xref: /openbmc/linux/kernel/capability.c (revision e23feb16)
1 /*
2  * linux/kernel/capability.c
3  *
4  * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
5  *
6  * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
7  * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
8  */
9 
10 #include <linux/audit.h>
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/export.h>
14 #include <linux/security.h>
15 #include <linux/syscalls.h>
16 #include <linux/pid_namespace.h>
17 #include <linux/user_namespace.h>
18 #include <asm/uaccess.h>
19 
20 /*
21  * Leveraged for setting/resetting capabilities
22  */
23 
24 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
25 
26 EXPORT_SYMBOL(__cap_empty_set);
27 
28 int file_caps_enabled = 1;
29 
30 static int __init file_caps_disable(char *str)
31 {
32 	file_caps_enabled = 0;
33 	return 1;
34 }
35 __setup("no_file_caps", file_caps_disable);
36 
37 /*
38  * More recent versions of libcap are available from:
39  *
40  *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
41  */
42 
43 static void warn_legacy_capability_use(void)
44 {
45 	static int warned;
46 	if (!warned) {
47 		char name[sizeof(current->comm)];
48 
49 		printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
50 		       " (legacy support in use)\n",
51 		       get_task_comm(name, current));
52 		warned = 1;
53 	}
54 }
55 
56 /*
57  * Version 2 capabilities worked fine, but the linux/capability.h file
58  * that accompanied their introduction encouraged their use without
59  * the necessary user-space source code changes. As such, we have
60  * created a version 3 with equivalent functionality to version 2, but
61  * with a header change to protect legacy source code from using
62  * version 2 when it wanted to use version 1. If your system has code
63  * that trips the following warning, it is using version 2 specific
64  * capabilities and may be doing so insecurely.
65  *
66  * The remedy is to either upgrade your version of libcap (to 2.10+,
67  * if the application is linked against it), or recompile your
68  * application with modern kernel headers and this warning will go
69  * away.
70  */
71 
72 static void warn_deprecated_v2(void)
73 {
74 	static int warned;
75 
76 	if (!warned) {
77 		char name[sizeof(current->comm)];
78 
79 		printk(KERN_INFO "warning: `%s' uses deprecated v2"
80 		       " capabilities in a way that may be insecure.\n",
81 		       get_task_comm(name, current));
82 		warned = 1;
83 	}
84 }
85 
86 /*
87  * Version check. Return the number of u32s in each capability flag
88  * array, or a negative value on error.
89  */
90 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
91 {
92 	__u32 version;
93 
94 	if (get_user(version, &header->version))
95 		return -EFAULT;
96 
97 	switch (version) {
98 	case _LINUX_CAPABILITY_VERSION_1:
99 		warn_legacy_capability_use();
100 		*tocopy = _LINUX_CAPABILITY_U32S_1;
101 		break;
102 	case _LINUX_CAPABILITY_VERSION_2:
103 		warn_deprecated_v2();
104 		/*
105 		 * fall through - v3 is otherwise equivalent to v2.
106 		 */
107 	case _LINUX_CAPABILITY_VERSION_3:
108 		*tocopy = _LINUX_CAPABILITY_U32S_3;
109 		break;
110 	default:
111 		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
112 			return -EFAULT;
113 		return -EINVAL;
114 	}
115 
116 	return 0;
117 }
118 
119 /*
120  * The only thing that can change the capabilities of the current
121  * process is the current process. As such, we can't be in this code
122  * at the same time as we are in the process of setting capabilities
123  * in this process. The net result is that we can limit our use of
124  * locks to when we are reading the caps of another process.
125  */
126 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
127 				     kernel_cap_t *pIp, kernel_cap_t *pPp)
128 {
129 	int ret;
130 
131 	if (pid && (pid != task_pid_vnr(current))) {
132 		struct task_struct *target;
133 
134 		rcu_read_lock();
135 
136 		target = find_task_by_vpid(pid);
137 		if (!target)
138 			ret = -ESRCH;
139 		else
140 			ret = security_capget(target, pEp, pIp, pPp);
141 
142 		rcu_read_unlock();
143 	} else
144 		ret = security_capget(current, pEp, pIp, pPp);
145 
146 	return ret;
147 }
148 
149 /**
150  * sys_capget - get the capabilities of a given process.
151  * @header: pointer to struct that contains capability version and
152  *	target pid data
153  * @dataptr: pointer to struct that contains the effective, permitted,
154  *	and inheritable capabilities that are returned
155  *
156  * Returns 0 on success and < 0 on error.
157  */
158 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
159 {
160 	int ret = 0;
161 	pid_t pid;
162 	unsigned tocopy;
163 	kernel_cap_t pE, pI, pP;
164 
165 	ret = cap_validate_magic(header, &tocopy);
166 	if ((dataptr == NULL) || (ret != 0))
167 		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
168 
169 	if (get_user(pid, &header->pid))
170 		return -EFAULT;
171 
172 	if (pid < 0)
173 		return -EINVAL;
174 
175 	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
176 	if (!ret) {
177 		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
178 		unsigned i;
179 
180 		for (i = 0; i < tocopy; i++) {
181 			kdata[i].effective = pE.cap[i];
182 			kdata[i].permitted = pP.cap[i];
183 			kdata[i].inheritable = pI.cap[i];
184 		}
185 
186 		/*
187 		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
188 		 * we silently drop the upper capabilities here. This
189 		 * has the effect of making older libcap
190 		 * implementations implicitly drop upper capability
191 		 * bits when they perform a: capget/modify/capset
192 		 * sequence.
193 		 *
194 		 * This behavior is considered fail-safe
195 		 * behavior. Upgrading the application to a newer
196 		 * version of libcap will enable access to the newer
197 		 * capabilities.
198 		 *
199 		 * An alternative would be to return an error here
200 		 * (-ERANGE), but that causes legacy applications to
201 		 * unexpectidly fail; the capget/modify/capset aborts
202 		 * before modification is attempted and the application
203 		 * fails.
204 		 */
205 		if (copy_to_user(dataptr, kdata, tocopy
206 				 * sizeof(struct __user_cap_data_struct))) {
207 			return -EFAULT;
208 		}
209 	}
210 
211 	return ret;
212 }
213 
214 /**
215  * sys_capset - set capabilities for a process or (*) a group of processes
216  * @header: pointer to struct that contains capability version and
217  *	target pid data
218  * @data: pointer to struct that contains the effective, permitted,
219  *	and inheritable capabilities
220  *
221  * Set capabilities for the current process only.  The ability to any other
222  * process(es) has been deprecated and removed.
223  *
224  * The restrictions on setting capabilities are specified as:
225  *
226  * I: any raised capabilities must be a subset of the old permitted
227  * P: any raised capabilities must be a subset of the old permitted
228  * E: must be set to a subset of new permitted
229  *
230  * Returns 0 on success and < 0 on error.
231  */
232 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
233 {
234 	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
235 	unsigned i, tocopy, copybytes;
236 	kernel_cap_t inheritable, permitted, effective;
237 	struct cred *new;
238 	int ret;
239 	pid_t pid;
240 
241 	ret = cap_validate_magic(header, &tocopy);
242 	if (ret != 0)
243 		return ret;
244 
245 	if (get_user(pid, &header->pid))
246 		return -EFAULT;
247 
248 	/* may only affect current now */
249 	if (pid != 0 && pid != task_pid_vnr(current))
250 		return -EPERM;
251 
252 	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
253 	if (copybytes > sizeof(kdata))
254 		return -EFAULT;
255 
256 	if (copy_from_user(&kdata, data, copybytes))
257 		return -EFAULT;
258 
259 	for (i = 0; i < tocopy; i++) {
260 		effective.cap[i] = kdata[i].effective;
261 		permitted.cap[i] = kdata[i].permitted;
262 		inheritable.cap[i] = kdata[i].inheritable;
263 	}
264 	while (i < _KERNEL_CAPABILITY_U32S) {
265 		effective.cap[i] = 0;
266 		permitted.cap[i] = 0;
267 		inheritable.cap[i] = 0;
268 		i++;
269 	}
270 
271 	new = prepare_creds();
272 	if (!new)
273 		return -ENOMEM;
274 
275 	ret = security_capset(new, current_cred(),
276 			      &effective, &inheritable, &permitted);
277 	if (ret < 0)
278 		goto error;
279 
280 	audit_log_capset(pid, new, current_cred());
281 
282 	return commit_creds(new);
283 
284 error:
285 	abort_creds(new);
286 	return ret;
287 }
288 
289 /**
290  * has_ns_capability - Does a task have a capability in a specific user ns
291  * @t: The task in question
292  * @ns: target user namespace
293  * @cap: The capability to be tested for
294  *
295  * Return true if the specified task has the given superior capability
296  * currently in effect to the specified user namespace, false if not.
297  *
298  * Note that this does not set PF_SUPERPRIV on the task.
299  */
300 bool has_ns_capability(struct task_struct *t,
301 		       struct user_namespace *ns, int cap)
302 {
303 	int ret;
304 
305 	rcu_read_lock();
306 	ret = security_capable(__task_cred(t), ns, cap);
307 	rcu_read_unlock();
308 
309 	return (ret == 0);
310 }
311 
312 /**
313  * has_capability - Does a task have a capability in init_user_ns
314  * @t: The task in question
315  * @cap: The capability to be tested for
316  *
317  * Return true if the specified task has the given superior capability
318  * currently in effect to the initial user namespace, false if not.
319  *
320  * Note that this does not set PF_SUPERPRIV on the task.
321  */
322 bool has_capability(struct task_struct *t, int cap)
323 {
324 	return has_ns_capability(t, &init_user_ns, cap);
325 }
326 
327 /**
328  * has_ns_capability_noaudit - Does a task have a capability (unaudited)
329  * in a specific user ns.
330  * @t: The task in question
331  * @ns: target user namespace
332  * @cap: The capability to be tested for
333  *
334  * Return true if the specified task has the given superior capability
335  * currently in effect to the specified user namespace, false if not.
336  * Do not write an audit message for the check.
337  *
338  * Note that this does not set PF_SUPERPRIV on the task.
339  */
340 bool has_ns_capability_noaudit(struct task_struct *t,
341 			       struct user_namespace *ns, int cap)
342 {
343 	int ret;
344 
345 	rcu_read_lock();
346 	ret = security_capable_noaudit(__task_cred(t), ns, cap);
347 	rcu_read_unlock();
348 
349 	return (ret == 0);
350 }
351 
352 /**
353  * has_capability_noaudit - Does a task have a capability (unaudited) in the
354  * initial user ns
355  * @t: The task in question
356  * @cap: The capability to be tested for
357  *
358  * Return true if the specified task has the given superior capability
359  * currently in effect to init_user_ns, false if not.  Don't write an
360  * audit message for the check.
361  *
362  * Note that this does not set PF_SUPERPRIV on the task.
363  */
364 bool has_capability_noaudit(struct task_struct *t, int cap)
365 {
366 	return has_ns_capability_noaudit(t, &init_user_ns, cap);
367 }
368 
369 /**
370  * ns_capable - Determine if the current task has a superior capability in effect
371  * @ns:  The usernamespace we want the capability in
372  * @cap: The capability to be tested for
373  *
374  * Return true if the current task has the given superior capability currently
375  * available for use, false if not.
376  *
377  * This sets PF_SUPERPRIV on the task if the capability is available on the
378  * assumption that it's about to be used.
379  */
380 bool ns_capable(struct user_namespace *ns, int cap)
381 {
382 	if (unlikely(!cap_valid(cap))) {
383 		printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);
384 		BUG();
385 	}
386 
387 	if (security_capable(current_cred(), ns, cap) == 0) {
388 		current->flags |= PF_SUPERPRIV;
389 		return true;
390 	}
391 	return false;
392 }
393 EXPORT_SYMBOL(ns_capable);
394 
395 /**
396  * file_ns_capable - Determine if the file's opener had a capability in effect
397  * @file:  The file we want to check
398  * @ns:  The usernamespace we want the capability in
399  * @cap: The capability to be tested for
400  *
401  * Return true if task that opened the file had a capability in effect
402  * when the file was opened.
403  *
404  * This does not set PF_SUPERPRIV because the caller may not
405  * actually be privileged.
406  */
407 bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap)
408 {
409 	if (WARN_ON_ONCE(!cap_valid(cap)))
410 		return false;
411 
412 	if (security_capable(file->f_cred, ns, cap) == 0)
413 		return true;
414 
415 	return false;
416 }
417 EXPORT_SYMBOL(file_ns_capable);
418 
419 /**
420  * capable - Determine if the current task has a superior capability in effect
421  * @cap: The capability to be tested for
422  *
423  * Return true if the current task has the given superior capability currently
424  * available for use, false if not.
425  *
426  * This sets PF_SUPERPRIV on the task if the capability is available on the
427  * assumption that it's about to be used.
428  */
429 bool capable(int cap)
430 {
431 	return ns_capable(&init_user_ns, cap);
432 }
433 EXPORT_SYMBOL(capable);
434 
435 /**
436  * inode_capable - Check superior capability over inode
437  * @inode: The inode in question
438  * @cap: The capability in question
439  *
440  * Return true if the current task has the given superior capability
441  * targeted at it's own user namespace and that the given inode is owned
442  * by the current user namespace or a child namespace.
443  *
444  * Currently we check to see if an inode is owned by the current
445  * user namespace by seeing if the inode's owner maps into the
446  * current user namespace.
447  *
448  */
449 bool inode_capable(const struct inode *inode, int cap)
450 {
451 	struct user_namespace *ns = current_user_ns();
452 
453 	return ns_capable(ns, cap) && kuid_has_mapping(ns, inode->i_uid);
454 }
455 EXPORT_SYMBOL(inode_capable);
456