xref: /openbmc/linux/kernel/cgroup/cgroup-v1.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18 
19 #include <trace/events/cgroup.h>
20 
21 /*
22  * pidlists linger the following amount before being destroyed.  The goal
23  * is avoiding frequent destruction in the middle of consecutive read calls
24  * Expiring in the middle is a performance problem not a correctness one.
25  * 1 sec should be enough.
26  */
27 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
28 
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31 
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34 
35 /*
36  * pidlist destructions need to be flushed on cgroup destruction.  Use a
37  * separate workqueue as flush domain.
38  */
39 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40 
41 /* protects cgroup_subsys->release_agent_path */
42 static DEFINE_SPINLOCK(release_agent_path_lock);
43 
44 bool cgroup1_ssid_disabled(int ssid)
45 {
46 	return cgroup_no_v1_mask & (1 << ssid);
47 }
48 
49 /**
50  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51  * @from: attach to all cgroups of a given task
52  * @tsk: the task to be attached
53  *
54  * Return: %0 on success or a negative errno code on failure
55  */
56 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
57 {
58 	struct cgroup_root *root;
59 	int retval = 0;
60 
61 	cgroup_lock();
62 	cgroup_attach_lock(true);
63 	for_each_root(root) {
64 		struct cgroup *from_cgrp;
65 
66 		spin_lock_irq(&css_set_lock);
67 		from_cgrp = task_cgroup_from_root(from, root);
68 		spin_unlock_irq(&css_set_lock);
69 
70 		retval = cgroup_attach_task(from_cgrp, tsk, false);
71 		if (retval)
72 			break;
73 	}
74 	cgroup_attach_unlock(true);
75 	cgroup_unlock();
76 
77 	return retval;
78 }
79 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
80 
81 /**
82  * cgroup_transfer_tasks - move tasks from one cgroup to another
83  * @to: cgroup to which the tasks will be moved
84  * @from: cgroup in which the tasks currently reside
85  *
86  * Locking rules between cgroup_post_fork() and the migration path
87  * guarantee that, if a task is forking while being migrated, the new child
88  * is guaranteed to be either visible in the source cgroup after the
89  * parent's migration is complete or put into the target cgroup.  No task
90  * can slip out of migration through forking.
91  *
92  * Return: %0 on success or a negative errno code on failure
93  */
94 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
95 {
96 	DEFINE_CGROUP_MGCTX(mgctx);
97 	struct cgrp_cset_link *link;
98 	struct css_task_iter it;
99 	struct task_struct *task;
100 	int ret;
101 
102 	if (cgroup_on_dfl(to))
103 		return -EINVAL;
104 
105 	ret = cgroup_migrate_vet_dst(to);
106 	if (ret)
107 		return ret;
108 
109 	cgroup_lock();
110 
111 	cgroup_attach_lock(true);
112 
113 	/* all tasks in @from are being moved, all csets are source */
114 	spin_lock_irq(&css_set_lock);
115 	list_for_each_entry(link, &from->cset_links, cset_link)
116 		cgroup_migrate_add_src(link->cset, to, &mgctx);
117 	spin_unlock_irq(&css_set_lock);
118 
119 	ret = cgroup_migrate_prepare_dst(&mgctx);
120 	if (ret)
121 		goto out_err;
122 
123 	/*
124 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
125 	 * ->can_attach() fails.
126 	 */
127 	do {
128 		css_task_iter_start(&from->self, 0, &it);
129 
130 		do {
131 			task = css_task_iter_next(&it);
132 		} while (task && (task->flags & PF_EXITING));
133 
134 		if (task)
135 			get_task_struct(task);
136 		css_task_iter_end(&it);
137 
138 		if (task) {
139 			ret = cgroup_migrate(task, false, &mgctx);
140 			if (!ret)
141 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
142 			put_task_struct(task);
143 		}
144 	} while (task && !ret);
145 out_err:
146 	cgroup_migrate_finish(&mgctx);
147 	cgroup_attach_unlock(true);
148 	cgroup_unlock();
149 	return ret;
150 }
151 
152 /*
153  * Stuff for reading the 'tasks'/'procs' files.
154  *
155  * Reading this file can return large amounts of data if a cgroup has
156  * *lots* of attached tasks. So it may need several calls to read(),
157  * but we cannot guarantee that the information we produce is correct
158  * unless we produce it entirely atomically.
159  *
160  */
161 
162 /* which pidlist file are we talking about? */
163 enum cgroup_filetype {
164 	CGROUP_FILE_PROCS,
165 	CGROUP_FILE_TASKS,
166 };
167 
168 /*
169  * A pidlist is a list of pids that virtually represents the contents of one
170  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
171  * a pair (one each for procs, tasks) for each pid namespace that's relevant
172  * to the cgroup.
173  */
174 struct cgroup_pidlist {
175 	/*
176 	 * used to find which pidlist is wanted. doesn't change as long as
177 	 * this particular list stays in the list.
178 	*/
179 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
180 	/* array of xids */
181 	pid_t *list;
182 	/* how many elements the above list has */
183 	int length;
184 	/* each of these stored in a list by its cgroup */
185 	struct list_head links;
186 	/* pointer to the cgroup we belong to, for list removal purposes */
187 	struct cgroup *owner;
188 	/* for delayed destruction */
189 	struct delayed_work destroy_dwork;
190 };
191 
192 /*
193  * Used to destroy all pidlists lingering waiting for destroy timer.  None
194  * should be left afterwards.
195  */
196 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
197 {
198 	struct cgroup_pidlist *l, *tmp_l;
199 
200 	mutex_lock(&cgrp->pidlist_mutex);
201 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
202 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
203 	mutex_unlock(&cgrp->pidlist_mutex);
204 
205 	flush_workqueue(cgroup_pidlist_destroy_wq);
206 	BUG_ON(!list_empty(&cgrp->pidlists));
207 }
208 
209 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
210 {
211 	struct delayed_work *dwork = to_delayed_work(work);
212 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
213 						destroy_dwork);
214 	struct cgroup_pidlist *tofree = NULL;
215 
216 	mutex_lock(&l->owner->pidlist_mutex);
217 
218 	/*
219 	 * Destroy iff we didn't get queued again.  The state won't change
220 	 * as destroy_dwork can only be queued while locked.
221 	 */
222 	if (!delayed_work_pending(dwork)) {
223 		list_del(&l->links);
224 		kvfree(l->list);
225 		put_pid_ns(l->key.ns);
226 		tofree = l;
227 	}
228 
229 	mutex_unlock(&l->owner->pidlist_mutex);
230 	kfree(tofree);
231 }
232 
233 /*
234  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
235  * Returns the number of unique elements.
236  */
237 static int pidlist_uniq(pid_t *list, int length)
238 {
239 	int src, dest = 1;
240 
241 	/*
242 	 * we presume the 0th element is unique, so i starts at 1. trivial
243 	 * edge cases first; no work needs to be done for either
244 	 */
245 	if (length == 0 || length == 1)
246 		return length;
247 	/* src and dest walk down the list; dest counts unique elements */
248 	for (src = 1; src < length; src++) {
249 		/* find next unique element */
250 		while (list[src] == list[src-1]) {
251 			src++;
252 			if (src == length)
253 				goto after;
254 		}
255 		/* dest always points to where the next unique element goes */
256 		list[dest] = list[src];
257 		dest++;
258 	}
259 after:
260 	return dest;
261 }
262 
263 /*
264  * The two pid files - task and cgroup.procs - guaranteed that the result
265  * is sorted, which forced this whole pidlist fiasco.  As pid order is
266  * different per namespace, each namespace needs differently sorted list,
267  * making it impossible to use, for example, single rbtree of member tasks
268  * sorted by task pointer.  As pidlists can be fairly large, allocating one
269  * per open file is dangerous, so cgroup had to implement shared pool of
270  * pidlists keyed by cgroup and namespace.
271  */
272 static int cmppid(const void *a, const void *b)
273 {
274 	return *(pid_t *)a - *(pid_t *)b;
275 }
276 
277 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
278 						  enum cgroup_filetype type)
279 {
280 	struct cgroup_pidlist *l;
281 	/* don't need task_nsproxy() if we're looking at ourself */
282 	struct pid_namespace *ns = task_active_pid_ns(current);
283 
284 	lockdep_assert_held(&cgrp->pidlist_mutex);
285 
286 	list_for_each_entry(l, &cgrp->pidlists, links)
287 		if (l->key.type == type && l->key.ns == ns)
288 			return l;
289 	return NULL;
290 }
291 
292 /*
293  * find the appropriate pidlist for our purpose (given procs vs tasks)
294  * returns with the lock on that pidlist already held, and takes care
295  * of the use count, or returns NULL with no locks held if we're out of
296  * memory.
297  */
298 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
299 						enum cgroup_filetype type)
300 {
301 	struct cgroup_pidlist *l;
302 
303 	lockdep_assert_held(&cgrp->pidlist_mutex);
304 
305 	l = cgroup_pidlist_find(cgrp, type);
306 	if (l)
307 		return l;
308 
309 	/* entry not found; create a new one */
310 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
311 	if (!l)
312 		return l;
313 
314 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
315 	l->key.type = type;
316 	/* don't need task_nsproxy() if we're looking at ourself */
317 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
318 	l->owner = cgrp;
319 	list_add(&l->links, &cgrp->pidlists);
320 	return l;
321 }
322 
323 /*
324  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
325  */
326 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
327 			      struct cgroup_pidlist **lp)
328 {
329 	pid_t *array;
330 	int length;
331 	int pid, n = 0; /* used for populating the array */
332 	struct css_task_iter it;
333 	struct task_struct *tsk;
334 	struct cgroup_pidlist *l;
335 
336 	lockdep_assert_held(&cgrp->pidlist_mutex);
337 
338 	/*
339 	 * If cgroup gets more users after we read count, we won't have
340 	 * enough space - tough.  This race is indistinguishable to the
341 	 * caller from the case that the additional cgroup users didn't
342 	 * show up until sometime later on.
343 	 */
344 	length = cgroup_task_count(cgrp);
345 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
346 	if (!array)
347 		return -ENOMEM;
348 	/* now, populate the array */
349 	css_task_iter_start(&cgrp->self, 0, &it);
350 	while ((tsk = css_task_iter_next(&it))) {
351 		if (unlikely(n == length))
352 			break;
353 		/* get tgid or pid for procs or tasks file respectively */
354 		if (type == CGROUP_FILE_PROCS)
355 			pid = task_tgid_vnr(tsk);
356 		else
357 			pid = task_pid_vnr(tsk);
358 		if (pid > 0) /* make sure to only use valid results */
359 			array[n++] = pid;
360 	}
361 	css_task_iter_end(&it);
362 	length = n;
363 	/* now sort & (if procs) strip out duplicates */
364 	sort(array, length, sizeof(pid_t), cmppid, NULL);
365 	if (type == CGROUP_FILE_PROCS)
366 		length = pidlist_uniq(array, length);
367 
368 	l = cgroup_pidlist_find_create(cgrp, type);
369 	if (!l) {
370 		kvfree(array);
371 		return -ENOMEM;
372 	}
373 
374 	/* store array, freeing old if necessary */
375 	kvfree(l->list);
376 	l->list = array;
377 	l->length = length;
378 	*lp = l;
379 	return 0;
380 }
381 
382 /*
383  * seq_file methods for the tasks/procs files. The seq_file position is the
384  * next pid to display; the seq_file iterator is a pointer to the pid
385  * in the cgroup->l->list array.
386  */
387 
388 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
389 {
390 	/*
391 	 * Initially we receive a position value that corresponds to
392 	 * one more than the last pid shown (or 0 on the first call or
393 	 * after a seek to the start). Use a binary-search to find the
394 	 * next pid to display, if any
395 	 */
396 	struct kernfs_open_file *of = s->private;
397 	struct cgroup_file_ctx *ctx = of->priv;
398 	struct cgroup *cgrp = seq_css(s)->cgroup;
399 	struct cgroup_pidlist *l;
400 	enum cgroup_filetype type = seq_cft(s)->private;
401 	int index = 0, pid = *pos;
402 	int *iter, ret;
403 
404 	mutex_lock(&cgrp->pidlist_mutex);
405 
406 	/*
407 	 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
408 	 * start() after open. If the matching pidlist is around, we can use
409 	 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
410 	 * directly. It could already have been destroyed.
411 	 */
412 	if (ctx->procs1.pidlist)
413 		ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
414 
415 	/*
416 	 * Either this is the first start() after open or the matching
417 	 * pidlist has been destroyed inbetween.  Create a new one.
418 	 */
419 	if (!ctx->procs1.pidlist) {
420 		ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
421 		if (ret)
422 			return ERR_PTR(ret);
423 	}
424 	l = ctx->procs1.pidlist;
425 
426 	if (pid) {
427 		int end = l->length;
428 
429 		while (index < end) {
430 			int mid = (index + end) / 2;
431 			if (l->list[mid] == pid) {
432 				index = mid;
433 				break;
434 			} else if (l->list[mid] <= pid)
435 				index = mid + 1;
436 			else
437 				end = mid;
438 		}
439 	}
440 	/* If we're off the end of the array, we're done */
441 	if (index >= l->length)
442 		return NULL;
443 	/* Update the abstract position to be the actual pid that we found */
444 	iter = l->list + index;
445 	*pos = *iter;
446 	return iter;
447 }
448 
449 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
450 {
451 	struct kernfs_open_file *of = s->private;
452 	struct cgroup_file_ctx *ctx = of->priv;
453 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
454 
455 	if (l)
456 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
457 				 CGROUP_PIDLIST_DESTROY_DELAY);
458 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
459 }
460 
461 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
462 {
463 	struct kernfs_open_file *of = s->private;
464 	struct cgroup_file_ctx *ctx = of->priv;
465 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
466 	pid_t *p = v;
467 	pid_t *end = l->list + l->length;
468 	/*
469 	 * Advance to the next pid in the array. If this goes off the
470 	 * end, we're done
471 	 */
472 	p++;
473 	if (p >= end) {
474 		(*pos)++;
475 		return NULL;
476 	} else {
477 		*pos = *p;
478 		return p;
479 	}
480 }
481 
482 static int cgroup_pidlist_show(struct seq_file *s, void *v)
483 {
484 	seq_printf(s, "%d\n", *(int *)v);
485 
486 	return 0;
487 }
488 
489 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
490 				     char *buf, size_t nbytes, loff_t off,
491 				     bool threadgroup)
492 {
493 	struct cgroup *cgrp;
494 	struct task_struct *task;
495 	const struct cred *cred, *tcred;
496 	ssize_t ret;
497 	bool locked;
498 
499 	cgrp = cgroup_kn_lock_live(of->kn, false);
500 	if (!cgrp)
501 		return -ENODEV;
502 
503 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
504 	ret = PTR_ERR_OR_ZERO(task);
505 	if (ret)
506 		goto out_unlock;
507 
508 	/*
509 	 * Even if we're attaching all tasks in the thread group, we only need
510 	 * to check permissions on one of them. Check permissions using the
511 	 * credentials from file open to protect against inherited fd attacks.
512 	 */
513 	cred = of->file->f_cred;
514 	tcred = get_task_cred(task);
515 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
516 	    !uid_eq(cred->euid, tcred->uid) &&
517 	    !uid_eq(cred->euid, tcred->suid))
518 		ret = -EACCES;
519 	put_cred(tcred);
520 	if (ret)
521 		goto out_finish;
522 
523 	ret = cgroup_attach_task(cgrp, task, threadgroup);
524 
525 out_finish:
526 	cgroup_procs_write_finish(task, locked);
527 out_unlock:
528 	cgroup_kn_unlock(of->kn);
529 
530 	return ret ?: nbytes;
531 }
532 
533 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
534 				   char *buf, size_t nbytes, loff_t off)
535 {
536 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
537 }
538 
539 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
540 				   char *buf, size_t nbytes, loff_t off)
541 {
542 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
543 }
544 
545 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
546 					  char *buf, size_t nbytes, loff_t off)
547 {
548 	struct cgroup *cgrp;
549 	struct cgroup_file_ctx *ctx;
550 
551 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
552 
553 	/*
554 	 * Release agent gets called with all capabilities,
555 	 * require capabilities to set release agent.
556 	 */
557 	ctx = of->priv;
558 	if ((ctx->ns->user_ns != &init_user_ns) ||
559 	    !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
560 		return -EPERM;
561 
562 	cgrp = cgroup_kn_lock_live(of->kn, false);
563 	if (!cgrp)
564 		return -ENODEV;
565 	spin_lock(&release_agent_path_lock);
566 	strscpy(cgrp->root->release_agent_path, strstrip(buf),
567 		sizeof(cgrp->root->release_agent_path));
568 	spin_unlock(&release_agent_path_lock);
569 	cgroup_kn_unlock(of->kn);
570 	return nbytes;
571 }
572 
573 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
574 {
575 	struct cgroup *cgrp = seq_css(seq)->cgroup;
576 
577 	spin_lock(&release_agent_path_lock);
578 	seq_puts(seq, cgrp->root->release_agent_path);
579 	spin_unlock(&release_agent_path_lock);
580 	seq_putc(seq, '\n');
581 	return 0;
582 }
583 
584 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
585 {
586 	seq_puts(seq, "0\n");
587 	return 0;
588 }
589 
590 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
591 					 struct cftype *cft)
592 {
593 	return notify_on_release(css->cgroup);
594 }
595 
596 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
597 					  struct cftype *cft, u64 val)
598 {
599 	if (val)
600 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
601 	else
602 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
603 	return 0;
604 }
605 
606 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
607 				      struct cftype *cft)
608 {
609 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
610 }
611 
612 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
613 				       struct cftype *cft, u64 val)
614 {
615 	if (val)
616 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
617 	else
618 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
619 	return 0;
620 }
621 
622 /* cgroup core interface files for the legacy hierarchies */
623 struct cftype cgroup1_base_files[] = {
624 	{
625 		.name = "cgroup.procs",
626 		.seq_start = cgroup_pidlist_start,
627 		.seq_next = cgroup_pidlist_next,
628 		.seq_stop = cgroup_pidlist_stop,
629 		.seq_show = cgroup_pidlist_show,
630 		.private = CGROUP_FILE_PROCS,
631 		.write = cgroup1_procs_write,
632 	},
633 	{
634 		.name = "cgroup.clone_children",
635 		.read_u64 = cgroup_clone_children_read,
636 		.write_u64 = cgroup_clone_children_write,
637 	},
638 	{
639 		.name = "cgroup.sane_behavior",
640 		.flags = CFTYPE_ONLY_ON_ROOT,
641 		.seq_show = cgroup_sane_behavior_show,
642 	},
643 	{
644 		.name = "tasks",
645 		.seq_start = cgroup_pidlist_start,
646 		.seq_next = cgroup_pidlist_next,
647 		.seq_stop = cgroup_pidlist_stop,
648 		.seq_show = cgroup_pidlist_show,
649 		.private = CGROUP_FILE_TASKS,
650 		.write = cgroup1_tasks_write,
651 	},
652 	{
653 		.name = "notify_on_release",
654 		.read_u64 = cgroup_read_notify_on_release,
655 		.write_u64 = cgroup_write_notify_on_release,
656 	},
657 	{
658 		.name = "release_agent",
659 		.flags = CFTYPE_ONLY_ON_ROOT,
660 		.seq_show = cgroup_release_agent_show,
661 		.write = cgroup_release_agent_write,
662 		.max_write_len = PATH_MAX - 1,
663 	},
664 	{ }	/* terminate */
665 };
666 
667 /* Display information about each subsystem and each hierarchy */
668 int proc_cgroupstats_show(struct seq_file *m, void *v)
669 {
670 	struct cgroup_subsys *ss;
671 	int i;
672 
673 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
674 	/*
675 	 * Grab the subsystems state racily. No need to add avenue to
676 	 * cgroup_mutex contention.
677 	 */
678 
679 	for_each_subsys(ss, i)
680 		seq_printf(m, "%s\t%d\t%d\t%d\n",
681 			   ss->legacy_name, ss->root->hierarchy_id,
682 			   atomic_read(&ss->root->nr_cgrps),
683 			   cgroup_ssid_enabled(i));
684 
685 	return 0;
686 }
687 
688 /**
689  * cgroupstats_build - build and fill cgroupstats
690  * @stats: cgroupstats to fill information into
691  * @dentry: A dentry entry belonging to the cgroup for which stats have
692  * been requested.
693  *
694  * Build and fill cgroupstats so that taskstats can export it to user
695  * space.
696  *
697  * Return: %0 on success or a negative errno code on failure
698  */
699 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
700 {
701 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
702 	struct cgroup *cgrp;
703 	struct css_task_iter it;
704 	struct task_struct *tsk;
705 
706 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
707 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
708 	    kernfs_type(kn) != KERNFS_DIR)
709 		return -EINVAL;
710 
711 	/*
712 	 * We aren't being called from kernfs and there's no guarantee on
713 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
714 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
715 	 */
716 	rcu_read_lock();
717 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
718 	if (!cgrp || !cgroup_tryget(cgrp)) {
719 		rcu_read_unlock();
720 		return -ENOENT;
721 	}
722 	rcu_read_unlock();
723 
724 	css_task_iter_start(&cgrp->self, 0, &it);
725 	while ((tsk = css_task_iter_next(&it))) {
726 		switch (READ_ONCE(tsk->__state)) {
727 		case TASK_RUNNING:
728 			stats->nr_running++;
729 			break;
730 		case TASK_INTERRUPTIBLE:
731 			stats->nr_sleeping++;
732 			break;
733 		case TASK_UNINTERRUPTIBLE:
734 			stats->nr_uninterruptible++;
735 			break;
736 		case TASK_STOPPED:
737 			stats->nr_stopped++;
738 			break;
739 		default:
740 			if (tsk->in_iowait)
741 				stats->nr_io_wait++;
742 			break;
743 		}
744 	}
745 	css_task_iter_end(&it);
746 
747 	cgroup_put(cgrp);
748 	return 0;
749 }
750 
751 void cgroup1_check_for_release(struct cgroup *cgrp)
752 {
753 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
754 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
755 		schedule_work(&cgrp->release_agent_work);
756 }
757 
758 /*
759  * Notify userspace when a cgroup is released, by running the
760  * configured release agent with the name of the cgroup (path
761  * relative to the root of cgroup file system) as the argument.
762  *
763  * Most likely, this user command will try to rmdir this cgroup.
764  *
765  * This races with the possibility that some other task will be
766  * attached to this cgroup before it is removed, or that some other
767  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
768  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
769  * unused, and this cgroup will be reprieved from its death sentence,
770  * to continue to serve a useful existence.  Next time it's released,
771  * we will get notified again, if it still has 'notify_on_release' set.
772  *
773  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
774  * means only wait until the task is successfully execve()'d.  The
775  * separate release agent task is forked by call_usermodehelper(),
776  * then control in this thread returns here, without waiting for the
777  * release agent task.  We don't bother to wait because the caller of
778  * this routine has no use for the exit status of the release agent
779  * task, so no sense holding our caller up for that.
780  */
781 void cgroup1_release_agent(struct work_struct *work)
782 {
783 	struct cgroup *cgrp =
784 		container_of(work, struct cgroup, release_agent_work);
785 	char *pathbuf, *agentbuf;
786 	char *argv[3], *envp[3];
787 	int ret;
788 
789 	/* snoop agent path and exit early if empty */
790 	if (!cgrp->root->release_agent_path[0])
791 		return;
792 
793 	/* prepare argument buffers */
794 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
795 	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
796 	if (!pathbuf || !agentbuf)
797 		goto out_free;
798 
799 	spin_lock(&release_agent_path_lock);
800 	strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
801 	spin_unlock(&release_agent_path_lock);
802 	if (!agentbuf[0])
803 		goto out_free;
804 
805 	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
806 	if (ret < 0 || ret >= PATH_MAX)
807 		goto out_free;
808 
809 	argv[0] = agentbuf;
810 	argv[1] = pathbuf;
811 	argv[2] = NULL;
812 
813 	/* minimal command environment */
814 	envp[0] = "HOME=/";
815 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
816 	envp[2] = NULL;
817 
818 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
819 out_free:
820 	kfree(agentbuf);
821 	kfree(pathbuf);
822 }
823 
824 /*
825  * cgroup_rename - Only allow simple rename of directories in place.
826  */
827 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
828 			  const char *new_name_str)
829 {
830 	struct cgroup *cgrp = kn->priv;
831 	int ret;
832 
833 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
834 	if (strchr(new_name_str, '\n'))
835 		return -EINVAL;
836 
837 	if (kernfs_type(kn) != KERNFS_DIR)
838 		return -ENOTDIR;
839 	if (kn->parent != new_parent)
840 		return -EIO;
841 
842 	/*
843 	 * We're gonna grab cgroup_mutex which nests outside kernfs
844 	 * active_ref.  kernfs_rename() doesn't require active_ref
845 	 * protection.  Break them before grabbing cgroup_mutex.
846 	 */
847 	kernfs_break_active_protection(new_parent);
848 	kernfs_break_active_protection(kn);
849 
850 	cgroup_lock();
851 
852 	ret = kernfs_rename(kn, new_parent, new_name_str);
853 	if (!ret)
854 		TRACE_CGROUP_PATH(rename, cgrp);
855 
856 	cgroup_unlock();
857 
858 	kernfs_unbreak_active_protection(kn);
859 	kernfs_unbreak_active_protection(new_parent);
860 	return ret;
861 }
862 
863 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
864 {
865 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
866 	struct cgroup_subsys *ss;
867 	int ssid;
868 
869 	for_each_subsys(ss, ssid)
870 		if (root->subsys_mask & (1 << ssid))
871 			seq_show_option(seq, ss->legacy_name, NULL);
872 	if (root->flags & CGRP_ROOT_NOPREFIX)
873 		seq_puts(seq, ",noprefix");
874 	if (root->flags & CGRP_ROOT_XATTR)
875 		seq_puts(seq, ",xattr");
876 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
877 		seq_puts(seq, ",cpuset_v2_mode");
878 	if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
879 		seq_puts(seq, ",favordynmods");
880 
881 	spin_lock(&release_agent_path_lock);
882 	if (strlen(root->release_agent_path))
883 		seq_show_option(seq, "release_agent",
884 				root->release_agent_path);
885 	spin_unlock(&release_agent_path_lock);
886 
887 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
888 		seq_puts(seq, ",clone_children");
889 	if (strlen(root->name))
890 		seq_show_option(seq, "name", root->name);
891 	return 0;
892 }
893 
894 enum cgroup1_param {
895 	Opt_all,
896 	Opt_clone_children,
897 	Opt_cpuset_v2_mode,
898 	Opt_name,
899 	Opt_none,
900 	Opt_noprefix,
901 	Opt_release_agent,
902 	Opt_xattr,
903 	Opt_favordynmods,
904 	Opt_nofavordynmods,
905 };
906 
907 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
908 	fsparam_flag  ("all",		Opt_all),
909 	fsparam_flag  ("clone_children", Opt_clone_children),
910 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
911 	fsparam_string("name",		Opt_name),
912 	fsparam_flag  ("none",		Opt_none),
913 	fsparam_flag  ("noprefix",	Opt_noprefix),
914 	fsparam_string("release_agent",	Opt_release_agent),
915 	fsparam_flag  ("xattr",		Opt_xattr),
916 	fsparam_flag  ("favordynmods",	Opt_favordynmods),
917 	fsparam_flag  ("nofavordynmods", Opt_nofavordynmods),
918 	{}
919 };
920 
921 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
922 {
923 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
924 	struct cgroup_subsys *ss;
925 	struct fs_parse_result result;
926 	int opt, i;
927 
928 	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
929 	if (opt == -ENOPARAM) {
930 		int ret;
931 
932 		ret = vfs_parse_fs_param_source(fc, param);
933 		if (ret != -ENOPARAM)
934 			return ret;
935 		for_each_subsys(ss, i) {
936 			if (strcmp(param->key, ss->legacy_name))
937 				continue;
938 			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
939 				return invalfc(fc, "Disabled controller '%s'",
940 					       param->key);
941 			ctx->subsys_mask |= (1 << i);
942 			return 0;
943 		}
944 		return invalfc(fc, "Unknown subsys name '%s'", param->key);
945 	}
946 	if (opt < 0)
947 		return opt;
948 
949 	switch (opt) {
950 	case Opt_none:
951 		/* Explicitly have no subsystems */
952 		ctx->none = true;
953 		break;
954 	case Opt_all:
955 		ctx->all_ss = true;
956 		break;
957 	case Opt_noprefix:
958 		ctx->flags |= CGRP_ROOT_NOPREFIX;
959 		break;
960 	case Opt_clone_children:
961 		ctx->cpuset_clone_children = true;
962 		break;
963 	case Opt_cpuset_v2_mode:
964 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
965 		break;
966 	case Opt_xattr:
967 		ctx->flags |= CGRP_ROOT_XATTR;
968 		break;
969 	case Opt_favordynmods:
970 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
971 		break;
972 	case Opt_nofavordynmods:
973 		ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
974 		break;
975 	case Opt_release_agent:
976 		/* Specifying two release agents is forbidden */
977 		if (ctx->release_agent)
978 			return invalfc(fc, "release_agent respecified");
979 		/*
980 		 * Release agent gets called with all capabilities,
981 		 * require capabilities to set release agent.
982 		 */
983 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
984 			return invalfc(fc, "Setting release_agent not allowed");
985 		ctx->release_agent = param->string;
986 		param->string = NULL;
987 		break;
988 	case Opt_name:
989 		/* blocked by boot param? */
990 		if (cgroup_no_v1_named)
991 			return -ENOENT;
992 		/* Can't specify an empty name */
993 		if (!param->size)
994 			return invalfc(fc, "Empty name");
995 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
996 			return invalfc(fc, "Name too long");
997 		/* Must match [\w.-]+ */
998 		for (i = 0; i < param->size; i++) {
999 			char c = param->string[i];
1000 			if (isalnum(c))
1001 				continue;
1002 			if ((c == '.') || (c == '-') || (c == '_'))
1003 				continue;
1004 			return invalfc(fc, "Invalid name");
1005 		}
1006 		/* Specifying two names is forbidden */
1007 		if (ctx->name)
1008 			return invalfc(fc, "name respecified");
1009 		ctx->name = param->string;
1010 		param->string = NULL;
1011 		break;
1012 	}
1013 	return 0;
1014 }
1015 
1016 static int check_cgroupfs_options(struct fs_context *fc)
1017 {
1018 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1019 	u16 mask = U16_MAX;
1020 	u16 enabled = 0;
1021 	struct cgroup_subsys *ss;
1022 	int i;
1023 
1024 #ifdef CONFIG_CPUSETS
1025 	mask = ~((u16)1 << cpuset_cgrp_id);
1026 #endif
1027 	for_each_subsys(ss, i)
1028 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1029 			enabled |= 1 << i;
1030 
1031 	ctx->subsys_mask &= enabled;
1032 
1033 	/*
1034 	 * In absence of 'none', 'name=' and subsystem name options,
1035 	 * let's default to 'all'.
1036 	 */
1037 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1038 		ctx->all_ss = true;
1039 
1040 	if (ctx->all_ss) {
1041 		/* Mutually exclusive option 'all' + subsystem name */
1042 		if (ctx->subsys_mask)
1043 			return invalfc(fc, "subsys name conflicts with all");
1044 		/* 'all' => select all the subsystems */
1045 		ctx->subsys_mask = enabled;
1046 	}
1047 
1048 	/*
1049 	 * We either have to specify by name or by subsystems. (So all
1050 	 * empty hierarchies must have a name).
1051 	 */
1052 	if (!ctx->subsys_mask && !ctx->name)
1053 		return invalfc(fc, "Need name or subsystem set");
1054 
1055 	/*
1056 	 * Option noprefix was introduced just for backward compatibility
1057 	 * with the old cpuset, so we allow noprefix only if mounting just
1058 	 * the cpuset subsystem.
1059 	 */
1060 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1061 		return invalfc(fc, "noprefix used incorrectly");
1062 
1063 	/* Can't specify "none" and some subsystems */
1064 	if (ctx->subsys_mask && ctx->none)
1065 		return invalfc(fc, "none used incorrectly");
1066 
1067 	return 0;
1068 }
1069 
1070 int cgroup1_reconfigure(struct fs_context *fc)
1071 {
1072 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1073 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1074 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1075 	int ret = 0;
1076 	u16 added_mask, removed_mask;
1077 
1078 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1079 
1080 	/* See what subsystems are wanted */
1081 	ret = check_cgroupfs_options(fc);
1082 	if (ret)
1083 		goto out_unlock;
1084 
1085 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1086 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1087 			task_tgid_nr(current), current->comm);
1088 
1089 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1090 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1091 
1092 	/* Don't allow flags or name to change at remount */
1093 	if ((ctx->flags ^ root->flags) ||
1094 	    (ctx->name && strcmp(ctx->name, root->name))) {
1095 		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1096 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1097 		ret = -EINVAL;
1098 		goto out_unlock;
1099 	}
1100 
1101 	/* remounting is not allowed for populated hierarchies */
1102 	if (!list_empty(&root->cgrp.self.children)) {
1103 		ret = -EBUSY;
1104 		goto out_unlock;
1105 	}
1106 
1107 	ret = rebind_subsystems(root, added_mask);
1108 	if (ret)
1109 		goto out_unlock;
1110 
1111 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1112 
1113 	if (ctx->release_agent) {
1114 		spin_lock(&release_agent_path_lock);
1115 		strcpy(root->release_agent_path, ctx->release_agent);
1116 		spin_unlock(&release_agent_path_lock);
1117 	}
1118 
1119 	trace_cgroup_remount(root);
1120 
1121  out_unlock:
1122 	cgroup_unlock();
1123 	return ret;
1124 }
1125 
1126 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1127 	.rename			= cgroup1_rename,
1128 	.show_options		= cgroup1_show_options,
1129 	.mkdir			= cgroup_mkdir,
1130 	.rmdir			= cgroup_rmdir,
1131 	.show_path		= cgroup_show_path,
1132 };
1133 
1134 /*
1135  * The guts of cgroup1 mount - find or create cgroup_root to use.
1136  * Called with cgroup_mutex held; returns 0 on success, -E... on
1137  * error and positive - in case when the candidate is busy dying.
1138  * On success it stashes a reference to cgroup_root into given
1139  * cgroup_fs_context; that reference is *NOT* counting towards the
1140  * cgroup_root refcount.
1141  */
1142 static int cgroup1_root_to_use(struct fs_context *fc)
1143 {
1144 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1145 	struct cgroup_root *root;
1146 	struct cgroup_subsys *ss;
1147 	int i, ret;
1148 
1149 	/* First find the desired set of subsystems */
1150 	ret = check_cgroupfs_options(fc);
1151 	if (ret)
1152 		return ret;
1153 
1154 	/*
1155 	 * Destruction of cgroup root is asynchronous, so subsystems may
1156 	 * still be dying after the previous unmount.  Let's drain the
1157 	 * dying subsystems.  We just need to ensure that the ones
1158 	 * unmounted previously finish dying and don't care about new ones
1159 	 * starting.  Testing ref liveliness is good enough.
1160 	 */
1161 	for_each_subsys(ss, i) {
1162 		if (!(ctx->subsys_mask & (1 << i)) ||
1163 		    ss->root == &cgrp_dfl_root)
1164 			continue;
1165 
1166 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1167 			return 1;	/* restart */
1168 		cgroup_put(&ss->root->cgrp);
1169 	}
1170 
1171 	for_each_root(root) {
1172 		bool name_match = false;
1173 
1174 		if (root == &cgrp_dfl_root)
1175 			continue;
1176 
1177 		/*
1178 		 * If we asked for a name then it must match.  Also, if
1179 		 * name matches but sybsys_mask doesn't, we should fail.
1180 		 * Remember whether name matched.
1181 		 */
1182 		if (ctx->name) {
1183 			if (strcmp(ctx->name, root->name))
1184 				continue;
1185 			name_match = true;
1186 		}
1187 
1188 		/*
1189 		 * If we asked for subsystems (or explicitly for no
1190 		 * subsystems) then they must match.
1191 		 */
1192 		if ((ctx->subsys_mask || ctx->none) &&
1193 		    (ctx->subsys_mask != root->subsys_mask)) {
1194 			if (!name_match)
1195 				continue;
1196 			return -EBUSY;
1197 		}
1198 
1199 		if (root->flags ^ ctx->flags)
1200 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1201 
1202 		ctx->root = root;
1203 		return 0;
1204 	}
1205 
1206 	/*
1207 	 * No such thing, create a new one.  name= matching without subsys
1208 	 * specification is allowed for already existing hierarchies but we
1209 	 * can't create new one without subsys specification.
1210 	 */
1211 	if (!ctx->subsys_mask && !ctx->none)
1212 		return invalfc(fc, "No subsys list or none specified");
1213 
1214 	/* Hierarchies may only be created in the initial cgroup namespace. */
1215 	if (ctx->ns != &init_cgroup_ns)
1216 		return -EPERM;
1217 
1218 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1219 	if (!root)
1220 		return -ENOMEM;
1221 
1222 	ctx->root = root;
1223 	init_cgroup_root(ctx);
1224 
1225 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1226 	if (!ret)
1227 		cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1228 	else
1229 		cgroup_free_root(root);
1230 
1231 	return ret;
1232 }
1233 
1234 int cgroup1_get_tree(struct fs_context *fc)
1235 {
1236 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1237 	int ret;
1238 
1239 	/* Check if the caller has permission to mount. */
1240 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1241 		return -EPERM;
1242 
1243 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1244 
1245 	ret = cgroup1_root_to_use(fc);
1246 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1247 		ret = 1;	/* restart */
1248 
1249 	cgroup_unlock();
1250 
1251 	if (!ret)
1252 		ret = cgroup_do_get_tree(fc);
1253 
1254 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1255 		fc_drop_locked(fc);
1256 		ret = 1;
1257 	}
1258 
1259 	if (unlikely(ret > 0)) {
1260 		msleep(10);
1261 		return restart_syscall();
1262 	}
1263 	return ret;
1264 }
1265 
1266 static int __init cgroup1_wq_init(void)
1267 {
1268 	/*
1269 	 * Used to destroy pidlists and separate to serve as flush domain.
1270 	 * Cap @max_active to 1 too.
1271 	 */
1272 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1273 						    0, 1);
1274 	BUG_ON(!cgroup_pidlist_destroy_wq);
1275 	return 0;
1276 }
1277 core_initcall(cgroup1_wq_init);
1278 
1279 static int __init cgroup_no_v1(char *str)
1280 {
1281 	struct cgroup_subsys *ss;
1282 	char *token;
1283 	int i;
1284 
1285 	while ((token = strsep(&str, ",")) != NULL) {
1286 		if (!*token)
1287 			continue;
1288 
1289 		if (!strcmp(token, "all")) {
1290 			cgroup_no_v1_mask = U16_MAX;
1291 			continue;
1292 		}
1293 
1294 		if (!strcmp(token, "named")) {
1295 			cgroup_no_v1_named = true;
1296 			continue;
1297 		}
1298 
1299 		for_each_subsys(ss, i) {
1300 			if (strcmp(token, ss->name) &&
1301 			    strcmp(token, ss->legacy_name))
1302 				continue;
1303 
1304 			cgroup_no_v1_mask |= 1 << i;
1305 		}
1306 	}
1307 	return 1;
1308 }
1309 __setup("cgroup_no_v1=", cgroup_no_v1);
1310