1 #include "cgroup-internal.h" 2 3 #include <linux/ctype.h> 4 #include <linux/kmod.h> 5 #include <linux/sort.h> 6 #include <linux/delay.h> 7 #include <linux/mm.h> 8 #include <linux/sched/signal.h> 9 #include <linux/sched/task.h> 10 #include <linux/magic.h> 11 #include <linux/slab.h> 12 #include <linux/vmalloc.h> 13 #include <linux/delayacct.h> 14 #include <linux/pid_namespace.h> 15 #include <linux/cgroupstats.h> 16 17 #include <trace/events/cgroup.h> 18 19 /* 20 * pidlists linger the following amount before being destroyed. The goal 21 * is avoiding frequent destruction in the middle of consecutive read calls 22 * Expiring in the middle is a performance problem not a correctness one. 23 * 1 sec should be enough. 24 */ 25 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 26 27 /* Controllers blocked by the commandline in v1 */ 28 static u16 cgroup_no_v1_mask; 29 30 /* 31 * pidlist destructions need to be flushed on cgroup destruction. Use a 32 * separate workqueue as flush domain. 33 */ 34 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 35 36 /* 37 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 38 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 39 */ 40 static DEFINE_SPINLOCK(release_agent_path_lock); 41 42 bool cgroup1_ssid_disabled(int ssid) 43 { 44 return cgroup_no_v1_mask & (1 << ssid); 45 } 46 47 /** 48 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 49 * @from: attach to all cgroups of a given task 50 * @tsk: the task to be attached 51 */ 52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 53 { 54 struct cgroup_root *root; 55 int retval = 0; 56 57 mutex_lock(&cgroup_mutex); 58 percpu_down_write(&cgroup_threadgroup_rwsem); 59 for_each_root(root) { 60 struct cgroup *from_cgrp; 61 62 if (root == &cgrp_dfl_root) 63 continue; 64 65 spin_lock_irq(&css_set_lock); 66 from_cgrp = task_cgroup_from_root(from, root); 67 spin_unlock_irq(&css_set_lock); 68 69 retval = cgroup_attach_task(from_cgrp, tsk, false); 70 if (retval) 71 break; 72 } 73 percpu_up_write(&cgroup_threadgroup_rwsem); 74 mutex_unlock(&cgroup_mutex); 75 76 return retval; 77 } 78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 79 80 /** 81 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 82 * @to: cgroup to which the tasks will be moved 83 * @from: cgroup in which the tasks currently reside 84 * 85 * Locking rules between cgroup_post_fork() and the migration path 86 * guarantee that, if a task is forking while being migrated, the new child 87 * is guaranteed to be either visible in the source cgroup after the 88 * parent's migration is complete or put into the target cgroup. No task 89 * can slip out of migration through forking. 90 */ 91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 92 { 93 DEFINE_CGROUP_MGCTX(mgctx); 94 struct cgrp_cset_link *link; 95 struct css_task_iter it; 96 struct task_struct *task; 97 int ret; 98 99 if (cgroup_on_dfl(to)) 100 return -EINVAL; 101 102 ret = cgroup_migrate_vet_dst(to); 103 if (ret) 104 return ret; 105 106 mutex_lock(&cgroup_mutex); 107 108 percpu_down_write(&cgroup_threadgroup_rwsem); 109 110 /* all tasks in @from are being moved, all csets are source */ 111 spin_lock_irq(&css_set_lock); 112 list_for_each_entry(link, &from->cset_links, cset_link) 113 cgroup_migrate_add_src(link->cset, to, &mgctx); 114 spin_unlock_irq(&css_set_lock); 115 116 ret = cgroup_migrate_prepare_dst(&mgctx); 117 if (ret) 118 goto out_err; 119 120 /* 121 * Migrate tasks one-by-one until @from is empty. This fails iff 122 * ->can_attach() fails. 123 */ 124 do { 125 css_task_iter_start(&from->self, 0, &it); 126 127 do { 128 task = css_task_iter_next(&it); 129 } while (task && (task->flags & PF_EXITING)); 130 131 if (task) 132 get_task_struct(task); 133 css_task_iter_end(&it); 134 135 if (task) { 136 ret = cgroup_migrate(task, false, &mgctx); 137 if (!ret) 138 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 139 put_task_struct(task); 140 } 141 } while (task && !ret); 142 out_err: 143 cgroup_migrate_finish(&mgctx); 144 percpu_up_write(&cgroup_threadgroup_rwsem); 145 mutex_unlock(&cgroup_mutex); 146 return ret; 147 } 148 149 /* 150 * Stuff for reading the 'tasks'/'procs' files. 151 * 152 * Reading this file can return large amounts of data if a cgroup has 153 * *lots* of attached tasks. So it may need several calls to read(), 154 * but we cannot guarantee that the information we produce is correct 155 * unless we produce it entirely atomically. 156 * 157 */ 158 159 /* which pidlist file are we talking about? */ 160 enum cgroup_filetype { 161 CGROUP_FILE_PROCS, 162 CGROUP_FILE_TASKS, 163 }; 164 165 /* 166 * A pidlist is a list of pids that virtually represents the contents of one 167 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 168 * a pair (one each for procs, tasks) for each pid namespace that's relevant 169 * to the cgroup. 170 */ 171 struct cgroup_pidlist { 172 /* 173 * used to find which pidlist is wanted. doesn't change as long as 174 * this particular list stays in the list. 175 */ 176 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 177 /* array of xids */ 178 pid_t *list; 179 /* how many elements the above list has */ 180 int length; 181 /* each of these stored in a list by its cgroup */ 182 struct list_head links; 183 /* pointer to the cgroup we belong to, for list removal purposes */ 184 struct cgroup *owner; 185 /* for delayed destruction */ 186 struct delayed_work destroy_dwork; 187 }; 188 189 /* 190 * The following two functions "fix" the issue where there are more pids 191 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. 192 * TODO: replace with a kernel-wide solution to this problem 193 */ 194 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) 195 static void *pidlist_allocate(int count) 196 { 197 if (PIDLIST_TOO_LARGE(count)) 198 return vmalloc(array_size(count, sizeof(pid_t))); 199 else 200 return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL); 201 } 202 203 static void pidlist_free(void *p) 204 { 205 kvfree(p); 206 } 207 208 /* 209 * Used to destroy all pidlists lingering waiting for destroy timer. None 210 * should be left afterwards. 211 */ 212 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 213 { 214 struct cgroup_pidlist *l, *tmp_l; 215 216 mutex_lock(&cgrp->pidlist_mutex); 217 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 218 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 219 mutex_unlock(&cgrp->pidlist_mutex); 220 221 flush_workqueue(cgroup_pidlist_destroy_wq); 222 BUG_ON(!list_empty(&cgrp->pidlists)); 223 } 224 225 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 226 { 227 struct delayed_work *dwork = to_delayed_work(work); 228 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 229 destroy_dwork); 230 struct cgroup_pidlist *tofree = NULL; 231 232 mutex_lock(&l->owner->pidlist_mutex); 233 234 /* 235 * Destroy iff we didn't get queued again. The state won't change 236 * as destroy_dwork can only be queued while locked. 237 */ 238 if (!delayed_work_pending(dwork)) { 239 list_del(&l->links); 240 pidlist_free(l->list); 241 put_pid_ns(l->key.ns); 242 tofree = l; 243 } 244 245 mutex_unlock(&l->owner->pidlist_mutex); 246 kfree(tofree); 247 } 248 249 /* 250 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 251 * Returns the number of unique elements. 252 */ 253 static int pidlist_uniq(pid_t *list, int length) 254 { 255 int src, dest = 1; 256 257 /* 258 * we presume the 0th element is unique, so i starts at 1. trivial 259 * edge cases first; no work needs to be done for either 260 */ 261 if (length == 0 || length == 1) 262 return length; 263 /* src and dest walk down the list; dest counts unique elements */ 264 for (src = 1; src < length; src++) { 265 /* find next unique element */ 266 while (list[src] == list[src-1]) { 267 src++; 268 if (src == length) 269 goto after; 270 } 271 /* dest always points to where the next unique element goes */ 272 list[dest] = list[src]; 273 dest++; 274 } 275 after: 276 return dest; 277 } 278 279 /* 280 * The two pid files - task and cgroup.procs - guaranteed that the result 281 * is sorted, which forced this whole pidlist fiasco. As pid order is 282 * different per namespace, each namespace needs differently sorted list, 283 * making it impossible to use, for example, single rbtree of member tasks 284 * sorted by task pointer. As pidlists can be fairly large, allocating one 285 * per open file is dangerous, so cgroup had to implement shared pool of 286 * pidlists keyed by cgroup and namespace. 287 */ 288 static int cmppid(const void *a, const void *b) 289 { 290 return *(pid_t *)a - *(pid_t *)b; 291 } 292 293 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 294 enum cgroup_filetype type) 295 { 296 struct cgroup_pidlist *l; 297 /* don't need task_nsproxy() if we're looking at ourself */ 298 struct pid_namespace *ns = task_active_pid_ns(current); 299 300 lockdep_assert_held(&cgrp->pidlist_mutex); 301 302 list_for_each_entry(l, &cgrp->pidlists, links) 303 if (l->key.type == type && l->key.ns == ns) 304 return l; 305 return NULL; 306 } 307 308 /* 309 * find the appropriate pidlist for our purpose (given procs vs tasks) 310 * returns with the lock on that pidlist already held, and takes care 311 * of the use count, or returns NULL with no locks held if we're out of 312 * memory. 313 */ 314 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 315 enum cgroup_filetype type) 316 { 317 struct cgroup_pidlist *l; 318 319 lockdep_assert_held(&cgrp->pidlist_mutex); 320 321 l = cgroup_pidlist_find(cgrp, type); 322 if (l) 323 return l; 324 325 /* entry not found; create a new one */ 326 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 327 if (!l) 328 return l; 329 330 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 331 l->key.type = type; 332 /* don't need task_nsproxy() if we're looking at ourself */ 333 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 334 l->owner = cgrp; 335 list_add(&l->links, &cgrp->pidlists); 336 return l; 337 } 338 339 /** 340 * cgroup_task_count - count the number of tasks in a cgroup. 341 * @cgrp: the cgroup in question 342 */ 343 int cgroup_task_count(const struct cgroup *cgrp) 344 { 345 int count = 0; 346 struct cgrp_cset_link *link; 347 348 spin_lock_irq(&css_set_lock); 349 list_for_each_entry(link, &cgrp->cset_links, cset_link) 350 count += link->cset->nr_tasks; 351 spin_unlock_irq(&css_set_lock); 352 return count; 353 } 354 355 /* 356 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 357 */ 358 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 359 struct cgroup_pidlist **lp) 360 { 361 pid_t *array; 362 int length; 363 int pid, n = 0; /* used for populating the array */ 364 struct css_task_iter it; 365 struct task_struct *tsk; 366 struct cgroup_pidlist *l; 367 368 lockdep_assert_held(&cgrp->pidlist_mutex); 369 370 /* 371 * If cgroup gets more users after we read count, we won't have 372 * enough space - tough. This race is indistinguishable to the 373 * caller from the case that the additional cgroup users didn't 374 * show up until sometime later on. 375 */ 376 length = cgroup_task_count(cgrp); 377 array = pidlist_allocate(length); 378 if (!array) 379 return -ENOMEM; 380 /* now, populate the array */ 381 css_task_iter_start(&cgrp->self, 0, &it); 382 while ((tsk = css_task_iter_next(&it))) { 383 if (unlikely(n == length)) 384 break; 385 /* get tgid or pid for procs or tasks file respectively */ 386 if (type == CGROUP_FILE_PROCS) 387 pid = task_tgid_vnr(tsk); 388 else 389 pid = task_pid_vnr(tsk); 390 if (pid > 0) /* make sure to only use valid results */ 391 array[n++] = pid; 392 } 393 css_task_iter_end(&it); 394 length = n; 395 /* now sort & (if procs) strip out duplicates */ 396 sort(array, length, sizeof(pid_t), cmppid, NULL); 397 if (type == CGROUP_FILE_PROCS) 398 length = pidlist_uniq(array, length); 399 400 l = cgroup_pidlist_find_create(cgrp, type); 401 if (!l) { 402 pidlist_free(array); 403 return -ENOMEM; 404 } 405 406 /* store array, freeing old if necessary */ 407 pidlist_free(l->list); 408 l->list = array; 409 l->length = length; 410 *lp = l; 411 return 0; 412 } 413 414 /* 415 * seq_file methods for the tasks/procs files. The seq_file position is the 416 * next pid to display; the seq_file iterator is a pointer to the pid 417 * in the cgroup->l->list array. 418 */ 419 420 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 421 { 422 /* 423 * Initially we receive a position value that corresponds to 424 * one more than the last pid shown (or 0 on the first call or 425 * after a seek to the start). Use a binary-search to find the 426 * next pid to display, if any 427 */ 428 struct kernfs_open_file *of = s->private; 429 struct cgroup *cgrp = seq_css(s)->cgroup; 430 struct cgroup_pidlist *l; 431 enum cgroup_filetype type = seq_cft(s)->private; 432 int index = 0, pid = *pos; 433 int *iter, ret; 434 435 mutex_lock(&cgrp->pidlist_mutex); 436 437 /* 438 * !NULL @of->priv indicates that this isn't the first start() 439 * after open. If the matching pidlist is around, we can use that. 440 * Look for it. Note that @of->priv can't be used directly. It 441 * could already have been destroyed. 442 */ 443 if (of->priv) 444 of->priv = cgroup_pidlist_find(cgrp, type); 445 446 /* 447 * Either this is the first start() after open or the matching 448 * pidlist has been destroyed inbetween. Create a new one. 449 */ 450 if (!of->priv) { 451 ret = pidlist_array_load(cgrp, type, 452 (struct cgroup_pidlist **)&of->priv); 453 if (ret) 454 return ERR_PTR(ret); 455 } 456 l = of->priv; 457 458 if (pid) { 459 int end = l->length; 460 461 while (index < end) { 462 int mid = (index + end) / 2; 463 if (l->list[mid] == pid) { 464 index = mid; 465 break; 466 } else if (l->list[mid] <= pid) 467 index = mid + 1; 468 else 469 end = mid; 470 } 471 } 472 /* If we're off the end of the array, we're done */ 473 if (index >= l->length) 474 return NULL; 475 /* Update the abstract position to be the actual pid that we found */ 476 iter = l->list + index; 477 *pos = *iter; 478 return iter; 479 } 480 481 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 482 { 483 struct kernfs_open_file *of = s->private; 484 struct cgroup_pidlist *l = of->priv; 485 486 if (l) 487 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 488 CGROUP_PIDLIST_DESTROY_DELAY); 489 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 490 } 491 492 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 493 { 494 struct kernfs_open_file *of = s->private; 495 struct cgroup_pidlist *l = of->priv; 496 pid_t *p = v; 497 pid_t *end = l->list + l->length; 498 /* 499 * Advance to the next pid in the array. If this goes off the 500 * end, we're done 501 */ 502 p++; 503 if (p >= end) { 504 return NULL; 505 } else { 506 *pos = *p; 507 return p; 508 } 509 } 510 511 static int cgroup_pidlist_show(struct seq_file *s, void *v) 512 { 513 seq_printf(s, "%d\n", *(int *)v); 514 515 return 0; 516 } 517 518 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 519 char *buf, size_t nbytes, loff_t off, 520 bool threadgroup) 521 { 522 struct cgroup *cgrp; 523 struct task_struct *task; 524 const struct cred *cred, *tcred; 525 ssize_t ret; 526 527 cgrp = cgroup_kn_lock_live(of->kn, false); 528 if (!cgrp) 529 return -ENODEV; 530 531 task = cgroup_procs_write_start(buf, threadgroup); 532 ret = PTR_ERR_OR_ZERO(task); 533 if (ret) 534 goto out_unlock; 535 536 /* 537 * Even if we're attaching all tasks in the thread group, we only 538 * need to check permissions on one of them. 539 */ 540 cred = current_cred(); 541 tcred = get_task_cred(task); 542 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 543 !uid_eq(cred->euid, tcred->uid) && 544 !uid_eq(cred->euid, tcred->suid)) 545 ret = -EACCES; 546 put_cred(tcred); 547 if (ret) 548 goto out_finish; 549 550 ret = cgroup_attach_task(cgrp, task, threadgroup); 551 552 out_finish: 553 cgroup_procs_write_finish(task); 554 out_unlock: 555 cgroup_kn_unlock(of->kn); 556 557 return ret ?: nbytes; 558 } 559 560 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 561 char *buf, size_t nbytes, loff_t off) 562 { 563 return __cgroup1_procs_write(of, buf, nbytes, off, true); 564 } 565 566 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 567 char *buf, size_t nbytes, loff_t off) 568 { 569 return __cgroup1_procs_write(of, buf, nbytes, off, false); 570 } 571 572 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 573 char *buf, size_t nbytes, loff_t off) 574 { 575 struct cgroup *cgrp; 576 577 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 578 579 cgrp = cgroup_kn_lock_live(of->kn, false); 580 if (!cgrp) 581 return -ENODEV; 582 spin_lock(&release_agent_path_lock); 583 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 584 sizeof(cgrp->root->release_agent_path)); 585 spin_unlock(&release_agent_path_lock); 586 cgroup_kn_unlock(of->kn); 587 return nbytes; 588 } 589 590 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 591 { 592 struct cgroup *cgrp = seq_css(seq)->cgroup; 593 594 spin_lock(&release_agent_path_lock); 595 seq_puts(seq, cgrp->root->release_agent_path); 596 spin_unlock(&release_agent_path_lock); 597 seq_putc(seq, '\n'); 598 return 0; 599 } 600 601 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 602 { 603 seq_puts(seq, "0\n"); 604 return 0; 605 } 606 607 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 608 struct cftype *cft) 609 { 610 return notify_on_release(css->cgroup); 611 } 612 613 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 614 struct cftype *cft, u64 val) 615 { 616 if (val) 617 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 618 else 619 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 620 return 0; 621 } 622 623 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 624 struct cftype *cft) 625 { 626 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 627 } 628 629 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 630 struct cftype *cft, u64 val) 631 { 632 if (val) 633 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 634 else 635 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 636 return 0; 637 } 638 639 /* cgroup core interface files for the legacy hierarchies */ 640 struct cftype cgroup1_base_files[] = { 641 { 642 .name = "cgroup.procs", 643 .seq_start = cgroup_pidlist_start, 644 .seq_next = cgroup_pidlist_next, 645 .seq_stop = cgroup_pidlist_stop, 646 .seq_show = cgroup_pidlist_show, 647 .private = CGROUP_FILE_PROCS, 648 .write = cgroup1_procs_write, 649 }, 650 { 651 .name = "cgroup.clone_children", 652 .read_u64 = cgroup_clone_children_read, 653 .write_u64 = cgroup_clone_children_write, 654 }, 655 { 656 .name = "cgroup.sane_behavior", 657 .flags = CFTYPE_ONLY_ON_ROOT, 658 .seq_show = cgroup_sane_behavior_show, 659 }, 660 { 661 .name = "tasks", 662 .seq_start = cgroup_pidlist_start, 663 .seq_next = cgroup_pidlist_next, 664 .seq_stop = cgroup_pidlist_stop, 665 .seq_show = cgroup_pidlist_show, 666 .private = CGROUP_FILE_TASKS, 667 .write = cgroup1_tasks_write, 668 }, 669 { 670 .name = "notify_on_release", 671 .read_u64 = cgroup_read_notify_on_release, 672 .write_u64 = cgroup_write_notify_on_release, 673 }, 674 { 675 .name = "release_agent", 676 .flags = CFTYPE_ONLY_ON_ROOT, 677 .seq_show = cgroup_release_agent_show, 678 .write = cgroup_release_agent_write, 679 .max_write_len = PATH_MAX - 1, 680 }, 681 { } /* terminate */ 682 }; 683 684 /* Display information about each subsystem and each hierarchy */ 685 int proc_cgroupstats_show(struct seq_file *m, void *v) 686 { 687 struct cgroup_subsys *ss; 688 int i; 689 690 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 691 /* 692 * ideally we don't want subsystems moving around while we do this. 693 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 694 * subsys/hierarchy state. 695 */ 696 mutex_lock(&cgroup_mutex); 697 698 for_each_subsys(ss, i) 699 seq_printf(m, "%s\t%d\t%d\t%d\n", 700 ss->legacy_name, ss->root->hierarchy_id, 701 atomic_read(&ss->root->nr_cgrps), 702 cgroup_ssid_enabled(i)); 703 704 mutex_unlock(&cgroup_mutex); 705 return 0; 706 } 707 708 /** 709 * cgroupstats_build - build and fill cgroupstats 710 * @stats: cgroupstats to fill information into 711 * @dentry: A dentry entry belonging to the cgroup for which stats have 712 * been requested. 713 * 714 * Build and fill cgroupstats so that taskstats can export it to user 715 * space. 716 */ 717 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 718 { 719 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 720 struct cgroup *cgrp; 721 struct css_task_iter it; 722 struct task_struct *tsk; 723 724 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 725 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 726 kernfs_type(kn) != KERNFS_DIR) 727 return -EINVAL; 728 729 mutex_lock(&cgroup_mutex); 730 731 /* 732 * We aren't being called from kernfs and there's no guarantee on 733 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 734 * @kn->priv is RCU safe. Let's do the RCU dancing. 735 */ 736 rcu_read_lock(); 737 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 738 if (!cgrp || cgroup_is_dead(cgrp)) { 739 rcu_read_unlock(); 740 mutex_unlock(&cgroup_mutex); 741 return -ENOENT; 742 } 743 rcu_read_unlock(); 744 745 css_task_iter_start(&cgrp->self, 0, &it); 746 while ((tsk = css_task_iter_next(&it))) { 747 switch (tsk->state) { 748 case TASK_RUNNING: 749 stats->nr_running++; 750 break; 751 case TASK_INTERRUPTIBLE: 752 stats->nr_sleeping++; 753 break; 754 case TASK_UNINTERRUPTIBLE: 755 stats->nr_uninterruptible++; 756 break; 757 case TASK_STOPPED: 758 stats->nr_stopped++; 759 break; 760 default: 761 if (delayacct_is_task_waiting_on_io(tsk)) 762 stats->nr_io_wait++; 763 break; 764 } 765 } 766 css_task_iter_end(&it); 767 768 mutex_unlock(&cgroup_mutex); 769 return 0; 770 } 771 772 void cgroup1_check_for_release(struct cgroup *cgrp) 773 { 774 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 775 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 776 schedule_work(&cgrp->release_agent_work); 777 } 778 779 /* 780 * Notify userspace when a cgroup is released, by running the 781 * configured release agent with the name of the cgroup (path 782 * relative to the root of cgroup file system) as the argument. 783 * 784 * Most likely, this user command will try to rmdir this cgroup. 785 * 786 * This races with the possibility that some other task will be 787 * attached to this cgroup before it is removed, or that some other 788 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 789 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 790 * unused, and this cgroup will be reprieved from its death sentence, 791 * to continue to serve a useful existence. Next time it's released, 792 * we will get notified again, if it still has 'notify_on_release' set. 793 * 794 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 795 * means only wait until the task is successfully execve()'d. The 796 * separate release agent task is forked by call_usermodehelper(), 797 * then control in this thread returns here, without waiting for the 798 * release agent task. We don't bother to wait because the caller of 799 * this routine has no use for the exit status of the release agent 800 * task, so no sense holding our caller up for that. 801 */ 802 void cgroup1_release_agent(struct work_struct *work) 803 { 804 struct cgroup *cgrp = 805 container_of(work, struct cgroup, release_agent_work); 806 char *pathbuf = NULL, *agentbuf = NULL; 807 char *argv[3], *envp[3]; 808 int ret; 809 810 mutex_lock(&cgroup_mutex); 811 812 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 813 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 814 if (!pathbuf || !agentbuf) 815 goto out; 816 817 spin_lock_irq(&css_set_lock); 818 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 819 spin_unlock_irq(&css_set_lock); 820 if (ret < 0 || ret >= PATH_MAX) 821 goto out; 822 823 argv[0] = agentbuf; 824 argv[1] = pathbuf; 825 argv[2] = NULL; 826 827 /* minimal command environment */ 828 envp[0] = "HOME=/"; 829 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 830 envp[2] = NULL; 831 832 mutex_unlock(&cgroup_mutex); 833 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 834 goto out_free; 835 out: 836 mutex_unlock(&cgroup_mutex); 837 out_free: 838 kfree(agentbuf); 839 kfree(pathbuf); 840 } 841 842 /* 843 * cgroup_rename - Only allow simple rename of directories in place. 844 */ 845 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 846 const char *new_name_str) 847 { 848 struct cgroup *cgrp = kn->priv; 849 int ret; 850 851 if (kernfs_type(kn) != KERNFS_DIR) 852 return -ENOTDIR; 853 if (kn->parent != new_parent) 854 return -EIO; 855 856 /* 857 * We're gonna grab cgroup_mutex which nests outside kernfs 858 * active_ref. kernfs_rename() doesn't require active_ref 859 * protection. Break them before grabbing cgroup_mutex. 860 */ 861 kernfs_break_active_protection(new_parent); 862 kernfs_break_active_protection(kn); 863 864 mutex_lock(&cgroup_mutex); 865 866 ret = kernfs_rename(kn, new_parent, new_name_str); 867 if (!ret) 868 TRACE_CGROUP_PATH(rename, cgrp); 869 870 mutex_unlock(&cgroup_mutex); 871 872 kernfs_unbreak_active_protection(kn); 873 kernfs_unbreak_active_protection(new_parent); 874 return ret; 875 } 876 877 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 878 { 879 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 880 struct cgroup_subsys *ss; 881 int ssid; 882 883 for_each_subsys(ss, ssid) 884 if (root->subsys_mask & (1 << ssid)) 885 seq_show_option(seq, ss->legacy_name, NULL); 886 if (root->flags & CGRP_ROOT_NOPREFIX) 887 seq_puts(seq, ",noprefix"); 888 if (root->flags & CGRP_ROOT_XATTR) 889 seq_puts(seq, ",xattr"); 890 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 891 seq_puts(seq, ",cpuset_v2_mode"); 892 893 spin_lock(&release_agent_path_lock); 894 if (strlen(root->release_agent_path)) 895 seq_show_option(seq, "release_agent", 896 root->release_agent_path); 897 spin_unlock(&release_agent_path_lock); 898 899 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 900 seq_puts(seq, ",clone_children"); 901 if (strlen(root->name)) 902 seq_show_option(seq, "name", root->name); 903 return 0; 904 } 905 906 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) 907 { 908 char *token, *o = data; 909 bool all_ss = false, one_ss = false; 910 u16 mask = U16_MAX; 911 struct cgroup_subsys *ss; 912 int nr_opts = 0; 913 int i; 914 915 #ifdef CONFIG_CPUSETS 916 mask = ~((u16)1 << cpuset_cgrp_id); 917 #endif 918 919 memset(opts, 0, sizeof(*opts)); 920 921 while ((token = strsep(&o, ",")) != NULL) { 922 nr_opts++; 923 924 if (!*token) 925 return -EINVAL; 926 if (!strcmp(token, "none")) { 927 /* Explicitly have no subsystems */ 928 opts->none = true; 929 continue; 930 } 931 if (!strcmp(token, "all")) { 932 /* Mutually exclusive option 'all' + subsystem name */ 933 if (one_ss) 934 return -EINVAL; 935 all_ss = true; 936 continue; 937 } 938 if (!strcmp(token, "noprefix")) { 939 opts->flags |= CGRP_ROOT_NOPREFIX; 940 continue; 941 } 942 if (!strcmp(token, "clone_children")) { 943 opts->cpuset_clone_children = true; 944 continue; 945 } 946 if (!strcmp(token, "cpuset_v2_mode")) { 947 opts->flags |= CGRP_ROOT_CPUSET_V2_MODE; 948 continue; 949 } 950 if (!strcmp(token, "xattr")) { 951 opts->flags |= CGRP_ROOT_XATTR; 952 continue; 953 } 954 if (!strncmp(token, "release_agent=", 14)) { 955 /* Specifying two release agents is forbidden */ 956 if (opts->release_agent) 957 return -EINVAL; 958 opts->release_agent = 959 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); 960 if (!opts->release_agent) 961 return -ENOMEM; 962 continue; 963 } 964 if (!strncmp(token, "name=", 5)) { 965 const char *name = token + 5; 966 /* Can't specify an empty name */ 967 if (!strlen(name)) 968 return -EINVAL; 969 /* Must match [\w.-]+ */ 970 for (i = 0; i < strlen(name); i++) { 971 char c = name[i]; 972 if (isalnum(c)) 973 continue; 974 if ((c == '.') || (c == '-') || (c == '_')) 975 continue; 976 return -EINVAL; 977 } 978 /* Specifying two names is forbidden */ 979 if (opts->name) 980 return -EINVAL; 981 opts->name = kstrndup(name, 982 MAX_CGROUP_ROOT_NAMELEN - 1, 983 GFP_KERNEL); 984 if (!opts->name) 985 return -ENOMEM; 986 987 continue; 988 } 989 990 for_each_subsys(ss, i) { 991 if (strcmp(token, ss->legacy_name)) 992 continue; 993 if (!cgroup_ssid_enabled(i)) 994 continue; 995 if (cgroup1_ssid_disabled(i)) 996 continue; 997 998 /* Mutually exclusive option 'all' + subsystem name */ 999 if (all_ss) 1000 return -EINVAL; 1001 opts->subsys_mask |= (1 << i); 1002 one_ss = true; 1003 1004 break; 1005 } 1006 if (i == CGROUP_SUBSYS_COUNT) 1007 return -ENOENT; 1008 } 1009 1010 /* 1011 * If the 'all' option was specified select all the subsystems, 1012 * otherwise if 'none', 'name=' and a subsystem name options were 1013 * not specified, let's default to 'all' 1014 */ 1015 if (all_ss || (!one_ss && !opts->none && !opts->name)) 1016 for_each_subsys(ss, i) 1017 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 1018 opts->subsys_mask |= (1 << i); 1019 1020 /* 1021 * We either have to specify by name or by subsystems. (So all 1022 * empty hierarchies must have a name). 1023 */ 1024 if (!opts->subsys_mask && !opts->name) 1025 return -EINVAL; 1026 1027 /* 1028 * Option noprefix was introduced just for backward compatibility 1029 * with the old cpuset, so we allow noprefix only if mounting just 1030 * the cpuset subsystem. 1031 */ 1032 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) 1033 return -EINVAL; 1034 1035 /* Can't specify "none" and some subsystems */ 1036 if (opts->subsys_mask && opts->none) 1037 return -EINVAL; 1038 1039 return 0; 1040 } 1041 1042 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data) 1043 { 1044 int ret = 0; 1045 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1046 struct cgroup_sb_opts opts; 1047 u16 added_mask, removed_mask; 1048 1049 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1050 1051 /* See what subsystems are wanted */ 1052 ret = parse_cgroupfs_options(data, &opts); 1053 if (ret) 1054 goto out_unlock; 1055 1056 if (opts.subsys_mask != root->subsys_mask || opts.release_agent) 1057 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1058 task_tgid_nr(current), current->comm); 1059 1060 added_mask = opts.subsys_mask & ~root->subsys_mask; 1061 removed_mask = root->subsys_mask & ~opts.subsys_mask; 1062 1063 /* Don't allow flags or name to change at remount */ 1064 if ((opts.flags ^ root->flags) || 1065 (opts.name && strcmp(opts.name, root->name))) { 1066 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", 1067 opts.flags, opts.name ?: "", root->flags, root->name); 1068 ret = -EINVAL; 1069 goto out_unlock; 1070 } 1071 1072 /* remounting is not allowed for populated hierarchies */ 1073 if (!list_empty(&root->cgrp.self.children)) { 1074 ret = -EBUSY; 1075 goto out_unlock; 1076 } 1077 1078 ret = rebind_subsystems(root, added_mask); 1079 if (ret) 1080 goto out_unlock; 1081 1082 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1083 1084 if (opts.release_agent) { 1085 spin_lock(&release_agent_path_lock); 1086 strcpy(root->release_agent_path, opts.release_agent); 1087 spin_unlock(&release_agent_path_lock); 1088 } 1089 1090 trace_cgroup_remount(root); 1091 1092 out_unlock: 1093 kfree(opts.release_agent); 1094 kfree(opts.name); 1095 mutex_unlock(&cgroup_mutex); 1096 return ret; 1097 } 1098 1099 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1100 .rename = cgroup1_rename, 1101 .show_options = cgroup1_show_options, 1102 .remount_fs = cgroup1_remount, 1103 .mkdir = cgroup_mkdir, 1104 .rmdir = cgroup_rmdir, 1105 .show_path = cgroup_show_path, 1106 }; 1107 1108 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, 1109 void *data, unsigned long magic, 1110 struct cgroup_namespace *ns) 1111 { 1112 struct super_block *pinned_sb = NULL; 1113 struct cgroup_sb_opts opts; 1114 struct cgroup_root *root; 1115 struct cgroup_subsys *ss; 1116 struct dentry *dentry; 1117 int i, ret; 1118 bool new_root = false; 1119 1120 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1121 1122 /* First find the desired set of subsystems */ 1123 ret = parse_cgroupfs_options(data, &opts); 1124 if (ret) 1125 goto out_unlock; 1126 1127 /* 1128 * Destruction of cgroup root is asynchronous, so subsystems may 1129 * still be dying after the previous unmount. Let's drain the 1130 * dying subsystems. We just need to ensure that the ones 1131 * unmounted previously finish dying and don't care about new ones 1132 * starting. Testing ref liveliness is good enough. 1133 */ 1134 for_each_subsys(ss, i) { 1135 if (!(opts.subsys_mask & (1 << i)) || 1136 ss->root == &cgrp_dfl_root) 1137 continue; 1138 1139 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { 1140 mutex_unlock(&cgroup_mutex); 1141 msleep(10); 1142 ret = restart_syscall(); 1143 goto out_free; 1144 } 1145 cgroup_put(&ss->root->cgrp); 1146 } 1147 1148 for_each_root(root) { 1149 bool name_match = false; 1150 1151 if (root == &cgrp_dfl_root) 1152 continue; 1153 1154 /* 1155 * If we asked for a name then it must match. Also, if 1156 * name matches but sybsys_mask doesn't, we should fail. 1157 * Remember whether name matched. 1158 */ 1159 if (opts.name) { 1160 if (strcmp(opts.name, root->name)) 1161 continue; 1162 name_match = true; 1163 } 1164 1165 /* 1166 * If we asked for subsystems (or explicitly for no 1167 * subsystems) then they must match. 1168 */ 1169 if ((opts.subsys_mask || opts.none) && 1170 (opts.subsys_mask != root->subsys_mask)) { 1171 if (!name_match) 1172 continue; 1173 ret = -EBUSY; 1174 goto out_unlock; 1175 } 1176 1177 if (root->flags ^ opts.flags) 1178 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1179 1180 /* 1181 * We want to reuse @root whose lifetime is governed by its 1182 * ->cgrp. Let's check whether @root is alive and keep it 1183 * that way. As cgroup_kill_sb() can happen anytime, we 1184 * want to block it by pinning the sb so that @root doesn't 1185 * get killed before mount is complete. 1186 * 1187 * With the sb pinned, tryget_live can reliably indicate 1188 * whether @root can be reused. If it's being killed, 1189 * drain it. We can use wait_queue for the wait but this 1190 * path is super cold. Let's just sleep a bit and retry. 1191 */ 1192 pinned_sb = kernfs_pin_sb(root->kf_root, NULL); 1193 if (IS_ERR(pinned_sb) || 1194 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { 1195 mutex_unlock(&cgroup_mutex); 1196 if (!IS_ERR_OR_NULL(pinned_sb)) 1197 deactivate_super(pinned_sb); 1198 msleep(10); 1199 ret = restart_syscall(); 1200 goto out_free; 1201 } 1202 1203 ret = 0; 1204 goto out_unlock; 1205 } 1206 1207 /* 1208 * No such thing, create a new one. name= matching without subsys 1209 * specification is allowed for already existing hierarchies but we 1210 * can't create new one without subsys specification. 1211 */ 1212 if (!opts.subsys_mask && !opts.none) { 1213 ret = -EINVAL; 1214 goto out_unlock; 1215 } 1216 1217 /* Hierarchies may only be created in the initial cgroup namespace. */ 1218 if (ns != &init_cgroup_ns) { 1219 ret = -EPERM; 1220 goto out_unlock; 1221 } 1222 1223 root = kzalloc(sizeof(*root), GFP_KERNEL); 1224 if (!root) { 1225 ret = -ENOMEM; 1226 goto out_unlock; 1227 } 1228 new_root = true; 1229 1230 init_cgroup_root(root, &opts); 1231 1232 ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD); 1233 if (ret) 1234 cgroup_free_root(root); 1235 1236 out_unlock: 1237 mutex_unlock(&cgroup_mutex); 1238 out_free: 1239 kfree(opts.release_agent); 1240 kfree(opts.name); 1241 1242 if (ret) 1243 return ERR_PTR(ret); 1244 1245 dentry = cgroup_do_mount(&cgroup_fs_type, flags, root, 1246 CGROUP_SUPER_MAGIC, ns); 1247 1248 /* 1249 * There's a race window after we release cgroup_mutex and before 1250 * allocating a superblock. Make sure a concurrent process won't 1251 * be able to re-use the root during this window by delaying the 1252 * initialization of root refcnt. 1253 */ 1254 if (new_root) { 1255 mutex_lock(&cgroup_mutex); 1256 percpu_ref_reinit(&root->cgrp.self.refcnt); 1257 mutex_unlock(&cgroup_mutex); 1258 } 1259 1260 /* 1261 * If @pinned_sb, we're reusing an existing root and holding an 1262 * extra ref on its sb. Mount is complete. Put the extra ref. 1263 */ 1264 if (pinned_sb) 1265 deactivate_super(pinned_sb); 1266 1267 return dentry; 1268 } 1269 1270 static int __init cgroup1_wq_init(void) 1271 { 1272 /* 1273 * Used to destroy pidlists and separate to serve as flush domain. 1274 * Cap @max_active to 1 too. 1275 */ 1276 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1277 0, 1); 1278 BUG_ON(!cgroup_pidlist_destroy_wq); 1279 return 0; 1280 } 1281 core_initcall(cgroup1_wq_init); 1282 1283 static int __init cgroup_no_v1(char *str) 1284 { 1285 struct cgroup_subsys *ss; 1286 char *token; 1287 int i; 1288 1289 while ((token = strsep(&str, ",")) != NULL) { 1290 if (!*token) 1291 continue; 1292 1293 if (!strcmp(token, "all")) { 1294 cgroup_no_v1_mask = U16_MAX; 1295 break; 1296 } 1297 1298 for_each_subsys(ss, i) { 1299 if (strcmp(token, ss->name) && 1300 strcmp(token, ss->legacy_name)) 1301 continue; 1302 1303 cgroup_no_v1_mask |= 1 << i; 1304 } 1305 } 1306 return 1; 1307 } 1308 __setup("cgroup_no_v1=", cgroup_no_v1); 1309