1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <linux/kernel.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/bpf.h> 18 #include <linux/bpf_verifier.h> 19 #include <linux/filter.h> 20 #include <net/netlink.h> 21 #include <linux/file.h> 22 #include <linux/vmalloc.h> 23 #include <linux/stringify.h> 24 #include <linux/bsearch.h> 25 #include <linux/sort.h> 26 #include <linux/perf_event.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 }; 175 176 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 177 #define BPF_COMPLEXITY_LIMIT_STACK 1024 178 #define BPF_COMPLEXITY_LIMIT_STATES 64 179 180 #define BPF_MAP_PTR_UNPRIV 1UL 181 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 182 POISON_POINTER_DELTA)) 183 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 184 185 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 186 { 187 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 188 } 189 190 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 191 { 192 return aux->map_state & BPF_MAP_PTR_UNPRIV; 193 } 194 195 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 196 const struct bpf_map *map, bool unpriv) 197 { 198 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 199 unpriv |= bpf_map_ptr_unpriv(aux); 200 aux->map_state = (unsigned long)map | 201 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 202 } 203 204 struct bpf_call_arg_meta { 205 struct bpf_map *map_ptr; 206 bool raw_mode; 207 bool pkt_access; 208 int regno; 209 int access_size; 210 s64 msize_smax_value; 211 u64 msize_umax_value; 212 int ptr_id; 213 }; 214 215 static DEFINE_MUTEX(bpf_verifier_lock); 216 217 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 218 va_list args) 219 { 220 unsigned int n; 221 222 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 223 224 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 225 "verifier log line truncated - local buffer too short\n"); 226 227 n = min(log->len_total - log->len_used - 1, n); 228 log->kbuf[n] = '\0'; 229 230 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 231 log->len_used += n; 232 else 233 log->ubuf = NULL; 234 } 235 236 /* log_level controls verbosity level of eBPF verifier. 237 * bpf_verifier_log_write() is used to dump the verification trace to the log, 238 * so the user can figure out what's wrong with the program 239 */ 240 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 241 const char *fmt, ...) 242 { 243 va_list args; 244 245 if (!bpf_verifier_log_needed(&env->log)) 246 return; 247 248 va_start(args, fmt); 249 bpf_verifier_vlog(&env->log, fmt, args); 250 va_end(args); 251 } 252 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 253 254 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 255 { 256 struct bpf_verifier_env *env = private_data; 257 va_list args; 258 259 if (!bpf_verifier_log_needed(&env->log)) 260 return; 261 262 va_start(args, fmt); 263 bpf_verifier_vlog(&env->log, fmt, args); 264 va_end(args); 265 } 266 267 static bool type_is_pkt_pointer(enum bpf_reg_type type) 268 { 269 return type == PTR_TO_PACKET || 270 type == PTR_TO_PACKET_META; 271 } 272 273 static bool reg_type_may_be_null(enum bpf_reg_type type) 274 { 275 return type == PTR_TO_MAP_VALUE_OR_NULL || 276 type == PTR_TO_SOCKET_OR_NULL; 277 } 278 279 static bool type_is_refcounted(enum bpf_reg_type type) 280 { 281 return type == PTR_TO_SOCKET; 282 } 283 284 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 285 { 286 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 287 } 288 289 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 290 { 291 return type_is_refcounted(reg->type); 292 } 293 294 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 295 { 296 return type_is_refcounted_or_null(reg->type); 297 } 298 299 static bool arg_type_is_refcounted(enum bpf_arg_type type) 300 { 301 return type == ARG_PTR_TO_SOCKET; 302 } 303 304 /* Determine whether the function releases some resources allocated by another 305 * function call. The first reference type argument will be assumed to be 306 * released by release_reference(). 307 */ 308 static bool is_release_function(enum bpf_func_id func_id) 309 { 310 return func_id == BPF_FUNC_sk_release; 311 } 312 313 /* string representation of 'enum bpf_reg_type' */ 314 static const char * const reg_type_str[] = { 315 [NOT_INIT] = "?", 316 [SCALAR_VALUE] = "inv", 317 [PTR_TO_CTX] = "ctx", 318 [CONST_PTR_TO_MAP] = "map_ptr", 319 [PTR_TO_MAP_VALUE] = "map_value", 320 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 321 [PTR_TO_STACK] = "fp", 322 [PTR_TO_PACKET] = "pkt", 323 [PTR_TO_PACKET_META] = "pkt_meta", 324 [PTR_TO_PACKET_END] = "pkt_end", 325 [PTR_TO_FLOW_KEYS] = "flow_keys", 326 [PTR_TO_SOCKET] = "sock", 327 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 328 }; 329 330 static char slot_type_char[] = { 331 [STACK_INVALID] = '?', 332 [STACK_SPILL] = 'r', 333 [STACK_MISC] = 'm', 334 [STACK_ZERO] = '0', 335 }; 336 337 static void print_liveness(struct bpf_verifier_env *env, 338 enum bpf_reg_liveness live) 339 { 340 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 341 verbose(env, "_"); 342 if (live & REG_LIVE_READ) 343 verbose(env, "r"); 344 if (live & REG_LIVE_WRITTEN) 345 verbose(env, "w"); 346 } 347 348 static struct bpf_func_state *func(struct bpf_verifier_env *env, 349 const struct bpf_reg_state *reg) 350 { 351 struct bpf_verifier_state *cur = env->cur_state; 352 353 return cur->frame[reg->frameno]; 354 } 355 356 static void print_verifier_state(struct bpf_verifier_env *env, 357 const struct bpf_func_state *state) 358 { 359 const struct bpf_reg_state *reg; 360 enum bpf_reg_type t; 361 int i; 362 363 if (state->frameno) 364 verbose(env, " frame%d:", state->frameno); 365 for (i = 0; i < MAX_BPF_REG; i++) { 366 reg = &state->regs[i]; 367 t = reg->type; 368 if (t == NOT_INIT) 369 continue; 370 verbose(env, " R%d", i); 371 print_liveness(env, reg->live); 372 verbose(env, "=%s", reg_type_str[t]); 373 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 374 tnum_is_const(reg->var_off)) { 375 /* reg->off should be 0 for SCALAR_VALUE */ 376 verbose(env, "%lld", reg->var_off.value + reg->off); 377 if (t == PTR_TO_STACK) 378 verbose(env, ",call_%d", func(env, reg)->callsite); 379 } else { 380 verbose(env, "(id=%d", reg->id); 381 if (t != SCALAR_VALUE) 382 verbose(env, ",off=%d", reg->off); 383 if (type_is_pkt_pointer(t)) 384 verbose(env, ",r=%d", reg->range); 385 else if (t == CONST_PTR_TO_MAP || 386 t == PTR_TO_MAP_VALUE || 387 t == PTR_TO_MAP_VALUE_OR_NULL) 388 verbose(env, ",ks=%d,vs=%d", 389 reg->map_ptr->key_size, 390 reg->map_ptr->value_size); 391 if (tnum_is_const(reg->var_off)) { 392 /* Typically an immediate SCALAR_VALUE, but 393 * could be a pointer whose offset is too big 394 * for reg->off 395 */ 396 verbose(env, ",imm=%llx", reg->var_off.value); 397 } else { 398 if (reg->smin_value != reg->umin_value && 399 reg->smin_value != S64_MIN) 400 verbose(env, ",smin_value=%lld", 401 (long long)reg->smin_value); 402 if (reg->smax_value != reg->umax_value && 403 reg->smax_value != S64_MAX) 404 verbose(env, ",smax_value=%lld", 405 (long long)reg->smax_value); 406 if (reg->umin_value != 0) 407 verbose(env, ",umin_value=%llu", 408 (unsigned long long)reg->umin_value); 409 if (reg->umax_value != U64_MAX) 410 verbose(env, ",umax_value=%llu", 411 (unsigned long long)reg->umax_value); 412 if (!tnum_is_unknown(reg->var_off)) { 413 char tn_buf[48]; 414 415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 416 verbose(env, ",var_off=%s", tn_buf); 417 } 418 } 419 verbose(env, ")"); 420 } 421 } 422 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 423 char types_buf[BPF_REG_SIZE + 1]; 424 bool valid = false; 425 int j; 426 427 for (j = 0; j < BPF_REG_SIZE; j++) { 428 if (state->stack[i].slot_type[j] != STACK_INVALID) 429 valid = true; 430 types_buf[j] = slot_type_char[ 431 state->stack[i].slot_type[j]]; 432 } 433 types_buf[BPF_REG_SIZE] = 0; 434 if (!valid) 435 continue; 436 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 437 print_liveness(env, state->stack[i].spilled_ptr.live); 438 if (state->stack[i].slot_type[0] == STACK_SPILL) 439 verbose(env, "=%s", 440 reg_type_str[state->stack[i].spilled_ptr.type]); 441 else 442 verbose(env, "=%s", types_buf); 443 } 444 if (state->acquired_refs && state->refs[0].id) { 445 verbose(env, " refs=%d", state->refs[0].id); 446 for (i = 1; i < state->acquired_refs; i++) 447 if (state->refs[i].id) 448 verbose(env, ",%d", state->refs[i].id); 449 } 450 verbose(env, "\n"); 451 } 452 453 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 454 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 455 const struct bpf_func_state *src) \ 456 { \ 457 if (!src->FIELD) \ 458 return 0; \ 459 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 460 /* internal bug, make state invalid to reject the program */ \ 461 memset(dst, 0, sizeof(*dst)); \ 462 return -EFAULT; \ 463 } \ 464 memcpy(dst->FIELD, src->FIELD, \ 465 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 466 return 0; \ 467 } 468 /* copy_reference_state() */ 469 COPY_STATE_FN(reference, acquired_refs, refs, 1) 470 /* copy_stack_state() */ 471 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 472 #undef COPY_STATE_FN 473 474 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 475 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 476 bool copy_old) \ 477 { \ 478 u32 old_size = state->COUNT; \ 479 struct bpf_##NAME##_state *new_##FIELD; \ 480 int slot = size / SIZE; \ 481 \ 482 if (size <= old_size || !size) { \ 483 if (copy_old) \ 484 return 0; \ 485 state->COUNT = slot * SIZE; \ 486 if (!size && old_size) { \ 487 kfree(state->FIELD); \ 488 state->FIELD = NULL; \ 489 } \ 490 return 0; \ 491 } \ 492 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 493 GFP_KERNEL); \ 494 if (!new_##FIELD) \ 495 return -ENOMEM; \ 496 if (copy_old) { \ 497 if (state->FIELD) \ 498 memcpy(new_##FIELD, state->FIELD, \ 499 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 500 memset(new_##FIELD + old_size / SIZE, 0, \ 501 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 502 } \ 503 state->COUNT = slot * SIZE; \ 504 kfree(state->FIELD); \ 505 state->FIELD = new_##FIELD; \ 506 return 0; \ 507 } 508 /* realloc_reference_state() */ 509 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 510 /* realloc_stack_state() */ 511 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 512 #undef REALLOC_STATE_FN 513 514 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 515 * make it consume minimal amount of memory. check_stack_write() access from 516 * the program calls into realloc_func_state() to grow the stack size. 517 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 518 * which realloc_stack_state() copies over. It points to previous 519 * bpf_verifier_state which is never reallocated. 520 */ 521 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 522 int refs_size, bool copy_old) 523 { 524 int err = realloc_reference_state(state, refs_size, copy_old); 525 if (err) 526 return err; 527 return realloc_stack_state(state, stack_size, copy_old); 528 } 529 530 /* Acquire a pointer id from the env and update the state->refs to include 531 * this new pointer reference. 532 * On success, returns a valid pointer id to associate with the register 533 * On failure, returns a negative errno. 534 */ 535 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 536 { 537 struct bpf_func_state *state = cur_func(env); 538 int new_ofs = state->acquired_refs; 539 int id, err; 540 541 err = realloc_reference_state(state, state->acquired_refs + 1, true); 542 if (err) 543 return err; 544 id = ++env->id_gen; 545 state->refs[new_ofs].id = id; 546 state->refs[new_ofs].insn_idx = insn_idx; 547 548 return id; 549 } 550 551 /* release function corresponding to acquire_reference_state(). Idempotent. */ 552 static int __release_reference_state(struct bpf_func_state *state, int ptr_id) 553 { 554 int i, last_idx; 555 556 if (!ptr_id) 557 return -EFAULT; 558 559 last_idx = state->acquired_refs - 1; 560 for (i = 0; i < state->acquired_refs; i++) { 561 if (state->refs[i].id == ptr_id) { 562 if (last_idx && i != last_idx) 563 memcpy(&state->refs[i], &state->refs[last_idx], 564 sizeof(*state->refs)); 565 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 566 state->acquired_refs--; 567 return 0; 568 } 569 } 570 return -EFAULT; 571 } 572 573 /* variation on the above for cases where we expect that there must be an 574 * outstanding reference for the specified ptr_id. 575 */ 576 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id) 577 { 578 struct bpf_func_state *state = cur_func(env); 579 int err; 580 581 err = __release_reference_state(state, ptr_id); 582 if (WARN_ON_ONCE(err != 0)) 583 verbose(env, "verifier internal error: can't release reference\n"); 584 return err; 585 } 586 587 static int transfer_reference_state(struct bpf_func_state *dst, 588 struct bpf_func_state *src) 589 { 590 int err = realloc_reference_state(dst, src->acquired_refs, false); 591 if (err) 592 return err; 593 err = copy_reference_state(dst, src); 594 if (err) 595 return err; 596 return 0; 597 } 598 599 static void free_func_state(struct bpf_func_state *state) 600 { 601 if (!state) 602 return; 603 kfree(state->refs); 604 kfree(state->stack); 605 kfree(state); 606 } 607 608 static void free_verifier_state(struct bpf_verifier_state *state, 609 bool free_self) 610 { 611 int i; 612 613 for (i = 0; i <= state->curframe; i++) { 614 free_func_state(state->frame[i]); 615 state->frame[i] = NULL; 616 } 617 if (free_self) 618 kfree(state); 619 } 620 621 /* copy verifier state from src to dst growing dst stack space 622 * when necessary to accommodate larger src stack 623 */ 624 static int copy_func_state(struct bpf_func_state *dst, 625 const struct bpf_func_state *src) 626 { 627 int err; 628 629 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 630 false); 631 if (err) 632 return err; 633 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 634 err = copy_reference_state(dst, src); 635 if (err) 636 return err; 637 return copy_stack_state(dst, src); 638 } 639 640 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 641 const struct bpf_verifier_state *src) 642 { 643 struct bpf_func_state *dst; 644 int i, err; 645 646 /* if dst has more stack frames then src frame, free them */ 647 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 648 free_func_state(dst_state->frame[i]); 649 dst_state->frame[i] = NULL; 650 } 651 dst_state->curframe = src->curframe; 652 for (i = 0; i <= src->curframe; i++) { 653 dst = dst_state->frame[i]; 654 if (!dst) { 655 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 656 if (!dst) 657 return -ENOMEM; 658 dst_state->frame[i] = dst; 659 } 660 err = copy_func_state(dst, src->frame[i]); 661 if (err) 662 return err; 663 } 664 return 0; 665 } 666 667 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 668 int *insn_idx) 669 { 670 struct bpf_verifier_state *cur = env->cur_state; 671 struct bpf_verifier_stack_elem *elem, *head = env->head; 672 int err; 673 674 if (env->head == NULL) 675 return -ENOENT; 676 677 if (cur) { 678 err = copy_verifier_state(cur, &head->st); 679 if (err) 680 return err; 681 } 682 if (insn_idx) 683 *insn_idx = head->insn_idx; 684 if (prev_insn_idx) 685 *prev_insn_idx = head->prev_insn_idx; 686 elem = head->next; 687 free_verifier_state(&head->st, false); 688 kfree(head); 689 env->head = elem; 690 env->stack_size--; 691 return 0; 692 } 693 694 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 695 int insn_idx, int prev_insn_idx) 696 { 697 struct bpf_verifier_state *cur = env->cur_state; 698 struct bpf_verifier_stack_elem *elem; 699 int err; 700 701 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 702 if (!elem) 703 goto err; 704 705 elem->insn_idx = insn_idx; 706 elem->prev_insn_idx = prev_insn_idx; 707 elem->next = env->head; 708 env->head = elem; 709 env->stack_size++; 710 err = copy_verifier_state(&elem->st, cur); 711 if (err) 712 goto err; 713 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 714 verbose(env, "BPF program is too complex\n"); 715 goto err; 716 } 717 return &elem->st; 718 err: 719 free_verifier_state(env->cur_state, true); 720 env->cur_state = NULL; 721 /* pop all elements and return */ 722 while (!pop_stack(env, NULL, NULL)); 723 return NULL; 724 } 725 726 #define CALLER_SAVED_REGS 6 727 static const int caller_saved[CALLER_SAVED_REGS] = { 728 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 729 }; 730 731 static void __mark_reg_not_init(struct bpf_reg_state *reg); 732 733 /* Mark the unknown part of a register (variable offset or scalar value) as 734 * known to have the value @imm. 735 */ 736 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 737 { 738 /* Clear id, off, and union(map_ptr, range) */ 739 memset(((u8 *)reg) + sizeof(reg->type), 0, 740 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 741 reg->var_off = tnum_const(imm); 742 reg->smin_value = (s64)imm; 743 reg->smax_value = (s64)imm; 744 reg->umin_value = imm; 745 reg->umax_value = imm; 746 } 747 748 /* Mark the 'variable offset' part of a register as zero. This should be 749 * used only on registers holding a pointer type. 750 */ 751 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 752 { 753 __mark_reg_known(reg, 0); 754 } 755 756 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 757 { 758 __mark_reg_known(reg, 0); 759 reg->type = SCALAR_VALUE; 760 } 761 762 static void mark_reg_known_zero(struct bpf_verifier_env *env, 763 struct bpf_reg_state *regs, u32 regno) 764 { 765 if (WARN_ON(regno >= MAX_BPF_REG)) { 766 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 767 /* Something bad happened, let's kill all regs */ 768 for (regno = 0; regno < MAX_BPF_REG; regno++) 769 __mark_reg_not_init(regs + regno); 770 return; 771 } 772 __mark_reg_known_zero(regs + regno); 773 } 774 775 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 776 { 777 return type_is_pkt_pointer(reg->type); 778 } 779 780 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 781 { 782 return reg_is_pkt_pointer(reg) || 783 reg->type == PTR_TO_PACKET_END; 784 } 785 786 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 787 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 788 enum bpf_reg_type which) 789 { 790 /* The register can already have a range from prior markings. 791 * This is fine as long as it hasn't been advanced from its 792 * origin. 793 */ 794 return reg->type == which && 795 reg->id == 0 && 796 reg->off == 0 && 797 tnum_equals_const(reg->var_off, 0); 798 } 799 800 /* Attempts to improve min/max values based on var_off information */ 801 static void __update_reg_bounds(struct bpf_reg_state *reg) 802 { 803 /* min signed is max(sign bit) | min(other bits) */ 804 reg->smin_value = max_t(s64, reg->smin_value, 805 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 806 /* max signed is min(sign bit) | max(other bits) */ 807 reg->smax_value = min_t(s64, reg->smax_value, 808 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 809 reg->umin_value = max(reg->umin_value, reg->var_off.value); 810 reg->umax_value = min(reg->umax_value, 811 reg->var_off.value | reg->var_off.mask); 812 } 813 814 /* Uses signed min/max values to inform unsigned, and vice-versa */ 815 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 816 { 817 /* Learn sign from signed bounds. 818 * If we cannot cross the sign boundary, then signed and unsigned bounds 819 * are the same, so combine. This works even in the negative case, e.g. 820 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 821 */ 822 if (reg->smin_value >= 0 || reg->smax_value < 0) { 823 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 824 reg->umin_value); 825 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 826 reg->umax_value); 827 return; 828 } 829 /* Learn sign from unsigned bounds. Signed bounds cross the sign 830 * boundary, so we must be careful. 831 */ 832 if ((s64)reg->umax_value >= 0) { 833 /* Positive. We can't learn anything from the smin, but smax 834 * is positive, hence safe. 835 */ 836 reg->smin_value = reg->umin_value; 837 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 838 reg->umax_value); 839 } else if ((s64)reg->umin_value < 0) { 840 /* Negative. We can't learn anything from the smax, but smin 841 * is negative, hence safe. 842 */ 843 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 844 reg->umin_value); 845 reg->smax_value = reg->umax_value; 846 } 847 } 848 849 /* Attempts to improve var_off based on unsigned min/max information */ 850 static void __reg_bound_offset(struct bpf_reg_state *reg) 851 { 852 reg->var_off = tnum_intersect(reg->var_off, 853 tnum_range(reg->umin_value, 854 reg->umax_value)); 855 } 856 857 /* Reset the min/max bounds of a register */ 858 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 859 { 860 reg->smin_value = S64_MIN; 861 reg->smax_value = S64_MAX; 862 reg->umin_value = 0; 863 reg->umax_value = U64_MAX; 864 } 865 866 /* Mark a register as having a completely unknown (scalar) value. */ 867 static void __mark_reg_unknown(struct bpf_reg_state *reg) 868 { 869 /* 870 * Clear type, id, off, and union(map_ptr, range) and 871 * padding between 'type' and union 872 */ 873 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 874 reg->type = SCALAR_VALUE; 875 reg->var_off = tnum_unknown; 876 reg->frameno = 0; 877 __mark_reg_unbounded(reg); 878 } 879 880 static void mark_reg_unknown(struct bpf_verifier_env *env, 881 struct bpf_reg_state *regs, u32 regno) 882 { 883 if (WARN_ON(regno >= MAX_BPF_REG)) { 884 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 885 /* Something bad happened, let's kill all regs except FP */ 886 for (regno = 0; regno < BPF_REG_FP; regno++) 887 __mark_reg_not_init(regs + regno); 888 return; 889 } 890 __mark_reg_unknown(regs + regno); 891 } 892 893 static void __mark_reg_not_init(struct bpf_reg_state *reg) 894 { 895 __mark_reg_unknown(reg); 896 reg->type = NOT_INIT; 897 } 898 899 static void mark_reg_not_init(struct bpf_verifier_env *env, 900 struct bpf_reg_state *regs, u32 regno) 901 { 902 if (WARN_ON(regno >= MAX_BPF_REG)) { 903 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 904 /* Something bad happened, let's kill all regs except FP */ 905 for (regno = 0; regno < BPF_REG_FP; regno++) 906 __mark_reg_not_init(regs + regno); 907 return; 908 } 909 __mark_reg_not_init(regs + regno); 910 } 911 912 static void init_reg_state(struct bpf_verifier_env *env, 913 struct bpf_func_state *state) 914 { 915 struct bpf_reg_state *regs = state->regs; 916 int i; 917 918 for (i = 0; i < MAX_BPF_REG; i++) { 919 mark_reg_not_init(env, regs, i); 920 regs[i].live = REG_LIVE_NONE; 921 regs[i].parent = NULL; 922 } 923 924 /* frame pointer */ 925 regs[BPF_REG_FP].type = PTR_TO_STACK; 926 mark_reg_known_zero(env, regs, BPF_REG_FP); 927 regs[BPF_REG_FP].frameno = state->frameno; 928 929 /* 1st arg to a function */ 930 regs[BPF_REG_1].type = PTR_TO_CTX; 931 mark_reg_known_zero(env, regs, BPF_REG_1); 932 } 933 934 #define BPF_MAIN_FUNC (-1) 935 static void init_func_state(struct bpf_verifier_env *env, 936 struct bpf_func_state *state, 937 int callsite, int frameno, int subprogno) 938 { 939 state->callsite = callsite; 940 state->frameno = frameno; 941 state->subprogno = subprogno; 942 init_reg_state(env, state); 943 } 944 945 enum reg_arg_type { 946 SRC_OP, /* register is used as source operand */ 947 DST_OP, /* register is used as destination operand */ 948 DST_OP_NO_MARK /* same as above, check only, don't mark */ 949 }; 950 951 static int cmp_subprogs(const void *a, const void *b) 952 { 953 return ((struct bpf_subprog_info *)a)->start - 954 ((struct bpf_subprog_info *)b)->start; 955 } 956 957 static int find_subprog(struct bpf_verifier_env *env, int off) 958 { 959 struct bpf_subprog_info *p; 960 961 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 962 sizeof(env->subprog_info[0]), cmp_subprogs); 963 if (!p) 964 return -ENOENT; 965 return p - env->subprog_info; 966 967 } 968 969 static int add_subprog(struct bpf_verifier_env *env, int off) 970 { 971 int insn_cnt = env->prog->len; 972 int ret; 973 974 if (off >= insn_cnt || off < 0) { 975 verbose(env, "call to invalid destination\n"); 976 return -EINVAL; 977 } 978 ret = find_subprog(env, off); 979 if (ret >= 0) 980 return 0; 981 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 982 verbose(env, "too many subprograms\n"); 983 return -E2BIG; 984 } 985 env->subprog_info[env->subprog_cnt++].start = off; 986 sort(env->subprog_info, env->subprog_cnt, 987 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 988 return 0; 989 } 990 991 static int check_subprogs(struct bpf_verifier_env *env) 992 { 993 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 994 struct bpf_subprog_info *subprog = env->subprog_info; 995 struct bpf_insn *insn = env->prog->insnsi; 996 int insn_cnt = env->prog->len; 997 998 /* Add entry function. */ 999 ret = add_subprog(env, 0); 1000 if (ret < 0) 1001 return ret; 1002 1003 /* determine subprog starts. The end is one before the next starts */ 1004 for (i = 0; i < insn_cnt; i++) { 1005 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1006 continue; 1007 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1008 continue; 1009 if (!env->allow_ptr_leaks) { 1010 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1011 return -EPERM; 1012 } 1013 ret = add_subprog(env, i + insn[i].imm + 1); 1014 if (ret < 0) 1015 return ret; 1016 } 1017 1018 /* Add a fake 'exit' subprog which could simplify subprog iteration 1019 * logic. 'subprog_cnt' should not be increased. 1020 */ 1021 subprog[env->subprog_cnt].start = insn_cnt; 1022 1023 if (env->log.level > 1) 1024 for (i = 0; i < env->subprog_cnt; i++) 1025 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1026 1027 /* now check that all jumps are within the same subprog */ 1028 subprog_start = subprog[cur_subprog].start; 1029 subprog_end = subprog[cur_subprog + 1].start; 1030 for (i = 0; i < insn_cnt; i++) { 1031 u8 code = insn[i].code; 1032 1033 if (BPF_CLASS(code) != BPF_JMP) 1034 goto next; 1035 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1036 goto next; 1037 off = i + insn[i].off + 1; 1038 if (off < subprog_start || off >= subprog_end) { 1039 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1040 return -EINVAL; 1041 } 1042 next: 1043 if (i == subprog_end - 1) { 1044 /* to avoid fall-through from one subprog into another 1045 * the last insn of the subprog should be either exit 1046 * or unconditional jump back 1047 */ 1048 if (code != (BPF_JMP | BPF_EXIT) && 1049 code != (BPF_JMP | BPF_JA)) { 1050 verbose(env, "last insn is not an exit or jmp\n"); 1051 return -EINVAL; 1052 } 1053 subprog_start = subprog_end; 1054 cur_subprog++; 1055 if (cur_subprog < env->subprog_cnt) 1056 subprog_end = subprog[cur_subprog + 1].start; 1057 } 1058 } 1059 return 0; 1060 } 1061 1062 /* Parentage chain of this register (or stack slot) should take care of all 1063 * issues like callee-saved registers, stack slot allocation time, etc. 1064 */ 1065 static int mark_reg_read(struct bpf_verifier_env *env, 1066 const struct bpf_reg_state *state, 1067 struct bpf_reg_state *parent) 1068 { 1069 bool writes = parent == state->parent; /* Observe write marks */ 1070 1071 while (parent) { 1072 /* if read wasn't screened by an earlier write ... */ 1073 if (writes && state->live & REG_LIVE_WRITTEN) 1074 break; 1075 /* ... then we depend on parent's value */ 1076 parent->live |= REG_LIVE_READ; 1077 state = parent; 1078 parent = state->parent; 1079 writes = true; 1080 } 1081 return 0; 1082 } 1083 1084 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1085 enum reg_arg_type t) 1086 { 1087 struct bpf_verifier_state *vstate = env->cur_state; 1088 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1089 struct bpf_reg_state *regs = state->regs; 1090 1091 if (regno >= MAX_BPF_REG) { 1092 verbose(env, "R%d is invalid\n", regno); 1093 return -EINVAL; 1094 } 1095 1096 if (t == SRC_OP) { 1097 /* check whether register used as source operand can be read */ 1098 if (regs[regno].type == NOT_INIT) { 1099 verbose(env, "R%d !read_ok\n", regno); 1100 return -EACCES; 1101 } 1102 /* We don't need to worry about FP liveness because it's read-only */ 1103 if (regno != BPF_REG_FP) 1104 return mark_reg_read(env, ®s[regno], 1105 regs[regno].parent); 1106 } else { 1107 /* check whether register used as dest operand can be written to */ 1108 if (regno == BPF_REG_FP) { 1109 verbose(env, "frame pointer is read only\n"); 1110 return -EACCES; 1111 } 1112 regs[regno].live |= REG_LIVE_WRITTEN; 1113 if (t == DST_OP) 1114 mark_reg_unknown(env, regs, regno); 1115 } 1116 return 0; 1117 } 1118 1119 static bool is_spillable_regtype(enum bpf_reg_type type) 1120 { 1121 switch (type) { 1122 case PTR_TO_MAP_VALUE: 1123 case PTR_TO_MAP_VALUE_OR_NULL: 1124 case PTR_TO_STACK: 1125 case PTR_TO_CTX: 1126 case PTR_TO_PACKET: 1127 case PTR_TO_PACKET_META: 1128 case PTR_TO_PACKET_END: 1129 case PTR_TO_FLOW_KEYS: 1130 case CONST_PTR_TO_MAP: 1131 case PTR_TO_SOCKET: 1132 case PTR_TO_SOCKET_OR_NULL: 1133 return true; 1134 default: 1135 return false; 1136 } 1137 } 1138 1139 /* Does this register contain a constant zero? */ 1140 static bool register_is_null(struct bpf_reg_state *reg) 1141 { 1142 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1143 } 1144 1145 /* check_stack_read/write functions track spill/fill of registers, 1146 * stack boundary and alignment are checked in check_mem_access() 1147 */ 1148 static int check_stack_write(struct bpf_verifier_env *env, 1149 struct bpf_func_state *state, /* func where register points to */ 1150 int off, int size, int value_regno, int insn_idx) 1151 { 1152 struct bpf_func_state *cur; /* state of the current function */ 1153 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1154 enum bpf_reg_type type; 1155 1156 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1157 state->acquired_refs, true); 1158 if (err) 1159 return err; 1160 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1161 * so it's aligned access and [off, off + size) are within stack limits 1162 */ 1163 if (!env->allow_ptr_leaks && 1164 state->stack[spi].slot_type[0] == STACK_SPILL && 1165 size != BPF_REG_SIZE) { 1166 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1167 return -EACCES; 1168 } 1169 1170 cur = env->cur_state->frame[env->cur_state->curframe]; 1171 if (value_regno >= 0 && 1172 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1173 1174 /* register containing pointer is being spilled into stack */ 1175 if (size != BPF_REG_SIZE) { 1176 verbose(env, "invalid size of register spill\n"); 1177 return -EACCES; 1178 } 1179 1180 if (state != cur && type == PTR_TO_STACK) { 1181 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1182 return -EINVAL; 1183 } 1184 1185 /* save register state */ 1186 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1187 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1188 1189 for (i = 0; i < BPF_REG_SIZE; i++) { 1190 if (state->stack[spi].slot_type[i] == STACK_MISC && 1191 !env->allow_ptr_leaks) { 1192 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1193 int soff = (-spi - 1) * BPF_REG_SIZE; 1194 1195 /* detected reuse of integer stack slot with a pointer 1196 * which means either llvm is reusing stack slot or 1197 * an attacker is trying to exploit CVE-2018-3639 1198 * (speculative store bypass) 1199 * Have to sanitize that slot with preemptive 1200 * store of zero. 1201 */ 1202 if (*poff && *poff != soff) { 1203 /* disallow programs where single insn stores 1204 * into two different stack slots, since verifier 1205 * cannot sanitize them 1206 */ 1207 verbose(env, 1208 "insn %d cannot access two stack slots fp%d and fp%d", 1209 insn_idx, *poff, soff); 1210 return -EINVAL; 1211 } 1212 *poff = soff; 1213 } 1214 state->stack[spi].slot_type[i] = STACK_SPILL; 1215 } 1216 } else { 1217 u8 type = STACK_MISC; 1218 1219 /* regular write of data into stack destroys any spilled ptr */ 1220 state->stack[spi].spilled_ptr.type = NOT_INIT; 1221 1222 /* only mark the slot as written if all 8 bytes were written 1223 * otherwise read propagation may incorrectly stop too soon 1224 * when stack slots are partially written. 1225 * This heuristic means that read propagation will be 1226 * conservative, since it will add reg_live_read marks 1227 * to stack slots all the way to first state when programs 1228 * writes+reads less than 8 bytes 1229 */ 1230 if (size == BPF_REG_SIZE) 1231 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1232 1233 /* when we zero initialize stack slots mark them as such */ 1234 if (value_regno >= 0 && 1235 register_is_null(&cur->regs[value_regno])) 1236 type = STACK_ZERO; 1237 1238 for (i = 0; i < size; i++) 1239 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1240 type; 1241 } 1242 return 0; 1243 } 1244 1245 static int check_stack_read(struct bpf_verifier_env *env, 1246 struct bpf_func_state *reg_state /* func where register points to */, 1247 int off, int size, int value_regno) 1248 { 1249 struct bpf_verifier_state *vstate = env->cur_state; 1250 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1251 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1252 u8 *stype; 1253 1254 if (reg_state->allocated_stack <= slot) { 1255 verbose(env, "invalid read from stack off %d+0 size %d\n", 1256 off, size); 1257 return -EACCES; 1258 } 1259 stype = reg_state->stack[spi].slot_type; 1260 1261 if (stype[0] == STACK_SPILL) { 1262 if (size != BPF_REG_SIZE) { 1263 verbose(env, "invalid size of register spill\n"); 1264 return -EACCES; 1265 } 1266 for (i = 1; i < BPF_REG_SIZE; i++) { 1267 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1268 verbose(env, "corrupted spill memory\n"); 1269 return -EACCES; 1270 } 1271 } 1272 1273 if (value_regno >= 0) { 1274 /* restore register state from stack */ 1275 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1276 /* mark reg as written since spilled pointer state likely 1277 * has its liveness marks cleared by is_state_visited() 1278 * which resets stack/reg liveness for state transitions 1279 */ 1280 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1281 } 1282 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1283 reg_state->stack[spi].spilled_ptr.parent); 1284 return 0; 1285 } else { 1286 int zeros = 0; 1287 1288 for (i = 0; i < size; i++) { 1289 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1290 continue; 1291 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1292 zeros++; 1293 continue; 1294 } 1295 verbose(env, "invalid read from stack off %d+%d size %d\n", 1296 off, i, size); 1297 return -EACCES; 1298 } 1299 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1300 reg_state->stack[spi].spilled_ptr.parent); 1301 if (value_regno >= 0) { 1302 if (zeros == size) { 1303 /* any size read into register is zero extended, 1304 * so the whole register == const_zero 1305 */ 1306 __mark_reg_const_zero(&state->regs[value_regno]); 1307 } else { 1308 /* have read misc data from the stack */ 1309 mark_reg_unknown(env, state->regs, value_regno); 1310 } 1311 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1312 } 1313 return 0; 1314 } 1315 } 1316 1317 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1318 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1319 int size, bool zero_size_allowed) 1320 { 1321 struct bpf_reg_state *regs = cur_regs(env); 1322 struct bpf_map *map = regs[regno].map_ptr; 1323 1324 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1325 off + size > map->value_size) { 1326 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1327 map->value_size, off, size); 1328 return -EACCES; 1329 } 1330 return 0; 1331 } 1332 1333 /* check read/write into a map element with possible variable offset */ 1334 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1335 int off, int size, bool zero_size_allowed) 1336 { 1337 struct bpf_verifier_state *vstate = env->cur_state; 1338 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1339 struct bpf_reg_state *reg = &state->regs[regno]; 1340 int err; 1341 1342 /* We may have adjusted the register to this map value, so we 1343 * need to try adding each of min_value and max_value to off 1344 * to make sure our theoretical access will be safe. 1345 */ 1346 if (env->log.level) 1347 print_verifier_state(env, state); 1348 /* The minimum value is only important with signed 1349 * comparisons where we can't assume the floor of a 1350 * value is 0. If we are using signed variables for our 1351 * index'es we need to make sure that whatever we use 1352 * will have a set floor within our range. 1353 */ 1354 if (reg->smin_value < 0) { 1355 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1356 regno); 1357 return -EACCES; 1358 } 1359 err = __check_map_access(env, regno, reg->smin_value + off, size, 1360 zero_size_allowed); 1361 if (err) { 1362 verbose(env, "R%d min value is outside of the array range\n", 1363 regno); 1364 return err; 1365 } 1366 1367 /* If we haven't set a max value then we need to bail since we can't be 1368 * sure we won't do bad things. 1369 * If reg->umax_value + off could overflow, treat that as unbounded too. 1370 */ 1371 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1372 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1373 regno); 1374 return -EACCES; 1375 } 1376 err = __check_map_access(env, regno, reg->umax_value + off, size, 1377 zero_size_allowed); 1378 if (err) 1379 verbose(env, "R%d max value is outside of the array range\n", 1380 regno); 1381 return err; 1382 } 1383 1384 #define MAX_PACKET_OFF 0xffff 1385 1386 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1387 const struct bpf_call_arg_meta *meta, 1388 enum bpf_access_type t) 1389 { 1390 switch (env->prog->type) { 1391 /* Program types only with direct read access go here! */ 1392 case BPF_PROG_TYPE_LWT_IN: 1393 case BPF_PROG_TYPE_LWT_OUT: 1394 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1395 case BPF_PROG_TYPE_SK_REUSEPORT: 1396 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1397 case BPF_PROG_TYPE_CGROUP_SKB: 1398 if (t == BPF_WRITE) 1399 return false; 1400 /* fallthrough */ 1401 1402 /* Program types with direct read + write access go here! */ 1403 case BPF_PROG_TYPE_SCHED_CLS: 1404 case BPF_PROG_TYPE_SCHED_ACT: 1405 case BPF_PROG_TYPE_XDP: 1406 case BPF_PROG_TYPE_LWT_XMIT: 1407 case BPF_PROG_TYPE_SK_SKB: 1408 case BPF_PROG_TYPE_SK_MSG: 1409 if (meta) 1410 return meta->pkt_access; 1411 1412 env->seen_direct_write = true; 1413 return true; 1414 default: 1415 return false; 1416 } 1417 } 1418 1419 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1420 int off, int size, bool zero_size_allowed) 1421 { 1422 struct bpf_reg_state *regs = cur_regs(env); 1423 struct bpf_reg_state *reg = ®s[regno]; 1424 1425 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1426 (u64)off + size > reg->range) { 1427 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1428 off, size, regno, reg->id, reg->off, reg->range); 1429 return -EACCES; 1430 } 1431 return 0; 1432 } 1433 1434 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1435 int size, bool zero_size_allowed) 1436 { 1437 struct bpf_reg_state *regs = cur_regs(env); 1438 struct bpf_reg_state *reg = ®s[regno]; 1439 int err; 1440 1441 /* We may have added a variable offset to the packet pointer; but any 1442 * reg->range we have comes after that. We are only checking the fixed 1443 * offset. 1444 */ 1445 1446 /* We don't allow negative numbers, because we aren't tracking enough 1447 * detail to prove they're safe. 1448 */ 1449 if (reg->smin_value < 0) { 1450 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1451 regno); 1452 return -EACCES; 1453 } 1454 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1455 if (err) { 1456 verbose(env, "R%d offset is outside of the packet\n", regno); 1457 return err; 1458 } 1459 return err; 1460 } 1461 1462 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1463 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1464 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1465 { 1466 struct bpf_insn_access_aux info = { 1467 .reg_type = *reg_type, 1468 }; 1469 1470 if (env->ops->is_valid_access && 1471 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1472 /* A non zero info.ctx_field_size indicates that this field is a 1473 * candidate for later verifier transformation to load the whole 1474 * field and then apply a mask when accessed with a narrower 1475 * access than actual ctx access size. A zero info.ctx_field_size 1476 * will only allow for whole field access and rejects any other 1477 * type of narrower access. 1478 */ 1479 *reg_type = info.reg_type; 1480 1481 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1482 /* remember the offset of last byte accessed in ctx */ 1483 if (env->prog->aux->max_ctx_offset < off + size) 1484 env->prog->aux->max_ctx_offset = off + size; 1485 return 0; 1486 } 1487 1488 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1489 return -EACCES; 1490 } 1491 1492 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1493 int size) 1494 { 1495 if (size < 0 || off < 0 || 1496 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1497 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1498 off, size); 1499 return -EACCES; 1500 } 1501 return 0; 1502 } 1503 1504 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off, 1505 int size, enum bpf_access_type t) 1506 { 1507 struct bpf_reg_state *regs = cur_regs(env); 1508 struct bpf_reg_state *reg = ®s[regno]; 1509 struct bpf_insn_access_aux info; 1510 1511 if (reg->smin_value < 0) { 1512 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1513 regno); 1514 return -EACCES; 1515 } 1516 1517 if (!bpf_sock_is_valid_access(off, size, t, &info)) { 1518 verbose(env, "invalid bpf_sock access off=%d size=%d\n", 1519 off, size); 1520 return -EACCES; 1521 } 1522 1523 return 0; 1524 } 1525 1526 static bool __is_pointer_value(bool allow_ptr_leaks, 1527 const struct bpf_reg_state *reg) 1528 { 1529 if (allow_ptr_leaks) 1530 return false; 1531 1532 return reg->type != SCALAR_VALUE; 1533 } 1534 1535 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1536 { 1537 return cur_regs(env) + regno; 1538 } 1539 1540 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1541 { 1542 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1543 } 1544 1545 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1546 { 1547 const struct bpf_reg_state *reg = reg_state(env, regno); 1548 1549 return reg->type == PTR_TO_CTX || 1550 reg->type == PTR_TO_SOCKET; 1551 } 1552 1553 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1554 { 1555 const struct bpf_reg_state *reg = reg_state(env, regno); 1556 1557 return type_is_pkt_pointer(reg->type); 1558 } 1559 1560 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1561 { 1562 const struct bpf_reg_state *reg = reg_state(env, regno); 1563 1564 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1565 return reg->type == PTR_TO_FLOW_KEYS; 1566 } 1567 1568 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1569 const struct bpf_reg_state *reg, 1570 int off, int size, bool strict) 1571 { 1572 struct tnum reg_off; 1573 int ip_align; 1574 1575 /* Byte size accesses are always allowed. */ 1576 if (!strict || size == 1) 1577 return 0; 1578 1579 /* For platforms that do not have a Kconfig enabling 1580 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1581 * NET_IP_ALIGN is universally set to '2'. And on platforms 1582 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1583 * to this code only in strict mode where we want to emulate 1584 * the NET_IP_ALIGN==2 checking. Therefore use an 1585 * unconditional IP align value of '2'. 1586 */ 1587 ip_align = 2; 1588 1589 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1590 if (!tnum_is_aligned(reg_off, size)) { 1591 char tn_buf[48]; 1592 1593 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1594 verbose(env, 1595 "misaligned packet access off %d+%s+%d+%d size %d\n", 1596 ip_align, tn_buf, reg->off, off, size); 1597 return -EACCES; 1598 } 1599 1600 return 0; 1601 } 1602 1603 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1604 const struct bpf_reg_state *reg, 1605 const char *pointer_desc, 1606 int off, int size, bool strict) 1607 { 1608 struct tnum reg_off; 1609 1610 /* Byte size accesses are always allowed. */ 1611 if (!strict || size == 1) 1612 return 0; 1613 1614 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1615 if (!tnum_is_aligned(reg_off, size)) { 1616 char tn_buf[48]; 1617 1618 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1619 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1620 pointer_desc, tn_buf, reg->off, off, size); 1621 return -EACCES; 1622 } 1623 1624 return 0; 1625 } 1626 1627 static int check_ptr_alignment(struct bpf_verifier_env *env, 1628 const struct bpf_reg_state *reg, int off, 1629 int size, bool strict_alignment_once) 1630 { 1631 bool strict = env->strict_alignment || strict_alignment_once; 1632 const char *pointer_desc = ""; 1633 1634 switch (reg->type) { 1635 case PTR_TO_PACKET: 1636 case PTR_TO_PACKET_META: 1637 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1638 * right in front, treat it the very same way. 1639 */ 1640 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1641 case PTR_TO_FLOW_KEYS: 1642 pointer_desc = "flow keys "; 1643 break; 1644 case PTR_TO_MAP_VALUE: 1645 pointer_desc = "value "; 1646 break; 1647 case PTR_TO_CTX: 1648 pointer_desc = "context "; 1649 break; 1650 case PTR_TO_STACK: 1651 pointer_desc = "stack "; 1652 /* The stack spill tracking logic in check_stack_write() 1653 * and check_stack_read() relies on stack accesses being 1654 * aligned. 1655 */ 1656 strict = true; 1657 break; 1658 case PTR_TO_SOCKET: 1659 pointer_desc = "sock "; 1660 break; 1661 default: 1662 break; 1663 } 1664 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1665 strict); 1666 } 1667 1668 static int update_stack_depth(struct bpf_verifier_env *env, 1669 const struct bpf_func_state *func, 1670 int off) 1671 { 1672 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1673 1674 if (stack >= -off) 1675 return 0; 1676 1677 /* update known max for given subprogram */ 1678 env->subprog_info[func->subprogno].stack_depth = -off; 1679 return 0; 1680 } 1681 1682 /* starting from main bpf function walk all instructions of the function 1683 * and recursively walk all callees that given function can call. 1684 * Ignore jump and exit insns. 1685 * Since recursion is prevented by check_cfg() this algorithm 1686 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1687 */ 1688 static int check_max_stack_depth(struct bpf_verifier_env *env) 1689 { 1690 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1691 struct bpf_subprog_info *subprog = env->subprog_info; 1692 struct bpf_insn *insn = env->prog->insnsi; 1693 int ret_insn[MAX_CALL_FRAMES]; 1694 int ret_prog[MAX_CALL_FRAMES]; 1695 1696 process_func: 1697 /* round up to 32-bytes, since this is granularity 1698 * of interpreter stack size 1699 */ 1700 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1701 if (depth > MAX_BPF_STACK) { 1702 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1703 frame + 1, depth); 1704 return -EACCES; 1705 } 1706 continue_func: 1707 subprog_end = subprog[idx + 1].start; 1708 for (; i < subprog_end; i++) { 1709 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1710 continue; 1711 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1712 continue; 1713 /* remember insn and function to return to */ 1714 ret_insn[frame] = i + 1; 1715 ret_prog[frame] = idx; 1716 1717 /* find the callee */ 1718 i = i + insn[i].imm + 1; 1719 idx = find_subprog(env, i); 1720 if (idx < 0) { 1721 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1722 i); 1723 return -EFAULT; 1724 } 1725 frame++; 1726 if (frame >= MAX_CALL_FRAMES) { 1727 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1728 return -EFAULT; 1729 } 1730 goto process_func; 1731 } 1732 /* end of for() loop means the last insn of the 'subprog' 1733 * was reached. Doesn't matter whether it was JA or EXIT 1734 */ 1735 if (frame == 0) 1736 return 0; 1737 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1738 frame--; 1739 i = ret_insn[frame]; 1740 idx = ret_prog[frame]; 1741 goto continue_func; 1742 } 1743 1744 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1745 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1746 const struct bpf_insn *insn, int idx) 1747 { 1748 int start = idx + insn->imm + 1, subprog; 1749 1750 subprog = find_subprog(env, start); 1751 if (subprog < 0) { 1752 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1753 start); 1754 return -EFAULT; 1755 } 1756 return env->subprog_info[subprog].stack_depth; 1757 } 1758 #endif 1759 1760 static int check_ctx_reg(struct bpf_verifier_env *env, 1761 const struct bpf_reg_state *reg, int regno) 1762 { 1763 /* Access to ctx or passing it to a helper is only allowed in 1764 * its original, unmodified form. 1765 */ 1766 1767 if (reg->off) { 1768 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1769 regno, reg->off); 1770 return -EACCES; 1771 } 1772 1773 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1774 char tn_buf[48]; 1775 1776 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1777 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1778 return -EACCES; 1779 } 1780 1781 return 0; 1782 } 1783 1784 /* truncate register to smaller size (in bytes) 1785 * must be called with size < BPF_REG_SIZE 1786 */ 1787 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1788 { 1789 u64 mask; 1790 1791 /* clear high bits in bit representation */ 1792 reg->var_off = tnum_cast(reg->var_off, size); 1793 1794 /* fix arithmetic bounds */ 1795 mask = ((u64)1 << (size * 8)) - 1; 1796 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1797 reg->umin_value &= mask; 1798 reg->umax_value &= mask; 1799 } else { 1800 reg->umin_value = 0; 1801 reg->umax_value = mask; 1802 } 1803 reg->smin_value = reg->umin_value; 1804 reg->smax_value = reg->umax_value; 1805 } 1806 1807 /* check whether memory at (regno + off) is accessible for t = (read | write) 1808 * if t==write, value_regno is a register which value is stored into memory 1809 * if t==read, value_regno is a register which will receive the value from memory 1810 * if t==write && value_regno==-1, some unknown value is stored into memory 1811 * if t==read && value_regno==-1, don't care what we read from memory 1812 */ 1813 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1814 int off, int bpf_size, enum bpf_access_type t, 1815 int value_regno, bool strict_alignment_once) 1816 { 1817 struct bpf_reg_state *regs = cur_regs(env); 1818 struct bpf_reg_state *reg = regs + regno; 1819 struct bpf_func_state *state; 1820 int size, err = 0; 1821 1822 size = bpf_size_to_bytes(bpf_size); 1823 if (size < 0) 1824 return size; 1825 1826 /* alignment checks will add in reg->off themselves */ 1827 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1828 if (err) 1829 return err; 1830 1831 /* for access checks, reg->off is just part of off */ 1832 off += reg->off; 1833 1834 if (reg->type == PTR_TO_MAP_VALUE) { 1835 if (t == BPF_WRITE && value_regno >= 0 && 1836 is_pointer_value(env, value_regno)) { 1837 verbose(env, "R%d leaks addr into map\n", value_regno); 1838 return -EACCES; 1839 } 1840 1841 err = check_map_access(env, regno, off, size, false); 1842 if (!err && t == BPF_READ && value_regno >= 0) 1843 mark_reg_unknown(env, regs, value_regno); 1844 1845 } else if (reg->type == PTR_TO_CTX) { 1846 enum bpf_reg_type reg_type = SCALAR_VALUE; 1847 1848 if (t == BPF_WRITE && value_regno >= 0 && 1849 is_pointer_value(env, value_regno)) { 1850 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1851 return -EACCES; 1852 } 1853 1854 err = check_ctx_reg(env, reg, regno); 1855 if (err < 0) 1856 return err; 1857 1858 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1859 if (!err && t == BPF_READ && value_regno >= 0) { 1860 /* ctx access returns either a scalar, or a 1861 * PTR_TO_PACKET[_META,_END]. In the latter 1862 * case, we know the offset is zero. 1863 */ 1864 if (reg_type == SCALAR_VALUE) 1865 mark_reg_unknown(env, regs, value_regno); 1866 else 1867 mark_reg_known_zero(env, regs, 1868 value_regno); 1869 regs[value_regno].type = reg_type; 1870 } 1871 1872 } else if (reg->type == PTR_TO_STACK) { 1873 /* stack accesses must be at a fixed offset, so that we can 1874 * determine what type of data were returned. 1875 * See check_stack_read(). 1876 */ 1877 if (!tnum_is_const(reg->var_off)) { 1878 char tn_buf[48]; 1879 1880 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1881 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1882 tn_buf, off, size); 1883 return -EACCES; 1884 } 1885 off += reg->var_off.value; 1886 if (off >= 0 || off < -MAX_BPF_STACK) { 1887 verbose(env, "invalid stack off=%d size=%d\n", off, 1888 size); 1889 return -EACCES; 1890 } 1891 1892 state = func(env, reg); 1893 err = update_stack_depth(env, state, off); 1894 if (err) 1895 return err; 1896 1897 if (t == BPF_WRITE) 1898 err = check_stack_write(env, state, off, size, 1899 value_regno, insn_idx); 1900 else 1901 err = check_stack_read(env, state, off, size, 1902 value_regno); 1903 } else if (reg_is_pkt_pointer(reg)) { 1904 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1905 verbose(env, "cannot write into packet\n"); 1906 return -EACCES; 1907 } 1908 if (t == BPF_WRITE && value_regno >= 0 && 1909 is_pointer_value(env, value_regno)) { 1910 verbose(env, "R%d leaks addr into packet\n", 1911 value_regno); 1912 return -EACCES; 1913 } 1914 err = check_packet_access(env, regno, off, size, false); 1915 if (!err && t == BPF_READ && value_regno >= 0) 1916 mark_reg_unknown(env, regs, value_regno); 1917 } else if (reg->type == PTR_TO_FLOW_KEYS) { 1918 if (t == BPF_WRITE && value_regno >= 0 && 1919 is_pointer_value(env, value_regno)) { 1920 verbose(env, "R%d leaks addr into flow keys\n", 1921 value_regno); 1922 return -EACCES; 1923 } 1924 1925 err = check_flow_keys_access(env, off, size); 1926 if (!err && t == BPF_READ && value_regno >= 0) 1927 mark_reg_unknown(env, regs, value_regno); 1928 } else if (reg->type == PTR_TO_SOCKET) { 1929 if (t == BPF_WRITE) { 1930 verbose(env, "cannot write into socket\n"); 1931 return -EACCES; 1932 } 1933 err = check_sock_access(env, regno, off, size, t); 1934 if (!err && value_regno >= 0) 1935 mark_reg_unknown(env, regs, value_regno); 1936 } else { 1937 verbose(env, "R%d invalid mem access '%s'\n", regno, 1938 reg_type_str[reg->type]); 1939 return -EACCES; 1940 } 1941 1942 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1943 regs[value_regno].type == SCALAR_VALUE) { 1944 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1945 coerce_reg_to_size(®s[value_regno], size); 1946 } 1947 return err; 1948 } 1949 1950 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1951 { 1952 int err; 1953 1954 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1955 insn->imm != 0) { 1956 verbose(env, "BPF_XADD uses reserved fields\n"); 1957 return -EINVAL; 1958 } 1959 1960 /* check src1 operand */ 1961 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1962 if (err) 1963 return err; 1964 1965 /* check src2 operand */ 1966 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1967 if (err) 1968 return err; 1969 1970 if (is_pointer_value(env, insn->src_reg)) { 1971 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1972 return -EACCES; 1973 } 1974 1975 if (is_ctx_reg(env, insn->dst_reg) || 1976 is_pkt_reg(env, insn->dst_reg) || 1977 is_flow_key_reg(env, insn->dst_reg)) { 1978 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1979 insn->dst_reg, 1980 reg_type_str[reg_state(env, insn->dst_reg)->type]); 1981 return -EACCES; 1982 } 1983 1984 /* check whether atomic_add can read the memory */ 1985 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1986 BPF_SIZE(insn->code), BPF_READ, -1, true); 1987 if (err) 1988 return err; 1989 1990 /* check whether atomic_add can write into the same memory */ 1991 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1992 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1993 } 1994 1995 /* when register 'regno' is passed into function that will read 'access_size' 1996 * bytes from that pointer, make sure that it's within stack boundary 1997 * and all elements of stack are initialized. 1998 * Unlike most pointer bounds-checking functions, this one doesn't take an 1999 * 'off' argument, so it has to add in reg->off itself. 2000 */ 2001 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2002 int access_size, bool zero_size_allowed, 2003 struct bpf_call_arg_meta *meta) 2004 { 2005 struct bpf_reg_state *reg = reg_state(env, regno); 2006 struct bpf_func_state *state = func(env, reg); 2007 int off, i, slot, spi; 2008 2009 if (reg->type != PTR_TO_STACK) { 2010 /* Allow zero-byte read from NULL, regardless of pointer type */ 2011 if (zero_size_allowed && access_size == 0 && 2012 register_is_null(reg)) 2013 return 0; 2014 2015 verbose(env, "R%d type=%s expected=%s\n", regno, 2016 reg_type_str[reg->type], 2017 reg_type_str[PTR_TO_STACK]); 2018 return -EACCES; 2019 } 2020 2021 /* Only allow fixed-offset stack reads */ 2022 if (!tnum_is_const(reg->var_off)) { 2023 char tn_buf[48]; 2024 2025 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2026 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2027 regno, tn_buf); 2028 return -EACCES; 2029 } 2030 off = reg->off + reg->var_off.value; 2031 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2032 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2033 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2034 regno, off, access_size); 2035 return -EACCES; 2036 } 2037 2038 if (meta && meta->raw_mode) { 2039 meta->access_size = access_size; 2040 meta->regno = regno; 2041 return 0; 2042 } 2043 2044 for (i = 0; i < access_size; i++) { 2045 u8 *stype; 2046 2047 slot = -(off + i) - 1; 2048 spi = slot / BPF_REG_SIZE; 2049 if (state->allocated_stack <= slot) 2050 goto err; 2051 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2052 if (*stype == STACK_MISC) 2053 goto mark; 2054 if (*stype == STACK_ZERO) { 2055 /* helper can write anything into the stack */ 2056 *stype = STACK_MISC; 2057 goto mark; 2058 } 2059 err: 2060 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2061 off, i, access_size); 2062 return -EACCES; 2063 mark: 2064 /* reading any byte out of 8-byte 'spill_slot' will cause 2065 * the whole slot to be marked as 'read' 2066 */ 2067 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2068 state->stack[spi].spilled_ptr.parent); 2069 } 2070 return update_stack_depth(env, state, off); 2071 } 2072 2073 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2074 int access_size, bool zero_size_allowed, 2075 struct bpf_call_arg_meta *meta) 2076 { 2077 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2078 2079 switch (reg->type) { 2080 case PTR_TO_PACKET: 2081 case PTR_TO_PACKET_META: 2082 return check_packet_access(env, regno, reg->off, access_size, 2083 zero_size_allowed); 2084 case PTR_TO_MAP_VALUE: 2085 return check_map_access(env, regno, reg->off, access_size, 2086 zero_size_allowed); 2087 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2088 return check_stack_boundary(env, regno, access_size, 2089 zero_size_allowed, meta); 2090 } 2091 } 2092 2093 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2094 { 2095 return type == ARG_PTR_TO_MEM || 2096 type == ARG_PTR_TO_MEM_OR_NULL || 2097 type == ARG_PTR_TO_UNINIT_MEM; 2098 } 2099 2100 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2101 { 2102 return type == ARG_CONST_SIZE || 2103 type == ARG_CONST_SIZE_OR_ZERO; 2104 } 2105 2106 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2107 enum bpf_arg_type arg_type, 2108 struct bpf_call_arg_meta *meta) 2109 { 2110 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2111 enum bpf_reg_type expected_type, type = reg->type; 2112 int err = 0; 2113 2114 if (arg_type == ARG_DONTCARE) 2115 return 0; 2116 2117 err = check_reg_arg(env, regno, SRC_OP); 2118 if (err) 2119 return err; 2120 2121 if (arg_type == ARG_ANYTHING) { 2122 if (is_pointer_value(env, regno)) { 2123 verbose(env, "R%d leaks addr into helper function\n", 2124 regno); 2125 return -EACCES; 2126 } 2127 return 0; 2128 } 2129 2130 if (type_is_pkt_pointer(type) && 2131 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2132 verbose(env, "helper access to the packet is not allowed\n"); 2133 return -EACCES; 2134 } 2135 2136 if (arg_type == ARG_PTR_TO_MAP_KEY || 2137 arg_type == ARG_PTR_TO_MAP_VALUE || 2138 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2139 expected_type = PTR_TO_STACK; 2140 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2141 type != expected_type) 2142 goto err_type; 2143 } else if (arg_type == ARG_CONST_SIZE || 2144 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2145 expected_type = SCALAR_VALUE; 2146 if (type != expected_type) 2147 goto err_type; 2148 } else if (arg_type == ARG_CONST_MAP_PTR) { 2149 expected_type = CONST_PTR_TO_MAP; 2150 if (type != expected_type) 2151 goto err_type; 2152 } else if (arg_type == ARG_PTR_TO_CTX) { 2153 expected_type = PTR_TO_CTX; 2154 if (type != expected_type) 2155 goto err_type; 2156 err = check_ctx_reg(env, reg, regno); 2157 if (err < 0) 2158 return err; 2159 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2160 expected_type = PTR_TO_SOCKET; 2161 if (type != expected_type) 2162 goto err_type; 2163 if (meta->ptr_id || !reg->id) { 2164 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2165 meta->ptr_id, reg->id); 2166 return -EFAULT; 2167 } 2168 meta->ptr_id = reg->id; 2169 } else if (arg_type_is_mem_ptr(arg_type)) { 2170 expected_type = PTR_TO_STACK; 2171 /* One exception here. In case function allows for NULL to be 2172 * passed in as argument, it's a SCALAR_VALUE type. Final test 2173 * happens during stack boundary checking. 2174 */ 2175 if (register_is_null(reg) && 2176 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2177 /* final test in check_stack_boundary() */; 2178 else if (!type_is_pkt_pointer(type) && 2179 type != PTR_TO_MAP_VALUE && 2180 type != expected_type) 2181 goto err_type; 2182 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2183 } else { 2184 verbose(env, "unsupported arg_type %d\n", arg_type); 2185 return -EFAULT; 2186 } 2187 2188 if (arg_type == ARG_CONST_MAP_PTR) { 2189 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2190 meta->map_ptr = reg->map_ptr; 2191 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2192 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2193 * check that [key, key + map->key_size) are within 2194 * stack limits and initialized 2195 */ 2196 if (!meta->map_ptr) { 2197 /* in function declaration map_ptr must come before 2198 * map_key, so that it's verified and known before 2199 * we have to check map_key here. Otherwise it means 2200 * that kernel subsystem misconfigured verifier 2201 */ 2202 verbose(env, "invalid map_ptr to access map->key\n"); 2203 return -EACCES; 2204 } 2205 err = check_helper_mem_access(env, regno, 2206 meta->map_ptr->key_size, false, 2207 NULL); 2208 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2209 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2210 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2211 * check [value, value + map->value_size) validity 2212 */ 2213 if (!meta->map_ptr) { 2214 /* kernel subsystem misconfigured verifier */ 2215 verbose(env, "invalid map_ptr to access map->value\n"); 2216 return -EACCES; 2217 } 2218 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2219 err = check_helper_mem_access(env, regno, 2220 meta->map_ptr->value_size, false, 2221 meta); 2222 } else if (arg_type_is_mem_size(arg_type)) { 2223 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2224 2225 /* remember the mem_size which may be used later 2226 * to refine return values. 2227 */ 2228 meta->msize_smax_value = reg->smax_value; 2229 meta->msize_umax_value = reg->umax_value; 2230 2231 /* The register is SCALAR_VALUE; the access check 2232 * happens using its boundaries. 2233 */ 2234 if (!tnum_is_const(reg->var_off)) 2235 /* For unprivileged variable accesses, disable raw 2236 * mode so that the program is required to 2237 * initialize all the memory that the helper could 2238 * just partially fill up. 2239 */ 2240 meta = NULL; 2241 2242 if (reg->smin_value < 0) { 2243 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2244 regno); 2245 return -EACCES; 2246 } 2247 2248 if (reg->umin_value == 0) { 2249 err = check_helper_mem_access(env, regno - 1, 0, 2250 zero_size_allowed, 2251 meta); 2252 if (err) 2253 return err; 2254 } 2255 2256 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2257 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2258 regno); 2259 return -EACCES; 2260 } 2261 err = check_helper_mem_access(env, regno - 1, 2262 reg->umax_value, 2263 zero_size_allowed, meta); 2264 } 2265 2266 return err; 2267 err_type: 2268 verbose(env, "R%d type=%s expected=%s\n", regno, 2269 reg_type_str[type], reg_type_str[expected_type]); 2270 return -EACCES; 2271 } 2272 2273 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2274 struct bpf_map *map, int func_id) 2275 { 2276 if (!map) 2277 return 0; 2278 2279 /* We need a two way check, first is from map perspective ... */ 2280 switch (map->map_type) { 2281 case BPF_MAP_TYPE_PROG_ARRAY: 2282 if (func_id != BPF_FUNC_tail_call) 2283 goto error; 2284 break; 2285 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2286 if (func_id != BPF_FUNC_perf_event_read && 2287 func_id != BPF_FUNC_perf_event_output && 2288 func_id != BPF_FUNC_perf_event_read_value) 2289 goto error; 2290 break; 2291 case BPF_MAP_TYPE_STACK_TRACE: 2292 if (func_id != BPF_FUNC_get_stackid) 2293 goto error; 2294 break; 2295 case BPF_MAP_TYPE_CGROUP_ARRAY: 2296 if (func_id != BPF_FUNC_skb_under_cgroup && 2297 func_id != BPF_FUNC_current_task_under_cgroup) 2298 goto error; 2299 break; 2300 case BPF_MAP_TYPE_CGROUP_STORAGE: 2301 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2302 if (func_id != BPF_FUNC_get_local_storage) 2303 goto error; 2304 break; 2305 /* devmap returns a pointer to a live net_device ifindex that we cannot 2306 * allow to be modified from bpf side. So do not allow lookup elements 2307 * for now. 2308 */ 2309 case BPF_MAP_TYPE_DEVMAP: 2310 if (func_id != BPF_FUNC_redirect_map) 2311 goto error; 2312 break; 2313 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2314 * appear. 2315 */ 2316 case BPF_MAP_TYPE_CPUMAP: 2317 case BPF_MAP_TYPE_XSKMAP: 2318 if (func_id != BPF_FUNC_redirect_map) 2319 goto error; 2320 break; 2321 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2322 case BPF_MAP_TYPE_HASH_OF_MAPS: 2323 if (func_id != BPF_FUNC_map_lookup_elem) 2324 goto error; 2325 break; 2326 case BPF_MAP_TYPE_SOCKMAP: 2327 if (func_id != BPF_FUNC_sk_redirect_map && 2328 func_id != BPF_FUNC_sock_map_update && 2329 func_id != BPF_FUNC_map_delete_elem && 2330 func_id != BPF_FUNC_msg_redirect_map) 2331 goto error; 2332 break; 2333 case BPF_MAP_TYPE_SOCKHASH: 2334 if (func_id != BPF_FUNC_sk_redirect_hash && 2335 func_id != BPF_FUNC_sock_hash_update && 2336 func_id != BPF_FUNC_map_delete_elem && 2337 func_id != BPF_FUNC_msg_redirect_hash) 2338 goto error; 2339 break; 2340 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2341 if (func_id != BPF_FUNC_sk_select_reuseport) 2342 goto error; 2343 break; 2344 case BPF_MAP_TYPE_QUEUE: 2345 case BPF_MAP_TYPE_STACK: 2346 if (func_id != BPF_FUNC_map_peek_elem && 2347 func_id != BPF_FUNC_map_pop_elem && 2348 func_id != BPF_FUNC_map_push_elem) 2349 goto error; 2350 break; 2351 default: 2352 break; 2353 } 2354 2355 /* ... and second from the function itself. */ 2356 switch (func_id) { 2357 case BPF_FUNC_tail_call: 2358 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2359 goto error; 2360 if (env->subprog_cnt > 1) { 2361 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2362 return -EINVAL; 2363 } 2364 break; 2365 case BPF_FUNC_perf_event_read: 2366 case BPF_FUNC_perf_event_output: 2367 case BPF_FUNC_perf_event_read_value: 2368 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2369 goto error; 2370 break; 2371 case BPF_FUNC_get_stackid: 2372 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2373 goto error; 2374 break; 2375 case BPF_FUNC_current_task_under_cgroup: 2376 case BPF_FUNC_skb_under_cgroup: 2377 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2378 goto error; 2379 break; 2380 case BPF_FUNC_redirect_map: 2381 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2382 map->map_type != BPF_MAP_TYPE_CPUMAP && 2383 map->map_type != BPF_MAP_TYPE_XSKMAP) 2384 goto error; 2385 break; 2386 case BPF_FUNC_sk_redirect_map: 2387 case BPF_FUNC_msg_redirect_map: 2388 case BPF_FUNC_sock_map_update: 2389 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2390 goto error; 2391 break; 2392 case BPF_FUNC_sk_redirect_hash: 2393 case BPF_FUNC_msg_redirect_hash: 2394 case BPF_FUNC_sock_hash_update: 2395 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2396 goto error; 2397 break; 2398 case BPF_FUNC_get_local_storage: 2399 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2400 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2401 goto error; 2402 break; 2403 case BPF_FUNC_sk_select_reuseport: 2404 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2405 goto error; 2406 break; 2407 case BPF_FUNC_map_peek_elem: 2408 case BPF_FUNC_map_pop_elem: 2409 case BPF_FUNC_map_push_elem: 2410 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2411 map->map_type != BPF_MAP_TYPE_STACK) 2412 goto error; 2413 break; 2414 default: 2415 break; 2416 } 2417 2418 return 0; 2419 error: 2420 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2421 map->map_type, func_id_name(func_id), func_id); 2422 return -EINVAL; 2423 } 2424 2425 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2426 { 2427 int count = 0; 2428 2429 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2430 count++; 2431 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2432 count++; 2433 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2434 count++; 2435 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2436 count++; 2437 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2438 count++; 2439 2440 /* We only support one arg being in raw mode at the moment, 2441 * which is sufficient for the helper functions we have 2442 * right now. 2443 */ 2444 return count <= 1; 2445 } 2446 2447 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2448 enum bpf_arg_type arg_next) 2449 { 2450 return (arg_type_is_mem_ptr(arg_curr) && 2451 !arg_type_is_mem_size(arg_next)) || 2452 (!arg_type_is_mem_ptr(arg_curr) && 2453 arg_type_is_mem_size(arg_next)); 2454 } 2455 2456 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2457 { 2458 /* bpf_xxx(..., buf, len) call will access 'len' 2459 * bytes from memory 'buf'. Both arg types need 2460 * to be paired, so make sure there's no buggy 2461 * helper function specification. 2462 */ 2463 if (arg_type_is_mem_size(fn->arg1_type) || 2464 arg_type_is_mem_ptr(fn->arg5_type) || 2465 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2466 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2467 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2468 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2469 return false; 2470 2471 return true; 2472 } 2473 2474 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2475 { 2476 int count = 0; 2477 2478 if (arg_type_is_refcounted(fn->arg1_type)) 2479 count++; 2480 if (arg_type_is_refcounted(fn->arg2_type)) 2481 count++; 2482 if (arg_type_is_refcounted(fn->arg3_type)) 2483 count++; 2484 if (arg_type_is_refcounted(fn->arg4_type)) 2485 count++; 2486 if (arg_type_is_refcounted(fn->arg5_type)) 2487 count++; 2488 2489 /* We only support one arg being unreferenced at the moment, 2490 * which is sufficient for the helper functions we have right now. 2491 */ 2492 return count <= 1; 2493 } 2494 2495 static int check_func_proto(const struct bpf_func_proto *fn) 2496 { 2497 return check_raw_mode_ok(fn) && 2498 check_arg_pair_ok(fn) && 2499 check_refcount_ok(fn) ? 0 : -EINVAL; 2500 } 2501 2502 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2503 * are now invalid, so turn them into unknown SCALAR_VALUE. 2504 */ 2505 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2506 struct bpf_func_state *state) 2507 { 2508 struct bpf_reg_state *regs = state->regs, *reg; 2509 int i; 2510 2511 for (i = 0; i < MAX_BPF_REG; i++) 2512 if (reg_is_pkt_pointer_any(®s[i])) 2513 mark_reg_unknown(env, regs, i); 2514 2515 bpf_for_each_spilled_reg(i, state, reg) { 2516 if (!reg) 2517 continue; 2518 if (reg_is_pkt_pointer_any(reg)) 2519 __mark_reg_unknown(reg); 2520 } 2521 } 2522 2523 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2524 { 2525 struct bpf_verifier_state *vstate = env->cur_state; 2526 int i; 2527 2528 for (i = 0; i <= vstate->curframe; i++) 2529 __clear_all_pkt_pointers(env, vstate->frame[i]); 2530 } 2531 2532 static void release_reg_references(struct bpf_verifier_env *env, 2533 struct bpf_func_state *state, int id) 2534 { 2535 struct bpf_reg_state *regs = state->regs, *reg; 2536 int i; 2537 2538 for (i = 0; i < MAX_BPF_REG; i++) 2539 if (regs[i].id == id) 2540 mark_reg_unknown(env, regs, i); 2541 2542 bpf_for_each_spilled_reg(i, state, reg) { 2543 if (!reg) 2544 continue; 2545 if (reg_is_refcounted(reg) && reg->id == id) 2546 __mark_reg_unknown(reg); 2547 } 2548 } 2549 2550 /* The pointer with the specified id has released its reference to kernel 2551 * resources. Identify all copies of the same pointer and clear the reference. 2552 */ 2553 static int release_reference(struct bpf_verifier_env *env, 2554 struct bpf_call_arg_meta *meta) 2555 { 2556 struct bpf_verifier_state *vstate = env->cur_state; 2557 int i; 2558 2559 for (i = 0; i <= vstate->curframe; i++) 2560 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2561 2562 return release_reference_state(env, meta->ptr_id); 2563 } 2564 2565 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2566 int *insn_idx) 2567 { 2568 struct bpf_verifier_state *state = env->cur_state; 2569 struct bpf_func_state *caller, *callee; 2570 int i, err, subprog, target_insn; 2571 2572 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2573 verbose(env, "the call stack of %d frames is too deep\n", 2574 state->curframe + 2); 2575 return -E2BIG; 2576 } 2577 2578 target_insn = *insn_idx + insn->imm; 2579 subprog = find_subprog(env, target_insn + 1); 2580 if (subprog < 0) { 2581 verbose(env, "verifier bug. No program starts at insn %d\n", 2582 target_insn + 1); 2583 return -EFAULT; 2584 } 2585 2586 caller = state->frame[state->curframe]; 2587 if (state->frame[state->curframe + 1]) { 2588 verbose(env, "verifier bug. Frame %d already allocated\n", 2589 state->curframe + 1); 2590 return -EFAULT; 2591 } 2592 2593 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2594 if (!callee) 2595 return -ENOMEM; 2596 state->frame[state->curframe + 1] = callee; 2597 2598 /* callee cannot access r0, r6 - r9 for reading and has to write 2599 * into its own stack before reading from it. 2600 * callee can read/write into caller's stack 2601 */ 2602 init_func_state(env, callee, 2603 /* remember the callsite, it will be used by bpf_exit */ 2604 *insn_idx /* callsite */, 2605 state->curframe + 1 /* frameno within this callchain */, 2606 subprog /* subprog number within this prog */); 2607 2608 /* Transfer references to the callee */ 2609 err = transfer_reference_state(callee, caller); 2610 if (err) 2611 return err; 2612 2613 /* copy r1 - r5 args that callee can access. The copy includes parent 2614 * pointers, which connects us up to the liveness chain 2615 */ 2616 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2617 callee->regs[i] = caller->regs[i]; 2618 2619 /* after the call registers r0 - r5 were scratched */ 2620 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2621 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2622 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2623 } 2624 2625 /* only increment it after check_reg_arg() finished */ 2626 state->curframe++; 2627 2628 /* and go analyze first insn of the callee */ 2629 *insn_idx = target_insn; 2630 2631 if (env->log.level) { 2632 verbose(env, "caller:\n"); 2633 print_verifier_state(env, caller); 2634 verbose(env, "callee:\n"); 2635 print_verifier_state(env, callee); 2636 } 2637 return 0; 2638 } 2639 2640 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2641 { 2642 struct bpf_verifier_state *state = env->cur_state; 2643 struct bpf_func_state *caller, *callee; 2644 struct bpf_reg_state *r0; 2645 int err; 2646 2647 callee = state->frame[state->curframe]; 2648 r0 = &callee->regs[BPF_REG_0]; 2649 if (r0->type == PTR_TO_STACK) { 2650 /* technically it's ok to return caller's stack pointer 2651 * (or caller's caller's pointer) back to the caller, 2652 * since these pointers are valid. Only current stack 2653 * pointer will be invalid as soon as function exits, 2654 * but let's be conservative 2655 */ 2656 verbose(env, "cannot return stack pointer to the caller\n"); 2657 return -EINVAL; 2658 } 2659 2660 state->curframe--; 2661 caller = state->frame[state->curframe]; 2662 /* return to the caller whatever r0 had in the callee */ 2663 caller->regs[BPF_REG_0] = *r0; 2664 2665 /* Transfer references to the caller */ 2666 err = transfer_reference_state(caller, callee); 2667 if (err) 2668 return err; 2669 2670 *insn_idx = callee->callsite + 1; 2671 if (env->log.level) { 2672 verbose(env, "returning from callee:\n"); 2673 print_verifier_state(env, callee); 2674 verbose(env, "to caller at %d:\n", *insn_idx); 2675 print_verifier_state(env, caller); 2676 } 2677 /* clear everything in the callee */ 2678 free_func_state(callee); 2679 state->frame[state->curframe + 1] = NULL; 2680 return 0; 2681 } 2682 2683 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2684 int func_id, 2685 struct bpf_call_arg_meta *meta) 2686 { 2687 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2688 2689 if (ret_type != RET_INTEGER || 2690 (func_id != BPF_FUNC_get_stack && 2691 func_id != BPF_FUNC_probe_read_str)) 2692 return; 2693 2694 ret_reg->smax_value = meta->msize_smax_value; 2695 ret_reg->umax_value = meta->msize_umax_value; 2696 __reg_deduce_bounds(ret_reg); 2697 __reg_bound_offset(ret_reg); 2698 } 2699 2700 static int 2701 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2702 int func_id, int insn_idx) 2703 { 2704 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2705 2706 if (func_id != BPF_FUNC_tail_call && 2707 func_id != BPF_FUNC_map_lookup_elem && 2708 func_id != BPF_FUNC_map_update_elem && 2709 func_id != BPF_FUNC_map_delete_elem && 2710 func_id != BPF_FUNC_map_push_elem && 2711 func_id != BPF_FUNC_map_pop_elem && 2712 func_id != BPF_FUNC_map_peek_elem) 2713 return 0; 2714 2715 if (meta->map_ptr == NULL) { 2716 verbose(env, "kernel subsystem misconfigured verifier\n"); 2717 return -EINVAL; 2718 } 2719 2720 if (!BPF_MAP_PTR(aux->map_state)) 2721 bpf_map_ptr_store(aux, meta->map_ptr, 2722 meta->map_ptr->unpriv_array); 2723 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2724 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2725 meta->map_ptr->unpriv_array); 2726 return 0; 2727 } 2728 2729 static int check_reference_leak(struct bpf_verifier_env *env) 2730 { 2731 struct bpf_func_state *state = cur_func(env); 2732 int i; 2733 2734 for (i = 0; i < state->acquired_refs; i++) { 2735 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 2736 state->refs[i].id, state->refs[i].insn_idx); 2737 } 2738 return state->acquired_refs ? -EINVAL : 0; 2739 } 2740 2741 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2742 { 2743 const struct bpf_func_proto *fn = NULL; 2744 struct bpf_reg_state *regs; 2745 struct bpf_call_arg_meta meta; 2746 bool changes_data; 2747 int i, err; 2748 2749 /* find function prototype */ 2750 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2751 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2752 func_id); 2753 return -EINVAL; 2754 } 2755 2756 if (env->ops->get_func_proto) 2757 fn = env->ops->get_func_proto(func_id, env->prog); 2758 if (!fn) { 2759 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2760 func_id); 2761 return -EINVAL; 2762 } 2763 2764 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2765 if (!env->prog->gpl_compatible && fn->gpl_only) { 2766 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2767 return -EINVAL; 2768 } 2769 2770 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2771 changes_data = bpf_helper_changes_pkt_data(fn->func); 2772 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2773 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2774 func_id_name(func_id), func_id); 2775 return -EINVAL; 2776 } 2777 2778 memset(&meta, 0, sizeof(meta)); 2779 meta.pkt_access = fn->pkt_access; 2780 2781 err = check_func_proto(fn); 2782 if (err) { 2783 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2784 func_id_name(func_id), func_id); 2785 return err; 2786 } 2787 2788 /* check args */ 2789 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2790 if (err) 2791 return err; 2792 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2793 if (err) 2794 return err; 2795 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2796 if (err) 2797 return err; 2798 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2799 if (err) 2800 return err; 2801 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2802 if (err) 2803 return err; 2804 2805 err = record_func_map(env, &meta, func_id, insn_idx); 2806 if (err) 2807 return err; 2808 2809 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2810 * is inferred from register state. 2811 */ 2812 for (i = 0; i < meta.access_size; i++) { 2813 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2814 BPF_WRITE, -1, false); 2815 if (err) 2816 return err; 2817 } 2818 2819 if (func_id == BPF_FUNC_tail_call) { 2820 err = check_reference_leak(env); 2821 if (err) { 2822 verbose(env, "tail_call would lead to reference leak\n"); 2823 return err; 2824 } 2825 } else if (is_release_function(func_id)) { 2826 err = release_reference(env, &meta); 2827 if (err) 2828 return err; 2829 } 2830 2831 regs = cur_regs(env); 2832 2833 /* check that flags argument in get_local_storage(map, flags) is 0, 2834 * this is required because get_local_storage() can't return an error. 2835 */ 2836 if (func_id == BPF_FUNC_get_local_storage && 2837 !register_is_null(®s[BPF_REG_2])) { 2838 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2839 return -EINVAL; 2840 } 2841 2842 /* reset caller saved regs */ 2843 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2844 mark_reg_not_init(env, regs, caller_saved[i]); 2845 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2846 } 2847 2848 /* update return register (already marked as written above) */ 2849 if (fn->ret_type == RET_INTEGER) { 2850 /* sets type to SCALAR_VALUE */ 2851 mark_reg_unknown(env, regs, BPF_REG_0); 2852 } else if (fn->ret_type == RET_VOID) { 2853 regs[BPF_REG_0].type = NOT_INIT; 2854 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2855 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2856 /* There is no offset yet applied, variable or fixed */ 2857 mark_reg_known_zero(env, regs, BPF_REG_0); 2858 /* remember map_ptr, so that check_map_access() 2859 * can check 'value_size' boundary of memory access 2860 * to map element returned from bpf_map_lookup_elem() 2861 */ 2862 if (meta.map_ptr == NULL) { 2863 verbose(env, 2864 "kernel subsystem misconfigured verifier\n"); 2865 return -EINVAL; 2866 } 2867 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2868 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2869 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2870 } else { 2871 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2872 regs[BPF_REG_0].id = ++env->id_gen; 2873 } 2874 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 2875 int id = acquire_reference_state(env, insn_idx); 2876 if (id < 0) 2877 return id; 2878 mark_reg_known_zero(env, regs, BPF_REG_0); 2879 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 2880 regs[BPF_REG_0].id = id; 2881 } else { 2882 verbose(env, "unknown return type %d of func %s#%d\n", 2883 fn->ret_type, func_id_name(func_id), func_id); 2884 return -EINVAL; 2885 } 2886 2887 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2888 2889 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2890 if (err) 2891 return err; 2892 2893 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2894 const char *err_str; 2895 2896 #ifdef CONFIG_PERF_EVENTS 2897 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2898 err_str = "cannot get callchain buffer for func %s#%d\n"; 2899 #else 2900 err = -ENOTSUPP; 2901 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2902 #endif 2903 if (err) { 2904 verbose(env, err_str, func_id_name(func_id), func_id); 2905 return err; 2906 } 2907 2908 env->prog->has_callchain_buf = true; 2909 } 2910 2911 if (changes_data) 2912 clear_all_pkt_pointers(env); 2913 return 0; 2914 } 2915 2916 static bool signed_add_overflows(s64 a, s64 b) 2917 { 2918 /* Do the add in u64, where overflow is well-defined */ 2919 s64 res = (s64)((u64)a + (u64)b); 2920 2921 if (b < 0) 2922 return res > a; 2923 return res < a; 2924 } 2925 2926 static bool signed_sub_overflows(s64 a, s64 b) 2927 { 2928 /* Do the sub in u64, where overflow is well-defined */ 2929 s64 res = (s64)((u64)a - (u64)b); 2930 2931 if (b < 0) 2932 return res < a; 2933 return res > a; 2934 } 2935 2936 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2937 const struct bpf_reg_state *reg, 2938 enum bpf_reg_type type) 2939 { 2940 bool known = tnum_is_const(reg->var_off); 2941 s64 val = reg->var_off.value; 2942 s64 smin = reg->smin_value; 2943 2944 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2945 verbose(env, "math between %s pointer and %lld is not allowed\n", 2946 reg_type_str[type], val); 2947 return false; 2948 } 2949 2950 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2951 verbose(env, "%s pointer offset %d is not allowed\n", 2952 reg_type_str[type], reg->off); 2953 return false; 2954 } 2955 2956 if (smin == S64_MIN) { 2957 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2958 reg_type_str[type]); 2959 return false; 2960 } 2961 2962 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2963 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2964 smin, reg_type_str[type]); 2965 return false; 2966 } 2967 2968 return true; 2969 } 2970 2971 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2972 * Caller should also handle BPF_MOV case separately. 2973 * If we return -EACCES, caller may want to try again treating pointer as a 2974 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2975 */ 2976 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2977 struct bpf_insn *insn, 2978 const struct bpf_reg_state *ptr_reg, 2979 const struct bpf_reg_state *off_reg) 2980 { 2981 struct bpf_verifier_state *vstate = env->cur_state; 2982 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2983 struct bpf_reg_state *regs = state->regs, *dst_reg; 2984 bool known = tnum_is_const(off_reg->var_off); 2985 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2986 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2987 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2988 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2989 u8 opcode = BPF_OP(insn->code); 2990 u32 dst = insn->dst_reg; 2991 2992 dst_reg = ®s[dst]; 2993 2994 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2995 smin_val > smax_val || umin_val > umax_val) { 2996 /* Taint dst register if offset had invalid bounds derived from 2997 * e.g. dead branches. 2998 */ 2999 __mark_reg_unknown(dst_reg); 3000 return 0; 3001 } 3002 3003 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3004 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3005 verbose(env, 3006 "R%d 32-bit pointer arithmetic prohibited\n", 3007 dst); 3008 return -EACCES; 3009 } 3010 3011 switch (ptr_reg->type) { 3012 case PTR_TO_MAP_VALUE_OR_NULL: 3013 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3014 dst, reg_type_str[ptr_reg->type]); 3015 return -EACCES; 3016 case CONST_PTR_TO_MAP: 3017 case PTR_TO_PACKET_END: 3018 case PTR_TO_SOCKET: 3019 case PTR_TO_SOCKET_OR_NULL: 3020 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3021 dst, reg_type_str[ptr_reg->type]); 3022 return -EACCES; 3023 default: 3024 break; 3025 } 3026 3027 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3028 * The id may be overwritten later if we create a new variable offset. 3029 */ 3030 dst_reg->type = ptr_reg->type; 3031 dst_reg->id = ptr_reg->id; 3032 3033 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3034 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3035 return -EINVAL; 3036 3037 switch (opcode) { 3038 case BPF_ADD: 3039 /* We can take a fixed offset as long as it doesn't overflow 3040 * the s32 'off' field 3041 */ 3042 if (known && (ptr_reg->off + smin_val == 3043 (s64)(s32)(ptr_reg->off + smin_val))) { 3044 /* pointer += K. Accumulate it into fixed offset */ 3045 dst_reg->smin_value = smin_ptr; 3046 dst_reg->smax_value = smax_ptr; 3047 dst_reg->umin_value = umin_ptr; 3048 dst_reg->umax_value = umax_ptr; 3049 dst_reg->var_off = ptr_reg->var_off; 3050 dst_reg->off = ptr_reg->off + smin_val; 3051 dst_reg->raw = ptr_reg->raw; 3052 break; 3053 } 3054 /* A new variable offset is created. Note that off_reg->off 3055 * == 0, since it's a scalar. 3056 * dst_reg gets the pointer type and since some positive 3057 * integer value was added to the pointer, give it a new 'id' 3058 * if it's a PTR_TO_PACKET. 3059 * this creates a new 'base' pointer, off_reg (variable) gets 3060 * added into the variable offset, and we copy the fixed offset 3061 * from ptr_reg. 3062 */ 3063 if (signed_add_overflows(smin_ptr, smin_val) || 3064 signed_add_overflows(smax_ptr, smax_val)) { 3065 dst_reg->smin_value = S64_MIN; 3066 dst_reg->smax_value = S64_MAX; 3067 } else { 3068 dst_reg->smin_value = smin_ptr + smin_val; 3069 dst_reg->smax_value = smax_ptr + smax_val; 3070 } 3071 if (umin_ptr + umin_val < umin_ptr || 3072 umax_ptr + umax_val < umax_ptr) { 3073 dst_reg->umin_value = 0; 3074 dst_reg->umax_value = U64_MAX; 3075 } else { 3076 dst_reg->umin_value = umin_ptr + umin_val; 3077 dst_reg->umax_value = umax_ptr + umax_val; 3078 } 3079 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3080 dst_reg->off = ptr_reg->off; 3081 dst_reg->raw = ptr_reg->raw; 3082 if (reg_is_pkt_pointer(ptr_reg)) { 3083 dst_reg->id = ++env->id_gen; 3084 /* something was added to pkt_ptr, set range to zero */ 3085 dst_reg->raw = 0; 3086 } 3087 break; 3088 case BPF_SUB: 3089 if (dst_reg == off_reg) { 3090 /* scalar -= pointer. Creates an unknown scalar */ 3091 verbose(env, "R%d tried to subtract pointer from scalar\n", 3092 dst); 3093 return -EACCES; 3094 } 3095 /* We don't allow subtraction from FP, because (according to 3096 * test_verifier.c test "invalid fp arithmetic", JITs might not 3097 * be able to deal with it. 3098 */ 3099 if (ptr_reg->type == PTR_TO_STACK) { 3100 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3101 dst); 3102 return -EACCES; 3103 } 3104 if (known && (ptr_reg->off - smin_val == 3105 (s64)(s32)(ptr_reg->off - smin_val))) { 3106 /* pointer -= K. Subtract it from fixed offset */ 3107 dst_reg->smin_value = smin_ptr; 3108 dst_reg->smax_value = smax_ptr; 3109 dst_reg->umin_value = umin_ptr; 3110 dst_reg->umax_value = umax_ptr; 3111 dst_reg->var_off = ptr_reg->var_off; 3112 dst_reg->id = ptr_reg->id; 3113 dst_reg->off = ptr_reg->off - smin_val; 3114 dst_reg->raw = ptr_reg->raw; 3115 break; 3116 } 3117 /* A new variable offset is created. If the subtrahend is known 3118 * nonnegative, then any reg->range we had before is still good. 3119 */ 3120 if (signed_sub_overflows(smin_ptr, smax_val) || 3121 signed_sub_overflows(smax_ptr, smin_val)) { 3122 /* Overflow possible, we know nothing */ 3123 dst_reg->smin_value = S64_MIN; 3124 dst_reg->smax_value = S64_MAX; 3125 } else { 3126 dst_reg->smin_value = smin_ptr - smax_val; 3127 dst_reg->smax_value = smax_ptr - smin_val; 3128 } 3129 if (umin_ptr < umax_val) { 3130 /* Overflow possible, we know nothing */ 3131 dst_reg->umin_value = 0; 3132 dst_reg->umax_value = U64_MAX; 3133 } else { 3134 /* Cannot overflow (as long as bounds are consistent) */ 3135 dst_reg->umin_value = umin_ptr - umax_val; 3136 dst_reg->umax_value = umax_ptr - umin_val; 3137 } 3138 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3139 dst_reg->off = ptr_reg->off; 3140 dst_reg->raw = ptr_reg->raw; 3141 if (reg_is_pkt_pointer(ptr_reg)) { 3142 dst_reg->id = ++env->id_gen; 3143 /* something was added to pkt_ptr, set range to zero */ 3144 if (smin_val < 0) 3145 dst_reg->raw = 0; 3146 } 3147 break; 3148 case BPF_AND: 3149 case BPF_OR: 3150 case BPF_XOR: 3151 /* bitwise ops on pointers are troublesome, prohibit. */ 3152 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3153 dst, bpf_alu_string[opcode >> 4]); 3154 return -EACCES; 3155 default: 3156 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3157 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3158 dst, bpf_alu_string[opcode >> 4]); 3159 return -EACCES; 3160 } 3161 3162 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3163 return -EINVAL; 3164 3165 __update_reg_bounds(dst_reg); 3166 __reg_deduce_bounds(dst_reg); 3167 __reg_bound_offset(dst_reg); 3168 return 0; 3169 } 3170 3171 /* WARNING: This function does calculations on 64-bit values, but the actual 3172 * execution may occur on 32-bit values. Therefore, things like bitshifts 3173 * need extra checks in the 32-bit case. 3174 */ 3175 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3176 struct bpf_insn *insn, 3177 struct bpf_reg_state *dst_reg, 3178 struct bpf_reg_state src_reg) 3179 { 3180 struct bpf_reg_state *regs = cur_regs(env); 3181 u8 opcode = BPF_OP(insn->code); 3182 bool src_known, dst_known; 3183 s64 smin_val, smax_val; 3184 u64 umin_val, umax_val; 3185 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3186 3187 if (insn_bitness == 32) { 3188 /* Relevant for 32-bit RSH: Information can propagate towards 3189 * LSB, so it isn't sufficient to only truncate the output to 3190 * 32 bits. 3191 */ 3192 coerce_reg_to_size(dst_reg, 4); 3193 coerce_reg_to_size(&src_reg, 4); 3194 } 3195 3196 smin_val = src_reg.smin_value; 3197 smax_val = src_reg.smax_value; 3198 umin_val = src_reg.umin_value; 3199 umax_val = src_reg.umax_value; 3200 src_known = tnum_is_const(src_reg.var_off); 3201 dst_known = tnum_is_const(dst_reg->var_off); 3202 3203 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3204 smin_val > smax_val || umin_val > umax_val) { 3205 /* Taint dst register if offset had invalid bounds derived from 3206 * e.g. dead branches. 3207 */ 3208 __mark_reg_unknown(dst_reg); 3209 return 0; 3210 } 3211 3212 if (!src_known && 3213 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3214 __mark_reg_unknown(dst_reg); 3215 return 0; 3216 } 3217 3218 switch (opcode) { 3219 case BPF_ADD: 3220 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3221 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3222 dst_reg->smin_value = S64_MIN; 3223 dst_reg->smax_value = S64_MAX; 3224 } else { 3225 dst_reg->smin_value += smin_val; 3226 dst_reg->smax_value += smax_val; 3227 } 3228 if (dst_reg->umin_value + umin_val < umin_val || 3229 dst_reg->umax_value + umax_val < umax_val) { 3230 dst_reg->umin_value = 0; 3231 dst_reg->umax_value = U64_MAX; 3232 } else { 3233 dst_reg->umin_value += umin_val; 3234 dst_reg->umax_value += umax_val; 3235 } 3236 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3237 break; 3238 case BPF_SUB: 3239 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3240 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3241 /* Overflow possible, we know nothing */ 3242 dst_reg->smin_value = S64_MIN; 3243 dst_reg->smax_value = S64_MAX; 3244 } else { 3245 dst_reg->smin_value -= smax_val; 3246 dst_reg->smax_value -= smin_val; 3247 } 3248 if (dst_reg->umin_value < umax_val) { 3249 /* Overflow possible, we know nothing */ 3250 dst_reg->umin_value = 0; 3251 dst_reg->umax_value = U64_MAX; 3252 } else { 3253 /* Cannot overflow (as long as bounds are consistent) */ 3254 dst_reg->umin_value -= umax_val; 3255 dst_reg->umax_value -= umin_val; 3256 } 3257 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3258 break; 3259 case BPF_MUL: 3260 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3261 if (smin_val < 0 || dst_reg->smin_value < 0) { 3262 /* Ain't nobody got time to multiply that sign */ 3263 __mark_reg_unbounded(dst_reg); 3264 __update_reg_bounds(dst_reg); 3265 break; 3266 } 3267 /* Both values are positive, so we can work with unsigned and 3268 * copy the result to signed (unless it exceeds S64_MAX). 3269 */ 3270 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3271 /* Potential overflow, we know nothing */ 3272 __mark_reg_unbounded(dst_reg); 3273 /* (except what we can learn from the var_off) */ 3274 __update_reg_bounds(dst_reg); 3275 break; 3276 } 3277 dst_reg->umin_value *= umin_val; 3278 dst_reg->umax_value *= umax_val; 3279 if (dst_reg->umax_value > S64_MAX) { 3280 /* Overflow possible, we know nothing */ 3281 dst_reg->smin_value = S64_MIN; 3282 dst_reg->smax_value = S64_MAX; 3283 } else { 3284 dst_reg->smin_value = dst_reg->umin_value; 3285 dst_reg->smax_value = dst_reg->umax_value; 3286 } 3287 break; 3288 case BPF_AND: 3289 if (src_known && dst_known) { 3290 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3291 src_reg.var_off.value); 3292 break; 3293 } 3294 /* We get our minimum from the var_off, since that's inherently 3295 * bitwise. Our maximum is the minimum of the operands' maxima. 3296 */ 3297 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3298 dst_reg->umin_value = dst_reg->var_off.value; 3299 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3300 if (dst_reg->smin_value < 0 || smin_val < 0) { 3301 /* Lose signed bounds when ANDing negative numbers, 3302 * ain't nobody got time for that. 3303 */ 3304 dst_reg->smin_value = S64_MIN; 3305 dst_reg->smax_value = S64_MAX; 3306 } else { 3307 /* ANDing two positives gives a positive, so safe to 3308 * cast result into s64. 3309 */ 3310 dst_reg->smin_value = dst_reg->umin_value; 3311 dst_reg->smax_value = dst_reg->umax_value; 3312 } 3313 /* We may learn something more from the var_off */ 3314 __update_reg_bounds(dst_reg); 3315 break; 3316 case BPF_OR: 3317 if (src_known && dst_known) { 3318 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3319 src_reg.var_off.value); 3320 break; 3321 } 3322 /* We get our maximum from the var_off, and our minimum is the 3323 * maximum of the operands' minima 3324 */ 3325 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3326 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3327 dst_reg->umax_value = dst_reg->var_off.value | 3328 dst_reg->var_off.mask; 3329 if (dst_reg->smin_value < 0 || smin_val < 0) { 3330 /* Lose signed bounds when ORing negative numbers, 3331 * ain't nobody got time for that. 3332 */ 3333 dst_reg->smin_value = S64_MIN; 3334 dst_reg->smax_value = S64_MAX; 3335 } else { 3336 /* ORing two positives gives a positive, so safe to 3337 * cast result into s64. 3338 */ 3339 dst_reg->smin_value = dst_reg->umin_value; 3340 dst_reg->smax_value = dst_reg->umax_value; 3341 } 3342 /* We may learn something more from the var_off */ 3343 __update_reg_bounds(dst_reg); 3344 break; 3345 case BPF_LSH: 3346 if (umax_val >= insn_bitness) { 3347 /* Shifts greater than 31 or 63 are undefined. 3348 * This includes shifts by a negative number. 3349 */ 3350 mark_reg_unknown(env, regs, insn->dst_reg); 3351 break; 3352 } 3353 /* We lose all sign bit information (except what we can pick 3354 * up from var_off) 3355 */ 3356 dst_reg->smin_value = S64_MIN; 3357 dst_reg->smax_value = S64_MAX; 3358 /* If we might shift our top bit out, then we know nothing */ 3359 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3360 dst_reg->umin_value = 0; 3361 dst_reg->umax_value = U64_MAX; 3362 } else { 3363 dst_reg->umin_value <<= umin_val; 3364 dst_reg->umax_value <<= umax_val; 3365 } 3366 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3367 /* We may learn something more from the var_off */ 3368 __update_reg_bounds(dst_reg); 3369 break; 3370 case BPF_RSH: 3371 if (umax_val >= insn_bitness) { 3372 /* Shifts greater than 31 or 63 are undefined. 3373 * This includes shifts by a negative number. 3374 */ 3375 mark_reg_unknown(env, regs, insn->dst_reg); 3376 break; 3377 } 3378 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3379 * be negative, then either: 3380 * 1) src_reg might be zero, so the sign bit of the result is 3381 * unknown, so we lose our signed bounds 3382 * 2) it's known negative, thus the unsigned bounds capture the 3383 * signed bounds 3384 * 3) the signed bounds cross zero, so they tell us nothing 3385 * about the result 3386 * If the value in dst_reg is known nonnegative, then again the 3387 * unsigned bounts capture the signed bounds. 3388 * Thus, in all cases it suffices to blow away our signed bounds 3389 * and rely on inferring new ones from the unsigned bounds and 3390 * var_off of the result. 3391 */ 3392 dst_reg->smin_value = S64_MIN; 3393 dst_reg->smax_value = S64_MAX; 3394 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3395 dst_reg->umin_value >>= umax_val; 3396 dst_reg->umax_value >>= umin_val; 3397 /* We may learn something more from the var_off */ 3398 __update_reg_bounds(dst_reg); 3399 break; 3400 case BPF_ARSH: 3401 if (umax_val >= insn_bitness) { 3402 /* Shifts greater than 31 or 63 are undefined. 3403 * This includes shifts by a negative number. 3404 */ 3405 mark_reg_unknown(env, regs, insn->dst_reg); 3406 break; 3407 } 3408 3409 /* Upon reaching here, src_known is true and 3410 * umax_val is equal to umin_val. 3411 */ 3412 dst_reg->smin_value >>= umin_val; 3413 dst_reg->smax_value >>= umin_val; 3414 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3415 3416 /* blow away the dst_reg umin_value/umax_value and rely on 3417 * dst_reg var_off to refine the result. 3418 */ 3419 dst_reg->umin_value = 0; 3420 dst_reg->umax_value = U64_MAX; 3421 __update_reg_bounds(dst_reg); 3422 break; 3423 default: 3424 mark_reg_unknown(env, regs, insn->dst_reg); 3425 break; 3426 } 3427 3428 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3429 /* 32-bit ALU ops are (32,32)->32 */ 3430 coerce_reg_to_size(dst_reg, 4); 3431 } 3432 3433 __reg_deduce_bounds(dst_reg); 3434 __reg_bound_offset(dst_reg); 3435 return 0; 3436 } 3437 3438 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3439 * and var_off. 3440 */ 3441 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3442 struct bpf_insn *insn) 3443 { 3444 struct bpf_verifier_state *vstate = env->cur_state; 3445 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3446 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3447 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3448 u8 opcode = BPF_OP(insn->code); 3449 3450 dst_reg = ®s[insn->dst_reg]; 3451 src_reg = NULL; 3452 if (dst_reg->type != SCALAR_VALUE) 3453 ptr_reg = dst_reg; 3454 if (BPF_SRC(insn->code) == BPF_X) { 3455 src_reg = ®s[insn->src_reg]; 3456 if (src_reg->type != SCALAR_VALUE) { 3457 if (dst_reg->type != SCALAR_VALUE) { 3458 /* Combining two pointers by any ALU op yields 3459 * an arbitrary scalar. Disallow all math except 3460 * pointer subtraction 3461 */ 3462 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3463 mark_reg_unknown(env, regs, insn->dst_reg); 3464 return 0; 3465 } 3466 verbose(env, "R%d pointer %s pointer prohibited\n", 3467 insn->dst_reg, 3468 bpf_alu_string[opcode >> 4]); 3469 return -EACCES; 3470 } else { 3471 /* scalar += pointer 3472 * This is legal, but we have to reverse our 3473 * src/dest handling in computing the range 3474 */ 3475 return adjust_ptr_min_max_vals(env, insn, 3476 src_reg, dst_reg); 3477 } 3478 } else if (ptr_reg) { 3479 /* pointer += scalar */ 3480 return adjust_ptr_min_max_vals(env, insn, 3481 dst_reg, src_reg); 3482 } 3483 } else { 3484 /* Pretend the src is a reg with a known value, since we only 3485 * need to be able to read from this state. 3486 */ 3487 off_reg.type = SCALAR_VALUE; 3488 __mark_reg_known(&off_reg, insn->imm); 3489 src_reg = &off_reg; 3490 if (ptr_reg) /* pointer += K */ 3491 return adjust_ptr_min_max_vals(env, insn, 3492 ptr_reg, src_reg); 3493 } 3494 3495 /* Got here implies adding two SCALAR_VALUEs */ 3496 if (WARN_ON_ONCE(ptr_reg)) { 3497 print_verifier_state(env, state); 3498 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3499 return -EINVAL; 3500 } 3501 if (WARN_ON(!src_reg)) { 3502 print_verifier_state(env, state); 3503 verbose(env, "verifier internal error: no src_reg\n"); 3504 return -EINVAL; 3505 } 3506 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3507 } 3508 3509 /* check validity of 32-bit and 64-bit arithmetic operations */ 3510 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3511 { 3512 struct bpf_reg_state *regs = cur_regs(env); 3513 u8 opcode = BPF_OP(insn->code); 3514 int err; 3515 3516 if (opcode == BPF_END || opcode == BPF_NEG) { 3517 if (opcode == BPF_NEG) { 3518 if (BPF_SRC(insn->code) != 0 || 3519 insn->src_reg != BPF_REG_0 || 3520 insn->off != 0 || insn->imm != 0) { 3521 verbose(env, "BPF_NEG uses reserved fields\n"); 3522 return -EINVAL; 3523 } 3524 } else { 3525 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3526 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3527 BPF_CLASS(insn->code) == BPF_ALU64) { 3528 verbose(env, "BPF_END uses reserved fields\n"); 3529 return -EINVAL; 3530 } 3531 } 3532 3533 /* check src operand */ 3534 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3535 if (err) 3536 return err; 3537 3538 if (is_pointer_value(env, insn->dst_reg)) { 3539 verbose(env, "R%d pointer arithmetic prohibited\n", 3540 insn->dst_reg); 3541 return -EACCES; 3542 } 3543 3544 /* check dest operand */ 3545 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3546 if (err) 3547 return err; 3548 3549 } else if (opcode == BPF_MOV) { 3550 3551 if (BPF_SRC(insn->code) == BPF_X) { 3552 if (insn->imm != 0 || insn->off != 0) { 3553 verbose(env, "BPF_MOV uses reserved fields\n"); 3554 return -EINVAL; 3555 } 3556 3557 /* check src operand */ 3558 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3559 if (err) 3560 return err; 3561 } else { 3562 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3563 verbose(env, "BPF_MOV uses reserved fields\n"); 3564 return -EINVAL; 3565 } 3566 } 3567 3568 /* check dest operand, mark as required later */ 3569 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3570 if (err) 3571 return err; 3572 3573 if (BPF_SRC(insn->code) == BPF_X) { 3574 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3575 /* case: R1 = R2 3576 * copy register state to dest reg 3577 */ 3578 regs[insn->dst_reg] = regs[insn->src_reg]; 3579 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3580 } else { 3581 /* R1 = (u32) R2 */ 3582 if (is_pointer_value(env, insn->src_reg)) { 3583 verbose(env, 3584 "R%d partial copy of pointer\n", 3585 insn->src_reg); 3586 return -EACCES; 3587 } 3588 mark_reg_unknown(env, regs, insn->dst_reg); 3589 coerce_reg_to_size(®s[insn->dst_reg], 4); 3590 } 3591 } else { 3592 /* case: R = imm 3593 * remember the value we stored into this reg 3594 */ 3595 /* clear any state __mark_reg_known doesn't set */ 3596 mark_reg_unknown(env, regs, insn->dst_reg); 3597 regs[insn->dst_reg].type = SCALAR_VALUE; 3598 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3599 __mark_reg_known(regs + insn->dst_reg, 3600 insn->imm); 3601 } else { 3602 __mark_reg_known(regs + insn->dst_reg, 3603 (u32)insn->imm); 3604 } 3605 } 3606 3607 } else if (opcode > BPF_END) { 3608 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3609 return -EINVAL; 3610 3611 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3612 3613 if (BPF_SRC(insn->code) == BPF_X) { 3614 if (insn->imm != 0 || insn->off != 0) { 3615 verbose(env, "BPF_ALU uses reserved fields\n"); 3616 return -EINVAL; 3617 } 3618 /* check src1 operand */ 3619 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3620 if (err) 3621 return err; 3622 } else { 3623 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3624 verbose(env, "BPF_ALU uses reserved fields\n"); 3625 return -EINVAL; 3626 } 3627 } 3628 3629 /* check src2 operand */ 3630 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3631 if (err) 3632 return err; 3633 3634 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3635 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3636 verbose(env, "div by zero\n"); 3637 return -EINVAL; 3638 } 3639 3640 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3641 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3642 return -EINVAL; 3643 } 3644 3645 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3646 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3647 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3648 3649 if (insn->imm < 0 || insn->imm >= size) { 3650 verbose(env, "invalid shift %d\n", insn->imm); 3651 return -EINVAL; 3652 } 3653 } 3654 3655 /* check dest operand */ 3656 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3657 if (err) 3658 return err; 3659 3660 return adjust_reg_min_max_vals(env, insn); 3661 } 3662 3663 return 0; 3664 } 3665 3666 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3667 struct bpf_reg_state *dst_reg, 3668 enum bpf_reg_type type, 3669 bool range_right_open) 3670 { 3671 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3672 struct bpf_reg_state *regs = state->regs, *reg; 3673 u16 new_range; 3674 int i, j; 3675 3676 if (dst_reg->off < 0 || 3677 (dst_reg->off == 0 && range_right_open)) 3678 /* This doesn't give us any range */ 3679 return; 3680 3681 if (dst_reg->umax_value > MAX_PACKET_OFF || 3682 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3683 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3684 * than pkt_end, but that's because it's also less than pkt. 3685 */ 3686 return; 3687 3688 new_range = dst_reg->off; 3689 if (range_right_open) 3690 new_range--; 3691 3692 /* Examples for register markings: 3693 * 3694 * pkt_data in dst register: 3695 * 3696 * r2 = r3; 3697 * r2 += 8; 3698 * if (r2 > pkt_end) goto <handle exception> 3699 * <access okay> 3700 * 3701 * r2 = r3; 3702 * r2 += 8; 3703 * if (r2 < pkt_end) goto <access okay> 3704 * <handle exception> 3705 * 3706 * Where: 3707 * r2 == dst_reg, pkt_end == src_reg 3708 * r2=pkt(id=n,off=8,r=0) 3709 * r3=pkt(id=n,off=0,r=0) 3710 * 3711 * pkt_data in src register: 3712 * 3713 * r2 = r3; 3714 * r2 += 8; 3715 * if (pkt_end >= r2) goto <access okay> 3716 * <handle exception> 3717 * 3718 * r2 = r3; 3719 * r2 += 8; 3720 * if (pkt_end <= r2) goto <handle exception> 3721 * <access okay> 3722 * 3723 * Where: 3724 * pkt_end == dst_reg, r2 == src_reg 3725 * r2=pkt(id=n,off=8,r=0) 3726 * r3=pkt(id=n,off=0,r=0) 3727 * 3728 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3729 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3730 * and [r3, r3 + 8-1) respectively is safe to access depending on 3731 * the check. 3732 */ 3733 3734 /* If our ids match, then we must have the same max_value. And we 3735 * don't care about the other reg's fixed offset, since if it's too big 3736 * the range won't allow anything. 3737 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3738 */ 3739 for (i = 0; i < MAX_BPF_REG; i++) 3740 if (regs[i].type == type && regs[i].id == dst_reg->id) 3741 /* keep the maximum range already checked */ 3742 regs[i].range = max(regs[i].range, new_range); 3743 3744 for (j = 0; j <= vstate->curframe; j++) { 3745 state = vstate->frame[j]; 3746 bpf_for_each_spilled_reg(i, state, reg) { 3747 if (!reg) 3748 continue; 3749 if (reg->type == type && reg->id == dst_reg->id) 3750 reg->range = max(reg->range, new_range); 3751 } 3752 } 3753 } 3754 3755 /* compute branch direction of the expression "if (reg opcode val) goto target;" 3756 * and return: 3757 * 1 - branch will be taken and "goto target" will be executed 3758 * 0 - branch will not be taken and fall-through to next insn 3759 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 3760 */ 3761 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 3762 { 3763 if (__is_pointer_value(false, reg)) 3764 return -1; 3765 3766 switch (opcode) { 3767 case BPF_JEQ: 3768 if (tnum_is_const(reg->var_off)) 3769 return !!tnum_equals_const(reg->var_off, val); 3770 break; 3771 case BPF_JNE: 3772 if (tnum_is_const(reg->var_off)) 3773 return !tnum_equals_const(reg->var_off, val); 3774 break; 3775 case BPF_JGT: 3776 if (reg->umin_value > val) 3777 return 1; 3778 else if (reg->umax_value <= val) 3779 return 0; 3780 break; 3781 case BPF_JSGT: 3782 if (reg->smin_value > (s64)val) 3783 return 1; 3784 else if (reg->smax_value < (s64)val) 3785 return 0; 3786 break; 3787 case BPF_JLT: 3788 if (reg->umax_value < val) 3789 return 1; 3790 else if (reg->umin_value >= val) 3791 return 0; 3792 break; 3793 case BPF_JSLT: 3794 if (reg->smax_value < (s64)val) 3795 return 1; 3796 else if (reg->smin_value >= (s64)val) 3797 return 0; 3798 break; 3799 case BPF_JGE: 3800 if (reg->umin_value >= val) 3801 return 1; 3802 else if (reg->umax_value < val) 3803 return 0; 3804 break; 3805 case BPF_JSGE: 3806 if (reg->smin_value >= (s64)val) 3807 return 1; 3808 else if (reg->smax_value < (s64)val) 3809 return 0; 3810 break; 3811 case BPF_JLE: 3812 if (reg->umax_value <= val) 3813 return 1; 3814 else if (reg->umin_value > val) 3815 return 0; 3816 break; 3817 case BPF_JSLE: 3818 if (reg->smax_value <= (s64)val) 3819 return 1; 3820 else if (reg->smin_value > (s64)val) 3821 return 0; 3822 break; 3823 } 3824 3825 return -1; 3826 } 3827 3828 /* Adjusts the register min/max values in the case that the dst_reg is the 3829 * variable register that we are working on, and src_reg is a constant or we're 3830 * simply doing a BPF_K check. 3831 * In JEQ/JNE cases we also adjust the var_off values. 3832 */ 3833 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3834 struct bpf_reg_state *false_reg, u64 val, 3835 u8 opcode) 3836 { 3837 /* If the dst_reg is a pointer, we can't learn anything about its 3838 * variable offset from the compare (unless src_reg were a pointer into 3839 * the same object, but we don't bother with that. 3840 * Since false_reg and true_reg have the same type by construction, we 3841 * only need to check one of them for pointerness. 3842 */ 3843 if (__is_pointer_value(false, false_reg)) 3844 return; 3845 3846 switch (opcode) { 3847 case BPF_JEQ: 3848 /* If this is false then we know nothing Jon Snow, but if it is 3849 * true then we know for sure. 3850 */ 3851 __mark_reg_known(true_reg, val); 3852 break; 3853 case BPF_JNE: 3854 /* If this is true we know nothing Jon Snow, but if it is false 3855 * we know the value for sure; 3856 */ 3857 __mark_reg_known(false_reg, val); 3858 break; 3859 case BPF_JGT: 3860 false_reg->umax_value = min(false_reg->umax_value, val); 3861 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3862 break; 3863 case BPF_JSGT: 3864 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3865 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3866 break; 3867 case BPF_JLT: 3868 false_reg->umin_value = max(false_reg->umin_value, val); 3869 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3870 break; 3871 case BPF_JSLT: 3872 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3873 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3874 break; 3875 case BPF_JGE: 3876 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3877 true_reg->umin_value = max(true_reg->umin_value, val); 3878 break; 3879 case BPF_JSGE: 3880 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3881 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3882 break; 3883 case BPF_JLE: 3884 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3885 true_reg->umax_value = min(true_reg->umax_value, val); 3886 break; 3887 case BPF_JSLE: 3888 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3889 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3890 break; 3891 default: 3892 break; 3893 } 3894 3895 __reg_deduce_bounds(false_reg); 3896 __reg_deduce_bounds(true_reg); 3897 /* We might have learned some bits from the bounds. */ 3898 __reg_bound_offset(false_reg); 3899 __reg_bound_offset(true_reg); 3900 /* Intersecting with the old var_off might have improved our bounds 3901 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3902 * then new var_off is (0; 0x7f...fc) which improves our umax. 3903 */ 3904 __update_reg_bounds(false_reg); 3905 __update_reg_bounds(true_reg); 3906 } 3907 3908 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3909 * the variable reg. 3910 */ 3911 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3912 struct bpf_reg_state *false_reg, u64 val, 3913 u8 opcode) 3914 { 3915 if (__is_pointer_value(false, false_reg)) 3916 return; 3917 3918 switch (opcode) { 3919 case BPF_JEQ: 3920 /* If this is false then we know nothing Jon Snow, but if it is 3921 * true then we know for sure. 3922 */ 3923 __mark_reg_known(true_reg, val); 3924 break; 3925 case BPF_JNE: 3926 /* If this is true we know nothing Jon Snow, but if it is false 3927 * we know the value for sure; 3928 */ 3929 __mark_reg_known(false_reg, val); 3930 break; 3931 case BPF_JGT: 3932 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3933 false_reg->umin_value = max(false_reg->umin_value, val); 3934 break; 3935 case BPF_JSGT: 3936 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3937 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3938 break; 3939 case BPF_JLT: 3940 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3941 false_reg->umax_value = min(false_reg->umax_value, val); 3942 break; 3943 case BPF_JSLT: 3944 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3945 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3946 break; 3947 case BPF_JGE: 3948 true_reg->umax_value = min(true_reg->umax_value, val); 3949 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3950 break; 3951 case BPF_JSGE: 3952 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3953 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3954 break; 3955 case BPF_JLE: 3956 true_reg->umin_value = max(true_reg->umin_value, val); 3957 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3958 break; 3959 case BPF_JSLE: 3960 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3961 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3962 break; 3963 default: 3964 break; 3965 } 3966 3967 __reg_deduce_bounds(false_reg); 3968 __reg_deduce_bounds(true_reg); 3969 /* We might have learned some bits from the bounds. */ 3970 __reg_bound_offset(false_reg); 3971 __reg_bound_offset(true_reg); 3972 /* Intersecting with the old var_off might have improved our bounds 3973 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3974 * then new var_off is (0; 0x7f...fc) which improves our umax. 3975 */ 3976 __update_reg_bounds(false_reg); 3977 __update_reg_bounds(true_reg); 3978 } 3979 3980 /* Regs are known to be equal, so intersect their min/max/var_off */ 3981 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3982 struct bpf_reg_state *dst_reg) 3983 { 3984 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3985 dst_reg->umin_value); 3986 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3987 dst_reg->umax_value); 3988 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3989 dst_reg->smin_value); 3990 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3991 dst_reg->smax_value); 3992 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3993 dst_reg->var_off); 3994 /* We might have learned new bounds from the var_off. */ 3995 __update_reg_bounds(src_reg); 3996 __update_reg_bounds(dst_reg); 3997 /* We might have learned something about the sign bit. */ 3998 __reg_deduce_bounds(src_reg); 3999 __reg_deduce_bounds(dst_reg); 4000 /* We might have learned some bits from the bounds. */ 4001 __reg_bound_offset(src_reg); 4002 __reg_bound_offset(dst_reg); 4003 /* Intersecting with the old var_off might have improved our bounds 4004 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4005 * then new var_off is (0; 0x7f...fc) which improves our umax. 4006 */ 4007 __update_reg_bounds(src_reg); 4008 __update_reg_bounds(dst_reg); 4009 } 4010 4011 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4012 struct bpf_reg_state *true_dst, 4013 struct bpf_reg_state *false_src, 4014 struct bpf_reg_state *false_dst, 4015 u8 opcode) 4016 { 4017 switch (opcode) { 4018 case BPF_JEQ: 4019 __reg_combine_min_max(true_src, true_dst); 4020 break; 4021 case BPF_JNE: 4022 __reg_combine_min_max(false_src, false_dst); 4023 break; 4024 } 4025 } 4026 4027 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4028 struct bpf_reg_state *reg, u32 id, 4029 bool is_null) 4030 { 4031 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4032 /* Old offset (both fixed and variable parts) should 4033 * have been known-zero, because we don't allow pointer 4034 * arithmetic on pointers that might be NULL. 4035 */ 4036 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4037 !tnum_equals_const(reg->var_off, 0) || 4038 reg->off)) { 4039 __mark_reg_known_zero(reg); 4040 reg->off = 0; 4041 } 4042 if (is_null) { 4043 reg->type = SCALAR_VALUE; 4044 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4045 if (reg->map_ptr->inner_map_meta) { 4046 reg->type = CONST_PTR_TO_MAP; 4047 reg->map_ptr = reg->map_ptr->inner_map_meta; 4048 } else { 4049 reg->type = PTR_TO_MAP_VALUE; 4050 } 4051 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4052 reg->type = PTR_TO_SOCKET; 4053 } 4054 if (is_null || !reg_is_refcounted(reg)) { 4055 /* We don't need id from this point onwards anymore, 4056 * thus we should better reset it, so that state 4057 * pruning has chances to take effect. 4058 */ 4059 reg->id = 0; 4060 } 4061 } 4062 } 4063 4064 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4065 * be folded together at some point. 4066 */ 4067 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4068 bool is_null) 4069 { 4070 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4071 struct bpf_reg_state *reg, *regs = state->regs; 4072 u32 id = regs[regno].id; 4073 int i, j; 4074 4075 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 4076 __release_reference_state(state, id); 4077 4078 for (i = 0; i < MAX_BPF_REG; i++) 4079 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4080 4081 for (j = 0; j <= vstate->curframe; j++) { 4082 state = vstate->frame[j]; 4083 bpf_for_each_spilled_reg(i, state, reg) { 4084 if (!reg) 4085 continue; 4086 mark_ptr_or_null_reg(state, reg, id, is_null); 4087 } 4088 } 4089 } 4090 4091 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4092 struct bpf_reg_state *dst_reg, 4093 struct bpf_reg_state *src_reg, 4094 struct bpf_verifier_state *this_branch, 4095 struct bpf_verifier_state *other_branch) 4096 { 4097 if (BPF_SRC(insn->code) != BPF_X) 4098 return false; 4099 4100 switch (BPF_OP(insn->code)) { 4101 case BPF_JGT: 4102 if ((dst_reg->type == PTR_TO_PACKET && 4103 src_reg->type == PTR_TO_PACKET_END) || 4104 (dst_reg->type == PTR_TO_PACKET_META && 4105 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4106 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4107 find_good_pkt_pointers(this_branch, dst_reg, 4108 dst_reg->type, false); 4109 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4110 src_reg->type == PTR_TO_PACKET) || 4111 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4112 src_reg->type == PTR_TO_PACKET_META)) { 4113 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4114 find_good_pkt_pointers(other_branch, src_reg, 4115 src_reg->type, true); 4116 } else { 4117 return false; 4118 } 4119 break; 4120 case BPF_JLT: 4121 if ((dst_reg->type == PTR_TO_PACKET && 4122 src_reg->type == PTR_TO_PACKET_END) || 4123 (dst_reg->type == PTR_TO_PACKET_META && 4124 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4125 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4126 find_good_pkt_pointers(other_branch, dst_reg, 4127 dst_reg->type, true); 4128 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4129 src_reg->type == PTR_TO_PACKET) || 4130 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4131 src_reg->type == PTR_TO_PACKET_META)) { 4132 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4133 find_good_pkt_pointers(this_branch, src_reg, 4134 src_reg->type, false); 4135 } else { 4136 return false; 4137 } 4138 break; 4139 case BPF_JGE: 4140 if ((dst_reg->type == PTR_TO_PACKET && 4141 src_reg->type == PTR_TO_PACKET_END) || 4142 (dst_reg->type == PTR_TO_PACKET_META && 4143 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4144 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4145 find_good_pkt_pointers(this_branch, dst_reg, 4146 dst_reg->type, true); 4147 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4148 src_reg->type == PTR_TO_PACKET) || 4149 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4150 src_reg->type == PTR_TO_PACKET_META)) { 4151 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4152 find_good_pkt_pointers(other_branch, src_reg, 4153 src_reg->type, false); 4154 } else { 4155 return false; 4156 } 4157 break; 4158 case BPF_JLE: 4159 if ((dst_reg->type == PTR_TO_PACKET && 4160 src_reg->type == PTR_TO_PACKET_END) || 4161 (dst_reg->type == PTR_TO_PACKET_META && 4162 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4163 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4164 find_good_pkt_pointers(other_branch, dst_reg, 4165 dst_reg->type, false); 4166 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4167 src_reg->type == PTR_TO_PACKET) || 4168 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4169 src_reg->type == PTR_TO_PACKET_META)) { 4170 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4171 find_good_pkt_pointers(this_branch, src_reg, 4172 src_reg->type, true); 4173 } else { 4174 return false; 4175 } 4176 break; 4177 default: 4178 return false; 4179 } 4180 4181 return true; 4182 } 4183 4184 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4185 struct bpf_insn *insn, int *insn_idx) 4186 { 4187 struct bpf_verifier_state *this_branch = env->cur_state; 4188 struct bpf_verifier_state *other_branch; 4189 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4190 struct bpf_reg_state *dst_reg, *other_branch_regs; 4191 u8 opcode = BPF_OP(insn->code); 4192 int err; 4193 4194 if (opcode > BPF_JSLE) { 4195 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 4196 return -EINVAL; 4197 } 4198 4199 if (BPF_SRC(insn->code) == BPF_X) { 4200 if (insn->imm != 0) { 4201 verbose(env, "BPF_JMP uses reserved fields\n"); 4202 return -EINVAL; 4203 } 4204 4205 /* check src1 operand */ 4206 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4207 if (err) 4208 return err; 4209 4210 if (is_pointer_value(env, insn->src_reg)) { 4211 verbose(env, "R%d pointer comparison prohibited\n", 4212 insn->src_reg); 4213 return -EACCES; 4214 } 4215 } else { 4216 if (insn->src_reg != BPF_REG_0) { 4217 verbose(env, "BPF_JMP uses reserved fields\n"); 4218 return -EINVAL; 4219 } 4220 } 4221 4222 /* check src2 operand */ 4223 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4224 if (err) 4225 return err; 4226 4227 dst_reg = ®s[insn->dst_reg]; 4228 4229 if (BPF_SRC(insn->code) == BPF_K) { 4230 int pred = is_branch_taken(dst_reg, insn->imm, opcode); 4231 4232 if (pred == 1) { 4233 /* only follow the goto, ignore fall-through */ 4234 *insn_idx += insn->off; 4235 return 0; 4236 } else if (pred == 0) { 4237 /* only follow fall-through branch, since 4238 * that's where the program will go 4239 */ 4240 return 0; 4241 } 4242 } 4243 4244 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 4245 if (!other_branch) 4246 return -EFAULT; 4247 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4248 4249 /* detect if we are comparing against a constant value so we can adjust 4250 * our min/max values for our dst register. 4251 * this is only legit if both are scalars (or pointers to the same 4252 * object, I suppose, but we don't support that right now), because 4253 * otherwise the different base pointers mean the offsets aren't 4254 * comparable. 4255 */ 4256 if (BPF_SRC(insn->code) == BPF_X) { 4257 if (dst_reg->type == SCALAR_VALUE && 4258 regs[insn->src_reg].type == SCALAR_VALUE) { 4259 if (tnum_is_const(regs[insn->src_reg].var_off)) 4260 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4261 dst_reg, regs[insn->src_reg].var_off.value, 4262 opcode); 4263 else if (tnum_is_const(dst_reg->var_off)) 4264 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4265 ®s[insn->src_reg], 4266 dst_reg->var_off.value, opcode); 4267 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 4268 /* Comparing for equality, we can combine knowledge */ 4269 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4270 &other_branch_regs[insn->dst_reg], 4271 ®s[insn->src_reg], 4272 ®s[insn->dst_reg], opcode); 4273 } 4274 } else if (dst_reg->type == SCALAR_VALUE) { 4275 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4276 dst_reg, insn->imm, opcode); 4277 } 4278 4279 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 4280 if (BPF_SRC(insn->code) == BPF_K && 4281 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4282 reg_type_may_be_null(dst_reg->type)) { 4283 /* Mark all identical registers in each branch as either 4284 * safe or unknown depending R == 0 or R != 0 conditional. 4285 */ 4286 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4287 opcode == BPF_JNE); 4288 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4289 opcode == BPF_JEQ); 4290 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4291 this_branch, other_branch) && 4292 is_pointer_value(env, insn->dst_reg)) { 4293 verbose(env, "R%d pointer comparison prohibited\n", 4294 insn->dst_reg); 4295 return -EACCES; 4296 } 4297 if (env->log.level) 4298 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4299 return 0; 4300 } 4301 4302 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4303 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4304 { 4305 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4306 4307 return (struct bpf_map *) (unsigned long) imm64; 4308 } 4309 4310 /* verify BPF_LD_IMM64 instruction */ 4311 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4312 { 4313 struct bpf_reg_state *regs = cur_regs(env); 4314 int err; 4315 4316 if (BPF_SIZE(insn->code) != BPF_DW) { 4317 verbose(env, "invalid BPF_LD_IMM insn\n"); 4318 return -EINVAL; 4319 } 4320 if (insn->off != 0) { 4321 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4322 return -EINVAL; 4323 } 4324 4325 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4326 if (err) 4327 return err; 4328 4329 if (insn->src_reg == 0) { 4330 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4331 4332 regs[insn->dst_reg].type = SCALAR_VALUE; 4333 __mark_reg_known(®s[insn->dst_reg], imm); 4334 return 0; 4335 } 4336 4337 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4338 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4339 4340 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4341 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4342 return 0; 4343 } 4344 4345 static bool may_access_skb(enum bpf_prog_type type) 4346 { 4347 switch (type) { 4348 case BPF_PROG_TYPE_SOCKET_FILTER: 4349 case BPF_PROG_TYPE_SCHED_CLS: 4350 case BPF_PROG_TYPE_SCHED_ACT: 4351 return true; 4352 default: 4353 return false; 4354 } 4355 } 4356 4357 /* verify safety of LD_ABS|LD_IND instructions: 4358 * - they can only appear in the programs where ctx == skb 4359 * - since they are wrappers of function calls, they scratch R1-R5 registers, 4360 * preserve R6-R9, and store return value into R0 4361 * 4362 * Implicit input: 4363 * ctx == skb == R6 == CTX 4364 * 4365 * Explicit input: 4366 * SRC == any register 4367 * IMM == 32-bit immediate 4368 * 4369 * Output: 4370 * R0 - 8/16/32-bit skb data converted to cpu endianness 4371 */ 4372 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4373 { 4374 struct bpf_reg_state *regs = cur_regs(env); 4375 u8 mode = BPF_MODE(insn->code); 4376 int i, err; 4377 4378 if (!may_access_skb(env->prog->type)) { 4379 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4380 return -EINVAL; 4381 } 4382 4383 if (!env->ops->gen_ld_abs) { 4384 verbose(env, "bpf verifier is misconfigured\n"); 4385 return -EINVAL; 4386 } 4387 4388 if (env->subprog_cnt > 1) { 4389 /* when program has LD_ABS insn JITs and interpreter assume 4390 * that r1 == ctx == skb which is not the case for callees 4391 * that can have arbitrary arguments. It's problematic 4392 * for main prog as well since JITs would need to analyze 4393 * all functions in order to make proper register save/restore 4394 * decisions in the main prog. Hence disallow LD_ABS with calls 4395 */ 4396 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4397 return -EINVAL; 4398 } 4399 4400 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4401 BPF_SIZE(insn->code) == BPF_DW || 4402 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4403 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4404 return -EINVAL; 4405 } 4406 4407 /* check whether implicit source operand (register R6) is readable */ 4408 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4409 if (err) 4410 return err; 4411 4412 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 4413 * gen_ld_abs() may terminate the program at runtime, leading to 4414 * reference leak. 4415 */ 4416 err = check_reference_leak(env); 4417 if (err) { 4418 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 4419 return err; 4420 } 4421 4422 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4423 verbose(env, 4424 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4425 return -EINVAL; 4426 } 4427 4428 if (mode == BPF_IND) { 4429 /* check explicit source operand */ 4430 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4431 if (err) 4432 return err; 4433 } 4434 4435 /* reset caller saved regs to unreadable */ 4436 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4437 mark_reg_not_init(env, regs, caller_saved[i]); 4438 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4439 } 4440 4441 /* mark destination R0 register as readable, since it contains 4442 * the value fetched from the packet. 4443 * Already marked as written above. 4444 */ 4445 mark_reg_unknown(env, regs, BPF_REG_0); 4446 return 0; 4447 } 4448 4449 static int check_return_code(struct bpf_verifier_env *env) 4450 { 4451 struct bpf_reg_state *reg; 4452 struct tnum range = tnum_range(0, 1); 4453 4454 switch (env->prog->type) { 4455 case BPF_PROG_TYPE_CGROUP_SKB: 4456 case BPF_PROG_TYPE_CGROUP_SOCK: 4457 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4458 case BPF_PROG_TYPE_SOCK_OPS: 4459 case BPF_PROG_TYPE_CGROUP_DEVICE: 4460 break; 4461 default: 4462 return 0; 4463 } 4464 4465 reg = cur_regs(env) + BPF_REG_0; 4466 if (reg->type != SCALAR_VALUE) { 4467 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4468 reg_type_str[reg->type]); 4469 return -EINVAL; 4470 } 4471 4472 if (!tnum_in(range, reg->var_off)) { 4473 verbose(env, "At program exit the register R0 "); 4474 if (!tnum_is_unknown(reg->var_off)) { 4475 char tn_buf[48]; 4476 4477 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4478 verbose(env, "has value %s", tn_buf); 4479 } else { 4480 verbose(env, "has unknown scalar value"); 4481 } 4482 verbose(env, " should have been 0 or 1\n"); 4483 return -EINVAL; 4484 } 4485 return 0; 4486 } 4487 4488 /* non-recursive DFS pseudo code 4489 * 1 procedure DFS-iterative(G,v): 4490 * 2 label v as discovered 4491 * 3 let S be a stack 4492 * 4 S.push(v) 4493 * 5 while S is not empty 4494 * 6 t <- S.pop() 4495 * 7 if t is what we're looking for: 4496 * 8 return t 4497 * 9 for all edges e in G.adjacentEdges(t) do 4498 * 10 if edge e is already labelled 4499 * 11 continue with the next edge 4500 * 12 w <- G.adjacentVertex(t,e) 4501 * 13 if vertex w is not discovered and not explored 4502 * 14 label e as tree-edge 4503 * 15 label w as discovered 4504 * 16 S.push(w) 4505 * 17 continue at 5 4506 * 18 else if vertex w is discovered 4507 * 19 label e as back-edge 4508 * 20 else 4509 * 21 // vertex w is explored 4510 * 22 label e as forward- or cross-edge 4511 * 23 label t as explored 4512 * 24 S.pop() 4513 * 4514 * convention: 4515 * 0x10 - discovered 4516 * 0x11 - discovered and fall-through edge labelled 4517 * 0x12 - discovered and fall-through and branch edges labelled 4518 * 0x20 - explored 4519 */ 4520 4521 enum { 4522 DISCOVERED = 0x10, 4523 EXPLORED = 0x20, 4524 FALLTHROUGH = 1, 4525 BRANCH = 2, 4526 }; 4527 4528 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4529 4530 static int *insn_stack; /* stack of insns to process */ 4531 static int cur_stack; /* current stack index */ 4532 static int *insn_state; 4533 4534 /* t, w, e - match pseudo-code above: 4535 * t - index of current instruction 4536 * w - next instruction 4537 * e - edge 4538 */ 4539 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4540 { 4541 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4542 return 0; 4543 4544 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4545 return 0; 4546 4547 if (w < 0 || w >= env->prog->len) { 4548 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4549 return -EINVAL; 4550 } 4551 4552 if (e == BRANCH) 4553 /* mark branch target for state pruning */ 4554 env->explored_states[w] = STATE_LIST_MARK; 4555 4556 if (insn_state[w] == 0) { 4557 /* tree-edge */ 4558 insn_state[t] = DISCOVERED | e; 4559 insn_state[w] = DISCOVERED; 4560 if (cur_stack >= env->prog->len) 4561 return -E2BIG; 4562 insn_stack[cur_stack++] = w; 4563 return 1; 4564 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4565 verbose(env, "back-edge from insn %d to %d\n", t, w); 4566 return -EINVAL; 4567 } else if (insn_state[w] == EXPLORED) { 4568 /* forward- or cross-edge */ 4569 insn_state[t] = DISCOVERED | e; 4570 } else { 4571 verbose(env, "insn state internal bug\n"); 4572 return -EFAULT; 4573 } 4574 return 0; 4575 } 4576 4577 /* non-recursive depth-first-search to detect loops in BPF program 4578 * loop == back-edge in directed graph 4579 */ 4580 static int check_cfg(struct bpf_verifier_env *env) 4581 { 4582 struct bpf_insn *insns = env->prog->insnsi; 4583 int insn_cnt = env->prog->len; 4584 int ret = 0; 4585 int i, t; 4586 4587 ret = check_subprogs(env); 4588 if (ret < 0) 4589 return ret; 4590 4591 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4592 if (!insn_state) 4593 return -ENOMEM; 4594 4595 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4596 if (!insn_stack) { 4597 kfree(insn_state); 4598 return -ENOMEM; 4599 } 4600 4601 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4602 insn_stack[0] = 0; /* 0 is the first instruction */ 4603 cur_stack = 1; 4604 4605 peek_stack: 4606 if (cur_stack == 0) 4607 goto check_state; 4608 t = insn_stack[cur_stack - 1]; 4609 4610 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4611 u8 opcode = BPF_OP(insns[t].code); 4612 4613 if (opcode == BPF_EXIT) { 4614 goto mark_explored; 4615 } else if (opcode == BPF_CALL) { 4616 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4617 if (ret == 1) 4618 goto peek_stack; 4619 else if (ret < 0) 4620 goto err_free; 4621 if (t + 1 < insn_cnt) 4622 env->explored_states[t + 1] = STATE_LIST_MARK; 4623 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4624 env->explored_states[t] = STATE_LIST_MARK; 4625 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4626 if (ret == 1) 4627 goto peek_stack; 4628 else if (ret < 0) 4629 goto err_free; 4630 } 4631 } else if (opcode == BPF_JA) { 4632 if (BPF_SRC(insns[t].code) != BPF_K) { 4633 ret = -EINVAL; 4634 goto err_free; 4635 } 4636 /* unconditional jump with single edge */ 4637 ret = push_insn(t, t + insns[t].off + 1, 4638 FALLTHROUGH, env); 4639 if (ret == 1) 4640 goto peek_stack; 4641 else if (ret < 0) 4642 goto err_free; 4643 /* tell verifier to check for equivalent states 4644 * after every call and jump 4645 */ 4646 if (t + 1 < insn_cnt) 4647 env->explored_states[t + 1] = STATE_LIST_MARK; 4648 } else { 4649 /* conditional jump with two edges */ 4650 env->explored_states[t] = STATE_LIST_MARK; 4651 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4652 if (ret == 1) 4653 goto peek_stack; 4654 else if (ret < 0) 4655 goto err_free; 4656 4657 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4658 if (ret == 1) 4659 goto peek_stack; 4660 else if (ret < 0) 4661 goto err_free; 4662 } 4663 } else { 4664 /* all other non-branch instructions with single 4665 * fall-through edge 4666 */ 4667 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4668 if (ret == 1) 4669 goto peek_stack; 4670 else if (ret < 0) 4671 goto err_free; 4672 } 4673 4674 mark_explored: 4675 insn_state[t] = EXPLORED; 4676 if (cur_stack-- <= 0) { 4677 verbose(env, "pop stack internal bug\n"); 4678 ret = -EFAULT; 4679 goto err_free; 4680 } 4681 goto peek_stack; 4682 4683 check_state: 4684 for (i = 0; i < insn_cnt; i++) { 4685 if (insn_state[i] != EXPLORED) { 4686 verbose(env, "unreachable insn %d\n", i); 4687 ret = -EINVAL; 4688 goto err_free; 4689 } 4690 } 4691 ret = 0; /* cfg looks good */ 4692 4693 err_free: 4694 kfree(insn_state); 4695 kfree(insn_stack); 4696 return ret; 4697 } 4698 4699 /* check %cur's range satisfies %old's */ 4700 static bool range_within(struct bpf_reg_state *old, 4701 struct bpf_reg_state *cur) 4702 { 4703 return old->umin_value <= cur->umin_value && 4704 old->umax_value >= cur->umax_value && 4705 old->smin_value <= cur->smin_value && 4706 old->smax_value >= cur->smax_value; 4707 } 4708 4709 /* Maximum number of register states that can exist at once */ 4710 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4711 struct idpair { 4712 u32 old; 4713 u32 cur; 4714 }; 4715 4716 /* If in the old state two registers had the same id, then they need to have 4717 * the same id in the new state as well. But that id could be different from 4718 * the old state, so we need to track the mapping from old to new ids. 4719 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4720 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4721 * regs with a different old id could still have new id 9, we don't care about 4722 * that. 4723 * So we look through our idmap to see if this old id has been seen before. If 4724 * so, we require the new id to match; otherwise, we add the id pair to the map. 4725 */ 4726 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4727 { 4728 unsigned int i; 4729 4730 for (i = 0; i < ID_MAP_SIZE; i++) { 4731 if (!idmap[i].old) { 4732 /* Reached an empty slot; haven't seen this id before */ 4733 idmap[i].old = old_id; 4734 idmap[i].cur = cur_id; 4735 return true; 4736 } 4737 if (idmap[i].old == old_id) 4738 return idmap[i].cur == cur_id; 4739 } 4740 /* We ran out of idmap slots, which should be impossible */ 4741 WARN_ON_ONCE(1); 4742 return false; 4743 } 4744 4745 /* Returns true if (rold safe implies rcur safe) */ 4746 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4747 struct idpair *idmap) 4748 { 4749 bool equal; 4750 4751 if (!(rold->live & REG_LIVE_READ)) 4752 /* explored state didn't use this */ 4753 return true; 4754 4755 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 4756 4757 if (rold->type == PTR_TO_STACK) 4758 /* two stack pointers are equal only if they're pointing to 4759 * the same stack frame, since fp-8 in foo != fp-8 in bar 4760 */ 4761 return equal && rold->frameno == rcur->frameno; 4762 4763 if (equal) 4764 return true; 4765 4766 if (rold->type == NOT_INIT) 4767 /* explored state can't have used this */ 4768 return true; 4769 if (rcur->type == NOT_INIT) 4770 return false; 4771 switch (rold->type) { 4772 case SCALAR_VALUE: 4773 if (rcur->type == SCALAR_VALUE) { 4774 /* new val must satisfy old val knowledge */ 4775 return range_within(rold, rcur) && 4776 tnum_in(rold->var_off, rcur->var_off); 4777 } else { 4778 /* We're trying to use a pointer in place of a scalar. 4779 * Even if the scalar was unbounded, this could lead to 4780 * pointer leaks because scalars are allowed to leak 4781 * while pointers are not. We could make this safe in 4782 * special cases if root is calling us, but it's 4783 * probably not worth the hassle. 4784 */ 4785 return false; 4786 } 4787 case PTR_TO_MAP_VALUE: 4788 /* If the new min/max/var_off satisfy the old ones and 4789 * everything else matches, we are OK. 4790 * We don't care about the 'id' value, because nothing 4791 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4792 */ 4793 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4794 range_within(rold, rcur) && 4795 tnum_in(rold->var_off, rcur->var_off); 4796 case PTR_TO_MAP_VALUE_OR_NULL: 4797 /* a PTR_TO_MAP_VALUE could be safe to use as a 4798 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4799 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4800 * checked, doing so could have affected others with the same 4801 * id, and we can't check for that because we lost the id when 4802 * we converted to a PTR_TO_MAP_VALUE. 4803 */ 4804 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4805 return false; 4806 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4807 return false; 4808 /* Check our ids match any regs they're supposed to */ 4809 return check_ids(rold->id, rcur->id, idmap); 4810 case PTR_TO_PACKET_META: 4811 case PTR_TO_PACKET: 4812 if (rcur->type != rold->type) 4813 return false; 4814 /* We must have at least as much range as the old ptr 4815 * did, so that any accesses which were safe before are 4816 * still safe. This is true even if old range < old off, 4817 * since someone could have accessed through (ptr - k), or 4818 * even done ptr -= k in a register, to get a safe access. 4819 */ 4820 if (rold->range > rcur->range) 4821 return false; 4822 /* If the offsets don't match, we can't trust our alignment; 4823 * nor can we be sure that we won't fall out of range. 4824 */ 4825 if (rold->off != rcur->off) 4826 return false; 4827 /* id relations must be preserved */ 4828 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4829 return false; 4830 /* new val must satisfy old val knowledge */ 4831 return range_within(rold, rcur) && 4832 tnum_in(rold->var_off, rcur->var_off); 4833 case PTR_TO_CTX: 4834 case CONST_PTR_TO_MAP: 4835 case PTR_TO_PACKET_END: 4836 case PTR_TO_FLOW_KEYS: 4837 case PTR_TO_SOCKET: 4838 case PTR_TO_SOCKET_OR_NULL: 4839 /* Only valid matches are exact, which memcmp() above 4840 * would have accepted 4841 */ 4842 default: 4843 /* Don't know what's going on, just say it's not safe */ 4844 return false; 4845 } 4846 4847 /* Shouldn't get here; if we do, say it's not safe */ 4848 WARN_ON_ONCE(1); 4849 return false; 4850 } 4851 4852 static bool stacksafe(struct bpf_func_state *old, 4853 struct bpf_func_state *cur, 4854 struct idpair *idmap) 4855 { 4856 int i, spi; 4857 4858 /* if explored stack has more populated slots than current stack 4859 * such stacks are not equivalent 4860 */ 4861 if (old->allocated_stack > cur->allocated_stack) 4862 return false; 4863 4864 /* walk slots of the explored stack and ignore any additional 4865 * slots in the current stack, since explored(safe) state 4866 * didn't use them 4867 */ 4868 for (i = 0; i < old->allocated_stack; i++) { 4869 spi = i / BPF_REG_SIZE; 4870 4871 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4872 /* explored state didn't use this */ 4873 continue; 4874 4875 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4876 continue; 4877 /* if old state was safe with misc data in the stack 4878 * it will be safe with zero-initialized stack. 4879 * The opposite is not true 4880 */ 4881 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4882 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4883 continue; 4884 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4885 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4886 /* Ex: old explored (safe) state has STACK_SPILL in 4887 * this stack slot, but current has has STACK_MISC -> 4888 * this verifier states are not equivalent, 4889 * return false to continue verification of this path 4890 */ 4891 return false; 4892 if (i % BPF_REG_SIZE) 4893 continue; 4894 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4895 continue; 4896 if (!regsafe(&old->stack[spi].spilled_ptr, 4897 &cur->stack[spi].spilled_ptr, 4898 idmap)) 4899 /* when explored and current stack slot are both storing 4900 * spilled registers, check that stored pointers types 4901 * are the same as well. 4902 * Ex: explored safe path could have stored 4903 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4904 * but current path has stored: 4905 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4906 * such verifier states are not equivalent. 4907 * return false to continue verification of this path 4908 */ 4909 return false; 4910 } 4911 return true; 4912 } 4913 4914 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 4915 { 4916 if (old->acquired_refs != cur->acquired_refs) 4917 return false; 4918 return !memcmp(old->refs, cur->refs, 4919 sizeof(*old->refs) * old->acquired_refs); 4920 } 4921 4922 /* compare two verifier states 4923 * 4924 * all states stored in state_list are known to be valid, since 4925 * verifier reached 'bpf_exit' instruction through them 4926 * 4927 * this function is called when verifier exploring different branches of 4928 * execution popped from the state stack. If it sees an old state that has 4929 * more strict register state and more strict stack state then this execution 4930 * branch doesn't need to be explored further, since verifier already 4931 * concluded that more strict state leads to valid finish. 4932 * 4933 * Therefore two states are equivalent if register state is more conservative 4934 * and explored stack state is more conservative than the current one. 4935 * Example: 4936 * explored current 4937 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4938 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4939 * 4940 * In other words if current stack state (one being explored) has more 4941 * valid slots than old one that already passed validation, it means 4942 * the verifier can stop exploring and conclude that current state is valid too 4943 * 4944 * Similarly with registers. If explored state has register type as invalid 4945 * whereas register type in current state is meaningful, it means that 4946 * the current state will reach 'bpf_exit' instruction safely 4947 */ 4948 static bool func_states_equal(struct bpf_func_state *old, 4949 struct bpf_func_state *cur) 4950 { 4951 struct idpair *idmap; 4952 bool ret = false; 4953 int i; 4954 4955 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4956 /* If we failed to allocate the idmap, just say it's not safe */ 4957 if (!idmap) 4958 return false; 4959 4960 for (i = 0; i < MAX_BPF_REG; i++) { 4961 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4962 goto out_free; 4963 } 4964 4965 if (!stacksafe(old, cur, idmap)) 4966 goto out_free; 4967 4968 if (!refsafe(old, cur)) 4969 goto out_free; 4970 ret = true; 4971 out_free: 4972 kfree(idmap); 4973 return ret; 4974 } 4975 4976 static bool states_equal(struct bpf_verifier_env *env, 4977 struct bpf_verifier_state *old, 4978 struct bpf_verifier_state *cur) 4979 { 4980 int i; 4981 4982 if (old->curframe != cur->curframe) 4983 return false; 4984 4985 /* for states to be equal callsites have to be the same 4986 * and all frame states need to be equivalent 4987 */ 4988 for (i = 0; i <= old->curframe; i++) { 4989 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4990 return false; 4991 if (!func_states_equal(old->frame[i], cur->frame[i])) 4992 return false; 4993 } 4994 return true; 4995 } 4996 4997 /* A write screens off any subsequent reads; but write marks come from the 4998 * straight-line code between a state and its parent. When we arrive at an 4999 * equivalent state (jump target or such) we didn't arrive by the straight-line 5000 * code, so read marks in the state must propagate to the parent regardless 5001 * of the state's write marks. That's what 'parent == state->parent' comparison 5002 * in mark_reg_read() is for. 5003 */ 5004 static int propagate_liveness(struct bpf_verifier_env *env, 5005 const struct bpf_verifier_state *vstate, 5006 struct bpf_verifier_state *vparent) 5007 { 5008 int i, frame, err = 0; 5009 struct bpf_func_state *state, *parent; 5010 5011 if (vparent->curframe != vstate->curframe) { 5012 WARN(1, "propagate_live: parent frame %d current frame %d\n", 5013 vparent->curframe, vstate->curframe); 5014 return -EFAULT; 5015 } 5016 /* Propagate read liveness of registers... */ 5017 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 5018 /* We don't need to worry about FP liveness because it's read-only */ 5019 for (i = 0; i < BPF_REG_FP; i++) { 5020 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 5021 continue; 5022 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 5023 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 5024 &vparent->frame[vstate->curframe]->regs[i]); 5025 if (err) 5026 return err; 5027 } 5028 } 5029 5030 /* ... and stack slots */ 5031 for (frame = 0; frame <= vstate->curframe; frame++) { 5032 state = vstate->frame[frame]; 5033 parent = vparent->frame[frame]; 5034 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 5035 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 5036 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 5037 continue; 5038 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 5039 mark_reg_read(env, &state->stack[i].spilled_ptr, 5040 &parent->stack[i].spilled_ptr); 5041 } 5042 } 5043 return err; 5044 } 5045 5046 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 5047 { 5048 struct bpf_verifier_state_list *new_sl; 5049 struct bpf_verifier_state_list *sl; 5050 struct bpf_verifier_state *cur = env->cur_state, *new; 5051 int i, j, err, states_cnt = 0; 5052 5053 sl = env->explored_states[insn_idx]; 5054 if (!sl) 5055 /* this 'insn_idx' instruction wasn't marked, so we will not 5056 * be doing state search here 5057 */ 5058 return 0; 5059 5060 while (sl != STATE_LIST_MARK) { 5061 if (states_equal(env, &sl->state, cur)) { 5062 /* reached equivalent register/stack state, 5063 * prune the search. 5064 * Registers read by the continuation are read by us. 5065 * If we have any write marks in env->cur_state, they 5066 * will prevent corresponding reads in the continuation 5067 * from reaching our parent (an explored_state). Our 5068 * own state will get the read marks recorded, but 5069 * they'll be immediately forgotten as we're pruning 5070 * this state and will pop a new one. 5071 */ 5072 err = propagate_liveness(env, &sl->state, cur); 5073 if (err) 5074 return err; 5075 return 1; 5076 } 5077 sl = sl->next; 5078 states_cnt++; 5079 } 5080 5081 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 5082 return 0; 5083 5084 /* there were no equivalent states, remember current one. 5085 * technically the current state is not proven to be safe yet, 5086 * but it will either reach outer most bpf_exit (which means it's safe) 5087 * or it will be rejected. Since there are no loops, we won't be 5088 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 5089 * again on the way to bpf_exit 5090 */ 5091 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 5092 if (!new_sl) 5093 return -ENOMEM; 5094 5095 /* add new state to the head of linked list */ 5096 new = &new_sl->state; 5097 err = copy_verifier_state(new, cur); 5098 if (err) { 5099 free_verifier_state(new, false); 5100 kfree(new_sl); 5101 return err; 5102 } 5103 new_sl->next = env->explored_states[insn_idx]; 5104 env->explored_states[insn_idx] = new_sl; 5105 /* connect new state to parentage chain */ 5106 for (i = 0; i < BPF_REG_FP; i++) 5107 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i]; 5108 /* clear write marks in current state: the writes we did are not writes 5109 * our child did, so they don't screen off its reads from us. 5110 * (There are no read marks in current state, because reads always mark 5111 * their parent and current state never has children yet. Only 5112 * explored_states can get read marks.) 5113 */ 5114 for (i = 0; i < BPF_REG_FP; i++) 5115 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 5116 5117 /* all stack frames are accessible from callee, clear them all */ 5118 for (j = 0; j <= cur->curframe; j++) { 5119 struct bpf_func_state *frame = cur->frame[j]; 5120 struct bpf_func_state *newframe = new->frame[j]; 5121 5122 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 5123 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 5124 frame->stack[i].spilled_ptr.parent = 5125 &newframe->stack[i].spilled_ptr; 5126 } 5127 } 5128 return 0; 5129 } 5130 5131 /* Return true if it's OK to have the same insn return a different type. */ 5132 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 5133 { 5134 switch (type) { 5135 case PTR_TO_CTX: 5136 case PTR_TO_SOCKET: 5137 case PTR_TO_SOCKET_OR_NULL: 5138 return false; 5139 default: 5140 return true; 5141 } 5142 } 5143 5144 /* If an instruction was previously used with particular pointer types, then we 5145 * need to be careful to avoid cases such as the below, where it may be ok 5146 * for one branch accessing the pointer, but not ok for the other branch: 5147 * 5148 * R1 = sock_ptr 5149 * goto X; 5150 * ... 5151 * R1 = some_other_valid_ptr; 5152 * goto X; 5153 * ... 5154 * R2 = *(u32 *)(R1 + 0); 5155 */ 5156 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 5157 { 5158 return src != prev && (!reg_type_mismatch_ok(src) || 5159 !reg_type_mismatch_ok(prev)); 5160 } 5161 5162 static int do_check(struct bpf_verifier_env *env) 5163 { 5164 struct bpf_verifier_state *state; 5165 struct bpf_insn *insns = env->prog->insnsi; 5166 struct bpf_reg_state *regs; 5167 int insn_cnt = env->prog->len, i; 5168 int insn_idx, prev_insn_idx = 0; 5169 int insn_processed = 0; 5170 bool do_print_state = false; 5171 5172 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 5173 if (!state) 5174 return -ENOMEM; 5175 state->curframe = 0; 5176 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 5177 if (!state->frame[0]) { 5178 kfree(state); 5179 return -ENOMEM; 5180 } 5181 env->cur_state = state; 5182 init_func_state(env, state->frame[0], 5183 BPF_MAIN_FUNC /* callsite */, 5184 0 /* frameno */, 5185 0 /* subprogno, zero == main subprog */); 5186 insn_idx = 0; 5187 for (;;) { 5188 struct bpf_insn *insn; 5189 u8 class; 5190 int err; 5191 5192 if (insn_idx >= insn_cnt) { 5193 verbose(env, "invalid insn idx %d insn_cnt %d\n", 5194 insn_idx, insn_cnt); 5195 return -EFAULT; 5196 } 5197 5198 insn = &insns[insn_idx]; 5199 class = BPF_CLASS(insn->code); 5200 5201 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 5202 verbose(env, 5203 "BPF program is too large. Processed %d insn\n", 5204 insn_processed); 5205 return -E2BIG; 5206 } 5207 5208 err = is_state_visited(env, insn_idx); 5209 if (err < 0) 5210 return err; 5211 if (err == 1) { 5212 /* found equivalent state, can prune the search */ 5213 if (env->log.level) { 5214 if (do_print_state) 5215 verbose(env, "\nfrom %d to %d: safe\n", 5216 prev_insn_idx, insn_idx); 5217 else 5218 verbose(env, "%d: safe\n", insn_idx); 5219 } 5220 goto process_bpf_exit; 5221 } 5222 5223 if (signal_pending(current)) 5224 return -EAGAIN; 5225 5226 if (need_resched()) 5227 cond_resched(); 5228 5229 if (env->log.level > 1 || (env->log.level && do_print_state)) { 5230 if (env->log.level > 1) 5231 verbose(env, "%d:", insn_idx); 5232 else 5233 verbose(env, "\nfrom %d to %d:", 5234 prev_insn_idx, insn_idx); 5235 print_verifier_state(env, state->frame[state->curframe]); 5236 do_print_state = false; 5237 } 5238 5239 if (env->log.level) { 5240 const struct bpf_insn_cbs cbs = { 5241 .cb_print = verbose, 5242 .private_data = env, 5243 }; 5244 5245 verbose(env, "%d: ", insn_idx); 5246 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 5247 } 5248 5249 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5250 err = bpf_prog_offload_verify_insn(env, insn_idx, 5251 prev_insn_idx); 5252 if (err) 5253 return err; 5254 } 5255 5256 regs = cur_regs(env); 5257 env->insn_aux_data[insn_idx].seen = true; 5258 5259 if (class == BPF_ALU || class == BPF_ALU64) { 5260 err = check_alu_op(env, insn); 5261 if (err) 5262 return err; 5263 5264 } else if (class == BPF_LDX) { 5265 enum bpf_reg_type *prev_src_type, src_reg_type; 5266 5267 /* check for reserved fields is already done */ 5268 5269 /* check src operand */ 5270 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5271 if (err) 5272 return err; 5273 5274 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5275 if (err) 5276 return err; 5277 5278 src_reg_type = regs[insn->src_reg].type; 5279 5280 /* check that memory (src_reg + off) is readable, 5281 * the state of dst_reg will be updated by this func 5282 */ 5283 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 5284 BPF_SIZE(insn->code), BPF_READ, 5285 insn->dst_reg, false); 5286 if (err) 5287 return err; 5288 5289 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 5290 5291 if (*prev_src_type == NOT_INIT) { 5292 /* saw a valid insn 5293 * dst_reg = *(u32 *)(src_reg + off) 5294 * save type to validate intersecting paths 5295 */ 5296 *prev_src_type = src_reg_type; 5297 5298 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 5299 /* ABuser program is trying to use the same insn 5300 * dst_reg = *(u32*) (src_reg + off) 5301 * with different pointer types: 5302 * src_reg == ctx in one branch and 5303 * src_reg == stack|map in some other branch. 5304 * Reject it. 5305 */ 5306 verbose(env, "same insn cannot be used with different pointers\n"); 5307 return -EINVAL; 5308 } 5309 5310 } else if (class == BPF_STX) { 5311 enum bpf_reg_type *prev_dst_type, dst_reg_type; 5312 5313 if (BPF_MODE(insn->code) == BPF_XADD) { 5314 err = check_xadd(env, insn_idx, insn); 5315 if (err) 5316 return err; 5317 insn_idx++; 5318 continue; 5319 } 5320 5321 /* check src1 operand */ 5322 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5323 if (err) 5324 return err; 5325 /* check src2 operand */ 5326 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5327 if (err) 5328 return err; 5329 5330 dst_reg_type = regs[insn->dst_reg].type; 5331 5332 /* check that memory (dst_reg + off) is writeable */ 5333 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5334 BPF_SIZE(insn->code), BPF_WRITE, 5335 insn->src_reg, false); 5336 if (err) 5337 return err; 5338 5339 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 5340 5341 if (*prev_dst_type == NOT_INIT) { 5342 *prev_dst_type = dst_reg_type; 5343 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 5344 verbose(env, "same insn cannot be used with different pointers\n"); 5345 return -EINVAL; 5346 } 5347 5348 } else if (class == BPF_ST) { 5349 if (BPF_MODE(insn->code) != BPF_MEM || 5350 insn->src_reg != BPF_REG_0) { 5351 verbose(env, "BPF_ST uses reserved fields\n"); 5352 return -EINVAL; 5353 } 5354 /* check src operand */ 5355 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5356 if (err) 5357 return err; 5358 5359 if (is_ctx_reg(env, insn->dst_reg)) { 5360 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 5361 insn->dst_reg, 5362 reg_type_str[reg_state(env, insn->dst_reg)->type]); 5363 return -EACCES; 5364 } 5365 5366 /* check that memory (dst_reg + off) is writeable */ 5367 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5368 BPF_SIZE(insn->code), BPF_WRITE, 5369 -1, false); 5370 if (err) 5371 return err; 5372 5373 } else if (class == BPF_JMP) { 5374 u8 opcode = BPF_OP(insn->code); 5375 5376 if (opcode == BPF_CALL) { 5377 if (BPF_SRC(insn->code) != BPF_K || 5378 insn->off != 0 || 5379 (insn->src_reg != BPF_REG_0 && 5380 insn->src_reg != BPF_PSEUDO_CALL) || 5381 insn->dst_reg != BPF_REG_0) { 5382 verbose(env, "BPF_CALL uses reserved fields\n"); 5383 return -EINVAL; 5384 } 5385 5386 if (insn->src_reg == BPF_PSEUDO_CALL) 5387 err = check_func_call(env, insn, &insn_idx); 5388 else 5389 err = check_helper_call(env, insn->imm, insn_idx); 5390 if (err) 5391 return err; 5392 5393 } else if (opcode == BPF_JA) { 5394 if (BPF_SRC(insn->code) != BPF_K || 5395 insn->imm != 0 || 5396 insn->src_reg != BPF_REG_0 || 5397 insn->dst_reg != BPF_REG_0) { 5398 verbose(env, "BPF_JA uses reserved fields\n"); 5399 return -EINVAL; 5400 } 5401 5402 insn_idx += insn->off + 1; 5403 continue; 5404 5405 } else if (opcode == BPF_EXIT) { 5406 if (BPF_SRC(insn->code) != BPF_K || 5407 insn->imm != 0 || 5408 insn->src_reg != BPF_REG_0 || 5409 insn->dst_reg != BPF_REG_0) { 5410 verbose(env, "BPF_EXIT uses reserved fields\n"); 5411 return -EINVAL; 5412 } 5413 5414 if (state->curframe) { 5415 /* exit from nested function */ 5416 prev_insn_idx = insn_idx; 5417 err = prepare_func_exit(env, &insn_idx); 5418 if (err) 5419 return err; 5420 do_print_state = true; 5421 continue; 5422 } 5423 5424 err = check_reference_leak(env); 5425 if (err) 5426 return err; 5427 5428 /* eBPF calling convetion is such that R0 is used 5429 * to return the value from eBPF program. 5430 * Make sure that it's readable at this time 5431 * of bpf_exit, which means that program wrote 5432 * something into it earlier 5433 */ 5434 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 5435 if (err) 5436 return err; 5437 5438 if (is_pointer_value(env, BPF_REG_0)) { 5439 verbose(env, "R0 leaks addr as return value\n"); 5440 return -EACCES; 5441 } 5442 5443 err = check_return_code(env); 5444 if (err) 5445 return err; 5446 process_bpf_exit: 5447 err = pop_stack(env, &prev_insn_idx, &insn_idx); 5448 if (err < 0) { 5449 if (err != -ENOENT) 5450 return err; 5451 break; 5452 } else { 5453 do_print_state = true; 5454 continue; 5455 } 5456 } else { 5457 err = check_cond_jmp_op(env, insn, &insn_idx); 5458 if (err) 5459 return err; 5460 } 5461 } else if (class == BPF_LD) { 5462 u8 mode = BPF_MODE(insn->code); 5463 5464 if (mode == BPF_ABS || mode == BPF_IND) { 5465 err = check_ld_abs(env, insn); 5466 if (err) 5467 return err; 5468 5469 } else if (mode == BPF_IMM) { 5470 err = check_ld_imm(env, insn); 5471 if (err) 5472 return err; 5473 5474 insn_idx++; 5475 env->insn_aux_data[insn_idx].seen = true; 5476 } else { 5477 verbose(env, "invalid BPF_LD mode\n"); 5478 return -EINVAL; 5479 } 5480 } else { 5481 verbose(env, "unknown insn class %d\n", class); 5482 return -EINVAL; 5483 } 5484 5485 insn_idx++; 5486 } 5487 5488 verbose(env, "processed %d insns (limit %d), stack depth ", 5489 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5490 for (i = 0; i < env->subprog_cnt; i++) { 5491 u32 depth = env->subprog_info[i].stack_depth; 5492 5493 verbose(env, "%d", depth); 5494 if (i + 1 < env->subprog_cnt) 5495 verbose(env, "+"); 5496 } 5497 verbose(env, "\n"); 5498 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5499 return 0; 5500 } 5501 5502 static int check_map_prealloc(struct bpf_map *map) 5503 { 5504 return (map->map_type != BPF_MAP_TYPE_HASH && 5505 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5506 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5507 !(map->map_flags & BPF_F_NO_PREALLOC); 5508 } 5509 5510 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5511 struct bpf_map *map, 5512 struct bpf_prog *prog) 5513 5514 { 5515 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 5516 * preallocated hash maps, since doing memory allocation 5517 * in overflow_handler can crash depending on where nmi got 5518 * triggered. 5519 */ 5520 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5521 if (!check_map_prealloc(map)) { 5522 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5523 return -EINVAL; 5524 } 5525 if (map->inner_map_meta && 5526 !check_map_prealloc(map->inner_map_meta)) { 5527 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5528 return -EINVAL; 5529 } 5530 } 5531 5532 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5533 !bpf_offload_prog_map_match(prog, map)) { 5534 verbose(env, "offload device mismatch between prog and map\n"); 5535 return -EINVAL; 5536 } 5537 5538 return 0; 5539 } 5540 5541 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 5542 { 5543 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 5544 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 5545 } 5546 5547 /* look for pseudo eBPF instructions that access map FDs and 5548 * replace them with actual map pointers 5549 */ 5550 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5551 { 5552 struct bpf_insn *insn = env->prog->insnsi; 5553 int insn_cnt = env->prog->len; 5554 int i, j, err; 5555 5556 err = bpf_prog_calc_tag(env->prog); 5557 if (err) 5558 return err; 5559 5560 for (i = 0; i < insn_cnt; i++, insn++) { 5561 if (BPF_CLASS(insn->code) == BPF_LDX && 5562 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5563 verbose(env, "BPF_LDX uses reserved fields\n"); 5564 return -EINVAL; 5565 } 5566 5567 if (BPF_CLASS(insn->code) == BPF_STX && 5568 ((BPF_MODE(insn->code) != BPF_MEM && 5569 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5570 verbose(env, "BPF_STX uses reserved fields\n"); 5571 return -EINVAL; 5572 } 5573 5574 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5575 struct bpf_map *map; 5576 struct fd f; 5577 5578 if (i == insn_cnt - 1 || insn[1].code != 0 || 5579 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5580 insn[1].off != 0) { 5581 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5582 return -EINVAL; 5583 } 5584 5585 if (insn->src_reg == 0) 5586 /* valid generic load 64-bit imm */ 5587 goto next_insn; 5588 5589 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5590 verbose(env, 5591 "unrecognized bpf_ld_imm64 insn\n"); 5592 return -EINVAL; 5593 } 5594 5595 f = fdget(insn->imm); 5596 map = __bpf_map_get(f); 5597 if (IS_ERR(map)) { 5598 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5599 insn->imm); 5600 return PTR_ERR(map); 5601 } 5602 5603 err = check_map_prog_compatibility(env, map, env->prog); 5604 if (err) { 5605 fdput(f); 5606 return err; 5607 } 5608 5609 /* store map pointer inside BPF_LD_IMM64 instruction */ 5610 insn[0].imm = (u32) (unsigned long) map; 5611 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5612 5613 /* check whether we recorded this map already */ 5614 for (j = 0; j < env->used_map_cnt; j++) 5615 if (env->used_maps[j] == map) { 5616 fdput(f); 5617 goto next_insn; 5618 } 5619 5620 if (env->used_map_cnt >= MAX_USED_MAPS) { 5621 fdput(f); 5622 return -E2BIG; 5623 } 5624 5625 /* hold the map. If the program is rejected by verifier, 5626 * the map will be released by release_maps() or it 5627 * will be used by the valid program until it's unloaded 5628 * and all maps are released in free_used_maps() 5629 */ 5630 map = bpf_map_inc(map, false); 5631 if (IS_ERR(map)) { 5632 fdput(f); 5633 return PTR_ERR(map); 5634 } 5635 env->used_maps[env->used_map_cnt++] = map; 5636 5637 if (bpf_map_is_cgroup_storage(map) && 5638 bpf_cgroup_storage_assign(env->prog, map)) { 5639 verbose(env, "only one cgroup storage of each type is allowed\n"); 5640 fdput(f); 5641 return -EBUSY; 5642 } 5643 5644 fdput(f); 5645 next_insn: 5646 insn++; 5647 i++; 5648 continue; 5649 } 5650 5651 /* Basic sanity check before we invest more work here. */ 5652 if (!bpf_opcode_in_insntable(insn->code)) { 5653 verbose(env, "unknown opcode %02x\n", insn->code); 5654 return -EINVAL; 5655 } 5656 } 5657 5658 /* now all pseudo BPF_LD_IMM64 instructions load valid 5659 * 'struct bpf_map *' into a register instead of user map_fd. 5660 * These pointers will be used later by verifier to validate map access. 5661 */ 5662 return 0; 5663 } 5664 5665 /* drop refcnt of maps used by the rejected program */ 5666 static void release_maps(struct bpf_verifier_env *env) 5667 { 5668 enum bpf_cgroup_storage_type stype; 5669 int i; 5670 5671 for_each_cgroup_storage_type(stype) { 5672 if (!env->prog->aux->cgroup_storage[stype]) 5673 continue; 5674 bpf_cgroup_storage_release(env->prog, 5675 env->prog->aux->cgroup_storage[stype]); 5676 } 5677 5678 for (i = 0; i < env->used_map_cnt; i++) 5679 bpf_map_put(env->used_maps[i]); 5680 } 5681 5682 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5683 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5684 { 5685 struct bpf_insn *insn = env->prog->insnsi; 5686 int insn_cnt = env->prog->len; 5687 int i; 5688 5689 for (i = 0; i < insn_cnt; i++, insn++) 5690 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5691 insn->src_reg = 0; 5692 } 5693 5694 /* single env->prog->insni[off] instruction was replaced with the range 5695 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5696 * [0, off) and [off, end) to new locations, so the patched range stays zero 5697 */ 5698 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5699 u32 off, u32 cnt) 5700 { 5701 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5702 int i; 5703 5704 if (cnt == 1) 5705 return 0; 5706 new_data = vzalloc(array_size(prog_len, 5707 sizeof(struct bpf_insn_aux_data))); 5708 if (!new_data) 5709 return -ENOMEM; 5710 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5711 memcpy(new_data + off + cnt - 1, old_data + off, 5712 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5713 for (i = off; i < off + cnt - 1; i++) 5714 new_data[i].seen = true; 5715 env->insn_aux_data = new_data; 5716 vfree(old_data); 5717 return 0; 5718 } 5719 5720 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5721 { 5722 int i; 5723 5724 if (len == 1) 5725 return; 5726 /* NOTE: fake 'exit' subprog should be updated as well. */ 5727 for (i = 0; i <= env->subprog_cnt; i++) { 5728 if (env->subprog_info[i].start <= off) 5729 continue; 5730 env->subprog_info[i].start += len - 1; 5731 } 5732 } 5733 5734 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5735 const struct bpf_insn *patch, u32 len) 5736 { 5737 struct bpf_prog *new_prog; 5738 5739 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5740 if (!new_prog) 5741 return NULL; 5742 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5743 return NULL; 5744 adjust_subprog_starts(env, off, len); 5745 return new_prog; 5746 } 5747 5748 /* The verifier does more data flow analysis than llvm and will not 5749 * explore branches that are dead at run time. Malicious programs can 5750 * have dead code too. Therefore replace all dead at-run-time code 5751 * with 'ja -1'. 5752 * 5753 * Just nops are not optimal, e.g. if they would sit at the end of the 5754 * program and through another bug we would manage to jump there, then 5755 * we'd execute beyond program memory otherwise. Returning exception 5756 * code also wouldn't work since we can have subprogs where the dead 5757 * code could be located. 5758 */ 5759 static void sanitize_dead_code(struct bpf_verifier_env *env) 5760 { 5761 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5762 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5763 struct bpf_insn *insn = env->prog->insnsi; 5764 const int insn_cnt = env->prog->len; 5765 int i; 5766 5767 for (i = 0; i < insn_cnt; i++) { 5768 if (aux_data[i].seen) 5769 continue; 5770 memcpy(insn + i, &trap, sizeof(trap)); 5771 } 5772 } 5773 5774 /* convert load instructions that access fields of a context type into a 5775 * sequence of instructions that access fields of the underlying structure: 5776 * struct __sk_buff -> struct sk_buff 5777 * struct bpf_sock_ops -> struct sock 5778 */ 5779 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5780 { 5781 const struct bpf_verifier_ops *ops = env->ops; 5782 int i, cnt, size, ctx_field_size, delta = 0; 5783 const int insn_cnt = env->prog->len; 5784 struct bpf_insn insn_buf[16], *insn; 5785 struct bpf_prog *new_prog; 5786 enum bpf_access_type type; 5787 bool is_narrower_load; 5788 u32 target_size; 5789 5790 if (ops->gen_prologue || env->seen_direct_write) { 5791 if (!ops->gen_prologue) { 5792 verbose(env, "bpf verifier is misconfigured\n"); 5793 return -EINVAL; 5794 } 5795 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5796 env->prog); 5797 if (cnt >= ARRAY_SIZE(insn_buf)) { 5798 verbose(env, "bpf verifier is misconfigured\n"); 5799 return -EINVAL; 5800 } else if (cnt) { 5801 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5802 if (!new_prog) 5803 return -ENOMEM; 5804 5805 env->prog = new_prog; 5806 delta += cnt - 1; 5807 } 5808 } 5809 5810 if (bpf_prog_is_dev_bound(env->prog->aux)) 5811 return 0; 5812 5813 insn = env->prog->insnsi + delta; 5814 5815 for (i = 0; i < insn_cnt; i++, insn++) { 5816 bpf_convert_ctx_access_t convert_ctx_access; 5817 5818 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5819 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5820 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5821 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5822 type = BPF_READ; 5823 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5824 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5825 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5826 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5827 type = BPF_WRITE; 5828 else 5829 continue; 5830 5831 if (type == BPF_WRITE && 5832 env->insn_aux_data[i + delta].sanitize_stack_off) { 5833 struct bpf_insn patch[] = { 5834 /* Sanitize suspicious stack slot with zero. 5835 * There are no memory dependencies for this store, 5836 * since it's only using frame pointer and immediate 5837 * constant of zero 5838 */ 5839 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5840 env->insn_aux_data[i + delta].sanitize_stack_off, 5841 0), 5842 /* the original STX instruction will immediately 5843 * overwrite the same stack slot with appropriate value 5844 */ 5845 *insn, 5846 }; 5847 5848 cnt = ARRAY_SIZE(patch); 5849 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5850 if (!new_prog) 5851 return -ENOMEM; 5852 5853 delta += cnt - 1; 5854 env->prog = new_prog; 5855 insn = new_prog->insnsi + i + delta; 5856 continue; 5857 } 5858 5859 switch (env->insn_aux_data[i + delta].ptr_type) { 5860 case PTR_TO_CTX: 5861 if (!ops->convert_ctx_access) 5862 continue; 5863 convert_ctx_access = ops->convert_ctx_access; 5864 break; 5865 case PTR_TO_SOCKET: 5866 convert_ctx_access = bpf_sock_convert_ctx_access; 5867 break; 5868 default: 5869 continue; 5870 } 5871 5872 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5873 size = BPF_LDST_BYTES(insn); 5874 5875 /* If the read access is a narrower load of the field, 5876 * convert to a 4/8-byte load, to minimum program type specific 5877 * convert_ctx_access changes. If conversion is successful, 5878 * we will apply proper mask to the result. 5879 */ 5880 is_narrower_load = size < ctx_field_size; 5881 if (is_narrower_load) { 5882 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 5883 u32 off = insn->off; 5884 u8 size_code; 5885 5886 if (type == BPF_WRITE) { 5887 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5888 return -EINVAL; 5889 } 5890 5891 size_code = BPF_H; 5892 if (ctx_field_size == 4) 5893 size_code = BPF_W; 5894 else if (ctx_field_size == 8) 5895 size_code = BPF_DW; 5896 5897 insn->off = off & ~(size_default - 1); 5898 insn->code = BPF_LDX | BPF_MEM | size_code; 5899 } 5900 5901 target_size = 0; 5902 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 5903 &target_size); 5904 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5905 (ctx_field_size && !target_size)) { 5906 verbose(env, "bpf verifier is misconfigured\n"); 5907 return -EINVAL; 5908 } 5909 5910 if (is_narrower_load && size < target_size) { 5911 if (ctx_field_size <= 4) 5912 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5913 (1 << size * 8) - 1); 5914 else 5915 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5916 (1 << size * 8) - 1); 5917 } 5918 5919 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5920 if (!new_prog) 5921 return -ENOMEM; 5922 5923 delta += cnt - 1; 5924 5925 /* keep walking new program and skip insns we just inserted */ 5926 env->prog = new_prog; 5927 insn = new_prog->insnsi + i + delta; 5928 } 5929 5930 return 0; 5931 } 5932 5933 static int jit_subprogs(struct bpf_verifier_env *env) 5934 { 5935 struct bpf_prog *prog = env->prog, **func, *tmp; 5936 int i, j, subprog_start, subprog_end = 0, len, subprog; 5937 struct bpf_insn *insn; 5938 void *old_bpf_func; 5939 int err = -ENOMEM; 5940 5941 if (env->subprog_cnt <= 1) 5942 return 0; 5943 5944 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5945 if (insn->code != (BPF_JMP | BPF_CALL) || 5946 insn->src_reg != BPF_PSEUDO_CALL) 5947 continue; 5948 /* Upon error here we cannot fall back to interpreter but 5949 * need a hard reject of the program. Thus -EFAULT is 5950 * propagated in any case. 5951 */ 5952 subprog = find_subprog(env, i + insn->imm + 1); 5953 if (subprog < 0) { 5954 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5955 i + insn->imm + 1); 5956 return -EFAULT; 5957 } 5958 /* temporarily remember subprog id inside insn instead of 5959 * aux_data, since next loop will split up all insns into funcs 5960 */ 5961 insn->off = subprog; 5962 /* remember original imm in case JIT fails and fallback 5963 * to interpreter will be needed 5964 */ 5965 env->insn_aux_data[i].call_imm = insn->imm; 5966 /* point imm to __bpf_call_base+1 from JITs point of view */ 5967 insn->imm = 1; 5968 } 5969 5970 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 5971 if (!func) 5972 goto out_undo_insn; 5973 5974 for (i = 0; i < env->subprog_cnt; i++) { 5975 subprog_start = subprog_end; 5976 subprog_end = env->subprog_info[i + 1].start; 5977 5978 len = subprog_end - subprog_start; 5979 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5980 if (!func[i]) 5981 goto out_free; 5982 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5983 len * sizeof(struct bpf_insn)); 5984 func[i]->type = prog->type; 5985 func[i]->len = len; 5986 if (bpf_prog_calc_tag(func[i])) 5987 goto out_free; 5988 func[i]->is_func = 1; 5989 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5990 * Long term would need debug info to populate names 5991 */ 5992 func[i]->aux->name[0] = 'F'; 5993 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5994 func[i]->jit_requested = 1; 5995 func[i] = bpf_int_jit_compile(func[i]); 5996 if (!func[i]->jited) { 5997 err = -ENOTSUPP; 5998 goto out_free; 5999 } 6000 cond_resched(); 6001 } 6002 /* at this point all bpf functions were successfully JITed 6003 * now populate all bpf_calls with correct addresses and 6004 * run last pass of JIT 6005 */ 6006 for (i = 0; i < env->subprog_cnt; i++) { 6007 insn = func[i]->insnsi; 6008 for (j = 0; j < func[i]->len; j++, insn++) { 6009 if (insn->code != (BPF_JMP | BPF_CALL) || 6010 insn->src_reg != BPF_PSEUDO_CALL) 6011 continue; 6012 subprog = insn->off; 6013 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 6014 func[subprog]->bpf_func - 6015 __bpf_call_base; 6016 } 6017 6018 /* we use the aux data to keep a list of the start addresses 6019 * of the JITed images for each function in the program 6020 * 6021 * for some architectures, such as powerpc64, the imm field 6022 * might not be large enough to hold the offset of the start 6023 * address of the callee's JITed image from __bpf_call_base 6024 * 6025 * in such cases, we can lookup the start address of a callee 6026 * by using its subprog id, available from the off field of 6027 * the call instruction, as an index for this list 6028 */ 6029 func[i]->aux->func = func; 6030 func[i]->aux->func_cnt = env->subprog_cnt; 6031 } 6032 for (i = 0; i < env->subprog_cnt; i++) { 6033 old_bpf_func = func[i]->bpf_func; 6034 tmp = bpf_int_jit_compile(func[i]); 6035 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 6036 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 6037 err = -ENOTSUPP; 6038 goto out_free; 6039 } 6040 cond_resched(); 6041 } 6042 6043 /* finally lock prog and jit images for all functions and 6044 * populate kallsysm 6045 */ 6046 for (i = 0; i < env->subprog_cnt; i++) { 6047 bpf_prog_lock_ro(func[i]); 6048 bpf_prog_kallsyms_add(func[i]); 6049 } 6050 6051 /* Last step: make now unused interpreter insns from main 6052 * prog consistent for later dump requests, so they can 6053 * later look the same as if they were interpreted only. 6054 */ 6055 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6056 if (insn->code != (BPF_JMP | BPF_CALL) || 6057 insn->src_reg != BPF_PSEUDO_CALL) 6058 continue; 6059 insn->off = env->insn_aux_data[i].call_imm; 6060 subprog = find_subprog(env, i + insn->off + 1); 6061 insn->imm = subprog; 6062 } 6063 6064 prog->jited = 1; 6065 prog->bpf_func = func[0]->bpf_func; 6066 prog->aux->func = func; 6067 prog->aux->func_cnt = env->subprog_cnt; 6068 return 0; 6069 out_free: 6070 for (i = 0; i < env->subprog_cnt; i++) 6071 if (func[i]) 6072 bpf_jit_free(func[i]); 6073 kfree(func); 6074 out_undo_insn: 6075 /* cleanup main prog to be interpreted */ 6076 prog->jit_requested = 0; 6077 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6078 if (insn->code != (BPF_JMP | BPF_CALL) || 6079 insn->src_reg != BPF_PSEUDO_CALL) 6080 continue; 6081 insn->off = 0; 6082 insn->imm = env->insn_aux_data[i].call_imm; 6083 } 6084 return err; 6085 } 6086 6087 static int fixup_call_args(struct bpf_verifier_env *env) 6088 { 6089 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6090 struct bpf_prog *prog = env->prog; 6091 struct bpf_insn *insn = prog->insnsi; 6092 int i, depth; 6093 #endif 6094 int err = 0; 6095 6096 if (env->prog->jit_requested && 6097 !bpf_prog_is_dev_bound(env->prog->aux)) { 6098 err = jit_subprogs(env); 6099 if (err == 0) 6100 return 0; 6101 if (err == -EFAULT) 6102 return err; 6103 } 6104 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6105 for (i = 0; i < prog->len; i++, insn++) { 6106 if (insn->code != (BPF_JMP | BPF_CALL) || 6107 insn->src_reg != BPF_PSEUDO_CALL) 6108 continue; 6109 depth = get_callee_stack_depth(env, insn, i); 6110 if (depth < 0) 6111 return depth; 6112 bpf_patch_call_args(insn, depth); 6113 } 6114 err = 0; 6115 #endif 6116 return err; 6117 } 6118 6119 /* fixup insn->imm field of bpf_call instructions 6120 * and inline eligible helpers as explicit sequence of BPF instructions 6121 * 6122 * this function is called after eBPF program passed verification 6123 */ 6124 static int fixup_bpf_calls(struct bpf_verifier_env *env) 6125 { 6126 struct bpf_prog *prog = env->prog; 6127 struct bpf_insn *insn = prog->insnsi; 6128 const struct bpf_func_proto *fn; 6129 const int insn_cnt = prog->len; 6130 const struct bpf_map_ops *ops; 6131 struct bpf_insn_aux_data *aux; 6132 struct bpf_insn insn_buf[16]; 6133 struct bpf_prog *new_prog; 6134 struct bpf_map *map_ptr; 6135 int i, cnt, delta = 0; 6136 6137 for (i = 0; i < insn_cnt; i++, insn++) { 6138 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 6139 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6140 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 6141 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6142 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 6143 struct bpf_insn mask_and_div[] = { 6144 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6145 /* Rx div 0 -> 0 */ 6146 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 6147 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 6148 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 6149 *insn, 6150 }; 6151 struct bpf_insn mask_and_mod[] = { 6152 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6153 /* Rx mod 0 -> Rx */ 6154 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 6155 *insn, 6156 }; 6157 struct bpf_insn *patchlet; 6158 6159 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6160 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6161 patchlet = mask_and_div + (is64 ? 1 : 0); 6162 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 6163 } else { 6164 patchlet = mask_and_mod + (is64 ? 1 : 0); 6165 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 6166 } 6167 6168 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 6169 if (!new_prog) 6170 return -ENOMEM; 6171 6172 delta += cnt - 1; 6173 env->prog = prog = new_prog; 6174 insn = new_prog->insnsi + i + delta; 6175 continue; 6176 } 6177 6178 if (BPF_CLASS(insn->code) == BPF_LD && 6179 (BPF_MODE(insn->code) == BPF_ABS || 6180 BPF_MODE(insn->code) == BPF_IND)) { 6181 cnt = env->ops->gen_ld_abs(insn, insn_buf); 6182 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6183 verbose(env, "bpf verifier is misconfigured\n"); 6184 return -EINVAL; 6185 } 6186 6187 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6188 if (!new_prog) 6189 return -ENOMEM; 6190 6191 delta += cnt - 1; 6192 env->prog = prog = new_prog; 6193 insn = new_prog->insnsi + i + delta; 6194 continue; 6195 } 6196 6197 if (insn->code != (BPF_JMP | BPF_CALL)) 6198 continue; 6199 if (insn->src_reg == BPF_PSEUDO_CALL) 6200 continue; 6201 6202 if (insn->imm == BPF_FUNC_get_route_realm) 6203 prog->dst_needed = 1; 6204 if (insn->imm == BPF_FUNC_get_prandom_u32) 6205 bpf_user_rnd_init_once(); 6206 if (insn->imm == BPF_FUNC_override_return) 6207 prog->kprobe_override = 1; 6208 if (insn->imm == BPF_FUNC_tail_call) { 6209 /* If we tail call into other programs, we 6210 * cannot make any assumptions since they can 6211 * be replaced dynamically during runtime in 6212 * the program array. 6213 */ 6214 prog->cb_access = 1; 6215 env->prog->aux->stack_depth = MAX_BPF_STACK; 6216 6217 /* mark bpf_tail_call as different opcode to avoid 6218 * conditional branch in the interpeter for every normal 6219 * call and to prevent accidental JITing by JIT compiler 6220 * that doesn't support bpf_tail_call yet 6221 */ 6222 insn->imm = 0; 6223 insn->code = BPF_JMP | BPF_TAIL_CALL; 6224 6225 aux = &env->insn_aux_data[i + delta]; 6226 if (!bpf_map_ptr_unpriv(aux)) 6227 continue; 6228 6229 /* instead of changing every JIT dealing with tail_call 6230 * emit two extra insns: 6231 * if (index >= max_entries) goto out; 6232 * index &= array->index_mask; 6233 * to avoid out-of-bounds cpu speculation 6234 */ 6235 if (bpf_map_ptr_poisoned(aux)) { 6236 verbose(env, "tail_call abusing map_ptr\n"); 6237 return -EINVAL; 6238 } 6239 6240 map_ptr = BPF_MAP_PTR(aux->map_state); 6241 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 6242 map_ptr->max_entries, 2); 6243 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 6244 container_of(map_ptr, 6245 struct bpf_array, 6246 map)->index_mask); 6247 insn_buf[2] = *insn; 6248 cnt = 3; 6249 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6250 if (!new_prog) 6251 return -ENOMEM; 6252 6253 delta += cnt - 1; 6254 env->prog = prog = new_prog; 6255 insn = new_prog->insnsi + i + delta; 6256 continue; 6257 } 6258 6259 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 6260 * and other inlining handlers are currently limited to 64 bit 6261 * only. 6262 */ 6263 if (prog->jit_requested && BITS_PER_LONG == 64 && 6264 (insn->imm == BPF_FUNC_map_lookup_elem || 6265 insn->imm == BPF_FUNC_map_update_elem || 6266 insn->imm == BPF_FUNC_map_delete_elem || 6267 insn->imm == BPF_FUNC_map_push_elem || 6268 insn->imm == BPF_FUNC_map_pop_elem || 6269 insn->imm == BPF_FUNC_map_peek_elem)) { 6270 aux = &env->insn_aux_data[i + delta]; 6271 if (bpf_map_ptr_poisoned(aux)) 6272 goto patch_call_imm; 6273 6274 map_ptr = BPF_MAP_PTR(aux->map_state); 6275 ops = map_ptr->ops; 6276 if (insn->imm == BPF_FUNC_map_lookup_elem && 6277 ops->map_gen_lookup) { 6278 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 6279 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6280 verbose(env, "bpf verifier is misconfigured\n"); 6281 return -EINVAL; 6282 } 6283 6284 new_prog = bpf_patch_insn_data(env, i + delta, 6285 insn_buf, cnt); 6286 if (!new_prog) 6287 return -ENOMEM; 6288 6289 delta += cnt - 1; 6290 env->prog = prog = new_prog; 6291 insn = new_prog->insnsi + i + delta; 6292 continue; 6293 } 6294 6295 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 6296 (void *(*)(struct bpf_map *map, void *key))NULL)); 6297 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 6298 (int (*)(struct bpf_map *map, void *key))NULL)); 6299 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 6300 (int (*)(struct bpf_map *map, void *key, void *value, 6301 u64 flags))NULL)); 6302 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 6303 (int (*)(struct bpf_map *map, void *value, 6304 u64 flags))NULL)); 6305 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 6306 (int (*)(struct bpf_map *map, void *value))NULL)); 6307 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 6308 (int (*)(struct bpf_map *map, void *value))NULL)); 6309 6310 switch (insn->imm) { 6311 case BPF_FUNC_map_lookup_elem: 6312 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 6313 __bpf_call_base; 6314 continue; 6315 case BPF_FUNC_map_update_elem: 6316 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 6317 __bpf_call_base; 6318 continue; 6319 case BPF_FUNC_map_delete_elem: 6320 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 6321 __bpf_call_base; 6322 continue; 6323 case BPF_FUNC_map_push_elem: 6324 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 6325 __bpf_call_base; 6326 continue; 6327 case BPF_FUNC_map_pop_elem: 6328 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 6329 __bpf_call_base; 6330 continue; 6331 case BPF_FUNC_map_peek_elem: 6332 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 6333 __bpf_call_base; 6334 continue; 6335 } 6336 6337 goto patch_call_imm; 6338 } 6339 6340 patch_call_imm: 6341 fn = env->ops->get_func_proto(insn->imm, env->prog); 6342 /* all functions that have prototype and verifier allowed 6343 * programs to call them, must be real in-kernel functions 6344 */ 6345 if (!fn->func) { 6346 verbose(env, 6347 "kernel subsystem misconfigured func %s#%d\n", 6348 func_id_name(insn->imm), insn->imm); 6349 return -EFAULT; 6350 } 6351 insn->imm = fn->func - __bpf_call_base; 6352 } 6353 6354 return 0; 6355 } 6356 6357 static void free_states(struct bpf_verifier_env *env) 6358 { 6359 struct bpf_verifier_state_list *sl, *sln; 6360 int i; 6361 6362 if (!env->explored_states) 6363 return; 6364 6365 for (i = 0; i < env->prog->len; i++) { 6366 sl = env->explored_states[i]; 6367 6368 if (sl) 6369 while (sl != STATE_LIST_MARK) { 6370 sln = sl->next; 6371 free_verifier_state(&sl->state, false); 6372 kfree(sl); 6373 sl = sln; 6374 } 6375 } 6376 6377 kfree(env->explored_states); 6378 } 6379 6380 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 6381 { 6382 struct bpf_verifier_env *env; 6383 struct bpf_verifier_log *log; 6384 int ret = -EINVAL; 6385 6386 /* no program is valid */ 6387 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 6388 return -EINVAL; 6389 6390 /* 'struct bpf_verifier_env' can be global, but since it's not small, 6391 * allocate/free it every time bpf_check() is called 6392 */ 6393 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 6394 if (!env) 6395 return -ENOMEM; 6396 log = &env->log; 6397 6398 env->insn_aux_data = 6399 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 6400 (*prog)->len)); 6401 ret = -ENOMEM; 6402 if (!env->insn_aux_data) 6403 goto err_free_env; 6404 env->prog = *prog; 6405 env->ops = bpf_verifier_ops[env->prog->type]; 6406 6407 /* grab the mutex to protect few globals used by verifier */ 6408 mutex_lock(&bpf_verifier_lock); 6409 6410 if (attr->log_level || attr->log_buf || attr->log_size) { 6411 /* user requested verbose verifier output 6412 * and supplied buffer to store the verification trace 6413 */ 6414 log->level = attr->log_level; 6415 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 6416 log->len_total = attr->log_size; 6417 6418 ret = -EINVAL; 6419 /* log attributes have to be sane */ 6420 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 6421 !log->level || !log->ubuf) 6422 goto err_unlock; 6423 } 6424 6425 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 6426 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 6427 env->strict_alignment = true; 6428 6429 ret = replace_map_fd_with_map_ptr(env); 6430 if (ret < 0) 6431 goto skip_full_check; 6432 6433 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6434 ret = bpf_prog_offload_verifier_prep(env); 6435 if (ret) 6436 goto skip_full_check; 6437 } 6438 6439 env->explored_states = kcalloc(env->prog->len, 6440 sizeof(struct bpf_verifier_state_list *), 6441 GFP_USER); 6442 ret = -ENOMEM; 6443 if (!env->explored_states) 6444 goto skip_full_check; 6445 6446 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 6447 6448 ret = check_cfg(env); 6449 if (ret < 0) 6450 goto skip_full_check; 6451 6452 ret = do_check(env); 6453 if (env->cur_state) { 6454 free_verifier_state(env->cur_state, true); 6455 env->cur_state = NULL; 6456 } 6457 6458 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 6459 ret = bpf_prog_offload_finalize(env); 6460 6461 skip_full_check: 6462 while (!pop_stack(env, NULL, NULL)); 6463 free_states(env); 6464 6465 if (ret == 0) 6466 sanitize_dead_code(env); 6467 6468 if (ret == 0) 6469 ret = check_max_stack_depth(env); 6470 6471 if (ret == 0) 6472 /* program is valid, convert *(u32*)(ctx + off) accesses */ 6473 ret = convert_ctx_accesses(env); 6474 6475 if (ret == 0) 6476 ret = fixup_bpf_calls(env); 6477 6478 if (ret == 0) 6479 ret = fixup_call_args(env); 6480 6481 if (log->level && bpf_verifier_log_full(log)) 6482 ret = -ENOSPC; 6483 if (log->level && !log->ubuf) { 6484 ret = -EFAULT; 6485 goto err_release_maps; 6486 } 6487 6488 if (ret == 0 && env->used_map_cnt) { 6489 /* if program passed verifier, update used_maps in bpf_prog_info */ 6490 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 6491 sizeof(env->used_maps[0]), 6492 GFP_KERNEL); 6493 6494 if (!env->prog->aux->used_maps) { 6495 ret = -ENOMEM; 6496 goto err_release_maps; 6497 } 6498 6499 memcpy(env->prog->aux->used_maps, env->used_maps, 6500 sizeof(env->used_maps[0]) * env->used_map_cnt); 6501 env->prog->aux->used_map_cnt = env->used_map_cnt; 6502 6503 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 6504 * bpf_ld_imm64 instructions 6505 */ 6506 convert_pseudo_ld_imm64(env); 6507 } 6508 6509 err_release_maps: 6510 if (!env->prog->aux->used_maps) 6511 /* if we didn't copy map pointers into bpf_prog_info, release 6512 * them now. Otherwise free_used_maps() will release them. 6513 */ 6514 release_maps(env); 6515 *prog = env->prog; 6516 err_unlock: 6517 mutex_unlock(&bpf_verifier_lock); 6518 vfree(env->insn_aux_data); 6519 err_free_env: 6520 kfree(env); 6521 return ret; 6522 } 6523