;
4865 
4866 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4867 	    cgroup_parent(parent)) {
4868 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4869 			current->comm, current->pid, ss->name);
4870 		if (!strcmp(ss->name, "memory"))
4871 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4872 		ss->warned_broken_hierarchy = true;
4873 	}
4874 
4875 	return css;
4876 
4877 err_list_del:
4878 	list_del_rcu(&css->sibling);
4879 err_free_css:
4880 	list_del_rcu(&css->rstat_css_node);
4881 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4882 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4883 	return ERR_PTR(err);
4884 }
4885 
4886 /*
4887  * The returned cgroup is fully initialized including its control mask, but
4888  * it isn't associated with its kernfs_node and doesn't have the control
4889  * mask applied.
4890  */
4891 static struct cgroup *cgroup_create(struct cgroup *parent)
4892 {
4893 	struct cgroup_root *root = parent->root;
4894 	struct cgroup *cgrp, *tcgrp;
4895 	int level = parent->level + 1;
4896 	int ret;
4897 
4898 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4899 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4900 		       GFP_KERNEL);
4901 	if (!cgrp)
4902 		return ERR_PTR(-ENOMEM);
4903 
4904 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4905 	if (ret)
4906 		goto out_free_cgrp;
4907 
4908 	if (cgroup_on_dfl(parent)) {
4909 		ret = cgroup_rstat_init(cgrp);
4910 		if (ret)
4911 			goto out_cancel_ref;
4912 	}
4913 
4914 	/*
4915 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4916 	 * a half-baked cgroup.
4917 	 */
4918 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4919 	if (cgrp->id < 0) {
4920 		ret = -ENOMEM;
4921 		goto out_stat_exit;
4922 	}
4923 
4924 	init_cgroup_housekeeping(cgrp);
4925 
4926 	cgrp->self.parent = &parent->self;
4927 	cgrp->root = root;
4928 	cgrp->level = level;
4929 
4930 	ret = psi_cgroup_alloc(cgrp);
4931 	if (ret)
4932 		goto out_idr_free;
4933 
4934 	ret = cgroup_bpf_inherit(cgrp);
4935 	if (ret)
4936 		goto out_psi_free;
4937 
4938 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4939 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4940 
4941 		if (tcgrp != cgrp)
4942 			tcgrp->nr_descendants++;
4943 	}
4944 
4945 	if (notify_on_release(parent))
4946 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4947 
4948 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4949 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4950 
4951 	cgrp->self.serial_nr = css_serial_nr_next++;
4952 
4953 	/* allocation complete, commit to creation */
4954 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4955 	atomic_inc(&root->nr_cgrps);
4956 	cgroup_get_live(parent);
4957 
4958 	/*
4959 	 * @cgrp is now fully operational.  If something fails after this
4960 	 * point, it'll be released via the normal destruction path.
4961 	 */
4962 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4963 
4964 	/*
4965 	 * On the default hierarchy, a child doesn't automatically inherit
4966 	 * subtree_control from the parent.  Each is configured manually.
4967 	 */
4968 	if (!cgroup_on_dfl(cgrp))
4969 		cgrp->subtree_control = cgroup_control(cgrp);
4970 
4971 	cgroup_propagate_control(cgrp);
4972 
4973 	return cgrp;
4974 
4975 out_psi_free:
4976 	psi_cgroup_free(cgrp);
4977 out_idr_free:
4978 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4979 out_stat_exit:
4980 	if (cgroup_on_dfl(parent))
4981 		cgroup_rstat_exit(cgrp);
4982 out_cancel_ref:
4983 	percpu_ref_exit(&cgrp->self.refcnt);
4984 out_free_cgrp:
4985 	kfree(cgrp);
4986 	return ERR_PTR(ret);
4987 }
4988 
4989 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4990 {
4991 	struct cgroup *cgroup;
4992 	int ret = false;
4993 	int level = 1;
4994 
4995 	lockdep_assert_held(&cgroup_mutex);
4996 
4997 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4998 		if (cgroup->nr_descendants >= cgroup->max_descendants)
4999 			goto fail;
5000 
5001 		if (level > cgroup->max_depth)
5002 			goto fail;
5003 
5004 		level++;
5005 	}
5006 
5007 	ret = true;
5008 fail:
5009 	return ret;
5010 }
5011 
5012 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5013 {
5014 	struct cgroup *parent, *cgrp;
5015 	struct kernfs_node *kn;
5016 	int ret;
5017 
5018 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5019 	if (strchr(name, '\n'))
5020 		return -EINVAL;
5021 
5022 	parent = cgroup_kn_lock_live(parent_kn, false);
5023 	if (!parent)
5024 		return -ENODEV;
5025 
5026 	if (!cgroup_check_hierarchy_limits(parent)) {
5027 		ret = -EAGAIN;
5028 		goto out_unlock;
5029 	}
5030 
5031 	cgrp = cgroup_create(parent);
5032 	if (IS_ERR(cgrp)) {
5033 		ret = PTR_ERR(cgrp);
5034 		goto out_unlock;
5035 	}
5036 
5037 	/* create the directory */
5038 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5039 	if (IS_ERR(kn)) {
5040 		ret = PTR_ERR(kn);
5041 		goto out_destroy;
5042 	}
5043 	cgrp->kn = kn;
5044 
5045 	/*
5046 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5047 	 * that @cgrp->kn is always accessible.
5048 	 */
5049 	kernfs_get(kn);
5050 
5051 	ret = cgroup_kn_set_ugid(kn);
5052 	if (ret)
5053 		goto out_destroy;
5054 
5055 	ret = css_populate_dir(&cgrp->self);
5056 	if (ret)
5057 		goto out_destroy;
5058 
5059 	ret = cgroup_apply_control_enable(cgrp);
5060 	if (ret)
5061 		goto out_destroy;
5062 
5063 	TRACE_CGROUP_PATH(mkdir, cgrp);
5064 
5065 	/* let's create and online css's */
5066 	kernfs_activate(kn);
5067 
5068 	ret = 0;
5069 	goto out_unlock;
5070 
5071 out_destroy:
5072 	cgroup_destroy_locked(cgrp);
5073 out_unlock:
5074 	cgroup_kn_unlock(parent_kn);
5075 	return ret;
5076 }
5077 
5078 /*
5079  * This is called when the refcnt of a css is confirmed to be killed.
5080  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5081  * initate destruction and put the css ref from kill_css().
5082  */
5083 static void css_killed_work_fn(struct work_struct *work)
5084 {
5085 	struct cgroup_subsys_state *css =
5086 		container_of(work, struct cgroup_subsys_state, destroy_work);
5087 
5088 	mutex_lock(&cgroup_mutex);
5089 
5090 	do {
5091 		offline_css(css);
5092 		css_put(css);
5093 		/* @css can't go away while we're holding cgroup_mutex */
5094 		css = css->parent;
5095 	} while (css && atomic_dec_and_test(&css->online_cnt));
5096 
5097 	mutex_unlock(&cgroup_mutex);
5098 }
5099 
5100 /* css kill confirmation processing requires process context, bounce */
5101 static void css_killed_ref_fn(struct percpu_ref *ref)
5102 {
5103 	struct cgroup_subsys_state *css =
5104 		container_of(ref, struct cgroup_subsys_state, refcnt);
5105 
5106 	if (atomic_dec_and_test(&css->online_cnt)) {
5107 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5108 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5109 	}
5110 }
5111 
5112 /**
5113  * kill_css - destroy a css
5114  * @css: css to destroy
5115  *
5116  * This function initiates destruction of @css by removing cgroup interface
5117  * files and putting its base reference.  ->css_offline() will be invoked
5118  * asynchronously once css_tryget_online() is guaranteed to fail and when
5119  * the reference count reaches zero, @css will be released.
5120  */
5121 static void kill_css(struct cgroup_subsys_state *css)
5122 {
5123 	lockdep_assert_held(&cgroup_mutex);
5124 
5125 	if (css->flags & CSS_DYING)
5126 		return;
5127 
5128 	css->flags |= CSS_DYING;
5129 
5130 	/*
5131 	 * This must happen before css is disassociated with its cgroup.
5132 	 * See seq_css() for details.
5133 	 */
5134 	css_clear_dir(css);
5135 
5136 	/*
5137 	 * Killing would put the base ref, but we need to keep it alive
5138 	 * until after ->css_offline().
5139 	 */
5140 	css_get(css);
5141 
5142 	/*
5143 	 * cgroup core guarantees that, by the time ->css_offline() is
5144 	 * invoked, no new css reference will be given out via
5145 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5146 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5147 	 * guarantee that the ref is seen as killed on all CPUs on return.
5148 	 *
5149 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5150 	 * css is confirmed to be seen as killed on all CPUs.
5151 	 */
5152 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5153 }
5154 
5155 /**
5156  * cgroup_destroy_locked - the first stage of cgroup destruction
5157  * @cgrp: cgroup to be destroyed
5158  *
5159  * css's make use of percpu refcnts whose killing latency shouldn't be
5160  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5161  * guarantee that css_tryget_online() won't succeed by the time
5162  * ->css_offline() is invoked.  To satisfy all the requirements,
5163  * destruction is implemented in the following two steps.
5164  *
5165  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5166  *     userland visible parts and start killing the percpu refcnts of
5167  *     css's.  Set up so that the next stage will be kicked off once all
5168  *     the percpu refcnts are confirmed to be killed.
5169  *
5170  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5171  *     rest of destruction.  Once all cgroup references are gone, the
5172  *     cgroup is RCU-freed.
5173  *
5174  * This function implements s1.  After this step, @cgrp is gone as far as
5175  * the userland is concerned and a new cgroup with the same name may be
5176  * created.  As cgroup doesn't care about the names internally, this
5177  * doesn't cause any problem.
5178  */
5179 static int cgroup_destroy_locked(struct cgroup *cgrp)
5180 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5181 {
5182 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5183 	struct cgroup_subsys_state *css;
5184 	struct cgrp_cset_link *link;
5185 	int ssid;
5186 
5187 	lockdep_assert_held(&cgroup_mutex);
5188 
5189 	/*
5190 	 * Only migration can raise populated from zero and we're already
5191 	 * holding cgroup_mutex.
5192 	 */
5193 	if (cgroup_is_populated(cgrp))
5194 		return -EBUSY;
5195 
5196 	/*
5197 	 * Make sure there's no live children.  We can't test emptiness of
5198 	 * ->self.children as dead children linger on it while being
5199 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5200 	 */
5201 	if (css_has_online_children(&cgrp->self))
5202 		return -EBUSY;
5203 
5204 	/*
5205 	 * Mark @cgrp and the associated csets dead.  The former prevents
5206 	 * further task migration and child creation by disabling
5207 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5208 	 * the migration path.
5209 	 */
5210 	cgrp->self.flags &= ~CSS_ONLINE;
5211 
5212 	spin_lock_irq(&css_set_lock);
5213 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5214 		link->cset->dead = true;
5215 	spin_unlock_irq(&css_set_lock);
5216 
5217 	/* initiate massacre of all css's */
5218 	for_each_css(css, ssid, cgrp)
5219 		kill_css(css);
5220 
5221 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5222 	css_clear_dir(&cgrp->self);
5223 	kernfs_remove(cgrp->kn);
5224 
5225 	if (parent && cgroup_is_threaded(cgrp))
5226 		parent->nr_threaded_children--;
5227 
5228 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5229 		tcgrp->nr_descendants--;
5230 		tcgrp->nr_dying_descendants++;
5231 	}
5232 
5233 	cgroup1_check_for_release(parent);
5234 
5235 	/* put the base reference */
5236 	percpu_ref_kill(&cgrp->self.refcnt);
5237 
5238 	return 0;
5239 };
5240 
5241 int cgroup_rmdir(struct kernfs_node *kn)
5242 {
5243 	struct cgroup *cgrp;
5244 	int ret = 0;
5245 
5246 	cgrp = cgroup_kn_lock_live(kn, false);
5247 	if (!cgrp)
5248 		return 0;
5249 
5250 	ret = cgroup_destroy_locked(cgrp);
5251 	if (!ret)
5252 		TRACE_CGROUP_PATH(rmdir, cgrp);
5253 
5254 	cgroup_kn_unlock(kn);
5255 	return ret;
5256 }
5257 
5258 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5259 	.show_options		= cgroup_show_options,
5260 	.remount_fs		= cgroup_remount,
5261 	.mkdir			= cgroup_mkdir,
5262 	.rmdir			= cgroup_rmdir,
5263 	.show_path		= cgroup_show_path,
5264 };
5265 
5266 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5267 {
5268 	struct cgroup_subsys_state *css;
5269 
5270 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5271 
5272 	mutex_lock(&cgroup_mutex);
5273 
5274 	idr_init(&ss->css_idr);
5275 	INIT_LIST_HEAD(&ss->cfts);
5276 
5277 	/* Create the root cgroup state for this subsystem */
5278 	ss->root = &cgrp_dfl_root;
5279 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5280 	/* We don't handle early failures gracefully */
5281 	BUG_ON(IS_ERR(css));
5282 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5283 
5284 	/*
5285 	 * Root csses are never destroyed and we can't initialize
5286 	 * percpu_ref during early init.  Disable refcnting.
5287 	 */
5288 	css->flags |= CSS_NO_REF;
5289 
5290 	if (early) {
5291 		/* allocation can't be done safely during early init */
5292 		css->id = 1;
5293 	} else {
5294 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5295 		BUG_ON(css->id < 0);
5296 	}
5297 
5298 	/* Update the init_css_set to contain a subsys
5299 	 * pointer to this state - since the subsystem is
5300 	 * newly registered, all tasks and hence the
5301 	 * init_css_set is in the subsystem's root cgroup. */
5302 	init_css_set.subsys[ss->id] = css;
5303 
5304 	have_fork_callback |= (bool)ss->fork << ss->id;
5305 	have_exit_callback |= (bool)ss->exit << ss->id;
5306 	have_free_callback |= (bool)ss->free << ss->id;
5307 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5308 
5309 	/* At system boot, before all subsystems have been
5310 	 * registered, no tasks have been forked, so we don't
5311 	 * need to invoke fork callbacks here. */
5312 	BUG_ON(!list_empty(&init_task.tasks));
5313 
5314 	BUG_ON(online_css(css));
5315 
5316 	mutex_unlock(&cgroup_mutex);
5317 }
5318 
5319 /**
5320  * cgroup_init_early - cgroup initialization at system boot
5321  *
5322  * Initialize cgroups at system boot, and initialize any
5323  * subsystems that request early init.
5324  */
5325 int __init cgroup_init_early(void)
5326 {
5327 	static struct cgroup_sb_opts __initdata opts;
5328 	struct cgroup_subsys *ss;
5329 	int i;
5330 
5331 	init_cgroup_root(&cgrp_dfl_root, &opts);
5332 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5333 
5334 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5335 
5336 	for_each_subsys(ss, i) {
5337 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5338 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5339 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5340 		     ss->id, ss->name);
5341 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5342 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5343 
5344 		ss->id = i;
5345 		ss->name = cgroup_subsys_name[i];
5346 		if (!ss->legacy_name)
5347 			ss->legacy_name = cgroup_subsys_name[i];
5348 
5349 		if (ss->early_init)
5350 			cgroup_init_subsys(ss, true);
5351 	}
5352 	return 0;
5353 }
5354 
5355 static u16 cgroup_disable_mask __initdata;
5356 
5357 /**
5358  * cgroup_init - cgroup initialization
5359  *
5360  * Register cgroup filesystem and /proc file, and initialize
5361  * any subsystems that didn't request early init.
5362  */
5363 int __init cgroup_init(void)
5364 {
5365 	struct cgroup_subsys *ss;
5366 	int ssid;
5367 
5368 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5369 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5370 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5371 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5372 
5373 	cgroup_rstat_boot();
5374 
5375 	/*
5376 	 * The latency of the synchronize_sched() is too high for cgroups,
5377 	 * avoid it at the cost of forcing all readers into the slow path.
5378 	 */
5379 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5380 
5381 	get_user_ns(init_cgroup_ns.user_ns);
5382 
5383 	mutex_lock(&cgroup_mutex);
5384 
5385 	/*
5386 	 * Add init_css_set to the hash table so that dfl_root can link to
5387 	 * it during init.
5388 	 */
5389 	hash_add(css_set_table, &init_css_set.hlist,
5390 		 css_set_hash(init_css_set.subsys));
5391 
5392 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5393 
5394 	mutex_unlock(&cgroup_mutex);
5395 
5396 	for_each_subsys(ss, ssid) {
5397 		if (ss->early_init) {
5398 			struct cgroup_subsys_state *css =
5399 				init_css_set.subsys[ss->id];
5400 
5401 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5402 						   GFP_KERNEL);
5403 			BUG_ON(css->id < 0);
5404 		} else {
5405 			cgroup_init_subsys(ss, false);
5406 		}
5407 
5408 		list_add_tail(&init_css_set.e_cset_node[ssid],
5409 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5410 
5411 		/*
5412 		 * Setting dfl_root subsys_mask needs to consider the
5413 		 * disabled flag and cftype registration needs kmalloc,
5414 		 * both of which aren't available during early_init.
5415 		 */
5416 		if (cgroup_disable_mask & (1 << ssid)) {
5417 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5418 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5419 			       ss->name);
5420 			continue;
5421 		}
5422 
5423 		if (cgroup1_ssid_disabled(ssid))
5424 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5425 			       ss->name);
5426 
5427 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5428 
5429 		/* implicit controllers must be threaded too */
5430 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5431 
5432 		if (ss->implicit_on_dfl)
5433 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5434 		else if (!ss->dfl_cftypes)
5435 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5436 
5437 		if (ss->threaded)
5438 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5439 
5440 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5441 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5442 		} else {
5443 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5444 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5445 		}
5446 
5447 		if (ss->bind)
5448 			ss->bind(init_css_set.subsys[ssid]);
5449 
5450 		mutex_lock(&cgroup_mutex);
5451 		css_populate_dir(init_css_set.subsys[ssid]);
5452 		mutex_unlock(&cgroup_mutex);
5453 	}
5454 
5455 	/* init_css_set.subsys[] has been updated, re-hash */
5456 	hash_del(&init_css_set.hlist);
5457 	hash_add(css_set_table, &init_css_set.hlist,
5458 		 css_set_hash(init_css_set.subsys));
5459 
5460 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5461 	WARN_ON(register_filesystem(&cgroup_fs_type));
5462 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5463 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5464 
5465 	return 0;
5466 }
5467 
5468 static int __init cgroup_wq_init(void)
5469 {
5470 	/*
5471 	 * There isn't much point in executing destruction path in
5472 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5473 	 * Use 1 for @max_active.
5474 	 *
5475 	 * We would prefer to do this in cgroup_init() above, but that
5476 	 * is called before init_workqueues(): so leave this until after.
5477 	 */
5478 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5479 	BUG_ON(!cgroup_destroy_wq);
5480 	return 0;
5481 }
5482 core_initcall(cgroup_wq_init);
5483 
5484 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5485 					char *buf, size_t buflen)
5486 {
5487 	struct kernfs_node *kn;
5488 
5489 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5490 	if (!kn)
5491 		return;
5492 	kernfs_path(kn, buf, buflen);
5493 	kernfs_put(kn);
5494 }
5495 
5496 /*
5497  * proc_cgroup_show()
5498  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5499  *  - Used for /proc/<pid>/cgroup.
5500  */
5501 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5502 		     struct pid *pid, struct task_struct *tsk)
5503 {
5504 	char *buf;
5505 	int retval;
5506 	struct cgroup_root *root;
5507 
5508 	retval = -ENOMEM;
5509 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5510 	if (!buf)
5511 		goto out;
5512 
5513 	mutex_lock(&cgroup_mutex);
5514 	spin_lock_irq(&css_set_lock);
5515 
5516 	for_each_root(root) {
5517 		struct cgroup_subsys *ss;
5518 		struct cgroup *cgrp;
5519 		int ssid, count = 0;
5520 
5521 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5522 			continue;
5523 
5524 		seq_printf(m, "%d:", root->hierarchy_id);
5525 		if (root != &cgrp_dfl_root)
5526 			for_each_subsys(ss, ssid)
5527 				if (root->subsys_mask & (1 << ssid))
5528 					seq_printf(m, "%s%s", count++ ? "," : "",
5529 						   ss->legacy_name);
5530 		if (strlen(root->name))
5531 			seq_printf(m, "%sname=%s", count ? "," : "",
5532 				   root->name);
5533 		seq_putc(m, ':');
5534 
5535 		cgrp = task_cgroup_from_root(tsk, root);
5536 
5537 		/*
5538 		 * On traditional hierarchies, all zombie tasks show up as
5539 		 * belonging to the root cgroup.  On the default hierarchy,
5540 		 * while a zombie doesn't show up in "cgroup.procs" and
5541 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5542 		 * reporting the cgroup it belonged to before exiting.  If
5543 		 * the cgroup is removed before the zombie is reaped,
5544 		 * " (deleted)" is appended to the cgroup path.
5545 		 */
5546 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5547 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5548 						current->nsproxy->cgroup_ns);
5549 			if (retval >= PATH_MAX)
5550 				retval = -ENAMETOOLONG;
5551 			if (retval < 0)
5552 				goto out_unlock;
5553 
5554 			seq_puts(m, buf);
5555 		} else {
5556 			seq_puts(m, "/");
5557 		}
5558 
5559 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5560 			seq_puts(m, " (deleted)\n");
5561 		else
5562 			seq_putc(m, '\n');
5563 	}
5564 
5565 	retval = 0;
5566 out_unlock:
5567 	spin_unlock_irq(&css_set_lock);
5568 	mutex_unlock(&cgroup_mutex);
5569 	kfree(buf);
5570 out:
5571 	return retval;
5572 }
5573 
5574 /**
5575  * cgroup_fork - initialize cgroup related fields during copy_process()
5576  * @child: pointer to task_struct of forking parent process.
5577  *
5578  * A task is associated with the init_css_set until cgroup_post_fork()
5579  * attaches it to the parent's css_set.  Empty cg_list indicates that
5580  * @child isn't holding reference to its css_set.
5581  */
5582 void cgroup_fork(struct task_struct *child)
5583 {
5584 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5585 	INIT_LIST_HEAD(&child->cg_list);
5586 }
5587 
5588 /**
5589  * cgroup_can_fork - called on a new task before the process is exposed
5590  * @child: the task in question.
5591  *
5592  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5593  * returns an error, the fork aborts with that error code. This allows for
5594  * a cgroup subsystem to conditionally allow or deny new forks.
5595  */
5596 int cgroup_can_fork(struct task_struct *child)
5597 {
5598 	struct cgroup_subsys *ss;
5599 	int i, j, ret;
5600 
5601 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5602 		ret = ss->can_fork(child);
5603 		if (ret)
5604 			goto out_revert;
5605 	} while_each_subsys_mask();
5606 
5607 	return 0;
5608 
5609 out_revert:
5610 	for_each_subsys(ss, j) {
5611 		if (j >= i)
5612 			break;
5613 		if (ss->cancel_fork)
5614 			ss->cancel_fork(child);
5615 	}
5616 
5617 	return ret;
5618 }
5619 
5620 /**
5621  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5622  * @child: the task in question
5623  *
5624  * This calls the cancel_fork() callbacks if a fork failed *after*
5625  * cgroup_can_fork() succeded.
5626  */
5627 void cgroup_cancel_fork(struct task_struct *child)
5628 {
5629 	struct cgroup_subsys *ss;
5630 	int i;
5631 
5632 	for_each_subsys(ss, i)
5633 		if (ss->cancel_fork)
5634 			ss->cancel_fork(child);
5635 }
5636 
5637 /**
5638  * cgroup_post_fork - called on a new task after adding it to the task list
5639  * @child: the task in question
5640  *
5641  * Adds the task to the list running through its css_set if necessary and
5642  * call the subsystem fork() callbacks.  Has to be after the task is
5643  * visible on the task list in case we race with the first call to
5644  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5645  * list.
5646  */
5647 void cgroup_post_fork(struct task_struct *child)
5648 {
5649 	struct cgroup_subsys *ss;
5650 	int i;
5651 
5652 	/*
5653 	 * This may race against cgroup_enable_task_cg_lists().  As that
5654 	 * function sets use_task_css_set_links before grabbing
5655 	 * tasklist_lock and we just went through tasklist_lock to add
5656 	 * @child, it's guaranteed that either we see the set
5657 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5658 	 * @child during its iteration.
5659 	 *
5660 	 * If we won the race, @child is associated with %current's
5661 	 * css_set.  Grabbing css_set_lock guarantees both that the
5662 	 * association is stable, and, on completion of the parent's
5663 	 * migration, @child is visible in the source of migration or
5664 	 * already in the destination cgroup.  This guarantee is necessary
5665 	 * when implementing operations which need to migrate all tasks of
5666 	 * a cgroup to another.
5667 	 *
5668 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5669 	 * will remain in init_css_set.  This is safe because all tasks are
5670 	 * in the init_css_set before cg_links is enabled and there's no
5671 	 * operation which transfers all tasks out of init_css_set.
5672 	 */
5673 	if (use_task_css_set_links) {
5674 		struct css_set *cset;
5675 
5676 		spin_lock_irq(&css_set_lock);
5677 		cset = task_css_set(current);
5678 		if (list_empty(&child->cg_list)) {
5679 			get_css_set(cset);
5680 			cset->nr_tasks++;
5681 			css_set_move_task(child, NULL, cset, false);
5682 		}
5683 		spin_unlock_irq(&css_set_lock);
5684 	}
5685 
5686 	/*
5687 	 * Call ss->fork().  This must happen after @child is linked on
5688 	 * css_set; otherwise, @child might change state between ->fork()
5689 	 * and addition to css_set.
5690 	 */
5691 	do_each_subsys_mask(ss, i, have_fork_callback) {
5692 		ss->fork(child);
5693 	} while_each_subsys_mask();
5694 }
5695 
5696 /**
5697  * cgroup_exit - detach cgroup from exiting task
5698  * @tsk: pointer to task_struct of exiting process
5699  *
5700  * Description: Detach cgroup from @tsk and release it.
5701  *
5702  * Note that cgroups marked notify_on_release force every task in
5703  * them to take the global cgroup_mutex mutex when exiting.
5704  * This could impact scaling on very large systems.  Be reluctant to
5705  * use notify_on_release cgroups where very high task exit scaling
5706  * is required on large systems.
5707  *
5708  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5709  * call cgroup_exit() while the task is still competent to handle
5710  * notify_on_release(), then leave the task attached to the root cgroup in
5711  * each hierarchy for the remainder of its exit.  No need to bother with
5712  * init_css_set refcnting.  init_css_set never goes away and we can't race
5713  * with migration path - PF_EXITING is visible to migration path.
5714  */
5715 void cgroup_exit(struct task_struct *tsk)
5716 {
5717 	struct cgroup_subsys *ss;
5718 	struct css_set *cset;
5719 	int i;
5720 
5721 	/*
5722 	 * Unlink from @tsk from its css_set.  As migration path can't race
5723 	 * with us, we can check css_set and cg_list without synchronization.
5724 	 */
5725 	cset = task_css_set(tsk);
5726 
5727 	if (!list_empty(&tsk->cg_list)) {
5728 		spin_lock_irq(&css_set_lock);
5729 		css_set_move_task(tsk, cset, NULL, false);
5730 		cset->nr_tasks--;
5731 		spin_unlock_irq(&css_set_lock);
5732 	} else {
5733 		get_css_set(cset);
5734 	}
5735 
5736 	/* see cgroup_post_fork() for details */
5737 	do_each_subsys_mask(ss, i, have_exit_callback) {
5738 		ss->exit(tsk);
5739 	} while_each_subsys_mask();
5740 }
5741 
5742 void cgroup_free(struct task_struct *task)
5743 {
5744 	struct css_set *cset = task_css_set(task);
5745 	struct cgroup_subsys *ss;
5746 	int ssid;
5747 
5748 	do_each_subsys_mask(ss, ssid, have_free_callback) {
5749 		ss->free(task);
5750 	} while_each_subsys_mask();
5751 
5752 	put_css_set(cset);
5753 }
5754 
5755 static int __init cgroup_disable(char *str)
5756 {
5757 	struct cgroup_subsys *ss;
5758 	char *token;
5759 	int i;
5760 
5761 	while ((token = strsep(&str, ",")) != NULL) {
5762 		if (!*token)
5763 			continue;
5764 
5765 		for_each_subsys(ss, i) {
5766 			if (strcmp(token, ss->name) &&
5767 			    strcmp(token, ss->legacy_name))
5768 				continue;
5769 			cgroup_disable_mask |= 1 << i;
5770 		}
5771 	}
5772 	return 1;
5773 }
5774 __setup("cgroup_disable=", cgroup_disable);
5775 
5776 /**
5777  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5778  * @dentry: directory dentry of interest
5779  * @ss: subsystem of interest
5780  *
5781  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5782  * to get the corresponding css and return it.  If such css doesn't exist
5783  * or can't be pinned, an ERR_PTR value is returned.
5784  */
5785 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5786 						       struct cgroup_subsys *ss)
5787 {
5788 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5789 	struct file_system_type *s_type = dentry->d_sb->s_type;
5790 	struct cgroup_subsys_state *css = NULL;
5791 	struct cgroup *cgrp;
5792 
5793 	/* is @dentry a cgroup dir? */
5794 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5795 	    !kn || kernfs_type(kn) != KERNFS_DIR)
5796 		return ERR_PTR(-EBADF);
5797 
5798 	rcu_read_lock();
5799 
5800 	/*
5801 	 * This path doesn't originate from kernfs and @kn could already
5802 	 * have been or be removed at any point.  @kn->priv is RCU
5803 	 * protected for this access.  See css_release_work_fn() for details.
5804 	 */
5805 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5806 	if (cgrp)
5807 		css = cgroup_css(cgrp, ss);
5808 
5809 	if (!css || !css_tryget_online(css))
5810 		css = ERR_PTR(-ENOENT);
5811 
5812 	rcu_read_unlock();
5813 	return css;
5814 }
5815 
5816 /**
5817  * css_from_id - lookup css by id
5818  * @id: the cgroup id
5819  * @ss: cgroup subsys to be looked into
5820  *
5821  * Returns the css if there's valid one with @id, otherwise returns NULL.
5822  * Should be called under rcu_read_lock().
5823  */
5824 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5825 {
5826 	WARN_ON_ONCE(!rcu_read_lock_held());
5827 	return idr_find(&ss->css_idr, id);
5828 }
5829 
5830 /**
5831  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5832  * @path: path on the default hierarchy
5833  *
5834  * Find the cgroup at @path on the default hierarchy, increment its
5835  * reference count and return it.  Returns pointer to the found cgroup on
5836  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5837  * if @path points to a non-directory.
5838  */
5839 struct cgroup *cgroup_get_from_path(const char *path)
5840 {
5841 	struct kernfs_node *kn;
5842 	struct cgroup *cgrp;
5843 
5844 	mutex_lock(&cgroup_mutex);
5845 
5846 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5847 	if (kn) {
5848 		if (kernfs_type(kn) == KERNFS_DIR) {
5849 			cgrp = kn->priv;
5850 			cgroup_get_live(cgrp);
5851 		} else {
5852 			cgrp = ERR_PTR(-ENOTDIR);
5853 		}
5854 		kernfs_put(kn);
5855 	} else {
5856 		cgrp = ERR_PTR(-ENOENT);
5857 	}
5858 
5859 	mutex_unlock(&cgroup_mutex);
5860 	return cgrp;
5861 }
5862 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5863 
5864 /**
5865  * cgroup_get_from_fd - get a cgroup pointer from a fd
5866  * @fd: fd obtained by open(cgroup2_dir)
5867  *
5868  * Find the cgroup from a fd which should be obtained
5869  * by opening a cgroup directory.  Returns a pointer to the
5870  * cgroup on success. ERR_PTR is returned if the cgroup
5871  * cannot be found.
5872  */
5873 struct cgroup *cgroup_get_from_fd(int fd)
5874 {
5875 	struct cgroup_subsys_state *css;
5876 	struct cgroup *cgrp;
5877 	struct file *f;
5878 
5879 	f = fget_raw(fd);
5880 	if (!f)
5881 		return ERR_PTR(-EBADF);
5882 
5883 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5884 	fput(f);
5885 	if (IS_ERR(css))
5886 		return ERR_CAST(css);
5887 
5888 	cgrp = css->cgroup;
5889 	if (!cgroup_on_dfl(cgrp)) {
5890 		cgroup_put(cgrp);
5891 		return ERR_PTR(-EBADF);
5892 	}
5893 
5894 	return cgrp;
5895 }
5896 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5897 
5898 /*
5899  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5900  * definition in cgroup-defs.h.
5901  */
5902 #ifdef CONFIG_SOCK_CGROUP_DATA
5903 
5904 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5905 
5906 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5907 static bool cgroup_sk_alloc_disabled __read_mostly;
5908 
5909 void cgroup_sk_alloc_disable(void)
5910 {
5911 	if (cgroup_sk_alloc_disabled)
5912 		return;
5913 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5914 	cgroup_sk_alloc_disabled = true;
5915 }
5916 
5917 #else
5918 
5919 #define cgroup_sk_alloc_disabled	false
5920 
5921 #endif
5922 
5923 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5924 {
5925 	if (cgroup_sk_alloc_disabled)
5926 		return;
5927 
5928 	/* Socket clone path */
5929 	if (skcd->val) {
5930 		/*
5931 		 * We might be cloning a socket which is left in an empty
5932 		 * cgroup and the cgroup might have already been rmdir'd.
5933 		 * Don't use cgroup_get_live().
5934 		 */
5935 		cgroup_get(sock_cgroup_ptr(skcd));
5936 		return;
5937 	}
5938 
5939 	rcu_read_lock();
5940 
5941 	while (true) {
5942 		struct css_set *cset;
5943 
5944 		cset = task_css_set(current);
5945 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5946 			skcd->val = (unsigned long)cset->dfl_cgrp;
5947 			break;
5948 		}
5949 		cpu_relax();
5950 	}
5951 
5952 	rcu_read_unlock();
5953 }
5954 
5955 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5956 {
5957 	cgroup_put(sock_cgroup_ptr(skcd));
5958 }
5959 
5960 #endif	/* CONFIG_SOCK_CGROUP_DATA */
5961 
5962 #ifdef CONFIG_CGROUP_BPF
5963 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5964 		      enum bpf_attach_type type, u32 flags)
5965 {
5966 	int ret;
5967 
5968 	mutex_lock(&cgroup_mutex);
5969 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5970 	mutex_unlock(&cgroup_mutex);
5971 	return ret;
5972 }
5973 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5974 		      enum bpf_attach_type type, u32 flags)
5975 {
5976 	int ret;
5977 
5978 	mutex_lock(&cgroup_mutex);
5979 	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5980 	mutex_unlock(&cgroup_mutex);
5981 	return ret;
5982 }
5983 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5984 		     union bpf_attr __user *uattr)
5985 {
5986 	int ret;
5987 
5988 	mutex_lock(&cgroup_mutex);
5989 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
5990 	mutex_unlock(&cgroup_mutex);
5991 	return ret;
5992 }
5993 #endif /* CONFIG_CGROUP_BPF */
5994 
5995 #ifdef CONFIG_SYSFS
5996 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5997 				      ssize_t size, const char *prefix)
5998 {
5999 	struct cftype *cft;
6000 	ssize_t ret = 0;
6001 
6002 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6003 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6004 			continue;
6005 
6006 		if (prefix)
6007 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6008 
6009 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6010 
6011 		if (unlikely(ret >= size)) {
6012 			WARN_ON(1);
6013 			break;
6014 		}
6015 	}
6016 
6017 	return ret;
6018 }
6019 
6020 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6021 			      char *buf)
6022 {
6023 	struct cgroup_subsys *ss;
6024 	int ssid;
6025 	ssize_t ret = 0;
6026 
6027 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6028 				     NULL);
6029 
6030 	for_each_subsys(ss, ssid)
6031 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6032 					      PAGE_SIZE - ret,
6033 					      cgroup_subsys_name[ssid]);
6034 
6035 	return ret;
6036 }
6037 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6038 
6039 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6040 			     char *buf)
6041 {
6042 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6043 }
6044 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6045 
6046 static struct attribute *cgroup_sysfs_attrs[] = {
6047 	&cgroup_delegate_attr.attr,
6048 	&cgroup_features_attr.attr,
6049 	NULL,
6050 };
6051 
6052 static const struct attribute_group cgroup_sysfs_attr_group = {
6053 	.attrs = cgroup_sysfs_attrs,
6054 	.name = "cgroup",
6055 };
6056 
6057 static int __init cgroup_sysfs_init(void)
6058 {
6059 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6060 }
6061 subsys_initcall(cgroup_sysfs_init);
6062 #endif /* CONFIG_SYSFS */
6063