xref: /openbmc/linux/kernel/cgroup/cgroup-v1.c (revision 2022ca0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18 
19 #include <trace/events/cgroup.h>
20 
21 #define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__)
22 
23 /*
24  * pidlists linger the following amount before being destroyed.  The goal
25  * is avoiding frequent destruction in the middle of consecutive read calls
26  * Expiring in the middle is a performance problem not a correctness one.
27  * 1 sec should be enough.
28  */
29 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
30 
31 /* Controllers blocked by the commandline in v1 */
32 static u16 cgroup_no_v1_mask;
33 
34 /* disable named v1 mounts */
35 static bool cgroup_no_v1_named;
36 
37 /*
38  * pidlist destructions need to be flushed on cgroup destruction.  Use a
39  * separate workqueue as flush domain.
40  */
41 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
42 
43 /*
44  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
45  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
46  */
47 static DEFINE_SPINLOCK(release_agent_path_lock);
48 
49 bool cgroup1_ssid_disabled(int ssid)
50 {
51 	return cgroup_no_v1_mask & (1 << ssid);
52 }
53 
54 /**
55  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
56  * @from: attach to all cgroups of a given task
57  * @tsk: the task to be attached
58  */
59 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
60 {
61 	struct cgroup_root *root;
62 	int retval = 0;
63 
64 	mutex_lock(&cgroup_mutex);
65 	percpu_down_write(&cgroup_threadgroup_rwsem);
66 	for_each_root(root) {
67 		struct cgroup *from_cgrp;
68 
69 		if (root == &cgrp_dfl_root)
70 			continue;
71 
72 		spin_lock_irq(&css_set_lock);
73 		from_cgrp = task_cgroup_from_root(from, root);
74 		spin_unlock_irq(&css_set_lock);
75 
76 		retval = cgroup_attach_task(from_cgrp, tsk, false);
77 		if (retval)
78 			break;
79 	}
80 	percpu_up_write(&cgroup_threadgroup_rwsem);
81 	mutex_unlock(&cgroup_mutex);
82 
83 	return retval;
84 }
85 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
86 
87 /**
88  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
89  * @to: cgroup to which the tasks will be moved
90  * @from: cgroup in which the tasks currently reside
91  *
92  * Locking rules between cgroup_post_fork() and the migration path
93  * guarantee that, if a task is forking while being migrated, the new child
94  * is guaranteed to be either visible in the source cgroup after the
95  * parent's migration is complete or put into the target cgroup.  No task
96  * can slip out of migration through forking.
97  */
98 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
99 {
100 	DEFINE_CGROUP_MGCTX(mgctx);
101 	struct cgrp_cset_link *link;
102 	struct css_task_iter it;
103 	struct task_struct *task;
104 	int ret;
105 
106 	if (cgroup_on_dfl(to))
107 		return -EINVAL;
108 
109 	ret = cgroup_migrate_vet_dst(to);
110 	if (ret)
111 		return ret;
112 
113 	mutex_lock(&cgroup_mutex);
114 
115 	percpu_down_write(&cgroup_threadgroup_rwsem);
116 
117 	/* all tasks in @from are being moved, all csets are source */
118 	spin_lock_irq(&css_set_lock);
119 	list_for_each_entry(link, &from->cset_links, cset_link)
120 		cgroup_migrate_add_src(link->cset, to, &mgctx);
121 	spin_unlock_irq(&css_set_lock);
122 
123 	ret = cgroup_migrate_prepare_dst(&mgctx);
124 	if (ret)
125 		goto out_err;
126 
127 	/*
128 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
129 	 * ->can_attach() fails.
130 	 */
131 	do {
132 		css_task_iter_start(&from->self, 0, &it);
133 
134 		do {
135 			task = css_task_iter_next(&it);
136 		} while (task && (task->flags & PF_EXITING));
137 
138 		if (task)
139 			get_task_struct(task);
140 		css_task_iter_end(&it);
141 
142 		if (task) {
143 			ret = cgroup_migrate(task, false, &mgctx);
144 			if (!ret)
145 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
146 			put_task_struct(task);
147 		}
148 	} while (task && !ret);
149 out_err:
150 	cgroup_migrate_finish(&mgctx);
151 	percpu_up_write(&cgroup_threadgroup_rwsem);
152 	mutex_unlock(&cgroup_mutex);
153 	return ret;
154 }
155 
156 /*
157  * Stuff for reading the 'tasks'/'procs' files.
158  *
159  * Reading this file can return large amounts of data if a cgroup has
160  * *lots* of attached tasks. So it may need several calls to read(),
161  * but we cannot guarantee that the information we produce is correct
162  * unless we produce it entirely atomically.
163  *
164  */
165 
166 /* which pidlist file are we talking about? */
167 enum cgroup_filetype {
168 	CGROUP_FILE_PROCS,
169 	CGROUP_FILE_TASKS,
170 };
171 
172 /*
173  * A pidlist is a list of pids that virtually represents the contents of one
174  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
175  * a pair (one each for procs, tasks) for each pid namespace that's relevant
176  * to the cgroup.
177  */
178 struct cgroup_pidlist {
179 	/*
180 	 * used to find which pidlist is wanted. doesn't change as long as
181 	 * this particular list stays in the list.
182 	*/
183 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
184 	/* array of xids */
185 	pid_t *list;
186 	/* how many elements the above list has */
187 	int length;
188 	/* each of these stored in a list by its cgroup */
189 	struct list_head links;
190 	/* pointer to the cgroup we belong to, for list removal purposes */
191 	struct cgroup *owner;
192 	/* for delayed destruction */
193 	struct delayed_work destroy_dwork;
194 };
195 
196 /*
197  * Used to destroy all pidlists lingering waiting for destroy timer.  None
198  * should be left afterwards.
199  */
200 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
201 {
202 	struct cgroup_pidlist *l, *tmp_l;
203 
204 	mutex_lock(&cgrp->pidlist_mutex);
205 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
206 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
207 	mutex_unlock(&cgrp->pidlist_mutex);
208 
209 	flush_workqueue(cgroup_pidlist_destroy_wq);
210 	BUG_ON(!list_empty(&cgrp->pidlists));
211 }
212 
213 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
214 {
215 	struct delayed_work *dwork = to_delayed_work(work);
216 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
217 						destroy_dwork);
218 	struct cgroup_pidlist *tofree = NULL;
219 
220 	mutex_lock(&l->owner->pidlist_mutex);
221 
222 	/*
223 	 * Destroy iff we didn't get queued again.  The state won't change
224 	 * as destroy_dwork can only be queued while locked.
225 	 */
226 	if (!delayed_work_pending(dwork)) {
227 		list_del(&l->links);
228 		kvfree(l->list);
229 		put_pid_ns(l->key.ns);
230 		tofree = l;
231 	}
232 
233 	mutex_unlock(&l->owner->pidlist_mutex);
234 	kfree(tofree);
235 }
236 
237 /*
238  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
239  * Returns the number of unique elements.
240  */
241 static int pidlist_uniq(pid_t *list, int length)
242 {
243 	int src, dest = 1;
244 
245 	/*
246 	 * we presume the 0th element is unique, so i starts at 1. trivial
247 	 * edge cases first; no work needs to be done for either
248 	 */
249 	if (length == 0 || length == 1)
250 		return length;
251 	/* src and dest walk down the list; dest counts unique elements */
252 	for (src = 1; src < length; src++) {
253 		/* find next unique element */
254 		while (list[src] == list[src-1]) {
255 			src++;
256 			if (src == length)
257 				goto after;
258 		}
259 		/* dest always points to where the next unique element goes */
260 		list[dest] = list[src];
261 		dest++;
262 	}
263 after:
264 	return dest;
265 }
266 
267 /*
268  * The two pid files - task and cgroup.procs - guaranteed that the result
269  * is sorted, which forced this whole pidlist fiasco.  As pid order is
270  * different per namespace, each namespace needs differently sorted list,
271  * making it impossible to use, for example, single rbtree of member tasks
272  * sorted by task pointer.  As pidlists can be fairly large, allocating one
273  * per open file is dangerous, so cgroup had to implement shared pool of
274  * pidlists keyed by cgroup and namespace.
275  */
276 static int cmppid(const void *a, const void *b)
277 {
278 	return *(pid_t *)a - *(pid_t *)b;
279 }
280 
281 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
282 						  enum cgroup_filetype type)
283 {
284 	struct cgroup_pidlist *l;
285 	/* don't need task_nsproxy() if we're looking at ourself */
286 	struct pid_namespace *ns = task_active_pid_ns(current);
287 
288 	lockdep_assert_held(&cgrp->pidlist_mutex);
289 
290 	list_for_each_entry(l, &cgrp->pidlists, links)
291 		if (l->key.type == type && l->key.ns == ns)
292 			return l;
293 	return NULL;
294 }
295 
296 /*
297  * find the appropriate pidlist for our purpose (given procs vs tasks)
298  * returns with the lock on that pidlist already held, and takes care
299  * of the use count, or returns NULL with no locks held if we're out of
300  * memory.
301  */
302 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
303 						enum cgroup_filetype type)
304 {
305 	struct cgroup_pidlist *l;
306 
307 	lockdep_assert_held(&cgrp->pidlist_mutex);
308 
309 	l = cgroup_pidlist_find(cgrp, type);
310 	if (l)
311 		return l;
312 
313 	/* entry not found; create a new one */
314 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
315 	if (!l)
316 		return l;
317 
318 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
319 	l->key.type = type;
320 	/* don't need task_nsproxy() if we're looking at ourself */
321 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
322 	l->owner = cgrp;
323 	list_add(&l->links, &cgrp->pidlists);
324 	return l;
325 }
326 
327 /*
328  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
329  */
330 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
331 			      struct cgroup_pidlist **lp)
332 {
333 	pid_t *array;
334 	int length;
335 	int pid, n = 0; /* used for populating the array */
336 	struct css_task_iter it;
337 	struct task_struct *tsk;
338 	struct cgroup_pidlist *l;
339 
340 	lockdep_assert_held(&cgrp->pidlist_mutex);
341 
342 	/*
343 	 * If cgroup gets more users after we read count, we won't have
344 	 * enough space - tough.  This race is indistinguishable to the
345 	 * caller from the case that the additional cgroup users didn't
346 	 * show up until sometime later on.
347 	 */
348 	length = cgroup_task_count(cgrp);
349 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
350 	if (!array)
351 		return -ENOMEM;
352 	/* now, populate the array */
353 	css_task_iter_start(&cgrp->self, 0, &it);
354 	while ((tsk = css_task_iter_next(&it))) {
355 		if (unlikely(n == length))
356 			break;
357 		/* get tgid or pid for procs or tasks file respectively */
358 		if (type == CGROUP_FILE_PROCS)
359 			pid = task_tgid_vnr(tsk);
360 		else
361 			pid = task_pid_vnr(tsk);
362 		if (pid > 0) /* make sure to only use valid results */
363 			array[n++] = pid;
364 	}
365 	css_task_iter_end(&it);
366 	length = n;
367 	/* now sort & (if procs) strip out duplicates */
368 	sort(array, length, sizeof(pid_t), cmppid, NULL);
369 	if (type == CGROUP_FILE_PROCS)
370 		length = pidlist_uniq(array, length);
371 
372 	l = cgroup_pidlist_find_create(cgrp, type);
373 	if (!l) {
374 		kvfree(array);
375 		return -ENOMEM;
376 	}
377 
378 	/* store array, freeing old if necessary */
379 	kvfree(l->list);
380 	l->list = array;
381 	l->length = length;
382 	*lp = l;
383 	return 0;
384 }
385 
386 /*
387  * seq_file methods for the tasks/procs files. The seq_file position is the
388  * next pid to display; the seq_file iterator is a pointer to the pid
389  * in the cgroup->l->list array.
390  */
391 
392 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
393 {
394 	/*
395 	 * Initially we receive a position value that corresponds to
396 	 * one more than the last pid shown (or 0 on the first call or
397 	 * after a seek to the start). Use a binary-search to find the
398 	 * next pid to display, if any
399 	 */
400 	struct kernfs_open_file *of = s->private;
401 	struct cgroup *cgrp = seq_css(s)->cgroup;
402 	struct cgroup_pidlist *l;
403 	enum cgroup_filetype type = seq_cft(s)->private;
404 	int index = 0, pid = *pos;
405 	int *iter, ret;
406 
407 	mutex_lock(&cgrp->pidlist_mutex);
408 
409 	/*
410 	 * !NULL @of->priv indicates that this isn't the first start()
411 	 * after open.  If the matching pidlist is around, we can use that.
412 	 * Look for it.  Note that @of->priv can't be used directly.  It
413 	 * could already have been destroyed.
414 	 */
415 	if (of->priv)
416 		of->priv = cgroup_pidlist_find(cgrp, type);
417 
418 	/*
419 	 * Either this is the first start() after open or the matching
420 	 * pidlist has been destroyed inbetween.  Create a new one.
421 	 */
422 	if (!of->priv) {
423 		ret = pidlist_array_load(cgrp, type,
424 					 (struct cgroup_pidlist **)&of->priv);
425 		if (ret)
426 			return ERR_PTR(ret);
427 	}
428 	l = of->priv;
429 
430 	if (pid) {
431 		int end = l->length;
432 
433 		while (index < end) {
434 			int mid = (index + end) / 2;
435 			if (l->list[mid] == pid) {
436 				index = mid;
437 				break;
438 			} else if (l->list[mid] <= pid)
439 				index = mid + 1;
440 			else
441 				end = mid;
442 		}
443 	}
444 	/* If we're off the end of the array, we're done */
445 	if (index >= l->length)
446 		return NULL;
447 	/* Update the abstract position to be the actual pid that we found */
448 	iter = l->list + index;
449 	*pos = *iter;
450 	return iter;
451 }
452 
453 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
454 {
455 	struct kernfs_open_file *of = s->private;
456 	struct cgroup_pidlist *l = of->priv;
457 
458 	if (l)
459 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
460 				 CGROUP_PIDLIST_DESTROY_DELAY);
461 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
462 }
463 
464 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
465 {
466 	struct kernfs_open_file *of = s->private;
467 	struct cgroup_pidlist *l = of->priv;
468 	pid_t *p = v;
469 	pid_t *end = l->list + l->length;
470 	/*
471 	 * Advance to the next pid in the array. If this goes off the
472 	 * end, we're done
473 	 */
474 	p++;
475 	if (p >= end) {
476 		return NULL;
477 	} else {
478 		*pos = *p;
479 		return p;
480 	}
481 }
482 
483 static int cgroup_pidlist_show(struct seq_file *s, void *v)
484 {
485 	seq_printf(s, "%d\n", *(int *)v);
486 
487 	return 0;
488 }
489 
490 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
491 				     char *buf, size_t nbytes, loff_t off,
492 				     bool threadgroup)
493 {
494 	struct cgroup *cgrp;
495 	struct task_struct *task;
496 	const struct cred *cred, *tcred;
497 	ssize_t ret;
498 
499 	cgrp = cgroup_kn_lock_live(of->kn, false);
500 	if (!cgrp)
501 		return -ENODEV;
502 
503 	task = cgroup_procs_write_start(buf, threadgroup);
504 	ret = PTR_ERR_OR_ZERO(task);
505 	if (ret)
506 		goto out_unlock;
507 
508 	/*
509 	 * Even if we're attaching all tasks in the thread group, we only
510 	 * need to check permissions on one of them.
511 	 */
512 	cred = current_cred();
513 	tcred = get_task_cred(task);
514 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
515 	    !uid_eq(cred->euid, tcred->uid) &&
516 	    !uid_eq(cred->euid, tcred->suid))
517 		ret = -EACCES;
518 	put_cred(tcred);
519 	if (ret)
520 		goto out_finish;
521 
522 	ret = cgroup_attach_task(cgrp, task, threadgroup);
523 
524 out_finish:
525 	cgroup_procs_write_finish(task);
526 out_unlock:
527 	cgroup_kn_unlock(of->kn);
528 
529 	return ret ?: nbytes;
530 }
531 
532 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
533 				   char *buf, size_t nbytes, loff_t off)
534 {
535 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
536 }
537 
538 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
539 				   char *buf, size_t nbytes, loff_t off)
540 {
541 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
542 }
543 
544 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
545 					  char *buf, size_t nbytes, loff_t off)
546 {
547 	struct cgroup *cgrp;
548 
549 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
550 
551 	cgrp = cgroup_kn_lock_live(of->kn, false);
552 	if (!cgrp)
553 		return -ENODEV;
554 	spin_lock(&release_agent_path_lock);
555 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
556 		sizeof(cgrp->root->release_agent_path));
557 	spin_unlock(&release_agent_path_lock);
558 	cgroup_kn_unlock(of->kn);
559 	return nbytes;
560 }
561 
562 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
563 {
564 	struct cgroup *cgrp = seq_css(seq)->cgroup;
565 
566 	spin_lock(&release_agent_path_lock);
567 	seq_puts(seq, cgrp->root->release_agent_path);
568 	spin_unlock(&release_agent_path_lock);
569 	seq_putc(seq, '\n');
570 	return 0;
571 }
572 
573 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
574 {
575 	seq_puts(seq, "0\n");
576 	return 0;
577 }
578 
579 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
580 					 struct cftype *cft)
581 {
582 	return notify_on_release(css->cgroup);
583 }
584 
585 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
586 					  struct cftype *cft, u64 val)
587 {
588 	if (val)
589 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
590 	else
591 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
592 	return 0;
593 }
594 
595 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
596 				      struct cftype *cft)
597 {
598 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
599 }
600 
601 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
602 				       struct cftype *cft, u64 val)
603 {
604 	if (val)
605 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
606 	else
607 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
608 	return 0;
609 }
610 
611 /* cgroup core interface files for the legacy hierarchies */
612 struct cftype cgroup1_base_files[] = {
613 	{
614 		.name = "cgroup.procs",
615 		.seq_start = cgroup_pidlist_start,
616 		.seq_next = cgroup_pidlist_next,
617 		.seq_stop = cgroup_pidlist_stop,
618 		.seq_show = cgroup_pidlist_show,
619 		.private = CGROUP_FILE_PROCS,
620 		.write = cgroup1_procs_write,
621 	},
622 	{
623 		.name = "cgroup.clone_children",
624 		.read_u64 = cgroup_clone_children_read,
625 		.write_u64 = cgroup_clone_children_write,
626 	},
627 	{
628 		.name = "cgroup.sane_behavior",
629 		.flags = CFTYPE_ONLY_ON_ROOT,
630 		.seq_show = cgroup_sane_behavior_show,
631 	},
632 	{
633 		.name = "tasks",
634 		.seq_start = cgroup_pidlist_start,
635 		.seq_next = cgroup_pidlist_next,
636 		.seq_stop = cgroup_pidlist_stop,
637 		.seq_show = cgroup_pidlist_show,
638 		.private = CGROUP_FILE_TASKS,
639 		.write = cgroup1_tasks_write,
640 	},
641 	{
642 		.name = "notify_on_release",
643 		.read_u64 = cgroup_read_notify_on_release,
644 		.write_u64 = cgroup_write_notify_on_release,
645 	},
646 	{
647 		.name = "release_agent",
648 		.flags = CFTYPE_ONLY_ON_ROOT,
649 		.seq_show = cgroup_release_agent_show,
650 		.write = cgroup_release_agent_write,
651 		.max_write_len = PATH_MAX - 1,
652 	},
653 	{ }	/* terminate */
654 };
655 
656 /* Display information about each subsystem and each hierarchy */
657 int proc_cgroupstats_show(struct seq_file *m, void *v)
658 {
659 	struct cgroup_subsys *ss;
660 	int i;
661 
662 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
663 	/*
664 	 * ideally we don't want subsystems moving around while we do this.
665 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
666 	 * subsys/hierarchy state.
667 	 */
668 	mutex_lock(&cgroup_mutex);
669 
670 	for_each_subsys(ss, i)
671 		seq_printf(m, "%s\t%d\t%d\t%d\n",
672 			   ss->legacy_name, ss->root->hierarchy_id,
673 			   atomic_read(&ss->root->nr_cgrps),
674 			   cgroup_ssid_enabled(i));
675 
676 	mutex_unlock(&cgroup_mutex);
677 	return 0;
678 }
679 
680 /**
681  * cgroupstats_build - build and fill cgroupstats
682  * @stats: cgroupstats to fill information into
683  * @dentry: A dentry entry belonging to the cgroup for which stats have
684  * been requested.
685  *
686  * Build and fill cgroupstats so that taskstats can export it to user
687  * space.
688  */
689 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
690 {
691 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
692 	struct cgroup *cgrp;
693 	struct css_task_iter it;
694 	struct task_struct *tsk;
695 
696 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
697 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
698 	    kernfs_type(kn) != KERNFS_DIR)
699 		return -EINVAL;
700 
701 	mutex_lock(&cgroup_mutex);
702 
703 	/*
704 	 * We aren't being called from kernfs and there's no guarantee on
705 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
706 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
707 	 */
708 	rcu_read_lock();
709 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
710 	if (!cgrp || cgroup_is_dead(cgrp)) {
711 		rcu_read_unlock();
712 		mutex_unlock(&cgroup_mutex);
713 		return -ENOENT;
714 	}
715 	rcu_read_unlock();
716 
717 	css_task_iter_start(&cgrp->self, 0, &it);
718 	while ((tsk = css_task_iter_next(&it))) {
719 		switch (tsk->state) {
720 		case TASK_RUNNING:
721 			stats->nr_running++;
722 			break;
723 		case TASK_INTERRUPTIBLE:
724 			stats->nr_sleeping++;
725 			break;
726 		case TASK_UNINTERRUPTIBLE:
727 			stats->nr_uninterruptible++;
728 			break;
729 		case TASK_STOPPED:
730 			stats->nr_stopped++;
731 			break;
732 		default:
733 			if (delayacct_is_task_waiting_on_io(tsk))
734 				stats->nr_io_wait++;
735 			break;
736 		}
737 	}
738 	css_task_iter_end(&it);
739 
740 	mutex_unlock(&cgroup_mutex);
741 	return 0;
742 }
743 
744 void cgroup1_check_for_release(struct cgroup *cgrp)
745 {
746 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
747 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
748 		schedule_work(&cgrp->release_agent_work);
749 }
750 
751 /*
752  * Notify userspace when a cgroup is released, by running the
753  * configured release agent with the name of the cgroup (path
754  * relative to the root of cgroup file system) as the argument.
755  *
756  * Most likely, this user command will try to rmdir this cgroup.
757  *
758  * This races with the possibility that some other task will be
759  * attached to this cgroup before it is removed, or that some other
760  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
761  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
762  * unused, and this cgroup will be reprieved from its death sentence,
763  * to continue to serve a useful existence.  Next time it's released,
764  * we will get notified again, if it still has 'notify_on_release' set.
765  *
766  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
767  * means only wait until the task is successfully execve()'d.  The
768  * separate release agent task is forked by call_usermodehelper(),
769  * then control in this thread returns here, without waiting for the
770  * release agent task.  We don't bother to wait because the caller of
771  * this routine has no use for the exit status of the release agent
772  * task, so no sense holding our caller up for that.
773  */
774 void cgroup1_release_agent(struct work_struct *work)
775 {
776 	struct cgroup *cgrp =
777 		container_of(work, struct cgroup, release_agent_work);
778 	char *pathbuf = NULL, *agentbuf = NULL;
779 	char *argv[3], *envp[3];
780 	int ret;
781 
782 	mutex_lock(&cgroup_mutex);
783 
784 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
785 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
786 	if (!pathbuf || !agentbuf)
787 		goto out;
788 
789 	spin_lock_irq(&css_set_lock);
790 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
791 	spin_unlock_irq(&css_set_lock);
792 	if (ret < 0 || ret >= PATH_MAX)
793 		goto out;
794 
795 	argv[0] = agentbuf;
796 	argv[1] = pathbuf;
797 	argv[2] = NULL;
798 
799 	/* minimal command environment */
800 	envp[0] = "HOME=/";
801 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
802 	envp[2] = NULL;
803 
804 	mutex_unlock(&cgroup_mutex);
805 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
806 	goto out_free;
807 out:
808 	mutex_unlock(&cgroup_mutex);
809 out_free:
810 	kfree(agentbuf);
811 	kfree(pathbuf);
812 }
813 
814 /*
815  * cgroup_rename - Only allow simple rename of directories in place.
816  */
817 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
818 			  const char *new_name_str)
819 {
820 	struct cgroup *cgrp = kn->priv;
821 	int ret;
822 
823 	if (kernfs_type(kn) != KERNFS_DIR)
824 		return -ENOTDIR;
825 	if (kn->parent != new_parent)
826 		return -EIO;
827 
828 	/*
829 	 * We're gonna grab cgroup_mutex which nests outside kernfs
830 	 * active_ref.  kernfs_rename() doesn't require active_ref
831 	 * protection.  Break them before grabbing cgroup_mutex.
832 	 */
833 	kernfs_break_active_protection(new_parent);
834 	kernfs_break_active_protection(kn);
835 
836 	mutex_lock(&cgroup_mutex);
837 
838 	ret = kernfs_rename(kn, new_parent, new_name_str);
839 	if (!ret)
840 		TRACE_CGROUP_PATH(rename, cgrp);
841 
842 	mutex_unlock(&cgroup_mutex);
843 
844 	kernfs_unbreak_active_protection(kn);
845 	kernfs_unbreak_active_protection(new_parent);
846 	return ret;
847 }
848 
849 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
850 {
851 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
852 	struct cgroup_subsys *ss;
853 	int ssid;
854 
855 	for_each_subsys(ss, ssid)
856 		if (root->subsys_mask & (1 << ssid))
857 			seq_show_option(seq, ss->legacy_name, NULL);
858 	if (root->flags & CGRP_ROOT_NOPREFIX)
859 		seq_puts(seq, ",noprefix");
860 	if (root->flags & CGRP_ROOT_XATTR)
861 		seq_puts(seq, ",xattr");
862 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
863 		seq_puts(seq, ",cpuset_v2_mode");
864 
865 	spin_lock(&release_agent_path_lock);
866 	if (strlen(root->release_agent_path))
867 		seq_show_option(seq, "release_agent",
868 				root->release_agent_path);
869 	spin_unlock(&release_agent_path_lock);
870 
871 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
872 		seq_puts(seq, ",clone_children");
873 	if (strlen(root->name))
874 		seq_show_option(seq, "name", root->name);
875 	return 0;
876 }
877 
878 enum cgroup1_param {
879 	Opt_all,
880 	Opt_clone_children,
881 	Opt_cpuset_v2_mode,
882 	Opt_name,
883 	Opt_none,
884 	Opt_noprefix,
885 	Opt_release_agent,
886 	Opt_xattr,
887 };
888 
889 static const struct fs_parameter_spec cgroup1_param_specs[] = {
890 	fsparam_flag  ("all",		Opt_all),
891 	fsparam_flag  ("clone_children", Opt_clone_children),
892 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
893 	fsparam_string("name",		Opt_name),
894 	fsparam_flag  ("none",		Opt_none),
895 	fsparam_flag  ("noprefix",	Opt_noprefix),
896 	fsparam_string("release_agent",	Opt_release_agent),
897 	fsparam_flag  ("xattr",		Opt_xattr),
898 	{}
899 };
900 
901 const struct fs_parameter_description cgroup1_fs_parameters = {
902 	.name		= "cgroup1",
903 	.specs		= cgroup1_param_specs,
904 };
905 
906 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
907 {
908 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
909 	struct cgroup_subsys *ss;
910 	struct fs_parse_result result;
911 	int opt, i;
912 
913 	opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result);
914 	if (opt == -ENOPARAM) {
915 		if (strcmp(param->key, "source") == 0) {
916 			fc->source = param->string;
917 			param->string = NULL;
918 			return 0;
919 		}
920 		for_each_subsys(ss, i) {
921 			if (strcmp(param->key, ss->legacy_name))
922 				continue;
923 			ctx->subsys_mask |= (1 << i);
924 			return 0;
925 		}
926 		return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key);
927 	}
928 	if (opt < 0)
929 		return opt;
930 
931 	switch (opt) {
932 	case Opt_none:
933 		/* Explicitly have no subsystems */
934 		ctx->none = true;
935 		break;
936 	case Opt_all:
937 		ctx->all_ss = true;
938 		break;
939 	case Opt_noprefix:
940 		ctx->flags |= CGRP_ROOT_NOPREFIX;
941 		break;
942 	case Opt_clone_children:
943 		ctx->cpuset_clone_children = true;
944 		break;
945 	case Opt_cpuset_v2_mode:
946 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
947 		break;
948 	case Opt_xattr:
949 		ctx->flags |= CGRP_ROOT_XATTR;
950 		break;
951 	case Opt_release_agent:
952 		/* Specifying two release agents is forbidden */
953 		if (ctx->release_agent)
954 			return cg_invalf(fc, "cgroup1: release_agent respecified");
955 		ctx->release_agent = param->string;
956 		param->string = NULL;
957 		break;
958 	case Opt_name:
959 		/* blocked by boot param? */
960 		if (cgroup_no_v1_named)
961 			return -ENOENT;
962 		/* Can't specify an empty name */
963 		if (!param->size)
964 			return cg_invalf(fc, "cgroup1: Empty name");
965 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
966 			return cg_invalf(fc, "cgroup1: Name too long");
967 		/* Must match [\w.-]+ */
968 		for (i = 0; i < param->size; i++) {
969 			char c = param->string[i];
970 			if (isalnum(c))
971 				continue;
972 			if ((c == '.') || (c == '-') || (c == '_'))
973 				continue;
974 			return cg_invalf(fc, "cgroup1: Invalid name");
975 		}
976 		/* Specifying two names is forbidden */
977 		if (ctx->name)
978 			return cg_invalf(fc, "cgroup1: name respecified");
979 		ctx->name = param->string;
980 		param->string = NULL;
981 		break;
982 	}
983 	return 0;
984 }
985 
986 static int check_cgroupfs_options(struct fs_context *fc)
987 {
988 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
989 	u16 mask = U16_MAX;
990 	u16 enabled = 0;
991 	struct cgroup_subsys *ss;
992 	int i;
993 
994 #ifdef CONFIG_CPUSETS
995 	mask = ~((u16)1 << cpuset_cgrp_id);
996 #endif
997 	for_each_subsys(ss, i)
998 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
999 			enabled |= 1 << i;
1000 
1001 	ctx->subsys_mask &= enabled;
1002 
1003 	/*
1004 	 * In absense of 'none', 'name=' or subsystem name options,
1005 	 * let's default to 'all'.
1006 	 */
1007 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1008 		ctx->all_ss = true;
1009 
1010 	if (ctx->all_ss) {
1011 		/* Mutually exclusive option 'all' + subsystem name */
1012 		if (ctx->subsys_mask)
1013 			return cg_invalf(fc, "cgroup1: subsys name conflicts with all");
1014 		/* 'all' => select all the subsystems */
1015 		ctx->subsys_mask = enabled;
1016 	}
1017 
1018 	/*
1019 	 * We either have to specify by name or by subsystems. (So all
1020 	 * empty hierarchies must have a name).
1021 	 */
1022 	if (!ctx->subsys_mask && !ctx->name)
1023 		return cg_invalf(fc, "cgroup1: Need name or subsystem set");
1024 
1025 	/*
1026 	 * Option noprefix was introduced just for backward compatibility
1027 	 * with the old cpuset, so we allow noprefix only if mounting just
1028 	 * the cpuset subsystem.
1029 	 */
1030 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1031 		return cg_invalf(fc, "cgroup1: noprefix used incorrectly");
1032 
1033 	/* Can't specify "none" and some subsystems */
1034 	if (ctx->subsys_mask && ctx->none)
1035 		return cg_invalf(fc, "cgroup1: none used incorrectly");
1036 
1037 	return 0;
1038 }
1039 
1040 int cgroup1_reconfigure(struct fs_context *fc)
1041 {
1042 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1043 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1044 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1045 	int ret = 0;
1046 	u16 added_mask, removed_mask;
1047 
1048 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1049 
1050 	/* See what subsystems are wanted */
1051 	ret = check_cgroupfs_options(fc);
1052 	if (ret)
1053 		goto out_unlock;
1054 
1055 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1056 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1057 			task_tgid_nr(current), current->comm);
1058 
1059 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1060 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1061 
1062 	/* Don't allow flags or name to change at remount */
1063 	if ((ctx->flags ^ root->flags) ||
1064 	    (ctx->name && strcmp(ctx->name, root->name))) {
1065 		cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1066 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1067 		ret = -EINVAL;
1068 		goto out_unlock;
1069 	}
1070 
1071 	/* remounting is not allowed for populated hierarchies */
1072 	if (!list_empty(&root->cgrp.self.children)) {
1073 		ret = -EBUSY;
1074 		goto out_unlock;
1075 	}
1076 
1077 	ret = rebind_subsystems(root, added_mask);
1078 	if (ret)
1079 		goto out_unlock;
1080 
1081 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1082 
1083 	if (ctx->release_agent) {
1084 		spin_lock(&release_agent_path_lock);
1085 		strcpy(root->release_agent_path, ctx->release_agent);
1086 		spin_unlock(&release_agent_path_lock);
1087 	}
1088 
1089 	trace_cgroup_remount(root);
1090 
1091  out_unlock:
1092 	mutex_unlock(&cgroup_mutex);
1093 	return ret;
1094 }
1095 
1096 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1097 	.rename			= cgroup1_rename,
1098 	.show_options		= cgroup1_show_options,
1099 	.mkdir			= cgroup_mkdir,
1100 	.rmdir			= cgroup_rmdir,
1101 	.show_path		= cgroup_show_path,
1102 };
1103 
1104 /*
1105  * The guts of cgroup1 mount - find or create cgroup_root to use.
1106  * Called with cgroup_mutex held; returns 0 on success, -E... on
1107  * error and positive - in case when the candidate is busy dying.
1108  * On success it stashes a reference to cgroup_root into given
1109  * cgroup_fs_context; that reference is *NOT* counting towards the
1110  * cgroup_root refcount.
1111  */
1112 static int cgroup1_root_to_use(struct fs_context *fc)
1113 {
1114 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1115 	struct cgroup_root *root;
1116 	struct cgroup_subsys *ss;
1117 	int i, ret;
1118 
1119 	/* First find the desired set of subsystems */
1120 	ret = check_cgroupfs_options(fc);
1121 	if (ret)
1122 		return ret;
1123 
1124 	/*
1125 	 * Destruction of cgroup root is asynchronous, so subsystems may
1126 	 * still be dying after the previous unmount.  Let's drain the
1127 	 * dying subsystems.  We just need to ensure that the ones
1128 	 * unmounted previously finish dying and don't care about new ones
1129 	 * starting.  Testing ref liveliness is good enough.
1130 	 */
1131 	for_each_subsys(ss, i) {
1132 		if (!(ctx->subsys_mask & (1 << i)) ||
1133 		    ss->root == &cgrp_dfl_root)
1134 			continue;
1135 
1136 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1137 			return 1;	/* restart */
1138 		cgroup_put(&ss->root->cgrp);
1139 	}
1140 
1141 	for_each_root(root) {
1142 		bool name_match = false;
1143 
1144 		if (root == &cgrp_dfl_root)
1145 			continue;
1146 
1147 		/*
1148 		 * If we asked for a name then it must match.  Also, if
1149 		 * name matches but sybsys_mask doesn't, we should fail.
1150 		 * Remember whether name matched.
1151 		 */
1152 		if (ctx->name) {
1153 			if (strcmp(ctx->name, root->name))
1154 				continue;
1155 			name_match = true;
1156 		}
1157 
1158 		/*
1159 		 * If we asked for subsystems (or explicitly for no
1160 		 * subsystems) then they must match.
1161 		 */
1162 		if ((ctx->subsys_mask || ctx->none) &&
1163 		    (ctx->subsys_mask != root->subsys_mask)) {
1164 			if (!name_match)
1165 				continue;
1166 			return -EBUSY;
1167 		}
1168 
1169 		if (root->flags ^ ctx->flags)
1170 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1171 
1172 		ctx->root = root;
1173 		return 0;
1174 	}
1175 
1176 	/*
1177 	 * No such thing, create a new one.  name= matching without subsys
1178 	 * specification is allowed for already existing hierarchies but we
1179 	 * can't create new one without subsys specification.
1180 	 */
1181 	if (!ctx->subsys_mask && !ctx->none)
1182 		return cg_invalf(fc, "cgroup1: No subsys list or none specified");
1183 
1184 	/* Hierarchies may only be created in the initial cgroup namespace. */
1185 	if (ctx->ns != &init_cgroup_ns)
1186 		return -EPERM;
1187 
1188 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1189 	if (!root)
1190 		return -ENOMEM;
1191 
1192 	ctx->root = root;
1193 	init_cgroup_root(ctx);
1194 
1195 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1196 	if (ret)
1197 		cgroup_free_root(root);
1198 	return ret;
1199 }
1200 
1201 int cgroup1_get_tree(struct fs_context *fc)
1202 {
1203 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1204 	int ret;
1205 
1206 	/* Check if the caller has permission to mount. */
1207 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1208 		return -EPERM;
1209 
1210 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1211 
1212 	ret = cgroup1_root_to_use(fc);
1213 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1214 		ret = 1;	/* restart */
1215 
1216 	mutex_unlock(&cgroup_mutex);
1217 
1218 	if (!ret)
1219 		ret = cgroup_do_get_tree(fc);
1220 
1221 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1222 		struct super_block *sb = fc->root->d_sb;
1223 		dput(fc->root);
1224 		deactivate_locked_super(sb);
1225 		ret = 1;
1226 	}
1227 
1228 	if (unlikely(ret > 0)) {
1229 		msleep(10);
1230 		return restart_syscall();
1231 	}
1232 	return ret;
1233 }
1234 
1235 static int __init cgroup1_wq_init(void)
1236 {
1237 	/*
1238 	 * Used to destroy pidlists and separate to serve as flush domain.
1239 	 * Cap @max_active to 1 too.
1240 	 */
1241 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1242 						    0, 1);
1243 	BUG_ON(!cgroup_pidlist_destroy_wq);
1244 	return 0;
1245 }
1246 core_initcall(cgroup1_wq_init);
1247 
1248 static int __init cgroup_no_v1(char *str)
1249 {
1250 	struct cgroup_subsys *ss;
1251 	char *token;
1252 	int i;
1253 
1254 	while ((token = strsep(&str, ",")) != NULL) {
1255 		if (!*token)
1256 			continue;
1257 
1258 		if (!strcmp(token, "all")) {
1259 			cgroup_no_v1_mask = U16_MAX;
1260 			continue;
1261 		}
1262 
1263 		if (!strcmp(token, "named")) {
1264 			cgroup_no_v1_named = true;
1265 			continue;
1266 		}
1267 
1268 		for_each_subsys(ss, i) {
1269 			if (strcmp(token, ss->name) &&
1270 			    strcmp(token, ss->legacy_name))
1271 				continue;
1272 
1273 			cgroup_no_v1_mask |= 1 << i;
1274 		}
1275 	}
1276 	return 1;
1277 }
1278 __setup("cgroup_no_v1=", cgroup_no_v1);
1279