1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/sched/cputime.h> 58 #include <linux/psi.h> 59 #include <net/sock.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/cgroup.h> 63 64 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 65 MAX_CFTYPE_NAME + 2) 66 /* let's not notify more than 100 times per second */ 67 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 68 69 /* 70 * cgroup_mutex is the master lock. Any modification to cgroup or its 71 * hierarchy must be performed while holding it. 72 * 73 * css_set_lock protects task->cgroups pointer, the list of css_set 74 * objects, and the chain of tasks off each css_set. 75 * 76 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 77 * cgroup.h can use them for lockdep annotations. 78 */ 79 DEFINE_MUTEX(cgroup_mutex); 80 DEFINE_SPINLOCK(css_set_lock); 81 82 #ifdef CONFIG_PROVE_RCU 83 EXPORT_SYMBOL_GPL(cgroup_mutex); 84 EXPORT_SYMBOL_GPL(css_set_lock); 85 #endif 86 87 DEFINE_SPINLOCK(trace_cgroup_path_lock); 88 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 89 90 /* 91 * Protects cgroup_idr and css_idr so that IDs can be released without 92 * grabbing cgroup_mutex. 93 */ 94 static DEFINE_SPINLOCK(cgroup_idr_lock); 95 96 /* 97 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 98 * against file removal/re-creation across css hiding. 99 */ 100 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 101 102 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 103 104 #define cgroup_assert_mutex_or_rcu_locked() \ 105 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 106 !lockdep_is_held(&cgroup_mutex), \ 107 "cgroup_mutex or RCU read lock required"); 108 109 /* 110 * cgroup destruction makes heavy use of work items and there can be a lot 111 * of concurrent destructions. Use a separate workqueue so that cgroup 112 * destruction work items don't end up filling up max_active of system_wq 113 * which may lead to deadlock. 114 */ 115 static struct workqueue_struct *cgroup_destroy_wq; 116 117 /* generate an array of cgroup subsystem pointers */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 119 struct cgroup_subsys *cgroup_subsys[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of cgroup subsystem names */ 125 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 126 static const char *cgroup_subsys_name[] = { 127 #include <linux/cgroup_subsys.h> 128 }; 129 #undef SUBSYS 130 131 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 132 #define SUBSYS(_x) \ 133 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 134 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 135 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 136 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 137 #include <linux/cgroup_subsys.h> 138 #undef SUBSYS 139 140 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 141 static struct static_key_true *cgroup_subsys_enabled_key[] = { 142 #include <linux/cgroup_subsys.h> 143 }; 144 #undef SUBSYS 145 146 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 147 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 148 #include <linux/cgroup_subsys.h> 149 }; 150 #undef SUBSYS 151 152 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 153 154 /* 155 * The default hierarchy, reserved for the subsystems that are otherwise 156 * unattached - it never has more than a single cgroup, and all tasks are 157 * part of that cgroup. 158 */ 159 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 160 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 161 162 /* 163 * The default hierarchy always exists but is hidden until mounted for the 164 * first time. This is for backward compatibility. 165 */ 166 static bool cgrp_dfl_visible; 167 168 /* some controllers are not supported in the default hierarchy */ 169 static u16 cgrp_dfl_inhibit_ss_mask; 170 171 /* some controllers are implicitly enabled on the default hierarchy */ 172 static u16 cgrp_dfl_implicit_ss_mask; 173 174 /* some controllers can be threaded on the default hierarchy */ 175 static u16 cgrp_dfl_threaded_ss_mask; 176 177 /* The list of hierarchy roots */ 178 LIST_HEAD(cgroup_roots); 179 static int cgroup_root_count; 180 181 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 182 static DEFINE_IDR(cgroup_hierarchy_idr); 183 184 /* 185 * Assign a monotonically increasing serial number to csses. It guarantees 186 * cgroups with bigger numbers are newer than those with smaller numbers. 187 * Also, as csses are always appended to the parent's ->children list, it 188 * guarantees that sibling csses are always sorted in the ascending serial 189 * number order on the list. Protected by cgroup_mutex. 190 */ 191 static u64 css_serial_nr_next = 1; 192 193 /* 194 * These bitmasks identify subsystems with specific features to avoid 195 * having to do iterative checks repeatedly. 196 */ 197 static u16 have_fork_callback __read_mostly; 198 static u16 have_exit_callback __read_mostly; 199 static u16 have_free_callback __read_mostly; 200 static u16 have_canfork_callback __read_mostly; 201 202 /* cgroup namespace for init task */ 203 struct cgroup_namespace init_cgroup_ns = { 204 .count = REFCOUNT_INIT(2), 205 .user_ns = &init_user_ns, 206 .ns.ops = &cgroupns_operations, 207 .ns.inum = PROC_CGROUP_INIT_INO, 208 .root_cset = &init_css_set, 209 }; 210 211 static struct file_system_type cgroup2_fs_type; 212 static struct cftype cgroup_base_files[]; 213 214 static int cgroup_apply_control(struct cgroup *cgrp); 215 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 216 static void css_task_iter_advance(struct css_task_iter *it); 217 static int cgroup_destroy_locked(struct cgroup *cgrp); 218 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 219 struct cgroup_subsys *ss); 220 static void css_release(struct percpu_ref *ref); 221 static void kill_css(struct cgroup_subsys_state *css); 222 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 223 struct cgroup *cgrp, struct cftype cfts[], 224 bool is_add); 225 226 /** 227 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 228 * @ssid: subsys ID of interest 229 * 230 * cgroup_subsys_enabled() can only be used with literal subsys names which 231 * is fine for individual subsystems but unsuitable for cgroup core. This 232 * is slower static_key_enabled() based test indexed by @ssid. 233 */ 234 bool cgroup_ssid_enabled(int ssid) 235 { 236 if (CGROUP_SUBSYS_COUNT == 0) 237 return false; 238 239 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 240 } 241 242 /** 243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 244 * @cgrp: the cgroup of interest 245 * 246 * The default hierarchy is the v2 interface of cgroup and this function 247 * can be used to test whether a cgroup is on the default hierarchy for 248 * cases where a subsystem should behave differnetly depending on the 249 * interface version. 250 * 251 * The set of behaviors which change on the default hierarchy are still 252 * being determined and the mount option is prefixed with __DEVEL__. 253 * 254 * List of changed behaviors: 255 * 256 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 257 * and "name" are disallowed. 258 * 259 * - When mounting an existing superblock, mount options should match. 260 * 261 * - Remount is disallowed. 262 * 263 * - rename(2) is disallowed. 264 * 265 * - "tasks" is removed. Everything should be at process granularity. Use 266 * "cgroup.procs" instead. 267 * 268 * - "cgroup.procs" is not sorted. pids will be unique unless they got 269 * recycled inbetween reads. 270 * 271 * - "release_agent" and "notify_on_release" are removed. Replacement 272 * notification mechanism will be implemented. 273 * 274 * - "cgroup.clone_children" is removed. 275 * 276 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 277 * and its descendants contain no task; otherwise, 1. The file also 278 * generates kernfs notification which can be monitored through poll and 279 * [di]notify when the value of the file changes. 280 * 281 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 282 * take masks of ancestors with non-empty cpus/mems, instead of being 283 * moved to an ancestor. 284 * 285 * - cpuset: a task can be moved into an empty cpuset, and again it takes 286 * masks of ancestors. 287 * 288 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 289 * is not created. 290 * 291 * - blkcg: blk-throttle becomes properly hierarchical. 292 * 293 * - debug: disallowed on the default hierarchy. 294 */ 295 bool cgroup_on_dfl(const struct cgroup *cgrp) 296 { 297 return cgrp->root == &cgrp_dfl_root; 298 } 299 300 /* IDR wrappers which synchronize using cgroup_idr_lock */ 301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 302 gfp_t gfp_mask) 303 { 304 int ret; 305 306 idr_preload(gfp_mask); 307 spin_lock_bh(&cgroup_idr_lock); 308 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 309 spin_unlock_bh(&cgroup_idr_lock); 310 idr_preload_end(); 311 return ret; 312 } 313 314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 315 { 316 void *ret; 317 318 spin_lock_bh(&cgroup_idr_lock); 319 ret = idr_replace(idr, ptr, id); 320 spin_unlock_bh(&cgroup_idr_lock); 321 return ret; 322 } 323 324 static void cgroup_idr_remove(struct idr *idr, int id) 325 { 326 spin_lock_bh(&cgroup_idr_lock); 327 idr_remove(idr, id); 328 spin_unlock_bh(&cgroup_idr_lock); 329 } 330 331 static bool cgroup_has_tasks(struct cgroup *cgrp) 332 { 333 return cgrp->nr_populated_csets; 334 } 335 336 bool cgroup_is_threaded(struct cgroup *cgrp) 337 { 338 return cgrp->dom_cgrp != cgrp; 339 } 340 341 /* can @cgrp host both domain and threaded children? */ 342 static bool cgroup_is_mixable(struct cgroup *cgrp) 343 { 344 /* 345 * Root isn't under domain level resource control exempting it from 346 * the no-internal-process constraint, so it can serve as a thread 347 * root and a parent of resource domains at the same time. 348 */ 349 return !cgroup_parent(cgrp); 350 } 351 352 /* can @cgrp become a thread root? should always be true for a thread root */ 353 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 354 { 355 /* mixables don't care */ 356 if (cgroup_is_mixable(cgrp)) 357 return true; 358 359 /* domain roots can't be nested under threaded */ 360 if (cgroup_is_threaded(cgrp)) 361 return false; 362 363 /* can only have either domain or threaded children */ 364 if (cgrp->nr_populated_domain_children) 365 return false; 366 367 /* and no domain controllers can be enabled */ 368 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 369 return false; 370 371 return true; 372 } 373 374 /* is @cgrp root of a threaded subtree? */ 375 bool cgroup_is_thread_root(struct cgroup *cgrp) 376 { 377 /* thread root should be a domain */ 378 if (cgroup_is_threaded(cgrp)) 379 return false; 380 381 /* a domain w/ threaded children is a thread root */ 382 if (cgrp->nr_threaded_children) 383 return true; 384 385 /* 386 * A domain which has tasks and explicit threaded controllers 387 * enabled is a thread root. 388 */ 389 if (cgroup_has_tasks(cgrp) && 390 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 391 return true; 392 393 return false; 394 } 395 396 /* a domain which isn't connected to the root w/o brekage can't be used */ 397 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 398 { 399 /* the cgroup itself can be a thread root */ 400 if (cgroup_is_threaded(cgrp)) 401 return false; 402 403 /* but the ancestors can't be unless mixable */ 404 while ((cgrp = cgroup_parent(cgrp))) { 405 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 406 return false; 407 if (cgroup_is_threaded(cgrp)) 408 return false; 409 } 410 411 return true; 412 } 413 414 /* subsystems visibly enabled on a cgroup */ 415 static u16 cgroup_control(struct cgroup *cgrp) 416 { 417 struct cgroup *parent = cgroup_parent(cgrp); 418 u16 root_ss_mask = cgrp->root->subsys_mask; 419 420 if (parent) { 421 u16 ss_mask = parent->subtree_control; 422 423 /* threaded cgroups can only have threaded controllers */ 424 if (cgroup_is_threaded(cgrp)) 425 ss_mask &= cgrp_dfl_threaded_ss_mask; 426 return ss_mask; 427 } 428 429 if (cgroup_on_dfl(cgrp)) 430 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 431 cgrp_dfl_implicit_ss_mask); 432 return root_ss_mask; 433 } 434 435 /* subsystems enabled on a cgroup */ 436 static u16 cgroup_ss_mask(struct cgroup *cgrp) 437 { 438 struct cgroup *parent = cgroup_parent(cgrp); 439 440 if (parent) { 441 u16 ss_mask = parent->subtree_ss_mask; 442 443 /* threaded cgroups can only have threaded controllers */ 444 if (cgroup_is_threaded(cgrp)) 445 ss_mask &= cgrp_dfl_threaded_ss_mask; 446 return ss_mask; 447 } 448 449 return cgrp->root->subsys_mask; 450 } 451 452 /** 453 * cgroup_css - obtain a cgroup's css for the specified subsystem 454 * @cgrp: the cgroup of interest 455 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 456 * 457 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 458 * function must be called either under cgroup_mutex or rcu_read_lock() and 459 * the caller is responsible for pinning the returned css if it wants to 460 * keep accessing it outside the said locks. This function may return 461 * %NULL if @cgrp doesn't have @subsys_id enabled. 462 */ 463 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 464 struct cgroup_subsys *ss) 465 { 466 if (ss) 467 return rcu_dereference_check(cgrp->subsys[ss->id], 468 lockdep_is_held(&cgroup_mutex)); 469 else 470 return &cgrp->self; 471 } 472 473 /** 474 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 475 * @cgrp: the cgroup of interest 476 * @ss: the subsystem of interest 477 * 478 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 479 * or is offline, %NULL is returned. 480 */ 481 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 482 struct cgroup_subsys *ss) 483 { 484 struct cgroup_subsys_state *css; 485 486 rcu_read_lock(); 487 css = cgroup_css(cgrp, ss); 488 if (!css || !css_tryget_online(css)) 489 css = NULL; 490 rcu_read_unlock(); 491 492 return css; 493 } 494 495 /** 496 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 497 * @cgrp: the cgroup of interest 498 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 499 * 500 * Similar to cgroup_css() but returns the effective css, which is defined 501 * as the matching css of the nearest ancestor including self which has @ss 502 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 503 * function is guaranteed to return non-NULL css. 504 */ 505 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 506 struct cgroup_subsys *ss) 507 { 508 lockdep_assert_held(&cgroup_mutex); 509 510 if (!ss) 511 return &cgrp->self; 512 513 /* 514 * This function is used while updating css associations and thus 515 * can't test the csses directly. Test ss_mask. 516 */ 517 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 518 cgrp = cgroup_parent(cgrp); 519 if (!cgrp) 520 return NULL; 521 } 522 523 return cgroup_css(cgrp, ss); 524 } 525 526 /** 527 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 528 * @cgrp: the cgroup of interest 529 * @ss: the subsystem of interest 530 * 531 * Find and get the effective css of @cgrp for @ss. The effective css is 532 * defined as the matching css of the nearest ancestor including self which 533 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 534 * the root css is returned, so this function always returns a valid css. 535 * 536 * The returned css is not guaranteed to be online, and therefore it is the 537 * callers responsiblity to tryget a reference for it. 538 */ 539 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 540 struct cgroup_subsys *ss) 541 { 542 struct cgroup_subsys_state *css; 543 544 do { 545 css = cgroup_css(cgrp, ss); 546 547 if (css) 548 return css; 549 cgrp = cgroup_parent(cgrp); 550 } while (cgrp); 551 552 return init_css_set.subsys[ss->id]; 553 } 554 555 /** 556 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 557 * @cgrp: the cgroup of interest 558 * @ss: the subsystem of interest 559 * 560 * Find and get the effective css of @cgrp for @ss. The effective css is 561 * defined as the matching css of the nearest ancestor including self which 562 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 563 * the root css is returned, so this function always returns a valid css. 564 * The returned css must be put using css_put(). 565 */ 566 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 567 struct cgroup_subsys *ss) 568 { 569 struct cgroup_subsys_state *css; 570 571 rcu_read_lock(); 572 573 do { 574 css = cgroup_css(cgrp, ss); 575 576 if (css && css_tryget_online(css)) 577 goto out_unlock; 578 cgrp = cgroup_parent(cgrp); 579 } while (cgrp); 580 581 css = init_css_set.subsys[ss->id]; 582 css_get(css); 583 out_unlock: 584 rcu_read_unlock(); 585 return css; 586 } 587 588 static void cgroup_get_live(struct cgroup *cgrp) 589 { 590 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 591 css_get(&cgrp->self); 592 } 593 594 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 595 { 596 struct cgroup *cgrp = of->kn->parent->priv; 597 struct cftype *cft = of_cft(of); 598 599 /* 600 * This is open and unprotected implementation of cgroup_css(). 601 * seq_css() is only called from a kernfs file operation which has 602 * an active reference on the file. Because all the subsystem 603 * files are drained before a css is disassociated with a cgroup, 604 * the matching css from the cgroup's subsys table is guaranteed to 605 * be and stay valid until the enclosing operation is complete. 606 */ 607 if (cft->ss) 608 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 609 else 610 return &cgrp->self; 611 } 612 EXPORT_SYMBOL_GPL(of_css); 613 614 /** 615 * for_each_css - iterate all css's of a cgroup 616 * @css: the iteration cursor 617 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 618 * @cgrp: the target cgroup to iterate css's of 619 * 620 * Should be called under cgroup_[tree_]mutex. 621 */ 622 #define for_each_css(css, ssid, cgrp) \ 623 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 624 if (!((css) = rcu_dereference_check( \ 625 (cgrp)->subsys[(ssid)], \ 626 lockdep_is_held(&cgroup_mutex)))) { } \ 627 else 628 629 /** 630 * for_each_e_css - iterate all effective css's of a cgroup 631 * @css: the iteration cursor 632 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 633 * @cgrp: the target cgroup to iterate css's of 634 * 635 * Should be called under cgroup_[tree_]mutex. 636 */ 637 #define for_each_e_css(css, ssid, cgrp) \ 638 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 639 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 640 cgroup_subsys[(ssid)]))) \ 641 ; \ 642 else 643 644 /** 645 * do_each_subsys_mask - filter for_each_subsys with a bitmask 646 * @ss: the iteration cursor 647 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 648 * @ss_mask: the bitmask 649 * 650 * The block will only run for cases where the ssid-th bit (1 << ssid) of 651 * @ss_mask is set. 652 */ 653 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 654 unsigned long __ss_mask = (ss_mask); \ 655 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 656 (ssid) = 0; \ 657 break; \ 658 } \ 659 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 660 (ss) = cgroup_subsys[ssid]; \ 661 { 662 663 #define while_each_subsys_mask() \ 664 } \ 665 } \ 666 } while (false) 667 668 /* iterate over child cgrps, lock should be held throughout iteration */ 669 #define cgroup_for_each_live_child(child, cgrp) \ 670 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 671 if (({ lockdep_assert_held(&cgroup_mutex); \ 672 cgroup_is_dead(child); })) \ 673 ; \ 674 else 675 676 /* walk live descendants in preorder */ 677 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 678 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 679 if (({ lockdep_assert_held(&cgroup_mutex); \ 680 (dsct) = (d_css)->cgroup; \ 681 cgroup_is_dead(dsct); })) \ 682 ; \ 683 else 684 685 /* walk live descendants in postorder */ 686 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 687 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 688 if (({ lockdep_assert_held(&cgroup_mutex); \ 689 (dsct) = (d_css)->cgroup; \ 690 cgroup_is_dead(dsct); })) \ 691 ; \ 692 else 693 694 /* 695 * The default css_set - used by init and its children prior to any 696 * hierarchies being mounted. It contains a pointer to the root state 697 * for each subsystem. Also used to anchor the list of css_sets. Not 698 * reference-counted, to improve performance when child cgroups 699 * haven't been created. 700 */ 701 struct css_set init_css_set = { 702 .refcount = REFCOUNT_INIT(1), 703 .dom_cset = &init_css_set, 704 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 705 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 706 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 707 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 708 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 709 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 710 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 711 712 /* 713 * The following field is re-initialized when this cset gets linked 714 * in cgroup_init(). However, let's initialize the field 715 * statically too so that the default cgroup can be accessed safely 716 * early during boot. 717 */ 718 .dfl_cgrp = &cgrp_dfl_root.cgrp, 719 }; 720 721 static int css_set_count = 1; /* 1 for init_css_set */ 722 723 static bool css_set_threaded(struct css_set *cset) 724 { 725 return cset->dom_cset != cset; 726 } 727 728 /** 729 * css_set_populated - does a css_set contain any tasks? 730 * @cset: target css_set 731 * 732 * css_set_populated() should be the same as !!cset->nr_tasks at steady 733 * state. However, css_set_populated() can be called while a task is being 734 * added to or removed from the linked list before the nr_tasks is 735 * properly updated. Hence, we can't just look at ->nr_tasks here. 736 */ 737 static bool css_set_populated(struct css_set *cset) 738 { 739 lockdep_assert_held(&css_set_lock); 740 741 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 742 } 743 744 /** 745 * cgroup_update_populated - update the populated count of a cgroup 746 * @cgrp: the target cgroup 747 * @populated: inc or dec populated count 748 * 749 * One of the css_sets associated with @cgrp is either getting its first 750 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 751 * count is propagated towards root so that a given cgroup's 752 * nr_populated_children is zero iff none of its descendants contain any 753 * tasks. 754 * 755 * @cgrp's interface file "cgroup.populated" is zero if both 756 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 757 * 1 otherwise. When the sum changes from or to zero, userland is notified 758 * that the content of the interface file has changed. This can be used to 759 * detect when @cgrp and its descendants become populated or empty. 760 */ 761 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 762 { 763 struct cgroup *child = NULL; 764 int adj = populated ? 1 : -1; 765 766 lockdep_assert_held(&css_set_lock); 767 768 do { 769 bool was_populated = cgroup_is_populated(cgrp); 770 771 if (!child) { 772 cgrp->nr_populated_csets += adj; 773 } else { 774 if (cgroup_is_threaded(child)) 775 cgrp->nr_populated_threaded_children += adj; 776 else 777 cgrp->nr_populated_domain_children += adj; 778 } 779 780 if (was_populated == cgroup_is_populated(cgrp)) 781 break; 782 783 cgroup1_check_for_release(cgrp); 784 cgroup_file_notify(&cgrp->events_file); 785 786 child = cgrp; 787 cgrp = cgroup_parent(cgrp); 788 } while (cgrp); 789 } 790 791 /** 792 * css_set_update_populated - update populated state of a css_set 793 * @cset: target css_set 794 * @populated: whether @cset is populated or depopulated 795 * 796 * @cset is either getting the first task or losing the last. Update the 797 * populated counters of all associated cgroups accordingly. 798 */ 799 static void css_set_update_populated(struct css_set *cset, bool populated) 800 { 801 struct cgrp_cset_link *link; 802 803 lockdep_assert_held(&css_set_lock); 804 805 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 806 cgroup_update_populated(link->cgrp, populated); 807 } 808 809 /** 810 * css_set_move_task - move a task from one css_set to another 811 * @task: task being moved 812 * @from_cset: css_set @task currently belongs to (may be NULL) 813 * @to_cset: new css_set @task is being moved to (may be NULL) 814 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 815 * 816 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 817 * css_set, @from_cset can be NULL. If @task is being disassociated 818 * instead of moved, @to_cset can be NULL. 819 * 820 * This function automatically handles populated counter updates and 821 * css_task_iter adjustments but the caller is responsible for managing 822 * @from_cset and @to_cset's reference counts. 823 */ 824 static void css_set_move_task(struct task_struct *task, 825 struct css_set *from_cset, struct css_set *to_cset, 826 bool use_mg_tasks) 827 { 828 lockdep_assert_held(&css_set_lock); 829 830 if (to_cset && !css_set_populated(to_cset)) 831 css_set_update_populated(to_cset, true); 832 833 if (from_cset) { 834 struct css_task_iter *it, *pos; 835 836 WARN_ON_ONCE(list_empty(&task->cg_list)); 837 838 /* 839 * @task is leaving, advance task iterators which are 840 * pointing to it so that they can resume at the next 841 * position. Advancing an iterator might remove it from 842 * the list, use safe walk. See css_task_iter_advance*() 843 * for details. 844 */ 845 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 846 iters_node) 847 if (it->task_pos == &task->cg_list) 848 css_task_iter_advance(it); 849 850 list_del_init(&task->cg_list); 851 if (!css_set_populated(from_cset)) 852 css_set_update_populated(from_cset, false); 853 } else { 854 WARN_ON_ONCE(!list_empty(&task->cg_list)); 855 } 856 857 if (to_cset) { 858 /* 859 * We are synchronized through cgroup_threadgroup_rwsem 860 * against PF_EXITING setting such that we can't race 861 * against cgroup_exit() changing the css_set to 862 * init_css_set and dropping the old one. 863 */ 864 WARN_ON_ONCE(task->flags & PF_EXITING); 865 866 cgroup_move_task(task, to_cset); 867 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 868 &to_cset->tasks); 869 } 870 } 871 872 /* 873 * hash table for cgroup groups. This improves the performance to find 874 * an existing css_set. This hash doesn't (currently) take into 875 * account cgroups in empty hierarchies. 876 */ 877 #define CSS_SET_HASH_BITS 7 878 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 879 880 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 881 { 882 unsigned long key = 0UL; 883 struct cgroup_subsys *ss; 884 int i; 885 886 for_each_subsys(ss, i) 887 key += (unsigned long)css[i]; 888 key = (key >> 16) ^ key; 889 890 return key; 891 } 892 893 void put_css_set_locked(struct css_set *cset) 894 { 895 struct cgrp_cset_link *link, *tmp_link; 896 struct cgroup_subsys *ss; 897 int ssid; 898 899 lockdep_assert_held(&css_set_lock); 900 901 if (!refcount_dec_and_test(&cset->refcount)) 902 return; 903 904 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 905 906 /* This css_set is dead. unlink it and release cgroup and css refs */ 907 for_each_subsys(ss, ssid) { 908 list_del(&cset->e_cset_node[ssid]); 909 css_put(cset->subsys[ssid]); 910 } 911 hash_del(&cset->hlist); 912 css_set_count--; 913 914 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 915 list_del(&link->cset_link); 916 list_del(&link->cgrp_link); 917 if (cgroup_parent(link->cgrp)) 918 cgroup_put(link->cgrp); 919 kfree(link); 920 } 921 922 if (css_set_threaded(cset)) { 923 list_del(&cset->threaded_csets_node); 924 put_css_set_locked(cset->dom_cset); 925 } 926 927 kfree_rcu(cset, rcu_head); 928 } 929 930 /** 931 * compare_css_sets - helper function for find_existing_css_set(). 932 * @cset: candidate css_set being tested 933 * @old_cset: existing css_set for a task 934 * @new_cgrp: cgroup that's being entered by the task 935 * @template: desired set of css pointers in css_set (pre-calculated) 936 * 937 * Returns true if "cset" matches "old_cset" except for the hierarchy 938 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 939 */ 940 static bool compare_css_sets(struct css_set *cset, 941 struct css_set *old_cset, 942 struct cgroup *new_cgrp, 943 struct cgroup_subsys_state *template[]) 944 { 945 struct cgroup *new_dfl_cgrp; 946 struct list_head *l1, *l2; 947 948 /* 949 * On the default hierarchy, there can be csets which are 950 * associated with the same set of cgroups but different csses. 951 * Let's first ensure that csses match. 952 */ 953 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 954 return false; 955 956 957 /* @cset's domain should match the default cgroup's */ 958 if (cgroup_on_dfl(new_cgrp)) 959 new_dfl_cgrp = new_cgrp; 960 else 961 new_dfl_cgrp = old_cset->dfl_cgrp; 962 963 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 964 return false; 965 966 /* 967 * Compare cgroup pointers in order to distinguish between 968 * different cgroups in hierarchies. As different cgroups may 969 * share the same effective css, this comparison is always 970 * necessary. 971 */ 972 l1 = &cset->cgrp_links; 973 l2 = &old_cset->cgrp_links; 974 while (1) { 975 struct cgrp_cset_link *link1, *link2; 976 struct cgroup *cgrp1, *cgrp2; 977 978 l1 = l1->next; 979 l2 = l2->next; 980 /* See if we reached the end - both lists are equal length. */ 981 if (l1 == &cset->cgrp_links) { 982 BUG_ON(l2 != &old_cset->cgrp_links); 983 break; 984 } else { 985 BUG_ON(l2 == &old_cset->cgrp_links); 986 } 987 /* Locate the cgroups associated with these links. */ 988 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 989 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 990 cgrp1 = link1->cgrp; 991 cgrp2 = link2->cgrp; 992 /* Hierarchies should be linked in the same order. */ 993 BUG_ON(cgrp1->root != cgrp2->root); 994 995 /* 996 * If this hierarchy is the hierarchy of the cgroup 997 * that's changing, then we need to check that this 998 * css_set points to the new cgroup; if it's any other 999 * hierarchy, then this css_set should point to the 1000 * same cgroup as the old css_set. 1001 */ 1002 if (cgrp1->root == new_cgrp->root) { 1003 if (cgrp1 != new_cgrp) 1004 return false; 1005 } else { 1006 if (cgrp1 != cgrp2) 1007 return false; 1008 } 1009 } 1010 return true; 1011 } 1012 1013 /** 1014 * find_existing_css_set - init css array and find the matching css_set 1015 * @old_cset: the css_set that we're using before the cgroup transition 1016 * @cgrp: the cgroup that we're moving into 1017 * @template: out param for the new set of csses, should be clear on entry 1018 */ 1019 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1020 struct cgroup *cgrp, 1021 struct cgroup_subsys_state *template[]) 1022 { 1023 struct cgroup_root *root = cgrp->root; 1024 struct cgroup_subsys *ss; 1025 struct css_set *cset; 1026 unsigned long key; 1027 int i; 1028 1029 /* 1030 * Build the set of subsystem state objects that we want to see in the 1031 * new css_set. while subsystems can change globally, the entries here 1032 * won't change, so no need for locking. 1033 */ 1034 for_each_subsys(ss, i) { 1035 if (root->subsys_mask & (1UL << i)) { 1036 /* 1037 * @ss is in this hierarchy, so we want the 1038 * effective css from @cgrp. 1039 */ 1040 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1041 } else { 1042 /* 1043 * @ss is not in this hierarchy, so we don't want 1044 * to change the css. 1045 */ 1046 template[i] = old_cset->subsys[i]; 1047 } 1048 } 1049 1050 key = css_set_hash(template); 1051 hash_for_each_possible(css_set_table, cset, hlist, key) { 1052 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1053 continue; 1054 1055 /* This css_set matches what we need */ 1056 return cset; 1057 } 1058 1059 /* No existing cgroup group matched */ 1060 return NULL; 1061 } 1062 1063 static void free_cgrp_cset_links(struct list_head *links_to_free) 1064 { 1065 struct cgrp_cset_link *link, *tmp_link; 1066 1067 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1068 list_del(&link->cset_link); 1069 kfree(link); 1070 } 1071 } 1072 1073 /** 1074 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1075 * @count: the number of links to allocate 1076 * @tmp_links: list_head the allocated links are put on 1077 * 1078 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1079 * through ->cset_link. Returns 0 on success or -errno. 1080 */ 1081 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1082 { 1083 struct cgrp_cset_link *link; 1084 int i; 1085 1086 INIT_LIST_HEAD(tmp_links); 1087 1088 for (i = 0; i < count; i++) { 1089 link = kzalloc(sizeof(*link), GFP_KERNEL); 1090 if (!link) { 1091 free_cgrp_cset_links(tmp_links); 1092 return -ENOMEM; 1093 } 1094 list_add(&link->cset_link, tmp_links); 1095 } 1096 return 0; 1097 } 1098 1099 /** 1100 * link_css_set - a helper function to link a css_set to a cgroup 1101 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1102 * @cset: the css_set to be linked 1103 * @cgrp: the destination cgroup 1104 */ 1105 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1106 struct cgroup *cgrp) 1107 { 1108 struct cgrp_cset_link *link; 1109 1110 BUG_ON(list_empty(tmp_links)); 1111 1112 if (cgroup_on_dfl(cgrp)) 1113 cset->dfl_cgrp = cgrp; 1114 1115 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1116 link->cset = cset; 1117 link->cgrp = cgrp; 1118 1119 /* 1120 * Always add links to the tail of the lists so that the lists are 1121 * in choronological order. 1122 */ 1123 list_move_tail(&link->cset_link, &cgrp->cset_links); 1124 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1125 1126 if (cgroup_parent(cgrp)) 1127 cgroup_get_live(cgrp); 1128 } 1129 1130 /** 1131 * find_css_set - return a new css_set with one cgroup updated 1132 * @old_cset: the baseline css_set 1133 * @cgrp: the cgroup to be updated 1134 * 1135 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1136 * substituted into the appropriate hierarchy. 1137 */ 1138 static struct css_set *find_css_set(struct css_set *old_cset, 1139 struct cgroup *cgrp) 1140 { 1141 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1142 struct css_set *cset; 1143 struct list_head tmp_links; 1144 struct cgrp_cset_link *link; 1145 struct cgroup_subsys *ss; 1146 unsigned long key; 1147 int ssid; 1148 1149 lockdep_assert_held(&cgroup_mutex); 1150 1151 /* First see if we already have a cgroup group that matches 1152 * the desired set */ 1153 spin_lock_irq(&css_set_lock); 1154 cset = find_existing_css_set(old_cset, cgrp, template); 1155 if (cset) 1156 get_css_set(cset); 1157 spin_unlock_irq(&css_set_lock); 1158 1159 if (cset) 1160 return cset; 1161 1162 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1163 if (!cset) 1164 return NULL; 1165 1166 /* Allocate all the cgrp_cset_link objects that we'll need */ 1167 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1168 kfree(cset); 1169 return NULL; 1170 } 1171 1172 refcount_set(&cset->refcount, 1); 1173 cset->dom_cset = cset; 1174 INIT_LIST_HEAD(&cset->tasks); 1175 INIT_LIST_HEAD(&cset->mg_tasks); 1176 INIT_LIST_HEAD(&cset->task_iters); 1177 INIT_LIST_HEAD(&cset->threaded_csets); 1178 INIT_HLIST_NODE(&cset->hlist); 1179 INIT_LIST_HEAD(&cset->cgrp_links); 1180 INIT_LIST_HEAD(&cset->mg_preload_node); 1181 INIT_LIST_HEAD(&cset->mg_node); 1182 1183 /* Copy the set of subsystem state objects generated in 1184 * find_existing_css_set() */ 1185 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1186 1187 spin_lock_irq(&css_set_lock); 1188 /* Add reference counts and links from the new css_set. */ 1189 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1190 struct cgroup *c = link->cgrp; 1191 1192 if (c->root == cgrp->root) 1193 c = cgrp; 1194 link_css_set(&tmp_links, cset, c); 1195 } 1196 1197 BUG_ON(!list_empty(&tmp_links)); 1198 1199 css_set_count++; 1200 1201 /* Add @cset to the hash table */ 1202 key = css_set_hash(cset->subsys); 1203 hash_add(css_set_table, &cset->hlist, key); 1204 1205 for_each_subsys(ss, ssid) { 1206 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1207 1208 list_add_tail(&cset->e_cset_node[ssid], 1209 &css->cgroup->e_csets[ssid]); 1210 css_get(css); 1211 } 1212 1213 spin_unlock_irq(&css_set_lock); 1214 1215 /* 1216 * If @cset should be threaded, look up the matching dom_cset and 1217 * link them up. We first fully initialize @cset then look for the 1218 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1219 * to stay empty until we return. 1220 */ 1221 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1222 struct css_set *dcset; 1223 1224 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1225 if (!dcset) { 1226 put_css_set(cset); 1227 return NULL; 1228 } 1229 1230 spin_lock_irq(&css_set_lock); 1231 cset->dom_cset = dcset; 1232 list_add_tail(&cset->threaded_csets_node, 1233 &dcset->threaded_csets); 1234 spin_unlock_irq(&css_set_lock); 1235 } 1236 1237 return cset; 1238 } 1239 1240 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1241 { 1242 struct cgroup *root_cgrp = kf_root->kn->priv; 1243 1244 return root_cgrp->root; 1245 } 1246 1247 static int cgroup_init_root_id(struct cgroup_root *root) 1248 { 1249 int id; 1250 1251 lockdep_assert_held(&cgroup_mutex); 1252 1253 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1254 if (id < 0) 1255 return id; 1256 1257 root->hierarchy_id = id; 1258 return 0; 1259 } 1260 1261 static void cgroup_exit_root_id(struct cgroup_root *root) 1262 { 1263 lockdep_assert_held(&cgroup_mutex); 1264 1265 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1266 } 1267 1268 void cgroup_free_root(struct cgroup_root *root) 1269 { 1270 if (root) { 1271 idr_destroy(&root->cgroup_idr); 1272 kfree(root); 1273 } 1274 } 1275 1276 static void cgroup_destroy_root(struct cgroup_root *root) 1277 { 1278 struct cgroup *cgrp = &root->cgrp; 1279 struct cgrp_cset_link *link, *tmp_link; 1280 1281 trace_cgroup_destroy_root(root); 1282 1283 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1284 1285 BUG_ON(atomic_read(&root->nr_cgrps)); 1286 BUG_ON(!list_empty(&cgrp->self.children)); 1287 1288 /* Rebind all subsystems back to the default hierarchy */ 1289 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1290 1291 /* 1292 * Release all the links from cset_links to this hierarchy's 1293 * root cgroup 1294 */ 1295 spin_lock_irq(&css_set_lock); 1296 1297 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1298 list_del(&link->cset_link); 1299 list_del(&link->cgrp_link); 1300 kfree(link); 1301 } 1302 1303 spin_unlock_irq(&css_set_lock); 1304 1305 if (!list_empty(&root->root_list)) { 1306 list_del(&root->root_list); 1307 cgroup_root_count--; 1308 } 1309 1310 cgroup_exit_root_id(root); 1311 1312 mutex_unlock(&cgroup_mutex); 1313 1314 kernfs_destroy_root(root->kf_root); 1315 cgroup_free_root(root); 1316 } 1317 1318 /* 1319 * look up cgroup associated with current task's cgroup namespace on the 1320 * specified hierarchy 1321 */ 1322 static struct cgroup * 1323 current_cgns_cgroup_from_root(struct cgroup_root *root) 1324 { 1325 struct cgroup *res = NULL; 1326 struct css_set *cset; 1327 1328 lockdep_assert_held(&css_set_lock); 1329 1330 rcu_read_lock(); 1331 1332 cset = current->nsproxy->cgroup_ns->root_cset; 1333 if (cset == &init_css_set) { 1334 res = &root->cgrp; 1335 } else { 1336 struct cgrp_cset_link *link; 1337 1338 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1339 struct cgroup *c = link->cgrp; 1340 1341 if (c->root == root) { 1342 res = c; 1343 break; 1344 } 1345 } 1346 } 1347 rcu_read_unlock(); 1348 1349 BUG_ON(!res); 1350 return res; 1351 } 1352 1353 /* look up cgroup associated with given css_set on the specified hierarchy */ 1354 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1355 struct cgroup_root *root) 1356 { 1357 struct cgroup *res = NULL; 1358 1359 lockdep_assert_held(&cgroup_mutex); 1360 lockdep_assert_held(&css_set_lock); 1361 1362 if (cset == &init_css_set) { 1363 res = &root->cgrp; 1364 } else if (root == &cgrp_dfl_root) { 1365 res = cset->dfl_cgrp; 1366 } else { 1367 struct cgrp_cset_link *link; 1368 1369 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1370 struct cgroup *c = link->cgrp; 1371 1372 if (c->root == root) { 1373 res = c; 1374 break; 1375 } 1376 } 1377 } 1378 1379 BUG_ON(!res); 1380 return res; 1381 } 1382 1383 /* 1384 * Return the cgroup for "task" from the given hierarchy. Must be 1385 * called with cgroup_mutex and css_set_lock held. 1386 */ 1387 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1388 struct cgroup_root *root) 1389 { 1390 /* 1391 * No need to lock the task - since we hold cgroup_mutex the 1392 * task can't change groups, so the only thing that can happen 1393 * is that it exits and its css is set back to init_css_set. 1394 */ 1395 return cset_cgroup_from_root(task_css_set(task), root); 1396 } 1397 1398 /* 1399 * A task must hold cgroup_mutex to modify cgroups. 1400 * 1401 * Any task can increment and decrement the count field without lock. 1402 * So in general, code holding cgroup_mutex can't rely on the count 1403 * field not changing. However, if the count goes to zero, then only 1404 * cgroup_attach_task() can increment it again. Because a count of zero 1405 * means that no tasks are currently attached, therefore there is no 1406 * way a task attached to that cgroup can fork (the other way to 1407 * increment the count). So code holding cgroup_mutex can safely 1408 * assume that if the count is zero, it will stay zero. Similarly, if 1409 * a task holds cgroup_mutex on a cgroup with zero count, it 1410 * knows that the cgroup won't be removed, as cgroup_rmdir() 1411 * needs that mutex. 1412 * 1413 * A cgroup can only be deleted if both its 'count' of using tasks 1414 * is zero, and its list of 'children' cgroups is empty. Since all 1415 * tasks in the system use _some_ cgroup, and since there is always at 1416 * least one task in the system (init, pid == 1), therefore, root cgroup 1417 * always has either children cgroups and/or using tasks. So we don't 1418 * need a special hack to ensure that root cgroup cannot be deleted. 1419 * 1420 * P.S. One more locking exception. RCU is used to guard the 1421 * update of a tasks cgroup pointer by cgroup_attach_task() 1422 */ 1423 1424 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1425 1426 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1427 char *buf) 1428 { 1429 struct cgroup_subsys *ss = cft->ss; 1430 1431 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1432 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1433 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1434 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1435 cft->name); 1436 else 1437 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1438 return buf; 1439 } 1440 1441 /** 1442 * cgroup_file_mode - deduce file mode of a control file 1443 * @cft: the control file in question 1444 * 1445 * S_IRUGO for read, S_IWUSR for write. 1446 */ 1447 static umode_t cgroup_file_mode(const struct cftype *cft) 1448 { 1449 umode_t mode = 0; 1450 1451 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1452 mode |= S_IRUGO; 1453 1454 if (cft->write_u64 || cft->write_s64 || cft->write) { 1455 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1456 mode |= S_IWUGO; 1457 else 1458 mode |= S_IWUSR; 1459 } 1460 1461 return mode; 1462 } 1463 1464 /** 1465 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1466 * @subtree_control: the new subtree_control mask to consider 1467 * @this_ss_mask: available subsystems 1468 * 1469 * On the default hierarchy, a subsystem may request other subsystems to be 1470 * enabled together through its ->depends_on mask. In such cases, more 1471 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1472 * 1473 * This function calculates which subsystems need to be enabled if 1474 * @subtree_control is to be applied while restricted to @this_ss_mask. 1475 */ 1476 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1477 { 1478 u16 cur_ss_mask = subtree_control; 1479 struct cgroup_subsys *ss; 1480 int ssid; 1481 1482 lockdep_assert_held(&cgroup_mutex); 1483 1484 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1485 1486 while (true) { 1487 u16 new_ss_mask = cur_ss_mask; 1488 1489 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1490 new_ss_mask |= ss->depends_on; 1491 } while_each_subsys_mask(); 1492 1493 /* 1494 * Mask out subsystems which aren't available. This can 1495 * happen only if some depended-upon subsystems were bound 1496 * to non-default hierarchies. 1497 */ 1498 new_ss_mask &= this_ss_mask; 1499 1500 if (new_ss_mask == cur_ss_mask) 1501 break; 1502 cur_ss_mask = new_ss_mask; 1503 } 1504 1505 return cur_ss_mask; 1506 } 1507 1508 /** 1509 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1510 * @kn: the kernfs_node being serviced 1511 * 1512 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1513 * the method finishes if locking succeeded. Note that once this function 1514 * returns the cgroup returned by cgroup_kn_lock_live() may become 1515 * inaccessible any time. If the caller intends to continue to access the 1516 * cgroup, it should pin it before invoking this function. 1517 */ 1518 void cgroup_kn_unlock(struct kernfs_node *kn) 1519 { 1520 struct cgroup *cgrp; 1521 1522 if (kernfs_type(kn) == KERNFS_DIR) 1523 cgrp = kn->priv; 1524 else 1525 cgrp = kn->parent->priv; 1526 1527 mutex_unlock(&cgroup_mutex); 1528 1529 kernfs_unbreak_active_protection(kn); 1530 cgroup_put(cgrp); 1531 } 1532 1533 /** 1534 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1535 * @kn: the kernfs_node being serviced 1536 * @drain_offline: perform offline draining on the cgroup 1537 * 1538 * This helper is to be used by a cgroup kernfs method currently servicing 1539 * @kn. It breaks the active protection, performs cgroup locking and 1540 * verifies that the associated cgroup is alive. Returns the cgroup if 1541 * alive; otherwise, %NULL. A successful return should be undone by a 1542 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1543 * cgroup is drained of offlining csses before return. 1544 * 1545 * Any cgroup kernfs method implementation which requires locking the 1546 * associated cgroup should use this helper. It avoids nesting cgroup 1547 * locking under kernfs active protection and allows all kernfs operations 1548 * including self-removal. 1549 */ 1550 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1551 { 1552 struct cgroup *cgrp; 1553 1554 if (kernfs_type(kn) == KERNFS_DIR) 1555 cgrp = kn->priv; 1556 else 1557 cgrp = kn->parent->priv; 1558 1559 /* 1560 * We're gonna grab cgroup_mutex which nests outside kernfs 1561 * active_ref. cgroup liveliness check alone provides enough 1562 * protection against removal. Ensure @cgrp stays accessible and 1563 * break the active_ref protection. 1564 */ 1565 if (!cgroup_tryget(cgrp)) 1566 return NULL; 1567 kernfs_break_active_protection(kn); 1568 1569 if (drain_offline) 1570 cgroup_lock_and_drain_offline(cgrp); 1571 else 1572 mutex_lock(&cgroup_mutex); 1573 1574 if (!cgroup_is_dead(cgrp)) 1575 return cgrp; 1576 1577 cgroup_kn_unlock(kn); 1578 return NULL; 1579 } 1580 1581 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1582 { 1583 char name[CGROUP_FILE_NAME_MAX]; 1584 1585 lockdep_assert_held(&cgroup_mutex); 1586 1587 if (cft->file_offset) { 1588 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1589 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1590 1591 spin_lock_irq(&cgroup_file_kn_lock); 1592 cfile->kn = NULL; 1593 spin_unlock_irq(&cgroup_file_kn_lock); 1594 1595 del_timer_sync(&cfile->notify_timer); 1596 } 1597 1598 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1599 } 1600 1601 /** 1602 * css_clear_dir - remove subsys files in a cgroup directory 1603 * @css: taget css 1604 */ 1605 static void css_clear_dir(struct cgroup_subsys_state *css) 1606 { 1607 struct cgroup *cgrp = css->cgroup; 1608 struct cftype *cfts; 1609 1610 if (!(css->flags & CSS_VISIBLE)) 1611 return; 1612 1613 css->flags &= ~CSS_VISIBLE; 1614 1615 if (!css->ss) { 1616 if (cgroup_on_dfl(cgrp)) 1617 cfts = cgroup_base_files; 1618 else 1619 cfts = cgroup1_base_files; 1620 1621 cgroup_addrm_files(css, cgrp, cfts, false); 1622 } else { 1623 list_for_each_entry(cfts, &css->ss->cfts, node) 1624 cgroup_addrm_files(css, cgrp, cfts, false); 1625 } 1626 } 1627 1628 /** 1629 * css_populate_dir - create subsys files in a cgroup directory 1630 * @css: target css 1631 * 1632 * On failure, no file is added. 1633 */ 1634 static int css_populate_dir(struct cgroup_subsys_state *css) 1635 { 1636 struct cgroup *cgrp = css->cgroup; 1637 struct cftype *cfts, *failed_cfts; 1638 int ret; 1639 1640 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1641 return 0; 1642 1643 if (!css->ss) { 1644 if (cgroup_on_dfl(cgrp)) 1645 cfts = cgroup_base_files; 1646 else 1647 cfts = cgroup1_base_files; 1648 1649 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1650 if (ret < 0) 1651 return ret; 1652 } else { 1653 list_for_each_entry(cfts, &css->ss->cfts, node) { 1654 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1655 if (ret < 0) { 1656 failed_cfts = cfts; 1657 goto err; 1658 } 1659 } 1660 } 1661 1662 css->flags |= CSS_VISIBLE; 1663 1664 return 0; 1665 err: 1666 list_for_each_entry(cfts, &css->ss->cfts, node) { 1667 if (cfts == failed_cfts) 1668 break; 1669 cgroup_addrm_files(css, cgrp, cfts, false); 1670 } 1671 return ret; 1672 } 1673 1674 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1675 { 1676 struct cgroup *dcgrp = &dst_root->cgrp; 1677 struct cgroup_subsys *ss; 1678 int ssid, i, ret; 1679 1680 lockdep_assert_held(&cgroup_mutex); 1681 1682 do_each_subsys_mask(ss, ssid, ss_mask) { 1683 /* 1684 * If @ss has non-root csses attached to it, can't move. 1685 * If @ss is an implicit controller, it is exempt from this 1686 * rule and can be stolen. 1687 */ 1688 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1689 !ss->implicit_on_dfl) 1690 return -EBUSY; 1691 1692 /* can't move between two non-dummy roots either */ 1693 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1694 return -EBUSY; 1695 } while_each_subsys_mask(); 1696 1697 do_each_subsys_mask(ss, ssid, ss_mask) { 1698 struct cgroup_root *src_root = ss->root; 1699 struct cgroup *scgrp = &src_root->cgrp; 1700 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1701 struct css_set *cset; 1702 1703 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1704 1705 /* disable from the source */ 1706 src_root->subsys_mask &= ~(1 << ssid); 1707 WARN_ON(cgroup_apply_control(scgrp)); 1708 cgroup_finalize_control(scgrp, 0); 1709 1710 /* rebind */ 1711 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1712 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1713 ss->root = dst_root; 1714 css->cgroup = dcgrp; 1715 1716 spin_lock_irq(&css_set_lock); 1717 hash_for_each(css_set_table, i, cset, hlist) 1718 list_move_tail(&cset->e_cset_node[ss->id], 1719 &dcgrp->e_csets[ss->id]); 1720 spin_unlock_irq(&css_set_lock); 1721 1722 /* default hierarchy doesn't enable controllers by default */ 1723 dst_root->subsys_mask |= 1 << ssid; 1724 if (dst_root == &cgrp_dfl_root) { 1725 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1726 } else { 1727 dcgrp->subtree_control |= 1 << ssid; 1728 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1729 } 1730 1731 ret = cgroup_apply_control(dcgrp); 1732 if (ret) 1733 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1734 ss->name, ret); 1735 1736 if (ss->bind) 1737 ss->bind(css); 1738 } while_each_subsys_mask(); 1739 1740 kernfs_activate(dcgrp->kn); 1741 return 0; 1742 } 1743 1744 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1745 struct kernfs_root *kf_root) 1746 { 1747 int len = 0; 1748 char *buf = NULL; 1749 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1750 struct cgroup *ns_cgroup; 1751 1752 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1753 if (!buf) 1754 return -ENOMEM; 1755 1756 spin_lock_irq(&css_set_lock); 1757 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1758 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1759 spin_unlock_irq(&css_set_lock); 1760 1761 if (len >= PATH_MAX) 1762 len = -ERANGE; 1763 else if (len > 0) { 1764 seq_escape(sf, buf, " \t\n\\"); 1765 len = 0; 1766 } 1767 kfree(buf); 1768 return len; 1769 } 1770 1771 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1772 { 1773 char *token; 1774 1775 *root_flags = 0; 1776 1777 if (!data) 1778 return 0; 1779 1780 while ((token = strsep(&data, ",")) != NULL) { 1781 if (!strcmp(token, "nsdelegate")) { 1782 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1783 continue; 1784 } 1785 1786 pr_err("cgroup2: unknown option \"%s\"\n", token); 1787 return -EINVAL; 1788 } 1789 1790 return 0; 1791 } 1792 1793 static void apply_cgroup_root_flags(unsigned int root_flags) 1794 { 1795 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1796 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1797 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1798 else 1799 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1800 } 1801 } 1802 1803 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1804 { 1805 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1806 seq_puts(seq, ",nsdelegate"); 1807 return 0; 1808 } 1809 1810 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1811 { 1812 unsigned int root_flags; 1813 int ret; 1814 1815 ret = parse_cgroup_root_flags(data, &root_flags); 1816 if (ret) 1817 return ret; 1818 1819 apply_cgroup_root_flags(root_flags); 1820 return 0; 1821 } 1822 1823 /* 1824 * To reduce the fork() overhead for systems that are not actually using 1825 * their cgroups capability, we don't maintain the lists running through 1826 * each css_set to its tasks until we see the list actually used - in other 1827 * words after the first mount. 1828 */ 1829 static bool use_task_css_set_links __read_mostly; 1830 1831 static void cgroup_enable_task_cg_lists(void) 1832 { 1833 struct task_struct *p, *g; 1834 1835 /* 1836 * We need tasklist_lock because RCU is not safe against 1837 * while_each_thread(). Besides, a forking task that has passed 1838 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1839 * is not guaranteed to have its child immediately visible in the 1840 * tasklist if we walk through it with RCU. 1841 */ 1842 read_lock(&tasklist_lock); 1843 spin_lock_irq(&css_set_lock); 1844 1845 if (use_task_css_set_links) 1846 goto out_unlock; 1847 1848 use_task_css_set_links = true; 1849 1850 do_each_thread(g, p) { 1851 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1852 task_css_set(p) != &init_css_set); 1853 1854 /* 1855 * We should check if the process is exiting, otherwise 1856 * it will race with cgroup_exit() in that the list 1857 * entry won't be deleted though the process has exited. 1858 * Do it while holding siglock so that we don't end up 1859 * racing against cgroup_exit(). 1860 * 1861 * Interrupts were already disabled while acquiring 1862 * the css_set_lock, so we do not need to disable it 1863 * again when acquiring the sighand->siglock here. 1864 */ 1865 spin_lock(&p->sighand->siglock); 1866 if (!(p->flags & PF_EXITING)) { 1867 struct css_set *cset = task_css_set(p); 1868 1869 if (!css_set_populated(cset)) 1870 css_set_update_populated(cset, true); 1871 list_add_tail(&p->cg_list, &cset->tasks); 1872 get_css_set(cset); 1873 cset->nr_tasks++; 1874 } 1875 spin_unlock(&p->sighand->siglock); 1876 } while_each_thread(g, p); 1877 out_unlock: 1878 spin_unlock_irq(&css_set_lock); 1879 read_unlock(&tasklist_lock); 1880 } 1881 1882 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1883 { 1884 struct cgroup_subsys *ss; 1885 int ssid; 1886 1887 INIT_LIST_HEAD(&cgrp->self.sibling); 1888 INIT_LIST_HEAD(&cgrp->self.children); 1889 INIT_LIST_HEAD(&cgrp->cset_links); 1890 INIT_LIST_HEAD(&cgrp->pidlists); 1891 mutex_init(&cgrp->pidlist_mutex); 1892 cgrp->self.cgroup = cgrp; 1893 cgrp->self.flags |= CSS_ONLINE; 1894 cgrp->dom_cgrp = cgrp; 1895 cgrp->max_descendants = INT_MAX; 1896 cgrp->max_depth = INT_MAX; 1897 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1898 prev_cputime_init(&cgrp->prev_cputime); 1899 1900 for_each_subsys(ss, ssid) 1901 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1902 1903 init_waitqueue_head(&cgrp->offline_waitq); 1904 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1905 } 1906 1907 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1908 { 1909 struct cgroup *cgrp = &root->cgrp; 1910 1911 INIT_LIST_HEAD(&root->root_list); 1912 atomic_set(&root->nr_cgrps, 1); 1913 cgrp->root = root; 1914 init_cgroup_housekeeping(cgrp); 1915 idr_init(&root->cgroup_idr); 1916 1917 root->flags = opts->flags; 1918 if (opts->release_agent) 1919 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX); 1920 if (opts->name) 1921 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN); 1922 if (opts->cpuset_clone_children) 1923 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1924 } 1925 1926 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1927 { 1928 LIST_HEAD(tmp_links); 1929 struct cgroup *root_cgrp = &root->cgrp; 1930 struct kernfs_syscall_ops *kf_sops; 1931 struct css_set *cset; 1932 int i, ret; 1933 1934 lockdep_assert_held(&cgroup_mutex); 1935 1936 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1937 if (ret < 0) 1938 goto out; 1939 root_cgrp->id = ret; 1940 root_cgrp->ancestor_ids[0] = ret; 1941 1942 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1943 ref_flags, GFP_KERNEL); 1944 if (ret) 1945 goto out; 1946 1947 /* 1948 * We're accessing css_set_count without locking css_set_lock here, 1949 * but that's OK - it can only be increased by someone holding 1950 * cgroup_lock, and that's us. Later rebinding may disable 1951 * controllers on the default hierarchy and thus create new csets, 1952 * which can't be more than the existing ones. Allocate 2x. 1953 */ 1954 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1955 if (ret) 1956 goto cancel_ref; 1957 1958 ret = cgroup_init_root_id(root); 1959 if (ret) 1960 goto cancel_ref; 1961 1962 kf_sops = root == &cgrp_dfl_root ? 1963 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1964 1965 root->kf_root = kernfs_create_root(kf_sops, 1966 KERNFS_ROOT_CREATE_DEACTIVATED | 1967 KERNFS_ROOT_SUPPORT_EXPORTOP, 1968 root_cgrp); 1969 if (IS_ERR(root->kf_root)) { 1970 ret = PTR_ERR(root->kf_root); 1971 goto exit_root_id; 1972 } 1973 root_cgrp->kn = root->kf_root->kn; 1974 1975 ret = css_populate_dir(&root_cgrp->self); 1976 if (ret) 1977 goto destroy_root; 1978 1979 ret = rebind_subsystems(root, ss_mask); 1980 if (ret) 1981 goto destroy_root; 1982 1983 ret = cgroup_bpf_inherit(root_cgrp); 1984 WARN_ON_ONCE(ret); 1985 1986 trace_cgroup_setup_root(root); 1987 1988 /* 1989 * There must be no failure case after here, since rebinding takes 1990 * care of subsystems' refcounts, which are explicitly dropped in 1991 * the failure exit path. 1992 */ 1993 list_add(&root->root_list, &cgroup_roots); 1994 cgroup_root_count++; 1995 1996 /* 1997 * Link the root cgroup in this hierarchy into all the css_set 1998 * objects. 1999 */ 2000 spin_lock_irq(&css_set_lock); 2001 hash_for_each(css_set_table, i, cset, hlist) { 2002 link_css_set(&tmp_links, cset, root_cgrp); 2003 if (css_set_populated(cset)) 2004 cgroup_update_populated(root_cgrp, true); 2005 } 2006 spin_unlock_irq(&css_set_lock); 2007 2008 BUG_ON(!list_empty(&root_cgrp->self.children)); 2009 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2010 2011 kernfs_activate(root_cgrp->kn); 2012 ret = 0; 2013 goto out; 2014 2015 destroy_root: 2016 kernfs_destroy_root(root->kf_root); 2017 root->kf_root = NULL; 2018 exit_root_id: 2019 cgroup_exit_root_id(root); 2020 cancel_ref: 2021 percpu_ref_exit(&root_cgrp->self.refcnt); 2022 out: 2023 free_cgrp_cset_links(&tmp_links); 2024 return ret; 2025 } 2026 2027 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 2028 struct cgroup_root *root, unsigned long magic, 2029 struct cgroup_namespace *ns) 2030 { 2031 struct dentry *dentry; 2032 bool new_sb; 2033 2034 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 2035 2036 /* 2037 * In non-init cgroup namespace, instead of root cgroup's dentry, 2038 * we return the dentry corresponding to the cgroupns->root_cgrp. 2039 */ 2040 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 2041 struct dentry *nsdentry; 2042 struct cgroup *cgrp; 2043 2044 mutex_lock(&cgroup_mutex); 2045 spin_lock_irq(&css_set_lock); 2046 2047 cgrp = cset_cgroup_from_root(ns->root_cset, root); 2048 2049 spin_unlock_irq(&css_set_lock); 2050 mutex_unlock(&cgroup_mutex); 2051 2052 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 2053 dput(dentry); 2054 dentry = nsdentry; 2055 } 2056 2057 if (IS_ERR(dentry) || !new_sb) 2058 cgroup_put(&root->cgrp); 2059 2060 return dentry; 2061 } 2062 2063 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 2064 int flags, const char *unused_dev_name, 2065 void *data) 2066 { 2067 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 2068 struct dentry *dentry; 2069 int ret; 2070 2071 get_cgroup_ns(ns); 2072 2073 /* Check if the caller has permission to mount. */ 2074 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 2075 put_cgroup_ns(ns); 2076 return ERR_PTR(-EPERM); 2077 } 2078 2079 /* 2080 * The first time anyone tries to mount a cgroup, enable the list 2081 * linking each css_set to its tasks and fix up all existing tasks. 2082 */ 2083 if (!use_task_css_set_links) 2084 cgroup_enable_task_cg_lists(); 2085 2086 if (fs_type == &cgroup2_fs_type) { 2087 unsigned int root_flags; 2088 2089 ret = parse_cgroup_root_flags(data, &root_flags); 2090 if (ret) { 2091 put_cgroup_ns(ns); 2092 return ERR_PTR(ret); 2093 } 2094 2095 cgrp_dfl_visible = true; 2096 cgroup_get_live(&cgrp_dfl_root.cgrp); 2097 2098 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 2099 CGROUP2_SUPER_MAGIC, ns); 2100 if (!IS_ERR(dentry)) 2101 apply_cgroup_root_flags(root_flags); 2102 } else { 2103 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 2104 CGROUP_SUPER_MAGIC, ns); 2105 } 2106 2107 put_cgroup_ns(ns); 2108 return dentry; 2109 } 2110 2111 static void cgroup_kill_sb(struct super_block *sb) 2112 { 2113 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2114 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2115 2116 /* 2117 * If @root doesn't have any mounts or children, start killing it. 2118 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2119 * cgroup_mount() may wait for @root's release. 2120 * 2121 * And don't kill the default root. 2122 */ 2123 if (!list_empty(&root->cgrp.self.children) || 2124 root == &cgrp_dfl_root) 2125 cgroup_put(&root->cgrp); 2126 else 2127 percpu_ref_kill(&root->cgrp.self.refcnt); 2128 2129 kernfs_kill_sb(sb); 2130 } 2131 2132 struct file_system_type cgroup_fs_type = { 2133 .name = "cgroup", 2134 .mount = cgroup_mount, 2135 .kill_sb = cgroup_kill_sb, 2136 .fs_flags = FS_USERNS_MOUNT, 2137 }; 2138 2139 static struct file_system_type cgroup2_fs_type = { 2140 .name = "cgroup2", 2141 .mount = cgroup_mount, 2142 .kill_sb = cgroup_kill_sb, 2143 .fs_flags = FS_USERNS_MOUNT, 2144 }; 2145 2146 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2147 struct cgroup_namespace *ns) 2148 { 2149 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2150 2151 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2152 } 2153 2154 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2155 struct cgroup_namespace *ns) 2156 { 2157 int ret; 2158 2159 mutex_lock(&cgroup_mutex); 2160 spin_lock_irq(&css_set_lock); 2161 2162 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2163 2164 spin_unlock_irq(&css_set_lock); 2165 mutex_unlock(&cgroup_mutex); 2166 2167 return ret; 2168 } 2169 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2170 2171 /** 2172 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2173 * @task: target task 2174 * @buf: the buffer to write the path into 2175 * @buflen: the length of the buffer 2176 * 2177 * Determine @task's cgroup on the first (the one with the lowest non-zero 2178 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2179 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2180 * cgroup controller callbacks. 2181 * 2182 * Return value is the same as kernfs_path(). 2183 */ 2184 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2185 { 2186 struct cgroup_root *root; 2187 struct cgroup *cgrp; 2188 int hierarchy_id = 1; 2189 int ret; 2190 2191 mutex_lock(&cgroup_mutex); 2192 spin_lock_irq(&css_set_lock); 2193 2194 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2195 2196 if (root) { 2197 cgrp = task_cgroup_from_root(task, root); 2198 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2199 } else { 2200 /* if no hierarchy exists, everyone is in "/" */ 2201 ret = strlcpy(buf, "/", buflen); 2202 } 2203 2204 spin_unlock_irq(&css_set_lock); 2205 mutex_unlock(&cgroup_mutex); 2206 return ret; 2207 } 2208 EXPORT_SYMBOL_GPL(task_cgroup_path); 2209 2210 /** 2211 * cgroup_migrate_add_task - add a migration target task to a migration context 2212 * @task: target task 2213 * @mgctx: target migration context 2214 * 2215 * Add @task, which is a migration target, to @mgctx->tset. This function 2216 * becomes noop if @task doesn't need to be migrated. @task's css_set 2217 * should have been added as a migration source and @task->cg_list will be 2218 * moved from the css_set's tasks list to mg_tasks one. 2219 */ 2220 static void cgroup_migrate_add_task(struct task_struct *task, 2221 struct cgroup_mgctx *mgctx) 2222 { 2223 struct css_set *cset; 2224 2225 lockdep_assert_held(&css_set_lock); 2226 2227 /* @task either already exited or can't exit until the end */ 2228 if (task->flags & PF_EXITING) 2229 return; 2230 2231 /* leave @task alone if post_fork() hasn't linked it yet */ 2232 if (list_empty(&task->cg_list)) 2233 return; 2234 2235 cset = task_css_set(task); 2236 if (!cset->mg_src_cgrp) 2237 return; 2238 2239 mgctx->tset.nr_tasks++; 2240 2241 list_move_tail(&task->cg_list, &cset->mg_tasks); 2242 if (list_empty(&cset->mg_node)) 2243 list_add_tail(&cset->mg_node, 2244 &mgctx->tset.src_csets); 2245 if (list_empty(&cset->mg_dst_cset->mg_node)) 2246 list_add_tail(&cset->mg_dst_cset->mg_node, 2247 &mgctx->tset.dst_csets); 2248 } 2249 2250 /** 2251 * cgroup_taskset_first - reset taskset and return the first task 2252 * @tset: taskset of interest 2253 * @dst_cssp: output variable for the destination css 2254 * 2255 * @tset iteration is initialized and the first task is returned. 2256 */ 2257 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2258 struct cgroup_subsys_state **dst_cssp) 2259 { 2260 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2261 tset->cur_task = NULL; 2262 2263 return cgroup_taskset_next(tset, dst_cssp); 2264 } 2265 2266 /** 2267 * cgroup_taskset_next - iterate to the next task in taskset 2268 * @tset: taskset of interest 2269 * @dst_cssp: output variable for the destination css 2270 * 2271 * Return the next task in @tset. Iteration must have been initialized 2272 * with cgroup_taskset_first(). 2273 */ 2274 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2275 struct cgroup_subsys_state **dst_cssp) 2276 { 2277 struct css_set *cset = tset->cur_cset; 2278 struct task_struct *task = tset->cur_task; 2279 2280 while (&cset->mg_node != tset->csets) { 2281 if (!task) 2282 task = list_first_entry(&cset->mg_tasks, 2283 struct task_struct, cg_list); 2284 else 2285 task = list_next_entry(task, cg_list); 2286 2287 if (&task->cg_list != &cset->mg_tasks) { 2288 tset->cur_cset = cset; 2289 tset->cur_task = task; 2290 2291 /* 2292 * This function may be called both before and 2293 * after cgroup_taskset_migrate(). The two cases 2294 * can be distinguished by looking at whether @cset 2295 * has its ->mg_dst_cset set. 2296 */ 2297 if (cset->mg_dst_cset) 2298 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2299 else 2300 *dst_cssp = cset->subsys[tset->ssid]; 2301 2302 return task; 2303 } 2304 2305 cset = list_next_entry(cset, mg_node); 2306 task = NULL; 2307 } 2308 2309 return NULL; 2310 } 2311 2312 /** 2313 * cgroup_taskset_migrate - migrate a taskset 2314 * @mgctx: migration context 2315 * 2316 * Migrate tasks in @mgctx as setup by migration preparation functions. 2317 * This function fails iff one of the ->can_attach callbacks fails and 2318 * guarantees that either all or none of the tasks in @mgctx are migrated. 2319 * @mgctx is consumed regardless of success. 2320 */ 2321 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2322 { 2323 struct cgroup_taskset *tset = &mgctx->tset; 2324 struct cgroup_subsys *ss; 2325 struct task_struct *task, *tmp_task; 2326 struct css_set *cset, *tmp_cset; 2327 int ssid, failed_ssid, ret; 2328 2329 /* check that we can legitimately attach to the cgroup */ 2330 if (tset->nr_tasks) { 2331 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2332 if (ss->can_attach) { 2333 tset->ssid = ssid; 2334 ret = ss->can_attach(tset); 2335 if (ret) { 2336 failed_ssid = ssid; 2337 goto out_cancel_attach; 2338 } 2339 } 2340 } while_each_subsys_mask(); 2341 } 2342 2343 /* 2344 * Now that we're guaranteed success, proceed to move all tasks to 2345 * the new cgroup. There are no failure cases after here, so this 2346 * is the commit point. 2347 */ 2348 spin_lock_irq(&css_set_lock); 2349 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2350 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2351 struct css_set *from_cset = task_css_set(task); 2352 struct css_set *to_cset = cset->mg_dst_cset; 2353 2354 get_css_set(to_cset); 2355 to_cset->nr_tasks++; 2356 css_set_move_task(task, from_cset, to_cset, true); 2357 put_css_set_locked(from_cset); 2358 from_cset->nr_tasks--; 2359 } 2360 } 2361 spin_unlock_irq(&css_set_lock); 2362 2363 /* 2364 * Migration is committed, all target tasks are now on dst_csets. 2365 * Nothing is sensitive to fork() after this point. Notify 2366 * controllers that migration is complete. 2367 */ 2368 tset->csets = &tset->dst_csets; 2369 2370 if (tset->nr_tasks) { 2371 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2372 if (ss->attach) { 2373 tset->ssid = ssid; 2374 ss->attach(tset); 2375 } 2376 } while_each_subsys_mask(); 2377 } 2378 2379 ret = 0; 2380 goto out_release_tset; 2381 2382 out_cancel_attach: 2383 if (tset->nr_tasks) { 2384 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2385 if (ssid == failed_ssid) 2386 break; 2387 if (ss->cancel_attach) { 2388 tset->ssid = ssid; 2389 ss->cancel_attach(tset); 2390 } 2391 } while_each_subsys_mask(); 2392 } 2393 out_release_tset: 2394 spin_lock_irq(&css_set_lock); 2395 list_splice_init(&tset->dst_csets, &tset->src_csets); 2396 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2397 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2398 list_del_init(&cset->mg_node); 2399 } 2400 spin_unlock_irq(&css_set_lock); 2401 2402 /* 2403 * Re-initialize the cgroup_taskset structure in case it is reused 2404 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2405 * iteration. 2406 */ 2407 tset->nr_tasks = 0; 2408 tset->csets = &tset->src_csets; 2409 return ret; 2410 } 2411 2412 /** 2413 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2414 * @dst_cgrp: destination cgroup to test 2415 * 2416 * On the default hierarchy, except for the mixable, (possible) thread root 2417 * and threaded cgroups, subtree_control must be zero for migration 2418 * destination cgroups with tasks so that child cgroups don't compete 2419 * against tasks. 2420 */ 2421 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2422 { 2423 /* v1 doesn't have any restriction */ 2424 if (!cgroup_on_dfl(dst_cgrp)) 2425 return 0; 2426 2427 /* verify @dst_cgrp can host resources */ 2428 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2429 return -EOPNOTSUPP; 2430 2431 /* mixables don't care */ 2432 if (cgroup_is_mixable(dst_cgrp)) 2433 return 0; 2434 2435 /* 2436 * If @dst_cgrp is already or can become a thread root or is 2437 * threaded, it doesn't matter. 2438 */ 2439 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2440 return 0; 2441 2442 /* apply no-internal-process constraint */ 2443 if (dst_cgrp->subtree_control) 2444 return -EBUSY; 2445 2446 return 0; 2447 } 2448 2449 /** 2450 * cgroup_migrate_finish - cleanup after attach 2451 * @mgctx: migration context 2452 * 2453 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2454 * those functions for details. 2455 */ 2456 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2457 { 2458 LIST_HEAD(preloaded); 2459 struct css_set *cset, *tmp_cset; 2460 2461 lockdep_assert_held(&cgroup_mutex); 2462 2463 spin_lock_irq(&css_set_lock); 2464 2465 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2466 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2467 2468 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2469 cset->mg_src_cgrp = NULL; 2470 cset->mg_dst_cgrp = NULL; 2471 cset->mg_dst_cset = NULL; 2472 list_del_init(&cset->mg_preload_node); 2473 put_css_set_locked(cset); 2474 } 2475 2476 spin_unlock_irq(&css_set_lock); 2477 } 2478 2479 /** 2480 * cgroup_migrate_add_src - add a migration source css_set 2481 * @src_cset: the source css_set to add 2482 * @dst_cgrp: the destination cgroup 2483 * @mgctx: migration context 2484 * 2485 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2486 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2487 * up by cgroup_migrate_finish(). 2488 * 2489 * This function may be called without holding cgroup_threadgroup_rwsem 2490 * even if the target is a process. Threads may be created and destroyed 2491 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2492 * into play and the preloaded css_sets are guaranteed to cover all 2493 * migrations. 2494 */ 2495 void cgroup_migrate_add_src(struct css_set *src_cset, 2496 struct cgroup *dst_cgrp, 2497 struct cgroup_mgctx *mgctx) 2498 { 2499 struct cgroup *src_cgrp; 2500 2501 lockdep_assert_held(&cgroup_mutex); 2502 lockdep_assert_held(&css_set_lock); 2503 2504 /* 2505 * If ->dead, @src_set is associated with one or more dead cgroups 2506 * and doesn't contain any migratable tasks. Ignore it early so 2507 * that the rest of migration path doesn't get confused by it. 2508 */ 2509 if (src_cset->dead) 2510 return; 2511 2512 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2513 2514 if (!list_empty(&src_cset->mg_preload_node)) 2515 return; 2516 2517 WARN_ON(src_cset->mg_src_cgrp); 2518 WARN_ON(src_cset->mg_dst_cgrp); 2519 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2520 WARN_ON(!list_empty(&src_cset->mg_node)); 2521 2522 src_cset->mg_src_cgrp = src_cgrp; 2523 src_cset->mg_dst_cgrp = dst_cgrp; 2524 get_css_set(src_cset); 2525 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2526 } 2527 2528 /** 2529 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2530 * @mgctx: migration context 2531 * 2532 * Tasks are about to be moved and all the source css_sets have been 2533 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2534 * pins all destination css_sets, links each to its source, and append them 2535 * to @mgctx->preloaded_dst_csets. 2536 * 2537 * This function must be called after cgroup_migrate_add_src() has been 2538 * called on each migration source css_set. After migration is performed 2539 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2540 * @mgctx. 2541 */ 2542 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2543 { 2544 struct css_set *src_cset, *tmp_cset; 2545 2546 lockdep_assert_held(&cgroup_mutex); 2547 2548 /* look up the dst cset for each src cset and link it to src */ 2549 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2550 mg_preload_node) { 2551 struct css_set *dst_cset; 2552 struct cgroup_subsys *ss; 2553 int ssid; 2554 2555 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2556 if (!dst_cset) 2557 goto err; 2558 2559 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2560 2561 /* 2562 * If src cset equals dst, it's noop. Drop the src. 2563 * cgroup_migrate() will skip the cset too. Note that we 2564 * can't handle src == dst as some nodes are used by both. 2565 */ 2566 if (src_cset == dst_cset) { 2567 src_cset->mg_src_cgrp = NULL; 2568 src_cset->mg_dst_cgrp = NULL; 2569 list_del_init(&src_cset->mg_preload_node); 2570 put_css_set(src_cset); 2571 put_css_set(dst_cset); 2572 continue; 2573 } 2574 2575 src_cset->mg_dst_cset = dst_cset; 2576 2577 if (list_empty(&dst_cset->mg_preload_node)) 2578 list_add_tail(&dst_cset->mg_preload_node, 2579 &mgctx->preloaded_dst_csets); 2580 else 2581 put_css_set(dst_cset); 2582 2583 for_each_subsys(ss, ssid) 2584 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2585 mgctx->ss_mask |= 1 << ssid; 2586 } 2587 2588 return 0; 2589 err: 2590 cgroup_migrate_finish(mgctx); 2591 return -ENOMEM; 2592 } 2593 2594 /** 2595 * cgroup_migrate - migrate a process or task to a cgroup 2596 * @leader: the leader of the process or the task to migrate 2597 * @threadgroup: whether @leader points to the whole process or a single task 2598 * @mgctx: migration context 2599 * 2600 * Migrate a process or task denoted by @leader. If migrating a process, 2601 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2602 * responsible for invoking cgroup_migrate_add_src() and 2603 * cgroup_migrate_prepare_dst() on the targets before invoking this 2604 * function and following up with cgroup_migrate_finish(). 2605 * 2606 * As long as a controller's ->can_attach() doesn't fail, this function is 2607 * guaranteed to succeed. This means that, excluding ->can_attach() 2608 * failure, when migrating multiple targets, the success or failure can be 2609 * decided for all targets by invoking group_migrate_prepare_dst() before 2610 * actually starting migrating. 2611 */ 2612 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2613 struct cgroup_mgctx *mgctx) 2614 { 2615 struct task_struct *task; 2616 2617 /* 2618 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2619 * already PF_EXITING could be freed from underneath us unless we 2620 * take an rcu_read_lock. 2621 */ 2622 spin_lock_irq(&css_set_lock); 2623 rcu_read_lock(); 2624 task = leader; 2625 do { 2626 cgroup_migrate_add_task(task, mgctx); 2627 if (!threadgroup) 2628 break; 2629 } while_each_thread(leader, task); 2630 rcu_read_unlock(); 2631 spin_unlock_irq(&css_set_lock); 2632 2633 return cgroup_migrate_execute(mgctx); 2634 } 2635 2636 /** 2637 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2638 * @dst_cgrp: the cgroup to attach to 2639 * @leader: the task or the leader of the threadgroup to be attached 2640 * @threadgroup: attach the whole threadgroup? 2641 * 2642 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2643 */ 2644 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2645 bool threadgroup) 2646 { 2647 DEFINE_CGROUP_MGCTX(mgctx); 2648 struct task_struct *task; 2649 int ret; 2650 2651 ret = cgroup_migrate_vet_dst(dst_cgrp); 2652 if (ret) 2653 return ret; 2654 2655 /* look up all src csets */ 2656 spin_lock_irq(&css_set_lock); 2657 rcu_read_lock(); 2658 task = leader; 2659 do { 2660 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2661 if (!threadgroup) 2662 break; 2663 } while_each_thread(leader, task); 2664 rcu_read_unlock(); 2665 spin_unlock_irq(&css_set_lock); 2666 2667 /* prepare dst csets and commit */ 2668 ret = cgroup_migrate_prepare_dst(&mgctx); 2669 if (!ret) 2670 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2671 2672 cgroup_migrate_finish(&mgctx); 2673 2674 if (!ret) 2675 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2676 2677 return ret; 2678 } 2679 2680 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2681 __acquires(&cgroup_threadgroup_rwsem) 2682 { 2683 struct task_struct *tsk; 2684 pid_t pid; 2685 2686 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2687 return ERR_PTR(-EINVAL); 2688 2689 percpu_down_write(&cgroup_threadgroup_rwsem); 2690 2691 rcu_read_lock(); 2692 if (pid) { 2693 tsk = find_task_by_vpid(pid); 2694 if (!tsk) { 2695 tsk = ERR_PTR(-ESRCH); 2696 goto out_unlock_threadgroup; 2697 } 2698 } else { 2699 tsk = current; 2700 } 2701 2702 if (threadgroup) 2703 tsk = tsk->group_leader; 2704 2705 /* 2706 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2707 * If userland migrates such a kthread to a non-root cgroup, it can 2708 * become trapped in a cpuset, or RT kthread may be born in a 2709 * cgroup with no rt_runtime allocated. Just say no. 2710 */ 2711 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2712 tsk = ERR_PTR(-EINVAL); 2713 goto out_unlock_threadgroup; 2714 } 2715 2716 get_task_struct(tsk); 2717 goto out_unlock_rcu; 2718 2719 out_unlock_threadgroup: 2720 percpu_up_write(&cgroup_threadgroup_rwsem); 2721 out_unlock_rcu: 2722 rcu_read_unlock(); 2723 return tsk; 2724 } 2725 2726 void cgroup_procs_write_finish(struct task_struct *task) 2727 __releases(&cgroup_threadgroup_rwsem) 2728 { 2729 struct cgroup_subsys *ss; 2730 int ssid; 2731 2732 /* release reference from cgroup_procs_write_start() */ 2733 put_task_struct(task); 2734 2735 percpu_up_write(&cgroup_threadgroup_rwsem); 2736 for_each_subsys(ss, ssid) 2737 if (ss->post_attach) 2738 ss->post_attach(); 2739 } 2740 2741 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2742 { 2743 struct cgroup_subsys *ss; 2744 bool printed = false; 2745 int ssid; 2746 2747 do_each_subsys_mask(ss, ssid, ss_mask) { 2748 if (printed) 2749 seq_putc(seq, ' '); 2750 seq_printf(seq, "%s", ss->name); 2751 printed = true; 2752 } while_each_subsys_mask(); 2753 if (printed) 2754 seq_putc(seq, '\n'); 2755 } 2756 2757 /* show controllers which are enabled from the parent */ 2758 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2759 { 2760 struct cgroup *cgrp = seq_css(seq)->cgroup; 2761 2762 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2763 return 0; 2764 } 2765 2766 /* show controllers which are enabled for a given cgroup's children */ 2767 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2768 { 2769 struct cgroup *cgrp = seq_css(seq)->cgroup; 2770 2771 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2772 return 0; 2773 } 2774 2775 /** 2776 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2777 * @cgrp: root of the subtree to update csses for 2778 * 2779 * @cgrp's control masks have changed and its subtree's css associations 2780 * need to be updated accordingly. This function looks up all css_sets 2781 * which are attached to the subtree, creates the matching updated css_sets 2782 * and migrates the tasks to the new ones. 2783 */ 2784 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2785 { 2786 DEFINE_CGROUP_MGCTX(mgctx); 2787 struct cgroup_subsys_state *d_css; 2788 struct cgroup *dsct; 2789 struct css_set *src_cset; 2790 int ret; 2791 2792 lockdep_assert_held(&cgroup_mutex); 2793 2794 percpu_down_write(&cgroup_threadgroup_rwsem); 2795 2796 /* look up all csses currently attached to @cgrp's subtree */ 2797 spin_lock_irq(&css_set_lock); 2798 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2799 struct cgrp_cset_link *link; 2800 2801 list_for_each_entry(link, &dsct->cset_links, cset_link) 2802 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2803 } 2804 spin_unlock_irq(&css_set_lock); 2805 2806 /* NULL dst indicates self on default hierarchy */ 2807 ret = cgroup_migrate_prepare_dst(&mgctx); 2808 if (ret) 2809 goto out_finish; 2810 2811 spin_lock_irq(&css_set_lock); 2812 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2813 struct task_struct *task, *ntask; 2814 2815 /* all tasks in src_csets need to be migrated */ 2816 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2817 cgroup_migrate_add_task(task, &mgctx); 2818 } 2819 spin_unlock_irq(&css_set_lock); 2820 2821 ret = cgroup_migrate_execute(&mgctx); 2822 out_finish: 2823 cgroup_migrate_finish(&mgctx); 2824 percpu_up_write(&cgroup_threadgroup_rwsem); 2825 return ret; 2826 } 2827 2828 /** 2829 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2830 * @cgrp: root of the target subtree 2831 * 2832 * Because css offlining is asynchronous, userland may try to re-enable a 2833 * controller while the previous css is still around. This function grabs 2834 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2835 */ 2836 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2837 __acquires(&cgroup_mutex) 2838 { 2839 struct cgroup *dsct; 2840 struct cgroup_subsys_state *d_css; 2841 struct cgroup_subsys *ss; 2842 int ssid; 2843 2844 restart: 2845 mutex_lock(&cgroup_mutex); 2846 2847 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2848 for_each_subsys(ss, ssid) { 2849 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2850 DEFINE_WAIT(wait); 2851 2852 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2853 continue; 2854 2855 cgroup_get_live(dsct); 2856 prepare_to_wait(&dsct->offline_waitq, &wait, 2857 TASK_UNINTERRUPTIBLE); 2858 2859 mutex_unlock(&cgroup_mutex); 2860 schedule(); 2861 finish_wait(&dsct->offline_waitq, &wait); 2862 2863 cgroup_put(dsct); 2864 goto restart; 2865 } 2866 } 2867 } 2868 2869 /** 2870 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2871 * @cgrp: root of the target subtree 2872 * 2873 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2874 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2875 * itself. 2876 */ 2877 static void cgroup_save_control(struct cgroup *cgrp) 2878 { 2879 struct cgroup *dsct; 2880 struct cgroup_subsys_state *d_css; 2881 2882 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2883 dsct->old_subtree_control = dsct->subtree_control; 2884 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2885 dsct->old_dom_cgrp = dsct->dom_cgrp; 2886 } 2887 } 2888 2889 /** 2890 * cgroup_propagate_control - refresh control masks of a subtree 2891 * @cgrp: root of the target subtree 2892 * 2893 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2894 * ->subtree_control and propagate controller availability through the 2895 * subtree so that descendants don't have unavailable controllers enabled. 2896 */ 2897 static void cgroup_propagate_control(struct cgroup *cgrp) 2898 { 2899 struct cgroup *dsct; 2900 struct cgroup_subsys_state *d_css; 2901 2902 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2903 dsct->subtree_control &= cgroup_control(dsct); 2904 dsct->subtree_ss_mask = 2905 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2906 cgroup_ss_mask(dsct)); 2907 } 2908 } 2909 2910 /** 2911 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 2912 * @cgrp: root of the target subtree 2913 * 2914 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 2915 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2916 * itself. 2917 */ 2918 static void cgroup_restore_control(struct cgroup *cgrp) 2919 { 2920 struct cgroup *dsct; 2921 struct cgroup_subsys_state *d_css; 2922 2923 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2924 dsct->subtree_control = dsct->old_subtree_control; 2925 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2926 dsct->dom_cgrp = dsct->old_dom_cgrp; 2927 } 2928 } 2929 2930 static bool css_visible(struct cgroup_subsys_state *css) 2931 { 2932 struct cgroup_subsys *ss = css->ss; 2933 struct cgroup *cgrp = css->cgroup; 2934 2935 if (cgroup_control(cgrp) & (1 << ss->id)) 2936 return true; 2937 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2938 return false; 2939 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2940 } 2941 2942 /** 2943 * cgroup_apply_control_enable - enable or show csses according to control 2944 * @cgrp: root of the target subtree 2945 * 2946 * Walk @cgrp's subtree and create new csses or make the existing ones 2947 * visible. A css is created invisible if it's being implicitly enabled 2948 * through dependency. An invisible css is made visible when the userland 2949 * explicitly enables it. 2950 * 2951 * Returns 0 on success, -errno on failure. On failure, csses which have 2952 * been processed already aren't cleaned up. The caller is responsible for 2953 * cleaning up with cgroup_apply_control_disable(). 2954 */ 2955 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2956 { 2957 struct cgroup *dsct; 2958 struct cgroup_subsys_state *d_css; 2959 struct cgroup_subsys *ss; 2960 int ssid, ret; 2961 2962 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2963 for_each_subsys(ss, ssid) { 2964 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2965 2966 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2967 2968 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2969 continue; 2970 2971 if (!css) { 2972 css = css_create(dsct, ss); 2973 if (IS_ERR(css)) 2974 return PTR_ERR(css); 2975 } 2976 2977 if (css_visible(css)) { 2978 ret = css_populate_dir(css); 2979 if (ret) 2980 return ret; 2981 } 2982 } 2983 } 2984 2985 return 0; 2986 } 2987 2988 /** 2989 * cgroup_apply_control_disable - kill or hide csses according to control 2990 * @cgrp: root of the target subtree 2991 * 2992 * Walk @cgrp's subtree and kill and hide csses so that they match 2993 * cgroup_ss_mask() and cgroup_visible_mask(). 2994 * 2995 * A css is hidden when the userland requests it to be disabled while other 2996 * subsystems are still depending on it. The css must not actively control 2997 * resources and be in the vanilla state if it's made visible again later. 2998 * Controllers which may be depended upon should provide ->css_reset() for 2999 * this purpose. 3000 */ 3001 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3002 { 3003 struct cgroup *dsct; 3004 struct cgroup_subsys_state *d_css; 3005 struct cgroup_subsys *ss; 3006 int ssid; 3007 3008 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3009 for_each_subsys(ss, ssid) { 3010 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3011 3012 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3013 3014 if (!css) 3015 continue; 3016 3017 if (css->parent && 3018 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3019 kill_css(css); 3020 } else if (!css_visible(css)) { 3021 css_clear_dir(css); 3022 if (ss->css_reset) 3023 ss->css_reset(css); 3024 } 3025 } 3026 } 3027 } 3028 3029 /** 3030 * cgroup_apply_control - apply control mask updates to the subtree 3031 * @cgrp: root of the target subtree 3032 * 3033 * subsystems can be enabled and disabled in a subtree using the following 3034 * steps. 3035 * 3036 * 1. Call cgroup_save_control() to stash the current state. 3037 * 2. Update ->subtree_control masks in the subtree as desired. 3038 * 3. Call cgroup_apply_control() to apply the changes. 3039 * 4. Optionally perform other related operations. 3040 * 5. Call cgroup_finalize_control() to finish up. 3041 * 3042 * This function implements step 3 and propagates the mask changes 3043 * throughout @cgrp's subtree, updates csses accordingly and perform 3044 * process migrations. 3045 */ 3046 static int cgroup_apply_control(struct cgroup *cgrp) 3047 { 3048 int ret; 3049 3050 cgroup_propagate_control(cgrp); 3051 3052 ret = cgroup_apply_control_enable(cgrp); 3053 if (ret) 3054 return ret; 3055 3056 /* 3057 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3058 * making the following cgroup_update_dfl_csses() properly update 3059 * css associations of all tasks in the subtree. 3060 */ 3061 ret = cgroup_update_dfl_csses(cgrp); 3062 if (ret) 3063 return ret; 3064 3065 return 0; 3066 } 3067 3068 /** 3069 * cgroup_finalize_control - finalize control mask update 3070 * @cgrp: root of the target subtree 3071 * @ret: the result of the update 3072 * 3073 * Finalize control mask update. See cgroup_apply_control() for more info. 3074 */ 3075 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3076 { 3077 if (ret) { 3078 cgroup_restore_control(cgrp); 3079 cgroup_propagate_control(cgrp); 3080 } 3081 3082 cgroup_apply_control_disable(cgrp); 3083 } 3084 3085 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3086 { 3087 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3088 3089 /* if nothing is getting enabled, nothing to worry about */ 3090 if (!enable) 3091 return 0; 3092 3093 /* can @cgrp host any resources? */ 3094 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3095 return -EOPNOTSUPP; 3096 3097 /* mixables don't care */ 3098 if (cgroup_is_mixable(cgrp)) 3099 return 0; 3100 3101 if (domain_enable) { 3102 /* can't enable domain controllers inside a thread subtree */ 3103 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3104 return -EOPNOTSUPP; 3105 } else { 3106 /* 3107 * Threaded controllers can handle internal competitions 3108 * and are always allowed inside a (prospective) thread 3109 * subtree. 3110 */ 3111 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3112 return 0; 3113 } 3114 3115 /* 3116 * Controllers can't be enabled for a cgroup with tasks to avoid 3117 * child cgroups competing against tasks. 3118 */ 3119 if (cgroup_has_tasks(cgrp)) 3120 return -EBUSY; 3121 3122 return 0; 3123 } 3124 3125 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3126 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3127 char *buf, size_t nbytes, 3128 loff_t off) 3129 { 3130 u16 enable = 0, disable = 0; 3131 struct cgroup *cgrp, *child; 3132 struct cgroup_subsys *ss; 3133 char *tok; 3134 int ssid, ret; 3135 3136 /* 3137 * Parse input - space separated list of subsystem names prefixed 3138 * with either + or -. 3139 */ 3140 buf = strstrip(buf); 3141 while ((tok = strsep(&buf, " "))) { 3142 if (tok[0] == '\0') 3143 continue; 3144 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3145 if (!cgroup_ssid_enabled(ssid) || 3146 strcmp(tok + 1, ss->name)) 3147 continue; 3148 3149 if (*tok == '+') { 3150 enable |= 1 << ssid; 3151 disable &= ~(1 << ssid); 3152 } else if (*tok == '-') { 3153 disable |= 1 << ssid; 3154 enable &= ~(1 << ssid); 3155 } else { 3156 return -EINVAL; 3157 } 3158 break; 3159 } while_each_subsys_mask(); 3160 if (ssid == CGROUP_SUBSYS_COUNT) 3161 return -EINVAL; 3162 } 3163 3164 cgrp = cgroup_kn_lock_live(of->kn, true); 3165 if (!cgrp) 3166 return -ENODEV; 3167 3168 for_each_subsys(ss, ssid) { 3169 if (enable & (1 << ssid)) { 3170 if (cgrp->subtree_control & (1 << ssid)) { 3171 enable &= ~(1 << ssid); 3172 continue; 3173 } 3174 3175 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3176 ret = -ENOENT; 3177 goto out_unlock; 3178 } 3179 } else if (disable & (1 << ssid)) { 3180 if (!(cgrp->subtree_control & (1 << ssid))) { 3181 disable &= ~(1 << ssid); 3182 continue; 3183 } 3184 3185 /* a child has it enabled? */ 3186 cgroup_for_each_live_child(child, cgrp) { 3187 if (child->subtree_control & (1 << ssid)) { 3188 ret = -EBUSY; 3189 goto out_unlock; 3190 } 3191 } 3192 } 3193 } 3194 3195 if (!enable && !disable) { 3196 ret = 0; 3197 goto out_unlock; 3198 } 3199 3200 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3201 if (ret) 3202 goto out_unlock; 3203 3204 /* save and update control masks and prepare csses */ 3205 cgroup_save_control(cgrp); 3206 3207 cgrp->subtree_control |= enable; 3208 cgrp->subtree_control &= ~disable; 3209 3210 ret = cgroup_apply_control(cgrp); 3211 cgroup_finalize_control(cgrp, ret); 3212 if (ret) 3213 goto out_unlock; 3214 3215 kernfs_activate(cgrp->kn); 3216 out_unlock: 3217 cgroup_kn_unlock(of->kn); 3218 return ret ?: nbytes; 3219 } 3220 3221 /** 3222 * cgroup_enable_threaded - make @cgrp threaded 3223 * @cgrp: the target cgroup 3224 * 3225 * Called when "threaded" is written to the cgroup.type interface file and 3226 * tries to make @cgrp threaded and join the parent's resource domain. 3227 * This function is never called on the root cgroup as cgroup.type doesn't 3228 * exist on it. 3229 */ 3230 static int cgroup_enable_threaded(struct cgroup *cgrp) 3231 { 3232 struct cgroup *parent = cgroup_parent(cgrp); 3233 struct cgroup *dom_cgrp = parent->dom_cgrp; 3234 struct cgroup *dsct; 3235 struct cgroup_subsys_state *d_css; 3236 int ret; 3237 3238 lockdep_assert_held(&cgroup_mutex); 3239 3240 /* noop if already threaded */ 3241 if (cgroup_is_threaded(cgrp)) 3242 return 0; 3243 3244 /* 3245 * If @cgroup is populated or has domain controllers enabled, it 3246 * can't be switched. While the below cgroup_can_be_thread_root() 3247 * test can catch the same conditions, that's only when @parent is 3248 * not mixable, so let's check it explicitly. 3249 */ 3250 if (cgroup_is_populated(cgrp) || 3251 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3252 return -EOPNOTSUPP; 3253 3254 /* we're joining the parent's domain, ensure its validity */ 3255 if (!cgroup_is_valid_domain(dom_cgrp) || 3256 !cgroup_can_be_thread_root(dom_cgrp)) 3257 return -EOPNOTSUPP; 3258 3259 /* 3260 * The following shouldn't cause actual migrations and should 3261 * always succeed. 3262 */ 3263 cgroup_save_control(cgrp); 3264 3265 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3266 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3267 dsct->dom_cgrp = dom_cgrp; 3268 3269 ret = cgroup_apply_control(cgrp); 3270 if (!ret) 3271 parent->nr_threaded_children++; 3272 3273 cgroup_finalize_control(cgrp, ret); 3274 return ret; 3275 } 3276 3277 static int cgroup_type_show(struct seq_file *seq, void *v) 3278 { 3279 struct cgroup *cgrp = seq_css(seq)->cgroup; 3280 3281 if (cgroup_is_threaded(cgrp)) 3282 seq_puts(seq, "threaded\n"); 3283 else if (!cgroup_is_valid_domain(cgrp)) 3284 seq_puts(seq, "domain invalid\n"); 3285 else if (cgroup_is_thread_root(cgrp)) 3286 seq_puts(seq, "domain threaded\n"); 3287 else 3288 seq_puts(seq, "domain\n"); 3289 3290 return 0; 3291 } 3292 3293 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3294 size_t nbytes, loff_t off) 3295 { 3296 struct cgroup *cgrp; 3297 int ret; 3298 3299 /* only switching to threaded mode is supported */ 3300 if (strcmp(strstrip(buf), "threaded")) 3301 return -EINVAL; 3302 3303 cgrp = cgroup_kn_lock_live(of->kn, false); 3304 if (!cgrp) 3305 return -ENOENT; 3306 3307 /* threaded can only be enabled */ 3308 ret = cgroup_enable_threaded(cgrp); 3309 3310 cgroup_kn_unlock(of->kn); 3311 return ret ?: nbytes; 3312 } 3313 3314 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3315 { 3316 struct cgroup *cgrp = seq_css(seq)->cgroup; 3317 int descendants = READ_ONCE(cgrp->max_descendants); 3318 3319 if (descendants == INT_MAX) 3320 seq_puts(seq, "max\n"); 3321 else 3322 seq_printf(seq, "%d\n", descendants); 3323 3324 return 0; 3325 } 3326 3327 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3328 char *buf, size_t nbytes, loff_t off) 3329 { 3330 struct cgroup *cgrp; 3331 int descendants; 3332 ssize_t ret; 3333 3334 buf = strstrip(buf); 3335 if (!strcmp(buf, "max")) { 3336 descendants = INT_MAX; 3337 } else { 3338 ret = kstrtoint(buf, 0, &descendants); 3339 if (ret) 3340 return ret; 3341 } 3342 3343 if (descendants < 0) 3344 return -ERANGE; 3345 3346 cgrp = cgroup_kn_lock_live(of->kn, false); 3347 if (!cgrp) 3348 return -ENOENT; 3349 3350 cgrp->max_descendants = descendants; 3351 3352 cgroup_kn_unlock(of->kn); 3353 3354 return nbytes; 3355 } 3356 3357 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3358 { 3359 struct cgroup *cgrp = seq_css(seq)->cgroup; 3360 int depth = READ_ONCE(cgrp->max_depth); 3361 3362 if (depth == INT_MAX) 3363 seq_puts(seq, "max\n"); 3364 else 3365 seq_printf(seq, "%d\n", depth); 3366 3367 return 0; 3368 } 3369 3370 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3371 char *buf, size_t nbytes, loff_t off) 3372 { 3373 struct cgroup *cgrp; 3374 ssize_t ret; 3375 int depth; 3376 3377 buf = strstrip(buf); 3378 if (!strcmp(buf, "max")) { 3379 depth = INT_MAX; 3380 } else { 3381 ret = kstrtoint(buf, 0, &depth); 3382 if (ret) 3383 return ret; 3384 } 3385 3386 if (depth < 0) 3387 return -ERANGE; 3388 3389 cgrp = cgroup_kn_lock_live(of->kn, false); 3390 if (!cgrp) 3391 return -ENOENT; 3392 3393 cgrp->max_depth = depth; 3394 3395 cgroup_kn_unlock(of->kn); 3396 3397 return nbytes; 3398 } 3399 3400 static int cgroup_events_show(struct seq_file *seq, void *v) 3401 { 3402 seq_printf(seq, "populated %d\n", 3403 cgroup_is_populated(seq_css(seq)->cgroup)); 3404 return 0; 3405 } 3406 3407 static int cgroup_stat_show(struct seq_file *seq, void *v) 3408 { 3409 struct cgroup *cgroup = seq_css(seq)->cgroup; 3410 3411 seq_printf(seq, "nr_descendants %d\n", 3412 cgroup->nr_descendants); 3413 seq_printf(seq, "nr_dying_descendants %d\n", 3414 cgroup->nr_dying_descendants); 3415 3416 return 0; 3417 } 3418 3419 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3420 struct cgroup *cgrp, int ssid) 3421 { 3422 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3423 struct cgroup_subsys_state *css; 3424 int ret; 3425 3426 if (!ss->css_extra_stat_show) 3427 return 0; 3428 3429 css = cgroup_tryget_css(cgrp, ss); 3430 if (!css) 3431 return 0; 3432 3433 ret = ss->css_extra_stat_show(seq, css); 3434 css_put(css); 3435 return ret; 3436 } 3437 3438 static int cpu_stat_show(struct seq_file *seq, void *v) 3439 { 3440 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3441 int ret = 0; 3442 3443 cgroup_base_stat_cputime_show(seq); 3444 #ifdef CONFIG_CGROUP_SCHED 3445 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3446 #endif 3447 return ret; 3448 } 3449 3450 #ifdef CONFIG_PSI 3451 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3452 { 3453 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO); 3454 } 3455 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3456 { 3457 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM); 3458 } 3459 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3460 { 3461 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU); 3462 } 3463 #endif 3464 3465 static int cgroup_file_open(struct kernfs_open_file *of) 3466 { 3467 struct cftype *cft = of->kn->priv; 3468 3469 if (cft->open) 3470 return cft->open(of); 3471 return 0; 3472 } 3473 3474 static void cgroup_file_release(struct kernfs_open_file *of) 3475 { 3476 struct cftype *cft = of->kn->priv; 3477 3478 if (cft->release) 3479 cft->release(of); 3480 } 3481 3482 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3483 size_t nbytes, loff_t off) 3484 { 3485 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3486 struct cgroup *cgrp = of->kn->parent->priv; 3487 struct cftype *cft = of->kn->priv; 3488 struct cgroup_subsys_state *css; 3489 int ret; 3490 3491 /* 3492 * If namespaces are delegation boundaries, disallow writes to 3493 * files in an non-init namespace root from inside the namespace 3494 * except for the files explicitly marked delegatable - 3495 * cgroup.procs and cgroup.subtree_control. 3496 */ 3497 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3498 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3499 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3500 return -EPERM; 3501 3502 if (cft->write) 3503 return cft->write(of, buf, nbytes, off); 3504 3505 /* 3506 * kernfs guarantees that a file isn't deleted with operations in 3507 * flight, which means that the matching css is and stays alive and 3508 * doesn't need to be pinned. The RCU locking is not necessary 3509 * either. It's just for the convenience of using cgroup_css(). 3510 */ 3511 rcu_read_lock(); 3512 css = cgroup_css(cgrp, cft->ss); 3513 rcu_read_unlock(); 3514 3515 if (cft->write_u64) { 3516 unsigned long long v; 3517 ret = kstrtoull(buf, 0, &v); 3518 if (!ret) 3519 ret = cft->write_u64(css, cft, v); 3520 } else if (cft->write_s64) { 3521 long long v; 3522 ret = kstrtoll(buf, 0, &v); 3523 if (!ret) 3524 ret = cft->write_s64(css, cft, v); 3525 } else { 3526 ret = -EINVAL; 3527 } 3528 3529 return ret ?: nbytes; 3530 } 3531 3532 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3533 { 3534 return seq_cft(seq)->seq_start(seq, ppos); 3535 } 3536 3537 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3538 { 3539 return seq_cft(seq)->seq_next(seq, v, ppos); 3540 } 3541 3542 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3543 { 3544 if (seq_cft(seq)->seq_stop) 3545 seq_cft(seq)->seq_stop(seq, v); 3546 } 3547 3548 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3549 { 3550 struct cftype *cft = seq_cft(m); 3551 struct cgroup_subsys_state *css = seq_css(m); 3552 3553 if (cft->seq_show) 3554 return cft->seq_show(m, arg); 3555 3556 if (cft->read_u64) 3557 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3558 else if (cft->read_s64) 3559 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3560 else 3561 return -EINVAL; 3562 return 0; 3563 } 3564 3565 static struct kernfs_ops cgroup_kf_single_ops = { 3566 .atomic_write_len = PAGE_SIZE, 3567 .open = cgroup_file_open, 3568 .release = cgroup_file_release, 3569 .write = cgroup_file_write, 3570 .seq_show = cgroup_seqfile_show, 3571 }; 3572 3573 static struct kernfs_ops cgroup_kf_ops = { 3574 .atomic_write_len = PAGE_SIZE, 3575 .open = cgroup_file_open, 3576 .release = cgroup_file_release, 3577 .write = cgroup_file_write, 3578 .seq_start = cgroup_seqfile_start, 3579 .seq_next = cgroup_seqfile_next, 3580 .seq_stop = cgroup_seqfile_stop, 3581 .seq_show = cgroup_seqfile_show, 3582 }; 3583 3584 /* set uid and gid of cgroup dirs and files to that of the creator */ 3585 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3586 { 3587 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3588 .ia_uid = current_fsuid(), 3589 .ia_gid = current_fsgid(), }; 3590 3591 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3592 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3593 return 0; 3594 3595 return kernfs_setattr(kn, &iattr); 3596 } 3597 3598 static void cgroup_file_notify_timer(struct timer_list *timer) 3599 { 3600 cgroup_file_notify(container_of(timer, struct cgroup_file, 3601 notify_timer)); 3602 } 3603 3604 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3605 struct cftype *cft) 3606 { 3607 char name[CGROUP_FILE_NAME_MAX]; 3608 struct kernfs_node *kn; 3609 struct lock_class_key *key = NULL; 3610 int ret; 3611 3612 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3613 key = &cft->lockdep_key; 3614 #endif 3615 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3616 cgroup_file_mode(cft), 3617 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3618 0, cft->kf_ops, cft, 3619 NULL, key); 3620 if (IS_ERR(kn)) 3621 return PTR_ERR(kn); 3622 3623 ret = cgroup_kn_set_ugid(kn); 3624 if (ret) { 3625 kernfs_remove(kn); 3626 return ret; 3627 } 3628 3629 if (cft->file_offset) { 3630 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3631 3632 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3633 3634 spin_lock_irq(&cgroup_file_kn_lock); 3635 cfile->kn = kn; 3636 spin_unlock_irq(&cgroup_file_kn_lock); 3637 } 3638 3639 return 0; 3640 } 3641 3642 /** 3643 * cgroup_addrm_files - add or remove files to a cgroup directory 3644 * @css: the target css 3645 * @cgrp: the target cgroup (usually css->cgroup) 3646 * @cfts: array of cftypes to be added 3647 * @is_add: whether to add or remove 3648 * 3649 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3650 * For removals, this function never fails. 3651 */ 3652 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3653 struct cgroup *cgrp, struct cftype cfts[], 3654 bool is_add) 3655 { 3656 struct cftype *cft, *cft_end = NULL; 3657 int ret = 0; 3658 3659 lockdep_assert_held(&cgroup_mutex); 3660 3661 restart: 3662 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3663 /* does cft->flags tell us to skip this file on @cgrp? */ 3664 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3665 continue; 3666 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3667 continue; 3668 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3669 continue; 3670 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3671 continue; 3672 3673 if (is_add) { 3674 ret = cgroup_add_file(css, cgrp, cft); 3675 if (ret) { 3676 pr_warn("%s: failed to add %s, err=%d\n", 3677 __func__, cft->name, ret); 3678 cft_end = cft; 3679 is_add = false; 3680 goto restart; 3681 } 3682 } else { 3683 cgroup_rm_file(cgrp, cft); 3684 } 3685 } 3686 return ret; 3687 } 3688 3689 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3690 { 3691 struct cgroup_subsys *ss = cfts[0].ss; 3692 struct cgroup *root = &ss->root->cgrp; 3693 struct cgroup_subsys_state *css; 3694 int ret = 0; 3695 3696 lockdep_assert_held(&cgroup_mutex); 3697 3698 /* add/rm files for all cgroups created before */ 3699 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3700 struct cgroup *cgrp = css->cgroup; 3701 3702 if (!(css->flags & CSS_VISIBLE)) 3703 continue; 3704 3705 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3706 if (ret) 3707 break; 3708 } 3709 3710 if (is_add && !ret) 3711 kernfs_activate(root->kn); 3712 return ret; 3713 } 3714 3715 static void cgroup_exit_cftypes(struct cftype *cfts) 3716 { 3717 struct cftype *cft; 3718 3719 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3720 /* free copy for custom atomic_write_len, see init_cftypes() */ 3721 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3722 kfree(cft->kf_ops); 3723 cft->kf_ops = NULL; 3724 cft->ss = NULL; 3725 3726 /* revert flags set by cgroup core while adding @cfts */ 3727 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3728 } 3729 } 3730 3731 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3732 { 3733 struct cftype *cft; 3734 3735 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3736 struct kernfs_ops *kf_ops; 3737 3738 WARN_ON(cft->ss || cft->kf_ops); 3739 3740 if (cft->seq_start) 3741 kf_ops = &cgroup_kf_ops; 3742 else 3743 kf_ops = &cgroup_kf_single_ops; 3744 3745 /* 3746 * Ugh... if @cft wants a custom max_write_len, we need to 3747 * make a copy of kf_ops to set its atomic_write_len. 3748 */ 3749 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3750 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3751 if (!kf_ops) { 3752 cgroup_exit_cftypes(cfts); 3753 return -ENOMEM; 3754 } 3755 kf_ops->atomic_write_len = cft->max_write_len; 3756 } 3757 3758 cft->kf_ops = kf_ops; 3759 cft->ss = ss; 3760 } 3761 3762 return 0; 3763 } 3764 3765 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3766 { 3767 lockdep_assert_held(&cgroup_mutex); 3768 3769 if (!cfts || !cfts[0].ss) 3770 return -ENOENT; 3771 3772 list_del(&cfts->node); 3773 cgroup_apply_cftypes(cfts, false); 3774 cgroup_exit_cftypes(cfts); 3775 return 0; 3776 } 3777 3778 /** 3779 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3780 * @cfts: zero-length name terminated array of cftypes 3781 * 3782 * Unregister @cfts. Files described by @cfts are removed from all 3783 * existing cgroups and all future cgroups won't have them either. This 3784 * function can be called anytime whether @cfts' subsys is attached or not. 3785 * 3786 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3787 * registered. 3788 */ 3789 int cgroup_rm_cftypes(struct cftype *cfts) 3790 { 3791 int ret; 3792 3793 mutex_lock(&cgroup_mutex); 3794 ret = cgroup_rm_cftypes_locked(cfts); 3795 mutex_unlock(&cgroup_mutex); 3796 return ret; 3797 } 3798 3799 /** 3800 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3801 * @ss: target cgroup subsystem 3802 * @cfts: zero-length name terminated array of cftypes 3803 * 3804 * Register @cfts to @ss. Files described by @cfts are created for all 3805 * existing cgroups to which @ss is attached and all future cgroups will 3806 * have them too. This function can be called anytime whether @ss is 3807 * attached or not. 3808 * 3809 * Returns 0 on successful registration, -errno on failure. Note that this 3810 * function currently returns 0 as long as @cfts registration is successful 3811 * even if some file creation attempts on existing cgroups fail. 3812 */ 3813 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3814 { 3815 int ret; 3816 3817 if (!cgroup_ssid_enabled(ss->id)) 3818 return 0; 3819 3820 if (!cfts || cfts[0].name[0] == '\0') 3821 return 0; 3822 3823 ret = cgroup_init_cftypes(ss, cfts); 3824 if (ret) 3825 return ret; 3826 3827 mutex_lock(&cgroup_mutex); 3828 3829 list_add_tail(&cfts->node, &ss->cfts); 3830 ret = cgroup_apply_cftypes(cfts, true); 3831 if (ret) 3832 cgroup_rm_cftypes_locked(cfts); 3833 3834 mutex_unlock(&cgroup_mutex); 3835 return ret; 3836 } 3837 3838 /** 3839 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3840 * @ss: target cgroup subsystem 3841 * @cfts: zero-length name terminated array of cftypes 3842 * 3843 * Similar to cgroup_add_cftypes() but the added files are only used for 3844 * the default hierarchy. 3845 */ 3846 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3847 { 3848 struct cftype *cft; 3849 3850 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3851 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3852 return cgroup_add_cftypes(ss, cfts); 3853 } 3854 3855 /** 3856 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3857 * @ss: target cgroup subsystem 3858 * @cfts: zero-length name terminated array of cftypes 3859 * 3860 * Similar to cgroup_add_cftypes() but the added files are only used for 3861 * the legacy hierarchies. 3862 */ 3863 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3864 { 3865 struct cftype *cft; 3866 3867 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3868 cft->flags |= __CFTYPE_NOT_ON_DFL; 3869 return cgroup_add_cftypes(ss, cfts); 3870 } 3871 3872 /** 3873 * cgroup_file_notify - generate a file modified event for a cgroup_file 3874 * @cfile: target cgroup_file 3875 * 3876 * @cfile must have been obtained by setting cftype->file_offset. 3877 */ 3878 void cgroup_file_notify(struct cgroup_file *cfile) 3879 { 3880 unsigned long flags; 3881 3882 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3883 if (cfile->kn) { 3884 unsigned long last = cfile->notified_at; 3885 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 3886 3887 if (time_in_range(jiffies, last, next)) { 3888 timer_reduce(&cfile->notify_timer, next); 3889 } else { 3890 kernfs_notify(cfile->kn); 3891 cfile->notified_at = jiffies; 3892 } 3893 } 3894 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3895 } 3896 3897 /** 3898 * css_next_child - find the next child of a given css 3899 * @pos: the current position (%NULL to initiate traversal) 3900 * @parent: css whose children to walk 3901 * 3902 * This function returns the next child of @parent and should be called 3903 * under either cgroup_mutex or RCU read lock. The only requirement is 3904 * that @parent and @pos are accessible. The next sibling is guaranteed to 3905 * be returned regardless of their states. 3906 * 3907 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3908 * css which finished ->css_online() is guaranteed to be visible in the 3909 * future iterations and will stay visible until the last reference is put. 3910 * A css which hasn't finished ->css_online() or already finished 3911 * ->css_offline() may show up during traversal. It's each subsystem's 3912 * responsibility to synchronize against on/offlining. 3913 */ 3914 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3915 struct cgroup_subsys_state *parent) 3916 { 3917 struct cgroup_subsys_state *next; 3918 3919 cgroup_assert_mutex_or_rcu_locked(); 3920 3921 /* 3922 * @pos could already have been unlinked from the sibling list. 3923 * Once a cgroup is removed, its ->sibling.next is no longer 3924 * updated when its next sibling changes. CSS_RELEASED is set when 3925 * @pos is taken off list, at which time its next pointer is valid, 3926 * and, as releases are serialized, the one pointed to by the next 3927 * pointer is guaranteed to not have started release yet. This 3928 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3929 * critical section, the one pointed to by its next pointer is 3930 * guaranteed to not have finished its RCU grace period even if we 3931 * have dropped rcu_read_lock() inbetween iterations. 3932 * 3933 * If @pos has CSS_RELEASED set, its next pointer can't be 3934 * dereferenced; however, as each css is given a monotonically 3935 * increasing unique serial number and always appended to the 3936 * sibling list, the next one can be found by walking the parent's 3937 * children until the first css with higher serial number than 3938 * @pos's. While this path can be slower, it happens iff iteration 3939 * races against release and the race window is very small. 3940 */ 3941 if (!pos) { 3942 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3943 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3944 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3945 } else { 3946 list_for_each_entry_rcu(next, &parent->children, sibling) 3947 if (next->serial_nr > pos->serial_nr) 3948 break; 3949 } 3950 3951 /* 3952 * @next, if not pointing to the head, can be dereferenced and is 3953 * the next sibling. 3954 */ 3955 if (&next->sibling != &parent->children) 3956 return next; 3957 return NULL; 3958 } 3959 3960 /** 3961 * css_next_descendant_pre - find the next descendant for pre-order walk 3962 * @pos: the current position (%NULL to initiate traversal) 3963 * @root: css whose descendants to walk 3964 * 3965 * To be used by css_for_each_descendant_pre(). Find the next descendant 3966 * to visit for pre-order traversal of @root's descendants. @root is 3967 * included in the iteration and the first node to be visited. 3968 * 3969 * While this function requires cgroup_mutex or RCU read locking, it 3970 * doesn't require the whole traversal to be contained in a single critical 3971 * section. This function will return the correct next descendant as long 3972 * as both @pos and @root are accessible and @pos is a descendant of @root. 3973 * 3974 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3975 * css which finished ->css_online() is guaranteed to be visible in the 3976 * future iterations and will stay visible until the last reference is put. 3977 * A css which hasn't finished ->css_online() or already finished 3978 * ->css_offline() may show up during traversal. It's each subsystem's 3979 * responsibility to synchronize against on/offlining. 3980 */ 3981 struct cgroup_subsys_state * 3982 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3983 struct cgroup_subsys_state *root) 3984 { 3985 struct cgroup_subsys_state *next; 3986 3987 cgroup_assert_mutex_or_rcu_locked(); 3988 3989 /* if first iteration, visit @root */ 3990 if (!pos) 3991 return root; 3992 3993 /* visit the first child if exists */ 3994 next = css_next_child(NULL, pos); 3995 if (next) 3996 return next; 3997 3998 /* no child, visit my or the closest ancestor's next sibling */ 3999 while (pos != root) { 4000 next = css_next_child(pos, pos->parent); 4001 if (next) 4002 return next; 4003 pos = pos->parent; 4004 } 4005 4006 return NULL; 4007 } 4008 4009 /** 4010 * css_rightmost_descendant - return the rightmost descendant of a css 4011 * @pos: css of interest 4012 * 4013 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4014 * is returned. This can be used during pre-order traversal to skip 4015 * subtree of @pos. 4016 * 4017 * While this function requires cgroup_mutex or RCU read locking, it 4018 * doesn't require the whole traversal to be contained in a single critical 4019 * section. This function will return the correct rightmost descendant as 4020 * long as @pos is accessible. 4021 */ 4022 struct cgroup_subsys_state * 4023 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4024 { 4025 struct cgroup_subsys_state *last, *tmp; 4026 4027 cgroup_assert_mutex_or_rcu_locked(); 4028 4029 do { 4030 last = pos; 4031 /* ->prev isn't RCU safe, walk ->next till the end */ 4032 pos = NULL; 4033 css_for_each_child(tmp, last) 4034 pos = tmp; 4035 } while (pos); 4036 4037 return last; 4038 } 4039 4040 static struct cgroup_subsys_state * 4041 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4042 { 4043 struct cgroup_subsys_state *last; 4044 4045 do { 4046 last = pos; 4047 pos = css_next_child(NULL, pos); 4048 } while (pos); 4049 4050 return last; 4051 } 4052 4053 /** 4054 * css_next_descendant_post - find the next descendant for post-order walk 4055 * @pos: the current position (%NULL to initiate traversal) 4056 * @root: css whose descendants to walk 4057 * 4058 * To be used by css_for_each_descendant_post(). Find the next descendant 4059 * to visit for post-order traversal of @root's descendants. @root is 4060 * included in the iteration and the last node to be visited. 4061 * 4062 * While this function requires cgroup_mutex or RCU read locking, it 4063 * doesn't require the whole traversal to be contained in a single critical 4064 * section. This function will return the correct next descendant as long 4065 * as both @pos and @cgroup are accessible and @pos is a descendant of 4066 * @cgroup. 4067 * 4068 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4069 * css which finished ->css_online() is guaranteed to be visible in the 4070 * future iterations and will stay visible until the last reference is put. 4071 * A css which hasn't finished ->css_online() or already finished 4072 * ->css_offline() may show up during traversal. It's each subsystem's 4073 * responsibility to synchronize against on/offlining. 4074 */ 4075 struct cgroup_subsys_state * 4076 css_next_descendant_post(struct cgroup_subsys_state *pos, 4077 struct cgroup_subsys_state *root) 4078 { 4079 struct cgroup_subsys_state *next; 4080 4081 cgroup_assert_mutex_or_rcu_locked(); 4082 4083 /* if first iteration, visit leftmost descendant which may be @root */ 4084 if (!pos) 4085 return css_leftmost_descendant(root); 4086 4087 /* if we visited @root, we're done */ 4088 if (pos == root) 4089 return NULL; 4090 4091 /* if there's an unvisited sibling, visit its leftmost descendant */ 4092 next = css_next_child(pos, pos->parent); 4093 if (next) 4094 return css_leftmost_descendant(next); 4095 4096 /* no sibling left, visit parent */ 4097 return pos->parent; 4098 } 4099 4100 /** 4101 * css_has_online_children - does a css have online children 4102 * @css: the target css 4103 * 4104 * Returns %true if @css has any online children; otherwise, %false. This 4105 * function can be called from any context but the caller is responsible 4106 * for synchronizing against on/offlining as necessary. 4107 */ 4108 bool css_has_online_children(struct cgroup_subsys_state *css) 4109 { 4110 struct cgroup_subsys_state *child; 4111 bool ret = false; 4112 4113 rcu_read_lock(); 4114 css_for_each_child(child, css) { 4115 if (child->flags & CSS_ONLINE) { 4116 ret = true; 4117 break; 4118 } 4119 } 4120 rcu_read_unlock(); 4121 return ret; 4122 } 4123 4124 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4125 { 4126 struct list_head *l; 4127 struct cgrp_cset_link *link; 4128 struct css_set *cset; 4129 4130 lockdep_assert_held(&css_set_lock); 4131 4132 /* find the next threaded cset */ 4133 if (it->tcset_pos) { 4134 l = it->tcset_pos->next; 4135 4136 if (l != it->tcset_head) { 4137 it->tcset_pos = l; 4138 return container_of(l, struct css_set, 4139 threaded_csets_node); 4140 } 4141 4142 it->tcset_pos = NULL; 4143 } 4144 4145 /* find the next cset */ 4146 l = it->cset_pos; 4147 l = l->next; 4148 if (l == it->cset_head) { 4149 it->cset_pos = NULL; 4150 return NULL; 4151 } 4152 4153 if (it->ss) { 4154 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4155 } else { 4156 link = list_entry(l, struct cgrp_cset_link, cset_link); 4157 cset = link->cset; 4158 } 4159 4160 it->cset_pos = l; 4161 4162 /* initialize threaded css_set walking */ 4163 if (it->flags & CSS_TASK_ITER_THREADED) { 4164 if (it->cur_dcset) 4165 put_css_set_locked(it->cur_dcset); 4166 it->cur_dcset = cset; 4167 get_css_set(cset); 4168 4169 it->tcset_head = &cset->threaded_csets; 4170 it->tcset_pos = &cset->threaded_csets; 4171 } 4172 4173 return cset; 4174 } 4175 4176 /** 4177 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4178 * @it: the iterator to advance 4179 * 4180 * Advance @it to the next css_set to walk. 4181 */ 4182 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4183 { 4184 struct css_set *cset; 4185 4186 lockdep_assert_held(&css_set_lock); 4187 4188 /* Advance to the next non-empty css_set */ 4189 do { 4190 cset = css_task_iter_next_css_set(it); 4191 if (!cset) { 4192 it->task_pos = NULL; 4193 return; 4194 } 4195 } while (!css_set_populated(cset)); 4196 4197 if (!list_empty(&cset->tasks)) 4198 it->task_pos = cset->tasks.next; 4199 else 4200 it->task_pos = cset->mg_tasks.next; 4201 4202 it->tasks_head = &cset->tasks; 4203 it->mg_tasks_head = &cset->mg_tasks; 4204 4205 /* 4206 * We don't keep css_sets locked across iteration steps and thus 4207 * need to take steps to ensure that iteration can be resumed after 4208 * the lock is re-acquired. Iteration is performed at two levels - 4209 * css_sets and tasks in them. 4210 * 4211 * Once created, a css_set never leaves its cgroup lists, so a 4212 * pinned css_set is guaranteed to stay put and we can resume 4213 * iteration afterwards. 4214 * 4215 * Tasks may leave @cset across iteration steps. This is resolved 4216 * by registering each iterator with the css_set currently being 4217 * walked and making css_set_move_task() advance iterators whose 4218 * next task is leaving. 4219 */ 4220 if (it->cur_cset) { 4221 list_del(&it->iters_node); 4222 put_css_set_locked(it->cur_cset); 4223 } 4224 get_css_set(cset); 4225 it->cur_cset = cset; 4226 list_add(&it->iters_node, &cset->task_iters); 4227 } 4228 4229 static void css_task_iter_advance(struct css_task_iter *it) 4230 { 4231 struct list_head *next; 4232 4233 lockdep_assert_held(&css_set_lock); 4234 repeat: 4235 /* 4236 * Advance iterator to find next entry. cset->tasks is consumed 4237 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 4238 * next cset. 4239 */ 4240 next = it->task_pos->next; 4241 4242 if (next == it->tasks_head) 4243 next = it->mg_tasks_head->next; 4244 4245 if (next == it->mg_tasks_head) 4246 css_task_iter_advance_css_set(it); 4247 else 4248 it->task_pos = next; 4249 4250 /* if PROCS, skip over tasks which aren't group leaders */ 4251 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4252 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4253 cg_list))) 4254 goto repeat; 4255 } 4256 4257 /** 4258 * css_task_iter_start - initiate task iteration 4259 * @css: the css to walk tasks of 4260 * @flags: CSS_TASK_ITER_* flags 4261 * @it: the task iterator to use 4262 * 4263 * Initiate iteration through the tasks of @css. The caller can call 4264 * css_task_iter_next() to walk through the tasks until the function 4265 * returns NULL. On completion of iteration, css_task_iter_end() must be 4266 * called. 4267 */ 4268 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4269 struct css_task_iter *it) 4270 { 4271 /* no one should try to iterate before mounting cgroups */ 4272 WARN_ON_ONCE(!use_task_css_set_links); 4273 4274 memset(it, 0, sizeof(*it)); 4275 4276 spin_lock_irq(&css_set_lock); 4277 4278 it->ss = css->ss; 4279 it->flags = flags; 4280 4281 if (it->ss) 4282 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4283 else 4284 it->cset_pos = &css->cgroup->cset_links; 4285 4286 it->cset_head = it->cset_pos; 4287 4288 css_task_iter_advance_css_set(it); 4289 4290 spin_unlock_irq(&css_set_lock); 4291 } 4292 4293 /** 4294 * css_task_iter_next - return the next task for the iterator 4295 * @it: the task iterator being iterated 4296 * 4297 * The "next" function for task iteration. @it should have been 4298 * initialized via css_task_iter_start(). Returns NULL when the iteration 4299 * reaches the end. 4300 */ 4301 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4302 { 4303 if (it->cur_task) { 4304 put_task_struct(it->cur_task); 4305 it->cur_task = NULL; 4306 } 4307 4308 spin_lock_irq(&css_set_lock); 4309 4310 if (it->task_pos) { 4311 it->cur_task = list_entry(it->task_pos, struct task_struct, 4312 cg_list); 4313 get_task_struct(it->cur_task); 4314 css_task_iter_advance(it); 4315 } 4316 4317 spin_unlock_irq(&css_set_lock); 4318 4319 return it->cur_task; 4320 } 4321 4322 /** 4323 * css_task_iter_end - finish task iteration 4324 * @it: the task iterator to finish 4325 * 4326 * Finish task iteration started by css_task_iter_start(). 4327 */ 4328 void css_task_iter_end(struct css_task_iter *it) 4329 { 4330 if (it->cur_cset) { 4331 spin_lock_irq(&css_set_lock); 4332 list_del(&it->iters_node); 4333 put_css_set_locked(it->cur_cset); 4334 spin_unlock_irq(&css_set_lock); 4335 } 4336 4337 if (it->cur_dcset) 4338 put_css_set(it->cur_dcset); 4339 4340 if (it->cur_task) 4341 put_task_struct(it->cur_task); 4342 } 4343 4344 static void cgroup_procs_release(struct kernfs_open_file *of) 4345 { 4346 if (of->priv) { 4347 css_task_iter_end(of->priv); 4348 kfree(of->priv); 4349 } 4350 } 4351 4352 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4353 { 4354 struct kernfs_open_file *of = s->private; 4355 struct css_task_iter *it = of->priv; 4356 4357 return css_task_iter_next(it); 4358 } 4359 4360 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4361 unsigned int iter_flags) 4362 { 4363 struct kernfs_open_file *of = s->private; 4364 struct cgroup *cgrp = seq_css(s)->cgroup; 4365 struct css_task_iter *it = of->priv; 4366 4367 /* 4368 * When a seq_file is seeked, it's always traversed sequentially 4369 * from position 0, so we can simply keep iterating on !0 *pos. 4370 */ 4371 if (!it) { 4372 if (WARN_ON_ONCE((*pos)++)) 4373 return ERR_PTR(-EINVAL); 4374 4375 it = kzalloc(sizeof(*it), GFP_KERNEL); 4376 if (!it) 4377 return ERR_PTR(-ENOMEM); 4378 of->priv = it; 4379 css_task_iter_start(&cgrp->self, iter_flags, it); 4380 } else if (!(*pos)++) { 4381 css_task_iter_end(it); 4382 css_task_iter_start(&cgrp->self, iter_flags, it); 4383 } 4384 4385 return cgroup_procs_next(s, NULL, NULL); 4386 } 4387 4388 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4389 { 4390 struct cgroup *cgrp = seq_css(s)->cgroup; 4391 4392 /* 4393 * All processes of a threaded subtree belong to the domain cgroup 4394 * of the subtree. Only threads can be distributed across the 4395 * subtree. Reject reads on cgroup.procs in the subtree proper. 4396 * They're always empty anyway. 4397 */ 4398 if (cgroup_is_threaded(cgrp)) 4399 return ERR_PTR(-EOPNOTSUPP); 4400 4401 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4402 CSS_TASK_ITER_THREADED); 4403 } 4404 4405 static int cgroup_procs_show(struct seq_file *s, void *v) 4406 { 4407 seq_printf(s, "%d\n", task_pid_vnr(v)); 4408 return 0; 4409 } 4410 4411 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4412 struct cgroup *dst_cgrp, 4413 struct super_block *sb) 4414 { 4415 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4416 struct cgroup *com_cgrp = src_cgrp; 4417 struct inode *inode; 4418 int ret; 4419 4420 lockdep_assert_held(&cgroup_mutex); 4421 4422 /* find the common ancestor */ 4423 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4424 com_cgrp = cgroup_parent(com_cgrp); 4425 4426 /* %current should be authorized to migrate to the common ancestor */ 4427 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4428 if (!inode) 4429 return -ENOMEM; 4430 4431 ret = inode_permission(inode, MAY_WRITE); 4432 iput(inode); 4433 if (ret) 4434 return ret; 4435 4436 /* 4437 * If namespaces are delegation boundaries, %current must be able 4438 * to see both source and destination cgroups from its namespace. 4439 */ 4440 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4441 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4442 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4443 return -ENOENT; 4444 4445 return 0; 4446 } 4447 4448 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4449 char *buf, size_t nbytes, loff_t off) 4450 { 4451 struct cgroup *src_cgrp, *dst_cgrp; 4452 struct task_struct *task; 4453 ssize_t ret; 4454 4455 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4456 if (!dst_cgrp) 4457 return -ENODEV; 4458 4459 task = cgroup_procs_write_start(buf, true); 4460 ret = PTR_ERR_OR_ZERO(task); 4461 if (ret) 4462 goto out_unlock; 4463 4464 /* find the source cgroup */ 4465 spin_lock_irq(&css_set_lock); 4466 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4467 spin_unlock_irq(&css_set_lock); 4468 4469 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4470 of->file->f_path.dentry->d_sb); 4471 if (ret) 4472 goto out_finish; 4473 4474 ret = cgroup_attach_task(dst_cgrp, task, true); 4475 4476 out_finish: 4477 cgroup_procs_write_finish(task); 4478 out_unlock: 4479 cgroup_kn_unlock(of->kn); 4480 4481 return ret ?: nbytes; 4482 } 4483 4484 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4485 { 4486 return __cgroup_procs_start(s, pos, 0); 4487 } 4488 4489 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4490 char *buf, size_t nbytes, loff_t off) 4491 { 4492 struct cgroup *src_cgrp, *dst_cgrp; 4493 struct task_struct *task; 4494 ssize_t ret; 4495 4496 buf = strstrip(buf); 4497 4498 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4499 if (!dst_cgrp) 4500 return -ENODEV; 4501 4502 task = cgroup_procs_write_start(buf, false); 4503 ret = PTR_ERR_OR_ZERO(task); 4504 if (ret) 4505 goto out_unlock; 4506 4507 /* find the source cgroup */ 4508 spin_lock_irq(&css_set_lock); 4509 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4510 spin_unlock_irq(&css_set_lock); 4511 4512 /* thread migrations follow the cgroup.procs delegation rule */ 4513 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4514 of->file->f_path.dentry->d_sb); 4515 if (ret) 4516 goto out_finish; 4517 4518 /* and must be contained in the same domain */ 4519 ret = -EOPNOTSUPP; 4520 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4521 goto out_finish; 4522 4523 ret = cgroup_attach_task(dst_cgrp, task, false); 4524 4525 out_finish: 4526 cgroup_procs_write_finish(task); 4527 out_unlock: 4528 cgroup_kn_unlock(of->kn); 4529 4530 return ret ?: nbytes; 4531 } 4532 4533 /* cgroup core interface files for the default hierarchy */ 4534 static struct cftype cgroup_base_files[] = { 4535 { 4536 .name = "cgroup.type", 4537 .flags = CFTYPE_NOT_ON_ROOT, 4538 .seq_show = cgroup_type_show, 4539 .write = cgroup_type_write, 4540 }, 4541 { 4542 .name = "cgroup.procs", 4543 .flags = CFTYPE_NS_DELEGATABLE, 4544 .file_offset = offsetof(struct cgroup, procs_file), 4545 .release = cgroup_procs_release, 4546 .seq_start = cgroup_procs_start, 4547 .seq_next = cgroup_procs_next, 4548 .seq_show = cgroup_procs_show, 4549 .write = cgroup_procs_write, 4550 }, 4551 { 4552 .name = "cgroup.threads", 4553 .flags = CFTYPE_NS_DELEGATABLE, 4554 .release = cgroup_procs_release, 4555 .seq_start = cgroup_threads_start, 4556 .seq_next = cgroup_procs_next, 4557 .seq_show = cgroup_procs_show, 4558 .write = cgroup_threads_write, 4559 }, 4560 { 4561 .name = "cgroup.controllers", 4562 .seq_show = cgroup_controllers_show, 4563 }, 4564 { 4565 .name = "cgroup.subtree_control", 4566 .flags = CFTYPE_NS_DELEGATABLE, 4567 .seq_show = cgroup_subtree_control_show, 4568 .write = cgroup_subtree_control_write, 4569 }, 4570 { 4571 .name = "cgroup.events", 4572 .flags = CFTYPE_NOT_ON_ROOT, 4573 .file_offset = offsetof(struct cgroup, events_file), 4574 .seq_show = cgroup_events_show, 4575 }, 4576 { 4577 .name = "cgroup.max.descendants", 4578 .seq_show = cgroup_max_descendants_show, 4579 .write = cgroup_max_descendants_write, 4580 }, 4581 { 4582 .name = "cgroup.max.depth", 4583 .seq_show = cgroup_max_depth_show, 4584 .write = cgroup_max_depth_write, 4585 }, 4586 { 4587 .name = "cgroup.stat", 4588 .seq_show = cgroup_stat_show, 4589 }, 4590 { 4591 .name = "cpu.stat", 4592 .flags = CFTYPE_NOT_ON_ROOT, 4593 .seq_show = cpu_stat_show, 4594 }, 4595 #ifdef CONFIG_PSI 4596 { 4597 .name = "io.pressure", 4598 .flags = CFTYPE_NOT_ON_ROOT, 4599 .seq_show = cgroup_io_pressure_show, 4600 }, 4601 { 4602 .name = "memory.pressure", 4603 .flags = CFTYPE_NOT_ON_ROOT, 4604 .seq_show = cgroup_memory_pressure_show, 4605 }, 4606 { 4607 .name = "cpu.pressure", 4608 .flags = CFTYPE_NOT_ON_ROOT, 4609 .seq_show = cgroup_cpu_pressure_show, 4610 }, 4611 #endif 4612 { } /* terminate */ 4613 }; 4614 4615 /* 4616 * css destruction is four-stage process. 4617 * 4618 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4619 * Implemented in kill_css(). 4620 * 4621 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4622 * and thus css_tryget_online() is guaranteed to fail, the css can be 4623 * offlined by invoking offline_css(). After offlining, the base ref is 4624 * put. Implemented in css_killed_work_fn(). 4625 * 4626 * 3. When the percpu_ref reaches zero, the only possible remaining 4627 * accessors are inside RCU read sections. css_release() schedules the 4628 * RCU callback. 4629 * 4630 * 4. After the grace period, the css can be freed. Implemented in 4631 * css_free_work_fn(). 4632 * 4633 * It is actually hairier because both step 2 and 4 require process context 4634 * and thus involve punting to css->destroy_work adding two additional 4635 * steps to the already complex sequence. 4636 */ 4637 static void css_free_rwork_fn(struct work_struct *work) 4638 { 4639 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4640 struct cgroup_subsys_state, destroy_rwork); 4641 struct cgroup_subsys *ss = css->ss; 4642 struct cgroup *cgrp = css->cgroup; 4643 4644 percpu_ref_exit(&css->refcnt); 4645 4646 if (ss) { 4647 /* css free path */ 4648 struct cgroup_subsys_state *parent = css->parent; 4649 int id = css->id; 4650 4651 ss->css_free(css); 4652 cgroup_idr_remove(&ss->css_idr, id); 4653 cgroup_put(cgrp); 4654 4655 if (parent) 4656 css_put(parent); 4657 } else { 4658 /* cgroup free path */ 4659 atomic_dec(&cgrp->root->nr_cgrps); 4660 cgroup1_pidlist_destroy_all(cgrp); 4661 cancel_work_sync(&cgrp->release_agent_work); 4662 4663 if (cgroup_parent(cgrp)) { 4664 /* 4665 * We get a ref to the parent, and put the ref when 4666 * this cgroup is being freed, so it's guaranteed 4667 * that the parent won't be destroyed before its 4668 * children. 4669 */ 4670 cgroup_put(cgroup_parent(cgrp)); 4671 kernfs_put(cgrp->kn); 4672 psi_cgroup_free(cgrp); 4673 if (cgroup_on_dfl(cgrp)) 4674 cgroup_rstat_exit(cgrp); 4675 kfree(cgrp); 4676 } else { 4677 /* 4678 * This is root cgroup's refcnt reaching zero, 4679 * which indicates that the root should be 4680 * released. 4681 */ 4682 cgroup_destroy_root(cgrp->root); 4683 } 4684 } 4685 } 4686 4687 static void css_release_work_fn(struct work_struct *work) 4688 { 4689 struct cgroup_subsys_state *css = 4690 container_of(work, struct cgroup_subsys_state, destroy_work); 4691 struct cgroup_subsys *ss = css->ss; 4692 struct cgroup *cgrp = css->cgroup; 4693 4694 mutex_lock(&cgroup_mutex); 4695 4696 css->flags |= CSS_RELEASED; 4697 list_del_rcu(&css->sibling); 4698 4699 if (ss) { 4700 /* css release path */ 4701 if (!list_empty(&css->rstat_css_node)) { 4702 cgroup_rstat_flush(cgrp); 4703 list_del_rcu(&css->rstat_css_node); 4704 } 4705 4706 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4707 if (ss->css_released) 4708 ss->css_released(css); 4709 } else { 4710 struct cgroup *tcgrp; 4711 4712 /* cgroup release path */ 4713 TRACE_CGROUP_PATH(release, cgrp); 4714 4715 if (cgroup_on_dfl(cgrp)) 4716 cgroup_rstat_flush(cgrp); 4717 4718 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4719 tcgrp = cgroup_parent(tcgrp)) 4720 tcgrp->nr_dying_descendants--; 4721 4722 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4723 cgrp->id = -1; 4724 4725 /* 4726 * There are two control paths which try to determine 4727 * cgroup from dentry without going through kernfs - 4728 * cgroupstats_build() and css_tryget_online_from_dir(). 4729 * Those are supported by RCU protecting clearing of 4730 * cgrp->kn->priv backpointer. 4731 */ 4732 if (cgrp->kn) 4733 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4734 NULL); 4735 4736 cgroup_bpf_put(cgrp); 4737 } 4738 4739 mutex_unlock(&cgroup_mutex); 4740 4741 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4742 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4743 } 4744 4745 static void css_release(struct percpu_ref *ref) 4746 { 4747 struct cgroup_subsys_state *css = 4748 container_of(ref, struct cgroup_subsys_state, refcnt); 4749 4750 INIT_WORK(&css->destroy_work, css_release_work_fn); 4751 queue_work(cgroup_destroy_wq, &css->destroy_work); 4752 } 4753 4754 static void init_and_link_css(struct cgroup_subsys_state *css, 4755 struct cgroup_subsys *ss, struct cgroup *cgrp) 4756 { 4757 lockdep_assert_held(&cgroup_mutex); 4758 4759 cgroup_get_live(cgrp); 4760 4761 memset(css, 0, sizeof(*css)); 4762 css->cgroup = cgrp; 4763 css->ss = ss; 4764 css->id = -1; 4765 INIT_LIST_HEAD(&css->sibling); 4766 INIT_LIST_HEAD(&css->children); 4767 INIT_LIST_HEAD(&css->rstat_css_node); 4768 css->serial_nr = css_serial_nr_next++; 4769 atomic_set(&css->online_cnt, 0); 4770 4771 if (cgroup_parent(cgrp)) { 4772 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4773 css_get(css->parent); 4774 } 4775 4776 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 4777 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 4778 4779 BUG_ON(cgroup_css(cgrp, ss)); 4780 } 4781 4782 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4783 static int online_css(struct cgroup_subsys_state *css) 4784 { 4785 struct cgroup_subsys *ss = css->ss; 4786 int ret = 0; 4787 4788 lockdep_assert_held(&cgroup_mutex); 4789 4790 if (ss->css_online) 4791 ret = ss->css_online(css); 4792 if (!ret) { 4793 css->flags |= CSS_ONLINE; 4794 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4795 4796 atomic_inc(&css->online_cnt); 4797 if (css->parent) 4798 atomic_inc(&css->parent->online_cnt); 4799 } 4800 return ret; 4801 } 4802 4803 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4804 static void offline_css(struct cgroup_subsys_state *css) 4805 { 4806 struct cgroup_subsys *ss = css->ss; 4807 4808 lockdep_assert_held(&cgroup_mutex); 4809 4810 if (!(css->flags & CSS_ONLINE)) 4811 return; 4812 4813 if (ss->css_offline) 4814 ss->css_offline(css); 4815 4816 css->flags &= ~CSS_ONLINE; 4817 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4818 4819 wake_up_all(&css->cgroup->offline_waitq); 4820 } 4821 4822 /** 4823 * css_create - create a cgroup_subsys_state 4824 * @cgrp: the cgroup new css will be associated with 4825 * @ss: the subsys of new css 4826 * 4827 * Create a new css associated with @cgrp - @ss pair. On success, the new 4828 * css is online and installed in @cgrp. This function doesn't create the 4829 * interface files. Returns 0 on success, -errno on failure. 4830 */ 4831 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4832 struct cgroup_subsys *ss) 4833 { 4834 struct cgroup *parent = cgroup_parent(cgrp); 4835 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4836 struct cgroup_subsys_state *css; 4837 int err; 4838 4839 lockdep_assert_held(&cgroup_mutex); 4840 4841 css = ss->css_alloc(parent_css); 4842 if (!css) 4843 css = ERR_PTR(-ENOMEM); 4844 if (IS_ERR(css)) 4845 return css; 4846 4847 init_and_link_css(css, ss, cgrp); 4848 4849 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4850 if (err) 4851 goto err_free_css; 4852 4853 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4854 if (err < 0) 4855 goto err_free_css; 4856 css->id = err; 4857 4858 /* @css is ready to be brought online now, make it visible */ 4859 list_add_tail_rcu(&css->sibling, &parent_css->children); 4860 cgroup_idr_replace(&ss->css_idr, css, css->id); 4861 4862 err = online_css(css); 4863 if (err) 4864 goto err_list_del; 4865 4866 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4867 cgroup_parent(parent)) { 4868 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4869 current->comm, current->pid, ss->name); 4870 if (!strcmp(ss->name, "memory")) 4871 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4872 ss->warned_broken_hierarchy = true; 4873 } 4874 4875 return css; 4876 4877 err_list_del: 4878 list_del_rcu(&css->sibling); 4879 err_free_css: 4880 list_del_rcu(&css->rstat_css_node); 4881 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4882 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4883 return ERR_PTR(err); 4884 } 4885 4886 /* 4887 * The returned cgroup is fully initialized including its control mask, but 4888 * it isn't associated with its kernfs_node and doesn't have the control 4889 * mask applied. 4890 */ 4891 static struct cgroup *cgroup_create(struct cgroup *parent) 4892 { 4893 struct cgroup_root *root = parent->root; 4894 struct cgroup *cgrp, *tcgrp; 4895 int level = parent->level + 1; 4896 int ret; 4897 4898 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4899 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 4900 GFP_KERNEL); 4901 if (!cgrp) 4902 return ERR_PTR(-ENOMEM); 4903 4904 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4905 if (ret) 4906 goto out_free_cgrp; 4907 4908 if (cgroup_on_dfl(parent)) { 4909 ret = cgroup_rstat_init(cgrp); 4910 if (ret) 4911 goto out_cancel_ref; 4912 } 4913 4914 /* 4915 * Temporarily set the pointer to NULL, so idr_find() won't return 4916 * a half-baked cgroup. 4917 */ 4918 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4919 if (cgrp->id < 0) { 4920 ret = -ENOMEM; 4921 goto out_stat_exit; 4922 } 4923 4924 init_cgroup_housekeeping(cgrp); 4925 4926 cgrp->self.parent = &parent->self; 4927 cgrp->root = root; 4928 cgrp->level = level; 4929 4930 ret = psi_cgroup_alloc(cgrp); 4931 if (ret) 4932 goto out_idr_free; 4933 4934 ret = cgroup_bpf_inherit(cgrp); 4935 if (ret) 4936 goto out_psi_free; 4937 4938 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 4939 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4940 4941 if (tcgrp != cgrp) 4942 tcgrp->nr_descendants++; 4943 } 4944 4945 if (notify_on_release(parent)) 4946 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4947 4948 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4949 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4950 4951 cgrp->self.serial_nr = css_serial_nr_next++; 4952 4953 /* allocation complete, commit to creation */ 4954 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4955 atomic_inc(&root->nr_cgrps); 4956 cgroup_get_live(parent); 4957 4958 /* 4959 * @cgrp is now fully operational. If something fails after this 4960 * point, it'll be released via the normal destruction path. 4961 */ 4962 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4963 4964 /* 4965 * On the default hierarchy, a child doesn't automatically inherit 4966 * subtree_control from the parent. Each is configured manually. 4967 */ 4968 if (!cgroup_on_dfl(cgrp)) 4969 cgrp->subtree_control = cgroup_control(cgrp); 4970 4971 cgroup_propagate_control(cgrp); 4972 4973 return cgrp; 4974 4975 out_psi_free: 4976 psi_cgroup_free(cgrp); 4977 out_idr_free: 4978 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 4979 out_stat_exit: 4980 if (cgroup_on_dfl(parent)) 4981 cgroup_rstat_exit(cgrp); 4982 out_cancel_ref: 4983 percpu_ref_exit(&cgrp->self.refcnt); 4984 out_free_cgrp: 4985 kfree(cgrp); 4986 return ERR_PTR(ret); 4987 } 4988 4989 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 4990 { 4991 struct cgroup *cgroup; 4992 int ret = false; 4993 int level = 1; 4994 4995 lockdep_assert_held(&cgroup_mutex); 4996 4997 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 4998 if (cgroup->nr_descendants >= cgroup->max_descendants) 4999 goto fail; 5000 5001 if (level > cgroup->max_depth) 5002 goto fail; 5003 5004 level++; 5005 } 5006 5007 ret = true; 5008 fail: 5009 return ret; 5010 } 5011 5012 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5013 { 5014 struct cgroup *parent, *cgrp; 5015 struct kernfs_node *kn; 5016 int ret; 5017 5018 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5019 if (strchr(name, '\n')) 5020 return -EINVAL; 5021 5022 parent = cgroup_kn_lock_live(parent_kn, false); 5023 if (!parent) 5024 return -ENODEV; 5025 5026 if (!cgroup_check_hierarchy_limits(parent)) { 5027 ret = -EAGAIN; 5028 goto out_unlock; 5029 } 5030 5031 cgrp = cgroup_create(parent); 5032 if (IS_ERR(cgrp)) { 5033 ret = PTR_ERR(cgrp); 5034 goto out_unlock; 5035 } 5036 5037 /* create the directory */ 5038 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5039 if (IS_ERR(kn)) { 5040 ret = PTR_ERR(kn); 5041 goto out_destroy; 5042 } 5043 cgrp->kn = kn; 5044 5045 /* 5046 * This extra ref will be put in cgroup_free_fn() and guarantees 5047 * that @cgrp->kn is always accessible. 5048 */ 5049 kernfs_get(kn); 5050 5051 ret = cgroup_kn_set_ugid(kn); 5052 if (ret) 5053 goto out_destroy; 5054 5055 ret = css_populate_dir(&cgrp->self); 5056 if (ret) 5057 goto out_destroy; 5058 5059 ret = cgroup_apply_control_enable(cgrp); 5060 if (ret) 5061 goto out_destroy; 5062 5063 TRACE_CGROUP_PATH(mkdir, cgrp); 5064 5065 /* let's create and online css's */ 5066 kernfs_activate(kn); 5067 5068 ret = 0; 5069 goto out_unlock; 5070 5071 out_destroy: 5072 cgroup_destroy_locked(cgrp); 5073 out_unlock: 5074 cgroup_kn_unlock(parent_kn); 5075 return ret; 5076 } 5077 5078 /* 5079 * This is called when the refcnt of a css is confirmed to be killed. 5080 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5081 * initate destruction and put the css ref from kill_css(). 5082 */ 5083 static void css_killed_work_fn(struct work_struct *work) 5084 { 5085 struct cgroup_subsys_state *css = 5086 container_of(work, struct cgroup_subsys_state, destroy_work); 5087 5088 mutex_lock(&cgroup_mutex); 5089 5090 do { 5091 offline_css(css); 5092 css_put(css); 5093 /* @css can't go away while we're holding cgroup_mutex */ 5094 css = css->parent; 5095 } while (css && atomic_dec_and_test(&css->online_cnt)); 5096 5097 mutex_unlock(&cgroup_mutex); 5098 } 5099 5100 /* css kill confirmation processing requires process context, bounce */ 5101 static void css_killed_ref_fn(struct percpu_ref *ref) 5102 { 5103 struct cgroup_subsys_state *css = 5104 container_of(ref, struct cgroup_subsys_state, refcnt); 5105 5106 if (atomic_dec_and_test(&css->online_cnt)) { 5107 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5108 queue_work(cgroup_destroy_wq, &css->destroy_work); 5109 } 5110 } 5111 5112 /** 5113 * kill_css - destroy a css 5114 * @css: css to destroy 5115 * 5116 * This function initiates destruction of @css by removing cgroup interface 5117 * files and putting its base reference. ->css_offline() will be invoked 5118 * asynchronously once css_tryget_online() is guaranteed to fail and when 5119 * the reference count reaches zero, @css will be released. 5120 */ 5121 static void kill_css(struct cgroup_subsys_state *css) 5122 { 5123 lockdep_assert_held(&cgroup_mutex); 5124 5125 if (css->flags & CSS_DYING) 5126 return; 5127 5128 css->flags |= CSS_DYING; 5129 5130 /* 5131 * This must happen before css is disassociated with its cgroup. 5132 * See seq_css() for details. 5133 */ 5134 css_clear_dir(css); 5135 5136 /* 5137 * Killing would put the base ref, but we need to keep it alive 5138 * until after ->css_offline(). 5139 */ 5140 css_get(css); 5141 5142 /* 5143 * cgroup core guarantees that, by the time ->css_offline() is 5144 * invoked, no new css reference will be given out via 5145 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5146 * proceed to offlining css's because percpu_ref_kill() doesn't 5147 * guarantee that the ref is seen as killed on all CPUs on return. 5148 * 5149 * Use percpu_ref_kill_and_confirm() to get notifications as each 5150 * css is confirmed to be seen as killed on all CPUs. 5151 */ 5152 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5153 } 5154 5155 /** 5156 * cgroup_destroy_locked - the first stage of cgroup destruction 5157 * @cgrp: cgroup to be destroyed 5158 * 5159 * css's make use of percpu refcnts whose killing latency shouldn't be 5160 * exposed to userland and are RCU protected. Also, cgroup core needs to 5161 * guarantee that css_tryget_online() won't succeed by the time 5162 * ->css_offline() is invoked. To satisfy all the requirements, 5163 * destruction is implemented in the following two steps. 5164 * 5165 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5166 * userland visible parts and start killing the percpu refcnts of 5167 * css's. Set up so that the next stage will be kicked off once all 5168 * the percpu refcnts are confirmed to be killed. 5169 * 5170 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5171 * rest of destruction. Once all cgroup references are gone, the 5172 * cgroup is RCU-freed. 5173 * 5174 * This function implements s1. After this step, @cgrp is gone as far as 5175 * the userland is concerned and a new cgroup with the same name may be 5176 * created. As cgroup doesn't care about the names internally, this 5177 * doesn't cause any problem. 5178 */ 5179 static int cgroup_destroy_locked(struct cgroup *cgrp) 5180 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5181 { 5182 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5183 struct cgroup_subsys_state *css; 5184 struct cgrp_cset_link *link; 5185 int ssid; 5186 5187 lockdep_assert_held(&cgroup_mutex); 5188 5189 /* 5190 * Only migration can raise populated from zero and we're already 5191 * holding cgroup_mutex. 5192 */ 5193 if (cgroup_is_populated(cgrp)) 5194 return -EBUSY; 5195 5196 /* 5197 * Make sure there's no live children. We can't test emptiness of 5198 * ->self.children as dead children linger on it while being 5199 * drained; otherwise, "rmdir parent/child parent" may fail. 5200 */ 5201 if (css_has_online_children(&cgrp->self)) 5202 return -EBUSY; 5203 5204 /* 5205 * Mark @cgrp and the associated csets dead. The former prevents 5206 * further task migration and child creation by disabling 5207 * cgroup_lock_live_group(). The latter makes the csets ignored by 5208 * the migration path. 5209 */ 5210 cgrp->self.flags &= ~CSS_ONLINE; 5211 5212 spin_lock_irq(&css_set_lock); 5213 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5214 link->cset->dead = true; 5215 spin_unlock_irq(&css_set_lock); 5216 5217 /* initiate massacre of all css's */ 5218 for_each_css(css, ssid, cgrp) 5219 kill_css(css); 5220 5221 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5222 css_clear_dir(&cgrp->self); 5223 kernfs_remove(cgrp->kn); 5224 5225 if (parent && cgroup_is_threaded(cgrp)) 5226 parent->nr_threaded_children--; 5227 5228 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5229 tcgrp->nr_descendants--; 5230 tcgrp->nr_dying_descendants++; 5231 } 5232 5233 cgroup1_check_for_release(parent); 5234 5235 /* put the base reference */ 5236 percpu_ref_kill(&cgrp->self.refcnt); 5237 5238 return 0; 5239 }; 5240 5241 int cgroup_rmdir(struct kernfs_node *kn) 5242 { 5243 struct cgroup *cgrp; 5244 int ret = 0; 5245 5246 cgrp = cgroup_kn_lock_live(kn, false); 5247 if (!cgrp) 5248 return 0; 5249 5250 ret = cgroup_destroy_locked(cgrp); 5251 if (!ret) 5252 TRACE_CGROUP_PATH(rmdir, cgrp); 5253 5254 cgroup_kn_unlock(kn); 5255 return ret; 5256 } 5257 5258 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5259 .show_options = cgroup_show_options, 5260 .remount_fs = cgroup_remount, 5261 .mkdir = cgroup_mkdir, 5262 .rmdir = cgroup_rmdir, 5263 .show_path = cgroup_show_path, 5264 }; 5265 5266 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5267 { 5268 struct cgroup_subsys_state *css; 5269 5270 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5271 5272 mutex_lock(&cgroup_mutex); 5273 5274 idr_init(&ss->css_idr); 5275 INIT_LIST_HEAD(&ss->cfts); 5276 5277 /* Create the root cgroup state for this subsystem */ 5278 ss->root = &cgrp_dfl_root; 5279 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5280 /* We don't handle early failures gracefully */ 5281 BUG_ON(IS_ERR(css)); 5282 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5283 5284 /* 5285 * Root csses are never destroyed and we can't initialize 5286 * percpu_ref during early init. Disable refcnting. 5287 */ 5288 css->flags |= CSS_NO_REF; 5289 5290 if (early) { 5291 /* allocation can't be done safely during early init */ 5292 css->id = 1; 5293 } else { 5294 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5295 BUG_ON(css->id < 0); 5296 } 5297 5298 /* Update the init_css_set to contain a subsys 5299 * pointer to this state - since the subsystem is 5300 * newly registered, all tasks and hence the 5301 * init_css_set is in the subsystem's root cgroup. */ 5302 init_css_set.subsys[ss->id] = css; 5303 5304 have_fork_callback |= (bool)ss->fork << ss->id; 5305 have_exit_callback |= (bool)ss->exit << ss->id; 5306 have_free_callback |= (bool)ss->free << ss->id; 5307 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5308 5309 /* At system boot, before all subsystems have been 5310 * registered, no tasks have been forked, so we don't 5311 * need to invoke fork callbacks here. */ 5312 BUG_ON(!list_empty(&init_task.tasks)); 5313 5314 BUG_ON(online_css(css)); 5315 5316 mutex_unlock(&cgroup_mutex); 5317 } 5318 5319 /** 5320 * cgroup_init_early - cgroup initialization at system boot 5321 * 5322 * Initialize cgroups at system boot, and initialize any 5323 * subsystems that request early init. 5324 */ 5325 int __init cgroup_init_early(void) 5326 { 5327 static struct cgroup_sb_opts __initdata opts; 5328 struct cgroup_subsys *ss; 5329 int i; 5330 5331 init_cgroup_root(&cgrp_dfl_root, &opts); 5332 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5333 5334 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5335 5336 for_each_subsys(ss, i) { 5337 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5338 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5339 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5340 ss->id, ss->name); 5341 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5342 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5343 5344 ss->id = i; 5345 ss->name = cgroup_subsys_name[i]; 5346 if (!ss->legacy_name) 5347 ss->legacy_name = cgroup_subsys_name[i]; 5348 5349 if (ss->early_init) 5350 cgroup_init_subsys(ss, true); 5351 } 5352 return 0; 5353 } 5354 5355 static u16 cgroup_disable_mask __initdata; 5356 5357 /** 5358 * cgroup_init - cgroup initialization 5359 * 5360 * Register cgroup filesystem and /proc file, and initialize 5361 * any subsystems that didn't request early init. 5362 */ 5363 int __init cgroup_init(void) 5364 { 5365 struct cgroup_subsys *ss; 5366 int ssid; 5367 5368 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5369 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5370 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5371 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5372 5373 cgroup_rstat_boot(); 5374 5375 /* 5376 * The latency of the synchronize_sched() is too high for cgroups, 5377 * avoid it at the cost of forcing all readers into the slow path. 5378 */ 5379 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5380 5381 get_user_ns(init_cgroup_ns.user_ns); 5382 5383 mutex_lock(&cgroup_mutex); 5384 5385 /* 5386 * Add init_css_set to the hash table so that dfl_root can link to 5387 * it during init. 5388 */ 5389 hash_add(css_set_table, &init_css_set.hlist, 5390 css_set_hash(init_css_set.subsys)); 5391 5392 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 5393 5394 mutex_unlock(&cgroup_mutex); 5395 5396 for_each_subsys(ss, ssid) { 5397 if (ss->early_init) { 5398 struct cgroup_subsys_state *css = 5399 init_css_set.subsys[ss->id]; 5400 5401 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5402 GFP_KERNEL); 5403 BUG_ON(css->id < 0); 5404 } else { 5405 cgroup_init_subsys(ss, false); 5406 } 5407 5408 list_add_tail(&init_css_set.e_cset_node[ssid], 5409 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5410 5411 /* 5412 * Setting dfl_root subsys_mask needs to consider the 5413 * disabled flag and cftype registration needs kmalloc, 5414 * both of which aren't available during early_init. 5415 */ 5416 if (cgroup_disable_mask & (1 << ssid)) { 5417 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5418 printk(KERN_INFO "Disabling %s control group subsystem\n", 5419 ss->name); 5420 continue; 5421 } 5422 5423 if (cgroup1_ssid_disabled(ssid)) 5424 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5425 ss->name); 5426 5427 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5428 5429 /* implicit controllers must be threaded too */ 5430 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5431 5432 if (ss->implicit_on_dfl) 5433 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5434 else if (!ss->dfl_cftypes) 5435 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5436 5437 if (ss->threaded) 5438 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5439 5440 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5441 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5442 } else { 5443 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5444 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5445 } 5446 5447 if (ss->bind) 5448 ss->bind(init_css_set.subsys[ssid]); 5449 5450 mutex_lock(&cgroup_mutex); 5451 css_populate_dir(init_css_set.subsys[ssid]); 5452 mutex_unlock(&cgroup_mutex); 5453 } 5454 5455 /* init_css_set.subsys[] has been updated, re-hash */ 5456 hash_del(&init_css_set.hlist); 5457 hash_add(css_set_table, &init_css_set.hlist, 5458 css_set_hash(init_css_set.subsys)); 5459 5460 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5461 WARN_ON(register_filesystem(&cgroup_fs_type)); 5462 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5463 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5464 5465 return 0; 5466 } 5467 5468 static int __init cgroup_wq_init(void) 5469 { 5470 /* 5471 * There isn't much point in executing destruction path in 5472 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5473 * Use 1 for @max_active. 5474 * 5475 * We would prefer to do this in cgroup_init() above, but that 5476 * is called before init_workqueues(): so leave this until after. 5477 */ 5478 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5479 BUG_ON(!cgroup_destroy_wq); 5480 return 0; 5481 } 5482 core_initcall(cgroup_wq_init); 5483 5484 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5485 char *buf, size_t buflen) 5486 { 5487 struct kernfs_node *kn; 5488 5489 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5490 if (!kn) 5491 return; 5492 kernfs_path(kn, buf, buflen); 5493 kernfs_put(kn); 5494 } 5495 5496 /* 5497 * proc_cgroup_show() 5498 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5499 * - Used for /proc/<pid>/cgroup. 5500 */ 5501 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5502 struct pid *pid, struct task_struct *tsk) 5503 { 5504 char *buf; 5505 int retval; 5506 struct cgroup_root *root; 5507 5508 retval = -ENOMEM; 5509 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5510 if (!buf) 5511 goto out; 5512 5513 mutex_lock(&cgroup_mutex); 5514 spin_lock_irq(&css_set_lock); 5515 5516 for_each_root(root) { 5517 struct cgroup_subsys *ss; 5518 struct cgroup *cgrp; 5519 int ssid, count = 0; 5520 5521 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5522 continue; 5523 5524 seq_printf(m, "%d:", root->hierarchy_id); 5525 if (root != &cgrp_dfl_root) 5526 for_each_subsys(ss, ssid) 5527 if (root->subsys_mask & (1 << ssid)) 5528 seq_printf(m, "%s%s", count++ ? "," : "", 5529 ss->legacy_name); 5530 if (strlen(root->name)) 5531 seq_printf(m, "%sname=%s", count ? "," : "", 5532 root->name); 5533 seq_putc(m, ':'); 5534 5535 cgrp = task_cgroup_from_root(tsk, root); 5536 5537 /* 5538 * On traditional hierarchies, all zombie tasks show up as 5539 * belonging to the root cgroup. On the default hierarchy, 5540 * while a zombie doesn't show up in "cgroup.procs" and 5541 * thus can't be migrated, its /proc/PID/cgroup keeps 5542 * reporting the cgroup it belonged to before exiting. If 5543 * the cgroup is removed before the zombie is reaped, 5544 * " (deleted)" is appended to the cgroup path. 5545 */ 5546 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5547 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5548 current->nsproxy->cgroup_ns); 5549 if (retval >= PATH_MAX) 5550 retval = -ENAMETOOLONG; 5551 if (retval < 0) 5552 goto out_unlock; 5553 5554 seq_puts(m, buf); 5555 } else { 5556 seq_puts(m, "/"); 5557 } 5558 5559 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5560 seq_puts(m, " (deleted)\n"); 5561 else 5562 seq_putc(m, '\n'); 5563 } 5564 5565 retval = 0; 5566 out_unlock: 5567 spin_unlock_irq(&css_set_lock); 5568 mutex_unlock(&cgroup_mutex); 5569 kfree(buf); 5570 out: 5571 return retval; 5572 } 5573 5574 /** 5575 * cgroup_fork - initialize cgroup related fields during copy_process() 5576 * @child: pointer to task_struct of forking parent process. 5577 * 5578 * A task is associated with the init_css_set until cgroup_post_fork() 5579 * attaches it to the parent's css_set. Empty cg_list indicates that 5580 * @child isn't holding reference to its css_set. 5581 */ 5582 void cgroup_fork(struct task_struct *child) 5583 { 5584 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5585 INIT_LIST_HEAD(&child->cg_list); 5586 } 5587 5588 /** 5589 * cgroup_can_fork - called on a new task before the process is exposed 5590 * @child: the task in question. 5591 * 5592 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5593 * returns an error, the fork aborts with that error code. This allows for 5594 * a cgroup subsystem to conditionally allow or deny new forks. 5595 */ 5596 int cgroup_can_fork(struct task_struct *child) 5597 { 5598 struct cgroup_subsys *ss; 5599 int i, j, ret; 5600 5601 do_each_subsys_mask(ss, i, have_canfork_callback) { 5602 ret = ss->can_fork(child); 5603 if (ret) 5604 goto out_revert; 5605 } while_each_subsys_mask(); 5606 5607 return 0; 5608 5609 out_revert: 5610 for_each_subsys(ss, j) { 5611 if (j >= i) 5612 break; 5613 if (ss->cancel_fork) 5614 ss->cancel_fork(child); 5615 } 5616 5617 return ret; 5618 } 5619 5620 /** 5621 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5622 * @child: the task in question 5623 * 5624 * This calls the cancel_fork() callbacks if a fork failed *after* 5625 * cgroup_can_fork() succeded. 5626 */ 5627 void cgroup_cancel_fork(struct task_struct *child) 5628 { 5629 struct cgroup_subsys *ss; 5630 int i; 5631 5632 for_each_subsys(ss, i) 5633 if (ss->cancel_fork) 5634 ss->cancel_fork(child); 5635 } 5636 5637 /** 5638 * cgroup_post_fork - called on a new task after adding it to the task list 5639 * @child: the task in question 5640 * 5641 * Adds the task to the list running through its css_set if necessary and 5642 * call the subsystem fork() callbacks. Has to be after the task is 5643 * visible on the task list in case we race with the first call to 5644 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5645 * list. 5646 */ 5647 void cgroup_post_fork(struct task_struct *child) 5648 { 5649 struct cgroup_subsys *ss; 5650 int i; 5651 5652 /* 5653 * This may race against cgroup_enable_task_cg_lists(). As that 5654 * function sets use_task_css_set_links before grabbing 5655 * tasklist_lock and we just went through tasklist_lock to add 5656 * @child, it's guaranteed that either we see the set 5657 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5658 * @child during its iteration. 5659 * 5660 * If we won the race, @child is associated with %current's 5661 * css_set. Grabbing css_set_lock guarantees both that the 5662 * association is stable, and, on completion of the parent's 5663 * migration, @child is visible in the source of migration or 5664 * already in the destination cgroup. This guarantee is necessary 5665 * when implementing operations which need to migrate all tasks of 5666 * a cgroup to another. 5667 * 5668 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5669 * will remain in init_css_set. This is safe because all tasks are 5670 * in the init_css_set before cg_links is enabled and there's no 5671 * operation which transfers all tasks out of init_css_set. 5672 */ 5673 if (use_task_css_set_links) { 5674 struct css_set *cset; 5675 5676 spin_lock_irq(&css_set_lock); 5677 cset = task_css_set(current); 5678 if (list_empty(&child->cg_list)) { 5679 get_css_set(cset); 5680 cset->nr_tasks++; 5681 css_set_move_task(child, NULL, cset, false); 5682 } 5683 spin_unlock_irq(&css_set_lock); 5684 } 5685 5686 /* 5687 * Call ss->fork(). This must happen after @child is linked on 5688 * css_set; otherwise, @child might change state between ->fork() 5689 * and addition to css_set. 5690 */ 5691 do_each_subsys_mask(ss, i, have_fork_callback) { 5692 ss->fork(child); 5693 } while_each_subsys_mask(); 5694 } 5695 5696 /** 5697 * cgroup_exit - detach cgroup from exiting task 5698 * @tsk: pointer to task_struct of exiting process 5699 * 5700 * Description: Detach cgroup from @tsk and release it. 5701 * 5702 * Note that cgroups marked notify_on_release force every task in 5703 * them to take the global cgroup_mutex mutex when exiting. 5704 * This could impact scaling on very large systems. Be reluctant to 5705 * use notify_on_release cgroups where very high task exit scaling 5706 * is required on large systems. 5707 * 5708 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5709 * call cgroup_exit() while the task is still competent to handle 5710 * notify_on_release(), then leave the task attached to the root cgroup in 5711 * each hierarchy for the remainder of its exit. No need to bother with 5712 * init_css_set refcnting. init_css_set never goes away and we can't race 5713 * with migration path - PF_EXITING is visible to migration path. 5714 */ 5715 void cgroup_exit(struct task_struct *tsk) 5716 { 5717 struct cgroup_subsys *ss; 5718 struct css_set *cset; 5719 int i; 5720 5721 /* 5722 * Unlink from @tsk from its css_set. As migration path can't race 5723 * with us, we can check css_set and cg_list without synchronization. 5724 */ 5725 cset = task_css_set(tsk); 5726 5727 if (!list_empty(&tsk->cg_list)) { 5728 spin_lock_irq(&css_set_lock); 5729 css_set_move_task(tsk, cset, NULL, false); 5730 cset->nr_tasks--; 5731 spin_unlock_irq(&css_set_lock); 5732 } else { 5733 get_css_set(cset); 5734 } 5735 5736 /* see cgroup_post_fork() for details */ 5737 do_each_subsys_mask(ss, i, have_exit_callback) { 5738 ss->exit(tsk); 5739 } while_each_subsys_mask(); 5740 } 5741 5742 void cgroup_free(struct task_struct *task) 5743 { 5744 struct css_set *cset = task_css_set(task); 5745 struct cgroup_subsys *ss; 5746 int ssid; 5747 5748 do_each_subsys_mask(ss, ssid, have_free_callback) { 5749 ss->free(task); 5750 } while_each_subsys_mask(); 5751 5752 put_css_set(cset); 5753 } 5754 5755 static int __init cgroup_disable(char *str) 5756 { 5757 struct cgroup_subsys *ss; 5758 char *token; 5759 int i; 5760 5761 while ((token = strsep(&str, ",")) != NULL) { 5762 if (!*token) 5763 continue; 5764 5765 for_each_subsys(ss, i) { 5766 if (strcmp(token, ss->name) && 5767 strcmp(token, ss->legacy_name)) 5768 continue; 5769 cgroup_disable_mask |= 1 << i; 5770 } 5771 } 5772 return 1; 5773 } 5774 __setup("cgroup_disable=", cgroup_disable); 5775 5776 /** 5777 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5778 * @dentry: directory dentry of interest 5779 * @ss: subsystem of interest 5780 * 5781 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5782 * to get the corresponding css and return it. If such css doesn't exist 5783 * or can't be pinned, an ERR_PTR value is returned. 5784 */ 5785 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5786 struct cgroup_subsys *ss) 5787 { 5788 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5789 struct file_system_type *s_type = dentry->d_sb->s_type; 5790 struct cgroup_subsys_state *css = NULL; 5791 struct cgroup *cgrp; 5792 5793 /* is @dentry a cgroup dir? */ 5794 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5795 !kn || kernfs_type(kn) != KERNFS_DIR) 5796 return ERR_PTR(-EBADF); 5797 5798 rcu_read_lock(); 5799 5800 /* 5801 * This path doesn't originate from kernfs and @kn could already 5802 * have been or be removed at any point. @kn->priv is RCU 5803 * protected for this access. See css_release_work_fn() for details. 5804 */ 5805 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5806 if (cgrp) 5807 css = cgroup_css(cgrp, ss); 5808 5809 if (!css || !css_tryget_online(css)) 5810 css = ERR_PTR(-ENOENT); 5811 5812 rcu_read_unlock(); 5813 return css; 5814 } 5815 5816 /** 5817 * css_from_id - lookup css by id 5818 * @id: the cgroup id 5819 * @ss: cgroup subsys to be looked into 5820 * 5821 * Returns the css if there's valid one with @id, otherwise returns NULL. 5822 * Should be called under rcu_read_lock(). 5823 */ 5824 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5825 { 5826 WARN_ON_ONCE(!rcu_read_lock_held()); 5827 return idr_find(&ss->css_idr, id); 5828 } 5829 5830 /** 5831 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5832 * @path: path on the default hierarchy 5833 * 5834 * Find the cgroup at @path on the default hierarchy, increment its 5835 * reference count and return it. Returns pointer to the found cgroup on 5836 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5837 * if @path points to a non-directory. 5838 */ 5839 struct cgroup *cgroup_get_from_path(const char *path) 5840 { 5841 struct kernfs_node *kn; 5842 struct cgroup *cgrp; 5843 5844 mutex_lock(&cgroup_mutex); 5845 5846 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5847 if (kn) { 5848 if (kernfs_type(kn) == KERNFS_DIR) { 5849 cgrp = kn->priv; 5850 cgroup_get_live(cgrp); 5851 } else { 5852 cgrp = ERR_PTR(-ENOTDIR); 5853 } 5854 kernfs_put(kn); 5855 } else { 5856 cgrp = ERR_PTR(-ENOENT); 5857 } 5858 5859 mutex_unlock(&cgroup_mutex); 5860 return cgrp; 5861 } 5862 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5863 5864 /** 5865 * cgroup_get_from_fd - get a cgroup pointer from a fd 5866 * @fd: fd obtained by open(cgroup2_dir) 5867 * 5868 * Find the cgroup from a fd which should be obtained 5869 * by opening a cgroup directory. Returns a pointer to the 5870 * cgroup on success. ERR_PTR is returned if the cgroup 5871 * cannot be found. 5872 */ 5873 struct cgroup *cgroup_get_from_fd(int fd) 5874 { 5875 struct cgroup_subsys_state *css; 5876 struct cgroup *cgrp; 5877 struct file *f; 5878 5879 f = fget_raw(fd); 5880 if (!f) 5881 return ERR_PTR(-EBADF); 5882 5883 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5884 fput(f); 5885 if (IS_ERR(css)) 5886 return ERR_CAST(css); 5887 5888 cgrp = css->cgroup; 5889 if (!cgroup_on_dfl(cgrp)) { 5890 cgroup_put(cgrp); 5891 return ERR_PTR(-EBADF); 5892 } 5893 5894 return cgrp; 5895 } 5896 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5897 5898 /* 5899 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5900 * definition in cgroup-defs.h. 5901 */ 5902 #ifdef CONFIG_SOCK_CGROUP_DATA 5903 5904 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5905 5906 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5907 static bool cgroup_sk_alloc_disabled __read_mostly; 5908 5909 void cgroup_sk_alloc_disable(void) 5910 { 5911 if (cgroup_sk_alloc_disabled) 5912 return; 5913 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5914 cgroup_sk_alloc_disabled = true; 5915 } 5916 5917 #else 5918 5919 #define cgroup_sk_alloc_disabled false 5920 5921 #endif 5922 5923 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5924 { 5925 if (cgroup_sk_alloc_disabled) 5926 return; 5927 5928 /* Socket clone path */ 5929 if (skcd->val) { 5930 /* 5931 * We might be cloning a socket which is left in an empty 5932 * cgroup and the cgroup might have already been rmdir'd. 5933 * Don't use cgroup_get_live(). 5934 */ 5935 cgroup_get(sock_cgroup_ptr(skcd)); 5936 return; 5937 } 5938 5939 rcu_read_lock(); 5940 5941 while (true) { 5942 struct css_set *cset; 5943 5944 cset = task_css_set(current); 5945 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5946 skcd->val = (unsigned long)cset->dfl_cgrp; 5947 break; 5948 } 5949 cpu_relax(); 5950 } 5951 5952 rcu_read_unlock(); 5953 } 5954 5955 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5956 { 5957 cgroup_put(sock_cgroup_ptr(skcd)); 5958 } 5959 5960 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5961 5962 #ifdef CONFIG_CGROUP_BPF 5963 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 5964 enum bpf_attach_type type, u32 flags) 5965 { 5966 int ret; 5967 5968 mutex_lock(&cgroup_mutex); 5969 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 5970 mutex_unlock(&cgroup_mutex); 5971 return ret; 5972 } 5973 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 5974 enum bpf_attach_type type, u32 flags) 5975 { 5976 int ret; 5977 5978 mutex_lock(&cgroup_mutex); 5979 ret = __cgroup_bpf_detach(cgrp, prog, type, flags); 5980 mutex_unlock(&cgroup_mutex); 5981 return ret; 5982 } 5983 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 5984 union bpf_attr __user *uattr) 5985 { 5986 int ret; 5987 5988 mutex_lock(&cgroup_mutex); 5989 ret = __cgroup_bpf_query(cgrp, attr, uattr); 5990 mutex_unlock(&cgroup_mutex); 5991 return ret; 5992 } 5993 #endif /* CONFIG_CGROUP_BPF */ 5994 5995 #ifdef CONFIG_SYSFS 5996 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 5997 ssize_t size, const char *prefix) 5998 { 5999 struct cftype *cft; 6000 ssize_t ret = 0; 6001 6002 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6003 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6004 continue; 6005 6006 if (prefix) 6007 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6008 6009 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6010 6011 if (unlikely(ret >= size)) { 6012 WARN_ON(1); 6013 break; 6014 } 6015 } 6016 6017 return ret; 6018 } 6019 6020 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6021 char *buf) 6022 { 6023 struct cgroup_subsys *ss; 6024 int ssid; 6025 ssize_t ret = 0; 6026 6027 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6028 NULL); 6029 6030 for_each_subsys(ss, ssid) 6031 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6032 PAGE_SIZE - ret, 6033 cgroup_subsys_name[ssid]); 6034 6035 return ret; 6036 } 6037 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6038 6039 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6040 char *buf) 6041 { 6042 return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); 6043 } 6044 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6045 6046 static struct attribute *cgroup_sysfs_attrs[] = { 6047 &cgroup_delegate_attr.attr, 6048 &cgroup_features_attr.attr, 6049 NULL, 6050 }; 6051 6052 static const struct attribute_group cgroup_sysfs_attr_group = { 6053 .attrs = cgroup_sysfs_attrs, 6054 .name = "cgroup", 6055 }; 6056 6057 static int __init cgroup_sysfs_init(void) 6058 { 6059 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6060 } 6061 subsys_initcall(cgroup_sysfs_init); 6062 #endif /* CONFIG_SYSFS */ 6063