xref: /openbmc/linux/kernel/cgroup/cgroup-v1.c (revision 9a8f3203)
1 #include "cgroup-internal.h"
2 
3 #include <linux/ctype.h>
4 #include <linux/kmod.h>
5 #include <linux/sort.h>
6 #include <linux/delay.h>
7 #include <linux/mm.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/task.h>
10 #include <linux/magic.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/delayacct.h>
14 #include <linux/pid_namespace.h>
15 #include <linux/cgroupstats.h>
16 #include <linux/fs_parser.h>
17 
18 #include <trace/events/cgroup.h>
19 
20 #define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__)
21 
22 /*
23  * pidlists linger the following amount before being destroyed.  The goal
24  * is avoiding frequent destruction in the middle of consecutive read calls
25  * Expiring in the middle is a performance problem not a correctness one.
26  * 1 sec should be enough.
27  */
28 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
29 
30 /* Controllers blocked by the commandline in v1 */
31 static u16 cgroup_no_v1_mask;
32 
33 /* disable named v1 mounts */
34 static bool cgroup_no_v1_named;
35 
36 /*
37  * pidlist destructions need to be flushed on cgroup destruction.  Use a
38  * separate workqueue as flush domain.
39  */
40 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
41 
42 /*
43  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
44  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
45  */
46 static DEFINE_SPINLOCK(release_agent_path_lock);
47 
48 bool cgroup1_ssid_disabled(int ssid)
49 {
50 	return cgroup_no_v1_mask & (1 << ssid);
51 }
52 
53 /**
54  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
55  * @from: attach to all cgroups of a given task
56  * @tsk: the task to be attached
57  */
58 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
59 {
60 	struct cgroup_root *root;
61 	int retval = 0;
62 
63 	mutex_lock(&cgroup_mutex);
64 	percpu_down_write(&cgroup_threadgroup_rwsem);
65 	for_each_root(root) {
66 		struct cgroup *from_cgrp;
67 
68 		if (root == &cgrp_dfl_root)
69 			continue;
70 
71 		spin_lock_irq(&css_set_lock);
72 		from_cgrp = task_cgroup_from_root(from, root);
73 		spin_unlock_irq(&css_set_lock);
74 
75 		retval = cgroup_attach_task(from_cgrp, tsk, false);
76 		if (retval)
77 			break;
78 	}
79 	percpu_up_write(&cgroup_threadgroup_rwsem);
80 	mutex_unlock(&cgroup_mutex);
81 
82 	return retval;
83 }
84 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
85 
86 /**
87  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
88  * @to: cgroup to which the tasks will be moved
89  * @from: cgroup in which the tasks currently reside
90  *
91  * Locking rules between cgroup_post_fork() and the migration path
92  * guarantee that, if a task is forking while being migrated, the new child
93  * is guaranteed to be either visible in the source cgroup after the
94  * parent's migration is complete or put into the target cgroup.  No task
95  * can slip out of migration through forking.
96  */
97 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
98 {
99 	DEFINE_CGROUP_MGCTX(mgctx);
100 	struct cgrp_cset_link *link;
101 	struct css_task_iter it;
102 	struct task_struct *task;
103 	int ret;
104 
105 	if (cgroup_on_dfl(to))
106 		return -EINVAL;
107 
108 	ret = cgroup_migrate_vet_dst(to);
109 	if (ret)
110 		return ret;
111 
112 	mutex_lock(&cgroup_mutex);
113 
114 	percpu_down_write(&cgroup_threadgroup_rwsem);
115 
116 	/* all tasks in @from are being moved, all csets are source */
117 	spin_lock_irq(&css_set_lock);
118 	list_for_each_entry(link, &from->cset_links, cset_link)
119 		cgroup_migrate_add_src(link->cset, to, &mgctx);
120 	spin_unlock_irq(&css_set_lock);
121 
122 	ret = cgroup_migrate_prepare_dst(&mgctx);
123 	if (ret)
124 		goto out_err;
125 
126 	/*
127 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
128 	 * ->can_attach() fails.
129 	 */
130 	do {
131 		css_task_iter_start(&from->self, 0, &it);
132 
133 		do {
134 			task = css_task_iter_next(&it);
135 		} while (task && (task->flags & PF_EXITING));
136 
137 		if (task)
138 			get_task_struct(task);
139 		css_task_iter_end(&it);
140 
141 		if (task) {
142 			ret = cgroup_migrate(task, false, &mgctx);
143 			if (!ret)
144 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
145 			put_task_struct(task);
146 		}
147 	} while (task && !ret);
148 out_err:
149 	cgroup_migrate_finish(&mgctx);
150 	percpu_up_write(&cgroup_threadgroup_rwsem);
151 	mutex_unlock(&cgroup_mutex);
152 	return ret;
153 }
154 
155 /*
156  * Stuff for reading the 'tasks'/'procs' files.
157  *
158  * Reading this file can return large amounts of data if a cgroup has
159  * *lots* of attached tasks. So it may need several calls to read(),
160  * but we cannot guarantee that the information we produce is correct
161  * unless we produce it entirely atomically.
162  *
163  */
164 
165 /* which pidlist file are we talking about? */
166 enum cgroup_filetype {
167 	CGROUP_FILE_PROCS,
168 	CGROUP_FILE_TASKS,
169 };
170 
171 /*
172  * A pidlist is a list of pids that virtually represents the contents of one
173  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
174  * a pair (one each for procs, tasks) for each pid namespace that's relevant
175  * to the cgroup.
176  */
177 struct cgroup_pidlist {
178 	/*
179 	 * used to find which pidlist is wanted. doesn't change as long as
180 	 * this particular list stays in the list.
181 	*/
182 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
183 	/* array of xids */
184 	pid_t *list;
185 	/* how many elements the above list has */
186 	int length;
187 	/* each of these stored in a list by its cgroup */
188 	struct list_head links;
189 	/* pointer to the cgroup we belong to, for list removal purposes */
190 	struct cgroup *owner;
191 	/* for delayed destruction */
192 	struct delayed_work destroy_dwork;
193 };
194 
195 /*
196  * The following two functions "fix" the issue where there are more pids
197  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
198  * TODO: replace with a kernel-wide solution to this problem
199  */
200 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
201 static void *pidlist_allocate(int count)
202 {
203 	if (PIDLIST_TOO_LARGE(count))
204 		return vmalloc(array_size(count, sizeof(pid_t)));
205 	else
206 		return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL);
207 }
208 
209 static void pidlist_free(void *p)
210 {
211 	kvfree(p);
212 }
213 
214 /*
215  * Used to destroy all pidlists lingering waiting for destroy timer.  None
216  * should be left afterwards.
217  */
218 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
219 {
220 	struct cgroup_pidlist *l, *tmp_l;
221 
222 	mutex_lock(&cgrp->pidlist_mutex);
223 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
224 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
225 	mutex_unlock(&cgrp->pidlist_mutex);
226 
227 	flush_workqueue(cgroup_pidlist_destroy_wq);
228 	BUG_ON(!list_empty(&cgrp->pidlists));
229 }
230 
231 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
232 {
233 	struct delayed_work *dwork = to_delayed_work(work);
234 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
235 						destroy_dwork);
236 	struct cgroup_pidlist *tofree = NULL;
237 
238 	mutex_lock(&l->owner->pidlist_mutex);
239 
240 	/*
241 	 * Destroy iff we didn't get queued again.  The state won't change
242 	 * as destroy_dwork can only be queued while locked.
243 	 */
244 	if (!delayed_work_pending(dwork)) {
245 		list_del(&l->links);
246 		pidlist_free(l->list);
247 		put_pid_ns(l->key.ns);
248 		tofree = l;
249 	}
250 
251 	mutex_unlock(&l->owner->pidlist_mutex);
252 	kfree(tofree);
253 }
254 
255 /*
256  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
257  * Returns the number of unique elements.
258  */
259 static int pidlist_uniq(pid_t *list, int length)
260 {
261 	int src, dest = 1;
262 
263 	/*
264 	 * we presume the 0th element is unique, so i starts at 1. trivial
265 	 * edge cases first; no work needs to be done for either
266 	 */
267 	if (length == 0 || length == 1)
268 		return length;
269 	/* src and dest walk down the list; dest counts unique elements */
270 	for (src = 1; src < length; src++) {
271 		/* find next unique element */
272 		while (list[src] == list[src-1]) {
273 			src++;
274 			if (src == length)
275 				goto after;
276 		}
277 		/* dest always points to where the next unique element goes */
278 		list[dest] = list[src];
279 		dest++;
280 	}
281 after:
282 	return dest;
283 }
284 
285 /*
286  * The two pid files - task and cgroup.procs - guaranteed that the result
287  * is sorted, which forced this whole pidlist fiasco.  As pid order is
288  * different per namespace, each namespace needs differently sorted list,
289  * making it impossible to use, for example, single rbtree of member tasks
290  * sorted by task pointer.  As pidlists can be fairly large, allocating one
291  * per open file is dangerous, so cgroup had to implement shared pool of
292  * pidlists keyed by cgroup and namespace.
293  */
294 static int cmppid(const void *a, const void *b)
295 {
296 	return *(pid_t *)a - *(pid_t *)b;
297 }
298 
299 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
300 						  enum cgroup_filetype type)
301 {
302 	struct cgroup_pidlist *l;
303 	/* don't need task_nsproxy() if we're looking at ourself */
304 	struct pid_namespace *ns = task_active_pid_ns(current);
305 
306 	lockdep_assert_held(&cgrp->pidlist_mutex);
307 
308 	list_for_each_entry(l, &cgrp->pidlists, links)
309 		if (l->key.type == type && l->key.ns == ns)
310 			return l;
311 	return NULL;
312 }
313 
314 /*
315  * find the appropriate pidlist for our purpose (given procs vs tasks)
316  * returns with the lock on that pidlist already held, and takes care
317  * of the use count, or returns NULL with no locks held if we're out of
318  * memory.
319  */
320 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
321 						enum cgroup_filetype type)
322 {
323 	struct cgroup_pidlist *l;
324 
325 	lockdep_assert_held(&cgrp->pidlist_mutex);
326 
327 	l = cgroup_pidlist_find(cgrp, type);
328 	if (l)
329 		return l;
330 
331 	/* entry not found; create a new one */
332 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
333 	if (!l)
334 		return l;
335 
336 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
337 	l->key.type = type;
338 	/* don't need task_nsproxy() if we're looking at ourself */
339 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
340 	l->owner = cgrp;
341 	list_add(&l->links, &cgrp->pidlists);
342 	return l;
343 }
344 
345 /**
346  * cgroup_task_count - count the number of tasks in a cgroup.
347  * @cgrp: the cgroup in question
348  */
349 int cgroup_task_count(const struct cgroup *cgrp)
350 {
351 	int count = 0;
352 	struct cgrp_cset_link *link;
353 
354 	spin_lock_irq(&css_set_lock);
355 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
356 		count += link->cset->nr_tasks;
357 	spin_unlock_irq(&css_set_lock);
358 	return count;
359 }
360 
361 /*
362  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
363  */
364 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
365 			      struct cgroup_pidlist **lp)
366 {
367 	pid_t *array;
368 	int length;
369 	int pid, n = 0; /* used for populating the array */
370 	struct css_task_iter it;
371 	struct task_struct *tsk;
372 	struct cgroup_pidlist *l;
373 
374 	lockdep_assert_held(&cgrp->pidlist_mutex);
375 
376 	/*
377 	 * If cgroup gets more users after we read count, we won't have
378 	 * enough space - tough.  This race is indistinguishable to the
379 	 * caller from the case that the additional cgroup users didn't
380 	 * show up until sometime later on.
381 	 */
382 	length = cgroup_task_count(cgrp);
383 	array = pidlist_allocate(length);
384 	if (!array)
385 		return -ENOMEM;
386 	/* now, populate the array */
387 	css_task_iter_start(&cgrp->self, 0, &it);
388 	while ((tsk = css_task_iter_next(&it))) {
389 		if (unlikely(n == length))
390 			break;
391 		/* get tgid or pid for procs or tasks file respectively */
392 		if (type == CGROUP_FILE_PROCS)
393 			pid = task_tgid_vnr(tsk);
394 		else
395 			pid = task_pid_vnr(tsk);
396 		if (pid > 0) /* make sure to only use valid results */
397 			array[n++] = pid;
398 	}
399 	css_task_iter_end(&it);
400 	length = n;
401 	/* now sort & (if procs) strip out duplicates */
402 	sort(array, length, sizeof(pid_t), cmppid, NULL);
403 	if (type == CGROUP_FILE_PROCS)
404 		length = pidlist_uniq(array, length);
405 
406 	l = cgroup_pidlist_find_create(cgrp, type);
407 	if (!l) {
408 		pidlist_free(array);
409 		return -ENOMEM;
410 	}
411 
412 	/* store array, freeing old if necessary */
413 	pidlist_free(l->list);
414 	l->list = array;
415 	l->length = length;
416 	*lp = l;
417 	return 0;
418 }
419 
420 /*
421  * seq_file methods for the tasks/procs files. The seq_file position is the
422  * next pid to display; the seq_file iterator is a pointer to the pid
423  * in the cgroup->l->list array.
424  */
425 
426 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
427 {
428 	/*
429 	 * Initially we receive a position value that corresponds to
430 	 * one more than the last pid shown (or 0 on the first call or
431 	 * after a seek to the start). Use a binary-search to find the
432 	 * next pid to display, if any
433 	 */
434 	struct kernfs_open_file *of = s->private;
435 	struct cgroup *cgrp = seq_css(s)->cgroup;
436 	struct cgroup_pidlist *l;
437 	enum cgroup_filetype type = seq_cft(s)->private;
438 	int index = 0, pid = *pos;
439 	int *iter, ret;
440 
441 	mutex_lock(&cgrp->pidlist_mutex);
442 
443 	/*
444 	 * !NULL @of->priv indicates that this isn't the first start()
445 	 * after open.  If the matching pidlist is around, we can use that.
446 	 * Look for it.  Note that @of->priv can't be used directly.  It
447 	 * could already have been destroyed.
448 	 */
449 	if (of->priv)
450 		of->priv = cgroup_pidlist_find(cgrp, type);
451 
452 	/*
453 	 * Either this is the first start() after open or the matching
454 	 * pidlist has been destroyed inbetween.  Create a new one.
455 	 */
456 	if (!of->priv) {
457 		ret = pidlist_array_load(cgrp, type,
458 					 (struct cgroup_pidlist **)&of->priv);
459 		if (ret)
460 			return ERR_PTR(ret);
461 	}
462 	l = of->priv;
463 
464 	if (pid) {
465 		int end = l->length;
466 
467 		while (index < end) {
468 			int mid = (index + end) / 2;
469 			if (l->list[mid] == pid) {
470 				index = mid;
471 				break;
472 			} else if (l->list[mid] <= pid)
473 				index = mid + 1;
474 			else
475 				end = mid;
476 		}
477 	}
478 	/* If we're off the end of the array, we're done */
479 	if (index >= l->length)
480 		return NULL;
481 	/* Update the abstract position to be the actual pid that we found */
482 	iter = l->list + index;
483 	*pos = *iter;
484 	return iter;
485 }
486 
487 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
488 {
489 	struct kernfs_open_file *of = s->private;
490 	struct cgroup_pidlist *l = of->priv;
491 
492 	if (l)
493 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
494 				 CGROUP_PIDLIST_DESTROY_DELAY);
495 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
496 }
497 
498 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
499 {
500 	struct kernfs_open_file *of = s->private;
501 	struct cgroup_pidlist *l = of->priv;
502 	pid_t *p = v;
503 	pid_t *end = l->list + l->length;
504 	/*
505 	 * Advance to the next pid in the array. If this goes off the
506 	 * end, we're done
507 	 */
508 	p++;
509 	if (p >= end) {
510 		return NULL;
511 	} else {
512 		*pos = *p;
513 		return p;
514 	}
515 }
516 
517 static int cgroup_pidlist_show(struct seq_file *s, void *v)
518 {
519 	seq_printf(s, "%d\n", *(int *)v);
520 
521 	return 0;
522 }
523 
524 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
525 				     char *buf, size_t nbytes, loff_t off,
526 				     bool threadgroup)
527 {
528 	struct cgroup *cgrp;
529 	struct task_struct *task;
530 	const struct cred *cred, *tcred;
531 	ssize_t ret;
532 
533 	cgrp = cgroup_kn_lock_live(of->kn, false);
534 	if (!cgrp)
535 		return -ENODEV;
536 
537 	task = cgroup_procs_write_start(buf, threadgroup);
538 	ret = PTR_ERR_OR_ZERO(task);
539 	if (ret)
540 		goto out_unlock;
541 
542 	/*
543 	 * Even if we're attaching all tasks in the thread group, we only
544 	 * need to check permissions on one of them.
545 	 */
546 	cred = current_cred();
547 	tcred = get_task_cred(task);
548 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
549 	    !uid_eq(cred->euid, tcred->uid) &&
550 	    !uid_eq(cred->euid, tcred->suid))
551 		ret = -EACCES;
552 	put_cred(tcred);
553 	if (ret)
554 		goto out_finish;
555 
556 	ret = cgroup_attach_task(cgrp, task, threadgroup);
557 
558 out_finish:
559 	cgroup_procs_write_finish(task);
560 out_unlock:
561 	cgroup_kn_unlock(of->kn);
562 
563 	return ret ?: nbytes;
564 }
565 
566 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
567 				   char *buf, size_t nbytes, loff_t off)
568 {
569 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
570 }
571 
572 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
573 				   char *buf, size_t nbytes, loff_t off)
574 {
575 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
576 }
577 
578 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
579 					  char *buf, size_t nbytes, loff_t off)
580 {
581 	struct cgroup *cgrp;
582 
583 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
584 
585 	cgrp = cgroup_kn_lock_live(of->kn, false);
586 	if (!cgrp)
587 		return -ENODEV;
588 	spin_lock(&release_agent_path_lock);
589 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
590 		sizeof(cgrp->root->release_agent_path));
591 	spin_unlock(&release_agent_path_lock);
592 	cgroup_kn_unlock(of->kn);
593 	return nbytes;
594 }
595 
596 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
597 {
598 	struct cgroup *cgrp = seq_css(seq)->cgroup;
599 
600 	spin_lock(&release_agent_path_lock);
601 	seq_puts(seq, cgrp->root->release_agent_path);
602 	spin_unlock(&release_agent_path_lock);
603 	seq_putc(seq, '\n');
604 	return 0;
605 }
606 
607 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
608 {
609 	seq_puts(seq, "0\n");
610 	return 0;
611 }
612 
613 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
614 					 struct cftype *cft)
615 {
616 	return notify_on_release(css->cgroup);
617 }
618 
619 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
620 					  struct cftype *cft, u64 val)
621 {
622 	if (val)
623 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
624 	else
625 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
626 	return 0;
627 }
628 
629 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
630 				      struct cftype *cft)
631 {
632 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
633 }
634 
635 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
636 				       struct cftype *cft, u64 val)
637 {
638 	if (val)
639 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
640 	else
641 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
642 	return 0;
643 }
644 
645 /* cgroup core interface files for the legacy hierarchies */
646 struct cftype cgroup1_base_files[] = {
647 	{
648 		.name = "cgroup.procs",
649 		.seq_start = cgroup_pidlist_start,
650 		.seq_next = cgroup_pidlist_next,
651 		.seq_stop = cgroup_pidlist_stop,
652 		.seq_show = cgroup_pidlist_show,
653 		.private = CGROUP_FILE_PROCS,
654 		.write = cgroup1_procs_write,
655 	},
656 	{
657 		.name = "cgroup.clone_children",
658 		.read_u64 = cgroup_clone_children_read,
659 		.write_u64 = cgroup_clone_children_write,
660 	},
661 	{
662 		.name = "cgroup.sane_behavior",
663 		.flags = CFTYPE_ONLY_ON_ROOT,
664 		.seq_show = cgroup_sane_behavior_show,
665 	},
666 	{
667 		.name = "tasks",
668 		.seq_start = cgroup_pidlist_start,
669 		.seq_next = cgroup_pidlist_next,
670 		.seq_stop = cgroup_pidlist_stop,
671 		.seq_show = cgroup_pidlist_show,
672 		.private = CGROUP_FILE_TASKS,
673 		.write = cgroup1_tasks_write,
674 	},
675 	{
676 		.name = "notify_on_release",
677 		.read_u64 = cgroup_read_notify_on_release,
678 		.write_u64 = cgroup_write_notify_on_release,
679 	},
680 	{
681 		.name = "release_agent",
682 		.flags = CFTYPE_ONLY_ON_ROOT,
683 		.seq_show = cgroup_release_agent_show,
684 		.write = cgroup_release_agent_write,
685 		.max_write_len = PATH_MAX - 1,
686 	},
687 	{ }	/* terminate */
688 };
689 
690 /* Display information about each subsystem and each hierarchy */
691 int proc_cgroupstats_show(struct seq_file *m, void *v)
692 {
693 	struct cgroup_subsys *ss;
694 	int i;
695 
696 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
697 	/*
698 	 * ideally we don't want subsystems moving around while we do this.
699 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
700 	 * subsys/hierarchy state.
701 	 */
702 	mutex_lock(&cgroup_mutex);
703 
704 	for_each_subsys(ss, i)
705 		seq_printf(m, "%s\t%d\t%d\t%d\n",
706 			   ss->legacy_name, ss->root->hierarchy_id,
707 			   atomic_read(&ss->root->nr_cgrps),
708 			   cgroup_ssid_enabled(i));
709 
710 	mutex_unlock(&cgroup_mutex);
711 	return 0;
712 }
713 
714 /**
715  * cgroupstats_build - build and fill cgroupstats
716  * @stats: cgroupstats to fill information into
717  * @dentry: A dentry entry belonging to the cgroup for which stats have
718  * been requested.
719  *
720  * Build and fill cgroupstats so that taskstats can export it to user
721  * space.
722  */
723 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
724 {
725 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
726 	struct cgroup *cgrp;
727 	struct css_task_iter it;
728 	struct task_struct *tsk;
729 
730 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
731 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
732 	    kernfs_type(kn) != KERNFS_DIR)
733 		return -EINVAL;
734 
735 	mutex_lock(&cgroup_mutex);
736 
737 	/*
738 	 * We aren't being called from kernfs and there's no guarantee on
739 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
740 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
741 	 */
742 	rcu_read_lock();
743 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
744 	if (!cgrp || cgroup_is_dead(cgrp)) {
745 		rcu_read_unlock();
746 		mutex_unlock(&cgroup_mutex);
747 		return -ENOENT;
748 	}
749 	rcu_read_unlock();
750 
751 	css_task_iter_start(&cgrp->self, 0, &it);
752 	while ((tsk = css_task_iter_next(&it))) {
753 		switch (tsk->state) {
754 		case TASK_RUNNING:
755 			stats->nr_running++;
756 			break;
757 		case TASK_INTERRUPTIBLE:
758 			stats->nr_sleeping++;
759 			break;
760 		case TASK_UNINTERRUPTIBLE:
761 			stats->nr_uninterruptible++;
762 			break;
763 		case TASK_STOPPED:
764 			stats->nr_stopped++;
765 			break;
766 		default:
767 			if (delayacct_is_task_waiting_on_io(tsk))
768 				stats->nr_io_wait++;
769 			break;
770 		}
771 	}
772 	css_task_iter_end(&it);
773 
774 	mutex_unlock(&cgroup_mutex);
775 	return 0;
776 }
777 
778 void cgroup1_check_for_release(struct cgroup *cgrp)
779 {
780 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
781 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
782 		schedule_work(&cgrp->release_agent_work);
783 }
784 
785 /*
786  * Notify userspace when a cgroup is released, by running the
787  * configured release agent with the name of the cgroup (path
788  * relative to the root of cgroup file system) as the argument.
789  *
790  * Most likely, this user command will try to rmdir this cgroup.
791  *
792  * This races with the possibility that some other task will be
793  * attached to this cgroup before it is removed, or that some other
794  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
795  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
796  * unused, and this cgroup will be reprieved from its death sentence,
797  * to continue to serve a useful existence.  Next time it's released,
798  * we will get notified again, if it still has 'notify_on_release' set.
799  *
800  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
801  * means only wait until the task is successfully execve()'d.  The
802  * separate release agent task is forked by call_usermodehelper(),
803  * then control in this thread returns here, without waiting for the
804  * release agent task.  We don't bother to wait because the caller of
805  * this routine has no use for the exit status of the release agent
806  * task, so no sense holding our caller up for that.
807  */
808 void cgroup1_release_agent(struct work_struct *work)
809 {
810 	struct cgroup *cgrp =
811 		container_of(work, struct cgroup, release_agent_work);
812 	char *pathbuf = NULL, *agentbuf = NULL;
813 	char *argv[3], *envp[3];
814 	int ret;
815 
816 	mutex_lock(&cgroup_mutex);
817 
818 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
819 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
820 	if (!pathbuf || !agentbuf)
821 		goto out;
822 
823 	spin_lock_irq(&css_set_lock);
824 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
825 	spin_unlock_irq(&css_set_lock);
826 	if (ret < 0 || ret >= PATH_MAX)
827 		goto out;
828 
829 	argv[0] = agentbuf;
830 	argv[1] = pathbuf;
831 	argv[2] = NULL;
832 
833 	/* minimal command environment */
834 	envp[0] = "HOME=/";
835 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
836 	envp[2] = NULL;
837 
838 	mutex_unlock(&cgroup_mutex);
839 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
840 	goto out_free;
841 out:
842 	mutex_unlock(&cgroup_mutex);
843 out_free:
844 	kfree(agentbuf);
845 	kfree(pathbuf);
846 }
847 
848 /*
849  * cgroup_rename - Only allow simple rename of directories in place.
850  */
851 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
852 			  const char *new_name_str)
853 {
854 	struct cgroup *cgrp = kn->priv;
855 	int ret;
856 
857 	if (kernfs_type(kn) != KERNFS_DIR)
858 		return -ENOTDIR;
859 	if (kn->parent != new_parent)
860 		return -EIO;
861 
862 	/*
863 	 * We're gonna grab cgroup_mutex which nests outside kernfs
864 	 * active_ref.  kernfs_rename() doesn't require active_ref
865 	 * protection.  Break them before grabbing cgroup_mutex.
866 	 */
867 	kernfs_break_active_protection(new_parent);
868 	kernfs_break_active_protection(kn);
869 
870 	mutex_lock(&cgroup_mutex);
871 
872 	ret = kernfs_rename(kn, new_parent, new_name_str);
873 	if (!ret)
874 		TRACE_CGROUP_PATH(rename, cgrp);
875 
876 	mutex_unlock(&cgroup_mutex);
877 
878 	kernfs_unbreak_active_protection(kn);
879 	kernfs_unbreak_active_protection(new_parent);
880 	return ret;
881 }
882 
883 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
884 {
885 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
886 	struct cgroup_subsys *ss;
887 	int ssid;
888 
889 	for_each_subsys(ss, ssid)
890 		if (root->subsys_mask & (1 << ssid))
891 			seq_show_option(seq, ss->legacy_name, NULL);
892 	if (root->flags & CGRP_ROOT_NOPREFIX)
893 		seq_puts(seq, ",noprefix");
894 	if (root->flags & CGRP_ROOT_XATTR)
895 		seq_puts(seq, ",xattr");
896 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
897 		seq_puts(seq, ",cpuset_v2_mode");
898 
899 	spin_lock(&release_agent_path_lock);
900 	if (strlen(root->release_agent_path))
901 		seq_show_option(seq, "release_agent",
902 				root->release_agent_path);
903 	spin_unlock(&release_agent_path_lock);
904 
905 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
906 		seq_puts(seq, ",clone_children");
907 	if (strlen(root->name))
908 		seq_show_option(seq, "name", root->name);
909 	return 0;
910 }
911 
912 enum cgroup1_param {
913 	Opt_all,
914 	Opt_clone_children,
915 	Opt_cpuset_v2_mode,
916 	Opt_name,
917 	Opt_none,
918 	Opt_noprefix,
919 	Opt_release_agent,
920 	Opt_xattr,
921 };
922 
923 static const struct fs_parameter_spec cgroup1_param_specs[] = {
924 	fsparam_flag  ("all",		Opt_all),
925 	fsparam_flag  ("clone_children", Opt_clone_children),
926 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
927 	fsparam_string("name",		Opt_name),
928 	fsparam_flag  ("none",		Opt_none),
929 	fsparam_flag  ("noprefix",	Opt_noprefix),
930 	fsparam_string("release_agent",	Opt_release_agent),
931 	fsparam_flag  ("xattr",		Opt_xattr),
932 	{}
933 };
934 
935 const struct fs_parameter_description cgroup1_fs_parameters = {
936 	.name		= "cgroup1",
937 	.specs		= cgroup1_param_specs,
938 };
939 
940 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
941 {
942 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
943 	struct cgroup_subsys *ss;
944 	struct fs_parse_result result;
945 	int opt, i;
946 
947 	opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result);
948 	if (opt == -ENOPARAM) {
949 		if (strcmp(param->key, "source") == 0) {
950 			fc->source = param->string;
951 			param->string = NULL;
952 			return 0;
953 		}
954 		for_each_subsys(ss, i) {
955 			if (strcmp(param->key, ss->legacy_name))
956 				continue;
957 			ctx->subsys_mask |= (1 << i);
958 			return 0;
959 		}
960 		return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key);
961 	}
962 	if (opt < 0)
963 		return opt;
964 
965 	switch (opt) {
966 	case Opt_none:
967 		/* Explicitly have no subsystems */
968 		ctx->none = true;
969 		break;
970 	case Opt_all:
971 		ctx->all_ss = true;
972 		break;
973 	case Opt_noprefix:
974 		ctx->flags |= CGRP_ROOT_NOPREFIX;
975 		break;
976 	case Opt_clone_children:
977 		ctx->cpuset_clone_children = true;
978 		break;
979 	case Opt_cpuset_v2_mode:
980 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
981 		break;
982 	case Opt_xattr:
983 		ctx->flags |= CGRP_ROOT_XATTR;
984 		break;
985 	case Opt_release_agent:
986 		/* Specifying two release agents is forbidden */
987 		if (ctx->release_agent)
988 			return cg_invalf(fc, "cgroup1: release_agent respecified");
989 		ctx->release_agent = param->string;
990 		param->string = NULL;
991 		break;
992 	case Opt_name:
993 		/* blocked by boot param? */
994 		if (cgroup_no_v1_named)
995 			return -ENOENT;
996 		/* Can't specify an empty name */
997 		if (!param->size)
998 			return cg_invalf(fc, "cgroup1: Empty name");
999 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
1000 			return cg_invalf(fc, "cgroup1: Name too long");
1001 		/* Must match [\w.-]+ */
1002 		for (i = 0; i < param->size; i++) {
1003 			char c = param->string[i];
1004 			if (isalnum(c))
1005 				continue;
1006 			if ((c == '.') || (c == '-') || (c == '_'))
1007 				continue;
1008 			return cg_invalf(fc, "cgroup1: Invalid name");
1009 		}
1010 		/* Specifying two names is forbidden */
1011 		if (ctx->name)
1012 			return cg_invalf(fc, "cgroup1: name respecified");
1013 		ctx->name = param->string;
1014 		param->string = NULL;
1015 		break;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static int check_cgroupfs_options(struct fs_context *fc)
1021 {
1022 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1023 	u16 mask = U16_MAX;
1024 	u16 enabled = 0;
1025 	struct cgroup_subsys *ss;
1026 	int i;
1027 
1028 #ifdef CONFIG_CPUSETS
1029 	mask = ~((u16)1 << cpuset_cgrp_id);
1030 #endif
1031 	for_each_subsys(ss, i)
1032 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1033 			enabled |= 1 << i;
1034 
1035 	ctx->subsys_mask &= enabled;
1036 
1037 	/*
1038 	 * In absense of 'none', 'name=' or subsystem name options,
1039 	 * let's default to 'all'.
1040 	 */
1041 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1042 		ctx->all_ss = true;
1043 
1044 	if (ctx->all_ss) {
1045 		/* Mutually exclusive option 'all' + subsystem name */
1046 		if (ctx->subsys_mask)
1047 			return cg_invalf(fc, "cgroup1: subsys name conflicts with all");
1048 		/* 'all' => select all the subsystems */
1049 		ctx->subsys_mask = enabled;
1050 	}
1051 
1052 	/*
1053 	 * We either have to specify by name or by subsystems. (So all
1054 	 * empty hierarchies must have a name).
1055 	 */
1056 	if (!ctx->subsys_mask && !ctx->name)
1057 		return cg_invalf(fc, "cgroup1: Need name or subsystem set");
1058 
1059 	/*
1060 	 * Option noprefix was introduced just for backward compatibility
1061 	 * with the old cpuset, so we allow noprefix only if mounting just
1062 	 * the cpuset subsystem.
1063 	 */
1064 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1065 		return cg_invalf(fc, "cgroup1: noprefix used incorrectly");
1066 
1067 	/* Can't specify "none" and some subsystems */
1068 	if (ctx->subsys_mask && ctx->none)
1069 		return cg_invalf(fc, "cgroup1: none used incorrectly");
1070 
1071 	return 0;
1072 }
1073 
1074 int cgroup1_reconfigure(struct fs_context *fc)
1075 {
1076 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1077 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1078 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1079 	int ret = 0;
1080 	u16 added_mask, removed_mask;
1081 
1082 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1083 
1084 	/* See what subsystems are wanted */
1085 	ret = check_cgroupfs_options(fc);
1086 	if (ret)
1087 		goto out_unlock;
1088 
1089 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1090 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1091 			task_tgid_nr(current), current->comm);
1092 
1093 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1094 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1095 
1096 	/* Don't allow flags or name to change at remount */
1097 	if ((ctx->flags ^ root->flags) ||
1098 	    (ctx->name && strcmp(ctx->name, root->name))) {
1099 		cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1100 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1101 		ret = -EINVAL;
1102 		goto out_unlock;
1103 	}
1104 
1105 	/* remounting is not allowed for populated hierarchies */
1106 	if (!list_empty(&root->cgrp.self.children)) {
1107 		ret = -EBUSY;
1108 		goto out_unlock;
1109 	}
1110 
1111 	ret = rebind_subsystems(root, added_mask);
1112 	if (ret)
1113 		goto out_unlock;
1114 
1115 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1116 
1117 	if (ctx->release_agent) {
1118 		spin_lock(&release_agent_path_lock);
1119 		strcpy(root->release_agent_path, ctx->release_agent);
1120 		spin_unlock(&release_agent_path_lock);
1121 	}
1122 
1123 	trace_cgroup_remount(root);
1124 
1125  out_unlock:
1126 	mutex_unlock(&cgroup_mutex);
1127 	return ret;
1128 }
1129 
1130 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1131 	.rename			= cgroup1_rename,
1132 	.show_options		= cgroup1_show_options,
1133 	.mkdir			= cgroup_mkdir,
1134 	.rmdir			= cgroup_rmdir,
1135 	.show_path		= cgroup_show_path,
1136 };
1137 
1138 /*
1139  * The guts of cgroup1 mount - find or create cgroup_root to use.
1140  * Called with cgroup_mutex held; returns 0 on success, -E... on
1141  * error and positive - in case when the candidate is busy dying.
1142  * On success it stashes a reference to cgroup_root into given
1143  * cgroup_fs_context; that reference is *NOT* counting towards the
1144  * cgroup_root refcount.
1145  */
1146 static int cgroup1_root_to_use(struct fs_context *fc)
1147 {
1148 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1149 	struct cgroup_root *root;
1150 	struct cgroup_subsys *ss;
1151 	int i, ret;
1152 
1153 	/* First find the desired set of subsystems */
1154 	ret = check_cgroupfs_options(fc);
1155 	if (ret)
1156 		return ret;
1157 
1158 	/*
1159 	 * Destruction of cgroup root is asynchronous, so subsystems may
1160 	 * still be dying after the previous unmount.  Let's drain the
1161 	 * dying subsystems.  We just need to ensure that the ones
1162 	 * unmounted previously finish dying and don't care about new ones
1163 	 * starting.  Testing ref liveliness is good enough.
1164 	 */
1165 	for_each_subsys(ss, i) {
1166 		if (!(ctx->subsys_mask & (1 << i)) ||
1167 		    ss->root == &cgrp_dfl_root)
1168 			continue;
1169 
1170 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1171 			return 1;	/* restart */
1172 		cgroup_put(&ss->root->cgrp);
1173 	}
1174 
1175 	for_each_root(root) {
1176 		bool name_match = false;
1177 
1178 		if (root == &cgrp_dfl_root)
1179 			continue;
1180 
1181 		/*
1182 		 * If we asked for a name then it must match.  Also, if
1183 		 * name matches but sybsys_mask doesn't, we should fail.
1184 		 * Remember whether name matched.
1185 		 */
1186 		if (ctx->name) {
1187 			if (strcmp(ctx->name, root->name))
1188 				continue;
1189 			name_match = true;
1190 		}
1191 
1192 		/*
1193 		 * If we asked for subsystems (or explicitly for no
1194 		 * subsystems) then they must match.
1195 		 */
1196 		if ((ctx->subsys_mask || ctx->none) &&
1197 		    (ctx->subsys_mask != root->subsys_mask)) {
1198 			if (!name_match)
1199 				continue;
1200 			return -EBUSY;
1201 		}
1202 
1203 		if (root->flags ^ ctx->flags)
1204 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1205 
1206 		ctx->root = root;
1207 		return 0;
1208 	}
1209 
1210 	/*
1211 	 * No such thing, create a new one.  name= matching without subsys
1212 	 * specification is allowed for already existing hierarchies but we
1213 	 * can't create new one without subsys specification.
1214 	 */
1215 	if (!ctx->subsys_mask && !ctx->none)
1216 		return cg_invalf(fc, "cgroup1: No subsys list or none specified");
1217 
1218 	/* Hierarchies may only be created in the initial cgroup namespace. */
1219 	if (ctx->ns != &init_cgroup_ns)
1220 		return -EPERM;
1221 
1222 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1223 	if (!root)
1224 		return -ENOMEM;
1225 
1226 	ctx->root = root;
1227 	init_cgroup_root(ctx);
1228 
1229 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1230 	if (ret)
1231 		cgroup_free_root(root);
1232 	return ret;
1233 }
1234 
1235 int cgroup1_get_tree(struct fs_context *fc)
1236 {
1237 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1238 	int ret;
1239 
1240 	/* Check if the caller has permission to mount. */
1241 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1242 		return -EPERM;
1243 
1244 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1245 
1246 	ret = cgroup1_root_to_use(fc);
1247 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1248 		ret = 1;	/* restart */
1249 
1250 	mutex_unlock(&cgroup_mutex);
1251 
1252 	if (!ret)
1253 		ret = cgroup_do_get_tree(fc);
1254 
1255 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1256 		struct super_block *sb = fc->root->d_sb;
1257 		dput(fc->root);
1258 		deactivate_locked_super(sb);
1259 		ret = 1;
1260 	}
1261 
1262 	if (unlikely(ret > 0)) {
1263 		msleep(10);
1264 		return restart_syscall();
1265 	}
1266 	return ret;
1267 }
1268 
1269 static int __init cgroup1_wq_init(void)
1270 {
1271 	/*
1272 	 * Used to destroy pidlists and separate to serve as flush domain.
1273 	 * Cap @max_active to 1 too.
1274 	 */
1275 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1276 						    0, 1);
1277 	BUG_ON(!cgroup_pidlist_destroy_wq);
1278 	return 0;
1279 }
1280 core_initcall(cgroup1_wq_init);
1281 
1282 static int __init cgroup_no_v1(char *str)
1283 {
1284 	struct cgroup_subsys *ss;
1285 	char *token;
1286 	int i;
1287 
1288 	while ((token = strsep(&str, ",")) != NULL) {
1289 		if (!*token)
1290 			continue;
1291 
1292 		if (!strcmp(token, "all")) {
1293 			cgroup_no_v1_mask = U16_MAX;
1294 			continue;
1295 		}
1296 
1297 		if (!strcmp(token, "named")) {
1298 			cgroup_no_v1_named = true;
1299 			continue;
1300 		}
1301 
1302 		for_each_subsys(ss, i) {
1303 			if (strcmp(token, ss->name) &&
1304 			    strcmp(token, ss->legacy_name))
1305 				continue;
1306 
1307 			cgroup_no_v1_mask |= 1 << i;
1308 		}
1309 	}
1310 	return 1;
1311 }
1312 __setup("cgroup_no_v1=", cgroup_no_v1);
1313