xref: /openbmc/linux/kernel/cgroup/cgroup-v1.c (revision 1cac4f26)
1 #include "cgroup-internal.h"
2 
3 #include <linux/ctype.h>
4 #include <linux/kmod.h>
5 #include <linux/sort.h>
6 #include <linux/delay.h>
7 #include <linux/mm.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/task.h>
10 #include <linux/magic.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/delayacct.h>
14 #include <linux/pid_namespace.h>
15 #include <linux/cgroupstats.h>
16 
17 #include <trace/events/cgroup.h>
18 
19 /*
20  * pidlists linger the following amount before being destroyed.  The goal
21  * is avoiding frequent destruction in the middle of consecutive read calls
22  * Expiring in the middle is a performance problem not a correctness one.
23  * 1 sec should be enough.
24  */
25 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
26 
27 /* Controllers blocked by the commandline in v1 */
28 static u16 cgroup_no_v1_mask;
29 
30 /* disable named v1 mounts */
31 static bool cgroup_no_v1_named;
32 
33 /*
34  * pidlist destructions need to be flushed on cgroup destruction.  Use a
35  * separate workqueue as flush domain.
36  */
37 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
38 
39 /*
40  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
41  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
42  */
43 static DEFINE_SPINLOCK(release_agent_path_lock);
44 
45 bool cgroup1_ssid_disabled(int ssid)
46 {
47 	return cgroup_no_v1_mask & (1 << ssid);
48 }
49 
50 /**
51  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
52  * @from: attach to all cgroups of a given task
53  * @tsk: the task to be attached
54  */
55 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
56 {
57 	struct cgroup_root *root;
58 	int retval = 0;
59 
60 	mutex_lock(&cgroup_mutex);
61 	percpu_down_write(&cgroup_threadgroup_rwsem);
62 	for_each_root(root) {
63 		struct cgroup *from_cgrp;
64 
65 		if (root == &cgrp_dfl_root)
66 			continue;
67 
68 		spin_lock_irq(&css_set_lock);
69 		from_cgrp = task_cgroup_from_root(from, root);
70 		spin_unlock_irq(&css_set_lock);
71 
72 		retval = cgroup_attach_task(from_cgrp, tsk, false);
73 		if (retval)
74 			break;
75 	}
76 	percpu_up_write(&cgroup_threadgroup_rwsem);
77 	mutex_unlock(&cgroup_mutex);
78 
79 	return retval;
80 }
81 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
82 
83 /**
84  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
85  * @to: cgroup to which the tasks will be moved
86  * @from: cgroup in which the tasks currently reside
87  *
88  * Locking rules between cgroup_post_fork() and the migration path
89  * guarantee that, if a task is forking while being migrated, the new child
90  * is guaranteed to be either visible in the source cgroup after the
91  * parent's migration is complete or put into the target cgroup.  No task
92  * can slip out of migration through forking.
93  */
94 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
95 {
96 	DEFINE_CGROUP_MGCTX(mgctx);
97 	struct cgrp_cset_link *link;
98 	struct css_task_iter it;
99 	struct task_struct *task;
100 	int ret;
101 
102 	if (cgroup_on_dfl(to))
103 		return -EINVAL;
104 
105 	ret = cgroup_migrate_vet_dst(to);
106 	if (ret)
107 		return ret;
108 
109 	mutex_lock(&cgroup_mutex);
110 
111 	percpu_down_write(&cgroup_threadgroup_rwsem);
112 
113 	/* all tasks in @from are being moved, all csets are source */
114 	spin_lock_irq(&css_set_lock);
115 	list_for_each_entry(link, &from->cset_links, cset_link)
116 		cgroup_migrate_add_src(link->cset, to, &mgctx);
117 	spin_unlock_irq(&css_set_lock);
118 
119 	ret = cgroup_migrate_prepare_dst(&mgctx);
120 	if (ret)
121 		goto out_err;
122 
123 	/*
124 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
125 	 * ->can_attach() fails.
126 	 */
127 	do {
128 		css_task_iter_start(&from->self, 0, &it);
129 
130 		do {
131 			task = css_task_iter_next(&it);
132 		} while (task && (task->flags & PF_EXITING));
133 
134 		if (task)
135 			get_task_struct(task);
136 		css_task_iter_end(&it);
137 
138 		if (task) {
139 			ret = cgroup_migrate(task, false, &mgctx);
140 			if (!ret)
141 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
142 			put_task_struct(task);
143 		}
144 	} while (task && !ret);
145 out_err:
146 	cgroup_migrate_finish(&mgctx);
147 	percpu_up_write(&cgroup_threadgroup_rwsem);
148 	mutex_unlock(&cgroup_mutex);
149 	return ret;
150 }
151 
152 /*
153  * Stuff for reading the 'tasks'/'procs' files.
154  *
155  * Reading this file can return large amounts of data if a cgroup has
156  * *lots* of attached tasks. So it may need several calls to read(),
157  * but we cannot guarantee that the information we produce is correct
158  * unless we produce it entirely atomically.
159  *
160  */
161 
162 /* which pidlist file are we talking about? */
163 enum cgroup_filetype {
164 	CGROUP_FILE_PROCS,
165 	CGROUP_FILE_TASKS,
166 };
167 
168 /*
169  * A pidlist is a list of pids that virtually represents the contents of one
170  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
171  * a pair (one each for procs, tasks) for each pid namespace that's relevant
172  * to the cgroup.
173  */
174 struct cgroup_pidlist {
175 	/*
176 	 * used to find which pidlist is wanted. doesn't change as long as
177 	 * this particular list stays in the list.
178 	*/
179 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
180 	/* array of xids */
181 	pid_t *list;
182 	/* how many elements the above list has */
183 	int length;
184 	/* each of these stored in a list by its cgroup */
185 	struct list_head links;
186 	/* pointer to the cgroup we belong to, for list removal purposes */
187 	struct cgroup *owner;
188 	/* for delayed destruction */
189 	struct delayed_work destroy_dwork;
190 };
191 
192 /*
193  * The following two functions "fix" the issue where there are more pids
194  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
195  * TODO: replace with a kernel-wide solution to this problem
196  */
197 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
198 static void *pidlist_allocate(int count)
199 {
200 	if (PIDLIST_TOO_LARGE(count))
201 		return vmalloc(array_size(count, sizeof(pid_t)));
202 	else
203 		return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL);
204 }
205 
206 static void pidlist_free(void *p)
207 {
208 	kvfree(p);
209 }
210 
211 /*
212  * Used to destroy all pidlists lingering waiting for destroy timer.  None
213  * should be left afterwards.
214  */
215 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
216 {
217 	struct cgroup_pidlist *l, *tmp_l;
218 
219 	mutex_lock(&cgrp->pidlist_mutex);
220 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
221 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
222 	mutex_unlock(&cgrp->pidlist_mutex);
223 
224 	flush_workqueue(cgroup_pidlist_destroy_wq);
225 	BUG_ON(!list_empty(&cgrp->pidlists));
226 }
227 
228 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
229 {
230 	struct delayed_work *dwork = to_delayed_work(work);
231 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
232 						destroy_dwork);
233 	struct cgroup_pidlist *tofree = NULL;
234 
235 	mutex_lock(&l->owner->pidlist_mutex);
236 
237 	/*
238 	 * Destroy iff we didn't get queued again.  The state won't change
239 	 * as destroy_dwork can only be queued while locked.
240 	 */
241 	if (!delayed_work_pending(dwork)) {
242 		list_del(&l->links);
243 		pidlist_free(l->list);
244 		put_pid_ns(l->key.ns);
245 		tofree = l;
246 	}
247 
248 	mutex_unlock(&l->owner->pidlist_mutex);
249 	kfree(tofree);
250 }
251 
252 /*
253  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
254  * Returns the number of unique elements.
255  */
256 static int pidlist_uniq(pid_t *list, int length)
257 {
258 	int src, dest = 1;
259 
260 	/*
261 	 * we presume the 0th element is unique, so i starts at 1. trivial
262 	 * edge cases first; no work needs to be done for either
263 	 */
264 	if (length == 0 || length == 1)
265 		return length;
266 	/* src and dest walk down the list; dest counts unique elements */
267 	for (src = 1; src < length; src++) {
268 		/* find next unique element */
269 		while (list[src] == list[src-1]) {
270 			src++;
271 			if (src == length)
272 				goto after;
273 		}
274 		/* dest always points to where the next unique element goes */
275 		list[dest] = list[src];
276 		dest++;
277 	}
278 after:
279 	return dest;
280 }
281 
282 /*
283  * The two pid files - task and cgroup.procs - guaranteed that the result
284  * is sorted, which forced this whole pidlist fiasco.  As pid order is
285  * different per namespace, each namespace needs differently sorted list,
286  * making it impossible to use, for example, single rbtree of member tasks
287  * sorted by task pointer.  As pidlists can be fairly large, allocating one
288  * per open file is dangerous, so cgroup had to implement shared pool of
289  * pidlists keyed by cgroup and namespace.
290  */
291 static int cmppid(const void *a, const void *b)
292 {
293 	return *(pid_t *)a - *(pid_t *)b;
294 }
295 
296 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
297 						  enum cgroup_filetype type)
298 {
299 	struct cgroup_pidlist *l;
300 	/* don't need task_nsproxy() if we're looking at ourself */
301 	struct pid_namespace *ns = task_active_pid_ns(current);
302 
303 	lockdep_assert_held(&cgrp->pidlist_mutex);
304 
305 	list_for_each_entry(l, &cgrp->pidlists, links)
306 		if (l->key.type == type && l->key.ns == ns)
307 			return l;
308 	return NULL;
309 }
310 
311 /*
312  * find the appropriate pidlist for our purpose (given procs vs tasks)
313  * returns with the lock on that pidlist already held, and takes care
314  * of the use count, or returns NULL with no locks held if we're out of
315  * memory.
316  */
317 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
318 						enum cgroup_filetype type)
319 {
320 	struct cgroup_pidlist *l;
321 
322 	lockdep_assert_held(&cgrp->pidlist_mutex);
323 
324 	l = cgroup_pidlist_find(cgrp, type);
325 	if (l)
326 		return l;
327 
328 	/* entry not found; create a new one */
329 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
330 	if (!l)
331 		return l;
332 
333 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
334 	l->key.type = type;
335 	/* don't need task_nsproxy() if we're looking at ourself */
336 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
337 	l->owner = cgrp;
338 	list_add(&l->links, &cgrp->pidlists);
339 	return l;
340 }
341 
342 /**
343  * cgroup_task_count - count the number of tasks in a cgroup.
344  * @cgrp: the cgroup in question
345  */
346 int cgroup_task_count(const struct cgroup *cgrp)
347 {
348 	int count = 0;
349 	struct cgrp_cset_link *link;
350 
351 	spin_lock_irq(&css_set_lock);
352 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
353 		count += link->cset->nr_tasks;
354 	spin_unlock_irq(&css_set_lock);
355 	return count;
356 }
357 
358 /*
359  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
360  */
361 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
362 			      struct cgroup_pidlist **lp)
363 {
364 	pid_t *array;
365 	int length;
366 	int pid, n = 0; /* used for populating the array */
367 	struct css_task_iter it;
368 	struct task_struct *tsk;
369 	struct cgroup_pidlist *l;
370 
371 	lockdep_assert_held(&cgrp->pidlist_mutex);
372 
373 	/*
374 	 * If cgroup gets more users after we read count, we won't have
375 	 * enough space - tough.  This race is indistinguishable to the
376 	 * caller from the case that the additional cgroup users didn't
377 	 * show up until sometime later on.
378 	 */
379 	length = cgroup_task_count(cgrp);
380 	array = pidlist_allocate(length);
381 	if (!array)
382 		return -ENOMEM;
383 	/* now, populate the array */
384 	css_task_iter_start(&cgrp->self, 0, &it);
385 	while ((tsk = css_task_iter_next(&it))) {
386 		if (unlikely(n == length))
387 			break;
388 		/* get tgid or pid for procs or tasks file respectively */
389 		if (type == CGROUP_FILE_PROCS)
390 			pid = task_tgid_vnr(tsk);
391 		else
392 			pid = task_pid_vnr(tsk);
393 		if (pid > 0) /* make sure to only use valid results */
394 			array[n++] = pid;
395 	}
396 	css_task_iter_end(&it);
397 	length = n;
398 	/* now sort & (if procs) strip out duplicates */
399 	sort(array, length, sizeof(pid_t), cmppid, NULL);
400 	if (type == CGROUP_FILE_PROCS)
401 		length = pidlist_uniq(array, length);
402 
403 	l = cgroup_pidlist_find_create(cgrp, type);
404 	if (!l) {
405 		pidlist_free(array);
406 		return -ENOMEM;
407 	}
408 
409 	/* store array, freeing old if necessary */
410 	pidlist_free(l->list);
411 	l->list = array;
412 	l->length = length;
413 	*lp = l;
414 	return 0;
415 }
416 
417 /*
418  * seq_file methods for the tasks/procs files. The seq_file position is the
419  * next pid to display; the seq_file iterator is a pointer to the pid
420  * in the cgroup->l->list array.
421  */
422 
423 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
424 {
425 	/*
426 	 * Initially we receive a position value that corresponds to
427 	 * one more than the last pid shown (or 0 on the first call or
428 	 * after a seek to the start). Use a binary-search to find the
429 	 * next pid to display, if any
430 	 */
431 	struct kernfs_open_file *of = s->private;
432 	struct cgroup *cgrp = seq_css(s)->cgroup;
433 	struct cgroup_pidlist *l;
434 	enum cgroup_filetype type = seq_cft(s)->private;
435 	int index = 0, pid = *pos;
436 	int *iter, ret;
437 
438 	mutex_lock(&cgrp->pidlist_mutex);
439 
440 	/*
441 	 * !NULL @of->priv indicates that this isn't the first start()
442 	 * after open.  If the matching pidlist is around, we can use that.
443 	 * Look for it.  Note that @of->priv can't be used directly.  It
444 	 * could already have been destroyed.
445 	 */
446 	if (of->priv)
447 		of->priv = cgroup_pidlist_find(cgrp, type);
448 
449 	/*
450 	 * Either this is the first start() after open or the matching
451 	 * pidlist has been destroyed inbetween.  Create a new one.
452 	 */
453 	if (!of->priv) {
454 		ret = pidlist_array_load(cgrp, type,
455 					 (struct cgroup_pidlist **)&of->priv);
456 		if (ret)
457 			return ERR_PTR(ret);
458 	}
459 	l = of->priv;
460 
461 	if (pid) {
462 		int end = l->length;
463 
464 		while (index < end) {
465 			int mid = (index + end) / 2;
466 			if (l->list[mid] == pid) {
467 				index = mid;
468 				break;
469 			} else if (l->list[mid] <= pid)
470 				index = mid + 1;
471 			else
472 				end = mid;
473 		}
474 	}
475 	/* If we're off the end of the array, we're done */
476 	if (index >= l->length)
477 		return NULL;
478 	/* Update the abstract position to be the actual pid that we found */
479 	iter = l->list + index;
480 	*pos = *iter;
481 	return iter;
482 }
483 
484 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
485 {
486 	struct kernfs_open_file *of = s->private;
487 	struct cgroup_pidlist *l = of->priv;
488 
489 	if (l)
490 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
491 				 CGROUP_PIDLIST_DESTROY_DELAY);
492 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
493 }
494 
495 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
496 {
497 	struct kernfs_open_file *of = s->private;
498 	struct cgroup_pidlist *l = of->priv;
499 	pid_t *p = v;
500 	pid_t *end = l->list + l->length;
501 	/*
502 	 * Advance to the next pid in the array. If this goes off the
503 	 * end, we're done
504 	 */
505 	p++;
506 	if (p >= end) {
507 		return NULL;
508 	} else {
509 		*pos = *p;
510 		return p;
511 	}
512 }
513 
514 static int cgroup_pidlist_show(struct seq_file *s, void *v)
515 {
516 	seq_printf(s, "%d\n", *(int *)v);
517 
518 	return 0;
519 }
520 
521 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
522 				     char *buf, size_t nbytes, loff_t off,
523 				     bool threadgroup)
524 {
525 	struct cgroup *cgrp;
526 	struct task_struct *task;
527 	const struct cred *cred, *tcred;
528 	ssize_t ret;
529 
530 	cgrp = cgroup_kn_lock_live(of->kn, false);
531 	if (!cgrp)
532 		return -ENODEV;
533 
534 	task = cgroup_procs_write_start(buf, threadgroup);
535 	ret = PTR_ERR_OR_ZERO(task);
536 	if (ret)
537 		goto out_unlock;
538 
539 	/*
540 	 * Even if we're attaching all tasks in the thread group, we only
541 	 * need to check permissions on one of them.
542 	 */
543 	cred = current_cred();
544 	tcred = get_task_cred(task);
545 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
546 	    !uid_eq(cred->euid, tcred->uid) &&
547 	    !uid_eq(cred->euid, tcred->suid))
548 		ret = -EACCES;
549 	put_cred(tcred);
550 	if (ret)
551 		goto out_finish;
552 
553 	ret = cgroup_attach_task(cgrp, task, threadgroup);
554 
555 out_finish:
556 	cgroup_procs_write_finish(task);
557 out_unlock:
558 	cgroup_kn_unlock(of->kn);
559 
560 	return ret ?: nbytes;
561 }
562 
563 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
564 				   char *buf, size_t nbytes, loff_t off)
565 {
566 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
567 }
568 
569 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
570 				   char *buf, size_t nbytes, loff_t off)
571 {
572 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
573 }
574 
575 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
576 					  char *buf, size_t nbytes, loff_t off)
577 {
578 	struct cgroup *cgrp;
579 
580 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
581 
582 	cgrp = cgroup_kn_lock_live(of->kn, false);
583 	if (!cgrp)
584 		return -ENODEV;
585 	spin_lock(&release_agent_path_lock);
586 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
587 		sizeof(cgrp->root->release_agent_path));
588 	spin_unlock(&release_agent_path_lock);
589 	cgroup_kn_unlock(of->kn);
590 	return nbytes;
591 }
592 
593 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
594 {
595 	struct cgroup *cgrp = seq_css(seq)->cgroup;
596 
597 	spin_lock(&release_agent_path_lock);
598 	seq_puts(seq, cgrp->root->release_agent_path);
599 	spin_unlock(&release_agent_path_lock);
600 	seq_putc(seq, '\n');
601 	return 0;
602 }
603 
604 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
605 {
606 	seq_puts(seq, "0\n");
607 	return 0;
608 }
609 
610 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
611 					 struct cftype *cft)
612 {
613 	return notify_on_release(css->cgroup);
614 }
615 
616 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
617 					  struct cftype *cft, u64 val)
618 {
619 	if (val)
620 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
621 	else
622 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
623 	return 0;
624 }
625 
626 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
627 				      struct cftype *cft)
628 {
629 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
630 }
631 
632 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
633 				       struct cftype *cft, u64 val)
634 {
635 	if (val)
636 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
637 	else
638 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
639 	return 0;
640 }
641 
642 /* cgroup core interface files for the legacy hierarchies */
643 struct cftype cgroup1_base_files[] = {
644 	{
645 		.name = "cgroup.procs",
646 		.seq_start = cgroup_pidlist_start,
647 		.seq_next = cgroup_pidlist_next,
648 		.seq_stop = cgroup_pidlist_stop,
649 		.seq_show = cgroup_pidlist_show,
650 		.private = CGROUP_FILE_PROCS,
651 		.write = cgroup1_procs_write,
652 	},
653 	{
654 		.name = "cgroup.clone_children",
655 		.read_u64 = cgroup_clone_children_read,
656 		.write_u64 = cgroup_clone_children_write,
657 	},
658 	{
659 		.name = "cgroup.sane_behavior",
660 		.flags = CFTYPE_ONLY_ON_ROOT,
661 		.seq_show = cgroup_sane_behavior_show,
662 	},
663 	{
664 		.name = "tasks",
665 		.seq_start = cgroup_pidlist_start,
666 		.seq_next = cgroup_pidlist_next,
667 		.seq_stop = cgroup_pidlist_stop,
668 		.seq_show = cgroup_pidlist_show,
669 		.private = CGROUP_FILE_TASKS,
670 		.write = cgroup1_tasks_write,
671 	},
672 	{
673 		.name = "notify_on_release",
674 		.read_u64 = cgroup_read_notify_on_release,
675 		.write_u64 = cgroup_write_notify_on_release,
676 	},
677 	{
678 		.name = "release_agent",
679 		.flags = CFTYPE_ONLY_ON_ROOT,
680 		.seq_show = cgroup_release_agent_show,
681 		.write = cgroup_release_agent_write,
682 		.max_write_len = PATH_MAX - 1,
683 	},
684 	{ }	/* terminate */
685 };
686 
687 /* Display information about each subsystem and each hierarchy */
688 int proc_cgroupstats_show(struct seq_file *m, void *v)
689 {
690 	struct cgroup_subsys *ss;
691 	int i;
692 
693 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
694 	/*
695 	 * ideally we don't want subsystems moving around while we do this.
696 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
697 	 * subsys/hierarchy state.
698 	 */
699 	mutex_lock(&cgroup_mutex);
700 
701 	for_each_subsys(ss, i)
702 		seq_printf(m, "%s\t%d\t%d\t%d\n",
703 			   ss->legacy_name, ss->root->hierarchy_id,
704 			   atomic_read(&ss->root->nr_cgrps),
705 			   cgroup_ssid_enabled(i));
706 
707 	mutex_unlock(&cgroup_mutex);
708 	return 0;
709 }
710 
711 /**
712  * cgroupstats_build - build and fill cgroupstats
713  * @stats: cgroupstats to fill information into
714  * @dentry: A dentry entry belonging to the cgroup for which stats have
715  * been requested.
716  *
717  * Build and fill cgroupstats so that taskstats can export it to user
718  * space.
719  */
720 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
721 {
722 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
723 	struct cgroup *cgrp;
724 	struct css_task_iter it;
725 	struct task_struct *tsk;
726 
727 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
728 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
729 	    kernfs_type(kn) != KERNFS_DIR)
730 		return -EINVAL;
731 
732 	mutex_lock(&cgroup_mutex);
733 
734 	/*
735 	 * We aren't being called from kernfs and there's no guarantee on
736 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
737 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
738 	 */
739 	rcu_read_lock();
740 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
741 	if (!cgrp || cgroup_is_dead(cgrp)) {
742 		rcu_read_unlock();
743 		mutex_unlock(&cgroup_mutex);
744 		return -ENOENT;
745 	}
746 	rcu_read_unlock();
747 
748 	css_task_iter_start(&cgrp->self, 0, &it);
749 	while ((tsk = css_task_iter_next(&it))) {
750 		switch (tsk->state) {
751 		case TASK_RUNNING:
752 			stats->nr_running++;
753 			break;
754 		case TASK_INTERRUPTIBLE:
755 			stats->nr_sleeping++;
756 			break;
757 		case TASK_UNINTERRUPTIBLE:
758 			stats->nr_uninterruptible++;
759 			break;
760 		case TASK_STOPPED:
761 			stats->nr_stopped++;
762 			break;
763 		default:
764 			if (delayacct_is_task_waiting_on_io(tsk))
765 				stats->nr_io_wait++;
766 			break;
767 		}
768 	}
769 	css_task_iter_end(&it);
770 
771 	mutex_unlock(&cgroup_mutex);
772 	return 0;
773 }
774 
775 void cgroup1_check_for_release(struct cgroup *cgrp)
776 {
777 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
778 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
779 		schedule_work(&cgrp->release_agent_work);
780 }
781 
782 /*
783  * Notify userspace when a cgroup is released, by running the
784  * configured release agent with the name of the cgroup (path
785  * relative to the root of cgroup file system) as the argument.
786  *
787  * Most likely, this user command will try to rmdir this cgroup.
788  *
789  * This races with the possibility that some other task will be
790  * attached to this cgroup before it is removed, or that some other
791  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
792  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
793  * unused, and this cgroup will be reprieved from its death sentence,
794  * to continue to serve a useful existence.  Next time it's released,
795  * we will get notified again, if it still has 'notify_on_release' set.
796  *
797  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
798  * means only wait until the task is successfully execve()'d.  The
799  * separate release agent task is forked by call_usermodehelper(),
800  * then control in this thread returns here, without waiting for the
801  * release agent task.  We don't bother to wait because the caller of
802  * this routine has no use for the exit status of the release agent
803  * task, so no sense holding our caller up for that.
804  */
805 void cgroup1_release_agent(struct work_struct *work)
806 {
807 	struct cgroup *cgrp =
808 		container_of(work, struct cgroup, release_agent_work);
809 	char *pathbuf = NULL, *agentbuf = NULL;
810 	char *argv[3], *envp[3];
811 	int ret;
812 
813 	mutex_lock(&cgroup_mutex);
814 
815 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
816 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
817 	if (!pathbuf || !agentbuf)
818 		goto out;
819 
820 	spin_lock_irq(&css_set_lock);
821 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
822 	spin_unlock_irq(&css_set_lock);
823 	if (ret < 0 || ret >= PATH_MAX)
824 		goto out;
825 
826 	argv[0] = agentbuf;
827 	argv[1] = pathbuf;
828 	argv[2] = NULL;
829 
830 	/* minimal command environment */
831 	envp[0] = "HOME=/";
832 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
833 	envp[2] = NULL;
834 
835 	mutex_unlock(&cgroup_mutex);
836 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
837 	goto out_free;
838 out:
839 	mutex_unlock(&cgroup_mutex);
840 out_free:
841 	kfree(agentbuf);
842 	kfree(pathbuf);
843 }
844 
845 /*
846  * cgroup_rename - Only allow simple rename of directories in place.
847  */
848 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
849 			  const char *new_name_str)
850 {
851 	struct cgroup *cgrp = kn->priv;
852 	int ret;
853 
854 	if (kernfs_type(kn) != KERNFS_DIR)
855 		return -ENOTDIR;
856 	if (kn->parent != new_parent)
857 		return -EIO;
858 
859 	/*
860 	 * We're gonna grab cgroup_mutex which nests outside kernfs
861 	 * active_ref.  kernfs_rename() doesn't require active_ref
862 	 * protection.  Break them before grabbing cgroup_mutex.
863 	 */
864 	kernfs_break_active_protection(new_parent);
865 	kernfs_break_active_protection(kn);
866 
867 	mutex_lock(&cgroup_mutex);
868 
869 	ret = kernfs_rename(kn, new_parent, new_name_str);
870 	if (!ret)
871 		TRACE_CGROUP_PATH(rename, cgrp);
872 
873 	mutex_unlock(&cgroup_mutex);
874 
875 	kernfs_unbreak_active_protection(kn);
876 	kernfs_unbreak_active_protection(new_parent);
877 	return ret;
878 }
879 
880 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
881 {
882 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
883 	struct cgroup_subsys *ss;
884 	int ssid;
885 
886 	for_each_subsys(ss, ssid)
887 		if (root->subsys_mask & (1 << ssid))
888 			seq_show_option(seq, ss->legacy_name, NULL);
889 	if (root->flags & CGRP_ROOT_NOPREFIX)
890 		seq_puts(seq, ",noprefix");
891 	if (root->flags & CGRP_ROOT_XATTR)
892 		seq_puts(seq, ",xattr");
893 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
894 		seq_puts(seq, ",cpuset_v2_mode");
895 
896 	spin_lock(&release_agent_path_lock);
897 	if (strlen(root->release_agent_path))
898 		seq_show_option(seq, "release_agent",
899 				root->release_agent_path);
900 	spin_unlock(&release_agent_path_lock);
901 
902 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
903 		seq_puts(seq, ",clone_children");
904 	if (strlen(root->name))
905 		seq_show_option(seq, "name", root->name);
906 	return 0;
907 }
908 
909 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
910 {
911 	char *token, *o = data;
912 	bool all_ss = false, one_ss = false;
913 	u16 mask = U16_MAX;
914 	struct cgroup_subsys *ss;
915 	int nr_opts = 0;
916 	int i;
917 
918 #ifdef CONFIG_CPUSETS
919 	mask = ~((u16)1 << cpuset_cgrp_id);
920 #endif
921 
922 	memset(opts, 0, sizeof(*opts));
923 
924 	while ((token = strsep(&o, ",")) != NULL) {
925 		nr_opts++;
926 
927 		if (!*token)
928 			return -EINVAL;
929 		if (!strcmp(token, "none")) {
930 			/* Explicitly have no subsystems */
931 			opts->none = true;
932 			continue;
933 		}
934 		if (!strcmp(token, "all")) {
935 			/* Mutually exclusive option 'all' + subsystem name */
936 			if (one_ss)
937 				return -EINVAL;
938 			all_ss = true;
939 			continue;
940 		}
941 		if (!strcmp(token, "noprefix")) {
942 			opts->flags |= CGRP_ROOT_NOPREFIX;
943 			continue;
944 		}
945 		if (!strcmp(token, "clone_children")) {
946 			opts->cpuset_clone_children = true;
947 			continue;
948 		}
949 		if (!strcmp(token, "cpuset_v2_mode")) {
950 			opts->flags |= CGRP_ROOT_CPUSET_V2_MODE;
951 			continue;
952 		}
953 		if (!strcmp(token, "xattr")) {
954 			opts->flags |= CGRP_ROOT_XATTR;
955 			continue;
956 		}
957 		if (!strncmp(token, "release_agent=", 14)) {
958 			/* Specifying two release agents is forbidden */
959 			if (opts->release_agent)
960 				return -EINVAL;
961 			opts->release_agent =
962 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
963 			if (!opts->release_agent)
964 				return -ENOMEM;
965 			continue;
966 		}
967 		if (!strncmp(token, "name=", 5)) {
968 			const char *name = token + 5;
969 
970 			/* blocked by boot param? */
971 			if (cgroup_no_v1_named)
972 				return -ENOENT;
973 			/* Can't specify an empty name */
974 			if (!strlen(name))
975 				return -EINVAL;
976 			/* Must match [\w.-]+ */
977 			for (i = 0; i < strlen(name); i++) {
978 				char c = name[i];
979 				if (isalnum(c))
980 					continue;
981 				if ((c == '.') || (c == '-') || (c == '_'))
982 					continue;
983 				return -EINVAL;
984 			}
985 			/* Specifying two names is forbidden */
986 			if (opts->name)
987 				return -EINVAL;
988 			opts->name = kstrndup(name,
989 					      MAX_CGROUP_ROOT_NAMELEN - 1,
990 					      GFP_KERNEL);
991 			if (!opts->name)
992 				return -ENOMEM;
993 
994 			continue;
995 		}
996 
997 		for_each_subsys(ss, i) {
998 			if (strcmp(token, ss->legacy_name))
999 				continue;
1000 			if (!cgroup_ssid_enabled(i))
1001 				continue;
1002 			if (cgroup1_ssid_disabled(i))
1003 				continue;
1004 
1005 			/* Mutually exclusive option 'all' + subsystem name */
1006 			if (all_ss)
1007 				return -EINVAL;
1008 			opts->subsys_mask |= (1 << i);
1009 			one_ss = true;
1010 
1011 			break;
1012 		}
1013 		if (i == CGROUP_SUBSYS_COUNT)
1014 			return -ENOENT;
1015 	}
1016 
1017 	/*
1018 	 * If the 'all' option was specified select all the subsystems,
1019 	 * otherwise if 'none', 'name=' and a subsystem name options were
1020 	 * not specified, let's default to 'all'
1021 	 */
1022 	if (all_ss || (!one_ss && !opts->none && !opts->name))
1023 		for_each_subsys(ss, i)
1024 			if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1025 				opts->subsys_mask |= (1 << i);
1026 
1027 	/*
1028 	 * We either have to specify by name or by subsystems. (So all
1029 	 * empty hierarchies must have a name).
1030 	 */
1031 	if (!opts->subsys_mask && !opts->name)
1032 		return -EINVAL;
1033 
1034 	/*
1035 	 * Option noprefix was introduced just for backward compatibility
1036 	 * with the old cpuset, so we allow noprefix only if mounting just
1037 	 * the cpuset subsystem.
1038 	 */
1039 	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1040 		return -EINVAL;
1041 
1042 	/* Can't specify "none" and some subsystems */
1043 	if (opts->subsys_mask && opts->none)
1044 		return -EINVAL;
1045 
1046 	return 0;
1047 }
1048 
1049 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
1050 {
1051 	int ret = 0;
1052 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1053 	struct cgroup_sb_opts opts;
1054 	u16 added_mask, removed_mask;
1055 
1056 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1057 
1058 	/* See what subsystems are wanted */
1059 	ret = parse_cgroupfs_options(data, &opts);
1060 	if (ret)
1061 		goto out_unlock;
1062 
1063 	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1064 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1065 			task_tgid_nr(current), current->comm);
1066 
1067 	added_mask = opts.subsys_mask & ~root->subsys_mask;
1068 	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1069 
1070 	/* Don't allow flags or name to change at remount */
1071 	if ((opts.flags ^ root->flags) ||
1072 	    (opts.name && strcmp(opts.name, root->name))) {
1073 		pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1074 		       opts.flags, opts.name ?: "", root->flags, root->name);
1075 		ret = -EINVAL;
1076 		goto out_unlock;
1077 	}
1078 
1079 	/* remounting is not allowed for populated hierarchies */
1080 	if (!list_empty(&root->cgrp.self.children)) {
1081 		ret = -EBUSY;
1082 		goto out_unlock;
1083 	}
1084 
1085 	ret = rebind_subsystems(root, added_mask);
1086 	if (ret)
1087 		goto out_unlock;
1088 
1089 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1090 
1091 	if (opts.release_agent) {
1092 		spin_lock(&release_agent_path_lock);
1093 		strcpy(root->release_agent_path, opts.release_agent);
1094 		spin_unlock(&release_agent_path_lock);
1095 	}
1096 
1097 	trace_cgroup_remount(root);
1098 
1099  out_unlock:
1100 	kfree(opts.release_agent);
1101 	kfree(opts.name);
1102 	mutex_unlock(&cgroup_mutex);
1103 	return ret;
1104 }
1105 
1106 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1107 	.rename			= cgroup1_rename,
1108 	.show_options		= cgroup1_show_options,
1109 	.remount_fs		= cgroup1_remount,
1110 	.mkdir			= cgroup_mkdir,
1111 	.rmdir			= cgroup_rmdir,
1112 	.show_path		= cgroup_show_path,
1113 };
1114 
1115 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1116 			     void *data, unsigned long magic,
1117 			     struct cgroup_namespace *ns)
1118 {
1119 	struct super_block *pinned_sb = NULL;
1120 	struct cgroup_sb_opts opts;
1121 	struct cgroup_root *root;
1122 	struct cgroup_subsys *ss;
1123 	struct dentry *dentry;
1124 	int i, ret;
1125 	bool new_root = false;
1126 
1127 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1128 
1129 	/* First find the desired set of subsystems */
1130 	ret = parse_cgroupfs_options(data, &opts);
1131 	if (ret)
1132 		goto out_unlock;
1133 
1134 	/*
1135 	 * Destruction of cgroup root is asynchronous, so subsystems may
1136 	 * still be dying after the previous unmount.  Let's drain the
1137 	 * dying subsystems.  We just need to ensure that the ones
1138 	 * unmounted previously finish dying and don't care about new ones
1139 	 * starting.  Testing ref liveliness is good enough.
1140 	 */
1141 	for_each_subsys(ss, i) {
1142 		if (!(opts.subsys_mask & (1 << i)) ||
1143 		    ss->root == &cgrp_dfl_root)
1144 			continue;
1145 
1146 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1147 			mutex_unlock(&cgroup_mutex);
1148 			msleep(10);
1149 			ret = restart_syscall();
1150 			goto out_free;
1151 		}
1152 		cgroup_put(&ss->root->cgrp);
1153 	}
1154 
1155 	for_each_root(root) {
1156 		bool name_match = false;
1157 
1158 		if (root == &cgrp_dfl_root)
1159 			continue;
1160 
1161 		/*
1162 		 * If we asked for a name then it must match.  Also, if
1163 		 * name matches but sybsys_mask doesn't, we should fail.
1164 		 * Remember whether name matched.
1165 		 */
1166 		if (opts.name) {
1167 			if (strcmp(opts.name, root->name))
1168 				continue;
1169 			name_match = true;
1170 		}
1171 
1172 		/*
1173 		 * If we asked for subsystems (or explicitly for no
1174 		 * subsystems) then they must match.
1175 		 */
1176 		if ((opts.subsys_mask || opts.none) &&
1177 		    (opts.subsys_mask != root->subsys_mask)) {
1178 			if (!name_match)
1179 				continue;
1180 			ret = -EBUSY;
1181 			goto out_unlock;
1182 		}
1183 
1184 		if (root->flags ^ opts.flags)
1185 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1186 
1187 		/*
1188 		 * We want to reuse @root whose lifetime is governed by its
1189 		 * ->cgrp.  Let's check whether @root is alive and keep it
1190 		 * that way.  As cgroup_kill_sb() can happen anytime, we
1191 		 * want to block it by pinning the sb so that @root doesn't
1192 		 * get killed before mount is complete.
1193 		 *
1194 		 * With the sb pinned, tryget_live can reliably indicate
1195 		 * whether @root can be reused.  If it's being killed,
1196 		 * drain it.  We can use wait_queue for the wait but this
1197 		 * path is super cold.  Let's just sleep a bit and retry.
1198 		 */
1199 		pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1200 		if (IS_ERR(pinned_sb) ||
1201 		    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1202 			mutex_unlock(&cgroup_mutex);
1203 			if (!IS_ERR_OR_NULL(pinned_sb))
1204 				deactivate_super(pinned_sb);
1205 			msleep(10);
1206 			ret = restart_syscall();
1207 			goto out_free;
1208 		}
1209 
1210 		ret = 0;
1211 		goto out_unlock;
1212 	}
1213 
1214 	/*
1215 	 * No such thing, create a new one.  name= matching without subsys
1216 	 * specification is allowed for already existing hierarchies but we
1217 	 * can't create new one without subsys specification.
1218 	 */
1219 	if (!opts.subsys_mask && !opts.none) {
1220 		ret = -EINVAL;
1221 		goto out_unlock;
1222 	}
1223 
1224 	/* Hierarchies may only be created in the initial cgroup namespace. */
1225 	if (ns != &init_cgroup_ns) {
1226 		ret = -EPERM;
1227 		goto out_unlock;
1228 	}
1229 
1230 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1231 	if (!root) {
1232 		ret = -ENOMEM;
1233 		goto out_unlock;
1234 	}
1235 	new_root = true;
1236 
1237 	init_cgroup_root(root, &opts);
1238 
1239 	ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1240 	if (ret)
1241 		cgroup_free_root(root);
1242 
1243 out_unlock:
1244 	mutex_unlock(&cgroup_mutex);
1245 out_free:
1246 	kfree(opts.release_agent);
1247 	kfree(opts.name);
1248 
1249 	if (ret)
1250 		return ERR_PTR(ret);
1251 
1252 	dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1253 				 CGROUP_SUPER_MAGIC, ns);
1254 
1255 	/*
1256 	 * There's a race window after we release cgroup_mutex and before
1257 	 * allocating a superblock. Make sure a concurrent process won't
1258 	 * be able to re-use the root during this window by delaying the
1259 	 * initialization of root refcnt.
1260 	 */
1261 	if (new_root) {
1262 		mutex_lock(&cgroup_mutex);
1263 		percpu_ref_reinit(&root->cgrp.self.refcnt);
1264 		mutex_unlock(&cgroup_mutex);
1265 	}
1266 
1267 	/*
1268 	 * If @pinned_sb, we're reusing an existing root and holding an
1269 	 * extra ref on its sb.  Mount is complete.  Put the extra ref.
1270 	 */
1271 	if (pinned_sb)
1272 		deactivate_super(pinned_sb);
1273 
1274 	return dentry;
1275 }
1276 
1277 static int __init cgroup1_wq_init(void)
1278 {
1279 	/*
1280 	 * Used to destroy pidlists and separate to serve as flush domain.
1281 	 * Cap @max_active to 1 too.
1282 	 */
1283 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1284 						    0, 1);
1285 	BUG_ON(!cgroup_pidlist_destroy_wq);
1286 	return 0;
1287 }
1288 core_initcall(cgroup1_wq_init);
1289 
1290 static int __init cgroup_no_v1(char *str)
1291 {
1292 	struct cgroup_subsys *ss;
1293 	char *token;
1294 	int i;
1295 
1296 	while ((token = strsep(&str, ",")) != NULL) {
1297 		if (!*token)
1298 			continue;
1299 
1300 		if (!strcmp(token, "all")) {
1301 			cgroup_no_v1_mask = U16_MAX;
1302 			continue;
1303 		}
1304 
1305 		if (!strcmp(token, "named")) {
1306 			cgroup_no_v1_named = true;
1307 			continue;
1308 		}
1309 
1310 		for_each_subsys(ss, i) {
1311 			if (strcmp(token, ss->name) &&
1312 			    strcmp(token, ss->legacy_name))
1313 				continue;
1314 
1315 			cgroup_no_v1_mask |= 1 << i;
1316 		}
1317 	}
1318 	return 1;
1319 }
1320 __setup("cgroup_no_v1=", cgroup_no_v1);
1321