1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/capability.c 4 * 5 * Copyright (C) 1997 Andrew Main <zefram@fysh.org> 6 * 7 * Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org> 8 * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net> 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/audit.h> 14 #include <linux/capability.h> 15 #include <linux/mm.h> 16 #include <linux/export.h> 17 #include <linux/security.h> 18 #include <linux/syscalls.h> 19 #include <linux/pid_namespace.h> 20 #include <linux/user_namespace.h> 21 #include <linux/uaccess.h> 22 23 /* 24 * Leveraged for setting/resetting capabilities 25 */ 26 27 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET; 28 EXPORT_SYMBOL(__cap_empty_set); 29 30 int file_caps_enabled = 1; 31 32 static int __init file_caps_disable(char *str) 33 { 34 file_caps_enabled = 0; 35 return 1; 36 } 37 __setup("no_file_caps", file_caps_disable); 38 39 #ifdef CONFIG_MULTIUSER 40 /* 41 * More recent versions of libcap are available from: 42 * 43 * http://www.kernel.org/pub/linux/libs/security/linux-privs/ 44 */ 45 46 static void warn_legacy_capability_use(void) 47 { 48 char name[sizeof(current->comm)]; 49 50 pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n", 51 get_task_comm(name, current)); 52 } 53 54 /* 55 * Version 2 capabilities worked fine, but the linux/capability.h file 56 * that accompanied their introduction encouraged their use without 57 * the necessary user-space source code changes. As such, we have 58 * created a version 3 with equivalent functionality to version 2, but 59 * with a header change to protect legacy source code from using 60 * version 2 when it wanted to use version 1. If your system has code 61 * that trips the following warning, it is using version 2 specific 62 * capabilities and may be doing so insecurely. 63 * 64 * The remedy is to either upgrade your version of libcap (to 2.10+, 65 * if the application is linked against it), or recompile your 66 * application with modern kernel headers and this warning will go 67 * away. 68 */ 69 70 static void warn_deprecated_v2(void) 71 { 72 char name[sizeof(current->comm)]; 73 74 pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n", 75 get_task_comm(name, current)); 76 } 77 78 /* 79 * Version check. Return the number of u32s in each capability flag 80 * array, or a negative value on error. 81 */ 82 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy) 83 { 84 __u32 version; 85 86 if (get_user(version, &header->version)) 87 return -EFAULT; 88 89 switch (version) { 90 case _LINUX_CAPABILITY_VERSION_1: 91 warn_legacy_capability_use(); 92 *tocopy = _LINUX_CAPABILITY_U32S_1; 93 break; 94 case _LINUX_CAPABILITY_VERSION_2: 95 warn_deprecated_v2(); 96 /* 97 * fall through - v3 is otherwise equivalent to v2. 98 */ 99 case _LINUX_CAPABILITY_VERSION_3: 100 *tocopy = _LINUX_CAPABILITY_U32S_3; 101 break; 102 default: 103 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version)) 104 return -EFAULT; 105 return -EINVAL; 106 } 107 108 return 0; 109 } 110 111 /* 112 * The only thing that can change the capabilities of the current 113 * process is the current process. As such, we can't be in this code 114 * at the same time as we are in the process of setting capabilities 115 * in this process. The net result is that we can limit our use of 116 * locks to when we are reading the caps of another process. 117 */ 118 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp, 119 kernel_cap_t *pIp, kernel_cap_t *pPp) 120 { 121 int ret; 122 123 if (pid && (pid != task_pid_vnr(current))) { 124 struct task_struct *target; 125 126 rcu_read_lock(); 127 128 target = find_task_by_vpid(pid); 129 if (!target) 130 ret = -ESRCH; 131 else 132 ret = security_capget(target, pEp, pIp, pPp); 133 134 rcu_read_unlock(); 135 } else 136 ret = security_capget(current, pEp, pIp, pPp); 137 138 return ret; 139 } 140 141 /** 142 * sys_capget - get the capabilities of a given process. 143 * @header: pointer to struct that contains capability version and 144 * target pid data 145 * @dataptr: pointer to struct that contains the effective, permitted, 146 * and inheritable capabilities that are returned 147 * 148 * Returns 0 on success and < 0 on error. 149 */ 150 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr) 151 { 152 int ret = 0; 153 pid_t pid; 154 unsigned tocopy; 155 kernel_cap_t pE, pI, pP; 156 157 ret = cap_validate_magic(header, &tocopy); 158 if ((dataptr == NULL) || (ret != 0)) 159 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret; 160 161 if (get_user(pid, &header->pid)) 162 return -EFAULT; 163 164 if (pid < 0) 165 return -EINVAL; 166 167 ret = cap_get_target_pid(pid, &pE, &pI, &pP); 168 if (!ret) { 169 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 170 unsigned i; 171 172 for (i = 0; i < tocopy; i++) { 173 kdata[i].effective = pE.cap[i]; 174 kdata[i].permitted = pP.cap[i]; 175 kdata[i].inheritable = pI.cap[i]; 176 } 177 178 /* 179 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S, 180 * we silently drop the upper capabilities here. This 181 * has the effect of making older libcap 182 * implementations implicitly drop upper capability 183 * bits when they perform a: capget/modify/capset 184 * sequence. 185 * 186 * This behavior is considered fail-safe 187 * behavior. Upgrading the application to a newer 188 * version of libcap will enable access to the newer 189 * capabilities. 190 * 191 * An alternative would be to return an error here 192 * (-ERANGE), but that causes legacy applications to 193 * unexpectedly fail; the capget/modify/capset aborts 194 * before modification is attempted and the application 195 * fails. 196 */ 197 if (copy_to_user(dataptr, kdata, tocopy 198 * sizeof(struct __user_cap_data_struct))) { 199 return -EFAULT; 200 } 201 } 202 203 return ret; 204 } 205 206 /** 207 * sys_capset - set capabilities for a process or (*) a group of processes 208 * @header: pointer to struct that contains capability version and 209 * target pid data 210 * @data: pointer to struct that contains the effective, permitted, 211 * and inheritable capabilities 212 * 213 * Set capabilities for the current process only. The ability to any other 214 * process(es) has been deprecated and removed. 215 * 216 * The restrictions on setting capabilities are specified as: 217 * 218 * I: any raised capabilities must be a subset of the old permitted 219 * P: any raised capabilities must be a subset of the old permitted 220 * E: must be set to a subset of new permitted 221 * 222 * Returns 0 on success and < 0 on error. 223 */ 224 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) 225 { 226 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 227 unsigned i, tocopy, copybytes; 228 kernel_cap_t inheritable, permitted, effective; 229 struct cred *new; 230 int ret; 231 pid_t pid; 232 233 ret = cap_validate_magic(header, &tocopy); 234 if (ret != 0) 235 return ret; 236 237 if (get_user(pid, &header->pid)) 238 return -EFAULT; 239 240 /* may only affect current now */ 241 if (pid != 0 && pid != task_pid_vnr(current)) 242 return -EPERM; 243 244 copybytes = tocopy * sizeof(struct __user_cap_data_struct); 245 if (copybytes > sizeof(kdata)) 246 return -EFAULT; 247 248 if (copy_from_user(&kdata, data, copybytes)) 249 return -EFAULT; 250 251 for (i = 0; i < tocopy; i++) { 252 effective.cap[i] = kdata[i].effective; 253 permitted.cap[i] = kdata[i].permitted; 254 inheritable.cap[i] = kdata[i].inheritable; 255 } 256 while (i < _KERNEL_CAPABILITY_U32S) { 257 effective.cap[i] = 0; 258 permitted.cap[i] = 0; 259 inheritable.cap[i] = 0; 260 i++; 261 } 262 263 effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 264 permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 265 inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 266 267 new = prepare_creds(); 268 if (!new) 269 return -ENOMEM; 270 271 ret = security_capset(new, current_cred(), 272 &effective, &inheritable, &permitted); 273 if (ret < 0) 274 goto error; 275 276 audit_log_capset(new, current_cred()); 277 278 return commit_creds(new); 279 280 error: 281 abort_creds(new); 282 return ret; 283 } 284 285 /** 286 * has_ns_capability - Does a task have a capability in a specific user ns 287 * @t: The task in question 288 * @ns: target user namespace 289 * @cap: The capability to be tested for 290 * 291 * Return true if the specified task has the given superior capability 292 * currently in effect to the specified user namespace, false if not. 293 * 294 * Note that this does not set PF_SUPERPRIV on the task. 295 */ 296 bool has_ns_capability(struct task_struct *t, 297 struct user_namespace *ns, int cap) 298 { 299 int ret; 300 301 rcu_read_lock(); 302 ret = security_capable(__task_cred(t), ns, cap); 303 rcu_read_unlock(); 304 305 return (ret == 0); 306 } 307 308 /** 309 * has_capability - Does a task have a capability in init_user_ns 310 * @t: The task in question 311 * @cap: The capability to be tested for 312 * 313 * Return true if the specified task has the given superior capability 314 * currently in effect to the initial user namespace, false if not. 315 * 316 * Note that this does not set PF_SUPERPRIV on the task. 317 */ 318 bool has_capability(struct task_struct *t, int cap) 319 { 320 return has_ns_capability(t, &init_user_ns, cap); 321 } 322 EXPORT_SYMBOL(has_capability); 323 324 /** 325 * has_ns_capability_noaudit - Does a task have a capability (unaudited) 326 * in a specific user ns. 327 * @t: The task in question 328 * @ns: target user namespace 329 * @cap: The capability to be tested for 330 * 331 * Return true if the specified task has the given superior capability 332 * currently in effect to the specified user namespace, false if not. 333 * Do not write an audit message for the check. 334 * 335 * Note that this does not set PF_SUPERPRIV on the task. 336 */ 337 bool has_ns_capability_noaudit(struct task_struct *t, 338 struct user_namespace *ns, int cap) 339 { 340 int ret; 341 342 rcu_read_lock(); 343 ret = security_capable_noaudit(__task_cred(t), ns, cap); 344 rcu_read_unlock(); 345 346 return (ret == 0); 347 } 348 349 /** 350 * has_capability_noaudit - Does a task have a capability (unaudited) in the 351 * initial user ns 352 * @t: The task in question 353 * @cap: The capability to be tested for 354 * 355 * Return true if the specified task has the given superior capability 356 * currently in effect to init_user_ns, false if not. Don't write an 357 * audit message for the check. 358 * 359 * Note that this does not set PF_SUPERPRIV on the task. 360 */ 361 bool has_capability_noaudit(struct task_struct *t, int cap) 362 { 363 return has_ns_capability_noaudit(t, &init_user_ns, cap); 364 } 365 366 static bool ns_capable_common(struct user_namespace *ns, int cap, bool audit) 367 { 368 int capable; 369 370 if (unlikely(!cap_valid(cap))) { 371 pr_crit("capable() called with invalid cap=%u\n", cap); 372 BUG(); 373 } 374 375 capable = audit ? security_capable(current_cred(), ns, cap) : 376 security_capable_noaudit(current_cred(), ns, cap); 377 if (capable == 0) { 378 current->flags |= PF_SUPERPRIV; 379 return true; 380 } 381 return false; 382 } 383 384 /** 385 * ns_capable - Determine if the current task has a superior capability in effect 386 * @ns: The usernamespace we want the capability in 387 * @cap: The capability to be tested for 388 * 389 * Return true if the current task has the given superior capability currently 390 * available for use, false if not. 391 * 392 * This sets PF_SUPERPRIV on the task if the capability is available on the 393 * assumption that it's about to be used. 394 */ 395 bool ns_capable(struct user_namespace *ns, int cap) 396 { 397 return ns_capable_common(ns, cap, true); 398 } 399 EXPORT_SYMBOL(ns_capable); 400 401 /** 402 * ns_capable_noaudit - Determine if the current task has a superior capability 403 * (unaudited) in effect 404 * @ns: The usernamespace we want the capability in 405 * @cap: The capability to be tested for 406 * 407 * Return true if the current task has the given superior capability currently 408 * available for use, false if not. 409 * 410 * This sets PF_SUPERPRIV on the task if the capability is available on the 411 * assumption that it's about to be used. 412 */ 413 bool ns_capable_noaudit(struct user_namespace *ns, int cap) 414 { 415 return ns_capable_common(ns, cap, false); 416 } 417 EXPORT_SYMBOL(ns_capable_noaudit); 418 419 /** 420 * capable - Determine if the current task has a superior capability in effect 421 * @cap: The capability to be tested for 422 * 423 * Return true if the current task has the given superior capability currently 424 * available for use, false if not. 425 * 426 * This sets PF_SUPERPRIV on the task if the capability is available on the 427 * assumption that it's about to be used. 428 */ 429 bool capable(int cap) 430 { 431 return ns_capable(&init_user_ns, cap); 432 } 433 EXPORT_SYMBOL(capable); 434 #endif /* CONFIG_MULTIUSER */ 435 436 /** 437 * file_ns_capable - Determine if the file's opener had a capability in effect 438 * @file: The file we want to check 439 * @ns: The usernamespace we want the capability in 440 * @cap: The capability to be tested for 441 * 442 * Return true if task that opened the file had a capability in effect 443 * when the file was opened. 444 * 445 * This does not set PF_SUPERPRIV because the caller may not 446 * actually be privileged. 447 */ 448 bool file_ns_capable(const struct file *file, struct user_namespace *ns, 449 int cap) 450 { 451 if (WARN_ON_ONCE(!cap_valid(cap))) 452 return false; 453 454 if (security_capable(file->f_cred, ns, cap) == 0) 455 return true; 456 457 return false; 458 } 459 EXPORT_SYMBOL(file_ns_capable); 460 461 /** 462 * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode? 463 * @ns: The user namespace in question 464 * @inode: The inode in question 465 * 466 * Return true if the inode uid and gid are within the namespace. 467 */ 468 bool privileged_wrt_inode_uidgid(struct user_namespace *ns, const struct inode *inode) 469 { 470 return kuid_has_mapping(ns, inode->i_uid) && 471 kgid_has_mapping(ns, inode->i_gid); 472 } 473 474 /** 475 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped 476 * @inode: The inode in question 477 * @cap: The capability in question 478 * 479 * Return true if the current task has the given capability targeted at 480 * its own user namespace and that the given inode's uid and gid are 481 * mapped into the current user namespace. 482 */ 483 bool capable_wrt_inode_uidgid(const struct inode *inode, int cap) 484 { 485 struct user_namespace *ns = current_user_ns(); 486 487 return ns_capable(ns, cap) && privileged_wrt_inode_uidgid(ns, inode); 488 } 489 EXPORT_SYMBOL(capable_wrt_inode_uidgid); 490 491 /** 492 * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace 493 * @tsk: The task that may be ptraced 494 * @ns: The user namespace to search for CAP_SYS_PTRACE in 495 * 496 * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE 497 * in the specified user namespace. 498 */ 499 bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns) 500 { 501 int ret = 0; /* An absent tracer adds no restrictions */ 502 const struct cred *cred; 503 rcu_read_lock(); 504 cred = rcu_dereference(tsk->ptracer_cred); 505 if (cred) 506 ret = security_capable_noaudit(cred, ns, CAP_SYS_PTRACE); 507 rcu_read_unlock(); 508 return (ret == 0); 509 } 510