1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 /* 22 * pidlists linger the following amount before being destroyed. The goal 23 * is avoiding frequent destruction in the middle of consecutive read calls 24 * Expiring in the middle is a performance problem not a correctness one. 25 * 1 sec should be enough. 26 */ 27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 28 29 /* Controllers blocked by the commandline in v1 */ 30 static u16 cgroup_no_v1_mask; 31 32 /* disable named v1 mounts */ 33 static bool cgroup_no_v1_named; 34 35 /* 36 * pidlist destructions need to be flushed on cgroup destruction. Use a 37 * separate workqueue as flush domain. 38 */ 39 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 40 41 /* protects cgroup_subsys->release_agent_path */ 42 static DEFINE_SPINLOCK(release_agent_path_lock); 43 44 bool cgroup1_ssid_disabled(int ssid) 45 { 46 return cgroup_no_v1_mask & (1 << ssid); 47 } 48 49 /** 50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 51 * @from: attach to all cgroups of a given task 52 * @tsk: the task to be attached 53 * 54 * Return: %0 on success or a negative errno code on failure 55 */ 56 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 57 { 58 struct cgroup_root *root; 59 int retval = 0; 60 61 mutex_lock(&cgroup_mutex); 62 percpu_down_write(&cgroup_threadgroup_rwsem); 63 for_each_root(root) { 64 struct cgroup *from_cgrp; 65 66 spin_lock_irq(&css_set_lock); 67 from_cgrp = task_cgroup_from_root(from, root); 68 spin_unlock_irq(&css_set_lock); 69 70 retval = cgroup_attach_task(from_cgrp, tsk, false); 71 if (retval) 72 break; 73 } 74 percpu_up_write(&cgroup_threadgroup_rwsem); 75 mutex_unlock(&cgroup_mutex); 76 77 return retval; 78 } 79 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 80 81 /** 82 * cgroup_transfer_tasks - move tasks from one cgroup to another 83 * @to: cgroup to which the tasks will be moved 84 * @from: cgroup in which the tasks currently reside 85 * 86 * Locking rules between cgroup_post_fork() and the migration path 87 * guarantee that, if a task is forking while being migrated, the new child 88 * is guaranteed to be either visible in the source cgroup after the 89 * parent's migration is complete or put into the target cgroup. No task 90 * can slip out of migration through forking. 91 * 92 * Return: %0 on success or a negative errno code on failure 93 */ 94 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 95 { 96 DEFINE_CGROUP_MGCTX(mgctx); 97 struct cgrp_cset_link *link; 98 struct css_task_iter it; 99 struct task_struct *task; 100 int ret; 101 102 if (cgroup_on_dfl(to)) 103 return -EINVAL; 104 105 ret = cgroup_migrate_vet_dst(to); 106 if (ret) 107 return ret; 108 109 mutex_lock(&cgroup_mutex); 110 111 percpu_down_write(&cgroup_threadgroup_rwsem); 112 113 /* all tasks in @from are being moved, all csets are source */ 114 spin_lock_irq(&css_set_lock); 115 list_for_each_entry(link, &from->cset_links, cset_link) 116 cgroup_migrate_add_src(link->cset, to, &mgctx); 117 spin_unlock_irq(&css_set_lock); 118 119 ret = cgroup_migrate_prepare_dst(&mgctx); 120 if (ret) 121 goto out_err; 122 123 /* 124 * Migrate tasks one-by-one until @from is empty. This fails iff 125 * ->can_attach() fails. 126 */ 127 do { 128 css_task_iter_start(&from->self, 0, &it); 129 130 do { 131 task = css_task_iter_next(&it); 132 } while (task && (task->flags & PF_EXITING)); 133 134 if (task) 135 get_task_struct(task); 136 css_task_iter_end(&it); 137 138 if (task) { 139 ret = cgroup_migrate(task, false, &mgctx); 140 if (!ret) 141 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 142 put_task_struct(task); 143 } 144 } while (task && !ret); 145 out_err: 146 cgroup_migrate_finish(&mgctx); 147 percpu_up_write(&cgroup_threadgroup_rwsem); 148 mutex_unlock(&cgroup_mutex); 149 return ret; 150 } 151 152 /* 153 * Stuff for reading the 'tasks'/'procs' files. 154 * 155 * Reading this file can return large amounts of data if a cgroup has 156 * *lots* of attached tasks. So it may need several calls to read(), 157 * but we cannot guarantee that the information we produce is correct 158 * unless we produce it entirely atomically. 159 * 160 */ 161 162 /* which pidlist file are we talking about? */ 163 enum cgroup_filetype { 164 CGROUP_FILE_PROCS, 165 CGROUP_FILE_TASKS, 166 }; 167 168 /* 169 * A pidlist is a list of pids that virtually represents the contents of one 170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 171 * a pair (one each for procs, tasks) for each pid namespace that's relevant 172 * to the cgroup. 173 */ 174 struct cgroup_pidlist { 175 /* 176 * used to find which pidlist is wanted. doesn't change as long as 177 * this particular list stays in the list. 178 */ 179 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 180 /* array of xids */ 181 pid_t *list; 182 /* how many elements the above list has */ 183 int length; 184 /* each of these stored in a list by its cgroup */ 185 struct list_head links; 186 /* pointer to the cgroup we belong to, for list removal purposes */ 187 struct cgroup *owner; 188 /* for delayed destruction */ 189 struct delayed_work destroy_dwork; 190 }; 191 192 /* 193 * Used to destroy all pidlists lingering waiting for destroy timer. None 194 * should be left afterwards. 195 */ 196 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 197 { 198 struct cgroup_pidlist *l, *tmp_l; 199 200 mutex_lock(&cgrp->pidlist_mutex); 201 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 202 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 203 mutex_unlock(&cgrp->pidlist_mutex); 204 205 flush_workqueue(cgroup_pidlist_destroy_wq); 206 BUG_ON(!list_empty(&cgrp->pidlists)); 207 } 208 209 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 210 { 211 struct delayed_work *dwork = to_delayed_work(work); 212 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 213 destroy_dwork); 214 struct cgroup_pidlist *tofree = NULL; 215 216 mutex_lock(&l->owner->pidlist_mutex); 217 218 /* 219 * Destroy iff we didn't get queued again. The state won't change 220 * as destroy_dwork can only be queued while locked. 221 */ 222 if (!delayed_work_pending(dwork)) { 223 list_del(&l->links); 224 kvfree(l->list); 225 put_pid_ns(l->key.ns); 226 tofree = l; 227 } 228 229 mutex_unlock(&l->owner->pidlist_mutex); 230 kfree(tofree); 231 } 232 233 /* 234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 235 * Returns the number of unique elements. 236 */ 237 static int pidlist_uniq(pid_t *list, int length) 238 { 239 int src, dest = 1; 240 241 /* 242 * we presume the 0th element is unique, so i starts at 1. trivial 243 * edge cases first; no work needs to be done for either 244 */ 245 if (length == 0 || length == 1) 246 return length; 247 /* src and dest walk down the list; dest counts unique elements */ 248 for (src = 1; src < length; src++) { 249 /* find next unique element */ 250 while (list[src] == list[src-1]) { 251 src++; 252 if (src == length) 253 goto after; 254 } 255 /* dest always points to where the next unique element goes */ 256 list[dest] = list[src]; 257 dest++; 258 } 259 after: 260 return dest; 261 } 262 263 /* 264 * The two pid files - task and cgroup.procs - guaranteed that the result 265 * is sorted, which forced this whole pidlist fiasco. As pid order is 266 * different per namespace, each namespace needs differently sorted list, 267 * making it impossible to use, for example, single rbtree of member tasks 268 * sorted by task pointer. As pidlists can be fairly large, allocating one 269 * per open file is dangerous, so cgroup had to implement shared pool of 270 * pidlists keyed by cgroup and namespace. 271 */ 272 static int cmppid(const void *a, const void *b) 273 { 274 return *(pid_t *)a - *(pid_t *)b; 275 } 276 277 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 278 enum cgroup_filetype type) 279 { 280 struct cgroup_pidlist *l; 281 /* don't need task_nsproxy() if we're looking at ourself */ 282 struct pid_namespace *ns = task_active_pid_ns(current); 283 284 lockdep_assert_held(&cgrp->pidlist_mutex); 285 286 list_for_each_entry(l, &cgrp->pidlists, links) 287 if (l->key.type == type && l->key.ns == ns) 288 return l; 289 return NULL; 290 } 291 292 /* 293 * find the appropriate pidlist for our purpose (given procs vs tasks) 294 * returns with the lock on that pidlist already held, and takes care 295 * of the use count, or returns NULL with no locks held if we're out of 296 * memory. 297 */ 298 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 299 enum cgroup_filetype type) 300 { 301 struct cgroup_pidlist *l; 302 303 lockdep_assert_held(&cgrp->pidlist_mutex); 304 305 l = cgroup_pidlist_find(cgrp, type); 306 if (l) 307 return l; 308 309 /* entry not found; create a new one */ 310 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 311 if (!l) 312 return l; 313 314 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 315 l->key.type = type; 316 /* don't need task_nsproxy() if we're looking at ourself */ 317 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 318 l->owner = cgrp; 319 list_add(&l->links, &cgrp->pidlists); 320 return l; 321 } 322 323 /* 324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 325 */ 326 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 327 struct cgroup_pidlist **lp) 328 { 329 pid_t *array; 330 int length; 331 int pid, n = 0; /* used for populating the array */ 332 struct css_task_iter it; 333 struct task_struct *tsk; 334 struct cgroup_pidlist *l; 335 336 lockdep_assert_held(&cgrp->pidlist_mutex); 337 338 /* 339 * If cgroup gets more users after we read count, we won't have 340 * enough space - tough. This race is indistinguishable to the 341 * caller from the case that the additional cgroup users didn't 342 * show up until sometime later on. 343 */ 344 length = cgroup_task_count(cgrp); 345 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 346 if (!array) 347 return -ENOMEM; 348 /* now, populate the array */ 349 css_task_iter_start(&cgrp->self, 0, &it); 350 while ((tsk = css_task_iter_next(&it))) { 351 if (unlikely(n == length)) 352 break; 353 /* get tgid or pid for procs or tasks file respectively */ 354 if (type == CGROUP_FILE_PROCS) 355 pid = task_tgid_vnr(tsk); 356 else 357 pid = task_pid_vnr(tsk); 358 if (pid > 0) /* make sure to only use valid results */ 359 array[n++] = pid; 360 } 361 css_task_iter_end(&it); 362 length = n; 363 /* now sort & (if procs) strip out duplicates */ 364 sort(array, length, sizeof(pid_t), cmppid, NULL); 365 if (type == CGROUP_FILE_PROCS) 366 length = pidlist_uniq(array, length); 367 368 l = cgroup_pidlist_find_create(cgrp, type); 369 if (!l) { 370 kvfree(array); 371 return -ENOMEM; 372 } 373 374 /* store array, freeing old if necessary */ 375 kvfree(l->list); 376 l->list = array; 377 l->length = length; 378 *lp = l; 379 return 0; 380 } 381 382 /* 383 * seq_file methods for the tasks/procs files. The seq_file position is the 384 * next pid to display; the seq_file iterator is a pointer to the pid 385 * in the cgroup->l->list array. 386 */ 387 388 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 389 { 390 /* 391 * Initially we receive a position value that corresponds to 392 * one more than the last pid shown (or 0 on the first call or 393 * after a seek to the start). Use a binary-search to find the 394 * next pid to display, if any 395 */ 396 struct kernfs_open_file *of = s->private; 397 struct cgroup_file_ctx *ctx = of->priv; 398 struct cgroup *cgrp = seq_css(s)->cgroup; 399 struct cgroup_pidlist *l; 400 enum cgroup_filetype type = seq_cft(s)->private; 401 int index = 0, pid = *pos; 402 int *iter, ret; 403 404 mutex_lock(&cgrp->pidlist_mutex); 405 406 /* 407 * !NULL @ctx->procs1.pidlist indicates that this isn't the first 408 * start() after open. If the matching pidlist is around, we can use 409 * that. Look for it. Note that @ctx->procs1.pidlist can't be used 410 * directly. It could already have been destroyed. 411 */ 412 if (ctx->procs1.pidlist) 413 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); 414 415 /* 416 * Either this is the first start() after open or the matching 417 * pidlist has been destroyed inbetween. Create a new one. 418 */ 419 if (!ctx->procs1.pidlist) { 420 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); 421 if (ret) 422 return ERR_PTR(ret); 423 } 424 l = ctx->procs1.pidlist; 425 426 if (pid) { 427 int end = l->length; 428 429 while (index < end) { 430 int mid = (index + end) / 2; 431 if (l->list[mid] == pid) { 432 index = mid; 433 break; 434 } else if (l->list[mid] <= pid) 435 index = mid + 1; 436 else 437 end = mid; 438 } 439 } 440 /* If we're off the end of the array, we're done */ 441 if (index >= l->length) 442 return NULL; 443 /* Update the abstract position to be the actual pid that we found */ 444 iter = l->list + index; 445 *pos = *iter; 446 return iter; 447 } 448 449 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 450 { 451 struct kernfs_open_file *of = s->private; 452 struct cgroup_file_ctx *ctx = of->priv; 453 struct cgroup_pidlist *l = ctx->procs1.pidlist; 454 455 if (l) 456 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 457 CGROUP_PIDLIST_DESTROY_DELAY); 458 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 459 } 460 461 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 462 { 463 struct kernfs_open_file *of = s->private; 464 struct cgroup_file_ctx *ctx = of->priv; 465 struct cgroup_pidlist *l = ctx->procs1.pidlist; 466 pid_t *p = v; 467 pid_t *end = l->list + l->length; 468 /* 469 * Advance to the next pid in the array. If this goes off the 470 * end, we're done 471 */ 472 p++; 473 if (p >= end) { 474 (*pos)++; 475 return NULL; 476 } else { 477 *pos = *p; 478 return p; 479 } 480 } 481 482 static int cgroup_pidlist_show(struct seq_file *s, void *v) 483 { 484 seq_printf(s, "%d\n", *(int *)v); 485 486 return 0; 487 } 488 489 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 490 char *buf, size_t nbytes, loff_t off, 491 bool threadgroup) 492 { 493 struct cgroup *cgrp; 494 struct task_struct *task; 495 const struct cred *cred, *tcred; 496 ssize_t ret; 497 bool locked; 498 499 cgrp = cgroup_kn_lock_live(of->kn, false); 500 if (!cgrp) 501 return -ENODEV; 502 503 task = cgroup_procs_write_start(buf, threadgroup, &locked); 504 ret = PTR_ERR_OR_ZERO(task); 505 if (ret) 506 goto out_unlock; 507 508 /* 509 * Even if we're attaching all tasks in the thread group, we only need 510 * to check permissions on one of them. Check permissions using the 511 * credentials from file open to protect against inherited fd attacks. 512 */ 513 cred = of->file->f_cred; 514 tcred = get_task_cred(task); 515 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 516 !uid_eq(cred->euid, tcred->uid) && 517 !uid_eq(cred->euid, tcred->suid)) 518 ret = -EACCES; 519 put_cred(tcred); 520 if (ret) 521 goto out_finish; 522 523 ret = cgroup_attach_task(cgrp, task, threadgroup); 524 525 out_finish: 526 cgroup_procs_write_finish(task, locked); 527 out_unlock: 528 cgroup_kn_unlock(of->kn); 529 530 return ret ?: nbytes; 531 } 532 533 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 534 char *buf, size_t nbytes, loff_t off) 535 { 536 return __cgroup1_procs_write(of, buf, nbytes, off, true); 537 } 538 539 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 540 char *buf, size_t nbytes, loff_t off) 541 { 542 return __cgroup1_procs_write(of, buf, nbytes, off, false); 543 } 544 545 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 546 char *buf, size_t nbytes, loff_t off) 547 { 548 struct cgroup *cgrp; 549 550 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 551 552 /* 553 * Release agent gets called with all capabilities, 554 * require capabilities to set release agent. 555 */ 556 if ((of->file->f_cred->user_ns != &init_user_ns) || 557 !capable(CAP_SYS_ADMIN)) 558 return -EPERM; 559 560 cgrp = cgroup_kn_lock_live(of->kn, false); 561 if (!cgrp) 562 return -ENODEV; 563 spin_lock(&release_agent_path_lock); 564 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 565 sizeof(cgrp->root->release_agent_path)); 566 spin_unlock(&release_agent_path_lock); 567 cgroup_kn_unlock(of->kn); 568 return nbytes; 569 } 570 571 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 572 { 573 struct cgroup *cgrp = seq_css(seq)->cgroup; 574 575 spin_lock(&release_agent_path_lock); 576 seq_puts(seq, cgrp->root->release_agent_path); 577 spin_unlock(&release_agent_path_lock); 578 seq_putc(seq, '\n'); 579 return 0; 580 } 581 582 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 583 { 584 seq_puts(seq, "0\n"); 585 return 0; 586 } 587 588 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 589 struct cftype *cft) 590 { 591 return notify_on_release(css->cgroup); 592 } 593 594 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 595 struct cftype *cft, u64 val) 596 { 597 if (val) 598 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 599 else 600 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 601 return 0; 602 } 603 604 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 605 struct cftype *cft) 606 { 607 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 608 } 609 610 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 611 struct cftype *cft, u64 val) 612 { 613 if (val) 614 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 615 else 616 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 617 return 0; 618 } 619 620 /* cgroup core interface files for the legacy hierarchies */ 621 struct cftype cgroup1_base_files[] = { 622 { 623 .name = "cgroup.procs", 624 .seq_start = cgroup_pidlist_start, 625 .seq_next = cgroup_pidlist_next, 626 .seq_stop = cgroup_pidlist_stop, 627 .seq_show = cgroup_pidlist_show, 628 .private = CGROUP_FILE_PROCS, 629 .write = cgroup1_procs_write, 630 }, 631 { 632 .name = "cgroup.clone_children", 633 .read_u64 = cgroup_clone_children_read, 634 .write_u64 = cgroup_clone_children_write, 635 }, 636 { 637 .name = "cgroup.sane_behavior", 638 .flags = CFTYPE_ONLY_ON_ROOT, 639 .seq_show = cgroup_sane_behavior_show, 640 }, 641 { 642 .name = "tasks", 643 .seq_start = cgroup_pidlist_start, 644 .seq_next = cgroup_pidlist_next, 645 .seq_stop = cgroup_pidlist_stop, 646 .seq_show = cgroup_pidlist_show, 647 .private = CGROUP_FILE_TASKS, 648 .write = cgroup1_tasks_write, 649 }, 650 { 651 .name = "notify_on_release", 652 .read_u64 = cgroup_read_notify_on_release, 653 .write_u64 = cgroup_write_notify_on_release, 654 }, 655 { 656 .name = "release_agent", 657 .flags = CFTYPE_ONLY_ON_ROOT, 658 .seq_show = cgroup_release_agent_show, 659 .write = cgroup_release_agent_write, 660 .max_write_len = PATH_MAX - 1, 661 }, 662 { } /* terminate */ 663 }; 664 665 /* Display information about each subsystem and each hierarchy */ 666 int proc_cgroupstats_show(struct seq_file *m, void *v) 667 { 668 struct cgroup_subsys *ss; 669 int i; 670 671 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 672 /* 673 * Grab the subsystems state racily. No need to add avenue to 674 * cgroup_mutex contention. 675 */ 676 677 for_each_subsys(ss, i) 678 seq_printf(m, "%s\t%d\t%d\t%d\n", 679 ss->legacy_name, ss->root->hierarchy_id, 680 atomic_read(&ss->root->nr_cgrps), 681 cgroup_ssid_enabled(i)); 682 683 return 0; 684 } 685 686 /** 687 * cgroupstats_build - build and fill cgroupstats 688 * @stats: cgroupstats to fill information into 689 * @dentry: A dentry entry belonging to the cgroup for which stats have 690 * been requested. 691 * 692 * Build and fill cgroupstats so that taskstats can export it to user 693 * space. 694 * 695 * Return: %0 on success or a negative errno code on failure 696 */ 697 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 698 { 699 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 700 struct cgroup *cgrp; 701 struct css_task_iter it; 702 struct task_struct *tsk; 703 704 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 705 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 706 kernfs_type(kn) != KERNFS_DIR) 707 return -EINVAL; 708 709 /* 710 * We aren't being called from kernfs and there's no guarantee on 711 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 712 * @kn->priv is RCU safe. Let's do the RCU dancing. 713 */ 714 rcu_read_lock(); 715 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 716 if (!cgrp || !cgroup_tryget(cgrp)) { 717 rcu_read_unlock(); 718 return -ENOENT; 719 } 720 rcu_read_unlock(); 721 722 css_task_iter_start(&cgrp->self, 0, &it); 723 while ((tsk = css_task_iter_next(&it))) { 724 switch (READ_ONCE(tsk->__state)) { 725 case TASK_RUNNING: 726 stats->nr_running++; 727 break; 728 case TASK_INTERRUPTIBLE: 729 stats->nr_sleeping++; 730 break; 731 case TASK_UNINTERRUPTIBLE: 732 stats->nr_uninterruptible++; 733 break; 734 case TASK_STOPPED: 735 stats->nr_stopped++; 736 break; 737 default: 738 if (tsk->in_iowait) 739 stats->nr_io_wait++; 740 break; 741 } 742 } 743 css_task_iter_end(&it); 744 745 cgroup_put(cgrp); 746 return 0; 747 } 748 749 void cgroup1_check_for_release(struct cgroup *cgrp) 750 { 751 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 752 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 753 schedule_work(&cgrp->release_agent_work); 754 } 755 756 /* 757 * Notify userspace when a cgroup is released, by running the 758 * configured release agent with the name of the cgroup (path 759 * relative to the root of cgroup file system) as the argument. 760 * 761 * Most likely, this user command will try to rmdir this cgroup. 762 * 763 * This races with the possibility that some other task will be 764 * attached to this cgroup before it is removed, or that some other 765 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 766 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 767 * unused, and this cgroup will be reprieved from its death sentence, 768 * to continue to serve a useful existence. Next time it's released, 769 * we will get notified again, if it still has 'notify_on_release' set. 770 * 771 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 772 * means only wait until the task is successfully execve()'d. The 773 * separate release agent task is forked by call_usermodehelper(), 774 * then control in this thread returns here, without waiting for the 775 * release agent task. We don't bother to wait because the caller of 776 * this routine has no use for the exit status of the release agent 777 * task, so no sense holding our caller up for that. 778 */ 779 void cgroup1_release_agent(struct work_struct *work) 780 { 781 struct cgroup *cgrp = 782 container_of(work, struct cgroup, release_agent_work); 783 char *pathbuf, *agentbuf; 784 char *argv[3], *envp[3]; 785 int ret; 786 787 /* snoop agent path and exit early if empty */ 788 if (!cgrp->root->release_agent_path[0]) 789 return; 790 791 /* prepare argument buffers */ 792 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 793 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); 794 if (!pathbuf || !agentbuf) 795 goto out_free; 796 797 spin_lock(&release_agent_path_lock); 798 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); 799 spin_unlock(&release_agent_path_lock); 800 if (!agentbuf[0]) 801 goto out_free; 802 803 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 804 if (ret < 0 || ret >= PATH_MAX) 805 goto out_free; 806 807 argv[0] = agentbuf; 808 argv[1] = pathbuf; 809 argv[2] = NULL; 810 811 /* minimal command environment */ 812 envp[0] = "HOME=/"; 813 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 814 envp[2] = NULL; 815 816 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 817 out_free: 818 kfree(agentbuf); 819 kfree(pathbuf); 820 } 821 822 /* 823 * cgroup_rename - Only allow simple rename of directories in place. 824 */ 825 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 826 const char *new_name_str) 827 { 828 struct cgroup *cgrp = kn->priv; 829 int ret; 830 831 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 832 if (strchr(new_name_str, '\n')) 833 return -EINVAL; 834 835 if (kernfs_type(kn) != KERNFS_DIR) 836 return -ENOTDIR; 837 if (kn->parent != new_parent) 838 return -EIO; 839 840 /* 841 * We're gonna grab cgroup_mutex which nests outside kernfs 842 * active_ref. kernfs_rename() doesn't require active_ref 843 * protection. Break them before grabbing cgroup_mutex. 844 */ 845 kernfs_break_active_protection(new_parent); 846 kernfs_break_active_protection(kn); 847 848 mutex_lock(&cgroup_mutex); 849 850 ret = kernfs_rename(kn, new_parent, new_name_str); 851 if (!ret) 852 TRACE_CGROUP_PATH(rename, cgrp); 853 854 mutex_unlock(&cgroup_mutex); 855 856 kernfs_unbreak_active_protection(kn); 857 kernfs_unbreak_active_protection(new_parent); 858 return ret; 859 } 860 861 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 862 { 863 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 864 struct cgroup_subsys *ss; 865 int ssid; 866 867 for_each_subsys(ss, ssid) 868 if (root->subsys_mask & (1 << ssid)) 869 seq_show_option(seq, ss->legacy_name, NULL); 870 if (root->flags & CGRP_ROOT_NOPREFIX) 871 seq_puts(seq, ",noprefix"); 872 if (root->flags & CGRP_ROOT_XATTR) 873 seq_puts(seq, ",xattr"); 874 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 875 seq_puts(seq, ",cpuset_v2_mode"); 876 877 spin_lock(&release_agent_path_lock); 878 if (strlen(root->release_agent_path)) 879 seq_show_option(seq, "release_agent", 880 root->release_agent_path); 881 spin_unlock(&release_agent_path_lock); 882 883 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 884 seq_puts(seq, ",clone_children"); 885 if (strlen(root->name)) 886 seq_show_option(seq, "name", root->name); 887 return 0; 888 } 889 890 enum cgroup1_param { 891 Opt_all, 892 Opt_clone_children, 893 Opt_cpuset_v2_mode, 894 Opt_name, 895 Opt_none, 896 Opt_noprefix, 897 Opt_release_agent, 898 Opt_xattr, 899 }; 900 901 const struct fs_parameter_spec cgroup1_fs_parameters[] = { 902 fsparam_flag ("all", Opt_all), 903 fsparam_flag ("clone_children", Opt_clone_children), 904 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 905 fsparam_string("name", Opt_name), 906 fsparam_flag ("none", Opt_none), 907 fsparam_flag ("noprefix", Opt_noprefix), 908 fsparam_string("release_agent", Opt_release_agent), 909 fsparam_flag ("xattr", Opt_xattr), 910 {} 911 }; 912 913 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 914 { 915 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 916 struct cgroup_subsys *ss; 917 struct fs_parse_result result; 918 int opt, i; 919 920 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 921 if (opt == -ENOPARAM) { 922 int ret; 923 924 ret = vfs_parse_fs_param_source(fc, param); 925 if (ret != -ENOPARAM) 926 return ret; 927 for_each_subsys(ss, i) { 928 if (strcmp(param->key, ss->legacy_name)) 929 continue; 930 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) 931 return invalfc(fc, "Disabled controller '%s'", 932 param->key); 933 ctx->subsys_mask |= (1 << i); 934 return 0; 935 } 936 return invalfc(fc, "Unknown subsys name '%s'", param->key); 937 } 938 if (opt < 0) 939 return opt; 940 941 switch (opt) { 942 case Opt_none: 943 /* Explicitly have no subsystems */ 944 ctx->none = true; 945 break; 946 case Opt_all: 947 ctx->all_ss = true; 948 break; 949 case Opt_noprefix: 950 ctx->flags |= CGRP_ROOT_NOPREFIX; 951 break; 952 case Opt_clone_children: 953 ctx->cpuset_clone_children = true; 954 break; 955 case Opt_cpuset_v2_mode: 956 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 957 break; 958 case Opt_xattr: 959 ctx->flags |= CGRP_ROOT_XATTR; 960 break; 961 case Opt_release_agent: 962 /* Specifying two release agents is forbidden */ 963 if (ctx->release_agent) 964 return invalfc(fc, "release_agent respecified"); 965 /* 966 * Release agent gets called with all capabilities, 967 * require capabilities to set release agent. 968 */ 969 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) 970 return invalfc(fc, "Setting release_agent not allowed"); 971 ctx->release_agent = param->string; 972 param->string = NULL; 973 break; 974 case Opt_name: 975 /* blocked by boot param? */ 976 if (cgroup_no_v1_named) 977 return -ENOENT; 978 /* Can't specify an empty name */ 979 if (!param->size) 980 return invalfc(fc, "Empty name"); 981 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 982 return invalfc(fc, "Name too long"); 983 /* Must match [\w.-]+ */ 984 for (i = 0; i < param->size; i++) { 985 char c = param->string[i]; 986 if (isalnum(c)) 987 continue; 988 if ((c == '.') || (c == '-') || (c == '_')) 989 continue; 990 return invalfc(fc, "Invalid name"); 991 } 992 /* Specifying two names is forbidden */ 993 if (ctx->name) 994 return invalfc(fc, "name respecified"); 995 ctx->name = param->string; 996 param->string = NULL; 997 break; 998 } 999 return 0; 1000 } 1001 1002 static int check_cgroupfs_options(struct fs_context *fc) 1003 { 1004 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1005 u16 mask = U16_MAX; 1006 u16 enabled = 0; 1007 struct cgroup_subsys *ss; 1008 int i; 1009 1010 #ifdef CONFIG_CPUSETS 1011 mask = ~((u16)1 << cpuset_cgrp_id); 1012 #endif 1013 for_each_subsys(ss, i) 1014 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 1015 enabled |= 1 << i; 1016 1017 ctx->subsys_mask &= enabled; 1018 1019 /* 1020 * In absence of 'none', 'name=' and subsystem name options, 1021 * let's default to 'all'. 1022 */ 1023 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1024 ctx->all_ss = true; 1025 1026 if (ctx->all_ss) { 1027 /* Mutually exclusive option 'all' + subsystem name */ 1028 if (ctx->subsys_mask) 1029 return invalfc(fc, "subsys name conflicts with all"); 1030 /* 'all' => select all the subsystems */ 1031 ctx->subsys_mask = enabled; 1032 } 1033 1034 /* 1035 * We either have to specify by name or by subsystems. (So all 1036 * empty hierarchies must have a name). 1037 */ 1038 if (!ctx->subsys_mask && !ctx->name) 1039 return invalfc(fc, "Need name or subsystem set"); 1040 1041 /* 1042 * Option noprefix was introduced just for backward compatibility 1043 * with the old cpuset, so we allow noprefix only if mounting just 1044 * the cpuset subsystem. 1045 */ 1046 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1047 return invalfc(fc, "noprefix used incorrectly"); 1048 1049 /* Can't specify "none" and some subsystems */ 1050 if (ctx->subsys_mask && ctx->none) 1051 return invalfc(fc, "none used incorrectly"); 1052 1053 return 0; 1054 } 1055 1056 int cgroup1_reconfigure(struct fs_context *fc) 1057 { 1058 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1059 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1060 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1061 int ret = 0; 1062 u16 added_mask, removed_mask; 1063 1064 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1065 1066 /* See what subsystems are wanted */ 1067 ret = check_cgroupfs_options(fc); 1068 if (ret) 1069 goto out_unlock; 1070 1071 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1072 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1073 task_tgid_nr(current), current->comm); 1074 1075 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1076 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1077 1078 /* Don't allow flags or name to change at remount */ 1079 if ((ctx->flags ^ root->flags) || 1080 (ctx->name && strcmp(ctx->name, root->name))) { 1081 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1082 ctx->flags, ctx->name ?: "", root->flags, root->name); 1083 ret = -EINVAL; 1084 goto out_unlock; 1085 } 1086 1087 /* remounting is not allowed for populated hierarchies */ 1088 if (!list_empty(&root->cgrp.self.children)) { 1089 ret = -EBUSY; 1090 goto out_unlock; 1091 } 1092 1093 ret = rebind_subsystems(root, added_mask); 1094 if (ret) 1095 goto out_unlock; 1096 1097 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1098 1099 if (ctx->release_agent) { 1100 spin_lock(&release_agent_path_lock); 1101 strcpy(root->release_agent_path, ctx->release_agent); 1102 spin_unlock(&release_agent_path_lock); 1103 } 1104 1105 trace_cgroup_remount(root); 1106 1107 out_unlock: 1108 mutex_unlock(&cgroup_mutex); 1109 return ret; 1110 } 1111 1112 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1113 .rename = cgroup1_rename, 1114 .show_options = cgroup1_show_options, 1115 .mkdir = cgroup_mkdir, 1116 .rmdir = cgroup_rmdir, 1117 .show_path = cgroup_show_path, 1118 }; 1119 1120 /* 1121 * The guts of cgroup1 mount - find or create cgroup_root to use. 1122 * Called with cgroup_mutex held; returns 0 on success, -E... on 1123 * error and positive - in case when the candidate is busy dying. 1124 * On success it stashes a reference to cgroup_root into given 1125 * cgroup_fs_context; that reference is *NOT* counting towards the 1126 * cgroup_root refcount. 1127 */ 1128 static int cgroup1_root_to_use(struct fs_context *fc) 1129 { 1130 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1131 struct cgroup_root *root; 1132 struct cgroup_subsys *ss; 1133 int i, ret; 1134 1135 /* First find the desired set of subsystems */ 1136 ret = check_cgroupfs_options(fc); 1137 if (ret) 1138 return ret; 1139 1140 /* 1141 * Destruction of cgroup root is asynchronous, so subsystems may 1142 * still be dying after the previous unmount. Let's drain the 1143 * dying subsystems. We just need to ensure that the ones 1144 * unmounted previously finish dying and don't care about new ones 1145 * starting. Testing ref liveliness is good enough. 1146 */ 1147 for_each_subsys(ss, i) { 1148 if (!(ctx->subsys_mask & (1 << i)) || 1149 ss->root == &cgrp_dfl_root) 1150 continue; 1151 1152 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1153 return 1; /* restart */ 1154 cgroup_put(&ss->root->cgrp); 1155 } 1156 1157 for_each_root(root) { 1158 bool name_match = false; 1159 1160 if (root == &cgrp_dfl_root) 1161 continue; 1162 1163 /* 1164 * If we asked for a name then it must match. Also, if 1165 * name matches but sybsys_mask doesn't, we should fail. 1166 * Remember whether name matched. 1167 */ 1168 if (ctx->name) { 1169 if (strcmp(ctx->name, root->name)) 1170 continue; 1171 name_match = true; 1172 } 1173 1174 /* 1175 * If we asked for subsystems (or explicitly for no 1176 * subsystems) then they must match. 1177 */ 1178 if ((ctx->subsys_mask || ctx->none) && 1179 (ctx->subsys_mask != root->subsys_mask)) { 1180 if (!name_match) 1181 continue; 1182 return -EBUSY; 1183 } 1184 1185 if (root->flags ^ ctx->flags) 1186 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1187 1188 ctx->root = root; 1189 return 0; 1190 } 1191 1192 /* 1193 * No such thing, create a new one. name= matching without subsys 1194 * specification is allowed for already existing hierarchies but we 1195 * can't create new one without subsys specification. 1196 */ 1197 if (!ctx->subsys_mask && !ctx->none) 1198 return invalfc(fc, "No subsys list or none specified"); 1199 1200 /* Hierarchies may only be created in the initial cgroup namespace. */ 1201 if (ctx->ns != &init_cgroup_ns) 1202 return -EPERM; 1203 1204 root = kzalloc(sizeof(*root), GFP_KERNEL); 1205 if (!root) 1206 return -ENOMEM; 1207 1208 ctx->root = root; 1209 init_cgroup_root(ctx); 1210 1211 ret = cgroup_setup_root(root, ctx->subsys_mask); 1212 if (ret) 1213 cgroup_free_root(root); 1214 return ret; 1215 } 1216 1217 int cgroup1_get_tree(struct fs_context *fc) 1218 { 1219 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1220 int ret; 1221 1222 /* Check if the caller has permission to mount. */ 1223 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1224 return -EPERM; 1225 1226 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1227 1228 ret = cgroup1_root_to_use(fc); 1229 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1230 ret = 1; /* restart */ 1231 1232 mutex_unlock(&cgroup_mutex); 1233 1234 if (!ret) 1235 ret = cgroup_do_get_tree(fc); 1236 1237 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1238 fc_drop_locked(fc); 1239 ret = 1; 1240 } 1241 1242 if (unlikely(ret > 0)) { 1243 msleep(10); 1244 return restart_syscall(); 1245 } 1246 return ret; 1247 } 1248 1249 static int __init cgroup1_wq_init(void) 1250 { 1251 /* 1252 * Used to destroy pidlists and separate to serve as flush domain. 1253 * Cap @max_active to 1 too. 1254 */ 1255 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1256 0, 1); 1257 BUG_ON(!cgroup_pidlist_destroy_wq); 1258 return 0; 1259 } 1260 core_initcall(cgroup1_wq_init); 1261 1262 static int __init cgroup_no_v1(char *str) 1263 { 1264 struct cgroup_subsys *ss; 1265 char *token; 1266 int i; 1267 1268 while ((token = strsep(&str, ",")) != NULL) { 1269 if (!*token) 1270 continue; 1271 1272 if (!strcmp(token, "all")) { 1273 cgroup_no_v1_mask = U16_MAX; 1274 continue; 1275 } 1276 1277 if (!strcmp(token, "named")) { 1278 cgroup_no_v1_named = true; 1279 continue; 1280 } 1281 1282 for_each_subsys(ss, i) { 1283 if (strcmp(token, ss->name) && 1284 strcmp(token, ss->legacy_name)) 1285 continue; 1286 1287 cgroup_no_v1_mask |= 1 << i; 1288 } 1289 } 1290 return 1; 1291 } 1292 __setup("cgroup_no_v1=", cgroup_no_v1); 1293