xref: /openbmc/linux/kernel/capability.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * linux/kernel/capability.c
3  *
4  * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
5  *
6  * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
7  * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/security.h>
14 #include <linux/syscalls.h>
15 #include <linux/pid_namespace.h>
16 #include <asm/uaccess.h>
17 
18 /*
19  * This lock protects task->cap_* for all tasks including current.
20  * Locking rule: acquire this prior to tasklist_lock.
21  */
22 static DEFINE_SPINLOCK(task_capability_lock);
23 
24 /*
25  * Leveraged for setting/resetting capabilities
26  */
27 
28 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
29 const kernel_cap_t __cap_full_set = CAP_FULL_SET;
30 const kernel_cap_t __cap_init_eff_set = CAP_INIT_EFF_SET;
31 
32 EXPORT_SYMBOL(__cap_empty_set);
33 EXPORT_SYMBOL(__cap_full_set);
34 EXPORT_SYMBOL(__cap_init_eff_set);
35 
36 /*
37  * More recent versions of libcap are available from:
38  *
39  *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
40  */
41 
42 static void warn_legacy_capability_use(void)
43 {
44 	static int warned;
45 	if (!warned) {
46 		char name[sizeof(current->comm)];
47 
48 		printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
49 		       " (legacy support in use)\n",
50 		       get_task_comm(name, current));
51 		warned = 1;
52 	}
53 }
54 
55 /*
56  * Version 2 capabilities worked fine, but the linux/capability.h file
57  * that accompanied their introduction encouraged their use without
58  * the necessary user-space source code changes. As such, we have
59  * created a version 3 with equivalent functionality to version 2, but
60  * with a header change to protect legacy source code from using
61  * version 2 when it wanted to use version 1. If your system has code
62  * that trips the following warning, it is using version 2 specific
63  * capabilities and may be doing so insecurely.
64  *
65  * The remedy is to either upgrade your version of libcap (to 2.10+,
66  * if the application is linked against it), or recompile your
67  * application with modern kernel headers and this warning will go
68  * away.
69  */
70 
71 static void warn_deprecated_v2(void)
72 {
73 	static int warned;
74 
75 	if (!warned) {
76 		char name[sizeof(current->comm)];
77 
78 		printk(KERN_INFO "warning: `%s' uses deprecated v2"
79 		       " capabilities in a way that may be insecure.\n",
80 		       get_task_comm(name, current));
81 		warned = 1;
82 	}
83 }
84 
85 /*
86  * Version check. Return the number of u32s in each capability flag
87  * array, or a negative value on error.
88  */
89 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
90 {
91 	__u32 version;
92 
93 	if (get_user(version, &header->version))
94 		return -EFAULT;
95 
96 	switch (version) {
97 	case _LINUX_CAPABILITY_VERSION_1:
98 		warn_legacy_capability_use();
99 		*tocopy = _LINUX_CAPABILITY_U32S_1;
100 		break;
101 	case _LINUX_CAPABILITY_VERSION_2:
102 		warn_deprecated_v2();
103 		/*
104 		 * fall through - v3 is otherwise equivalent to v2.
105 		 */
106 	case _LINUX_CAPABILITY_VERSION_3:
107 		*tocopy = _LINUX_CAPABILITY_U32S_3;
108 		break;
109 	default:
110 		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
111 			return -EFAULT;
112 		return -EINVAL;
113 	}
114 
115 	return 0;
116 }
117 
118 #ifndef CONFIG_SECURITY_FILE_CAPABILITIES
119 
120 /*
121  * Without filesystem capability support, we nominally support one process
122  * setting the capabilities of another
123  */
124 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
125 				     kernel_cap_t *pIp, kernel_cap_t *pPp)
126 {
127 	struct task_struct *target;
128 	int ret;
129 
130 	spin_lock(&task_capability_lock);
131 	read_lock(&tasklist_lock);
132 
133 	if (pid && pid != task_pid_vnr(current)) {
134 		target = find_task_by_vpid(pid);
135 		if (!target) {
136 			ret = -ESRCH;
137 			goto out;
138 		}
139 	} else
140 		target = current;
141 
142 	ret = security_capget(target, pEp, pIp, pPp);
143 
144 out:
145 	read_unlock(&tasklist_lock);
146 	spin_unlock(&task_capability_lock);
147 
148 	return ret;
149 }
150 
151 /*
152  * cap_set_pg - set capabilities for all processes in a given process
153  * group.  We call this holding task_capability_lock and tasklist_lock.
154  */
155 static inline int cap_set_pg(int pgrp_nr, kernel_cap_t *effective,
156 			     kernel_cap_t *inheritable,
157 			     kernel_cap_t *permitted)
158 {
159 	struct task_struct *g, *target;
160 	int ret = -EPERM;
161 	int found = 0;
162 	struct pid *pgrp;
163 
164 	spin_lock(&task_capability_lock);
165 	read_lock(&tasklist_lock);
166 
167 	pgrp = find_vpid(pgrp_nr);
168 	do_each_pid_task(pgrp, PIDTYPE_PGID, g) {
169 		target = g;
170 		while_each_thread(g, target) {
171 			if (!security_capset_check(target, effective,
172 						   inheritable, permitted)) {
173 				security_capset_set(target, effective,
174 						    inheritable, permitted);
175 				ret = 0;
176 			}
177 			found = 1;
178 		}
179 	} while_each_pid_task(pgrp, PIDTYPE_PGID, g);
180 
181 	read_unlock(&tasklist_lock);
182 	spin_unlock(&task_capability_lock);
183 
184 	if (!found)
185 		ret = 0;
186 	return ret;
187 }
188 
189 /*
190  * cap_set_all - set capabilities for all processes other than init
191  * and self.  We call this holding task_capability_lock and tasklist_lock.
192  */
193 static inline int cap_set_all(kernel_cap_t *effective,
194 			      kernel_cap_t *inheritable,
195 			      kernel_cap_t *permitted)
196 {
197 	struct task_struct *g, *target;
198 	int ret = -EPERM;
199 	int found = 0;
200 
201 	spin_lock(&task_capability_lock);
202 	read_lock(&tasklist_lock);
203 
204 	do_each_thread(g, target) {
205 		if (target == current
206 		    || is_container_init(target->group_leader))
207 			continue;
208 		found = 1;
209 		if (security_capset_check(target, effective, inheritable,
210 					  permitted))
211 			continue;
212 		ret = 0;
213 		security_capset_set(target, effective, inheritable, permitted);
214 	} while_each_thread(g, target);
215 
216 	read_unlock(&tasklist_lock);
217 	spin_unlock(&task_capability_lock);
218 
219 	if (!found)
220 		ret = 0;
221 
222 	return ret;
223 }
224 
225 /*
226  * Given the target pid does not refer to the current process we
227  * need more elaborate support... (This support is not present when
228  * filesystem capabilities are configured.)
229  */
230 static inline int do_sys_capset_other_tasks(pid_t pid, kernel_cap_t *effective,
231 					    kernel_cap_t *inheritable,
232 					    kernel_cap_t *permitted)
233 {
234 	struct task_struct *target;
235 	int ret;
236 
237 	if (!capable(CAP_SETPCAP))
238 		return -EPERM;
239 
240 	if (pid == -1)	          /* all procs other than current and init */
241 		return cap_set_all(effective, inheritable, permitted);
242 
243 	else if (pid < 0)                    /* all procs in process group */
244 		return cap_set_pg(-pid, effective, inheritable, permitted);
245 
246 	/* target != current */
247 	spin_lock(&task_capability_lock);
248 	read_lock(&tasklist_lock);
249 
250 	target = find_task_by_vpid(pid);
251 	if (!target)
252 		ret = -ESRCH;
253 	else {
254 		ret = security_capset_check(target, effective, inheritable,
255 					    permitted);
256 
257 		/* having verified that the proposed changes are legal,
258 		   we now put them into effect. */
259 		if (!ret)
260 			security_capset_set(target, effective, inheritable,
261 					    permitted);
262 	}
263 
264 	read_unlock(&tasklist_lock);
265 	spin_unlock(&task_capability_lock);
266 
267 	return ret;
268 }
269 
270 #else /* ie., def CONFIG_SECURITY_FILE_CAPABILITIES */
271 
272 /*
273  * If we have configured with filesystem capability support, then the
274  * only thing that can change the capabilities of the current process
275  * is the current process. As such, we can't be in this code at the
276  * same time as we are in the process of setting capabilities in this
277  * process. The net result is that we can limit our use of locks to
278  * when we are reading the caps of another process.
279  */
280 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
281 				     kernel_cap_t *pIp, kernel_cap_t *pPp)
282 {
283 	int ret;
284 
285 	if (pid && (pid != task_pid_vnr(current))) {
286 		struct task_struct *target;
287 
288 		spin_lock(&task_capability_lock);
289 		read_lock(&tasklist_lock);
290 
291 		target = find_task_by_vpid(pid);
292 		if (!target)
293 			ret = -ESRCH;
294 		else
295 			ret = security_capget(target, pEp, pIp, pPp);
296 
297 		read_unlock(&tasklist_lock);
298 		spin_unlock(&task_capability_lock);
299 	} else
300 		ret = security_capget(current, pEp, pIp, pPp);
301 
302 	return ret;
303 }
304 
305 /*
306  * With filesystem capability support configured, the kernel does not
307  * permit the changing of capabilities in one process by another
308  * process. (CAP_SETPCAP has much less broad semantics when configured
309  * this way.)
310  */
311 static inline int do_sys_capset_other_tasks(pid_t pid,
312 					    kernel_cap_t *effective,
313 					    kernel_cap_t *inheritable,
314 					    kernel_cap_t *permitted)
315 {
316 	return -EPERM;
317 }
318 
319 #endif /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
320 
321 /*
322  * Atomically modify the effective capabilities returning the original
323  * value. No permission check is performed here - it is assumed that the
324  * caller is permitted to set the desired effective capabilities.
325  */
326 kernel_cap_t cap_set_effective(const kernel_cap_t pE_new)
327 {
328 	kernel_cap_t pE_old;
329 
330 	spin_lock(&task_capability_lock);
331 
332 	pE_old = current->cap_effective;
333 	current->cap_effective = pE_new;
334 
335 	spin_unlock(&task_capability_lock);
336 
337 	return pE_old;
338 }
339 
340 EXPORT_SYMBOL(cap_set_effective);
341 
342 /**
343  * sys_capget - get the capabilities of a given process.
344  * @header: pointer to struct that contains capability version and
345  *	target pid data
346  * @dataptr: pointer to struct that contains the effective, permitted,
347  *	and inheritable capabilities that are returned
348  *
349  * Returns 0 on success and < 0 on error.
350  */
351 asmlinkage long sys_capget(cap_user_header_t header, cap_user_data_t dataptr)
352 {
353 	int ret = 0;
354 	pid_t pid;
355 	unsigned tocopy;
356 	kernel_cap_t pE, pI, pP;
357 
358 	ret = cap_validate_magic(header, &tocopy);
359 	if (ret != 0)
360 		return ret;
361 
362 	if (get_user(pid, &header->pid))
363 		return -EFAULT;
364 
365 	if (pid < 0)
366 		return -EINVAL;
367 
368 	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
369 
370 	if (!ret) {
371 		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
372 		unsigned i;
373 
374 		for (i = 0; i < tocopy; i++) {
375 			kdata[i].effective = pE.cap[i];
376 			kdata[i].permitted = pP.cap[i];
377 			kdata[i].inheritable = pI.cap[i];
378 		}
379 
380 		/*
381 		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
382 		 * we silently drop the upper capabilities here. This
383 		 * has the effect of making older libcap
384 		 * implementations implicitly drop upper capability
385 		 * bits when they perform a: capget/modify/capset
386 		 * sequence.
387 		 *
388 		 * This behavior is considered fail-safe
389 		 * behavior. Upgrading the application to a newer
390 		 * version of libcap will enable access to the newer
391 		 * capabilities.
392 		 *
393 		 * An alternative would be to return an error here
394 		 * (-ERANGE), but that causes legacy applications to
395 		 * unexpectidly fail; the capget/modify/capset aborts
396 		 * before modification is attempted and the application
397 		 * fails.
398 		 */
399 		if (copy_to_user(dataptr, kdata, tocopy
400 				 * sizeof(struct __user_cap_data_struct))) {
401 			return -EFAULT;
402 		}
403 	}
404 
405 	return ret;
406 }
407 
408 /**
409  * sys_capset - set capabilities for a process or (*) a group of processes
410  * @header: pointer to struct that contains capability version and
411  *	target pid data
412  * @data: pointer to struct that contains the effective, permitted,
413  *	and inheritable capabilities
414  *
415  * Set capabilities for a given process, all processes, or all
416  * processes in a given process group.
417  *
418  * The restrictions on setting capabilities are specified as:
419  *
420  * [pid is for the 'target' task.  'current' is the calling task.]
421  *
422  * I: any raised capabilities must be a subset of the (old current) permitted
423  * P: any raised capabilities must be a subset of the (old current) permitted
424  * E: must be set to a subset of (new target) permitted
425  *
426  * Returns 0 on success and < 0 on error.
427  */
428 asmlinkage long sys_capset(cap_user_header_t header, const cap_user_data_t data)
429 {
430 	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
431 	unsigned i, tocopy;
432 	kernel_cap_t inheritable, permitted, effective;
433 	int ret;
434 	pid_t pid;
435 
436 	ret = cap_validate_magic(header, &tocopy);
437 	if (ret != 0)
438 		return ret;
439 
440 	if (get_user(pid, &header->pid))
441 		return -EFAULT;
442 
443 	if (copy_from_user(&kdata, data, tocopy
444 			   * sizeof(struct __user_cap_data_struct))) {
445 		return -EFAULT;
446 	}
447 
448 	for (i = 0; i < tocopy; i++) {
449 		effective.cap[i] = kdata[i].effective;
450 		permitted.cap[i] = kdata[i].permitted;
451 		inheritable.cap[i] = kdata[i].inheritable;
452 	}
453 	while (i < _KERNEL_CAPABILITY_U32S) {
454 		effective.cap[i] = 0;
455 		permitted.cap[i] = 0;
456 		inheritable.cap[i] = 0;
457 		i++;
458 	}
459 
460 	if (pid && (pid != task_pid_vnr(current)))
461 		ret = do_sys_capset_other_tasks(pid, &effective, &inheritable,
462 						&permitted);
463 	else {
464 		/*
465 		 * This lock is required even when filesystem
466 		 * capability support is configured - it protects the
467 		 * sys_capget() call from returning incorrect data in
468 		 * the case that the targeted process is not the
469 		 * current one.
470 		 */
471 		spin_lock(&task_capability_lock);
472 
473 		ret = security_capset_check(current, &effective, &inheritable,
474 					    &permitted);
475 		/*
476 		 * Having verified that the proposed changes are
477 		 * legal, we now put them into effect.
478 		 */
479 		if (!ret)
480 			security_capset_set(current, &effective, &inheritable,
481 					    &permitted);
482 		spin_unlock(&task_capability_lock);
483 	}
484 
485 
486 	return ret;
487 }
488 
489 /**
490  * capable - Determine if the current task has a superior capability in effect
491  * @cap: The capability to be tested for
492  *
493  * Return true if the current task has the given superior capability currently
494  * available for use, false if not.
495  *
496  * This sets PF_SUPERPRIV on the task if the capability is available on the
497  * assumption that it's about to be used.
498  */
499 int capable(int cap)
500 {
501 	if (has_capability(current, cap)) {
502 		current->flags |= PF_SUPERPRIV;
503 		return 1;
504 	}
505 	return 0;
506 }
507 EXPORT_SYMBOL(capable);
508