1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 /* 22 * pidlists linger the following amount before being destroyed. The goal 23 * is avoiding frequent destruction in the middle of consecutive read calls 24 * Expiring in the middle is a performance problem not a correctness one. 25 * 1 sec should be enough. 26 */ 27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 28 29 /* Controllers blocked by the commandline in v1 */ 30 static u16 cgroup_no_v1_mask; 31 32 /* disable named v1 mounts */ 33 static bool cgroup_no_v1_named; 34 35 /* 36 * pidlist destructions need to be flushed on cgroup destruction. Use a 37 * separate workqueue as flush domain. 38 */ 39 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 40 41 /* protects cgroup_subsys->release_agent_path */ 42 static DEFINE_SPINLOCK(release_agent_path_lock); 43 44 bool cgroup1_ssid_disabled(int ssid) 45 { 46 return cgroup_no_v1_mask & (1 << ssid); 47 } 48 49 /** 50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 51 * @from: attach to all cgroups of a given task 52 * @tsk: the task to be attached 53 * 54 * Return: %0 on success or a negative errno code on failure 55 */ 56 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 57 { 58 struct cgroup_root *root; 59 int retval = 0; 60 61 cgroup_lock(); 62 cgroup_attach_lock(true); 63 for_each_root(root) { 64 struct cgroup *from_cgrp; 65 66 spin_lock_irq(&css_set_lock); 67 from_cgrp = task_cgroup_from_root(from, root); 68 spin_unlock_irq(&css_set_lock); 69 70 retval = cgroup_attach_task(from_cgrp, tsk, false); 71 if (retval) 72 break; 73 } 74 cgroup_attach_unlock(true); 75 cgroup_unlock(); 76 77 return retval; 78 } 79 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 80 81 /** 82 * cgroup_transfer_tasks - move tasks from one cgroup to another 83 * @to: cgroup to which the tasks will be moved 84 * @from: cgroup in which the tasks currently reside 85 * 86 * Locking rules between cgroup_post_fork() and the migration path 87 * guarantee that, if a task is forking while being migrated, the new child 88 * is guaranteed to be either visible in the source cgroup after the 89 * parent's migration is complete or put into the target cgroup. No task 90 * can slip out of migration through forking. 91 * 92 * Return: %0 on success or a negative errno code on failure 93 */ 94 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 95 { 96 DEFINE_CGROUP_MGCTX(mgctx); 97 struct cgrp_cset_link *link; 98 struct css_task_iter it; 99 struct task_struct *task; 100 int ret; 101 102 if (cgroup_on_dfl(to)) 103 return -EINVAL; 104 105 ret = cgroup_migrate_vet_dst(to); 106 if (ret) 107 return ret; 108 109 cgroup_lock(); 110 111 cgroup_attach_lock(true); 112 113 /* all tasks in @from are being moved, all csets are source */ 114 spin_lock_irq(&css_set_lock); 115 list_for_each_entry(link, &from->cset_links, cset_link) 116 cgroup_migrate_add_src(link->cset, to, &mgctx); 117 spin_unlock_irq(&css_set_lock); 118 119 ret = cgroup_migrate_prepare_dst(&mgctx); 120 if (ret) 121 goto out_err; 122 123 /* 124 * Migrate tasks one-by-one until @from is empty. This fails iff 125 * ->can_attach() fails. 126 */ 127 do { 128 css_task_iter_start(&from->self, 0, &it); 129 130 do { 131 task = css_task_iter_next(&it); 132 } while (task && (task->flags & PF_EXITING)); 133 134 if (task) 135 get_task_struct(task); 136 css_task_iter_end(&it); 137 138 if (task) { 139 ret = cgroup_migrate(task, false, &mgctx); 140 if (!ret) 141 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 142 put_task_struct(task); 143 } 144 } while (task && !ret); 145 out_err: 146 cgroup_migrate_finish(&mgctx); 147 cgroup_attach_unlock(true); 148 cgroup_unlock(); 149 return ret; 150 } 151 152 /* 153 * Stuff for reading the 'tasks'/'procs' files. 154 * 155 * Reading this file can return large amounts of data if a cgroup has 156 * *lots* of attached tasks. So it may need several calls to read(), 157 * but we cannot guarantee that the information we produce is correct 158 * unless we produce it entirely atomically. 159 * 160 */ 161 162 /* which pidlist file are we talking about? */ 163 enum cgroup_filetype { 164 CGROUP_FILE_PROCS, 165 CGROUP_FILE_TASKS, 166 }; 167 168 /* 169 * A pidlist is a list of pids that virtually represents the contents of one 170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 171 * a pair (one each for procs, tasks) for each pid namespace that's relevant 172 * to the cgroup. 173 */ 174 struct cgroup_pidlist { 175 /* 176 * used to find which pidlist is wanted. doesn't change as long as 177 * this particular list stays in the list. 178 */ 179 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 180 /* array of xids */ 181 pid_t *list; 182 /* how many elements the above list has */ 183 int length; 184 /* each of these stored in a list by its cgroup */ 185 struct list_head links; 186 /* pointer to the cgroup we belong to, for list removal purposes */ 187 struct cgroup *owner; 188 /* for delayed destruction */ 189 struct delayed_work destroy_dwork; 190 }; 191 192 /* 193 * Used to destroy all pidlists lingering waiting for destroy timer. None 194 * should be left afterwards. 195 */ 196 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 197 { 198 struct cgroup_pidlist *l, *tmp_l; 199 200 mutex_lock(&cgrp->pidlist_mutex); 201 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 202 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 203 mutex_unlock(&cgrp->pidlist_mutex); 204 205 flush_workqueue(cgroup_pidlist_destroy_wq); 206 BUG_ON(!list_empty(&cgrp->pidlists)); 207 } 208 209 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 210 { 211 struct delayed_work *dwork = to_delayed_work(work); 212 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 213 destroy_dwork); 214 struct cgroup_pidlist *tofree = NULL; 215 216 mutex_lock(&l->owner->pidlist_mutex); 217 218 /* 219 * Destroy iff we didn't get queued again. The state won't change 220 * as destroy_dwork can only be queued while locked. 221 */ 222 if (!delayed_work_pending(dwork)) { 223 list_del(&l->links); 224 kvfree(l->list); 225 put_pid_ns(l->key.ns); 226 tofree = l; 227 } 228 229 mutex_unlock(&l->owner->pidlist_mutex); 230 kfree(tofree); 231 } 232 233 /* 234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 235 * Returns the number of unique elements. 236 */ 237 static int pidlist_uniq(pid_t *list, int length) 238 { 239 int src, dest = 1; 240 241 /* 242 * we presume the 0th element is unique, so i starts at 1. trivial 243 * edge cases first; no work needs to be done for either 244 */ 245 if (length == 0 || length == 1) 246 return length; 247 /* src and dest walk down the list; dest counts unique elements */ 248 for (src = 1; src < length; src++) { 249 /* find next unique element */ 250 while (list[src] == list[src-1]) { 251 src++; 252 if (src == length) 253 goto after; 254 } 255 /* dest always points to where the next unique element goes */ 256 list[dest] = list[src]; 257 dest++; 258 } 259 after: 260 return dest; 261 } 262 263 /* 264 * The two pid files - task and cgroup.procs - guaranteed that the result 265 * is sorted, which forced this whole pidlist fiasco. As pid order is 266 * different per namespace, each namespace needs differently sorted list, 267 * making it impossible to use, for example, single rbtree of member tasks 268 * sorted by task pointer. As pidlists can be fairly large, allocating one 269 * per open file is dangerous, so cgroup had to implement shared pool of 270 * pidlists keyed by cgroup and namespace. 271 */ 272 static int cmppid(const void *a, const void *b) 273 { 274 return *(pid_t *)a - *(pid_t *)b; 275 } 276 277 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 278 enum cgroup_filetype type) 279 { 280 struct cgroup_pidlist *l; 281 /* don't need task_nsproxy() if we're looking at ourself */ 282 struct pid_namespace *ns = task_active_pid_ns(current); 283 284 lockdep_assert_held(&cgrp->pidlist_mutex); 285 286 list_for_each_entry(l, &cgrp->pidlists, links) 287 if (l->key.type == type && l->key.ns == ns) 288 return l; 289 return NULL; 290 } 291 292 /* 293 * find the appropriate pidlist for our purpose (given procs vs tasks) 294 * returns with the lock on that pidlist already held, and takes care 295 * of the use count, or returns NULL with no locks held if we're out of 296 * memory. 297 */ 298 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 299 enum cgroup_filetype type) 300 { 301 struct cgroup_pidlist *l; 302 303 lockdep_assert_held(&cgrp->pidlist_mutex); 304 305 l = cgroup_pidlist_find(cgrp, type); 306 if (l) 307 return l; 308 309 /* entry not found; create a new one */ 310 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 311 if (!l) 312 return l; 313 314 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 315 l->key.type = type; 316 /* don't need task_nsproxy() if we're looking at ourself */ 317 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 318 l->owner = cgrp; 319 list_add(&l->links, &cgrp->pidlists); 320 return l; 321 } 322 323 /* 324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 325 */ 326 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 327 struct cgroup_pidlist **lp) 328 { 329 pid_t *array; 330 int length; 331 int pid, n = 0; /* used for populating the array */ 332 struct css_task_iter it; 333 struct task_struct *tsk; 334 struct cgroup_pidlist *l; 335 336 lockdep_assert_held(&cgrp->pidlist_mutex); 337 338 /* 339 * If cgroup gets more users after we read count, we won't have 340 * enough space - tough. This race is indistinguishable to the 341 * caller from the case that the additional cgroup users didn't 342 * show up until sometime later on. 343 */ 344 length = cgroup_task_count(cgrp); 345 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 346 if (!array) 347 return -ENOMEM; 348 /* now, populate the array */ 349 css_task_iter_start(&cgrp->self, 0, &it); 350 while ((tsk = css_task_iter_next(&it))) { 351 if (unlikely(n == length)) 352 break; 353 /* get tgid or pid for procs or tasks file respectively */ 354 if (type == CGROUP_FILE_PROCS) 355 pid = task_tgid_vnr(tsk); 356 else 357 pid = task_pid_vnr(tsk); 358 if (pid > 0) /* make sure to only use valid results */ 359 array[n++] = pid; 360 } 361 css_task_iter_end(&it); 362 length = n; 363 /* now sort & strip out duplicates (tgids or recycled thread PIDs) */ 364 sort(array, length, sizeof(pid_t), cmppid, NULL); 365 length = pidlist_uniq(array, length); 366 367 l = cgroup_pidlist_find_create(cgrp, type); 368 if (!l) { 369 kvfree(array); 370 return -ENOMEM; 371 } 372 373 /* store array, freeing old if necessary */ 374 kvfree(l->list); 375 l->list = array; 376 l->length = length; 377 *lp = l; 378 return 0; 379 } 380 381 /* 382 * seq_file methods for the tasks/procs files. The seq_file position is the 383 * next pid to display; the seq_file iterator is a pointer to the pid 384 * in the cgroup->l->list array. 385 */ 386 387 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 388 { 389 /* 390 * Initially we receive a position value that corresponds to 391 * one more than the last pid shown (or 0 on the first call or 392 * after a seek to the start). Use a binary-search to find the 393 * next pid to display, if any 394 */ 395 struct kernfs_open_file *of = s->private; 396 struct cgroup_file_ctx *ctx = of->priv; 397 struct cgroup *cgrp = seq_css(s)->cgroup; 398 struct cgroup_pidlist *l; 399 enum cgroup_filetype type = seq_cft(s)->private; 400 int index = 0, pid = *pos; 401 int *iter, ret; 402 403 mutex_lock(&cgrp->pidlist_mutex); 404 405 /* 406 * !NULL @ctx->procs1.pidlist indicates that this isn't the first 407 * start() after open. If the matching pidlist is around, we can use 408 * that. Look for it. Note that @ctx->procs1.pidlist can't be used 409 * directly. It could already have been destroyed. 410 */ 411 if (ctx->procs1.pidlist) 412 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); 413 414 /* 415 * Either this is the first start() after open or the matching 416 * pidlist has been destroyed inbetween. Create a new one. 417 */ 418 if (!ctx->procs1.pidlist) { 419 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); 420 if (ret) 421 return ERR_PTR(ret); 422 } 423 l = ctx->procs1.pidlist; 424 425 if (pid) { 426 int end = l->length; 427 428 while (index < end) { 429 int mid = (index + end) / 2; 430 if (l->list[mid] == pid) { 431 index = mid; 432 break; 433 } else if (l->list[mid] < pid) 434 index = mid + 1; 435 else 436 end = mid; 437 } 438 } 439 /* If we're off the end of the array, we're done */ 440 if (index >= l->length) 441 return NULL; 442 /* Update the abstract position to be the actual pid that we found */ 443 iter = l->list + index; 444 *pos = *iter; 445 return iter; 446 } 447 448 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 449 { 450 struct kernfs_open_file *of = s->private; 451 struct cgroup_file_ctx *ctx = of->priv; 452 struct cgroup_pidlist *l = ctx->procs1.pidlist; 453 454 if (l) 455 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 456 CGROUP_PIDLIST_DESTROY_DELAY); 457 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 458 } 459 460 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 461 { 462 struct kernfs_open_file *of = s->private; 463 struct cgroup_file_ctx *ctx = of->priv; 464 struct cgroup_pidlist *l = ctx->procs1.pidlist; 465 pid_t *p = v; 466 pid_t *end = l->list + l->length; 467 /* 468 * Advance to the next pid in the array. If this goes off the 469 * end, we're done 470 */ 471 p++; 472 if (p >= end) { 473 (*pos)++; 474 return NULL; 475 } else { 476 *pos = *p; 477 return p; 478 } 479 } 480 481 static int cgroup_pidlist_show(struct seq_file *s, void *v) 482 { 483 seq_printf(s, "%d\n", *(int *)v); 484 485 return 0; 486 } 487 488 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 489 char *buf, size_t nbytes, loff_t off, 490 bool threadgroup) 491 { 492 struct cgroup *cgrp; 493 struct task_struct *task; 494 const struct cred *cred, *tcred; 495 ssize_t ret; 496 bool locked; 497 498 cgrp = cgroup_kn_lock_live(of->kn, false); 499 if (!cgrp) 500 return -ENODEV; 501 502 task = cgroup_procs_write_start(buf, threadgroup, &locked); 503 ret = PTR_ERR_OR_ZERO(task); 504 if (ret) 505 goto out_unlock; 506 507 /* 508 * Even if we're attaching all tasks in the thread group, we only need 509 * to check permissions on one of them. Check permissions using the 510 * credentials from file open to protect against inherited fd attacks. 511 */ 512 cred = of->file->f_cred; 513 tcred = get_task_cred(task); 514 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 515 !uid_eq(cred->euid, tcred->uid) && 516 !uid_eq(cred->euid, tcred->suid)) 517 ret = -EACCES; 518 put_cred(tcred); 519 if (ret) 520 goto out_finish; 521 522 ret = cgroup_attach_task(cgrp, task, threadgroup); 523 524 out_finish: 525 cgroup_procs_write_finish(task, locked); 526 out_unlock: 527 cgroup_kn_unlock(of->kn); 528 529 return ret ?: nbytes; 530 } 531 532 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 533 char *buf, size_t nbytes, loff_t off) 534 { 535 return __cgroup1_procs_write(of, buf, nbytes, off, true); 536 } 537 538 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 539 char *buf, size_t nbytes, loff_t off) 540 { 541 return __cgroup1_procs_write(of, buf, nbytes, off, false); 542 } 543 544 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 545 char *buf, size_t nbytes, loff_t off) 546 { 547 struct cgroup *cgrp; 548 struct cgroup_file_ctx *ctx; 549 550 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 551 552 /* 553 * Release agent gets called with all capabilities, 554 * require capabilities to set release agent. 555 */ 556 ctx = of->priv; 557 if ((ctx->ns->user_ns != &init_user_ns) || 558 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN)) 559 return -EPERM; 560 561 cgrp = cgroup_kn_lock_live(of->kn, false); 562 if (!cgrp) 563 return -ENODEV; 564 spin_lock(&release_agent_path_lock); 565 strscpy(cgrp->root->release_agent_path, strstrip(buf), 566 sizeof(cgrp->root->release_agent_path)); 567 spin_unlock(&release_agent_path_lock); 568 cgroup_kn_unlock(of->kn); 569 return nbytes; 570 } 571 572 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 573 { 574 struct cgroup *cgrp = seq_css(seq)->cgroup; 575 576 spin_lock(&release_agent_path_lock); 577 seq_puts(seq, cgrp->root->release_agent_path); 578 spin_unlock(&release_agent_path_lock); 579 seq_putc(seq, '\n'); 580 return 0; 581 } 582 583 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 584 { 585 seq_puts(seq, "0\n"); 586 return 0; 587 } 588 589 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 590 struct cftype *cft) 591 { 592 return notify_on_release(css->cgroup); 593 } 594 595 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 596 struct cftype *cft, u64 val) 597 { 598 if (val) 599 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 600 else 601 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 602 return 0; 603 } 604 605 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 606 struct cftype *cft) 607 { 608 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 609 } 610 611 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 612 struct cftype *cft, u64 val) 613 { 614 if (val) 615 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 616 else 617 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 618 return 0; 619 } 620 621 /* cgroup core interface files for the legacy hierarchies */ 622 struct cftype cgroup1_base_files[] = { 623 { 624 .name = "cgroup.procs", 625 .seq_start = cgroup_pidlist_start, 626 .seq_next = cgroup_pidlist_next, 627 .seq_stop = cgroup_pidlist_stop, 628 .seq_show = cgroup_pidlist_show, 629 .private = CGROUP_FILE_PROCS, 630 .write = cgroup1_procs_write, 631 }, 632 { 633 .name = "cgroup.clone_children", 634 .read_u64 = cgroup_clone_children_read, 635 .write_u64 = cgroup_clone_children_write, 636 }, 637 { 638 .name = "cgroup.sane_behavior", 639 .flags = CFTYPE_ONLY_ON_ROOT, 640 .seq_show = cgroup_sane_behavior_show, 641 }, 642 { 643 .name = "tasks", 644 .seq_start = cgroup_pidlist_start, 645 .seq_next = cgroup_pidlist_next, 646 .seq_stop = cgroup_pidlist_stop, 647 .seq_show = cgroup_pidlist_show, 648 .private = CGROUP_FILE_TASKS, 649 .write = cgroup1_tasks_write, 650 }, 651 { 652 .name = "notify_on_release", 653 .read_u64 = cgroup_read_notify_on_release, 654 .write_u64 = cgroup_write_notify_on_release, 655 }, 656 { 657 .name = "release_agent", 658 .flags = CFTYPE_ONLY_ON_ROOT, 659 .seq_show = cgroup_release_agent_show, 660 .write = cgroup_release_agent_write, 661 .max_write_len = PATH_MAX - 1, 662 }, 663 { } /* terminate */ 664 }; 665 666 /* Display information about each subsystem and each hierarchy */ 667 int proc_cgroupstats_show(struct seq_file *m, void *v) 668 { 669 struct cgroup_subsys *ss; 670 int i; 671 672 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 673 /* 674 * Grab the subsystems state racily. No need to add avenue to 675 * cgroup_mutex contention. 676 */ 677 678 for_each_subsys(ss, i) 679 seq_printf(m, "%s\t%d\t%d\t%d\n", 680 ss->legacy_name, ss->root->hierarchy_id, 681 atomic_read(&ss->root->nr_cgrps), 682 cgroup_ssid_enabled(i)); 683 684 return 0; 685 } 686 687 /** 688 * cgroupstats_build - build and fill cgroupstats 689 * @stats: cgroupstats to fill information into 690 * @dentry: A dentry entry belonging to the cgroup for which stats have 691 * been requested. 692 * 693 * Build and fill cgroupstats so that taskstats can export it to user 694 * space. 695 * 696 * Return: %0 on success or a negative errno code on failure 697 */ 698 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 699 { 700 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 701 struct cgroup *cgrp; 702 struct css_task_iter it; 703 struct task_struct *tsk; 704 705 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 706 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 707 kernfs_type(kn) != KERNFS_DIR) 708 return -EINVAL; 709 710 /* 711 * We aren't being called from kernfs and there's no guarantee on 712 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 713 * @kn->priv is RCU safe. Let's do the RCU dancing. 714 */ 715 rcu_read_lock(); 716 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 717 if (!cgrp || !cgroup_tryget(cgrp)) { 718 rcu_read_unlock(); 719 return -ENOENT; 720 } 721 rcu_read_unlock(); 722 723 css_task_iter_start(&cgrp->self, 0, &it); 724 while ((tsk = css_task_iter_next(&it))) { 725 switch (READ_ONCE(tsk->__state)) { 726 case TASK_RUNNING: 727 stats->nr_running++; 728 break; 729 case TASK_INTERRUPTIBLE: 730 stats->nr_sleeping++; 731 break; 732 case TASK_UNINTERRUPTIBLE: 733 stats->nr_uninterruptible++; 734 break; 735 case TASK_STOPPED: 736 stats->nr_stopped++; 737 break; 738 default: 739 if (tsk->in_iowait) 740 stats->nr_io_wait++; 741 break; 742 } 743 } 744 css_task_iter_end(&it); 745 746 cgroup_put(cgrp); 747 return 0; 748 } 749 750 void cgroup1_check_for_release(struct cgroup *cgrp) 751 { 752 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 753 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 754 schedule_work(&cgrp->release_agent_work); 755 } 756 757 /* 758 * Notify userspace when a cgroup is released, by running the 759 * configured release agent with the name of the cgroup (path 760 * relative to the root of cgroup file system) as the argument. 761 * 762 * Most likely, this user command will try to rmdir this cgroup. 763 * 764 * This races with the possibility that some other task will be 765 * attached to this cgroup before it is removed, or that some other 766 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 767 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 768 * unused, and this cgroup will be reprieved from its death sentence, 769 * to continue to serve a useful existence. Next time it's released, 770 * we will get notified again, if it still has 'notify_on_release' set. 771 * 772 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 773 * means only wait until the task is successfully execve()'d. The 774 * separate release agent task is forked by call_usermodehelper(), 775 * then control in this thread returns here, without waiting for the 776 * release agent task. We don't bother to wait because the caller of 777 * this routine has no use for the exit status of the release agent 778 * task, so no sense holding our caller up for that. 779 */ 780 void cgroup1_release_agent(struct work_struct *work) 781 { 782 struct cgroup *cgrp = 783 container_of(work, struct cgroup, release_agent_work); 784 char *pathbuf, *agentbuf; 785 char *argv[3], *envp[3]; 786 int ret; 787 788 /* snoop agent path and exit early if empty */ 789 if (!cgrp->root->release_agent_path[0]) 790 return; 791 792 /* prepare argument buffers */ 793 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 794 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); 795 if (!pathbuf || !agentbuf) 796 goto out_free; 797 798 spin_lock(&release_agent_path_lock); 799 strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); 800 spin_unlock(&release_agent_path_lock); 801 if (!agentbuf[0]) 802 goto out_free; 803 804 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 805 if (ret < 0 || ret >= PATH_MAX) 806 goto out_free; 807 808 argv[0] = agentbuf; 809 argv[1] = pathbuf; 810 argv[2] = NULL; 811 812 /* minimal command environment */ 813 envp[0] = "HOME=/"; 814 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 815 envp[2] = NULL; 816 817 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 818 out_free: 819 kfree(agentbuf); 820 kfree(pathbuf); 821 } 822 823 /* 824 * cgroup_rename - Only allow simple rename of directories in place. 825 */ 826 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 827 const char *new_name_str) 828 { 829 struct cgroup *cgrp = kn->priv; 830 int ret; 831 832 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 833 if (strchr(new_name_str, '\n')) 834 return -EINVAL; 835 836 if (kernfs_type(kn) != KERNFS_DIR) 837 return -ENOTDIR; 838 if (kn->parent != new_parent) 839 return -EIO; 840 841 /* 842 * We're gonna grab cgroup_mutex which nests outside kernfs 843 * active_ref. kernfs_rename() doesn't require active_ref 844 * protection. Break them before grabbing cgroup_mutex. 845 */ 846 kernfs_break_active_protection(new_parent); 847 kernfs_break_active_protection(kn); 848 849 cgroup_lock(); 850 851 ret = kernfs_rename(kn, new_parent, new_name_str); 852 if (!ret) 853 TRACE_CGROUP_PATH(rename, cgrp); 854 855 cgroup_unlock(); 856 857 kernfs_unbreak_active_protection(kn); 858 kernfs_unbreak_active_protection(new_parent); 859 return ret; 860 } 861 862 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 863 { 864 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 865 struct cgroup_subsys *ss; 866 int ssid; 867 868 for_each_subsys(ss, ssid) 869 if (root->subsys_mask & (1 << ssid)) 870 seq_show_option(seq, ss->legacy_name, NULL); 871 if (root->flags & CGRP_ROOT_NOPREFIX) 872 seq_puts(seq, ",noprefix"); 873 if (root->flags & CGRP_ROOT_XATTR) 874 seq_puts(seq, ",xattr"); 875 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 876 seq_puts(seq, ",cpuset_v2_mode"); 877 if (root->flags & CGRP_ROOT_FAVOR_DYNMODS) 878 seq_puts(seq, ",favordynmods"); 879 880 spin_lock(&release_agent_path_lock); 881 if (strlen(root->release_agent_path)) 882 seq_show_option(seq, "release_agent", 883 root->release_agent_path); 884 spin_unlock(&release_agent_path_lock); 885 886 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 887 seq_puts(seq, ",clone_children"); 888 if (strlen(root->name)) 889 seq_show_option(seq, "name", root->name); 890 return 0; 891 } 892 893 enum cgroup1_param { 894 Opt_all, 895 Opt_clone_children, 896 Opt_cpuset_v2_mode, 897 Opt_name, 898 Opt_none, 899 Opt_noprefix, 900 Opt_release_agent, 901 Opt_xattr, 902 Opt_favordynmods, 903 Opt_nofavordynmods, 904 }; 905 906 const struct fs_parameter_spec cgroup1_fs_parameters[] = { 907 fsparam_flag ("all", Opt_all), 908 fsparam_flag ("clone_children", Opt_clone_children), 909 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 910 fsparam_string("name", Opt_name), 911 fsparam_flag ("none", Opt_none), 912 fsparam_flag ("noprefix", Opt_noprefix), 913 fsparam_string("release_agent", Opt_release_agent), 914 fsparam_flag ("xattr", Opt_xattr), 915 fsparam_flag ("favordynmods", Opt_favordynmods), 916 fsparam_flag ("nofavordynmods", Opt_nofavordynmods), 917 {} 918 }; 919 920 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 921 { 922 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 923 struct cgroup_subsys *ss; 924 struct fs_parse_result result; 925 int opt, i; 926 927 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 928 if (opt == -ENOPARAM) { 929 int ret; 930 931 ret = vfs_parse_fs_param_source(fc, param); 932 if (ret != -ENOPARAM) 933 return ret; 934 for_each_subsys(ss, i) { 935 if (strcmp(param->key, ss->legacy_name)) 936 continue; 937 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) 938 return invalfc(fc, "Disabled controller '%s'", 939 param->key); 940 ctx->subsys_mask |= (1 << i); 941 return 0; 942 } 943 return invalfc(fc, "Unknown subsys name '%s'", param->key); 944 } 945 if (opt < 0) 946 return opt; 947 948 switch (opt) { 949 case Opt_none: 950 /* Explicitly have no subsystems */ 951 ctx->none = true; 952 break; 953 case Opt_all: 954 ctx->all_ss = true; 955 break; 956 case Opt_noprefix: 957 ctx->flags |= CGRP_ROOT_NOPREFIX; 958 break; 959 case Opt_clone_children: 960 ctx->cpuset_clone_children = true; 961 break; 962 case Opt_cpuset_v2_mode: 963 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 964 break; 965 case Opt_xattr: 966 ctx->flags |= CGRP_ROOT_XATTR; 967 break; 968 case Opt_favordynmods: 969 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 970 break; 971 case Opt_nofavordynmods: 972 ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 973 break; 974 case Opt_release_agent: 975 /* Specifying two release agents is forbidden */ 976 if (ctx->release_agent) 977 return invalfc(fc, "release_agent respecified"); 978 /* 979 * Release agent gets called with all capabilities, 980 * require capabilities to set release agent. 981 */ 982 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) 983 return invalfc(fc, "Setting release_agent not allowed"); 984 ctx->release_agent = param->string; 985 param->string = NULL; 986 break; 987 case Opt_name: 988 /* blocked by boot param? */ 989 if (cgroup_no_v1_named) 990 return -ENOENT; 991 /* Can't specify an empty name */ 992 if (!param->size) 993 return invalfc(fc, "Empty name"); 994 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 995 return invalfc(fc, "Name too long"); 996 /* Must match [\w.-]+ */ 997 for (i = 0; i < param->size; i++) { 998 char c = param->string[i]; 999 if (isalnum(c)) 1000 continue; 1001 if ((c == '.') || (c == '-') || (c == '_')) 1002 continue; 1003 return invalfc(fc, "Invalid name"); 1004 } 1005 /* Specifying two names is forbidden */ 1006 if (ctx->name) 1007 return invalfc(fc, "name respecified"); 1008 ctx->name = param->string; 1009 param->string = NULL; 1010 break; 1011 } 1012 return 0; 1013 } 1014 1015 static int check_cgroupfs_options(struct fs_context *fc) 1016 { 1017 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1018 u16 mask = U16_MAX; 1019 u16 enabled = 0; 1020 struct cgroup_subsys *ss; 1021 int i; 1022 1023 #ifdef CONFIG_CPUSETS 1024 mask = ~((u16)1 << cpuset_cgrp_id); 1025 #endif 1026 for_each_subsys(ss, i) 1027 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 1028 enabled |= 1 << i; 1029 1030 ctx->subsys_mask &= enabled; 1031 1032 /* 1033 * In absence of 'none', 'name=' and subsystem name options, 1034 * let's default to 'all'. 1035 */ 1036 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1037 ctx->all_ss = true; 1038 1039 if (ctx->all_ss) { 1040 /* Mutually exclusive option 'all' + subsystem name */ 1041 if (ctx->subsys_mask) 1042 return invalfc(fc, "subsys name conflicts with all"); 1043 /* 'all' => select all the subsystems */ 1044 ctx->subsys_mask = enabled; 1045 } 1046 1047 /* 1048 * We either have to specify by name or by subsystems. (So all 1049 * empty hierarchies must have a name). 1050 */ 1051 if (!ctx->subsys_mask && !ctx->name) 1052 return invalfc(fc, "Need name or subsystem set"); 1053 1054 /* 1055 * Option noprefix was introduced just for backward compatibility 1056 * with the old cpuset, so we allow noprefix only if mounting just 1057 * the cpuset subsystem. 1058 */ 1059 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1060 return invalfc(fc, "noprefix used incorrectly"); 1061 1062 /* Can't specify "none" and some subsystems */ 1063 if (ctx->subsys_mask && ctx->none) 1064 return invalfc(fc, "none used incorrectly"); 1065 1066 return 0; 1067 } 1068 1069 int cgroup1_reconfigure(struct fs_context *fc) 1070 { 1071 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1072 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1073 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1074 int ret = 0; 1075 u16 added_mask, removed_mask; 1076 1077 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1078 1079 /* See what subsystems are wanted */ 1080 ret = check_cgroupfs_options(fc); 1081 if (ret) 1082 goto out_unlock; 1083 1084 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1085 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1086 task_tgid_nr(current), current->comm); 1087 1088 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1089 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1090 1091 /* Don't allow flags or name to change at remount */ 1092 if ((ctx->flags ^ root->flags) || 1093 (ctx->name && strcmp(ctx->name, root->name))) { 1094 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1095 ctx->flags, ctx->name ?: "", root->flags, root->name); 1096 ret = -EINVAL; 1097 goto out_unlock; 1098 } 1099 1100 /* remounting is not allowed for populated hierarchies */ 1101 if (!list_empty(&root->cgrp.self.children)) { 1102 ret = -EBUSY; 1103 goto out_unlock; 1104 } 1105 1106 ret = rebind_subsystems(root, added_mask); 1107 if (ret) 1108 goto out_unlock; 1109 1110 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1111 1112 if (ctx->release_agent) { 1113 spin_lock(&release_agent_path_lock); 1114 strcpy(root->release_agent_path, ctx->release_agent); 1115 spin_unlock(&release_agent_path_lock); 1116 } 1117 1118 trace_cgroup_remount(root); 1119 1120 out_unlock: 1121 cgroup_unlock(); 1122 return ret; 1123 } 1124 1125 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1126 .rename = cgroup1_rename, 1127 .show_options = cgroup1_show_options, 1128 .mkdir = cgroup_mkdir, 1129 .rmdir = cgroup_rmdir, 1130 .show_path = cgroup_show_path, 1131 }; 1132 1133 /* 1134 * The guts of cgroup1 mount - find or create cgroup_root to use. 1135 * Called with cgroup_mutex held; returns 0 on success, -E... on 1136 * error and positive - in case when the candidate is busy dying. 1137 * On success it stashes a reference to cgroup_root into given 1138 * cgroup_fs_context; that reference is *NOT* counting towards the 1139 * cgroup_root refcount. 1140 */ 1141 static int cgroup1_root_to_use(struct fs_context *fc) 1142 { 1143 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1144 struct cgroup_root *root; 1145 struct cgroup_subsys *ss; 1146 int i, ret; 1147 1148 /* First find the desired set of subsystems */ 1149 ret = check_cgroupfs_options(fc); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * Destruction of cgroup root is asynchronous, so subsystems may 1155 * still be dying after the previous unmount. Let's drain the 1156 * dying subsystems. We just need to ensure that the ones 1157 * unmounted previously finish dying and don't care about new ones 1158 * starting. Testing ref liveliness is good enough. 1159 */ 1160 for_each_subsys(ss, i) { 1161 if (!(ctx->subsys_mask & (1 << i)) || 1162 ss->root == &cgrp_dfl_root) 1163 continue; 1164 1165 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1166 return 1; /* restart */ 1167 cgroup_put(&ss->root->cgrp); 1168 } 1169 1170 for_each_root(root) { 1171 bool name_match = false; 1172 1173 if (root == &cgrp_dfl_root) 1174 continue; 1175 1176 /* 1177 * If we asked for a name then it must match. Also, if 1178 * name matches but sybsys_mask doesn't, we should fail. 1179 * Remember whether name matched. 1180 */ 1181 if (ctx->name) { 1182 if (strcmp(ctx->name, root->name)) 1183 continue; 1184 name_match = true; 1185 } 1186 1187 /* 1188 * If we asked for subsystems (or explicitly for no 1189 * subsystems) then they must match. 1190 */ 1191 if ((ctx->subsys_mask || ctx->none) && 1192 (ctx->subsys_mask != root->subsys_mask)) { 1193 if (!name_match) 1194 continue; 1195 return -EBUSY; 1196 } 1197 1198 if (root->flags ^ ctx->flags) 1199 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1200 1201 ctx->root = root; 1202 return 0; 1203 } 1204 1205 /* 1206 * No such thing, create a new one. name= matching without subsys 1207 * specification is allowed for already existing hierarchies but we 1208 * can't create new one without subsys specification. 1209 */ 1210 if (!ctx->subsys_mask && !ctx->none) 1211 return invalfc(fc, "No subsys list or none specified"); 1212 1213 /* Hierarchies may only be created in the initial cgroup namespace. */ 1214 if (ctx->ns != &init_cgroup_ns) 1215 return -EPERM; 1216 1217 root = kzalloc(sizeof(*root), GFP_KERNEL); 1218 if (!root) 1219 return -ENOMEM; 1220 1221 ctx->root = root; 1222 init_cgroup_root(ctx); 1223 1224 ret = cgroup_setup_root(root, ctx->subsys_mask); 1225 if (!ret) 1226 cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS); 1227 else 1228 cgroup_free_root(root); 1229 1230 return ret; 1231 } 1232 1233 int cgroup1_get_tree(struct fs_context *fc) 1234 { 1235 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1236 int ret; 1237 1238 /* Check if the caller has permission to mount. */ 1239 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1240 return -EPERM; 1241 1242 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1243 1244 ret = cgroup1_root_to_use(fc); 1245 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1246 ret = 1; /* restart */ 1247 1248 cgroup_unlock(); 1249 1250 if (!ret) 1251 ret = cgroup_do_get_tree(fc); 1252 1253 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1254 fc_drop_locked(fc); 1255 ret = 1; 1256 } 1257 1258 if (unlikely(ret > 0)) { 1259 msleep(10); 1260 return restart_syscall(); 1261 } 1262 return ret; 1263 } 1264 1265 static int __init cgroup1_wq_init(void) 1266 { 1267 /* 1268 * Used to destroy pidlists and separate to serve as flush domain. 1269 * Cap @max_active to 1 too. 1270 */ 1271 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1272 0, 1); 1273 BUG_ON(!cgroup_pidlist_destroy_wq); 1274 return 0; 1275 } 1276 core_initcall(cgroup1_wq_init); 1277 1278 static int __init cgroup_no_v1(char *str) 1279 { 1280 struct cgroup_subsys *ss; 1281 char *token; 1282 int i; 1283 1284 while ((token = strsep(&str, ",")) != NULL) { 1285 if (!*token) 1286 continue; 1287 1288 if (!strcmp(token, "all")) { 1289 cgroup_no_v1_mask = U16_MAX; 1290 continue; 1291 } 1292 1293 if (!strcmp(token, "named")) { 1294 cgroup_no_v1_named = true; 1295 continue; 1296 } 1297 1298 for_each_subsys(ss, i) { 1299 if (strcmp(token, ss->name) && 1300 strcmp(token, ss->legacy_name)) 1301 continue; 1302 1303 cgroup_no_v1_mask |= 1 << i; 1304 } 1305 } 1306 return 1; 1307 } 1308 __setup("cgroup_no_v1=", cgroup_no_v1); 1309