1 /* 2 * linux/kernel/capability.c 3 * 4 * Copyright (C) 1997 Andrew Main <zefram@fysh.org> 5 * 6 * Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org> 7 * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/audit.h> 13 #include <linux/capability.h> 14 #include <linux/mm.h> 15 #include <linux/export.h> 16 #include <linux/security.h> 17 #include <linux/syscalls.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/user_namespace.h> 20 #include <linux/uaccess.h> 21 22 /* 23 * Leveraged for setting/resetting capabilities 24 */ 25 26 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET; 27 EXPORT_SYMBOL(__cap_empty_set); 28 29 int file_caps_enabled = 1; 30 31 static int __init file_caps_disable(char *str) 32 { 33 file_caps_enabled = 0; 34 return 1; 35 } 36 __setup("no_file_caps", file_caps_disable); 37 38 #ifdef CONFIG_MULTIUSER 39 /* 40 * More recent versions of libcap are available from: 41 * 42 * http://www.kernel.org/pub/linux/libs/security/linux-privs/ 43 */ 44 45 static void warn_legacy_capability_use(void) 46 { 47 char name[sizeof(current->comm)]; 48 49 pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n", 50 get_task_comm(name, current)); 51 } 52 53 /* 54 * Version 2 capabilities worked fine, but the linux/capability.h file 55 * that accompanied their introduction encouraged their use without 56 * the necessary user-space source code changes. As such, we have 57 * created a version 3 with equivalent functionality to version 2, but 58 * with a header change to protect legacy source code from using 59 * version 2 when it wanted to use version 1. If your system has code 60 * that trips the following warning, it is using version 2 specific 61 * capabilities and may be doing so insecurely. 62 * 63 * The remedy is to either upgrade your version of libcap (to 2.10+, 64 * if the application is linked against it), or recompile your 65 * application with modern kernel headers and this warning will go 66 * away. 67 */ 68 69 static void warn_deprecated_v2(void) 70 { 71 char name[sizeof(current->comm)]; 72 73 pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n", 74 get_task_comm(name, current)); 75 } 76 77 /* 78 * Version check. Return the number of u32s in each capability flag 79 * array, or a negative value on error. 80 */ 81 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy) 82 { 83 __u32 version; 84 85 if (get_user(version, &header->version)) 86 return -EFAULT; 87 88 switch (version) { 89 case _LINUX_CAPABILITY_VERSION_1: 90 warn_legacy_capability_use(); 91 *tocopy = _LINUX_CAPABILITY_U32S_1; 92 break; 93 case _LINUX_CAPABILITY_VERSION_2: 94 warn_deprecated_v2(); 95 /* 96 * fall through - v3 is otherwise equivalent to v2. 97 */ 98 case _LINUX_CAPABILITY_VERSION_3: 99 *tocopy = _LINUX_CAPABILITY_U32S_3; 100 break; 101 default: 102 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version)) 103 return -EFAULT; 104 return -EINVAL; 105 } 106 107 return 0; 108 } 109 110 /* 111 * The only thing that can change the capabilities of the current 112 * process is the current process. As such, we can't be in this code 113 * at the same time as we are in the process of setting capabilities 114 * in this process. The net result is that we can limit our use of 115 * locks to when we are reading the caps of another process. 116 */ 117 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp, 118 kernel_cap_t *pIp, kernel_cap_t *pPp) 119 { 120 int ret; 121 122 if (pid && (pid != task_pid_vnr(current))) { 123 struct task_struct *target; 124 125 rcu_read_lock(); 126 127 target = find_task_by_vpid(pid); 128 if (!target) 129 ret = -ESRCH; 130 else 131 ret = security_capget(target, pEp, pIp, pPp); 132 133 rcu_read_unlock(); 134 } else 135 ret = security_capget(current, pEp, pIp, pPp); 136 137 return ret; 138 } 139 140 /** 141 * sys_capget - get the capabilities of a given process. 142 * @header: pointer to struct that contains capability version and 143 * target pid data 144 * @dataptr: pointer to struct that contains the effective, permitted, 145 * and inheritable capabilities that are returned 146 * 147 * Returns 0 on success and < 0 on error. 148 */ 149 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr) 150 { 151 int ret = 0; 152 pid_t pid; 153 unsigned tocopy; 154 kernel_cap_t pE, pI, pP; 155 156 ret = cap_validate_magic(header, &tocopy); 157 if ((dataptr == NULL) || (ret != 0)) 158 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret; 159 160 if (get_user(pid, &header->pid)) 161 return -EFAULT; 162 163 if (pid < 0) 164 return -EINVAL; 165 166 ret = cap_get_target_pid(pid, &pE, &pI, &pP); 167 if (!ret) { 168 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 169 unsigned i; 170 171 for (i = 0; i < tocopy; i++) { 172 kdata[i].effective = pE.cap[i]; 173 kdata[i].permitted = pP.cap[i]; 174 kdata[i].inheritable = pI.cap[i]; 175 } 176 177 /* 178 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S, 179 * we silently drop the upper capabilities here. This 180 * has the effect of making older libcap 181 * implementations implicitly drop upper capability 182 * bits when they perform a: capget/modify/capset 183 * sequence. 184 * 185 * This behavior is considered fail-safe 186 * behavior. Upgrading the application to a newer 187 * version of libcap will enable access to the newer 188 * capabilities. 189 * 190 * An alternative would be to return an error here 191 * (-ERANGE), but that causes legacy applications to 192 * unexpectedly fail; the capget/modify/capset aborts 193 * before modification is attempted and the application 194 * fails. 195 */ 196 if (copy_to_user(dataptr, kdata, tocopy 197 * sizeof(struct __user_cap_data_struct))) { 198 return -EFAULT; 199 } 200 } 201 202 return ret; 203 } 204 205 /** 206 * sys_capset - set capabilities for a process or (*) a group of processes 207 * @header: pointer to struct that contains capability version and 208 * target pid data 209 * @data: pointer to struct that contains the effective, permitted, 210 * and inheritable capabilities 211 * 212 * Set capabilities for the current process only. The ability to any other 213 * process(es) has been deprecated and removed. 214 * 215 * The restrictions on setting capabilities are specified as: 216 * 217 * I: any raised capabilities must be a subset of the old permitted 218 * P: any raised capabilities must be a subset of the old permitted 219 * E: must be set to a subset of new permitted 220 * 221 * Returns 0 on success and < 0 on error. 222 */ 223 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) 224 { 225 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 226 unsigned i, tocopy, copybytes; 227 kernel_cap_t inheritable, permitted, effective; 228 struct cred *new; 229 int ret; 230 pid_t pid; 231 232 ret = cap_validate_magic(header, &tocopy); 233 if (ret != 0) 234 return ret; 235 236 if (get_user(pid, &header->pid)) 237 return -EFAULT; 238 239 /* may only affect current now */ 240 if (pid != 0 && pid != task_pid_vnr(current)) 241 return -EPERM; 242 243 copybytes = tocopy * sizeof(struct __user_cap_data_struct); 244 if (copybytes > sizeof(kdata)) 245 return -EFAULT; 246 247 if (copy_from_user(&kdata, data, copybytes)) 248 return -EFAULT; 249 250 for (i = 0; i < tocopy; i++) { 251 effective.cap[i] = kdata[i].effective; 252 permitted.cap[i] = kdata[i].permitted; 253 inheritable.cap[i] = kdata[i].inheritable; 254 } 255 while (i < _KERNEL_CAPABILITY_U32S) { 256 effective.cap[i] = 0; 257 permitted.cap[i] = 0; 258 inheritable.cap[i] = 0; 259 i++; 260 } 261 262 effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 263 permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 264 inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 265 266 new = prepare_creds(); 267 if (!new) 268 return -ENOMEM; 269 270 ret = security_capset(new, current_cred(), 271 &effective, &inheritable, &permitted); 272 if (ret < 0) 273 goto error; 274 275 audit_log_capset(new, current_cred()); 276 277 return commit_creds(new); 278 279 error: 280 abort_creds(new); 281 return ret; 282 } 283 284 /** 285 * has_ns_capability - Does a task have a capability in a specific user ns 286 * @t: The task in question 287 * @ns: target user namespace 288 * @cap: The capability to be tested for 289 * 290 * Return true if the specified task has the given superior capability 291 * currently in effect to the specified user namespace, false if not. 292 * 293 * Note that this does not set PF_SUPERPRIV on the task. 294 */ 295 bool has_ns_capability(struct task_struct *t, 296 struct user_namespace *ns, int cap) 297 { 298 int ret; 299 300 rcu_read_lock(); 301 ret = security_capable(__task_cred(t), ns, cap); 302 rcu_read_unlock(); 303 304 return (ret == 0); 305 } 306 307 /** 308 * has_capability - Does a task have a capability in init_user_ns 309 * @t: The task in question 310 * @cap: The capability to be tested for 311 * 312 * Return true if the specified task has the given superior capability 313 * currently in effect to the initial user namespace, false if not. 314 * 315 * Note that this does not set PF_SUPERPRIV on the task. 316 */ 317 bool has_capability(struct task_struct *t, int cap) 318 { 319 return has_ns_capability(t, &init_user_ns, cap); 320 } 321 EXPORT_SYMBOL(has_capability); 322 323 /** 324 * has_ns_capability_noaudit - Does a task have a capability (unaudited) 325 * in a specific user ns. 326 * @t: The task in question 327 * @ns: target user namespace 328 * @cap: The capability to be tested for 329 * 330 * Return true if the specified task has the given superior capability 331 * currently in effect to the specified user namespace, false if not. 332 * Do not write an audit message for the check. 333 * 334 * Note that this does not set PF_SUPERPRIV on the task. 335 */ 336 bool has_ns_capability_noaudit(struct task_struct *t, 337 struct user_namespace *ns, int cap) 338 { 339 int ret; 340 341 rcu_read_lock(); 342 ret = security_capable_noaudit(__task_cred(t), ns, cap); 343 rcu_read_unlock(); 344 345 return (ret == 0); 346 } 347 348 /** 349 * has_capability_noaudit - Does a task have a capability (unaudited) in the 350 * initial user ns 351 * @t: The task in question 352 * @cap: The capability to be tested for 353 * 354 * Return true if the specified task has the given superior capability 355 * currently in effect to init_user_ns, false if not. Don't write an 356 * audit message for the check. 357 * 358 * Note that this does not set PF_SUPERPRIV on the task. 359 */ 360 bool has_capability_noaudit(struct task_struct *t, int cap) 361 { 362 return has_ns_capability_noaudit(t, &init_user_ns, cap); 363 } 364 365 static bool ns_capable_common(struct user_namespace *ns, int cap, bool audit) 366 { 367 int capable; 368 369 if (unlikely(!cap_valid(cap))) { 370 pr_crit("capable() called with invalid cap=%u\n", cap); 371 BUG(); 372 } 373 374 capable = audit ? security_capable(current_cred(), ns, cap) : 375 security_capable_noaudit(current_cred(), ns, cap); 376 if (capable == 0) { 377 current->flags |= PF_SUPERPRIV; 378 return true; 379 } 380 return false; 381 } 382 383 /** 384 * ns_capable - Determine if the current task has a superior capability in effect 385 * @ns: The usernamespace we want the capability in 386 * @cap: The capability to be tested for 387 * 388 * Return true if the current task has the given superior capability currently 389 * available for use, false if not. 390 * 391 * This sets PF_SUPERPRIV on the task if the capability is available on the 392 * assumption that it's about to be used. 393 */ 394 bool ns_capable(struct user_namespace *ns, int cap) 395 { 396 return ns_capable_common(ns, cap, true); 397 } 398 EXPORT_SYMBOL(ns_capable); 399 400 /** 401 * ns_capable_noaudit - Determine if the current task has a superior capability 402 * (unaudited) in effect 403 * @ns: The usernamespace we want the capability in 404 * @cap: The capability to be tested for 405 * 406 * Return true if the current task has the given superior capability currently 407 * available for use, false if not. 408 * 409 * This sets PF_SUPERPRIV on the task if the capability is available on the 410 * assumption that it's about to be used. 411 */ 412 bool ns_capable_noaudit(struct user_namespace *ns, int cap) 413 { 414 return ns_capable_common(ns, cap, false); 415 } 416 EXPORT_SYMBOL(ns_capable_noaudit); 417 418 /** 419 * capable - Determine if the current task has a superior capability in effect 420 * @cap: The capability to be tested for 421 * 422 * Return true if the current task has the given superior capability currently 423 * available for use, false if not. 424 * 425 * This sets PF_SUPERPRIV on the task if the capability is available on the 426 * assumption that it's about to be used. 427 */ 428 bool capable(int cap) 429 { 430 return ns_capable(&init_user_ns, cap); 431 } 432 EXPORT_SYMBOL(capable); 433 #endif /* CONFIG_MULTIUSER */ 434 435 /** 436 * file_ns_capable - Determine if the file's opener had a capability in effect 437 * @file: The file we want to check 438 * @ns: The usernamespace we want the capability in 439 * @cap: The capability to be tested for 440 * 441 * Return true if task that opened the file had a capability in effect 442 * when the file was opened. 443 * 444 * This does not set PF_SUPERPRIV because the caller may not 445 * actually be privileged. 446 */ 447 bool file_ns_capable(const struct file *file, struct user_namespace *ns, 448 int cap) 449 { 450 if (WARN_ON_ONCE(!cap_valid(cap))) 451 return false; 452 453 if (security_capable(file->f_cred, ns, cap) == 0) 454 return true; 455 456 return false; 457 } 458 EXPORT_SYMBOL(file_ns_capable); 459 460 /** 461 * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode? 462 * @ns: The user namespace in question 463 * @inode: The inode in question 464 * 465 * Return true if the inode uid and gid are within the namespace. 466 */ 467 bool privileged_wrt_inode_uidgid(struct user_namespace *ns, const struct inode *inode) 468 { 469 return kuid_has_mapping(ns, inode->i_uid) && 470 kgid_has_mapping(ns, inode->i_gid); 471 } 472 473 /** 474 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped 475 * @inode: The inode in question 476 * @cap: The capability in question 477 * 478 * Return true if the current task has the given capability targeted at 479 * its own user namespace and that the given inode's uid and gid are 480 * mapped into the current user namespace. 481 */ 482 bool capable_wrt_inode_uidgid(const struct inode *inode, int cap) 483 { 484 struct user_namespace *ns = current_user_ns(); 485 486 return ns_capable(ns, cap) && privileged_wrt_inode_uidgid(ns, inode); 487 } 488 EXPORT_SYMBOL(capable_wrt_inode_uidgid); 489 490 /** 491 * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace 492 * @tsk: The task that may be ptraced 493 * @ns: The user namespace to search for CAP_SYS_PTRACE in 494 * 495 * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE 496 * in the specified user namespace. 497 */ 498 bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns) 499 { 500 int ret = 0; /* An absent tracer adds no restrictions */ 501 const struct cred *cred; 502 rcu_read_lock(); 503 cred = rcu_dereference(tsk->ptracer_cred); 504 if (cred) 505 ret = security_capable_noaudit(cred, ns, CAP_SYS_PTRACE); 506 rcu_read_unlock(); 507 return (ret == 0); 508 } 509