1 #include "cgroup-internal.h" 2 3 #include <linux/ctype.h> 4 #include <linux/kmod.h> 5 #include <linux/sort.h> 6 #include <linux/delay.h> 7 #include <linux/mm.h> 8 #include <linux/sched/signal.h> 9 #include <linux/sched/task.h> 10 #include <linux/magic.h> 11 #include <linux/slab.h> 12 #include <linux/vmalloc.h> 13 #include <linux/delayacct.h> 14 #include <linux/pid_namespace.h> 15 #include <linux/cgroupstats.h> 16 #include <linux/fs_parser.h> 17 18 #include <trace/events/cgroup.h> 19 20 #define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__) 21 22 /* 23 * pidlists linger the following amount before being destroyed. The goal 24 * is avoiding frequent destruction in the middle of consecutive read calls 25 * Expiring in the middle is a performance problem not a correctness one. 26 * 1 sec should be enough. 27 */ 28 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 29 30 /* Controllers blocked by the commandline in v1 */ 31 static u16 cgroup_no_v1_mask; 32 33 /* disable named v1 mounts */ 34 static bool cgroup_no_v1_named; 35 36 /* 37 * pidlist destructions need to be flushed on cgroup destruction. Use a 38 * separate workqueue as flush domain. 39 */ 40 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 41 42 /* 43 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 44 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 45 */ 46 static DEFINE_SPINLOCK(release_agent_path_lock); 47 48 bool cgroup1_ssid_disabled(int ssid) 49 { 50 return cgroup_no_v1_mask & (1 << ssid); 51 } 52 53 /** 54 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 55 * @from: attach to all cgroups of a given task 56 * @tsk: the task to be attached 57 */ 58 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 59 { 60 struct cgroup_root *root; 61 int retval = 0; 62 63 mutex_lock(&cgroup_mutex); 64 percpu_down_write(&cgroup_threadgroup_rwsem); 65 for_each_root(root) { 66 struct cgroup *from_cgrp; 67 68 if (root == &cgrp_dfl_root) 69 continue; 70 71 spin_lock_irq(&css_set_lock); 72 from_cgrp = task_cgroup_from_root(from, root); 73 spin_unlock_irq(&css_set_lock); 74 75 retval = cgroup_attach_task(from_cgrp, tsk, false); 76 if (retval) 77 break; 78 } 79 percpu_up_write(&cgroup_threadgroup_rwsem); 80 mutex_unlock(&cgroup_mutex); 81 82 return retval; 83 } 84 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 85 86 /** 87 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 88 * @to: cgroup to which the tasks will be moved 89 * @from: cgroup in which the tasks currently reside 90 * 91 * Locking rules between cgroup_post_fork() and the migration path 92 * guarantee that, if a task is forking while being migrated, the new child 93 * is guaranteed to be either visible in the source cgroup after the 94 * parent's migration is complete or put into the target cgroup. No task 95 * can slip out of migration through forking. 96 */ 97 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 98 { 99 DEFINE_CGROUP_MGCTX(mgctx); 100 struct cgrp_cset_link *link; 101 struct css_task_iter it; 102 struct task_struct *task; 103 int ret; 104 105 if (cgroup_on_dfl(to)) 106 return -EINVAL; 107 108 ret = cgroup_migrate_vet_dst(to); 109 if (ret) 110 return ret; 111 112 mutex_lock(&cgroup_mutex); 113 114 percpu_down_write(&cgroup_threadgroup_rwsem); 115 116 /* all tasks in @from are being moved, all csets are source */ 117 spin_lock_irq(&css_set_lock); 118 list_for_each_entry(link, &from->cset_links, cset_link) 119 cgroup_migrate_add_src(link->cset, to, &mgctx); 120 spin_unlock_irq(&css_set_lock); 121 122 ret = cgroup_migrate_prepare_dst(&mgctx); 123 if (ret) 124 goto out_err; 125 126 /* 127 * Migrate tasks one-by-one until @from is empty. This fails iff 128 * ->can_attach() fails. 129 */ 130 do { 131 css_task_iter_start(&from->self, 0, &it); 132 133 do { 134 task = css_task_iter_next(&it); 135 } while (task && (task->flags & PF_EXITING)); 136 137 if (task) 138 get_task_struct(task); 139 css_task_iter_end(&it); 140 141 if (task) { 142 ret = cgroup_migrate(task, false, &mgctx); 143 if (!ret) 144 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 145 put_task_struct(task); 146 } 147 } while (task && !ret); 148 out_err: 149 cgroup_migrate_finish(&mgctx); 150 percpu_up_write(&cgroup_threadgroup_rwsem); 151 mutex_unlock(&cgroup_mutex); 152 return ret; 153 } 154 155 /* 156 * Stuff for reading the 'tasks'/'procs' files. 157 * 158 * Reading this file can return large amounts of data if a cgroup has 159 * *lots* of attached tasks. So it may need several calls to read(), 160 * but we cannot guarantee that the information we produce is correct 161 * unless we produce it entirely atomically. 162 * 163 */ 164 165 /* which pidlist file are we talking about? */ 166 enum cgroup_filetype { 167 CGROUP_FILE_PROCS, 168 CGROUP_FILE_TASKS, 169 }; 170 171 /* 172 * A pidlist is a list of pids that virtually represents the contents of one 173 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 174 * a pair (one each for procs, tasks) for each pid namespace that's relevant 175 * to the cgroup. 176 */ 177 struct cgroup_pidlist { 178 /* 179 * used to find which pidlist is wanted. doesn't change as long as 180 * this particular list stays in the list. 181 */ 182 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 183 /* array of xids */ 184 pid_t *list; 185 /* how many elements the above list has */ 186 int length; 187 /* each of these stored in a list by its cgroup */ 188 struct list_head links; 189 /* pointer to the cgroup we belong to, for list removal purposes */ 190 struct cgroup *owner; 191 /* for delayed destruction */ 192 struct delayed_work destroy_dwork; 193 }; 194 195 /* 196 * The following two functions "fix" the issue where there are more pids 197 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. 198 * TODO: replace with a kernel-wide solution to this problem 199 */ 200 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) 201 static void *pidlist_allocate(int count) 202 { 203 if (PIDLIST_TOO_LARGE(count)) 204 return vmalloc(array_size(count, sizeof(pid_t))); 205 else 206 return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL); 207 } 208 209 static void pidlist_free(void *p) 210 { 211 kvfree(p); 212 } 213 214 /* 215 * Used to destroy all pidlists lingering waiting for destroy timer. None 216 * should be left afterwards. 217 */ 218 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 219 { 220 struct cgroup_pidlist *l, *tmp_l; 221 222 mutex_lock(&cgrp->pidlist_mutex); 223 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 224 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 225 mutex_unlock(&cgrp->pidlist_mutex); 226 227 flush_workqueue(cgroup_pidlist_destroy_wq); 228 BUG_ON(!list_empty(&cgrp->pidlists)); 229 } 230 231 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 232 { 233 struct delayed_work *dwork = to_delayed_work(work); 234 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 235 destroy_dwork); 236 struct cgroup_pidlist *tofree = NULL; 237 238 mutex_lock(&l->owner->pidlist_mutex); 239 240 /* 241 * Destroy iff we didn't get queued again. The state won't change 242 * as destroy_dwork can only be queued while locked. 243 */ 244 if (!delayed_work_pending(dwork)) { 245 list_del(&l->links); 246 pidlist_free(l->list); 247 put_pid_ns(l->key.ns); 248 tofree = l; 249 } 250 251 mutex_unlock(&l->owner->pidlist_mutex); 252 kfree(tofree); 253 } 254 255 /* 256 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 257 * Returns the number of unique elements. 258 */ 259 static int pidlist_uniq(pid_t *list, int length) 260 { 261 int src, dest = 1; 262 263 /* 264 * we presume the 0th element is unique, so i starts at 1. trivial 265 * edge cases first; no work needs to be done for either 266 */ 267 if (length == 0 || length == 1) 268 return length; 269 /* src and dest walk down the list; dest counts unique elements */ 270 for (src = 1; src < length; src++) { 271 /* find next unique element */ 272 while (list[src] == list[src-1]) { 273 src++; 274 if (src == length) 275 goto after; 276 } 277 /* dest always points to where the next unique element goes */ 278 list[dest] = list[src]; 279 dest++; 280 } 281 after: 282 return dest; 283 } 284 285 /* 286 * The two pid files - task and cgroup.procs - guaranteed that the result 287 * is sorted, which forced this whole pidlist fiasco. As pid order is 288 * different per namespace, each namespace needs differently sorted list, 289 * making it impossible to use, for example, single rbtree of member tasks 290 * sorted by task pointer. As pidlists can be fairly large, allocating one 291 * per open file is dangerous, so cgroup had to implement shared pool of 292 * pidlists keyed by cgroup and namespace. 293 */ 294 static int cmppid(const void *a, const void *b) 295 { 296 return *(pid_t *)a - *(pid_t *)b; 297 } 298 299 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 300 enum cgroup_filetype type) 301 { 302 struct cgroup_pidlist *l; 303 /* don't need task_nsproxy() if we're looking at ourself */ 304 struct pid_namespace *ns = task_active_pid_ns(current); 305 306 lockdep_assert_held(&cgrp->pidlist_mutex); 307 308 list_for_each_entry(l, &cgrp->pidlists, links) 309 if (l->key.type == type && l->key.ns == ns) 310 return l; 311 return NULL; 312 } 313 314 /* 315 * find the appropriate pidlist for our purpose (given procs vs tasks) 316 * returns with the lock on that pidlist already held, and takes care 317 * of the use count, or returns NULL with no locks held if we're out of 318 * memory. 319 */ 320 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 321 enum cgroup_filetype type) 322 { 323 struct cgroup_pidlist *l; 324 325 lockdep_assert_held(&cgrp->pidlist_mutex); 326 327 l = cgroup_pidlist_find(cgrp, type); 328 if (l) 329 return l; 330 331 /* entry not found; create a new one */ 332 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 333 if (!l) 334 return l; 335 336 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 337 l->key.type = type; 338 /* don't need task_nsproxy() if we're looking at ourself */ 339 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 340 l->owner = cgrp; 341 list_add(&l->links, &cgrp->pidlists); 342 return l; 343 } 344 345 /* 346 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 347 */ 348 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 349 struct cgroup_pidlist **lp) 350 { 351 pid_t *array; 352 int length; 353 int pid, n = 0; /* used for populating the array */ 354 struct css_task_iter it; 355 struct task_struct *tsk; 356 struct cgroup_pidlist *l; 357 358 lockdep_assert_held(&cgrp->pidlist_mutex); 359 360 /* 361 * If cgroup gets more users after we read count, we won't have 362 * enough space - tough. This race is indistinguishable to the 363 * caller from the case that the additional cgroup users didn't 364 * show up until sometime later on. 365 */ 366 length = cgroup_task_count(cgrp); 367 array = pidlist_allocate(length); 368 if (!array) 369 return -ENOMEM; 370 /* now, populate the array */ 371 css_task_iter_start(&cgrp->self, 0, &it); 372 while ((tsk = css_task_iter_next(&it))) { 373 if (unlikely(n == length)) 374 break; 375 /* get tgid or pid for procs or tasks file respectively */ 376 if (type == CGROUP_FILE_PROCS) 377 pid = task_tgid_vnr(tsk); 378 else 379 pid = task_pid_vnr(tsk); 380 if (pid > 0) /* make sure to only use valid results */ 381 array[n++] = pid; 382 } 383 css_task_iter_end(&it); 384 length = n; 385 /* now sort & (if procs) strip out duplicates */ 386 sort(array, length, sizeof(pid_t), cmppid, NULL); 387 if (type == CGROUP_FILE_PROCS) 388 length = pidlist_uniq(array, length); 389 390 l = cgroup_pidlist_find_create(cgrp, type); 391 if (!l) { 392 pidlist_free(array); 393 return -ENOMEM; 394 } 395 396 /* store array, freeing old if necessary */ 397 pidlist_free(l->list); 398 l->list = array; 399 l->length = length; 400 *lp = l; 401 return 0; 402 } 403 404 /* 405 * seq_file methods for the tasks/procs files. The seq_file position is the 406 * next pid to display; the seq_file iterator is a pointer to the pid 407 * in the cgroup->l->list array. 408 */ 409 410 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 411 { 412 /* 413 * Initially we receive a position value that corresponds to 414 * one more than the last pid shown (or 0 on the first call or 415 * after a seek to the start). Use a binary-search to find the 416 * next pid to display, if any 417 */ 418 struct kernfs_open_file *of = s->private; 419 struct cgroup *cgrp = seq_css(s)->cgroup; 420 struct cgroup_pidlist *l; 421 enum cgroup_filetype type = seq_cft(s)->private; 422 int index = 0, pid = *pos; 423 int *iter, ret; 424 425 mutex_lock(&cgrp->pidlist_mutex); 426 427 /* 428 * !NULL @of->priv indicates that this isn't the first start() 429 * after open. If the matching pidlist is around, we can use that. 430 * Look for it. Note that @of->priv can't be used directly. It 431 * could already have been destroyed. 432 */ 433 if (of->priv) 434 of->priv = cgroup_pidlist_find(cgrp, type); 435 436 /* 437 * Either this is the first start() after open or the matching 438 * pidlist has been destroyed inbetween. Create a new one. 439 */ 440 if (!of->priv) { 441 ret = pidlist_array_load(cgrp, type, 442 (struct cgroup_pidlist **)&of->priv); 443 if (ret) 444 return ERR_PTR(ret); 445 } 446 l = of->priv; 447 448 if (pid) { 449 int end = l->length; 450 451 while (index < end) { 452 int mid = (index + end) / 2; 453 if (l->list[mid] == pid) { 454 index = mid; 455 break; 456 } else if (l->list[mid] <= pid) 457 index = mid + 1; 458 else 459 end = mid; 460 } 461 } 462 /* If we're off the end of the array, we're done */ 463 if (index >= l->length) 464 return NULL; 465 /* Update the abstract position to be the actual pid that we found */ 466 iter = l->list + index; 467 *pos = *iter; 468 return iter; 469 } 470 471 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 472 { 473 struct kernfs_open_file *of = s->private; 474 struct cgroup_pidlist *l = of->priv; 475 476 if (l) 477 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 478 CGROUP_PIDLIST_DESTROY_DELAY); 479 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 480 } 481 482 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 483 { 484 struct kernfs_open_file *of = s->private; 485 struct cgroup_pidlist *l = of->priv; 486 pid_t *p = v; 487 pid_t *end = l->list + l->length; 488 /* 489 * Advance to the next pid in the array. If this goes off the 490 * end, we're done 491 */ 492 p++; 493 if (p >= end) { 494 return NULL; 495 } else { 496 *pos = *p; 497 return p; 498 } 499 } 500 501 static int cgroup_pidlist_show(struct seq_file *s, void *v) 502 { 503 seq_printf(s, "%d\n", *(int *)v); 504 505 return 0; 506 } 507 508 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 509 char *buf, size_t nbytes, loff_t off, 510 bool threadgroup) 511 { 512 struct cgroup *cgrp; 513 struct task_struct *task; 514 const struct cred *cred, *tcred; 515 ssize_t ret; 516 517 cgrp = cgroup_kn_lock_live(of->kn, false); 518 if (!cgrp) 519 return -ENODEV; 520 521 task = cgroup_procs_write_start(buf, threadgroup); 522 ret = PTR_ERR_OR_ZERO(task); 523 if (ret) 524 goto out_unlock; 525 526 /* 527 * Even if we're attaching all tasks in the thread group, we only 528 * need to check permissions on one of them. 529 */ 530 cred = current_cred(); 531 tcred = get_task_cred(task); 532 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 533 !uid_eq(cred->euid, tcred->uid) && 534 !uid_eq(cred->euid, tcred->suid)) 535 ret = -EACCES; 536 put_cred(tcred); 537 if (ret) 538 goto out_finish; 539 540 ret = cgroup_attach_task(cgrp, task, threadgroup); 541 542 out_finish: 543 cgroup_procs_write_finish(task); 544 out_unlock: 545 cgroup_kn_unlock(of->kn); 546 547 return ret ?: nbytes; 548 } 549 550 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 551 char *buf, size_t nbytes, loff_t off) 552 { 553 return __cgroup1_procs_write(of, buf, nbytes, off, true); 554 } 555 556 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 557 char *buf, size_t nbytes, loff_t off) 558 { 559 return __cgroup1_procs_write(of, buf, nbytes, off, false); 560 } 561 562 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 563 char *buf, size_t nbytes, loff_t off) 564 { 565 struct cgroup *cgrp; 566 567 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 568 569 cgrp = cgroup_kn_lock_live(of->kn, false); 570 if (!cgrp) 571 return -ENODEV; 572 spin_lock(&release_agent_path_lock); 573 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 574 sizeof(cgrp->root->release_agent_path)); 575 spin_unlock(&release_agent_path_lock); 576 cgroup_kn_unlock(of->kn); 577 return nbytes; 578 } 579 580 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 581 { 582 struct cgroup *cgrp = seq_css(seq)->cgroup; 583 584 spin_lock(&release_agent_path_lock); 585 seq_puts(seq, cgrp->root->release_agent_path); 586 spin_unlock(&release_agent_path_lock); 587 seq_putc(seq, '\n'); 588 return 0; 589 } 590 591 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 592 { 593 seq_puts(seq, "0\n"); 594 return 0; 595 } 596 597 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 598 struct cftype *cft) 599 { 600 return notify_on_release(css->cgroup); 601 } 602 603 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 604 struct cftype *cft, u64 val) 605 { 606 if (val) 607 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 608 else 609 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 610 return 0; 611 } 612 613 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 614 struct cftype *cft) 615 { 616 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 617 } 618 619 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 620 struct cftype *cft, u64 val) 621 { 622 if (val) 623 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 624 else 625 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 626 return 0; 627 } 628 629 /* cgroup core interface files for the legacy hierarchies */ 630 struct cftype cgroup1_base_files[] = { 631 { 632 .name = "cgroup.procs", 633 .seq_start = cgroup_pidlist_start, 634 .seq_next = cgroup_pidlist_next, 635 .seq_stop = cgroup_pidlist_stop, 636 .seq_show = cgroup_pidlist_show, 637 .private = CGROUP_FILE_PROCS, 638 .write = cgroup1_procs_write, 639 }, 640 { 641 .name = "cgroup.clone_children", 642 .read_u64 = cgroup_clone_children_read, 643 .write_u64 = cgroup_clone_children_write, 644 }, 645 { 646 .name = "cgroup.sane_behavior", 647 .flags = CFTYPE_ONLY_ON_ROOT, 648 .seq_show = cgroup_sane_behavior_show, 649 }, 650 { 651 .name = "tasks", 652 .seq_start = cgroup_pidlist_start, 653 .seq_next = cgroup_pidlist_next, 654 .seq_stop = cgroup_pidlist_stop, 655 .seq_show = cgroup_pidlist_show, 656 .private = CGROUP_FILE_TASKS, 657 .write = cgroup1_tasks_write, 658 }, 659 { 660 .name = "notify_on_release", 661 .read_u64 = cgroup_read_notify_on_release, 662 .write_u64 = cgroup_write_notify_on_release, 663 }, 664 { 665 .name = "release_agent", 666 .flags = CFTYPE_ONLY_ON_ROOT, 667 .seq_show = cgroup_release_agent_show, 668 .write = cgroup_release_agent_write, 669 .max_write_len = PATH_MAX - 1, 670 }, 671 { } /* terminate */ 672 }; 673 674 /* Display information about each subsystem and each hierarchy */ 675 int proc_cgroupstats_show(struct seq_file *m, void *v) 676 { 677 struct cgroup_subsys *ss; 678 int i; 679 680 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 681 /* 682 * ideally we don't want subsystems moving around while we do this. 683 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 684 * subsys/hierarchy state. 685 */ 686 mutex_lock(&cgroup_mutex); 687 688 for_each_subsys(ss, i) 689 seq_printf(m, "%s\t%d\t%d\t%d\n", 690 ss->legacy_name, ss->root->hierarchy_id, 691 atomic_read(&ss->root->nr_cgrps), 692 cgroup_ssid_enabled(i)); 693 694 mutex_unlock(&cgroup_mutex); 695 return 0; 696 } 697 698 /** 699 * cgroupstats_build - build and fill cgroupstats 700 * @stats: cgroupstats to fill information into 701 * @dentry: A dentry entry belonging to the cgroup for which stats have 702 * been requested. 703 * 704 * Build and fill cgroupstats so that taskstats can export it to user 705 * space. 706 */ 707 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 708 { 709 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 710 struct cgroup *cgrp; 711 struct css_task_iter it; 712 struct task_struct *tsk; 713 714 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 715 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 716 kernfs_type(kn) != KERNFS_DIR) 717 return -EINVAL; 718 719 mutex_lock(&cgroup_mutex); 720 721 /* 722 * We aren't being called from kernfs and there's no guarantee on 723 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 724 * @kn->priv is RCU safe. Let's do the RCU dancing. 725 */ 726 rcu_read_lock(); 727 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 728 if (!cgrp || cgroup_is_dead(cgrp)) { 729 rcu_read_unlock(); 730 mutex_unlock(&cgroup_mutex); 731 return -ENOENT; 732 } 733 rcu_read_unlock(); 734 735 css_task_iter_start(&cgrp->self, 0, &it); 736 while ((tsk = css_task_iter_next(&it))) { 737 switch (tsk->state) { 738 case TASK_RUNNING: 739 stats->nr_running++; 740 break; 741 case TASK_INTERRUPTIBLE: 742 stats->nr_sleeping++; 743 break; 744 case TASK_UNINTERRUPTIBLE: 745 stats->nr_uninterruptible++; 746 break; 747 case TASK_STOPPED: 748 stats->nr_stopped++; 749 break; 750 default: 751 if (delayacct_is_task_waiting_on_io(tsk)) 752 stats->nr_io_wait++; 753 break; 754 } 755 } 756 css_task_iter_end(&it); 757 758 mutex_unlock(&cgroup_mutex); 759 return 0; 760 } 761 762 void cgroup1_check_for_release(struct cgroup *cgrp) 763 { 764 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 765 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 766 schedule_work(&cgrp->release_agent_work); 767 } 768 769 /* 770 * Notify userspace when a cgroup is released, by running the 771 * configured release agent with the name of the cgroup (path 772 * relative to the root of cgroup file system) as the argument. 773 * 774 * Most likely, this user command will try to rmdir this cgroup. 775 * 776 * This races with the possibility that some other task will be 777 * attached to this cgroup before it is removed, or that some other 778 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 779 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 780 * unused, and this cgroup will be reprieved from its death sentence, 781 * to continue to serve a useful existence. Next time it's released, 782 * we will get notified again, if it still has 'notify_on_release' set. 783 * 784 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 785 * means only wait until the task is successfully execve()'d. The 786 * separate release agent task is forked by call_usermodehelper(), 787 * then control in this thread returns here, without waiting for the 788 * release agent task. We don't bother to wait because the caller of 789 * this routine has no use for the exit status of the release agent 790 * task, so no sense holding our caller up for that. 791 */ 792 void cgroup1_release_agent(struct work_struct *work) 793 { 794 struct cgroup *cgrp = 795 container_of(work, struct cgroup, release_agent_work); 796 char *pathbuf = NULL, *agentbuf = NULL; 797 char *argv[3], *envp[3]; 798 int ret; 799 800 mutex_lock(&cgroup_mutex); 801 802 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 803 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 804 if (!pathbuf || !agentbuf) 805 goto out; 806 807 spin_lock_irq(&css_set_lock); 808 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 809 spin_unlock_irq(&css_set_lock); 810 if (ret < 0 || ret >= PATH_MAX) 811 goto out; 812 813 argv[0] = agentbuf; 814 argv[1] = pathbuf; 815 argv[2] = NULL; 816 817 /* minimal command environment */ 818 envp[0] = "HOME=/"; 819 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 820 envp[2] = NULL; 821 822 mutex_unlock(&cgroup_mutex); 823 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 824 goto out_free; 825 out: 826 mutex_unlock(&cgroup_mutex); 827 out_free: 828 kfree(agentbuf); 829 kfree(pathbuf); 830 } 831 832 /* 833 * cgroup_rename - Only allow simple rename of directories in place. 834 */ 835 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 836 const char *new_name_str) 837 { 838 struct cgroup *cgrp = kn->priv; 839 int ret; 840 841 if (kernfs_type(kn) != KERNFS_DIR) 842 return -ENOTDIR; 843 if (kn->parent != new_parent) 844 return -EIO; 845 846 /* 847 * We're gonna grab cgroup_mutex which nests outside kernfs 848 * active_ref. kernfs_rename() doesn't require active_ref 849 * protection. Break them before grabbing cgroup_mutex. 850 */ 851 kernfs_break_active_protection(new_parent); 852 kernfs_break_active_protection(kn); 853 854 mutex_lock(&cgroup_mutex); 855 856 ret = kernfs_rename(kn, new_parent, new_name_str); 857 if (!ret) 858 TRACE_CGROUP_PATH(rename, cgrp); 859 860 mutex_unlock(&cgroup_mutex); 861 862 kernfs_unbreak_active_protection(kn); 863 kernfs_unbreak_active_protection(new_parent); 864 return ret; 865 } 866 867 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 868 { 869 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 870 struct cgroup_subsys *ss; 871 int ssid; 872 873 for_each_subsys(ss, ssid) 874 if (root->subsys_mask & (1 << ssid)) 875 seq_show_option(seq, ss->legacy_name, NULL); 876 if (root->flags & CGRP_ROOT_NOPREFIX) 877 seq_puts(seq, ",noprefix"); 878 if (root->flags & CGRP_ROOT_XATTR) 879 seq_puts(seq, ",xattr"); 880 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 881 seq_puts(seq, ",cpuset_v2_mode"); 882 883 spin_lock(&release_agent_path_lock); 884 if (strlen(root->release_agent_path)) 885 seq_show_option(seq, "release_agent", 886 root->release_agent_path); 887 spin_unlock(&release_agent_path_lock); 888 889 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 890 seq_puts(seq, ",clone_children"); 891 if (strlen(root->name)) 892 seq_show_option(seq, "name", root->name); 893 return 0; 894 } 895 896 enum cgroup1_param { 897 Opt_all, 898 Opt_clone_children, 899 Opt_cpuset_v2_mode, 900 Opt_name, 901 Opt_none, 902 Opt_noprefix, 903 Opt_release_agent, 904 Opt_xattr, 905 }; 906 907 static const struct fs_parameter_spec cgroup1_param_specs[] = { 908 fsparam_flag ("all", Opt_all), 909 fsparam_flag ("clone_children", Opt_clone_children), 910 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 911 fsparam_string("name", Opt_name), 912 fsparam_flag ("none", Opt_none), 913 fsparam_flag ("noprefix", Opt_noprefix), 914 fsparam_string("release_agent", Opt_release_agent), 915 fsparam_flag ("xattr", Opt_xattr), 916 {} 917 }; 918 919 const struct fs_parameter_description cgroup1_fs_parameters = { 920 .name = "cgroup1", 921 .specs = cgroup1_param_specs, 922 }; 923 924 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 925 { 926 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 927 struct cgroup_subsys *ss; 928 struct fs_parse_result result; 929 int opt, i; 930 931 opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result); 932 if (opt == -ENOPARAM) { 933 if (strcmp(param->key, "source") == 0) { 934 fc->source = param->string; 935 param->string = NULL; 936 return 0; 937 } 938 for_each_subsys(ss, i) { 939 if (strcmp(param->key, ss->legacy_name)) 940 continue; 941 ctx->subsys_mask |= (1 << i); 942 return 0; 943 } 944 return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key); 945 } 946 if (opt < 0) 947 return opt; 948 949 switch (opt) { 950 case Opt_none: 951 /* Explicitly have no subsystems */ 952 ctx->none = true; 953 break; 954 case Opt_all: 955 ctx->all_ss = true; 956 break; 957 case Opt_noprefix: 958 ctx->flags |= CGRP_ROOT_NOPREFIX; 959 break; 960 case Opt_clone_children: 961 ctx->cpuset_clone_children = true; 962 break; 963 case Opt_cpuset_v2_mode: 964 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 965 break; 966 case Opt_xattr: 967 ctx->flags |= CGRP_ROOT_XATTR; 968 break; 969 case Opt_release_agent: 970 /* Specifying two release agents is forbidden */ 971 if (ctx->release_agent) 972 return cg_invalf(fc, "cgroup1: release_agent respecified"); 973 ctx->release_agent = param->string; 974 param->string = NULL; 975 break; 976 case Opt_name: 977 /* blocked by boot param? */ 978 if (cgroup_no_v1_named) 979 return -ENOENT; 980 /* Can't specify an empty name */ 981 if (!param->size) 982 return cg_invalf(fc, "cgroup1: Empty name"); 983 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 984 return cg_invalf(fc, "cgroup1: Name too long"); 985 /* Must match [\w.-]+ */ 986 for (i = 0; i < param->size; i++) { 987 char c = param->string[i]; 988 if (isalnum(c)) 989 continue; 990 if ((c == '.') || (c == '-') || (c == '_')) 991 continue; 992 return cg_invalf(fc, "cgroup1: Invalid name"); 993 } 994 /* Specifying two names is forbidden */ 995 if (ctx->name) 996 return cg_invalf(fc, "cgroup1: name respecified"); 997 ctx->name = param->string; 998 param->string = NULL; 999 break; 1000 } 1001 return 0; 1002 } 1003 1004 static int check_cgroupfs_options(struct fs_context *fc) 1005 { 1006 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1007 u16 mask = U16_MAX; 1008 u16 enabled = 0; 1009 struct cgroup_subsys *ss; 1010 int i; 1011 1012 #ifdef CONFIG_CPUSETS 1013 mask = ~((u16)1 << cpuset_cgrp_id); 1014 #endif 1015 for_each_subsys(ss, i) 1016 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 1017 enabled |= 1 << i; 1018 1019 ctx->subsys_mask &= enabled; 1020 1021 /* 1022 * In absense of 'none', 'name=' or subsystem name options, 1023 * let's default to 'all'. 1024 */ 1025 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1026 ctx->all_ss = true; 1027 1028 if (ctx->all_ss) { 1029 /* Mutually exclusive option 'all' + subsystem name */ 1030 if (ctx->subsys_mask) 1031 return cg_invalf(fc, "cgroup1: subsys name conflicts with all"); 1032 /* 'all' => select all the subsystems */ 1033 ctx->subsys_mask = enabled; 1034 } 1035 1036 /* 1037 * We either have to specify by name or by subsystems. (So all 1038 * empty hierarchies must have a name). 1039 */ 1040 if (!ctx->subsys_mask && !ctx->name) 1041 return cg_invalf(fc, "cgroup1: Need name or subsystem set"); 1042 1043 /* 1044 * Option noprefix was introduced just for backward compatibility 1045 * with the old cpuset, so we allow noprefix only if mounting just 1046 * the cpuset subsystem. 1047 */ 1048 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1049 return cg_invalf(fc, "cgroup1: noprefix used incorrectly"); 1050 1051 /* Can't specify "none" and some subsystems */ 1052 if (ctx->subsys_mask && ctx->none) 1053 return cg_invalf(fc, "cgroup1: none used incorrectly"); 1054 1055 return 0; 1056 } 1057 1058 int cgroup1_reconfigure(struct fs_context *fc) 1059 { 1060 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1061 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1062 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1063 int ret = 0; 1064 u16 added_mask, removed_mask; 1065 1066 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1067 1068 /* See what subsystems are wanted */ 1069 ret = check_cgroupfs_options(fc); 1070 if (ret) 1071 goto out_unlock; 1072 1073 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1074 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1075 task_tgid_nr(current), current->comm); 1076 1077 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1078 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1079 1080 /* Don't allow flags or name to change at remount */ 1081 if ((ctx->flags ^ root->flags) || 1082 (ctx->name && strcmp(ctx->name, root->name))) { 1083 cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1084 ctx->flags, ctx->name ?: "", root->flags, root->name); 1085 ret = -EINVAL; 1086 goto out_unlock; 1087 } 1088 1089 /* remounting is not allowed for populated hierarchies */ 1090 if (!list_empty(&root->cgrp.self.children)) { 1091 ret = -EBUSY; 1092 goto out_unlock; 1093 } 1094 1095 ret = rebind_subsystems(root, added_mask); 1096 if (ret) 1097 goto out_unlock; 1098 1099 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1100 1101 if (ctx->release_agent) { 1102 spin_lock(&release_agent_path_lock); 1103 strcpy(root->release_agent_path, ctx->release_agent); 1104 spin_unlock(&release_agent_path_lock); 1105 } 1106 1107 trace_cgroup_remount(root); 1108 1109 out_unlock: 1110 mutex_unlock(&cgroup_mutex); 1111 return ret; 1112 } 1113 1114 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1115 .rename = cgroup1_rename, 1116 .show_options = cgroup1_show_options, 1117 .mkdir = cgroup_mkdir, 1118 .rmdir = cgroup_rmdir, 1119 .show_path = cgroup_show_path, 1120 }; 1121 1122 /* 1123 * The guts of cgroup1 mount - find or create cgroup_root to use. 1124 * Called with cgroup_mutex held; returns 0 on success, -E... on 1125 * error and positive - in case when the candidate is busy dying. 1126 * On success it stashes a reference to cgroup_root into given 1127 * cgroup_fs_context; that reference is *NOT* counting towards the 1128 * cgroup_root refcount. 1129 */ 1130 static int cgroup1_root_to_use(struct fs_context *fc) 1131 { 1132 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1133 struct cgroup_root *root; 1134 struct cgroup_subsys *ss; 1135 int i, ret; 1136 1137 /* First find the desired set of subsystems */ 1138 ret = check_cgroupfs_options(fc); 1139 if (ret) 1140 return ret; 1141 1142 /* 1143 * Destruction of cgroup root is asynchronous, so subsystems may 1144 * still be dying after the previous unmount. Let's drain the 1145 * dying subsystems. We just need to ensure that the ones 1146 * unmounted previously finish dying and don't care about new ones 1147 * starting. Testing ref liveliness is good enough. 1148 */ 1149 for_each_subsys(ss, i) { 1150 if (!(ctx->subsys_mask & (1 << i)) || 1151 ss->root == &cgrp_dfl_root) 1152 continue; 1153 1154 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1155 return 1; /* restart */ 1156 cgroup_put(&ss->root->cgrp); 1157 } 1158 1159 for_each_root(root) { 1160 bool name_match = false; 1161 1162 if (root == &cgrp_dfl_root) 1163 continue; 1164 1165 /* 1166 * If we asked for a name then it must match. Also, if 1167 * name matches but sybsys_mask doesn't, we should fail. 1168 * Remember whether name matched. 1169 */ 1170 if (ctx->name) { 1171 if (strcmp(ctx->name, root->name)) 1172 continue; 1173 name_match = true; 1174 } 1175 1176 /* 1177 * If we asked for subsystems (or explicitly for no 1178 * subsystems) then they must match. 1179 */ 1180 if ((ctx->subsys_mask || ctx->none) && 1181 (ctx->subsys_mask != root->subsys_mask)) { 1182 if (!name_match) 1183 continue; 1184 return -EBUSY; 1185 } 1186 1187 if (root->flags ^ ctx->flags) 1188 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1189 1190 ctx->root = root; 1191 return 0; 1192 } 1193 1194 /* 1195 * No such thing, create a new one. name= matching without subsys 1196 * specification is allowed for already existing hierarchies but we 1197 * can't create new one without subsys specification. 1198 */ 1199 if (!ctx->subsys_mask && !ctx->none) 1200 return cg_invalf(fc, "cgroup1: No subsys list or none specified"); 1201 1202 /* Hierarchies may only be created in the initial cgroup namespace. */ 1203 if (ctx->ns != &init_cgroup_ns) 1204 return -EPERM; 1205 1206 root = kzalloc(sizeof(*root), GFP_KERNEL); 1207 if (!root) 1208 return -ENOMEM; 1209 1210 ctx->root = root; 1211 init_cgroup_root(ctx); 1212 1213 ret = cgroup_setup_root(root, ctx->subsys_mask); 1214 if (ret) 1215 cgroup_free_root(root); 1216 return ret; 1217 } 1218 1219 int cgroup1_get_tree(struct fs_context *fc) 1220 { 1221 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1222 int ret; 1223 1224 /* Check if the caller has permission to mount. */ 1225 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1226 return -EPERM; 1227 1228 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1229 1230 ret = cgroup1_root_to_use(fc); 1231 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1232 ret = 1; /* restart */ 1233 1234 mutex_unlock(&cgroup_mutex); 1235 1236 if (!ret) 1237 ret = cgroup_do_get_tree(fc); 1238 1239 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1240 struct super_block *sb = fc->root->d_sb; 1241 dput(fc->root); 1242 deactivate_locked_super(sb); 1243 ret = 1; 1244 } 1245 1246 if (unlikely(ret > 0)) { 1247 msleep(10); 1248 return restart_syscall(); 1249 } 1250 return ret; 1251 } 1252 1253 static int __init cgroup1_wq_init(void) 1254 { 1255 /* 1256 * Used to destroy pidlists and separate to serve as flush domain. 1257 * Cap @max_active to 1 too. 1258 */ 1259 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1260 0, 1); 1261 BUG_ON(!cgroup_pidlist_destroy_wq); 1262 return 0; 1263 } 1264 core_initcall(cgroup1_wq_init); 1265 1266 static int __init cgroup_no_v1(char *str) 1267 { 1268 struct cgroup_subsys *ss; 1269 char *token; 1270 int i; 1271 1272 while ((token = strsep(&str, ",")) != NULL) { 1273 if (!*token) 1274 continue; 1275 1276 if (!strcmp(token, "all")) { 1277 cgroup_no_v1_mask = U16_MAX; 1278 continue; 1279 } 1280 1281 if (!strcmp(token, "named")) { 1282 cgroup_no_v1_named = true; 1283 continue; 1284 } 1285 1286 for_each_subsys(ss, i) { 1287 if (strcmp(token, ss->name) && 1288 strcmp(token, ss->legacy_name)) 1289 continue; 1290 1291 cgroup_no_v1_mask |= 1 << i; 1292 } 1293 } 1294 return 1; 1295 } 1296 __setup("cgroup_no_v1=", cgroup_no_v1); 1297