1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 /* 22 * pidlists linger the following amount before being destroyed. The goal 23 * is avoiding frequent destruction in the middle of consecutive read calls 24 * Expiring in the middle is a performance problem not a correctness one. 25 * 1 sec should be enough. 26 */ 27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 28 29 /* Controllers blocked by the commandline in v1 */ 30 static u16 cgroup_no_v1_mask; 31 32 /* disable named v1 mounts */ 33 static bool cgroup_no_v1_named; 34 35 /* 36 * pidlist destructions need to be flushed on cgroup destruction. Use a 37 * separate workqueue as flush domain. 38 */ 39 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 40 41 /* 42 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 43 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 44 */ 45 static DEFINE_SPINLOCK(release_agent_path_lock); 46 47 bool cgroup1_ssid_disabled(int ssid) 48 { 49 return cgroup_no_v1_mask & (1 << ssid); 50 } 51 52 /** 53 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 54 * @from: attach to all cgroups of a given task 55 * @tsk: the task to be attached 56 */ 57 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 58 { 59 struct cgroup_root *root; 60 int retval = 0; 61 62 mutex_lock(&cgroup_mutex); 63 percpu_down_write(&cgroup_threadgroup_rwsem); 64 for_each_root(root) { 65 struct cgroup *from_cgrp; 66 67 if (root == &cgrp_dfl_root) 68 continue; 69 70 spin_lock_irq(&css_set_lock); 71 from_cgrp = task_cgroup_from_root(from, root); 72 spin_unlock_irq(&css_set_lock); 73 74 retval = cgroup_attach_task(from_cgrp, tsk, false); 75 if (retval) 76 break; 77 } 78 percpu_up_write(&cgroup_threadgroup_rwsem); 79 mutex_unlock(&cgroup_mutex); 80 81 return retval; 82 } 83 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 84 85 /** 86 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 87 * @to: cgroup to which the tasks will be moved 88 * @from: cgroup in which the tasks currently reside 89 * 90 * Locking rules between cgroup_post_fork() and the migration path 91 * guarantee that, if a task is forking while being migrated, the new child 92 * is guaranteed to be either visible in the source cgroup after the 93 * parent's migration is complete or put into the target cgroup. No task 94 * can slip out of migration through forking. 95 */ 96 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 97 { 98 DEFINE_CGROUP_MGCTX(mgctx); 99 struct cgrp_cset_link *link; 100 struct css_task_iter it; 101 struct task_struct *task; 102 int ret; 103 104 if (cgroup_on_dfl(to)) 105 return -EINVAL; 106 107 ret = cgroup_migrate_vet_dst(to); 108 if (ret) 109 return ret; 110 111 mutex_lock(&cgroup_mutex); 112 113 percpu_down_write(&cgroup_threadgroup_rwsem); 114 115 /* all tasks in @from are being moved, all csets are source */ 116 spin_lock_irq(&css_set_lock); 117 list_for_each_entry(link, &from->cset_links, cset_link) 118 cgroup_migrate_add_src(link->cset, to, &mgctx); 119 spin_unlock_irq(&css_set_lock); 120 121 ret = cgroup_migrate_prepare_dst(&mgctx); 122 if (ret) 123 goto out_err; 124 125 /* 126 * Migrate tasks one-by-one until @from is empty. This fails iff 127 * ->can_attach() fails. 128 */ 129 do { 130 css_task_iter_start(&from->self, 0, &it); 131 132 do { 133 task = css_task_iter_next(&it); 134 } while (task && (task->flags & PF_EXITING)); 135 136 if (task) 137 get_task_struct(task); 138 css_task_iter_end(&it); 139 140 if (task) { 141 ret = cgroup_migrate(task, false, &mgctx); 142 if (!ret) 143 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 144 put_task_struct(task); 145 } 146 } while (task && !ret); 147 out_err: 148 cgroup_migrate_finish(&mgctx); 149 percpu_up_write(&cgroup_threadgroup_rwsem); 150 mutex_unlock(&cgroup_mutex); 151 return ret; 152 } 153 154 /* 155 * Stuff for reading the 'tasks'/'procs' files. 156 * 157 * Reading this file can return large amounts of data if a cgroup has 158 * *lots* of attached tasks. So it may need several calls to read(), 159 * but we cannot guarantee that the information we produce is correct 160 * unless we produce it entirely atomically. 161 * 162 */ 163 164 /* which pidlist file are we talking about? */ 165 enum cgroup_filetype { 166 CGROUP_FILE_PROCS, 167 CGROUP_FILE_TASKS, 168 }; 169 170 /* 171 * A pidlist is a list of pids that virtually represents the contents of one 172 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 173 * a pair (one each for procs, tasks) for each pid namespace that's relevant 174 * to the cgroup. 175 */ 176 struct cgroup_pidlist { 177 /* 178 * used to find which pidlist is wanted. doesn't change as long as 179 * this particular list stays in the list. 180 */ 181 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 182 /* array of xids */ 183 pid_t *list; 184 /* how many elements the above list has */ 185 int length; 186 /* each of these stored in a list by its cgroup */ 187 struct list_head links; 188 /* pointer to the cgroup we belong to, for list removal purposes */ 189 struct cgroup *owner; 190 /* for delayed destruction */ 191 struct delayed_work destroy_dwork; 192 }; 193 194 /* 195 * Used to destroy all pidlists lingering waiting for destroy timer. None 196 * should be left afterwards. 197 */ 198 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 199 { 200 struct cgroup_pidlist *l, *tmp_l; 201 202 mutex_lock(&cgrp->pidlist_mutex); 203 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 204 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 205 mutex_unlock(&cgrp->pidlist_mutex); 206 207 flush_workqueue(cgroup_pidlist_destroy_wq); 208 BUG_ON(!list_empty(&cgrp->pidlists)); 209 } 210 211 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 212 { 213 struct delayed_work *dwork = to_delayed_work(work); 214 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 215 destroy_dwork); 216 struct cgroup_pidlist *tofree = NULL; 217 218 mutex_lock(&l->owner->pidlist_mutex); 219 220 /* 221 * Destroy iff we didn't get queued again. The state won't change 222 * as destroy_dwork can only be queued while locked. 223 */ 224 if (!delayed_work_pending(dwork)) { 225 list_del(&l->links); 226 kvfree(l->list); 227 put_pid_ns(l->key.ns); 228 tofree = l; 229 } 230 231 mutex_unlock(&l->owner->pidlist_mutex); 232 kfree(tofree); 233 } 234 235 /* 236 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 237 * Returns the number of unique elements. 238 */ 239 static int pidlist_uniq(pid_t *list, int length) 240 { 241 int src, dest = 1; 242 243 /* 244 * we presume the 0th element is unique, so i starts at 1. trivial 245 * edge cases first; no work needs to be done for either 246 */ 247 if (length == 0 || length == 1) 248 return length; 249 /* src and dest walk down the list; dest counts unique elements */ 250 for (src = 1; src < length; src++) { 251 /* find next unique element */ 252 while (list[src] == list[src-1]) { 253 src++; 254 if (src == length) 255 goto after; 256 } 257 /* dest always points to where the next unique element goes */ 258 list[dest] = list[src]; 259 dest++; 260 } 261 after: 262 return dest; 263 } 264 265 /* 266 * The two pid files - task and cgroup.procs - guaranteed that the result 267 * is sorted, which forced this whole pidlist fiasco. As pid order is 268 * different per namespace, each namespace needs differently sorted list, 269 * making it impossible to use, for example, single rbtree of member tasks 270 * sorted by task pointer. As pidlists can be fairly large, allocating one 271 * per open file is dangerous, so cgroup had to implement shared pool of 272 * pidlists keyed by cgroup and namespace. 273 */ 274 static int cmppid(const void *a, const void *b) 275 { 276 return *(pid_t *)a - *(pid_t *)b; 277 } 278 279 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 280 enum cgroup_filetype type) 281 { 282 struct cgroup_pidlist *l; 283 /* don't need task_nsproxy() if we're looking at ourself */ 284 struct pid_namespace *ns = task_active_pid_ns(current); 285 286 lockdep_assert_held(&cgrp->pidlist_mutex); 287 288 list_for_each_entry(l, &cgrp->pidlists, links) 289 if (l->key.type == type && l->key.ns == ns) 290 return l; 291 return NULL; 292 } 293 294 /* 295 * find the appropriate pidlist for our purpose (given procs vs tasks) 296 * returns with the lock on that pidlist already held, and takes care 297 * of the use count, or returns NULL with no locks held if we're out of 298 * memory. 299 */ 300 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 301 enum cgroup_filetype type) 302 { 303 struct cgroup_pidlist *l; 304 305 lockdep_assert_held(&cgrp->pidlist_mutex); 306 307 l = cgroup_pidlist_find(cgrp, type); 308 if (l) 309 return l; 310 311 /* entry not found; create a new one */ 312 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 313 if (!l) 314 return l; 315 316 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 317 l->key.type = type; 318 /* don't need task_nsproxy() if we're looking at ourself */ 319 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 320 l->owner = cgrp; 321 list_add(&l->links, &cgrp->pidlists); 322 return l; 323 } 324 325 /* 326 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 327 */ 328 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 329 struct cgroup_pidlist **lp) 330 { 331 pid_t *array; 332 int length; 333 int pid, n = 0; /* used for populating the array */ 334 struct css_task_iter it; 335 struct task_struct *tsk; 336 struct cgroup_pidlist *l; 337 338 lockdep_assert_held(&cgrp->pidlist_mutex); 339 340 /* 341 * If cgroup gets more users after we read count, we won't have 342 * enough space - tough. This race is indistinguishable to the 343 * caller from the case that the additional cgroup users didn't 344 * show up until sometime later on. 345 */ 346 length = cgroup_task_count(cgrp); 347 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 348 if (!array) 349 return -ENOMEM; 350 /* now, populate the array */ 351 css_task_iter_start(&cgrp->self, 0, &it); 352 while ((tsk = css_task_iter_next(&it))) { 353 if (unlikely(n == length)) 354 break; 355 /* get tgid or pid for procs or tasks file respectively */ 356 if (type == CGROUP_FILE_PROCS) 357 pid = task_tgid_vnr(tsk); 358 else 359 pid = task_pid_vnr(tsk); 360 if (pid > 0) /* make sure to only use valid results */ 361 array[n++] = pid; 362 } 363 css_task_iter_end(&it); 364 length = n; 365 /* now sort & (if procs) strip out duplicates */ 366 sort(array, length, sizeof(pid_t), cmppid, NULL); 367 if (type == CGROUP_FILE_PROCS) 368 length = pidlist_uniq(array, length); 369 370 l = cgroup_pidlist_find_create(cgrp, type); 371 if (!l) { 372 kvfree(array); 373 return -ENOMEM; 374 } 375 376 /* store array, freeing old if necessary */ 377 kvfree(l->list); 378 l->list = array; 379 l->length = length; 380 *lp = l; 381 return 0; 382 } 383 384 /* 385 * seq_file methods for the tasks/procs files. The seq_file position is the 386 * next pid to display; the seq_file iterator is a pointer to the pid 387 * in the cgroup->l->list array. 388 */ 389 390 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 391 { 392 /* 393 * Initially we receive a position value that corresponds to 394 * one more than the last pid shown (or 0 on the first call or 395 * after a seek to the start). Use a binary-search to find the 396 * next pid to display, if any 397 */ 398 struct kernfs_open_file *of = s->private; 399 struct cgroup *cgrp = seq_css(s)->cgroup; 400 struct cgroup_pidlist *l; 401 enum cgroup_filetype type = seq_cft(s)->private; 402 int index = 0, pid = *pos; 403 int *iter, ret; 404 405 mutex_lock(&cgrp->pidlist_mutex); 406 407 /* 408 * !NULL @of->priv indicates that this isn't the first start() 409 * after open. If the matching pidlist is around, we can use that. 410 * Look for it. Note that @of->priv can't be used directly. It 411 * could already have been destroyed. 412 */ 413 if (of->priv) 414 of->priv = cgroup_pidlist_find(cgrp, type); 415 416 /* 417 * Either this is the first start() after open or the matching 418 * pidlist has been destroyed inbetween. Create a new one. 419 */ 420 if (!of->priv) { 421 ret = pidlist_array_load(cgrp, type, 422 (struct cgroup_pidlist **)&of->priv); 423 if (ret) 424 return ERR_PTR(ret); 425 } 426 l = of->priv; 427 428 if (pid) { 429 int end = l->length; 430 431 while (index < end) { 432 int mid = (index + end) / 2; 433 if (l->list[mid] == pid) { 434 index = mid; 435 break; 436 } else if (l->list[mid] <= pid) 437 index = mid + 1; 438 else 439 end = mid; 440 } 441 } 442 /* If we're off the end of the array, we're done */ 443 if (index >= l->length) 444 return NULL; 445 /* Update the abstract position to be the actual pid that we found */ 446 iter = l->list + index; 447 *pos = *iter; 448 return iter; 449 } 450 451 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 452 { 453 struct kernfs_open_file *of = s->private; 454 struct cgroup_pidlist *l = of->priv; 455 456 if (l) 457 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 458 CGROUP_PIDLIST_DESTROY_DELAY); 459 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 460 } 461 462 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 463 { 464 struct kernfs_open_file *of = s->private; 465 struct cgroup_pidlist *l = of->priv; 466 pid_t *p = v; 467 pid_t *end = l->list + l->length; 468 /* 469 * Advance to the next pid in the array. If this goes off the 470 * end, we're done 471 */ 472 p++; 473 if (p >= end) { 474 return NULL; 475 } else { 476 *pos = *p; 477 return p; 478 } 479 } 480 481 static int cgroup_pidlist_show(struct seq_file *s, void *v) 482 { 483 seq_printf(s, "%d\n", *(int *)v); 484 485 return 0; 486 } 487 488 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 489 char *buf, size_t nbytes, loff_t off, 490 bool threadgroup) 491 { 492 struct cgroup *cgrp; 493 struct task_struct *task; 494 const struct cred *cred, *tcred; 495 ssize_t ret; 496 bool locked; 497 498 cgrp = cgroup_kn_lock_live(of->kn, false); 499 if (!cgrp) 500 return -ENODEV; 501 502 task = cgroup_procs_write_start(buf, threadgroup, &locked); 503 ret = PTR_ERR_OR_ZERO(task); 504 if (ret) 505 goto out_unlock; 506 507 /* 508 * Even if we're attaching all tasks in the thread group, we only 509 * need to check permissions on one of them. 510 */ 511 cred = current_cred(); 512 tcred = get_task_cred(task); 513 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 514 !uid_eq(cred->euid, tcred->uid) && 515 !uid_eq(cred->euid, tcred->suid)) 516 ret = -EACCES; 517 put_cred(tcred); 518 if (ret) 519 goto out_finish; 520 521 ret = cgroup_attach_task(cgrp, task, threadgroup); 522 523 out_finish: 524 cgroup_procs_write_finish(task, locked); 525 out_unlock: 526 cgroup_kn_unlock(of->kn); 527 528 return ret ?: nbytes; 529 } 530 531 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 532 char *buf, size_t nbytes, loff_t off) 533 { 534 return __cgroup1_procs_write(of, buf, nbytes, off, true); 535 } 536 537 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 538 char *buf, size_t nbytes, loff_t off) 539 { 540 return __cgroup1_procs_write(of, buf, nbytes, off, false); 541 } 542 543 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 544 char *buf, size_t nbytes, loff_t off) 545 { 546 struct cgroup *cgrp; 547 548 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 549 550 cgrp = cgroup_kn_lock_live(of->kn, false); 551 if (!cgrp) 552 return -ENODEV; 553 spin_lock(&release_agent_path_lock); 554 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 555 sizeof(cgrp->root->release_agent_path)); 556 spin_unlock(&release_agent_path_lock); 557 cgroup_kn_unlock(of->kn); 558 return nbytes; 559 } 560 561 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 562 { 563 struct cgroup *cgrp = seq_css(seq)->cgroup; 564 565 spin_lock(&release_agent_path_lock); 566 seq_puts(seq, cgrp->root->release_agent_path); 567 spin_unlock(&release_agent_path_lock); 568 seq_putc(seq, '\n'); 569 return 0; 570 } 571 572 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 573 { 574 seq_puts(seq, "0\n"); 575 return 0; 576 } 577 578 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 579 struct cftype *cft) 580 { 581 return notify_on_release(css->cgroup); 582 } 583 584 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 585 struct cftype *cft, u64 val) 586 { 587 if (val) 588 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 589 else 590 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 591 return 0; 592 } 593 594 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 595 struct cftype *cft) 596 { 597 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 598 } 599 600 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 601 struct cftype *cft, u64 val) 602 { 603 if (val) 604 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 605 else 606 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 607 return 0; 608 } 609 610 /* cgroup core interface files for the legacy hierarchies */ 611 struct cftype cgroup1_base_files[] = { 612 { 613 .name = "cgroup.procs", 614 .seq_start = cgroup_pidlist_start, 615 .seq_next = cgroup_pidlist_next, 616 .seq_stop = cgroup_pidlist_stop, 617 .seq_show = cgroup_pidlist_show, 618 .private = CGROUP_FILE_PROCS, 619 .write = cgroup1_procs_write, 620 }, 621 { 622 .name = "cgroup.clone_children", 623 .read_u64 = cgroup_clone_children_read, 624 .write_u64 = cgroup_clone_children_write, 625 }, 626 { 627 .name = "cgroup.sane_behavior", 628 .flags = CFTYPE_ONLY_ON_ROOT, 629 .seq_show = cgroup_sane_behavior_show, 630 }, 631 { 632 .name = "tasks", 633 .seq_start = cgroup_pidlist_start, 634 .seq_next = cgroup_pidlist_next, 635 .seq_stop = cgroup_pidlist_stop, 636 .seq_show = cgroup_pidlist_show, 637 .private = CGROUP_FILE_TASKS, 638 .write = cgroup1_tasks_write, 639 }, 640 { 641 .name = "notify_on_release", 642 .read_u64 = cgroup_read_notify_on_release, 643 .write_u64 = cgroup_write_notify_on_release, 644 }, 645 { 646 .name = "release_agent", 647 .flags = CFTYPE_ONLY_ON_ROOT, 648 .seq_show = cgroup_release_agent_show, 649 .write = cgroup_release_agent_write, 650 .max_write_len = PATH_MAX - 1, 651 }, 652 { } /* terminate */ 653 }; 654 655 /* Display information about each subsystem and each hierarchy */ 656 int proc_cgroupstats_show(struct seq_file *m, void *v) 657 { 658 struct cgroup_subsys *ss; 659 int i; 660 661 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 662 /* 663 * ideally we don't want subsystems moving around while we do this. 664 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 665 * subsys/hierarchy state. 666 */ 667 mutex_lock(&cgroup_mutex); 668 669 for_each_subsys(ss, i) 670 seq_printf(m, "%s\t%d\t%d\t%d\n", 671 ss->legacy_name, ss->root->hierarchy_id, 672 atomic_read(&ss->root->nr_cgrps), 673 cgroup_ssid_enabled(i)); 674 675 mutex_unlock(&cgroup_mutex); 676 return 0; 677 } 678 679 /** 680 * cgroupstats_build - build and fill cgroupstats 681 * @stats: cgroupstats to fill information into 682 * @dentry: A dentry entry belonging to the cgroup for which stats have 683 * been requested. 684 * 685 * Build and fill cgroupstats so that taskstats can export it to user 686 * space. 687 */ 688 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 689 { 690 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 691 struct cgroup *cgrp; 692 struct css_task_iter it; 693 struct task_struct *tsk; 694 695 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 696 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 697 kernfs_type(kn) != KERNFS_DIR) 698 return -EINVAL; 699 700 mutex_lock(&cgroup_mutex); 701 702 /* 703 * We aren't being called from kernfs and there's no guarantee on 704 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 705 * @kn->priv is RCU safe. Let's do the RCU dancing. 706 */ 707 rcu_read_lock(); 708 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 709 if (!cgrp || cgroup_is_dead(cgrp)) { 710 rcu_read_unlock(); 711 mutex_unlock(&cgroup_mutex); 712 return -ENOENT; 713 } 714 rcu_read_unlock(); 715 716 css_task_iter_start(&cgrp->self, 0, &it); 717 while ((tsk = css_task_iter_next(&it))) { 718 switch (tsk->state) { 719 case TASK_RUNNING: 720 stats->nr_running++; 721 break; 722 case TASK_INTERRUPTIBLE: 723 stats->nr_sleeping++; 724 break; 725 case TASK_UNINTERRUPTIBLE: 726 stats->nr_uninterruptible++; 727 break; 728 case TASK_STOPPED: 729 stats->nr_stopped++; 730 break; 731 default: 732 if (delayacct_is_task_waiting_on_io(tsk)) 733 stats->nr_io_wait++; 734 break; 735 } 736 } 737 css_task_iter_end(&it); 738 739 mutex_unlock(&cgroup_mutex); 740 return 0; 741 } 742 743 void cgroup1_check_for_release(struct cgroup *cgrp) 744 { 745 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 746 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 747 schedule_work(&cgrp->release_agent_work); 748 } 749 750 /* 751 * Notify userspace when a cgroup is released, by running the 752 * configured release agent with the name of the cgroup (path 753 * relative to the root of cgroup file system) as the argument. 754 * 755 * Most likely, this user command will try to rmdir this cgroup. 756 * 757 * This races with the possibility that some other task will be 758 * attached to this cgroup before it is removed, or that some other 759 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 760 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 761 * unused, and this cgroup will be reprieved from its death sentence, 762 * to continue to serve a useful existence. Next time it's released, 763 * we will get notified again, if it still has 'notify_on_release' set. 764 * 765 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 766 * means only wait until the task is successfully execve()'d. The 767 * separate release agent task is forked by call_usermodehelper(), 768 * then control in this thread returns here, without waiting for the 769 * release agent task. We don't bother to wait because the caller of 770 * this routine has no use for the exit status of the release agent 771 * task, so no sense holding our caller up for that. 772 */ 773 void cgroup1_release_agent(struct work_struct *work) 774 { 775 struct cgroup *cgrp = 776 container_of(work, struct cgroup, release_agent_work); 777 char *pathbuf = NULL, *agentbuf = NULL; 778 char *argv[3], *envp[3]; 779 int ret; 780 781 mutex_lock(&cgroup_mutex); 782 783 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 784 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 785 if (!pathbuf || !agentbuf) 786 goto out; 787 788 spin_lock_irq(&css_set_lock); 789 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 790 spin_unlock_irq(&css_set_lock); 791 if (ret < 0 || ret >= PATH_MAX) 792 goto out; 793 794 argv[0] = agentbuf; 795 argv[1] = pathbuf; 796 argv[2] = NULL; 797 798 /* minimal command environment */ 799 envp[0] = "HOME=/"; 800 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 801 envp[2] = NULL; 802 803 mutex_unlock(&cgroup_mutex); 804 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 805 goto out_free; 806 out: 807 mutex_unlock(&cgroup_mutex); 808 out_free: 809 kfree(agentbuf); 810 kfree(pathbuf); 811 } 812 813 /* 814 * cgroup_rename - Only allow simple rename of directories in place. 815 */ 816 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 817 const char *new_name_str) 818 { 819 struct cgroup *cgrp = kn->priv; 820 int ret; 821 822 if (kernfs_type(kn) != KERNFS_DIR) 823 return -ENOTDIR; 824 if (kn->parent != new_parent) 825 return -EIO; 826 827 /* 828 * We're gonna grab cgroup_mutex which nests outside kernfs 829 * active_ref. kernfs_rename() doesn't require active_ref 830 * protection. Break them before grabbing cgroup_mutex. 831 */ 832 kernfs_break_active_protection(new_parent); 833 kernfs_break_active_protection(kn); 834 835 mutex_lock(&cgroup_mutex); 836 837 ret = kernfs_rename(kn, new_parent, new_name_str); 838 if (!ret) 839 TRACE_CGROUP_PATH(rename, cgrp); 840 841 mutex_unlock(&cgroup_mutex); 842 843 kernfs_unbreak_active_protection(kn); 844 kernfs_unbreak_active_protection(new_parent); 845 return ret; 846 } 847 848 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 849 { 850 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 851 struct cgroup_subsys *ss; 852 int ssid; 853 854 for_each_subsys(ss, ssid) 855 if (root->subsys_mask & (1 << ssid)) 856 seq_show_option(seq, ss->legacy_name, NULL); 857 if (root->flags & CGRP_ROOT_NOPREFIX) 858 seq_puts(seq, ",noprefix"); 859 if (root->flags & CGRP_ROOT_XATTR) 860 seq_puts(seq, ",xattr"); 861 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 862 seq_puts(seq, ",cpuset_v2_mode"); 863 864 spin_lock(&release_agent_path_lock); 865 if (strlen(root->release_agent_path)) 866 seq_show_option(seq, "release_agent", 867 root->release_agent_path); 868 spin_unlock(&release_agent_path_lock); 869 870 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 871 seq_puts(seq, ",clone_children"); 872 if (strlen(root->name)) 873 seq_show_option(seq, "name", root->name); 874 return 0; 875 } 876 877 enum cgroup1_param { 878 Opt_all, 879 Opt_clone_children, 880 Opt_cpuset_v2_mode, 881 Opt_name, 882 Opt_none, 883 Opt_noprefix, 884 Opt_release_agent, 885 Opt_xattr, 886 }; 887 888 const struct fs_parameter_spec cgroup1_fs_parameters[] = { 889 fsparam_flag ("all", Opt_all), 890 fsparam_flag ("clone_children", Opt_clone_children), 891 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 892 fsparam_string("name", Opt_name), 893 fsparam_flag ("none", Opt_none), 894 fsparam_flag ("noprefix", Opt_noprefix), 895 fsparam_string("release_agent", Opt_release_agent), 896 fsparam_flag ("xattr", Opt_xattr), 897 {} 898 }; 899 900 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 901 { 902 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 903 struct cgroup_subsys *ss; 904 struct fs_parse_result result; 905 int opt, i; 906 907 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 908 if (opt == -ENOPARAM) { 909 if (strcmp(param->key, "source") == 0) { 910 fc->source = param->string; 911 param->string = NULL; 912 return 0; 913 } 914 for_each_subsys(ss, i) { 915 if (strcmp(param->key, ss->legacy_name)) 916 continue; 917 ctx->subsys_mask |= (1 << i); 918 return 0; 919 } 920 return invalfc(fc, "Unknown subsys name '%s'", param->key); 921 } 922 if (opt < 0) 923 return opt; 924 925 switch (opt) { 926 case Opt_none: 927 /* Explicitly have no subsystems */ 928 ctx->none = true; 929 break; 930 case Opt_all: 931 ctx->all_ss = true; 932 break; 933 case Opt_noprefix: 934 ctx->flags |= CGRP_ROOT_NOPREFIX; 935 break; 936 case Opt_clone_children: 937 ctx->cpuset_clone_children = true; 938 break; 939 case Opt_cpuset_v2_mode: 940 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 941 break; 942 case Opt_xattr: 943 ctx->flags |= CGRP_ROOT_XATTR; 944 break; 945 case Opt_release_agent: 946 /* Specifying two release agents is forbidden */ 947 if (ctx->release_agent) 948 return invalfc(fc, "release_agent respecified"); 949 ctx->release_agent = param->string; 950 param->string = NULL; 951 break; 952 case Opt_name: 953 /* blocked by boot param? */ 954 if (cgroup_no_v1_named) 955 return -ENOENT; 956 /* Can't specify an empty name */ 957 if (!param->size) 958 return invalfc(fc, "Empty name"); 959 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 960 return invalfc(fc, "Name too long"); 961 /* Must match [\w.-]+ */ 962 for (i = 0; i < param->size; i++) { 963 char c = param->string[i]; 964 if (isalnum(c)) 965 continue; 966 if ((c == '.') || (c == '-') || (c == '_')) 967 continue; 968 return invalfc(fc, "Invalid name"); 969 } 970 /* Specifying two names is forbidden */ 971 if (ctx->name) 972 return invalfc(fc, "name respecified"); 973 ctx->name = param->string; 974 param->string = NULL; 975 break; 976 } 977 return 0; 978 } 979 980 static int check_cgroupfs_options(struct fs_context *fc) 981 { 982 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 983 u16 mask = U16_MAX; 984 u16 enabled = 0; 985 struct cgroup_subsys *ss; 986 int i; 987 988 #ifdef CONFIG_CPUSETS 989 mask = ~((u16)1 << cpuset_cgrp_id); 990 #endif 991 for_each_subsys(ss, i) 992 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 993 enabled |= 1 << i; 994 995 ctx->subsys_mask &= enabled; 996 997 /* 998 * In absense of 'none', 'name=' or subsystem name options, 999 * let's default to 'all'. 1000 */ 1001 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1002 ctx->all_ss = true; 1003 1004 if (ctx->all_ss) { 1005 /* Mutually exclusive option 'all' + subsystem name */ 1006 if (ctx->subsys_mask) 1007 return invalfc(fc, "subsys name conflicts with all"); 1008 /* 'all' => select all the subsystems */ 1009 ctx->subsys_mask = enabled; 1010 } 1011 1012 /* 1013 * We either have to specify by name or by subsystems. (So all 1014 * empty hierarchies must have a name). 1015 */ 1016 if (!ctx->subsys_mask && !ctx->name) 1017 return invalfc(fc, "Need name or subsystem set"); 1018 1019 /* 1020 * Option noprefix was introduced just for backward compatibility 1021 * with the old cpuset, so we allow noprefix only if mounting just 1022 * the cpuset subsystem. 1023 */ 1024 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1025 return invalfc(fc, "noprefix used incorrectly"); 1026 1027 /* Can't specify "none" and some subsystems */ 1028 if (ctx->subsys_mask && ctx->none) 1029 return invalfc(fc, "none used incorrectly"); 1030 1031 return 0; 1032 } 1033 1034 int cgroup1_reconfigure(struct fs_context *fc) 1035 { 1036 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1037 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1038 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1039 int ret = 0; 1040 u16 added_mask, removed_mask; 1041 1042 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1043 1044 /* See what subsystems are wanted */ 1045 ret = check_cgroupfs_options(fc); 1046 if (ret) 1047 goto out_unlock; 1048 1049 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1050 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1051 task_tgid_nr(current), current->comm); 1052 1053 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1054 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1055 1056 /* Don't allow flags or name to change at remount */ 1057 if ((ctx->flags ^ root->flags) || 1058 (ctx->name && strcmp(ctx->name, root->name))) { 1059 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1060 ctx->flags, ctx->name ?: "", root->flags, root->name); 1061 ret = -EINVAL; 1062 goto out_unlock; 1063 } 1064 1065 /* remounting is not allowed for populated hierarchies */ 1066 if (!list_empty(&root->cgrp.self.children)) { 1067 ret = -EBUSY; 1068 goto out_unlock; 1069 } 1070 1071 ret = rebind_subsystems(root, added_mask); 1072 if (ret) 1073 goto out_unlock; 1074 1075 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1076 1077 if (ctx->release_agent) { 1078 spin_lock(&release_agent_path_lock); 1079 strcpy(root->release_agent_path, ctx->release_agent); 1080 spin_unlock(&release_agent_path_lock); 1081 } 1082 1083 trace_cgroup_remount(root); 1084 1085 out_unlock: 1086 mutex_unlock(&cgroup_mutex); 1087 return ret; 1088 } 1089 1090 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1091 .rename = cgroup1_rename, 1092 .show_options = cgroup1_show_options, 1093 .mkdir = cgroup_mkdir, 1094 .rmdir = cgroup_rmdir, 1095 .show_path = cgroup_show_path, 1096 }; 1097 1098 /* 1099 * The guts of cgroup1 mount - find or create cgroup_root to use. 1100 * Called with cgroup_mutex held; returns 0 on success, -E... on 1101 * error and positive - in case when the candidate is busy dying. 1102 * On success it stashes a reference to cgroup_root into given 1103 * cgroup_fs_context; that reference is *NOT* counting towards the 1104 * cgroup_root refcount. 1105 */ 1106 static int cgroup1_root_to_use(struct fs_context *fc) 1107 { 1108 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1109 struct cgroup_root *root; 1110 struct cgroup_subsys *ss; 1111 int i, ret; 1112 1113 /* First find the desired set of subsystems */ 1114 ret = check_cgroupfs_options(fc); 1115 if (ret) 1116 return ret; 1117 1118 /* 1119 * Destruction of cgroup root is asynchronous, so subsystems may 1120 * still be dying after the previous unmount. Let's drain the 1121 * dying subsystems. We just need to ensure that the ones 1122 * unmounted previously finish dying and don't care about new ones 1123 * starting. Testing ref liveliness is good enough. 1124 */ 1125 for_each_subsys(ss, i) { 1126 if (!(ctx->subsys_mask & (1 << i)) || 1127 ss->root == &cgrp_dfl_root) 1128 continue; 1129 1130 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1131 return 1; /* restart */ 1132 cgroup_put(&ss->root->cgrp); 1133 } 1134 1135 for_each_root(root) { 1136 bool name_match = false; 1137 1138 if (root == &cgrp_dfl_root) 1139 continue; 1140 1141 /* 1142 * If we asked for a name then it must match. Also, if 1143 * name matches but sybsys_mask doesn't, we should fail. 1144 * Remember whether name matched. 1145 */ 1146 if (ctx->name) { 1147 if (strcmp(ctx->name, root->name)) 1148 continue; 1149 name_match = true; 1150 } 1151 1152 /* 1153 * If we asked for subsystems (or explicitly for no 1154 * subsystems) then they must match. 1155 */ 1156 if ((ctx->subsys_mask || ctx->none) && 1157 (ctx->subsys_mask != root->subsys_mask)) { 1158 if (!name_match) 1159 continue; 1160 return -EBUSY; 1161 } 1162 1163 if (root->flags ^ ctx->flags) 1164 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1165 1166 ctx->root = root; 1167 return 0; 1168 } 1169 1170 /* 1171 * No such thing, create a new one. name= matching without subsys 1172 * specification is allowed for already existing hierarchies but we 1173 * can't create new one without subsys specification. 1174 */ 1175 if (!ctx->subsys_mask && !ctx->none) 1176 return invalfc(fc, "No subsys list or none specified"); 1177 1178 /* Hierarchies may only be created in the initial cgroup namespace. */ 1179 if (ctx->ns != &init_cgroup_ns) 1180 return -EPERM; 1181 1182 root = kzalloc(sizeof(*root), GFP_KERNEL); 1183 if (!root) 1184 return -ENOMEM; 1185 1186 ctx->root = root; 1187 init_cgroup_root(ctx); 1188 1189 ret = cgroup_setup_root(root, ctx->subsys_mask); 1190 if (ret) 1191 cgroup_free_root(root); 1192 return ret; 1193 } 1194 1195 int cgroup1_get_tree(struct fs_context *fc) 1196 { 1197 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1198 int ret; 1199 1200 /* Check if the caller has permission to mount. */ 1201 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1202 return -EPERM; 1203 1204 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1205 1206 ret = cgroup1_root_to_use(fc); 1207 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1208 ret = 1; /* restart */ 1209 1210 mutex_unlock(&cgroup_mutex); 1211 1212 if (!ret) 1213 ret = cgroup_do_get_tree(fc); 1214 1215 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1216 struct super_block *sb = fc->root->d_sb; 1217 dput(fc->root); 1218 deactivate_locked_super(sb); 1219 ret = 1; 1220 } 1221 1222 if (unlikely(ret > 0)) { 1223 msleep(10); 1224 return restart_syscall(); 1225 } 1226 return ret; 1227 } 1228 1229 static int __init cgroup1_wq_init(void) 1230 { 1231 /* 1232 * Used to destroy pidlists and separate to serve as flush domain. 1233 * Cap @max_active to 1 too. 1234 */ 1235 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1236 0, 1); 1237 BUG_ON(!cgroup_pidlist_destroy_wq); 1238 return 0; 1239 } 1240 core_initcall(cgroup1_wq_init); 1241 1242 static int __init cgroup_no_v1(char *str) 1243 { 1244 struct cgroup_subsys *ss; 1245 char *token; 1246 int i; 1247 1248 while ((token = strsep(&str, ",")) != NULL) { 1249 if (!*token) 1250 continue; 1251 1252 if (!strcmp(token, "all")) { 1253 cgroup_no_v1_mask = U16_MAX; 1254 continue; 1255 } 1256 1257 if (!strcmp(token, "named")) { 1258 cgroup_no_v1_named = true; 1259 continue; 1260 } 1261 1262 for_each_subsys(ss, i) { 1263 if (strcmp(token, ss->name) && 1264 strcmp(token, ss->legacy_name)) 1265 continue; 1266 1267 cgroup_no_v1_mask |= 1 << i; 1268 } 1269 } 1270 return 1; 1271 } 1272 __setup("cgroup_no_v1=", cgroup_no_v1); 1273