xref: /openbmc/linux/kernel/cgroup/cgroup-v1.c (revision 5edb7691)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18 
19 #include <trace/events/cgroup.h>
20 
21 /*
22  * pidlists linger the following amount before being destroyed.  The goal
23  * is avoiding frequent destruction in the middle of consecutive read calls
24  * Expiring in the middle is a performance problem not a correctness one.
25  * 1 sec should be enough.
26  */
27 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
28 
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31 
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34 
35 /*
36  * pidlist destructions need to be flushed on cgroup destruction.  Use a
37  * separate workqueue as flush domain.
38  */
39 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40 
41 /*
42  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
43  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
44  */
45 static DEFINE_SPINLOCK(release_agent_path_lock);
46 
47 bool cgroup1_ssid_disabled(int ssid)
48 {
49 	return cgroup_no_v1_mask & (1 << ssid);
50 }
51 
52 /**
53  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
54  * @from: attach to all cgroups of a given task
55  * @tsk: the task to be attached
56  */
57 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
58 {
59 	struct cgroup_root *root;
60 	int retval = 0;
61 
62 	mutex_lock(&cgroup_mutex);
63 	percpu_down_write(&cgroup_threadgroup_rwsem);
64 	for_each_root(root) {
65 		struct cgroup *from_cgrp;
66 
67 		if (root == &cgrp_dfl_root)
68 			continue;
69 
70 		spin_lock_irq(&css_set_lock);
71 		from_cgrp = task_cgroup_from_root(from, root);
72 		spin_unlock_irq(&css_set_lock);
73 
74 		retval = cgroup_attach_task(from_cgrp, tsk, false);
75 		if (retval)
76 			break;
77 	}
78 	percpu_up_write(&cgroup_threadgroup_rwsem);
79 	mutex_unlock(&cgroup_mutex);
80 
81 	return retval;
82 }
83 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
84 
85 /**
86  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
87  * @to: cgroup to which the tasks will be moved
88  * @from: cgroup in which the tasks currently reside
89  *
90  * Locking rules between cgroup_post_fork() and the migration path
91  * guarantee that, if a task is forking while being migrated, the new child
92  * is guaranteed to be either visible in the source cgroup after the
93  * parent's migration is complete or put into the target cgroup.  No task
94  * can slip out of migration through forking.
95  */
96 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
97 {
98 	DEFINE_CGROUP_MGCTX(mgctx);
99 	struct cgrp_cset_link *link;
100 	struct css_task_iter it;
101 	struct task_struct *task;
102 	int ret;
103 
104 	if (cgroup_on_dfl(to))
105 		return -EINVAL;
106 
107 	ret = cgroup_migrate_vet_dst(to);
108 	if (ret)
109 		return ret;
110 
111 	mutex_lock(&cgroup_mutex);
112 
113 	percpu_down_write(&cgroup_threadgroup_rwsem);
114 
115 	/* all tasks in @from are being moved, all csets are source */
116 	spin_lock_irq(&css_set_lock);
117 	list_for_each_entry(link, &from->cset_links, cset_link)
118 		cgroup_migrate_add_src(link->cset, to, &mgctx);
119 	spin_unlock_irq(&css_set_lock);
120 
121 	ret = cgroup_migrate_prepare_dst(&mgctx);
122 	if (ret)
123 		goto out_err;
124 
125 	/*
126 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
127 	 * ->can_attach() fails.
128 	 */
129 	do {
130 		css_task_iter_start(&from->self, 0, &it);
131 
132 		do {
133 			task = css_task_iter_next(&it);
134 		} while (task && (task->flags & PF_EXITING));
135 
136 		if (task)
137 			get_task_struct(task);
138 		css_task_iter_end(&it);
139 
140 		if (task) {
141 			ret = cgroup_migrate(task, false, &mgctx);
142 			if (!ret)
143 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
144 			put_task_struct(task);
145 		}
146 	} while (task && !ret);
147 out_err:
148 	cgroup_migrate_finish(&mgctx);
149 	percpu_up_write(&cgroup_threadgroup_rwsem);
150 	mutex_unlock(&cgroup_mutex);
151 	return ret;
152 }
153 
154 /*
155  * Stuff for reading the 'tasks'/'procs' files.
156  *
157  * Reading this file can return large amounts of data if a cgroup has
158  * *lots* of attached tasks. So it may need several calls to read(),
159  * but we cannot guarantee that the information we produce is correct
160  * unless we produce it entirely atomically.
161  *
162  */
163 
164 /* which pidlist file are we talking about? */
165 enum cgroup_filetype {
166 	CGROUP_FILE_PROCS,
167 	CGROUP_FILE_TASKS,
168 };
169 
170 /*
171  * A pidlist is a list of pids that virtually represents the contents of one
172  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
173  * a pair (one each for procs, tasks) for each pid namespace that's relevant
174  * to the cgroup.
175  */
176 struct cgroup_pidlist {
177 	/*
178 	 * used to find which pidlist is wanted. doesn't change as long as
179 	 * this particular list stays in the list.
180 	*/
181 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
182 	/* array of xids */
183 	pid_t *list;
184 	/* how many elements the above list has */
185 	int length;
186 	/* each of these stored in a list by its cgroup */
187 	struct list_head links;
188 	/* pointer to the cgroup we belong to, for list removal purposes */
189 	struct cgroup *owner;
190 	/* for delayed destruction */
191 	struct delayed_work destroy_dwork;
192 };
193 
194 /*
195  * Used to destroy all pidlists lingering waiting for destroy timer.  None
196  * should be left afterwards.
197  */
198 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
199 {
200 	struct cgroup_pidlist *l, *tmp_l;
201 
202 	mutex_lock(&cgrp->pidlist_mutex);
203 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
204 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
205 	mutex_unlock(&cgrp->pidlist_mutex);
206 
207 	flush_workqueue(cgroup_pidlist_destroy_wq);
208 	BUG_ON(!list_empty(&cgrp->pidlists));
209 }
210 
211 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
212 {
213 	struct delayed_work *dwork = to_delayed_work(work);
214 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
215 						destroy_dwork);
216 	struct cgroup_pidlist *tofree = NULL;
217 
218 	mutex_lock(&l->owner->pidlist_mutex);
219 
220 	/*
221 	 * Destroy iff we didn't get queued again.  The state won't change
222 	 * as destroy_dwork can only be queued while locked.
223 	 */
224 	if (!delayed_work_pending(dwork)) {
225 		list_del(&l->links);
226 		kvfree(l->list);
227 		put_pid_ns(l->key.ns);
228 		tofree = l;
229 	}
230 
231 	mutex_unlock(&l->owner->pidlist_mutex);
232 	kfree(tofree);
233 }
234 
235 /*
236  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
237  * Returns the number of unique elements.
238  */
239 static int pidlist_uniq(pid_t *list, int length)
240 {
241 	int src, dest = 1;
242 
243 	/*
244 	 * we presume the 0th element is unique, so i starts at 1. trivial
245 	 * edge cases first; no work needs to be done for either
246 	 */
247 	if (length == 0 || length == 1)
248 		return length;
249 	/* src and dest walk down the list; dest counts unique elements */
250 	for (src = 1; src < length; src++) {
251 		/* find next unique element */
252 		while (list[src] == list[src-1]) {
253 			src++;
254 			if (src == length)
255 				goto after;
256 		}
257 		/* dest always points to where the next unique element goes */
258 		list[dest] = list[src];
259 		dest++;
260 	}
261 after:
262 	return dest;
263 }
264 
265 /*
266  * The two pid files - task and cgroup.procs - guaranteed that the result
267  * is sorted, which forced this whole pidlist fiasco.  As pid order is
268  * different per namespace, each namespace needs differently sorted list,
269  * making it impossible to use, for example, single rbtree of member tasks
270  * sorted by task pointer.  As pidlists can be fairly large, allocating one
271  * per open file is dangerous, so cgroup had to implement shared pool of
272  * pidlists keyed by cgroup and namespace.
273  */
274 static int cmppid(const void *a, const void *b)
275 {
276 	return *(pid_t *)a - *(pid_t *)b;
277 }
278 
279 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
280 						  enum cgroup_filetype type)
281 {
282 	struct cgroup_pidlist *l;
283 	/* don't need task_nsproxy() if we're looking at ourself */
284 	struct pid_namespace *ns = task_active_pid_ns(current);
285 
286 	lockdep_assert_held(&cgrp->pidlist_mutex);
287 
288 	list_for_each_entry(l, &cgrp->pidlists, links)
289 		if (l->key.type == type && l->key.ns == ns)
290 			return l;
291 	return NULL;
292 }
293 
294 /*
295  * find the appropriate pidlist for our purpose (given procs vs tasks)
296  * returns with the lock on that pidlist already held, and takes care
297  * of the use count, or returns NULL with no locks held if we're out of
298  * memory.
299  */
300 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
301 						enum cgroup_filetype type)
302 {
303 	struct cgroup_pidlist *l;
304 
305 	lockdep_assert_held(&cgrp->pidlist_mutex);
306 
307 	l = cgroup_pidlist_find(cgrp, type);
308 	if (l)
309 		return l;
310 
311 	/* entry not found; create a new one */
312 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
313 	if (!l)
314 		return l;
315 
316 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
317 	l->key.type = type;
318 	/* don't need task_nsproxy() if we're looking at ourself */
319 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
320 	l->owner = cgrp;
321 	list_add(&l->links, &cgrp->pidlists);
322 	return l;
323 }
324 
325 /*
326  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
327  */
328 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
329 			      struct cgroup_pidlist **lp)
330 {
331 	pid_t *array;
332 	int length;
333 	int pid, n = 0; /* used for populating the array */
334 	struct css_task_iter it;
335 	struct task_struct *tsk;
336 	struct cgroup_pidlist *l;
337 
338 	lockdep_assert_held(&cgrp->pidlist_mutex);
339 
340 	/*
341 	 * If cgroup gets more users after we read count, we won't have
342 	 * enough space - tough.  This race is indistinguishable to the
343 	 * caller from the case that the additional cgroup users didn't
344 	 * show up until sometime later on.
345 	 */
346 	length = cgroup_task_count(cgrp);
347 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
348 	if (!array)
349 		return -ENOMEM;
350 	/* now, populate the array */
351 	css_task_iter_start(&cgrp->self, 0, &it);
352 	while ((tsk = css_task_iter_next(&it))) {
353 		if (unlikely(n == length))
354 			break;
355 		/* get tgid or pid for procs or tasks file respectively */
356 		if (type == CGROUP_FILE_PROCS)
357 			pid = task_tgid_vnr(tsk);
358 		else
359 			pid = task_pid_vnr(tsk);
360 		if (pid > 0) /* make sure to only use valid results */
361 			array[n++] = pid;
362 	}
363 	css_task_iter_end(&it);
364 	length = n;
365 	/* now sort & (if procs) strip out duplicates */
366 	sort(array, length, sizeof(pid_t), cmppid, NULL);
367 	if (type == CGROUP_FILE_PROCS)
368 		length = pidlist_uniq(array, length);
369 
370 	l = cgroup_pidlist_find_create(cgrp, type);
371 	if (!l) {
372 		kvfree(array);
373 		return -ENOMEM;
374 	}
375 
376 	/* store array, freeing old if necessary */
377 	kvfree(l->list);
378 	l->list = array;
379 	l->length = length;
380 	*lp = l;
381 	return 0;
382 }
383 
384 /*
385  * seq_file methods for the tasks/procs files. The seq_file position is the
386  * next pid to display; the seq_file iterator is a pointer to the pid
387  * in the cgroup->l->list array.
388  */
389 
390 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
391 {
392 	/*
393 	 * Initially we receive a position value that corresponds to
394 	 * one more than the last pid shown (or 0 on the first call or
395 	 * after a seek to the start). Use a binary-search to find the
396 	 * next pid to display, if any
397 	 */
398 	struct kernfs_open_file *of = s->private;
399 	struct cgroup *cgrp = seq_css(s)->cgroup;
400 	struct cgroup_pidlist *l;
401 	enum cgroup_filetype type = seq_cft(s)->private;
402 	int index = 0, pid = *pos;
403 	int *iter, ret;
404 
405 	mutex_lock(&cgrp->pidlist_mutex);
406 
407 	/*
408 	 * !NULL @of->priv indicates that this isn't the first start()
409 	 * after open.  If the matching pidlist is around, we can use that.
410 	 * Look for it.  Note that @of->priv can't be used directly.  It
411 	 * could already have been destroyed.
412 	 */
413 	if (of->priv)
414 		of->priv = cgroup_pidlist_find(cgrp, type);
415 
416 	/*
417 	 * Either this is the first start() after open or the matching
418 	 * pidlist has been destroyed inbetween.  Create a new one.
419 	 */
420 	if (!of->priv) {
421 		ret = pidlist_array_load(cgrp, type,
422 					 (struct cgroup_pidlist **)&of->priv);
423 		if (ret)
424 			return ERR_PTR(ret);
425 	}
426 	l = of->priv;
427 
428 	if (pid) {
429 		int end = l->length;
430 
431 		while (index < end) {
432 			int mid = (index + end) / 2;
433 			if (l->list[mid] == pid) {
434 				index = mid;
435 				break;
436 			} else if (l->list[mid] <= pid)
437 				index = mid + 1;
438 			else
439 				end = mid;
440 		}
441 	}
442 	/* If we're off the end of the array, we're done */
443 	if (index >= l->length)
444 		return NULL;
445 	/* Update the abstract position to be the actual pid that we found */
446 	iter = l->list + index;
447 	*pos = *iter;
448 	return iter;
449 }
450 
451 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
452 {
453 	struct kernfs_open_file *of = s->private;
454 	struct cgroup_pidlist *l = of->priv;
455 
456 	if (l)
457 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
458 				 CGROUP_PIDLIST_DESTROY_DELAY);
459 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
460 }
461 
462 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
463 {
464 	struct kernfs_open_file *of = s->private;
465 	struct cgroup_pidlist *l = of->priv;
466 	pid_t *p = v;
467 	pid_t *end = l->list + l->length;
468 	/*
469 	 * Advance to the next pid in the array. If this goes off the
470 	 * end, we're done
471 	 */
472 	p++;
473 	if (p >= end) {
474 		(*pos)++;
475 		return NULL;
476 	} else {
477 		*pos = *p;
478 		return p;
479 	}
480 }
481 
482 static int cgroup_pidlist_show(struct seq_file *s, void *v)
483 {
484 	seq_printf(s, "%d\n", *(int *)v);
485 
486 	return 0;
487 }
488 
489 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
490 				     char *buf, size_t nbytes, loff_t off,
491 				     bool threadgroup)
492 {
493 	struct cgroup *cgrp;
494 	struct task_struct *task;
495 	const struct cred *cred, *tcred;
496 	ssize_t ret;
497 	bool locked;
498 
499 	cgrp = cgroup_kn_lock_live(of->kn, false);
500 	if (!cgrp)
501 		return -ENODEV;
502 
503 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
504 	ret = PTR_ERR_OR_ZERO(task);
505 	if (ret)
506 		goto out_unlock;
507 
508 	/*
509 	 * Even if we're attaching all tasks in the thread group, we only
510 	 * need to check permissions on one of them.
511 	 */
512 	cred = current_cred();
513 	tcred = get_task_cred(task);
514 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
515 	    !uid_eq(cred->euid, tcred->uid) &&
516 	    !uid_eq(cred->euid, tcred->suid))
517 		ret = -EACCES;
518 	put_cred(tcred);
519 	if (ret)
520 		goto out_finish;
521 
522 	ret = cgroup_attach_task(cgrp, task, threadgroup);
523 
524 out_finish:
525 	cgroup_procs_write_finish(task, locked);
526 out_unlock:
527 	cgroup_kn_unlock(of->kn);
528 
529 	return ret ?: nbytes;
530 }
531 
532 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
533 				   char *buf, size_t nbytes, loff_t off)
534 {
535 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
536 }
537 
538 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
539 				   char *buf, size_t nbytes, loff_t off)
540 {
541 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
542 }
543 
544 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
545 					  char *buf, size_t nbytes, loff_t off)
546 {
547 	struct cgroup *cgrp;
548 
549 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
550 
551 	cgrp = cgroup_kn_lock_live(of->kn, false);
552 	if (!cgrp)
553 		return -ENODEV;
554 	spin_lock(&release_agent_path_lock);
555 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
556 		sizeof(cgrp->root->release_agent_path));
557 	spin_unlock(&release_agent_path_lock);
558 	cgroup_kn_unlock(of->kn);
559 	return nbytes;
560 }
561 
562 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
563 {
564 	struct cgroup *cgrp = seq_css(seq)->cgroup;
565 
566 	spin_lock(&release_agent_path_lock);
567 	seq_puts(seq, cgrp->root->release_agent_path);
568 	spin_unlock(&release_agent_path_lock);
569 	seq_putc(seq, '\n');
570 	return 0;
571 }
572 
573 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
574 {
575 	seq_puts(seq, "0\n");
576 	return 0;
577 }
578 
579 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
580 					 struct cftype *cft)
581 {
582 	return notify_on_release(css->cgroup);
583 }
584 
585 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
586 					  struct cftype *cft, u64 val)
587 {
588 	if (val)
589 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
590 	else
591 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
592 	return 0;
593 }
594 
595 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
596 				      struct cftype *cft)
597 {
598 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
599 }
600 
601 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
602 				       struct cftype *cft, u64 val)
603 {
604 	if (val)
605 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
606 	else
607 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
608 	return 0;
609 }
610 
611 /* cgroup core interface files for the legacy hierarchies */
612 struct cftype cgroup1_base_files[] = {
613 	{
614 		.name = "cgroup.procs",
615 		.seq_start = cgroup_pidlist_start,
616 		.seq_next = cgroup_pidlist_next,
617 		.seq_stop = cgroup_pidlist_stop,
618 		.seq_show = cgroup_pidlist_show,
619 		.private = CGROUP_FILE_PROCS,
620 		.write = cgroup1_procs_write,
621 	},
622 	{
623 		.name = "cgroup.clone_children",
624 		.read_u64 = cgroup_clone_children_read,
625 		.write_u64 = cgroup_clone_children_write,
626 	},
627 	{
628 		.name = "cgroup.sane_behavior",
629 		.flags = CFTYPE_ONLY_ON_ROOT,
630 		.seq_show = cgroup_sane_behavior_show,
631 	},
632 	{
633 		.name = "tasks",
634 		.seq_start = cgroup_pidlist_start,
635 		.seq_next = cgroup_pidlist_next,
636 		.seq_stop = cgroup_pidlist_stop,
637 		.seq_show = cgroup_pidlist_show,
638 		.private = CGROUP_FILE_TASKS,
639 		.write = cgroup1_tasks_write,
640 	},
641 	{
642 		.name = "notify_on_release",
643 		.read_u64 = cgroup_read_notify_on_release,
644 		.write_u64 = cgroup_write_notify_on_release,
645 	},
646 	{
647 		.name = "release_agent",
648 		.flags = CFTYPE_ONLY_ON_ROOT,
649 		.seq_show = cgroup_release_agent_show,
650 		.write = cgroup_release_agent_write,
651 		.max_write_len = PATH_MAX - 1,
652 	},
653 	{ }	/* terminate */
654 };
655 
656 /* Display information about each subsystem and each hierarchy */
657 int proc_cgroupstats_show(struct seq_file *m, void *v)
658 {
659 	struct cgroup_subsys *ss;
660 	int i;
661 
662 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
663 	/*
664 	 * ideally we don't want subsystems moving around while we do this.
665 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
666 	 * subsys/hierarchy state.
667 	 */
668 	mutex_lock(&cgroup_mutex);
669 
670 	for_each_subsys(ss, i)
671 		seq_printf(m, "%s\t%d\t%d\t%d\n",
672 			   ss->legacy_name, ss->root->hierarchy_id,
673 			   atomic_read(&ss->root->nr_cgrps),
674 			   cgroup_ssid_enabled(i));
675 
676 	mutex_unlock(&cgroup_mutex);
677 	return 0;
678 }
679 
680 /**
681  * cgroupstats_build - build and fill cgroupstats
682  * @stats: cgroupstats to fill information into
683  * @dentry: A dentry entry belonging to the cgroup for which stats have
684  * been requested.
685  *
686  * Build and fill cgroupstats so that taskstats can export it to user
687  * space.
688  */
689 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
690 {
691 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
692 	struct cgroup *cgrp;
693 	struct css_task_iter it;
694 	struct task_struct *tsk;
695 
696 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
697 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
698 	    kernfs_type(kn) != KERNFS_DIR)
699 		return -EINVAL;
700 
701 	mutex_lock(&cgroup_mutex);
702 
703 	/*
704 	 * We aren't being called from kernfs and there's no guarantee on
705 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
706 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
707 	 */
708 	rcu_read_lock();
709 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
710 	if (!cgrp || cgroup_is_dead(cgrp)) {
711 		rcu_read_unlock();
712 		mutex_unlock(&cgroup_mutex);
713 		return -ENOENT;
714 	}
715 	rcu_read_unlock();
716 
717 	css_task_iter_start(&cgrp->self, 0, &it);
718 	while ((tsk = css_task_iter_next(&it))) {
719 		switch (tsk->state) {
720 		case TASK_RUNNING:
721 			stats->nr_running++;
722 			break;
723 		case TASK_INTERRUPTIBLE:
724 			stats->nr_sleeping++;
725 			break;
726 		case TASK_UNINTERRUPTIBLE:
727 			stats->nr_uninterruptible++;
728 			break;
729 		case TASK_STOPPED:
730 			stats->nr_stopped++;
731 			break;
732 		default:
733 			if (delayacct_is_task_waiting_on_io(tsk))
734 				stats->nr_io_wait++;
735 			break;
736 		}
737 	}
738 	css_task_iter_end(&it);
739 
740 	mutex_unlock(&cgroup_mutex);
741 	return 0;
742 }
743 
744 void cgroup1_check_for_release(struct cgroup *cgrp)
745 {
746 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
747 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
748 		schedule_work(&cgrp->release_agent_work);
749 }
750 
751 /*
752  * Notify userspace when a cgroup is released, by running the
753  * configured release agent with the name of the cgroup (path
754  * relative to the root of cgroup file system) as the argument.
755  *
756  * Most likely, this user command will try to rmdir this cgroup.
757  *
758  * This races with the possibility that some other task will be
759  * attached to this cgroup before it is removed, or that some other
760  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
761  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
762  * unused, and this cgroup will be reprieved from its death sentence,
763  * to continue to serve a useful existence.  Next time it's released,
764  * we will get notified again, if it still has 'notify_on_release' set.
765  *
766  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
767  * means only wait until the task is successfully execve()'d.  The
768  * separate release agent task is forked by call_usermodehelper(),
769  * then control in this thread returns here, without waiting for the
770  * release agent task.  We don't bother to wait because the caller of
771  * this routine has no use for the exit status of the release agent
772  * task, so no sense holding our caller up for that.
773  */
774 void cgroup1_release_agent(struct work_struct *work)
775 {
776 	struct cgroup *cgrp =
777 		container_of(work, struct cgroup, release_agent_work);
778 	char *pathbuf = NULL, *agentbuf = NULL;
779 	char *argv[3], *envp[3];
780 	int ret;
781 
782 	mutex_lock(&cgroup_mutex);
783 
784 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
785 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
786 	if (!pathbuf || !agentbuf || !strlen(agentbuf))
787 		goto out;
788 
789 	spin_lock_irq(&css_set_lock);
790 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
791 	spin_unlock_irq(&css_set_lock);
792 	if (ret < 0 || ret >= PATH_MAX)
793 		goto out;
794 
795 	argv[0] = agentbuf;
796 	argv[1] = pathbuf;
797 	argv[2] = NULL;
798 
799 	/* minimal command environment */
800 	envp[0] = "HOME=/";
801 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
802 	envp[2] = NULL;
803 
804 	mutex_unlock(&cgroup_mutex);
805 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
806 	goto out_free;
807 out:
808 	mutex_unlock(&cgroup_mutex);
809 out_free:
810 	kfree(agentbuf);
811 	kfree(pathbuf);
812 }
813 
814 /*
815  * cgroup_rename - Only allow simple rename of directories in place.
816  */
817 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
818 			  const char *new_name_str)
819 {
820 	struct cgroup *cgrp = kn->priv;
821 	int ret;
822 
823 	if (kernfs_type(kn) != KERNFS_DIR)
824 		return -ENOTDIR;
825 	if (kn->parent != new_parent)
826 		return -EIO;
827 
828 	/*
829 	 * We're gonna grab cgroup_mutex which nests outside kernfs
830 	 * active_ref.  kernfs_rename() doesn't require active_ref
831 	 * protection.  Break them before grabbing cgroup_mutex.
832 	 */
833 	kernfs_break_active_protection(new_parent);
834 	kernfs_break_active_protection(kn);
835 
836 	mutex_lock(&cgroup_mutex);
837 
838 	ret = kernfs_rename(kn, new_parent, new_name_str);
839 	if (!ret)
840 		TRACE_CGROUP_PATH(rename, cgrp);
841 
842 	mutex_unlock(&cgroup_mutex);
843 
844 	kernfs_unbreak_active_protection(kn);
845 	kernfs_unbreak_active_protection(new_parent);
846 	return ret;
847 }
848 
849 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
850 {
851 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
852 	struct cgroup_subsys *ss;
853 	int ssid;
854 
855 	for_each_subsys(ss, ssid)
856 		if (root->subsys_mask & (1 << ssid))
857 			seq_show_option(seq, ss->legacy_name, NULL);
858 	if (root->flags & CGRP_ROOT_NOPREFIX)
859 		seq_puts(seq, ",noprefix");
860 	if (root->flags & CGRP_ROOT_XATTR)
861 		seq_puts(seq, ",xattr");
862 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
863 		seq_puts(seq, ",cpuset_v2_mode");
864 
865 	spin_lock(&release_agent_path_lock);
866 	if (strlen(root->release_agent_path))
867 		seq_show_option(seq, "release_agent",
868 				root->release_agent_path);
869 	spin_unlock(&release_agent_path_lock);
870 
871 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
872 		seq_puts(seq, ",clone_children");
873 	if (strlen(root->name))
874 		seq_show_option(seq, "name", root->name);
875 	return 0;
876 }
877 
878 enum cgroup1_param {
879 	Opt_all,
880 	Opt_clone_children,
881 	Opt_cpuset_v2_mode,
882 	Opt_name,
883 	Opt_none,
884 	Opt_noprefix,
885 	Opt_release_agent,
886 	Opt_xattr,
887 };
888 
889 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
890 	fsparam_flag  ("all",		Opt_all),
891 	fsparam_flag  ("clone_children", Opt_clone_children),
892 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
893 	fsparam_string("name",		Opt_name),
894 	fsparam_flag  ("none",		Opt_none),
895 	fsparam_flag  ("noprefix",	Opt_noprefix),
896 	fsparam_string("release_agent",	Opt_release_agent),
897 	fsparam_flag  ("xattr",		Opt_xattr),
898 	{}
899 };
900 
901 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
902 {
903 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
904 	struct cgroup_subsys *ss;
905 	struct fs_parse_result result;
906 	int opt, i;
907 
908 	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
909 	if (opt == -ENOPARAM) {
910 		if (strcmp(param->key, "source") == 0) {
911 			fc->source = param->string;
912 			param->string = NULL;
913 			return 0;
914 		}
915 		for_each_subsys(ss, i) {
916 			if (strcmp(param->key, ss->legacy_name))
917 				continue;
918 			ctx->subsys_mask |= (1 << i);
919 			return 0;
920 		}
921 		return invalfc(fc, "Unknown subsys name '%s'", param->key);
922 	}
923 	if (opt < 0)
924 		return opt;
925 
926 	switch (opt) {
927 	case Opt_none:
928 		/* Explicitly have no subsystems */
929 		ctx->none = true;
930 		break;
931 	case Opt_all:
932 		ctx->all_ss = true;
933 		break;
934 	case Opt_noprefix:
935 		ctx->flags |= CGRP_ROOT_NOPREFIX;
936 		break;
937 	case Opt_clone_children:
938 		ctx->cpuset_clone_children = true;
939 		break;
940 	case Opt_cpuset_v2_mode:
941 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
942 		break;
943 	case Opt_xattr:
944 		ctx->flags |= CGRP_ROOT_XATTR;
945 		break;
946 	case Opt_release_agent:
947 		/* Specifying two release agents is forbidden */
948 		if (ctx->release_agent)
949 			return invalfc(fc, "release_agent respecified");
950 		ctx->release_agent = param->string;
951 		param->string = NULL;
952 		break;
953 	case Opt_name:
954 		/* blocked by boot param? */
955 		if (cgroup_no_v1_named)
956 			return -ENOENT;
957 		/* Can't specify an empty name */
958 		if (!param->size)
959 			return invalfc(fc, "Empty name");
960 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
961 			return invalfc(fc, "Name too long");
962 		/* Must match [\w.-]+ */
963 		for (i = 0; i < param->size; i++) {
964 			char c = param->string[i];
965 			if (isalnum(c))
966 				continue;
967 			if ((c == '.') || (c == '-') || (c == '_'))
968 				continue;
969 			return invalfc(fc, "Invalid name");
970 		}
971 		/* Specifying two names is forbidden */
972 		if (ctx->name)
973 			return invalfc(fc, "name respecified");
974 		ctx->name = param->string;
975 		param->string = NULL;
976 		break;
977 	}
978 	return 0;
979 }
980 
981 static int check_cgroupfs_options(struct fs_context *fc)
982 {
983 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
984 	u16 mask = U16_MAX;
985 	u16 enabled = 0;
986 	struct cgroup_subsys *ss;
987 	int i;
988 
989 #ifdef CONFIG_CPUSETS
990 	mask = ~((u16)1 << cpuset_cgrp_id);
991 #endif
992 	for_each_subsys(ss, i)
993 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
994 			enabled |= 1 << i;
995 
996 	ctx->subsys_mask &= enabled;
997 
998 	/*
999 	 * In absense of 'none', 'name=' or subsystem name options,
1000 	 * let's default to 'all'.
1001 	 */
1002 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1003 		ctx->all_ss = true;
1004 
1005 	if (ctx->all_ss) {
1006 		/* Mutually exclusive option 'all' + subsystem name */
1007 		if (ctx->subsys_mask)
1008 			return invalfc(fc, "subsys name conflicts with all");
1009 		/* 'all' => select all the subsystems */
1010 		ctx->subsys_mask = enabled;
1011 	}
1012 
1013 	/*
1014 	 * We either have to specify by name or by subsystems. (So all
1015 	 * empty hierarchies must have a name).
1016 	 */
1017 	if (!ctx->subsys_mask && !ctx->name)
1018 		return invalfc(fc, "Need name or subsystem set");
1019 
1020 	/*
1021 	 * Option noprefix was introduced just for backward compatibility
1022 	 * with the old cpuset, so we allow noprefix only if mounting just
1023 	 * the cpuset subsystem.
1024 	 */
1025 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1026 		return invalfc(fc, "noprefix used incorrectly");
1027 
1028 	/* Can't specify "none" and some subsystems */
1029 	if (ctx->subsys_mask && ctx->none)
1030 		return invalfc(fc, "none used incorrectly");
1031 
1032 	return 0;
1033 }
1034 
1035 int cgroup1_reconfigure(struct fs_context *fc)
1036 {
1037 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1038 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1039 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1040 	int ret = 0;
1041 	u16 added_mask, removed_mask;
1042 
1043 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1044 
1045 	/* See what subsystems are wanted */
1046 	ret = check_cgroupfs_options(fc);
1047 	if (ret)
1048 		goto out_unlock;
1049 
1050 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1051 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1052 			task_tgid_nr(current), current->comm);
1053 
1054 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1055 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1056 
1057 	/* Don't allow flags or name to change at remount */
1058 	if ((ctx->flags ^ root->flags) ||
1059 	    (ctx->name && strcmp(ctx->name, root->name))) {
1060 		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1061 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1062 		ret = -EINVAL;
1063 		goto out_unlock;
1064 	}
1065 
1066 	/* remounting is not allowed for populated hierarchies */
1067 	if (!list_empty(&root->cgrp.self.children)) {
1068 		ret = -EBUSY;
1069 		goto out_unlock;
1070 	}
1071 
1072 	ret = rebind_subsystems(root, added_mask);
1073 	if (ret)
1074 		goto out_unlock;
1075 
1076 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1077 
1078 	if (ctx->release_agent) {
1079 		spin_lock(&release_agent_path_lock);
1080 		strcpy(root->release_agent_path, ctx->release_agent);
1081 		spin_unlock(&release_agent_path_lock);
1082 	}
1083 
1084 	trace_cgroup_remount(root);
1085 
1086  out_unlock:
1087 	mutex_unlock(&cgroup_mutex);
1088 	return ret;
1089 }
1090 
1091 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1092 	.rename			= cgroup1_rename,
1093 	.show_options		= cgroup1_show_options,
1094 	.mkdir			= cgroup_mkdir,
1095 	.rmdir			= cgroup_rmdir,
1096 	.show_path		= cgroup_show_path,
1097 };
1098 
1099 /*
1100  * The guts of cgroup1 mount - find or create cgroup_root to use.
1101  * Called with cgroup_mutex held; returns 0 on success, -E... on
1102  * error and positive - in case when the candidate is busy dying.
1103  * On success it stashes a reference to cgroup_root into given
1104  * cgroup_fs_context; that reference is *NOT* counting towards the
1105  * cgroup_root refcount.
1106  */
1107 static int cgroup1_root_to_use(struct fs_context *fc)
1108 {
1109 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1110 	struct cgroup_root *root;
1111 	struct cgroup_subsys *ss;
1112 	int i, ret;
1113 
1114 	/* First find the desired set of subsystems */
1115 	ret = check_cgroupfs_options(fc);
1116 	if (ret)
1117 		return ret;
1118 
1119 	/*
1120 	 * Destruction of cgroup root is asynchronous, so subsystems may
1121 	 * still be dying after the previous unmount.  Let's drain the
1122 	 * dying subsystems.  We just need to ensure that the ones
1123 	 * unmounted previously finish dying and don't care about new ones
1124 	 * starting.  Testing ref liveliness is good enough.
1125 	 */
1126 	for_each_subsys(ss, i) {
1127 		if (!(ctx->subsys_mask & (1 << i)) ||
1128 		    ss->root == &cgrp_dfl_root)
1129 			continue;
1130 
1131 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1132 			return 1;	/* restart */
1133 		cgroup_put(&ss->root->cgrp);
1134 	}
1135 
1136 	for_each_root(root) {
1137 		bool name_match = false;
1138 
1139 		if (root == &cgrp_dfl_root)
1140 			continue;
1141 
1142 		/*
1143 		 * If we asked for a name then it must match.  Also, if
1144 		 * name matches but sybsys_mask doesn't, we should fail.
1145 		 * Remember whether name matched.
1146 		 */
1147 		if (ctx->name) {
1148 			if (strcmp(ctx->name, root->name))
1149 				continue;
1150 			name_match = true;
1151 		}
1152 
1153 		/*
1154 		 * If we asked for subsystems (or explicitly for no
1155 		 * subsystems) then they must match.
1156 		 */
1157 		if ((ctx->subsys_mask || ctx->none) &&
1158 		    (ctx->subsys_mask != root->subsys_mask)) {
1159 			if (!name_match)
1160 				continue;
1161 			return -EBUSY;
1162 		}
1163 
1164 		if (root->flags ^ ctx->flags)
1165 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1166 
1167 		ctx->root = root;
1168 		return 0;
1169 	}
1170 
1171 	/*
1172 	 * No such thing, create a new one.  name= matching without subsys
1173 	 * specification is allowed for already existing hierarchies but we
1174 	 * can't create new one without subsys specification.
1175 	 */
1176 	if (!ctx->subsys_mask && !ctx->none)
1177 		return invalfc(fc, "No subsys list or none specified");
1178 
1179 	/* Hierarchies may only be created in the initial cgroup namespace. */
1180 	if (ctx->ns != &init_cgroup_ns)
1181 		return -EPERM;
1182 
1183 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1184 	if (!root)
1185 		return -ENOMEM;
1186 
1187 	ctx->root = root;
1188 	init_cgroup_root(ctx);
1189 
1190 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1191 	if (ret)
1192 		cgroup_free_root(root);
1193 	return ret;
1194 }
1195 
1196 int cgroup1_get_tree(struct fs_context *fc)
1197 {
1198 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1199 	int ret;
1200 
1201 	/* Check if the caller has permission to mount. */
1202 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1203 		return -EPERM;
1204 
1205 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1206 
1207 	ret = cgroup1_root_to_use(fc);
1208 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1209 		ret = 1;	/* restart */
1210 
1211 	mutex_unlock(&cgroup_mutex);
1212 
1213 	if (!ret)
1214 		ret = cgroup_do_get_tree(fc);
1215 
1216 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1217 		struct super_block *sb = fc->root->d_sb;
1218 		dput(fc->root);
1219 		deactivate_locked_super(sb);
1220 		ret = 1;
1221 	}
1222 
1223 	if (unlikely(ret > 0)) {
1224 		msleep(10);
1225 		return restart_syscall();
1226 	}
1227 	return ret;
1228 }
1229 
1230 static int __init cgroup1_wq_init(void)
1231 {
1232 	/*
1233 	 * Used to destroy pidlists and separate to serve as flush domain.
1234 	 * Cap @max_active to 1 too.
1235 	 */
1236 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1237 						    0, 1);
1238 	BUG_ON(!cgroup_pidlist_destroy_wq);
1239 	return 0;
1240 }
1241 core_initcall(cgroup1_wq_init);
1242 
1243 static int __init cgroup_no_v1(char *str)
1244 {
1245 	struct cgroup_subsys *ss;
1246 	char *token;
1247 	int i;
1248 
1249 	while ((token = strsep(&str, ",")) != NULL) {
1250 		if (!*token)
1251 			continue;
1252 
1253 		if (!strcmp(token, "all")) {
1254 			cgroup_no_v1_mask = U16_MAX;
1255 			continue;
1256 		}
1257 
1258 		if (!strcmp(token, "named")) {
1259 			cgroup_no_v1_named = true;
1260 			continue;
1261 		}
1262 
1263 		for_each_subsys(ss, i) {
1264 			if (strcmp(token, ss->name) &&
1265 			    strcmp(token, ss->legacy_name))
1266 				continue;
1267 
1268 			cgroup_no_v1_mask |= 1 << i;
1269 		}
1270 	}
1271 	return 1;
1272 }
1273 __setup("cgroup_no_v1=", cgroup_no_v1);
1274