1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 #define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__) 22 23 /* 24 * pidlists linger the following amount before being destroyed. The goal 25 * is avoiding frequent destruction in the middle of consecutive read calls 26 * Expiring in the middle is a performance problem not a correctness one. 27 * 1 sec should be enough. 28 */ 29 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 30 31 /* Controllers blocked by the commandline in v1 */ 32 static u16 cgroup_no_v1_mask; 33 34 /* disable named v1 mounts */ 35 static bool cgroup_no_v1_named; 36 37 /* 38 * pidlist destructions need to be flushed on cgroup destruction. Use a 39 * separate workqueue as flush domain. 40 */ 41 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 42 43 /* 44 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 45 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 46 */ 47 static DEFINE_SPINLOCK(release_agent_path_lock); 48 49 bool cgroup1_ssid_disabled(int ssid) 50 { 51 return cgroup_no_v1_mask & (1 << ssid); 52 } 53 54 /** 55 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 56 * @from: attach to all cgroups of a given task 57 * @tsk: the task to be attached 58 */ 59 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 60 { 61 struct cgroup_root *root; 62 int retval = 0; 63 64 mutex_lock(&cgroup_mutex); 65 percpu_down_write(&cgroup_threadgroup_rwsem); 66 for_each_root(root) { 67 struct cgroup *from_cgrp; 68 69 if (root == &cgrp_dfl_root) 70 continue; 71 72 spin_lock_irq(&css_set_lock); 73 from_cgrp = task_cgroup_from_root(from, root); 74 spin_unlock_irq(&css_set_lock); 75 76 retval = cgroup_attach_task(from_cgrp, tsk, false); 77 if (retval) 78 break; 79 } 80 percpu_up_write(&cgroup_threadgroup_rwsem); 81 mutex_unlock(&cgroup_mutex); 82 83 return retval; 84 } 85 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 86 87 /** 88 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 89 * @to: cgroup to which the tasks will be moved 90 * @from: cgroup in which the tasks currently reside 91 * 92 * Locking rules between cgroup_post_fork() and the migration path 93 * guarantee that, if a task is forking while being migrated, the new child 94 * is guaranteed to be either visible in the source cgroup after the 95 * parent's migration is complete or put into the target cgroup. No task 96 * can slip out of migration through forking. 97 */ 98 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 99 { 100 DEFINE_CGROUP_MGCTX(mgctx); 101 struct cgrp_cset_link *link; 102 struct css_task_iter it; 103 struct task_struct *task; 104 int ret; 105 106 if (cgroup_on_dfl(to)) 107 return -EINVAL; 108 109 ret = cgroup_migrate_vet_dst(to); 110 if (ret) 111 return ret; 112 113 mutex_lock(&cgroup_mutex); 114 115 percpu_down_write(&cgroup_threadgroup_rwsem); 116 117 /* all tasks in @from are being moved, all csets are source */ 118 spin_lock_irq(&css_set_lock); 119 list_for_each_entry(link, &from->cset_links, cset_link) 120 cgroup_migrate_add_src(link->cset, to, &mgctx); 121 spin_unlock_irq(&css_set_lock); 122 123 ret = cgroup_migrate_prepare_dst(&mgctx); 124 if (ret) 125 goto out_err; 126 127 /* 128 * Migrate tasks one-by-one until @from is empty. This fails iff 129 * ->can_attach() fails. 130 */ 131 do { 132 css_task_iter_start(&from->self, 0, &it); 133 134 do { 135 task = css_task_iter_next(&it); 136 } while (task && (task->flags & PF_EXITING)); 137 138 if (task) 139 get_task_struct(task); 140 css_task_iter_end(&it); 141 142 if (task) { 143 ret = cgroup_migrate(task, false, &mgctx); 144 if (!ret) 145 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 146 put_task_struct(task); 147 } 148 } while (task && !ret); 149 out_err: 150 cgroup_migrate_finish(&mgctx); 151 percpu_up_write(&cgroup_threadgroup_rwsem); 152 mutex_unlock(&cgroup_mutex); 153 return ret; 154 } 155 156 /* 157 * Stuff for reading the 'tasks'/'procs' files. 158 * 159 * Reading this file can return large amounts of data if a cgroup has 160 * *lots* of attached tasks. So it may need several calls to read(), 161 * but we cannot guarantee that the information we produce is correct 162 * unless we produce it entirely atomically. 163 * 164 */ 165 166 /* which pidlist file are we talking about? */ 167 enum cgroup_filetype { 168 CGROUP_FILE_PROCS, 169 CGROUP_FILE_TASKS, 170 }; 171 172 /* 173 * A pidlist is a list of pids that virtually represents the contents of one 174 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 175 * a pair (one each for procs, tasks) for each pid namespace that's relevant 176 * to the cgroup. 177 */ 178 struct cgroup_pidlist { 179 /* 180 * used to find which pidlist is wanted. doesn't change as long as 181 * this particular list stays in the list. 182 */ 183 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 184 /* array of xids */ 185 pid_t *list; 186 /* how many elements the above list has */ 187 int length; 188 /* each of these stored in a list by its cgroup */ 189 struct list_head links; 190 /* pointer to the cgroup we belong to, for list removal purposes */ 191 struct cgroup *owner; 192 /* for delayed destruction */ 193 struct delayed_work destroy_dwork; 194 }; 195 196 /* 197 * Used to destroy all pidlists lingering waiting for destroy timer. None 198 * should be left afterwards. 199 */ 200 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 201 { 202 struct cgroup_pidlist *l, *tmp_l; 203 204 mutex_lock(&cgrp->pidlist_mutex); 205 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 206 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 207 mutex_unlock(&cgrp->pidlist_mutex); 208 209 flush_workqueue(cgroup_pidlist_destroy_wq); 210 BUG_ON(!list_empty(&cgrp->pidlists)); 211 } 212 213 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 214 { 215 struct delayed_work *dwork = to_delayed_work(work); 216 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 217 destroy_dwork); 218 struct cgroup_pidlist *tofree = NULL; 219 220 mutex_lock(&l->owner->pidlist_mutex); 221 222 /* 223 * Destroy iff we didn't get queued again. The state won't change 224 * as destroy_dwork can only be queued while locked. 225 */ 226 if (!delayed_work_pending(dwork)) { 227 list_del(&l->links); 228 kvfree(l->list); 229 put_pid_ns(l->key.ns); 230 tofree = l; 231 } 232 233 mutex_unlock(&l->owner->pidlist_mutex); 234 kfree(tofree); 235 } 236 237 /* 238 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 239 * Returns the number of unique elements. 240 */ 241 static int pidlist_uniq(pid_t *list, int length) 242 { 243 int src, dest = 1; 244 245 /* 246 * we presume the 0th element is unique, so i starts at 1. trivial 247 * edge cases first; no work needs to be done for either 248 */ 249 if (length == 0 || length == 1) 250 return length; 251 /* src and dest walk down the list; dest counts unique elements */ 252 for (src = 1; src < length; src++) { 253 /* find next unique element */ 254 while (list[src] == list[src-1]) { 255 src++; 256 if (src == length) 257 goto after; 258 } 259 /* dest always points to where the next unique element goes */ 260 list[dest] = list[src]; 261 dest++; 262 } 263 after: 264 return dest; 265 } 266 267 /* 268 * The two pid files - task and cgroup.procs - guaranteed that the result 269 * is sorted, which forced this whole pidlist fiasco. As pid order is 270 * different per namespace, each namespace needs differently sorted list, 271 * making it impossible to use, for example, single rbtree of member tasks 272 * sorted by task pointer. As pidlists can be fairly large, allocating one 273 * per open file is dangerous, so cgroup had to implement shared pool of 274 * pidlists keyed by cgroup and namespace. 275 */ 276 static int cmppid(const void *a, const void *b) 277 { 278 return *(pid_t *)a - *(pid_t *)b; 279 } 280 281 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 282 enum cgroup_filetype type) 283 { 284 struct cgroup_pidlist *l; 285 /* don't need task_nsproxy() if we're looking at ourself */ 286 struct pid_namespace *ns = task_active_pid_ns(current); 287 288 lockdep_assert_held(&cgrp->pidlist_mutex); 289 290 list_for_each_entry(l, &cgrp->pidlists, links) 291 if (l->key.type == type && l->key.ns == ns) 292 return l; 293 return NULL; 294 } 295 296 /* 297 * find the appropriate pidlist for our purpose (given procs vs tasks) 298 * returns with the lock on that pidlist already held, and takes care 299 * of the use count, or returns NULL with no locks held if we're out of 300 * memory. 301 */ 302 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 303 enum cgroup_filetype type) 304 { 305 struct cgroup_pidlist *l; 306 307 lockdep_assert_held(&cgrp->pidlist_mutex); 308 309 l = cgroup_pidlist_find(cgrp, type); 310 if (l) 311 return l; 312 313 /* entry not found; create a new one */ 314 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 315 if (!l) 316 return l; 317 318 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 319 l->key.type = type; 320 /* don't need task_nsproxy() if we're looking at ourself */ 321 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 322 l->owner = cgrp; 323 list_add(&l->links, &cgrp->pidlists); 324 return l; 325 } 326 327 /* 328 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 329 */ 330 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 331 struct cgroup_pidlist **lp) 332 { 333 pid_t *array; 334 int length; 335 int pid, n = 0; /* used for populating the array */ 336 struct css_task_iter it; 337 struct task_struct *tsk; 338 struct cgroup_pidlist *l; 339 340 lockdep_assert_held(&cgrp->pidlist_mutex); 341 342 /* 343 * If cgroup gets more users after we read count, we won't have 344 * enough space - tough. This race is indistinguishable to the 345 * caller from the case that the additional cgroup users didn't 346 * show up until sometime later on. 347 */ 348 length = cgroup_task_count(cgrp); 349 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 350 if (!array) 351 return -ENOMEM; 352 /* now, populate the array */ 353 css_task_iter_start(&cgrp->self, 0, &it); 354 while ((tsk = css_task_iter_next(&it))) { 355 if (unlikely(n == length)) 356 break; 357 /* get tgid or pid for procs or tasks file respectively */ 358 if (type == CGROUP_FILE_PROCS) 359 pid = task_tgid_vnr(tsk); 360 else 361 pid = task_pid_vnr(tsk); 362 if (pid > 0) /* make sure to only use valid results */ 363 array[n++] = pid; 364 } 365 css_task_iter_end(&it); 366 length = n; 367 /* now sort & (if procs) strip out duplicates */ 368 sort(array, length, sizeof(pid_t), cmppid, NULL); 369 if (type == CGROUP_FILE_PROCS) 370 length = pidlist_uniq(array, length); 371 372 l = cgroup_pidlist_find_create(cgrp, type); 373 if (!l) { 374 kvfree(array); 375 return -ENOMEM; 376 } 377 378 /* store array, freeing old if necessary */ 379 kvfree(l->list); 380 l->list = array; 381 l->length = length; 382 *lp = l; 383 return 0; 384 } 385 386 /* 387 * seq_file methods for the tasks/procs files. The seq_file position is the 388 * next pid to display; the seq_file iterator is a pointer to the pid 389 * in the cgroup->l->list array. 390 */ 391 392 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 393 { 394 /* 395 * Initially we receive a position value that corresponds to 396 * one more than the last pid shown (or 0 on the first call or 397 * after a seek to the start). Use a binary-search to find the 398 * next pid to display, if any 399 */ 400 struct kernfs_open_file *of = s->private; 401 struct cgroup *cgrp = seq_css(s)->cgroup; 402 struct cgroup_pidlist *l; 403 enum cgroup_filetype type = seq_cft(s)->private; 404 int index = 0, pid = *pos; 405 int *iter, ret; 406 407 mutex_lock(&cgrp->pidlist_mutex); 408 409 /* 410 * !NULL @of->priv indicates that this isn't the first start() 411 * after open. If the matching pidlist is around, we can use that. 412 * Look for it. Note that @of->priv can't be used directly. It 413 * could already have been destroyed. 414 */ 415 if (of->priv) 416 of->priv = cgroup_pidlist_find(cgrp, type); 417 418 /* 419 * Either this is the first start() after open or the matching 420 * pidlist has been destroyed inbetween. Create a new one. 421 */ 422 if (!of->priv) { 423 ret = pidlist_array_load(cgrp, type, 424 (struct cgroup_pidlist **)&of->priv); 425 if (ret) 426 return ERR_PTR(ret); 427 } 428 l = of->priv; 429 430 if (pid) { 431 int end = l->length; 432 433 while (index < end) { 434 int mid = (index + end) / 2; 435 if (l->list[mid] == pid) { 436 index = mid; 437 break; 438 } else if (l->list[mid] <= pid) 439 index = mid + 1; 440 else 441 end = mid; 442 } 443 } 444 /* If we're off the end of the array, we're done */ 445 if (index >= l->length) 446 return NULL; 447 /* Update the abstract position to be the actual pid that we found */ 448 iter = l->list + index; 449 *pos = *iter; 450 return iter; 451 } 452 453 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 454 { 455 struct kernfs_open_file *of = s->private; 456 struct cgroup_pidlist *l = of->priv; 457 458 if (l) 459 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 460 CGROUP_PIDLIST_DESTROY_DELAY); 461 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 462 } 463 464 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 465 { 466 struct kernfs_open_file *of = s->private; 467 struct cgroup_pidlist *l = of->priv; 468 pid_t *p = v; 469 pid_t *end = l->list + l->length; 470 /* 471 * Advance to the next pid in the array. If this goes off the 472 * end, we're done 473 */ 474 p++; 475 if (p >= end) { 476 return NULL; 477 } else { 478 *pos = *p; 479 return p; 480 } 481 } 482 483 static int cgroup_pidlist_show(struct seq_file *s, void *v) 484 { 485 seq_printf(s, "%d\n", *(int *)v); 486 487 return 0; 488 } 489 490 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 491 char *buf, size_t nbytes, loff_t off, 492 bool threadgroup) 493 { 494 struct cgroup *cgrp; 495 struct task_struct *task; 496 const struct cred *cred, *tcred; 497 ssize_t ret; 498 bool locked; 499 500 cgrp = cgroup_kn_lock_live(of->kn, false); 501 if (!cgrp) 502 return -ENODEV; 503 504 task = cgroup_procs_write_start(buf, threadgroup, &locked); 505 ret = PTR_ERR_OR_ZERO(task); 506 if (ret) 507 goto out_unlock; 508 509 /* 510 * Even if we're attaching all tasks in the thread group, we only 511 * need to check permissions on one of them. 512 */ 513 cred = current_cred(); 514 tcred = get_task_cred(task); 515 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 516 !uid_eq(cred->euid, tcred->uid) && 517 !uid_eq(cred->euid, tcred->suid)) 518 ret = -EACCES; 519 put_cred(tcred); 520 if (ret) 521 goto out_finish; 522 523 ret = cgroup_attach_task(cgrp, task, threadgroup); 524 525 out_finish: 526 cgroup_procs_write_finish(task, locked); 527 out_unlock: 528 cgroup_kn_unlock(of->kn); 529 530 return ret ?: nbytes; 531 } 532 533 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 534 char *buf, size_t nbytes, loff_t off) 535 { 536 return __cgroup1_procs_write(of, buf, nbytes, off, true); 537 } 538 539 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 540 char *buf, size_t nbytes, loff_t off) 541 { 542 return __cgroup1_procs_write(of, buf, nbytes, off, false); 543 } 544 545 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 546 char *buf, size_t nbytes, loff_t off) 547 { 548 struct cgroup *cgrp; 549 550 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 551 552 cgrp = cgroup_kn_lock_live(of->kn, false); 553 if (!cgrp) 554 return -ENODEV; 555 spin_lock(&release_agent_path_lock); 556 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 557 sizeof(cgrp->root->release_agent_path)); 558 spin_unlock(&release_agent_path_lock); 559 cgroup_kn_unlock(of->kn); 560 return nbytes; 561 } 562 563 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 564 { 565 struct cgroup *cgrp = seq_css(seq)->cgroup; 566 567 spin_lock(&release_agent_path_lock); 568 seq_puts(seq, cgrp->root->release_agent_path); 569 spin_unlock(&release_agent_path_lock); 570 seq_putc(seq, '\n'); 571 return 0; 572 } 573 574 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 575 { 576 seq_puts(seq, "0\n"); 577 return 0; 578 } 579 580 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 581 struct cftype *cft) 582 { 583 return notify_on_release(css->cgroup); 584 } 585 586 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 587 struct cftype *cft, u64 val) 588 { 589 if (val) 590 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 591 else 592 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 593 return 0; 594 } 595 596 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 597 struct cftype *cft) 598 { 599 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 600 } 601 602 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 603 struct cftype *cft, u64 val) 604 { 605 if (val) 606 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 607 else 608 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 609 return 0; 610 } 611 612 /* cgroup core interface files for the legacy hierarchies */ 613 struct cftype cgroup1_base_files[] = { 614 { 615 .name = "cgroup.procs", 616 .seq_start = cgroup_pidlist_start, 617 .seq_next = cgroup_pidlist_next, 618 .seq_stop = cgroup_pidlist_stop, 619 .seq_show = cgroup_pidlist_show, 620 .private = CGROUP_FILE_PROCS, 621 .write = cgroup1_procs_write, 622 }, 623 { 624 .name = "cgroup.clone_children", 625 .read_u64 = cgroup_clone_children_read, 626 .write_u64 = cgroup_clone_children_write, 627 }, 628 { 629 .name = "cgroup.sane_behavior", 630 .flags = CFTYPE_ONLY_ON_ROOT, 631 .seq_show = cgroup_sane_behavior_show, 632 }, 633 { 634 .name = "tasks", 635 .seq_start = cgroup_pidlist_start, 636 .seq_next = cgroup_pidlist_next, 637 .seq_stop = cgroup_pidlist_stop, 638 .seq_show = cgroup_pidlist_show, 639 .private = CGROUP_FILE_TASKS, 640 .write = cgroup1_tasks_write, 641 }, 642 { 643 .name = "notify_on_release", 644 .read_u64 = cgroup_read_notify_on_release, 645 .write_u64 = cgroup_write_notify_on_release, 646 }, 647 { 648 .name = "release_agent", 649 .flags = CFTYPE_ONLY_ON_ROOT, 650 .seq_show = cgroup_release_agent_show, 651 .write = cgroup_release_agent_write, 652 .max_write_len = PATH_MAX - 1, 653 }, 654 { } /* terminate */ 655 }; 656 657 /* Display information about each subsystem and each hierarchy */ 658 int proc_cgroupstats_show(struct seq_file *m, void *v) 659 { 660 struct cgroup_subsys *ss; 661 int i; 662 663 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 664 /* 665 * ideally we don't want subsystems moving around while we do this. 666 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 667 * subsys/hierarchy state. 668 */ 669 mutex_lock(&cgroup_mutex); 670 671 for_each_subsys(ss, i) 672 seq_printf(m, "%s\t%d\t%d\t%d\n", 673 ss->legacy_name, ss->root->hierarchy_id, 674 atomic_read(&ss->root->nr_cgrps), 675 cgroup_ssid_enabled(i)); 676 677 mutex_unlock(&cgroup_mutex); 678 return 0; 679 } 680 681 /** 682 * cgroupstats_build - build and fill cgroupstats 683 * @stats: cgroupstats to fill information into 684 * @dentry: A dentry entry belonging to the cgroup for which stats have 685 * been requested. 686 * 687 * Build and fill cgroupstats so that taskstats can export it to user 688 * space. 689 */ 690 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 691 { 692 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 693 struct cgroup *cgrp; 694 struct css_task_iter it; 695 struct task_struct *tsk; 696 697 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 698 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 699 kernfs_type(kn) != KERNFS_DIR) 700 return -EINVAL; 701 702 mutex_lock(&cgroup_mutex); 703 704 /* 705 * We aren't being called from kernfs and there's no guarantee on 706 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 707 * @kn->priv is RCU safe. Let's do the RCU dancing. 708 */ 709 rcu_read_lock(); 710 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 711 if (!cgrp || cgroup_is_dead(cgrp)) { 712 rcu_read_unlock(); 713 mutex_unlock(&cgroup_mutex); 714 return -ENOENT; 715 } 716 rcu_read_unlock(); 717 718 css_task_iter_start(&cgrp->self, 0, &it); 719 while ((tsk = css_task_iter_next(&it))) { 720 switch (tsk->state) { 721 case TASK_RUNNING: 722 stats->nr_running++; 723 break; 724 case TASK_INTERRUPTIBLE: 725 stats->nr_sleeping++; 726 break; 727 case TASK_UNINTERRUPTIBLE: 728 stats->nr_uninterruptible++; 729 break; 730 case TASK_STOPPED: 731 stats->nr_stopped++; 732 break; 733 default: 734 if (delayacct_is_task_waiting_on_io(tsk)) 735 stats->nr_io_wait++; 736 break; 737 } 738 } 739 css_task_iter_end(&it); 740 741 mutex_unlock(&cgroup_mutex); 742 return 0; 743 } 744 745 void cgroup1_check_for_release(struct cgroup *cgrp) 746 { 747 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 748 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 749 schedule_work(&cgrp->release_agent_work); 750 } 751 752 /* 753 * Notify userspace when a cgroup is released, by running the 754 * configured release agent with the name of the cgroup (path 755 * relative to the root of cgroup file system) as the argument. 756 * 757 * Most likely, this user command will try to rmdir this cgroup. 758 * 759 * This races with the possibility that some other task will be 760 * attached to this cgroup before it is removed, or that some other 761 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 762 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 763 * unused, and this cgroup will be reprieved from its death sentence, 764 * to continue to serve a useful existence. Next time it's released, 765 * we will get notified again, if it still has 'notify_on_release' set. 766 * 767 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 768 * means only wait until the task is successfully execve()'d. The 769 * separate release agent task is forked by call_usermodehelper(), 770 * then control in this thread returns here, without waiting for the 771 * release agent task. We don't bother to wait because the caller of 772 * this routine has no use for the exit status of the release agent 773 * task, so no sense holding our caller up for that. 774 */ 775 void cgroup1_release_agent(struct work_struct *work) 776 { 777 struct cgroup *cgrp = 778 container_of(work, struct cgroup, release_agent_work); 779 char *pathbuf = NULL, *agentbuf = NULL; 780 char *argv[3], *envp[3]; 781 int ret; 782 783 mutex_lock(&cgroup_mutex); 784 785 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 786 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 787 if (!pathbuf || !agentbuf) 788 goto out; 789 790 spin_lock_irq(&css_set_lock); 791 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 792 spin_unlock_irq(&css_set_lock); 793 if (ret < 0 || ret >= PATH_MAX) 794 goto out; 795 796 argv[0] = agentbuf; 797 argv[1] = pathbuf; 798 argv[2] = NULL; 799 800 /* minimal command environment */ 801 envp[0] = "HOME=/"; 802 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 803 envp[2] = NULL; 804 805 mutex_unlock(&cgroup_mutex); 806 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 807 goto out_free; 808 out: 809 mutex_unlock(&cgroup_mutex); 810 out_free: 811 kfree(agentbuf); 812 kfree(pathbuf); 813 } 814 815 /* 816 * cgroup_rename - Only allow simple rename of directories in place. 817 */ 818 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 819 const char *new_name_str) 820 { 821 struct cgroup *cgrp = kn->priv; 822 int ret; 823 824 if (kernfs_type(kn) != KERNFS_DIR) 825 return -ENOTDIR; 826 if (kn->parent != new_parent) 827 return -EIO; 828 829 /* 830 * We're gonna grab cgroup_mutex which nests outside kernfs 831 * active_ref. kernfs_rename() doesn't require active_ref 832 * protection. Break them before grabbing cgroup_mutex. 833 */ 834 kernfs_break_active_protection(new_parent); 835 kernfs_break_active_protection(kn); 836 837 mutex_lock(&cgroup_mutex); 838 839 ret = kernfs_rename(kn, new_parent, new_name_str); 840 if (!ret) 841 TRACE_CGROUP_PATH(rename, cgrp); 842 843 mutex_unlock(&cgroup_mutex); 844 845 kernfs_unbreak_active_protection(kn); 846 kernfs_unbreak_active_protection(new_parent); 847 return ret; 848 } 849 850 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 851 { 852 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 853 struct cgroup_subsys *ss; 854 int ssid; 855 856 for_each_subsys(ss, ssid) 857 if (root->subsys_mask & (1 << ssid)) 858 seq_show_option(seq, ss->legacy_name, NULL); 859 if (root->flags & CGRP_ROOT_NOPREFIX) 860 seq_puts(seq, ",noprefix"); 861 if (root->flags & CGRP_ROOT_XATTR) 862 seq_puts(seq, ",xattr"); 863 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 864 seq_puts(seq, ",cpuset_v2_mode"); 865 866 spin_lock(&release_agent_path_lock); 867 if (strlen(root->release_agent_path)) 868 seq_show_option(seq, "release_agent", 869 root->release_agent_path); 870 spin_unlock(&release_agent_path_lock); 871 872 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 873 seq_puts(seq, ",clone_children"); 874 if (strlen(root->name)) 875 seq_show_option(seq, "name", root->name); 876 return 0; 877 } 878 879 enum cgroup1_param { 880 Opt_all, 881 Opt_clone_children, 882 Opt_cpuset_v2_mode, 883 Opt_name, 884 Opt_none, 885 Opt_noprefix, 886 Opt_release_agent, 887 Opt_xattr, 888 }; 889 890 static const struct fs_parameter_spec cgroup1_param_specs[] = { 891 fsparam_flag ("all", Opt_all), 892 fsparam_flag ("clone_children", Opt_clone_children), 893 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 894 fsparam_string("name", Opt_name), 895 fsparam_flag ("none", Opt_none), 896 fsparam_flag ("noprefix", Opt_noprefix), 897 fsparam_string("release_agent", Opt_release_agent), 898 fsparam_flag ("xattr", Opt_xattr), 899 {} 900 }; 901 902 const struct fs_parameter_description cgroup1_fs_parameters = { 903 .name = "cgroup1", 904 .specs = cgroup1_param_specs, 905 }; 906 907 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 908 { 909 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 910 struct cgroup_subsys *ss; 911 struct fs_parse_result result; 912 int opt, i; 913 914 opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result); 915 if (opt == -ENOPARAM) { 916 if (strcmp(param->key, "source") == 0) { 917 fc->source = param->string; 918 param->string = NULL; 919 return 0; 920 } 921 for_each_subsys(ss, i) { 922 if (strcmp(param->key, ss->legacy_name)) 923 continue; 924 ctx->subsys_mask |= (1 << i); 925 return 0; 926 } 927 return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key); 928 } 929 if (opt < 0) 930 return opt; 931 932 switch (opt) { 933 case Opt_none: 934 /* Explicitly have no subsystems */ 935 ctx->none = true; 936 break; 937 case Opt_all: 938 ctx->all_ss = true; 939 break; 940 case Opt_noprefix: 941 ctx->flags |= CGRP_ROOT_NOPREFIX; 942 break; 943 case Opt_clone_children: 944 ctx->cpuset_clone_children = true; 945 break; 946 case Opt_cpuset_v2_mode: 947 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 948 break; 949 case Opt_xattr: 950 ctx->flags |= CGRP_ROOT_XATTR; 951 break; 952 case Opt_release_agent: 953 /* Specifying two release agents is forbidden */ 954 if (ctx->release_agent) 955 return cg_invalf(fc, "cgroup1: release_agent respecified"); 956 ctx->release_agent = param->string; 957 param->string = NULL; 958 break; 959 case Opt_name: 960 /* blocked by boot param? */ 961 if (cgroup_no_v1_named) 962 return -ENOENT; 963 /* Can't specify an empty name */ 964 if (!param->size) 965 return cg_invalf(fc, "cgroup1: Empty name"); 966 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 967 return cg_invalf(fc, "cgroup1: Name too long"); 968 /* Must match [\w.-]+ */ 969 for (i = 0; i < param->size; i++) { 970 char c = param->string[i]; 971 if (isalnum(c)) 972 continue; 973 if ((c == '.') || (c == '-') || (c == '_')) 974 continue; 975 return cg_invalf(fc, "cgroup1: Invalid name"); 976 } 977 /* Specifying two names is forbidden */ 978 if (ctx->name) 979 return cg_invalf(fc, "cgroup1: name respecified"); 980 ctx->name = param->string; 981 param->string = NULL; 982 break; 983 } 984 return 0; 985 } 986 987 static int check_cgroupfs_options(struct fs_context *fc) 988 { 989 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 990 u16 mask = U16_MAX; 991 u16 enabled = 0; 992 struct cgroup_subsys *ss; 993 int i; 994 995 #ifdef CONFIG_CPUSETS 996 mask = ~((u16)1 << cpuset_cgrp_id); 997 #endif 998 for_each_subsys(ss, i) 999 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 1000 enabled |= 1 << i; 1001 1002 ctx->subsys_mask &= enabled; 1003 1004 /* 1005 * In absense of 'none', 'name=' or subsystem name options, 1006 * let's default to 'all'. 1007 */ 1008 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1009 ctx->all_ss = true; 1010 1011 if (ctx->all_ss) { 1012 /* Mutually exclusive option 'all' + subsystem name */ 1013 if (ctx->subsys_mask) 1014 return cg_invalf(fc, "cgroup1: subsys name conflicts with all"); 1015 /* 'all' => select all the subsystems */ 1016 ctx->subsys_mask = enabled; 1017 } 1018 1019 /* 1020 * We either have to specify by name or by subsystems. (So all 1021 * empty hierarchies must have a name). 1022 */ 1023 if (!ctx->subsys_mask && !ctx->name) 1024 return cg_invalf(fc, "cgroup1: Need name or subsystem set"); 1025 1026 /* 1027 * Option noprefix was introduced just for backward compatibility 1028 * with the old cpuset, so we allow noprefix only if mounting just 1029 * the cpuset subsystem. 1030 */ 1031 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1032 return cg_invalf(fc, "cgroup1: noprefix used incorrectly"); 1033 1034 /* Can't specify "none" and some subsystems */ 1035 if (ctx->subsys_mask && ctx->none) 1036 return cg_invalf(fc, "cgroup1: none used incorrectly"); 1037 1038 return 0; 1039 } 1040 1041 int cgroup1_reconfigure(struct fs_context *fc) 1042 { 1043 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1044 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1045 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1046 int ret = 0; 1047 u16 added_mask, removed_mask; 1048 1049 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1050 1051 /* See what subsystems are wanted */ 1052 ret = check_cgroupfs_options(fc); 1053 if (ret) 1054 goto out_unlock; 1055 1056 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1057 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1058 task_tgid_nr(current), current->comm); 1059 1060 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1061 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1062 1063 /* Don't allow flags or name to change at remount */ 1064 if ((ctx->flags ^ root->flags) || 1065 (ctx->name && strcmp(ctx->name, root->name))) { 1066 cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1067 ctx->flags, ctx->name ?: "", root->flags, root->name); 1068 ret = -EINVAL; 1069 goto out_unlock; 1070 } 1071 1072 /* remounting is not allowed for populated hierarchies */ 1073 if (!list_empty(&root->cgrp.self.children)) { 1074 ret = -EBUSY; 1075 goto out_unlock; 1076 } 1077 1078 ret = rebind_subsystems(root, added_mask); 1079 if (ret) 1080 goto out_unlock; 1081 1082 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1083 1084 if (ctx->release_agent) { 1085 spin_lock(&release_agent_path_lock); 1086 strcpy(root->release_agent_path, ctx->release_agent); 1087 spin_unlock(&release_agent_path_lock); 1088 } 1089 1090 trace_cgroup_remount(root); 1091 1092 out_unlock: 1093 mutex_unlock(&cgroup_mutex); 1094 return ret; 1095 } 1096 1097 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1098 .rename = cgroup1_rename, 1099 .show_options = cgroup1_show_options, 1100 .mkdir = cgroup_mkdir, 1101 .rmdir = cgroup_rmdir, 1102 .show_path = cgroup_show_path, 1103 }; 1104 1105 /* 1106 * The guts of cgroup1 mount - find or create cgroup_root to use. 1107 * Called with cgroup_mutex held; returns 0 on success, -E... on 1108 * error and positive - in case when the candidate is busy dying. 1109 * On success it stashes a reference to cgroup_root into given 1110 * cgroup_fs_context; that reference is *NOT* counting towards the 1111 * cgroup_root refcount. 1112 */ 1113 static int cgroup1_root_to_use(struct fs_context *fc) 1114 { 1115 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1116 struct cgroup_root *root; 1117 struct cgroup_subsys *ss; 1118 int i, ret; 1119 1120 /* First find the desired set of subsystems */ 1121 ret = check_cgroupfs_options(fc); 1122 if (ret) 1123 return ret; 1124 1125 /* 1126 * Destruction of cgroup root is asynchronous, so subsystems may 1127 * still be dying after the previous unmount. Let's drain the 1128 * dying subsystems. We just need to ensure that the ones 1129 * unmounted previously finish dying and don't care about new ones 1130 * starting. Testing ref liveliness is good enough. 1131 */ 1132 for_each_subsys(ss, i) { 1133 if (!(ctx->subsys_mask & (1 << i)) || 1134 ss->root == &cgrp_dfl_root) 1135 continue; 1136 1137 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1138 return 1; /* restart */ 1139 cgroup_put(&ss->root->cgrp); 1140 } 1141 1142 for_each_root(root) { 1143 bool name_match = false; 1144 1145 if (root == &cgrp_dfl_root) 1146 continue; 1147 1148 /* 1149 * If we asked for a name then it must match. Also, if 1150 * name matches but sybsys_mask doesn't, we should fail. 1151 * Remember whether name matched. 1152 */ 1153 if (ctx->name) { 1154 if (strcmp(ctx->name, root->name)) 1155 continue; 1156 name_match = true; 1157 } 1158 1159 /* 1160 * If we asked for subsystems (or explicitly for no 1161 * subsystems) then they must match. 1162 */ 1163 if ((ctx->subsys_mask || ctx->none) && 1164 (ctx->subsys_mask != root->subsys_mask)) { 1165 if (!name_match) 1166 continue; 1167 return -EBUSY; 1168 } 1169 1170 if (root->flags ^ ctx->flags) 1171 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1172 1173 ctx->root = root; 1174 return 0; 1175 } 1176 1177 /* 1178 * No such thing, create a new one. name= matching without subsys 1179 * specification is allowed for already existing hierarchies but we 1180 * can't create new one without subsys specification. 1181 */ 1182 if (!ctx->subsys_mask && !ctx->none) 1183 return cg_invalf(fc, "cgroup1: No subsys list or none specified"); 1184 1185 /* Hierarchies may only be created in the initial cgroup namespace. */ 1186 if (ctx->ns != &init_cgroup_ns) 1187 return -EPERM; 1188 1189 root = kzalloc(sizeof(*root), GFP_KERNEL); 1190 if (!root) 1191 return -ENOMEM; 1192 1193 ctx->root = root; 1194 init_cgroup_root(ctx); 1195 1196 ret = cgroup_setup_root(root, ctx->subsys_mask); 1197 if (ret) 1198 cgroup_free_root(root); 1199 return ret; 1200 } 1201 1202 int cgroup1_get_tree(struct fs_context *fc) 1203 { 1204 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1205 int ret; 1206 1207 /* Check if the caller has permission to mount. */ 1208 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1209 return -EPERM; 1210 1211 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1212 1213 ret = cgroup1_root_to_use(fc); 1214 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1215 ret = 1; /* restart */ 1216 1217 mutex_unlock(&cgroup_mutex); 1218 1219 if (!ret) 1220 ret = cgroup_do_get_tree(fc); 1221 1222 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1223 struct super_block *sb = fc->root->d_sb; 1224 dput(fc->root); 1225 deactivate_locked_super(sb); 1226 ret = 1; 1227 } 1228 1229 if (unlikely(ret > 0)) { 1230 msleep(10); 1231 return restart_syscall(); 1232 } 1233 return ret; 1234 } 1235 1236 static int __init cgroup1_wq_init(void) 1237 { 1238 /* 1239 * Used to destroy pidlists and separate to serve as flush domain. 1240 * Cap @max_active to 1 too. 1241 */ 1242 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1243 0, 1); 1244 BUG_ON(!cgroup_pidlist_destroy_wq); 1245 return 0; 1246 } 1247 core_initcall(cgroup1_wq_init); 1248 1249 static int __init cgroup_no_v1(char *str) 1250 { 1251 struct cgroup_subsys *ss; 1252 char *token; 1253 int i; 1254 1255 while ((token = strsep(&str, ",")) != NULL) { 1256 if (!*token) 1257 continue; 1258 1259 if (!strcmp(token, "all")) { 1260 cgroup_no_v1_mask = U16_MAX; 1261 continue; 1262 } 1263 1264 if (!strcmp(token, "named")) { 1265 cgroup_no_v1_named = true; 1266 continue; 1267 } 1268 1269 for_each_subsys(ss, i) { 1270 if (strcmp(token, ss->name) && 1271 strcmp(token, ss->legacy_name)) 1272 continue; 1273 1274 cgroup_no_v1_mask |= 1 << i; 1275 } 1276 } 1277 return 1; 1278 } 1279 __setup("cgroup_no_v1=", cgroup_no_v1); 1280