1 #include "cgroup-internal.h" 2 3 #include <linux/ctype.h> 4 #include <linux/kmod.h> 5 #include <linux/sort.h> 6 #include <linux/delay.h> 7 #include <linux/mm.h> 8 #include <linux/sched/signal.h> 9 #include <linux/sched/task.h> 10 #include <linux/magic.h> 11 #include <linux/slab.h> 12 #include <linux/vmalloc.h> 13 #include <linux/delayacct.h> 14 #include <linux/pid_namespace.h> 15 #include <linux/cgroupstats.h> 16 17 #include <trace/events/cgroup.h> 18 19 /* 20 * pidlists linger the following amount before being destroyed. The goal 21 * is avoiding frequent destruction in the middle of consecutive read calls 22 * Expiring in the middle is a performance problem not a correctness one. 23 * 1 sec should be enough. 24 */ 25 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 26 27 /* Controllers blocked by the commandline in v1 */ 28 static u16 cgroup_no_v1_mask; 29 30 /* 31 * pidlist destructions need to be flushed on cgroup destruction. Use a 32 * separate workqueue as flush domain. 33 */ 34 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 35 36 /* 37 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 38 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 39 */ 40 static DEFINE_SPINLOCK(release_agent_path_lock); 41 42 bool cgroup1_ssid_disabled(int ssid) 43 { 44 return cgroup_no_v1_mask & (1 << ssid); 45 } 46 47 /** 48 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 49 * @from: attach to all cgroups of a given task 50 * @tsk: the task to be attached 51 */ 52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 53 { 54 struct cgroup_root *root; 55 int retval = 0; 56 57 mutex_lock(&cgroup_mutex); 58 percpu_down_write(&cgroup_threadgroup_rwsem); 59 for_each_root(root) { 60 struct cgroup *from_cgrp; 61 62 if (root == &cgrp_dfl_root) 63 continue; 64 65 spin_lock_irq(&css_set_lock); 66 from_cgrp = task_cgroup_from_root(from, root); 67 spin_unlock_irq(&css_set_lock); 68 69 retval = cgroup_attach_task(from_cgrp, tsk, false); 70 if (retval) 71 break; 72 } 73 percpu_up_write(&cgroup_threadgroup_rwsem); 74 mutex_unlock(&cgroup_mutex); 75 76 return retval; 77 } 78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 79 80 /** 81 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 82 * @to: cgroup to which the tasks will be moved 83 * @from: cgroup in which the tasks currently reside 84 * 85 * Locking rules between cgroup_post_fork() and the migration path 86 * guarantee that, if a task is forking while being migrated, the new child 87 * is guaranteed to be either visible in the source cgroup after the 88 * parent's migration is complete or put into the target cgroup. No task 89 * can slip out of migration through forking. 90 */ 91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 92 { 93 DEFINE_CGROUP_MGCTX(mgctx); 94 struct cgrp_cset_link *link; 95 struct css_task_iter it; 96 struct task_struct *task; 97 int ret; 98 99 if (cgroup_on_dfl(to)) 100 return -EINVAL; 101 102 ret = cgroup_migrate_vet_dst(to); 103 if (ret) 104 return ret; 105 106 mutex_lock(&cgroup_mutex); 107 108 percpu_down_write(&cgroup_threadgroup_rwsem); 109 110 /* all tasks in @from are being moved, all csets are source */ 111 spin_lock_irq(&css_set_lock); 112 list_for_each_entry(link, &from->cset_links, cset_link) 113 cgroup_migrate_add_src(link->cset, to, &mgctx); 114 spin_unlock_irq(&css_set_lock); 115 116 ret = cgroup_migrate_prepare_dst(&mgctx); 117 if (ret) 118 goto out_err; 119 120 /* 121 * Migrate tasks one-by-one until @from is empty. This fails iff 122 * ->can_attach() fails. 123 */ 124 do { 125 css_task_iter_start(&from->self, 0, &it); 126 127 do { 128 task = css_task_iter_next(&it); 129 } while (task && (task->flags & PF_EXITING)); 130 131 if (task) 132 get_task_struct(task); 133 css_task_iter_end(&it); 134 135 if (task) { 136 ret = cgroup_migrate(task, false, &mgctx); 137 if (!ret) 138 trace_cgroup_transfer_tasks(to, task, false); 139 put_task_struct(task); 140 } 141 } while (task && !ret); 142 out_err: 143 cgroup_migrate_finish(&mgctx); 144 percpu_up_write(&cgroup_threadgroup_rwsem); 145 mutex_unlock(&cgroup_mutex); 146 return ret; 147 } 148 149 /* 150 * Stuff for reading the 'tasks'/'procs' files. 151 * 152 * Reading this file can return large amounts of data if a cgroup has 153 * *lots* of attached tasks. So it may need several calls to read(), 154 * but we cannot guarantee that the information we produce is correct 155 * unless we produce it entirely atomically. 156 * 157 */ 158 159 /* which pidlist file are we talking about? */ 160 enum cgroup_filetype { 161 CGROUP_FILE_PROCS, 162 CGROUP_FILE_TASKS, 163 }; 164 165 /* 166 * A pidlist is a list of pids that virtually represents the contents of one 167 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 168 * a pair (one each for procs, tasks) for each pid namespace that's relevant 169 * to the cgroup. 170 */ 171 struct cgroup_pidlist { 172 /* 173 * used to find which pidlist is wanted. doesn't change as long as 174 * this particular list stays in the list. 175 */ 176 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 177 /* array of xids */ 178 pid_t *list; 179 /* how many elements the above list has */ 180 int length; 181 /* each of these stored in a list by its cgroup */ 182 struct list_head links; 183 /* pointer to the cgroup we belong to, for list removal purposes */ 184 struct cgroup *owner; 185 /* for delayed destruction */ 186 struct delayed_work destroy_dwork; 187 }; 188 189 /* 190 * The following two functions "fix" the issue where there are more pids 191 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. 192 * TODO: replace with a kernel-wide solution to this problem 193 */ 194 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) 195 static void *pidlist_allocate(int count) 196 { 197 if (PIDLIST_TOO_LARGE(count)) 198 return vmalloc(count * sizeof(pid_t)); 199 else 200 return kmalloc(count * sizeof(pid_t), GFP_KERNEL); 201 } 202 203 static void pidlist_free(void *p) 204 { 205 kvfree(p); 206 } 207 208 /* 209 * Used to destroy all pidlists lingering waiting for destroy timer. None 210 * should be left afterwards. 211 */ 212 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 213 { 214 struct cgroup_pidlist *l, *tmp_l; 215 216 mutex_lock(&cgrp->pidlist_mutex); 217 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 218 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 219 mutex_unlock(&cgrp->pidlist_mutex); 220 221 flush_workqueue(cgroup_pidlist_destroy_wq); 222 BUG_ON(!list_empty(&cgrp->pidlists)); 223 } 224 225 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 226 { 227 struct delayed_work *dwork = to_delayed_work(work); 228 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 229 destroy_dwork); 230 struct cgroup_pidlist *tofree = NULL; 231 232 mutex_lock(&l->owner->pidlist_mutex); 233 234 /* 235 * Destroy iff we didn't get queued again. The state won't change 236 * as destroy_dwork can only be queued while locked. 237 */ 238 if (!delayed_work_pending(dwork)) { 239 list_del(&l->links); 240 pidlist_free(l->list); 241 put_pid_ns(l->key.ns); 242 tofree = l; 243 } 244 245 mutex_unlock(&l->owner->pidlist_mutex); 246 kfree(tofree); 247 } 248 249 /* 250 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 251 * Returns the number of unique elements. 252 */ 253 static int pidlist_uniq(pid_t *list, int length) 254 { 255 int src, dest = 1; 256 257 /* 258 * we presume the 0th element is unique, so i starts at 1. trivial 259 * edge cases first; no work needs to be done for either 260 */ 261 if (length == 0 || length == 1) 262 return length; 263 /* src and dest walk down the list; dest counts unique elements */ 264 for (src = 1; src < length; src++) { 265 /* find next unique element */ 266 while (list[src] == list[src-1]) { 267 src++; 268 if (src == length) 269 goto after; 270 } 271 /* dest always points to where the next unique element goes */ 272 list[dest] = list[src]; 273 dest++; 274 } 275 after: 276 return dest; 277 } 278 279 /* 280 * The two pid files - task and cgroup.procs - guaranteed that the result 281 * is sorted, which forced this whole pidlist fiasco. As pid order is 282 * different per namespace, each namespace needs differently sorted list, 283 * making it impossible to use, for example, single rbtree of member tasks 284 * sorted by task pointer. As pidlists can be fairly large, allocating one 285 * per open file is dangerous, so cgroup had to implement shared pool of 286 * pidlists keyed by cgroup and namespace. 287 */ 288 static int cmppid(const void *a, const void *b) 289 { 290 return *(pid_t *)a - *(pid_t *)b; 291 } 292 293 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 294 enum cgroup_filetype type) 295 { 296 struct cgroup_pidlist *l; 297 /* don't need task_nsproxy() if we're looking at ourself */ 298 struct pid_namespace *ns = task_active_pid_ns(current); 299 300 lockdep_assert_held(&cgrp->pidlist_mutex); 301 302 list_for_each_entry(l, &cgrp->pidlists, links) 303 if (l->key.type == type && l->key.ns == ns) 304 return l; 305 return NULL; 306 } 307 308 /* 309 * find the appropriate pidlist for our purpose (given procs vs tasks) 310 * returns with the lock on that pidlist already held, and takes care 311 * of the use count, or returns NULL with no locks held if we're out of 312 * memory. 313 */ 314 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 315 enum cgroup_filetype type) 316 { 317 struct cgroup_pidlist *l; 318 319 lockdep_assert_held(&cgrp->pidlist_mutex); 320 321 l = cgroup_pidlist_find(cgrp, type); 322 if (l) 323 return l; 324 325 /* entry not found; create a new one */ 326 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 327 if (!l) 328 return l; 329 330 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 331 l->key.type = type; 332 /* don't need task_nsproxy() if we're looking at ourself */ 333 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 334 l->owner = cgrp; 335 list_add(&l->links, &cgrp->pidlists); 336 return l; 337 } 338 339 /** 340 * cgroup_task_count - count the number of tasks in a cgroup. 341 * @cgrp: the cgroup in question 342 */ 343 int cgroup_task_count(const struct cgroup *cgrp) 344 { 345 int count = 0; 346 struct cgrp_cset_link *link; 347 348 spin_lock_irq(&css_set_lock); 349 list_for_each_entry(link, &cgrp->cset_links, cset_link) 350 count += link->cset->nr_tasks; 351 spin_unlock_irq(&css_set_lock); 352 return count; 353 } 354 355 /* 356 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 357 */ 358 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 359 struct cgroup_pidlist **lp) 360 { 361 pid_t *array; 362 int length; 363 int pid, n = 0; /* used for populating the array */ 364 struct css_task_iter it; 365 struct task_struct *tsk; 366 struct cgroup_pidlist *l; 367 368 lockdep_assert_held(&cgrp->pidlist_mutex); 369 370 /* 371 * If cgroup gets more users after we read count, we won't have 372 * enough space - tough. This race is indistinguishable to the 373 * caller from the case that the additional cgroup users didn't 374 * show up until sometime later on. 375 */ 376 length = cgroup_task_count(cgrp); 377 array = pidlist_allocate(length); 378 if (!array) 379 return -ENOMEM; 380 /* now, populate the array */ 381 css_task_iter_start(&cgrp->self, 0, &it); 382 while ((tsk = css_task_iter_next(&it))) { 383 if (unlikely(n == length)) 384 break; 385 /* get tgid or pid for procs or tasks file respectively */ 386 if (type == CGROUP_FILE_PROCS) 387 pid = task_tgid_vnr(tsk); 388 else 389 pid = task_pid_vnr(tsk); 390 if (pid > 0) /* make sure to only use valid results */ 391 array[n++] = pid; 392 } 393 css_task_iter_end(&it); 394 length = n; 395 /* now sort & (if procs) strip out duplicates */ 396 sort(array, length, sizeof(pid_t), cmppid, NULL); 397 if (type == CGROUP_FILE_PROCS) 398 length = pidlist_uniq(array, length); 399 400 l = cgroup_pidlist_find_create(cgrp, type); 401 if (!l) { 402 pidlist_free(array); 403 return -ENOMEM; 404 } 405 406 /* store array, freeing old if necessary */ 407 pidlist_free(l->list); 408 l->list = array; 409 l->length = length; 410 *lp = l; 411 return 0; 412 } 413 414 /* 415 * seq_file methods for the tasks/procs files. The seq_file position is the 416 * next pid to display; the seq_file iterator is a pointer to the pid 417 * in the cgroup->l->list array. 418 */ 419 420 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 421 { 422 /* 423 * Initially we receive a position value that corresponds to 424 * one more than the last pid shown (or 0 on the first call or 425 * after a seek to the start). Use a binary-search to find the 426 * next pid to display, if any 427 */ 428 struct kernfs_open_file *of = s->private; 429 struct cgroup *cgrp = seq_css(s)->cgroup; 430 struct cgroup_pidlist *l; 431 enum cgroup_filetype type = seq_cft(s)->private; 432 int index = 0, pid = *pos; 433 int *iter, ret; 434 435 mutex_lock(&cgrp->pidlist_mutex); 436 437 /* 438 * !NULL @of->priv indicates that this isn't the first start() 439 * after open. If the matching pidlist is around, we can use that. 440 * Look for it. Note that @of->priv can't be used directly. It 441 * could already have been destroyed. 442 */ 443 if (of->priv) 444 of->priv = cgroup_pidlist_find(cgrp, type); 445 446 /* 447 * Either this is the first start() after open or the matching 448 * pidlist has been destroyed inbetween. Create a new one. 449 */ 450 if (!of->priv) { 451 ret = pidlist_array_load(cgrp, type, 452 (struct cgroup_pidlist **)&of->priv); 453 if (ret) 454 return ERR_PTR(ret); 455 } 456 l = of->priv; 457 458 if (pid) { 459 int end = l->length; 460 461 while (index < end) { 462 int mid = (index + end) / 2; 463 if (l->list[mid] == pid) { 464 index = mid; 465 break; 466 } else if (l->list[mid] <= pid) 467 index = mid + 1; 468 else 469 end = mid; 470 } 471 } 472 /* If we're off the end of the array, we're done */ 473 if (index >= l->length) 474 return NULL; 475 /* Update the abstract position to be the actual pid that we found */ 476 iter = l->list + index; 477 *pos = *iter; 478 return iter; 479 } 480 481 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 482 { 483 struct kernfs_open_file *of = s->private; 484 struct cgroup_pidlist *l = of->priv; 485 486 if (l) 487 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 488 CGROUP_PIDLIST_DESTROY_DELAY); 489 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 490 } 491 492 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 493 { 494 struct kernfs_open_file *of = s->private; 495 struct cgroup_pidlist *l = of->priv; 496 pid_t *p = v; 497 pid_t *end = l->list + l->length; 498 /* 499 * Advance to the next pid in the array. If this goes off the 500 * end, we're done 501 */ 502 p++; 503 if (p >= end) { 504 return NULL; 505 } else { 506 *pos = *p; 507 return p; 508 } 509 } 510 511 static int cgroup_pidlist_show(struct seq_file *s, void *v) 512 { 513 seq_printf(s, "%d\n", *(int *)v); 514 515 return 0; 516 } 517 518 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 519 char *buf, size_t nbytes, loff_t off, 520 bool threadgroup) 521 { 522 struct cgroup *cgrp; 523 struct task_struct *task; 524 const struct cred *cred, *tcred; 525 ssize_t ret; 526 527 cgrp = cgroup_kn_lock_live(of->kn, false); 528 if (!cgrp) 529 return -ENODEV; 530 531 task = cgroup_procs_write_start(buf, threadgroup); 532 ret = PTR_ERR_OR_ZERO(task); 533 if (ret) 534 goto out_unlock; 535 536 /* 537 * Even if we're attaching all tasks in the thread group, we only 538 * need to check permissions on one of them. 539 */ 540 cred = current_cred(); 541 tcred = get_task_cred(task); 542 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 543 !uid_eq(cred->euid, tcred->uid) && 544 !uid_eq(cred->euid, tcred->suid)) 545 ret = -EACCES; 546 put_cred(tcred); 547 if (ret) 548 goto out_finish; 549 550 ret = cgroup_attach_task(cgrp, task, threadgroup); 551 552 out_finish: 553 cgroup_procs_write_finish(task); 554 out_unlock: 555 cgroup_kn_unlock(of->kn); 556 557 return ret ?: nbytes; 558 } 559 560 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 561 char *buf, size_t nbytes, loff_t off) 562 { 563 return __cgroup1_procs_write(of, buf, nbytes, off, true); 564 } 565 566 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 567 char *buf, size_t nbytes, loff_t off) 568 { 569 return __cgroup1_procs_write(of, buf, nbytes, off, false); 570 } 571 572 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 573 char *buf, size_t nbytes, loff_t off) 574 { 575 struct cgroup *cgrp; 576 577 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 578 579 cgrp = cgroup_kn_lock_live(of->kn, false); 580 if (!cgrp) 581 return -ENODEV; 582 spin_lock(&release_agent_path_lock); 583 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 584 sizeof(cgrp->root->release_agent_path)); 585 spin_unlock(&release_agent_path_lock); 586 cgroup_kn_unlock(of->kn); 587 return nbytes; 588 } 589 590 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 591 { 592 struct cgroup *cgrp = seq_css(seq)->cgroup; 593 594 spin_lock(&release_agent_path_lock); 595 seq_puts(seq, cgrp->root->release_agent_path); 596 spin_unlock(&release_agent_path_lock); 597 seq_putc(seq, '\n'); 598 return 0; 599 } 600 601 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 602 { 603 seq_puts(seq, "0\n"); 604 return 0; 605 } 606 607 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 608 struct cftype *cft) 609 { 610 return notify_on_release(css->cgroup); 611 } 612 613 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 614 struct cftype *cft, u64 val) 615 { 616 if (val) 617 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 618 else 619 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 620 return 0; 621 } 622 623 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 624 struct cftype *cft) 625 { 626 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 627 } 628 629 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 630 struct cftype *cft, u64 val) 631 { 632 if (val) 633 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 634 else 635 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 636 return 0; 637 } 638 639 /* cgroup core interface files for the legacy hierarchies */ 640 struct cftype cgroup1_base_files[] = { 641 { 642 .name = "cgroup.procs", 643 .seq_start = cgroup_pidlist_start, 644 .seq_next = cgroup_pidlist_next, 645 .seq_stop = cgroup_pidlist_stop, 646 .seq_show = cgroup_pidlist_show, 647 .private = CGROUP_FILE_PROCS, 648 .write = cgroup1_procs_write, 649 }, 650 { 651 .name = "cgroup.clone_children", 652 .read_u64 = cgroup_clone_children_read, 653 .write_u64 = cgroup_clone_children_write, 654 }, 655 { 656 .name = "cgroup.sane_behavior", 657 .flags = CFTYPE_ONLY_ON_ROOT, 658 .seq_show = cgroup_sane_behavior_show, 659 }, 660 { 661 .name = "tasks", 662 .seq_start = cgroup_pidlist_start, 663 .seq_next = cgroup_pidlist_next, 664 .seq_stop = cgroup_pidlist_stop, 665 .seq_show = cgroup_pidlist_show, 666 .private = CGROUP_FILE_TASKS, 667 .write = cgroup1_tasks_write, 668 }, 669 { 670 .name = "notify_on_release", 671 .read_u64 = cgroup_read_notify_on_release, 672 .write_u64 = cgroup_write_notify_on_release, 673 }, 674 { 675 .name = "release_agent", 676 .flags = CFTYPE_ONLY_ON_ROOT, 677 .seq_show = cgroup_release_agent_show, 678 .write = cgroup_release_agent_write, 679 .max_write_len = PATH_MAX - 1, 680 }, 681 { } /* terminate */ 682 }; 683 684 /* Display information about each subsystem and each hierarchy */ 685 static int proc_cgroupstats_show(struct seq_file *m, void *v) 686 { 687 struct cgroup_subsys *ss; 688 int i; 689 690 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 691 /* 692 * ideally we don't want subsystems moving around while we do this. 693 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 694 * subsys/hierarchy state. 695 */ 696 mutex_lock(&cgroup_mutex); 697 698 for_each_subsys(ss, i) 699 seq_printf(m, "%s\t%d\t%d\t%d\n", 700 ss->legacy_name, ss->root->hierarchy_id, 701 atomic_read(&ss->root->nr_cgrps), 702 cgroup_ssid_enabled(i)); 703 704 mutex_unlock(&cgroup_mutex); 705 return 0; 706 } 707 708 static int cgroupstats_open(struct inode *inode, struct file *file) 709 { 710 return single_open(file, proc_cgroupstats_show, NULL); 711 } 712 713 const struct file_operations proc_cgroupstats_operations = { 714 .open = cgroupstats_open, 715 .read = seq_read, 716 .llseek = seq_lseek, 717 .release = single_release, 718 }; 719 720 /** 721 * cgroupstats_build - build and fill cgroupstats 722 * @stats: cgroupstats to fill information into 723 * @dentry: A dentry entry belonging to the cgroup for which stats have 724 * been requested. 725 * 726 * Build and fill cgroupstats so that taskstats can export it to user 727 * space. 728 */ 729 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 730 { 731 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 732 struct cgroup *cgrp; 733 struct css_task_iter it; 734 struct task_struct *tsk; 735 736 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 737 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 738 kernfs_type(kn) != KERNFS_DIR) 739 return -EINVAL; 740 741 mutex_lock(&cgroup_mutex); 742 743 /* 744 * We aren't being called from kernfs and there's no guarantee on 745 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 746 * @kn->priv is RCU safe. Let's do the RCU dancing. 747 */ 748 rcu_read_lock(); 749 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 750 if (!cgrp || cgroup_is_dead(cgrp)) { 751 rcu_read_unlock(); 752 mutex_unlock(&cgroup_mutex); 753 return -ENOENT; 754 } 755 rcu_read_unlock(); 756 757 css_task_iter_start(&cgrp->self, 0, &it); 758 while ((tsk = css_task_iter_next(&it))) { 759 switch (tsk->state) { 760 case TASK_RUNNING: 761 stats->nr_running++; 762 break; 763 case TASK_INTERRUPTIBLE: 764 stats->nr_sleeping++; 765 break; 766 case TASK_UNINTERRUPTIBLE: 767 stats->nr_uninterruptible++; 768 break; 769 case TASK_STOPPED: 770 stats->nr_stopped++; 771 break; 772 default: 773 if (delayacct_is_task_waiting_on_io(tsk)) 774 stats->nr_io_wait++; 775 break; 776 } 777 } 778 css_task_iter_end(&it); 779 780 mutex_unlock(&cgroup_mutex); 781 return 0; 782 } 783 784 void cgroup1_check_for_release(struct cgroup *cgrp) 785 { 786 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 787 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 788 schedule_work(&cgrp->release_agent_work); 789 } 790 791 /* 792 * Notify userspace when a cgroup is released, by running the 793 * configured release agent with the name of the cgroup (path 794 * relative to the root of cgroup file system) as the argument. 795 * 796 * Most likely, this user command will try to rmdir this cgroup. 797 * 798 * This races with the possibility that some other task will be 799 * attached to this cgroup before it is removed, or that some other 800 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 801 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 802 * unused, and this cgroup will be reprieved from its death sentence, 803 * to continue to serve a useful existence. Next time it's released, 804 * we will get notified again, if it still has 'notify_on_release' set. 805 * 806 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 807 * means only wait until the task is successfully execve()'d. The 808 * separate release agent task is forked by call_usermodehelper(), 809 * then control in this thread returns here, without waiting for the 810 * release agent task. We don't bother to wait because the caller of 811 * this routine has no use for the exit status of the release agent 812 * task, so no sense holding our caller up for that. 813 */ 814 void cgroup1_release_agent(struct work_struct *work) 815 { 816 struct cgroup *cgrp = 817 container_of(work, struct cgroup, release_agent_work); 818 char *pathbuf = NULL, *agentbuf = NULL; 819 char *argv[3], *envp[3]; 820 int ret; 821 822 mutex_lock(&cgroup_mutex); 823 824 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 825 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 826 if (!pathbuf || !agentbuf) 827 goto out; 828 829 spin_lock_irq(&css_set_lock); 830 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 831 spin_unlock_irq(&css_set_lock); 832 if (ret < 0 || ret >= PATH_MAX) 833 goto out; 834 835 argv[0] = agentbuf; 836 argv[1] = pathbuf; 837 argv[2] = NULL; 838 839 /* minimal command environment */ 840 envp[0] = "HOME=/"; 841 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 842 envp[2] = NULL; 843 844 mutex_unlock(&cgroup_mutex); 845 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 846 goto out_free; 847 out: 848 mutex_unlock(&cgroup_mutex); 849 out_free: 850 kfree(agentbuf); 851 kfree(pathbuf); 852 } 853 854 /* 855 * cgroup_rename - Only allow simple rename of directories in place. 856 */ 857 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 858 const char *new_name_str) 859 { 860 struct cgroup *cgrp = kn->priv; 861 int ret; 862 863 if (kernfs_type(kn) != KERNFS_DIR) 864 return -ENOTDIR; 865 if (kn->parent != new_parent) 866 return -EIO; 867 868 /* 869 * We're gonna grab cgroup_mutex which nests outside kernfs 870 * active_ref. kernfs_rename() doesn't require active_ref 871 * protection. Break them before grabbing cgroup_mutex. 872 */ 873 kernfs_break_active_protection(new_parent); 874 kernfs_break_active_protection(kn); 875 876 mutex_lock(&cgroup_mutex); 877 878 ret = kernfs_rename(kn, new_parent, new_name_str); 879 if (!ret) 880 trace_cgroup_rename(cgrp); 881 882 mutex_unlock(&cgroup_mutex); 883 884 kernfs_unbreak_active_protection(kn); 885 kernfs_unbreak_active_protection(new_parent); 886 return ret; 887 } 888 889 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 890 { 891 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 892 struct cgroup_subsys *ss; 893 int ssid; 894 895 for_each_subsys(ss, ssid) 896 if (root->subsys_mask & (1 << ssid)) 897 seq_show_option(seq, ss->legacy_name, NULL); 898 if (root->flags & CGRP_ROOT_NOPREFIX) 899 seq_puts(seq, ",noprefix"); 900 if (root->flags & CGRP_ROOT_XATTR) 901 seq_puts(seq, ",xattr"); 902 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 903 seq_puts(seq, ",cpuset_v2_mode"); 904 905 spin_lock(&release_agent_path_lock); 906 if (strlen(root->release_agent_path)) 907 seq_show_option(seq, "release_agent", 908 root->release_agent_path); 909 spin_unlock(&release_agent_path_lock); 910 911 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 912 seq_puts(seq, ",clone_children"); 913 if (strlen(root->name)) 914 seq_show_option(seq, "name", root->name); 915 return 0; 916 } 917 918 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) 919 { 920 char *token, *o = data; 921 bool all_ss = false, one_ss = false; 922 u16 mask = U16_MAX; 923 struct cgroup_subsys *ss; 924 int nr_opts = 0; 925 int i; 926 927 #ifdef CONFIG_CPUSETS 928 mask = ~((u16)1 << cpuset_cgrp_id); 929 #endif 930 931 memset(opts, 0, sizeof(*opts)); 932 933 while ((token = strsep(&o, ",")) != NULL) { 934 nr_opts++; 935 936 if (!*token) 937 return -EINVAL; 938 if (!strcmp(token, "none")) { 939 /* Explicitly have no subsystems */ 940 opts->none = true; 941 continue; 942 } 943 if (!strcmp(token, "all")) { 944 /* Mutually exclusive option 'all' + subsystem name */ 945 if (one_ss) 946 return -EINVAL; 947 all_ss = true; 948 continue; 949 } 950 if (!strcmp(token, "noprefix")) { 951 opts->flags |= CGRP_ROOT_NOPREFIX; 952 continue; 953 } 954 if (!strcmp(token, "clone_children")) { 955 opts->cpuset_clone_children = true; 956 continue; 957 } 958 if (!strcmp(token, "cpuset_v2_mode")) { 959 opts->flags |= CGRP_ROOT_CPUSET_V2_MODE; 960 continue; 961 } 962 if (!strcmp(token, "xattr")) { 963 opts->flags |= CGRP_ROOT_XATTR; 964 continue; 965 } 966 if (!strncmp(token, "release_agent=", 14)) { 967 /* Specifying two release agents is forbidden */ 968 if (opts->release_agent) 969 return -EINVAL; 970 opts->release_agent = 971 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); 972 if (!opts->release_agent) 973 return -ENOMEM; 974 continue; 975 } 976 if (!strncmp(token, "name=", 5)) { 977 const char *name = token + 5; 978 /* Can't specify an empty name */ 979 if (!strlen(name)) 980 return -EINVAL; 981 /* Must match [\w.-]+ */ 982 for (i = 0; i < strlen(name); i++) { 983 char c = name[i]; 984 if (isalnum(c)) 985 continue; 986 if ((c == '.') || (c == '-') || (c == '_')) 987 continue; 988 return -EINVAL; 989 } 990 /* Specifying two names is forbidden */ 991 if (opts->name) 992 return -EINVAL; 993 opts->name = kstrndup(name, 994 MAX_CGROUP_ROOT_NAMELEN - 1, 995 GFP_KERNEL); 996 if (!opts->name) 997 return -ENOMEM; 998 999 continue; 1000 } 1001 1002 for_each_subsys(ss, i) { 1003 if (strcmp(token, ss->legacy_name)) 1004 continue; 1005 if (!cgroup_ssid_enabled(i)) 1006 continue; 1007 if (cgroup1_ssid_disabled(i)) 1008 continue; 1009 1010 /* Mutually exclusive option 'all' + subsystem name */ 1011 if (all_ss) 1012 return -EINVAL; 1013 opts->subsys_mask |= (1 << i); 1014 one_ss = true; 1015 1016 break; 1017 } 1018 if (i == CGROUP_SUBSYS_COUNT) 1019 return -ENOENT; 1020 } 1021 1022 /* 1023 * If the 'all' option was specified select all the subsystems, 1024 * otherwise if 'none', 'name=' and a subsystem name options were 1025 * not specified, let's default to 'all' 1026 */ 1027 if (all_ss || (!one_ss && !opts->none && !opts->name)) 1028 for_each_subsys(ss, i) 1029 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 1030 opts->subsys_mask |= (1 << i); 1031 1032 /* 1033 * We either have to specify by name or by subsystems. (So all 1034 * empty hierarchies must have a name). 1035 */ 1036 if (!opts->subsys_mask && !opts->name) 1037 return -EINVAL; 1038 1039 /* 1040 * Option noprefix was introduced just for backward compatibility 1041 * with the old cpuset, so we allow noprefix only if mounting just 1042 * the cpuset subsystem. 1043 */ 1044 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) 1045 return -EINVAL; 1046 1047 /* Can't specify "none" and some subsystems */ 1048 if (opts->subsys_mask && opts->none) 1049 return -EINVAL; 1050 1051 return 0; 1052 } 1053 1054 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data) 1055 { 1056 int ret = 0; 1057 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1058 struct cgroup_sb_opts opts; 1059 u16 added_mask, removed_mask; 1060 1061 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1062 1063 /* See what subsystems are wanted */ 1064 ret = parse_cgroupfs_options(data, &opts); 1065 if (ret) 1066 goto out_unlock; 1067 1068 if (opts.subsys_mask != root->subsys_mask || opts.release_agent) 1069 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1070 task_tgid_nr(current), current->comm); 1071 1072 added_mask = opts.subsys_mask & ~root->subsys_mask; 1073 removed_mask = root->subsys_mask & ~opts.subsys_mask; 1074 1075 /* Don't allow flags or name to change at remount */ 1076 if ((opts.flags ^ root->flags) || 1077 (opts.name && strcmp(opts.name, root->name))) { 1078 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", 1079 opts.flags, opts.name ?: "", root->flags, root->name); 1080 ret = -EINVAL; 1081 goto out_unlock; 1082 } 1083 1084 /* remounting is not allowed for populated hierarchies */ 1085 if (!list_empty(&root->cgrp.self.children)) { 1086 ret = -EBUSY; 1087 goto out_unlock; 1088 } 1089 1090 ret = rebind_subsystems(root, added_mask); 1091 if (ret) 1092 goto out_unlock; 1093 1094 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1095 1096 if (opts.release_agent) { 1097 spin_lock(&release_agent_path_lock); 1098 strcpy(root->release_agent_path, opts.release_agent); 1099 spin_unlock(&release_agent_path_lock); 1100 } 1101 1102 trace_cgroup_remount(root); 1103 1104 out_unlock: 1105 kfree(opts.release_agent); 1106 kfree(opts.name); 1107 mutex_unlock(&cgroup_mutex); 1108 return ret; 1109 } 1110 1111 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1112 .rename = cgroup1_rename, 1113 .show_options = cgroup1_show_options, 1114 .remount_fs = cgroup1_remount, 1115 .mkdir = cgroup_mkdir, 1116 .rmdir = cgroup_rmdir, 1117 .show_path = cgroup_show_path, 1118 }; 1119 1120 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, 1121 void *data, unsigned long magic, 1122 struct cgroup_namespace *ns) 1123 { 1124 struct super_block *pinned_sb = NULL; 1125 struct cgroup_sb_opts opts; 1126 struct cgroup_root *root; 1127 struct cgroup_subsys *ss; 1128 struct dentry *dentry; 1129 int i, ret; 1130 bool new_root = false; 1131 1132 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1133 1134 /* First find the desired set of subsystems */ 1135 ret = parse_cgroupfs_options(data, &opts); 1136 if (ret) 1137 goto out_unlock; 1138 1139 /* 1140 * Destruction of cgroup root is asynchronous, so subsystems may 1141 * still be dying after the previous unmount. Let's drain the 1142 * dying subsystems. We just need to ensure that the ones 1143 * unmounted previously finish dying and don't care about new ones 1144 * starting. Testing ref liveliness is good enough. 1145 */ 1146 for_each_subsys(ss, i) { 1147 if (!(opts.subsys_mask & (1 << i)) || 1148 ss->root == &cgrp_dfl_root) 1149 continue; 1150 1151 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { 1152 mutex_unlock(&cgroup_mutex); 1153 msleep(10); 1154 ret = restart_syscall(); 1155 goto out_free; 1156 } 1157 cgroup_put(&ss->root->cgrp); 1158 } 1159 1160 for_each_root(root) { 1161 bool name_match = false; 1162 1163 if (root == &cgrp_dfl_root) 1164 continue; 1165 1166 /* 1167 * If we asked for a name then it must match. Also, if 1168 * name matches but sybsys_mask doesn't, we should fail. 1169 * Remember whether name matched. 1170 */ 1171 if (opts.name) { 1172 if (strcmp(opts.name, root->name)) 1173 continue; 1174 name_match = true; 1175 } 1176 1177 /* 1178 * If we asked for subsystems (or explicitly for no 1179 * subsystems) then they must match. 1180 */ 1181 if ((opts.subsys_mask || opts.none) && 1182 (opts.subsys_mask != root->subsys_mask)) { 1183 if (!name_match) 1184 continue; 1185 ret = -EBUSY; 1186 goto out_unlock; 1187 } 1188 1189 if (root->flags ^ opts.flags) 1190 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1191 1192 /* 1193 * We want to reuse @root whose lifetime is governed by its 1194 * ->cgrp. Let's check whether @root is alive and keep it 1195 * that way. As cgroup_kill_sb() can happen anytime, we 1196 * want to block it by pinning the sb so that @root doesn't 1197 * get killed before mount is complete. 1198 * 1199 * With the sb pinned, tryget_live can reliably indicate 1200 * whether @root can be reused. If it's being killed, 1201 * drain it. We can use wait_queue for the wait but this 1202 * path is super cold. Let's just sleep a bit and retry. 1203 */ 1204 pinned_sb = kernfs_pin_sb(root->kf_root, NULL); 1205 if (IS_ERR(pinned_sb) || 1206 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { 1207 mutex_unlock(&cgroup_mutex); 1208 if (!IS_ERR_OR_NULL(pinned_sb)) 1209 deactivate_super(pinned_sb); 1210 msleep(10); 1211 ret = restart_syscall(); 1212 goto out_free; 1213 } 1214 1215 ret = 0; 1216 goto out_unlock; 1217 } 1218 1219 /* 1220 * No such thing, create a new one. name= matching without subsys 1221 * specification is allowed for already existing hierarchies but we 1222 * can't create new one without subsys specification. 1223 */ 1224 if (!opts.subsys_mask && !opts.none) { 1225 ret = -EINVAL; 1226 goto out_unlock; 1227 } 1228 1229 /* Hierarchies may only be created in the initial cgroup namespace. */ 1230 if (ns != &init_cgroup_ns) { 1231 ret = -EPERM; 1232 goto out_unlock; 1233 } 1234 1235 root = kzalloc(sizeof(*root), GFP_KERNEL); 1236 if (!root) { 1237 ret = -ENOMEM; 1238 goto out_unlock; 1239 } 1240 new_root = true; 1241 1242 init_cgroup_root(root, &opts); 1243 1244 ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD); 1245 if (ret) 1246 cgroup_free_root(root); 1247 1248 out_unlock: 1249 mutex_unlock(&cgroup_mutex); 1250 out_free: 1251 kfree(opts.release_agent); 1252 kfree(opts.name); 1253 1254 if (ret) 1255 return ERR_PTR(ret); 1256 1257 dentry = cgroup_do_mount(&cgroup_fs_type, flags, root, 1258 CGROUP_SUPER_MAGIC, ns); 1259 1260 /* 1261 * There's a race window after we release cgroup_mutex and before 1262 * allocating a superblock. Make sure a concurrent process won't 1263 * be able to re-use the root during this window by delaying the 1264 * initialization of root refcnt. 1265 */ 1266 if (new_root) { 1267 mutex_lock(&cgroup_mutex); 1268 percpu_ref_reinit(&root->cgrp.self.refcnt); 1269 mutex_unlock(&cgroup_mutex); 1270 } 1271 1272 /* 1273 * If @pinned_sb, we're reusing an existing root and holding an 1274 * extra ref on its sb. Mount is complete. Put the extra ref. 1275 */ 1276 if (pinned_sb) 1277 deactivate_super(pinned_sb); 1278 1279 return dentry; 1280 } 1281 1282 static int __init cgroup1_wq_init(void) 1283 { 1284 /* 1285 * Used to destroy pidlists and separate to serve as flush domain. 1286 * Cap @max_active to 1 too. 1287 */ 1288 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1289 0, 1); 1290 BUG_ON(!cgroup_pidlist_destroy_wq); 1291 return 0; 1292 } 1293 core_initcall(cgroup1_wq_init); 1294 1295 static int __init cgroup_no_v1(char *str) 1296 { 1297 struct cgroup_subsys *ss; 1298 char *token; 1299 int i; 1300 1301 while ((token = strsep(&str, ",")) != NULL) { 1302 if (!*token) 1303 continue; 1304 1305 if (!strcmp(token, "all")) { 1306 cgroup_no_v1_mask = U16_MAX; 1307 break; 1308 } 1309 1310 for_each_subsys(ss, i) { 1311 if (strcmp(token, ss->name) && 1312 strcmp(token, ss->legacy_name)) 1313 continue; 1314 1315 cgroup_no_v1_mask |= 1 << i; 1316 } 1317 } 1318 return 1; 1319 } 1320 __setup("cgroup_no_v1=", cgroup_no_v1); 1321