1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/capability.c 4 * 5 * Copyright (C) 1997 Andrew Main <zefram@fysh.org> 6 * 7 * Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org> 8 * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net> 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/audit.h> 14 #include <linux/capability.h> 15 #include <linux/mm.h> 16 #include <linux/export.h> 17 #include <linux/security.h> 18 #include <linux/syscalls.h> 19 #include <linux/pid_namespace.h> 20 #include <linux/user_namespace.h> 21 #include <linux/uaccess.h> 22 23 /* 24 * Leveraged for setting/resetting capabilities 25 */ 26 27 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET; 28 EXPORT_SYMBOL(__cap_empty_set); 29 30 int file_caps_enabled = 1; 31 32 static int __init file_caps_disable(char *str) 33 { 34 file_caps_enabled = 0; 35 return 1; 36 } 37 __setup("no_file_caps", file_caps_disable); 38 39 #ifdef CONFIG_MULTIUSER 40 /* 41 * More recent versions of libcap are available from: 42 * 43 * http://www.kernel.org/pub/linux/libs/security/linux-privs/ 44 */ 45 46 static void warn_legacy_capability_use(void) 47 { 48 char name[sizeof(current->comm)]; 49 50 pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n", 51 get_task_comm(name, current)); 52 } 53 54 /* 55 * Version 2 capabilities worked fine, but the linux/capability.h file 56 * that accompanied their introduction encouraged their use without 57 * the necessary user-space source code changes. As such, we have 58 * created a version 3 with equivalent functionality to version 2, but 59 * with a header change to protect legacy source code from using 60 * version 2 when it wanted to use version 1. If your system has code 61 * that trips the following warning, it is using version 2 specific 62 * capabilities and may be doing so insecurely. 63 * 64 * The remedy is to either upgrade your version of libcap (to 2.10+, 65 * if the application is linked against it), or recompile your 66 * application with modern kernel headers and this warning will go 67 * away. 68 */ 69 70 static void warn_deprecated_v2(void) 71 { 72 char name[sizeof(current->comm)]; 73 74 pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n", 75 get_task_comm(name, current)); 76 } 77 78 /* 79 * Version check. Return the number of u32s in each capability flag 80 * array, or a negative value on error. 81 */ 82 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy) 83 { 84 __u32 version; 85 86 if (get_user(version, &header->version)) 87 return -EFAULT; 88 89 switch (version) { 90 case _LINUX_CAPABILITY_VERSION_1: 91 warn_legacy_capability_use(); 92 *tocopy = _LINUX_CAPABILITY_U32S_1; 93 break; 94 case _LINUX_CAPABILITY_VERSION_2: 95 warn_deprecated_v2(); 96 fallthrough; /* v3 is otherwise equivalent to v2 */ 97 case _LINUX_CAPABILITY_VERSION_3: 98 *tocopy = _LINUX_CAPABILITY_U32S_3; 99 break; 100 default: 101 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version)) 102 return -EFAULT; 103 return -EINVAL; 104 } 105 106 return 0; 107 } 108 109 /* 110 * The only thing that can change the capabilities of the current 111 * process is the current process. As such, we can't be in this code 112 * at the same time as we are in the process of setting capabilities 113 * in this process. The net result is that we can limit our use of 114 * locks to when we are reading the caps of another process. 115 */ 116 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp, 117 kernel_cap_t *pIp, kernel_cap_t *pPp) 118 { 119 int ret; 120 121 if (pid && (pid != task_pid_vnr(current))) { 122 struct task_struct *target; 123 124 rcu_read_lock(); 125 126 target = find_task_by_vpid(pid); 127 if (!target) 128 ret = -ESRCH; 129 else 130 ret = security_capget(target, pEp, pIp, pPp); 131 132 rcu_read_unlock(); 133 } else 134 ret = security_capget(current, pEp, pIp, pPp); 135 136 return ret; 137 } 138 139 /** 140 * sys_capget - get the capabilities of a given process. 141 * @header: pointer to struct that contains capability version and 142 * target pid data 143 * @dataptr: pointer to struct that contains the effective, permitted, 144 * and inheritable capabilities that are returned 145 * 146 * Returns 0 on success and < 0 on error. 147 */ 148 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr) 149 { 150 int ret = 0; 151 pid_t pid; 152 unsigned tocopy; 153 kernel_cap_t pE, pI, pP; 154 155 ret = cap_validate_magic(header, &tocopy); 156 if ((dataptr == NULL) || (ret != 0)) 157 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret; 158 159 if (get_user(pid, &header->pid)) 160 return -EFAULT; 161 162 if (pid < 0) 163 return -EINVAL; 164 165 ret = cap_get_target_pid(pid, &pE, &pI, &pP); 166 if (!ret) { 167 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 168 unsigned i; 169 170 for (i = 0; i < tocopy; i++) { 171 kdata[i].effective = pE.cap[i]; 172 kdata[i].permitted = pP.cap[i]; 173 kdata[i].inheritable = pI.cap[i]; 174 } 175 176 /* 177 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S, 178 * we silently drop the upper capabilities here. This 179 * has the effect of making older libcap 180 * implementations implicitly drop upper capability 181 * bits when they perform a: capget/modify/capset 182 * sequence. 183 * 184 * This behavior is considered fail-safe 185 * behavior. Upgrading the application to a newer 186 * version of libcap will enable access to the newer 187 * capabilities. 188 * 189 * An alternative would be to return an error here 190 * (-ERANGE), but that causes legacy applications to 191 * unexpectedly fail; the capget/modify/capset aborts 192 * before modification is attempted and the application 193 * fails. 194 */ 195 if (copy_to_user(dataptr, kdata, tocopy 196 * sizeof(struct __user_cap_data_struct))) { 197 return -EFAULT; 198 } 199 } 200 201 return ret; 202 } 203 204 /** 205 * sys_capset - set capabilities for a process or (*) a group of processes 206 * @header: pointer to struct that contains capability version and 207 * target pid data 208 * @data: pointer to struct that contains the effective, permitted, 209 * and inheritable capabilities 210 * 211 * Set capabilities for the current process only. The ability to any other 212 * process(es) has been deprecated and removed. 213 * 214 * The restrictions on setting capabilities are specified as: 215 * 216 * I: any raised capabilities must be a subset of the old permitted 217 * P: any raised capabilities must be a subset of the old permitted 218 * E: must be set to a subset of new permitted 219 * 220 * Returns 0 on success and < 0 on error. 221 */ 222 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) 223 { 224 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 225 unsigned i, tocopy, copybytes; 226 kernel_cap_t inheritable, permitted, effective; 227 struct cred *new; 228 int ret; 229 pid_t pid; 230 231 ret = cap_validate_magic(header, &tocopy); 232 if (ret != 0) 233 return ret; 234 235 if (get_user(pid, &header->pid)) 236 return -EFAULT; 237 238 /* may only affect current now */ 239 if (pid != 0 && pid != task_pid_vnr(current)) 240 return -EPERM; 241 242 copybytes = tocopy * sizeof(struct __user_cap_data_struct); 243 if (copybytes > sizeof(kdata)) 244 return -EFAULT; 245 246 if (copy_from_user(&kdata, data, copybytes)) 247 return -EFAULT; 248 249 for (i = 0; i < tocopy; i++) { 250 effective.cap[i] = kdata[i].effective; 251 permitted.cap[i] = kdata[i].permitted; 252 inheritable.cap[i] = kdata[i].inheritable; 253 } 254 while (i < _KERNEL_CAPABILITY_U32S) { 255 effective.cap[i] = 0; 256 permitted.cap[i] = 0; 257 inheritable.cap[i] = 0; 258 i++; 259 } 260 261 effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 262 permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 263 inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 264 265 new = prepare_creds(); 266 if (!new) 267 return -ENOMEM; 268 269 ret = security_capset(new, current_cred(), 270 &effective, &inheritable, &permitted); 271 if (ret < 0) 272 goto error; 273 274 audit_log_capset(new, current_cred()); 275 276 return commit_creds(new); 277 278 error: 279 abort_creds(new); 280 return ret; 281 } 282 283 /** 284 * has_ns_capability - Does a task have a capability in a specific user ns 285 * @t: The task in question 286 * @ns: target user namespace 287 * @cap: The capability to be tested for 288 * 289 * Return true if the specified task has the given superior capability 290 * currently in effect to the specified user namespace, false if not. 291 * 292 * Note that this does not set PF_SUPERPRIV on the task. 293 */ 294 bool has_ns_capability(struct task_struct *t, 295 struct user_namespace *ns, int cap) 296 { 297 int ret; 298 299 rcu_read_lock(); 300 ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NONE); 301 rcu_read_unlock(); 302 303 return (ret == 0); 304 } 305 306 /** 307 * has_capability - Does a task have a capability in init_user_ns 308 * @t: The task in question 309 * @cap: The capability to be tested for 310 * 311 * Return true if the specified task has the given superior capability 312 * currently in effect to the initial user namespace, false if not. 313 * 314 * Note that this does not set PF_SUPERPRIV on the task. 315 */ 316 bool has_capability(struct task_struct *t, int cap) 317 { 318 return has_ns_capability(t, &init_user_ns, cap); 319 } 320 EXPORT_SYMBOL(has_capability); 321 322 /** 323 * has_ns_capability_noaudit - Does a task have a capability (unaudited) 324 * in a specific user ns. 325 * @t: The task in question 326 * @ns: target user namespace 327 * @cap: The capability to be tested for 328 * 329 * Return true if the specified task has the given superior capability 330 * currently in effect to the specified user namespace, false if not. 331 * Do not write an audit message for the check. 332 * 333 * Note that this does not set PF_SUPERPRIV on the task. 334 */ 335 bool has_ns_capability_noaudit(struct task_struct *t, 336 struct user_namespace *ns, int cap) 337 { 338 int ret; 339 340 rcu_read_lock(); 341 ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NOAUDIT); 342 rcu_read_unlock(); 343 344 return (ret == 0); 345 } 346 347 /** 348 * has_capability_noaudit - Does a task have a capability (unaudited) in the 349 * initial user ns 350 * @t: The task in question 351 * @cap: The capability to be tested for 352 * 353 * Return true if the specified task has the given superior capability 354 * currently in effect to init_user_ns, false if not. Don't write an 355 * audit message for the check. 356 * 357 * Note that this does not set PF_SUPERPRIV on the task. 358 */ 359 bool has_capability_noaudit(struct task_struct *t, int cap) 360 { 361 return has_ns_capability_noaudit(t, &init_user_ns, cap); 362 } 363 364 static bool ns_capable_common(struct user_namespace *ns, 365 int cap, 366 unsigned int opts) 367 { 368 int capable; 369 370 if (unlikely(!cap_valid(cap))) { 371 pr_crit("capable() called with invalid cap=%u\n", cap); 372 BUG(); 373 } 374 375 capable = security_capable(current_cred(), ns, cap, opts); 376 if (capable == 0) { 377 current->flags |= PF_SUPERPRIV; 378 return true; 379 } 380 return false; 381 } 382 383 /** 384 * ns_capable - Determine if the current task has a superior capability in effect 385 * @ns: The usernamespace we want the capability in 386 * @cap: The capability to be tested for 387 * 388 * Return true if the current task has the given superior capability currently 389 * available for use, false if not. 390 * 391 * This sets PF_SUPERPRIV on the task if the capability is available on the 392 * assumption that it's about to be used. 393 */ 394 bool ns_capable(struct user_namespace *ns, int cap) 395 { 396 return ns_capable_common(ns, cap, CAP_OPT_NONE); 397 } 398 EXPORT_SYMBOL(ns_capable); 399 400 /** 401 * ns_capable_noaudit - Determine if the current task has a superior capability 402 * (unaudited) in effect 403 * @ns: The usernamespace we want the capability in 404 * @cap: The capability to be tested for 405 * 406 * Return true if the current task has the given superior capability currently 407 * available for use, false if not. 408 * 409 * This sets PF_SUPERPRIV on the task if the capability is available on the 410 * assumption that it's about to be used. 411 */ 412 bool ns_capable_noaudit(struct user_namespace *ns, int cap) 413 { 414 return ns_capable_common(ns, cap, CAP_OPT_NOAUDIT); 415 } 416 EXPORT_SYMBOL(ns_capable_noaudit); 417 418 /** 419 * ns_capable_setid - Determine if the current task has a superior capability 420 * in effect, while signalling that this check is being done from within a 421 * setid or setgroups syscall. 422 * @ns: The usernamespace we want the capability in 423 * @cap: The capability to be tested for 424 * 425 * Return true if the current task has the given superior capability currently 426 * available for use, false if not. 427 * 428 * This sets PF_SUPERPRIV on the task if the capability is available on the 429 * assumption that it's about to be used. 430 */ 431 bool ns_capable_setid(struct user_namespace *ns, int cap) 432 { 433 return ns_capable_common(ns, cap, CAP_OPT_INSETID); 434 } 435 EXPORT_SYMBOL(ns_capable_setid); 436 437 /** 438 * capable - Determine if the current task has a superior capability in effect 439 * @cap: The capability to be tested for 440 * 441 * Return true if the current task has the given superior capability currently 442 * available for use, false if not. 443 * 444 * This sets PF_SUPERPRIV on the task if the capability is available on the 445 * assumption that it's about to be used. 446 */ 447 bool capable(int cap) 448 { 449 return ns_capable(&init_user_ns, cap); 450 } 451 EXPORT_SYMBOL(capable); 452 #endif /* CONFIG_MULTIUSER */ 453 454 /** 455 * file_ns_capable - Determine if the file's opener had a capability in effect 456 * @file: The file we want to check 457 * @ns: The usernamespace we want the capability in 458 * @cap: The capability to be tested for 459 * 460 * Return true if task that opened the file had a capability in effect 461 * when the file was opened. 462 * 463 * This does not set PF_SUPERPRIV because the caller may not 464 * actually be privileged. 465 */ 466 bool file_ns_capable(const struct file *file, struct user_namespace *ns, 467 int cap) 468 { 469 470 if (WARN_ON_ONCE(!cap_valid(cap))) 471 return false; 472 473 if (security_capable(file->f_cred, ns, cap, CAP_OPT_NONE) == 0) 474 return true; 475 476 return false; 477 } 478 EXPORT_SYMBOL(file_ns_capable); 479 480 /** 481 * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode? 482 * @ns: The user namespace in question 483 * @inode: The inode in question 484 * 485 * Return true if the inode uid and gid are within the namespace. 486 */ 487 bool privileged_wrt_inode_uidgid(struct user_namespace *ns, const struct inode *inode) 488 { 489 return kuid_has_mapping(ns, inode->i_uid) && 490 kgid_has_mapping(ns, inode->i_gid); 491 } 492 493 /** 494 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped 495 * @inode: The inode in question 496 * @cap: The capability in question 497 * 498 * Return true if the current task has the given capability targeted at 499 * its own user namespace and that the given inode's uid and gid are 500 * mapped into the current user namespace. 501 */ 502 bool capable_wrt_inode_uidgid(const struct inode *inode, int cap) 503 { 504 struct user_namespace *ns = current_user_ns(); 505 506 return ns_capable(ns, cap) && privileged_wrt_inode_uidgid(ns, inode); 507 } 508 EXPORT_SYMBOL(capable_wrt_inode_uidgid); 509 510 /** 511 * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace 512 * @tsk: The task that may be ptraced 513 * @ns: The user namespace to search for CAP_SYS_PTRACE in 514 * 515 * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE 516 * in the specified user namespace. 517 */ 518 bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns) 519 { 520 int ret = 0; /* An absent tracer adds no restrictions */ 521 const struct cred *cred; 522 523 rcu_read_lock(); 524 cred = rcu_dereference(tsk->ptracer_cred); 525 if (cred) 526 ret = security_capable(cred, ns, CAP_SYS_PTRACE, 527 CAP_OPT_NOAUDIT); 528 rcu_read_unlock(); 529 return (ret == 0); 530 } 531