xref: /openbmc/linux/kernel/bpf/verifier.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_verifier.h>
19 #include <linux/filter.h>
20 #include <net/netlink.h>
21 #include <linux/file.h>
22 #include <linux/vmalloc.h>
23 #include <linux/stringify.h>
24 #include <linux/bsearch.h>
25 #include <linux/sort.h>
26 #include <linux/perf_event.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 };
175 
176 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
177 #define BPF_COMPLEXITY_LIMIT_STACK	1024
178 #define BPF_COMPLEXITY_LIMIT_STATES	64
179 
180 #define BPF_MAP_PTR_UNPRIV	1UL
181 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
182 					  POISON_POINTER_DELTA))
183 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
184 
185 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
186 {
187 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
188 }
189 
190 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
191 {
192 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
193 }
194 
195 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
196 			      const struct bpf_map *map, bool unpriv)
197 {
198 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
199 	unpriv |= bpf_map_ptr_unpriv(aux);
200 	aux->map_state = (unsigned long)map |
201 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
202 }
203 
204 struct bpf_call_arg_meta {
205 	struct bpf_map *map_ptr;
206 	bool raw_mode;
207 	bool pkt_access;
208 	int regno;
209 	int access_size;
210 	s64 msize_smax_value;
211 	u64 msize_umax_value;
212 	int ptr_id;
213 };
214 
215 static DEFINE_MUTEX(bpf_verifier_lock);
216 
217 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
218 		       va_list args)
219 {
220 	unsigned int n;
221 
222 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
223 
224 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
225 		  "verifier log line truncated - local buffer too short\n");
226 
227 	n = min(log->len_total - log->len_used - 1, n);
228 	log->kbuf[n] = '\0';
229 
230 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
231 		log->len_used += n;
232 	else
233 		log->ubuf = NULL;
234 }
235 
236 /* log_level controls verbosity level of eBPF verifier.
237  * bpf_verifier_log_write() is used to dump the verification trace to the log,
238  * so the user can figure out what's wrong with the program
239  */
240 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
241 					   const char *fmt, ...)
242 {
243 	va_list args;
244 
245 	if (!bpf_verifier_log_needed(&env->log))
246 		return;
247 
248 	va_start(args, fmt);
249 	bpf_verifier_vlog(&env->log, fmt, args);
250 	va_end(args);
251 }
252 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
253 
254 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
255 {
256 	struct bpf_verifier_env *env = private_data;
257 	va_list args;
258 
259 	if (!bpf_verifier_log_needed(&env->log))
260 		return;
261 
262 	va_start(args, fmt);
263 	bpf_verifier_vlog(&env->log, fmt, args);
264 	va_end(args);
265 }
266 
267 static bool type_is_pkt_pointer(enum bpf_reg_type type)
268 {
269 	return type == PTR_TO_PACKET ||
270 	       type == PTR_TO_PACKET_META;
271 }
272 
273 static bool reg_type_may_be_null(enum bpf_reg_type type)
274 {
275 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
276 	       type == PTR_TO_SOCKET_OR_NULL;
277 }
278 
279 static bool type_is_refcounted(enum bpf_reg_type type)
280 {
281 	return type == PTR_TO_SOCKET;
282 }
283 
284 static bool type_is_refcounted_or_null(enum bpf_reg_type type)
285 {
286 	return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
287 }
288 
289 static bool reg_is_refcounted(const struct bpf_reg_state *reg)
290 {
291 	return type_is_refcounted(reg->type);
292 }
293 
294 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
295 {
296 	return type_is_refcounted_or_null(reg->type);
297 }
298 
299 static bool arg_type_is_refcounted(enum bpf_arg_type type)
300 {
301 	return type == ARG_PTR_TO_SOCKET;
302 }
303 
304 /* Determine whether the function releases some resources allocated by another
305  * function call. The first reference type argument will be assumed to be
306  * released by release_reference().
307  */
308 static bool is_release_function(enum bpf_func_id func_id)
309 {
310 	return func_id == BPF_FUNC_sk_release;
311 }
312 
313 /* string representation of 'enum bpf_reg_type' */
314 static const char * const reg_type_str[] = {
315 	[NOT_INIT]		= "?",
316 	[SCALAR_VALUE]		= "inv",
317 	[PTR_TO_CTX]		= "ctx",
318 	[CONST_PTR_TO_MAP]	= "map_ptr",
319 	[PTR_TO_MAP_VALUE]	= "map_value",
320 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
321 	[PTR_TO_STACK]		= "fp",
322 	[PTR_TO_PACKET]		= "pkt",
323 	[PTR_TO_PACKET_META]	= "pkt_meta",
324 	[PTR_TO_PACKET_END]	= "pkt_end",
325 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
326 	[PTR_TO_SOCKET]		= "sock",
327 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
328 };
329 
330 static char slot_type_char[] = {
331 	[STACK_INVALID]	= '?',
332 	[STACK_SPILL]	= 'r',
333 	[STACK_MISC]	= 'm',
334 	[STACK_ZERO]	= '0',
335 };
336 
337 static void print_liveness(struct bpf_verifier_env *env,
338 			   enum bpf_reg_liveness live)
339 {
340 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
341 	    verbose(env, "_");
342 	if (live & REG_LIVE_READ)
343 		verbose(env, "r");
344 	if (live & REG_LIVE_WRITTEN)
345 		verbose(env, "w");
346 }
347 
348 static struct bpf_func_state *func(struct bpf_verifier_env *env,
349 				   const struct bpf_reg_state *reg)
350 {
351 	struct bpf_verifier_state *cur = env->cur_state;
352 
353 	return cur->frame[reg->frameno];
354 }
355 
356 static void print_verifier_state(struct bpf_verifier_env *env,
357 				 const struct bpf_func_state *state)
358 {
359 	const struct bpf_reg_state *reg;
360 	enum bpf_reg_type t;
361 	int i;
362 
363 	if (state->frameno)
364 		verbose(env, " frame%d:", state->frameno);
365 	for (i = 0; i < MAX_BPF_REG; i++) {
366 		reg = &state->regs[i];
367 		t = reg->type;
368 		if (t == NOT_INIT)
369 			continue;
370 		verbose(env, " R%d", i);
371 		print_liveness(env, reg->live);
372 		verbose(env, "=%s", reg_type_str[t]);
373 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
374 		    tnum_is_const(reg->var_off)) {
375 			/* reg->off should be 0 for SCALAR_VALUE */
376 			verbose(env, "%lld", reg->var_off.value + reg->off);
377 			if (t == PTR_TO_STACK)
378 				verbose(env, ",call_%d", func(env, reg)->callsite);
379 		} else {
380 			verbose(env, "(id=%d", reg->id);
381 			if (t != SCALAR_VALUE)
382 				verbose(env, ",off=%d", reg->off);
383 			if (type_is_pkt_pointer(t))
384 				verbose(env, ",r=%d", reg->range);
385 			else if (t == CONST_PTR_TO_MAP ||
386 				 t == PTR_TO_MAP_VALUE ||
387 				 t == PTR_TO_MAP_VALUE_OR_NULL)
388 				verbose(env, ",ks=%d,vs=%d",
389 					reg->map_ptr->key_size,
390 					reg->map_ptr->value_size);
391 			if (tnum_is_const(reg->var_off)) {
392 				/* Typically an immediate SCALAR_VALUE, but
393 				 * could be a pointer whose offset is too big
394 				 * for reg->off
395 				 */
396 				verbose(env, ",imm=%llx", reg->var_off.value);
397 			} else {
398 				if (reg->smin_value != reg->umin_value &&
399 				    reg->smin_value != S64_MIN)
400 					verbose(env, ",smin_value=%lld",
401 						(long long)reg->smin_value);
402 				if (reg->smax_value != reg->umax_value &&
403 				    reg->smax_value != S64_MAX)
404 					verbose(env, ",smax_value=%lld",
405 						(long long)reg->smax_value);
406 				if (reg->umin_value != 0)
407 					verbose(env, ",umin_value=%llu",
408 						(unsigned long long)reg->umin_value);
409 				if (reg->umax_value != U64_MAX)
410 					verbose(env, ",umax_value=%llu",
411 						(unsigned long long)reg->umax_value);
412 				if (!tnum_is_unknown(reg->var_off)) {
413 					char tn_buf[48];
414 
415 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 					verbose(env, ",var_off=%s", tn_buf);
417 				}
418 			}
419 			verbose(env, ")");
420 		}
421 	}
422 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
423 		char types_buf[BPF_REG_SIZE + 1];
424 		bool valid = false;
425 		int j;
426 
427 		for (j = 0; j < BPF_REG_SIZE; j++) {
428 			if (state->stack[i].slot_type[j] != STACK_INVALID)
429 				valid = true;
430 			types_buf[j] = slot_type_char[
431 					state->stack[i].slot_type[j]];
432 		}
433 		types_buf[BPF_REG_SIZE] = 0;
434 		if (!valid)
435 			continue;
436 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
437 		print_liveness(env, state->stack[i].spilled_ptr.live);
438 		if (state->stack[i].slot_type[0] == STACK_SPILL)
439 			verbose(env, "=%s",
440 				reg_type_str[state->stack[i].spilled_ptr.type]);
441 		else
442 			verbose(env, "=%s", types_buf);
443 	}
444 	if (state->acquired_refs && state->refs[0].id) {
445 		verbose(env, " refs=%d", state->refs[0].id);
446 		for (i = 1; i < state->acquired_refs; i++)
447 			if (state->refs[i].id)
448 				verbose(env, ",%d", state->refs[i].id);
449 	}
450 	verbose(env, "\n");
451 }
452 
453 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
454 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
455 			       const struct bpf_func_state *src)	\
456 {									\
457 	if (!src->FIELD)						\
458 		return 0;						\
459 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
460 		/* internal bug, make state invalid to reject the program */ \
461 		memset(dst, 0, sizeof(*dst));				\
462 		return -EFAULT;						\
463 	}								\
464 	memcpy(dst->FIELD, src->FIELD,					\
465 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
466 	return 0;							\
467 }
468 /* copy_reference_state() */
469 COPY_STATE_FN(reference, acquired_refs, refs, 1)
470 /* copy_stack_state() */
471 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
472 #undef COPY_STATE_FN
473 
474 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
475 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
476 				  bool copy_old)			\
477 {									\
478 	u32 old_size = state->COUNT;					\
479 	struct bpf_##NAME##_state *new_##FIELD;				\
480 	int slot = size / SIZE;						\
481 									\
482 	if (size <= old_size || !size) {				\
483 		if (copy_old)						\
484 			return 0;					\
485 		state->COUNT = slot * SIZE;				\
486 		if (!size && old_size) {				\
487 			kfree(state->FIELD);				\
488 			state->FIELD = NULL;				\
489 		}							\
490 		return 0;						\
491 	}								\
492 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
493 				    GFP_KERNEL);			\
494 	if (!new_##FIELD)						\
495 		return -ENOMEM;						\
496 	if (copy_old) {							\
497 		if (state->FIELD)					\
498 			memcpy(new_##FIELD, state->FIELD,		\
499 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
500 		memset(new_##FIELD + old_size / SIZE, 0,		\
501 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
502 	}								\
503 	state->COUNT = slot * SIZE;					\
504 	kfree(state->FIELD);						\
505 	state->FIELD = new_##FIELD;					\
506 	return 0;							\
507 }
508 /* realloc_reference_state() */
509 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
510 /* realloc_stack_state() */
511 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
512 #undef REALLOC_STATE_FN
513 
514 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
515  * make it consume minimal amount of memory. check_stack_write() access from
516  * the program calls into realloc_func_state() to grow the stack size.
517  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
518  * which realloc_stack_state() copies over. It points to previous
519  * bpf_verifier_state which is never reallocated.
520  */
521 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
522 			      int refs_size, bool copy_old)
523 {
524 	int err = realloc_reference_state(state, refs_size, copy_old);
525 	if (err)
526 		return err;
527 	return realloc_stack_state(state, stack_size, copy_old);
528 }
529 
530 /* Acquire a pointer id from the env and update the state->refs to include
531  * this new pointer reference.
532  * On success, returns a valid pointer id to associate with the register
533  * On failure, returns a negative errno.
534  */
535 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
536 {
537 	struct bpf_func_state *state = cur_func(env);
538 	int new_ofs = state->acquired_refs;
539 	int id, err;
540 
541 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
542 	if (err)
543 		return err;
544 	id = ++env->id_gen;
545 	state->refs[new_ofs].id = id;
546 	state->refs[new_ofs].insn_idx = insn_idx;
547 
548 	return id;
549 }
550 
551 /* release function corresponding to acquire_reference_state(). Idempotent. */
552 static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
553 {
554 	int i, last_idx;
555 
556 	if (!ptr_id)
557 		return -EFAULT;
558 
559 	last_idx = state->acquired_refs - 1;
560 	for (i = 0; i < state->acquired_refs; i++) {
561 		if (state->refs[i].id == ptr_id) {
562 			if (last_idx && i != last_idx)
563 				memcpy(&state->refs[i], &state->refs[last_idx],
564 				       sizeof(*state->refs));
565 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
566 			state->acquired_refs--;
567 			return 0;
568 		}
569 	}
570 	return -EFAULT;
571 }
572 
573 /* variation on the above for cases where we expect that there must be an
574  * outstanding reference for the specified ptr_id.
575  */
576 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
577 {
578 	struct bpf_func_state *state = cur_func(env);
579 	int err;
580 
581 	err = __release_reference_state(state, ptr_id);
582 	if (WARN_ON_ONCE(err != 0))
583 		verbose(env, "verifier internal error: can't release reference\n");
584 	return err;
585 }
586 
587 static int transfer_reference_state(struct bpf_func_state *dst,
588 				    struct bpf_func_state *src)
589 {
590 	int err = realloc_reference_state(dst, src->acquired_refs, false);
591 	if (err)
592 		return err;
593 	err = copy_reference_state(dst, src);
594 	if (err)
595 		return err;
596 	return 0;
597 }
598 
599 static void free_func_state(struct bpf_func_state *state)
600 {
601 	if (!state)
602 		return;
603 	kfree(state->refs);
604 	kfree(state->stack);
605 	kfree(state);
606 }
607 
608 static void free_verifier_state(struct bpf_verifier_state *state,
609 				bool free_self)
610 {
611 	int i;
612 
613 	for (i = 0; i <= state->curframe; i++) {
614 		free_func_state(state->frame[i]);
615 		state->frame[i] = NULL;
616 	}
617 	if (free_self)
618 		kfree(state);
619 }
620 
621 /* copy verifier state from src to dst growing dst stack space
622  * when necessary to accommodate larger src stack
623  */
624 static int copy_func_state(struct bpf_func_state *dst,
625 			   const struct bpf_func_state *src)
626 {
627 	int err;
628 
629 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
630 				 false);
631 	if (err)
632 		return err;
633 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
634 	err = copy_reference_state(dst, src);
635 	if (err)
636 		return err;
637 	return copy_stack_state(dst, src);
638 }
639 
640 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
641 			       const struct bpf_verifier_state *src)
642 {
643 	struct bpf_func_state *dst;
644 	int i, err;
645 
646 	/* if dst has more stack frames then src frame, free them */
647 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
648 		free_func_state(dst_state->frame[i]);
649 		dst_state->frame[i] = NULL;
650 	}
651 	dst_state->curframe = src->curframe;
652 	for (i = 0; i <= src->curframe; i++) {
653 		dst = dst_state->frame[i];
654 		if (!dst) {
655 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
656 			if (!dst)
657 				return -ENOMEM;
658 			dst_state->frame[i] = dst;
659 		}
660 		err = copy_func_state(dst, src->frame[i]);
661 		if (err)
662 			return err;
663 	}
664 	return 0;
665 }
666 
667 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
668 		     int *insn_idx)
669 {
670 	struct bpf_verifier_state *cur = env->cur_state;
671 	struct bpf_verifier_stack_elem *elem, *head = env->head;
672 	int err;
673 
674 	if (env->head == NULL)
675 		return -ENOENT;
676 
677 	if (cur) {
678 		err = copy_verifier_state(cur, &head->st);
679 		if (err)
680 			return err;
681 	}
682 	if (insn_idx)
683 		*insn_idx = head->insn_idx;
684 	if (prev_insn_idx)
685 		*prev_insn_idx = head->prev_insn_idx;
686 	elem = head->next;
687 	free_verifier_state(&head->st, false);
688 	kfree(head);
689 	env->head = elem;
690 	env->stack_size--;
691 	return 0;
692 }
693 
694 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
695 					     int insn_idx, int prev_insn_idx)
696 {
697 	struct bpf_verifier_state *cur = env->cur_state;
698 	struct bpf_verifier_stack_elem *elem;
699 	int err;
700 
701 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
702 	if (!elem)
703 		goto err;
704 
705 	elem->insn_idx = insn_idx;
706 	elem->prev_insn_idx = prev_insn_idx;
707 	elem->next = env->head;
708 	env->head = elem;
709 	env->stack_size++;
710 	err = copy_verifier_state(&elem->st, cur);
711 	if (err)
712 		goto err;
713 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
714 		verbose(env, "BPF program is too complex\n");
715 		goto err;
716 	}
717 	return &elem->st;
718 err:
719 	free_verifier_state(env->cur_state, true);
720 	env->cur_state = NULL;
721 	/* pop all elements and return */
722 	while (!pop_stack(env, NULL, NULL));
723 	return NULL;
724 }
725 
726 #define CALLER_SAVED_REGS 6
727 static const int caller_saved[CALLER_SAVED_REGS] = {
728 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
729 };
730 
731 static void __mark_reg_not_init(struct bpf_reg_state *reg);
732 
733 /* Mark the unknown part of a register (variable offset or scalar value) as
734  * known to have the value @imm.
735  */
736 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
737 {
738 	/* Clear id, off, and union(map_ptr, range) */
739 	memset(((u8 *)reg) + sizeof(reg->type), 0,
740 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
741 	reg->var_off = tnum_const(imm);
742 	reg->smin_value = (s64)imm;
743 	reg->smax_value = (s64)imm;
744 	reg->umin_value = imm;
745 	reg->umax_value = imm;
746 }
747 
748 /* Mark the 'variable offset' part of a register as zero.  This should be
749  * used only on registers holding a pointer type.
750  */
751 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
752 {
753 	__mark_reg_known(reg, 0);
754 }
755 
756 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
757 {
758 	__mark_reg_known(reg, 0);
759 	reg->type = SCALAR_VALUE;
760 }
761 
762 static void mark_reg_known_zero(struct bpf_verifier_env *env,
763 				struct bpf_reg_state *regs, u32 regno)
764 {
765 	if (WARN_ON(regno >= MAX_BPF_REG)) {
766 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
767 		/* Something bad happened, let's kill all regs */
768 		for (regno = 0; regno < MAX_BPF_REG; regno++)
769 			__mark_reg_not_init(regs + regno);
770 		return;
771 	}
772 	__mark_reg_known_zero(regs + regno);
773 }
774 
775 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
776 {
777 	return type_is_pkt_pointer(reg->type);
778 }
779 
780 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
781 {
782 	return reg_is_pkt_pointer(reg) ||
783 	       reg->type == PTR_TO_PACKET_END;
784 }
785 
786 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
787 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
788 				    enum bpf_reg_type which)
789 {
790 	/* The register can already have a range from prior markings.
791 	 * This is fine as long as it hasn't been advanced from its
792 	 * origin.
793 	 */
794 	return reg->type == which &&
795 	       reg->id == 0 &&
796 	       reg->off == 0 &&
797 	       tnum_equals_const(reg->var_off, 0);
798 }
799 
800 /* Attempts to improve min/max values based on var_off information */
801 static void __update_reg_bounds(struct bpf_reg_state *reg)
802 {
803 	/* min signed is max(sign bit) | min(other bits) */
804 	reg->smin_value = max_t(s64, reg->smin_value,
805 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
806 	/* max signed is min(sign bit) | max(other bits) */
807 	reg->smax_value = min_t(s64, reg->smax_value,
808 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
809 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
810 	reg->umax_value = min(reg->umax_value,
811 			      reg->var_off.value | reg->var_off.mask);
812 }
813 
814 /* Uses signed min/max values to inform unsigned, and vice-versa */
815 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
816 {
817 	/* Learn sign from signed bounds.
818 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
819 	 * are the same, so combine.  This works even in the negative case, e.g.
820 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
821 	 */
822 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
823 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
824 							  reg->umin_value);
825 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
826 							  reg->umax_value);
827 		return;
828 	}
829 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
830 	 * boundary, so we must be careful.
831 	 */
832 	if ((s64)reg->umax_value >= 0) {
833 		/* Positive.  We can't learn anything from the smin, but smax
834 		 * is positive, hence safe.
835 		 */
836 		reg->smin_value = reg->umin_value;
837 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
838 							  reg->umax_value);
839 	} else if ((s64)reg->umin_value < 0) {
840 		/* Negative.  We can't learn anything from the smax, but smin
841 		 * is negative, hence safe.
842 		 */
843 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
844 							  reg->umin_value);
845 		reg->smax_value = reg->umax_value;
846 	}
847 }
848 
849 /* Attempts to improve var_off based on unsigned min/max information */
850 static void __reg_bound_offset(struct bpf_reg_state *reg)
851 {
852 	reg->var_off = tnum_intersect(reg->var_off,
853 				      tnum_range(reg->umin_value,
854 						 reg->umax_value));
855 }
856 
857 /* Reset the min/max bounds of a register */
858 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
859 {
860 	reg->smin_value = S64_MIN;
861 	reg->smax_value = S64_MAX;
862 	reg->umin_value = 0;
863 	reg->umax_value = U64_MAX;
864 }
865 
866 /* Mark a register as having a completely unknown (scalar) value. */
867 static void __mark_reg_unknown(struct bpf_reg_state *reg)
868 {
869 	/*
870 	 * Clear type, id, off, and union(map_ptr, range) and
871 	 * padding between 'type' and union
872 	 */
873 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
874 	reg->type = SCALAR_VALUE;
875 	reg->var_off = tnum_unknown;
876 	reg->frameno = 0;
877 	__mark_reg_unbounded(reg);
878 }
879 
880 static void mark_reg_unknown(struct bpf_verifier_env *env,
881 			     struct bpf_reg_state *regs, u32 regno)
882 {
883 	if (WARN_ON(regno >= MAX_BPF_REG)) {
884 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
885 		/* Something bad happened, let's kill all regs except FP */
886 		for (regno = 0; regno < BPF_REG_FP; regno++)
887 			__mark_reg_not_init(regs + regno);
888 		return;
889 	}
890 	__mark_reg_unknown(regs + regno);
891 }
892 
893 static void __mark_reg_not_init(struct bpf_reg_state *reg)
894 {
895 	__mark_reg_unknown(reg);
896 	reg->type = NOT_INIT;
897 }
898 
899 static void mark_reg_not_init(struct bpf_verifier_env *env,
900 			      struct bpf_reg_state *regs, u32 regno)
901 {
902 	if (WARN_ON(regno >= MAX_BPF_REG)) {
903 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
904 		/* Something bad happened, let's kill all regs except FP */
905 		for (regno = 0; regno < BPF_REG_FP; regno++)
906 			__mark_reg_not_init(regs + regno);
907 		return;
908 	}
909 	__mark_reg_not_init(regs + regno);
910 }
911 
912 static void init_reg_state(struct bpf_verifier_env *env,
913 			   struct bpf_func_state *state)
914 {
915 	struct bpf_reg_state *regs = state->regs;
916 	int i;
917 
918 	for (i = 0; i < MAX_BPF_REG; i++) {
919 		mark_reg_not_init(env, regs, i);
920 		regs[i].live = REG_LIVE_NONE;
921 		regs[i].parent = NULL;
922 	}
923 
924 	/* frame pointer */
925 	regs[BPF_REG_FP].type = PTR_TO_STACK;
926 	mark_reg_known_zero(env, regs, BPF_REG_FP);
927 	regs[BPF_REG_FP].frameno = state->frameno;
928 
929 	/* 1st arg to a function */
930 	regs[BPF_REG_1].type = PTR_TO_CTX;
931 	mark_reg_known_zero(env, regs, BPF_REG_1);
932 }
933 
934 #define BPF_MAIN_FUNC (-1)
935 static void init_func_state(struct bpf_verifier_env *env,
936 			    struct bpf_func_state *state,
937 			    int callsite, int frameno, int subprogno)
938 {
939 	state->callsite = callsite;
940 	state->frameno = frameno;
941 	state->subprogno = subprogno;
942 	init_reg_state(env, state);
943 }
944 
945 enum reg_arg_type {
946 	SRC_OP,		/* register is used as source operand */
947 	DST_OP,		/* register is used as destination operand */
948 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
949 };
950 
951 static int cmp_subprogs(const void *a, const void *b)
952 {
953 	return ((struct bpf_subprog_info *)a)->start -
954 	       ((struct bpf_subprog_info *)b)->start;
955 }
956 
957 static int find_subprog(struct bpf_verifier_env *env, int off)
958 {
959 	struct bpf_subprog_info *p;
960 
961 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
962 		    sizeof(env->subprog_info[0]), cmp_subprogs);
963 	if (!p)
964 		return -ENOENT;
965 	return p - env->subprog_info;
966 
967 }
968 
969 static int add_subprog(struct bpf_verifier_env *env, int off)
970 {
971 	int insn_cnt = env->prog->len;
972 	int ret;
973 
974 	if (off >= insn_cnt || off < 0) {
975 		verbose(env, "call to invalid destination\n");
976 		return -EINVAL;
977 	}
978 	ret = find_subprog(env, off);
979 	if (ret >= 0)
980 		return 0;
981 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
982 		verbose(env, "too many subprograms\n");
983 		return -E2BIG;
984 	}
985 	env->subprog_info[env->subprog_cnt++].start = off;
986 	sort(env->subprog_info, env->subprog_cnt,
987 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
988 	return 0;
989 }
990 
991 static int check_subprogs(struct bpf_verifier_env *env)
992 {
993 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
994 	struct bpf_subprog_info *subprog = env->subprog_info;
995 	struct bpf_insn *insn = env->prog->insnsi;
996 	int insn_cnt = env->prog->len;
997 
998 	/* Add entry function. */
999 	ret = add_subprog(env, 0);
1000 	if (ret < 0)
1001 		return ret;
1002 
1003 	/* determine subprog starts. The end is one before the next starts */
1004 	for (i = 0; i < insn_cnt; i++) {
1005 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1006 			continue;
1007 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1008 			continue;
1009 		if (!env->allow_ptr_leaks) {
1010 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1011 			return -EPERM;
1012 		}
1013 		ret = add_subprog(env, i + insn[i].imm + 1);
1014 		if (ret < 0)
1015 			return ret;
1016 	}
1017 
1018 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1019 	 * logic. 'subprog_cnt' should not be increased.
1020 	 */
1021 	subprog[env->subprog_cnt].start = insn_cnt;
1022 
1023 	if (env->log.level > 1)
1024 		for (i = 0; i < env->subprog_cnt; i++)
1025 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1026 
1027 	/* now check that all jumps are within the same subprog */
1028 	subprog_start = subprog[cur_subprog].start;
1029 	subprog_end = subprog[cur_subprog + 1].start;
1030 	for (i = 0; i < insn_cnt; i++) {
1031 		u8 code = insn[i].code;
1032 
1033 		if (BPF_CLASS(code) != BPF_JMP)
1034 			goto next;
1035 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1036 			goto next;
1037 		off = i + insn[i].off + 1;
1038 		if (off < subprog_start || off >= subprog_end) {
1039 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1040 			return -EINVAL;
1041 		}
1042 next:
1043 		if (i == subprog_end - 1) {
1044 			/* to avoid fall-through from one subprog into another
1045 			 * the last insn of the subprog should be either exit
1046 			 * or unconditional jump back
1047 			 */
1048 			if (code != (BPF_JMP | BPF_EXIT) &&
1049 			    code != (BPF_JMP | BPF_JA)) {
1050 				verbose(env, "last insn is not an exit or jmp\n");
1051 				return -EINVAL;
1052 			}
1053 			subprog_start = subprog_end;
1054 			cur_subprog++;
1055 			if (cur_subprog < env->subprog_cnt)
1056 				subprog_end = subprog[cur_subprog + 1].start;
1057 		}
1058 	}
1059 	return 0;
1060 }
1061 
1062 /* Parentage chain of this register (or stack slot) should take care of all
1063  * issues like callee-saved registers, stack slot allocation time, etc.
1064  */
1065 static int mark_reg_read(struct bpf_verifier_env *env,
1066 			 const struct bpf_reg_state *state,
1067 			 struct bpf_reg_state *parent)
1068 {
1069 	bool writes = parent == state->parent; /* Observe write marks */
1070 
1071 	while (parent) {
1072 		/* if read wasn't screened by an earlier write ... */
1073 		if (writes && state->live & REG_LIVE_WRITTEN)
1074 			break;
1075 		/* ... then we depend on parent's value */
1076 		parent->live |= REG_LIVE_READ;
1077 		state = parent;
1078 		parent = state->parent;
1079 		writes = true;
1080 	}
1081 	return 0;
1082 }
1083 
1084 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1085 			 enum reg_arg_type t)
1086 {
1087 	struct bpf_verifier_state *vstate = env->cur_state;
1088 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1089 	struct bpf_reg_state *regs = state->regs;
1090 
1091 	if (regno >= MAX_BPF_REG) {
1092 		verbose(env, "R%d is invalid\n", regno);
1093 		return -EINVAL;
1094 	}
1095 
1096 	if (t == SRC_OP) {
1097 		/* check whether register used as source operand can be read */
1098 		if (regs[regno].type == NOT_INIT) {
1099 			verbose(env, "R%d !read_ok\n", regno);
1100 			return -EACCES;
1101 		}
1102 		/* We don't need to worry about FP liveness because it's read-only */
1103 		if (regno != BPF_REG_FP)
1104 			return mark_reg_read(env, &regs[regno],
1105 					     regs[regno].parent);
1106 	} else {
1107 		/* check whether register used as dest operand can be written to */
1108 		if (regno == BPF_REG_FP) {
1109 			verbose(env, "frame pointer is read only\n");
1110 			return -EACCES;
1111 		}
1112 		regs[regno].live |= REG_LIVE_WRITTEN;
1113 		if (t == DST_OP)
1114 			mark_reg_unknown(env, regs, regno);
1115 	}
1116 	return 0;
1117 }
1118 
1119 static bool is_spillable_regtype(enum bpf_reg_type type)
1120 {
1121 	switch (type) {
1122 	case PTR_TO_MAP_VALUE:
1123 	case PTR_TO_MAP_VALUE_OR_NULL:
1124 	case PTR_TO_STACK:
1125 	case PTR_TO_CTX:
1126 	case PTR_TO_PACKET:
1127 	case PTR_TO_PACKET_META:
1128 	case PTR_TO_PACKET_END:
1129 	case PTR_TO_FLOW_KEYS:
1130 	case CONST_PTR_TO_MAP:
1131 	case PTR_TO_SOCKET:
1132 	case PTR_TO_SOCKET_OR_NULL:
1133 		return true;
1134 	default:
1135 		return false;
1136 	}
1137 }
1138 
1139 /* Does this register contain a constant zero? */
1140 static bool register_is_null(struct bpf_reg_state *reg)
1141 {
1142 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1143 }
1144 
1145 /* check_stack_read/write functions track spill/fill of registers,
1146  * stack boundary and alignment are checked in check_mem_access()
1147  */
1148 static int check_stack_write(struct bpf_verifier_env *env,
1149 			     struct bpf_func_state *state, /* func where register points to */
1150 			     int off, int size, int value_regno, int insn_idx)
1151 {
1152 	struct bpf_func_state *cur; /* state of the current function */
1153 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1154 	enum bpf_reg_type type;
1155 
1156 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1157 				 state->acquired_refs, true);
1158 	if (err)
1159 		return err;
1160 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1161 	 * so it's aligned access and [off, off + size) are within stack limits
1162 	 */
1163 	if (!env->allow_ptr_leaks &&
1164 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1165 	    size != BPF_REG_SIZE) {
1166 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1167 		return -EACCES;
1168 	}
1169 
1170 	cur = env->cur_state->frame[env->cur_state->curframe];
1171 	if (value_regno >= 0 &&
1172 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1173 
1174 		/* register containing pointer is being spilled into stack */
1175 		if (size != BPF_REG_SIZE) {
1176 			verbose(env, "invalid size of register spill\n");
1177 			return -EACCES;
1178 		}
1179 
1180 		if (state != cur && type == PTR_TO_STACK) {
1181 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1182 			return -EINVAL;
1183 		}
1184 
1185 		/* save register state */
1186 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1187 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1188 
1189 		for (i = 0; i < BPF_REG_SIZE; i++) {
1190 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1191 			    !env->allow_ptr_leaks) {
1192 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1193 				int soff = (-spi - 1) * BPF_REG_SIZE;
1194 
1195 				/* detected reuse of integer stack slot with a pointer
1196 				 * which means either llvm is reusing stack slot or
1197 				 * an attacker is trying to exploit CVE-2018-3639
1198 				 * (speculative store bypass)
1199 				 * Have to sanitize that slot with preemptive
1200 				 * store of zero.
1201 				 */
1202 				if (*poff && *poff != soff) {
1203 					/* disallow programs where single insn stores
1204 					 * into two different stack slots, since verifier
1205 					 * cannot sanitize them
1206 					 */
1207 					verbose(env,
1208 						"insn %d cannot access two stack slots fp%d and fp%d",
1209 						insn_idx, *poff, soff);
1210 					return -EINVAL;
1211 				}
1212 				*poff = soff;
1213 			}
1214 			state->stack[spi].slot_type[i] = STACK_SPILL;
1215 		}
1216 	} else {
1217 		u8 type = STACK_MISC;
1218 
1219 		/* regular write of data into stack destroys any spilled ptr */
1220 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1221 
1222 		/* only mark the slot as written if all 8 bytes were written
1223 		 * otherwise read propagation may incorrectly stop too soon
1224 		 * when stack slots are partially written.
1225 		 * This heuristic means that read propagation will be
1226 		 * conservative, since it will add reg_live_read marks
1227 		 * to stack slots all the way to first state when programs
1228 		 * writes+reads less than 8 bytes
1229 		 */
1230 		if (size == BPF_REG_SIZE)
1231 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1232 
1233 		/* when we zero initialize stack slots mark them as such */
1234 		if (value_regno >= 0 &&
1235 		    register_is_null(&cur->regs[value_regno]))
1236 			type = STACK_ZERO;
1237 
1238 		for (i = 0; i < size; i++)
1239 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1240 				type;
1241 	}
1242 	return 0;
1243 }
1244 
1245 static int check_stack_read(struct bpf_verifier_env *env,
1246 			    struct bpf_func_state *reg_state /* func where register points to */,
1247 			    int off, int size, int value_regno)
1248 {
1249 	struct bpf_verifier_state *vstate = env->cur_state;
1250 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1251 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1252 	u8 *stype;
1253 
1254 	if (reg_state->allocated_stack <= slot) {
1255 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1256 			off, size);
1257 		return -EACCES;
1258 	}
1259 	stype = reg_state->stack[spi].slot_type;
1260 
1261 	if (stype[0] == STACK_SPILL) {
1262 		if (size != BPF_REG_SIZE) {
1263 			verbose(env, "invalid size of register spill\n");
1264 			return -EACCES;
1265 		}
1266 		for (i = 1; i < BPF_REG_SIZE; i++) {
1267 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1268 				verbose(env, "corrupted spill memory\n");
1269 				return -EACCES;
1270 			}
1271 		}
1272 
1273 		if (value_regno >= 0) {
1274 			/* restore register state from stack */
1275 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1276 			/* mark reg as written since spilled pointer state likely
1277 			 * has its liveness marks cleared by is_state_visited()
1278 			 * which resets stack/reg liveness for state transitions
1279 			 */
1280 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1281 		}
1282 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1283 			      reg_state->stack[spi].spilled_ptr.parent);
1284 		return 0;
1285 	} else {
1286 		int zeros = 0;
1287 
1288 		for (i = 0; i < size; i++) {
1289 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1290 				continue;
1291 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1292 				zeros++;
1293 				continue;
1294 			}
1295 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1296 				off, i, size);
1297 			return -EACCES;
1298 		}
1299 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1300 			      reg_state->stack[spi].spilled_ptr.parent);
1301 		if (value_regno >= 0) {
1302 			if (zeros == size) {
1303 				/* any size read into register is zero extended,
1304 				 * so the whole register == const_zero
1305 				 */
1306 				__mark_reg_const_zero(&state->regs[value_regno]);
1307 			} else {
1308 				/* have read misc data from the stack */
1309 				mark_reg_unknown(env, state->regs, value_regno);
1310 			}
1311 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1312 		}
1313 		return 0;
1314 	}
1315 }
1316 
1317 /* check read/write into map element returned by bpf_map_lookup_elem() */
1318 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1319 			      int size, bool zero_size_allowed)
1320 {
1321 	struct bpf_reg_state *regs = cur_regs(env);
1322 	struct bpf_map *map = regs[regno].map_ptr;
1323 
1324 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1325 	    off + size > map->value_size) {
1326 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1327 			map->value_size, off, size);
1328 		return -EACCES;
1329 	}
1330 	return 0;
1331 }
1332 
1333 /* check read/write into a map element with possible variable offset */
1334 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1335 			    int off, int size, bool zero_size_allowed)
1336 {
1337 	struct bpf_verifier_state *vstate = env->cur_state;
1338 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1339 	struct bpf_reg_state *reg = &state->regs[regno];
1340 	int err;
1341 
1342 	/* We may have adjusted the register to this map value, so we
1343 	 * need to try adding each of min_value and max_value to off
1344 	 * to make sure our theoretical access will be safe.
1345 	 */
1346 	if (env->log.level)
1347 		print_verifier_state(env, state);
1348 	/* The minimum value is only important with signed
1349 	 * comparisons where we can't assume the floor of a
1350 	 * value is 0.  If we are using signed variables for our
1351 	 * index'es we need to make sure that whatever we use
1352 	 * will have a set floor within our range.
1353 	 */
1354 	if (reg->smin_value < 0) {
1355 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1356 			regno);
1357 		return -EACCES;
1358 	}
1359 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1360 				 zero_size_allowed);
1361 	if (err) {
1362 		verbose(env, "R%d min value is outside of the array range\n",
1363 			regno);
1364 		return err;
1365 	}
1366 
1367 	/* If we haven't set a max value then we need to bail since we can't be
1368 	 * sure we won't do bad things.
1369 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1370 	 */
1371 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1372 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1373 			regno);
1374 		return -EACCES;
1375 	}
1376 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1377 				 zero_size_allowed);
1378 	if (err)
1379 		verbose(env, "R%d max value is outside of the array range\n",
1380 			regno);
1381 	return err;
1382 }
1383 
1384 #define MAX_PACKET_OFF 0xffff
1385 
1386 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1387 				       const struct bpf_call_arg_meta *meta,
1388 				       enum bpf_access_type t)
1389 {
1390 	switch (env->prog->type) {
1391 	/* Program types only with direct read access go here! */
1392 	case BPF_PROG_TYPE_LWT_IN:
1393 	case BPF_PROG_TYPE_LWT_OUT:
1394 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1395 	case BPF_PROG_TYPE_SK_REUSEPORT:
1396 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1397 	case BPF_PROG_TYPE_CGROUP_SKB:
1398 		if (t == BPF_WRITE)
1399 			return false;
1400 		/* fallthrough */
1401 
1402 	/* Program types with direct read + write access go here! */
1403 	case BPF_PROG_TYPE_SCHED_CLS:
1404 	case BPF_PROG_TYPE_SCHED_ACT:
1405 	case BPF_PROG_TYPE_XDP:
1406 	case BPF_PROG_TYPE_LWT_XMIT:
1407 	case BPF_PROG_TYPE_SK_SKB:
1408 	case BPF_PROG_TYPE_SK_MSG:
1409 		if (meta)
1410 			return meta->pkt_access;
1411 
1412 		env->seen_direct_write = true;
1413 		return true;
1414 	default:
1415 		return false;
1416 	}
1417 }
1418 
1419 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1420 				 int off, int size, bool zero_size_allowed)
1421 {
1422 	struct bpf_reg_state *regs = cur_regs(env);
1423 	struct bpf_reg_state *reg = &regs[regno];
1424 
1425 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1426 	    (u64)off + size > reg->range) {
1427 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1428 			off, size, regno, reg->id, reg->off, reg->range);
1429 		return -EACCES;
1430 	}
1431 	return 0;
1432 }
1433 
1434 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1435 			       int size, bool zero_size_allowed)
1436 {
1437 	struct bpf_reg_state *regs = cur_regs(env);
1438 	struct bpf_reg_state *reg = &regs[regno];
1439 	int err;
1440 
1441 	/* We may have added a variable offset to the packet pointer; but any
1442 	 * reg->range we have comes after that.  We are only checking the fixed
1443 	 * offset.
1444 	 */
1445 
1446 	/* We don't allow negative numbers, because we aren't tracking enough
1447 	 * detail to prove they're safe.
1448 	 */
1449 	if (reg->smin_value < 0) {
1450 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1451 			regno);
1452 		return -EACCES;
1453 	}
1454 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1455 	if (err) {
1456 		verbose(env, "R%d offset is outside of the packet\n", regno);
1457 		return err;
1458 	}
1459 	return err;
1460 }
1461 
1462 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1463 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1464 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1465 {
1466 	struct bpf_insn_access_aux info = {
1467 		.reg_type = *reg_type,
1468 	};
1469 
1470 	if (env->ops->is_valid_access &&
1471 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1472 		/* A non zero info.ctx_field_size indicates that this field is a
1473 		 * candidate for later verifier transformation to load the whole
1474 		 * field and then apply a mask when accessed with a narrower
1475 		 * access than actual ctx access size. A zero info.ctx_field_size
1476 		 * will only allow for whole field access and rejects any other
1477 		 * type of narrower access.
1478 		 */
1479 		*reg_type = info.reg_type;
1480 
1481 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1482 		/* remember the offset of last byte accessed in ctx */
1483 		if (env->prog->aux->max_ctx_offset < off + size)
1484 			env->prog->aux->max_ctx_offset = off + size;
1485 		return 0;
1486 	}
1487 
1488 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1489 	return -EACCES;
1490 }
1491 
1492 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1493 				  int size)
1494 {
1495 	if (size < 0 || off < 0 ||
1496 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1497 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1498 			off, size);
1499 		return -EACCES;
1500 	}
1501 	return 0;
1502 }
1503 
1504 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1505 			     int size, enum bpf_access_type t)
1506 {
1507 	struct bpf_reg_state *regs = cur_regs(env);
1508 	struct bpf_reg_state *reg = &regs[regno];
1509 	struct bpf_insn_access_aux info;
1510 
1511 	if (reg->smin_value < 0) {
1512 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1513 			regno);
1514 		return -EACCES;
1515 	}
1516 
1517 	if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1518 		verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1519 			off, size);
1520 		return -EACCES;
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 static bool __is_pointer_value(bool allow_ptr_leaks,
1527 			       const struct bpf_reg_state *reg)
1528 {
1529 	if (allow_ptr_leaks)
1530 		return false;
1531 
1532 	return reg->type != SCALAR_VALUE;
1533 }
1534 
1535 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1536 {
1537 	return cur_regs(env) + regno;
1538 }
1539 
1540 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1541 {
1542 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1543 }
1544 
1545 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1546 {
1547 	const struct bpf_reg_state *reg = reg_state(env, regno);
1548 
1549 	return reg->type == PTR_TO_CTX ||
1550 	       reg->type == PTR_TO_SOCKET;
1551 }
1552 
1553 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1554 {
1555 	const struct bpf_reg_state *reg = reg_state(env, regno);
1556 
1557 	return type_is_pkt_pointer(reg->type);
1558 }
1559 
1560 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1561 {
1562 	const struct bpf_reg_state *reg = reg_state(env, regno);
1563 
1564 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1565 	return reg->type == PTR_TO_FLOW_KEYS;
1566 }
1567 
1568 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1569 				   const struct bpf_reg_state *reg,
1570 				   int off, int size, bool strict)
1571 {
1572 	struct tnum reg_off;
1573 	int ip_align;
1574 
1575 	/* Byte size accesses are always allowed. */
1576 	if (!strict || size == 1)
1577 		return 0;
1578 
1579 	/* For platforms that do not have a Kconfig enabling
1580 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1581 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1582 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1583 	 * to this code only in strict mode where we want to emulate
1584 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1585 	 * unconditional IP align value of '2'.
1586 	 */
1587 	ip_align = 2;
1588 
1589 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1590 	if (!tnum_is_aligned(reg_off, size)) {
1591 		char tn_buf[48];
1592 
1593 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1594 		verbose(env,
1595 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1596 			ip_align, tn_buf, reg->off, off, size);
1597 		return -EACCES;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1604 				       const struct bpf_reg_state *reg,
1605 				       const char *pointer_desc,
1606 				       int off, int size, bool strict)
1607 {
1608 	struct tnum reg_off;
1609 
1610 	/* Byte size accesses are always allowed. */
1611 	if (!strict || size == 1)
1612 		return 0;
1613 
1614 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1615 	if (!tnum_is_aligned(reg_off, size)) {
1616 		char tn_buf[48];
1617 
1618 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1619 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1620 			pointer_desc, tn_buf, reg->off, off, size);
1621 		return -EACCES;
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 static int check_ptr_alignment(struct bpf_verifier_env *env,
1628 			       const struct bpf_reg_state *reg, int off,
1629 			       int size, bool strict_alignment_once)
1630 {
1631 	bool strict = env->strict_alignment || strict_alignment_once;
1632 	const char *pointer_desc = "";
1633 
1634 	switch (reg->type) {
1635 	case PTR_TO_PACKET:
1636 	case PTR_TO_PACKET_META:
1637 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1638 		 * right in front, treat it the very same way.
1639 		 */
1640 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1641 	case PTR_TO_FLOW_KEYS:
1642 		pointer_desc = "flow keys ";
1643 		break;
1644 	case PTR_TO_MAP_VALUE:
1645 		pointer_desc = "value ";
1646 		break;
1647 	case PTR_TO_CTX:
1648 		pointer_desc = "context ";
1649 		break;
1650 	case PTR_TO_STACK:
1651 		pointer_desc = "stack ";
1652 		/* The stack spill tracking logic in check_stack_write()
1653 		 * and check_stack_read() relies on stack accesses being
1654 		 * aligned.
1655 		 */
1656 		strict = true;
1657 		break;
1658 	case PTR_TO_SOCKET:
1659 		pointer_desc = "sock ";
1660 		break;
1661 	default:
1662 		break;
1663 	}
1664 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1665 					   strict);
1666 }
1667 
1668 static int update_stack_depth(struct bpf_verifier_env *env,
1669 			      const struct bpf_func_state *func,
1670 			      int off)
1671 {
1672 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1673 
1674 	if (stack >= -off)
1675 		return 0;
1676 
1677 	/* update known max for given subprogram */
1678 	env->subprog_info[func->subprogno].stack_depth = -off;
1679 	return 0;
1680 }
1681 
1682 /* starting from main bpf function walk all instructions of the function
1683  * and recursively walk all callees that given function can call.
1684  * Ignore jump and exit insns.
1685  * Since recursion is prevented by check_cfg() this algorithm
1686  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1687  */
1688 static int check_max_stack_depth(struct bpf_verifier_env *env)
1689 {
1690 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1691 	struct bpf_subprog_info *subprog = env->subprog_info;
1692 	struct bpf_insn *insn = env->prog->insnsi;
1693 	int ret_insn[MAX_CALL_FRAMES];
1694 	int ret_prog[MAX_CALL_FRAMES];
1695 
1696 process_func:
1697 	/* round up to 32-bytes, since this is granularity
1698 	 * of interpreter stack size
1699 	 */
1700 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1701 	if (depth > MAX_BPF_STACK) {
1702 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1703 			frame + 1, depth);
1704 		return -EACCES;
1705 	}
1706 continue_func:
1707 	subprog_end = subprog[idx + 1].start;
1708 	for (; i < subprog_end; i++) {
1709 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1710 			continue;
1711 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1712 			continue;
1713 		/* remember insn and function to return to */
1714 		ret_insn[frame] = i + 1;
1715 		ret_prog[frame] = idx;
1716 
1717 		/* find the callee */
1718 		i = i + insn[i].imm + 1;
1719 		idx = find_subprog(env, i);
1720 		if (idx < 0) {
1721 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1722 				  i);
1723 			return -EFAULT;
1724 		}
1725 		frame++;
1726 		if (frame >= MAX_CALL_FRAMES) {
1727 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1728 			return -EFAULT;
1729 		}
1730 		goto process_func;
1731 	}
1732 	/* end of for() loop means the last insn of the 'subprog'
1733 	 * was reached. Doesn't matter whether it was JA or EXIT
1734 	 */
1735 	if (frame == 0)
1736 		return 0;
1737 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1738 	frame--;
1739 	i = ret_insn[frame];
1740 	idx = ret_prog[frame];
1741 	goto continue_func;
1742 }
1743 
1744 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1745 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1746 				  const struct bpf_insn *insn, int idx)
1747 {
1748 	int start = idx + insn->imm + 1, subprog;
1749 
1750 	subprog = find_subprog(env, start);
1751 	if (subprog < 0) {
1752 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1753 			  start);
1754 		return -EFAULT;
1755 	}
1756 	return env->subprog_info[subprog].stack_depth;
1757 }
1758 #endif
1759 
1760 static int check_ctx_reg(struct bpf_verifier_env *env,
1761 			 const struct bpf_reg_state *reg, int regno)
1762 {
1763 	/* Access to ctx or passing it to a helper is only allowed in
1764 	 * its original, unmodified form.
1765 	 */
1766 
1767 	if (reg->off) {
1768 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1769 			regno, reg->off);
1770 		return -EACCES;
1771 	}
1772 
1773 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1774 		char tn_buf[48];
1775 
1776 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1777 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1778 		return -EACCES;
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 /* truncate register to smaller size (in bytes)
1785  * must be called with size < BPF_REG_SIZE
1786  */
1787 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1788 {
1789 	u64 mask;
1790 
1791 	/* clear high bits in bit representation */
1792 	reg->var_off = tnum_cast(reg->var_off, size);
1793 
1794 	/* fix arithmetic bounds */
1795 	mask = ((u64)1 << (size * 8)) - 1;
1796 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1797 		reg->umin_value &= mask;
1798 		reg->umax_value &= mask;
1799 	} else {
1800 		reg->umin_value = 0;
1801 		reg->umax_value = mask;
1802 	}
1803 	reg->smin_value = reg->umin_value;
1804 	reg->smax_value = reg->umax_value;
1805 }
1806 
1807 /* check whether memory at (regno + off) is accessible for t = (read | write)
1808  * if t==write, value_regno is a register which value is stored into memory
1809  * if t==read, value_regno is a register which will receive the value from memory
1810  * if t==write && value_regno==-1, some unknown value is stored into memory
1811  * if t==read && value_regno==-1, don't care what we read from memory
1812  */
1813 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1814 			    int off, int bpf_size, enum bpf_access_type t,
1815 			    int value_regno, bool strict_alignment_once)
1816 {
1817 	struct bpf_reg_state *regs = cur_regs(env);
1818 	struct bpf_reg_state *reg = regs + regno;
1819 	struct bpf_func_state *state;
1820 	int size, err = 0;
1821 
1822 	size = bpf_size_to_bytes(bpf_size);
1823 	if (size < 0)
1824 		return size;
1825 
1826 	/* alignment checks will add in reg->off themselves */
1827 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1828 	if (err)
1829 		return err;
1830 
1831 	/* for access checks, reg->off is just part of off */
1832 	off += reg->off;
1833 
1834 	if (reg->type == PTR_TO_MAP_VALUE) {
1835 		if (t == BPF_WRITE && value_regno >= 0 &&
1836 		    is_pointer_value(env, value_regno)) {
1837 			verbose(env, "R%d leaks addr into map\n", value_regno);
1838 			return -EACCES;
1839 		}
1840 
1841 		err = check_map_access(env, regno, off, size, false);
1842 		if (!err && t == BPF_READ && value_regno >= 0)
1843 			mark_reg_unknown(env, regs, value_regno);
1844 
1845 	} else if (reg->type == PTR_TO_CTX) {
1846 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1847 
1848 		if (t == BPF_WRITE && value_regno >= 0 &&
1849 		    is_pointer_value(env, value_regno)) {
1850 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1851 			return -EACCES;
1852 		}
1853 
1854 		err = check_ctx_reg(env, reg, regno);
1855 		if (err < 0)
1856 			return err;
1857 
1858 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1859 		if (!err && t == BPF_READ && value_regno >= 0) {
1860 			/* ctx access returns either a scalar, or a
1861 			 * PTR_TO_PACKET[_META,_END]. In the latter
1862 			 * case, we know the offset is zero.
1863 			 */
1864 			if (reg_type == SCALAR_VALUE)
1865 				mark_reg_unknown(env, regs, value_regno);
1866 			else
1867 				mark_reg_known_zero(env, regs,
1868 						    value_regno);
1869 			regs[value_regno].type = reg_type;
1870 		}
1871 
1872 	} else if (reg->type == PTR_TO_STACK) {
1873 		/* stack accesses must be at a fixed offset, so that we can
1874 		 * determine what type of data were returned.
1875 		 * See check_stack_read().
1876 		 */
1877 		if (!tnum_is_const(reg->var_off)) {
1878 			char tn_buf[48];
1879 
1880 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1881 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1882 				tn_buf, off, size);
1883 			return -EACCES;
1884 		}
1885 		off += reg->var_off.value;
1886 		if (off >= 0 || off < -MAX_BPF_STACK) {
1887 			verbose(env, "invalid stack off=%d size=%d\n", off,
1888 				size);
1889 			return -EACCES;
1890 		}
1891 
1892 		state = func(env, reg);
1893 		err = update_stack_depth(env, state, off);
1894 		if (err)
1895 			return err;
1896 
1897 		if (t == BPF_WRITE)
1898 			err = check_stack_write(env, state, off, size,
1899 						value_regno, insn_idx);
1900 		else
1901 			err = check_stack_read(env, state, off, size,
1902 					       value_regno);
1903 	} else if (reg_is_pkt_pointer(reg)) {
1904 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1905 			verbose(env, "cannot write into packet\n");
1906 			return -EACCES;
1907 		}
1908 		if (t == BPF_WRITE && value_regno >= 0 &&
1909 		    is_pointer_value(env, value_regno)) {
1910 			verbose(env, "R%d leaks addr into packet\n",
1911 				value_regno);
1912 			return -EACCES;
1913 		}
1914 		err = check_packet_access(env, regno, off, size, false);
1915 		if (!err && t == BPF_READ && value_regno >= 0)
1916 			mark_reg_unknown(env, regs, value_regno);
1917 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
1918 		if (t == BPF_WRITE && value_regno >= 0 &&
1919 		    is_pointer_value(env, value_regno)) {
1920 			verbose(env, "R%d leaks addr into flow keys\n",
1921 				value_regno);
1922 			return -EACCES;
1923 		}
1924 
1925 		err = check_flow_keys_access(env, off, size);
1926 		if (!err && t == BPF_READ && value_regno >= 0)
1927 			mark_reg_unknown(env, regs, value_regno);
1928 	} else if (reg->type == PTR_TO_SOCKET) {
1929 		if (t == BPF_WRITE) {
1930 			verbose(env, "cannot write into socket\n");
1931 			return -EACCES;
1932 		}
1933 		err = check_sock_access(env, regno, off, size, t);
1934 		if (!err && value_regno >= 0)
1935 			mark_reg_unknown(env, regs, value_regno);
1936 	} else {
1937 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1938 			reg_type_str[reg->type]);
1939 		return -EACCES;
1940 	}
1941 
1942 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1943 	    regs[value_regno].type == SCALAR_VALUE) {
1944 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1945 		coerce_reg_to_size(&regs[value_regno], size);
1946 	}
1947 	return err;
1948 }
1949 
1950 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1951 {
1952 	int err;
1953 
1954 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1955 	    insn->imm != 0) {
1956 		verbose(env, "BPF_XADD uses reserved fields\n");
1957 		return -EINVAL;
1958 	}
1959 
1960 	/* check src1 operand */
1961 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1962 	if (err)
1963 		return err;
1964 
1965 	/* check src2 operand */
1966 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1967 	if (err)
1968 		return err;
1969 
1970 	if (is_pointer_value(env, insn->src_reg)) {
1971 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1972 		return -EACCES;
1973 	}
1974 
1975 	if (is_ctx_reg(env, insn->dst_reg) ||
1976 	    is_pkt_reg(env, insn->dst_reg) ||
1977 	    is_flow_key_reg(env, insn->dst_reg)) {
1978 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1979 			insn->dst_reg,
1980 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
1981 		return -EACCES;
1982 	}
1983 
1984 	/* check whether atomic_add can read the memory */
1985 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1986 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1987 	if (err)
1988 		return err;
1989 
1990 	/* check whether atomic_add can write into the same memory */
1991 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1992 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1993 }
1994 
1995 /* when register 'regno' is passed into function that will read 'access_size'
1996  * bytes from that pointer, make sure that it's within stack boundary
1997  * and all elements of stack are initialized.
1998  * Unlike most pointer bounds-checking functions, this one doesn't take an
1999  * 'off' argument, so it has to add in reg->off itself.
2000  */
2001 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2002 				int access_size, bool zero_size_allowed,
2003 				struct bpf_call_arg_meta *meta)
2004 {
2005 	struct bpf_reg_state *reg = reg_state(env, regno);
2006 	struct bpf_func_state *state = func(env, reg);
2007 	int off, i, slot, spi;
2008 
2009 	if (reg->type != PTR_TO_STACK) {
2010 		/* Allow zero-byte read from NULL, regardless of pointer type */
2011 		if (zero_size_allowed && access_size == 0 &&
2012 		    register_is_null(reg))
2013 			return 0;
2014 
2015 		verbose(env, "R%d type=%s expected=%s\n", regno,
2016 			reg_type_str[reg->type],
2017 			reg_type_str[PTR_TO_STACK]);
2018 		return -EACCES;
2019 	}
2020 
2021 	/* Only allow fixed-offset stack reads */
2022 	if (!tnum_is_const(reg->var_off)) {
2023 		char tn_buf[48];
2024 
2025 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2026 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
2027 			regno, tn_buf);
2028 		return -EACCES;
2029 	}
2030 	off = reg->off + reg->var_off.value;
2031 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2032 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2033 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2034 			regno, off, access_size);
2035 		return -EACCES;
2036 	}
2037 
2038 	if (meta && meta->raw_mode) {
2039 		meta->access_size = access_size;
2040 		meta->regno = regno;
2041 		return 0;
2042 	}
2043 
2044 	for (i = 0; i < access_size; i++) {
2045 		u8 *stype;
2046 
2047 		slot = -(off + i) - 1;
2048 		spi = slot / BPF_REG_SIZE;
2049 		if (state->allocated_stack <= slot)
2050 			goto err;
2051 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2052 		if (*stype == STACK_MISC)
2053 			goto mark;
2054 		if (*stype == STACK_ZERO) {
2055 			/* helper can write anything into the stack */
2056 			*stype = STACK_MISC;
2057 			goto mark;
2058 		}
2059 err:
2060 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2061 			off, i, access_size);
2062 		return -EACCES;
2063 mark:
2064 		/* reading any byte out of 8-byte 'spill_slot' will cause
2065 		 * the whole slot to be marked as 'read'
2066 		 */
2067 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2068 			      state->stack[spi].spilled_ptr.parent);
2069 	}
2070 	return update_stack_depth(env, state, off);
2071 }
2072 
2073 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2074 				   int access_size, bool zero_size_allowed,
2075 				   struct bpf_call_arg_meta *meta)
2076 {
2077 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2078 
2079 	switch (reg->type) {
2080 	case PTR_TO_PACKET:
2081 	case PTR_TO_PACKET_META:
2082 		return check_packet_access(env, regno, reg->off, access_size,
2083 					   zero_size_allowed);
2084 	case PTR_TO_MAP_VALUE:
2085 		return check_map_access(env, regno, reg->off, access_size,
2086 					zero_size_allowed);
2087 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2088 		return check_stack_boundary(env, regno, access_size,
2089 					    zero_size_allowed, meta);
2090 	}
2091 }
2092 
2093 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2094 {
2095 	return type == ARG_PTR_TO_MEM ||
2096 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2097 	       type == ARG_PTR_TO_UNINIT_MEM;
2098 }
2099 
2100 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2101 {
2102 	return type == ARG_CONST_SIZE ||
2103 	       type == ARG_CONST_SIZE_OR_ZERO;
2104 }
2105 
2106 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2107 			  enum bpf_arg_type arg_type,
2108 			  struct bpf_call_arg_meta *meta)
2109 {
2110 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2111 	enum bpf_reg_type expected_type, type = reg->type;
2112 	int err = 0;
2113 
2114 	if (arg_type == ARG_DONTCARE)
2115 		return 0;
2116 
2117 	err = check_reg_arg(env, regno, SRC_OP);
2118 	if (err)
2119 		return err;
2120 
2121 	if (arg_type == ARG_ANYTHING) {
2122 		if (is_pointer_value(env, regno)) {
2123 			verbose(env, "R%d leaks addr into helper function\n",
2124 				regno);
2125 			return -EACCES;
2126 		}
2127 		return 0;
2128 	}
2129 
2130 	if (type_is_pkt_pointer(type) &&
2131 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2132 		verbose(env, "helper access to the packet is not allowed\n");
2133 		return -EACCES;
2134 	}
2135 
2136 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2137 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2138 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2139 		expected_type = PTR_TO_STACK;
2140 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2141 		    type != expected_type)
2142 			goto err_type;
2143 	} else if (arg_type == ARG_CONST_SIZE ||
2144 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2145 		expected_type = SCALAR_VALUE;
2146 		if (type != expected_type)
2147 			goto err_type;
2148 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2149 		expected_type = CONST_PTR_TO_MAP;
2150 		if (type != expected_type)
2151 			goto err_type;
2152 	} else if (arg_type == ARG_PTR_TO_CTX) {
2153 		expected_type = PTR_TO_CTX;
2154 		if (type != expected_type)
2155 			goto err_type;
2156 		err = check_ctx_reg(env, reg, regno);
2157 		if (err < 0)
2158 			return err;
2159 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2160 		expected_type = PTR_TO_SOCKET;
2161 		if (type != expected_type)
2162 			goto err_type;
2163 		if (meta->ptr_id || !reg->id) {
2164 			verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2165 				meta->ptr_id, reg->id);
2166 			return -EFAULT;
2167 		}
2168 		meta->ptr_id = reg->id;
2169 	} else if (arg_type_is_mem_ptr(arg_type)) {
2170 		expected_type = PTR_TO_STACK;
2171 		/* One exception here. In case function allows for NULL to be
2172 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2173 		 * happens during stack boundary checking.
2174 		 */
2175 		if (register_is_null(reg) &&
2176 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2177 			/* final test in check_stack_boundary() */;
2178 		else if (!type_is_pkt_pointer(type) &&
2179 			 type != PTR_TO_MAP_VALUE &&
2180 			 type != expected_type)
2181 			goto err_type;
2182 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2183 	} else {
2184 		verbose(env, "unsupported arg_type %d\n", arg_type);
2185 		return -EFAULT;
2186 	}
2187 
2188 	if (arg_type == ARG_CONST_MAP_PTR) {
2189 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2190 		meta->map_ptr = reg->map_ptr;
2191 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2192 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2193 		 * check that [key, key + map->key_size) are within
2194 		 * stack limits and initialized
2195 		 */
2196 		if (!meta->map_ptr) {
2197 			/* in function declaration map_ptr must come before
2198 			 * map_key, so that it's verified and known before
2199 			 * we have to check map_key here. Otherwise it means
2200 			 * that kernel subsystem misconfigured verifier
2201 			 */
2202 			verbose(env, "invalid map_ptr to access map->key\n");
2203 			return -EACCES;
2204 		}
2205 		err = check_helper_mem_access(env, regno,
2206 					      meta->map_ptr->key_size, false,
2207 					      NULL);
2208 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2209 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2210 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2211 		 * check [value, value + map->value_size) validity
2212 		 */
2213 		if (!meta->map_ptr) {
2214 			/* kernel subsystem misconfigured verifier */
2215 			verbose(env, "invalid map_ptr to access map->value\n");
2216 			return -EACCES;
2217 		}
2218 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2219 		err = check_helper_mem_access(env, regno,
2220 					      meta->map_ptr->value_size, false,
2221 					      meta);
2222 	} else if (arg_type_is_mem_size(arg_type)) {
2223 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2224 
2225 		/* remember the mem_size which may be used later
2226 		 * to refine return values.
2227 		 */
2228 		meta->msize_smax_value = reg->smax_value;
2229 		meta->msize_umax_value = reg->umax_value;
2230 
2231 		/* The register is SCALAR_VALUE; the access check
2232 		 * happens using its boundaries.
2233 		 */
2234 		if (!tnum_is_const(reg->var_off))
2235 			/* For unprivileged variable accesses, disable raw
2236 			 * mode so that the program is required to
2237 			 * initialize all the memory that the helper could
2238 			 * just partially fill up.
2239 			 */
2240 			meta = NULL;
2241 
2242 		if (reg->smin_value < 0) {
2243 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2244 				regno);
2245 			return -EACCES;
2246 		}
2247 
2248 		if (reg->umin_value == 0) {
2249 			err = check_helper_mem_access(env, regno - 1, 0,
2250 						      zero_size_allowed,
2251 						      meta);
2252 			if (err)
2253 				return err;
2254 		}
2255 
2256 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2257 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2258 				regno);
2259 			return -EACCES;
2260 		}
2261 		err = check_helper_mem_access(env, regno - 1,
2262 					      reg->umax_value,
2263 					      zero_size_allowed, meta);
2264 	}
2265 
2266 	return err;
2267 err_type:
2268 	verbose(env, "R%d type=%s expected=%s\n", regno,
2269 		reg_type_str[type], reg_type_str[expected_type]);
2270 	return -EACCES;
2271 }
2272 
2273 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2274 					struct bpf_map *map, int func_id)
2275 {
2276 	if (!map)
2277 		return 0;
2278 
2279 	/* We need a two way check, first is from map perspective ... */
2280 	switch (map->map_type) {
2281 	case BPF_MAP_TYPE_PROG_ARRAY:
2282 		if (func_id != BPF_FUNC_tail_call)
2283 			goto error;
2284 		break;
2285 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2286 		if (func_id != BPF_FUNC_perf_event_read &&
2287 		    func_id != BPF_FUNC_perf_event_output &&
2288 		    func_id != BPF_FUNC_perf_event_read_value)
2289 			goto error;
2290 		break;
2291 	case BPF_MAP_TYPE_STACK_TRACE:
2292 		if (func_id != BPF_FUNC_get_stackid)
2293 			goto error;
2294 		break;
2295 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2296 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2297 		    func_id != BPF_FUNC_current_task_under_cgroup)
2298 			goto error;
2299 		break;
2300 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2301 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2302 		if (func_id != BPF_FUNC_get_local_storage)
2303 			goto error;
2304 		break;
2305 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2306 	 * allow to be modified from bpf side. So do not allow lookup elements
2307 	 * for now.
2308 	 */
2309 	case BPF_MAP_TYPE_DEVMAP:
2310 		if (func_id != BPF_FUNC_redirect_map)
2311 			goto error;
2312 		break;
2313 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2314 	 * appear.
2315 	 */
2316 	case BPF_MAP_TYPE_CPUMAP:
2317 	case BPF_MAP_TYPE_XSKMAP:
2318 		if (func_id != BPF_FUNC_redirect_map)
2319 			goto error;
2320 		break;
2321 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2322 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2323 		if (func_id != BPF_FUNC_map_lookup_elem)
2324 			goto error;
2325 		break;
2326 	case BPF_MAP_TYPE_SOCKMAP:
2327 		if (func_id != BPF_FUNC_sk_redirect_map &&
2328 		    func_id != BPF_FUNC_sock_map_update &&
2329 		    func_id != BPF_FUNC_map_delete_elem &&
2330 		    func_id != BPF_FUNC_msg_redirect_map)
2331 			goto error;
2332 		break;
2333 	case BPF_MAP_TYPE_SOCKHASH:
2334 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2335 		    func_id != BPF_FUNC_sock_hash_update &&
2336 		    func_id != BPF_FUNC_map_delete_elem &&
2337 		    func_id != BPF_FUNC_msg_redirect_hash)
2338 			goto error;
2339 		break;
2340 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2341 		if (func_id != BPF_FUNC_sk_select_reuseport)
2342 			goto error;
2343 		break;
2344 	case BPF_MAP_TYPE_QUEUE:
2345 	case BPF_MAP_TYPE_STACK:
2346 		if (func_id != BPF_FUNC_map_peek_elem &&
2347 		    func_id != BPF_FUNC_map_pop_elem &&
2348 		    func_id != BPF_FUNC_map_push_elem)
2349 			goto error;
2350 		break;
2351 	default:
2352 		break;
2353 	}
2354 
2355 	/* ... and second from the function itself. */
2356 	switch (func_id) {
2357 	case BPF_FUNC_tail_call:
2358 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2359 			goto error;
2360 		if (env->subprog_cnt > 1) {
2361 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2362 			return -EINVAL;
2363 		}
2364 		break;
2365 	case BPF_FUNC_perf_event_read:
2366 	case BPF_FUNC_perf_event_output:
2367 	case BPF_FUNC_perf_event_read_value:
2368 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2369 			goto error;
2370 		break;
2371 	case BPF_FUNC_get_stackid:
2372 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2373 			goto error;
2374 		break;
2375 	case BPF_FUNC_current_task_under_cgroup:
2376 	case BPF_FUNC_skb_under_cgroup:
2377 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2378 			goto error;
2379 		break;
2380 	case BPF_FUNC_redirect_map:
2381 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2382 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2383 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2384 			goto error;
2385 		break;
2386 	case BPF_FUNC_sk_redirect_map:
2387 	case BPF_FUNC_msg_redirect_map:
2388 	case BPF_FUNC_sock_map_update:
2389 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2390 			goto error;
2391 		break;
2392 	case BPF_FUNC_sk_redirect_hash:
2393 	case BPF_FUNC_msg_redirect_hash:
2394 	case BPF_FUNC_sock_hash_update:
2395 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2396 			goto error;
2397 		break;
2398 	case BPF_FUNC_get_local_storage:
2399 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2400 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2401 			goto error;
2402 		break;
2403 	case BPF_FUNC_sk_select_reuseport:
2404 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2405 			goto error;
2406 		break;
2407 	case BPF_FUNC_map_peek_elem:
2408 	case BPF_FUNC_map_pop_elem:
2409 	case BPF_FUNC_map_push_elem:
2410 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2411 		    map->map_type != BPF_MAP_TYPE_STACK)
2412 			goto error;
2413 		break;
2414 	default:
2415 		break;
2416 	}
2417 
2418 	return 0;
2419 error:
2420 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2421 		map->map_type, func_id_name(func_id), func_id);
2422 	return -EINVAL;
2423 }
2424 
2425 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2426 {
2427 	int count = 0;
2428 
2429 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2430 		count++;
2431 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2432 		count++;
2433 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2434 		count++;
2435 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2436 		count++;
2437 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2438 		count++;
2439 
2440 	/* We only support one arg being in raw mode at the moment,
2441 	 * which is sufficient for the helper functions we have
2442 	 * right now.
2443 	 */
2444 	return count <= 1;
2445 }
2446 
2447 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2448 				    enum bpf_arg_type arg_next)
2449 {
2450 	return (arg_type_is_mem_ptr(arg_curr) &&
2451 	        !arg_type_is_mem_size(arg_next)) ||
2452 	       (!arg_type_is_mem_ptr(arg_curr) &&
2453 		arg_type_is_mem_size(arg_next));
2454 }
2455 
2456 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2457 {
2458 	/* bpf_xxx(..., buf, len) call will access 'len'
2459 	 * bytes from memory 'buf'. Both arg types need
2460 	 * to be paired, so make sure there's no buggy
2461 	 * helper function specification.
2462 	 */
2463 	if (arg_type_is_mem_size(fn->arg1_type) ||
2464 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2465 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2466 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2467 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2468 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2469 		return false;
2470 
2471 	return true;
2472 }
2473 
2474 static bool check_refcount_ok(const struct bpf_func_proto *fn)
2475 {
2476 	int count = 0;
2477 
2478 	if (arg_type_is_refcounted(fn->arg1_type))
2479 		count++;
2480 	if (arg_type_is_refcounted(fn->arg2_type))
2481 		count++;
2482 	if (arg_type_is_refcounted(fn->arg3_type))
2483 		count++;
2484 	if (arg_type_is_refcounted(fn->arg4_type))
2485 		count++;
2486 	if (arg_type_is_refcounted(fn->arg5_type))
2487 		count++;
2488 
2489 	/* We only support one arg being unreferenced at the moment,
2490 	 * which is sufficient for the helper functions we have right now.
2491 	 */
2492 	return count <= 1;
2493 }
2494 
2495 static int check_func_proto(const struct bpf_func_proto *fn)
2496 {
2497 	return check_raw_mode_ok(fn) &&
2498 	       check_arg_pair_ok(fn) &&
2499 	       check_refcount_ok(fn) ? 0 : -EINVAL;
2500 }
2501 
2502 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2503  * are now invalid, so turn them into unknown SCALAR_VALUE.
2504  */
2505 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2506 				     struct bpf_func_state *state)
2507 {
2508 	struct bpf_reg_state *regs = state->regs, *reg;
2509 	int i;
2510 
2511 	for (i = 0; i < MAX_BPF_REG; i++)
2512 		if (reg_is_pkt_pointer_any(&regs[i]))
2513 			mark_reg_unknown(env, regs, i);
2514 
2515 	bpf_for_each_spilled_reg(i, state, reg) {
2516 		if (!reg)
2517 			continue;
2518 		if (reg_is_pkt_pointer_any(reg))
2519 			__mark_reg_unknown(reg);
2520 	}
2521 }
2522 
2523 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2524 {
2525 	struct bpf_verifier_state *vstate = env->cur_state;
2526 	int i;
2527 
2528 	for (i = 0; i <= vstate->curframe; i++)
2529 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2530 }
2531 
2532 static void release_reg_references(struct bpf_verifier_env *env,
2533 				   struct bpf_func_state *state, int id)
2534 {
2535 	struct bpf_reg_state *regs = state->regs, *reg;
2536 	int i;
2537 
2538 	for (i = 0; i < MAX_BPF_REG; i++)
2539 		if (regs[i].id == id)
2540 			mark_reg_unknown(env, regs, i);
2541 
2542 	bpf_for_each_spilled_reg(i, state, reg) {
2543 		if (!reg)
2544 			continue;
2545 		if (reg_is_refcounted(reg) && reg->id == id)
2546 			__mark_reg_unknown(reg);
2547 	}
2548 }
2549 
2550 /* The pointer with the specified id has released its reference to kernel
2551  * resources. Identify all copies of the same pointer and clear the reference.
2552  */
2553 static int release_reference(struct bpf_verifier_env *env,
2554 			     struct bpf_call_arg_meta *meta)
2555 {
2556 	struct bpf_verifier_state *vstate = env->cur_state;
2557 	int i;
2558 
2559 	for (i = 0; i <= vstate->curframe; i++)
2560 		release_reg_references(env, vstate->frame[i], meta->ptr_id);
2561 
2562 	return release_reference_state(env, meta->ptr_id);
2563 }
2564 
2565 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2566 			   int *insn_idx)
2567 {
2568 	struct bpf_verifier_state *state = env->cur_state;
2569 	struct bpf_func_state *caller, *callee;
2570 	int i, err, subprog, target_insn;
2571 
2572 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2573 		verbose(env, "the call stack of %d frames is too deep\n",
2574 			state->curframe + 2);
2575 		return -E2BIG;
2576 	}
2577 
2578 	target_insn = *insn_idx + insn->imm;
2579 	subprog = find_subprog(env, target_insn + 1);
2580 	if (subprog < 0) {
2581 		verbose(env, "verifier bug. No program starts at insn %d\n",
2582 			target_insn + 1);
2583 		return -EFAULT;
2584 	}
2585 
2586 	caller = state->frame[state->curframe];
2587 	if (state->frame[state->curframe + 1]) {
2588 		verbose(env, "verifier bug. Frame %d already allocated\n",
2589 			state->curframe + 1);
2590 		return -EFAULT;
2591 	}
2592 
2593 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2594 	if (!callee)
2595 		return -ENOMEM;
2596 	state->frame[state->curframe + 1] = callee;
2597 
2598 	/* callee cannot access r0, r6 - r9 for reading and has to write
2599 	 * into its own stack before reading from it.
2600 	 * callee can read/write into caller's stack
2601 	 */
2602 	init_func_state(env, callee,
2603 			/* remember the callsite, it will be used by bpf_exit */
2604 			*insn_idx /* callsite */,
2605 			state->curframe + 1 /* frameno within this callchain */,
2606 			subprog /* subprog number within this prog */);
2607 
2608 	/* Transfer references to the callee */
2609 	err = transfer_reference_state(callee, caller);
2610 	if (err)
2611 		return err;
2612 
2613 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2614 	 * pointers, which connects us up to the liveness chain
2615 	 */
2616 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2617 		callee->regs[i] = caller->regs[i];
2618 
2619 	/* after the call registers r0 - r5 were scratched */
2620 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2621 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2622 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2623 	}
2624 
2625 	/* only increment it after check_reg_arg() finished */
2626 	state->curframe++;
2627 
2628 	/* and go analyze first insn of the callee */
2629 	*insn_idx = target_insn;
2630 
2631 	if (env->log.level) {
2632 		verbose(env, "caller:\n");
2633 		print_verifier_state(env, caller);
2634 		verbose(env, "callee:\n");
2635 		print_verifier_state(env, callee);
2636 	}
2637 	return 0;
2638 }
2639 
2640 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2641 {
2642 	struct bpf_verifier_state *state = env->cur_state;
2643 	struct bpf_func_state *caller, *callee;
2644 	struct bpf_reg_state *r0;
2645 	int err;
2646 
2647 	callee = state->frame[state->curframe];
2648 	r0 = &callee->regs[BPF_REG_0];
2649 	if (r0->type == PTR_TO_STACK) {
2650 		/* technically it's ok to return caller's stack pointer
2651 		 * (or caller's caller's pointer) back to the caller,
2652 		 * since these pointers are valid. Only current stack
2653 		 * pointer will be invalid as soon as function exits,
2654 		 * but let's be conservative
2655 		 */
2656 		verbose(env, "cannot return stack pointer to the caller\n");
2657 		return -EINVAL;
2658 	}
2659 
2660 	state->curframe--;
2661 	caller = state->frame[state->curframe];
2662 	/* return to the caller whatever r0 had in the callee */
2663 	caller->regs[BPF_REG_0] = *r0;
2664 
2665 	/* Transfer references to the caller */
2666 	err = transfer_reference_state(caller, callee);
2667 	if (err)
2668 		return err;
2669 
2670 	*insn_idx = callee->callsite + 1;
2671 	if (env->log.level) {
2672 		verbose(env, "returning from callee:\n");
2673 		print_verifier_state(env, callee);
2674 		verbose(env, "to caller at %d:\n", *insn_idx);
2675 		print_verifier_state(env, caller);
2676 	}
2677 	/* clear everything in the callee */
2678 	free_func_state(callee);
2679 	state->frame[state->curframe + 1] = NULL;
2680 	return 0;
2681 }
2682 
2683 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2684 				   int func_id,
2685 				   struct bpf_call_arg_meta *meta)
2686 {
2687 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2688 
2689 	if (ret_type != RET_INTEGER ||
2690 	    (func_id != BPF_FUNC_get_stack &&
2691 	     func_id != BPF_FUNC_probe_read_str))
2692 		return;
2693 
2694 	ret_reg->smax_value = meta->msize_smax_value;
2695 	ret_reg->umax_value = meta->msize_umax_value;
2696 	__reg_deduce_bounds(ret_reg);
2697 	__reg_bound_offset(ret_reg);
2698 }
2699 
2700 static int
2701 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2702 		int func_id, int insn_idx)
2703 {
2704 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2705 
2706 	if (func_id != BPF_FUNC_tail_call &&
2707 	    func_id != BPF_FUNC_map_lookup_elem &&
2708 	    func_id != BPF_FUNC_map_update_elem &&
2709 	    func_id != BPF_FUNC_map_delete_elem &&
2710 	    func_id != BPF_FUNC_map_push_elem &&
2711 	    func_id != BPF_FUNC_map_pop_elem &&
2712 	    func_id != BPF_FUNC_map_peek_elem)
2713 		return 0;
2714 
2715 	if (meta->map_ptr == NULL) {
2716 		verbose(env, "kernel subsystem misconfigured verifier\n");
2717 		return -EINVAL;
2718 	}
2719 
2720 	if (!BPF_MAP_PTR(aux->map_state))
2721 		bpf_map_ptr_store(aux, meta->map_ptr,
2722 				  meta->map_ptr->unpriv_array);
2723 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2724 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2725 				  meta->map_ptr->unpriv_array);
2726 	return 0;
2727 }
2728 
2729 static int check_reference_leak(struct bpf_verifier_env *env)
2730 {
2731 	struct bpf_func_state *state = cur_func(env);
2732 	int i;
2733 
2734 	for (i = 0; i < state->acquired_refs; i++) {
2735 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2736 			state->refs[i].id, state->refs[i].insn_idx);
2737 	}
2738 	return state->acquired_refs ? -EINVAL : 0;
2739 }
2740 
2741 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2742 {
2743 	const struct bpf_func_proto *fn = NULL;
2744 	struct bpf_reg_state *regs;
2745 	struct bpf_call_arg_meta meta;
2746 	bool changes_data;
2747 	int i, err;
2748 
2749 	/* find function prototype */
2750 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2751 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2752 			func_id);
2753 		return -EINVAL;
2754 	}
2755 
2756 	if (env->ops->get_func_proto)
2757 		fn = env->ops->get_func_proto(func_id, env->prog);
2758 	if (!fn) {
2759 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2760 			func_id);
2761 		return -EINVAL;
2762 	}
2763 
2764 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2765 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2766 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2767 		return -EINVAL;
2768 	}
2769 
2770 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2771 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2772 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2773 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2774 			func_id_name(func_id), func_id);
2775 		return -EINVAL;
2776 	}
2777 
2778 	memset(&meta, 0, sizeof(meta));
2779 	meta.pkt_access = fn->pkt_access;
2780 
2781 	err = check_func_proto(fn);
2782 	if (err) {
2783 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2784 			func_id_name(func_id), func_id);
2785 		return err;
2786 	}
2787 
2788 	/* check args */
2789 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2790 	if (err)
2791 		return err;
2792 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2793 	if (err)
2794 		return err;
2795 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2796 	if (err)
2797 		return err;
2798 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2799 	if (err)
2800 		return err;
2801 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2802 	if (err)
2803 		return err;
2804 
2805 	err = record_func_map(env, &meta, func_id, insn_idx);
2806 	if (err)
2807 		return err;
2808 
2809 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2810 	 * is inferred from register state.
2811 	 */
2812 	for (i = 0; i < meta.access_size; i++) {
2813 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2814 				       BPF_WRITE, -1, false);
2815 		if (err)
2816 			return err;
2817 	}
2818 
2819 	if (func_id == BPF_FUNC_tail_call) {
2820 		err = check_reference_leak(env);
2821 		if (err) {
2822 			verbose(env, "tail_call would lead to reference leak\n");
2823 			return err;
2824 		}
2825 	} else if (is_release_function(func_id)) {
2826 		err = release_reference(env, &meta);
2827 		if (err)
2828 			return err;
2829 	}
2830 
2831 	regs = cur_regs(env);
2832 
2833 	/* check that flags argument in get_local_storage(map, flags) is 0,
2834 	 * this is required because get_local_storage() can't return an error.
2835 	 */
2836 	if (func_id == BPF_FUNC_get_local_storage &&
2837 	    !register_is_null(&regs[BPF_REG_2])) {
2838 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2839 		return -EINVAL;
2840 	}
2841 
2842 	/* reset caller saved regs */
2843 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2844 		mark_reg_not_init(env, regs, caller_saved[i]);
2845 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2846 	}
2847 
2848 	/* update return register (already marked as written above) */
2849 	if (fn->ret_type == RET_INTEGER) {
2850 		/* sets type to SCALAR_VALUE */
2851 		mark_reg_unknown(env, regs, BPF_REG_0);
2852 	} else if (fn->ret_type == RET_VOID) {
2853 		regs[BPF_REG_0].type = NOT_INIT;
2854 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2855 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2856 		/* There is no offset yet applied, variable or fixed */
2857 		mark_reg_known_zero(env, regs, BPF_REG_0);
2858 		/* remember map_ptr, so that check_map_access()
2859 		 * can check 'value_size' boundary of memory access
2860 		 * to map element returned from bpf_map_lookup_elem()
2861 		 */
2862 		if (meta.map_ptr == NULL) {
2863 			verbose(env,
2864 				"kernel subsystem misconfigured verifier\n");
2865 			return -EINVAL;
2866 		}
2867 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2868 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2869 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2870 		} else {
2871 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2872 			regs[BPF_REG_0].id = ++env->id_gen;
2873 		}
2874 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
2875 		int id = acquire_reference_state(env, insn_idx);
2876 		if (id < 0)
2877 			return id;
2878 		mark_reg_known_zero(env, regs, BPF_REG_0);
2879 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
2880 		regs[BPF_REG_0].id = id;
2881 	} else {
2882 		verbose(env, "unknown return type %d of func %s#%d\n",
2883 			fn->ret_type, func_id_name(func_id), func_id);
2884 		return -EINVAL;
2885 	}
2886 
2887 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2888 
2889 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2890 	if (err)
2891 		return err;
2892 
2893 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2894 		const char *err_str;
2895 
2896 #ifdef CONFIG_PERF_EVENTS
2897 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2898 		err_str = "cannot get callchain buffer for func %s#%d\n";
2899 #else
2900 		err = -ENOTSUPP;
2901 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2902 #endif
2903 		if (err) {
2904 			verbose(env, err_str, func_id_name(func_id), func_id);
2905 			return err;
2906 		}
2907 
2908 		env->prog->has_callchain_buf = true;
2909 	}
2910 
2911 	if (changes_data)
2912 		clear_all_pkt_pointers(env);
2913 	return 0;
2914 }
2915 
2916 static bool signed_add_overflows(s64 a, s64 b)
2917 {
2918 	/* Do the add in u64, where overflow is well-defined */
2919 	s64 res = (s64)((u64)a + (u64)b);
2920 
2921 	if (b < 0)
2922 		return res > a;
2923 	return res < a;
2924 }
2925 
2926 static bool signed_sub_overflows(s64 a, s64 b)
2927 {
2928 	/* Do the sub in u64, where overflow is well-defined */
2929 	s64 res = (s64)((u64)a - (u64)b);
2930 
2931 	if (b < 0)
2932 		return res < a;
2933 	return res > a;
2934 }
2935 
2936 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2937 				  const struct bpf_reg_state *reg,
2938 				  enum bpf_reg_type type)
2939 {
2940 	bool known = tnum_is_const(reg->var_off);
2941 	s64 val = reg->var_off.value;
2942 	s64 smin = reg->smin_value;
2943 
2944 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2945 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2946 			reg_type_str[type], val);
2947 		return false;
2948 	}
2949 
2950 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2951 		verbose(env, "%s pointer offset %d is not allowed\n",
2952 			reg_type_str[type], reg->off);
2953 		return false;
2954 	}
2955 
2956 	if (smin == S64_MIN) {
2957 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2958 			reg_type_str[type]);
2959 		return false;
2960 	}
2961 
2962 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2963 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2964 			smin, reg_type_str[type]);
2965 		return false;
2966 	}
2967 
2968 	return true;
2969 }
2970 
2971 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2972  * Caller should also handle BPF_MOV case separately.
2973  * If we return -EACCES, caller may want to try again treating pointer as a
2974  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2975  */
2976 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2977 				   struct bpf_insn *insn,
2978 				   const struct bpf_reg_state *ptr_reg,
2979 				   const struct bpf_reg_state *off_reg)
2980 {
2981 	struct bpf_verifier_state *vstate = env->cur_state;
2982 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2983 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2984 	bool known = tnum_is_const(off_reg->var_off);
2985 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2986 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2987 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2988 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2989 	u8 opcode = BPF_OP(insn->code);
2990 	u32 dst = insn->dst_reg;
2991 
2992 	dst_reg = &regs[dst];
2993 
2994 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2995 	    smin_val > smax_val || umin_val > umax_val) {
2996 		/* Taint dst register if offset had invalid bounds derived from
2997 		 * e.g. dead branches.
2998 		 */
2999 		__mark_reg_unknown(dst_reg);
3000 		return 0;
3001 	}
3002 
3003 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3004 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3005 		verbose(env,
3006 			"R%d 32-bit pointer arithmetic prohibited\n",
3007 			dst);
3008 		return -EACCES;
3009 	}
3010 
3011 	switch (ptr_reg->type) {
3012 	case PTR_TO_MAP_VALUE_OR_NULL:
3013 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3014 			dst, reg_type_str[ptr_reg->type]);
3015 		return -EACCES;
3016 	case CONST_PTR_TO_MAP:
3017 	case PTR_TO_PACKET_END:
3018 	case PTR_TO_SOCKET:
3019 	case PTR_TO_SOCKET_OR_NULL:
3020 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3021 			dst, reg_type_str[ptr_reg->type]);
3022 		return -EACCES;
3023 	default:
3024 		break;
3025 	}
3026 
3027 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3028 	 * The id may be overwritten later if we create a new variable offset.
3029 	 */
3030 	dst_reg->type = ptr_reg->type;
3031 	dst_reg->id = ptr_reg->id;
3032 
3033 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3034 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3035 		return -EINVAL;
3036 
3037 	switch (opcode) {
3038 	case BPF_ADD:
3039 		/* We can take a fixed offset as long as it doesn't overflow
3040 		 * the s32 'off' field
3041 		 */
3042 		if (known && (ptr_reg->off + smin_val ==
3043 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3044 			/* pointer += K.  Accumulate it into fixed offset */
3045 			dst_reg->smin_value = smin_ptr;
3046 			dst_reg->smax_value = smax_ptr;
3047 			dst_reg->umin_value = umin_ptr;
3048 			dst_reg->umax_value = umax_ptr;
3049 			dst_reg->var_off = ptr_reg->var_off;
3050 			dst_reg->off = ptr_reg->off + smin_val;
3051 			dst_reg->raw = ptr_reg->raw;
3052 			break;
3053 		}
3054 		/* A new variable offset is created.  Note that off_reg->off
3055 		 * == 0, since it's a scalar.
3056 		 * dst_reg gets the pointer type and since some positive
3057 		 * integer value was added to the pointer, give it a new 'id'
3058 		 * if it's a PTR_TO_PACKET.
3059 		 * this creates a new 'base' pointer, off_reg (variable) gets
3060 		 * added into the variable offset, and we copy the fixed offset
3061 		 * from ptr_reg.
3062 		 */
3063 		if (signed_add_overflows(smin_ptr, smin_val) ||
3064 		    signed_add_overflows(smax_ptr, smax_val)) {
3065 			dst_reg->smin_value = S64_MIN;
3066 			dst_reg->smax_value = S64_MAX;
3067 		} else {
3068 			dst_reg->smin_value = smin_ptr + smin_val;
3069 			dst_reg->smax_value = smax_ptr + smax_val;
3070 		}
3071 		if (umin_ptr + umin_val < umin_ptr ||
3072 		    umax_ptr + umax_val < umax_ptr) {
3073 			dst_reg->umin_value = 0;
3074 			dst_reg->umax_value = U64_MAX;
3075 		} else {
3076 			dst_reg->umin_value = umin_ptr + umin_val;
3077 			dst_reg->umax_value = umax_ptr + umax_val;
3078 		}
3079 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3080 		dst_reg->off = ptr_reg->off;
3081 		dst_reg->raw = ptr_reg->raw;
3082 		if (reg_is_pkt_pointer(ptr_reg)) {
3083 			dst_reg->id = ++env->id_gen;
3084 			/* something was added to pkt_ptr, set range to zero */
3085 			dst_reg->raw = 0;
3086 		}
3087 		break;
3088 	case BPF_SUB:
3089 		if (dst_reg == off_reg) {
3090 			/* scalar -= pointer.  Creates an unknown scalar */
3091 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3092 				dst);
3093 			return -EACCES;
3094 		}
3095 		/* We don't allow subtraction from FP, because (according to
3096 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3097 		 * be able to deal with it.
3098 		 */
3099 		if (ptr_reg->type == PTR_TO_STACK) {
3100 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3101 				dst);
3102 			return -EACCES;
3103 		}
3104 		if (known && (ptr_reg->off - smin_val ==
3105 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3106 			/* pointer -= K.  Subtract it from fixed offset */
3107 			dst_reg->smin_value = smin_ptr;
3108 			dst_reg->smax_value = smax_ptr;
3109 			dst_reg->umin_value = umin_ptr;
3110 			dst_reg->umax_value = umax_ptr;
3111 			dst_reg->var_off = ptr_reg->var_off;
3112 			dst_reg->id = ptr_reg->id;
3113 			dst_reg->off = ptr_reg->off - smin_val;
3114 			dst_reg->raw = ptr_reg->raw;
3115 			break;
3116 		}
3117 		/* A new variable offset is created.  If the subtrahend is known
3118 		 * nonnegative, then any reg->range we had before is still good.
3119 		 */
3120 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3121 		    signed_sub_overflows(smax_ptr, smin_val)) {
3122 			/* Overflow possible, we know nothing */
3123 			dst_reg->smin_value = S64_MIN;
3124 			dst_reg->smax_value = S64_MAX;
3125 		} else {
3126 			dst_reg->smin_value = smin_ptr - smax_val;
3127 			dst_reg->smax_value = smax_ptr - smin_val;
3128 		}
3129 		if (umin_ptr < umax_val) {
3130 			/* Overflow possible, we know nothing */
3131 			dst_reg->umin_value = 0;
3132 			dst_reg->umax_value = U64_MAX;
3133 		} else {
3134 			/* Cannot overflow (as long as bounds are consistent) */
3135 			dst_reg->umin_value = umin_ptr - umax_val;
3136 			dst_reg->umax_value = umax_ptr - umin_val;
3137 		}
3138 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3139 		dst_reg->off = ptr_reg->off;
3140 		dst_reg->raw = ptr_reg->raw;
3141 		if (reg_is_pkt_pointer(ptr_reg)) {
3142 			dst_reg->id = ++env->id_gen;
3143 			/* something was added to pkt_ptr, set range to zero */
3144 			if (smin_val < 0)
3145 				dst_reg->raw = 0;
3146 		}
3147 		break;
3148 	case BPF_AND:
3149 	case BPF_OR:
3150 	case BPF_XOR:
3151 		/* bitwise ops on pointers are troublesome, prohibit. */
3152 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3153 			dst, bpf_alu_string[opcode >> 4]);
3154 		return -EACCES;
3155 	default:
3156 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3157 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3158 			dst, bpf_alu_string[opcode >> 4]);
3159 		return -EACCES;
3160 	}
3161 
3162 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3163 		return -EINVAL;
3164 
3165 	__update_reg_bounds(dst_reg);
3166 	__reg_deduce_bounds(dst_reg);
3167 	__reg_bound_offset(dst_reg);
3168 	return 0;
3169 }
3170 
3171 /* WARNING: This function does calculations on 64-bit values, but the actual
3172  * execution may occur on 32-bit values. Therefore, things like bitshifts
3173  * need extra checks in the 32-bit case.
3174  */
3175 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3176 				      struct bpf_insn *insn,
3177 				      struct bpf_reg_state *dst_reg,
3178 				      struct bpf_reg_state src_reg)
3179 {
3180 	struct bpf_reg_state *regs = cur_regs(env);
3181 	u8 opcode = BPF_OP(insn->code);
3182 	bool src_known, dst_known;
3183 	s64 smin_val, smax_val;
3184 	u64 umin_val, umax_val;
3185 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3186 
3187 	if (insn_bitness == 32) {
3188 		/* Relevant for 32-bit RSH: Information can propagate towards
3189 		 * LSB, so it isn't sufficient to only truncate the output to
3190 		 * 32 bits.
3191 		 */
3192 		coerce_reg_to_size(dst_reg, 4);
3193 		coerce_reg_to_size(&src_reg, 4);
3194 	}
3195 
3196 	smin_val = src_reg.smin_value;
3197 	smax_val = src_reg.smax_value;
3198 	umin_val = src_reg.umin_value;
3199 	umax_val = src_reg.umax_value;
3200 	src_known = tnum_is_const(src_reg.var_off);
3201 	dst_known = tnum_is_const(dst_reg->var_off);
3202 
3203 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3204 	    smin_val > smax_val || umin_val > umax_val) {
3205 		/* Taint dst register if offset had invalid bounds derived from
3206 		 * e.g. dead branches.
3207 		 */
3208 		__mark_reg_unknown(dst_reg);
3209 		return 0;
3210 	}
3211 
3212 	if (!src_known &&
3213 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3214 		__mark_reg_unknown(dst_reg);
3215 		return 0;
3216 	}
3217 
3218 	switch (opcode) {
3219 	case BPF_ADD:
3220 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3221 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3222 			dst_reg->smin_value = S64_MIN;
3223 			dst_reg->smax_value = S64_MAX;
3224 		} else {
3225 			dst_reg->smin_value += smin_val;
3226 			dst_reg->smax_value += smax_val;
3227 		}
3228 		if (dst_reg->umin_value + umin_val < umin_val ||
3229 		    dst_reg->umax_value + umax_val < umax_val) {
3230 			dst_reg->umin_value = 0;
3231 			dst_reg->umax_value = U64_MAX;
3232 		} else {
3233 			dst_reg->umin_value += umin_val;
3234 			dst_reg->umax_value += umax_val;
3235 		}
3236 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3237 		break;
3238 	case BPF_SUB:
3239 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3240 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3241 			/* Overflow possible, we know nothing */
3242 			dst_reg->smin_value = S64_MIN;
3243 			dst_reg->smax_value = S64_MAX;
3244 		} else {
3245 			dst_reg->smin_value -= smax_val;
3246 			dst_reg->smax_value -= smin_val;
3247 		}
3248 		if (dst_reg->umin_value < umax_val) {
3249 			/* Overflow possible, we know nothing */
3250 			dst_reg->umin_value = 0;
3251 			dst_reg->umax_value = U64_MAX;
3252 		} else {
3253 			/* Cannot overflow (as long as bounds are consistent) */
3254 			dst_reg->umin_value -= umax_val;
3255 			dst_reg->umax_value -= umin_val;
3256 		}
3257 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3258 		break;
3259 	case BPF_MUL:
3260 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3261 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3262 			/* Ain't nobody got time to multiply that sign */
3263 			__mark_reg_unbounded(dst_reg);
3264 			__update_reg_bounds(dst_reg);
3265 			break;
3266 		}
3267 		/* Both values are positive, so we can work with unsigned and
3268 		 * copy the result to signed (unless it exceeds S64_MAX).
3269 		 */
3270 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3271 			/* Potential overflow, we know nothing */
3272 			__mark_reg_unbounded(dst_reg);
3273 			/* (except what we can learn from the var_off) */
3274 			__update_reg_bounds(dst_reg);
3275 			break;
3276 		}
3277 		dst_reg->umin_value *= umin_val;
3278 		dst_reg->umax_value *= umax_val;
3279 		if (dst_reg->umax_value > S64_MAX) {
3280 			/* Overflow possible, we know nothing */
3281 			dst_reg->smin_value = S64_MIN;
3282 			dst_reg->smax_value = S64_MAX;
3283 		} else {
3284 			dst_reg->smin_value = dst_reg->umin_value;
3285 			dst_reg->smax_value = dst_reg->umax_value;
3286 		}
3287 		break;
3288 	case BPF_AND:
3289 		if (src_known && dst_known) {
3290 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3291 						  src_reg.var_off.value);
3292 			break;
3293 		}
3294 		/* We get our minimum from the var_off, since that's inherently
3295 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3296 		 */
3297 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3298 		dst_reg->umin_value = dst_reg->var_off.value;
3299 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3300 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3301 			/* Lose signed bounds when ANDing negative numbers,
3302 			 * ain't nobody got time for that.
3303 			 */
3304 			dst_reg->smin_value = S64_MIN;
3305 			dst_reg->smax_value = S64_MAX;
3306 		} else {
3307 			/* ANDing two positives gives a positive, so safe to
3308 			 * cast result into s64.
3309 			 */
3310 			dst_reg->smin_value = dst_reg->umin_value;
3311 			dst_reg->smax_value = dst_reg->umax_value;
3312 		}
3313 		/* We may learn something more from the var_off */
3314 		__update_reg_bounds(dst_reg);
3315 		break;
3316 	case BPF_OR:
3317 		if (src_known && dst_known) {
3318 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3319 						  src_reg.var_off.value);
3320 			break;
3321 		}
3322 		/* We get our maximum from the var_off, and our minimum is the
3323 		 * maximum of the operands' minima
3324 		 */
3325 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3326 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3327 		dst_reg->umax_value = dst_reg->var_off.value |
3328 				      dst_reg->var_off.mask;
3329 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3330 			/* Lose signed bounds when ORing negative numbers,
3331 			 * ain't nobody got time for that.
3332 			 */
3333 			dst_reg->smin_value = S64_MIN;
3334 			dst_reg->smax_value = S64_MAX;
3335 		} else {
3336 			/* ORing two positives gives a positive, so safe to
3337 			 * cast result into s64.
3338 			 */
3339 			dst_reg->smin_value = dst_reg->umin_value;
3340 			dst_reg->smax_value = dst_reg->umax_value;
3341 		}
3342 		/* We may learn something more from the var_off */
3343 		__update_reg_bounds(dst_reg);
3344 		break;
3345 	case BPF_LSH:
3346 		if (umax_val >= insn_bitness) {
3347 			/* Shifts greater than 31 or 63 are undefined.
3348 			 * This includes shifts by a negative number.
3349 			 */
3350 			mark_reg_unknown(env, regs, insn->dst_reg);
3351 			break;
3352 		}
3353 		/* We lose all sign bit information (except what we can pick
3354 		 * up from var_off)
3355 		 */
3356 		dst_reg->smin_value = S64_MIN;
3357 		dst_reg->smax_value = S64_MAX;
3358 		/* If we might shift our top bit out, then we know nothing */
3359 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3360 			dst_reg->umin_value = 0;
3361 			dst_reg->umax_value = U64_MAX;
3362 		} else {
3363 			dst_reg->umin_value <<= umin_val;
3364 			dst_reg->umax_value <<= umax_val;
3365 		}
3366 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3367 		/* We may learn something more from the var_off */
3368 		__update_reg_bounds(dst_reg);
3369 		break;
3370 	case BPF_RSH:
3371 		if (umax_val >= insn_bitness) {
3372 			/* Shifts greater than 31 or 63 are undefined.
3373 			 * This includes shifts by a negative number.
3374 			 */
3375 			mark_reg_unknown(env, regs, insn->dst_reg);
3376 			break;
3377 		}
3378 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3379 		 * be negative, then either:
3380 		 * 1) src_reg might be zero, so the sign bit of the result is
3381 		 *    unknown, so we lose our signed bounds
3382 		 * 2) it's known negative, thus the unsigned bounds capture the
3383 		 *    signed bounds
3384 		 * 3) the signed bounds cross zero, so they tell us nothing
3385 		 *    about the result
3386 		 * If the value in dst_reg is known nonnegative, then again the
3387 		 * unsigned bounts capture the signed bounds.
3388 		 * Thus, in all cases it suffices to blow away our signed bounds
3389 		 * and rely on inferring new ones from the unsigned bounds and
3390 		 * var_off of the result.
3391 		 */
3392 		dst_reg->smin_value = S64_MIN;
3393 		dst_reg->smax_value = S64_MAX;
3394 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3395 		dst_reg->umin_value >>= umax_val;
3396 		dst_reg->umax_value >>= umin_val;
3397 		/* We may learn something more from the var_off */
3398 		__update_reg_bounds(dst_reg);
3399 		break;
3400 	case BPF_ARSH:
3401 		if (umax_val >= insn_bitness) {
3402 			/* Shifts greater than 31 or 63 are undefined.
3403 			 * This includes shifts by a negative number.
3404 			 */
3405 			mark_reg_unknown(env, regs, insn->dst_reg);
3406 			break;
3407 		}
3408 
3409 		/* Upon reaching here, src_known is true and
3410 		 * umax_val is equal to umin_val.
3411 		 */
3412 		dst_reg->smin_value >>= umin_val;
3413 		dst_reg->smax_value >>= umin_val;
3414 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3415 
3416 		/* blow away the dst_reg umin_value/umax_value and rely on
3417 		 * dst_reg var_off to refine the result.
3418 		 */
3419 		dst_reg->umin_value = 0;
3420 		dst_reg->umax_value = U64_MAX;
3421 		__update_reg_bounds(dst_reg);
3422 		break;
3423 	default:
3424 		mark_reg_unknown(env, regs, insn->dst_reg);
3425 		break;
3426 	}
3427 
3428 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3429 		/* 32-bit ALU ops are (32,32)->32 */
3430 		coerce_reg_to_size(dst_reg, 4);
3431 	}
3432 
3433 	__reg_deduce_bounds(dst_reg);
3434 	__reg_bound_offset(dst_reg);
3435 	return 0;
3436 }
3437 
3438 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3439  * and var_off.
3440  */
3441 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3442 				   struct bpf_insn *insn)
3443 {
3444 	struct bpf_verifier_state *vstate = env->cur_state;
3445 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3446 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3447 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3448 	u8 opcode = BPF_OP(insn->code);
3449 
3450 	dst_reg = &regs[insn->dst_reg];
3451 	src_reg = NULL;
3452 	if (dst_reg->type != SCALAR_VALUE)
3453 		ptr_reg = dst_reg;
3454 	if (BPF_SRC(insn->code) == BPF_X) {
3455 		src_reg = &regs[insn->src_reg];
3456 		if (src_reg->type != SCALAR_VALUE) {
3457 			if (dst_reg->type != SCALAR_VALUE) {
3458 				/* Combining two pointers by any ALU op yields
3459 				 * an arbitrary scalar. Disallow all math except
3460 				 * pointer subtraction
3461 				 */
3462 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3463 					mark_reg_unknown(env, regs, insn->dst_reg);
3464 					return 0;
3465 				}
3466 				verbose(env, "R%d pointer %s pointer prohibited\n",
3467 					insn->dst_reg,
3468 					bpf_alu_string[opcode >> 4]);
3469 				return -EACCES;
3470 			} else {
3471 				/* scalar += pointer
3472 				 * This is legal, but we have to reverse our
3473 				 * src/dest handling in computing the range
3474 				 */
3475 				return adjust_ptr_min_max_vals(env, insn,
3476 							       src_reg, dst_reg);
3477 			}
3478 		} else if (ptr_reg) {
3479 			/* pointer += scalar */
3480 			return adjust_ptr_min_max_vals(env, insn,
3481 						       dst_reg, src_reg);
3482 		}
3483 	} else {
3484 		/* Pretend the src is a reg with a known value, since we only
3485 		 * need to be able to read from this state.
3486 		 */
3487 		off_reg.type = SCALAR_VALUE;
3488 		__mark_reg_known(&off_reg, insn->imm);
3489 		src_reg = &off_reg;
3490 		if (ptr_reg) /* pointer += K */
3491 			return adjust_ptr_min_max_vals(env, insn,
3492 						       ptr_reg, src_reg);
3493 	}
3494 
3495 	/* Got here implies adding two SCALAR_VALUEs */
3496 	if (WARN_ON_ONCE(ptr_reg)) {
3497 		print_verifier_state(env, state);
3498 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3499 		return -EINVAL;
3500 	}
3501 	if (WARN_ON(!src_reg)) {
3502 		print_verifier_state(env, state);
3503 		verbose(env, "verifier internal error: no src_reg\n");
3504 		return -EINVAL;
3505 	}
3506 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3507 }
3508 
3509 /* check validity of 32-bit and 64-bit arithmetic operations */
3510 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3511 {
3512 	struct bpf_reg_state *regs = cur_regs(env);
3513 	u8 opcode = BPF_OP(insn->code);
3514 	int err;
3515 
3516 	if (opcode == BPF_END || opcode == BPF_NEG) {
3517 		if (opcode == BPF_NEG) {
3518 			if (BPF_SRC(insn->code) != 0 ||
3519 			    insn->src_reg != BPF_REG_0 ||
3520 			    insn->off != 0 || insn->imm != 0) {
3521 				verbose(env, "BPF_NEG uses reserved fields\n");
3522 				return -EINVAL;
3523 			}
3524 		} else {
3525 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3526 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3527 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3528 				verbose(env, "BPF_END uses reserved fields\n");
3529 				return -EINVAL;
3530 			}
3531 		}
3532 
3533 		/* check src operand */
3534 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3535 		if (err)
3536 			return err;
3537 
3538 		if (is_pointer_value(env, insn->dst_reg)) {
3539 			verbose(env, "R%d pointer arithmetic prohibited\n",
3540 				insn->dst_reg);
3541 			return -EACCES;
3542 		}
3543 
3544 		/* check dest operand */
3545 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3546 		if (err)
3547 			return err;
3548 
3549 	} else if (opcode == BPF_MOV) {
3550 
3551 		if (BPF_SRC(insn->code) == BPF_X) {
3552 			if (insn->imm != 0 || insn->off != 0) {
3553 				verbose(env, "BPF_MOV uses reserved fields\n");
3554 				return -EINVAL;
3555 			}
3556 
3557 			/* check src operand */
3558 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3559 			if (err)
3560 				return err;
3561 		} else {
3562 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3563 				verbose(env, "BPF_MOV uses reserved fields\n");
3564 				return -EINVAL;
3565 			}
3566 		}
3567 
3568 		/* check dest operand, mark as required later */
3569 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3570 		if (err)
3571 			return err;
3572 
3573 		if (BPF_SRC(insn->code) == BPF_X) {
3574 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3575 				/* case: R1 = R2
3576 				 * copy register state to dest reg
3577 				 */
3578 				regs[insn->dst_reg] = regs[insn->src_reg];
3579 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3580 			} else {
3581 				/* R1 = (u32) R2 */
3582 				if (is_pointer_value(env, insn->src_reg)) {
3583 					verbose(env,
3584 						"R%d partial copy of pointer\n",
3585 						insn->src_reg);
3586 					return -EACCES;
3587 				}
3588 				mark_reg_unknown(env, regs, insn->dst_reg);
3589 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3590 			}
3591 		} else {
3592 			/* case: R = imm
3593 			 * remember the value we stored into this reg
3594 			 */
3595 			/* clear any state __mark_reg_known doesn't set */
3596 			mark_reg_unknown(env, regs, insn->dst_reg);
3597 			regs[insn->dst_reg].type = SCALAR_VALUE;
3598 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3599 				__mark_reg_known(regs + insn->dst_reg,
3600 						 insn->imm);
3601 			} else {
3602 				__mark_reg_known(regs + insn->dst_reg,
3603 						 (u32)insn->imm);
3604 			}
3605 		}
3606 
3607 	} else if (opcode > BPF_END) {
3608 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3609 		return -EINVAL;
3610 
3611 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3612 
3613 		if (BPF_SRC(insn->code) == BPF_X) {
3614 			if (insn->imm != 0 || insn->off != 0) {
3615 				verbose(env, "BPF_ALU uses reserved fields\n");
3616 				return -EINVAL;
3617 			}
3618 			/* check src1 operand */
3619 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3620 			if (err)
3621 				return err;
3622 		} else {
3623 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3624 				verbose(env, "BPF_ALU uses reserved fields\n");
3625 				return -EINVAL;
3626 			}
3627 		}
3628 
3629 		/* check src2 operand */
3630 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3631 		if (err)
3632 			return err;
3633 
3634 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3635 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3636 			verbose(env, "div by zero\n");
3637 			return -EINVAL;
3638 		}
3639 
3640 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3641 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3642 			return -EINVAL;
3643 		}
3644 
3645 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3646 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3647 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3648 
3649 			if (insn->imm < 0 || insn->imm >= size) {
3650 				verbose(env, "invalid shift %d\n", insn->imm);
3651 				return -EINVAL;
3652 			}
3653 		}
3654 
3655 		/* check dest operand */
3656 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3657 		if (err)
3658 			return err;
3659 
3660 		return adjust_reg_min_max_vals(env, insn);
3661 	}
3662 
3663 	return 0;
3664 }
3665 
3666 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3667 				   struct bpf_reg_state *dst_reg,
3668 				   enum bpf_reg_type type,
3669 				   bool range_right_open)
3670 {
3671 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3672 	struct bpf_reg_state *regs = state->regs, *reg;
3673 	u16 new_range;
3674 	int i, j;
3675 
3676 	if (dst_reg->off < 0 ||
3677 	    (dst_reg->off == 0 && range_right_open))
3678 		/* This doesn't give us any range */
3679 		return;
3680 
3681 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3682 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3683 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3684 		 * than pkt_end, but that's because it's also less than pkt.
3685 		 */
3686 		return;
3687 
3688 	new_range = dst_reg->off;
3689 	if (range_right_open)
3690 		new_range--;
3691 
3692 	/* Examples for register markings:
3693 	 *
3694 	 * pkt_data in dst register:
3695 	 *
3696 	 *   r2 = r3;
3697 	 *   r2 += 8;
3698 	 *   if (r2 > pkt_end) goto <handle exception>
3699 	 *   <access okay>
3700 	 *
3701 	 *   r2 = r3;
3702 	 *   r2 += 8;
3703 	 *   if (r2 < pkt_end) goto <access okay>
3704 	 *   <handle exception>
3705 	 *
3706 	 *   Where:
3707 	 *     r2 == dst_reg, pkt_end == src_reg
3708 	 *     r2=pkt(id=n,off=8,r=0)
3709 	 *     r3=pkt(id=n,off=0,r=0)
3710 	 *
3711 	 * pkt_data in src register:
3712 	 *
3713 	 *   r2 = r3;
3714 	 *   r2 += 8;
3715 	 *   if (pkt_end >= r2) goto <access okay>
3716 	 *   <handle exception>
3717 	 *
3718 	 *   r2 = r3;
3719 	 *   r2 += 8;
3720 	 *   if (pkt_end <= r2) goto <handle exception>
3721 	 *   <access okay>
3722 	 *
3723 	 *   Where:
3724 	 *     pkt_end == dst_reg, r2 == src_reg
3725 	 *     r2=pkt(id=n,off=8,r=0)
3726 	 *     r3=pkt(id=n,off=0,r=0)
3727 	 *
3728 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3729 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3730 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3731 	 * the check.
3732 	 */
3733 
3734 	/* If our ids match, then we must have the same max_value.  And we
3735 	 * don't care about the other reg's fixed offset, since if it's too big
3736 	 * the range won't allow anything.
3737 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3738 	 */
3739 	for (i = 0; i < MAX_BPF_REG; i++)
3740 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3741 			/* keep the maximum range already checked */
3742 			regs[i].range = max(regs[i].range, new_range);
3743 
3744 	for (j = 0; j <= vstate->curframe; j++) {
3745 		state = vstate->frame[j];
3746 		bpf_for_each_spilled_reg(i, state, reg) {
3747 			if (!reg)
3748 				continue;
3749 			if (reg->type == type && reg->id == dst_reg->id)
3750 				reg->range = max(reg->range, new_range);
3751 		}
3752 	}
3753 }
3754 
3755 /* compute branch direction of the expression "if (reg opcode val) goto target;"
3756  * and return:
3757  *  1 - branch will be taken and "goto target" will be executed
3758  *  0 - branch will not be taken and fall-through to next insn
3759  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
3760  */
3761 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
3762 {
3763 	if (__is_pointer_value(false, reg))
3764 		return -1;
3765 
3766 	switch (opcode) {
3767 	case BPF_JEQ:
3768 		if (tnum_is_const(reg->var_off))
3769 			return !!tnum_equals_const(reg->var_off, val);
3770 		break;
3771 	case BPF_JNE:
3772 		if (tnum_is_const(reg->var_off))
3773 			return !tnum_equals_const(reg->var_off, val);
3774 		break;
3775 	case BPF_JGT:
3776 		if (reg->umin_value > val)
3777 			return 1;
3778 		else if (reg->umax_value <= val)
3779 			return 0;
3780 		break;
3781 	case BPF_JSGT:
3782 		if (reg->smin_value > (s64)val)
3783 			return 1;
3784 		else if (reg->smax_value < (s64)val)
3785 			return 0;
3786 		break;
3787 	case BPF_JLT:
3788 		if (reg->umax_value < val)
3789 			return 1;
3790 		else if (reg->umin_value >= val)
3791 			return 0;
3792 		break;
3793 	case BPF_JSLT:
3794 		if (reg->smax_value < (s64)val)
3795 			return 1;
3796 		else if (reg->smin_value >= (s64)val)
3797 			return 0;
3798 		break;
3799 	case BPF_JGE:
3800 		if (reg->umin_value >= val)
3801 			return 1;
3802 		else if (reg->umax_value < val)
3803 			return 0;
3804 		break;
3805 	case BPF_JSGE:
3806 		if (reg->smin_value >= (s64)val)
3807 			return 1;
3808 		else if (reg->smax_value < (s64)val)
3809 			return 0;
3810 		break;
3811 	case BPF_JLE:
3812 		if (reg->umax_value <= val)
3813 			return 1;
3814 		else if (reg->umin_value > val)
3815 			return 0;
3816 		break;
3817 	case BPF_JSLE:
3818 		if (reg->smax_value <= (s64)val)
3819 			return 1;
3820 		else if (reg->smin_value > (s64)val)
3821 			return 0;
3822 		break;
3823 	}
3824 
3825 	return -1;
3826 }
3827 
3828 /* Adjusts the register min/max values in the case that the dst_reg is the
3829  * variable register that we are working on, and src_reg is a constant or we're
3830  * simply doing a BPF_K check.
3831  * In JEQ/JNE cases we also adjust the var_off values.
3832  */
3833 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3834 			    struct bpf_reg_state *false_reg, u64 val,
3835 			    u8 opcode)
3836 {
3837 	/* If the dst_reg is a pointer, we can't learn anything about its
3838 	 * variable offset from the compare (unless src_reg were a pointer into
3839 	 * the same object, but we don't bother with that.
3840 	 * Since false_reg and true_reg have the same type by construction, we
3841 	 * only need to check one of them for pointerness.
3842 	 */
3843 	if (__is_pointer_value(false, false_reg))
3844 		return;
3845 
3846 	switch (opcode) {
3847 	case BPF_JEQ:
3848 		/* If this is false then we know nothing Jon Snow, but if it is
3849 		 * true then we know for sure.
3850 		 */
3851 		__mark_reg_known(true_reg, val);
3852 		break;
3853 	case BPF_JNE:
3854 		/* If this is true we know nothing Jon Snow, but if it is false
3855 		 * we know the value for sure;
3856 		 */
3857 		__mark_reg_known(false_reg, val);
3858 		break;
3859 	case BPF_JGT:
3860 		false_reg->umax_value = min(false_reg->umax_value, val);
3861 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3862 		break;
3863 	case BPF_JSGT:
3864 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3865 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3866 		break;
3867 	case BPF_JLT:
3868 		false_reg->umin_value = max(false_reg->umin_value, val);
3869 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3870 		break;
3871 	case BPF_JSLT:
3872 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3873 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3874 		break;
3875 	case BPF_JGE:
3876 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3877 		true_reg->umin_value = max(true_reg->umin_value, val);
3878 		break;
3879 	case BPF_JSGE:
3880 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3881 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3882 		break;
3883 	case BPF_JLE:
3884 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3885 		true_reg->umax_value = min(true_reg->umax_value, val);
3886 		break;
3887 	case BPF_JSLE:
3888 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3889 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3890 		break;
3891 	default:
3892 		break;
3893 	}
3894 
3895 	__reg_deduce_bounds(false_reg);
3896 	__reg_deduce_bounds(true_reg);
3897 	/* We might have learned some bits from the bounds. */
3898 	__reg_bound_offset(false_reg);
3899 	__reg_bound_offset(true_reg);
3900 	/* Intersecting with the old var_off might have improved our bounds
3901 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3902 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3903 	 */
3904 	__update_reg_bounds(false_reg);
3905 	__update_reg_bounds(true_reg);
3906 }
3907 
3908 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3909  * the variable reg.
3910  */
3911 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3912 				struct bpf_reg_state *false_reg, u64 val,
3913 				u8 opcode)
3914 {
3915 	if (__is_pointer_value(false, false_reg))
3916 		return;
3917 
3918 	switch (opcode) {
3919 	case BPF_JEQ:
3920 		/* If this is false then we know nothing Jon Snow, but if it is
3921 		 * true then we know for sure.
3922 		 */
3923 		__mark_reg_known(true_reg, val);
3924 		break;
3925 	case BPF_JNE:
3926 		/* If this is true we know nothing Jon Snow, but if it is false
3927 		 * we know the value for sure;
3928 		 */
3929 		__mark_reg_known(false_reg, val);
3930 		break;
3931 	case BPF_JGT:
3932 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3933 		false_reg->umin_value = max(false_reg->umin_value, val);
3934 		break;
3935 	case BPF_JSGT:
3936 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3937 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3938 		break;
3939 	case BPF_JLT:
3940 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3941 		false_reg->umax_value = min(false_reg->umax_value, val);
3942 		break;
3943 	case BPF_JSLT:
3944 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3945 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3946 		break;
3947 	case BPF_JGE:
3948 		true_reg->umax_value = min(true_reg->umax_value, val);
3949 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3950 		break;
3951 	case BPF_JSGE:
3952 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3953 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3954 		break;
3955 	case BPF_JLE:
3956 		true_reg->umin_value = max(true_reg->umin_value, val);
3957 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3958 		break;
3959 	case BPF_JSLE:
3960 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3961 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3962 		break;
3963 	default:
3964 		break;
3965 	}
3966 
3967 	__reg_deduce_bounds(false_reg);
3968 	__reg_deduce_bounds(true_reg);
3969 	/* We might have learned some bits from the bounds. */
3970 	__reg_bound_offset(false_reg);
3971 	__reg_bound_offset(true_reg);
3972 	/* Intersecting with the old var_off might have improved our bounds
3973 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3974 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3975 	 */
3976 	__update_reg_bounds(false_reg);
3977 	__update_reg_bounds(true_reg);
3978 }
3979 
3980 /* Regs are known to be equal, so intersect their min/max/var_off */
3981 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3982 				  struct bpf_reg_state *dst_reg)
3983 {
3984 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3985 							dst_reg->umin_value);
3986 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3987 							dst_reg->umax_value);
3988 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3989 							dst_reg->smin_value);
3990 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3991 							dst_reg->smax_value);
3992 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3993 							     dst_reg->var_off);
3994 	/* We might have learned new bounds from the var_off. */
3995 	__update_reg_bounds(src_reg);
3996 	__update_reg_bounds(dst_reg);
3997 	/* We might have learned something about the sign bit. */
3998 	__reg_deduce_bounds(src_reg);
3999 	__reg_deduce_bounds(dst_reg);
4000 	/* We might have learned some bits from the bounds. */
4001 	__reg_bound_offset(src_reg);
4002 	__reg_bound_offset(dst_reg);
4003 	/* Intersecting with the old var_off might have improved our bounds
4004 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4005 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4006 	 */
4007 	__update_reg_bounds(src_reg);
4008 	__update_reg_bounds(dst_reg);
4009 }
4010 
4011 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4012 				struct bpf_reg_state *true_dst,
4013 				struct bpf_reg_state *false_src,
4014 				struct bpf_reg_state *false_dst,
4015 				u8 opcode)
4016 {
4017 	switch (opcode) {
4018 	case BPF_JEQ:
4019 		__reg_combine_min_max(true_src, true_dst);
4020 		break;
4021 	case BPF_JNE:
4022 		__reg_combine_min_max(false_src, false_dst);
4023 		break;
4024 	}
4025 }
4026 
4027 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4028 				 struct bpf_reg_state *reg, u32 id,
4029 				 bool is_null)
4030 {
4031 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4032 		/* Old offset (both fixed and variable parts) should
4033 		 * have been known-zero, because we don't allow pointer
4034 		 * arithmetic on pointers that might be NULL.
4035 		 */
4036 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4037 				 !tnum_equals_const(reg->var_off, 0) ||
4038 				 reg->off)) {
4039 			__mark_reg_known_zero(reg);
4040 			reg->off = 0;
4041 		}
4042 		if (is_null) {
4043 			reg->type = SCALAR_VALUE;
4044 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4045 			if (reg->map_ptr->inner_map_meta) {
4046 				reg->type = CONST_PTR_TO_MAP;
4047 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4048 			} else {
4049 				reg->type = PTR_TO_MAP_VALUE;
4050 			}
4051 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4052 			reg->type = PTR_TO_SOCKET;
4053 		}
4054 		if (is_null || !reg_is_refcounted(reg)) {
4055 			/* We don't need id from this point onwards anymore,
4056 			 * thus we should better reset it, so that state
4057 			 * pruning has chances to take effect.
4058 			 */
4059 			reg->id = 0;
4060 		}
4061 	}
4062 }
4063 
4064 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4065  * be folded together at some point.
4066  */
4067 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4068 				  bool is_null)
4069 {
4070 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4071 	struct bpf_reg_state *reg, *regs = state->regs;
4072 	u32 id = regs[regno].id;
4073 	int i, j;
4074 
4075 	if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4076 		__release_reference_state(state, id);
4077 
4078 	for (i = 0; i < MAX_BPF_REG; i++)
4079 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4080 
4081 	for (j = 0; j <= vstate->curframe; j++) {
4082 		state = vstate->frame[j];
4083 		bpf_for_each_spilled_reg(i, state, reg) {
4084 			if (!reg)
4085 				continue;
4086 			mark_ptr_or_null_reg(state, reg, id, is_null);
4087 		}
4088 	}
4089 }
4090 
4091 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4092 				   struct bpf_reg_state *dst_reg,
4093 				   struct bpf_reg_state *src_reg,
4094 				   struct bpf_verifier_state *this_branch,
4095 				   struct bpf_verifier_state *other_branch)
4096 {
4097 	if (BPF_SRC(insn->code) != BPF_X)
4098 		return false;
4099 
4100 	switch (BPF_OP(insn->code)) {
4101 	case BPF_JGT:
4102 		if ((dst_reg->type == PTR_TO_PACKET &&
4103 		     src_reg->type == PTR_TO_PACKET_END) ||
4104 		    (dst_reg->type == PTR_TO_PACKET_META &&
4105 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4106 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4107 			find_good_pkt_pointers(this_branch, dst_reg,
4108 					       dst_reg->type, false);
4109 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4110 			    src_reg->type == PTR_TO_PACKET) ||
4111 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4112 			    src_reg->type == PTR_TO_PACKET_META)) {
4113 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4114 			find_good_pkt_pointers(other_branch, src_reg,
4115 					       src_reg->type, true);
4116 		} else {
4117 			return false;
4118 		}
4119 		break;
4120 	case BPF_JLT:
4121 		if ((dst_reg->type == PTR_TO_PACKET &&
4122 		     src_reg->type == PTR_TO_PACKET_END) ||
4123 		    (dst_reg->type == PTR_TO_PACKET_META &&
4124 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4125 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4126 			find_good_pkt_pointers(other_branch, dst_reg,
4127 					       dst_reg->type, true);
4128 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4129 			    src_reg->type == PTR_TO_PACKET) ||
4130 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4131 			    src_reg->type == PTR_TO_PACKET_META)) {
4132 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4133 			find_good_pkt_pointers(this_branch, src_reg,
4134 					       src_reg->type, false);
4135 		} else {
4136 			return false;
4137 		}
4138 		break;
4139 	case BPF_JGE:
4140 		if ((dst_reg->type == PTR_TO_PACKET &&
4141 		     src_reg->type == PTR_TO_PACKET_END) ||
4142 		    (dst_reg->type == PTR_TO_PACKET_META &&
4143 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4144 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4145 			find_good_pkt_pointers(this_branch, dst_reg,
4146 					       dst_reg->type, true);
4147 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4148 			    src_reg->type == PTR_TO_PACKET) ||
4149 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4150 			    src_reg->type == PTR_TO_PACKET_META)) {
4151 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4152 			find_good_pkt_pointers(other_branch, src_reg,
4153 					       src_reg->type, false);
4154 		} else {
4155 			return false;
4156 		}
4157 		break;
4158 	case BPF_JLE:
4159 		if ((dst_reg->type == PTR_TO_PACKET &&
4160 		     src_reg->type == PTR_TO_PACKET_END) ||
4161 		    (dst_reg->type == PTR_TO_PACKET_META &&
4162 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4163 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4164 			find_good_pkt_pointers(other_branch, dst_reg,
4165 					       dst_reg->type, false);
4166 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4167 			    src_reg->type == PTR_TO_PACKET) ||
4168 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4169 			    src_reg->type == PTR_TO_PACKET_META)) {
4170 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4171 			find_good_pkt_pointers(this_branch, src_reg,
4172 					       src_reg->type, true);
4173 		} else {
4174 			return false;
4175 		}
4176 		break;
4177 	default:
4178 		return false;
4179 	}
4180 
4181 	return true;
4182 }
4183 
4184 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4185 			     struct bpf_insn *insn, int *insn_idx)
4186 {
4187 	struct bpf_verifier_state *this_branch = env->cur_state;
4188 	struct bpf_verifier_state *other_branch;
4189 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4190 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4191 	u8 opcode = BPF_OP(insn->code);
4192 	int err;
4193 
4194 	if (opcode > BPF_JSLE) {
4195 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
4196 		return -EINVAL;
4197 	}
4198 
4199 	if (BPF_SRC(insn->code) == BPF_X) {
4200 		if (insn->imm != 0) {
4201 			verbose(env, "BPF_JMP uses reserved fields\n");
4202 			return -EINVAL;
4203 		}
4204 
4205 		/* check src1 operand */
4206 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4207 		if (err)
4208 			return err;
4209 
4210 		if (is_pointer_value(env, insn->src_reg)) {
4211 			verbose(env, "R%d pointer comparison prohibited\n",
4212 				insn->src_reg);
4213 			return -EACCES;
4214 		}
4215 	} else {
4216 		if (insn->src_reg != BPF_REG_0) {
4217 			verbose(env, "BPF_JMP uses reserved fields\n");
4218 			return -EINVAL;
4219 		}
4220 	}
4221 
4222 	/* check src2 operand */
4223 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4224 	if (err)
4225 		return err;
4226 
4227 	dst_reg = &regs[insn->dst_reg];
4228 
4229 	if (BPF_SRC(insn->code) == BPF_K) {
4230 		int pred = is_branch_taken(dst_reg, insn->imm, opcode);
4231 
4232 		if (pred == 1) {
4233 			 /* only follow the goto, ignore fall-through */
4234 			*insn_idx += insn->off;
4235 			return 0;
4236 		} else if (pred == 0) {
4237 			/* only follow fall-through branch, since
4238 			 * that's where the program will go
4239 			 */
4240 			return 0;
4241 		}
4242 	}
4243 
4244 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4245 	if (!other_branch)
4246 		return -EFAULT;
4247 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4248 
4249 	/* detect if we are comparing against a constant value so we can adjust
4250 	 * our min/max values for our dst register.
4251 	 * this is only legit if both are scalars (or pointers to the same
4252 	 * object, I suppose, but we don't support that right now), because
4253 	 * otherwise the different base pointers mean the offsets aren't
4254 	 * comparable.
4255 	 */
4256 	if (BPF_SRC(insn->code) == BPF_X) {
4257 		if (dst_reg->type == SCALAR_VALUE &&
4258 		    regs[insn->src_reg].type == SCALAR_VALUE) {
4259 			if (tnum_is_const(regs[insn->src_reg].var_off))
4260 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4261 						dst_reg, regs[insn->src_reg].var_off.value,
4262 						opcode);
4263 			else if (tnum_is_const(dst_reg->var_off))
4264 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4265 						    &regs[insn->src_reg],
4266 						    dst_reg->var_off.value, opcode);
4267 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4268 				/* Comparing for equality, we can combine knowledge */
4269 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4270 						    &other_branch_regs[insn->dst_reg],
4271 						    &regs[insn->src_reg],
4272 						    &regs[insn->dst_reg], opcode);
4273 		}
4274 	} else if (dst_reg->type == SCALAR_VALUE) {
4275 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4276 					dst_reg, insn->imm, opcode);
4277 	}
4278 
4279 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
4280 	if (BPF_SRC(insn->code) == BPF_K &&
4281 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4282 	    reg_type_may_be_null(dst_reg->type)) {
4283 		/* Mark all identical registers in each branch as either
4284 		 * safe or unknown depending R == 0 or R != 0 conditional.
4285 		 */
4286 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4287 				      opcode == BPF_JNE);
4288 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4289 				      opcode == BPF_JEQ);
4290 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4291 					   this_branch, other_branch) &&
4292 		   is_pointer_value(env, insn->dst_reg)) {
4293 		verbose(env, "R%d pointer comparison prohibited\n",
4294 			insn->dst_reg);
4295 		return -EACCES;
4296 	}
4297 	if (env->log.level)
4298 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4299 	return 0;
4300 }
4301 
4302 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4303 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4304 {
4305 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4306 
4307 	return (struct bpf_map *) (unsigned long) imm64;
4308 }
4309 
4310 /* verify BPF_LD_IMM64 instruction */
4311 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4312 {
4313 	struct bpf_reg_state *regs = cur_regs(env);
4314 	int err;
4315 
4316 	if (BPF_SIZE(insn->code) != BPF_DW) {
4317 		verbose(env, "invalid BPF_LD_IMM insn\n");
4318 		return -EINVAL;
4319 	}
4320 	if (insn->off != 0) {
4321 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4322 		return -EINVAL;
4323 	}
4324 
4325 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
4326 	if (err)
4327 		return err;
4328 
4329 	if (insn->src_reg == 0) {
4330 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4331 
4332 		regs[insn->dst_reg].type = SCALAR_VALUE;
4333 		__mark_reg_known(&regs[insn->dst_reg], imm);
4334 		return 0;
4335 	}
4336 
4337 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4338 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4339 
4340 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4341 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4342 	return 0;
4343 }
4344 
4345 static bool may_access_skb(enum bpf_prog_type type)
4346 {
4347 	switch (type) {
4348 	case BPF_PROG_TYPE_SOCKET_FILTER:
4349 	case BPF_PROG_TYPE_SCHED_CLS:
4350 	case BPF_PROG_TYPE_SCHED_ACT:
4351 		return true;
4352 	default:
4353 		return false;
4354 	}
4355 }
4356 
4357 /* verify safety of LD_ABS|LD_IND instructions:
4358  * - they can only appear in the programs where ctx == skb
4359  * - since they are wrappers of function calls, they scratch R1-R5 registers,
4360  *   preserve R6-R9, and store return value into R0
4361  *
4362  * Implicit input:
4363  *   ctx == skb == R6 == CTX
4364  *
4365  * Explicit input:
4366  *   SRC == any register
4367  *   IMM == 32-bit immediate
4368  *
4369  * Output:
4370  *   R0 - 8/16/32-bit skb data converted to cpu endianness
4371  */
4372 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
4373 {
4374 	struct bpf_reg_state *regs = cur_regs(env);
4375 	u8 mode = BPF_MODE(insn->code);
4376 	int i, err;
4377 
4378 	if (!may_access_skb(env->prog->type)) {
4379 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
4380 		return -EINVAL;
4381 	}
4382 
4383 	if (!env->ops->gen_ld_abs) {
4384 		verbose(env, "bpf verifier is misconfigured\n");
4385 		return -EINVAL;
4386 	}
4387 
4388 	if (env->subprog_cnt > 1) {
4389 		/* when program has LD_ABS insn JITs and interpreter assume
4390 		 * that r1 == ctx == skb which is not the case for callees
4391 		 * that can have arbitrary arguments. It's problematic
4392 		 * for main prog as well since JITs would need to analyze
4393 		 * all functions in order to make proper register save/restore
4394 		 * decisions in the main prog. Hence disallow LD_ABS with calls
4395 		 */
4396 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4397 		return -EINVAL;
4398 	}
4399 
4400 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
4401 	    BPF_SIZE(insn->code) == BPF_DW ||
4402 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
4403 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
4404 		return -EINVAL;
4405 	}
4406 
4407 	/* check whether implicit source operand (register R6) is readable */
4408 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
4409 	if (err)
4410 		return err;
4411 
4412 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4413 	 * gen_ld_abs() may terminate the program at runtime, leading to
4414 	 * reference leak.
4415 	 */
4416 	err = check_reference_leak(env);
4417 	if (err) {
4418 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4419 		return err;
4420 	}
4421 
4422 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
4423 		verbose(env,
4424 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4425 		return -EINVAL;
4426 	}
4427 
4428 	if (mode == BPF_IND) {
4429 		/* check explicit source operand */
4430 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4431 		if (err)
4432 			return err;
4433 	}
4434 
4435 	/* reset caller saved regs to unreadable */
4436 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4437 		mark_reg_not_init(env, regs, caller_saved[i]);
4438 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4439 	}
4440 
4441 	/* mark destination R0 register as readable, since it contains
4442 	 * the value fetched from the packet.
4443 	 * Already marked as written above.
4444 	 */
4445 	mark_reg_unknown(env, regs, BPF_REG_0);
4446 	return 0;
4447 }
4448 
4449 static int check_return_code(struct bpf_verifier_env *env)
4450 {
4451 	struct bpf_reg_state *reg;
4452 	struct tnum range = tnum_range(0, 1);
4453 
4454 	switch (env->prog->type) {
4455 	case BPF_PROG_TYPE_CGROUP_SKB:
4456 	case BPF_PROG_TYPE_CGROUP_SOCK:
4457 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4458 	case BPF_PROG_TYPE_SOCK_OPS:
4459 	case BPF_PROG_TYPE_CGROUP_DEVICE:
4460 		break;
4461 	default:
4462 		return 0;
4463 	}
4464 
4465 	reg = cur_regs(env) + BPF_REG_0;
4466 	if (reg->type != SCALAR_VALUE) {
4467 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4468 			reg_type_str[reg->type]);
4469 		return -EINVAL;
4470 	}
4471 
4472 	if (!tnum_in(range, reg->var_off)) {
4473 		verbose(env, "At program exit the register R0 ");
4474 		if (!tnum_is_unknown(reg->var_off)) {
4475 			char tn_buf[48];
4476 
4477 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4478 			verbose(env, "has value %s", tn_buf);
4479 		} else {
4480 			verbose(env, "has unknown scalar value");
4481 		}
4482 		verbose(env, " should have been 0 or 1\n");
4483 		return -EINVAL;
4484 	}
4485 	return 0;
4486 }
4487 
4488 /* non-recursive DFS pseudo code
4489  * 1  procedure DFS-iterative(G,v):
4490  * 2      label v as discovered
4491  * 3      let S be a stack
4492  * 4      S.push(v)
4493  * 5      while S is not empty
4494  * 6            t <- S.pop()
4495  * 7            if t is what we're looking for:
4496  * 8                return t
4497  * 9            for all edges e in G.adjacentEdges(t) do
4498  * 10               if edge e is already labelled
4499  * 11                   continue with the next edge
4500  * 12               w <- G.adjacentVertex(t,e)
4501  * 13               if vertex w is not discovered and not explored
4502  * 14                   label e as tree-edge
4503  * 15                   label w as discovered
4504  * 16                   S.push(w)
4505  * 17                   continue at 5
4506  * 18               else if vertex w is discovered
4507  * 19                   label e as back-edge
4508  * 20               else
4509  * 21                   // vertex w is explored
4510  * 22                   label e as forward- or cross-edge
4511  * 23           label t as explored
4512  * 24           S.pop()
4513  *
4514  * convention:
4515  * 0x10 - discovered
4516  * 0x11 - discovered and fall-through edge labelled
4517  * 0x12 - discovered and fall-through and branch edges labelled
4518  * 0x20 - explored
4519  */
4520 
4521 enum {
4522 	DISCOVERED = 0x10,
4523 	EXPLORED = 0x20,
4524 	FALLTHROUGH = 1,
4525 	BRANCH = 2,
4526 };
4527 
4528 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4529 
4530 static int *insn_stack;	/* stack of insns to process */
4531 static int cur_stack;	/* current stack index */
4532 static int *insn_state;
4533 
4534 /* t, w, e - match pseudo-code above:
4535  * t - index of current instruction
4536  * w - next instruction
4537  * e - edge
4538  */
4539 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4540 {
4541 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4542 		return 0;
4543 
4544 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4545 		return 0;
4546 
4547 	if (w < 0 || w >= env->prog->len) {
4548 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4549 		return -EINVAL;
4550 	}
4551 
4552 	if (e == BRANCH)
4553 		/* mark branch target for state pruning */
4554 		env->explored_states[w] = STATE_LIST_MARK;
4555 
4556 	if (insn_state[w] == 0) {
4557 		/* tree-edge */
4558 		insn_state[t] = DISCOVERED | e;
4559 		insn_state[w] = DISCOVERED;
4560 		if (cur_stack >= env->prog->len)
4561 			return -E2BIG;
4562 		insn_stack[cur_stack++] = w;
4563 		return 1;
4564 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4565 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4566 		return -EINVAL;
4567 	} else if (insn_state[w] == EXPLORED) {
4568 		/* forward- or cross-edge */
4569 		insn_state[t] = DISCOVERED | e;
4570 	} else {
4571 		verbose(env, "insn state internal bug\n");
4572 		return -EFAULT;
4573 	}
4574 	return 0;
4575 }
4576 
4577 /* non-recursive depth-first-search to detect loops in BPF program
4578  * loop == back-edge in directed graph
4579  */
4580 static int check_cfg(struct bpf_verifier_env *env)
4581 {
4582 	struct bpf_insn *insns = env->prog->insnsi;
4583 	int insn_cnt = env->prog->len;
4584 	int ret = 0;
4585 	int i, t;
4586 
4587 	ret = check_subprogs(env);
4588 	if (ret < 0)
4589 		return ret;
4590 
4591 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4592 	if (!insn_state)
4593 		return -ENOMEM;
4594 
4595 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4596 	if (!insn_stack) {
4597 		kfree(insn_state);
4598 		return -ENOMEM;
4599 	}
4600 
4601 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4602 	insn_stack[0] = 0; /* 0 is the first instruction */
4603 	cur_stack = 1;
4604 
4605 peek_stack:
4606 	if (cur_stack == 0)
4607 		goto check_state;
4608 	t = insn_stack[cur_stack - 1];
4609 
4610 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4611 		u8 opcode = BPF_OP(insns[t].code);
4612 
4613 		if (opcode == BPF_EXIT) {
4614 			goto mark_explored;
4615 		} else if (opcode == BPF_CALL) {
4616 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4617 			if (ret == 1)
4618 				goto peek_stack;
4619 			else if (ret < 0)
4620 				goto err_free;
4621 			if (t + 1 < insn_cnt)
4622 				env->explored_states[t + 1] = STATE_LIST_MARK;
4623 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4624 				env->explored_states[t] = STATE_LIST_MARK;
4625 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4626 				if (ret == 1)
4627 					goto peek_stack;
4628 				else if (ret < 0)
4629 					goto err_free;
4630 			}
4631 		} else if (opcode == BPF_JA) {
4632 			if (BPF_SRC(insns[t].code) != BPF_K) {
4633 				ret = -EINVAL;
4634 				goto err_free;
4635 			}
4636 			/* unconditional jump with single edge */
4637 			ret = push_insn(t, t + insns[t].off + 1,
4638 					FALLTHROUGH, env);
4639 			if (ret == 1)
4640 				goto peek_stack;
4641 			else if (ret < 0)
4642 				goto err_free;
4643 			/* tell verifier to check for equivalent states
4644 			 * after every call and jump
4645 			 */
4646 			if (t + 1 < insn_cnt)
4647 				env->explored_states[t + 1] = STATE_LIST_MARK;
4648 		} else {
4649 			/* conditional jump with two edges */
4650 			env->explored_states[t] = STATE_LIST_MARK;
4651 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4652 			if (ret == 1)
4653 				goto peek_stack;
4654 			else if (ret < 0)
4655 				goto err_free;
4656 
4657 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4658 			if (ret == 1)
4659 				goto peek_stack;
4660 			else if (ret < 0)
4661 				goto err_free;
4662 		}
4663 	} else {
4664 		/* all other non-branch instructions with single
4665 		 * fall-through edge
4666 		 */
4667 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4668 		if (ret == 1)
4669 			goto peek_stack;
4670 		else if (ret < 0)
4671 			goto err_free;
4672 	}
4673 
4674 mark_explored:
4675 	insn_state[t] = EXPLORED;
4676 	if (cur_stack-- <= 0) {
4677 		verbose(env, "pop stack internal bug\n");
4678 		ret = -EFAULT;
4679 		goto err_free;
4680 	}
4681 	goto peek_stack;
4682 
4683 check_state:
4684 	for (i = 0; i < insn_cnt; i++) {
4685 		if (insn_state[i] != EXPLORED) {
4686 			verbose(env, "unreachable insn %d\n", i);
4687 			ret = -EINVAL;
4688 			goto err_free;
4689 		}
4690 	}
4691 	ret = 0; /* cfg looks good */
4692 
4693 err_free:
4694 	kfree(insn_state);
4695 	kfree(insn_stack);
4696 	return ret;
4697 }
4698 
4699 /* check %cur's range satisfies %old's */
4700 static bool range_within(struct bpf_reg_state *old,
4701 			 struct bpf_reg_state *cur)
4702 {
4703 	return old->umin_value <= cur->umin_value &&
4704 	       old->umax_value >= cur->umax_value &&
4705 	       old->smin_value <= cur->smin_value &&
4706 	       old->smax_value >= cur->smax_value;
4707 }
4708 
4709 /* Maximum number of register states that can exist at once */
4710 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4711 struct idpair {
4712 	u32 old;
4713 	u32 cur;
4714 };
4715 
4716 /* If in the old state two registers had the same id, then they need to have
4717  * the same id in the new state as well.  But that id could be different from
4718  * the old state, so we need to track the mapping from old to new ids.
4719  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4720  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4721  * regs with a different old id could still have new id 9, we don't care about
4722  * that.
4723  * So we look through our idmap to see if this old id has been seen before.  If
4724  * so, we require the new id to match; otherwise, we add the id pair to the map.
4725  */
4726 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4727 {
4728 	unsigned int i;
4729 
4730 	for (i = 0; i < ID_MAP_SIZE; i++) {
4731 		if (!idmap[i].old) {
4732 			/* Reached an empty slot; haven't seen this id before */
4733 			idmap[i].old = old_id;
4734 			idmap[i].cur = cur_id;
4735 			return true;
4736 		}
4737 		if (idmap[i].old == old_id)
4738 			return idmap[i].cur == cur_id;
4739 	}
4740 	/* We ran out of idmap slots, which should be impossible */
4741 	WARN_ON_ONCE(1);
4742 	return false;
4743 }
4744 
4745 /* Returns true if (rold safe implies rcur safe) */
4746 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4747 		    struct idpair *idmap)
4748 {
4749 	bool equal;
4750 
4751 	if (!(rold->live & REG_LIVE_READ))
4752 		/* explored state didn't use this */
4753 		return true;
4754 
4755 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
4756 
4757 	if (rold->type == PTR_TO_STACK)
4758 		/* two stack pointers are equal only if they're pointing to
4759 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4760 		 */
4761 		return equal && rold->frameno == rcur->frameno;
4762 
4763 	if (equal)
4764 		return true;
4765 
4766 	if (rold->type == NOT_INIT)
4767 		/* explored state can't have used this */
4768 		return true;
4769 	if (rcur->type == NOT_INIT)
4770 		return false;
4771 	switch (rold->type) {
4772 	case SCALAR_VALUE:
4773 		if (rcur->type == SCALAR_VALUE) {
4774 			/* new val must satisfy old val knowledge */
4775 			return range_within(rold, rcur) &&
4776 			       tnum_in(rold->var_off, rcur->var_off);
4777 		} else {
4778 			/* We're trying to use a pointer in place of a scalar.
4779 			 * Even if the scalar was unbounded, this could lead to
4780 			 * pointer leaks because scalars are allowed to leak
4781 			 * while pointers are not. We could make this safe in
4782 			 * special cases if root is calling us, but it's
4783 			 * probably not worth the hassle.
4784 			 */
4785 			return false;
4786 		}
4787 	case PTR_TO_MAP_VALUE:
4788 		/* If the new min/max/var_off satisfy the old ones and
4789 		 * everything else matches, we are OK.
4790 		 * We don't care about the 'id' value, because nothing
4791 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4792 		 */
4793 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4794 		       range_within(rold, rcur) &&
4795 		       tnum_in(rold->var_off, rcur->var_off);
4796 	case PTR_TO_MAP_VALUE_OR_NULL:
4797 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4798 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4799 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4800 		 * checked, doing so could have affected others with the same
4801 		 * id, and we can't check for that because we lost the id when
4802 		 * we converted to a PTR_TO_MAP_VALUE.
4803 		 */
4804 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4805 			return false;
4806 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4807 			return false;
4808 		/* Check our ids match any regs they're supposed to */
4809 		return check_ids(rold->id, rcur->id, idmap);
4810 	case PTR_TO_PACKET_META:
4811 	case PTR_TO_PACKET:
4812 		if (rcur->type != rold->type)
4813 			return false;
4814 		/* We must have at least as much range as the old ptr
4815 		 * did, so that any accesses which were safe before are
4816 		 * still safe.  This is true even if old range < old off,
4817 		 * since someone could have accessed through (ptr - k), or
4818 		 * even done ptr -= k in a register, to get a safe access.
4819 		 */
4820 		if (rold->range > rcur->range)
4821 			return false;
4822 		/* If the offsets don't match, we can't trust our alignment;
4823 		 * nor can we be sure that we won't fall out of range.
4824 		 */
4825 		if (rold->off != rcur->off)
4826 			return false;
4827 		/* id relations must be preserved */
4828 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4829 			return false;
4830 		/* new val must satisfy old val knowledge */
4831 		return range_within(rold, rcur) &&
4832 		       tnum_in(rold->var_off, rcur->var_off);
4833 	case PTR_TO_CTX:
4834 	case CONST_PTR_TO_MAP:
4835 	case PTR_TO_PACKET_END:
4836 	case PTR_TO_FLOW_KEYS:
4837 	case PTR_TO_SOCKET:
4838 	case PTR_TO_SOCKET_OR_NULL:
4839 		/* Only valid matches are exact, which memcmp() above
4840 		 * would have accepted
4841 		 */
4842 	default:
4843 		/* Don't know what's going on, just say it's not safe */
4844 		return false;
4845 	}
4846 
4847 	/* Shouldn't get here; if we do, say it's not safe */
4848 	WARN_ON_ONCE(1);
4849 	return false;
4850 }
4851 
4852 static bool stacksafe(struct bpf_func_state *old,
4853 		      struct bpf_func_state *cur,
4854 		      struct idpair *idmap)
4855 {
4856 	int i, spi;
4857 
4858 	/* if explored stack has more populated slots than current stack
4859 	 * such stacks are not equivalent
4860 	 */
4861 	if (old->allocated_stack > cur->allocated_stack)
4862 		return false;
4863 
4864 	/* walk slots of the explored stack and ignore any additional
4865 	 * slots in the current stack, since explored(safe) state
4866 	 * didn't use them
4867 	 */
4868 	for (i = 0; i < old->allocated_stack; i++) {
4869 		spi = i / BPF_REG_SIZE;
4870 
4871 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4872 			/* explored state didn't use this */
4873 			continue;
4874 
4875 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4876 			continue;
4877 		/* if old state was safe with misc data in the stack
4878 		 * it will be safe with zero-initialized stack.
4879 		 * The opposite is not true
4880 		 */
4881 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4882 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4883 			continue;
4884 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4885 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4886 			/* Ex: old explored (safe) state has STACK_SPILL in
4887 			 * this stack slot, but current has has STACK_MISC ->
4888 			 * this verifier states are not equivalent,
4889 			 * return false to continue verification of this path
4890 			 */
4891 			return false;
4892 		if (i % BPF_REG_SIZE)
4893 			continue;
4894 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4895 			continue;
4896 		if (!regsafe(&old->stack[spi].spilled_ptr,
4897 			     &cur->stack[spi].spilled_ptr,
4898 			     idmap))
4899 			/* when explored and current stack slot are both storing
4900 			 * spilled registers, check that stored pointers types
4901 			 * are the same as well.
4902 			 * Ex: explored safe path could have stored
4903 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4904 			 * but current path has stored:
4905 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4906 			 * such verifier states are not equivalent.
4907 			 * return false to continue verification of this path
4908 			 */
4909 			return false;
4910 	}
4911 	return true;
4912 }
4913 
4914 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
4915 {
4916 	if (old->acquired_refs != cur->acquired_refs)
4917 		return false;
4918 	return !memcmp(old->refs, cur->refs,
4919 		       sizeof(*old->refs) * old->acquired_refs);
4920 }
4921 
4922 /* compare two verifier states
4923  *
4924  * all states stored in state_list are known to be valid, since
4925  * verifier reached 'bpf_exit' instruction through them
4926  *
4927  * this function is called when verifier exploring different branches of
4928  * execution popped from the state stack. If it sees an old state that has
4929  * more strict register state and more strict stack state then this execution
4930  * branch doesn't need to be explored further, since verifier already
4931  * concluded that more strict state leads to valid finish.
4932  *
4933  * Therefore two states are equivalent if register state is more conservative
4934  * and explored stack state is more conservative than the current one.
4935  * Example:
4936  *       explored                   current
4937  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4938  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4939  *
4940  * In other words if current stack state (one being explored) has more
4941  * valid slots than old one that already passed validation, it means
4942  * the verifier can stop exploring and conclude that current state is valid too
4943  *
4944  * Similarly with registers. If explored state has register type as invalid
4945  * whereas register type in current state is meaningful, it means that
4946  * the current state will reach 'bpf_exit' instruction safely
4947  */
4948 static bool func_states_equal(struct bpf_func_state *old,
4949 			      struct bpf_func_state *cur)
4950 {
4951 	struct idpair *idmap;
4952 	bool ret = false;
4953 	int i;
4954 
4955 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4956 	/* If we failed to allocate the idmap, just say it's not safe */
4957 	if (!idmap)
4958 		return false;
4959 
4960 	for (i = 0; i < MAX_BPF_REG; i++) {
4961 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4962 			goto out_free;
4963 	}
4964 
4965 	if (!stacksafe(old, cur, idmap))
4966 		goto out_free;
4967 
4968 	if (!refsafe(old, cur))
4969 		goto out_free;
4970 	ret = true;
4971 out_free:
4972 	kfree(idmap);
4973 	return ret;
4974 }
4975 
4976 static bool states_equal(struct bpf_verifier_env *env,
4977 			 struct bpf_verifier_state *old,
4978 			 struct bpf_verifier_state *cur)
4979 {
4980 	int i;
4981 
4982 	if (old->curframe != cur->curframe)
4983 		return false;
4984 
4985 	/* for states to be equal callsites have to be the same
4986 	 * and all frame states need to be equivalent
4987 	 */
4988 	for (i = 0; i <= old->curframe; i++) {
4989 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4990 			return false;
4991 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4992 			return false;
4993 	}
4994 	return true;
4995 }
4996 
4997 /* A write screens off any subsequent reads; but write marks come from the
4998  * straight-line code between a state and its parent.  When we arrive at an
4999  * equivalent state (jump target or such) we didn't arrive by the straight-line
5000  * code, so read marks in the state must propagate to the parent regardless
5001  * of the state's write marks. That's what 'parent == state->parent' comparison
5002  * in mark_reg_read() is for.
5003  */
5004 static int propagate_liveness(struct bpf_verifier_env *env,
5005 			      const struct bpf_verifier_state *vstate,
5006 			      struct bpf_verifier_state *vparent)
5007 {
5008 	int i, frame, err = 0;
5009 	struct bpf_func_state *state, *parent;
5010 
5011 	if (vparent->curframe != vstate->curframe) {
5012 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
5013 		     vparent->curframe, vstate->curframe);
5014 		return -EFAULT;
5015 	}
5016 	/* Propagate read liveness of registers... */
5017 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
5018 	/* We don't need to worry about FP liveness because it's read-only */
5019 	for (i = 0; i < BPF_REG_FP; i++) {
5020 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
5021 			continue;
5022 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
5023 			err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
5024 					    &vparent->frame[vstate->curframe]->regs[i]);
5025 			if (err)
5026 				return err;
5027 		}
5028 	}
5029 
5030 	/* ... and stack slots */
5031 	for (frame = 0; frame <= vstate->curframe; frame++) {
5032 		state = vstate->frame[frame];
5033 		parent = vparent->frame[frame];
5034 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
5035 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
5036 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
5037 				continue;
5038 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
5039 				mark_reg_read(env, &state->stack[i].spilled_ptr,
5040 					      &parent->stack[i].spilled_ptr);
5041 		}
5042 	}
5043 	return err;
5044 }
5045 
5046 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
5047 {
5048 	struct bpf_verifier_state_list *new_sl;
5049 	struct bpf_verifier_state_list *sl;
5050 	struct bpf_verifier_state *cur = env->cur_state, *new;
5051 	int i, j, err, states_cnt = 0;
5052 
5053 	sl = env->explored_states[insn_idx];
5054 	if (!sl)
5055 		/* this 'insn_idx' instruction wasn't marked, so we will not
5056 		 * be doing state search here
5057 		 */
5058 		return 0;
5059 
5060 	while (sl != STATE_LIST_MARK) {
5061 		if (states_equal(env, &sl->state, cur)) {
5062 			/* reached equivalent register/stack state,
5063 			 * prune the search.
5064 			 * Registers read by the continuation are read by us.
5065 			 * If we have any write marks in env->cur_state, they
5066 			 * will prevent corresponding reads in the continuation
5067 			 * from reaching our parent (an explored_state).  Our
5068 			 * own state will get the read marks recorded, but
5069 			 * they'll be immediately forgotten as we're pruning
5070 			 * this state and will pop a new one.
5071 			 */
5072 			err = propagate_liveness(env, &sl->state, cur);
5073 			if (err)
5074 				return err;
5075 			return 1;
5076 		}
5077 		sl = sl->next;
5078 		states_cnt++;
5079 	}
5080 
5081 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
5082 		return 0;
5083 
5084 	/* there were no equivalent states, remember current one.
5085 	 * technically the current state is not proven to be safe yet,
5086 	 * but it will either reach outer most bpf_exit (which means it's safe)
5087 	 * or it will be rejected. Since there are no loops, we won't be
5088 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5089 	 * again on the way to bpf_exit
5090 	 */
5091 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
5092 	if (!new_sl)
5093 		return -ENOMEM;
5094 
5095 	/* add new state to the head of linked list */
5096 	new = &new_sl->state;
5097 	err = copy_verifier_state(new, cur);
5098 	if (err) {
5099 		free_verifier_state(new, false);
5100 		kfree(new_sl);
5101 		return err;
5102 	}
5103 	new_sl->next = env->explored_states[insn_idx];
5104 	env->explored_states[insn_idx] = new_sl;
5105 	/* connect new state to parentage chain */
5106 	for (i = 0; i < BPF_REG_FP; i++)
5107 		cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
5108 	/* clear write marks in current state: the writes we did are not writes
5109 	 * our child did, so they don't screen off its reads from us.
5110 	 * (There are no read marks in current state, because reads always mark
5111 	 * their parent and current state never has children yet.  Only
5112 	 * explored_states can get read marks.)
5113 	 */
5114 	for (i = 0; i < BPF_REG_FP; i++)
5115 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5116 
5117 	/* all stack frames are accessible from callee, clear them all */
5118 	for (j = 0; j <= cur->curframe; j++) {
5119 		struct bpf_func_state *frame = cur->frame[j];
5120 		struct bpf_func_state *newframe = new->frame[j];
5121 
5122 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
5123 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
5124 			frame->stack[i].spilled_ptr.parent =
5125 						&newframe->stack[i].spilled_ptr;
5126 		}
5127 	}
5128 	return 0;
5129 }
5130 
5131 /* Return true if it's OK to have the same insn return a different type. */
5132 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5133 {
5134 	switch (type) {
5135 	case PTR_TO_CTX:
5136 	case PTR_TO_SOCKET:
5137 	case PTR_TO_SOCKET_OR_NULL:
5138 		return false;
5139 	default:
5140 		return true;
5141 	}
5142 }
5143 
5144 /* If an instruction was previously used with particular pointer types, then we
5145  * need to be careful to avoid cases such as the below, where it may be ok
5146  * for one branch accessing the pointer, but not ok for the other branch:
5147  *
5148  * R1 = sock_ptr
5149  * goto X;
5150  * ...
5151  * R1 = some_other_valid_ptr;
5152  * goto X;
5153  * ...
5154  * R2 = *(u32 *)(R1 + 0);
5155  */
5156 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5157 {
5158 	return src != prev && (!reg_type_mismatch_ok(src) ||
5159 			       !reg_type_mismatch_ok(prev));
5160 }
5161 
5162 static int do_check(struct bpf_verifier_env *env)
5163 {
5164 	struct bpf_verifier_state *state;
5165 	struct bpf_insn *insns = env->prog->insnsi;
5166 	struct bpf_reg_state *regs;
5167 	int insn_cnt = env->prog->len, i;
5168 	int insn_idx, prev_insn_idx = 0;
5169 	int insn_processed = 0;
5170 	bool do_print_state = false;
5171 
5172 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5173 	if (!state)
5174 		return -ENOMEM;
5175 	state->curframe = 0;
5176 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5177 	if (!state->frame[0]) {
5178 		kfree(state);
5179 		return -ENOMEM;
5180 	}
5181 	env->cur_state = state;
5182 	init_func_state(env, state->frame[0],
5183 			BPF_MAIN_FUNC /* callsite */,
5184 			0 /* frameno */,
5185 			0 /* subprogno, zero == main subprog */);
5186 	insn_idx = 0;
5187 	for (;;) {
5188 		struct bpf_insn *insn;
5189 		u8 class;
5190 		int err;
5191 
5192 		if (insn_idx >= insn_cnt) {
5193 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
5194 				insn_idx, insn_cnt);
5195 			return -EFAULT;
5196 		}
5197 
5198 		insn = &insns[insn_idx];
5199 		class = BPF_CLASS(insn->code);
5200 
5201 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
5202 			verbose(env,
5203 				"BPF program is too large. Processed %d insn\n",
5204 				insn_processed);
5205 			return -E2BIG;
5206 		}
5207 
5208 		err = is_state_visited(env, insn_idx);
5209 		if (err < 0)
5210 			return err;
5211 		if (err == 1) {
5212 			/* found equivalent state, can prune the search */
5213 			if (env->log.level) {
5214 				if (do_print_state)
5215 					verbose(env, "\nfrom %d to %d: safe\n",
5216 						prev_insn_idx, insn_idx);
5217 				else
5218 					verbose(env, "%d: safe\n", insn_idx);
5219 			}
5220 			goto process_bpf_exit;
5221 		}
5222 
5223 		if (signal_pending(current))
5224 			return -EAGAIN;
5225 
5226 		if (need_resched())
5227 			cond_resched();
5228 
5229 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
5230 			if (env->log.level > 1)
5231 				verbose(env, "%d:", insn_idx);
5232 			else
5233 				verbose(env, "\nfrom %d to %d:",
5234 					prev_insn_idx, insn_idx);
5235 			print_verifier_state(env, state->frame[state->curframe]);
5236 			do_print_state = false;
5237 		}
5238 
5239 		if (env->log.level) {
5240 			const struct bpf_insn_cbs cbs = {
5241 				.cb_print	= verbose,
5242 				.private_data	= env,
5243 			};
5244 
5245 			verbose(env, "%d: ", insn_idx);
5246 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
5247 		}
5248 
5249 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
5250 			err = bpf_prog_offload_verify_insn(env, insn_idx,
5251 							   prev_insn_idx);
5252 			if (err)
5253 				return err;
5254 		}
5255 
5256 		regs = cur_regs(env);
5257 		env->insn_aux_data[insn_idx].seen = true;
5258 
5259 		if (class == BPF_ALU || class == BPF_ALU64) {
5260 			err = check_alu_op(env, insn);
5261 			if (err)
5262 				return err;
5263 
5264 		} else if (class == BPF_LDX) {
5265 			enum bpf_reg_type *prev_src_type, src_reg_type;
5266 
5267 			/* check for reserved fields is already done */
5268 
5269 			/* check src operand */
5270 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5271 			if (err)
5272 				return err;
5273 
5274 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5275 			if (err)
5276 				return err;
5277 
5278 			src_reg_type = regs[insn->src_reg].type;
5279 
5280 			/* check that memory (src_reg + off) is readable,
5281 			 * the state of dst_reg will be updated by this func
5282 			 */
5283 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
5284 					       BPF_SIZE(insn->code), BPF_READ,
5285 					       insn->dst_reg, false);
5286 			if (err)
5287 				return err;
5288 
5289 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5290 
5291 			if (*prev_src_type == NOT_INIT) {
5292 				/* saw a valid insn
5293 				 * dst_reg = *(u32 *)(src_reg + off)
5294 				 * save type to validate intersecting paths
5295 				 */
5296 				*prev_src_type = src_reg_type;
5297 
5298 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
5299 				/* ABuser program is trying to use the same insn
5300 				 * dst_reg = *(u32*) (src_reg + off)
5301 				 * with different pointer types:
5302 				 * src_reg == ctx in one branch and
5303 				 * src_reg == stack|map in some other branch.
5304 				 * Reject it.
5305 				 */
5306 				verbose(env, "same insn cannot be used with different pointers\n");
5307 				return -EINVAL;
5308 			}
5309 
5310 		} else if (class == BPF_STX) {
5311 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
5312 
5313 			if (BPF_MODE(insn->code) == BPF_XADD) {
5314 				err = check_xadd(env, insn_idx, insn);
5315 				if (err)
5316 					return err;
5317 				insn_idx++;
5318 				continue;
5319 			}
5320 
5321 			/* check src1 operand */
5322 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5323 			if (err)
5324 				return err;
5325 			/* check src2 operand */
5326 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5327 			if (err)
5328 				return err;
5329 
5330 			dst_reg_type = regs[insn->dst_reg].type;
5331 
5332 			/* check that memory (dst_reg + off) is writeable */
5333 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5334 					       BPF_SIZE(insn->code), BPF_WRITE,
5335 					       insn->src_reg, false);
5336 			if (err)
5337 				return err;
5338 
5339 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5340 
5341 			if (*prev_dst_type == NOT_INIT) {
5342 				*prev_dst_type = dst_reg_type;
5343 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
5344 				verbose(env, "same insn cannot be used with different pointers\n");
5345 				return -EINVAL;
5346 			}
5347 
5348 		} else if (class == BPF_ST) {
5349 			if (BPF_MODE(insn->code) != BPF_MEM ||
5350 			    insn->src_reg != BPF_REG_0) {
5351 				verbose(env, "BPF_ST uses reserved fields\n");
5352 				return -EINVAL;
5353 			}
5354 			/* check src operand */
5355 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5356 			if (err)
5357 				return err;
5358 
5359 			if (is_ctx_reg(env, insn->dst_reg)) {
5360 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
5361 					insn->dst_reg,
5362 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
5363 				return -EACCES;
5364 			}
5365 
5366 			/* check that memory (dst_reg + off) is writeable */
5367 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5368 					       BPF_SIZE(insn->code), BPF_WRITE,
5369 					       -1, false);
5370 			if (err)
5371 				return err;
5372 
5373 		} else if (class == BPF_JMP) {
5374 			u8 opcode = BPF_OP(insn->code);
5375 
5376 			if (opcode == BPF_CALL) {
5377 				if (BPF_SRC(insn->code) != BPF_K ||
5378 				    insn->off != 0 ||
5379 				    (insn->src_reg != BPF_REG_0 &&
5380 				     insn->src_reg != BPF_PSEUDO_CALL) ||
5381 				    insn->dst_reg != BPF_REG_0) {
5382 					verbose(env, "BPF_CALL uses reserved fields\n");
5383 					return -EINVAL;
5384 				}
5385 
5386 				if (insn->src_reg == BPF_PSEUDO_CALL)
5387 					err = check_func_call(env, insn, &insn_idx);
5388 				else
5389 					err = check_helper_call(env, insn->imm, insn_idx);
5390 				if (err)
5391 					return err;
5392 
5393 			} else if (opcode == BPF_JA) {
5394 				if (BPF_SRC(insn->code) != BPF_K ||
5395 				    insn->imm != 0 ||
5396 				    insn->src_reg != BPF_REG_0 ||
5397 				    insn->dst_reg != BPF_REG_0) {
5398 					verbose(env, "BPF_JA uses reserved fields\n");
5399 					return -EINVAL;
5400 				}
5401 
5402 				insn_idx += insn->off + 1;
5403 				continue;
5404 
5405 			} else if (opcode == BPF_EXIT) {
5406 				if (BPF_SRC(insn->code) != BPF_K ||
5407 				    insn->imm != 0 ||
5408 				    insn->src_reg != BPF_REG_0 ||
5409 				    insn->dst_reg != BPF_REG_0) {
5410 					verbose(env, "BPF_EXIT uses reserved fields\n");
5411 					return -EINVAL;
5412 				}
5413 
5414 				if (state->curframe) {
5415 					/* exit from nested function */
5416 					prev_insn_idx = insn_idx;
5417 					err = prepare_func_exit(env, &insn_idx);
5418 					if (err)
5419 						return err;
5420 					do_print_state = true;
5421 					continue;
5422 				}
5423 
5424 				err = check_reference_leak(env);
5425 				if (err)
5426 					return err;
5427 
5428 				/* eBPF calling convetion is such that R0 is used
5429 				 * to return the value from eBPF program.
5430 				 * Make sure that it's readable at this time
5431 				 * of bpf_exit, which means that program wrote
5432 				 * something into it earlier
5433 				 */
5434 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
5435 				if (err)
5436 					return err;
5437 
5438 				if (is_pointer_value(env, BPF_REG_0)) {
5439 					verbose(env, "R0 leaks addr as return value\n");
5440 					return -EACCES;
5441 				}
5442 
5443 				err = check_return_code(env);
5444 				if (err)
5445 					return err;
5446 process_bpf_exit:
5447 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
5448 				if (err < 0) {
5449 					if (err != -ENOENT)
5450 						return err;
5451 					break;
5452 				} else {
5453 					do_print_state = true;
5454 					continue;
5455 				}
5456 			} else {
5457 				err = check_cond_jmp_op(env, insn, &insn_idx);
5458 				if (err)
5459 					return err;
5460 			}
5461 		} else if (class == BPF_LD) {
5462 			u8 mode = BPF_MODE(insn->code);
5463 
5464 			if (mode == BPF_ABS || mode == BPF_IND) {
5465 				err = check_ld_abs(env, insn);
5466 				if (err)
5467 					return err;
5468 
5469 			} else if (mode == BPF_IMM) {
5470 				err = check_ld_imm(env, insn);
5471 				if (err)
5472 					return err;
5473 
5474 				insn_idx++;
5475 				env->insn_aux_data[insn_idx].seen = true;
5476 			} else {
5477 				verbose(env, "invalid BPF_LD mode\n");
5478 				return -EINVAL;
5479 			}
5480 		} else {
5481 			verbose(env, "unknown insn class %d\n", class);
5482 			return -EINVAL;
5483 		}
5484 
5485 		insn_idx++;
5486 	}
5487 
5488 	verbose(env, "processed %d insns (limit %d), stack depth ",
5489 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5490 	for (i = 0; i < env->subprog_cnt; i++) {
5491 		u32 depth = env->subprog_info[i].stack_depth;
5492 
5493 		verbose(env, "%d", depth);
5494 		if (i + 1 < env->subprog_cnt)
5495 			verbose(env, "+");
5496 	}
5497 	verbose(env, "\n");
5498 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5499 	return 0;
5500 }
5501 
5502 static int check_map_prealloc(struct bpf_map *map)
5503 {
5504 	return (map->map_type != BPF_MAP_TYPE_HASH &&
5505 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5506 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5507 		!(map->map_flags & BPF_F_NO_PREALLOC);
5508 }
5509 
5510 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5511 					struct bpf_map *map,
5512 					struct bpf_prog *prog)
5513 
5514 {
5515 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5516 	 * preallocated hash maps, since doing memory allocation
5517 	 * in overflow_handler can crash depending on where nmi got
5518 	 * triggered.
5519 	 */
5520 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5521 		if (!check_map_prealloc(map)) {
5522 			verbose(env, "perf_event programs can only use preallocated hash map\n");
5523 			return -EINVAL;
5524 		}
5525 		if (map->inner_map_meta &&
5526 		    !check_map_prealloc(map->inner_map_meta)) {
5527 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5528 			return -EINVAL;
5529 		}
5530 	}
5531 
5532 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5533 	    !bpf_offload_prog_map_match(prog, map)) {
5534 		verbose(env, "offload device mismatch between prog and map\n");
5535 		return -EINVAL;
5536 	}
5537 
5538 	return 0;
5539 }
5540 
5541 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5542 {
5543 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5544 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5545 }
5546 
5547 /* look for pseudo eBPF instructions that access map FDs and
5548  * replace them with actual map pointers
5549  */
5550 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5551 {
5552 	struct bpf_insn *insn = env->prog->insnsi;
5553 	int insn_cnt = env->prog->len;
5554 	int i, j, err;
5555 
5556 	err = bpf_prog_calc_tag(env->prog);
5557 	if (err)
5558 		return err;
5559 
5560 	for (i = 0; i < insn_cnt; i++, insn++) {
5561 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5562 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5563 			verbose(env, "BPF_LDX uses reserved fields\n");
5564 			return -EINVAL;
5565 		}
5566 
5567 		if (BPF_CLASS(insn->code) == BPF_STX &&
5568 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5569 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5570 			verbose(env, "BPF_STX uses reserved fields\n");
5571 			return -EINVAL;
5572 		}
5573 
5574 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5575 			struct bpf_map *map;
5576 			struct fd f;
5577 
5578 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5579 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5580 			    insn[1].off != 0) {
5581 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5582 				return -EINVAL;
5583 			}
5584 
5585 			if (insn->src_reg == 0)
5586 				/* valid generic load 64-bit imm */
5587 				goto next_insn;
5588 
5589 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5590 				verbose(env,
5591 					"unrecognized bpf_ld_imm64 insn\n");
5592 				return -EINVAL;
5593 			}
5594 
5595 			f = fdget(insn->imm);
5596 			map = __bpf_map_get(f);
5597 			if (IS_ERR(map)) {
5598 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5599 					insn->imm);
5600 				return PTR_ERR(map);
5601 			}
5602 
5603 			err = check_map_prog_compatibility(env, map, env->prog);
5604 			if (err) {
5605 				fdput(f);
5606 				return err;
5607 			}
5608 
5609 			/* store map pointer inside BPF_LD_IMM64 instruction */
5610 			insn[0].imm = (u32) (unsigned long) map;
5611 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5612 
5613 			/* check whether we recorded this map already */
5614 			for (j = 0; j < env->used_map_cnt; j++)
5615 				if (env->used_maps[j] == map) {
5616 					fdput(f);
5617 					goto next_insn;
5618 				}
5619 
5620 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5621 				fdput(f);
5622 				return -E2BIG;
5623 			}
5624 
5625 			/* hold the map. If the program is rejected by verifier,
5626 			 * the map will be released by release_maps() or it
5627 			 * will be used by the valid program until it's unloaded
5628 			 * and all maps are released in free_used_maps()
5629 			 */
5630 			map = bpf_map_inc(map, false);
5631 			if (IS_ERR(map)) {
5632 				fdput(f);
5633 				return PTR_ERR(map);
5634 			}
5635 			env->used_maps[env->used_map_cnt++] = map;
5636 
5637 			if (bpf_map_is_cgroup_storage(map) &&
5638 			    bpf_cgroup_storage_assign(env->prog, map)) {
5639 				verbose(env, "only one cgroup storage of each type is allowed\n");
5640 				fdput(f);
5641 				return -EBUSY;
5642 			}
5643 
5644 			fdput(f);
5645 next_insn:
5646 			insn++;
5647 			i++;
5648 			continue;
5649 		}
5650 
5651 		/* Basic sanity check before we invest more work here. */
5652 		if (!bpf_opcode_in_insntable(insn->code)) {
5653 			verbose(env, "unknown opcode %02x\n", insn->code);
5654 			return -EINVAL;
5655 		}
5656 	}
5657 
5658 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5659 	 * 'struct bpf_map *' into a register instead of user map_fd.
5660 	 * These pointers will be used later by verifier to validate map access.
5661 	 */
5662 	return 0;
5663 }
5664 
5665 /* drop refcnt of maps used by the rejected program */
5666 static void release_maps(struct bpf_verifier_env *env)
5667 {
5668 	enum bpf_cgroup_storage_type stype;
5669 	int i;
5670 
5671 	for_each_cgroup_storage_type(stype) {
5672 		if (!env->prog->aux->cgroup_storage[stype])
5673 			continue;
5674 		bpf_cgroup_storage_release(env->prog,
5675 			env->prog->aux->cgroup_storage[stype]);
5676 	}
5677 
5678 	for (i = 0; i < env->used_map_cnt; i++)
5679 		bpf_map_put(env->used_maps[i]);
5680 }
5681 
5682 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5683 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5684 {
5685 	struct bpf_insn *insn = env->prog->insnsi;
5686 	int insn_cnt = env->prog->len;
5687 	int i;
5688 
5689 	for (i = 0; i < insn_cnt; i++, insn++)
5690 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5691 			insn->src_reg = 0;
5692 }
5693 
5694 /* single env->prog->insni[off] instruction was replaced with the range
5695  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5696  * [0, off) and [off, end) to new locations, so the patched range stays zero
5697  */
5698 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5699 				u32 off, u32 cnt)
5700 {
5701 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5702 	int i;
5703 
5704 	if (cnt == 1)
5705 		return 0;
5706 	new_data = vzalloc(array_size(prog_len,
5707 				      sizeof(struct bpf_insn_aux_data)));
5708 	if (!new_data)
5709 		return -ENOMEM;
5710 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5711 	memcpy(new_data + off + cnt - 1, old_data + off,
5712 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5713 	for (i = off; i < off + cnt - 1; i++)
5714 		new_data[i].seen = true;
5715 	env->insn_aux_data = new_data;
5716 	vfree(old_data);
5717 	return 0;
5718 }
5719 
5720 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5721 {
5722 	int i;
5723 
5724 	if (len == 1)
5725 		return;
5726 	/* NOTE: fake 'exit' subprog should be updated as well. */
5727 	for (i = 0; i <= env->subprog_cnt; i++) {
5728 		if (env->subprog_info[i].start <= off)
5729 			continue;
5730 		env->subprog_info[i].start += len - 1;
5731 	}
5732 }
5733 
5734 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5735 					    const struct bpf_insn *patch, u32 len)
5736 {
5737 	struct bpf_prog *new_prog;
5738 
5739 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5740 	if (!new_prog)
5741 		return NULL;
5742 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5743 		return NULL;
5744 	adjust_subprog_starts(env, off, len);
5745 	return new_prog;
5746 }
5747 
5748 /* The verifier does more data flow analysis than llvm and will not
5749  * explore branches that are dead at run time. Malicious programs can
5750  * have dead code too. Therefore replace all dead at-run-time code
5751  * with 'ja -1'.
5752  *
5753  * Just nops are not optimal, e.g. if they would sit at the end of the
5754  * program and through another bug we would manage to jump there, then
5755  * we'd execute beyond program memory otherwise. Returning exception
5756  * code also wouldn't work since we can have subprogs where the dead
5757  * code could be located.
5758  */
5759 static void sanitize_dead_code(struct bpf_verifier_env *env)
5760 {
5761 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5762 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5763 	struct bpf_insn *insn = env->prog->insnsi;
5764 	const int insn_cnt = env->prog->len;
5765 	int i;
5766 
5767 	for (i = 0; i < insn_cnt; i++) {
5768 		if (aux_data[i].seen)
5769 			continue;
5770 		memcpy(insn + i, &trap, sizeof(trap));
5771 	}
5772 }
5773 
5774 /* convert load instructions that access fields of a context type into a
5775  * sequence of instructions that access fields of the underlying structure:
5776  *     struct __sk_buff    -> struct sk_buff
5777  *     struct bpf_sock_ops -> struct sock
5778  */
5779 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5780 {
5781 	const struct bpf_verifier_ops *ops = env->ops;
5782 	int i, cnt, size, ctx_field_size, delta = 0;
5783 	const int insn_cnt = env->prog->len;
5784 	struct bpf_insn insn_buf[16], *insn;
5785 	struct bpf_prog *new_prog;
5786 	enum bpf_access_type type;
5787 	bool is_narrower_load;
5788 	u32 target_size;
5789 
5790 	if (ops->gen_prologue || env->seen_direct_write) {
5791 		if (!ops->gen_prologue) {
5792 			verbose(env, "bpf verifier is misconfigured\n");
5793 			return -EINVAL;
5794 		}
5795 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5796 					env->prog);
5797 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5798 			verbose(env, "bpf verifier is misconfigured\n");
5799 			return -EINVAL;
5800 		} else if (cnt) {
5801 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5802 			if (!new_prog)
5803 				return -ENOMEM;
5804 
5805 			env->prog = new_prog;
5806 			delta += cnt - 1;
5807 		}
5808 	}
5809 
5810 	if (bpf_prog_is_dev_bound(env->prog->aux))
5811 		return 0;
5812 
5813 	insn = env->prog->insnsi + delta;
5814 
5815 	for (i = 0; i < insn_cnt; i++, insn++) {
5816 		bpf_convert_ctx_access_t convert_ctx_access;
5817 
5818 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5819 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5820 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5821 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5822 			type = BPF_READ;
5823 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5824 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5825 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5826 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5827 			type = BPF_WRITE;
5828 		else
5829 			continue;
5830 
5831 		if (type == BPF_WRITE &&
5832 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
5833 			struct bpf_insn patch[] = {
5834 				/* Sanitize suspicious stack slot with zero.
5835 				 * There are no memory dependencies for this store,
5836 				 * since it's only using frame pointer and immediate
5837 				 * constant of zero
5838 				 */
5839 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5840 					   env->insn_aux_data[i + delta].sanitize_stack_off,
5841 					   0),
5842 				/* the original STX instruction will immediately
5843 				 * overwrite the same stack slot with appropriate value
5844 				 */
5845 				*insn,
5846 			};
5847 
5848 			cnt = ARRAY_SIZE(patch);
5849 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5850 			if (!new_prog)
5851 				return -ENOMEM;
5852 
5853 			delta    += cnt - 1;
5854 			env->prog = new_prog;
5855 			insn      = new_prog->insnsi + i + delta;
5856 			continue;
5857 		}
5858 
5859 		switch (env->insn_aux_data[i + delta].ptr_type) {
5860 		case PTR_TO_CTX:
5861 			if (!ops->convert_ctx_access)
5862 				continue;
5863 			convert_ctx_access = ops->convert_ctx_access;
5864 			break;
5865 		case PTR_TO_SOCKET:
5866 			convert_ctx_access = bpf_sock_convert_ctx_access;
5867 			break;
5868 		default:
5869 			continue;
5870 		}
5871 
5872 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5873 		size = BPF_LDST_BYTES(insn);
5874 
5875 		/* If the read access is a narrower load of the field,
5876 		 * convert to a 4/8-byte load, to minimum program type specific
5877 		 * convert_ctx_access changes. If conversion is successful,
5878 		 * we will apply proper mask to the result.
5879 		 */
5880 		is_narrower_load = size < ctx_field_size;
5881 		if (is_narrower_load) {
5882 			u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5883 			u32 off = insn->off;
5884 			u8 size_code;
5885 
5886 			if (type == BPF_WRITE) {
5887 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5888 				return -EINVAL;
5889 			}
5890 
5891 			size_code = BPF_H;
5892 			if (ctx_field_size == 4)
5893 				size_code = BPF_W;
5894 			else if (ctx_field_size == 8)
5895 				size_code = BPF_DW;
5896 
5897 			insn->off = off & ~(size_default - 1);
5898 			insn->code = BPF_LDX | BPF_MEM | size_code;
5899 		}
5900 
5901 		target_size = 0;
5902 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5903 					 &target_size);
5904 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5905 		    (ctx_field_size && !target_size)) {
5906 			verbose(env, "bpf verifier is misconfigured\n");
5907 			return -EINVAL;
5908 		}
5909 
5910 		if (is_narrower_load && size < target_size) {
5911 			if (ctx_field_size <= 4)
5912 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5913 								(1 << size * 8) - 1);
5914 			else
5915 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5916 								(1 << size * 8) - 1);
5917 		}
5918 
5919 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5920 		if (!new_prog)
5921 			return -ENOMEM;
5922 
5923 		delta += cnt - 1;
5924 
5925 		/* keep walking new program and skip insns we just inserted */
5926 		env->prog = new_prog;
5927 		insn      = new_prog->insnsi + i + delta;
5928 	}
5929 
5930 	return 0;
5931 }
5932 
5933 static int jit_subprogs(struct bpf_verifier_env *env)
5934 {
5935 	struct bpf_prog *prog = env->prog, **func, *tmp;
5936 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5937 	struct bpf_insn *insn;
5938 	void *old_bpf_func;
5939 	int err = -ENOMEM;
5940 
5941 	if (env->subprog_cnt <= 1)
5942 		return 0;
5943 
5944 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5945 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5946 		    insn->src_reg != BPF_PSEUDO_CALL)
5947 			continue;
5948 		/* Upon error here we cannot fall back to interpreter but
5949 		 * need a hard reject of the program. Thus -EFAULT is
5950 		 * propagated in any case.
5951 		 */
5952 		subprog = find_subprog(env, i + insn->imm + 1);
5953 		if (subprog < 0) {
5954 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5955 				  i + insn->imm + 1);
5956 			return -EFAULT;
5957 		}
5958 		/* temporarily remember subprog id inside insn instead of
5959 		 * aux_data, since next loop will split up all insns into funcs
5960 		 */
5961 		insn->off = subprog;
5962 		/* remember original imm in case JIT fails and fallback
5963 		 * to interpreter will be needed
5964 		 */
5965 		env->insn_aux_data[i].call_imm = insn->imm;
5966 		/* point imm to __bpf_call_base+1 from JITs point of view */
5967 		insn->imm = 1;
5968 	}
5969 
5970 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
5971 	if (!func)
5972 		goto out_undo_insn;
5973 
5974 	for (i = 0; i < env->subprog_cnt; i++) {
5975 		subprog_start = subprog_end;
5976 		subprog_end = env->subprog_info[i + 1].start;
5977 
5978 		len = subprog_end - subprog_start;
5979 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5980 		if (!func[i])
5981 			goto out_free;
5982 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5983 		       len * sizeof(struct bpf_insn));
5984 		func[i]->type = prog->type;
5985 		func[i]->len = len;
5986 		if (bpf_prog_calc_tag(func[i]))
5987 			goto out_free;
5988 		func[i]->is_func = 1;
5989 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5990 		 * Long term would need debug info to populate names
5991 		 */
5992 		func[i]->aux->name[0] = 'F';
5993 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5994 		func[i]->jit_requested = 1;
5995 		func[i] = bpf_int_jit_compile(func[i]);
5996 		if (!func[i]->jited) {
5997 			err = -ENOTSUPP;
5998 			goto out_free;
5999 		}
6000 		cond_resched();
6001 	}
6002 	/* at this point all bpf functions were successfully JITed
6003 	 * now populate all bpf_calls with correct addresses and
6004 	 * run last pass of JIT
6005 	 */
6006 	for (i = 0; i < env->subprog_cnt; i++) {
6007 		insn = func[i]->insnsi;
6008 		for (j = 0; j < func[i]->len; j++, insn++) {
6009 			if (insn->code != (BPF_JMP | BPF_CALL) ||
6010 			    insn->src_reg != BPF_PSEUDO_CALL)
6011 				continue;
6012 			subprog = insn->off;
6013 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
6014 				func[subprog]->bpf_func -
6015 				__bpf_call_base;
6016 		}
6017 
6018 		/* we use the aux data to keep a list of the start addresses
6019 		 * of the JITed images for each function in the program
6020 		 *
6021 		 * for some architectures, such as powerpc64, the imm field
6022 		 * might not be large enough to hold the offset of the start
6023 		 * address of the callee's JITed image from __bpf_call_base
6024 		 *
6025 		 * in such cases, we can lookup the start address of a callee
6026 		 * by using its subprog id, available from the off field of
6027 		 * the call instruction, as an index for this list
6028 		 */
6029 		func[i]->aux->func = func;
6030 		func[i]->aux->func_cnt = env->subprog_cnt;
6031 	}
6032 	for (i = 0; i < env->subprog_cnt; i++) {
6033 		old_bpf_func = func[i]->bpf_func;
6034 		tmp = bpf_int_jit_compile(func[i]);
6035 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
6036 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
6037 			err = -ENOTSUPP;
6038 			goto out_free;
6039 		}
6040 		cond_resched();
6041 	}
6042 
6043 	/* finally lock prog and jit images for all functions and
6044 	 * populate kallsysm
6045 	 */
6046 	for (i = 0; i < env->subprog_cnt; i++) {
6047 		bpf_prog_lock_ro(func[i]);
6048 		bpf_prog_kallsyms_add(func[i]);
6049 	}
6050 
6051 	/* Last step: make now unused interpreter insns from main
6052 	 * prog consistent for later dump requests, so they can
6053 	 * later look the same as if they were interpreted only.
6054 	 */
6055 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6056 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6057 		    insn->src_reg != BPF_PSEUDO_CALL)
6058 			continue;
6059 		insn->off = env->insn_aux_data[i].call_imm;
6060 		subprog = find_subprog(env, i + insn->off + 1);
6061 		insn->imm = subprog;
6062 	}
6063 
6064 	prog->jited = 1;
6065 	prog->bpf_func = func[0]->bpf_func;
6066 	prog->aux->func = func;
6067 	prog->aux->func_cnt = env->subprog_cnt;
6068 	return 0;
6069 out_free:
6070 	for (i = 0; i < env->subprog_cnt; i++)
6071 		if (func[i])
6072 			bpf_jit_free(func[i]);
6073 	kfree(func);
6074 out_undo_insn:
6075 	/* cleanup main prog to be interpreted */
6076 	prog->jit_requested = 0;
6077 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6078 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6079 		    insn->src_reg != BPF_PSEUDO_CALL)
6080 			continue;
6081 		insn->off = 0;
6082 		insn->imm = env->insn_aux_data[i].call_imm;
6083 	}
6084 	return err;
6085 }
6086 
6087 static int fixup_call_args(struct bpf_verifier_env *env)
6088 {
6089 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6090 	struct bpf_prog *prog = env->prog;
6091 	struct bpf_insn *insn = prog->insnsi;
6092 	int i, depth;
6093 #endif
6094 	int err = 0;
6095 
6096 	if (env->prog->jit_requested &&
6097 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
6098 		err = jit_subprogs(env);
6099 		if (err == 0)
6100 			return 0;
6101 		if (err == -EFAULT)
6102 			return err;
6103 	}
6104 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6105 	for (i = 0; i < prog->len; i++, insn++) {
6106 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6107 		    insn->src_reg != BPF_PSEUDO_CALL)
6108 			continue;
6109 		depth = get_callee_stack_depth(env, insn, i);
6110 		if (depth < 0)
6111 			return depth;
6112 		bpf_patch_call_args(insn, depth);
6113 	}
6114 	err = 0;
6115 #endif
6116 	return err;
6117 }
6118 
6119 /* fixup insn->imm field of bpf_call instructions
6120  * and inline eligible helpers as explicit sequence of BPF instructions
6121  *
6122  * this function is called after eBPF program passed verification
6123  */
6124 static int fixup_bpf_calls(struct bpf_verifier_env *env)
6125 {
6126 	struct bpf_prog *prog = env->prog;
6127 	struct bpf_insn *insn = prog->insnsi;
6128 	const struct bpf_func_proto *fn;
6129 	const int insn_cnt = prog->len;
6130 	const struct bpf_map_ops *ops;
6131 	struct bpf_insn_aux_data *aux;
6132 	struct bpf_insn insn_buf[16];
6133 	struct bpf_prog *new_prog;
6134 	struct bpf_map *map_ptr;
6135 	int i, cnt, delta = 0;
6136 
6137 	for (i = 0; i < insn_cnt; i++, insn++) {
6138 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6139 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6140 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
6141 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6142 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6143 			struct bpf_insn mask_and_div[] = {
6144 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6145 				/* Rx div 0 -> 0 */
6146 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6147 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6148 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6149 				*insn,
6150 			};
6151 			struct bpf_insn mask_and_mod[] = {
6152 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6153 				/* Rx mod 0 -> Rx */
6154 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6155 				*insn,
6156 			};
6157 			struct bpf_insn *patchlet;
6158 
6159 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6160 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6161 				patchlet = mask_and_div + (is64 ? 1 : 0);
6162 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6163 			} else {
6164 				patchlet = mask_and_mod + (is64 ? 1 : 0);
6165 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6166 			}
6167 
6168 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
6169 			if (!new_prog)
6170 				return -ENOMEM;
6171 
6172 			delta    += cnt - 1;
6173 			env->prog = prog = new_prog;
6174 			insn      = new_prog->insnsi + i + delta;
6175 			continue;
6176 		}
6177 
6178 		if (BPF_CLASS(insn->code) == BPF_LD &&
6179 		    (BPF_MODE(insn->code) == BPF_ABS ||
6180 		     BPF_MODE(insn->code) == BPF_IND)) {
6181 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
6182 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6183 				verbose(env, "bpf verifier is misconfigured\n");
6184 				return -EINVAL;
6185 			}
6186 
6187 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6188 			if (!new_prog)
6189 				return -ENOMEM;
6190 
6191 			delta    += cnt - 1;
6192 			env->prog = prog = new_prog;
6193 			insn      = new_prog->insnsi + i + delta;
6194 			continue;
6195 		}
6196 
6197 		if (insn->code != (BPF_JMP | BPF_CALL))
6198 			continue;
6199 		if (insn->src_reg == BPF_PSEUDO_CALL)
6200 			continue;
6201 
6202 		if (insn->imm == BPF_FUNC_get_route_realm)
6203 			prog->dst_needed = 1;
6204 		if (insn->imm == BPF_FUNC_get_prandom_u32)
6205 			bpf_user_rnd_init_once();
6206 		if (insn->imm == BPF_FUNC_override_return)
6207 			prog->kprobe_override = 1;
6208 		if (insn->imm == BPF_FUNC_tail_call) {
6209 			/* If we tail call into other programs, we
6210 			 * cannot make any assumptions since they can
6211 			 * be replaced dynamically during runtime in
6212 			 * the program array.
6213 			 */
6214 			prog->cb_access = 1;
6215 			env->prog->aux->stack_depth = MAX_BPF_STACK;
6216 
6217 			/* mark bpf_tail_call as different opcode to avoid
6218 			 * conditional branch in the interpeter for every normal
6219 			 * call and to prevent accidental JITing by JIT compiler
6220 			 * that doesn't support bpf_tail_call yet
6221 			 */
6222 			insn->imm = 0;
6223 			insn->code = BPF_JMP | BPF_TAIL_CALL;
6224 
6225 			aux = &env->insn_aux_data[i + delta];
6226 			if (!bpf_map_ptr_unpriv(aux))
6227 				continue;
6228 
6229 			/* instead of changing every JIT dealing with tail_call
6230 			 * emit two extra insns:
6231 			 * if (index >= max_entries) goto out;
6232 			 * index &= array->index_mask;
6233 			 * to avoid out-of-bounds cpu speculation
6234 			 */
6235 			if (bpf_map_ptr_poisoned(aux)) {
6236 				verbose(env, "tail_call abusing map_ptr\n");
6237 				return -EINVAL;
6238 			}
6239 
6240 			map_ptr = BPF_MAP_PTR(aux->map_state);
6241 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6242 						  map_ptr->max_entries, 2);
6243 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6244 						    container_of(map_ptr,
6245 								 struct bpf_array,
6246 								 map)->index_mask);
6247 			insn_buf[2] = *insn;
6248 			cnt = 3;
6249 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6250 			if (!new_prog)
6251 				return -ENOMEM;
6252 
6253 			delta    += cnt - 1;
6254 			env->prog = prog = new_prog;
6255 			insn      = new_prog->insnsi + i + delta;
6256 			continue;
6257 		}
6258 
6259 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
6260 		 * and other inlining handlers are currently limited to 64 bit
6261 		 * only.
6262 		 */
6263 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
6264 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
6265 		     insn->imm == BPF_FUNC_map_update_elem ||
6266 		     insn->imm == BPF_FUNC_map_delete_elem ||
6267 		     insn->imm == BPF_FUNC_map_push_elem   ||
6268 		     insn->imm == BPF_FUNC_map_pop_elem    ||
6269 		     insn->imm == BPF_FUNC_map_peek_elem)) {
6270 			aux = &env->insn_aux_data[i + delta];
6271 			if (bpf_map_ptr_poisoned(aux))
6272 				goto patch_call_imm;
6273 
6274 			map_ptr = BPF_MAP_PTR(aux->map_state);
6275 			ops = map_ptr->ops;
6276 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
6277 			    ops->map_gen_lookup) {
6278 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6279 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6280 					verbose(env, "bpf verifier is misconfigured\n");
6281 					return -EINVAL;
6282 				}
6283 
6284 				new_prog = bpf_patch_insn_data(env, i + delta,
6285 							       insn_buf, cnt);
6286 				if (!new_prog)
6287 					return -ENOMEM;
6288 
6289 				delta    += cnt - 1;
6290 				env->prog = prog = new_prog;
6291 				insn      = new_prog->insnsi + i + delta;
6292 				continue;
6293 			}
6294 
6295 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6296 				     (void *(*)(struct bpf_map *map, void *key))NULL));
6297 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6298 				     (int (*)(struct bpf_map *map, void *key))NULL));
6299 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6300 				     (int (*)(struct bpf_map *map, void *key, void *value,
6301 					      u64 flags))NULL));
6302 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6303 				     (int (*)(struct bpf_map *map, void *value,
6304 					      u64 flags))NULL));
6305 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6306 				     (int (*)(struct bpf_map *map, void *value))NULL));
6307 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6308 				     (int (*)(struct bpf_map *map, void *value))NULL));
6309 
6310 			switch (insn->imm) {
6311 			case BPF_FUNC_map_lookup_elem:
6312 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6313 					    __bpf_call_base;
6314 				continue;
6315 			case BPF_FUNC_map_update_elem:
6316 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6317 					    __bpf_call_base;
6318 				continue;
6319 			case BPF_FUNC_map_delete_elem:
6320 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6321 					    __bpf_call_base;
6322 				continue;
6323 			case BPF_FUNC_map_push_elem:
6324 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6325 					    __bpf_call_base;
6326 				continue;
6327 			case BPF_FUNC_map_pop_elem:
6328 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6329 					    __bpf_call_base;
6330 				continue;
6331 			case BPF_FUNC_map_peek_elem:
6332 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6333 					    __bpf_call_base;
6334 				continue;
6335 			}
6336 
6337 			goto patch_call_imm;
6338 		}
6339 
6340 patch_call_imm:
6341 		fn = env->ops->get_func_proto(insn->imm, env->prog);
6342 		/* all functions that have prototype and verifier allowed
6343 		 * programs to call them, must be real in-kernel functions
6344 		 */
6345 		if (!fn->func) {
6346 			verbose(env,
6347 				"kernel subsystem misconfigured func %s#%d\n",
6348 				func_id_name(insn->imm), insn->imm);
6349 			return -EFAULT;
6350 		}
6351 		insn->imm = fn->func - __bpf_call_base;
6352 	}
6353 
6354 	return 0;
6355 }
6356 
6357 static void free_states(struct bpf_verifier_env *env)
6358 {
6359 	struct bpf_verifier_state_list *sl, *sln;
6360 	int i;
6361 
6362 	if (!env->explored_states)
6363 		return;
6364 
6365 	for (i = 0; i < env->prog->len; i++) {
6366 		sl = env->explored_states[i];
6367 
6368 		if (sl)
6369 			while (sl != STATE_LIST_MARK) {
6370 				sln = sl->next;
6371 				free_verifier_state(&sl->state, false);
6372 				kfree(sl);
6373 				sl = sln;
6374 			}
6375 	}
6376 
6377 	kfree(env->explored_states);
6378 }
6379 
6380 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
6381 {
6382 	struct bpf_verifier_env *env;
6383 	struct bpf_verifier_log *log;
6384 	int ret = -EINVAL;
6385 
6386 	/* no program is valid */
6387 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6388 		return -EINVAL;
6389 
6390 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
6391 	 * allocate/free it every time bpf_check() is called
6392 	 */
6393 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
6394 	if (!env)
6395 		return -ENOMEM;
6396 	log = &env->log;
6397 
6398 	env->insn_aux_data =
6399 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6400 				   (*prog)->len));
6401 	ret = -ENOMEM;
6402 	if (!env->insn_aux_data)
6403 		goto err_free_env;
6404 	env->prog = *prog;
6405 	env->ops = bpf_verifier_ops[env->prog->type];
6406 
6407 	/* grab the mutex to protect few globals used by verifier */
6408 	mutex_lock(&bpf_verifier_lock);
6409 
6410 	if (attr->log_level || attr->log_buf || attr->log_size) {
6411 		/* user requested verbose verifier output
6412 		 * and supplied buffer to store the verification trace
6413 		 */
6414 		log->level = attr->log_level;
6415 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6416 		log->len_total = attr->log_size;
6417 
6418 		ret = -EINVAL;
6419 		/* log attributes have to be sane */
6420 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6421 		    !log->level || !log->ubuf)
6422 			goto err_unlock;
6423 	}
6424 
6425 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6426 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
6427 		env->strict_alignment = true;
6428 
6429 	ret = replace_map_fd_with_map_ptr(env);
6430 	if (ret < 0)
6431 		goto skip_full_check;
6432 
6433 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
6434 		ret = bpf_prog_offload_verifier_prep(env);
6435 		if (ret)
6436 			goto skip_full_check;
6437 	}
6438 
6439 	env->explored_states = kcalloc(env->prog->len,
6440 				       sizeof(struct bpf_verifier_state_list *),
6441 				       GFP_USER);
6442 	ret = -ENOMEM;
6443 	if (!env->explored_states)
6444 		goto skip_full_check;
6445 
6446 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6447 
6448 	ret = check_cfg(env);
6449 	if (ret < 0)
6450 		goto skip_full_check;
6451 
6452 	ret = do_check(env);
6453 	if (env->cur_state) {
6454 		free_verifier_state(env->cur_state, true);
6455 		env->cur_state = NULL;
6456 	}
6457 
6458 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6459 		ret = bpf_prog_offload_finalize(env);
6460 
6461 skip_full_check:
6462 	while (!pop_stack(env, NULL, NULL));
6463 	free_states(env);
6464 
6465 	if (ret == 0)
6466 		sanitize_dead_code(env);
6467 
6468 	if (ret == 0)
6469 		ret = check_max_stack_depth(env);
6470 
6471 	if (ret == 0)
6472 		/* program is valid, convert *(u32*)(ctx + off) accesses */
6473 		ret = convert_ctx_accesses(env);
6474 
6475 	if (ret == 0)
6476 		ret = fixup_bpf_calls(env);
6477 
6478 	if (ret == 0)
6479 		ret = fixup_call_args(env);
6480 
6481 	if (log->level && bpf_verifier_log_full(log))
6482 		ret = -ENOSPC;
6483 	if (log->level && !log->ubuf) {
6484 		ret = -EFAULT;
6485 		goto err_release_maps;
6486 	}
6487 
6488 	if (ret == 0 && env->used_map_cnt) {
6489 		/* if program passed verifier, update used_maps in bpf_prog_info */
6490 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6491 							  sizeof(env->used_maps[0]),
6492 							  GFP_KERNEL);
6493 
6494 		if (!env->prog->aux->used_maps) {
6495 			ret = -ENOMEM;
6496 			goto err_release_maps;
6497 		}
6498 
6499 		memcpy(env->prog->aux->used_maps, env->used_maps,
6500 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
6501 		env->prog->aux->used_map_cnt = env->used_map_cnt;
6502 
6503 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
6504 		 * bpf_ld_imm64 instructions
6505 		 */
6506 		convert_pseudo_ld_imm64(env);
6507 	}
6508 
6509 err_release_maps:
6510 	if (!env->prog->aux->used_maps)
6511 		/* if we didn't copy map pointers into bpf_prog_info, release
6512 		 * them now. Otherwise free_used_maps() will release them.
6513 		 */
6514 		release_maps(env);
6515 	*prog = env->prog;
6516 err_unlock:
6517 	mutex_unlock(&bpf_verifier_lock);
6518 	vfree(env->insn_aux_data);
6519 err_free_env:
6520 	kfree(env);
6521 	return ret;
6522 }
6523