1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <net/sock.h> 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/cgroup.h> 61 62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 63 MAX_CFTYPE_NAME + 2) 64 65 /* 66 * cgroup_mutex is the master lock. Any modification to cgroup or its 67 * hierarchy must be performed while holding it. 68 * 69 * css_set_lock protects task->cgroups pointer, the list of css_set 70 * objects, and the chain of tasks off each css_set. 71 * 72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 73 * cgroup.h can use them for lockdep annotations. 74 */ 75 DEFINE_MUTEX(cgroup_mutex); 76 DEFINE_SPINLOCK(css_set_lock); 77 78 #ifdef CONFIG_PROVE_RCU 79 EXPORT_SYMBOL_GPL(cgroup_mutex); 80 EXPORT_SYMBOL_GPL(css_set_lock); 81 #endif 82 83 /* 84 * Protects cgroup_idr and css_idr so that IDs can be released without 85 * grabbing cgroup_mutex. 86 */ 87 static DEFINE_SPINLOCK(cgroup_idr_lock); 88 89 /* 90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 91 * against file removal/re-creation across css hiding. 92 */ 93 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 94 95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 96 97 #define cgroup_assert_mutex_or_rcu_locked() \ 98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 99 !lockdep_is_held(&cgroup_mutex), \ 100 "cgroup_mutex or RCU read lock required"); 101 102 /* 103 * cgroup destruction makes heavy use of work items and there can be a lot 104 * of concurrent destructions. Use a separate workqueue so that cgroup 105 * destruction work items don't end up filling up max_active of system_wq 106 * which may lead to deadlock. 107 */ 108 static struct workqueue_struct *cgroup_destroy_wq; 109 110 /* generate an array of cgroup subsystem pointers */ 111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 112 struct cgroup_subsys *cgroup_subsys[] = { 113 #include <linux/cgroup_subsys.h> 114 }; 115 #undef SUBSYS 116 117 /* array of cgroup subsystem names */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 119 static const char *cgroup_subsys_name[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 125 #define SUBSYS(_x) \ 126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 130 #include <linux/cgroup_subsys.h> 131 #undef SUBSYS 132 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 134 static struct static_key_true *cgroup_subsys_enabled_key[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 /* 146 * The default hierarchy, reserved for the subsystems that are otherwise 147 * unattached - it never has more than a single cgroup, and all tasks are 148 * part of that cgroup. 149 */ 150 struct cgroup_root cgrp_dfl_root; 151 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 152 153 /* 154 * The default hierarchy always exists but is hidden until mounted for the 155 * first time. This is for backward compatibility. 156 */ 157 static bool cgrp_dfl_visible; 158 159 /* some controllers are not supported in the default hierarchy */ 160 static u16 cgrp_dfl_inhibit_ss_mask; 161 162 /* some controllers are implicitly enabled on the default hierarchy */ 163 static u16 cgrp_dfl_implicit_ss_mask; 164 165 /* The list of hierarchy roots */ 166 LIST_HEAD(cgroup_roots); 167 static int cgroup_root_count; 168 169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 170 static DEFINE_IDR(cgroup_hierarchy_idr); 171 172 /* 173 * Assign a monotonically increasing serial number to csses. It guarantees 174 * cgroups with bigger numbers are newer than those with smaller numbers. 175 * Also, as csses are always appended to the parent's ->children list, it 176 * guarantees that sibling csses are always sorted in the ascending serial 177 * number order on the list. Protected by cgroup_mutex. 178 */ 179 static u64 css_serial_nr_next = 1; 180 181 /* 182 * These bitmasks identify subsystems with specific features to avoid 183 * having to do iterative checks repeatedly. 184 */ 185 static u16 have_fork_callback __read_mostly; 186 static u16 have_exit_callback __read_mostly; 187 static u16 have_free_callback __read_mostly; 188 static u16 have_canfork_callback __read_mostly; 189 190 /* cgroup namespace for init task */ 191 struct cgroup_namespace init_cgroup_ns = { 192 .count = REFCOUNT_INIT(2), 193 .user_ns = &init_user_ns, 194 .ns.ops = &cgroupns_operations, 195 .ns.inum = PROC_CGROUP_INIT_INO, 196 .root_cset = &init_css_set, 197 }; 198 199 static struct file_system_type cgroup2_fs_type; 200 static struct cftype cgroup_base_files[]; 201 202 static int cgroup_apply_control(struct cgroup *cgrp); 203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 204 static void css_task_iter_advance(struct css_task_iter *it); 205 static int cgroup_destroy_locked(struct cgroup *cgrp); 206 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 207 struct cgroup_subsys *ss); 208 static void css_release(struct percpu_ref *ref); 209 static void kill_css(struct cgroup_subsys_state *css); 210 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 211 struct cgroup *cgrp, struct cftype cfts[], 212 bool is_add); 213 214 /** 215 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 216 * @ssid: subsys ID of interest 217 * 218 * cgroup_subsys_enabled() can only be used with literal subsys names which 219 * is fine for individual subsystems but unsuitable for cgroup core. This 220 * is slower static_key_enabled() based test indexed by @ssid. 221 */ 222 bool cgroup_ssid_enabled(int ssid) 223 { 224 if (CGROUP_SUBSYS_COUNT == 0) 225 return false; 226 227 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 228 } 229 230 /** 231 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 232 * @cgrp: the cgroup of interest 233 * 234 * The default hierarchy is the v2 interface of cgroup and this function 235 * can be used to test whether a cgroup is on the default hierarchy for 236 * cases where a subsystem should behave differnetly depending on the 237 * interface version. 238 * 239 * The set of behaviors which change on the default hierarchy are still 240 * being determined and the mount option is prefixed with __DEVEL__. 241 * 242 * List of changed behaviors: 243 * 244 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 245 * and "name" are disallowed. 246 * 247 * - When mounting an existing superblock, mount options should match. 248 * 249 * - Remount is disallowed. 250 * 251 * - rename(2) is disallowed. 252 * 253 * - "tasks" is removed. Everything should be at process granularity. Use 254 * "cgroup.procs" instead. 255 * 256 * - "cgroup.procs" is not sorted. pids will be unique unless they got 257 * recycled inbetween reads. 258 * 259 * - "release_agent" and "notify_on_release" are removed. Replacement 260 * notification mechanism will be implemented. 261 * 262 * - "cgroup.clone_children" is removed. 263 * 264 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 265 * and its descendants contain no task; otherwise, 1. The file also 266 * generates kernfs notification which can be monitored through poll and 267 * [di]notify when the value of the file changes. 268 * 269 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 270 * take masks of ancestors with non-empty cpus/mems, instead of being 271 * moved to an ancestor. 272 * 273 * - cpuset: a task can be moved into an empty cpuset, and again it takes 274 * masks of ancestors. 275 * 276 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 277 * is not created. 278 * 279 * - blkcg: blk-throttle becomes properly hierarchical. 280 * 281 * - debug: disallowed on the default hierarchy. 282 */ 283 bool cgroup_on_dfl(const struct cgroup *cgrp) 284 { 285 return cgrp->root == &cgrp_dfl_root; 286 } 287 288 /* IDR wrappers which synchronize using cgroup_idr_lock */ 289 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 290 gfp_t gfp_mask) 291 { 292 int ret; 293 294 idr_preload(gfp_mask); 295 spin_lock_bh(&cgroup_idr_lock); 296 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 297 spin_unlock_bh(&cgroup_idr_lock); 298 idr_preload_end(); 299 return ret; 300 } 301 302 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 303 { 304 void *ret; 305 306 spin_lock_bh(&cgroup_idr_lock); 307 ret = idr_replace(idr, ptr, id); 308 spin_unlock_bh(&cgroup_idr_lock); 309 return ret; 310 } 311 312 static void cgroup_idr_remove(struct idr *idr, int id) 313 { 314 spin_lock_bh(&cgroup_idr_lock); 315 idr_remove(idr, id); 316 spin_unlock_bh(&cgroup_idr_lock); 317 } 318 319 static struct cgroup *cgroup_parent(struct cgroup *cgrp) 320 { 321 struct cgroup_subsys_state *parent_css = cgrp->self.parent; 322 323 if (parent_css) 324 return container_of(parent_css, struct cgroup, self); 325 return NULL; 326 } 327 328 /* subsystems visibly enabled on a cgroup */ 329 static u16 cgroup_control(struct cgroup *cgrp) 330 { 331 struct cgroup *parent = cgroup_parent(cgrp); 332 u16 root_ss_mask = cgrp->root->subsys_mask; 333 334 if (parent) 335 return parent->subtree_control; 336 337 if (cgroup_on_dfl(cgrp)) 338 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 339 cgrp_dfl_implicit_ss_mask); 340 return root_ss_mask; 341 } 342 343 /* subsystems enabled on a cgroup */ 344 static u16 cgroup_ss_mask(struct cgroup *cgrp) 345 { 346 struct cgroup *parent = cgroup_parent(cgrp); 347 348 if (parent) 349 return parent->subtree_ss_mask; 350 351 return cgrp->root->subsys_mask; 352 } 353 354 /** 355 * cgroup_css - obtain a cgroup's css for the specified subsystem 356 * @cgrp: the cgroup of interest 357 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 358 * 359 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 360 * function must be called either under cgroup_mutex or rcu_read_lock() and 361 * the caller is responsible for pinning the returned css if it wants to 362 * keep accessing it outside the said locks. This function may return 363 * %NULL if @cgrp doesn't have @subsys_id enabled. 364 */ 365 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 366 struct cgroup_subsys *ss) 367 { 368 if (ss) 369 return rcu_dereference_check(cgrp->subsys[ss->id], 370 lockdep_is_held(&cgroup_mutex)); 371 else 372 return &cgrp->self; 373 } 374 375 /** 376 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 377 * @cgrp: the cgroup of interest 378 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 379 * 380 * Similar to cgroup_css() but returns the effective css, which is defined 381 * as the matching css of the nearest ancestor including self which has @ss 382 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 383 * function is guaranteed to return non-NULL css. 384 */ 385 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 386 struct cgroup_subsys *ss) 387 { 388 lockdep_assert_held(&cgroup_mutex); 389 390 if (!ss) 391 return &cgrp->self; 392 393 /* 394 * This function is used while updating css associations and thus 395 * can't test the csses directly. Test ss_mask. 396 */ 397 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 398 cgrp = cgroup_parent(cgrp); 399 if (!cgrp) 400 return NULL; 401 } 402 403 return cgroup_css(cgrp, ss); 404 } 405 406 /** 407 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 408 * @cgrp: the cgroup of interest 409 * @ss: the subsystem of interest 410 * 411 * Find and get the effective css of @cgrp for @ss. The effective css is 412 * defined as the matching css of the nearest ancestor including self which 413 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 414 * the root css is returned, so this function always returns a valid css. 415 * The returned css must be put using css_put(). 416 */ 417 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 418 struct cgroup_subsys *ss) 419 { 420 struct cgroup_subsys_state *css; 421 422 rcu_read_lock(); 423 424 do { 425 css = cgroup_css(cgrp, ss); 426 427 if (css && css_tryget_online(css)) 428 goto out_unlock; 429 cgrp = cgroup_parent(cgrp); 430 } while (cgrp); 431 432 css = init_css_set.subsys[ss->id]; 433 css_get(css); 434 out_unlock: 435 rcu_read_unlock(); 436 return css; 437 } 438 439 static void __maybe_unused cgroup_get(struct cgroup *cgrp) 440 { 441 css_get(&cgrp->self); 442 } 443 444 static void cgroup_get_live(struct cgroup *cgrp) 445 { 446 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 447 css_get(&cgrp->self); 448 } 449 450 static bool cgroup_tryget(struct cgroup *cgrp) 451 { 452 return css_tryget(&cgrp->self); 453 } 454 455 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 456 { 457 struct cgroup *cgrp = of->kn->parent->priv; 458 struct cftype *cft = of_cft(of); 459 460 /* 461 * This is open and unprotected implementation of cgroup_css(). 462 * seq_css() is only called from a kernfs file operation which has 463 * an active reference on the file. Because all the subsystem 464 * files are drained before a css is disassociated with a cgroup, 465 * the matching css from the cgroup's subsys table is guaranteed to 466 * be and stay valid until the enclosing operation is complete. 467 */ 468 if (cft->ss) 469 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 470 else 471 return &cgrp->self; 472 } 473 EXPORT_SYMBOL_GPL(of_css); 474 475 /** 476 * for_each_css - iterate all css's of a cgroup 477 * @css: the iteration cursor 478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 479 * @cgrp: the target cgroup to iterate css's of 480 * 481 * Should be called under cgroup_[tree_]mutex. 482 */ 483 #define for_each_css(css, ssid, cgrp) \ 484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 485 if (!((css) = rcu_dereference_check( \ 486 (cgrp)->subsys[(ssid)], \ 487 lockdep_is_held(&cgroup_mutex)))) { } \ 488 else 489 490 /** 491 * for_each_e_css - iterate all effective css's of a cgroup 492 * @css: the iteration cursor 493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 494 * @cgrp: the target cgroup to iterate css's of 495 * 496 * Should be called under cgroup_[tree_]mutex. 497 */ 498 #define for_each_e_css(css, ssid, cgrp) \ 499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 501 ; \ 502 else 503 504 /** 505 * do_each_subsys_mask - filter for_each_subsys with a bitmask 506 * @ss: the iteration cursor 507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 508 * @ss_mask: the bitmask 509 * 510 * The block will only run for cases where the ssid-th bit (1 << ssid) of 511 * @ss_mask is set. 512 */ 513 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 514 unsigned long __ss_mask = (ss_mask); \ 515 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 516 (ssid) = 0; \ 517 break; \ 518 } \ 519 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 520 (ss) = cgroup_subsys[ssid]; \ 521 { 522 523 #define while_each_subsys_mask() \ 524 } \ 525 } \ 526 } while (false) 527 528 /* iterate over child cgrps, lock should be held throughout iteration */ 529 #define cgroup_for_each_live_child(child, cgrp) \ 530 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 531 if (({ lockdep_assert_held(&cgroup_mutex); \ 532 cgroup_is_dead(child); })) \ 533 ; \ 534 else 535 536 /* walk live descendants in preorder */ 537 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 538 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 539 if (({ lockdep_assert_held(&cgroup_mutex); \ 540 (dsct) = (d_css)->cgroup; \ 541 cgroup_is_dead(dsct); })) \ 542 ; \ 543 else 544 545 /* walk live descendants in postorder */ 546 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 547 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 548 if (({ lockdep_assert_held(&cgroup_mutex); \ 549 (dsct) = (d_css)->cgroup; \ 550 cgroup_is_dead(dsct); })) \ 551 ; \ 552 else 553 554 /* 555 * The default css_set - used by init and its children prior to any 556 * hierarchies being mounted. It contains a pointer to the root state 557 * for each subsystem. Also used to anchor the list of css_sets. Not 558 * reference-counted, to improve performance when child cgroups 559 * haven't been created. 560 */ 561 struct css_set init_css_set = { 562 .refcount = REFCOUNT_INIT(1), 563 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 564 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 565 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 566 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 567 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 568 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 569 }; 570 571 static int css_set_count = 1; /* 1 for init_css_set */ 572 573 /** 574 * css_set_populated - does a css_set contain any tasks? 575 * @cset: target css_set 576 */ 577 static bool css_set_populated(struct css_set *cset) 578 { 579 lockdep_assert_held(&css_set_lock); 580 581 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 582 } 583 584 /** 585 * cgroup_update_populated - updated populated count of a cgroup 586 * @cgrp: the target cgroup 587 * @populated: inc or dec populated count 588 * 589 * One of the css_sets associated with @cgrp is either getting its first 590 * task or losing the last. Update @cgrp->populated_cnt accordingly. The 591 * count is propagated towards root so that a given cgroup's populated_cnt 592 * is zero iff the cgroup and all its descendants don't contain any tasks. 593 * 594 * @cgrp's interface file "cgroup.populated" is zero if 595 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt 596 * changes from or to zero, userland is notified that the content of the 597 * interface file has changed. This can be used to detect when @cgrp and 598 * its descendants become populated or empty. 599 */ 600 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 601 { 602 lockdep_assert_held(&css_set_lock); 603 604 do { 605 bool trigger; 606 607 if (populated) 608 trigger = !cgrp->populated_cnt++; 609 else 610 trigger = !--cgrp->populated_cnt; 611 612 if (!trigger) 613 break; 614 615 cgroup1_check_for_release(cgrp); 616 cgroup_file_notify(&cgrp->events_file); 617 618 cgrp = cgroup_parent(cgrp); 619 } while (cgrp); 620 } 621 622 /** 623 * css_set_update_populated - update populated state of a css_set 624 * @cset: target css_set 625 * @populated: whether @cset is populated or depopulated 626 * 627 * @cset is either getting the first task or losing the last. Update the 628 * ->populated_cnt of all associated cgroups accordingly. 629 */ 630 static void css_set_update_populated(struct css_set *cset, bool populated) 631 { 632 struct cgrp_cset_link *link; 633 634 lockdep_assert_held(&css_set_lock); 635 636 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 637 cgroup_update_populated(link->cgrp, populated); 638 } 639 640 /** 641 * css_set_move_task - move a task from one css_set to another 642 * @task: task being moved 643 * @from_cset: css_set @task currently belongs to (may be NULL) 644 * @to_cset: new css_set @task is being moved to (may be NULL) 645 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 646 * 647 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 648 * css_set, @from_cset can be NULL. If @task is being disassociated 649 * instead of moved, @to_cset can be NULL. 650 * 651 * This function automatically handles populated_cnt updates and 652 * css_task_iter adjustments but the caller is responsible for managing 653 * @from_cset and @to_cset's reference counts. 654 */ 655 static void css_set_move_task(struct task_struct *task, 656 struct css_set *from_cset, struct css_set *to_cset, 657 bool use_mg_tasks) 658 { 659 lockdep_assert_held(&css_set_lock); 660 661 if (to_cset && !css_set_populated(to_cset)) 662 css_set_update_populated(to_cset, true); 663 664 if (from_cset) { 665 struct css_task_iter *it, *pos; 666 667 WARN_ON_ONCE(list_empty(&task->cg_list)); 668 669 /* 670 * @task is leaving, advance task iterators which are 671 * pointing to it so that they can resume at the next 672 * position. Advancing an iterator might remove it from 673 * the list, use safe walk. See css_task_iter_advance*() 674 * for details. 675 */ 676 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 677 iters_node) 678 if (it->task_pos == &task->cg_list) 679 css_task_iter_advance(it); 680 681 list_del_init(&task->cg_list); 682 if (!css_set_populated(from_cset)) 683 css_set_update_populated(from_cset, false); 684 } else { 685 WARN_ON_ONCE(!list_empty(&task->cg_list)); 686 } 687 688 if (to_cset) { 689 /* 690 * We are synchronized through cgroup_threadgroup_rwsem 691 * against PF_EXITING setting such that we can't race 692 * against cgroup_exit() changing the css_set to 693 * init_css_set and dropping the old one. 694 */ 695 WARN_ON_ONCE(task->flags & PF_EXITING); 696 697 rcu_assign_pointer(task->cgroups, to_cset); 698 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 699 &to_cset->tasks); 700 } 701 } 702 703 /* 704 * hash table for cgroup groups. This improves the performance to find 705 * an existing css_set. This hash doesn't (currently) take into 706 * account cgroups in empty hierarchies. 707 */ 708 #define CSS_SET_HASH_BITS 7 709 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 710 711 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 712 { 713 unsigned long key = 0UL; 714 struct cgroup_subsys *ss; 715 int i; 716 717 for_each_subsys(ss, i) 718 key += (unsigned long)css[i]; 719 key = (key >> 16) ^ key; 720 721 return key; 722 } 723 724 void put_css_set_locked(struct css_set *cset) 725 { 726 struct cgrp_cset_link *link, *tmp_link; 727 struct cgroup_subsys *ss; 728 int ssid; 729 730 lockdep_assert_held(&css_set_lock); 731 732 if (!refcount_dec_and_test(&cset->refcount)) 733 return; 734 735 /* This css_set is dead. unlink it and release cgroup and css refs */ 736 for_each_subsys(ss, ssid) { 737 list_del(&cset->e_cset_node[ssid]); 738 css_put(cset->subsys[ssid]); 739 } 740 hash_del(&cset->hlist); 741 css_set_count--; 742 743 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 744 list_del(&link->cset_link); 745 list_del(&link->cgrp_link); 746 if (cgroup_parent(link->cgrp)) 747 cgroup_put(link->cgrp); 748 kfree(link); 749 } 750 751 kfree_rcu(cset, rcu_head); 752 } 753 754 /** 755 * compare_css_sets - helper function for find_existing_css_set(). 756 * @cset: candidate css_set being tested 757 * @old_cset: existing css_set for a task 758 * @new_cgrp: cgroup that's being entered by the task 759 * @template: desired set of css pointers in css_set (pre-calculated) 760 * 761 * Returns true if "cset" matches "old_cset" except for the hierarchy 762 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 763 */ 764 static bool compare_css_sets(struct css_set *cset, 765 struct css_set *old_cset, 766 struct cgroup *new_cgrp, 767 struct cgroup_subsys_state *template[]) 768 { 769 struct list_head *l1, *l2; 770 771 /* 772 * On the default hierarchy, there can be csets which are 773 * associated with the same set of cgroups but different csses. 774 * Let's first ensure that csses match. 775 */ 776 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 777 return false; 778 779 /* 780 * Compare cgroup pointers in order to distinguish between 781 * different cgroups in hierarchies. As different cgroups may 782 * share the same effective css, this comparison is always 783 * necessary. 784 */ 785 l1 = &cset->cgrp_links; 786 l2 = &old_cset->cgrp_links; 787 while (1) { 788 struct cgrp_cset_link *link1, *link2; 789 struct cgroup *cgrp1, *cgrp2; 790 791 l1 = l1->next; 792 l2 = l2->next; 793 /* See if we reached the end - both lists are equal length. */ 794 if (l1 == &cset->cgrp_links) { 795 BUG_ON(l2 != &old_cset->cgrp_links); 796 break; 797 } else { 798 BUG_ON(l2 == &old_cset->cgrp_links); 799 } 800 /* Locate the cgroups associated with these links. */ 801 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 802 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 803 cgrp1 = link1->cgrp; 804 cgrp2 = link2->cgrp; 805 /* Hierarchies should be linked in the same order. */ 806 BUG_ON(cgrp1->root != cgrp2->root); 807 808 /* 809 * If this hierarchy is the hierarchy of the cgroup 810 * that's changing, then we need to check that this 811 * css_set points to the new cgroup; if it's any other 812 * hierarchy, then this css_set should point to the 813 * same cgroup as the old css_set. 814 */ 815 if (cgrp1->root == new_cgrp->root) { 816 if (cgrp1 != new_cgrp) 817 return false; 818 } else { 819 if (cgrp1 != cgrp2) 820 return false; 821 } 822 } 823 return true; 824 } 825 826 /** 827 * find_existing_css_set - init css array and find the matching css_set 828 * @old_cset: the css_set that we're using before the cgroup transition 829 * @cgrp: the cgroup that we're moving into 830 * @template: out param for the new set of csses, should be clear on entry 831 */ 832 static struct css_set *find_existing_css_set(struct css_set *old_cset, 833 struct cgroup *cgrp, 834 struct cgroup_subsys_state *template[]) 835 { 836 struct cgroup_root *root = cgrp->root; 837 struct cgroup_subsys *ss; 838 struct css_set *cset; 839 unsigned long key; 840 int i; 841 842 /* 843 * Build the set of subsystem state objects that we want to see in the 844 * new css_set. while subsystems can change globally, the entries here 845 * won't change, so no need for locking. 846 */ 847 for_each_subsys(ss, i) { 848 if (root->subsys_mask & (1UL << i)) { 849 /* 850 * @ss is in this hierarchy, so we want the 851 * effective css from @cgrp. 852 */ 853 template[i] = cgroup_e_css(cgrp, ss); 854 } else { 855 /* 856 * @ss is not in this hierarchy, so we don't want 857 * to change the css. 858 */ 859 template[i] = old_cset->subsys[i]; 860 } 861 } 862 863 key = css_set_hash(template); 864 hash_for_each_possible(css_set_table, cset, hlist, key) { 865 if (!compare_css_sets(cset, old_cset, cgrp, template)) 866 continue; 867 868 /* This css_set matches what we need */ 869 return cset; 870 } 871 872 /* No existing cgroup group matched */ 873 return NULL; 874 } 875 876 static void free_cgrp_cset_links(struct list_head *links_to_free) 877 { 878 struct cgrp_cset_link *link, *tmp_link; 879 880 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 881 list_del(&link->cset_link); 882 kfree(link); 883 } 884 } 885 886 /** 887 * allocate_cgrp_cset_links - allocate cgrp_cset_links 888 * @count: the number of links to allocate 889 * @tmp_links: list_head the allocated links are put on 890 * 891 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 892 * through ->cset_link. Returns 0 on success or -errno. 893 */ 894 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 895 { 896 struct cgrp_cset_link *link; 897 int i; 898 899 INIT_LIST_HEAD(tmp_links); 900 901 for (i = 0; i < count; i++) { 902 link = kzalloc(sizeof(*link), GFP_KERNEL); 903 if (!link) { 904 free_cgrp_cset_links(tmp_links); 905 return -ENOMEM; 906 } 907 list_add(&link->cset_link, tmp_links); 908 } 909 return 0; 910 } 911 912 /** 913 * link_css_set - a helper function to link a css_set to a cgroup 914 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 915 * @cset: the css_set to be linked 916 * @cgrp: the destination cgroup 917 */ 918 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 919 struct cgroup *cgrp) 920 { 921 struct cgrp_cset_link *link; 922 923 BUG_ON(list_empty(tmp_links)); 924 925 if (cgroup_on_dfl(cgrp)) 926 cset->dfl_cgrp = cgrp; 927 928 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 929 link->cset = cset; 930 link->cgrp = cgrp; 931 932 /* 933 * Always add links to the tail of the lists so that the lists are 934 * in choronological order. 935 */ 936 list_move_tail(&link->cset_link, &cgrp->cset_links); 937 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 938 939 if (cgroup_parent(cgrp)) 940 cgroup_get_live(cgrp); 941 } 942 943 /** 944 * find_css_set - return a new css_set with one cgroup updated 945 * @old_cset: the baseline css_set 946 * @cgrp: the cgroup to be updated 947 * 948 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 949 * substituted into the appropriate hierarchy. 950 */ 951 static struct css_set *find_css_set(struct css_set *old_cset, 952 struct cgroup *cgrp) 953 { 954 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 955 struct css_set *cset; 956 struct list_head tmp_links; 957 struct cgrp_cset_link *link; 958 struct cgroup_subsys *ss; 959 unsigned long key; 960 int ssid; 961 962 lockdep_assert_held(&cgroup_mutex); 963 964 /* First see if we already have a cgroup group that matches 965 * the desired set */ 966 spin_lock_irq(&css_set_lock); 967 cset = find_existing_css_set(old_cset, cgrp, template); 968 if (cset) 969 get_css_set(cset); 970 spin_unlock_irq(&css_set_lock); 971 972 if (cset) 973 return cset; 974 975 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 976 if (!cset) 977 return NULL; 978 979 /* Allocate all the cgrp_cset_link objects that we'll need */ 980 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 981 kfree(cset); 982 return NULL; 983 } 984 985 refcount_set(&cset->refcount, 1); 986 INIT_LIST_HEAD(&cset->tasks); 987 INIT_LIST_HEAD(&cset->mg_tasks); 988 INIT_LIST_HEAD(&cset->task_iters); 989 INIT_HLIST_NODE(&cset->hlist); 990 INIT_LIST_HEAD(&cset->cgrp_links); 991 INIT_LIST_HEAD(&cset->mg_preload_node); 992 INIT_LIST_HEAD(&cset->mg_node); 993 994 /* Copy the set of subsystem state objects generated in 995 * find_existing_css_set() */ 996 memcpy(cset->subsys, template, sizeof(cset->subsys)); 997 998 spin_lock_irq(&css_set_lock); 999 /* Add reference counts and links from the new css_set. */ 1000 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1001 struct cgroup *c = link->cgrp; 1002 1003 if (c->root == cgrp->root) 1004 c = cgrp; 1005 link_css_set(&tmp_links, cset, c); 1006 } 1007 1008 BUG_ON(!list_empty(&tmp_links)); 1009 1010 css_set_count++; 1011 1012 /* Add @cset to the hash table */ 1013 key = css_set_hash(cset->subsys); 1014 hash_add(css_set_table, &cset->hlist, key); 1015 1016 for_each_subsys(ss, ssid) { 1017 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1018 1019 list_add_tail(&cset->e_cset_node[ssid], 1020 &css->cgroup->e_csets[ssid]); 1021 css_get(css); 1022 } 1023 1024 spin_unlock_irq(&css_set_lock); 1025 1026 return cset; 1027 } 1028 1029 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1030 { 1031 struct cgroup *root_cgrp = kf_root->kn->priv; 1032 1033 return root_cgrp->root; 1034 } 1035 1036 static int cgroup_init_root_id(struct cgroup_root *root) 1037 { 1038 int id; 1039 1040 lockdep_assert_held(&cgroup_mutex); 1041 1042 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1043 if (id < 0) 1044 return id; 1045 1046 root->hierarchy_id = id; 1047 return 0; 1048 } 1049 1050 static void cgroup_exit_root_id(struct cgroup_root *root) 1051 { 1052 lockdep_assert_held(&cgroup_mutex); 1053 1054 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1055 } 1056 1057 void cgroup_free_root(struct cgroup_root *root) 1058 { 1059 if (root) { 1060 idr_destroy(&root->cgroup_idr); 1061 kfree(root); 1062 } 1063 } 1064 1065 static void cgroup_destroy_root(struct cgroup_root *root) 1066 { 1067 struct cgroup *cgrp = &root->cgrp; 1068 struct cgrp_cset_link *link, *tmp_link; 1069 1070 trace_cgroup_destroy_root(root); 1071 1072 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1073 1074 BUG_ON(atomic_read(&root->nr_cgrps)); 1075 BUG_ON(!list_empty(&cgrp->self.children)); 1076 1077 /* Rebind all subsystems back to the default hierarchy */ 1078 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1079 1080 /* 1081 * Release all the links from cset_links to this hierarchy's 1082 * root cgroup 1083 */ 1084 spin_lock_irq(&css_set_lock); 1085 1086 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1087 list_del(&link->cset_link); 1088 list_del(&link->cgrp_link); 1089 kfree(link); 1090 } 1091 1092 spin_unlock_irq(&css_set_lock); 1093 1094 if (!list_empty(&root->root_list)) { 1095 list_del(&root->root_list); 1096 cgroup_root_count--; 1097 } 1098 1099 cgroup_exit_root_id(root); 1100 1101 mutex_unlock(&cgroup_mutex); 1102 1103 kernfs_destroy_root(root->kf_root); 1104 cgroup_free_root(root); 1105 } 1106 1107 /* 1108 * look up cgroup associated with current task's cgroup namespace on the 1109 * specified hierarchy 1110 */ 1111 static struct cgroup * 1112 current_cgns_cgroup_from_root(struct cgroup_root *root) 1113 { 1114 struct cgroup *res = NULL; 1115 struct css_set *cset; 1116 1117 lockdep_assert_held(&css_set_lock); 1118 1119 rcu_read_lock(); 1120 1121 cset = current->nsproxy->cgroup_ns->root_cset; 1122 if (cset == &init_css_set) { 1123 res = &root->cgrp; 1124 } else { 1125 struct cgrp_cset_link *link; 1126 1127 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1128 struct cgroup *c = link->cgrp; 1129 1130 if (c->root == root) { 1131 res = c; 1132 break; 1133 } 1134 } 1135 } 1136 rcu_read_unlock(); 1137 1138 BUG_ON(!res); 1139 return res; 1140 } 1141 1142 /* look up cgroup associated with given css_set on the specified hierarchy */ 1143 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1144 struct cgroup_root *root) 1145 { 1146 struct cgroup *res = NULL; 1147 1148 lockdep_assert_held(&cgroup_mutex); 1149 lockdep_assert_held(&css_set_lock); 1150 1151 if (cset == &init_css_set) { 1152 res = &root->cgrp; 1153 } else { 1154 struct cgrp_cset_link *link; 1155 1156 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1157 struct cgroup *c = link->cgrp; 1158 1159 if (c->root == root) { 1160 res = c; 1161 break; 1162 } 1163 } 1164 } 1165 1166 BUG_ON(!res); 1167 return res; 1168 } 1169 1170 /* 1171 * Return the cgroup for "task" from the given hierarchy. Must be 1172 * called with cgroup_mutex and css_set_lock held. 1173 */ 1174 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1175 struct cgroup_root *root) 1176 { 1177 /* 1178 * No need to lock the task - since we hold cgroup_mutex the 1179 * task can't change groups, so the only thing that can happen 1180 * is that it exits and its css is set back to init_css_set. 1181 */ 1182 return cset_cgroup_from_root(task_css_set(task), root); 1183 } 1184 1185 /* 1186 * A task must hold cgroup_mutex to modify cgroups. 1187 * 1188 * Any task can increment and decrement the count field without lock. 1189 * So in general, code holding cgroup_mutex can't rely on the count 1190 * field not changing. However, if the count goes to zero, then only 1191 * cgroup_attach_task() can increment it again. Because a count of zero 1192 * means that no tasks are currently attached, therefore there is no 1193 * way a task attached to that cgroup can fork (the other way to 1194 * increment the count). So code holding cgroup_mutex can safely 1195 * assume that if the count is zero, it will stay zero. Similarly, if 1196 * a task holds cgroup_mutex on a cgroup with zero count, it 1197 * knows that the cgroup won't be removed, as cgroup_rmdir() 1198 * needs that mutex. 1199 * 1200 * A cgroup can only be deleted if both its 'count' of using tasks 1201 * is zero, and its list of 'children' cgroups is empty. Since all 1202 * tasks in the system use _some_ cgroup, and since there is always at 1203 * least one task in the system (init, pid == 1), therefore, root cgroup 1204 * always has either children cgroups and/or using tasks. So we don't 1205 * need a special hack to ensure that root cgroup cannot be deleted. 1206 * 1207 * P.S. One more locking exception. RCU is used to guard the 1208 * update of a tasks cgroup pointer by cgroup_attach_task() 1209 */ 1210 1211 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1212 1213 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1214 char *buf) 1215 { 1216 struct cgroup_subsys *ss = cft->ss; 1217 1218 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1219 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1220 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1221 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1222 cft->name); 1223 else 1224 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1225 return buf; 1226 } 1227 1228 /** 1229 * cgroup_file_mode - deduce file mode of a control file 1230 * @cft: the control file in question 1231 * 1232 * S_IRUGO for read, S_IWUSR for write. 1233 */ 1234 static umode_t cgroup_file_mode(const struct cftype *cft) 1235 { 1236 umode_t mode = 0; 1237 1238 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1239 mode |= S_IRUGO; 1240 1241 if (cft->write_u64 || cft->write_s64 || cft->write) { 1242 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1243 mode |= S_IWUGO; 1244 else 1245 mode |= S_IWUSR; 1246 } 1247 1248 return mode; 1249 } 1250 1251 /** 1252 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1253 * @subtree_control: the new subtree_control mask to consider 1254 * @this_ss_mask: available subsystems 1255 * 1256 * On the default hierarchy, a subsystem may request other subsystems to be 1257 * enabled together through its ->depends_on mask. In such cases, more 1258 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1259 * 1260 * This function calculates which subsystems need to be enabled if 1261 * @subtree_control is to be applied while restricted to @this_ss_mask. 1262 */ 1263 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1264 { 1265 u16 cur_ss_mask = subtree_control; 1266 struct cgroup_subsys *ss; 1267 int ssid; 1268 1269 lockdep_assert_held(&cgroup_mutex); 1270 1271 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1272 1273 while (true) { 1274 u16 new_ss_mask = cur_ss_mask; 1275 1276 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1277 new_ss_mask |= ss->depends_on; 1278 } while_each_subsys_mask(); 1279 1280 /* 1281 * Mask out subsystems which aren't available. This can 1282 * happen only if some depended-upon subsystems were bound 1283 * to non-default hierarchies. 1284 */ 1285 new_ss_mask &= this_ss_mask; 1286 1287 if (new_ss_mask == cur_ss_mask) 1288 break; 1289 cur_ss_mask = new_ss_mask; 1290 } 1291 1292 return cur_ss_mask; 1293 } 1294 1295 /** 1296 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1297 * @kn: the kernfs_node being serviced 1298 * 1299 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1300 * the method finishes if locking succeeded. Note that once this function 1301 * returns the cgroup returned by cgroup_kn_lock_live() may become 1302 * inaccessible any time. If the caller intends to continue to access the 1303 * cgroup, it should pin it before invoking this function. 1304 */ 1305 void cgroup_kn_unlock(struct kernfs_node *kn) 1306 { 1307 struct cgroup *cgrp; 1308 1309 if (kernfs_type(kn) == KERNFS_DIR) 1310 cgrp = kn->priv; 1311 else 1312 cgrp = kn->parent->priv; 1313 1314 mutex_unlock(&cgroup_mutex); 1315 1316 kernfs_unbreak_active_protection(kn); 1317 cgroup_put(cgrp); 1318 } 1319 1320 /** 1321 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1322 * @kn: the kernfs_node being serviced 1323 * @drain_offline: perform offline draining on the cgroup 1324 * 1325 * This helper is to be used by a cgroup kernfs method currently servicing 1326 * @kn. It breaks the active protection, performs cgroup locking and 1327 * verifies that the associated cgroup is alive. Returns the cgroup if 1328 * alive; otherwise, %NULL. A successful return should be undone by a 1329 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1330 * cgroup is drained of offlining csses before return. 1331 * 1332 * Any cgroup kernfs method implementation which requires locking the 1333 * associated cgroup should use this helper. It avoids nesting cgroup 1334 * locking under kernfs active protection and allows all kernfs operations 1335 * including self-removal. 1336 */ 1337 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1338 { 1339 struct cgroup *cgrp; 1340 1341 if (kernfs_type(kn) == KERNFS_DIR) 1342 cgrp = kn->priv; 1343 else 1344 cgrp = kn->parent->priv; 1345 1346 /* 1347 * We're gonna grab cgroup_mutex which nests outside kernfs 1348 * active_ref. cgroup liveliness check alone provides enough 1349 * protection against removal. Ensure @cgrp stays accessible and 1350 * break the active_ref protection. 1351 */ 1352 if (!cgroup_tryget(cgrp)) 1353 return NULL; 1354 kernfs_break_active_protection(kn); 1355 1356 if (drain_offline) 1357 cgroup_lock_and_drain_offline(cgrp); 1358 else 1359 mutex_lock(&cgroup_mutex); 1360 1361 if (!cgroup_is_dead(cgrp)) 1362 return cgrp; 1363 1364 cgroup_kn_unlock(kn); 1365 return NULL; 1366 } 1367 1368 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1369 { 1370 char name[CGROUP_FILE_NAME_MAX]; 1371 1372 lockdep_assert_held(&cgroup_mutex); 1373 1374 if (cft->file_offset) { 1375 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1376 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1377 1378 spin_lock_irq(&cgroup_file_kn_lock); 1379 cfile->kn = NULL; 1380 spin_unlock_irq(&cgroup_file_kn_lock); 1381 } 1382 1383 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1384 } 1385 1386 /** 1387 * css_clear_dir - remove subsys files in a cgroup directory 1388 * @css: taget css 1389 */ 1390 static void css_clear_dir(struct cgroup_subsys_state *css) 1391 { 1392 struct cgroup *cgrp = css->cgroup; 1393 struct cftype *cfts; 1394 1395 if (!(css->flags & CSS_VISIBLE)) 1396 return; 1397 1398 css->flags &= ~CSS_VISIBLE; 1399 1400 list_for_each_entry(cfts, &css->ss->cfts, node) 1401 cgroup_addrm_files(css, cgrp, cfts, false); 1402 } 1403 1404 /** 1405 * css_populate_dir - create subsys files in a cgroup directory 1406 * @css: target css 1407 * 1408 * On failure, no file is added. 1409 */ 1410 static int css_populate_dir(struct cgroup_subsys_state *css) 1411 { 1412 struct cgroup *cgrp = css->cgroup; 1413 struct cftype *cfts, *failed_cfts; 1414 int ret; 1415 1416 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1417 return 0; 1418 1419 if (!css->ss) { 1420 if (cgroup_on_dfl(cgrp)) 1421 cfts = cgroup_base_files; 1422 else 1423 cfts = cgroup1_base_files; 1424 1425 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1426 } 1427 1428 list_for_each_entry(cfts, &css->ss->cfts, node) { 1429 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1430 if (ret < 0) { 1431 failed_cfts = cfts; 1432 goto err; 1433 } 1434 } 1435 1436 css->flags |= CSS_VISIBLE; 1437 1438 return 0; 1439 err: 1440 list_for_each_entry(cfts, &css->ss->cfts, node) { 1441 if (cfts == failed_cfts) 1442 break; 1443 cgroup_addrm_files(css, cgrp, cfts, false); 1444 } 1445 return ret; 1446 } 1447 1448 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1449 { 1450 struct cgroup *dcgrp = &dst_root->cgrp; 1451 struct cgroup_subsys *ss; 1452 int ssid, i, ret; 1453 1454 lockdep_assert_held(&cgroup_mutex); 1455 1456 do_each_subsys_mask(ss, ssid, ss_mask) { 1457 /* 1458 * If @ss has non-root csses attached to it, can't move. 1459 * If @ss is an implicit controller, it is exempt from this 1460 * rule and can be stolen. 1461 */ 1462 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1463 !ss->implicit_on_dfl) 1464 return -EBUSY; 1465 1466 /* can't move between two non-dummy roots either */ 1467 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1468 return -EBUSY; 1469 } while_each_subsys_mask(); 1470 1471 do_each_subsys_mask(ss, ssid, ss_mask) { 1472 struct cgroup_root *src_root = ss->root; 1473 struct cgroup *scgrp = &src_root->cgrp; 1474 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1475 struct css_set *cset; 1476 1477 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1478 1479 /* disable from the source */ 1480 src_root->subsys_mask &= ~(1 << ssid); 1481 WARN_ON(cgroup_apply_control(scgrp)); 1482 cgroup_finalize_control(scgrp, 0); 1483 1484 /* rebind */ 1485 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1486 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1487 ss->root = dst_root; 1488 css->cgroup = dcgrp; 1489 1490 spin_lock_irq(&css_set_lock); 1491 hash_for_each(css_set_table, i, cset, hlist) 1492 list_move_tail(&cset->e_cset_node[ss->id], 1493 &dcgrp->e_csets[ss->id]); 1494 spin_unlock_irq(&css_set_lock); 1495 1496 /* default hierarchy doesn't enable controllers by default */ 1497 dst_root->subsys_mask |= 1 << ssid; 1498 if (dst_root == &cgrp_dfl_root) { 1499 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1500 } else { 1501 dcgrp->subtree_control |= 1 << ssid; 1502 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1503 } 1504 1505 ret = cgroup_apply_control(dcgrp); 1506 if (ret) 1507 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1508 ss->name, ret); 1509 1510 if (ss->bind) 1511 ss->bind(css); 1512 } while_each_subsys_mask(); 1513 1514 kernfs_activate(dcgrp->kn); 1515 return 0; 1516 } 1517 1518 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1519 struct kernfs_root *kf_root) 1520 { 1521 int len = 0; 1522 char *buf = NULL; 1523 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1524 struct cgroup *ns_cgroup; 1525 1526 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1527 if (!buf) 1528 return -ENOMEM; 1529 1530 spin_lock_irq(&css_set_lock); 1531 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1532 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1533 spin_unlock_irq(&css_set_lock); 1534 1535 if (len >= PATH_MAX) 1536 len = -ERANGE; 1537 else if (len > 0) { 1538 seq_escape(sf, buf, " \t\n\\"); 1539 len = 0; 1540 } 1541 kfree(buf); 1542 return len; 1543 } 1544 1545 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1546 { 1547 pr_err("remount is not allowed\n"); 1548 return -EINVAL; 1549 } 1550 1551 /* 1552 * To reduce the fork() overhead for systems that are not actually using 1553 * their cgroups capability, we don't maintain the lists running through 1554 * each css_set to its tasks until we see the list actually used - in other 1555 * words after the first mount. 1556 */ 1557 static bool use_task_css_set_links __read_mostly; 1558 1559 static void cgroup_enable_task_cg_lists(void) 1560 { 1561 struct task_struct *p, *g; 1562 1563 spin_lock_irq(&css_set_lock); 1564 1565 if (use_task_css_set_links) 1566 goto out_unlock; 1567 1568 use_task_css_set_links = true; 1569 1570 /* 1571 * We need tasklist_lock because RCU is not safe against 1572 * while_each_thread(). Besides, a forking task that has passed 1573 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1574 * is not guaranteed to have its child immediately visible in the 1575 * tasklist if we walk through it with RCU. 1576 */ 1577 read_lock(&tasklist_lock); 1578 do_each_thread(g, p) { 1579 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1580 task_css_set(p) != &init_css_set); 1581 1582 /* 1583 * We should check if the process is exiting, otherwise 1584 * it will race with cgroup_exit() in that the list 1585 * entry won't be deleted though the process has exited. 1586 * Do it while holding siglock so that we don't end up 1587 * racing against cgroup_exit(). 1588 * 1589 * Interrupts were already disabled while acquiring 1590 * the css_set_lock, so we do not need to disable it 1591 * again when acquiring the sighand->siglock here. 1592 */ 1593 spin_lock(&p->sighand->siglock); 1594 if (!(p->flags & PF_EXITING)) { 1595 struct css_set *cset = task_css_set(p); 1596 1597 if (!css_set_populated(cset)) 1598 css_set_update_populated(cset, true); 1599 list_add_tail(&p->cg_list, &cset->tasks); 1600 get_css_set(cset); 1601 } 1602 spin_unlock(&p->sighand->siglock); 1603 } while_each_thread(g, p); 1604 read_unlock(&tasklist_lock); 1605 out_unlock: 1606 spin_unlock_irq(&css_set_lock); 1607 } 1608 1609 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1610 { 1611 struct cgroup_subsys *ss; 1612 int ssid; 1613 1614 INIT_LIST_HEAD(&cgrp->self.sibling); 1615 INIT_LIST_HEAD(&cgrp->self.children); 1616 INIT_LIST_HEAD(&cgrp->cset_links); 1617 INIT_LIST_HEAD(&cgrp->pidlists); 1618 mutex_init(&cgrp->pidlist_mutex); 1619 cgrp->self.cgroup = cgrp; 1620 cgrp->self.flags |= CSS_ONLINE; 1621 1622 for_each_subsys(ss, ssid) 1623 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1624 1625 init_waitqueue_head(&cgrp->offline_waitq); 1626 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1627 } 1628 1629 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1630 { 1631 struct cgroup *cgrp = &root->cgrp; 1632 1633 INIT_LIST_HEAD(&root->root_list); 1634 atomic_set(&root->nr_cgrps, 1); 1635 cgrp->root = root; 1636 init_cgroup_housekeeping(cgrp); 1637 idr_init(&root->cgroup_idr); 1638 1639 root->flags = opts->flags; 1640 if (opts->release_agent) 1641 strcpy(root->release_agent_path, opts->release_agent); 1642 if (opts->name) 1643 strcpy(root->name, opts->name); 1644 if (opts->cpuset_clone_children) 1645 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1646 } 1647 1648 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1649 { 1650 LIST_HEAD(tmp_links); 1651 struct cgroup *root_cgrp = &root->cgrp; 1652 struct kernfs_syscall_ops *kf_sops; 1653 struct css_set *cset; 1654 int i, ret; 1655 1656 lockdep_assert_held(&cgroup_mutex); 1657 1658 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1659 if (ret < 0) 1660 goto out; 1661 root_cgrp->id = ret; 1662 root_cgrp->ancestor_ids[0] = ret; 1663 1664 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1665 ref_flags, GFP_KERNEL); 1666 if (ret) 1667 goto out; 1668 1669 /* 1670 * We're accessing css_set_count without locking css_set_lock here, 1671 * but that's OK - it can only be increased by someone holding 1672 * cgroup_lock, and that's us. Later rebinding may disable 1673 * controllers on the default hierarchy and thus create new csets, 1674 * which can't be more than the existing ones. Allocate 2x. 1675 */ 1676 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1677 if (ret) 1678 goto cancel_ref; 1679 1680 ret = cgroup_init_root_id(root); 1681 if (ret) 1682 goto cancel_ref; 1683 1684 kf_sops = root == &cgrp_dfl_root ? 1685 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1686 1687 root->kf_root = kernfs_create_root(kf_sops, 1688 KERNFS_ROOT_CREATE_DEACTIVATED, 1689 root_cgrp); 1690 if (IS_ERR(root->kf_root)) { 1691 ret = PTR_ERR(root->kf_root); 1692 goto exit_root_id; 1693 } 1694 root_cgrp->kn = root->kf_root->kn; 1695 1696 ret = css_populate_dir(&root_cgrp->self); 1697 if (ret) 1698 goto destroy_root; 1699 1700 ret = rebind_subsystems(root, ss_mask); 1701 if (ret) 1702 goto destroy_root; 1703 1704 trace_cgroup_setup_root(root); 1705 1706 /* 1707 * There must be no failure case after here, since rebinding takes 1708 * care of subsystems' refcounts, which are explicitly dropped in 1709 * the failure exit path. 1710 */ 1711 list_add(&root->root_list, &cgroup_roots); 1712 cgroup_root_count++; 1713 1714 /* 1715 * Link the root cgroup in this hierarchy into all the css_set 1716 * objects. 1717 */ 1718 spin_lock_irq(&css_set_lock); 1719 hash_for_each(css_set_table, i, cset, hlist) { 1720 link_css_set(&tmp_links, cset, root_cgrp); 1721 if (css_set_populated(cset)) 1722 cgroup_update_populated(root_cgrp, true); 1723 } 1724 spin_unlock_irq(&css_set_lock); 1725 1726 BUG_ON(!list_empty(&root_cgrp->self.children)); 1727 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1728 1729 kernfs_activate(root_cgrp->kn); 1730 ret = 0; 1731 goto out; 1732 1733 destroy_root: 1734 kernfs_destroy_root(root->kf_root); 1735 root->kf_root = NULL; 1736 exit_root_id: 1737 cgroup_exit_root_id(root); 1738 cancel_ref: 1739 percpu_ref_exit(&root_cgrp->self.refcnt); 1740 out: 1741 free_cgrp_cset_links(&tmp_links); 1742 return ret; 1743 } 1744 1745 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1746 struct cgroup_root *root, unsigned long magic, 1747 struct cgroup_namespace *ns) 1748 { 1749 struct dentry *dentry; 1750 bool new_sb; 1751 1752 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 1753 1754 /* 1755 * In non-init cgroup namespace, instead of root cgroup's dentry, 1756 * we return the dentry corresponding to the cgroupns->root_cgrp. 1757 */ 1758 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 1759 struct dentry *nsdentry; 1760 struct cgroup *cgrp; 1761 1762 mutex_lock(&cgroup_mutex); 1763 spin_lock_irq(&css_set_lock); 1764 1765 cgrp = cset_cgroup_from_root(ns->root_cset, root); 1766 1767 spin_unlock_irq(&css_set_lock); 1768 mutex_unlock(&cgroup_mutex); 1769 1770 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 1771 dput(dentry); 1772 dentry = nsdentry; 1773 } 1774 1775 if (IS_ERR(dentry) || !new_sb) 1776 cgroup_put(&root->cgrp); 1777 1778 return dentry; 1779 } 1780 1781 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 1782 int flags, const char *unused_dev_name, 1783 void *data) 1784 { 1785 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 1786 struct dentry *dentry; 1787 1788 get_cgroup_ns(ns); 1789 1790 /* Check if the caller has permission to mount. */ 1791 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 1792 put_cgroup_ns(ns); 1793 return ERR_PTR(-EPERM); 1794 } 1795 1796 /* 1797 * The first time anyone tries to mount a cgroup, enable the list 1798 * linking each css_set to its tasks and fix up all existing tasks. 1799 */ 1800 if (!use_task_css_set_links) 1801 cgroup_enable_task_cg_lists(); 1802 1803 if (fs_type == &cgroup2_fs_type) { 1804 if (data) { 1805 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data); 1806 put_cgroup_ns(ns); 1807 return ERR_PTR(-EINVAL); 1808 } 1809 cgrp_dfl_visible = true; 1810 cgroup_get_live(&cgrp_dfl_root.cgrp); 1811 1812 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 1813 CGROUP2_SUPER_MAGIC, ns); 1814 } else { 1815 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 1816 CGROUP_SUPER_MAGIC, ns); 1817 } 1818 1819 put_cgroup_ns(ns); 1820 return dentry; 1821 } 1822 1823 static void cgroup_kill_sb(struct super_block *sb) 1824 { 1825 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 1826 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1827 1828 /* 1829 * If @root doesn't have any mounts or children, start killing it. 1830 * This prevents new mounts by disabling percpu_ref_tryget_live(). 1831 * cgroup_mount() may wait for @root's release. 1832 * 1833 * And don't kill the default root. 1834 */ 1835 if (!list_empty(&root->cgrp.self.children) || 1836 root == &cgrp_dfl_root) 1837 cgroup_put(&root->cgrp); 1838 else 1839 percpu_ref_kill(&root->cgrp.self.refcnt); 1840 1841 kernfs_kill_sb(sb); 1842 } 1843 1844 struct file_system_type cgroup_fs_type = { 1845 .name = "cgroup", 1846 .mount = cgroup_mount, 1847 .kill_sb = cgroup_kill_sb, 1848 .fs_flags = FS_USERNS_MOUNT, 1849 }; 1850 1851 static struct file_system_type cgroup2_fs_type = { 1852 .name = "cgroup2", 1853 .mount = cgroup_mount, 1854 .kill_sb = cgroup_kill_sb, 1855 .fs_flags = FS_USERNS_MOUNT, 1856 }; 1857 1858 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 1859 struct cgroup_namespace *ns) 1860 { 1861 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 1862 1863 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 1864 } 1865 1866 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 1867 struct cgroup_namespace *ns) 1868 { 1869 int ret; 1870 1871 mutex_lock(&cgroup_mutex); 1872 spin_lock_irq(&css_set_lock); 1873 1874 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 1875 1876 spin_unlock_irq(&css_set_lock); 1877 mutex_unlock(&cgroup_mutex); 1878 1879 return ret; 1880 } 1881 EXPORT_SYMBOL_GPL(cgroup_path_ns); 1882 1883 /** 1884 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 1885 * @task: target task 1886 * @buf: the buffer to write the path into 1887 * @buflen: the length of the buffer 1888 * 1889 * Determine @task's cgroup on the first (the one with the lowest non-zero 1890 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 1891 * function grabs cgroup_mutex and shouldn't be used inside locks used by 1892 * cgroup controller callbacks. 1893 * 1894 * Return value is the same as kernfs_path(). 1895 */ 1896 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 1897 { 1898 struct cgroup_root *root; 1899 struct cgroup *cgrp; 1900 int hierarchy_id = 1; 1901 int ret; 1902 1903 mutex_lock(&cgroup_mutex); 1904 spin_lock_irq(&css_set_lock); 1905 1906 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 1907 1908 if (root) { 1909 cgrp = task_cgroup_from_root(task, root); 1910 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 1911 } else { 1912 /* if no hierarchy exists, everyone is in "/" */ 1913 ret = strlcpy(buf, "/", buflen); 1914 } 1915 1916 spin_unlock_irq(&css_set_lock); 1917 mutex_unlock(&cgroup_mutex); 1918 return ret; 1919 } 1920 EXPORT_SYMBOL_GPL(task_cgroup_path); 1921 1922 /** 1923 * cgroup_migrate_add_task - add a migration target task to a migration context 1924 * @task: target task 1925 * @mgctx: target migration context 1926 * 1927 * Add @task, which is a migration target, to @mgctx->tset. This function 1928 * becomes noop if @task doesn't need to be migrated. @task's css_set 1929 * should have been added as a migration source and @task->cg_list will be 1930 * moved from the css_set's tasks list to mg_tasks one. 1931 */ 1932 static void cgroup_migrate_add_task(struct task_struct *task, 1933 struct cgroup_mgctx *mgctx) 1934 { 1935 struct css_set *cset; 1936 1937 lockdep_assert_held(&css_set_lock); 1938 1939 /* @task either already exited or can't exit until the end */ 1940 if (task->flags & PF_EXITING) 1941 return; 1942 1943 /* leave @task alone if post_fork() hasn't linked it yet */ 1944 if (list_empty(&task->cg_list)) 1945 return; 1946 1947 cset = task_css_set(task); 1948 if (!cset->mg_src_cgrp) 1949 return; 1950 1951 list_move_tail(&task->cg_list, &cset->mg_tasks); 1952 if (list_empty(&cset->mg_node)) 1953 list_add_tail(&cset->mg_node, 1954 &mgctx->tset.src_csets); 1955 if (list_empty(&cset->mg_dst_cset->mg_node)) 1956 list_add_tail(&cset->mg_dst_cset->mg_node, 1957 &mgctx->tset.dst_csets); 1958 } 1959 1960 /** 1961 * cgroup_taskset_first - reset taskset and return the first task 1962 * @tset: taskset of interest 1963 * @dst_cssp: output variable for the destination css 1964 * 1965 * @tset iteration is initialized and the first task is returned. 1966 */ 1967 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 1968 struct cgroup_subsys_state **dst_cssp) 1969 { 1970 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 1971 tset->cur_task = NULL; 1972 1973 return cgroup_taskset_next(tset, dst_cssp); 1974 } 1975 1976 /** 1977 * cgroup_taskset_next - iterate to the next task in taskset 1978 * @tset: taskset of interest 1979 * @dst_cssp: output variable for the destination css 1980 * 1981 * Return the next task in @tset. Iteration must have been initialized 1982 * with cgroup_taskset_first(). 1983 */ 1984 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 1985 struct cgroup_subsys_state **dst_cssp) 1986 { 1987 struct css_set *cset = tset->cur_cset; 1988 struct task_struct *task = tset->cur_task; 1989 1990 while (&cset->mg_node != tset->csets) { 1991 if (!task) 1992 task = list_first_entry(&cset->mg_tasks, 1993 struct task_struct, cg_list); 1994 else 1995 task = list_next_entry(task, cg_list); 1996 1997 if (&task->cg_list != &cset->mg_tasks) { 1998 tset->cur_cset = cset; 1999 tset->cur_task = task; 2000 2001 /* 2002 * This function may be called both before and 2003 * after cgroup_taskset_migrate(). The two cases 2004 * can be distinguished by looking at whether @cset 2005 * has its ->mg_dst_cset set. 2006 */ 2007 if (cset->mg_dst_cset) 2008 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2009 else 2010 *dst_cssp = cset->subsys[tset->ssid]; 2011 2012 return task; 2013 } 2014 2015 cset = list_next_entry(cset, mg_node); 2016 task = NULL; 2017 } 2018 2019 return NULL; 2020 } 2021 2022 /** 2023 * cgroup_taskset_migrate - migrate a taskset 2024 * @mgctx: migration context 2025 * 2026 * Migrate tasks in @mgctx as setup by migration preparation functions. 2027 * This function fails iff one of the ->can_attach callbacks fails and 2028 * guarantees that either all or none of the tasks in @mgctx are migrated. 2029 * @mgctx is consumed regardless of success. 2030 */ 2031 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2032 { 2033 struct cgroup_taskset *tset = &mgctx->tset; 2034 struct cgroup_subsys *ss; 2035 struct task_struct *task, *tmp_task; 2036 struct css_set *cset, *tmp_cset; 2037 int ssid, failed_ssid, ret; 2038 2039 /* methods shouldn't be called if no task is actually migrating */ 2040 if (list_empty(&tset->src_csets)) 2041 return 0; 2042 2043 /* check that we can legitimately attach to the cgroup */ 2044 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2045 if (ss->can_attach) { 2046 tset->ssid = ssid; 2047 ret = ss->can_attach(tset); 2048 if (ret) { 2049 failed_ssid = ssid; 2050 goto out_cancel_attach; 2051 } 2052 } 2053 } while_each_subsys_mask(); 2054 2055 /* 2056 * Now that we're guaranteed success, proceed to move all tasks to 2057 * the new cgroup. There are no failure cases after here, so this 2058 * is the commit point. 2059 */ 2060 spin_lock_irq(&css_set_lock); 2061 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2062 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2063 struct css_set *from_cset = task_css_set(task); 2064 struct css_set *to_cset = cset->mg_dst_cset; 2065 2066 get_css_set(to_cset); 2067 css_set_move_task(task, from_cset, to_cset, true); 2068 put_css_set_locked(from_cset); 2069 } 2070 } 2071 spin_unlock_irq(&css_set_lock); 2072 2073 /* 2074 * Migration is committed, all target tasks are now on dst_csets. 2075 * Nothing is sensitive to fork() after this point. Notify 2076 * controllers that migration is complete. 2077 */ 2078 tset->csets = &tset->dst_csets; 2079 2080 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2081 if (ss->attach) { 2082 tset->ssid = ssid; 2083 ss->attach(tset); 2084 } 2085 } while_each_subsys_mask(); 2086 2087 ret = 0; 2088 goto out_release_tset; 2089 2090 out_cancel_attach: 2091 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2092 if (ssid == failed_ssid) 2093 break; 2094 if (ss->cancel_attach) { 2095 tset->ssid = ssid; 2096 ss->cancel_attach(tset); 2097 } 2098 } while_each_subsys_mask(); 2099 out_release_tset: 2100 spin_lock_irq(&css_set_lock); 2101 list_splice_init(&tset->dst_csets, &tset->src_csets); 2102 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2103 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2104 list_del_init(&cset->mg_node); 2105 } 2106 spin_unlock_irq(&css_set_lock); 2107 return ret; 2108 } 2109 2110 /** 2111 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination 2112 * @dst_cgrp: destination cgroup to test 2113 * 2114 * On the default hierarchy, except for the root, subtree_control must be 2115 * zero for migration destination cgroups with tasks so that child cgroups 2116 * don't compete against tasks. 2117 */ 2118 bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) 2119 { 2120 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) || 2121 !dst_cgrp->subtree_control; 2122 } 2123 2124 /** 2125 * cgroup_migrate_finish - cleanup after attach 2126 * @mgctx: migration context 2127 * 2128 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2129 * those functions for details. 2130 */ 2131 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2132 { 2133 LIST_HEAD(preloaded); 2134 struct css_set *cset, *tmp_cset; 2135 2136 lockdep_assert_held(&cgroup_mutex); 2137 2138 spin_lock_irq(&css_set_lock); 2139 2140 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2141 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2142 2143 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2144 cset->mg_src_cgrp = NULL; 2145 cset->mg_dst_cgrp = NULL; 2146 cset->mg_dst_cset = NULL; 2147 list_del_init(&cset->mg_preload_node); 2148 put_css_set_locked(cset); 2149 } 2150 2151 spin_unlock_irq(&css_set_lock); 2152 } 2153 2154 /** 2155 * cgroup_migrate_add_src - add a migration source css_set 2156 * @src_cset: the source css_set to add 2157 * @dst_cgrp: the destination cgroup 2158 * @mgctx: migration context 2159 * 2160 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2161 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2162 * up by cgroup_migrate_finish(). 2163 * 2164 * This function may be called without holding cgroup_threadgroup_rwsem 2165 * even if the target is a process. Threads may be created and destroyed 2166 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2167 * into play and the preloaded css_sets are guaranteed to cover all 2168 * migrations. 2169 */ 2170 void cgroup_migrate_add_src(struct css_set *src_cset, 2171 struct cgroup *dst_cgrp, 2172 struct cgroup_mgctx *mgctx) 2173 { 2174 struct cgroup *src_cgrp; 2175 2176 lockdep_assert_held(&cgroup_mutex); 2177 lockdep_assert_held(&css_set_lock); 2178 2179 /* 2180 * If ->dead, @src_set is associated with one or more dead cgroups 2181 * and doesn't contain any migratable tasks. Ignore it early so 2182 * that the rest of migration path doesn't get confused by it. 2183 */ 2184 if (src_cset->dead) 2185 return; 2186 2187 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2188 2189 if (!list_empty(&src_cset->mg_preload_node)) 2190 return; 2191 2192 WARN_ON(src_cset->mg_src_cgrp); 2193 WARN_ON(src_cset->mg_dst_cgrp); 2194 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2195 WARN_ON(!list_empty(&src_cset->mg_node)); 2196 2197 src_cset->mg_src_cgrp = src_cgrp; 2198 src_cset->mg_dst_cgrp = dst_cgrp; 2199 get_css_set(src_cset); 2200 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2201 } 2202 2203 /** 2204 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2205 * @mgctx: migration context 2206 * 2207 * Tasks are about to be moved and all the source css_sets have been 2208 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2209 * pins all destination css_sets, links each to its source, and append them 2210 * to @mgctx->preloaded_dst_csets. 2211 * 2212 * This function must be called after cgroup_migrate_add_src() has been 2213 * called on each migration source css_set. After migration is performed 2214 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2215 * @mgctx. 2216 */ 2217 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2218 { 2219 struct css_set *src_cset, *tmp_cset; 2220 2221 lockdep_assert_held(&cgroup_mutex); 2222 2223 /* look up the dst cset for each src cset and link it to src */ 2224 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2225 mg_preload_node) { 2226 struct css_set *dst_cset; 2227 struct cgroup_subsys *ss; 2228 int ssid; 2229 2230 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2231 if (!dst_cset) 2232 goto err; 2233 2234 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2235 2236 /* 2237 * If src cset equals dst, it's noop. Drop the src. 2238 * cgroup_migrate() will skip the cset too. Note that we 2239 * can't handle src == dst as some nodes are used by both. 2240 */ 2241 if (src_cset == dst_cset) { 2242 src_cset->mg_src_cgrp = NULL; 2243 src_cset->mg_dst_cgrp = NULL; 2244 list_del_init(&src_cset->mg_preload_node); 2245 put_css_set(src_cset); 2246 put_css_set(dst_cset); 2247 continue; 2248 } 2249 2250 src_cset->mg_dst_cset = dst_cset; 2251 2252 if (list_empty(&dst_cset->mg_preload_node)) 2253 list_add_tail(&dst_cset->mg_preload_node, 2254 &mgctx->preloaded_dst_csets); 2255 else 2256 put_css_set(dst_cset); 2257 2258 for_each_subsys(ss, ssid) 2259 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2260 mgctx->ss_mask |= 1 << ssid; 2261 } 2262 2263 return 0; 2264 err: 2265 cgroup_migrate_finish(mgctx); 2266 return -ENOMEM; 2267 } 2268 2269 /** 2270 * cgroup_migrate - migrate a process or task to a cgroup 2271 * @leader: the leader of the process or the task to migrate 2272 * @threadgroup: whether @leader points to the whole process or a single task 2273 * @mgctx: migration context 2274 * 2275 * Migrate a process or task denoted by @leader. If migrating a process, 2276 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2277 * responsible for invoking cgroup_migrate_add_src() and 2278 * cgroup_migrate_prepare_dst() on the targets before invoking this 2279 * function and following up with cgroup_migrate_finish(). 2280 * 2281 * As long as a controller's ->can_attach() doesn't fail, this function is 2282 * guaranteed to succeed. This means that, excluding ->can_attach() 2283 * failure, when migrating multiple targets, the success or failure can be 2284 * decided for all targets by invoking group_migrate_prepare_dst() before 2285 * actually starting migrating. 2286 */ 2287 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2288 struct cgroup_mgctx *mgctx) 2289 { 2290 struct task_struct *task; 2291 2292 /* 2293 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2294 * already PF_EXITING could be freed from underneath us unless we 2295 * take an rcu_read_lock. 2296 */ 2297 spin_lock_irq(&css_set_lock); 2298 rcu_read_lock(); 2299 task = leader; 2300 do { 2301 cgroup_migrate_add_task(task, mgctx); 2302 if (!threadgroup) 2303 break; 2304 } while_each_thread(leader, task); 2305 rcu_read_unlock(); 2306 spin_unlock_irq(&css_set_lock); 2307 2308 return cgroup_migrate_execute(mgctx); 2309 } 2310 2311 /** 2312 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2313 * @dst_cgrp: the cgroup to attach to 2314 * @leader: the task or the leader of the threadgroup to be attached 2315 * @threadgroup: attach the whole threadgroup? 2316 * 2317 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2318 */ 2319 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2320 bool threadgroup) 2321 { 2322 DEFINE_CGROUP_MGCTX(mgctx); 2323 struct task_struct *task; 2324 int ret; 2325 2326 if (!cgroup_may_migrate_to(dst_cgrp)) 2327 return -EBUSY; 2328 2329 /* look up all src csets */ 2330 spin_lock_irq(&css_set_lock); 2331 rcu_read_lock(); 2332 task = leader; 2333 do { 2334 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2335 if (!threadgroup) 2336 break; 2337 } while_each_thread(leader, task); 2338 rcu_read_unlock(); 2339 spin_unlock_irq(&css_set_lock); 2340 2341 /* prepare dst csets and commit */ 2342 ret = cgroup_migrate_prepare_dst(&mgctx); 2343 if (!ret) 2344 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2345 2346 cgroup_migrate_finish(&mgctx); 2347 2348 if (!ret) 2349 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2350 2351 return ret; 2352 } 2353 2354 static int cgroup_procs_write_permission(struct task_struct *task, 2355 struct cgroup *dst_cgrp, 2356 struct kernfs_open_file *of) 2357 { 2358 int ret = 0; 2359 2360 if (cgroup_on_dfl(dst_cgrp)) { 2361 struct super_block *sb = of->file->f_path.dentry->d_sb; 2362 struct cgroup *cgrp; 2363 struct inode *inode; 2364 2365 spin_lock_irq(&css_set_lock); 2366 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 2367 spin_unlock_irq(&css_set_lock); 2368 2369 while (!cgroup_is_descendant(dst_cgrp, cgrp)) 2370 cgrp = cgroup_parent(cgrp); 2371 2372 ret = -ENOMEM; 2373 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 2374 if (inode) { 2375 ret = inode_permission(inode, MAY_WRITE); 2376 iput(inode); 2377 } 2378 } else { 2379 const struct cred *cred = current_cred(); 2380 const struct cred *tcred = get_task_cred(task); 2381 2382 /* 2383 * even if we're attaching all tasks in the thread group, 2384 * we only need to check permissions on one of them. 2385 */ 2386 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 2387 !uid_eq(cred->euid, tcred->uid) && 2388 !uid_eq(cred->euid, tcred->suid)) 2389 ret = -EACCES; 2390 put_cred(tcred); 2391 } 2392 2393 return ret; 2394 } 2395 2396 /* 2397 * Find the task_struct of the task to attach by vpid and pass it along to the 2398 * function to attach either it or all tasks in its threadgroup. Will lock 2399 * cgroup_mutex and threadgroup. 2400 */ 2401 ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 2402 size_t nbytes, loff_t off, bool threadgroup) 2403 { 2404 struct task_struct *tsk; 2405 struct cgroup_subsys *ss; 2406 struct cgroup *cgrp; 2407 pid_t pid; 2408 int ssid, ret; 2409 2410 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2411 return -EINVAL; 2412 2413 cgrp = cgroup_kn_lock_live(of->kn, false); 2414 if (!cgrp) 2415 return -ENODEV; 2416 2417 percpu_down_write(&cgroup_threadgroup_rwsem); 2418 rcu_read_lock(); 2419 if (pid) { 2420 tsk = find_task_by_vpid(pid); 2421 if (!tsk) { 2422 ret = -ESRCH; 2423 goto out_unlock_rcu; 2424 } 2425 } else { 2426 tsk = current; 2427 } 2428 2429 if (threadgroup) 2430 tsk = tsk->group_leader; 2431 2432 /* 2433 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2434 * If userland migrates such a kthread to a non-root cgroup, it can 2435 * become trapped in a cpuset, or RT kthread may be born in a 2436 * cgroup with no rt_runtime allocated. Just say no. 2437 */ 2438 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2439 ret = -EINVAL; 2440 goto out_unlock_rcu; 2441 } 2442 2443 get_task_struct(tsk); 2444 rcu_read_unlock(); 2445 2446 ret = cgroup_procs_write_permission(tsk, cgrp, of); 2447 if (!ret) 2448 ret = cgroup_attach_task(cgrp, tsk, threadgroup); 2449 2450 put_task_struct(tsk); 2451 goto out_unlock_threadgroup; 2452 2453 out_unlock_rcu: 2454 rcu_read_unlock(); 2455 out_unlock_threadgroup: 2456 percpu_up_write(&cgroup_threadgroup_rwsem); 2457 for_each_subsys(ss, ssid) 2458 if (ss->post_attach) 2459 ss->post_attach(); 2460 cgroup_kn_unlock(of->kn); 2461 return ret ?: nbytes; 2462 } 2463 2464 ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 2465 loff_t off) 2466 { 2467 return __cgroup_procs_write(of, buf, nbytes, off, true); 2468 } 2469 2470 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2471 { 2472 struct cgroup_subsys *ss; 2473 bool printed = false; 2474 int ssid; 2475 2476 do_each_subsys_mask(ss, ssid, ss_mask) { 2477 if (printed) 2478 seq_putc(seq, ' '); 2479 seq_printf(seq, "%s", ss->name); 2480 printed = true; 2481 } while_each_subsys_mask(); 2482 if (printed) 2483 seq_putc(seq, '\n'); 2484 } 2485 2486 /* show controllers which are enabled from the parent */ 2487 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2488 { 2489 struct cgroup *cgrp = seq_css(seq)->cgroup; 2490 2491 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2492 return 0; 2493 } 2494 2495 /* show controllers which are enabled for a given cgroup's children */ 2496 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2497 { 2498 struct cgroup *cgrp = seq_css(seq)->cgroup; 2499 2500 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2501 return 0; 2502 } 2503 2504 /** 2505 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2506 * @cgrp: root of the subtree to update csses for 2507 * 2508 * @cgrp's control masks have changed and its subtree's css associations 2509 * need to be updated accordingly. This function looks up all css_sets 2510 * which are attached to the subtree, creates the matching updated css_sets 2511 * and migrates the tasks to the new ones. 2512 */ 2513 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2514 { 2515 DEFINE_CGROUP_MGCTX(mgctx); 2516 struct cgroup_subsys_state *d_css; 2517 struct cgroup *dsct; 2518 struct css_set *src_cset; 2519 int ret; 2520 2521 lockdep_assert_held(&cgroup_mutex); 2522 2523 percpu_down_write(&cgroup_threadgroup_rwsem); 2524 2525 /* look up all csses currently attached to @cgrp's subtree */ 2526 spin_lock_irq(&css_set_lock); 2527 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2528 struct cgrp_cset_link *link; 2529 2530 list_for_each_entry(link, &dsct->cset_links, cset_link) 2531 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2532 } 2533 spin_unlock_irq(&css_set_lock); 2534 2535 /* NULL dst indicates self on default hierarchy */ 2536 ret = cgroup_migrate_prepare_dst(&mgctx); 2537 if (ret) 2538 goto out_finish; 2539 2540 spin_lock_irq(&css_set_lock); 2541 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2542 struct task_struct *task, *ntask; 2543 2544 /* all tasks in src_csets need to be migrated */ 2545 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2546 cgroup_migrate_add_task(task, &mgctx); 2547 } 2548 spin_unlock_irq(&css_set_lock); 2549 2550 ret = cgroup_migrate_execute(&mgctx); 2551 out_finish: 2552 cgroup_migrate_finish(&mgctx); 2553 percpu_up_write(&cgroup_threadgroup_rwsem); 2554 return ret; 2555 } 2556 2557 /** 2558 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2559 * @cgrp: root of the target subtree 2560 * 2561 * Because css offlining is asynchronous, userland may try to re-enable a 2562 * controller while the previous css is still around. This function grabs 2563 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2564 */ 2565 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2566 __acquires(&cgroup_mutex) 2567 { 2568 struct cgroup *dsct; 2569 struct cgroup_subsys_state *d_css; 2570 struct cgroup_subsys *ss; 2571 int ssid; 2572 2573 restart: 2574 mutex_lock(&cgroup_mutex); 2575 2576 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2577 for_each_subsys(ss, ssid) { 2578 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2579 DEFINE_WAIT(wait); 2580 2581 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2582 continue; 2583 2584 cgroup_get_live(dsct); 2585 prepare_to_wait(&dsct->offline_waitq, &wait, 2586 TASK_UNINTERRUPTIBLE); 2587 2588 mutex_unlock(&cgroup_mutex); 2589 schedule(); 2590 finish_wait(&dsct->offline_waitq, &wait); 2591 2592 cgroup_put(dsct); 2593 goto restart; 2594 } 2595 } 2596 } 2597 2598 /** 2599 * cgroup_save_control - save control masks of a subtree 2600 * @cgrp: root of the target subtree 2601 * 2602 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2603 * prefixed fields for @cgrp's subtree including @cgrp itself. 2604 */ 2605 static void cgroup_save_control(struct cgroup *cgrp) 2606 { 2607 struct cgroup *dsct; 2608 struct cgroup_subsys_state *d_css; 2609 2610 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2611 dsct->old_subtree_control = dsct->subtree_control; 2612 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2613 } 2614 } 2615 2616 /** 2617 * cgroup_propagate_control - refresh control masks of a subtree 2618 * @cgrp: root of the target subtree 2619 * 2620 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2621 * ->subtree_control and propagate controller availability through the 2622 * subtree so that descendants don't have unavailable controllers enabled. 2623 */ 2624 static void cgroup_propagate_control(struct cgroup *cgrp) 2625 { 2626 struct cgroup *dsct; 2627 struct cgroup_subsys_state *d_css; 2628 2629 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2630 dsct->subtree_control &= cgroup_control(dsct); 2631 dsct->subtree_ss_mask = 2632 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2633 cgroup_ss_mask(dsct)); 2634 } 2635 } 2636 2637 /** 2638 * cgroup_restore_control - restore control masks of a subtree 2639 * @cgrp: root of the target subtree 2640 * 2641 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2642 * prefixed fields for @cgrp's subtree including @cgrp itself. 2643 */ 2644 static void cgroup_restore_control(struct cgroup *cgrp) 2645 { 2646 struct cgroup *dsct; 2647 struct cgroup_subsys_state *d_css; 2648 2649 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2650 dsct->subtree_control = dsct->old_subtree_control; 2651 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2652 } 2653 } 2654 2655 static bool css_visible(struct cgroup_subsys_state *css) 2656 { 2657 struct cgroup_subsys *ss = css->ss; 2658 struct cgroup *cgrp = css->cgroup; 2659 2660 if (cgroup_control(cgrp) & (1 << ss->id)) 2661 return true; 2662 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2663 return false; 2664 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2665 } 2666 2667 /** 2668 * cgroup_apply_control_enable - enable or show csses according to control 2669 * @cgrp: root of the target subtree 2670 * 2671 * Walk @cgrp's subtree and create new csses or make the existing ones 2672 * visible. A css is created invisible if it's being implicitly enabled 2673 * through dependency. An invisible css is made visible when the userland 2674 * explicitly enables it. 2675 * 2676 * Returns 0 on success, -errno on failure. On failure, csses which have 2677 * been processed already aren't cleaned up. The caller is responsible for 2678 * cleaning up with cgroup_apply_control_disable(). 2679 */ 2680 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2681 { 2682 struct cgroup *dsct; 2683 struct cgroup_subsys_state *d_css; 2684 struct cgroup_subsys *ss; 2685 int ssid, ret; 2686 2687 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2688 for_each_subsys(ss, ssid) { 2689 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2690 2691 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2692 2693 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2694 continue; 2695 2696 if (!css) { 2697 css = css_create(dsct, ss); 2698 if (IS_ERR(css)) 2699 return PTR_ERR(css); 2700 } 2701 2702 if (css_visible(css)) { 2703 ret = css_populate_dir(css); 2704 if (ret) 2705 return ret; 2706 } 2707 } 2708 } 2709 2710 return 0; 2711 } 2712 2713 /** 2714 * cgroup_apply_control_disable - kill or hide csses according to control 2715 * @cgrp: root of the target subtree 2716 * 2717 * Walk @cgrp's subtree and kill and hide csses so that they match 2718 * cgroup_ss_mask() and cgroup_visible_mask(). 2719 * 2720 * A css is hidden when the userland requests it to be disabled while other 2721 * subsystems are still depending on it. The css must not actively control 2722 * resources and be in the vanilla state if it's made visible again later. 2723 * Controllers which may be depended upon should provide ->css_reset() for 2724 * this purpose. 2725 */ 2726 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2727 { 2728 struct cgroup *dsct; 2729 struct cgroup_subsys_state *d_css; 2730 struct cgroup_subsys *ss; 2731 int ssid; 2732 2733 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2734 for_each_subsys(ss, ssid) { 2735 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2736 2737 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2738 2739 if (!css) 2740 continue; 2741 2742 if (css->parent && 2743 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2744 kill_css(css); 2745 } else if (!css_visible(css)) { 2746 css_clear_dir(css); 2747 if (ss->css_reset) 2748 ss->css_reset(css); 2749 } 2750 } 2751 } 2752 } 2753 2754 /** 2755 * cgroup_apply_control - apply control mask updates to the subtree 2756 * @cgrp: root of the target subtree 2757 * 2758 * subsystems can be enabled and disabled in a subtree using the following 2759 * steps. 2760 * 2761 * 1. Call cgroup_save_control() to stash the current state. 2762 * 2. Update ->subtree_control masks in the subtree as desired. 2763 * 3. Call cgroup_apply_control() to apply the changes. 2764 * 4. Optionally perform other related operations. 2765 * 5. Call cgroup_finalize_control() to finish up. 2766 * 2767 * This function implements step 3 and propagates the mask changes 2768 * throughout @cgrp's subtree, updates csses accordingly and perform 2769 * process migrations. 2770 */ 2771 static int cgroup_apply_control(struct cgroup *cgrp) 2772 { 2773 int ret; 2774 2775 cgroup_propagate_control(cgrp); 2776 2777 ret = cgroup_apply_control_enable(cgrp); 2778 if (ret) 2779 return ret; 2780 2781 /* 2782 * At this point, cgroup_e_css() results reflect the new csses 2783 * making the following cgroup_update_dfl_csses() properly update 2784 * css associations of all tasks in the subtree. 2785 */ 2786 ret = cgroup_update_dfl_csses(cgrp); 2787 if (ret) 2788 return ret; 2789 2790 return 0; 2791 } 2792 2793 /** 2794 * cgroup_finalize_control - finalize control mask update 2795 * @cgrp: root of the target subtree 2796 * @ret: the result of the update 2797 * 2798 * Finalize control mask update. See cgroup_apply_control() for more info. 2799 */ 2800 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 2801 { 2802 if (ret) { 2803 cgroup_restore_control(cgrp); 2804 cgroup_propagate_control(cgrp); 2805 } 2806 2807 cgroup_apply_control_disable(cgrp); 2808 } 2809 2810 /* change the enabled child controllers for a cgroup in the default hierarchy */ 2811 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 2812 char *buf, size_t nbytes, 2813 loff_t off) 2814 { 2815 u16 enable = 0, disable = 0; 2816 struct cgroup *cgrp, *child; 2817 struct cgroup_subsys *ss; 2818 char *tok; 2819 int ssid, ret; 2820 2821 /* 2822 * Parse input - space separated list of subsystem names prefixed 2823 * with either + or -. 2824 */ 2825 buf = strstrip(buf); 2826 while ((tok = strsep(&buf, " "))) { 2827 if (tok[0] == '\0') 2828 continue; 2829 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 2830 if (!cgroup_ssid_enabled(ssid) || 2831 strcmp(tok + 1, ss->name)) 2832 continue; 2833 2834 if (*tok == '+') { 2835 enable |= 1 << ssid; 2836 disable &= ~(1 << ssid); 2837 } else if (*tok == '-') { 2838 disable |= 1 << ssid; 2839 enable &= ~(1 << ssid); 2840 } else { 2841 return -EINVAL; 2842 } 2843 break; 2844 } while_each_subsys_mask(); 2845 if (ssid == CGROUP_SUBSYS_COUNT) 2846 return -EINVAL; 2847 } 2848 2849 cgrp = cgroup_kn_lock_live(of->kn, true); 2850 if (!cgrp) 2851 return -ENODEV; 2852 2853 for_each_subsys(ss, ssid) { 2854 if (enable & (1 << ssid)) { 2855 if (cgrp->subtree_control & (1 << ssid)) { 2856 enable &= ~(1 << ssid); 2857 continue; 2858 } 2859 2860 if (!(cgroup_control(cgrp) & (1 << ssid))) { 2861 ret = -ENOENT; 2862 goto out_unlock; 2863 } 2864 } else if (disable & (1 << ssid)) { 2865 if (!(cgrp->subtree_control & (1 << ssid))) { 2866 disable &= ~(1 << ssid); 2867 continue; 2868 } 2869 2870 /* a child has it enabled? */ 2871 cgroup_for_each_live_child(child, cgrp) { 2872 if (child->subtree_control & (1 << ssid)) { 2873 ret = -EBUSY; 2874 goto out_unlock; 2875 } 2876 } 2877 } 2878 } 2879 2880 if (!enable && !disable) { 2881 ret = 0; 2882 goto out_unlock; 2883 } 2884 2885 /* 2886 * Except for the root, subtree_control must be zero for a cgroup 2887 * with tasks so that child cgroups don't compete against tasks. 2888 */ 2889 if (enable && cgroup_parent(cgrp)) { 2890 struct cgrp_cset_link *link; 2891 2892 /* 2893 * Because namespaces pin csets too, @cgrp->cset_links 2894 * might not be empty even when @cgrp is empty. Walk and 2895 * verify each cset. 2896 */ 2897 spin_lock_irq(&css_set_lock); 2898 2899 ret = 0; 2900 list_for_each_entry(link, &cgrp->cset_links, cset_link) { 2901 if (css_set_populated(link->cset)) { 2902 ret = -EBUSY; 2903 break; 2904 } 2905 } 2906 2907 spin_unlock_irq(&css_set_lock); 2908 2909 if (ret) 2910 goto out_unlock; 2911 } 2912 2913 /* save and update control masks and prepare csses */ 2914 cgroup_save_control(cgrp); 2915 2916 cgrp->subtree_control |= enable; 2917 cgrp->subtree_control &= ~disable; 2918 2919 ret = cgroup_apply_control(cgrp); 2920 2921 cgroup_finalize_control(cgrp, ret); 2922 2923 kernfs_activate(cgrp->kn); 2924 ret = 0; 2925 out_unlock: 2926 cgroup_kn_unlock(of->kn); 2927 return ret ?: nbytes; 2928 } 2929 2930 static int cgroup_events_show(struct seq_file *seq, void *v) 2931 { 2932 seq_printf(seq, "populated %d\n", 2933 cgroup_is_populated(seq_css(seq)->cgroup)); 2934 return 0; 2935 } 2936 2937 static int cgroup_file_open(struct kernfs_open_file *of) 2938 { 2939 struct cftype *cft = of->kn->priv; 2940 2941 if (cft->open) 2942 return cft->open(of); 2943 return 0; 2944 } 2945 2946 static void cgroup_file_release(struct kernfs_open_file *of) 2947 { 2948 struct cftype *cft = of->kn->priv; 2949 2950 if (cft->release) 2951 cft->release(of); 2952 } 2953 2954 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 2955 size_t nbytes, loff_t off) 2956 { 2957 struct cgroup *cgrp = of->kn->parent->priv; 2958 struct cftype *cft = of->kn->priv; 2959 struct cgroup_subsys_state *css; 2960 int ret; 2961 2962 if (cft->write) 2963 return cft->write(of, buf, nbytes, off); 2964 2965 /* 2966 * kernfs guarantees that a file isn't deleted with operations in 2967 * flight, which means that the matching css is and stays alive and 2968 * doesn't need to be pinned. The RCU locking is not necessary 2969 * either. It's just for the convenience of using cgroup_css(). 2970 */ 2971 rcu_read_lock(); 2972 css = cgroup_css(cgrp, cft->ss); 2973 rcu_read_unlock(); 2974 2975 if (cft->write_u64) { 2976 unsigned long long v; 2977 ret = kstrtoull(buf, 0, &v); 2978 if (!ret) 2979 ret = cft->write_u64(css, cft, v); 2980 } else if (cft->write_s64) { 2981 long long v; 2982 ret = kstrtoll(buf, 0, &v); 2983 if (!ret) 2984 ret = cft->write_s64(css, cft, v); 2985 } else { 2986 ret = -EINVAL; 2987 } 2988 2989 return ret ?: nbytes; 2990 } 2991 2992 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 2993 { 2994 return seq_cft(seq)->seq_start(seq, ppos); 2995 } 2996 2997 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 2998 { 2999 return seq_cft(seq)->seq_next(seq, v, ppos); 3000 } 3001 3002 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3003 { 3004 if (seq_cft(seq)->seq_stop) 3005 seq_cft(seq)->seq_stop(seq, v); 3006 } 3007 3008 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3009 { 3010 struct cftype *cft = seq_cft(m); 3011 struct cgroup_subsys_state *css = seq_css(m); 3012 3013 if (cft->seq_show) 3014 return cft->seq_show(m, arg); 3015 3016 if (cft->read_u64) 3017 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3018 else if (cft->read_s64) 3019 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3020 else 3021 return -EINVAL; 3022 return 0; 3023 } 3024 3025 static struct kernfs_ops cgroup_kf_single_ops = { 3026 .atomic_write_len = PAGE_SIZE, 3027 .open = cgroup_file_open, 3028 .release = cgroup_file_release, 3029 .write = cgroup_file_write, 3030 .seq_show = cgroup_seqfile_show, 3031 }; 3032 3033 static struct kernfs_ops cgroup_kf_ops = { 3034 .atomic_write_len = PAGE_SIZE, 3035 .open = cgroup_file_open, 3036 .release = cgroup_file_release, 3037 .write = cgroup_file_write, 3038 .seq_start = cgroup_seqfile_start, 3039 .seq_next = cgroup_seqfile_next, 3040 .seq_stop = cgroup_seqfile_stop, 3041 .seq_show = cgroup_seqfile_show, 3042 }; 3043 3044 /* set uid and gid of cgroup dirs and files to that of the creator */ 3045 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3046 { 3047 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3048 .ia_uid = current_fsuid(), 3049 .ia_gid = current_fsgid(), }; 3050 3051 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3052 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3053 return 0; 3054 3055 return kernfs_setattr(kn, &iattr); 3056 } 3057 3058 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3059 struct cftype *cft) 3060 { 3061 char name[CGROUP_FILE_NAME_MAX]; 3062 struct kernfs_node *kn; 3063 struct lock_class_key *key = NULL; 3064 int ret; 3065 3066 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3067 key = &cft->lockdep_key; 3068 #endif 3069 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3070 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3071 NULL, key); 3072 if (IS_ERR(kn)) 3073 return PTR_ERR(kn); 3074 3075 ret = cgroup_kn_set_ugid(kn); 3076 if (ret) { 3077 kernfs_remove(kn); 3078 return ret; 3079 } 3080 3081 if (cft->file_offset) { 3082 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3083 3084 spin_lock_irq(&cgroup_file_kn_lock); 3085 cfile->kn = kn; 3086 spin_unlock_irq(&cgroup_file_kn_lock); 3087 } 3088 3089 return 0; 3090 } 3091 3092 /** 3093 * cgroup_addrm_files - add or remove files to a cgroup directory 3094 * @css: the target css 3095 * @cgrp: the target cgroup (usually css->cgroup) 3096 * @cfts: array of cftypes to be added 3097 * @is_add: whether to add or remove 3098 * 3099 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3100 * For removals, this function never fails. 3101 */ 3102 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3103 struct cgroup *cgrp, struct cftype cfts[], 3104 bool is_add) 3105 { 3106 struct cftype *cft, *cft_end = NULL; 3107 int ret = 0; 3108 3109 lockdep_assert_held(&cgroup_mutex); 3110 3111 restart: 3112 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3113 /* does cft->flags tell us to skip this file on @cgrp? */ 3114 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3115 continue; 3116 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3117 continue; 3118 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3119 continue; 3120 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3121 continue; 3122 3123 if (is_add) { 3124 ret = cgroup_add_file(css, cgrp, cft); 3125 if (ret) { 3126 pr_warn("%s: failed to add %s, err=%d\n", 3127 __func__, cft->name, ret); 3128 cft_end = cft; 3129 is_add = false; 3130 goto restart; 3131 } 3132 } else { 3133 cgroup_rm_file(cgrp, cft); 3134 } 3135 } 3136 return ret; 3137 } 3138 3139 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3140 { 3141 LIST_HEAD(pending); 3142 struct cgroup_subsys *ss = cfts[0].ss; 3143 struct cgroup *root = &ss->root->cgrp; 3144 struct cgroup_subsys_state *css; 3145 int ret = 0; 3146 3147 lockdep_assert_held(&cgroup_mutex); 3148 3149 /* add/rm files for all cgroups created before */ 3150 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3151 struct cgroup *cgrp = css->cgroup; 3152 3153 if (!(css->flags & CSS_VISIBLE)) 3154 continue; 3155 3156 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3157 if (ret) 3158 break; 3159 } 3160 3161 if (is_add && !ret) 3162 kernfs_activate(root->kn); 3163 return ret; 3164 } 3165 3166 static void cgroup_exit_cftypes(struct cftype *cfts) 3167 { 3168 struct cftype *cft; 3169 3170 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3171 /* free copy for custom atomic_write_len, see init_cftypes() */ 3172 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3173 kfree(cft->kf_ops); 3174 cft->kf_ops = NULL; 3175 cft->ss = NULL; 3176 3177 /* revert flags set by cgroup core while adding @cfts */ 3178 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3179 } 3180 } 3181 3182 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3183 { 3184 struct cftype *cft; 3185 3186 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3187 struct kernfs_ops *kf_ops; 3188 3189 WARN_ON(cft->ss || cft->kf_ops); 3190 3191 if (cft->seq_start) 3192 kf_ops = &cgroup_kf_ops; 3193 else 3194 kf_ops = &cgroup_kf_single_ops; 3195 3196 /* 3197 * Ugh... if @cft wants a custom max_write_len, we need to 3198 * make a copy of kf_ops to set its atomic_write_len. 3199 */ 3200 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3201 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3202 if (!kf_ops) { 3203 cgroup_exit_cftypes(cfts); 3204 return -ENOMEM; 3205 } 3206 kf_ops->atomic_write_len = cft->max_write_len; 3207 } 3208 3209 cft->kf_ops = kf_ops; 3210 cft->ss = ss; 3211 } 3212 3213 return 0; 3214 } 3215 3216 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3217 { 3218 lockdep_assert_held(&cgroup_mutex); 3219 3220 if (!cfts || !cfts[0].ss) 3221 return -ENOENT; 3222 3223 list_del(&cfts->node); 3224 cgroup_apply_cftypes(cfts, false); 3225 cgroup_exit_cftypes(cfts); 3226 return 0; 3227 } 3228 3229 /** 3230 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3231 * @cfts: zero-length name terminated array of cftypes 3232 * 3233 * Unregister @cfts. Files described by @cfts are removed from all 3234 * existing cgroups and all future cgroups won't have them either. This 3235 * function can be called anytime whether @cfts' subsys is attached or not. 3236 * 3237 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3238 * registered. 3239 */ 3240 int cgroup_rm_cftypes(struct cftype *cfts) 3241 { 3242 int ret; 3243 3244 mutex_lock(&cgroup_mutex); 3245 ret = cgroup_rm_cftypes_locked(cfts); 3246 mutex_unlock(&cgroup_mutex); 3247 return ret; 3248 } 3249 3250 /** 3251 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3252 * @ss: target cgroup subsystem 3253 * @cfts: zero-length name terminated array of cftypes 3254 * 3255 * Register @cfts to @ss. Files described by @cfts are created for all 3256 * existing cgroups to which @ss is attached and all future cgroups will 3257 * have them too. This function can be called anytime whether @ss is 3258 * attached or not. 3259 * 3260 * Returns 0 on successful registration, -errno on failure. Note that this 3261 * function currently returns 0 as long as @cfts registration is successful 3262 * even if some file creation attempts on existing cgroups fail. 3263 */ 3264 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3265 { 3266 int ret; 3267 3268 if (!cgroup_ssid_enabled(ss->id)) 3269 return 0; 3270 3271 if (!cfts || cfts[0].name[0] == '\0') 3272 return 0; 3273 3274 ret = cgroup_init_cftypes(ss, cfts); 3275 if (ret) 3276 return ret; 3277 3278 mutex_lock(&cgroup_mutex); 3279 3280 list_add_tail(&cfts->node, &ss->cfts); 3281 ret = cgroup_apply_cftypes(cfts, true); 3282 if (ret) 3283 cgroup_rm_cftypes_locked(cfts); 3284 3285 mutex_unlock(&cgroup_mutex); 3286 return ret; 3287 } 3288 3289 /** 3290 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3291 * @ss: target cgroup subsystem 3292 * @cfts: zero-length name terminated array of cftypes 3293 * 3294 * Similar to cgroup_add_cftypes() but the added files are only used for 3295 * the default hierarchy. 3296 */ 3297 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3298 { 3299 struct cftype *cft; 3300 3301 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3302 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3303 return cgroup_add_cftypes(ss, cfts); 3304 } 3305 3306 /** 3307 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3308 * @ss: target cgroup subsystem 3309 * @cfts: zero-length name terminated array of cftypes 3310 * 3311 * Similar to cgroup_add_cftypes() but the added files are only used for 3312 * the legacy hierarchies. 3313 */ 3314 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3315 { 3316 struct cftype *cft; 3317 3318 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3319 cft->flags |= __CFTYPE_NOT_ON_DFL; 3320 return cgroup_add_cftypes(ss, cfts); 3321 } 3322 3323 /** 3324 * cgroup_file_notify - generate a file modified event for a cgroup_file 3325 * @cfile: target cgroup_file 3326 * 3327 * @cfile must have been obtained by setting cftype->file_offset. 3328 */ 3329 void cgroup_file_notify(struct cgroup_file *cfile) 3330 { 3331 unsigned long flags; 3332 3333 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3334 if (cfile->kn) 3335 kernfs_notify(cfile->kn); 3336 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3337 } 3338 3339 /** 3340 * css_next_child - find the next child of a given css 3341 * @pos: the current position (%NULL to initiate traversal) 3342 * @parent: css whose children to walk 3343 * 3344 * This function returns the next child of @parent and should be called 3345 * under either cgroup_mutex or RCU read lock. The only requirement is 3346 * that @parent and @pos are accessible. The next sibling is guaranteed to 3347 * be returned regardless of their states. 3348 * 3349 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3350 * css which finished ->css_online() is guaranteed to be visible in the 3351 * future iterations and will stay visible until the last reference is put. 3352 * A css which hasn't finished ->css_online() or already finished 3353 * ->css_offline() may show up during traversal. It's each subsystem's 3354 * responsibility to synchronize against on/offlining. 3355 */ 3356 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3357 struct cgroup_subsys_state *parent) 3358 { 3359 struct cgroup_subsys_state *next; 3360 3361 cgroup_assert_mutex_or_rcu_locked(); 3362 3363 /* 3364 * @pos could already have been unlinked from the sibling list. 3365 * Once a cgroup is removed, its ->sibling.next is no longer 3366 * updated when its next sibling changes. CSS_RELEASED is set when 3367 * @pos is taken off list, at which time its next pointer is valid, 3368 * and, as releases are serialized, the one pointed to by the next 3369 * pointer is guaranteed to not have started release yet. This 3370 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3371 * critical section, the one pointed to by its next pointer is 3372 * guaranteed to not have finished its RCU grace period even if we 3373 * have dropped rcu_read_lock() inbetween iterations. 3374 * 3375 * If @pos has CSS_RELEASED set, its next pointer can't be 3376 * dereferenced; however, as each css is given a monotonically 3377 * increasing unique serial number and always appended to the 3378 * sibling list, the next one can be found by walking the parent's 3379 * children until the first css with higher serial number than 3380 * @pos's. While this path can be slower, it happens iff iteration 3381 * races against release and the race window is very small. 3382 */ 3383 if (!pos) { 3384 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3385 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3386 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3387 } else { 3388 list_for_each_entry_rcu(next, &parent->children, sibling) 3389 if (next->serial_nr > pos->serial_nr) 3390 break; 3391 } 3392 3393 /* 3394 * @next, if not pointing to the head, can be dereferenced and is 3395 * the next sibling. 3396 */ 3397 if (&next->sibling != &parent->children) 3398 return next; 3399 return NULL; 3400 } 3401 3402 /** 3403 * css_next_descendant_pre - find the next descendant for pre-order walk 3404 * @pos: the current position (%NULL to initiate traversal) 3405 * @root: css whose descendants to walk 3406 * 3407 * To be used by css_for_each_descendant_pre(). Find the next descendant 3408 * to visit for pre-order traversal of @root's descendants. @root is 3409 * included in the iteration and the first node to be visited. 3410 * 3411 * While this function requires cgroup_mutex or RCU read locking, it 3412 * doesn't require the whole traversal to be contained in a single critical 3413 * section. This function will return the correct next descendant as long 3414 * as both @pos and @root are accessible and @pos is a descendant of @root. 3415 * 3416 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3417 * css which finished ->css_online() is guaranteed to be visible in the 3418 * future iterations and will stay visible until the last reference is put. 3419 * A css which hasn't finished ->css_online() or already finished 3420 * ->css_offline() may show up during traversal. It's each subsystem's 3421 * responsibility to synchronize against on/offlining. 3422 */ 3423 struct cgroup_subsys_state * 3424 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3425 struct cgroup_subsys_state *root) 3426 { 3427 struct cgroup_subsys_state *next; 3428 3429 cgroup_assert_mutex_or_rcu_locked(); 3430 3431 /* if first iteration, visit @root */ 3432 if (!pos) 3433 return root; 3434 3435 /* visit the first child if exists */ 3436 next = css_next_child(NULL, pos); 3437 if (next) 3438 return next; 3439 3440 /* no child, visit my or the closest ancestor's next sibling */ 3441 while (pos != root) { 3442 next = css_next_child(pos, pos->parent); 3443 if (next) 3444 return next; 3445 pos = pos->parent; 3446 } 3447 3448 return NULL; 3449 } 3450 3451 /** 3452 * css_rightmost_descendant - return the rightmost descendant of a css 3453 * @pos: css of interest 3454 * 3455 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3456 * is returned. This can be used during pre-order traversal to skip 3457 * subtree of @pos. 3458 * 3459 * While this function requires cgroup_mutex or RCU read locking, it 3460 * doesn't require the whole traversal to be contained in a single critical 3461 * section. This function will return the correct rightmost descendant as 3462 * long as @pos is accessible. 3463 */ 3464 struct cgroup_subsys_state * 3465 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3466 { 3467 struct cgroup_subsys_state *last, *tmp; 3468 3469 cgroup_assert_mutex_or_rcu_locked(); 3470 3471 do { 3472 last = pos; 3473 /* ->prev isn't RCU safe, walk ->next till the end */ 3474 pos = NULL; 3475 css_for_each_child(tmp, last) 3476 pos = tmp; 3477 } while (pos); 3478 3479 return last; 3480 } 3481 3482 static struct cgroup_subsys_state * 3483 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3484 { 3485 struct cgroup_subsys_state *last; 3486 3487 do { 3488 last = pos; 3489 pos = css_next_child(NULL, pos); 3490 } while (pos); 3491 3492 return last; 3493 } 3494 3495 /** 3496 * css_next_descendant_post - find the next descendant for post-order walk 3497 * @pos: the current position (%NULL to initiate traversal) 3498 * @root: css whose descendants to walk 3499 * 3500 * To be used by css_for_each_descendant_post(). Find the next descendant 3501 * to visit for post-order traversal of @root's descendants. @root is 3502 * included in the iteration and the last node to be visited. 3503 * 3504 * While this function requires cgroup_mutex or RCU read locking, it 3505 * doesn't require the whole traversal to be contained in a single critical 3506 * section. This function will return the correct next descendant as long 3507 * as both @pos and @cgroup are accessible and @pos is a descendant of 3508 * @cgroup. 3509 * 3510 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3511 * css which finished ->css_online() is guaranteed to be visible in the 3512 * future iterations and will stay visible until the last reference is put. 3513 * A css which hasn't finished ->css_online() or already finished 3514 * ->css_offline() may show up during traversal. It's each subsystem's 3515 * responsibility to synchronize against on/offlining. 3516 */ 3517 struct cgroup_subsys_state * 3518 css_next_descendant_post(struct cgroup_subsys_state *pos, 3519 struct cgroup_subsys_state *root) 3520 { 3521 struct cgroup_subsys_state *next; 3522 3523 cgroup_assert_mutex_or_rcu_locked(); 3524 3525 /* if first iteration, visit leftmost descendant which may be @root */ 3526 if (!pos) 3527 return css_leftmost_descendant(root); 3528 3529 /* if we visited @root, we're done */ 3530 if (pos == root) 3531 return NULL; 3532 3533 /* if there's an unvisited sibling, visit its leftmost descendant */ 3534 next = css_next_child(pos, pos->parent); 3535 if (next) 3536 return css_leftmost_descendant(next); 3537 3538 /* no sibling left, visit parent */ 3539 return pos->parent; 3540 } 3541 3542 /** 3543 * css_has_online_children - does a css have online children 3544 * @css: the target css 3545 * 3546 * Returns %true if @css has any online children; otherwise, %false. This 3547 * function can be called from any context but the caller is responsible 3548 * for synchronizing against on/offlining as necessary. 3549 */ 3550 bool css_has_online_children(struct cgroup_subsys_state *css) 3551 { 3552 struct cgroup_subsys_state *child; 3553 bool ret = false; 3554 3555 rcu_read_lock(); 3556 css_for_each_child(child, css) { 3557 if (child->flags & CSS_ONLINE) { 3558 ret = true; 3559 break; 3560 } 3561 } 3562 rcu_read_unlock(); 3563 return ret; 3564 } 3565 3566 /** 3567 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 3568 * @it: the iterator to advance 3569 * 3570 * Advance @it to the next css_set to walk. 3571 */ 3572 static void css_task_iter_advance_css_set(struct css_task_iter *it) 3573 { 3574 struct list_head *l = it->cset_pos; 3575 struct cgrp_cset_link *link; 3576 struct css_set *cset; 3577 3578 lockdep_assert_held(&css_set_lock); 3579 3580 /* Advance to the next non-empty css_set */ 3581 do { 3582 l = l->next; 3583 if (l == it->cset_head) { 3584 it->cset_pos = NULL; 3585 it->task_pos = NULL; 3586 return; 3587 } 3588 3589 if (it->ss) { 3590 cset = container_of(l, struct css_set, 3591 e_cset_node[it->ss->id]); 3592 } else { 3593 link = list_entry(l, struct cgrp_cset_link, cset_link); 3594 cset = link->cset; 3595 } 3596 } while (!css_set_populated(cset)); 3597 3598 it->cset_pos = l; 3599 3600 if (!list_empty(&cset->tasks)) 3601 it->task_pos = cset->tasks.next; 3602 else 3603 it->task_pos = cset->mg_tasks.next; 3604 3605 it->tasks_head = &cset->tasks; 3606 it->mg_tasks_head = &cset->mg_tasks; 3607 3608 /* 3609 * We don't keep css_sets locked across iteration steps and thus 3610 * need to take steps to ensure that iteration can be resumed after 3611 * the lock is re-acquired. Iteration is performed at two levels - 3612 * css_sets and tasks in them. 3613 * 3614 * Once created, a css_set never leaves its cgroup lists, so a 3615 * pinned css_set is guaranteed to stay put and we can resume 3616 * iteration afterwards. 3617 * 3618 * Tasks may leave @cset across iteration steps. This is resolved 3619 * by registering each iterator with the css_set currently being 3620 * walked and making css_set_move_task() advance iterators whose 3621 * next task is leaving. 3622 */ 3623 if (it->cur_cset) { 3624 list_del(&it->iters_node); 3625 put_css_set_locked(it->cur_cset); 3626 } 3627 get_css_set(cset); 3628 it->cur_cset = cset; 3629 list_add(&it->iters_node, &cset->task_iters); 3630 } 3631 3632 static void css_task_iter_advance(struct css_task_iter *it) 3633 { 3634 struct list_head *l = it->task_pos; 3635 3636 lockdep_assert_held(&css_set_lock); 3637 WARN_ON_ONCE(!l); 3638 3639 /* 3640 * Advance iterator to find next entry. cset->tasks is consumed 3641 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 3642 * next cset. 3643 */ 3644 l = l->next; 3645 3646 if (l == it->tasks_head) 3647 l = it->mg_tasks_head->next; 3648 3649 if (l == it->mg_tasks_head) 3650 css_task_iter_advance_css_set(it); 3651 else 3652 it->task_pos = l; 3653 } 3654 3655 /** 3656 * css_task_iter_start - initiate task iteration 3657 * @css: the css to walk tasks of 3658 * @it: the task iterator to use 3659 * 3660 * Initiate iteration through the tasks of @css. The caller can call 3661 * css_task_iter_next() to walk through the tasks until the function 3662 * returns NULL. On completion of iteration, css_task_iter_end() must be 3663 * called. 3664 */ 3665 void css_task_iter_start(struct cgroup_subsys_state *css, 3666 struct css_task_iter *it) 3667 { 3668 /* no one should try to iterate before mounting cgroups */ 3669 WARN_ON_ONCE(!use_task_css_set_links); 3670 3671 memset(it, 0, sizeof(*it)); 3672 3673 spin_lock_irq(&css_set_lock); 3674 3675 it->ss = css->ss; 3676 3677 if (it->ss) 3678 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 3679 else 3680 it->cset_pos = &css->cgroup->cset_links; 3681 3682 it->cset_head = it->cset_pos; 3683 3684 css_task_iter_advance_css_set(it); 3685 3686 spin_unlock_irq(&css_set_lock); 3687 } 3688 3689 /** 3690 * css_task_iter_next - return the next task for the iterator 3691 * @it: the task iterator being iterated 3692 * 3693 * The "next" function for task iteration. @it should have been 3694 * initialized via css_task_iter_start(). Returns NULL when the iteration 3695 * reaches the end. 3696 */ 3697 struct task_struct *css_task_iter_next(struct css_task_iter *it) 3698 { 3699 if (it->cur_task) { 3700 put_task_struct(it->cur_task); 3701 it->cur_task = NULL; 3702 } 3703 3704 spin_lock_irq(&css_set_lock); 3705 3706 if (it->task_pos) { 3707 it->cur_task = list_entry(it->task_pos, struct task_struct, 3708 cg_list); 3709 get_task_struct(it->cur_task); 3710 css_task_iter_advance(it); 3711 } 3712 3713 spin_unlock_irq(&css_set_lock); 3714 3715 return it->cur_task; 3716 } 3717 3718 /** 3719 * css_task_iter_end - finish task iteration 3720 * @it: the task iterator to finish 3721 * 3722 * Finish task iteration started by css_task_iter_start(). 3723 */ 3724 void css_task_iter_end(struct css_task_iter *it) 3725 { 3726 if (it->cur_cset) { 3727 spin_lock_irq(&css_set_lock); 3728 list_del(&it->iters_node); 3729 put_css_set_locked(it->cur_cset); 3730 spin_unlock_irq(&css_set_lock); 3731 } 3732 3733 if (it->cur_task) 3734 put_task_struct(it->cur_task); 3735 } 3736 3737 static void cgroup_procs_release(struct kernfs_open_file *of) 3738 { 3739 if (of->priv) { 3740 css_task_iter_end(of->priv); 3741 kfree(of->priv); 3742 } 3743 } 3744 3745 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 3746 { 3747 struct kernfs_open_file *of = s->private; 3748 struct css_task_iter *it = of->priv; 3749 struct task_struct *task; 3750 3751 do { 3752 task = css_task_iter_next(it); 3753 } while (task && !thread_group_leader(task)); 3754 3755 return task; 3756 } 3757 3758 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 3759 { 3760 struct kernfs_open_file *of = s->private; 3761 struct cgroup *cgrp = seq_css(s)->cgroup; 3762 struct css_task_iter *it = of->priv; 3763 3764 /* 3765 * When a seq_file is seeked, it's always traversed sequentially 3766 * from position 0, so we can simply keep iterating on !0 *pos. 3767 */ 3768 if (!it) { 3769 if (WARN_ON_ONCE((*pos)++)) 3770 return ERR_PTR(-EINVAL); 3771 3772 it = kzalloc(sizeof(*it), GFP_KERNEL); 3773 if (!it) 3774 return ERR_PTR(-ENOMEM); 3775 of->priv = it; 3776 css_task_iter_start(&cgrp->self, it); 3777 } else if (!(*pos)++) { 3778 css_task_iter_end(it); 3779 css_task_iter_start(&cgrp->self, it); 3780 } 3781 3782 return cgroup_procs_next(s, NULL, NULL); 3783 } 3784 3785 static int cgroup_procs_show(struct seq_file *s, void *v) 3786 { 3787 seq_printf(s, "%d\n", task_tgid_vnr(v)); 3788 return 0; 3789 } 3790 3791 /* cgroup core interface files for the default hierarchy */ 3792 static struct cftype cgroup_base_files[] = { 3793 { 3794 .name = "cgroup.procs", 3795 .file_offset = offsetof(struct cgroup, procs_file), 3796 .release = cgroup_procs_release, 3797 .seq_start = cgroup_procs_start, 3798 .seq_next = cgroup_procs_next, 3799 .seq_show = cgroup_procs_show, 3800 .write = cgroup_procs_write, 3801 }, 3802 { 3803 .name = "cgroup.controllers", 3804 .seq_show = cgroup_controllers_show, 3805 }, 3806 { 3807 .name = "cgroup.subtree_control", 3808 .seq_show = cgroup_subtree_control_show, 3809 .write = cgroup_subtree_control_write, 3810 }, 3811 { 3812 .name = "cgroup.events", 3813 .flags = CFTYPE_NOT_ON_ROOT, 3814 .file_offset = offsetof(struct cgroup, events_file), 3815 .seq_show = cgroup_events_show, 3816 }, 3817 { } /* terminate */ 3818 }; 3819 3820 /* 3821 * css destruction is four-stage process. 3822 * 3823 * 1. Destruction starts. Killing of the percpu_ref is initiated. 3824 * Implemented in kill_css(). 3825 * 3826 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 3827 * and thus css_tryget_online() is guaranteed to fail, the css can be 3828 * offlined by invoking offline_css(). After offlining, the base ref is 3829 * put. Implemented in css_killed_work_fn(). 3830 * 3831 * 3. When the percpu_ref reaches zero, the only possible remaining 3832 * accessors are inside RCU read sections. css_release() schedules the 3833 * RCU callback. 3834 * 3835 * 4. After the grace period, the css can be freed. Implemented in 3836 * css_free_work_fn(). 3837 * 3838 * It is actually hairier because both step 2 and 4 require process context 3839 * and thus involve punting to css->destroy_work adding two additional 3840 * steps to the already complex sequence. 3841 */ 3842 static void css_free_work_fn(struct work_struct *work) 3843 { 3844 struct cgroup_subsys_state *css = 3845 container_of(work, struct cgroup_subsys_state, destroy_work); 3846 struct cgroup_subsys *ss = css->ss; 3847 struct cgroup *cgrp = css->cgroup; 3848 3849 percpu_ref_exit(&css->refcnt); 3850 3851 if (ss) { 3852 /* css free path */ 3853 struct cgroup_subsys_state *parent = css->parent; 3854 int id = css->id; 3855 3856 ss->css_free(css); 3857 cgroup_idr_remove(&ss->css_idr, id); 3858 cgroup_put(cgrp); 3859 3860 if (parent) 3861 css_put(parent); 3862 } else { 3863 /* cgroup free path */ 3864 atomic_dec(&cgrp->root->nr_cgrps); 3865 cgroup1_pidlist_destroy_all(cgrp); 3866 cancel_work_sync(&cgrp->release_agent_work); 3867 3868 if (cgroup_parent(cgrp)) { 3869 /* 3870 * We get a ref to the parent, and put the ref when 3871 * this cgroup is being freed, so it's guaranteed 3872 * that the parent won't be destroyed before its 3873 * children. 3874 */ 3875 cgroup_put(cgroup_parent(cgrp)); 3876 kernfs_put(cgrp->kn); 3877 kfree(cgrp); 3878 } else { 3879 /* 3880 * This is root cgroup's refcnt reaching zero, 3881 * which indicates that the root should be 3882 * released. 3883 */ 3884 cgroup_destroy_root(cgrp->root); 3885 } 3886 } 3887 } 3888 3889 static void css_free_rcu_fn(struct rcu_head *rcu_head) 3890 { 3891 struct cgroup_subsys_state *css = 3892 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 3893 3894 INIT_WORK(&css->destroy_work, css_free_work_fn); 3895 queue_work(cgroup_destroy_wq, &css->destroy_work); 3896 } 3897 3898 static void css_release_work_fn(struct work_struct *work) 3899 { 3900 struct cgroup_subsys_state *css = 3901 container_of(work, struct cgroup_subsys_state, destroy_work); 3902 struct cgroup_subsys *ss = css->ss; 3903 struct cgroup *cgrp = css->cgroup; 3904 3905 mutex_lock(&cgroup_mutex); 3906 3907 css->flags |= CSS_RELEASED; 3908 list_del_rcu(&css->sibling); 3909 3910 if (ss) { 3911 /* css release path */ 3912 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 3913 if (ss->css_released) 3914 ss->css_released(css); 3915 } else { 3916 /* cgroup release path */ 3917 trace_cgroup_release(cgrp); 3918 3919 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 3920 cgrp->id = -1; 3921 3922 /* 3923 * There are two control paths which try to determine 3924 * cgroup from dentry without going through kernfs - 3925 * cgroupstats_build() and css_tryget_online_from_dir(). 3926 * Those are supported by RCU protecting clearing of 3927 * cgrp->kn->priv backpointer. 3928 */ 3929 if (cgrp->kn) 3930 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 3931 NULL); 3932 3933 cgroup_bpf_put(cgrp); 3934 } 3935 3936 mutex_unlock(&cgroup_mutex); 3937 3938 call_rcu(&css->rcu_head, css_free_rcu_fn); 3939 } 3940 3941 static void css_release(struct percpu_ref *ref) 3942 { 3943 struct cgroup_subsys_state *css = 3944 container_of(ref, struct cgroup_subsys_state, refcnt); 3945 3946 INIT_WORK(&css->destroy_work, css_release_work_fn); 3947 queue_work(cgroup_destroy_wq, &css->destroy_work); 3948 } 3949 3950 static void init_and_link_css(struct cgroup_subsys_state *css, 3951 struct cgroup_subsys *ss, struct cgroup *cgrp) 3952 { 3953 lockdep_assert_held(&cgroup_mutex); 3954 3955 cgroup_get_live(cgrp); 3956 3957 memset(css, 0, sizeof(*css)); 3958 css->cgroup = cgrp; 3959 css->ss = ss; 3960 css->id = -1; 3961 INIT_LIST_HEAD(&css->sibling); 3962 INIT_LIST_HEAD(&css->children); 3963 css->serial_nr = css_serial_nr_next++; 3964 atomic_set(&css->online_cnt, 0); 3965 3966 if (cgroup_parent(cgrp)) { 3967 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 3968 css_get(css->parent); 3969 } 3970 3971 BUG_ON(cgroup_css(cgrp, ss)); 3972 } 3973 3974 /* invoke ->css_online() on a new CSS and mark it online if successful */ 3975 static int online_css(struct cgroup_subsys_state *css) 3976 { 3977 struct cgroup_subsys *ss = css->ss; 3978 int ret = 0; 3979 3980 lockdep_assert_held(&cgroup_mutex); 3981 3982 if (ss->css_online) 3983 ret = ss->css_online(css); 3984 if (!ret) { 3985 css->flags |= CSS_ONLINE; 3986 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 3987 3988 atomic_inc(&css->online_cnt); 3989 if (css->parent) 3990 atomic_inc(&css->parent->online_cnt); 3991 } 3992 return ret; 3993 } 3994 3995 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 3996 static void offline_css(struct cgroup_subsys_state *css) 3997 { 3998 struct cgroup_subsys *ss = css->ss; 3999 4000 lockdep_assert_held(&cgroup_mutex); 4001 4002 if (!(css->flags & CSS_ONLINE)) 4003 return; 4004 4005 if (ss->css_reset) 4006 ss->css_reset(css); 4007 4008 if (ss->css_offline) 4009 ss->css_offline(css); 4010 4011 css->flags &= ~CSS_ONLINE; 4012 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4013 4014 wake_up_all(&css->cgroup->offline_waitq); 4015 } 4016 4017 /** 4018 * css_create - create a cgroup_subsys_state 4019 * @cgrp: the cgroup new css will be associated with 4020 * @ss: the subsys of new css 4021 * 4022 * Create a new css associated with @cgrp - @ss pair. On success, the new 4023 * css is online and installed in @cgrp. This function doesn't create the 4024 * interface files. Returns 0 on success, -errno on failure. 4025 */ 4026 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4027 struct cgroup_subsys *ss) 4028 { 4029 struct cgroup *parent = cgroup_parent(cgrp); 4030 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4031 struct cgroup_subsys_state *css; 4032 int err; 4033 4034 lockdep_assert_held(&cgroup_mutex); 4035 4036 css = ss->css_alloc(parent_css); 4037 if (!css) 4038 css = ERR_PTR(-ENOMEM); 4039 if (IS_ERR(css)) 4040 return css; 4041 4042 init_and_link_css(css, ss, cgrp); 4043 4044 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4045 if (err) 4046 goto err_free_css; 4047 4048 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4049 if (err < 0) 4050 goto err_free_css; 4051 css->id = err; 4052 4053 /* @css is ready to be brought online now, make it visible */ 4054 list_add_tail_rcu(&css->sibling, &parent_css->children); 4055 cgroup_idr_replace(&ss->css_idr, css, css->id); 4056 4057 err = online_css(css); 4058 if (err) 4059 goto err_list_del; 4060 4061 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4062 cgroup_parent(parent)) { 4063 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4064 current->comm, current->pid, ss->name); 4065 if (!strcmp(ss->name, "memory")) 4066 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4067 ss->warned_broken_hierarchy = true; 4068 } 4069 4070 return css; 4071 4072 err_list_del: 4073 list_del_rcu(&css->sibling); 4074 err_free_css: 4075 call_rcu(&css->rcu_head, css_free_rcu_fn); 4076 return ERR_PTR(err); 4077 } 4078 4079 /* 4080 * The returned cgroup is fully initialized including its control mask, but 4081 * it isn't associated with its kernfs_node and doesn't have the control 4082 * mask applied. 4083 */ 4084 static struct cgroup *cgroup_create(struct cgroup *parent) 4085 { 4086 struct cgroup_root *root = parent->root; 4087 struct cgroup *cgrp, *tcgrp; 4088 int level = parent->level + 1; 4089 int ret; 4090 4091 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4092 cgrp = kzalloc(sizeof(*cgrp) + 4093 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); 4094 if (!cgrp) 4095 return ERR_PTR(-ENOMEM); 4096 4097 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4098 if (ret) 4099 goto out_free_cgrp; 4100 4101 /* 4102 * Temporarily set the pointer to NULL, so idr_find() won't return 4103 * a half-baked cgroup. 4104 */ 4105 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4106 if (cgrp->id < 0) { 4107 ret = -ENOMEM; 4108 goto out_cancel_ref; 4109 } 4110 4111 init_cgroup_housekeeping(cgrp); 4112 4113 cgrp->self.parent = &parent->self; 4114 cgrp->root = root; 4115 cgrp->level = level; 4116 4117 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) 4118 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4119 4120 if (notify_on_release(parent)) 4121 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4122 4123 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4124 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4125 4126 cgrp->self.serial_nr = css_serial_nr_next++; 4127 4128 /* allocation complete, commit to creation */ 4129 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4130 atomic_inc(&root->nr_cgrps); 4131 cgroup_get_live(parent); 4132 4133 /* 4134 * @cgrp is now fully operational. If something fails after this 4135 * point, it'll be released via the normal destruction path. 4136 */ 4137 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4138 4139 /* 4140 * On the default hierarchy, a child doesn't automatically inherit 4141 * subtree_control from the parent. Each is configured manually. 4142 */ 4143 if (!cgroup_on_dfl(cgrp)) 4144 cgrp->subtree_control = cgroup_control(cgrp); 4145 4146 if (parent) 4147 cgroup_bpf_inherit(cgrp, parent); 4148 4149 cgroup_propagate_control(cgrp); 4150 4151 return cgrp; 4152 4153 out_cancel_ref: 4154 percpu_ref_exit(&cgrp->self.refcnt); 4155 out_free_cgrp: 4156 kfree(cgrp); 4157 return ERR_PTR(ret); 4158 } 4159 4160 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4161 { 4162 struct cgroup *parent, *cgrp; 4163 struct kernfs_node *kn; 4164 int ret; 4165 4166 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4167 if (strchr(name, '\n')) 4168 return -EINVAL; 4169 4170 parent = cgroup_kn_lock_live(parent_kn, false); 4171 if (!parent) 4172 return -ENODEV; 4173 4174 cgrp = cgroup_create(parent); 4175 if (IS_ERR(cgrp)) { 4176 ret = PTR_ERR(cgrp); 4177 goto out_unlock; 4178 } 4179 4180 /* create the directory */ 4181 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4182 if (IS_ERR(kn)) { 4183 ret = PTR_ERR(kn); 4184 goto out_destroy; 4185 } 4186 cgrp->kn = kn; 4187 4188 /* 4189 * This extra ref will be put in cgroup_free_fn() and guarantees 4190 * that @cgrp->kn is always accessible. 4191 */ 4192 kernfs_get(kn); 4193 4194 ret = cgroup_kn_set_ugid(kn); 4195 if (ret) 4196 goto out_destroy; 4197 4198 ret = css_populate_dir(&cgrp->self); 4199 if (ret) 4200 goto out_destroy; 4201 4202 ret = cgroup_apply_control_enable(cgrp); 4203 if (ret) 4204 goto out_destroy; 4205 4206 trace_cgroup_mkdir(cgrp); 4207 4208 /* let's create and online css's */ 4209 kernfs_activate(kn); 4210 4211 ret = 0; 4212 goto out_unlock; 4213 4214 out_destroy: 4215 cgroup_destroy_locked(cgrp); 4216 out_unlock: 4217 cgroup_kn_unlock(parent_kn); 4218 return ret; 4219 } 4220 4221 /* 4222 * This is called when the refcnt of a css is confirmed to be killed. 4223 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4224 * initate destruction and put the css ref from kill_css(). 4225 */ 4226 static void css_killed_work_fn(struct work_struct *work) 4227 { 4228 struct cgroup_subsys_state *css = 4229 container_of(work, struct cgroup_subsys_state, destroy_work); 4230 4231 mutex_lock(&cgroup_mutex); 4232 4233 do { 4234 offline_css(css); 4235 css_put(css); 4236 /* @css can't go away while we're holding cgroup_mutex */ 4237 css = css->parent; 4238 } while (css && atomic_dec_and_test(&css->online_cnt)); 4239 4240 mutex_unlock(&cgroup_mutex); 4241 } 4242 4243 /* css kill confirmation processing requires process context, bounce */ 4244 static void css_killed_ref_fn(struct percpu_ref *ref) 4245 { 4246 struct cgroup_subsys_state *css = 4247 container_of(ref, struct cgroup_subsys_state, refcnt); 4248 4249 if (atomic_dec_and_test(&css->online_cnt)) { 4250 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4251 queue_work(cgroup_destroy_wq, &css->destroy_work); 4252 } 4253 } 4254 4255 /** 4256 * kill_css - destroy a css 4257 * @css: css to destroy 4258 * 4259 * This function initiates destruction of @css by removing cgroup interface 4260 * files and putting its base reference. ->css_offline() will be invoked 4261 * asynchronously once css_tryget_online() is guaranteed to fail and when 4262 * the reference count reaches zero, @css will be released. 4263 */ 4264 static void kill_css(struct cgroup_subsys_state *css) 4265 { 4266 lockdep_assert_held(&cgroup_mutex); 4267 4268 /* 4269 * This must happen before css is disassociated with its cgroup. 4270 * See seq_css() for details. 4271 */ 4272 css_clear_dir(css); 4273 4274 /* 4275 * Killing would put the base ref, but we need to keep it alive 4276 * until after ->css_offline(). 4277 */ 4278 css_get(css); 4279 4280 /* 4281 * cgroup core guarantees that, by the time ->css_offline() is 4282 * invoked, no new css reference will be given out via 4283 * css_tryget_online(). We can't simply call percpu_ref_kill() and 4284 * proceed to offlining css's because percpu_ref_kill() doesn't 4285 * guarantee that the ref is seen as killed on all CPUs on return. 4286 * 4287 * Use percpu_ref_kill_and_confirm() to get notifications as each 4288 * css is confirmed to be seen as killed on all CPUs. 4289 */ 4290 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 4291 } 4292 4293 /** 4294 * cgroup_destroy_locked - the first stage of cgroup destruction 4295 * @cgrp: cgroup to be destroyed 4296 * 4297 * css's make use of percpu refcnts whose killing latency shouldn't be 4298 * exposed to userland and are RCU protected. Also, cgroup core needs to 4299 * guarantee that css_tryget_online() won't succeed by the time 4300 * ->css_offline() is invoked. To satisfy all the requirements, 4301 * destruction is implemented in the following two steps. 4302 * 4303 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 4304 * userland visible parts and start killing the percpu refcnts of 4305 * css's. Set up so that the next stage will be kicked off once all 4306 * the percpu refcnts are confirmed to be killed. 4307 * 4308 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 4309 * rest of destruction. Once all cgroup references are gone, the 4310 * cgroup is RCU-freed. 4311 * 4312 * This function implements s1. After this step, @cgrp is gone as far as 4313 * the userland is concerned and a new cgroup with the same name may be 4314 * created. As cgroup doesn't care about the names internally, this 4315 * doesn't cause any problem. 4316 */ 4317 static int cgroup_destroy_locked(struct cgroup *cgrp) 4318 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 4319 { 4320 struct cgroup_subsys_state *css; 4321 struct cgrp_cset_link *link; 4322 int ssid; 4323 4324 lockdep_assert_held(&cgroup_mutex); 4325 4326 /* 4327 * Only migration can raise populated from zero and we're already 4328 * holding cgroup_mutex. 4329 */ 4330 if (cgroup_is_populated(cgrp)) 4331 return -EBUSY; 4332 4333 /* 4334 * Make sure there's no live children. We can't test emptiness of 4335 * ->self.children as dead children linger on it while being 4336 * drained; otherwise, "rmdir parent/child parent" may fail. 4337 */ 4338 if (css_has_online_children(&cgrp->self)) 4339 return -EBUSY; 4340 4341 /* 4342 * Mark @cgrp and the associated csets dead. The former prevents 4343 * further task migration and child creation by disabling 4344 * cgroup_lock_live_group(). The latter makes the csets ignored by 4345 * the migration path. 4346 */ 4347 cgrp->self.flags &= ~CSS_ONLINE; 4348 4349 spin_lock_irq(&css_set_lock); 4350 list_for_each_entry(link, &cgrp->cset_links, cset_link) 4351 link->cset->dead = true; 4352 spin_unlock_irq(&css_set_lock); 4353 4354 /* initiate massacre of all css's */ 4355 for_each_css(css, ssid, cgrp) 4356 kill_css(css); 4357 4358 /* 4359 * Remove @cgrp directory along with the base files. @cgrp has an 4360 * extra ref on its kn. 4361 */ 4362 kernfs_remove(cgrp->kn); 4363 4364 cgroup1_check_for_release(cgroup_parent(cgrp)); 4365 4366 /* put the base reference */ 4367 percpu_ref_kill(&cgrp->self.refcnt); 4368 4369 return 0; 4370 }; 4371 4372 int cgroup_rmdir(struct kernfs_node *kn) 4373 { 4374 struct cgroup *cgrp; 4375 int ret = 0; 4376 4377 cgrp = cgroup_kn_lock_live(kn, false); 4378 if (!cgrp) 4379 return 0; 4380 4381 ret = cgroup_destroy_locked(cgrp); 4382 4383 if (!ret) 4384 trace_cgroup_rmdir(cgrp); 4385 4386 cgroup_kn_unlock(kn); 4387 return ret; 4388 } 4389 4390 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 4391 .remount_fs = cgroup_remount, 4392 .mkdir = cgroup_mkdir, 4393 .rmdir = cgroup_rmdir, 4394 .show_path = cgroup_show_path, 4395 }; 4396 4397 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 4398 { 4399 struct cgroup_subsys_state *css; 4400 4401 pr_debug("Initializing cgroup subsys %s\n", ss->name); 4402 4403 mutex_lock(&cgroup_mutex); 4404 4405 idr_init(&ss->css_idr); 4406 INIT_LIST_HEAD(&ss->cfts); 4407 4408 /* Create the root cgroup state for this subsystem */ 4409 ss->root = &cgrp_dfl_root; 4410 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 4411 /* We don't handle early failures gracefully */ 4412 BUG_ON(IS_ERR(css)); 4413 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 4414 4415 /* 4416 * Root csses are never destroyed and we can't initialize 4417 * percpu_ref during early init. Disable refcnting. 4418 */ 4419 css->flags |= CSS_NO_REF; 4420 4421 if (early) { 4422 /* allocation can't be done safely during early init */ 4423 css->id = 1; 4424 } else { 4425 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 4426 BUG_ON(css->id < 0); 4427 } 4428 4429 /* Update the init_css_set to contain a subsys 4430 * pointer to this state - since the subsystem is 4431 * newly registered, all tasks and hence the 4432 * init_css_set is in the subsystem's root cgroup. */ 4433 init_css_set.subsys[ss->id] = css; 4434 4435 have_fork_callback |= (bool)ss->fork << ss->id; 4436 have_exit_callback |= (bool)ss->exit << ss->id; 4437 have_free_callback |= (bool)ss->free << ss->id; 4438 have_canfork_callback |= (bool)ss->can_fork << ss->id; 4439 4440 /* At system boot, before all subsystems have been 4441 * registered, no tasks have been forked, so we don't 4442 * need to invoke fork callbacks here. */ 4443 BUG_ON(!list_empty(&init_task.tasks)); 4444 4445 BUG_ON(online_css(css)); 4446 4447 mutex_unlock(&cgroup_mutex); 4448 } 4449 4450 /** 4451 * cgroup_init_early - cgroup initialization at system boot 4452 * 4453 * Initialize cgroups at system boot, and initialize any 4454 * subsystems that request early init. 4455 */ 4456 int __init cgroup_init_early(void) 4457 { 4458 static struct cgroup_sb_opts __initdata opts; 4459 struct cgroup_subsys *ss; 4460 int i; 4461 4462 init_cgroup_root(&cgrp_dfl_root, &opts); 4463 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 4464 4465 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 4466 4467 for_each_subsys(ss, i) { 4468 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 4469 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 4470 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 4471 ss->id, ss->name); 4472 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 4473 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 4474 4475 ss->id = i; 4476 ss->name = cgroup_subsys_name[i]; 4477 if (!ss->legacy_name) 4478 ss->legacy_name = cgroup_subsys_name[i]; 4479 4480 if (ss->early_init) 4481 cgroup_init_subsys(ss, true); 4482 } 4483 return 0; 4484 } 4485 4486 static u16 cgroup_disable_mask __initdata; 4487 4488 /** 4489 * cgroup_init - cgroup initialization 4490 * 4491 * Register cgroup filesystem and /proc file, and initialize 4492 * any subsystems that didn't request early init. 4493 */ 4494 int __init cgroup_init(void) 4495 { 4496 struct cgroup_subsys *ss; 4497 int ssid; 4498 4499 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 4500 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 4501 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 4502 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 4503 4504 /* 4505 * The latency of the synchronize_sched() is too high for cgroups, 4506 * avoid it at the cost of forcing all readers into the slow path. 4507 */ 4508 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 4509 4510 get_user_ns(init_cgroup_ns.user_ns); 4511 4512 mutex_lock(&cgroup_mutex); 4513 4514 /* 4515 * Add init_css_set to the hash table so that dfl_root can link to 4516 * it during init. 4517 */ 4518 hash_add(css_set_table, &init_css_set.hlist, 4519 css_set_hash(init_css_set.subsys)); 4520 4521 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 4522 4523 mutex_unlock(&cgroup_mutex); 4524 4525 for_each_subsys(ss, ssid) { 4526 if (ss->early_init) { 4527 struct cgroup_subsys_state *css = 4528 init_css_set.subsys[ss->id]; 4529 4530 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 4531 GFP_KERNEL); 4532 BUG_ON(css->id < 0); 4533 } else { 4534 cgroup_init_subsys(ss, false); 4535 } 4536 4537 list_add_tail(&init_css_set.e_cset_node[ssid], 4538 &cgrp_dfl_root.cgrp.e_csets[ssid]); 4539 4540 /* 4541 * Setting dfl_root subsys_mask needs to consider the 4542 * disabled flag and cftype registration needs kmalloc, 4543 * both of which aren't available during early_init. 4544 */ 4545 if (cgroup_disable_mask & (1 << ssid)) { 4546 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 4547 printk(KERN_INFO "Disabling %s control group subsystem\n", 4548 ss->name); 4549 continue; 4550 } 4551 4552 if (cgroup1_ssid_disabled(ssid)) 4553 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 4554 ss->name); 4555 4556 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 4557 4558 if (ss->implicit_on_dfl) 4559 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 4560 else if (!ss->dfl_cftypes) 4561 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 4562 4563 if (ss->dfl_cftypes == ss->legacy_cftypes) { 4564 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 4565 } else { 4566 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 4567 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 4568 } 4569 4570 if (ss->bind) 4571 ss->bind(init_css_set.subsys[ssid]); 4572 } 4573 4574 /* init_css_set.subsys[] has been updated, re-hash */ 4575 hash_del(&init_css_set.hlist); 4576 hash_add(css_set_table, &init_css_set.hlist, 4577 css_set_hash(init_css_set.subsys)); 4578 4579 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 4580 WARN_ON(register_filesystem(&cgroup_fs_type)); 4581 WARN_ON(register_filesystem(&cgroup2_fs_type)); 4582 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 4583 4584 return 0; 4585 } 4586 4587 static int __init cgroup_wq_init(void) 4588 { 4589 /* 4590 * There isn't much point in executing destruction path in 4591 * parallel. Good chunk is serialized with cgroup_mutex anyway. 4592 * Use 1 for @max_active. 4593 * 4594 * We would prefer to do this in cgroup_init() above, but that 4595 * is called before init_workqueues(): so leave this until after. 4596 */ 4597 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 4598 BUG_ON(!cgroup_destroy_wq); 4599 return 0; 4600 } 4601 core_initcall(cgroup_wq_init); 4602 4603 /* 4604 * proc_cgroup_show() 4605 * - Print task's cgroup paths into seq_file, one line for each hierarchy 4606 * - Used for /proc/<pid>/cgroup. 4607 */ 4608 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 4609 struct pid *pid, struct task_struct *tsk) 4610 { 4611 char *buf; 4612 int retval; 4613 struct cgroup_root *root; 4614 4615 retval = -ENOMEM; 4616 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4617 if (!buf) 4618 goto out; 4619 4620 mutex_lock(&cgroup_mutex); 4621 spin_lock_irq(&css_set_lock); 4622 4623 for_each_root(root) { 4624 struct cgroup_subsys *ss; 4625 struct cgroup *cgrp; 4626 int ssid, count = 0; 4627 4628 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 4629 continue; 4630 4631 seq_printf(m, "%d:", root->hierarchy_id); 4632 if (root != &cgrp_dfl_root) 4633 for_each_subsys(ss, ssid) 4634 if (root->subsys_mask & (1 << ssid)) 4635 seq_printf(m, "%s%s", count++ ? "," : "", 4636 ss->legacy_name); 4637 if (strlen(root->name)) 4638 seq_printf(m, "%sname=%s", count ? "," : "", 4639 root->name); 4640 seq_putc(m, ':'); 4641 4642 cgrp = task_cgroup_from_root(tsk, root); 4643 4644 /* 4645 * On traditional hierarchies, all zombie tasks show up as 4646 * belonging to the root cgroup. On the default hierarchy, 4647 * while a zombie doesn't show up in "cgroup.procs" and 4648 * thus can't be migrated, its /proc/PID/cgroup keeps 4649 * reporting the cgroup it belonged to before exiting. If 4650 * the cgroup is removed before the zombie is reaped, 4651 * " (deleted)" is appended to the cgroup path. 4652 */ 4653 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 4654 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 4655 current->nsproxy->cgroup_ns); 4656 if (retval >= PATH_MAX) 4657 retval = -ENAMETOOLONG; 4658 if (retval < 0) 4659 goto out_unlock; 4660 4661 seq_puts(m, buf); 4662 } else { 4663 seq_puts(m, "/"); 4664 } 4665 4666 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 4667 seq_puts(m, " (deleted)\n"); 4668 else 4669 seq_putc(m, '\n'); 4670 } 4671 4672 retval = 0; 4673 out_unlock: 4674 spin_unlock_irq(&css_set_lock); 4675 mutex_unlock(&cgroup_mutex); 4676 kfree(buf); 4677 out: 4678 return retval; 4679 } 4680 4681 /** 4682 * cgroup_fork - initialize cgroup related fields during copy_process() 4683 * @child: pointer to task_struct of forking parent process. 4684 * 4685 * A task is associated with the init_css_set until cgroup_post_fork() 4686 * attaches it to the parent's css_set. Empty cg_list indicates that 4687 * @child isn't holding reference to its css_set. 4688 */ 4689 void cgroup_fork(struct task_struct *child) 4690 { 4691 RCU_INIT_POINTER(child->cgroups, &init_css_set); 4692 INIT_LIST_HEAD(&child->cg_list); 4693 } 4694 4695 /** 4696 * cgroup_can_fork - called on a new task before the process is exposed 4697 * @child: the task in question. 4698 * 4699 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 4700 * returns an error, the fork aborts with that error code. This allows for 4701 * a cgroup subsystem to conditionally allow or deny new forks. 4702 */ 4703 int cgroup_can_fork(struct task_struct *child) 4704 { 4705 struct cgroup_subsys *ss; 4706 int i, j, ret; 4707 4708 do_each_subsys_mask(ss, i, have_canfork_callback) { 4709 ret = ss->can_fork(child); 4710 if (ret) 4711 goto out_revert; 4712 } while_each_subsys_mask(); 4713 4714 return 0; 4715 4716 out_revert: 4717 for_each_subsys(ss, j) { 4718 if (j >= i) 4719 break; 4720 if (ss->cancel_fork) 4721 ss->cancel_fork(child); 4722 } 4723 4724 return ret; 4725 } 4726 4727 /** 4728 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 4729 * @child: the task in question 4730 * 4731 * This calls the cancel_fork() callbacks if a fork failed *after* 4732 * cgroup_can_fork() succeded. 4733 */ 4734 void cgroup_cancel_fork(struct task_struct *child) 4735 { 4736 struct cgroup_subsys *ss; 4737 int i; 4738 4739 for_each_subsys(ss, i) 4740 if (ss->cancel_fork) 4741 ss->cancel_fork(child); 4742 } 4743 4744 /** 4745 * cgroup_post_fork - called on a new task after adding it to the task list 4746 * @child: the task in question 4747 * 4748 * Adds the task to the list running through its css_set if necessary and 4749 * call the subsystem fork() callbacks. Has to be after the task is 4750 * visible on the task list in case we race with the first call to 4751 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 4752 * list. 4753 */ 4754 void cgroup_post_fork(struct task_struct *child) 4755 { 4756 struct cgroup_subsys *ss; 4757 int i; 4758 4759 /* 4760 * This may race against cgroup_enable_task_cg_lists(). As that 4761 * function sets use_task_css_set_links before grabbing 4762 * tasklist_lock and we just went through tasklist_lock to add 4763 * @child, it's guaranteed that either we see the set 4764 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 4765 * @child during its iteration. 4766 * 4767 * If we won the race, @child is associated with %current's 4768 * css_set. Grabbing css_set_lock guarantees both that the 4769 * association is stable, and, on completion of the parent's 4770 * migration, @child is visible in the source of migration or 4771 * already in the destination cgroup. This guarantee is necessary 4772 * when implementing operations which need to migrate all tasks of 4773 * a cgroup to another. 4774 * 4775 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 4776 * will remain in init_css_set. This is safe because all tasks are 4777 * in the init_css_set before cg_links is enabled and there's no 4778 * operation which transfers all tasks out of init_css_set. 4779 */ 4780 if (use_task_css_set_links) { 4781 struct css_set *cset; 4782 4783 spin_lock_irq(&css_set_lock); 4784 cset = task_css_set(current); 4785 if (list_empty(&child->cg_list)) { 4786 get_css_set(cset); 4787 css_set_move_task(child, NULL, cset, false); 4788 } 4789 spin_unlock_irq(&css_set_lock); 4790 } 4791 4792 /* 4793 * Call ss->fork(). This must happen after @child is linked on 4794 * css_set; otherwise, @child might change state between ->fork() 4795 * and addition to css_set. 4796 */ 4797 do_each_subsys_mask(ss, i, have_fork_callback) { 4798 ss->fork(child); 4799 } while_each_subsys_mask(); 4800 } 4801 4802 /** 4803 * cgroup_exit - detach cgroup from exiting task 4804 * @tsk: pointer to task_struct of exiting process 4805 * 4806 * Description: Detach cgroup from @tsk and release it. 4807 * 4808 * Note that cgroups marked notify_on_release force every task in 4809 * them to take the global cgroup_mutex mutex when exiting. 4810 * This could impact scaling on very large systems. Be reluctant to 4811 * use notify_on_release cgroups where very high task exit scaling 4812 * is required on large systems. 4813 * 4814 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 4815 * call cgroup_exit() while the task is still competent to handle 4816 * notify_on_release(), then leave the task attached to the root cgroup in 4817 * each hierarchy for the remainder of its exit. No need to bother with 4818 * init_css_set refcnting. init_css_set never goes away and we can't race 4819 * with migration path - PF_EXITING is visible to migration path. 4820 */ 4821 void cgroup_exit(struct task_struct *tsk) 4822 { 4823 struct cgroup_subsys *ss; 4824 struct css_set *cset; 4825 int i; 4826 4827 /* 4828 * Unlink from @tsk from its css_set. As migration path can't race 4829 * with us, we can check css_set and cg_list without synchronization. 4830 */ 4831 cset = task_css_set(tsk); 4832 4833 if (!list_empty(&tsk->cg_list)) { 4834 spin_lock_irq(&css_set_lock); 4835 css_set_move_task(tsk, cset, NULL, false); 4836 spin_unlock_irq(&css_set_lock); 4837 } else { 4838 get_css_set(cset); 4839 } 4840 4841 /* see cgroup_post_fork() for details */ 4842 do_each_subsys_mask(ss, i, have_exit_callback) { 4843 ss->exit(tsk); 4844 } while_each_subsys_mask(); 4845 } 4846 4847 void cgroup_free(struct task_struct *task) 4848 { 4849 struct css_set *cset = task_css_set(task); 4850 struct cgroup_subsys *ss; 4851 int ssid; 4852 4853 do_each_subsys_mask(ss, ssid, have_free_callback) { 4854 ss->free(task); 4855 } while_each_subsys_mask(); 4856 4857 put_css_set(cset); 4858 } 4859 4860 static int __init cgroup_disable(char *str) 4861 { 4862 struct cgroup_subsys *ss; 4863 char *token; 4864 int i; 4865 4866 while ((token = strsep(&str, ",")) != NULL) { 4867 if (!*token) 4868 continue; 4869 4870 for_each_subsys(ss, i) { 4871 if (strcmp(token, ss->name) && 4872 strcmp(token, ss->legacy_name)) 4873 continue; 4874 cgroup_disable_mask |= 1 << i; 4875 } 4876 } 4877 return 1; 4878 } 4879 __setup("cgroup_disable=", cgroup_disable); 4880 4881 /** 4882 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 4883 * @dentry: directory dentry of interest 4884 * @ss: subsystem of interest 4885 * 4886 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 4887 * to get the corresponding css and return it. If such css doesn't exist 4888 * or can't be pinned, an ERR_PTR value is returned. 4889 */ 4890 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 4891 struct cgroup_subsys *ss) 4892 { 4893 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 4894 struct file_system_type *s_type = dentry->d_sb->s_type; 4895 struct cgroup_subsys_state *css = NULL; 4896 struct cgroup *cgrp; 4897 4898 /* is @dentry a cgroup dir? */ 4899 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 4900 !kn || kernfs_type(kn) != KERNFS_DIR) 4901 return ERR_PTR(-EBADF); 4902 4903 rcu_read_lock(); 4904 4905 /* 4906 * This path doesn't originate from kernfs and @kn could already 4907 * have been or be removed at any point. @kn->priv is RCU 4908 * protected for this access. See css_release_work_fn() for details. 4909 */ 4910 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 4911 if (cgrp) 4912 css = cgroup_css(cgrp, ss); 4913 4914 if (!css || !css_tryget_online(css)) 4915 css = ERR_PTR(-ENOENT); 4916 4917 rcu_read_unlock(); 4918 return css; 4919 } 4920 4921 /** 4922 * css_from_id - lookup css by id 4923 * @id: the cgroup id 4924 * @ss: cgroup subsys to be looked into 4925 * 4926 * Returns the css if there's valid one with @id, otherwise returns NULL. 4927 * Should be called under rcu_read_lock(). 4928 */ 4929 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 4930 { 4931 WARN_ON_ONCE(!rcu_read_lock_held()); 4932 return idr_find(&ss->css_idr, id); 4933 } 4934 4935 /** 4936 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 4937 * @path: path on the default hierarchy 4938 * 4939 * Find the cgroup at @path on the default hierarchy, increment its 4940 * reference count and return it. Returns pointer to the found cgroup on 4941 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 4942 * if @path points to a non-directory. 4943 */ 4944 struct cgroup *cgroup_get_from_path(const char *path) 4945 { 4946 struct kernfs_node *kn; 4947 struct cgroup *cgrp; 4948 4949 mutex_lock(&cgroup_mutex); 4950 4951 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 4952 if (kn) { 4953 if (kernfs_type(kn) == KERNFS_DIR) { 4954 cgrp = kn->priv; 4955 cgroup_get_live(cgrp); 4956 } else { 4957 cgrp = ERR_PTR(-ENOTDIR); 4958 } 4959 kernfs_put(kn); 4960 } else { 4961 cgrp = ERR_PTR(-ENOENT); 4962 } 4963 4964 mutex_unlock(&cgroup_mutex); 4965 return cgrp; 4966 } 4967 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 4968 4969 /** 4970 * cgroup_get_from_fd - get a cgroup pointer from a fd 4971 * @fd: fd obtained by open(cgroup2_dir) 4972 * 4973 * Find the cgroup from a fd which should be obtained 4974 * by opening a cgroup directory. Returns a pointer to the 4975 * cgroup on success. ERR_PTR is returned if the cgroup 4976 * cannot be found. 4977 */ 4978 struct cgroup *cgroup_get_from_fd(int fd) 4979 { 4980 struct cgroup_subsys_state *css; 4981 struct cgroup *cgrp; 4982 struct file *f; 4983 4984 f = fget_raw(fd); 4985 if (!f) 4986 return ERR_PTR(-EBADF); 4987 4988 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 4989 fput(f); 4990 if (IS_ERR(css)) 4991 return ERR_CAST(css); 4992 4993 cgrp = css->cgroup; 4994 if (!cgroup_on_dfl(cgrp)) { 4995 cgroup_put(cgrp); 4996 return ERR_PTR(-EBADF); 4997 } 4998 4999 return cgrp; 5000 } 5001 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5002 5003 /* 5004 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5005 * definition in cgroup-defs.h. 5006 */ 5007 #ifdef CONFIG_SOCK_CGROUP_DATA 5008 5009 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5010 5011 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5012 static bool cgroup_sk_alloc_disabled __read_mostly; 5013 5014 void cgroup_sk_alloc_disable(void) 5015 { 5016 if (cgroup_sk_alloc_disabled) 5017 return; 5018 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5019 cgroup_sk_alloc_disabled = true; 5020 } 5021 5022 #else 5023 5024 #define cgroup_sk_alloc_disabled false 5025 5026 #endif 5027 5028 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5029 { 5030 if (cgroup_sk_alloc_disabled) 5031 return; 5032 5033 /* Socket clone path */ 5034 if (skcd->val) { 5035 /* 5036 * We might be cloning a socket which is left in an empty 5037 * cgroup and the cgroup might have already been rmdir'd. 5038 * Don't use cgroup_get_live(). 5039 */ 5040 cgroup_get(sock_cgroup_ptr(skcd)); 5041 return; 5042 } 5043 5044 rcu_read_lock(); 5045 5046 while (true) { 5047 struct css_set *cset; 5048 5049 cset = task_css_set(current); 5050 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5051 skcd->val = (unsigned long)cset->dfl_cgrp; 5052 break; 5053 } 5054 cpu_relax(); 5055 } 5056 5057 rcu_read_unlock(); 5058 } 5059 5060 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5061 { 5062 cgroup_put(sock_cgroup_ptr(skcd)); 5063 } 5064 5065 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5066 5067 #ifdef CONFIG_CGROUP_BPF 5068 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog, 5069 enum bpf_attach_type type, bool overridable) 5070 { 5071 struct cgroup *parent = cgroup_parent(cgrp); 5072 int ret; 5073 5074 mutex_lock(&cgroup_mutex); 5075 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable); 5076 mutex_unlock(&cgroup_mutex); 5077 return ret; 5078 } 5079 #endif /* CONFIG_CGROUP_BPF */ 5080