1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/psi.h> 61 #include <net/sock.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/cgroup.h> 65 66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 67 MAX_CFTYPE_NAME + 2) 68 /* let's not notify more than 100 times per second */ 69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 70 71 /* 72 * To avoid confusing the compiler (and generating warnings) with code 73 * that attempts to access what would be a 0-element array (i.e. sized 74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 75 * constant expression can be added. 76 */ 77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 78 79 /* 80 * cgroup_mutex is the master lock. Any modification to cgroup or its 81 * hierarchy must be performed while holding it. 82 * 83 * css_set_lock protects task->cgroups pointer, the list of css_set 84 * objects, and the chain of tasks off each css_set. 85 * 86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 87 * cgroup.h can use them for lockdep annotations. 88 */ 89 DEFINE_MUTEX(cgroup_mutex); 90 DEFINE_SPINLOCK(css_set_lock); 91 92 #ifdef CONFIG_PROVE_RCU 93 EXPORT_SYMBOL_GPL(cgroup_mutex); 94 EXPORT_SYMBOL_GPL(css_set_lock); 95 #endif 96 97 DEFINE_SPINLOCK(trace_cgroup_path_lock); 98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 99 static bool cgroup_debug __read_mostly; 100 101 /* 102 * Protects cgroup_idr and css_idr so that IDs can be released without 103 * grabbing cgroup_mutex. 104 */ 105 static DEFINE_SPINLOCK(cgroup_idr_lock); 106 107 /* 108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 109 * against file removal/re-creation across css hiding. 110 */ 111 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 112 113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 114 115 #define cgroup_assert_mutex_or_rcu_locked() \ 116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 117 !lockdep_is_held(&cgroup_mutex), \ 118 "cgroup_mutex or RCU read lock required"); 119 120 /* 121 * cgroup destruction makes heavy use of work items and there can be a lot 122 * of concurrent destructions. Use a separate workqueue so that cgroup 123 * destruction work items don't end up filling up max_active of system_wq 124 * which may lead to deadlock. 125 */ 126 static struct workqueue_struct *cgroup_destroy_wq; 127 128 /* generate an array of cgroup subsystem pointers */ 129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130 struct cgroup_subsys *cgroup_subsys[] = { 131 #include <linux/cgroup_subsys.h> 132 }; 133 #undef SUBSYS 134 135 /* array of cgroup subsystem names */ 136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137 static const char *cgroup_subsys_name[] = { 138 #include <linux/cgroup_subsys.h> 139 }; 140 #undef SUBSYS 141 142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 143 #define SUBSYS(_x) \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 148 #include <linux/cgroup_subsys.h> 149 #undef SUBSYS 150 151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 152 static struct static_key_true *cgroup_subsys_enabled_key[] = { 153 #include <linux/cgroup_subsys.h> 154 }; 155 #undef SUBSYS 156 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 164 165 /* the default hierarchy */ 166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 167 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 168 169 /* 170 * The default hierarchy always exists but is hidden until mounted for the 171 * first time. This is for backward compatibility. 172 */ 173 static bool cgrp_dfl_visible; 174 175 /* some controllers are not supported in the default hierarchy */ 176 static u16 cgrp_dfl_inhibit_ss_mask; 177 178 /* some controllers are implicitly enabled on the default hierarchy */ 179 static u16 cgrp_dfl_implicit_ss_mask; 180 181 /* some controllers can be threaded on the default hierarchy */ 182 static u16 cgrp_dfl_threaded_ss_mask; 183 184 /* The list of hierarchy roots */ 185 LIST_HEAD(cgroup_roots); 186 static int cgroup_root_count; 187 188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 189 static DEFINE_IDR(cgroup_hierarchy_idr); 190 191 /* 192 * Assign a monotonically increasing serial number to csses. It guarantees 193 * cgroups with bigger numbers are newer than those with smaller numbers. 194 * Also, as csses are always appended to the parent's ->children list, it 195 * guarantees that sibling csses are always sorted in the ascending serial 196 * number order on the list. Protected by cgroup_mutex. 197 */ 198 static u64 css_serial_nr_next = 1; 199 200 /* 201 * These bitmasks identify subsystems with specific features to avoid 202 * having to do iterative checks repeatedly. 203 */ 204 static u16 have_fork_callback __read_mostly; 205 static u16 have_exit_callback __read_mostly; 206 static u16 have_release_callback __read_mostly; 207 static u16 have_canfork_callback __read_mostly; 208 209 /* cgroup namespace for init task */ 210 struct cgroup_namespace init_cgroup_ns = { 211 .ns.count = REFCOUNT_INIT(2), 212 .user_ns = &init_user_ns, 213 .ns.ops = &cgroupns_operations, 214 .ns.inum = PROC_CGROUP_INIT_INO, 215 .root_cset = &init_css_set, 216 }; 217 218 static struct file_system_type cgroup2_fs_type; 219 static struct cftype cgroup_base_files[]; 220 static struct cftype cgroup_psi_files[]; 221 222 /* cgroup optional features */ 223 enum cgroup_opt_features { 224 #ifdef CONFIG_PSI 225 OPT_FEATURE_PRESSURE, 226 #endif 227 OPT_FEATURE_COUNT 228 }; 229 230 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 231 #ifdef CONFIG_PSI 232 "pressure", 233 #endif 234 }; 235 236 static u16 cgroup_feature_disable_mask __read_mostly; 237 238 static int cgroup_apply_control(struct cgroup *cgrp); 239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 240 static void css_task_iter_skip(struct css_task_iter *it, 241 struct task_struct *task); 242 static int cgroup_destroy_locked(struct cgroup *cgrp); 243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 244 struct cgroup_subsys *ss); 245 static void css_release(struct percpu_ref *ref); 246 static void kill_css(struct cgroup_subsys_state *css); 247 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 248 struct cgroup *cgrp, struct cftype cfts[], 249 bool is_add); 250 251 /** 252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 253 * @ssid: subsys ID of interest 254 * 255 * cgroup_subsys_enabled() can only be used with literal subsys names which 256 * is fine for individual subsystems but unsuitable for cgroup core. This 257 * is slower static_key_enabled() based test indexed by @ssid. 258 */ 259 bool cgroup_ssid_enabled(int ssid) 260 { 261 if (!CGROUP_HAS_SUBSYS_CONFIG) 262 return false; 263 264 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 265 } 266 267 /** 268 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 269 * @cgrp: the cgroup of interest 270 * 271 * The default hierarchy is the v2 interface of cgroup and this function 272 * can be used to test whether a cgroup is on the default hierarchy for 273 * cases where a subsystem should behave differently depending on the 274 * interface version. 275 * 276 * List of changed behaviors: 277 * 278 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 279 * and "name" are disallowed. 280 * 281 * - When mounting an existing superblock, mount options should match. 282 * 283 * - rename(2) is disallowed. 284 * 285 * - "tasks" is removed. Everything should be at process granularity. Use 286 * "cgroup.procs" instead. 287 * 288 * - "cgroup.procs" is not sorted. pids will be unique unless they got 289 * recycled in-between reads. 290 * 291 * - "release_agent" and "notify_on_release" are removed. Replacement 292 * notification mechanism will be implemented. 293 * 294 * - "cgroup.clone_children" is removed. 295 * 296 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 297 * and its descendants contain no task; otherwise, 1. The file also 298 * generates kernfs notification which can be monitored through poll and 299 * [di]notify when the value of the file changes. 300 * 301 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 302 * take masks of ancestors with non-empty cpus/mems, instead of being 303 * moved to an ancestor. 304 * 305 * - cpuset: a task can be moved into an empty cpuset, and again it takes 306 * masks of ancestors. 307 * 308 * - blkcg: blk-throttle becomes properly hierarchical. 309 * 310 * - debug: disallowed on the default hierarchy. 311 */ 312 bool cgroup_on_dfl(const struct cgroup *cgrp) 313 { 314 return cgrp->root == &cgrp_dfl_root; 315 } 316 317 /* IDR wrappers which synchronize using cgroup_idr_lock */ 318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 319 gfp_t gfp_mask) 320 { 321 int ret; 322 323 idr_preload(gfp_mask); 324 spin_lock_bh(&cgroup_idr_lock); 325 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 326 spin_unlock_bh(&cgroup_idr_lock); 327 idr_preload_end(); 328 return ret; 329 } 330 331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 332 { 333 void *ret; 334 335 spin_lock_bh(&cgroup_idr_lock); 336 ret = idr_replace(idr, ptr, id); 337 spin_unlock_bh(&cgroup_idr_lock); 338 return ret; 339 } 340 341 static void cgroup_idr_remove(struct idr *idr, int id) 342 { 343 spin_lock_bh(&cgroup_idr_lock); 344 idr_remove(idr, id); 345 spin_unlock_bh(&cgroup_idr_lock); 346 } 347 348 static bool cgroup_has_tasks(struct cgroup *cgrp) 349 { 350 return cgrp->nr_populated_csets; 351 } 352 353 bool cgroup_is_threaded(struct cgroup *cgrp) 354 { 355 return cgrp->dom_cgrp != cgrp; 356 } 357 358 /* can @cgrp host both domain and threaded children? */ 359 static bool cgroup_is_mixable(struct cgroup *cgrp) 360 { 361 /* 362 * Root isn't under domain level resource control exempting it from 363 * the no-internal-process constraint, so it can serve as a thread 364 * root and a parent of resource domains at the same time. 365 */ 366 return !cgroup_parent(cgrp); 367 } 368 369 /* can @cgrp become a thread root? Should always be true for a thread root */ 370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 371 { 372 /* mixables don't care */ 373 if (cgroup_is_mixable(cgrp)) 374 return true; 375 376 /* domain roots can't be nested under threaded */ 377 if (cgroup_is_threaded(cgrp)) 378 return false; 379 380 /* can only have either domain or threaded children */ 381 if (cgrp->nr_populated_domain_children) 382 return false; 383 384 /* and no domain controllers can be enabled */ 385 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 386 return false; 387 388 return true; 389 } 390 391 /* is @cgrp root of a threaded subtree? */ 392 bool cgroup_is_thread_root(struct cgroup *cgrp) 393 { 394 /* thread root should be a domain */ 395 if (cgroup_is_threaded(cgrp)) 396 return false; 397 398 /* a domain w/ threaded children is a thread root */ 399 if (cgrp->nr_threaded_children) 400 return true; 401 402 /* 403 * A domain which has tasks and explicit threaded controllers 404 * enabled is a thread root. 405 */ 406 if (cgroup_has_tasks(cgrp) && 407 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 408 return true; 409 410 return false; 411 } 412 413 /* a domain which isn't connected to the root w/o brekage can't be used */ 414 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 415 { 416 /* the cgroup itself can be a thread root */ 417 if (cgroup_is_threaded(cgrp)) 418 return false; 419 420 /* but the ancestors can't be unless mixable */ 421 while ((cgrp = cgroup_parent(cgrp))) { 422 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 423 return false; 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 } 427 428 return true; 429 } 430 431 /* subsystems visibly enabled on a cgroup */ 432 static u16 cgroup_control(struct cgroup *cgrp) 433 { 434 struct cgroup *parent = cgroup_parent(cgrp); 435 u16 root_ss_mask = cgrp->root->subsys_mask; 436 437 if (parent) { 438 u16 ss_mask = parent->subtree_control; 439 440 /* threaded cgroups can only have threaded controllers */ 441 if (cgroup_is_threaded(cgrp)) 442 ss_mask &= cgrp_dfl_threaded_ss_mask; 443 return ss_mask; 444 } 445 446 if (cgroup_on_dfl(cgrp)) 447 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 448 cgrp_dfl_implicit_ss_mask); 449 return root_ss_mask; 450 } 451 452 /* subsystems enabled on a cgroup */ 453 static u16 cgroup_ss_mask(struct cgroup *cgrp) 454 { 455 struct cgroup *parent = cgroup_parent(cgrp); 456 457 if (parent) { 458 u16 ss_mask = parent->subtree_ss_mask; 459 460 /* threaded cgroups can only have threaded controllers */ 461 if (cgroup_is_threaded(cgrp)) 462 ss_mask &= cgrp_dfl_threaded_ss_mask; 463 return ss_mask; 464 } 465 466 return cgrp->root->subsys_mask; 467 } 468 469 /** 470 * cgroup_css - obtain a cgroup's css for the specified subsystem 471 * @cgrp: the cgroup of interest 472 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 473 * 474 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 475 * function must be called either under cgroup_mutex or rcu_read_lock() and 476 * the caller is responsible for pinning the returned css if it wants to 477 * keep accessing it outside the said locks. This function may return 478 * %NULL if @cgrp doesn't have @subsys_id enabled. 479 */ 480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 481 struct cgroup_subsys *ss) 482 { 483 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 484 return rcu_dereference_check(cgrp->subsys[ss->id], 485 lockdep_is_held(&cgroup_mutex)); 486 else 487 return &cgrp->self; 488 } 489 490 /** 491 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 492 * @cgrp: the cgroup of interest 493 * @ss: the subsystem of interest 494 * 495 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 496 * or is offline, %NULL is returned. 497 */ 498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 499 struct cgroup_subsys *ss) 500 { 501 struct cgroup_subsys_state *css; 502 503 rcu_read_lock(); 504 css = cgroup_css(cgrp, ss); 505 if (css && !css_tryget_online(css)) 506 css = NULL; 507 rcu_read_unlock(); 508 509 return css; 510 } 511 512 /** 513 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 514 * @cgrp: the cgroup of interest 515 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 516 * 517 * Similar to cgroup_css() but returns the effective css, which is defined 518 * as the matching css of the nearest ancestor including self which has @ss 519 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 520 * function is guaranteed to return non-NULL css. 521 */ 522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 523 struct cgroup_subsys *ss) 524 { 525 lockdep_assert_held(&cgroup_mutex); 526 527 if (!ss) 528 return &cgrp->self; 529 530 /* 531 * This function is used while updating css associations and thus 532 * can't test the csses directly. Test ss_mask. 533 */ 534 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 535 cgrp = cgroup_parent(cgrp); 536 if (!cgrp) 537 return NULL; 538 } 539 540 return cgroup_css(cgrp, ss); 541 } 542 543 /** 544 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 545 * @cgrp: the cgroup of interest 546 * @ss: the subsystem of interest 547 * 548 * Find and get the effective css of @cgrp for @ss. The effective css is 549 * defined as the matching css of the nearest ancestor including self which 550 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 551 * the root css is returned, so this function always returns a valid css. 552 * 553 * The returned css is not guaranteed to be online, and therefore it is the 554 * callers responsibility to try get a reference for it. 555 */ 556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 557 struct cgroup_subsys *ss) 558 { 559 struct cgroup_subsys_state *css; 560 561 if (!CGROUP_HAS_SUBSYS_CONFIG) 562 return NULL; 563 564 do { 565 css = cgroup_css(cgrp, ss); 566 567 if (css) 568 return css; 569 cgrp = cgroup_parent(cgrp); 570 } while (cgrp); 571 572 return init_css_set.subsys[ss->id]; 573 } 574 575 /** 576 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 577 * @cgrp: the cgroup of interest 578 * @ss: the subsystem of interest 579 * 580 * Find and get the effective css of @cgrp for @ss. The effective css is 581 * defined as the matching css of the nearest ancestor including self which 582 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 583 * the root css is returned, so this function always returns a valid css. 584 * The returned css must be put using css_put(). 585 */ 586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 587 struct cgroup_subsys *ss) 588 { 589 struct cgroup_subsys_state *css; 590 591 if (!CGROUP_HAS_SUBSYS_CONFIG) 592 return NULL; 593 594 rcu_read_lock(); 595 596 do { 597 css = cgroup_css(cgrp, ss); 598 599 if (css && css_tryget_online(css)) 600 goto out_unlock; 601 cgrp = cgroup_parent(cgrp); 602 } while (cgrp); 603 604 css = init_css_set.subsys[ss->id]; 605 css_get(css); 606 out_unlock: 607 rcu_read_unlock(); 608 return css; 609 } 610 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 611 612 static void cgroup_get_live(struct cgroup *cgrp) 613 { 614 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 615 css_get(&cgrp->self); 616 } 617 618 /** 619 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 620 * is responsible for taking the css_set_lock. 621 * @cgrp: the cgroup in question 622 */ 623 int __cgroup_task_count(const struct cgroup *cgrp) 624 { 625 int count = 0; 626 struct cgrp_cset_link *link; 627 628 lockdep_assert_held(&css_set_lock); 629 630 list_for_each_entry(link, &cgrp->cset_links, cset_link) 631 count += link->cset->nr_tasks; 632 633 return count; 634 } 635 636 /** 637 * cgroup_task_count - count the number of tasks in a cgroup. 638 * @cgrp: the cgroup in question 639 */ 640 int cgroup_task_count(const struct cgroup *cgrp) 641 { 642 int count; 643 644 spin_lock_irq(&css_set_lock); 645 count = __cgroup_task_count(cgrp); 646 spin_unlock_irq(&css_set_lock); 647 648 return count; 649 } 650 651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 652 { 653 struct cgroup *cgrp = of->kn->parent->priv; 654 struct cftype *cft = of_cft(of); 655 656 /* 657 * This is open and unprotected implementation of cgroup_css(). 658 * seq_css() is only called from a kernfs file operation which has 659 * an active reference on the file. Because all the subsystem 660 * files are drained before a css is disassociated with a cgroup, 661 * the matching css from the cgroup's subsys table is guaranteed to 662 * be and stay valid until the enclosing operation is complete. 663 */ 664 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 665 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 666 else 667 return &cgrp->self; 668 } 669 EXPORT_SYMBOL_GPL(of_css); 670 671 /** 672 * for_each_css - iterate all css's of a cgroup 673 * @css: the iteration cursor 674 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 675 * @cgrp: the target cgroup to iterate css's of 676 * 677 * Should be called under cgroup_[tree_]mutex. 678 */ 679 #define for_each_css(css, ssid, cgrp) \ 680 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 681 if (!((css) = rcu_dereference_check( \ 682 (cgrp)->subsys[(ssid)], \ 683 lockdep_is_held(&cgroup_mutex)))) { } \ 684 else 685 686 /** 687 * for_each_e_css - iterate all effective css's of a cgroup 688 * @css: the iteration cursor 689 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 690 * @cgrp: the target cgroup to iterate css's of 691 * 692 * Should be called under cgroup_[tree_]mutex. 693 */ 694 #define for_each_e_css(css, ssid, cgrp) \ 695 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 696 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 697 cgroup_subsys[(ssid)]))) \ 698 ; \ 699 else 700 701 /** 702 * do_each_subsys_mask - filter for_each_subsys with a bitmask 703 * @ss: the iteration cursor 704 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 705 * @ss_mask: the bitmask 706 * 707 * The block will only run for cases where the ssid-th bit (1 << ssid) of 708 * @ss_mask is set. 709 */ 710 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 711 unsigned long __ss_mask = (ss_mask); \ 712 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 713 (ssid) = 0; \ 714 break; \ 715 } \ 716 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 717 (ss) = cgroup_subsys[ssid]; \ 718 { 719 720 #define while_each_subsys_mask() \ 721 } \ 722 } \ 723 } while (false) 724 725 /* iterate over child cgrps, lock should be held throughout iteration */ 726 #define cgroup_for_each_live_child(child, cgrp) \ 727 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 728 if (({ lockdep_assert_held(&cgroup_mutex); \ 729 cgroup_is_dead(child); })) \ 730 ; \ 731 else 732 733 /* walk live descendants in pre order */ 734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 735 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 736 if (({ lockdep_assert_held(&cgroup_mutex); \ 737 (dsct) = (d_css)->cgroup; \ 738 cgroup_is_dead(dsct); })) \ 739 ; \ 740 else 741 742 /* walk live descendants in postorder */ 743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 744 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 745 if (({ lockdep_assert_held(&cgroup_mutex); \ 746 (dsct) = (d_css)->cgroup; \ 747 cgroup_is_dead(dsct); })) \ 748 ; \ 749 else 750 751 /* 752 * The default css_set - used by init and its children prior to any 753 * hierarchies being mounted. It contains a pointer to the root state 754 * for each subsystem. Also used to anchor the list of css_sets. Not 755 * reference-counted, to improve performance when child cgroups 756 * haven't been created. 757 */ 758 struct css_set init_css_set = { 759 .refcount = REFCOUNT_INIT(1), 760 .dom_cset = &init_css_set, 761 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 762 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 763 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 764 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 765 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 766 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 767 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 768 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 769 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 770 771 /* 772 * The following field is re-initialized when this cset gets linked 773 * in cgroup_init(). However, let's initialize the field 774 * statically too so that the default cgroup can be accessed safely 775 * early during boot. 776 */ 777 .dfl_cgrp = &cgrp_dfl_root.cgrp, 778 }; 779 780 static int css_set_count = 1; /* 1 for init_css_set */ 781 782 static bool css_set_threaded(struct css_set *cset) 783 { 784 return cset->dom_cset != cset; 785 } 786 787 /** 788 * css_set_populated - does a css_set contain any tasks? 789 * @cset: target css_set 790 * 791 * css_set_populated() should be the same as !!cset->nr_tasks at steady 792 * state. However, css_set_populated() can be called while a task is being 793 * added to or removed from the linked list before the nr_tasks is 794 * properly updated. Hence, we can't just look at ->nr_tasks here. 795 */ 796 static bool css_set_populated(struct css_set *cset) 797 { 798 lockdep_assert_held(&css_set_lock); 799 800 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 801 } 802 803 /** 804 * cgroup_update_populated - update the populated count of a cgroup 805 * @cgrp: the target cgroup 806 * @populated: inc or dec populated count 807 * 808 * One of the css_sets associated with @cgrp is either getting its first 809 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 810 * count is propagated towards root so that a given cgroup's 811 * nr_populated_children is zero iff none of its descendants contain any 812 * tasks. 813 * 814 * @cgrp's interface file "cgroup.populated" is zero if both 815 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 816 * 1 otherwise. When the sum changes from or to zero, userland is notified 817 * that the content of the interface file has changed. This can be used to 818 * detect when @cgrp and its descendants become populated or empty. 819 */ 820 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 821 { 822 struct cgroup *child = NULL; 823 int adj = populated ? 1 : -1; 824 825 lockdep_assert_held(&css_set_lock); 826 827 do { 828 bool was_populated = cgroup_is_populated(cgrp); 829 830 if (!child) { 831 cgrp->nr_populated_csets += adj; 832 } else { 833 if (cgroup_is_threaded(child)) 834 cgrp->nr_populated_threaded_children += adj; 835 else 836 cgrp->nr_populated_domain_children += adj; 837 } 838 839 if (was_populated == cgroup_is_populated(cgrp)) 840 break; 841 842 cgroup1_check_for_release(cgrp); 843 TRACE_CGROUP_PATH(notify_populated, cgrp, 844 cgroup_is_populated(cgrp)); 845 cgroup_file_notify(&cgrp->events_file); 846 847 child = cgrp; 848 cgrp = cgroup_parent(cgrp); 849 } while (cgrp); 850 } 851 852 /** 853 * css_set_update_populated - update populated state of a css_set 854 * @cset: target css_set 855 * @populated: whether @cset is populated or depopulated 856 * 857 * @cset is either getting the first task or losing the last. Update the 858 * populated counters of all associated cgroups accordingly. 859 */ 860 static void css_set_update_populated(struct css_set *cset, bool populated) 861 { 862 struct cgrp_cset_link *link; 863 864 lockdep_assert_held(&css_set_lock); 865 866 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 867 cgroup_update_populated(link->cgrp, populated); 868 } 869 870 /* 871 * @task is leaving, advance task iterators which are pointing to it so 872 * that they can resume at the next position. Advancing an iterator might 873 * remove it from the list, use safe walk. See css_task_iter_skip() for 874 * details. 875 */ 876 static void css_set_skip_task_iters(struct css_set *cset, 877 struct task_struct *task) 878 { 879 struct css_task_iter *it, *pos; 880 881 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 882 css_task_iter_skip(it, task); 883 } 884 885 /** 886 * css_set_move_task - move a task from one css_set to another 887 * @task: task being moved 888 * @from_cset: css_set @task currently belongs to (may be NULL) 889 * @to_cset: new css_set @task is being moved to (may be NULL) 890 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 891 * 892 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 893 * css_set, @from_cset can be NULL. If @task is being disassociated 894 * instead of moved, @to_cset can be NULL. 895 * 896 * This function automatically handles populated counter updates and 897 * css_task_iter adjustments but the caller is responsible for managing 898 * @from_cset and @to_cset's reference counts. 899 */ 900 static void css_set_move_task(struct task_struct *task, 901 struct css_set *from_cset, struct css_set *to_cset, 902 bool use_mg_tasks) 903 { 904 lockdep_assert_held(&css_set_lock); 905 906 if (to_cset && !css_set_populated(to_cset)) 907 css_set_update_populated(to_cset, true); 908 909 if (from_cset) { 910 WARN_ON_ONCE(list_empty(&task->cg_list)); 911 912 css_set_skip_task_iters(from_cset, task); 913 list_del_init(&task->cg_list); 914 if (!css_set_populated(from_cset)) 915 css_set_update_populated(from_cset, false); 916 } else { 917 WARN_ON_ONCE(!list_empty(&task->cg_list)); 918 } 919 920 if (to_cset) { 921 /* 922 * We are synchronized through cgroup_threadgroup_rwsem 923 * against PF_EXITING setting such that we can't race 924 * against cgroup_exit()/cgroup_free() dropping the css_set. 925 */ 926 WARN_ON_ONCE(task->flags & PF_EXITING); 927 928 cgroup_move_task(task, to_cset); 929 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 930 &to_cset->tasks); 931 } 932 } 933 934 /* 935 * hash table for cgroup groups. This improves the performance to find 936 * an existing css_set. This hash doesn't (currently) take into 937 * account cgroups in empty hierarchies. 938 */ 939 #define CSS_SET_HASH_BITS 7 940 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 941 942 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 943 { 944 unsigned long key = 0UL; 945 struct cgroup_subsys *ss; 946 int i; 947 948 for_each_subsys(ss, i) 949 key += (unsigned long)css[i]; 950 key = (key >> 16) ^ key; 951 952 return key; 953 } 954 955 void put_css_set_locked(struct css_set *cset) 956 { 957 struct cgrp_cset_link *link, *tmp_link; 958 struct cgroup_subsys *ss; 959 int ssid; 960 961 lockdep_assert_held(&css_set_lock); 962 963 if (!refcount_dec_and_test(&cset->refcount)) 964 return; 965 966 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 967 968 /* This css_set is dead. Unlink it and release cgroup and css refs */ 969 for_each_subsys(ss, ssid) { 970 list_del(&cset->e_cset_node[ssid]); 971 css_put(cset->subsys[ssid]); 972 } 973 hash_del(&cset->hlist); 974 css_set_count--; 975 976 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 977 list_del(&link->cset_link); 978 list_del(&link->cgrp_link); 979 if (cgroup_parent(link->cgrp)) 980 cgroup_put(link->cgrp); 981 kfree(link); 982 } 983 984 if (css_set_threaded(cset)) { 985 list_del(&cset->threaded_csets_node); 986 put_css_set_locked(cset->dom_cset); 987 } 988 989 kfree_rcu(cset, rcu_head); 990 } 991 992 /** 993 * compare_css_sets - helper function for find_existing_css_set(). 994 * @cset: candidate css_set being tested 995 * @old_cset: existing css_set for a task 996 * @new_cgrp: cgroup that's being entered by the task 997 * @template: desired set of css pointers in css_set (pre-calculated) 998 * 999 * Returns true if "cset" matches "old_cset" except for the hierarchy 1000 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1001 */ 1002 static bool compare_css_sets(struct css_set *cset, 1003 struct css_set *old_cset, 1004 struct cgroup *new_cgrp, 1005 struct cgroup_subsys_state *template[]) 1006 { 1007 struct cgroup *new_dfl_cgrp; 1008 struct list_head *l1, *l2; 1009 1010 /* 1011 * On the default hierarchy, there can be csets which are 1012 * associated with the same set of cgroups but different csses. 1013 * Let's first ensure that csses match. 1014 */ 1015 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1016 return false; 1017 1018 1019 /* @cset's domain should match the default cgroup's */ 1020 if (cgroup_on_dfl(new_cgrp)) 1021 new_dfl_cgrp = new_cgrp; 1022 else 1023 new_dfl_cgrp = old_cset->dfl_cgrp; 1024 1025 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1026 return false; 1027 1028 /* 1029 * Compare cgroup pointers in order to distinguish between 1030 * different cgroups in hierarchies. As different cgroups may 1031 * share the same effective css, this comparison is always 1032 * necessary. 1033 */ 1034 l1 = &cset->cgrp_links; 1035 l2 = &old_cset->cgrp_links; 1036 while (1) { 1037 struct cgrp_cset_link *link1, *link2; 1038 struct cgroup *cgrp1, *cgrp2; 1039 1040 l1 = l1->next; 1041 l2 = l2->next; 1042 /* See if we reached the end - both lists are equal length. */ 1043 if (l1 == &cset->cgrp_links) { 1044 BUG_ON(l2 != &old_cset->cgrp_links); 1045 break; 1046 } else { 1047 BUG_ON(l2 == &old_cset->cgrp_links); 1048 } 1049 /* Locate the cgroups associated with these links. */ 1050 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1051 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1052 cgrp1 = link1->cgrp; 1053 cgrp2 = link2->cgrp; 1054 /* Hierarchies should be linked in the same order. */ 1055 BUG_ON(cgrp1->root != cgrp2->root); 1056 1057 /* 1058 * If this hierarchy is the hierarchy of the cgroup 1059 * that's changing, then we need to check that this 1060 * css_set points to the new cgroup; if it's any other 1061 * hierarchy, then this css_set should point to the 1062 * same cgroup as the old css_set. 1063 */ 1064 if (cgrp1->root == new_cgrp->root) { 1065 if (cgrp1 != new_cgrp) 1066 return false; 1067 } else { 1068 if (cgrp1 != cgrp2) 1069 return false; 1070 } 1071 } 1072 return true; 1073 } 1074 1075 /** 1076 * find_existing_css_set - init css array and find the matching css_set 1077 * @old_cset: the css_set that we're using before the cgroup transition 1078 * @cgrp: the cgroup that we're moving into 1079 * @template: out param for the new set of csses, should be clear on entry 1080 */ 1081 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1082 struct cgroup *cgrp, 1083 struct cgroup_subsys_state *template[]) 1084 { 1085 struct cgroup_root *root = cgrp->root; 1086 struct cgroup_subsys *ss; 1087 struct css_set *cset; 1088 unsigned long key; 1089 int i; 1090 1091 /* 1092 * Build the set of subsystem state objects that we want to see in the 1093 * new css_set. While subsystems can change globally, the entries here 1094 * won't change, so no need for locking. 1095 */ 1096 for_each_subsys(ss, i) { 1097 if (root->subsys_mask & (1UL << i)) { 1098 /* 1099 * @ss is in this hierarchy, so we want the 1100 * effective css from @cgrp. 1101 */ 1102 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1103 } else { 1104 /* 1105 * @ss is not in this hierarchy, so we don't want 1106 * to change the css. 1107 */ 1108 template[i] = old_cset->subsys[i]; 1109 } 1110 } 1111 1112 key = css_set_hash(template); 1113 hash_for_each_possible(css_set_table, cset, hlist, key) { 1114 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1115 continue; 1116 1117 /* This css_set matches what we need */ 1118 return cset; 1119 } 1120 1121 /* No existing cgroup group matched */ 1122 return NULL; 1123 } 1124 1125 static void free_cgrp_cset_links(struct list_head *links_to_free) 1126 { 1127 struct cgrp_cset_link *link, *tmp_link; 1128 1129 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1130 list_del(&link->cset_link); 1131 kfree(link); 1132 } 1133 } 1134 1135 /** 1136 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1137 * @count: the number of links to allocate 1138 * @tmp_links: list_head the allocated links are put on 1139 * 1140 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1141 * through ->cset_link. Returns 0 on success or -errno. 1142 */ 1143 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1144 { 1145 struct cgrp_cset_link *link; 1146 int i; 1147 1148 INIT_LIST_HEAD(tmp_links); 1149 1150 for (i = 0; i < count; i++) { 1151 link = kzalloc(sizeof(*link), GFP_KERNEL); 1152 if (!link) { 1153 free_cgrp_cset_links(tmp_links); 1154 return -ENOMEM; 1155 } 1156 list_add(&link->cset_link, tmp_links); 1157 } 1158 return 0; 1159 } 1160 1161 /** 1162 * link_css_set - a helper function to link a css_set to a cgroup 1163 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1164 * @cset: the css_set to be linked 1165 * @cgrp: the destination cgroup 1166 */ 1167 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1168 struct cgroup *cgrp) 1169 { 1170 struct cgrp_cset_link *link; 1171 1172 BUG_ON(list_empty(tmp_links)); 1173 1174 if (cgroup_on_dfl(cgrp)) 1175 cset->dfl_cgrp = cgrp; 1176 1177 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1178 link->cset = cset; 1179 link->cgrp = cgrp; 1180 1181 /* 1182 * Always add links to the tail of the lists so that the lists are 1183 * in chronological order. 1184 */ 1185 list_move_tail(&link->cset_link, &cgrp->cset_links); 1186 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1187 1188 if (cgroup_parent(cgrp)) 1189 cgroup_get_live(cgrp); 1190 } 1191 1192 /** 1193 * find_css_set - return a new css_set with one cgroup updated 1194 * @old_cset: the baseline css_set 1195 * @cgrp: the cgroup to be updated 1196 * 1197 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1198 * substituted into the appropriate hierarchy. 1199 */ 1200 static struct css_set *find_css_set(struct css_set *old_cset, 1201 struct cgroup *cgrp) 1202 { 1203 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1204 struct css_set *cset; 1205 struct list_head tmp_links; 1206 struct cgrp_cset_link *link; 1207 struct cgroup_subsys *ss; 1208 unsigned long key; 1209 int ssid; 1210 1211 lockdep_assert_held(&cgroup_mutex); 1212 1213 /* First see if we already have a cgroup group that matches 1214 * the desired set */ 1215 spin_lock_irq(&css_set_lock); 1216 cset = find_existing_css_set(old_cset, cgrp, template); 1217 if (cset) 1218 get_css_set(cset); 1219 spin_unlock_irq(&css_set_lock); 1220 1221 if (cset) 1222 return cset; 1223 1224 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1225 if (!cset) 1226 return NULL; 1227 1228 /* Allocate all the cgrp_cset_link objects that we'll need */ 1229 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1230 kfree(cset); 1231 return NULL; 1232 } 1233 1234 refcount_set(&cset->refcount, 1); 1235 cset->dom_cset = cset; 1236 INIT_LIST_HEAD(&cset->tasks); 1237 INIT_LIST_HEAD(&cset->mg_tasks); 1238 INIT_LIST_HEAD(&cset->dying_tasks); 1239 INIT_LIST_HEAD(&cset->task_iters); 1240 INIT_LIST_HEAD(&cset->threaded_csets); 1241 INIT_HLIST_NODE(&cset->hlist); 1242 INIT_LIST_HEAD(&cset->cgrp_links); 1243 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1244 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1245 INIT_LIST_HEAD(&cset->mg_node); 1246 1247 /* Copy the set of subsystem state objects generated in 1248 * find_existing_css_set() */ 1249 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1250 1251 spin_lock_irq(&css_set_lock); 1252 /* Add reference counts and links from the new css_set. */ 1253 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1254 struct cgroup *c = link->cgrp; 1255 1256 if (c->root == cgrp->root) 1257 c = cgrp; 1258 link_css_set(&tmp_links, cset, c); 1259 } 1260 1261 BUG_ON(!list_empty(&tmp_links)); 1262 1263 css_set_count++; 1264 1265 /* Add @cset to the hash table */ 1266 key = css_set_hash(cset->subsys); 1267 hash_add(css_set_table, &cset->hlist, key); 1268 1269 for_each_subsys(ss, ssid) { 1270 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1271 1272 list_add_tail(&cset->e_cset_node[ssid], 1273 &css->cgroup->e_csets[ssid]); 1274 css_get(css); 1275 } 1276 1277 spin_unlock_irq(&css_set_lock); 1278 1279 /* 1280 * If @cset should be threaded, look up the matching dom_cset and 1281 * link them up. We first fully initialize @cset then look for the 1282 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1283 * to stay empty until we return. 1284 */ 1285 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1286 struct css_set *dcset; 1287 1288 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1289 if (!dcset) { 1290 put_css_set(cset); 1291 return NULL; 1292 } 1293 1294 spin_lock_irq(&css_set_lock); 1295 cset->dom_cset = dcset; 1296 list_add_tail(&cset->threaded_csets_node, 1297 &dcset->threaded_csets); 1298 spin_unlock_irq(&css_set_lock); 1299 } 1300 1301 return cset; 1302 } 1303 1304 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1305 { 1306 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1307 1308 return root_cgrp->root; 1309 } 1310 1311 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1312 { 1313 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1314 1315 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1316 if (favor && !favoring) { 1317 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1318 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1319 } else if (!favor && favoring) { 1320 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1321 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1322 } 1323 } 1324 1325 static int cgroup_init_root_id(struct cgroup_root *root) 1326 { 1327 int id; 1328 1329 lockdep_assert_held(&cgroup_mutex); 1330 1331 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1332 if (id < 0) 1333 return id; 1334 1335 root->hierarchy_id = id; 1336 return 0; 1337 } 1338 1339 static void cgroup_exit_root_id(struct cgroup_root *root) 1340 { 1341 lockdep_assert_held(&cgroup_mutex); 1342 1343 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1344 } 1345 1346 void cgroup_free_root(struct cgroup_root *root) 1347 { 1348 kfree(root); 1349 } 1350 1351 static void cgroup_destroy_root(struct cgroup_root *root) 1352 { 1353 struct cgroup *cgrp = &root->cgrp; 1354 struct cgrp_cset_link *link, *tmp_link; 1355 1356 trace_cgroup_destroy_root(root); 1357 1358 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1359 1360 BUG_ON(atomic_read(&root->nr_cgrps)); 1361 BUG_ON(!list_empty(&cgrp->self.children)); 1362 1363 /* Rebind all subsystems back to the default hierarchy */ 1364 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1365 1366 /* 1367 * Release all the links from cset_links to this hierarchy's 1368 * root cgroup 1369 */ 1370 spin_lock_irq(&css_set_lock); 1371 1372 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1373 list_del(&link->cset_link); 1374 list_del(&link->cgrp_link); 1375 kfree(link); 1376 } 1377 1378 spin_unlock_irq(&css_set_lock); 1379 1380 if (!list_empty(&root->root_list)) { 1381 list_del(&root->root_list); 1382 cgroup_root_count--; 1383 } 1384 1385 cgroup_favor_dynmods(root, false); 1386 cgroup_exit_root_id(root); 1387 1388 mutex_unlock(&cgroup_mutex); 1389 1390 cgroup_rstat_exit(cgrp); 1391 kernfs_destroy_root(root->kf_root); 1392 cgroup_free_root(root); 1393 } 1394 1395 /* 1396 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1397 */ 1398 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1399 struct cgroup_root *root) 1400 { 1401 struct cgroup *res_cgroup = NULL; 1402 1403 if (cset == &init_css_set) { 1404 res_cgroup = &root->cgrp; 1405 } else if (root == &cgrp_dfl_root) { 1406 res_cgroup = cset->dfl_cgrp; 1407 } else { 1408 struct cgrp_cset_link *link; 1409 lockdep_assert_held(&css_set_lock); 1410 1411 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1412 struct cgroup *c = link->cgrp; 1413 1414 if (c->root == root) { 1415 res_cgroup = c; 1416 break; 1417 } 1418 } 1419 } 1420 1421 BUG_ON(!res_cgroup); 1422 return res_cgroup; 1423 } 1424 1425 /* 1426 * look up cgroup associated with current task's cgroup namespace on the 1427 * specified hierarchy 1428 */ 1429 static struct cgroup * 1430 current_cgns_cgroup_from_root(struct cgroup_root *root) 1431 { 1432 struct cgroup *res = NULL; 1433 struct css_set *cset; 1434 1435 lockdep_assert_held(&css_set_lock); 1436 1437 rcu_read_lock(); 1438 1439 cset = current->nsproxy->cgroup_ns->root_cset; 1440 res = __cset_cgroup_from_root(cset, root); 1441 1442 rcu_read_unlock(); 1443 1444 return res; 1445 } 1446 1447 /* 1448 * Look up cgroup associated with current task's cgroup namespace on the default 1449 * hierarchy. 1450 * 1451 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1452 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1453 * pointers. 1454 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1455 * - As a bonus returned cgrp is pinned with the current because it cannot 1456 * switch cgroup_ns asynchronously. 1457 */ 1458 static struct cgroup *current_cgns_cgroup_dfl(void) 1459 { 1460 struct css_set *cset; 1461 1462 cset = current->nsproxy->cgroup_ns->root_cset; 1463 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1464 } 1465 1466 /* look up cgroup associated with given css_set on the specified hierarchy */ 1467 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1468 struct cgroup_root *root) 1469 { 1470 lockdep_assert_held(&cgroup_mutex); 1471 lockdep_assert_held(&css_set_lock); 1472 1473 return __cset_cgroup_from_root(cset, root); 1474 } 1475 1476 /* 1477 * Return the cgroup for "task" from the given hierarchy. Must be 1478 * called with cgroup_mutex and css_set_lock held. 1479 */ 1480 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1481 struct cgroup_root *root) 1482 { 1483 /* 1484 * No need to lock the task - since we hold css_set_lock the 1485 * task can't change groups. 1486 */ 1487 return cset_cgroup_from_root(task_css_set(task), root); 1488 } 1489 1490 /* 1491 * A task must hold cgroup_mutex to modify cgroups. 1492 * 1493 * Any task can increment and decrement the count field without lock. 1494 * So in general, code holding cgroup_mutex can't rely on the count 1495 * field not changing. However, if the count goes to zero, then only 1496 * cgroup_attach_task() can increment it again. Because a count of zero 1497 * means that no tasks are currently attached, therefore there is no 1498 * way a task attached to that cgroup can fork (the other way to 1499 * increment the count). So code holding cgroup_mutex can safely 1500 * assume that if the count is zero, it will stay zero. Similarly, if 1501 * a task holds cgroup_mutex on a cgroup with zero count, it 1502 * knows that the cgroup won't be removed, as cgroup_rmdir() 1503 * needs that mutex. 1504 * 1505 * A cgroup can only be deleted if both its 'count' of using tasks 1506 * is zero, and its list of 'children' cgroups is empty. Since all 1507 * tasks in the system use _some_ cgroup, and since there is always at 1508 * least one task in the system (init, pid == 1), therefore, root cgroup 1509 * always has either children cgroups and/or using tasks. So we don't 1510 * need a special hack to ensure that root cgroup cannot be deleted. 1511 * 1512 * P.S. One more locking exception. RCU is used to guard the 1513 * update of a tasks cgroup pointer by cgroup_attach_task() 1514 */ 1515 1516 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1517 1518 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1519 char *buf) 1520 { 1521 struct cgroup_subsys *ss = cft->ss; 1522 1523 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1524 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1525 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1526 1527 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1528 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1529 cft->name); 1530 } else { 1531 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1532 } 1533 return buf; 1534 } 1535 1536 /** 1537 * cgroup_file_mode - deduce file mode of a control file 1538 * @cft: the control file in question 1539 * 1540 * S_IRUGO for read, S_IWUSR for write. 1541 */ 1542 static umode_t cgroup_file_mode(const struct cftype *cft) 1543 { 1544 umode_t mode = 0; 1545 1546 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1547 mode |= S_IRUGO; 1548 1549 if (cft->write_u64 || cft->write_s64 || cft->write) { 1550 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1551 mode |= S_IWUGO; 1552 else 1553 mode |= S_IWUSR; 1554 } 1555 1556 return mode; 1557 } 1558 1559 /** 1560 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1561 * @subtree_control: the new subtree_control mask to consider 1562 * @this_ss_mask: available subsystems 1563 * 1564 * On the default hierarchy, a subsystem may request other subsystems to be 1565 * enabled together through its ->depends_on mask. In such cases, more 1566 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1567 * 1568 * This function calculates which subsystems need to be enabled if 1569 * @subtree_control is to be applied while restricted to @this_ss_mask. 1570 */ 1571 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1572 { 1573 u16 cur_ss_mask = subtree_control; 1574 struct cgroup_subsys *ss; 1575 int ssid; 1576 1577 lockdep_assert_held(&cgroup_mutex); 1578 1579 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1580 1581 while (true) { 1582 u16 new_ss_mask = cur_ss_mask; 1583 1584 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1585 new_ss_mask |= ss->depends_on; 1586 } while_each_subsys_mask(); 1587 1588 /* 1589 * Mask out subsystems which aren't available. This can 1590 * happen only if some depended-upon subsystems were bound 1591 * to non-default hierarchies. 1592 */ 1593 new_ss_mask &= this_ss_mask; 1594 1595 if (new_ss_mask == cur_ss_mask) 1596 break; 1597 cur_ss_mask = new_ss_mask; 1598 } 1599 1600 return cur_ss_mask; 1601 } 1602 1603 /** 1604 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1605 * @kn: the kernfs_node being serviced 1606 * 1607 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1608 * the method finishes if locking succeeded. Note that once this function 1609 * returns the cgroup returned by cgroup_kn_lock_live() may become 1610 * inaccessible any time. If the caller intends to continue to access the 1611 * cgroup, it should pin it before invoking this function. 1612 */ 1613 void cgroup_kn_unlock(struct kernfs_node *kn) 1614 { 1615 struct cgroup *cgrp; 1616 1617 if (kernfs_type(kn) == KERNFS_DIR) 1618 cgrp = kn->priv; 1619 else 1620 cgrp = kn->parent->priv; 1621 1622 mutex_unlock(&cgroup_mutex); 1623 1624 kernfs_unbreak_active_protection(kn); 1625 cgroup_put(cgrp); 1626 } 1627 1628 /** 1629 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1630 * @kn: the kernfs_node being serviced 1631 * @drain_offline: perform offline draining on the cgroup 1632 * 1633 * This helper is to be used by a cgroup kernfs method currently servicing 1634 * @kn. It breaks the active protection, performs cgroup locking and 1635 * verifies that the associated cgroup is alive. Returns the cgroup if 1636 * alive; otherwise, %NULL. A successful return should be undone by a 1637 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1638 * cgroup is drained of offlining csses before return. 1639 * 1640 * Any cgroup kernfs method implementation which requires locking the 1641 * associated cgroup should use this helper. It avoids nesting cgroup 1642 * locking under kernfs active protection and allows all kernfs operations 1643 * including self-removal. 1644 */ 1645 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1646 { 1647 struct cgroup *cgrp; 1648 1649 if (kernfs_type(kn) == KERNFS_DIR) 1650 cgrp = kn->priv; 1651 else 1652 cgrp = kn->parent->priv; 1653 1654 /* 1655 * We're gonna grab cgroup_mutex which nests outside kernfs 1656 * active_ref. cgroup liveliness check alone provides enough 1657 * protection against removal. Ensure @cgrp stays accessible and 1658 * break the active_ref protection. 1659 */ 1660 if (!cgroup_tryget(cgrp)) 1661 return NULL; 1662 kernfs_break_active_protection(kn); 1663 1664 if (drain_offline) 1665 cgroup_lock_and_drain_offline(cgrp); 1666 else 1667 mutex_lock(&cgroup_mutex); 1668 1669 if (!cgroup_is_dead(cgrp)) 1670 return cgrp; 1671 1672 cgroup_kn_unlock(kn); 1673 return NULL; 1674 } 1675 1676 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1677 { 1678 char name[CGROUP_FILE_NAME_MAX]; 1679 1680 lockdep_assert_held(&cgroup_mutex); 1681 1682 if (cft->file_offset) { 1683 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1684 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1685 1686 spin_lock_irq(&cgroup_file_kn_lock); 1687 cfile->kn = NULL; 1688 spin_unlock_irq(&cgroup_file_kn_lock); 1689 1690 del_timer_sync(&cfile->notify_timer); 1691 } 1692 1693 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1694 } 1695 1696 /** 1697 * css_clear_dir - remove subsys files in a cgroup directory 1698 * @css: target css 1699 */ 1700 static void css_clear_dir(struct cgroup_subsys_state *css) 1701 { 1702 struct cgroup *cgrp = css->cgroup; 1703 struct cftype *cfts; 1704 1705 if (!(css->flags & CSS_VISIBLE)) 1706 return; 1707 1708 css->flags &= ~CSS_VISIBLE; 1709 1710 if (!css->ss) { 1711 if (cgroup_on_dfl(cgrp)) { 1712 cgroup_addrm_files(css, cgrp, 1713 cgroup_base_files, false); 1714 if (cgroup_psi_enabled()) 1715 cgroup_addrm_files(css, cgrp, 1716 cgroup_psi_files, false); 1717 } else { 1718 cgroup_addrm_files(css, cgrp, 1719 cgroup1_base_files, false); 1720 } 1721 } else { 1722 list_for_each_entry(cfts, &css->ss->cfts, node) 1723 cgroup_addrm_files(css, cgrp, cfts, false); 1724 } 1725 } 1726 1727 /** 1728 * css_populate_dir - create subsys files in a cgroup directory 1729 * @css: target css 1730 * 1731 * On failure, no file is added. 1732 */ 1733 static int css_populate_dir(struct cgroup_subsys_state *css) 1734 { 1735 struct cgroup *cgrp = css->cgroup; 1736 struct cftype *cfts, *failed_cfts; 1737 int ret; 1738 1739 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1740 return 0; 1741 1742 if (!css->ss) { 1743 if (cgroup_on_dfl(cgrp)) { 1744 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1745 cgroup_base_files, true); 1746 if (ret < 0) 1747 return ret; 1748 1749 if (cgroup_psi_enabled()) { 1750 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1751 cgroup_psi_files, true); 1752 if (ret < 0) 1753 return ret; 1754 } 1755 } else { 1756 cgroup_addrm_files(css, cgrp, 1757 cgroup1_base_files, true); 1758 } 1759 } else { 1760 list_for_each_entry(cfts, &css->ss->cfts, node) { 1761 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1762 if (ret < 0) { 1763 failed_cfts = cfts; 1764 goto err; 1765 } 1766 } 1767 } 1768 1769 css->flags |= CSS_VISIBLE; 1770 1771 return 0; 1772 err: 1773 list_for_each_entry(cfts, &css->ss->cfts, node) { 1774 if (cfts == failed_cfts) 1775 break; 1776 cgroup_addrm_files(css, cgrp, cfts, false); 1777 } 1778 return ret; 1779 } 1780 1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1782 { 1783 struct cgroup *dcgrp = &dst_root->cgrp; 1784 struct cgroup_subsys *ss; 1785 int ssid, i, ret; 1786 u16 dfl_disable_ss_mask = 0; 1787 1788 lockdep_assert_held(&cgroup_mutex); 1789 1790 do_each_subsys_mask(ss, ssid, ss_mask) { 1791 /* 1792 * If @ss has non-root csses attached to it, can't move. 1793 * If @ss is an implicit controller, it is exempt from this 1794 * rule and can be stolen. 1795 */ 1796 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1797 !ss->implicit_on_dfl) 1798 return -EBUSY; 1799 1800 /* can't move between two non-dummy roots either */ 1801 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1802 return -EBUSY; 1803 1804 /* 1805 * Collect ssid's that need to be disabled from default 1806 * hierarchy. 1807 */ 1808 if (ss->root == &cgrp_dfl_root) 1809 dfl_disable_ss_mask |= 1 << ssid; 1810 1811 } while_each_subsys_mask(); 1812 1813 if (dfl_disable_ss_mask) { 1814 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1815 1816 /* 1817 * Controllers from default hierarchy that need to be rebound 1818 * are all disabled together in one go. 1819 */ 1820 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1821 WARN_ON(cgroup_apply_control(scgrp)); 1822 cgroup_finalize_control(scgrp, 0); 1823 } 1824 1825 do_each_subsys_mask(ss, ssid, ss_mask) { 1826 struct cgroup_root *src_root = ss->root; 1827 struct cgroup *scgrp = &src_root->cgrp; 1828 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1829 struct css_set *cset; 1830 1831 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1832 1833 if (src_root != &cgrp_dfl_root) { 1834 /* disable from the source */ 1835 src_root->subsys_mask &= ~(1 << ssid); 1836 WARN_ON(cgroup_apply_control(scgrp)); 1837 cgroup_finalize_control(scgrp, 0); 1838 } 1839 1840 /* rebind */ 1841 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1842 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1843 ss->root = dst_root; 1844 css->cgroup = dcgrp; 1845 1846 spin_lock_irq(&css_set_lock); 1847 hash_for_each(css_set_table, i, cset, hlist) 1848 list_move_tail(&cset->e_cset_node[ss->id], 1849 &dcgrp->e_csets[ss->id]); 1850 spin_unlock_irq(&css_set_lock); 1851 1852 if (ss->css_rstat_flush) { 1853 list_del_rcu(&css->rstat_css_node); 1854 synchronize_rcu(); 1855 list_add_rcu(&css->rstat_css_node, 1856 &dcgrp->rstat_css_list); 1857 } 1858 1859 /* default hierarchy doesn't enable controllers by default */ 1860 dst_root->subsys_mask |= 1 << ssid; 1861 if (dst_root == &cgrp_dfl_root) { 1862 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1863 } else { 1864 dcgrp->subtree_control |= 1 << ssid; 1865 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1866 } 1867 1868 ret = cgroup_apply_control(dcgrp); 1869 if (ret) 1870 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1871 ss->name, ret); 1872 1873 if (ss->bind) 1874 ss->bind(css); 1875 } while_each_subsys_mask(); 1876 1877 kernfs_activate(dcgrp->kn); 1878 return 0; 1879 } 1880 1881 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1882 struct kernfs_root *kf_root) 1883 { 1884 int len = 0; 1885 char *buf = NULL; 1886 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1887 struct cgroup *ns_cgroup; 1888 1889 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1890 if (!buf) 1891 return -ENOMEM; 1892 1893 spin_lock_irq(&css_set_lock); 1894 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1895 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1896 spin_unlock_irq(&css_set_lock); 1897 1898 if (len >= PATH_MAX) 1899 len = -ERANGE; 1900 else if (len > 0) { 1901 seq_escape(sf, buf, " \t\n\\"); 1902 len = 0; 1903 } 1904 kfree(buf); 1905 return len; 1906 } 1907 1908 enum cgroup2_param { 1909 Opt_nsdelegate, 1910 Opt_favordynmods, 1911 Opt_memory_localevents, 1912 Opt_memory_recursiveprot, 1913 nr__cgroup2_params 1914 }; 1915 1916 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1917 fsparam_flag("nsdelegate", Opt_nsdelegate), 1918 fsparam_flag("favordynmods", Opt_favordynmods), 1919 fsparam_flag("memory_localevents", Opt_memory_localevents), 1920 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1921 {} 1922 }; 1923 1924 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1925 { 1926 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1927 struct fs_parse_result result; 1928 int opt; 1929 1930 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1931 if (opt < 0) 1932 return opt; 1933 1934 switch (opt) { 1935 case Opt_nsdelegate: 1936 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1937 return 0; 1938 case Opt_favordynmods: 1939 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1940 return 0; 1941 case Opt_memory_localevents: 1942 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1943 return 0; 1944 case Opt_memory_recursiveprot: 1945 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1946 return 0; 1947 } 1948 return -EINVAL; 1949 } 1950 1951 static void apply_cgroup_root_flags(unsigned int root_flags) 1952 { 1953 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1954 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1955 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1956 else 1957 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1958 1959 cgroup_favor_dynmods(&cgrp_dfl_root, 1960 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1961 1962 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1963 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1964 else 1965 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1966 1967 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1968 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1969 else 1970 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1971 } 1972 } 1973 1974 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1975 { 1976 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1977 seq_puts(seq, ",nsdelegate"); 1978 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1979 seq_puts(seq, ",favordynmods"); 1980 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1981 seq_puts(seq, ",memory_localevents"); 1982 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1983 seq_puts(seq, ",memory_recursiveprot"); 1984 return 0; 1985 } 1986 1987 static int cgroup_reconfigure(struct fs_context *fc) 1988 { 1989 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1990 1991 apply_cgroup_root_flags(ctx->flags); 1992 return 0; 1993 } 1994 1995 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1996 { 1997 struct cgroup_subsys *ss; 1998 int ssid; 1999 2000 INIT_LIST_HEAD(&cgrp->self.sibling); 2001 INIT_LIST_HEAD(&cgrp->self.children); 2002 INIT_LIST_HEAD(&cgrp->cset_links); 2003 INIT_LIST_HEAD(&cgrp->pidlists); 2004 mutex_init(&cgrp->pidlist_mutex); 2005 cgrp->self.cgroup = cgrp; 2006 cgrp->self.flags |= CSS_ONLINE; 2007 cgrp->dom_cgrp = cgrp; 2008 cgrp->max_descendants = INT_MAX; 2009 cgrp->max_depth = INT_MAX; 2010 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2011 prev_cputime_init(&cgrp->prev_cputime); 2012 2013 for_each_subsys(ss, ssid) 2014 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2015 2016 init_waitqueue_head(&cgrp->offline_waitq); 2017 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2018 } 2019 2020 void init_cgroup_root(struct cgroup_fs_context *ctx) 2021 { 2022 struct cgroup_root *root = ctx->root; 2023 struct cgroup *cgrp = &root->cgrp; 2024 2025 INIT_LIST_HEAD(&root->root_list); 2026 atomic_set(&root->nr_cgrps, 1); 2027 cgrp->root = root; 2028 init_cgroup_housekeeping(cgrp); 2029 2030 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2031 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2032 if (ctx->release_agent) 2033 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2034 if (ctx->name) 2035 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2036 if (ctx->cpuset_clone_children) 2037 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2038 } 2039 2040 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2041 { 2042 LIST_HEAD(tmp_links); 2043 struct cgroup *root_cgrp = &root->cgrp; 2044 struct kernfs_syscall_ops *kf_sops; 2045 struct css_set *cset; 2046 int i, ret; 2047 2048 lockdep_assert_held(&cgroup_mutex); 2049 2050 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2051 0, GFP_KERNEL); 2052 if (ret) 2053 goto out; 2054 2055 /* 2056 * We're accessing css_set_count without locking css_set_lock here, 2057 * but that's OK - it can only be increased by someone holding 2058 * cgroup_lock, and that's us. Later rebinding may disable 2059 * controllers on the default hierarchy and thus create new csets, 2060 * which can't be more than the existing ones. Allocate 2x. 2061 */ 2062 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2063 if (ret) 2064 goto cancel_ref; 2065 2066 ret = cgroup_init_root_id(root); 2067 if (ret) 2068 goto cancel_ref; 2069 2070 kf_sops = root == &cgrp_dfl_root ? 2071 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2072 2073 root->kf_root = kernfs_create_root(kf_sops, 2074 KERNFS_ROOT_CREATE_DEACTIVATED | 2075 KERNFS_ROOT_SUPPORT_EXPORTOP | 2076 KERNFS_ROOT_SUPPORT_USER_XATTR, 2077 root_cgrp); 2078 if (IS_ERR(root->kf_root)) { 2079 ret = PTR_ERR(root->kf_root); 2080 goto exit_root_id; 2081 } 2082 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2083 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2084 root_cgrp->ancestors[0] = root_cgrp; 2085 2086 ret = css_populate_dir(&root_cgrp->self); 2087 if (ret) 2088 goto destroy_root; 2089 2090 ret = cgroup_rstat_init(root_cgrp); 2091 if (ret) 2092 goto destroy_root; 2093 2094 ret = rebind_subsystems(root, ss_mask); 2095 if (ret) 2096 goto exit_stats; 2097 2098 ret = cgroup_bpf_inherit(root_cgrp); 2099 WARN_ON_ONCE(ret); 2100 2101 trace_cgroup_setup_root(root); 2102 2103 /* 2104 * There must be no failure case after here, since rebinding takes 2105 * care of subsystems' refcounts, which are explicitly dropped in 2106 * the failure exit path. 2107 */ 2108 list_add(&root->root_list, &cgroup_roots); 2109 cgroup_root_count++; 2110 2111 /* 2112 * Link the root cgroup in this hierarchy into all the css_set 2113 * objects. 2114 */ 2115 spin_lock_irq(&css_set_lock); 2116 hash_for_each(css_set_table, i, cset, hlist) { 2117 link_css_set(&tmp_links, cset, root_cgrp); 2118 if (css_set_populated(cset)) 2119 cgroup_update_populated(root_cgrp, true); 2120 } 2121 spin_unlock_irq(&css_set_lock); 2122 2123 BUG_ON(!list_empty(&root_cgrp->self.children)); 2124 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2125 2126 ret = 0; 2127 goto out; 2128 2129 exit_stats: 2130 cgroup_rstat_exit(root_cgrp); 2131 destroy_root: 2132 kernfs_destroy_root(root->kf_root); 2133 root->kf_root = NULL; 2134 exit_root_id: 2135 cgroup_exit_root_id(root); 2136 cancel_ref: 2137 percpu_ref_exit(&root_cgrp->self.refcnt); 2138 out: 2139 free_cgrp_cset_links(&tmp_links); 2140 return ret; 2141 } 2142 2143 int cgroup_do_get_tree(struct fs_context *fc) 2144 { 2145 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2146 int ret; 2147 2148 ctx->kfc.root = ctx->root->kf_root; 2149 if (fc->fs_type == &cgroup2_fs_type) 2150 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2151 else 2152 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2153 ret = kernfs_get_tree(fc); 2154 2155 /* 2156 * In non-init cgroup namespace, instead of root cgroup's dentry, 2157 * we return the dentry corresponding to the cgroupns->root_cgrp. 2158 */ 2159 if (!ret && ctx->ns != &init_cgroup_ns) { 2160 struct dentry *nsdentry; 2161 struct super_block *sb = fc->root->d_sb; 2162 struct cgroup *cgrp; 2163 2164 mutex_lock(&cgroup_mutex); 2165 spin_lock_irq(&css_set_lock); 2166 2167 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2168 2169 spin_unlock_irq(&css_set_lock); 2170 mutex_unlock(&cgroup_mutex); 2171 2172 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2173 dput(fc->root); 2174 if (IS_ERR(nsdentry)) { 2175 deactivate_locked_super(sb); 2176 ret = PTR_ERR(nsdentry); 2177 nsdentry = NULL; 2178 } 2179 fc->root = nsdentry; 2180 } 2181 2182 if (!ctx->kfc.new_sb_created) 2183 cgroup_put(&ctx->root->cgrp); 2184 2185 return ret; 2186 } 2187 2188 /* 2189 * Destroy a cgroup filesystem context. 2190 */ 2191 static void cgroup_fs_context_free(struct fs_context *fc) 2192 { 2193 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2194 2195 kfree(ctx->name); 2196 kfree(ctx->release_agent); 2197 put_cgroup_ns(ctx->ns); 2198 kernfs_free_fs_context(fc); 2199 kfree(ctx); 2200 } 2201 2202 static int cgroup_get_tree(struct fs_context *fc) 2203 { 2204 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2205 int ret; 2206 2207 WRITE_ONCE(cgrp_dfl_visible, true); 2208 cgroup_get_live(&cgrp_dfl_root.cgrp); 2209 ctx->root = &cgrp_dfl_root; 2210 2211 ret = cgroup_do_get_tree(fc); 2212 if (!ret) 2213 apply_cgroup_root_flags(ctx->flags); 2214 return ret; 2215 } 2216 2217 static const struct fs_context_operations cgroup_fs_context_ops = { 2218 .free = cgroup_fs_context_free, 2219 .parse_param = cgroup2_parse_param, 2220 .get_tree = cgroup_get_tree, 2221 .reconfigure = cgroup_reconfigure, 2222 }; 2223 2224 static const struct fs_context_operations cgroup1_fs_context_ops = { 2225 .free = cgroup_fs_context_free, 2226 .parse_param = cgroup1_parse_param, 2227 .get_tree = cgroup1_get_tree, 2228 .reconfigure = cgroup1_reconfigure, 2229 }; 2230 2231 /* 2232 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2233 * we select the namespace we're going to use. 2234 */ 2235 static int cgroup_init_fs_context(struct fs_context *fc) 2236 { 2237 struct cgroup_fs_context *ctx; 2238 2239 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2240 if (!ctx) 2241 return -ENOMEM; 2242 2243 ctx->ns = current->nsproxy->cgroup_ns; 2244 get_cgroup_ns(ctx->ns); 2245 fc->fs_private = &ctx->kfc; 2246 if (fc->fs_type == &cgroup2_fs_type) 2247 fc->ops = &cgroup_fs_context_ops; 2248 else 2249 fc->ops = &cgroup1_fs_context_ops; 2250 put_user_ns(fc->user_ns); 2251 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2252 fc->global = true; 2253 2254 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2255 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2256 #endif 2257 return 0; 2258 } 2259 2260 static void cgroup_kill_sb(struct super_block *sb) 2261 { 2262 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2263 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2264 2265 /* 2266 * If @root doesn't have any children, start killing it. 2267 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2268 * 2269 * And don't kill the default root. 2270 */ 2271 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2272 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2273 cgroup_bpf_offline(&root->cgrp); 2274 percpu_ref_kill(&root->cgrp.self.refcnt); 2275 } 2276 cgroup_put(&root->cgrp); 2277 kernfs_kill_sb(sb); 2278 } 2279 2280 struct file_system_type cgroup_fs_type = { 2281 .name = "cgroup", 2282 .init_fs_context = cgroup_init_fs_context, 2283 .parameters = cgroup1_fs_parameters, 2284 .kill_sb = cgroup_kill_sb, 2285 .fs_flags = FS_USERNS_MOUNT, 2286 }; 2287 2288 static struct file_system_type cgroup2_fs_type = { 2289 .name = "cgroup2", 2290 .init_fs_context = cgroup_init_fs_context, 2291 .parameters = cgroup2_fs_parameters, 2292 .kill_sb = cgroup_kill_sb, 2293 .fs_flags = FS_USERNS_MOUNT, 2294 }; 2295 2296 #ifdef CONFIG_CPUSETS 2297 static const struct fs_context_operations cpuset_fs_context_ops = { 2298 .get_tree = cgroup1_get_tree, 2299 .free = cgroup_fs_context_free, 2300 }; 2301 2302 /* 2303 * This is ugly, but preserves the userspace API for existing cpuset 2304 * users. If someone tries to mount the "cpuset" filesystem, we 2305 * silently switch it to mount "cgroup" instead 2306 */ 2307 static int cpuset_init_fs_context(struct fs_context *fc) 2308 { 2309 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2310 struct cgroup_fs_context *ctx; 2311 int err; 2312 2313 err = cgroup_init_fs_context(fc); 2314 if (err) { 2315 kfree(agent); 2316 return err; 2317 } 2318 2319 fc->ops = &cpuset_fs_context_ops; 2320 2321 ctx = cgroup_fc2context(fc); 2322 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2323 ctx->flags |= CGRP_ROOT_NOPREFIX; 2324 ctx->release_agent = agent; 2325 2326 get_filesystem(&cgroup_fs_type); 2327 put_filesystem(fc->fs_type); 2328 fc->fs_type = &cgroup_fs_type; 2329 2330 return 0; 2331 } 2332 2333 static struct file_system_type cpuset_fs_type = { 2334 .name = "cpuset", 2335 .init_fs_context = cpuset_init_fs_context, 2336 .fs_flags = FS_USERNS_MOUNT, 2337 }; 2338 #endif 2339 2340 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2341 struct cgroup_namespace *ns) 2342 { 2343 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2344 2345 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2346 } 2347 2348 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2349 struct cgroup_namespace *ns) 2350 { 2351 int ret; 2352 2353 mutex_lock(&cgroup_mutex); 2354 spin_lock_irq(&css_set_lock); 2355 2356 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2357 2358 spin_unlock_irq(&css_set_lock); 2359 mutex_unlock(&cgroup_mutex); 2360 2361 return ret; 2362 } 2363 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2364 2365 /** 2366 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2367 * @task: target task 2368 * @buf: the buffer to write the path into 2369 * @buflen: the length of the buffer 2370 * 2371 * Determine @task's cgroup on the first (the one with the lowest non-zero 2372 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2373 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2374 * cgroup controller callbacks. 2375 * 2376 * Return value is the same as kernfs_path(). 2377 */ 2378 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2379 { 2380 struct cgroup_root *root; 2381 struct cgroup *cgrp; 2382 int hierarchy_id = 1; 2383 int ret; 2384 2385 mutex_lock(&cgroup_mutex); 2386 spin_lock_irq(&css_set_lock); 2387 2388 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2389 2390 if (root) { 2391 cgrp = task_cgroup_from_root(task, root); 2392 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2393 } else { 2394 /* if no hierarchy exists, everyone is in "/" */ 2395 ret = strscpy(buf, "/", buflen); 2396 } 2397 2398 spin_unlock_irq(&css_set_lock); 2399 mutex_unlock(&cgroup_mutex); 2400 return ret; 2401 } 2402 EXPORT_SYMBOL_GPL(task_cgroup_path); 2403 2404 /** 2405 * cgroup_attach_lock - Lock for ->attach() 2406 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2407 * 2408 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2409 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2410 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2411 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2412 * lead to deadlocks. 2413 * 2414 * Bringing up a CPU may involve creating and destroying tasks which requires 2415 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2416 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2417 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2418 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2419 * the threadgroup_rwsem to be released to create new tasks. For more details: 2420 * 2421 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2422 * 2423 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2424 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2425 * CPU hotplug is disabled on entry. 2426 */ 2427 void cgroup_attach_lock(bool lock_threadgroup) 2428 { 2429 cpus_read_lock(); 2430 if (lock_threadgroup) 2431 percpu_down_write(&cgroup_threadgroup_rwsem); 2432 } 2433 2434 /** 2435 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2436 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2437 */ 2438 void cgroup_attach_unlock(bool lock_threadgroup) 2439 { 2440 if (lock_threadgroup) 2441 percpu_up_write(&cgroup_threadgroup_rwsem); 2442 cpus_read_unlock(); 2443 } 2444 2445 /** 2446 * cgroup_migrate_add_task - add a migration target task to a migration context 2447 * @task: target task 2448 * @mgctx: target migration context 2449 * 2450 * Add @task, which is a migration target, to @mgctx->tset. This function 2451 * becomes noop if @task doesn't need to be migrated. @task's css_set 2452 * should have been added as a migration source and @task->cg_list will be 2453 * moved from the css_set's tasks list to mg_tasks one. 2454 */ 2455 static void cgroup_migrate_add_task(struct task_struct *task, 2456 struct cgroup_mgctx *mgctx) 2457 { 2458 struct css_set *cset; 2459 2460 lockdep_assert_held(&css_set_lock); 2461 2462 /* @task either already exited or can't exit until the end */ 2463 if (task->flags & PF_EXITING) 2464 return; 2465 2466 /* cgroup_threadgroup_rwsem protects racing against forks */ 2467 WARN_ON_ONCE(list_empty(&task->cg_list)); 2468 2469 cset = task_css_set(task); 2470 if (!cset->mg_src_cgrp) 2471 return; 2472 2473 mgctx->tset.nr_tasks++; 2474 2475 list_move_tail(&task->cg_list, &cset->mg_tasks); 2476 if (list_empty(&cset->mg_node)) 2477 list_add_tail(&cset->mg_node, 2478 &mgctx->tset.src_csets); 2479 if (list_empty(&cset->mg_dst_cset->mg_node)) 2480 list_add_tail(&cset->mg_dst_cset->mg_node, 2481 &mgctx->tset.dst_csets); 2482 } 2483 2484 /** 2485 * cgroup_taskset_first - reset taskset and return the first task 2486 * @tset: taskset of interest 2487 * @dst_cssp: output variable for the destination css 2488 * 2489 * @tset iteration is initialized and the first task is returned. 2490 */ 2491 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2492 struct cgroup_subsys_state **dst_cssp) 2493 { 2494 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2495 tset->cur_task = NULL; 2496 2497 return cgroup_taskset_next(tset, dst_cssp); 2498 } 2499 2500 /** 2501 * cgroup_taskset_next - iterate to the next task in taskset 2502 * @tset: taskset of interest 2503 * @dst_cssp: output variable for the destination css 2504 * 2505 * Return the next task in @tset. Iteration must have been initialized 2506 * with cgroup_taskset_first(). 2507 */ 2508 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2509 struct cgroup_subsys_state **dst_cssp) 2510 { 2511 struct css_set *cset = tset->cur_cset; 2512 struct task_struct *task = tset->cur_task; 2513 2514 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2515 if (!task) 2516 task = list_first_entry(&cset->mg_tasks, 2517 struct task_struct, cg_list); 2518 else 2519 task = list_next_entry(task, cg_list); 2520 2521 if (&task->cg_list != &cset->mg_tasks) { 2522 tset->cur_cset = cset; 2523 tset->cur_task = task; 2524 2525 /* 2526 * This function may be called both before and 2527 * after cgroup_taskset_migrate(). The two cases 2528 * can be distinguished by looking at whether @cset 2529 * has its ->mg_dst_cset set. 2530 */ 2531 if (cset->mg_dst_cset) 2532 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2533 else 2534 *dst_cssp = cset->subsys[tset->ssid]; 2535 2536 return task; 2537 } 2538 2539 cset = list_next_entry(cset, mg_node); 2540 task = NULL; 2541 } 2542 2543 return NULL; 2544 } 2545 2546 /** 2547 * cgroup_migrate_execute - migrate a taskset 2548 * @mgctx: migration context 2549 * 2550 * Migrate tasks in @mgctx as setup by migration preparation functions. 2551 * This function fails iff one of the ->can_attach callbacks fails and 2552 * guarantees that either all or none of the tasks in @mgctx are migrated. 2553 * @mgctx is consumed regardless of success. 2554 */ 2555 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2556 { 2557 struct cgroup_taskset *tset = &mgctx->tset; 2558 struct cgroup_subsys *ss; 2559 struct task_struct *task, *tmp_task; 2560 struct css_set *cset, *tmp_cset; 2561 int ssid, failed_ssid, ret; 2562 2563 /* check that we can legitimately attach to the cgroup */ 2564 if (tset->nr_tasks) { 2565 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2566 if (ss->can_attach) { 2567 tset->ssid = ssid; 2568 ret = ss->can_attach(tset); 2569 if (ret) { 2570 failed_ssid = ssid; 2571 goto out_cancel_attach; 2572 } 2573 } 2574 } while_each_subsys_mask(); 2575 } 2576 2577 /* 2578 * Now that we're guaranteed success, proceed to move all tasks to 2579 * the new cgroup. There are no failure cases after here, so this 2580 * is the commit point. 2581 */ 2582 spin_lock_irq(&css_set_lock); 2583 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2584 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2585 struct css_set *from_cset = task_css_set(task); 2586 struct css_set *to_cset = cset->mg_dst_cset; 2587 2588 get_css_set(to_cset); 2589 to_cset->nr_tasks++; 2590 css_set_move_task(task, from_cset, to_cset, true); 2591 from_cset->nr_tasks--; 2592 /* 2593 * If the source or destination cgroup is frozen, 2594 * the task might require to change its state. 2595 */ 2596 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2597 to_cset->dfl_cgrp); 2598 put_css_set_locked(from_cset); 2599 2600 } 2601 } 2602 spin_unlock_irq(&css_set_lock); 2603 2604 /* 2605 * Migration is committed, all target tasks are now on dst_csets. 2606 * Nothing is sensitive to fork() after this point. Notify 2607 * controllers that migration is complete. 2608 */ 2609 tset->csets = &tset->dst_csets; 2610 2611 if (tset->nr_tasks) { 2612 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2613 if (ss->attach) { 2614 tset->ssid = ssid; 2615 ss->attach(tset); 2616 } 2617 } while_each_subsys_mask(); 2618 } 2619 2620 ret = 0; 2621 goto out_release_tset; 2622 2623 out_cancel_attach: 2624 if (tset->nr_tasks) { 2625 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2626 if (ssid == failed_ssid) 2627 break; 2628 if (ss->cancel_attach) { 2629 tset->ssid = ssid; 2630 ss->cancel_attach(tset); 2631 } 2632 } while_each_subsys_mask(); 2633 } 2634 out_release_tset: 2635 spin_lock_irq(&css_set_lock); 2636 list_splice_init(&tset->dst_csets, &tset->src_csets); 2637 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2638 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2639 list_del_init(&cset->mg_node); 2640 } 2641 spin_unlock_irq(&css_set_lock); 2642 2643 /* 2644 * Re-initialize the cgroup_taskset structure in case it is reused 2645 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2646 * iteration. 2647 */ 2648 tset->nr_tasks = 0; 2649 tset->csets = &tset->src_csets; 2650 return ret; 2651 } 2652 2653 /** 2654 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2655 * @dst_cgrp: destination cgroup to test 2656 * 2657 * On the default hierarchy, except for the mixable, (possible) thread root 2658 * and threaded cgroups, subtree_control must be zero for migration 2659 * destination cgroups with tasks so that child cgroups don't compete 2660 * against tasks. 2661 */ 2662 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2663 { 2664 /* v1 doesn't have any restriction */ 2665 if (!cgroup_on_dfl(dst_cgrp)) 2666 return 0; 2667 2668 /* verify @dst_cgrp can host resources */ 2669 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2670 return -EOPNOTSUPP; 2671 2672 /* 2673 * If @dst_cgrp is already or can become a thread root or is 2674 * threaded, it doesn't matter. 2675 */ 2676 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2677 return 0; 2678 2679 /* apply no-internal-process constraint */ 2680 if (dst_cgrp->subtree_control) 2681 return -EBUSY; 2682 2683 return 0; 2684 } 2685 2686 /** 2687 * cgroup_migrate_finish - cleanup after attach 2688 * @mgctx: migration context 2689 * 2690 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2691 * those functions for details. 2692 */ 2693 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2694 { 2695 struct css_set *cset, *tmp_cset; 2696 2697 lockdep_assert_held(&cgroup_mutex); 2698 2699 spin_lock_irq(&css_set_lock); 2700 2701 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2702 mg_src_preload_node) { 2703 cset->mg_src_cgrp = NULL; 2704 cset->mg_dst_cgrp = NULL; 2705 cset->mg_dst_cset = NULL; 2706 list_del_init(&cset->mg_src_preload_node); 2707 put_css_set_locked(cset); 2708 } 2709 2710 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2711 mg_dst_preload_node) { 2712 cset->mg_src_cgrp = NULL; 2713 cset->mg_dst_cgrp = NULL; 2714 cset->mg_dst_cset = NULL; 2715 list_del_init(&cset->mg_dst_preload_node); 2716 put_css_set_locked(cset); 2717 } 2718 2719 spin_unlock_irq(&css_set_lock); 2720 } 2721 2722 /** 2723 * cgroup_migrate_add_src - add a migration source css_set 2724 * @src_cset: the source css_set to add 2725 * @dst_cgrp: the destination cgroup 2726 * @mgctx: migration context 2727 * 2728 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2729 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2730 * up by cgroup_migrate_finish(). 2731 * 2732 * This function may be called without holding cgroup_threadgroup_rwsem 2733 * even if the target is a process. Threads may be created and destroyed 2734 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2735 * into play and the preloaded css_sets are guaranteed to cover all 2736 * migrations. 2737 */ 2738 void cgroup_migrate_add_src(struct css_set *src_cset, 2739 struct cgroup *dst_cgrp, 2740 struct cgroup_mgctx *mgctx) 2741 { 2742 struct cgroup *src_cgrp; 2743 2744 lockdep_assert_held(&cgroup_mutex); 2745 lockdep_assert_held(&css_set_lock); 2746 2747 /* 2748 * If ->dead, @src_set is associated with one or more dead cgroups 2749 * and doesn't contain any migratable tasks. Ignore it early so 2750 * that the rest of migration path doesn't get confused by it. 2751 */ 2752 if (src_cset->dead) 2753 return; 2754 2755 if (!list_empty(&src_cset->mg_src_preload_node)) 2756 return; 2757 2758 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2759 2760 WARN_ON(src_cset->mg_src_cgrp); 2761 WARN_ON(src_cset->mg_dst_cgrp); 2762 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2763 WARN_ON(!list_empty(&src_cset->mg_node)); 2764 2765 src_cset->mg_src_cgrp = src_cgrp; 2766 src_cset->mg_dst_cgrp = dst_cgrp; 2767 get_css_set(src_cset); 2768 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2769 } 2770 2771 /** 2772 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2773 * @mgctx: migration context 2774 * 2775 * Tasks are about to be moved and all the source css_sets have been 2776 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2777 * pins all destination css_sets, links each to its source, and append them 2778 * to @mgctx->preloaded_dst_csets. 2779 * 2780 * This function must be called after cgroup_migrate_add_src() has been 2781 * called on each migration source css_set. After migration is performed 2782 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2783 * @mgctx. 2784 */ 2785 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2786 { 2787 struct css_set *src_cset, *tmp_cset; 2788 2789 lockdep_assert_held(&cgroup_mutex); 2790 2791 /* look up the dst cset for each src cset and link it to src */ 2792 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2793 mg_src_preload_node) { 2794 struct css_set *dst_cset; 2795 struct cgroup_subsys *ss; 2796 int ssid; 2797 2798 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2799 if (!dst_cset) 2800 return -ENOMEM; 2801 2802 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2803 2804 /* 2805 * If src cset equals dst, it's noop. Drop the src. 2806 * cgroup_migrate() will skip the cset too. Note that we 2807 * can't handle src == dst as some nodes are used by both. 2808 */ 2809 if (src_cset == dst_cset) { 2810 src_cset->mg_src_cgrp = NULL; 2811 src_cset->mg_dst_cgrp = NULL; 2812 list_del_init(&src_cset->mg_src_preload_node); 2813 put_css_set(src_cset); 2814 put_css_set(dst_cset); 2815 continue; 2816 } 2817 2818 src_cset->mg_dst_cset = dst_cset; 2819 2820 if (list_empty(&dst_cset->mg_dst_preload_node)) 2821 list_add_tail(&dst_cset->mg_dst_preload_node, 2822 &mgctx->preloaded_dst_csets); 2823 else 2824 put_css_set(dst_cset); 2825 2826 for_each_subsys(ss, ssid) 2827 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2828 mgctx->ss_mask |= 1 << ssid; 2829 } 2830 2831 return 0; 2832 } 2833 2834 /** 2835 * cgroup_migrate - migrate a process or task to a cgroup 2836 * @leader: the leader of the process or the task to migrate 2837 * @threadgroup: whether @leader points to the whole process or a single task 2838 * @mgctx: migration context 2839 * 2840 * Migrate a process or task denoted by @leader. If migrating a process, 2841 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2842 * responsible for invoking cgroup_migrate_add_src() and 2843 * cgroup_migrate_prepare_dst() on the targets before invoking this 2844 * function and following up with cgroup_migrate_finish(). 2845 * 2846 * As long as a controller's ->can_attach() doesn't fail, this function is 2847 * guaranteed to succeed. This means that, excluding ->can_attach() 2848 * failure, when migrating multiple targets, the success or failure can be 2849 * decided for all targets by invoking group_migrate_prepare_dst() before 2850 * actually starting migrating. 2851 */ 2852 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2853 struct cgroup_mgctx *mgctx) 2854 { 2855 struct task_struct *task; 2856 2857 /* 2858 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2859 * already PF_EXITING could be freed from underneath us unless we 2860 * take an rcu_read_lock. 2861 */ 2862 spin_lock_irq(&css_set_lock); 2863 rcu_read_lock(); 2864 task = leader; 2865 do { 2866 cgroup_migrate_add_task(task, mgctx); 2867 if (!threadgroup) 2868 break; 2869 } while_each_thread(leader, task); 2870 rcu_read_unlock(); 2871 spin_unlock_irq(&css_set_lock); 2872 2873 return cgroup_migrate_execute(mgctx); 2874 } 2875 2876 /** 2877 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2878 * @dst_cgrp: the cgroup to attach to 2879 * @leader: the task or the leader of the threadgroup to be attached 2880 * @threadgroup: attach the whole threadgroup? 2881 * 2882 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2883 */ 2884 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2885 bool threadgroup) 2886 { 2887 DEFINE_CGROUP_MGCTX(mgctx); 2888 struct task_struct *task; 2889 int ret = 0; 2890 2891 /* look up all src csets */ 2892 spin_lock_irq(&css_set_lock); 2893 rcu_read_lock(); 2894 task = leader; 2895 do { 2896 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2897 if (!threadgroup) 2898 break; 2899 } while_each_thread(leader, task); 2900 rcu_read_unlock(); 2901 spin_unlock_irq(&css_set_lock); 2902 2903 /* prepare dst csets and commit */ 2904 ret = cgroup_migrate_prepare_dst(&mgctx); 2905 if (!ret) 2906 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2907 2908 cgroup_migrate_finish(&mgctx); 2909 2910 if (!ret) 2911 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2912 2913 return ret; 2914 } 2915 2916 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2917 bool *threadgroup_locked) 2918 { 2919 struct task_struct *tsk; 2920 pid_t pid; 2921 2922 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2923 return ERR_PTR(-EINVAL); 2924 2925 /* 2926 * If we migrate a single thread, we don't care about threadgroup 2927 * stability. If the thread is `current`, it won't exit(2) under our 2928 * hands or change PID through exec(2). We exclude 2929 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2930 * callers by cgroup_mutex. 2931 * Therefore, we can skip the global lock. 2932 */ 2933 lockdep_assert_held(&cgroup_mutex); 2934 *threadgroup_locked = pid || threadgroup; 2935 cgroup_attach_lock(*threadgroup_locked); 2936 2937 rcu_read_lock(); 2938 if (pid) { 2939 tsk = find_task_by_vpid(pid); 2940 if (!tsk) { 2941 tsk = ERR_PTR(-ESRCH); 2942 goto out_unlock_threadgroup; 2943 } 2944 } else { 2945 tsk = current; 2946 } 2947 2948 if (threadgroup) 2949 tsk = tsk->group_leader; 2950 2951 /* 2952 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2953 * If userland migrates such a kthread to a non-root cgroup, it can 2954 * become trapped in a cpuset, or RT kthread may be born in a 2955 * cgroup with no rt_runtime allocated. Just say no. 2956 */ 2957 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2958 tsk = ERR_PTR(-EINVAL); 2959 goto out_unlock_threadgroup; 2960 } 2961 2962 get_task_struct(tsk); 2963 goto out_unlock_rcu; 2964 2965 out_unlock_threadgroup: 2966 cgroup_attach_unlock(*threadgroup_locked); 2967 *threadgroup_locked = false; 2968 out_unlock_rcu: 2969 rcu_read_unlock(); 2970 return tsk; 2971 } 2972 2973 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2974 { 2975 struct cgroup_subsys *ss; 2976 int ssid; 2977 2978 /* release reference from cgroup_procs_write_start() */ 2979 put_task_struct(task); 2980 2981 cgroup_attach_unlock(threadgroup_locked); 2982 2983 for_each_subsys(ss, ssid) 2984 if (ss->post_attach) 2985 ss->post_attach(); 2986 } 2987 2988 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2989 { 2990 struct cgroup_subsys *ss; 2991 bool printed = false; 2992 int ssid; 2993 2994 do_each_subsys_mask(ss, ssid, ss_mask) { 2995 if (printed) 2996 seq_putc(seq, ' '); 2997 seq_puts(seq, ss->name); 2998 printed = true; 2999 } while_each_subsys_mask(); 3000 if (printed) 3001 seq_putc(seq, '\n'); 3002 } 3003 3004 /* show controllers which are enabled from the parent */ 3005 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3006 { 3007 struct cgroup *cgrp = seq_css(seq)->cgroup; 3008 3009 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3010 return 0; 3011 } 3012 3013 /* show controllers which are enabled for a given cgroup's children */ 3014 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3015 { 3016 struct cgroup *cgrp = seq_css(seq)->cgroup; 3017 3018 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3019 return 0; 3020 } 3021 3022 /** 3023 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3024 * @cgrp: root of the subtree to update csses for 3025 * 3026 * @cgrp's control masks have changed and its subtree's css associations 3027 * need to be updated accordingly. This function looks up all css_sets 3028 * which are attached to the subtree, creates the matching updated css_sets 3029 * and migrates the tasks to the new ones. 3030 */ 3031 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3032 { 3033 DEFINE_CGROUP_MGCTX(mgctx); 3034 struct cgroup_subsys_state *d_css; 3035 struct cgroup *dsct; 3036 struct css_set *src_cset; 3037 bool has_tasks; 3038 int ret; 3039 3040 lockdep_assert_held(&cgroup_mutex); 3041 3042 /* look up all csses currently attached to @cgrp's subtree */ 3043 spin_lock_irq(&css_set_lock); 3044 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3045 struct cgrp_cset_link *link; 3046 3047 /* 3048 * As cgroup_update_dfl_csses() is only called by 3049 * cgroup_apply_control(). The csses associated with the 3050 * given cgrp will not be affected by changes made to 3051 * its subtree_control file. We can skip them. 3052 */ 3053 if (dsct == cgrp) 3054 continue; 3055 3056 list_for_each_entry(link, &dsct->cset_links, cset_link) 3057 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3058 } 3059 spin_unlock_irq(&css_set_lock); 3060 3061 /* 3062 * We need to write-lock threadgroup_rwsem while migrating tasks. 3063 * However, if there are no source csets for @cgrp, changing its 3064 * controllers isn't gonna produce any task migrations and the 3065 * write-locking can be skipped safely. 3066 */ 3067 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3068 cgroup_attach_lock(has_tasks); 3069 3070 /* NULL dst indicates self on default hierarchy */ 3071 ret = cgroup_migrate_prepare_dst(&mgctx); 3072 if (ret) 3073 goto out_finish; 3074 3075 spin_lock_irq(&css_set_lock); 3076 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3077 mg_src_preload_node) { 3078 struct task_struct *task, *ntask; 3079 3080 /* all tasks in src_csets need to be migrated */ 3081 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3082 cgroup_migrate_add_task(task, &mgctx); 3083 } 3084 spin_unlock_irq(&css_set_lock); 3085 3086 ret = cgroup_migrate_execute(&mgctx); 3087 out_finish: 3088 cgroup_migrate_finish(&mgctx); 3089 cgroup_attach_unlock(has_tasks); 3090 return ret; 3091 } 3092 3093 /** 3094 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3095 * @cgrp: root of the target subtree 3096 * 3097 * Because css offlining is asynchronous, userland may try to re-enable a 3098 * controller while the previous css is still around. This function grabs 3099 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3100 */ 3101 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3102 __acquires(&cgroup_mutex) 3103 { 3104 struct cgroup *dsct; 3105 struct cgroup_subsys_state *d_css; 3106 struct cgroup_subsys *ss; 3107 int ssid; 3108 3109 restart: 3110 mutex_lock(&cgroup_mutex); 3111 3112 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3113 for_each_subsys(ss, ssid) { 3114 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3115 DEFINE_WAIT(wait); 3116 3117 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3118 continue; 3119 3120 cgroup_get_live(dsct); 3121 prepare_to_wait(&dsct->offline_waitq, &wait, 3122 TASK_UNINTERRUPTIBLE); 3123 3124 mutex_unlock(&cgroup_mutex); 3125 schedule(); 3126 finish_wait(&dsct->offline_waitq, &wait); 3127 3128 cgroup_put(dsct); 3129 goto restart; 3130 } 3131 } 3132 } 3133 3134 /** 3135 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3136 * @cgrp: root of the target subtree 3137 * 3138 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3139 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3140 * itself. 3141 */ 3142 static void cgroup_save_control(struct cgroup *cgrp) 3143 { 3144 struct cgroup *dsct; 3145 struct cgroup_subsys_state *d_css; 3146 3147 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3148 dsct->old_subtree_control = dsct->subtree_control; 3149 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3150 dsct->old_dom_cgrp = dsct->dom_cgrp; 3151 } 3152 } 3153 3154 /** 3155 * cgroup_propagate_control - refresh control masks of a subtree 3156 * @cgrp: root of the target subtree 3157 * 3158 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3159 * ->subtree_control and propagate controller availability through the 3160 * subtree so that descendants don't have unavailable controllers enabled. 3161 */ 3162 static void cgroup_propagate_control(struct cgroup *cgrp) 3163 { 3164 struct cgroup *dsct; 3165 struct cgroup_subsys_state *d_css; 3166 3167 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3168 dsct->subtree_control &= cgroup_control(dsct); 3169 dsct->subtree_ss_mask = 3170 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3171 cgroup_ss_mask(dsct)); 3172 } 3173 } 3174 3175 /** 3176 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3177 * @cgrp: root of the target subtree 3178 * 3179 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3180 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3181 * itself. 3182 */ 3183 static void cgroup_restore_control(struct cgroup *cgrp) 3184 { 3185 struct cgroup *dsct; 3186 struct cgroup_subsys_state *d_css; 3187 3188 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3189 dsct->subtree_control = dsct->old_subtree_control; 3190 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3191 dsct->dom_cgrp = dsct->old_dom_cgrp; 3192 } 3193 } 3194 3195 static bool css_visible(struct cgroup_subsys_state *css) 3196 { 3197 struct cgroup_subsys *ss = css->ss; 3198 struct cgroup *cgrp = css->cgroup; 3199 3200 if (cgroup_control(cgrp) & (1 << ss->id)) 3201 return true; 3202 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3203 return false; 3204 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3205 } 3206 3207 /** 3208 * cgroup_apply_control_enable - enable or show csses according to control 3209 * @cgrp: root of the target subtree 3210 * 3211 * Walk @cgrp's subtree and create new csses or make the existing ones 3212 * visible. A css is created invisible if it's being implicitly enabled 3213 * through dependency. An invisible css is made visible when the userland 3214 * explicitly enables it. 3215 * 3216 * Returns 0 on success, -errno on failure. On failure, csses which have 3217 * been processed already aren't cleaned up. The caller is responsible for 3218 * cleaning up with cgroup_apply_control_disable(). 3219 */ 3220 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3221 { 3222 struct cgroup *dsct; 3223 struct cgroup_subsys_state *d_css; 3224 struct cgroup_subsys *ss; 3225 int ssid, ret; 3226 3227 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3228 for_each_subsys(ss, ssid) { 3229 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3230 3231 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3232 continue; 3233 3234 if (!css) { 3235 css = css_create(dsct, ss); 3236 if (IS_ERR(css)) 3237 return PTR_ERR(css); 3238 } 3239 3240 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3241 3242 if (css_visible(css)) { 3243 ret = css_populate_dir(css); 3244 if (ret) 3245 return ret; 3246 } 3247 } 3248 } 3249 3250 return 0; 3251 } 3252 3253 /** 3254 * cgroup_apply_control_disable - kill or hide csses according to control 3255 * @cgrp: root of the target subtree 3256 * 3257 * Walk @cgrp's subtree and kill and hide csses so that they match 3258 * cgroup_ss_mask() and cgroup_visible_mask(). 3259 * 3260 * A css is hidden when the userland requests it to be disabled while other 3261 * subsystems are still depending on it. The css must not actively control 3262 * resources and be in the vanilla state if it's made visible again later. 3263 * Controllers which may be depended upon should provide ->css_reset() for 3264 * this purpose. 3265 */ 3266 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3267 { 3268 struct cgroup *dsct; 3269 struct cgroup_subsys_state *d_css; 3270 struct cgroup_subsys *ss; 3271 int ssid; 3272 3273 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3274 for_each_subsys(ss, ssid) { 3275 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3276 3277 if (!css) 3278 continue; 3279 3280 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3281 3282 if (css->parent && 3283 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3284 kill_css(css); 3285 } else if (!css_visible(css)) { 3286 css_clear_dir(css); 3287 if (ss->css_reset) 3288 ss->css_reset(css); 3289 } 3290 } 3291 } 3292 } 3293 3294 /** 3295 * cgroup_apply_control - apply control mask updates to the subtree 3296 * @cgrp: root of the target subtree 3297 * 3298 * subsystems can be enabled and disabled in a subtree using the following 3299 * steps. 3300 * 3301 * 1. Call cgroup_save_control() to stash the current state. 3302 * 2. Update ->subtree_control masks in the subtree as desired. 3303 * 3. Call cgroup_apply_control() to apply the changes. 3304 * 4. Optionally perform other related operations. 3305 * 5. Call cgroup_finalize_control() to finish up. 3306 * 3307 * This function implements step 3 and propagates the mask changes 3308 * throughout @cgrp's subtree, updates csses accordingly and perform 3309 * process migrations. 3310 */ 3311 static int cgroup_apply_control(struct cgroup *cgrp) 3312 { 3313 int ret; 3314 3315 cgroup_propagate_control(cgrp); 3316 3317 ret = cgroup_apply_control_enable(cgrp); 3318 if (ret) 3319 return ret; 3320 3321 /* 3322 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3323 * making the following cgroup_update_dfl_csses() properly update 3324 * css associations of all tasks in the subtree. 3325 */ 3326 return cgroup_update_dfl_csses(cgrp); 3327 } 3328 3329 /** 3330 * cgroup_finalize_control - finalize control mask update 3331 * @cgrp: root of the target subtree 3332 * @ret: the result of the update 3333 * 3334 * Finalize control mask update. See cgroup_apply_control() for more info. 3335 */ 3336 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3337 { 3338 if (ret) { 3339 cgroup_restore_control(cgrp); 3340 cgroup_propagate_control(cgrp); 3341 } 3342 3343 cgroup_apply_control_disable(cgrp); 3344 } 3345 3346 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3347 { 3348 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3349 3350 /* if nothing is getting enabled, nothing to worry about */ 3351 if (!enable) 3352 return 0; 3353 3354 /* can @cgrp host any resources? */ 3355 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3356 return -EOPNOTSUPP; 3357 3358 /* mixables don't care */ 3359 if (cgroup_is_mixable(cgrp)) 3360 return 0; 3361 3362 if (domain_enable) { 3363 /* can't enable domain controllers inside a thread subtree */ 3364 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3365 return -EOPNOTSUPP; 3366 } else { 3367 /* 3368 * Threaded controllers can handle internal competitions 3369 * and are always allowed inside a (prospective) thread 3370 * subtree. 3371 */ 3372 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3373 return 0; 3374 } 3375 3376 /* 3377 * Controllers can't be enabled for a cgroup with tasks to avoid 3378 * child cgroups competing against tasks. 3379 */ 3380 if (cgroup_has_tasks(cgrp)) 3381 return -EBUSY; 3382 3383 return 0; 3384 } 3385 3386 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3387 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3388 char *buf, size_t nbytes, 3389 loff_t off) 3390 { 3391 u16 enable = 0, disable = 0; 3392 struct cgroup *cgrp, *child; 3393 struct cgroup_subsys *ss; 3394 char *tok; 3395 int ssid, ret; 3396 3397 /* 3398 * Parse input - space separated list of subsystem names prefixed 3399 * with either + or -. 3400 */ 3401 buf = strstrip(buf); 3402 while ((tok = strsep(&buf, " "))) { 3403 if (tok[0] == '\0') 3404 continue; 3405 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3406 if (!cgroup_ssid_enabled(ssid) || 3407 strcmp(tok + 1, ss->name)) 3408 continue; 3409 3410 if (*tok == '+') { 3411 enable |= 1 << ssid; 3412 disable &= ~(1 << ssid); 3413 } else if (*tok == '-') { 3414 disable |= 1 << ssid; 3415 enable &= ~(1 << ssid); 3416 } else { 3417 return -EINVAL; 3418 } 3419 break; 3420 } while_each_subsys_mask(); 3421 if (ssid == CGROUP_SUBSYS_COUNT) 3422 return -EINVAL; 3423 } 3424 3425 cgrp = cgroup_kn_lock_live(of->kn, true); 3426 if (!cgrp) 3427 return -ENODEV; 3428 3429 for_each_subsys(ss, ssid) { 3430 if (enable & (1 << ssid)) { 3431 if (cgrp->subtree_control & (1 << ssid)) { 3432 enable &= ~(1 << ssid); 3433 continue; 3434 } 3435 3436 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3437 ret = -ENOENT; 3438 goto out_unlock; 3439 } 3440 } else if (disable & (1 << ssid)) { 3441 if (!(cgrp->subtree_control & (1 << ssid))) { 3442 disable &= ~(1 << ssid); 3443 continue; 3444 } 3445 3446 /* a child has it enabled? */ 3447 cgroup_for_each_live_child(child, cgrp) { 3448 if (child->subtree_control & (1 << ssid)) { 3449 ret = -EBUSY; 3450 goto out_unlock; 3451 } 3452 } 3453 } 3454 } 3455 3456 if (!enable && !disable) { 3457 ret = 0; 3458 goto out_unlock; 3459 } 3460 3461 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3462 if (ret) 3463 goto out_unlock; 3464 3465 /* save and update control masks and prepare csses */ 3466 cgroup_save_control(cgrp); 3467 3468 cgrp->subtree_control |= enable; 3469 cgrp->subtree_control &= ~disable; 3470 3471 ret = cgroup_apply_control(cgrp); 3472 cgroup_finalize_control(cgrp, ret); 3473 if (ret) 3474 goto out_unlock; 3475 3476 kernfs_activate(cgrp->kn); 3477 out_unlock: 3478 cgroup_kn_unlock(of->kn); 3479 return ret ?: nbytes; 3480 } 3481 3482 /** 3483 * cgroup_enable_threaded - make @cgrp threaded 3484 * @cgrp: the target cgroup 3485 * 3486 * Called when "threaded" is written to the cgroup.type interface file and 3487 * tries to make @cgrp threaded and join the parent's resource domain. 3488 * This function is never called on the root cgroup as cgroup.type doesn't 3489 * exist on it. 3490 */ 3491 static int cgroup_enable_threaded(struct cgroup *cgrp) 3492 { 3493 struct cgroup *parent = cgroup_parent(cgrp); 3494 struct cgroup *dom_cgrp = parent->dom_cgrp; 3495 struct cgroup *dsct; 3496 struct cgroup_subsys_state *d_css; 3497 int ret; 3498 3499 lockdep_assert_held(&cgroup_mutex); 3500 3501 /* noop if already threaded */ 3502 if (cgroup_is_threaded(cgrp)) 3503 return 0; 3504 3505 /* 3506 * If @cgroup is populated or has domain controllers enabled, it 3507 * can't be switched. While the below cgroup_can_be_thread_root() 3508 * test can catch the same conditions, that's only when @parent is 3509 * not mixable, so let's check it explicitly. 3510 */ 3511 if (cgroup_is_populated(cgrp) || 3512 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3513 return -EOPNOTSUPP; 3514 3515 /* we're joining the parent's domain, ensure its validity */ 3516 if (!cgroup_is_valid_domain(dom_cgrp) || 3517 !cgroup_can_be_thread_root(dom_cgrp)) 3518 return -EOPNOTSUPP; 3519 3520 /* 3521 * The following shouldn't cause actual migrations and should 3522 * always succeed. 3523 */ 3524 cgroup_save_control(cgrp); 3525 3526 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3527 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3528 dsct->dom_cgrp = dom_cgrp; 3529 3530 ret = cgroup_apply_control(cgrp); 3531 if (!ret) 3532 parent->nr_threaded_children++; 3533 3534 cgroup_finalize_control(cgrp, ret); 3535 return ret; 3536 } 3537 3538 static int cgroup_type_show(struct seq_file *seq, void *v) 3539 { 3540 struct cgroup *cgrp = seq_css(seq)->cgroup; 3541 3542 if (cgroup_is_threaded(cgrp)) 3543 seq_puts(seq, "threaded\n"); 3544 else if (!cgroup_is_valid_domain(cgrp)) 3545 seq_puts(seq, "domain invalid\n"); 3546 else if (cgroup_is_thread_root(cgrp)) 3547 seq_puts(seq, "domain threaded\n"); 3548 else 3549 seq_puts(seq, "domain\n"); 3550 3551 return 0; 3552 } 3553 3554 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3555 size_t nbytes, loff_t off) 3556 { 3557 struct cgroup *cgrp; 3558 int ret; 3559 3560 /* only switching to threaded mode is supported */ 3561 if (strcmp(strstrip(buf), "threaded")) 3562 return -EINVAL; 3563 3564 /* drain dying csses before we re-apply (threaded) subtree control */ 3565 cgrp = cgroup_kn_lock_live(of->kn, true); 3566 if (!cgrp) 3567 return -ENOENT; 3568 3569 /* threaded can only be enabled */ 3570 ret = cgroup_enable_threaded(cgrp); 3571 3572 cgroup_kn_unlock(of->kn); 3573 return ret ?: nbytes; 3574 } 3575 3576 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3577 { 3578 struct cgroup *cgrp = seq_css(seq)->cgroup; 3579 int descendants = READ_ONCE(cgrp->max_descendants); 3580 3581 if (descendants == INT_MAX) 3582 seq_puts(seq, "max\n"); 3583 else 3584 seq_printf(seq, "%d\n", descendants); 3585 3586 return 0; 3587 } 3588 3589 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3590 char *buf, size_t nbytes, loff_t off) 3591 { 3592 struct cgroup *cgrp; 3593 int descendants; 3594 ssize_t ret; 3595 3596 buf = strstrip(buf); 3597 if (!strcmp(buf, "max")) { 3598 descendants = INT_MAX; 3599 } else { 3600 ret = kstrtoint(buf, 0, &descendants); 3601 if (ret) 3602 return ret; 3603 } 3604 3605 if (descendants < 0) 3606 return -ERANGE; 3607 3608 cgrp = cgroup_kn_lock_live(of->kn, false); 3609 if (!cgrp) 3610 return -ENOENT; 3611 3612 cgrp->max_descendants = descendants; 3613 3614 cgroup_kn_unlock(of->kn); 3615 3616 return nbytes; 3617 } 3618 3619 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3620 { 3621 struct cgroup *cgrp = seq_css(seq)->cgroup; 3622 int depth = READ_ONCE(cgrp->max_depth); 3623 3624 if (depth == INT_MAX) 3625 seq_puts(seq, "max\n"); 3626 else 3627 seq_printf(seq, "%d\n", depth); 3628 3629 return 0; 3630 } 3631 3632 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3633 char *buf, size_t nbytes, loff_t off) 3634 { 3635 struct cgroup *cgrp; 3636 ssize_t ret; 3637 int depth; 3638 3639 buf = strstrip(buf); 3640 if (!strcmp(buf, "max")) { 3641 depth = INT_MAX; 3642 } else { 3643 ret = kstrtoint(buf, 0, &depth); 3644 if (ret) 3645 return ret; 3646 } 3647 3648 if (depth < 0) 3649 return -ERANGE; 3650 3651 cgrp = cgroup_kn_lock_live(of->kn, false); 3652 if (!cgrp) 3653 return -ENOENT; 3654 3655 cgrp->max_depth = depth; 3656 3657 cgroup_kn_unlock(of->kn); 3658 3659 return nbytes; 3660 } 3661 3662 static int cgroup_events_show(struct seq_file *seq, void *v) 3663 { 3664 struct cgroup *cgrp = seq_css(seq)->cgroup; 3665 3666 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3667 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3668 3669 return 0; 3670 } 3671 3672 static int cgroup_stat_show(struct seq_file *seq, void *v) 3673 { 3674 struct cgroup *cgroup = seq_css(seq)->cgroup; 3675 3676 seq_printf(seq, "nr_descendants %d\n", 3677 cgroup->nr_descendants); 3678 seq_printf(seq, "nr_dying_descendants %d\n", 3679 cgroup->nr_dying_descendants); 3680 3681 return 0; 3682 } 3683 3684 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3685 struct cgroup *cgrp, int ssid) 3686 { 3687 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3688 struct cgroup_subsys_state *css; 3689 int ret; 3690 3691 if (!ss->css_extra_stat_show) 3692 return 0; 3693 3694 css = cgroup_tryget_css(cgrp, ss); 3695 if (!css) 3696 return 0; 3697 3698 ret = ss->css_extra_stat_show(seq, css); 3699 css_put(css); 3700 return ret; 3701 } 3702 3703 static int cpu_stat_show(struct seq_file *seq, void *v) 3704 { 3705 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3706 int ret = 0; 3707 3708 cgroup_base_stat_cputime_show(seq); 3709 #ifdef CONFIG_CGROUP_SCHED 3710 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3711 #endif 3712 return ret; 3713 } 3714 3715 #ifdef CONFIG_PSI 3716 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3717 { 3718 struct cgroup *cgrp = seq_css(seq)->cgroup; 3719 struct psi_group *psi = cgroup_psi(cgrp); 3720 3721 return psi_show(seq, psi, PSI_IO); 3722 } 3723 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3724 { 3725 struct cgroup *cgrp = seq_css(seq)->cgroup; 3726 struct psi_group *psi = cgroup_psi(cgrp); 3727 3728 return psi_show(seq, psi, PSI_MEM); 3729 } 3730 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3731 { 3732 struct cgroup *cgrp = seq_css(seq)->cgroup; 3733 struct psi_group *psi = cgroup_psi(cgrp); 3734 3735 return psi_show(seq, psi, PSI_CPU); 3736 } 3737 3738 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3739 size_t nbytes, enum psi_res res) 3740 { 3741 struct cgroup_file_ctx *ctx = of->priv; 3742 struct psi_trigger *new; 3743 struct cgroup *cgrp; 3744 struct psi_group *psi; 3745 3746 cgrp = cgroup_kn_lock_live(of->kn, false); 3747 if (!cgrp) 3748 return -ENODEV; 3749 3750 cgroup_get(cgrp); 3751 cgroup_kn_unlock(of->kn); 3752 3753 /* Allow only one trigger per file descriptor */ 3754 if (ctx->psi.trigger) { 3755 cgroup_put(cgrp); 3756 return -EBUSY; 3757 } 3758 3759 psi = cgroup_psi(cgrp); 3760 new = psi_trigger_create(psi, buf, res); 3761 if (IS_ERR(new)) { 3762 cgroup_put(cgrp); 3763 return PTR_ERR(new); 3764 } 3765 3766 smp_store_release(&ctx->psi.trigger, new); 3767 cgroup_put(cgrp); 3768 3769 return nbytes; 3770 } 3771 3772 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3773 char *buf, size_t nbytes, 3774 loff_t off) 3775 { 3776 return pressure_write(of, buf, nbytes, PSI_IO); 3777 } 3778 3779 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3780 char *buf, size_t nbytes, 3781 loff_t off) 3782 { 3783 return pressure_write(of, buf, nbytes, PSI_MEM); 3784 } 3785 3786 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3787 char *buf, size_t nbytes, 3788 loff_t off) 3789 { 3790 return pressure_write(of, buf, nbytes, PSI_CPU); 3791 } 3792 3793 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3794 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3795 { 3796 struct cgroup *cgrp = seq_css(seq)->cgroup; 3797 struct psi_group *psi = cgroup_psi(cgrp); 3798 3799 return psi_show(seq, psi, PSI_IRQ); 3800 } 3801 3802 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3803 char *buf, size_t nbytes, 3804 loff_t off) 3805 { 3806 return pressure_write(of, buf, nbytes, PSI_IRQ); 3807 } 3808 #endif 3809 3810 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3811 { 3812 struct cgroup *cgrp = seq_css(seq)->cgroup; 3813 struct psi_group *psi = cgroup_psi(cgrp); 3814 3815 seq_printf(seq, "%d\n", psi->enabled); 3816 3817 return 0; 3818 } 3819 3820 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3821 char *buf, size_t nbytes, 3822 loff_t off) 3823 { 3824 ssize_t ret; 3825 int enable; 3826 struct cgroup *cgrp; 3827 struct psi_group *psi; 3828 3829 ret = kstrtoint(strstrip(buf), 0, &enable); 3830 if (ret) 3831 return ret; 3832 3833 if (enable < 0 || enable > 1) 3834 return -ERANGE; 3835 3836 cgrp = cgroup_kn_lock_live(of->kn, false); 3837 if (!cgrp) 3838 return -ENOENT; 3839 3840 psi = cgroup_psi(cgrp); 3841 if (psi->enabled != enable) { 3842 int i; 3843 3844 /* show or hide {cpu,memory,io,irq}.pressure files */ 3845 for (i = 0; i < NR_PSI_RESOURCES; i++) 3846 cgroup_file_show(&cgrp->psi_files[i], enable); 3847 3848 psi->enabled = enable; 3849 if (enable) 3850 psi_cgroup_restart(psi); 3851 } 3852 3853 cgroup_kn_unlock(of->kn); 3854 3855 return nbytes; 3856 } 3857 3858 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3859 poll_table *pt) 3860 { 3861 struct cgroup_file_ctx *ctx = of->priv; 3862 3863 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3864 } 3865 3866 static void cgroup_pressure_release(struct kernfs_open_file *of) 3867 { 3868 struct cgroup_file_ctx *ctx = of->priv; 3869 3870 psi_trigger_destroy(ctx->psi.trigger); 3871 } 3872 3873 bool cgroup_psi_enabled(void) 3874 { 3875 if (static_branch_likely(&psi_disabled)) 3876 return false; 3877 3878 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3879 } 3880 3881 #else /* CONFIG_PSI */ 3882 bool cgroup_psi_enabled(void) 3883 { 3884 return false; 3885 } 3886 3887 #endif /* CONFIG_PSI */ 3888 3889 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3890 { 3891 struct cgroup *cgrp = seq_css(seq)->cgroup; 3892 3893 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3894 3895 return 0; 3896 } 3897 3898 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3899 char *buf, size_t nbytes, loff_t off) 3900 { 3901 struct cgroup *cgrp; 3902 ssize_t ret; 3903 int freeze; 3904 3905 ret = kstrtoint(strstrip(buf), 0, &freeze); 3906 if (ret) 3907 return ret; 3908 3909 if (freeze < 0 || freeze > 1) 3910 return -ERANGE; 3911 3912 cgrp = cgroup_kn_lock_live(of->kn, false); 3913 if (!cgrp) 3914 return -ENOENT; 3915 3916 cgroup_freeze(cgrp, freeze); 3917 3918 cgroup_kn_unlock(of->kn); 3919 3920 return nbytes; 3921 } 3922 3923 static void __cgroup_kill(struct cgroup *cgrp) 3924 { 3925 struct css_task_iter it; 3926 struct task_struct *task; 3927 3928 lockdep_assert_held(&cgroup_mutex); 3929 3930 spin_lock_irq(&css_set_lock); 3931 set_bit(CGRP_KILL, &cgrp->flags); 3932 spin_unlock_irq(&css_set_lock); 3933 3934 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3935 while ((task = css_task_iter_next(&it))) { 3936 /* Ignore kernel threads here. */ 3937 if (task->flags & PF_KTHREAD) 3938 continue; 3939 3940 /* Skip tasks that are already dying. */ 3941 if (__fatal_signal_pending(task)) 3942 continue; 3943 3944 send_sig(SIGKILL, task, 0); 3945 } 3946 css_task_iter_end(&it); 3947 3948 spin_lock_irq(&css_set_lock); 3949 clear_bit(CGRP_KILL, &cgrp->flags); 3950 spin_unlock_irq(&css_set_lock); 3951 } 3952 3953 static void cgroup_kill(struct cgroup *cgrp) 3954 { 3955 struct cgroup_subsys_state *css; 3956 struct cgroup *dsct; 3957 3958 lockdep_assert_held(&cgroup_mutex); 3959 3960 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3961 __cgroup_kill(dsct); 3962 } 3963 3964 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3965 size_t nbytes, loff_t off) 3966 { 3967 ssize_t ret = 0; 3968 int kill; 3969 struct cgroup *cgrp; 3970 3971 ret = kstrtoint(strstrip(buf), 0, &kill); 3972 if (ret) 3973 return ret; 3974 3975 if (kill != 1) 3976 return -ERANGE; 3977 3978 cgrp = cgroup_kn_lock_live(of->kn, false); 3979 if (!cgrp) 3980 return -ENOENT; 3981 3982 /* 3983 * Killing is a process directed operation, i.e. the whole thread-group 3984 * is taken down so act like we do for cgroup.procs and only make this 3985 * writable in non-threaded cgroups. 3986 */ 3987 if (cgroup_is_threaded(cgrp)) 3988 ret = -EOPNOTSUPP; 3989 else 3990 cgroup_kill(cgrp); 3991 3992 cgroup_kn_unlock(of->kn); 3993 3994 return ret ?: nbytes; 3995 } 3996 3997 static int cgroup_file_open(struct kernfs_open_file *of) 3998 { 3999 struct cftype *cft = of_cft(of); 4000 struct cgroup_file_ctx *ctx; 4001 int ret; 4002 4003 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4004 if (!ctx) 4005 return -ENOMEM; 4006 4007 ctx->ns = current->nsproxy->cgroup_ns; 4008 get_cgroup_ns(ctx->ns); 4009 of->priv = ctx; 4010 4011 if (!cft->open) 4012 return 0; 4013 4014 ret = cft->open(of); 4015 if (ret) { 4016 put_cgroup_ns(ctx->ns); 4017 kfree(ctx); 4018 } 4019 return ret; 4020 } 4021 4022 static void cgroup_file_release(struct kernfs_open_file *of) 4023 { 4024 struct cftype *cft = of_cft(of); 4025 struct cgroup_file_ctx *ctx = of->priv; 4026 4027 if (cft->release) 4028 cft->release(of); 4029 put_cgroup_ns(ctx->ns); 4030 kfree(ctx); 4031 } 4032 4033 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4034 size_t nbytes, loff_t off) 4035 { 4036 struct cgroup_file_ctx *ctx = of->priv; 4037 struct cgroup *cgrp = of->kn->parent->priv; 4038 struct cftype *cft = of_cft(of); 4039 struct cgroup_subsys_state *css; 4040 int ret; 4041 4042 if (!nbytes) 4043 return 0; 4044 4045 /* 4046 * If namespaces are delegation boundaries, disallow writes to 4047 * files in an non-init namespace root from inside the namespace 4048 * except for the files explicitly marked delegatable - 4049 * cgroup.procs and cgroup.subtree_control. 4050 */ 4051 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4052 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4053 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4054 return -EPERM; 4055 4056 if (cft->write) 4057 return cft->write(of, buf, nbytes, off); 4058 4059 /* 4060 * kernfs guarantees that a file isn't deleted with operations in 4061 * flight, which means that the matching css is and stays alive and 4062 * doesn't need to be pinned. The RCU locking is not necessary 4063 * either. It's just for the convenience of using cgroup_css(). 4064 */ 4065 rcu_read_lock(); 4066 css = cgroup_css(cgrp, cft->ss); 4067 rcu_read_unlock(); 4068 4069 if (cft->write_u64) { 4070 unsigned long long v; 4071 ret = kstrtoull(buf, 0, &v); 4072 if (!ret) 4073 ret = cft->write_u64(css, cft, v); 4074 } else if (cft->write_s64) { 4075 long long v; 4076 ret = kstrtoll(buf, 0, &v); 4077 if (!ret) 4078 ret = cft->write_s64(css, cft, v); 4079 } else { 4080 ret = -EINVAL; 4081 } 4082 4083 return ret ?: nbytes; 4084 } 4085 4086 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4087 { 4088 struct cftype *cft = of_cft(of); 4089 4090 if (cft->poll) 4091 return cft->poll(of, pt); 4092 4093 return kernfs_generic_poll(of, pt); 4094 } 4095 4096 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4097 { 4098 return seq_cft(seq)->seq_start(seq, ppos); 4099 } 4100 4101 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4102 { 4103 return seq_cft(seq)->seq_next(seq, v, ppos); 4104 } 4105 4106 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4107 { 4108 if (seq_cft(seq)->seq_stop) 4109 seq_cft(seq)->seq_stop(seq, v); 4110 } 4111 4112 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4113 { 4114 struct cftype *cft = seq_cft(m); 4115 struct cgroup_subsys_state *css = seq_css(m); 4116 4117 if (cft->seq_show) 4118 return cft->seq_show(m, arg); 4119 4120 if (cft->read_u64) 4121 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4122 else if (cft->read_s64) 4123 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4124 else 4125 return -EINVAL; 4126 return 0; 4127 } 4128 4129 static struct kernfs_ops cgroup_kf_single_ops = { 4130 .atomic_write_len = PAGE_SIZE, 4131 .open = cgroup_file_open, 4132 .release = cgroup_file_release, 4133 .write = cgroup_file_write, 4134 .poll = cgroup_file_poll, 4135 .seq_show = cgroup_seqfile_show, 4136 }; 4137 4138 static struct kernfs_ops cgroup_kf_ops = { 4139 .atomic_write_len = PAGE_SIZE, 4140 .open = cgroup_file_open, 4141 .release = cgroup_file_release, 4142 .write = cgroup_file_write, 4143 .poll = cgroup_file_poll, 4144 .seq_start = cgroup_seqfile_start, 4145 .seq_next = cgroup_seqfile_next, 4146 .seq_stop = cgroup_seqfile_stop, 4147 .seq_show = cgroup_seqfile_show, 4148 }; 4149 4150 /* set uid and gid of cgroup dirs and files to that of the creator */ 4151 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4152 { 4153 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4154 .ia_uid = current_fsuid(), 4155 .ia_gid = current_fsgid(), }; 4156 4157 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4158 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4159 return 0; 4160 4161 return kernfs_setattr(kn, &iattr); 4162 } 4163 4164 static void cgroup_file_notify_timer(struct timer_list *timer) 4165 { 4166 cgroup_file_notify(container_of(timer, struct cgroup_file, 4167 notify_timer)); 4168 } 4169 4170 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4171 struct cftype *cft) 4172 { 4173 char name[CGROUP_FILE_NAME_MAX]; 4174 struct kernfs_node *kn; 4175 struct lock_class_key *key = NULL; 4176 int ret; 4177 4178 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4179 key = &cft->lockdep_key; 4180 #endif 4181 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4182 cgroup_file_mode(cft), 4183 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4184 0, cft->kf_ops, cft, 4185 NULL, key); 4186 if (IS_ERR(kn)) 4187 return PTR_ERR(kn); 4188 4189 ret = cgroup_kn_set_ugid(kn); 4190 if (ret) { 4191 kernfs_remove(kn); 4192 return ret; 4193 } 4194 4195 if (cft->file_offset) { 4196 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4197 4198 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4199 4200 spin_lock_irq(&cgroup_file_kn_lock); 4201 cfile->kn = kn; 4202 spin_unlock_irq(&cgroup_file_kn_lock); 4203 } 4204 4205 return 0; 4206 } 4207 4208 /** 4209 * cgroup_addrm_files - add or remove files to a cgroup directory 4210 * @css: the target css 4211 * @cgrp: the target cgroup (usually css->cgroup) 4212 * @cfts: array of cftypes to be added 4213 * @is_add: whether to add or remove 4214 * 4215 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4216 * For removals, this function never fails. 4217 */ 4218 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4219 struct cgroup *cgrp, struct cftype cfts[], 4220 bool is_add) 4221 { 4222 struct cftype *cft, *cft_end = NULL; 4223 int ret = 0; 4224 4225 lockdep_assert_held(&cgroup_mutex); 4226 4227 restart: 4228 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4229 /* does cft->flags tell us to skip this file on @cgrp? */ 4230 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4231 continue; 4232 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4233 continue; 4234 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4235 continue; 4236 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4237 continue; 4238 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4239 continue; 4240 if (is_add) { 4241 ret = cgroup_add_file(css, cgrp, cft); 4242 if (ret) { 4243 pr_warn("%s: failed to add %s, err=%d\n", 4244 __func__, cft->name, ret); 4245 cft_end = cft; 4246 is_add = false; 4247 goto restart; 4248 } 4249 } else { 4250 cgroup_rm_file(cgrp, cft); 4251 } 4252 } 4253 return ret; 4254 } 4255 4256 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4257 { 4258 struct cgroup_subsys *ss = cfts[0].ss; 4259 struct cgroup *root = &ss->root->cgrp; 4260 struct cgroup_subsys_state *css; 4261 int ret = 0; 4262 4263 lockdep_assert_held(&cgroup_mutex); 4264 4265 /* add/rm files for all cgroups created before */ 4266 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4267 struct cgroup *cgrp = css->cgroup; 4268 4269 if (!(css->flags & CSS_VISIBLE)) 4270 continue; 4271 4272 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4273 if (ret) 4274 break; 4275 } 4276 4277 if (is_add && !ret) 4278 kernfs_activate(root->kn); 4279 return ret; 4280 } 4281 4282 static void cgroup_exit_cftypes(struct cftype *cfts) 4283 { 4284 struct cftype *cft; 4285 4286 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4287 /* free copy for custom atomic_write_len, see init_cftypes() */ 4288 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4289 kfree(cft->kf_ops); 4290 cft->kf_ops = NULL; 4291 cft->ss = NULL; 4292 4293 /* revert flags set by cgroup core while adding @cfts */ 4294 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4295 __CFTYPE_ADDED); 4296 } 4297 } 4298 4299 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4300 { 4301 struct cftype *cft; 4302 int ret = 0; 4303 4304 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4305 struct kernfs_ops *kf_ops; 4306 4307 WARN_ON(cft->ss || cft->kf_ops); 4308 4309 if (cft->flags & __CFTYPE_ADDED) { 4310 ret = -EBUSY; 4311 break; 4312 } 4313 4314 if (cft->seq_start) 4315 kf_ops = &cgroup_kf_ops; 4316 else 4317 kf_ops = &cgroup_kf_single_ops; 4318 4319 /* 4320 * Ugh... if @cft wants a custom max_write_len, we need to 4321 * make a copy of kf_ops to set its atomic_write_len. 4322 */ 4323 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4324 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4325 if (!kf_ops) { 4326 ret = -ENOMEM; 4327 break; 4328 } 4329 kf_ops->atomic_write_len = cft->max_write_len; 4330 } 4331 4332 cft->kf_ops = kf_ops; 4333 cft->ss = ss; 4334 cft->flags |= __CFTYPE_ADDED; 4335 } 4336 4337 if (ret) 4338 cgroup_exit_cftypes(cfts); 4339 return ret; 4340 } 4341 4342 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4343 { 4344 lockdep_assert_held(&cgroup_mutex); 4345 4346 list_del(&cfts->node); 4347 cgroup_apply_cftypes(cfts, false); 4348 cgroup_exit_cftypes(cfts); 4349 return 0; 4350 } 4351 4352 /** 4353 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4354 * @cfts: zero-length name terminated array of cftypes 4355 * 4356 * Unregister @cfts. Files described by @cfts are removed from all 4357 * existing cgroups and all future cgroups won't have them either. This 4358 * function can be called anytime whether @cfts' subsys is attached or not. 4359 * 4360 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4361 * registered. 4362 */ 4363 int cgroup_rm_cftypes(struct cftype *cfts) 4364 { 4365 int ret; 4366 4367 if (!cfts || cfts[0].name[0] == '\0') 4368 return 0; 4369 4370 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4371 return -ENOENT; 4372 4373 mutex_lock(&cgroup_mutex); 4374 ret = cgroup_rm_cftypes_locked(cfts); 4375 mutex_unlock(&cgroup_mutex); 4376 return ret; 4377 } 4378 4379 /** 4380 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4381 * @ss: target cgroup subsystem 4382 * @cfts: zero-length name terminated array of cftypes 4383 * 4384 * Register @cfts to @ss. Files described by @cfts are created for all 4385 * existing cgroups to which @ss is attached and all future cgroups will 4386 * have them too. This function can be called anytime whether @ss is 4387 * attached or not. 4388 * 4389 * Returns 0 on successful registration, -errno on failure. Note that this 4390 * function currently returns 0 as long as @cfts registration is successful 4391 * even if some file creation attempts on existing cgroups fail. 4392 */ 4393 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4394 { 4395 int ret; 4396 4397 if (!cgroup_ssid_enabled(ss->id)) 4398 return 0; 4399 4400 if (!cfts || cfts[0].name[0] == '\0') 4401 return 0; 4402 4403 ret = cgroup_init_cftypes(ss, cfts); 4404 if (ret) 4405 return ret; 4406 4407 mutex_lock(&cgroup_mutex); 4408 4409 list_add_tail(&cfts->node, &ss->cfts); 4410 ret = cgroup_apply_cftypes(cfts, true); 4411 if (ret) 4412 cgroup_rm_cftypes_locked(cfts); 4413 4414 mutex_unlock(&cgroup_mutex); 4415 return ret; 4416 } 4417 4418 /** 4419 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4420 * @ss: target cgroup subsystem 4421 * @cfts: zero-length name terminated array of cftypes 4422 * 4423 * Similar to cgroup_add_cftypes() but the added files are only used for 4424 * the default hierarchy. 4425 */ 4426 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4427 { 4428 struct cftype *cft; 4429 4430 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4431 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4432 return cgroup_add_cftypes(ss, cfts); 4433 } 4434 4435 /** 4436 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4437 * @ss: target cgroup subsystem 4438 * @cfts: zero-length name terminated array of cftypes 4439 * 4440 * Similar to cgroup_add_cftypes() but the added files are only used for 4441 * the legacy hierarchies. 4442 */ 4443 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4444 { 4445 struct cftype *cft; 4446 4447 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4448 cft->flags |= __CFTYPE_NOT_ON_DFL; 4449 return cgroup_add_cftypes(ss, cfts); 4450 } 4451 4452 /** 4453 * cgroup_file_notify - generate a file modified event for a cgroup_file 4454 * @cfile: target cgroup_file 4455 * 4456 * @cfile must have been obtained by setting cftype->file_offset. 4457 */ 4458 void cgroup_file_notify(struct cgroup_file *cfile) 4459 { 4460 unsigned long flags; 4461 4462 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4463 if (cfile->kn) { 4464 unsigned long last = cfile->notified_at; 4465 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4466 4467 if (time_in_range(jiffies, last, next)) { 4468 timer_reduce(&cfile->notify_timer, next); 4469 } else { 4470 kernfs_notify(cfile->kn); 4471 cfile->notified_at = jiffies; 4472 } 4473 } 4474 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4475 } 4476 4477 /** 4478 * cgroup_file_show - show or hide a hidden cgroup file 4479 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4480 * @show: whether to show or hide 4481 */ 4482 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4483 { 4484 struct kernfs_node *kn; 4485 4486 spin_lock_irq(&cgroup_file_kn_lock); 4487 kn = cfile->kn; 4488 kernfs_get(kn); 4489 spin_unlock_irq(&cgroup_file_kn_lock); 4490 4491 if (kn) 4492 kernfs_show(kn, show); 4493 4494 kernfs_put(kn); 4495 } 4496 4497 /** 4498 * css_next_child - find the next child of a given css 4499 * @pos: the current position (%NULL to initiate traversal) 4500 * @parent: css whose children to walk 4501 * 4502 * This function returns the next child of @parent and should be called 4503 * under either cgroup_mutex or RCU read lock. The only requirement is 4504 * that @parent and @pos are accessible. The next sibling is guaranteed to 4505 * be returned regardless of their states. 4506 * 4507 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4508 * css which finished ->css_online() is guaranteed to be visible in the 4509 * future iterations and will stay visible until the last reference is put. 4510 * A css which hasn't finished ->css_online() or already finished 4511 * ->css_offline() may show up during traversal. It's each subsystem's 4512 * responsibility to synchronize against on/offlining. 4513 */ 4514 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4515 struct cgroup_subsys_state *parent) 4516 { 4517 struct cgroup_subsys_state *next; 4518 4519 cgroup_assert_mutex_or_rcu_locked(); 4520 4521 /* 4522 * @pos could already have been unlinked from the sibling list. 4523 * Once a cgroup is removed, its ->sibling.next is no longer 4524 * updated when its next sibling changes. CSS_RELEASED is set when 4525 * @pos is taken off list, at which time its next pointer is valid, 4526 * and, as releases are serialized, the one pointed to by the next 4527 * pointer is guaranteed to not have started release yet. This 4528 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4529 * critical section, the one pointed to by its next pointer is 4530 * guaranteed to not have finished its RCU grace period even if we 4531 * have dropped rcu_read_lock() in-between iterations. 4532 * 4533 * If @pos has CSS_RELEASED set, its next pointer can't be 4534 * dereferenced; however, as each css is given a monotonically 4535 * increasing unique serial number and always appended to the 4536 * sibling list, the next one can be found by walking the parent's 4537 * children until the first css with higher serial number than 4538 * @pos's. While this path can be slower, it happens iff iteration 4539 * races against release and the race window is very small. 4540 */ 4541 if (!pos) { 4542 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4543 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4544 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4545 } else { 4546 list_for_each_entry_rcu(next, &parent->children, sibling, 4547 lockdep_is_held(&cgroup_mutex)) 4548 if (next->serial_nr > pos->serial_nr) 4549 break; 4550 } 4551 4552 /* 4553 * @next, if not pointing to the head, can be dereferenced and is 4554 * the next sibling. 4555 */ 4556 if (&next->sibling != &parent->children) 4557 return next; 4558 return NULL; 4559 } 4560 4561 /** 4562 * css_next_descendant_pre - find the next descendant for pre-order walk 4563 * @pos: the current position (%NULL to initiate traversal) 4564 * @root: css whose descendants to walk 4565 * 4566 * To be used by css_for_each_descendant_pre(). Find the next descendant 4567 * to visit for pre-order traversal of @root's descendants. @root is 4568 * included in the iteration and the first node to be visited. 4569 * 4570 * While this function requires cgroup_mutex or RCU read locking, it 4571 * doesn't require the whole traversal to be contained in a single critical 4572 * section. This function will return the correct next descendant as long 4573 * as both @pos and @root are accessible and @pos is a descendant of @root. 4574 * 4575 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4576 * css which finished ->css_online() is guaranteed to be visible in the 4577 * future iterations and will stay visible until the last reference is put. 4578 * A css which hasn't finished ->css_online() or already finished 4579 * ->css_offline() may show up during traversal. It's each subsystem's 4580 * responsibility to synchronize against on/offlining. 4581 */ 4582 struct cgroup_subsys_state * 4583 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4584 struct cgroup_subsys_state *root) 4585 { 4586 struct cgroup_subsys_state *next; 4587 4588 cgroup_assert_mutex_or_rcu_locked(); 4589 4590 /* if first iteration, visit @root */ 4591 if (!pos) 4592 return root; 4593 4594 /* visit the first child if exists */ 4595 next = css_next_child(NULL, pos); 4596 if (next) 4597 return next; 4598 4599 /* no child, visit my or the closest ancestor's next sibling */ 4600 while (pos != root) { 4601 next = css_next_child(pos, pos->parent); 4602 if (next) 4603 return next; 4604 pos = pos->parent; 4605 } 4606 4607 return NULL; 4608 } 4609 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4610 4611 /** 4612 * css_rightmost_descendant - return the rightmost descendant of a css 4613 * @pos: css of interest 4614 * 4615 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4616 * is returned. This can be used during pre-order traversal to skip 4617 * subtree of @pos. 4618 * 4619 * While this function requires cgroup_mutex or RCU read locking, it 4620 * doesn't require the whole traversal to be contained in a single critical 4621 * section. This function will return the correct rightmost descendant as 4622 * long as @pos is accessible. 4623 */ 4624 struct cgroup_subsys_state * 4625 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4626 { 4627 struct cgroup_subsys_state *last, *tmp; 4628 4629 cgroup_assert_mutex_or_rcu_locked(); 4630 4631 do { 4632 last = pos; 4633 /* ->prev isn't RCU safe, walk ->next till the end */ 4634 pos = NULL; 4635 css_for_each_child(tmp, last) 4636 pos = tmp; 4637 } while (pos); 4638 4639 return last; 4640 } 4641 4642 static struct cgroup_subsys_state * 4643 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4644 { 4645 struct cgroup_subsys_state *last; 4646 4647 do { 4648 last = pos; 4649 pos = css_next_child(NULL, pos); 4650 } while (pos); 4651 4652 return last; 4653 } 4654 4655 /** 4656 * css_next_descendant_post - find the next descendant for post-order walk 4657 * @pos: the current position (%NULL to initiate traversal) 4658 * @root: css whose descendants to walk 4659 * 4660 * To be used by css_for_each_descendant_post(). Find the next descendant 4661 * to visit for post-order traversal of @root's descendants. @root is 4662 * included in the iteration and the last node to be visited. 4663 * 4664 * While this function requires cgroup_mutex or RCU read locking, it 4665 * doesn't require the whole traversal to be contained in a single critical 4666 * section. This function will return the correct next descendant as long 4667 * as both @pos and @cgroup are accessible and @pos is a descendant of 4668 * @cgroup. 4669 * 4670 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4671 * css which finished ->css_online() is guaranteed to be visible in the 4672 * future iterations and will stay visible until the last reference is put. 4673 * A css which hasn't finished ->css_online() or already finished 4674 * ->css_offline() may show up during traversal. It's each subsystem's 4675 * responsibility to synchronize against on/offlining. 4676 */ 4677 struct cgroup_subsys_state * 4678 css_next_descendant_post(struct cgroup_subsys_state *pos, 4679 struct cgroup_subsys_state *root) 4680 { 4681 struct cgroup_subsys_state *next; 4682 4683 cgroup_assert_mutex_or_rcu_locked(); 4684 4685 /* if first iteration, visit leftmost descendant which may be @root */ 4686 if (!pos) 4687 return css_leftmost_descendant(root); 4688 4689 /* if we visited @root, we're done */ 4690 if (pos == root) 4691 return NULL; 4692 4693 /* if there's an unvisited sibling, visit its leftmost descendant */ 4694 next = css_next_child(pos, pos->parent); 4695 if (next) 4696 return css_leftmost_descendant(next); 4697 4698 /* no sibling left, visit parent */ 4699 return pos->parent; 4700 } 4701 4702 /** 4703 * css_has_online_children - does a css have online children 4704 * @css: the target css 4705 * 4706 * Returns %true if @css has any online children; otherwise, %false. This 4707 * function can be called from any context but the caller is responsible 4708 * for synchronizing against on/offlining as necessary. 4709 */ 4710 bool css_has_online_children(struct cgroup_subsys_state *css) 4711 { 4712 struct cgroup_subsys_state *child; 4713 bool ret = false; 4714 4715 rcu_read_lock(); 4716 css_for_each_child(child, css) { 4717 if (child->flags & CSS_ONLINE) { 4718 ret = true; 4719 break; 4720 } 4721 } 4722 rcu_read_unlock(); 4723 return ret; 4724 } 4725 4726 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4727 { 4728 struct list_head *l; 4729 struct cgrp_cset_link *link; 4730 struct css_set *cset; 4731 4732 lockdep_assert_held(&css_set_lock); 4733 4734 /* find the next threaded cset */ 4735 if (it->tcset_pos) { 4736 l = it->tcset_pos->next; 4737 4738 if (l != it->tcset_head) { 4739 it->tcset_pos = l; 4740 return container_of(l, struct css_set, 4741 threaded_csets_node); 4742 } 4743 4744 it->tcset_pos = NULL; 4745 } 4746 4747 /* find the next cset */ 4748 l = it->cset_pos; 4749 l = l->next; 4750 if (l == it->cset_head) { 4751 it->cset_pos = NULL; 4752 return NULL; 4753 } 4754 4755 if (it->ss) { 4756 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4757 } else { 4758 link = list_entry(l, struct cgrp_cset_link, cset_link); 4759 cset = link->cset; 4760 } 4761 4762 it->cset_pos = l; 4763 4764 /* initialize threaded css_set walking */ 4765 if (it->flags & CSS_TASK_ITER_THREADED) { 4766 if (it->cur_dcset) 4767 put_css_set_locked(it->cur_dcset); 4768 it->cur_dcset = cset; 4769 get_css_set(cset); 4770 4771 it->tcset_head = &cset->threaded_csets; 4772 it->tcset_pos = &cset->threaded_csets; 4773 } 4774 4775 return cset; 4776 } 4777 4778 /** 4779 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4780 * @it: the iterator to advance 4781 * 4782 * Advance @it to the next css_set to walk. 4783 */ 4784 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4785 { 4786 struct css_set *cset; 4787 4788 lockdep_assert_held(&css_set_lock); 4789 4790 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4791 while ((cset = css_task_iter_next_css_set(it))) { 4792 if (!list_empty(&cset->tasks)) { 4793 it->cur_tasks_head = &cset->tasks; 4794 break; 4795 } else if (!list_empty(&cset->mg_tasks)) { 4796 it->cur_tasks_head = &cset->mg_tasks; 4797 break; 4798 } else if (!list_empty(&cset->dying_tasks)) { 4799 it->cur_tasks_head = &cset->dying_tasks; 4800 break; 4801 } 4802 } 4803 if (!cset) { 4804 it->task_pos = NULL; 4805 return; 4806 } 4807 it->task_pos = it->cur_tasks_head->next; 4808 4809 /* 4810 * We don't keep css_sets locked across iteration steps and thus 4811 * need to take steps to ensure that iteration can be resumed after 4812 * the lock is re-acquired. Iteration is performed at two levels - 4813 * css_sets and tasks in them. 4814 * 4815 * Once created, a css_set never leaves its cgroup lists, so a 4816 * pinned css_set is guaranteed to stay put and we can resume 4817 * iteration afterwards. 4818 * 4819 * Tasks may leave @cset across iteration steps. This is resolved 4820 * by registering each iterator with the css_set currently being 4821 * walked and making css_set_move_task() advance iterators whose 4822 * next task is leaving. 4823 */ 4824 if (it->cur_cset) { 4825 list_del(&it->iters_node); 4826 put_css_set_locked(it->cur_cset); 4827 } 4828 get_css_set(cset); 4829 it->cur_cset = cset; 4830 list_add(&it->iters_node, &cset->task_iters); 4831 } 4832 4833 static void css_task_iter_skip(struct css_task_iter *it, 4834 struct task_struct *task) 4835 { 4836 lockdep_assert_held(&css_set_lock); 4837 4838 if (it->task_pos == &task->cg_list) { 4839 it->task_pos = it->task_pos->next; 4840 it->flags |= CSS_TASK_ITER_SKIPPED; 4841 } 4842 } 4843 4844 static void css_task_iter_advance(struct css_task_iter *it) 4845 { 4846 struct task_struct *task; 4847 4848 lockdep_assert_held(&css_set_lock); 4849 repeat: 4850 if (it->task_pos) { 4851 /* 4852 * Advance iterator to find next entry. We go through cset 4853 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4854 * the next cset. 4855 */ 4856 if (it->flags & CSS_TASK_ITER_SKIPPED) 4857 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4858 else 4859 it->task_pos = it->task_pos->next; 4860 4861 if (it->task_pos == &it->cur_cset->tasks) { 4862 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4863 it->task_pos = it->cur_tasks_head->next; 4864 } 4865 if (it->task_pos == &it->cur_cset->mg_tasks) { 4866 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4867 it->task_pos = it->cur_tasks_head->next; 4868 } 4869 if (it->task_pos == &it->cur_cset->dying_tasks) 4870 css_task_iter_advance_css_set(it); 4871 } else { 4872 /* called from start, proceed to the first cset */ 4873 css_task_iter_advance_css_set(it); 4874 } 4875 4876 if (!it->task_pos) 4877 return; 4878 4879 task = list_entry(it->task_pos, struct task_struct, cg_list); 4880 4881 if (it->flags & CSS_TASK_ITER_PROCS) { 4882 /* if PROCS, skip over tasks which aren't group leaders */ 4883 if (!thread_group_leader(task)) 4884 goto repeat; 4885 4886 /* and dying leaders w/o live member threads */ 4887 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4888 !atomic_read(&task->signal->live)) 4889 goto repeat; 4890 } else { 4891 /* skip all dying ones */ 4892 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4893 goto repeat; 4894 } 4895 } 4896 4897 /** 4898 * css_task_iter_start - initiate task iteration 4899 * @css: the css to walk tasks of 4900 * @flags: CSS_TASK_ITER_* flags 4901 * @it: the task iterator to use 4902 * 4903 * Initiate iteration through the tasks of @css. The caller can call 4904 * css_task_iter_next() to walk through the tasks until the function 4905 * returns NULL. On completion of iteration, css_task_iter_end() must be 4906 * called. 4907 */ 4908 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4909 struct css_task_iter *it) 4910 { 4911 memset(it, 0, sizeof(*it)); 4912 4913 spin_lock_irq(&css_set_lock); 4914 4915 it->ss = css->ss; 4916 it->flags = flags; 4917 4918 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4919 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4920 else 4921 it->cset_pos = &css->cgroup->cset_links; 4922 4923 it->cset_head = it->cset_pos; 4924 4925 css_task_iter_advance(it); 4926 4927 spin_unlock_irq(&css_set_lock); 4928 } 4929 4930 /** 4931 * css_task_iter_next - return the next task for the iterator 4932 * @it: the task iterator being iterated 4933 * 4934 * The "next" function for task iteration. @it should have been 4935 * initialized via css_task_iter_start(). Returns NULL when the iteration 4936 * reaches the end. 4937 */ 4938 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4939 { 4940 if (it->cur_task) { 4941 put_task_struct(it->cur_task); 4942 it->cur_task = NULL; 4943 } 4944 4945 spin_lock_irq(&css_set_lock); 4946 4947 /* @it may be half-advanced by skips, finish advancing */ 4948 if (it->flags & CSS_TASK_ITER_SKIPPED) 4949 css_task_iter_advance(it); 4950 4951 if (it->task_pos) { 4952 it->cur_task = list_entry(it->task_pos, struct task_struct, 4953 cg_list); 4954 get_task_struct(it->cur_task); 4955 css_task_iter_advance(it); 4956 } 4957 4958 spin_unlock_irq(&css_set_lock); 4959 4960 return it->cur_task; 4961 } 4962 4963 /** 4964 * css_task_iter_end - finish task iteration 4965 * @it: the task iterator to finish 4966 * 4967 * Finish task iteration started by css_task_iter_start(). 4968 */ 4969 void css_task_iter_end(struct css_task_iter *it) 4970 { 4971 if (it->cur_cset) { 4972 spin_lock_irq(&css_set_lock); 4973 list_del(&it->iters_node); 4974 put_css_set_locked(it->cur_cset); 4975 spin_unlock_irq(&css_set_lock); 4976 } 4977 4978 if (it->cur_dcset) 4979 put_css_set(it->cur_dcset); 4980 4981 if (it->cur_task) 4982 put_task_struct(it->cur_task); 4983 } 4984 4985 static void cgroup_procs_release(struct kernfs_open_file *of) 4986 { 4987 struct cgroup_file_ctx *ctx = of->priv; 4988 4989 if (ctx->procs.started) 4990 css_task_iter_end(&ctx->procs.iter); 4991 } 4992 4993 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4994 { 4995 struct kernfs_open_file *of = s->private; 4996 struct cgroup_file_ctx *ctx = of->priv; 4997 4998 if (pos) 4999 (*pos)++; 5000 5001 return css_task_iter_next(&ctx->procs.iter); 5002 } 5003 5004 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5005 unsigned int iter_flags) 5006 { 5007 struct kernfs_open_file *of = s->private; 5008 struct cgroup *cgrp = seq_css(s)->cgroup; 5009 struct cgroup_file_ctx *ctx = of->priv; 5010 struct css_task_iter *it = &ctx->procs.iter; 5011 5012 /* 5013 * When a seq_file is seeked, it's always traversed sequentially 5014 * from position 0, so we can simply keep iterating on !0 *pos. 5015 */ 5016 if (!ctx->procs.started) { 5017 if (WARN_ON_ONCE((*pos))) 5018 return ERR_PTR(-EINVAL); 5019 css_task_iter_start(&cgrp->self, iter_flags, it); 5020 ctx->procs.started = true; 5021 } else if (!(*pos)) { 5022 css_task_iter_end(it); 5023 css_task_iter_start(&cgrp->self, iter_flags, it); 5024 } else 5025 return it->cur_task; 5026 5027 return cgroup_procs_next(s, NULL, NULL); 5028 } 5029 5030 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5031 { 5032 struct cgroup *cgrp = seq_css(s)->cgroup; 5033 5034 /* 5035 * All processes of a threaded subtree belong to the domain cgroup 5036 * of the subtree. Only threads can be distributed across the 5037 * subtree. Reject reads on cgroup.procs in the subtree proper. 5038 * They're always empty anyway. 5039 */ 5040 if (cgroup_is_threaded(cgrp)) 5041 return ERR_PTR(-EOPNOTSUPP); 5042 5043 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5044 CSS_TASK_ITER_THREADED); 5045 } 5046 5047 static int cgroup_procs_show(struct seq_file *s, void *v) 5048 { 5049 seq_printf(s, "%d\n", task_pid_vnr(v)); 5050 return 0; 5051 } 5052 5053 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5054 { 5055 int ret; 5056 struct inode *inode; 5057 5058 lockdep_assert_held(&cgroup_mutex); 5059 5060 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5061 if (!inode) 5062 return -ENOMEM; 5063 5064 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 5065 iput(inode); 5066 return ret; 5067 } 5068 5069 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5070 struct cgroup *dst_cgrp, 5071 struct super_block *sb, 5072 struct cgroup_namespace *ns) 5073 { 5074 struct cgroup *com_cgrp = src_cgrp; 5075 int ret; 5076 5077 lockdep_assert_held(&cgroup_mutex); 5078 5079 /* find the common ancestor */ 5080 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5081 com_cgrp = cgroup_parent(com_cgrp); 5082 5083 /* %current should be authorized to migrate to the common ancestor */ 5084 ret = cgroup_may_write(com_cgrp, sb); 5085 if (ret) 5086 return ret; 5087 5088 /* 5089 * If namespaces are delegation boundaries, %current must be able 5090 * to see both source and destination cgroups from its namespace. 5091 */ 5092 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5093 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5094 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5095 return -ENOENT; 5096 5097 return 0; 5098 } 5099 5100 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5101 struct cgroup *dst_cgrp, 5102 struct super_block *sb, bool threadgroup, 5103 struct cgroup_namespace *ns) 5104 { 5105 int ret = 0; 5106 5107 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5108 if (ret) 5109 return ret; 5110 5111 ret = cgroup_migrate_vet_dst(dst_cgrp); 5112 if (ret) 5113 return ret; 5114 5115 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5116 ret = -EOPNOTSUPP; 5117 5118 return ret; 5119 } 5120 5121 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5122 bool threadgroup) 5123 { 5124 struct cgroup_file_ctx *ctx = of->priv; 5125 struct cgroup *src_cgrp, *dst_cgrp; 5126 struct task_struct *task; 5127 const struct cred *saved_cred; 5128 ssize_t ret; 5129 bool threadgroup_locked; 5130 5131 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5132 if (!dst_cgrp) 5133 return -ENODEV; 5134 5135 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5136 ret = PTR_ERR_OR_ZERO(task); 5137 if (ret) 5138 goto out_unlock; 5139 5140 /* find the source cgroup */ 5141 spin_lock_irq(&css_set_lock); 5142 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5143 spin_unlock_irq(&css_set_lock); 5144 5145 /* 5146 * Process and thread migrations follow same delegation rule. Check 5147 * permissions using the credentials from file open to protect against 5148 * inherited fd attacks. 5149 */ 5150 saved_cred = override_creds(of->file->f_cred); 5151 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5152 of->file->f_path.dentry->d_sb, 5153 threadgroup, ctx->ns); 5154 revert_creds(saved_cred); 5155 if (ret) 5156 goto out_finish; 5157 5158 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5159 5160 out_finish: 5161 cgroup_procs_write_finish(task, threadgroup_locked); 5162 out_unlock: 5163 cgroup_kn_unlock(of->kn); 5164 5165 return ret; 5166 } 5167 5168 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5169 char *buf, size_t nbytes, loff_t off) 5170 { 5171 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5172 } 5173 5174 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5175 { 5176 return __cgroup_procs_start(s, pos, 0); 5177 } 5178 5179 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5180 char *buf, size_t nbytes, loff_t off) 5181 { 5182 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5183 } 5184 5185 /* cgroup core interface files for the default hierarchy */ 5186 static struct cftype cgroup_base_files[] = { 5187 { 5188 .name = "cgroup.type", 5189 .flags = CFTYPE_NOT_ON_ROOT, 5190 .seq_show = cgroup_type_show, 5191 .write = cgroup_type_write, 5192 }, 5193 { 5194 .name = "cgroup.procs", 5195 .flags = CFTYPE_NS_DELEGATABLE, 5196 .file_offset = offsetof(struct cgroup, procs_file), 5197 .release = cgroup_procs_release, 5198 .seq_start = cgroup_procs_start, 5199 .seq_next = cgroup_procs_next, 5200 .seq_show = cgroup_procs_show, 5201 .write = cgroup_procs_write, 5202 }, 5203 { 5204 .name = "cgroup.threads", 5205 .flags = CFTYPE_NS_DELEGATABLE, 5206 .release = cgroup_procs_release, 5207 .seq_start = cgroup_threads_start, 5208 .seq_next = cgroup_procs_next, 5209 .seq_show = cgroup_procs_show, 5210 .write = cgroup_threads_write, 5211 }, 5212 { 5213 .name = "cgroup.controllers", 5214 .seq_show = cgroup_controllers_show, 5215 }, 5216 { 5217 .name = "cgroup.subtree_control", 5218 .flags = CFTYPE_NS_DELEGATABLE, 5219 .seq_show = cgroup_subtree_control_show, 5220 .write = cgroup_subtree_control_write, 5221 }, 5222 { 5223 .name = "cgroup.events", 5224 .flags = CFTYPE_NOT_ON_ROOT, 5225 .file_offset = offsetof(struct cgroup, events_file), 5226 .seq_show = cgroup_events_show, 5227 }, 5228 { 5229 .name = "cgroup.max.descendants", 5230 .seq_show = cgroup_max_descendants_show, 5231 .write = cgroup_max_descendants_write, 5232 }, 5233 { 5234 .name = "cgroup.max.depth", 5235 .seq_show = cgroup_max_depth_show, 5236 .write = cgroup_max_depth_write, 5237 }, 5238 { 5239 .name = "cgroup.stat", 5240 .seq_show = cgroup_stat_show, 5241 }, 5242 { 5243 .name = "cgroup.freeze", 5244 .flags = CFTYPE_NOT_ON_ROOT, 5245 .seq_show = cgroup_freeze_show, 5246 .write = cgroup_freeze_write, 5247 }, 5248 { 5249 .name = "cgroup.kill", 5250 .flags = CFTYPE_NOT_ON_ROOT, 5251 .write = cgroup_kill_write, 5252 }, 5253 { 5254 .name = "cpu.stat", 5255 .seq_show = cpu_stat_show, 5256 }, 5257 { } /* terminate */ 5258 }; 5259 5260 static struct cftype cgroup_psi_files[] = { 5261 #ifdef CONFIG_PSI 5262 { 5263 .name = "io.pressure", 5264 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5265 .seq_show = cgroup_io_pressure_show, 5266 .write = cgroup_io_pressure_write, 5267 .poll = cgroup_pressure_poll, 5268 .release = cgroup_pressure_release, 5269 }, 5270 { 5271 .name = "memory.pressure", 5272 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5273 .seq_show = cgroup_memory_pressure_show, 5274 .write = cgroup_memory_pressure_write, 5275 .poll = cgroup_pressure_poll, 5276 .release = cgroup_pressure_release, 5277 }, 5278 { 5279 .name = "cpu.pressure", 5280 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5281 .seq_show = cgroup_cpu_pressure_show, 5282 .write = cgroup_cpu_pressure_write, 5283 .poll = cgroup_pressure_poll, 5284 .release = cgroup_pressure_release, 5285 }, 5286 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5287 { 5288 .name = "irq.pressure", 5289 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5290 .seq_show = cgroup_irq_pressure_show, 5291 .write = cgroup_irq_pressure_write, 5292 .poll = cgroup_pressure_poll, 5293 .release = cgroup_pressure_release, 5294 }, 5295 #endif 5296 { 5297 .name = "cgroup.pressure", 5298 .seq_show = cgroup_pressure_show, 5299 .write = cgroup_pressure_write, 5300 }, 5301 #endif /* CONFIG_PSI */ 5302 { } /* terminate */ 5303 }; 5304 5305 /* 5306 * css destruction is four-stage process. 5307 * 5308 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5309 * Implemented in kill_css(). 5310 * 5311 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5312 * and thus css_tryget_online() is guaranteed to fail, the css can be 5313 * offlined by invoking offline_css(). After offlining, the base ref is 5314 * put. Implemented in css_killed_work_fn(). 5315 * 5316 * 3. When the percpu_ref reaches zero, the only possible remaining 5317 * accessors are inside RCU read sections. css_release() schedules the 5318 * RCU callback. 5319 * 5320 * 4. After the grace period, the css can be freed. Implemented in 5321 * css_free_work_fn(). 5322 * 5323 * It is actually hairier because both step 2 and 4 require process context 5324 * and thus involve punting to css->destroy_work adding two additional 5325 * steps to the already complex sequence. 5326 */ 5327 static void css_free_rwork_fn(struct work_struct *work) 5328 { 5329 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5330 struct cgroup_subsys_state, destroy_rwork); 5331 struct cgroup_subsys *ss = css->ss; 5332 struct cgroup *cgrp = css->cgroup; 5333 5334 percpu_ref_exit(&css->refcnt); 5335 5336 if (ss) { 5337 /* css free path */ 5338 struct cgroup_subsys_state *parent = css->parent; 5339 int id = css->id; 5340 5341 ss->css_free(css); 5342 cgroup_idr_remove(&ss->css_idr, id); 5343 cgroup_put(cgrp); 5344 5345 if (parent) 5346 css_put(parent); 5347 } else { 5348 /* cgroup free path */ 5349 atomic_dec(&cgrp->root->nr_cgrps); 5350 cgroup1_pidlist_destroy_all(cgrp); 5351 cancel_work_sync(&cgrp->release_agent_work); 5352 5353 if (cgroup_parent(cgrp)) { 5354 /* 5355 * We get a ref to the parent, and put the ref when 5356 * this cgroup is being freed, so it's guaranteed 5357 * that the parent won't be destroyed before its 5358 * children. 5359 */ 5360 cgroup_put(cgroup_parent(cgrp)); 5361 kernfs_put(cgrp->kn); 5362 psi_cgroup_free(cgrp); 5363 cgroup_rstat_exit(cgrp); 5364 kfree(cgrp); 5365 } else { 5366 /* 5367 * This is root cgroup's refcnt reaching zero, 5368 * which indicates that the root should be 5369 * released. 5370 */ 5371 cgroup_destroy_root(cgrp->root); 5372 } 5373 } 5374 } 5375 5376 static void css_release_work_fn(struct work_struct *work) 5377 { 5378 struct cgroup_subsys_state *css = 5379 container_of(work, struct cgroup_subsys_state, destroy_work); 5380 struct cgroup_subsys *ss = css->ss; 5381 struct cgroup *cgrp = css->cgroup; 5382 5383 mutex_lock(&cgroup_mutex); 5384 5385 css->flags |= CSS_RELEASED; 5386 list_del_rcu(&css->sibling); 5387 5388 if (ss) { 5389 /* css release path */ 5390 if (!list_empty(&css->rstat_css_node)) { 5391 cgroup_rstat_flush(cgrp); 5392 list_del_rcu(&css->rstat_css_node); 5393 } 5394 5395 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5396 if (ss->css_released) 5397 ss->css_released(css); 5398 } else { 5399 struct cgroup *tcgrp; 5400 5401 /* cgroup release path */ 5402 TRACE_CGROUP_PATH(release, cgrp); 5403 5404 cgroup_rstat_flush(cgrp); 5405 5406 spin_lock_irq(&css_set_lock); 5407 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5408 tcgrp = cgroup_parent(tcgrp)) 5409 tcgrp->nr_dying_descendants--; 5410 spin_unlock_irq(&css_set_lock); 5411 5412 /* 5413 * There are two control paths which try to determine 5414 * cgroup from dentry without going through kernfs - 5415 * cgroupstats_build() and css_tryget_online_from_dir(). 5416 * Those are supported by RCU protecting clearing of 5417 * cgrp->kn->priv backpointer. 5418 */ 5419 if (cgrp->kn) 5420 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5421 NULL); 5422 } 5423 5424 mutex_unlock(&cgroup_mutex); 5425 5426 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5427 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5428 } 5429 5430 static void css_release(struct percpu_ref *ref) 5431 { 5432 struct cgroup_subsys_state *css = 5433 container_of(ref, struct cgroup_subsys_state, refcnt); 5434 5435 INIT_WORK(&css->destroy_work, css_release_work_fn); 5436 queue_work(cgroup_destroy_wq, &css->destroy_work); 5437 } 5438 5439 static void init_and_link_css(struct cgroup_subsys_state *css, 5440 struct cgroup_subsys *ss, struct cgroup *cgrp) 5441 { 5442 lockdep_assert_held(&cgroup_mutex); 5443 5444 cgroup_get_live(cgrp); 5445 5446 memset(css, 0, sizeof(*css)); 5447 css->cgroup = cgrp; 5448 css->ss = ss; 5449 css->id = -1; 5450 INIT_LIST_HEAD(&css->sibling); 5451 INIT_LIST_HEAD(&css->children); 5452 INIT_LIST_HEAD(&css->rstat_css_node); 5453 css->serial_nr = css_serial_nr_next++; 5454 atomic_set(&css->online_cnt, 0); 5455 5456 if (cgroup_parent(cgrp)) { 5457 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5458 css_get(css->parent); 5459 } 5460 5461 if (ss->css_rstat_flush) 5462 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5463 5464 BUG_ON(cgroup_css(cgrp, ss)); 5465 } 5466 5467 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5468 static int online_css(struct cgroup_subsys_state *css) 5469 { 5470 struct cgroup_subsys *ss = css->ss; 5471 int ret = 0; 5472 5473 lockdep_assert_held(&cgroup_mutex); 5474 5475 if (ss->css_online) 5476 ret = ss->css_online(css); 5477 if (!ret) { 5478 css->flags |= CSS_ONLINE; 5479 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5480 5481 atomic_inc(&css->online_cnt); 5482 if (css->parent) 5483 atomic_inc(&css->parent->online_cnt); 5484 } 5485 return ret; 5486 } 5487 5488 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5489 static void offline_css(struct cgroup_subsys_state *css) 5490 { 5491 struct cgroup_subsys *ss = css->ss; 5492 5493 lockdep_assert_held(&cgroup_mutex); 5494 5495 if (!(css->flags & CSS_ONLINE)) 5496 return; 5497 5498 if (ss->css_offline) 5499 ss->css_offline(css); 5500 5501 css->flags &= ~CSS_ONLINE; 5502 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5503 5504 wake_up_all(&css->cgroup->offline_waitq); 5505 } 5506 5507 /** 5508 * css_create - create a cgroup_subsys_state 5509 * @cgrp: the cgroup new css will be associated with 5510 * @ss: the subsys of new css 5511 * 5512 * Create a new css associated with @cgrp - @ss pair. On success, the new 5513 * css is online and installed in @cgrp. This function doesn't create the 5514 * interface files. Returns 0 on success, -errno on failure. 5515 */ 5516 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5517 struct cgroup_subsys *ss) 5518 { 5519 struct cgroup *parent = cgroup_parent(cgrp); 5520 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5521 struct cgroup_subsys_state *css; 5522 int err; 5523 5524 lockdep_assert_held(&cgroup_mutex); 5525 5526 css = ss->css_alloc(parent_css); 5527 if (!css) 5528 css = ERR_PTR(-ENOMEM); 5529 if (IS_ERR(css)) 5530 return css; 5531 5532 init_and_link_css(css, ss, cgrp); 5533 5534 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5535 if (err) 5536 goto err_free_css; 5537 5538 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5539 if (err < 0) 5540 goto err_free_css; 5541 css->id = err; 5542 5543 /* @css is ready to be brought online now, make it visible */ 5544 list_add_tail_rcu(&css->sibling, &parent_css->children); 5545 cgroup_idr_replace(&ss->css_idr, css, css->id); 5546 5547 err = online_css(css); 5548 if (err) 5549 goto err_list_del; 5550 5551 return css; 5552 5553 err_list_del: 5554 list_del_rcu(&css->sibling); 5555 err_free_css: 5556 list_del_rcu(&css->rstat_css_node); 5557 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5558 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5559 return ERR_PTR(err); 5560 } 5561 5562 /* 5563 * The returned cgroup is fully initialized including its control mask, but 5564 * it isn't associated with its kernfs_node and doesn't have the control 5565 * mask applied. 5566 */ 5567 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5568 umode_t mode) 5569 { 5570 struct cgroup_root *root = parent->root; 5571 struct cgroup *cgrp, *tcgrp; 5572 struct kernfs_node *kn; 5573 int level = parent->level + 1; 5574 int ret; 5575 5576 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5577 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5578 if (!cgrp) 5579 return ERR_PTR(-ENOMEM); 5580 5581 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5582 if (ret) 5583 goto out_free_cgrp; 5584 5585 ret = cgroup_rstat_init(cgrp); 5586 if (ret) 5587 goto out_cancel_ref; 5588 5589 /* create the directory */ 5590 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5591 if (IS_ERR(kn)) { 5592 ret = PTR_ERR(kn); 5593 goto out_stat_exit; 5594 } 5595 cgrp->kn = kn; 5596 5597 init_cgroup_housekeeping(cgrp); 5598 5599 cgrp->self.parent = &parent->self; 5600 cgrp->root = root; 5601 cgrp->level = level; 5602 5603 ret = psi_cgroup_alloc(cgrp); 5604 if (ret) 5605 goto out_kernfs_remove; 5606 5607 ret = cgroup_bpf_inherit(cgrp); 5608 if (ret) 5609 goto out_psi_free; 5610 5611 /* 5612 * New cgroup inherits effective freeze counter, and 5613 * if the parent has to be frozen, the child has too. 5614 */ 5615 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5616 if (cgrp->freezer.e_freeze) { 5617 /* 5618 * Set the CGRP_FREEZE flag, so when a process will be 5619 * attached to the child cgroup, it will become frozen. 5620 * At this point the new cgroup is unpopulated, so we can 5621 * consider it frozen immediately. 5622 */ 5623 set_bit(CGRP_FREEZE, &cgrp->flags); 5624 set_bit(CGRP_FROZEN, &cgrp->flags); 5625 } 5626 5627 spin_lock_irq(&css_set_lock); 5628 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5629 cgrp->ancestors[tcgrp->level] = tcgrp; 5630 5631 if (tcgrp != cgrp) { 5632 tcgrp->nr_descendants++; 5633 5634 /* 5635 * If the new cgroup is frozen, all ancestor cgroups 5636 * get a new frozen descendant, but their state can't 5637 * change because of this. 5638 */ 5639 if (cgrp->freezer.e_freeze) 5640 tcgrp->freezer.nr_frozen_descendants++; 5641 } 5642 } 5643 spin_unlock_irq(&css_set_lock); 5644 5645 if (notify_on_release(parent)) 5646 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5647 5648 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5649 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5650 5651 cgrp->self.serial_nr = css_serial_nr_next++; 5652 5653 /* allocation complete, commit to creation */ 5654 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5655 atomic_inc(&root->nr_cgrps); 5656 cgroup_get_live(parent); 5657 5658 /* 5659 * On the default hierarchy, a child doesn't automatically inherit 5660 * subtree_control from the parent. Each is configured manually. 5661 */ 5662 if (!cgroup_on_dfl(cgrp)) 5663 cgrp->subtree_control = cgroup_control(cgrp); 5664 5665 cgroup_propagate_control(cgrp); 5666 5667 return cgrp; 5668 5669 out_psi_free: 5670 psi_cgroup_free(cgrp); 5671 out_kernfs_remove: 5672 kernfs_remove(cgrp->kn); 5673 out_stat_exit: 5674 cgroup_rstat_exit(cgrp); 5675 out_cancel_ref: 5676 percpu_ref_exit(&cgrp->self.refcnt); 5677 out_free_cgrp: 5678 kfree(cgrp); 5679 return ERR_PTR(ret); 5680 } 5681 5682 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5683 { 5684 struct cgroup *cgroup; 5685 int ret = false; 5686 int level = 1; 5687 5688 lockdep_assert_held(&cgroup_mutex); 5689 5690 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5691 if (cgroup->nr_descendants >= cgroup->max_descendants) 5692 goto fail; 5693 5694 if (level > cgroup->max_depth) 5695 goto fail; 5696 5697 level++; 5698 } 5699 5700 ret = true; 5701 fail: 5702 return ret; 5703 } 5704 5705 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5706 { 5707 struct cgroup *parent, *cgrp; 5708 int ret; 5709 5710 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5711 if (strchr(name, '\n')) 5712 return -EINVAL; 5713 5714 parent = cgroup_kn_lock_live(parent_kn, false); 5715 if (!parent) 5716 return -ENODEV; 5717 5718 if (!cgroup_check_hierarchy_limits(parent)) { 5719 ret = -EAGAIN; 5720 goto out_unlock; 5721 } 5722 5723 cgrp = cgroup_create(parent, name, mode); 5724 if (IS_ERR(cgrp)) { 5725 ret = PTR_ERR(cgrp); 5726 goto out_unlock; 5727 } 5728 5729 /* 5730 * This extra ref will be put in cgroup_free_fn() and guarantees 5731 * that @cgrp->kn is always accessible. 5732 */ 5733 kernfs_get(cgrp->kn); 5734 5735 ret = cgroup_kn_set_ugid(cgrp->kn); 5736 if (ret) 5737 goto out_destroy; 5738 5739 ret = css_populate_dir(&cgrp->self); 5740 if (ret) 5741 goto out_destroy; 5742 5743 ret = cgroup_apply_control_enable(cgrp); 5744 if (ret) 5745 goto out_destroy; 5746 5747 TRACE_CGROUP_PATH(mkdir, cgrp); 5748 5749 /* let's create and online css's */ 5750 kernfs_activate(cgrp->kn); 5751 5752 ret = 0; 5753 goto out_unlock; 5754 5755 out_destroy: 5756 cgroup_destroy_locked(cgrp); 5757 out_unlock: 5758 cgroup_kn_unlock(parent_kn); 5759 return ret; 5760 } 5761 5762 /* 5763 * This is called when the refcnt of a css is confirmed to be killed. 5764 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5765 * initiate destruction and put the css ref from kill_css(). 5766 */ 5767 static void css_killed_work_fn(struct work_struct *work) 5768 { 5769 struct cgroup_subsys_state *css = 5770 container_of(work, struct cgroup_subsys_state, destroy_work); 5771 5772 mutex_lock(&cgroup_mutex); 5773 5774 do { 5775 offline_css(css); 5776 css_put(css); 5777 /* @css can't go away while we're holding cgroup_mutex */ 5778 css = css->parent; 5779 } while (css && atomic_dec_and_test(&css->online_cnt)); 5780 5781 mutex_unlock(&cgroup_mutex); 5782 } 5783 5784 /* css kill confirmation processing requires process context, bounce */ 5785 static void css_killed_ref_fn(struct percpu_ref *ref) 5786 { 5787 struct cgroup_subsys_state *css = 5788 container_of(ref, struct cgroup_subsys_state, refcnt); 5789 5790 if (atomic_dec_and_test(&css->online_cnt)) { 5791 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5792 queue_work(cgroup_destroy_wq, &css->destroy_work); 5793 } 5794 } 5795 5796 /** 5797 * kill_css - destroy a css 5798 * @css: css to destroy 5799 * 5800 * This function initiates destruction of @css by removing cgroup interface 5801 * files and putting its base reference. ->css_offline() will be invoked 5802 * asynchronously once css_tryget_online() is guaranteed to fail and when 5803 * the reference count reaches zero, @css will be released. 5804 */ 5805 static void kill_css(struct cgroup_subsys_state *css) 5806 { 5807 lockdep_assert_held(&cgroup_mutex); 5808 5809 if (css->flags & CSS_DYING) 5810 return; 5811 5812 css->flags |= CSS_DYING; 5813 5814 /* 5815 * This must happen before css is disassociated with its cgroup. 5816 * See seq_css() for details. 5817 */ 5818 css_clear_dir(css); 5819 5820 /* 5821 * Killing would put the base ref, but we need to keep it alive 5822 * until after ->css_offline(). 5823 */ 5824 css_get(css); 5825 5826 /* 5827 * cgroup core guarantees that, by the time ->css_offline() is 5828 * invoked, no new css reference will be given out via 5829 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5830 * proceed to offlining css's because percpu_ref_kill() doesn't 5831 * guarantee that the ref is seen as killed on all CPUs on return. 5832 * 5833 * Use percpu_ref_kill_and_confirm() to get notifications as each 5834 * css is confirmed to be seen as killed on all CPUs. 5835 */ 5836 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5837 } 5838 5839 /** 5840 * cgroup_destroy_locked - the first stage of cgroup destruction 5841 * @cgrp: cgroup to be destroyed 5842 * 5843 * css's make use of percpu refcnts whose killing latency shouldn't be 5844 * exposed to userland and are RCU protected. Also, cgroup core needs to 5845 * guarantee that css_tryget_online() won't succeed by the time 5846 * ->css_offline() is invoked. To satisfy all the requirements, 5847 * destruction is implemented in the following two steps. 5848 * 5849 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5850 * userland visible parts and start killing the percpu refcnts of 5851 * css's. Set up so that the next stage will be kicked off once all 5852 * the percpu refcnts are confirmed to be killed. 5853 * 5854 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5855 * rest of destruction. Once all cgroup references are gone, the 5856 * cgroup is RCU-freed. 5857 * 5858 * This function implements s1. After this step, @cgrp is gone as far as 5859 * the userland is concerned and a new cgroup with the same name may be 5860 * created. As cgroup doesn't care about the names internally, this 5861 * doesn't cause any problem. 5862 */ 5863 static int cgroup_destroy_locked(struct cgroup *cgrp) 5864 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5865 { 5866 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5867 struct cgroup_subsys_state *css; 5868 struct cgrp_cset_link *link; 5869 int ssid; 5870 5871 lockdep_assert_held(&cgroup_mutex); 5872 5873 /* 5874 * Only migration can raise populated from zero and we're already 5875 * holding cgroup_mutex. 5876 */ 5877 if (cgroup_is_populated(cgrp)) 5878 return -EBUSY; 5879 5880 /* 5881 * Make sure there's no live children. We can't test emptiness of 5882 * ->self.children as dead children linger on it while being 5883 * drained; otherwise, "rmdir parent/child parent" may fail. 5884 */ 5885 if (css_has_online_children(&cgrp->self)) 5886 return -EBUSY; 5887 5888 /* 5889 * Mark @cgrp and the associated csets dead. The former prevents 5890 * further task migration and child creation by disabling 5891 * cgroup_lock_live_group(). The latter makes the csets ignored by 5892 * the migration path. 5893 */ 5894 cgrp->self.flags &= ~CSS_ONLINE; 5895 5896 spin_lock_irq(&css_set_lock); 5897 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5898 link->cset->dead = true; 5899 spin_unlock_irq(&css_set_lock); 5900 5901 /* initiate massacre of all css's */ 5902 for_each_css(css, ssid, cgrp) 5903 kill_css(css); 5904 5905 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5906 css_clear_dir(&cgrp->self); 5907 kernfs_remove(cgrp->kn); 5908 5909 if (cgroup_is_threaded(cgrp)) 5910 parent->nr_threaded_children--; 5911 5912 spin_lock_irq(&css_set_lock); 5913 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5914 tcgrp->nr_descendants--; 5915 tcgrp->nr_dying_descendants++; 5916 /* 5917 * If the dying cgroup is frozen, decrease frozen descendants 5918 * counters of ancestor cgroups. 5919 */ 5920 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5921 tcgrp->freezer.nr_frozen_descendants--; 5922 } 5923 spin_unlock_irq(&css_set_lock); 5924 5925 cgroup1_check_for_release(parent); 5926 5927 cgroup_bpf_offline(cgrp); 5928 5929 /* put the base reference */ 5930 percpu_ref_kill(&cgrp->self.refcnt); 5931 5932 return 0; 5933 }; 5934 5935 int cgroup_rmdir(struct kernfs_node *kn) 5936 { 5937 struct cgroup *cgrp; 5938 int ret = 0; 5939 5940 cgrp = cgroup_kn_lock_live(kn, false); 5941 if (!cgrp) 5942 return 0; 5943 5944 ret = cgroup_destroy_locked(cgrp); 5945 if (!ret) 5946 TRACE_CGROUP_PATH(rmdir, cgrp); 5947 5948 cgroup_kn_unlock(kn); 5949 return ret; 5950 } 5951 5952 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5953 .show_options = cgroup_show_options, 5954 .mkdir = cgroup_mkdir, 5955 .rmdir = cgroup_rmdir, 5956 .show_path = cgroup_show_path, 5957 }; 5958 5959 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5960 { 5961 struct cgroup_subsys_state *css; 5962 5963 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5964 5965 mutex_lock(&cgroup_mutex); 5966 5967 idr_init(&ss->css_idr); 5968 INIT_LIST_HEAD(&ss->cfts); 5969 5970 /* Create the root cgroup state for this subsystem */ 5971 ss->root = &cgrp_dfl_root; 5972 css = ss->css_alloc(NULL); 5973 /* We don't handle early failures gracefully */ 5974 BUG_ON(IS_ERR(css)); 5975 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5976 5977 /* 5978 * Root csses are never destroyed and we can't initialize 5979 * percpu_ref during early init. Disable refcnting. 5980 */ 5981 css->flags |= CSS_NO_REF; 5982 5983 if (early) { 5984 /* allocation can't be done safely during early init */ 5985 css->id = 1; 5986 } else { 5987 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5988 BUG_ON(css->id < 0); 5989 } 5990 5991 /* Update the init_css_set to contain a subsys 5992 * pointer to this state - since the subsystem is 5993 * newly registered, all tasks and hence the 5994 * init_css_set is in the subsystem's root cgroup. */ 5995 init_css_set.subsys[ss->id] = css; 5996 5997 have_fork_callback |= (bool)ss->fork << ss->id; 5998 have_exit_callback |= (bool)ss->exit << ss->id; 5999 have_release_callback |= (bool)ss->release << ss->id; 6000 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6001 6002 /* At system boot, before all subsystems have been 6003 * registered, no tasks have been forked, so we don't 6004 * need to invoke fork callbacks here. */ 6005 BUG_ON(!list_empty(&init_task.tasks)); 6006 6007 BUG_ON(online_css(css)); 6008 6009 mutex_unlock(&cgroup_mutex); 6010 } 6011 6012 /** 6013 * cgroup_init_early - cgroup initialization at system boot 6014 * 6015 * Initialize cgroups at system boot, and initialize any 6016 * subsystems that request early init. 6017 */ 6018 int __init cgroup_init_early(void) 6019 { 6020 static struct cgroup_fs_context __initdata ctx; 6021 struct cgroup_subsys *ss; 6022 int i; 6023 6024 ctx.root = &cgrp_dfl_root; 6025 init_cgroup_root(&ctx); 6026 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6027 6028 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6029 6030 for_each_subsys(ss, i) { 6031 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6032 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6033 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6034 ss->id, ss->name); 6035 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6036 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6037 6038 ss->id = i; 6039 ss->name = cgroup_subsys_name[i]; 6040 if (!ss->legacy_name) 6041 ss->legacy_name = cgroup_subsys_name[i]; 6042 6043 if (ss->early_init) 6044 cgroup_init_subsys(ss, true); 6045 } 6046 return 0; 6047 } 6048 6049 /** 6050 * cgroup_init - cgroup initialization 6051 * 6052 * Register cgroup filesystem and /proc file, and initialize 6053 * any subsystems that didn't request early init. 6054 */ 6055 int __init cgroup_init(void) 6056 { 6057 struct cgroup_subsys *ss; 6058 int ssid; 6059 6060 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6061 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6062 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6063 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6064 6065 cgroup_rstat_boot(); 6066 6067 get_user_ns(init_cgroup_ns.user_ns); 6068 6069 mutex_lock(&cgroup_mutex); 6070 6071 /* 6072 * Add init_css_set to the hash table so that dfl_root can link to 6073 * it during init. 6074 */ 6075 hash_add(css_set_table, &init_css_set.hlist, 6076 css_set_hash(init_css_set.subsys)); 6077 6078 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6079 6080 mutex_unlock(&cgroup_mutex); 6081 6082 for_each_subsys(ss, ssid) { 6083 if (ss->early_init) { 6084 struct cgroup_subsys_state *css = 6085 init_css_set.subsys[ss->id]; 6086 6087 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6088 GFP_KERNEL); 6089 BUG_ON(css->id < 0); 6090 } else { 6091 cgroup_init_subsys(ss, false); 6092 } 6093 6094 list_add_tail(&init_css_set.e_cset_node[ssid], 6095 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6096 6097 /* 6098 * Setting dfl_root subsys_mask needs to consider the 6099 * disabled flag and cftype registration needs kmalloc, 6100 * both of which aren't available during early_init. 6101 */ 6102 if (!cgroup_ssid_enabled(ssid)) 6103 continue; 6104 6105 if (cgroup1_ssid_disabled(ssid)) 6106 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 6107 ss->name); 6108 6109 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6110 6111 /* implicit controllers must be threaded too */ 6112 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6113 6114 if (ss->implicit_on_dfl) 6115 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6116 else if (!ss->dfl_cftypes) 6117 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6118 6119 if (ss->threaded) 6120 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6121 6122 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6123 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6124 } else { 6125 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6126 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6127 } 6128 6129 if (ss->bind) 6130 ss->bind(init_css_set.subsys[ssid]); 6131 6132 mutex_lock(&cgroup_mutex); 6133 css_populate_dir(init_css_set.subsys[ssid]); 6134 mutex_unlock(&cgroup_mutex); 6135 } 6136 6137 /* init_css_set.subsys[] has been updated, re-hash */ 6138 hash_del(&init_css_set.hlist); 6139 hash_add(css_set_table, &init_css_set.hlist, 6140 css_set_hash(init_css_set.subsys)); 6141 6142 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6143 WARN_ON(register_filesystem(&cgroup_fs_type)); 6144 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6145 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6146 #ifdef CONFIG_CPUSETS 6147 WARN_ON(register_filesystem(&cpuset_fs_type)); 6148 #endif 6149 6150 return 0; 6151 } 6152 6153 static int __init cgroup_wq_init(void) 6154 { 6155 /* 6156 * There isn't much point in executing destruction path in 6157 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6158 * Use 1 for @max_active. 6159 * 6160 * We would prefer to do this in cgroup_init() above, but that 6161 * is called before init_workqueues(): so leave this until after. 6162 */ 6163 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6164 BUG_ON(!cgroup_destroy_wq); 6165 return 0; 6166 } 6167 core_initcall(cgroup_wq_init); 6168 6169 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6170 { 6171 struct kernfs_node *kn; 6172 6173 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6174 if (!kn) 6175 return; 6176 kernfs_path(kn, buf, buflen); 6177 kernfs_put(kn); 6178 } 6179 6180 /* 6181 * cgroup_get_from_id : get the cgroup associated with cgroup id 6182 * @id: cgroup id 6183 * On success return the cgrp or ERR_PTR on failure 6184 * Only cgroups within current task's cgroup NS are valid. 6185 */ 6186 struct cgroup *cgroup_get_from_id(u64 id) 6187 { 6188 struct kernfs_node *kn; 6189 struct cgroup *cgrp, *root_cgrp; 6190 6191 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6192 if (!kn) 6193 return ERR_PTR(-ENOENT); 6194 6195 if (kernfs_type(kn) != KERNFS_DIR) { 6196 kernfs_put(kn); 6197 return ERR_PTR(-ENOENT); 6198 } 6199 6200 rcu_read_lock(); 6201 6202 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6203 if (cgrp && !cgroup_tryget(cgrp)) 6204 cgrp = NULL; 6205 6206 rcu_read_unlock(); 6207 kernfs_put(kn); 6208 6209 if (!cgrp) 6210 return ERR_PTR(-ENOENT); 6211 6212 root_cgrp = current_cgns_cgroup_dfl(); 6213 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6214 cgroup_put(cgrp); 6215 return ERR_PTR(-ENOENT); 6216 } 6217 6218 return cgrp; 6219 } 6220 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6221 6222 /* 6223 * proc_cgroup_show() 6224 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6225 * - Used for /proc/<pid>/cgroup. 6226 */ 6227 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6228 struct pid *pid, struct task_struct *tsk) 6229 { 6230 char *buf; 6231 int retval; 6232 struct cgroup_root *root; 6233 6234 retval = -ENOMEM; 6235 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6236 if (!buf) 6237 goto out; 6238 6239 mutex_lock(&cgroup_mutex); 6240 spin_lock_irq(&css_set_lock); 6241 6242 for_each_root(root) { 6243 struct cgroup_subsys *ss; 6244 struct cgroup *cgrp; 6245 int ssid, count = 0; 6246 6247 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6248 continue; 6249 6250 seq_printf(m, "%d:", root->hierarchy_id); 6251 if (root != &cgrp_dfl_root) 6252 for_each_subsys(ss, ssid) 6253 if (root->subsys_mask & (1 << ssid)) 6254 seq_printf(m, "%s%s", count++ ? "," : "", 6255 ss->legacy_name); 6256 if (strlen(root->name)) 6257 seq_printf(m, "%sname=%s", count ? "," : "", 6258 root->name); 6259 seq_putc(m, ':'); 6260 6261 cgrp = task_cgroup_from_root(tsk, root); 6262 6263 /* 6264 * On traditional hierarchies, all zombie tasks show up as 6265 * belonging to the root cgroup. On the default hierarchy, 6266 * while a zombie doesn't show up in "cgroup.procs" and 6267 * thus can't be migrated, its /proc/PID/cgroup keeps 6268 * reporting the cgroup it belonged to before exiting. If 6269 * the cgroup is removed before the zombie is reaped, 6270 * " (deleted)" is appended to the cgroup path. 6271 */ 6272 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6273 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6274 current->nsproxy->cgroup_ns); 6275 if (retval >= PATH_MAX) 6276 retval = -ENAMETOOLONG; 6277 if (retval < 0) 6278 goto out_unlock; 6279 6280 seq_puts(m, buf); 6281 } else { 6282 seq_puts(m, "/"); 6283 } 6284 6285 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6286 seq_puts(m, " (deleted)\n"); 6287 else 6288 seq_putc(m, '\n'); 6289 } 6290 6291 retval = 0; 6292 out_unlock: 6293 spin_unlock_irq(&css_set_lock); 6294 mutex_unlock(&cgroup_mutex); 6295 kfree(buf); 6296 out: 6297 return retval; 6298 } 6299 6300 /** 6301 * cgroup_fork - initialize cgroup related fields during copy_process() 6302 * @child: pointer to task_struct of forking parent process. 6303 * 6304 * A task is associated with the init_css_set until cgroup_post_fork() 6305 * attaches it to the target css_set. 6306 */ 6307 void cgroup_fork(struct task_struct *child) 6308 { 6309 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6310 INIT_LIST_HEAD(&child->cg_list); 6311 } 6312 6313 /** 6314 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6315 * @f: file corresponding to cgroup_dir 6316 * 6317 * Find the cgroup from a file pointer associated with a cgroup directory. 6318 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6319 * cgroup cannot be found. 6320 */ 6321 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6322 { 6323 struct cgroup_subsys_state *css; 6324 6325 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6326 if (IS_ERR(css)) 6327 return ERR_CAST(css); 6328 6329 return css->cgroup; 6330 } 6331 6332 /** 6333 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6334 * cgroup2. 6335 * @f: file corresponding to cgroup2_dir 6336 */ 6337 static struct cgroup *cgroup_get_from_file(struct file *f) 6338 { 6339 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6340 6341 if (IS_ERR(cgrp)) 6342 return ERR_CAST(cgrp); 6343 6344 if (!cgroup_on_dfl(cgrp)) { 6345 cgroup_put(cgrp); 6346 return ERR_PTR(-EBADF); 6347 } 6348 6349 return cgrp; 6350 } 6351 6352 /** 6353 * cgroup_css_set_fork - find or create a css_set for a child process 6354 * @kargs: the arguments passed to create the child process 6355 * 6356 * This functions finds or creates a new css_set which the child 6357 * process will be attached to in cgroup_post_fork(). By default, 6358 * the child process will be given the same css_set as its parent. 6359 * 6360 * If CLONE_INTO_CGROUP is specified this function will try to find an 6361 * existing css_set which includes the requested cgroup and if not create 6362 * a new css_set that the child will be attached to later. If this function 6363 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6364 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6365 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6366 * to the target cgroup. 6367 */ 6368 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6369 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6370 { 6371 int ret; 6372 struct cgroup *dst_cgrp = NULL; 6373 struct css_set *cset; 6374 struct super_block *sb; 6375 struct file *f; 6376 6377 if (kargs->flags & CLONE_INTO_CGROUP) 6378 mutex_lock(&cgroup_mutex); 6379 6380 cgroup_threadgroup_change_begin(current); 6381 6382 spin_lock_irq(&css_set_lock); 6383 cset = task_css_set(current); 6384 get_css_set(cset); 6385 spin_unlock_irq(&css_set_lock); 6386 6387 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6388 kargs->cset = cset; 6389 return 0; 6390 } 6391 6392 f = fget_raw(kargs->cgroup); 6393 if (!f) { 6394 ret = -EBADF; 6395 goto err; 6396 } 6397 sb = f->f_path.dentry->d_sb; 6398 6399 dst_cgrp = cgroup_get_from_file(f); 6400 if (IS_ERR(dst_cgrp)) { 6401 ret = PTR_ERR(dst_cgrp); 6402 dst_cgrp = NULL; 6403 goto err; 6404 } 6405 6406 if (cgroup_is_dead(dst_cgrp)) { 6407 ret = -ENODEV; 6408 goto err; 6409 } 6410 6411 /* 6412 * Verify that we the target cgroup is writable for us. This is 6413 * usually done by the vfs layer but since we're not going through 6414 * the vfs layer here we need to do it "manually". 6415 */ 6416 ret = cgroup_may_write(dst_cgrp, sb); 6417 if (ret) 6418 goto err; 6419 6420 /* 6421 * Spawning a task directly into a cgroup works by passing a file 6422 * descriptor to the target cgroup directory. This can even be an O_PATH 6423 * file descriptor. But it can never be a cgroup.procs file descriptor. 6424 * This was done on purpose so spawning into a cgroup could be 6425 * conceptualized as an atomic 6426 * 6427 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6428 * write(fd, <child-pid>, ...); 6429 * 6430 * sequence, i.e. it's a shorthand for the caller opening and writing 6431 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6432 * to always use the caller's credentials. 6433 */ 6434 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6435 !(kargs->flags & CLONE_THREAD), 6436 current->nsproxy->cgroup_ns); 6437 if (ret) 6438 goto err; 6439 6440 kargs->cset = find_css_set(cset, dst_cgrp); 6441 if (!kargs->cset) { 6442 ret = -ENOMEM; 6443 goto err; 6444 } 6445 6446 put_css_set(cset); 6447 fput(f); 6448 kargs->cgrp = dst_cgrp; 6449 return ret; 6450 6451 err: 6452 cgroup_threadgroup_change_end(current); 6453 mutex_unlock(&cgroup_mutex); 6454 if (f) 6455 fput(f); 6456 if (dst_cgrp) 6457 cgroup_put(dst_cgrp); 6458 put_css_set(cset); 6459 if (kargs->cset) 6460 put_css_set(kargs->cset); 6461 return ret; 6462 } 6463 6464 /** 6465 * cgroup_css_set_put_fork - drop references we took during fork 6466 * @kargs: the arguments passed to create the child process 6467 * 6468 * Drop references to the prepared css_set and target cgroup if 6469 * CLONE_INTO_CGROUP was requested. 6470 */ 6471 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6472 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6473 { 6474 cgroup_threadgroup_change_end(current); 6475 6476 if (kargs->flags & CLONE_INTO_CGROUP) { 6477 struct cgroup *cgrp = kargs->cgrp; 6478 struct css_set *cset = kargs->cset; 6479 6480 mutex_unlock(&cgroup_mutex); 6481 6482 if (cset) { 6483 put_css_set(cset); 6484 kargs->cset = NULL; 6485 } 6486 6487 if (cgrp) { 6488 cgroup_put(cgrp); 6489 kargs->cgrp = NULL; 6490 } 6491 } 6492 } 6493 6494 /** 6495 * cgroup_can_fork - called on a new task before the process is exposed 6496 * @child: the child process 6497 * @kargs: the arguments passed to create the child process 6498 * 6499 * This prepares a new css_set for the child process which the child will 6500 * be attached to in cgroup_post_fork(). 6501 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6502 * callback returns an error, the fork aborts with that error code. This 6503 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6504 */ 6505 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6506 { 6507 struct cgroup_subsys *ss; 6508 int i, j, ret; 6509 6510 ret = cgroup_css_set_fork(kargs); 6511 if (ret) 6512 return ret; 6513 6514 do_each_subsys_mask(ss, i, have_canfork_callback) { 6515 ret = ss->can_fork(child, kargs->cset); 6516 if (ret) 6517 goto out_revert; 6518 } while_each_subsys_mask(); 6519 6520 return 0; 6521 6522 out_revert: 6523 for_each_subsys(ss, j) { 6524 if (j >= i) 6525 break; 6526 if (ss->cancel_fork) 6527 ss->cancel_fork(child, kargs->cset); 6528 } 6529 6530 cgroup_css_set_put_fork(kargs); 6531 6532 return ret; 6533 } 6534 6535 /** 6536 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6537 * @child: the child process 6538 * @kargs: the arguments passed to create the child process 6539 * 6540 * This calls the cancel_fork() callbacks if a fork failed *after* 6541 * cgroup_can_fork() succeeded and cleans up references we took to 6542 * prepare a new css_set for the child process in cgroup_can_fork(). 6543 */ 6544 void cgroup_cancel_fork(struct task_struct *child, 6545 struct kernel_clone_args *kargs) 6546 { 6547 struct cgroup_subsys *ss; 6548 int i; 6549 6550 for_each_subsys(ss, i) 6551 if (ss->cancel_fork) 6552 ss->cancel_fork(child, kargs->cset); 6553 6554 cgroup_css_set_put_fork(kargs); 6555 } 6556 6557 /** 6558 * cgroup_post_fork - finalize cgroup setup for the child process 6559 * @child: the child process 6560 * @kargs: the arguments passed to create the child process 6561 * 6562 * Attach the child process to its css_set calling the subsystem fork() 6563 * callbacks. 6564 */ 6565 void cgroup_post_fork(struct task_struct *child, 6566 struct kernel_clone_args *kargs) 6567 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6568 { 6569 unsigned long cgrp_flags = 0; 6570 bool kill = false; 6571 struct cgroup_subsys *ss; 6572 struct css_set *cset; 6573 int i; 6574 6575 cset = kargs->cset; 6576 kargs->cset = NULL; 6577 6578 spin_lock_irq(&css_set_lock); 6579 6580 /* init tasks are special, only link regular threads */ 6581 if (likely(child->pid)) { 6582 if (kargs->cgrp) 6583 cgrp_flags = kargs->cgrp->flags; 6584 else 6585 cgrp_flags = cset->dfl_cgrp->flags; 6586 6587 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6588 cset->nr_tasks++; 6589 css_set_move_task(child, NULL, cset, false); 6590 } else { 6591 put_css_set(cset); 6592 cset = NULL; 6593 } 6594 6595 if (!(child->flags & PF_KTHREAD)) { 6596 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6597 /* 6598 * If the cgroup has to be frozen, the new task has 6599 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6600 * get the task into the frozen state. 6601 */ 6602 spin_lock(&child->sighand->siglock); 6603 WARN_ON_ONCE(child->frozen); 6604 child->jobctl |= JOBCTL_TRAP_FREEZE; 6605 spin_unlock(&child->sighand->siglock); 6606 6607 /* 6608 * Calling cgroup_update_frozen() isn't required here, 6609 * because it will be called anyway a bit later from 6610 * do_freezer_trap(). So we avoid cgroup's transient 6611 * switch from the frozen state and back. 6612 */ 6613 } 6614 6615 /* 6616 * If the cgroup is to be killed notice it now and take the 6617 * child down right after we finished preparing it for 6618 * userspace. 6619 */ 6620 kill = test_bit(CGRP_KILL, &cgrp_flags); 6621 } 6622 6623 spin_unlock_irq(&css_set_lock); 6624 6625 /* 6626 * Call ss->fork(). This must happen after @child is linked on 6627 * css_set; otherwise, @child might change state between ->fork() 6628 * and addition to css_set. 6629 */ 6630 do_each_subsys_mask(ss, i, have_fork_callback) { 6631 ss->fork(child); 6632 } while_each_subsys_mask(); 6633 6634 /* Make the new cset the root_cset of the new cgroup namespace. */ 6635 if (kargs->flags & CLONE_NEWCGROUP) { 6636 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6637 6638 get_css_set(cset); 6639 child->nsproxy->cgroup_ns->root_cset = cset; 6640 put_css_set(rcset); 6641 } 6642 6643 /* Cgroup has to be killed so take down child immediately. */ 6644 if (unlikely(kill)) 6645 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6646 6647 cgroup_css_set_put_fork(kargs); 6648 } 6649 6650 /** 6651 * cgroup_exit - detach cgroup from exiting task 6652 * @tsk: pointer to task_struct of exiting process 6653 * 6654 * Description: Detach cgroup from @tsk. 6655 * 6656 */ 6657 void cgroup_exit(struct task_struct *tsk) 6658 { 6659 struct cgroup_subsys *ss; 6660 struct css_set *cset; 6661 int i; 6662 6663 spin_lock_irq(&css_set_lock); 6664 6665 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6666 cset = task_css_set(tsk); 6667 css_set_move_task(tsk, cset, NULL, false); 6668 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6669 cset->nr_tasks--; 6670 6671 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6672 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6673 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6674 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6675 6676 spin_unlock_irq(&css_set_lock); 6677 6678 /* see cgroup_post_fork() for details */ 6679 do_each_subsys_mask(ss, i, have_exit_callback) { 6680 ss->exit(tsk); 6681 } while_each_subsys_mask(); 6682 } 6683 6684 void cgroup_release(struct task_struct *task) 6685 { 6686 struct cgroup_subsys *ss; 6687 int ssid; 6688 6689 do_each_subsys_mask(ss, ssid, have_release_callback) { 6690 ss->release(task); 6691 } while_each_subsys_mask(); 6692 6693 spin_lock_irq(&css_set_lock); 6694 css_set_skip_task_iters(task_css_set(task), task); 6695 list_del_init(&task->cg_list); 6696 spin_unlock_irq(&css_set_lock); 6697 } 6698 6699 void cgroup_free(struct task_struct *task) 6700 { 6701 struct css_set *cset = task_css_set(task); 6702 put_css_set(cset); 6703 } 6704 6705 static int __init cgroup_disable(char *str) 6706 { 6707 struct cgroup_subsys *ss; 6708 char *token; 6709 int i; 6710 6711 while ((token = strsep(&str, ",")) != NULL) { 6712 if (!*token) 6713 continue; 6714 6715 for_each_subsys(ss, i) { 6716 if (strcmp(token, ss->name) && 6717 strcmp(token, ss->legacy_name)) 6718 continue; 6719 6720 static_branch_disable(cgroup_subsys_enabled_key[i]); 6721 pr_info("Disabling %s control group subsystem\n", 6722 ss->name); 6723 } 6724 6725 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6726 if (strcmp(token, cgroup_opt_feature_names[i])) 6727 continue; 6728 cgroup_feature_disable_mask |= 1 << i; 6729 pr_info("Disabling %s control group feature\n", 6730 cgroup_opt_feature_names[i]); 6731 break; 6732 } 6733 } 6734 return 1; 6735 } 6736 __setup("cgroup_disable=", cgroup_disable); 6737 6738 void __init __weak enable_debug_cgroup(void) { } 6739 6740 static int __init enable_cgroup_debug(char *str) 6741 { 6742 cgroup_debug = true; 6743 enable_debug_cgroup(); 6744 return 1; 6745 } 6746 __setup("cgroup_debug", enable_cgroup_debug); 6747 6748 /** 6749 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6750 * @dentry: directory dentry of interest 6751 * @ss: subsystem of interest 6752 * 6753 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6754 * to get the corresponding css and return it. If such css doesn't exist 6755 * or can't be pinned, an ERR_PTR value is returned. 6756 */ 6757 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6758 struct cgroup_subsys *ss) 6759 { 6760 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6761 struct file_system_type *s_type = dentry->d_sb->s_type; 6762 struct cgroup_subsys_state *css = NULL; 6763 struct cgroup *cgrp; 6764 6765 /* is @dentry a cgroup dir? */ 6766 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6767 !kn || kernfs_type(kn) != KERNFS_DIR) 6768 return ERR_PTR(-EBADF); 6769 6770 rcu_read_lock(); 6771 6772 /* 6773 * This path doesn't originate from kernfs and @kn could already 6774 * have been or be removed at any point. @kn->priv is RCU 6775 * protected for this access. See css_release_work_fn() for details. 6776 */ 6777 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6778 if (cgrp) 6779 css = cgroup_css(cgrp, ss); 6780 6781 if (!css || !css_tryget_online(css)) 6782 css = ERR_PTR(-ENOENT); 6783 6784 rcu_read_unlock(); 6785 return css; 6786 } 6787 6788 /** 6789 * css_from_id - lookup css by id 6790 * @id: the cgroup id 6791 * @ss: cgroup subsys to be looked into 6792 * 6793 * Returns the css if there's valid one with @id, otherwise returns NULL. 6794 * Should be called under rcu_read_lock(). 6795 */ 6796 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6797 { 6798 WARN_ON_ONCE(!rcu_read_lock_held()); 6799 return idr_find(&ss->css_idr, id); 6800 } 6801 6802 /** 6803 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6804 * @path: path on the default hierarchy 6805 * 6806 * Find the cgroup at @path on the default hierarchy, increment its 6807 * reference count and return it. Returns pointer to the found cgroup on 6808 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6809 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6810 */ 6811 struct cgroup *cgroup_get_from_path(const char *path) 6812 { 6813 struct kernfs_node *kn; 6814 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6815 struct cgroup *root_cgrp; 6816 6817 root_cgrp = current_cgns_cgroup_dfl(); 6818 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6819 if (!kn) 6820 goto out; 6821 6822 if (kernfs_type(kn) != KERNFS_DIR) { 6823 cgrp = ERR_PTR(-ENOTDIR); 6824 goto out_kernfs; 6825 } 6826 6827 rcu_read_lock(); 6828 6829 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6830 if (!cgrp || !cgroup_tryget(cgrp)) 6831 cgrp = ERR_PTR(-ENOENT); 6832 6833 rcu_read_unlock(); 6834 6835 out_kernfs: 6836 kernfs_put(kn); 6837 out: 6838 return cgrp; 6839 } 6840 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6841 6842 /** 6843 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6844 * @fd: fd obtained by open(cgroup_dir) 6845 * 6846 * Find the cgroup from a fd which should be obtained 6847 * by opening a cgroup directory. Returns a pointer to the 6848 * cgroup on success. ERR_PTR is returned if the cgroup 6849 * cannot be found. 6850 */ 6851 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6852 { 6853 struct cgroup *cgrp; 6854 struct file *f; 6855 6856 f = fget_raw(fd); 6857 if (!f) 6858 return ERR_PTR(-EBADF); 6859 6860 cgrp = cgroup_v1v2_get_from_file(f); 6861 fput(f); 6862 return cgrp; 6863 } 6864 6865 /** 6866 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6867 * cgroup2. 6868 * @fd: fd obtained by open(cgroup2_dir) 6869 */ 6870 struct cgroup *cgroup_get_from_fd(int fd) 6871 { 6872 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6873 6874 if (IS_ERR(cgrp)) 6875 return ERR_CAST(cgrp); 6876 6877 if (!cgroup_on_dfl(cgrp)) { 6878 cgroup_put(cgrp); 6879 return ERR_PTR(-EBADF); 6880 } 6881 return cgrp; 6882 } 6883 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6884 6885 static u64 power_of_ten(int power) 6886 { 6887 u64 v = 1; 6888 while (power--) 6889 v *= 10; 6890 return v; 6891 } 6892 6893 /** 6894 * cgroup_parse_float - parse a floating number 6895 * @input: input string 6896 * @dec_shift: number of decimal digits to shift 6897 * @v: output 6898 * 6899 * Parse a decimal floating point number in @input and store the result in 6900 * @v with decimal point right shifted @dec_shift times. For example, if 6901 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6902 * Returns 0 on success, -errno otherwise. 6903 * 6904 * There's nothing cgroup specific about this function except that it's 6905 * currently the only user. 6906 */ 6907 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6908 { 6909 s64 whole, frac = 0; 6910 int fstart = 0, fend = 0, flen; 6911 6912 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6913 return -EINVAL; 6914 if (frac < 0) 6915 return -EINVAL; 6916 6917 flen = fend > fstart ? fend - fstart : 0; 6918 if (flen < dec_shift) 6919 frac *= power_of_ten(dec_shift - flen); 6920 else 6921 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6922 6923 *v = whole * power_of_ten(dec_shift) + frac; 6924 return 0; 6925 } 6926 6927 /* 6928 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6929 * definition in cgroup-defs.h. 6930 */ 6931 #ifdef CONFIG_SOCK_CGROUP_DATA 6932 6933 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6934 { 6935 struct cgroup *cgroup; 6936 6937 rcu_read_lock(); 6938 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6939 if (in_interrupt()) { 6940 cgroup = &cgrp_dfl_root.cgrp; 6941 cgroup_get(cgroup); 6942 goto out; 6943 } 6944 6945 while (true) { 6946 struct css_set *cset; 6947 6948 cset = task_css_set(current); 6949 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6950 cgroup = cset->dfl_cgrp; 6951 break; 6952 } 6953 cpu_relax(); 6954 } 6955 out: 6956 skcd->cgroup = cgroup; 6957 cgroup_bpf_get(cgroup); 6958 rcu_read_unlock(); 6959 } 6960 6961 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6962 { 6963 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6964 6965 /* 6966 * We might be cloning a socket which is left in an empty 6967 * cgroup and the cgroup might have already been rmdir'd. 6968 * Don't use cgroup_get_live(). 6969 */ 6970 cgroup_get(cgrp); 6971 cgroup_bpf_get(cgrp); 6972 } 6973 6974 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6975 { 6976 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6977 6978 cgroup_bpf_put(cgrp); 6979 cgroup_put(cgrp); 6980 } 6981 6982 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6983 6984 #ifdef CONFIG_SYSFS 6985 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6986 ssize_t size, const char *prefix) 6987 { 6988 struct cftype *cft; 6989 ssize_t ret = 0; 6990 6991 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6992 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6993 continue; 6994 6995 if (prefix) 6996 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6997 6998 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6999 7000 if (WARN_ON(ret >= size)) 7001 break; 7002 } 7003 7004 return ret; 7005 } 7006 7007 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7008 char *buf) 7009 { 7010 struct cgroup_subsys *ss; 7011 int ssid; 7012 ssize_t ret = 0; 7013 7014 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7015 PAGE_SIZE - ret, NULL); 7016 if (cgroup_psi_enabled()) 7017 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7018 PAGE_SIZE - ret, NULL); 7019 7020 for_each_subsys(ss, ssid) 7021 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7022 PAGE_SIZE - ret, 7023 cgroup_subsys_name[ssid]); 7024 7025 return ret; 7026 } 7027 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7028 7029 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7030 char *buf) 7031 { 7032 return snprintf(buf, PAGE_SIZE, 7033 "nsdelegate\n" 7034 "favordynmods\n" 7035 "memory_localevents\n" 7036 "memory_recursiveprot\n"); 7037 } 7038 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7039 7040 static struct attribute *cgroup_sysfs_attrs[] = { 7041 &cgroup_delegate_attr.attr, 7042 &cgroup_features_attr.attr, 7043 NULL, 7044 }; 7045 7046 static const struct attribute_group cgroup_sysfs_attr_group = { 7047 .attrs = cgroup_sysfs_attrs, 7048 .name = "cgroup", 7049 }; 7050 7051 static int __init cgroup_sysfs_init(void) 7052 { 7053 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7054 } 7055 subsys_initcall(cgroup_sysfs_init); 7056 7057 #endif /* CONFIG_SYSFS */ 7058