xref: /openbmc/linux/kernel/cgroup/cgroup-v1.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 #include "cgroup-internal.h"
2 
3 #include <linux/ctype.h>
4 #include <linux/kmod.h>
5 #include <linux/sort.h>
6 #include <linux/delay.h>
7 #include <linux/mm.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/task.h>
10 #include <linux/magic.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/delayacct.h>
14 #include <linux/pid_namespace.h>
15 #include <linux/cgroupstats.h>
16 
17 #include <trace/events/cgroup.h>
18 
19 /*
20  * pidlists linger the following amount before being destroyed.  The goal
21  * is avoiding frequent destruction in the middle of consecutive read calls
22  * Expiring in the middle is a performance problem not a correctness one.
23  * 1 sec should be enough.
24  */
25 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
26 
27 /* Controllers blocked by the commandline in v1 */
28 static u16 cgroup_no_v1_mask;
29 
30 /*
31  * pidlist destructions need to be flushed on cgroup destruction.  Use a
32  * separate workqueue as flush domain.
33  */
34 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
35 
36 /*
37  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
38  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
39  */
40 static DEFINE_SPINLOCK(release_agent_path_lock);
41 
42 bool cgroup1_ssid_disabled(int ssid)
43 {
44 	return cgroup_no_v1_mask & (1 << ssid);
45 }
46 
47 /**
48  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
49  * @from: attach to all cgroups of a given task
50  * @tsk: the task to be attached
51  */
52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
53 {
54 	struct cgroup_root *root;
55 	int retval = 0;
56 
57 	mutex_lock(&cgroup_mutex);
58 	percpu_down_write(&cgroup_threadgroup_rwsem);
59 	for_each_root(root) {
60 		struct cgroup *from_cgrp;
61 
62 		if (root == &cgrp_dfl_root)
63 			continue;
64 
65 		spin_lock_irq(&css_set_lock);
66 		from_cgrp = task_cgroup_from_root(from, root);
67 		spin_unlock_irq(&css_set_lock);
68 
69 		retval = cgroup_attach_task(from_cgrp, tsk, false);
70 		if (retval)
71 			break;
72 	}
73 	percpu_up_write(&cgroup_threadgroup_rwsem);
74 	mutex_unlock(&cgroup_mutex);
75 
76 	return retval;
77 }
78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
79 
80 /**
81  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
82  * @to: cgroup to which the tasks will be moved
83  * @from: cgroup in which the tasks currently reside
84  *
85  * Locking rules between cgroup_post_fork() and the migration path
86  * guarantee that, if a task is forking while being migrated, the new child
87  * is guaranteed to be either visible in the source cgroup after the
88  * parent's migration is complete or put into the target cgroup.  No task
89  * can slip out of migration through forking.
90  */
91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
92 {
93 	DEFINE_CGROUP_MGCTX(mgctx);
94 	struct cgrp_cset_link *link;
95 	struct css_task_iter it;
96 	struct task_struct *task;
97 	int ret;
98 
99 	if (cgroup_on_dfl(to))
100 		return -EINVAL;
101 
102 	ret = cgroup_migrate_vet_dst(to);
103 	if (ret)
104 		return ret;
105 
106 	mutex_lock(&cgroup_mutex);
107 
108 	percpu_down_write(&cgroup_threadgroup_rwsem);
109 
110 	/* all tasks in @from are being moved, all csets are source */
111 	spin_lock_irq(&css_set_lock);
112 	list_for_each_entry(link, &from->cset_links, cset_link)
113 		cgroup_migrate_add_src(link->cset, to, &mgctx);
114 	spin_unlock_irq(&css_set_lock);
115 
116 	ret = cgroup_migrate_prepare_dst(&mgctx);
117 	if (ret)
118 		goto out_err;
119 
120 	/*
121 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
122 	 * ->can_attach() fails.
123 	 */
124 	do {
125 		css_task_iter_start(&from->self, 0, &it);
126 
127 		do {
128 			task = css_task_iter_next(&it);
129 		} while (task && (task->flags & PF_EXITING));
130 
131 		if (task)
132 			get_task_struct(task);
133 		css_task_iter_end(&it);
134 
135 		if (task) {
136 			ret = cgroup_migrate(task, false, &mgctx);
137 			if (!ret)
138 				trace_cgroup_transfer_tasks(to, task, false);
139 			put_task_struct(task);
140 		}
141 	} while (task && !ret);
142 out_err:
143 	cgroup_migrate_finish(&mgctx);
144 	percpu_up_write(&cgroup_threadgroup_rwsem);
145 	mutex_unlock(&cgroup_mutex);
146 	return ret;
147 }
148 
149 /*
150  * Stuff for reading the 'tasks'/'procs' files.
151  *
152  * Reading this file can return large amounts of data if a cgroup has
153  * *lots* of attached tasks. So it may need several calls to read(),
154  * but we cannot guarantee that the information we produce is correct
155  * unless we produce it entirely atomically.
156  *
157  */
158 
159 /* which pidlist file are we talking about? */
160 enum cgroup_filetype {
161 	CGROUP_FILE_PROCS,
162 	CGROUP_FILE_TASKS,
163 };
164 
165 /*
166  * A pidlist is a list of pids that virtually represents the contents of one
167  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
168  * a pair (one each for procs, tasks) for each pid namespace that's relevant
169  * to the cgroup.
170  */
171 struct cgroup_pidlist {
172 	/*
173 	 * used to find which pidlist is wanted. doesn't change as long as
174 	 * this particular list stays in the list.
175 	*/
176 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
177 	/* array of xids */
178 	pid_t *list;
179 	/* how many elements the above list has */
180 	int length;
181 	/* each of these stored in a list by its cgroup */
182 	struct list_head links;
183 	/* pointer to the cgroup we belong to, for list removal purposes */
184 	struct cgroup *owner;
185 	/* for delayed destruction */
186 	struct delayed_work destroy_dwork;
187 };
188 
189 /*
190  * The following two functions "fix" the issue where there are more pids
191  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
192  * TODO: replace with a kernel-wide solution to this problem
193  */
194 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
195 static void *pidlist_allocate(int count)
196 {
197 	if (PIDLIST_TOO_LARGE(count))
198 		return vmalloc(array_size(count, sizeof(pid_t)));
199 	else
200 		return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL);
201 }
202 
203 static void pidlist_free(void *p)
204 {
205 	kvfree(p);
206 }
207 
208 /*
209  * Used to destroy all pidlists lingering waiting for destroy timer.  None
210  * should be left afterwards.
211  */
212 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
213 {
214 	struct cgroup_pidlist *l, *tmp_l;
215 
216 	mutex_lock(&cgrp->pidlist_mutex);
217 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
218 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
219 	mutex_unlock(&cgrp->pidlist_mutex);
220 
221 	flush_workqueue(cgroup_pidlist_destroy_wq);
222 	BUG_ON(!list_empty(&cgrp->pidlists));
223 }
224 
225 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
226 {
227 	struct delayed_work *dwork = to_delayed_work(work);
228 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
229 						destroy_dwork);
230 	struct cgroup_pidlist *tofree = NULL;
231 
232 	mutex_lock(&l->owner->pidlist_mutex);
233 
234 	/*
235 	 * Destroy iff we didn't get queued again.  The state won't change
236 	 * as destroy_dwork can only be queued while locked.
237 	 */
238 	if (!delayed_work_pending(dwork)) {
239 		list_del(&l->links);
240 		pidlist_free(l->list);
241 		put_pid_ns(l->key.ns);
242 		tofree = l;
243 	}
244 
245 	mutex_unlock(&l->owner->pidlist_mutex);
246 	kfree(tofree);
247 }
248 
249 /*
250  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
251  * Returns the number of unique elements.
252  */
253 static int pidlist_uniq(pid_t *list, int length)
254 {
255 	int src, dest = 1;
256 
257 	/*
258 	 * we presume the 0th element is unique, so i starts at 1. trivial
259 	 * edge cases first; no work needs to be done for either
260 	 */
261 	if (length == 0 || length == 1)
262 		return length;
263 	/* src and dest walk down the list; dest counts unique elements */
264 	for (src = 1; src < length; src++) {
265 		/* find next unique element */
266 		while (list[src] == list[src-1]) {
267 			src++;
268 			if (src == length)
269 				goto after;
270 		}
271 		/* dest always points to where the next unique element goes */
272 		list[dest] = list[src];
273 		dest++;
274 	}
275 after:
276 	return dest;
277 }
278 
279 /*
280  * The two pid files - task and cgroup.procs - guaranteed that the result
281  * is sorted, which forced this whole pidlist fiasco.  As pid order is
282  * different per namespace, each namespace needs differently sorted list,
283  * making it impossible to use, for example, single rbtree of member tasks
284  * sorted by task pointer.  As pidlists can be fairly large, allocating one
285  * per open file is dangerous, so cgroup had to implement shared pool of
286  * pidlists keyed by cgroup and namespace.
287  */
288 static int cmppid(const void *a, const void *b)
289 {
290 	return *(pid_t *)a - *(pid_t *)b;
291 }
292 
293 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
294 						  enum cgroup_filetype type)
295 {
296 	struct cgroup_pidlist *l;
297 	/* don't need task_nsproxy() if we're looking at ourself */
298 	struct pid_namespace *ns = task_active_pid_ns(current);
299 
300 	lockdep_assert_held(&cgrp->pidlist_mutex);
301 
302 	list_for_each_entry(l, &cgrp->pidlists, links)
303 		if (l->key.type == type && l->key.ns == ns)
304 			return l;
305 	return NULL;
306 }
307 
308 /*
309  * find the appropriate pidlist for our purpose (given procs vs tasks)
310  * returns with the lock on that pidlist already held, and takes care
311  * of the use count, or returns NULL with no locks held if we're out of
312  * memory.
313  */
314 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
315 						enum cgroup_filetype type)
316 {
317 	struct cgroup_pidlist *l;
318 
319 	lockdep_assert_held(&cgrp->pidlist_mutex);
320 
321 	l = cgroup_pidlist_find(cgrp, type);
322 	if (l)
323 		return l;
324 
325 	/* entry not found; create a new one */
326 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
327 	if (!l)
328 		return l;
329 
330 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
331 	l->key.type = type;
332 	/* don't need task_nsproxy() if we're looking at ourself */
333 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
334 	l->owner = cgrp;
335 	list_add(&l->links, &cgrp->pidlists);
336 	return l;
337 }
338 
339 /**
340  * cgroup_task_count - count the number of tasks in a cgroup.
341  * @cgrp: the cgroup in question
342  */
343 int cgroup_task_count(const struct cgroup *cgrp)
344 {
345 	int count = 0;
346 	struct cgrp_cset_link *link;
347 
348 	spin_lock_irq(&css_set_lock);
349 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
350 		count += link->cset->nr_tasks;
351 	spin_unlock_irq(&css_set_lock);
352 	return count;
353 }
354 
355 /*
356  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
357  */
358 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
359 			      struct cgroup_pidlist **lp)
360 {
361 	pid_t *array;
362 	int length;
363 	int pid, n = 0; /* used for populating the array */
364 	struct css_task_iter it;
365 	struct task_struct *tsk;
366 	struct cgroup_pidlist *l;
367 
368 	lockdep_assert_held(&cgrp->pidlist_mutex);
369 
370 	/*
371 	 * If cgroup gets more users after we read count, we won't have
372 	 * enough space - tough.  This race is indistinguishable to the
373 	 * caller from the case that the additional cgroup users didn't
374 	 * show up until sometime later on.
375 	 */
376 	length = cgroup_task_count(cgrp);
377 	array = pidlist_allocate(length);
378 	if (!array)
379 		return -ENOMEM;
380 	/* now, populate the array */
381 	css_task_iter_start(&cgrp->self, 0, &it);
382 	while ((tsk = css_task_iter_next(&it))) {
383 		if (unlikely(n == length))
384 			break;
385 		/* get tgid or pid for procs or tasks file respectively */
386 		if (type == CGROUP_FILE_PROCS)
387 			pid = task_tgid_vnr(tsk);
388 		else
389 			pid = task_pid_vnr(tsk);
390 		if (pid > 0) /* make sure to only use valid results */
391 			array[n++] = pid;
392 	}
393 	css_task_iter_end(&it);
394 	length = n;
395 	/* now sort & (if procs) strip out duplicates */
396 	sort(array, length, sizeof(pid_t), cmppid, NULL);
397 	if (type == CGROUP_FILE_PROCS)
398 		length = pidlist_uniq(array, length);
399 
400 	l = cgroup_pidlist_find_create(cgrp, type);
401 	if (!l) {
402 		pidlist_free(array);
403 		return -ENOMEM;
404 	}
405 
406 	/* store array, freeing old if necessary */
407 	pidlist_free(l->list);
408 	l->list = array;
409 	l->length = length;
410 	*lp = l;
411 	return 0;
412 }
413 
414 /*
415  * seq_file methods for the tasks/procs files. The seq_file position is the
416  * next pid to display; the seq_file iterator is a pointer to the pid
417  * in the cgroup->l->list array.
418  */
419 
420 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
421 {
422 	/*
423 	 * Initially we receive a position value that corresponds to
424 	 * one more than the last pid shown (or 0 on the first call or
425 	 * after a seek to the start). Use a binary-search to find the
426 	 * next pid to display, if any
427 	 */
428 	struct kernfs_open_file *of = s->private;
429 	struct cgroup *cgrp = seq_css(s)->cgroup;
430 	struct cgroup_pidlist *l;
431 	enum cgroup_filetype type = seq_cft(s)->private;
432 	int index = 0, pid = *pos;
433 	int *iter, ret;
434 
435 	mutex_lock(&cgrp->pidlist_mutex);
436 
437 	/*
438 	 * !NULL @of->priv indicates that this isn't the first start()
439 	 * after open.  If the matching pidlist is around, we can use that.
440 	 * Look for it.  Note that @of->priv can't be used directly.  It
441 	 * could already have been destroyed.
442 	 */
443 	if (of->priv)
444 		of->priv = cgroup_pidlist_find(cgrp, type);
445 
446 	/*
447 	 * Either this is the first start() after open or the matching
448 	 * pidlist has been destroyed inbetween.  Create a new one.
449 	 */
450 	if (!of->priv) {
451 		ret = pidlist_array_load(cgrp, type,
452 					 (struct cgroup_pidlist **)&of->priv);
453 		if (ret)
454 			return ERR_PTR(ret);
455 	}
456 	l = of->priv;
457 
458 	if (pid) {
459 		int end = l->length;
460 
461 		while (index < end) {
462 			int mid = (index + end) / 2;
463 			if (l->list[mid] == pid) {
464 				index = mid;
465 				break;
466 			} else if (l->list[mid] <= pid)
467 				index = mid + 1;
468 			else
469 				end = mid;
470 		}
471 	}
472 	/* If we're off the end of the array, we're done */
473 	if (index >= l->length)
474 		return NULL;
475 	/* Update the abstract position to be the actual pid that we found */
476 	iter = l->list + index;
477 	*pos = *iter;
478 	return iter;
479 }
480 
481 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
482 {
483 	struct kernfs_open_file *of = s->private;
484 	struct cgroup_pidlist *l = of->priv;
485 
486 	if (l)
487 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
488 				 CGROUP_PIDLIST_DESTROY_DELAY);
489 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
490 }
491 
492 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
493 {
494 	struct kernfs_open_file *of = s->private;
495 	struct cgroup_pidlist *l = of->priv;
496 	pid_t *p = v;
497 	pid_t *end = l->list + l->length;
498 	/*
499 	 * Advance to the next pid in the array. If this goes off the
500 	 * end, we're done
501 	 */
502 	p++;
503 	if (p >= end) {
504 		return NULL;
505 	} else {
506 		*pos = *p;
507 		return p;
508 	}
509 }
510 
511 static int cgroup_pidlist_show(struct seq_file *s, void *v)
512 {
513 	seq_printf(s, "%d\n", *(int *)v);
514 
515 	return 0;
516 }
517 
518 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
519 				     char *buf, size_t nbytes, loff_t off,
520 				     bool threadgroup)
521 {
522 	struct cgroup *cgrp;
523 	struct task_struct *task;
524 	const struct cred *cred, *tcred;
525 	ssize_t ret;
526 
527 	cgrp = cgroup_kn_lock_live(of->kn, false);
528 	if (!cgrp)
529 		return -ENODEV;
530 
531 	task = cgroup_procs_write_start(buf, threadgroup);
532 	ret = PTR_ERR_OR_ZERO(task);
533 	if (ret)
534 		goto out_unlock;
535 
536 	/*
537 	 * Even if we're attaching all tasks in the thread group, we only
538 	 * need to check permissions on one of them.
539 	 */
540 	cred = current_cred();
541 	tcred = get_task_cred(task);
542 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
543 	    !uid_eq(cred->euid, tcred->uid) &&
544 	    !uid_eq(cred->euid, tcred->suid))
545 		ret = -EACCES;
546 	put_cred(tcred);
547 	if (ret)
548 		goto out_finish;
549 
550 	ret = cgroup_attach_task(cgrp, task, threadgroup);
551 
552 out_finish:
553 	cgroup_procs_write_finish(task);
554 out_unlock:
555 	cgroup_kn_unlock(of->kn);
556 
557 	return ret ?: nbytes;
558 }
559 
560 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
561 				   char *buf, size_t nbytes, loff_t off)
562 {
563 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
564 }
565 
566 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
567 				   char *buf, size_t nbytes, loff_t off)
568 {
569 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
570 }
571 
572 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
573 					  char *buf, size_t nbytes, loff_t off)
574 {
575 	struct cgroup *cgrp;
576 
577 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
578 
579 	cgrp = cgroup_kn_lock_live(of->kn, false);
580 	if (!cgrp)
581 		return -ENODEV;
582 	spin_lock(&release_agent_path_lock);
583 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
584 		sizeof(cgrp->root->release_agent_path));
585 	spin_unlock(&release_agent_path_lock);
586 	cgroup_kn_unlock(of->kn);
587 	return nbytes;
588 }
589 
590 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
591 {
592 	struct cgroup *cgrp = seq_css(seq)->cgroup;
593 
594 	spin_lock(&release_agent_path_lock);
595 	seq_puts(seq, cgrp->root->release_agent_path);
596 	spin_unlock(&release_agent_path_lock);
597 	seq_putc(seq, '\n');
598 	return 0;
599 }
600 
601 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
602 {
603 	seq_puts(seq, "0\n");
604 	return 0;
605 }
606 
607 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
608 					 struct cftype *cft)
609 {
610 	return notify_on_release(css->cgroup);
611 }
612 
613 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
614 					  struct cftype *cft, u64 val)
615 {
616 	if (val)
617 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
618 	else
619 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
620 	return 0;
621 }
622 
623 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
624 				      struct cftype *cft)
625 {
626 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
627 }
628 
629 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
630 				       struct cftype *cft, u64 val)
631 {
632 	if (val)
633 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
634 	else
635 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
636 	return 0;
637 }
638 
639 /* cgroup core interface files for the legacy hierarchies */
640 struct cftype cgroup1_base_files[] = {
641 	{
642 		.name = "cgroup.procs",
643 		.seq_start = cgroup_pidlist_start,
644 		.seq_next = cgroup_pidlist_next,
645 		.seq_stop = cgroup_pidlist_stop,
646 		.seq_show = cgroup_pidlist_show,
647 		.private = CGROUP_FILE_PROCS,
648 		.write = cgroup1_procs_write,
649 	},
650 	{
651 		.name = "cgroup.clone_children",
652 		.read_u64 = cgroup_clone_children_read,
653 		.write_u64 = cgroup_clone_children_write,
654 	},
655 	{
656 		.name = "cgroup.sane_behavior",
657 		.flags = CFTYPE_ONLY_ON_ROOT,
658 		.seq_show = cgroup_sane_behavior_show,
659 	},
660 	{
661 		.name = "tasks",
662 		.seq_start = cgroup_pidlist_start,
663 		.seq_next = cgroup_pidlist_next,
664 		.seq_stop = cgroup_pidlist_stop,
665 		.seq_show = cgroup_pidlist_show,
666 		.private = CGROUP_FILE_TASKS,
667 		.write = cgroup1_tasks_write,
668 	},
669 	{
670 		.name = "notify_on_release",
671 		.read_u64 = cgroup_read_notify_on_release,
672 		.write_u64 = cgroup_write_notify_on_release,
673 	},
674 	{
675 		.name = "release_agent",
676 		.flags = CFTYPE_ONLY_ON_ROOT,
677 		.seq_show = cgroup_release_agent_show,
678 		.write = cgroup_release_agent_write,
679 		.max_write_len = PATH_MAX - 1,
680 	},
681 	{ }	/* terminate */
682 };
683 
684 /* Display information about each subsystem and each hierarchy */
685 int proc_cgroupstats_show(struct seq_file *m, void *v)
686 {
687 	struct cgroup_subsys *ss;
688 	int i;
689 
690 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
691 	/*
692 	 * ideally we don't want subsystems moving around while we do this.
693 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
694 	 * subsys/hierarchy state.
695 	 */
696 	mutex_lock(&cgroup_mutex);
697 
698 	for_each_subsys(ss, i)
699 		seq_printf(m, "%s\t%d\t%d\t%d\n",
700 			   ss->legacy_name, ss->root->hierarchy_id,
701 			   atomic_read(&ss->root->nr_cgrps),
702 			   cgroup_ssid_enabled(i));
703 
704 	mutex_unlock(&cgroup_mutex);
705 	return 0;
706 }
707 
708 /**
709  * cgroupstats_build - build and fill cgroupstats
710  * @stats: cgroupstats to fill information into
711  * @dentry: A dentry entry belonging to the cgroup for which stats have
712  * been requested.
713  *
714  * Build and fill cgroupstats so that taskstats can export it to user
715  * space.
716  */
717 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
718 {
719 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
720 	struct cgroup *cgrp;
721 	struct css_task_iter it;
722 	struct task_struct *tsk;
723 
724 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
725 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
726 	    kernfs_type(kn) != KERNFS_DIR)
727 		return -EINVAL;
728 
729 	mutex_lock(&cgroup_mutex);
730 
731 	/*
732 	 * We aren't being called from kernfs and there's no guarantee on
733 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
734 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
735 	 */
736 	rcu_read_lock();
737 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
738 	if (!cgrp || cgroup_is_dead(cgrp)) {
739 		rcu_read_unlock();
740 		mutex_unlock(&cgroup_mutex);
741 		return -ENOENT;
742 	}
743 	rcu_read_unlock();
744 
745 	css_task_iter_start(&cgrp->self, 0, &it);
746 	while ((tsk = css_task_iter_next(&it))) {
747 		switch (tsk->state) {
748 		case TASK_RUNNING:
749 			stats->nr_running++;
750 			break;
751 		case TASK_INTERRUPTIBLE:
752 			stats->nr_sleeping++;
753 			break;
754 		case TASK_UNINTERRUPTIBLE:
755 			stats->nr_uninterruptible++;
756 			break;
757 		case TASK_STOPPED:
758 			stats->nr_stopped++;
759 			break;
760 		default:
761 			if (delayacct_is_task_waiting_on_io(tsk))
762 				stats->nr_io_wait++;
763 			break;
764 		}
765 	}
766 	css_task_iter_end(&it);
767 
768 	mutex_unlock(&cgroup_mutex);
769 	return 0;
770 }
771 
772 void cgroup1_check_for_release(struct cgroup *cgrp)
773 {
774 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
775 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
776 		schedule_work(&cgrp->release_agent_work);
777 }
778 
779 /*
780  * Notify userspace when a cgroup is released, by running the
781  * configured release agent with the name of the cgroup (path
782  * relative to the root of cgroup file system) as the argument.
783  *
784  * Most likely, this user command will try to rmdir this cgroup.
785  *
786  * This races with the possibility that some other task will be
787  * attached to this cgroup before it is removed, or that some other
788  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
789  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
790  * unused, and this cgroup will be reprieved from its death sentence,
791  * to continue to serve a useful existence.  Next time it's released,
792  * we will get notified again, if it still has 'notify_on_release' set.
793  *
794  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
795  * means only wait until the task is successfully execve()'d.  The
796  * separate release agent task is forked by call_usermodehelper(),
797  * then control in this thread returns here, without waiting for the
798  * release agent task.  We don't bother to wait because the caller of
799  * this routine has no use for the exit status of the release agent
800  * task, so no sense holding our caller up for that.
801  */
802 void cgroup1_release_agent(struct work_struct *work)
803 {
804 	struct cgroup *cgrp =
805 		container_of(work, struct cgroup, release_agent_work);
806 	char *pathbuf = NULL, *agentbuf = NULL;
807 	char *argv[3], *envp[3];
808 	int ret;
809 
810 	mutex_lock(&cgroup_mutex);
811 
812 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
813 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
814 	if (!pathbuf || !agentbuf)
815 		goto out;
816 
817 	spin_lock_irq(&css_set_lock);
818 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
819 	spin_unlock_irq(&css_set_lock);
820 	if (ret < 0 || ret >= PATH_MAX)
821 		goto out;
822 
823 	argv[0] = agentbuf;
824 	argv[1] = pathbuf;
825 	argv[2] = NULL;
826 
827 	/* minimal command environment */
828 	envp[0] = "HOME=/";
829 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
830 	envp[2] = NULL;
831 
832 	mutex_unlock(&cgroup_mutex);
833 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
834 	goto out_free;
835 out:
836 	mutex_unlock(&cgroup_mutex);
837 out_free:
838 	kfree(agentbuf);
839 	kfree(pathbuf);
840 }
841 
842 /*
843  * cgroup_rename - Only allow simple rename of directories in place.
844  */
845 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
846 			  const char *new_name_str)
847 {
848 	struct cgroup *cgrp = kn->priv;
849 	int ret;
850 
851 	if (kernfs_type(kn) != KERNFS_DIR)
852 		return -ENOTDIR;
853 	if (kn->parent != new_parent)
854 		return -EIO;
855 
856 	/*
857 	 * We're gonna grab cgroup_mutex which nests outside kernfs
858 	 * active_ref.  kernfs_rename() doesn't require active_ref
859 	 * protection.  Break them before grabbing cgroup_mutex.
860 	 */
861 	kernfs_break_active_protection(new_parent);
862 	kernfs_break_active_protection(kn);
863 
864 	mutex_lock(&cgroup_mutex);
865 
866 	ret = kernfs_rename(kn, new_parent, new_name_str);
867 	if (!ret)
868 		trace_cgroup_rename(cgrp);
869 
870 	mutex_unlock(&cgroup_mutex);
871 
872 	kernfs_unbreak_active_protection(kn);
873 	kernfs_unbreak_active_protection(new_parent);
874 	return ret;
875 }
876 
877 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
878 {
879 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
880 	struct cgroup_subsys *ss;
881 	int ssid;
882 
883 	for_each_subsys(ss, ssid)
884 		if (root->subsys_mask & (1 << ssid))
885 			seq_show_option(seq, ss->legacy_name, NULL);
886 	if (root->flags & CGRP_ROOT_NOPREFIX)
887 		seq_puts(seq, ",noprefix");
888 	if (root->flags & CGRP_ROOT_XATTR)
889 		seq_puts(seq, ",xattr");
890 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
891 		seq_puts(seq, ",cpuset_v2_mode");
892 
893 	spin_lock(&release_agent_path_lock);
894 	if (strlen(root->release_agent_path))
895 		seq_show_option(seq, "release_agent",
896 				root->release_agent_path);
897 	spin_unlock(&release_agent_path_lock);
898 
899 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
900 		seq_puts(seq, ",clone_children");
901 	if (strlen(root->name))
902 		seq_show_option(seq, "name", root->name);
903 	return 0;
904 }
905 
906 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
907 {
908 	char *token, *o = data;
909 	bool all_ss = false, one_ss = false;
910 	u16 mask = U16_MAX;
911 	struct cgroup_subsys *ss;
912 	int nr_opts = 0;
913 	int i;
914 
915 #ifdef CONFIG_CPUSETS
916 	mask = ~((u16)1 << cpuset_cgrp_id);
917 #endif
918 
919 	memset(opts, 0, sizeof(*opts));
920 
921 	while ((token = strsep(&o, ",")) != NULL) {
922 		nr_opts++;
923 
924 		if (!*token)
925 			return -EINVAL;
926 		if (!strcmp(token, "none")) {
927 			/* Explicitly have no subsystems */
928 			opts->none = true;
929 			continue;
930 		}
931 		if (!strcmp(token, "all")) {
932 			/* Mutually exclusive option 'all' + subsystem name */
933 			if (one_ss)
934 				return -EINVAL;
935 			all_ss = true;
936 			continue;
937 		}
938 		if (!strcmp(token, "noprefix")) {
939 			opts->flags |= CGRP_ROOT_NOPREFIX;
940 			continue;
941 		}
942 		if (!strcmp(token, "clone_children")) {
943 			opts->cpuset_clone_children = true;
944 			continue;
945 		}
946 		if (!strcmp(token, "cpuset_v2_mode")) {
947 			opts->flags |= CGRP_ROOT_CPUSET_V2_MODE;
948 			continue;
949 		}
950 		if (!strcmp(token, "xattr")) {
951 			opts->flags |= CGRP_ROOT_XATTR;
952 			continue;
953 		}
954 		if (!strncmp(token, "release_agent=", 14)) {
955 			/* Specifying two release agents is forbidden */
956 			if (opts->release_agent)
957 				return -EINVAL;
958 			opts->release_agent =
959 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
960 			if (!opts->release_agent)
961 				return -ENOMEM;
962 			continue;
963 		}
964 		if (!strncmp(token, "name=", 5)) {
965 			const char *name = token + 5;
966 			/* Can't specify an empty name */
967 			if (!strlen(name))
968 				return -EINVAL;
969 			/* Must match [\w.-]+ */
970 			for (i = 0; i < strlen(name); i++) {
971 				char c = name[i];
972 				if (isalnum(c))
973 					continue;
974 				if ((c == '.') || (c == '-') || (c == '_'))
975 					continue;
976 				return -EINVAL;
977 			}
978 			/* Specifying two names is forbidden */
979 			if (opts->name)
980 				return -EINVAL;
981 			opts->name = kstrndup(name,
982 					      MAX_CGROUP_ROOT_NAMELEN - 1,
983 					      GFP_KERNEL);
984 			if (!opts->name)
985 				return -ENOMEM;
986 
987 			continue;
988 		}
989 
990 		for_each_subsys(ss, i) {
991 			if (strcmp(token, ss->legacy_name))
992 				continue;
993 			if (!cgroup_ssid_enabled(i))
994 				continue;
995 			if (cgroup1_ssid_disabled(i))
996 				continue;
997 
998 			/* Mutually exclusive option 'all' + subsystem name */
999 			if (all_ss)
1000 				return -EINVAL;
1001 			opts->subsys_mask |= (1 << i);
1002 			one_ss = true;
1003 
1004 			break;
1005 		}
1006 		if (i == CGROUP_SUBSYS_COUNT)
1007 			return -ENOENT;
1008 	}
1009 
1010 	/*
1011 	 * If the 'all' option was specified select all the subsystems,
1012 	 * otherwise if 'none', 'name=' and a subsystem name options were
1013 	 * not specified, let's default to 'all'
1014 	 */
1015 	if (all_ss || (!one_ss && !opts->none && !opts->name))
1016 		for_each_subsys(ss, i)
1017 			if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1018 				opts->subsys_mask |= (1 << i);
1019 
1020 	/*
1021 	 * We either have to specify by name or by subsystems. (So all
1022 	 * empty hierarchies must have a name).
1023 	 */
1024 	if (!opts->subsys_mask && !opts->name)
1025 		return -EINVAL;
1026 
1027 	/*
1028 	 * Option noprefix was introduced just for backward compatibility
1029 	 * with the old cpuset, so we allow noprefix only if mounting just
1030 	 * the cpuset subsystem.
1031 	 */
1032 	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1033 		return -EINVAL;
1034 
1035 	/* Can't specify "none" and some subsystems */
1036 	if (opts->subsys_mask && opts->none)
1037 		return -EINVAL;
1038 
1039 	return 0;
1040 }
1041 
1042 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
1043 {
1044 	int ret = 0;
1045 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1046 	struct cgroup_sb_opts opts;
1047 	u16 added_mask, removed_mask;
1048 
1049 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1050 
1051 	/* See what subsystems are wanted */
1052 	ret = parse_cgroupfs_options(data, &opts);
1053 	if (ret)
1054 		goto out_unlock;
1055 
1056 	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1057 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1058 			task_tgid_nr(current), current->comm);
1059 
1060 	added_mask = opts.subsys_mask & ~root->subsys_mask;
1061 	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1062 
1063 	/* Don't allow flags or name to change at remount */
1064 	if ((opts.flags ^ root->flags) ||
1065 	    (opts.name && strcmp(opts.name, root->name))) {
1066 		pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1067 		       opts.flags, opts.name ?: "", root->flags, root->name);
1068 		ret = -EINVAL;
1069 		goto out_unlock;
1070 	}
1071 
1072 	/* remounting is not allowed for populated hierarchies */
1073 	if (!list_empty(&root->cgrp.self.children)) {
1074 		ret = -EBUSY;
1075 		goto out_unlock;
1076 	}
1077 
1078 	ret = rebind_subsystems(root, added_mask);
1079 	if (ret)
1080 		goto out_unlock;
1081 
1082 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1083 
1084 	if (opts.release_agent) {
1085 		spin_lock(&release_agent_path_lock);
1086 		strcpy(root->release_agent_path, opts.release_agent);
1087 		spin_unlock(&release_agent_path_lock);
1088 	}
1089 
1090 	trace_cgroup_remount(root);
1091 
1092  out_unlock:
1093 	kfree(opts.release_agent);
1094 	kfree(opts.name);
1095 	mutex_unlock(&cgroup_mutex);
1096 	return ret;
1097 }
1098 
1099 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1100 	.rename			= cgroup1_rename,
1101 	.show_options		= cgroup1_show_options,
1102 	.remount_fs		= cgroup1_remount,
1103 	.mkdir			= cgroup_mkdir,
1104 	.rmdir			= cgroup_rmdir,
1105 	.show_path		= cgroup_show_path,
1106 };
1107 
1108 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1109 			     void *data, unsigned long magic,
1110 			     struct cgroup_namespace *ns)
1111 {
1112 	struct super_block *pinned_sb = NULL;
1113 	struct cgroup_sb_opts opts;
1114 	struct cgroup_root *root;
1115 	struct cgroup_subsys *ss;
1116 	struct dentry *dentry;
1117 	int i, ret;
1118 	bool new_root = false;
1119 
1120 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1121 
1122 	/* First find the desired set of subsystems */
1123 	ret = parse_cgroupfs_options(data, &opts);
1124 	if (ret)
1125 		goto out_unlock;
1126 
1127 	/*
1128 	 * Destruction of cgroup root is asynchronous, so subsystems may
1129 	 * still be dying after the previous unmount.  Let's drain the
1130 	 * dying subsystems.  We just need to ensure that the ones
1131 	 * unmounted previously finish dying and don't care about new ones
1132 	 * starting.  Testing ref liveliness is good enough.
1133 	 */
1134 	for_each_subsys(ss, i) {
1135 		if (!(opts.subsys_mask & (1 << i)) ||
1136 		    ss->root == &cgrp_dfl_root)
1137 			continue;
1138 
1139 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1140 			mutex_unlock(&cgroup_mutex);
1141 			msleep(10);
1142 			ret = restart_syscall();
1143 			goto out_free;
1144 		}
1145 		cgroup_put(&ss->root->cgrp);
1146 	}
1147 
1148 	for_each_root(root) {
1149 		bool name_match = false;
1150 
1151 		if (root == &cgrp_dfl_root)
1152 			continue;
1153 
1154 		/*
1155 		 * If we asked for a name then it must match.  Also, if
1156 		 * name matches but sybsys_mask doesn't, we should fail.
1157 		 * Remember whether name matched.
1158 		 */
1159 		if (opts.name) {
1160 			if (strcmp(opts.name, root->name))
1161 				continue;
1162 			name_match = true;
1163 		}
1164 
1165 		/*
1166 		 * If we asked for subsystems (or explicitly for no
1167 		 * subsystems) then they must match.
1168 		 */
1169 		if ((opts.subsys_mask || opts.none) &&
1170 		    (opts.subsys_mask != root->subsys_mask)) {
1171 			if (!name_match)
1172 				continue;
1173 			ret = -EBUSY;
1174 			goto out_unlock;
1175 		}
1176 
1177 		if (root->flags ^ opts.flags)
1178 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1179 
1180 		/*
1181 		 * We want to reuse @root whose lifetime is governed by its
1182 		 * ->cgrp.  Let's check whether @root is alive and keep it
1183 		 * that way.  As cgroup_kill_sb() can happen anytime, we
1184 		 * want to block it by pinning the sb so that @root doesn't
1185 		 * get killed before mount is complete.
1186 		 *
1187 		 * With the sb pinned, tryget_live can reliably indicate
1188 		 * whether @root can be reused.  If it's being killed,
1189 		 * drain it.  We can use wait_queue for the wait but this
1190 		 * path is super cold.  Let's just sleep a bit and retry.
1191 		 */
1192 		pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1193 		if (IS_ERR(pinned_sb) ||
1194 		    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1195 			mutex_unlock(&cgroup_mutex);
1196 			if (!IS_ERR_OR_NULL(pinned_sb))
1197 				deactivate_super(pinned_sb);
1198 			msleep(10);
1199 			ret = restart_syscall();
1200 			goto out_free;
1201 		}
1202 
1203 		ret = 0;
1204 		goto out_unlock;
1205 	}
1206 
1207 	/*
1208 	 * No such thing, create a new one.  name= matching without subsys
1209 	 * specification is allowed for already existing hierarchies but we
1210 	 * can't create new one without subsys specification.
1211 	 */
1212 	if (!opts.subsys_mask && !opts.none) {
1213 		ret = -EINVAL;
1214 		goto out_unlock;
1215 	}
1216 
1217 	/* Hierarchies may only be created in the initial cgroup namespace. */
1218 	if (ns != &init_cgroup_ns) {
1219 		ret = -EPERM;
1220 		goto out_unlock;
1221 	}
1222 
1223 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1224 	if (!root) {
1225 		ret = -ENOMEM;
1226 		goto out_unlock;
1227 	}
1228 	new_root = true;
1229 
1230 	init_cgroup_root(root, &opts);
1231 
1232 	ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1233 	if (ret)
1234 		cgroup_free_root(root);
1235 
1236 out_unlock:
1237 	mutex_unlock(&cgroup_mutex);
1238 out_free:
1239 	kfree(opts.release_agent);
1240 	kfree(opts.name);
1241 
1242 	if (ret)
1243 		return ERR_PTR(ret);
1244 
1245 	dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1246 				 CGROUP_SUPER_MAGIC, ns);
1247 
1248 	/*
1249 	 * There's a race window after we release cgroup_mutex and before
1250 	 * allocating a superblock. Make sure a concurrent process won't
1251 	 * be able to re-use the root during this window by delaying the
1252 	 * initialization of root refcnt.
1253 	 */
1254 	if (new_root) {
1255 		mutex_lock(&cgroup_mutex);
1256 		percpu_ref_reinit(&root->cgrp.self.refcnt);
1257 		mutex_unlock(&cgroup_mutex);
1258 	}
1259 
1260 	/*
1261 	 * If @pinned_sb, we're reusing an existing root and holding an
1262 	 * extra ref on its sb.  Mount is complete.  Put the extra ref.
1263 	 */
1264 	if (pinned_sb)
1265 		deactivate_super(pinned_sb);
1266 
1267 	return dentry;
1268 }
1269 
1270 static int __init cgroup1_wq_init(void)
1271 {
1272 	/*
1273 	 * Used to destroy pidlists and separate to serve as flush domain.
1274 	 * Cap @max_active to 1 too.
1275 	 */
1276 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1277 						    0, 1);
1278 	BUG_ON(!cgroup_pidlist_destroy_wq);
1279 	return 0;
1280 }
1281 core_initcall(cgroup1_wq_init);
1282 
1283 static int __init cgroup_no_v1(char *str)
1284 {
1285 	struct cgroup_subsys *ss;
1286 	char *token;
1287 	int i;
1288 
1289 	while ((token = strsep(&str, ",")) != NULL) {
1290 		if (!*token)
1291 			continue;
1292 
1293 		if (!strcmp(token, "all")) {
1294 			cgroup_no_v1_mask = U16_MAX;
1295 			break;
1296 		}
1297 
1298 		for_each_subsys(ss, i) {
1299 			if (strcmp(token, ss->name) &&
1300 			    strcmp(token, ss->legacy_name))
1301 				continue;
1302 
1303 			cgroup_no_v1_mask |= 1 << i;
1304 		}
1305 	}
1306 	return 1;
1307 }
1308 __setup("cgroup_no_v1=", cgroup_no_v1);
1309