xref: /openbmc/linux/kernel/capability.c (revision afb46f79)
1 /*
2  * linux/kernel/capability.c
3  *
4  * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
5  *
6  * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
7  * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/audit.h>
13 #include <linux/capability.h>
14 #include <linux/mm.h>
15 #include <linux/export.h>
16 #include <linux/security.h>
17 #include <linux/syscalls.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/user_namespace.h>
20 #include <asm/uaccess.h>
21 
22 /*
23  * Leveraged for setting/resetting capabilities
24  */
25 
26 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
27 
28 EXPORT_SYMBOL(__cap_empty_set);
29 
30 int file_caps_enabled = 1;
31 
32 static int __init file_caps_disable(char *str)
33 {
34 	file_caps_enabled = 0;
35 	return 1;
36 }
37 __setup("no_file_caps", file_caps_disable);
38 
39 /*
40  * More recent versions of libcap are available from:
41  *
42  *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
43  */
44 
45 static void warn_legacy_capability_use(void)
46 {
47 	char name[sizeof(current->comm)];
48 
49 	pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
50 		     get_task_comm(name, current));
51 }
52 
53 /*
54  * Version 2 capabilities worked fine, but the linux/capability.h file
55  * that accompanied their introduction encouraged their use without
56  * the necessary user-space source code changes. As such, we have
57  * created a version 3 with equivalent functionality to version 2, but
58  * with a header change to protect legacy source code from using
59  * version 2 when it wanted to use version 1. If your system has code
60  * that trips the following warning, it is using version 2 specific
61  * capabilities and may be doing so insecurely.
62  *
63  * The remedy is to either upgrade your version of libcap (to 2.10+,
64  * if the application is linked against it), or recompile your
65  * application with modern kernel headers and this warning will go
66  * away.
67  */
68 
69 static void warn_deprecated_v2(void)
70 {
71 	char name[sizeof(current->comm)];
72 
73 	pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
74 		     get_task_comm(name, current));
75 }
76 
77 /*
78  * Version check. Return the number of u32s in each capability flag
79  * array, or a negative value on error.
80  */
81 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
82 {
83 	__u32 version;
84 
85 	if (get_user(version, &header->version))
86 		return -EFAULT;
87 
88 	switch (version) {
89 	case _LINUX_CAPABILITY_VERSION_1:
90 		warn_legacy_capability_use();
91 		*tocopy = _LINUX_CAPABILITY_U32S_1;
92 		break;
93 	case _LINUX_CAPABILITY_VERSION_2:
94 		warn_deprecated_v2();
95 		/*
96 		 * fall through - v3 is otherwise equivalent to v2.
97 		 */
98 	case _LINUX_CAPABILITY_VERSION_3:
99 		*tocopy = _LINUX_CAPABILITY_U32S_3;
100 		break;
101 	default:
102 		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
103 			return -EFAULT;
104 		return -EINVAL;
105 	}
106 
107 	return 0;
108 }
109 
110 /*
111  * The only thing that can change the capabilities of the current
112  * process is the current process. As such, we can't be in this code
113  * at the same time as we are in the process of setting capabilities
114  * in this process. The net result is that we can limit our use of
115  * locks to when we are reading the caps of another process.
116  */
117 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
118 				     kernel_cap_t *pIp, kernel_cap_t *pPp)
119 {
120 	int ret;
121 
122 	if (pid && (pid != task_pid_vnr(current))) {
123 		struct task_struct *target;
124 
125 		rcu_read_lock();
126 
127 		target = find_task_by_vpid(pid);
128 		if (!target)
129 			ret = -ESRCH;
130 		else
131 			ret = security_capget(target, pEp, pIp, pPp);
132 
133 		rcu_read_unlock();
134 	} else
135 		ret = security_capget(current, pEp, pIp, pPp);
136 
137 	return ret;
138 }
139 
140 /**
141  * sys_capget - get the capabilities of a given process.
142  * @header: pointer to struct that contains capability version and
143  *	target pid data
144  * @dataptr: pointer to struct that contains the effective, permitted,
145  *	and inheritable capabilities that are returned
146  *
147  * Returns 0 on success and < 0 on error.
148  */
149 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
150 {
151 	int ret = 0;
152 	pid_t pid;
153 	unsigned tocopy;
154 	kernel_cap_t pE, pI, pP;
155 
156 	ret = cap_validate_magic(header, &tocopy);
157 	if ((dataptr == NULL) || (ret != 0))
158 		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
159 
160 	if (get_user(pid, &header->pid))
161 		return -EFAULT;
162 
163 	if (pid < 0)
164 		return -EINVAL;
165 
166 	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
167 	if (!ret) {
168 		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
169 		unsigned i;
170 
171 		for (i = 0; i < tocopy; i++) {
172 			kdata[i].effective = pE.cap[i];
173 			kdata[i].permitted = pP.cap[i];
174 			kdata[i].inheritable = pI.cap[i];
175 		}
176 
177 		/*
178 		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
179 		 * we silently drop the upper capabilities here. This
180 		 * has the effect of making older libcap
181 		 * implementations implicitly drop upper capability
182 		 * bits when they perform a: capget/modify/capset
183 		 * sequence.
184 		 *
185 		 * This behavior is considered fail-safe
186 		 * behavior. Upgrading the application to a newer
187 		 * version of libcap will enable access to the newer
188 		 * capabilities.
189 		 *
190 		 * An alternative would be to return an error here
191 		 * (-ERANGE), but that causes legacy applications to
192 		 * unexpectidly fail; the capget/modify/capset aborts
193 		 * before modification is attempted and the application
194 		 * fails.
195 		 */
196 		if (copy_to_user(dataptr, kdata, tocopy
197 				 * sizeof(struct __user_cap_data_struct))) {
198 			return -EFAULT;
199 		}
200 	}
201 
202 	return ret;
203 }
204 
205 /**
206  * sys_capset - set capabilities for a process or (*) a group of processes
207  * @header: pointer to struct that contains capability version and
208  *	target pid data
209  * @data: pointer to struct that contains the effective, permitted,
210  *	and inheritable capabilities
211  *
212  * Set capabilities for the current process only.  The ability to any other
213  * process(es) has been deprecated and removed.
214  *
215  * The restrictions on setting capabilities are specified as:
216  *
217  * I: any raised capabilities must be a subset of the old permitted
218  * P: any raised capabilities must be a subset of the old permitted
219  * E: must be set to a subset of new permitted
220  *
221  * Returns 0 on success and < 0 on error.
222  */
223 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
224 {
225 	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
226 	unsigned i, tocopy, copybytes;
227 	kernel_cap_t inheritable, permitted, effective;
228 	struct cred *new;
229 	int ret;
230 	pid_t pid;
231 
232 	ret = cap_validate_magic(header, &tocopy);
233 	if (ret != 0)
234 		return ret;
235 
236 	if (get_user(pid, &header->pid))
237 		return -EFAULT;
238 
239 	/* may only affect current now */
240 	if (pid != 0 && pid != task_pid_vnr(current))
241 		return -EPERM;
242 
243 	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
244 	if (copybytes > sizeof(kdata))
245 		return -EFAULT;
246 
247 	if (copy_from_user(&kdata, data, copybytes))
248 		return -EFAULT;
249 
250 	for (i = 0; i < tocopy; i++) {
251 		effective.cap[i] = kdata[i].effective;
252 		permitted.cap[i] = kdata[i].permitted;
253 		inheritable.cap[i] = kdata[i].inheritable;
254 	}
255 	while (i < _KERNEL_CAPABILITY_U32S) {
256 		effective.cap[i] = 0;
257 		permitted.cap[i] = 0;
258 		inheritable.cap[i] = 0;
259 		i++;
260 	}
261 
262 	new = prepare_creds();
263 	if (!new)
264 		return -ENOMEM;
265 
266 	ret = security_capset(new, current_cred(),
267 			      &effective, &inheritable, &permitted);
268 	if (ret < 0)
269 		goto error;
270 
271 	audit_log_capset(new, current_cred());
272 
273 	return commit_creds(new);
274 
275 error:
276 	abort_creds(new);
277 	return ret;
278 }
279 
280 /**
281  * has_ns_capability - Does a task have a capability in a specific user ns
282  * @t: The task in question
283  * @ns: target user namespace
284  * @cap: The capability to be tested for
285  *
286  * Return true if the specified task has the given superior capability
287  * currently in effect to the specified user namespace, false if not.
288  *
289  * Note that this does not set PF_SUPERPRIV on the task.
290  */
291 bool has_ns_capability(struct task_struct *t,
292 		       struct user_namespace *ns, int cap)
293 {
294 	int ret;
295 
296 	rcu_read_lock();
297 	ret = security_capable(__task_cred(t), ns, cap);
298 	rcu_read_unlock();
299 
300 	return (ret == 0);
301 }
302 
303 /**
304  * has_capability - Does a task have a capability in init_user_ns
305  * @t: The task in question
306  * @cap: The capability to be tested for
307  *
308  * Return true if the specified task has the given superior capability
309  * currently in effect to the initial user namespace, false if not.
310  *
311  * Note that this does not set PF_SUPERPRIV on the task.
312  */
313 bool has_capability(struct task_struct *t, int cap)
314 {
315 	return has_ns_capability(t, &init_user_ns, cap);
316 }
317 
318 /**
319  * has_ns_capability_noaudit - Does a task have a capability (unaudited)
320  * in a specific user ns.
321  * @t: The task in question
322  * @ns: target user namespace
323  * @cap: The capability to be tested for
324  *
325  * Return true if the specified task has the given superior capability
326  * currently in effect to the specified user namespace, false if not.
327  * Do not write an audit message for the check.
328  *
329  * Note that this does not set PF_SUPERPRIV on the task.
330  */
331 bool has_ns_capability_noaudit(struct task_struct *t,
332 			       struct user_namespace *ns, int cap)
333 {
334 	int ret;
335 
336 	rcu_read_lock();
337 	ret = security_capable_noaudit(__task_cred(t), ns, cap);
338 	rcu_read_unlock();
339 
340 	return (ret == 0);
341 }
342 
343 /**
344  * has_capability_noaudit - Does a task have a capability (unaudited) in the
345  * initial user ns
346  * @t: The task in question
347  * @cap: The capability to be tested for
348  *
349  * Return true if the specified task has the given superior capability
350  * currently in effect to init_user_ns, false if not.  Don't write an
351  * audit message for the check.
352  *
353  * Note that this does not set PF_SUPERPRIV on the task.
354  */
355 bool has_capability_noaudit(struct task_struct *t, int cap)
356 {
357 	return has_ns_capability_noaudit(t, &init_user_ns, cap);
358 }
359 
360 /**
361  * ns_capable - Determine if the current task has a superior capability in effect
362  * @ns:  The usernamespace we want the capability in
363  * @cap: The capability to be tested for
364  *
365  * Return true if the current task has the given superior capability currently
366  * available for use, false if not.
367  *
368  * This sets PF_SUPERPRIV on the task if the capability is available on the
369  * assumption that it's about to be used.
370  */
371 bool ns_capable(struct user_namespace *ns, int cap)
372 {
373 	if (unlikely(!cap_valid(cap))) {
374 		pr_crit("capable() called with invalid cap=%u\n", cap);
375 		BUG();
376 	}
377 
378 	if (security_capable(current_cred(), ns, cap) == 0) {
379 		current->flags |= PF_SUPERPRIV;
380 		return true;
381 	}
382 	return false;
383 }
384 EXPORT_SYMBOL(ns_capable);
385 
386 /**
387  * file_ns_capable - Determine if the file's opener had a capability in effect
388  * @file:  The file we want to check
389  * @ns:  The usernamespace we want the capability in
390  * @cap: The capability to be tested for
391  *
392  * Return true if task that opened the file had a capability in effect
393  * when the file was opened.
394  *
395  * This does not set PF_SUPERPRIV because the caller may not
396  * actually be privileged.
397  */
398 bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap)
399 {
400 	if (WARN_ON_ONCE(!cap_valid(cap)))
401 		return false;
402 
403 	if (security_capable(file->f_cred, ns, cap) == 0)
404 		return true;
405 
406 	return false;
407 }
408 EXPORT_SYMBOL(file_ns_capable);
409 
410 /**
411  * capable - Determine if the current task has a superior capability in effect
412  * @cap: The capability to be tested for
413  *
414  * Return true if the current task has the given superior capability currently
415  * available for use, false if not.
416  *
417  * This sets PF_SUPERPRIV on the task if the capability is available on the
418  * assumption that it's about to be used.
419  */
420 bool capable(int cap)
421 {
422 	return ns_capable(&init_user_ns, cap);
423 }
424 EXPORT_SYMBOL(capable);
425 
426 /**
427  * inode_capable - Check superior capability over inode
428  * @inode: The inode in question
429  * @cap: The capability in question
430  *
431  * Return true if the current task has the given superior capability
432  * targeted at it's own user namespace and that the given inode is owned
433  * by the current user namespace or a child namespace.
434  *
435  * Currently we check to see if an inode is owned by the current
436  * user namespace by seeing if the inode's owner maps into the
437  * current user namespace.
438  *
439  */
440 bool inode_capable(const struct inode *inode, int cap)
441 {
442 	struct user_namespace *ns = current_user_ns();
443 
444 	return ns_capable(ns, cap) && kuid_has_mapping(ns, inode->i_uid);
445 }
446 EXPORT_SYMBOL(inode_capable);
447