1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 /* 22 * pidlists linger the following amount before being destroyed. The goal 23 * is avoiding frequent destruction in the middle of consecutive read calls 24 * Expiring in the middle is a performance problem not a correctness one. 25 * 1 sec should be enough. 26 */ 27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 28 29 /* Controllers blocked by the commandline in v1 */ 30 static u16 cgroup_no_v1_mask; 31 32 /* disable named v1 mounts */ 33 static bool cgroup_no_v1_named; 34 35 /* 36 * pidlist destructions need to be flushed on cgroup destruction. Use a 37 * separate workqueue as flush domain. 38 */ 39 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 40 41 /* protects cgroup_subsys->release_agent_path */ 42 static DEFINE_SPINLOCK(release_agent_path_lock); 43 44 bool cgroup1_ssid_disabled(int ssid) 45 { 46 return cgroup_no_v1_mask & (1 << ssid); 47 } 48 49 /** 50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 51 * @from: attach to all cgroups of a given task 52 * @tsk: the task to be attached 53 * 54 * Return: %0 on success or a negative errno code on failure 55 */ 56 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 57 { 58 struct cgroup_root *root; 59 int retval = 0; 60 61 mutex_lock(&cgroup_mutex); 62 percpu_down_write(&cgroup_threadgroup_rwsem); 63 for_each_root(root) { 64 struct cgroup *from_cgrp; 65 66 spin_lock_irq(&css_set_lock); 67 from_cgrp = task_cgroup_from_root(from, root); 68 spin_unlock_irq(&css_set_lock); 69 70 retval = cgroup_attach_task(from_cgrp, tsk, false); 71 if (retval) 72 break; 73 } 74 percpu_up_write(&cgroup_threadgroup_rwsem); 75 mutex_unlock(&cgroup_mutex); 76 77 return retval; 78 } 79 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 80 81 /** 82 * cgroup_transfer_tasks - move tasks from one cgroup to another 83 * @to: cgroup to which the tasks will be moved 84 * @from: cgroup in which the tasks currently reside 85 * 86 * Locking rules between cgroup_post_fork() and the migration path 87 * guarantee that, if a task is forking while being migrated, the new child 88 * is guaranteed to be either visible in the source cgroup after the 89 * parent's migration is complete or put into the target cgroup. No task 90 * can slip out of migration through forking. 91 * 92 * Return: %0 on success or a negative errno code on failure 93 */ 94 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 95 { 96 DEFINE_CGROUP_MGCTX(mgctx); 97 struct cgrp_cset_link *link; 98 struct css_task_iter it; 99 struct task_struct *task; 100 int ret; 101 102 if (cgroup_on_dfl(to)) 103 return -EINVAL; 104 105 ret = cgroup_migrate_vet_dst(to); 106 if (ret) 107 return ret; 108 109 mutex_lock(&cgroup_mutex); 110 111 percpu_down_write(&cgroup_threadgroup_rwsem); 112 113 /* all tasks in @from are being moved, all csets are source */ 114 spin_lock_irq(&css_set_lock); 115 list_for_each_entry(link, &from->cset_links, cset_link) 116 cgroup_migrate_add_src(link->cset, to, &mgctx); 117 spin_unlock_irq(&css_set_lock); 118 119 ret = cgroup_migrate_prepare_dst(&mgctx); 120 if (ret) 121 goto out_err; 122 123 /* 124 * Migrate tasks one-by-one until @from is empty. This fails iff 125 * ->can_attach() fails. 126 */ 127 do { 128 css_task_iter_start(&from->self, 0, &it); 129 130 do { 131 task = css_task_iter_next(&it); 132 } while (task && (task->flags & PF_EXITING)); 133 134 if (task) 135 get_task_struct(task); 136 css_task_iter_end(&it); 137 138 if (task) { 139 ret = cgroup_migrate(task, false, &mgctx); 140 if (!ret) 141 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 142 put_task_struct(task); 143 } 144 } while (task && !ret); 145 out_err: 146 cgroup_migrate_finish(&mgctx); 147 percpu_up_write(&cgroup_threadgroup_rwsem); 148 mutex_unlock(&cgroup_mutex); 149 return ret; 150 } 151 152 /* 153 * Stuff for reading the 'tasks'/'procs' files. 154 * 155 * Reading this file can return large amounts of data if a cgroup has 156 * *lots* of attached tasks. So it may need several calls to read(), 157 * but we cannot guarantee that the information we produce is correct 158 * unless we produce it entirely atomically. 159 * 160 */ 161 162 /* which pidlist file are we talking about? */ 163 enum cgroup_filetype { 164 CGROUP_FILE_PROCS, 165 CGROUP_FILE_TASKS, 166 }; 167 168 /* 169 * A pidlist is a list of pids that virtually represents the contents of one 170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 171 * a pair (one each for procs, tasks) for each pid namespace that's relevant 172 * to the cgroup. 173 */ 174 struct cgroup_pidlist { 175 /* 176 * used to find which pidlist is wanted. doesn't change as long as 177 * this particular list stays in the list. 178 */ 179 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 180 /* array of xids */ 181 pid_t *list; 182 /* how many elements the above list has */ 183 int length; 184 /* each of these stored in a list by its cgroup */ 185 struct list_head links; 186 /* pointer to the cgroup we belong to, for list removal purposes */ 187 struct cgroup *owner; 188 /* for delayed destruction */ 189 struct delayed_work destroy_dwork; 190 }; 191 192 /* 193 * Used to destroy all pidlists lingering waiting for destroy timer. None 194 * should be left afterwards. 195 */ 196 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 197 { 198 struct cgroup_pidlist *l, *tmp_l; 199 200 mutex_lock(&cgrp->pidlist_mutex); 201 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 202 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 203 mutex_unlock(&cgrp->pidlist_mutex); 204 205 flush_workqueue(cgroup_pidlist_destroy_wq); 206 BUG_ON(!list_empty(&cgrp->pidlists)); 207 } 208 209 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 210 { 211 struct delayed_work *dwork = to_delayed_work(work); 212 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 213 destroy_dwork); 214 struct cgroup_pidlist *tofree = NULL; 215 216 mutex_lock(&l->owner->pidlist_mutex); 217 218 /* 219 * Destroy iff we didn't get queued again. The state won't change 220 * as destroy_dwork can only be queued while locked. 221 */ 222 if (!delayed_work_pending(dwork)) { 223 list_del(&l->links); 224 kvfree(l->list); 225 put_pid_ns(l->key.ns); 226 tofree = l; 227 } 228 229 mutex_unlock(&l->owner->pidlist_mutex); 230 kfree(tofree); 231 } 232 233 /* 234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 235 * Returns the number of unique elements. 236 */ 237 static int pidlist_uniq(pid_t *list, int length) 238 { 239 int src, dest = 1; 240 241 /* 242 * we presume the 0th element is unique, so i starts at 1. trivial 243 * edge cases first; no work needs to be done for either 244 */ 245 if (length == 0 || length == 1) 246 return length; 247 /* src and dest walk down the list; dest counts unique elements */ 248 for (src = 1; src < length; src++) { 249 /* find next unique element */ 250 while (list[src] == list[src-1]) { 251 src++; 252 if (src == length) 253 goto after; 254 } 255 /* dest always points to where the next unique element goes */ 256 list[dest] = list[src]; 257 dest++; 258 } 259 after: 260 return dest; 261 } 262 263 /* 264 * The two pid files - task and cgroup.procs - guaranteed that the result 265 * is sorted, which forced this whole pidlist fiasco. As pid order is 266 * different per namespace, each namespace needs differently sorted list, 267 * making it impossible to use, for example, single rbtree of member tasks 268 * sorted by task pointer. As pidlists can be fairly large, allocating one 269 * per open file is dangerous, so cgroup had to implement shared pool of 270 * pidlists keyed by cgroup and namespace. 271 */ 272 static int cmppid(const void *a, const void *b) 273 { 274 return *(pid_t *)a - *(pid_t *)b; 275 } 276 277 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 278 enum cgroup_filetype type) 279 { 280 struct cgroup_pidlist *l; 281 /* don't need task_nsproxy() if we're looking at ourself */ 282 struct pid_namespace *ns = task_active_pid_ns(current); 283 284 lockdep_assert_held(&cgrp->pidlist_mutex); 285 286 list_for_each_entry(l, &cgrp->pidlists, links) 287 if (l->key.type == type && l->key.ns == ns) 288 return l; 289 return NULL; 290 } 291 292 /* 293 * find the appropriate pidlist for our purpose (given procs vs tasks) 294 * returns with the lock on that pidlist already held, and takes care 295 * of the use count, or returns NULL with no locks held if we're out of 296 * memory. 297 */ 298 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 299 enum cgroup_filetype type) 300 { 301 struct cgroup_pidlist *l; 302 303 lockdep_assert_held(&cgrp->pidlist_mutex); 304 305 l = cgroup_pidlist_find(cgrp, type); 306 if (l) 307 return l; 308 309 /* entry not found; create a new one */ 310 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 311 if (!l) 312 return l; 313 314 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 315 l->key.type = type; 316 /* don't need task_nsproxy() if we're looking at ourself */ 317 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 318 l->owner = cgrp; 319 list_add(&l->links, &cgrp->pidlists); 320 return l; 321 } 322 323 /* 324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 325 */ 326 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 327 struct cgroup_pidlist **lp) 328 { 329 pid_t *array; 330 int length; 331 int pid, n = 0; /* used for populating the array */ 332 struct css_task_iter it; 333 struct task_struct *tsk; 334 struct cgroup_pidlist *l; 335 336 lockdep_assert_held(&cgrp->pidlist_mutex); 337 338 /* 339 * If cgroup gets more users after we read count, we won't have 340 * enough space - tough. This race is indistinguishable to the 341 * caller from the case that the additional cgroup users didn't 342 * show up until sometime later on. 343 */ 344 length = cgroup_task_count(cgrp); 345 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 346 if (!array) 347 return -ENOMEM; 348 /* now, populate the array */ 349 css_task_iter_start(&cgrp->self, 0, &it); 350 while ((tsk = css_task_iter_next(&it))) { 351 if (unlikely(n == length)) 352 break; 353 /* get tgid or pid for procs or tasks file respectively */ 354 if (type == CGROUP_FILE_PROCS) 355 pid = task_tgid_vnr(tsk); 356 else 357 pid = task_pid_vnr(tsk); 358 if (pid > 0) /* make sure to only use valid results */ 359 array[n++] = pid; 360 } 361 css_task_iter_end(&it); 362 length = n; 363 /* now sort & (if procs) strip out duplicates */ 364 sort(array, length, sizeof(pid_t), cmppid, NULL); 365 if (type == CGROUP_FILE_PROCS) 366 length = pidlist_uniq(array, length); 367 368 l = cgroup_pidlist_find_create(cgrp, type); 369 if (!l) { 370 kvfree(array); 371 return -ENOMEM; 372 } 373 374 /* store array, freeing old if necessary */ 375 kvfree(l->list); 376 l->list = array; 377 l->length = length; 378 *lp = l; 379 return 0; 380 } 381 382 /* 383 * seq_file methods for the tasks/procs files. The seq_file position is the 384 * next pid to display; the seq_file iterator is a pointer to the pid 385 * in the cgroup->l->list array. 386 */ 387 388 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 389 { 390 /* 391 * Initially we receive a position value that corresponds to 392 * one more than the last pid shown (or 0 on the first call or 393 * after a seek to the start). Use a binary-search to find the 394 * next pid to display, if any 395 */ 396 struct kernfs_open_file *of = s->private; 397 struct cgroup_file_ctx *ctx = of->priv; 398 struct cgroup *cgrp = seq_css(s)->cgroup; 399 struct cgroup_pidlist *l; 400 enum cgroup_filetype type = seq_cft(s)->private; 401 int index = 0, pid = *pos; 402 int *iter, ret; 403 404 mutex_lock(&cgrp->pidlist_mutex); 405 406 /* 407 * !NULL @ctx->procs1.pidlist indicates that this isn't the first 408 * start() after open. If the matching pidlist is around, we can use 409 * that. Look for it. Note that @ctx->procs1.pidlist can't be used 410 * directly. It could already have been destroyed. 411 */ 412 if (ctx->procs1.pidlist) 413 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); 414 415 /* 416 * Either this is the first start() after open or the matching 417 * pidlist has been destroyed inbetween. Create a new one. 418 */ 419 if (!ctx->procs1.pidlist) { 420 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); 421 if (ret) 422 return ERR_PTR(ret); 423 } 424 l = ctx->procs1.pidlist; 425 426 if (pid) { 427 int end = l->length; 428 429 while (index < end) { 430 int mid = (index + end) / 2; 431 if (l->list[mid] == pid) { 432 index = mid; 433 break; 434 } else if (l->list[mid] <= pid) 435 index = mid + 1; 436 else 437 end = mid; 438 } 439 } 440 /* If we're off the end of the array, we're done */ 441 if (index >= l->length) 442 return NULL; 443 /* Update the abstract position to be the actual pid that we found */ 444 iter = l->list + index; 445 *pos = *iter; 446 return iter; 447 } 448 449 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 450 { 451 struct kernfs_open_file *of = s->private; 452 struct cgroup_file_ctx *ctx = of->priv; 453 struct cgroup_pidlist *l = ctx->procs1.pidlist; 454 455 if (l) 456 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 457 CGROUP_PIDLIST_DESTROY_DELAY); 458 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 459 } 460 461 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 462 { 463 struct kernfs_open_file *of = s->private; 464 struct cgroup_file_ctx *ctx = of->priv; 465 struct cgroup_pidlist *l = ctx->procs1.pidlist; 466 pid_t *p = v; 467 pid_t *end = l->list + l->length; 468 /* 469 * Advance to the next pid in the array. If this goes off the 470 * end, we're done 471 */ 472 p++; 473 if (p >= end) { 474 (*pos)++; 475 return NULL; 476 } else { 477 *pos = *p; 478 return p; 479 } 480 } 481 482 static int cgroup_pidlist_show(struct seq_file *s, void *v) 483 { 484 seq_printf(s, "%d\n", *(int *)v); 485 486 return 0; 487 } 488 489 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 490 char *buf, size_t nbytes, loff_t off, 491 bool threadgroup) 492 { 493 struct cgroup *cgrp; 494 struct task_struct *task; 495 const struct cred *cred, *tcred; 496 ssize_t ret; 497 bool locked; 498 499 cgrp = cgroup_kn_lock_live(of->kn, false); 500 if (!cgrp) 501 return -ENODEV; 502 503 task = cgroup_procs_write_start(buf, threadgroup, &locked); 504 ret = PTR_ERR_OR_ZERO(task); 505 if (ret) 506 goto out_unlock; 507 508 /* 509 * Even if we're attaching all tasks in the thread group, we only need 510 * to check permissions on one of them. Check permissions using the 511 * credentials from file open to protect against inherited fd attacks. 512 */ 513 cred = of->file->f_cred; 514 tcred = get_task_cred(task); 515 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 516 !uid_eq(cred->euid, tcred->uid) && 517 !uid_eq(cred->euid, tcred->suid)) 518 ret = -EACCES; 519 put_cred(tcred); 520 if (ret) 521 goto out_finish; 522 523 ret = cgroup_attach_task(cgrp, task, threadgroup); 524 525 out_finish: 526 cgroup_procs_write_finish(task, locked); 527 out_unlock: 528 cgroup_kn_unlock(of->kn); 529 530 return ret ?: nbytes; 531 } 532 533 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 534 char *buf, size_t nbytes, loff_t off) 535 { 536 return __cgroup1_procs_write(of, buf, nbytes, off, true); 537 } 538 539 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 540 char *buf, size_t nbytes, loff_t off) 541 { 542 return __cgroup1_procs_write(of, buf, nbytes, off, false); 543 } 544 545 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 546 char *buf, size_t nbytes, loff_t off) 547 { 548 struct cgroup *cgrp; 549 struct cgroup_file_ctx *ctx; 550 551 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 552 553 /* 554 * Release agent gets called with all capabilities, 555 * require capabilities to set release agent. 556 */ 557 ctx = of->priv; 558 if ((ctx->ns->user_ns != &init_user_ns) || 559 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN)) 560 return -EPERM; 561 562 cgrp = cgroup_kn_lock_live(of->kn, false); 563 if (!cgrp) 564 return -ENODEV; 565 spin_lock(&release_agent_path_lock); 566 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 567 sizeof(cgrp->root->release_agent_path)); 568 spin_unlock(&release_agent_path_lock); 569 cgroup_kn_unlock(of->kn); 570 return nbytes; 571 } 572 573 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 574 { 575 struct cgroup *cgrp = seq_css(seq)->cgroup; 576 577 spin_lock(&release_agent_path_lock); 578 seq_puts(seq, cgrp->root->release_agent_path); 579 spin_unlock(&release_agent_path_lock); 580 seq_putc(seq, '\n'); 581 return 0; 582 } 583 584 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 585 { 586 seq_puts(seq, "0\n"); 587 return 0; 588 } 589 590 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 591 struct cftype *cft) 592 { 593 return notify_on_release(css->cgroup); 594 } 595 596 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 597 struct cftype *cft, u64 val) 598 { 599 if (val) 600 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 601 else 602 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 603 return 0; 604 } 605 606 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 607 struct cftype *cft) 608 { 609 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 610 } 611 612 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 613 struct cftype *cft, u64 val) 614 { 615 if (val) 616 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 617 else 618 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 619 return 0; 620 } 621 622 /* cgroup core interface files for the legacy hierarchies */ 623 struct cftype cgroup1_base_files[] = { 624 { 625 .name = "cgroup.procs", 626 .seq_start = cgroup_pidlist_start, 627 .seq_next = cgroup_pidlist_next, 628 .seq_stop = cgroup_pidlist_stop, 629 .seq_show = cgroup_pidlist_show, 630 .private = CGROUP_FILE_PROCS, 631 .write = cgroup1_procs_write, 632 }, 633 { 634 .name = "cgroup.clone_children", 635 .read_u64 = cgroup_clone_children_read, 636 .write_u64 = cgroup_clone_children_write, 637 }, 638 { 639 .name = "cgroup.sane_behavior", 640 .flags = CFTYPE_ONLY_ON_ROOT, 641 .seq_show = cgroup_sane_behavior_show, 642 }, 643 { 644 .name = "tasks", 645 .seq_start = cgroup_pidlist_start, 646 .seq_next = cgroup_pidlist_next, 647 .seq_stop = cgroup_pidlist_stop, 648 .seq_show = cgroup_pidlist_show, 649 .private = CGROUP_FILE_TASKS, 650 .write = cgroup1_tasks_write, 651 }, 652 { 653 .name = "notify_on_release", 654 .read_u64 = cgroup_read_notify_on_release, 655 .write_u64 = cgroup_write_notify_on_release, 656 }, 657 { 658 .name = "release_agent", 659 .flags = CFTYPE_ONLY_ON_ROOT, 660 .seq_show = cgroup_release_agent_show, 661 .write = cgroup_release_agent_write, 662 .max_write_len = PATH_MAX - 1, 663 }, 664 { } /* terminate */ 665 }; 666 667 /* Display information about each subsystem and each hierarchy */ 668 int proc_cgroupstats_show(struct seq_file *m, void *v) 669 { 670 struct cgroup_subsys *ss; 671 int i; 672 673 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 674 /* 675 * Grab the subsystems state racily. No need to add avenue to 676 * cgroup_mutex contention. 677 */ 678 679 for_each_subsys(ss, i) 680 seq_printf(m, "%s\t%d\t%d\t%d\n", 681 ss->legacy_name, ss->root->hierarchy_id, 682 atomic_read(&ss->root->nr_cgrps), 683 cgroup_ssid_enabled(i)); 684 685 return 0; 686 } 687 688 /** 689 * cgroupstats_build - build and fill cgroupstats 690 * @stats: cgroupstats to fill information into 691 * @dentry: A dentry entry belonging to the cgroup for which stats have 692 * been requested. 693 * 694 * Build and fill cgroupstats so that taskstats can export it to user 695 * space. 696 * 697 * Return: %0 on success or a negative errno code on failure 698 */ 699 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 700 { 701 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 702 struct cgroup *cgrp; 703 struct css_task_iter it; 704 struct task_struct *tsk; 705 706 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 707 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 708 kernfs_type(kn) != KERNFS_DIR) 709 return -EINVAL; 710 711 /* 712 * We aren't being called from kernfs and there's no guarantee on 713 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 714 * @kn->priv is RCU safe. Let's do the RCU dancing. 715 */ 716 rcu_read_lock(); 717 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 718 if (!cgrp || !cgroup_tryget(cgrp)) { 719 rcu_read_unlock(); 720 return -ENOENT; 721 } 722 rcu_read_unlock(); 723 724 css_task_iter_start(&cgrp->self, 0, &it); 725 while ((tsk = css_task_iter_next(&it))) { 726 switch (READ_ONCE(tsk->__state)) { 727 case TASK_RUNNING: 728 stats->nr_running++; 729 break; 730 case TASK_INTERRUPTIBLE: 731 stats->nr_sleeping++; 732 break; 733 case TASK_UNINTERRUPTIBLE: 734 stats->nr_uninterruptible++; 735 break; 736 case TASK_STOPPED: 737 stats->nr_stopped++; 738 break; 739 default: 740 if (tsk->in_iowait) 741 stats->nr_io_wait++; 742 break; 743 } 744 } 745 css_task_iter_end(&it); 746 747 cgroup_put(cgrp); 748 return 0; 749 } 750 751 void cgroup1_check_for_release(struct cgroup *cgrp) 752 { 753 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 754 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 755 schedule_work(&cgrp->release_agent_work); 756 } 757 758 /* 759 * Notify userspace when a cgroup is released, by running the 760 * configured release agent with the name of the cgroup (path 761 * relative to the root of cgroup file system) as the argument. 762 * 763 * Most likely, this user command will try to rmdir this cgroup. 764 * 765 * This races with the possibility that some other task will be 766 * attached to this cgroup before it is removed, or that some other 767 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 768 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 769 * unused, and this cgroup will be reprieved from its death sentence, 770 * to continue to serve a useful existence. Next time it's released, 771 * we will get notified again, if it still has 'notify_on_release' set. 772 * 773 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 774 * means only wait until the task is successfully execve()'d. The 775 * separate release agent task is forked by call_usermodehelper(), 776 * then control in this thread returns here, without waiting for the 777 * release agent task. We don't bother to wait because the caller of 778 * this routine has no use for the exit status of the release agent 779 * task, so no sense holding our caller up for that. 780 */ 781 void cgroup1_release_agent(struct work_struct *work) 782 { 783 struct cgroup *cgrp = 784 container_of(work, struct cgroup, release_agent_work); 785 char *pathbuf, *agentbuf; 786 char *argv[3], *envp[3]; 787 int ret; 788 789 /* snoop agent path and exit early if empty */ 790 if (!cgrp->root->release_agent_path[0]) 791 return; 792 793 /* prepare argument buffers */ 794 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 795 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); 796 if (!pathbuf || !agentbuf) 797 goto out_free; 798 799 spin_lock(&release_agent_path_lock); 800 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); 801 spin_unlock(&release_agent_path_lock); 802 if (!agentbuf[0]) 803 goto out_free; 804 805 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 806 if (ret < 0 || ret >= PATH_MAX) 807 goto out_free; 808 809 argv[0] = agentbuf; 810 argv[1] = pathbuf; 811 argv[2] = NULL; 812 813 /* minimal command environment */ 814 envp[0] = "HOME=/"; 815 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 816 envp[2] = NULL; 817 818 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 819 out_free: 820 kfree(agentbuf); 821 kfree(pathbuf); 822 } 823 824 /* 825 * cgroup_rename - Only allow simple rename of directories in place. 826 */ 827 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 828 const char *new_name_str) 829 { 830 struct cgroup *cgrp = kn->priv; 831 int ret; 832 833 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 834 if (strchr(new_name_str, '\n')) 835 return -EINVAL; 836 837 if (kernfs_type(kn) != KERNFS_DIR) 838 return -ENOTDIR; 839 if (kn->parent != new_parent) 840 return -EIO; 841 842 /* 843 * We're gonna grab cgroup_mutex which nests outside kernfs 844 * active_ref. kernfs_rename() doesn't require active_ref 845 * protection. Break them before grabbing cgroup_mutex. 846 */ 847 kernfs_break_active_protection(new_parent); 848 kernfs_break_active_protection(kn); 849 850 mutex_lock(&cgroup_mutex); 851 852 ret = kernfs_rename(kn, new_parent, new_name_str); 853 if (!ret) 854 TRACE_CGROUP_PATH(rename, cgrp); 855 856 mutex_unlock(&cgroup_mutex); 857 858 kernfs_unbreak_active_protection(kn); 859 kernfs_unbreak_active_protection(new_parent); 860 return ret; 861 } 862 863 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 864 { 865 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 866 struct cgroup_subsys *ss; 867 int ssid; 868 869 for_each_subsys(ss, ssid) 870 if (root->subsys_mask & (1 << ssid)) 871 seq_show_option(seq, ss->legacy_name, NULL); 872 if (root->flags & CGRP_ROOT_NOPREFIX) 873 seq_puts(seq, ",noprefix"); 874 if (root->flags & CGRP_ROOT_XATTR) 875 seq_puts(seq, ",xattr"); 876 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 877 seq_puts(seq, ",cpuset_v2_mode"); 878 879 spin_lock(&release_agent_path_lock); 880 if (strlen(root->release_agent_path)) 881 seq_show_option(seq, "release_agent", 882 root->release_agent_path); 883 spin_unlock(&release_agent_path_lock); 884 885 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 886 seq_puts(seq, ",clone_children"); 887 if (strlen(root->name)) 888 seq_show_option(seq, "name", root->name); 889 return 0; 890 } 891 892 enum cgroup1_param { 893 Opt_all, 894 Opt_clone_children, 895 Opt_cpuset_v2_mode, 896 Opt_name, 897 Opt_none, 898 Opt_noprefix, 899 Opt_release_agent, 900 Opt_xattr, 901 }; 902 903 const struct fs_parameter_spec cgroup1_fs_parameters[] = { 904 fsparam_flag ("all", Opt_all), 905 fsparam_flag ("clone_children", Opt_clone_children), 906 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 907 fsparam_string("name", Opt_name), 908 fsparam_flag ("none", Opt_none), 909 fsparam_flag ("noprefix", Opt_noprefix), 910 fsparam_string("release_agent", Opt_release_agent), 911 fsparam_flag ("xattr", Opt_xattr), 912 {} 913 }; 914 915 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 916 { 917 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 918 struct cgroup_subsys *ss; 919 struct fs_parse_result result; 920 int opt, i; 921 922 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 923 if (opt == -ENOPARAM) { 924 int ret; 925 926 ret = vfs_parse_fs_param_source(fc, param); 927 if (ret != -ENOPARAM) 928 return ret; 929 for_each_subsys(ss, i) { 930 if (strcmp(param->key, ss->legacy_name)) 931 continue; 932 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) 933 return invalfc(fc, "Disabled controller '%s'", 934 param->key); 935 ctx->subsys_mask |= (1 << i); 936 return 0; 937 } 938 return invalfc(fc, "Unknown subsys name '%s'", param->key); 939 } 940 if (opt < 0) 941 return opt; 942 943 switch (opt) { 944 case Opt_none: 945 /* Explicitly have no subsystems */ 946 ctx->none = true; 947 break; 948 case Opt_all: 949 ctx->all_ss = true; 950 break; 951 case Opt_noprefix: 952 ctx->flags |= CGRP_ROOT_NOPREFIX; 953 break; 954 case Opt_clone_children: 955 ctx->cpuset_clone_children = true; 956 break; 957 case Opt_cpuset_v2_mode: 958 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 959 break; 960 case Opt_xattr: 961 ctx->flags |= CGRP_ROOT_XATTR; 962 break; 963 case Opt_release_agent: 964 /* Specifying two release agents is forbidden */ 965 if (ctx->release_agent) 966 return invalfc(fc, "release_agent respecified"); 967 /* 968 * Release agent gets called with all capabilities, 969 * require capabilities to set release agent. 970 */ 971 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) 972 return invalfc(fc, "Setting release_agent not allowed"); 973 ctx->release_agent = param->string; 974 param->string = NULL; 975 break; 976 case Opt_name: 977 /* blocked by boot param? */ 978 if (cgroup_no_v1_named) 979 return -ENOENT; 980 /* Can't specify an empty name */ 981 if (!param->size) 982 return invalfc(fc, "Empty name"); 983 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 984 return invalfc(fc, "Name too long"); 985 /* Must match [\w.-]+ */ 986 for (i = 0; i < param->size; i++) { 987 char c = param->string[i]; 988 if (isalnum(c)) 989 continue; 990 if ((c == '.') || (c == '-') || (c == '_')) 991 continue; 992 return invalfc(fc, "Invalid name"); 993 } 994 /* Specifying two names is forbidden */ 995 if (ctx->name) 996 return invalfc(fc, "name respecified"); 997 ctx->name = param->string; 998 param->string = NULL; 999 break; 1000 } 1001 return 0; 1002 } 1003 1004 static int check_cgroupfs_options(struct fs_context *fc) 1005 { 1006 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1007 u16 mask = U16_MAX; 1008 u16 enabled = 0; 1009 struct cgroup_subsys *ss; 1010 int i; 1011 1012 #ifdef CONFIG_CPUSETS 1013 mask = ~((u16)1 << cpuset_cgrp_id); 1014 #endif 1015 for_each_subsys(ss, i) 1016 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 1017 enabled |= 1 << i; 1018 1019 ctx->subsys_mask &= enabled; 1020 1021 /* 1022 * In absence of 'none', 'name=' and subsystem name options, 1023 * let's default to 'all'. 1024 */ 1025 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1026 ctx->all_ss = true; 1027 1028 if (ctx->all_ss) { 1029 /* Mutually exclusive option 'all' + subsystem name */ 1030 if (ctx->subsys_mask) 1031 return invalfc(fc, "subsys name conflicts with all"); 1032 /* 'all' => select all the subsystems */ 1033 ctx->subsys_mask = enabled; 1034 } 1035 1036 /* 1037 * We either have to specify by name or by subsystems. (So all 1038 * empty hierarchies must have a name). 1039 */ 1040 if (!ctx->subsys_mask && !ctx->name) 1041 return invalfc(fc, "Need name or subsystem set"); 1042 1043 /* 1044 * Option noprefix was introduced just for backward compatibility 1045 * with the old cpuset, so we allow noprefix only if mounting just 1046 * the cpuset subsystem. 1047 */ 1048 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1049 return invalfc(fc, "noprefix used incorrectly"); 1050 1051 /* Can't specify "none" and some subsystems */ 1052 if (ctx->subsys_mask && ctx->none) 1053 return invalfc(fc, "none used incorrectly"); 1054 1055 return 0; 1056 } 1057 1058 int cgroup1_reconfigure(struct fs_context *fc) 1059 { 1060 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1061 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1062 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1063 int ret = 0; 1064 u16 added_mask, removed_mask; 1065 1066 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1067 1068 /* See what subsystems are wanted */ 1069 ret = check_cgroupfs_options(fc); 1070 if (ret) 1071 goto out_unlock; 1072 1073 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1074 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1075 task_tgid_nr(current), current->comm); 1076 1077 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1078 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1079 1080 /* Don't allow flags or name to change at remount */ 1081 if ((ctx->flags ^ root->flags) || 1082 (ctx->name && strcmp(ctx->name, root->name))) { 1083 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1084 ctx->flags, ctx->name ?: "", root->flags, root->name); 1085 ret = -EINVAL; 1086 goto out_unlock; 1087 } 1088 1089 /* remounting is not allowed for populated hierarchies */ 1090 if (!list_empty(&root->cgrp.self.children)) { 1091 ret = -EBUSY; 1092 goto out_unlock; 1093 } 1094 1095 ret = rebind_subsystems(root, added_mask); 1096 if (ret) 1097 goto out_unlock; 1098 1099 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1100 1101 if (ctx->release_agent) { 1102 spin_lock(&release_agent_path_lock); 1103 strcpy(root->release_agent_path, ctx->release_agent); 1104 spin_unlock(&release_agent_path_lock); 1105 } 1106 1107 trace_cgroup_remount(root); 1108 1109 out_unlock: 1110 mutex_unlock(&cgroup_mutex); 1111 return ret; 1112 } 1113 1114 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1115 .rename = cgroup1_rename, 1116 .show_options = cgroup1_show_options, 1117 .mkdir = cgroup_mkdir, 1118 .rmdir = cgroup_rmdir, 1119 .show_path = cgroup_show_path, 1120 }; 1121 1122 /* 1123 * The guts of cgroup1 mount - find or create cgroup_root to use. 1124 * Called with cgroup_mutex held; returns 0 on success, -E... on 1125 * error and positive - in case when the candidate is busy dying. 1126 * On success it stashes a reference to cgroup_root into given 1127 * cgroup_fs_context; that reference is *NOT* counting towards the 1128 * cgroup_root refcount. 1129 */ 1130 static int cgroup1_root_to_use(struct fs_context *fc) 1131 { 1132 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1133 struct cgroup_root *root; 1134 struct cgroup_subsys *ss; 1135 int i, ret; 1136 1137 /* First find the desired set of subsystems */ 1138 ret = check_cgroupfs_options(fc); 1139 if (ret) 1140 return ret; 1141 1142 /* 1143 * Destruction of cgroup root is asynchronous, so subsystems may 1144 * still be dying after the previous unmount. Let's drain the 1145 * dying subsystems. We just need to ensure that the ones 1146 * unmounted previously finish dying and don't care about new ones 1147 * starting. Testing ref liveliness is good enough. 1148 */ 1149 for_each_subsys(ss, i) { 1150 if (!(ctx->subsys_mask & (1 << i)) || 1151 ss->root == &cgrp_dfl_root) 1152 continue; 1153 1154 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1155 return 1; /* restart */ 1156 cgroup_put(&ss->root->cgrp); 1157 } 1158 1159 for_each_root(root) { 1160 bool name_match = false; 1161 1162 if (root == &cgrp_dfl_root) 1163 continue; 1164 1165 /* 1166 * If we asked for a name then it must match. Also, if 1167 * name matches but sybsys_mask doesn't, we should fail. 1168 * Remember whether name matched. 1169 */ 1170 if (ctx->name) { 1171 if (strcmp(ctx->name, root->name)) 1172 continue; 1173 name_match = true; 1174 } 1175 1176 /* 1177 * If we asked for subsystems (or explicitly for no 1178 * subsystems) then they must match. 1179 */ 1180 if ((ctx->subsys_mask || ctx->none) && 1181 (ctx->subsys_mask != root->subsys_mask)) { 1182 if (!name_match) 1183 continue; 1184 return -EBUSY; 1185 } 1186 1187 if (root->flags ^ ctx->flags) 1188 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1189 1190 ctx->root = root; 1191 return 0; 1192 } 1193 1194 /* 1195 * No such thing, create a new one. name= matching without subsys 1196 * specification is allowed for already existing hierarchies but we 1197 * can't create new one without subsys specification. 1198 */ 1199 if (!ctx->subsys_mask && !ctx->none) 1200 return invalfc(fc, "No subsys list or none specified"); 1201 1202 /* Hierarchies may only be created in the initial cgroup namespace. */ 1203 if (ctx->ns != &init_cgroup_ns) 1204 return -EPERM; 1205 1206 root = kzalloc(sizeof(*root), GFP_KERNEL); 1207 if (!root) 1208 return -ENOMEM; 1209 1210 ctx->root = root; 1211 init_cgroup_root(ctx); 1212 1213 ret = cgroup_setup_root(root, ctx->subsys_mask); 1214 if (ret) 1215 cgroup_free_root(root); 1216 return ret; 1217 } 1218 1219 int cgroup1_get_tree(struct fs_context *fc) 1220 { 1221 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1222 int ret; 1223 1224 /* Check if the caller has permission to mount. */ 1225 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1226 return -EPERM; 1227 1228 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1229 1230 ret = cgroup1_root_to_use(fc); 1231 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1232 ret = 1; /* restart */ 1233 1234 mutex_unlock(&cgroup_mutex); 1235 1236 if (!ret) 1237 ret = cgroup_do_get_tree(fc); 1238 1239 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1240 fc_drop_locked(fc); 1241 ret = 1; 1242 } 1243 1244 if (unlikely(ret > 0)) { 1245 msleep(10); 1246 return restart_syscall(); 1247 } 1248 return ret; 1249 } 1250 1251 static int __init cgroup1_wq_init(void) 1252 { 1253 /* 1254 * Used to destroy pidlists and separate to serve as flush domain. 1255 * Cap @max_active to 1 too. 1256 */ 1257 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1258 0, 1); 1259 BUG_ON(!cgroup_pidlist_destroy_wq); 1260 return 0; 1261 } 1262 core_initcall(cgroup1_wq_init); 1263 1264 static int __init cgroup_no_v1(char *str) 1265 { 1266 struct cgroup_subsys *ss; 1267 char *token; 1268 int i; 1269 1270 while ((token = strsep(&str, ",")) != NULL) { 1271 if (!*token) 1272 continue; 1273 1274 if (!strcmp(token, "all")) { 1275 cgroup_no_v1_mask = U16_MAX; 1276 continue; 1277 } 1278 1279 if (!strcmp(token, "named")) { 1280 cgroup_no_v1_named = true; 1281 continue; 1282 } 1283 1284 for_each_subsys(ss, i) { 1285 if (strcmp(token, ss->name) && 1286 strcmp(token, ss->legacy_name)) 1287 continue; 1288 1289 cgroup_no_v1_mask |= 1 << i; 1290 } 1291 } 1292 return 1; 1293 } 1294 __setup("cgroup_no_v1=", cgroup_no_v1); 1295