1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 /* 22 * pidlists linger the following amount before being destroyed. The goal 23 * is avoiding frequent destruction in the middle of consecutive read calls 24 * Expiring in the middle is a performance problem not a correctness one. 25 * 1 sec should be enough. 26 */ 27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 28 29 /* Controllers blocked by the commandline in v1 */ 30 static u16 cgroup_no_v1_mask; 31 32 /* disable named v1 mounts */ 33 static bool cgroup_no_v1_named; 34 35 /* 36 * pidlist destructions need to be flushed on cgroup destruction. Use a 37 * separate workqueue as flush domain. 38 */ 39 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 40 41 /* 42 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 43 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 44 */ 45 static DEFINE_SPINLOCK(release_agent_path_lock); 46 47 bool cgroup1_ssid_disabled(int ssid) 48 { 49 return cgroup_no_v1_mask & (1 << ssid); 50 } 51 52 /** 53 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 54 * @from: attach to all cgroups of a given task 55 * @tsk: the task to be attached 56 */ 57 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 58 { 59 struct cgroup_root *root; 60 int retval = 0; 61 62 mutex_lock(&cgroup_mutex); 63 percpu_down_write(&cgroup_threadgroup_rwsem); 64 for_each_root(root) { 65 struct cgroup *from_cgrp; 66 67 if (root == &cgrp_dfl_root) 68 continue; 69 70 spin_lock_irq(&css_set_lock); 71 from_cgrp = task_cgroup_from_root(from, root); 72 spin_unlock_irq(&css_set_lock); 73 74 retval = cgroup_attach_task(from_cgrp, tsk, false); 75 if (retval) 76 break; 77 } 78 percpu_up_write(&cgroup_threadgroup_rwsem); 79 mutex_unlock(&cgroup_mutex); 80 81 return retval; 82 } 83 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 84 85 /** 86 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 87 * @to: cgroup to which the tasks will be moved 88 * @from: cgroup in which the tasks currently reside 89 * 90 * Locking rules between cgroup_post_fork() and the migration path 91 * guarantee that, if a task is forking while being migrated, the new child 92 * is guaranteed to be either visible in the source cgroup after the 93 * parent's migration is complete or put into the target cgroup. No task 94 * can slip out of migration through forking. 95 */ 96 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 97 { 98 DEFINE_CGROUP_MGCTX(mgctx); 99 struct cgrp_cset_link *link; 100 struct css_task_iter it; 101 struct task_struct *task; 102 int ret; 103 104 if (cgroup_on_dfl(to)) 105 return -EINVAL; 106 107 ret = cgroup_migrate_vet_dst(to); 108 if (ret) 109 return ret; 110 111 mutex_lock(&cgroup_mutex); 112 113 percpu_down_write(&cgroup_threadgroup_rwsem); 114 115 /* all tasks in @from are being moved, all csets are source */ 116 spin_lock_irq(&css_set_lock); 117 list_for_each_entry(link, &from->cset_links, cset_link) 118 cgroup_migrate_add_src(link->cset, to, &mgctx); 119 spin_unlock_irq(&css_set_lock); 120 121 ret = cgroup_migrate_prepare_dst(&mgctx); 122 if (ret) 123 goto out_err; 124 125 /* 126 * Migrate tasks one-by-one until @from is empty. This fails iff 127 * ->can_attach() fails. 128 */ 129 do { 130 css_task_iter_start(&from->self, 0, &it); 131 132 do { 133 task = css_task_iter_next(&it); 134 } while (task && (task->flags & PF_EXITING)); 135 136 if (task) 137 get_task_struct(task); 138 css_task_iter_end(&it); 139 140 if (task) { 141 ret = cgroup_migrate(task, false, &mgctx); 142 if (!ret) 143 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 144 put_task_struct(task); 145 } 146 } while (task && !ret); 147 out_err: 148 cgroup_migrate_finish(&mgctx); 149 percpu_up_write(&cgroup_threadgroup_rwsem); 150 mutex_unlock(&cgroup_mutex); 151 return ret; 152 } 153 154 /* 155 * Stuff for reading the 'tasks'/'procs' files. 156 * 157 * Reading this file can return large amounts of data if a cgroup has 158 * *lots* of attached tasks. So it may need several calls to read(), 159 * but we cannot guarantee that the information we produce is correct 160 * unless we produce it entirely atomically. 161 * 162 */ 163 164 /* which pidlist file are we talking about? */ 165 enum cgroup_filetype { 166 CGROUP_FILE_PROCS, 167 CGROUP_FILE_TASKS, 168 }; 169 170 /* 171 * A pidlist is a list of pids that virtually represents the contents of one 172 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 173 * a pair (one each for procs, tasks) for each pid namespace that's relevant 174 * to the cgroup. 175 */ 176 struct cgroup_pidlist { 177 /* 178 * used to find which pidlist is wanted. doesn't change as long as 179 * this particular list stays in the list. 180 */ 181 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 182 /* array of xids */ 183 pid_t *list; 184 /* how many elements the above list has */ 185 int length; 186 /* each of these stored in a list by its cgroup */ 187 struct list_head links; 188 /* pointer to the cgroup we belong to, for list removal purposes */ 189 struct cgroup *owner; 190 /* for delayed destruction */ 191 struct delayed_work destroy_dwork; 192 }; 193 194 /* 195 * Used to destroy all pidlists lingering waiting for destroy timer. None 196 * should be left afterwards. 197 */ 198 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 199 { 200 struct cgroup_pidlist *l, *tmp_l; 201 202 mutex_lock(&cgrp->pidlist_mutex); 203 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 204 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 205 mutex_unlock(&cgrp->pidlist_mutex); 206 207 flush_workqueue(cgroup_pidlist_destroy_wq); 208 BUG_ON(!list_empty(&cgrp->pidlists)); 209 } 210 211 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 212 { 213 struct delayed_work *dwork = to_delayed_work(work); 214 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 215 destroy_dwork); 216 struct cgroup_pidlist *tofree = NULL; 217 218 mutex_lock(&l->owner->pidlist_mutex); 219 220 /* 221 * Destroy iff we didn't get queued again. The state won't change 222 * as destroy_dwork can only be queued while locked. 223 */ 224 if (!delayed_work_pending(dwork)) { 225 list_del(&l->links); 226 kvfree(l->list); 227 put_pid_ns(l->key.ns); 228 tofree = l; 229 } 230 231 mutex_unlock(&l->owner->pidlist_mutex); 232 kfree(tofree); 233 } 234 235 /* 236 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 237 * Returns the number of unique elements. 238 */ 239 static int pidlist_uniq(pid_t *list, int length) 240 { 241 int src, dest = 1; 242 243 /* 244 * we presume the 0th element is unique, so i starts at 1. trivial 245 * edge cases first; no work needs to be done for either 246 */ 247 if (length == 0 || length == 1) 248 return length; 249 /* src and dest walk down the list; dest counts unique elements */ 250 for (src = 1; src < length; src++) { 251 /* find next unique element */ 252 while (list[src] == list[src-1]) { 253 src++; 254 if (src == length) 255 goto after; 256 } 257 /* dest always points to where the next unique element goes */ 258 list[dest] = list[src]; 259 dest++; 260 } 261 after: 262 return dest; 263 } 264 265 /* 266 * The two pid files - task and cgroup.procs - guaranteed that the result 267 * is sorted, which forced this whole pidlist fiasco. As pid order is 268 * different per namespace, each namespace needs differently sorted list, 269 * making it impossible to use, for example, single rbtree of member tasks 270 * sorted by task pointer. As pidlists can be fairly large, allocating one 271 * per open file is dangerous, so cgroup had to implement shared pool of 272 * pidlists keyed by cgroup and namespace. 273 */ 274 static int cmppid(const void *a, const void *b) 275 { 276 return *(pid_t *)a - *(pid_t *)b; 277 } 278 279 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 280 enum cgroup_filetype type) 281 { 282 struct cgroup_pidlist *l; 283 /* don't need task_nsproxy() if we're looking at ourself */ 284 struct pid_namespace *ns = task_active_pid_ns(current); 285 286 lockdep_assert_held(&cgrp->pidlist_mutex); 287 288 list_for_each_entry(l, &cgrp->pidlists, links) 289 if (l->key.type == type && l->key.ns == ns) 290 return l; 291 return NULL; 292 } 293 294 /* 295 * find the appropriate pidlist for our purpose (given procs vs tasks) 296 * returns with the lock on that pidlist already held, and takes care 297 * of the use count, or returns NULL with no locks held if we're out of 298 * memory. 299 */ 300 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 301 enum cgroup_filetype type) 302 { 303 struct cgroup_pidlist *l; 304 305 lockdep_assert_held(&cgrp->pidlist_mutex); 306 307 l = cgroup_pidlist_find(cgrp, type); 308 if (l) 309 return l; 310 311 /* entry not found; create a new one */ 312 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 313 if (!l) 314 return l; 315 316 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 317 l->key.type = type; 318 /* don't need task_nsproxy() if we're looking at ourself */ 319 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 320 l->owner = cgrp; 321 list_add(&l->links, &cgrp->pidlists); 322 return l; 323 } 324 325 /* 326 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 327 */ 328 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 329 struct cgroup_pidlist **lp) 330 { 331 pid_t *array; 332 int length; 333 int pid, n = 0; /* used for populating the array */ 334 struct css_task_iter it; 335 struct task_struct *tsk; 336 struct cgroup_pidlist *l; 337 338 lockdep_assert_held(&cgrp->pidlist_mutex); 339 340 /* 341 * If cgroup gets more users after we read count, we won't have 342 * enough space - tough. This race is indistinguishable to the 343 * caller from the case that the additional cgroup users didn't 344 * show up until sometime later on. 345 */ 346 length = cgroup_task_count(cgrp); 347 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 348 if (!array) 349 return -ENOMEM; 350 /* now, populate the array */ 351 css_task_iter_start(&cgrp->self, 0, &it); 352 while ((tsk = css_task_iter_next(&it))) { 353 if (unlikely(n == length)) 354 break; 355 /* get tgid or pid for procs or tasks file respectively */ 356 if (type == CGROUP_FILE_PROCS) 357 pid = task_tgid_vnr(tsk); 358 else 359 pid = task_pid_vnr(tsk); 360 if (pid > 0) /* make sure to only use valid results */ 361 array[n++] = pid; 362 } 363 css_task_iter_end(&it); 364 length = n; 365 /* now sort & (if procs) strip out duplicates */ 366 sort(array, length, sizeof(pid_t), cmppid, NULL); 367 if (type == CGROUP_FILE_PROCS) 368 length = pidlist_uniq(array, length); 369 370 l = cgroup_pidlist_find_create(cgrp, type); 371 if (!l) { 372 kvfree(array); 373 return -ENOMEM; 374 } 375 376 /* store array, freeing old if necessary */ 377 kvfree(l->list); 378 l->list = array; 379 l->length = length; 380 *lp = l; 381 return 0; 382 } 383 384 /* 385 * seq_file methods for the tasks/procs files. The seq_file position is the 386 * next pid to display; the seq_file iterator is a pointer to the pid 387 * in the cgroup->l->list array. 388 */ 389 390 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 391 { 392 /* 393 * Initially we receive a position value that corresponds to 394 * one more than the last pid shown (or 0 on the first call or 395 * after a seek to the start). Use a binary-search to find the 396 * next pid to display, if any 397 */ 398 struct kernfs_open_file *of = s->private; 399 struct cgroup *cgrp = seq_css(s)->cgroup; 400 struct cgroup_pidlist *l; 401 enum cgroup_filetype type = seq_cft(s)->private; 402 int index = 0, pid = *pos; 403 int *iter, ret; 404 405 mutex_lock(&cgrp->pidlist_mutex); 406 407 /* 408 * !NULL @of->priv indicates that this isn't the first start() 409 * after open. If the matching pidlist is around, we can use that. 410 * Look for it. Note that @of->priv can't be used directly. It 411 * could already have been destroyed. 412 */ 413 if (of->priv) 414 of->priv = cgroup_pidlist_find(cgrp, type); 415 416 /* 417 * Either this is the first start() after open or the matching 418 * pidlist has been destroyed inbetween. Create a new one. 419 */ 420 if (!of->priv) { 421 ret = pidlist_array_load(cgrp, type, 422 (struct cgroup_pidlist **)&of->priv); 423 if (ret) 424 return ERR_PTR(ret); 425 } 426 l = of->priv; 427 428 if (pid) { 429 int end = l->length; 430 431 while (index < end) { 432 int mid = (index + end) / 2; 433 if (l->list[mid] == pid) { 434 index = mid; 435 break; 436 } else if (l->list[mid] <= pid) 437 index = mid + 1; 438 else 439 end = mid; 440 } 441 } 442 /* If we're off the end of the array, we're done */ 443 if (index >= l->length) 444 return NULL; 445 /* Update the abstract position to be the actual pid that we found */ 446 iter = l->list + index; 447 *pos = *iter; 448 return iter; 449 } 450 451 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 452 { 453 struct kernfs_open_file *of = s->private; 454 struct cgroup_pidlist *l = of->priv; 455 456 if (l) 457 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 458 CGROUP_PIDLIST_DESTROY_DELAY); 459 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 460 } 461 462 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 463 { 464 struct kernfs_open_file *of = s->private; 465 struct cgroup_pidlist *l = of->priv; 466 pid_t *p = v; 467 pid_t *end = l->list + l->length; 468 /* 469 * Advance to the next pid in the array. If this goes off the 470 * end, we're done 471 */ 472 p++; 473 if (p >= end) { 474 (*pos)++; 475 return NULL; 476 } else { 477 *pos = *p; 478 return p; 479 } 480 } 481 482 static int cgroup_pidlist_show(struct seq_file *s, void *v) 483 { 484 seq_printf(s, "%d\n", *(int *)v); 485 486 return 0; 487 } 488 489 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 490 char *buf, size_t nbytes, loff_t off, 491 bool threadgroup) 492 { 493 struct cgroup *cgrp; 494 struct task_struct *task; 495 const struct cred *cred, *tcred; 496 ssize_t ret; 497 bool locked; 498 499 cgrp = cgroup_kn_lock_live(of->kn, false); 500 if (!cgrp) 501 return -ENODEV; 502 503 task = cgroup_procs_write_start(buf, threadgroup, &locked); 504 ret = PTR_ERR_OR_ZERO(task); 505 if (ret) 506 goto out_unlock; 507 508 /* 509 * Even if we're attaching all tasks in the thread group, we only 510 * need to check permissions on one of them. 511 */ 512 cred = current_cred(); 513 tcred = get_task_cred(task); 514 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 515 !uid_eq(cred->euid, tcred->uid) && 516 !uid_eq(cred->euid, tcred->suid)) 517 ret = -EACCES; 518 put_cred(tcred); 519 if (ret) 520 goto out_finish; 521 522 ret = cgroup_attach_task(cgrp, task, threadgroup); 523 524 out_finish: 525 cgroup_procs_write_finish(task, locked); 526 out_unlock: 527 cgroup_kn_unlock(of->kn); 528 529 return ret ?: nbytes; 530 } 531 532 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 533 char *buf, size_t nbytes, loff_t off) 534 { 535 return __cgroup1_procs_write(of, buf, nbytes, off, true); 536 } 537 538 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 539 char *buf, size_t nbytes, loff_t off) 540 { 541 return __cgroup1_procs_write(of, buf, nbytes, off, false); 542 } 543 544 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 545 char *buf, size_t nbytes, loff_t off) 546 { 547 struct cgroup *cgrp; 548 549 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 550 551 cgrp = cgroup_kn_lock_live(of->kn, false); 552 if (!cgrp) 553 return -ENODEV; 554 spin_lock(&release_agent_path_lock); 555 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 556 sizeof(cgrp->root->release_agent_path)); 557 spin_unlock(&release_agent_path_lock); 558 cgroup_kn_unlock(of->kn); 559 return nbytes; 560 } 561 562 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 563 { 564 struct cgroup *cgrp = seq_css(seq)->cgroup; 565 566 spin_lock(&release_agent_path_lock); 567 seq_puts(seq, cgrp->root->release_agent_path); 568 spin_unlock(&release_agent_path_lock); 569 seq_putc(seq, '\n'); 570 return 0; 571 } 572 573 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 574 { 575 seq_puts(seq, "0\n"); 576 return 0; 577 } 578 579 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 580 struct cftype *cft) 581 { 582 return notify_on_release(css->cgroup); 583 } 584 585 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 586 struct cftype *cft, u64 val) 587 { 588 if (val) 589 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 590 else 591 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 592 return 0; 593 } 594 595 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 596 struct cftype *cft) 597 { 598 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 599 } 600 601 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 602 struct cftype *cft, u64 val) 603 { 604 if (val) 605 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 606 else 607 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 608 return 0; 609 } 610 611 /* cgroup core interface files for the legacy hierarchies */ 612 struct cftype cgroup1_base_files[] = { 613 { 614 .name = "cgroup.procs", 615 .seq_start = cgroup_pidlist_start, 616 .seq_next = cgroup_pidlist_next, 617 .seq_stop = cgroup_pidlist_stop, 618 .seq_show = cgroup_pidlist_show, 619 .private = CGROUP_FILE_PROCS, 620 .write = cgroup1_procs_write, 621 }, 622 { 623 .name = "cgroup.clone_children", 624 .read_u64 = cgroup_clone_children_read, 625 .write_u64 = cgroup_clone_children_write, 626 }, 627 { 628 .name = "cgroup.sane_behavior", 629 .flags = CFTYPE_ONLY_ON_ROOT, 630 .seq_show = cgroup_sane_behavior_show, 631 }, 632 { 633 .name = "tasks", 634 .seq_start = cgroup_pidlist_start, 635 .seq_next = cgroup_pidlist_next, 636 .seq_stop = cgroup_pidlist_stop, 637 .seq_show = cgroup_pidlist_show, 638 .private = CGROUP_FILE_TASKS, 639 .write = cgroup1_tasks_write, 640 }, 641 { 642 .name = "notify_on_release", 643 .read_u64 = cgroup_read_notify_on_release, 644 .write_u64 = cgroup_write_notify_on_release, 645 }, 646 { 647 .name = "release_agent", 648 .flags = CFTYPE_ONLY_ON_ROOT, 649 .seq_show = cgroup_release_agent_show, 650 .write = cgroup_release_agent_write, 651 .max_write_len = PATH_MAX - 1, 652 }, 653 { } /* terminate */ 654 }; 655 656 /* Display information about each subsystem and each hierarchy */ 657 int proc_cgroupstats_show(struct seq_file *m, void *v) 658 { 659 struct cgroup_subsys *ss; 660 int i; 661 662 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 663 /* 664 * ideally we don't want subsystems moving around while we do this. 665 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 666 * subsys/hierarchy state. 667 */ 668 mutex_lock(&cgroup_mutex); 669 670 for_each_subsys(ss, i) 671 seq_printf(m, "%s\t%d\t%d\t%d\n", 672 ss->legacy_name, ss->root->hierarchy_id, 673 atomic_read(&ss->root->nr_cgrps), 674 cgroup_ssid_enabled(i)); 675 676 mutex_unlock(&cgroup_mutex); 677 return 0; 678 } 679 680 /** 681 * cgroupstats_build - build and fill cgroupstats 682 * @stats: cgroupstats to fill information into 683 * @dentry: A dentry entry belonging to the cgroup for which stats have 684 * been requested. 685 * 686 * Build and fill cgroupstats so that taskstats can export it to user 687 * space. 688 */ 689 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 690 { 691 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 692 struct cgroup *cgrp; 693 struct css_task_iter it; 694 struct task_struct *tsk; 695 696 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 697 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 698 kernfs_type(kn) != KERNFS_DIR) 699 return -EINVAL; 700 701 mutex_lock(&cgroup_mutex); 702 703 /* 704 * We aren't being called from kernfs and there's no guarantee on 705 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 706 * @kn->priv is RCU safe. Let's do the RCU dancing. 707 */ 708 rcu_read_lock(); 709 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 710 if (!cgrp || cgroup_is_dead(cgrp)) { 711 rcu_read_unlock(); 712 mutex_unlock(&cgroup_mutex); 713 return -ENOENT; 714 } 715 rcu_read_unlock(); 716 717 css_task_iter_start(&cgrp->self, 0, &it); 718 while ((tsk = css_task_iter_next(&it))) { 719 switch (tsk->state) { 720 case TASK_RUNNING: 721 stats->nr_running++; 722 break; 723 case TASK_INTERRUPTIBLE: 724 stats->nr_sleeping++; 725 break; 726 case TASK_UNINTERRUPTIBLE: 727 stats->nr_uninterruptible++; 728 break; 729 case TASK_STOPPED: 730 stats->nr_stopped++; 731 break; 732 default: 733 if (delayacct_is_task_waiting_on_io(tsk)) 734 stats->nr_io_wait++; 735 break; 736 } 737 } 738 css_task_iter_end(&it); 739 740 mutex_unlock(&cgroup_mutex); 741 return 0; 742 } 743 744 void cgroup1_check_for_release(struct cgroup *cgrp) 745 { 746 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 747 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 748 schedule_work(&cgrp->release_agent_work); 749 } 750 751 /* 752 * Notify userspace when a cgroup is released, by running the 753 * configured release agent with the name of the cgroup (path 754 * relative to the root of cgroup file system) as the argument. 755 * 756 * Most likely, this user command will try to rmdir this cgroup. 757 * 758 * This races with the possibility that some other task will be 759 * attached to this cgroup before it is removed, or that some other 760 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 761 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 762 * unused, and this cgroup will be reprieved from its death sentence, 763 * to continue to serve a useful existence. Next time it's released, 764 * we will get notified again, if it still has 'notify_on_release' set. 765 * 766 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 767 * means only wait until the task is successfully execve()'d. The 768 * separate release agent task is forked by call_usermodehelper(), 769 * then control in this thread returns here, without waiting for the 770 * release agent task. We don't bother to wait because the caller of 771 * this routine has no use for the exit status of the release agent 772 * task, so no sense holding our caller up for that. 773 */ 774 void cgroup1_release_agent(struct work_struct *work) 775 { 776 struct cgroup *cgrp = 777 container_of(work, struct cgroup, release_agent_work); 778 char *pathbuf = NULL, *agentbuf = NULL; 779 char *argv[3], *envp[3]; 780 int ret; 781 782 mutex_lock(&cgroup_mutex); 783 784 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 785 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 786 if (!pathbuf || !agentbuf || !strlen(agentbuf)) 787 goto out; 788 789 spin_lock_irq(&css_set_lock); 790 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 791 spin_unlock_irq(&css_set_lock); 792 if (ret < 0 || ret >= PATH_MAX) 793 goto out; 794 795 argv[0] = agentbuf; 796 argv[1] = pathbuf; 797 argv[2] = NULL; 798 799 /* minimal command environment */ 800 envp[0] = "HOME=/"; 801 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 802 envp[2] = NULL; 803 804 mutex_unlock(&cgroup_mutex); 805 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 806 goto out_free; 807 out: 808 mutex_unlock(&cgroup_mutex); 809 out_free: 810 kfree(agentbuf); 811 kfree(pathbuf); 812 } 813 814 /* 815 * cgroup_rename - Only allow simple rename of directories in place. 816 */ 817 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 818 const char *new_name_str) 819 { 820 struct cgroup *cgrp = kn->priv; 821 int ret; 822 823 if (kernfs_type(kn) != KERNFS_DIR) 824 return -ENOTDIR; 825 if (kn->parent != new_parent) 826 return -EIO; 827 828 /* 829 * We're gonna grab cgroup_mutex which nests outside kernfs 830 * active_ref. kernfs_rename() doesn't require active_ref 831 * protection. Break them before grabbing cgroup_mutex. 832 */ 833 kernfs_break_active_protection(new_parent); 834 kernfs_break_active_protection(kn); 835 836 mutex_lock(&cgroup_mutex); 837 838 ret = kernfs_rename(kn, new_parent, new_name_str); 839 if (!ret) 840 TRACE_CGROUP_PATH(rename, cgrp); 841 842 mutex_unlock(&cgroup_mutex); 843 844 kernfs_unbreak_active_protection(kn); 845 kernfs_unbreak_active_protection(new_parent); 846 return ret; 847 } 848 849 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 850 { 851 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 852 struct cgroup_subsys *ss; 853 int ssid; 854 855 for_each_subsys(ss, ssid) 856 if (root->subsys_mask & (1 << ssid)) 857 seq_show_option(seq, ss->legacy_name, NULL); 858 if (root->flags & CGRP_ROOT_NOPREFIX) 859 seq_puts(seq, ",noprefix"); 860 if (root->flags & CGRP_ROOT_XATTR) 861 seq_puts(seq, ",xattr"); 862 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 863 seq_puts(seq, ",cpuset_v2_mode"); 864 865 spin_lock(&release_agent_path_lock); 866 if (strlen(root->release_agent_path)) 867 seq_show_option(seq, "release_agent", 868 root->release_agent_path); 869 spin_unlock(&release_agent_path_lock); 870 871 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 872 seq_puts(seq, ",clone_children"); 873 if (strlen(root->name)) 874 seq_show_option(seq, "name", root->name); 875 return 0; 876 } 877 878 enum cgroup1_param { 879 Opt_all, 880 Opt_clone_children, 881 Opt_cpuset_v2_mode, 882 Opt_name, 883 Opt_none, 884 Opt_noprefix, 885 Opt_release_agent, 886 Opt_xattr, 887 }; 888 889 const struct fs_parameter_spec cgroup1_fs_parameters[] = { 890 fsparam_flag ("all", Opt_all), 891 fsparam_flag ("clone_children", Opt_clone_children), 892 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 893 fsparam_string("name", Opt_name), 894 fsparam_flag ("none", Opt_none), 895 fsparam_flag ("noprefix", Opt_noprefix), 896 fsparam_string("release_agent", Opt_release_agent), 897 fsparam_flag ("xattr", Opt_xattr), 898 {} 899 }; 900 901 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 902 { 903 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 904 struct cgroup_subsys *ss; 905 struct fs_parse_result result; 906 int opt, i; 907 908 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 909 if (opt == -ENOPARAM) { 910 if (strcmp(param->key, "source") == 0) { 911 fc->source = param->string; 912 param->string = NULL; 913 return 0; 914 } 915 for_each_subsys(ss, i) { 916 if (strcmp(param->key, ss->legacy_name)) 917 continue; 918 ctx->subsys_mask |= (1 << i); 919 return 0; 920 } 921 return invalfc(fc, "Unknown subsys name '%s'", param->key); 922 } 923 if (opt < 0) 924 return opt; 925 926 switch (opt) { 927 case Opt_none: 928 /* Explicitly have no subsystems */ 929 ctx->none = true; 930 break; 931 case Opt_all: 932 ctx->all_ss = true; 933 break; 934 case Opt_noprefix: 935 ctx->flags |= CGRP_ROOT_NOPREFIX; 936 break; 937 case Opt_clone_children: 938 ctx->cpuset_clone_children = true; 939 break; 940 case Opt_cpuset_v2_mode: 941 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 942 break; 943 case Opt_xattr: 944 ctx->flags |= CGRP_ROOT_XATTR; 945 break; 946 case Opt_release_agent: 947 /* Specifying two release agents is forbidden */ 948 if (ctx->release_agent) 949 return invalfc(fc, "release_agent respecified"); 950 ctx->release_agent = param->string; 951 param->string = NULL; 952 break; 953 case Opt_name: 954 /* blocked by boot param? */ 955 if (cgroup_no_v1_named) 956 return -ENOENT; 957 /* Can't specify an empty name */ 958 if (!param->size) 959 return invalfc(fc, "Empty name"); 960 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 961 return invalfc(fc, "Name too long"); 962 /* Must match [\w.-]+ */ 963 for (i = 0; i < param->size; i++) { 964 char c = param->string[i]; 965 if (isalnum(c)) 966 continue; 967 if ((c == '.') || (c == '-') || (c == '_')) 968 continue; 969 return invalfc(fc, "Invalid name"); 970 } 971 /* Specifying two names is forbidden */ 972 if (ctx->name) 973 return invalfc(fc, "name respecified"); 974 ctx->name = param->string; 975 param->string = NULL; 976 break; 977 } 978 return 0; 979 } 980 981 static int check_cgroupfs_options(struct fs_context *fc) 982 { 983 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 984 u16 mask = U16_MAX; 985 u16 enabled = 0; 986 struct cgroup_subsys *ss; 987 int i; 988 989 #ifdef CONFIG_CPUSETS 990 mask = ~((u16)1 << cpuset_cgrp_id); 991 #endif 992 for_each_subsys(ss, i) 993 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 994 enabled |= 1 << i; 995 996 ctx->subsys_mask &= enabled; 997 998 /* 999 * In absense of 'none', 'name=' or subsystem name options, 1000 * let's default to 'all'. 1001 */ 1002 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1003 ctx->all_ss = true; 1004 1005 if (ctx->all_ss) { 1006 /* Mutually exclusive option 'all' + subsystem name */ 1007 if (ctx->subsys_mask) 1008 return invalfc(fc, "subsys name conflicts with all"); 1009 /* 'all' => select all the subsystems */ 1010 ctx->subsys_mask = enabled; 1011 } 1012 1013 /* 1014 * We either have to specify by name or by subsystems. (So all 1015 * empty hierarchies must have a name). 1016 */ 1017 if (!ctx->subsys_mask && !ctx->name) 1018 return invalfc(fc, "Need name or subsystem set"); 1019 1020 /* 1021 * Option noprefix was introduced just for backward compatibility 1022 * with the old cpuset, so we allow noprefix only if mounting just 1023 * the cpuset subsystem. 1024 */ 1025 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1026 return invalfc(fc, "noprefix used incorrectly"); 1027 1028 /* Can't specify "none" and some subsystems */ 1029 if (ctx->subsys_mask && ctx->none) 1030 return invalfc(fc, "none used incorrectly"); 1031 1032 return 0; 1033 } 1034 1035 int cgroup1_reconfigure(struct fs_context *fc) 1036 { 1037 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1038 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1039 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1040 int ret = 0; 1041 u16 added_mask, removed_mask; 1042 1043 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1044 1045 /* See what subsystems are wanted */ 1046 ret = check_cgroupfs_options(fc); 1047 if (ret) 1048 goto out_unlock; 1049 1050 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1051 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1052 task_tgid_nr(current), current->comm); 1053 1054 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1055 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1056 1057 /* Don't allow flags or name to change at remount */ 1058 if ((ctx->flags ^ root->flags) || 1059 (ctx->name && strcmp(ctx->name, root->name))) { 1060 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1061 ctx->flags, ctx->name ?: "", root->flags, root->name); 1062 ret = -EINVAL; 1063 goto out_unlock; 1064 } 1065 1066 /* remounting is not allowed for populated hierarchies */ 1067 if (!list_empty(&root->cgrp.self.children)) { 1068 ret = -EBUSY; 1069 goto out_unlock; 1070 } 1071 1072 ret = rebind_subsystems(root, added_mask); 1073 if (ret) 1074 goto out_unlock; 1075 1076 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1077 1078 if (ctx->release_agent) { 1079 spin_lock(&release_agent_path_lock); 1080 strcpy(root->release_agent_path, ctx->release_agent); 1081 spin_unlock(&release_agent_path_lock); 1082 } 1083 1084 trace_cgroup_remount(root); 1085 1086 out_unlock: 1087 mutex_unlock(&cgroup_mutex); 1088 return ret; 1089 } 1090 1091 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1092 .rename = cgroup1_rename, 1093 .show_options = cgroup1_show_options, 1094 .mkdir = cgroup_mkdir, 1095 .rmdir = cgroup_rmdir, 1096 .show_path = cgroup_show_path, 1097 }; 1098 1099 /* 1100 * The guts of cgroup1 mount - find or create cgroup_root to use. 1101 * Called with cgroup_mutex held; returns 0 on success, -E... on 1102 * error and positive - in case when the candidate is busy dying. 1103 * On success it stashes a reference to cgroup_root into given 1104 * cgroup_fs_context; that reference is *NOT* counting towards the 1105 * cgroup_root refcount. 1106 */ 1107 static int cgroup1_root_to_use(struct fs_context *fc) 1108 { 1109 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1110 struct cgroup_root *root; 1111 struct cgroup_subsys *ss; 1112 int i, ret; 1113 1114 /* First find the desired set of subsystems */ 1115 ret = check_cgroupfs_options(fc); 1116 if (ret) 1117 return ret; 1118 1119 /* 1120 * Destruction of cgroup root is asynchronous, so subsystems may 1121 * still be dying after the previous unmount. Let's drain the 1122 * dying subsystems. We just need to ensure that the ones 1123 * unmounted previously finish dying and don't care about new ones 1124 * starting. Testing ref liveliness is good enough. 1125 */ 1126 for_each_subsys(ss, i) { 1127 if (!(ctx->subsys_mask & (1 << i)) || 1128 ss->root == &cgrp_dfl_root) 1129 continue; 1130 1131 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1132 return 1; /* restart */ 1133 cgroup_put(&ss->root->cgrp); 1134 } 1135 1136 for_each_root(root) { 1137 bool name_match = false; 1138 1139 if (root == &cgrp_dfl_root) 1140 continue; 1141 1142 /* 1143 * If we asked for a name then it must match. Also, if 1144 * name matches but sybsys_mask doesn't, we should fail. 1145 * Remember whether name matched. 1146 */ 1147 if (ctx->name) { 1148 if (strcmp(ctx->name, root->name)) 1149 continue; 1150 name_match = true; 1151 } 1152 1153 /* 1154 * If we asked for subsystems (or explicitly for no 1155 * subsystems) then they must match. 1156 */ 1157 if ((ctx->subsys_mask || ctx->none) && 1158 (ctx->subsys_mask != root->subsys_mask)) { 1159 if (!name_match) 1160 continue; 1161 return -EBUSY; 1162 } 1163 1164 if (root->flags ^ ctx->flags) 1165 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1166 1167 ctx->root = root; 1168 return 0; 1169 } 1170 1171 /* 1172 * No such thing, create a new one. name= matching without subsys 1173 * specification is allowed for already existing hierarchies but we 1174 * can't create new one without subsys specification. 1175 */ 1176 if (!ctx->subsys_mask && !ctx->none) 1177 return invalfc(fc, "No subsys list or none specified"); 1178 1179 /* Hierarchies may only be created in the initial cgroup namespace. */ 1180 if (ctx->ns != &init_cgroup_ns) 1181 return -EPERM; 1182 1183 root = kzalloc(sizeof(*root), GFP_KERNEL); 1184 if (!root) 1185 return -ENOMEM; 1186 1187 ctx->root = root; 1188 init_cgroup_root(ctx); 1189 1190 ret = cgroup_setup_root(root, ctx->subsys_mask); 1191 if (ret) 1192 cgroup_free_root(root); 1193 return ret; 1194 } 1195 1196 int cgroup1_get_tree(struct fs_context *fc) 1197 { 1198 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1199 int ret; 1200 1201 /* Check if the caller has permission to mount. */ 1202 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1203 return -EPERM; 1204 1205 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1206 1207 ret = cgroup1_root_to_use(fc); 1208 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1209 ret = 1; /* restart */ 1210 1211 mutex_unlock(&cgroup_mutex); 1212 1213 if (!ret) 1214 ret = cgroup_do_get_tree(fc); 1215 1216 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1217 struct super_block *sb = fc->root->d_sb; 1218 dput(fc->root); 1219 deactivate_locked_super(sb); 1220 ret = 1; 1221 } 1222 1223 if (unlikely(ret > 0)) { 1224 msleep(10); 1225 return restart_syscall(); 1226 } 1227 return ret; 1228 } 1229 1230 static int __init cgroup1_wq_init(void) 1231 { 1232 /* 1233 * Used to destroy pidlists and separate to serve as flush domain. 1234 * Cap @max_active to 1 too. 1235 */ 1236 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1237 0, 1); 1238 BUG_ON(!cgroup_pidlist_destroy_wq); 1239 return 0; 1240 } 1241 core_initcall(cgroup1_wq_init); 1242 1243 static int __init cgroup_no_v1(char *str) 1244 { 1245 struct cgroup_subsys *ss; 1246 char *token; 1247 int i; 1248 1249 while ((token = strsep(&str, ",")) != NULL) { 1250 if (!*token) 1251 continue; 1252 1253 if (!strcmp(token, "all")) { 1254 cgroup_no_v1_mask = U16_MAX; 1255 continue; 1256 } 1257 1258 if (!strcmp(token, "named")) { 1259 cgroup_no_v1_named = true; 1260 continue; 1261 } 1262 1263 for_each_subsys(ss, i) { 1264 if (strcmp(token, ss->name) && 1265 strcmp(token, ss->legacy_name)) 1266 continue; 1267 1268 cgroup_no_v1_mask |= 1 << i; 1269 } 1270 } 1271 return 1; 1272 } 1273 __setup("cgroup_no_v1=", cgroup_no_v1); 1274