1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 /* 22 * pidlists linger the following amount before being destroyed. The goal 23 * is avoiding frequent destruction in the middle of consecutive read calls 24 * Expiring in the middle is a performance problem not a correctness one. 25 * 1 sec should be enough. 26 */ 27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 28 29 /* Controllers blocked by the commandline in v1 */ 30 static u16 cgroup_no_v1_mask; 31 32 /* disable named v1 mounts */ 33 static bool cgroup_no_v1_named; 34 35 /* 36 * pidlist destructions need to be flushed on cgroup destruction. Use a 37 * separate workqueue as flush domain. 38 */ 39 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 40 41 /* protects cgroup_subsys->release_agent_path */ 42 static DEFINE_SPINLOCK(release_agent_path_lock); 43 44 bool cgroup1_ssid_disabled(int ssid) 45 { 46 return cgroup_no_v1_mask & (1 << ssid); 47 } 48 49 /** 50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 51 * @from: attach to all cgroups of a given task 52 * @tsk: the task to be attached 53 * 54 * Return: %0 on success or a negative errno code on failure 55 */ 56 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 57 { 58 struct cgroup_root *root; 59 int retval = 0; 60 61 mutex_lock(&cgroup_mutex); 62 percpu_down_write(&cgroup_threadgroup_rwsem); 63 for_each_root(root) { 64 struct cgroup *from_cgrp; 65 66 spin_lock_irq(&css_set_lock); 67 from_cgrp = task_cgroup_from_root(from, root); 68 spin_unlock_irq(&css_set_lock); 69 70 retval = cgroup_attach_task(from_cgrp, tsk, false); 71 if (retval) 72 break; 73 } 74 percpu_up_write(&cgroup_threadgroup_rwsem); 75 mutex_unlock(&cgroup_mutex); 76 77 return retval; 78 } 79 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 80 81 /** 82 * cgroup_transfer_tasks - move tasks from one cgroup to another 83 * @to: cgroup to which the tasks will be moved 84 * @from: cgroup in which the tasks currently reside 85 * 86 * Locking rules between cgroup_post_fork() and the migration path 87 * guarantee that, if a task is forking while being migrated, the new child 88 * is guaranteed to be either visible in the source cgroup after the 89 * parent's migration is complete or put into the target cgroup. No task 90 * can slip out of migration through forking. 91 * 92 * Return: %0 on success or a negative errno code on failure 93 */ 94 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 95 { 96 DEFINE_CGROUP_MGCTX(mgctx); 97 struct cgrp_cset_link *link; 98 struct css_task_iter it; 99 struct task_struct *task; 100 int ret; 101 102 if (cgroup_on_dfl(to)) 103 return -EINVAL; 104 105 ret = cgroup_migrate_vet_dst(to); 106 if (ret) 107 return ret; 108 109 mutex_lock(&cgroup_mutex); 110 111 percpu_down_write(&cgroup_threadgroup_rwsem); 112 113 /* all tasks in @from are being moved, all csets are source */ 114 spin_lock_irq(&css_set_lock); 115 list_for_each_entry(link, &from->cset_links, cset_link) 116 cgroup_migrate_add_src(link->cset, to, &mgctx); 117 spin_unlock_irq(&css_set_lock); 118 119 ret = cgroup_migrate_prepare_dst(&mgctx); 120 if (ret) 121 goto out_err; 122 123 /* 124 * Migrate tasks one-by-one until @from is empty. This fails iff 125 * ->can_attach() fails. 126 */ 127 do { 128 css_task_iter_start(&from->self, 0, &it); 129 130 do { 131 task = css_task_iter_next(&it); 132 } while (task && (task->flags & PF_EXITING)); 133 134 if (task) 135 get_task_struct(task); 136 css_task_iter_end(&it); 137 138 if (task) { 139 ret = cgroup_migrate(task, false, &mgctx); 140 if (!ret) 141 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 142 put_task_struct(task); 143 } 144 } while (task && !ret); 145 out_err: 146 cgroup_migrate_finish(&mgctx); 147 percpu_up_write(&cgroup_threadgroup_rwsem); 148 mutex_unlock(&cgroup_mutex); 149 return ret; 150 } 151 152 /* 153 * Stuff for reading the 'tasks'/'procs' files. 154 * 155 * Reading this file can return large amounts of data if a cgroup has 156 * *lots* of attached tasks. So it may need several calls to read(), 157 * but we cannot guarantee that the information we produce is correct 158 * unless we produce it entirely atomically. 159 * 160 */ 161 162 /* which pidlist file are we talking about? */ 163 enum cgroup_filetype { 164 CGROUP_FILE_PROCS, 165 CGROUP_FILE_TASKS, 166 }; 167 168 /* 169 * A pidlist is a list of pids that virtually represents the contents of one 170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 171 * a pair (one each for procs, tasks) for each pid namespace that's relevant 172 * to the cgroup. 173 */ 174 struct cgroup_pidlist { 175 /* 176 * used to find which pidlist is wanted. doesn't change as long as 177 * this particular list stays in the list. 178 */ 179 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 180 /* array of xids */ 181 pid_t *list; 182 /* how many elements the above list has */ 183 int length; 184 /* each of these stored in a list by its cgroup */ 185 struct list_head links; 186 /* pointer to the cgroup we belong to, for list removal purposes */ 187 struct cgroup *owner; 188 /* for delayed destruction */ 189 struct delayed_work destroy_dwork; 190 }; 191 192 /* 193 * Used to destroy all pidlists lingering waiting for destroy timer. None 194 * should be left afterwards. 195 */ 196 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 197 { 198 struct cgroup_pidlist *l, *tmp_l; 199 200 mutex_lock(&cgrp->pidlist_mutex); 201 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 202 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 203 mutex_unlock(&cgrp->pidlist_mutex); 204 205 flush_workqueue(cgroup_pidlist_destroy_wq); 206 BUG_ON(!list_empty(&cgrp->pidlists)); 207 } 208 209 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 210 { 211 struct delayed_work *dwork = to_delayed_work(work); 212 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 213 destroy_dwork); 214 struct cgroup_pidlist *tofree = NULL; 215 216 mutex_lock(&l->owner->pidlist_mutex); 217 218 /* 219 * Destroy iff we didn't get queued again. The state won't change 220 * as destroy_dwork can only be queued while locked. 221 */ 222 if (!delayed_work_pending(dwork)) { 223 list_del(&l->links); 224 kvfree(l->list); 225 put_pid_ns(l->key.ns); 226 tofree = l; 227 } 228 229 mutex_unlock(&l->owner->pidlist_mutex); 230 kfree(tofree); 231 } 232 233 /* 234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 235 * Returns the number of unique elements. 236 */ 237 static int pidlist_uniq(pid_t *list, int length) 238 { 239 int src, dest = 1; 240 241 /* 242 * we presume the 0th element is unique, so i starts at 1. trivial 243 * edge cases first; no work needs to be done for either 244 */ 245 if (length == 0 || length == 1) 246 return length; 247 /* src and dest walk down the list; dest counts unique elements */ 248 for (src = 1; src < length; src++) { 249 /* find next unique element */ 250 while (list[src] == list[src-1]) { 251 src++; 252 if (src == length) 253 goto after; 254 } 255 /* dest always points to where the next unique element goes */ 256 list[dest] = list[src]; 257 dest++; 258 } 259 after: 260 return dest; 261 } 262 263 /* 264 * The two pid files - task and cgroup.procs - guaranteed that the result 265 * is sorted, which forced this whole pidlist fiasco. As pid order is 266 * different per namespace, each namespace needs differently sorted list, 267 * making it impossible to use, for example, single rbtree of member tasks 268 * sorted by task pointer. As pidlists can be fairly large, allocating one 269 * per open file is dangerous, so cgroup had to implement shared pool of 270 * pidlists keyed by cgroup and namespace. 271 */ 272 static int cmppid(const void *a, const void *b) 273 { 274 return *(pid_t *)a - *(pid_t *)b; 275 } 276 277 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 278 enum cgroup_filetype type) 279 { 280 struct cgroup_pidlist *l; 281 /* don't need task_nsproxy() if we're looking at ourself */ 282 struct pid_namespace *ns = task_active_pid_ns(current); 283 284 lockdep_assert_held(&cgrp->pidlist_mutex); 285 286 list_for_each_entry(l, &cgrp->pidlists, links) 287 if (l->key.type == type && l->key.ns == ns) 288 return l; 289 return NULL; 290 } 291 292 /* 293 * find the appropriate pidlist for our purpose (given procs vs tasks) 294 * returns with the lock on that pidlist already held, and takes care 295 * of the use count, or returns NULL with no locks held if we're out of 296 * memory. 297 */ 298 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 299 enum cgroup_filetype type) 300 { 301 struct cgroup_pidlist *l; 302 303 lockdep_assert_held(&cgrp->pidlist_mutex); 304 305 l = cgroup_pidlist_find(cgrp, type); 306 if (l) 307 return l; 308 309 /* entry not found; create a new one */ 310 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 311 if (!l) 312 return l; 313 314 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 315 l->key.type = type; 316 /* don't need task_nsproxy() if we're looking at ourself */ 317 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 318 l->owner = cgrp; 319 list_add(&l->links, &cgrp->pidlists); 320 return l; 321 } 322 323 /* 324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 325 */ 326 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 327 struct cgroup_pidlist **lp) 328 { 329 pid_t *array; 330 int length; 331 int pid, n = 0; /* used for populating the array */ 332 struct css_task_iter it; 333 struct task_struct *tsk; 334 struct cgroup_pidlist *l; 335 336 lockdep_assert_held(&cgrp->pidlist_mutex); 337 338 /* 339 * If cgroup gets more users after we read count, we won't have 340 * enough space - tough. This race is indistinguishable to the 341 * caller from the case that the additional cgroup users didn't 342 * show up until sometime later on. 343 */ 344 length = cgroup_task_count(cgrp); 345 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 346 if (!array) 347 return -ENOMEM; 348 /* now, populate the array */ 349 css_task_iter_start(&cgrp->self, 0, &it); 350 while ((tsk = css_task_iter_next(&it))) { 351 if (unlikely(n == length)) 352 break; 353 /* get tgid or pid for procs or tasks file respectively */ 354 if (type == CGROUP_FILE_PROCS) 355 pid = task_tgid_vnr(tsk); 356 else 357 pid = task_pid_vnr(tsk); 358 if (pid > 0) /* make sure to only use valid results */ 359 array[n++] = pid; 360 } 361 css_task_iter_end(&it); 362 length = n; 363 /* now sort & (if procs) strip out duplicates */ 364 sort(array, length, sizeof(pid_t), cmppid, NULL); 365 if (type == CGROUP_FILE_PROCS) 366 length = pidlist_uniq(array, length); 367 368 l = cgroup_pidlist_find_create(cgrp, type); 369 if (!l) { 370 kvfree(array); 371 return -ENOMEM; 372 } 373 374 /* store array, freeing old if necessary */ 375 kvfree(l->list); 376 l->list = array; 377 l->length = length; 378 *lp = l; 379 return 0; 380 } 381 382 /* 383 * seq_file methods for the tasks/procs files. The seq_file position is the 384 * next pid to display; the seq_file iterator is a pointer to the pid 385 * in the cgroup->l->list array. 386 */ 387 388 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 389 { 390 /* 391 * Initially we receive a position value that corresponds to 392 * one more than the last pid shown (or 0 on the first call or 393 * after a seek to the start). Use a binary-search to find the 394 * next pid to display, if any 395 */ 396 struct kernfs_open_file *of = s->private; 397 struct cgroup *cgrp = seq_css(s)->cgroup; 398 struct cgroup_pidlist *l; 399 enum cgroup_filetype type = seq_cft(s)->private; 400 int index = 0, pid = *pos; 401 int *iter, ret; 402 403 mutex_lock(&cgrp->pidlist_mutex); 404 405 /* 406 * !NULL @of->priv indicates that this isn't the first start() 407 * after open. If the matching pidlist is around, we can use that. 408 * Look for it. Note that @of->priv can't be used directly. It 409 * could already have been destroyed. 410 */ 411 if (of->priv) 412 of->priv = cgroup_pidlist_find(cgrp, type); 413 414 /* 415 * Either this is the first start() after open or the matching 416 * pidlist has been destroyed inbetween. Create a new one. 417 */ 418 if (!of->priv) { 419 ret = pidlist_array_load(cgrp, type, 420 (struct cgroup_pidlist **)&of->priv); 421 if (ret) 422 return ERR_PTR(ret); 423 } 424 l = of->priv; 425 426 if (pid) { 427 int end = l->length; 428 429 while (index < end) { 430 int mid = (index + end) / 2; 431 if (l->list[mid] == pid) { 432 index = mid; 433 break; 434 } else if (l->list[mid] <= pid) 435 index = mid + 1; 436 else 437 end = mid; 438 } 439 } 440 /* If we're off the end of the array, we're done */ 441 if (index >= l->length) 442 return NULL; 443 /* Update the abstract position to be the actual pid that we found */ 444 iter = l->list + index; 445 *pos = *iter; 446 return iter; 447 } 448 449 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 450 { 451 struct kernfs_open_file *of = s->private; 452 struct cgroup_pidlist *l = of->priv; 453 454 if (l) 455 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 456 CGROUP_PIDLIST_DESTROY_DELAY); 457 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 458 } 459 460 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 461 { 462 struct kernfs_open_file *of = s->private; 463 struct cgroup_pidlist *l = of->priv; 464 pid_t *p = v; 465 pid_t *end = l->list + l->length; 466 /* 467 * Advance to the next pid in the array. If this goes off the 468 * end, we're done 469 */ 470 p++; 471 if (p >= end) { 472 (*pos)++; 473 return NULL; 474 } else { 475 *pos = *p; 476 return p; 477 } 478 } 479 480 static int cgroup_pidlist_show(struct seq_file *s, void *v) 481 { 482 seq_printf(s, "%d\n", *(int *)v); 483 484 return 0; 485 } 486 487 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 488 char *buf, size_t nbytes, loff_t off, 489 bool threadgroup) 490 { 491 struct cgroup *cgrp; 492 struct task_struct *task; 493 const struct cred *cred, *tcred; 494 ssize_t ret; 495 bool locked; 496 497 cgrp = cgroup_kn_lock_live(of->kn, false); 498 if (!cgrp) 499 return -ENODEV; 500 501 task = cgroup_procs_write_start(buf, threadgroup, &locked); 502 ret = PTR_ERR_OR_ZERO(task); 503 if (ret) 504 goto out_unlock; 505 506 /* 507 * Even if we're attaching all tasks in the thread group, we only 508 * need to check permissions on one of them. 509 */ 510 cred = current_cred(); 511 tcred = get_task_cred(task); 512 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 513 !uid_eq(cred->euid, tcred->uid) && 514 !uid_eq(cred->euid, tcred->suid)) 515 ret = -EACCES; 516 put_cred(tcred); 517 if (ret) 518 goto out_finish; 519 520 ret = cgroup_attach_task(cgrp, task, threadgroup); 521 522 out_finish: 523 cgroup_procs_write_finish(task, locked); 524 out_unlock: 525 cgroup_kn_unlock(of->kn); 526 527 return ret ?: nbytes; 528 } 529 530 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 531 char *buf, size_t nbytes, loff_t off) 532 { 533 return __cgroup1_procs_write(of, buf, nbytes, off, true); 534 } 535 536 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 537 char *buf, size_t nbytes, loff_t off) 538 { 539 return __cgroup1_procs_write(of, buf, nbytes, off, false); 540 } 541 542 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 543 char *buf, size_t nbytes, loff_t off) 544 { 545 struct cgroup *cgrp; 546 547 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 548 549 cgrp = cgroup_kn_lock_live(of->kn, false); 550 if (!cgrp) 551 return -ENODEV; 552 spin_lock(&release_agent_path_lock); 553 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 554 sizeof(cgrp->root->release_agent_path)); 555 spin_unlock(&release_agent_path_lock); 556 cgroup_kn_unlock(of->kn); 557 return nbytes; 558 } 559 560 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 561 { 562 struct cgroup *cgrp = seq_css(seq)->cgroup; 563 564 spin_lock(&release_agent_path_lock); 565 seq_puts(seq, cgrp->root->release_agent_path); 566 spin_unlock(&release_agent_path_lock); 567 seq_putc(seq, '\n'); 568 return 0; 569 } 570 571 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 572 { 573 seq_puts(seq, "0\n"); 574 return 0; 575 } 576 577 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 578 struct cftype *cft) 579 { 580 return notify_on_release(css->cgroup); 581 } 582 583 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 584 struct cftype *cft, u64 val) 585 { 586 if (val) 587 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 588 else 589 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 590 return 0; 591 } 592 593 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 594 struct cftype *cft) 595 { 596 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 597 } 598 599 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 600 struct cftype *cft, u64 val) 601 { 602 if (val) 603 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 604 else 605 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 606 return 0; 607 } 608 609 /* cgroup core interface files for the legacy hierarchies */ 610 struct cftype cgroup1_base_files[] = { 611 { 612 .name = "cgroup.procs", 613 .seq_start = cgroup_pidlist_start, 614 .seq_next = cgroup_pidlist_next, 615 .seq_stop = cgroup_pidlist_stop, 616 .seq_show = cgroup_pidlist_show, 617 .private = CGROUP_FILE_PROCS, 618 .write = cgroup1_procs_write, 619 }, 620 { 621 .name = "cgroup.clone_children", 622 .read_u64 = cgroup_clone_children_read, 623 .write_u64 = cgroup_clone_children_write, 624 }, 625 { 626 .name = "cgroup.sane_behavior", 627 .flags = CFTYPE_ONLY_ON_ROOT, 628 .seq_show = cgroup_sane_behavior_show, 629 }, 630 { 631 .name = "tasks", 632 .seq_start = cgroup_pidlist_start, 633 .seq_next = cgroup_pidlist_next, 634 .seq_stop = cgroup_pidlist_stop, 635 .seq_show = cgroup_pidlist_show, 636 .private = CGROUP_FILE_TASKS, 637 .write = cgroup1_tasks_write, 638 }, 639 { 640 .name = "notify_on_release", 641 .read_u64 = cgroup_read_notify_on_release, 642 .write_u64 = cgroup_write_notify_on_release, 643 }, 644 { 645 .name = "release_agent", 646 .flags = CFTYPE_ONLY_ON_ROOT, 647 .seq_show = cgroup_release_agent_show, 648 .write = cgroup_release_agent_write, 649 .max_write_len = PATH_MAX - 1, 650 }, 651 { } /* terminate */ 652 }; 653 654 /* Display information about each subsystem and each hierarchy */ 655 int proc_cgroupstats_show(struct seq_file *m, void *v) 656 { 657 struct cgroup_subsys *ss; 658 int i; 659 660 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 661 /* 662 * Grab the subsystems state racily. No need to add avenue to 663 * cgroup_mutex contention. 664 */ 665 666 for_each_subsys(ss, i) 667 seq_printf(m, "%s\t%d\t%d\t%d\n", 668 ss->legacy_name, ss->root->hierarchy_id, 669 atomic_read(&ss->root->nr_cgrps), 670 cgroup_ssid_enabled(i)); 671 672 return 0; 673 } 674 675 /** 676 * cgroupstats_build - build and fill cgroupstats 677 * @stats: cgroupstats to fill information into 678 * @dentry: A dentry entry belonging to the cgroup for which stats have 679 * been requested. 680 * 681 * Build and fill cgroupstats so that taskstats can export it to user 682 * space. 683 * 684 * Return: %0 on success or a negative errno code on failure 685 */ 686 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 687 { 688 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 689 struct cgroup *cgrp; 690 struct css_task_iter it; 691 struct task_struct *tsk; 692 693 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 694 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 695 kernfs_type(kn) != KERNFS_DIR) 696 return -EINVAL; 697 698 /* 699 * We aren't being called from kernfs and there's no guarantee on 700 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 701 * @kn->priv is RCU safe. Let's do the RCU dancing. 702 */ 703 rcu_read_lock(); 704 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 705 if (!cgrp || !cgroup_tryget(cgrp)) { 706 rcu_read_unlock(); 707 return -ENOENT; 708 } 709 rcu_read_unlock(); 710 711 css_task_iter_start(&cgrp->self, 0, &it); 712 while ((tsk = css_task_iter_next(&it))) { 713 switch (READ_ONCE(tsk->__state)) { 714 case TASK_RUNNING: 715 stats->nr_running++; 716 break; 717 case TASK_INTERRUPTIBLE: 718 stats->nr_sleeping++; 719 break; 720 case TASK_UNINTERRUPTIBLE: 721 stats->nr_uninterruptible++; 722 break; 723 case TASK_STOPPED: 724 stats->nr_stopped++; 725 break; 726 default: 727 if (tsk->in_iowait) 728 stats->nr_io_wait++; 729 break; 730 } 731 } 732 css_task_iter_end(&it); 733 734 cgroup_put(cgrp); 735 return 0; 736 } 737 738 void cgroup1_check_for_release(struct cgroup *cgrp) 739 { 740 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 741 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 742 schedule_work(&cgrp->release_agent_work); 743 } 744 745 /* 746 * Notify userspace when a cgroup is released, by running the 747 * configured release agent with the name of the cgroup (path 748 * relative to the root of cgroup file system) as the argument. 749 * 750 * Most likely, this user command will try to rmdir this cgroup. 751 * 752 * This races with the possibility that some other task will be 753 * attached to this cgroup before it is removed, or that some other 754 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 755 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 756 * unused, and this cgroup will be reprieved from its death sentence, 757 * to continue to serve a useful existence. Next time it's released, 758 * we will get notified again, if it still has 'notify_on_release' set. 759 * 760 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 761 * means only wait until the task is successfully execve()'d. The 762 * separate release agent task is forked by call_usermodehelper(), 763 * then control in this thread returns here, without waiting for the 764 * release agent task. We don't bother to wait because the caller of 765 * this routine has no use for the exit status of the release agent 766 * task, so no sense holding our caller up for that. 767 */ 768 void cgroup1_release_agent(struct work_struct *work) 769 { 770 struct cgroup *cgrp = 771 container_of(work, struct cgroup, release_agent_work); 772 char *pathbuf, *agentbuf; 773 char *argv[3], *envp[3]; 774 int ret; 775 776 /* snoop agent path and exit early if empty */ 777 if (!cgrp->root->release_agent_path[0]) 778 return; 779 780 /* prepare argument buffers */ 781 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 782 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); 783 if (!pathbuf || !agentbuf) 784 goto out_free; 785 786 spin_lock(&release_agent_path_lock); 787 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); 788 spin_unlock(&release_agent_path_lock); 789 if (!agentbuf[0]) 790 goto out_free; 791 792 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 793 if (ret < 0 || ret >= PATH_MAX) 794 goto out_free; 795 796 argv[0] = agentbuf; 797 argv[1] = pathbuf; 798 argv[2] = NULL; 799 800 /* minimal command environment */ 801 envp[0] = "HOME=/"; 802 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 803 envp[2] = NULL; 804 805 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 806 out_free: 807 kfree(agentbuf); 808 kfree(pathbuf); 809 } 810 811 /* 812 * cgroup_rename - Only allow simple rename of directories in place. 813 */ 814 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 815 const char *new_name_str) 816 { 817 struct cgroup *cgrp = kn->priv; 818 int ret; 819 820 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 821 if (strchr(new_name_str, '\n')) 822 return -EINVAL; 823 824 if (kernfs_type(kn) != KERNFS_DIR) 825 return -ENOTDIR; 826 if (kn->parent != new_parent) 827 return -EIO; 828 829 /* 830 * We're gonna grab cgroup_mutex which nests outside kernfs 831 * active_ref. kernfs_rename() doesn't require active_ref 832 * protection. Break them before grabbing cgroup_mutex. 833 */ 834 kernfs_break_active_protection(new_parent); 835 kernfs_break_active_protection(kn); 836 837 mutex_lock(&cgroup_mutex); 838 839 ret = kernfs_rename(kn, new_parent, new_name_str); 840 if (!ret) 841 TRACE_CGROUP_PATH(rename, cgrp); 842 843 mutex_unlock(&cgroup_mutex); 844 845 kernfs_unbreak_active_protection(kn); 846 kernfs_unbreak_active_protection(new_parent); 847 return ret; 848 } 849 850 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 851 { 852 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 853 struct cgroup_subsys *ss; 854 int ssid; 855 856 for_each_subsys(ss, ssid) 857 if (root->subsys_mask & (1 << ssid)) 858 seq_show_option(seq, ss->legacy_name, NULL); 859 if (root->flags & CGRP_ROOT_NOPREFIX) 860 seq_puts(seq, ",noprefix"); 861 if (root->flags & CGRP_ROOT_XATTR) 862 seq_puts(seq, ",xattr"); 863 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 864 seq_puts(seq, ",cpuset_v2_mode"); 865 866 spin_lock(&release_agent_path_lock); 867 if (strlen(root->release_agent_path)) 868 seq_show_option(seq, "release_agent", 869 root->release_agent_path); 870 spin_unlock(&release_agent_path_lock); 871 872 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 873 seq_puts(seq, ",clone_children"); 874 if (strlen(root->name)) 875 seq_show_option(seq, "name", root->name); 876 return 0; 877 } 878 879 enum cgroup1_param { 880 Opt_all, 881 Opt_clone_children, 882 Opt_cpuset_v2_mode, 883 Opt_name, 884 Opt_none, 885 Opt_noprefix, 886 Opt_release_agent, 887 Opt_xattr, 888 }; 889 890 const struct fs_parameter_spec cgroup1_fs_parameters[] = { 891 fsparam_flag ("all", Opt_all), 892 fsparam_flag ("clone_children", Opt_clone_children), 893 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 894 fsparam_string("name", Opt_name), 895 fsparam_flag ("none", Opt_none), 896 fsparam_flag ("noprefix", Opt_noprefix), 897 fsparam_string("release_agent", Opt_release_agent), 898 fsparam_flag ("xattr", Opt_xattr), 899 {} 900 }; 901 902 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 903 { 904 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 905 struct cgroup_subsys *ss; 906 struct fs_parse_result result; 907 int opt, i; 908 909 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 910 if (opt == -ENOPARAM) { 911 int ret; 912 913 ret = vfs_parse_fs_param_source(fc, param); 914 if (ret != -ENOPARAM) 915 return ret; 916 for_each_subsys(ss, i) { 917 if (strcmp(param->key, ss->legacy_name)) 918 continue; 919 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) 920 return invalfc(fc, "Disabled controller '%s'", 921 param->key); 922 ctx->subsys_mask |= (1 << i); 923 return 0; 924 } 925 return invalfc(fc, "Unknown subsys name '%s'", param->key); 926 } 927 if (opt < 0) 928 return opt; 929 930 switch (opt) { 931 case Opt_none: 932 /* Explicitly have no subsystems */ 933 ctx->none = true; 934 break; 935 case Opt_all: 936 ctx->all_ss = true; 937 break; 938 case Opt_noprefix: 939 ctx->flags |= CGRP_ROOT_NOPREFIX; 940 break; 941 case Opt_clone_children: 942 ctx->cpuset_clone_children = true; 943 break; 944 case Opt_cpuset_v2_mode: 945 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 946 break; 947 case Opt_xattr: 948 ctx->flags |= CGRP_ROOT_XATTR; 949 break; 950 case Opt_release_agent: 951 /* Specifying two release agents is forbidden */ 952 if (ctx->release_agent) 953 return invalfc(fc, "release_agent respecified"); 954 ctx->release_agent = param->string; 955 param->string = NULL; 956 break; 957 case Opt_name: 958 /* blocked by boot param? */ 959 if (cgroup_no_v1_named) 960 return -ENOENT; 961 /* Can't specify an empty name */ 962 if (!param->size) 963 return invalfc(fc, "Empty name"); 964 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 965 return invalfc(fc, "Name too long"); 966 /* Must match [\w.-]+ */ 967 for (i = 0; i < param->size; i++) { 968 char c = param->string[i]; 969 if (isalnum(c)) 970 continue; 971 if ((c == '.') || (c == '-') || (c == '_')) 972 continue; 973 return invalfc(fc, "Invalid name"); 974 } 975 /* Specifying two names is forbidden */ 976 if (ctx->name) 977 return invalfc(fc, "name respecified"); 978 ctx->name = param->string; 979 param->string = NULL; 980 break; 981 } 982 return 0; 983 } 984 985 static int check_cgroupfs_options(struct fs_context *fc) 986 { 987 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 988 u16 mask = U16_MAX; 989 u16 enabled = 0; 990 struct cgroup_subsys *ss; 991 int i; 992 993 #ifdef CONFIG_CPUSETS 994 mask = ~((u16)1 << cpuset_cgrp_id); 995 #endif 996 for_each_subsys(ss, i) 997 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 998 enabled |= 1 << i; 999 1000 ctx->subsys_mask &= enabled; 1001 1002 /* 1003 * In absence of 'none', 'name=' and subsystem name options, 1004 * let's default to 'all'. 1005 */ 1006 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1007 ctx->all_ss = true; 1008 1009 if (ctx->all_ss) { 1010 /* Mutually exclusive option 'all' + subsystem name */ 1011 if (ctx->subsys_mask) 1012 return invalfc(fc, "subsys name conflicts with all"); 1013 /* 'all' => select all the subsystems */ 1014 ctx->subsys_mask = enabled; 1015 } 1016 1017 /* 1018 * We either have to specify by name or by subsystems. (So all 1019 * empty hierarchies must have a name). 1020 */ 1021 if (!ctx->subsys_mask && !ctx->name) 1022 return invalfc(fc, "Need name or subsystem set"); 1023 1024 /* 1025 * Option noprefix was introduced just for backward compatibility 1026 * with the old cpuset, so we allow noprefix only if mounting just 1027 * the cpuset subsystem. 1028 */ 1029 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1030 return invalfc(fc, "noprefix used incorrectly"); 1031 1032 /* Can't specify "none" and some subsystems */ 1033 if (ctx->subsys_mask && ctx->none) 1034 return invalfc(fc, "none used incorrectly"); 1035 1036 return 0; 1037 } 1038 1039 int cgroup1_reconfigure(struct fs_context *fc) 1040 { 1041 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1042 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1043 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1044 int ret = 0; 1045 u16 added_mask, removed_mask; 1046 1047 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1048 1049 /* See what subsystems are wanted */ 1050 ret = check_cgroupfs_options(fc); 1051 if (ret) 1052 goto out_unlock; 1053 1054 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1055 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1056 task_tgid_nr(current), current->comm); 1057 1058 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1059 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1060 1061 /* Don't allow flags or name to change at remount */ 1062 if ((ctx->flags ^ root->flags) || 1063 (ctx->name && strcmp(ctx->name, root->name))) { 1064 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1065 ctx->flags, ctx->name ?: "", root->flags, root->name); 1066 ret = -EINVAL; 1067 goto out_unlock; 1068 } 1069 1070 /* remounting is not allowed for populated hierarchies */ 1071 if (!list_empty(&root->cgrp.self.children)) { 1072 ret = -EBUSY; 1073 goto out_unlock; 1074 } 1075 1076 ret = rebind_subsystems(root, added_mask); 1077 if (ret) 1078 goto out_unlock; 1079 1080 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1081 1082 if (ctx->release_agent) { 1083 spin_lock(&release_agent_path_lock); 1084 strcpy(root->release_agent_path, ctx->release_agent); 1085 spin_unlock(&release_agent_path_lock); 1086 } 1087 1088 trace_cgroup_remount(root); 1089 1090 out_unlock: 1091 mutex_unlock(&cgroup_mutex); 1092 return ret; 1093 } 1094 1095 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1096 .rename = cgroup1_rename, 1097 .show_options = cgroup1_show_options, 1098 .mkdir = cgroup_mkdir, 1099 .rmdir = cgroup_rmdir, 1100 .show_path = cgroup_show_path, 1101 }; 1102 1103 /* 1104 * The guts of cgroup1 mount - find or create cgroup_root to use. 1105 * Called with cgroup_mutex held; returns 0 on success, -E... on 1106 * error and positive - in case when the candidate is busy dying. 1107 * On success it stashes a reference to cgroup_root into given 1108 * cgroup_fs_context; that reference is *NOT* counting towards the 1109 * cgroup_root refcount. 1110 */ 1111 static int cgroup1_root_to_use(struct fs_context *fc) 1112 { 1113 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1114 struct cgroup_root *root; 1115 struct cgroup_subsys *ss; 1116 int i, ret; 1117 1118 /* First find the desired set of subsystems */ 1119 ret = check_cgroupfs_options(fc); 1120 if (ret) 1121 return ret; 1122 1123 /* 1124 * Destruction of cgroup root is asynchronous, so subsystems may 1125 * still be dying after the previous unmount. Let's drain the 1126 * dying subsystems. We just need to ensure that the ones 1127 * unmounted previously finish dying and don't care about new ones 1128 * starting. Testing ref liveliness is good enough. 1129 */ 1130 for_each_subsys(ss, i) { 1131 if (!(ctx->subsys_mask & (1 << i)) || 1132 ss->root == &cgrp_dfl_root) 1133 continue; 1134 1135 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1136 return 1; /* restart */ 1137 cgroup_put(&ss->root->cgrp); 1138 } 1139 1140 for_each_root(root) { 1141 bool name_match = false; 1142 1143 if (root == &cgrp_dfl_root) 1144 continue; 1145 1146 /* 1147 * If we asked for a name then it must match. Also, if 1148 * name matches but sybsys_mask doesn't, we should fail. 1149 * Remember whether name matched. 1150 */ 1151 if (ctx->name) { 1152 if (strcmp(ctx->name, root->name)) 1153 continue; 1154 name_match = true; 1155 } 1156 1157 /* 1158 * If we asked for subsystems (or explicitly for no 1159 * subsystems) then they must match. 1160 */ 1161 if ((ctx->subsys_mask || ctx->none) && 1162 (ctx->subsys_mask != root->subsys_mask)) { 1163 if (!name_match) 1164 continue; 1165 return -EBUSY; 1166 } 1167 1168 if (root->flags ^ ctx->flags) 1169 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1170 1171 ctx->root = root; 1172 return 0; 1173 } 1174 1175 /* 1176 * No such thing, create a new one. name= matching without subsys 1177 * specification is allowed for already existing hierarchies but we 1178 * can't create new one without subsys specification. 1179 */ 1180 if (!ctx->subsys_mask && !ctx->none) 1181 return invalfc(fc, "No subsys list or none specified"); 1182 1183 /* Hierarchies may only be created in the initial cgroup namespace. */ 1184 if (ctx->ns != &init_cgroup_ns) 1185 return -EPERM; 1186 1187 root = kzalloc(sizeof(*root), GFP_KERNEL); 1188 if (!root) 1189 return -ENOMEM; 1190 1191 ctx->root = root; 1192 init_cgroup_root(ctx); 1193 1194 ret = cgroup_setup_root(root, ctx->subsys_mask); 1195 if (ret) 1196 cgroup_free_root(root); 1197 return ret; 1198 } 1199 1200 int cgroup1_get_tree(struct fs_context *fc) 1201 { 1202 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1203 int ret; 1204 1205 /* Check if the caller has permission to mount. */ 1206 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1207 return -EPERM; 1208 1209 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1210 1211 ret = cgroup1_root_to_use(fc); 1212 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1213 ret = 1; /* restart */ 1214 1215 mutex_unlock(&cgroup_mutex); 1216 1217 if (!ret) 1218 ret = cgroup_do_get_tree(fc); 1219 1220 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1221 fc_drop_locked(fc); 1222 ret = 1; 1223 } 1224 1225 if (unlikely(ret > 0)) { 1226 msleep(10); 1227 return restart_syscall(); 1228 } 1229 return ret; 1230 } 1231 1232 static int __init cgroup1_wq_init(void) 1233 { 1234 /* 1235 * Used to destroy pidlists and separate to serve as flush domain. 1236 * Cap @max_active to 1 too. 1237 */ 1238 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1239 0, 1); 1240 BUG_ON(!cgroup_pidlist_destroy_wq); 1241 return 0; 1242 } 1243 core_initcall(cgroup1_wq_init); 1244 1245 static int __init cgroup_no_v1(char *str) 1246 { 1247 struct cgroup_subsys *ss; 1248 char *token; 1249 int i; 1250 1251 while ((token = strsep(&str, ",")) != NULL) { 1252 if (!*token) 1253 continue; 1254 1255 if (!strcmp(token, "all")) { 1256 cgroup_no_v1_mask = U16_MAX; 1257 continue; 1258 } 1259 1260 if (!strcmp(token, "named")) { 1261 cgroup_no_v1_named = true; 1262 continue; 1263 } 1264 1265 for_each_subsys(ss, i) { 1266 if (strcmp(token, ss->name) && 1267 strcmp(token, ss->legacy_name)) 1268 continue; 1269 1270 cgroup_no_v1_mask |= 1 << i; 1271 } 1272 } 1273 return 1; 1274 } 1275 __setup("cgroup_no_v1=", cgroup_no_v1); 1276