1 /* 2 * linux/kernel/capability.c 3 * 4 * Copyright (C) 1997 Andrew Main <zefram@fysh.org> 5 * 6 * Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org> 7 * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/audit.h> 13 #include <linux/capability.h> 14 #include <linux/mm.h> 15 #include <linux/export.h> 16 #include <linux/security.h> 17 #include <linux/syscalls.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/user_namespace.h> 20 #include <asm/uaccess.h> 21 22 /* 23 * Leveraged for setting/resetting capabilities 24 */ 25 26 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET; 27 28 EXPORT_SYMBOL(__cap_empty_set); 29 30 int file_caps_enabled = 1; 31 32 static int __init file_caps_disable(char *str) 33 { 34 file_caps_enabled = 0; 35 return 1; 36 } 37 __setup("no_file_caps", file_caps_disable); 38 39 /* 40 * More recent versions of libcap are available from: 41 * 42 * http://www.kernel.org/pub/linux/libs/security/linux-privs/ 43 */ 44 45 static void warn_legacy_capability_use(void) 46 { 47 char name[sizeof(current->comm)]; 48 49 pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n", 50 get_task_comm(name, current)); 51 } 52 53 /* 54 * Version 2 capabilities worked fine, but the linux/capability.h file 55 * that accompanied their introduction encouraged their use without 56 * the necessary user-space source code changes. As such, we have 57 * created a version 3 with equivalent functionality to version 2, but 58 * with a header change to protect legacy source code from using 59 * version 2 when it wanted to use version 1. If your system has code 60 * that trips the following warning, it is using version 2 specific 61 * capabilities and may be doing so insecurely. 62 * 63 * The remedy is to either upgrade your version of libcap (to 2.10+, 64 * if the application is linked against it), or recompile your 65 * application with modern kernel headers and this warning will go 66 * away. 67 */ 68 69 static void warn_deprecated_v2(void) 70 { 71 char name[sizeof(current->comm)]; 72 73 pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n", 74 get_task_comm(name, current)); 75 } 76 77 /* 78 * Version check. Return the number of u32s in each capability flag 79 * array, or a negative value on error. 80 */ 81 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy) 82 { 83 __u32 version; 84 85 if (get_user(version, &header->version)) 86 return -EFAULT; 87 88 switch (version) { 89 case _LINUX_CAPABILITY_VERSION_1: 90 warn_legacy_capability_use(); 91 *tocopy = _LINUX_CAPABILITY_U32S_1; 92 break; 93 case _LINUX_CAPABILITY_VERSION_2: 94 warn_deprecated_v2(); 95 /* 96 * fall through - v3 is otherwise equivalent to v2. 97 */ 98 case _LINUX_CAPABILITY_VERSION_3: 99 *tocopy = _LINUX_CAPABILITY_U32S_3; 100 break; 101 default: 102 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version)) 103 return -EFAULT; 104 return -EINVAL; 105 } 106 107 return 0; 108 } 109 110 /* 111 * The only thing that can change the capabilities of the current 112 * process is the current process. As such, we can't be in this code 113 * at the same time as we are in the process of setting capabilities 114 * in this process. The net result is that we can limit our use of 115 * locks to when we are reading the caps of another process. 116 */ 117 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp, 118 kernel_cap_t *pIp, kernel_cap_t *pPp) 119 { 120 int ret; 121 122 if (pid && (pid != task_pid_vnr(current))) { 123 struct task_struct *target; 124 125 rcu_read_lock(); 126 127 target = find_task_by_vpid(pid); 128 if (!target) 129 ret = -ESRCH; 130 else 131 ret = security_capget(target, pEp, pIp, pPp); 132 133 rcu_read_unlock(); 134 } else 135 ret = security_capget(current, pEp, pIp, pPp); 136 137 return ret; 138 } 139 140 /** 141 * sys_capget - get the capabilities of a given process. 142 * @header: pointer to struct that contains capability version and 143 * target pid data 144 * @dataptr: pointer to struct that contains the effective, permitted, 145 * and inheritable capabilities that are returned 146 * 147 * Returns 0 on success and < 0 on error. 148 */ 149 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr) 150 { 151 int ret = 0; 152 pid_t pid; 153 unsigned tocopy; 154 kernel_cap_t pE, pI, pP; 155 156 ret = cap_validate_magic(header, &tocopy); 157 if ((dataptr == NULL) || (ret != 0)) 158 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret; 159 160 if (get_user(pid, &header->pid)) 161 return -EFAULT; 162 163 if (pid < 0) 164 return -EINVAL; 165 166 ret = cap_get_target_pid(pid, &pE, &pI, &pP); 167 if (!ret) { 168 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 169 unsigned i; 170 171 for (i = 0; i < tocopy; i++) { 172 kdata[i].effective = pE.cap[i]; 173 kdata[i].permitted = pP.cap[i]; 174 kdata[i].inheritable = pI.cap[i]; 175 } 176 177 /* 178 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S, 179 * we silently drop the upper capabilities here. This 180 * has the effect of making older libcap 181 * implementations implicitly drop upper capability 182 * bits when they perform a: capget/modify/capset 183 * sequence. 184 * 185 * This behavior is considered fail-safe 186 * behavior. Upgrading the application to a newer 187 * version of libcap will enable access to the newer 188 * capabilities. 189 * 190 * An alternative would be to return an error here 191 * (-ERANGE), but that causes legacy applications to 192 * unexpectidly fail; the capget/modify/capset aborts 193 * before modification is attempted and the application 194 * fails. 195 */ 196 if (copy_to_user(dataptr, kdata, tocopy 197 * sizeof(struct __user_cap_data_struct))) { 198 return -EFAULT; 199 } 200 } 201 202 return ret; 203 } 204 205 /** 206 * sys_capset - set capabilities for a process or (*) a group of processes 207 * @header: pointer to struct that contains capability version and 208 * target pid data 209 * @data: pointer to struct that contains the effective, permitted, 210 * and inheritable capabilities 211 * 212 * Set capabilities for the current process only. The ability to any other 213 * process(es) has been deprecated and removed. 214 * 215 * The restrictions on setting capabilities are specified as: 216 * 217 * I: any raised capabilities must be a subset of the old permitted 218 * P: any raised capabilities must be a subset of the old permitted 219 * E: must be set to a subset of new permitted 220 * 221 * Returns 0 on success and < 0 on error. 222 */ 223 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) 224 { 225 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 226 unsigned i, tocopy, copybytes; 227 kernel_cap_t inheritable, permitted, effective; 228 struct cred *new; 229 int ret; 230 pid_t pid; 231 232 ret = cap_validate_magic(header, &tocopy); 233 if (ret != 0) 234 return ret; 235 236 if (get_user(pid, &header->pid)) 237 return -EFAULT; 238 239 /* may only affect current now */ 240 if (pid != 0 && pid != task_pid_vnr(current)) 241 return -EPERM; 242 243 copybytes = tocopy * sizeof(struct __user_cap_data_struct); 244 if (copybytes > sizeof(kdata)) 245 return -EFAULT; 246 247 if (copy_from_user(&kdata, data, copybytes)) 248 return -EFAULT; 249 250 for (i = 0; i < tocopy; i++) { 251 effective.cap[i] = kdata[i].effective; 252 permitted.cap[i] = kdata[i].permitted; 253 inheritable.cap[i] = kdata[i].inheritable; 254 } 255 while (i < _KERNEL_CAPABILITY_U32S) { 256 effective.cap[i] = 0; 257 permitted.cap[i] = 0; 258 inheritable.cap[i] = 0; 259 i++; 260 } 261 262 new = prepare_creds(); 263 if (!new) 264 return -ENOMEM; 265 266 ret = security_capset(new, current_cred(), 267 &effective, &inheritable, &permitted); 268 if (ret < 0) 269 goto error; 270 271 audit_log_capset(new, current_cred()); 272 273 return commit_creds(new); 274 275 error: 276 abort_creds(new); 277 return ret; 278 } 279 280 /** 281 * has_ns_capability - Does a task have a capability in a specific user ns 282 * @t: The task in question 283 * @ns: target user namespace 284 * @cap: The capability to be tested for 285 * 286 * Return true if the specified task has the given superior capability 287 * currently in effect to the specified user namespace, false if not. 288 * 289 * Note that this does not set PF_SUPERPRIV on the task. 290 */ 291 bool has_ns_capability(struct task_struct *t, 292 struct user_namespace *ns, int cap) 293 { 294 int ret; 295 296 rcu_read_lock(); 297 ret = security_capable(__task_cred(t), ns, cap); 298 rcu_read_unlock(); 299 300 return (ret == 0); 301 } 302 303 /** 304 * has_capability - Does a task have a capability in init_user_ns 305 * @t: The task in question 306 * @cap: The capability to be tested for 307 * 308 * Return true if the specified task has the given superior capability 309 * currently in effect to the initial user namespace, false if not. 310 * 311 * Note that this does not set PF_SUPERPRIV on the task. 312 */ 313 bool has_capability(struct task_struct *t, int cap) 314 { 315 return has_ns_capability(t, &init_user_ns, cap); 316 } 317 318 /** 319 * has_ns_capability_noaudit - Does a task have a capability (unaudited) 320 * in a specific user ns. 321 * @t: The task in question 322 * @ns: target user namespace 323 * @cap: The capability to be tested for 324 * 325 * Return true if the specified task has the given superior capability 326 * currently in effect to the specified user namespace, false if not. 327 * Do not write an audit message for the check. 328 * 329 * Note that this does not set PF_SUPERPRIV on the task. 330 */ 331 bool has_ns_capability_noaudit(struct task_struct *t, 332 struct user_namespace *ns, int cap) 333 { 334 int ret; 335 336 rcu_read_lock(); 337 ret = security_capable_noaudit(__task_cred(t), ns, cap); 338 rcu_read_unlock(); 339 340 return (ret == 0); 341 } 342 343 /** 344 * has_capability_noaudit - Does a task have a capability (unaudited) in the 345 * initial user ns 346 * @t: The task in question 347 * @cap: The capability to be tested for 348 * 349 * Return true if the specified task has the given superior capability 350 * currently in effect to init_user_ns, false if not. Don't write an 351 * audit message for the check. 352 * 353 * Note that this does not set PF_SUPERPRIV on the task. 354 */ 355 bool has_capability_noaudit(struct task_struct *t, int cap) 356 { 357 return has_ns_capability_noaudit(t, &init_user_ns, cap); 358 } 359 360 /** 361 * ns_capable - Determine if the current task has a superior capability in effect 362 * @ns: The usernamespace we want the capability in 363 * @cap: The capability to be tested for 364 * 365 * Return true if the current task has the given superior capability currently 366 * available for use, false if not. 367 * 368 * This sets PF_SUPERPRIV on the task if the capability is available on the 369 * assumption that it's about to be used. 370 */ 371 bool ns_capable(struct user_namespace *ns, int cap) 372 { 373 if (unlikely(!cap_valid(cap))) { 374 pr_crit("capable() called with invalid cap=%u\n", cap); 375 BUG(); 376 } 377 378 if (security_capable(current_cred(), ns, cap) == 0) { 379 current->flags |= PF_SUPERPRIV; 380 return true; 381 } 382 return false; 383 } 384 EXPORT_SYMBOL(ns_capable); 385 386 /** 387 * file_ns_capable - Determine if the file's opener had a capability in effect 388 * @file: The file we want to check 389 * @ns: The usernamespace we want the capability in 390 * @cap: The capability to be tested for 391 * 392 * Return true if task that opened the file had a capability in effect 393 * when the file was opened. 394 * 395 * This does not set PF_SUPERPRIV because the caller may not 396 * actually be privileged. 397 */ 398 bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap) 399 { 400 if (WARN_ON_ONCE(!cap_valid(cap))) 401 return false; 402 403 if (security_capable(file->f_cred, ns, cap) == 0) 404 return true; 405 406 return false; 407 } 408 EXPORT_SYMBOL(file_ns_capable); 409 410 /** 411 * capable - Determine if the current task has a superior capability in effect 412 * @cap: The capability to be tested for 413 * 414 * Return true if the current task has the given superior capability currently 415 * available for use, false if not. 416 * 417 * This sets PF_SUPERPRIV on the task if the capability is available on the 418 * assumption that it's about to be used. 419 */ 420 bool capable(int cap) 421 { 422 return ns_capable(&init_user_ns, cap); 423 } 424 EXPORT_SYMBOL(capable); 425 426 /** 427 * inode_capable - Check superior capability over inode 428 * @inode: The inode in question 429 * @cap: The capability in question 430 * 431 * Return true if the current task has the given superior capability 432 * targeted at it's own user namespace and that the given inode is owned 433 * by the current user namespace or a child namespace. 434 * 435 * Currently we check to see if an inode is owned by the current 436 * user namespace by seeing if the inode's owner maps into the 437 * current user namespace. 438 * 439 */ 440 bool inode_capable(const struct inode *inode, int cap) 441 { 442 struct user_namespace *ns = current_user_ns(); 443 444 return ns_capable(ns, cap) && kuid_has_mapping(ns, inode->i_uid); 445 } 446 EXPORT_SYMBOL(inode_capable); 447