xref: /openbmc/linux/kernel/cgroup/cgroup-v1.c (revision 8931ddd8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18 
19 #include <trace/events/cgroup.h>
20 
21 /*
22  * pidlists linger the following amount before being destroyed.  The goal
23  * is avoiding frequent destruction in the middle of consecutive read calls
24  * Expiring in the middle is a performance problem not a correctness one.
25  * 1 sec should be enough.
26  */
27 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
28 
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31 
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34 
35 /*
36  * pidlist destructions need to be flushed on cgroup destruction.  Use a
37  * separate workqueue as flush domain.
38  */
39 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40 
41 /* protects cgroup_subsys->release_agent_path */
42 static DEFINE_SPINLOCK(release_agent_path_lock);
43 
44 bool cgroup1_ssid_disabled(int ssid)
45 {
46 	return cgroup_no_v1_mask & (1 << ssid);
47 }
48 
49 /**
50  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51  * @from: attach to all cgroups of a given task
52  * @tsk: the task to be attached
53  *
54  * Return: %0 on success or a negative errno code on failure
55  */
56 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
57 {
58 	struct cgroup_root *root;
59 	int retval = 0;
60 
61 	mutex_lock(&cgroup_mutex);
62 	percpu_down_write(&cgroup_threadgroup_rwsem);
63 	for_each_root(root) {
64 		struct cgroup *from_cgrp;
65 
66 		spin_lock_irq(&css_set_lock);
67 		from_cgrp = task_cgroup_from_root(from, root);
68 		spin_unlock_irq(&css_set_lock);
69 
70 		retval = cgroup_attach_task(from_cgrp, tsk, false);
71 		if (retval)
72 			break;
73 	}
74 	percpu_up_write(&cgroup_threadgroup_rwsem);
75 	mutex_unlock(&cgroup_mutex);
76 
77 	return retval;
78 }
79 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
80 
81 /**
82  * cgroup_transfer_tasks - move tasks from one cgroup to another
83  * @to: cgroup to which the tasks will be moved
84  * @from: cgroup in which the tasks currently reside
85  *
86  * Locking rules between cgroup_post_fork() and the migration path
87  * guarantee that, if a task is forking while being migrated, the new child
88  * is guaranteed to be either visible in the source cgroup after the
89  * parent's migration is complete or put into the target cgroup.  No task
90  * can slip out of migration through forking.
91  *
92  * Return: %0 on success or a negative errno code on failure
93  */
94 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
95 {
96 	DEFINE_CGROUP_MGCTX(mgctx);
97 	struct cgrp_cset_link *link;
98 	struct css_task_iter it;
99 	struct task_struct *task;
100 	int ret;
101 
102 	if (cgroup_on_dfl(to))
103 		return -EINVAL;
104 
105 	ret = cgroup_migrate_vet_dst(to);
106 	if (ret)
107 		return ret;
108 
109 	mutex_lock(&cgroup_mutex);
110 
111 	percpu_down_write(&cgroup_threadgroup_rwsem);
112 
113 	/* all tasks in @from are being moved, all csets are source */
114 	spin_lock_irq(&css_set_lock);
115 	list_for_each_entry(link, &from->cset_links, cset_link)
116 		cgroup_migrate_add_src(link->cset, to, &mgctx);
117 	spin_unlock_irq(&css_set_lock);
118 
119 	ret = cgroup_migrate_prepare_dst(&mgctx);
120 	if (ret)
121 		goto out_err;
122 
123 	/*
124 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
125 	 * ->can_attach() fails.
126 	 */
127 	do {
128 		css_task_iter_start(&from->self, 0, &it);
129 
130 		do {
131 			task = css_task_iter_next(&it);
132 		} while (task && (task->flags & PF_EXITING));
133 
134 		if (task)
135 			get_task_struct(task);
136 		css_task_iter_end(&it);
137 
138 		if (task) {
139 			ret = cgroup_migrate(task, false, &mgctx);
140 			if (!ret)
141 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
142 			put_task_struct(task);
143 		}
144 	} while (task && !ret);
145 out_err:
146 	cgroup_migrate_finish(&mgctx);
147 	percpu_up_write(&cgroup_threadgroup_rwsem);
148 	mutex_unlock(&cgroup_mutex);
149 	return ret;
150 }
151 
152 /*
153  * Stuff for reading the 'tasks'/'procs' files.
154  *
155  * Reading this file can return large amounts of data if a cgroup has
156  * *lots* of attached tasks. So it may need several calls to read(),
157  * but we cannot guarantee that the information we produce is correct
158  * unless we produce it entirely atomically.
159  *
160  */
161 
162 /* which pidlist file are we talking about? */
163 enum cgroup_filetype {
164 	CGROUP_FILE_PROCS,
165 	CGROUP_FILE_TASKS,
166 };
167 
168 /*
169  * A pidlist is a list of pids that virtually represents the contents of one
170  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
171  * a pair (one each for procs, tasks) for each pid namespace that's relevant
172  * to the cgroup.
173  */
174 struct cgroup_pidlist {
175 	/*
176 	 * used to find which pidlist is wanted. doesn't change as long as
177 	 * this particular list stays in the list.
178 	*/
179 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
180 	/* array of xids */
181 	pid_t *list;
182 	/* how many elements the above list has */
183 	int length;
184 	/* each of these stored in a list by its cgroup */
185 	struct list_head links;
186 	/* pointer to the cgroup we belong to, for list removal purposes */
187 	struct cgroup *owner;
188 	/* for delayed destruction */
189 	struct delayed_work destroy_dwork;
190 };
191 
192 /*
193  * Used to destroy all pidlists lingering waiting for destroy timer.  None
194  * should be left afterwards.
195  */
196 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
197 {
198 	struct cgroup_pidlist *l, *tmp_l;
199 
200 	mutex_lock(&cgrp->pidlist_mutex);
201 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
202 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
203 	mutex_unlock(&cgrp->pidlist_mutex);
204 
205 	flush_workqueue(cgroup_pidlist_destroy_wq);
206 	BUG_ON(!list_empty(&cgrp->pidlists));
207 }
208 
209 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
210 {
211 	struct delayed_work *dwork = to_delayed_work(work);
212 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
213 						destroy_dwork);
214 	struct cgroup_pidlist *tofree = NULL;
215 
216 	mutex_lock(&l->owner->pidlist_mutex);
217 
218 	/*
219 	 * Destroy iff we didn't get queued again.  The state won't change
220 	 * as destroy_dwork can only be queued while locked.
221 	 */
222 	if (!delayed_work_pending(dwork)) {
223 		list_del(&l->links);
224 		kvfree(l->list);
225 		put_pid_ns(l->key.ns);
226 		tofree = l;
227 	}
228 
229 	mutex_unlock(&l->owner->pidlist_mutex);
230 	kfree(tofree);
231 }
232 
233 /*
234  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
235  * Returns the number of unique elements.
236  */
237 static int pidlist_uniq(pid_t *list, int length)
238 {
239 	int src, dest = 1;
240 
241 	/*
242 	 * we presume the 0th element is unique, so i starts at 1. trivial
243 	 * edge cases first; no work needs to be done for either
244 	 */
245 	if (length == 0 || length == 1)
246 		return length;
247 	/* src and dest walk down the list; dest counts unique elements */
248 	for (src = 1; src < length; src++) {
249 		/* find next unique element */
250 		while (list[src] == list[src-1]) {
251 			src++;
252 			if (src == length)
253 				goto after;
254 		}
255 		/* dest always points to where the next unique element goes */
256 		list[dest] = list[src];
257 		dest++;
258 	}
259 after:
260 	return dest;
261 }
262 
263 /*
264  * The two pid files - task and cgroup.procs - guaranteed that the result
265  * is sorted, which forced this whole pidlist fiasco.  As pid order is
266  * different per namespace, each namespace needs differently sorted list,
267  * making it impossible to use, for example, single rbtree of member tasks
268  * sorted by task pointer.  As pidlists can be fairly large, allocating one
269  * per open file is dangerous, so cgroup had to implement shared pool of
270  * pidlists keyed by cgroup and namespace.
271  */
272 static int cmppid(const void *a, const void *b)
273 {
274 	return *(pid_t *)a - *(pid_t *)b;
275 }
276 
277 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
278 						  enum cgroup_filetype type)
279 {
280 	struct cgroup_pidlist *l;
281 	/* don't need task_nsproxy() if we're looking at ourself */
282 	struct pid_namespace *ns = task_active_pid_ns(current);
283 
284 	lockdep_assert_held(&cgrp->pidlist_mutex);
285 
286 	list_for_each_entry(l, &cgrp->pidlists, links)
287 		if (l->key.type == type && l->key.ns == ns)
288 			return l;
289 	return NULL;
290 }
291 
292 /*
293  * find the appropriate pidlist for our purpose (given procs vs tasks)
294  * returns with the lock on that pidlist already held, and takes care
295  * of the use count, or returns NULL with no locks held if we're out of
296  * memory.
297  */
298 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
299 						enum cgroup_filetype type)
300 {
301 	struct cgroup_pidlist *l;
302 
303 	lockdep_assert_held(&cgrp->pidlist_mutex);
304 
305 	l = cgroup_pidlist_find(cgrp, type);
306 	if (l)
307 		return l;
308 
309 	/* entry not found; create a new one */
310 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
311 	if (!l)
312 		return l;
313 
314 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
315 	l->key.type = type;
316 	/* don't need task_nsproxy() if we're looking at ourself */
317 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
318 	l->owner = cgrp;
319 	list_add(&l->links, &cgrp->pidlists);
320 	return l;
321 }
322 
323 /*
324  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
325  */
326 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
327 			      struct cgroup_pidlist **lp)
328 {
329 	pid_t *array;
330 	int length;
331 	int pid, n = 0; /* used for populating the array */
332 	struct css_task_iter it;
333 	struct task_struct *tsk;
334 	struct cgroup_pidlist *l;
335 
336 	lockdep_assert_held(&cgrp->pidlist_mutex);
337 
338 	/*
339 	 * If cgroup gets more users after we read count, we won't have
340 	 * enough space - tough.  This race is indistinguishable to the
341 	 * caller from the case that the additional cgroup users didn't
342 	 * show up until sometime later on.
343 	 */
344 	length = cgroup_task_count(cgrp);
345 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
346 	if (!array)
347 		return -ENOMEM;
348 	/* now, populate the array */
349 	css_task_iter_start(&cgrp->self, 0, &it);
350 	while ((tsk = css_task_iter_next(&it))) {
351 		if (unlikely(n == length))
352 			break;
353 		/* get tgid or pid for procs or tasks file respectively */
354 		if (type == CGROUP_FILE_PROCS)
355 			pid = task_tgid_vnr(tsk);
356 		else
357 			pid = task_pid_vnr(tsk);
358 		if (pid > 0) /* make sure to only use valid results */
359 			array[n++] = pid;
360 	}
361 	css_task_iter_end(&it);
362 	length = n;
363 	/* now sort & (if procs) strip out duplicates */
364 	sort(array, length, sizeof(pid_t), cmppid, NULL);
365 	if (type == CGROUP_FILE_PROCS)
366 		length = pidlist_uniq(array, length);
367 
368 	l = cgroup_pidlist_find_create(cgrp, type);
369 	if (!l) {
370 		kvfree(array);
371 		return -ENOMEM;
372 	}
373 
374 	/* store array, freeing old if necessary */
375 	kvfree(l->list);
376 	l->list = array;
377 	l->length = length;
378 	*lp = l;
379 	return 0;
380 }
381 
382 /*
383  * seq_file methods for the tasks/procs files. The seq_file position is the
384  * next pid to display; the seq_file iterator is a pointer to the pid
385  * in the cgroup->l->list array.
386  */
387 
388 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
389 {
390 	/*
391 	 * Initially we receive a position value that corresponds to
392 	 * one more than the last pid shown (or 0 on the first call or
393 	 * after a seek to the start). Use a binary-search to find the
394 	 * next pid to display, if any
395 	 */
396 	struct kernfs_open_file *of = s->private;
397 	struct cgroup_file_ctx *ctx = of->priv;
398 	struct cgroup *cgrp = seq_css(s)->cgroup;
399 	struct cgroup_pidlist *l;
400 	enum cgroup_filetype type = seq_cft(s)->private;
401 	int index = 0, pid = *pos;
402 	int *iter, ret;
403 
404 	mutex_lock(&cgrp->pidlist_mutex);
405 
406 	/*
407 	 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
408 	 * start() after open. If the matching pidlist is around, we can use
409 	 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
410 	 * directly. It could already have been destroyed.
411 	 */
412 	if (ctx->procs1.pidlist)
413 		ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
414 
415 	/*
416 	 * Either this is the first start() after open or the matching
417 	 * pidlist has been destroyed inbetween.  Create a new one.
418 	 */
419 	if (!ctx->procs1.pidlist) {
420 		ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
421 		if (ret)
422 			return ERR_PTR(ret);
423 	}
424 	l = ctx->procs1.pidlist;
425 
426 	if (pid) {
427 		int end = l->length;
428 
429 		while (index < end) {
430 			int mid = (index + end) / 2;
431 			if (l->list[mid] == pid) {
432 				index = mid;
433 				break;
434 			} else if (l->list[mid] <= pid)
435 				index = mid + 1;
436 			else
437 				end = mid;
438 		}
439 	}
440 	/* If we're off the end of the array, we're done */
441 	if (index >= l->length)
442 		return NULL;
443 	/* Update the abstract position to be the actual pid that we found */
444 	iter = l->list + index;
445 	*pos = *iter;
446 	return iter;
447 }
448 
449 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
450 {
451 	struct kernfs_open_file *of = s->private;
452 	struct cgroup_file_ctx *ctx = of->priv;
453 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
454 
455 	if (l)
456 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
457 				 CGROUP_PIDLIST_DESTROY_DELAY);
458 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
459 }
460 
461 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
462 {
463 	struct kernfs_open_file *of = s->private;
464 	struct cgroup_file_ctx *ctx = of->priv;
465 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
466 	pid_t *p = v;
467 	pid_t *end = l->list + l->length;
468 	/*
469 	 * Advance to the next pid in the array. If this goes off the
470 	 * end, we're done
471 	 */
472 	p++;
473 	if (p >= end) {
474 		(*pos)++;
475 		return NULL;
476 	} else {
477 		*pos = *p;
478 		return p;
479 	}
480 }
481 
482 static int cgroup_pidlist_show(struct seq_file *s, void *v)
483 {
484 	seq_printf(s, "%d\n", *(int *)v);
485 
486 	return 0;
487 }
488 
489 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
490 				     char *buf, size_t nbytes, loff_t off,
491 				     bool threadgroup)
492 {
493 	struct cgroup *cgrp;
494 	struct task_struct *task;
495 	const struct cred *cred, *tcred;
496 	ssize_t ret;
497 	bool locked;
498 
499 	cgrp = cgroup_kn_lock_live(of->kn, false);
500 	if (!cgrp)
501 		return -ENODEV;
502 
503 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
504 	ret = PTR_ERR_OR_ZERO(task);
505 	if (ret)
506 		goto out_unlock;
507 
508 	/*
509 	 * Even if we're attaching all tasks in the thread group, we only need
510 	 * to check permissions on one of them. Check permissions using the
511 	 * credentials from file open to protect against inherited fd attacks.
512 	 */
513 	cred = of->file->f_cred;
514 	tcred = get_task_cred(task);
515 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
516 	    !uid_eq(cred->euid, tcred->uid) &&
517 	    !uid_eq(cred->euid, tcred->suid))
518 		ret = -EACCES;
519 	put_cred(tcred);
520 	if (ret)
521 		goto out_finish;
522 
523 	ret = cgroup_attach_task(cgrp, task, threadgroup);
524 
525 out_finish:
526 	cgroup_procs_write_finish(task, locked);
527 out_unlock:
528 	cgroup_kn_unlock(of->kn);
529 
530 	return ret ?: nbytes;
531 }
532 
533 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
534 				   char *buf, size_t nbytes, loff_t off)
535 {
536 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
537 }
538 
539 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
540 				   char *buf, size_t nbytes, loff_t off)
541 {
542 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
543 }
544 
545 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
546 					  char *buf, size_t nbytes, loff_t off)
547 {
548 	struct cgroup *cgrp;
549 
550 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
551 
552 	/*
553 	 * Release agent gets called with all capabilities,
554 	 * require capabilities to set release agent.
555 	 */
556 	if ((of->file->f_cred->user_ns != &init_user_ns) ||
557 	    !capable(CAP_SYS_ADMIN))
558 		return -EPERM;
559 
560 	cgrp = cgroup_kn_lock_live(of->kn, false);
561 	if (!cgrp)
562 		return -ENODEV;
563 	spin_lock(&release_agent_path_lock);
564 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
565 		sizeof(cgrp->root->release_agent_path));
566 	spin_unlock(&release_agent_path_lock);
567 	cgroup_kn_unlock(of->kn);
568 	return nbytes;
569 }
570 
571 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
572 {
573 	struct cgroup *cgrp = seq_css(seq)->cgroup;
574 
575 	spin_lock(&release_agent_path_lock);
576 	seq_puts(seq, cgrp->root->release_agent_path);
577 	spin_unlock(&release_agent_path_lock);
578 	seq_putc(seq, '\n');
579 	return 0;
580 }
581 
582 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
583 {
584 	seq_puts(seq, "0\n");
585 	return 0;
586 }
587 
588 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
589 					 struct cftype *cft)
590 {
591 	return notify_on_release(css->cgroup);
592 }
593 
594 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
595 					  struct cftype *cft, u64 val)
596 {
597 	if (val)
598 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
599 	else
600 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
601 	return 0;
602 }
603 
604 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
605 				      struct cftype *cft)
606 {
607 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
608 }
609 
610 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
611 				       struct cftype *cft, u64 val)
612 {
613 	if (val)
614 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
615 	else
616 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
617 	return 0;
618 }
619 
620 /* cgroup core interface files for the legacy hierarchies */
621 struct cftype cgroup1_base_files[] = {
622 	{
623 		.name = "cgroup.procs",
624 		.seq_start = cgroup_pidlist_start,
625 		.seq_next = cgroup_pidlist_next,
626 		.seq_stop = cgroup_pidlist_stop,
627 		.seq_show = cgroup_pidlist_show,
628 		.private = CGROUP_FILE_PROCS,
629 		.write = cgroup1_procs_write,
630 	},
631 	{
632 		.name = "cgroup.clone_children",
633 		.read_u64 = cgroup_clone_children_read,
634 		.write_u64 = cgroup_clone_children_write,
635 	},
636 	{
637 		.name = "cgroup.sane_behavior",
638 		.flags = CFTYPE_ONLY_ON_ROOT,
639 		.seq_show = cgroup_sane_behavior_show,
640 	},
641 	{
642 		.name = "tasks",
643 		.seq_start = cgroup_pidlist_start,
644 		.seq_next = cgroup_pidlist_next,
645 		.seq_stop = cgroup_pidlist_stop,
646 		.seq_show = cgroup_pidlist_show,
647 		.private = CGROUP_FILE_TASKS,
648 		.write = cgroup1_tasks_write,
649 	},
650 	{
651 		.name = "notify_on_release",
652 		.read_u64 = cgroup_read_notify_on_release,
653 		.write_u64 = cgroup_write_notify_on_release,
654 	},
655 	{
656 		.name = "release_agent",
657 		.flags = CFTYPE_ONLY_ON_ROOT,
658 		.seq_show = cgroup_release_agent_show,
659 		.write = cgroup_release_agent_write,
660 		.max_write_len = PATH_MAX - 1,
661 	},
662 	{ }	/* terminate */
663 };
664 
665 /* Display information about each subsystem and each hierarchy */
666 int proc_cgroupstats_show(struct seq_file *m, void *v)
667 {
668 	struct cgroup_subsys *ss;
669 	int i;
670 
671 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
672 	/*
673 	 * Grab the subsystems state racily. No need to add avenue to
674 	 * cgroup_mutex contention.
675 	 */
676 
677 	for_each_subsys(ss, i)
678 		seq_printf(m, "%s\t%d\t%d\t%d\n",
679 			   ss->legacy_name, ss->root->hierarchy_id,
680 			   atomic_read(&ss->root->nr_cgrps),
681 			   cgroup_ssid_enabled(i));
682 
683 	return 0;
684 }
685 
686 /**
687  * cgroupstats_build - build and fill cgroupstats
688  * @stats: cgroupstats to fill information into
689  * @dentry: A dentry entry belonging to the cgroup for which stats have
690  * been requested.
691  *
692  * Build and fill cgroupstats so that taskstats can export it to user
693  * space.
694  *
695  * Return: %0 on success or a negative errno code on failure
696  */
697 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
698 {
699 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
700 	struct cgroup *cgrp;
701 	struct css_task_iter it;
702 	struct task_struct *tsk;
703 
704 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
705 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
706 	    kernfs_type(kn) != KERNFS_DIR)
707 		return -EINVAL;
708 
709 	/*
710 	 * We aren't being called from kernfs and there's no guarantee on
711 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
712 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
713 	 */
714 	rcu_read_lock();
715 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
716 	if (!cgrp || !cgroup_tryget(cgrp)) {
717 		rcu_read_unlock();
718 		return -ENOENT;
719 	}
720 	rcu_read_unlock();
721 
722 	css_task_iter_start(&cgrp->self, 0, &it);
723 	while ((tsk = css_task_iter_next(&it))) {
724 		switch (READ_ONCE(tsk->__state)) {
725 		case TASK_RUNNING:
726 			stats->nr_running++;
727 			break;
728 		case TASK_INTERRUPTIBLE:
729 			stats->nr_sleeping++;
730 			break;
731 		case TASK_UNINTERRUPTIBLE:
732 			stats->nr_uninterruptible++;
733 			break;
734 		case TASK_STOPPED:
735 			stats->nr_stopped++;
736 			break;
737 		default:
738 			if (tsk->in_iowait)
739 				stats->nr_io_wait++;
740 			break;
741 		}
742 	}
743 	css_task_iter_end(&it);
744 
745 	cgroup_put(cgrp);
746 	return 0;
747 }
748 
749 void cgroup1_check_for_release(struct cgroup *cgrp)
750 {
751 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
752 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
753 		schedule_work(&cgrp->release_agent_work);
754 }
755 
756 /*
757  * Notify userspace when a cgroup is released, by running the
758  * configured release agent with the name of the cgroup (path
759  * relative to the root of cgroup file system) as the argument.
760  *
761  * Most likely, this user command will try to rmdir this cgroup.
762  *
763  * This races with the possibility that some other task will be
764  * attached to this cgroup before it is removed, or that some other
765  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
766  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
767  * unused, and this cgroup will be reprieved from its death sentence,
768  * to continue to serve a useful existence.  Next time it's released,
769  * we will get notified again, if it still has 'notify_on_release' set.
770  *
771  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
772  * means only wait until the task is successfully execve()'d.  The
773  * separate release agent task is forked by call_usermodehelper(),
774  * then control in this thread returns here, without waiting for the
775  * release agent task.  We don't bother to wait because the caller of
776  * this routine has no use for the exit status of the release agent
777  * task, so no sense holding our caller up for that.
778  */
779 void cgroup1_release_agent(struct work_struct *work)
780 {
781 	struct cgroup *cgrp =
782 		container_of(work, struct cgroup, release_agent_work);
783 	char *pathbuf, *agentbuf;
784 	char *argv[3], *envp[3];
785 	int ret;
786 
787 	/* snoop agent path and exit early if empty */
788 	if (!cgrp->root->release_agent_path[0])
789 		return;
790 
791 	/* prepare argument buffers */
792 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
793 	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
794 	if (!pathbuf || !agentbuf)
795 		goto out_free;
796 
797 	spin_lock(&release_agent_path_lock);
798 	strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
799 	spin_unlock(&release_agent_path_lock);
800 	if (!agentbuf[0])
801 		goto out_free;
802 
803 	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
804 	if (ret < 0 || ret >= PATH_MAX)
805 		goto out_free;
806 
807 	argv[0] = agentbuf;
808 	argv[1] = pathbuf;
809 	argv[2] = NULL;
810 
811 	/* minimal command environment */
812 	envp[0] = "HOME=/";
813 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
814 	envp[2] = NULL;
815 
816 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
817 out_free:
818 	kfree(agentbuf);
819 	kfree(pathbuf);
820 }
821 
822 /*
823  * cgroup_rename - Only allow simple rename of directories in place.
824  */
825 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
826 			  const char *new_name_str)
827 {
828 	struct cgroup *cgrp = kn->priv;
829 	int ret;
830 
831 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
832 	if (strchr(new_name_str, '\n'))
833 		return -EINVAL;
834 
835 	if (kernfs_type(kn) != KERNFS_DIR)
836 		return -ENOTDIR;
837 	if (kn->parent != new_parent)
838 		return -EIO;
839 
840 	/*
841 	 * We're gonna grab cgroup_mutex which nests outside kernfs
842 	 * active_ref.  kernfs_rename() doesn't require active_ref
843 	 * protection.  Break them before grabbing cgroup_mutex.
844 	 */
845 	kernfs_break_active_protection(new_parent);
846 	kernfs_break_active_protection(kn);
847 
848 	mutex_lock(&cgroup_mutex);
849 
850 	ret = kernfs_rename(kn, new_parent, new_name_str);
851 	if (!ret)
852 		TRACE_CGROUP_PATH(rename, cgrp);
853 
854 	mutex_unlock(&cgroup_mutex);
855 
856 	kernfs_unbreak_active_protection(kn);
857 	kernfs_unbreak_active_protection(new_parent);
858 	return ret;
859 }
860 
861 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
862 {
863 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
864 	struct cgroup_subsys *ss;
865 	int ssid;
866 
867 	for_each_subsys(ss, ssid)
868 		if (root->subsys_mask & (1 << ssid))
869 			seq_show_option(seq, ss->legacy_name, NULL);
870 	if (root->flags & CGRP_ROOT_NOPREFIX)
871 		seq_puts(seq, ",noprefix");
872 	if (root->flags & CGRP_ROOT_XATTR)
873 		seq_puts(seq, ",xattr");
874 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
875 		seq_puts(seq, ",cpuset_v2_mode");
876 
877 	spin_lock(&release_agent_path_lock);
878 	if (strlen(root->release_agent_path))
879 		seq_show_option(seq, "release_agent",
880 				root->release_agent_path);
881 	spin_unlock(&release_agent_path_lock);
882 
883 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
884 		seq_puts(seq, ",clone_children");
885 	if (strlen(root->name))
886 		seq_show_option(seq, "name", root->name);
887 	return 0;
888 }
889 
890 enum cgroup1_param {
891 	Opt_all,
892 	Opt_clone_children,
893 	Opt_cpuset_v2_mode,
894 	Opt_name,
895 	Opt_none,
896 	Opt_noprefix,
897 	Opt_release_agent,
898 	Opt_xattr,
899 };
900 
901 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
902 	fsparam_flag  ("all",		Opt_all),
903 	fsparam_flag  ("clone_children", Opt_clone_children),
904 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
905 	fsparam_string("name",		Opt_name),
906 	fsparam_flag  ("none",		Opt_none),
907 	fsparam_flag  ("noprefix",	Opt_noprefix),
908 	fsparam_string("release_agent",	Opt_release_agent),
909 	fsparam_flag  ("xattr",		Opt_xattr),
910 	{}
911 };
912 
913 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
914 {
915 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
916 	struct cgroup_subsys *ss;
917 	struct fs_parse_result result;
918 	int opt, i;
919 
920 	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
921 	if (opt == -ENOPARAM) {
922 		int ret;
923 
924 		ret = vfs_parse_fs_param_source(fc, param);
925 		if (ret != -ENOPARAM)
926 			return ret;
927 		for_each_subsys(ss, i) {
928 			if (strcmp(param->key, ss->legacy_name))
929 				continue;
930 			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
931 				return invalfc(fc, "Disabled controller '%s'",
932 					       param->key);
933 			ctx->subsys_mask |= (1 << i);
934 			return 0;
935 		}
936 		return invalfc(fc, "Unknown subsys name '%s'", param->key);
937 	}
938 	if (opt < 0)
939 		return opt;
940 
941 	switch (opt) {
942 	case Opt_none:
943 		/* Explicitly have no subsystems */
944 		ctx->none = true;
945 		break;
946 	case Opt_all:
947 		ctx->all_ss = true;
948 		break;
949 	case Opt_noprefix:
950 		ctx->flags |= CGRP_ROOT_NOPREFIX;
951 		break;
952 	case Opt_clone_children:
953 		ctx->cpuset_clone_children = true;
954 		break;
955 	case Opt_cpuset_v2_mode:
956 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
957 		break;
958 	case Opt_xattr:
959 		ctx->flags |= CGRP_ROOT_XATTR;
960 		break;
961 	case Opt_release_agent:
962 		/* Specifying two release agents is forbidden */
963 		if (ctx->release_agent)
964 			return invalfc(fc, "release_agent respecified");
965 		/*
966 		 * Release agent gets called with all capabilities,
967 		 * require capabilities to set release agent.
968 		 */
969 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
970 			return invalfc(fc, "Setting release_agent not allowed");
971 		ctx->release_agent = param->string;
972 		param->string = NULL;
973 		break;
974 	case Opt_name:
975 		/* blocked by boot param? */
976 		if (cgroup_no_v1_named)
977 			return -ENOENT;
978 		/* Can't specify an empty name */
979 		if (!param->size)
980 			return invalfc(fc, "Empty name");
981 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
982 			return invalfc(fc, "Name too long");
983 		/* Must match [\w.-]+ */
984 		for (i = 0; i < param->size; i++) {
985 			char c = param->string[i];
986 			if (isalnum(c))
987 				continue;
988 			if ((c == '.') || (c == '-') || (c == '_'))
989 				continue;
990 			return invalfc(fc, "Invalid name");
991 		}
992 		/* Specifying two names is forbidden */
993 		if (ctx->name)
994 			return invalfc(fc, "name respecified");
995 		ctx->name = param->string;
996 		param->string = NULL;
997 		break;
998 	}
999 	return 0;
1000 }
1001 
1002 static int check_cgroupfs_options(struct fs_context *fc)
1003 {
1004 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1005 	u16 mask = U16_MAX;
1006 	u16 enabled = 0;
1007 	struct cgroup_subsys *ss;
1008 	int i;
1009 
1010 #ifdef CONFIG_CPUSETS
1011 	mask = ~((u16)1 << cpuset_cgrp_id);
1012 #endif
1013 	for_each_subsys(ss, i)
1014 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1015 			enabled |= 1 << i;
1016 
1017 	ctx->subsys_mask &= enabled;
1018 
1019 	/*
1020 	 * In absence of 'none', 'name=' and subsystem name options,
1021 	 * let's default to 'all'.
1022 	 */
1023 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1024 		ctx->all_ss = true;
1025 
1026 	if (ctx->all_ss) {
1027 		/* Mutually exclusive option 'all' + subsystem name */
1028 		if (ctx->subsys_mask)
1029 			return invalfc(fc, "subsys name conflicts with all");
1030 		/* 'all' => select all the subsystems */
1031 		ctx->subsys_mask = enabled;
1032 	}
1033 
1034 	/*
1035 	 * We either have to specify by name or by subsystems. (So all
1036 	 * empty hierarchies must have a name).
1037 	 */
1038 	if (!ctx->subsys_mask && !ctx->name)
1039 		return invalfc(fc, "Need name or subsystem set");
1040 
1041 	/*
1042 	 * Option noprefix was introduced just for backward compatibility
1043 	 * with the old cpuset, so we allow noprefix only if mounting just
1044 	 * the cpuset subsystem.
1045 	 */
1046 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1047 		return invalfc(fc, "noprefix used incorrectly");
1048 
1049 	/* Can't specify "none" and some subsystems */
1050 	if (ctx->subsys_mask && ctx->none)
1051 		return invalfc(fc, "none used incorrectly");
1052 
1053 	return 0;
1054 }
1055 
1056 int cgroup1_reconfigure(struct fs_context *fc)
1057 {
1058 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1059 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1060 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1061 	int ret = 0;
1062 	u16 added_mask, removed_mask;
1063 
1064 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1065 
1066 	/* See what subsystems are wanted */
1067 	ret = check_cgroupfs_options(fc);
1068 	if (ret)
1069 		goto out_unlock;
1070 
1071 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1072 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1073 			task_tgid_nr(current), current->comm);
1074 
1075 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1076 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1077 
1078 	/* Don't allow flags or name to change at remount */
1079 	if ((ctx->flags ^ root->flags) ||
1080 	    (ctx->name && strcmp(ctx->name, root->name))) {
1081 		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1082 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1083 		ret = -EINVAL;
1084 		goto out_unlock;
1085 	}
1086 
1087 	/* remounting is not allowed for populated hierarchies */
1088 	if (!list_empty(&root->cgrp.self.children)) {
1089 		ret = -EBUSY;
1090 		goto out_unlock;
1091 	}
1092 
1093 	ret = rebind_subsystems(root, added_mask);
1094 	if (ret)
1095 		goto out_unlock;
1096 
1097 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1098 
1099 	if (ctx->release_agent) {
1100 		spin_lock(&release_agent_path_lock);
1101 		strcpy(root->release_agent_path, ctx->release_agent);
1102 		spin_unlock(&release_agent_path_lock);
1103 	}
1104 
1105 	trace_cgroup_remount(root);
1106 
1107  out_unlock:
1108 	mutex_unlock(&cgroup_mutex);
1109 	return ret;
1110 }
1111 
1112 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1113 	.rename			= cgroup1_rename,
1114 	.show_options		= cgroup1_show_options,
1115 	.mkdir			= cgroup_mkdir,
1116 	.rmdir			= cgroup_rmdir,
1117 	.show_path		= cgroup_show_path,
1118 };
1119 
1120 /*
1121  * The guts of cgroup1 mount - find or create cgroup_root to use.
1122  * Called with cgroup_mutex held; returns 0 on success, -E... on
1123  * error and positive - in case when the candidate is busy dying.
1124  * On success it stashes a reference to cgroup_root into given
1125  * cgroup_fs_context; that reference is *NOT* counting towards the
1126  * cgroup_root refcount.
1127  */
1128 static int cgroup1_root_to_use(struct fs_context *fc)
1129 {
1130 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1131 	struct cgroup_root *root;
1132 	struct cgroup_subsys *ss;
1133 	int i, ret;
1134 
1135 	/* First find the desired set of subsystems */
1136 	ret = check_cgroupfs_options(fc);
1137 	if (ret)
1138 		return ret;
1139 
1140 	/*
1141 	 * Destruction of cgroup root is asynchronous, so subsystems may
1142 	 * still be dying after the previous unmount.  Let's drain the
1143 	 * dying subsystems.  We just need to ensure that the ones
1144 	 * unmounted previously finish dying and don't care about new ones
1145 	 * starting.  Testing ref liveliness is good enough.
1146 	 */
1147 	for_each_subsys(ss, i) {
1148 		if (!(ctx->subsys_mask & (1 << i)) ||
1149 		    ss->root == &cgrp_dfl_root)
1150 			continue;
1151 
1152 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1153 			return 1;	/* restart */
1154 		cgroup_put(&ss->root->cgrp);
1155 	}
1156 
1157 	for_each_root(root) {
1158 		bool name_match = false;
1159 
1160 		if (root == &cgrp_dfl_root)
1161 			continue;
1162 
1163 		/*
1164 		 * If we asked for a name then it must match.  Also, if
1165 		 * name matches but sybsys_mask doesn't, we should fail.
1166 		 * Remember whether name matched.
1167 		 */
1168 		if (ctx->name) {
1169 			if (strcmp(ctx->name, root->name))
1170 				continue;
1171 			name_match = true;
1172 		}
1173 
1174 		/*
1175 		 * If we asked for subsystems (or explicitly for no
1176 		 * subsystems) then they must match.
1177 		 */
1178 		if ((ctx->subsys_mask || ctx->none) &&
1179 		    (ctx->subsys_mask != root->subsys_mask)) {
1180 			if (!name_match)
1181 				continue;
1182 			return -EBUSY;
1183 		}
1184 
1185 		if (root->flags ^ ctx->flags)
1186 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1187 
1188 		ctx->root = root;
1189 		return 0;
1190 	}
1191 
1192 	/*
1193 	 * No such thing, create a new one.  name= matching without subsys
1194 	 * specification is allowed for already existing hierarchies but we
1195 	 * can't create new one without subsys specification.
1196 	 */
1197 	if (!ctx->subsys_mask && !ctx->none)
1198 		return invalfc(fc, "No subsys list or none specified");
1199 
1200 	/* Hierarchies may only be created in the initial cgroup namespace. */
1201 	if (ctx->ns != &init_cgroup_ns)
1202 		return -EPERM;
1203 
1204 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1205 	if (!root)
1206 		return -ENOMEM;
1207 
1208 	ctx->root = root;
1209 	init_cgroup_root(ctx);
1210 
1211 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1212 	if (ret)
1213 		cgroup_free_root(root);
1214 	return ret;
1215 }
1216 
1217 int cgroup1_get_tree(struct fs_context *fc)
1218 {
1219 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1220 	int ret;
1221 
1222 	/* Check if the caller has permission to mount. */
1223 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1224 		return -EPERM;
1225 
1226 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1227 
1228 	ret = cgroup1_root_to_use(fc);
1229 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1230 		ret = 1;	/* restart */
1231 
1232 	mutex_unlock(&cgroup_mutex);
1233 
1234 	if (!ret)
1235 		ret = cgroup_do_get_tree(fc);
1236 
1237 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1238 		fc_drop_locked(fc);
1239 		ret = 1;
1240 	}
1241 
1242 	if (unlikely(ret > 0)) {
1243 		msleep(10);
1244 		return restart_syscall();
1245 	}
1246 	return ret;
1247 }
1248 
1249 static int __init cgroup1_wq_init(void)
1250 {
1251 	/*
1252 	 * Used to destroy pidlists and separate to serve as flush domain.
1253 	 * Cap @max_active to 1 too.
1254 	 */
1255 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1256 						    0, 1);
1257 	BUG_ON(!cgroup_pidlist_destroy_wq);
1258 	return 0;
1259 }
1260 core_initcall(cgroup1_wq_init);
1261 
1262 static int __init cgroup_no_v1(char *str)
1263 {
1264 	struct cgroup_subsys *ss;
1265 	char *token;
1266 	int i;
1267 
1268 	while ((token = strsep(&str, ",")) != NULL) {
1269 		if (!*token)
1270 			continue;
1271 
1272 		if (!strcmp(token, "all")) {
1273 			cgroup_no_v1_mask = U16_MAX;
1274 			continue;
1275 		}
1276 
1277 		if (!strcmp(token, "named")) {
1278 			cgroup_no_v1_named = true;
1279 			continue;
1280 		}
1281 
1282 		for_each_subsys(ss, i) {
1283 			if (strcmp(token, ss->name) &&
1284 			    strcmp(token, ss->legacy_name))
1285 				continue;
1286 
1287 			cgroup_no_v1_mask |= 1 << i;
1288 		}
1289 	}
1290 	return 1;
1291 }
1292 __setup("cgroup_no_v1=", cgroup_no_v1);
1293