xref: /openbmc/linux/kernel/cgroup/cgroup-v1.c (revision c8dbaa22)
1 #include "cgroup-internal.h"
2 
3 #include <linux/ctype.h>
4 #include <linux/kmod.h>
5 #include <linux/sort.h>
6 #include <linux/delay.h>
7 #include <linux/mm.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/task.h>
10 #include <linux/magic.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/delayacct.h>
14 #include <linux/pid_namespace.h>
15 #include <linux/cgroupstats.h>
16 
17 #include <trace/events/cgroup.h>
18 
19 /*
20  * pidlists linger the following amount before being destroyed.  The goal
21  * is avoiding frequent destruction in the middle of consecutive read calls
22  * Expiring in the middle is a performance problem not a correctness one.
23  * 1 sec should be enough.
24  */
25 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
26 
27 /* Controllers blocked by the commandline in v1 */
28 static u16 cgroup_no_v1_mask;
29 
30 /*
31  * pidlist destructions need to be flushed on cgroup destruction.  Use a
32  * separate workqueue as flush domain.
33  */
34 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
35 
36 /*
37  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
38  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
39  */
40 static DEFINE_SPINLOCK(release_agent_path_lock);
41 
42 bool cgroup1_ssid_disabled(int ssid)
43 {
44 	return cgroup_no_v1_mask & (1 << ssid);
45 }
46 
47 /**
48  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
49  * @from: attach to all cgroups of a given task
50  * @tsk: the task to be attached
51  */
52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
53 {
54 	struct cgroup_root *root;
55 	int retval = 0;
56 
57 	mutex_lock(&cgroup_mutex);
58 	percpu_down_write(&cgroup_threadgroup_rwsem);
59 	for_each_root(root) {
60 		struct cgroup *from_cgrp;
61 
62 		if (root == &cgrp_dfl_root)
63 			continue;
64 
65 		spin_lock_irq(&css_set_lock);
66 		from_cgrp = task_cgroup_from_root(from, root);
67 		spin_unlock_irq(&css_set_lock);
68 
69 		retval = cgroup_attach_task(from_cgrp, tsk, false);
70 		if (retval)
71 			break;
72 	}
73 	percpu_up_write(&cgroup_threadgroup_rwsem);
74 	mutex_unlock(&cgroup_mutex);
75 
76 	return retval;
77 }
78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
79 
80 /**
81  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
82  * @to: cgroup to which the tasks will be moved
83  * @from: cgroup in which the tasks currently reside
84  *
85  * Locking rules between cgroup_post_fork() and the migration path
86  * guarantee that, if a task is forking while being migrated, the new child
87  * is guaranteed to be either visible in the source cgroup after the
88  * parent's migration is complete or put into the target cgroup.  No task
89  * can slip out of migration through forking.
90  */
91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
92 {
93 	DEFINE_CGROUP_MGCTX(mgctx);
94 	struct cgrp_cset_link *link;
95 	struct css_task_iter it;
96 	struct task_struct *task;
97 	int ret;
98 
99 	if (cgroup_on_dfl(to))
100 		return -EINVAL;
101 
102 	if (!cgroup_may_migrate_to(to))
103 		return -EBUSY;
104 
105 	mutex_lock(&cgroup_mutex);
106 
107 	percpu_down_write(&cgroup_threadgroup_rwsem);
108 
109 	/* all tasks in @from are being moved, all csets are source */
110 	spin_lock_irq(&css_set_lock);
111 	list_for_each_entry(link, &from->cset_links, cset_link)
112 		cgroup_migrate_add_src(link->cset, to, &mgctx);
113 	spin_unlock_irq(&css_set_lock);
114 
115 	ret = cgroup_migrate_prepare_dst(&mgctx);
116 	if (ret)
117 		goto out_err;
118 
119 	/*
120 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
121 	 * ->can_attach() fails.
122 	 */
123 	do {
124 		css_task_iter_start(&from->self, &it);
125 		task = css_task_iter_next(&it);
126 		if (task)
127 			get_task_struct(task);
128 		css_task_iter_end(&it);
129 
130 		if (task) {
131 			ret = cgroup_migrate(task, false, &mgctx);
132 			if (!ret)
133 				trace_cgroup_transfer_tasks(to, task, false);
134 			put_task_struct(task);
135 		}
136 	} while (task && !ret);
137 out_err:
138 	cgroup_migrate_finish(&mgctx);
139 	percpu_up_write(&cgroup_threadgroup_rwsem);
140 	mutex_unlock(&cgroup_mutex);
141 	return ret;
142 }
143 
144 /*
145  * Stuff for reading the 'tasks'/'procs' files.
146  *
147  * Reading this file can return large amounts of data if a cgroup has
148  * *lots* of attached tasks. So it may need several calls to read(),
149  * but we cannot guarantee that the information we produce is correct
150  * unless we produce it entirely atomically.
151  *
152  */
153 
154 /* which pidlist file are we talking about? */
155 enum cgroup_filetype {
156 	CGROUP_FILE_PROCS,
157 	CGROUP_FILE_TASKS,
158 };
159 
160 /*
161  * A pidlist is a list of pids that virtually represents the contents of one
162  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
163  * a pair (one each for procs, tasks) for each pid namespace that's relevant
164  * to the cgroup.
165  */
166 struct cgroup_pidlist {
167 	/*
168 	 * used to find which pidlist is wanted. doesn't change as long as
169 	 * this particular list stays in the list.
170 	*/
171 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
172 	/* array of xids */
173 	pid_t *list;
174 	/* how many elements the above list has */
175 	int length;
176 	/* each of these stored in a list by its cgroup */
177 	struct list_head links;
178 	/* pointer to the cgroup we belong to, for list removal purposes */
179 	struct cgroup *owner;
180 	/* for delayed destruction */
181 	struct delayed_work destroy_dwork;
182 };
183 
184 /*
185  * The following two functions "fix" the issue where there are more pids
186  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
187  * TODO: replace with a kernel-wide solution to this problem
188  */
189 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
190 static void *pidlist_allocate(int count)
191 {
192 	if (PIDLIST_TOO_LARGE(count))
193 		return vmalloc(count * sizeof(pid_t));
194 	else
195 		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
196 }
197 
198 static void pidlist_free(void *p)
199 {
200 	kvfree(p);
201 }
202 
203 /*
204  * Used to destroy all pidlists lingering waiting for destroy timer.  None
205  * should be left afterwards.
206  */
207 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
208 {
209 	struct cgroup_pidlist *l, *tmp_l;
210 
211 	mutex_lock(&cgrp->pidlist_mutex);
212 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
213 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
214 	mutex_unlock(&cgrp->pidlist_mutex);
215 
216 	flush_workqueue(cgroup_pidlist_destroy_wq);
217 	BUG_ON(!list_empty(&cgrp->pidlists));
218 }
219 
220 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
221 {
222 	struct delayed_work *dwork = to_delayed_work(work);
223 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
224 						destroy_dwork);
225 	struct cgroup_pidlist *tofree = NULL;
226 
227 	mutex_lock(&l->owner->pidlist_mutex);
228 
229 	/*
230 	 * Destroy iff we didn't get queued again.  The state won't change
231 	 * as destroy_dwork can only be queued while locked.
232 	 */
233 	if (!delayed_work_pending(dwork)) {
234 		list_del(&l->links);
235 		pidlist_free(l->list);
236 		put_pid_ns(l->key.ns);
237 		tofree = l;
238 	}
239 
240 	mutex_unlock(&l->owner->pidlist_mutex);
241 	kfree(tofree);
242 }
243 
244 /*
245  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
246  * Returns the number of unique elements.
247  */
248 static int pidlist_uniq(pid_t *list, int length)
249 {
250 	int src, dest = 1;
251 
252 	/*
253 	 * we presume the 0th element is unique, so i starts at 1. trivial
254 	 * edge cases first; no work needs to be done for either
255 	 */
256 	if (length == 0 || length == 1)
257 		return length;
258 	/* src and dest walk down the list; dest counts unique elements */
259 	for (src = 1; src < length; src++) {
260 		/* find next unique element */
261 		while (list[src] == list[src-1]) {
262 			src++;
263 			if (src == length)
264 				goto after;
265 		}
266 		/* dest always points to where the next unique element goes */
267 		list[dest] = list[src];
268 		dest++;
269 	}
270 after:
271 	return dest;
272 }
273 
274 /*
275  * The two pid files - task and cgroup.procs - guaranteed that the result
276  * is sorted, which forced this whole pidlist fiasco.  As pid order is
277  * different per namespace, each namespace needs differently sorted list,
278  * making it impossible to use, for example, single rbtree of member tasks
279  * sorted by task pointer.  As pidlists can be fairly large, allocating one
280  * per open file is dangerous, so cgroup had to implement shared pool of
281  * pidlists keyed by cgroup and namespace.
282  */
283 static int cmppid(const void *a, const void *b)
284 {
285 	return *(pid_t *)a - *(pid_t *)b;
286 }
287 
288 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
289 						  enum cgroup_filetype type)
290 {
291 	struct cgroup_pidlist *l;
292 	/* don't need task_nsproxy() if we're looking at ourself */
293 	struct pid_namespace *ns = task_active_pid_ns(current);
294 
295 	lockdep_assert_held(&cgrp->pidlist_mutex);
296 
297 	list_for_each_entry(l, &cgrp->pidlists, links)
298 		if (l->key.type == type && l->key.ns == ns)
299 			return l;
300 	return NULL;
301 }
302 
303 /*
304  * find the appropriate pidlist for our purpose (given procs vs tasks)
305  * returns with the lock on that pidlist already held, and takes care
306  * of the use count, or returns NULL with no locks held if we're out of
307  * memory.
308  */
309 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
310 						enum cgroup_filetype type)
311 {
312 	struct cgroup_pidlist *l;
313 
314 	lockdep_assert_held(&cgrp->pidlist_mutex);
315 
316 	l = cgroup_pidlist_find(cgrp, type);
317 	if (l)
318 		return l;
319 
320 	/* entry not found; create a new one */
321 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
322 	if (!l)
323 		return l;
324 
325 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
326 	l->key.type = type;
327 	/* don't need task_nsproxy() if we're looking at ourself */
328 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
329 	l->owner = cgrp;
330 	list_add(&l->links, &cgrp->pidlists);
331 	return l;
332 }
333 
334 /**
335  * cgroup_task_count - count the number of tasks in a cgroup.
336  * @cgrp: the cgroup in question
337  */
338 int cgroup_task_count(const struct cgroup *cgrp)
339 {
340 	int count = 0;
341 	struct cgrp_cset_link *link;
342 
343 	spin_lock_irq(&css_set_lock);
344 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
345 		count += link->cset->nr_tasks;
346 	spin_unlock_irq(&css_set_lock);
347 	return count;
348 }
349 
350 /*
351  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
352  */
353 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
354 			      struct cgroup_pidlist **lp)
355 {
356 	pid_t *array;
357 	int length;
358 	int pid, n = 0; /* used for populating the array */
359 	struct css_task_iter it;
360 	struct task_struct *tsk;
361 	struct cgroup_pidlist *l;
362 
363 	lockdep_assert_held(&cgrp->pidlist_mutex);
364 
365 	/*
366 	 * If cgroup gets more users after we read count, we won't have
367 	 * enough space - tough.  This race is indistinguishable to the
368 	 * caller from the case that the additional cgroup users didn't
369 	 * show up until sometime later on.
370 	 */
371 	length = cgroup_task_count(cgrp);
372 	array = pidlist_allocate(length);
373 	if (!array)
374 		return -ENOMEM;
375 	/* now, populate the array */
376 	css_task_iter_start(&cgrp->self, &it);
377 	while ((tsk = css_task_iter_next(&it))) {
378 		if (unlikely(n == length))
379 			break;
380 		/* get tgid or pid for procs or tasks file respectively */
381 		if (type == CGROUP_FILE_PROCS)
382 			pid = task_tgid_vnr(tsk);
383 		else
384 			pid = task_pid_vnr(tsk);
385 		if (pid > 0) /* make sure to only use valid results */
386 			array[n++] = pid;
387 	}
388 	css_task_iter_end(&it);
389 	length = n;
390 	/* now sort & (if procs) strip out duplicates */
391 	sort(array, length, sizeof(pid_t), cmppid, NULL);
392 	if (type == CGROUP_FILE_PROCS)
393 		length = pidlist_uniq(array, length);
394 
395 	l = cgroup_pidlist_find_create(cgrp, type);
396 	if (!l) {
397 		pidlist_free(array);
398 		return -ENOMEM;
399 	}
400 
401 	/* store array, freeing old if necessary */
402 	pidlist_free(l->list);
403 	l->list = array;
404 	l->length = length;
405 	*lp = l;
406 	return 0;
407 }
408 
409 /*
410  * seq_file methods for the tasks/procs files. The seq_file position is the
411  * next pid to display; the seq_file iterator is a pointer to the pid
412  * in the cgroup->l->list array.
413  */
414 
415 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
416 {
417 	/*
418 	 * Initially we receive a position value that corresponds to
419 	 * one more than the last pid shown (or 0 on the first call or
420 	 * after a seek to the start). Use a binary-search to find the
421 	 * next pid to display, if any
422 	 */
423 	struct kernfs_open_file *of = s->private;
424 	struct cgroup *cgrp = seq_css(s)->cgroup;
425 	struct cgroup_pidlist *l;
426 	enum cgroup_filetype type = seq_cft(s)->private;
427 	int index = 0, pid = *pos;
428 	int *iter, ret;
429 
430 	mutex_lock(&cgrp->pidlist_mutex);
431 
432 	/*
433 	 * !NULL @of->priv indicates that this isn't the first start()
434 	 * after open.  If the matching pidlist is around, we can use that.
435 	 * Look for it.  Note that @of->priv can't be used directly.  It
436 	 * could already have been destroyed.
437 	 */
438 	if (of->priv)
439 		of->priv = cgroup_pidlist_find(cgrp, type);
440 
441 	/*
442 	 * Either this is the first start() after open or the matching
443 	 * pidlist has been destroyed inbetween.  Create a new one.
444 	 */
445 	if (!of->priv) {
446 		ret = pidlist_array_load(cgrp, type,
447 					 (struct cgroup_pidlist **)&of->priv);
448 		if (ret)
449 			return ERR_PTR(ret);
450 	}
451 	l = of->priv;
452 
453 	if (pid) {
454 		int end = l->length;
455 
456 		while (index < end) {
457 			int mid = (index + end) / 2;
458 			if (l->list[mid] == pid) {
459 				index = mid;
460 				break;
461 			} else if (l->list[mid] <= pid)
462 				index = mid + 1;
463 			else
464 				end = mid;
465 		}
466 	}
467 	/* If we're off the end of the array, we're done */
468 	if (index >= l->length)
469 		return NULL;
470 	/* Update the abstract position to be the actual pid that we found */
471 	iter = l->list + index;
472 	*pos = *iter;
473 	return iter;
474 }
475 
476 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
477 {
478 	struct kernfs_open_file *of = s->private;
479 	struct cgroup_pidlist *l = of->priv;
480 
481 	if (l)
482 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
483 				 CGROUP_PIDLIST_DESTROY_DELAY);
484 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
485 }
486 
487 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
488 {
489 	struct kernfs_open_file *of = s->private;
490 	struct cgroup_pidlist *l = of->priv;
491 	pid_t *p = v;
492 	pid_t *end = l->list + l->length;
493 	/*
494 	 * Advance to the next pid in the array. If this goes off the
495 	 * end, we're done
496 	 */
497 	p++;
498 	if (p >= end) {
499 		return NULL;
500 	} else {
501 		*pos = *p;
502 		return p;
503 	}
504 }
505 
506 static int cgroup_pidlist_show(struct seq_file *s, void *v)
507 {
508 	seq_printf(s, "%d\n", *(int *)v);
509 
510 	return 0;
511 }
512 
513 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
514 				  char *buf, size_t nbytes, loff_t off)
515 {
516 	return __cgroup_procs_write(of, buf, nbytes, off, false);
517 }
518 
519 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
520 					  char *buf, size_t nbytes, loff_t off)
521 {
522 	struct cgroup *cgrp;
523 
524 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
525 
526 	cgrp = cgroup_kn_lock_live(of->kn, false);
527 	if (!cgrp)
528 		return -ENODEV;
529 	spin_lock(&release_agent_path_lock);
530 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
531 		sizeof(cgrp->root->release_agent_path));
532 	spin_unlock(&release_agent_path_lock);
533 	cgroup_kn_unlock(of->kn);
534 	return nbytes;
535 }
536 
537 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
538 {
539 	struct cgroup *cgrp = seq_css(seq)->cgroup;
540 
541 	spin_lock(&release_agent_path_lock);
542 	seq_puts(seq, cgrp->root->release_agent_path);
543 	spin_unlock(&release_agent_path_lock);
544 	seq_putc(seq, '\n');
545 	return 0;
546 }
547 
548 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
549 {
550 	seq_puts(seq, "0\n");
551 	return 0;
552 }
553 
554 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
555 					 struct cftype *cft)
556 {
557 	return notify_on_release(css->cgroup);
558 }
559 
560 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
561 					  struct cftype *cft, u64 val)
562 {
563 	if (val)
564 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
565 	else
566 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
567 	return 0;
568 }
569 
570 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
571 				      struct cftype *cft)
572 {
573 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
574 }
575 
576 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
577 				       struct cftype *cft, u64 val)
578 {
579 	if (val)
580 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
581 	else
582 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
583 	return 0;
584 }
585 
586 /* cgroup core interface files for the legacy hierarchies */
587 struct cftype cgroup1_base_files[] = {
588 	{
589 		.name = "cgroup.procs",
590 		.seq_start = cgroup_pidlist_start,
591 		.seq_next = cgroup_pidlist_next,
592 		.seq_stop = cgroup_pidlist_stop,
593 		.seq_show = cgroup_pidlist_show,
594 		.private = CGROUP_FILE_PROCS,
595 		.write = cgroup_procs_write,
596 	},
597 	{
598 		.name = "cgroup.clone_children",
599 		.read_u64 = cgroup_clone_children_read,
600 		.write_u64 = cgroup_clone_children_write,
601 	},
602 	{
603 		.name = "cgroup.sane_behavior",
604 		.flags = CFTYPE_ONLY_ON_ROOT,
605 		.seq_show = cgroup_sane_behavior_show,
606 	},
607 	{
608 		.name = "tasks",
609 		.seq_start = cgroup_pidlist_start,
610 		.seq_next = cgroup_pidlist_next,
611 		.seq_stop = cgroup_pidlist_stop,
612 		.seq_show = cgroup_pidlist_show,
613 		.private = CGROUP_FILE_TASKS,
614 		.write = cgroup_tasks_write,
615 	},
616 	{
617 		.name = "notify_on_release",
618 		.read_u64 = cgroup_read_notify_on_release,
619 		.write_u64 = cgroup_write_notify_on_release,
620 	},
621 	{
622 		.name = "release_agent",
623 		.flags = CFTYPE_ONLY_ON_ROOT,
624 		.seq_show = cgroup_release_agent_show,
625 		.write = cgroup_release_agent_write,
626 		.max_write_len = PATH_MAX - 1,
627 	},
628 	{ }	/* terminate */
629 };
630 
631 /* Display information about each subsystem and each hierarchy */
632 static int proc_cgroupstats_show(struct seq_file *m, void *v)
633 {
634 	struct cgroup_subsys *ss;
635 	int i;
636 
637 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
638 	/*
639 	 * ideally we don't want subsystems moving around while we do this.
640 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
641 	 * subsys/hierarchy state.
642 	 */
643 	mutex_lock(&cgroup_mutex);
644 
645 	for_each_subsys(ss, i)
646 		seq_printf(m, "%s\t%d\t%d\t%d\n",
647 			   ss->legacy_name, ss->root->hierarchy_id,
648 			   atomic_read(&ss->root->nr_cgrps),
649 			   cgroup_ssid_enabled(i));
650 
651 	mutex_unlock(&cgroup_mutex);
652 	return 0;
653 }
654 
655 static int cgroupstats_open(struct inode *inode, struct file *file)
656 {
657 	return single_open(file, proc_cgroupstats_show, NULL);
658 }
659 
660 const struct file_operations proc_cgroupstats_operations = {
661 	.open = cgroupstats_open,
662 	.read = seq_read,
663 	.llseek = seq_lseek,
664 	.release = single_release,
665 };
666 
667 /**
668  * cgroupstats_build - build and fill cgroupstats
669  * @stats: cgroupstats to fill information into
670  * @dentry: A dentry entry belonging to the cgroup for which stats have
671  * been requested.
672  *
673  * Build and fill cgroupstats so that taskstats can export it to user
674  * space.
675  */
676 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
677 {
678 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
679 	struct cgroup *cgrp;
680 	struct css_task_iter it;
681 	struct task_struct *tsk;
682 
683 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
684 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
685 	    kernfs_type(kn) != KERNFS_DIR)
686 		return -EINVAL;
687 
688 	mutex_lock(&cgroup_mutex);
689 
690 	/*
691 	 * We aren't being called from kernfs and there's no guarantee on
692 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
693 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
694 	 */
695 	rcu_read_lock();
696 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
697 	if (!cgrp || cgroup_is_dead(cgrp)) {
698 		rcu_read_unlock();
699 		mutex_unlock(&cgroup_mutex);
700 		return -ENOENT;
701 	}
702 	rcu_read_unlock();
703 
704 	css_task_iter_start(&cgrp->self, &it);
705 	while ((tsk = css_task_iter_next(&it))) {
706 		switch (tsk->state) {
707 		case TASK_RUNNING:
708 			stats->nr_running++;
709 			break;
710 		case TASK_INTERRUPTIBLE:
711 			stats->nr_sleeping++;
712 			break;
713 		case TASK_UNINTERRUPTIBLE:
714 			stats->nr_uninterruptible++;
715 			break;
716 		case TASK_STOPPED:
717 			stats->nr_stopped++;
718 			break;
719 		default:
720 			if (delayacct_is_task_waiting_on_io(tsk))
721 				stats->nr_io_wait++;
722 			break;
723 		}
724 	}
725 	css_task_iter_end(&it);
726 
727 	mutex_unlock(&cgroup_mutex);
728 	return 0;
729 }
730 
731 void cgroup1_check_for_release(struct cgroup *cgrp)
732 {
733 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
734 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
735 		schedule_work(&cgrp->release_agent_work);
736 }
737 
738 /*
739  * Notify userspace when a cgroup is released, by running the
740  * configured release agent with the name of the cgroup (path
741  * relative to the root of cgroup file system) as the argument.
742  *
743  * Most likely, this user command will try to rmdir this cgroup.
744  *
745  * This races with the possibility that some other task will be
746  * attached to this cgroup before it is removed, or that some other
747  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
748  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
749  * unused, and this cgroup will be reprieved from its death sentence,
750  * to continue to serve a useful existence.  Next time it's released,
751  * we will get notified again, if it still has 'notify_on_release' set.
752  *
753  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
754  * means only wait until the task is successfully execve()'d.  The
755  * separate release agent task is forked by call_usermodehelper(),
756  * then control in this thread returns here, without waiting for the
757  * release agent task.  We don't bother to wait because the caller of
758  * this routine has no use for the exit status of the release agent
759  * task, so no sense holding our caller up for that.
760  */
761 void cgroup1_release_agent(struct work_struct *work)
762 {
763 	struct cgroup *cgrp =
764 		container_of(work, struct cgroup, release_agent_work);
765 	char *pathbuf = NULL, *agentbuf = NULL;
766 	char *argv[3], *envp[3];
767 	int ret;
768 
769 	mutex_lock(&cgroup_mutex);
770 
771 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
772 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
773 	if (!pathbuf || !agentbuf)
774 		goto out;
775 
776 	spin_lock_irq(&css_set_lock);
777 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
778 	spin_unlock_irq(&css_set_lock);
779 	if (ret < 0 || ret >= PATH_MAX)
780 		goto out;
781 
782 	argv[0] = agentbuf;
783 	argv[1] = pathbuf;
784 	argv[2] = NULL;
785 
786 	/* minimal command environment */
787 	envp[0] = "HOME=/";
788 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
789 	envp[2] = NULL;
790 
791 	mutex_unlock(&cgroup_mutex);
792 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
793 	goto out_free;
794 out:
795 	mutex_unlock(&cgroup_mutex);
796 out_free:
797 	kfree(agentbuf);
798 	kfree(pathbuf);
799 }
800 
801 /*
802  * cgroup_rename - Only allow simple rename of directories in place.
803  */
804 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
805 			  const char *new_name_str)
806 {
807 	struct cgroup *cgrp = kn->priv;
808 	int ret;
809 
810 	if (kernfs_type(kn) != KERNFS_DIR)
811 		return -ENOTDIR;
812 	if (kn->parent != new_parent)
813 		return -EIO;
814 
815 	/*
816 	 * We're gonna grab cgroup_mutex which nests outside kernfs
817 	 * active_ref.  kernfs_rename() doesn't require active_ref
818 	 * protection.  Break them before grabbing cgroup_mutex.
819 	 */
820 	kernfs_break_active_protection(new_parent);
821 	kernfs_break_active_protection(kn);
822 
823 	mutex_lock(&cgroup_mutex);
824 
825 	ret = kernfs_rename(kn, new_parent, new_name_str);
826 	if (!ret)
827 		trace_cgroup_rename(cgrp);
828 
829 	mutex_unlock(&cgroup_mutex);
830 
831 	kernfs_unbreak_active_protection(kn);
832 	kernfs_unbreak_active_protection(new_parent);
833 	return ret;
834 }
835 
836 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
837 {
838 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
839 	struct cgroup_subsys *ss;
840 	int ssid;
841 
842 	for_each_subsys(ss, ssid)
843 		if (root->subsys_mask & (1 << ssid))
844 			seq_show_option(seq, ss->legacy_name, NULL);
845 	if (root->flags & CGRP_ROOT_NOPREFIX)
846 		seq_puts(seq, ",noprefix");
847 	if (root->flags & CGRP_ROOT_XATTR)
848 		seq_puts(seq, ",xattr");
849 
850 	spin_lock(&release_agent_path_lock);
851 	if (strlen(root->release_agent_path))
852 		seq_show_option(seq, "release_agent",
853 				root->release_agent_path);
854 	spin_unlock(&release_agent_path_lock);
855 
856 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
857 		seq_puts(seq, ",clone_children");
858 	if (strlen(root->name))
859 		seq_show_option(seq, "name", root->name);
860 	return 0;
861 }
862 
863 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
864 {
865 	char *token, *o = data;
866 	bool all_ss = false, one_ss = false;
867 	u16 mask = U16_MAX;
868 	struct cgroup_subsys *ss;
869 	int nr_opts = 0;
870 	int i;
871 
872 #ifdef CONFIG_CPUSETS
873 	mask = ~((u16)1 << cpuset_cgrp_id);
874 #endif
875 
876 	memset(opts, 0, sizeof(*opts));
877 
878 	while ((token = strsep(&o, ",")) != NULL) {
879 		nr_opts++;
880 
881 		if (!*token)
882 			return -EINVAL;
883 		if (!strcmp(token, "none")) {
884 			/* Explicitly have no subsystems */
885 			opts->none = true;
886 			continue;
887 		}
888 		if (!strcmp(token, "all")) {
889 			/* Mutually exclusive option 'all' + subsystem name */
890 			if (one_ss)
891 				return -EINVAL;
892 			all_ss = true;
893 			continue;
894 		}
895 		if (!strcmp(token, "noprefix")) {
896 			opts->flags |= CGRP_ROOT_NOPREFIX;
897 			continue;
898 		}
899 		if (!strcmp(token, "clone_children")) {
900 			opts->cpuset_clone_children = true;
901 			continue;
902 		}
903 		if (!strcmp(token, "xattr")) {
904 			opts->flags |= CGRP_ROOT_XATTR;
905 			continue;
906 		}
907 		if (!strncmp(token, "release_agent=", 14)) {
908 			/* Specifying two release agents is forbidden */
909 			if (opts->release_agent)
910 				return -EINVAL;
911 			opts->release_agent =
912 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
913 			if (!opts->release_agent)
914 				return -ENOMEM;
915 			continue;
916 		}
917 		if (!strncmp(token, "name=", 5)) {
918 			const char *name = token + 5;
919 			/* Can't specify an empty name */
920 			if (!strlen(name))
921 				return -EINVAL;
922 			/* Must match [\w.-]+ */
923 			for (i = 0; i < strlen(name); i++) {
924 				char c = name[i];
925 				if (isalnum(c))
926 					continue;
927 				if ((c == '.') || (c == '-') || (c == '_'))
928 					continue;
929 				return -EINVAL;
930 			}
931 			/* Specifying two names is forbidden */
932 			if (opts->name)
933 				return -EINVAL;
934 			opts->name = kstrndup(name,
935 					      MAX_CGROUP_ROOT_NAMELEN - 1,
936 					      GFP_KERNEL);
937 			if (!opts->name)
938 				return -ENOMEM;
939 
940 			continue;
941 		}
942 
943 		for_each_subsys(ss, i) {
944 			if (strcmp(token, ss->legacy_name))
945 				continue;
946 			if (!cgroup_ssid_enabled(i))
947 				continue;
948 			if (cgroup1_ssid_disabled(i))
949 				continue;
950 
951 			/* Mutually exclusive option 'all' + subsystem name */
952 			if (all_ss)
953 				return -EINVAL;
954 			opts->subsys_mask |= (1 << i);
955 			one_ss = true;
956 
957 			break;
958 		}
959 		if (i == CGROUP_SUBSYS_COUNT)
960 			return -ENOENT;
961 	}
962 
963 	/*
964 	 * If the 'all' option was specified select all the subsystems,
965 	 * otherwise if 'none', 'name=' and a subsystem name options were
966 	 * not specified, let's default to 'all'
967 	 */
968 	if (all_ss || (!one_ss && !opts->none && !opts->name))
969 		for_each_subsys(ss, i)
970 			if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
971 				opts->subsys_mask |= (1 << i);
972 
973 	/*
974 	 * We either have to specify by name or by subsystems. (So all
975 	 * empty hierarchies must have a name).
976 	 */
977 	if (!opts->subsys_mask && !opts->name)
978 		return -EINVAL;
979 
980 	/*
981 	 * Option noprefix was introduced just for backward compatibility
982 	 * with the old cpuset, so we allow noprefix only if mounting just
983 	 * the cpuset subsystem.
984 	 */
985 	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
986 		return -EINVAL;
987 
988 	/* Can't specify "none" and some subsystems */
989 	if (opts->subsys_mask && opts->none)
990 		return -EINVAL;
991 
992 	return 0;
993 }
994 
995 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
996 {
997 	int ret = 0;
998 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
999 	struct cgroup_sb_opts opts;
1000 	u16 added_mask, removed_mask;
1001 
1002 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1003 
1004 	/* See what subsystems are wanted */
1005 	ret = parse_cgroupfs_options(data, &opts);
1006 	if (ret)
1007 		goto out_unlock;
1008 
1009 	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1010 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1011 			task_tgid_nr(current), current->comm);
1012 
1013 	added_mask = opts.subsys_mask & ~root->subsys_mask;
1014 	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1015 
1016 	/* Don't allow flags or name to change at remount */
1017 	if ((opts.flags ^ root->flags) ||
1018 	    (opts.name && strcmp(opts.name, root->name))) {
1019 		pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1020 		       opts.flags, opts.name ?: "", root->flags, root->name);
1021 		ret = -EINVAL;
1022 		goto out_unlock;
1023 	}
1024 
1025 	/* remounting is not allowed for populated hierarchies */
1026 	if (!list_empty(&root->cgrp.self.children)) {
1027 		ret = -EBUSY;
1028 		goto out_unlock;
1029 	}
1030 
1031 	ret = rebind_subsystems(root, added_mask);
1032 	if (ret)
1033 		goto out_unlock;
1034 
1035 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1036 
1037 	if (opts.release_agent) {
1038 		spin_lock(&release_agent_path_lock);
1039 		strcpy(root->release_agent_path, opts.release_agent);
1040 		spin_unlock(&release_agent_path_lock);
1041 	}
1042 
1043 	trace_cgroup_remount(root);
1044 
1045  out_unlock:
1046 	kfree(opts.release_agent);
1047 	kfree(opts.name);
1048 	mutex_unlock(&cgroup_mutex);
1049 	return ret;
1050 }
1051 
1052 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1053 	.rename			= cgroup1_rename,
1054 	.show_options		= cgroup1_show_options,
1055 	.remount_fs		= cgroup1_remount,
1056 	.mkdir			= cgroup_mkdir,
1057 	.rmdir			= cgroup_rmdir,
1058 	.show_path		= cgroup_show_path,
1059 };
1060 
1061 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1062 			     void *data, unsigned long magic,
1063 			     struct cgroup_namespace *ns)
1064 {
1065 	struct super_block *pinned_sb = NULL;
1066 	struct cgroup_sb_opts opts;
1067 	struct cgroup_root *root;
1068 	struct cgroup_subsys *ss;
1069 	struct dentry *dentry;
1070 	int i, ret;
1071 	bool new_root = false;
1072 
1073 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1074 
1075 	/* First find the desired set of subsystems */
1076 	ret = parse_cgroupfs_options(data, &opts);
1077 	if (ret)
1078 		goto out_unlock;
1079 
1080 	/*
1081 	 * Destruction of cgroup root is asynchronous, so subsystems may
1082 	 * still be dying after the previous unmount.  Let's drain the
1083 	 * dying subsystems.  We just need to ensure that the ones
1084 	 * unmounted previously finish dying and don't care about new ones
1085 	 * starting.  Testing ref liveliness is good enough.
1086 	 */
1087 	for_each_subsys(ss, i) {
1088 		if (!(opts.subsys_mask & (1 << i)) ||
1089 		    ss->root == &cgrp_dfl_root)
1090 			continue;
1091 
1092 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1093 			mutex_unlock(&cgroup_mutex);
1094 			msleep(10);
1095 			ret = restart_syscall();
1096 			goto out_free;
1097 		}
1098 		cgroup_put(&ss->root->cgrp);
1099 	}
1100 
1101 	for_each_root(root) {
1102 		bool name_match = false;
1103 
1104 		if (root == &cgrp_dfl_root)
1105 			continue;
1106 
1107 		/*
1108 		 * If we asked for a name then it must match.  Also, if
1109 		 * name matches but sybsys_mask doesn't, we should fail.
1110 		 * Remember whether name matched.
1111 		 */
1112 		if (opts.name) {
1113 			if (strcmp(opts.name, root->name))
1114 				continue;
1115 			name_match = true;
1116 		}
1117 
1118 		/*
1119 		 * If we asked for subsystems (or explicitly for no
1120 		 * subsystems) then they must match.
1121 		 */
1122 		if ((opts.subsys_mask || opts.none) &&
1123 		    (opts.subsys_mask != root->subsys_mask)) {
1124 			if (!name_match)
1125 				continue;
1126 			ret = -EBUSY;
1127 			goto out_unlock;
1128 		}
1129 
1130 		if (root->flags ^ opts.flags)
1131 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1132 
1133 		/*
1134 		 * We want to reuse @root whose lifetime is governed by its
1135 		 * ->cgrp.  Let's check whether @root is alive and keep it
1136 		 * that way.  As cgroup_kill_sb() can happen anytime, we
1137 		 * want to block it by pinning the sb so that @root doesn't
1138 		 * get killed before mount is complete.
1139 		 *
1140 		 * With the sb pinned, tryget_live can reliably indicate
1141 		 * whether @root can be reused.  If it's being killed,
1142 		 * drain it.  We can use wait_queue for the wait but this
1143 		 * path is super cold.  Let's just sleep a bit and retry.
1144 		 */
1145 		pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1146 		if (IS_ERR(pinned_sb) ||
1147 		    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1148 			mutex_unlock(&cgroup_mutex);
1149 			if (!IS_ERR_OR_NULL(pinned_sb))
1150 				deactivate_super(pinned_sb);
1151 			msleep(10);
1152 			ret = restart_syscall();
1153 			goto out_free;
1154 		}
1155 
1156 		ret = 0;
1157 		goto out_unlock;
1158 	}
1159 
1160 	/*
1161 	 * No such thing, create a new one.  name= matching without subsys
1162 	 * specification is allowed for already existing hierarchies but we
1163 	 * can't create new one without subsys specification.
1164 	 */
1165 	if (!opts.subsys_mask && !opts.none) {
1166 		ret = -EINVAL;
1167 		goto out_unlock;
1168 	}
1169 
1170 	/* Hierarchies may only be created in the initial cgroup namespace. */
1171 	if (ns != &init_cgroup_ns) {
1172 		ret = -EPERM;
1173 		goto out_unlock;
1174 	}
1175 
1176 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1177 	if (!root) {
1178 		ret = -ENOMEM;
1179 		goto out_unlock;
1180 	}
1181 	new_root = true;
1182 
1183 	init_cgroup_root(root, &opts);
1184 
1185 	ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1186 	if (ret)
1187 		cgroup_free_root(root);
1188 
1189 out_unlock:
1190 	mutex_unlock(&cgroup_mutex);
1191 out_free:
1192 	kfree(opts.release_agent);
1193 	kfree(opts.name);
1194 
1195 	if (ret)
1196 		return ERR_PTR(ret);
1197 
1198 	dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1199 				 CGROUP_SUPER_MAGIC, ns);
1200 
1201 	/*
1202 	 * There's a race window after we release cgroup_mutex and before
1203 	 * allocating a superblock. Make sure a concurrent process won't
1204 	 * be able to re-use the root during this window by delaying the
1205 	 * initialization of root refcnt.
1206 	 */
1207 	if (new_root) {
1208 		mutex_lock(&cgroup_mutex);
1209 		percpu_ref_reinit(&root->cgrp.self.refcnt);
1210 		mutex_unlock(&cgroup_mutex);
1211 	}
1212 
1213 	/*
1214 	 * If @pinned_sb, we're reusing an existing root and holding an
1215 	 * extra ref on its sb.  Mount is complete.  Put the extra ref.
1216 	 */
1217 	if (pinned_sb)
1218 		deactivate_super(pinned_sb);
1219 
1220 	return dentry;
1221 }
1222 
1223 static int __init cgroup1_wq_init(void)
1224 {
1225 	/*
1226 	 * Used to destroy pidlists and separate to serve as flush domain.
1227 	 * Cap @max_active to 1 too.
1228 	 */
1229 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1230 						    0, 1);
1231 	BUG_ON(!cgroup_pidlist_destroy_wq);
1232 	return 0;
1233 }
1234 core_initcall(cgroup1_wq_init);
1235 
1236 static int __init cgroup_no_v1(char *str)
1237 {
1238 	struct cgroup_subsys *ss;
1239 	char *token;
1240 	int i;
1241 
1242 	while ((token = strsep(&str, ",")) != NULL) {
1243 		if (!*token)
1244 			continue;
1245 
1246 		if (!strcmp(token, "all")) {
1247 			cgroup_no_v1_mask = U16_MAX;
1248 			break;
1249 		}
1250 
1251 		for_each_subsys(ss, i) {
1252 			if (strcmp(token, ss->name) &&
1253 			    strcmp(token, ss->legacy_name))
1254 				continue;
1255 
1256 			cgroup_no_v1_mask |= 1 << i;
1257 		}
1258 	}
1259 	return 1;
1260 }
1261 __setup("cgroup_no_v1=", cgroup_no_v1);
1262