1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/sched/cputime.h> 58 #include <net/sock.h> 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/cgroup.h> 62 63 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 64 MAX_CFTYPE_NAME + 2) 65 /* let's not notify more than 100 times per second */ 66 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 67 68 /* 69 * cgroup_mutex is the master lock. Any modification to cgroup or its 70 * hierarchy must be performed while holding it. 71 * 72 * css_set_lock protects task->cgroups pointer, the list of css_set 73 * objects, and the chain of tasks off each css_set. 74 * 75 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 76 * cgroup.h can use them for lockdep annotations. 77 */ 78 DEFINE_MUTEX(cgroup_mutex); 79 DEFINE_SPINLOCK(css_set_lock); 80 81 #ifdef CONFIG_PROVE_RCU 82 EXPORT_SYMBOL_GPL(cgroup_mutex); 83 EXPORT_SYMBOL_GPL(css_set_lock); 84 #endif 85 86 /* 87 * Protects cgroup_idr and css_idr so that IDs can be released without 88 * grabbing cgroup_mutex. 89 */ 90 static DEFINE_SPINLOCK(cgroup_idr_lock); 91 92 /* 93 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 94 * against file removal/re-creation across css hiding. 95 */ 96 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 97 98 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 99 100 #define cgroup_assert_mutex_or_rcu_locked() \ 101 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 102 !lockdep_is_held(&cgroup_mutex), \ 103 "cgroup_mutex or RCU read lock required"); 104 105 /* 106 * cgroup destruction makes heavy use of work items and there can be a lot 107 * of concurrent destructions. Use a separate workqueue so that cgroup 108 * destruction work items don't end up filling up max_active of system_wq 109 * which may lead to deadlock. 110 */ 111 static struct workqueue_struct *cgroup_destroy_wq; 112 113 /* generate an array of cgroup subsystem pointers */ 114 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 115 struct cgroup_subsys *cgroup_subsys[] = { 116 #include <linux/cgroup_subsys.h> 117 }; 118 #undef SUBSYS 119 120 /* array of cgroup subsystem names */ 121 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 122 static const char *cgroup_subsys_name[] = { 123 #include <linux/cgroup_subsys.h> 124 }; 125 #undef SUBSYS 126 127 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 128 #define SUBSYS(_x) \ 129 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 130 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 131 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 132 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 133 #include <linux/cgroup_subsys.h> 134 #undef SUBSYS 135 136 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 137 static struct static_key_true *cgroup_subsys_enabled_key[] = { 138 #include <linux/cgroup_subsys.h> 139 }; 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 143 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 149 150 /* 151 * The default hierarchy, reserved for the subsystems that are otherwise 152 * unattached - it never has more than a single cgroup, and all tasks are 153 * part of that cgroup. 154 */ 155 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 156 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 157 158 /* 159 * The default hierarchy always exists but is hidden until mounted for the 160 * first time. This is for backward compatibility. 161 */ 162 static bool cgrp_dfl_visible; 163 164 /* some controllers are not supported in the default hierarchy */ 165 static u16 cgrp_dfl_inhibit_ss_mask; 166 167 /* some controllers are implicitly enabled on the default hierarchy */ 168 static u16 cgrp_dfl_implicit_ss_mask; 169 170 /* some controllers can be threaded on the default hierarchy */ 171 static u16 cgrp_dfl_threaded_ss_mask; 172 173 /* The list of hierarchy roots */ 174 LIST_HEAD(cgroup_roots); 175 static int cgroup_root_count; 176 177 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 178 static DEFINE_IDR(cgroup_hierarchy_idr); 179 180 /* 181 * Assign a monotonically increasing serial number to csses. It guarantees 182 * cgroups with bigger numbers are newer than those with smaller numbers. 183 * Also, as csses are always appended to the parent's ->children list, it 184 * guarantees that sibling csses are always sorted in the ascending serial 185 * number order on the list. Protected by cgroup_mutex. 186 */ 187 static u64 css_serial_nr_next = 1; 188 189 /* 190 * These bitmasks identify subsystems with specific features to avoid 191 * having to do iterative checks repeatedly. 192 */ 193 static u16 have_fork_callback __read_mostly; 194 static u16 have_exit_callback __read_mostly; 195 static u16 have_free_callback __read_mostly; 196 static u16 have_canfork_callback __read_mostly; 197 198 /* cgroup namespace for init task */ 199 struct cgroup_namespace init_cgroup_ns = { 200 .count = REFCOUNT_INIT(2), 201 .user_ns = &init_user_ns, 202 .ns.ops = &cgroupns_operations, 203 .ns.inum = PROC_CGROUP_INIT_INO, 204 .root_cset = &init_css_set, 205 }; 206 207 static struct file_system_type cgroup2_fs_type; 208 static struct cftype cgroup_base_files[]; 209 210 static int cgroup_apply_control(struct cgroup *cgrp); 211 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 212 static void css_task_iter_advance(struct css_task_iter *it); 213 static int cgroup_destroy_locked(struct cgroup *cgrp); 214 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 215 struct cgroup_subsys *ss); 216 static void css_release(struct percpu_ref *ref); 217 static void kill_css(struct cgroup_subsys_state *css); 218 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 219 struct cgroup *cgrp, struct cftype cfts[], 220 bool is_add); 221 222 /** 223 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 224 * @ssid: subsys ID of interest 225 * 226 * cgroup_subsys_enabled() can only be used with literal subsys names which 227 * is fine for individual subsystems but unsuitable for cgroup core. This 228 * is slower static_key_enabled() based test indexed by @ssid. 229 */ 230 bool cgroup_ssid_enabled(int ssid) 231 { 232 if (CGROUP_SUBSYS_COUNT == 0) 233 return false; 234 235 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 236 } 237 238 /** 239 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 240 * @cgrp: the cgroup of interest 241 * 242 * The default hierarchy is the v2 interface of cgroup and this function 243 * can be used to test whether a cgroup is on the default hierarchy for 244 * cases where a subsystem should behave differnetly depending on the 245 * interface version. 246 * 247 * The set of behaviors which change on the default hierarchy are still 248 * being determined and the mount option is prefixed with __DEVEL__. 249 * 250 * List of changed behaviors: 251 * 252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 253 * and "name" are disallowed. 254 * 255 * - When mounting an existing superblock, mount options should match. 256 * 257 * - Remount is disallowed. 258 * 259 * - rename(2) is disallowed. 260 * 261 * - "tasks" is removed. Everything should be at process granularity. Use 262 * "cgroup.procs" instead. 263 * 264 * - "cgroup.procs" is not sorted. pids will be unique unless they got 265 * recycled inbetween reads. 266 * 267 * - "release_agent" and "notify_on_release" are removed. Replacement 268 * notification mechanism will be implemented. 269 * 270 * - "cgroup.clone_children" is removed. 271 * 272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 273 * and its descendants contain no task; otherwise, 1. The file also 274 * generates kernfs notification which can be monitored through poll and 275 * [di]notify when the value of the file changes. 276 * 277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 278 * take masks of ancestors with non-empty cpus/mems, instead of being 279 * moved to an ancestor. 280 * 281 * - cpuset: a task can be moved into an empty cpuset, and again it takes 282 * masks of ancestors. 283 * 284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 285 * is not created. 286 * 287 * - blkcg: blk-throttle becomes properly hierarchical. 288 * 289 * - debug: disallowed on the default hierarchy. 290 */ 291 bool cgroup_on_dfl(const struct cgroup *cgrp) 292 { 293 return cgrp->root == &cgrp_dfl_root; 294 } 295 296 /* IDR wrappers which synchronize using cgroup_idr_lock */ 297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 298 gfp_t gfp_mask) 299 { 300 int ret; 301 302 idr_preload(gfp_mask); 303 spin_lock_bh(&cgroup_idr_lock); 304 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 305 spin_unlock_bh(&cgroup_idr_lock); 306 idr_preload_end(); 307 return ret; 308 } 309 310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 311 { 312 void *ret; 313 314 spin_lock_bh(&cgroup_idr_lock); 315 ret = idr_replace(idr, ptr, id); 316 spin_unlock_bh(&cgroup_idr_lock); 317 return ret; 318 } 319 320 static void cgroup_idr_remove(struct idr *idr, int id) 321 { 322 spin_lock_bh(&cgroup_idr_lock); 323 idr_remove(idr, id); 324 spin_unlock_bh(&cgroup_idr_lock); 325 } 326 327 static bool cgroup_has_tasks(struct cgroup *cgrp) 328 { 329 return cgrp->nr_populated_csets; 330 } 331 332 bool cgroup_is_threaded(struct cgroup *cgrp) 333 { 334 return cgrp->dom_cgrp != cgrp; 335 } 336 337 /* can @cgrp host both domain and threaded children? */ 338 static bool cgroup_is_mixable(struct cgroup *cgrp) 339 { 340 /* 341 * Root isn't under domain level resource control exempting it from 342 * the no-internal-process constraint, so it can serve as a thread 343 * root and a parent of resource domains at the same time. 344 */ 345 return !cgroup_parent(cgrp); 346 } 347 348 /* can @cgrp become a thread root? should always be true for a thread root */ 349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 350 { 351 /* mixables don't care */ 352 if (cgroup_is_mixable(cgrp)) 353 return true; 354 355 /* domain roots can't be nested under threaded */ 356 if (cgroup_is_threaded(cgrp)) 357 return false; 358 359 /* can only have either domain or threaded children */ 360 if (cgrp->nr_populated_domain_children) 361 return false; 362 363 /* and no domain controllers can be enabled */ 364 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 365 return false; 366 367 return true; 368 } 369 370 /* is @cgrp root of a threaded subtree? */ 371 bool cgroup_is_thread_root(struct cgroup *cgrp) 372 { 373 /* thread root should be a domain */ 374 if (cgroup_is_threaded(cgrp)) 375 return false; 376 377 /* a domain w/ threaded children is a thread root */ 378 if (cgrp->nr_threaded_children) 379 return true; 380 381 /* 382 * A domain which has tasks and explicit threaded controllers 383 * enabled is a thread root. 384 */ 385 if (cgroup_has_tasks(cgrp) && 386 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 387 return true; 388 389 return false; 390 } 391 392 /* a domain which isn't connected to the root w/o brekage can't be used */ 393 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 394 { 395 /* the cgroup itself can be a thread root */ 396 if (cgroup_is_threaded(cgrp)) 397 return false; 398 399 /* but the ancestors can't be unless mixable */ 400 while ((cgrp = cgroup_parent(cgrp))) { 401 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 402 return false; 403 if (cgroup_is_threaded(cgrp)) 404 return false; 405 } 406 407 return true; 408 } 409 410 /* subsystems visibly enabled on a cgroup */ 411 static u16 cgroup_control(struct cgroup *cgrp) 412 { 413 struct cgroup *parent = cgroup_parent(cgrp); 414 u16 root_ss_mask = cgrp->root->subsys_mask; 415 416 if (parent) { 417 u16 ss_mask = parent->subtree_control; 418 419 /* threaded cgroups can only have threaded controllers */ 420 if (cgroup_is_threaded(cgrp)) 421 ss_mask &= cgrp_dfl_threaded_ss_mask; 422 return ss_mask; 423 } 424 425 if (cgroup_on_dfl(cgrp)) 426 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 427 cgrp_dfl_implicit_ss_mask); 428 return root_ss_mask; 429 } 430 431 /* subsystems enabled on a cgroup */ 432 static u16 cgroup_ss_mask(struct cgroup *cgrp) 433 { 434 struct cgroup *parent = cgroup_parent(cgrp); 435 436 if (parent) { 437 u16 ss_mask = parent->subtree_ss_mask; 438 439 /* threaded cgroups can only have threaded controllers */ 440 if (cgroup_is_threaded(cgrp)) 441 ss_mask &= cgrp_dfl_threaded_ss_mask; 442 return ss_mask; 443 } 444 445 return cgrp->root->subsys_mask; 446 } 447 448 /** 449 * cgroup_css - obtain a cgroup's css for the specified subsystem 450 * @cgrp: the cgroup of interest 451 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 452 * 453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 454 * function must be called either under cgroup_mutex or rcu_read_lock() and 455 * the caller is responsible for pinning the returned css if it wants to 456 * keep accessing it outside the said locks. This function may return 457 * %NULL if @cgrp doesn't have @subsys_id enabled. 458 */ 459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 460 struct cgroup_subsys *ss) 461 { 462 if (ss) 463 return rcu_dereference_check(cgrp->subsys[ss->id], 464 lockdep_is_held(&cgroup_mutex)); 465 else 466 return &cgrp->self; 467 } 468 469 /** 470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 471 * @cgrp: the cgroup of interest 472 * @ss: the subsystem of interest 473 * 474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 475 * or is offline, %NULL is returned. 476 */ 477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 478 struct cgroup_subsys *ss) 479 { 480 struct cgroup_subsys_state *css; 481 482 rcu_read_lock(); 483 css = cgroup_css(cgrp, ss); 484 if (!css || !css_tryget_online(css)) 485 css = NULL; 486 rcu_read_unlock(); 487 488 return css; 489 } 490 491 /** 492 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 493 * @cgrp: the cgroup of interest 494 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 495 * 496 * Similar to cgroup_css() but returns the effective css, which is defined 497 * as the matching css of the nearest ancestor including self which has @ss 498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 499 * function is guaranteed to return non-NULL css. 500 */ 501 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 502 struct cgroup_subsys *ss) 503 { 504 lockdep_assert_held(&cgroup_mutex); 505 506 if (!ss) 507 return &cgrp->self; 508 509 /* 510 * This function is used while updating css associations and thus 511 * can't test the csses directly. Test ss_mask. 512 */ 513 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 514 cgrp = cgroup_parent(cgrp); 515 if (!cgrp) 516 return NULL; 517 } 518 519 return cgroup_css(cgrp, ss); 520 } 521 522 /** 523 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 524 * @cgrp: the cgroup of interest 525 * @ss: the subsystem of interest 526 * 527 * Find and get the effective css of @cgrp for @ss. The effective css is 528 * defined as the matching css of the nearest ancestor including self which 529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 530 * the root css is returned, so this function always returns a valid css. 531 * The returned css must be put using css_put(). 532 */ 533 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 534 struct cgroup_subsys *ss) 535 { 536 struct cgroup_subsys_state *css; 537 538 rcu_read_lock(); 539 540 do { 541 css = cgroup_css(cgrp, ss); 542 543 if (css && css_tryget_online(css)) 544 goto out_unlock; 545 cgrp = cgroup_parent(cgrp); 546 } while (cgrp); 547 548 css = init_css_set.subsys[ss->id]; 549 css_get(css); 550 out_unlock: 551 rcu_read_unlock(); 552 return css; 553 } 554 555 static void cgroup_get_live(struct cgroup *cgrp) 556 { 557 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 558 css_get(&cgrp->self); 559 } 560 561 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 562 { 563 struct cgroup *cgrp = of->kn->parent->priv; 564 struct cftype *cft = of_cft(of); 565 566 /* 567 * This is open and unprotected implementation of cgroup_css(). 568 * seq_css() is only called from a kernfs file operation which has 569 * an active reference on the file. Because all the subsystem 570 * files are drained before a css is disassociated with a cgroup, 571 * the matching css from the cgroup's subsys table is guaranteed to 572 * be and stay valid until the enclosing operation is complete. 573 */ 574 if (cft->ss) 575 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 576 else 577 return &cgrp->self; 578 } 579 EXPORT_SYMBOL_GPL(of_css); 580 581 /** 582 * for_each_css - iterate all css's of a cgroup 583 * @css: the iteration cursor 584 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 585 * @cgrp: the target cgroup to iterate css's of 586 * 587 * Should be called under cgroup_[tree_]mutex. 588 */ 589 #define for_each_css(css, ssid, cgrp) \ 590 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 591 if (!((css) = rcu_dereference_check( \ 592 (cgrp)->subsys[(ssid)], \ 593 lockdep_is_held(&cgroup_mutex)))) { } \ 594 else 595 596 /** 597 * for_each_e_css - iterate all effective css's of a cgroup 598 * @css: the iteration cursor 599 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 600 * @cgrp: the target cgroup to iterate css's of 601 * 602 * Should be called under cgroup_[tree_]mutex. 603 */ 604 #define for_each_e_css(css, ssid, cgrp) \ 605 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 606 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 607 ; \ 608 else 609 610 /** 611 * do_each_subsys_mask - filter for_each_subsys with a bitmask 612 * @ss: the iteration cursor 613 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 614 * @ss_mask: the bitmask 615 * 616 * The block will only run for cases where the ssid-th bit (1 << ssid) of 617 * @ss_mask is set. 618 */ 619 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 620 unsigned long __ss_mask = (ss_mask); \ 621 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 622 (ssid) = 0; \ 623 break; \ 624 } \ 625 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 626 (ss) = cgroup_subsys[ssid]; \ 627 { 628 629 #define while_each_subsys_mask() \ 630 } \ 631 } \ 632 } while (false) 633 634 /* iterate over child cgrps, lock should be held throughout iteration */ 635 #define cgroup_for_each_live_child(child, cgrp) \ 636 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 637 if (({ lockdep_assert_held(&cgroup_mutex); \ 638 cgroup_is_dead(child); })) \ 639 ; \ 640 else 641 642 /* walk live descendants in preorder */ 643 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 644 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 645 if (({ lockdep_assert_held(&cgroup_mutex); \ 646 (dsct) = (d_css)->cgroup; \ 647 cgroup_is_dead(dsct); })) \ 648 ; \ 649 else 650 651 /* walk live descendants in postorder */ 652 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 653 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 654 if (({ lockdep_assert_held(&cgroup_mutex); \ 655 (dsct) = (d_css)->cgroup; \ 656 cgroup_is_dead(dsct); })) \ 657 ; \ 658 else 659 660 /* 661 * The default css_set - used by init and its children prior to any 662 * hierarchies being mounted. It contains a pointer to the root state 663 * for each subsystem. Also used to anchor the list of css_sets. Not 664 * reference-counted, to improve performance when child cgroups 665 * haven't been created. 666 */ 667 struct css_set init_css_set = { 668 .refcount = REFCOUNT_INIT(1), 669 .dom_cset = &init_css_set, 670 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 671 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 672 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 673 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 674 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 675 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 676 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 677 678 /* 679 * The following field is re-initialized when this cset gets linked 680 * in cgroup_init(). However, let's initialize the field 681 * statically too so that the default cgroup can be accessed safely 682 * early during boot. 683 */ 684 .dfl_cgrp = &cgrp_dfl_root.cgrp, 685 }; 686 687 static int css_set_count = 1; /* 1 for init_css_set */ 688 689 static bool css_set_threaded(struct css_set *cset) 690 { 691 return cset->dom_cset != cset; 692 } 693 694 /** 695 * css_set_populated - does a css_set contain any tasks? 696 * @cset: target css_set 697 * 698 * css_set_populated() should be the same as !!cset->nr_tasks at steady 699 * state. However, css_set_populated() can be called while a task is being 700 * added to or removed from the linked list before the nr_tasks is 701 * properly updated. Hence, we can't just look at ->nr_tasks here. 702 */ 703 static bool css_set_populated(struct css_set *cset) 704 { 705 lockdep_assert_held(&css_set_lock); 706 707 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 708 } 709 710 /** 711 * cgroup_update_populated - update the populated count of a cgroup 712 * @cgrp: the target cgroup 713 * @populated: inc or dec populated count 714 * 715 * One of the css_sets associated with @cgrp is either getting its first 716 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 717 * count is propagated towards root so that a given cgroup's 718 * nr_populated_children is zero iff none of its descendants contain any 719 * tasks. 720 * 721 * @cgrp's interface file "cgroup.populated" is zero if both 722 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 723 * 1 otherwise. When the sum changes from or to zero, userland is notified 724 * that the content of the interface file has changed. This can be used to 725 * detect when @cgrp and its descendants become populated or empty. 726 */ 727 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 728 { 729 struct cgroup *child = NULL; 730 int adj = populated ? 1 : -1; 731 732 lockdep_assert_held(&css_set_lock); 733 734 do { 735 bool was_populated = cgroup_is_populated(cgrp); 736 737 if (!child) { 738 cgrp->nr_populated_csets += adj; 739 } else { 740 if (cgroup_is_threaded(child)) 741 cgrp->nr_populated_threaded_children += adj; 742 else 743 cgrp->nr_populated_domain_children += adj; 744 } 745 746 if (was_populated == cgroup_is_populated(cgrp)) 747 break; 748 749 cgroup1_check_for_release(cgrp); 750 cgroup_file_notify(&cgrp->events_file); 751 752 child = cgrp; 753 cgrp = cgroup_parent(cgrp); 754 } while (cgrp); 755 } 756 757 /** 758 * css_set_update_populated - update populated state of a css_set 759 * @cset: target css_set 760 * @populated: whether @cset is populated or depopulated 761 * 762 * @cset is either getting the first task or losing the last. Update the 763 * populated counters of all associated cgroups accordingly. 764 */ 765 static void css_set_update_populated(struct css_set *cset, bool populated) 766 { 767 struct cgrp_cset_link *link; 768 769 lockdep_assert_held(&css_set_lock); 770 771 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 772 cgroup_update_populated(link->cgrp, populated); 773 } 774 775 /** 776 * css_set_move_task - move a task from one css_set to another 777 * @task: task being moved 778 * @from_cset: css_set @task currently belongs to (may be NULL) 779 * @to_cset: new css_set @task is being moved to (may be NULL) 780 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 781 * 782 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 783 * css_set, @from_cset can be NULL. If @task is being disassociated 784 * instead of moved, @to_cset can be NULL. 785 * 786 * This function automatically handles populated counter updates and 787 * css_task_iter adjustments but the caller is responsible for managing 788 * @from_cset and @to_cset's reference counts. 789 */ 790 static void css_set_move_task(struct task_struct *task, 791 struct css_set *from_cset, struct css_set *to_cset, 792 bool use_mg_tasks) 793 { 794 lockdep_assert_held(&css_set_lock); 795 796 if (to_cset && !css_set_populated(to_cset)) 797 css_set_update_populated(to_cset, true); 798 799 if (from_cset) { 800 struct css_task_iter *it, *pos; 801 802 WARN_ON_ONCE(list_empty(&task->cg_list)); 803 804 /* 805 * @task is leaving, advance task iterators which are 806 * pointing to it so that they can resume at the next 807 * position. Advancing an iterator might remove it from 808 * the list, use safe walk. See css_task_iter_advance*() 809 * for details. 810 */ 811 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 812 iters_node) 813 if (it->task_pos == &task->cg_list) 814 css_task_iter_advance(it); 815 816 list_del_init(&task->cg_list); 817 if (!css_set_populated(from_cset)) 818 css_set_update_populated(from_cset, false); 819 } else { 820 WARN_ON_ONCE(!list_empty(&task->cg_list)); 821 } 822 823 if (to_cset) { 824 /* 825 * We are synchronized through cgroup_threadgroup_rwsem 826 * against PF_EXITING setting such that we can't race 827 * against cgroup_exit() changing the css_set to 828 * init_css_set and dropping the old one. 829 */ 830 WARN_ON_ONCE(task->flags & PF_EXITING); 831 832 rcu_assign_pointer(task->cgroups, to_cset); 833 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 834 &to_cset->tasks); 835 } 836 } 837 838 /* 839 * hash table for cgroup groups. This improves the performance to find 840 * an existing css_set. This hash doesn't (currently) take into 841 * account cgroups in empty hierarchies. 842 */ 843 #define CSS_SET_HASH_BITS 7 844 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 845 846 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 847 { 848 unsigned long key = 0UL; 849 struct cgroup_subsys *ss; 850 int i; 851 852 for_each_subsys(ss, i) 853 key += (unsigned long)css[i]; 854 key = (key >> 16) ^ key; 855 856 return key; 857 } 858 859 void put_css_set_locked(struct css_set *cset) 860 { 861 struct cgrp_cset_link *link, *tmp_link; 862 struct cgroup_subsys *ss; 863 int ssid; 864 865 lockdep_assert_held(&css_set_lock); 866 867 if (!refcount_dec_and_test(&cset->refcount)) 868 return; 869 870 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 871 872 /* This css_set is dead. unlink it and release cgroup and css refs */ 873 for_each_subsys(ss, ssid) { 874 list_del(&cset->e_cset_node[ssid]); 875 css_put(cset->subsys[ssid]); 876 } 877 hash_del(&cset->hlist); 878 css_set_count--; 879 880 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 881 list_del(&link->cset_link); 882 list_del(&link->cgrp_link); 883 if (cgroup_parent(link->cgrp)) 884 cgroup_put(link->cgrp); 885 kfree(link); 886 } 887 888 if (css_set_threaded(cset)) { 889 list_del(&cset->threaded_csets_node); 890 put_css_set_locked(cset->dom_cset); 891 } 892 893 kfree_rcu(cset, rcu_head); 894 } 895 896 /** 897 * compare_css_sets - helper function for find_existing_css_set(). 898 * @cset: candidate css_set being tested 899 * @old_cset: existing css_set for a task 900 * @new_cgrp: cgroup that's being entered by the task 901 * @template: desired set of css pointers in css_set (pre-calculated) 902 * 903 * Returns true if "cset" matches "old_cset" except for the hierarchy 904 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 905 */ 906 static bool compare_css_sets(struct css_set *cset, 907 struct css_set *old_cset, 908 struct cgroup *new_cgrp, 909 struct cgroup_subsys_state *template[]) 910 { 911 struct cgroup *new_dfl_cgrp; 912 struct list_head *l1, *l2; 913 914 /* 915 * On the default hierarchy, there can be csets which are 916 * associated with the same set of cgroups but different csses. 917 * Let's first ensure that csses match. 918 */ 919 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 920 return false; 921 922 923 /* @cset's domain should match the default cgroup's */ 924 if (cgroup_on_dfl(new_cgrp)) 925 new_dfl_cgrp = new_cgrp; 926 else 927 new_dfl_cgrp = old_cset->dfl_cgrp; 928 929 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 930 return false; 931 932 /* 933 * Compare cgroup pointers in order to distinguish between 934 * different cgroups in hierarchies. As different cgroups may 935 * share the same effective css, this comparison is always 936 * necessary. 937 */ 938 l1 = &cset->cgrp_links; 939 l2 = &old_cset->cgrp_links; 940 while (1) { 941 struct cgrp_cset_link *link1, *link2; 942 struct cgroup *cgrp1, *cgrp2; 943 944 l1 = l1->next; 945 l2 = l2->next; 946 /* See if we reached the end - both lists are equal length. */ 947 if (l1 == &cset->cgrp_links) { 948 BUG_ON(l2 != &old_cset->cgrp_links); 949 break; 950 } else { 951 BUG_ON(l2 == &old_cset->cgrp_links); 952 } 953 /* Locate the cgroups associated with these links. */ 954 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 955 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 956 cgrp1 = link1->cgrp; 957 cgrp2 = link2->cgrp; 958 /* Hierarchies should be linked in the same order. */ 959 BUG_ON(cgrp1->root != cgrp2->root); 960 961 /* 962 * If this hierarchy is the hierarchy of the cgroup 963 * that's changing, then we need to check that this 964 * css_set points to the new cgroup; if it's any other 965 * hierarchy, then this css_set should point to the 966 * same cgroup as the old css_set. 967 */ 968 if (cgrp1->root == new_cgrp->root) { 969 if (cgrp1 != new_cgrp) 970 return false; 971 } else { 972 if (cgrp1 != cgrp2) 973 return false; 974 } 975 } 976 return true; 977 } 978 979 /** 980 * find_existing_css_set - init css array and find the matching css_set 981 * @old_cset: the css_set that we're using before the cgroup transition 982 * @cgrp: the cgroup that we're moving into 983 * @template: out param for the new set of csses, should be clear on entry 984 */ 985 static struct css_set *find_existing_css_set(struct css_set *old_cset, 986 struct cgroup *cgrp, 987 struct cgroup_subsys_state *template[]) 988 { 989 struct cgroup_root *root = cgrp->root; 990 struct cgroup_subsys *ss; 991 struct css_set *cset; 992 unsigned long key; 993 int i; 994 995 /* 996 * Build the set of subsystem state objects that we want to see in the 997 * new css_set. while subsystems can change globally, the entries here 998 * won't change, so no need for locking. 999 */ 1000 for_each_subsys(ss, i) { 1001 if (root->subsys_mask & (1UL << i)) { 1002 /* 1003 * @ss is in this hierarchy, so we want the 1004 * effective css from @cgrp. 1005 */ 1006 template[i] = cgroup_e_css(cgrp, ss); 1007 } else { 1008 /* 1009 * @ss is not in this hierarchy, so we don't want 1010 * to change the css. 1011 */ 1012 template[i] = old_cset->subsys[i]; 1013 } 1014 } 1015 1016 key = css_set_hash(template); 1017 hash_for_each_possible(css_set_table, cset, hlist, key) { 1018 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1019 continue; 1020 1021 /* This css_set matches what we need */ 1022 return cset; 1023 } 1024 1025 /* No existing cgroup group matched */ 1026 return NULL; 1027 } 1028 1029 static void free_cgrp_cset_links(struct list_head *links_to_free) 1030 { 1031 struct cgrp_cset_link *link, *tmp_link; 1032 1033 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1034 list_del(&link->cset_link); 1035 kfree(link); 1036 } 1037 } 1038 1039 /** 1040 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1041 * @count: the number of links to allocate 1042 * @tmp_links: list_head the allocated links are put on 1043 * 1044 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1045 * through ->cset_link. Returns 0 on success or -errno. 1046 */ 1047 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1048 { 1049 struct cgrp_cset_link *link; 1050 int i; 1051 1052 INIT_LIST_HEAD(tmp_links); 1053 1054 for (i = 0; i < count; i++) { 1055 link = kzalloc(sizeof(*link), GFP_KERNEL); 1056 if (!link) { 1057 free_cgrp_cset_links(tmp_links); 1058 return -ENOMEM; 1059 } 1060 list_add(&link->cset_link, tmp_links); 1061 } 1062 return 0; 1063 } 1064 1065 /** 1066 * link_css_set - a helper function to link a css_set to a cgroup 1067 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1068 * @cset: the css_set to be linked 1069 * @cgrp: the destination cgroup 1070 */ 1071 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1072 struct cgroup *cgrp) 1073 { 1074 struct cgrp_cset_link *link; 1075 1076 BUG_ON(list_empty(tmp_links)); 1077 1078 if (cgroup_on_dfl(cgrp)) 1079 cset->dfl_cgrp = cgrp; 1080 1081 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1082 link->cset = cset; 1083 link->cgrp = cgrp; 1084 1085 /* 1086 * Always add links to the tail of the lists so that the lists are 1087 * in choronological order. 1088 */ 1089 list_move_tail(&link->cset_link, &cgrp->cset_links); 1090 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1091 1092 if (cgroup_parent(cgrp)) 1093 cgroup_get_live(cgrp); 1094 } 1095 1096 /** 1097 * find_css_set - return a new css_set with one cgroup updated 1098 * @old_cset: the baseline css_set 1099 * @cgrp: the cgroup to be updated 1100 * 1101 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1102 * substituted into the appropriate hierarchy. 1103 */ 1104 static struct css_set *find_css_set(struct css_set *old_cset, 1105 struct cgroup *cgrp) 1106 { 1107 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1108 struct css_set *cset; 1109 struct list_head tmp_links; 1110 struct cgrp_cset_link *link; 1111 struct cgroup_subsys *ss; 1112 unsigned long key; 1113 int ssid; 1114 1115 lockdep_assert_held(&cgroup_mutex); 1116 1117 /* First see if we already have a cgroup group that matches 1118 * the desired set */ 1119 spin_lock_irq(&css_set_lock); 1120 cset = find_existing_css_set(old_cset, cgrp, template); 1121 if (cset) 1122 get_css_set(cset); 1123 spin_unlock_irq(&css_set_lock); 1124 1125 if (cset) 1126 return cset; 1127 1128 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1129 if (!cset) 1130 return NULL; 1131 1132 /* Allocate all the cgrp_cset_link objects that we'll need */ 1133 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1134 kfree(cset); 1135 return NULL; 1136 } 1137 1138 refcount_set(&cset->refcount, 1); 1139 cset->dom_cset = cset; 1140 INIT_LIST_HEAD(&cset->tasks); 1141 INIT_LIST_HEAD(&cset->mg_tasks); 1142 INIT_LIST_HEAD(&cset->task_iters); 1143 INIT_LIST_HEAD(&cset->threaded_csets); 1144 INIT_HLIST_NODE(&cset->hlist); 1145 INIT_LIST_HEAD(&cset->cgrp_links); 1146 INIT_LIST_HEAD(&cset->mg_preload_node); 1147 INIT_LIST_HEAD(&cset->mg_node); 1148 1149 /* Copy the set of subsystem state objects generated in 1150 * find_existing_css_set() */ 1151 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1152 1153 spin_lock_irq(&css_set_lock); 1154 /* Add reference counts and links from the new css_set. */ 1155 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1156 struct cgroup *c = link->cgrp; 1157 1158 if (c->root == cgrp->root) 1159 c = cgrp; 1160 link_css_set(&tmp_links, cset, c); 1161 } 1162 1163 BUG_ON(!list_empty(&tmp_links)); 1164 1165 css_set_count++; 1166 1167 /* Add @cset to the hash table */ 1168 key = css_set_hash(cset->subsys); 1169 hash_add(css_set_table, &cset->hlist, key); 1170 1171 for_each_subsys(ss, ssid) { 1172 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1173 1174 list_add_tail(&cset->e_cset_node[ssid], 1175 &css->cgroup->e_csets[ssid]); 1176 css_get(css); 1177 } 1178 1179 spin_unlock_irq(&css_set_lock); 1180 1181 /* 1182 * If @cset should be threaded, look up the matching dom_cset and 1183 * link them up. We first fully initialize @cset then look for the 1184 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1185 * to stay empty until we return. 1186 */ 1187 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1188 struct css_set *dcset; 1189 1190 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1191 if (!dcset) { 1192 put_css_set(cset); 1193 return NULL; 1194 } 1195 1196 spin_lock_irq(&css_set_lock); 1197 cset->dom_cset = dcset; 1198 list_add_tail(&cset->threaded_csets_node, 1199 &dcset->threaded_csets); 1200 spin_unlock_irq(&css_set_lock); 1201 } 1202 1203 return cset; 1204 } 1205 1206 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1207 { 1208 struct cgroup *root_cgrp = kf_root->kn->priv; 1209 1210 return root_cgrp->root; 1211 } 1212 1213 static int cgroup_init_root_id(struct cgroup_root *root) 1214 { 1215 int id; 1216 1217 lockdep_assert_held(&cgroup_mutex); 1218 1219 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1220 if (id < 0) 1221 return id; 1222 1223 root->hierarchy_id = id; 1224 return 0; 1225 } 1226 1227 static void cgroup_exit_root_id(struct cgroup_root *root) 1228 { 1229 lockdep_assert_held(&cgroup_mutex); 1230 1231 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1232 } 1233 1234 void cgroup_free_root(struct cgroup_root *root) 1235 { 1236 if (root) { 1237 idr_destroy(&root->cgroup_idr); 1238 kfree(root); 1239 } 1240 } 1241 1242 static void cgroup_destroy_root(struct cgroup_root *root) 1243 { 1244 struct cgroup *cgrp = &root->cgrp; 1245 struct cgrp_cset_link *link, *tmp_link; 1246 1247 trace_cgroup_destroy_root(root); 1248 1249 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1250 1251 BUG_ON(atomic_read(&root->nr_cgrps)); 1252 BUG_ON(!list_empty(&cgrp->self.children)); 1253 1254 /* Rebind all subsystems back to the default hierarchy */ 1255 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1256 1257 /* 1258 * Release all the links from cset_links to this hierarchy's 1259 * root cgroup 1260 */ 1261 spin_lock_irq(&css_set_lock); 1262 1263 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1264 list_del(&link->cset_link); 1265 list_del(&link->cgrp_link); 1266 kfree(link); 1267 } 1268 1269 spin_unlock_irq(&css_set_lock); 1270 1271 if (!list_empty(&root->root_list)) { 1272 list_del(&root->root_list); 1273 cgroup_root_count--; 1274 } 1275 1276 cgroup_exit_root_id(root); 1277 1278 mutex_unlock(&cgroup_mutex); 1279 1280 kernfs_destroy_root(root->kf_root); 1281 cgroup_free_root(root); 1282 } 1283 1284 /* 1285 * look up cgroup associated with current task's cgroup namespace on the 1286 * specified hierarchy 1287 */ 1288 static struct cgroup * 1289 current_cgns_cgroup_from_root(struct cgroup_root *root) 1290 { 1291 struct cgroup *res = NULL; 1292 struct css_set *cset; 1293 1294 lockdep_assert_held(&css_set_lock); 1295 1296 rcu_read_lock(); 1297 1298 cset = current->nsproxy->cgroup_ns->root_cset; 1299 if (cset == &init_css_set) { 1300 res = &root->cgrp; 1301 } else { 1302 struct cgrp_cset_link *link; 1303 1304 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1305 struct cgroup *c = link->cgrp; 1306 1307 if (c->root == root) { 1308 res = c; 1309 break; 1310 } 1311 } 1312 } 1313 rcu_read_unlock(); 1314 1315 BUG_ON(!res); 1316 return res; 1317 } 1318 1319 /* look up cgroup associated with given css_set on the specified hierarchy */ 1320 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1321 struct cgroup_root *root) 1322 { 1323 struct cgroup *res = NULL; 1324 1325 lockdep_assert_held(&cgroup_mutex); 1326 lockdep_assert_held(&css_set_lock); 1327 1328 if (cset == &init_css_set) { 1329 res = &root->cgrp; 1330 } else if (root == &cgrp_dfl_root) { 1331 res = cset->dfl_cgrp; 1332 } else { 1333 struct cgrp_cset_link *link; 1334 1335 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1336 struct cgroup *c = link->cgrp; 1337 1338 if (c->root == root) { 1339 res = c; 1340 break; 1341 } 1342 } 1343 } 1344 1345 BUG_ON(!res); 1346 return res; 1347 } 1348 1349 /* 1350 * Return the cgroup for "task" from the given hierarchy. Must be 1351 * called with cgroup_mutex and css_set_lock held. 1352 */ 1353 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1354 struct cgroup_root *root) 1355 { 1356 /* 1357 * No need to lock the task - since we hold cgroup_mutex the 1358 * task can't change groups, so the only thing that can happen 1359 * is that it exits and its css is set back to init_css_set. 1360 */ 1361 return cset_cgroup_from_root(task_css_set(task), root); 1362 } 1363 1364 /* 1365 * A task must hold cgroup_mutex to modify cgroups. 1366 * 1367 * Any task can increment and decrement the count field without lock. 1368 * So in general, code holding cgroup_mutex can't rely on the count 1369 * field not changing. However, if the count goes to zero, then only 1370 * cgroup_attach_task() can increment it again. Because a count of zero 1371 * means that no tasks are currently attached, therefore there is no 1372 * way a task attached to that cgroup can fork (the other way to 1373 * increment the count). So code holding cgroup_mutex can safely 1374 * assume that if the count is zero, it will stay zero. Similarly, if 1375 * a task holds cgroup_mutex on a cgroup with zero count, it 1376 * knows that the cgroup won't be removed, as cgroup_rmdir() 1377 * needs that mutex. 1378 * 1379 * A cgroup can only be deleted if both its 'count' of using tasks 1380 * is zero, and its list of 'children' cgroups is empty. Since all 1381 * tasks in the system use _some_ cgroup, and since there is always at 1382 * least one task in the system (init, pid == 1), therefore, root cgroup 1383 * always has either children cgroups and/or using tasks. So we don't 1384 * need a special hack to ensure that root cgroup cannot be deleted. 1385 * 1386 * P.S. One more locking exception. RCU is used to guard the 1387 * update of a tasks cgroup pointer by cgroup_attach_task() 1388 */ 1389 1390 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1391 1392 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1393 char *buf) 1394 { 1395 struct cgroup_subsys *ss = cft->ss; 1396 1397 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1398 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1399 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1400 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1401 cft->name); 1402 else 1403 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1404 return buf; 1405 } 1406 1407 /** 1408 * cgroup_file_mode - deduce file mode of a control file 1409 * @cft: the control file in question 1410 * 1411 * S_IRUGO for read, S_IWUSR for write. 1412 */ 1413 static umode_t cgroup_file_mode(const struct cftype *cft) 1414 { 1415 umode_t mode = 0; 1416 1417 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1418 mode |= S_IRUGO; 1419 1420 if (cft->write_u64 || cft->write_s64 || cft->write) { 1421 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1422 mode |= S_IWUGO; 1423 else 1424 mode |= S_IWUSR; 1425 } 1426 1427 return mode; 1428 } 1429 1430 /** 1431 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1432 * @subtree_control: the new subtree_control mask to consider 1433 * @this_ss_mask: available subsystems 1434 * 1435 * On the default hierarchy, a subsystem may request other subsystems to be 1436 * enabled together through its ->depends_on mask. In such cases, more 1437 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1438 * 1439 * This function calculates which subsystems need to be enabled if 1440 * @subtree_control is to be applied while restricted to @this_ss_mask. 1441 */ 1442 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1443 { 1444 u16 cur_ss_mask = subtree_control; 1445 struct cgroup_subsys *ss; 1446 int ssid; 1447 1448 lockdep_assert_held(&cgroup_mutex); 1449 1450 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1451 1452 while (true) { 1453 u16 new_ss_mask = cur_ss_mask; 1454 1455 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1456 new_ss_mask |= ss->depends_on; 1457 } while_each_subsys_mask(); 1458 1459 /* 1460 * Mask out subsystems which aren't available. This can 1461 * happen only if some depended-upon subsystems were bound 1462 * to non-default hierarchies. 1463 */ 1464 new_ss_mask &= this_ss_mask; 1465 1466 if (new_ss_mask == cur_ss_mask) 1467 break; 1468 cur_ss_mask = new_ss_mask; 1469 } 1470 1471 return cur_ss_mask; 1472 } 1473 1474 /** 1475 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1476 * @kn: the kernfs_node being serviced 1477 * 1478 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1479 * the method finishes if locking succeeded. Note that once this function 1480 * returns the cgroup returned by cgroup_kn_lock_live() may become 1481 * inaccessible any time. If the caller intends to continue to access the 1482 * cgroup, it should pin it before invoking this function. 1483 */ 1484 void cgroup_kn_unlock(struct kernfs_node *kn) 1485 { 1486 struct cgroup *cgrp; 1487 1488 if (kernfs_type(kn) == KERNFS_DIR) 1489 cgrp = kn->priv; 1490 else 1491 cgrp = kn->parent->priv; 1492 1493 mutex_unlock(&cgroup_mutex); 1494 1495 kernfs_unbreak_active_protection(kn); 1496 cgroup_put(cgrp); 1497 } 1498 1499 /** 1500 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1501 * @kn: the kernfs_node being serviced 1502 * @drain_offline: perform offline draining on the cgroup 1503 * 1504 * This helper is to be used by a cgroup kernfs method currently servicing 1505 * @kn. It breaks the active protection, performs cgroup locking and 1506 * verifies that the associated cgroup is alive. Returns the cgroup if 1507 * alive; otherwise, %NULL. A successful return should be undone by a 1508 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1509 * cgroup is drained of offlining csses before return. 1510 * 1511 * Any cgroup kernfs method implementation which requires locking the 1512 * associated cgroup should use this helper. It avoids nesting cgroup 1513 * locking under kernfs active protection and allows all kernfs operations 1514 * including self-removal. 1515 */ 1516 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1517 { 1518 struct cgroup *cgrp; 1519 1520 if (kernfs_type(kn) == KERNFS_DIR) 1521 cgrp = kn->priv; 1522 else 1523 cgrp = kn->parent->priv; 1524 1525 /* 1526 * We're gonna grab cgroup_mutex which nests outside kernfs 1527 * active_ref. cgroup liveliness check alone provides enough 1528 * protection against removal. Ensure @cgrp stays accessible and 1529 * break the active_ref protection. 1530 */ 1531 if (!cgroup_tryget(cgrp)) 1532 return NULL; 1533 kernfs_break_active_protection(kn); 1534 1535 if (drain_offline) 1536 cgroup_lock_and_drain_offline(cgrp); 1537 else 1538 mutex_lock(&cgroup_mutex); 1539 1540 if (!cgroup_is_dead(cgrp)) 1541 return cgrp; 1542 1543 cgroup_kn_unlock(kn); 1544 return NULL; 1545 } 1546 1547 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1548 { 1549 char name[CGROUP_FILE_NAME_MAX]; 1550 1551 lockdep_assert_held(&cgroup_mutex); 1552 1553 if (cft->file_offset) { 1554 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1555 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1556 1557 spin_lock_irq(&cgroup_file_kn_lock); 1558 cfile->kn = NULL; 1559 spin_unlock_irq(&cgroup_file_kn_lock); 1560 1561 del_timer_sync(&cfile->notify_timer); 1562 } 1563 1564 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1565 } 1566 1567 /** 1568 * css_clear_dir - remove subsys files in a cgroup directory 1569 * @css: taget css 1570 */ 1571 static void css_clear_dir(struct cgroup_subsys_state *css) 1572 { 1573 struct cgroup *cgrp = css->cgroup; 1574 struct cftype *cfts; 1575 1576 if (!(css->flags & CSS_VISIBLE)) 1577 return; 1578 1579 css->flags &= ~CSS_VISIBLE; 1580 1581 if (!css->ss) { 1582 if (cgroup_on_dfl(cgrp)) 1583 cfts = cgroup_base_files; 1584 else 1585 cfts = cgroup1_base_files; 1586 1587 cgroup_addrm_files(css, cgrp, cfts, false); 1588 } else { 1589 list_for_each_entry(cfts, &css->ss->cfts, node) 1590 cgroup_addrm_files(css, cgrp, cfts, false); 1591 } 1592 } 1593 1594 /** 1595 * css_populate_dir - create subsys files in a cgroup directory 1596 * @css: target css 1597 * 1598 * On failure, no file is added. 1599 */ 1600 static int css_populate_dir(struct cgroup_subsys_state *css) 1601 { 1602 struct cgroup *cgrp = css->cgroup; 1603 struct cftype *cfts, *failed_cfts; 1604 int ret; 1605 1606 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1607 return 0; 1608 1609 if (!css->ss) { 1610 if (cgroup_on_dfl(cgrp)) 1611 cfts = cgroup_base_files; 1612 else 1613 cfts = cgroup1_base_files; 1614 1615 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1616 if (ret < 0) 1617 return ret; 1618 } else { 1619 list_for_each_entry(cfts, &css->ss->cfts, node) { 1620 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1621 if (ret < 0) { 1622 failed_cfts = cfts; 1623 goto err; 1624 } 1625 } 1626 } 1627 1628 css->flags |= CSS_VISIBLE; 1629 1630 return 0; 1631 err: 1632 list_for_each_entry(cfts, &css->ss->cfts, node) { 1633 if (cfts == failed_cfts) 1634 break; 1635 cgroup_addrm_files(css, cgrp, cfts, false); 1636 } 1637 return ret; 1638 } 1639 1640 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1641 { 1642 struct cgroup *dcgrp = &dst_root->cgrp; 1643 struct cgroup_subsys *ss; 1644 int ssid, i, ret; 1645 1646 lockdep_assert_held(&cgroup_mutex); 1647 1648 do_each_subsys_mask(ss, ssid, ss_mask) { 1649 /* 1650 * If @ss has non-root csses attached to it, can't move. 1651 * If @ss is an implicit controller, it is exempt from this 1652 * rule and can be stolen. 1653 */ 1654 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1655 !ss->implicit_on_dfl) 1656 return -EBUSY; 1657 1658 /* can't move between two non-dummy roots either */ 1659 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1660 return -EBUSY; 1661 } while_each_subsys_mask(); 1662 1663 do_each_subsys_mask(ss, ssid, ss_mask) { 1664 struct cgroup_root *src_root = ss->root; 1665 struct cgroup *scgrp = &src_root->cgrp; 1666 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1667 struct css_set *cset; 1668 1669 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1670 1671 /* disable from the source */ 1672 src_root->subsys_mask &= ~(1 << ssid); 1673 WARN_ON(cgroup_apply_control(scgrp)); 1674 cgroup_finalize_control(scgrp, 0); 1675 1676 /* rebind */ 1677 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1678 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1679 ss->root = dst_root; 1680 css->cgroup = dcgrp; 1681 1682 spin_lock_irq(&css_set_lock); 1683 hash_for_each(css_set_table, i, cset, hlist) 1684 list_move_tail(&cset->e_cset_node[ss->id], 1685 &dcgrp->e_csets[ss->id]); 1686 spin_unlock_irq(&css_set_lock); 1687 1688 /* default hierarchy doesn't enable controllers by default */ 1689 dst_root->subsys_mask |= 1 << ssid; 1690 if (dst_root == &cgrp_dfl_root) { 1691 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1692 } else { 1693 dcgrp->subtree_control |= 1 << ssid; 1694 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1695 } 1696 1697 ret = cgroup_apply_control(dcgrp); 1698 if (ret) 1699 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1700 ss->name, ret); 1701 1702 if (ss->bind) 1703 ss->bind(css); 1704 } while_each_subsys_mask(); 1705 1706 kernfs_activate(dcgrp->kn); 1707 return 0; 1708 } 1709 1710 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1711 struct kernfs_root *kf_root) 1712 { 1713 int len = 0; 1714 char *buf = NULL; 1715 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1716 struct cgroup *ns_cgroup; 1717 1718 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1719 if (!buf) 1720 return -ENOMEM; 1721 1722 spin_lock_irq(&css_set_lock); 1723 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1724 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1725 spin_unlock_irq(&css_set_lock); 1726 1727 if (len >= PATH_MAX) 1728 len = -ERANGE; 1729 else if (len > 0) { 1730 seq_escape(sf, buf, " \t\n\\"); 1731 len = 0; 1732 } 1733 kfree(buf); 1734 return len; 1735 } 1736 1737 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1738 { 1739 char *token; 1740 1741 *root_flags = 0; 1742 1743 if (!data) 1744 return 0; 1745 1746 while ((token = strsep(&data, ",")) != NULL) { 1747 if (!strcmp(token, "nsdelegate")) { 1748 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1749 continue; 1750 } 1751 1752 pr_err("cgroup2: unknown option \"%s\"\n", token); 1753 return -EINVAL; 1754 } 1755 1756 return 0; 1757 } 1758 1759 static void apply_cgroup_root_flags(unsigned int root_flags) 1760 { 1761 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1762 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1763 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1764 else 1765 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1766 } 1767 } 1768 1769 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1770 { 1771 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1772 seq_puts(seq, ",nsdelegate"); 1773 return 0; 1774 } 1775 1776 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1777 { 1778 unsigned int root_flags; 1779 int ret; 1780 1781 ret = parse_cgroup_root_flags(data, &root_flags); 1782 if (ret) 1783 return ret; 1784 1785 apply_cgroup_root_flags(root_flags); 1786 return 0; 1787 } 1788 1789 /* 1790 * To reduce the fork() overhead for systems that are not actually using 1791 * their cgroups capability, we don't maintain the lists running through 1792 * each css_set to its tasks until we see the list actually used - in other 1793 * words after the first mount. 1794 */ 1795 static bool use_task_css_set_links __read_mostly; 1796 1797 static void cgroup_enable_task_cg_lists(void) 1798 { 1799 struct task_struct *p, *g; 1800 1801 /* 1802 * We need tasklist_lock because RCU is not safe against 1803 * while_each_thread(). Besides, a forking task that has passed 1804 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1805 * is not guaranteed to have its child immediately visible in the 1806 * tasklist if we walk through it with RCU. 1807 */ 1808 read_lock(&tasklist_lock); 1809 spin_lock_irq(&css_set_lock); 1810 1811 if (use_task_css_set_links) 1812 goto out_unlock; 1813 1814 use_task_css_set_links = true; 1815 1816 do_each_thread(g, p) { 1817 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1818 task_css_set(p) != &init_css_set); 1819 1820 /* 1821 * We should check if the process is exiting, otherwise 1822 * it will race with cgroup_exit() in that the list 1823 * entry won't be deleted though the process has exited. 1824 * Do it while holding siglock so that we don't end up 1825 * racing against cgroup_exit(). 1826 * 1827 * Interrupts were already disabled while acquiring 1828 * the css_set_lock, so we do not need to disable it 1829 * again when acquiring the sighand->siglock here. 1830 */ 1831 spin_lock(&p->sighand->siglock); 1832 if (!(p->flags & PF_EXITING)) { 1833 struct css_set *cset = task_css_set(p); 1834 1835 if (!css_set_populated(cset)) 1836 css_set_update_populated(cset, true); 1837 list_add_tail(&p->cg_list, &cset->tasks); 1838 get_css_set(cset); 1839 cset->nr_tasks++; 1840 } 1841 spin_unlock(&p->sighand->siglock); 1842 } while_each_thread(g, p); 1843 out_unlock: 1844 spin_unlock_irq(&css_set_lock); 1845 read_unlock(&tasklist_lock); 1846 } 1847 1848 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1849 { 1850 struct cgroup_subsys *ss; 1851 int ssid; 1852 1853 INIT_LIST_HEAD(&cgrp->self.sibling); 1854 INIT_LIST_HEAD(&cgrp->self.children); 1855 INIT_LIST_HEAD(&cgrp->cset_links); 1856 INIT_LIST_HEAD(&cgrp->pidlists); 1857 mutex_init(&cgrp->pidlist_mutex); 1858 cgrp->self.cgroup = cgrp; 1859 cgrp->self.flags |= CSS_ONLINE; 1860 cgrp->dom_cgrp = cgrp; 1861 cgrp->max_descendants = INT_MAX; 1862 cgrp->max_depth = INT_MAX; 1863 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1864 prev_cputime_init(&cgrp->prev_cputime); 1865 1866 for_each_subsys(ss, ssid) 1867 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1868 1869 init_waitqueue_head(&cgrp->offline_waitq); 1870 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1871 } 1872 1873 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1874 { 1875 struct cgroup *cgrp = &root->cgrp; 1876 1877 INIT_LIST_HEAD(&root->root_list); 1878 atomic_set(&root->nr_cgrps, 1); 1879 cgrp->root = root; 1880 init_cgroup_housekeeping(cgrp); 1881 idr_init(&root->cgroup_idr); 1882 1883 root->flags = opts->flags; 1884 if (opts->release_agent) 1885 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX); 1886 if (opts->name) 1887 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN); 1888 if (opts->cpuset_clone_children) 1889 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1890 } 1891 1892 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1893 { 1894 LIST_HEAD(tmp_links); 1895 struct cgroup *root_cgrp = &root->cgrp; 1896 struct kernfs_syscall_ops *kf_sops; 1897 struct css_set *cset; 1898 int i, ret; 1899 1900 lockdep_assert_held(&cgroup_mutex); 1901 1902 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1903 if (ret < 0) 1904 goto out; 1905 root_cgrp->id = ret; 1906 root_cgrp->ancestor_ids[0] = ret; 1907 1908 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1909 ref_flags, GFP_KERNEL); 1910 if (ret) 1911 goto out; 1912 1913 /* 1914 * We're accessing css_set_count without locking css_set_lock here, 1915 * but that's OK - it can only be increased by someone holding 1916 * cgroup_lock, and that's us. Later rebinding may disable 1917 * controllers on the default hierarchy and thus create new csets, 1918 * which can't be more than the existing ones. Allocate 2x. 1919 */ 1920 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1921 if (ret) 1922 goto cancel_ref; 1923 1924 ret = cgroup_init_root_id(root); 1925 if (ret) 1926 goto cancel_ref; 1927 1928 kf_sops = root == &cgrp_dfl_root ? 1929 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1930 1931 root->kf_root = kernfs_create_root(kf_sops, 1932 KERNFS_ROOT_CREATE_DEACTIVATED | 1933 KERNFS_ROOT_SUPPORT_EXPORTOP, 1934 root_cgrp); 1935 if (IS_ERR(root->kf_root)) { 1936 ret = PTR_ERR(root->kf_root); 1937 goto exit_root_id; 1938 } 1939 root_cgrp->kn = root->kf_root->kn; 1940 1941 ret = css_populate_dir(&root_cgrp->self); 1942 if (ret) 1943 goto destroy_root; 1944 1945 ret = rebind_subsystems(root, ss_mask); 1946 if (ret) 1947 goto destroy_root; 1948 1949 ret = cgroup_bpf_inherit(root_cgrp); 1950 WARN_ON_ONCE(ret); 1951 1952 trace_cgroup_setup_root(root); 1953 1954 /* 1955 * There must be no failure case after here, since rebinding takes 1956 * care of subsystems' refcounts, which are explicitly dropped in 1957 * the failure exit path. 1958 */ 1959 list_add(&root->root_list, &cgroup_roots); 1960 cgroup_root_count++; 1961 1962 /* 1963 * Link the root cgroup in this hierarchy into all the css_set 1964 * objects. 1965 */ 1966 spin_lock_irq(&css_set_lock); 1967 hash_for_each(css_set_table, i, cset, hlist) { 1968 link_css_set(&tmp_links, cset, root_cgrp); 1969 if (css_set_populated(cset)) 1970 cgroup_update_populated(root_cgrp, true); 1971 } 1972 spin_unlock_irq(&css_set_lock); 1973 1974 BUG_ON(!list_empty(&root_cgrp->self.children)); 1975 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1976 1977 kernfs_activate(root_cgrp->kn); 1978 ret = 0; 1979 goto out; 1980 1981 destroy_root: 1982 kernfs_destroy_root(root->kf_root); 1983 root->kf_root = NULL; 1984 exit_root_id: 1985 cgroup_exit_root_id(root); 1986 cancel_ref: 1987 percpu_ref_exit(&root_cgrp->self.refcnt); 1988 out: 1989 free_cgrp_cset_links(&tmp_links); 1990 return ret; 1991 } 1992 1993 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1994 struct cgroup_root *root, unsigned long magic, 1995 struct cgroup_namespace *ns) 1996 { 1997 struct dentry *dentry; 1998 bool new_sb; 1999 2000 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 2001 2002 /* 2003 * In non-init cgroup namespace, instead of root cgroup's dentry, 2004 * we return the dentry corresponding to the cgroupns->root_cgrp. 2005 */ 2006 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 2007 struct dentry *nsdentry; 2008 struct cgroup *cgrp; 2009 2010 mutex_lock(&cgroup_mutex); 2011 spin_lock_irq(&css_set_lock); 2012 2013 cgrp = cset_cgroup_from_root(ns->root_cset, root); 2014 2015 spin_unlock_irq(&css_set_lock); 2016 mutex_unlock(&cgroup_mutex); 2017 2018 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 2019 dput(dentry); 2020 dentry = nsdentry; 2021 } 2022 2023 if (IS_ERR(dentry) || !new_sb) 2024 cgroup_put(&root->cgrp); 2025 2026 return dentry; 2027 } 2028 2029 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 2030 int flags, const char *unused_dev_name, 2031 void *data) 2032 { 2033 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 2034 struct dentry *dentry; 2035 int ret; 2036 2037 get_cgroup_ns(ns); 2038 2039 /* Check if the caller has permission to mount. */ 2040 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 2041 put_cgroup_ns(ns); 2042 return ERR_PTR(-EPERM); 2043 } 2044 2045 /* 2046 * The first time anyone tries to mount a cgroup, enable the list 2047 * linking each css_set to its tasks and fix up all existing tasks. 2048 */ 2049 if (!use_task_css_set_links) 2050 cgroup_enable_task_cg_lists(); 2051 2052 if (fs_type == &cgroup2_fs_type) { 2053 unsigned int root_flags; 2054 2055 ret = parse_cgroup_root_flags(data, &root_flags); 2056 if (ret) { 2057 put_cgroup_ns(ns); 2058 return ERR_PTR(ret); 2059 } 2060 2061 cgrp_dfl_visible = true; 2062 cgroup_get_live(&cgrp_dfl_root.cgrp); 2063 2064 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 2065 CGROUP2_SUPER_MAGIC, ns); 2066 if (!IS_ERR(dentry)) 2067 apply_cgroup_root_flags(root_flags); 2068 } else { 2069 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 2070 CGROUP_SUPER_MAGIC, ns); 2071 } 2072 2073 put_cgroup_ns(ns); 2074 return dentry; 2075 } 2076 2077 static void cgroup_kill_sb(struct super_block *sb) 2078 { 2079 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2080 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2081 2082 /* 2083 * If @root doesn't have any mounts or children, start killing it. 2084 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2085 * cgroup_mount() may wait for @root's release. 2086 * 2087 * And don't kill the default root. 2088 */ 2089 if (!list_empty(&root->cgrp.self.children) || 2090 root == &cgrp_dfl_root) 2091 cgroup_put(&root->cgrp); 2092 else 2093 percpu_ref_kill(&root->cgrp.self.refcnt); 2094 2095 kernfs_kill_sb(sb); 2096 } 2097 2098 struct file_system_type cgroup_fs_type = { 2099 .name = "cgroup", 2100 .mount = cgroup_mount, 2101 .kill_sb = cgroup_kill_sb, 2102 .fs_flags = FS_USERNS_MOUNT, 2103 }; 2104 2105 static struct file_system_type cgroup2_fs_type = { 2106 .name = "cgroup2", 2107 .mount = cgroup_mount, 2108 .kill_sb = cgroup_kill_sb, 2109 .fs_flags = FS_USERNS_MOUNT, 2110 }; 2111 2112 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2113 struct cgroup_namespace *ns) 2114 { 2115 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2116 2117 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2118 } 2119 2120 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2121 struct cgroup_namespace *ns) 2122 { 2123 int ret; 2124 2125 mutex_lock(&cgroup_mutex); 2126 spin_lock_irq(&css_set_lock); 2127 2128 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2129 2130 spin_unlock_irq(&css_set_lock); 2131 mutex_unlock(&cgroup_mutex); 2132 2133 return ret; 2134 } 2135 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2136 2137 /** 2138 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2139 * @task: target task 2140 * @buf: the buffer to write the path into 2141 * @buflen: the length of the buffer 2142 * 2143 * Determine @task's cgroup on the first (the one with the lowest non-zero 2144 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2145 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2146 * cgroup controller callbacks. 2147 * 2148 * Return value is the same as kernfs_path(). 2149 */ 2150 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2151 { 2152 struct cgroup_root *root; 2153 struct cgroup *cgrp; 2154 int hierarchy_id = 1; 2155 int ret; 2156 2157 mutex_lock(&cgroup_mutex); 2158 spin_lock_irq(&css_set_lock); 2159 2160 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2161 2162 if (root) { 2163 cgrp = task_cgroup_from_root(task, root); 2164 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2165 } else { 2166 /* if no hierarchy exists, everyone is in "/" */ 2167 ret = strlcpy(buf, "/", buflen); 2168 } 2169 2170 spin_unlock_irq(&css_set_lock); 2171 mutex_unlock(&cgroup_mutex); 2172 return ret; 2173 } 2174 EXPORT_SYMBOL_GPL(task_cgroup_path); 2175 2176 /** 2177 * cgroup_migrate_add_task - add a migration target task to a migration context 2178 * @task: target task 2179 * @mgctx: target migration context 2180 * 2181 * Add @task, which is a migration target, to @mgctx->tset. This function 2182 * becomes noop if @task doesn't need to be migrated. @task's css_set 2183 * should have been added as a migration source and @task->cg_list will be 2184 * moved from the css_set's tasks list to mg_tasks one. 2185 */ 2186 static void cgroup_migrate_add_task(struct task_struct *task, 2187 struct cgroup_mgctx *mgctx) 2188 { 2189 struct css_set *cset; 2190 2191 lockdep_assert_held(&css_set_lock); 2192 2193 /* @task either already exited or can't exit until the end */ 2194 if (task->flags & PF_EXITING) 2195 return; 2196 2197 /* leave @task alone if post_fork() hasn't linked it yet */ 2198 if (list_empty(&task->cg_list)) 2199 return; 2200 2201 cset = task_css_set(task); 2202 if (!cset->mg_src_cgrp) 2203 return; 2204 2205 mgctx->tset.nr_tasks++; 2206 2207 list_move_tail(&task->cg_list, &cset->mg_tasks); 2208 if (list_empty(&cset->mg_node)) 2209 list_add_tail(&cset->mg_node, 2210 &mgctx->tset.src_csets); 2211 if (list_empty(&cset->mg_dst_cset->mg_node)) 2212 list_add_tail(&cset->mg_dst_cset->mg_node, 2213 &mgctx->tset.dst_csets); 2214 } 2215 2216 /** 2217 * cgroup_taskset_first - reset taskset and return the first task 2218 * @tset: taskset of interest 2219 * @dst_cssp: output variable for the destination css 2220 * 2221 * @tset iteration is initialized and the first task is returned. 2222 */ 2223 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2224 struct cgroup_subsys_state **dst_cssp) 2225 { 2226 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2227 tset->cur_task = NULL; 2228 2229 return cgroup_taskset_next(tset, dst_cssp); 2230 } 2231 2232 /** 2233 * cgroup_taskset_next - iterate to the next task in taskset 2234 * @tset: taskset of interest 2235 * @dst_cssp: output variable for the destination css 2236 * 2237 * Return the next task in @tset. Iteration must have been initialized 2238 * with cgroup_taskset_first(). 2239 */ 2240 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2241 struct cgroup_subsys_state **dst_cssp) 2242 { 2243 struct css_set *cset = tset->cur_cset; 2244 struct task_struct *task = tset->cur_task; 2245 2246 while (&cset->mg_node != tset->csets) { 2247 if (!task) 2248 task = list_first_entry(&cset->mg_tasks, 2249 struct task_struct, cg_list); 2250 else 2251 task = list_next_entry(task, cg_list); 2252 2253 if (&task->cg_list != &cset->mg_tasks) { 2254 tset->cur_cset = cset; 2255 tset->cur_task = task; 2256 2257 /* 2258 * This function may be called both before and 2259 * after cgroup_taskset_migrate(). The two cases 2260 * can be distinguished by looking at whether @cset 2261 * has its ->mg_dst_cset set. 2262 */ 2263 if (cset->mg_dst_cset) 2264 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2265 else 2266 *dst_cssp = cset->subsys[tset->ssid]; 2267 2268 return task; 2269 } 2270 2271 cset = list_next_entry(cset, mg_node); 2272 task = NULL; 2273 } 2274 2275 return NULL; 2276 } 2277 2278 /** 2279 * cgroup_taskset_migrate - migrate a taskset 2280 * @mgctx: migration context 2281 * 2282 * Migrate tasks in @mgctx as setup by migration preparation functions. 2283 * This function fails iff one of the ->can_attach callbacks fails and 2284 * guarantees that either all or none of the tasks in @mgctx are migrated. 2285 * @mgctx is consumed regardless of success. 2286 */ 2287 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2288 { 2289 struct cgroup_taskset *tset = &mgctx->tset; 2290 struct cgroup_subsys *ss; 2291 struct task_struct *task, *tmp_task; 2292 struct css_set *cset, *tmp_cset; 2293 int ssid, failed_ssid, ret; 2294 2295 /* check that we can legitimately attach to the cgroup */ 2296 if (tset->nr_tasks) { 2297 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2298 if (ss->can_attach) { 2299 tset->ssid = ssid; 2300 ret = ss->can_attach(tset); 2301 if (ret) { 2302 failed_ssid = ssid; 2303 goto out_cancel_attach; 2304 } 2305 } 2306 } while_each_subsys_mask(); 2307 } 2308 2309 /* 2310 * Now that we're guaranteed success, proceed to move all tasks to 2311 * the new cgroup. There are no failure cases after here, so this 2312 * is the commit point. 2313 */ 2314 spin_lock_irq(&css_set_lock); 2315 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2316 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2317 struct css_set *from_cset = task_css_set(task); 2318 struct css_set *to_cset = cset->mg_dst_cset; 2319 2320 get_css_set(to_cset); 2321 to_cset->nr_tasks++; 2322 css_set_move_task(task, from_cset, to_cset, true); 2323 put_css_set_locked(from_cset); 2324 from_cset->nr_tasks--; 2325 } 2326 } 2327 spin_unlock_irq(&css_set_lock); 2328 2329 /* 2330 * Migration is committed, all target tasks are now on dst_csets. 2331 * Nothing is sensitive to fork() after this point. Notify 2332 * controllers that migration is complete. 2333 */ 2334 tset->csets = &tset->dst_csets; 2335 2336 if (tset->nr_tasks) { 2337 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2338 if (ss->attach) { 2339 tset->ssid = ssid; 2340 ss->attach(tset); 2341 } 2342 } while_each_subsys_mask(); 2343 } 2344 2345 ret = 0; 2346 goto out_release_tset; 2347 2348 out_cancel_attach: 2349 if (tset->nr_tasks) { 2350 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2351 if (ssid == failed_ssid) 2352 break; 2353 if (ss->cancel_attach) { 2354 tset->ssid = ssid; 2355 ss->cancel_attach(tset); 2356 } 2357 } while_each_subsys_mask(); 2358 } 2359 out_release_tset: 2360 spin_lock_irq(&css_set_lock); 2361 list_splice_init(&tset->dst_csets, &tset->src_csets); 2362 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2363 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2364 list_del_init(&cset->mg_node); 2365 } 2366 spin_unlock_irq(&css_set_lock); 2367 2368 /* 2369 * Re-initialize the cgroup_taskset structure in case it is reused 2370 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2371 * iteration. 2372 */ 2373 tset->nr_tasks = 0; 2374 tset->csets = &tset->src_csets; 2375 return ret; 2376 } 2377 2378 /** 2379 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2380 * @dst_cgrp: destination cgroup to test 2381 * 2382 * On the default hierarchy, except for the mixable, (possible) thread root 2383 * and threaded cgroups, subtree_control must be zero for migration 2384 * destination cgroups with tasks so that child cgroups don't compete 2385 * against tasks. 2386 */ 2387 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2388 { 2389 /* v1 doesn't have any restriction */ 2390 if (!cgroup_on_dfl(dst_cgrp)) 2391 return 0; 2392 2393 /* verify @dst_cgrp can host resources */ 2394 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2395 return -EOPNOTSUPP; 2396 2397 /* mixables don't care */ 2398 if (cgroup_is_mixable(dst_cgrp)) 2399 return 0; 2400 2401 /* 2402 * If @dst_cgrp is already or can become a thread root or is 2403 * threaded, it doesn't matter. 2404 */ 2405 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2406 return 0; 2407 2408 /* apply no-internal-process constraint */ 2409 if (dst_cgrp->subtree_control) 2410 return -EBUSY; 2411 2412 return 0; 2413 } 2414 2415 /** 2416 * cgroup_migrate_finish - cleanup after attach 2417 * @mgctx: migration context 2418 * 2419 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2420 * those functions for details. 2421 */ 2422 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2423 { 2424 LIST_HEAD(preloaded); 2425 struct css_set *cset, *tmp_cset; 2426 2427 lockdep_assert_held(&cgroup_mutex); 2428 2429 spin_lock_irq(&css_set_lock); 2430 2431 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2432 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2433 2434 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2435 cset->mg_src_cgrp = NULL; 2436 cset->mg_dst_cgrp = NULL; 2437 cset->mg_dst_cset = NULL; 2438 list_del_init(&cset->mg_preload_node); 2439 put_css_set_locked(cset); 2440 } 2441 2442 spin_unlock_irq(&css_set_lock); 2443 } 2444 2445 /** 2446 * cgroup_migrate_add_src - add a migration source css_set 2447 * @src_cset: the source css_set to add 2448 * @dst_cgrp: the destination cgroup 2449 * @mgctx: migration context 2450 * 2451 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2452 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2453 * up by cgroup_migrate_finish(). 2454 * 2455 * This function may be called without holding cgroup_threadgroup_rwsem 2456 * even if the target is a process. Threads may be created and destroyed 2457 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2458 * into play and the preloaded css_sets are guaranteed to cover all 2459 * migrations. 2460 */ 2461 void cgroup_migrate_add_src(struct css_set *src_cset, 2462 struct cgroup *dst_cgrp, 2463 struct cgroup_mgctx *mgctx) 2464 { 2465 struct cgroup *src_cgrp; 2466 2467 lockdep_assert_held(&cgroup_mutex); 2468 lockdep_assert_held(&css_set_lock); 2469 2470 /* 2471 * If ->dead, @src_set is associated with one or more dead cgroups 2472 * and doesn't contain any migratable tasks. Ignore it early so 2473 * that the rest of migration path doesn't get confused by it. 2474 */ 2475 if (src_cset->dead) 2476 return; 2477 2478 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2479 2480 if (!list_empty(&src_cset->mg_preload_node)) 2481 return; 2482 2483 WARN_ON(src_cset->mg_src_cgrp); 2484 WARN_ON(src_cset->mg_dst_cgrp); 2485 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2486 WARN_ON(!list_empty(&src_cset->mg_node)); 2487 2488 src_cset->mg_src_cgrp = src_cgrp; 2489 src_cset->mg_dst_cgrp = dst_cgrp; 2490 get_css_set(src_cset); 2491 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2492 } 2493 2494 /** 2495 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2496 * @mgctx: migration context 2497 * 2498 * Tasks are about to be moved and all the source css_sets have been 2499 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2500 * pins all destination css_sets, links each to its source, and append them 2501 * to @mgctx->preloaded_dst_csets. 2502 * 2503 * This function must be called after cgroup_migrate_add_src() has been 2504 * called on each migration source css_set. After migration is performed 2505 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2506 * @mgctx. 2507 */ 2508 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2509 { 2510 struct css_set *src_cset, *tmp_cset; 2511 2512 lockdep_assert_held(&cgroup_mutex); 2513 2514 /* look up the dst cset for each src cset and link it to src */ 2515 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2516 mg_preload_node) { 2517 struct css_set *dst_cset; 2518 struct cgroup_subsys *ss; 2519 int ssid; 2520 2521 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2522 if (!dst_cset) 2523 goto err; 2524 2525 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2526 2527 /* 2528 * If src cset equals dst, it's noop. Drop the src. 2529 * cgroup_migrate() will skip the cset too. Note that we 2530 * can't handle src == dst as some nodes are used by both. 2531 */ 2532 if (src_cset == dst_cset) { 2533 src_cset->mg_src_cgrp = NULL; 2534 src_cset->mg_dst_cgrp = NULL; 2535 list_del_init(&src_cset->mg_preload_node); 2536 put_css_set(src_cset); 2537 put_css_set(dst_cset); 2538 continue; 2539 } 2540 2541 src_cset->mg_dst_cset = dst_cset; 2542 2543 if (list_empty(&dst_cset->mg_preload_node)) 2544 list_add_tail(&dst_cset->mg_preload_node, 2545 &mgctx->preloaded_dst_csets); 2546 else 2547 put_css_set(dst_cset); 2548 2549 for_each_subsys(ss, ssid) 2550 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2551 mgctx->ss_mask |= 1 << ssid; 2552 } 2553 2554 return 0; 2555 err: 2556 cgroup_migrate_finish(mgctx); 2557 return -ENOMEM; 2558 } 2559 2560 /** 2561 * cgroup_migrate - migrate a process or task to a cgroup 2562 * @leader: the leader of the process or the task to migrate 2563 * @threadgroup: whether @leader points to the whole process or a single task 2564 * @mgctx: migration context 2565 * 2566 * Migrate a process or task denoted by @leader. If migrating a process, 2567 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2568 * responsible for invoking cgroup_migrate_add_src() and 2569 * cgroup_migrate_prepare_dst() on the targets before invoking this 2570 * function and following up with cgroup_migrate_finish(). 2571 * 2572 * As long as a controller's ->can_attach() doesn't fail, this function is 2573 * guaranteed to succeed. This means that, excluding ->can_attach() 2574 * failure, when migrating multiple targets, the success or failure can be 2575 * decided for all targets by invoking group_migrate_prepare_dst() before 2576 * actually starting migrating. 2577 */ 2578 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2579 struct cgroup_mgctx *mgctx) 2580 { 2581 struct task_struct *task; 2582 2583 /* 2584 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2585 * already PF_EXITING could be freed from underneath us unless we 2586 * take an rcu_read_lock. 2587 */ 2588 spin_lock_irq(&css_set_lock); 2589 rcu_read_lock(); 2590 task = leader; 2591 do { 2592 cgroup_migrate_add_task(task, mgctx); 2593 if (!threadgroup) 2594 break; 2595 } while_each_thread(leader, task); 2596 rcu_read_unlock(); 2597 spin_unlock_irq(&css_set_lock); 2598 2599 return cgroup_migrate_execute(mgctx); 2600 } 2601 2602 /** 2603 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2604 * @dst_cgrp: the cgroup to attach to 2605 * @leader: the task or the leader of the threadgroup to be attached 2606 * @threadgroup: attach the whole threadgroup? 2607 * 2608 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2609 */ 2610 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2611 bool threadgroup) 2612 { 2613 DEFINE_CGROUP_MGCTX(mgctx); 2614 struct task_struct *task; 2615 int ret; 2616 2617 ret = cgroup_migrate_vet_dst(dst_cgrp); 2618 if (ret) 2619 return ret; 2620 2621 /* look up all src csets */ 2622 spin_lock_irq(&css_set_lock); 2623 rcu_read_lock(); 2624 task = leader; 2625 do { 2626 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2627 if (!threadgroup) 2628 break; 2629 } while_each_thread(leader, task); 2630 rcu_read_unlock(); 2631 spin_unlock_irq(&css_set_lock); 2632 2633 /* prepare dst csets and commit */ 2634 ret = cgroup_migrate_prepare_dst(&mgctx); 2635 if (!ret) 2636 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2637 2638 cgroup_migrate_finish(&mgctx); 2639 2640 if (!ret) 2641 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2642 2643 return ret; 2644 } 2645 2646 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2647 __acquires(&cgroup_threadgroup_rwsem) 2648 { 2649 struct task_struct *tsk; 2650 pid_t pid; 2651 2652 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2653 return ERR_PTR(-EINVAL); 2654 2655 percpu_down_write(&cgroup_threadgroup_rwsem); 2656 2657 rcu_read_lock(); 2658 if (pid) { 2659 tsk = find_task_by_vpid(pid); 2660 if (!tsk) { 2661 tsk = ERR_PTR(-ESRCH); 2662 goto out_unlock_threadgroup; 2663 } 2664 } else { 2665 tsk = current; 2666 } 2667 2668 if (threadgroup) 2669 tsk = tsk->group_leader; 2670 2671 /* 2672 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2673 * If userland migrates such a kthread to a non-root cgroup, it can 2674 * become trapped in a cpuset, or RT kthread may be born in a 2675 * cgroup with no rt_runtime allocated. Just say no. 2676 */ 2677 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2678 tsk = ERR_PTR(-EINVAL); 2679 goto out_unlock_threadgroup; 2680 } 2681 2682 get_task_struct(tsk); 2683 goto out_unlock_rcu; 2684 2685 out_unlock_threadgroup: 2686 percpu_up_write(&cgroup_threadgroup_rwsem); 2687 out_unlock_rcu: 2688 rcu_read_unlock(); 2689 return tsk; 2690 } 2691 2692 void cgroup_procs_write_finish(struct task_struct *task) 2693 __releases(&cgroup_threadgroup_rwsem) 2694 { 2695 struct cgroup_subsys *ss; 2696 int ssid; 2697 2698 /* release reference from cgroup_procs_write_start() */ 2699 put_task_struct(task); 2700 2701 percpu_up_write(&cgroup_threadgroup_rwsem); 2702 for_each_subsys(ss, ssid) 2703 if (ss->post_attach) 2704 ss->post_attach(); 2705 } 2706 2707 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2708 { 2709 struct cgroup_subsys *ss; 2710 bool printed = false; 2711 int ssid; 2712 2713 do_each_subsys_mask(ss, ssid, ss_mask) { 2714 if (printed) 2715 seq_putc(seq, ' '); 2716 seq_printf(seq, "%s", ss->name); 2717 printed = true; 2718 } while_each_subsys_mask(); 2719 if (printed) 2720 seq_putc(seq, '\n'); 2721 } 2722 2723 /* show controllers which are enabled from the parent */ 2724 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2725 { 2726 struct cgroup *cgrp = seq_css(seq)->cgroup; 2727 2728 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2729 return 0; 2730 } 2731 2732 /* show controllers which are enabled for a given cgroup's children */ 2733 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2734 { 2735 struct cgroup *cgrp = seq_css(seq)->cgroup; 2736 2737 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2738 return 0; 2739 } 2740 2741 /** 2742 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2743 * @cgrp: root of the subtree to update csses for 2744 * 2745 * @cgrp's control masks have changed and its subtree's css associations 2746 * need to be updated accordingly. This function looks up all css_sets 2747 * which are attached to the subtree, creates the matching updated css_sets 2748 * and migrates the tasks to the new ones. 2749 */ 2750 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2751 { 2752 DEFINE_CGROUP_MGCTX(mgctx); 2753 struct cgroup_subsys_state *d_css; 2754 struct cgroup *dsct; 2755 struct css_set *src_cset; 2756 int ret; 2757 2758 lockdep_assert_held(&cgroup_mutex); 2759 2760 percpu_down_write(&cgroup_threadgroup_rwsem); 2761 2762 /* look up all csses currently attached to @cgrp's subtree */ 2763 spin_lock_irq(&css_set_lock); 2764 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2765 struct cgrp_cset_link *link; 2766 2767 list_for_each_entry(link, &dsct->cset_links, cset_link) 2768 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2769 } 2770 spin_unlock_irq(&css_set_lock); 2771 2772 /* NULL dst indicates self on default hierarchy */ 2773 ret = cgroup_migrate_prepare_dst(&mgctx); 2774 if (ret) 2775 goto out_finish; 2776 2777 spin_lock_irq(&css_set_lock); 2778 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2779 struct task_struct *task, *ntask; 2780 2781 /* all tasks in src_csets need to be migrated */ 2782 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2783 cgroup_migrate_add_task(task, &mgctx); 2784 } 2785 spin_unlock_irq(&css_set_lock); 2786 2787 ret = cgroup_migrate_execute(&mgctx); 2788 out_finish: 2789 cgroup_migrate_finish(&mgctx); 2790 percpu_up_write(&cgroup_threadgroup_rwsem); 2791 return ret; 2792 } 2793 2794 /** 2795 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2796 * @cgrp: root of the target subtree 2797 * 2798 * Because css offlining is asynchronous, userland may try to re-enable a 2799 * controller while the previous css is still around. This function grabs 2800 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2801 */ 2802 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2803 __acquires(&cgroup_mutex) 2804 { 2805 struct cgroup *dsct; 2806 struct cgroup_subsys_state *d_css; 2807 struct cgroup_subsys *ss; 2808 int ssid; 2809 2810 restart: 2811 mutex_lock(&cgroup_mutex); 2812 2813 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2814 for_each_subsys(ss, ssid) { 2815 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2816 DEFINE_WAIT(wait); 2817 2818 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2819 continue; 2820 2821 cgroup_get_live(dsct); 2822 prepare_to_wait(&dsct->offline_waitq, &wait, 2823 TASK_UNINTERRUPTIBLE); 2824 2825 mutex_unlock(&cgroup_mutex); 2826 schedule(); 2827 finish_wait(&dsct->offline_waitq, &wait); 2828 2829 cgroup_put(dsct); 2830 goto restart; 2831 } 2832 } 2833 } 2834 2835 /** 2836 * cgroup_save_control - save control masks of a subtree 2837 * @cgrp: root of the target subtree 2838 * 2839 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2840 * prefixed fields for @cgrp's subtree including @cgrp itself. 2841 */ 2842 static void cgroup_save_control(struct cgroup *cgrp) 2843 { 2844 struct cgroup *dsct; 2845 struct cgroup_subsys_state *d_css; 2846 2847 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2848 dsct->old_subtree_control = dsct->subtree_control; 2849 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2850 } 2851 } 2852 2853 /** 2854 * cgroup_propagate_control - refresh control masks of a subtree 2855 * @cgrp: root of the target subtree 2856 * 2857 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2858 * ->subtree_control and propagate controller availability through the 2859 * subtree so that descendants don't have unavailable controllers enabled. 2860 */ 2861 static void cgroup_propagate_control(struct cgroup *cgrp) 2862 { 2863 struct cgroup *dsct; 2864 struct cgroup_subsys_state *d_css; 2865 2866 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2867 dsct->subtree_control &= cgroup_control(dsct); 2868 dsct->subtree_ss_mask = 2869 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2870 cgroup_ss_mask(dsct)); 2871 } 2872 } 2873 2874 /** 2875 * cgroup_restore_control - restore control masks of a subtree 2876 * @cgrp: root of the target subtree 2877 * 2878 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2879 * prefixed fields for @cgrp's subtree including @cgrp itself. 2880 */ 2881 static void cgroup_restore_control(struct cgroup *cgrp) 2882 { 2883 struct cgroup *dsct; 2884 struct cgroup_subsys_state *d_css; 2885 2886 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2887 dsct->subtree_control = dsct->old_subtree_control; 2888 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2889 } 2890 } 2891 2892 static bool css_visible(struct cgroup_subsys_state *css) 2893 { 2894 struct cgroup_subsys *ss = css->ss; 2895 struct cgroup *cgrp = css->cgroup; 2896 2897 if (cgroup_control(cgrp) & (1 << ss->id)) 2898 return true; 2899 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2900 return false; 2901 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2902 } 2903 2904 /** 2905 * cgroup_apply_control_enable - enable or show csses according to control 2906 * @cgrp: root of the target subtree 2907 * 2908 * Walk @cgrp's subtree and create new csses or make the existing ones 2909 * visible. A css is created invisible if it's being implicitly enabled 2910 * through dependency. An invisible css is made visible when the userland 2911 * explicitly enables it. 2912 * 2913 * Returns 0 on success, -errno on failure. On failure, csses which have 2914 * been processed already aren't cleaned up. The caller is responsible for 2915 * cleaning up with cgroup_apply_control_disable(). 2916 */ 2917 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2918 { 2919 struct cgroup *dsct; 2920 struct cgroup_subsys_state *d_css; 2921 struct cgroup_subsys *ss; 2922 int ssid, ret; 2923 2924 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2925 for_each_subsys(ss, ssid) { 2926 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2927 2928 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2929 2930 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2931 continue; 2932 2933 if (!css) { 2934 css = css_create(dsct, ss); 2935 if (IS_ERR(css)) 2936 return PTR_ERR(css); 2937 } 2938 2939 if (css_visible(css)) { 2940 ret = css_populate_dir(css); 2941 if (ret) 2942 return ret; 2943 } 2944 } 2945 } 2946 2947 return 0; 2948 } 2949 2950 /** 2951 * cgroup_apply_control_disable - kill or hide csses according to control 2952 * @cgrp: root of the target subtree 2953 * 2954 * Walk @cgrp's subtree and kill and hide csses so that they match 2955 * cgroup_ss_mask() and cgroup_visible_mask(). 2956 * 2957 * A css is hidden when the userland requests it to be disabled while other 2958 * subsystems are still depending on it. The css must not actively control 2959 * resources and be in the vanilla state if it's made visible again later. 2960 * Controllers which may be depended upon should provide ->css_reset() for 2961 * this purpose. 2962 */ 2963 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2964 { 2965 struct cgroup *dsct; 2966 struct cgroup_subsys_state *d_css; 2967 struct cgroup_subsys *ss; 2968 int ssid; 2969 2970 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2971 for_each_subsys(ss, ssid) { 2972 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2973 2974 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2975 2976 if (!css) 2977 continue; 2978 2979 if (css->parent && 2980 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2981 kill_css(css); 2982 } else if (!css_visible(css)) { 2983 css_clear_dir(css); 2984 if (ss->css_reset) 2985 ss->css_reset(css); 2986 } 2987 } 2988 } 2989 } 2990 2991 /** 2992 * cgroup_apply_control - apply control mask updates to the subtree 2993 * @cgrp: root of the target subtree 2994 * 2995 * subsystems can be enabled and disabled in a subtree using the following 2996 * steps. 2997 * 2998 * 1. Call cgroup_save_control() to stash the current state. 2999 * 2. Update ->subtree_control masks in the subtree as desired. 3000 * 3. Call cgroup_apply_control() to apply the changes. 3001 * 4. Optionally perform other related operations. 3002 * 5. Call cgroup_finalize_control() to finish up. 3003 * 3004 * This function implements step 3 and propagates the mask changes 3005 * throughout @cgrp's subtree, updates csses accordingly and perform 3006 * process migrations. 3007 */ 3008 static int cgroup_apply_control(struct cgroup *cgrp) 3009 { 3010 int ret; 3011 3012 cgroup_propagate_control(cgrp); 3013 3014 ret = cgroup_apply_control_enable(cgrp); 3015 if (ret) 3016 return ret; 3017 3018 /* 3019 * At this point, cgroup_e_css() results reflect the new csses 3020 * making the following cgroup_update_dfl_csses() properly update 3021 * css associations of all tasks in the subtree. 3022 */ 3023 ret = cgroup_update_dfl_csses(cgrp); 3024 if (ret) 3025 return ret; 3026 3027 return 0; 3028 } 3029 3030 /** 3031 * cgroup_finalize_control - finalize control mask update 3032 * @cgrp: root of the target subtree 3033 * @ret: the result of the update 3034 * 3035 * Finalize control mask update. See cgroup_apply_control() for more info. 3036 */ 3037 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3038 { 3039 if (ret) { 3040 cgroup_restore_control(cgrp); 3041 cgroup_propagate_control(cgrp); 3042 } 3043 3044 cgroup_apply_control_disable(cgrp); 3045 } 3046 3047 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3048 { 3049 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3050 3051 /* if nothing is getting enabled, nothing to worry about */ 3052 if (!enable) 3053 return 0; 3054 3055 /* can @cgrp host any resources? */ 3056 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3057 return -EOPNOTSUPP; 3058 3059 /* mixables don't care */ 3060 if (cgroup_is_mixable(cgrp)) 3061 return 0; 3062 3063 if (domain_enable) { 3064 /* can't enable domain controllers inside a thread subtree */ 3065 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3066 return -EOPNOTSUPP; 3067 } else { 3068 /* 3069 * Threaded controllers can handle internal competitions 3070 * and are always allowed inside a (prospective) thread 3071 * subtree. 3072 */ 3073 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3074 return 0; 3075 } 3076 3077 /* 3078 * Controllers can't be enabled for a cgroup with tasks to avoid 3079 * child cgroups competing against tasks. 3080 */ 3081 if (cgroup_has_tasks(cgrp)) 3082 return -EBUSY; 3083 3084 return 0; 3085 } 3086 3087 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3088 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3089 char *buf, size_t nbytes, 3090 loff_t off) 3091 { 3092 u16 enable = 0, disable = 0; 3093 struct cgroup *cgrp, *child; 3094 struct cgroup_subsys *ss; 3095 char *tok; 3096 int ssid, ret; 3097 3098 /* 3099 * Parse input - space separated list of subsystem names prefixed 3100 * with either + or -. 3101 */ 3102 buf = strstrip(buf); 3103 while ((tok = strsep(&buf, " "))) { 3104 if (tok[0] == '\0') 3105 continue; 3106 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3107 if (!cgroup_ssid_enabled(ssid) || 3108 strcmp(tok + 1, ss->name)) 3109 continue; 3110 3111 if (*tok == '+') { 3112 enable |= 1 << ssid; 3113 disable &= ~(1 << ssid); 3114 } else if (*tok == '-') { 3115 disable |= 1 << ssid; 3116 enable &= ~(1 << ssid); 3117 } else { 3118 return -EINVAL; 3119 } 3120 break; 3121 } while_each_subsys_mask(); 3122 if (ssid == CGROUP_SUBSYS_COUNT) 3123 return -EINVAL; 3124 } 3125 3126 cgrp = cgroup_kn_lock_live(of->kn, true); 3127 if (!cgrp) 3128 return -ENODEV; 3129 3130 for_each_subsys(ss, ssid) { 3131 if (enable & (1 << ssid)) { 3132 if (cgrp->subtree_control & (1 << ssid)) { 3133 enable &= ~(1 << ssid); 3134 continue; 3135 } 3136 3137 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3138 ret = -ENOENT; 3139 goto out_unlock; 3140 } 3141 } else if (disable & (1 << ssid)) { 3142 if (!(cgrp->subtree_control & (1 << ssid))) { 3143 disable &= ~(1 << ssid); 3144 continue; 3145 } 3146 3147 /* a child has it enabled? */ 3148 cgroup_for_each_live_child(child, cgrp) { 3149 if (child->subtree_control & (1 << ssid)) { 3150 ret = -EBUSY; 3151 goto out_unlock; 3152 } 3153 } 3154 } 3155 } 3156 3157 if (!enable && !disable) { 3158 ret = 0; 3159 goto out_unlock; 3160 } 3161 3162 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3163 if (ret) 3164 goto out_unlock; 3165 3166 /* save and update control masks and prepare csses */ 3167 cgroup_save_control(cgrp); 3168 3169 cgrp->subtree_control |= enable; 3170 cgrp->subtree_control &= ~disable; 3171 3172 ret = cgroup_apply_control(cgrp); 3173 cgroup_finalize_control(cgrp, ret); 3174 if (ret) 3175 goto out_unlock; 3176 3177 kernfs_activate(cgrp->kn); 3178 out_unlock: 3179 cgroup_kn_unlock(of->kn); 3180 return ret ?: nbytes; 3181 } 3182 3183 /** 3184 * cgroup_enable_threaded - make @cgrp threaded 3185 * @cgrp: the target cgroup 3186 * 3187 * Called when "threaded" is written to the cgroup.type interface file and 3188 * tries to make @cgrp threaded and join the parent's resource domain. 3189 * This function is never called on the root cgroup as cgroup.type doesn't 3190 * exist on it. 3191 */ 3192 static int cgroup_enable_threaded(struct cgroup *cgrp) 3193 { 3194 struct cgroup *parent = cgroup_parent(cgrp); 3195 struct cgroup *dom_cgrp = parent->dom_cgrp; 3196 int ret; 3197 3198 lockdep_assert_held(&cgroup_mutex); 3199 3200 /* noop if already threaded */ 3201 if (cgroup_is_threaded(cgrp)) 3202 return 0; 3203 3204 /* 3205 * If @cgroup is populated or has domain controllers enabled, it 3206 * can't be switched. While the below cgroup_can_be_thread_root() 3207 * test can catch the same conditions, that's only when @parent is 3208 * not mixable, so let's check it explicitly. 3209 */ 3210 if (cgroup_is_populated(cgrp) || 3211 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3212 return -EOPNOTSUPP; 3213 3214 /* we're joining the parent's domain, ensure its validity */ 3215 if (!cgroup_is_valid_domain(dom_cgrp) || 3216 !cgroup_can_be_thread_root(dom_cgrp)) 3217 return -EOPNOTSUPP; 3218 3219 /* 3220 * The following shouldn't cause actual migrations and should 3221 * always succeed. 3222 */ 3223 cgroup_save_control(cgrp); 3224 3225 cgrp->dom_cgrp = dom_cgrp; 3226 ret = cgroup_apply_control(cgrp); 3227 if (!ret) 3228 parent->nr_threaded_children++; 3229 else 3230 cgrp->dom_cgrp = cgrp; 3231 3232 cgroup_finalize_control(cgrp, ret); 3233 return ret; 3234 } 3235 3236 static int cgroup_type_show(struct seq_file *seq, void *v) 3237 { 3238 struct cgroup *cgrp = seq_css(seq)->cgroup; 3239 3240 if (cgroup_is_threaded(cgrp)) 3241 seq_puts(seq, "threaded\n"); 3242 else if (!cgroup_is_valid_domain(cgrp)) 3243 seq_puts(seq, "domain invalid\n"); 3244 else if (cgroup_is_thread_root(cgrp)) 3245 seq_puts(seq, "domain threaded\n"); 3246 else 3247 seq_puts(seq, "domain\n"); 3248 3249 return 0; 3250 } 3251 3252 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3253 size_t nbytes, loff_t off) 3254 { 3255 struct cgroup *cgrp; 3256 int ret; 3257 3258 /* only switching to threaded mode is supported */ 3259 if (strcmp(strstrip(buf), "threaded")) 3260 return -EINVAL; 3261 3262 cgrp = cgroup_kn_lock_live(of->kn, false); 3263 if (!cgrp) 3264 return -ENOENT; 3265 3266 /* threaded can only be enabled */ 3267 ret = cgroup_enable_threaded(cgrp); 3268 3269 cgroup_kn_unlock(of->kn); 3270 return ret ?: nbytes; 3271 } 3272 3273 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3274 { 3275 struct cgroup *cgrp = seq_css(seq)->cgroup; 3276 int descendants = READ_ONCE(cgrp->max_descendants); 3277 3278 if (descendants == INT_MAX) 3279 seq_puts(seq, "max\n"); 3280 else 3281 seq_printf(seq, "%d\n", descendants); 3282 3283 return 0; 3284 } 3285 3286 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3287 char *buf, size_t nbytes, loff_t off) 3288 { 3289 struct cgroup *cgrp; 3290 int descendants; 3291 ssize_t ret; 3292 3293 buf = strstrip(buf); 3294 if (!strcmp(buf, "max")) { 3295 descendants = INT_MAX; 3296 } else { 3297 ret = kstrtoint(buf, 0, &descendants); 3298 if (ret) 3299 return ret; 3300 } 3301 3302 if (descendants < 0) 3303 return -ERANGE; 3304 3305 cgrp = cgroup_kn_lock_live(of->kn, false); 3306 if (!cgrp) 3307 return -ENOENT; 3308 3309 cgrp->max_descendants = descendants; 3310 3311 cgroup_kn_unlock(of->kn); 3312 3313 return nbytes; 3314 } 3315 3316 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3317 { 3318 struct cgroup *cgrp = seq_css(seq)->cgroup; 3319 int depth = READ_ONCE(cgrp->max_depth); 3320 3321 if (depth == INT_MAX) 3322 seq_puts(seq, "max\n"); 3323 else 3324 seq_printf(seq, "%d\n", depth); 3325 3326 return 0; 3327 } 3328 3329 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3330 char *buf, size_t nbytes, loff_t off) 3331 { 3332 struct cgroup *cgrp; 3333 ssize_t ret; 3334 int depth; 3335 3336 buf = strstrip(buf); 3337 if (!strcmp(buf, "max")) { 3338 depth = INT_MAX; 3339 } else { 3340 ret = kstrtoint(buf, 0, &depth); 3341 if (ret) 3342 return ret; 3343 } 3344 3345 if (depth < 0) 3346 return -ERANGE; 3347 3348 cgrp = cgroup_kn_lock_live(of->kn, false); 3349 if (!cgrp) 3350 return -ENOENT; 3351 3352 cgrp->max_depth = depth; 3353 3354 cgroup_kn_unlock(of->kn); 3355 3356 return nbytes; 3357 } 3358 3359 static int cgroup_events_show(struct seq_file *seq, void *v) 3360 { 3361 seq_printf(seq, "populated %d\n", 3362 cgroup_is_populated(seq_css(seq)->cgroup)); 3363 return 0; 3364 } 3365 3366 static int cgroup_stat_show(struct seq_file *seq, void *v) 3367 { 3368 struct cgroup *cgroup = seq_css(seq)->cgroup; 3369 3370 seq_printf(seq, "nr_descendants %d\n", 3371 cgroup->nr_descendants); 3372 seq_printf(seq, "nr_dying_descendants %d\n", 3373 cgroup->nr_dying_descendants); 3374 3375 return 0; 3376 } 3377 3378 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3379 struct cgroup *cgrp, int ssid) 3380 { 3381 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3382 struct cgroup_subsys_state *css; 3383 int ret; 3384 3385 if (!ss->css_extra_stat_show) 3386 return 0; 3387 3388 css = cgroup_tryget_css(cgrp, ss); 3389 if (!css) 3390 return 0; 3391 3392 ret = ss->css_extra_stat_show(seq, css); 3393 css_put(css); 3394 return ret; 3395 } 3396 3397 static int cpu_stat_show(struct seq_file *seq, void *v) 3398 { 3399 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3400 int ret = 0; 3401 3402 cgroup_base_stat_cputime_show(seq); 3403 #ifdef CONFIG_CGROUP_SCHED 3404 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3405 #endif 3406 return ret; 3407 } 3408 3409 static int cgroup_file_open(struct kernfs_open_file *of) 3410 { 3411 struct cftype *cft = of->kn->priv; 3412 3413 if (cft->open) 3414 return cft->open(of); 3415 return 0; 3416 } 3417 3418 static void cgroup_file_release(struct kernfs_open_file *of) 3419 { 3420 struct cftype *cft = of->kn->priv; 3421 3422 if (cft->release) 3423 cft->release(of); 3424 } 3425 3426 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3427 size_t nbytes, loff_t off) 3428 { 3429 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3430 struct cgroup *cgrp = of->kn->parent->priv; 3431 struct cftype *cft = of->kn->priv; 3432 struct cgroup_subsys_state *css; 3433 int ret; 3434 3435 /* 3436 * If namespaces are delegation boundaries, disallow writes to 3437 * files in an non-init namespace root from inside the namespace 3438 * except for the files explicitly marked delegatable - 3439 * cgroup.procs and cgroup.subtree_control. 3440 */ 3441 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3442 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3443 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3444 return -EPERM; 3445 3446 if (cft->write) 3447 return cft->write(of, buf, nbytes, off); 3448 3449 /* 3450 * kernfs guarantees that a file isn't deleted with operations in 3451 * flight, which means that the matching css is and stays alive and 3452 * doesn't need to be pinned. The RCU locking is not necessary 3453 * either. It's just for the convenience of using cgroup_css(). 3454 */ 3455 rcu_read_lock(); 3456 css = cgroup_css(cgrp, cft->ss); 3457 rcu_read_unlock(); 3458 3459 if (cft->write_u64) { 3460 unsigned long long v; 3461 ret = kstrtoull(buf, 0, &v); 3462 if (!ret) 3463 ret = cft->write_u64(css, cft, v); 3464 } else if (cft->write_s64) { 3465 long long v; 3466 ret = kstrtoll(buf, 0, &v); 3467 if (!ret) 3468 ret = cft->write_s64(css, cft, v); 3469 } else { 3470 ret = -EINVAL; 3471 } 3472 3473 return ret ?: nbytes; 3474 } 3475 3476 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3477 { 3478 return seq_cft(seq)->seq_start(seq, ppos); 3479 } 3480 3481 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3482 { 3483 return seq_cft(seq)->seq_next(seq, v, ppos); 3484 } 3485 3486 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3487 { 3488 if (seq_cft(seq)->seq_stop) 3489 seq_cft(seq)->seq_stop(seq, v); 3490 } 3491 3492 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3493 { 3494 struct cftype *cft = seq_cft(m); 3495 struct cgroup_subsys_state *css = seq_css(m); 3496 3497 if (cft->seq_show) 3498 return cft->seq_show(m, arg); 3499 3500 if (cft->read_u64) 3501 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3502 else if (cft->read_s64) 3503 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3504 else 3505 return -EINVAL; 3506 return 0; 3507 } 3508 3509 static struct kernfs_ops cgroup_kf_single_ops = { 3510 .atomic_write_len = PAGE_SIZE, 3511 .open = cgroup_file_open, 3512 .release = cgroup_file_release, 3513 .write = cgroup_file_write, 3514 .seq_show = cgroup_seqfile_show, 3515 }; 3516 3517 static struct kernfs_ops cgroup_kf_ops = { 3518 .atomic_write_len = PAGE_SIZE, 3519 .open = cgroup_file_open, 3520 .release = cgroup_file_release, 3521 .write = cgroup_file_write, 3522 .seq_start = cgroup_seqfile_start, 3523 .seq_next = cgroup_seqfile_next, 3524 .seq_stop = cgroup_seqfile_stop, 3525 .seq_show = cgroup_seqfile_show, 3526 }; 3527 3528 /* set uid and gid of cgroup dirs and files to that of the creator */ 3529 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3530 { 3531 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3532 .ia_uid = current_fsuid(), 3533 .ia_gid = current_fsgid(), }; 3534 3535 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3536 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3537 return 0; 3538 3539 return kernfs_setattr(kn, &iattr); 3540 } 3541 3542 static void cgroup_file_notify_timer(struct timer_list *timer) 3543 { 3544 cgroup_file_notify(container_of(timer, struct cgroup_file, 3545 notify_timer)); 3546 } 3547 3548 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3549 struct cftype *cft) 3550 { 3551 char name[CGROUP_FILE_NAME_MAX]; 3552 struct kernfs_node *kn; 3553 struct lock_class_key *key = NULL; 3554 int ret; 3555 3556 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3557 key = &cft->lockdep_key; 3558 #endif 3559 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3560 cgroup_file_mode(cft), 3561 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3562 0, cft->kf_ops, cft, 3563 NULL, key); 3564 if (IS_ERR(kn)) 3565 return PTR_ERR(kn); 3566 3567 ret = cgroup_kn_set_ugid(kn); 3568 if (ret) { 3569 kernfs_remove(kn); 3570 return ret; 3571 } 3572 3573 if (cft->file_offset) { 3574 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3575 3576 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3577 3578 spin_lock_irq(&cgroup_file_kn_lock); 3579 cfile->kn = kn; 3580 spin_unlock_irq(&cgroup_file_kn_lock); 3581 } 3582 3583 return 0; 3584 } 3585 3586 /** 3587 * cgroup_addrm_files - add or remove files to a cgroup directory 3588 * @css: the target css 3589 * @cgrp: the target cgroup (usually css->cgroup) 3590 * @cfts: array of cftypes to be added 3591 * @is_add: whether to add or remove 3592 * 3593 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3594 * For removals, this function never fails. 3595 */ 3596 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3597 struct cgroup *cgrp, struct cftype cfts[], 3598 bool is_add) 3599 { 3600 struct cftype *cft, *cft_end = NULL; 3601 int ret = 0; 3602 3603 lockdep_assert_held(&cgroup_mutex); 3604 3605 restart: 3606 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3607 /* does cft->flags tell us to skip this file on @cgrp? */ 3608 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3609 continue; 3610 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3611 continue; 3612 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3613 continue; 3614 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3615 continue; 3616 3617 if (is_add) { 3618 ret = cgroup_add_file(css, cgrp, cft); 3619 if (ret) { 3620 pr_warn("%s: failed to add %s, err=%d\n", 3621 __func__, cft->name, ret); 3622 cft_end = cft; 3623 is_add = false; 3624 goto restart; 3625 } 3626 } else { 3627 cgroup_rm_file(cgrp, cft); 3628 } 3629 } 3630 return ret; 3631 } 3632 3633 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3634 { 3635 struct cgroup_subsys *ss = cfts[0].ss; 3636 struct cgroup *root = &ss->root->cgrp; 3637 struct cgroup_subsys_state *css; 3638 int ret = 0; 3639 3640 lockdep_assert_held(&cgroup_mutex); 3641 3642 /* add/rm files for all cgroups created before */ 3643 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3644 struct cgroup *cgrp = css->cgroup; 3645 3646 if (!(css->flags & CSS_VISIBLE)) 3647 continue; 3648 3649 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3650 if (ret) 3651 break; 3652 } 3653 3654 if (is_add && !ret) 3655 kernfs_activate(root->kn); 3656 return ret; 3657 } 3658 3659 static void cgroup_exit_cftypes(struct cftype *cfts) 3660 { 3661 struct cftype *cft; 3662 3663 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3664 /* free copy for custom atomic_write_len, see init_cftypes() */ 3665 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3666 kfree(cft->kf_ops); 3667 cft->kf_ops = NULL; 3668 cft->ss = NULL; 3669 3670 /* revert flags set by cgroup core while adding @cfts */ 3671 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3672 } 3673 } 3674 3675 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3676 { 3677 struct cftype *cft; 3678 3679 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3680 struct kernfs_ops *kf_ops; 3681 3682 WARN_ON(cft->ss || cft->kf_ops); 3683 3684 if (cft->seq_start) 3685 kf_ops = &cgroup_kf_ops; 3686 else 3687 kf_ops = &cgroup_kf_single_ops; 3688 3689 /* 3690 * Ugh... if @cft wants a custom max_write_len, we need to 3691 * make a copy of kf_ops to set its atomic_write_len. 3692 */ 3693 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3694 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3695 if (!kf_ops) { 3696 cgroup_exit_cftypes(cfts); 3697 return -ENOMEM; 3698 } 3699 kf_ops->atomic_write_len = cft->max_write_len; 3700 } 3701 3702 cft->kf_ops = kf_ops; 3703 cft->ss = ss; 3704 } 3705 3706 return 0; 3707 } 3708 3709 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3710 { 3711 lockdep_assert_held(&cgroup_mutex); 3712 3713 if (!cfts || !cfts[0].ss) 3714 return -ENOENT; 3715 3716 list_del(&cfts->node); 3717 cgroup_apply_cftypes(cfts, false); 3718 cgroup_exit_cftypes(cfts); 3719 return 0; 3720 } 3721 3722 /** 3723 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3724 * @cfts: zero-length name terminated array of cftypes 3725 * 3726 * Unregister @cfts. Files described by @cfts are removed from all 3727 * existing cgroups and all future cgroups won't have them either. This 3728 * function can be called anytime whether @cfts' subsys is attached or not. 3729 * 3730 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3731 * registered. 3732 */ 3733 int cgroup_rm_cftypes(struct cftype *cfts) 3734 { 3735 int ret; 3736 3737 mutex_lock(&cgroup_mutex); 3738 ret = cgroup_rm_cftypes_locked(cfts); 3739 mutex_unlock(&cgroup_mutex); 3740 return ret; 3741 } 3742 3743 /** 3744 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3745 * @ss: target cgroup subsystem 3746 * @cfts: zero-length name terminated array of cftypes 3747 * 3748 * Register @cfts to @ss. Files described by @cfts are created for all 3749 * existing cgroups to which @ss is attached and all future cgroups will 3750 * have them too. This function can be called anytime whether @ss is 3751 * attached or not. 3752 * 3753 * Returns 0 on successful registration, -errno on failure. Note that this 3754 * function currently returns 0 as long as @cfts registration is successful 3755 * even if some file creation attempts on existing cgroups fail. 3756 */ 3757 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3758 { 3759 int ret; 3760 3761 if (!cgroup_ssid_enabled(ss->id)) 3762 return 0; 3763 3764 if (!cfts || cfts[0].name[0] == '\0') 3765 return 0; 3766 3767 ret = cgroup_init_cftypes(ss, cfts); 3768 if (ret) 3769 return ret; 3770 3771 mutex_lock(&cgroup_mutex); 3772 3773 list_add_tail(&cfts->node, &ss->cfts); 3774 ret = cgroup_apply_cftypes(cfts, true); 3775 if (ret) 3776 cgroup_rm_cftypes_locked(cfts); 3777 3778 mutex_unlock(&cgroup_mutex); 3779 return ret; 3780 } 3781 3782 /** 3783 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3784 * @ss: target cgroup subsystem 3785 * @cfts: zero-length name terminated array of cftypes 3786 * 3787 * Similar to cgroup_add_cftypes() but the added files are only used for 3788 * the default hierarchy. 3789 */ 3790 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3791 { 3792 struct cftype *cft; 3793 3794 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3795 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3796 return cgroup_add_cftypes(ss, cfts); 3797 } 3798 3799 /** 3800 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3801 * @ss: target cgroup subsystem 3802 * @cfts: zero-length name terminated array of cftypes 3803 * 3804 * Similar to cgroup_add_cftypes() but the added files are only used for 3805 * the legacy hierarchies. 3806 */ 3807 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3808 { 3809 struct cftype *cft; 3810 3811 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3812 cft->flags |= __CFTYPE_NOT_ON_DFL; 3813 return cgroup_add_cftypes(ss, cfts); 3814 } 3815 3816 /** 3817 * cgroup_file_notify - generate a file modified event for a cgroup_file 3818 * @cfile: target cgroup_file 3819 * 3820 * @cfile must have been obtained by setting cftype->file_offset. 3821 */ 3822 void cgroup_file_notify(struct cgroup_file *cfile) 3823 { 3824 unsigned long flags; 3825 3826 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3827 if (cfile->kn) { 3828 unsigned long last = cfile->notified_at; 3829 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 3830 3831 if (time_in_range(jiffies, last, next)) { 3832 timer_reduce(&cfile->notify_timer, next); 3833 } else { 3834 kernfs_notify(cfile->kn); 3835 cfile->notified_at = jiffies; 3836 } 3837 } 3838 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3839 } 3840 3841 /** 3842 * css_next_child - find the next child of a given css 3843 * @pos: the current position (%NULL to initiate traversal) 3844 * @parent: css whose children to walk 3845 * 3846 * This function returns the next child of @parent and should be called 3847 * under either cgroup_mutex or RCU read lock. The only requirement is 3848 * that @parent and @pos are accessible. The next sibling is guaranteed to 3849 * be returned regardless of their states. 3850 * 3851 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3852 * css which finished ->css_online() is guaranteed to be visible in the 3853 * future iterations and will stay visible until the last reference is put. 3854 * A css which hasn't finished ->css_online() or already finished 3855 * ->css_offline() may show up during traversal. It's each subsystem's 3856 * responsibility to synchronize against on/offlining. 3857 */ 3858 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3859 struct cgroup_subsys_state *parent) 3860 { 3861 struct cgroup_subsys_state *next; 3862 3863 cgroup_assert_mutex_or_rcu_locked(); 3864 3865 /* 3866 * @pos could already have been unlinked from the sibling list. 3867 * Once a cgroup is removed, its ->sibling.next is no longer 3868 * updated when its next sibling changes. CSS_RELEASED is set when 3869 * @pos is taken off list, at which time its next pointer is valid, 3870 * and, as releases are serialized, the one pointed to by the next 3871 * pointer is guaranteed to not have started release yet. This 3872 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3873 * critical section, the one pointed to by its next pointer is 3874 * guaranteed to not have finished its RCU grace period even if we 3875 * have dropped rcu_read_lock() inbetween iterations. 3876 * 3877 * If @pos has CSS_RELEASED set, its next pointer can't be 3878 * dereferenced; however, as each css is given a monotonically 3879 * increasing unique serial number and always appended to the 3880 * sibling list, the next one can be found by walking the parent's 3881 * children until the first css with higher serial number than 3882 * @pos's. While this path can be slower, it happens iff iteration 3883 * races against release and the race window is very small. 3884 */ 3885 if (!pos) { 3886 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3887 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3888 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3889 } else { 3890 list_for_each_entry_rcu(next, &parent->children, sibling) 3891 if (next->serial_nr > pos->serial_nr) 3892 break; 3893 } 3894 3895 /* 3896 * @next, if not pointing to the head, can be dereferenced and is 3897 * the next sibling. 3898 */ 3899 if (&next->sibling != &parent->children) 3900 return next; 3901 return NULL; 3902 } 3903 3904 /** 3905 * css_next_descendant_pre - find the next descendant for pre-order walk 3906 * @pos: the current position (%NULL to initiate traversal) 3907 * @root: css whose descendants to walk 3908 * 3909 * To be used by css_for_each_descendant_pre(). Find the next descendant 3910 * to visit for pre-order traversal of @root's descendants. @root is 3911 * included in the iteration and the first node to be visited. 3912 * 3913 * While this function requires cgroup_mutex or RCU read locking, it 3914 * doesn't require the whole traversal to be contained in a single critical 3915 * section. This function will return the correct next descendant as long 3916 * as both @pos and @root are accessible and @pos is a descendant of @root. 3917 * 3918 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3919 * css which finished ->css_online() is guaranteed to be visible in the 3920 * future iterations and will stay visible until the last reference is put. 3921 * A css which hasn't finished ->css_online() or already finished 3922 * ->css_offline() may show up during traversal. It's each subsystem's 3923 * responsibility to synchronize against on/offlining. 3924 */ 3925 struct cgroup_subsys_state * 3926 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3927 struct cgroup_subsys_state *root) 3928 { 3929 struct cgroup_subsys_state *next; 3930 3931 cgroup_assert_mutex_or_rcu_locked(); 3932 3933 /* if first iteration, visit @root */ 3934 if (!pos) 3935 return root; 3936 3937 /* visit the first child if exists */ 3938 next = css_next_child(NULL, pos); 3939 if (next) 3940 return next; 3941 3942 /* no child, visit my or the closest ancestor's next sibling */ 3943 while (pos != root) { 3944 next = css_next_child(pos, pos->parent); 3945 if (next) 3946 return next; 3947 pos = pos->parent; 3948 } 3949 3950 return NULL; 3951 } 3952 3953 /** 3954 * css_rightmost_descendant - return the rightmost descendant of a css 3955 * @pos: css of interest 3956 * 3957 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3958 * is returned. This can be used during pre-order traversal to skip 3959 * subtree of @pos. 3960 * 3961 * While this function requires cgroup_mutex or RCU read locking, it 3962 * doesn't require the whole traversal to be contained in a single critical 3963 * section. This function will return the correct rightmost descendant as 3964 * long as @pos is accessible. 3965 */ 3966 struct cgroup_subsys_state * 3967 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3968 { 3969 struct cgroup_subsys_state *last, *tmp; 3970 3971 cgroup_assert_mutex_or_rcu_locked(); 3972 3973 do { 3974 last = pos; 3975 /* ->prev isn't RCU safe, walk ->next till the end */ 3976 pos = NULL; 3977 css_for_each_child(tmp, last) 3978 pos = tmp; 3979 } while (pos); 3980 3981 return last; 3982 } 3983 3984 static struct cgroup_subsys_state * 3985 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3986 { 3987 struct cgroup_subsys_state *last; 3988 3989 do { 3990 last = pos; 3991 pos = css_next_child(NULL, pos); 3992 } while (pos); 3993 3994 return last; 3995 } 3996 3997 /** 3998 * css_next_descendant_post - find the next descendant for post-order walk 3999 * @pos: the current position (%NULL to initiate traversal) 4000 * @root: css whose descendants to walk 4001 * 4002 * To be used by css_for_each_descendant_post(). Find the next descendant 4003 * to visit for post-order traversal of @root's descendants. @root is 4004 * included in the iteration and the last node to be visited. 4005 * 4006 * While this function requires cgroup_mutex or RCU read locking, it 4007 * doesn't require the whole traversal to be contained in a single critical 4008 * section. This function will return the correct next descendant as long 4009 * as both @pos and @cgroup are accessible and @pos is a descendant of 4010 * @cgroup. 4011 * 4012 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4013 * css which finished ->css_online() is guaranteed to be visible in the 4014 * future iterations and will stay visible until the last reference is put. 4015 * A css which hasn't finished ->css_online() or already finished 4016 * ->css_offline() may show up during traversal. It's each subsystem's 4017 * responsibility to synchronize against on/offlining. 4018 */ 4019 struct cgroup_subsys_state * 4020 css_next_descendant_post(struct cgroup_subsys_state *pos, 4021 struct cgroup_subsys_state *root) 4022 { 4023 struct cgroup_subsys_state *next; 4024 4025 cgroup_assert_mutex_or_rcu_locked(); 4026 4027 /* if first iteration, visit leftmost descendant which may be @root */ 4028 if (!pos) 4029 return css_leftmost_descendant(root); 4030 4031 /* if we visited @root, we're done */ 4032 if (pos == root) 4033 return NULL; 4034 4035 /* if there's an unvisited sibling, visit its leftmost descendant */ 4036 next = css_next_child(pos, pos->parent); 4037 if (next) 4038 return css_leftmost_descendant(next); 4039 4040 /* no sibling left, visit parent */ 4041 return pos->parent; 4042 } 4043 4044 /** 4045 * css_has_online_children - does a css have online children 4046 * @css: the target css 4047 * 4048 * Returns %true if @css has any online children; otherwise, %false. This 4049 * function can be called from any context but the caller is responsible 4050 * for synchronizing against on/offlining as necessary. 4051 */ 4052 bool css_has_online_children(struct cgroup_subsys_state *css) 4053 { 4054 struct cgroup_subsys_state *child; 4055 bool ret = false; 4056 4057 rcu_read_lock(); 4058 css_for_each_child(child, css) { 4059 if (child->flags & CSS_ONLINE) { 4060 ret = true; 4061 break; 4062 } 4063 } 4064 rcu_read_unlock(); 4065 return ret; 4066 } 4067 4068 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4069 { 4070 struct list_head *l; 4071 struct cgrp_cset_link *link; 4072 struct css_set *cset; 4073 4074 lockdep_assert_held(&css_set_lock); 4075 4076 /* find the next threaded cset */ 4077 if (it->tcset_pos) { 4078 l = it->tcset_pos->next; 4079 4080 if (l != it->tcset_head) { 4081 it->tcset_pos = l; 4082 return container_of(l, struct css_set, 4083 threaded_csets_node); 4084 } 4085 4086 it->tcset_pos = NULL; 4087 } 4088 4089 /* find the next cset */ 4090 l = it->cset_pos; 4091 l = l->next; 4092 if (l == it->cset_head) { 4093 it->cset_pos = NULL; 4094 return NULL; 4095 } 4096 4097 if (it->ss) { 4098 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4099 } else { 4100 link = list_entry(l, struct cgrp_cset_link, cset_link); 4101 cset = link->cset; 4102 } 4103 4104 it->cset_pos = l; 4105 4106 /* initialize threaded css_set walking */ 4107 if (it->flags & CSS_TASK_ITER_THREADED) { 4108 if (it->cur_dcset) 4109 put_css_set_locked(it->cur_dcset); 4110 it->cur_dcset = cset; 4111 get_css_set(cset); 4112 4113 it->tcset_head = &cset->threaded_csets; 4114 it->tcset_pos = &cset->threaded_csets; 4115 } 4116 4117 return cset; 4118 } 4119 4120 /** 4121 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4122 * @it: the iterator to advance 4123 * 4124 * Advance @it to the next css_set to walk. 4125 */ 4126 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4127 { 4128 struct css_set *cset; 4129 4130 lockdep_assert_held(&css_set_lock); 4131 4132 /* Advance to the next non-empty css_set */ 4133 do { 4134 cset = css_task_iter_next_css_set(it); 4135 if (!cset) { 4136 it->task_pos = NULL; 4137 return; 4138 } 4139 } while (!css_set_populated(cset)); 4140 4141 if (!list_empty(&cset->tasks)) 4142 it->task_pos = cset->tasks.next; 4143 else 4144 it->task_pos = cset->mg_tasks.next; 4145 4146 it->tasks_head = &cset->tasks; 4147 it->mg_tasks_head = &cset->mg_tasks; 4148 4149 /* 4150 * We don't keep css_sets locked across iteration steps and thus 4151 * need to take steps to ensure that iteration can be resumed after 4152 * the lock is re-acquired. Iteration is performed at two levels - 4153 * css_sets and tasks in them. 4154 * 4155 * Once created, a css_set never leaves its cgroup lists, so a 4156 * pinned css_set is guaranteed to stay put and we can resume 4157 * iteration afterwards. 4158 * 4159 * Tasks may leave @cset across iteration steps. This is resolved 4160 * by registering each iterator with the css_set currently being 4161 * walked and making css_set_move_task() advance iterators whose 4162 * next task is leaving. 4163 */ 4164 if (it->cur_cset) { 4165 list_del(&it->iters_node); 4166 put_css_set_locked(it->cur_cset); 4167 } 4168 get_css_set(cset); 4169 it->cur_cset = cset; 4170 list_add(&it->iters_node, &cset->task_iters); 4171 } 4172 4173 static void css_task_iter_advance(struct css_task_iter *it) 4174 { 4175 struct list_head *next; 4176 4177 lockdep_assert_held(&css_set_lock); 4178 repeat: 4179 /* 4180 * Advance iterator to find next entry. cset->tasks is consumed 4181 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 4182 * next cset. 4183 */ 4184 next = it->task_pos->next; 4185 4186 if (next == it->tasks_head) 4187 next = it->mg_tasks_head->next; 4188 4189 if (next == it->mg_tasks_head) 4190 css_task_iter_advance_css_set(it); 4191 else 4192 it->task_pos = next; 4193 4194 /* if PROCS, skip over tasks which aren't group leaders */ 4195 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4196 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4197 cg_list))) 4198 goto repeat; 4199 } 4200 4201 /** 4202 * css_task_iter_start - initiate task iteration 4203 * @css: the css to walk tasks of 4204 * @flags: CSS_TASK_ITER_* flags 4205 * @it: the task iterator to use 4206 * 4207 * Initiate iteration through the tasks of @css. The caller can call 4208 * css_task_iter_next() to walk through the tasks until the function 4209 * returns NULL. On completion of iteration, css_task_iter_end() must be 4210 * called. 4211 */ 4212 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4213 struct css_task_iter *it) 4214 { 4215 /* no one should try to iterate before mounting cgroups */ 4216 WARN_ON_ONCE(!use_task_css_set_links); 4217 4218 memset(it, 0, sizeof(*it)); 4219 4220 spin_lock_irq(&css_set_lock); 4221 4222 it->ss = css->ss; 4223 it->flags = flags; 4224 4225 if (it->ss) 4226 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4227 else 4228 it->cset_pos = &css->cgroup->cset_links; 4229 4230 it->cset_head = it->cset_pos; 4231 4232 css_task_iter_advance_css_set(it); 4233 4234 spin_unlock_irq(&css_set_lock); 4235 } 4236 4237 /** 4238 * css_task_iter_next - return the next task for the iterator 4239 * @it: the task iterator being iterated 4240 * 4241 * The "next" function for task iteration. @it should have been 4242 * initialized via css_task_iter_start(). Returns NULL when the iteration 4243 * reaches the end. 4244 */ 4245 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4246 { 4247 if (it->cur_task) { 4248 put_task_struct(it->cur_task); 4249 it->cur_task = NULL; 4250 } 4251 4252 spin_lock_irq(&css_set_lock); 4253 4254 if (it->task_pos) { 4255 it->cur_task = list_entry(it->task_pos, struct task_struct, 4256 cg_list); 4257 get_task_struct(it->cur_task); 4258 css_task_iter_advance(it); 4259 } 4260 4261 spin_unlock_irq(&css_set_lock); 4262 4263 return it->cur_task; 4264 } 4265 4266 /** 4267 * css_task_iter_end - finish task iteration 4268 * @it: the task iterator to finish 4269 * 4270 * Finish task iteration started by css_task_iter_start(). 4271 */ 4272 void css_task_iter_end(struct css_task_iter *it) 4273 { 4274 if (it->cur_cset) { 4275 spin_lock_irq(&css_set_lock); 4276 list_del(&it->iters_node); 4277 put_css_set_locked(it->cur_cset); 4278 spin_unlock_irq(&css_set_lock); 4279 } 4280 4281 if (it->cur_dcset) 4282 put_css_set(it->cur_dcset); 4283 4284 if (it->cur_task) 4285 put_task_struct(it->cur_task); 4286 } 4287 4288 static void cgroup_procs_release(struct kernfs_open_file *of) 4289 { 4290 if (of->priv) { 4291 css_task_iter_end(of->priv); 4292 kfree(of->priv); 4293 } 4294 } 4295 4296 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4297 { 4298 struct kernfs_open_file *of = s->private; 4299 struct css_task_iter *it = of->priv; 4300 4301 return css_task_iter_next(it); 4302 } 4303 4304 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4305 unsigned int iter_flags) 4306 { 4307 struct kernfs_open_file *of = s->private; 4308 struct cgroup *cgrp = seq_css(s)->cgroup; 4309 struct css_task_iter *it = of->priv; 4310 4311 /* 4312 * When a seq_file is seeked, it's always traversed sequentially 4313 * from position 0, so we can simply keep iterating on !0 *pos. 4314 */ 4315 if (!it) { 4316 if (WARN_ON_ONCE((*pos)++)) 4317 return ERR_PTR(-EINVAL); 4318 4319 it = kzalloc(sizeof(*it), GFP_KERNEL); 4320 if (!it) 4321 return ERR_PTR(-ENOMEM); 4322 of->priv = it; 4323 css_task_iter_start(&cgrp->self, iter_flags, it); 4324 } else if (!(*pos)++) { 4325 css_task_iter_end(it); 4326 css_task_iter_start(&cgrp->self, iter_flags, it); 4327 } 4328 4329 return cgroup_procs_next(s, NULL, NULL); 4330 } 4331 4332 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4333 { 4334 struct cgroup *cgrp = seq_css(s)->cgroup; 4335 4336 /* 4337 * All processes of a threaded subtree belong to the domain cgroup 4338 * of the subtree. Only threads can be distributed across the 4339 * subtree. Reject reads on cgroup.procs in the subtree proper. 4340 * They're always empty anyway. 4341 */ 4342 if (cgroup_is_threaded(cgrp)) 4343 return ERR_PTR(-EOPNOTSUPP); 4344 4345 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4346 CSS_TASK_ITER_THREADED); 4347 } 4348 4349 static int cgroup_procs_show(struct seq_file *s, void *v) 4350 { 4351 seq_printf(s, "%d\n", task_pid_vnr(v)); 4352 return 0; 4353 } 4354 4355 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4356 struct cgroup *dst_cgrp, 4357 struct super_block *sb) 4358 { 4359 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4360 struct cgroup *com_cgrp = src_cgrp; 4361 struct inode *inode; 4362 int ret; 4363 4364 lockdep_assert_held(&cgroup_mutex); 4365 4366 /* find the common ancestor */ 4367 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4368 com_cgrp = cgroup_parent(com_cgrp); 4369 4370 /* %current should be authorized to migrate to the common ancestor */ 4371 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4372 if (!inode) 4373 return -ENOMEM; 4374 4375 ret = inode_permission(inode, MAY_WRITE); 4376 iput(inode); 4377 if (ret) 4378 return ret; 4379 4380 /* 4381 * If namespaces are delegation boundaries, %current must be able 4382 * to see both source and destination cgroups from its namespace. 4383 */ 4384 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4385 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4386 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4387 return -ENOENT; 4388 4389 return 0; 4390 } 4391 4392 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4393 char *buf, size_t nbytes, loff_t off) 4394 { 4395 struct cgroup *src_cgrp, *dst_cgrp; 4396 struct task_struct *task; 4397 ssize_t ret; 4398 4399 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4400 if (!dst_cgrp) 4401 return -ENODEV; 4402 4403 task = cgroup_procs_write_start(buf, true); 4404 ret = PTR_ERR_OR_ZERO(task); 4405 if (ret) 4406 goto out_unlock; 4407 4408 /* find the source cgroup */ 4409 spin_lock_irq(&css_set_lock); 4410 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4411 spin_unlock_irq(&css_set_lock); 4412 4413 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4414 of->file->f_path.dentry->d_sb); 4415 if (ret) 4416 goto out_finish; 4417 4418 ret = cgroup_attach_task(dst_cgrp, task, true); 4419 4420 out_finish: 4421 cgroup_procs_write_finish(task); 4422 out_unlock: 4423 cgroup_kn_unlock(of->kn); 4424 4425 return ret ?: nbytes; 4426 } 4427 4428 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4429 { 4430 return __cgroup_procs_start(s, pos, 0); 4431 } 4432 4433 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4434 char *buf, size_t nbytes, loff_t off) 4435 { 4436 struct cgroup *src_cgrp, *dst_cgrp; 4437 struct task_struct *task; 4438 ssize_t ret; 4439 4440 buf = strstrip(buf); 4441 4442 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4443 if (!dst_cgrp) 4444 return -ENODEV; 4445 4446 task = cgroup_procs_write_start(buf, false); 4447 ret = PTR_ERR_OR_ZERO(task); 4448 if (ret) 4449 goto out_unlock; 4450 4451 /* find the source cgroup */ 4452 spin_lock_irq(&css_set_lock); 4453 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4454 spin_unlock_irq(&css_set_lock); 4455 4456 /* thread migrations follow the cgroup.procs delegation rule */ 4457 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4458 of->file->f_path.dentry->d_sb); 4459 if (ret) 4460 goto out_finish; 4461 4462 /* and must be contained in the same domain */ 4463 ret = -EOPNOTSUPP; 4464 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4465 goto out_finish; 4466 4467 ret = cgroup_attach_task(dst_cgrp, task, false); 4468 4469 out_finish: 4470 cgroup_procs_write_finish(task); 4471 out_unlock: 4472 cgroup_kn_unlock(of->kn); 4473 4474 return ret ?: nbytes; 4475 } 4476 4477 /* cgroup core interface files for the default hierarchy */ 4478 static struct cftype cgroup_base_files[] = { 4479 { 4480 .name = "cgroup.type", 4481 .flags = CFTYPE_NOT_ON_ROOT, 4482 .seq_show = cgroup_type_show, 4483 .write = cgroup_type_write, 4484 }, 4485 { 4486 .name = "cgroup.procs", 4487 .flags = CFTYPE_NS_DELEGATABLE, 4488 .file_offset = offsetof(struct cgroup, procs_file), 4489 .release = cgroup_procs_release, 4490 .seq_start = cgroup_procs_start, 4491 .seq_next = cgroup_procs_next, 4492 .seq_show = cgroup_procs_show, 4493 .write = cgroup_procs_write, 4494 }, 4495 { 4496 .name = "cgroup.threads", 4497 .flags = CFTYPE_NS_DELEGATABLE, 4498 .release = cgroup_procs_release, 4499 .seq_start = cgroup_threads_start, 4500 .seq_next = cgroup_procs_next, 4501 .seq_show = cgroup_procs_show, 4502 .write = cgroup_threads_write, 4503 }, 4504 { 4505 .name = "cgroup.controllers", 4506 .seq_show = cgroup_controllers_show, 4507 }, 4508 { 4509 .name = "cgroup.subtree_control", 4510 .flags = CFTYPE_NS_DELEGATABLE, 4511 .seq_show = cgroup_subtree_control_show, 4512 .write = cgroup_subtree_control_write, 4513 }, 4514 { 4515 .name = "cgroup.events", 4516 .flags = CFTYPE_NOT_ON_ROOT, 4517 .file_offset = offsetof(struct cgroup, events_file), 4518 .seq_show = cgroup_events_show, 4519 }, 4520 { 4521 .name = "cgroup.max.descendants", 4522 .seq_show = cgroup_max_descendants_show, 4523 .write = cgroup_max_descendants_write, 4524 }, 4525 { 4526 .name = "cgroup.max.depth", 4527 .seq_show = cgroup_max_depth_show, 4528 .write = cgroup_max_depth_write, 4529 }, 4530 { 4531 .name = "cgroup.stat", 4532 .seq_show = cgroup_stat_show, 4533 }, 4534 { 4535 .name = "cpu.stat", 4536 .flags = CFTYPE_NOT_ON_ROOT, 4537 .seq_show = cpu_stat_show, 4538 }, 4539 { } /* terminate */ 4540 }; 4541 4542 /* 4543 * css destruction is four-stage process. 4544 * 4545 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4546 * Implemented in kill_css(). 4547 * 4548 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4549 * and thus css_tryget_online() is guaranteed to fail, the css can be 4550 * offlined by invoking offline_css(). After offlining, the base ref is 4551 * put. Implemented in css_killed_work_fn(). 4552 * 4553 * 3. When the percpu_ref reaches zero, the only possible remaining 4554 * accessors are inside RCU read sections. css_release() schedules the 4555 * RCU callback. 4556 * 4557 * 4. After the grace period, the css can be freed. Implemented in 4558 * css_free_work_fn(). 4559 * 4560 * It is actually hairier because both step 2 and 4 require process context 4561 * and thus involve punting to css->destroy_work adding two additional 4562 * steps to the already complex sequence. 4563 */ 4564 static void css_free_rwork_fn(struct work_struct *work) 4565 { 4566 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4567 struct cgroup_subsys_state, destroy_rwork); 4568 struct cgroup_subsys *ss = css->ss; 4569 struct cgroup *cgrp = css->cgroup; 4570 4571 percpu_ref_exit(&css->refcnt); 4572 4573 if (ss) { 4574 /* css free path */ 4575 struct cgroup_subsys_state *parent = css->parent; 4576 int id = css->id; 4577 4578 ss->css_free(css); 4579 cgroup_idr_remove(&ss->css_idr, id); 4580 cgroup_put(cgrp); 4581 4582 if (parent) 4583 css_put(parent); 4584 } else { 4585 /* cgroup free path */ 4586 atomic_dec(&cgrp->root->nr_cgrps); 4587 cgroup1_pidlist_destroy_all(cgrp); 4588 cancel_work_sync(&cgrp->release_agent_work); 4589 4590 if (cgroup_parent(cgrp)) { 4591 /* 4592 * We get a ref to the parent, and put the ref when 4593 * this cgroup is being freed, so it's guaranteed 4594 * that the parent won't be destroyed before its 4595 * children. 4596 */ 4597 cgroup_put(cgroup_parent(cgrp)); 4598 kernfs_put(cgrp->kn); 4599 if (cgroup_on_dfl(cgrp)) 4600 cgroup_rstat_exit(cgrp); 4601 kfree(cgrp); 4602 } else { 4603 /* 4604 * This is root cgroup's refcnt reaching zero, 4605 * which indicates that the root should be 4606 * released. 4607 */ 4608 cgroup_destroy_root(cgrp->root); 4609 } 4610 } 4611 } 4612 4613 static void css_release_work_fn(struct work_struct *work) 4614 { 4615 struct cgroup_subsys_state *css = 4616 container_of(work, struct cgroup_subsys_state, destroy_work); 4617 struct cgroup_subsys *ss = css->ss; 4618 struct cgroup *cgrp = css->cgroup; 4619 4620 mutex_lock(&cgroup_mutex); 4621 4622 css->flags |= CSS_RELEASED; 4623 list_del_rcu(&css->sibling); 4624 4625 if (ss) { 4626 /* css release path */ 4627 if (!list_empty(&css->rstat_css_node)) { 4628 cgroup_rstat_flush(cgrp); 4629 list_del_rcu(&css->rstat_css_node); 4630 } 4631 4632 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4633 if (ss->css_released) 4634 ss->css_released(css); 4635 } else { 4636 struct cgroup *tcgrp; 4637 4638 /* cgroup release path */ 4639 trace_cgroup_release(cgrp); 4640 4641 if (cgroup_on_dfl(cgrp)) 4642 cgroup_rstat_flush(cgrp); 4643 4644 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4645 tcgrp = cgroup_parent(tcgrp)) 4646 tcgrp->nr_dying_descendants--; 4647 4648 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4649 cgrp->id = -1; 4650 4651 /* 4652 * There are two control paths which try to determine 4653 * cgroup from dentry without going through kernfs - 4654 * cgroupstats_build() and css_tryget_online_from_dir(). 4655 * Those are supported by RCU protecting clearing of 4656 * cgrp->kn->priv backpointer. 4657 */ 4658 if (cgrp->kn) 4659 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4660 NULL); 4661 4662 cgroup_bpf_put(cgrp); 4663 } 4664 4665 mutex_unlock(&cgroup_mutex); 4666 4667 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4668 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4669 } 4670 4671 static void css_release(struct percpu_ref *ref) 4672 { 4673 struct cgroup_subsys_state *css = 4674 container_of(ref, struct cgroup_subsys_state, refcnt); 4675 4676 INIT_WORK(&css->destroy_work, css_release_work_fn); 4677 queue_work(cgroup_destroy_wq, &css->destroy_work); 4678 } 4679 4680 static void init_and_link_css(struct cgroup_subsys_state *css, 4681 struct cgroup_subsys *ss, struct cgroup *cgrp) 4682 { 4683 lockdep_assert_held(&cgroup_mutex); 4684 4685 cgroup_get_live(cgrp); 4686 4687 memset(css, 0, sizeof(*css)); 4688 css->cgroup = cgrp; 4689 css->ss = ss; 4690 css->id = -1; 4691 INIT_LIST_HEAD(&css->sibling); 4692 INIT_LIST_HEAD(&css->children); 4693 INIT_LIST_HEAD(&css->rstat_css_node); 4694 css->serial_nr = css_serial_nr_next++; 4695 atomic_set(&css->online_cnt, 0); 4696 4697 if (cgroup_parent(cgrp)) { 4698 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4699 css_get(css->parent); 4700 } 4701 4702 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 4703 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 4704 4705 BUG_ON(cgroup_css(cgrp, ss)); 4706 } 4707 4708 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4709 static int online_css(struct cgroup_subsys_state *css) 4710 { 4711 struct cgroup_subsys *ss = css->ss; 4712 int ret = 0; 4713 4714 lockdep_assert_held(&cgroup_mutex); 4715 4716 if (ss->css_online) 4717 ret = ss->css_online(css); 4718 if (!ret) { 4719 css->flags |= CSS_ONLINE; 4720 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4721 4722 atomic_inc(&css->online_cnt); 4723 if (css->parent) 4724 atomic_inc(&css->parent->online_cnt); 4725 } 4726 return ret; 4727 } 4728 4729 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4730 static void offline_css(struct cgroup_subsys_state *css) 4731 { 4732 struct cgroup_subsys *ss = css->ss; 4733 4734 lockdep_assert_held(&cgroup_mutex); 4735 4736 if (!(css->flags & CSS_ONLINE)) 4737 return; 4738 4739 if (ss->css_offline) 4740 ss->css_offline(css); 4741 4742 css->flags &= ~CSS_ONLINE; 4743 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4744 4745 wake_up_all(&css->cgroup->offline_waitq); 4746 } 4747 4748 /** 4749 * css_create - create a cgroup_subsys_state 4750 * @cgrp: the cgroup new css will be associated with 4751 * @ss: the subsys of new css 4752 * 4753 * Create a new css associated with @cgrp - @ss pair. On success, the new 4754 * css is online and installed in @cgrp. This function doesn't create the 4755 * interface files. Returns 0 on success, -errno on failure. 4756 */ 4757 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4758 struct cgroup_subsys *ss) 4759 { 4760 struct cgroup *parent = cgroup_parent(cgrp); 4761 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4762 struct cgroup_subsys_state *css; 4763 int err; 4764 4765 lockdep_assert_held(&cgroup_mutex); 4766 4767 css = ss->css_alloc(parent_css); 4768 if (!css) 4769 css = ERR_PTR(-ENOMEM); 4770 if (IS_ERR(css)) 4771 return css; 4772 4773 init_and_link_css(css, ss, cgrp); 4774 4775 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4776 if (err) 4777 goto err_free_css; 4778 4779 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4780 if (err < 0) 4781 goto err_free_css; 4782 css->id = err; 4783 4784 /* @css is ready to be brought online now, make it visible */ 4785 list_add_tail_rcu(&css->sibling, &parent_css->children); 4786 cgroup_idr_replace(&ss->css_idr, css, css->id); 4787 4788 err = online_css(css); 4789 if (err) 4790 goto err_list_del; 4791 4792 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4793 cgroup_parent(parent)) { 4794 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4795 current->comm, current->pid, ss->name); 4796 if (!strcmp(ss->name, "memory")) 4797 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4798 ss->warned_broken_hierarchy = true; 4799 } 4800 4801 return css; 4802 4803 err_list_del: 4804 list_del_rcu(&css->sibling); 4805 err_free_css: 4806 list_del_rcu(&css->rstat_css_node); 4807 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4808 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4809 return ERR_PTR(err); 4810 } 4811 4812 /* 4813 * The returned cgroup is fully initialized including its control mask, but 4814 * it isn't associated with its kernfs_node and doesn't have the control 4815 * mask applied. 4816 */ 4817 static struct cgroup *cgroup_create(struct cgroup *parent) 4818 { 4819 struct cgroup_root *root = parent->root; 4820 struct cgroup *cgrp, *tcgrp; 4821 int level = parent->level + 1; 4822 int ret; 4823 4824 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4825 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 4826 GFP_KERNEL); 4827 if (!cgrp) 4828 return ERR_PTR(-ENOMEM); 4829 4830 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4831 if (ret) 4832 goto out_free_cgrp; 4833 4834 if (cgroup_on_dfl(parent)) { 4835 ret = cgroup_rstat_init(cgrp); 4836 if (ret) 4837 goto out_cancel_ref; 4838 } 4839 4840 /* 4841 * Temporarily set the pointer to NULL, so idr_find() won't return 4842 * a half-baked cgroup. 4843 */ 4844 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4845 if (cgrp->id < 0) { 4846 ret = -ENOMEM; 4847 goto out_stat_exit; 4848 } 4849 4850 init_cgroup_housekeeping(cgrp); 4851 4852 cgrp->self.parent = &parent->self; 4853 cgrp->root = root; 4854 cgrp->level = level; 4855 ret = cgroup_bpf_inherit(cgrp); 4856 if (ret) 4857 goto out_idr_free; 4858 4859 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 4860 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4861 4862 if (tcgrp != cgrp) 4863 tcgrp->nr_descendants++; 4864 } 4865 4866 if (notify_on_release(parent)) 4867 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4868 4869 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4870 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4871 4872 cgrp->self.serial_nr = css_serial_nr_next++; 4873 4874 /* allocation complete, commit to creation */ 4875 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4876 atomic_inc(&root->nr_cgrps); 4877 cgroup_get_live(parent); 4878 4879 /* 4880 * @cgrp is now fully operational. If something fails after this 4881 * point, it'll be released via the normal destruction path. 4882 */ 4883 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4884 4885 /* 4886 * On the default hierarchy, a child doesn't automatically inherit 4887 * subtree_control from the parent. Each is configured manually. 4888 */ 4889 if (!cgroup_on_dfl(cgrp)) 4890 cgrp->subtree_control = cgroup_control(cgrp); 4891 4892 cgroup_propagate_control(cgrp); 4893 4894 return cgrp; 4895 4896 out_idr_free: 4897 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 4898 out_stat_exit: 4899 if (cgroup_on_dfl(parent)) 4900 cgroup_rstat_exit(cgrp); 4901 out_cancel_ref: 4902 percpu_ref_exit(&cgrp->self.refcnt); 4903 out_free_cgrp: 4904 kfree(cgrp); 4905 return ERR_PTR(ret); 4906 } 4907 4908 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 4909 { 4910 struct cgroup *cgroup; 4911 int ret = false; 4912 int level = 1; 4913 4914 lockdep_assert_held(&cgroup_mutex); 4915 4916 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 4917 if (cgroup->nr_descendants >= cgroup->max_descendants) 4918 goto fail; 4919 4920 if (level > cgroup->max_depth) 4921 goto fail; 4922 4923 level++; 4924 } 4925 4926 ret = true; 4927 fail: 4928 return ret; 4929 } 4930 4931 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4932 { 4933 struct cgroup *parent, *cgrp; 4934 struct kernfs_node *kn; 4935 int ret; 4936 4937 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4938 if (strchr(name, '\n')) 4939 return -EINVAL; 4940 4941 parent = cgroup_kn_lock_live(parent_kn, false); 4942 if (!parent) 4943 return -ENODEV; 4944 4945 if (!cgroup_check_hierarchy_limits(parent)) { 4946 ret = -EAGAIN; 4947 goto out_unlock; 4948 } 4949 4950 cgrp = cgroup_create(parent); 4951 if (IS_ERR(cgrp)) { 4952 ret = PTR_ERR(cgrp); 4953 goto out_unlock; 4954 } 4955 4956 /* create the directory */ 4957 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4958 if (IS_ERR(kn)) { 4959 ret = PTR_ERR(kn); 4960 goto out_destroy; 4961 } 4962 cgrp->kn = kn; 4963 4964 /* 4965 * This extra ref will be put in cgroup_free_fn() and guarantees 4966 * that @cgrp->kn is always accessible. 4967 */ 4968 kernfs_get(kn); 4969 4970 ret = cgroup_kn_set_ugid(kn); 4971 if (ret) 4972 goto out_destroy; 4973 4974 ret = css_populate_dir(&cgrp->self); 4975 if (ret) 4976 goto out_destroy; 4977 4978 ret = cgroup_apply_control_enable(cgrp); 4979 if (ret) 4980 goto out_destroy; 4981 4982 trace_cgroup_mkdir(cgrp); 4983 4984 /* let's create and online css's */ 4985 kernfs_activate(kn); 4986 4987 ret = 0; 4988 goto out_unlock; 4989 4990 out_destroy: 4991 cgroup_destroy_locked(cgrp); 4992 out_unlock: 4993 cgroup_kn_unlock(parent_kn); 4994 return ret; 4995 } 4996 4997 /* 4998 * This is called when the refcnt of a css is confirmed to be killed. 4999 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5000 * initate destruction and put the css ref from kill_css(). 5001 */ 5002 static void css_killed_work_fn(struct work_struct *work) 5003 { 5004 struct cgroup_subsys_state *css = 5005 container_of(work, struct cgroup_subsys_state, destroy_work); 5006 5007 mutex_lock(&cgroup_mutex); 5008 5009 do { 5010 offline_css(css); 5011 css_put(css); 5012 /* @css can't go away while we're holding cgroup_mutex */ 5013 css = css->parent; 5014 } while (css && atomic_dec_and_test(&css->online_cnt)); 5015 5016 mutex_unlock(&cgroup_mutex); 5017 } 5018 5019 /* css kill confirmation processing requires process context, bounce */ 5020 static void css_killed_ref_fn(struct percpu_ref *ref) 5021 { 5022 struct cgroup_subsys_state *css = 5023 container_of(ref, struct cgroup_subsys_state, refcnt); 5024 5025 if (atomic_dec_and_test(&css->online_cnt)) { 5026 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5027 queue_work(cgroup_destroy_wq, &css->destroy_work); 5028 } 5029 } 5030 5031 /** 5032 * kill_css - destroy a css 5033 * @css: css to destroy 5034 * 5035 * This function initiates destruction of @css by removing cgroup interface 5036 * files and putting its base reference. ->css_offline() will be invoked 5037 * asynchronously once css_tryget_online() is guaranteed to fail and when 5038 * the reference count reaches zero, @css will be released. 5039 */ 5040 static void kill_css(struct cgroup_subsys_state *css) 5041 { 5042 lockdep_assert_held(&cgroup_mutex); 5043 5044 if (css->flags & CSS_DYING) 5045 return; 5046 5047 css->flags |= CSS_DYING; 5048 5049 /* 5050 * This must happen before css is disassociated with its cgroup. 5051 * See seq_css() for details. 5052 */ 5053 css_clear_dir(css); 5054 5055 /* 5056 * Killing would put the base ref, but we need to keep it alive 5057 * until after ->css_offline(). 5058 */ 5059 css_get(css); 5060 5061 /* 5062 * cgroup core guarantees that, by the time ->css_offline() is 5063 * invoked, no new css reference will be given out via 5064 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5065 * proceed to offlining css's because percpu_ref_kill() doesn't 5066 * guarantee that the ref is seen as killed on all CPUs on return. 5067 * 5068 * Use percpu_ref_kill_and_confirm() to get notifications as each 5069 * css is confirmed to be seen as killed on all CPUs. 5070 */ 5071 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5072 } 5073 5074 /** 5075 * cgroup_destroy_locked - the first stage of cgroup destruction 5076 * @cgrp: cgroup to be destroyed 5077 * 5078 * css's make use of percpu refcnts whose killing latency shouldn't be 5079 * exposed to userland and are RCU protected. Also, cgroup core needs to 5080 * guarantee that css_tryget_online() won't succeed by the time 5081 * ->css_offline() is invoked. To satisfy all the requirements, 5082 * destruction is implemented in the following two steps. 5083 * 5084 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5085 * userland visible parts and start killing the percpu refcnts of 5086 * css's. Set up so that the next stage will be kicked off once all 5087 * the percpu refcnts are confirmed to be killed. 5088 * 5089 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5090 * rest of destruction. Once all cgroup references are gone, the 5091 * cgroup is RCU-freed. 5092 * 5093 * This function implements s1. After this step, @cgrp is gone as far as 5094 * the userland is concerned and a new cgroup with the same name may be 5095 * created. As cgroup doesn't care about the names internally, this 5096 * doesn't cause any problem. 5097 */ 5098 static int cgroup_destroy_locked(struct cgroup *cgrp) 5099 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5100 { 5101 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5102 struct cgroup_subsys_state *css; 5103 struct cgrp_cset_link *link; 5104 int ssid; 5105 5106 lockdep_assert_held(&cgroup_mutex); 5107 5108 /* 5109 * Only migration can raise populated from zero and we're already 5110 * holding cgroup_mutex. 5111 */ 5112 if (cgroup_is_populated(cgrp)) 5113 return -EBUSY; 5114 5115 /* 5116 * Make sure there's no live children. We can't test emptiness of 5117 * ->self.children as dead children linger on it while being 5118 * drained; otherwise, "rmdir parent/child parent" may fail. 5119 */ 5120 if (css_has_online_children(&cgrp->self)) 5121 return -EBUSY; 5122 5123 /* 5124 * Mark @cgrp and the associated csets dead. The former prevents 5125 * further task migration and child creation by disabling 5126 * cgroup_lock_live_group(). The latter makes the csets ignored by 5127 * the migration path. 5128 */ 5129 cgrp->self.flags &= ~CSS_ONLINE; 5130 5131 spin_lock_irq(&css_set_lock); 5132 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5133 link->cset->dead = true; 5134 spin_unlock_irq(&css_set_lock); 5135 5136 /* initiate massacre of all css's */ 5137 for_each_css(css, ssid, cgrp) 5138 kill_css(css); 5139 5140 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5141 css_clear_dir(&cgrp->self); 5142 kernfs_remove(cgrp->kn); 5143 5144 if (parent && cgroup_is_threaded(cgrp)) 5145 parent->nr_threaded_children--; 5146 5147 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5148 tcgrp->nr_descendants--; 5149 tcgrp->nr_dying_descendants++; 5150 } 5151 5152 cgroup1_check_for_release(parent); 5153 5154 /* put the base reference */ 5155 percpu_ref_kill(&cgrp->self.refcnt); 5156 5157 return 0; 5158 }; 5159 5160 int cgroup_rmdir(struct kernfs_node *kn) 5161 { 5162 struct cgroup *cgrp; 5163 int ret = 0; 5164 5165 cgrp = cgroup_kn_lock_live(kn, false); 5166 if (!cgrp) 5167 return 0; 5168 5169 ret = cgroup_destroy_locked(cgrp); 5170 5171 if (!ret) 5172 trace_cgroup_rmdir(cgrp); 5173 5174 cgroup_kn_unlock(kn); 5175 return ret; 5176 } 5177 5178 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5179 .show_options = cgroup_show_options, 5180 .remount_fs = cgroup_remount, 5181 .mkdir = cgroup_mkdir, 5182 .rmdir = cgroup_rmdir, 5183 .show_path = cgroup_show_path, 5184 }; 5185 5186 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5187 { 5188 struct cgroup_subsys_state *css; 5189 5190 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5191 5192 mutex_lock(&cgroup_mutex); 5193 5194 idr_init(&ss->css_idr); 5195 INIT_LIST_HEAD(&ss->cfts); 5196 5197 /* Create the root cgroup state for this subsystem */ 5198 ss->root = &cgrp_dfl_root; 5199 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5200 /* We don't handle early failures gracefully */ 5201 BUG_ON(IS_ERR(css)); 5202 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5203 5204 /* 5205 * Root csses are never destroyed and we can't initialize 5206 * percpu_ref during early init. Disable refcnting. 5207 */ 5208 css->flags |= CSS_NO_REF; 5209 5210 if (early) { 5211 /* allocation can't be done safely during early init */ 5212 css->id = 1; 5213 } else { 5214 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5215 BUG_ON(css->id < 0); 5216 } 5217 5218 /* Update the init_css_set to contain a subsys 5219 * pointer to this state - since the subsystem is 5220 * newly registered, all tasks and hence the 5221 * init_css_set is in the subsystem's root cgroup. */ 5222 init_css_set.subsys[ss->id] = css; 5223 5224 have_fork_callback |= (bool)ss->fork << ss->id; 5225 have_exit_callback |= (bool)ss->exit << ss->id; 5226 have_free_callback |= (bool)ss->free << ss->id; 5227 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5228 5229 /* At system boot, before all subsystems have been 5230 * registered, no tasks have been forked, so we don't 5231 * need to invoke fork callbacks here. */ 5232 BUG_ON(!list_empty(&init_task.tasks)); 5233 5234 BUG_ON(online_css(css)); 5235 5236 mutex_unlock(&cgroup_mutex); 5237 } 5238 5239 /** 5240 * cgroup_init_early - cgroup initialization at system boot 5241 * 5242 * Initialize cgroups at system boot, and initialize any 5243 * subsystems that request early init. 5244 */ 5245 int __init cgroup_init_early(void) 5246 { 5247 static struct cgroup_sb_opts __initdata opts; 5248 struct cgroup_subsys *ss; 5249 int i; 5250 5251 init_cgroup_root(&cgrp_dfl_root, &opts); 5252 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5253 5254 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5255 5256 for_each_subsys(ss, i) { 5257 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5258 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5259 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5260 ss->id, ss->name); 5261 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5262 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5263 5264 ss->id = i; 5265 ss->name = cgroup_subsys_name[i]; 5266 if (!ss->legacy_name) 5267 ss->legacy_name = cgroup_subsys_name[i]; 5268 5269 if (ss->early_init) 5270 cgroup_init_subsys(ss, true); 5271 } 5272 return 0; 5273 } 5274 5275 static u16 cgroup_disable_mask __initdata; 5276 5277 /** 5278 * cgroup_init - cgroup initialization 5279 * 5280 * Register cgroup filesystem and /proc file, and initialize 5281 * any subsystems that didn't request early init. 5282 */ 5283 int __init cgroup_init(void) 5284 { 5285 struct cgroup_subsys *ss; 5286 int ssid; 5287 5288 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5289 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5290 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5291 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5292 5293 cgroup_rstat_boot(); 5294 5295 /* 5296 * The latency of the synchronize_sched() is too high for cgroups, 5297 * avoid it at the cost of forcing all readers into the slow path. 5298 */ 5299 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5300 5301 get_user_ns(init_cgroup_ns.user_ns); 5302 5303 mutex_lock(&cgroup_mutex); 5304 5305 /* 5306 * Add init_css_set to the hash table so that dfl_root can link to 5307 * it during init. 5308 */ 5309 hash_add(css_set_table, &init_css_set.hlist, 5310 css_set_hash(init_css_set.subsys)); 5311 5312 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 5313 5314 mutex_unlock(&cgroup_mutex); 5315 5316 for_each_subsys(ss, ssid) { 5317 if (ss->early_init) { 5318 struct cgroup_subsys_state *css = 5319 init_css_set.subsys[ss->id]; 5320 5321 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5322 GFP_KERNEL); 5323 BUG_ON(css->id < 0); 5324 } else { 5325 cgroup_init_subsys(ss, false); 5326 } 5327 5328 list_add_tail(&init_css_set.e_cset_node[ssid], 5329 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5330 5331 /* 5332 * Setting dfl_root subsys_mask needs to consider the 5333 * disabled flag and cftype registration needs kmalloc, 5334 * both of which aren't available during early_init. 5335 */ 5336 if (cgroup_disable_mask & (1 << ssid)) { 5337 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5338 printk(KERN_INFO "Disabling %s control group subsystem\n", 5339 ss->name); 5340 continue; 5341 } 5342 5343 if (cgroup1_ssid_disabled(ssid)) 5344 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5345 ss->name); 5346 5347 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5348 5349 /* implicit controllers must be threaded too */ 5350 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5351 5352 if (ss->implicit_on_dfl) 5353 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5354 else if (!ss->dfl_cftypes) 5355 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5356 5357 if (ss->threaded) 5358 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5359 5360 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5361 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5362 } else { 5363 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5364 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5365 } 5366 5367 if (ss->bind) 5368 ss->bind(init_css_set.subsys[ssid]); 5369 5370 mutex_lock(&cgroup_mutex); 5371 css_populate_dir(init_css_set.subsys[ssid]); 5372 mutex_unlock(&cgroup_mutex); 5373 } 5374 5375 /* init_css_set.subsys[] has been updated, re-hash */ 5376 hash_del(&init_css_set.hlist); 5377 hash_add(css_set_table, &init_css_set.hlist, 5378 css_set_hash(init_css_set.subsys)); 5379 5380 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5381 WARN_ON(register_filesystem(&cgroup_fs_type)); 5382 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5383 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5384 5385 return 0; 5386 } 5387 5388 static int __init cgroup_wq_init(void) 5389 { 5390 /* 5391 * There isn't much point in executing destruction path in 5392 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5393 * Use 1 for @max_active. 5394 * 5395 * We would prefer to do this in cgroup_init() above, but that 5396 * is called before init_workqueues(): so leave this until after. 5397 */ 5398 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5399 BUG_ON(!cgroup_destroy_wq); 5400 return 0; 5401 } 5402 core_initcall(cgroup_wq_init); 5403 5404 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5405 char *buf, size_t buflen) 5406 { 5407 struct kernfs_node *kn; 5408 5409 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5410 if (!kn) 5411 return; 5412 kernfs_path(kn, buf, buflen); 5413 kernfs_put(kn); 5414 } 5415 5416 /* 5417 * proc_cgroup_show() 5418 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5419 * - Used for /proc/<pid>/cgroup. 5420 */ 5421 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5422 struct pid *pid, struct task_struct *tsk) 5423 { 5424 char *buf; 5425 int retval; 5426 struct cgroup_root *root; 5427 5428 retval = -ENOMEM; 5429 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5430 if (!buf) 5431 goto out; 5432 5433 mutex_lock(&cgroup_mutex); 5434 spin_lock_irq(&css_set_lock); 5435 5436 for_each_root(root) { 5437 struct cgroup_subsys *ss; 5438 struct cgroup *cgrp; 5439 int ssid, count = 0; 5440 5441 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5442 continue; 5443 5444 seq_printf(m, "%d:", root->hierarchy_id); 5445 if (root != &cgrp_dfl_root) 5446 for_each_subsys(ss, ssid) 5447 if (root->subsys_mask & (1 << ssid)) 5448 seq_printf(m, "%s%s", count++ ? "," : "", 5449 ss->legacy_name); 5450 if (strlen(root->name)) 5451 seq_printf(m, "%sname=%s", count ? "," : "", 5452 root->name); 5453 seq_putc(m, ':'); 5454 5455 cgrp = task_cgroup_from_root(tsk, root); 5456 5457 /* 5458 * On traditional hierarchies, all zombie tasks show up as 5459 * belonging to the root cgroup. On the default hierarchy, 5460 * while a zombie doesn't show up in "cgroup.procs" and 5461 * thus can't be migrated, its /proc/PID/cgroup keeps 5462 * reporting the cgroup it belonged to before exiting. If 5463 * the cgroup is removed before the zombie is reaped, 5464 * " (deleted)" is appended to the cgroup path. 5465 */ 5466 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5467 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5468 current->nsproxy->cgroup_ns); 5469 if (retval >= PATH_MAX) 5470 retval = -ENAMETOOLONG; 5471 if (retval < 0) 5472 goto out_unlock; 5473 5474 seq_puts(m, buf); 5475 } else { 5476 seq_puts(m, "/"); 5477 } 5478 5479 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5480 seq_puts(m, " (deleted)\n"); 5481 else 5482 seq_putc(m, '\n'); 5483 } 5484 5485 retval = 0; 5486 out_unlock: 5487 spin_unlock_irq(&css_set_lock); 5488 mutex_unlock(&cgroup_mutex); 5489 kfree(buf); 5490 out: 5491 return retval; 5492 } 5493 5494 /** 5495 * cgroup_fork - initialize cgroup related fields during copy_process() 5496 * @child: pointer to task_struct of forking parent process. 5497 * 5498 * A task is associated with the init_css_set until cgroup_post_fork() 5499 * attaches it to the parent's css_set. Empty cg_list indicates that 5500 * @child isn't holding reference to its css_set. 5501 */ 5502 void cgroup_fork(struct task_struct *child) 5503 { 5504 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5505 INIT_LIST_HEAD(&child->cg_list); 5506 } 5507 5508 /** 5509 * cgroup_can_fork - called on a new task before the process is exposed 5510 * @child: the task in question. 5511 * 5512 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5513 * returns an error, the fork aborts with that error code. This allows for 5514 * a cgroup subsystem to conditionally allow or deny new forks. 5515 */ 5516 int cgroup_can_fork(struct task_struct *child) 5517 { 5518 struct cgroup_subsys *ss; 5519 int i, j, ret; 5520 5521 do_each_subsys_mask(ss, i, have_canfork_callback) { 5522 ret = ss->can_fork(child); 5523 if (ret) 5524 goto out_revert; 5525 } while_each_subsys_mask(); 5526 5527 return 0; 5528 5529 out_revert: 5530 for_each_subsys(ss, j) { 5531 if (j >= i) 5532 break; 5533 if (ss->cancel_fork) 5534 ss->cancel_fork(child); 5535 } 5536 5537 return ret; 5538 } 5539 5540 /** 5541 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5542 * @child: the task in question 5543 * 5544 * This calls the cancel_fork() callbacks if a fork failed *after* 5545 * cgroup_can_fork() succeded. 5546 */ 5547 void cgroup_cancel_fork(struct task_struct *child) 5548 { 5549 struct cgroup_subsys *ss; 5550 int i; 5551 5552 for_each_subsys(ss, i) 5553 if (ss->cancel_fork) 5554 ss->cancel_fork(child); 5555 } 5556 5557 /** 5558 * cgroup_post_fork - called on a new task after adding it to the task list 5559 * @child: the task in question 5560 * 5561 * Adds the task to the list running through its css_set if necessary and 5562 * call the subsystem fork() callbacks. Has to be after the task is 5563 * visible on the task list in case we race with the first call to 5564 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5565 * list. 5566 */ 5567 void cgroup_post_fork(struct task_struct *child) 5568 { 5569 struct cgroup_subsys *ss; 5570 int i; 5571 5572 /* 5573 * This may race against cgroup_enable_task_cg_lists(). As that 5574 * function sets use_task_css_set_links before grabbing 5575 * tasklist_lock and we just went through tasklist_lock to add 5576 * @child, it's guaranteed that either we see the set 5577 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5578 * @child during its iteration. 5579 * 5580 * If we won the race, @child is associated with %current's 5581 * css_set. Grabbing css_set_lock guarantees both that the 5582 * association is stable, and, on completion of the parent's 5583 * migration, @child is visible in the source of migration or 5584 * already in the destination cgroup. This guarantee is necessary 5585 * when implementing operations which need to migrate all tasks of 5586 * a cgroup to another. 5587 * 5588 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5589 * will remain in init_css_set. This is safe because all tasks are 5590 * in the init_css_set before cg_links is enabled and there's no 5591 * operation which transfers all tasks out of init_css_set. 5592 */ 5593 if (use_task_css_set_links) { 5594 struct css_set *cset; 5595 5596 spin_lock_irq(&css_set_lock); 5597 cset = task_css_set(current); 5598 if (list_empty(&child->cg_list)) { 5599 get_css_set(cset); 5600 cset->nr_tasks++; 5601 css_set_move_task(child, NULL, cset, false); 5602 } 5603 spin_unlock_irq(&css_set_lock); 5604 } 5605 5606 /* 5607 * Call ss->fork(). This must happen after @child is linked on 5608 * css_set; otherwise, @child might change state between ->fork() 5609 * and addition to css_set. 5610 */ 5611 do_each_subsys_mask(ss, i, have_fork_callback) { 5612 ss->fork(child); 5613 } while_each_subsys_mask(); 5614 } 5615 5616 /** 5617 * cgroup_exit - detach cgroup from exiting task 5618 * @tsk: pointer to task_struct of exiting process 5619 * 5620 * Description: Detach cgroup from @tsk and release it. 5621 * 5622 * Note that cgroups marked notify_on_release force every task in 5623 * them to take the global cgroup_mutex mutex when exiting. 5624 * This could impact scaling on very large systems. Be reluctant to 5625 * use notify_on_release cgroups where very high task exit scaling 5626 * is required on large systems. 5627 * 5628 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5629 * call cgroup_exit() while the task is still competent to handle 5630 * notify_on_release(), then leave the task attached to the root cgroup in 5631 * each hierarchy for the remainder of its exit. No need to bother with 5632 * init_css_set refcnting. init_css_set never goes away and we can't race 5633 * with migration path - PF_EXITING is visible to migration path. 5634 */ 5635 void cgroup_exit(struct task_struct *tsk) 5636 { 5637 struct cgroup_subsys *ss; 5638 struct css_set *cset; 5639 int i; 5640 5641 /* 5642 * Unlink from @tsk from its css_set. As migration path can't race 5643 * with us, we can check css_set and cg_list without synchronization. 5644 */ 5645 cset = task_css_set(tsk); 5646 5647 if (!list_empty(&tsk->cg_list)) { 5648 spin_lock_irq(&css_set_lock); 5649 css_set_move_task(tsk, cset, NULL, false); 5650 cset->nr_tasks--; 5651 spin_unlock_irq(&css_set_lock); 5652 } else { 5653 get_css_set(cset); 5654 } 5655 5656 /* see cgroup_post_fork() for details */ 5657 do_each_subsys_mask(ss, i, have_exit_callback) { 5658 ss->exit(tsk); 5659 } while_each_subsys_mask(); 5660 } 5661 5662 void cgroup_free(struct task_struct *task) 5663 { 5664 struct css_set *cset = task_css_set(task); 5665 struct cgroup_subsys *ss; 5666 int ssid; 5667 5668 do_each_subsys_mask(ss, ssid, have_free_callback) { 5669 ss->free(task); 5670 } while_each_subsys_mask(); 5671 5672 put_css_set(cset); 5673 } 5674 5675 static int __init cgroup_disable(char *str) 5676 { 5677 struct cgroup_subsys *ss; 5678 char *token; 5679 int i; 5680 5681 while ((token = strsep(&str, ",")) != NULL) { 5682 if (!*token) 5683 continue; 5684 5685 for_each_subsys(ss, i) { 5686 if (strcmp(token, ss->name) && 5687 strcmp(token, ss->legacy_name)) 5688 continue; 5689 cgroup_disable_mask |= 1 << i; 5690 } 5691 } 5692 return 1; 5693 } 5694 __setup("cgroup_disable=", cgroup_disable); 5695 5696 /** 5697 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5698 * @dentry: directory dentry of interest 5699 * @ss: subsystem of interest 5700 * 5701 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5702 * to get the corresponding css and return it. If such css doesn't exist 5703 * or can't be pinned, an ERR_PTR value is returned. 5704 */ 5705 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5706 struct cgroup_subsys *ss) 5707 { 5708 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5709 struct file_system_type *s_type = dentry->d_sb->s_type; 5710 struct cgroup_subsys_state *css = NULL; 5711 struct cgroup *cgrp; 5712 5713 /* is @dentry a cgroup dir? */ 5714 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5715 !kn || kernfs_type(kn) != KERNFS_DIR) 5716 return ERR_PTR(-EBADF); 5717 5718 rcu_read_lock(); 5719 5720 /* 5721 * This path doesn't originate from kernfs and @kn could already 5722 * have been or be removed at any point. @kn->priv is RCU 5723 * protected for this access. See css_release_work_fn() for details. 5724 */ 5725 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5726 if (cgrp) 5727 css = cgroup_css(cgrp, ss); 5728 5729 if (!css || !css_tryget_online(css)) 5730 css = ERR_PTR(-ENOENT); 5731 5732 rcu_read_unlock(); 5733 return css; 5734 } 5735 5736 /** 5737 * css_from_id - lookup css by id 5738 * @id: the cgroup id 5739 * @ss: cgroup subsys to be looked into 5740 * 5741 * Returns the css if there's valid one with @id, otherwise returns NULL. 5742 * Should be called under rcu_read_lock(). 5743 */ 5744 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5745 { 5746 WARN_ON_ONCE(!rcu_read_lock_held()); 5747 return idr_find(&ss->css_idr, id); 5748 } 5749 5750 /** 5751 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5752 * @path: path on the default hierarchy 5753 * 5754 * Find the cgroup at @path on the default hierarchy, increment its 5755 * reference count and return it. Returns pointer to the found cgroup on 5756 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5757 * if @path points to a non-directory. 5758 */ 5759 struct cgroup *cgroup_get_from_path(const char *path) 5760 { 5761 struct kernfs_node *kn; 5762 struct cgroup *cgrp; 5763 5764 mutex_lock(&cgroup_mutex); 5765 5766 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5767 if (kn) { 5768 if (kernfs_type(kn) == KERNFS_DIR) { 5769 cgrp = kn->priv; 5770 cgroup_get_live(cgrp); 5771 } else { 5772 cgrp = ERR_PTR(-ENOTDIR); 5773 } 5774 kernfs_put(kn); 5775 } else { 5776 cgrp = ERR_PTR(-ENOENT); 5777 } 5778 5779 mutex_unlock(&cgroup_mutex); 5780 return cgrp; 5781 } 5782 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5783 5784 /** 5785 * cgroup_get_from_fd - get a cgroup pointer from a fd 5786 * @fd: fd obtained by open(cgroup2_dir) 5787 * 5788 * Find the cgroup from a fd which should be obtained 5789 * by opening a cgroup directory. Returns a pointer to the 5790 * cgroup on success. ERR_PTR is returned if the cgroup 5791 * cannot be found. 5792 */ 5793 struct cgroup *cgroup_get_from_fd(int fd) 5794 { 5795 struct cgroup_subsys_state *css; 5796 struct cgroup *cgrp; 5797 struct file *f; 5798 5799 f = fget_raw(fd); 5800 if (!f) 5801 return ERR_PTR(-EBADF); 5802 5803 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5804 fput(f); 5805 if (IS_ERR(css)) 5806 return ERR_CAST(css); 5807 5808 cgrp = css->cgroup; 5809 if (!cgroup_on_dfl(cgrp)) { 5810 cgroup_put(cgrp); 5811 return ERR_PTR(-EBADF); 5812 } 5813 5814 return cgrp; 5815 } 5816 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5817 5818 /* 5819 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5820 * definition in cgroup-defs.h. 5821 */ 5822 #ifdef CONFIG_SOCK_CGROUP_DATA 5823 5824 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5825 5826 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5827 static bool cgroup_sk_alloc_disabled __read_mostly; 5828 5829 void cgroup_sk_alloc_disable(void) 5830 { 5831 if (cgroup_sk_alloc_disabled) 5832 return; 5833 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5834 cgroup_sk_alloc_disabled = true; 5835 } 5836 5837 #else 5838 5839 #define cgroup_sk_alloc_disabled false 5840 5841 #endif 5842 5843 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5844 { 5845 if (cgroup_sk_alloc_disabled) 5846 return; 5847 5848 /* Socket clone path */ 5849 if (skcd->val) { 5850 /* 5851 * We might be cloning a socket which is left in an empty 5852 * cgroup and the cgroup might have already been rmdir'd. 5853 * Don't use cgroup_get_live(). 5854 */ 5855 cgroup_get(sock_cgroup_ptr(skcd)); 5856 return; 5857 } 5858 5859 rcu_read_lock(); 5860 5861 while (true) { 5862 struct css_set *cset; 5863 5864 cset = task_css_set(current); 5865 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5866 skcd->val = (unsigned long)cset->dfl_cgrp; 5867 break; 5868 } 5869 cpu_relax(); 5870 } 5871 5872 rcu_read_unlock(); 5873 } 5874 5875 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5876 { 5877 cgroup_put(sock_cgroup_ptr(skcd)); 5878 } 5879 5880 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5881 5882 #ifdef CONFIG_CGROUP_BPF 5883 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 5884 enum bpf_attach_type type, u32 flags) 5885 { 5886 int ret; 5887 5888 mutex_lock(&cgroup_mutex); 5889 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 5890 mutex_unlock(&cgroup_mutex); 5891 return ret; 5892 } 5893 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 5894 enum bpf_attach_type type, u32 flags) 5895 { 5896 int ret; 5897 5898 mutex_lock(&cgroup_mutex); 5899 ret = __cgroup_bpf_detach(cgrp, prog, type, flags); 5900 mutex_unlock(&cgroup_mutex); 5901 return ret; 5902 } 5903 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 5904 union bpf_attr __user *uattr) 5905 { 5906 int ret; 5907 5908 mutex_lock(&cgroup_mutex); 5909 ret = __cgroup_bpf_query(cgrp, attr, uattr); 5910 mutex_unlock(&cgroup_mutex); 5911 return ret; 5912 } 5913 #endif /* CONFIG_CGROUP_BPF */ 5914 5915 #ifdef CONFIG_SYSFS 5916 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 5917 ssize_t size, const char *prefix) 5918 { 5919 struct cftype *cft; 5920 ssize_t ret = 0; 5921 5922 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 5923 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 5924 continue; 5925 5926 if (prefix) 5927 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 5928 5929 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 5930 5931 if (unlikely(ret >= size)) { 5932 WARN_ON(1); 5933 break; 5934 } 5935 } 5936 5937 return ret; 5938 } 5939 5940 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 5941 char *buf) 5942 { 5943 struct cgroup_subsys *ss; 5944 int ssid; 5945 ssize_t ret = 0; 5946 5947 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 5948 NULL); 5949 5950 for_each_subsys(ss, ssid) 5951 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 5952 PAGE_SIZE - ret, 5953 cgroup_subsys_name[ssid]); 5954 5955 return ret; 5956 } 5957 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 5958 5959 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 5960 char *buf) 5961 { 5962 return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); 5963 } 5964 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 5965 5966 static struct attribute *cgroup_sysfs_attrs[] = { 5967 &cgroup_delegate_attr.attr, 5968 &cgroup_features_attr.attr, 5969 NULL, 5970 }; 5971 5972 static const struct attribute_group cgroup_sysfs_attr_group = { 5973 .attrs = cgroup_sysfs_attrs, 5974 .name = "cgroup", 5975 }; 5976 5977 static int __init cgroup_sysfs_init(void) 5978 { 5979 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 5980 } 5981 subsys_initcall(cgroup_sysfs_init); 5982 #endif /* CONFIG_SYSFS */ 5983