xref: /openbmc/linux/kernel/capability.c (revision 68198dca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/kernel/capability.c
4  *
5  * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
6  *
7  * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
8  * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/audit.h>
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/export.h>
17 #include <linux/security.h>
18 #include <linux/syscalls.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/user_namespace.h>
21 #include <linux/uaccess.h>
22 
23 /*
24  * Leveraged for setting/resetting capabilities
25  */
26 
27 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
28 EXPORT_SYMBOL(__cap_empty_set);
29 
30 int file_caps_enabled = 1;
31 
32 static int __init file_caps_disable(char *str)
33 {
34 	file_caps_enabled = 0;
35 	return 1;
36 }
37 __setup("no_file_caps", file_caps_disable);
38 
39 #ifdef CONFIG_MULTIUSER
40 /*
41  * More recent versions of libcap are available from:
42  *
43  *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
44  */
45 
46 static void warn_legacy_capability_use(void)
47 {
48 	char name[sizeof(current->comm)];
49 
50 	pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
51 		     get_task_comm(name, current));
52 }
53 
54 /*
55  * Version 2 capabilities worked fine, but the linux/capability.h file
56  * that accompanied their introduction encouraged their use without
57  * the necessary user-space source code changes. As such, we have
58  * created a version 3 with equivalent functionality to version 2, but
59  * with a header change to protect legacy source code from using
60  * version 2 when it wanted to use version 1. If your system has code
61  * that trips the following warning, it is using version 2 specific
62  * capabilities and may be doing so insecurely.
63  *
64  * The remedy is to either upgrade your version of libcap (to 2.10+,
65  * if the application is linked against it), or recompile your
66  * application with modern kernel headers and this warning will go
67  * away.
68  */
69 
70 static void warn_deprecated_v2(void)
71 {
72 	char name[sizeof(current->comm)];
73 
74 	pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
75 		     get_task_comm(name, current));
76 }
77 
78 /*
79  * Version check. Return the number of u32s in each capability flag
80  * array, or a negative value on error.
81  */
82 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
83 {
84 	__u32 version;
85 
86 	if (get_user(version, &header->version))
87 		return -EFAULT;
88 
89 	switch (version) {
90 	case _LINUX_CAPABILITY_VERSION_1:
91 		warn_legacy_capability_use();
92 		*tocopy = _LINUX_CAPABILITY_U32S_1;
93 		break;
94 	case _LINUX_CAPABILITY_VERSION_2:
95 		warn_deprecated_v2();
96 		/*
97 		 * fall through - v3 is otherwise equivalent to v2.
98 		 */
99 	case _LINUX_CAPABILITY_VERSION_3:
100 		*tocopy = _LINUX_CAPABILITY_U32S_3;
101 		break;
102 	default:
103 		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
104 			return -EFAULT;
105 		return -EINVAL;
106 	}
107 
108 	return 0;
109 }
110 
111 /*
112  * The only thing that can change the capabilities of the current
113  * process is the current process. As such, we can't be in this code
114  * at the same time as we are in the process of setting capabilities
115  * in this process. The net result is that we can limit our use of
116  * locks to when we are reading the caps of another process.
117  */
118 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
119 				     kernel_cap_t *pIp, kernel_cap_t *pPp)
120 {
121 	int ret;
122 
123 	if (pid && (pid != task_pid_vnr(current))) {
124 		struct task_struct *target;
125 
126 		rcu_read_lock();
127 
128 		target = find_task_by_vpid(pid);
129 		if (!target)
130 			ret = -ESRCH;
131 		else
132 			ret = security_capget(target, pEp, pIp, pPp);
133 
134 		rcu_read_unlock();
135 	} else
136 		ret = security_capget(current, pEp, pIp, pPp);
137 
138 	return ret;
139 }
140 
141 /**
142  * sys_capget - get the capabilities of a given process.
143  * @header: pointer to struct that contains capability version and
144  *	target pid data
145  * @dataptr: pointer to struct that contains the effective, permitted,
146  *	and inheritable capabilities that are returned
147  *
148  * Returns 0 on success and < 0 on error.
149  */
150 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
151 {
152 	int ret = 0;
153 	pid_t pid;
154 	unsigned tocopy;
155 	kernel_cap_t pE, pI, pP;
156 
157 	ret = cap_validate_magic(header, &tocopy);
158 	if ((dataptr == NULL) || (ret != 0))
159 		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
160 
161 	if (get_user(pid, &header->pid))
162 		return -EFAULT;
163 
164 	if (pid < 0)
165 		return -EINVAL;
166 
167 	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
168 	if (!ret) {
169 		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
170 		unsigned i;
171 
172 		for (i = 0; i < tocopy; i++) {
173 			kdata[i].effective = pE.cap[i];
174 			kdata[i].permitted = pP.cap[i];
175 			kdata[i].inheritable = pI.cap[i];
176 		}
177 
178 		/*
179 		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
180 		 * we silently drop the upper capabilities here. This
181 		 * has the effect of making older libcap
182 		 * implementations implicitly drop upper capability
183 		 * bits when they perform a: capget/modify/capset
184 		 * sequence.
185 		 *
186 		 * This behavior is considered fail-safe
187 		 * behavior. Upgrading the application to a newer
188 		 * version of libcap will enable access to the newer
189 		 * capabilities.
190 		 *
191 		 * An alternative would be to return an error here
192 		 * (-ERANGE), but that causes legacy applications to
193 		 * unexpectedly fail; the capget/modify/capset aborts
194 		 * before modification is attempted and the application
195 		 * fails.
196 		 */
197 		if (copy_to_user(dataptr, kdata, tocopy
198 				 * sizeof(struct __user_cap_data_struct))) {
199 			return -EFAULT;
200 		}
201 	}
202 
203 	return ret;
204 }
205 
206 /**
207  * sys_capset - set capabilities for a process or (*) a group of processes
208  * @header: pointer to struct that contains capability version and
209  *	target pid data
210  * @data: pointer to struct that contains the effective, permitted,
211  *	and inheritable capabilities
212  *
213  * Set capabilities for the current process only.  The ability to any other
214  * process(es) has been deprecated and removed.
215  *
216  * The restrictions on setting capabilities are specified as:
217  *
218  * I: any raised capabilities must be a subset of the old permitted
219  * P: any raised capabilities must be a subset of the old permitted
220  * E: must be set to a subset of new permitted
221  *
222  * Returns 0 on success and < 0 on error.
223  */
224 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
225 {
226 	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
227 	unsigned i, tocopy, copybytes;
228 	kernel_cap_t inheritable, permitted, effective;
229 	struct cred *new;
230 	int ret;
231 	pid_t pid;
232 
233 	ret = cap_validate_magic(header, &tocopy);
234 	if (ret != 0)
235 		return ret;
236 
237 	if (get_user(pid, &header->pid))
238 		return -EFAULT;
239 
240 	/* may only affect current now */
241 	if (pid != 0 && pid != task_pid_vnr(current))
242 		return -EPERM;
243 
244 	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
245 	if (copybytes > sizeof(kdata))
246 		return -EFAULT;
247 
248 	if (copy_from_user(&kdata, data, copybytes))
249 		return -EFAULT;
250 
251 	for (i = 0; i < tocopy; i++) {
252 		effective.cap[i] = kdata[i].effective;
253 		permitted.cap[i] = kdata[i].permitted;
254 		inheritable.cap[i] = kdata[i].inheritable;
255 	}
256 	while (i < _KERNEL_CAPABILITY_U32S) {
257 		effective.cap[i] = 0;
258 		permitted.cap[i] = 0;
259 		inheritable.cap[i] = 0;
260 		i++;
261 	}
262 
263 	effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
264 	permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
265 	inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
266 
267 	new = prepare_creds();
268 	if (!new)
269 		return -ENOMEM;
270 
271 	ret = security_capset(new, current_cred(),
272 			      &effective, &inheritable, &permitted);
273 	if (ret < 0)
274 		goto error;
275 
276 	audit_log_capset(new, current_cred());
277 
278 	return commit_creds(new);
279 
280 error:
281 	abort_creds(new);
282 	return ret;
283 }
284 
285 /**
286  * has_ns_capability - Does a task have a capability in a specific user ns
287  * @t: The task in question
288  * @ns: target user namespace
289  * @cap: The capability to be tested for
290  *
291  * Return true if the specified task has the given superior capability
292  * currently in effect to the specified user namespace, false if not.
293  *
294  * Note that this does not set PF_SUPERPRIV on the task.
295  */
296 bool has_ns_capability(struct task_struct *t,
297 		       struct user_namespace *ns, int cap)
298 {
299 	int ret;
300 
301 	rcu_read_lock();
302 	ret = security_capable(__task_cred(t), ns, cap);
303 	rcu_read_unlock();
304 
305 	return (ret == 0);
306 }
307 
308 /**
309  * has_capability - Does a task have a capability in init_user_ns
310  * @t: The task in question
311  * @cap: The capability to be tested for
312  *
313  * Return true if the specified task has the given superior capability
314  * currently in effect to the initial user namespace, false if not.
315  *
316  * Note that this does not set PF_SUPERPRIV on the task.
317  */
318 bool has_capability(struct task_struct *t, int cap)
319 {
320 	return has_ns_capability(t, &init_user_ns, cap);
321 }
322 EXPORT_SYMBOL(has_capability);
323 
324 /**
325  * has_ns_capability_noaudit - Does a task have a capability (unaudited)
326  * in a specific user ns.
327  * @t: The task in question
328  * @ns: target user namespace
329  * @cap: The capability to be tested for
330  *
331  * Return true if the specified task has the given superior capability
332  * currently in effect to the specified user namespace, false if not.
333  * Do not write an audit message for the check.
334  *
335  * Note that this does not set PF_SUPERPRIV on the task.
336  */
337 bool has_ns_capability_noaudit(struct task_struct *t,
338 			       struct user_namespace *ns, int cap)
339 {
340 	int ret;
341 
342 	rcu_read_lock();
343 	ret = security_capable_noaudit(__task_cred(t), ns, cap);
344 	rcu_read_unlock();
345 
346 	return (ret == 0);
347 }
348 
349 /**
350  * has_capability_noaudit - Does a task have a capability (unaudited) in the
351  * initial user ns
352  * @t: The task in question
353  * @cap: The capability to be tested for
354  *
355  * Return true if the specified task has the given superior capability
356  * currently in effect to init_user_ns, false if not.  Don't write an
357  * audit message for the check.
358  *
359  * Note that this does not set PF_SUPERPRIV on the task.
360  */
361 bool has_capability_noaudit(struct task_struct *t, int cap)
362 {
363 	return has_ns_capability_noaudit(t, &init_user_ns, cap);
364 }
365 
366 static bool ns_capable_common(struct user_namespace *ns, int cap, bool audit)
367 {
368 	int capable;
369 
370 	if (unlikely(!cap_valid(cap))) {
371 		pr_crit("capable() called with invalid cap=%u\n", cap);
372 		BUG();
373 	}
374 
375 	capable = audit ? security_capable(current_cred(), ns, cap) :
376 			  security_capable_noaudit(current_cred(), ns, cap);
377 	if (capable == 0) {
378 		current->flags |= PF_SUPERPRIV;
379 		return true;
380 	}
381 	return false;
382 }
383 
384 /**
385  * ns_capable - Determine if the current task has a superior capability in effect
386  * @ns:  The usernamespace we want the capability in
387  * @cap: The capability to be tested for
388  *
389  * Return true if the current task has the given superior capability currently
390  * available for use, false if not.
391  *
392  * This sets PF_SUPERPRIV on the task if the capability is available on the
393  * assumption that it's about to be used.
394  */
395 bool ns_capable(struct user_namespace *ns, int cap)
396 {
397 	return ns_capable_common(ns, cap, true);
398 }
399 EXPORT_SYMBOL(ns_capable);
400 
401 /**
402  * ns_capable_noaudit - Determine if the current task has a superior capability
403  * (unaudited) in effect
404  * @ns:  The usernamespace we want the capability in
405  * @cap: The capability to be tested for
406  *
407  * Return true if the current task has the given superior capability currently
408  * available for use, false if not.
409  *
410  * This sets PF_SUPERPRIV on the task if the capability is available on the
411  * assumption that it's about to be used.
412  */
413 bool ns_capable_noaudit(struct user_namespace *ns, int cap)
414 {
415 	return ns_capable_common(ns, cap, false);
416 }
417 EXPORT_SYMBOL(ns_capable_noaudit);
418 
419 /**
420  * capable - Determine if the current task has a superior capability in effect
421  * @cap: The capability to be tested for
422  *
423  * Return true if the current task has the given superior capability currently
424  * available for use, false if not.
425  *
426  * This sets PF_SUPERPRIV on the task if the capability is available on the
427  * assumption that it's about to be used.
428  */
429 bool capable(int cap)
430 {
431 	return ns_capable(&init_user_ns, cap);
432 }
433 EXPORT_SYMBOL(capable);
434 #endif /* CONFIG_MULTIUSER */
435 
436 /**
437  * file_ns_capable - Determine if the file's opener had a capability in effect
438  * @file:  The file we want to check
439  * @ns:  The usernamespace we want the capability in
440  * @cap: The capability to be tested for
441  *
442  * Return true if task that opened the file had a capability in effect
443  * when the file was opened.
444  *
445  * This does not set PF_SUPERPRIV because the caller may not
446  * actually be privileged.
447  */
448 bool file_ns_capable(const struct file *file, struct user_namespace *ns,
449 		     int cap)
450 {
451 	if (WARN_ON_ONCE(!cap_valid(cap)))
452 		return false;
453 
454 	if (security_capable(file->f_cred, ns, cap) == 0)
455 		return true;
456 
457 	return false;
458 }
459 EXPORT_SYMBOL(file_ns_capable);
460 
461 /**
462  * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode?
463  * @ns: The user namespace in question
464  * @inode: The inode in question
465  *
466  * Return true if the inode uid and gid are within the namespace.
467  */
468 bool privileged_wrt_inode_uidgid(struct user_namespace *ns, const struct inode *inode)
469 {
470 	return kuid_has_mapping(ns, inode->i_uid) &&
471 		kgid_has_mapping(ns, inode->i_gid);
472 }
473 
474 /**
475  * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
476  * @inode: The inode in question
477  * @cap: The capability in question
478  *
479  * Return true if the current task has the given capability targeted at
480  * its own user namespace and that the given inode's uid and gid are
481  * mapped into the current user namespace.
482  */
483 bool capable_wrt_inode_uidgid(const struct inode *inode, int cap)
484 {
485 	struct user_namespace *ns = current_user_ns();
486 
487 	return ns_capable(ns, cap) && privileged_wrt_inode_uidgid(ns, inode);
488 }
489 EXPORT_SYMBOL(capable_wrt_inode_uidgid);
490 
491 /**
492  * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace
493  * @tsk: The task that may be ptraced
494  * @ns: The user namespace to search for CAP_SYS_PTRACE in
495  *
496  * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE
497  * in the specified user namespace.
498  */
499 bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns)
500 {
501 	int ret = 0;  /* An absent tracer adds no restrictions */
502 	const struct cred *cred;
503 	rcu_read_lock();
504 	cred = rcu_dereference(tsk->ptracer_cred);
505 	if (cred)
506 		ret = security_capable_noaudit(cred, ns, CAP_SYS_PTRACE);
507 	rcu_read_unlock();
508 	return (ret == 0);
509 }
510