1 #include "cgroup-internal.h" 2 3 #include <linux/ctype.h> 4 #include <linux/kmod.h> 5 #include <linux/sort.h> 6 #include <linux/delay.h> 7 #include <linux/mm.h> 8 #include <linux/sched/signal.h> 9 #include <linux/sched/task.h> 10 #include <linux/magic.h> 11 #include <linux/slab.h> 12 #include <linux/vmalloc.h> 13 #include <linux/delayacct.h> 14 #include <linux/pid_namespace.h> 15 #include <linux/cgroupstats.h> 16 17 #include <trace/events/cgroup.h> 18 19 /* 20 * pidlists linger the following amount before being destroyed. The goal 21 * is avoiding frequent destruction in the middle of consecutive read calls 22 * Expiring in the middle is a performance problem not a correctness one. 23 * 1 sec should be enough. 24 */ 25 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 26 27 /* Controllers blocked by the commandline in v1 */ 28 static u16 cgroup_no_v1_mask; 29 30 /* 31 * pidlist destructions need to be flushed on cgroup destruction. Use a 32 * separate workqueue as flush domain. 33 */ 34 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 35 36 /* 37 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 38 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 39 */ 40 static DEFINE_SPINLOCK(release_agent_path_lock); 41 42 bool cgroup1_ssid_disabled(int ssid) 43 { 44 return cgroup_no_v1_mask & (1 << ssid); 45 } 46 47 /** 48 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 49 * @from: attach to all cgroups of a given task 50 * @tsk: the task to be attached 51 */ 52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 53 { 54 struct cgroup_root *root; 55 int retval = 0; 56 57 mutex_lock(&cgroup_mutex); 58 percpu_down_write(&cgroup_threadgroup_rwsem); 59 for_each_root(root) { 60 struct cgroup *from_cgrp; 61 62 if (root == &cgrp_dfl_root) 63 continue; 64 65 spin_lock_irq(&css_set_lock); 66 from_cgrp = task_cgroup_from_root(from, root); 67 spin_unlock_irq(&css_set_lock); 68 69 retval = cgroup_attach_task(from_cgrp, tsk, false); 70 if (retval) 71 break; 72 } 73 percpu_up_write(&cgroup_threadgroup_rwsem); 74 mutex_unlock(&cgroup_mutex); 75 76 return retval; 77 } 78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 79 80 /** 81 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 82 * @to: cgroup to which the tasks will be moved 83 * @from: cgroup in which the tasks currently reside 84 * 85 * Locking rules between cgroup_post_fork() and the migration path 86 * guarantee that, if a task is forking while being migrated, the new child 87 * is guaranteed to be either visible in the source cgroup after the 88 * parent's migration is complete or put into the target cgroup. No task 89 * can slip out of migration through forking. 90 */ 91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 92 { 93 DEFINE_CGROUP_MGCTX(mgctx); 94 struct cgrp_cset_link *link; 95 struct css_task_iter it; 96 struct task_struct *task; 97 int ret; 98 99 if (cgroup_on_dfl(to)) 100 return -EINVAL; 101 102 if (!cgroup_may_migrate_to(to)) 103 return -EBUSY; 104 105 mutex_lock(&cgroup_mutex); 106 107 percpu_down_write(&cgroup_threadgroup_rwsem); 108 109 /* all tasks in @from are being moved, all csets are source */ 110 spin_lock_irq(&css_set_lock); 111 list_for_each_entry(link, &from->cset_links, cset_link) 112 cgroup_migrate_add_src(link->cset, to, &mgctx); 113 spin_unlock_irq(&css_set_lock); 114 115 ret = cgroup_migrate_prepare_dst(&mgctx); 116 if (ret) 117 goto out_err; 118 119 /* 120 * Migrate tasks one-by-one until @from is empty. This fails iff 121 * ->can_attach() fails. 122 */ 123 do { 124 css_task_iter_start(&from->self, &it); 125 task = css_task_iter_next(&it); 126 if (task) 127 get_task_struct(task); 128 css_task_iter_end(&it); 129 130 if (task) { 131 ret = cgroup_migrate(task, false, &mgctx); 132 if (!ret) 133 trace_cgroup_transfer_tasks(to, task, false); 134 put_task_struct(task); 135 } 136 } while (task && !ret); 137 out_err: 138 cgroup_migrate_finish(&mgctx); 139 percpu_up_write(&cgroup_threadgroup_rwsem); 140 mutex_unlock(&cgroup_mutex); 141 return ret; 142 } 143 144 /* 145 * Stuff for reading the 'tasks'/'procs' files. 146 * 147 * Reading this file can return large amounts of data if a cgroup has 148 * *lots* of attached tasks. So it may need several calls to read(), 149 * but we cannot guarantee that the information we produce is correct 150 * unless we produce it entirely atomically. 151 * 152 */ 153 154 /* which pidlist file are we talking about? */ 155 enum cgroup_filetype { 156 CGROUP_FILE_PROCS, 157 CGROUP_FILE_TASKS, 158 }; 159 160 /* 161 * A pidlist is a list of pids that virtually represents the contents of one 162 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 163 * a pair (one each for procs, tasks) for each pid namespace that's relevant 164 * to the cgroup. 165 */ 166 struct cgroup_pidlist { 167 /* 168 * used to find which pidlist is wanted. doesn't change as long as 169 * this particular list stays in the list. 170 */ 171 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 172 /* array of xids */ 173 pid_t *list; 174 /* how many elements the above list has */ 175 int length; 176 /* each of these stored in a list by its cgroup */ 177 struct list_head links; 178 /* pointer to the cgroup we belong to, for list removal purposes */ 179 struct cgroup *owner; 180 /* for delayed destruction */ 181 struct delayed_work destroy_dwork; 182 }; 183 184 /* 185 * The following two functions "fix" the issue where there are more pids 186 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. 187 * TODO: replace with a kernel-wide solution to this problem 188 */ 189 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) 190 static void *pidlist_allocate(int count) 191 { 192 if (PIDLIST_TOO_LARGE(count)) 193 return vmalloc(count * sizeof(pid_t)); 194 else 195 return kmalloc(count * sizeof(pid_t), GFP_KERNEL); 196 } 197 198 static void pidlist_free(void *p) 199 { 200 kvfree(p); 201 } 202 203 /* 204 * Used to destroy all pidlists lingering waiting for destroy timer. None 205 * should be left afterwards. 206 */ 207 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 208 { 209 struct cgroup_pidlist *l, *tmp_l; 210 211 mutex_lock(&cgrp->pidlist_mutex); 212 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 213 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 214 mutex_unlock(&cgrp->pidlist_mutex); 215 216 flush_workqueue(cgroup_pidlist_destroy_wq); 217 BUG_ON(!list_empty(&cgrp->pidlists)); 218 } 219 220 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 221 { 222 struct delayed_work *dwork = to_delayed_work(work); 223 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 224 destroy_dwork); 225 struct cgroup_pidlist *tofree = NULL; 226 227 mutex_lock(&l->owner->pidlist_mutex); 228 229 /* 230 * Destroy iff we didn't get queued again. The state won't change 231 * as destroy_dwork can only be queued while locked. 232 */ 233 if (!delayed_work_pending(dwork)) { 234 list_del(&l->links); 235 pidlist_free(l->list); 236 put_pid_ns(l->key.ns); 237 tofree = l; 238 } 239 240 mutex_unlock(&l->owner->pidlist_mutex); 241 kfree(tofree); 242 } 243 244 /* 245 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 246 * Returns the number of unique elements. 247 */ 248 static int pidlist_uniq(pid_t *list, int length) 249 { 250 int src, dest = 1; 251 252 /* 253 * we presume the 0th element is unique, so i starts at 1. trivial 254 * edge cases first; no work needs to be done for either 255 */ 256 if (length == 0 || length == 1) 257 return length; 258 /* src and dest walk down the list; dest counts unique elements */ 259 for (src = 1; src < length; src++) { 260 /* find next unique element */ 261 while (list[src] == list[src-1]) { 262 src++; 263 if (src == length) 264 goto after; 265 } 266 /* dest always points to where the next unique element goes */ 267 list[dest] = list[src]; 268 dest++; 269 } 270 after: 271 return dest; 272 } 273 274 /* 275 * The two pid files - task and cgroup.procs - guaranteed that the result 276 * is sorted, which forced this whole pidlist fiasco. As pid order is 277 * different per namespace, each namespace needs differently sorted list, 278 * making it impossible to use, for example, single rbtree of member tasks 279 * sorted by task pointer. As pidlists can be fairly large, allocating one 280 * per open file is dangerous, so cgroup had to implement shared pool of 281 * pidlists keyed by cgroup and namespace. 282 */ 283 static int cmppid(const void *a, const void *b) 284 { 285 return *(pid_t *)a - *(pid_t *)b; 286 } 287 288 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 289 enum cgroup_filetype type) 290 { 291 struct cgroup_pidlist *l; 292 /* don't need task_nsproxy() if we're looking at ourself */ 293 struct pid_namespace *ns = task_active_pid_ns(current); 294 295 lockdep_assert_held(&cgrp->pidlist_mutex); 296 297 list_for_each_entry(l, &cgrp->pidlists, links) 298 if (l->key.type == type && l->key.ns == ns) 299 return l; 300 return NULL; 301 } 302 303 /* 304 * find the appropriate pidlist for our purpose (given procs vs tasks) 305 * returns with the lock on that pidlist already held, and takes care 306 * of the use count, or returns NULL with no locks held if we're out of 307 * memory. 308 */ 309 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 310 enum cgroup_filetype type) 311 { 312 struct cgroup_pidlist *l; 313 314 lockdep_assert_held(&cgrp->pidlist_mutex); 315 316 l = cgroup_pidlist_find(cgrp, type); 317 if (l) 318 return l; 319 320 /* entry not found; create a new one */ 321 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 322 if (!l) 323 return l; 324 325 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 326 l->key.type = type; 327 /* don't need task_nsproxy() if we're looking at ourself */ 328 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 329 l->owner = cgrp; 330 list_add(&l->links, &cgrp->pidlists); 331 return l; 332 } 333 334 /** 335 * cgroup_task_count - count the number of tasks in a cgroup. 336 * @cgrp: the cgroup in question 337 */ 338 int cgroup_task_count(const struct cgroup *cgrp) 339 { 340 int count = 0; 341 struct cgrp_cset_link *link; 342 343 spin_lock_irq(&css_set_lock); 344 list_for_each_entry(link, &cgrp->cset_links, cset_link) 345 count += link->cset->nr_tasks; 346 spin_unlock_irq(&css_set_lock); 347 return count; 348 } 349 350 /* 351 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 352 */ 353 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 354 struct cgroup_pidlist **lp) 355 { 356 pid_t *array; 357 int length; 358 int pid, n = 0; /* used for populating the array */ 359 struct css_task_iter it; 360 struct task_struct *tsk; 361 struct cgroup_pidlist *l; 362 363 lockdep_assert_held(&cgrp->pidlist_mutex); 364 365 /* 366 * If cgroup gets more users after we read count, we won't have 367 * enough space - tough. This race is indistinguishable to the 368 * caller from the case that the additional cgroup users didn't 369 * show up until sometime later on. 370 */ 371 length = cgroup_task_count(cgrp); 372 array = pidlist_allocate(length); 373 if (!array) 374 return -ENOMEM; 375 /* now, populate the array */ 376 css_task_iter_start(&cgrp->self, &it); 377 while ((tsk = css_task_iter_next(&it))) { 378 if (unlikely(n == length)) 379 break; 380 /* get tgid or pid for procs or tasks file respectively */ 381 if (type == CGROUP_FILE_PROCS) 382 pid = task_tgid_vnr(tsk); 383 else 384 pid = task_pid_vnr(tsk); 385 if (pid > 0) /* make sure to only use valid results */ 386 array[n++] = pid; 387 } 388 css_task_iter_end(&it); 389 length = n; 390 /* now sort & (if procs) strip out duplicates */ 391 sort(array, length, sizeof(pid_t), cmppid, NULL); 392 if (type == CGROUP_FILE_PROCS) 393 length = pidlist_uniq(array, length); 394 395 l = cgroup_pidlist_find_create(cgrp, type); 396 if (!l) { 397 pidlist_free(array); 398 return -ENOMEM; 399 } 400 401 /* store array, freeing old if necessary */ 402 pidlist_free(l->list); 403 l->list = array; 404 l->length = length; 405 *lp = l; 406 return 0; 407 } 408 409 /* 410 * seq_file methods for the tasks/procs files. The seq_file position is the 411 * next pid to display; the seq_file iterator is a pointer to the pid 412 * in the cgroup->l->list array. 413 */ 414 415 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 416 { 417 /* 418 * Initially we receive a position value that corresponds to 419 * one more than the last pid shown (or 0 on the first call or 420 * after a seek to the start). Use a binary-search to find the 421 * next pid to display, if any 422 */ 423 struct kernfs_open_file *of = s->private; 424 struct cgroup *cgrp = seq_css(s)->cgroup; 425 struct cgroup_pidlist *l; 426 enum cgroup_filetype type = seq_cft(s)->private; 427 int index = 0, pid = *pos; 428 int *iter, ret; 429 430 mutex_lock(&cgrp->pidlist_mutex); 431 432 /* 433 * !NULL @of->priv indicates that this isn't the first start() 434 * after open. If the matching pidlist is around, we can use that. 435 * Look for it. Note that @of->priv can't be used directly. It 436 * could already have been destroyed. 437 */ 438 if (of->priv) 439 of->priv = cgroup_pidlist_find(cgrp, type); 440 441 /* 442 * Either this is the first start() after open or the matching 443 * pidlist has been destroyed inbetween. Create a new one. 444 */ 445 if (!of->priv) { 446 ret = pidlist_array_load(cgrp, type, 447 (struct cgroup_pidlist **)&of->priv); 448 if (ret) 449 return ERR_PTR(ret); 450 } 451 l = of->priv; 452 453 if (pid) { 454 int end = l->length; 455 456 while (index < end) { 457 int mid = (index + end) / 2; 458 if (l->list[mid] == pid) { 459 index = mid; 460 break; 461 } else if (l->list[mid] <= pid) 462 index = mid + 1; 463 else 464 end = mid; 465 } 466 } 467 /* If we're off the end of the array, we're done */ 468 if (index >= l->length) 469 return NULL; 470 /* Update the abstract position to be the actual pid that we found */ 471 iter = l->list + index; 472 *pos = *iter; 473 return iter; 474 } 475 476 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 477 { 478 struct kernfs_open_file *of = s->private; 479 struct cgroup_pidlist *l = of->priv; 480 481 if (l) 482 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 483 CGROUP_PIDLIST_DESTROY_DELAY); 484 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 485 } 486 487 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 488 { 489 struct kernfs_open_file *of = s->private; 490 struct cgroup_pidlist *l = of->priv; 491 pid_t *p = v; 492 pid_t *end = l->list + l->length; 493 /* 494 * Advance to the next pid in the array. If this goes off the 495 * end, we're done 496 */ 497 p++; 498 if (p >= end) { 499 return NULL; 500 } else { 501 *pos = *p; 502 return p; 503 } 504 } 505 506 static int cgroup_pidlist_show(struct seq_file *s, void *v) 507 { 508 seq_printf(s, "%d\n", *(int *)v); 509 510 return 0; 511 } 512 513 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, 514 char *buf, size_t nbytes, loff_t off) 515 { 516 return __cgroup_procs_write(of, buf, nbytes, off, false); 517 } 518 519 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 520 char *buf, size_t nbytes, loff_t off) 521 { 522 struct cgroup *cgrp; 523 524 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 525 526 cgrp = cgroup_kn_lock_live(of->kn, false); 527 if (!cgrp) 528 return -ENODEV; 529 spin_lock(&release_agent_path_lock); 530 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 531 sizeof(cgrp->root->release_agent_path)); 532 spin_unlock(&release_agent_path_lock); 533 cgroup_kn_unlock(of->kn); 534 return nbytes; 535 } 536 537 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 538 { 539 struct cgroup *cgrp = seq_css(seq)->cgroup; 540 541 spin_lock(&release_agent_path_lock); 542 seq_puts(seq, cgrp->root->release_agent_path); 543 spin_unlock(&release_agent_path_lock); 544 seq_putc(seq, '\n'); 545 return 0; 546 } 547 548 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 549 { 550 seq_puts(seq, "0\n"); 551 return 0; 552 } 553 554 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 555 struct cftype *cft) 556 { 557 return notify_on_release(css->cgroup); 558 } 559 560 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 561 struct cftype *cft, u64 val) 562 { 563 if (val) 564 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 565 else 566 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 567 return 0; 568 } 569 570 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 571 struct cftype *cft) 572 { 573 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 574 } 575 576 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 577 struct cftype *cft, u64 val) 578 { 579 if (val) 580 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 581 else 582 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 583 return 0; 584 } 585 586 /* cgroup core interface files for the legacy hierarchies */ 587 struct cftype cgroup1_base_files[] = { 588 { 589 .name = "cgroup.procs", 590 .seq_start = cgroup_pidlist_start, 591 .seq_next = cgroup_pidlist_next, 592 .seq_stop = cgroup_pidlist_stop, 593 .seq_show = cgroup_pidlist_show, 594 .private = CGROUP_FILE_PROCS, 595 .write = cgroup_procs_write, 596 }, 597 { 598 .name = "cgroup.clone_children", 599 .read_u64 = cgroup_clone_children_read, 600 .write_u64 = cgroup_clone_children_write, 601 }, 602 { 603 .name = "cgroup.sane_behavior", 604 .flags = CFTYPE_ONLY_ON_ROOT, 605 .seq_show = cgroup_sane_behavior_show, 606 }, 607 { 608 .name = "tasks", 609 .seq_start = cgroup_pidlist_start, 610 .seq_next = cgroup_pidlist_next, 611 .seq_stop = cgroup_pidlist_stop, 612 .seq_show = cgroup_pidlist_show, 613 .private = CGROUP_FILE_TASKS, 614 .write = cgroup_tasks_write, 615 }, 616 { 617 .name = "notify_on_release", 618 .read_u64 = cgroup_read_notify_on_release, 619 .write_u64 = cgroup_write_notify_on_release, 620 }, 621 { 622 .name = "release_agent", 623 .flags = CFTYPE_ONLY_ON_ROOT, 624 .seq_show = cgroup_release_agent_show, 625 .write = cgroup_release_agent_write, 626 .max_write_len = PATH_MAX - 1, 627 }, 628 { } /* terminate */ 629 }; 630 631 /* Display information about each subsystem and each hierarchy */ 632 static int proc_cgroupstats_show(struct seq_file *m, void *v) 633 { 634 struct cgroup_subsys *ss; 635 int i; 636 637 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 638 /* 639 * ideally we don't want subsystems moving around while we do this. 640 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 641 * subsys/hierarchy state. 642 */ 643 mutex_lock(&cgroup_mutex); 644 645 for_each_subsys(ss, i) 646 seq_printf(m, "%s\t%d\t%d\t%d\n", 647 ss->legacy_name, ss->root->hierarchy_id, 648 atomic_read(&ss->root->nr_cgrps), 649 cgroup_ssid_enabled(i)); 650 651 mutex_unlock(&cgroup_mutex); 652 return 0; 653 } 654 655 static int cgroupstats_open(struct inode *inode, struct file *file) 656 { 657 return single_open(file, proc_cgroupstats_show, NULL); 658 } 659 660 const struct file_operations proc_cgroupstats_operations = { 661 .open = cgroupstats_open, 662 .read = seq_read, 663 .llseek = seq_lseek, 664 .release = single_release, 665 }; 666 667 /** 668 * cgroupstats_build - build and fill cgroupstats 669 * @stats: cgroupstats to fill information into 670 * @dentry: A dentry entry belonging to the cgroup for which stats have 671 * been requested. 672 * 673 * Build and fill cgroupstats so that taskstats can export it to user 674 * space. 675 */ 676 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 677 { 678 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 679 struct cgroup *cgrp; 680 struct css_task_iter it; 681 struct task_struct *tsk; 682 683 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 684 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 685 kernfs_type(kn) != KERNFS_DIR) 686 return -EINVAL; 687 688 mutex_lock(&cgroup_mutex); 689 690 /* 691 * We aren't being called from kernfs and there's no guarantee on 692 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 693 * @kn->priv is RCU safe. Let's do the RCU dancing. 694 */ 695 rcu_read_lock(); 696 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 697 if (!cgrp || cgroup_is_dead(cgrp)) { 698 rcu_read_unlock(); 699 mutex_unlock(&cgroup_mutex); 700 return -ENOENT; 701 } 702 rcu_read_unlock(); 703 704 css_task_iter_start(&cgrp->self, &it); 705 while ((tsk = css_task_iter_next(&it))) { 706 switch (tsk->state) { 707 case TASK_RUNNING: 708 stats->nr_running++; 709 break; 710 case TASK_INTERRUPTIBLE: 711 stats->nr_sleeping++; 712 break; 713 case TASK_UNINTERRUPTIBLE: 714 stats->nr_uninterruptible++; 715 break; 716 case TASK_STOPPED: 717 stats->nr_stopped++; 718 break; 719 default: 720 if (delayacct_is_task_waiting_on_io(tsk)) 721 stats->nr_io_wait++; 722 break; 723 } 724 } 725 css_task_iter_end(&it); 726 727 mutex_unlock(&cgroup_mutex); 728 return 0; 729 } 730 731 void cgroup1_check_for_release(struct cgroup *cgrp) 732 { 733 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 734 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 735 schedule_work(&cgrp->release_agent_work); 736 } 737 738 /* 739 * Notify userspace when a cgroup is released, by running the 740 * configured release agent with the name of the cgroup (path 741 * relative to the root of cgroup file system) as the argument. 742 * 743 * Most likely, this user command will try to rmdir this cgroup. 744 * 745 * This races with the possibility that some other task will be 746 * attached to this cgroup before it is removed, or that some other 747 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 748 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 749 * unused, and this cgroup will be reprieved from its death sentence, 750 * to continue to serve a useful existence. Next time it's released, 751 * we will get notified again, if it still has 'notify_on_release' set. 752 * 753 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 754 * means only wait until the task is successfully execve()'d. The 755 * separate release agent task is forked by call_usermodehelper(), 756 * then control in this thread returns here, without waiting for the 757 * release agent task. We don't bother to wait because the caller of 758 * this routine has no use for the exit status of the release agent 759 * task, so no sense holding our caller up for that. 760 */ 761 void cgroup1_release_agent(struct work_struct *work) 762 { 763 struct cgroup *cgrp = 764 container_of(work, struct cgroup, release_agent_work); 765 char *pathbuf = NULL, *agentbuf = NULL; 766 char *argv[3], *envp[3]; 767 int ret; 768 769 mutex_lock(&cgroup_mutex); 770 771 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 772 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 773 if (!pathbuf || !agentbuf) 774 goto out; 775 776 spin_lock_irq(&css_set_lock); 777 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 778 spin_unlock_irq(&css_set_lock); 779 if (ret < 0 || ret >= PATH_MAX) 780 goto out; 781 782 argv[0] = agentbuf; 783 argv[1] = pathbuf; 784 argv[2] = NULL; 785 786 /* minimal command environment */ 787 envp[0] = "HOME=/"; 788 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 789 envp[2] = NULL; 790 791 mutex_unlock(&cgroup_mutex); 792 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 793 goto out_free; 794 out: 795 mutex_unlock(&cgroup_mutex); 796 out_free: 797 kfree(agentbuf); 798 kfree(pathbuf); 799 } 800 801 /* 802 * cgroup_rename - Only allow simple rename of directories in place. 803 */ 804 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 805 const char *new_name_str) 806 { 807 struct cgroup *cgrp = kn->priv; 808 int ret; 809 810 if (kernfs_type(kn) != KERNFS_DIR) 811 return -ENOTDIR; 812 if (kn->parent != new_parent) 813 return -EIO; 814 815 /* 816 * We're gonna grab cgroup_mutex which nests outside kernfs 817 * active_ref. kernfs_rename() doesn't require active_ref 818 * protection. Break them before grabbing cgroup_mutex. 819 */ 820 kernfs_break_active_protection(new_parent); 821 kernfs_break_active_protection(kn); 822 823 mutex_lock(&cgroup_mutex); 824 825 ret = kernfs_rename(kn, new_parent, new_name_str); 826 if (!ret) 827 trace_cgroup_rename(cgrp); 828 829 mutex_unlock(&cgroup_mutex); 830 831 kernfs_unbreak_active_protection(kn); 832 kernfs_unbreak_active_protection(new_parent); 833 return ret; 834 } 835 836 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 837 { 838 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 839 struct cgroup_subsys *ss; 840 int ssid; 841 842 for_each_subsys(ss, ssid) 843 if (root->subsys_mask & (1 << ssid)) 844 seq_show_option(seq, ss->legacy_name, NULL); 845 if (root->flags & CGRP_ROOT_NOPREFIX) 846 seq_puts(seq, ",noprefix"); 847 if (root->flags & CGRP_ROOT_XATTR) 848 seq_puts(seq, ",xattr"); 849 850 spin_lock(&release_agent_path_lock); 851 if (strlen(root->release_agent_path)) 852 seq_show_option(seq, "release_agent", 853 root->release_agent_path); 854 spin_unlock(&release_agent_path_lock); 855 856 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 857 seq_puts(seq, ",clone_children"); 858 if (strlen(root->name)) 859 seq_show_option(seq, "name", root->name); 860 return 0; 861 } 862 863 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) 864 { 865 char *token, *o = data; 866 bool all_ss = false, one_ss = false; 867 u16 mask = U16_MAX; 868 struct cgroup_subsys *ss; 869 int nr_opts = 0; 870 int i; 871 872 #ifdef CONFIG_CPUSETS 873 mask = ~((u16)1 << cpuset_cgrp_id); 874 #endif 875 876 memset(opts, 0, sizeof(*opts)); 877 878 while ((token = strsep(&o, ",")) != NULL) { 879 nr_opts++; 880 881 if (!*token) 882 return -EINVAL; 883 if (!strcmp(token, "none")) { 884 /* Explicitly have no subsystems */ 885 opts->none = true; 886 continue; 887 } 888 if (!strcmp(token, "all")) { 889 /* Mutually exclusive option 'all' + subsystem name */ 890 if (one_ss) 891 return -EINVAL; 892 all_ss = true; 893 continue; 894 } 895 if (!strcmp(token, "noprefix")) { 896 opts->flags |= CGRP_ROOT_NOPREFIX; 897 continue; 898 } 899 if (!strcmp(token, "clone_children")) { 900 opts->cpuset_clone_children = true; 901 continue; 902 } 903 if (!strcmp(token, "xattr")) { 904 opts->flags |= CGRP_ROOT_XATTR; 905 continue; 906 } 907 if (!strncmp(token, "release_agent=", 14)) { 908 /* Specifying two release agents is forbidden */ 909 if (opts->release_agent) 910 return -EINVAL; 911 opts->release_agent = 912 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); 913 if (!opts->release_agent) 914 return -ENOMEM; 915 continue; 916 } 917 if (!strncmp(token, "name=", 5)) { 918 const char *name = token + 5; 919 /* Can't specify an empty name */ 920 if (!strlen(name)) 921 return -EINVAL; 922 /* Must match [\w.-]+ */ 923 for (i = 0; i < strlen(name); i++) { 924 char c = name[i]; 925 if (isalnum(c)) 926 continue; 927 if ((c == '.') || (c == '-') || (c == '_')) 928 continue; 929 return -EINVAL; 930 } 931 /* Specifying two names is forbidden */ 932 if (opts->name) 933 return -EINVAL; 934 opts->name = kstrndup(name, 935 MAX_CGROUP_ROOT_NAMELEN - 1, 936 GFP_KERNEL); 937 if (!opts->name) 938 return -ENOMEM; 939 940 continue; 941 } 942 943 for_each_subsys(ss, i) { 944 if (strcmp(token, ss->legacy_name)) 945 continue; 946 if (!cgroup_ssid_enabled(i)) 947 continue; 948 if (cgroup1_ssid_disabled(i)) 949 continue; 950 951 /* Mutually exclusive option 'all' + subsystem name */ 952 if (all_ss) 953 return -EINVAL; 954 opts->subsys_mask |= (1 << i); 955 one_ss = true; 956 957 break; 958 } 959 if (i == CGROUP_SUBSYS_COUNT) 960 return -ENOENT; 961 } 962 963 /* 964 * If the 'all' option was specified select all the subsystems, 965 * otherwise if 'none', 'name=' and a subsystem name options were 966 * not specified, let's default to 'all' 967 */ 968 if (all_ss || (!one_ss && !opts->none && !opts->name)) 969 for_each_subsys(ss, i) 970 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 971 opts->subsys_mask |= (1 << i); 972 973 /* 974 * We either have to specify by name or by subsystems. (So all 975 * empty hierarchies must have a name). 976 */ 977 if (!opts->subsys_mask && !opts->name) 978 return -EINVAL; 979 980 /* 981 * Option noprefix was introduced just for backward compatibility 982 * with the old cpuset, so we allow noprefix only if mounting just 983 * the cpuset subsystem. 984 */ 985 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) 986 return -EINVAL; 987 988 /* Can't specify "none" and some subsystems */ 989 if (opts->subsys_mask && opts->none) 990 return -EINVAL; 991 992 return 0; 993 } 994 995 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data) 996 { 997 int ret = 0; 998 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 999 struct cgroup_sb_opts opts; 1000 u16 added_mask, removed_mask; 1001 1002 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1003 1004 /* See what subsystems are wanted */ 1005 ret = parse_cgroupfs_options(data, &opts); 1006 if (ret) 1007 goto out_unlock; 1008 1009 if (opts.subsys_mask != root->subsys_mask || opts.release_agent) 1010 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1011 task_tgid_nr(current), current->comm); 1012 1013 added_mask = opts.subsys_mask & ~root->subsys_mask; 1014 removed_mask = root->subsys_mask & ~opts.subsys_mask; 1015 1016 /* Don't allow flags or name to change at remount */ 1017 if ((opts.flags ^ root->flags) || 1018 (opts.name && strcmp(opts.name, root->name))) { 1019 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", 1020 opts.flags, opts.name ?: "", root->flags, root->name); 1021 ret = -EINVAL; 1022 goto out_unlock; 1023 } 1024 1025 /* remounting is not allowed for populated hierarchies */ 1026 if (!list_empty(&root->cgrp.self.children)) { 1027 ret = -EBUSY; 1028 goto out_unlock; 1029 } 1030 1031 ret = rebind_subsystems(root, added_mask); 1032 if (ret) 1033 goto out_unlock; 1034 1035 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1036 1037 if (opts.release_agent) { 1038 spin_lock(&release_agent_path_lock); 1039 strcpy(root->release_agent_path, opts.release_agent); 1040 spin_unlock(&release_agent_path_lock); 1041 } 1042 1043 trace_cgroup_remount(root); 1044 1045 out_unlock: 1046 kfree(opts.release_agent); 1047 kfree(opts.name); 1048 mutex_unlock(&cgroup_mutex); 1049 return ret; 1050 } 1051 1052 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1053 .rename = cgroup1_rename, 1054 .show_options = cgroup1_show_options, 1055 .remount_fs = cgroup1_remount, 1056 .mkdir = cgroup_mkdir, 1057 .rmdir = cgroup_rmdir, 1058 .show_path = cgroup_show_path, 1059 }; 1060 1061 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, 1062 void *data, unsigned long magic, 1063 struct cgroup_namespace *ns) 1064 { 1065 struct super_block *pinned_sb = NULL; 1066 struct cgroup_sb_opts opts; 1067 struct cgroup_root *root; 1068 struct cgroup_subsys *ss; 1069 struct dentry *dentry; 1070 int i, ret; 1071 bool new_root = false; 1072 1073 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1074 1075 /* First find the desired set of subsystems */ 1076 ret = parse_cgroupfs_options(data, &opts); 1077 if (ret) 1078 goto out_unlock; 1079 1080 /* 1081 * Destruction of cgroup root is asynchronous, so subsystems may 1082 * still be dying after the previous unmount. Let's drain the 1083 * dying subsystems. We just need to ensure that the ones 1084 * unmounted previously finish dying and don't care about new ones 1085 * starting. Testing ref liveliness is good enough. 1086 */ 1087 for_each_subsys(ss, i) { 1088 if (!(opts.subsys_mask & (1 << i)) || 1089 ss->root == &cgrp_dfl_root) 1090 continue; 1091 1092 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { 1093 mutex_unlock(&cgroup_mutex); 1094 msleep(10); 1095 ret = restart_syscall(); 1096 goto out_free; 1097 } 1098 cgroup_put(&ss->root->cgrp); 1099 } 1100 1101 for_each_root(root) { 1102 bool name_match = false; 1103 1104 if (root == &cgrp_dfl_root) 1105 continue; 1106 1107 /* 1108 * If we asked for a name then it must match. Also, if 1109 * name matches but sybsys_mask doesn't, we should fail. 1110 * Remember whether name matched. 1111 */ 1112 if (opts.name) { 1113 if (strcmp(opts.name, root->name)) 1114 continue; 1115 name_match = true; 1116 } 1117 1118 /* 1119 * If we asked for subsystems (or explicitly for no 1120 * subsystems) then they must match. 1121 */ 1122 if ((opts.subsys_mask || opts.none) && 1123 (opts.subsys_mask != root->subsys_mask)) { 1124 if (!name_match) 1125 continue; 1126 ret = -EBUSY; 1127 goto out_unlock; 1128 } 1129 1130 if (root->flags ^ opts.flags) 1131 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1132 1133 /* 1134 * We want to reuse @root whose lifetime is governed by its 1135 * ->cgrp. Let's check whether @root is alive and keep it 1136 * that way. As cgroup_kill_sb() can happen anytime, we 1137 * want to block it by pinning the sb so that @root doesn't 1138 * get killed before mount is complete. 1139 * 1140 * With the sb pinned, tryget_live can reliably indicate 1141 * whether @root can be reused. If it's being killed, 1142 * drain it. We can use wait_queue for the wait but this 1143 * path is super cold. Let's just sleep a bit and retry. 1144 */ 1145 pinned_sb = kernfs_pin_sb(root->kf_root, NULL); 1146 if (IS_ERR(pinned_sb) || 1147 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { 1148 mutex_unlock(&cgroup_mutex); 1149 if (!IS_ERR_OR_NULL(pinned_sb)) 1150 deactivate_super(pinned_sb); 1151 msleep(10); 1152 ret = restart_syscall(); 1153 goto out_free; 1154 } 1155 1156 ret = 0; 1157 goto out_unlock; 1158 } 1159 1160 /* 1161 * No such thing, create a new one. name= matching without subsys 1162 * specification is allowed for already existing hierarchies but we 1163 * can't create new one without subsys specification. 1164 */ 1165 if (!opts.subsys_mask && !opts.none) { 1166 ret = -EINVAL; 1167 goto out_unlock; 1168 } 1169 1170 /* Hierarchies may only be created in the initial cgroup namespace. */ 1171 if (ns != &init_cgroup_ns) { 1172 ret = -EPERM; 1173 goto out_unlock; 1174 } 1175 1176 root = kzalloc(sizeof(*root), GFP_KERNEL); 1177 if (!root) { 1178 ret = -ENOMEM; 1179 goto out_unlock; 1180 } 1181 new_root = true; 1182 1183 init_cgroup_root(root, &opts); 1184 1185 ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD); 1186 if (ret) 1187 cgroup_free_root(root); 1188 1189 out_unlock: 1190 mutex_unlock(&cgroup_mutex); 1191 out_free: 1192 kfree(opts.release_agent); 1193 kfree(opts.name); 1194 1195 if (ret) 1196 return ERR_PTR(ret); 1197 1198 dentry = cgroup_do_mount(&cgroup_fs_type, flags, root, 1199 CGROUP_SUPER_MAGIC, ns); 1200 1201 /* 1202 * There's a race window after we release cgroup_mutex and before 1203 * allocating a superblock. Make sure a concurrent process won't 1204 * be able to re-use the root during this window by delaying the 1205 * initialization of root refcnt. 1206 */ 1207 if (new_root) { 1208 mutex_lock(&cgroup_mutex); 1209 percpu_ref_reinit(&root->cgrp.self.refcnt); 1210 mutex_unlock(&cgroup_mutex); 1211 } 1212 1213 /* 1214 * If @pinned_sb, we're reusing an existing root and holding an 1215 * extra ref on its sb. Mount is complete. Put the extra ref. 1216 */ 1217 if (pinned_sb) 1218 deactivate_super(pinned_sb); 1219 1220 return dentry; 1221 } 1222 1223 static int __init cgroup1_wq_init(void) 1224 { 1225 /* 1226 * Used to destroy pidlists and separate to serve as flush domain. 1227 * Cap @max_active to 1 too. 1228 */ 1229 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1230 0, 1); 1231 BUG_ON(!cgroup_pidlist_destroy_wq); 1232 return 0; 1233 } 1234 core_initcall(cgroup1_wq_init); 1235 1236 static int __init cgroup_no_v1(char *str) 1237 { 1238 struct cgroup_subsys *ss; 1239 char *token; 1240 int i; 1241 1242 while ((token = strsep(&str, ",")) != NULL) { 1243 if (!*token) 1244 continue; 1245 1246 if (!strcmp(token, "all")) { 1247 cgroup_no_v1_mask = U16_MAX; 1248 break; 1249 } 1250 1251 for_each_subsys(ss, i) { 1252 if (strcmp(token, ss->name) && 1253 strcmp(token, ss->legacy_name)) 1254 continue; 1255 1256 cgroup_no_v1_mask |= 1 << i; 1257 } 1258 } 1259 return 1; 1260 } 1261 __setup("cgroup_no_v1=", cgroup_no_v1); 1262