1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #ifdef CONFIG_PROVE_RCU 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 static bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 /* cgroup namespace for init task */ 211 struct cgroup_namespace init_cgroup_ns = { 212 .ns.count = REFCOUNT_INIT(2), 213 .user_ns = &init_user_ns, 214 .ns.ops = &cgroupns_operations, 215 .ns.inum = PROC_CGROUP_INIT_INO, 216 .root_cset = &init_css_set, 217 }; 218 219 static struct file_system_type cgroup2_fs_type; 220 static struct cftype cgroup_base_files[]; 221 static struct cftype cgroup_psi_files[]; 222 223 /* cgroup optional features */ 224 enum cgroup_opt_features { 225 #ifdef CONFIG_PSI 226 OPT_FEATURE_PRESSURE, 227 #endif 228 OPT_FEATURE_COUNT 229 }; 230 231 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 232 #ifdef CONFIG_PSI 233 "pressure", 234 #endif 235 }; 236 237 static u16 cgroup_feature_disable_mask __read_mostly; 238 239 static int cgroup_apply_control(struct cgroup *cgrp); 240 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 241 static void css_task_iter_skip(struct css_task_iter *it, 242 struct task_struct *task); 243 static int cgroup_destroy_locked(struct cgroup *cgrp); 244 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 245 struct cgroup_subsys *ss); 246 static void css_release(struct percpu_ref *ref); 247 static void kill_css(struct cgroup_subsys_state *css); 248 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 249 struct cgroup *cgrp, struct cftype cfts[], 250 bool is_add); 251 252 #ifdef CONFIG_DEBUG_CGROUP_REF 253 #define CGROUP_REF_FN_ATTRS noinline 254 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 255 #include <linux/cgroup_refcnt.h> 256 #endif 257 258 /** 259 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 260 * @ssid: subsys ID of interest 261 * 262 * cgroup_subsys_enabled() can only be used with literal subsys names which 263 * is fine for individual subsystems but unsuitable for cgroup core. This 264 * is slower static_key_enabled() based test indexed by @ssid. 265 */ 266 bool cgroup_ssid_enabled(int ssid) 267 { 268 if (!CGROUP_HAS_SUBSYS_CONFIG) 269 return false; 270 271 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 272 } 273 274 /** 275 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 276 * @cgrp: the cgroup of interest 277 * 278 * The default hierarchy is the v2 interface of cgroup and this function 279 * can be used to test whether a cgroup is on the default hierarchy for 280 * cases where a subsystem should behave differently depending on the 281 * interface version. 282 * 283 * List of changed behaviors: 284 * 285 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 286 * and "name" are disallowed. 287 * 288 * - When mounting an existing superblock, mount options should match. 289 * 290 * - rename(2) is disallowed. 291 * 292 * - "tasks" is removed. Everything should be at process granularity. Use 293 * "cgroup.procs" instead. 294 * 295 * - "cgroup.procs" is not sorted. pids will be unique unless they got 296 * recycled in-between reads. 297 * 298 * - "release_agent" and "notify_on_release" are removed. Replacement 299 * notification mechanism will be implemented. 300 * 301 * - "cgroup.clone_children" is removed. 302 * 303 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 304 * and its descendants contain no task; otherwise, 1. The file also 305 * generates kernfs notification which can be monitored through poll and 306 * [di]notify when the value of the file changes. 307 * 308 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 309 * take masks of ancestors with non-empty cpus/mems, instead of being 310 * moved to an ancestor. 311 * 312 * - cpuset: a task can be moved into an empty cpuset, and again it takes 313 * masks of ancestors. 314 * 315 * - blkcg: blk-throttle becomes properly hierarchical. 316 */ 317 bool cgroup_on_dfl(const struct cgroup *cgrp) 318 { 319 return cgrp->root == &cgrp_dfl_root; 320 } 321 322 /* IDR wrappers which synchronize using cgroup_idr_lock */ 323 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 324 gfp_t gfp_mask) 325 { 326 int ret; 327 328 idr_preload(gfp_mask); 329 spin_lock_bh(&cgroup_idr_lock); 330 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 331 spin_unlock_bh(&cgroup_idr_lock); 332 idr_preload_end(); 333 return ret; 334 } 335 336 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 337 { 338 void *ret; 339 340 spin_lock_bh(&cgroup_idr_lock); 341 ret = idr_replace(idr, ptr, id); 342 spin_unlock_bh(&cgroup_idr_lock); 343 return ret; 344 } 345 346 static void cgroup_idr_remove(struct idr *idr, int id) 347 { 348 spin_lock_bh(&cgroup_idr_lock); 349 idr_remove(idr, id); 350 spin_unlock_bh(&cgroup_idr_lock); 351 } 352 353 static bool cgroup_has_tasks(struct cgroup *cgrp) 354 { 355 return cgrp->nr_populated_csets; 356 } 357 358 static bool cgroup_is_threaded(struct cgroup *cgrp) 359 { 360 return cgrp->dom_cgrp != cgrp; 361 } 362 363 /* can @cgrp host both domain and threaded children? */ 364 static bool cgroup_is_mixable(struct cgroup *cgrp) 365 { 366 /* 367 * Root isn't under domain level resource control exempting it from 368 * the no-internal-process constraint, so it can serve as a thread 369 * root and a parent of resource domains at the same time. 370 */ 371 return !cgroup_parent(cgrp); 372 } 373 374 /* can @cgrp become a thread root? Should always be true for a thread root */ 375 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 376 { 377 /* mixables don't care */ 378 if (cgroup_is_mixable(cgrp)) 379 return true; 380 381 /* domain roots can't be nested under threaded */ 382 if (cgroup_is_threaded(cgrp)) 383 return false; 384 385 /* can only have either domain or threaded children */ 386 if (cgrp->nr_populated_domain_children) 387 return false; 388 389 /* and no domain controllers can be enabled */ 390 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 391 return false; 392 393 return true; 394 } 395 396 /* is @cgrp root of a threaded subtree? */ 397 static bool cgroup_is_thread_root(struct cgroup *cgrp) 398 { 399 /* thread root should be a domain */ 400 if (cgroup_is_threaded(cgrp)) 401 return false; 402 403 /* a domain w/ threaded children is a thread root */ 404 if (cgrp->nr_threaded_children) 405 return true; 406 407 /* 408 * A domain which has tasks and explicit threaded controllers 409 * enabled is a thread root. 410 */ 411 if (cgroup_has_tasks(cgrp) && 412 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 413 return true; 414 415 return false; 416 } 417 418 /* a domain which isn't connected to the root w/o brekage can't be used */ 419 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 420 { 421 /* the cgroup itself can be a thread root */ 422 if (cgroup_is_threaded(cgrp)) 423 return false; 424 425 /* but the ancestors can't be unless mixable */ 426 while ((cgrp = cgroup_parent(cgrp))) { 427 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 428 return false; 429 if (cgroup_is_threaded(cgrp)) 430 return false; 431 } 432 433 return true; 434 } 435 436 /* subsystems visibly enabled on a cgroup */ 437 static u16 cgroup_control(struct cgroup *cgrp) 438 { 439 struct cgroup *parent = cgroup_parent(cgrp); 440 u16 root_ss_mask = cgrp->root->subsys_mask; 441 442 if (parent) { 443 u16 ss_mask = parent->subtree_control; 444 445 /* threaded cgroups can only have threaded controllers */ 446 if (cgroup_is_threaded(cgrp)) 447 ss_mask &= cgrp_dfl_threaded_ss_mask; 448 return ss_mask; 449 } 450 451 if (cgroup_on_dfl(cgrp)) 452 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 453 cgrp_dfl_implicit_ss_mask); 454 return root_ss_mask; 455 } 456 457 /* subsystems enabled on a cgroup */ 458 static u16 cgroup_ss_mask(struct cgroup *cgrp) 459 { 460 struct cgroup *parent = cgroup_parent(cgrp); 461 462 if (parent) { 463 u16 ss_mask = parent->subtree_ss_mask; 464 465 /* threaded cgroups can only have threaded controllers */ 466 if (cgroup_is_threaded(cgrp)) 467 ss_mask &= cgrp_dfl_threaded_ss_mask; 468 return ss_mask; 469 } 470 471 return cgrp->root->subsys_mask; 472 } 473 474 /** 475 * cgroup_css - obtain a cgroup's css for the specified subsystem 476 * @cgrp: the cgroup of interest 477 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 478 * 479 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 480 * function must be called either under cgroup_mutex or rcu_read_lock() and 481 * the caller is responsible for pinning the returned css if it wants to 482 * keep accessing it outside the said locks. This function may return 483 * %NULL if @cgrp doesn't have @subsys_id enabled. 484 */ 485 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 486 struct cgroup_subsys *ss) 487 { 488 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 489 return rcu_dereference_check(cgrp->subsys[ss->id], 490 lockdep_is_held(&cgroup_mutex)); 491 else 492 return &cgrp->self; 493 } 494 495 /** 496 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 497 * @cgrp: the cgroup of interest 498 * @ss: the subsystem of interest 499 * 500 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 501 * or is offline, %NULL is returned. 502 */ 503 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 504 struct cgroup_subsys *ss) 505 { 506 struct cgroup_subsys_state *css; 507 508 rcu_read_lock(); 509 css = cgroup_css(cgrp, ss); 510 if (css && !css_tryget_online(css)) 511 css = NULL; 512 rcu_read_unlock(); 513 514 return css; 515 } 516 517 /** 518 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 519 * @cgrp: the cgroup of interest 520 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 521 * 522 * Similar to cgroup_css() but returns the effective css, which is defined 523 * as the matching css of the nearest ancestor including self which has @ss 524 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 525 * function is guaranteed to return non-NULL css. 526 */ 527 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 528 struct cgroup_subsys *ss) 529 { 530 lockdep_assert_held(&cgroup_mutex); 531 532 if (!ss) 533 return &cgrp->self; 534 535 /* 536 * This function is used while updating css associations and thus 537 * can't test the csses directly. Test ss_mask. 538 */ 539 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 540 cgrp = cgroup_parent(cgrp); 541 if (!cgrp) 542 return NULL; 543 } 544 545 return cgroup_css(cgrp, ss); 546 } 547 548 /** 549 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 550 * @cgrp: the cgroup of interest 551 * @ss: the subsystem of interest 552 * 553 * Find and get the effective css of @cgrp for @ss. The effective css is 554 * defined as the matching css of the nearest ancestor including self which 555 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 556 * the root css is returned, so this function always returns a valid css. 557 * 558 * The returned css is not guaranteed to be online, and therefore it is the 559 * callers responsibility to try get a reference for it. 560 */ 561 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 562 struct cgroup_subsys *ss) 563 { 564 struct cgroup_subsys_state *css; 565 566 if (!CGROUP_HAS_SUBSYS_CONFIG) 567 return NULL; 568 569 do { 570 css = cgroup_css(cgrp, ss); 571 572 if (css) 573 return css; 574 cgrp = cgroup_parent(cgrp); 575 } while (cgrp); 576 577 return init_css_set.subsys[ss->id]; 578 } 579 580 /** 581 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 582 * @cgrp: the cgroup of interest 583 * @ss: the subsystem of interest 584 * 585 * Find and get the effective css of @cgrp for @ss. The effective css is 586 * defined as the matching css of the nearest ancestor including self which 587 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 588 * the root css is returned, so this function always returns a valid css. 589 * The returned css must be put using css_put(). 590 */ 591 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 592 struct cgroup_subsys *ss) 593 { 594 struct cgroup_subsys_state *css; 595 596 if (!CGROUP_HAS_SUBSYS_CONFIG) 597 return NULL; 598 599 rcu_read_lock(); 600 601 do { 602 css = cgroup_css(cgrp, ss); 603 604 if (css && css_tryget_online(css)) 605 goto out_unlock; 606 cgrp = cgroup_parent(cgrp); 607 } while (cgrp); 608 609 css = init_css_set.subsys[ss->id]; 610 css_get(css); 611 out_unlock: 612 rcu_read_unlock(); 613 return css; 614 } 615 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 616 617 static void cgroup_get_live(struct cgroup *cgrp) 618 { 619 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 620 cgroup_get(cgrp); 621 } 622 623 /** 624 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 625 * is responsible for taking the css_set_lock. 626 * @cgrp: the cgroup in question 627 */ 628 int __cgroup_task_count(const struct cgroup *cgrp) 629 { 630 int count = 0; 631 struct cgrp_cset_link *link; 632 633 lockdep_assert_held(&css_set_lock); 634 635 list_for_each_entry(link, &cgrp->cset_links, cset_link) 636 count += link->cset->nr_tasks; 637 638 return count; 639 } 640 641 /** 642 * cgroup_task_count - count the number of tasks in a cgroup. 643 * @cgrp: the cgroup in question 644 */ 645 int cgroup_task_count(const struct cgroup *cgrp) 646 { 647 int count; 648 649 spin_lock_irq(&css_set_lock); 650 count = __cgroup_task_count(cgrp); 651 spin_unlock_irq(&css_set_lock); 652 653 return count; 654 } 655 656 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 657 { 658 struct cgroup *cgrp = of->kn->parent->priv; 659 struct cftype *cft = of_cft(of); 660 661 /* 662 * This is open and unprotected implementation of cgroup_css(). 663 * seq_css() is only called from a kernfs file operation which has 664 * an active reference on the file. Because all the subsystem 665 * files are drained before a css is disassociated with a cgroup, 666 * the matching css from the cgroup's subsys table is guaranteed to 667 * be and stay valid until the enclosing operation is complete. 668 */ 669 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 670 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 671 else 672 return &cgrp->self; 673 } 674 EXPORT_SYMBOL_GPL(of_css); 675 676 /** 677 * for_each_css - iterate all css's of a cgroup 678 * @css: the iteration cursor 679 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 680 * @cgrp: the target cgroup to iterate css's of 681 * 682 * Should be called under cgroup_[tree_]mutex. 683 */ 684 #define for_each_css(css, ssid, cgrp) \ 685 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 686 if (!((css) = rcu_dereference_check( \ 687 (cgrp)->subsys[(ssid)], \ 688 lockdep_is_held(&cgroup_mutex)))) { } \ 689 else 690 691 /** 692 * do_each_subsys_mask - filter for_each_subsys with a bitmask 693 * @ss: the iteration cursor 694 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 695 * @ss_mask: the bitmask 696 * 697 * The block will only run for cases where the ssid-th bit (1 << ssid) of 698 * @ss_mask is set. 699 */ 700 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 701 unsigned long __ss_mask = (ss_mask); \ 702 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 703 (ssid) = 0; \ 704 break; \ 705 } \ 706 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 707 (ss) = cgroup_subsys[ssid]; \ 708 { 709 710 #define while_each_subsys_mask() \ 711 } \ 712 } \ 713 } while (false) 714 715 /* iterate over child cgrps, lock should be held throughout iteration */ 716 #define cgroup_for_each_live_child(child, cgrp) \ 717 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 718 if (({ lockdep_assert_held(&cgroup_mutex); \ 719 cgroup_is_dead(child); })) \ 720 ; \ 721 else 722 723 /* walk live descendants in pre order */ 724 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 725 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 726 if (({ lockdep_assert_held(&cgroup_mutex); \ 727 (dsct) = (d_css)->cgroup; \ 728 cgroup_is_dead(dsct); })) \ 729 ; \ 730 else 731 732 /* walk live descendants in postorder */ 733 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 734 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 735 if (({ lockdep_assert_held(&cgroup_mutex); \ 736 (dsct) = (d_css)->cgroup; \ 737 cgroup_is_dead(dsct); })) \ 738 ; \ 739 else 740 741 /* 742 * The default css_set - used by init and its children prior to any 743 * hierarchies being mounted. It contains a pointer to the root state 744 * for each subsystem. Also used to anchor the list of css_sets. Not 745 * reference-counted, to improve performance when child cgroups 746 * haven't been created. 747 */ 748 struct css_set init_css_set = { 749 .refcount = REFCOUNT_INIT(1), 750 .dom_cset = &init_css_set, 751 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 752 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 753 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 754 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 755 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 756 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 757 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 758 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 759 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 760 761 /* 762 * The following field is re-initialized when this cset gets linked 763 * in cgroup_init(). However, let's initialize the field 764 * statically too so that the default cgroup can be accessed safely 765 * early during boot. 766 */ 767 .dfl_cgrp = &cgrp_dfl_root.cgrp, 768 }; 769 770 static int css_set_count = 1; /* 1 for init_css_set */ 771 772 static bool css_set_threaded(struct css_set *cset) 773 { 774 return cset->dom_cset != cset; 775 } 776 777 /** 778 * css_set_populated - does a css_set contain any tasks? 779 * @cset: target css_set 780 * 781 * css_set_populated() should be the same as !!cset->nr_tasks at steady 782 * state. However, css_set_populated() can be called while a task is being 783 * added to or removed from the linked list before the nr_tasks is 784 * properly updated. Hence, we can't just look at ->nr_tasks here. 785 */ 786 static bool css_set_populated(struct css_set *cset) 787 { 788 lockdep_assert_held(&css_set_lock); 789 790 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 791 } 792 793 /** 794 * cgroup_update_populated - update the populated count of a cgroup 795 * @cgrp: the target cgroup 796 * @populated: inc or dec populated count 797 * 798 * One of the css_sets associated with @cgrp is either getting its first 799 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 800 * count is propagated towards root so that a given cgroup's 801 * nr_populated_children is zero iff none of its descendants contain any 802 * tasks. 803 * 804 * @cgrp's interface file "cgroup.populated" is zero if both 805 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 806 * 1 otherwise. When the sum changes from or to zero, userland is notified 807 * that the content of the interface file has changed. This can be used to 808 * detect when @cgrp and its descendants become populated or empty. 809 */ 810 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 811 { 812 struct cgroup *child = NULL; 813 int adj = populated ? 1 : -1; 814 815 lockdep_assert_held(&css_set_lock); 816 817 do { 818 bool was_populated = cgroup_is_populated(cgrp); 819 820 if (!child) { 821 cgrp->nr_populated_csets += adj; 822 } else { 823 if (cgroup_is_threaded(child)) 824 cgrp->nr_populated_threaded_children += adj; 825 else 826 cgrp->nr_populated_domain_children += adj; 827 } 828 829 if (was_populated == cgroup_is_populated(cgrp)) 830 break; 831 832 cgroup1_check_for_release(cgrp); 833 TRACE_CGROUP_PATH(notify_populated, cgrp, 834 cgroup_is_populated(cgrp)); 835 cgroup_file_notify(&cgrp->events_file); 836 837 child = cgrp; 838 cgrp = cgroup_parent(cgrp); 839 } while (cgrp); 840 } 841 842 /** 843 * css_set_update_populated - update populated state of a css_set 844 * @cset: target css_set 845 * @populated: whether @cset is populated or depopulated 846 * 847 * @cset is either getting the first task or losing the last. Update the 848 * populated counters of all associated cgroups accordingly. 849 */ 850 static void css_set_update_populated(struct css_set *cset, bool populated) 851 { 852 struct cgrp_cset_link *link; 853 854 lockdep_assert_held(&css_set_lock); 855 856 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 857 cgroup_update_populated(link->cgrp, populated); 858 } 859 860 /* 861 * @task is leaving, advance task iterators which are pointing to it so 862 * that they can resume at the next position. Advancing an iterator might 863 * remove it from the list, use safe walk. See css_task_iter_skip() for 864 * details. 865 */ 866 static void css_set_skip_task_iters(struct css_set *cset, 867 struct task_struct *task) 868 { 869 struct css_task_iter *it, *pos; 870 871 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 872 css_task_iter_skip(it, task); 873 } 874 875 /** 876 * css_set_move_task - move a task from one css_set to another 877 * @task: task being moved 878 * @from_cset: css_set @task currently belongs to (may be NULL) 879 * @to_cset: new css_set @task is being moved to (may be NULL) 880 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 881 * 882 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 883 * css_set, @from_cset can be NULL. If @task is being disassociated 884 * instead of moved, @to_cset can be NULL. 885 * 886 * This function automatically handles populated counter updates and 887 * css_task_iter adjustments but the caller is responsible for managing 888 * @from_cset and @to_cset's reference counts. 889 */ 890 static void css_set_move_task(struct task_struct *task, 891 struct css_set *from_cset, struct css_set *to_cset, 892 bool use_mg_tasks) 893 { 894 lockdep_assert_held(&css_set_lock); 895 896 if (to_cset && !css_set_populated(to_cset)) 897 css_set_update_populated(to_cset, true); 898 899 if (from_cset) { 900 WARN_ON_ONCE(list_empty(&task->cg_list)); 901 902 css_set_skip_task_iters(from_cset, task); 903 list_del_init(&task->cg_list); 904 if (!css_set_populated(from_cset)) 905 css_set_update_populated(from_cset, false); 906 } else { 907 WARN_ON_ONCE(!list_empty(&task->cg_list)); 908 } 909 910 if (to_cset) { 911 /* 912 * We are synchronized through cgroup_threadgroup_rwsem 913 * against PF_EXITING setting such that we can't race 914 * against cgroup_exit()/cgroup_free() dropping the css_set. 915 */ 916 WARN_ON_ONCE(task->flags & PF_EXITING); 917 918 cgroup_move_task(task, to_cset); 919 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 920 &to_cset->tasks); 921 } 922 } 923 924 /* 925 * hash table for cgroup groups. This improves the performance to find 926 * an existing css_set. This hash doesn't (currently) take into 927 * account cgroups in empty hierarchies. 928 */ 929 #define CSS_SET_HASH_BITS 7 930 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 931 932 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 933 { 934 unsigned long key = 0UL; 935 struct cgroup_subsys *ss; 936 int i; 937 938 for_each_subsys(ss, i) 939 key += (unsigned long)css[i]; 940 key = (key >> 16) ^ key; 941 942 return key; 943 } 944 945 void put_css_set_locked(struct css_set *cset) 946 { 947 struct cgrp_cset_link *link, *tmp_link; 948 struct cgroup_subsys *ss; 949 int ssid; 950 951 lockdep_assert_held(&css_set_lock); 952 953 if (!refcount_dec_and_test(&cset->refcount)) 954 return; 955 956 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 957 958 /* This css_set is dead. Unlink it and release cgroup and css refs */ 959 for_each_subsys(ss, ssid) { 960 list_del(&cset->e_cset_node[ssid]); 961 css_put(cset->subsys[ssid]); 962 } 963 hash_del(&cset->hlist); 964 css_set_count--; 965 966 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 967 list_del(&link->cset_link); 968 list_del(&link->cgrp_link); 969 if (cgroup_parent(link->cgrp)) 970 cgroup_put(link->cgrp); 971 kfree(link); 972 } 973 974 if (css_set_threaded(cset)) { 975 list_del(&cset->threaded_csets_node); 976 put_css_set_locked(cset->dom_cset); 977 } 978 979 kfree_rcu(cset, rcu_head); 980 } 981 982 /** 983 * compare_css_sets - helper function for find_existing_css_set(). 984 * @cset: candidate css_set being tested 985 * @old_cset: existing css_set for a task 986 * @new_cgrp: cgroup that's being entered by the task 987 * @template: desired set of css pointers in css_set (pre-calculated) 988 * 989 * Returns true if "cset" matches "old_cset" except for the hierarchy 990 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 991 */ 992 static bool compare_css_sets(struct css_set *cset, 993 struct css_set *old_cset, 994 struct cgroup *new_cgrp, 995 struct cgroup_subsys_state *template[]) 996 { 997 struct cgroup *new_dfl_cgrp; 998 struct list_head *l1, *l2; 999 1000 /* 1001 * On the default hierarchy, there can be csets which are 1002 * associated with the same set of cgroups but different csses. 1003 * Let's first ensure that csses match. 1004 */ 1005 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1006 return false; 1007 1008 1009 /* @cset's domain should match the default cgroup's */ 1010 if (cgroup_on_dfl(new_cgrp)) 1011 new_dfl_cgrp = new_cgrp; 1012 else 1013 new_dfl_cgrp = old_cset->dfl_cgrp; 1014 1015 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1016 return false; 1017 1018 /* 1019 * Compare cgroup pointers in order to distinguish between 1020 * different cgroups in hierarchies. As different cgroups may 1021 * share the same effective css, this comparison is always 1022 * necessary. 1023 */ 1024 l1 = &cset->cgrp_links; 1025 l2 = &old_cset->cgrp_links; 1026 while (1) { 1027 struct cgrp_cset_link *link1, *link2; 1028 struct cgroup *cgrp1, *cgrp2; 1029 1030 l1 = l1->next; 1031 l2 = l2->next; 1032 /* See if we reached the end - both lists are equal length. */ 1033 if (l1 == &cset->cgrp_links) { 1034 BUG_ON(l2 != &old_cset->cgrp_links); 1035 break; 1036 } else { 1037 BUG_ON(l2 == &old_cset->cgrp_links); 1038 } 1039 /* Locate the cgroups associated with these links. */ 1040 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1041 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1042 cgrp1 = link1->cgrp; 1043 cgrp2 = link2->cgrp; 1044 /* Hierarchies should be linked in the same order. */ 1045 BUG_ON(cgrp1->root != cgrp2->root); 1046 1047 /* 1048 * If this hierarchy is the hierarchy of the cgroup 1049 * that's changing, then we need to check that this 1050 * css_set points to the new cgroup; if it's any other 1051 * hierarchy, then this css_set should point to the 1052 * same cgroup as the old css_set. 1053 */ 1054 if (cgrp1->root == new_cgrp->root) { 1055 if (cgrp1 != new_cgrp) 1056 return false; 1057 } else { 1058 if (cgrp1 != cgrp2) 1059 return false; 1060 } 1061 } 1062 return true; 1063 } 1064 1065 /** 1066 * find_existing_css_set - init css array and find the matching css_set 1067 * @old_cset: the css_set that we're using before the cgroup transition 1068 * @cgrp: the cgroup that we're moving into 1069 * @template: out param for the new set of csses, should be clear on entry 1070 */ 1071 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1072 struct cgroup *cgrp, 1073 struct cgroup_subsys_state *template[]) 1074 { 1075 struct cgroup_root *root = cgrp->root; 1076 struct cgroup_subsys *ss; 1077 struct css_set *cset; 1078 unsigned long key; 1079 int i; 1080 1081 /* 1082 * Build the set of subsystem state objects that we want to see in the 1083 * new css_set. While subsystems can change globally, the entries here 1084 * won't change, so no need for locking. 1085 */ 1086 for_each_subsys(ss, i) { 1087 if (root->subsys_mask & (1UL << i)) { 1088 /* 1089 * @ss is in this hierarchy, so we want the 1090 * effective css from @cgrp. 1091 */ 1092 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1093 } else { 1094 /* 1095 * @ss is not in this hierarchy, so we don't want 1096 * to change the css. 1097 */ 1098 template[i] = old_cset->subsys[i]; 1099 } 1100 } 1101 1102 key = css_set_hash(template); 1103 hash_for_each_possible(css_set_table, cset, hlist, key) { 1104 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1105 continue; 1106 1107 /* This css_set matches what we need */ 1108 return cset; 1109 } 1110 1111 /* No existing cgroup group matched */ 1112 return NULL; 1113 } 1114 1115 static void free_cgrp_cset_links(struct list_head *links_to_free) 1116 { 1117 struct cgrp_cset_link *link, *tmp_link; 1118 1119 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1120 list_del(&link->cset_link); 1121 kfree(link); 1122 } 1123 } 1124 1125 /** 1126 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1127 * @count: the number of links to allocate 1128 * @tmp_links: list_head the allocated links are put on 1129 * 1130 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1131 * through ->cset_link. Returns 0 on success or -errno. 1132 */ 1133 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1134 { 1135 struct cgrp_cset_link *link; 1136 int i; 1137 1138 INIT_LIST_HEAD(tmp_links); 1139 1140 for (i = 0; i < count; i++) { 1141 link = kzalloc(sizeof(*link), GFP_KERNEL); 1142 if (!link) { 1143 free_cgrp_cset_links(tmp_links); 1144 return -ENOMEM; 1145 } 1146 list_add(&link->cset_link, tmp_links); 1147 } 1148 return 0; 1149 } 1150 1151 /** 1152 * link_css_set - a helper function to link a css_set to a cgroup 1153 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1154 * @cset: the css_set to be linked 1155 * @cgrp: the destination cgroup 1156 */ 1157 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1158 struct cgroup *cgrp) 1159 { 1160 struct cgrp_cset_link *link; 1161 1162 BUG_ON(list_empty(tmp_links)); 1163 1164 if (cgroup_on_dfl(cgrp)) 1165 cset->dfl_cgrp = cgrp; 1166 1167 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1168 link->cset = cset; 1169 link->cgrp = cgrp; 1170 1171 /* 1172 * Always add links to the tail of the lists so that the lists are 1173 * in chronological order. 1174 */ 1175 list_move_tail(&link->cset_link, &cgrp->cset_links); 1176 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1177 1178 if (cgroup_parent(cgrp)) 1179 cgroup_get_live(cgrp); 1180 } 1181 1182 /** 1183 * find_css_set - return a new css_set with one cgroup updated 1184 * @old_cset: the baseline css_set 1185 * @cgrp: the cgroup to be updated 1186 * 1187 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1188 * substituted into the appropriate hierarchy. 1189 */ 1190 static struct css_set *find_css_set(struct css_set *old_cset, 1191 struct cgroup *cgrp) 1192 { 1193 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1194 struct css_set *cset; 1195 struct list_head tmp_links; 1196 struct cgrp_cset_link *link; 1197 struct cgroup_subsys *ss; 1198 unsigned long key; 1199 int ssid; 1200 1201 lockdep_assert_held(&cgroup_mutex); 1202 1203 /* First see if we already have a cgroup group that matches 1204 * the desired set */ 1205 spin_lock_irq(&css_set_lock); 1206 cset = find_existing_css_set(old_cset, cgrp, template); 1207 if (cset) 1208 get_css_set(cset); 1209 spin_unlock_irq(&css_set_lock); 1210 1211 if (cset) 1212 return cset; 1213 1214 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1215 if (!cset) 1216 return NULL; 1217 1218 /* Allocate all the cgrp_cset_link objects that we'll need */ 1219 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1220 kfree(cset); 1221 return NULL; 1222 } 1223 1224 refcount_set(&cset->refcount, 1); 1225 cset->dom_cset = cset; 1226 INIT_LIST_HEAD(&cset->tasks); 1227 INIT_LIST_HEAD(&cset->mg_tasks); 1228 INIT_LIST_HEAD(&cset->dying_tasks); 1229 INIT_LIST_HEAD(&cset->task_iters); 1230 INIT_LIST_HEAD(&cset->threaded_csets); 1231 INIT_HLIST_NODE(&cset->hlist); 1232 INIT_LIST_HEAD(&cset->cgrp_links); 1233 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1234 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1235 INIT_LIST_HEAD(&cset->mg_node); 1236 1237 /* Copy the set of subsystem state objects generated in 1238 * find_existing_css_set() */ 1239 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1240 1241 spin_lock_irq(&css_set_lock); 1242 /* Add reference counts and links from the new css_set. */ 1243 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1244 struct cgroup *c = link->cgrp; 1245 1246 if (c->root == cgrp->root) 1247 c = cgrp; 1248 link_css_set(&tmp_links, cset, c); 1249 } 1250 1251 BUG_ON(!list_empty(&tmp_links)); 1252 1253 css_set_count++; 1254 1255 /* Add @cset to the hash table */ 1256 key = css_set_hash(cset->subsys); 1257 hash_add(css_set_table, &cset->hlist, key); 1258 1259 for_each_subsys(ss, ssid) { 1260 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1261 1262 list_add_tail(&cset->e_cset_node[ssid], 1263 &css->cgroup->e_csets[ssid]); 1264 css_get(css); 1265 } 1266 1267 spin_unlock_irq(&css_set_lock); 1268 1269 /* 1270 * If @cset should be threaded, look up the matching dom_cset and 1271 * link them up. We first fully initialize @cset then look for the 1272 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1273 * to stay empty until we return. 1274 */ 1275 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1276 struct css_set *dcset; 1277 1278 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1279 if (!dcset) { 1280 put_css_set(cset); 1281 return NULL; 1282 } 1283 1284 spin_lock_irq(&css_set_lock); 1285 cset->dom_cset = dcset; 1286 list_add_tail(&cset->threaded_csets_node, 1287 &dcset->threaded_csets); 1288 spin_unlock_irq(&css_set_lock); 1289 } 1290 1291 return cset; 1292 } 1293 1294 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1295 { 1296 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1297 1298 return root_cgrp->root; 1299 } 1300 1301 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1302 { 1303 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1304 1305 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1306 if (favor && !favoring) { 1307 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1308 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1309 } else if (!favor && favoring) { 1310 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1311 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1312 } 1313 } 1314 1315 static int cgroup_init_root_id(struct cgroup_root *root) 1316 { 1317 int id; 1318 1319 lockdep_assert_held(&cgroup_mutex); 1320 1321 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1322 if (id < 0) 1323 return id; 1324 1325 root->hierarchy_id = id; 1326 return 0; 1327 } 1328 1329 static void cgroup_exit_root_id(struct cgroup_root *root) 1330 { 1331 lockdep_assert_held(&cgroup_mutex); 1332 1333 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1334 } 1335 1336 void cgroup_free_root(struct cgroup_root *root) 1337 { 1338 kfree(root); 1339 } 1340 1341 static void cgroup_destroy_root(struct cgroup_root *root) 1342 { 1343 struct cgroup *cgrp = &root->cgrp; 1344 struct cgrp_cset_link *link, *tmp_link; 1345 1346 trace_cgroup_destroy_root(root); 1347 1348 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1349 1350 BUG_ON(atomic_read(&root->nr_cgrps)); 1351 BUG_ON(!list_empty(&cgrp->self.children)); 1352 1353 /* Rebind all subsystems back to the default hierarchy */ 1354 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1355 1356 /* 1357 * Release all the links from cset_links to this hierarchy's 1358 * root cgroup 1359 */ 1360 spin_lock_irq(&css_set_lock); 1361 1362 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1363 list_del(&link->cset_link); 1364 list_del(&link->cgrp_link); 1365 kfree(link); 1366 } 1367 1368 spin_unlock_irq(&css_set_lock); 1369 1370 if (!list_empty(&root->root_list)) { 1371 list_del(&root->root_list); 1372 cgroup_root_count--; 1373 } 1374 1375 cgroup_favor_dynmods(root, false); 1376 cgroup_exit_root_id(root); 1377 1378 cgroup_unlock(); 1379 1380 cgroup_rstat_exit(cgrp); 1381 kernfs_destroy_root(root->kf_root); 1382 cgroup_free_root(root); 1383 } 1384 1385 /* 1386 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1387 */ 1388 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1389 struct cgroup_root *root) 1390 { 1391 struct cgroup *res_cgroup = NULL; 1392 1393 if (cset == &init_css_set) { 1394 res_cgroup = &root->cgrp; 1395 } else if (root == &cgrp_dfl_root) { 1396 res_cgroup = cset->dfl_cgrp; 1397 } else { 1398 struct cgrp_cset_link *link; 1399 lockdep_assert_held(&css_set_lock); 1400 1401 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1402 struct cgroup *c = link->cgrp; 1403 1404 if (c->root == root) { 1405 res_cgroup = c; 1406 break; 1407 } 1408 } 1409 } 1410 1411 BUG_ON(!res_cgroup); 1412 return res_cgroup; 1413 } 1414 1415 /* 1416 * look up cgroup associated with current task's cgroup namespace on the 1417 * specified hierarchy 1418 */ 1419 static struct cgroup * 1420 current_cgns_cgroup_from_root(struct cgroup_root *root) 1421 { 1422 struct cgroup *res = NULL; 1423 struct css_set *cset; 1424 1425 lockdep_assert_held(&css_set_lock); 1426 1427 rcu_read_lock(); 1428 1429 cset = current->nsproxy->cgroup_ns->root_cset; 1430 res = __cset_cgroup_from_root(cset, root); 1431 1432 rcu_read_unlock(); 1433 1434 return res; 1435 } 1436 1437 /* 1438 * Look up cgroup associated with current task's cgroup namespace on the default 1439 * hierarchy. 1440 * 1441 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1442 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1443 * pointers. 1444 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1445 * - As a bonus returned cgrp is pinned with the current because it cannot 1446 * switch cgroup_ns asynchronously. 1447 */ 1448 static struct cgroup *current_cgns_cgroup_dfl(void) 1449 { 1450 struct css_set *cset; 1451 1452 if (current->nsproxy) { 1453 cset = current->nsproxy->cgroup_ns->root_cset; 1454 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1455 } else { 1456 /* 1457 * NOTE: This function may be called from bpf_cgroup_from_id() 1458 * on a task which has already passed exit_task_namespaces() and 1459 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1460 * cgroups visible for lookups. 1461 */ 1462 return &cgrp_dfl_root.cgrp; 1463 } 1464 } 1465 1466 /* look up cgroup associated with given css_set on the specified hierarchy */ 1467 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1468 struct cgroup_root *root) 1469 { 1470 lockdep_assert_held(&cgroup_mutex); 1471 lockdep_assert_held(&css_set_lock); 1472 1473 return __cset_cgroup_from_root(cset, root); 1474 } 1475 1476 /* 1477 * Return the cgroup for "task" from the given hierarchy. Must be 1478 * called with cgroup_mutex and css_set_lock held. 1479 */ 1480 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1481 struct cgroup_root *root) 1482 { 1483 /* 1484 * No need to lock the task - since we hold css_set_lock the 1485 * task can't change groups. 1486 */ 1487 return cset_cgroup_from_root(task_css_set(task), root); 1488 } 1489 1490 /* 1491 * A task must hold cgroup_mutex to modify cgroups. 1492 * 1493 * Any task can increment and decrement the count field without lock. 1494 * So in general, code holding cgroup_mutex can't rely on the count 1495 * field not changing. However, if the count goes to zero, then only 1496 * cgroup_attach_task() can increment it again. Because a count of zero 1497 * means that no tasks are currently attached, therefore there is no 1498 * way a task attached to that cgroup can fork (the other way to 1499 * increment the count). So code holding cgroup_mutex can safely 1500 * assume that if the count is zero, it will stay zero. Similarly, if 1501 * a task holds cgroup_mutex on a cgroup with zero count, it 1502 * knows that the cgroup won't be removed, as cgroup_rmdir() 1503 * needs that mutex. 1504 * 1505 * A cgroup can only be deleted if both its 'count' of using tasks 1506 * is zero, and its list of 'children' cgroups is empty. Since all 1507 * tasks in the system use _some_ cgroup, and since there is always at 1508 * least one task in the system (init, pid == 1), therefore, root cgroup 1509 * always has either children cgroups and/or using tasks. So we don't 1510 * need a special hack to ensure that root cgroup cannot be deleted. 1511 * 1512 * P.S. One more locking exception. RCU is used to guard the 1513 * update of a tasks cgroup pointer by cgroup_attach_task() 1514 */ 1515 1516 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1517 1518 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1519 char *buf) 1520 { 1521 struct cgroup_subsys *ss = cft->ss; 1522 1523 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1524 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1525 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1526 1527 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1528 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1529 cft->name); 1530 } else { 1531 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1532 } 1533 return buf; 1534 } 1535 1536 /** 1537 * cgroup_file_mode - deduce file mode of a control file 1538 * @cft: the control file in question 1539 * 1540 * S_IRUGO for read, S_IWUSR for write. 1541 */ 1542 static umode_t cgroup_file_mode(const struct cftype *cft) 1543 { 1544 umode_t mode = 0; 1545 1546 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1547 mode |= S_IRUGO; 1548 1549 if (cft->write_u64 || cft->write_s64 || cft->write) { 1550 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1551 mode |= S_IWUGO; 1552 else 1553 mode |= S_IWUSR; 1554 } 1555 1556 return mode; 1557 } 1558 1559 /** 1560 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1561 * @subtree_control: the new subtree_control mask to consider 1562 * @this_ss_mask: available subsystems 1563 * 1564 * On the default hierarchy, a subsystem may request other subsystems to be 1565 * enabled together through its ->depends_on mask. In such cases, more 1566 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1567 * 1568 * This function calculates which subsystems need to be enabled if 1569 * @subtree_control is to be applied while restricted to @this_ss_mask. 1570 */ 1571 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1572 { 1573 u16 cur_ss_mask = subtree_control; 1574 struct cgroup_subsys *ss; 1575 int ssid; 1576 1577 lockdep_assert_held(&cgroup_mutex); 1578 1579 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1580 1581 while (true) { 1582 u16 new_ss_mask = cur_ss_mask; 1583 1584 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1585 new_ss_mask |= ss->depends_on; 1586 } while_each_subsys_mask(); 1587 1588 /* 1589 * Mask out subsystems which aren't available. This can 1590 * happen only if some depended-upon subsystems were bound 1591 * to non-default hierarchies. 1592 */ 1593 new_ss_mask &= this_ss_mask; 1594 1595 if (new_ss_mask == cur_ss_mask) 1596 break; 1597 cur_ss_mask = new_ss_mask; 1598 } 1599 1600 return cur_ss_mask; 1601 } 1602 1603 /** 1604 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1605 * @kn: the kernfs_node being serviced 1606 * 1607 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1608 * the method finishes if locking succeeded. Note that once this function 1609 * returns the cgroup returned by cgroup_kn_lock_live() may become 1610 * inaccessible any time. If the caller intends to continue to access the 1611 * cgroup, it should pin it before invoking this function. 1612 */ 1613 void cgroup_kn_unlock(struct kernfs_node *kn) 1614 { 1615 struct cgroup *cgrp; 1616 1617 if (kernfs_type(kn) == KERNFS_DIR) 1618 cgrp = kn->priv; 1619 else 1620 cgrp = kn->parent->priv; 1621 1622 cgroup_unlock(); 1623 1624 kernfs_unbreak_active_protection(kn); 1625 cgroup_put(cgrp); 1626 } 1627 1628 /** 1629 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1630 * @kn: the kernfs_node being serviced 1631 * @drain_offline: perform offline draining on the cgroup 1632 * 1633 * This helper is to be used by a cgroup kernfs method currently servicing 1634 * @kn. It breaks the active protection, performs cgroup locking and 1635 * verifies that the associated cgroup is alive. Returns the cgroup if 1636 * alive; otherwise, %NULL. A successful return should be undone by a 1637 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1638 * cgroup is drained of offlining csses before return. 1639 * 1640 * Any cgroup kernfs method implementation which requires locking the 1641 * associated cgroup should use this helper. It avoids nesting cgroup 1642 * locking under kernfs active protection and allows all kernfs operations 1643 * including self-removal. 1644 */ 1645 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1646 { 1647 struct cgroup *cgrp; 1648 1649 if (kernfs_type(kn) == KERNFS_DIR) 1650 cgrp = kn->priv; 1651 else 1652 cgrp = kn->parent->priv; 1653 1654 /* 1655 * We're gonna grab cgroup_mutex which nests outside kernfs 1656 * active_ref. cgroup liveliness check alone provides enough 1657 * protection against removal. Ensure @cgrp stays accessible and 1658 * break the active_ref protection. 1659 */ 1660 if (!cgroup_tryget(cgrp)) 1661 return NULL; 1662 kernfs_break_active_protection(kn); 1663 1664 if (drain_offline) 1665 cgroup_lock_and_drain_offline(cgrp); 1666 else 1667 cgroup_lock(); 1668 1669 if (!cgroup_is_dead(cgrp)) 1670 return cgrp; 1671 1672 cgroup_kn_unlock(kn); 1673 return NULL; 1674 } 1675 1676 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1677 { 1678 char name[CGROUP_FILE_NAME_MAX]; 1679 1680 lockdep_assert_held(&cgroup_mutex); 1681 1682 if (cft->file_offset) { 1683 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1684 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1685 1686 spin_lock_irq(&cgroup_file_kn_lock); 1687 cfile->kn = NULL; 1688 spin_unlock_irq(&cgroup_file_kn_lock); 1689 1690 del_timer_sync(&cfile->notify_timer); 1691 } 1692 1693 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1694 } 1695 1696 /** 1697 * css_clear_dir - remove subsys files in a cgroup directory 1698 * @css: target css 1699 */ 1700 static void css_clear_dir(struct cgroup_subsys_state *css) 1701 { 1702 struct cgroup *cgrp = css->cgroup; 1703 struct cftype *cfts; 1704 1705 if (!(css->flags & CSS_VISIBLE)) 1706 return; 1707 1708 css->flags &= ~CSS_VISIBLE; 1709 1710 if (!css->ss) { 1711 if (cgroup_on_dfl(cgrp)) { 1712 cgroup_addrm_files(css, cgrp, 1713 cgroup_base_files, false); 1714 if (cgroup_psi_enabled()) 1715 cgroup_addrm_files(css, cgrp, 1716 cgroup_psi_files, false); 1717 } else { 1718 cgroup_addrm_files(css, cgrp, 1719 cgroup1_base_files, false); 1720 } 1721 } else { 1722 list_for_each_entry(cfts, &css->ss->cfts, node) 1723 cgroup_addrm_files(css, cgrp, cfts, false); 1724 } 1725 } 1726 1727 /** 1728 * css_populate_dir - create subsys files in a cgroup directory 1729 * @css: target css 1730 * 1731 * On failure, no file is added. 1732 */ 1733 static int css_populate_dir(struct cgroup_subsys_state *css) 1734 { 1735 struct cgroup *cgrp = css->cgroup; 1736 struct cftype *cfts, *failed_cfts; 1737 int ret; 1738 1739 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1740 return 0; 1741 1742 if (!css->ss) { 1743 if (cgroup_on_dfl(cgrp)) { 1744 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1745 cgroup_base_files, true); 1746 if (ret < 0) 1747 return ret; 1748 1749 if (cgroup_psi_enabled()) { 1750 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1751 cgroup_psi_files, true); 1752 if (ret < 0) 1753 return ret; 1754 } 1755 } else { 1756 cgroup_addrm_files(css, cgrp, 1757 cgroup1_base_files, true); 1758 } 1759 } else { 1760 list_for_each_entry(cfts, &css->ss->cfts, node) { 1761 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1762 if (ret < 0) { 1763 failed_cfts = cfts; 1764 goto err; 1765 } 1766 } 1767 } 1768 1769 css->flags |= CSS_VISIBLE; 1770 1771 return 0; 1772 err: 1773 list_for_each_entry(cfts, &css->ss->cfts, node) { 1774 if (cfts == failed_cfts) 1775 break; 1776 cgroup_addrm_files(css, cgrp, cfts, false); 1777 } 1778 return ret; 1779 } 1780 1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1782 { 1783 struct cgroup *dcgrp = &dst_root->cgrp; 1784 struct cgroup_subsys *ss; 1785 int ssid, ret; 1786 u16 dfl_disable_ss_mask = 0; 1787 1788 lockdep_assert_held(&cgroup_mutex); 1789 1790 do_each_subsys_mask(ss, ssid, ss_mask) { 1791 /* 1792 * If @ss has non-root csses attached to it, can't move. 1793 * If @ss is an implicit controller, it is exempt from this 1794 * rule and can be stolen. 1795 */ 1796 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1797 !ss->implicit_on_dfl) 1798 return -EBUSY; 1799 1800 /* can't move between two non-dummy roots either */ 1801 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1802 return -EBUSY; 1803 1804 /* 1805 * Collect ssid's that need to be disabled from default 1806 * hierarchy. 1807 */ 1808 if (ss->root == &cgrp_dfl_root) 1809 dfl_disable_ss_mask |= 1 << ssid; 1810 1811 } while_each_subsys_mask(); 1812 1813 if (dfl_disable_ss_mask) { 1814 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1815 1816 /* 1817 * Controllers from default hierarchy that need to be rebound 1818 * are all disabled together in one go. 1819 */ 1820 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1821 WARN_ON(cgroup_apply_control(scgrp)); 1822 cgroup_finalize_control(scgrp, 0); 1823 } 1824 1825 do_each_subsys_mask(ss, ssid, ss_mask) { 1826 struct cgroup_root *src_root = ss->root; 1827 struct cgroup *scgrp = &src_root->cgrp; 1828 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1829 struct css_set *cset, *cset_pos; 1830 struct css_task_iter *it; 1831 1832 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1833 1834 if (src_root != &cgrp_dfl_root) { 1835 /* disable from the source */ 1836 src_root->subsys_mask &= ~(1 << ssid); 1837 WARN_ON(cgroup_apply_control(scgrp)); 1838 cgroup_finalize_control(scgrp, 0); 1839 } 1840 1841 /* rebind */ 1842 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1843 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1844 ss->root = dst_root; 1845 css->cgroup = dcgrp; 1846 1847 spin_lock_irq(&css_set_lock); 1848 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1849 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1850 e_cset_node[ss->id]) { 1851 list_move_tail(&cset->e_cset_node[ss->id], 1852 &dcgrp->e_csets[ss->id]); 1853 /* 1854 * all css_sets of scgrp together in same order to dcgrp, 1855 * patch in-flight iterators to preserve correct iteration. 1856 * since the iterator is always advanced right away and 1857 * finished when it->cset_pos meets it->cset_head, so only 1858 * update it->cset_head is enough here. 1859 */ 1860 list_for_each_entry(it, &cset->task_iters, iters_node) 1861 if (it->cset_head == &scgrp->e_csets[ss->id]) 1862 it->cset_head = &dcgrp->e_csets[ss->id]; 1863 } 1864 spin_unlock_irq(&css_set_lock); 1865 1866 if (ss->css_rstat_flush) { 1867 list_del_rcu(&css->rstat_css_node); 1868 synchronize_rcu(); 1869 list_add_rcu(&css->rstat_css_node, 1870 &dcgrp->rstat_css_list); 1871 } 1872 1873 /* default hierarchy doesn't enable controllers by default */ 1874 dst_root->subsys_mask |= 1 << ssid; 1875 if (dst_root == &cgrp_dfl_root) { 1876 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1877 } else { 1878 dcgrp->subtree_control |= 1 << ssid; 1879 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1880 } 1881 1882 ret = cgroup_apply_control(dcgrp); 1883 if (ret) 1884 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1885 ss->name, ret); 1886 1887 if (ss->bind) 1888 ss->bind(css); 1889 } while_each_subsys_mask(); 1890 1891 kernfs_activate(dcgrp->kn); 1892 return 0; 1893 } 1894 1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1896 struct kernfs_root *kf_root) 1897 { 1898 int len = 0; 1899 char *buf = NULL; 1900 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1901 struct cgroup *ns_cgroup; 1902 1903 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1904 if (!buf) 1905 return -ENOMEM; 1906 1907 spin_lock_irq(&css_set_lock); 1908 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1909 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1910 spin_unlock_irq(&css_set_lock); 1911 1912 if (len >= PATH_MAX) 1913 len = -ERANGE; 1914 else if (len > 0) { 1915 seq_escape(sf, buf, " \t\n\\"); 1916 len = 0; 1917 } 1918 kfree(buf); 1919 return len; 1920 } 1921 1922 enum cgroup2_param { 1923 Opt_nsdelegate, 1924 Opt_favordynmods, 1925 Opt_memory_localevents, 1926 Opt_memory_recursiveprot, 1927 nr__cgroup2_params 1928 }; 1929 1930 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1931 fsparam_flag("nsdelegate", Opt_nsdelegate), 1932 fsparam_flag("favordynmods", Opt_favordynmods), 1933 fsparam_flag("memory_localevents", Opt_memory_localevents), 1934 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1935 {} 1936 }; 1937 1938 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1939 { 1940 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1941 struct fs_parse_result result; 1942 int opt; 1943 1944 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1945 if (opt < 0) 1946 return opt; 1947 1948 switch (opt) { 1949 case Opt_nsdelegate: 1950 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1951 return 0; 1952 case Opt_favordynmods: 1953 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1954 return 0; 1955 case Opt_memory_localevents: 1956 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1957 return 0; 1958 case Opt_memory_recursiveprot: 1959 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1960 return 0; 1961 } 1962 return -EINVAL; 1963 } 1964 1965 static void apply_cgroup_root_flags(unsigned int root_flags) 1966 { 1967 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1968 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1969 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1970 else 1971 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1972 1973 cgroup_favor_dynmods(&cgrp_dfl_root, 1974 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1975 1976 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1977 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1978 else 1979 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1980 1981 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1982 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1983 else 1984 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1985 } 1986 } 1987 1988 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1989 { 1990 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1991 seq_puts(seq, ",nsdelegate"); 1992 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1993 seq_puts(seq, ",favordynmods"); 1994 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1995 seq_puts(seq, ",memory_localevents"); 1996 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1997 seq_puts(seq, ",memory_recursiveprot"); 1998 return 0; 1999 } 2000 2001 static int cgroup_reconfigure(struct fs_context *fc) 2002 { 2003 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2004 2005 apply_cgroup_root_flags(ctx->flags); 2006 return 0; 2007 } 2008 2009 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2010 { 2011 struct cgroup_subsys *ss; 2012 int ssid; 2013 2014 INIT_LIST_HEAD(&cgrp->self.sibling); 2015 INIT_LIST_HEAD(&cgrp->self.children); 2016 INIT_LIST_HEAD(&cgrp->cset_links); 2017 INIT_LIST_HEAD(&cgrp->pidlists); 2018 mutex_init(&cgrp->pidlist_mutex); 2019 cgrp->self.cgroup = cgrp; 2020 cgrp->self.flags |= CSS_ONLINE; 2021 cgrp->dom_cgrp = cgrp; 2022 cgrp->max_descendants = INT_MAX; 2023 cgrp->max_depth = INT_MAX; 2024 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2025 prev_cputime_init(&cgrp->prev_cputime); 2026 2027 for_each_subsys(ss, ssid) 2028 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2029 2030 init_waitqueue_head(&cgrp->offline_waitq); 2031 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2032 } 2033 2034 void init_cgroup_root(struct cgroup_fs_context *ctx) 2035 { 2036 struct cgroup_root *root = ctx->root; 2037 struct cgroup *cgrp = &root->cgrp; 2038 2039 INIT_LIST_HEAD(&root->root_list); 2040 atomic_set(&root->nr_cgrps, 1); 2041 cgrp->root = root; 2042 init_cgroup_housekeeping(cgrp); 2043 2044 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2045 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2046 if (ctx->release_agent) 2047 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2048 if (ctx->name) 2049 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2050 if (ctx->cpuset_clone_children) 2051 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2052 } 2053 2054 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2055 { 2056 LIST_HEAD(tmp_links); 2057 struct cgroup *root_cgrp = &root->cgrp; 2058 struct kernfs_syscall_ops *kf_sops; 2059 struct css_set *cset; 2060 int i, ret; 2061 2062 lockdep_assert_held(&cgroup_mutex); 2063 2064 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2065 0, GFP_KERNEL); 2066 if (ret) 2067 goto out; 2068 2069 /* 2070 * We're accessing css_set_count without locking css_set_lock here, 2071 * but that's OK - it can only be increased by someone holding 2072 * cgroup_lock, and that's us. Later rebinding may disable 2073 * controllers on the default hierarchy and thus create new csets, 2074 * which can't be more than the existing ones. Allocate 2x. 2075 */ 2076 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2077 if (ret) 2078 goto cancel_ref; 2079 2080 ret = cgroup_init_root_id(root); 2081 if (ret) 2082 goto cancel_ref; 2083 2084 kf_sops = root == &cgrp_dfl_root ? 2085 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2086 2087 root->kf_root = kernfs_create_root(kf_sops, 2088 KERNFS_ROOT_CREATE_DEACTIVATED | 2089 KERNFS_ROOT_SUPPORT_EXPORTOP | 2090 KERNFS_ROOT_SUPPORT_USER_XATTR, 2091 root_cgrp); 2092 if (IS_ERR(root->kf_root)) { 2093 ret = PTR_ERR(root->kf_root); 2094 goto exit_root_id; 2095 } 2096 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2097 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2098 root_cgrp->ancestors[0] = root_cgrp; 2099 2100 ret = css_populate_dir(&root_cgrp->self); 2101 if (ret) 2102 goto destroy_root; 2103 2104 ret = cgroup_rstat_init(root_cgrp); 2105 if (ret) 2106 goto destroy_root; 2107 2108 ret = rebind_subsystems(root, ss_mask); 2109 if (ret) 2110 goto exit_stats; 2111 2112 ret = cgroup_bpf_inherit(root_cgrp); 2113 WARN_ON_ONCE(ret); 2114 2115 trace_cgroup_setup_root(root); 2116 2117 /* 2118 * There must be no failure case after here, since rebinding takes 2119 * care of subsystems' refcounts, which are explicitly dropped in 2120 * the failure exit path. 2121 */ 2122 list_add(&root->root_list, &cgroup_roots); 2123 cgroup_root_count++; 2124 2125 /* 2126 * Link the root cgroup in this hierarchy into all the css_set 2127 * objects. 2128 */ 2129 spin_lock_irq(&css_set_lock); 2130 hash_for_each(css_set_table, i, cset, hlist) { 2131 link_css_set(&tmp_links, cset, root_cgrp); 2132 if (css_set_populated(cset)) 2133 cgroup_update_populated(root_cgrp, true); 2134 } 2135 spin_unlock_irq(&css_set_lock); 2136 2137 BUG_ON(!list_empty(&root_cgrp->self.children)); 2138 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2139 2140 ret = 0; 2141 goto out; 2142 2143 exit_stats: 2144 cgroup_rstat_exit(root_cgrp); 2145 destroy_root: 2146 kernfs_destroy_root(root->kf_root); 2147 root->kf_root = NULL; 2148 exit_root_id: 2149 cgroup_exit_root_id(root); 2150 cancel_ref: 2151 percpu_ref_exit(&root_cgrp->self.refcnt); 2152 out: 2153 free_cgrp_cset_links(&tmp_links); 2154 return ret; 2155 } 2156 2157 int cgroup_do_get_tree(struct fs_context *fc) 2158 { 2159 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2160 int ret; 2161 2162 ctx->kfc.root = ctx->root->kf_root; 2163 if (fc->fs_type == &cgroup2_fs_type) 2164 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2165 else 2166 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2167 ret = kernfs_get_tree(fc); 2168 2169 /* 2170 * In non-init cgroup namespace, instead of root cgroup's dentry, 2171 * we return the dentry corresponding to the cgroupns->root_cgrp. 2172 */ 2173 if (!ret && ctx->ns != &init_cgroup_ns) { 2174 struct dentry *nsdentry; 2175 struct super_block *sb = fc->root->d_sb; 2176 struct cgroup *cgrp; 2177 2178 cgroup_lock(); 2179 spin_lock_irq(&css_set_lock); 2180 2181 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2182 2183 spin_unlock_irq(&css_set_lock); 2184 cgroup_unlock(); 2185 2186 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2187 dput(fc->root); 2188 if (IS_ERR(nsdentry)) { 2189 deactivate_locked_super(sb); 2190 ret = PTR_ERR(nsdentry); 2191 nsdentry = NULL; 2192 } 2193 fc->root = nsdentry; 2194 } 2195 2196 if (!ctx->kfc.new_sb_created) 2197 cgroup_put(&ctx->root->cgrp); 2198 2199 return ret; 2200 } 2201 2202 /* 2203 * Destroy a cgroup filesystem context. 2204 */ 2205 static void cgroup_fs_context_free(struct fs_context *fc) 2206 { 2207 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2208 2209 kfree(ctx->name); 2210 kfree(ctx->release_agent); 2211 put_cgroup_ns(ctx->ns); 2212 kernfs_free_fs_context(fc); 2213 kfree(ctx); 2214 } 2215 2216 static int cgroup_get_tree(struct fs_context *fc) 2217 { 2218 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2219 int ret; 2220 2221 WRITE_ONCE(cgrp_dfl_visible, true); 2222 cgroup_get_live(&cgrp_dfl_root.cgrp); 2223 ctx->root = &cgrp_dfl_root; 2224 2225 ret = cgroup_do_get_tree(fc); 2226 if (!ret) 2227 apply_cgroup_root_flags(ctx->flags); 2228 return ret; 2229 } 2230 2231 static const struct fs_context_operations cgroup_fs_context_ops = { 2232 .free = cgroup_fs_context_free, 2233 .parse_param = cgroup2_parse_param, 2234 .get_tree = cgroup_get_tree, 2235 .reconfigure = cgroup_reconfigure, 2236 }; 2237 2238 static const struct fs_context_operations cgroup1_fs_context_ops = { 2239 .free = cgroup_fs_context_free, 2240 .parse_param = cgroup1_parse_param, 2241 .get_tree = cgroup1_get_tree, 2242 .reconfigure = cgroup1_reconfigure, 2243 }; 2244 2245 /* 2246 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2247 * we select the namespace we're going to use. 2248 */ 2249 static int cgroup_init_fs_context(struct fs_context *fc) 2250 { 2251 struct cgroup_fs_context *ctx; 2252 2253 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2254 if (!ctx) 2255 return -ENOMEM; 2256 2257 ctx->ns = current->nsproxy->cgroup_ns; 2258 get_cgroup_ns(ctx->ns); 2259 fc->fs_private = &ctx->kfc; 2260 if (fc->fs_type == &cgroup2_fs_type) 2261 fc->ops = &cgroup_fs_context_ops; 2262 else 2263 fc->ops = &cgroup1_fs_context_ops; 2264 put_user_ns(fc->user_ns); 2265 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2266 fc->global = true; 2267 2268 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2269 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2270 #endif 2271 return 0; 2272 } 2273 2274 static void cgroup_kill_sb(struct super_block *sb) 2275 { 2276 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2277 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2278 2279 /* 2280 * If @root doesn't have any children, start killing it. 2281 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2282 * 2283 * And don't kill the default root. 2284 */ 2285 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2286 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2287 cgroup_bpf_offline(&root->cgrp); 2288 percpu_ref_kill(&root->cgrp.self.refcnt); 2289 } 2290 cgroup_put(&root->cgrp); 2291 kernfs_kill_sb(sb); 2292 } 2293 2294 struct file_system_type cgroup_fs_type = { 2295 .name = "cgroup", 2296 .init_fs_context = cgroup_init_fs_context, 2297 .parameters = cgroup1_fs_parameters, 2298 .kill_sb = cgroup_kill_sb, 2299 .fs_flags = FS_USERNS_MOUNT, 2300 }; 2301 2302 static struct file_system_type cgroup2_fs_type = { 2303 .name = "cgroup2", 2304 .init_fs_context = cgroup_init_fs_context, 2305 .parameters = cgroup2_fs_parameters, 2306 .kill_sb = cgroup_kill_sb, 2307 .fs_flags = FS_USERNS_MOUNT, 2308 }; 2309 2310 #ifdef CONFIG_CPUSETS 2311 static const struct fs_context_operations cpuset_fs_context_ops = { 2312 .get_tree = cgroup1_get_tree, 2313 .free = cgroup_fs_context_free, 2314 }; 2315 2316 /* 2317 * This is ugly, but preserves the userspace API for existing cpuset 2318 * users. If someone tries to mount the "cpuset" filesystem, we 2319 * silently switch it to mount "cgroup" instead 2320 */ 2321 static int cpuset_init_fs_context(struct fs_context *fc) 2322 { 2323 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2324 struct cgroup_fs_context *ctx; 2325 int err; 2326 2327 err = cgroup_init_fs_context(fc); 2328 if (err) { 2329 kfree(agent); 2330 return err; 2331 } 2332 2333 fc->ops = &cpuset_fs_context_ops; 2334 2335 ctx = cgroup_fc2context(fc); 2336 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2337 ctx->flags |= CGRP_ROOT_NOPREFIX; 2338 ctx->release_agent = agent; 2339 2340 get_filesystem(&cgroup_fs_type); 2341 put_filesystem(fc->fs_type); 2342 fc->fs_type = &cgroup_fs_type; 2343 2344 return 0; 2345 } 2346 2347 static struct file_system_type cpuset_fs_type = { 2348 .name = "cpuset", 2349 .init_fs_context = cpuset_init_fs_context, 2350 .fs_flags = FS_USERNS_MOUNT, 2351 }; 2352 #endif 2353 2354 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2355 struct cgroup_namespace *ns) 2356 { 2357 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2358 2359 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2360 } 2361 2362 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2363 struct cgroup_namespace *ns) 2364 { 2365 int ret; 2366 2367 cgroup_lock(); 2368 spin_lock_irq(&css_set_lock); 2369 2370 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2371 2372 spin_unlock_irq(&css_set_lock); 2373 cgroup_unlock(); 2374 2375 return ret; 2376 } 2377 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2378 2379 /** 2380 * cgroup_attach_lock - Lock for ->attach() 2381 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2382 * 2383 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2384 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2385 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2386 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2387 * lead to deadlocks. 2388 * 2389 * Bringing up a CPU may involve creating and destroying tasks which requires 2390 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2391 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2392 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2393 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2394 * the threadgroup_rwsem to be released to create new tasks. For more details: 2395 * 2396 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2397 * 2398 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2399 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2400 * CPU hotplug is disabled on entry. 2401 */ 2402 void cgroup_attach_lock(bool lock_threadgroup) 2403 { 2404 cpus_read_lock(); 2405 if (lock_threadgroup) 2406 percpu_down_write(&cgroup_threadgroup_rwsem); 2407 } 2408 2409 /** 2410 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2411 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2412 */ 2413 void cgroup_attach_unlock(bool lock_threadgroup) 2414 { 2415 if (lock_threadgroup) 2416 percpu_up_write(&cgroup_threadgroup_rwsem); 2417 cpus_read_unlock(); 2418 } 2419 2420 /** 2421 * cgroup_migrate_add_task - add a migration target task to a migration context 2422 * @task: target task 2423 * @mgctx: target migration context 2424 * 2425 * Add @task, which is a migration target, to @mgctx->tset. This function 2426 * becomes noop if @task doesn't need to be migrated. @task's css_set 2427 * should have been added as a migration source and @task->cg_list will be 2428 * moved from the css_set's tasks list to mg_tasks one. 2429 */ 2430 static void cgroup_migrate_add_task(struct task_struct *task, 2431 struct cgroup_mgctx *mgctx) 2432 { 2433 struct css_set *cset; 2434 2435 lockdep_assert_held(&css_set_lock); 2436 2437 /* @task either already exited or can't exit until the end */ 2438 if (task->flags & PF_EXITING) 2439 return; 2440 2441 /* cgroup_threadgroup_rwsem protects racing against forks */ 2442 WARN_ON_ONCE(list_empty(&task->cg_list)); 2443 2444 cset = task_css_set(task); 2445 if (!cset->mg_src_cgrp) 2446 return; 2447 2448 mgctx->tset.nr_tasks++; 2449 2450 list_move_tail(&task->cg_list, &cset->mg_tasks); 2451 if (list_empty(&cset->mg_node)) 2452 list_add_tail(&cset->mg_node, 2453 &mgctx->tset.src_csets); 2454 if (list_empty(&cset->mg_dst_cset->mg_node)) 2455 list_add_tail(&cset->mg_dst_cset->mg_node, 2456 &mgctx->tset.dst_csets); 2457 } 2458 2459 /** 2460 * cgroup_taskset_first - reset taskset and return the first task 2461 * @tset: taskset of interest 2462 * @dst_cssp: output variable for the destination css 2463 * 2464 * @tset iteration is initialized and the first task is returned. 2465 */ 2466 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2467 struct cgroup_subsys_state **dst_cssp) 2468 { 2469 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2470 tset->cur_task = NULL; 2471 2472 return cgroup_taskset_next(tset, dst_cssp); 2473 } 2474 2475 /** 2476 * cgroup_taskset_next - iterate to the next task in taskset 2477 * @tset: taskset of interest 2478 * @dst_cssp: output variable for the destination css 2479 * 2480 * Return the next task in @tset. Iteration must have been initialized 2481 * with cgroup_taskset_first(). 2482 */ 2483 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2484 struct cgroup_subsys_state **dst_cssp) 2485 { 2486 struct css_set *cset = tset->cur_cset; 2487 struct task_struct *task = tset->cur_task; 2488 2489 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2490 if (!task) 2491 task = list_first_entry(&cset->mg_tasks, 2492 struct task_struct, cg_list); 2493 else 2494 task = list_next_entry(task, cg_list); 2495 2496 if (&task->cg_list != &cset->mg_tasks) { 2497 tset->cur_cset = cset; 2498 tset->cur_task = task; 2499 2500 /* 2501 * This function may be called both before and 2502 * after cgroup_taskset_migrate(). The two cases 2503 * can be distinguished by looking at whether @cset 2504 * has its ->mg_dst_cset set. 2505 */ 2506 if (cset->mg_dst_cset) 2507 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2508 else 2509 *dst_cssp = cset->subsys[tset->ssid]; 2510 2511 return task; 2512 } 2513 2514 cset = list_next_entry(cset, mg_node); 2515 task = NULL; 2516 } 2517 2518 return NULL; 2519 } 2520 2521 /** 2522 * cgroup_migrate_execute - migrate a taskset 2523 * @mgctx: migration context 2524 * 2525 * Migrate tasks in @mgctx as setup by migration preparation functions. 2526 * This function fails iff one of the ->can_attach callbacks fails and 2527 * guarantees that either all or none of the tasks in @mgctx are migrated. 2528 * @mgctx is consumed regardless of success. 2529 */ 2530 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2531 { 2532 struct cgroup_taskset *tset = &mgctx->tset; 2533 struct cgroup_subsys *ss; 2534 struct task_struct *task, *tmp_task; 2535 struct css_set *cset, *tmp_cset; 2536 int ssid, failed_ssid, ret; 2537 2538 /* check that we can legitimately attach to the cgroup */ 2539 if (tset->nr_tasks) { 2540 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2541 if (ss->can_attach) { 2542 tset->ssid = ssid; 2543 ret = ss->can_attach(tset); 2544 if (ret) { 2545 failed_ssid = ssid; 2546 goto out_cancel_attach; 2547 } 2548 } 2549 } while_each_subsys_mask(); 2550 } 2551 2552 /* 2553 * Now that we're guaranteed success, proceed to move all tasks to 2554 * the new cgroup. There are no failure cases after here, so this 2555 * is the commit point. 2556 */ 2557 spin_lock_irq(&css_set_lock); 2558 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2559 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2560 struct css_set *from_cset = task_css_set(task); 2561 struct css_set *to_cset = cset->mg_dst_cset; 2562 2563 get_css_set(to_cset); 2564 to_cset->nr_tasks++; 2565 css_set_move_task(task, from_cset, to_cset, true); 2566 from_cset->nr_tasks--; 2567 /* 2568 * If the source or destination cgroup is frozen, 2569 * the task might require to change its state. 2570 */ 2571 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2572 to_cset->dfl_cgrp); 2573 put_css_set_locked(from_cset); 2574 2575 } 2576 } 2577 spin_unlock_irq(&css_set_lock); 2578 2579 /* 2580 * Migration is committed, all target tasks are now on dst_csets. 2581 * Nothing is sensitive to fork() after this point. Notify 2582 * controllers that migration is complete. 2583 */ 2584 tset->csets = &tset->dst_csets; 2585 2586 if (tset->nr_tasks) { 2587 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2588 if (ss->attach) { 2589 tset->ssid = ssid; 2590 ss->attach(tset); 2591 } 2592 } while_each_subsys_mask(); 2593 } 2594 2595 ret = 0; 2596 goto out_release_tset; 2597 2598 out_cancel_attach: 2599 if (tset->nr_tasks) { 2600 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2601 if (ssid == failed_ssid) 2602 break; 2603 if (ss->cancel_attach) { 2604 tset->ssid = ssid; 2605 ss->cancel_attach(tset); 2606 } 2607 } while_each_subsys_mask(); 2608 } 2609 out_release_tset: 2610 spin_lock_irq(&css_set_lock); 2611 list_splice_init(&tset->dst_csets, &tset->src_csets); 2612 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2613 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2614 list_del_init(&cset->mg_node); 2615 } 2616 spin_unlock_irq(&css_set_lock); 2617 2618 /* 2619 * Re-initialize the cgroup_taskset structure in case it is reused 2620 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2621 * iteration. 2622 */ 2623 tset->nr_tasks = 0; 2624 tset->csets = &tset->src_csets; 2625 return ret; 2626 } 2627 2628 /** 2629 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2630 * @dst_cgrp: destination cgroup to test 2631 * 2632 * On the default hierarchy, except for the mixable, (possible) thread root 2633 * and threaded cgroups, subtree_control must be zero for migration 2634 * destination cgroups with tasks so that child cgroups don't compete 2635 * against tasks. 2636 */ 2637 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2638 { 2639 /* v1 doesn't have any restriction */ 2640 if (!cgroup_on_dfl(dst_cgrp)) 2641 return 0; 2642 2643 /* verify @dst_cgrp can host resources */ 2644 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2645 return -EOPNOTSUPP; 2646 2647 /* 2648 * If @dst_cgrp is already or can become a thread root or is 2649 * threaded, it doesn't matter. 2650 */ 2651 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2652 return 0; 2653 2654 /* apply no-internal-process constraint */ 2655 if (dst_cgrp->subtree_control) 2656 return -EBUSY; 2657 2658 return 0; 2659 } 2660 2661 /** 2662 * cgroup_migrate_finish - cleanup after attach 2663 * @mgctx: migration context 2664 * 2665 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2666 * those functions for details. 2667 */ 2668 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2669 { 2670 struct css_set *cset, *tmp_cset; 2671 2672 lockdep_assert_held(&cgroup_mutex); 2673 2674 spin_lock_irq(&css_set_lock); 2675 2676 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2677 mg_src_preload_node) { 2678 cset->mg_src_cgrp = NULL; 2679 cset->mg_dst_cgrp = NULL; 2680 cset->mg_dst_cset = NULL; 2681 list_del_init(&cset->mg_src_preload_node); 2682 put_css_set_locked(cset); 2683 } 2684 2685 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2686 mg_dst_preload_node) { 2687 cset->mg_src_cgrp = NULL; 2688 cset->mg_dst_cgrp = NULL; 2689 cset->mg_dst_cset = NULL; 2690 list_del_init(&cset->mg_dst_preload_node); 2691 put_css_set_locked(cset); 2692 } 2693 2694 spin_unlock_irq(&css_set_lock); 2695 } 2696 2697 /** 2698 * cgroup_migrate_add_src - add a migration source css_set 2699 * @src_cset: the source css_set to add 2700 * @dst_cgrp: the destination cgroup 2701 * @mgctx: migration context 2702 * 2703 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2704 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2705 * up by cgroup_migrate_finish(). 2706 * 2707 * This function may be called without holding cgroup_threadgroup_rwsem 2708 * even if the target is a process. Threads may be created and destroyed 2709 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2710 * into play and the preloaded css_sets are guaranteed to cover all 2711 * migrations. 2712 */ 2713 void cgroup_migrate_add_src(struct css_set *src_cset, 2714 struct cgroup *dst_cgrp, 2715 struct cgroup_mgctx *mgctx) 2716 { 2717 struct cgroup *src_cgrp; 2718 2719 lockdep_assert_held(&cgroup_mutex); 2720 lockdep_assert_held(&css_set_lock); 2721 2722 /* 2723 * If ->dead, @src_set is associated with one or more dead cgroups 2724 * and doesn't contain any migratable tasks. Ignore it early so 2725 * that the rest of migration path doesn't get confused by it. 2726 */ 2727 if (src_cset->dead) 2728 return; 2729 2730 if (!list_empty(&src_cset->mg_src_preload_node)) 2731 return; 2732 2733 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2734 2735 WARN_ON(src_cset->mg_src_cgrp); 2736 WARN_ON(src_cset->mg_dst_cgrp); 2737 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2738 WARN_ON(!list_empty(&src_cset->mg_node)); 2739 2740 src_cset->mg_src_cgrp = src_cgrp; 2741 src_cset->mg_dst_cgrp = dst_cgrp; 2742 get_css_set(src_cset); 2743 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2744 } 2745 2746 /** 2747 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2748 * @mgctx: migration context 2749 * 2750 * Tasks are about to be moved and all the source css_sets have been 2751 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2752 * pins all destination css_sets, links each to its source, and append them 2753 * to @mgctx->preloaded_dst_csets. 2754 * 2755 * This function must be called after cgroup_migrate_add_src() has been 2756 * called on each migration source css_set. After migration is performed 2757 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2758 * @mgctx. 2759 */ 2760 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2761 { 2762 struct css_set *src_cset, *tmp_cset; 2763 2764 lockdep_assert_held(&cgroup_mutex); 2765 2766 /* look up the dst cset for each src cset and link it to src */ 2767 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2768 mg_src_preload_node) { 2769 struct css_set *dst_cset; 2770 struct cgroup_subsys *ss; 2771 int ssid; 2772 2773 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2774 if (!dst_cset) 2775 return -ENOMEM; 2776 2777 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2778 2779 /* 2780 * If src cset equals dst, it's noop. Drop the src. 2781 * cgroup_migrate() will skip the cset too. Note that we 2782 * can't handle src == dst as some nodes are used by both. 2783 */ 2784 if (src_cset == dst_cset) { 2785 src_cset->mg_src_cgrp = NULL; 2786 src_cset->mg_dst_cgrp = NULL; 2787 list_del_init(&src_cset->mg_src_preload_node); 2788 put_css_set(src_cset); 2789 put_css_set(dst_cset); 2790 continue; 2791 } 2792 2793 src_cset->mg_dst_cset = dst_cset; 2794 2795 if (list_empty(&dst_cset->mg_dst_preload_node)) 2796 list_add_tail(&dst_cset->mg_dst_preload_node, 2797 &mgctx->preloaded_dst_csets); 2798 else 2799 put_css_set(dst_cset); 2800 2801 for_each_subsys(ss, ssid) 2802 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2803 mgctx->ss_mask |= 1 << ssid; 2804 } 2805 2806 return 0; 2807 } 2808 2809 /** 2810 * cgroup_migrate - migrate a process or task to a cgroup 2811 * @leader: the leader of the process or the task to migrate 2812 * @threadgroup: whether @leader points to the whole process or a single task 2813 * @mgctx: migration context 2814 * 2815 * Migrate a process or task denoted by @leader. If migrating a process, 2816 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2817 * responsible for invoking cgroup_migrate_add_src() and 2818 * cgroup_migrate_prepare_dst() on the targets before invoking this 2819 * function and following up with cgroup_migrate_finish(). 2820 * 2821 * As long as a controller's ->can_attach() doesn't fail, this function is 2822 * guaranteed to succeed. This means that, excluding ->can_attach() 2823 * failure, when migrating multiple targets, the success or failure can be 2824 * decided for all targets by invoking group_migrate_prepare_dst() before 2825 * actually starting migrating. 2826 */ 2827 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2828 struct cgroup_mgctx *mgctx) 2829 { 2830 struct task_struct *task; 2831 2832 /* 2833 * The following thread iteration should be inside an RCU critical 2834 * section to prevent tasks from being freed while taking the snapshot. 2835 * spin_lock_irq() implies RCU critical section here. 2836 */ 2837 spin_lock_irq(&css_set_lock); 2838 task = leader; 2839 do { 2840 cgroup_migrate_add_task(task, mgctx); 2841 if (!threadgroup) 2842 break; 2843 } while_each_thread(leader, task); 2844 spin_unlock_irq(&css_set_lock); 2845 2846 return cgroup_migrate_execute(mgctx); 2847 } 2848 2849 /** 2850 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2851 * @dst_cgrp: the cgroup to attach to 2852 * @leader: the task or the leader of the threadgroup to be attached 2853 * @threadgroup: attach the whole threadgroup? 2854 * 2855 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2856 */ 2857 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2858 bool threadgroup) 2859 { 2860 DEFINE_CGROUP_MGCTX(mgctx); 2861 struct task_struct *task; 2862 int ret = 0; 2863 2864 /* look up all src csets */ 2865 spin_lock_irq(&css_set_lock); 2866 rcu_read_lock(); 2867 task = leader; 2868 do { 2869 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2870 if (!threadgroup) 2871 break; 2872 } while_each_thread(leader, task); 2873 rcu_read_unlock(); 2874 spin_unlock_irq(&css_set_lock); 2875 2876 /* prepare dst csets and commit */ 2877 ret = cgroup_migrate_prepare_dst(&mgctx); 2878 if (!ret) 2879 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2880 2881 cgroup_migrate_finish(&mgctx); 2882 2883 if (!ret) 2884 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2885 2886 return ret; 2887 } 2888 2889 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2890 bool *threadgroup_locked) 2891 { 2892 struct task_struct *tsk; 2893 pid_t pid; 2894 2895 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2896 return ERR_PTR(-EINVAL); 2897 2898 /* 2899 * If we migrate a single thread, we don't care about threadgroup 2900 * stability. If the thread is `current`, it won't exit(2) under our 2901 * hands or change PID through exec(2). We exclude 2902 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2903 * callers by cgroup_mutex. 2904 * Therefore, we can skip the global lock. 2905 */ 2906 lockdep_assert_held(&cgroup_mutex); 2907 *threadgroup_locked = pid || threadgroup; 2908 cgroup_attach_lock(*threadgroup_locked); 2909 2910 rcu_read_lock(); 2911 if (pid) { 2912 tsk = find_task_by_vpid(pid); 2913 if (!tsk) { 2914 tsk = ERR_PTR(-ESRCH); 2915 goto out_unlock_threadgroup; 2916 } 2917 } else { 2918 tsk = current; 2919 } 2920 2921 if (threadgroup) 2922 tsk = tsk->group_leader; 2923 2924 /* 2925 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2926 * If userland migrates such a kthread to a non-root cgroup, it can 2927 * become trapped in a cpuset, or RT kthread may be born in a 2928 * cgroup with no rt_runtime allocated. Just say no. 2929 */ 2930 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2931 tsk = ERR_PTR(-EINVAL); 2932 goto out_unlock_threadgroup; 2933 } 2934 2935 get_task_struct(tsk); 2936 goto out_unlock_rcu; 2937 2938 out_unlock_threadgroup: 2939 cgroup_attach_unlock(*threadgroup_locked); 2940 *threadgroup_locked = false; 2941 out_unlock_rcu: 2942 rcu_read_unlock(); 2943 return tsk; 2944 } 2945 2946 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2947 { 2948 struct cgroup_subsys *ss; 2949 int ssid; 2950 2951 /* release reference from cgroup_procs_write_start() */ 2952 put_task_struct(task); 2953 2954 cgroup_attach_unlock(threadgroup_locked); 2955 2956 for_each_subsys(ss, ssid) 2957 if (ss->post_attach) 2958 ss->post_attach(); 2959 } 2960 2961 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2962 { 2963 struct cgroup_subsys *ss; 2964 bool printed = false; 2965 int ssid; 2966 2967 do_each_subsys_mask(ss, ssid, ss_mask) { 2968 if (printed) 2969 seq_putc(seq, ' '); 2970 seq_puts(seq, ss->name); 2971 printed = true; 2972 } while_each_subsys_mask(); 2973 if (printed) 2974 seq_putc(seq, '\n'); 2975 } 2976 2977 /* show controllers which are enabled from the parent */ 2978 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2979 { 2980 struct cgroup *cgrp = seq_css(seq)->cgroup; 2981 2982 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2983 return 0; 2984 } 2985 2986 /* show controllers which are enabled for a given cgroup's children */ 2987 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2988 { 2989 struct cgroup *cgrp = seq_css(seq)->cgroup; 2990 2991 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2992 return 0; 2993 } 2994 2995 /** 2996 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2997 * @cgrp: root of the subtree to update csses for 2998 * 2999 * @cgrp's control masks have changed and its subtree's css associations 3000 * need to be updated accordingly. This function looks up all css_sets 3001 * which are attached to the subtree, creates the matching updated css_sets 3002 * and migrates the tasks to the new ones. 3003 */ 3004 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3005 { 3006 DEFINE_CGROUP_MGCTX(mgctx); 3007 struct cgroup_subsys_state *d_css; 3008 struct cgroup *dsct; 3009 struct css_set *src_cset; 3010 bool has_tasks; 3011 int ret; 3012 3013 lockdep_assert_held(&cgroup_mutex); 3014 3015 /* look up all csses currently attached to @cgrp's subtree */ 3016 spin_lock_irq(&css_set_lock); 3017 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3018 struct cgrp_cset_link *link; 3019 3020 /* 3021 * As cgroup_update_dfl_csses() is only called by 3022 * cgroup_apply_control(). The csses associated with the 3023 * given cgrp will not be affected by changes made to 3024 * its subtree_control file. We can skip them. 3025 */ 3026 if (dsct == cgrp) 3027 continue; 3028 3029 list_for_each_entry(link, &dsct->cset_links, cset_link) 3030 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3031 } 3032 spin_unlock_irq(&css_set_lock); 3033 3034 /* 3035 * We need to write-lock threadgroup_rwsem while migrating tasks. 3036 * However, if there are no source csets for @cgrp, changing its 3037 * controllers isn't gonna produce any task migrations and the 3038 * write-locking can be skipped safely. 3039 */ 3040 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3041 cgroup_attach_lock(has_tasks); 3042 3043 /* NULL dst indicates self on default hierarchy */ 3044 ret = cgroup_migrate_prepare_dst(&mgctx); 3045 if (ret) 3046 goto out_finish; 3047 3048 spin_lock_irq(&css_set_lock); 3049 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3050 mg_src_preload_node) { 3051 struct task_struct *task, *ntask; 3052 3053 /* all tasks in src_csets need to be migrated */ 3054 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3055 cgroup_migrate_add_task(task, &mgctx); 3056 } 3057 spin_unlock_irq(&css_set_lock); 3058 3059 ret = cgroup_migrate_execute(&mgctx); 3060 out_finish: 3061 cgroup_migrate_finish(&mgctx); 3062 cgroup_attach_unlock(has_tasks); 3063 return ret; 3064 } 3065 3066 /** 3067 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3068 * @cgrp: root of the target subtree 3069 * 3070 * Because css offlining is asynchronous, userland may try to re-enable a 3071 * controller while the previous css is still around. This function grabs 3072 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3073 */ 3074 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3075 __acquires(&cgroup_mutex) 3076 { 3077 struct cgroup *dsct; 3078 struct cgroup_subsys_state *d_css; 3079 struct cgroup_subsys *ss; 3080 int ssid; 3081 3082 restart: 3083 cgroup_lock(); 3084 3085 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3086 for_each_subsys(ss, ssid) { 3087 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3088 DEFINE_WAIT(wait); 3089 3090 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3091 continue; 3092 3093 cgroup_get_live(dsct); 3094 prepare_to_wait(&dsct->offline_waitq, &wait, 3095 TASK_UNINTERRUPTIBLE); 3096 3097 cgroup_unlock(); 3098 schedule(); 3099 finish_wait(&dsct->offline_waitq, &wait); 3100 3101 cgroup_put(dsct); 3102 goto restart; 3103 } 3104 } 3105 } 3106 3107 /** 3108 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3109 * @cgrp: root of the target subtree 3110 * 3111 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3112 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3113 * itself. 3114 */ 3115 static void cgroup_save_control(struct cgroup *cgrp) 3116 { 3117 struct cgroup *dsct; 3118 struct cgroup_subsys_state *d_css; 3119 3120 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3121 dsct->old_subtree_control = dsct->subtree_control; 3122 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3123 dsct->old_dom_cgrp = dsct->dom_cgrp; 3124 } 3125 } 3126 3127 /** 3128 * cgroup_propagate_control - refresh control masks of a subtree 3129 * @cgrp: root of the target subtree 3130 * 3131 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3132 * ->subtree_control and propagate controller availability through the 3133 * subtree so that descendants don't have unavailable controllers enabled. 3134 */ 3135 static void cgroup_propagate_control(struct cgroup *cgrp) 3136 { 3137 struct cgroup *dsct; 3138 struct cgroup_subsys_state *d_css; 3139 3140 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3141 dsct->subtree_control &= cgroup_control(dsct); 3142 dsct->subtree_ss_mask = 3143 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3144 cgroup_ss_mask(dsct)); 3145 } 3146 } 3147 3148 /** 3149 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3150 * @cgrp: root of the target subtree 3151 * 3152 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3153 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3154 * itself. 3155 */ 3156 static void cgroup_restore_control(struct cgroup *cgrp) 3157 { 3158 struct cgroup *dsct; 3159 struct cgroup_subsys_state *d_css; 3160 3161 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3162 dsct->subtree_control = dsct->old_subtree_control; 3163 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3164 dsct->dom_cgrp = dsct->old_dom_cgrp; 3165 } 3166 } 3167 3168 static bool css_visible(struct cgroup_subsys_state *css) 3169 { 3170 struct cgroup_subsys *ss = css->ss; 3171 struct cgroup *cgrp = css->cgroup; 3172 3173 if (cgroup_control(cgrp) & (1 << ss->id)) 3174 return true; 3175 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3176 return false; 3177 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3178 } 3179 3180 /** 3181 * cgroup_apply_control_enable - enable or show csses according to control 3182 * @cgrp: root of the target subtree 3183 * 3184 * Walk @cgrp's subtree and create new csses or make the existing ones 3185 * visible. A css is created invisible if it's being implicitly enabled 3186 * through dependency. An invisible css is made visible when the userland 3187 * explicitly enables it. 3188 * 3189 * Returns 0 on success, -errno on failure. On failure, csses which have 3190 * been processed already aren't cleaned up. The caller is responsible for 3191 * cleaning up with cgroup_apply_control_disable(). 3192 */ 3193 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3194 { 3195 struct cgroup *dsct; 3196 struct cgroup_subsys_state *d_css; 3197 struct cgroup_subsys *ss; 3198 int ssid, ret; 3199 3200 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3201 for_each_subsys(ss, ssid) { 3202 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3203 3204 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3205 continue; 3206 3207 if (!css) { 3208 css = css_create(dsct, ss); 3209 if (IS_ERR(css)) 3210 return PTR_ERR(css); 3211 } 3212 3213 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3214 3215 if (css_visible(css)) { 3216 ret = css_populate_dir(css); 3217 if (ret) 3218 return ret; 3219 } 3220 } 3221 } 3222 3223 return 0; 3224 } 3225 3226 /** 3227 * cgroup_apply_control_disable - kill or hide csses according to control 3228 * @cgrp: root of the target subtree 3229 * 3230 * Walk @cgrp's subtree and kill and hide csses so that they match 3231 * cgroup_ss_mask() and cgroup_visible_mask(). 3232 * 3233 * A css is hidden when the userland requests it to be disabled while other 3234 * subsystems are still depending on it. The css must not actively control 3235 * resources and be in the vanilla state if it's made visible again later. 3236 * Controllers which may be depended upon should provide ->css_reset() for 3237 * this purpose. 3238 */ 3239 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3240 { 3241 struct cgroup *dsct; 3242 struct cgroup_subsys_state *d_css; 3243 struct cgroup_subsys *ss; 3244 int ssid; 3245 3246 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3247 for_each_subsys(ss, ssid) { 3248 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3249 3250 if (!css) 3251 continue; 3252 3253 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3254 3255 if (css->parent && 3256 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3257 kill_css(css); 3258 } else if (!css_visible(css)) { 3259 css_clear_dir(css); 3260 if (ss->css_reset) 3261 ss->css_reset(css); 3262 } 3263 } 3264 } 3265 } 3266 3267 /** 3268 * cgroup_apply_control - apply control mask updates to the subtree 3269 * @cgrp: root of the target subtree 3270 * 3271 * subsystems can be enabled and disabled in a subtree using the following 3272 * steps. 3273 * 3274 * 1. Call cgroup_save_control() to stash the current state. 3275 * 2. Update ->subtree_control masks in the subtree as desired. 3276 * 3. Call cgroup_apply_control() to apply the changes. 3277 * 4. Optionally perform other related operations. 3278 * 5. Call cgroup_finalize_control() to finish up. 3279 * 3280 * This function implements step 3 and propagates the mask changes 3281 * throughout @cgrp's subtree, updates csses accordingly and perform 3282 * process migrations. 3283 */ 3284 static int cgroup_apply_control(struct cgroup *cgrp) 3285 { 3286 int ret; 3287 3288 cgroup_propagate_control(cgrp); 3289 3290 ret = cgroup_apply_control_enable(cgrp); 3291 if (ret) 3292 return ret; 3293 3294 /* 3295 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3296 * making the following cgroup_update_dfl_csses() properly update 3297 * css associations of all tasks in the subtree. 3298 */ 3299 return cgroup_update_dfl_csses(cgrp); 3300 } 3301 3302 /** 3303 * cgroup_finalize_control - finalize control mask update 3304 * @cgrp: root of the target subtree 3305 * @ret: the result of the update 3306 * 3307 * Finalize control mask update. See cgroup_apply_control() for more info. 3308 */ 3309 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3310 { 3311 if (ret) { 3312 cgroup_restore_control(cgrp); 3313 cgroup_propagate_control(cgrp); 3314 } 3315 3316 cgroup_apply_control_disable(cgrp); 3317 } 3318 3319 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3320 { 3321 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3322 3323 /* if nothing is getting enabled, nothing to worry about */ 3324 if (!enable) 3325 return 0; 3326 3327 /* can @cgrp host any resources? */ 3328 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3329 return -EOPNOTSUPP; 3330 3331 /* mixables don't care */ 3332 if (cgroup_is_mixable(cgrp)) 3333 return 0; 3334 3335 if (domain_enable) { 3336 /* can't enable domain controllers inside a thread subtree */ 3337 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3338 return -EOPNOTSUPP; 3339 } else { 3340 /* 3341 * Threaded controllers can handle internal competitions 3342 * and are always allowed inside a (prospective) thread 3343 * subtree. 3344 */ 3345 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3346 return 0; 3347 } 3348 3349 /* 3350 * Controllers can't be enabled for a cgroup with tasks to avoid 3351 * child cgroups competing against tasks. 3352 */ 3353 if (cgroup_has_tasks(cgrp)) 3354 return -EBUSY; 3355 3356 return 0; 3357 } 3358 3359 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3360 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3361 char *buf, size_t nbytes, 3362 loff_t off) 3363 { 3364 u16 enable = 0, disable = 0; 3365 struct cgroup *cgrp, *child; 3366 struct cgroup_subsys *ss; 3367 char *tok; 3368 int ssid, ret; 3369 3370 /* 3371 * Parse input - space separated list of subsystem names prefixed 3372 * with either + or -. 3373 */ 3374 buf = strstrip(buf); 3375 while ((tok = strsep(&buf, " "))) { 3376 if (tok[0] == '\0') 3377 continue; 3378 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3379 if (!cgroup_ssid_enabled(ssid) || 3380 strcmp(tok + 1, ss->name)) 3381 continue; 3382 3383 if (*tok == '+') { 3384 enable |= 1 << ssid; 3385 disable &= ~(1 << ssid); 3386 } else if (*tok == '-') { 3387 disable |= 1 << ssid; 3388 enable &= ~(1 << ssid); 3389 } else { 3390 return -EINVAL; 3391 } 3392 break; 3393 } while_each_subsys_mask(); 3394 if (ssid == CGROUP_SUBSYS_COUNT) 3395 return -EINVAL; 3396 } 3397 3398 cgrp = cgroup_kn_lock_live(of->kn, true); 3399 if (!cgrp) 3400 return -ENODEV; 3401 3402 for_each_subsys(ss, ssid) { 3403 if (enable & (1 << ssid)) { 3404 if (cgrp->subtree_control & (1 << ssid)) { 3405 enable &= ~(1 << ssid); 3406 continue; 3407 } 3408 3409 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3410 ret = -ENOENT; 3411 goto out_unlock; 3412 } 3413 } else if (disable & (1 << ssid)) { 3414 if (!(cgrp->subtree_control & (1 << ssid))) { 3415 disable &= ~(1 << ssid); 3416 continue; 3417 } 3418 3419 /* a child has it enabled? */ 3420 cgroup_for_each_live_child(child, cgrp) { 3421 if (child->subtree_control & (1 << ssid)) { 3422 ret = -EBUSY; 3423 goto out_unlock; 3424 } 3425 } 3426 } 3427 } 3428 3429 if (!enable && !disable) { 3430 ret = 0; 3431 goto out_unlock; 3432 } 3433 3434 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3435 if (ret) 3436 goto out_unlock; 3437 3438 /* save and update control masks and prepare csses */ 3439 cgroup_save_control(cgrp); 3440 3441 cgrp->subtree_control |= enable; 3442 cgrp->subtree_control &= ~disable; 3443 3444 ret = cgroup_apply_control(cgrp); 3445 cgroup_finalize_control(cgrp, ret); 3446 if (ret) 3447 goto out_unlock; 3448 3449 kernfs_activate(cgrp->kn); 3450 out_unlock: 3451 cgroup_kn_unlock(of->kn); 3452 return ret ?: nbytes; 3453 } 3454 3455 /** 3456 * cgroup_enable_threaded - make @cgrp threaded 3457 * @cgrp: the target cgroup 3458 * 3459 * Called when "threaded" is written to the cgroup.type interface file and 3460 * tries to make @cgrp threaded and join the parent's resource domain. 3461 * This function is never called on the root cgroup as cgroup.type doesn't 3462 * exist on it. 3463 */ 3464 static int cgroup_enable_threaded(struct cgroup *cgrp) 3465 { 3466 struct cgroup *parent = cgroup_parent(cgrp); 3467 struct cgroup *dom_cgrp = parent->dom_cgrp; 3468 struct cgroup *dsct; 3469 struct cgroup_subsys_state *d_css; 3470 int ret; 3471 3472 lockdep_assert_held(&cgroup_mutex); 3473 3474 /* noop if already threaded */ 3475 if (cgroup_is_threaded(cgrp)) 3476 return 0; 3477 3478 /* 3479 * If @cgroup is populated or has domain controllers enabled, it 3480 * can't be switched. While the below cgroup_can_be_thread_root() 3481 * test can catch the same conditions, that's only when @parent is 3482 * not mixable, so let's check it explicitly. 3483 */ 3484 if (cgroup_is_populated(cgrp) || 3485 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3486 return -EOPNOTSUPP; 3487 3488 /* we're joining the parent's domain, ensure its validity */ 3489 if (!cgroup_is_valid_domain(dom_cgrp) || 3490 !cgroup_can_be_thread_root(dom_cgrp)) 3491 return -EOPNOTSUPP; 3492 3493 /* 3494 * The following shouldn't cause actual migrations and should 3495 * always succeed. 3496 */ 3497 cgroup_save_control(cgrp); 3498 3499 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3500 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3501 dsct->dom_cgrp = dom_cgrp; 3502 3503 ret = cgroup_apply_control(cgrp); 3504 if (!ret) 3505 parent->nr_threaded_children++; 3506 3507 cgroup_finalize_control(cgrp, ret); 3508 return ret; 3509 } 3510 3511 static int cgroup_type_show(struct seq_file *seq, void *v) 3512 { 3513 struct cgroup *cgrp = seq_css(seq)->cgroup; 3514 3515 if (cgroup_is_threaded(cgrp)) 3516 seq_puts(seq, "threaded\n"); 3517 else if (!cgroup_is_valid_domain(cgrp)) 3518 seq_puts(seq, "domain invalid\n"); 3519 else if (cgroup_is_thread_root(cgrp)) 3520 seq_puts(seq, "domain threaded\n"); 3521 else 3522 seq_puts(seq, "domain\n"); 3523 3524 return 0; 3525 } 3526 3527 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3528 size_t nbytes, loff_t off) 3529 { 3530 struct cgroup *cgrp; 3531 int ret; 3532 3533 /* only switching to threaded mode is supported */ 3534 if (strcmp(strstrip(buf), "threaded")) 3535 return -EINVAL; 3536 3537 /* drain dying csses before we re-apply (threaded) subtree control */ 3538 cgrp = cgroup_kn_lock_live(of->kn, true); 3539 if (!cgrp) 3540 return -ENOENT; 3541 3542 /* threaded can only be enabled */ 3543 ret = cgroup_enable_threaded(cgrp); 3544 3545 cgroup_kn_unlock(of->kn); 3546 return ret ?: nbytes; 3547 } 3548 3549 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3550 { 3551 struct cgroup *cgrp = seq_css(seq)->cgroup; 3552 int descendants = READ_ONCE(cgrp->max_descendants); 3553 3554 if (descendants == INT_MAX) 3555 seq_puts(seq, "max\n"); 3556 else 3557 seq_printf(seq, "%d\n", descendants); 3558 3559 return 0; 3560 } 3561 3562 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3563 char *buf, size_t nbytes, loff_t off) 3564 { 3565 struct cgroup *cgrp; 3566 int descendants; 3567 ssize_t ret; 3568 3569 buf = strstrip(buf); 3570 if (!strcmp(buf, "max")) { 3571 descendants = INT_MAX; 3572 } else { 3573 ret = kstrtoint(buf, 0, &descendants); 3574 if (ret) 3575 return ret; 3576 } 3577 3578 if (descendants < 0) 3579 return -ERANGE; 3580 3581 cgrp = cgroup_kn_lock_live(of->kn, false); 3582 if (!cgrp) 3583 return -ENOENT; 3584 3585 cgrp->max_descendants = descendants; 3586 3587 cgroup_kn_unlock(of->kn); 3588 3589 return nbytes; 3590 } 3591 3592 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3593 { 3594 struct cgroup *cgrp = seq_css(seq)->cgroup; 3595 int depth = READ_ONCE(cgrp->max_depth); 3596 3597 if (depth == INT_MAX) 3598 seq_puts(seq, "max\n"); 3599 else 3600 seq_printf(seq, "%d\n", depth); 3601 3602 return 0; 3603 } 3604 3605 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3606 char *buf, size_t nbytes, loff_t off) 3607 { 3608 struct cgroup *cgrp; 3609 ssize_t ret; 3610 int depth; 3611 3612 buf = strstrip(buf); 3613 if (!strcmp(buf, "max")) { 3614 depth = INT_MAX; 3615 } else { 3616 ret = kstrtoint(buf, 0, &depth); 3617 if (ret) 3618 return ret; 3619 } 3620 3621 if (depth < 0) 3622 return -ERANGE; 3623 3624 cgrp = cgroup_kn_lock_live(of->kn, false); 3625 if (!cgrp) 3626 return -ENOENT; 3627 3628 cgrp->max_depth = depth; 3629 3630 cgroup_kn_unlock(of->kn); 3631 3632 return nbytes; 3633 } 3634 3635 static int cgroup_events_show(struct seq_file *seq, void *v) 3636 { 3637 struct cgroup *cgrp = seq_css(seq)->cgroup; 3638 3639 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3640 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3641 3642 return 0; 3643 } 3644 3645 static int cgroup_stat_show(struct seq_file *seq, void *v) 3646 { 3647 struct cgroup *cgroup = seq_css(seq)->cgroup; 3648 3649 seq_printf(seq, "nr_descendants %d\n", 3650 cgroup->nr_descendants); 3651 seq_printf(seq, "nr_dying_descendants %d\n", 3652 cgroup->nr_dying_descendants); 3653 3654 return 0; 3655 } 3656 3657 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3658 struct cgroup *cgrp, int ssid) 3659 { 3660 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3661 struct cgroup_subsys_state *css; 3662 int ret; 3663 3664 if (!ss->css_extra_stat_show) 3665 return 0; 3666 3667 css = cgroup_tryget_css(cgrp, ss); 3668 if (!css) 3669 return 0; 3670 3671 ret = ss->css_extra_stat_show(seq, css); 3672 css_put(css); 3673 return ret; 3674 } 3675 3676 static int cpu_stat_show(struct seq_file *seq, void *v) 3677 { 3678 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3679 int ret = 0; 3680 3681 cgroup_base_stat_cputime_show(seq); 3682 #ifdef CONFIG_CGROUP_SCHED 3683 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3684 #endif 3685 return ret; 3686 } 3687 3688 static int __maybe_unused cgroup_local_stat_show(struct seq_file *seq, 3689 struct cgroup *cgrp, int ssid) 3690 { 3691 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3692 struct cgroup_subsys_state *css; 3693 int ret; 3694 3695 if (!ss->css_local_stat_show) 3696 return 0; 3697 3698 css = cgroup_tryget_css(cgrp, ss); 3699 if (!css) 3700 return 0; 3701 3702 ret = ss->css_local_stat_show(seq, css); 3703 css_put(css); 3704 return ret; 3705 } 3706 3707 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3708 { 3709 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3710 int ret = 0; 3711 3712 #ifdef CONFIG_CGROUP_SCHED 3713 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3714 #endif 3715 return ret; 3716 } 3717 3718 #ifdef CONFIG_PSI 3719 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3720 { 3721 struct cgroup *cgrp = seq_css(seq)->cgroup; 3722 struct psi_group *psi = cgroup_psi(cgrp); 3723 3724 return psi_show(seq, psi, PSI_IO); 3725 } 3726 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3727 { 3728 struct cgroup *cgrp = seq_css(seq)->cgroup; 3729 struct psi_group *psi = cgroup_psi(cgrp); 3730 3731 return psi_show(seq, psi, PSI_MEM); 3732 } 3733 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3734 { 3735 struct cgroup *cgrp = seq_css(seq)->cgroup; 3736 struct psi_group *psi = cgroup_psi(cgrp); 3737 3738 return psi_show(seq, psi, PSI_CPU); 3739 } 3740 3741 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3742 size_t nbytes, enum psi_res res) 3743 { 3744 struct cgroup_file_ctx *ctx = of->priv; 3745 struct psi_trigger *new; 3746 struct cgroup *cgrp; 3747 struct psi_group *psi; 3748 3749 cgrp = cgroup_kn_lock_live(of->kn, false); 3750 if (!cgrp) 3751 return -ENODEV; 3752 3753 cgroup_get(cgrp); 3754 cgroup_kn_unlock(of->kn); 3755 3756 /* Allow only one trigger per file descriptor */ 3757 if (ctx->psi.trigger) { 3758 cgroup_put(cgrp); 3759 return -EBUSY; 3760 } 3761 3762 psi = cgroup_psi(cgrp); 3763 new = psi_trigger_create(psi, buf, res, of->file, of); 3764 if (IS_ERR(new)) { 3765 cgroup_put(cgrp); 3766 return PTR_ERR(new); 3767 } 3768 3769 smp_store_release(&ctx->psi.trigger, new); 3770 cgroup_put(cgrp); 3771 3772 return nbytes; 3773 } 3774 3775 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3776 char *buf, size_t nbytes, 3777 loff_t off) 3778 { 3779 return pressure_write(of, buf, nbytes, PSI_IO); 3780 } 3781 3782 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3783 char *buf, size_t nbytes, 3784 loff_t off) 3785 { 3786 return pressure_write(of, buf, nbytes, PSI_MEM); 3787 } 3788 3789 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3790 char *buf, size_t nbytes, 3791 loff_t off) 3792 { 3793 return pressure_write(of, buf, nbytes, PSI_CPU); 3794 } 3795 3796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3797 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3798 { 3799 struct cgroup *cgrp = seq_css(seq)->cgroup; 3800 struct psi_group *psi = cgroup_psi(cgrp); 3801 3802 return psi_show(seq, psi, PSI_IRQ); 3803 } 3804 3805 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3806 char *buf, size_t nbytes, 3807 loff_t off) 3808 { 3809 return pressure_write(of, buf, nbytes, PSI_IRQ); 3810 } 3811 #endif 3812 3813 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3814 { 3815 struct cgroup *cgrp = seq_css(seq)->cgroup; 3816 struct psi_group *psi = cgroup_psi(cgrp); 3817 3818 seq_printf(seq, "%d\n", psi->enabled); 3819 3820 return 0; 3821 } 3822 3823 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3824 char *buf, size_t nbytes, 3825 loff_t off) 3826 { 3827 ssize_t ret; 3828 int enable; 3829 struct cgroup *cgrp; 3830 struct psi_group *psi; 3831 3832 ret = kstrtoint(strstrip(buf), 0, &enable); 3833 if (ret) 3834 return ret; 3835 3836 if (enable < 0 || enable > 1) 3837 return -ERANGE; 3838 3839 cgrp = cgroup_kn_lock_live(of->kn, false); 3840 if (!cgrp) 3841 return -ENOENT; 3842 3843 psi = cgroup_psi(cgrp); 3844 if (psi->enabled != enable) { 3845 int i; 3846 3847 /* show or hide {cpu,memory,io,irq}.pressure files */ 3848 for (i = 0; i < NR_PSI_RESOURCES; i++) 3849 cgroup_file_show(&cgrp->psi_files[i], enable); 3850 3851 psi->enabled = enable; 3852 if (enable) 3853 psi_cgroup_restart(psi); 3854 } 3855 3856 cgroup_kn_unlock(of->kn); 3857 3858 return nbytes; 3859 } 3860 3861 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3862 poll_table *pt) 3863 { 3864 struct cgroup_file_ctx *ctx = of->priv; 3865 3866 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3867 } 3868 3869 static int cgroup_pressure_open(struct kernfs_open_file *of) 3870 { 3871 if (of->file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE)) 3872 return -EPERM; 3873 3874 return 0; 3875 } 3876 3877 static void cgroup_pressure_release(struct kernfs_open_file *of) 3878 { 3879 struct cgroup_file_ctx *ctx = of->priv; 3880 3881 psi_trigger_destroy(ctx->psi.trigger); 3882 } 3883 3884 bool cgroup_psi_enabled(void) 3885 { 3886 if (static_branch_likely(&psi_disabled)) 3887 return false; 3888 3889 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3890 } 3891 3892 #else /* CONFIG_PSI */ 3893 bool cgroup_psi_enabled(void) 3894 { 3895 return false; 3896 } 3897 3898 #endif /* CONFIG_PSI */ 3899 3900 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3901 { 3902 struct cgroup *cgrp = seq_css(seq)->cgroup; 3903 3904 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3905 3906 return 0; 3907 } 3908 3909 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3910 char *buf, size_t nbytes, loff_t off) 3911 { 3912 struct cgroup *cgrp; 3913 ssize_t ret; 3914 int freeze; 3915 3916 ret = kstrtoint(strstrip(buf), 0, &freeze); 3917 if (ret) 3918 return ret; 3919 3920 if (freeze < 0 || freeze > 1) 3921 return -ERANGE; 3922 3923 cgrp = cgroup_kn_lock_live(of->kn, false); 3924 if (!cgrp) 3925 return -ENOENT; 3926 3927 cgroup_freeze(cgrp, freeze); 3928 3929 cgroup_kn_unlock(of->kn); 3930 3931 return nbytes; 3932 } 3933 3934 static void __cgroup_kill(struct cgroup *cgrp) 3935 { 3936 struct css_task_iter it; 3937 struct task_struct *task; 3938 3939 lockdep_assert_held(&cgroup_mutex); 3940 3941 spin_lock_irq(&css_set_lock); 3942 set_bit(CGRP_KILL, &cgrp->flags); 3943 spin_unlock_irq(&css_set_lock); 3944 3945 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3946 while ((task = css_task_iter_next(&it))) { 3947 /* Ignore kernel threads here. */ 3948 if (task->flags & PF_KTHREAD) 3949 continue; 3950 3951 /* Skip tasks that are already dying. */ 3952 if (__fatal_signal_pending(task)) 3953 continue; 3954 3955 send_sig(SIGKILL, task, 0); 3956 } 3957 css_task_iter_end(&it); 3958 3959 spin_lock_irq(&css_set_lock); 3960 clear_bit(CGRP_KILL, &cgrp->flags); 3961 spin_unlock_irq(&css_set_lock); 3962 } 3963 3964 static void cgroup_kill(struct cgroup *cgrp) 3965 { 3966 struct cgroup_subsys_state *css; 3967 struct cgroup *dsct; 3968 3969 lockdep_assert_held(&cgroup_mutex); 3970 3971 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3972 __cgroup_kill(dsct); 3973 } 3974 3975 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3976 size_t nbytes, loff_t off) 3977 { 3978 ssize_t ret = 0; 3979 int kill; 3980 struct cgroup *cgrp; 3981 3982 ret = kstrtoint(strstrip(buf), 0, &kill); 3983 if (ret) 3984 return ret; 3985 3986 if (kill != 1) 3987 return -ERANGE; 3988 3989 cgrp = cgroup_kn_lock_live(of->kn, false); 3990 if (!cgrp) 3991 return -ENOENT; 3992 3993 /* 3994 * Killing is a process directed operation, i.e. the whole thread-group 3995 * is taken down so act like we do for cgroup.procs and only make this 3996 * writable in non-threaded cgroups. 3997 */ 3998 if (cgroup_is_threaded(cgrp)) 3999 ret = -EOPNOTSUPP; 4000 else 4001 cgroup_kill(cgrp); 4002 4003 cgroup_kn_unlock(of->kn); 4004 4005 return ret ?: nbytes; 4006 } 4007 4008 static int cgroup_file_open(struct kernfs_open_file *of) 4009 { 4010 struct cftype *cft = of_cft(of); 4011 struct cgroup_file_ctx *ctx; 4012 int ret; 4013 4014 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4015 if (!ctx) 4016 return -ENOMEM; 4017 4018 ctx->ns = current->nsproxy->cgroup_ns; 4019 get_cgroup_ns(ctx->ns); 4020 of->priv = ctx; 4021 4022 if (!cft->open) 4023 return 0; 4024 4025 ret = cft->open(of); 4026 if (ret) { 4027 put_cgroup_ns(ctx->ns); 4028 kfree(ctx); 4029 } 4030 return ret; 4031 } 4032 4033 static void cgroup_file_release(struct kernfs_open_file *of) 4034 { 4035 struct cftype *cft = of_cft(of); 4036 struct cgroup_file_ctx *ctx = of->priv; 4037 4038 if (cft->release) 4039 cft->release(of); 4040 put_cgroup_ns(ctx->ns); 4041 kfree(ctx); 4042 } 4043 4044 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4045 size_t nbytes, loff_t off) 4046 { 4047 struct cgroup_file_ctx *ctx = of->priv; 4048 struct cgroup *cgrp = of->kn->parent->priv; 4049 struct cftype *cft = of_cft(of); 4050 struct cgroup_subsys_state *css; 4051 int ret; 4052 4053 if (!nbytes) 4054 return 0; 4055 4056 /* 4057 * If namespaces are delegation boundaries, disallow writes to 4058 * files in an non-init namespace root from inside the namespace 4059 * except for the files explicitly marked delegatable - 4060 * cgroup.procs and cgroup.subtree_control. 4061 */ 4062 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4063 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4064 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4065 return -EPERM; 4066 4067 if (cft->write) 4068 return cft->write(of, buf, nbytes, off); 4069 4070 /* 4071 * kernfs guarantees that a file isn't deleted with operations in 4072 * flight, which means that the matching css is and stays alive and 4073 * doesn't need to be pinned. The RCU locking is not necessary 4074 * either. It's just for the convenience of using cgroup_css(). 4075 */ 4076 rcu_read_lock(); 4077 css = cgroup_css(cgrp, cft->ss); 4078 rcu_read_unlock(); 4079 4080 if (cft->write_u64) { 4081 unsigned long long v; 4082 ret = kstrtoull(buf, 0, &v); 4083 if (!ret) 4084 ret = cft->write_u64(css, cft, v); 4085 } else if (cft->write_s64) { 4086 long long v; 4087 ret = kstrtoll(buf, 0, &v); 4088 if (!ret) 4089 ret = cft->write_s64(css, cft, v); 4090 } else { 4091 ret = -EINVAL; 4092 } 4093 4094 return ret ?: nbytes; 4095 } 4096 4097 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4098 { 4099 struct cftype *cft = of_cft(of); 4100 4101 if (cft->poll) 4102 return cft->poll(of, pt); 4103 4104 return kernfs_generic_poll(of, pt); 4105 } 4106 4107 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4108 { 4109 return seq_cft(seq)->seq_start(seq, ppos); 4110 } 4111 4112 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4113 { 4114 return seq_cft(seq)->seq_next(seq, v, ppos); 4115 } 4116 4117 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4118 { 4119 if (seq_cft(seq)->seq_stop) 4120 seq_cft(seq)->seq_stop(seq, v); 4121 } 4122 4123 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4124 { 4125 struct cftype *cft = seq_cft(m); 4126 struct cgroup_subsys_state *css = seq_css(m); 4127 4128 if (cft->seq_show) 4129 return cft->seq_show(m, arg); 4130 4131 if (cft->read_u64) 4132 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4133 else if (cft->read_s64) 4134 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4135 else 4136 return -EINVAL; 4137 return 0; 4138 } 4139 4140 static struct kernfs_ops cgroup_kf_single_ops = { 4141 .atomic_write_len = PAGE_SIZE, 4142 .open = cgroup_file_open, 4143 .release = cgroup_file_release, 4144 .write = cgroup_file_write, 4145 .poll = cgroup_file_poll, 4146 .seq_show = cgroup_seqfile_show, 4147 }; 4148 4149 static struct kernfs_ops cgroup_kf_ops = { 4150 .atomic_write_len = PAGE_SIZE, 4151 .open = cgroup_file_open, 4152 .release = cgroup_file_release, 4153 .write = cgroup_file_write, 4154 .poll = cgroup_file_poll, 4155 .seq_start = cgroup_seqfile_start, 4156 .seq_next = cgroup_seqfile_next, 4157 .seq_stop = cgroup_seqfile_stop, 4158 .seq_show = cgroup_seqfile_show, 4159 }; 4160 4161 /* set uid and gid of cgroup dirs and files to that of the creator */ 4162 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4163 { 4164 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4165 .ia_uid = current_fsuid(), 4166 .ia_gid = current_fsgid(), }; 4167 4168 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4169 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4170 return 0; 4171 4172 return kernfs_setattr(kn, &iattr); 4173 } 4174 4175 static void cgroup_file_notify_timer(struct timer_list *timer) 4176 { 4177 cgroup_file_notify(container_of(timer, struct cgroup_file, 4178 notify_timer)); 4179 } 4180 4181 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4182 struct cftype *cft) 4183 { 4184 char name[CGROUP_FILE_NAME_MAX]; 4185 struct kernfs_node *kn; 4186 struct lock_class_key *key = NULL; 4187 int ret; 4188 4189 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4190 key = &cft->lockdep_key; 4191 #endif 4192 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4193 cgroup_file_mode(cft), 4194 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4195 0, cft->kf_ops, cft, 4196 NULL, key); 4197 if (IS_ERR(kn)) 4198 return PTR_ERR(kn); 4199 4200 ret = cgroup_kn_set_ugid(kn); 4201 if (ret) { 4202 kernfs_remove(kn); 4203 return ret; 4204 } 4205 4206 if (cft->file_offset) { 4207 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4208 4209 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4210 4211 spin_lock_irq(&cgroup_file_kn_lock); 4212 cfile->kn = kn; 4213 spin_unlock_irq(&cgroup_file_kn_lock); 4214 } 4215 4216 return 0; 4217 } 4218 4219 /** 4220 * cgroup_addrm_files - add or remove files to a cgroup directory 4221 * @css: the target css 4222 * @cgrp: the target cgroup (usually css->cgroup) 4223 * @cfts: array of cftypes to be added 4224 * @is_add: whether to add or remove 4225 * 4226 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4227 * For removals, this function never fails. 4228 */ 4229 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4230 struct cgroup *cgrp, struct cftype cfts[], 4231 bool is_add) 4232 { 4233 struct cftype *cft, *cft_end = NULL; 4234 int ret = 0; 4235 4236 lockdep_assert_held(&cgroup_mutex); 4237 4238 restart: 4239 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4240 /* does cft->flags tell us to skip this file on @cgrp? */ 4241 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4242 continue; 4243 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4244 continue; 4245 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4246 continue; 4247 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4248 continue; 4249 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4250 continue; 4251 if (is_add) { 4252 ret = cgroup_add_file(css, cgrp, cft); 4253 if (ret) { 4254 pr_warn("%s: failed to add %s, err=%d\n", 4255 __func__, cft->name, ret); 4256 cft_end = cft; 4257 is_add = false; 4258 goto restart; 4259 } 4260 } else { 4261 cgroup_rm_file(cgrp, cft); 4262 } 4263 } 4264 return ret; 4265 } 4266 4267 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4268 { 4269 struct cgroup_subsys *ss = cfts[0].ss; 4270 struct cgroup *root = &ss->root->cgrp; 4271 struct cgroup_subsys_state *css; 4272 int ret = 0; 4273 4274 lockdep_assert_held(&cgroup_mutex); 4275 4276 /* add/rm files for all cgroups created before */ 4277 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4278 struct cgroup *cgrp = css->cgroup; 4279 4280 if (!(css->flags & CSS_VISIBLE)) 4281 continue; 4282 4283 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4284 if (ret) 4285 break; 4286 } 4287 4288 if (is_add && !ret) 4289 kernfs_activate(root->kn); 4290 return ret; 4291 } 4292 4293 static void cgroup_exit_cftypes(struct cftype *cfts) 4294 { 4295 struct cftype *cft; 4296 4297 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4298 /* free copy for custom atomic_write_len, see init_cftypes() */ 4299 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4300 kfree(cft->kf_ops); 4301 cft->kf_ops = NULL; 4302 cft->ss = NULL; 4303 4304 /* revert flags set by cgroup core while adding @cfts */ 4305 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4306 __CFTYPE_ADDED); 4307 } 4308 } 4309 4310 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4311 { 4312 struct cftype *cft; 4313 int ret = 0; 4314 4315 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4316 struct kernfs_ops *kf_ops; 4317 4318 WARN_ON(cft->ss || cft->kf_ops); 4319 4320 if (cft->flags & __CFTYPE_ADDED) { 4321 ret = -EBUSY; 4322 break; 4323 } 4324 4325 if (cft->seq_start) 4326 kf_ops = &cgroup_kf_ops; 4327 else 4328 kf_ops = &cgroup_kf_single_ops; 4329 4330 /* 4331 * Ugh... if @cft wants a custom max_write_len, we need to 4332 * make a copy of kf_ops to set its atomic_write_len. 4333 */ 4334 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4335 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4336 if (!kf_ops) { 4337 ret = -ENOMEM; 4338 break; 4339 } 4340 kf_ops->atomic_write_len = cft->max_write_len; 4341 } 4342 4343 cft->kf_ops = kf_ops; 4344 cft->ss = ss; 4345 cft->flags |= __CFTYPE_ADDED; 4346 } 4347 4348 if (ret) 4349 cgroup_exit_cftypes(cfts); 4350 return ret; 4351 } 4352 4353 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4354 { 4355 lockdep_assert_held(&cgroup_mutex); 4356 4357 list_del(&cfts->node); 4358 cgroup_apply_cftypes(cfts, false); 4359 cgroup_exit_cftypes(cfts); 4360 return 0; 4361 } 4362 4363 /** 4364 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4365 * @cfts: zero-length name terminated array of cftypes 4366 * 4367 * Unregister @cfts. Files described by @cfts are removed from all 4368 * existing cgroups and all future cgroups won't have them either. This 4369 * function can be called anytime whether @cfts' subsys is attached or not. 4370 * 4371 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4372 * registered. 4373 */ 4374 int cgroup_rm_cftypes(struct cftype *cfts) 4375 { 4376 int ret; 4377 4378 if (!cfts || cfts[0].name[0] == '\0') 4379 return 0; 4380 4381 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4382 return -ENOENT; 4383 4384 cgroup_lock(); 4385 ret = cgroup_rm_cftypes_locked(cfts); 4386 cgroup_unlock(); 4387 return ret; 4388 } 4389 4390 /** 4391 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4392 * @ss: target cgroup subsystem 4393 * @cfts: zero-length name terminated array of cftypes 4394 * 4395 * Register @cfts to @ss. Files described by @cfts are created for all 4396 * existing cgroups to which @ss is attached and all future cgroups will 4397 * have them too. This function can be called anytime whether @ss is 4398 * attached or not. 4399 * 4400 * Returns 0 on successful registration, -errno on failure. Note that this 4401 * function currently returns 0 as long as @cfts registration is successful 4402 * even if some file creation attempts on existing cgroups fail. 4403 */ 4404 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4405 { 4406 int ret; 4407 4408 if (!cgroup_ssid_enabled(ss->id)) 4409 return 0; 4410 4411 if (!cfts || cfts[0].name[0] == '\0') 4412 return 0; 4413 4414 ret = cgroup_init_cftypes(ss, cfts); 4415 if (ret) 4416 return ret; 4417 4418 cgroup_lock(); 4419 4420 list_add_tail(&cfts->node, &ss->cfts); 4421 ret = cgroup_apply_cftypes(cfts, true); 4422 if (ret) 4423 cgroup_rm_cftypes_locked(cfts); 4424 4425 cgroup_unlock(); 4426 return ret; 4427 } 4428 4429 /** 4430 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4431 * @ss: target cgroup subsystem 4432 * @cfts: zero-length name terminated array of cftypes 4433 * 4434 * Similar to cgroup_add_cftypes() but the added files are only used for 4435 * the default hierarchy. 4436 */ 4437 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4438 { 4439 struct cftype *cft; 4440 4441 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4442 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4443 return cgroup_add_cftypes(ss, cfts); 4444 } 4445 4446 /** 4447 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4448 * @ss: target cgroup subsystem 4449 * @cfts: zero-length name terminated array of cftypes 4450 * 4451 * Similar to cgroup_add_cftypes() but the added files are only used for 4452 * the legacy hierarchies. 4453 */ 4454 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4455 { 4456 struct cftype *cft; 4457 4458 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4459 cft->flags |= __CFTYPE_NOT_ON_DFL; 4460 return cgroup_add_cftypes(ss, cfts); 4461 } 4462 4463 /** 4464 * cgroup_file_notify - generate a file modified event for a cgroup_file 4465 * @cfile: target cgroup_file 4466 * 4467 * @cfile must have been obtained by setting cftype->file_offset. 4468 */ 4469 void cgroup_file_notify(struct cgroup_file *cfile) 4470 { 4471 unsigned long flags; 4472 4473 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4474 if (cfile->kn) { 4475 unsigned long last = cfile->notified_at; 4476 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4477 4478 if (time_in_range(jiffies, last, next)) { 4479 timer_reduce(&cfile->notify_timer, next); 4480 } else { 4481 kernfs_notify(cfile->kn); 4482 cfile->notified_at = jiffies; 4483 } 4484 } 4485 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4486 } 4487 4488 /** 4489 * cgroup_file_show - show or hide a hidden cgroup file 4490 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4491 * @show: whether to show or hide 4492 */ 4493 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4494 { 4495 struct kernfs_node *kn; 4496 4497 spin_lock_irq(&cgroup_file_kn_lock); 4498 kn = cfile->kn; 4499 kernfs_get(kn); 4500 spin_unlock_irq(&cgroup_file_kn_lock); 4501 4502 if (kn) 4503 kernfs_show(kn, show); 4504 4505 kernfs_put(kn); 4506 } 4507 4508 /** 4509 * css_next_child - find the next child of a given css 4510 * @pos: the current position (%NULL to initiate traversal) 4511 * @parent: css whose children to walk 4512 * 4513 * This function returns the next child of @parent and should be called 4514 * under either cgroup_mutex or RCU read lock. The only requirement is 4515 * that @parent and @pos are accessible. The next sibling is guaranteed to 4516 * be returned regardless of their states. 4517 * 4518 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4519 * css which finished ->css_online() is guaranteed to be visible in the 4520 * future iterations and will stay visible until the last reference is put. 4521 * A css which hasn't finished ->css_online() or already finished 4522 * ->css_offline() may show up during traversal. It's each subsystem's 4523 * responsibility to synchronize against on/offlining. 4524 */ 4525 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4526 struct cgroup_subsys_state *parent) 4527 { 4528 struct cgroup_subsys_state *next; 4529 4530 cgroup_assert_mutex_or_rcu_locked(); 4531 4532 /* 4533 * @pos could already have been unlinked from the sibling list. 4534 * Once a cgroup is removed, its ->sibling.next is no longer 4535 * updated when its next sibling changes. CSS_RELEASED is set when 4536 * @pos is taken off list, at which time its next pointer is valid, 4537 * and, as releases are serialized, the one pointed to by the next 4538 * pointer is guaranteed to not have started release yet. This 4539 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4540 * critical section, the one pointed to by its next pointer is 4541 * guaranteed to not have finished its RCU grace period even if we 4542 * have dropped rcu_read_lock() in-between iterations. 4543 * 4544 * If @pos has CSS_RELEASED set, its next pointer can't be 4545 * dereferenced; however, as each css is given a monotonically 4546 * increasing unique serial number and always appended to the 4547 * sibling list, the next one can be found by walking the parent's 4548 * children until the first css with higher serial number than 4549 * @pos's. While this path can be slower, it happens iff iteration 4550 * races against release and the race window is very small. 4551 */ 4552 if (!pos) { 4553 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4554 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4555 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4556 } else { 4557 list_for_each_entry_rcu(next, &parent->children, sibling, 4558 lockdep_is_held(&cgroup_mutex)) 4559 if (next->serial_nr > pos->serial_nr) 4560 break; 4561 } 4562 4563 /* 4564 * @next, if not pointing to the head, can be dereferenced and is 4565 * the next sibling. 4566 */ 4567 if (&next->sibling != &parent->children) 4568 return next; 4569 return NULL; 4570 } 4571 4572 /** 4573 * css_next_descendant_pre - find the next descendant for pre-order walk 4574 * @pos: the current position (%NULL to initiate traversal) 4575 * @root: css whose descendants to walk 4576 * 4577 * To be used by css_for_each_descendant_pre(). Find the next descendant 4578 * to visit for pre-order traversal of @root's descendants. @root is 4579 * included in the iteration and the first node to be visited. 4580 * 4581 * While this function requires cgroup_mutex or RCU read locking, it 4582 * doesn't require the whole traversal to be contained in a single critical 4583 * section. This function will return the correct next descendant as long 4584 * as both @pos and @root are accessible and @pos is a descendant of @root. 4585 * 4586 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4587 * css which finished ->css_online() is guaranteed to be visible in the 4588 * future iterations and will stay visible until the last reference is put. 4589 * A css which hasn't finished ->css_online() or already finished 4590 * ->css_offline() may show up during traversal. It's each subsystem's 4591 * responsibility to synchronize against on/offlining. 4592 */ 4593 struct cgroup_subsys_state * 4594 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4595 struct cgroup_subsys_state *root) 4596 { 4597 struct cgroup_subsys_state *next; 4598 4599 cgroup_assert_mutex_or_rcu_locked(); 4600 4601 /* if first iteration, visit @root */ 4602 if (!pos) 4603 return root; 4604 4605 /* visit the first child if exists */ 4606 next = css_next_child(NULL, pos); 4607 if (next) 4608 return next; 4609 4610 /* no child, visit my or the closest ancestor's next sibling */ 4611 while (pos != root) { 4612 next = css_next_child(pos, pos->parent); 4613 if (next) 4614 return next; 4615 pos = pos->parent; 4616 } 4617 4618 return NULL; 4619 } 4620 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4621 4622 /** 4623 * css_rightmost_descendant - return the rightmost descendant of a css 4624 * @pos: css of interest 4625 * 4626 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4627 * is returned. This can be used during pre-order traversal to skip 4628 * subtree of @pos. 4629 * 4630 * While this function requires cgroup_mutex or RCU read locking, it 4631 * doesn't require the whole traversal to be contained in a single critical 4632 * section. This function will return the correct rightmost descendant as 4633 * long as @pos is accessible. 4634 */ 4635 struct cgroup_subsys_state * 4636 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4637 { 4638 struct cgroup_subsys_state *last, *tmp; 4639 4640 cgroup_assert_mutex_or_rcu_locked(); 4641 4642 do { 4643 last = pos; 4644 /* ->prev isn't RCU safe, walk ->next till the end */ 4645 pos = NULL; 4646 css_for_each_child(tmp, last) 4647 pos = tmp; 4648 } while (pos); 4649 4650 return last; 4651 } 4652 4653 static struct cgroup_subsys_state * 4654 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4655 { 4656 struct cgroup_subsys_state *last; 4657 4658 do { 4659 last = pos; 4660 pos = css_next_child(NULL, pos); 4661 } while (pos); 4662 4663 return last; 4664 } 4665 4666 /** 4667 * css_next_descendant_post - find the next descendant for post-order walk 4668 * @pos: the current position (%NULL to initiate traversal) 4669 * @root: css whose descendants to walk 4670 * 4671 * To be used by css_for_each_descendant_post(). Find the next descendant 4672 * to visit for post-order traversal of @root's descendants. @root is 4673 * included in the iteration and the last node to be visited. 4674 * 4675 * While this function requires cgroup_mutex or RCU read locking, it 4676 * doesn't require the whole traversal to be contained in a single critical 4677 * section. This function will return the correct next descendant as long 4678 * as both @pos and @cgroup are accessible and @pos is a descendant of 4679 * @cgroup. 4680 * 4681 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4682 * css which finished ->css_online() is guaranteed to be visible in the 4683 * future iterations and will stay visible until the last reference is put. 4684 * A css which hasn't finished ->css_online() or already finished 4685 * ->css_offline() may show up during traversal. It's each subsystem's 4686 * responsibility to synchronize against on/offlining. 4687 */ 4688 struct cgroup_subsys_state * 4689 css_next_descendant_post(struct cgroup_subsys_state *pos, 4690 struct cgroup_subsys_state *root) 4691 { 4692 struct cgroup_subsys_state *next; 4693 4694 cgroup_assert_mutex_or_rcu_locked(); 4695 4696 /* if first iteration, visit leftmost descendant which may be @root */ 4697 if (!pos) 4698 return css_leftmost_descendant(root); 4699 4700 /* if we visited @root, we're done */ 4701 if (pos == root) 4702 return NULL; 4703 4704 /* if there's an unvisited sibling, visit its leftmost descendant */ 4705 next = css_next_child(pos, pos->parent); 4706 if (next) 4707 return css_leftmost_descendant(next); 4708 4709 /* no sibling left, visit parent */ 4710 return pos->parent; 4711 } 4712 4713 /** 4714 * css_has_online_children - does a css have online children 4715 * @css: the target css 4716 * 4717 * Returns %true if @css has any online children; otherwise, %false. This 4718 * function can be called from any context but the caller is responsible 4719 * for synchronizing against on/offlining as necessary. 4720 */ 4721 bool css_has_online_children(struct cgroup_subsys_state *css) 4722 { 4723 struct cgroup_subsys_state *child; 4724 bool ret = false; 4725 4726 rcu_read_lock(); 4727 css_for_each_child(child, css) { 4728 if (child->flags & CSS_ONLINE) { 4729 ret = true; 4730 break; 4731 } 4732 } 4733 rcu_read_unlock(); 4734 return ret; 4735 } 4736 4737 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4738 { 4739 struct list_head *l; 4740 struct cgrp_cset_link *link; 4741 struct css_set *cset; 4742 4743 lockdep_assert_held(&css_set_lock); 4744 4745 /* find the next threaded cset */ 4746 if (it->tcset_pos) { 4747 l = it->tcset_pos->next; 4748 4749 if (l != it->tcset_head) { 4750 it->tcset_pos = l; 4751 return container_of(l, struct css_set, 4752 threaded_csets_node); 4753 } 4754 4755 it->tcset_pos = NULL; 4756 } 4757 4758 /* find the next cset */ 4759 l = it->cset_pos; 4760 l = l->next; 4761 if (l == it->cset_head) { 4762 it->cset_pos = NULL; 4763 return NULL; 4764 } 4765 4766 if (it->ss) { 4767 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4768 } else { 4769 link = list_entry(l, struct cgrp_cset_link, cset_link); 4770 cset = link->cset; 4771 } 4772 4773 it->cset_pos = l; 4774 4775 /* initialize threaded css_set walking */ 4776 if (it->flags & CSS_TASK_ITER_THREADED) { 4777 if (it->cur_dcset) 4778 put_css_set_locked(it->cur_dcset); 4779 it->cur_dcset = cset; 4780 get_css_set(cset); 4781 4782 it->tcset_head = &cset->threaded_csets; 4783 it->tcset_pos = &cset->threaded_csets; 4784 } 4785 4786 return cset; 4787 } 4788 4789 /** 4790 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4791 * @it: the iterator to advance 4792 * 4793 * Advance @it to the next css_set to walk. 4794 */ 4795 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4796 { 4797 struct css_set *cset; 4798 4799 lockdep_assert_held(&css_set_lock); 4800 4801 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4802 while ((cset = css_task_iter_next_css_set(it))) { 4803 if (!list_empty(&cset->tasks)) { 4804 it->cur_tasks_head = &cset->tasks; 4805 break; 4806 } else if (!list_empty(&cset->mg_tasks)) { 4807 it->cur_tasks_head = &cset->mg_tasks; 4808 break; 4809 } else if (!list_empty(&cset->dying_tasks)) { 4810 it->cur_tasks_head = &cset->dying_tasks; 4811 break; 4812 } 4813 } 4814 if (!cset) { 4815 it->task_pos = NULL; 4816 return; 4817 } 4818 it->task_pos = it->cur_tasks_head->next; 4819 4820 /* 4821 * We don't keep css_sets locked across iteration steps and thus 4822 * need to take steps to ensure that iteration can be resumed after 4823 * the lock is re-acquired. Iteration is performed at two levels - 4824 * css_sets and tasks in them. 4825 * 4826 * Once created, a css_set never leaves its cgroup lists, so a 4827 * pinned css_set is guaranteed to stay put and we can resume 4828 * iteration afterwards. 4829 * 4830 * Tasks may leave @cset across iteration steps. This is resolved 4831 * by registering each iterator with the css_set currently being 4832 * walked and making css_set_move_task() advance iterators whose 4833 * next task is leaving. 4834 */ 4835 if (it->cur_cset) { 4836 list_del(&it->iters_node); 4837 put_css_set_locked(it->cur_cset); 4838 } 4839 get_css_set(cset); 4840 it->cur_cset = cset; 4841 list_add(&it->iters_node, &cset->task_iters); 4842 } 4843 4844 static void css_task_iter_skip(struct css_task_iter *it, 4845 struct task_struct *task) 4846 { 4847 lockdep_assert_held(&css_set_lock); 4848 4849 if (it->task_pos == &task->cg_list) { 4850 it->task_pos = it->task_pos->next; 4851 it->flags |= CSS_TASK_ITER_SKIPPED; 4852 } 4853 } 4854 4855 static void css_task_iter_advance(struct css_task_iter *it) 4856 { 4857 struct task_struct *task; 4858 4859 lockdep_assert_held(&css_set_lock); 4860 repeat: 4861 if (it->task_pos) { 4862 /* 4863 * Advance iterator to find next entry. We go through cset 4864 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4865 * the next cset. 4866 */ 4867 if (it->flags & CSS_TASK_ITER_SKIPPED) 4868 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4869 else 4870 it->task_pos = it->task_pos->next; 4871 4872 if (it->task_pos == &it->cur_cset->tasks) { 4873 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4874 it->task_pos = it->cur_tasks_head->next; 4875 } 4876 if (it->task_pos == &it->cur_cset->mg_tasks) { 4877 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4878 it->task_pos = it->cur_tasks_head->next; 4879 } 4880 if (it->task_pos == &it->cur_cset->dying_tasks) 4881 css_task_iter_advance_css_set(it); 4882 } else { 4883 /* called from start, proceed to the first cset */ 4884 css_task_iter_advance_css_set(it); 4885 } 4886 4887 if (!it->task_pos) 4888 return; 4889 4890 task = list_entry(it->task_pos, struct task_struct, cg_list); 4891 4892 if (it->flags & CSS_TASK_ITER_PROCS) { 4893 /* if PROCS, skip over tasks which aren't group leaders */ 4894 if (!thread_group_leader(task)) 4895 goto repeat; 4896 4897 /* and dying leaders w/o live member threads */ 4898 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4899 !atomic_read(&task->signal->live)) 4900 goto repeat; 4901 } else { 4902 /* skip all dying ones */ 4903 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4904 goto repeat; 4905 } 4906 } 4907 4908 /** 4909 * css_task_iter_start - initiate task iteration 4910 * @css: the css to walk tasks of 4911 * @flags: CSS_TASK_ITER_* flags 4912 * @it: the task iterator to use 4913 * 4914 * Initiate iteration through the tasks of @css. The caller can call 4915 * css_task_iter_next() to walk through the tasks until the function 4916 * returns NULL. On completion of iteration, css_task_iter_end() must be 4917 * called. 4918 */ 4919 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4920 struct css_task_iter *it) 4921 { 4922 memset(it, 0, sizeof(*it)); 4923 4924 spin_lock_irq(&css_set_lock); 4925 4926 it->ss = css->ss; 4927 it->flags = flags; 4928 4929 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4930 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4931 else 4932 it->cset_pos = &css->cgroup->cset_links; 4933 4934 it->cset_head = it->cset_pos; 4935 4936 css_task_iter_advance(it); 4937 4938 spin_unlock_irq(&css_set_lock); 4939 } 4940 4941 /** 4942 * css_task_iter_next - return the next task for the iterator 4943 * @it: the task iterator being iterated 4944 * 4945 * The "next" function for task iteration. @it should have been 4946 * initialized via css_task_iter_start(). Returns NULL when the iteration 4947 * reaches the end. 4948 */ 4949 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4950 { 4951 if (it->cur_task) { 4952 put_task_struct(it->cur_task); 4953 it->cur_task = NULL; 4954 } 4955 4956 spin_lock_irq(&css_set_lock); 4957 4958 /* @it may be half-advanced by skips, finish advancing */ 4959 if (it->flags & CSS_TASK_ITER_SKIPPED) 4960 css_task_iter_advance(it); 4961 4962 if (it->task_pos) { 4963 it->cur_task = list_entry(it->task_pos, struct task_struct, 4964 cg_list); 4965 get_task_struct(it->cur_task); 4966 css_task_iter_advance(it); 4967 } 4968 4969 spin_unlock_irq(&css_set_lock); 4970 4971 return it->cur_task; 4972 } 4973 4974 /** 4975 * css_task_iter_end - finish task iteration 4976 * @it: the task iterator to finish 4977 * 4978 * Finish task iteration started by css_task_iter_start(). 4979 */ 4980 void css_task_iter_end(struct css_task_iter *it) 4981 { 4982 if (it->cur_cset) { 4983 spin_lock_irq(&css_set_lock); 4984 list_del(&it->iters_node); 4985 put_css_set_locked(it->cur_cset); 4986 spin_unlock_irq(&css_set_lock); 4987 } 4988 4989 if (it->cur_dcset) 4990 put_css_set(it->cur_dcset); 4991 4992 if (it->cur_task) 4993 put_task_struct(it->cur_task); 4994 } 4995 4996 static void cgroup_procs_release(struct kernfs_open_file *of) 4997 { 4998 struct cgroup_file_ctx *ctx = of->priv; 4999 5000 if (ctx->procs.started) 5001 css_task_iter_end(&ctx->procs.iter); 5002 } 5003 5004 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5005 { 5006 struct kernfs_open_file *of = s->private; 5007 struct cgroup_file_ctx *ctx = of->priv; 5008 5009 if (pos) 5010 (*pos)++; 5011 5012 return css_task_iter_next(&ctx->procs.iter); 5013 } 5014 5015 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5016 unsigned int iter_flags) 5017 { 5018 struct kernfs_open_file *of = s->private; 5019 struct cgroup *cgrp = seq_css(s)->cgroup; 5020 struct cgroup_file_ctx *ctx = of->priv; 5021 struct css_task_iter *it = &ctx->procs.iter; 5022 5023 /* 5024 * When a seq_file is seeked, it's always traversed sequentially 5025 * from position 0, so we can simply keep iterating on !0 *pos. 5026 */ 5027 if (!ctx->procs.started) { 5028 if (WARN_ON_ONCE((*pos))) 5029 return ERR_PTR(-EINVAL); 5030 css_task_iter_start(&cgrp->self, iter_flags, it); 5031 ctx->procs.started = true; 5032 } else if (!(*pos)) { 5033 css_task_iter_end(it); 5034 css_task_iter_start(&cgrp->self, iter_flags, it); 5035 } else 5036 return it->cur_task; 5037 5038 return cgroup_procs_next(s, NULL, NULL); 5039 } 5040 5041 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5042 { 5043 struct cgroup *cgrp = seq_css(s)->cgroup; 5044 5045 /* 5046 * All processes of a threaded subtree belong to the domain cgroup 5047 * of the subtree. Only threads can be distributed across the 5048 * subtree. Reject reads on cgroup.procs in the subtree proper. 5049 * They're always empty anyway. 5050 */ 5051 if (cgroup_is_threaded(cgrp)) 5052 return ERR_PTR(-EOPNOTSUPP); 5053 5054 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5055 CSS_TASK_ITER_THREADED); 5056 } 5057 5058 static int cgroup_procs_show(struct seq_file *s, void *v) 5059 { 5060 seq_printf(s, "%d\n", task_pid_vnr(v)); 5061 return 0; 5062 } 5063 5064 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5065 { 5066 int ret; 5067 struct inode *inode; 5068 5069 lockdep_assert_held(&cgroup_mutex); 5070 5071 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5072 if (!inode) 5073 return -ENOMEM; 5074 5075 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5076 iput(inode); 5077 return ret; 5078 } 5079 5080 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5081 struct cgroup *dst_cgrp, 5082 struct super_block *sb, 5083 struct cgroup_namespace *ns) 5084 { 5085 struct cgroup *com_cgrp = src_cgrp; 5086 int ret; 5087 5088 lockdep_assert_held(&cgroup_mutex); 5089 5090 /* find the common ancestor */ 5091 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5092 com_cgrp = cgroup_parent(com_cgrp); 5093 5094 /* %current should be authorized to migrate to the common ancestor */ 5095 ret = cgroup_may_write(com_cgrp, sb); 5096 if (ret) 5097 return ret; 5098 5099 /* 5100 * If namespaces are delegation boundaries, %current must be able 5101 * to see both source and destination cgroups from its namespace. 5102 */ 5103 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5104 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5105 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5106 return -ENOENT; 5107 5108 return 0; 5109 } 5110 5111 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5112 struct cgroup *dst_cgrp, 5113 struct super_block *sb, bool threadgroup, 5114 struct cgroup_namespace *ns) 5115 { 5116 int ret = 0; 5117 5118 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5119 if (ret) 5120 return ret; 5121 5122 ret = cgroup_migrate_vet_dst(dst_cgrp); 5123 if (ret) 5124 return ret; 5125 5126 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5127 ret = -EOPNOTSUPP; 5128 5129 return ret; 5130 } 5131 5132 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5133 bool threadgroup) 5134 { 5135 struct cgroup_file_ctx *ctx = of->priv; 5136 struct cgroup *src_cgrp, *dst_cgrp; 5137 struct task_struct *task; 5138 const struct cred *saved_cred; 5139 ssize_t ret; 5140 bool threadgroup_locked; 5141 5142 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5143 if (!dst_cgrp) 5144 return -ENODEV; 5145 5146 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5147 ret = PTR_ERR_OR_ZERO(task); 5148 if (ret) 5149 goto out_unlock; 5150 5151 /* find the source cgroup */ 5152 spin_lock_irq(&css_set_lock); 5153 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5154 spin_unlock_irq(&css_set_lock); 5155 5156 /* 5157 * Process and thread migrations follow same delegation rule. Check 5158 * permissions using the credentials from file open to protect against 5159 * inherited fd attacks. 5160 */ 5161 saved_cred = override_creds(of->file->f_cred); 5162 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5163 of->file->f_path.dentry->d_sb, 5164 threadgroup, ctx->ns); 5165 revert_creds(saved_cred); 5166 if (ret) 5167 goto out_finish; 5168 5169 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5170 5171 out_finish: 5172 cgroup_procs_write_finish(task, threadgroup_locked); 5173 out_unlock: 5174 cgroup_kn_unlock(of->kn); 5175 5176 return ret; 5177 } 5178 5179 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5180 char *buf, size_t nbytes, loff_t off) 5181 { 5182 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5183 } 5184 5185 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5186 { 5187 return __cgroup_procs_start(s, pos, 0); 5188 } 5189 5190 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5191 char *buf, size_t nbytes, loff_t off) 5192 { 5193 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5194 } 5195 5196 /* cgroup core interface files for the default hierarchy */ 5197 static struct cftype cgroup_base_files[] = { 5198 { 5199 .name = "cgroup.type", 5200 .flags = CFTYPE_NOT_ON_ROOT, 5201 .seq_show = cgroup_type_show, 5202 .write = cgroup_type_write, 5203 }, 5204 { 5205 .name = "cgroup.procs", 5206 .flags = CFTYPE_NS_DELEGATABLE, 5207 .file_offset = offsetof(struct cgroup, procs_file), 5208 .release = cgroup_procs_release, 5209 .seq_start = cgroup_procs_start, 5210 .seq_next = cgroup_procs_next, 5211 .seq_show = cgroup_procs_show, 5212 .write = cgroup_procs_write, 5213 }, 5214 { 5215 .name = "cgroup.threads", 5216 .flags = CFTYPE_NS_DELEGATABLE, 5217 .release = cgroup_procs_release, 5218 .seq_start = cgroup_threads_start, 5219 .seq_next = cgroup_procs_next, 5220 .seq_show = cgroup_procs_show, 5221 .write = cgroup_threads_write, 5222 }, 5223 { 5224 .name = "cgroup.controllers", 5225 .seq_show = cgroup_controllers_show, 5226 }, 5227 { 5228 .name = "cgroup.subtree_control", 5229 .flags = CFTYPE_NS_DELEGATABLE, 5230 .seq_show = cgroup_subtree_control_show, 5231 .write = cgroup_subtree_control_write, 5232 }, 5233 { 5234 .name = "cgroup.events", 5235 .flags = CFTYPE_NOT_ON_ROOT, 5236 .file_offset = offsetof(struct cgroup, events_file), 5237 .seq_show = cgroup_events_show, 5238 }, 5239 { 5240 .name = "cgroup.max.descendants", 5241 .seq_show = cgroup_max_descendants_show, 5242 .write = cgroup_max_descendants_write, 5243 }, 5244 { 5245 .name = "cgroup.max.depth", 5246 .seq_show = cgroup_max_depth_show, 5247 .write = cgroup_max_depth_write, 5248 }, 5249 { 5250 .name = "cgroup.stat", 5251 .seq_show = cgroup_stat_show, 5252 }, 5253 { 5254 .name = "cgroup.freeze", 5255 .flags = CFTYPE_NOT_ON_ROOT, 5256 .seq_show = cgroup_freeze_show, 5257 .write = cgroup_freeze_write, 5258 }, 5259 { 5260 .name = "cgroup.kill", 5261 .flags = CFTYPE_NOT_ON_ROOT, 5262 .write = cgroup_kill_write, 5263 }, 5264 { 5265 .name = "cpu.stat", 5266 .seq_show = cpu_stat_show, 5267 }, 5268 { 5269 .name = "cpu.stat.local", 5270 .seq_show = cpu_local_stat_show, 5271 }, 5272 { } /* terminate */ 5273 }; 5274 5275 static struct cftype cgroup_psi_files[] = { 5276 #ifdef CONFIG_PSI 5277 { 5278 .name = "io.pressure", 5279 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5280 .open = cgroup_pressure_open, 5281 .seq_show = cgroup_io_pressure_show, 5282 .write = cgroup_io_pressure_write, 5283 .poll = cgroup_pressure_poll, 5284 .release = cgroup_pressure_release, 5285 }, 5286 { 5287 .name = "memory.pressure", 5288 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5289 .open = cgroup_pressure_open, 5290 .seq_show = cgroup_memory_pressure_show, 5291 .write = cgroup_memory_pressure_write, 5292 .poll = cgroup_pressure_poll, 5293 .release = cgroup_pressure_release, 5294 }, 5295 { 5296 .name = "cpu.pressure", 5297 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5298 .open = cgroup_pressure_open, 5299 .seq_show = cgroup_cpu_pressure_show, 5300 .write = cgroup_cpu_pressure_write, 5301 .poll = cgroup_pressure_poll, 5302 .release = cgroup_pressure_release, 5303 }, 5304 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5305 { 5306 .name = "irq.pressure", 5307 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5308 .open = cgroup_pressure_open, 5309 .seq_show = cgroup_irq_pressure_show, 5310 .write = cgroup_irq_pressure_write, 5311 .poll = cgroup_pressure_poll, 5312 .release = cgroup_pressure_release, 5313 }, 5314 #endif 5315 { 5316 .name = "cgroup.pressure", 5317 .seq_show = cgroup_pressure_show, 5318 .write = cgroup_pressure_write, 5319 }, 5320 #endif /* CONFIG_PSI */ 5321 { } /* terminate */ 5322 }; 5323 5324 /* 5325 * css destruction is four-stage process. 5326 * 5327 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5328 * Implemented in kill_css(). 5329 * 5330 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5331 * and thus css_tryget_online() is guaranteed to fail, the css can be 5332 * offlined by invoking offline_css(). After offlining, the base ref is 5333 * put. Implemented in css_killed_work_fn(). 5334 * 5335 * 3. When the percpu_ref reaches zero, the only possible remaining 5336 * accessors are inside RCU read sections. css_release() schedules the 5337 * RCU callback. 5338 * 5339 * 4. After the grace period, the css can be freed. Implemented in 5340 * css_free_work_fn(). 5341 * 5342 * It is actually hairier because both step 2 and 4 require process context 5343 * and thus involve punting to css->destroy_work adding two additional 5344 * steps to the already complex sequence. 5345 */ 5346 static void css_free_rwork_fn(struct work_struct *work) 5347 { 5348 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5349 struct cgroup_subsys_state, destroy_rwork); 5350 struct cgroup_subsys *ss = css->ss; 5351 struct cgroup *cgrp = css->cgroup; 5352 5353 percpu_ref_exit(&css->refcnt); 5354 5355 if (ss) { 5356 /* css free path */ 5357 struct cgroup_subsys_state *parent = css->parent; 5358 int id = css->id; 5359 5360 ss->css_free(css); 5361 cgroup_idr_remove(&ss->css_idr, id); 5362 cgroup_put(cgrp); 5363 5364 if (parent) 5365 css_put(parent); 5366 } else { 5367 /* cgroup free path */ 5368 atomic_dec(&cgrp->root->nr_cgrps); 5369 cgroup1_pidlist_destroy_all(cgrp); 5370 cancel_work_sync(&cgrp->release_agent_work); 5371 bpf_cgrp_storage_free(cgrp); 5372 5373 if (cgroup_parent(cgrp)) { 5374 /* 5375 * We get a ref to the parent, and put the ref when 5376 * this cgroup is being freed, so it's guaranteed 5377 * that the parent won't be destroyed before its 5378 * children. 5379 */ 5380 cgroup_put(cgroup_parent(cgrp)); 5381 kernfs_put(cgrp->kn); 5382 psi_cgroup_free(cgrp); 5383 cgroup_rstat_exit(cgrp); 5384 kfree(cgrp); 5385 } else { 5386 /* 5387 * This is root cgroup's refcnt reaching zero, 5388 * which indicates that the root should be 5389 * released. 5390 */ 5391 cgroup_destroy_root(cgrp->root); 5392 } 5393 } 5394 } 5395 5396 static void css_release_work_fn(struct work_struct *work) 5397 { 5398 struct cgroup_subsys_state *css = 5399 container_of(work, struct cgroup_subsys_state, destroy_work); 5400 struct cgroup_subsys *ss = css->ss; 5401 struct cgroup *cgrp = css->cgroup; 5402 5403 cgroup_lock(); 5404 5405 css->flags |= CSS_RELEASED; 5406 list_del_rcu(&css->sibling); 5407 5408 if (ss) { 5409 /* css release path */ 5410 if (!list_empty(&css->rstat_css_node)) { 5411 cgroup_rstat_flush(cgrp); 5412 list_del_rcu(&css->rstat_css_node); 5413 } 5414 5415 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5416 if (ss->css_released) 5417 ss->css_released(css); 5418 } else { 5419 struct cgroup *tcgrp; 5420 5421 /* cgroup release path */ 5422 TRACE_CGROUP_PATH(release, cgrp); 5423 5424 cgroup_rstat_flush(cgrp); 5425 5426 spin_lock_irq(&css_set_lock); 5427 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5428 tcgrp = cgroup_parent(tcgrp)) 5429 tcgrp->nr_dying_descendants--; 5430 spin_unlock_irq(&css_set_lock); 5431 5432 /* 5433 * There are two control paths which try to determine 5434 * cgroup from dentry without going through kernfs - 5435 * cgroupstats_build() and css_tryget_online_from_dir(). 5436 * Those are supported by RCU protecting clearing of 5437 * cgrp->kn->priv backpointer. 5438 */ 5439 if (cgrp->kn) 5440 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5441 NULL); 5442 } 5443 5444 cgroup_unlock(); 5445 5446 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5447 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5448 } 5449 5450 static void css_release(struct percpu_ref *ref) 5451 { 5452 struct cgroup_subsys_state *css = 5453 container_of(ref, struct cgroup_subsys_state, refcnt); 5454 5455 INIT_WORK(&css->destroy_work, css_release_work_fn); 5456 queue_work(cgroup_destroy_wq, &css->destroy_work); 5457 } 5458 5459 static void init_and_link_css(struct cgroup_subsys_state *css, 5460 struct cgroup_subsys *ss, struct cgroup *cgrp) 5461 { 5462 lockdep_assert_held(&cgroup_mutex); 5463 5464 cgroup_get_live(cgrp); 5465 5466 memset(css, 0, sizeof(*css)); 5467 css->cgroup = cgrp; 5468 css->ss = ss; 5469 css->id = -1; 5470 INIT_LIST_HEAD(&css->sibling); 5471 INIT_LIST_HEAD(&css->children); 5472 INIT_LIST_HEAD(&css->rstat_css_node); 5473 css->serial_nr = css_serial_nr_next++; 5474 atomic_set(&css->online_cnt, 0); 5475 5476 if (cgroup_parent(cgrp)) { 5477 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5478 css_get(css->parent); 5479 } 5480 5481 if (ss->css_rstat_flush) 5482 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5483 5484 BUG_ON(cgroup_css(cgrp, ss)); 5485 } 5486 5487 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5488 static int online_css(struct cgroup_subsys_state *css) 5489 { 5490 struct cgroup_subsys *ss = css->ss; 5491 int ret = 0; 5492 5493 lockdep_assert_held(&cgroup_mutex); 5494 5495 if (ss->css_online) 5496 ret = ss->css_online(css); 5497 if (!ret) { 5498 css->flags |= CSS_ONLINE; 5499 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5500 5501 atomic_inc(&css->online_cnt); 5502 if (css->parent) 5503 atomic_inc(&css->parent->online_cnt); 5504 } 5505 return ret; 5506 } 5507 5508 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5509 static void offline_css(struct cgroup_subsys_state *css) 5510 { 5511 struct cgroup_subsys *ss = css->ss; 5512 5513 lockdep_assert_held(&cgroup_mutex); 5514 5515 if (!(css->flags & CSS_ONLINE)) 5516 return; 5517 5518 if (ss->css_offline) 5519 ss->css_offline(css); 5520 5521 css->flags &= ~CSS_ONLINE; 5522 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5523 5524 wake_up_all(&css->cgroup->offline_waitq); 5525 } 5526 5527 /** 5528 * css_create - create a cgroup_subsys_state 5529 * @cgrp: the cgroup new css will be associated with 5530 * @ss: the subsys of new css 5531 * 5532 * Create a new css associated with @cgrp - @ss pair. On success, the new 5533 * css is online and installed in @cgrp. This function doesn't create the 5534 * interface files. Returns 0 on success, -errno on failure. 5535 */ 5536 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5537 struct cgroup_subsys *ss) 5538 { 5539 struct cgroup *parent = cgroup_parent(cgrp); 5540 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5541 struct cgroup_subsys_state *css; 5542 int err; 5543 5544 lockdep_assert_held(&cgroup_mutex); 5545 5546 css = ss->css_alloc(parent_css); 5547 if (!css) 5548 css = ERR_PTR(-ENOMEM); 5549 if (IS_ERR(css)) 5550 return css; 5551 5552 init_and_link_css(css, ss, cgrp); 5553 5554 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5555 if (err) 5556 goto err_free_css; 5557 5558 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5559 if (err < 0) 5560 goto err_free_css; 5561 css->id = err; 5562 5563 /* @css is ready to be brought online now, make it visible */ 5564 list_add_tail_rcu(&css->sibling, &parent_css->children); 5565 cgroup_idr_replace(&ss->css_idr, css, css->id); 5566 5567 err = online_css(css); 5568 if (err) 5569 goto err_list_del; 5570 5571 return css; 5572 5573 err_list_del: 5574 list_del_rcu(&css->sibling); 5575 err_free_css: 5576 list_del_rcu(&css->rstat_css_node); 5577 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5578 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5579 return ERR_PTR(err); 5580 } 5581 5582 /* 5583 * The returned cgroup is fully initialized including its control mask, but 5584 * it isn't associated with its kernfs_node and doesn't have the control 5585 * mask applied. 5586 */ 5587 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5588 umode_t mode) 5589 { 5590 struct cgroup_root *root = parent->root; 5591 struct cgroup *cgrp, *tcgrp; 5592 struct kernfs_node *kn; 5593 int level = parent->level + 1; 5594 int ret; 5595 5596 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5597 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5598 if (!cgrp) 5599 return ERR_PTR(-ENOMEM); 5600 5601 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5602 if (ret) 5603 goto out_free_cgrp; 5604 5605 ret = cgroup_rstat_init(cgrp); 5606 if (ret) 5607 goto out_cancel_ref; 5608 5609 /* create the directory */ 5610 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5611 if (IS_ERR(kn)) { 5612 ret = PTR_ERR(kn); 5613 goto out_stat_exit; 5614 } 5615 cgrp->kn = kn; 5616 5617 init_cgroup_housekeeping(cgrp); 5618 5619 cgrp->self.parent = &parent->self; 5620 cgrp->root = root; 5621 cgrp->level = level; 5622 5623 ret = psi_cgroup_alloc(cgrp); 5624 if (ret) 5625 goto out_kernfs_remove; 5626 5627 ret = cgroup_bpf_inherit(cgrp); 5628 if (ret) 5629 goto out_psi_free; 5630 5631 /* 5632 * New cgroup inherits effective freeze counter, and 5633 * if the parent has to be frozen, the child has too. 5634 */ 5635 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5636 if (cgrp->freezer.e_freeze) { 5637 /* 5638 * Set the CGRP_FREEZE flag, so when a process will be 5639 * attached to the child cgroup, it will become frozen. 5640 * At this point the new cgroup is unpopulated, so we can 5641 * consider it frozen immediately. 5642 */ 5643 set_bit(CGRP_FREEZE, &cgrp->flags); 5644 set_bit(CGRP_FROZEN, &cgrp->flags); 5645 } 5646 5647 spin_lock_irq(&css_set_lock); 5648 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5649 cgrp->ancestors[tcgrp->level] = tcgrp; 5650 5651 if (tcgrp != cgrp) { 5652 tcgrp->nr_descendants++; 5653 5654 /* 5655 * If the new cgroup is frozen, all ancestor cgroups 5656 * get a new frozen descendant, but their state can't 5657 * change because of this. 5658 */ 5659 if (cgrp->freezer.e_freeze) 5660 tcgrp->freezer.nr_frozen_descendants++; 5661 } 5662 } 5663 spin_unlock_irq(&css_set_lock); 5664 5665 if (notify_on_release(parent)) 5666 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5667 5668 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5669 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5670 5671 cgrp->self.serial_nr = css_serial_nr_next++; 5672 5673 /* allocation complete, commit to creation */ 5674 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5675 atomic_inc(&root->nr_cgrps); 5676 cgroup_get_live(parent); 5677 5678 /* 5679 * On the default hierarchy, a child doesn't automatically inherit 5680 * subtree_control from the parent. Each is configured manually. 5681 */ 5682 if (!cgroup_on_dfl(cgrp)) 5683 cgrp->subtree_control = cgroup_control(cgrp); 5684 5685 cgroup_propagate_control(cgrp); 5686 5687 return cgrp; 5688 5689 out_psi_free: 5690 psi_cgroup_free(cgrp); 5691 out_kernfs_remove: 5692 kernfs_remove(cgrp->kn); 5693 out_stat_exit: 5694 cgroup_rstat_exit(cgrp); 5695 out_cancel_ref: 5696 percpu_ref_exit(&cgrp->self.refcnt); 5697 out_free_cgrp: 5698 kfree(cgrp); 5699 return ERR_PTR(ret); 5700 } 5701 5702 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5703 { 5704 struct cgroup *cgroup; 5705 int ret = false; 5706 int level = 1; 5707 5708 lockdep_assert_held(&cgroup_mutex); 5709 5710 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5711 if (cgroup->nr_descendants >= cgroup->max_descendants) 5712 goto fail; 5713 5714 if (level > cgroup->max_depth) 5715 goto fail; 5716 5717 level++; 5718 } 5719 5720 ret = true; 5721 fail: 5722 return ret; 5723 } 5724 5725 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5726 { 5727 struct cgroup *parent, *cgrp; 5728 int ret; 5729 5730 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5731 if (strchr(name, '\n')) 5732 return -EINVAL; 5733 5734 parent = cgroup_kn_lock_live(parent_kn, false); 5735 if (!parent) 5736 return -ENODEV; 5737 5738 if (!cgroup_check_hierarchy_limits(parent)) { 5739 ret = -EAGAIN; 5740 goto out_unlock; 5741 } 5742 5743 cgrp = cgroup_create(parent, name, mode); 5744 if (IS_ERR(cgrp)) { 5745 ret = PTR_ERR(cgrp); 5746 goto out_unlock; 5747 } 5748 5749 /* 5750 * This extra ref will be put in cgroup_free_fn() and guarantees 5751 * that @cgrp->kn is always accessible. 5752 */ 5753 kernfs_get(cgrp->kn); 5754 5755 ret = cgroup_kn_set_ugid(cgrp->kn); 5756 if (ret) 5757 goto out_destroy; 5758 5759 ret = css_populate_dir(&cgrp->self); 5760 if (ret) 5761 goto out_destroy; 5762 5763 ret = cgroup_apply_control_enable(cgrp); 5764 if (ret) 5765 goto out_destroy; 5766 5767 TRACE_CGROUP_PATH(mkdir, cgrp); 5768 5769 /* let's create and online css's */ 5770 kernfs_activate(cgrp->kn); 5771 5772 ret = 0; 5773 goto out_unlock; 5774 5775 out_destroy: 5776 cgroup_destroy_locked(cgrp); 5777 out_unlock: 5778 cgroup_kn_unlock(parent_kn); 5779 return ret; 5780 } 5781 5782 /* 5783 * This is called when the refcnt of a css is confirmed to be killed. 5784 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5785 * initiate destruction and put the css ref from kill_css(). 5786 */ 5787 static void css_killed_work_fn(struct work_struct *work) 5788 { 5789 struct cgroup_subsys_state *css = 5790 container_of(work, struct cgroup_subsys_state, destroy_work); 5791 5792 cgroup_lock(); 5793 5794 do { 5795 offline_css(css); 5796 css_put(css); 5797 /* @css can't go away while we're holding cgroup_mutex */ 5798 css = css->parent; 5799 } while (css && atomic_dec_and_test(&css->online_cnt)); 5800 5801 cgroup_unlock(); 5802 } 5803 5804 /* css kill confirmation processing requires process context, bounce */ 5805 static void css_killed_ref_fn(struct percpu_ref *ref) 5806 { 5807 struct cgroup_subsys_state *css = 5808 container_of(ref, struct cgroup_subsys_state, refcnt); 5809 5810 if (atomic_dec_and_test(&css->online_cnt)) { 5811 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5812 queue_work(cgroup_destroy_wq, &css->destroy_work); 5813 } 5814 } 5815 5816 /** 5817 * kill_css - destroy a css 5818 * @css: css to destroy 5819 * 5820 * This function initiates destruction of @css by removing cgroup interface 5821 * files and putting its base reference. ->css_offline() will be invoked 5822 * asynchronously once css_tryget_online() is guaranteed to fail and when 5823 * the reference count reaches zero, @css will be released. 5824 */ 5825 static void kill_css(struct cgroup_subsys_state *css) 5826 { 5827 lockdep_assert_held(&cgroup_mutex); 5828 5829 if (css->flags & CSS_DYING) 5830 return; 5831 5832 css->flags |= CSS_DYING; 5833 5834 /* 5835 * This must happen before css is disassociated with its cgroup. 5836 * See seq_css() for details. 5837 */ 5838 css_clear_dir(css); 5839 5840 /* 5841 * Killing would put the base ref, but we need to keep it alive 5842 * until after ->css_offline(). 5843 */ 5844 css_get(css); 5845 5846 /* 5847 * cgroup core guarantees that, by the time ->css_offline() is 5848 * invoked, no new css reference will be given out via 5849 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5850 * proceed to offlining css's because percpu_ref_kill() doesn't 5851 * guarantee that the ref is seen as killed on all CPUs on return. 5852 * 5853 * Use percpu_ref_kill_and_confirm() to get notifications as each 5854 * css is confirmed to be seen as killed on all CPUs. 5855 */ 5856 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5857 } 5858 5859 /** 5860 * cgroup_destroy_locked - the first stage of cgroup destruction 5861 * @cgrp: cgroup to be destroyed 5862 * 5863 * css's make use of percpu refcnts whose killing latency shouldn't be 5864 * exposed to userland and are RCU protected. Also, cgroup core needs to 5865 * guarantee that css_tryget_online() won't succeed by the time 5866 * ->css_offline() is invoked. To satisfy all the requirements, 5867 * destruction is implemented in the following two steps. 5868 * 5869 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5870 * userland visible parts and start killing the percpu refcnts of 5871 * css's. Set up so that the next stage will be kicked off once all 5872 * the percpu refcnts are confirmed to be killed. 5873 * 5874 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5875 * rest of destruction. Once all cgroup references are gone, the 5876 * cgroup is RCU-freed. 5877 * 5878 * This function implements s1. After this step, @cgrp is gone as far as 5879 * the userland is concerned and a new cgroup with the same name may be 5880 * created. As cgroup doesn't care about the names internally, this 5881 * doesn't cause any problem. 5882 */ 5883 static int cgroup_destroy_locked(struct cgroup *cgrp) 5884 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5885 { 5886 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5887 struct cgroup_subsys_state *css; 5888 struct cgrp_cset_link *link; 5889 int ssid; 5890 5891 lockdep_assert_held(&cgroup_mutex); 5892 5893 /* 5894 * Only migration can raise populated from zero and we're already 5895 * holding cgroup_mutex. 5896 */ 5897 if (cgroup_is_populated(cgrp)) 5898 return -EBUSY; 5899 5900 /* 5901 * Make sure there's no live children. We can't test emptiness of 5902 * ->self.children as dead children linger on it while being 5903 * drained; otherwise, "rmdir parent/child parent" may fail. 5904 */ 5905 if (css_has_online_children(&cgrp->self)) 5906 return -EBUSY; 5907 5908 /* 5909 * Mark @cgrp and the associated csets dead. The former prevents 5910 * further task migration and child creation by disabling 5911 * cgroup_lock_live_group(). The latter makes the csets ignored by 5912 * the migration path. 5913 */ 5914 cgrp->self.flags &= ~CSS_ONLINE; 5915 5916 spin_lock_irq(&css_set_lock); 5917 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5918 link->cset->dead = true; 5919 spin_unlock_irq(&css_set_lock); 5920 5921 /* initiate massacre of all css's */ 5922 for_each_css(css, ssid, cgrp) 5923 kill_css(css); 5924 5925 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5926 css_clear_dir(&cgrp->self); 5927 kernfs_remove(cgrp->kn); 5928 5929 if (cgroup_is_threaded(cgrp)) 5930 parent->nr_threaded_children--; 5931 5932 spin_lock_irq(&css_set_lock); 5933 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5934 tcgrp->nr_descendants--; 5935 tcgrp->nr_dying_descendants++; 5936 /* 5937 * If the dying cgroup is frozen, decrease frozen descendants 5938 * counters of ancestor cgroups. 5939 */ 5940 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5941 tcgrp->freezer.nr_frozen_descendants--; 5942 } 5943 spin_unlock_irq(&css_set_lock); 5944 5945 cgroup1_check_for_release(parent); 5946 5947 cgroup_bpf_offline(cgrp); 5948 5949 /* put the base reference */ 5950 percpu_ref_kill(&cgrp->self.refcnt); 5951 5952 return 0; 5953 }; 5954 5955 int cgroup_rmdir(struct kernfs_node *kn) 5956 { 5957 struct cgroup *cgrp; 5958 int ret = 0; 5959 5960 cgrp = cgroup_kn_lock_live(kn, false); 5961 if (!cgrp) 5962 return 0; 5963 5964 ret = cgroup_destroy_locked(cgrp); 5965 if (!ret) 5966 TRACE_CGROUP_PATH(rmdir, cgrp); 5967 5968 cgroup_kn_unlock(kn); 5969 return ret; 5970 } 5971 5972 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5973 .show_options = cgroup_show_options, 5974 .mkdir = cgroup_mkdir, 5975 .rmdir = cgroup_rmdir, 5976 .show_path = cgroup_show_path, 5977 }; 5978 5979 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5980 { 5981 struct cgroup_subsys_state *css; 5982 5983 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5984 5985 cgroup_lock(); 5986 5987 idr_init(&ss->css_idr); 5988 INIT_LIST_HEAD(&ss->cfts); 5989 5990 /* Create the root cgroup state for this subsystem */ 5991 ss->root = &cgrp_dfl_root; 5992 css = ss->css_alloc(NULL); 5993 /* We don't handle early failures gracefully */ 5994 BUG_ON(IS_ERR(css)); 5995 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5996 5997 /* 5998 * Root csses are never destroyed and we can't initialize 5999 * percpu_ref during early init. Disable refcnting. 6000 */ 6001 css->flags |= CSS_NO_REF; 6002 6003 if (early) { 6004 /* allocation can't be done safely during early init */ 6005 css->id = 1; 6006 } else { 6007 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6008 BUG_ON(css->id < 0); 6009 } 6010 6011 /* Update the init_css_set to contain a subsys 6012 * pointer to this state - since the subsystem is 6013 * newly registered, all tasks and hence the 6014 * init_css_set is in the subsystem's root cgroup. */ 6015 init_css_set.subsys[ss->id] = css; 6016 6017 have_fork_callback |= (bool)ss->fork << ss->id; 6018 have_exit_callback |= (bool)ss->exit << ss->id; 6019 have_release_callback |= (bool)ss->release << ss->id; 6020 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6021 6022 /* At system boot, before all subsystems have been 6023 * registered, no tasks have been forked, so we don't 6024 * need to invoke fork callbacks here. */ 6025 BUG_ON(!list_empty(&init_task.tasks)); 6026 6027 BUG_ON(online_css(css)); 6028 6029 cgroup_unlock(); 6030 } 6031 6032 /** 6033 * cgroup_init_early - cgroup initialization at system boot 6034 * 6035 * Initialize cgroups at system boot, and initialize any 6036 * subsystems that request early init. 6037 */ 6038 int __init cgroup_init_early(void) 6039 { 6040 static struct cgroup_fs_context __initdata ctx; 6041 struct cgroup_subsys *ss; 6042 int i; 6043 6044 ctx.root = &cgrp_dfl_root; 6045 init_cgroup_root(&ctx); 6046 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6047 6048 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6049 6050 for_each_subsys(ss, i) { 6051 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6052 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6053 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6054 ss->id, ss->name); 6055 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6056 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6057 6058 ss->id = i; 6059 ss->name = cgroup_subsys_name[i]; 6060 if (!ss->legacy_name) 6061 ss->legacy_name = cgroup_subsys_name[i]; 6062 6063 if (ss->early_init) 6064 cgroup_init_subsys(ss, true); 6065 } 6066 return 0; 6067 } 6068 6069 /** 6070 * cgroup_init - cgroup initialization 6071 * 6072 * Register cgroup filesystem and /proc file, and initialize 6073 * any subsystems that didn't request early init. 6074 */ 6075 int __init cgroup_init(void) 6076 { 6077 struct cgroup_subsys *ss; 6078 int ssid; 6079 6080 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6081 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6082 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6083 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6084 6085 cgroup_rstat_boot(); 6086 6087 get_user_ns(init_cgroup_ns.user_ns); 6088 6089 cgroup_lock(); 6090 6091 /* 6092 * Add init_css_set to the hash table so that dfl_root can link to 6093 * it during init. 6094 */ 6095 hash_add(css_set_table, &init_css_set.hlist, 6096 css_set_hash(init_css_set.subsys)); 6097 6098 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6099 6100 cgroup_unlock(); 6101 6102 for_each_subsys(ss, ssid) { 6103 if (ss->early_init) { 6104 struct cgroup_subsys_state *css = 6105 init_css_set.subsys[ss->id]; 6106 6107 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6108 GFP_KERNEL); 6109 BUG_ON(css->id < 0); 6110 } else { 6111 cgroup_init_subsys(ss, false); 6112 } 6113 6114 list_add_tail(&init_css_set.e_cset_node[ssid], 6115 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6116 6117 /* 6118 * Setting dfl_root subsys_mask needs to consider the 6119 * disabled flag and cftype registration needs kmalloc, 6120 * both of which aren't available during early_init. 6121 */ 6122 if (!cgroup_ssid_enabled(ssid)) 6123 continue; 6124 6125 if (cgroup1_ssid_disabled(ssid)) 6126 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 6127 ss->name); 6128 6129 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6130 6131 /* implicit controllers must be threaded too */ 6132 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6133 6134 if (ss->implicit_on_dfl) 6135 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6136 else if (!ss->dfl_cftypes) 6137 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6138 6139 if (ss->threaded) 6140 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6141 6142 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6143 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6144 } else { 6145 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6146 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6147 } 6148 6149 if (ss->bind) 6150 ss->bind(init_css_set.subsys[ssid]); 6151 6152 cgroup_lock(); 6153 css_populate_dir(init_css_set.subsys[ssid]); 6154 cgroup_unlock(); 6155 } 6156 6157 /* init_css_set.subsys[] has been updated, re-hash */ 6158 hash_del(&init_css_set.hlist); 6159 hash_add(css_set_table, &init_css_set.hlist, 6160 css_set_hash(init_css_set.subsys)); 6161 6162 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6163 WARN_ON(register_filesystem(&cgroup_fs_type)); 6164 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6165 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6166 #ifdef CONFIG_CPUSETS 6167 WARN_ON(register_filesystem(&cpuset_fs_type)); 6168 #endif 6169 6170 return 0; 6171 } 6172 6173 static int __init cgroup_wq_init(void) 6174 { 6175 /* 6176 * There isn't much point in executing destruction path in 6177 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6178 * Use 1 for @max_active. 6179 * 6180 * We would prefer to do this in cgroup_init() above, but that 6181 * is called before init_workqueues(): so leave this until after. 6182 */ 6183 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6184 BUG_ON(!cgroup_destroy_wq); 6185 return 0; 6186 } 6187 core_initcall(cgroup_wq_init); 6188 6189 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6190 { 6191 struct kernfs_node *kn; 6192 6193 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6194 if (!kn) 6195 return; 6196 kernfs_path(kn, buf, buflen); 6197 kernfs_put(kn); 6198 } 6199 6200 /* 6201 * cgroup_get_from_id : get the cgroup associated with cgroup id 6202 * @id: cgroup id 6203 * On success return the cgrp or ERR_PTR on failure 6204 * Only cgroups within current task's cgroup NS are valid. 6205 */ 6206 struct cgroup *cgroup_get_from_id(u64 id) 6207 { 6208 struct kernfs_node *kn; 6209 struct cgroup *cgrp, *root_cgrp; 6210 6211 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6212 if (!kn) 6213 return ERR_PTR(-ENOENT); 6214 6215 if (kernfs_type(kn) != KERNFS_DIR) { 6216 kernfs_put(kn); 6217 return ERR_PTR(-ENOENT); 6218 } 6219 6220 rcu_read_lock(); 6221 6222 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6223 if (cgrp && !cgroup_tryget(cgrp)) 6224 cgrp = NULL; 6225 6226 rcu_read_unlock(); 6227 kernfs_put(kn); 6228 6229 if (!cgrp) 6230 return ERR_PTR(-ENOENT); 6231 6232 root_cgrp = current_cgns_cgroup_dfl(); 6233 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6234 cgroup_put(cgrp); 6235 return ERR_PTR(-ENOENT); 6236 } 6237 6238 return cgrp; 6239 } 6240 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6241 6242 /* 6243 * proc_cgroup_show() 6244 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6245 * - Used for /proc/<pid>/cgroup. 6246 */ 6247 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6248 struct pid *pid, struct task_struct *tsk) 6249 { 6250 char *buf; 6251 int retval; 6252 struct cgroup_root *root; 6253 6254 retval = -ENOMEM; 6255 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6256 if (!buf) 6257 goto out; 6258 6259 cgroup_lock(); 6260 spin_lock_irq(&css_set_lock); 6261 6262 for_each_root(root) { 6263 struct cgroup_subsys *ss; 6264 struct cgroup *cgrp; 6265 int ssid, count = 0; 6266 6267 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6268 continue; 6269 6270 seq_printf(m, "%d:", root->hierarchy_id); 6271 if (root != &cgrp_dfl_root) 6272 for_each_subsys(ss, ssid) 6273 if (root->subsys_mask & (1 << ssid)) 6274 seq_printf(m, "%s%s", count++ ? "," : "", 6275 ss->legacy_name); 6276 if (strlen(root->name)) 6277 seq_printf(m, "%sname=%s", count ? "," : "", 6278 root->name); 6279 seq_putc(m, ':'); 6280 6281 cgrp = task_cgroup_from_root(tsk, root); 6282 6283 /* 6284 * On traditional hierarchies, all zombie tasks show up as 6285 * belonging to the root cgroup. On the default hierarchy, 6286 * while a zombie doesn't show up in "cgroup.procs" and 6287 * thus can't be migrated, its /proc/PID/cgroup keeps 6288 * reporting the cgroup it belonged to before exiting. If 6289 * the cgroup is removed before the zombie is reaped, 6290 * " (deleted)" is appended to the cgroup path. 6291 */ 6292 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6293 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6294 current->nsproxy->cgroup_ns); 6295 if (retval >= PATH_MAX) 6296 retval = -ENAMETOOLONG; 6297 if (retval < 0) 6298 goto out_unlock; 6299 6300 seq_puts(m, buf); 6301 } else { 6302 seq_puts(m, "/"); 6303 } 6304 6305 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6306 seq_puts(m, " (deleted)\n"); 6307 else 6308 seq_putc(m, '\n'); 6309 } 6310 6311 retval = 0; 6312 out_unlock: 6313 spin_unlock_irq(&css_set_lock); 6314 cgroup_unlock(); 6315 kfree(buf); 6316 out: 6317 return retval; 6318 } 6319 6320 /** 6321 * cgroup_fork - initialize cgroup related fields during copy_process() 6322 * @child: pointer to task_struct of forking parent process. 6323 * 6324 * A task is associated with the init_css_set until cgroup_post_fork() 6325 * attaches it to the target css_set. 6326 */ 6327 void cgroup_fork(struct task_struct *child) 6328 { 6329 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6330 INIT_LIST_HEAD(&child->cg_list); 6331 } 6332 6333 /** 6334 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6335 * @f: file corresponding to cgroup_dir 6336 * 6337 * Find the cgroup from a file pointer associated with a cgroup directory. 6338 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6339 * cgroup cannot be found. 6340 */ 6341 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6342 { 6343 struct cgroup_subsys_state *css; 6344 6345 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6346 if (IS_ERR(css)) 6347 return ERR_CAST(css); 6348 6349 return css->cgroup; 6350 } 6351 6352 /** 6353 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6354 * cgroup2. 6355 * @f: file corresponding to cgroup2_dir 6356 */ 6357 static struct cgroup *cgroup_get_from_file(struct file *f) 6358 { 6359 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6360 6361 if (IS_ERR(cgrp)) 6362 return ERR_CAST(cgrp); 6363 6364 if (!cgroup_on_dfl(cgrp)) { 6365 cgroup_put(cgrp); 6366 return ERR_PTR(-EBADF); 6367 } 6368 6369 return cgrp; 6370 } 6371 6372 /** 6373 * cgroup_css_set_fork - find or create a css_set for a child process 6374 * @kargs: the arguments passed to create the child process 6375 * 6376 * This functions finds or creates a new css_set which the child 6377 * process will be attached to in cgroup_post_fork(). By default, 6378 * the child process will be given the same css_set as its parent. 6379 * 6380 * If CLONE_INTO_CGROUP is specified this function will try to find an 6381 * existing css_set which includes the requested cgroup and if not create 6382 * a new css_set that the child will be attached to later. If this function 6383 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6384 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6385 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6386 * to the target cgroup. 6387 */ 6388 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6389 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6390 { 6391 int ret; 6392 struct cgroup *dst_cgrp = NULL; 6393 struct css_set *cset; 6394 struct super_block *sb; 6395 struct file *f; 6396 6397 if (kargs->flags & CLONE_INTO_CGROUP) 6398 cgroup_lock(); 6399 6400 cgroup_threadgroup_change_begin(current); 6401 6402 spin_lock_irq(&css_set_lock); 6403 cset = task_css_set(current); 6404 get_css_set(cset); 6405 spin_unlock_irq(&css_set_lock); 6406 6407 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6408 kargs->cset = cset; 6409 return 0; 6410 } 6411 6412 f = fget_raw(kargs->cgroup); 6413 if (!f) { 6414 ret = -EBADF; 6415 goto err; 6416 } 6417 sb = f->f_path.dentry->d_sb; 6418 6419 dst_cgrp = cgroup_get_from_file(f); 6420 if (IS_ERR(dst_cgrp)) { 6421 ret = PTR_ERR(dst_cgrp); 6422 dst_cgrp = NULL; 6423 goto err; 6424 } 6425 6426 if (cgroup_is_dead(dst_cgrp)) { 6427 ret = -ENODEV; 6428 goto err; 6429 } 6430 6431 /* 6432 * Verify that we the target cgroup is writable for us. This is 6433 * usually done by the vfs layer but since we're not going through 6434 * the vfs layer here we need to do it "manually". 6435 */ 6436 ret = cgroup_may_write(dst_cgrp, sb); 6437 if (ret) 6438 goto err; 6439 6440 /* 6441 * Spawning a task directly into a cgroup works by passing a file 6442 * descriptor to the target cgroup directory. This can even be an O_PATH 6443 * file descriptor. But it can never be a cgroup.procs file descriptor. 6444 * This was done on purpose so spawning into a cgroup could be 6445 * conceptualized as an atomic 6446 * 6447 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6448 * write(fd, <child-pid>, ...); 6449 * 6450 * sequence, i.e. it's a shorthand for the caller opening and writing 6451 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6452 * to always use the caller's credentials. 6453 */ 6454 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6455 !(kargs->flags & CLONE_THREAD), 6456 current->nsproxy->cgroup_ns); 6457 if (ret) 6458 goto err; 6459 6460 kargs->cset = find_css_set(cset, dst_cgrp); 6461 if (!kargs->cset) { 6462 ret = -ENOMEM; 6463 goto err; 6464 } 6465 6466 put_css_set(cset); 6467 fput(f); 6468 kargs->cgrp = dst_cgrp; 6469 return ret; 6470 6471 err: 6472 cgroup_threadgroup_change_end(current); 6473 cgroup_unlock(); 6474 if (f) 6475 fput(f); 6476 if (dst_cgrp) 6477 cgroup_put(dst_cgrp); 6478 put_css_set(cset); 6479 if (kargs->cset) 6480 put_css_set(kargs->cset); 6481 return ret; 6482 } 6483 6484 /** 6485 * cgroup_css_set_put_fork - drop references we took during fork 6486 * @kargs: the arguments passed to create the child process 6487 * 6488 * Drop references to the prepared css_set and target cgroup if 6489 * CLONE_INTO_CGROUP was requested. 6490 */ 6491 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6492 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6493 { 6494 struct cgroup *cgrp = kargs->cgrp; 6495 struct css_set *cset = kargs->cset; 6496 6497 cgroup_threadgroup_change_end(current); 6498 6499 if (cset) { 6500 put_css_set(cset); 6501 kargs->cset = NULL; 6502 } 6503 6504 if (kargs->flags & CLONE_INTO_CGROUP) { 6505 cgroup_unlock(); 6506 if (cgrp) { 6507 cgroup_put(cgrp); 6508 kargs->cgrp = NULL; 6509 } 6510 } 6511 } 6512 6513 /** 6514 * cgroup_can_fork - called on a new task before the process is exposed 6515 * @child: the child process 6516 * @kargs: the arguments passed to create the child process 6517 * 6518 * This prepares a new css_set for the child process which the child will 6519 * be attached to in cgroup_post_fork(). 6520 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6521 * callback returns an error, the fork aborts with that error code. This 6522 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6523 */ 6524 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6525 { 6526 struct cgroup_subsys *ss; 6527 int i, j, ret; 6528 6529 ret = cgroup_css_set_fork(kargs); 6530 if (ret) 6531 return ret; 6532 6533 do_each_subsys_mask(ss, i, have_canfork_callback) { 6534 ret = ss->can_fork(child, kargs->cset); 6535 if (ret) 6536 goto out_revert; 6537 } while_each_subsys_mask(); 6538 6539 return 0; 6540 6541 out_revert: 6542 for_each_subsys(ss, j) { 6543 if (j >= i) 6544 break; 6545 if (ss->cancel_fork) 6546 ss->cancel_fork(child, kargs->cset); 6547 } 6548 6549 cgroup_css_set_put_fork(kargs); 6550 6551 return ret; 6552 } 6553 6554 /** 6555 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6556 * @child: the child process 6557 * @kargs: the arguments passed to create the child process 6558 * 6559 * This calls the cancel_fork() callbacks if a fork failed *after* 6560 * cgroup_can_fork() succeeded and cleans up references we took to 6561 * prepare a new css_set for the child process in cgroup_can_fork(). 6562 */ 6563 void cgroup_cancel_fork(struct task_struct *child, 6564 struct kernel_clone_args *kargs) 6565 { 6566 struct cgroup_subsys *ss; 6567 int i; 6568 6569 for_each_subsys(ss, i) 6570 if (ss->cancel_fork) 6571 ss->cancel_fork(child, kargs->cset); 6572 6573 cgroup_css_set_put_fork(kargs); 6574 } 6575 6576 /** 6577 * cgroup_post_fork - finalize cgroup setup for the child process 6578 * @child: the child process 6579 * @kargs: the arguments passed to create the child process 6580 * 6581 * Attach the child process to its css_set calling the subsystem fork() 6582 * callbacks. 6583 */ 6584 void cgroup_post_fork(struct task_struct *child, 6585 struct kernel_clone_args *kargs) 6586 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6587 { 6588 unsigned long cgrp_flags = 0; 6589 bool kill = false; 6590 struct cgroup_subsys *ss; 6591 struct css_set *cset; 6592 int i; 6593 6594 cset = kargs->cset; 6595 kargs->cset = NULL; 6596 6597 spin_lock_irq(&css_set_lock); 6598 6599 /* init tasks are special, only link regular threads */ 6600 if (likely(child->pid)) { 6601 if (kargs->cgrp) 6602 cgrp_flags = kargs->cgrp->flags; 6603 else 6604 cgrp_flags = cset->dfl_cgrp->flags; 6605 6606 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6607 cset->nr_tasks++; 6608 css_set_move_task(child, NULL, cset, false); 6609 } else { 6610 put_css_set(cset); 6611 cset = NULL; 6612 } 6613 6614 if (!(child->flags & PF_KTHREAD)) { 6615 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6616 /* 6617 * If the cgroup has to be frozen, the new task has 6618 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6619 * get the task into the frozen state. 6620 */ 6621 spin_lock(&child->sighand->siglock); 6622 WARN_ON_ONCE(child->frozen); 6623 child->jobctl |= JOBCTL_TRAP_FREEZE; 6624 spin_unlock(&child->sighand->siglock); 6625 6626 /* 6627 * Calling cgroup_update_frozen() isn't required here, 6628 * because it will be called anyway a bit later from 6629 * do_freezer_trap(). So we avoid cgroup's transient 6630 * switch from the frozen state and back. 6631 */ 6632 } 6633 6634 /* 6635 * If the cgroup is to be killed notice it now and take the 6636 * child down right after we finished preparing it for 6637 * userspace. 6638 */ 6639 kill = test_bit(CGRP_KILL, &cgrp_flags); 6640 } 6641 6642 spin_unlock_irq(&css_set_lock); 6643 6644 /* 6645 * Call ss->fork(). This must happen after @child is linked on 6646 * css_set; otherwise, @child might change state between ->fork() 6647 * and addition to css_set. 6648 */ 6649 do_each_subsys_mask(ss, i, have_fork_callback) { 6650 ss->fork(child); 6651 } while_each_subsys_mask(); 6652 6653 /* Make the new cset the root_cset of the new cgroup namespace. */ 6654 if (kargs->flags & CLONE_NEWCGROUP) { 6655 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6656 6657 get_css_set(cset); 6658 child->nsproxy->cgroup_ns->root_cset = cset; 6659 put_css_set(rcset); 6660 } 6661 6662 /* Cgroup has to be killed so take down child immediately. */ 6663 if (unlikely(kill)) 6664 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6665 6666 cgroup_css_set_put_fork(kargs); 6667 } 6668 6669 /** 6670 * cgroup_exit - detach cgroup from exiting task 6671 * @tsk: pointer to task_struct of exiting process 6672 * 6673 * Description: Detach cgroup from @tsk. 6674 * 6675 */ 6676 void cgroup_exit(struct task_struct *tsk) 6677 { 6678 struct cgroup_subsys *ss; 6679 struct css_set *cset; 6680 int i; 6681 6682 spin_lock_irq(&css_set_lock); 6683 6684 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6685 cset = task_css_set(tsk); 6686 css_set_move_task(tsk, cset, NULL, false); 6687 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6688 cset->nr_tasks--; 6689 6690 if (dl_task(tsk)) 6691 dec_dl_tasks_cs(tsk); 6692 6693 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6694 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6695 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6696 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6697 6698 spin_unlock_irq(&css_set_lock); 6699 6700 /* see cgroup_post_fork() for details */ 6701 do_each_subsys_mask(ss, i, have_exit_callback) { 6702 ss->exit(tsk); 6703 } while_each_subsys_mask(); 6704 } 6705 6706 void cgroup_release(struct task_struct *task) 6707 { 6708 struct cgroup_subsys *ss; 6709 int ssid; 6710 6711 do_each_subsys_mask(ss, ssid, have_release_callback) { 6712 ss->release(task); 6713 } while_each_subsys_mask(); 6714 6715 spin_lock_irq(&css_set_lock); 6716 css_set_skip_task_iters(task_css_set(task), task); 6717 list_del_init(&task->cg_list); 6718 spin_unlock_irq(&css_set_lock); 6719 } 6720 6721 void cgroup_free(struct task_struct *task) 6722 { 6723 struct css_set *cset = task_css_set(task); 6724 put_css_set(cset); 6725 } 6726 6727 static int __init cgroup_disable(char *str) 6728 { 6729 struct cgroup_subsys *ss; 6730 char *token; 6731 int i; 6732 6733 while ((token = strsep(&str, ",")) != NULL) { 6734 if (!*token) 6735 continue; 6736 6737 for_each_subsys(ss, i) { 6738 if (strcmp(token, ss->name) && 6739 strcmp(token, ss->legacy_name)) 6740 continue; 6741 6742 static_branch_disable(cgroup_subsys_enabled_key[i]); 6743 pr_info("Disabling %s control group subsystem\n", 6744 ss->name); 6745 } 6746 6747 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6748 if (strcmp(token, cgroup_opt_feature_names[i])) 6749 continue; 6750 cgroup_feature_disable_mask |= 1 << i; 6751 pr_info("Disabling %s control group feature\n", 6752 cgroup_opt_feature_names[i]); 6753 break; 6754 } 6755 } 6756 return 1; 6757 } 6758 __setup("cgroup_disable=", cgroup_disable); 6759 6760 void __init __weak enable_debug_cgroup(void) { } 6761 6762 static int __init enable_cgroup_debug(char *str) 6763 { 6764 cgroup_debug = true; 6765 enable_debug_cgroup(); 6766 return 1; 6767 } 6768 __setup("cgroup_debug", enable_cgroup_debug); 6769 6770 /** 6771 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6772 * @dentry: directory dentry of interest 6773 * @ss: subsystem of interest 6774 * 6775 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6776 * to get the corresponding css and return it. If such css doesn't exist 6777 * or can't be pinned, an ERR_PTR value is returned. 6778 */ 6779 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6780 struct cgroup_subsys *ss) 6781 { 6782 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6783 struct file_system_type *s_type = dentry->d_sb->s_type; 6784 struct cgroup_subsys_state *css = NULL; 6785 struct cgroup *cgrp; 6786 6787 /* is @dentry a cgroup dir? */ 6788 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6789 !kn || kernfs_type(kn) != KERNFS_DIR) 6790 return ERR_PTR(-EBADF); 6791 6792 rcu_read_lock(); 6793 6794 /* 6795 * This path doesn't originate from kernfs and @kn could already 6796 * have been or be removed at any point. @kn->priv is RCU 6797 * protected for this access. See css_release_work_fn() for details. 6798 */ 6799 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6800 if (cgrp) 6801 css = cgroup_css(cgrp, ss); 6802 6803 if (!css || !css_tryget_online(css)) 6804 css = ERR_PTR(-ENOENT); 6805 6806 rcu_read_unlock(); 6807 return css; 6808 } 6809 6810 /** 6811 * css_from_id - lookup css by id 6812 * @id: the cgroup id 6813 * @ss: cgroup subsys to be looked into 6814 * 6815 * Returns the css if there's valid one with @id, otherwise returns NULL. 6816 * Should be called under rcu_read_lock(). 6817 */ 6818 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6819 { 6820 WARN_ON_ONCE(!rcu_read_lock_held()); 6821 return idr_find(&ss->css_idr, id); 6822 } 6823 6824 /** 6825 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6826 * @path: path on the default hierarchy 6827 * 6828 * Find the cgroup at @path on the default hierarchy, increment its 6829 * reference count and return it. Returns pointer to the found cgroup on 6830 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6831 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6832 */ 6833 struct cgroup *cgroup_get_from_path(const char *path) 6834 { 6835 struct kernfs_node *kn; 6836 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6837 struct cgroup *root_cgrp; 6838 6839 root_cgrp = current_cgns_cgroup_dfl(); 6840 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6841 if (!kn) 6842 goto out; 6843 6844 if (kernfs_type(kn) != KERNFS_DIR) { 6845 cgrp = ERR_PTR(-ENOTDIR); 6846 goto out_kernfs; 6847 } 6848 6849 rcu_read_lock(); 6850 6851 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6852 if (!cgrp || !cgroup_tryget(cgrp)) 6853 cgrp = ERR_PTR(-ENOENT); 6854 6855 rcu_read_unlock(); 6856 6857 out_kernfs: 6858 kernfs_put(kn); 6859 out: 6860 return cgrp; 6861 } 6862 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6863 6864 /** 6865 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6866 * @fd: fd obtained by open(cgroup_dir) 6867 * 6868 * Find the cgroup from a fd which should be obtained 6869 * by opening a cgroup directory. Returns a pointer to the 6870 * cgroup on success. ERR_PTR is returned if the cgroup 6871 * cannot be found. 6872 */ 6873 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6874 { 6875 struct cgroup *cgrp; 6876 struct fd f = fdget_raw(fd); 6877 if (!f.file) 6878 return ERR_PTR(-EBADF); 6879 6880 cgrp = cgroup_v1v2_get_from_file(f.file); 6881 fdput(f); 6882 return cgrp; 6883 } 6884 6885 /** 6886 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6887 * cgroup2. 6888 * @fd: fd obtained by open(cgroup2_dir) 6889 */ 6890 struct cgroup *cgroup_get_from_fd(int fd) 6891 { 6892 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6893 6894 if (IS_ERR(cgrp)) 6895 return ERR_CAST(cgrp); 6896 6897 if (!cgroup_on_dfl(cgrp)) { 6898 cgroup_put(cgrp); 6899 return ERR_PTR(-EBADF); 6900 } 6901 return cgrp; 6902 } 6903 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6904 6905 static u64 power_of_ten(int power) 6906 { 6907 u64 v = 1; 6908 while (power--) 6909 v *= 10; 6910 return v; 6911 } 6912 6913 /** 6914 * cgroup_parse_float - parse a floating number 6915 * @input: input string 6916 * @dec_shift: number of decimal digits to shift 6917 * @v: output 6918 * 6919 * Parse a decimal floating point number in @input and store the result in 6920 * @v with decimal point right shifted @dec_shift times. For example, if 6921 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6922 * Returns 0 on success, -errno otherwise. 6923 * 6924 * There's nothing cgroup specific about this function except that it's 6925 * currently the only user. 6926 */ 6927 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6928 { 6929 s64 whole, frac = 0; 6930 int fstart = 0, fend = 0, flen; 6931 6932 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6933 return -EINVAL; 6934 if (frac < 0) 6935 return -EINVAL; 6936 6937 flen = fend > fstart ? fend - fstart : 0; 6938 if (flen < dec_shift) 6939 frac *= power_of_ten(dec_shift - flen); 6940 else 6941 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6942 6943 *v = whole * power_of_ten(dec_shift) + frac; 6944 return 0; 6945 } 6946 6947 /* 6948 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6949 * definition in cgroup-defs.h. 6950 */ 6951 #ifdef CONFIG_SOCK_CGROUP_DATA 6952 6953 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6954 { 6955 struct cgroup *cgroup; 6956 6957 rcu_read_lock(); 6958 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6959 if (in_interrupt()) { 6960 cgroup = &cgrp_dfl_root.cgrp; 6961 cgroup_get(cgroup); 6962 goto out; 6963 } 6964 6965 while (true) { 6966 struct css_set *cset; 6967 6968 cset = task_css_set(current); 6969 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6970 cgroup = cset->dfl_cgrp; 6971 break; 6972 } 6973 cpu_relax(); 6974 } 6975 out: 6976 skcd->cgroup = cgroup; 6977 cgroup_bpf_get(cgroup); 6978 rcu_read_unlock(); 6979 } 6980 6981 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6982 { 6983 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6984 6985 /* 6986 * We might be cloning a socket which is left in an empty 6987 * cgroup and the cgroup might have already been rmdir'd. 6988 * Don't use cgroup_get_live(). 6989 */ 6990 cgroup_get(cgrp); 6991 cgroup_bpf_get(cgrp); 6992 } 6993 6994 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6995 { 6996 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6997 6998 cgroup_bpf_put(cgrp); 6999 cgroup_put(cgrp); 7000 } 7001 7002 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7003 7004 #ifdef CONFIG_SYSFS 7005 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7006 ssize_t size, const char *prefix) 7007 { 7008 struct cftype *cft; 7009 ssize_t ret = 0; 7010 7011 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7012 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7013 continue; 7014 7015 if (prefix) 7016 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7017 7018 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7019 7020 if (WARN_ON(ret >= size)) 7021 break; 7022 } 7023 7024 return ret; 7025 } 7026 7027 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7028 char *buf) 7029 { 7030 struct cgroup_subsys *ss; 7031 int ssid; 7032 ssize_t ret = 0; 7033 7034 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7035 PAGE_SIZE - ret, NULL); 7036 if (cgroup_psi_enabled()) 7037 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7038 PAGE_SIZE - ret, NULL); 7039 7040 for_each_subsys(ss, ssid) 7041 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7042 PAGE_SIZE - ret, 7043 cgroup_subsys_name[ssid]); 7044 7045 return ret; 7046 } 7047 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7048 7049 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7050 char *buf) 7051 { 7052 return snprintf(buf, PAGE_SIZE, 7053 "nsdelegate\n" 7054 "favordynmods\n" 7055 "memory_localevents\n" 7056 "memory_recursiveprot\n"); 7057 } 7058 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7059 7060 static struct attribute *cgroup_sysfs_attrs[] = { 7061 &cgroup_delegate_attr.attr, 7062 &cgroup_features_attr.attr, 7063 NULL, 7064 }; 7065 7066 static const struct attribute_group cgroup_sysfs_attr_group = { 7067 .attrs = cgroup_sysfs_attrs, 7068 .name = "cgroup", 7069 }; 7070 7071 static int __init cgroup_sysfs_init(void) 7072 { 7073 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7074 } 7075 subsys_initcall(cgroup_sysfs_init); 7076 7077 #endif /* CONFIG_SYSFS */ 7078