1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 /* 22 * pidlists linger the following amount before being destroyed. The goal 23 * is avoiding frequent destruction in the middle of consecutive read calls 24 * Expiring in the middle is a performance problem not a correctness one. 25 * 1 sec should be enough. 26 */ 27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 28 29 /* Controllers blocked by the commandline in v1 */ 30 static u16 cgroup_no_v1_mask; 31 32 /* disable named v1 mounts */ 33 static bool cgroup_no_v1_named; 34 35 /* 36 * pidlist destructions need to be flushed on cgroup destruction. Use a 37 * separate workqueue as flush domain. 38 */ 39 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 40 41 /* protects cgroup_subsys->release_agent_path */ 42 static DEFINE_SPINLOCK(release_agent_path_lock); 43 44 bool cgroup1_ssid_disabled(int ssid) 45 { 46 return cgroup_no_v1_mask & (1 << ssid); 47 } 48 49 /** 50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 51 * @from: attach to all cgroups of a given task 52 * @tsk: the task to be attached 53 * 54 * Return: %0 on success or a negative errno code on failure 55 */ 56 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 57 { 58 struct cgroup_root *root; 59 int retval = 0; 60 61 mutex_lock(&cgroup_mutex); 62 percpu_down_write(&cgroup_threadgroup_rwsem); 63 for_each_root(root) { 64 struct cgroup *from_cgrp; 65 66 if (root == &cgrp_dfl_root) 67 continue; 68 69 spin_lock_irq(&css_set_lock); 70 from_cgrp = task_cgroup_from_root(from, root); 71 spin_unlock_irq(&css_set_lock); 72 73 retval = cgroup_attach_task(from_cgrp, tsk, false); 74 if (retval) 75 break; 76 } 77 percpu_up_write(&cgroup_threadgroup_rwsem); 78 mutex_unlock(&cgroup_mutex); 79 80 return retval; 81 } 82 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 83 84 /** 85 * cgroup_transfer_tasks - move tasks from one cgroup to another 86 * @to: cgroup to which the tasks will be moved 87 * @from: cgroup in which the tasks currently reside 88 * 89 * Locking rules between cgroup_post_fork() and the migration path 90 * guarantee that, if a task is forking while being migrated, the new child 91 * is guaranteed to be either visible in the source cgroup after the 92 * parent's migration is complete or put into the target cgroup. No task 93 * can slip out of migration through forking. 94 * 95 * Return: %0 on success or a negative errno code on failure 96 */ 97 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 98 { 99 DEFINE_CGROUP_MGCTX(mgctx); 100 struct cgrp_cset_link *link; 101 struct css_task_iter it; 102 struct task_struct *task; 103 int ret; 104 105 if (cgroup_on_dfl(to)) 106 return -EINVAL; 107 108 ret = cgroup_migrate_vet_dst(to); 109 if (ret) 110 return ret; 111 112 mutex_lock(&cgroup_mutex); 113 114 percpu_down_write(&cgroup_threadgroup_rwsem); 115 116 /* all tasks in @from are being moved, all csets are source */ 117 spin_lock_irq(&css_set_lock); 118 list_for_each_entry(link, &from->cset_links, cset_link) 119 cgroup_migrate_add_src(link->cset, to, &mgctx); 120 spin_unlock_irq(&css_set_lock); 121 122 ret = cgroup_migrate_prepare_dst(&mgctx); 123 if (ret) 124 goto out_err; 125 126 /* 127 * Migrate tasks one-by-one until @from is empty. This fails iff 128 * ->can_attach() fails. 129 */ 130 do { 131 css_task_iter_start(&from->self, 0, &it); 132 133 do { 134 task = css_task_iter_next(&it); 135 } while (task && (task->flags & PF_EXITING)); 136 137 if (task) 138 get_task_struct(task); 139 css_task_iter_end(&it); 140 141 if (task) { 142 ret = cgroup_migrate(task, false, &mgctx); 143 if (!ret) 144 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 145 put_task_struct(task); 146 } 147 } while (task && !ret); 148 out_err: 149 cgroup_migrate_finish(&mgctx); 150 percpu_up_write(&cgroup_threadgroup_rwsem); 151 mutex_unlock(&cgroup_mutex); 152 return ret; 153 } 154 155 /* 156 * Stuff for reading the 'tasks'/'procs' files. 157 * 158 * Reading this file can return large amounts of data if a cgroup has 159 * *lots* of attached tasks. So it may need several calls to read(), 160 * but we cannot guarantee that the information we produce is correct 161 * unless we produce it entirely atomically. 162 * 163 */ 164 165 /* which pidlist file are we talking about? */ 166 enum cgroup_filetype { 167 CGROUP_FILE_PROCS, 168 CGROUP_FILE_TASKS, 169 }; 170 171 /* 172 * A pidlist is a list of pids that virtually represents the contents of one 173 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 174 * a pair (one each for procs, tasks) for each pid namespace that's relevant 175 * to the cgroup. 176 */ 177 struct cgroup_pidlist { 178 /* 179 * used to find which pidlist is wanted. doesn't change as long as 180 * this particular list stays in the list. 181 */ 182 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 183 /* array of xids */ 184 pid_t *list; 185 /* how many elements the above list has */ 186 int length; 187 /* each of these stored in a list by its cgroup */ 188 struct list_head links; 189 /* pointer to the cgroup we belong to, for list removal purposes */ 190 struct cgroup *owner; 191 /* for delayed destruction */ 192 struct delayed_work destroy_dwork; 193 }; 194 195 /* 196 * Used to destroy all pidlists lingering waiting for destroy timer. None 197 * should be left afterwards. 198 */ 199 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 200 { 201 struct cgroup_pidlist *l, *tmp_l; 202 203 mutex_lock(&cgrp->pidlist_mutex); 204 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 205 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 206 mutex_unlock(&cgrp->pidlist_mutex); 207 208 flush_workqueue(cgroup_pidlist_destroy_wq); 209 BUG_ON(!list_empty(&cgrp->pidlists)); 210 } 211 212 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 213 { 214 struct delayed_work *dwork = to_delayed_work(work); 215 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 216 destroy_dwork); 217 struct cgroup_pidlist *tofree = NULL; 218 219 mutex_lock(&l->owner->pidlist_mutex); 220 221 /* 222 * Destroy iff we didn't get queued again. The state won't change 223 * as destroy_dwork can only be queued while locked. 224 */ 225 if (!delayed_work_pending(dwork)) { 226 list_del(&l->links); 227 kvfree(l->list); 228 put_pid_ns(l->key.ns); 229 tofree = l; 230 } 231 232 mutex_unlock(&l->owner->pidlist_mutex); 233 kfree(tofree); 234 } 235 236 /* 237 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 238 * Returns the number of unique elements. 239 */ 240 static int pidlist_uniq(pid_t *list, int length) 241 { 242 int src, dest = 1; 243 244 /* 245 * we presume the 0th element is unique, so i starts at 1. trivial 246 * edge cases first; no work needs to be done for either 247 */ 248 if (length == 0 || length == 1) 249 return length; 250 /* src and dest walk down the list; dest counts unique elements */ 251 for (src = 1; src < length; src++) { 252 /* find next unique element */ 253 while (list[src] == list[src-1]) { 254 src++; 255 if (src == length) 256 goto after; 257 } 258 /* dest always points to where the next unique element goes */ 259 list[dest] = list[src]; 260 dest++; 261 } 262 after: 263 return dest; 264 } 265 266 /* 267 * The two pid files - task and cgroup.procs - guaranteed that the result 268 * is sorted, which forced this whole pidlist fiasco. As pid order is 269 * different per namespace, each namespace needs differently sorted list, 270 * making it impossible to use, for example, single rbtree of member tasks 271 * sorted by task pointer. As pidlists can be fairly large, allocating one 272 * per open file is dangerous, so cgroup had to implement shared pool of 273 * pidlists keyed by cgroup and namespace. 274 */ 275 static int cmppid(const void *a, const void *b) 276 { 277 return *(pid_t *)a - *(pid_t *)b; 278 } 279 280 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 281 enum cgroup_filetype type) 282 { 283 struct cgroup_pidlist *l; 284 /* don't need task_nsproxy() if we're looking at ourself */ 285 struct pid_namespace *ns = task_active_pid_ns(current); 286 287 lockdep_assert_held(&cgrp->pidlist_mutex); 288 289 list_for_each_entry(l, &cgrp->pidlists, links) 290 if (l->key.type == type && l->key.ns == ns) 291 return l; 292 return NULL; 293 } 294 295 /* 296 * find the appropriate pidlist for our purpose (given procs vs tasks) 297 * returns with the lock on that pidlist already held, and takes care 298 * of the use count, or returns NULL with no locks held if we're out of 299 * memory. 300 */ 301 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 302 enum cgroup_filetype type) 303 { 304 struct cgroup_pidlist *l; 305 306 lockdep_assert_held(&cgrp->pidlist_mutex); 307 308 l = cgroup_pidlist_find(cgrp, type); 309 if (l) 310 return l; 311 312 /* entry not found; create a new one */ 313 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 314 if (!l) 315 return l; 316 317 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 318 l->key.type = type; 319 /* don't need task_nsproxy() if we're looking at ourself */ 320 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 321 l->owner = cgrp; 322 list_add(&l->links, &cgrp->pidlists); 323 return l; 324 } 325 326 /* 327 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 328 */ 329 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 330 struct cgroup_pidlist **lp) 331 { 332 pid_t *array; 333 int length; 334 int pid, n = 0; /* used for populating the array */ 335 struct css_task_iter it; 336 struct task_struct *tsk; 337 struct cgroup_pidlist *l; 338 339 lockdep_assert_held(&cgrp->pidlist_mutex); 340 341 /* 342 * If cgroup gets more users after we read count, we won't have 343 * enough space - tough. This race is indistinguishable to the 344 * caller from the case that the additional cgroup users didn't 345 * show up until sometime later on. 346 */ 347 length = cgroup_task_count(cgrp); 348 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 349 if (!array) 350 return -ENOMEM; 351 /* now, populate the array */ 352 css_task_iter_start(&cgrp->self, 0, &it); 353 while ((tsk = css_task_iter_next(&it))) { 354 if (unlikely(n == length)) 355 break; 356 /* get tgid or pid for procs or tasks file respectively */ 357 if (type == CGROUP_FILE_PROCS) 358 pid = task_tgid_vnr(tsk); 359 else 360 pid = task_pid_vnr(tsk); 361 if (pid > 0) /* make sure to only use valid results */ 362 array[n++] = pid; 363 } 364 css_task_iter_end(&it); 365 length = n; 366 /* now sort & (if procs) strip out duplicates */ 367 sort(array, length, sizeof(pid_t), cmppid, NULL); 368 if (type == CGROUP_FILE_PROCS) 369 length = pidlist_uniq(array, length); 370 371 l = cgroup_pidlist_find_create(cgrp, type); 372 if (!l) { 373 kvfree(array); 374 return -ENOMEM; 375 } 376 377 /* store array, freeing old if necessary */ 378 kvfree(l->list); 379 l->list = array; 380 l->length = length; 381 *lp = l; 382 return 0; 383 } 384 385 /* 386 * seq_file methods for the tasks/procs files. The seq_file position is the 387 * next pid to display; the seq_file iterator is a pointer to the pid 388 * in the cgroup->l->list array. 389 */ 390 391 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 392 { 393 /* 394 * Initially we receive a position value that corresponds to 395 * one more than the last pid shown (or 0 on the first call or 396 * after a seek to the start). Use a binary-search to find the 397 * next pid to display, if any 398 */ 399 struct kernfs_open_file *of = s->private; 400 struct cgroup *cgrp = seq_css(s)->cgroup; 401 struct cgroup_pidlist *l; 402 enum cgroup_filetype type = seq_cft(s)->private; 403 int index = 0, pid = *pos; 404 int *iter, ret; 405 406 mutex_lock(&cgrp->pidlist_mutex); 407 408 /* 409 * !NULL @of->priv indicates that this isn't the first start() 410 * after open. If the matching pidlist is around, we can use that. 411 * Look for it. Note that @of->priv can't be used directly. It 412 * could already have been destroyed. 413 */ 414 if (of->priv) 415 of->priv = cgroup_pidlist_find(cgrp, type); 416 417 /* 418 * Either this is the first start() after open or the matching 419 * pidlist has been destroyed inbetween. Create a new one. 420 */ 421 if (!of->priv) { 422 ret = pidlist_array_load(cgrp, type, 423 (struct cgroup_pidlist **)&of->priv); 424 if (ret) 425 return ERR_PTR(ret); 426 } 427 l = of->priv; 428 429 if (pid) { 430 int end = l->length; 431 432 while (index < end) { 433 int mid = (index + end) / 2; 434 if (l->list[mid] == pid) { 435 index = mid; 436 break; 437 } else if (l->list[mid] <= pid) 438 index = mid + 1; 439 else 440 end = mid; 441 } 442 } 443 /* If we're off the end of the array, we're done */ 444 if (index >= l->length) 445 return NULL; 446 /* Update the abstract position to be the actual pid that we found */ 447 iter = l->list + index; 448 *pos = *iter; 449 return iter; 450 } 451 452 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 453 { 454 struct kernfs_open_file *of = s->private; 455 struct cgroup_pidlist *l = of->priv; 456 457 if (l) 458 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 459 CGROUP_PIDLIST_DESTROY_DELAY); 460 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 461 } 462 463 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 464 { 465 struct kernfs_open_file *of = s->private; 466 struct cgroup_pidlist *l = of->priv; 467 pid_t *p = v; 468 pid_t *end = l->list + l->length; 469 /* 470 * Advance to the next pid in the array. If this goes off the 471 * end, we're done 472 */ 473 p++; 474 if (p >= end) { 475 (*pos)++; 476 return NULL; 477 } else { 478 *pos = *p; 479 return p; 480 } 481 } 482 483 static int cgroup_pidlist_show(struct seq_file *s, void *v) 484 { 485 seq_printf(s, "%d\n", *(int *)v); 486 487 return 0; 488 } 489 490 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 491 char *buf, size_t nbytes, loff_t off, 492 bool threadgroup) 493 { 494 struct cgroup *cgrp; 495 struct task_struct *task; 496 const struct cred *cred, *tcred; 497 ssize_t ret; 498 bool locked; 499 500 cgrp = cgroup_kn_lock_live(of->kn, false); 501 if (!cgrp) 502 return -ENODEV; 503 504 task = cgroup_procs_write_start(buf, threadgroup, &locked); 505 ret = PTR_ERR_OR_ZERO(task); 506 if (ret) 507 goto out_unlock; 508 509 /* 510 * Even if we're attaching all tasks in the thread group, we only 511 * need to check permissions on one of them. 512 */ 513 cred = current_cred(); 514 tcred = get_task_cred(task); 515 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 516 !uid_eq(cred->euid, tcred->uid) && 517 !uid_eq(cred->euid, tcred->suid)) 518 ret = -EACCES; 519 put_cred(tcred); 520 if (ret) 521 goto out_finish; 522 523 ret = cgroup_attach_task(cgrp, task, threadgroup); 524 525 out_finish: 526 cgroup_procs_write_finish(task, locked); 527 out_unlock: 528 cgroup_kn_unlock(of->kn); 529 530 return ret ?: nbytes; 531 } 532 533 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 534 char *buf, size_t nbytes, loff_t off) 535 { 536 return __cgroup1_procs_write(of, buf, nbytes, off, true); 537 } 538 539 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 540 char *buf, size_t nbytes, loff_t off) 541 { 542 return __cgroup1_procs_write(of, buf, nbytes, off, false); 543 } 544 545 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 546 char *buf, size_t nbytes, loff_t off) 547 { 548 struct cgroup *cgrp; 549 550 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 551 552 cgrp = cgroup_kn_lock_live(of->kn, false); 553 if (!cgrp) 554 return -ENODEV; 555 spin_lock(&release_agent_path_lock); 556 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 557 sizeof(cgrp->root->release_agent_path)); 558 spin_unlock(&release_agent_path_lock); 559 cgroup_kn_unlock(of->kn); 560 return nbytes; 561 } 562 563 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 564 { 565 struct cgroup *cgrp = seq_css(seq)->cgroup; 566 567 spin_lock(&release_agent_path_lock); 568 seq_puts(seq, cgrp->root->release_agent_path); 569 spin_unlock(&release_agent_path_lock); 570 seq_putc(seq, '\n'); 571 return 0; 572 } 573 574 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 575 { 576 seq_puts(seq, "0\n"); 577 return 0; 578 } 579 580 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 581 struct cftype *cft) 582 { 583 return notify_on_release(css->cgroup); 584 } 585 586 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 587 struct cftype *cft, u64 val) 588 { 589 if (val) 590 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 591 else 592 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 593 return 0; 594 } 595 596 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 597 struct cftype *cft) 598 { 599 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 600 } 601 602 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 603 struct cftype *cft, u64 val) 604 { 605 if (val) 606 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 607 else 608 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 609 return 0; 610 } 611 612 /* cgroup core interface files for the legacy hierarchies */ 613 struct cftype cgroup1_base_files[] = { 614 { 615 .name = "cgroup.procs", 616 .seq_start = cgroup_pidlist_start, 617 .seq_next = cgroup_pidlist_next, 618 .seq_stop = cgroup_pidlist_stop, 619 .seq_show = cgroup_pidlist_show, 620 .private = CGROUP_FILE_PROCS, 621 .write = cgroup1_procs_write, 622 }, 623 { 624 .name = "cgroup.clone_children", 625 .read_u64 = cgroup_clone_children_read, 626 .write_u64 = cgroup_clone_children_write, 627 }, 628 { 629 .name = "cgroup.sane_behavior", 630 .flags = CFTYPE_ONLY_ON_ROOT, 631 .seq_show = cgroup_sane_behavior_show, 632 }, 633 { 634 .name = "tasks", 635 .seq_start = cgroup_pidlist_start, 636 .seq_next = cgroup_pidlist_next, 637 .seq_stop = cgroup_pidlist_stop, 638 .seq_show = cgroup_pidlist_show, 639 .private = CGROUP_FILE_TASKS, 640 .write = cgroup1_tasks_write, 641 }, 642 { 643 .name = "notify_on_release", 644 .read_u64 = cgroup_read_notify_on_release, 645 .write_u64 = cgroup_write_notify_on_release, 646 }, 647 { 648 .name = "release_agent", 649 .flags = CFTYPE_ONLY_ON_ROOT, 650 .seq_show = cgroup_release_agent_show, 651 .write = cgroup_release_agent_write, 652 .max_write_len = PATH_MAX - 1, 653 }, 654 { } /* terminate */ 655 }; 656 657 /* Display information about each subsystem and each hierarchy */ 658 int proc_cgroupstats_show(struct seq_file *m, void *v) 659 { 660 struct cgroup_subsys *ss; 661 int i; 662 663 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 664 /* 665 * ideally we don't want subsystems moving around while we do this. 666 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 667 * subsys/hierarchy state. 668 */ 669 mutex_lock(&cgroup_mutex); 670 671 for_each_subsys(ss, i) 672 seq_printf(m, "%s\t%d\t%d\t%d\n", 673 ss->legacy_name, ss->root->hierarchy_id, 674 atomic_read(&ss->root->nr_cgrps), 675 cgroup_ssid_enabled(i)); 676 677 mutex_unlock(&cgroup_mutex); 678 return 0; 679 } 680 681 /** 682 * cgroupstats_build - build and fill cgroupstats 683 * @stats: cgroupstats to fill information into 684 * @dentry: A dentry entry belonging to the cgroup for which stats have 685 * been requested. 686 * 687 * Build and fill cgroupstats so that taskstats can export it to user 688 * space. 689 * 690 * Return: %0 on success or a negative errno code on failure 691 */ 692 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 693 { 694 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 695 struct cgroup *cgrp; 696 struct css_task_iter it; 697 struct task_struct *tsk; 698 699 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 700 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 701 kernfs_type(kn) != KERNFS_DIR) 702 return -EINVAL; 703 704 mutex_lock(&cgroup_mutex); 705 706 /* 707 * We aren't being called from kernfs and there's no guarantee on 708 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 709 * @kn->priv is RCU safe. Let's do the RCU dancing. 710 */ 711 rcu_read_lock(); 712 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 713 if (!cgrp || cgroup_is_dead(cgrp)) { 714 rcu_read_unlock(); 715 mutex_unlock(&cgroup_mutex); 716 return -ENOENT; 717 } 718 rcu_read_unlock(); 719 720 css_task_iter_start(&cgrp->self, 0, &it); 721 while ((tsk = css_task_iter_next(&it))) { 722 switch (READ_ONCE(tsk->__state)) { 723 case TASK_RUNNING: 724 stats->nr_running++; 725 break; 726 case TASK_INTERRUPTIBLE: 727 stats->nr_sleeping++; 728 break; 729 case TASK_UNINTERRUPTIBLE: 730 stats->nr_uninterruptible++; 731 break; 732 case TASK_STOPPED: 733 stats->nr_stopped++; 734 break; 735 default: 736 if (tsk->in_iowait) 737 stats->nr_io_wait++; 738 break; 739 } 740 } 741 css_task_iter_end(&it); 742 743 mutex_unlock(&cgroup_mutex); 744 return 0; 745 } 746 747 void cgroup1_check_for_release(struct cgroup *cgrp) 748 { 749 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 750 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 751 schedule_work(&cgrp->release_agent_work); 752 } 753 754 /* 755 * Notify userspace when a cgroup is released, by running the 756 * configured release agent with the name of the cgroup (path 757 * relative to the root of cgroup file system) as the argument. 758 * 759 * Most likely, this user command will try to rmdir this cgroup. 760 * 761 * This races with the possibility that some other task will be 762 * attached to this cgroup before it is removed, or that some other 763 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 764 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 765 * unused, and this cgroup will be reprieved from its death sentence, 766 * to continue to serve a useful existence. Next time it's released, 767 * we will get notified again, if it still has 'notify_on_release' set. 768 * 769 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 770 * means only wait until the task is successfully execve()'d. The 771 * separate release agent task is forked by call_usermodehelper(), 772 * then control in this thread returns here, without waiting for the 773 * release agent task. We don't bother to wait because the caller of 774 * this routine has no use for the exit status of the release agent 775 * task, so no sense holding our caller up for that. 776 */ 777 void cgroup1_release_agent(struct work_struct *work) 778 { 779 struct cgroup *cgrp = 780 container_of(work, struct cgroup, release_agent_work); 781 char *pathbuf, *agentbuf; 782 char *argv[3], *envp[3]; 783 int ret; 784 785 /* snoop agent path and exit early if empty */ 786 if (!cgrp->root->release_agent_path[0]) 787 return; 788 789 /* prepare argument buffers */ 790 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 791 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); 792 if (!pathbuf || !agentbuf) 793 goto out_free; 794 795 spin_lock(&release_agent_path_lock); 796 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); 797 spin_unlock(&release_agent_path_lock); 798 if (!agentbuf[0]) 799 goto out_free; 800 801 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 802 if (ret < 0 || ret >= PATH_MAX) 803 goto out_free; 804 805 argv[0] = agentbuf; 806 argv[1] = pathbuf; 807 argv[2] = NULL; 808 809 /* minimal command environment */ 810 envp[0] = "HOME=/"; 811 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 812 envp[2] = NULL; 813 814 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 815 out_free: 816 kfree(agentbuf); 817 kfree(pathbuf); 818 } 819 820 /* 821 * cgroup_rename - Only allow simple rename of directories in place. 822 */ 823 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 824 const char *new_name_str) 825 { 826 struct cgroup *cgrp = kn->priv; 827 int ret; 828 829 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 830 if (strchr(new_name_str, '\n')) 831 return -EINVAL; 832 833 if (kernfs_type(kn) != KERNFS_DIR) 834 return -ENOTDIR; 835 if (kn->parent != new_parent) 836 return -EIO; 837 838 /* 839 * We're gonna grab cgroup_mutex which nests outside kernfs 840 * active_ref. kernfs_rename() doesn't require active_ref 841 * protection. Break them before grabbing cgroup_mutex. 842 */ 843 kernfs_break_active_protection(new_parent); 844 kernfs_break_active_protection(kn); 845 846 mutex_lock(&cgroup_mutex); 847 848 ret = kernfs_rename(kn, new_parent, new_name_str); 849 if (!ret) 850 TRACE_CGROUP_PATH(rename, cgrp); 851 852 mutex_unlock(&cgroup_mutex); 853 854 kernfs_unbreak_active_protection(kn); 855 kernfs_unbreak_active_protection(new_parent); 856 return ret; 857 } 858 859 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 860 { 861 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 862 struct cgroup_subsys *ss; 863 int ssid; 864 865 for_each_subsys(ss, ssid) 866 if (root->subsys_mask & (1 << ssid)) 867 seq_show_option(seq, ss->legacy_name, NULL); 868 if (root->flags & CGRP_ROOT_NOPREFIX) 869 seq_puts(seq, ",noprefix"); 870 if (root->flags & CGRP_ROOT_XATTR) 871 seq_puts(seq, ",xattr"); 872 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 873 seq_puts(seq, ",cpuset_v2_mode"); 874 875 spin_lock(&release_agent_path_lock); 876 if (strlen(root->release_agent_path)) 877 seq_show_option(seq, "release_agent", 878 root->release_agent_path); 879 spin_unlock(&release_agent_path_lock); 880 881 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 882 seq_puts(seq, ",clone_children"); 883 if (strlen(root->name)) 884 seq_show_option(seq, "name", root->name); 885 return 0; 886 } 887 888 enum cgroup1_param { 889 Opt_all, 890 Opt_clone_children, 891 Opt_cpuset_v2_mode, 892 Opt_name, 893 Opt_none, 894 Opt_noprefix, 895 Opt_release_agent, 896 Opt_xattr, 897 }; 898 899 const struct fs_parameter_spec cgroup1_fs_parameters[] = { 900 fsparam_flag ("all", Opt_all), 901 fsparam_flag ("clone_children", Opt_clone_children), 902 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 903 fsparam_string("name", Opt_name), 904 fsparam_flag ("none", Opt_none), 905 fsparam_flag ("noprefix", Opt_noprefix), 906 fsparam_string("release_agent", Opt_release_agent), 907 fsparam_flag ("xattr", Opt_xattr), 908 {} 909 }; 910 911 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 912 { 913 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 914 struct cgroup_subsys *ss; 915 struct fs_parse_result result; 916 int opt, i; 917 918 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 919 if (opt == -ENOPARAM) { 920 int ret; 921 922 ret = vfs_parse_fs_param_source(fc, param); 923 if (ret != -ENOPARAM) 924 return ret; 925 for_each_subsys(ss, i) { 926 if (strcmp(param->key, ss->legacy_name)) 927 continue; 928 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) 929 return invalfc(fc, "Disabled controller '%s'", 930 param->key); 931 ctx->subsys_mask |= (1 << i); 932 return 0; 933 } 934 return invalfc(fc, "Unknown subsys name '%s'", param->key); 935 } 936 if (opt < 0) 937 return opt; 938 939 switch (opt) { 940 case Opt_none: 941 /* Explicitly have no subsystems */ 942 ctx->none = true; 943 break; 944 case Opt_all: 945 ctx->all_ss = true; 946 break; 947 case Opt_noprefix: 948 ctx->flags |= CGRP_ROOT_NOPREFIX; 949 break; 950 case Opt_clone_children: 951 ctx->cpuset_clone_children = true; 952 break; 953 case Opt_cpuset_v2_mode: 954 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 955 break; 956 case Opt_xattr: 957 ctx->flags |= CGRP_ROOT_XATTR; 958 break; 959 case Opt_release_agent: 960 /* Specifying two release agents is forbidden */ 961 if (ctx->release_agent) 962 return invalfc(fc, "release_agent respecified"); 963 ctx->release_agent = param->string; 964 param->string = NULL; 965 break; 966 case Opt_name: 967 /* blocked by boot param? */ 968 if (cgroup_no_v1_named) 969 return -ENOENT; 970 /* Can't specify an empty name */ 971 if (!param->size) 972 return invalfc(fc, "Empty name"); 973 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 974 return invalfc(fc, "Name too long"); 975 /* Must match [\w.-]+ */ 976 for (i = 0; i < param->size; i++) { 977 char c = param->string[i]; 978 if (isalnum(c)) 979 continue; 980 if ((c == '.') || (c == '-') || (c == '_')) 981 continue; 982 return invalfc(fc, "Invalid name"); 983 } 984 /* Specifying two names is forbidden */ 985 if (ctx->name) 986 return invalfc(fc, "name respecified"); 987 ctx->name = param->string; 988 param->string = NULL; 989 break; 990 } 991 return 0; 992 } 993 994 static int check_cgroupfs_options(struct fs_context *fc) 995 { 996 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 997 u16 mask = U16_MAX; 998 u16 enabled = 0; 999 struct cgroup_subsys *ss; 1000 int i; 1001 1002 #ifdef CONFIG_CPUSETS 1003 mask = ~((u16)1 << cpuset_cgrp_id); 1004 #endif 1005 for_each_subsys(ss, i) 1006 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 1007 enabled |= 1 << i; 1008 1009 ctx->subsys_mask &= enabled; 1010 1011 /* 1012 * In absence of 'none', 'name=' and subsystem name options, 1013 * let's default to 'all'. 1014 */ 1015 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1016 ctx->all_ss = true; 1017 1018 if (ctx->all_ss) { 1019 /* Mutually exclusive option 'all' + subsystem name */ 1020 if (ctx->subsys_mask) 1021 return invalfc(fc, "subsys name conflicts with all"); 1022 /* 'all' => select all the subsystems */ 1023 ctx->subsys_mask = enabled; 1024 } 1025 1026 /* 1027 * We either have to specify by name or by subsystems. (So all 1028 * empty hierarchies must have a name). 1029 */ 1030 if (!ctx->subsys_mask && !ctx->name) 1031 return invalfc(fc, "Need name or subsystem set"); 1032 1033 /* 1034 * Option noprefix was introduced just for backward compatibility 1035 * with the old cpuset, so we allow noprefix only if mounting just 1036 * the cpuset subsystem. 1037 */ 1038 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1039 return invalfc(fc, "noprefix used incorrectly"); 1040 1041 /* Can't specify "none" and some subsystems */ 1042 if (ctx->subsys_mask && ctx->none) 1043 return invalfc(fc, "none used incorrectly"); 1044 1045 return 0; 1046 } 1047 1048 int cgroup1_reconfigure(struct fs_context *fc) 1049 { 1050 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1051 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1052 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1053 int ret = 0; 1054 u16 added_mask, removed_mask; 1055 1056 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1057 1058 /* See what subsystems are wanted */ 1059 ret = check_cgroupfs_options(fc); 1060 if (ret) 1061 goto out_unlock; 1062 1063 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1064 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1065 task_tgid_nr(current), current->comm); 1066 1067 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1068 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1069 1070 /* Don't allow flags or name to change at remount */ 1071 if ((ctx->flags ^ root->flags) || 1072 (ctx->name && strcmp(ctx->name, root->name))) { 1073 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1074 ctx->flags, ctx->name ?: "", root->flags, root->name); 1075 ret = -EINVAL; 1076 goto out_unlock; 1077 } 1078 1079 /* remounting is not allowed for populated hierarchies */ 1080 if (!list_empty(&root->cgrp.self.children)) { 1081 ret = -EBUSY; 1082 goto out_unlock; 1083 } 1084 1085 ret = rebind_subsystems(root, added_mask); 1086 if (ret) 1087 goto out_unlock; 1088 1089 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1090 1091 if (ctx->release_agent) { 1092 spin_lock(&release_agent_path_lock); 1093 strcpy(root->release_agent_path, ctx->release_agent); 1094 spin_unlock(&release_agent_path_lock); 1095 } 1096 1097 trace_cgroup_remount(root); 1098 1099 out_unlock: 1100 mutex_unlock(&cgroup_mutex); 1101 return ret; 1102 } 1103 1104 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1105 .rename = cgroup1_rename, 1106 .show_options = cgroup1_show_options, 1107 .mkdir = cgroup_mkdir, 1108 .rmdir = cgroup_rmdir, 1109 .show_path = cgroup_show_path, 1110 }; 1111 1112 /* 1113 * The guts of cgroup1 mount - find or create cgroup_root to use. 1114 * Called with cgroup_mutex held; returns 0 on success, -E... on 1115 * error and positive - in case when the candidate is busy dying. 1116 * On success it stashes a reference to cgroup_root into given 1117 * cgroup_fs_context; that reference is *NOT* counting towards the 1118 * cgroup_root refcount. 1119 */ 1120 static int cgroup1_root_to_use(struct fs_context *fc) 1121 { 1122 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1123 struct cgroup_root *root; 1124 struct cgroup_subsys *ss; 1125 int i, ret; 1126 1127 /* First find the desired set of subsystems */ 1128 ret = check_cgroupfs_options(fc); 1129 if (ret) 1130 return ret; 1131 1132 /* 1133 * Destruction of cgroup root is asynchronous, so subsystems may 1134 * still be dying after the previous unmount. Let's drain the 1135 * dying subsystems. We just need to ensure that the ones 1136 * unmounted previously finish dying and don't care about new ones 1137 * starting. Testing ref liveliness is good enough. 1138 */ 1139 for_each_subsys(ss, i) { 1140 if (!(ctx->subsys_mask & (1 << i)) || 1141 ss->root == &cgrp_dfl_root) 1142 continue; 1143 1144 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1145 return 1; /* restart */ 1146 cgroup_put(&ss->root->cgrp); 1147 } 1148 1149 for_each_root(root) { 1150 bool name_match = false; 1151 1152 if (root == &cgrp_dfl_root) 1153 continue; 1154 1155 /* 1156 * If we asked for a name then it must match. Also, if 1157 * name matches but sybsys_mask doesn't, we should fail. 1158 * Remember whether name matched. 1159 */ 1160 if (ctx->name) { 1161 if (strcmp(ctx->name, root->name)) 1162 continue; 1163 name_match = true; 1164 } 1165 1166 /* 1167 * If we asked for subsystems (or explicitly for no 1168 * subsystems) then they must match. 1169 */ 1170 if ((ctx->subsys_mask || ctx->none) && 1171 (ctx->subsys_mask != root->subsys_mask)) { 1172 if (!name_match) 1173 continue; 1174 return -EBUSY; 1175 } 1176 1177 if (root->flags ^ ctx->flags) 1178 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1179 1180 ctx->root = root; 1181 return 0; 1182 } 1183 1184 /* 1185 * No such thing, create a new one. name= matching without subsys 1186 * specification is allowed for already existing hierarchies but we 1187 * can't create new one without subsys specification. 1188 */ 1189 if (!ctx->subsys_mask && !ctx->none) 1190 return invalfc(fc, "No subsys list or none specified"); 1191 1192 /* Hierarchies may only be created in the initial cgroup namespace. */ 1193 if (ctx->ns != &init_cgroup_ns) 1194 return -EPERM; 1195 1196 root = kzalloc(sizeof(*root), GFP_KERNEL); 1197 if (!root) 1198 return -ENOMEM; 1199 1200 ctx->root = root; 1201 init_cgroup_root(ctx); 1202 1203 ret = cgroup_setup_root(root, ctx->subsys_mask); 1204 if (ret) 1205 cgroup_free_root(root); 1206 return ret; 1207 } 1208 1209 int cgroup1_get_tree(struct fs_context *fc) 1210 { 1211 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1212 int ret; 1213 1214 /* Check if the caller has permission to mount. */ 1215 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1216 return -EPERM; 1217 1218 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1219 1220 ret = cgroup1_root_to_use(fc); 1221 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1222 ret = 1; /* restart */ 1223 1224 mutex_unlock(&cgroup_mutex); 1225 1226 if (!ret) 1227 ret = cgroup_do_get_tree(fc); 1228 1229 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1230 fc_drop_locked(fc); 1231 ret = 1; 1232 } 1233 1234 if (unlikely(ret > 0)) { 1235 msleep(10); 1236 return restart_syscall(); 1237 } 1238 return ret; 1239 } 1240 1241 static int __init cgroup1_wq_init(void) 1242 { 1243 /* 1244 * Used to destroy pidlists and separate to serve as flush domain. 1245 * Cap @max_active to 1 too. 1246 */ 1247 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1248 0, 1); 1249 BUG_ON(!cgroup_pidlist_destroy_wq); 1250 return 0; 1251 } 1252 core_initcall(cgroup1_wq_init); 1253 1254 static int __init cgroup_no_v1(char *str) 1255 { 1256 struct cgroup_subsys *ss; 1257 char *token; 1258 int i; 1259 1260 while ((token = strsep(&str, ",")) != NULL) { 1261 if (!*token) 1262 continue; 1263 1264 if (!strcmp(token, "all")) { 1265 cgroup_no_v1_mask = U16_MAX; 1266 continue; 1267 } 1268 1269 if (!strcmp(token, "named")) { 1270 cgroup_no_v1_named = true; 1271 continue; 1272 } 1273 1274 for_each_subsys(ss, i) { 1275 if (strcmp(token, ss->name) && 1276 strcmp(token, ss->legacy_name)) 1277 continue; 1278 1279 cgroup_no_v1_mask |= 1 << i; 1280 } 1281 } 1282 return 1; 1283 } 1284 __setup("cgroup_no_v1=", cgroup_no_v1); 1285