1 #include "cgroup-internal.h" 2 3 #include <linux/ctype.h> 4 #include <linux/kmod.h> 5 #include <linux/sort.h> 6 #include <linux/delay.h> 7 #include <linux/mm.h> 8 #include <linux/sched/signal.h> 9 #include <linux/sched/task.h> 10 #include <linux/magic.h> 11 #include <linux/slab.h> 12 #include <linux/vmalloc.h> 13 #include <linux/delayacct.h> 14 #include <linux/pid_namespace.h> 15 #include <linux/cgroupstats.h> 16 17 #include <trace/events/cgroup.h> 18 19 /* 20 * pidlists linger the following amount before being destroyed. The goal 21 * is avoiding frequent destruction in the middle of consecutive read calls 22 * Expiring in the middle is a performance problem not a correctness one. 23 * 1 sec should be enough. 24 */ 25 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 26 27 /* Controllers blocked by the commandline in v1 */ 28 static u16 cgroup_no_v1_mask; 29 30 /* 31 * pidlist destructions need to be flushed on cgroup destruction. Use a 32 * separate workqueue as flush domain. 33 */ 34 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 35 36 /* 37 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 38 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 39 */ 40 static DEFINE_SPINLOCK(release_agent_path_lock); 41 42 bool cgroup1_ssid_disabled(int ssid) 43 { 44 return cgroup_no_v1_mask & (1 << ssid); 45 } 46 47 /** 48 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 49 * @from: attach to all cgroups of a given task 50 * @tsk: the task to be attached 51 */ 52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 53 { 54 struct cgroup_root *root; 55 int retval = 0; 56 57 mutex_lock(&cgroup_mutex); 58 percpu_down_write(&cgroup_threadgroup_rwsem); 59 for_each_root(root) { 60 struct cgroup *from_cgrp; 61 62 if (root == &cgrp_dfl_root) 63 continue; 64 65 spin_lock_irq(&css_set_lock); 66 from_cgrp = task_cgroup_from_root(from, root); 67 spin_unlock_irq(&css_set_lock); 68 69 retval = cgroup_attach_task(from_cgrp, tsk, false); 70 if (retval) 71 break; 72 } 73 percpu_up_write(&cgroup_threadgroup_rwsem); 74 mutex_unlock(&cgroup_mutex); 75 76 return retval; 77 } 78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 79 80 /** 81 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 82 * @to: cgroup to which the tasks will be moved 83 * @from: cgroup in which the tasks currently reside 84 * 85 * Locking rules between cgroup_post_fork() and the migration path 86 * guarantee that, if a task is forking while being migrated, the new child 87 * is guaranteed to be either visible in the source cgroup after the 88 * parent's migration is complete or put into the target cgroup. No task 89 * can slip out of migration through forking. 90 */ 91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 92 { 93 DEFINE_CGROUP_MGCTX(mgctx); 94 struct cgrp_cset_link *link; 95 struct css_task_iter it; 96 struct task_struct *task; 97 int ret; 98 99 if (cgroup_on_dfl(to)) 100 return -EINVAL; 101 102 if (!cgroup_may_migrate_to(to)) 103 return -EBUSY; 104 105 mutex_lock(&cgroup_mutex); 106 107 percpu_down_write(&cgroup_threadgroup_rwsem); 108 109 /* all tasks in @from are being moved, all csets are source */ 110 spin_lock_irq(&css_set_lock); 111 list_for_each_entry(link, &from->cset_links, cset_link) 112 cgroup_migrate_add_src(link->cset, to, &mgctx); 113 spin_unlock_irq(&css_set_lock); 114 115 ret = cgroup_migrate_prepare_dst(&mgctx); 116 if (ret) 117 goto out_err; 118 119 /* 120 * Migrate tasks one-by-one until @from is empty. This fails iff 121 * ->can_attach() fails. 122 */ 123 do { 124 css_task_iter_start(&from->self, &it); 125 task = css_task_iter_next(&it); 126 if (task) 127 get_task_struct(task); 128 css_task_iter_end(&it); 129 130 if (task) { 131 ret = cgroup_migrate(task, false, &mgctx); 132 if (!ret) 133 trace_cgroup_transfer_tasks(to, task, false); 134 put_task_struct(task); 135 } 136 } while (task && !ret); 137 out_err: 138 cgroup_migrate_finish(&mgctx); 139 percpu_up_write(&cgroup_threadgroup_rwsem); 140 mutex_unlock(&cgroup_mutex); 141 return ret; 142 } 143 144 /* 145 * Stuff for reading the 'tasks'/'procs' files. 146 * 147 * Reading this file can return large amounts of data if a cgroup has 148 * *lots* of attached tasks. So it may need several calls to read(), 149 * but we cannot guarantee that the information we produce is correct 150 * unless we produce it entirely atomically. 151 * 152 */ 153 154 /* which pidlist file are we talking about? */ 155 enum cgroup_filetype { 156 CGROUP_FILE_PROCS, 157 CGROUP_FILE_TASKS, 158 }; 159 160 /* 161 * A pidlist is a list of pids that virtually represents the contents of one 162 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 163 * a pair (one each for procs, tasks) for each pid namespace that's relevant 164 * to the cgroup. 165 */ 166 struct cgroup_pidlist { 167 /* 168 * used to find which pidlist is wanted. doesn't change as long as 169 * this particular list stays in the list. 170 */ 171 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 172 /* array of xids */ 173 pid_t *list; 174 /* how many elements the above list has */ 175 int length; 176 /* each of these stored in a list by its cgroup */ 177 struct list_head links; 178 /* pointer to the cgroup we belong to, for list removal purposes */ 179 struct cgroup *owner; 180 /* for delayed destruction */ 181 struct delayed_work destroy_dwork; 182 }; 183 184 /* 185 * The following two functions "fix" the issue where there are more pids 186 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. 187 * TODO: replace with a kernel-wide solution to this problem 188 */ 189 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) 190 static void *pidlist_allocate(int count) 191 { 192 if (PIDLIST_TOO_LARGE(count)) 193 return vmalloc(count * sizeof(pid_t)); 194 else 195 return kmalloc(count * sizeof(pid_t), GFP_KERNEL); 196 } 197 198 static void pidlist_free(void *p) 199 { 200 kvfree(p); 201 } 202 203 /* 204 * Used to destroy all pidlists lingering waiting for destroy timer. None 205 * should be left afterwards. 206 */ 207 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 208 { 209 struct cgroup_pidlist *l, *tmp_l; 210 211 mutex_lock(&cgrp->pidlist_mutex); 212 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 213 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 214 mutex_unlock(&cgrp->pidlist_mutex); 215 216 flush_workqueue(cgroup_pidlist_destroy_wq); 217 BUG_ON(!list_empty(&cgrp->pidlists)); 218 } 219 220 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 221 { 222 struct delayed_work *dwork = to_delayed_work(work); 223 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 224 destroy_dwork); 225 struct cgroup_pidlist *tofree = NULL; 226 227 mutex_lock(&l->owner->pidlist_mutex); 228 229 /* 230 * Destroy iff we didn't get queued again. The state won't change 231 * as destroy_dwork can only be queued while locked. 232 */ 233 if (!delayed_work_pending(dwork)) { 234 list_del(&l->links); 235 pidlist_free(l->list); 236 put_pid_ns(l->key.ns); 237 tofree = l; 238 } 239 240 mutex_unlock(&l->owner->pidlist_mutex); 241 kfree(tofree); 242 } 243 244 /* 245 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 246 * Returns the number of unique elements. 247 */ 248 static int pidlist_uniq(pid_t *list, int length) 249 { 250 int src, dest = 1; 251 252 /* 253 * we presume the 0th element is unique, so i starts at 1. trivial 254 * edge cases first; no work needs to be done for either 255 */ 256 if (length == 0 || length == 1) 257 return length; 258 /* src and dest walk down the list; dest counts unique elements */ 259 for (src = 1; src < length; src++) { 260 /* find next unique element */ 261 while (list[src] == list[src-1]) { 262 src++; 263 if (src == length) 264 goto after; 265 } 266 /* dest always points to where the next unique element goes */ 267 list[dest] = list[src]; 268 dest++; 269 } 270 after: 271 return dest; 272 } 273 274 /* 275 * The two pid files - task and cgroup.procs - guaranteed that the result 276 * is sorted, which forced this whole pidlist fiasco. As pid order is 277 * different per namespace, each namespace needs differently sorted list, 278 * making it impossible to use, for example, single rbtree of member tasks 279 * sorted by task pointer. As pidlists can be fairly large, allocating one 280 * per open file is dangerous, so cgroup had to implement shared pool of 281 * pidlists keyed by cgroup and namespace. 282 */ 283 static int cmppid(const void *a, const void *b) 284 { 285 return *(pid_t *)a - *(pid_t *)b; 286 } 287 288 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 289 enum cgroup_filetype type) 290 { 291 struct cgroup_pidlist *l; 292 /* don't need task_nsproxy() if we're looking at ourself */ 293 struct pid_namespace *ns = task_active_pid_ns(current); 294 295 lockdep_assert_held(&cgrp->pidlist_mutex); 296 297 list_for_each_entry(l, &cgrp->pidlists, links) 298 if (l->key.type == type && l->key.ns == ns) 299 return l; 300 return NULL; 301 } 302 303 /* 304 * find the appropriate pidlist for our purpose (given procs vs tasks) 305 * returns with the lock on that pidlist already held, and takes care 306 * of the use count, or returns NULL with no locks held if we're out of 307 * memory. 308 */ 309 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 310 enum cgroup_filetype type) 311 { 312 struct cgroup_pidlist *l; 313 314 lockdep_assert_held(&cgrp->pidlist_mutex); 315 316 l = cgroup_pidlist_find(cgrp, type); 317 if (l) 318 return l; 319 320 /* entry not found; create a new one */ 321 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 322 if (!l) 323 return l; 324 325 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 326 l->key.type = type; 327 /* don't need task_nsproxy() if we're looking at ourself */ 328 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 329 l->owner = cgrp; 330 list_add(&l->links, &cgrp->pidlists); 331 return l; 332 } 333 334 /** 335 * cgroup_task_count - count the number of tasks in a cgroup. 336 * @cgrp: the cgroup in question 337 * 338 * Return the number of tasks in the cgroup. The returned number can be 339 * higher than the actual number of tasks due to css_set references from 340 * namespace roots and temporary usages. 341 */ 342 static int cgroup_task_count(const struct cgroup *cgrp) 343 { 344 int count = 0; 345 struct cgrp_cset_link *link; 346 347 spin_lock_irq(&css_set_lock); 348 list_for_each_entry(link, &cgrp->cset_links, cset_link) 349 count += refcount_read(&link->cset->refcount); 350 spin_unlock_irq(&css_set_lock); 351 return count; 352 } 353 354 /* 355 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 356 */ 357 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 358 struct cgroup_pidlist **lp) 359 { 360 pid_t *array; 361 int length; 362 int pid, n = 0; /* used for populating the array */ 363 struct css_task_iter it; 364 struct task_struct *tsk; 365 struct cgroup_pidlist *l; 366 367 lockdep_assert_held(&cgrp->pidlist_mutex); 368 369 /* 370 * If cgroup gets more users after we read count, we won't have 371 * enough space - tough. This race is indistinguishable to the 372 * caller from the case that the additional cgroup users didn't 373 * show up until sometime later on. 374 */ 375 length = cgroup_task_count(cgrp); 376 array = pidlist_allocate(length); 377 if (!array) 378 return -ENOMEM; 379 /* now, populate the array */ 380 css_task_iter_start(&cgrp->self, &it); 381 while ((tsk = css_task_iter_next(&it))) { 382 if (unlikely(n == length)) 383 break; 384 /* get tgid or pid for procs or tasks file respectively */ 385 if (type == CGROUP_FILE_PROCS) 386 pid = task_tgid_vnr(tsk); 387 else 388 pid = task_pid_vnr(tsk); 389 if (pid > 0) /* make sure to only use valid results */ 390 array[n++] = pid; 391 } 392 css_task_iter_end(&it); 393 length = n; 394 /* now sort & (if procs) strip out duplicates */ 395 sort(array, length, sizeof(pid_t), cmppid, NULL); 396 if (type == CGROUP_FILE_PROCS) 397 length = pidlist_uniq(array, length); 398 399 l = cgroup_pidlist_find_create(cgrp, type); 400 if (!l) { 401 pidlist_free(array); 402 return -ENOMEM; 403 } 404 405 /* store array, freeing old if necessary */ 406 pidlist_free(l->list); 407 l->list = array; 408 l->length = length; 409 *lp = l; 410 return 0; 411 } 412 413 /* 414 * seq_file methods for the tasks/procs files. The seq_file position is the 415 * next pid to display; the seq_file iterator is a pointer to the pid 416 * in the cgroup->l->list array. 417 */ 418 419 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 420 { 421 /* 422 * Initially we receive a position value that corresponds to 423 * one more than the last pid shown (or 0 on the first call or 424 * after a seek to the start). Use a binary-search to find the 425 * next pid to display, if any 426 */ 427 struct kernfs_open_file *of = s->private; 428 struct cgroup *cgrp = seq_css(s)->cgroup; 429 struct cgroup_pidlist *l; 430 enum cgroup_filetype type = seq_cft(s)->private; 431 int index = 0, pid = *pos; 432 int *iter, ret; 433 434 mutex_lock(&cgrp->pidlist_mutex); 435 436 /* 437 * !NULL @of->priv indicates that this isn't the first start() 438 * after open. If the matching pidlist is around, we can use that. 439 * Look for it. Note that @of->priv can't be used directly. It 440 * could already have been destroyed. 441 */ 442 if (of->priv) 443 of->priv = cgroup_pidlist_find(cgrp, type); 444 445 /* 446 * Either this is the first start() after open or the matching 447 * pidlist has been destroyed inbetween. Create a new one. 448 */ 449 if (!of->priv) { 450 ret = pidlist_array_load(cgrp, type, 451 (struct cgroup_pidlist **)&of->priv); 452 if (ret) 453 return ERR_PTR(ret); 454 } 455 l = of->priv; 456 457 if (pid) { 458 int end = l->length; 459 460 while (index < end) { 461 int mid = (index + end) / 2; 462 if (l->list[mid] == pid) { 463 index = mid; 464 break; 465 } else if (l->list[mid] <= pid) 466 index = mid + 1; 467 else 468 end = mid; 469 } 470 } 471 /* If we're off the end of the array, we're done */ 472 if (index >= l->length) 473 return NULL; 474 /* Update the abstract position to be the actual pid that we found */ 475 iter = l->list + index; 476 *pos = *iter; 477 return iter; 478 } 479 480 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 481 { 482 struct kernfs_open_file *of = s->private; 483 struct cgroup_pidlist *l = of->priv; 484 485 if (l) 486 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 487 CGROUP_PIDLIST_DESTROY_DELAY); 488 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 489 } 490 491 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 492 { 493 struct kernfs_open_file *of = s->private; 494 struct cgroup_pidlist *l = of->priv; 495 pid_t *p = v; 496 pid_t *end = l->list + l->length; 497 /* 498 * Advance to the next pid in the array. If this goes off the 499 * end, we're done 500 */ 501 p++; 502 if (p >= end) { 503 return NULL; 504 } else { 505 *pos = *p; 506 return p; 507 } 508 } 509 510 static int cgroup_pidlist_show(struct seq_file *s, void *v) 511 { 512 seq_printf(s, "%d\n", *(int *)v); 513 514 return 0; 515 } 516 517 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, 518 char *buf, size_t nbytes, loff_t off) 519 { 520 return __cgroup_procs_write(of, buf, nbytes, off, false); 521 } 522 523 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 524 char *buf, size_t nbytes, loff_t off) 525 { 526 struct cgroup *cgrp; 527 528 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 529 530 cgrp = cgroup_kn_lock_live(of->kn, false); 531 if (!cgrp) 532 return -ENODEV; 533 spin_lock(&release_agent_path_lock); 534 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 535 sizeof(cgrp->root->release_agent_path)); 536 spin_unlock(&release_agent_path_lock); 537 cgroup_kn_unlock(of->kn); 538 return nbytes; 539 } 540 541 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 542 { 543 struct cgroup *cgrp = seq_css(seq)->cgroup; 544 545 spin_lock(&release_agent_path_lock); 546 seq_puts(seq, cgrp->root->release_agent_path); 547 spin_unlock(&release_agent_path_lock); 548 seq_putc(seq, '\n'); 549 return 0; 550 } 551 552 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 553 { 554 seq_puts(seq, "0\n"); 555 return 0; 556 } 557 558 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 559 struct cftype *cft) 560 { 561 return notify_on_release(css->cgroup); 562 } 563 564 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 565 struct cftype *cft, u64 val) 566 { 567 if (val) 568 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 569 else 570 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 571 return 0; 572 } 573 574 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 575 struct cftype *cft) 576 { 577 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 578 } 579 580 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 581 struct cftype *cft, u64 val) 582 { 583 if (val) 584 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 585 else 586 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 587 return 0; 588 } 589 590 /* cgroup core interface files for the legacy hierarchies */ 591 struct cftype cgroup1_base_files[] = { 592 { 593 .name = "cgroup.procs", 594 .seq_start = cgroup_pidlist_start, 595 .seq_next = cgroup_pidlist_next, 596 .seq_stop = cgroup_pidlist_stop, 597 .seq_show = cgroup_pidlist_show, 598 .private = CGROUP_FILE_PROCS, 599 .write = cgroup_procs_write, 600 }, 601 { 602 .name = "cgroup.clone_children", 603 .read_u64 = cgroup_clone_children_read, 604 .write_u64 = cgroup_clone_children_write, 605 }, 606 { 607 .name = "cgroup.sane_behavior", 608 .flags = CFTYPE_ONLY_ON_ROOT, 609 .seq_show = cgroup_sane_behavior_show, 610 }, 611 { 612 .name = "tasks", 613 .seq_start = cgroup_pidlist_start, 614 .seq_next = cgroup_pidlist_next, 615 .seq_stop = cgroup_pidlist_stop, 616 .seq_show = cgroup_pidlist_show, 617 .private = CGROUP_FILE_TASKS, 618 .write = cgroup_tasks_write, 619 }, 620 { 621 .name = "notify_on_release", 622 .read_u64 = cgroup_read_notify_on_release, 623 .write_u64 = cgroup_write_notify_on_release, 624 }, 625 { 626 .name = "release_agent", 627 .flags = CFTYPE_ONLY_ON_ROOT, 628 .seq_show = cgroup_release_agent_show, 629 .write = cgroup_release_agent_write, 630 .max_write_len = PATH_MAX - 1, 631 }, 632 { } /* terminate */ 633 }; 634 635 /* Display information about each subsystem and each hierarchy */ 636 static int proc_cgroupstats_show(struct seq_file *m, void *v) 637 { 638 struct cgroup_subsys *ss; 639 int i; 640 641 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 642 /* 643 * ideally we don't want subsystems moving around while we do this. 644 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 645 * subsys/hierarchy state. 646 */ 647 mutex_lock(&cgroup_mutex); 648 649 for_each_subsys(ss, i) 650 seq_printf(m, "%s\t%d\t%d\t%d\n", 651 ss->legacy_name, ss->root->hierarchy_id, 652 atomic_read(&ss->root->nr_cgrps), 653 cgroup_ssid_enabled(i)); 654 655 mutex_unlock(&cgroup_mutex); 656 return 0; 657 } 658 659 static int cgroupstats_open(struct inode *inode, struct file *file) 660 { 661 return single_open(file, proc_cgroupstats_show, NULL); 662 } 663 664 const struct file_operations proc_cgroupstats_operations = { 665 .open = cgroupstats_open, 666 .read = seq_read, 667 .llseek = seq_lseek, 668 .release = single_release, 669 }; 670 671 /** 672 * cgroupstats_build - build and fill cgroupstats 673 * @stats: cgroupstats to fill information into 674 * @dentry: A dentry entry belonging to the cgroup for which stats have 675 * been requested. 676 * 677 * Build and fill cgroupstats so that taskstats can export it to user 678 * space. 679 */ 680 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 681 { 682 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 683 struct cgroup *cgrp; 684 struct css_task_iter it; 685 struct task_struct *tsk; 686 687 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 688 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 689 kernfs_type(kn) != KERNFS_DIR) 690 return -EINVAL; 691 692 mutex_lock(&cgroup_mutex); 693 694 /* 695 * We aren't being called from kernfs and there's no guarantee on 696 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 697 * @kn->priv is RCU safe. Let's do the RCU dancing. 698 */ 699 rcu_read_lock(); 700 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 701 if (!cgrp || cgroup_is_dead(cgrp)) { 702 rcu_read_unlock(); 703 mutex_unlock(&cgroup_mutex); 704 return -ENOENT; 705 } 706 rcu_read_unlock(); 707 708 css_task_iter_start(&cgrp->self, &it); 709 while ((tsk = css_task_iter_next(&it))) { 710 switch (tsk->state) { 711 case TASK_RUNNING: 712 stats->nr_running++; 713 break; 714 case TASK_INTERRUPTIBLE: 715 stats->nr_sleeping++; 716 break; 717 case TASK_UNINTERRUPTIBLE: 718 stats->nr_uninterruptible++; 719 break; 720 case TASK_STOPPED: 721 stats->nr_stopped++; 722 break; 723 default: 724 if (delayacct_is_task_waiting_on_io(tsk)) 725 stats->nr_io_wait++; 726 break; 727 } 728 } 729 css_task_iter_end(&it); 730 731 mutex_unlock(&cgroup_mutex); 732 return 0; 733 } 734 735 void cgroup1_check_for_release(struct cgroup *cgrp) 736 { 737 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 738 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 739 schedule_work(&cgrp->release_agent_work); 740 } 741 742 /* 743 * Notify userspace when a cgroup is released, by running the 744 * configured release agent with the name of the cgroup (path 745 * relative to the root of cgroup file system) as the argument. 746 * 747 * Most likely, this user command will try to rmdir this cgroup. 748 * 749 * This races with the possibility that some other task will be 750 * attached to this cgroup before it is removed, or that some other 751 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 752 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 753 * unused, and this cgroup will be reprieved from its death sentence, 754 * to continue to serve a useful existence. Next time it's released, 755 * we will get notified again, if it still has 'notify_on_release' set. 756 * 757 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 758 * means only wait until the task is successfully execve()'d. The 759 * separate release agent task is forked by call_usermodehelper(), 760 * then control in this thread returns here, without waiting for the 761 * release agent task. We don't bother to wait because the caller of 762 * this routine has no use for the exit status of the release agent 763 * task, so no sense holding our caller up for that. 764 */ 765 void cgroup1_release_agent(struct work_struct *work) 766 { 767 struct cgroup *cgrp = 768 container_of(work, struct cgroup, release_agent_work); 769 char *pathbuf = NULL, *agentbuf = NULL; 770 char *argv[3], *envp[3]; 771 int ret; 772 773 mutex_lock(&cgroup_mutex); 774 775 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 776 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 777 if (!pathbuf || !agentbuf) 778 goto out; 779 780 spin_lock_irq(&css_set_lock); 781 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 782 spin_unlock_irq(&css_set_lock); 783 if (ret < 0 || ret >= PATH_MAX) 784 goto out; 785 786 argv[0] = agentbuf; 787 argv[1] = pathbuf; 788 argv[2] = NULL; 789 790 /* minimal command environment */ 791 envp[0] = "HOME=/"; 792 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 793 envp[2] = NULL; 794 795 mutex_unlock(&cgroup_mutex); 796 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 797 goto out_free; 798 out: 799 mutex_unlock(&cgroup_mutex); 800 out_free: 801 kfree(agentbuf); 802 kfree(pathbuf); 803 } 804 805 /* 806 * cgroup_rename - Only allow simple rename of directories in place. 807 */ 808 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 809 const char *new_name_str) 810 { 811 struct cgroup *cgrp = kn->priv; 812 int ret; 813 814 if (kernfs_type(kn) != KERNFS_DIR) 815 return -ENOTDIR; 816 if (kn->parent != new_parent) 817 return -EIO; 818 819 /* 820 * We're gonna grab cgroup_mutex which nests outside kernfs 821 * active_ref. kernfs_rename() doesn't require active_ref 822 * protection. Break them before grabbing cgroup_mutex. 823 */ 824 kernfs_break_active_protection(new_parent); 825 kernfs_break_active_protection(kn); 826 827 mutex_lock(&cgroup_mutex); 828 829 ret = kernfs_rename(kn, new_parent, new_name_str); 830 if (!ret) 831 trace_cgroup_rename(cgrp); 832 833 mutex_unlock(&cgroup_mutex); 834 835 kernfs_unbreak_active_protection(kn); 836 kernfs_unbreak_active_protection(new_parent); 837 return ret; 838 } 839 840 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 841 { 842 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 843 struct cgroup_subsys *ss; 844 int ssid; 845 846 for_each_subsys(ss, ssid) 847 if (root->subsys_mask & (1 << ssid)) 848 seq_show_option(seq, ss->legacy_name, NULL); 849 if (root->flags & CGRP_ROOT_NOPREFIX) 850 seq_puts(seq, ",noprefix"); 851 if (root->flags & CGRP_ROOT_XATTR) 852 seq_puts(seq, ",xattr"); 853 854 spin_lock(&release_agent_path_lock); 855 if (strlen(root->release_agent_path)) 856 seq_show_option(seq, "release_agent", 857 root->release_agent_path); 858 spin_unlock(&release_agent_path_lock); 859 860 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 861 seq_puts(seq, ",clone_children"); 862 if (strlen(root->name)) 863 seq_show_option(seq, "name", root->name); 864 return 0; 865 } 866 867 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) 868 { 869 char *token, *o = data; 870 bool all_ss = false, one_ss = false; 871 u16 mask = U16_MAX; 872 struct cgroup_subsys *ss; 873 int nr_opts = 0; 874 int i; 875 876 #ifdef CONFIG_CPUSETS 877 mask = ~((u16)1 << cpuset_cgrp_id); 878 #endif 879 880 memset(opts, 0, sizeof(*opts)); 881 882 while ((token = strsep(&o, ",")) != NULL) { 883 nr_opts++; 884 885 if (!*token) 886 return -EINVAL; 887 if (!strcmp(token, "none")) { 888 /* Explicitly have no subsystems */ 889 opts->none = true; 890 continue; 891 } 892 if (!strcmp(token, "all")) { 893 /* Mutually exclusive option 'all' + subsystem name */ 894 if (one_ss) 895 return -EINVAL; 896 all_ss = true; 897 continue; 898 } 899 if (!strcmp(token, "noprefix")) { 900 opts->flags |= CGRP_ROOT_NOPREFIX; 901 continue; 902 } 903 if (!strcmp(token, "clone_children")) { 904 opts->cpuset_clone_children = true; 905 continue; 906 } 907 if (!strcmp(token, "xattr")) { 908 opts->flags |= CGRP_ROOT_XATTR; 909 continue; 910 } 911 if (!strncmp(token, "release_agent=", 14)) { 912 /* Specifying two release agents is forbidden */ 913 if (opts->release_agent) 914 return -EINVAL; 915 opts->release_agent = 916 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); 917 if (!opts->release_agent) 918 return -ENOMEM; 919 continue; 920 } 921 if (!strncmp(token, "name=", 5)) { 922 const char *name = token + 5; 923 /* Can't specify an empty name */ 924 if (!strlen(name)) 925 return -EINVAL; 926 /* Must match [\w.-]+ */ 927 for (i = 0; i < strlen(name); i++) { 928 char c = name[i]; 929 if (isalnum(c)) 930 continue; 931 if ((c == '.') || (c == '-') || (c == '_')) 932 continue; 933 return -EINVAL; 934 } 935 /* Specifying two names is forbidden */ 936 if (opts->name) 937 return -EINVAL; 938 opts->name = kstrndup(name, 939 MAX_CGROUP_ROOT_NAMELEN - 1, 940 GFP_KERNEL); 941 if (!opts->name) 942 return -ENOMEM; 943 944 continue; 945 } 946 947 for_each_subsys(ss, i) { 948 if (strcmp(token, ss->legacy_name)) 949 continue; 950 if (!cgroup_ssid_enabled(i)) 951 continue; 952 if (cgroup1_ssid_disabled(i)) 953 continue; 954 955 /* Mutually exclusive option 'all' + subsystem name */ 956 if (all_ss) 957 return -EINVAL; 958 opts->subsys_mask |= (1 << i); 959 one_ss = true; 960 961 break; 962 } 963 if (i == CGROUP_SUBSYS_COUNT) 964 return -ENOENT; 965 } 966 967 /* 968 * If the 'all' option was specified select all the subsystems, 969 * otherwise if 'none', 'name=' and a subsystem name options were 970 * not specified, let's default to 'all' 971 */ 972 if (all_ss || (!one_ss && !opts->none && !opts->name)) 973 for_each_subsys(ss, i) 974 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 975 opts->subsys_mask |= (1 << i); 976 977 /* 978 * We either have to specify by name or by subsystems. (So all 979 * empty hierarchies must have a name). 980 */ 981 if (!opts->subsys_mask && !opts->name) 982 return -EINVAL; 983 984 /* 985 * Option noprefix was introduced just for backward compatibility 986 * with the old cpuset, so we allow noprefix only if mounting just 987 * the cpuset subsystem. 988 */ 989 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) 990 return -EINVAL; 991 992 /* Can't specify "none" and some subsystems */ 993 if (opts->subsys_mask && opts->none) 994 return -EINVAL; 995 996 return 0; 997 } 998 999 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data) 1000 { 1001 int ret = 0; 1002 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1003 struct cgroup_sb_opts opts; 1004 u16 added_mask, removed_mask; 1005 1006 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1007 1008 /* See what subsystems are wanted */ 1009 ret = parse_cgroupfs_options(data, &opts); 1010 if (ret) 1011 goto out_unlock; 1012 1013 if (opts.subsys_mask != root->subsys_mask || opts.release_agent) 1014 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1015 task_tgid_nr(current), current->comm); 1016 1017 added_mask = opts.subsys_mask & ~root->subsys_mask; 1018 removed_mask = root->subsys_mask & ~opts.subsys_mask; 1019 1020 /* Don't allow flags or name to change at remount */ 1021 if ((opts.flags ^ root->flags) || 1022 (opts.name && strcmp(opts.name, root->name))) { 1023 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", 1024 opts.flags, opts.name ?: "", root->flags, root->name); 1025 ret = -EINVAL; 1026 goto out_unlock; 1027 } 1028 1029 /* remounting is not allowed for populated hierarchies */ 1030 if (!list_empty(&root->cgrp.self.children)) { 1031 ret = -EBUSY; 1032 goto out_unlock; 1033 } 1034 1035 ret = rebind_subsystems(root, added_mask); 1036 if (ret) 1037 goto out_unlock; 1038 1039 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1040 1041 if (opts.release_agent) { 1042 spin_lock(&release_agent_path_lock); 1043 strcpy(root->release_agent_path, opts.release_agent); 1044 spin_unlock(&release_agent_path_lock); 1045 } 1046 1047 trace_cgroup_remount(root); 1048 1049 out_unlock: 1050 kfree(opts.release_agent); 1051 kfree(opts.name); 1052 mutex_unlock(&cgroup_mutex); 1053 return ret; 1054 } 1055 1056 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1057 .rename = cgroup1_rename, 1058 .show_options = cgroup1_show_options, 1059 .remount_fs = cgroup1_remount, 1060 .mkdir = cgroup_mkdir, 1061 .rmdir = cgroup_rmdir, 1062 .show_path = cgroup_show_path, 1063 }; 1064 1065 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, 1066 void *data, unsigned long magic, 1067 struct cgroup_namespace *ns) 1068 { 1069 struct super_block *pinned_sb = NULL; 1070 struct cgroup_sb_opts opts; 1071 struct cgroup_root *root; 1072 struct cgroup_subsys *ss; 1073 struct dentry *dentry; 1074 int i, ret; 1075 bool new_root = false; 1076 1077 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1078 1079 /* First find the desired set of subsystems */ 1080 ret = parse_cgroupfs_options(data, &opts); 1081 if (ret) 1082 goto out_unlock; 1083 1084 /* 1085 * Destruction of cgroup root is asynchronous, so subsystems may 1086 * still be dying after the previous unmount. Let's drain the 1087 * dying subsystems. We just need to ensure that the ones 1088 * unmounted previously finish dying and don't care about new ones 1089 * starting. Testing ref liveliness is good enough. 1090 */ 1091 for_each_subsys(ss, i) { 1092 if (!(opts.subsys_mask & (1 << i)) || 1093 ss->root == &cgrp_dfl_root) 1094 continue; 1095 1096 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { 1097 mutex_unlock(&cgroup_mutex); 1098 msleep(10); 1099 ret = restart_syscall(); 1100 goto out_free; 1101 } 1102 cgroup_put(&ss->root->cgrp); 1103 } 1104 1105 for_each_root(root) { 1106 bool name_match = false; 1107 1108 if (root == &cgrp_dfl_root) 1109 continue; 1110 1111 /* 1112 * If we asked for a name then it must match. Also, if 1113 * name matches but sybsys_mask doesn't, we should fail. 1114 * Remember whether name matched. 1115 */ 1116 if (opts.name) { 1117 if (strcmp(opts.name, root->name)) 1118 continue; 1119 name_match = true; 1120 } 1121 1122 /* 1123 * If we asked for subsystems (or explicitly for no 1124 * subsystems) then they must match. 1125 */ 1126 if ((opts.subsys_mask || opts.none) && 1127 (opts.subsys_mask != root->subsys_mask)) { 1128 if (!name_match) 1129 continue; 1130 ret = -EBUSY; 1131 goto out_unlock; 1132 } 1133 1134 if (root->flags ^ opts.flags) 1135 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1136 1137 /* 1138 * We want to reuse @root whose lifetime is governed by its 1139 * ->cgrp. Let's check whether @root is alive and keep it 1140 * that way. As cgroup_kill_sb() can happen anytime, we 1141 * want to block it by pinning the sb so that @root doesn't 1142 * get killed before mount is complete. 1143 * 1144 * With the sb pinned, tryget_live can reliably indicate 1145 * whether @root can be reused. If it's being killed, 1146 * drain it. We can use wait_queue for the wait but this 1147 * path is super cold. Let's just sleep a bit and retry. 1148 */ 1149 pinned_sb = kernfs_pin_sb(root->kf_root, NULL); 1150 if (IS_ERR(pinned_sb) || 1151 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { 1152 mutex_unlock(&cgroup_mutex); 1153 if (!IS_ERR_OR_NULL(pinned_sb)) 1154 deactivate_super(pinned_sb); 1155 msleep(10); 1156 ret = restart_syscall(); 1157 goto out_free; 1158 } 1159 1160 ret = 0; 1161 goto out_unlock; 1162 } 1163 1164 /* 1165 * No such thing, create a new one. name= matching without subsys 1166 * specification is allowed for already existing hierarchies but we 1167 * can't create new one without subsys specification. 1168 */ 1169 if (!opts.subsys_mask && !opts.none) { 1170 ret = -EINVAL; 1171 goto out_unlock; 1172 } 1173 1174 /* Hierarchies may only be created in the initial cgroup namespace. */ 1175 if (ns != &init_cgroup_ns) { 1176 ret = -EPERM; 1177 goto out_unlock; 1178 } 1179 1180 root = kzalloc(sizeof(*root), GFP_KERNEL); 1181 if (!root) { 1182 ret = -ENOMEM; 1183 goto out_unlock; 1184 } 1185 new_root = true; 1186 1187 init_cgroup_root(root, &opts); 1188 1189 ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD); 1190 if (ret) 1191 cgroup_free_root(root); 1192 1193 out_unlock: 1194 mutex_unlock(&cgroup_mutex); 1195 out_free: 1196 kfree(opts.release_agent); 1197 kfree(opts.name); 1198 1199 if (ret) 1200 return ERR_PTR(ret); 1201 1202 dentry = cgroup_do_mount(&cgroup_fs_type, flags, root, 1203 CGROUP_SUPER_MAGIC, ns); 1204 1205 /* 1206 * There's a race window after we release cgroup_mutex and before 1207 * allocating a superblock. Make sure a concurrent process won't 1208 * be able to re-use the root during this window by delaying the 1209 * initialization of root refcnt. 1210 */ 1211 if (new_root) { 1212 mutex_lock(&cgroup_mutex); 1213 percpu_ref_reinit(&root->cgrp.self.refcnt); 1214 mutex_unlock(&cgroup_mutex); 1215 } 1216 1217 /* 1218 * If @pinned_sb, we're reusing an existing root and holding an 1219 * extra ref on its sb. Mount is complete. Put the extra ref. 1220 */ 1221 if (pinned_sb) 1222 deactivate_super(pinned_sb); 1223 1224 return dentry; 1225 } 1226 1227 static int __init cgroup1_wq_init(void) 1228 { 1229 /* 1230 * Used to destroy pidlists and separate to serve as flush domain. 1231 * Cap @max_active to 1 too. 1232 */ 1233 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1234 0, 1); 1235 BUG_ON(!cgroup_pidlist_destroy_wq); 1236 return 0; 1237 } 1238 core_initcall(cgroup1_wq_init); 1239 1240 static int __init cgroup_no_v1(char *str) 1241 { 1242 struct cgroup_subsys *ss; 1243 char *token; 1244 int i; 1245 1246 while ((token = strsep(&str, ",")) != NULL) { 1247 if (!*token) 1248 continue; 1249 1250 if (!strcmp(token, "all")) { 1251 cgroup_no_v1_mask = U16_MAX; 1252 break; 1253 } 1254 1255 for_each_subsys(ss, i) { 1256 if (strcmp(token, ss->name) && 1257 strcmp(token, ss->legacy_name)) 1258 continue; 1259 1260 cgroup_no_v1_mask |= 1 << i; 1261 } 1262 } 1263 return 1; 1264 } 1265 __setup("cgroup_no_v1=", cgroup_no_v1); 1266 1267 1268 #ifdef CONFIG_CGROUP_DEBUG 1269 static struct cgroup_subsys_state * 1270 debug_css_alloc(struct cgroup_subsys_state *parent_css) 1271 { 1272 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); 1273 1274 if (!css) 1275 return ERR_PTR(-ENOMEM); 1276 1277 return css; 1278 } 1279 1280 static void debug_css_free(struct cgroup_subsys_state *css) 1281 { 1282 kfree(css); 1283 } 1284 1285 static u64 debug_taskcount_read(struct cgroup_subsys_state *css, 1286 struct cftype *cft) 1287 { 1288 return cgroup_task_count(css->cgroup); 1289 } 1290 1291 static u64 current_css_set_read(struct cgroup_subsys_state *css, 1292 struct cftype *cft) 1293 { 1294 return (u64)(unsigned long)current->cgroups; 1295 } 1296 1297 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, 1298 struct cftype *cft) 1299 { 1300 u64 count; 1301 1302 rcu_read_lock(); 1303 count = refcount_read(&task_css_set(current)->refcount); 1304 rcu_read_unlock(); 1305 return count; 1306 } 1307 1308 static int current_css_set_cg_links_read(struct seq_file *seq, void *v) 1309 { 1310 struct cgrp_cset_link *link; 1311 struct css_set *cset; 1312 char *name_buf; 1313 1314 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); 1315 if (!name_buf) 1316 return -ENOMEM; 1317 1318 spin_lock_irq(&css_set_lock); 1319 rcu_read_lock(); 1320 cset = rcu_dereference(current->cgroups); 1321 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1322 struct cgroup *c = link->cgrp; 1323 1324 cgroup_name(c, name_buf, NAME_MAX + 1); 1325 seq_printf(seq, "Root %d group %s\n", 1326 c->root->hierarchy_id, name_buf); 1327 } 1328 rcu_read_unlock(); 1329 spin_unlock_irq(&css_set_lock); 1330 kfree(name_buf); 1331 return 0; 1332 } 1333 1334 #define MAX_TASKS_SHOWN_PER_CSS 25 1335 static int cgroup_css_links_read(struct seq_file *seq, void *v) 1336 { 1337 struct cgroup_subsys_state *css = seq_css(seq); 1338 struct cgrp_cset_link *link; 1339 1340 spin_lock_irq(&css_set_lock); 1341 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { 1342 struct css_set *cset = link->cset; 1343 struct task_struct *task; 1344 int count = 0; 1345 1346 seq_printf(seq, "css_set %pK\n", cset); 1347 1348 list_for_each_entry(task, &cset->tasks, cg_list) { 1349 if (count++ > MAX_TASKS_SHOWN_PER_CSS) 1350 goto overflow; 1351 seq_printf(seq, " task %d\n", task_pid_vnr(task)); 1352 } 1353 1354 list_for_each_entry(task, &cset->mg_tasks, cg_list) { 1355 if (count++ > MAX_TASKS_SHOWN_PER_CSS) 1356 goto overflow; 1357 seq_printf(seq, " task %d\n", task_pid_vnr(task)); 1358 } 1359 continue; 1360 overflow: 1361 seq_puts(seq, " ...\n"); 1362 } 1363 spin_unlock_irq(&css_set_lock); 1364 return 0; 1365 } 1366 1367 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) 1368 { 1369 return (!cgroup_is_populated(css->cgroup) && 1370 !css_has_online_children(&css->cgroup->self)); 1371 } 1372 1373 static struct cftype debug_files[] = { 1374 { 1375 .name = "taskcount", 1376 .read_u64 = debug_taskcount_read, 1377 }, 1378 1379 { 1380 .name = "current_css_set", 1381 .read_u64 = current_css_set_read, 1382 }, 1383 1384 { 1385 .name = "current_css_set_refcount", 1386 .read_u64 = current_css_set_refcount_read, 1387 }, 1388 1389 { 1390 .name = "current_css_set_cg_links", 1391 .seq_show = current_css_set_cg_links_read, 1392 }, 1393 1394 { 1395 .name = "cgroup_css_links", 1396 .seq_show = cgroup_css_links_read, 1397 }, 1398 1399 { 1400 .name = "releasable", 1401 .read_u64 = releasable_read, 1402 }, 1403 1404 { } /* terminate */ 1405 }; 1406 1407 struct cgroup_subsys debug_cgrp_subsys = { 1408 .css_alloc = debug_css_alloc, 1409 .css_free = debug_css_free, 1410 .legacy_cftypes = debug_files, 1411 }; 1412 #endif /* CONFIG_CGROUP_DEBUG */ 1413