1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* the default hierarchy */ 157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 158 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 159 160 /* 161 * The default hierarchy always exists but is hidden until mounted for the 162 * first time. This is for backward compatibility. 163 */ 164 static bool cgrp_dfl_visible; 165 166 /* some controllers are not supported in the default hierarchy */ 167 static u16 cgrp_dfl_inhibit_ss_mask; 168 169 /* some controllers are implicitly enabled on the default hierarchy */ 170 static u16 cgrp_dfl_implicit_ss_mask; 171 172 /* some controllers can be threaded on the default hierarchy */ 173 static u16 cgrp_dfl_threaded_ss_mask; 174 175 /* The list of hierarchy roots */ 176 LIST_HEAD(cgroup_roots); 177 static int cgroup_root_count; 178 179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 180 static DEFINE_IDR(cgroup_hierarchy_idr); 181 182 /* 183 * Assign a monotonically increasing serial number to csses. It guarantees 184 * cgroups with bigger numbers are newer than those with smaller numbers. 185 * Also, as csses are always appended to the parent's ->children list, it 186 * guarantees that sibling csses are always sorted in the ascending serial 187 * number order on the list. Protected by cgroup_mutex. 188 */ 189 static u64 css_serial_nr_next = 1; 190 191 /* 192 * These bitmasks identify subsystems with specific features to avoid 193 * having to do iterative checks repeatedly. 194 */ 195 static u16 have_fork_callback __read_mostly; 196 static u16 have_exit_callback __read_mostly; 197 static u16 have_release_callback __read_mostly; 198 static u16 have_canfork_callback __read_mostly; 199 200 /* cgroup namespace for init task */ 201 struct cgroup_namespace init_cgroup_ns = { 202 .count = REFCOUNT_INIT(2), 203 .user_ns = &init_user_ns, 204 .ns.ops = &cgroupns_operations, 205 .ns.inum = PROC_CGROUP_INIT_INO, 206 .root_cset = &init_css_set, 207 }; 208 209 static struct file_system_type cgroup2_fs_type; 210 static struct cftype cgroup_base_files[]; 211 212 static int cgroup_apply_control(struct cgroup *cgrp); 213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 214 static void css_task_iter_skip(struct css_task_iter *it, 215 struct task_struct *task); 216 static int cgroup_destroy_locked(struct cgroup *cgrp); 217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 218 struct cgroup_subsys *ss); 219 static void css_release(struct percpu_ref *ref); 220 static void kill_css(struct cgroup_subsys_state *css); 221 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 222 struct cgroup *cgrp, struct cftype cfts[], 223 bool is_add); 224 225 /** 226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 227 * @ssid: subsys ID of interest 228 * 229 * cgroup_subsys_enabled() can only be used with literal subsys names which 230 * is fine for individual subsystems but unsuitable for cgroup core. This 231 * is slower static_key_enabled() based test indexed by @ssid. 232 */ 233 bool cgroup_ssid_enabled(int ssid) 234 { 235 if (CGROUP_SUBSYS_COUNT == 0) 236 return false; 237 238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 239 } 240 241 /** 242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 243 * @cgrp: the cgroup of interest 244 * 245 * The default hierarchy is the v2 interface of cgroup and this function 246 * can be used to test whether a cgroup is on the default hierarchy for 247 * cases where a subsystem should behave differnetly depending on the 248 * interface version. 249 * 250 * List of changed behaviors: 251 * 252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 253 * and "name" are disallowed. 254 * 255 * - When mounting an existing superblock, mount options should match. 256 * 257 * - Remount is disallowed. 258 * 259 * - rename(2) is disallowed. 260 * 261 * - "tasks" is removed. Everything should be at process granularity. Use 262 * "cgroup.procs" instead. 263 * 264 * - "cgroup.procs" is not sorted. pids will be unique unless they got 265 * recycled inbetween reads. 266 * 267 * - "release_agent" and "notify_on_release" are removed. Replacement 268 * notification mechanism will be implemented. 269 * 270 * - "cgroup.clone_children" is removed. 271 * 272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 273 * and its descendants contain no task; otherwise, 1. The file also 274 * generates kernfs notification which can be monitored through poll and 275 * [di]notify when the value of the file changes. 276 * 277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 278 * take masks of ancestors with non-empty cpus/mems, instead of being 279 * moved to an ancestor. 280 * 281 * - cpuset: a task can be moved into an empty cpuset, and again it takes 282 * masks of ancestors. 283 * 284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 285 * is not created. 286 * 287 * - blkcg: blk-throttle becomes properly hierarchical. 288 * 289 * - debug: disallowed on the default hierarchy. 290 */ 291 bool cgroup_on_dfl(const struct cgroup *cgrp) 292 { 293 return cgrp->root == &cgrp_dfl_root; 294 } 295 296 /* IDR wrappers which synchronize using cgroup_idr_lock */ 297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 298 gfp_t gfp_mask) 299 { 300 int ret; 301 302 idr_preload(gfp_mask); 303 spin_lock_bh(&cgroup_idr_lock); 304 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 305 spin_unlock_bh(&cgroup_idr_lock); 306 idr_preload_end(); 307 return ret; 308 } 309 310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 311 { 312 void *ret; 313 314 spin_lock_bh(&cgroup_idr_lock); 315 ret = idr_replace(idr, ptr, id); 316 spin_unlock_bh(&cgroup_idr_lock); 317 return ret; 318 } 319 320 static void cgroup_idr_remove(struct idr *idr, int id) 321 { 322 spin_lock_bh(&cgroup_idr_lock); 323 idr_remove(idr, id); 324 spin_unlock_bh(&cgroup_idr_lock); 325 } 326 327 static bool cgroup_has_tasks(struct cgroup *cgrp) 328 { 329 return cgrp->nr_populated_csets; 330 } 331 332 bool cgroup_is_threaded(struct cgroup *cgrp) 333 { 334 return cgrp->dom_cgrp != cgrp; 335 } 336 337 /* can @cgrp host both domain and threaded children? */ 338 static bool cgroup_is_mixable(struct cgroup *cgrp) 339 { 340 /* 341 * Root isn't under domain level resource control exempting it from 342 * the no-internal-process constraint, so it can serve as a thread 343 * root and a parent of resource domains at the same time. 344 */ 345 return !cgroup_parent(cgrp); 346 } 347 348 /* can @cgrp become a thread root? should always be true for a thread root */ 349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 350 { 351 /* mixables don't care */ 352 if (cgroup_is_mixable(cgrp)) 353 return true; 354 355 /* domain roots can't be nested under threaded */ 356 if (cgroup_is_threaded(cgrp)) 357 return false; 358 359 /* can only have either domain or threaded children */ 360 if (cgrp->nr_populated_domain_children) 361 return false; 362 363 /* and no domain controllers can be enabled */ 364 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 365 return false; 366 367 return true; 368 } 369 370 /* is @cgrp root of a threaded subtree? */ 371 bool cgroup_is_thread_root(struct cgroup *cgrp) 372 { 373 /* thread root should be a domain */ 374 if (cgroup_is_threaded(cgrp)) 375 return false; 376 377 /* a domain w/ threaded children is a thread root */ 378 if (cgrp->nr_threaded_children) 379 return true; 380 381 /* 382 * A domain which has tasks and explicit threaded controllers 383 * enabled is a thread root. 384 */ 385 if (cgroup_has_tasks(cgrp) && 386 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 387 return true; 388 389 return false; 390 } 391 392 /* a domain which isn't connected to the root w/o brekage can't be used */ 393 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 394 { 395 /* the cgroup itself can be a thread root */ 396 if (cgroup_is_threaded(cgrp)) 397 return false; 398 399 /* but the ancestors can't be unless mixable */ 400 while ((cgrp = cgroup_parent(cgrp))) { 401 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 402 return false; 403 if (cgroup_is_threaded(cgrp)) 404 return false; 405 } 406 407 return true; 408 } 409 410 /* subsystems visibly enabled on a cgroup */ 411 static u16 cgroup_control(struct cgroup *cgrp) 412 { 413 struct cgroup *parent = cgroup_parent(cgrp); 414 u16 root_ss_mask = cgrp->root->subsys_mask; 415 416 if (parent) { 417 u16 ss_mask = parent->subtree_control; 418 419 /* threaded cgroups can only have threaded controllers */ 420 if (cgroup_is_threaded(cgrp)) 421 ss_mask &= cgrp_dfl_threaded_ss_mask; 422 return ss_mask; 423 } 424 425 if (cgroup_on_dfl(cgrp)) 426 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 427 cgrp_dfl_implicit_ss_mask); 428 return root_ss_mask; 429 } 430 431 /* subsystems enabled on a cgroup */ 432 static u16 cgroup_ss_mask(struct cgroup *cgrp) 433 { 434 struct cgroup *parent = cgroup_parent(cgrp); 435 436 if (parent) { 437 u16 ss_mask = parent->subtree_ss_mask; 438 439 /* threaded cgroups can only have threaded controllers */ 440 if (cgroup_is_threaded(cgrp)) 441 ss_mask &= cgrp_dfl_threaded_ss_mask; 442 return ss_mask; 443 } 444 445 return cgrp->root->subsys_mask; 446 } 447 448 /** 449 * cgroup_css - obtain a cgroup's css for the specified subsystem 450 * @cgrp: the cgroup of interest 451 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 452 * 453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 454 * function must be called either under cgroup_mutex or rcu_read_lock() and 455 * the caller is responsible for pinning the returned css if it wants to 456 * keep accessing it outside the said locks. This function may return 457 * %NULL if @cgrp doesn't have @subsys_id enabled. 458 */ 459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 460 struct cgroup_subsys *ss) 461 { 462 if (ss) 463 return rcu_dereference_check(cgrp->subsys[ss->id], 464 lockdep_is_held(&cgroup_mutex)); 465 else 466 return &cgrp->self; 467 } 468 469 /** 470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 471 * @cgrp: the cgroup of interest 472 * @ss: the subsystem of interest 473 * 474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 475 * or is offline, %NULL is returned. 476 */ 477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 478 struct cgroup_subsys *ss) 479 { 480 struct cgroup_subsys_state *css; 481 482 rcu_read_lock(); 483 css = cgroup_css(cgrp, ss); 484 if (css && !css_tryget_online(css)) 485 css = NULL; 486 rcu_read_unlock(); 487 488 return css; 489 } 490 491 /** 492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 493 * @cgrp: the cgroup of interest 494 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 495 * 496 * Similar to cgroup_css() but returns the effective css, which is defined 497 * as the matching css of the nearest ancestor including self which has @ss 498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 499 * function is guaranteed to return non-NULL css. 500 */ 501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 502 struct cgroup_subsys *ss) 503 { 504 lockdep_assert_held(&cgroup_mutex); 505 506 if (!ss) 507 return &cgrp->self; 508 509 /* 510 * This function is used while updating css associations and thus 511 * can't test the csses directly. Test ss_mask. 512 */ 513 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 514 cgrp = cgroup_parent(cgrp); 515 if (!cgrp) 516 return NULL; 517 } 518 519 return cgroup_css(cgrp, ss); 520 } 521 522 /** 523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 524 * @cgrp: the cgroup of interest 525 * @ss: the subsystem of interest 526 * 527 * Find and get the effective css of @cgrp for @ss. The effective css is 528 * defined as the matching css of the nearest ancestor including self which 529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 530 * the root css is returned, so this function always returns a valid css. 531 * 532 * The returned css is not guaranteed to be online, and therefore it is the 533 * callers responsiblity to tryget a reference for it. 534 */ 535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 536 struct cgroup_subsys *ss) 537 { 538 struct cgroup_subsys_state *css; 539 540 do { 541 css = cgroup_css(cgrp, ss); 542 543 if (css) 544 return css; 545 cgrp = cgroup_parent(cgrp); 546 } while (cgrp); 547 548 return init_css_set.subsys[ss->id]; 549 } 550 551 /** 552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 553 * @cgrp: the cgroup of interest 554 * @ss: the subsystem of interest 555 * 556 * Find and get the effective css of @cgrp for @ss. The effective css is 557 * defined as the matching css of the nearest ancestor including self which 558 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 559 * the root css is returned, so this function always returns a valid css. 560 * The returned css must be put using css_put(). 561 */ 562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 563 struct cgroup_subsys *ss) 564 { 565 struct cgroup_subsys_state *css; 566 567 rcu_read_lock(); 568 569 do { 570 css = cgroup_css(cgrp, ss); 571 572 if (css && css_tryget_online(css)) 573 goto out_unlock; 574 cgrp = cgroup_parent(cgrp); 575 } while (cgrp); 576 577 css = init_css_set.subsys[ss->id]; 578 css_get(css); 579 out_unlock: 580 rcu_read_unlock(); 581 return css; 582 } 583 584 static void cgroup_get_live(struct cgroup *cgrp) 585 { 586 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 587 css_get(&cgrp->self); 588 } 589 590 /** 591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 592 * is responsible for taking the css_set_lock. 593 * @cgrp: the cgroup in question 594 */ 595 int __cgroup_task_count(const struct cgroup *cgrp) 596 { 597 int count = 0; 598 struct cgrp_cset_link *link; 599 600 lockdep_assert_held(&css_set_lock); 601 602 list_for_each_entry(link, &cgrp->cset_links, cset_link) 603 count += link->cset->nr_tasks; 604 605 return count; 606 } 607 608 /** 609 * cgroup_task_count - count the number of tasks in a cgroup. 610 * @cgrp: the cgroup in question 611 */ 612 int cgroup_task_count(const struct cgroup *cgrp) 613 { 614 int count; 615 616 spin_lock_irq(&css_set_lock); 617 count = __cgroup_task_count(cgrp); 618 spin_unlock_irq(&css_set_lock); 619 620 return count; 621 } 622 623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 624 { 625 struct cgroup *cgrp = of->kn->parent->priv; 626 struct cftype *cft = of_cft(of); 627 628 /* 629 * This is open and unprotected implementation of cgroup_css(). 630 * seq_css() is only called from a kernfs file operation which has 631 * an active reference on the file. Because all the subsystem 632 * files are drained before a css is disassociated with a cgroup, 633 * the matching css from the cgroup's subsys table is guaranteed to 634 * be and stay valid until the enclosing operation is complete. 635 */ 636 if (cft->ss) 637 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 638 else 639 return &cgrp->self; 640 } 641 EXPORT_SYMBOL_GPL(of_css); 642 643 /** 644 * for_each_css - iterate all css's of a cgroup 645 * @css: the iteration cursor 646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 647 * @cgrp: the target cgroup to iterate css's of 648 * 649 * Should be called under cgroup_[tree_]mutex. 650 */ 651 #define for_each_css(css, ssid, cgrp) \ 652 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 653 if (!((css) = rcu_dereference_check( \ 654 (cgrp)->subsys[(ssid)], \ 655 lockdep_is_held(&cgroup_mutex)))) { } \ 656 else 657 658 /** 659 * for_each_e_css - iterate all effective css's of a cgroup 660 * @css: the iteration cursor 661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 662 * @cgrp: the target cgroup to iterate css's of 663 * 664 * Should be called under cgroup_[tree_]mutex. 665 */ 666 #define for_each_e_css(css, ssid, cgrp) \ 667 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 668 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 669 cgroup_subsys[(ssid)]))) \ 670 ; \ 671 else 672 673 /** 674 * do_each_subsys_mask - filter for_each_subsys with a bitmask 675 * @ss: the iteration cursor 676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 677 * @ss_mask: the bitmask 678 * 679 * The block will only run for cases where the ssid-th bit (1 << ssid) of 680 * @ss_mask is set. 681 */ 682 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 683 unsigned long __ss_mask = (ss_mask); \ 684 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 685 (ssid) = 0; \ 686 break; \ 687 } \ 688 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 689 (ss) = cgroup_subsys[ssid]; \ 690 { 691 692 #define while_each_subsys_mask() \ 693 } \ 694 } \ 695 } while (false) 696 697 /* iterate over child cgrps, lock should be held throughout iteration */ 698 #define cgroup_for_each_live_child(child, cgrp) \ 699 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 700 if (({ lockdep_assert_held(&cgroup_mutex); \ 701 cgroup_is_dead(child); })) \ 702 ; \ 703 else 704 705 /* walk live descendants in preorder */ 706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 707 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 708 if (({ lockdep_assert_held(&cgroup_mutex); \ 709 (dsct) = (d_css)->cgroup; \ 710 cgroup_is_dead(dsct); })) \ 711 ; \ 712 else 713 714 /* walk live descendants in postorder */ 715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 716 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 717 if (({ lockdep_assert_held(&cgroup_mutex); \ 718 (dsct) = (d_css)->cgroup; \ 719 cgroup_is_dead(dsct); })) \ 720 ; \ 721 else 722 723 /* 724 * The default css_set - used by init and its children prior to any 725 * hierarchies being mounted. It contains a pointer to the root state 726 * for each subsystem. Also used to anchor the list of css_sets. Not 727 * reference-counted, to improve performance when child cgroups 728 * haven't been created. 729 */ 730 struct css_set init_css_set = { 731 .refcount = REFCOUNT_INIT(1), 732 .dom_cset = &init_css_set, 733 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 734 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 735 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 736 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 737 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 738 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 739 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 740 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 741 742 /* 743 * The following field is re-initialized when this cset gets linked 744 * in cgroup_init(). However, let's initialize the field 745 * statically too so that the default cgroup can be accessed safely 746 * early during boot. 747 */ 748 .dfl_cgrp = &cgrp_dfl_root.cgrp, 749 }; 750 751 static int css_set_count = 1; /* 1 for init_css_set */ 752 753 static bool css_set_threaded(struct css_set *cset) 754 { 755 return cset->dom_cset != cset; 756 } 757 758 /** 759 * css_set_populated - does a css_set contain any tasks? 760 * @cset: target css_set 761 * 762 * css_set_populated() should be the same as !!cset->nr_tasks at steady 763 * state. However, css_set_populated() can be called while a task is being 764 * added to or removed from the linked list before the nr_tasks is 765 * properly updated. Hence, we can't just look at ->nr_tasks here. 766 */ 767 static bool css_set_populated(struct css_set *cset) 768 { 769 lockdep_assert_held(&css_set_lock); 770 771 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 772 } 773 774 /** 775 * cgroup_update_populated - update the populated count of a cgroup 776 * @cgrp: the target cgroup 777 * @populated: inc or dec populated count 778 * 779 * One of the css_sets associated with @cgrp is either getting its first 780 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 781 * count is propagated towards root so that a given cgroup's 782 * nr_populated_children is zero iff none of its descendants contain any 783 * tasks. 784 * 785 * @cgrp's interface file "cgroup.populated" is zero if both 786 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 787 * 1 otherwise. When the sum changes from or to zero, userland is notified 788 * that the content of the interface file has changed. This can be used to 789 * detect when @cgrp and its descendants become populated or empty. 790 */ 791 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 792 { 793 struct cgroup *child = NULL; 794 int adj = populated ? 1 : -1; 795 796 lockdep_assert_held(&css_set_lock); 797 798 do { 799 bool was_populated = cgroup_is_populated(cgrp); 800 801 if (!child) { 802 cgrp->nr_populated_csets += adj; 803 } else { 804 if (cgroup_is_threaded(child)) 805 cgrp->nr_populated_threaded_children += adj; 806 else 807 cgrp->nr_populated_domain_children += adj; 808 } 809 810 if (was_populated == cgroup_is_populated(cgrp)) 811 break; 812 813 cgroup1_check_for_release(cgrp); 814 TRACE_CGROUP_PATH(notify_populated, cgrp, 815 cgroup_is_populated(cgrp)); 816 cgroup_file_notify(&cgrp->events_file); 817 818 child = cgrp; 819 cgrp = cgroup_parent(cgrp); 820 } while (cgrp); 821 } 822 823 /** 824 * css_set_update_populated - update populated state of a css_set 825 * @cset: target css_set 826 * @populated: whether @cset is populated or depopulated 827 * 828 * @cset is either getting the first task or losing the last. Update the 829 * populated counters of all associated cgroups accordingly. 830 */ 831 static void css_set_update_populated(struct css_set *cset, bool populated) 832 { 833 struct cgrp_cset_link *link; 834 835 lockdep_assert_held(&css_set_lock); 836 837 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 838 cgroup_update_populated(link->cgrp, populated); 839 } 840 841 /* 842 * @task is leaving, advance task iterators which are pointing to it so 843 * that they can resume at the next position. Advancing an iterator might 844 * remove it from the list, use safe walk. See css_task_iter_skip() for 845 * details. 846 */ 847 static void css_set_skip_task_iters(struct css_set *cset, 848 struct task_struct *task) 849 { 850 struct css_task_iter *it, *pos; 851 852 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 853 css_task_iter_skip(it, task); 854 } 855 856 /** 857 * css_set_move_task - move a task from one css_set to another 858 * @task: task being moved 859 * @from_cset: css_set @task currently belongs to (may be NULL) 860 * @to_cset: new css_set @task is being moved to (may be NULL) 861 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 862 * 863 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 864 * css_set, @from_cset can be NULL. If @task is being disassociated 865 * instead of moved, @to_cset can be NULL. 866 * 867 * This function automatically handles populated counter updates and 868 * css_task_iter adjustments but the caller is responsible for managing 869 * @from_cset and @to_cset's reference counts. 870 */ 871 static void css_set_move_task(struct task_struct *task, 872 struct css_set *from_cset, struct css_set *to_cset, 873 bool use_mg_tasks) 874 { 875 lockdep_assert_held(&css_set_lock); 876 877 if (to_cset && !css_set_populated(to_cset)) 878 css_set_update_populated(to_cset, true); 879 880 if (from_cset) { 881 WARN_ON_ONCE(list_empty(&task->cg_list)); 882 883 css_set_skip_task_iters(from_cset, task); 884 list_del_init(&task->cg_list); 885 if (!css_set_populated(from_cset)) 886 css_set_update_populated(from_cset, false); 887 } else { 888 WARN_ON_ONCE(!list_empty(&task->cg_list)); 889 } 890 891 if (to_cset) { 892 /* 893 * We are synchronized through cgroup_threadgroup_rwsem 894 * against PF_EXITING setting such that we can't race 895 * against cgroup_exit()/cgroup_free() dropping the css_set. 896 */ 897 WARN_ON_ONCE(task->flags & PF_EXITING); 898 899 cgroup_move_task(task, to_cset); 900 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 901 &to_cset->tasks); 902 } 903 } 904 905 /* 906 * hash table for cgroup groups. This improves the performance to find 907 * an existing css_set. This hash doesn't (currently) take into 908 * account cgroups in empty hierarchies. 909 */ 910 #define CSS_SET_HASH_BITS 7 911 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 912 913 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 914 { 915 unsigned long key = 0UL; 916 struct cgroup_subsys *ss; 917 int i; 918 919 for_each_subsys(ss, i) 920 key += (unsigned long)css[i]; 921 key = (key >> 16) ^ key; 922 923 return key; 924 } 925 926 void put_css_set_locked(struct css_set *cset) 927 { 928 struct cgrp_cset_link *link, *tmp_link; 929 struct cgroup_subsys *ss; 930 int ssid; 931 932 lockdep_assert_held(&css_set_lock); 933 934 if (!refcount_dec_and_test(&cset->refcount)) 935 return; 936 937 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 938 939 /* This css_set is dead. unlink it and release cgroup and css refs */ 940 for_each_subsys(ss, ssid) { 941 list_del(&cset->e_cset_node[ssid]); 942 css_put(cset->subsys[ssid]); 943 } 944 hash_del(&cset->hlist); 945 css_set_count--; 946 947 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 948 list_del(&link->cset_link); 949 list_del(&link->cgrp_link); 950 if (cgroup_parent(link->cgrp)) 951 cgroup_put(link->cgrp); 952 kfree(link); 953 } 954 955 if (css_set_threaded(cset)) { 956 list_del(&cset->threaded_csets_node); 957 put_css_set_locked(cset->dom_cset); 958 } 959 960 kfree_rcu(cset, rcu_head); 961 } 962 963 /** 964 * compare_css_sets - helper function for find_existing_css_set(). 965 * @cset: candidate css_set being tested 966 * @old_cset: existing css_set for a task 967 * @new_cgrp: cgroup that's being entered by the task 968 * @template: desired set of css pointers in css_set (pre-calculated) 969 * 970 * Returns true if "cset" matches "old_cset" except for the hierarchy 971 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 972 */ 973 static bool compare_css_sets(struct css_set *cset, 974 struct css_set *old_cset, 975 struct cgroup *new_cgrp, 976 struct cgroup_subsys_state *template[]) 977 { 978 struct cgroup *new_dfl_cgrp; 979 struct list_head *l1, *l2; 980 981 /* 982 * On the default hierarchy, there can be csets which are 983 * associated with the same set of cgroups but different csses. 984 * Let's first ensure that csses match. 985 */ 986 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 987 return false; 988 989 990 /* @cset's domain should match the default cgroup's */ 991 if (cgroup_on_dfl(new_cgrp)) 992 new_dfl_cgrp = new_cgrp; 993 else 994 new_dfl_cgrp = old_cset->dfl_cgrp; 995 996 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 997 return false; 998 999 /* 1000 * Compare cgroup pointers in order to distinguish between 1001 * different cgroups in hierarchies. As different cgroups may 1002 * share the same effective css, this comparison is always 1003 * necessary. 1004 */ 1005 l1 = &cset->cgrp_links; 1006 l2 = &old_cset->cgrp_links; 1007 while (1) { 1008 struct cgrp_cset_link *link1, *link2; 1009 struct cgroup *cgrp1, *cgrp2; 1010 1011 l1 = l1->next; 1012 l2 = l2->next; 1013 /* See if we reached the end - both lists are equal length. */ 1014 if (l1 == &cset->cgrp_links) { 1015 BUG_ON(l2 != &old_cset->cgrp_links); 1016 break; 1017 } else { 1018 BUG_ON(l2 == &old_cset->cgrp_links); 1019 } 1020 /* Locate the cgroups associated with these links. */ 1021 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1022 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1023 cgrp1 = link1->cgrp; 1024 cgrp2 = link2->cgrp; 1025 /* Hierarchies should be linked in the same order. */ 1026 BUG_ON(cgrp1->root != cgrp2->root); 1027 1028 /* 1029 * If this hierarchy is the hierarchy of the cgroup 1030 * that's changing, then we need to check that this 1031 * css_set points to the new cgroup; if it's any other 1032 * hierarchy, then this css_set should point to the 1033 * same cgroup as the old css_set. 1034 */ 1035 if (cgrp1->root == new_cgrp->root) { 1036 if (cgrp1 != new_cgrp) 1037 return false; 1038 } else { 1039 if (cgrp1 != cgrp2) 1040 return false; 1041 } 1042 } 1043 return true; 1044 } 1045 1046 /** 1047 * find_existing_css_set - init css array and find the matching css_set 1048 * @old_cset: the css_set that we're using before the cgroup transition 1049 * @cgrp: the cgroup that we're moving into 1050 * @template: out param for the new set of csses, should be clear on entry 1051 */ 1052 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1053 struct cgroup *cgrp, 1054 struct cgroup_subsys_state *template[]) 1055 { 1056 struct cgroup_root *root = cgrp->root; 1057 struct cgroup_subsys *ss; 1058 struct css_set *cset; 1059 unsigned long key; 1060 int i; 1061 1062 /* 1063 * Build the set of subsystem state objects that we want to see in the 1064 * new css_set. while subsystems can change globally, the entries here 1065 * won't change, so no need for locking. 1066 */ 1067 for_each_subsys(ss, i) { 1068 if (root->subsys_mask & (1UL << i)) { 1069 /* 1070 * @ss is in this hierarchy, so we want the 1071 * effective css from @cgrp. 1072 */ 1073 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1074 } else { 1075 /* 1076 * @ss is not in this hierarchy, so we don't want 1077 * to change the css. 1078 */ 1079 template[i] = old_cset->subsys[i]; 1080 } 1081 } 1082 1083 key = css_set_hash(template); 1084 hash_for_each_possible(css_set_table, cset, hlist, key) { 1085 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1086 continue; 1087 1088 /* This css_set matches what we need */ 1089 return cset; 1090 } 1091 1092 /* No existing cgroup group matched */ 1093 return NULL; 1094 } 1095 1096 static void free_cgrp_cset_links(struct list_head *links_to_free) 1097 { 1098 struct cgrp_cset_link *link, *tmp_link; 1099 1100 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1101 list_del(&link->cset_link); 1102 kfree(link); 1103 } 1104 } 1105 1106 /** 1107 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1108 * @count: the number of links to allocate 1109 * @tmp_links: list_head the allocated links are put on 1110 * 1111 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1112 * through ->cset_link. Returns 0 on success or -errno. 1113 */ 1114 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1115 { 1116 struct cgrp_cset_link *link; 1117 int i; 1118 1119 INIT_LIST_HEAD(tmp_links); 1120 1121 for (i = 0; i < count; i++) { 1122 link = kzalloc(sizeof(*link), GFP_KERNEL); 1123 if (!link) { 1124 free_cgrp_cset_links(tmp_links); 1125 return -ENOMEM; 1126 } 1127 list_add(&link->cset_link, tmp_links); 1128 } 1129 return 0; 1130 } 1131 1132 /** 1133 * link_css_set - a helper function to link a css_set to a cgroup 1134 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1135 * @cset: the css_set to be linked 1136 * @cgrp: the destination cgroup 1137 */ 1138 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1139 struct cgroup *cgrp) 1140 { 1141 struct cgrp_cset_link *link; 1142 1143 BUG_ON(list_empty(tmp_links)); 1144 1145 if (cgroup_on_dfl(cgrp)) 1146 cset->dfl_cgrp = cgrp; 1147 1148 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1149 link->cset = cset; 1150 link->cgrp = cgrp; 1151 1152 /* 1153 * Always add links to the tail of the lists so that the lists are 1154 * in choronological order. 1155 */ 1156 list_move_tail(&link->cset_link, &cgrp->cset_links); 1157 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1158 1159 if (cgroup_parent(cgrp)) 1160 cgroup_get_live(cgrp); 1161 } 1162 1163 /** 1164 * find_css_set - return a new css_set with one cgroup updated 1165 * @old_cset: the baseline css_set 1166 * @cgrp: the cgroup to be updated 1167 * 1168 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1169 * substituted into the appropriate hierarchy. 1170 */ 1171 static struct css_set *find_css_set(struct css_set *old_cset, 1172 struct cgroup *cgrp) 1173 { 1174 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1175 struct css_set *cset; 1176 struct list_head tmp_links; 1177 struct cgrp_cset_link *link; 1178 struct cgroup_subsys *ss; 1179 unsigned long key; 1180 int ssid; 1181 1182 lockdep_assert_held(&cgroup_mutex); 1183 1184 /* First see if we already have a cgroup group that matches 1185 * the desired set */ 1186 spin_lock_irq(&css_set_lock); 1187 cset = find_existing_css_set(old_cset, cgrp, template); 1188 if (cset) 1189 get_css_set(cset); 1190 spin_unlock_irq(&css_set_lock); 1191 1192 if (cset) 1193 return cset; 1194 1195 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1196 if (!cset) 1197 return NULL; 1198 1199 /* Allocate all the cgrp_cset_link objects that we'll need */ 1200 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1201 kfree(cset); 1202 return NULL; 1203 } 1204 1205 refcount_set(&cset->refcount, 1); 1206 cset->dom_cset = cset; 1207 INIT_LIST_HEAD(&cset->tasks); 1208 INIT_LIST_HEAD(&cset->mg_tasks); 1209 INIT_LIST_HEAD(&cset->dying_tasks); 1210 INIT_LIST_HEAD(&cset->task_iters); 1211 INIT_LIST_HEAD(&cset->threaded_csets); 1212 INIT_HLIST_NODE(&cset->hlist); 1213 INIT_LIST_HEAD(&cset->cgrp_links); 1214 INIT_LIST_HEAD(&cset->mg_preload_node); 1215 INIT_LIST_HEAD(&cset->mg_node); 1216 1217 /* Copy the set of subsystem state objects generated in 1218 * find_existing_css_set() */ 1219 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1220 1221 spin_lock_irq(&css_set_lock); 1222 /* Add reference counts and links from the new css_set. */ 1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1224 struct cgroup *c = link->cgrp; 1225 1226 if (c->root == cgrp->root) 1227 c = cgrp; 1228 link_css_set(&tmp_links, cset, c); 1229 } 1230 1231 BUG_ON(!list_empty(&tmp_links)); 1232 1233 css_set_count++; 1234 1235 /* Add @cset to the hash table */ 1236 key = css_set_hash(cset->subsys); 1237 hash_add(css_set_table, &cset->hlist, key); 1238 1239 for_each_subsys(ss, ssid) { 1240 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1241 1242 list_add_tail(&cset->e_cset_node[ssid], 1243 &css->cgroup->e_csets[ssid]); 1244 css_get(css); 1245 } 1246 1247 spin_unlock_irq(&css_set_lock); 1248 1249 /* 1250 * If @cset should be threaded, look up the matching dom_cset and 1251 * link them up. We first fully initialize @cset then look for the 1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1253 * to stay empty until we return. 1254 */ 1255 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1256 struct css_set *dcset; 1257 1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1259 if (!dcset) { 1260 put_css_set(cset); 1261 return NULL; 1262 } 1263 1264 spin_lock_irq(&css_set_lock); 1265 cset->dom_cset = dcset; 1266 list_add_tail(&cset->threaded_csets_node, 1267 &dcset->threaded_csets); 1268 spin_unlock_irq(&css_set_lock); 1269 } 1270 1271 return cset; 1272 } 1273 1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1275 { 1276 struct cgroup *root_cgrp = kf_root->kn->priv; 1277 1278 return root_cgrp->root; 1279 } 1280 1281 static int cgroup_init_root_id(struct cgroup_root *root) 1282 { 1283 int id; 1284 1285 lockdep_assert_held(&cgroup_mutex); 1286 1287 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1288 if (id < 0) 1289 return id; 1290 1291 root->hierarchy_id = id; 1292 return 0; 1293 } 1294 1295 static void cgroup_exit_root_id(struct cgroup_root *root) 1296 { 1297 lockdep_assert_held(&cgroup_mutex); 1298 1299 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1300 } 1301 1302 void cgroup_free_root(struct cgroup_root *root) 1303 { 1304 kfree(root); 1305 } 1306 1307 static void cgroup_destroy_root(struct cgroup_root *root) 1308 { 1309 struct cgroup *cgrp = &root->cgrp; 1310 struct cgrp_cset_link *link, *tmp_link; 1311 1312 trace_cgroup_destroy_root(root); 1313 1314 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1315 1316 BUG_ON(atomic_read(&root->nr_cgrps)); 1317 BUG_ON(!list_empty(&cgrp->self.children)); 1318 1319 /* Rebind all subsystems back to the default hierarchy */ 1320 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1321 1322 /* 1323 * Release all the links from cset_links to this hierarchy's 1324 * root cgroup 1325 */ 1326 spin_lock_irq(&css_set_lock); 1327 1328 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1329 list_del(&link->cset_link); 1330 list_del(&link->cgrp_link); 1331 kfree(link); 1332 } 1333 1334 spin_unlock_irq(&css_set_lock); 1335 1336 if (!list_empty(&root->root_list)) { 1337 list_del(&root->root_list); 1338 cgroup_root_count--; 1339 } 1340 1341 cgroup_exit_root_id(root); 1342 1343 mutex_unlock(&cgroup_mutex); 1344 1345 kernfs_destroy_root(root->kf_root); 1346 cgroup_free_root(root); 1347 } 1348 1349 /* 1350 * look up cgroup associated with current task's cgroup namespace on the 1351 * specified hierarchy 1352 */ 1353 static struct cgroup * 1354 current_cgns_cgroup_from_root(struct cgroup_root *root) 1355 { 1356 struct cgroup *res = NULL; 1357 struct css_set *cset; 1358 1359 lockdep_assert_held(&css_set_lock); 1360 1361 rcu_read_lock(); 1362 1363 cset = current->nsproxy->cgroup_ns->root_cset; 1364 if (cset == &init_css_set) { 1365 res = &root->cgrp; 1366 } else if (root == &cgrp_dfl_root) { 1367 res = cset->dfl_cgrp; 1368 } else { 1369 struct cgrp_cset_link *link; 1370 1371 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1372 struct cgroup *c = link->cgrp; 1373 1374 if (c->root == root) { 1375 res = c; 1376 break; 1377 } 1378 } 1379 } 1380 rcu_read_unlock(); 1381 1382 BUG_ON(!res); 1383 return res; 1384 } 1385 1386 /* look up cgroup associated with given css_set on the specified hierarchy */ 1387 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1388 struct cgroup_root *root) 1389 { 1390 struct cgroup *res = NULL; 1391 1392 lockdep_assert_held(&cgroup_mutex); 1393 lockdep_assert_held(&css_set_lock); 1394 1395 if (cset == &init_css_set) { 1396 res = &root->cgrp; 1397 } else if (root == &cgrp_dfl_root) { 1398 res = cset->dfl_cgrp; 1399 } else { 1400 struct cgrp_cset_link *link; 1401 1402 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1403 struct cgroup *c = link->cgrp; 1404 1405 if (c->root == root) { 1406 res = c; 1407 break; 1408 } 1409 } 1410 } 1411 1412 BUG_ON(!res); 1413 return res; 1414 } 1415 1416 /* 1417 * Return the cgroup for "task" from the given hierarchy. Must be 1418 * called with cgroup_mutex and css_set_lock held. 1419 */ 1420 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1421 struct cgroup_root *root) 1422 { 1423 /* 1424 * No need to lock the task - since we hold css_set_lock the 1425 * task can't change groups. 1426 */ 1427 return cset_cgroup_from_root(task_css_set(task), root); 1428 } 1429 1430 /* 1431 * A task must hold cgroup_mutex to modify cgroups. 1432 * 1433 * Any task can increment and decrement the count field without lock. 1434 * So in general, code holding cgroup_mutex can't rely on the count 1435 * field not changing. However, if the count goes to zero, then only 1436 * cgroup_attach_task() can increment it again. Because a count of zero 1437 * means that no tasks are currently attached, therefore there is no 1438 * way a task attached to that cgroup can fork (the other way to 1439 * increment the count). So code holding cgroup_mutex can safely 1440 * assume that if the count is zero, it will stay zero. Similarly, if 1441 * a task holds cgroup_mutex on a cgroup with zero count, it 1442 * knows that the cgroup won't be removed, as cgroup_rmdir() 1443 * needs that mutex. 1444 * 1445 * A cgroup can only be deleted if both its 'count' of using tasks 1446 * is zero, and its list of 'children' cgroups is empty. Since all 1447 * tasks in the system use _some_ cgroup, and since there is always at 1448 * least one task in the system (init, pid == 1), therefore, root cgroup 1449 * always has either children cgroups and/or using tasks. So we don't 1450 * need a special hack to ensure that root cgroup cannot be deleted. 1451 * 1452 * P.S. One more locking exception. RCU is used to guard the 1453 * update of a tasks cgroup pointer by cgroup_attach_task() 1454 */ 1455 1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1457 1458 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1459 char *buf) 1460 { 1461 struct cgroup_subsys *ss = cft->ss; 1462 1463 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1464 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1465 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1466 1467 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1468 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1469 cft->name); 1470 } else { 1471 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1472 } 1473 return buf; 1474 } 1475 1476 /** 1477 * cgroup_file_mode - deduce file mode of a control file 1478 * @cft: the control file in question 1479 * 1480 * S_IRUGO for read, S_IWUSR for write. 1481 */ 1482 static umode_t cgroup_file_mode(const struct cftype *cft) 1483 { 1484 umode_t mode = 0; 1485 1486 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1487 mode |= S_IRUGO; 1488 1489 if (cft->write_u64 || cft->write_s64 || cft->write) { 1490 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1491 mode |= S_IWUGO; 1492 else 1493 mode |= S_IWUSR; 1494 } 1495 1496 return mode; 1497 } 1498 1499 /** 1500 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1501 * @subtree_control: the new subtree_control mask to consider 1502 * @this_ss_mask: available subsystems 1503 * 1504 * On the default hierarchy, a subsystem may request other subsystems to be 1505 * enabled together through its ->depends_on mask. In such cases, more 1506 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1507 * 1508 * This function calculates which subsystems need to be enabled if 1509 * @subtree_control is to be applied while restricted to @this_ss_mask. 1510 */ 1511 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1512 { 1513 u16 cur_ss_mask = subtree_control; 1514 struct cgroup_subsys *ss; 1515 int ssid; 1516 1517 lockdep_assert_held(&cgroup_mutex); 1518 1519 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1520 1521 while (true) { 1522 u16 new_ss_mask = cur_ss_mask; 1523 1524 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1525 new_ss_mask |= ss->depends_on; 1526 } while_each_subsys_mask(); 1527 1528 /* 1529 * Mask out subsystems which aren't available. This can 1530 * happen only if some depended-upon subsystems were bound 1531 * to non-default hierarchies. 1532 */ 1533 new_ss_mask &= this_ss_mask; 1534 1535 if (new_ss_mask == cur_ss_mask) 1536 break; 1537 cur_ss_mask = new_ss_mask; 1538 } 1539 1540 return cur_ss_mask; 1541 } 1542 1543 /** 1544 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1545 * @kn: the kernfs_node being serviced 1546 * 1547 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1548 * the method finishes if locking succeeded. Note that once this function 1549 * returns the cgroup returned by cgroup_kn_lock_live() may become 1550 * inaccessible any time. If the caller intends to continue to access the 1551 * cgroup, it should pin it before invoking this function. 1552 */ 1553 void cgroup_kn_unlock(struct kernfs_node *kn) 1554 { 1555 struct cgroup *cgrp; 1556 1557 if (kernfs_type(kn) == KERNFS_DIR) 1558 cgrp = kn->priv; 1559 else 1560 cgrp = kn->parent->priv; 1561 1562 mutex_unlock(&cgroup_mutex); 1563 1564 kernfs_unbreak_active_protection(kn); 1565 cgroup_put(cgrp); 1566 } 1567 1568 /** 1569 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1570 * @kn: the kernfs_node being serviced 1571 * @drain_offline: perform offline draining on the cgroup 1572 * 1573 * This helper is to be used by a cgroup kernfs method currently servicing 1574 * @kn. It breaks the active protection, performs cgroup locking and 1575 * verifies that the associated cgroup is alive. Returns the cgroup if 1576 * alive; otherwise, %NULL. A successful return should be undone by a 1577 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1578 * cgroup is drained of offlining csses before return. 1579 * 1580 * Any cgroup kernfs method implementation which requires locking the 1581 * associated cgroup should use this helper. It avoids nesting cgroup 1582 * locking under kernfs active protection and allows all kernfs operations 1583 * including self-removal. 1584 */ 1585 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1586 { 1587 struct cgroup *cgrp; 1588 1589 if (kernfs_type(kn) == KERNFS_DIR) 1590 cgrp = kn->priv; 1591 else 1592 cgrp = kn->parent->priv; 1593 1594 /* 1595 * We're gonna grab cgroup_mutex which nests outside kernfs 1596 * active_ref. cgroup liveliness check alone provides enough 1597 * protection against removal. Ensure @cgrp stays accessible and 1598 * break the active_ref protection. 1599 */ 1600 if (!cgroup_tryget(cgrp)) 1601 return NULL; 1602 kernfs_break_active_protection(kn); 1603 1604 if (drain_offline) 1605 cgroup_lock_and_drain_offline(cgrp); 1606 else 1607 mutex_lock(&cgroup_mutex); 1608 1609 if (!cgroup_is_dead(cgrp)) 1610 return cgrp; 1611 1612 cgroup_kn_unlock(kn); 1613 return NULL; 1614 } 1615 1616 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1617 { 1618 char name[CGROUP_FILE_NAME_MAX]; 1619 1620 lockdep_assert_held(&cgroup_mutex); 1621 1622 if (cft->file_offset) { 1623 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1624 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1625 1626 spin_lock_irq(&cgroup_file_kn_lock); 1627 cfile->kn = NULL; 1628 spin_unlock_irq(&cgroup_file_kn_lock); 1629 1630 del_timer_sync(&cfile->notify_timer); 1631 } 1632 1633 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1634 } 1635 1636 /** 1637 * css_clear_dir - remove subsys files in a cgroup directory 1638 * @css: taget css 1639 */ 1640 static void css_clear_dir(struct cgroup_subsys_state *css) 1641 { 1642 struct cgroup *cgrp = css->cgroup; 1643 struct cftype *cfts; 1644 1645 if (!(css->flags & CSS_VISIBLE)) 1646 return; 1647 1648 css->flags &= ~CSS_VISIBLE; 1649 1650 if (!css->ss) { 1651 if (cgroup_on_dfl(cgrp)) 1652 cfts = cgroup_base_files; 1653 else 1654 cfts = cgroup1_base_files; 1655 1656 cgroup_addrm_files(css, cgrp, cfts, false); 1657 } else { 1658 list_for_each_entry(cfts, &css->ss->cfts, node) 1659 cgroup_addrm_files(css, cgrp, cfts, false); 1660 } 1661 } 1662 1663 /** 1664 * css_populate_dir - create subsys files in a cgroup directory 1665 * @css: target css 1666 * 1667 * On failure, no file is added. 1668 */ 1669 static int css_populate_dir(struct cgroup_subsys_state *css) 1670 { 1671 struct cgroup *cgrp = css->cgroup; 1672 struct cftype *cfts, *failed_cfts; 1673 int ret; 1674 1675 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1676 return 0; 1677 1678 if (!css->ss) { 1679 if (cgroup_on_dfl(cgrp)) 1680 cfts = cgroup_base_files; 1681 else 1682 cfts = cgroup1_base_files; 1683 1684 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1685 if (ret < 0) 1686 return ret; 1687 } else { 1688 list_for_each_entry(cfts, &css->ss->cfts, node) { 1689 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1690 if (ret < 0) { 1691 failed_cfts = cfts; 1692 goto err; 1693 } 1694 } 1695 } 1696 1697 css->flags |= CSS_VISIBLE; 1698 1699 return 0; 1700 err: 1701 list_for_each_entry(cfts, &css->ss->cfts, node) { 1702 if (cfts == failed_cfts) 1703 break; 1704 cgroup_addrm_files(css, cgrp, cfts, false); 1705 } 1706 return ret; 1707 } 1708 1709 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1710 { 1711 struct cgroup *dcgrp = &dst_root->cgrp; 1712 struct cgroup_subsys *ss; 1713 int ssid, i, ret; 1714 1715 lockdep_assert_held(&cgroup_mutex); 1716 1717 do_each_subsys_mask(ss, ssid, ss_mask) { 1718 /* 1719 * If @ss has non-root csses attached to it, can't move. 1720 * If @ss is an implicit controller, it is exempt from this 1721 * rule and can be stolen. 1722 */ 1723 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1724 !ss->implicit_on_dfl) 1725 return -EBUSY; 1726 1727 /* can't move between two non-dummy roots either */ 1728 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1729 return -EBUSY; 1730 } while_each_subsys_mask(); 1731 1732 do_each_subsys_mask(ss, ssid, ss_mask) { 1733 struct cgroup_root *src_root = ss->root; 1734 struct cgroup *scgrp = &src_root->cgrp; 1735 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1736 struct css_set *cset; 1737 1738 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1739 1740 /* disable from the source */ 1741 src_root->subsys_mask &= ~(1 << ssid); 1742 WARN_ON(cgroup_apply_control(scgrp)); 1743 cgroup_finalize_control(scgrp, 0); 1744 1745 /* rebind */ 1746 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1747 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1748 ss->root = dst_root; 1749 css->cgroup = dcgrp; 1750 1751 spin_lock_irq(&css_set_lock); 1752 hash_for_each(css_set_table, i, cset, hlist) 1753 list_move_tail(&cset->e_cset_node[ss->id], 1754 &dcgrp->e_csets[ss->id]); 1755 spin_unlock_irq(&css_set_lock); 1756 1757 /* default hierarchy doesn't enable controllers by default */ 1758 dst_root->subsys_mask |= 1 << ssid; 1759 if (dst_root == &cgrp_dfl_root) { 1760 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1761 } else { 1762 dcgrp->subtree_control |= 1 << ssid; 1763 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1764 } 1765 1766 ret = cgroup_apply_control(dcgrp); 1767 if (ret) 1768 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1769 ss->name, ret); 1770 1771 if (ss->bind) 1772 ss->bind(css); 1773 } while_each_subsys_mask(); 1774 1775 kernfs_activate(dcgrp->kn); 1776 return 0; 1777 } 1778 1779 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1780 struct kernfs_root *kf_root) 1781 { 1782 int len = 0; 1783 char *buf = NULL; 1784 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1785 struct cgroup *ns_cgroup; 1786 1787 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1788 if (!buf) 1789 return -ENOMEM; 1790 1791 spin_lock_irq(&css_set_lock); 1792 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1793 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1794 spin_unlock_irq(&css_set_lock); 1795 1796 if (len >= PATH_MAX) 1797 len = -ERANGE; 1798 else if (len > 0) { 1799 seq_escape(sf, buf, " \t\n\\"); 1800 len = 0; 1801 } 1802 kfree(buf); 1803 return len; 1804 } 1805 1806 enum cgroup2_param { 1807 Opt_nsdelegate, 1808 Opt_memory_localevents, 1809 Opt_memory_recursiveprot, 1810 nr__cgroup2_params 1811 }; 1812 1813 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1814 fsparam_flag("nsdelegate", Opt_nsdelegate), 1815 fsparam_flag("memory_localevents", Opt_memory_localevents), 1816 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1817 {} 1818 }; 1819 1820 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1821 { 1822 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1823 struct fs_parse_result result; 1824 int opt; 1825 1826 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1827 if (opt < 0) 1828 return opt; 1829 1830 switch (opt) { 1831 case Opt_nsdelegate: 1832 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1833 return 0; 1834 case Opt_memory_localevents: 1835 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1836 return 0; 1837 case Opt_memory_recursiveprot: 1838 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1839 return 0; 1840 } 1841 return -EINVAL; 1842 } 1843 1844 static void apply_cgroup_root_flags(unsigned int root_flags) 1845 { 1846 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1847 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1848 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1849 else 1850 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1851 1852 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1853 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1854 else 1855 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1856 1857 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1858 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1859 else 1860 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1861 } 1862 } 1863 1864 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1865 { 1866 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1867 seq_puts(seq, ",nsdelegate"); 1868 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1869 seq_puts(seq, ",memory_localevents"); 1870 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1871 seq_puts(seq, ",memory_recursiveprot"); 1872 return 0; 1873 } 1874 1875 static int cgroup_reconfigure(struct fs_context *fc) 1876 { 1877 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1878 1879 apply_cgroup_root_flags(ctx->flags); 1880 return 0; 1881 } 1882 1883 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1884 { 1885 struct cgroup_subsys *ss; 1886 int ssid; 1887 1888 INIT_LIST_HEAD(&cgrp->self.sibling); 1889 INIT_LIST_HEAD(&cgrp->self.children); 1890 INIT_LIST_HEAD(&cgrp->cset_links); 1891 INIT_LIST_HEAD(&cgrp->pidlists); 1892 mutex_init(&cgrp->pidlist_mutex); 1893 cgrp->self.cgroup = cgrp; 1894 cgrp->self.flags |= CSS_ONLINE; 1895 cgrp->dom_cgrp = cgrp; 1896 cgrp->max_descendants = INT_MAX; 1897 cgrp->max_depth = INT_MAX; 1898 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1899 prev_cputime_init(&cgrp->prev_cputime); 1900 1901 for_each_subsys(ss, ssid) 1902 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1903 1904 init_waitqueue_head(&cgrp->offline_waitq); 1905 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1906 } 1907 1908 void init_cgroup_root(struct cgroup_fs_context *ctx) 1909 { 1910 struct cgroup_root *root = ctx->root; 1911 struct cgroup *cgrp = &root->cgrp; 1912 1913 INIT_LIST_HEAD(&root->root_list); 1914 atomic_set(&root->nr_cgrps, 1); 1915 cgrp->root = root; 1916 init_cgroup_housekeeping(cgrp); 1917 1918 root->flags = ctx->flags; 1919 if (ctx->release_agent) 1920 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1921 if (ctx->name) 1922 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1923 if (ctx->cpuset_clone_children) 1924 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1925 } 1926 1927 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1928 { 1929 LIST_HEAD(tmp_links); 1930 struct cgroup *root_cgrp = &root->cgrp; 1931 struct kernfs_syscall_ops *kf_sops; 1932 struct css_set *cset; 1933 int i, ret; 1934 1935 lockdep_assert_held(&cgroup_mutex); 1936 1937 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1938 0, GFP_KERNEL); 1939 if (ret) 1940 goto out; 1941 1942 /* 1943 * We're accessing css_set_count without locking css_set_lock here, 1944 * but that's OK - it can only be increased by someone holding 1945 * cgroup_lock, and that's us. Later rebinding may disable 1946 * controllers on the default hierarchy and thus create new csets, 1947 * which can't be more than the existing ones. Allocate 2x. 1948 */ 1949 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1950 if (ret) 1951 goto cancel_ref; 1952 1953 ret = cgroup_init_root_id(root); 1954 if (ret) 1955 goto cancel_ref; 1956 1957 kf_sops = root == &cgrp_dfl_root ? 1958 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1959 1960 root->kf_root = kernfs_create_root(kf_sops, 1961 KERNFS_ROOT_CREATE_DEACTIVATED | 1962 KERNFS_ROOT_SUPPORT_EXPORTOP | 1963 KERNFS_ROOT_SUPPORT_USER_XATTR, 1964 root_cgrp); 1965 if (IS_ERR(root->kf_root)) { 1966 ret = PTR_ERR(root->kf_root); 1967 goto exit_root_id; 1968 } 1969 root_cgrp->kn = root->kf_root->kn; 1970 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 1971 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 1972 1973 ret = css_populate_dir(&root_cgrp->self); 1974 if (ret) 1975 goto destroy_root; 1976 1977 ret = rebind_subsystems(root, ss_mask); 1978 if (ret) 1979 goto destroy_root; 1980 1981 ret = cgroup_bpf_inherit(root_cgrp); 1982 WARN_ON_ONCE(ret); 1983 1984 trace_cgroup_setup_root(root); 1985 1986 /* 1987 * There must be no failure case after here, since rebinding takes 1988 * care of subsystems' refcounts, which are explicitly dropped in 1989 * the failure exit path. 1990 */ 1991 list_add(&root->root_list, &cgroup_roots); 1992 cgroup_root_count++; 1993 1994 /* 1995 * Link the root cgroup in this hierarchy into all the css_set 1996 * objects. 1997 */ 1998 spin_lock_irq(&css_set_lock); 1999 hash_for_each(css_set_table, i, cset, hlist) { 2000 link_css_set(&tmp_links, cset, root_cgrp); 2001 if (css_set_populated(cset)) 2002 cgroup_update_populated(root_cgrp, true); 2003 } 2004 spin_unlock_irq(&css_set_lock); 2005 2006 BUG_ON(!list_empty(&root_cgrp->self.children)); 2007 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2008 2009 ret = 0; 2010 goto out; 2011 2012 destroy_root: 2013 kernfs_destroy_root(root->kf_root); 2014 root->kf_root = NULL; 2015 exit_root_id: 2016 cgroup_exit_root_id(root); 2017 cancel_ref: 2018 percpu_ref_exit(&root_cgrp->self.refcnt); 2019 out: 2020 free_cgrp_cset_links(&tmp_links); 2021 return ret; 2022 } 2023 2024 int cgroup_do_get_tree(struct fs_context *fc) 2025 { 2026 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2027 int ret; 2028 2029 ctx->kfc.root = ctx->root->kf_root; 2030 if (fc->fs_type == &cgroup2_fs_type) 2031 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2032 else 2033 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2034 ret = kernfs_get_tree(fc); 2035 2036 /* 2037 * In non-init cgroup namespace, instead of root cgroup's dentry, 2038 * we return the dentry corresponding to the cgroupns->root_cgrp. 2039 */ 2040 if (!ret && ctx->ns != &init_cgroup_ns) { 2041 struct dentry *nsdentry; 2042 struct super_block *sb = fc->root->d_sb; 2043 struct cgroup *cgrp; 2044 2045 mutex_lock(&cgroup_mutex); 2046 spin_lock_irq(&css_set_lock); 2047 2048 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2049 2050 spin_unlock_irq(&css_set_lock); 2051 mutex_unlock(&cgroup_mutex); 2052 2053 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2054 dput(fc->root); 2055 if (IS_ERR(nsdentry)) { 2056 deactivate_locked_super(sb); 2057 ret = PTR_ERR(nsdentry); 2058 nsdentry = NULL; 2059 } 2060 fc->root = nsdentry; 2061 } 2062 2063 if (!ctx->kfc.new_sb_created) 2064 cgroup_put(&ctx->root->cgrp); 2065 2066 return ret; 2067 } 2068 2069 /* 2070 * Destroy a cgroup filesystem context. 2071 */ 2072 static void cgroup_fs_context_free(struct fs_context *fc) 2073 { 2074 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2075 2076 kfree(ctx->name); 2077 kfree(ctx->release_agent); 2078 put_cgroup_ns(ctx->ns); 2079 kernfs_free_fs_context(fc); 2080 kfree(ctx); 2081 } 2082 2083 static int cgroup_get_tree(struct fs_context *fc) 2084 { 2085 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2086 int ret; 2087 2088 cgrp_dfl_visible = true; 2089 cgroup_get_live(&cgrp_dfl_root.cgrp); 2090 ctx->root = &cgrp_dfl_root; 2091 2092 ret = cgroup_do_get_tree(fc); 2093 if (!ret) 2094 apply_cgroup_root_flags(ctx->flags); 2095 return ret; 2096 } 2097 2098 static const struct fs_context_operations cgroup_fs_context_ops = { 2099 .free = cgroup_fs_context_free, 2100 .parse_param = cgroup2_parse_param, 2101 .get_tree = cgroup_get_tree, 2102 .reconfigure = cgroup_reconfigure, 2103 }; 2104 2105 static const struct fs_context_operations cgroup1_fs_context_ops = { 2106 .free = cgroup_fs_context_free, 2107 .parse_param = cgroup1_parse_param, 2108 .get_tree = cgroup1_get_tree, 2109 .reconfigure = cgroup1_reconfigure, 2110 }; 2111 2112 /* 2113 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2114 * we select the namespace we're going to use. 2115 */ 2116 static int cgroup_init_fs_context(struct fs_context *fc) 2117 { 2118 struct cgroup_fs_context *ctx; 2119 2120 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2121 if (!ctx) 2122 return -ENOMEM; 2123 2124 ctx->ns = current->nsproxy->cgroup_ns; 2125 get_cgroup_ns(ctx->ns); 2126 fc->fs_private = &ctx->kfc; 2127 if (fc->fs_type == &cgroup2_fs_type) 2128 fc->ops = &cgroup_fs_context_ops; 2129 else 2130 fc->ops = &cgroup1_fs_context_ops; 2131 put_user_ns(fc->user_ns); 2132 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2133 fc->global = true; 2134 return 0; 2135 } 2136 2137 static void cgroup_kill_sb(struct super_block *sb) 2138 { 2139 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2140 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2141 2142 /* 2143 * If @root doesn't have any children, start killing it. 2144 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2145 * cgroup_mount() may wait for @root's release. 2146 * 2147 * And don't kill the default root. 2148 */ 2149 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2150 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2151 percpu_ref_kill(&root->cgrp.self.refcnt); 2152 cgroup_put(&root->cgrp); 2153 kernfs_kill_sb(sb); 2154 } 2155 2156 struct file_system_type cgroup_fs_type = { 2157 .name = "cgroup", 2158 .init_fs_context = cgroup_init_fs_context, 2159 .parameters = cgroup1_fs_parameters, 2160 .kill_sb = cgroup_kill_sb, 2161 .fs_flags = FS_USERNS_MOUNT, 2162 }; 2163 2164 static struct file_system_type cgroup2_fs_type = { 2165 .name = "cgroup2", 2166 .init_fs_context = cgroup_init_fs_context, 2167 .parameters = cgroup2_fs_parameters, 2168 .kill_sb = cgroup_kill_sb, 2169 .fs_flags = FS_USERNS_MOUNT, 2170 }; 2171 2172 #ifdef CONFIG_CPUSETS 2173 static const struct fs_context_operations cpuset_fs_context_ops = { 2174 .get_tree = cgroup1_get_tree, 2175 .free = cgroup_fs_context_free, 2176 }; 2177 2178 /* 2179 * This is ugly, but preserves the userspace API for existing cpuset 2180 * users. If someone tries to mount the "cpuset" filesystem, we 2181 * silently switch it to mount "cgroup" instead 2182 */ 2183 static int cpuset_init_fs_context(struct fs_context *fc) 2184 { 2185 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2186 struct cgroup_fs_context *ctx; 2187 int err; 2188 2189 err = cgroup_init_fs_context(fc); 2190 if (err) { 2191 kfree(agent); 2192 return err; 2193 } 2194 2195 fc->ops = &cpuset_fs_context_ops; 2196 2197 ctx = cgroup_fc2context(fc); 2198 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2199 ctx->flags |= CGRP_ROOT_NOPREFIX; 2200 ctx->release_agent = agent; 2201 2202 get_filesystem(&cgroup_fs_type); 2203 put_filesystem(fc->fs_type); 2204 fc->fs_type = &cgroup_fs_type; 2205 2206 return 0; 2207 } 2208 2209 static struct file_system_type cpuset_fs_type = { 2210 .name = "cpuset", 2211 .init_fs_context = cpuset_init_fs_context, 2212 .fs_flags = FS_USERNS_MOUNT, 2213 }; 2214 #endif 2215 2216 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2217 struct cgroup_namespace *ns) 2218 { 2219 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2220 2221 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2222 } 2223 2224 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2225 struct cgroup_namespace *ns) 2226 { 2227 int ret; 2228 2229 mutex_lock(&cgroup_mutex); 2230 spin_lock_irq(&css_set_lock); 2231 2232 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2233 2234 spin_unlock_irq(&css_set_lock); 2235 mutex_unlock(&cgroup_mutex); 2236 2237 return ret; 2238 } 2239 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2240 2241 /** 2242 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2243 * @task: target task 2244 * @buf: the buffer to write the path into 2245 * @buflen: the length of the buffer 2246 * 2247 * Determine @task's cgroup on the first (the one with the lowest non-zero 2248 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2249 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2250 * cgroup controller callbacks. 2251 * 2252 * Return value is the same as kernfs_path(). 2253 */ 2254 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2255 { 2256 struct cgroup_root *root; 2257 struct cgroup *cgrp; 2258 int hierarchy_id = 1; 2259 int ret; 2260 2261 mutex_lock(&cgroup_mutex); 2262 spin_lock_irq(&css_set_lock); 2263 2264 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2265 2266 if (root) { 2267 cgrp = task_cgroup_from_root(task, root); 2268 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2269 } else { 2270 /* if no hierarchy exists, everyone is in "/" */ 2271 ret = strlcpy(buf, "/", buflen); 2272 } 2273 2274 spin_unlock_irq(&css_set_lock); 2275 mutex_unlock(&cgroup_mutex); 2276 return ret; 2277 } 2278 EXPORT_SYMBOL_GPL(task_cgroup_path); 2279 2280 /** 2281 * cgroup_migrate_add_task - add a migration target task to a migration context 2282 * @task: target task 2283 * @mgctx: target migration context 2284 * 2285 * Add @task, which is a migration target, to @mgctx->tset. This function 2286 * becomes noop if @task doesn't need to be migrated. @task's css_set 2287 * should have been added as a migration source and @task->cg_list will be 2288 * moved from the css_set's tasks list to mg_tasks one. 2289 */ 2290 static void cgroup_migrate_add_task(struct task_struct *task, 2291 struct cgroup_mgctx *mgctx) 2292 { 2293 struct css_set *cset; 2294 2295 lockdep_assert_held(&css_set_lock); 2296 2297 /* @task either already exited or can't exit until the end */ 2298 if (task->flags & PF_EXITING) 2299 return; 2300 2301 /* cgroup_threadgroup_rwsem protects racing against forks */ 2302 WARN_ON_ONCE(list_empty(&task->cg_list)); 2303 2304 cset = task_css_set(task); 2305 if (!cset->mg_src_cgrp) 2306 return; 2307 2308 mgctx->tset.nr_tasks++; 2309 2310 list_move_tail(&task->cg_list, &cset->mg_tasks); 2311 if (list_empty(&cset->mg_node)) 2312 list_add_tail(&cset->mg_node, 2313 &mgctx->tset.src_csets); 2314 if (list_empty(&cset->mg_dst_cset->mg_node)) 2315 list_add_tail(&cset->mg_dst_cset->mg_node, 2316 &mgctx->tset.dst_csets); 2317 } 2318 2319 /** 2320 * cgroup_taskset_first - reset taskset and return the first task 2321 * @tset: taskset of interest 2322 * @dst_cssp: output variable for the destination css 2323 * 2324 * @tset iteration is initialized and the first task is returned. 2325 */ 2326 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2327 struct cgroup_subsys_state **dst_cssp) 2328 { 2329 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2330 tset->cur_task = NULL; 2331 2332 return cgroup_taskset_next(tset, dst_cssp); 2333 } 2334 2335 /** 2336 * cgroup_taskset_next - iterate to the next task in taskset 2337 * @tset: taskset of interest 2338 * @dst_cssp: output variable for the destination css 2339 * 2340 * Return the next task in @tset. Iteration must have been initialized 2341 * with cgroup_taskset_first(). 2342 */ 2343 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2344 struct cgroup_subsys_state **dst_cssp) 2345 { 2346 struct css_set *cset = tset->cur_cset; 2347 struct task_struct *task = tset->cur_task; 2348 2349 while (&cset->mg_node != tset->csets) { 2350 if (!task) 2351 task = list_first_entry(&cset->mg_tasks, 2352 struct task_struct, cg_list); 2353 else 2354 task = list_next_entry(task, cg_list); 2355 2356 if (&task->cg_list != &cset->mg_tasks) { 2357 tset->cur_cset = cset; 2358 tset->cur_task = task; 2359 2360 /* 2361 * This function may be called both before and 2362 * after cgroup_taskset_migrate(). The two cases 2363 * can be distinguished by looking at whether @cset 2364 * has its ->mg_dst_cset set. 2365 */ 2366 if (cset->mg_dst_cset) 2367 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2368 else 2369 *dst_cssp = cset->subsys[tset->ssid]; 2370 2371 return task; 2372 } 2373 2374 cset = list_next_entry(cset, mg_node); 2375 task = NULL; 2376 } 2377 2378 return NULL; 2379 } 2380 2381 /** 2382 * cgroup_taskset_migrate - migrate a taskset 2383 * @mgctx: migration context 2384 * 2385 * Migrate tasks in @mgctx as setup by migration preparation functions. 2386 * This function fails iff one of the ->can_attach callbacks fails and 2387 * guarantees that either all or none of the tasks in @mgctx are migrated. 2388 * @mgctx is consumed regardless of success. 2389 */ 2390 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2391 { 2392 struct cgroup_taskset *tset = &mgctx->tset; 2393 struct cgroup_subsys *ss; 2394 struct task_struct *task, *tmp_task; 2395 struct css_set *cset, *tmp_cset; 2396 int ssid, failed_ssid, ret; 2397 2398 /* check that we can legitimately attach to the cgroup */ 2399 if (tset->nr_tasks) { 2400 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2401 if (ss->can_attach) { 2402 tset->ssid = ssid; 2403 ret = ss->can_attach(tset); 2404 if (ret) { 2405 failed_ssid = ssid; 2406 goto out_cancel_attach; 2407 } 2408 } 2409 } while_each_subsys_mask(); 2410 } 2411 2412 /* 2413 * Now that we're guaranteed success, proceed to move all tasks to 2414 * the new cgroup. There are no failure cases after here, so this 2415 * is the commit point. 2416 */ 2417 spin_lock_irq(&css_set_lock); 2418 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2419 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2420 struct css_set *from_cset = task_css_set(task); 2421 struct css_set *to_cset = cset->mg_dst_cset; 2422 2423 get_css_set(to_cset); 2424 to_cset->nr_tasks++; 2425 css_set_move_task(task, from_cset, to_cset, true); 2426 from_cset->nr_tasks--; 2427 /* 2428 * If the source or destination cgroup is frozen, 2429 * the task might require to change its state. 2430 */ 2431 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2432 to_cset->dfl_cgrp); 2433 put_css_set_locked(from_cset); 2434 2435 } 2436 } 2437 spin_unlock_irq(&css_set_lock); 2438 2439 /* 2440 * Migration is committed, all target tasks are now on dst_csets. 2441 * Nothing is sensitive to fork() after this point. Notify 2442 * controllers that migration is complete. 2443 */ 2444 tset->csets = &tset->dst_csets; 2445 2446 if (tset->nr_tasks) { 2447 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2448 if (ss->attach) { 2449 tset->ssid = ssid; 2450 ss->attach(tset); 2451 } 2452 } while_each_subsys_mask(); 2453 } 2454 2455 ret = 0; 2456 goto out_release_tset; 2457 2458 out_cancel_attach: 2459 if (tset->nr_tasks) { 2460 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2461 if (ssid == failed_ssid) 2462 break; 2463 if (ss->cancel_attach) { 2464 tset->ssid = ssid; 2465 ss->cancel_attach(tset); 2466 } 2467 } while_each_subsys_mask(); 2468 } 2469 out_release_tset: 2470 spin_lock_irq(&css_set_lock); 2471 list_splice_init(&tset->dst_csets, &tset->src_csets); 2472 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2473 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2474 list_del_init(&cset->mg_node); 2475 } 2476 spin_unlock_irq(&css_set_lock); 2477 2478 /* 2479 * Re-initialize the cgroup_taskset structure in case it is reused 2480 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2481 * iteration. 2482 */ 2483 tset->nr_tasks = 0; 2484 tset->csets = &tset->src_csets; 2485 return ret; 2486 } 2487 2488 /** 2489 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2490 * @dst_cgrp: destination cgroup to test 2491 * 2492 * On the default hierarchy, except for the mixable, (possible) thread root 2493 * and threaded cgroups, subtree_control must be zero for migration 2494 * destination cgroups with tasks so that child cgroups don't compete 2495 * against tasks. 2496 */ 2497 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2498 { 2499 /* v1 doesn't have any restriction */ 2500 if (!cgroup_on_dfl(dst_cgrp)) 2501 return 0; 2502 2503 /* verify @dst_cgrp can host resources */ 2504 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2505 return -EOPNOTSUPP; 2506 2507 /* mixables don't care */ 2508 if (cgroup_is_mixable(dst_cgrp)) 2509 return 0; 2510 2511 /* 2512 * If @dst_cgrp is already or can become a thread root or is 2513 * threaded, it doesn't matter. 2514 */ 2515 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2516 return 0; 2517 2518 /* apply no-internal-process constraint */ 2519 if (dst_cgrp->subtree_control) 2520 return -EBUSY; 2521 2522 return 0; 2523 } 2524 2525 /** 2526 * cgroup_migrate_finish - cleanup after attach 2527 * @mgctx: migration context 2528 * 2529 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2530 * those functions for details. 2531 */ 2532 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2533 { 2534 LIST_HEAD(preloaded); 2535 struct css_set *cset, *tmp_cset; 2536 2537 lockdep_assert_held(&cgroup_mutex); 2538 2539 spin_lock_irq(&css_set_lock); 2540 2541 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2542 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2543 2544 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2545 cset->mg_src_cgrp = NULL; 2546 cset->mg_dst_cgrp = NULL; 2547 cset->mg_dst_cset = NULL; 2548 list_del_init(&cset->mg_preload_node); 2549 put_css_set_locked(cset); 2550 } 2551 2552 spin_unlock_irq(&css_set_lock); 2553 } 2554 2555 /** 2556 * cgroup_migrate_add_src - add a migration source css_set 2557 * @src_cset: the source css_set to add 2558 * @dst_cgrp: the destination cgroup 2559 * @mgctx: migration context 2560 * 2561 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2562 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2563 * up by cgroup_migrate_finish(). 2564 * 2565 * This function may be called without holding cgroup_threadgroup_rwsem 2566 * even if the target is a process. Threads may be created and destroyed 2567 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2568 * into play and the preloaded css_sets are guaranteed to cover all 2569 * migrations. 2570 */ 2571 void cgroup_migrate_add_src(struct css_set *src_cset, 2572 struct cgroup *dst_cgrp, 2573 struct cgroup_mgctx *mgctx) 2574 { 2575 struct cgroup *src_cgrp; 2576 2577 lockdep_assert_held(&cgroup_mutex); 2578 lockdep_assert_held(&css_set_lock); 2579 2580 /* 2581 * If ->dead, @src_set is associated with one or more dead cgroups 2582 * and doesn't contain any migratable tasks. Ignore it early so 2583 * that the rest of migration path doesn't get confused by it. 2584 */ 2585 if (src_cset->dead) 2586 return; 2587 2588 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2589 2590 if (!list_empty(&src_cset->mg_preload_node)) 2591 return; 2592 2593 WARN_ON(src_cset->mg_src_cgrp); 2594 WARN_ON(src_cset->mg_dst_cgrp); 2595 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2596 WARN_ON(!list_empty(&src_cset->mg_node)); 2597 2598 src_cset->mg_src_cgrp = src_cgrp; 2599 src_cset->mg_dst_cgrp = dst_cgrp; 2600 get_css_set(src_cset); 2601 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2602 } 2603 2604 /** 2605 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2606 * @mgctx: migration context 2607 * 2608 * Tasks are about to be moved and all the source css_sets have been 2609 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2610 * pins all destination css_sets, links each to its source, and append them 2611 * to @mgctx->preloaded_dst_csets. 2612 * 2613 * This function must be called after cgroup_migrate_add_src() has been 2614 * called on each migration source css_set. After migration is performed 2615 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2616 * @mgctx. 2617 */ 2618 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2619 { 2620 struct css_set *src_cset, *tmp_cset; 2621 2622 lockdep_assert_held(&cgroup_mutex); 2623 2624 /* look up the dst cset for each src cset and link it to src */ 2625 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2626 mg_preload_node) { 2627 struct css_set *dst_cset; 2628 struct cgroup_subsys *ss; 2629 int ssid; 2630 2631 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2632 if (!dst_cset) 2633 return -ENOMEM; 2634 2635 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2636 2637 /* 2638 * If src cset equals dst, it's noop. Drop the src. 2639 * cgroup_migrate() will skip the cset too. Note that we 2640 * can't handle src == dst as some nodes are used by both. 2641 */ 2642 if (src_cset == dst_cset) { 2643 src_cset->mg_src_cgrp = NULL; 2644 src_cset->mg_dst_cgrp = NULL; 2645 list_del_init(&src_cset->mg_preload_node); 2646 put_css_set(src_cset); 2647 put_css_set(dst_cset); 2648 continue; 2649 } 2650 2651 src_cset->mg_dst_cset = dst_cset; 2652 2653 if (list_empty(&dst_cset->mg_preload_node)) 2654 list_add_tail(&dst_cset->mg_preload_node, 2655 &mgctx->preloaded_dst_csets); 2656 else 2657 put_css_set(dst_cset); 2658 2659 for_each_subsys(ss, ssid) 2660 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2661 mgctx->ss_mask |= 1 << ssid; 2662 } 2663 2664 return 0; 2665 } 2666 2667 /** 2668 * cgroup_migrate - migrate a process or task to a cgroup 2669 * @leader: the leader of the process or the task to migrate 2670 * @threadgroup: whether @leader points to the whole process or a single task 2671 * @mgctx: migration context 2672 * 2673 * Migrate a process or task denoted by @leader. If migrating a process, 2674 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2675 * responsible for invoking cgroup_migrate_add_src() and 2676 * cgroup_migrate_prepare_dst() on the targets before invoking this 2677 * function and following up with cgroup_migrate_finish(). 2678 * 2679 * As long as a controller's ->can_attach() doesn't fail, this function is 2680 * guaranteed to succeed. This means that, excluding ->can_attach() 2681 * failure, when migrating multiple targets, the success or failure can be 2682 * decided for all targets by invoking group_migrate_prepare_dst() before 2683 * actually starting migrating. 2684 */ 2685 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2686 struct cgroup_mgctx *mgctx) 2687 { 2688 struct task_struct *task; 2689 2690 /* 2691 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2692 * already PF_EXITING could be freed from underneath us unless we 2693 * take an rcu_read_lock. 2694 */ 2695 spin_lock_irq(&css_set_lock); 2696 rcu_read_lock(); 2697 task = leader; 2698 do { 2699 cgroup_migrate_add_task(task, mgctx); 2700 if (!threadgroup) 2701 break; 2702 } while_each_thread(leader, task); 2703 rcu_read_unlock(); 2704 spin_unlock_irq(&css_set_lock); 2705 2706 return cgroup_migrate_execute(mgctx); 2707 } 2708 2709 /** 2710 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2711 * @dst_cgrp: the cgroup to attach to 2712 * @leader: the task or the leader of the threadgroup to be attached 2713 * @threadgroup: attach the whole threadgroup? 2714 * 2715 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2716 */ 2717 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2718 bool threadgroup) 2719 { 2720 DEFINE_CGROUP_MGCTX(mgctx); 2721 struct task_struct *task; 2722 int ret = 0; 2723 2724 /* look up all src csets */ 2725 spin_lock_irq(&css_set_lock); 2726 rcu_read_lock(); 2727 task = leader; 2728 do { 2729 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2730 if (!threadgroup) 2731 break; 2732 } while_each_thread(leader, task); 2733 rcu_read_unlock(); 2734 spin_unlock_irq(&css_set_lock); 2735 2736 /* prepare dst csets and commit */ 2737 ret = cgroup_migrate_prepare_dst(&mgctx); 2738 if (!ret) 2739 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2740 2741 cgroup_migrate_finish(&mgctx); 2742 2743 if (!ret) 2744 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2745 2746 return ret; 2747 } 2748 2749 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2750 bool *locked) 2751 __acquires(&cgroup_threadgroup_rwsem) 2752 { 2753 struct task_struct *tsk; 2754 pid_t pid; 2755 2756 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2757 return ERR_PTR(-EINVAL); 2758 2759 /* 2760 * If we migrate a single thread, we don't care about threadgroup 2761 * stability. If the thread is `current`, it won't exit(2) under our 2762 * hands or change PID through exec(2). We exclude 2763 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2764 * callers by cgroup_mutex. 2765 * Therefore, we can skip the global lock. 2766 */ 2767 lockdep_assert_held(&cgroup_mutex); 2768 if (pid || threadgroup) { 2769 percpu_down_write(&cgroup_threadgroup_rwsem); 2770 *locked = true; 2771 } else { 2772 *locked = false; 2773 } 2774 2775 rcu_read_lock(); 2776 if (pid) { 2777 tsk = find_task_by_vpid(pid); 2778 if (!tsk) { 2779 tsk = ERR_PTR(-ESRCH); 2780 goto out_unlock_threadgroup; 2781 } 2782 } else { 2783 tsk = current; 2784 } 2785 2786 if (threadgroup) 2787 tsk = tsk->group_leader; 2788 2789 /* 2790 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2791 * If userland migrates such a kthread to a non-root cgroup, it can 2792 * become trapped in a cpuset, or RT kthread may be born in a 2793 * cgroup with no rt_runtime allocated. Just say no. 2794 */ 2795 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2796 tsk = ERR_PTR(-EINVAL); 2797 goto out_unlock_threadgroup; 2798 } 2799 2800 get_task_struct(tsk); 2801 goto out_unlock_rcu; 2802 2803 out_unlock_threadgroup: 2804 if (*locked) { 2805 percpu_up_write(&cgroup_threadgroup_rwsem); 2806 *locked = false; 2807 } 2808 out_unlock_rcu: 2809 rcu_read_unlock(); 2810 return tsk; 2811 } 2812 2813 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2814 __releases(&cgroup_threadgroup_rwsem) 2815 { 2816 struct cgroup_subsys *ss; 2817 int ssid; 2818 2819 /* release reference from cgroup_procs_write_start() */ 2820 put_task_struct(task); 2821 2822 if (locked) 2823 percpu_up_write(&cgroup_threadgroup_rwsem); 2824 for_each_subsys(ss, ssid) 2825 if (ss->post_attach) 2826 ss->post_attach(); 2827 } 2828 2829 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2830 { 2831 struct cgroup_subsys *ss; 2832 bool printed = false; 2833 int ssid; 2834 2835 do_each_subsys_mask(ss, ssid, ss_mask) { 2836 if (printed) 2837 seq_putc(seq, ' '); 2838 seq_puts(seq, ss->name); 2839 printed = true; 2840 } while_each_subsys_mask(); 2841 if (printed) 2842 seq_putc(seq, '\n'); 2843 } 2844 2845 /* show controllers which are enabled from the parent */ 2846 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2847 { 2848 struct cgroup *cgrp = seq_css(seq)->cgroup; 2849 2850 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2851 return 0; 2852 } 2853 2854 /* show controllers which are enabled for a given cgroup's children */ 2855 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2856 { 2857 struct cgroup *cgrp = seq_css(seq)->cgroup; 2858 2859 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2860 return 0; 2861 } 2862 2863 /** 2864 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2865 * @cgrp: root of the subtree to update csses for 2866 * 2867 * @cgrp's control masks have changed and its subtree's css associations 2868 * need to be updated accordingly. This function looks up all css_sets 2869 * which are attached to the subtree, creates the matching updated css_sets 2870 * and migrates the tasks to the new ones. 2871 */ 2872 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2873 { 2874 DEFINE_CGROUP_MGCTX(mgctx); 2875 struct cgroup_subsys_state *d_css; 2876 struct cgroup *dsct; 2877 struct css_set *src_cset; 2878 int ret; 2879 2880 lockdep_assert_held(&cgroup_mutex); 2881 2882 percpu_down_write(&cgroup_threadgroup_rwsem); 2883 2884 /* look up all csses currently attached to @cgrp's subtree */ 2885 spin_lock_irq(&css_set_lock); 2886 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2887 struct cgrp_cset_link *link; 2888 2889 list_for_each_entry(link, &dsct->cset_links, cset_link) 2890 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2891 } 2892 spin_unlock_irq(&css_set_lock); 2893 2894 /* NULL dst indicates self on default hierarchy */ 2895 ret = cgroup_migrate_prepare_dst(&mgctx); 2896 if (ret) 2897 goto out_finish; 2898 2899 spin_lock_irq(&css_set_lock); 2900 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2901 struct task_struct *task, *ntask; 2902 2903 /* all tasks in src_csets need to be migrated */ 2904 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2905 cgroup_migrate_add_task(task, &mgctx); 2906 } 2907 spin_unlock_irq(&css_set_lock); 2908 2909 ret = cgroup_migrate_execute(&mgctx); 2910 out_finish: 2911 cgroup_migrate_finish(&mgctx); 2912 percpu_up_write(&cgroup_threadgroup_rwsem); 2913 return ret; 2914 } 2915 2916 /** 2917 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2918 * @cgrp: root of the target subtree 2919 * 2920 * Because css offlining is asynchronous, userland may try to re-enable a 2921 * controller while the previous css is still around. This function grabs 2922 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2923 */ 2924 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2925 __acquires(&cgroup_mutex) 2926 { 2927 struct cgroup *dsct; 2928 struct cgroup_subsys_state *d_css; 2929 struct cgroup_subsys *ss; 2930 int ssid; 2931 2932 restart: 2933 mutex_lock(&cgroup_mutex); 2934 2935 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2936 for_each_subsys(ss, ssid) { 2937 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2938 DEFINE_WAIT(wait); 2939 2940 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2941 continue; 2942 2943 cgroup_get_live(dsct); 2944 prepare_to_wait(&dsct->offline_waitq, &wait, 2945 TASK_UNINTERRUPTIBLE); 2946 2947 mutex_unlock(&cgroup_mutex); 2948 schedule(); 2949 finish_wait(&dsct->offline_waitq, &wait); 2950 2951 cgroup_put(dsct); 2952 goto restart; 2953 } 2954 } 2955 } 2956 2957 /** 2958 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2959 * @cgrp: root of the target subtree 2960 * 2961 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2962 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2963 * itself. 2964 */ 2965 static void cgroup_save_control(struct cgroup *cgrp) 2966 { 2967 struct cgroup *dsct; 2968 struct cgroup_subsys_state *d_css; 2969 2970 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2971 dsct->old_subtree_control = dsct->subtree_control; 2972 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2973 dsct->old_dom_cgrp = dsct->dom_cgrp; 2974 } 2975 } 2976 2977 /** 2978 * cgroup_propagate_control - refresh control masks of a subtree 2979 * @cgrp: root of the target subtree 2980 * 2981 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2982 * ->subtree_control and propagate controller availability through the 2983 * subtree so that descendants don't have unavailable controllers enabled. 2984 */ 2985 static void cgroup_propagate_control(struct cgroup *cgrp) 2986 { 2987 struct cgroup *dsct; 2988 struct cgroup_subsys_state *d_css; 2989 2990 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2991 dsct->subtree_control &= cgroup_control(dsct); 2992 dsct->subtree_ss_mask = 2993 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2994 cgroup_ss_mask(dsct)); 2995 } 2996 } 2997 2998 /** 2999 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3000 * @cgrp: root of the target subtree 3001 * 3002 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3003 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3004 * itself. 3005 */ 3006 static void cgroup_restore_control(struct cgroup *cgrp) 3007 { 3008 struct cgroup *dsct; 3009 struct cgroup_subsys_state *d_css; 3010 3011 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3012 dsct->subtree_control = dsct->old_subtree_control; 3013 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3014 dsct->dom_cgrp = dsct->old_dom_cgrp; 3015 } 3016 } 3017 3018 static bool css_visible(struct cgroup_subsys_state *css) 3019 { 3020 struct cgroup_subsys *ss = css->ss; 3021 struct cgroup *cgrp = css->cgroup; 3022 3023 if (cgroup_control(cgrp) & (1 << ss->id)) 3024 return true; 3025 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3026 return false; 3027 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3028 } 3029 3030 /** 3031 * cgroup_apply_control_enable - enable or show csses according to control 3032 * @cgrp: root of the target subtree 3033 * 3034 * Walk @cgrp's subtree and create new csses or make the existing ones 3035 * visible. A css is created invisible if it's being implicitly enabled 3036 * through dependency. An invisible css is made visible when the userland 3037 * explicitly enables it. 3038 * 3039 * Returns 0 on success, -errno on failure. On failure, csses which have 3040 * been processed already aren't cleaned up. The caller is responsible for 3041 * cleaning up with cgroup_apply_control_disable(). 3042 */ 3043 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3044 { 3045 struct cgroup *dsct; 3046 struct cgroup_subsys_state *d_css; 3047 struct cgroup_subsys *ss; 3048 int ssid, ret; 3049 3050 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3051 for_each_subsys(ss, ssid) { 3052 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3053 3054 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3055 continue; 3056 3057 if (!css) { 3058 css = css_create(dsct, ss); 3059 if (IS_ERR(css)) 3060 return PTR_ERR(css); 3061 } 3062 3063 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3064 3065 if (css_visible(css)) { 3066 ret = css_populate_dir(css); 3067 if (ret) 3068 return ret; 3069 } 3070 } 3071 } 3072 3073 return 0; 3074 } 3075 3076 /** 3077 * cgroup_apply_control_disable - kill or hide csses according to control 3078 * @cgrp: root of the target subtree 3079 * 3080 * Walk @cgrp's subtree and kill and hide csses so that they match 3081 * cgroup_ss_mask() and cgroup_visible_mask(). 3082 * 3083 * A css is hidden when the userland requests it to be disabled while other 3084 * subsystems are still depending on it. The css must not actively control 3085 * resources and be in the vanilla state if it's made visible again later. 3086 * Controllers which may be depended upon should provide ->css_reset() for 3087 * this purpose. 3088 */ 3089 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3090 { 3091 struct cgroup *dsct; 3092 struct cgroup_subsys_state *d_css; 3093 struct cgroup_subsys *ss; 3094 int ssid; 3095 3096 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3097 for_each_subsys(ss, ssid) { 3098 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3099 3100 if (!css) 3101 continue; 3102 3103 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3104 3105 if (css->parent && 3106 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3107 kill_css(css); 3108 } else if (!css_visible(css)) { 3109 css_clear_dir(css); 3110 if (ss->css_reset) 3111 ss->css_reset(css); 3112 } 3113 } 3114 } 3115 } 3116 3117 /** 3118 * cgroup_apply_control - apply control mask updates to the subtree 3119 * @cgrp: root of the target subtree 3120 * 3121 * subsystems can be enabled and disabled in a subtree using the following 3122 * steps. 3123 * 3124 * 1. Call cgroup_save_control() to stash the current state. 3125 * 2. Update ->subtree_control masks in the subtree as desired. 3126 * 3. Call cgroup_apply_control() to apply the changes. 3127 * 4. Optionally perform other related operations. 3128 * 5. Call cgroup_finalize_control() to finish up. 3129 * 3130 * This function implements step 3 and propagates the mask changes 3131 * throughout @cgrp's subtree, updates csses accordingly and perform 3132 * process migrations. 3133 */ 3134 static int cgroup_apply_control(struct cgroup *cgrp) 3135 { 3136 int ret; 3137 3138 cgroup_propagate_control(cgrp); 3139 3140 ret = cgroup_apply_control_enable(cgrp); 3141 if (ret) 3142 return ret; 3143 3144 /* 3145 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3146 * making the following cgroup_update_dfl_csses() properly update 3147 * css associations of all tasks in the subtree. 3148 */ 3149 ret = cgroup_update_dfl_csses(cgrp); 3150 if (ret) 3151 return ret; 3152 3153 return 0; 3154 } 3155 3156 /** 3157 * cgroup_finalize_control - finalize control mask update 3158 * @cgrp: root of the target subtree 3159 * @ret: the result of the update 3160 * 3161 * Finalize control mask update. See cgroup_apply_control() for more info. 3162 */ 3163 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3164 { 3165 if (ret) { 3166 cgroup_restore_control(cgrp); 3167 cgroup_propagate_control(cgrp); 3168 } 3169 3170 cgroup_apply_control_disable(cgrp); 3171 } 3172 3173 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3174 { 3175 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3176 3177 /* if nothing is getting enabled, nothing to worry about */ 3178 if (!enable) 3179 return 0; 3180 3181 /* can @cgrp host any resources? */ 3182 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3183 return -EOPNOTSUPP; 3184 3185 /* mixables don't care */ 3186 if (cgroup_is_mixable(cgrp)) 3187 return 0; 3188 3189 if (domain_enable) { 3190 /* can't enable domain controllers inside a thread subtree */ 3191 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3192 return -EOPNOTSUPP; 3193 } else { 3194 /* 3195 * Threaded controllers can handle internal competitions 3196 * and are always allowed inside a (prospective) thread 3197 * subtree. 3198 */ 3199 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3200 return 0; 3201 } 3202 3203 /* 3204 * Controllers can't be enabled for a cgroup with tasks to avoid 3205 * child cgroups competing against tasks. 3206 */ 3207 if (cgroup_has_tasks(cgrp)) 3208 return -EBUSY; 3209 3210 return 0; 3211 } 3212 3213 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3214 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3215 char *buf, size_t nbytes, 3216 loff_t off) 3217 { 3218 u16 enable = 0, disable = 0; 3219 struct cgroup *cgrp, *child; 3220 struct cgroup_subsys *ss; 3221 char *tok; 3222 int ssid, ret; 3223 3224 /* 3225 * Parse input - space separated list of subsystem names prefixed 3226 * with either + or -. 3227 */ 3228 buf = strstrip(buf); 3229 while ((tok = strsep(&buf, " "))) { 3230 if (tok[0] == '\0') 3231 continue; 3232 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3233 if (!cgroup_ssid_enabled(ssid) || 3234 strcmp(tok + 1, ss->name)) 3235 continue; 3236 3237 if (*tok == '+') { 3238 enable |= 1 << ssid; 3239 disable &= ~(1 << ssid); 3240 } else if (*tok == '-') { 3241 disable |= 1 << ssid; 3242 enable &= ~(1 << ssid); 3243 } else { 3244 return -EINVAL; 3245 } 3246 break; 3247 } while_each_subsys_mask(); 3248 if (ssid == CGROUP_SUBSYS_COUNT) 3249 return -EINVAL; 3250 } 3251 3252 cgrp = cgroup_kn_lock_live(of->kn, true); 3253 if (!cgrp) 3254 return -ENODEV; 3255 3256 for_each_subsys(ss, ssid) { 3257 if (enable & (1 << ssid)) { 3258 if (cgrp->subtree_control & (1 << ssid)) { 3259 enable &= ~(1 << ssid); 3260 continue; 3261 } 3262 3263 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3264 ret = -ENOENT; 3265 goto out_unlock; 3266 } 3267 } else if (disable & (1 << ssid)) { 3268 if (!(cgrp->subtree_control & (1 << ssid))) { 3269 disable &= ~(1 << ssid); 3270 continue; 3271 } 3272 3273 /* a child has it enabled? */ 3274 cgroup_for_each_live_child(child, cgrp) { 3275 if (child->subtree_control & (1 << ssid)) { 3276 ret = -EBUSY; 3277 goto out_unlock; 3278 } 3279 } 3280 } 3281 } 3282 3283 if (!enable && !disable) { 3284 ret = 0; 3285 goto out_unlock; 3286 } 3287 3288 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3289 if (ret) 3290 goto out_unlock; 3291 3292 /* save and update control masks and prepare csses */ 3293 cgroup_save_control(cgrp); 3294 3295 cgrp->subtree_control |= enable; 3296 cgrp->subtree_control &= ~disable; 3297 3298 ret = cgroup_apply_control(cgrp); 3299 cgroup_finalize_control(cgrp, ret); 3300 if (ret) 3301 goto out_unlock; 3302 3303 kernfs_activate(cgrp->kn); 3304 out_unlock: 3305 cgroup_kn_unlock(of->kn); 3306 return ret ?: nbytes; 3307 } 3308 3309 /** 3310 * cgroup_enable_threaded - make @cgrp threaded 3311 * @cgrp: the target cgroup 3312 * 3313 * Called when "threaded" is written to the cgroup.type interface file and 3314 * tries to make @cgrp threaded and join the parent's resource domain. 3315 * This function is never called on the root cgroup as cgroup.type doesn't 3316 * exist on it. 3317 */ 3318 static int cgroup_enable_threaded(struct cgroup *cgrp) 3319 { 3320 struct cgroup *parent = cgroup_parent(cgrp); 3321 struct cgroup *dom_cgrp = parent->dom_cgrp; 3322 struct cgroup *dsct; 3323 struct cgroup_subsys_state *d_css; 3324 int ret; 3325 3326 lockdep_assert_held(&cgroup_mutex); 3327 3328 /* noop if already threaded */ 3329 if (cgroup_is_threaded(cgrp)) 3330 return 0; 3331 3332 /* 3333 * If @cgroup is populated or has domain controllers enabled, it 3334 * can't be switched. While the below cgroup_can_be_thread_root() 3335 * test can catch the same conditions, that's only when @parent is 3336 * not mixable, so let's check it explicitly. 3337 */ 3338 if (cgroup_is_populated(cgrp) || 3339 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3340 return -EOPNOTSUPP; 3341 3342 /* we're joining the parent's domain, ensure its validity */ 3343 if (!cgroup_is_valid_domain(dom_cgrp) || 3344 !cgroup_can_be_thread_root(dom_cgrp)) 3345 return -EOPNOTSUPP; 3346 3347 /* 3348 * The following shouldn't cause actual migrations and should 3349 * always succeed. 3350 */ 3351 cgroup_save_control(cgrp); 3352 3353 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3354 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3355 dsct->dom_cgrp = dom_cgrp; 3356 3357 ret = cgroup_apply_control(cgrp); 3358 if (!ret) 3359 parent->nr_threaded_children++; 3360 3361 cgroup_finalize_control(cgrp, ret); 3362 return ret; 3363 } 3364 3365 static int cgroup_type_show(struct seq_file *seq, void *v) 3366 { 3367 struct cgroup *cgrp = seq_css(seq)->cgroup; 3368 3369 if (cgroup_is_threaded(cgrp)) 3370 seq_puts(seq, "threaded\n"); 3371 else if (!cgroup_is_valid_domain(cgrp)) 3372 seq_puts(seq, "domain invalid\n"); 3373 else if (cgroup_is_thread_root(cgrp)) 3374 seq_puts(seq, "domain threaded\n"); 3375 else 3376 seq_puts(seq, "domain\n"); 3377 3378 return 0; 3379 } 3380 3381 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3382 size_t nbytes, loff_t off) 3383 { 3384 struct cgroup *cgrp; 3385 int ret; 3386 3387 /* only switching to threaded mode is supported */ 3388 if (strcmp(strstrip(buf), "threaded")) 3389 return -EINVAL; 3390 3391 /* drain dying csses before we re-apply (threaded) subtree control */ 3392 cgrp = cgroup_kn_lock_live(of->kn, true); 3393 if (!cgrp) 3394 return -ENOENT; 3395 3396 /* threaded can only be enabled */ 3397 ret = cgroup_enable_threaded(cgrp); 3398 3399 cgroup_kn_unlock(of->kn); 3400 return ret ?: nbytes; 3401 } 3402 3403 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3404 { 3405 struct cgroup *cgrp = seq_css(seq)->cgroup; 3406 int descendants = READ_ONCE(cgrp->max_descendants); 3407 3408 if (descendants == INT_MAX) 3409 seq_puts(seq, "max\n"); 3410 else 3411 seq_printf(seq, "%d\n", descendants); 3412 3413 return 0; 3414 } 3415 3416 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3417 char *buf, size_t nbytes, loff_t off) 3418 { 3419 struct cgroup *cgrp; 3420 int descendants; 3421 ssize_t ret; 3422 3423 buf = strstrip(buf); 3424 if (!strcmp(buf, "max")) { 3425 descendants = INT_MAX; 3426 } else { 3427 ret = kstrtoint(buf, 0, &descendants); 3428 if (ret) 3429 return ret; 3430 } 3431 3432 if (descendants < 0) 3433 return -ERANGE; 3434 3435 cgrp = cgroup_kn_lock_live(of->kn, false); 3436 if (!cgrp) 3437 return -ENOENT; 3438 3439 cgrp->max_descendants = descendants; 3440 3441 cgroup_kn_unlock(of->kn); 3442 3443 return nbytes; 3444 } 3445 3446 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3447 { 3448 struct cgroup *cgrp = seq_css(seq)->cgroup; 3449 int depth = READ_ONCE(cgrp->max_depth); 3450 3451 if (depth == INT_MAX) 3452 seq_puts(seq, "max\n"); 3453 else 3454 seq_printf(seq, "%d\n", depth); 3455 3456 return 0; 3457 } 3458 3459 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3460 char *buf, size_t nbytes, loff_t off) 3461 { 3462 struct cgroup *cgrp; 3463 ssize_t ret; 3464 int depth; 3465 3466 buf = strstrip(buf); 3467 if (!strcmp(buf, "max")) { 3468 depth = INT_MAX; 3469 } else { 3470 ret = kstrtoint(buf, 0, &depth); 3471 if (ret) 3472 return ret; 3473 } 3474 3475 if (depth < 0) 3476 return -ERANGE; 3477 3478 cgrp = cgroup_kn_lock_live(of->kn, false); 3479 if (!cgrp) 3480 return -ENOENT; 3481 3482 cgrp->max_depth = depth; 3483 3484 cgroup_kn_unlock(of->kn); 3485 3486 return nbytes; 3487 } 3488 3489 static int cgroup_events_show(struct seq_file *seq, void *v) 3490 { 3491 struct cgroup *cgrp = seq_css(seq)->cgroup; 3492 3493 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3494 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3495 3496 return 0; 3497 } 3498 3499 static int cgroup_stat_show(struct seq_file *seq, void *v) 3500 { 3501 struct cgroup *cgroup = seq_css(seq)->cgroup; 3502 3503 seq_printf(seq, "nr_descendants %d\n", 3504 cgroup->nr_descendants); 3505 seq_printf(seq, "nr_dying_descendants %d\n", 3506 cgroup->nr_dying_descendants); 3507 3508 return 0; 3509 } 3510 3511 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3512 struct cgroup *cgrp, int ssid) 3513 { 3514 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3515 struct cgroup_subsys_state *css; 3516 int ret; 3517 3518 if (!ss->css_extra_stat_show) 3519 return 0; 3520 3521 css = cgroup_tryget_css(cgrp, ss); 3522 if (!css) 3523 return 0; 3524 3525 ret = ss->css_extra_stat_show(seq, css); 3526 css_put(css); 3527 return ret; 3528 } 3529 3530 static int cpu_stat_show(struct seq_file *seq, void *v) 3531 { 3532 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3533 int ret = 0; 3534 3535 cgroup_base_stat_cputime_show(seq); 3536 #ifdef CONFIG_CGROUP_SCHED 3537 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3538 #endif 3539 return ret; 3540 } 3541 3542 #ifdef CONFIG_PSI 3543 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3544 { 3545 struct cgroup *cgrp = seq_css(seq)->cgroup; 3546 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3547 3548 return psi_show(seq, psi, PSI_IO); 3549 } 3550 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3551 { 3552 struct cgroup *cgrp = seq_css(seq)->cgroup; 3553 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3554 3555 return psi_show(seq, psi, PSI_MEM); 3556 } 3557 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3558 { 3559 struct cgroup *cgrp = seq_css(seq)->cgroup; 3560 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3561 3562 return psi_show(seq, psi, PSI_CPU); 3563 } 3564 3565 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3566 size_t nbytes, enum psi_res res) 3567 { 3568 struct psi_trigger *new; 3569 struct cgroup *cgrp; 3570 3571 cgrp = cgroup_kn_lock_live(of->kn, false); 3572 if (!cgrp) 3573 return -ENODEV; 3574 3575 cgroup_get(cgrp); 3576 cgroup_kn_unlock(of->kn); 3577 3578 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res); 3579 if (IS_ERR(new)) { 3580 cgroup_put(cgrp); 3581 return PTR_ERR(new); 3582 } 3583 3584 psi_trigger_replace(&of->priv, new); 3585 3586 cgroup_put(cgrp); 3587 3588 return nbytes; 3589 } 3590 3591 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3592 char *buf, size_t nbytes, 3593 loff_t off) 3594 { 3595 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3596 } 3597 3598 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3599 char *buf, size_t nbytes, 3600 loff_t off) 3601 { 3602 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3603 } 3604 3605 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3606 char *buf, size_t nbytes, 3607 loff_t off) 3608 { 3609 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3610 } 3611 3612 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3613 poll_table *pt) 3614 { 3615 return psi_trigger_poll(&of->priv, of->file, pt); 3616 } 3617 3618 static void cgroup_pressure_release(struct kernfs_open_file *of) 3619 { 3620 psi_trigger_replace(&of->priv, NULL); 3621 } 3622 #endif /* CONFIG_PSI */ 3623 3624 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3625 { 3626 struct cgroup *cgrp = seq_css(seq)->cgroup; 3627 3628 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3629 3630 return 0; 3631 } 3632 3633 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3634 char *buf, size_t nbytes, loff_t off) 3635 { 3636 struct cgroup *cgrp; 3637 ssize_t ret; 3638 int freeze; 3639 3640 ret = kstrtoint(strstrip(buf), 0, &freeze); 3641 if (ret) 3642 return ret; 3643 3644 if (freeze < 0 || freeze > 1) 3645 return -ERANGE; 3646 3647 cgrp = cgroup_kn_lock_live(of->kn, false); 3648 if (!cgrp) 3649 return -ENOENT; 3650 3651 cgroup_freeze(cgrp, freeze); 3652 3653 cgroup_kn_unlock(of->kn); 3654 3655 return nbytes; 3656 } 3657 3658 static int cgroup_file_open(struct kernfs_open_file *of) 3659 { 3660 struct cftype *cft = of->kn->priv; 3661 3662 if (cft->open) 3663 return cft->open(of); 3664 return 0; 3665 } 3666 3667 static void cgroup_file_release(struct kernfs_open_file *of) 3668 { 3669 struct cftype *cft = of->kn->priv; 3670 3671 if (cft->release) 3672 cft->release(of); 3673 } 3674 3675 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3676 size_t nbytes, loff_t off) 3677 { 3678 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3679 struct cgroup *cgrp = of->kn->parent->priv; 3680 struct cftype *cft = of->kn->priv; 3681 struct cgroup_subsys_state *css; 3682 int ret; 3683 3684 if (!nbytes) 3685 return 0; 3686 3687 /* 3688 * If namespaces are delegation boundaries, disallow writes to 3689 * files in an non-init namespace root from inside the namespace 3690 * except for the files explicitly marked delegatable - 3691 * cgroup.procs and cgroup.subtree_control. 3692 */ 3693 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3694 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3695 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3696 return -EPERM; 3697 3698 if (cft->write) 3699 return cft->write(of, buf, nbytes, off); 3700 3701 /* 3702 * kernfs guarantees that a file isn't deleted with operations in 3703 * flight, which means that the matching css is and stays alive and 3704 * doesn't need to be pinned. The RCU locking is not necessary 3705 * either. It's just for the convenience of using cgroup_css(). 3706 */ 3707 rcu_read_lock(); 3708 css = cgroup_css(cgrp, cft->ss); 3709 rcu_read_unlock(); 3710 3711 if (cft->write_u64) { 3712 unsigned long long v; 3713 ret = kstrtoull(buf, 0, &v); 3714 if (!ret) 3715 ret = cft->write_u64(css, cft, v); 3716 } else if (cft->write_s64) { 3717 long long v; 3718 ret = kstrtoll(buf, 0, &v); 3719 if (!ret) 3720 ret = cft->write_s64(css, cft, v); 3721 } else { 3722 ret = -EINVAL; 3723 } 3724 3725 return ret ?: nbytes; 3726 } 3727 3728 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3729 { 3730 struct cftype *cft = of->kn->priv; 3731 3732 if (cft->poll) 3733 return cft->poll(of, pt); 3734 3735 return kernfs_generic_poll(of, pt); 3736 } 3737 3738 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3739 { 3740 return seq_cft(seq)->seq_start(seq, ppos); 3741 } 3742 3743 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3744 { 3745 return seq_cft(seq)->seq_next(seq, v, ppos); 3746 } 3747 3748 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3749 { 3750 if (seq_cft(seq)->seq_stop) 3751 seq_cft(seq)->seq_stop(seq, v); 3752 } 3753 3754 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3755 { 3756 struct cftype *cft = seq_cft(m); 3757 struct cgroup_subsys_state *css = seq_css(m); 3758 3759 if (cft->seq_show) 3760 return cft->seq_show(m, arg); 3761 3762 if (cft->read_u64) 3763 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3764 else if (cft->read_s64) 3765 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3766 else 3767 return -EINVAL; 3768 return 0; 3769 } 3770 3771 static struct kernfs_ops cgroup_kf_single_ops = { 3772 .atomic_write_len = PAGE_SIZE, 3773 .open = cgroup_file_open, 3774 .release = cgroup_file_release, 3775 .write = cgroup_file_write, 3776 .poll = cgroup_file_poll, 3777 .seq_show = cgroup_seqfile_show, 3778 }; 3779 3780 static struct kernfs_ops cgroup_kf_ops = { 3781 .atomic_write_len = PAGE_SIZE, 3782 .open = cgroup_file_open, 3783 .release = cgroup_file_release, 3784 .write = cgroup_file_write, 3785 .poll = cgroup_file_poll, 3786 .seq_start = cgroup_seqfile_start, 3787 .seq_next = cgroup_seqfile_next, 3788 .seq_stop = cgroup_seqfile_stop, 3789 .seq_show = cgroup_seqfile_show, 3790 }; 3791 3792 /* set uid and gid of cgroup dirs and files to that of the creator */ 3793 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3794 { 3795 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3796 .ia_uid = current_fsuid(), 3797 .ia_gid = current_fsgid(), }; 3798 3799 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3800 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3801 return 0; 3802 3803 return kernfs_setattr(kn, &iattr); 3804 } 3805 3806 static void cgroup_file_notify_timer(struct timer_list *timer) 3807 { 3808 cgroup_file_notify(container_of(timer, struct cgroup_file, 3809 notify_timer)); 3810 } 3811 3812 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3813 struct cftype *cft) 3814 { 3815 char name[CGROUP_FILE_NAME_MAX]; 3816 struct kernfs_node *kn; 3817 struct lock_class_key *key = NULL; 3818 int ret; 3819 3820 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3821 key = &cft->lockdep_key; 3822 #endif 3823 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3824 cgroup_file_mode(cft), 3825 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3826 0, cft->kf_ops, cft, 3827 NULL, key); 3828 if (IS_ERR(kn)) 3829 return PTR_ERR(kn); 3830 3831 ret = cgroup_kn_set_ugid(kn); 3832 if (ret) { 3833 kernfs_remove(kn); 3834 return ret; 3835 } 3836 3837 if (cft->file_offset) { 3838 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3839 3840 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3841 3842 spin_lock_irq(&cgroup_file_kn_lock); 3843 cfile->kn = kn; 3844 spin_unlock_irq(&cgroup_file_kn_lock); 3845 } 3846 3847 return 0; 3848 } 3849 3850 /** 3851 * cgroup_addrm_files - add or remove files to a cgroup directory 3852 * @css: the target css 3853 * @cgrp: the target cgroup (usually css->cgroup) 3854 * @cfts: array of cftypes to be added 3855 * @is_add: whether to add or remove 3856 * 3857 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3858 * For removals, this function never fails. 3859 */ 3860 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3861 struct cgroup *cgrp, struct cftype cfts[], 3862 bool is_add) 3863 { 3864 struct cftype *cft, *cft_end = NULL; 3865 int ret = 0; 3866 3867 lockdep_assert_held(&cgroup_mutex); 3868 3869 restart: 3870 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3871 /* does cft->flags tell us to skip this file on @cgrp? */ 3872 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3873 continue; 3874 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3875 continue; 3876 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3877 continue; 3878 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3879 continue; 3880 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3881 continue; 3882 if (is_add) { 3883 ret = cgroup_add_file(css, cgrp, cft); 3884 if (ret) { 3885 pr_warn("%s: failed to add %s, err=%d\n", 3886 __func__, cft->name, ret); 3887 cft_end = cft; 3888 is_add = false; 3889 goto restart; 3890 } 3891 } else { 3892 cgroup_rm_file(cgrp, cft); 3893 } 3894 } 3895 return ret; 3896 } 3897 3898 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3899 { 3900 struct cgroup_subsys *ss = cfts[0].ss; 3901 struct cgroup *root = &ss->root->cgrp; 3902 struct cgroup_subsys_state *css; 3903 int ret = 0; 3904 3905 lockdep_assert_held(&cgroup_mutex); 3906 3907 /* add/rm files for all cgroups created before */ 3908 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3909 struct cgroup *cgrp = css->cgroup; 3910 3911 if (!(css->flags & CSS_VISIBLE)) 3912 continue; 3913 3914 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3915 if (ret) 3916 break; 3917 } 3918 3919 if (is_add && !ret) 3920 kernfs_activate(root->kn); 3921 return ret; 3922 } 3923 3924 static void cgroup_exit_cftypes(struct cftype *cfts) 3925 { 3926 struct cftype *cft; 3927 3928 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3929 /* free copy for custom atomic_write_len, see init_cftypes() */ 3930 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3931 kfree(cft->kf_ops); 3932 cft->kf_ops = NULL; 3933 cft->ss = NULL; 3934 3935 /* revert flags set by cgroup core while adding @cfts */ 3936 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3937 } 3938 } 3939 3940 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3941 { 3942 struct cftype *cft; 3943 3944 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3945 struct kernfs_ops *kf_ops; 3946 3947 WARN_ON(cft->ss || cft->kf_ops); 3948 3949 if (cft->seq_start) 3950 kf_ops = &cgroup_kf_ops; 3951 else 3952 kf_ops = &cgroup_kf_single_ops; 3953 3954 /* 3955 * Ugh... if @cft wants a custom max_write_len, we need to 3956 * make a copy of kf_ops to set its atomic_write_len. 3957 */ 3958 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3959 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3960 if (!kf_ops) { 3961 cgroup_exit_cftypes(cfts); 3962 return -ENOMEM; 3963 } 3964 kf_ops->atomic_write_len = cft->max_write_len; 3965 } 3966 3967 cft->kf_ops = kf_ops; 3968 cft->ss = ss; 3969 } 3970 3971 return 0; 3972 } 3973 3974 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3975 { 3976 lockdep_assert_held(&cgroup_mutex); 3977 3978 if (!cfts || !cfts[0].ss) 3979 return -ENOENT; 3980 3981 list_del(&cfts->node); 3982 cgroup_apply_cftypes(cfts, false); 3983 cgroup_exit_cftypes(cfts); 3984 return 0; 3985 } 3986 3987 /** 3988 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3989 * @cfts: zero-length name terminated array of cftypes 3990 * 3991 * Unregister @cfts. Files described by @cfts are removed from all 3992 * existing cgroups and all future cgroups won't have them either. This 3993 * function can be called anytime whether @cfts' subsys is attached or not. 3994 * 3995 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3996 * registered. 3997 */ 3998 int cgroup_rm_cftypes(struct cftype *cfts) 3999 { 4000 int ret; 4001 4002 mutex_lock(&cgroup_mutex); 4003 ret = cgroup_rm_cftypes_locked(cfts); 4004 mutex_unlock(&cgroup_mutex); 4005 return ret; 4006 } 4007 4008 /** 4009 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4010 * @ss: target cgroup subsystem 4011 * @cfts: zero-length name terminated array of cftypes 4012 * 4013 * Register @cfts to @ss. Files described by @cfts are created for all 4014 * existing cgroups to which @ss is attached and all future cgroups will 4015 * have them too. This function can be called anytime whether @ss is 4016 * attached or not. 4017 * 4018 * Returns 0 on successful registration, -errno on failure. Note that this 4019 * function currently returns 0 as long as @cfts registration is successful 4020 * even if some file creation attempts on existing cgroups fail. 4021 */ 4022 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4023 { 4024 int ret; 4025 4026 if (!cgroup_ssid_enabled(ss->id)) 4027 return 0; 4028 4029 if (!cfts || cfts[0].name[0] == '\0') 4030 return 0; 4031 4032 ret = cgroup_init_cftypes(ss, cfts); 4033 if (ret) 4034 return ret; 4035 4036 mutex_lock(&cgroup_mutex); 4037 4038 list_add_tail(&cfts->node, &ss->cfts); 4039 ret = cgroup_apply_cftypes(cfts, true); 4040 if (ret) 4041 cgroup_rm_cftypes_locked(cfts); 4042 4043 mutex_unlock(&cgroup_mutex); 4044 return ret; 4045 } 4046 4047 /** 4048 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4049 * @ss: target cgroup subsystem 4050 * @cfts: zero-length name terminated array of cftypes 4051 * 4052 * Similar to cgroup_add_cftypes() but the added files are only used for 4053 * the default hierarchy. 4054 */ 4055 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4056 { 4057 struct cftype *cft; 4058 4059 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4060 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4061 return cgroup_add_cftypes(ss, cfts); 4062 } 4063 4064 /** 4065 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4066 * @ss: target cgroup subsystem 4067 * @cfts: zero-length name terminated array of cftypes 4068 * 4069 * Similar to cgroup_add_cftypes() but the added files are only used for 4070 * the legacy hierarchies. 4071 */ 4072 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4073 { 4074 struct cftype *cft; 4075 4076 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4077 cft->flags |= __CFTYPE_NOT_ON_DFL; 4078 return cgroup_add_cftypes(ss, cfts); 4079 } 4080 4081 /** 4082 * cgroup_file_notify - generate a file modified event for a cgroup_file 4083 * @cfile: target cgroup_file 4084 * 4085 * @cfile must have been obtained by setting cftype->file_offset. 4086 */ 4087 void cgroup_file_notify(struct cgroup_file *cfile) 4088 { 4089 unsigned long flags; 4090 4091 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4092 if (cfile->kn) { 4093 unsigned long last = cfile->notified_at; 4094 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4095 4096 if (time_in_range(jiffies, last, next)) { 4097 timer_reduce(&cfile->notify_timer, next); 4098 } else { 4099 kernfs_notify(cfile->kn); 4100 cfile->notified_at = jiffies; 4101 } 4102 } 4103 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4104 } 4105 4106 /** 4107 * css_next_child - find the next child of a given css 4108 * @pos: the current position (%NULL to initiate traversal) 4109 * @parent: css whose children to walk 4110 * 4111 * This function returns the next child of @parent and should be called 4112 * under either cgroup_mutex or RCU read lock. The only requirement is 4113 * that @parent and @pos are accessible. The next sibling is guaranteed to 4114 * be returned regardless of their states. 4115 * 4116 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4117 * css which finished ->css_online() is guaranteed to be visible in the 4118 * future iterations and will stay visible until the last reference is put. 4119 * A css which hasn't finished ->css_online() or already finished 4120 * ->css_offline() may show up during traversal. It's each subsystem's 4121 * responsibility to synchronize against on/offlining. 4122 */ 4123 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4124 struct cgroup_subsys_state *parent) 4125 { 4126 struct cgroup_subsys_state *next; 4127 4128 cgroup_assert_mutex_or_rcu_locked(); 4129 4130 /* 4131 * @pos could already have been unlinked from the sibling list. 4132 * Once a cgroup is removed, its ->sibling.next is no longer 4133 * updated when its next sibling changes. CSS_RELEASED is set when 4134 * @pos is taken off list, at which time its next pointer is valid, 4135 * and, as releases are serialized, the one pointed to by the next 4136 * pointer is guaranteed to not have started release yet. This 4137 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4138 * critical section, the one pointed to by its next pointer is 4139 * guaranteed to not have finished its RCU grace period even if we 4140 * have dropped rcu_read_lock() inbetween iterations. 4141 * 4142 * If @pos has CSS_RELEASED set, its next pointer can't be 4143 * dereferenced; however, as each css is given a monotonically 4144 * increasing unique serial number and always appended to the 4145 * sibling list, the next one can be found by walking the parent's 4146 * children until the first css with higher serial number than 4147 * @pos's. While this path can be slower, it happens iff iteration 4148 * races against release and the race window is very small. 4149 */ 4150 if (!pos) { 4151 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4152 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4153 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4154 } else { 4155 list_for_each_entry_rcu(next, &parent->children, sibling, 4156 lockdep_is_held(&cgroup_mutex)) 4157 if (next->serial_nr > pos->serial_nr) 4158 break; 4159 } 4160 4161 /* 4162 * @next, if not pointing to the head, can be dereferenced and is 4163 * the next sibling. 4164 */ 4165 if (&next->sibling != &parent->children) 4166 return next; 4167 return NULL; 4168 } 4169 4170 /** 4171 * css_next_descendant_pre - find the next descendant for pre-order walk 4172 * @pos: the current position (%NULL to initiate traversal) 4173 * @root: css whose descendants to walk 4174 * 4175 * To be used by css_for_each_descendant_pre(). Find the next descendant 4176 * to visit for pre-order traversal of @root's descendants. @root is 4177 * included in the iteration and the first node to be visited. 4178 * 4179 * While this function requires cgroup_mutex or RCU read locking, it 4180 * doesn't require the whole traversal to be contained in a single critical 4181 * section. This function will return the correct next descendant as long 4182 * as both @pos and @root are accessible and @pos is a descendant of @root. 4183 * 4184 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4185 * css which finished ->css_online() is guaranteed to be visible in the 4186 * future iterations and will stay visible until the last reference is put. 4187 * A css which hasn't finished ->css_online() or already finished 4188 * ->css_offline() may show up during traversal. It's each subsystem's 4189 * responsibility to synchronize against on/offlining. 4190 */ 4191 struct cgroup_subsys_state * 4192 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4193 struct cgroup_subsys_state *root) 4194 { 4195 struct cgroup_subsys_state *next; 4196 4197 cgroup_assert_mutex_or_rcu_locked(); 4198 4199 /* if first iteration, visit @root */ 4200 if (!pos) 4201 return root; 4202 4203 /* visit the first child if exists */ 4204 next = css_next_child(NULL, pos); 4205 if (next) 4206 return next; 4207 4208 /* no child, visit my or the closest ancestor's next sibling */ 4209 while (pos != root) { 4210 next = css_next_child(pos, pos->parent); 4211 if (next) 4212 return next; 4213 pos = pos->parent; 4214 } 4215 4216 return NULL; 4217 } 4218 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4219 4220 /** 4221 * css_rightmost_descendant - return the rightmost descendant of a css 4222 * @pos: css of interest 4223 * 4224 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4225 * is returned. This can be used during pre-order traversal to skip 4226 * subtree of @pos. 4227 * 4228 * While this function requires cgroup_mutex or RCU read locking, it 4229 * doesn't require the whole traversal to be contained in a single critical 4230 * section. This function will return the correct rightmost descendant as 4231 * long as @pos is accessible. 4232 */ 4233 struct cgroup_subsys_state * 4234 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4235 { 4236 struct cgroup_subsys_state *last, *tmp; 4237 4238 cgroup_assert_mutex_or_rcu_locked(); 4239 4240 do { 4241 last = pos; 4242 /* ->prev isn't RCU safe, walk ->next till the end */ 4243 pos = NULL; 4244 css_for_each_child(tmp, last) 4245 pos = tmp; 4246 } while (pos); 4247 4248 return last; 4249 } 4250 4251 static struct cgroup_subsys_state * 4252 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4253 { 4254 struct cgroup_subsys_state *last; 4255 4256 do { 4257 last = pos; 4258 pos = css_next_child(NULL, pos); 4259 } while (pos); 4260 4261 return last; 4262 } 4263 4264 /** 4265 * css_next_descendant_post - find the next descendant for post-order walk 4266 * @pos: the current position (%NULL to initiate traversal) 4267 * @root: css whose descendants to walk 4268 * 4269 * To be used by css_for_each_descendant_post(). Find the next descendant 4270 * to visit for post-order traversal of @root's descendants. @root is 4271 * included in the iteration and the last node to be visited. 4272 * 4273 * While this function requires cgroup_mutex or RCU read locking, it 4274 * doesn't require the whole traversal to be contained in a single critical 4275 * section. This function will return the correct next descendant as long 4276 * as both @pos and @cgroup are accessible and @pos is a descendant of 4277 * @cgroup. 4278 * 4279 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4280 * css which finished ->css_online() is guaranteed to be visible in the 4281 * future iterations and will stay visible until the last reference is put. 4282 * A css which hasn't finished ->css_online() or already finished 4283 * ->css_offline() may show up during traversal. It's each subsystem's 4284 * responsibility to synchronize against on/offlining. 4285 */ 4286 struct cgroup_subsys_state * 4287 css_next_descendant_post(struct cgroup_subsys_state *pos, 4288 struct cgroup_subsys_state *root) 4289 { 4290 struct cgroup_subsys_state *next; 4291 4292 cgroup_assert_mutex_or_rcu_locked(); 4293 4294 /* if first iteration, visit leftmost descendant which may be @root */ 4295 if (!pos) 4296 return css_leftmost_descendant(root); 4297 4298 /* if we visited @root, we're done */ 4299 if (pos == root) 4300 return NULL; 4301 4302 /* if there's an unvisited sibling, visit its leftmost descendant */ 4303 next = css_next_child(pos, pos->parent); 4304 if (next) 4305 return css_leftmost_descendant(next); 4306 4307 /* no sibling left, visit parent */ 4308 return pos->parent; 4309 } 4310 4311 /** 4312 * css_has_online_children - does a css have online children 4313 * @css: the target css 4314 * 4315 * Returns %true if @css has any online children; otherwise, %false. This 4316 * function can be called from any context but the caller is responsible 4317 * for synchronizing against on/offlining as necessary. 4318 */ 4319 bool css_has_online_children(struct cgroup_subsys_state *css) 4320 { 4321 struct cgroup_subsys_state *child; 4322 bool ret = false; 4323 4324 rcu_read_lock(); 4325 css_for_each_child(child, css) { 4326 if (child->flags & CSS_ONLINE) { 4327 ret = true; 4328 break; 4329 } 4330 } 4331 rcu_read_unlock(); 4332 return ret; 4333 } 4334 4335 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4336 { 4337 struct list_head *l; 4338 struct cgrp_cset_link *link; 4339 struct css_set *cset; 4340 4341 lockdep_assert_held(&css_set_lock); 4342 4343 /* find the next threaded cset */ 4344 if (it->tcset_pos) { 4345 l = it->tcset_pos->next; 4346 4347 if (l != it->tcset_head) { 4348 it->tcset_pos = l; 4349 return container_of(l, struct css_set, 4350 threaded_csets_node); 4351 } 4352 4353 it->tcset_pos = NULL; 4354 } 4355 4356 /* find the next cset */ 4357 l = it->cset_pos; 4358 l = l->next; 4359 if (l == it->cset_head) { 4360 it->cset_pos = NULL; 4361 return NULL; 4362 } 4363 4364 if (it->ss) { 4365 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4366 } else { 4367 link = list_entry(l, struct cgrp_cset_link, cset_link); 4368 cset = link->cset; 4369 } 4370 4371 it->cset_pos = l; 4372 4373 /* initialize threaded css_set walking */ 4374 if (it->flags & CSS_TASK_ITER_THREADED) { 4375 if (it->cur_dcset) 4376 put_css_set_locked(it->cur_dcset); 4377 it->cur_dcset = cset; 4378 get_css_set(cset); 4379 4380 it->tcset_head = &cset->threaded_csets; 4381 it->tcset_pos = &cset->threaded_csets; 4382 } 4383 4384 return cset; 4385 } 4386 4387 /** 4388 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4389 * @it: the iterator to advance 4390 * 4391 * Advance @it to the next css_set to walk. 4392 */ 4393 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4394 { 4395 struct css_set *cset; 4396 4397 lockdep_assert_held(&css_set_lock); 4398 4399 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4400 while ((cset = css_task_iter_next_css_set(it))) { 4401 if (!list_empty(&cset->tasks)) { 4402 it->cur_tasks_head = &cset->tasks; 4403 break; 4404 } else if (!list_empty(&cset->mg_tasks)) { 4405 it->cur_tasks_head = &cset->mg_tasks; 4406 break; 4407 } else if (!list_empty(&cset->dying_tasks)) { 4408 it->cur_tasks_head = &cset->dying_tasks; 4409 break; 4410 } 4411 } 4412 if (!cset) { 4413 it->task_pos = NULL; 4414 return; 4415 } 4416 it->task_pos = it->cur_tasks_head->next; 4417 4418 /* 4419 * We don't keep css_sets locked across iteration steps and thus 4420 * need to take steps to ensure that iteration can be resumed after 4421 * the lock is re-acquired. Iteration is performed at two levels - 4422 * css_sets and tasks in them. 4423 * 4424 * Once created, a css_set never leaves its cgroup lists, so a 4425 * pinned css_set is guaranteed to stay put and we can resume 4426 * iteration afterwards. 4427 * 4428 * Tasks may leave @cset across iteration steps. This is resolved 4429 * by registering each iterator with the css_set currently being 4430 * walked and making css_set_move_task() advance iterators whose 4431 * next task is leaving. 4432 */ 4433 if (it->cur_cset) { 4434 list_del(&it->iters_node); 4435 put_css_set_locked(it->cur_cset); 4436 } 4437 get_css_set(cset); 4438 it->cur_cset = cset; 4439 list_add(&it->iters_node, &cset->task_iters); 4440 } 4441 4442 static void css_task_iter_skip(struct css_task_iter *it, 4443 struct task_struct *task) 4444 { 4445 lockdep_assert_held(&css_set_lock); 4446 4447 if (it->task_pos == &task->cg_list) { 4448 it->task_pos = it->task_pos->next; 4449 it->flags |= CSS_TASK_ITER_SKIPPED; 4450 } 4451 } 4452 4453 static void css_task_iter_advance(struct css_task_iter *it) 4454 { 4455 struct task_struct *task; 4456 4457 lockdep_assert_held(&css_set_lock); 4458 repeat: 4459 if (it->task_pos) { 4460 /* 4461 * Advance iterator to find next entry. We go through cset 4462 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4463 * the next cset. 4464 */ 4465 if (it->flags & CSS_TASK_ITER_SKIPPED) 4466 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4467 else 4468 it->task_pos = it->task_pos->next; 4469 4470 if (it->task_pos == &it->cur_cset->tasks) { 4471 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4472 it->task_pos = it->cur_tasks_head->next; 4473 } 4474 if (it->task_pos == &it->cur_cset->mg_tasks) { 4475 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4476 it->task_pos = it->cur_tasks_head->next; 4477 } 4478 if (it->task_pos == &it->cur_cset->dying_tasks) 4479 css_task_iter_advance_css_set(it); 4480 } else { 4481 /* called from start, proceed to the first cset */ 4482 css_task_iter_advance_css_set(it); 4483 } 4484 4485 if (!it->task_pos) 4486 return; 4487 4488 task = list_entry(it->task_pos, struct task_struct, cg_list); 4489 4490 if (it->flags & CSS_TASK_ITER_PROCS) { 4491 /* if PROCS, skip over tasks which aren't group leaders */ 4492 if (!thread_group_leader(task)) 4493 goto repeat; 4494 4495 /* and dying leaders w/o live member threads */ 4496 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4497 !atomic_read(&task->signal->live)) 4498 goto repeat; 4499 } else { 4500 /* skip all dying ones */ 4501 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4502 goto repeat; 4503 } 4504 } 4505 4506 /** 4507 * css_task_iter_start - initiate task iteration 4508 * @css: the css to walk tasks of 4509 * @flags: CSS_TASK_ITER_* flags 4510 * @it: the task iterator to use 4511 * 4512 * Initiate iteration through the tasks of @css. The caller can call 4513 * css_task_iter_next() to walk through the tasks until the function 4514 * returns NULL. On completion of iteration, css_task_iter_end() must be 4515 * called. 4516 */ 4517 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4518 struct css_task_iter *it) 4519 { 4520 memset(it, 0, sizeof(*it)); 4521 4522 spin_lock_irq(&css_set_lock); 4523 4524 it->ss = css->ss; 4525 it->flags = flags; 4526 4527 if (it->ss) 4528 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4529 else 4530 it->cset_pos = &css->cgroup->cset_links; 4531 4532 it->cset_head = it->cset_pos; 4533 4534 css_task_iter_advance(it); 4535 4536 spin_unlock_irq(&css_set_lock); 4537 } 4538 4539 /** 4540 * css_task_iter_next - return the next task for the iterator 4541 * @it: the task iterator being iterated 4542 * 4543 * The "next" function for task iteration. @it should have been 4544 * initialized via css_task_iter_start(). Returns NULL when the iteration 4545 * reaches the end. 4546 */ 4547 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4548 { 4549 if (it->cur_task) { 4550 put_task_struct(it->cur_task); 4551 it->cur_task = NULL; 4552 } 4553 4554 spin_lock_irq(&css_set_lock); 4555 4556 /* @it may be half-advanced by skips, finish advancing */ 4557 if (it->flags & CSS_TASK_ITER_SKIPPED) 4558 css_task_iter_advance(it); 4559 4560 if (it->task_pos) { 4561 it->cur_task = list_entry(it->task_pos, struct task_struct, 4562 cg_list); 4563 get_task_struct(it->cur_task); 4564 css_task_iter_advance(it); 4565 } 4566 4567 spin_unlock_irq(&css_set_lock); 4568 4569 return it->cur_task; 4570 } 4571 4572 /** 4573 * css_task_iter_end - finish task iteration 4574 * @it: the task iterator to finish 4575 * 4576 * Finish task iteration started by css_task_iter_start(). 4577 */ 4578 void css_task_iter_end(struct css_task_iter *it) 4579 { 4580 if (it->cur_cset) { 4581 spin_lock_irq(&css_set_lock); 4582 list_del(&it->iters_node); 4583 put_css_set_locked(it->cur_cset); 4584 spin_unlock_irq(&css_set_lock); 4585 } 4586 4587 if (it->cur_dcset) 4588 put_css_set(it->cur_dcset); 4589 4590 if (it->cur_task) 4591 put_task_struct(it->cur_task); 4592 } 4593 4594 static void cgroup_procs_release(struct kernfs_open_file *of) 4595 { 4596 if (of->priv) { 4597 css_task_iter_end(of->priv); 4598 kfree(of->priv); 4599 } 4600 } 4601 4602 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4603 { 4604 struct kernfs_open_file *of = s->private; 4605 struct css_task_iter *it = of->priv; 4606 4607 if (pos) 4608 (*pos)++; 4609 4610 return css_task_iter_next(it); 4611 } 4612 4613 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4614 unsigned int iter_flags) 4615 { 4616 struct kernfs_open_file *of = s->private; 4617 struct cgroup *cgrp = seq_css(s)->cgroup; 4618 struct css_task_iter *it = of->priv; 4619 4620 /* 4621 * When a seq_file is seeked, it's always traversed sequentially 4622 * from position 0, so we can simply keep iterating on !0 *pos. 4623 */ 4624 if (!it) { 4625 if (WARN_ON_ONCE((*pos))) 4626 return ERR_PTR(-EINVAL); 4627 4628 it = kzalloc(sizeof(*it), GFP_KERNEL); 4629 if (!it) 4630 return ERR_PTR(-ENOMEM); 4631 of->priv = it; 4632 css_task_iter_start(&cgrp->self, iter_flags, it); 4633 } else if (!(*pos)) { 4634 css_task_iter_end(it); 4635 css_task_iter_start(&cgrp->self, iter_flags, it); 4636 } else 4637 return it->cur_task; 4638 4639 return cgroup_procs_next(s, NULL, NULL); 4640 } 4641 4642 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4643 { 4644 struct cgroup *cgrp = seq_css(s)->cgroup; 4645 4646 /* 4647 * All processes of a threaded subtree belong to the domain cgroup 4648 * of the subtree. Only threads can be distributed across the 4649 * subtree. Reject reads on cgroup.procs in the subtree proper. 4650 * They're always empty anyway. 4651 */ 4652 if (cgroup_is_threaded(cgrp)) 4653 return ERR_PTR(-EOPNOTSUPP); 4654 4655 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4656 CSS_TASK_ITER_THREADED); 4657 } 4658 4659 static int cgroup_procs_show(struct seq_file *s, void *v) 4660 { 4661 seq_printf(s, "%d\n", task_pid_vnr(v)); 4662 return 0; 4663 } 4664 4665 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4666 { 4667 int ret; 4668 struct inode *inode; 4669 4670 lockdep_assert_held(&cgroup_mutex); 4671 4672 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4673 if (!inode) 4674 return -ENOMEM; 4675 4676 ret = inode_permission(inode, MAY_WRITE); 4677 iput(inode); 4678 return ret; 4679 } 4680 4681 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4682 struct cgroup *dst_cgrp, 4683 struct super_block *sb) 4684 { 4685 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4686 struct cgroup *com_cgrp = src_cgrp; 4687 int ret; 4688 4689 lockdep_assert_held(&cgroup_mutex); 4690 4691 /* find the common ancestor */ 4692 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4693 com_cgrp = cgroup_parent(com_cgrp); 4694 4695 /* %current should be authorized to migrate to the common ancestor */ 4696 ret = cgroup_may_write(com_cgrp, sb); 4697 if (ret) 4698 return ret; 4699 4700 /* 4701 * If namespaces are delegation boundaries, %current must be able 4702 * to see both source and destination cgroups from its namespace. 4703 */ 4704 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4705 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4706 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4707 return -ENOENT; 4708 4709 return 0; 4710 } 4711 4712 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4713 struct cgroup *dst_cgrp, 4714 struct super_block *sb, bool threadgroup) 4715 { 4716 int ret = 0; 4717 4718 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb); 4719 if (ret) 4720 return ret; 4721 4722 ret = cgroup_migrate_vet_dst(dst_cgrp); 4723 if (ret) 4724 return ret; 4725 4726 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4727 ret = -EOPNOTSUPP; 4728 4729 return ret; 4730 } 4731 4732 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4733 char *buf, size_t nbytes, loff_t off) 4734 { 4735 struct cgroup *src_cgrp, *dst_cgrp; 4736 struct task_struct *task; 4737 ssize_t ret; 4738 bool locked; 4739 4740 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4741 if (!dst_cgrp) 4742 return -ENODEV; 4743 4744 task = cgroup_procs_write_start(buf, true, &locked); 4745 ret = PTR_ERR_OR_ZERO(task); 4746 if (ret) 4747 goto out_unlock; 4748 4749 /* find the source cgroup */ 4750 spin_lock_irq(&css_set_lock); 4751 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4752 spin_unlock_irq(&css_set_lock); 4753 4754 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4755 of->file->f_path.dentry->d_sb, true); 4756 if (ret) 4757 goto out_finish; 4758 4759 ret = cgroup_attach_task(dst_cgrp, task, true); 4760 4761 out_finish: 4762 cgroup_procs_write_finish(task, locked); 4763 out_unlock: 4764 cgroup_kn_unlock(of->kn); 4765 4766 return ret ?: nbytes; 4767 } 4768 4769 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4770 { 4771 return __cgroup_procs_start(s, pos, 0); 4772 } 4773 4774 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4775 char *buf, size_t nbytes, loff_t off) 4776 { 4777 struct cgroup *src_cgrp, *dst_cgrp; 4778 struct task_struct *task; 4779 ssize_t ret; 4780 bool locked; 4781 4782 buf = strstrip(buf); 4783 4784 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4785 if (!dst_cgrp) 4786 return -ENODEV; 4787 4788 task = cgroup_procs_write_start(buf, false, &locked); 4789 ret = PTR_ERR_OR_ZERO(task); 4790 if (ret) 4791 goto out_unlock; 4792 4793 /* find the source cgroup */ 4794 spin_lock_irq(&css_set_lock); 4795 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4796 spin_unlock_irq(&css_set_lock); 4797 4798 /* thread migrations follow the cgroup.procs delegation rule */ 4799 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4800 of->file->f_path.dentry->d_sb, false); 4801 if (ret) 4802 goto out_finish; 4803 4804 ret = cgroup_attach_task(dst_cgrp, task, false); 4805 4806 out_finish: 4807 cgroup_procs_write_finish(task, locked); 4808 out_unlock: 4809 cgroup_kn_unlock(of->kn); 4810 4811 return ret ?: nbytes; 4812 } 4813 4814 /* cgroup core interface files for the default hierarchy */ 4815 static struct cftype cgroup_base_files[] = { 4816 { 4817 .name = "cgroup.type", 4818 .flags = CFTYPE_NOT_ON_ROOT, 4819 .seq_show = cgroup_type_show, 4820 .write = cgroup_type_write, 4821 }, 4822 { 4823 .name = "cgroup.procs", 4824 .flags = CFTYPE_NS_DELEGATABLE, 4825 .file_offset = offsetof(struct cgroup, procs_file), 4826 .release = cgroup_procs_release, 4827 .seq_start = cgroup_procs_start, 4828 .seq_next = cgroup_procs_next, 4829 .seq_show = cgroup_procs_show, 4830 .write = cgroup_procs_write, 4831 }, 4832 { 4833 .name = "cgroup.threads", 4834 .flags = CFTYPE_NS_DELEGATABLE, 4835 .release = cgroup_procs_release, 4836 .seq_start = cgroup_threads_start, 4837 .seq_next = cgroup_procs_next, 4838 .seq_show = cgroup_procs_show, 4839 .write = cgroup_threads_write, 4840 }, 4841 { 4842 .name = "cgroup.controllers", 4843 .seq_show = cgroup_controllers_show, 4844 }, 4845 { 4846 .name = "cgroup.subtree_control", 4847 .flags = CFTYPE_NS_DELEGATABLE, 4848 .seq_show = cgroup_subtree_control_show, 4849 .write = cgroup_subtree_control_write, 4850 }, 4851 { 4852 .name = "cgroup.events", 4853 .flags = CFTYPE_NOT_ON_ROOT, 4854 .file_offset = offsetof(struct cgroup, events_file), 4855 .seq_show = cgroup_events_show, 4856 }, 4857 { 4858 .name = "cgroup.max.descendants", 4859 .seq_show = cgroup_max_descendants_show, 4860 .write = cgroup_max_descendants_write, 4861 }, 4862 { 4863 .name = "cgroup.max.depth", 4864 .seq_show = cgroup_max_depth_show, 4865 .write = cgroup_max_depth_write, 4866 }, 4867 { 4868 .name = "cgroup.stat", 4869 .seq_show = cgroup_stat_show, 4870 }, 4871 { 4872 .name = "cgroup.freeze", 4873 .flags = CFTYPE_NOT_ON_ROOT, 4874 .seq_show = cgroup_freeze_show, 4875 .write = cgroup_freeze_write, 4876 }, 4877 { 4878 .name = "cpu.stat", 4879 .seq_show = cpu_stat_show, 4880 }, 4881 #ifdef CONFIG_PSI 4882 { 4883 .name = "io.pressure", 4884 .seq_show = cgroup_io_pressure_show, 4885 .write = cgroup_io_pressure_write, 4886 .poll = cgroup_pressure_poll, 4887 .release = cgroup_pressure_release, 4888 }, 4889 { 4890 .name = "memory.pressure", 4891 .seq_show = cgroup_memory_pressure_show, 4892 .write = cgroup_memory_pressure_write, 4893 .poll = cgroup_pressure_poll, 4894 .release = cgroup_pressure_release, 4895 }, 4896 { 4897 .name = "cpu.pressure", 4898 .seq_show = cgroup_cpu_pressure_show, 4899 .write = cgroup_cpu_pressure_write, 4900 .poll = cgroup_pressure_poll, 4901 .release = cgroup_pressure_release, 4902 }, 4903 #endif /* CONFIG_PSI */ 4904 { } /* terminate */ 4905 }; 4906 4907 /* 4908 * css destruction is four-stage process. 4909 * 4910 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4911 * Implemented in kill_css(). 4912 * 4913 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4914 * and thus css_tryget_online() is guaranteed to fail, the css can be 4915 * offlined by invoking offline_css(). After offlining, the base ref is 4916 * put. Implemented in css_killed_work_fn(). 4917 * 4918 * 3. When the percpu_ref reaches zero, the only possible remaining 4919 * accessors are inside RCU read sections. css_release() schedules the 4920 * RCU callback. 4921 * 4922 * 4. After the grace period, the css can be freed. Implemented in 4923 * css_free_work_fn(). 4924 * 4925 * It is actually hairier because both step 2 and 4 require process context 4926 * and thus involve punting to css->destroy_work adding two additional 4927 * steps to the already complex sequence. 4928 */ 4929 static void css_free_rwork_fn(struct work_struct *work) 4930 { 4931 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4932 struct cgroup_subsys_state, destroy_rwork); 4933 struct cgroup_subsys *ss = css->ss; 4934 struct cgroup *cgrp = css->cgroup; 4935 4936 percpu_ref_exit(&css->refcnt); 4937 4938 if (ss) { 4939 /* css free path */ 4940 struct cgroup_subsys_state *parent = css->parent; 4941 int id = css->id; 4942 4943 ss->css_free(css); 4944 cgroup_idr_remove(&ss->css_idr, id); 4945 cgroup_put(cgrp); 4946 4947 if (parent) 4948 css_put(parent); 4949 } else { 4950 /* cgroup free path */ 4951 atomic_dec(&cgrp->root->nr_cgrps); 4952 cgroup1_pidlist_destroy_all(cgrp); 4953 cancel_work_sync(&cgrp->release_agent_work); 4954 4955 if (cgroup_parent(cgrp)) { 4956 /* 4957 * We get a ref to the parent, and put the ref when 4958 * this cgroup is being freed, so it's guaranteed 4959 * that the parent won't be destroyed before its 4960 * children. 4961 */ 4962 cgroup_put(cgroup_parent(cgrp)); 4963 kernfs_put(cgrp->kn); 4964 psi_cgroup_free(cgrp); 4965 if (cgroup_on_dfl(cgrp)) 4966 cgroup_rstat_exit(cgrp); 4967 kfree(cgrp); 4968 } else { 4969 /* 4970 * This is root cgroup's refcnt reaching zero, 4971 * which indicates that the root should be 4972 * released. 4973 */ 4974 cgroup_destroy_root(cgrp->root); 4975 } 4976 } 4977 } 4978 4979 static void css_release_work_fn(struct work_struct *work) 4980 { 4981 struct cgroup_subsys_state *css = 4982 container_of(work, struct cgroup_subsys_state, destroy_work); 4983 struct cgroup_subsys *ss = css->ss; 4984 struct cgroup *cgrp = css->cgroup; 4985 4986 mutex_lock(&cgroup_mutex); 4987 4988 css->flags |= CSS_RELEASED; 4989 list_del_rcu(&css->sibling); 4990 4991 if (ss) { 4992 /* css release path */ 4993 if (!list_empty(&css->rstat_css_node)) { 4994 cgroup_rstat_flush(cgrp); 4995 list_del_rcu(&css->rstat_css_node); 4996 } 4997 4998 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4999 if (ss->css_released) 5000 ss->css_released(css); 5001 } else { 5002 struct cgroup *tcgrp; 5003 5004 /* cgroup release path */ 5005 TRACE_CGROUP_PATH(release, cgrp); 5006 5007 if (cgroup_on_dfl(cgrp)) 5008 cgroup_rstat_flush(cgrp); 5009 5010 spin_lock_irq(&css_set_lock); 5011 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5012 tcgrp = cgroup_parent(tcgrp)) 5013 tcgrp->nr_dying_descendants--; 5014 spin_unlock_irq(&css_set_lock); 5015 5016 /* 5017 * There are two control paths which try to determine 5018 * cgroup from dentry without going through kernfs - 5019 * cgroupstats_build() and css_tryget_online_from_dir(). 5020 * Those are supported by RCU protecting clearing of 5021 * cgrp->kn->priv backpointer. 5022 */ 5023 if (cgrp->kn) 5024 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5025 NULL); 5026 } 5027 5028 mutex_unlock(&cgroup_mutex); 5029 5030 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5031 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5032 } 5033 5034 static void css_release(struct percpu_ref *ref) 5035 { 5036 struct cgroup_subsys_state *css = 5037 container_of(ref, struct cgroup_subsys_state, refcnt); 5038 5039 INIT_WORK(&css->destroy_work, css_release_work_fn); 5040 queue_work(cgroup_destroy_wq, &css->destroy_work); 5041 } 5042 5043 static void init_and_link_css(struct cgroup_subsys_state *css, 5044 struct cgroup_subsys *ss, struct cgroup *cgrp) 5045 { 5046 lockdep_assert_held(&cgroup_mutex); 5047 5048 cgroup_get_live(cgrp); 5049 5050 memset(css, 0, sizeof(*css)); 5051 css->cgroup = cgrp; 5052 css->ss = ss; 5053 css->id = -1; 5054 INIT_LIST_HEAD(&css->sibling); 5055 INIT_LIST_HEAD(&css->children); 5056 INIT_LIST_HEAD(&css->rstat_css_node); 5057 css->serial_nr = css_serial_nr_next++; 5058 atomic_set(&css->online_cnt, 0); 5059 5060 if (cgroup_parent(cgrp)) { 5061 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5062 css_get(css->parent); 5063 } 5064 5065 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 5066 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5067 5068 BUG_ON(cgroup_css(cgrp, ss)); 5069 } 5070 5071 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5072 static int online_css(struct cgroup_subsys_state *css) 5073 { 5074 struct cgroup_subsys *ss = css->ss; 5075 int ret = 0; 5076 5077 lockdep_assert_held(&cgroup_mutex); 5078 5079 if (ss->css_online) 5080 ret = ss->css_online(css); 5081 if (!ret) { 5082 css->flags |= CSS_ONLINE; 5083 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5084 5085 atomic_inc(&css->online_cnt); 5086 if (css->parent) 5087 atomic_inc(&css->parent->online_cnt); 5088 } 5089 return ret; 5090 } 5091 5092 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5093 static void offline_css(struct cgroup_subsys_state *css) 5094 { 5095 struct cgroup_subsys *ss = css->ss; 5096 5097 lockdep_assert_held(&cgroup_mutex); 5098 5099 if (!(css->flags & CSS_ONLINE)) 5100 return; 5101 5102 if (ss->css_offline) 5103 ss->css_offline(css); 5104 5105 css->flags &= ~CSS_ONLINE; 5106 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5107 5108 wake_up_all(&css->cgroup->offline_waitq); 5109 } 5110 5111 /** 5112 * css_create - create a cgroup_subsys_state 5113 * @cgrp: the cgroup new css will be associated with 5114 * @ss: the subsys of new css 5115 * 5116 * Create a new css associated with @cgrp - @ss pair. On success, the new 5117 * css is online and installed in @cgrp. This function doesn't create the 5118 * interface files. Returns 0 on success, -errno on failure. 5119 */ 5120 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5121 struct cgroup_subsys *ss) 5122 { 5123 struct cgroup *parent = cgroup_parent(cgrp); 5124 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5125 struct cgroup_subsys_state *css; 5126 int err; 5127 5128 lockdep_assert_held(&cgroup_mutex); 5129 5130 css = ss->css_alloc(parent_css); 5131 if (!css) 5132 css = ERR_PTR(-ENOMEM); 5133 if (IS_ERR(css)) 5134 return css; 5135 5136 init_and_link_css(css, ss, cgrp); 5137 5138 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5139 if (err) 5140 goto err_free_css; 5141 5142 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5143 if (err < 0) 5144 goto err_free_css; 5145 css->id = err; 5146 5147 /* @css is ready to be brought online now, make it visible */ 5148 list_add_tail_rcu(&css->sibling, &parent_css->children); 5149 cgroup_idr_replace(&ss->css_idr, css, css->id); 5150 5151 err = online_css(css); 5152 if (err) 5153 goto err_list_del; 5154 5155 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 5156 cgroup_parent(parent)) { 5157 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 5158 current->comm, current->pid, ss->name); 5159 if (!strcmp(ss->name, "memory")) 5160 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 5161 ss->warned_broken_hierarchy = true; 5162 } 5163 5164 return css; 5165 5166 err_list_del: 5167 list_del_rcu(&css->sibling); 5168 err_free_css: 5169 list_del_rcu(&css->rstat_css_node); 5170 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5171 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5172 return ERR_PTR(err); 5173 } 5174 5175 /* 5176 * The returned cgroup is fully initialized including its control mask, but 5177 * it isn't associated with its kernfs_node and doesn't have the control 5178 * mask applied. 5179 */ 5180 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5181 umode_t mode) 5182 { 5183 struct cgroup_root *root = parent->root; 5184 struct cgroup *cgrp, *tcgrp; 5185 struct kernfs_node *kn; 5186 int level = parent->level + 1; 5187 int ret; 5188 5189 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5190 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5191 GFP_KERNEL); 5192 if (!cgrp) 5193 return ERR_PTR(-ENOMEM); 5194 5195 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5196 if (ret) 5197 goto out_free_cgrp; 5198 5199 if (cgroup_on_dfl(parent)) { 5200 ret = cgroup_rstat_init(cgrp); 5201 if (ret) 5202 goto out_cancel_ref; 5203 } 5204 5205 /* create the directory */ 5206 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5207 if (IS_ERR(kn)) { 5208 ret = PTR_ERR(kn); 5209 goto out_stat_exit; 5210 } 5211 cgrp->kn = kn; 5212 5213 init_cgroup_housekeeping(cgrp); 5214 5215 cgrp->self.parent = &parent->self; 5216 cgrp->root = root; 5217 cgrp->level = level; 5218 5219 ret = psi_cgroup_alloc(cgrp); 5220 if (ret) 5221 goto out_kernfs_remove; 5222 5223 ret = cgroup_bpf_inherit(cgrp); 5224 if (ret) 5225 goto out_psi_free; 5226 5227 /* 5228 * New cgroup inherits effective freeze counter, and 5229 * if the parent has to be frozen, the child has too. 5230 */ 5231 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5232 if (cgrp->freezer.e_freeze) { 5233 /* 5234 * Set the CGRP_FREEZE flag, so when a process will be 5235 * attached to the child cgroup, it will become frozen. 5236 * At this point the new cgroup is unpopulated, so we can 5237 * consider it frozen immediately. 5238 */ 5239 set_bit(CGRP_FREEZE, &cgrp->flags); 5240 set_bit(CGRP_FROZEN, &cgrp->flags); 5241 } 5242 5243 spin_lock_irq(&css_set_lock); 5244 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5245 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5246 5247 if (tcgrp != cgrp) { 5248 tcgrp->nr_descendants++; 5249 5250 /* 5251 * If the new cgroup is frozen, all ancestor cgroups 5252 * get a new frozen descendant, but their state can't 5253 * change because of this. 5254 */ 5255 if (cgrp->freezer.e_freeze) 5256 tcgrp->freezer.nr_frozen_descendants++; 5257 } 5258 } 5259 spin_unlock_irq(&css_set_lock); 5260 5261 if (notify_on_release(parent)) 5262 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5263 5264 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5265 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5266 5267 cgrp->self.serial_nr = css_serial_nr_next++; 5268 5269 /* allocation complete, commit to creation */ 5270 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5271 atomic_inc(&root->nr_cgrps); 5272 cgroup_get_live(parent); 5273 5274 /* 5275 * On the default hierarchy, a child doesn't automatically inherit 5276 * subtree_control from the parent. Each is configured manually. 5277 */ 5278 if (!cgroup_on_dfl(cgrp)) 5279 cgrp->subtree_control = cgroup_control(cgrp); 5280 5281 cgroup_propagate_control(cgrp); 5282 5283 return cgrp; 5284 5285 out_psi_free: 5286 psi_cgroup_free(cgrp); 5287 out_kernfs_remove: 5288 kernfs_remove(cgrp->kn); 5289 out_stat_exit: 5290 if (cgroup_on_dfl(parent)) 5291 cgroup_rstat_exit(cgrp); 5292 out_cancel_ref: 5293 percpu_ref_exit(&cgrp->self.refcnt); 5294 out_free_cgrp: 5295 kfree(cgrp); 5296 return ERR_PTR(ret); 5297 } 5298 5299 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5300 { 5301 struct cgroup *cgroup; 5302 int ret = false; 5303 int level = 1; 5304 5305 lockdep_assert_held(&cgroup_mutex); 5306 5307 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5308 if (cgroup->nr_descendants >= cgroup->max_descendants) 5309 goto fail; 5310 5311 if (level > cgroup->max_depth) 5312 goto fail; 5313 5314 level++; 5315 } 5316 5317 ret = true; 5318 fail: 5319 return ret; 5320 } 5321 5322 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5323 { 5324 struct cgroup *parent, *cgrp; 5325 int ret; 5326 5327 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5328 if (strchr(name, '\n')) 5329 return -EINVAL; 5330 5331 parent = cgroup_kn_lock_live(parent_kn, false); 5332 if (!parent) 5333 return -ENODEV; 5334 5335 if (!cgroup_check_hierarchy_limits(parent)) { 5336 ret = -EAGAIN; 5337 goto out_unlock; 5338 } 5339 5340 cgrp = cgroup_create(parent, name, mode); 5341 if (IS_ERR(cgrp)) { 5342 ret = PTR_ERR(cgrp); 5343 goto out_unlock; 5344 } 5345 5346 /* 5347 * This extra ref will be put in cgroup_free_fn() and guarantees 5348 * that @cgrp->kn is always accessible. 5349 */ 5350 kernfs_get(cgrp->kn); 5351 5352 ret = cgroup_kn_set_ugid(cgrp->kn); 5353 if (ret) 5354 goto out_destroy; 5355 5356 ret = css_populate_dir(&cgrp->self); 5357 if (ret) 5358 goto out_destroy; 5359 5360 ret = cgroup_apply_control_enable(cgrp); 5361 if (ret) 5362 goto out_destroy; 5363 5364 TRACE_CGROUP_PATH(mkdir, cgrp); 5365 5366 /* let's create and online css's */ 5367 kernfs_activate(cgrp->kn); 5368 5369 ret = 0; 5370 goto out_unlock; 5371 5372 out_destroy: 5373 cgroup_destroy_locked(cgrp); 5374 out_unlock: 5375 cgroup_kn_unlock(parent_kn); 5376 return ret; 5377 } 5378 5379 /* 5380 * This is called when the refcnt of a css is confirmed to be killed. 5381 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5382 * initate destruction and put the css ref from kill_css(). 5383 */ 5384 static void css_killed_work_fn(struct work_struct *work) 5385 { 5386 struct cgroup_subsys_state *css = 5387 container_of(work, struct cgroup_subsys_state, destroy_work); 5388 5389 mutex_lock(&cgroup_mutex); 5390 5391 do { 5392 offline_css(css); 5393 css_put(css); 5394 /* @css can't go away while we're holding cgroup_mutex */ 5395 css = css->parent; 5396 } while (css && atomic_dec_and_test(&css->online_cnt)); 5397 5398 mutex_unlock(&cgroup_mutex); 5399 } 5400 5401 /* css kill confirmation processing requires process context, bounce */ 5402 static void css_killed_ref_fn(struct percpu_ref *ref) 5403 { 5404 struct cgroup_subsys_state *css = 5405 container_of(ref, struct cgroup_subsys_state, refcnt); 5406 5407 if (atomic_dec_and_test(&css->online_cnt)) { 5408 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5409 queue_work(cgroup_destroy_wq, &css->destroy_work); 5410 } 5411 } 5412 5413 /** 5414 * kill_css - destroy a css 5415 * @css: css to destroy 5416 * 5417 * This function initiates destruction of @css by removing cgroup interface 5418 * files and putting its base reference. ->css_offline() will be invoked 5419 * asynchronously once css_tryget_online() is guaranteed to fail and when 5420 * the reference count reaches zero, @css will be released. 5421 */ 5422 static void kill_css(struct cgroup_subsys_state *css) 5423 { 5424 lockdep_assert_held(&cgroup_mutex); 5425 5426 if (css->flags & CSS_DYING) 5427 return; 5428 5429 css->flags |= CSS_DYING; 5430 5431 /* 5432 * This must happen before css is disassociated with its cgroup. 5433 * See seq_css() for details. 5434 */ 5435 css_clear_dir(css); 5436 5437 /* 5438 * Killing would put the base ref, but we need to keep it alive 5439 * until after ->css_offline(). 5440 */ 5441 css_get(css); 5442 5443 /* 5444 * cgroup core guarantees that, by the time ->css_offline() is 5445 * invoked, no new css reference will be given out via 5446 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5447 * proceed to offlining css's because percpu_ref_kill() doesn't 5448 * guarantee that the ref is seen as killed on all CPUs on return. 5449 * 5450 * Use percpu_ref_kill_and_confirm() to get notifications as each 5451 * css is confirmed to be seen as killed on all CPUs. 5452 */ 5453 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5454 } 5455 5456 /** 5457 * cgroup_destroy_locked - the first stage of cgroup destruction 5458 * @cgrp: cgroup to be destroyed 5459 * 5460 * css's make use of percpu refcnts whose killing latency shouldn't be 5461 * exposed to userland and are RCU protected. Also, cgroup core needs to 5462 * guarantee that css_tryget_online() won't succeed by the time 5463 * ->css_offline() is invoked. To satisfy all the requirements, 5464 * destruction is implemented in the following two steps. 5465 * 5466 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5467 * userland visible parts and start killing the percpu refcnts of 5468 * css's. Set up so that the next stage will be kicked off once all 5469 * the percpu refcnts are confirmed to be killed. 5470 * 5471 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5472 * rest of destruction. Once all cgroup references are gone, the 5473 * cgroup is RCU-freed. 5474 * 5475 * This function implements s1. After this step, @cgrp is gone as far as 5476 * the userland is concerned and a new cgroup with the same name may be 5477 * created. As cgroup doesn't care about the names internally, this 5478 * doesn't cause any problem. 5479 */ 5480 static int cgroup_destroy_locked(struct cgroup *cgrp) 5481 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5482 { 5483 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5484 struct cgroup_subsys_state *css; 5485 struct cgrp_cset_link *link; 5486 int ssid; 5487 5488 lockdep_assert_held(&cgroup_mutex); 5489 5490 /* 5491 * Only migration can raise populated from zero and we're already 5492 * holding cgroup_mutex. 5493 */ 5494 if (cgroup_is_populated(cgrp)) 5495 return -EBUSY; 5496 5497 /* 5498 * Make sure there's no live children. We can't test emptiness of 5499 * ->self.children as dead children linger on it while being 5500 * drained; otherwise, "rmdir parent/child parent" may fail. 5501 */ 5502 if (css_has_online_children(&cgrp->self)) 5503 return -EBUSY; 5504 5505 /* 5506 * Mark @cgrp and the associated csets dead. The former prevents 5507 * further task migration and child creation by disabling 5508 * cgroup_lock_live_group(). The latter makes the csets ignored by 5509 * the migration path. 5510 */ 5511 cgrp->self.flags &= ~CSS_ONLINE; 5512 5513 spin_lock_irq(&css_set_lock); 5514 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5515 link->cset->dead = true; 5516 spin_unlock_irq(&css_set_lock); 5517 5518 /* initiate massacre of all css's */ 5519 for_each_css(css, ssid, cgrp) 5520 kill_css(css); 5521 5522 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5523 css_clear_dir(&cgrp->self); 5524 kernfs_remove(cgrp->kn); 5525 5526 if (parent && cgroup_is_threaded(cgrp)) 5527 parent->nr_threaded_children--; 5528 5529 spin_lock_irq(&css_set_lock); 5530 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5531 tcgrp->nr_descendants--; 5532 tcgrp->nr_dying_descendants++; 5533 /* 5534 * If the dying cgroup is frozen, decrease frozen descendants 5535 * counters of ancestor cgroups. 5536 */ 5537 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5538 tcgrp->freezer.nr_frozen_descendants--; 5539 } 5540 spin_unlock_irq(&css_set_lock); 5541 5542 cgroup1_check_for_release(parent); 5543 5544 cgroup_bpf_offline(cgrp); 5545 5546 /* put the base reference */ 5547 percpu_ref_kill(&cgrp->self.refcnt); 5548 5549 return 0; 5550 }; 5551 5552 int cgroup_rmdir(struct kernfs_node *kn) 5553 { 5554 struct cgroup *cgrp; 5555 int ret = 0; 5556 5557 cgrp = cgroup_kn_lock_live(kn, false); 5558 if (!cgrp) 5559 return 0; 5560 5561 ret = cgroup_destroy_locked(cgrp); 5562 if (!ret) 5563 TRACE_CGROUP_PATH(rmdir, cgrp); 5564 5565 cgroup_kn_unlock(kn); 5566 return ret; 5567 } 5568 5569 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5570 .show_options = cgroup_show_options, 5571 .mkdir = cgroup_mkdir, 5572 .rmdir = cgroup_rmdir, 5573 .show_path = cgroup_show_path, 5574 }; 5575 5576 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5577 { 5578 struct cgroup_subsys_state *css; 5579 5580 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5581 5582 mutex_lock(&cgroup_mutex); 5583 5584 idr_init(&ss->css_idr); 5585 INIT_LIST_HEAD(&ss->cfts); 5586 5587 /* Create the root cgroup state for this subsystem */ 5588 ss->root = &cgrp_dfl_root; 5589 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5590 /* We don't handle early failures gracefully */ 5591 BUG_ON(IS_ERR(css)); 5592 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5593 5594 /* 5595 * Root csses are never destroyed and we can't initialize 5596 * percpu_ref during early init. Disable refcnting. 5597 */ 5598 css->flags |= CSS_NO_REF; 5599 5600 if (early) { 5601 /* allocation can't be done safely during early init */ 5602 css->id = 1; 5603 } else { 5604 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5605 BUG_ON(css->id < 0); 5606 } 5607 5608 /* Update the init_css_set to contain a subsys 5609 * pointer to this state - since the subsystem is 5610 * newly registered, all tasks and hence the 5611 * init_css_set is in the subsystem's root cgroup. */ 5612 init_css_set.subsys[ss->id] = css; 5613 5614 have_fork_callback |= (bool)ss->fork << ss->id; 5615 have_exit_callback |= (bool)ss->exit << ss->id; 5616 have_release_callback |= (bool)ss->release << ss->id; 5617 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5618 5619 /* At system boot, before all subsystems have been 5620 * registered, no tasks have been forked, so we don't 5621 * need to invoke fork callbacks here. */ 5622 BUG_ON(!list_empty(&init_task.tasks)); 5623 5624 BUG_ON(online_css(css)); 5625 5626 mutex_unlock(&cgroup_mutex); 5627 } 5628 5629 /** 5630 * cgroup_init_early - cgroup initialization at system boot 5631 * 5632 * Initialize cgroups at system boot, and initialize any 5633 * subsystems that request early init. 5634 */ 5635 int __init cgroup_init_early(void) 5636 { 5637 static struct cgroup_fs_context __initdata ctx; 5638 struct cgroup_subsys *ss; 5639 int i; 5640 5641 ctx.root = &cgrp_dfl_root; 5642 init_cgroup_root(&ctx); 5643 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5644 5645 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5646 5647 for_each_subsys(ss, i) { 5648 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5649 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5650 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5651 ss->id, ss->name); 5652 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5653 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5654 5655 ss->id = i; 5656 ss->name = cgroup_subsys_name[i]; 5657 if (!ss->legacy_name) 5658 ss->legacy_name = cgroup_subsys_name[i]; 5659 5660 if (ss->early_init) 5661 cgroup_init_subsys(ss, true); 5662 } 5663 return 0; 5664 } 5665 5666 static u16 cgroup_disable_mask __initdata; 5667 5668 /** 5669 * cgroup_init - cgroup initialization 5670 * 5671 * Register cgroup filesystem and /proc file, and initialize 5672 * any subsystems that didn't request early init. 5673 */ 5674 int __init cgroup_init(void) 5675 { 5676 struct cgroup_subsys *ss; 5677 int ssid; 5678 5679 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5680 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5681 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5682 5683 cgroup_rstat_boot(); 5684 5685 /* 5686 * The latency of the synchronize_rcu() is too high for cgroups, 5687 * avoid it at the cost of forcing all readers into the slow path. 5688 */ 5689 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5690 5691 get_user_ns(init_cgroup_ns.user_ns); 5692 5693 mutex_lock(&cgroup_mutex); 5694 5695 /* 5696 * Add init_css_set to the hash table so that dfl_root can link to 5697 * it during init. 5698 */ 5699 hash_add(css_set_table, &init_css_set.hlist, 5700 css_set_hash(init_css_set.subsys)); 5701 5702 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5703 5704 mutex_unlock(&cgroup_mutex); 5705 5706 for_each_subsys(ss, ssid) { 5707 if (ss->early_init) { 5708 struct cgroup_subsys_state *css = 5709 init_css_set.subsys[ss->id]; 5710 5711 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5712 GFP_KERNEL); 5713 BUG_ON(css->id < 0); 5714 } else { 5715 cgroup_init_subsys(ss, false); 5716 } 5717 5718 list_add_tail(&init_css_set.e_cset_node[ssid], 5719 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5720 5721 /* 5722 * Setting dfl_root subsys_mask needs to consider the 5723 * disabled flag and cftype registration needs kmalloc, 5724 * both of which aren't available during early_init. 5725 */ 5726 if (cgroup_disable_mask & (1 << ssid)) { 5727 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5728 printk(KERN_INFO "Disabling %s control group subsystem\n", 5729 ss->name); 5730 continue; 5731 } 5732 5733 if (cgroup1_ssid_disabled(ssid)) 5734 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5735 ss->name); 5736 5737 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5738 5739 /* implicit controllers must be threaded too */ 5740 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5741 5742 if (ss->implicit_on_dfl) 5743 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5744 else if (!ss->dfl_cftypes) 5745 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5746 5747 if (ss->threaded) 5748 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5749 5750 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5751 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5752 } else { 5753 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5754 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5755 } 5756 5757 if (ss->bind) 5758 ss->bind(init_css_set.subsys[ssid]); 5759 5760 mutex_lock(&cgroup_mutex); 5761 css_populate_dir(init_css_set.subsys[ssid]); 5762 mutex_unlock(&cgroup_mutex); 5763 } 5764 5765 /* init_css_set.subsys[] has been updated, re-hash */ 5766 hash_del(&init_css_set.hlist); 5767 hash_add(css_set_table, &init_css_set.hlist, 5768 css_set_hash(init_css_set.subsys)); 5769 5770 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5771 WARN_ON(register_filesystem(&cgroup_fs_type)); 5772 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5773 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5774 #ifdef CONFIG_CPUSETS 5775 WARN_ON(register_filesystem(&cpuset_fs_type)); 5776 #endif 5777 5778 return 0; 5779 } 5780 5781 static int __init cgroup_wq_init(void) 5782 { 5783 /* 5784 * There isn't much point in executing destruction path in 5785 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5786 * Use 1 for @max_active. 5787 * 5788 * We would prefer to do this in cgroup_init() above, but that 5789 * is called before init_workqueues(): so leave this until after. 5790 */ 5791 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5792 BUG_ON(!cgroup_destroy_wq); 5793 return 0; 5794 } 5795 core_initcall(cgroup_wq_init); 5796 5797 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5798 { 5799 struct kernfs_node *kn; 5800 5801 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5802 if (!kn) 5803 return; 5804 kernfs_path(kn, buf, buflen); 5805 kernfs_put(kn); 5806 } 5807 5808 /* 5809 * proc_cgroup_show() 5810 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5811 * - Used for /proc/<pid>/cgroup. 5812 */ 5813 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5814 struct pid *pid, struct task_struct *tsk) 5815 { 5816 char *buf; 5817 int retval; 5818 struct cgroup_root *root; 5819 5820 retval = -ENOMEM; 5821 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5822 if (!buf) 5823 goto out; 5824 5825 mutex_lock(&cgroup_mutex); 5826 spin_lock_irq(&css_set_lock); 5827 5828 for_each_root(root) { 5829 struct cgroup_subsys *ss; 5830 struct cgroup *cgrp; 5831 int ssid, count = 0; 5832 5833 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5834 continue; 5835 5836 seq_printf(m, "%d:", root->hierarchy_id); 5837 if (root != &cgrp_dfl_root) 5838 for_each_subsys(ss, ssid) 5839 if (root->subsys_mask & (1 << ssid)) 5840 seq_printf(m, "%s%s", count++ ? "," : "", 5841 ss->legacy_name); 5842 if (strlen(root->name)) 5843 seq_printf(m, "%sname=%s", count ? "," : "", 5844 root->name); 5845 seq_putc(m, ':'); 5846 5847 cgrp = task_cgroup_from_root(tsk, root); 5848 5849 /* 5850 * On traditional hierarchies, all zombie tasks show up as 5851 * belonging to the root cgroup. On the default hierarchy, 5852 * while a zombie doesn't show up in "cgroup.procs" and 5853 * thus can't be migrated, its /proc/PID/cgroup keeps 5854 * reporting the cgroup it belonged to before exiting. If 5855 * the cgroup is removed before the zombie is reaped, 5856 * " (deleted)" is appended to the cgroup path. 5857 */ 5858 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5859 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5860 current->nsproxy->cgroup_ns); 5861 if (retval >= PATH_MAX) 5862 retval = -ENAMETOOLONG; 5863 if (retval < 0) 5864 goto out_unlock; 5865 5866 seq_puts(m, buf); 5867 } else { 5868 seq_puts(m, "/"); 5869 } 5870 5871 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5872 seq_puts(m, " (deleted)\n"); 5873 else 5874 seq_putc(m, '\n'); 5875 } 5876 5877 retval = 0; 5878 out_unlock: 5879 spin_unlock_irq(&css_set_lock); 5880 mutex_unlock(&cgroup_mutex); 5881 kfree(buf); 5882 out: 5883 return retval; 5884 } 5885 5886 /** 5887 * cgroup_fork - initialize cgroup related fields during copy_process() 5888 * @child: pointer to task_struct of forking parent process. 5889 * 5890 * A task is associated with the init_css_set until cgroup_post_fork() 5891 * attaches it to the target css_set. 5892 */ 5893 void cgroup_fork(struct task_struct *child) 5894 { 5895 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5896 INIT_LIST_HEAD(&child->cg_list); 5897 } 5898 5899 static struct cgroup *cgroup_get_from_file(struct file *f) 5900 { 5901 struct cgroup_subsys_state *css; 5902 struct cgroup *cgrp; 5903 5904 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5905 if (IS_ERR(css)) 5906 return ERR_CAST(css); 5907 5908 cgrp = css->cgroup; 5909 if (!cgroup_on_dfl(cgrp)) { 5910 cgroup_put(cgrp); 5911 return ERR_PTR(-EBADF); 5912 } 5913 5914 return cgrp; 5915 } 5916 5917 /** 5918 * cgroup_css_set_fork - find or create a css_set for a child process 5919 * @kargs: the arguments passed to create the child process 5920 * 5921 * This functions finds or creates a new css_set which the child 5922 * process will be attached to in cgroup_post_fork(). By default, 5923 * the child process will be given the same css_set as its parent. 5924 * 5925 * If CLONE_INTO_CGROUP is specified this function will try to find an 5926 * existing css_set which includes the requested cgroup and if not create 5927 * a new css_set that the child will be attached to later. If this function 5928 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 5929 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 5930 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 5931 * to the target cgroup. 5932 */ 5933 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 5934 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 5935 { 5936 int ret; 5937 struct cgroup *dst_cgrp = NULL; 5938 struct css_set *cset; 5939 struct super_block *sb; 5940 struct file *f; 5941 5942 if (kargs->flags & CLONE_INTO_CGROUP) 5943 mutex_lock(&cgroup_mutex); 5944 5945 cgroup_threadgroup_change_begin(current); 5946 5947 spin_lock_irq(&css_set_lock); 5948 cset = task_css_set(current); 5949 get_css_set(cset); 5950 spin_unlock_irq(&css_set_lock); 5951 5952 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 5953 kargs->cset = cset; 5954 return 0; 5955 } 5956 5957 f = fget_raw(kargs->cgroup); 5958 if (!f) { 5959 ret = -EBADF; 5960 goto err; 5961 } 5962 sb = f->f_path.dentry->d_sb; 5963 5964 dst_cgrp = cgroup_get_from_file(f); 5965 if (IS_ERR(dst_cgrp)) { 5966 ret = PTR_ERR(dst_cgrp); 5967 dst_cgrp = NULL; 5968 goto err; 5969 } 5970 5971 if (cgroup_is_dead(dst_cgrp)) { 5972 ret = -ENODEV; 5973 goto err; 5974 } 5975 5976 /* 5977 * Verify that we the target cgroup is writable for us. This is 5978 * usually done by the vfs layer but since we're not going through 5979 * the vfs layer here we need to do it "manually". 5980 */ 5981 ret = cgroup_may_write(dst_cgrp, sb); 5982 if (ret) 5983 goto err; 5984 5985 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 5986 !(kargs->flags & CLONE_THREAD)); 5987 if (ret) 5988 goto err; 5989 5990 kargs->cset = find_css_set(cset, dst_cgrp); 5991 if (!kargs->cset) { 5992 ret = -ENOMEM; 5993 goto err; 5994 } 5995 5996 put_css_set(cset); 5997 fput(f); 5998 kargs->cgrp = dst_cgrp; 5999 return ret; 6000 6001 err: 6002 cgroup_threadgroup_change_end(current); 6003 mutex_unlock(&cgroup_mutex); 6004 if (f) 6005 fput(f); 6006 if (dst_cgrp) 6007 cgroup_put(dst_cgrp); 6008 put_css_set(cset); 6009 if (kargs->cset) 6010 put_css_set(kargs->cset); 6011 return ret; 6012 } 6013 6014 /** 6015 * cgroup_css_set_put_fork - drop references we took during fork 6016 * @kargs: the arguments passed to create the child process 6017 * 6018 * Drop references to the prepared css_set and target cgroup if 6019 * CLONE_INTO_CGROUP was requested. 6020 */ 6021 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6022 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6023 { 6024 cgroup_threadgroup_change_end(current); 6025 6026 if (kargs->flags & CLONE_INTO_CGROUP) { 6027 struct cgroup *cgrp = kargs->cgrp; 6028 struct css_set *cset = kargs->cset; 6029 6030 mutex_unlock(&cgroup_mutex); 6031 6032 if (cset) { 6033 put_css_set(cset); 6034 kargs->cset = NULL; 6035 } 6036 6037 if (cgrp) { 6038 cgroup_put(cgrp); 6039 kargs->cgrp = NULL; 6040 } 6041 } 6042 } 6043 6044 /** 6045 * cgroup_can_fork - called on a new task before the process is exposed 6046 * @child: the child process 6047 * 6048 * This prepares a new css_set for the child process which the child will 6049 * be attached to in cgroup_post_fork(). 6050 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6051 * callback returns an error, the fork aborts with that error code. This 6052 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6053 */ 6054 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6055 { 6056 struct cgroup_subsys *ss; 6057 int i, j, ret; 6058 6059 ret = cgroup_css_set_fork(kargs); 6060 if (ret) 6061 return ret; 6062 6063 do_each_subsys_mask(ss, i, have_canfork_callback) { 6064 ret = ss->can_fork(child, kargs->cset); 6065 if (ret) 6066 goto out_revert; 6067 } while_each_subsys_mask(); 6068 6069 return 0; 6070 6071 out_revert: 6072 for_each_subsys(ss, j) { 6073 if (j >= i) 6074 break; 6075 if (ss->cancel_fork) 6076 ss->cancel_fork(child, kargs->cset); 6077 } 6078 6079 cgroup_css_set_put_fork(kargs); 6080 6081 return ret; 6082 } 6083 6084 /** 6085 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6086 * @child: the child process 6087 * @kargs: the arguments passed to create the child process 6088 * 6089 * This calls the cancel_fork() callbacks if a fork failed *after* 6090 * cgroup_can_fork() succeded and cleans up references we took to 6091 * prepare a new css_set for the child process in cgroup_can_fork(). 6092 */ 6093 void cgroup_cancel_fork(struct task_struct *child, 6094 struct kernel_clone_args *kargs) 6095 { 6096 struct cgroup_subsys *ss; 6097 int i; 6098 6099 for_each_subsys(ss, i) 6100 if (ss->cancel_fork) 6101 ss->cancel_fork(child, kargs->cset); 6102 6103 cgroup_css_set_put_fork(kargs); 6104 } 6105 6106 /** 6107 * cgroup_post_fork - finalize cgroup setup for the child process 6108 * @child: the child process 6109 * 6110 * Attach the child process to its css_set calling the subsystem fork() 6111 * callbacks. 6112 */ 6113 void cgroup_post_fork(struct task_struct *child, 6114 struct kernel_clone_args *kargs) 6115 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6116 { 6117 struct cgroup_subsys *ss; 6118 struct css_set *cset; 6119 int i; 6120 6121 cset = kargs->cset; 6122 kargs->cset = NULL; 6123 6124 spin_lock_irq(&css_set_lock); 6125 6126 /* init tasks are special, only link regular threads */ 6127 if (likely(child->pid)) { 6128 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6129 cset->nr_tasks++; 6130 css_set_move_task(child, NULL, cset, false); 6131 } else { 6132 put_css_set(cset); 6133 cset = NULL; 6134 } 6135 6136 /* 6137 * If the cgroup has to be frozen, the new task has too. Let's set 6138 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the 6139 * frozen state. 6140 */ 6141 if (unlikely(cgroup_task_freeze(child))) { 6142 spin_lock(&child->sighand->siglock); 6143 WARN_ON_ONCE(child->frozen); 6144 child->jobctl |= JOBCTL_TRAP_FREEZE; 6145 spin_unlock(&child->sighand->siglock); 6146 6147 /* 6148 * Calling cgroup_update_frozen() isn't required here, 6149 * because it will be called anyway a bit later from 6150 * do_freezer_trap(). So we avoid cgroup's transient switch 6151 * from the frozen state and back. 6152 */ 6153 } 6154 6155 spin_unlock_irq(&css_set_lock); 6156 6157 /* 6158 * Call ss->fork(). This must happen after @child is linked on 6159 * css_set; otherwise, @child might change state between ->fork() 6160 * and addition to css_set. 6161 */ 6162 do_each_subsys_mask(ss, i, have_fork_callback) { 6163 ss->fork(child); 6164 } while_each_subsys_mask(); 6165 6166 /* Make the new cset the root_cset of the new cgroup namespace. */ 6167 if (kargs->flags & CLONE_NEWCGROUP) { 6168 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6169 6170 get_css_set(cset); 6171 child->nsproxy->cgroup_ns->root_cset = cset; 6172 put_css_set(rcset); 6173 } 6174 6175 cgroup_css_set_put_fork(kargs); 6176 } 6177 6178 /** 6179 * cgroup_exit - detach cgroup from exiting task 6180 * @tsk: pointer to task_struct of exiting process 6181 * 6182 * Description: Detach cgroup from @tsk. 6183 * 6184 */ 6185 void cgroup_exit(struct task_struct *tsk) 6186 { 6187 struct cgroup_subsys *ss; 6188 struct css_set *cset; 6189 int i; 6190 6191 spin_lock_irq(&css_set_lock); 6192 6193 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6194 cset = task_css_set(tsk); 6195 css_set_move_task(tsk, cset, NULL, false); 6196 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6197 cset->nr_tasks--; 6198 6199 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6200 if (unlikely(cgroup_task_freeze(tsk))) 6201 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6202 6203 spin_unlock_irq(&css_set_lock); 6204 6205 /* see cgroup_post_fork() for details */ 6206 do_each_subsys_mask(ss, i, have_exit_callback) { 6207 ss->exit(tsk); 6208 } while_each_subsys_mask(); 6209 } 6210 6211 void cgroup_release(struct task_struct *task) 6212 { 6213 struct cgroup_subsys *ss; 6214 int ssid; 6215 6216 do_each_subsys_mask(ss, ssid, have_release_callback) { 6217 ss->release(task); 6218 } while_each_subsys_mask(); 6219 6220 spin_lock_irq(&css_set_lock); 6221 css_set_skip_task_iters(task_css_set(task), task); 6222 list_del_init(&task->cg_list); 6223 spin_unlock_irq(&css_set_lock); 6224 } 6225 6226 void cgroup_free(struct task_struct *task) 6227 { 6228 struct css_set *cset = task_css_set(task); 6229 put_css_set(cset); 6230 } 6231 6232 static int __init cgroup_disable(char *str) 6233 { 6234 struct cgroup_subsys *ss; 6235 char *token; 6236 int i; 6237 6238 while ((token = strsep(&str, ",")) != NULL) { 6239 if (!*token) 6240 continue; 6241 6242 for_each_subsys(ss, i) { 6243 if (strcmp(token, ss->name) && 6244 strcmp(token, ss->legacy_name)) 6245 continue; 6246 cgroup_disable_mask |= 1 << i; 6247 } 6248 } 6249 return 1; 6250 } 6251 __setup("cgroup_disable=", cgroup_disable); 6252 6253 void __init __weak enable_debug_cgroup(void) { } 6254 6255 static int __init enable_cgroup_debug(char *str) 6256 { 6257 cgroup_debug = true; 6258 enable_debug_cgroup(); 6259 return 1; 6260 } 6261 __setup("cgroup_debug", enable_cgroup_debug); 6262 6263 /** 6264 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6265 * @dentry: directory dentry of interest 6266 * @ss: subsystem of interest 6267 * 6268 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6269 * to get the corresponding css and return it. If such css doesn't exist 6270 * or can't be pinned, an ERR_PTR value is returned. 6271 */ 6272 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6273 struct cgroup_subsys *ss) 6274 { 6275 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6276 struct file_system_type *s_type = dentry->d_sb->s_type; 6277 struct cgroup_subsys_state *css = NULL; 6278 struct cgroup *cgrp; 6279 6280 /* is @dentry a cgroup dir? */ 6281 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6282 !kn || kernfs_type(kn) != KERNFS_DIR) 6283 return ERR_PTR(-EBADF); 6284 6285 rcu_read_lock(); 6286 6287 /* 6288 * This path doesn't originate from kernfs and @kn could already 6289 * have been or be removed at any point. @kn->priv is RCU 6290 * protected for this access. See css_release_work_fn() for details. 6291 */ 6292 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6293 if (cgrp) 6294 css = cgroup_css(cgrp, ss); 6295 6296 if (!css || !css_tryget_online(css)) 6297 css = ERR_PTR(-ENOENT); 6298 6299 rcu_read_unlock(); 6300 return css; 6301 } 6302 6303 /** 6304 * css_from_id - lookup css by id 6305 * @id: the cgroup id 6306 * @ss: cgroup subsys to be looked into 6307 * 6308 * Returns the css if there's valid one with @id, otherwise returns NULL. 6309 * Should be called under rcu_read_lock(). 6310 */ 6311 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6312 { 6313 WARN_ON_ONCE(!rcu_read_lock_held()); 6314 return idr_find(&ss->css_idr, id); 6315 } 6316 6317 /** 6318 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6319 * @path: path on the default hierarchy 6320 * 6321 * Find the cgroup at @path on the default hierarchy, increment its 6322 * reference count and return it. Returns pointer to the found cgroup on 6323 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 6324 * if @path points to a non-directory. 6325 */ 6326 struct cgroup *cgroup_get_from_path(const char *path) 6327 { 6328 struct kernfs_node *kn; 6329 struct cgroup *cgrp; 6330 6331 mutex_lock(&cgroup_mutex); 6332 6333 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6334 if (kn) { 6335 if (kernfs_type(kn) == KERNFS_DIR) { 6336 cgrp = kn->priv; 6337 cgroup_get_live(cgrp); 6338 } else { 6339 cgrp = ERR_PTR(-ENOTDIR); 6340 } 6341 kernfs_put(kn); 6342 } else { 6343 cgrp = ERR_PTR(-ENOENT); 6344 } 6345 6346 mutex_unlock(&cgroup_mutex); 6347 return cgrp; 6348 } 6349 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6350 6351 /** 6352 * cgroup_get_from_fd - get a cgroup pointer from a fd 6353 * @fd: fd obtained by open(cgroup2_dir) 6354 * 6355 * Find the cgroup from a fd which should be obtained 6356 * by opening a cgroup directory. Returns a pointer to the 6357 * cgroup on success. ERR_PTR is returned if the cgroup 6358 * cannot be found. 6359 */ 6360 struct cgroup *cgroup_get_from_fd(int fd) 6361 { 6362 struct cgroup *cgrp; 6363 struct file *f; 6364 6365 f = fget_raw(fd); 6366 if (!f) 6367 return ERR_PTR(-EBADF); 6368 6369 cgrp = cgroup_get_from_file(f); 6370 fput(f); 6371 return cgrp; 6372 } 6373 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6374 6375 static u64 power_of_ten(int power) 6376 { 6377 u64 v = 1; 6378 while (power--) 6379 v *= 10; 6380 return v; 6381 } 6382 6383 /** 6384 * cgroup_parse_float - parse a floating number 6385 * @input: input string 6386 * @dec_shift: number of decimal digits to shift 6387 * @v: output 6388 * 6389 * Parse a decimal floating point number in @input and store the result in 6390 * @v with decimal point right shifted @dec_shift times. For example, if 6391 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6392 * Returns 0 on success, -errno otherwise. 6393 * 6394 * There's nothing cgroup specific about this function except that it's 6395 * currently the only user. 6396 */ 6397 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6398 { 6399 s64 whole, frac = 0; 6400 int fstart = 0, fend = 0, flen; 6401 6402 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6403 return -EINVAL; 6404 if (frac < 0) 6405 return -EINVAL; 6406 6407 flen = fend > fstart ? fend - fstart : 0; 6408 if (flen < dec_shift) 6409 frac *= power_of_ten(dec_shift - flen); 6410 else 6411 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6412 6413 *v = whole * power_of_ten(dec_shift) + frac; 6414 return 0; 6415 } 6416 6417 /* 6418 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6419 * definition in cgroup-defs.h. 6420 */ 6421 #ifdef CONFIG_SOCK_CGROUP_DATA 6422 6423 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6424 6425 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6426 static bool cgroup_sk_alloc_disabled __read_mostly; 6427 6428 void cgroup_sk_alloc_disable(void) 6429 { 6430 if (cgroup_sk_alloc_disabled) 6431 return; 6432 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6433 cgroup_sk_alloc_disabled = true; 6434 } 6435 6436 #else 6437 6438 #define cgroup_sk_alloc_disabled false 6439 6440 #endif 6441 6442 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6443 { 6444 if (cgroup_sk_alloc_disabled) { 6445 skcd->no_refcnt = 1; 6446 return; 6447 } 6448 6449 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6450 if (in_interrupt()) 6451 return; 6452 6453 rcu_read_lock(); 6454 6455 while (true) { 6456 struct css_set *cset; 6457 6458 cset = task_css_set(current); 6459 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6460 skcd->val = (unsigned long)cset->dfl_cgrp; 6461 cgroup_bpf_get(cset->dfl_cgrp); 6462 break; 6463 } 6464 cpu_relax(); 6465 } 6466 6467 rcu_read_unlock(); 6468 } 6469 6470 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6471 { 6472 if (skcd->val) { 6473 if (skcd->no_refcnt) 6474 return; 6475 /* 6476 * We might be cloning a socket which is left in an empty 6477 * cgroup and the cgroup might have already been rmdir'd. 6478 * Don't use cgroup_get_live(). 6479 */ 6480 cgroup_get(sock_cgroup_ptr(skcd)); 6481 cgroup_bpf_get(sock_cgroup_ptr(skcd)); 6482 } 6483 } 6484 6485 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6486 { 6487 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6488 6489 if (skcd->no_refcnt) 6490 return; 6491 cgroup_bpf_put(cgrp); 6492 cgroup_put(cgrp); 6493 } 6494 6495 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6496 6497 #ifdef CONFIG_CGROUP_BPF 6498 int cgroup_bpf_attach(struct cgroup *cgrp, 6499 struct bpf_prog *prog, struct bpf_prog *replace_prog, 6500 struct bpf_cgroup_link *link, 6501 enum bpf_attach_type type, 6502 u32 flags) 6503 { 6504 int ret; 6505 6506 mutex_lock(&cgroup_mutex); 6507 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 6508 mutex_unlock(&cgroup_mutex); 6509 return ret; 6510 } 6511 6512 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6513 enum bpf_attach_type type) 6514 { 6515 int ret; 6516 6517 mutex_lock(&cgroup_mutex); 6518 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 6519 mutex_unlock(&cgroup_mutex); 6520 return ret; 6521 } 6522 6523 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6524 union bpf_attr __user *uattr) 6525 { 6526 int ret; 6527 6528 mutex_lock(&cgroup_mutex); 6529 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6530 mutex_unlock(&cgroup_mutex); 6531 return ret; 6532 } 6533 #endif /* CONFIG_CGROUP_BPF */ 6534 6535 #ifdef CONFIG_SYSFS 6536 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6537 ssize_t size, const char *prefix) 6538 { 6539 struct cftype *cft; 6540 ssize_t ret = 0; 6541 6542 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6543 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6544 continue; 6545 6546 if (prefix) 6547 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6548 6549 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6550 6551 if (WARN_ON(ret >= size)) 6552 break; 6553 } 6554 6555 return ret; 6556 } 6557 6558 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6559 char *buf) 6560 { 6561 struct cgroup_subsys *ss; 6562 int ssid; 6563 ssize_t ret = 0; 6564 6565 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6566 NULL); 6567 6568 for_each_subsys(ss, ssid) 6569 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6570 PAGE_SIZE - ret, 6571 cgroup_subsys_name[ssid]); 6572 6573 return ret; 6574 } 6575 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6576 6577 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6578 char *buf) 6579 { 6580 return snprintf(buf, PAGE_SIZE, 6581 "nsdelegate\n" 6582 "memory_localevents\n" 6583 "memory_recursiveprot\n"); 6584 } 6585 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6586 6587 static struct attribute *cgroup_sysfs_attrs[] = { 6588 &cgroup_delegate_attr.attr, 6589 &cgroup_features_attr.attr, 6590 NULL, 6591 }; 6592 6593 static const struct attribute_group cgroup_sysfs_attr_group = { 6594 .attrs = cgroup_sysfs_attrs, 6595 .name = "cgroup", 6596 }; 6597 6598 static int __init cgroup_sysfs_init(void) 6599 { 6600 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6601 } 6602 subsys_initcall(cgroup_sysfs_init); 6603 6604 #endif /* CONFIG_SYSFS */ 6605