1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 191 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 192 193 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 194 { 195 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 196 } 197 198 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 199 { 200 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 201 } 202 203 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 204 const struct bpf_map *map, bool unpriv) 205 { 206 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 207 unpriv |= bpf_map_ptr_unpriv(aux); 208 aux->map_ptr_state = (unsigned long)map | 209 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 210 } 211 212 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 213 { 214 return aux->map_key_state & BPF_MAP_KEY_POISON; 215 } 216 217 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 218 { 219 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 220 } 221 222 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 223 { 224 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 225 } 226 227 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 228 { 229 bool poisoned = bpf_map_key_poisoned(aux); 230 231 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 232 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 233 } 234 235 static bool bpf_pseudo_call(const struct bpf_insn *insn) 236 { 237 return insn->code == (BPF_JMP | BPF_CALL) && 238 insn->src_reg == BPF_PSEUDO_CALL; 239 } 240 241 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 242 { 243 return insn->code == (BPF_JMP | BPF_CALL) && 244 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 245 } 246 247 struct bpf_call_arg_meta { 248 struct bpf_map *map_ptr; 249 bool raw_mode; 250 bool pkt_access; 251 u8 release_regno; 252 int regno; 253 int access_size; 254 int mem_size; 255 u64 msize_max_value; 256 int ref_obj_id; 257 int map_uid; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 struct bpf_map_value_off_desc *kptr_off_desc; 265 u8 uninit_dynptr_regno; 266 }; 267 268 struct btf *btf_vmlinux; 269 270 static DEFINE_MUTEX(bpf_verifier_lock); 271 272 static const struct bpf_line_info * 273 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 274 { 275 const struct bpf_line_info *linfo; 276 const struct bpf_prog *prog; 277 u32 i, nr_linfo; 278 279 prog = env->prog; 280 nr_linfo = prog->aux->nr_linfo; 281 282 if (!nr_linfo || insn_off >= prog->len) 283 return NULL; 284 285 linfo = prog->aux->linfo; 286 for (i = 1; i < nr_linfo; i++) 287 if (insn_off < linfo[i].insn_off) 288 break; 289 290 return &linfo[i - 1]; 291 } 292 293 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 294 va_list args) 295 { 296 unsigned int n; 297 298 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 299 300 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 301 "verifier log line truncated - local buffer too short\n"); 302 303 if (log->level == BPF_LOG_KERNEL) { 304 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 305 306 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 307 return; 308 } 309 310 n = min(log->len_total - log->len_used - 1, n); 311 log->kbuf[n] = '\0'; 312 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 313 log->len_used += n; 314 else 315 log->ubuf = NULL; 316 } 317 318 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 319 { 320 char zero = 0; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 log->len_used = new_pos; 326 if (put_user(zero, log->ubuf + new_pos)) 327 log->ubuf = NULL; 328 } 329 330 /* log_level controls verbosity level of eBPF verifier. 331 * bpf_verifier_log_write() is used to dump the verification trace to the log, 332 * so the user can figure out what's wrong with the program 333 */ 334 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(&env->log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(&env->log, fmt, args); 344 va_end(args); 345 } 346 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 347 348 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 349 { 350 struct bpf_verifier_env *env = private_data; 351 va_list args; 352 353 if (!bpf_verifier_log_needed(&env->log)) 354 return; 355 356 va_start(args, fmt); 357 bpf_verifier_vlog(&env->log, fmt, args); 358 va_end(args); 359 } 360 361 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 362 const char *fmt, ...) 363 { 364 va_list args; 365 366 if (!bpf_verifier_log_needed(log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 return type == PTR_TO_PACKET || 431 type == PTR_TO_PACKET_META; 432 } 433 434 static bool type_is_sk_pointer(enum bpf_reg_type type) 435 { 436 return type == PTR_TO_SOCKET || 437 type == PTR_TO_SOCK_COMMON || 438 type == PTR_TO_TCP_SOCK || 439 type == PTR_TO_XDP_SOCK; 440 } 441 442 static bool reg_type_not_null(enum bpf_reg_type type) 443 { 444 return type == PTR_TO_SOCKET || 445 type == PTR_TO_TCP_SOCK || 446 type == PTR_TO_MAP_VALUE || 447 type == PTR_TO_MAP_KEY || 448 type == PTR_TO_SOCK_COMMON; 449 } 450 451 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 452 { 453 return reg->type == PTR_TO_MAP_VALUE && 454 map_value_has_spin_lock(reg->map_ptr); 455 } 456 457 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 458 { 459 return base_type(type) == PTR_TO_SOCKET || 460 base_type(type) == PTR_TO_TCP_SOCK || 461 base_type(type) == PTR_TO_MEM || 462 base_type(type) == PTR_TO_BTF_ID; 463 } 464 465 static bool type_is_rdonly_mem(u32 type) 466 { 467 return type & MEM_RDONLY; 468 } 469 470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 471 { 472 return type == ARG_PTR_TO_SOCK_COMMON; 473 } 474 475 static bool type_may_be_null(u32 type) 476 { 477 return type & PTR_MAYBE_NULL; 478 } 479 480 static bool may_be_acquire_function(enum bpf_func_id func_id) 481 { 482 return func_id == BPF_FUNC_sk_lookup_tcp || 483 func_id == BPF_FUNC_sk_lookup_udp || 484 func_id == BPF_FUNC_skc_lookup_tcp || 485 func_id == BPF_FUNC_map_lookup_elem || 486 func_id == BPF_FUNC_ringbuf_reserve; 487 } 488 489 static bool is_acquire_function(enum bpf_func_id func_id, 490 const struct bpf_map *map) 491 { 492 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 493 494 if (func_id == BPF_FUNC_sk_lookup_tcp || 495 func_id == BPF_FUNC_sk_lookup_udp || 496 func_id == BPF_FUNC_skc_lookup_tcp || 497 func_id == BPF_FUNC_ringbuf_reserve || 498 func_id == BPF_FUNC_kptr_xchg) 499 return true; 500 501 if (func_id == BPF_FUNC_map_lookup_elem && 502 (map_type == BPF_MAP_TYPE_SOCKMAP || 503 map_type == BPF_MAP_TYPE_SOCKHASH)) 504 return true; 505 506 return false; 507 } 508 509 static bool is_ptr_cast_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_tcp_sock || 512 func_id == BPF_FUNC_sk_fullsock || 513 func_id == BPF_FUNC_skc_to_tcp_sock || 514 func_id == BPF_FUNC_skc_to_tcp6_sock || 515 func_id == BPF_FUNC_skc_to_udp6_sock || 516 func_id == BPF_FUNC_skc_to_mptcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 518 func_id == BPF_FUNC_skc_to_tcp_request_sock; 519 } 520 521 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 522 { 523 return BPF_CLASS(insn->code) == BPF_STX && 524 BPF_MODE(insn->code) == BPF_ATOMIC && 525 insn->imm == BPF_CMPXCHG; 526 } 527 528 /* string representation of 'enum bpf_reg_type' 529 * 530 * Note that reg_type_str() can not appear more than once in a single verbose() 531 * statement. 532 */ 533 static const char *reg_type_str(struct bpf_verifier_env *env, 534 enum bpf_reg_type type) 535 { 536 char postfix[16] = {0}, prefix[32] = {0}; 537 static const char * const str[] = { 538 [NOT_INIT] = "?", 539 [SCALAR_VALUE] = "scalar", 540 [PTR_TO_CTX] = "ctx", 541 [CONST_PTR_TO_MAP] = "map_ptr", 542 [PTR_TO_MAP_VALUE] = "map_value", 543 [PTR_TO_STACK] = "fp", 544 [PTR_TO_PACKET] = "pkt", 545 [PTR_TO_PACKET_META] = "pkt_meta", 546 [PTR_TO_PACKET_END] = "pkt_end", 547 [PTR_TO_FLOW_KEYS] = "flow_keys", 548 [PTR_TO_SOCKET] = "sock", 549 [PTR_TO_SOCK_COMMON] = "sock_common", 550 [PTR_TO_TCP_SOCK] = "tcp_sock", 551 [PTR_TO_TP_BUFFER] = "tp_buffer", 552 [PTR_TO_XDP_SOCK] = "xdp_sock", 553 [PTR_TO_BTF_ID] = "ptr_", 554 [PTR_TO_MEM] = "mem", 555 [PTR_TO_BUF] = "buf", 556 [PTR_TO_FUNC] = "func", 557 [PTR_TO_MAP_KEY] = "map_key", 558 }; 559 560 if (type & PTR_MAYBE_NULL) { 561 if (base_type(type) == PTR_TO_BTF_ID) 562 strncpy(postfix, "or_null_", 16); 563 else 564 strncpy(postfix, "_or_null", 16); 565 } 566 567 if (type & MEM_RDONLY) 568 strncpy(prefix, "rdonly_", 32); 569 if (type & MEM_ALLOC) 570 strncpy(prefix, "alloc_", 32); 571 if (type & MEM_USER) 572 strncpy(prefix, "user_", 32); 573 if (type & MEM_PERCPU) 574 strncpy(prefix, "percpu_", 32); 575 if (type & PTR_UNTRUSTED) 576 strncpy(prefix, "untrusted_", 32); 577 578 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 579 prefix, str[base_type(type)], postfix); 580 return env->type_str_buf; 581 } 582 583 static char slot_type_char[] = { 584 [STACK_INVALID] = '?', 585 [STACK_SPILL] = 'r', 586 [STACK_MISC] = 'm', 587 [STACK_ZERO] = '0', 588 [STACK_DYNPTR] = 'd', 589 }; 590 591 static void print_liveness(struct bpf_verifier_env *env, 592 enum bpf_reg_liveness live) 593 { 594 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 595 verbose(env, "_"); 596 if (live & REG_LIVE_READ) 597 verbose(env, "r"); 598 if (live & REG_LIVE_WRITTEN) 599 verbose(env, "w"); 600 if (live & REG_LIVE_DONE) 601 verbose(env, "D"); 602 } 603 604 static int get_spi(s32 off) 605 { 606 return (-off - 1) / BPF_REG_SIZE; 607 } 608 609 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 610 { 611 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 612 613 /* We need to check that slots between [spi - nr_slots + 1, spi] are 614 * within [0, allocated_stack). 615 * 616 * Please note that the spi grows downwards. For example, a dynptr 617 * takes the size of two stack slots; the first slot will be at 618 * spi and the second slot will be at spi - 1. 619 */ 620 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 621 } 622 623 static struct bpf_func_state *func(struct bpf_verifier_env *env, 624 const struct bpf_reg_state *reg) 625 { 626 struct bpf_verifier_state *cur = env->cur_state; 627 628 return cur->frame[reg->frameno]; 629 } 630 631 static const char *kernel_type_name(const struct btf* btf, u32 id) 632 { 633 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 634 } 635 636 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 637 { 638 env->scratched_regs |= 1U << regno; 639 } 640 641 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 642 { 643 env->scratched_stack_slots |= 1ULL << spi; 644 } 645 646 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 647 { 648 return (env->scratched_regs >> regno) & 1; 649 } 650 651 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 652 { 653 return (env->scratched_stack_slots >> regno) & 1; 654 } 655 656 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 657 { 658 return env->scratched_regs || env->scratched_stack_slots; 659 } 660 661 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 662 { 663 env->scratched_regs = 0U; 664 env->scratched_stack_slots = 0ULL; 665 } 666 667 /* Used for printing the entire verifier state. */ 668 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 669 { 670 env->scratched_regs = ~0U; 671 env->scratched_stack_slots = ~0ULL; 672 } 673 674 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 675 { 676 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 677 case DYNPTR_TYPE_LOCAL: 678 return BPF_DYNPTR_TYPE_LOCAL; 679 case DYNPTR_TYPE_RINGBUF: 680 return BPF_DYNPTR_TYPE_RINGBUF; 681 default: 682 return BPF_DYNPTR_TYPE_INVALID; 683 } 684 } 685 686 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 687 { 688 return type == BPF_DYNPTR_TYPE_RINGBUF; 689 } 690 691 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 692 enum bpf_arg_type arg_type, int insn_idx) 693 { 694 struct bpf_func_state *state = func(env, reg); 695 enum bpf_dynptr_type type; 696 int spi, i, id; 697 698 spi = get_spi(reg->off); 699 700 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 701 return -EINVAL; 702 703 for (i = 0; i < BPF_REG_SIZE; i++) { 704 state->stack[spi].slot_type[i] = STACK_DYNPTR; 705 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 706 } 707 708 type = arg_to_dynptr_type(arg_type); 709 if (type == BPF_DYNPTR_TYPE_INVALID) 710 return -EINVAL; 711 712 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 713 state->stack[spi].spilled_ptr.dynptr.type = type; 714 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 715 716 if (dynptr_type_refcounted(type)) { 717 /* The id is used to track proper releasing */ 718 id = acquire_reference_state(env, insn_idx); 719 if (id < 0) 720 return id; 721 722 state->stack[spi].spilled_ptr.id = id; 723 state->stack[spi - 1].spilled_ptr.id = id; 724 } 725 726 return 0; 727 } 728 729 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 730 { 731 struct bpf_func_state *state = func(env, reg); 732 int spi, i; 733 734 spi = get_spi(reg->off); 735 736 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 737 return -EINVAL; 738 739 for (i = 0; i < BPF_REG_SIZE; i++) { 740 state->stack[spi].slot_type[i] = STACK_INVALID; 741 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 742 } 743 744 /* Invalidate any slices associated with this dynptr */ 745 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 746 release_reference(env, state->stack[spi].spilled_ptr.id); 747 state->stack[spi].spilled_ptr.id = 0; 748 state->stack[spi - 1].spilled_ptr.id = 0; 749 } 750 751 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 752 state->stack[spi].spilled_ptr.dynptr.type = 0; 753 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 754 755 return 0; 756 } 757 758 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 759 { 760 struct bpf_func_state *state = func(env, reg); 761 int spi = get_spi(reg->off); 762 int i; 763 764 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 765 return true; 766 767 for (i = 0; i < BPF_REG_SIZE; i++) { 768 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 769 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 770 return false; 771 } 772 773 return true; 774 } 775 776 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 777 enum bpf_arg_type arg_type) 778 { 779 struct bpf_func_state *state = func(env, reg); 780 int spi = get_spi(reg->off); 781 int i; 782 783 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 784 !state->stack[spi].spilled_ptr.dynptr.first_slot) 785 return false; 786 787 for (i = 0; i < BPF_REG_SIZE; i++) { 788 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 789 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 790 return false; 791 } 792 793 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 794 if (arg_type == ARG_PTR_TO_DYNPTR) 795 return true; 796 797 return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type); 798 } 799 800 /* The reg state of a pointer or a bounded scalar was saved when 801 * it was spilled to the stack. 802 */ 803 static bool is_spilled_reg(const struct bpf_stack_state *stack) 804 { 805 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 806 } 807 808 static void scrub_spilled_slot(u8 *stype) 809 { 810 if (*stype != STACK_INVALID) 811 *stype = STACK_MISC; 812 } 813 814 static void print_verifier_state(struct bpf_verifier_env *env, 815 const struct bpf_func_state *state, 816 bool print_all) 817 { 818 const struct bpf_reg_state *reg; 819 enum bpf_reg_type t; 820 int i; 821 822 if (state->frameno) 823 verbose(env, " frame%d:", state->frameno); 824 for (i = 0; i < MAX_BPF_REG; i++) { 825 reg = &state->regs[i]; 826 t = reg->type; 827 if (t == NOT_INIT) 828 continue; 829 if (!print_all && !reg_scratched(env, i)) 830 continue; 831 verbose(env, " R%d", i); 832 print_liveness(env, reg->live); 833 verbose(env, "="); 834 if (t == SCALAR_VALUE && reg->precise) 835 verbose(env, "P"); 836 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 837 tnum_is_const(reg->var_off)) { 838 /* reg->off should be 0 for SCALAR_VALUE */ 839 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 840 verbose(env, "%lld", reg->var_off.value + reg->off); 841 } else { 842 const char *sep = ""; 843 844 verbose(env, "%s", reg_type_str(env, t)); 845 if (base_type(t) == PTR_TO_BTF_ID) 846 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 847 verbose(env, "("); 848 /* 849 * _a stands for append, was shortened to avoid multiline statements below. 850 * This macro is used to output a comma separated list of attributes. 851 */ 852 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 853 854 if (reg->id) 855 verbose_a("id=%d", reg->id); 856 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 857 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 858 if (t != SCALAR_VALUE) 859 verbose_a("off=%d", reg->off); 860 if (type_is_pkt_pointer(t)) 861 verbose_a("r=%d", reg->range); 862 else if (base_type(t) == CONST_PTR_TO_MAP || 863 base_type(t) == PTR_TO_MAP_KEY || 864 base_type(t) == PTR_TO_MAP_VALUE) 865 verbose_a("ks=%d,vs=%d", 866 reg->map_ptr->key_size, 867 reg->map_ptr->value_size); 868 if (tnum_is_const(reg->var_off)) { 869 /* Typically an immediate SCALAR_VALUE, but 870 * could be a pointer whose offset is too big 871 * for reg->off 872 */ 873 verbose_a("imm=%llx", reg->var_off.value); 874 } else { 875 if (reg->smin_value != reg->umin_value && 876 reg->smin_value != S64_MIN) 877 verbose_a("smin=%lld", (long long)reg->smin_value); 878 if (reg->smax_value != reg->umax_value && 879 reg->smax_value != S64_MAX) 880 verbose_a("smax=%lld", (long long)reg->smax_value); 881 if (reg->umin_value != 0) 882 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 883 if (reg->umax_value != U64_MAX) 884 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 885 if (!tnum_is_unknown(reg->var_off)) { 886 char tn_buf[48]; 887 888 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 889 verbose_a("var_off=%s", tn_buf); 890 } 891 if (reg->s32_min_value != reg->smin_value && 892 reg->s32_min_value != S32_MIN) 893 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 894 if (reg->s32_max_value != reg->smax_value && 895 reg->s32_max_value != S32_MAX) 896 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 897 if (reg->u32_min_value != reg->umin_value && 898 reg->u32_min_value != U32_MIN) 899 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 900 if (reg->u32_max_value != reg->umax_value && 901 reg->u32_max_value != U32_MAX) 902 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 903 } 904 #undef verbose_a 905 906 verbose(env, ")"); 907 } 908 } 909 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 910 char types_buf[BPF_REG_SIZE + 1]; 911 bool valid = false; 912 int j; 913 914 for (j = 0; j < BPF_REG_SIZE; j++) { 915 if (state->stack[i].slot_type[j] != STACK_INVALID) 916 valid = true; 917 types_buf[j] = slot_type_char[ 918 state->stack[i].slot_type[j]]; 919 } 920 types_buf[BPF_REG_SIZE] = 0; 921 if (!valid) 922 continue; 923 if (!print_all && !stack_slot_scratched(env, i)) 924 continue; 925 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 926 print_liveness(env, state->stack[i].spilled_ptr.live); 927 if (is_spilled_reg(&state->stack[i])) { 928 reg = &state->stack[i].spilled_ptr; 929 t = reg->type; 930 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 931 if (t == SCALAR_VALUE && reg->precise) 932 verbose(env, "P"); 933 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 934 verbose(env, "%lld", reg->var_off.value + reg->off); 935 } else { 936 verbose(env, "=%s", types_buf); 937 } 938 } 939 if (state->acquired_refs && state->refs[0].id) { 940 verbose(env, " refs=%d", state->refs[0].id); 941 for (i = 1; i < state->acquired_refs; i++) 942 if (state->refs[i].id) 943 verbose(env, ",%d", state->refs[i].id); 944 } 945 if (state->in_callback_fn) 946 verbose(env, " cb"); 947 if (state->in_async_callback_fn) 948 verbose(env, " async_cb"); 949 verbose(env, "\n"); 950 mark_verifier_state_clean(env); 951 } 952 953 static inline u32 vlog_alignment(u32 pos) 954 { 955 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 956 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 957 } 958 959 static void print_insn_state(struct bpf_verifier_env *env, 960 const struct bpf_func_state *state) 961 { 962 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 963 /* remove new line character */ 964 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 965 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 966 } else { 967 verbose(env, "%d:", env->insn_idx); 968 } 969 print_verifier_state(env, state, false); 970 } 971 972 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 973 * small to hold src. This is different from krealloc since we don't want to preserve 974 * the contents of dst. 975 * 976 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 977 * not be allocated. 978 */ 979 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 980 { 981 size_t bytes; 982 983 if (ZERO_OR_NULL_PTR(src)) 984 goto out; 985 986 if (unlikely(check_mul_overflow(n, size, &bytes))) 987 return NULL; 988 989 if (ksize(dst) < bytes) { 990 kfree(dst); 991 dst = kmalloc_track_caller(bytes, flags); 992 if (!dst) 993 return NULL; 994 } 995 996 memcpy(dst, src, bytes); 997 out: 998 return dst ? dst : ZERO_SIZE_PTR; 999 } 1000 1001 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1002 * small to hold new_n items. new items are zeroed out if the array grows. 1003 * 1004 * Contrary to krealloc_array, does not free arr if new_n is zero. 1005 */ 1006 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1007 { 1008 if (!new_n || old_n == new_n) 1009 goto out; 1010 1011 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1012 if (!arr) 1013 return NULL; 1014 1015 if (new_n > old_n) 1016 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1017 1018 out: 1019 return arr ? arr : ZERO_SIZE_PTR; 1020 } 1021 1022 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1023 { 1024 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1025 sizeof(struct bpf_reference_state), GFP_KERNEL); 1026 if (!dst->refs) 1027 return -ENOMEM; 1028 1029 dst->acquired_refs = src->acquired_refs; 1030 return 0; 1031 } 1032 1033 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1034 { 1035 size_t n = src->allocated_stack / BPF_REG_SIZE; 1036 1037 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1038 GFP_KERNEL); 1039 if (!dst->stack) 1040 return -ENOMEM; 1041 1042 dst->allocated_stack = src->allocated_stack; 1043 return 0; 1044 } 1045 1046 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1047 { 1048 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1049 sizeof(struct bpf_reference_state)); 1050 if (!state->refs) 1051 return -ENOMEM; 1052 1053 state->acquired_refs = n; 1054 return 0; 1055 } 1056 1057 static int grow_stack_state(struct bpf_func_state *state, int size) 1058 { 1059 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1060 1061 if (old_n >= n) 1062 return 0; 1063 1064 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1065 if (!state->stack) 1066 return -ENOMEM; 1067 1068 state->allocated_stack = size; 1069 return 0; 1070 } 1071 1072 /* Acquire a pointer id from the env and update the state->refs to include 1073 * this new pointer reference. 1074 * On success, returns a valid pointer id to associate with the register 1075 * On failure, returns a negative errno. 1076 */ 1077 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1078 { 1079 struct bpf_func_state *state = cur_func(env); 1080 int new_ofs = state->acquired_refs; 1081 int id, err; 1082 1083 err = resize_reference_state(state, state->acquired_refs + 1); 1084 if (err) 1085 return err; 1086 id = ++env->id_gen; 1087 state->refs[new_ofs].id = id; 1088 state->refs[new_ofs].insn_idx = insn_idx; 1089 1090 return id; 1091 } 1092 1093 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1094 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1095 { 1096 int i, last_idx; 1097 1098 last_idx = state->acquired_refs - 1; 1099 for (i = 0; i < state->acquired_refs; i++) { 1100 if (state->refs[i].id == ptr_id) { 1101 if (last_idx && i != last_idx) 1102 memcpy(&state->refs[i], &state->refs[last_idx], 1103 sizeof(*state->refs)); 1104 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1105 state->acquired_refs--; 1106 return 0; 1107 } 1108 } 1109 return -EINVAL; 1110 } 1111 1112 static void free_func_state(struct bpf_func_state *state) 1113 { 1114 if (!state) 1115 return; 1116 kfree(state->refs); 1117 kfree(state->stack); 1118 kfree(state); 1119 } 1120 1121 static void clear_jmp_history(struct bpf_verifier_state *state) 1122 { 1123 kfree(state->jmp_history); 1124 state->jmp_history = NULL; 1125 state->jmp_history_cnt = 0; 1126 } 1127 1128 static void free_verifier_state(struct bpf_verifier_state *state, 1129 bool free_self) 1130 { 1131 int i; 1132 1133 for (i = 0; i <= state->curframe; i++) { 1134 free_func_state(state->frame[i]); 1135 state->frame[i] = NULL; 1136 } 1137 clear_jmp_history(state); 1138 if (free_self) 1139 kfree(state); 1140 } 1141 1142 /* copy verifier state from src to dst growing dst stack space 1143 * when necessary to accommodate larger src stack 1144 */ 1145 static int copy_func_state(struct bpf_func_state *dst, 1146 const struct bpf_func_state *src) 1147 { 1148 int err; 1149 1150 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1151 err = copy_reference_state(dst, src); 1152 if (err) 1153 return err; 1154 return copy_stack_state(dst, src); 1155 } 1156 1157 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1158 const struct bpf_verifier_state *src) 1159 { 1160 struct bpf_func_state *dst; 1161 int i, err; 1162 1163 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1164 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1165 GFP_USER); 1166 if (!dst_state->jmp_history) 1167 return -ENOMEM; 1168 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1169 1170 /* if dst has more stack frames then src frame, free them */ 1171 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1172 free_func_state(dst_state->frame[i]); 1173 dst_state->frame[i] = NULL; 1174 } 1175 dst_state->speculative = src->speculative; 1176 dst_state->curframe = src->curframe; 1177 dst_state->active_spin_lock = src->active_spin_lock; 1178 dst_state->branches = src->branches; 1179 dst_state->parent = src->parent; 1180 dst_state->first_insn_idx = src->first_insn_idx; 1181 dst_state->last_insn_idx = src->last_insn_idx; 1182 for (i = 0; i <= src->curframe; i++) { 1183 dst = dst_state->frame[i]; 1184 if (!dst) { 1185 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1186 if (!dst) 1187 return -ENOMEM; 1188 dst_state->frame[i] = dst; 1189 } 1190 err = copy_func_state(dst, src->frame[i]); 1191 if (err) 1192 return err; 1193 } 1194 return 0; 1195 } 1196 1197 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1198 { 1199 while (st) { 1200 u32 br = --st->branches; 1201 1202 /* WARN_ON(br > 1) technically makes sense here, 1203 * but see comment in push_stack(), hence: 1204 */ 1205 WARN_ONCE((int)br < 0, 1206 "BUG update_branch_counts:branches_to_explore=%d\n", 1207 br); 1208 if (br) 1209 break; 1210 st = st->parent; 1211 } 1212 } 1213 1214 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1215 int *insn_idx, bool pop_log) 1216 { 1217 struct bpf_verifier_state *cur = env->cur_state; 1218 struct bpf_verifier_stack_elem *elem, *head = env->head; 1219 int err; 1220 1221 if (env->head == NULL) 1222 return -ENOENT; 1223 1224 if (cur) { 1225 err = copy_verifier_state(cur, &head->st); 1226 if (err) 1227 return err; 1228 } 1229 if (pop_log) 1230 bpf_vlog_reset(&env->log, head->log_pos); 1231 if (insn_idx) 1232 *insn_idx = head->insn_idx; 1233 if (prev_insn_idx) 1234 *prev_insn_idx = head->prev_insn_idx; 1235 elem = head->next; 1236 free_verifier_state(&head->st, false); 1237 kfree(head); 1238 env->head = elem; 1239 env->stack_size--; 1240 return 0; 1241 } 1242 1243 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1244 int insn_idx, int prev_insn_idx, 1245 bool speculative) 1246 { 1247 struct bpf_verifier_state *cur = env->cur_state; 1248 struct bpf_verifier_stack_elem *elem; 1249 int err; 1250 1251 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1252 if (!elem) 1253 goto err; 1254 1255 elem->insn_idx = insn_idx; 1256 elem->prev_insn_idx = prev_insn_idx; 1257 elem->next = env->head; 1258 elem->log_pos = env->log.len_used; 1259 env->head = elem; 1260 env->stack_size++; 1261 err = copy_verifier_state(&elem->st, cur); 1262 if (err) 1263 goto err; 1264 elem->st.speculative |= speculative; 1265 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1266 verbose(env, "The sequence of %d jumps is too complex.\n", 1267 env->stack_size); 1268 goto err; 1269 } 1270 if (elem->st.parent) { 1271 ++elem->st.parent->branches; 1272 /* WARN_ON(branches > 2) technically makes sense here, 1273 * but 1274 * 1. speculative states will bump 'branches' for non-branch 1275 * instructions 1276 * 2. is_state_visited() heuristics may decide not to create 1277 * a new state for a sequence of branches and all such current 1278 * and cloned states will be pointing to a single parent state 1279 * which might have large 'branches' count. 1280 */ 1281 } 1282 return &elem->st; 1283 err: 1284 free_verifier_state(env->cur_state, true); 1285 env->cur_state = NULL; 1286 /* pop all elements and return */ 1287 while (!pop_stack(env, NULL, NULL, false)); 1288 return NULL; 1289 } 1290 1291 #define CALLER_SAVED_REGS 6 1292 static const int caller_saved[CALLER_SAVED_REGS] = { 1293 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1294 }; 1295 1296 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1297 struct bpf_reg_state *reg); 1298 1299 /* This helper doesn't clear reg->id */ 1300 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1301 { 1302 reg->var_off = tnum_const(imm); 1303 reg->smin_value = (s64)imm; 1304 reg->smax_value = (s64)imm; 1305 reg->umin_value = imm; 1306 reg->umax_value = imm; 1307 1308 reg->s32_min_value = (s32)imm; 1309 reg->s32_max_value = (s32)imm; 1310 reg->u32_min_value = (u32)imm; 1311 reg->u32_max_value = (u32)imm; 1312 } 1313 1314 /* Mark the unknown part of a register (variable offset or scalar value) as 1315 * known to have the value @imm. 1316 */ 1317 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1318 { 1319 /* Clear id, off, and union(map_ptr, range) */ 1320 memset(((u8 *)reg) + sizeof(reg->type), 0, 1321 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1322 ___mark_reg_known(reg, imm); 1323 } 1324 1325 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1326 { 1327 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1328 reg->s32_min_value = (s32)imm; 1329 reg->s32_max_value = (s32)imm; 1330 reg->u32_min_value = (u32)imm; 1331 reg->u32_max_value = (u32)imm; 1332 } 1333 1334 /* Mark the 'variable offset' part of a register as zero. This should be 1335 * used only on registers holding a pointer type. 1336 */ 1337 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1338 { 1339 __mark_reg_known(reg, 0); 1340 } 1341 1342 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1343 { 1344 __mark_reg_known(reg, 0); 1345 reg->type = SCALAR_VALUE; 1346 } 1347 1348 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1349 struct bpf_reg_state *regs, u32 regno) 1350 { 1351 if (WARN_ON(regno >= MAX_BPF_REG)) { 1352 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1353 /* Something bad happened, let's kill all regs */ 1354 for (regno = 0; regno < MAX_BPF_REG; regno++) 1355 __mark_reg_not_init(env, regs + regno); 1356 return; 1357 } 1358 __mark_reg_known_zero(regs + regno); 1359 } 1360 1361 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1362 { 1363 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1364 const struct bpf_map *map = reg->map_ptr; 1365 1366 if (map->inner_map_meta) { 1367 reg->type = CONST_PTR_TO_MAP; 1368 reg->map_ptr = map->inner_map_meta; 1369 /* transfer reg's id which is unique for every map_lookup_elem 1370 * as UID of the inner map. 1371 */ 1372 if (map_value_has_timer(map->inner_map_meta)) 1373 reg->map_uid = reg->id; 1374 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1375 reg->type = PTR_TO_XDP_SOCK; 1376 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1377 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1378 reg->type = PTR_TO_SOCKET; 1379 } else { 1380 reg->type = PTR_TO_MAP_VALUE; 1381 } 1382 return; 1383 } 1384 1385 reg->type &= ~PTR_MAYBE_NULL; 1386 } 1387 1388 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1389 { 1390 return type_is_pkt_pointer(reg->type); 1391 } 1392 1393 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1394 { 1395 return reg_is_pkt_pointer(reg) || 1396 reg->type == PTR_TO_PACKET_END; 1397 } 1398 1399 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1400 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1401 enum bpf_reg_type which) 1402 { 1403 /* The register can already have a range from prior markings. 1404 * This is fine as long as it hasn't been advanced from its 1405 * origin. 1406 */ 1407 return reg->type == which && 1408 reg->id == 0 && 1409 reg->off == 0 && 1410 tnum_equals_const(reg->var_off, 0); 1411 } 1412 1413 /* Reset the min/max bounds of a register */ 1414 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1415 { 1416 reg->smin_value = S64_MIN; 1417 reg->smax_value = S64_MAX; 1418 reg->umin_value = 0; 1419 reg->umax_value = U64_MAX; 1420 1421 reg->s32_min_value = S32_MIN; 1422 reg->s32_max_value = S32_MAX; 1423 reg->u32_min_value = 0; 1424 reg->u32_max_value = U32_MAX; 1425 } 1426 1427 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1428 { 1429 reg->smin_value = S64_MIN; 1430 reg->smax_value = S64_MAX; 1431 reg->umin_value = 0; 1432 reg->umax_value = U64_MAX; 1433 } 1434 1435 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1436 { 1437 reg->s32_min_value = S32_MIN; 1438 reg->s32_max_value = S32_MAX; 1439 reg->u32_min_value = 0; 1440 reg->u32_max_value = U32_MAX; 1441 } 1442 1443 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1444 { 1445 struct tnum var32_off = tnum_subreg(reg->var_off); 1446 1447 /* min signed is max(sign bit) | min(other bits) */ 1448 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1449 var32_off.value | (var32_off.mask & S32_MIN)); 1450 /* max signed is min(sign bit) | max(other bits) */ 1451 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1452 var32_off.value | (var32_off.mask & S32_MAX)); 1453 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1454 reg->u32_max_value = min(reg->u32_max_value, 1455 (u32)(var32_off.value | var32_off.mask)); 1456 } 1457 1458 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1459 { 1460 /* min signed is max(sign bit) | min(other bits) */ 1461 reg->smin_value = max_t(s64, reg->smin_value, 1462 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1463 /* max signed is min(sign bit) | max(other bits) */ 1464 reg->smax_value = min_t(s64, reg->smax_value, 1465 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1466 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1467 reg->umax_value = min(reg->umax_value, 1468 reg->var_off.value | reg->var_off.mask); 1469 } 1470 1471 static void __update_reg_bounds(struct bpf_reg_state *reg) 1472 { 1473 __update_reg32_bounds(reg); 1474 __update_reg64_bounds(reg); 1475 } 1476 1477 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1478 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1479 { 1480 /* Learn sign from signed bounds. 1481 * If we cannot cross the sign boundary, then signed and unsigned bounds 1482 * are the same, so combine. This works even in the negative case, e.g. 1483 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1484 */ 1485 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1486 reg->s32_min_value = reg->u32_min_value = 1487 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1488 reg->s32_max_value = reg->u32_max_value = 1489 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1490 return; 1491 } 1492 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1493 * boundary, so we must be careful. 1494 */ 1495 if ((s32)reg->u32_max_value >= 0) { 1496 /* Positive. We can't learn anything from the smin, but smax 1497 * is positive, hence safe. 1498 */ 1499 reg->s32_min_value = reg->u32_min_value; 1500 reg->s32_max_value = reg->u32_max_value = 1501 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1502 } else if ((s32)reg->u32_min_value < 0) { 1503 /* Negative. We can't learn anything from the smax, but smin 1504 * is negative, hence safe. 1505 */ 1506 reg->s32_min_value = reg->u32_min_value = 1507 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1508 reg->s32_max_value = reg->u32_max_value; 1509 } 1510 } 1511 1512 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1513 { 1514 /* Learn sign from signed bounds. 1515 * If we cannot cross the sign boundary, then signed and unsigned bounds 1516 * are the same, so combine. This works even in the negative case, e.g. 1517 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1518 */ 1519 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1520 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1521 reg->umin_value); 1522 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1523 reg->umax_value); 1524 return; 1525 } 1526 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1527 * boundary, so we must be careful. 1528 */ 1529 if ((s64)reg->umax_value >= 0) { 1530 /* Positive. We can't learn anything from the smin, but smax 1531 * is positive, hence safe. 1532 */ 1533 reg->smin_value = reg->umin_value; 1534 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1535 reg->umax_value); 1536 } else if ((s64)reg->umin_value < 0) { 1537 /* Negative. We can't learn anything from the smax, but smin 1538 * is negative, hence safe. 1539 */ 1540 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1541 reg->umin_value); 1542 reg->smax_value = reg->umax_value; 1543 } 1544 } 1545 1546 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1547 { 1548 __reg32_deduce_bounds(reg); 1549 __reg64_deduce_bounds(reg); 1550 } 1551 1552 /* Attempts to improve var_off based on unsigned min/max information */ 1553 static void __reg_bound_offset(struct bpf_reg_state *reg) 1554 { 1555 struct tnum var64_off = tnum_intersect(reg->var_off, 1556 tnum_range(reg->umin_value, 1557 reg->umax_value)); 1558 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1559 tnum_range(reg->u32_min_value, 1560 reg->u32_max_value)); 1561 1562 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1563 } 1564 1565 static void reg_bounds_sync(struct bpf_reg_state *reg) 1566 { 1567 /* We might have learned new bounds from the var_off. */ 1568 __update_reg_bounds(reg); 1569 /* We might have learned something about the sign bit. */ 1570 __reg_deduce_bounds(reg); 1571 /* We might have learned some bits from the bounds. */ 1572 __reg_bound_offset(reg); 1573 /* Intersecting with the old var_off might have improved our bounds 1574 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1575 * then new var_off is (0; 0x7f...fc) which improves our umax. 1576 */ 1577 __update_reg_bounds(reg); 1578 } 1579 1580 static bool __reg32_bound_s64(s32 a) 1581 { 1582 return a >= 0 && a <= S32_MAX; 1583 } 1584 1585 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1586 { 1587 reg->umin_value = reg->u32_min_value; 1588 reg->umax_value = reg->u32_max_value; 1589 1590 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1591 * be positive otherwise set to worse case bounds and refine later 1592 * from tnum. 1593 */ 1594 if (__reg32_bound_s64(reg->s32_min_value) && 1595 __reg32_bound_s64(reg->s32_max_value)) { 1596 reg->smin_value = reg->s32_min_value; 1597 reg->smax_value = reg->s32_max_value; 1598 } else { 1599 reg->smin_value = 0; 1600 reg->smax_value = U32_MAX; 1601 } 1602 } 1603 1604 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1605 { 1606 /* special case when 64-bit register has upper 32-bit register 1607 * zeroed. Typically happens after zext or <<32, >>32 sequence 1608 * allowing us to use 32-bit bounds directly, 1609 */ 1610 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1611 __reg_assign_32_into_64(reg); 1612 } else { 1613 /* Otherwise the best we can do is push lower 32bit known and 1614 * unknown bits into register (var_off set from jmp logic) 1615 * then learn as much as possible from the 64-bit tnum 1616 * known and unknown bits. The previous smin/smax bounds are 1617 * invalid here because of jmp32 compare so mark them unknown 1618 * so they do not impact tnum bounds calculation. 1619 */ 1620 __mark_reg64_unbounded(reg); 1621 } 1622 reg_bounds_sync(reg); 1623 } 1624 1625 static bool __reg64_bound_s32(s64 a) 1626 { 1627 return a >= S32_MIN && a <= S32_MAX; 1628 } 1629 1630 static bool __reg64_bound_u32(u64 a) 1631 { 1632 return a >= U32_MIN && a <= U32_MAX; 1633 } 1634 1635 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1636 { 1637 __mark_reg32_unbounded(reg); 1638 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1639 reg->s32_min_value = (s32)reg->smin_value; 1640 reg->s32_max_value = (s32)reg->smax_value; 1641 } 1642 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1643 reg->u32_min_value = (u32)reg->umin_value; 1644 reg->u32_max_value = (u32)reg->umax_value; 1645 } 1646 reg_bounds_sync(reg); 1647 } 1648 1649 /* Mark a register as having a completely unknown (scalar) value. */ 1650 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1651 struct bpf_reg_state *reg) 1652 { 1653 /* 1654 * Clear type, id, off, and union(map_ptr, range) and 1655 * padding between 'type' and union 1656 */ 1657 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1658 reg->type = SCALAR_VALUE; 1659 reg->var_off = tnum_unknown; 1660 reg->frameno = 0; 1661 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1662 __mark_reg_unbounded(reg); 1663 } 1664 1665 static void mark_reg_unknown(struct bpf_verifier_env *env, 1666 struct bpf_reg_state *regs, u32 regno) 1667 { 1668 if (WARN_ON(regno >= MAX_BPF_REG)) { 1669 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1670 /* Something bad happened, let's kill all regs except FP */ 1671 for (regno = 0; regno < BPF_REG_FP; regno++) 1672 __mark_reg_not_init(env, regs + regno); 1673 return; 1674 } 1675 __mark_reg_unknown(env, regs + regno); 1676 } 1677 1678 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1679 struct bpf_reg_state *reg) 1680 { 1681 __mark_reg_unknown(env, reg); 1682 reg->type = NOT_INIT; 1683 } 1684 1685 static void mark_reg_not_init(struct bpf_verifier_env *env, 1686 struct bpf_reg_state *regs, u32 regno) 1687 { 1688 if (WARN_ON(regno >= MAX_BPF_REG)) { 1689 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1690 /* Something bad happened, let's kill all regs except FP */ 1691 for (regno = 0; regno < BPF_REG_FP; regno++) 1692 __mark_reg_not_init(env, regs + regno); 1693 return; 1694 } 1695 __mark_reg_not_init(env, regs + regno); 1696 } 1697 1698 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1699 struct bpf_reg_state *regs, u32 regno, 1700 enum bpf_reg_type reg_type, 1701 struct btf *btf, u32 btf_id, 1702 enum bpf_type_flag flag) 1703 { 1704 if (reg_type == SCALAR_VALUE) { 1705 mark_reg_unknown(env, regs, regno); 1706 return; 1707 } 1708 mark_reg_known_zero(env, regs, regno); 1709 regs[regno].type = PTR_TO_BTF_ID | flag; 1710 regs[regno].btf = btf; 1711 regs[regno].btf_id = btf_id; 1712 } 1713 1714 #define DEF_NOT_SUBREG (0) 1715 static void init_reg_state(struct bpf_verifier_env *env, 1716 struct bpf_func_state *state) 1717 { 1718 struct bpf_reg_state *regs = state->regs; 1719 int i; 1720 1721 for (i = 0; i < MAX_BPF_REG; i++) { 1722 mark_reg_not_init(env, regs, i); 1723 regs[i].live = REG_LIVE_NONE; 1724 regs[i].parent = NULL; 1725 regs[i].subreg_def = DEF_NOT_SUBREG; 1726 } 1727 1728 /* frame pointer */ 1729 regs[BPF_REG_FP].type = PTR_TO_STACK; 1730 mark_reg_known_zero(env, regs, BPF_REG_FP); 1731 regs[BPF_REG_FP].frameno = state->frameno; 1732 } 1733 1734 #define BPF_MAIN_FUNC (-1) 1735 static void init_func_state(struct bpf_verifier_env *env, 1736 struct bpf_func_state *state, 1737 int callsite, int frameno, int subprogno) 1738 { 1739 state->callsite = callsite; 1740 state->frameno = frameno; 1741 state->subprogno = subprogno; 1742 init_reg_state(env, state); 1743 mark_verifier_state_scratched(env); 1744 } 1745 1746 /* Similar to push_stack(), but for async callbacks */ 1747 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1748 int insn_idx, int prev_insn_idx, 1749 int subprog) 1750 { 1751 struct bpf_verifier_stack_elem *elem; 1752 struct bpf_func_state *frame; 1753 1754 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1755 if (!elem) 1756 goto err; 1757 1758 elem->insn_idx = insn_idx; 1759 elem->prev_insn_idx = prev_insn_idx; 1760 elem->next = env->head; 1761 elem->log_pos = env->log.len_used; 1762 env->head = elem; 1763 env->stack_size++; 1764 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1765 verbose(env, 1766 "The sequence of %d jumps is too complex for async cb.\n", 1767 env->stack_size); 1768 goto err; 1769 } 1770 /* Unlike push_stack() do not copy_verifier_state(). 1771 * The caller state doesn't matter. 1772 * This is async callback. It starts in a fresh stack. 1773 * Initialize it similar to do_check_common(). 1774 */ 1775 elem->st.branches = 1; 1776 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1777 if (!frame) 1778 goto err; 1779 init_func_state(env, frame, 1780 BPF_MAIN_FUNC /* callsite */, 1781 0 /* frameno within this callchain */, 1782 subprog /* subprog number within this prog */); 1783 elem->st.frame[0] = frame; 1784 return &elem->st; 1785 err: 1786 free_verifier_state(env->cur_state, true); 1787 env->cur_state = NULL; 1788 /* pop all elements and return */ 1789 while (!pop_stack(env, NULL, NULL, false)); 1790 return NULL; 1791 } 1792 1793 1794 enum reg_arg_type { 1795 SRC_OP, /* register is used as source operand */ 1796 DST_OP, /* register is used as destination operand */ 1797 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1798 }; 1799 1800 static int cmp_subprogs(const void *a, const void *b) 1801 { 1802 return ((struct bpf_subprog_info *)a)->start - 1803 ((struct bpf_subprog_info *)b)->start; 1804 } 1805 1806 static int find_subprog(struct bpf_verifier_env *env, int off) 1807 { 1808 struct bpf_subprog_info *p; 1809 1810 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1811 sizeof(env->subprog_info[0]), cmp_subprogs); 1812 if (!p) 1813 return -ENOENT; 1814 return p - env->subprog_info; 1815 1816 } 1817 1818 static int add_subprog(struct bpf_verifier_env *env, int off) 1819 { 1820 int insn_cnt = env->prog->len; 1821 int ret; 1822 1823 if (off >= insn_cnt || off < 0) { 1824 verbose(env, "call to invalid destination\n"); 1825 return -EINVAL; 1826 } 1827 ret = find_subprog(env, off); 1828 if (ret >= 0) 1829 return ret; 1830 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1831 verbose(env, "too many subprograms\n"); 1832 return -E2BIG; 1833 } 1834 /* determine subprog starts. The end is one before the next starts */ 1835 env->subprog_info[env->subprog_cnt++].start = off; 1836 sort(env->subprog_info, env->subprog_cnt, 1837 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1838 return env->subprog_cnt - 1; 1839 } 1840 1841 #define MAX_KFUNC_DESCS 256 1842 #define MAX_KFUNC_BTFS 256 1843 1844 struct bpf_kfunc_desc { 1845 struct btf_func_model func_model; 1846 u32 func_id; 1847 s32 imm; 1848 u16 offset; 1849 }; 1850 1851 struct bpf_kfunc_btf { 1852 struct btf *btf; 1853 struct module *module; 1854 u16 offset; 1855 }; 1856 1857 struct bpf_kfunc_desc_tab { 1858 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1859 u32 nr_descs; 1860 }; 1861 1862 struct bpf_kfunc_btf_tab { 1863 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1864 u32 nr_descs; 1865 }; 1866 1867 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1868 { 1869 const struct bpf_kfunc_desc *d0 = a; 1870 const struct bpf_kfunc_desc *d1 = b; 1871 1872 /* func_id is not greater than BTF_MAX_TYPE */ 1873 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1874 } 1875 1876 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1877 { 1878 const struct bpf_kfunc_btf *d0 = a; 1879 const struct bpf_kfunc_btf *d1 = b; 1880 1881 return d0->offset - d1->offset; 1882 } 1883 1884 static const struct bpf_kfunc_desc * 1885 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1886 { 1887 struct bpf_kfunc_desc desc = { 1888 .func_id = func_id, 1889 .offset = offset, 1890 }; 1891 struct bpf_kfunc_desc_tab *tab; 1892 1893 tab = prog->aux->kfunc_tab; 1894 return bsearch(&desc, tab->descs, tab->nr_descs, 1895 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1896 } 1897 1898 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1899 s16 offset) 1900 { 1901 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1902 struct bpf_kfunc_btf_tab *tab; 1903 struct bpf_kfunc_btf *b; 1904 struct module *mod; 1905 struct btf *btf; 1906 int btf_fd; 1907 1908 tab = env->prog->aux->kfunc_btf_tab; 1909 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1910 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1911 if (!b) { 1912 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1913 verbose(env, "too many different module BTFs\n"); 1914 return ERR_PTR(-E2BIG); 1915 } 1916 1917 if (bpfptr_is_null(env->fd_array)) { 1918 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1919 return ERR_PTR(-EPROTO); 1920 } 1921 1922 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1923 offset * sizeof(btf_fd), 1924 sizeof(btf_fd))) 1925 return ERR_PTR(-EFAULT); 1926 1927 btf = btf_get_by_fd(btf_fd); 1928 if (IS_ERR(btf)) { 1929 verbose(env, "invalid module BTF fd specified\n"); 1930 return btf; 1931 } 1932 1933 if (!btf_is_module(btf)) { 1934 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1935 btf_put(btf); 1936 return ERR_PTR(-EINVAL); 1937 } 1938 1939 mod = btf_try_get_module(btf); 1940 if (!mod) { 1941 btf_put(btf); 1942 return ERR_PTR(-ENXIO); 1943 } 1944 1945 b = &tab->descs[tab->nr_descs++]; 1946 b->btf = btf; 1947 b->module = mod; 1948 b->offset = offset; 1949 1950 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1951 kfunc_btf_cmp_by_off, NULL); 1952 } 1953 return b->btf; 1954 } 1955 1956 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1957 { 1958 if (!tab) 1959 return; 1960 1961 while (tab->nr_descs--) { 1962 module_put(tab->descs[tab->nr_descs].module); 1963 btf_put(tab->descs[tab->nr_descs].btf); 1964 } 1965 kfree(tab); 1966 } 1967 1968 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 1969 { 1970 if (offset) { 1971 if (offset < 0) { 1972 /* In the future, this can be allowed to increase limit 1973 * of fd index into fd_array, interpreted as u16. 1974 */ 1975 verbose(env, "negative offset disallowed for kernel module function call\n"); 1976 return ERR_PTR(-EINVAL); 1977 } 1978 1979 return __find_kfunc_desc_btf(env, offset); 1980 } 1981 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1982 } 1983 1984 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1985 { 1986 const struct btf_type *func, *func_proto; 1987 struct bpf_kfunc_btf_tab *btf_tab; 1988 struct bpf_kfunc_desc_tab *tab; 1989 struct bpf_prog_aux *prog_aux; 1990 struct bpf_kfunc_desc *desc; 1991 const char *func_name; 1992 struct btf *desc_btf; 1993 unsigned long call_imm; 1994 unsigned long addr; 1995 int err; 1996 1997 prog_aux = env->prog->aux; 1998 tab = prog_aux->kfunc_tab; 1999 btf_tab = prog_aux->kfunc_btf_tab; 2000 if (!tab) { 2001 if (!btf_vmlinux) { 2002 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2003 return -ENOTSUPP; 2004 } 2005 2006 if (!env->prog->jit_requested) { 2007 verbose(env, "JIT is required for calling kernel function\n"); 2008 return -ENOTSUPP; 2009 } 2010 2011 if (!bpf_jit_supports_kfunc_call()) { 2012 verbose(env, "JIT does not support calling kernel function\n"); 2013 return -ENOTSUPP; 2014 } 2015 2016 if (!env->prog->gpl_compatible) { 2017 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2018 return -EINVAL; 2019 } 2020 2021 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2022 if (!tab) 2023 return -ENOMEM; 2024 prog_aux->kfunc_tab = tab; 2025 } 2026 2027 /* func_id == 0 is always invalid, but instead of returning an error, be 2028 * conservative and wait until the code elimination pass before returning 2029 * error, so that invalid calls that get pruned out can be in BPF programs 2030 * loaded from userspace. It is also required that offset be untouched 2031 * for such calls. 2032 */ 2033 if (!func_id && !offset) 2034 return 0; 2035 2036 if (!btf_tab && offset) { 2037 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2038 if (!btf_tab) 2039 return -ENOMEM; 2040 prog_aux->kfunc_btf_tab = btf_tab; 2041 } 2042 2043 desc_btf = find_kfunc_desc_btf(env, offset); 2044 if (IS_ERR(desc_btf)) { 2045 verbose(env, "failed to find BTF for kernel function\n"); 2046 return PTR_ERR(desc_btf); 2047 } 2048 2049 if (find_kfunc_desc(env->prog, func_id, offset)) 2050 return 0; 2051 2052 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2053 verbose(env, "too many different kernel function calls\n"); 2054 return -E2BIG; 2055 } 2056 2057 func = btf_type_by_id(desc_btf, func_id); 2058 if (!func || !btf_type_is_func(func)) { 2059 verbose(env, "kernel btf_id %u is not a function\n", 2060 func_id); 2061 return -EINVAL; 2062 } 2063 func_proto = btf_type_by_id(desc_btf, func->type); 2064 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2065 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2066 func_id); 2067 return -EINVAL; 2068 } 2069 2070 func_name = btf_name_by_offset(desc_btf, func->name_off); 2071 addr = kallsyms_lookup_name(func_name); 2072 if (!addr) { 2073 verbose(env, "cannot find address for kernel function %s\n", 2074 func_name); 2075 return -EINVAL; 2076 } 2077 2078 call_imm = BPF_CALL_IMM(addr); 2079 /* Check whether or not the relative offset overflows desc->imm */ 2080 if ((unsigned long)(s32)call_imm != call_imm) { 2081 verbose(env, "address of kernel function %s is out of range\n", 2082 func_name); 2083 return -EINVAL; 2084 } 2085 2086 desc = &tab->descs[tab->nr_descs++]; 2087 desc->func_id = func_id; 2088 desc->imm = call_imm; 2089 desc->offset = offset; 2090 err = btf_distill_func_proto(&env->log, desc_btf, 2091 func_proto, func_name, 2092 &desc->func_model); 2093 if (!err) 2094 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2095 kfunc_desc_cmp_by_id_off, NULL); 2096 return err; 2097 } 2098 2099 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2100 { 2101 const struct bpf_kfunc_desc *d0 = a; 2102 const struct bpf_kfunc_desc *d1 = b; 2103 2104 if (d0->imm > d1->imm) 2105 return 1; 2106 else if (d0->imm < d1->imm) 2107 return -1; 2108 return 0; 2109 } 2110 2111 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2112 { 2113 struct bpf_kfunc_desc_tab *tab; 2114 2115 tab = prog->aux->kfunc_tab; 2116 if (!tab) 2117 return; 2118 2119 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2120 kfunc_desc_cmp_by_imm, NULL); 2121 } 2122 2123 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2124 { 2125 return !!prog->aux->kfunc_tab; 2126 } 2127 2128 const struct btf_func_model * 2129 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2130 const struct bpf_insn *insn) 2131 { 2132 const struct bpf_kfunc_desc desc = { 2133 .imm = insn->imm, 2134 }; 2135 const struct bpf_kfunc_desc *res; 2136 struct bpf_kfunc_desc_tab *tab; 2137 2138 tab = prog->aux->kfunc_tab; 2139 res = bsearch(&desc, tab->descs, tab->nr_descs, 2140 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2141 2142 return res ? &res->func_model : NULL; 2143 } 2144 2145 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2146 { 2147 struct bpf_subprog_info *subprog = env->subprog_info; 2148 struct bpf_insn *insn = env->prog->insnsi; 2149 int i, ret, insn_cnt = env->prog->len; 2150 2151 /* Add entry function. */ 2152 ret = add_subprog(env, 0); 2153 if (ret) 2154 return ret; 2155 2156 for (i = 0; i < insn_cnt; i++, insn++) { 2157 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2158 !bpf_pseudo_kfunc_call(insn)) 2159 continue; 2160 2161 if (!env->bpf_capable) { 2162 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2163 return -EPERM; 2164 } 2165 2166 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2167 ret = add_subprog(env, i + insn->imm + 1); 2168 else 2169 ret = add_kfunc_call(env, insn->imm, insn->off); 2170 2171 if (ret < 0) 2172 return ret; 2173 } 2174 2175 /* Add a fake 'exit' subprog which could simplify subprog iteration 2176 * logic. 'subprog_cnt' should not be increased. 2177 */ 2178 subprog[env->subprog_cnt].start = insn_cnt; 2179 2180 if (env->log.level & BPF_LOG_LEVEL2) 2181 for (i = 0; i < env->subprog_cnt; i++) 2182 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2183 2184 return 0; 2185 } 2186 2187 static int check_subprogs(struct bpf_verifier_env *env) 2188 { 2189 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2190 struct bpf_subprog_info *subprog = env->subprog_info; 2191 struct bpf_insn *insn = env->prog->insnsi; 2192 int insn_cnt = env->prog->len; 2193 2194 /* now check that all jumps are within the same subprog */ 2195 subprog_start = subprog[cur_subprog].start; 2196 subprog_end = subprog[cur_subprog + 1].start; 2197 for (i = 0; i < insn_cnt; i++) { 2198 u8 code = insn[i].code; 2199 2200 if (code == (BPF_JMP | BPF_CALL) && 2201 insn[i].imm == BPF_FUNC_tail_call && 2202 insn[i].src_reg != BPF_PSEUDO_CALL) 2203 subprog[cur_subprog].has_tail_call = true; 2204 if (BPF_CLASS(code) == BPF_LD && 2205 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2206 subprog[cur_subprog].has_ld_abs = true; 2207 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2208 goto next; 2209 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2210 goto next; 2211 off = i + insn[i].off + 1; 2212 if (off < subprog_start || off >= subprog_end) { 2213 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2214 return -EINVAL; 2215 } 2216 next: 2217 if (i == subprog_end - 1) { 2218 /* to avoid fall-through from one subprog into another 2219 * the last insn of the subprog should be either exit 2220 * or unconditional jump back 2221 */ 2222 if (code != (BPF_JMP | BPF_EXIT) && 2223 code != (BPF_JMP | BPF_JA)) { 2224 verbose(env, "last insn is not an exit or jmp\n"); 2225 return -EINVAL; 2226 } 2227 subprog_start = subprog_end; 2228 cur_subprog++; 2229 if (cur_subprog < env->subprog_cnt) 2230 subprog_end = subprog[cur_subprog + 1].start; 2231 } 2232 } 2233 return 0; 2234 } 2235 2236 /* Parentage chain of this register (or stack slot) should take care of all 2237 * issues like callee-saved registers, stack slot allocation time, etc. 2238 */ 2239 static int mark_reg_read(struct bpf_verifier_env *env, 2240 const struct bpf_reg_state *state, 2241 struct bpf_reg_state *parent, u8 flag) 2242 { 2243 bool writes = parent == state->parent; /* Observe write marks */ 2244 int cnt = 0; 2245 2246 while (parent) { 2247 /* if read wasn't screened by an earlier write ... */ 2248 if (writes && state->live & REG_LIVE_WRITTEN) 2249 break; 2250 if (parent->live & REG_LIVE_DONE) { 2251 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2252 reg_type_str(env, parent->type), 2253 parent->var_off.value, parent->off); 2254 return -EFAULT; 2255 } 2256 /* The first condition is more likely to be true than the 2257 * second, checked it first. 2258 */ 2259 if ((parent->live & REG_LIVE_READ) == flag || 2260 parent->live & REG_LIVE_READ64) 2261 /* The parentage chain never changes and 2262 * this parent was already marked as LIVE_READ. 2263 * There is no need to keep walking the chain again and 2264 * keep re-marking all parents as LIVE_READ. 2265 * This case happens when the same register is read 2266 * multiple times without writes into it in-between. 2267 * Also, if parent has the stronger REG_LIVE_READ64 set, 2268 * then no need to set the weak REG_LIVE_READ32. 2269 */ 2270 break; 2271 /* ... then we depend on parent's value */ 2272 parent->live |= flag; 2273 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2274 if (flag == REG_LIVE_READ64) 2275 parent->live &= ~REG_LIVE_READ32; 2276 state = parent; 2277 parent = state->parent; 2278 writes = true; 2279 cnt++; 2280 } 2281 2282 if (env->longest_mark_read_walk < cnt) 2283 env->longest_mark_read_walk = cnt; 2284 return 0; 2285 } 2286 2287 /* This function is supposed to be used by the following 32-bit optimization 2288 * code only. It returns TRUE if the source or destination register operates 2289 * on 64-bit, otherwise return FALSE. 2290 */ 2291 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2292 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2293 { 2294 u8 code, class, op; 2295 2296 code = insn->code; 2297 class = BPF_CLASS(code); 2298 op = BPF_OP(code); 2299 if (class == BPF_JMP) { 2300 /* BPF_EXIT for "main" will reach here. Return TRUE 2301 * conservatively. 2302 */ 2303 if (op == BPF_EXIT) 2304 return true; 2305 if (op == BPF_CALL) { 2306 /* BPF to BPF call will reach here because of marking 2307 * caller saved clobber with DST_OP_NO_MARK for which we 2308 * don't care the register def because they are anyway 2309 * marked as NOT_INIT already. 2310 */ 2311 if (insn->src_reg == BPF_PSEUDO_CALL) 2312 return false; 2313 /* Helper call will reach here because of arg type 2314 * check, conservatively return TRUE. 2315 */ 2316 if (t == SRC_OP) 2317 return true; 2318 2319 return false; 2320 } 2321 } 2322 2323 if (class == BPF_ALU64 || class == BPF_JMP || 2324 /* BPF_END always use BPF_ALU class. */ 2325 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2326 return true; 2327 2328 if (class == BPF_ALU || class == BPF_JMP32) 2329 return false; 2330 2331 if (class == BPF_LDX) { 2332 if (t != SRC_OP) 2333 return BPF_SIZE(code) == BPF_DW; 2334 /* LDX source must be ptr. */ 2335 return true; 2336 } 2337 2338 if (class == BPF_STX) { 2339 /* BPF_STX (including atomic variants) has multiple source 2340 * operands, one of which is a ptr. Check whether the caller is 2341 * asking about it. 2342 */ 2343 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2344 return true; 2345 return BPF_SIZE(code) == BPF_DW; 2346 } 2347 2348 if (class == BPF_LD) { 2349 u8 mode = BPF_MODE(code); 2350 2351 /* LD_IMM64 */ 2352 if (mode == BPF_IMM) 2353 return true; 2354 2355 /* Both LD_IND and LD_ABS return 32-bit data. */ 2356 if (t != SRC_OP) 2357 return false; 2358 2359 /* Implicit ctx ptr. */ 2360 if (regno == BPF_REG_6) 2361 return true; 2362 2363 /* Explicit source could be any width. */ 2364 return true; 2365 } 2366 2367 if (class == BPF_ST) 2368 /* The only source register for BPF_ST is a ptr. */ 2369 return true; 2370 2371 /* Conservatively return true at default. */ 2372 return true; 2373 } 2374 2375 /* Return the regno defined by the insn, or -1. */ 2376 static int insn_def_regno(const struct bpf_insn *insn) 2377 { 2378 switch (BPF_CLASS(insn->code)) { 2379 case BPF_JMP: 2380 case BPF_JMP32: 2381 case BPF_ST: 2382 return -1; 2383 case BPF_STX: 2384 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2385 (insn->imm & BPF_FETCH)) { 2386 if (insn->imm == BPF_CMPXCHG) 2387 return BPF_REG_0; 2388 else 2389 return insn->src_reg; 2390 } else { 2391 return -1; 2392 } 2393 default: 2394 return insn->dst_reg; 2395 } 2396 } 2397 2398 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2399 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2400 { 2401 int dst_reg = insn_def_regno(insn); 2402 2403 if (dst_reg == -1) 2404 return false; 2405 2406 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2407 } 2408 2409 static void mark_insn_zext(struct bpf_verifier_env *env, 2410 struct bpf_reg_state *reg) 2411 { 2412 s32 def_idx = reg->subreg_def; 2413 2414 if (def_idx == DEF_NOT_SUBREG) 2415 return; 2416 2417 env->insn_aux_data[def_idx - 1].zext_dst = true; 2418 /* The dst will be zero extended, so won't be sub-register anymore. */ 2419 reg->subreg_def = DEF_NOT_SUBREG; 2420 } 2421 2422 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2423 enum reg_arg_type t) 2424 { 2425 struct bpf_verifier_state *vstate = env->cur_state; 2426 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2427 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2428 struct bpf_reg_state *reg, *regs = state->regs; 2429 bool rw64; 2430 2431 if (regno >= MAX_BPF_REG) { 2432 verbose(env, "R%d is invalid\n", regno); 2433 return -EINVAL; 2434 } 2435 2436 mark_reg_scratched(env, regno); 2437 2438 reg = ®s[regno]; 2439 rw64 = is_reg64(env, insn, regno, reg, t); 2440 if (t == SRC_OP) { 2441 /* check whether register used as source operand can be read */ 2442 if (reg->type == NOT_INIT) { 2443 verbose(env, "R%d !read_ok\n", regno); 2444 return -EACCES; 2445 } 2446 /* We don't need to worry about FP liveness because it's read-only */ 2447 if (regno == BPF_REG_FP) 2448 return 0; 2449 2450 if (rw64) 2451 mark_insn_zext(env, reg); 2452 2453 return mark_reg_read(env, reg, reg->parent, 2454 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2455 } else { 2456 /* check whether register used as dest operand can be written to */ 2457 if (regno == BPF_REG_FP) { 2458 verbose(env, "frame pointer is read only\n"); 2459 return -EACCES; 2460 } 2461 reg->live |= REG_LIVE_WRITTEN; 2462 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2463 if (t == DST_OP) 2464 mark_reg_unknown(env, regs, regno); 2465 } 2466 return 0; 2467 } 2468 2469 /* for any branch, call, exit record the history of jmps in the given state */ 2470 static int push_jmp_history(struct bpf_verifier_env *env, 2471 struct bpf_verifier_state *cur) 2472 { 2473 u32 cnt = cur->jmp_history_cnt; 2474 struct bpf_idx_pair *p; 2475 2476 cnt++; 2477 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2478 if (!p) 2479 return -ENOMEM; 2480 p[cnt - 1].idx = env->insn_idx; 2481 p[cnt - 1].prev_idx = env->prev_insn_idx; 2482 cur->jmp_history = p; 2483 cur->jmp_history_cnt = cnt; 2484 return 0; 2485 } 2486 2487 /* Backtrack one insn at a time. If idx is not at the top of recorded 2488 * history then previous instruction came from straight line execution. 2489 */ 2490 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2491 u32 *history) 2492 { 2493 u32 cnt = *history; 2494 2495 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2496 i = st->jmp_history[cnt - 1].prev_idx; 2497 (*history)--; 2498 } else { 2499 i--; 2500 } 2501 return i; 2502 } 2503 2504 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2505 { 2506 const struct btf_type *func; 2507 struct btf *desc_btf; 2508 2509 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2510 return NULL; 2511 2512 desc_btf = find_kfunc_desc_btf(data, insn->off); 2513 if (IS_ERR(desc_btf)) 2514 return "<error>"; 2515 2516 func = btf_type_by_id(desc_btf, insn->imm); 2517 return btf_name_by_offset(desc_btf, func->name_off); 2518 } 2519 2520 /* For given verifier state backtrack_insn() is called from the last insn to 2521 * the first insn. Its purpose is to compute a bitmask of registers and 2522 * stack slots that needs precision in the parent verifier state. 2523 */ 2524 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2525 u32 *reg_mask, u64 *stack_mask) 2526 { 2527 const struct bpf_insn_cbs cbs = { 2528 .cb_call = disasm_kfunc_name, 2529 .cb_print = verbose, 2530 .private_data = env, 2531 }; 2532 struct bpf_insn *insn = env->prog->insnsi + idx; 2533 u8 class = BPF_CLASS(insn->code); 2534 u8 opcode = BPF_OP(insn->code); 2535 u8 mode = BPF_MODE(insn->code); 2536 u32 dreg = 1u << insn->dst_reg; 2537 u32 sreg = 1u << insn->src_reg; 2538 u32 spi; 2539 2540 if (insn->code == 0) 2541 return 0; 2542 if (env->log.level & BPF_LOG_LEVEL2) { 2543 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2544 verbose(env, "%d: ", idx); 2545 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2546 } 2547 2548 if (class == BPF_ALU || class == BPF_ALU64) { 2549 if (!(*reg_mask & dreg)) 2550 return 0; 2551 if (opcode == BPF_MOV) { 2552 if (BPF_SRC(insn->code) == BPF_X) { 2553 /* dreg = sreg 2554 * dreg needs precision after this insn 2555 * sreg needs precision before this insn 2556 */ 2557 *reg_mask &= ~dreg; 2558 *reg_mask |= sreg; 2559 } else { 2560 /* dreg = K 2561 * dreg needs precision after this insn. 2562 * Corresponding register is already marked 2563 * as precise=true in this verifier state. 2564 * No further markings in parent are necessary 2565 */ 2566 *reg_mask &= ~dreg; 2567 } 2568 } else { 2569 if (BPF_SRC(insn->code) == BPF_X) { 2570 /* dreg += sreg 2571 * both dreg and sreg need precision 2572 * before this insn 2573 */ 2574 *reg_mask |= sreg; 2575 } /* else dreg += K 2576 * dreg still needs precision before this insn 2577 */ 2578 } 2579 } else if (class == BPF_LDX) { 2580 if (!(*reg_mask & dreg)) 2581 return 0; 2582 *reg_mask &= ~dreg; 2583 2584 /* scalars can only be spilled into stack w/o losing precision. 2585 * Load from any other memory can be zero extended. 2586 * The desire to keep that precision is already indicated 2587 * by 'precise' mark in corresponding register of this state. 2588 * No further tracking necessary. 2589 */ 2590 if (insn->src_reg != BPF_REG_FP) 2591 return 0; 2592 2593 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2594 * that [fp - off] slot contains scalar that needs to be 2595 * tracked with precision 2596 */ 2597 spi = (-insn->off - 1) / BPF_REG_SIZE; 2598 if (spi >= 64) { 2599 verbose(env, "BUG spi %d\n", spi); 2600 WARN_ONCE(1, "verifier backtracking bug"); 2601 return -EFAULT; 2602 } 2603 *stack_mask |= 1ull << spi; 2604 } else if (class == BPF_STX || class == BPF_ST) { 2605 if (*reg_mask & dreg) 2606 /* stx & st shouldn't be using _scalar_ dst_reg 2607 * to access memory. It means backtracking 2608 * encountered a case of pointer subtraction. 2609 */ 2610 return -ENOTSUPP; 2611 /* scalars can only be spilled into stack */ 2612 if (insn->dst_reg != BPF_REG_FP) 2613 return 0; 2614 spi = (-insn->off - 1) / BPF_REG_SIZE; 2615 if (spi >= 64) { 2616 verbose(env, "BUG spi %d\n", spi); 2617 WARN_ONCE(1, "verifier backtracking bug"); 2618 return -EFAULT; 2619 } 2620 if (!(*stack_mask & (1ull << spi))) 2621 return 0; 2622 *stack_mask &= ~(1ull << spi); 2623 if (class == BPF_STX) 2624 *reg_mask |= sreg; 2625 } else if (class == BPF_JMP || class == BPF_JMP32) { 2626 if (opcode == BPF_CALL) { 2627 if (insn->src_reg == BPF_PSEUDO_CALL) 2628 return -ENOTSUPP; 2629 /* regular helper call sets R0 */ 2630 *reg_mask &= ~1; 2631 if (*reg_mask & 0x3f) { 2632 /* if backtracing was looking for registers R1-R5 2633 * they should have been found already. 2634 */ 2635 verbose(env, "BUG regs %x\n", *reg_mask); 2636 WARN_ONCE(1, "verifier backtracking bug"); 2637 return -EFAULT; 2638 } 2639 } else if (opcode == BPF_EXIT) { 2640 return -ENOTSUPP; 2641 } 2642 } else if (class == BPF_LD) { 2643 if (!(*reg_mask & dreg)) 2644 return 0; 2645 *reg_mask &= ~dreg; 2646 /* It's ld_imm64 or ld_abs or ld_ind. 2647 * For ld_imm64 no further tracking of precision 2648 * into parent is necessary 2649 */ 2650 if (mode == BPF_IND || mode == BPF_ABS) 2651 /* to be analyzed */ 2652 return -ENOTSUPP; 2653 } 2654 return 0; 2655 } 2656 2657 /* the scalar precision tracking algorithm: 2658 * . at the start all registers have precise=false. 2659 * . scalar ranges are tracked as normal through alu and jmp insns. 2660 * . once precise value of the scalar register is used in: 2661 * . ptr + scalar alu 2662 * . if (scalar cond K|scalar) 2663 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2664 * backtrack through the verifier states and mark all registers and 2665 * stack slots with spilled constants that these scalar regisers 2666 * should be precise. 2667 * . during state pruning two registers (or spilled stack slots) 2668 * are equivalent if both are not precise. 2669 * 2670 * Note the verifier cannot simply walk register parentage chain, 2671 * since many different registers and stack slots could have been 2672 * used to compute single precise scalar. 2673 * 2674 * The approach of starting with precise=true for all registers and then 2675 * backtrack to mark a register as not precise when the verifier detects 2676 * that program doesn't care about specific value (e.g., when helper 2677 * takes register as ARG_ANYTHING parameter) is not safe. 2678 * 2679 * It's ok to walk single parentage chain of the verifier states. 2680 * It's possible that this backtracking will go all the way till 1st insn. 2681 * All other branches will be explored for needing precision later. 2682 * 2683 * The backtracking needs to deal with cases like: 2684 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2685 * r9 -= r8 2686 * r5 = r9 2687 * if r5 > 0x79f goto pc+7 2688 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2689 * r5 += 1 2690 * ... 2691 * call bpf_perf_event_output#25 2692 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2693 * 2694 * and this case: 2695 * r6 = 1 2696 * call foo // uses callee's r6 inside to compute r0 2697 * r0 += r6 2698 * if r0 == 0 goto 2699 * 2700 * to track above reg_mask/stack_mask needs to be independent for each frame. 2701 * 2702 * Also if parent's curframe > frame where backtracking started, 2703 * the verifier need to mark registers in both frames, otherwise callees 2704 * may incorrectly prune callers. This is similar to 2705 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2706 * 2707 * For now backtracking falls back into conservative marking. 2708 */ 2709 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2710 struct bpf_verifier_state *st) 2711 { 2712 struct bpf_func_state *func; 2713 struct bpf_reg_state *reg; 2714 int i, j; 2715 2716 /* big hammer: mark all scalars precise in this path. 2717 * pop_stack may still get !precise scalars. 2718 */ 2719 for (; st; st = st->parent) 2720 for (i = 0; i <= st->curframe; i++) { 2721 func = st->frame[i]; 2722 for (j = 0; j < BPF_REG_FP; j++) { 2723 reg = &func->regs[j]; 2724 if (reg->type != SCALAR_VALUE) 2725 continue; 2726 reg->precise = true; 2727 } 2728 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2729 if (!is_spilled_reg(&func->stack[j])) 2730 continue; 2731 reg = &func->stack[j].spilled_ptr; 2732 if (reg->type != SCALAR_VALUE) 2733 continue; 2734 reg->precise = true; 2735 } 2736 } 2737 } 2738 2739 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2740 int spi) 2741 { 2742 struct bpf_verifier_state *st = env->cur_state; 2743 int first_idx = st->first_insn_idx; 2744 int last_idx = env->insn_idx; 2745 struct bpf_func_state *func; 2746 struct bpf_reg_state *reg; 2747 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2748 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2749 bool skip_first = true; 2750 bool new_marks = false; 2751 int i, err; 2752 2753 if (!env->bpf_capable) 2754 return 0; 2755 2756 func = st->frame[st->curframe]; 2757 if (regno >= 0) { 2758 reg = &func->regs[regno]; 2759 if (reg->type != SCALAR_VALUE) { 2760 WARN_ONCE(1, "backtracing misuse"); 2761 return -EFAULT; 2762 } 2763 if (!reg->precise) 2764 new_marks = true; 2765 else 2766 reg_mask = 0; 2767 reg->precise = true; 2768 } 2769 2770 while (spi >= 0) { 2771 if (!is_spilled_reg(&func->stack[spi])) { 2772 stack_mask = 0; 2773 break; 2774 } 2775 reg = &func->stack[spi].spilled_ptr; 2776 if (reg->type != SCALAR_VALUE) { 2777 stack_mask = 0; 2778 break; 2779 } 2780 if (!reg->precise) 2781 new_marks = true; 2782 else 2783 stack_mask = 0; 2784 reg->precise = true; 2785 break; 2786 } 2787 2788 if (!new_marks) 2789 return 0; 2790 if (!reg_mask && !stack_mask) 2791 return 0; 2792 for (;;) { 2793 DECLARE_BITMAP(mask, 64); 2794 u32 history = st->jmp_history_cnt; 2795 2796 if (env->log.level & BPF_LOG_LEVEL2) 2797 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2798 for (i = last_idx;;) { 2799 if (skip_first) { 2800 err = 0; 2801 skip_first = false; 2802 } else { 2803 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2804 } 2805 if (err == -ENOTSUPP) { 2806 mark_all_scalars_precise(env, st); 2807 return 0; 2808 } else if (err) { 2809 return err; 2810 } 2811 if (!reg_mask && !stack_mask) 2812 /* Found assignment(s) into tracked register in this state. 2813 * Since this state is already marked, just return. 2814 * Nothing to be tracked further in the parent state. 2815 */ 2816 return 0; 2817 if (i == first_idx) 2818 break; 2819 i = get_prev_insn_idx(st, i, &history); 2820 if (i >= env->prog->len) { 2821 /* This can happen if backtracking reached insn 0 2822 * and there are still reg_mask or stack_mask 2823 * to backtrack. 2824 * It means the backtracking missed the spot where 2825 * particular register was initialized with a constant. 2826 */ 2827 verbose(env, "BUG backtracking idx %d\n", i); 2828 WARN_ONCE(1, "verifier backtracking bug"); 2829 return -EFAULT; 2830 } 2831 } 2832 st = st->parent; 2833 if (!st) 2834 break; 2835 2836 new_marks = false; 2837 func = st->frame[st->curframe]; 2838 bitmap_from_u64(mask, reg_mask); 2839 for_each_set_bit(i, mask, 32) { 2840 reg = &func->regs[i]; 2841 if (reg->type != SCALAR_VALUE) { 2842 reg_mask &= ~(1u << i); 2843 continue; 2844 } 2845 if (!reg->precise) 2846 new_marks = true; 2847 reg->precise = true; 2848 } 2849 2850 bitmap_from_u64(mask, stack_mask); 2851 for_each_set_bit(i, mask, 64) { 2852 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2853 /* the sequence of instructions: 2854 * 2: (bf) r3 = r10 2855 * 3: (7b) *(u64 *)(r3 -8) = r0 2856 * 4: (79) r4 = *(u64 *)(r10 -8) 2857 * doesn't contain jmps. It's backtracked 2858 * as a single block. 2859 * During backtracking insn 3 is not recognized as 2860 * stack access, so at the end of backtracking 2861 * stack slot fp-8 is still marked in stack_mask. 2862 * However the parent state may not have accessed 2863 * fp-8 and it's "unallocated" stack space. 2864 * In such case fallback to conservative. 2865 */ 2866 mark_all_scalars_precise(env, st); 2867 return 0; 2868 } 2869 2870 if (!is_spilled_reg(&func->stack[i])) { 2871 stack_mask &= ~(1ull << i); 2872 continue; 2873 } 2874 reg = &func->stack[i].spilled_ptr; 2875 if (reg->type != SCALAR_VALUE) { 2876 stack_mask &= ~(1ull << i); 2877 continue; 2878 } 2879 if (!reg->precise) 2880 new_marks = true; 2881 reg->precise = true; 2882 } 2883 if (env->log.level & BPF_LOG_LEVEL2) { 2884 verbose(env, "parent %s regs=%x stack=%llx marks:", 2885 new_marks ? "didn't have" : "already had", 2886 reg_mask, stack_mask); 2887 print_verifier_state(env, func, true); 2888 } 2889 2890 if (!reg_mask && !stack_mask) 2891 break; 2892 if (!new_marks) 2893 break; 2894 2895 last_idx = st->last_insn_idx; 2896 first_idx = st->first_insn_idx; 2897 } 2898 return 0; 2899 } 2900 2901 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2902 { 2903 return __mark_chain_precision(env, regno, -1); 2904 } 2905 2906 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2907 { 2908 return __mark_chain_precision(env, -1, spi); 2909 } 2910 2911 static bool is_spillable_regtype(enum bpf_reg_type type) 2912 { 2913 switch (base_type(type)) { 2914 case PTR_TO_MAP_VALUE: 2915 case PTR_TO_STACK: 2916 case PTR_TO_CTX: 2917 case PTR_TO_PACKET: 2918 case PTR_TO_PACKET_META: 2919 case PTR_TO_PACKET_END: 2920 case PTR_TO_FLOW_KEYS: 2921 case CONST_PTR_TO_MAP: 2922 case PTR_TO_SOCKET: 2923 case PTR_TO_SOCK_COMMON: 2924 case PTR_TO_TCP_SOCK: 2925 case PTR_TO_XDP_SOCK: 2926 case PTR_TO_BTF_ID: 2927 case PTR_TO_BUF: 2928 case PTR_TO_MEM: 2929 case PTR_TO_FUNC: 2930 case PTR_TO_MAP_KEY: 2931 return true; 2932 default: 2933 return false; 2934 } 2935 } 2936 2937 /* Does this register contain a constant zero? */ 2938 static bool register_is_null(struct bpf_reg_state *reg) 2939 { 2940 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2941 } 2942 2943 static bool register_is_const(struct bpf_reg_state *reg) 2944 { 2945 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2946 } 2947 2948 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2949 { 2950 return tnum_is_unknown(reg->var_off) && 2951 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2952 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2953 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2954 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2955 } 2956 2957 static bool register_is_bounded(struct bpf_reg_state *reg) 2958 { 2959 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2960 } 2961 2962 static bool __is_pointer_value(bool allow_ptr_leaks, 2963 const struct bpf_reg_state *reg) 2964 { 2965 if (allow_ptr_leaks) 2966 return false; 2967 2968 return reg->type != SCALAR_VALUE; 2969 } 2970 2971 static void save_register_state(struct bpf_func_state *state, 2972 int spi, struct bpf_reg_state *reg, 2973 int size) 2974 { 2975 int i; 2976 2977 state->stack[spi].spilled_ptr = *reg; 2978 if (size == BPF_REG_SIZE) 2979 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2980 2981 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2982 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2983 2984 /* size < 8 bytes spill */ 2985 for (; i; i--) 2986 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2987 } 2988 2989 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2990 * stack boundary and alignment are checked in check_mem_access() 2991 */ 2992 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2993 /* stack frame we're writing to */ 2994 struct bpf_func_state *state, 2995 int off, int size, int value_regno, 2996 int insn_idx) 2997 { 2998 struct bpf_func_state *cur; /* state of the current function */ 2999 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3000 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3001 struct bpf_reg_state *reg = NULL; 3002 3003 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3004 if (err) 3005 return err; 3006 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3007 * so it's aligned access and [off, off + size) are within stack limits 3008 */ 3009 if (!env->allow_ptr_leaks && 3010 state->stack[spi].slot_type[0] == STACK_SPILL && 3011 size != BPF_REG_SIZE) { 3012 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3013 return -EACCES; 3014 } 3015 3016 cur = env->cur_state->frame[env->cur_state->curframe]; 3017 if (value_regno >= 0) 3018 reg = &cur->regs[value_regno]; 3019 if (!env->bypass_spec_v4) { 3020 bool sanitize = reg && is_spillable_regtype(reg->type); 3021 3022 for (i = 0; i < size; i++) { 3023 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3024 sanitize = true; 3025 break; 3026 } 3027 } 3028 3029 if (sanitize) 3030 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3031 } 3032 3033 mark_stack_slot_scratched(env, spi); 3034 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3035 !register_is_null(reg) && env->bpf_capable) { 3036 if (dst_reg != BPF_REG_FP) { 3037 /* The backtracking logic can only recognize explicit 3038 * stack slot address like [fp - 8]. Other spill of 3039 * scalar via different register has to be conservative. 3040 * Backtrack from here and mark all registers as precise 3041 * that contributed into 'reg' being a constant. 3042 */ 3043 err = mark_chain_precision(env, value_regno); 3044 if (err) 3045 return err; 3046 } 3047 save_register_state(state, spi, reg, size); 3048 } else if (reg && is_spillable_regtype(reg->type)) { 3049 /* register containing pointer is being spilled into stack */ 3050 if (size != BPF_REG_SIZE) { 3051 verbose_linfo(env, insn_idx, "; "); 3052 verbose(env, "invalid size of register spill\n"); 3053 return -EACCES; 3054 } 3055 if (state != cur && reg->type == PTR_TO_STACK) { 3056 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3057 return -EINVAL; 3058 } 3059 save_register_state(state, spi, reg, size); 3060 } else { 3061 u8 type = STACK_MISC; 3062 3063 /* regular write of data into stack destroys any spilled ptr */ 3064 state->stack[spi].spilled_ptr.type = NOT_INIT; 3065 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3066 if (is_spilled_reg(&state->stack[spi])) 3067 for (i = 0; i < BPF_REG_SIZE; i++) 3068 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3069 3070 /* only mark the slot as written if all 8 bytes were written 3071 * otherwise read propagation may incorrectly stop too soon 3072 * when stack slots are partially written. 3073 * This heuristic means that read propagation will be 3074 * conservative, since it will add reg_live_read marks 3075 * to stack slots all the way to first state when programs 3076 * writes+reads less than 8 bytes 3077 */ 3078 if (size == BPF_REG_SIZE) 3079 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3080 3081 /* when we zero initialize stack slots mark them as such */ 3082 if (reg && register_is_null(reg)) { 3083 /* backtracking doesn't work for STACK_ZERO yet. */ 3084 err = mark_chain_precision(env, value_regno); 3085 if (err) 3086 return err; 3087 type = STACK_ZERO; 3088 } 3089 3090 /* Mark slots affected by this stack write. */ 3091 for (i = 0; i < size; i++) 3092 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3093 type; 3094 } 3095 return 0; 3096 } 3097 3098 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3099 * known to contain a variable offset. 3100 * This function checks whether the write is permitted and conservatively 3101 * tracks the effects of the write, considering that each stack slot in the 3102 * dynamic range is potentially written to. 3103 * 3104 * 'off' includes 'regno->off'. 3105 * 'value_regno' can be -1, meaning that an unknown value is being written to 3106 * the stack. 3107 * 3108 * Spilled pointers in range are not marked as written because we don't know 3109 * what's going to be actually written. This means that read propagation for 3110 * future reads cannot be terminated by this write. 3111 * 3112 * For privileged programs, uninitialized stack slots are considered 3113 * initialized by this write (even though we don't know exactly what offsets 3114 * are going to be written to). The idea is that we don't want the verifier to 3115 * reject future reads that access slots written to through variable offsets. 3116 */ 3117 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3118 /* func where register points to */ 3119 struct bpf_func_state *state, 3120 int ptr_regno, int off, int size, 3121 int value_regno, int insn_idx) 3122 { 3123 struct bpf_func_state *cur; /* state of the current function */ 3124 int min_off, max_off; 3125 int i, err; 3126 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3127 bool writing_zero = false; 3128 /* set if the fact that we're writing a zero is used to let any 3129 * stack slots remain STACK_ZERO 3130 */ 3131 bool zero_used = false; 3132 3133 cur = env->cur_state->frame[env->cur_state->curframe]; 3134 ptr_reg = &cur->regs[ptr_regno]; 3135 min_off = ptr_reg->smin_value + off; 3136 max_off = ptr_reg->smax_value + off + size; 3137 if (value_regno >= 0) 3138 value_reg = &cur->regs[value_regno]; 3139 if (value_reg && register_is_null(value_reg)) 3140 writing_zero = true; 3141 3142 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3143 if (err) 3144 return err; 3145 3146 3147 /* Variable offset writes destroy any spilled pointers in range. */ 3148 for (i = min_off; i < max_off; i++) { 3149 u8 new_type, *stype; 3150 int slot, spi; 3151 3152 slot = -i - 1; 3153 spi = slot / BPF_REG_SIZE; 3154 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3155 mark_stack_slot_scratched(env, spi); 3156 3157 if (!env->allow_ptr_leaks 3158 && *stype != NOT_INIT 3159 && *stype != SCALAR_VALUE) { 3160 /* Reject the write if there's are spilled pointers in 3161 * range. If we didn't reject here, the ptr status 3162 * would be erased below (even though not all slots are 3163 * actually overwritten), possibly opening the door to 3164 * leaks. 3165 */ 3166 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3167 insn_idx, i); 3168 return -EINVAL; 3169 } 3170 3171 /* Erase all spilled pointers. */ 3172 state->stack[spi].spilled_ptr.type = NOT_INIT; 3173 3174 /* Update the slot type. */ 3175 new_type = STACK_MISC; 3176 if (writing_zero && *stype == STACK_ZERO) { 3177 new_type = STACK_ZERO; 3178 zero_used = true; 3179 } 3180 /* If the slot is STACK_INVALID, we check whether it's OK to 3181 * pretend that it will be initialized by this write. The slot 3182 * might not actually be written to, and so if we mark it as 3183 * initialized future reads might leak uninitialized memory. 3184 * For privileged programs, we will accept such reads to slots 3185 * that may or may not be written because, if we're reject 3186 * them, the error would be too confusing. 3187 */ 3188 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3189 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3190 insn_idx, i); 3191 return -EINVAL; 3192 } 3193 *stype = new_type; 3194 } 3195 if (zero_used) { 3196 /* backtracking doesn't work for STACK_ZERO yet. */ 3197 err = mark_chain_precision(env, value_regno); 3198 if (err) 3199 return err; 3200 } 3201 return 0; 3202 } 3203 3204 /* When register 'dst_regno' is assigned some values from stack[min_off, 3205 * max_off), we set the register's type according to the types of the 3206 * respective stack slots. If all the stack values are known to be zeros, then 3207 * so is the destination reg. Otherwise, the register is considered to be 3208 * SCALAR. This function does not deal with register filling; the caller must 3209 * ensure that all spilled registers in the stack range have been marked as 3210 * read. 3211 */ 3212 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3213 /* func where src register points to */ 3214 struct bpf_func_state *ptr_state, 3215 int min_off, int max_off, int dst_regno) 3216 { 3217 struct bpf_verifier_state *vstate = env->cur_state; 3218 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3219 int i, slot, spi; 3220 u8 *stype; 3221 int zeros = 0; 3222 3223 for (i = min_off; i < max_off; i++) { 3224 slot = -i - 1; 3225 spi = slot / BPF_REG_SIZE; 3226 stype = ptr_state->stack[spi].slot_type; 3227 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3228 break; 3229 zeros++; 3230 } 3231 if (zeros == max_off - min_off) { 3232 /* any access_size read into register is zero extended, 3233 * so the whole register == const_zero 3234 */ 3235 __mark_reg_const_zero(&state->regs[dst_regno]); 3236 /* backtracking doesn't support STACK_ZERO yet, 3237 * so mark it precise here, so that later 3238 * backtracking can stop here. 3239 * Backtracking may not need this if this register 3240 * doesn't participate in pointer adjustment. 3241 * Forward propagation of precise flag is not 3242 * necessary either. This mark is only to stop 3243 * backtracking. Any register that contributed 3244 * to const 0 was marked precise before spill. 3245 */ 3246 state->regs[dst_regno].precise = true; 3247 } else { 3248 /* have read misc data from the stack */ 3249 mark_reg_unknown(env, state->regs, dst_regno); 3250 } 3251 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3252 } 3253 3254 /* Read the stack at 'off' and put the results into the register indicated by 3255 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3256 * spilled reg. 3257 * 3258 * 'dst_regno' can be -1, meaning that the read value is not going to a 3259 * register. 3260 * 3261 * The access is assumed to be within the current stack bounds. 3262 */ 3263 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3264 /* func where src register points to */ 3265 struct bpf_func_state *reg_state, 3266 int off, int size, int dst_regno) 3267 { 3268 struct bpf_verifier_state *vstate = env->cur_state; 3269 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3270 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3271 struct bpf_reg_state *reg; 3272 u8 *stype, type; 3273 3274 stype = reg_state->stack[spi].slot_type; 3275 reg = ®_state->stack[spi].spilled_ptr; 3276 3277 if (is_spilled_reg(®_state->stack[spi])) { 3278 u8 spill_size = 1; 3279 3280 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3281 spill_size++; 3282 3283 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3284 if (reg->type != SCALAR_VALUE) { 3285 verbose_linfo(env, env->insn_idx, "; "); 3286 verbose(env, "invalid size of register fill\n"); 3287 return -EACCES; 3288 } 3289 3290 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3291 if (dst_regno < 0) 3292 return 0; 3293 3294 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3295 /* The earlier check_reg_arg() has decided the 3296 * subreg_def for this insn. Save it first. 3297 */ 3298 s32 subreg_def = state->regs[dst_regno].subreg_def; 3299 3300 state->regs[dst_regno] = *reg; 3301 state->regs[dst_regno].subreg_def = subreg_def; 3302 } else { 3303 for (i = 0; i < size; i++) { 3304 type = stype[(slot - i) % BPF_REG_SIZE]; 3305 if (type == STACK_SPILL) 3306 continue; 3307 if (type == STACK_MISC) 3308 continue; 3309 verbose(env, "invalid read from stack off %d+%d size %d\n", 3310 off, i, size); 3311 return -EACCES; 3312 } 3313 mark_reg_unknown(env, state->regs, dst_regno); 3314 } 3315 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3316 return 0; 3317 } 3318 3319 if (dst_regno >= 0) { 3320 /* restore register state from stack */ 3321 state->regs[dst_regno] = *reg; 3322 /* mark reg as written since spilled pointer state likely 3323 * has its liveness marks cleared by is_state_visited() 3324 * which resets stack/reg liveness for state transitions 3325 */ 3326 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3327 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3328 /* If dst_regno==-1, the caller is asking us whether 3329 * it is acceptable to use this value as a SCALAR_VALUE 3330 * (e.g. for XADD). 3331 * We must not allow unprivileged callers to do that 3332 * with spilled pointers. 3333 */ 3334 verbose(env, "leaking pointer from stack off %d\n", 3335 off); 3336 return -EACCES; 3337 } 3338 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3339 } else { 3340 for (i = 0; i < size; i++) { 3341 type = stype[(slot - i) % BPF_REG_SIZE]; 3342 if (type == STACK_MISC) 3343 continue; 3344 if (type == STACK_ZERO) 3345 continue; 3346 verbose(env, "invalid read from stack off %d+%d size %d\n", 3347 off, i, size); 3348 return -EACCES; 3349 } 3350 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3351 if (dst_regno >= 0) 3352 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3353 } 3354 return 0; 3355 } 3356 3357 enum bpf_access_src { 3358 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3359 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3360 }; 3361 3362 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3363 int regno, int off, int access_size, 3364 bool zero_size_allowed, 3365 enum bpf_access_src type, 3366 struct bpf_call_arg_meta *meta); 3367 3368 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3369 { 3370 return cur_regs(env) + regno; 3371 } 3372 3373 /* Read the stack at 'ptr_regno + off' and put the result into the register 3374 * 'dst_regno'. 3375 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3376 * but not its variable offset. 3377 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3378 * 3379 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3380 * filling registers (i.e. reads of spilled register cannot be detected when 3381 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3382 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3383 * offset; for a fixed offset check_stack_read_fixed_off should be used 3384 * instead. 3385 */ 3386 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3387 int ptr_regno, int off, int size, int dst_regno) 3388 { 3389 /* The state of the source register. */ 3390 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3391 struct bpf_func_state *ptr_state = func(env, reg); 3392 int err; 3393 int min_off, max_off; 3394 3395 /* Note that we pass a NULL meta, so raw access will not be permitted. 3396 */ 3397 err = check_stack_range_initialized(env, ptr_regno, off, size, 3398 false, ACCESS_DIRECT, NULL); 3399 if (err) 3400 return err; 3401 3402 min_off = reg->smin_value + off; 3403 max_off = reg->smax_value + off; 3404 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3405 return 0; 3406 } 3407 3408 /* check_stack_read dispatches to check_stack_read_fixed_off or 3409 * check_stack_read_var_off. 3410 * 3411 * The caller must ensure that the offset falls within the allocated stack 3412 * bounds. 3413 * 3414 * 'dst_regno' is a register which will receive the value from the stack. It 3415 * can be -1, meaning that the read value is not going to a register. 3416 */ 3417 static int check_stack_read(struct bpf_verifier_env *env, 3418 int ptr_regno, int off, int size, 3419 int dst_regno) 3420 { 3421 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3422 struct bpf_func_state *state = func(env, reg); 3423 int err; 3424 /* Some accesses are only permitted with a static offset. */ 3425 bool var_off = !tnum_is_const(reg->var_off); 3426 3427 /* The offset is required to be static when reads don't go to a 3428 * register, in order to not leak pointers (see 3429 * check_stack_read_fixed_off). 3430 */ 3431 if (dst_regno < 0 && var_off) { 3432 char tn_buf[48]; 3433 3434 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3435 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3436 tn_buf, off, size); 3437 return -EACCES; 3438 } 3439 /* Variable offset is prohibited for unprivileged mode for simplicity 3440 * since it requires corresponding support in Spectre masking for stack 3441 * ALU. See also retrieve_ptr_limit(). 3442 */ 3443 if (!env->bypass_spec_v1 && var_off) { 3444 char tn_buf[48]; 3445 3446 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3447 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3448 ptr_regno, tn_buf); 3449 return -EACCES; 3450 } 3451 3452 if (!var_off) { 3453 off += reg->var_off.value; 3454 err = check_stack_read_fixed_off(env, state, off, size, 3455 dst_regno); 3456 } else { 3457 /* Variable offset stack reads need more conservative handling 3458 * than fixed offset ones. Note that dst_regno >= 0 on this 3459 * branch. 3460 */ 3461 err = check_stack_read_var_off(env, ptr_regno, off, size, 3462 dst_regno); 3463 } 3464 return err; 3465 } 3466 3467 3468 /* check_stack_write dispatches to check_stack_write_fixed_off or 3469 * check_stack_write_var_off. 3470 * 3471 * 'ptr_regno' is the register used as a pointer into the stack. 3472 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3473 * 'value_regno' is the register whose value we're writing to the stack. It can 3474 * be -1, meaning that we're not writing from a register. 3475 * 3476 * The caller must ensure that the offset falls within the maximum stack size. 3477 */ 3478 static int check_stack_write(struct bpf_verifier_env *env, 3479 int ptr_regno, int off, int size, 3480 int value_regno, int insn_idx) 3481 { 3482 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3483 struct bpf_func_state *state = func(env, reg); 3484 int err; 3485 3486 if (tnum_is_const(reg->var_off)) { 3487 off += reg->var_off.value; 3488 err = check_stack_write_fixed_off(env, state, off, size, 3489 value_regno, insn_idx); 3490 } else { 3491 /* Variable offset stack reads need more conservative handling 3492 * than fixed offset ones. 3493 */ 3494 err = check_stack_write_var_off(env, state, 3495 ptr_regno, off, size, 3496 value_regno, insn_idx); 3497 } 3498 return err; 3499 } 3500 3501 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3502 int off, int size, enum bpf_access_type type) 3503 { 3504 struct bpf_reg_state *regs = cur_regs(env); 3505 struct bpf_map *map = regs[regno].map_ptr; 3506 u32 cap = bpf_map_flags_to_cap(map); 3507 3508 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3509 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3510 map->value_size, off, size); 3511 return -EACCES; 3512 } 3513 3514 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3515 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3516 map->value_size, off, size); 3517 return -EACCES; 3518 } 3519 3520 return 0; 3521 } 3522 3523 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3524 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3525 int off, int size, u32 mem_size, 3526 bool zero_size_allowed) 3527 { 3528 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3529 struct bpf_reg_state *reg; 3530 3531 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3532 return 0; 3533 3534 reg = &cur_regs(env)[regno]; 3535 switch (reg->type) { 3536 case PTR_TO_MAP_KEY: 3537 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3538 mem_size, off, size); 3539 break; 3540 case PTR_TO_MAP_VALUE: 3541 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3542 mem_size, off, size); 3543 break; 3544 case PTR_TO_PACKET: 3545 case PTR_TO_PACKET_META: 3546 case PTR_TO_PACKET_END: 3547 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3548 off, size, regno, reg->id, off, mem_size); 3549 break; 3550 case PTR_TO_MEM: 3551 default: 3552 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3553 mem_size, off, size); 3554 } 3555 3556 return -EACCES; 3557 } 3558 3559 /* check read/write into a memory region with possible variable offset */ 3560 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3561 int off, int size, u32 mem_size, 3562 bool zero_size_allowed) 3563 { 3564 struct bpf_verifier_state *vstate = env->cur_state; 3565 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3566 struct bpf_reg_state *reg = &state->regs[regno]; 3567 int err; 3568 3569 /* We may have adjusted the register pointing to memory region, so we 3570 * need to try adding each of min_value and max_value to off 3571 * to make sure our theoretical access will be safe. 3572 * 3573 * The minimum value is only important with signed 3574 * comparisons where we can't assume the floor of a 3575 * value is 0. If we are using signed variables for our 3576 * index'es we need to make sure that whatever we use 3577 * will have a set floor within our range. 3578 */ 3579 if (reg->smin_value < 0 && 3580 (reg->smin_value == S64_MIN || 3581 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3582 reg->smin_value + off < 0)) { 3583 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3584 regno); 3585 return -EACCES; 3586 } 3587 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3588 mem_size, zero_size_allowed); 3589 if (err) { 3590 verbose(env, "R%d min value is outside of the allowed memory range\n", 3591 regno); 3592 return err; 3593 } 3594 3595 /* If we haven't set a max value then we need to bail since we can't be 3596 * sure we won't do bad things. 3597 * If reg->umax_value + off could overflow, treat that as unbounded too. 3598 */ 3599 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3600 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3601 regno); 3602 return -EACCES; 3603 } 3604 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3605 mem_size, zero_size_allowed); 3606 if (err) { 3607 verbose(env, "R%d max value is outside of the allowed memory range\n", 3608 regno); 3609 return err; 3610 } 3611 3612 return 0; 3613 } 3614 3615 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3616 const struct bpf_reg_state *reg, int regno, 3617 bool fixed_off_ok) 3618 { 3619 /* Access to this pointer-typed register or passing it to a helper 3620 * is only allowed in its original, unmodified form. 3621 */ 3622 3623 if (reg->off < 0) { 3624 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3625 reg_type_str(env, reg->type), regno, reg->off); 3626 return -EACCES; 3627 } 3628 3629 if (!fixed_off_ok && reg->off) { 3630 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3631 reg_type_str(env, reg->type), regno, reg->off); 3632 return -EACCES; 3633 } 3634 3635 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3636 char tn_buf[48]; 3637 3638 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3639 verbose(env, "variable %s access var_off=%s disallowed\n", 3640 reg_type_str(env, reg->type), tn_buf); 3641 return -EACCES; 3642 } 3643 3644 return 0; 3645 } 3646 3647 int check_ptr_off_reg(struct bpf_verifier_env *env, 3648 const struct bpf_reg_state *reg, int regno) 3649 { 3650 return __check_ptr_off_reg(env, reg, regno, false); 3651 } 3652 3653 static int map_kptr_match_type(struct bpf_verifier_env *env, 3654 struct bpf_map_value_off_desc *off_desc, 3655 struct bpf_reg_state *reg, u32 regno) 3656 { 3657 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id); 3658 int perm_flags = PTR_MAYBE_NULL; 3659 const char *reg_name = ""; 3660 3661 /* Only unreferenced case accepts untrusted pointers */ 3662 if (off_desc->type == BPF_KPTR_UNREF) 3663 perm_flags |= PTR_UNTRUSTED; 3664 3665 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3666 goto bad_type; 3667 3668 if (!btf_is_kernel(reg->btf)) { 3669 verbose(env, "R%d must point to kernel BTF\n", regno); 3670 return -EINVAL; 3671 } 3672 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3673 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3674 3675 /* For ref_ptr case, release function check should ensure we get one 3676 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3677 * normal store of unreferenced kptr, we must ensure var_off is zero. 3678 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3679 * reg->off and reg->ref_obj_id are not needed here. 3680 */ 3681 if (__check_ptr_off_reg(env, reg, regno, true)) 3682 return -EACCES; 3683 3684 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3685 * we also need to take into account the reg->off. 3686 * 3687 * We want to support cases like: 3688 * 3689 * struct foo { 3690 * struct bar br; 3691 * struct baz bz; 3692 * }; 3693 * 3694 * struct foo *v; 3695 * v = func(); // PTR_TO_BTF_ID 3696 * val->foo = v; // reg->off is zero, btf and btf_id match type 3697 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3698 * // first member type of struct after comparison fails 3699 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3700 * // to match type 3701 * 3702 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3703 * is zero. We must also ensure that btf_struct_ids_match does not walk 3704 * the struct to match type against first member of struct, i.e. reject 3705 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3706 * strict mode to true for type match. 3707 */ 3708 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3709 off_desc->kptr.btf, off_desc->kptr.btf_id, 3710 off_desc->type == BPF_KPTR_REF)) 3711 goto bad_type; 3712 return 0; 3713 bad_type: 3714 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3715 reg_type_str(env, reg->type), reg_name); 3716 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3717 if (off_desc->type == BPF_KPTR_UNREF) 3718 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3719 targ_name); 3720 else 3721 verbose(env, "\n"); 3722 return -EINVAL; 3723 } 3724 3725 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3726 int value_regno, int insn_idx, 3727 struct bpf_map_value_off_desc *off_desc) 3728 { 3729 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3730 int class = BPF_CLASS(insn->code); 3731 struct bpf_reg_state *val_reg; 3732 3733 /* Things we already checked for in check_map_access and caller: 3734 * - Reject cases where variable offset may touch kptr 3735 * - size of access (must be BPF_DW) 3736 * - tnum_is_const(reg->var_off) 3737 * - off_desc->offset == off + reg->var_off.value 3738 */ 3739 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3740 if (BPF_MODE(insn->code) != BPF_MEM) { 3741 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3742 return -EACCES; 3743 } 3744 3745 /* We only allow loading referenced kptr, since it will be marked as 3746 * untrusted, similar to unreferenced kptr. 3747 */ 3748 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) { 3749 verbose(env, "store to referenced kptr disallowed\n"); 3750 return -EACCES; 3751 } 3752 3753 if (class == BPF_LDX) { 3754 val_reg = reg_state(env, value_regno); 3755 /* We can simply mark the value_regno receiving the pointer 3756 * value from map as PTR_TO_BTF_ID, with the correct type. 3757 */ 3758 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf, 3759 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3760 /* For mark_ptr_or_null_reg */ 3761 val_reg->id = ++env->id_gen; 3762 } else if (class == BPF_STX) { 3763 val_reg = reg_state(env, value_regno); 3764 if (!register_is_null(val_reg) && 3765 map_kptr_match_type(env, off_desc, val_reg, value_regno)) 3766 return -EACCES; 3767 } else if (class == BPF_ST) { 3768 if (insn->imm) { 3769 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3770 off_desc->offset); 3771 return -EACCES; 3772 } 3773 } else { 3774 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3775 return -EACCES; 3776 } 3777 return 0; 3778 } 3779 3780 /* check read/write into a map element with possible variable offset */ 3781 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3782 int off, int size, bool zero_size_allowed, 3783 enum bpf_access_src src) 3784 { 3785 struct bpf_verifier_state *vstate = env->cur_state; 3786 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3787 struct bpf_reg_state *reg = &state->regs[regno]; 3788 struct bpf_map *map = reg->map_ptr; 3789 int err; 3790 3791 err = check_mem_region_access(env, regno, off, size, map->value_size, 3792 zero_size_allowed); 3793 if (err) 3794 return err; 3795 3796 if (map_value_has_spin_lock(map)) { 3797 u32 lock = map->spin_lock_off; 3798 3799 /* if any part of struct bpf_spin_lock can be touched by 3800 * load/store reject this program. 3801 * To check that [x1, x2) overlaps with [y1, y2) 3802 * it is sufficient to check x1 < y2 && y1 < x2. 3803 */ 3804 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3805 lock < reg->umax_value + off + size) { 3806 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3807 return -EACCES; 3808 } 3809 } 3810 if (map_value_has_timer(map)) { 3811 u32 t = map->timer_off; 3812 3813 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3814 t < reg->umax_value + off + size) { 3815 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3816 return -EACCES; 3817 } 3818 } 3819 if (map_value_has_kptrs(map)) { 3820 struct bpf_map_value_off *tab = map->kptr_off_tab; 3821 int i; 3822 3823 for (i = 0; i < tab->nr_off; i++) { 3824 u32 p = tab->off[i].offset; 3825 3826 if (reg->smin_value + off < p + sizeof(u64) && 3827 p < reg->umax_value + off + size) { 3828 if (src != ACCESS_DIRECT) { 3829 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 3830 return -EACCES; 3831 } 3832 if (!tnum_is_const(reg->var_off)) { 3833 verbose(env, "kptr access cannot have variable offset\n"); 3834 return -EACCES; 3835 } 3836 if (p != off + reg->var_off.value) { 3837 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 3838 p, off + reg->var_off.value); 3839 return -EACCES; 3840 } 3841 if (size != bpf_size_to_bytes(BPF_DW)) { 3842 verbose(env, "kptr access size must be BPF_DW\n"); 3843 return -EACCES; 3844 } 3845 break; 3846 } 3847 } 3848 } 3849 return err; 3850 } 3851 3852 #define MAX_PACKET_OFF 0xffff 3853 3854 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3855 const struct bpf_call_arg_meta *meta, 3856 enum bpf_access_type t) 3857 { 3858 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3859 3860 switch (prog_type) { 3861 /* Program types only with direct read access go here! */ 3862 case BPF_PROG_TYPE_LWT_IN: 3863 case BPF_PROG_TYPE_LWT_OUT: 3864 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3865 case BPF_PROG_TYPE_SK_REUSEPORT: 3866 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3867 case BPF_PROG_TYPE_CGROUP_SKB: 3868 if (t == BPF_WRITE) 3869 return false; 3870 fallthrough; 3871 3872 /* Program types with direct read + write access go here! */ 3873 case BPF_PROG_TYPE_SCHED_CLS: 3874 case BPF_PROG_TYPE_SCHED_ACT: 3875 case BPF_PROG_TYPE_XDP: 3876 case BPF_PROG_TYPE_LWT_XMIT: 3877 case BPF_PROG_TYPE_SK_SKB: 3878 case BPF_PROG_TYPE_SK_MSG: 3879 if (meta) 3880 return meta->pkt_access; 3881 3882 env->seen_direct_write = true; 3883 return true; 3884 3885 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3886 if (t == BPF_WRITE) 3887 env->seen_direct_write = true; 3888 3889 return true; 3890 3891 default: 3892 return false; 3893 } 3894 } 3895 3896 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3897 int size, bool zero_size_allowed) 3898 { 3899 struct bpf_reg_state *regs = cur_regs(env); 3900 struct bpf_reg_state *reg = ®s[regno]; 3901 int err; 3902 3903 /* We may have added a variable offset to the packet pointer; but any 3904 * reg->range we have comes after that. We are only checking the fixed 3905 * offset. 3906 */ 3907 3908 /* We don't allow negative numbers, because we aren't tracking enough 3909 * detail to prove they're safe. 3910 */ 3911 if (reg->smin_value < 0) { 3912 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3913 regno); 3914 return -EACCES; 3915 } 3916 3917 err = reg->range < 0 ? -EINVAL : 3918 __check_mem_access(env, regno, off, size, reg->range, 3919 zero_size_allowed); 3920 if (err) { 3921 verbose(env, "R%d offset is outside of the packet\n", regno); 3922 return err; 3923 } 3924 3925 /* __check_mem_access has made sure "off + size - 1" is within u16. 3926 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3927 * otherwise find_good_pkt_pointers would have refused to set range info 3928 * that __check_mem_access would have rejected this pkt access. 3929 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3930 */ 3931 env->prog->aux->max_pkt_offset = 3932 max_t(u32, env->prog->aux->max_pkt_offset, 3933 off + reg->umax_value + size - 1); 3934 3935 return err; 3936 } 3937 3938 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3939 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3940 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3941 struct btf **btf, u32 *btf_id) 3942 { 3943 struct bpf_insn_access_aux info = { 3944 .reg_type = *reg_type, 3945 .log = &env->log, 3946 }; 3947 3948 if (env->ops->is_valid_access && 3949 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3950 /* A non zero info.ctx_field_size indicates that this field is a 3951 * candidate for later verifier transformation to load the whole 3952 * field and then apply a mask when accessed with a narrower 3953 * access than actual ctx access size. A zero info.ctx_field_size 3954 * will only allow for whole field access and rejects any other 3955 * type of narrower access. 3956 */ 3957 *reg_type = info.reg_type; 3958 3959 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3960 *btf = info.btf; 3961 *btf_id = info.btf_id; 3962 } else { 3963 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3964 } 3965 /* remember the offset of last byte accessed in ctx */ 3966 if (env->prog->aux->max_ctx_offset < off + size) 3967 env->prog->aux->max_ctx_offset = off + size; 3968 return 0; 3969 } 3970 3971 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3972 return -EACCES; 3973 } 3974 3975 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3976 int size) 3977 { 3978 if (size < 0 || off < 0 || 3979 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3980 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3981 off, size); 3982 return -EACCES; 3983 } 3984 return 0; 3985 } 3986 3987 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3988 u32 regno, int off, int size, 3989 enum bpf_access_type t) 3990 { 3991 struct bpf_reg_state *regs = cur_regs(env); 3992 struct bpf_reg_state *reg = ®s[regno]; 3993 struct bpf_insn_access_aux info = {}; 3994 bool valid; 3995 3996 if (reg->smin_value < 0) { 3997 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3998 regno); 3999 return -EACCES; 4000 } 4001 4002 switch (reg->type) { 4003 case PTR_TO_SOCK_COMMON: 4004 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4005 break; 4006 case PTR_TO_SOCKET: 4007 valid = bpf_sock_is_valid_access(off, size, t, &info); 4008 break; 4009 case PTR_TO_TCP_SOCK: 4010 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4011 break; 4012 case PTR_TO_XDP_SOCK: 4013 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4014 break; 4015 default: 4016 valid = false; 4017 } 4018 4019 4020 if (valid) { 4021 env->insn_aux_data[insn_idx].ctx_field_size = 4022 info.ctx_field_size; 4023 return 0; 4024 } 4025 4026 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4027 regno, reg_type_str(env, reg->type), off, size); 4028 4029 return -EACCES; 4030 } 4031 4032 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4033 { 4034 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4035 } 4036 4037 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4038 { 4039 const struct bpf_reg_state *reg = reg_state(env, regno); 4040 4041 return reg->type == PTR_TO_CTX; 4042 } 4043 4044 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4045 { 4046 const struct bpf_reg_state *reg = reg_state(env, regno); 4047 4048 return type_is_sk_pointer(reg->type); 4049 } 4050 4051 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4052 { 4053 const struct bpf_reg_state *reg = reg_state(env, regno); 4054 4055 return type_is_pkt_pointer(reg->type); 4056 } 4057 4058 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4059 { 4060 const struct bpf_reg_state *reg = reg_state(env, regno); 4061 4062 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4063 return reg->type == PTR_TO_FLOW_KEYS; 4064 } 4065 4066 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4067 const struct bpf_reg_state *reg, 4068 int off, int size, bool strict) 4069 { 4070 struct tnum reg_off; 4071 int ip_align; 4072 4073 /* Byte size accesses are always allowed. */ 4074 if (!strict || size == 1) 4075 return 0; 4076 4077 /* For platforms that do not have a Kconfig enabling 4078 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4079 * NET_IP_ALIGN is universally set to '2'. And on platforms 4080 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4081 * to this code only in strict mode where we want to emulate 4082 * the NET_IP_ALIGN==2 checking. Therefore use an 4083 * unconditional IP align value of '2'. 4084 */ 4085 ip_align = 2; 4086 4087 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4088 if (!tnum_is_aligned(reg_off, size)) { 4089 char tn_buf[48]; 4090 4091 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4092 verbose(env, 4093 "misaligned packet access off %d+%s+%d+%d size %d\n", 4094 ip_align, tn_buf, reg->off, off, size); 4095 return -EACCES; 4096 } 4097 4098 return 0; 4099 } 4100 4101 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4102 const struct bpf_reg_state *reg, 4103 const char *pointer_desc, 4104 int off, int size, bool strict) 4105 { 4106 struct tnum reg_off; 4107 4108 /* Byte size accesses are always allowed. */ 4109 if (!strict || size == 1) 4110 return 0; 4111 4112 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4113 if (!tnum_is_aligned(reg_off, size)) { 4114 char tn_buf[48]; 4115 4116 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4117 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4118 pointer_desc, tn_buf, reg->off, off, size); 4119 return -EACCES; 4120 } 4121 4122 return 0; 4123 } 4124 4125 static int check_ptr_alignment(struct bpf_verifier_env *env, 4126 const struct bpf_reg_state *reg, int off, 4127 int size, bool strict_alignment_once) 4128 { 4129 bool strict = env->strict_alignment || strict_alignment_once; 4130 const char *pointer_desc = ""; 4131 4132 switch (reg->type) { 4133 case PTR_TO_PACKET: 4134 case PTR_TO_PACKET_META: 4135 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4136 * right in front, treat it the very same way. 4137 */ 4138 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4139 case PTR_TO_FLOW_KEYS: 4140 pointer_desc = "flow keys "; 4141 break; 4142 case PTR_TO_MAP_KEY: 4143 pointer_desc = "key "; 4144 break; 4145 case PTR_TO_MAP_VALUE: 4146 pointer_desc = "value "; 4147 break; 4148 case PTR_TO_CTX: 4149 pointer_desc = "context "; 4150 break; 4151 case PTR_TO_STACK: 4152 pointer_desc = "stack "; 4153 /* The stack spill tracking logic in check_stack_write_fixed_off() 4154 * and check_stack_read_fixed_off() relies on stack accesses being 4155 * aligned. 4156 */ 4157 strict = true; 4158 break; 4159 case PTR_TO_SOCKET: 4160 pointer_desc = "sock "; 4161 break; 4162 case PTR_TO_SOCK_COMMON: 4163 pointer_desc = "sock_common "; 4164 break; 4165 case PTR_TO_TCP_SOCK: 4166 pointer_desc = "tcp_sock "; 4167 break; 4168 case PTR_TO_XDP_SOCK: 4169 pointer_desc = "xdp_sock "; 4170 break; 4171 default: 4172 break; 4173 } 4174 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4175 strict); 4176 } 4177 4178 static int update_stack_depth(struct bpf_verifier_env *env, 4179 const struct bpf_func_state *func, 4180 int off) 4181 { 4182 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4183 4184 if (stack >= -off) 4185 return 0; 4186 4187 /* update known max for given subprogram */ 4188 env->subprog_info[func->subprogno].stack_depth = -off; 4189 return 0; 4190 } 4191 4192 /* starting from main bpf function walk all instructions of the function 4193 * and recursively walk all callees that given function can call. 4194 * Ignore jump and exit insns. 4195 * Since recursion is prevented by check_cfg() this algorithm 4196 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4197 */ 4198 static int check_max_stack_depth(struct bpf_verifier_env *env) 4199 { 4200 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4201 struct bpf_subprog_info *subprog = env->subprog_info; 4202 struct bpf_insn *insn = env->prog->insnsi; 4203 bool tail_call_reachable = false; 4204 int ret_insn[MAX_CALL_FRAMES]; 4205 int ret_prog[MAX_CALL_FRAMES]; 4206 int j; 4207 4208 process_func: 4209 /* protect against potential stack overflow that might happen when 4210 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4211 * depth for such case down to 256 so that the worst case scenario 4212 * would result in 8k stack size (32 which is tailcall limit * 256 = 4213 * 8k). 4214 * 4215 * To get the idea what might happen, see an example: 4216 * func1 -> sub rsp, 128 4217 * subfunc1 -> sub rsp, 256 4218 * tailcall1 -> add rsp, 256 4219 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4220 * subfunc2 -> sub rsp, 64 4221 * subfunc22 -> sub rsp, 128 4222 * tailcall2 -> add rsp, 128 4223 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4224 * 4225 * tailcall will unwind the current stack frame but it will not get rid 4226 * of caller's stack as shown on the example above. 4227 */ 4228 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4229 verbose(env, 4230 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4231 depth); 4232 return -EACCES; 4233 } 4234 /* round up to 32-bytes, since this is granularity 4235 * of interpreter stack size 4236 */ 4237 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4238 if (depth > MAX_BPF_STACK) { 4239 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4240 frame + 1, depth); 4241 return -EACCES; 4242 } 4243 continue_func: 4244 subprog_end = subprog[idx + 1].start; 4245 for (; i < subprog_end; i++) { 4246 int next_insn; 4247 4248 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4249 continue; 4250 /* remember insn and function to return to */ 4251 ret_insn[frame] = i + 1; 4252 ret_prog[frame] = idx; 4253 4254 /* find the callee */ 4255 next_insn = i + insn[i].imm + 1; 4256 idx = find_subprog(env, next_insn); 4257 if (idx < 0) { 4258 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4259 next_insn); 4260 return -EFAULT; 4261 } 4262 if (subprog[idx].is_async_cb) { 4263 if (subprog[idx].has_tail_call) { 4264 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4265 return -EFAULT; 4266 } 4267 /* async callbacks don't increase bpf prog stack size */ 4268 continue; 4269 } 4270 i = next_insn; 4271 4272 if (subprog[idx].has_tail_call) 4273 tail_call_reachable = true; 4274 4275 frame++; 4276 if (frame >= MAX_CALL_FRAMES) { 4277 verbose(env, "the call stack of %d frames is too deep !\n", 4278 frame); 4279 return -E2BIG; 4280 } 4281 goto process_func; 4282 } 4283 /* if tail call got detected across bpf2bpf calls then mark each of the 4284 * currently present subprog frames as tail call reachable subprogs; 4285 * this info will be utilized by JIT so that we will be preserving the 4286 * tail call counter throughout bpf2bpf calls combined with tailcalls 4287 */ 4288 if (tail_call_reachable) 4289 for (j = 0; j < frame; j++) 4290 subprog[ret_prog[j]].tail_call_reachable = true; 4291 if (subprog[0].tail_call_reachable) 4292 env->prog->aux->tail_call_reachable = true; 4293 4294 /* end of for() loop means the last insn of the 'subprog' 4295 * was reached. Doesn't matter whether it was JA or EXIT 4296 */ 4297 if (frame == 0) 4298 return 0; 4299 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4300 frame--; 4301 i = ret_insn[frame]; 4302 idx = ret_prog[frame]; 4303 goto continue_func; 4304 } 4305 4306 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4307 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4308 const struct bpf_insn *insn, int idx) 4309 { 4310 int start = idx + insn->imm + 1, subprog; 4311 4312 subprog = find_subprog(env, start); 4313 if (subprog < 0) { 4314 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4315 start); 4316 return -EFAULT; 4317 } 4318 return env->subprog_info[subprog].stack_depth; 4319 } 4320 #endif 4321 4322 static int __check_buffer_access(struct bpf_verifier_env *env, 4323 const char *buf_info, 4324 const struct bpf_reg_state *reg, 4325 int regno, int off, int size) 4326 { 4327 if (off < 0) { 4328 verbose(env, 4329 "R%d invalid %s buffer access: off=%d, size=%d\n", 4330 regno, buf_info, off, size); 4331 return -EACCES; 4332 } 4333 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4334 char tn_buf[48]; 4335 4336 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4337 verbose(env, 4338 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4339 regno, off, tn_buf); 4340 return -EACCES; 4341 } 4342 4343 return 0; 4344 } 4345 4346 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4347 const struct bpf_reg_state *reg, 4348 int regno, int off, int size) 4349 { 4350 int err; 4351 4352 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4353 if (err) 4354 return err; 4355 4356 if (off + size > env->prog->aux->max_tp_access) 4357 env->prog->aux->max_tp_access = off + size; 4358 4359 return 0; 4360 } 4361 4362 static int check_buffer_access(struct bpf_verifier_env *env, 4363 const struct bpf_reg_state *reg, 4364 int regno, int off, int size, 4365 bool zero_size_allowed, 4366 u32 *max_access) 4367 { 4368 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4369 int err; 4370 4371 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4372 if (err) 4373 return err; 4374 4375 if (off + size > *max_access) 4376 *max_access = off + size; 4377 4378 return 0; 4379 } 4380 4381 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4382 static void zext_32_to_64(struct bpf_reg_state *reg) 4383 { 4384 reg->var_off = tnum_subreg(reg->var_off); 4385 __reg_assign_32_into_64(reg); 4386 } 4387 4388 /* truncate register to smaller size (in bytes) 4389 * must be called with size < BPF_REG_SIZE 4390 */ 4391 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4392 { 4393 u64 mask; 4394 4395 /* clear high bits in bit representation */ 4396 reg->var_off = tnum_cast(reg->var_off, size); 4397 4398 /* fix arithmetic bounds */ 4399 mask = ((u64)1 << (size * 8)) - 1; 4400 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4401 reg->umin_value &= mask; 4402 reg->umax_value &= mask; 4403 } else { 4404 reg->umin_value = 0; 4405 reg->umax_value = mask; 4406 } 4407 reg->smin_value = reg->umin_value; 4408 reg->smax_value = reg->umax_value; 4409 4410 /* If size is smaller than 32bit register the 32bit register 4411 * values are also truncated so we push 64-bit bounds into 4412 * 32-bit bounds. Above were truncated < 32-bits already. 4413 */ 4414 if (size >= 4) 4415 return; 4416 __reg_combine_64_into_32(reg); 4417 } 4418 4419 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4420 { 4421 /* A map is considered read-only if the following condition are true: 4422 * 4423 * 1) BPF program side cannot change any of the map content. The 4424 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4425 * and was set at map creation time. 4426 * 2) The map value(s) have been initialized from user space by a 4427 * loader and then "frozen", such that no new map update/delete 4428 * operations from syscall side are possible for the rest of 4429 * the map's lifetime from that point onwards. 4430 * 3) Any parallel/pending map update/delete operations from syscall 4431 * side have been completed. Only after that point, it's safe to 4432 * assume that map value(s) are immutable. 4433 */ 4434 return (map->map_flags & BPF_F_RDONLY_PROG) && 4435 READ_ONCE(map->frozen) && 4436 !bpf_map_write_active(map); 4437 } 4438 4439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4440 { 4441 void *ptr; 4442 u64 addr; 4443 int err; 4444 4445 err = map->ops->map_direct_value_addr(map, &addr, off); 4446 if (err) 4447 return err; 4448 ptr = (void *)(long)addr + off; 4449 4450 switch (size) { 4451 case sizeof(u8): 4452 *val = (u64)*(u8 *)ptr; 4453 break; 4454 case sizeof(u16): 4455 *val = (u64)*(u16 *)ptr; 4456 break; 4457 case sizeof(u32): 4458 *val = (u64)*(u32 *)ptr; 4459 break; 4460 case sizeof(u64): 4461 *val = *(u64 *)ptr; 4462 break; 4463 default: 4464 return -EINVAL; 4465 } 4466 return 0; 4467 } 4468 4469 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4470 struct bpf_reg_state *regs, 4471 int regno, int off, int size, 4472 enum bpf_access_type atype, 4473 int value_regno) 4474 { 4475 struct bpf_reg_state *reg = regs + regno; 4476 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4477 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4478 enum bpf_type_flag flag = 0; 4479 u32 btf_id; 4480 int ret; 4481 4482 if (off < 0) { 4483 verbose(env, 4484 "R%d is ptr_%s invalid negative access: off=%d\n", 4485 regno, tname, off); 4486 return -EACCES; 4487 } 4488 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4489 char tn_buf[48]; 4490 4491 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4492 verbose(env, 4493 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4494 regno, tname, off, tn_buf); 4495 return -EACCES; 4496 } 4497 4498 if (reg->type & MEM_USER) { 4499 verbose(env, 4500 "R%d is ptr_%s access user memory: off=%d\n", 4501 regno, tname, off); 4502 return -EACCES; 4503 } 4504 4505 if (reg->type & MEM_PERCPU) { 4506 verbose(env, 4507 "R%d is ptr_%s access percpu memory: off=%d\n", 4508 regno, tname, off); 4509 return -EACCES; 4510 } 4511 4512 if (env->ops->btf_struct_access) { 4513 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4514 off, size, atype, &btf_id, &flag); 4515 } else { 4516 if (atype != BPF_READ) { 4517 verbose(env, "only read is supported\n"); 4518 return -EACCES; 4519 } 4520 4521 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4522 atype, &btf_id, &flag); 4523 } 4524 4525 if (ret < 0) 4526 return ret; 4527 4528 /* If this is an untrusted pointer, all pointers formed by walking it 4529 * also inherit the untrusted flag. 4530 */ 4531 if (type_flag(reg->type) & PTR_UNTRUSTED) 4532 flag |= PTR_UNTRUSTED; 4533 4534 if (atype == BPF_READ && value_regno >= 0) 4535 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4536 4537 return 0; 4538 } 4539 4540 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4541 struct bpf_reg_state *regs, 4542 int regno, int off, int size, 4543 enum bpf_access_type atype, 4544 int value_regno) 4545 { 4546 struct bpf_reg_state *reg = regs + regno; 4547 struct bpf_map *map = reg->map_ptr; 4548 enum bpf_type_flag flag = 0; 4549 const struct btf_type *t; 4550 const char *tname; 4551 u32 btf_id; 4552 int ret; 4553 4554 if (!btf_vmlinux) { 4555 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4556 return -ENOTSUPP; 4557 } 4558 4559 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4560 verbose(env, "map_ptr access not supported for map type %d\n", 4561 map->map_type); 4562 return -ENOTSUPP; 4563 } 4564 4565 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4566 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4567 4568 if (!env->allow_ptr_to_map_access) { 4569 verbose(env, 4570 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4571 tname); 4572 return -EPERM; 4573 } 4574 4575 if (off < 0) { 4576 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4577 regno, tname, off); 4578 return -EACCES; 4579 } 4580 4581 if (atype != BPF_READ) { 4582 verbose(env, "only read from %s is supported\n", tname); 4583 return -EACCES; 4584 } 4585 4586 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4587 if (ret < 0) 4588 return ret; 4589 4590 if (value_regno >= 0) 4591 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4592 4593 return 0; 4594 } 4595 4596 /* Check that the stack access at the given offset is within bounds. The 4597 * maximum valid offset is -1. 4598 * 4599 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4600 * -state->allocated_stack for reads. 4601 */ 4602 static int check_stack_slot_within_bounds(int off, 4603 struct bpf_func_state *state, 4604 enum bpf_access_type t) 4605 { 4606 int min_valid_off; 4607 4608 if (t == BPF_WRITE) 4609 min_valid_off = -MAX_BPF_STACK; 4610 else 4611 min_valid_off = -state->allocated_stack; 4612 4613 if (off < min_valid_off || off > -1) 4614 return -EACCES; 4615 return 0; 4616 } 4617 4618 /* Check that the stack access at 'regno + off' falls within the maximum stack 4619 * bounds. 4620 * 4621 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4622 */ 4623 static int check_stack_access_within_bounds( 4624 struct bpf_verifier_env *env, 4625 int regno, int off, int access_size, 4626 enum bpf_access_src src, enum bpf_access_type type) 4627 { 4628 struct bpf_reg_state *regs = cur_regs(env); 4629 struct bpf_reg_state *reg = regs + regno; 4630 struct bpf_func_state *state = func(env, reg); 4631 int min_off, max_off; 4632 int err; 4633 char *err_extra; 4634 4635 if (src == ACCESS_HELPER) 4636 /* We don't know if helpers are reading or writing (or both). */ 4637 err_extra = " indirect access to"; 4638 else if (type == BPF_READ) 4639 err_extra = " read from"; 4640 else 4641 err_extra = " write to"; 4642 4643 if (tnum_is_const(reg->var_off)) { 4644 min_off = reg->var_off.value + off; 4645 if (access_size > 0) 4646 max_off = min_off + access_size - 1; 4647 else 4648 max_off = min_off; 4649 } else { 4650 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4651 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4652 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4653 err_extra, regno); 4654 return -EACCES; 4655 } 4656 min_off = reg->smin_value + off; 4657 if (access_size > 0) 4658 max_off = reg->smax_value + off + access_size - 1; 4659 else 4660 max_off = min_off; 4661 } 4662 4663 err = check_stack_slot_within_bounds(min_off, state, type); 4664 if (!err) 4665 err = check_stack_slot_within_bounds(max_off, state, type); 4666 4667 if (err) { 4668 if (tnum_is_const(reg->var_off)) { 4669 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4670 err_extra, regno, off, access_size); 4671 } else { 4672 char tn_buf[48]; 4673 4674 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4675 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4676 err_extra, regno, tn_buf, access_size); 4677 } 4678 } 4679 return err; 4680 } 4681 4682 /* check whether memory at (regno + off) is accessible for t = (read | write) 4683 * if t==write, value_regno is a register which value is stored into memory 4684 * if t==read, value_regno is a register which will receive the value from memory 4685 * if t==write && value_regno==-1, some unknown value is stored into memory 4686 * if t==read && value_regno==-1, don't care what we read from memory 4687 */ 4688 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4689 int off, int bpf_size, enum bpf_access_type t, 4690 int value_regno, bool strict_alignment_once) 4691 { 4692 struct bpf_reg_state *regs = cur_regs(env); 4693 struct bpf_reg_state *reg = regs + regno; 4694 struct bpf_func_state *state; 4695 int size, err = 0; 4696 4697 size = bpf_size_to_bytes(bpf_size); 4698 if (size < 0) 4699 return size; 4700 4701 /* alignment checks will add in reg->off themselves */ 4702 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4703 if (err) 4704 return err; 4705 4706 /* for access checks, reg->off is just part of off */ 4707 off += reg->off; 4708 4709 if (reg->type == PTR_TO_MAP_KEY) { 4710 if (t == BPF_WRITE) { 4711 verbose(env, "write to change key R%d not allowed\n", regno); 4712 return -EACCES; 4713 } 4714 4715 err = check_mem_region_access(env, regno, off, size, 4716 reg->map_ptr->key_size, false); 4717 if (err) 4718 return err; 4719 if (value_regno >= 0) 4720 mark_reg_unknown(env, regs, value_regno); 4721 } else if (reg->type == PTR_TO_MAP_VALUE) { 4722 struct bpf_map_value_off_desc *kptr_off_desc = NULL; 4723 4724 if (t == BPF_WRITE && value_regno >= 0 && 4725 is_pointer_value(env, value_regno)) { 4726 verbose(env, "R%d leaks addr into map\n", value_regno); 4727 return -EACCES; 4728 } 4729 err = check_map_access_type(env, regno, off, size, t); 4730 if (err) 4731 return err; 4732 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4733 if (err) 4734 return err; 4735 if (tnum_is_const(reg->var_off)) 4736 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr, 4737 off + reg->var_off.value); 4738 if (kptr_off_desc) { 4739 err = check_map_kptr_access(env, regno, value_regno, insn_idx, 4740 kptr_off_desc); 4741 } else if (t == BPF_READ && value_regno >= 0) { 4742 struct bpf_map *map = reg->map_ptr; 4743 4744 /* if map is read-only, track its contents as scalars */ 4745 if (tnum_is_const(reg->var_off) && 4746 bpf_map_is_rdonly(map) && 4747 map->ops->map_direct_value_addr) { 4748 int map_off = off + reg->var_off.value; 4749 u64 val = 0; 4750 4751 err = bpf_map_direct_read(map, map_off, size, 4752 &val); 4753 if (err) 4754 return err; 4755 4756 regs[value_regno].type = SCALAR_VALUE; 4757 __mark_reg_known(®s[value_regno], val); 4758 } else { 4759 mark_reg_unknown(env, regs, value_regno); 4760 } 4761 } 4762 } else if (base_type(reg->type) == PTR_TO_MEM) { 4763 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4764 4765 if (type_may_be_null(reg->type)) { 4766 verbose(env, "R%d invalid mem access '%s'\n", regno, 4767 reg_type_str(env, reg->type)); 4768 return -EACCES; 4769 } 4770 4771 if (t == BPF_WRITE && rdonly_mem) { 4772 verbose(env, "R%d cannot write into %s\n", 4773 regno, reg_type_str(env, reg->type)); 4774 return -EACCES; 4775 } 4776 4777 if (t == BPF_WRITE && value_regno >= 0 && 4778 is_pointer_value(env, value_regno)) { 4779 verbose(env, "R%d leaks addr into mem\n", value_regno); 4780 return -EACCES; 4781 } 4782 4783 err = check_mem_region_access(env, regno, off, size, 4784 reg->mem_size, false); 4785 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4786 mark_reg_unknown(env, regs, value_regno); 4787 } else if (reg->type == PTR_TO_CTX) { 4788 enum bpf_reg_type reg_type = SCALAR_VALUE; 4789 struct btf *btf = NULL; 4790 u32 btf_id = 0; 4791 4792 if (t == BPF_WRITE && value_regno >= 0 && 4793 is_pointer_value(env, value_regno)) { 4794 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4795 return -EACCES; 4796 } 4797 4798 err = check_ptr_off_reg(env, reg, regno); 4799 if (err < 0) 4800 return err; 4801 4802 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4803 &btf_id); 4804 if (err) 4805 verbose_linfo(env, insn_idx, "; "); 4806 if (!err && t == BPF_READ && value_regno >= 0) { 4807 /* ctx access returns either a scalar, or a 4808 * PTR_TO_PACKET[_META,_END]. In the latter 4809 * case, we know the offset is zero. 4810 */ 4811 if (reg_type == SCALAR_VALUE) { 4812 mark_reg_unknown(env, regs, value_regno); 4813 } else { 4814 mark_reg_known_zero(env, regs, 4815 value_regno); 4816 if (type_may_be_null(reg_type)) 4817 regs[value_regno].id = ++env->id_gen; 4818 /* A load of ctx field could have different 4819 * actual load size with the one encoded in the 4820 * insn. When the dst is PTR, it is for sure not 4821 * a sub-register. 4822 */ 4823 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4824 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4825 regs[value_regno].btf = btf; 4826 regs[value_regno].btf_id = btf_id; 4827 } 4828 } 4829 regs[value_regno].type = reg_type; 4830 } 4831 4832 } else if (reg->type == PTR_TO_STACK) { 4833 /* Basic bounds checks. */ 4834 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4835 if (err) 4836 return err; 4837 4838 state = func(env, reg); 4839 err = update_stack_depth(env, state, off); 4840 if (err) 4841 return err; 4842 4843 if (t == BPF_READ) 4844 err = check_stack_read(env, regno, off, size, 4845 value_regno); 4846 else 4847 err = check_stack_write(env, regno, off, size, 4848 value_regno, insn_idx); 4849 } else if (reg_is_pkt_pointer(reg)) { 4850 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4851 verbose(env, "cannot write into packet\n"); 4852 return -EACCES; 4853 } 4854 if (t == BPF_WRITE && value_regno >= 0 && 4855 is_pointer_value(env, value_regno)) { 4856 verbose(env, "R%d leaks addr into packet\n", 4857 value_regno); 4858 return -EACCES; 4859 } 4860 err = check_packet_access(env, regno, off, size, false); 4861 if (!err && t == BPF_READ && value_regno >= 0) 4862 mark_reg_unknown(env, regs, value_regno); 4863 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4864 if (t == BPF_WRITE && value_regno >= 0 && 4865 is_pointer_value(env, value_regno)) { 4866 verbose(env, "R%d leaks addr into flow keys\n", 4867 value_regno); 4868 return -EACCES; 4869 } 4870 4871 err = check_flow_keys_access(env, off, size); 4872 if (!err && t == BPF_READ && value_regno >= 0) 4873 mark_reg_unknown(env, regs, value_regno); 4874 } else if (type_is_sk_pointer(reg->type)) { 4875 if (t == BPF_WRITE) { 4876 verbose(env, "R%d cannot write into %s\n", 4877 regno, reg_type_str(env, reg->type)); 4878 return -EACCES; 4879 } 4880 err = check_sock_access(env, insn_idx, regno, off, size, t); 4881 if (!err && value_regno >= 0) 4882 mark_reg_unknown(env, regs, value_regno); 4883 } else if (reg->type == PTR_TO_TP_BUFFER) { 4884 err = check_tp_buffer_access(env, reg, regno, off, size); 4885 if (!err && t == BPF_READ && value_regno >= 0) 4886 mark_reg_unknown(env, regs, value_regno); 4887 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4888 !type_may_be_null(reg->type)) { 4889 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4890 value_regno); 4891 } else if (reg->type == CONST_PTR_TO_MAP) { 4892 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4893 value_regno); 4894 } else if (base_type(reg->type) == PTR_TO_BUF) { 4895 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4896 u32 *max_access; 4897 4898 if (rdonly_mem) { 4899 if (t == BPF_WRITE) { 4900 verbose(env, "R%d cannot write into %s\n", 4901 regno, reg_type_str(env, reg->type)); 4902 return -EACCES; 4903 } 4904 max_access = &env->prog->aux->max_rdonly_access; 4905 } else { 4906 max_access = &env->prog->aux->max_rdwr_access; 4907 } 4908 4909 err = check_buffer_access(env, reg, regno, off, size, false, 4910 max_access); 4911 4912 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4913 mark_reg_unknown(env, regs, value_regno); 4914 } else { 4915 verbose(env, "R%d invalid mem access '%s'\n", regno, 4916 reg_type_str(env, reg->type)); 4917 return -EACCES; 4918 } 4919 4920 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4921 regs[value_regno].type == SCALAR_VALUE) { 4922 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4923 coerce_reg_to_size(®s[value_regno], size); 4924 } 4925 return err; 4926 } 4927 4928 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4929 { 4930 int load_reg; 4931 int err; 4932 4933 switch (insn->imm) { 4934 case BPF_ADD: 4935 case BPF_ADD | BPF_FETCH: 4936 case BPF_AND: 4937 case BPF_AND | BPF_FETCH: 4938 case BPF_OR: 4939 case BPF_OR | BPF_FETCH: 4940 case BPF_XOR: 4941 case BPF_XOR | BPF_FETCH: 4942 case BPF_XCHG: 4943 case BPF_CMPXCHG: 4944 break; 4945 default: 4946 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4947 return -EINVAL; 4948 } 4949 4950 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4951 verbose(env, "invalid atomic operand size\n"); 4952 return -EINVAL; 4953 } 4954 4955 /* check src1 operand */ 4956 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4957 if (err) 4958 return err; 4959 4960 /* check src2 operand */ 4961 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4962 if (err) 4963 return err; 4964 4965 if (insn->imm == BPF_CMPXCHG) { 4966 /* Check comparison of R0 with memory location */ 4967 const u32 aux_reg = BPF_REG_0; 4968 4969 err = check_reg_arg(env, aux_reg, SRC_OP); 4970 if (err) 4971 return err; 4972 4973 if (is_pointer_value(env, aux_reg)) { 4974 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4975 return -EACCES; 4976 } 4977 } 4978 4979 if (is_pointer_value(env, insn->src_reg)) { 4980 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4981 return -EACCES; 4982 } 4983 4984 if (is_ctx_reg(env, insn->dst_reg) || 4985 is_pkt_reg(env, insn->dst_reg) || 4986 is_flow_key_reg(env, insn->dst_reg) || 4987 is_sk_reg(env, insn->dst_reg)) { 4988 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4989 insn->dst_reg, 4990 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 4991 return -EACCES; 4992 } 4993 4994 if (insn->imm & BPF_FETCH) { 4995 if (insn->imm == BPF_CMPXCHG) 4996 load_reg = BPF_REG_0; 4997 else 4998 load_reg = insn->src_reg; 4999 5000 /* check and record load of old value */ 5001 err = check_reg_arg(env, load_reg, DST_OP); 5002 if (err) 5003 return err; 5004 } else { 5005 /* This instruction accesses a memory location but doesn't 5006 * actually load it into a register. 5007 */ 5008 load_reg = -1; 5009 } 5010 5011 /* Check whether we can read the memory, with second call for fetch 5012 * case to simulate the register fill. 5013 */ 5014 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5015 BPF_SIZE(insn->code), BPF_READ, -1, true); 5016 if (!err && load_reg >= 0) 5017 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5018 BPF_SIZE(insn->code), BPF_READ, load_reg, 5019 true); 5020 if (err) 5021 return err; 5022 5023 /* Check whether we can write into the same memory. */ 5024 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5025 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5026 if (err) 5027 return err; 5028 5029 return 0; 5030 } 5031 5032 /* When register 'regno' is used to read the stack (either directly or through 5033 * a helper function) make sure that it's within stack boundary and, depending 5034 * on the access type, that all elements of the stack are initialized. 5035 * 5036 * 'off' includes 'regno->off', but not its dynamic part (if any). 5037 * 5038 * All registers that have been spilled on the stack in the slots within the 5039 * read offsets are marked as read. 5040 */ 5041 static int check_stack_range_initialized( 5042 struct bpf_verifier_env *env, int regno, int off, 5043 int access_size, bool zero_size_allowed, 5044 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5045 { 5046 struct bpf_reg_state *reg = reg_state(env, regno); 5047 struct bpf_func_state *state = func(env, reg); 5048 int err, min_off, max_off, i, j, slot, spi; 5049 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5050 enum bpf_access_type bounds_check_type; 5051 /* Some accesses can write anything into the stack, others are 5052 * read-only. 5053 */ 5054 bool clobber = false; 5055 5056 if (access_size == 0 && !zero_size_allowed) { 5057 verbose(env, "invalid zero-sized read\n"); 5058 return -EACCES; 5059 } 5060 5061 if (type == ACCESS_HELPER) { 5062 /* The bounds checks for writes are more permissive than for 5063 * reads. However, if raw_mode is not set, we'll do extra 5064 * checks below. 5065 */ 5066 bounds_check_type = BPF_WRITE; 5067 clobber = true; 5068 } else { 5069 bounds_check_type = BPF_READ; 5070 } 5071 err = check_stack_access_within_bounds(env, regno, off, access_size, 5072 type, bounds_check_type); 5073 if (err) 5074 return err; 5075 5076 5077 if (tnum_is_const(reg->var_off)) { 5078 min_off = max_off = reg->var_off.value + off; 5079 } else { 5080 /* Variable offset is prohibited for unprivileged mode for 5081 * simplicity since it requires corresponding support in 5082 * Spectre masking for stack ALU. 5083 * See also retrieve_ptr_limit(). 5084 */ 5085 if (!env->bypass_spec_v1) { 5086 char tn_buf[48]; 5087 5088 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5089 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5090 regno, err_extra, tn_buf); 5091 return -EACCES; 5092 } 5093 /* Only initialized buffer on stack is allowed to be accessed 5094 * with variable offset. With uninitialized buffer it's hard to 5095 * guarantee that whole memory is marked as initialized on 5096 * helper return since specific bounds are unknown what may 5097 * cause uninitialized stack leaking. 5098 */ 5099 if (meta && meta->raw_mode) 5100 meta = NULL; 5101 5102 min_off = reg->smin_value + off; 5103 max_off = reg->smax_value + off; 5104 } 5105 5106 if (meta && meta->raw_mode) { 5107 meta->access_size = access_size; 5108 meta->regno = regno; 5109 return 0; 5110 } 5111 5112 for (i = min_off; i < max_off + access_size; i++) { 5113 u8 *stype; 5114 5115 slot = -i - 1; 5116 spi = slot / BPF_REG_SIZE; 5117 if (state->allocated_stack <= slot) 5118 goto err; 5119 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5120 if (*stype == STACK_MISC) 5121 goto mark; 5122 if (*stype == STACK_ZERO) { 5123 if (clobber) { 5124 /* helper can write anything into the stack */ 5125 *stype = STACK_MISC; 5126 } 5127 goto mark; 5128 } 5129 5130 if (is_spilled_reg(&state->stack[spi]) && 5131 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 5132 goto mark; 5133 5134 if (is_spilled_reg(&state->stack[spi]) && 5135 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5136 env->allow_ptr_leaks)) { 5137 if (clobber) { 5138 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5139 for (j = 0; j < BPF_REG_SIZE; j++) 5140 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5141 } 5142 goto mark; 5143 } 5144 5145 err: 5146 if (tnum_is_const(reg->var_off)) { 5147 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5148 err_extra, regno, min_off, i - min_off, access_size); 5149 } else { 5150 char tn_buf[48]; 5151 5152 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5153 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5154 err_extra, regno, tn_buf, i - min_off, access_size); 5155 } 5156 return -EACCES; 5157 mark: 5158 /* reading any byte out of 8-byte 'spill_slot' will cause 5159 * the whole slot to be marked as 'read' 5160 */ 5161 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5162 state->stack[spi].spilled_ptr.parent, 5163 REG_LIVE_READ64); 5164 } 5165 return update_stack_depth(env, state, min_off); 5166 } 5167 5168 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5169 int access_size, bool zero_size_allowed, 5170 struct bpf_call_arg_meta *meta) 5171 { 5172 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5173 u32 *max_access; 5174 5175 switch (base_type(reg->type)) { 5176 case PTR_TO_PACKET: 5177 case PTR_TO_PACKET_META: 5178 return check_packet_access(env, regno, reg->off, access_size, 5179 zero_size_allowed); 5180 case PTR_TO_MAP_KEY: 5181 if (meta && meta->raw_mode) { 5182 verbose(env, "R%d cannot write into %s\n", regno, 5183 reg_type_str(env, reg->type)); 5184 return -EACCES; 5185 } 5186 return check_mem_region_access(env, regno, reg->off, access_size, 5187 reg->map_ptr->key_size, false); 5188 case PTR_TO_MAP_VALUE: 5189 if (check_map_access_type(env, regno, reg->off, access_size, 5190 meta && meta->raw_mode ? BPF_WRITE : 5191 BPF_READ)) 5192 return -EACCES; 5193 return check_map_access(env, regno, reg->off, access_size, 5194 zero_size_allowed, ACCESS_HELPER); 5195 case PTR_TO_MEM: 5196 if (type_is_rdonly_mem(reg->type)) { 5197 if (meta && meta->raw_mode) { 5198 verbose(env, "R%d cannot write into %s\n", regno, 5199 reg_type_str(env, reg->type)); 5200 return -EACCES; 5201 } 5202 } 5203 return check_mem_region_access(env, regno, reg->off, 5204 access_size, reg->mem_size, 5205 zero_size_allowed); 5206 case PTR_TO_BUF: 5207 if (type_is_rdonly_mem(reg->type)) { 5208 if (meta && meta->raw_mode) { 5209 verbose(env, "R%d cannot write into %s\n", regno, 5210 reg_type_str(env, reg->type)); 5211 return -EACCES; 5212 } 5213 5214 max_access = &env->prog->aux->max_rdonly_access; 5215 } else { 5216 max_access = &env->prog->aux->max_rdwr_access; 5217 } 5218 return check_buffer_access(env, reg, regno, reg->off, 5219 access_size, zero_size_allowed, 5220 max_access); 5221 case PTR_TO_STACK: 5222 return check_stack_range_initialized( 5223 env, 5224 regno, reg->off, access_size, 5225 zero_size_allowed, ACCESS_HELPER, meta); 5226 default: /* scalar_value or invalid ptr */ 5227 /* Allow zero-byte read from NULL, regardless of pointer type */ 5228 if (zero_size_allowed && access_size == 0 && 5229 register_is_null(reg)) 5230 return 0; 5231 5232 verbose(env, "R%d type=%s ", regno, 5233 reg_type_str(env, reg->type)); 5234 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5235 return -EACCES; 5236 } 5237 } 5238 5239 static int check_mem_size_reg(struct bpf_verifier_env *env, 5240 struct bpf_reg_state *reg, u32 regno, 5241 bool zero_size_allowed, 5242 struct bpf_call_arg_meta *meta) 5243 { 5244 int err; 5245 5246 /* This is used to refine r0 return value bounds for helpers 5247 * that enforce this value as an upper bound on return values. 5248 * See do_refine_retval_range() for helpers that can refine 5249 * the return value. C type of helper is u32 so we pull register 5250 * bound from umax_value however, if negative verifier errors 5251 * out. Only upper bounds can be learned because retval is an 5252 * int type and negative retvals are allowed. 5253 */ 5254 meta->msize_max_value = reg->umax_value; 5255 5256 /* The register is SCALAR_VALUE; the access check 5257 * happens using its boundaries. 5258 */ 5259 if (!tnum_is_const(reg->var_off)) 5260 /* For unprivileged variable accesses, disable raw 5261 * mode so that the program is required to 5262 * initialize all the memory that the helper could 5263 * just partially fill up. 5264 */ 5265 meta = NULL; 5266 5267 if (reg->smin_value < 0) { 5268 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5269 regno); 5270 return -EACCES; 5271 } 5272 5273 if (reg->umin_value == 0) { 5274 err = check_helper_mem_access(env, regno - 1, 0, 5275 zero_size_allowed, 5276 meta); 5277 if (err) 5278 return err; 5279 } 5280 5281 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5282 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5283 regno); 5284 return -EACCES; 5285 } 5286 err = check_helper_mem_access(env, regno - 1, 5287 reg->umax_value, 5288 zero_size_allowed, meta); 5289 if (!err) 5290 err = mark_chain_precision(env, regno); 5291 return err; 5292 } 5293 5294 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5295 u32 regno, u32 mem_size) 5296 { 5297 bool may_be_null = type_may_be_null(reg->type); 5298 struct bpf_reg_state saved_reg; 5299 struct bpf_call_arg_meta meta; 5300 int err; 5301 5302 if (register_is_null(reg)) 5303 return 0; 5304 5305 memset(&meta, 0, sizeof(meta)); 5306 /* Assuming that the register contains a value check if the memory 5307 * access is safe. Temporarily save and restore the register's state as 5308 * the conversion shouldn't be visible to a caller. 5309 */ 5310 if (may_be_null) { 5311 saved_reg = *reg; 5312 mark_ptr_not_null_reg(reg); 5313 } 5314 5315 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5316 /* Check access for BPF_WRITE */ 5317 meta.raw_mode = true; 5318 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5319 5320 if (may_be_null) 5321 *reg = saved_reg; 5322 5323 return err; 5324 } 5325 5326 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5327 u32 regno) 5328 { 5329 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5330 bool may_be_null = type_may_be_null(mem_reg->type); 5331 struct bpf_reg_state saved_reg; 5332 struct bpf_call_arg_meta meta; 5333 int err; 5334 5335 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5336 5337 memset(&meta, 0, sizeof(meta)); 5338 5339 if (may_be_null) { 5340 saved_reg = *mem_reg; 5341 mark_ptr_not_null_reg(mem_reg); 5342 } 5343 5344 err = check_mem_size_reg(env, reg, regno, true, &meta); 5345 /* Check access for BPF_WRITE */ 5346 meta.raw_mode = true; 5347 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5348 5349 if (may_be_null) 5350 *mem_reg = saved_reg; 5351 return err; 5352 } 5353 5354 /* Implementation details: 5355 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5356 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5357 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5358 * value_or_null->value transition, since the verifier only cares about 5359 * the range of access to valid map value pointer and doesn't care about actual 5360 * address of the map element. 5361 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5362 * reg->id > 0 after value_or_null->value transition. By doing so 5363 * two bpf_map_lookups will be considered two different pointers that 5364 * point to different bpf_spin_locks. 5365 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5366 * dead-locks. 5367 * Since only one bpf_spin_lock is allowed the checks are simpler than 5368 * reg_is_refcounted() logic. The verifier needs to remember only 5369 * one spin_lock instead of array of acquired_refs. 5370 * cur_state->active_spin_lock remembers which map value element got locked 5371 * and clears it after bpf_spin_unlock. 5372 */ 5373 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5374 bool is_lock) 5375 { 5376 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5377 struct bpf_verifier_state *cur = env->cur_state; 5378 bool is_const = tnum_is_const(reg->var_off); 5379 struct bpf_map *map = reg->map_ptr; 5380 u64 val = reg->var_off.value; 5381 5382 if (!is_const) { 5383 verbose(env, 5384 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5385 regno); 5386 return -EINVAL; 5387 } 5388 if (!map->btf) { 5389 verbose(env, 5390 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5391 map->name); 5392 return -EINVAL; 5393 } 5394 if (!map_value_has_spin_lock(map)) { 5395 if (map->spin_lock_off == -E2BIG) 5396 verbose(env, 5397 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5398 map->name); 5399 else if (map->spin_lock_off == -ENOENT) 5400 verbose(env, 5401 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5402 map->name); 5403 else 5404 verbose(env, 5405 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5406 map->name); 5407 return -EINVAL; 5408 } 5409 if (map->spin_lock_off != val + reg->off) { 5410 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5411 val + reg->off); 5412 return -EINVAL; 5413 } 5414 if (is_lock) { 5415 if (cur->active_spin_lock) { 5416 verbose(env, 5417 "Locking two bpf_spin_locks are not allowed\n"); 5418 return -EINVAL; 5419 } 5420 cur->active_spin_lock = reg->id; 5421 } else { 5422 if (!cur->active_spin_lock) { 5423 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5424 return -EINVAL; 5425 } 5426 if (cur->active_spin_lock != reg->id) { 5427 verbose(env, "bpf_spin_unlock of different lock\n"); 5428 return -EINVAL; 5429 } 5430 cur->active_spin_lock = 0; 5431 } 5432 return 0; 5433 } 5434 5435 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5436 struct bpf_call_arg_meta *meta) 5437 { 5438 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5439 bool is_const = tnum_is_const(reg->var_off); 5440 struct bpf_map *map = reg->map_ptr; 5441 u64 val = reg->var_off.value; 5442 5443 if (!is_const) { 5444 verbose(env, 5445 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5446 regno); 5447 return -EINVAL; 5448 } 5449 if (!map->btf) { 5450 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5451 map->name); 5452 return -EINVAL; 5453 } 5454 if (!map_value_has_timer(map)) { 5455 if (map->timer_off == -E2BIG) 5456 verbose(env, 5457 "map '%s' has more than one 'struct bpf_timer'\n", 5458 map->name); 5459 else if (map->timer_off == -ENOENT) 5460 verbose(env, 5461 "map '%s' doesn't have 'struct bpf_timer'\n", 5462 map->name); 5463 else 5464 verbose(env, 5465 "map '%s' is not a struct type or bpf_timer is mangled\n", 5466 map->name); 5467 return -EINVAL; 5468 } 5469 if (map->timer_off != val + reg->off) { 5470 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5471 val + reg->off, map->timer_off); 5472 return -EINVAL; 5473 } 5474 if (meta->map_ptr) { 5475 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5476 return -EFAULT; 5477 } 5478 meta->map_uid = reg->map_uid; 5479 meta->map_ptr = map; 5480 return 0; 5481 } 5482 5483 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5484 struct bpf_call_arg_meta *meta) 5485 { 5486 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5487 struct bpf_map_value_off_desc *off_desc; 5488 struct bpf_map *map_ptr = reg->map_ptr; 5489 u32 kptr_off; 5490 int ret; 5491 5492 if (!tnum_is_const(reg->var_off)) { 5493 verbose(env, 5494 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5495 regno); 5496 return -EINVAL; 5497 } 5498 if (!map_ptr->btf) { 5499 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5500 map_ptr->name); 5501 return -EINVAL; 5502 } 5503 if (!map_value_has_kptrs(map_ptr)) { 5504 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab); 5505 if (ret == -E2BIG) 5506 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name, 5507 BPF_MAP_VALUE_OFF_MAX); 5508 else if (ret == -EEXIST) 5509 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name); 5510 else 5511 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5512 return -EINVAL; 5513 } 5514 5515 meta->map_ptr = map_ptr; 5516 kptr_off = reg->off + reg->var_off.value; 5517 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off); 5518 if (!off_desc) { 5519 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5520 return -EACCES; 5521 } 5522 if (off_desc->type != BPF_KPTR_REF) { 5523 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5524 return -EACCES; 5525 } 5526 meta->kptr_off_desc = off_desc; 5527 return 0; 5528 } 5529 5530 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5531 { 5532 return type == ARG_CONST_SIZE || 5533 type == ARG_CONST_SIZE_OR_ZERO; 5534 } 5535 5536 static bool arg_type_is_release(enum bpf_arg_type type) 5537 { 5538 return type & OBJ_RELEASE; 5539 } 5540 5541 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5542 { 5543 return base_type(type) == ARG_PTR_TO_DYNPTR; 5544 } 5545 5546 static int int_ptr_type_to_size(enum bpf_arg_type type) 5547 { 5548 if (type == ARG_PTR_TO_INT) 5549 return sizeof(u32); 5550 else if (type == ARG_PTR_TO_LONG) 5551 return sizeof(u64); 5552 5553 return -EINVAL; 5554 } 5555 5556 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5557 const struct bpf_call_arg_meta *meta, 5558 enum bpf_arg_type *arg_type) 5559 { 5560 if (!meta->map_ptr) { 5561 /* kernel subsystem misconfigured verifier */ 5562 verbose(env, "invalid map_ptr to access map->type\n"); 5563 return -EACCES; 5564 } 5565 5566 switch (meta->map_ptr->map_type) { 5567 case BPF_MAP_TYPE_SOCKMAP: 5568 case BPF_MAP_TYPE_SOCKHASH: 5569 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5570 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5571 } else { 5572 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5573 return -EINVAL; 5574 } 5575 break; 5576 case BPF_MAP_TYPE_BLOOM_FILTER: 5577 if (meta->func_id == BPF_FUNC_map_peek_elem) 5578 *arg_type = ARG_PTR_TO_MAP_VALUE; 5579 break; 5580 default: 5581 break; 5582 } 5583 return 0; 5584 } 5585 5586 struct bpf_reg_types { 5587 const enum bpf_reg_type types[10]; 5588 u32 *btf_id; 5589 }; 5590 5591 static const struct bpf_reg_types map_key_value_types = { 5592 .types = { 5593 PTR_TO_STACK, 5594 PTR_TO_PACKET, 5595 PTR_TO_PACKET_META, 5596 PTR_TO_MAP_KEY, 5597 PTR_TO_MAP_VALUE, 5598 }, 5599 }; 5600 5601 static const struct bpf_reg_types sock_types = { 5602 .types = { 5603 PTR_TO_SOCK_COMMON, 5604 PTR_TO_SOCKET, 5605 PTR_TO_TCP_SOCK, 5606 PTR_TO_XDP_SOCK, 5607 }, 5608 }; 5609 5610 #ifdef CONFIG_NET 5611 static const struct bpf_reg_types btf_id_sock_common_types = { 5612 .types = { 5613 PTR_TO_SOCK_COMMON, 5614 PTR_TO_SOCKET, 5615 PTR_TO_TCP_SOCK, 5616 PTR_TO_XDP_SOCK, 5617 PTR_TO_BTF_ID, 5618 }, 5619 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5620 }; 5621 #endif 5622 5623 static const struct bpf_reg_types mem_types = { 5624 .types = { 5625 PTR_TO_STACK, 5626 PTR_TO_PACKET, 5627 PTR_TO_PACKET_META, 5628 PTR_TO_MAP_KEY, 5629 PTR_TO_MAP_VALUE, 5630 PTR_TO_MEM, 5631 PTR_TO_MEM | MEM_ALLOC, 5632 PTR_TO_BUF, 5633 }, 5634 }; 5635 5636 static const struct bpf_reg_types int_ptr_types = { 5637 .types = { 5638 PTR_TO_STACK, 5639 PTR_TO_PACKET, 5640 PTR_TO_PACKET_META, 5641 PTR_TO_MAP_KEY, 5642 PTR_TO_MAP_VALUE, 5643 }, 5644 }; 5645 5646 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5647 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5648 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5649 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5650 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5651 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5652 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5653 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5654 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5655 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5656 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5657 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5658 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5659 5660 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5661 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5662 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5663 [ARG_CONST_SIZE] = &scalar_types, 5664 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5665 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5666 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5667 [ARG_PTR_TO_CTX] = &context_types, 5668 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5669 #ifdef CONFIG_NET 5670 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5671 #endif 5672 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5673 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5674 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5675 [ARG_PTR_TO_MEM] = &mem_types, 5676 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5677 [ARG_PTR_TO_INT] = &int_ptr_types, 5678 [ARG_PTR_TO_LONG] = &int_ptr_types, 5679 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5680 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5681 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5682 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5683 [ARG_PTR_TO_TIMER] = &timer_types, 5684 [ARG_PTR_TO_KPTR] = &kptr_types, 5685 [ARG_PTR_TO_DYNPTR] = &stack_ptr_types, 5686 }; 5687 5688 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5689 enum bpf_arg_type arg_type, 5690 const u32 *arg_btf_id, 5691 struct bpf_call_arg_meta *meta) 5692 { 5693 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5694 enum bpf_reg_type expected, type = reg->type; 5695 const struct bpf_reg_types *compatible; 5696 int i, j; 5697 5698 compatible = compatible_reg_types[base_type(arg_type)]; 5699 if (!compatible) { 5700 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5701 return -EFAULT; 5702 } 5703 5704 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5705 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5706 * 5707 * Same for MAYBE_NULL: 5708 * 5709 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5710 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5711 * 5712 * Therefore we fold these flags depending on the arg_type before comparison. 5713 */ 5714 if (arg_type & MEM_RDONLY) 5715 type &= ~MEM_RDONLY; 5716 if (arg_type & PTR_MAYBE_NULL) 5717 type &= ~PTR_MAYBE_NULL; 5718 5719 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5720 expected = compatible->types[i]; 5721 if (expected == NOT_INIT) 5722 break; 5723 5724 if (type == expected) 5725 goto found; 5726 } 5727 5728 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5729 for (j = 0; j + 1 < i; j++) 5730 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5731 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5732 return -EACCES; 5733 5734 found: 5735 if (reg->type == PTR_TO_BTF_ID) { 5736 /* For bpf_sk_release, it needs to match against first member 5737 * 'struct sock_common', hence make an exception for it. This 5738 * allows bpf_sk_release to work for multiple socket types. 5739 */ 5740 bool strict_type_match = arg_type_is_release(arg_type) && 5741 meta->func_id != BPF_FUNC_sk_release; 5742 5743 if (!arg_btf_id) { 5744 if (!compatible->btf_id) { 5745 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5746 return -EFAULT; 5747 } 5748 arg_btf_id = compatible->btf_id; 5749 } 5750 5751 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5752 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno)) 5753 return -EACCES; 5754 } else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5755 btf_vmlinux, *arg_btf_id, 5756 strict_type_match)) { 5757 verbose(env, "R%d is of type %s but %s is expected\n", 5758 regno, kernel_type_name(reg->btf, reg->btf_id), 5759 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5760 return -EACCES; 5761 } 5762 } 5763 5764 return 0; 5765 } 5766 5767 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5768 const struct bpf_reg_state *reg, int regno, 5769 enum bpf_arg_type arg_type) 5770 { 5771 enum bpf_reg_type type = reg->type; 5772 bool fixed_off_ok = false; 5773 5774 switch ((u32)type) { 5775 /* Pointer types where reg offset is explicitly allowed: */ 5776 case PTR_TO_STACK: 5777 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5778 verbose(env, "cannot pass in dynptr at an offset\n"); 5779 return -EINVAL; 5780 } 5781 fallthrough; 5782 case PTR_TO_PACKET: 5783 case PTR_TO_PACKET_META: 5784 case PTR_TO_MAP_KEY: 5785 case PTR_TO_MAP_VALUE: 5786 case PTR_TO_MEM: 5787 case PTR_TO_MEM | MEM_RDONLY: 5788 case PTR_TO_MEM | MEM_ALLOC: 5789 case PTR_TO_BUF: 5790 case PTR_TO_BUF | MEM_RDONLY: 5791 case SCALAR_VALUE: 5792 /* Some of the argument types nevertheless require a 5793 * zero register offset. 5794 */ 5795 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5796 return 0; 5797 break; 5798 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5799 * fixed offset. 5800 */ 5801 case PTR_TO_BTF_ID: 5802 /* When referenced PTR_TO_BTF_ID is passed to release function, 5803 * it's fixed offset must be 0. In the other cases, fixed offset 5804 * can be non-zero. 5805 */ 5806 if (arg_type_is_release(arg_type) && reg->off) { 5807 verbose(env, "R%d must have zero offset when passed to release func\n", 5808 regno); 5809 return -EINVAL; 5810 } 5811 /* For arg is release pointer, fixed_off_ok must be false, but 5812 * we already checked and rejected reg->off != 0 above, so set 5813 * to true to allow fixed offset for all other cases. 5814 */ 5815 fixed_off_ok = true; 5816 break; 5817 default: 5818 break; 5819 } 5820 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5821 } 5822 5823 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5824 { 5825 struct bpf_func_state *state = func(env, reg); 5826 int spi = get_spi(reg->off); 5827 5828 return state->stack[spi].spilled_ptr.id; 5829 } 5830 5831 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5832 struct bpf_call_arg_meta *meta, 5833 const struct bpf_func_proto *fn) 5834 { 5835 u32 regno = BPF_REG_1 + arg; 5836 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5837 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5838 enum bpf_reg_type type = reg->type; 5839 u32 *arg_btf_id = NULL; 5840 int err = 0; 5841 5842 if (arg_type == ARG_DONTCARE) 5843 return 0; 5844 5845 err = check_reg_arg(env, regno, SRC_OP); 5846 if (err) 5847 return err; 5848 5849 if (arg_type == ARG_ANYTHING) { 5850 if (is_pointer_value(env, regno)) { 5851 verbose(env, "R%d leaks addr into helper function\n", 5852 regno); 5853 return -EACCES; 5854 } 5855 return 0; 5856 } 5857 5858 if (type_is_pkt_pointer(type) && 5859 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5860 verbose(env, "helper access to the packet is not allowed\n"); 5861 return -EACCES; 5862 } 5863 5864 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5865 err = resolve_map_arg_type(env, meta, &arg_type); 5866 if (err) 5867 return err; 5868 } 5869 5870 if (register_is_null(reg) && type_may_be_null(arg_type)) 5871 /* A NULL register has a SCALAR_VALUE type, so skip 5872 * type checking. 5873 */ 5874 goto skip_type_check; 5875 5876 /* arg_btf_id and arg_size are in a union. */ 5877 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID) 5878 arg_btf_id = fn->arg_btf_id[arg]; 5879 5880 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 5881 if (err) 5882 return err; 5883 5884 err = check_func_arg_reg_off(env, reg, regno, arg_type); 5885 if (err) 5886 return err; 5887 5888 skip_type_check: 5889 if (arg_type_is_release(arg_type)) { 5890 if (arg_type_is_dynptr(arg_type)) { 5891 struct bpf_func_state *state = func(env, reg); 5892 int spi = get_spi(reg->off); 5893 5894 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 5895 !state->stack[spi].spilled_ptr.id) { 5896 verbose(env, "arg %d is an unacquired reference\n", regno); 5897 return -EINVAL; 5898 } 5899 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 5900 verbose(env, "R%d must be referenced when passed to release function\n", 5901 regno); 5902 return -EINVAL; 5903 } 5904 if (meta->release_regno) { 5905 verbose(env, "verifier internal error: more than one release argument\n"); 5906 return -EFAULT; 5907 } 5908 meta->release_regno = regno; 5909 } 5910 5911 if (reg->ref_obj_id) { 5912 if (meta->ref_obj_id) { 5913 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5914 regno, reg->ref_obj_id, 5915 meta->ref_obj_id); 5916 return -EFAULT; 5917 } 5918 meta->ref_obj_id = reg->ref_obj_id; 5919 } 5920 5921 switch (base_type(arg_type)) { 5922 case ARG_CONST_MAP_PTR: 5923 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5924 if (meta->map_ptr) { 5925 /* Use map_uid (which is unique id of inner map) to reject: 5926 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5927 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5928 * if (inner_map1 && inner_map2) { 5929 * timer = bpf_map_lookup_elem(inner_map1); 5930 * if (timer) 5931 * // mismatch would have been allowed 5932 * bpf_timer_init(timer, inner_map2); 5933 * } 5934 * 5935 * Comparing map_ptr is enough to distinguish normal and outer maps. 5936 */ 5937 if (meta->map_ptr != reg->map_ptr || 5938 meta->map_uid != reg->map_uid) { 5939 verbose(env, 5940 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5941 meta->map_uid, reg->map_uid); 5942 return -EINVAL; 5943 } 5944 } 5945 meta->map_ptr = reg->map_ptr; 5946 meta->map_uid = reg->map_uid; 5947 break; 5948 case ARG_PTR_TO_MAP_KEY: 5949 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5950 * check that [key, key + map->key_size) are within 5951 * stack limits and initialized 5952 */ 5953 if (!meta->map_ptr) { 5954 /* in function declaration map_ptr must come before 5955 * map_key, so that it's verified and known before 5956 * we have to check map_key here. Otherwise it means 5957 * that kernel subsystem misconfigured verifier 5958 */ 5959 verbose(env, "invalid map_ptr to access map->key\n"); 5960 return -EACCES; 5961 } 5962 err = check_helper_mem_access(env, regno, 5963 meta->map_ptr->key_size, false, 5964 NULL); 5965 break; 5966 case ARG_PTR_TO_MAP_VALUE: 5967 if (type_may_be_null(arg_type) && register_is_null(reg)) 5968 return 0; 5969 5970 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5971 * check [value, value + map->value_size) validity 5972 */ 5973 if (!meta->map_ptr) { 5974 /* kernel subsystem misconfigured verifier */ 5975 verbose(env, "invalid map_ptr to access map->value\n"); 5976 return -EACCES; 5977 } 5978 meta->raw_mode = arg_type & MEM_UNINIT; 5979 err = check_helper_mem_access(env, regno, 5980 meta->map_ptr->value_size, false, 5981 meta); 5982 break; 5983 case ARG_PTR_TO_PERCPU_BTF_ID: 5984 if (!reg->btf_id) { 5985 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5986 return -EACCES; 5987 } 5988 meta->ret_btf = reg->btf; 5989 meta->ret_btf_id = reg->btf_id; 5990 break; 5991 case ARG_PTR_TO_SPIN_LOCK: 5992 if (meta->func_id == BPF_FUNC_spin_lock) { 5993 if (process_spin_lock(env, regno, true)) 5994 return -EACCES; 5995 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5996 if (process_spin_lock(env, regno, false)) 5997 return -EACCES; 5998 } else { 5999 verbose(env, "verifier internal error\n"); 6000 return -EFAULT; 6001 } 6002 break; 6003 case ARG_PTR_TO_TIMER: 6004 if (process_timer_func(env, regno, meta)) 6005 return -EACCES; 6006 break; 6007 case ARG_PTR_TO_FUNC: 6008 meta->subprogno = reg->subprogno; 6009 break; 6010 case ARG_PTR_TO_MEM: 6011 /* The access to this pointer is only checked when we hit the 6012 * next is_mem_size argument below. 6013 */ 6014 meta->raw_mode = arg_type & MEM_UNINIT; 6015 if (arg_type & MEM_FIXED_SIZE) { 6016 err = check_helper_mem_access(env, regno, 6017 fn->arg_size[arg], false, 6018 meta); 6019 } 6020 break; 6021 case ARG_CONST_SIZE: 6022 err = check_mem_size_reg(env, reg, regno, false, meta); 6023 break; 6024 case ARG_CONST_SIZE_OR_ZERO: 6025 err = check_mem_size_reg(env, reg, regno, true, meta); 6026 break; 6027 case ARG_PTR_TO_DYNPTR: 6028 if (arg_type & MEM_UNINIT) { 6029 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6030 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6031 return -EINVAL; 6032 } 6033 6034 /* We only support one dynptr being uninitialized at the moment, 6035 * which is sufficient for the helper functions we have right now. 6036 */ 6037 if (meta->uninit_dynptr_regno) { 6038 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6039 return -EFAULT; 6040 } 6041 6042 meta->uninit_dynptr_regno = regno; 6043 } else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) { 6044 const char *err_extra = ""; 6045 6046 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6047 case DYNPTR_TYPE_LOCAL: 6048 err_extra = "local "; 6049 break; 6050 case DYNPTR_TYPE_RINGBUF: 6051 err_extra = "ringbuf "; 6052 break; 6053 default: 6054 break; 6055 } 6056 6057 verbose(env, "Expected an initialized %sdynptr as arg #%d\n", 6058 err_extra, arg + 1); 6059 return -EINVAL; 6060 } 6061 break; 6062 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6063 if (!tnum_is_const(reg->var_off)) { 6064 verbose(env, "R%d is not a known constant'\n", 6065 regno); 6066 return -EACCES; 6067 } 6068 meta->mem_size = reg->var_off.value; 6069 break; 6070 case ARG_PTR_TO_INT: 6071 case ARG_PTR_TO_LONG: 6072 { 6073 int size = int_ptr_type_to_size(arg_type); 6074 6075 err = check_helper_mem_access(env, regno, size, false, meta); 6076 if (err) 6077 return err; 6078 err = check_ptr_alignment(env, reg, 0, size, true); 6079 break; 6080 } 6081 case ARG_PTR_TO_CONST_STR: 6082 { 6083 struct bpf_map *map = reg->map_ptr; 6084 int map_off; 6085 u64 map_addr; 6086 char *str_ptr; 6087 6088 if (!bpf_map_is_rdonly(map)) { 6089 verbose(env, "R%d does not point to a readonly map'\n", regno); 6090 return -EACCES; 6091 } 6092 6093 if (!tnum_is_const(reg->var_off)) { 6094 verbose(env, "R%d is not a constant address'\n", regno); 6095 return -EACCES; 6096 } 6097 6098 if (!map->ops->map_direct_value_addr) { 6099 verbose(env, "no direct value access support for this map type\n"); 6100 return -EACCES; 6101 } 6102 6103 err = check_map_access(env, regno, reg->off, 6104 map->value_size - reg->off, false, 6105 ACCESS_HELPER); 6106 if (err) 6107 return err; 6108 6109 map_off = reg->off + reg->var_off.value; 6110 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6111 if (err) { 6112 verbose(env, "direct value access on string failed\n"); 6113 return err; 6114 } 6115 6116 str_ptr = (char *)(long)(map_addr); 6117 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6118 verbose(env, "string is not zero-terminated\n"); 6119 return -EINVAL; 6120 } 6121 break; 6122 } 6123 case ARG_PTR_TO_KPTR: 6124 if (process_kptr_func(env, regno, meta)) 6125 return -EACCES; 6126 break; 6127 } 6128 6129 return err; 6130 } 6131 6132 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6133 { 6134 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6135 enum bpf_prog_type type = resolve_prog_type(env->prog); 6136 6137 if (func_id != BPF_FUNC_map_update_elem) 6138 return false; 6139 6140 /* It's not possible to get access to a locked struct sock in these 6141 * contexts, so updating is safe. 6142 */ 6143 switch (type) { 6144 case BPF_PROG_TYPE_TRACING: 6145 if (eatype == BPF_TRACE_ITER) 6146 return true; 6147 break; 6148 case BPF_PROG_TYPE_SOCKET_FILTER: 6149 case BPF_PROG_TYPE_SCHED_CLS: 6150 case BPF_PROG_TYPE_SCHED_ACT: 6151 case BPF_PROG_TYPE_XDP: 6152 case BPF_PROG_TYPE_SK_REUSEPORT: 6153 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6154 case BPF_PROG_TYPE_SK_LOOKUP: 6155 return true; 6156 default: 6157 break; 6158 } 6159 6160 verbose(env, "cannot update sockmap in this context\n"); 6161 return false; 6162 } 6163 6164 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6165 { 6166 return env->prog->jit_requested && 6167 bpf_jit_supports_subprog_tailcalls(); 6168 } 6169 6170 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6171 struct bpf_map *map, int func_id) 6172 { 6173 if (!map) 6174 return 0; 6175 6176 /* We need a two way check, first is from map perspective ... */ 6177 switch (map->map_type) { 6178 case BPF_MAP_TYPE_PROG_ARRAY: 6179 if (func_id != BPF_FUNC_tail_call) 6180 goto error; 6181 break; 6182 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6183 if (func_id != BPF_FUNC_perf_event_read && 6184 func_id != BPF_FUNC_perf_event_output && 6185 func_id != BPF_FUNC_skb_output && 6186 func_id != BPF_FUNC_perf_event_read_value && 6187 func_id != BPF_FUNC_xdp_output) 6188 goto error; 6189 break; 6190 case BPF_MAP_TYPE_RINGBUF: 6191 if (func_id != BPF_FUNC_ringbuf_output && 6192 func_id != BPF_FUNC_ringbuf_reserve && 6193 func_id != BPF_FUNC_ringbuf_query && 6194 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6195 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6196 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6197 goto error; 6198 break; 6199 case BPF_MAP_TYPE_STACK_TRACE: 6200 if (func_id != BPF_FUNC_get_stackid) 6201 goto error; 6202 break; 6203 case BPF_MAP_TYPE_CGROUP_ARRAY: 6204 if (func_id != BPF_FUNC_skb_under_cgroup && 6205 func_id != BPF_FUNC_current_task_under_cgroup) 6206 goto error; 6207 break; 6208 case BPF_MAP_TYPE_CGROUP_STORAGE: 6209 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6210 if (func_id != BPF_FUNC_get_local_storage) 6211 goto error; 6212 break; 6213 case BPF_MAP_TYPE_DEVMAP: 6214 case BPF_MAP_TYPE_DEVMAP_HASH: 6215 if (func_id != BPF_FUNC_redirect_map && 6216 func_id != BPF_FUNC_map_lookup_elem) 6217 goto error; 6218 break; 6219 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6220 * appear. 6221 */ 6222 case BPF_MAP_TYPE_CPUMAP: 6223 if (func_id != BPF_FUNC_redirect_map) 6224 goto error; 6225 break; 6226 case BPF_MAP_TYPE_XSKMAP: 6227 if (func_id != BPF_FUNC_redirect_map && 6228 func_id != BPF_FUNC_map_lookup_elem) 6229 goto error; 6230 break; 6231 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6232 case BPF_MAP_TYPE_HASH_OF_MAPS: 6233 if (func_id != BPF_FUNC_map_lookup_elem) 6234 goto error; 6235 break; 6236 case BPF_MAP_TYPE_SOCKMAP: 6237 if (func_id != BPF_FUNC_sk_redirect_map && 6238 func_id != BPF_FUNC_sock_map_update && 6239 func_id != BPF_FUNC_map_delete_elem && 6240 func_id != BPF_FUNC_msg_redirect_map && 6241 func_id != BPF_FUNC_sk_select_reuseport && 6242 func_id != BPF_FUNC_map_lookup_elem && 6243 !may_update_sockmap(env, func_id)) 6244 goto error; 6245 break; 6246 case BPF_MAP_TYPE_SOCKHASH: 6247 if (func_id != BPF_FUNC_sk_redirect_hash && 6248 func_id != BPF_FUNC_sock_hash_update && 6249 func_id != BPF_FUNC_map_delete_elem && 6250 func_id != BPF_FUNC_msg_redirect_hash && 6251 func_id != BPF_FUNC_sk_select_reuseport && 6252 func_id != BPF_FUNC_map_lookup_elem && 6253 !may_update_sockmap(env, func_id)) 6254 goto error; 6255 break; 6256 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6257 if (func_id != BPF_FUNC_sk_select_reuseport) 6258 goto error; 6259 break; 6260 case BPF_MAP_TYPE_QUEUE: 6261 case BPF_MAP_TYPE_STACK: 6262 if (func_id != BPF_FUNC_map_peek_elem && 6263 func_id != BPF_FUNC_map_pop_elem && 6264 func_id != BPF_FUNC_map_push_elem) 6265 goto error; 6266 break; 6267 case BPF_MAP_TYPE_SK_STORAGE: 6268 if (func_id != BPF_FUNC_sk_storage_get && 6269 func_id != BPF_FUNC_sk_storage_delete) 6270 goto error; 6271 break; 6272 case BPF_MAP_TYPE_INODE_STORAGE: 6273 if (func_id != BPF_FUNC_inode_storage_get && 6274 func_id != BPF_FUNC_inode_storage_delete) 6275 goto error; 6276 break; 6277 case BPF_MAP_TYPE_TASK_STORAGE: 6278 if (func_id != BPF_FUNC_task_storage_get && 6279 func_id != BPF_FUNC_task_storage_delete) 6280 goto error; 6281 break; 6282 case BPF_MAP_TYPE_BLOOM_FILTER: 6283 if (func_id != BPF_FUNC_map_peek_elem && 6284 func_id != BPF_FUNC_map_push_elem) 6285 goto error; 6286 break; 6287 default: 6288 break; 6289 } 6290 6291 /* ... and second from the function itself. */ 6292 switch (func_id) { 6293 case BPF_FUNC_tail_call: 6294 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6295 goto error; 6296 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6297 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6298 return -EINVAL; 6299 } 6300 break; 6301 case BPF_FUNC_perf_event_read: 6302 case BPF_FUNC_perf_event_output: 6303 case BPF_FUNC_perf_event_read_value: 6304 case BPF_FUNC_skb_output: 6305 case BPF_FUNC_xdp_output: 6306 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6307 goto error; 6308 break; 6309 case BPF_FUNC_ringbuf_output: 6310 case BPF_FUNC_ringbuf_reserve: 6311 case BPF_FUNC_ringbuf_query: 6312 case BPF_FUNC_ringbuf_reserve_dynptr: 6313 case BPF_FUNC_ringbuf_submit_dynptr: 6314 case BPF_FUNC_ringbuf_discard_dynptr: 6315 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6316 goto error; 6317 break; 6318 case BPF_FUNC_get_stackid: 6319 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6320 goto error; 6321 break; 6322 case BPF_FUNC_current_task_under_cgroup: 6323 case BPF_FUNC_skb_under_cgroup: 6324 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6325 goto error; 6326 break; 6327 case BPF_FUNC_redirect_map: 6328 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6329 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6330 map->map_type != BPF_MAP_TYPE_CPUMAP && 6331 map->map_type != BPF_MAP_TYPE_XSKMAP) 6332 goto error; 6333 break; 6334 case BPF_FUNC_sk_redirect_map: 6335 case BPF_FUNC_msg_redirect_map: 6336 case BPF_FUNC_sock_map_update: 6337 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6338 goto error; 6339 break; 6340 case BPF_FUNC_sk_redirect_hash: 6341 case BPF_FUNC_msg_redirect_hash: 6342 case BPF_FUNC_sock_hash_update: 6343 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6344 goto error; 6345 break; 6346 case BPF_FUNC_get_local_storage: 6347 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6348 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6349 goto error; 6350 break; 6351 case BPF_FUNC_sk_select_reuseport: 6352 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6353 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6354 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6355 goto error; 6356 break; 6357 case BPF_FUNC_map_pop_elem: 6358 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6359 map->map_type != BPF_MAP_TYPE_STACK) 6360 goto error; 6361 break; 6362 case BPF_FUNC_map_peek_elem: 6363 case BPF_FUNC_map_push_elem: 6364 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6365 map->map_type != BPF_MAP_TYPE_STACK && 6366 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6367 goto error; 6368 break; 6369 case BPF_FUNC_map_lookup_percpu_elem: 6370 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6371 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6372 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6373 goto error; 6374 break; 6375 case BPF_FUNC_sk_storage_get: 6376 case BPF_FUNC_sk_storage_delete: 6377 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6378 goto error; 6379 break; 6380 case BPF_FUNC_inode_storage_get: 6381 case BPF_FUNC_inode_storage_delete: 6382 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6383 goto error; 6384 break; 6385 case BPF_FUNC_task_storage_get: 6386 case BPF_FUNC_task_storage_delete: 6387 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6388 goto error; 6389 break; 6390 default: 6391 break; 6392 } 6393 6394 return 0; 6395 error: 6396 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6397 map->map_type, func_id_name(func_id), func_id); 6398 return -EINVAL; 6399 } 6400 6401 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6402 { 6403 int count = 0; 6404 6405 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6406 count++; 6407 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6408 count++; 6409 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6410 count++; 6411 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6412 count++; 6413 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6414 count++; 6415 6416 /* We only support one arg being in raw mode at the moment, 6417 * which is sufficient for the helper functions we have 6418 * right now. 6419 */ 6420 return count <= 1; 6421 } 6422 6423 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6424 { 6425 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6426 bool has_size = fn->arg_size[arg] != 0; 6427 bool is_next_size = false; 6428 6429 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6430 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6431 6432 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6433 return is_next_size; 6434 6435 return has_size == is_next_size || is_next_size == is_fixed; 6436 } 6437 6438 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6439 { 6440 /* bpf_xxx(..., buf, len) call will access 'len' 6441 * bytes from memory 'buf'. Both arg types need 6442 * to be paired, so make sure there's no buggy 6443 * helper function specification. 6444 */ 6445 if (arg_type_is_mem_size(fn->arg1_type) || 6446 check_args_pair_invalid(fn, 0) || 6447 check_args_pair_invalid(fn, 1) || 6448 check_args_pair_invalid(fn, 2) || 6449 check_args_pair_invalid(fn, 3) || 6450 check_args_pair_invalid(fn, 4)) 6451 return false; 6452 6453 return true; 6454 } 6455 6456 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 6457 { 6458 int count = 0; 6459 6460 if (arg_type_may_be_refcounted(fn->arg1_type)) 6461 count++; 6462 if (arg_type_may_be_refcounted(fn->arg2_type)) 6463 count++; 6464 if (arg_type_may_be_refcounted(fn->arg3_type)) 6465 count++; 6466 if (arg_type_may_be_refcounted(fn->arg4_type)) 6467 count++; 6468 if (arg_type_may_be_refcounted(fn->arg5_type)) 6469 count++; 6470 6471 /* A reference acquiring function cannot acquire 6472 * another refcounted ptr. 6473 */ 6474 if (may_be_acquire_function(func_id) && count) 6475 return false; 6476 6477 /* We only support one arg being unreferenced at the moment, 6478 * which is sufficient for the helper functions we have right now. 6479 */ 6480 return count <= 1; 6481 } 6482 6483 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6484 { 6485 int i; 6486 6487 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6488 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6489 return false; 6490 6491 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6492 /* arg_btf_id and arg_size are in a union. */ 6493 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 6494 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 6495 return false; 6496 } 6497 6498 return true; 6499 } 6500 6501 static int check_func_proto(const struct bpf_func_proto *fn, int func_id, 6502 struct bpf_call_arg_meta *meta) 6503 { 6504 return check_raw_mode_ok(fn) && 6505 check_arg_pair_ok(fn) && 6506 check_btf_id_ok(fn) && 6507 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 6508 } 6509 6510 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6511 * are now invalid, so turn them into unknown SCALAR_VALUE. 6512 */ 6513 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 6514 struct bpf_func_state *state) 6515 { 6516 struct bpf_reg_state *regs = state->regs, *reg; 6517 int i; 6518 6519 for (i = 0; i < MAX_BPF_REG; i++) 6520 if (reg_is_pkt_pointer_any(®s[i])) 6521 mark_reg_unknown(env, regs, i); 6522 6523 bpf_for_each_spilled_reg(i, state, reg) { 6524 if (!reg) 6525 continue; 6526 if (reg_is_pkt_pointer_any(reg)) 6527 __mark_reg_unknown(env, reg); 6528 } 6529 } 6530 6531 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6532 { 6533 struct bpf_verifier_state *vstate = env->cur_state; 6534 int i; 6535 6536 for (i = 0; i <= vstate->curframe; i++) 6537 __clear_all_pkt_pointers(env, vstate->frame[i]); 6538 } 6539 6540 enum { 6541 AT_PKT_END = -1, 6542 BEYOND_PKT_END = -2, 6543 }; 6544 6545 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6546 { 6547 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6548 struct bpf_reg_state *reg = &state->regs[regn]; 6549 6550 if (reg->type != PTR_TO_PACKET) 6551 /* PTR_TO_PACKET_META is not supported yet */ 6552 return; 6553 6554 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6555 * How far beyond pkt_end it goes is unknown. 6556 * if (!range_open) it's the case of pkt >= pkt_end 6557 * if (range_open) it's the case of pkt > pkt_end 6558 * hence this pointer is at least 1 byte bigger than pkt_end 6559 */ 6560 if (range_open) 6561 reg->range = BEYOND_PKT_END; 6562 else 6563 reg->range = AT_PKT_END; 6564 } 6565 6566 static void release_reg_references(struct bpf_verifier_env *env, 6567 struct bpf_func_state *state, 6568 int ref_obj_id) 6569 { 6570 struct bpf_reg_state *regs = state->regs, *reg; 6571 int i; 6572 6573 for (i = 0; i < MAX_BPF_REG; i++) 6574 if (regs[i].ref_obj_id == ref_obj_id) 6575 mark_reg_unknown(env, regs, i); 6576 6577 bpf_for_each_spilled_reg(i, state, reg) { 6578 if (!reg) 6579 continue; 6580 if (reg->ref_obj_id == ref_obj_id) 6581 __mark_reg_unknown(env, reg); 6582 } 6583 } 6584 6585 /* The pointer with the specified id has released its reference to kernel 6586 * resources. Identify all copies of the same pointer and clear the reference. 6587 */ 6588 static int release_reference(struct bpf_verifier_env *env, 6589 int ref_obj_id) 6590 { 6591 struct bpf_verifier_state *vstate = env->cur_state; 6592 int err; 6593 int i; 6594 6595 err = release_reference_state(cur_func(env), ref_obj_id); 6596 if (err) 6597 return err; 6598 6599 for (i = 0; i <= vstate->curframe; i++) 6600 release_reg_references(env, vstate->frame[i], ref_obj_id); 6601 6602 return 0; 6603 } 6604 6605 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6606 struct bpf_reg_state *regs) 6607 { 6608 int i; 6609 6610 /* after the call registers r0 - r5 were scratched */ 6611 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6612 mark_reg_not_init(env, regs, caller_saved[i]); 6613 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6614 } 6615 } 6616 6617 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6618 struct bpf_func_state *caller, 6619 struct bpf_func_state *callee, 6620 int insn_idx); 6621 6622 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6623 int *insn_idx, int subprog, 6624 set_callee_state_fn set_callee_state_cb) 6625 { 6626 struct bpf_verifier_state *state = env->cur_state; 6627 struct bpf_func_info_aux *func_info_aux; 6628 struct bpf_func_state *caller, *callee; 6629 int err; 6630 bool is_global = false; 6631 6632 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6633 verbose(env, "the call stack of %d frames is too deep\n", 6634 state->curframe + 2); 6635 return -E2BIG; 6636 } 6637 6638 caller = state->frame[state->curframe]; 6639 if (state->frame[state->curframe + 1]) { 6640 verbose(env, "verifier bug. Frame %d already allocated\n", 6641 state->curframe + 1); 6642 return -EFAULT; 6643 } 6644 6645 func_info_aux = env->prog->aux->func_info_aux; 6646 if (func_info_aux) 6647 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6648 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6649 if (err == -EFAULT) 6650 return err; 6651 if (is_global) { 6652 if (err) { 6653 verbose(env, "Caller passes invalid args into func#%d\n", 6654 subprog); 6655 return err; 6656 } else { 6657 if (env->log.level & BPF_LOG_LEVEL) 6658 verbose(env, 6659 "Func#%d is global and valid. Skipping.\n", 6660 subprog); 6661 clear_caller_saved_regs(env, caller->regs); 6662 6663 /* All global functions return a 64-bit SCALAR_VALUE */ 6664 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6665 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6666 6667 /* continue with next insn after call */ 6668 return 0; 6669 } 6670 } 6671 6672 if (insn->code == (BPF_JMP | BPF_CALL) && 6673 insn->src_reg == 0 && 6674 insn->imm == BPF_FUNC_timer_set_callback) { 6675 struct bpf_verifier_state *async_cb; 6676 6677 /* there is no real recursion here. timer callbacks are async */ 6678 env->subprog_info[subprog].is_async_cb = true; 6679 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6680 *insn_idx, subprog); 6681 if (!async_cb) 6682 return -EFAULT; 6683 callee = async_cb->frame[0]; 6684 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6685 6686 /* Convert bpf_timer_set_callback() args into timer callback args */ 6687 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6688 if (err) 6689 return err; 6690 6691 clear_caller_saved_regs(env, caller->regs); 6692 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6693 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6694 /* continue with next insn after call */ 6695 return 0; 6696 } 6697 6698 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6699 if (!callee) 6700 return -ENOMEM; 6701 state->frame[state->curframe + 1] = callee; 6702 6703 /* callee cannot access r0, r6 - r9 for reading and has to write 6704 * into its own stack before reading from it. 6705 * callee can read/write into caller's stack 6706 */ 6707 init_func_state(env, callee, 6708 /* remember the callsite, it will be used by bpf_exit */ 6709 *insn_idx /* callsite */, 6710 state->curframe + 1 /* frameno within this callchain */, 6711 subprog /* subprog number within this prog */); 6712 6713 /* Transfer references to the callee */ 6714 err = copy_reference_state(callee, caller); 6715 if (err) 6716 return err; 6717 6718 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6719 if (err) 6720 return err; 6721 6722 clear_caller_saved_regs(env, caller->regs); 6723 6724 /* only increment it after check_reg_arg() finished */ 6725 state->curframe++; 6726 6727 /* and go analyze first insn of the callee */ 6728 *insn_idx = env->subprog_info[subprog].start - 1; 6729 6730 if (env->log.level & BPF_LOG_LEVEL) { 6731 verbose(env, "caller:\n"); 6732 print_verifier_state(env, caller, true); 6733 verbose(env, "callee:\n"); 6734 print_verifier_state(env, callee, true); 6735 } 6736 return 0; 6737 } 6738 6739 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6740 struct bpf_func_state *caller, 6741 struct bpf_func_state *callee) 6742 { 6743 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6744 * void *callback_ctx, u64 flags); 6745 * callback_fn(struct bpf_map *map, void *key, void *value, 6746 * void *callback_ctx); 6747 */ 6748 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6749 6750 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6751 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6752 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6753 6754 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6755 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6756 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6757 6758 /* pointer to stack or null */ 6759 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6760 6761 /* unused */ 6762 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6763 return 0; 6764 } 6765 6766 static int set_callee_state(struct bpf_verifier_env *env, 6767 struct bpf_func_state *caller, 6768 struct bpf_func_state *callee, int insn_idx) 6769 { 6770 int i; 6771 6772 /* copy r1 - r5 args that callee can access. The copy includes parent 6773 * pointers, which connects us up to the liveness chain 6774 */ 6775 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6776 callee->regs[i] = caller->regs[i]; 6777 return 0; 6778 } 6779 6780 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6781 int *insn_idx) 6782 { 6783 int subprog, target_insn; 6784 6785 target_insn = *insn_idx + insn->imm + 1; 6786 subprog = find_subprog(env, target_insn); 6787 if (subprog < 0) { 6788 verbose(env, "verifier bug. No program starts at insn %d\n", 6789 target_insn); 6790 return -EFAULT; 6791 } 6792 6793 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6794 } 6795 6796 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6797 struct bpf_func_state *caller, 6798 struct bpf_func_state *callee, 6799 int insn_idx) 6800 { 6801 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6802 struct bpf_map *map; 6803 int err; 6804 6805 if (bpf_map_ptr_poisoned(insn_aux)) { 6806 verbose(env, "tail_call abusing map_ptr\n"); 6807 return -EINVAL; 6808 } 6809 6810 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6811 if (!map->ops->map_set_for_each_callback_args || 6812 !map->ops->map_for_each_callback) { 6813 verbose(env, "callback function not allowed for map\n"); 6814 return -ENOTSUPP; 6815 } 6816 6817 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6818 if (err) 6819 return err; 6820 6821 callee->in_callback_fn = true; 6822 return 0; 6823 } 6824 6825 static int set_loop_callback_state(struct bpf_verifier_env *env, 6826 struct bpf_func_state *caller, 6827 struct bpf_func_state *callee, 6828 int insn_idx) 6829 { 6830 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6831 * u64 flags); 6832 * callback_fn(u32 index, void *callback_ctx); 6833 */ 6834 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6835 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6836 6837 /* unused */ 6838 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6839 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6840 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6841 6842 callee->in_callback_fn = true; 6843 return 0; 6844 } 6845 6846 static int set_timer_callback_state(struct bpf_verifier_env *env, 6847 struct bpf_func_state *caller, 6848 struct bpf_func_state *callee, 6849 int insn_idx) 6850 { 6851 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6852 6853 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6854 * callback_fn(struct bpf_map *map, void *key, void *value); 6855 */ 6856 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6857 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6858 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6859 6860 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6861 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6862 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6863 6864 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6865 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6866 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6867 6868 /* unused */ 6869 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6870 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6871 callee->in_async_callback_fn = true; 6872 return 0; 6873 } 6874 6875 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6876 struct bpf_func_state *caller, 6877 struct bpf_func_state *callee, 6878 int insn_idx) 6879 { 6880 /* bpf_find_vma(struct task_struct *task, u64 addr, 6881 * void *callback_fn, void *callback_ctx, u64 flags) 6882 * (callback_fn)(struct task_struct *task, 6883 * struct vm_area_struct *vma, void *callback_ctx); 6884 */ 6885 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6886 6887 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6888 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6889 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6890 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6891 6892 /* pointer to stack or null */ 6893 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6894 6895 /* unused */ 6896 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6897 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6898 callee->in_callback_fn = true; 6899 return 0; 6900 } 6901 6902 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6903 { 6904 struct bpf_verifier_state *state = env->cur_state; 6905 struct bpf_func_state *caller, *callee; 6906 struct bpf_reg_state *r0; 6907 int err; 6908 6909 callee = state->frame[state->curframe]; 6910 r0 = &callee->regs[BPF_REG_0]; 6911 if (r0->type == PTR_TO_STACK) { 6912 /* technically it's ok to return caller's stack pointer 6913 * (or caller's caller's pointer) back to the caller, 6914 * since these pointers are valid. Only current stack 6915 * pointer will be invalid as soon as function exits, 6916 * but let's be conservative 6917 */ 6918 verbose(env, "cannot return stack pointer to the caller\n"); 6919 return -EINVAL; 6920 } 6921 6922 state->curframe--; 6923 caller = state->frame[state->curframe]; 6924 if (callee->in_callback_fn) { 6925 /* enforce R0 return value range [0, 1]. */ 6926 struct tnum range = tnum_range(0, 1); 6927 6928 if (r0->type != SCALAR_VALUE) { 6929 verbose(env, "R0 not a scalar value\n"); 6930 return -EACCES; 6931 } 6932 if (!tnum_in(range, r0->var_off)) { 6933 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6934 return -EINVAL; 6935 } 6936 } else { 6937 /* return to the caller whatever r0 had in the callee */ 6938 caller->regs[BPF_REG_0] = *r0; 6939 } 6940 6941 /* Transfer references to the caller */ 6942 err = copy_reference_state(caller, callee); 6943 if (err) 6944 return err; 6945 6946 *insn_idx = callee->callsite + 1; 6947 if (env->log.level & BPF_LOG_LEVEL) { 6948 verbose(env, "returning from callee:\n"); 6949 print_verifier_state(env, callee, true); 6950 verbose(env, "to caller at %d:\n", *insn_idx); 6951 print_verifier_state(env, caller, true); 6952 } 6953 /* clear everything in the callee */ 6954 free_func_state(callee); 6955 state->frame[state->curframe + 1] = NULL; 6956 return 0; 6957 } 6958 6959 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6960 int func_id, 6961 struct bpf_call_arg_meta *meta) 6962 { 6963 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6964 6965 if (ret_type != RET_INTEGER || 6966 (func_id != BPF_FUNC_get_stack && 6967 func_id != BPF_FUNC_get_task_stack && 6968 func_id != BPF_FUNC_probe_read_str && 6969 func_id != BPF_FUNC_probe_read_kernel_str && 6970 func_id != BPF_FUNC_probe_read_user_str)) 6971 return; 6972 6973 ret_reg->smax_value = meta->msize_max_value; 6974 ret_reg->s32_max_value = meta->msize_max_value; 6975 ret_reg->smin_value = -MAX_ERRNO; 6976 ret_reg->s32_min_value = -MAX_ERRNO; 6977 reg_bounds_sync(ret_reg); 6978 } 6979 6980 static int 6981 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6982 int func_id, int insn_idx) 6983 { 6984 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6985 struct bpf_map *map = meta->map_ptr; 6986 6987 if (func_id != BPF_FUNC_tail_call && 6988 func_id != BPF_FUNC_map_lookup_elem && 6989 func_id != BPF_FUNC_map_update_elem && 6990 func_id != BPF_FUNC_map_delete_elem && 6991 func_id != BPF_FUNC_map_push_elem && 6992 func_id != BPF_FUNC_map_pop_elem && 6993 func_id != BPF_FUNC_map_peek_elem && 6994 func_id != BPF_FUNC_for_each_map_elem && 6995 func_id != BPF_FUNC_redirect_map && 6996 func_id != BPF_FUNC_map_lookup_percpu_elem) 6997 return 0; 6998 6999 if (map == NULL) { 7000 verbose(env, "kernel subsystem misconfigured verifier\n"); 7001 return -EINVAL; 7002 } 7003 7004 /* In case of read-only, some additional restrictions 7005 * need to be applied in order to prevent altering the 7006 * state of the map from program side. 7007 */ 7008 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7009 (func_id == BPF_FUNC_map_delete_elem || 7010 func_id == BPF_FUNC_map_update_elem || 7011 func_id == BPF_FUNC_map_push_elem || 7012 func_id == BPF_FUNC_map_pop_elem)) { 7013 verbose(env, "write into map forbidden\n"); 7014 return -EACCES; 7015 } 7016 7017 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7018 bpf_map_ptr_store(aux, meta->map_ptr, 7019 !meta->map_ptr->bypass_spec_v1); 7020 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7021 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7022 !meta->map_ptr->bypass_spec_v1); 7023 return 0; 7024 } 7025 7026 static int 7027 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7028 int func_id, int insn_idx) 7029 { 7030 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7031 struct bpf_reg_state *regs = cur_regs(env), *reg; 7032 struct bpf_map *map = meta->map_ptr; 7033 struct tnum range; 7034 u64 val; 7035 int err; 7036 7037 if (func_id != BPF_FUNC_tail_call) 7038 return 0; 7039 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7040 verbose(env, "kernel subsystem misconfigured verifier\n"); 7041 return -EINVAL; 7042 } 7043 7044 range = tnum_range(0, map->max_entries - 1); 7045 reg = ®s[BPF_REG_3]; 7046 7047 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 7048 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7049 return 0; 7050 } 7051 7052 err = mark_chain_precision(env, BPF_REG_3); 7053 if (err) 7054 return err; 7055 7056 val = reg->var_off.value; 7057 if (bpf_map_key_unseen(aux)) 7058 bpf_map_key_store(aux, val); 7059 else if (!bpf_map_key_poisoned(aux) && 7060 bpf_map_key_immediate(aux) != val) 7061 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7062 return 0; 7063 } 7064 7065 static int check_reference_leak(struct bpf_verifier_env *env) 7066 { 7067 struct bpf_func_state *state = cur_func(env); 7068 int i; 7069 7070 for (i = 0; i < state->acquired_refs; i++) { 7071 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7072 state->refs[i].id, state->refs[i].insn_idx); 7073 } 7074 return state->acquired_refs ? -EINVAL : 0; 7075 } 7076 7077 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7078 struct bpf_reg_state *regs) 7079 { 7080 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7081 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7082 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7083 int err, fmt_map_off, num_args; 7084 u64 fmt_addr; 7085 char *fmt; 7086 7087 /* data must be an array of u64 */ 7088 if (data_len_reg->var_off.value % 8) 7089 return -EINVAL; 7090 num_args = data_len_reg->var_off.value / 8; 7091 7092 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7093 * and map_direct_value_addr is set. 7094 */ 7095 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7096 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7097 fmt_map_off); 7098 if (err) { 7099 verbose(env, "verifier bug\n"); 7100 return -EFAULT; 7101 } 7102 fmt = (char *)(long)fmt_addr + fmt_map_off; 7103 7104 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7105 * can focus on validating the format specifiers. 7106 */ 7107 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7108 if (err < 0) 7109 verbose(env, "Invalid format string\n"); 7110 7111 return err; 7112 } 7113 7114 static int check_get_func_ip(struct bpf_verifier_env *env) 7115 { 7116 enum bpf_prog_type type = resolve_prog_type(env->prog); 7117 int func_id = BPF_FUNC_get_func_ip; 7118 7119 if (type == BPF_PROG_TYPE_TRACING) { 7120 if (!bpf_prog_has_trampoline(env->prog)) { 7121 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7122 func_id_name(func_id), func_id); 7123 return -ENOTSUPP; 7124 } 7125 return 0; 7126 } else if (type == BPF_PROG_TYPE_KPROBE) { 7127 return 0; 7128 } 7129 7130 verbose(env, "func %s#%d not supported for program type %d\n", 7131 func_id_name(func_id), func_id, type); 7132 return -ENOTSUPP; 7133 } 7134 7135 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7136 { 7137 return &env->insn_aux_data[env->insn_idx]; 7138 } 7139 7140 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7141 { 7142 struct bpf_reg_state *regs = cur_regs(env); 7143 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7144 bool reg_is_null = register_is_null(reg); 7145 7146 if (reg_is_null) 7147 mark_chain_precision(env, BPF_REG_4); 7148 7149 return reg_is_null; 7150 } 7151 7152 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7153 { 7154 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7155 7156 if (!state->initialized) { 7157 state->initialized = 1; 7158 state->fit_for_inline = loop_flag_is_zero(env); 7159 state->callback_subprogno = subprogno; 7160 return; 7161 } 7162 7163 if (!state->fit_for_inline) 7164 return; 7165 7166 state->fit_for_inline = (loop_flag_is_zero(env) && 7167 state->callback_subprogno == subprogno); 7168 } 7169 7170 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7171 int *insn_idx_p) 7172 { 7173 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7174 const struct bpf_func_proto *fn = NULL; 7175 enum bpf_return_type ret_type; 7176 enum bpf_type_flag ret_flag; 7177 struct bpf_reg_state *regs; 7178 struct bpf_call_arg_meta meta; 7179 int insn_idx = *insn_idx_p; 7180 bool changes_data; 7181 int i, err, func_id; 7182 7183 /* find function prototype */ 7184 func_id = insn->imm; 7185 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7186 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7187 func_id); 7188 return -EINVAL; 7189 } 7190 7191 if (env->ops->get_func_proto) 7192 fn = env->ops->get_func_proto(func_id, env->prog); 7193 if (!fn) { 7194 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7195 func_id); 7196 return -EINVAL; 7197 } 7198 7199 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7200 if (!env->prog->gpl_compatible && fn->gpl_only) { 7201 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7202 return -EINVAL; 7203 } 7204 7205 if (fn->allowed && !fn->allowed(env->prog)) { 7206 verbose(env, "helper call is not allowed in probe\n"); 7207 return -EINVAL; 7208 } 7209 7210 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7211 changes_data = bpf_helper_changes_pkt_data(fn->func); 7212 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7213 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7214 func_id_name(func_id), func_id); 7215 return -EINVAL; 7216 } 7217 7218 memset(&meta, 0, sizeof(meta)); 7219 meta.pkt_access = fn->pkt_access; 7220 7221 err = check_func_proto(fn, func_id, &meta); 7222 if (err) { 7223 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7224 func_id_name(func_id), func_id); 7225 return err; 7226 } 7227 7228 meta.func_id = func_id; 7229 /* check args */ 7230 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7231 err = check_func_arg(env, i, &meta, fn); 7232 if (err) 7233 return err; 7234 } 7235 7236 err = record_func_map(env, &meta, func_id, insn_idx); 7237 if (err) 7238 return err; 7239 7240 err = record_func_key(env, &meta, func_id, insn_idx); 7241 if (err) 7242 return err; 7243 7244 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7245 * is inferred from register state. 7246 */ 7247 for (i = 0; i < meta.access_size; i++) { 7248 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7249 BPF_WRITE, -1, false); 7250 if (err) 7251 return err; 7252 } 7253 7254 regs = cur_regs(env); 7255 7256 if (meta.uninit_dynptr_regno) { 7257 /* we write BPF_DW bits (8 bytes) at a time */ 7258 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7259 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7260 i, BPF_DW, BPF_WRITE, -1, false); 7261 if (err) 7262 return err; 7263 } 7264 7265 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7266 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7267 insn_idx); 7268 if (err) 7269 return err; 7270 } 7271 7272 if (meta.release_regno) { 7273 err = -EINVAL; 7274 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7275 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7276 else if (meta.ref_obj_id) 7277 err = release_reference(env, meta.ref_obj_id); 7278 /* meta.ref_obj_id can only be 0 if register that is meant to be 7279 * released is NULL, which must be > R0. 7280 */ 7281 else if (register_is_null(®s[meta.release_regno])) 7282 err = 0; 7283 if (err) { 7284 verbose(env, "func %s#%d reference has not been acquired before\n", 7285 func_id_name(func_id), func_id); 7286 return err; 7287 } 7288 } 7289 7290 switch (func_id) { 7291 case BPF_FUNC_tail_call: 7292 err = check_reference_leak(env); 7293 if (err) { 7294 verbose(env, "tail_call would lead to reference leak\n"); 7295 return err; 7296 } 7297 break; 7298 case BPF_FUNC_get_local_storage: 7299 /* check that flags argument in get_local_storage(map, flags) is 0, 7300 * this is required because get_local_storage() can't return an error. 7301 */ 7302 if (!register_is_null(®s[BPF_REG_2])) { 7303 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7304 return -EINVAL; 7305 } 7306 break; 7307 case BPF_FUNC_for_each_map_elem: 7308 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7309 set_map_elem_callback_state); 7310 break; 7311 case BPF_FUNC_timer_set_callback: 7312 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7313 set_timer_callback_state); 7314 break; 7315 case BPF_FUNC_find_vma: 7316 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7317 set_find_vma_callback_state); 7318 break; 7319 case BPF_FUNC_snprintf: 7320 err = check_bpf_snprintf_call(env, regs); 7321 break; 7322 case BPF_FUNC_loop: 7323 update_loop_inline_state(env, meta.subprogno); 7324 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7325 set_loop_callback_state); 7326 break; 7327 case BPF_FUNC_dynptr_from_mem: 7328 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7329 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7330 reg_type_str(env, regs[BPF_REG_1].type)); 7331 return -EACCES; 7332 } 7333 break; 7334 case BPF_FUNC_set_retval: 7335 if (prog_type == BPF_PROG_TYPE_LSM && 7336 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7337 if (!env->prog->aux->attach_func_proto->type) { 7338 /* Make sure programs that attach to void 7339 * hooks don't try to modify return value. 7340 */ 7341 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7342 return -EINVAL; 7343 } 7344 } 7345 break; 7346 } 7347 7348 if (err) 7349 return err; 7350 7351 /* reset caller saved regs */ 7352 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7353 mark_reg_not_init(env, regs, caller_saved[i]); 7354 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7355 } 7356 7357 /* helper call returns 64-bit value. */ 7358 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7359 7360 /* update return register (already marked as written above) */ 7361 ret_type = fn->ret_type; 7362 ret_flag = type_flag(fn->ret_type); 7363 if (ret_type == RET_INTEGER) { 7364 /* sets type to SCALAR_VALUE */ 7365 mark_reg_unknown(env, regs, BPF_REG_0); 7366 } else if (ret_type == RET_VOID) { 7367 regs[BPF_REG_0].type = NOT_INIT; 7368 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) { 7369 /* There is no offset yet applied, variable or fixed */ 7370 mark_reg_known_zero(env, regs, BPF_REG_0); 7371 /* remember map_ptr, so that check_map_access() 7372 * can check 'value_size' boundary of memory access 7373 * to map element returned from bpf_map_lookup_elem() 7374 */ 7375 if (meta.map_ptr == NULL) { 7376 verbose(env, 7377 "kernel subsystem misconfigured verifier\n"); 7378 return -EINVAL; 7379 } 7380 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7381 regs[BPF_REG_0].map_uid = meta.map_uid; 7382 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7383 if (!type_may_be_null(ret_type) && 7384 map_value_has_spin_lock(meta.map_ptr)) { 7385 regs[BPF_REG_0].id = ++env->id_gen; 7386 } 7387 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) { 7388 mark_reg_known_zero(env, regs, BPF_REG_0); 7389 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7390 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) { 7391 mark_reg_known_zero(env, regs, BPF_REG_0); 7392 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7393 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) { 7394 mark_reg_known_zero(env, regs, BPF_REG_0); 7395 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7396 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) { 7397 mark_reg_known_zero(env, regs, BPF_REG_0); 7398 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7399 regs[BPF_REG_0].mem_size = meta.mem_size; 7400 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) { 7401 const struct btf_type *t; 7402 7403 mark_reg_known_zero(env, regs, BPF_REG_0); 7404 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7405 if (!btf_type_is_struct(t)) { 7406 u32 tsize; 7407 const struct btf_type *ret; 7408 const char *tname; 7409 7410 /* resolve the type size of ksym. */ 7411 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7412 if (IS_ERR(ret)) { 7413 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7414 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7415 tname, PTR_ERR(ret)); 7416 return -EINVAL; 7417 } 7418 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7419 regs[BPF_REG_0].mem_size = tsize; 7420 } else { 7421 /* MEM_RDONLY may be carried from ret_flag, but it 7422 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7423 * it will confuse the check of PTR_TO_BTF_ID in 7424 * check_mem_access(). 7425 */ 7426 ret_flag &= ~MEM_RDONLY; 7427 7428 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7429 regs[BPF_REG_0].btf = meta.ret_btf; 7430 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7431 } 7432 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) { 7433 struct btf *ret_btf; 7434 int ret_btf_id; 7435 7436 mark_reg_known_zero(env, regs, BPF_REG_0); 7437 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7438 if (func_id == BPF_FUNC_kptr_xchg) { 7439 ret_btf = meta.kptr_off_desc->kptr.btf; 7440 ret_btf_id = meta.kptr_off_desc->kptr.btf_id; 7441 } else { 7442 ret_btf = btf_vmlinux; 7443 ret_btf_id = *fn->ret_btf_id; 7444 } 7445 if (ret_btf_id == 0) { 7446 verbose(env, "invalid return type %u of func %s#%d\n", 7447 base_type(ret_type), func_id_name(func_id), 7448 func_id); 7449 return -EINVAL; 7450 } 7451 regs[BPF_REG_0].btf = ret_btf; 7452 regs[BPF_REG_0].btf_id = ret_btf_id; 7453 } else { 7454 verbose(env, "unknown return type %u of func %s#%d\n", 7455 base_type(ret_type), func_id_name(func_id), func_id); 7456 return -EINVAL; 7457 } 7458 7459 if (type_may_be_null(regs[BPF_REG_0].type)) 7460 regs[BPF_REG_0].id = ++env->id_gen; 7461 7462 if (is_ptr_cast_function(func_id)) { 7463 /* For release_reference() */ 7464 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7465 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7466 int id = acquire_reference_state(env, insn_idx); 7467 7468 if (id < 0) 7469 return id; 7470 /* For mark_ptr_or_null_reg() */ 7471 regs[BPF_REG_0].id = id; 7472 /* For release_reference() */ 7473 regs[BPF_REG_0].ref_obj_id = id; 7474 } else if (func_id == BPF_FUNC_dynptr_data) { 7475 int dynptr_id = 0, i; 7476 7477 /* Find the id of the dynptr we're acquiring a reference to */ 7478 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7479 if (arg_type_is_dynptr(fn->arg_type[i])) { 7480 if (dynptr_id) { 7481 verbose(env, "verifier internal error: multiple dynptr args in func\n"); 7482 return -EFAULT; 7483 } 7484 dynptr_id = stack_slot_get_id(env, ®s[BPF_REG_1 + i]); 7485 } 7486 } 7487 /* For release_reference() */ 7488 regs[BPF_REG_0].ref_obj_id = dynptr_id; 7489 } 7490 7491 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7492 7493 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7494 if (err) 7495 return err; 7496 7497 if ((func_id == BPF_FUNC_get_stack || 7498 func_id == BPF_FUNC_get_task_stack) && 7499 !env->prog->has_callchain_buf) { 7500 const char *err_str; 7501 7502 #ifdef CONFIG_PERF_EVENTS 7503 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7504 err_str = "cannot get callchain buffer for func %s#%d\n"; 7505 #else 7506 err = -ENOTSUPP; 7507 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7508 #endif 7509 if (err) { 7510 verbose(env, err_str, func_id_name(func_id), func_id); 7511 return err; 7512 } 7513 7514 env->prog->has_callchain_buf = true; 7515 } 7516 7517 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7518 env->prog->call_get_stack = true; 7519 7520 if (func_id == BPF_FUNC_get_func_ip) { 7521 if (check_get_func_ip(env)) 7522 return -ENOTSUPP; 7523 env->prog->call_get_func_ip = true; 7524 } 7525 7526 if (changes_data) 7527 clear_all_pkt_pointers(env); 7528 return 0; 7529 } 7530 7531 /* mark_btf_func_reg_size() is used when the reg size is determined by 7532 * the BTF func_proto's return value size and argument. 7533 */ 7534 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7535 size_t reg_size) 7536 { 7537 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7538 7539 if (regno == BPF_REG_0) { 7540 /* Function return value */ 7541 reg->live |= REG_LIVE_WRITTEN; 7542 reg->subreg_def = reg_size == sizeof(u64) ? 7543 DEF_NOT_SUBREG : env->insn_idx + 1; 7544 } else { 7545 /* Function argument */ 7546 if (reg_size == sizeof(u64)) { 7547 mark_insn_zext(env, reg); 7548 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7549 } else { 7550 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7551 } 7552 } 7553 } 7554 7555 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7556 int *insn_idx_p) 7557 { 7558 const struct btf_type *t, *func, *func_proto, *ptr_type; 7559 struct bpf_reg_state *regs = cur_regs(env); 7560 const char *func_name, *ptr_type_name; 7561 u32 i, nargs, func_id, ptr_type_id; 7562 int err, insn_idx = *insn_idx_p; 7563 const struct btf_param *args; 7564 struct btf *desc_btf; 7565 u32 *kfunc_flags; 7566 bool acq; 7567 7568 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7569 if (!insn->imm) 7570 return 0; 7571 7572 desc_btf = find_kfunc_desc_btf(env, insn->off); 7573 if (IS_ERR(desc_btf)) 7574 return PTR_ERR(desc_btf); 7575 7576 func_id = insn->imm; 7577 func = btf_type_by_id(desc_btf, func_id); 7578 func_name = btf_name_by_offset(desc_btf, func->name_off); 7579 func_proto = btf_type_by_id(desc_btf, func->type); 7580 7581 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 7582 if (!kfunc_flags) { 7583 verbose(env, "calling kernel function %s is not allowed\n", 7584 func_name); 7585 return -EACCES; 7586 } 7587 acq = *kfunc_flags & KF_ACQUIRE; 7588 7589 /* Check the arguments */ 7590 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, *kfunc_flags); 7591 if (err < 0) 7592 return err; 7593 /* In case of release function, we get register number of refcounted 7594 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7595 */ 7596 if (err) { 7597 err = release_reference(env, regs[err].ref_obj_id); 7598 if (err) { 7599 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7600 func_name, func_id); 7601 return err; 7602 } 7603 } 7604 7605 for (i = 0; i < CALLER_SAVED_REGS; i++) 7606 mark_reg_not_init(env, regs, caller_saved[i]); 7607 7608 /* Check return type */ 7609 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7610 7611 if (acq && !btf_type_is_ptr(t)) { 7612 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7613 return -EINVAL; 7614 } 7615 7616 if (btf_type_is_scalar(t)) { 7617 mark_reg_unknown(env, regs, BPF_REG_0); 7618 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7619 } else if (btf_type_is_ptr(t)) { 7620 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7621 &ptr_type_id); 7622 if (!btf_type_is_struct(ptr_type)) { 7623 ptr_type_name = btf_name_by_offset(desc_btf, 7624 ptr_type->name_off); 7625 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 7626 func_name, btf_type_str(ptr_type), 7627 ptr_type_name); 7628 return -EINVAL; 7629 } 7630 mark_reg_known_zero(env, regs, BPF_REG_0); 7631 regs[BPF_REG_0].btf = desc_btf; 7632 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7633 regs[BPF_REG_0].btf_id = ptr_type_id; 7634 if (*kfunc_flags & KF_RET_NULL) { 7635 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7636 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7637 regs[BPF_REG_0].id = ++env->id_gen; 7638 } 7639 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7640 if (acq) { 7641 int id = acquire_reference_state(env, insn_idx); 7642 7643 if (id < 0) 7644 return id; 7645 regs[BPF_REG_0].id = id; 7646 regs[BPF_REG_0].ref_obj_id = id; 7647 } 7648 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7649 7650 nargs = btf_type_vlen(func_proto); 7651 args = (const struct btf_param *)(func_proto + 1); 7652 for (i = 0; i < nargs; i++) { 7653 u32 regno = i + 1; 7654 7655 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7656 if (btf_type_is_ptr(t)) 7657 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7658 else 7659 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7660 mark_btf_func_reg_size(env, regno, t->size); 7661 } 7662 7663 return 0; 7664 } 7665 7666 static bool signed_add_overflows(s64 a, s64 b) 7667 { 7668 /* Do the add in u64, where overflow is well-defined */ 7669 s64 res = (s64)((u64)a + (u64)b); 7670 7671 if (b < 0) 7672 return res > a; 7673 return res < a; 7674 } 7675 7676 static bool signed_add32_overflows(s32 a, s32 b) 7677 { 7678 /* Do the add in u32, where overflow is well-defined */ 7679 s32 res = (s32)((u32)a + (u32)b); 7680 7681 if (b < 0) 7682 return res > a; 7683 return res < a; 7684 } 7685 7686 static bool signed_sub_overflows(s64 a, s64 b) 7687 { 7688 /* Do the sub in u64, where overflow is well-defined */ 7689 s64 res = (s64)((u64)a - (u64)b); 7690 7691 if (b < 0) 7692 return res < a; 7693 return res > a; 7694 } 7695 7696 static bool signed_sub32_overflows(s32 a, s32 b) 7697 { 7698 /* Do the sub in u32, where overflow is well-defined */ 7699 s32 res = (s32)((u32)a - (u32)b); 7700 7701 if (b < 0) 7702 return res < a; 7703 return res > a; 7704 } 7705 7706 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7707 const struct bpf_reg_state *reg, 7708 enum bpf_reg_type type) 7709 { 7710 bool known = tnum_is_const(reg->var_off); 7711 s64 val = reg->var_off.value; 7712 s64 smin = reg->smin_value; 7713 7714 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7715 verbose(env, "math between %s pointer and %lld is not allowed\n", 7716 reg_type_str(env, type), val); 7717 return false; 7718 } 7719 7720 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7721 verbose(env, "%s pointer offset %d is not allowed\n", 7722 reg_type_str(env, type), reg->off); 7723 return false; 7724 } 7725 7726 if (smin == S64_MIN) { 7727 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7728 reg_type_str(env, type)); 7729 return false; 7730 } 7731 7732 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7733 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7734 smin, reg_type_str(env, type)); 7735 return false; 7736 } 7737 7738 return true; 7739 } 7740 7741 enum { 7742 REASON_BOUNDS = -1, 7743 REASON_TYPE = -2, 7744 REASON_PATHS = -3, 7745 REASON_LIMIT = -4, 7746 REASON_STACK = -5, 7747 }; 7748 7749 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7750 u32 *alu_limit, bool mask_to_left) 7751 { 7752 u32 max = 0, ptr_limit = 0; 7753 7754 switch (ptr_reg->type) { 7755 case PTR_TO_STACK: 7756 /* Offset 0 is out-of-bounds, but acceptable start for the 7757 * left direction, see BPF_REG_FP. Also, unknown scalar 7758 * offset where we would need to deal with min/max bounds is 7759 * currently prohibited for unprivileged. 7760 */ 7761 max = MAX_BPF_STACK + mask_to_left; 7762 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7763 break; 7764 case PTR_TO_MAP_VALUE: 7765 max = ptr_reg->map_ptr->value_size; 7766 ptr_limit = (mask_to_left ? 7767 ptr_reg->smin_value : 7768 ptr_reg->umax_value) + ptr_reg->off; 7769 break; 7770 default: 7771 return REASON_TYPE; 7772 } 7773 7774 if (ptr_limit >= max) 7775 return REASON_LIMIT; 7776 *alu_limit = ptr_limit; 7777 return 0; 7778 } 7779 7780 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7781 const struct bpf_insn *insn) 7782 { 7783 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7784 } 7785 7786 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7787 u32 alu_state, u32 alu_limit) 7788 { 7789 /* If we arrived here from different branches with different 7790 * state or limits to sanitize, then this won't work. 7791 */ 7792 if (aux->alu_state && 7793 (aux->alu_state != alu_state || 7794 aux->alu_limit != alu_limit)) 7795 return REASON_PATHS; 7796 7797 /* Corresponding fixup done in do_misc_fixups(). */ 7798 aux->alu_state = alu_state; 7799 aux->alu_limit = alu_limit; 7800 return 0; 7801 } 7802 7803 static int sanitize_val_alu(struct bpf_verifier_env *env, 7804 struct bpf_insn *insn) 7805 { 7806 struct bpf_insn_aux_data *aux = cur_aux(env); 7807 7808 if (can_skip_alu_sanitation(env, insn)) 7809 return 0; 7810 7811 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7812 } 7813 7814 static bool sanitize_needed(u8 opcode) 7815 { 7816 return opcode == BPF_ADD || opcode == BPF_SUB; 7817 } 7818 7819 struct bpf_sanitize_info { 7820 struct bpf_insn_aux_data aux; 7821 bool mask_to_left; 7822 }; 7823 7824 static struct bpf_verifier_state * 7825 sanitize_speculative_path(struct bpf_verifier_env *env, 7826 const struct bpf_insn *insn, 7827 u32 next_idx, u32 curr_idx) 7828 { 7829 struct bpf_verifier_state *branch; 7830 struct bpf_reg_state *regs; 7831 7832 branch = push_stack(env, next_idx, curr_idx, true); 7833 if (branch && insn) { 7834 regs = branch->frame[branch->curframe]->regs; 7835 if (BPF_SRC(insn->code) == BPF_K) { 7836 mark_reg_unknown(env, regs, insn->dst_reg); 7837 } else if (BPF_SRC(insn->code) == BPF_X) { 7838 mark_reg_unknown(env, regs, insn->dst_reg); 7839 mark_reg_unknown(env, regs, insn->src_reg); 7840 } 7841 } 7842 return branch; 7843 } 7844 7845 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7846 struct bpf_insn *insn, 7847 const struct bpf_reg_state *ptr_reg, 7848 const struct bpf_reg_state *off_reg, 7849 struct bpf_reg_state *dst_reg, 7850 struct bpf_sanitize_info *info, 7851 const bool commit_window) 7852 { 7853 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7854 struct bpf_verifier_state *vstate = env->cur_state; 7855 bool off_is_imm = tnum_is_const(off_reg->var_off); 7856 bool off_is_neg = off_reg->smin_value < 0; 7857 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7858 u8 opcode = BPF_OP(insn->code); 7859 u32 alu_state, alu_limit; 7860 struct bpf_reg_state tmp; 7861 bool ret; 7862 int err; 7863 7864 if (can_skip_alu_sanitation(env, insn)) 7865 return 0; 7866 7867 /* We already marked aux for masking from non-speculative 7868 * paths, thus we got here in the first place. We only care 7869 * to explore bad access from here. 7870 */ 7871 if (vstate->speculative) 7872 goto do_sim; 7873 7874 if (!commit_window) { 7875 if (!tnum_is_const(off_reg->var_off) && 7876 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7877 return REASON_BOUNDS; 7878 7879 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7880 (opcode == BPF_SUB && !off_is_neg); 7881 } 7882 7883 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7884 if (err < 0) 7885 return err; 7886 7887 if (commit_window) { 7888 /* In commit phase we narrow the masking window based on 7889 * the observed pointer move after the simulated operation. 7890 */ 7891 alu_state = info->aux.alu_state; 7892 alu_limit = abs(info->aux.alu_limit - alu_limit); 7893 } else { 7894 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7895 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7896 alu_state |= ptr_is_dst_reg ? 7897 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7898 7899 /* Limit pruning on unknown scalars to enable deep search for 7900 * potential masking differences from other program paths. 7901 */ 7902 if (!off_is_imm) 7903 env->explore_alu_limits = true; 7904 } 7905 7906 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7907 if (err < 0) 7908 return err; 7909 do_sim: 7910 /* If we're in commit phase, we're done here given we already 7911 * pushed the truncated dst_reg into the speculative verification 7912 * stack. 7913 * 7914 * Also, when register is a known constant, we rewrite register-based 7915 * operation to immediate-based, and thus do not need masking (and as 7916 * a consequence, do not need to simulate the zero-truncation either). 7917 */ 7918 if (commit_window || off_is_imm) 7919 return 0; 7920 7921 /* Simulate and find potential out-of-bounds access under 7922 * speculative execution from truncation as a result of 7923 * masking when off was not within expected range. If off 7924 * sits in dst, then we temporarily need to move ptr there 7925 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7926 * for cases where we use K-based arithmetic in one direction 7927 * and truncated reg-based in the other in order to explore 7928 * bad access. 7929 */ 7930 if (!ptr_is_dst_reg) { 7931 tmp = *dst_reg; 7932 *dst_reg = *ptr_reg; 7933 } 7934 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7935 env->insn_idx); 7936 if (!ptr_is_dst_reg && ret) 7937 *dst_reg = tmp; 7938 return !ret ? REASON_STACK : 0; 7939 } 7940 7941 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7942 { 7943 struct bpf_verifier_state *vstate = env->cur_state; 7944 7945 /* If we simulate paths under speculation, we don't update the 7946 * insn as 'seen' such that when we verify unreachable paths in 7947 * the non-speculative domain, sanitize_dead_code() can still 7948 * rewrite/sanitize them. 7949 */ 7950 if (!vstate->speculative) 7951 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7952 } 7953 7954 static int sanitize_err(struct bpf_verifier_env *env, 7955 const struct bpf_insn *insn, int reason, 7956 const struct bpf_reg_state *off_reg, 7957 const struct bpf_reg_state *dst_reg) 7958 { 7959 static const char *err = "pointer arithmetic with it prohibited for !root"; 7960 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7961 u32 dst = insn->dst_reg, src = insn->src_reg; 7962 7963 switch (reason) { 7964 case REASON_BOUNDS: 7965 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7966 off_reg == dst_reg ? dst : src, err); 7967 break; 7968 case REASON_TYPE: 7969 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7970 off_reg == dst_reg ? src : dst, err); 7971 break; 7972 case REASON_PATHS: 7973 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7974 dst, op, err); 7975 break; 7976 case REASON_LIMIT: 7977 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7978 dst, op, err); 7979 break; 7980 case REASON_STACK: 7981 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7982 dst, err); 7983 break; 7984 default: 7985 verbose(env, "verifier internal error: unknown reason (%d)\n", 7986 reason); 7987 break; 7988 } 7989 7990 return -EACCES; 7991 } 7992 7993 /* check that stack access falls within stack limits and that 'reg' doesn't 7994 * have a variable offset. 7995 * 7996 * Variable offset is prohibited for unprivileged mode for simplicity since it 7997 * requires corresponding support in Spectre masking for stack ALU. See also 7998 * retrieve_ptr_limit(). 7999 * 8000 * 8001 * 'off' includes 'reg->off'. 8002 */ 8003 static int check_stack_access_for_ptr_arithmetic( 8004 struct bpf_verifier_env *env, 8005 int regno, 8006 const struct bpf_reg_state *reg, 8007 int off) 8008 { 8009 if (!tnum_is_const(reg->var_off)) { 8010 char tn_buf[48]; 8011 8012 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8013 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 8014 regno, tn_buf, off); 8015 return -EACCES; 8016 } 8017 8018 if (off >= 0 || off < -MAX_BPF_STACK) { 8019 verbose(env, "R%d stack pointer arithmetic goes out of range, " 8020 "prohibited for !root; off=%d\n", regno, off); 8021 return -EACCES; 8022 } 8023 8024 return 0; 8025 } 8026 8027 static int sanitize_check_bounds(struct bpf_verifier_env *env, 8028 const struct bpf_insn *insn, 8029 const struct bpf_reg_state *dst_reg) 8030 { 8031 u32 dst = insn->dst_reg; 8032 8033 /* For unprivileged we require that resulting offset must be in bounds 8034 * in order to be able to sanitize access later on. 8035 */ 8036 if (env->bypass_spec_v1) 8037 return 0; 8038 8039 switch (dst_reg->type) { 8040 case PTR_TO_STACK: 8041 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 8042 dst_reg->off + dst_reg->var_off.value)) 8043 return -EACCES; 8044 break; 8045 case PTR_TO_MAP_VALUE: 8046 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 8047 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 8048 "prohibited for !root\n", dst); 8049 return -EACCES; 8050 } 8051 break; 8052 default: 8053 break; 8054 } 8055 8056 return 0; 8057 } 8058 8059 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 8060 * Caller should also handle BPF_MOV case separately. 8061 * If we return -EACCES, caller may want to try again treating pointer as a 8062 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 8063 */ 8064 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 8065 struct bpf_insn *insn, 8066 const struct bpf_reg_state *ptr_reg, 8067 const struct bpf_reg_state *off_reg) 8068 { 8069 struct bpf_verifier_state *vstate = env->cur_state; 8070 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8071 struct bpf_reg_state *regs = state->regs, *dst_reg; 8072 bool known = tnum_is_const(off_reg->var_off); 8073 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 8074 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8075 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8076 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8077 struct bpf_sanitize_info info = {}; 8078 u8 opcode = BPF_OP(insn->code); 8079 u32 dst = insn->dst_reg; 8080 int ret; 8081 8082 dst_reg = ®s[dst]; 8083 8084 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8085 smin_val > smax_val || umin_val > umax_val) { 8086 /* Taint dst register if offset had invalid bounds derived from 8087 * e.g. dead branches. 8088 */ 8089 __mark_reg_unknown(env, dst_reg); 8090 return 0; 8091 } 8092 8093 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8094 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8095 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8096 __mark_reg_unknown(env, dst_reg); 8097 return 0; 8098 } 8099 8100 verbose(env, 8101 "R%d 32-bit pointer arithmetic prohibited\n", 8102 dst); 8103 return -EACCES; 8104 } 8105 8106 if (ptr_reg->type & PTR_MAYBE_NULL) { 8107 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8108 dst, reg_type_str(env, ptr_reg->type)); 8109 return -EACCES; 8110 } 8111 8112 switch (base_type(ptr_reg->type)) { 8113 case CONST_PTR_TO_MAP: 8114 /* smin_val represents the known value */ 8115 if (known && smin_val == 0 && opcode == BPF_ADD) 8116 break; 8117 fallthrough; 8118 case PTR_TO_PACKET_END: 8119 case PTR_TO_SOCKET: 8120 case PTR_TO_SOCK_COMMON: 8121 case PTR_TO_TCP_SOCK: 8122 case PTR_TO_XDP_SOCK: 8123 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8124 dst, reg_type_str(env, ptr_reg->type)); 8125 return -EACCES; 8126 default: 8127 break; 8128 } 8129 8130 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8131 * The id may be overwritten later if we create a new variable offset. 8132 */ 8133 dst_reg->type = ptr_reg->type; 8134 dst_reg->id = ptr_reg->id; 8135 8136 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8137 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8138 return -EINVAL; 8139 8140 /* pointer types do not carry 32-bit bounds at the moment. */ 8141 __mark_reg32_unbounded(dst_reg); 8142 8143 if (sanitize_needed(opcode)) { 8144 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8145 &info, false); 8146 if (ret < 0) 8147 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8148 } 8149 8150 switch (opcode) { 8151 case BPF_ADD: 8152 /* We can take a fixed offset as long as it doesn't overflow 8153 * the s32 'off' field 8154 */ 8155 if (known && (ptr_reg->off + smin_val == 8156 (s64)(s32)(ptr_reg->off + smin_val))) { 8157 /* pointer += K. Accumulate it into fixed offset */ 8158 dst_reg->smin_value = smin_ptr; 8159 dst_reg->smax_value = smax_ptr; 8160 dst_reg->umin_value = umin_ptr; 8161 dst_reg->umax_value = umax_ptr; 8162 dst_reg->var_off = ptr_reg->var_off; 8163 dst_reg->off = ptr_reg->off + smin_val; 8164 dst_reg->raw = ptr_reg->raw; 8165 break; 8166 } 8167 /* A new variable offset is created. Note that off_reg->off 8168 * == 0, since it's a scalar. 8169 * dst_reg gets the pointer type and since some positive 8170 * integer value was added to the pointer, give it a new 'id' 8171 * if it's a PTR_TO_PACKET. 8172 * this creates a new 'base' pointer, off_reg (variable) gets 8173 * added into the variable offset, and we copy the fixed offset 8174 * from ptr_reg. 8175 */ 8176 if (signed_add_overflows(smin_ptr, smin_val) || 8177 signed_add_overflows(smax_ptr, smax_val)) { 8178 dst_reg->smin_value = S64_MIN; 8179 dst_reg->smax_value = S64_MAX; 8180 } else { 8181 dst_reg->smin_value = smin_ptr + smin_val; 8182 dst_reg->smax_value = smax_ptr + smax_val; 8183 } 8184 if (umin_ptr + umin_val < umin_ptr || 8185 umax_ptr + umax_val < umax_ptr) { 8186 dst_reg->umin_value = 0; 8187 dst_reg->umax_value = U64_MAX; 8188 } else { 8189 dst_reg->umin_value = umin_ptr + umin_val; 8190 dst_reg->umax_value = umax_ptr + umax_val; 8191 } 8192 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8193 dst_reg->off = ptr_reg->off; 8194 dst_reg->raw = ptr_reg->raw; 8195 if (reg_is_pkt_pointer(ptr_reg)) { 8196 dst_reg->id = ++env->id_gen; 8197 /* something was added to pkt_ptr, set range to zero */ 8198 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8199 } 8200 break; 8201 case BPF_SUB: 8202 if (dst_reg == off_reg) { 8203 /* scalar -= pointer. Creates an unknown scalar */ 8204 verbose(env, "R%d tried to subtract pointer from scalar\n", 8205 dst); 8206 return -EACCES; 8207 } 8208 /* We don't allow subtraction from FP, because (according to 8209 * test_verifier.c test "invalid fp arithmetic", JITs might not 8210 * be able to deal with it. 8211 */ 8212 if (ptr_reg->type == PTR_TO_STACK) { 8213 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8214 dst); 8215 return -EACCES; 8216 } 8217 if (known && (ptr_reg->off - smin_val == 8218 (s64)(s32)(ptr_reg->off - smin_val))) { 8219 /* pointer -= K. Subtract it from fixed offset */ 8220 dst_reg->smin_value = smin_ptr; 8221 dst_reg->smax_value = smax_ptr; 8222 dst_reg->umin_value = umin_ptr; 8223 dst_reg->umax_value = umax_ptr; 8224 dst_reg->var_off = ptr_reg->var_off; 8225 dst_reg->id = ptr_reg->id; 8226 dst_reg->off = ptr_reg->off - smin_val; 8227 dst_reg->raw = ptr_reg->raw; 8228 break; 8229 } 8230 /* A new variable offset is created. If the subtrahend is known 8231 * nonnegative, then any reg->range we had before is still good. 8232 */ 8233 if (signed_sub_overflows(smin_ptr, smax_val) || 8234 signed_sub_overflows(smax_ptr, smin_val)) { 8235 /* Overflow possible, we know nothing */ 8236 dst_reg->smin_value = S64_MIN; 8237 dst_reg->smax_value = S64_MAX; 8238 } else { 8239 dst_reg->smin_value = smin_ptr - smax_val; 8240 dst_reg->smax_value = smax_ptr - smin_val; 8241 } 8242 if (umin_ptr < umax_val) { 8243 /* Overflow possible, we know nothing */ 8244 dst_reg->umin_value = 0; 8245 dst_reg->umax_value = U64_MAX; 8246 } else { 8247 /* Cannot overflow (as long as bounds are consistent) */ 8248 dst_reg->umin_value = umin_ptr - umax_val; 8249 dst_reg->umax_value = umax_ptr - umin_val; 8250 } 8251 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8252 dst_reg->off = ptr_reg->off; 8253 dst_reg->raw = ptr_reg->raw; 8254 if (reg_is_pkt_pointer(ptr_reg)) { 8255 dst_reg->id = ++env->id_gen; 8256 /* something was added to pkt_ptr, set range to zero */ 8257 if (smin_val < 0) 8258 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8259 } 8260 break; 8261 case BPF_AND: 8262 case BPF_OR: 8263 case BPF_XOR: 8264 /* bitwise ops on pointers are troublesome, prohibit. */ 8265 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8266 dst, bpf_alu_string[opcode >> 4]); 8267 return -EACCES; 8268 default: 8269 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8270 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8271 dst, bpf_alu_string[opcode >> 4]); 8272 return -EACCES; 8273 } 8274 8275 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8276 return -EINVAL; 8277 reg_bounds_sync(dst_reg); 8278 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8279 return -EACCES; 8280 if (sanitize_needed(opcode)) { 8281 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8282 &info, true); 8283 if (ret < 0) 8284 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8285 } 8286 8287 return 0; 8288 } 8289 8290 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8291 struct bpf_reg_state *src_reg) 8292 { 8293 s32 smin_val = src_reg->s32_min_value; 8294 s32 smax_val = src_reg->s32_max_value; 8295 u32 umin_val = src_reg->u32_min_value; 8296 u32 umax_val = src_reg->u32_max_value; 8297 8298 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8299 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8300 dst_reg->s32_min_value = S32_MIN; 8301 dst_reg->s32_max_value = S32_MAX; 8302 } else { 8303 dst_reg->s32_min_value += smin_val; 8304 dst_reg->s32_max_value += smax_val; 8305 } 8306 if (dst_reg->u32_min_value + umin_val < umin_val || 8307 dst_reg->u32_max_value + umax_val < umax_val) { 8308 dst_reg->u32_min_value = 0; 8309 dst_reg->u32_max_value = U32_MAX; 8310 } else { 8311 dst_reg->u32_min_value += umin_val; 8312 dst_reg->u32_max_value += umax_val; 8313 } 8314 } 8315 8316 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8317 struct bpf_reg_state *src_reg) 8318 { 8319 s64 smin_val = src_reg->smin_value; 8320 s64 smax_val = src_reg->smax_value; 8321 u64 umin_val = src_reg->umin_value; 8322 u64 umax_val = src_reg->umax_value; 8323 8324 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8325 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8326 dst_reg->smin_value = S64_MIN; 8327 dst_reg->smax_value = S64_MAX; 8328 } else { 8329 dst_reg->smin_value += smin_val; 8330 dst_reg->smax_value += smax_val; 8331 } 8332 if (dst_reg->umin_value + umin_val < umin_val || 8333 dst_reg->umax_value + umax_val < umax_val) { 8334 dst_reg->umin_value = 0; 8335 dst_reg->umax_value = U64_MAX; 8336 } else { 8337 dst_reg->umin_value += umin_val; 8338 dst_reg->umax_value += umax_val; 8339 } 8340 } 8341 8342 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8343 struct bpf_reg_state *src_reg) 8344 { 8345 s32 smin_val = src_reg->s32_min_value; 8346 s32 smax_val = src_reg->s32_max_value; 8347 u32 umin_val = src_reg->u32_min_value; 8348 u32 umax_val = src_reg->u32_max_value; 8349 8350 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8351 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8352 /* Overflow possible, we know nothing */ 8353 dst_reg->s32_min_value = S32_MIN; 8354 dst_reg->s32_max_value = S32_MAX; 8355 } else { 8356 dst_reg->s32_min_value -= smax_val; 8357 dst_reg->s32_max_value -= smin_val; 8358 } 8359 if (dst_reg->u32_min_value < umax_val) { 8360 /* Overflow possible, we know nothing */ 8361 dst_reg->u32_min_value = 0; 8362 dst_reg->u32_max_value = U32_MAX; 8363 } else { 8364 /* Cannot overflow (as long as bounds are consistent) */ 8365 dst_reg->u32_min_value -= umax_val; 8366 dst_reg->u32_max_value -= umin_val; 8367 } 8368 } 8369 8370 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8371 struct bpf_reg_state *src_reg) 8372 { 8373 s64 smin_val = src_reg->smin_value; 8374 s64 smax_val = src_reg->smax_value; 8375 u64 umin_val = src_reg->umin_value; 8376 u64 umax_val = src_reg->umax_value; 8377 8378 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8379 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8380 /* Overflow possible, we know nothing */ 8381 dst_reg->smin_value = S64_MIN; 8382 dst_reg->smax_value = S64_MAX; 8383 } else { 8384 dst_reg->smin_value -= smax_val; 8385 dst_reg->smax_value -= smin_val; 8386 } 8387 if (dst_reg->umin_value < umax_val) { 8388 /* Overflow possible, we know nothing */ 8389 dst_reg->umin_value = 0; 8390 dst_reg->umax_value = U64_MAX; 8391 } else { 8392 /* Cannot overflow (as long as bounds are consistent) */ 8393 dst_reg->umin_value -= umax_val; 8394 dst_reg->umax_value -= umin_val; 8395 } 8396 } 8397 8398 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8399 struct bpf_reg_state *src_reg) 8400 { 8401 s32 smin_val = src_reg->s32_min_value; 8402 u32 umin_val = src_reg->u32_min_value; 8403 u32 umax_val = src_reg->u32_max_value; 8404 8405 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8406 /* Ain't nobody got time to multiply that sign */ 8407 __mark_reg32_unbounded(dst_reg); 8408 return; 8409 } 8410 /* Both values are positive, so we can work with unsigned and 8411 * copy the result to signed (unless it exceeds S32_MAX). 8412 */ 8413 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8414 /* Potential overflow, we know nothing */ 8415 __mark_reg32_unbounded(dst_reg); 8416 return; 8417 } 8418 dst_reg->u32_min_value *= umin_val; 8419 dst_reg->u32_max_value *= umax_val; 8420 if (dst_reg->u32_max_value > S32_MAX) { 8421 /* Overflow possible, we know nothing */ 8422 dst_reg->s32_min_value = S32_MIN; 8423 dst_reg->s32_max_value = S32_MAX; 8424 } else { 8425 dst_reg->s32_min_value = dst_reg->u32_min_value; 8426 dst_reg->s32_max_value = dst_reg->u32_max_value; 8427 } 8428 } 8429 8430 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8431 struct bpf_reg_state *src_reg) 8432 { 8433 s64 smin_val = src_reg->smin_value; 8434 u64 umin_val = src_reg->umin_value; 8435 u64 umax_val = src_reg->umax_value; 8436 8437 if (smin_val < 0 || dst_reg->smin_value < 0) { 8438 /* Ain't nobody got time to multiply that sign */ 8439 __mark_reg64_unbounded(dst_reg); 8440 return; 8441 } 8442 /* Both values are positive, so we can work with unsigned and 8443 * copy the result to signed (unless it exceeds S64_MAX). 8444 */ 8445 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8446 /* Potential overflow, we know nothing */ 8447 __mark_reg64_unbounded(dst_reg); 8448 return; 8449 } 8450 dst_reg->umin_value *= umin_val; 8451 dst_reg->umax_value *= umax_val; 8452 if (dst_reg->umax_value > S64_MAX) { 8453 /* Overflow possible, we know nothing */ 8454 dst_reg->smin_value = S64_MIN; 8455 dst_reg->smax_value = S64_MAX; 8456 } else { 8457 dst_reg->smin_value = dst_reg->umin_value; 8458 dst_reg->smax_value = dst_reg->umax_value; 8459 } 8460 } 8461 8462 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8463 struct bpf_reg_state *src_reg) 8464 { 8465 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8466 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8467 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8468 s32 smin_val = src_reg->s32_min_value; 8469 u32 umax_val = src_reg->u32_max_value; 8470 8471 if (src_known && dst_known) { 8472 __mark_reg32_known(dst_reg, var32_off.value); 8473 return; 8474 } 8475 8476 /* We get our minimum from the var_off, since that's inherently 8477 * bitwise. Our maximum is the minimum of the operands' maxima. 8478 */ 8479 dst_reg->u32_min_value = var32_off.value; 8480 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8481 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8482 /* Lose signed bounds when ANDing negative numbers, 8483 * ain't nobody got time for that. 8484 */ 8485 dst_reg->s32_min_value = S32_MIN; 8486 dst_reg->s32_max_value = S32_MAX; 8487 } else { 8488 /* ANDing two positives gives a positive, so safe to 8489 * cast result into s64. 8490 */ 8491 dst_reg->s32_min_value = dst_reg->u32_min_value; 8492 dst_reg->s32_max_value = dst_reg->u32_max_value; 8493 } 8494 } 8495 8496 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8497 struct bpf_reg_state *src_reg) 8498 { 8499 bool src_known = tnum_is_const(src_reg->var_off); 8500 bool dst_known = tnum_is_const(dst_reg->var_off); 8501 s64 smin_val = src_reg->smin_value; 8502 u64 umax_val = src_reg->umax_value; 8503 8504 if (src_known && dst_known) { 8505 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8506 return; 8507 } 8508 8509 /* We get our minimum from the var_off, since that's inherently 8510 * bitwise. Our maximum is the minimum of the operands' maxima. 8511 */ 8512 dst_reg->umin_value = dst_reg->var_off.value; 8513 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8514 if (dst_reg->smin_value < 0 || smin_val < 0) { 8515 /* Lose signed bounds when ANDing negative numbers, 8516 * ain't nobody got time for that. 8517 */ 8518 dst_reg->smin_value = S64_MIN; 8519 dst_reg->smax_value = S64_MAX; 8520 } else { 8521 /* ANDing two positives gives a positive, so safe to 8522 * cast result into s64. 8523 */ 8524 dst_reg->smin_value = dst_reg->umin_value; 8525 dst_reg->smax_value = dst_reg->umax_value; 8526 } 8527 /* We may learn something more from the var_off */ 8528 __update_reg_bounds(dst_reg); 8529 } 8530 8531 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8532 struct bpf_reg_state *src_reg) 8533 { 8534 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8535 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8536 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8537 s32 smin_val = src_reg->s32_min_value; 8538 u32 umin_val = src_reg->u32_min_value; 8539 8540 if (src_known && dst_known) { 8541 __mark_reg32_known(dst_reg, var32_off.value); 8542 return; 8543 } 8544 8545 /* We get our maximum from the var_off, and our minimum is the 8546 * maximum of the operands' minima 8547 */ 8548 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8549 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8550 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8551 /* Lose signed bounds when ORing negative numbers, 8552 * ain't nobody got time for that. 8553 */ 8554 dst_reg->s32_min_value = S32_MIN; 8555 dst_reg->s32_max_value = S32_MAX; 8556 } else { 8557 /* ORing two positives gives a positive, so safe to 8558 * cast result into s64. 8559 */ 8560 dst_reg->s32_min_value = dst_reg->u32_min_value; 8561 dst_reg->s32_max_value = dst_reg->u32_max_value; 8562 } 8563 } 8564 8565 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8566 struct bpf_reg_state *src_reg) 8567 { 8568 bool src_known = tnum_is_const(src_reg->var_off); 8569 bool dst_known = tnum_is_const(dst_reg->var_off); 8570 s64 smin_val = src_reg->smin_value; 8571 u64 umin_val = src_reg->umin_value; 8572 8573 if (src_known && dst_known) { 8574 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8575 return; 8576 } 8577 8578 /* We get our maximum from the var_off, and our minimum is the 8579 * maximum of the operands' minima 8580 */ 8581 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8582 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8583 if (dst_reg->smin_value < 0 || smin_val < 0) { 8584 /* Lose signed bounds when ORing negative numbers, 8585 * ain't nobody got time for that. 8586 */ 8587 dst_reg->smin_value = S64_MIN; 8588 dst_reg->smax_value = S64_MAX; 8589 } else { 8590 /* ORing two positives gives a positive, so safe to 8591 * cast result into s64. 8592 */ 8593 dst_reg->smin_value = dst_reg->umin_value; 8594 dst_reg->smax_value = dst_reg->umax_value; 8595 } 8596 /* We may learn something more from the var_off */ 8597 __update_reg_bounds(dst_reg); 8598 } 8599 8600 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8601 struct bpf_reg_state *src_reg) 8602 { 8603 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8604 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8605 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8606 s32 smin_val = src_reg->s32_min_value; 8607 8608 if (src_known && dst_known) { 8609 __mark_reg32_known(dst_reg, var32_off.value); 8610 return; 8611 } 8612 8613 /* We get both minimum and maximum from the var32_off. */ 8614 dst_reg->u32_min_value = var32_off.value; 8615 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8616 8617 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8618 /* XORing two positive sign numbers gives a positive, 8619 * so safe to cast u32 result into s32. 8620 */ 8621 dst_reg->s32_min_value = dst_reg->u32_min_value; 8622 dst_reg->s32_max_value = dst_reg->u32_max_value; 8623 } else { 8624 dst_reg->s32_min_value = S32_MIN; 8625 dst_reg->s32_max_value = S32_MAX; 8626 } 8627 } 8628 8629 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8630 struct bpf_reg_state *src_reg) 8631 { 8632 bool src_known = tnum_is_const(src_reg->var_off); 8633 bool dst_known = tnum_is_const(dst_reg->var_off); 8634 s64 smin_val = src_reg->smin_value; 8635 8636 if (src_known && dst_known) { 8637 /* dst_reg->var_off.value has been updated earlier */ 8638 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8639 return; 8640 } 8641 8642 /* We get both minimum and maximum from the var_off. */ 8643 dst_reg->umin_value = dst_reg->var_off.value; 8644 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8645 8646 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8647 /* XORing two positive sign numbers gives a positive, 8648 * so safe to cast u64 result into s64. 8649 */ 8650 dst_reg->smin_value = dst_reg->umin_value; 8651 dst_reg->smax_value = dst_reg->umax_value; 8652 } else { 8653 dst_reg->smin_value = S64_MIN; 8654 dst_reg->smax_value = S64_MAX; 8655 } 8656 8657 __update_reg_bounds(dst_reg); 8658 } 8659 8660 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8661 u64 umin_val, u64 umax_val) 8662 { 8663 /* We lose all sign bit information (except what we can pick 8664 * up from var_off) 8665 */ 8666 dst_reg->s32_min_value = S32_MIN; 8667 dst_reg->s32_max_value = S32_MAX; 8668 /* If we might shift our top bit out, then we know nothing */ 8669 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8670 dst_reg->u32_min_value = 0; 8671 dst_reg->u32_max_value = U32_MAX; 8672 } else { 8673 dst_reg->u32_min_value <<= umin_val; 8674 dst_reg->u32_max_value <<= umax_val; 8675 } 8676 } 8677 8678 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8679 struct bpf_reg_state *src_reg) 8680 { 8681 u32 umax_val = src_reg->u32_max_value; 8682 u32 umin_val = src_reg->u32_min_value; 8683 /* u32 alu operation will zext upper bits */ 8684 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8685 8686 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8687 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8688 /* Not required but being careful mark reg64 bounds as unknown so 8689 * that we are forced to pick them up from tnum and zext later and 8690 * if some path skips this step we are still safe. 8691 */ 8692 __mark_reg64_unbounded(dst_reg); 8693 __update_reg32_bounds(dst_reg); 8694 } 8695 8696 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8697 u64 umin_val, u64 umax_val) 8698 { 8699 /* Special case <<32 because it is a common compiler pattern to sign 8700 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8701 * positive we know this shift will also be positive so we can track 8702 * bounds correctly. Otherwise we lose all sign bit information except 8703 * what we can pick up from var_off. Perhaps we can generalize this 8704 * later to shifts of any length. 8705 */ 8706 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8707 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8708 else 8709 dst_reg->smax_value = S64_MAX; 8710 8711 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8712 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8713 else 8714 dst_reg->smin_value = S64_MIN; 8715 8716 /* If we might shift our top bit out, then we know nothing */ 8717 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8718 dst_reg->umin_value = 0; 8719 dst_reg->umax_value = U64_MAX; 8720 } else { 8721 dst_reg->umin_value <<= umin_val; 8722 dst_reg->umax_value <<= umax_val; 8723 } 8724 } 8725 8726 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8727 struct bpf_reg_state *src_reg) 8728 { 8729 u64 umax_val = src_reg->umax_value; 8730 u64 umin_val = src_reg->umin_value; 8731 8732 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8733 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8734 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8735 8736 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8737 /* We may learn something more from the var_off */ 8738 __update_reg_bounds(dst_reg); 8739 } 8740 8741 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8742 struct bpf_reg_state *src_reg) 8743 { 8744 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8745 u32 umax_val = src_reg->u32_max_value; 8746 u32 umin_val = src_reg->u32_min_value; 8747 8748 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8749 * be negative, then either: 8750 * 1) src_reg might be zero, so the sign bit of the result is 8751 * unknown, so we lose our signed bounds 8752 * 2) it's known negative, thus the unsigned bounds capture the 8753 * signed bounds 8754 * 3) the signed bounds cross zero, so they tell us nothing 8755 * about the result 8756 * If the value in dst_reg is known nonnegative, then again the 8757 * unsigned bounds capture the signed bounds. 8758 * Thus, in all cases it suffices to blow away our signed bounds 8759 * and rely on inferring new ones from the unsigned bounds and 8760 * var_off of the result. 8761 */ 8762 dst_reg->s32_min_value = S32_MIN; 8763 dst_reg->s32_max_value = S32_MAX; 8764 8765 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8766 dst_reg->u32_min_value >>= umax_val; 8767 dst_reg->u32_max_value >>= umin_val; 8768 8769 __mark_reg64_unbounded(dst_reg); 8770 __update_reg32_bounds(dst_reg); 8771 } 8772 8773 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8774 struct bpf_reg_state *src_reg) 8775 { 8776 u64 umax_val = src_reg->umax_value; 8777 u64 umin_val = src_reg->umin_value; 8778 8779 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8780 * be negative, then either: 8781 * 1) src_reg might be zero, so the sign bit of the result is 8782 * unknown, so we lose our signed bounds 8783 * 2) it's known negative, thus the unsigned bounds capture the 8784 * signed bounds 8785 * 3) the signed bounds cross zero, so they tell us nothing 8786 * about the result 8787 * If the value in dst_reg is known nonnegative, then again the 8788 * unsigned bounds capture the signed bounds. 8789 * Thus, in all cases it suffices to blow away our signed bounds 8790 * and rely on inferring new ones from the unsigned bounds and 8791 * var_off of the result. 8792 */ 8793 dst_reg->smin_value = S64_MIN; 8794 dst_reg->smax_value = S64_MAX; 8795 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8796 dst_reg->umin_value >>= umax_val; 8797 dst_reg->umax_value >>= umin_val; 8798 8799 /* Its not easy to operate on alu32 bounds here because it depends 8800 * on bits being shifted in. Take easy way out and mark unbounded 8801 * so we can recalculate later from tnum. 8802 */ 8803 __mark_reg32_unbounded(dst_reg); 8804 __update_reg_bounds(dst_reg); 8805 } 8806 8807 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8808 struct bpf_reg_state *src_reg) 8809 { 8810 u64 umin_val = src_reg->u32_min_value; 8811 8812 /* Upon reaching here, src_known is true and 8813 * umax_val is equal to umin_val. 8814 */ 8815 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8816 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8817 8818 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8819 8820 /* blow away the dst_reg umin_value/umax_value and rely on 8821 * dst_reg var_off to refine the result. 8822 */ 8823 dst_reg->u32_min_value = 0; 8824 dst_reg->u32_max_value = U32_MAX; 8825 8826 __mark_reg64_unbounded(dst_reg); 8827 __update_reg32_bounds(dst_reg); 8828 } 8829 8830 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8831 struct bpf_reg_state *src_reg) 8832 { 8833 u64 umin_val = src_reg->umin_value; 8834 8835 /* Upon reaching here, src_known is true and umax_val is equal 8836 * to umin_val. 8837 */ 8838 dst_reg->smin_value >>= umin_val; 8839 dst_reg->smax_value >>= umin_val; 8840 8841 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8842 8843 /* blow away the dst_reg umin_value/umax_value and rely on 8844 * dst_reg var_off to refine the result. 8845 */ 8846 dst_reg->umin_value = 0; 8847 dst_reg->umax_value = U64_MAX; 8848 8849 /* Its not easy to operate on alu32 bounds here because it depends 8850 * on bits being shifted in from upper 32-bits. Take easy way out 8851 * and mark unbounded so we can recalculate later from tnum. 8852 */ 8853 __mark_reg32_unbounded(dst_reg); 8854 __update_reg_bounds(dst_reg); 8855 } 8856 8857 /* WARNING: This function does calculations on 64-bit values, but the actual 8858 * execution may occur on 32-bit values. Therefore, things like bitshifts 8859 * need extra checks in the 32-bit case. 8860 */ 8861 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8862 struct bpf_insn *insn, 8863 struct bpf_reg_state *dst_reg, 8864 struct bpf_reg_state src_reg) 8865 { 8866 struct bpf_reg_state *regs = cur_regs(env); 8867 u8 opcode = BPF_OP(insn->code); 8868 bool src_known; 8869 s64 smin_val, smax_val; 8870 u64 umin_val, umax_val; 8871 s32 s32_min_val, s32_max_val; 8872 u32 u32_min_val, u32_max_val; 8873 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8874 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8875 int ret; 8876 8877 smin_val = src_reg.smin_value; 8878 smax_val = src_reg.smax_value; 8879 umin_val = src_reg.umin_value; 8880 umax_val = src_reg.umax_value; 8881 8882 s32_min_val = src_reg.s32_min_value; 8883 s32_max_val = src_reg.s32_max_value; 8884 u32_min_val = src_reg.u32_min_value; 8885 u32_max_val = src_reg.u32_max_value; 8886 8887 if (alu32) { 8888 src_known = tnum_subreg_is_const(src_reg.var_off); 8889 if ((src_known && 8890 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8891 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8892 /* Taint dst register if offset had invalid bounds 8893 * derived from e.g. dead branches. 8894 */ 8895 __mark_reg_unknown(env, dst_reg); 8896 return 0; 8897 } 8898 } else { 8899 src_known = tnum_is_const(src_reg.var_off); 8900 if ((src_known && 8901 (smin_val != smax_val || umin_val != umax_val)) || 8902 smin_val > smax_val || umin_val > umax_val) { 8903 /* Taint dst register if offset had invalid bounds 8904 * derived from e.g. dead branches. 8905 */ 8906 __mark_reg_unknown(env, dst_reg); 8907 return 0; 8908 } 8909 } 8910 8911 if (!src_known && 8912 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8913 __mark_reg_unknown(env, dst_reg); 8914 return 0; 8915 } 8916 8917 if (sanitize_needed(opcode)) { 8918 ret = sanitize_val_alu(env, insn); 8919 if (ret < 0) 8920 return sanitize_err(env, insn, ret, NULL, NULL); 8921 } 8922 8923 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8924 * There are two classes of instructions: The first class we track both 8925 * alu32 and alu64 sign/unsigned bounds independently this provides the 8926 * greatest amount of precision when alu operations are mixed with jmp32 8927 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8928 * and BPF_OR. This is possible because these ops have fairly easy to 8929 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8930 * See alu32 verifier tests for examples. The second class of 8931 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8932 * with regards to tracking sign/unsigned bounds because the bits may 8933 * cross subreg boundaries in the alu64 case. When this happens we mark 8934 * the reg unbounded in the subreg bound space and use the resulting 8935 * tnum to calculate an approximation of the sign/unsigned bounds. 8936 */ 8937 switch (opcode) { 8938 case BPF_ADD: 8939 scalar32_min_max_add(dst_reg, &src_reg); 8940 scalar_min_max_add(dst_reg, &src_reg); 8941 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8942 break; 8943 case BPF_SUB: 8944 scalar32_min_max_sub(dst_reg, &src_reg); 8945 scalar_min_max_sub(dst_reg, &src_reg); 8946 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8947 break; 8948 case BPF_MUL: 8949 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8950 scalar32_min_max_mul(dst_reg, &src_reg); 8951 scalar_min_max_mul(dst_reg, &src_reg); 8952 break; 8953 case BPF_AND: 8954 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8955 scalar32_min_max_and(dst_reg, &src_reg); 8956 scalar_min_max_and(dst_reg, &src_reg); 8957 break; 8958 case BPF_OR: 8959 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8960 scalar32_min_max_or(dst_reg, &src_reg); 8961 scalar_min_max_or(dst_reg, &src_reg); 8962 break; 8963 case BPF_XOR: 8964 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8965 scalar32_min_max_xor(dst_reg, &src_reg); 8966 scalar_min_max_xor(dst_reg, &src_reg); 8967 break; 8968 case BPF_LSH: 8969 if (umax_val >= insn_bitness) { 8970 /* Shifts greater than 31 or 63 are undefined. 8971 * This includes shifts by a negative number. 8972 */ 8973 mark_reg_unknown(env, regs, insn->dst_reg); 8974 break; 8975 } 8976 if (alu32) 8977 scalar32_min_max_lsh(dst_reg, &src_reg); 8978 else 8979 scalar_min_max_lsh(dst_reg, &src_reg); 8980 break; 8981 case BPF_RSH: 8982 if (umax_val >= insn_bitness) { 8983 /* Shifts greater than 31 or 63 are undefined. 8984 * This includes shifts by a negative number. 8985 */ 8986 mark_reg_unknown(env, regs, insn->dst_reg); 8987 break; 8988 } 8989 if (alu32) 8990 scalar32_min_max_rsh(dst_reg, &src_reg); 8991 else 8992 scalar_min_max_rsh(dst_reg, &src_reg); 8993 break; 8994 case BPF_ARSH: 8995 if (umax_val >= insn_bitness) { 8996 /* Shifts greater than 31 or 63 are undefined. 8997 * This includes shifts by a negative number. 8998 */ 8999 mark_reg_unknown(env, regs, insn->dst_reg); 9000 break; 9001 } 9002 if (alu32) 9003 scalar32_min_max_arsh(dst_reg, &src_reg); 9004 else 9005 scalar_min_max_arsh(dst_reg, &src_reg); 9006 break; 9007 default: 9008 mark_reg_unknown(env, regs, insn->dst_reg); 9009 break; 9010 } 9011 9012 /* ALU32 ops are zero extended into 64bit register */ 9013 if (alu32) 9014 zext_32_to_64(dst_reg); 9015 reg_bounds_sync(dst_reg); 9016 return 0; 9017 } 9018 9019 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 9020 * and var_off. 9021 */ 9022 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 9023 struct bpf_insn *insn) 9024 { 9025 struct bpf_verifier_state *vstate = env->cur_state; 9026 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9027 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 9028 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 9029 u8 opcode = BPF_OP(insn->code); 9030 int err; 9031 9032 dst_reg = ®s[insn->dst_reg]; 9033 src_reg = NULL; 9034 if (dst_reg->type != SCALAR_VALUE) 9035 ptr_reg = dst_reg; 9036 else 9037 /* Make sure ID is cleared otherwise dst_reg min/max could be 9038 * incorrectly propagated into other registers by find_equal_scalars() 9039 */ 9040 dst_reg->id = 0; 9041 if (BPF_SRC(insn->code) == BPF_X) { 9042 src_reg = ®s[insn->src_reg]; 9043 if (src_reg->type != SCALAR_VALUE) { 9044 if (dst_reg->type != SCALAR_VALUE) { 9045 /* Combining two pointers by any ALU op yields 9046 * an arbitrary scalar. Disallow all math except 9047 * pointer subtraction 9048 */ 9049 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9050 mark_reg_unknown(env, regs, insn->dst_reg); 9051 return 0; 9052 } 9053 verbose(env, "R%d pointer %s pointer prohibited\n", 9054 insn->dst_reg, 9055 bpf_alu_string[opcode >> 4]); 9056 return -EACCES; 9057 } else { 9058 /* scalar += pointer 9059 * This is legal, but we have to reverse our 9060 * src/dest handling in computing the range 9061 */ 9062 err = mark_chain_precision(env, insn->dst_reg); 9063 if (err) 9064 return err; 9065 return adjust_ptr_min_max_vals(env, insn, 9066 src_reg, dst_reg); 9067 } 9068 } else if (ptr_reg) { 9069 /* pointer += scalar */ 9070 err = mark_chain_precision(env, insn->src_reg); 9071 if (err) 9072 return err; 9073 return adjust_ptr_min_max_vals(env, insn, 9074 dst_reg, src_reg); 9075 } 9076 } else { 9077 /* Pretend the src is a reg with a known value, since we only 9078 * need to be able to read from this state. 9079 */ 9080 off_reg.type = SCALAR_VALUE; 9081 __mark_reg_known(&off_reg, insn->imm); 9082 src_reg = &off_reg; 9083 if (ptr_reg) /* pointer += K */ 9084 return adjust_ptr_min_max_vals(env, insn, 9085 ptr_reg, src_reg); 9086 } 9087 9088 /* Got here implies adding two SCALAR_VALUEs */ 9089 if (WARN_ON_ONCE(ptr_reg)) { 9090 print_verifier_state(env, state, true); 9091 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9092 return -EINVAL; 9093 } 9094 if (WARN_ON(!src_reg)) { 9095 print_verifier_state(env, state, true); 9096 verbose(env, "verifier internal error: no src_reg\n"); 9097 return -EINVAL; 9098 } 9099 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9100 } 9101 9102 /* check validity of 32-bit and 64-bit arithmetic operations */ 9103 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9104 { 9105 struct bpf_reg_state *regs = cur_regs(env); 9106 u8 opcode = BPF_OP(insn->code); 9107 int err; 9108 9109 if (opcode == BPF_END || opcode == BPF_NEG) { 9110 if (opcode == BPF_NEG) { 9111 if (BPF_SRC(insn->code) != BPF_K || 9112 insn->src_reg != BPF_REG_0 || 9113 insn->off != 0 || insn->imm != 0) { 9114 verbose(env, "BPF_NEG uses reserved fields\n"); 9115 return -EINVAL; 9116 } 9117 } else { 9118 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9119 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9120 BPF_CLASS(insn->code) == BPF_ALU64) { 9121 verbose(env, "BPF_END uses reserved fields\n"); 9122 return -EINVAL; 9123 } 9124 } 9125 9126 /* check src operand */ 9127 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9128 if (err) 9129 return err; 9130 9131 if (is_pointer_value(env, insn->dst_reg)) { 9132 verbose(env, "R%d pointer arithmetic prohibited\n", 9133 insn->dst_reg); 9134 return -EACCES; 9135 } 9136 9137 /* check dest operand */ 9138 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9139 if (err) 9140 return err; 9141 9142 } else if (opcode == BPF_MOV) { 9143 9144 if (BPF_SRC(insn->code) == BPF_X) { 9145 if (insn->imm != 0 || insn->off != 0) { 9146 verbose(env, "BPF_MOV uses reserved fields\n"); 9147 return -EINVAL; 9148 } 9149 9150 /* check src operand */ 9151 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9152 if (err) 9153 return err; 9154 } else { 9155 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9156 verbose(env, "BPF_MOV uses reserved fields\n"); 9157 return -EINVAL; 9158 } 9159 } 9160 9161 /* check dest operand, mark as required later */ 9162 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9163 if (err) 9164 return err; 9165 9166 if (BPF_SRC(insn->code) == BPF_X) { 9167 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9168 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9169 9170 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9171 /* case: R1 = R2 9172 * copy register state to dest reg 9173 */ 9174 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9175 /* Assign src and dst registers the same ID 9176 * that will be used by find_equal_scalars() 9177 * to propagate min/max range. 9178 */ 9179 src_reg->id = ++env->id_gen; 9180 *dst_reg = *src_reg; 9181 dst_reg->live |= REG_LIVE_WRITTEN; 9182 dst_reg->subreg_def = DEF_NOT_SUBREG; 9183 } else { 9184 /* R1 = (u32) R2 */ 9185 if (is_pointer_value(env, insn->src_reg)) { 9186 verbose(env, 9187 "R%d partial copy of pointer\n", 9188 insn->src_reg); 9189 return -EACCES; 9190 } else if (src_reg->type == SCALAR_VALUE) { 9191 *dst_reg = *src_reg; 9192 /* Make sure ID is cleared otherwise 9193 * dst_reg min/max could be incorrectly 9194 * propagated into src_reg by find_equal_scalars() 9195 */ 9196 dst_reg->id = 0; 9197 dst_reg->live |= REG_LIVE_WRITTEN; 9198 dst_reg->subreg_def = env->insn_idx + 1; 9199 } else { 9200 mark_reg_unknown(env, regs, 9201 insn->dst_reg); 9202 } 9203 zext_32_to_64(dst_reg); 9204 reg_bounds_sync(dst_reg); 9205 } 9206 } else { 9207 /* case: R = imm 9208 * remember the value we stored into this reg 9209 */ 9210 /* clear any state __mark_reg_known doesn't set */ 9211 mark_reg_unknown(env, regs, insn->dst_reg); 9212 regs[insn->dst_reg].type = SCALAR_VALUE; 9213 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9214 __mark_reg_known(regs + insn->dst_reg, 9215 insn->imm); 9216 } else { 9217 __mark_reg_known(regs + insn->dst_reg, 9218 (u32)insn->imm); 9219 } 9220 } 9221 9222 } else if (opcode > BPF_END) { 9223 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9224 return -EINVAL; 9225 9226 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9227 9228 if (BPF_SRC(insn->code) == BPF_X) { 9229 if (insn->imm != 0 || insn->off != 0) { 9230 verbose(env, "BPF_ALU uses reserved fields\n"); 9231 return -EINVAL; 9232 } 9233 /* check src1 operand */ 9234 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9235 if (err) 9236 return err; 9237 } else { 9238 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9239 verbose(env, "BPF_ALU uses reserved fields\n"); 9240 return -EINVAL; 9241 } 9242 } 9243 9244 /* check src2 operand */ 9245 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9246 if (err) 9247 return err; 9248 9249 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9250 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9251 verbose(env, "div by zero\n"); 9252 return -EINVAL; 9253 } 9254 9255 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9256 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9257 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9258 9259 if (insn->imm < 0 || insn->imm >= size) { 9260 verbose(env, "invalid shift %d\n", insn->imm); 9261 return -EINVAL; 9262 } 9263 } 9264 9265 /* check dest operand */ 9266 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9267 if (err) 9268 return err; 9269 9270 return adjust_reg_min_max_vals(env, insn); 9271 } 9272 9273 return 0; 9274 } 9275 9276 static void __find_good_pkt_pointers(struct bpf_func_state *state, 9277 struct bpf_reg_state *dst_reg, 9278 enum bpf_reg_type type, int new_range) 9279 { 9280 struct bpf_reg_state *reg; 9281 int i; 9282 9283 for (i = 0; i < MAX_BPF_REG; i++) { 9284 reg = &state->regs[i]; 9285 if (reg->type == type && reg->id == dst_reg->id) 9286 /* keep the maximum range already checked */ 9287 reg->range = max(reg->range, new_range); 9288 } 9289 9290 bpf_for_each_spilled_reg(i, state, reg) { 9291 if (!reg) 9292 continue; 9293 if (reg->type == type && reg->id == dst_reg->id) 9294 reg->range = max(reg->range, new_range); 9295 } 9296 } 9297 9298 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9299 struct bpf_reg_state *dst_reg, 9300 enum bpf_reg_type type, 9301 bool range_right_open) 9302 { 9303 int new_range, i; 9304 9305 if (dst_reg->off < 0 || 9306 (dst_reg->off == 0 && range_right_open)) 9307 /* This doesn't give us any range */ 9308 return; 9309 9310 if (dst_reg->umax_value > MAX_PACKET_OFF || 9311 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9312 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9313 * than pkt_end, but that's because it's also less than pkt. 9314 */ 9315 return; 9316 9317 new_range = dst_reg->off; 9318 if (range_right_open) 9319 new_range++; 9320 9321 /* Examples for register markings: 9322 * 9323 * pkt_data in dst register: 9324 * 9325 * r2 = r3; 9326 * r2 += 8; 9327 * if (r2 > pkt_end) goto <handle exception> 9328 * <access okay> 9329 * 9330 * r2 = r3; 9331 * r2 += 8; 9332 * if (r2 < pkt_end) goto <access okay> 9333 * <handle exception> 9334 * 9335 * Where: 9336 * r2 == dst_reg, pkt_end == src_reg 9337 * r2=pkt(id=n,off=8,r=0) 9338 * r3=pkt(id=n,off=0,r=0) 9339 * 9340 * pkt_data in src register: 9341 * 9342 * r2 = r3; 9343 * r2 += 8; 9344 * if (pkt_end >= r2) goto <access okay> 9345 * <handle exception> 9346 * 9347 * r2 = r3; 9348 * r2 += 8; 9349 * if (pkt_end <= r2) goto <handle exception> 9350 * <access okay> 9351 * 9352 * Where: 9353 * pkt_end == dst_reg, r2 == src_reg 9354 * r2=pkt(id=n,off=8,r=0) 9355 * r3=pkt(id=n,off=0,r=0) 9356 * 9357 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9358 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9359 * and [r3, r3 + 8-1) respectively is safe to access depending on 9360 * the check. 9361 */ 9362 9363 /* If our ids match, then we must have the same max_value. And we 9364 * don't care about the other reg's fixed offset, since if it's too big 9365 * the range won't allow anything. 9366 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9367 */ 9368 for (i = 0; i <= vstate->curframe; i++) 9369 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 9370 new_range); 9371 } 9372 9373 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9374 { 9375 struct tnum subreg = tnum_subreg(reg->var_off); 9376 s32 sval = (s32)val; 9377 9378 switch (opcode) { 9379 case BPF_JEQ: 9380 if (tnum_is_const(subreg)) 9381 return !!tnum_equals_const(subreg, val); 9382 break; 9383 case BPF_JNE: 9384 if (tnum_is_const(subreg)) 9385 return !tnum_equals_const(subreg, val); 9386 break; 9387 case BPF_JSET: 9388 if ((~subreg.mask & subreg.value) & val) 9389 return 1; 9390 if (!((subreg.mask | subreg.value) & val)) 9391 return 0; 9392 break; 9393 case BPF_JGT: 9394 if (reg->u32_min_value > val) 9395 return 1; 9396 else if (reg->u32_max_value <= val) 9397 return 0; 9398 break; 9399 case BPF_JSGT: 9400 if (reg->s32_min_value > sval) 9401 return 1; 9402 else if (reg->s32_max_value <= sval) 9403 return 0; 9404 break; 9405 case BPF_JLT: 9406 if (reg->u32_max_value < val) 9407 return 1; 9408 else if (reg->u32_min_value >= val) 9409 return 0; 9410 break; 9411 case BPF_JSLT: 9412 if (reg->s32_max_value < sval) 9413 return 1; 9414 else if (reg->s32_min_value >= sval) 9415 return 0; 9416 break; 9417 case BPF_JGE: 9418 if (reg->u32_min_value >= val) 9419 return 1; 9420 else if (reg->u32_max_value < val) 9421 return 0; 9422 break; 9423 case BPF_JSGE: 9424 if (reg->s32_min_value >= sval) 9425 return 1; 9426 else if (reg->s32_max_value < sval) 9427 return 0; 9428 break; 9429 case BPF_JLE: 9430 if (reg->u32_max_value <= val) 9431 return 1; 9432 else if (reg->u32_min_value > val) 9433 return 0; 9434 break; 9435 case BPF_JSLE: 9436 if (reg->s32_max_value <= sval) 9437 return 1; 9438 else if (reg->s32_min_value > sval) 9439 return 0; 9440 break; 9441 } 9442 9443 return -1; 9444 } 9445 9446 9447 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9448 { 9449 s64 sval = (s64)val; 9450 9451 switch (opcode) { 9452 case BPF_JEQ: 9453 if (tnum_is_const(reg->var_off)) 9454 return !!tnum_equals_const(reg->var_off, val); 9455 break; 9456 case BPF_JNE: 9457 if (tnum_is_const(reg->var_off)) 9458 return !tnum_equals_const(reg->var_off, val); 9459 break; 9460 case BPF_JSET: 9461 if ((~reg->var_off.mask & reg->var_off.value) & val) 9462 return 1; 9463 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9464 return 0; 9465 break; 9466 case BPF_JGT: 9467 if (reg->umin_value > val) 9468 return 1; 9469 else if (reg->umax_value <= val) 9470 return 0; 9471 break; 9472 case BPF_JSGT: 9473 if (reg->smin_value > sval) 9474 return 1; 9475 else if (reg->smax_value <= sval) 9476 return 0; 9477 break; 9478 case BPF_JLT: 9479 if (reg->umax_value < val) 9480 return 1; 9481 else if (reg->umin_value >= val) 9482 return 0; 9483 break; 9484 case BPF_JSLT: 9485 if (reg->smax_value < sval) 9486 return 1; 9487 else if (reg->smin_value >= sval) 9488 return 0; 9489 break; 9490 case BPF_JGE: 9491 if (reg->umin_value >= val) 9492 return 1; 9493 else if (reg->umax_value < val) 9494 return 0; 9495 break; 9496 case BPF_JSGE: 9497 if (reg->smin_value >= sval) 9498 return 1; 9499 else if (reg->smax_value < sval) 9500 return 0; 9501 break; 9502 case BPF_JLE: 9503 if (reg->umax_value <= val) 9504 return 1; 9505 else if (reg->umin_value > val) 9506 return 0; 9507 break; 9508 case BPF_JSLE: 9509 if (reg->smax_value <= sval) 9510 return 1; 9511 else if (reg->smin_value > sval) 9512 return 0; 9513 break; 9514 } 9515 9516 return -1; 9517 } 9518 9519 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9520 * and return: 9521 * 1 - branch will be taken and "goto target" will be executed 9522 * 0 - branch will not be taken and fall-through to next insn 9523 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9524 * range [0,10] 9525 */ 9526 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9527 bool is_jmp32) 9528 { 9529 if (__is_pointer_value(false, reg)) { 9530 if (!reg_type_not_null(reg->type)) 9531 return -1; 9532 9533 /* If pointer is valid tests against zero will fail so we can 9534 * use this to direct branch taken. 9535 */ 9536 if (val != 0) 9537 return -1; 9538 9539 switch (opcode) { 9540 case BPF_JEQ: 9541 return 0; 9542 case BPF_JNE: 9543 return 1; 9544 default: 9545 return -1; 9546 } 9547 } 9548 9549 if (is_jmp32) 9550 return is_branch32_taken(reg, val, opcode); 9551 return is_branch64_taken(reg, val, opcode); 9552 } 9553 9554 static int flip_opcode(u32 opcode) 9555 { 9556 /* How can we transform "a <op> b" into "b <op> a"? */ 9557 static const u8 opcode_flip[16] = { 9558 /* these stay the same */ 9559 [BPF_JEQ >> 4] = BPF_JEQ, 9560 [BPF_JNE >> 4] = BPF_JNE, 9561 [BPF_JSET >> 4] = BPF_JSET, 9562 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9563 [BPF_JGE >> 4] = BPF_JLE, 9564 [BPF_JGT >> 4] = BPF_JLT, 9565 [BPF_JLE >> 4] = BPF_JGE, 9566 [BPF_JLT >> 4] = BPF_JGT, 9567 [BPF_JSGE >> 4] = BPF_JSLE, 9568 [BPF_JSGT >> 4] = BPF_JSLT, 9569 [BPF_JSLE >> 4] = BPF_JSGE, 9570 [BPF_JSLT >> 4] = BPF_JSGT 9571 }; 9572 return opcode_flip[opcode >> 4]; 9573 } 9574 9575 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9576 struct bpf_reg_state *src_reg, 9577 u8 opcode) 9578 { 9579 struct bpf_reg_state *pkt; 9580 9581 if (src_reg->type == PTR_TO_PACKET_END) { 9582 pkt = dst_reg; 9583 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9584 pkt = src_reg; 9585 opcode = flip_opcode(opcode); 9586 } else { 9587 return -1; 9588 } 9589 9590 if (pkt->range >= 0) 9591 return -1; 9592 9593 switch (opcode) { 9594 case BPF_JLE: 9595 /* pkt <= pkt_end */ 9596 fallthrough; 9597 case BPF_JGT: 9598 /* pkt > pkt_end */ 9599 if (pkt->range == BEYOND_PKT_END) 9600 /* pkt has at last one extra byte beyond pkt_end */ 9601 return opcode == BPF_JGT; 9602 break; 9603 case BPF_JLT: 9604 /* pkt < pkt_end */ 9605 fallthrough; 9606 case BPF_JGE: 9607 /* pkt >= pkt_end */ 9608 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9609 return opcode == BPF_JGE; 9610 break; 9611 } 9612 return -1; 9613 } 9614 9615 /* Adjusts the register min/max values in the case that the dst_reg is the 9616 * variable register that we are working on, and src_reg is a constant or we're 9617 * simply doing a BPF_K check. 9618 * In JEQ/JNE cases we also adjust the var_off values. 9619 */ 9620 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9621 struct bpf_reg_state *false_reg, 9622 u64 val, u32 val32, 9623 u8 opcode, bool is_jmp32) 9624 { 9625 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9626 struct tnum false_64off = false_reg->var_off; 9627 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9628 struct tnum true_64off = true_reg->var_off; 9629 s64 sval = (s64)val; 9630 s32 sval32 = (s32)val32; 9631 9632 /* If the dst_reg is a pointer, we can't learn anything about its 9633 * variable offset from the compare (unless src_reg were a pointer into 9634 * the same object, but we don't bother with that. 9635 * Since false_reg and true_reg have the same type by construction, we 9636 * only need to check one of them for pointerness. 9637 */ 9638 if (__is_pointer_value(false, false_reg)) 9639 return; 9640 9641 switch (opcode) { 9642 /* JEQ/JNE comparison doesn't change the register equivalence. 9643 * 9644 * r1 = r2; 9645 * if (r1 == 42) goto label; 9646 * ... 9647 * label: // here both r1 and r2 are known to be 42. 9648 * 9649 * Hence when marking register as known preserve it's ID. 9650 */ 9651 case BPF_JEQ: 9652 if (is_jmp32) { 9653 __mark_reg32_known(true_reg, val32); 9654 true_32off = tnum_subreg(true_reg->var_off); 9655 } else { 9656 ___mark_reg_known(true_reg, val); 9657 true_64off = true_reg->var_off; 9658 } 9659 break; 9660 case BPF_JNE: 9661 if (is_jmp32) { 9662 __mark_reg32_known(false_reg, val32); 9663 false_32off = tnum_subreg(false_reg->var_off); 9664 } else { 9665 ___mark_reg_known(false_reg, val); 9666 false_64off = false_reg->var_off; 9667 } 9668 break; 9669 case BPF_JSET: 9670 if (is_jmp32) { 9671 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9672 if (is_power_of_2(val32)) 9673 true_32off = tnum_or(true_32off, 9674 tnum_const(val32)); 9675 } else { 9676 false_64off = tnum_and(false_64off, tnum_const(~val)); 9677 if (is_power_of_2(val)) 9678 true_64off = tnum_or(true_64off, 9679 tnum_const(val)); 9680 } 9681 break; 9682 case BPF_JGE: 9683 case BPF_JGT: 9684 { 9685 if (is_jmp32) { 9686 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9687 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9688 9689 false_reg->u32_max_value = min(false_reg->u32_max_value, 9690 false_umax); 9691 true_reg->u32_min_value = max(true_reg->u32_min_value, 9692 true_umin); 9693 } else { 9694 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9695 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9696 9697 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9698 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9699 } 9700 break; 9701 } 9702 case BPF_JSGE: 9703 case BPF_JSGT: 9704 { 9705 if (is_jmp32) { 9706 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9707 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9708 9709 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9710 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9711 } else { 9712 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9713 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9714 9715 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9716 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9717 } 9718 break; 9719 } 9720 case BPF_JLE: 9721 case BPF_JLT: 9722 { 9723 if (is_jmp32) { 9724 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9725 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9726 9727 false_reg->u32_min_value = max(false_reg->u32_min_value, 9728 false_umin); 9729 true_reg->u32_max_value = min(true_reg->u32_max_value, 9730 true_umax); 9731 } else { 9732 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9733 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9734 9735 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9736 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9737 } 9738 break; 9739 } 9740 case BPF_JSLE: 9741 case BPF_JSLT: 9742 { 9743 if (is_jmp32) { 9744 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9745 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9746 9747 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9748 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9749 } else { 9750 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9751 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9752 9753 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9754 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9755 } 9756 break; 9757 } 9758 default: 9759 return; 9760 } 9761 9762 if (is_jmp32) { 9763 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9764 tnum_subreg(false_32off)); 9765 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9766 tnum_subreg(true_32off)); 9767 __reg_combine_32_into_64(false_reg); 9768 __reg_combine_32_into_64(true_reg); 9769 } else { 9770 false_reg->var_off = false_64off; 9771 true_reg->var_off = true_64off; 9772 __reg_combine_64_into_32(false_reg); 9773 __reg_combine_64_into_32(true_reg); 9774 } 9775 } 9776 9777 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9778 * the variable reg. 9779 */ 9780 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9781 struct bpf_reg_state *false_reg, 9782 u64 val, u32 val32, 9783 u8 opcode, bool is_jmp32) 9784 { 9785 opcode = flip_opcode(opcode); 9786 /* This uses zero as "not present in table"; luckily the zero opcode, 9787 * BPF_JA, can't get here. 9788 */ 9789 if (opcode) 9790 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9791 } 9792 9793 /* Regs are known to be equal, so intersect their min/max/var_off */ 9794 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9795 struct bpf_reg_state *dst_reg) 9796 { 9797 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9798 dst_reg->umin_value); 9799 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9800 dst_reg->umax_value); 9801 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9802 dst_reg->smin_value); 9803 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9804 dst_reg->smax_value); 9805 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9806 dst_reg->var_off); 9807 reg_bounds_sync(src_reg); 9808 reg_bounds_sync(dst_reg); 9809 } 9810 9811 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9812 struct bpf_reg_state *true_dst, 9813 struct bpf_reg_state *false_src, 9814 struct bpf_reg_state *false_dst, 9815 u8 opcode) 9816 { 9817 switch (opcode) { 9818 case BPF_JEQ: 9819 __reg_combine_min_max(true_src, true_dst); 9820 break; 9821 case BPF_JNE: 9822 __reg_combine_min_max(false_src, false_dst); 9823 break; 9824 } 9825 } 9826 9827 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9828 struct bpf_reg_state *reg, u32 id, 9829 bool is_null) 9830 { 9831 if (type_may_be_null(reg->type) && reg->id == id && 9832 !WARN_ON_ONCE(!reg->id)) { 9833 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9834 !tnum_equals_const(reg->var_off, 0) || 9835 reg->off)) { 9836 /* Old offset (both fixed and variable parts) should 9837 * have been known-zero, because we don't allow pointer 9838 * arithmetic on pointers that might be NULL. If we 9839 * see this happening, don't convert the register. 9840 */ 9841 return; 9842 } 9843 if (is_null) { 9844 reg->type = SCALAR_VALUE; 9845 /* We don't need id and ref_obj_id from this point 9846 * onwards anymore, thus we should better reset it, 9847 * so that state pruning has chances to take effect. 9848 */ 9849 reg->id = 0; 9850 reg->ref_obj_id = 0; 9851 9852 return; 9853 } 9854 9855 mark_ptr_not_null_reg(reg); 9856 9857 if (!reg_may_point_to_spin_lock(reg)) { 9858 /* For not-NULL ptr, reg->ref_obj_id will be reset 9859 * in release_reg_references(). 9860 * 9861 * reg->id is still used by spin_lock ptr. Other 9862 * than spin_lock ptr type, reg->id can be reset. 9863 */ 9864 reg->id = 0; 9865 } 9866 } 9867 } 9868 9869 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9870 bool is_null) 9871 { 9872 struct bpf_reg_state *reg; 9873 int i; 9874 9875 for (i = 0; i < MAX_BPF_REG; i++) 9876 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9877 9878 bpf_for_each_spilled_reg(i, state, reg) { 9879 if (!reg) 9880 continue; 9881 mark_ptr_or_null_reg(state, reg, id, is_null); 9882 } 9883 } 9884 9885 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9886 * be folded together at some point. 9887 */ 9888 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9889 bool is_null) 9890 { 9891 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9892 struct bpf_reg_state *regs = state->regs; 9893 u32 ref_obj_id = regs[regno].ref_obj_id; 9894 u32 id = regs[regno].id; 9895 int i; 9896 9897 if (ref_obj_id && ref_obj_id == id && is_null) 9898 /* regs[regno] is in the " == NULL" branch. 9899 * No one could have freed the reference state before 9900 * doing the NULL check. 9901 */ 9902 WARN_ON_ONCE(release_reference_state(state, id)); 9903 9904 for (i = 0; i <= vstate->curframe; i++) 9905 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9906 } 9907 9908 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9909 struct bpf_reg_state *dst_reg, 9910 struct bpf_reg_state *src_reg, 9911 struct bpf_verifier_state *this_branch, 9912 struct bpf_verifier_state *other_branch) 9913 { 9914 if (BPF_SRC(insn->code) != BPF_X) 9915 return false; 9916 9917 /* Pointers are always 64-bit. */ 9918 if (BPF_CLASS(insn->code) == BPF_JMP32) 9919 return false; 9920 9921 switch (BPF_OP(insn->code)) { 9922 case BPF_JGT: 9923 if ((dst_reg->type == PTR_TO_PACKET && 9924 src_reg->type == PTR_TO_PACKET_END) || 9925 (dst_reg->type == PTR_TO_PACKET_META && 9926 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9927 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9928 find_good_pkt_pointers(this_branch, dst_reg, 9929 dst_reg->type, false); 9930 mark_pkt_end(other_branch, insn->dst_reg, true); 9931 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9932 src_reg->type == PTR_TO_PACKET) || 9933 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9934 src_reg->type == PTR_TO_PACKET_META)) { 9935 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9936 find_good_pkt_pointers(other_branch, src_reg, 9937 src_reg->type, true); 9938 mark_pkt_end(this_branch, insn->src_reg, false); 9939 } else { 9940 return false; 9941 } 9942 break; 9943 case BPF_JLT: 9944 if ((dst_reg->type == PTR_TO_PACKET && 9945 src_reg->type == PTR_TO_PACKET_END) || 9946 (dst_reg->type == PTR_TO_PACKET_META && 9947 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9948 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9949 find_good_pkt_pointers(other_branch, dst_reg, 9950 dst_reg->type, true); 9951 mark_pkt_end(this_branch, insn->dst_reg, false); 9952 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9953 src_reg->type == PTR_TO_PACKET) || 9954 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9955 src_reg->type == PTR_TO_PACKET_META)) { 9956 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9957 find_good_pkt_pointers(this_branch, src_reg, 9958 src_reg->type, false); 9959 mark_pkt_end(other_branch, insn->src_reg, true); 9960 } else { 9961 return false; 9962 } 9963 break; 9964 case BPF_JGE: 9965 if ((dst_reg->type == PTR_TO_PACKET && 9966 src_reg->type == PTR_TO_PACKET_END) || 9967 (dst_reg->type == PTR_TO_PACKET_META && 9968 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9969 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9970 find_good_pkt_pointers(this_branch, dst_reg, 9971 dst_reg->type, true); 9972 mark_pkt_end(other_branch, insn->dst_reg, false); 9973 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9974 src_reg->type == PTR_TO_PACKET) || 9975 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9976 src_reg->type == PTR_TO_PACKET_META)) { 9977 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9978 find_good_pkt_pointers(other_branch, src_reg, 9979 src_reg->type, false); 9980 mark_pkt_end(this_branch, insn->src_reg, true); 9981 } else { 9982 return false; 9983 } 9984 break; 9985 case BPF_JLE: 9986 if ((dst_reg->type == PTR_TO_PACKET && 9987 src_reg->type == PTR_TO_PACKET_END) || 9988 (dst_reg->type == PTR_TO_PACKET_META && 9989 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9990 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9991 find_good_pkt_pointers(other_branch, dst_reg, 9992 dst_reg->type, false); 9993 mark_pkt_end(this_branch, insn->dst_reg, true); 9994 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9995 src_reg->type == PTR_TO_PACKET) || 9996 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9997 src_reg->type == PTR_TO_PACKET_META)) { 9998 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9999 find_good_pkt_pointers(this_branch, src_reg, 10000 src_reg->type, true); 10001 mark_pkt_end(other_branch, insn->src_reg, false); 10002 } else { 10003 return false; 10004 } 10005 break; 10006 default: 10007 return false; 10008 } 10009 10010 return true; 10011 } 10012 10013 static void find_equal_scalars(struct bpf_verifier_state *vstate, 10014 struct bpf_reg_state *known_reg) 10015 { 10016 struct bpf_func_state *state; 10017 struct bpf_reg_state *reg; 10018 int i, j; 10019 10020 for (i = 0; i <= vstate->curframe; i++) { 10021 state = vstate->frame[i]; 10022 for (j = 0; j < MAX_BPF_REG; j++) { 10023 reg = &state->regs[j]; 10024 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10025 *reg = *known_reg; 10026 } 10027 10028 bpf_for_each_spilled_reg(j, state, reg) { 10029 if (!reg) 10030 continue; 10031 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10032 *reg = *known_reg; 10033 } 10034 } 10035 } 10036 10037 static int check_cond_jmp_op(struct bpf_verifier_env *env, 10038 struct bpf_insn *insn, int *insn_idx) 10039 { 10040 struct bpf_verifier_state *this_branch = env->cur_state; 10041 struct bpf_verifier_state *other_branch; 10042 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 10043 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 10044 u8 opcode = BPF_OP(insn->code); 10045 bool is_jmp32; 10046 int pred = -1; 10047 int err; 10048 10049 /* Only conditional jumps are expected to reach here. */ 10050 if (opcode == BPF_JA || opcode > BPF_JSLE) { 10051 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 10052 return -EINVAL; 10053 } 10054 10055 if (BPF_SRC(insn->code) == BPF_X) { 10056 if (insn->imm != 0) { 10057 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10058 return -EINVAL; 10059 } 10060 10061 /* check src1 operand */ 10062 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10063 if (err) 10064 return err; 10065 10066 if (is_pointer_value(env, insn->src_reg)) { 10067 verbose(env, "R%d pointer comparison prohibited\n", 10068 insn->src_reg); 10069 return -EACCES; 10070 } 10071 src_reg = ®s[insn->src_reg]; 10072 } else { 10073 if (insn->src_reg != BPF_REG_0) { 10074 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10075 return -EINVAL; 10076 } 10077 } 10078 10079 /* check src2 operand */ 10080 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10081 if (err) 10082 return err; 10083 10084 dst_reg = ®s[insn->dst_reg]; 10085 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10086 10087 if (BPF_SRC(insn->code) == BPF_K) { 10088 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10089 } else if (src_reg->type == SCALAR_VALUE && 10090 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10091 pred = is_branch_taken(dst_reg, 10092 tnum_subreg(src_reg->var_off).value, 10093 opcode, 10094 is_jmp32); 10095 } else if (src_reg->type == SCALAR_VALUE && 10096 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10097 pred = is_branch_taken(dst_reg, 10098 src_reg->var_off.value, 10099 opcode, 10100 is_jmp32); 10101 } else if (reg_is_pkt_pointer_any(dst_reg) && 10102 reg_is_pkt_pointer_any(src_reg) && 10103 !is_jmp32) { 10104 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10105 } 10106 10107 if (pred >= 0) { 10108 /* If we get here with a dst_reg pointer type it is because 10109 * above is_branch_taken() special cased the 0 comparison. 10110 */ 10111 if (!__is_pointer_value(false, dst_reg)) 10112 err = mark_chain_precision(env, insn->dst_reg); 10113 if (BPF_SRC(insn->code) == BPF_X && !err && 10114 !__is_pointer_value(false, src_reg)) 10115 err = mark_chain_precision(env, insn->src_reg); 10116 if (err) 10117 return err; 10118 } 10119 10120 if (pred == 1) { 10121 /* Only follow the goto, ignore fall-through. If needed, push 10122 * the fall-through branch for simulation under speculative 10123 * execution. 10124 */ 10125 if (!env->bypass_spec_v1 && 10126 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10127 *insn_idx)) 10128 return -EFAULT; 10129 *insn_idx += insn->off; 10130 return 0; 10131 } else if (pred == 0) { 10132 /* Only follow the fall-through branch, since that's where the 10133 * program will go. If needed, push the goto branch for 10134 * simulation under speculative execution. 10135 */ 10136 if (!env->bypass_spec_v1 && 10137 !sanitize_speculative_path(env, insn, 10138 *insn_idx + insn->off + 1, 10139 *insn_idx)) 10140 return -EFAULT; 10141 return 0; 10142 } 10143 10144 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10145 false); 10146 if (!other_branch) 10147 return -EFAULT; 10148 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10149 10150 /* detect if we are comparing against a constant value so we can adjust 10151 * our min/max values for our dst register. 10152 * this is only legit if both are scalars (or pointers to the same 10153 * object, I suppose, but we don't support that right now), because 10154 * otherwise the different base pointers mean the offsets aren't 10155 * comparable. 10156 */ 10157 if (BPF_SRC(insn->code) == BPF_X) { 10158 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10159 10160 if (dst_reg->type == SCALAR_VALUE && 10161 src_reg->type == SCALAR_VALUE) { 10162 if (tnum_is_const(src_reg->var_off) || 10163 (is_jmp32 && 10164 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10165 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10166 dst_reg, 10167 src_reg->var_off.value, 10168 tnum_subreg(src_reg->var_off).value, 10169 opcode, is_jmp32); 10170 else if (tnum_is_const(dst_reg->var_off) || 10171 (is_jmp32 && 10172 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10173 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10174 src_reg, 10175 dst_reg->var_off.value, 10176 tnum_subreg(dst_reg->var_off).value, 10177 opcode, is_jmp32); 10178 else if (!is_jmp32 && 10179 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10180 /* Comparing for equality, we can combine knowledge */ 10181 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10182 &other_branch_regs[insn->dst_reg], 10183 src_reg, dst_reg, opcode); 10184 if (src_reg->id && 10185 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10186 find_equal_scalars(this_branch, src_reg); 10187 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10188 } 10189 10190 } 10191 } else if (dst_reg->type == SCALAR_VALUE) { 10192 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10193 dst_reg, insn->imm, (u32)insn->imm, 10194 opcode, is_jmp32); 10195 } 10196 10197 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10198 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10199 find_equal_scalars(this_branch, dst_reg); 10200 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10201 } 10202 10203 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10204 * NOTE: these optimizations below are related with pointer comparison 10205 * which will never be JMP32. 10206 */ 10207 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10208 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10209 type_may_be_null(dst_reg->type)) { 10210 /* Mark all identical registers in each branch as either 10211 * safe or unknown depending R == 0 or R != 0 conditional. 10212 */ 10213 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10214 opcode == BPF_JNE); 10215 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10216 opcode == BPF_JEQ); 10217 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10218 this_branch, other_branch) && 10219 is_pointer_value(env, insn->dst_reg)) { 10220 verbose(env, "R%d pointer comparison prohibited\n", 10221 insn->dst_reg); 10222 return -EACCES; 10223 } 10224 if (env->log.level & BPF_LOG_LEVEL) 10225 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10226 return 0; 10227 } 10228 10229 /* verify BPF_LD_IMM64 instruction */ 10230 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10231 { 10232 struct bpf_insn_aux_data *aux = cur_aux(env); 10233 struct bpf_reg_state *regs = cur_regs(env); 10234 struct bpf_reg_state *dst_reg; 10235 struct bpf_map *map; 10236 int err; 10237 10238 if (BPF_SIZE(insn->code) != BPF_DW) { 10239 verbose(env, "invalid BPF_LD_IMM insn\n"); 10240 return -EINVAL; 10241 } 10242 if (insn->off != 0) { 10243 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10244 return -EINVAL; 10245 } 10246 10247 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10248 if (err) 10249 return err; 10250 10251 dst_reg = ®s[insn->dst_reg]; 10252 if (insn->src_reg == 0) { 10253 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10254 10255 dst_reg->type = SCALAR_VALUE; 10256 __mark_reg_known(®s[insn->dst_reg], imm); 10257 return 0; 10258 } 10259 10260 /* All special src_reg cases are listed below. From this point onwards 10261 * we either succeed and assign a corresponding dst_reg->type after 10262 * zeroing the offset, or fail and reject the program. 10263 */ 10264 mark_reg_known_zero(env, regs, insn->dst_reg); 10265 10266 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10267 dst_reg->type = aux->btf_var.reg_type; 10268 switch (base_type(dst_reg->type)) { 10269 case PTR_TO_MEM: 10270 dst_reg->mem_size = aux->btf_var.mem_size; 10271 break; 10272 case PTR_TO_BTF_ID: 10273 dst_reg->btf = aux->btf_var.btf; 10274 dst_reg->btf_id = aux->btf_var.btf_id; 10275 break; 10276 default: 10277 verbose(env, "bpf verifier is misconfigured\n"); 10278 return -EFAULT; 10279 } 10280 return 0; 10281 } 10282 10283 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10284 struct bpf_prog_aux *aux = env->prog->aux; 10285 u32 subprogno = find_subprog(env, 10286 env->insn_idx + insn->imm + 1); 10287 10288 if (!aux->func_info) { 10289 verbose(env, "missing btf func_info\n"); 10290 return -EINVAL; 10291 } 10292 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10293 verbose(env, "callback function not static\n"); 10294 return -EINVAL; 10295 } 10296 10297 dst_reg->type = PTR_TO_FUNC; 10298 dst_reg->subprogno = subprogno; 10299 return 0; 10300 } 10301 10302 map = env->used_maps[aux->map_index]; 10303 dst_reg->map_ptr = map; 10304 10305 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10306 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10307 dst_reg->type = PTR_TO_MAP_VALUE; 10308 dst_reg->off = aux->map_off; 10309 if (map_value_has_spin_lock(map)) 10310 dst_reg->id = ++env->id_gen; 10311 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10312 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10313 dst_reg->type = CONST_PTR_TO_MAP; 10314 } else { 10315 verbose(env, "bpf verifier is misconfigured\n"); 10316 return -EINVAL; 10317 } 10318 10319 return 0; 10320 } 10321 10322 static bool may_access_skb(enum bpf_prog_type type) 10323 { 10324 switch (type) { 10325 case BPF_PROG_TYPE_SOCKET_FILTER: 10326 case BPF_PROG_TYPE_SCHED_CLS: 10327 case BPF_PROG_TYPE_SCHED_ACT: 10328 return true; 10329 default: 10330 return false; 10331 } 10332 } 10333 10334 /* verify safety of LD_ABS|LD_IND instructions: 10335 * - they can only appear in the programs where ctx == skb 10336 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10337 * preserve R6-R9, and store return value into R0 10338 * 10339 * Implicit input: 10340 * ctx == skb == R6 == CTX 10341 * 10342 * Explicit input: 10343 * SRC == any register 10344 * IMM == 32-bit immediate 10345 * 10346 * Output: 10347 * R0 - 8/16/32-bit skb data converted to cpu endianness 10348 */ 10349 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10350 { 10351 struct bpf_reg_state *regs = cur_regs(env); 10352 static const int ctx_reg = BPF_REG_6; 10353 u8 mode = BPF_MODE(insn->code); 10354 int i, err; 10355 10356 if (!may_access_skb(resolve_prog_type(env->prog))) { 10357 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10358 return -EINVAL; 10359 } 10360 10361 if (!env->ops->gen_ld_abs) { 10362 verbose(env, "bpf verifier is misconfigured\n"); 10363 return -EINVAL; 10364 } 10365 10366 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10367 BPF_SIZE(insn->code) == BPF_DW || 10368 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10369 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10370 return -EINVAL; 10371 } 10372 10373 /* check whether implicit source operand (register R6) is readable */ 10374 err = check_reg_arg(env, ctx_reg, SRC_OP); 10375 if (err) 10376 return err; 10377 10378 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10379 * gen_ld_abs() may terminate the program at runtime, leading to 10380 * reference leak. 10381 */ 10382 err = check_reference_leak(env); 10383 if (err) { 10384 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10385 return err; 10386 } 10387 10388 if (env->cur_state->active_spin_lock) { 10389 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10390 return -EINVAL; 10391 } 10392 10393 if (regs[ctx_reg].type != PTR_TO_CTX) { 10394 verbose(env, 10395 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10396 return -EINVAL; 10397 } 10398 10399 if (mode == BPF_IND) { 10400 /* check explicit source operand */ 10401 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10402 if (err) 10403 return err; 10404 } 10405 10406 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10407 if (err < 0) 10408 return err; 10409 10410 /* reset caller saved regs to unreadable */ 10411 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10412 mark_reg_not_init(env, regs, caller_saved[i]); 10413 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10414 } 10415 10416 /* mark destination R0 register as readable, since it contains 10417 * the value fetched from the packet. 10418 * Already marked as written above. 10419 */ 10420 mark_reg_unknown(env, regs, BPF_REG_0); 10421 /* ld_abs load up to 32-bit skb data. */ 10422 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10423 return 0; 10424 } 10425 10426 static int check_return_code(struct bpf_verifier_env *env) 10427 { 10428 struct tnum enforce_attach_type_range = tnum_unknown; 10429 const struct bpf_prog *prog = env->prog; 10430 struct bpf_reg_state *reg; 10431 struct tnum range = tnum_range(0, 1); 10432 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10433 int err; 10434 struct bpf_func_state *frame = env->cur_state->frame[0]; 10435 const bool is_subprog = frame->subprogno; 10436 10437 /* LSM and struct_ops func-ptr's return type could be "void" */ 10438 if (!is_subprog) { 10439 switch (prog_type) { 10440 case BPF_PROG_TYPE_LSM: 10441 if (prog->expected_attach_type == BPF_LSM_CGROUP) 10442 /* See below, can be 0 or 0-1 depending on hook. */ 10443 break; 10444 fallthrough; 10445 case BPF_PROG_TYPE_STRUCT_OPS: 10446 if (!prog->aux->attach_func_proto->type) 10447 return 0; 10448 break; 10449 default: 10450 break; 10451 } 10452 } 10453 10454 /* eBPF calling convention is such that R0 is used 10455 * to return the value from eBPF program. 10456 * Make sure that it's readable at this time 10457 * of bpf_exit, which means that program wrote 10458 * something into it earlier 10459 */ 10460 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10461 if (err) 10462 return err; 10463 10464 if (is_pointer_value(env, BPF_REG_0)) { 10465 verbose(env, "R0 leaks addr as return value\n"); 10466 return -EACCES; 10467 } 10468 10469 reg = cur_regs(env) + BPF_REG_0; 10470 10471 if (frame->in_async_callback_fn) { 10472 /* enforce return zero from async callbacks like timer */ 10473 if (reg->type != SCALAR_VALUE) { 10474 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10475 reg_type_str(env, reg->type)); 10476 return -EINVAL; 10477 } 10478 10479 if (!tnum_in(tnum_const(0), reg->var_off)) { 10480 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10481 return -EINVAL; 10482 } 10483 return 0; 10484 } 10485 10486 if (is_subprog) { 10487 if (reg->type != SCALAR_VALUE) { 10488 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10489 reg_type_str(env, reg->type)); 10490 return -EINVAL; 10491 } 10492 return 0; 10493 } 10494 10495 switch (prog_type) { 10496 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10497 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10498 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10499 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10500 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10501 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10502 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10503 range = tnum_range(1, 1); 10504 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10505 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10506 range = tnum_range(0, 3); 10507 break; 10508 case BPF_PROG_TYPE_CGROUP_SKB: 10509 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10510 range = tnum_range(0, 3); 10511 enforce_attach_type_range = tnum_range(2, 3); 10512 } 10513 break; 10514 case BPF_PROG_TYPE_CGROUP_SOCK: 10515 case BPF_PROG_TYPE_SOCK_OPS: 10516 case BPF_PROG_TYPE_CGROUP_DEVICE: 10517 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10518 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10519 break; 10520 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10521 if (!env->prog->aux->attach_btf_id) 10522 return 0; 10523 range = tnum_const(0); 10524 break; 10525 case BPF_PROG_TYPE_TRACING: 10526 switch (env->prog->expected_attach_type) { 10527 case BPF_TRACE_FENTRY: 10528 case BPF_TRACE_FEXIT: 10529 range = tnum_const(0); 10530 break; 10531 case BPF_TRACE_RAW_TP: 10532 case BPF_MODIFY_RETURN: 10533 return 0; 10534 case BPF_TRACE_ITER: 10535 break; 10536 default: 10537 return -ENOTSUPP; 10538 } 10539 break; 10540 case BPF_PROG_TYPE_SK_LOOKUP: 10541 range = tnum_range(SK_DROP, SK_PASS); 10542 break; 10543 10544 case BPF_PROG_TYPE_LSM: 10545 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 10546 /* Regular BPF_PROG_TYPE_LSM programs can return 10547 * any value. 10548 */ 10549 return 0; 10550 } 10551 if (!env->prog->aux->attach_func_proto->type) { 10552 /* Make sure programs that attach to void 10553 * hooks don't try to modify return value. 10554 */ 10555 range = tnum_range(1, 1); 10556 } 10557 break; 10558 10559 case BPF_PROG_TYPE_EXT: 10560 /* freplace program can return anything as its return value 10561 * depends on the to-be-replaced kernel func or bpf program. 10562 */ 10563 default: 10564 return 0; 10565 } 10566 10567 if (reg->type != SCALAR_VALUE) { 10568 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10569 reg_type_str(env, reg->type)); 10570 return -EINVAL; 10571 } 10572 10573 if (!tnum_in(range, reg->var_off)) { 10574 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10575 if (prog->expected_attach_type == BPF_LSM_CGROUP && 10576 prog_type == BPF_PROG_TYPE_LSM && 10577 !prog->aux->attach_func_proto->type) 10578 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10579 return -EINVAL; 10580 } 10581 10582 if (!tnum_is_unknown(enforce_attach_type_range) && 10583 tnum_in(enforce_attach_type_range, reg->var_off)) 10584 env->prog->enforce_expected_attach_type = 1; 10585 return 0; 10586 } 10587 10588 /* non-recursive DFS pseudo code 10589 * 1 procedure DFS-iterative(G,v): 10590 * 2 label v as discovered 10591 * 3 let S be a stack 10592 * 4 S.push(v) 10593 * 5 while S is not empty 10594 * 6 t <- S.pop() 10595 * 7 if t is what we're looking for: 10596 * 8 return t 10597 * 9 for all edges e in G.adjacentEdges(t) do 10598 * 10 if edge e is already labelled 10599 * 11 continue with the next edge 10600 * 12 w <- G.adjacentVertex(t,e) 10601 * 13 if vertex w is not discovered and not explored 10602 * 14 label e as tree-edge 10603 * 15 label w as discovered 10604 * 16 S.push(w) 10605 * 17 continue at 5 10606 * 18 else if vertex w is discovered 10607 * 19 label e as back-edge 10608 * 20 else 10609 * 21 // vertex w is explored 10610 * 22 label e as forward- or cross-edge 10611 * 23 label t as explored 10612 * 24 S.pop() 10613 * 10614 * convention: 10615 * 0x10 - discovered 10616 * 0x11 - discovered and fall-through edge labelled 10617 * 0x12 - discovered and fall-through and branch edges labelled 10618 * 0x20 - explored 10619 */ 10620 10621 enum { 10622 DISCOVERED = 0x10, 10623 EXPLORED = 0x20, 10624 FALLTHROUGH = 1, 10625 BRANCH = 2, 10626 }; 10627 10628 static u32 state_htab_size(struct bpf_verifier_env *env) 10629 { 10630 return env->prog->len; 10631 } 10632 10633 static struct bpf_verifier_state_list **explored_state( 10634 struct bpf_verifier_env *env, 10635 int idx) 10636 { 10637 struct bpf_verifier_state *cur = env->cur_state; 10638 struct bpf_func_state *state = cur->frame[cur->curframe]; 10639 10640 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10641 } 10642 10643 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10644 { 10645 env->insn_aux_data[idx].prune_point = true; 10646 } 10647 10648 enum { 10649 DONE_EXPLORING = 0, 10650 KEEP_EXPLORING = 1, 10651 }; 10652 10653 /* t, w, e - match pseudo-code above: 10654 * t - index of current instruction 10655 * w - next instruction 10656 * e - edge 10657 */ 10658 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10659 bool loop_ok) 10660 { 10661 int *insn_stack = env->cfg.insn_stack; 10662 int *insn_state = env->cfg.insn_state; 10663 10664 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10665 return DONE_EXPLORING; 10666 10667 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10668 return DONE_EXPLORING; 10669 10670 if (w < 0 || w >= env->prog->len) { 10671 verbose_linfo(env, t, "%d: ", t); 10672 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10673 return -EINVAL; 10674 } 10675 10676 if (e == BRANCH) 10677 /* mark branch target for state pruning */ 10678 init_explored_state(env, w); 10679 10680 if (insn_state[w] == 0) { 10681 /* tree-edge */ 10682 insn_state[t] = DISCOVERED | e; 10683 insn_state[w] = DISCOVERED; 10684 if (env->cfg.cur_stack >= env->prog->len) 10685 return -E2BIG; 10686 insn_stack[env->cfg.cur_stack++] = w; 10687 return KEEP_EXPLORING; 10688 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10689 if (loop_ok && env->bpf_capable) 10690 return DONE_EXPLORING; 10691 verbose_linfo(env, t, "%d: ", t); 10692 verbose_linfo(env, w, "%d: ", w); 10693 verbose(env, "back-edge from insn %d to %d\n", t, w); 10694 return -EINVAL; 10695 } else if (insn_state[w] == EXPLORED) { 10696 /* forward- or cross-edge */ 10697 insn_state[t] = DISCOVERED | e; 10698 } else { 10699 verbose(env, "insn state internal bug\n"); 10700 return -EFAULT; 10701 } 10702 return DONE_EXPLORING; 10703 } 10704 10705 static int visit_func_call_insn(int t, int insn_cnt, 10706 struct bpf_insn *insns, 10707 struct bpf_verifier_env *env, 10708 bool visit_callee) 10709 { 10710 int ret; 10711 10712 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10713 if (ret) 10714 return ret; 10715 10716 if (t + 1 < insn_cnt) 10717 init_explored_state(env, t + 1); 10718 if (visit_callee) { 10719 init_explored_state(env, t); 10720 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10721 /* It's ok to allow recursion from CFG point of 10722 * view. __check_func_call() will do the actual 10723 * check. 10724 */ 10725 bpf_pseudo_func(insns + t)); 10726 } 10727 return ret; 10728 } 10729 10730 /* Visits the instruction at index t and returns one of the following: 10731 * < 0 - an error occurred 10732 * DONE_EXPLORING - the instruction was fully explored 10733 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10734 */ 10735 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10736 { 10737 struct bpf_insn *insns = env->prog->insnsi; 10738 int ret; 10739 10740 if (bpf_pseudo_func(insns + t)) 10741 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10742 10743 /* All non-branch instructions have a single fall-through edge. */ 10744 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10745 BPF_CLASS(insns[t].code) != BPF_JMP32) 10746 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10747 10748 switch (BPF_OP(insns[t].code)) { 10749 case BPF_EXIT: 10750 return DONE_EXPLORING; 10751 10752 case BPF_CALL: 10753 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10754 /* Mark this call insn to trigger is_state_visited() check 10755 * before call itself is processed by __check_func_call(). 10756 * Otherwise new async state will be pushed for further 10757 * exploration. 10758 */ 10759 init_explored_state(env, t); 10760 return visit_func_call_insn(t, insn_cnt, insns, env, 10761 insns[t].src_reg == BPF_PSEUDO_CALL); 10762 10763 case BPF_JA: 10764 if (BPF_SRC(insns[t].code) != BPF_K) 10765 return -EINVAL; 10766 10767 /* unconditional jump with single edge */ 10768 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10769 true); 10770 if (ret) 10771 return ret; 10772 10773 /* unconditional jmp is not a good pruning point, 10774 * but it's marked, since backtracking needs 10775 * to record jmp history in is_state_visited(). 10776 */ 10777 init_explored_state(env, t + insns[t].off + 1); 10778 /* tell verifier to check for equivalent states 10779 * after every call and jump 10780 */ 10781 if (t + 1 < insn_cnt) 10782 init_explored_state(env, t + 1); 10783 10784 return ret; 10785 10786 default: 10787 /* conditional jump with two edges */ 10788 init_explored_state(env, t); 10789 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10790 if (ret) 10791 return ret; 10792 10793 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10794 } 10795 } 10796 10797 /* non-recursive depth-first-search to detect loops in BPF program 10798 * loop == back-edge in directed graph 10799 */ 10800 static int check_cfg(struct bpf_verifier_env *env) 10801 { 10802 int insn_cnt = env->prog->len; 10803 int *insn_stack, *insn_state; 10804 int ret = 0; 10805 int i; 10806 10807 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10808 if (!insn_state) 10809 return -ENOMEM; 10810 10811 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10812 if (!insn_stack) { 10813 kvfree(insn_state); 10814 return -ENOMEM; 10815 } 10816 10817 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10818 insn_stack[0] = 0; /* 0 is the first instruction */ 10819 env->cfg.cur_stack = 1; 10820 10821 while (env->cfg.cur_stack > 0) { 10822 int t = insn_stack[env->cfg.cur_stack - 1]; 10823 10824 ret = visit_insn(t, insn_cnt, env); 10825 switch (ret) { 10826 case DONE_EXPLORING: 10827 insn_state[t] = EXPLORED; 10828 env->cfg.cur_stack--; 10829 break; 10830 case KEEP_EXPLORING: 10831 break; 10832 default: 10833 if (ret > 0) { 10834 verbose(env, "visit_insn internal bug\n"); 10835 ret = -EFAULT; 10836 } 10837 goto err_free; 10838 } 10839 } 10840 10841 if (env->cfg.cur_stack < 0) { 10842 verbose(env, "pop stack internal bug\n"); 10843 ret = -EFAULT; 10844 goto err_free; 10845 } 10846 10847 for (i = 0; i < insn_cnt; i++) { 10848 if (insn_state[i] != EXPLORED) { 10849 verbose(env, "unreachable insn %d\n", i); 10850 ret = -EINVAL; 10851 goto err_free; 10852 } 10853 } 10854 ret = 0; /* cfg looks good */ 10855 10856 err_free: 10857 kvfree(insn_state); 10858 kvfree(insn_stack); 10859 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10860 return ret; 10861 } 10862 10863 static int check_abnormal_return(struct bpf_verifier_env *env) 10864 { 10865 int i; 10866 10867 for (i = 1; i < env->subprog_cnt; i++) { 10868 if (env->subprog_info[i].has_ld_abs) { 10869 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10870 return -EINVAL; 10871 } 10872 if (env->subprog_info[i].has_tail_call) { 10873 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10874 return -EINVAL; 10875 } 10876 } 10877 return 0; 10878 } 10879 10880 /* The minimum supported BTF func info size */ 10881 #define MIN_BPF_FUNCINFO_SIZE 8 10882 #define MAX_FUNCINFO_REC_SIZE 252 10883 10884 static int check_btf_func(struct bpf_verifier_env *env, 10885 const union bpf_attr *attr, 10886 bpfptr_t uattr) 10887 { 10888 const struct btf_type *type, *func_proto, *ret_type; 10889 u32 i, nfuncs, urec_size, min_size; 10890 u32 krec_size = sizeof(struct bpf_func_info); 10891 struct bpf_func_info *krecord; 10892 struct bpf_func_info_aux *info_aux = NULL; 10893 struct bpf_prog *prog; 10894 const struct btf *btf; 10895 bpfptr_t urecord; 10896 u32 prev_offset = 0; 10897 bool scalar_return; 10898 int ret = -ENOMEM; 10899 10900 nfuncs = attr->func_info_cnt; 10901 if (!nfuncs) { 10902 if (check_abnormal_return(env)) 10903 return -EINVAL; 10904 return 0; 10905 } 10906 10907 if (nfuncs != env->subprog_cnt) { 10908 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10909 return -EINVAL; 10910 } 10911 10912 urec_size = attr->func_info_rec_size; 10913 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10914 urec_size > MAX_FUNCINFO_REC_SIZE || 10915 urec_size % sizeof(u32)) { 10916 verbose(env, "invalid func info rec size %u\n", urec_size); 10917 return -EINVAL; 10918 } 10919 10920 prog = env->prog; 10921 btf = prog->aux->btf; 10922 10923 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10924 min_size = min_t(u32, krec_size, urec_size); 10925 10926 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10927 if (!krecord) 10928 return -ENOMEM; 10929 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10930 if (!info_aux) 10931 goto err_free; 10932 10933 for (i = 0; i < nfuncs; i++) { 10934 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10935 if (ret) { 10936 if (ret == -E2BIG) { 10937 verbose(env, "nonzero tailing record in func info"); 10938 /* set the size kernel expects so loader can zero 10939 * out the rest of the record. 10940 */ 10941 if (copy_to_bpfptr_offset(uattr, 10942 offsetof(union bpf_attr, func_info_rec_size), 10943 &min_size, sizeof(min_size))) 10944 ret = -EFAULT; 10945 } 10946 goto err_free; 10947 } 10948 10949 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10950 ret = -EFAULT; 10951 goto err_free; 10952 } 10953 10954 /* check insn_off */ 10955 ret = -EINVAL; 10956 if (i == 0) { 10957 if (krecord[i].insn_off) { 10958 verbose(env, 10959 "nonzero insn_off %u for the first func info record", 10960 krecord[i].insn_off); 10961 goto err_free; 10962 } 10963 } else if (krecord[i].insn_off <= prev_offset) { 10964 verbose(env, 10965 "same or smaller insn offset (%u) than previous func info record (%u)", 10966 krecord[i].insn_off, prev_offset); 10967 goto err_free; 10968 } 10969 10970 if (env->subprog_info[i].start != krecord[i].insn_off) { 10971 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10972 goto err_free; 10973 } 10974 10975 /* check type_id */ 10976 type = btf_type_by_id(btf, krecord[i].type_id); 10977 if (!type || !btf_type_is_func(type)) { 10978 verbose(env, "invalid type id %d in func info", 10979 krecord[i].type_id); 10980 goto err_free; 10981 } 10982 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10983 10984 func_proto = btf_type_by_id(btf, type->type); 10985 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10986 /* btf_func_check() already verified it during BTF load */ 10987 goto err_free; 10988 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10989 scalar_return = 10990 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 10991 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10992 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10993 goto err_free; 10994 } 10995 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10996 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10997 goto err_free; 10998 } 10999 11000 prev_offset = krecord[i].insn_off; 11001 bpfptr_add(&urecord, urec_size); 11002 } 11003 11004 prog->aux->func_info = krecord; 11005 prog->aux->func_info_cnt = nfuncs; 11006 prog->aux->func_info_aux = info_aux; 11007 return 0; 11008 11009 err_free: 11010 kvfree(krecord); 11011 kfree(info_aux); 11012 return ret; 11013 } 11014 11015 static void adjust_btf_func(struct bpf_verifier_env *env) 11016 { 11017 struct bpf_prog_aux *aux = env->prog->aux; 11018 int i; 11019 11020 if (!aux->func_info) 11021 return; 11022 11023 for (i = 0; i < env->subprog_cnt; i++) 11024 aux->func_info[i].insn_off = env->subprog_info[i].start; 11025 } 11026 11027 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 11028 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 11029 11030 static int check_btf_line(struct bpf_verifier_env *env, 11031 const union bpf_attr *attr, 11032 bpfptr_t uattr) 11033 { 11034 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 11035 struct bpf_subprog_info *sub; 11036 struct bpf_line_info *linfo; 11037 struct bpf_prog *prog; 11038 const struct btf *btf; 11039 bpfptr_t ulinfo; 11040 int err; 11041 11042 nr_linfo = attr->line_info_cnt; 11043 if (!nr_linfo) 11044 return 0; 11045 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 11046 return -EINVAL; 11047 11048 rec_size = attr->line_info_rec_size; 11049 if (rec_size < MIN_BPF_LINEINFO_SIZE || 11050 rec_size > MAX_LINEINFO_REC_SIZE || 11051 rec_size & (sizeof(u32) - 1)) 11052 return -EINVAL; 11053 11054 /* Need to zero it in case the userspace may 11055 * pass in a smaller bpf_line_info object. 11056 */ 11057 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 11058 GFP_KERNEL | __GFP_NOWARN); 11059 if (!linfo) 11060 return -ENOMEM; 11061 11062 prog = env->prog; 11063 btf = prog->aux->btf; 11064 11065 s = 0; 11066 sub = env->subprog_info; 11067 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 11068 expected_size = sizeof(struct bpf_line_info); 11069 ncopy = min_t(u32, expected_size, rec_size); 11070 for (i = 0; i < nr_linfo; i++) { 11071 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 11072 if (err) { 11073 if (err == -E2BIG) { 11074 verbose(env, "nonzero tailing record in line_info"); 11075 if (copy_to_bpfptr_offset(uattr, 11076 offsetof(union bpf_attr, line_info_rec_size), 11077 &expected_size, sizeof(expected_size))) 11078 err = -EFAULT; 11079 } 11080 goto err_free; 11081 } 11082 11083 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 11084 err = -EFAULT; 11085 goto err_free; 11086 } 11087 11088 /* 11089 * Check insn_off to ensure 11090 * 1) strictly increasing AND 11091 * 2) bounded by prog->len 11092 * 11093 * The linfo[0].insn_off == 0 check logically falls into 11094 * the later "missing bpf_line_info for func..." case 11095 * because the first linfo[0].insn_off must be the 11096 * first sub also and the first sub must have 11097 * subprog_info[0].start == 0. 11098 */ 11099 if ((i && linfo[i].insn_off <= prev_offset) || 11100 linfo[i].insn_off >= prog->len) { 11101 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 11102 i, linfo[i].insn_off, prev_offset, 11103 prog->len); 11104 err = -EINVAL; 11105 goto err_free; 11106 } 11107 11108 if (!prog->insnsi[linfo[i].insn_off].code) { 11109 verbose(env, 11110 "Invalid insn code at line_info[%u].insn_off\n", 11111 i); 11112 err = -EINVAL; 11113 goto err_free; 11114 } 11115 11116 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11117 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11118 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11119 err = -EINVAL; 11120 goto err_free; 11121 } 11122 11123 if (s != env->subprog_cnt) { 11124 if (linfo[i].insn_off == sub[s].start) { 11125 sub[s].linfo_idx = i; 11126 s++; 11127 } else if (sub[s].start < linfo[i].insn_off) { 11128 verbose(env, "missing bpf_line_info for func#%u\n", s); 11129 err = -EINVAL; 11130 goto err_free; 11131 } 11132 } 11133 11134 prev_offset = linfo[i].insn_off; 11135 bpfptr_add(&ulinfo, rec_size); 11136 } 11137 11138 if (s != env->subprog_cnt) { 11139 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11140 env->subprog_cnt - s, s); 11141 err = -EINVAL; 11142 goto err_free; 11143 } 11144 11145 prog->aux->linfo = linfo; 11146 prog->aux->nr_linfo = nr_linfo; 11147 11148 return 0; 11149 11150 err_free: 11151 kvfree(linfo); 11152 return err; 11153 } 11154 11155 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11156 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11157 11158 static int check_core_relo(struct bpf_verifier_env *env, 11159 const union bpf_attr *attr, 11160 bpfptr_t uattr) 11161 { 11162 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11163 struct bpf_core_relo core_relo = {}; 11164 struct bpf_prog *prog = env->prog; 11165 const struct btf *btf = prog->aux->btf; 11166 struct bpf_core_ctx ctx = { 11167 .log = &env->log, 11168 .btf = btf, 11169 }; 11170 bpfptr_t u_core_relo; 11171 int err; 11172 11173 nr_core_relo = attr->core_relo_cnt; 11174 if (!nr_core_relo) 11175 return 0; 11176 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11177 return -EINVAL; 11178 11179 rec_size = attr->core_relo_rec_size; 11180 if (rec_size < MIN_CORE_RELO_SIZE || 11181 rec_size > MAX_CORE_RELO_SIZE || 11182 rec_size % sizeof(u32)) 11183 return -EINVAL; 11184 11185 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11186 expected_size = sizeof(struct bpf_core_relo); 11187 ncopy = min_t(u32, expected_size, rec_size); 11188 11189 /* Unlike func_info and line_info, copy and apply each CO-RE 11190 * relocation record one at a time. 11191 */ 11192 for (i = 0; i < nr_core_relo; i++) { 11193 /* future proofing when sizeof(bpf_core_relo) changes */ 11194 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11195 if (err) { 11196 if (err == -E2BIG) { 11197 verbose(env, "nonzero tailing record in core_relo"); 11198 if (copy_to_bpfptr_offset(uattr, 11199 offsetof(union bpf_attr, core_relo_rec_size), 11200 &expected_size, sizeof(expected_size))) 11201 err = -EFAULT; 11202 } 11203 break; 11204 } 11205 11206 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11207 err = -EFAULT; 11208 break; 11209 } 11210 11211 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11212 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11213 i, core_relo.insn_off, prog->len); 11214 err = -EINVAL; 11215 break; 11216 } 11217 11218 err = bpf_core_apply(&ctx, &core_relo, i, 11219 &prog->insnsi[core_relo.insn_off / 8]); 11220 if (err) 11221 break; 11222 bpfptr_add(&u_core_relo, rec_size); 11223 } 11224 return err; 11225 } 11226 11227 static int check_btf_info(struct bpf_verifier_env *env, 11228 const union bpf_attr *attr, 11229 bpfptr_t uattr) 11230 { 11231 struct btf *btf; 11232 int err; 11233 11234 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11235 if (check_abnormal_return(env)) 11236 return -EINVAL; 11237 return 0; 11238 } 11239 11240 btf = btf_get_by_fd(attr->prog_btf_fd); 11241 if (IS_ERR(btf)) 11242 return PTR_ERR(btf); 11243 if (btf_is_kernel(btf)) { 11244 btf_put(btf); 11245 return -EACCES; 11246 } 11247 env->prog->aux->btf = btf; 11248 11249 err = check_btf_func(env, attr, uattr); 11250 if (err) 11251 return err; 11252 11253 err = check_btf_line(env, attr, uattr); 11254 if (err) 11255 return err; 11256 11257 err = check_core_relo(env, attr, uattr); 11258 if (err) 11259 return err; 11260 11261 return 0; 11262 } 11263 11264 /* check %cur's range satisfies %old's */ 11265 static bool range_within(struct bpf_reg_state *old, 11266 struct bpf_reg_state *cur) 11267 { 11268 return old->umin_value <= cur->umin_value && 11269 old->umax_value >= cur->umax_value && 11270 old->smin_value <= cur->smin_value && 11271 old->smax_value >= cur->smax_value && 11272 old->u32_min_value <= cur->u32_min_value && 11273 old->u32_max_value >= cur->u32_max_value && 11274 old->s32_min_value <= cur->s32_min_value && 11275 old->s32_max_value >= cur->s32_max_value; 11276 } 11277 11278 /* If in the old state two registers had the same id, then they need to have 11279 * the same id in the new state as well. But that id could be different from 11280 * the old state, so we need to track the mapping from old to new ids. 11281 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11282 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11283 * regs with a different old id could still have new id 9, we don't care about 11284 * that. 11285 * So we look through our idmap to see if this old id has been seen before. If 11286 * so, we require the new id to match; otherwise, we add the id pair to the map. 11287 */ 11288 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11289 { 11290 unsigned int i; 11291 11292 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11293 if (!idmap[i].old) { 11294 /* Reached an empty slot; haven't seen this id before */ 11295 idmap[i].old = old_id; 11296 idmap[i].cur = cur_id; 11297 return true; 11298 } 11299 if (idmap[i].old == old_id) 11300 return idmap[i].cur == cur_id; 11301 } 11302 /* We ran out of idmap slots, which should be impossible */ 11303 WARN_ON_ONCE(1); 11304 return false; 11305 } 11306 11307 static void clean_func_state(struct bpf_verifier_env *env, 11308 struct bpf_func_state *st) 11309 { 11310 enum bpf_reg_liveness live; 11311 int i, j; 11312 11313 for (i = 0; i < BPF_REG_FP; i++) { 11314 live = st->regs[i].live; 11315 /* liveness must not touch this register anymore */ 11316 st->regs[i].live |= REG_LIVE_DONE; 11317 if (!(live & REG_LIVE_READ)) 11318 /* since the register is unused, clear its state 11319 * to make further comparison simpler 11320 */ 11321 __mark_reg_not_init(env, &st->regs[i]); 11322 } 11323 11324 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11325 live = st->stack[i].spilled_ptr.live; 11326 /* liveness must not touch this stack slot anymore */ 11327 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11328 if (!(live & REG_LIVE_READ)) { 11329 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11330 for (j = 0; j < BPF_REG_SIZE; j++) 11331 st->stack[i].slot_type[j] = STACK_INVALID; 11332 } 11333 } 11334 } 11335 11336 static void clean_verifier_state(struct bpf_verifier_env *env, 11337 struct bpf_verifier_state *st) 11338 { 11339 int i; 11340 11341 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11342 /* all regs in this state in all frames were already marked */ 11343 return; 11344 11345 for (i = 0; i <= st->curframe; i++) 11346 clean_func_state(env, st->frame[i]); 11347 } 11348 11349 /* the parentage chains form a tree. 11350 * the verifier states are added to state lists at given insn and 11351 * pushed into state stack for future exploration. 11352 * when the verifier reaches bpf_exit insn some of the verifer states 11353 * stored in the state lists have their final liveness state already, 11354 * but a lot of states will get revised from liveness point of view when 11355 * the verifier explores other branches. 11356 * Example: 11357 * 1: r0 = 1 11358 * 2: if r1 == 100 goto pc+1 11359 * 3: r0 = 2 11360 * 4: exit 11361 * when the verifier reaches exit insn the register r0 in the state list of 11362 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11363 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11364 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11365 * 11366 * Since the verifier pushes the branch states as it sees them while exploring 11367 * the program the condition of walking the branch instruction for the second 11368 * time means that all states below this branch were already explored and 11369 * their final liveness marks are already propagated. 11370 * Hence when the verifier completes the search of state list in is_state_visited() 11371 * we can call this clean_live_states() function to mark all liveness states 11372 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11373 * will not be used. 11374 * This function also clears the registers and stack for states that !READ 11375 * to simplify state merging. 11376 * 11377 * Important note here that walking the same branch instruction in the callee 11378 * doesn't meant that the states are DONE. The verifier has to compare 11379 * the callsites 11380 */ 11381 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11382 struct bpf_verifier_state *cur) 11383 { 11384 struct bpf_verifier_state_list *sl; 11385 int i; 11386 11387 sl = *explored_state(env, insn); 11388 while (sl) { 11389 if (sl->state.branches) 11390 goto next; 11391 if (sl->state.insn_idx != insn || 11392 sl->state.curframe != cur->curframe) 11393 goto next; 11394 for (i = 0; i <= cur->curframe; i++) 11395 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11396 goto next; 11397 clean_verifier_state(env, &sl->state); 11398 next: 11399 sl = sl->next; 11400 } 11401 } 11402 11403 /* Returns true if (rold safe implies rcur safe) */ 11404 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11405 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11406 { 11407 bool equal; 11408 11409 if (!(rold->live & REG_LIVE_READ)) 11410 /* explored state didn't use this */ 11411 return true; 11412 11413 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11414 11415 if (rold->type == PTR_TO_STACK) 11416 /* two stack pointers are equal only if they're pointing to 11417 * the same stack frame, since fp-8 in foo != fp-8 in bar 11418 */ 11419 return equal && rold->frameno == rcur->frameno; 11420 11421 if (equal) 11422 return true; 11423 11424 if (rold->type == NOT_INIT) 11425 /* explored state can't have used this */ 11426 return true; 11427 if (rcur->type == NOT_INIT) 11428 return false; 11429 switch (base_type(rold->type)) { 11430 case SCALAR_VALUE: 11431 if (env->explore_alu_limits) 11432 return false; 11433 if (rcur->type == SCALAR_VALUE) { 11434 if (!rold->precise && !rcur->precise) 11435 return true; 11436 /* new val must satisfy old val knowledge */ 11437 return range_within(rold, rcur) && 11438 tnum_in(rold->var_off, rcur->var_off); 11439 } else { 11440 /* We're trying to use a pointer in place of a scalar. 11441 * Even if the scalar was unbounded, this could lead to 11442 * pointer leaks because scalars are allowed to leak 11443 * while pointers are not. We could make this safe in 11444 * special cases if root is calling us, but it's 11445 * probably not worth the hassle. 11446 */ 11447 return false; 11448 } 11449 case PTR_TO_MAP_KEY: 11450 case PTR_TO_MAP_VALUE: 11451 /* a PTR_TO_MAP_VALUE could be safe to use as a 11452 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11453 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11454 * checked, doing so could have affected others with the same 11455 * id, and we can't check for that because we lost the id when 11456 * we converted to a PTR_TO_MAP_VALUE. 11457 */ 11458 if (type_may_be_null(rold->type)) { 11459 if (!type_may_be_null(rcur->type)) 11460 return false; 11461 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11462 return false; 11463 /* Check our ids match any regs they're supposed to */ 11464 return check_ids(rold->id, rcur->id, idmap); 11465 } 11466 11467 /* If the new min/max/var_off satisfy the old ones and 11468 * everything else matches, we are OK. 11469 * 'id' is not compared, since it's only used for maps with 11470 * bpf_spin_lock inside map element and in such cases if 11471 * the rest of the prog is valid for one map element then 11472 * it's valid for all map elements regardless of the key 11473 * used in bpf_map_lookup() 11474 */ 11475 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11476 range_within(rold, rcur) && 11477 tnum_in(rold->var_off, rcur->var_off); 11478 case PTR_TO_PACKET_META: 11479 case PTR_TO_PACKET: 11480 if (rcur->type != rold->type) 11481 return false; 11482 /* We must have at least as much range as the old ptr 11483 * did, so that any accesses which were safe before are 11484 * still safe. This is true even if old range < old off, 11485 * since someone could have accessed through (ptr - k), or 11486 * even done ptr -= k in a register, to get a safe access. 11487 */ 11488 if (rold->range > rcur->range) 11489 return false; 11490 /* If the offsets don't match, we can't trust our alignment; 11491 * nor can we be sure that we won't fall out of range. 11492 */ 11493 if (rold->off != rcur->off) 11494 return false; 11495 /* id relations must be preserved */ 11496 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11497 return false; 11498 /* new val must satisfy old val knowledge */ 11499 return range_within(rold, rcur) && 11500 tnum_in(rold->var_off, rcur->var_off); 11501 case PTR_TO_CTX: 11502 case CONST_PTR_TO_MAP: 11503 case PTR_TO_PACKET_END: 11504 case PTR_TO_FLOW_KEYS: 11505 case PTR_TO_SOCKET: 11506 case PTR_TO_SOCK_COMMON: 11507 case PTR_TO_TCP_SOCK: 11508 case PTR_TO_XDP_SOCK: 11509 /* Only valid matches are exact, which memcmp() above 11510 * would have accepted 11511 */ 11512 default: 11513 /* Don't know what's going on, just say it's not safe */ 11514 return false; 11515 } 11516 11517 /* Shouldn't get here; if we do, say it's not safe */ 11518 WARN_ON_ONCE(1); 11519 return false; 11520 } 11521 11522 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11523 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11524 { 11525 int i, spi; 11526 11527 /* walk slots of the explored stack and ignore any additional 11528 * slots in the current stack, since explored(safe) state 11529 * didn't use them 11530 */ 11531 for (i = 0; i < old->allocated_stack; i++) { 11532 spi = i / BPF_REG_SIZE; 11533 11534 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11535 i += BPF_REG_SIZE - 1; 11536 /* explored state didn't use this */ 11537 continue; 11538 } 11539 11540 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11541 continue; 11542 11543 /* explored stack has more populated slots than current stack 11544 * and these slots were used 11545 */ 11546 if (i >= cur->allocated_stack) 11547 return false; 11548 11549 /* if old state was safe with misc data in the stack 11550 * it will be safe with zero-initialized stack. 11551 * The opposite is not true 11552 */ 11553 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11554 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11555 continue; 11556 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11557 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11558 /* Ex: old explored (safe) state has STACK_SPILL in 11559 * this stack slot, but current has STACK_MISC -> 11560 * this verifier states are not equivalent, 11561 * return false to continue verification of this path 11562 */ 11563 return false; 11564 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11565 continue; 11566 if (!is_spilled_reg(&old->stack[spi])) 11567 continue; 11568 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11569 &cur->stack[spi].spilled_ptr, idmap)) 11570 /* when explored and current stack slot are both storing 11571 * spilled registers, check that stored pointers types 11572 * are the same as well. 11573 * Ex: explored safe path could have stored 11574 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11575 * but current path has stored: 11576 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11577 * such verifier states are not equivalent. 11578 * return false to continue verification of this path 11579 */ 11580 return false; 11581 } 11582 return true; 11583 } 11584 11585 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11586 { 11587 if (old->acquired_refs != cur->acquired_refs) 11588 return false; 11589 return !memcmp(old->refs, cur->refs, 11590 sizeof(*old->refs) * old->acquired_refs); 11591 } 11592 11593 /* compare two verifier states 11594 * 11595 * all states stored in state_list are known to be valid, since 11596 * verifier reached 'bpf_exit' instruction through them 11597 * 11598 * this function is called when verifier exploring different branches of 11599 * execution popped from the state stack. If it sees an old state that has 11600 * more strict register state and more strict stack state then this execution 11601 * branch doesn't need to be explored further, since verifier already 11602 * concluded that more strict state leads to valid finish. 11603 * 11604 * Therefore two states are equivalent if register state is more conservative 11605 * and explored stack state is more conservative than the current one. 11606 * Example: 11607 * explored current 11608 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11609 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11610 * 11611 * In other words if current stack state (one being explored) has more 11612 * valid slots than old one that already passed validation, it means 11613 * the verifier can stop exploring and conclude that current state is valid too 11614 * 11615 * Similarly with registers. If explored state has register type as invalid 11616 * whereas register type in current state is meaningful, it means that 11617 * the current state will reach 'bpf_exit' instruction safely 11618 */ 11619 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11620 struct bpf_func_state *cur) 11621 { 11622 int i; 11623 11624 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11625 for (i = 0; i < MAX_BPF_REG; i++) 11626 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11627 env->idmap_scratch)) 11628 return false; 11629 11630 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11631 return false; 11632 11633 if (!refsafe(old, cur)) 11634 return false; 11635 11636 return true; 11637 } 11638 11639 static bool states_equal(struct bpf_verifier_env *env, 11640 struct bpf_verifier_state *old, 11641 struct bpf_verifier_state *cur) 11642 { 11643 int i; 11644 11645 if (old->curframe != cur->curframe) 11646 return false; 11647 11648 /* Verification state from speculative execution simulation 11649 * must never prune a non-speculative execution one. 11650 */ 11651 if (old->speculative && !cur->speculative) 11652 return false; 11653 11654 if (old->active_spin_lock != cur->active_spin_lock) 11655 return false; 11656 11657 /* for states to be equal callsites have to be the same 11658 * and all frame states need to be equivalent 11659 */ 11660 for (i = 0; i <= old->curframe; i++) { 11661 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11662 return false; 11663 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11664 return false; 11665 } 11666 return true; 11667 } 11668 11669 /* Return 0 if no propagation happened. Return negative error code if error 11670 * happened. Otherwise, return the propagated bit. 11671 */ 11672 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11673 struct bpf_reg_state *reg, 11674 struct bpf_reg_state *parent_reg) 11675 { 11676 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11677 u8 flag = reg->live & REG_LIVE_READ; 11678 int err; 11679 11680 /* When comes here, read flags of PARENT_REG or REG could be any of 11681 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11682 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11683 */ 11684 if (parent_flag == REG_LIVE_READ64 || 11685 /* Or if there is no read flag from REG. */ 11686 !flag || 11687 /* Or if the read flag from REG is the same as PARENT_REG. */ 11688 parent_flag == flag) 11689 return 0; 11690 11691 err = mark_reg_read(env, reg, parent_reg, flag); 11692 if (err) 11693 return err; 11694 11695 return flag; 11696 } 11697 11698 /* A write screens off any subsequent reads; but write marks come from the 11699 * straight-line code between a state and its parent. When we arrive at an 11700 * equivalent state (jump target or such) we didn't arrive by the straight-line 11701 * code, so read marks in the state must propagate to the parent regardless 11702 * of the state's write marks. That's what 'parent == state->parent' comparison 11703 * in mark_reg_read() is for. 11704 */ 11705 static int propagate_liveness(struct bpf_verifier_env *env, 11706 const struct bpf_verifier_state *vstate, 11707 struct bpf_verifier_state *vparent) 11708 { 11709 struct bpf_reg_state *state_reg, *parent_reg; 11710 struct bpf_func_state *state, *parent; 11711 int i, frame, err = 0; 11712 11713 if (vparent->curframe != vstate->curframe) { 11714 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11715 vparent->curframe, vstate->curframe); 11716 return -EFAULT; 11717 } 11718 /* Propagate read liveness of registers... */ 11719 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11720 for (frame = 0; frame <= vstate->curframe; frame++) { 11721 parent = vparent->frame[frame]; 11722 state = vstate->frame[frame]; 11723 parent_reg = parent->regs; 11724 state_reg = state->regs; 11725 /* We don't need to worry about FP liveness, it's read-only */ 11726 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11727 err = propagate_liveness_reg(env, &state_reg[i], 11728 &parent_reg[i]); 11729 if (err < 0) 11730 return err; 11731 if (err == REG_LIVE_READ64) 11732 mark_insn_zext(env, &parent_reg[i]); 11733 } 11734 11735 /* Propagate stack slots. */ 11736 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11737 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11738 parent_reg = &parent->stack[i].spilled_ptr; 11739 state_reg = &state->stack[i].spilled_ptr; 11740 err = propagate_liveness_reg(env, state_reg, 11741 parent_reg); 11742 if (err < 0) 11743 return err; 11744 } 11745 } 11746 return 0; 11747 } 11748 11749 /* find precise scalars in the previous equivalent state and 11750 * propagate them into the current state 11751 */ 11752 static int propagate_precision(struct bpf_verifier_env *env, 11753 const struct bpf_verifier_state *old) 11754 { 11755 struct bpf_reg_state *state_reg; 11756 struct bpf_func_state *state; 11757 int i, err = 0; 11758 11759 state = old->frame[old->curframe]; 11760 state_reg = state->regs; 11761 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11762 if (state_reg->type != SCALAR_VALUE || 11763 !state_reg->precise) 11764 continue; 11765 if (env->log.level & BPF_LOG_LEVEL2) 11766 verbose(env, "propagating r%d\n", i); 11767 err = mark_chain_precision(env, i); 11768 if (err < 0) 11769 return err; 11770 } 11771 11772 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11773 if (!is_spilled_reg(&state->stack[i])) 11774 continue; 11775 state_reg = &state->stack[i].spilled_ptr; 11776 if (state_reg->type != SCALAR_VALUE || 11777 !state_reg->precise) 11778 continue; 11779 if (env->log.level & BPF_LOG_LEVEL2) 11780 verbose(env, "propagating fp%d\n", 11781 (-i - 1) * BPF_REG_SIZE); 11782 err = mark_chain_precision_stack(env, i); 11783 if (err < 0) 11784 return err; 11785 } 11786 return 0; 11787 } 11788 11789 static bool states_maybe_looping(struct bpf_verifier_state *old, 11790 struct bpf_verifier_state *cur) 11791 { 11792 struct bpf_func_state *fold, *fcur; 11793 int i, fr = cur->curframe; 11794 11795 if (old->curframe != fr) 11796 return false; 11797 11798 fold = old->frame[fr]; 11799 fcur = cur->frame[fr]; 11800 for (i = 0; i < MAX_BPF_REG; i++) 11801 if (memcmp(&fold->regs[i], &fcur->regs[i], 11802 offsetof(struct bpf_reg_state, parent))) 11803 return false; 11804 return true; 11805 } 11806 11807 11808 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11809 { 11810 struct bpf_verifier_state_list *new_sl; 11811 struct bpf_verifier_state_list *sl, **pprev; 11812 struct bpf_verifier_state *cur = env->cur_state, *new; 11813 int i, j, err, states_cnt = 0; 11814 bool add_new_state = env->test_state_freq ? true : false; 11815 11816 cur->last_insn_idx = env->prev_insn_idx; 11817 if (!env->insn_aux_data[insn_idx].prune_point) 11818 /* this 'insn_idx' instruction wasn't marked, so we will not 11819 * be doing state search here 11820 */ 11821 return 0; 11822 11823 /* bpf progs typically have pruning point every 4 instructions 11824 * http://vger.kernel.org/bpfconf2019.html#session-1 11825 * Do not add new state for future pruning if the verifier hasn't seen 11826 * at least 2 jumps and at least 8 instructions. 11827 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11828 * In tests that amounts to up to 50% reduction into total verifier 11829 * memory consumption and 20% verifier time speedup. 11830 */ 11831 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11832 env->insn_processed - env->prev_insn_processed >= 8) 11833 add_new_state = true; 11834 11835 pprev = explored_state(env, insn_idx); 11836 sl = *pprev; 11837 11838 clean_live_states(env, insn_idx, cur); 11839 11840 while (sl) { 11841 states_cnt++; 11842 if (sl->state.insn_idx != insn_idx) 11843 goto next; 11844 11845 if (sl->state.branches) { 11846 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11847 11848 if (frame->in_async_callback_fn && 11849 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11850 /* Different async_entry_cnt means that the verifier is 11851 * processing another entry into async callback. 11852 * Seeing the same state is not an indication of infinite 11853 * loop or infinite recursion. 11854 * But finding the same state doesn't mean that it's safe 11855 * to stop processing the current state. The previous state 11856 * hasn't yet reached bpf_exit, since state.branches > 0. 11857 * Checking in_async_callback_fn alone is not enough either. 11858 * Since the verifier still needs to catch infinite loops 11859 * inside async callbacks. 11860 */ 11861 } else if (states_maybe_looping(&sl->state, cur) && 11862 states_equal(env, &sl->state, cur)) { 11863 verbose_linfo(env, insn_idx, "; "); 11864 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11865 return -EINVAL; 11866 } 11867 /* if the verifier is processing a loop, avoid adding new state 11868 * too often, since different loop iterations have distinct 11869 * states and may not help future pruning. 11870 * This threshold shouldn't be too low to make sure that 11871 * a loop with large bound will be rejected quickly. 11872 * The most abusive loop will be: 11873 * r1 += 1 11874 * if r1 < 1000000 goto pc-2 11875 * 1M insn_procssed limit / 100 == 10k peak states. 11876 * This threshold shouldn't be too high either, since states 11877 * at the end of the loop are likely to be useful in pruning. 11878 */ 11879 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11880 env->insn_processed - env->prev_insn_processed < 100) 11881 add_new_state = false; 11882 goto miss; 11883 } 11884 if (states_equal(env, &sl->state, cur)) { 11885 sl->hit_cnt++; 11886 /* reached equivalent register/stack state, 11887 * prune the search. 11888 * Registers read by the continuation are read by us. 11889 * If we have any write marks in env->cur_state, they 11890 * will prevent corresponding reads in the continuation 11891 * from reaching our parent (an explored_state). Our 11892 * own state will get the read marks recorded, but 11893 * they'll be immediately forgotten as we're pruning 11894 * this state and will pop a new one. 11895 */ 11896 err = propagate_liveness(env, &sl->state, cur); 11897 11898 /* if previous state reached the exit with precision and 11899 * current state is equivalent to it (except precsion marks) 11900 * the precision needs to be propagated back in 11901 * the current state. 11902 */ 11903 err = err ? : push_jmp_history(env, cur); 11904 err = err ? : propagate_precision(env, &sl->state); 11905 if (err) 11906 return err; 11907 return 1; 11908 } 11909 miss: 11910 /* when new state is not going to be added do not increase miss count. 11911 * Otherwise several loop iterations will remove the state 11912 * recorded earlier. The goal of these heuristics is to have 11913 * states from some iterations of the loop (some in the beginning 11914 * and some at the end) to help pruning. 11915 */ 11916 if (add_new_state) 11917 sl->miss_cnt++; 11918 /* heuristic to determine whether this state is beneficial 11919 * to keep checking from state equivalence point of view. 11920 * Higher numbers increase max_states_per_insn and verification time, 11921 * but do not meaningfully decrease insn_processed. 11922 */ 11923 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11924 /* the state is unlikely to be useful. Remove it to 11925 * speed up verification 11926 */ 11927 *pprev = sl->next; 11928 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11929 u32 br = sl->state.branches; 11930 11931 WARN_ONCE(br, 11932 "BUG live_done but branches_to_explore %d\n", 11933 br); 11934 free_verifier_state(&sl->state, false); 11935 kfree(sl); 11936 env->peak_states--; 11937 } else { 11938 /* cannot free this state, since parentage chain may 11939 * walk it later. Add it for free_list instead to 11940 * be freed at the end of verification 11941 */ 11942 sl->next = env->free_list; 11943 env->free_list = sl; 11944 } 11945 sl = *pprev; 11946 continue; 11947 } 11948 next: 11949 pprev = &sl->next; 11950 sl = *pprev; 11951 } 11952 11953 if (env->max_states_per_insn < states_cnt) 11954 env->max_states_per_insn = states_cnt; 11955 11956 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11957 return push_jmp_history(env, cur); 11958 11959 if (!add_new_state) 11960 return push_jmp_history(env, cur); 11961 11962 /* There were no equivalent states, remember the current one. 11963 * Technically the current state is not proven to be safe yet, 11964 * but it will either reach outer most bpf_exit (which means it's safe) 11965 * or it will be rejected. When there are no loops the verifier won't be 11966 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11967 * again on the way to bpf_exit. 11968 * When looping the sl->state.branches will be > 0 and this state 11969 * will not be considered for equivalence until branches == 0. 11970 */ 11971 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11972 if (!new_sl) 11973 return -ENOMEM; 11974 env->total_states++; 11975 env->peak_states++; 11976 env->prev_jmps_processed = env->jmps_processed; 11977 env->prev_insn_processed = env->insn_processed; 11978 11979 /* add new state to the head of linked list */ 11980 new = &new_sl->state; 11981 err = copy_verifier_state(new, cur); 11982 if (err) { 11983 free_verifier_state(new, false); 11984 kfree(new_sl); 11985 return err; 11986 } 11987 new->insn_idx = insn_idx; 11988 WARN_ONCE(new->branches != 1, 11989 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11990 11991 cur->parent = new; 11992 cur->first_insn_idx = insn_idx; 11993 clear_jmp_history(cur); 11994 new_sl->next = *explored_state(env, insn_idx); 11995 *explored_state(env, insn_idx) = new_sl; 11996 /* connect new state to parentage chain. Current frame needs all 11997 * registers connected. Only r6 - r9 of the callers are alive (pushed 11998 * to the stack implicitly by JITs) so in callers' frames connect just 11999 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 12000 * the state of the call instruction (with WRITTEN set), and r0 comes 12001 * from callee with its full parentage chain, anyway. 12002 */ 12003 /* clear write marks in current state: the writes we did are not writes 12004 * our child did, so they don't screen off its reads from us. 12005 * (There are no read marks in current state, because reads always mark 12006 * their parent and current state never has children yet. Only 12007 * explored_states can get read marks.) 12008 */ 12009 for (j = 0; j <= cur->curframe; j++) { 12010 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 12011 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 12012 for (i = 0; i < BPF_REG_FP; i++) 12013 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 12014 } 12015 12016 /* all stack frames are accessible from callee, clear them all */ 12017 for (j = 0; j <= cur->curframe; j++) { 12018 struct bpf_func_state *frame = cur->frame[j]; 12019 struct bpf_func_state *newframe = new->frame[j]; 12020 12021 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 12022 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 12023 frame->stack[i].spilled_ptr.parent = 12024 &newframe->stack[i].spilled_ptr; 12025 } 12026 } 12027 return 0; 12028 } 12029 12030 /* Return true if it's OK to have the same insn return a different type. */ 12031 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 12032 { 12033 switch (base_type(type)) { 12034 case PTR_TO_CTX: 12035 case PTR_TO_SOCKET: 12036 case PTR_TO_SOCK_COMMON: 12037 case PTR_TO_TCP_SOCK: 12038 case PTR_TO_XDP_SOCK: 12039 case PTR_TO_BTF_ID: 12040 return false; 12041 default: 12042 return true; 12043 } 12044 } 12045 12046 /* If an instruction was previously used with particular pointer types, then we 12047 * need to be careful to avoid cases such as the below, where it may be ok 12048 * for one branch accessing the pointer, but not ok for the other branch: 12049 * 12050 * R1 = sock_ptr 12051 * goto X; 12052 * ... 12053 * R1 = some_other_valid_ptr; 12054 * goto X; 12055 * ... 12056 * R2 = *(u32 *)(R1 + 0); 12057 */ 12058 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 12059 { 12060 return src != prev && (!reg_type_mismatch_ok(src) || 12061 !reg_type_mismatch_ok(prev)); 12062 } 12063 12064 static int do_check(struct bpf_verifier_env *env) 12065 { 12066 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12067 struct bpf_verifier_state *state = env->cur_state; 12068 struct bpf_insn *insns = env->prog->insnsi; 12069 struct bpf_reg_state *regs; 12070 int insn_cnt = env->prog->len; 12071 bool do_print_state = false; 12072 int prev_insn_idx = -1; 12073 12074 for (;;) { 12075 struct bpf_insn *insn; 12076 u8 class; 12077 int err; 12078 12079 env->prev_insn_idx = prev_insn_idx; 12080 if (env->insn_idx >= insn_cnt) { 12081 verbose(env, "invalid insn idx %d insn_cnt %d\n", 12082 env->insn_idx, insn_cnt); 12083 return -EFAULT; 12084 } 12085 12086 insn = &insns[env->insn_idx]; 12087 class = BPF_CLASS(insn->code); 12088 12089 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 12090 verbose(env, 12091 "BPF program is too large. Processed %d insn\n", 12092 env->insn_processed); 12093 return -E2BIG; 12094 } 12095 12096 err = is_state_visited(env, env->insn_idx); 12097 if (err < 0) 12098 return err; 12099 if (err == 1) { 12100 /* found equivalent state, can prune the search */ 12101 if (env->log.level & BPF_LOG_LEVEL) { 12102 if (do_print_state) 12103 verbose(env, "\nfrom %d to %d%s: safe\n", 12104 env->prev_insn_idx, env->insn_idx, 12105 env->cur_state->speculative ? 12106 " (speculative execution)" : ""); 12107 else 12108 verbose(env, "%d: safe\n", env->insn_idx); 12109 } 12110 goto process_bpf_exit; 12111 } 12112 12113 if (signal_pending(current)) 12114 return -EAGAIN; 12115 12116 if (need_resched()) 12117 cond_resched(); 12118 12119 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12120 verbose(env, "\nfrom %d to %d%s:", 12121 env->prev_insn_idx, env->insn_idx, 12122 env->cur_state->speculative ? 12123 " (speculative execution)" : ""); 12124 print_verifier_state(env, state->frame[state->curframe], true); 12125 do_print_state = false; 12126 } 12127 12128 if (env->log.level & BPF_LOG_LEVEL) { 12129 const struct bpf_insn_cbs cbs = { 12130 .cb_call = disasm_kfunc_name, 12131 .cb_print = verbose, 12132 .private_data = env, 12133 }; 12134 12135 if (verifier_state_scratched(env)) 12136 print_insn_state(env, state->frame[state->curframe]); 12137 12138 verbose_linfo(env, env->insn_idx, "; "); 12139 env->prev_log_len = env->log.len_used; 12140 verbose(env, "%d: ", env->insn_idx); 12141 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12142 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12143 env->prev_log_len = env->log.len_used; 12144 } 12145 12146 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12147 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12148 env->prev_insn_idx); 12149 if (err) 12150 return err; 12151 } 12152 12153 regs = cur_regs(env); 12154 sanitize_mark_insn_seen(env); 12155 prev_insn_idx = env->insn_idx; 12156 12157 if (class == BPF_ALU || class == BPF_ALU64) { 12158 err = check_alu_op(env, insn); 12159 if (err) 12160 return err; 12161 12162 } else if (class == BPF_LDX) { 12163 enum bpf_reg_type *prev_src_type, src_reg_type; 12164 12165 /* check for reserved fields is already done */ 12166 12167 /* check src operand */ 12168 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12169 if (err) 12170 return err; 12171 12172 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12173 if (err) 12174 return err; 12175 12176 src_reg_type = regs[insn->src_reg].type; 12177 12178 /* check that memory (src_reg + off) is readable, 12179 * the state of dst_reg will be updated by this func 12180 */ 12181 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12182 insn->off, BPF_SIZE(insn->code), 12183 BPF_READ, insn->dst_reg, false); 12184 if (err) 12185 return err; 12186 12187 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12188 12189 if (*prev_src_type == NOT_INIT) { 12190 /* saw a valid insn 12191 * dst_reg = *(u32 *)(src_reg + off) 12192 * save type to validate intersecting paths 12193 */ 12194 *prev_src_type = src_reg_type; 12195 12196 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12197 /* ABuser program is trying to use the same insn 12198 * dst_reg = *(u32*) (src_reg + off) 12199 * with different pointer types: 12200 * src_reg == ctx in one branch and 12201 * src_reg == stack|map in some other branch. 12202 * Reject it. 12203 */ 12204 verbose(env, "same insn cannot be used with different pointers\n"); 12205 return -EINVAL; 12206 } 12207 12208 } else if (class == BPF_STX) { 12209 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12210 12211 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12212 err = check_atomic(env, env->insn_idx, insn); 12213 if (err) 12214 return err; 12215 env->insn_idx++; 12216 continue; 12217 } 12218 12219 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12220 verbose(env, "BPF_STX uses reserved fields\n"); 12221 return -EINVAL; 12222 } 12223 12224 /* check src1 operand */ 12225 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12226 if (err) 12227 return err; 12228 /* check src2 operand */ 12229 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12230 if (err) 12231 return err; 12232 12233 dst_reg_type = regs[insn->dst_reg].type; 12234 12235 /* check that memory (dst_reg + off) is writeable */ 12236 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12237 insn->off, BPF_SIZE(insn->code), 12238 BPF_WRITE, insn->src_reg, false); 12239 if (err) 12240 return err; 12241 12242 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12243 12244 if (*prev_dst_type == NOT_INIT) { 12245 *prev_dst_type = dst_reg_type; 12246 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12247 verbose(env, "same insn cannot be used with different pointers\n"); 12248 return -EINVAL; 12249 } 12250 12251 } else if (class == BPF_ST) { 12252 if (BPF_MODE(insn->code) != BPF_MEM || 12253 insn->src_reg != BPF_REG_0) { 12254 verbose(env, "BPF_ST uses reserved fields\n"); 12255 return -EINVAL; 12256 } 12257 /* check src operand */ 12258 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12259 if (err) 12260 return err; 12261 12262 if (is_ctx_reg(env, insn->dst_reg)) { 12263 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12264 insn->dst_reg, 12265 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12266 return -EACCES; 12267 } 12268 12269 /* check that memory (dst_reg + off) is writeable */ 12270 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12271 insn->off, BPF_SIZE(insn->code), 12272 BPF_WRITE, -1, false); 12273 if (err) 12274 return err; 12275 12276 } else if (class == BPF_JMP || class == BPF_JMP32) { 12277 u8 opcode = BPF_OP(insn->code); 12278 12279 env->jmps_processed++; 12280 if (opcode == BPF_CALL) { 12281 if (BPF_SRC(insn->code) != BPF_K || 12282 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12283 && insn->off != 0) || 12284 (insn->src_reg != BPF_REG_0 && 12285 insn->src_reg != BPF_PSEUDO_CALL && 12286 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12287 insn->dst_reg != BPF_REG_0 || 12288 class == BPF_JMP32) { 12289 verbose(env, "BPF_CALL uses reserved fields\n"); 12290 return -EINVAL; 12291 } 12292 12293 if (env->cur_state->active_spin_lock && 12294 (insn->src_reg == BPF_PSEUDO_CALL || 12295 insn->imm != BPF_FUNC_spin_unlock)) { 12296 verbose(env, "function calls are not allowed while holding a lock\n"); 12297 return -EINVAL; 12298 } 12299 if (insn->src_reg == BPF_PSEUDO_CALL) 12300 err = check_func_call(env, insn, &env->insn_idx); 12301 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12302 err = check_kfunc_call(env, insn, &env->insn_idx); 12303 else 12304 err = check_helper_call(env, insn, &env->insn_idx); 12305 if (err) 12306 return err; 12307 } else if (opcode == BPF_JA) { 12308 if (BPF_SRC(insn->code) != BPF_K || 12309 insn->imm != 0 || 12310 insn->src_reg != BPF_REG_0 || 12311 insn->dst_reg != BPF_REG_0 || 12312 class == BPF_JMP32) { 12313 verbose(env, "BPF_JA uses reserved fields\n"); 12314 return -EINVAL; 12315 } 12316 12317 env->insn_idx += insn->off + 1; 12318 continue; 12319 12320 } else if (opcode == BPF_EXIT) { 12321 if (BPF_SRC(insn->code) != BPF_K || 12322 insn->imm != 0 || 12323 insn->src_reg != BPF_REG_0 || 12324 insn->dst_reg != BPF_REG_0 || 12325 class == BPF_JMP32) { 12326 verbose(env, "BPF_EXIT uses reserved fields\n"); 12327 return -EINVAL; 12328 } 12329 12330 if (env->cur_state->active_spin_lock) { 12331 verbose(env, "bpf_spin_unlock is missing\n"); 12332 return -EINVAL; 12333 } 12334 12335 if (state->curframe) { 12336 /* exit from nested function */ 12337 err = prepare_func_exit(env, &env->insn_idx); 12338 if (err) 12339 return err; 12340 do_print_state = true; 12341 continue; 12342 } 12343 12344 err = check_reference_leak(env); 12345 if (err) 12346 return err; 12347 12348 err = check_return_code(env); 12349 if (err) 12350 return err; 12351 process_bpf_exit: 12352 mark_verifier_state_scratched(env); 12353 update_branch_counts(env, env->cur_state); 12354 err = pop_stack(env, &prev_insn_idx, 12355 &env->insn_idx, pop_log); 12356 if (err < 0) { 12357 if (err != -ENOENT) 12358 return err; 12359 break; 12360 } else { 12361 do_print_state = true; 12362 continue; 12363 } 12364 } else { 12365 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12366 if (err) 12367 return err; 12368 } 12369 } else if (class == BPF_LD) { 12370 u8 mode = BPF_MODE(insn->code); 12371 12372 if (mode == BPF_ABS || mode == BPF_IND) { 12373 err = check_ld_abs(env, insn); 12374 if (err) 12375 return err; 12376 12377 } else if (mode == BPF_IMM) { 12378 err = check_ld_imm(env, insn); 12379 if (err) 12380 return err; 12381 12382 env->insn_idx++; 12383 sanitize_mark_insn_seen(env); 12384 } else { 12385 verbose(env, "invalid BPF_LD mode\n"); 12386 return -EINVAL; 12387 } 12388 } else { 12389 verbose(env, "unknown insn class %d\n", class); 12390 return -EINVAL; 12391 } 12392 12393 env->insn_idx++; 12394 } 12395 12396 return 0; 12397 } 12398 12399 static int find_btf_percpu_datasec(struct btf *btf) 12400 { 12401 const struct btf_type *t; 12402 const char *tname; 12403 int i, n; 12404 12405 /* 12406 * Both vmlinux and module each have their own ".data..percpu" 12407 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12408 * types to look at only module's own BTF types. 12409 */ 12410 n = btf_nr_types(btf); 12411 if (btf_is_module(btf)) 12412 i = btf_nr_types(btf_vmlinux); 12413 else 12414 i = 1; 12415 12416 for(; i < n; i++) { 12417 t = btf_type_by_id(btf, i); 12418 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12419 continue; 12420 12421 tname = btf_name_by_offset(btf, t->name_off); 12422 if (!strcmp(tname, ".data..percpu")) 12423 return i; 12424 } 12425 12426 return -ENOENT; 12427 } 12428 12429 /* replace pseudo btf_id with kernel symbol address */ 12430 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12431 struct bpf_insn *insn, 12432 struct bpf_insn_aux_data *aux) 12433 { 12434 const struct btf_var_secinfo *vsi; 12435 const struct btf_type *datasec; 12436 struct btf_mod_pair *btf_mod; 12437 const struct btf_type *t; 12438 const char *sym_name; 12439 bool percpu = false; 12440 u32 type, id = insn->imm; 12441 struct btf *btf; 12442 s32 datasec_id; 12443 u64 addr; 12444 int i, btf_fd, err; 12445 12446 btf_fd = insn[1].imm; 12447 if (btf_fd) { 12448 btf = btf_get_by_fd(btf_fd); 12449 if (IS_ERR(btf)) { 12450 verbose(env, "invalid module BTF object FD specified.\n"); 12451 return -EINVAL; 12452 } 12453 } else { 12454 if (!btf_vmlinux) { 12455 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12456 return -EINVAL; 12457 } 12458 btf = btf_vmlinux; 12459 btf_get(btf); 12460 } 12461 12462 t = btf_type_by_id(btf, id); 12463 if (!t) { 12464 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12465 err = -ENOENT; 12466 goto err_put; 12467 } 12468 12469 if (!btf_type_is_var(t)) { 12470 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12471 err = -EINVAL; 12472 goto err_put; 12473 } 12474 12475 sym_name = btf_name_by_offset(btf, t->name_off); 12476 addr = kallsyms_lookup_name(sym_name); 12477 if (!addr) { 12478 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12479 sym_name); 12480 err = -ENOENT; 12481 goto err_put; 12482 } 12483 12484 datasec_id = find_btf_percpu_datasec(btf); 12485 if (datasec_id > 0) { 12486 datasec = btf_type_by_id(btf, datasec_id); 12487 for_each_vsi(i, datasec, vsi) { 12488 if (vsi->type == id) { 12489 percpu = true; 12490 break; 12491 } 12492 } 12493 } 12494 12495 insn[0].imm = (u32)addr; 12496 insn[1].imm = addr >> 32; 12497 12498 type = t->type; 12499 t = btf_type_skip_modifiers(btf, type, NULL); 12500 if (percpu) { 12501 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12502 aux->btf_var.btf = btf; 12503 aux->btf_var.btf_id = type; 12504 } else if (!btf_type_is_struct(t)) { 12505 const struct btf_type *ret; 12506 const char *tname; 12507 u32 tsize; 12508 12509 /* resolve the type size of ksym. */ 12510 ret = btf_resolve_size(btf, t, &tsize); 12511 if (IS_ERR(ret)) { 12512 tname = btf_name_by_offset(btf, t->name_off); 12513 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12514 tname, PTR_ERR(ret)); 12515 err = -EINVAL; 12516 goto err_put; 12517 } 12518 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12519 aux->btf_var.mem_size = tsize; 12520 } else { 12521 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12522 aux->btf_var.btf = btf; 12523 aux->btf_var.btf_id = type; 12524 } 12525 12526 /* check whether we recorded this BTF (and maybe module) already */ 12527 for (i = 0; i < env->used_btf_cnt; i++) { 12528 if (env->used_btfs[i].btf == btf) { 12529 btf_put(btf); 12530 return 0; 12531 } 12532 } 12533 12534 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12535 err = -E2BIG; 12536 goto err_put; 12537 } 12538 12539 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12540 btf_mod->btf = btf; 12541 btf_mod->module = NULL; 12542 12543 /* if we reference variables from kernel module, bump its refcount */ 12544 if (btf_is_module(btf)) { 12545 btf_mod->module = btf_try_get_module(btf); 12546 if (!btf_mod->module) { 12547 err = -ENXIO; 12548 goto err_put; 12549 } 12550 } 12551 12552 env->used_btf_cnt++; 12553 12554 return 0; 12555 err_put: 12556 btf_put(btf); 12557 return err; 12558 } 12559 12560 static int check_map_prealloc(struct bpf_map *map) 12561 { 12562 return (map->map_type != BPF_MAP_TYPE_HASH && 12563 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 12564 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 12565 !(map->map_flags & BPF_F_NO_PREALLOC); 12566 } 12567 12568 static bool is_tracing_prog_type(enum bpf_prog_type type) 12569 { 12570 switch (type) { 12571 case BPF_PROG_TYPE_KPROBE: 12572 case BPF_PROG_TYPE_TRACEPOINT: 12573 case BPF_PROG_TYPE_PERF_EVENT: 12574 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12575 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 12576 return true; 12577 default: 12578 return false; 12579 } 12580 } 12581 12582 static bool is_preallocated_map(struct bpf_map *map) 12583 { 12584 if (!check_map_prealloc(map)) 12585 return false; 12586 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 12587 return false; 12588 return true; 12589 } 12590 12591 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12592 struct bpf_map *map, 12593 struct bpf_prog *prog) 12594 12595 { 12596 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12597 /* 12598 * Validate that trace type programs use preallocated hash maps. 12599 * 12600 * For programs attached to PERF events this is mandatory as the 12601 * perf NMI can hit any arbitrary code sequence. 12602 * 12603 * All other trace types using preallocated hash maps are unsafe as 12604 * well because tracepoint or kprobes can be inside locked regions 12605 * of the memory allocator or at a place where a recursion into the 12606 * memory allocator would see inconsistent state. 12607 * 12608 * On RT enabled kernels run-time allocation of all trace type 12609 * programs is strictly prohibited due to lock type constraints. On 12610 * !RT kernels it is allowed for backwards compatibility reasons for 12611 * now, but warnings are emitted so developers are made aware of 12612 * the unsafety and can fix their programs before this is enforced. 12613 */ 12614 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 12615 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 12616 verbose(env, "perf_event programs can only use preallocated hash map\n"); 12617 return -EINVAL; 12618 } 12619 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 12620 verbose(env, "trace type programs can only use preallocated hash map\n"); 12621 return -EINVAL; 12622 } 12623 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 12624 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 12625 } 12626 12627 if (map_value_has_spin_lock(map)) { 12628 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12629 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12630 return -EINVAL; 12631 } 12632 12633 if (is_tracing_prog_type(prog_type)) { 12634 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12635 return -EINVAL; 12636 } 12637 12638 if (prog->aux->sleepable) { 12639 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12640 return -EINVAL; 12641 } 12642 } 12643 12644 if (map_value_has_timer(map)) { 12645 if (is_tracing_prog_type(prog_type)) { 12646 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12647 return -EINVAL; 12648 } 12649 } 12650 12651 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12652 !bpf_offload_prog_map_match(prog, map)) { 12653 verbose(env, "offload device mismatch between prog and map\n"); 12654 return -EINVAL; 12655 } 12656 12657 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12658 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12659 return -EINVAL; 12660 } 12661 12662 if (prog->aux->sleepable) 12663 switch (map->map_type) { 12664 case BPF_MAP_TYPE_HASH: 12665 case BPF_MAP_TYPE_LRU_HASH: 12666 case BPF_MAP_TYPE_ARRAY: 12667 case BPF_MAP_TYPE_PERCPU_HASH: 12668 case BPF_MAP_TYPE_PERCPU_ARRAY: 12669 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12670 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12671 case BPF_MAP_TYPE_HASH_OF_MAPS: 12672 if (!is_preallocated_map(map)) { 12673 verbose(env, 12674 "Sleepable programs can only use preallocated maps\n"); 12675 return -EINVAL; 12676 } 12677 break; 12678 case BPF_MAP_TYPE_RINGBUF: 12679 case BPF_MAP_TYPE_INODE_STORAGE: 12680 case BPF_MAP_TYPE_SK_STORAGE: 12681 case BPF_MAP_TYPE_TASK_STORAGE: 12682 break; 12683 default: 12684 verbose(env, 12685 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12686 return -EINVAL; 12687 } 12688 12689 return 0; 12690 } 12691 12692 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12693 { 12694 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12695 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12696 } 12697 12698 /* find and rewrite pseudo imm in ld_imm64 instructions: 12699 * 12700 * 1. if it accesses map FD, replace it with actual map pointer. 12701 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12702 * 12703 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12704 */ 12705 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12706 { 12707 struct bpf_insn *insn = env->prog->insnsi; 12708 int insn_cnt = env->prog->len; 12709 int i, j, err; 12710 12711 err = bpf_prog_calc_tag(env->prog); 12712 if (err) 12713 return err; 12714 12715 for (i = 0; i < insn_cnt; i++, insn++) { 12716 if (BPF_CLASS(insn->code) == BPF_LDX && 12717 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12718 verbose(env, "BPF_LDX uses reserved fields\n"); 12719 return -EINVAL; 12720 } 12721 12722 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12723 struct bpf_insn_aux_data *aux; 12724 struct bpf_map *map; 12725 struct fd f; 12726 u64 addr; 12727 u32 fd; 12728 12729 if (i == insn_cnt - 1 || insn[1].code != 0 || 12730 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12731 insn[1].off != 0) { 12732 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12733 return -EINVAL; 12734 } 12735 12736 if (insn[0].src_reg == 0) 12737 /* valid generic load 64-bit imm */ 12738 goto next_insn; 12739 12740 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12741 aux = &env->insn_aux_data[i]; 12742 err = check_pseudo_btf_id(env, insn, aux); 12743 if (err) 12744 return err; 12745 goto next_insn; 12746 } 12747 12748 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12749 aux = &env->insn_aux_data[i]; 12750 aux->ptr_type = PTR_TO_FUNC; 12751 goto next_insn; 12752 } 12753 12754 /* In final convert_pseudo_ld_imm64() step, this is 12755 * converted into regular 64-bit imm load insn. 12756 */ 12757 switch (insn[0].src_reg) { 12758 case BPF_PSEUDO_MAP_VALUE: 12759 case BPF_PSEUDO_MAP_IDX_VALUE: 12760 break; 12761 case BPF_PSEUDO_MAP_FD: 12762 case BPF_PSEUDO_MAP_IDX: 12763 if (insn[1].imm == 0) 12764 break; 12765 fallthrough; 12766 default: 12767 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12768 return -EINVAL; 12769 } 12770 12771 switch (insn[0].src_reg) { 12772 case BPF_PSEUDO_MAP_IDX_VALUE: 12773 case BPF_PSEUDO_MAP_IDX: 12774 if (bpfptr_is_null(env->fd_array)) { 12775 verbose(env, "fd_idx without fd_array is invalid\n"); 12776 return -EPROTO; 12777 } 12778 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12779 insn[0].imm * sizeof(fd), 12780 sizeof(fd))) 12781 return -EFAULT; 12782 break; 12783 default: 12784 fd = insn[0].imm; 12785 break; 12786 } 12787 12788 f = fdget(fd); 12789 map = __bpf_map_get(f); 12790 if (IS_ERR(map)) { 12791 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12792 insn[0].imm); 12793 return PTR_ERR(map); 12794 } 12795 12796 err = check_map_prog_compatibility(env, map, env->prog); 12797 if (err) { 12798 fdput(f); 12799 return err; 12800 } 12801 12802 aux = &env->insn_aux_data[i]; 12803 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12804 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12805 addr = (unsigned long)map; 12806 } else { 12807 u32 off = insn[1].imm; 12808 12809 if (off >= BPF_MAX_VAR_OFF) { 12810 verbose(env, "direct value offset of %u is not allowed\n", off); 12811 fdput(f); 12812 return -EINVAL; 12813 } 12814 12815 if (!map->ops->map_direct_value_addr) { 12816 verbose(env, "no direct value access support for this map type\n"); 12817 fdput(f); 12818 return -EINVAL; 12819 } 12820 12821 err = map->ops->map_direct_value_addr(map, &addr, off); 12822 if (err) { 12823 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12824 map->value_size, off); 12825 fdput(f); 12826 return err; 12827 } 12828 12829 aux->map_off = off; 12830 addr += off; 12831 } 12832 12833 insn[0].imm = (u32)addr; 12834 insn[1].imm = addr >> 32; 12835 12836 /* check whether we recorded this map already */ 12837 for (j = 0; j < env->used_map_cnt; j++) { 12838 if (env->used_maps[j] == map) { 12839 aux->map_index = j; 12840 fdput(f); 12841 goto next_insn; 12842 } 12843 } 12844 12845 if (env->used_map_cnt >= MAX_USED_MAPS) { 12846 fdput(f); 12847 return -E2BIG; 12848 } 12849 12850 /* hold the map. If the program is rejected by verifier, 12851 * the map will be released by release_maps() or it 12852 * will be used by the valid program until it's unloaded 12853 * and all maps are released in free_used_maps() 12854 */ 12855 bpf_map_inc(map); 12856 12857 aux->map_index = env->used_map_cnt; 12858 env->used_maps[env->used_map_cnt++] = map; 12859 12860 if (bpf_map_is_cgroup_storage(map) && 12861 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12862 verbose(env, "only one cgroup storage of each type is allowed\n"); 12863 fdput(f); 12864 return -EBUSY; 12865 } 12866 12867 fdput(f); 12868 next_insn: 12869 insn++; 12870 i++; 12871 continue; 12872 } 12873 12874 /* Basic sanity check before we invest more work here. */ 12875 if (!bpf_opcode_in_insntable(insn->code)) { 12876 verbose(env, "unknown opcode %02x\n", insn->code); 12877 return -EINVAL; 12878 } 12879 } 12880 12881 /* now all pseudo BPF_LD_IMM64 instructions load valid 12882 * 'struct bpf_map *' into a register instead of user map_fd. 12883 * These pointers will be used later by verifier to validate map access. 12884 */ 12885 return 0; 12886 } 12887 12888 /* drop refcnt of maps used by the rejected program */ 12889 static void release_maps(struct bpf_verifier_env *env) 12890 { 12891 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12892 env->used_map_cnt); 12893 } 12894 12895 /* drop refcnt of maps used by the rejected program */ 12896 static void release_btfs(struct bpf_verifier_env *env) 12897 { 12898 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12899 env->used_btf_cnt); 12900 } 12901 12902 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12903 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12904 { 12905 struct bpf_insn *insn = env->prog->insnsi; 12906 int insn_cnt = env->prog->len; 12907 int i; 12908 12909 for (i = 0; i < insn_cnt; i++, insn++) { 12910 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12911 continue; 12912 if (insn->src_reg == BPF_PSEUDO_FUNC) 12913 continue; 12914 insn->src_reg = 0; 12915 } 12916 } 12917 12918 /* single env->prog->insni[off] instruction was replaced with the range 12919 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12920 * [0, off) and [off, end) to new locations, so the patched range stays zero 12921 */ 12922 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12923 struct bpf_insn_aux_data *new_data, 12924 struct bpf_prog *new_prog, u32 off, u32 cnt) 12925 { 12926 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12927 struct bpf_insn *insn = new_prog->insnsi; 12928 u32 old_seen = old_data[off].seen; 12929 u32 prog_len; 12930 int i; 12931 12932 /* aux info at OFF always needs adjustment, no matter fast path 12933 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12934 * original insn at old prog. 12935 */ 12936 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12937 12938 if (cnt == 1) 12939 return; 12940 prog_len = new_prog->len; 12941 12942 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12943 memcpy(new_data + off + cnt - 1, old_data + off, 12944 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12945 for (i = off; i < off + cnt - 1; i++) { 12946 /* Expand insni[off]'s seen count to the patched range. */ 12947 new_data[i].seen = old_seen; 12948 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12949 } 12950 env->insn_aux_data = new_data; 12951 vfree(old_data); 12952 } 12953 12954 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12955 { 12956 int i; 12957 12958 if (len == 1) 12959 return; 12960 /* NOTE: fake 'exit' subprog should be updated as well. */ 12961 for (i = 0; i <= env->subprog_cnt; i++) { 12962 if (env->subprog_info[i].start <= off) 12963 continue; 12964 env->subprog_info[i].start += len - 1; 12965 } 12966 } 12967 12968 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12969 { 12970 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12971 int i, sz = prog->aux->size_poke_tab; 12972 struct bpf_jit_poke_descriptor *desc; 12973 12974 for (i = 0; i < sz; i++) { 12975 desc = &tab[i]; 12976 if (desc->insn_idx <= off) 12977 continue; 12978 desc->insn_idx += len - 1; 12979 } 12980 } 12981 12982 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12983 const struct bpf_insn *patch, u32 len) 12984 { 12985 struct bpf_prog *new_prog; 12986 struct bpf_insn_aux_data *new_data = NULL; 12987 12988 if (len > 1) { 12989 new_data = vzalloc(array_size(env->prog->len + len - 1, 12990 sizeof(struct bpf_insn_aux_data))); 12991 if (!new_data) 12992 return NULL; 12993 } 12994 12995 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12996 if (IS_ERR(new_prog)) { 12997 if (PTR_ERR(new_prog) == -ERANGE) 12998 verbose(env, 12999 "insn %d cannot be patched due to 16-bit range\n", 13000 env->insn_aux_data[off].orig_idx); 13001 vfree(new_data); 13002 return NULL; 13003 } 13004 adjust_insn_aux_data(env, new_data, new_prog, off, len); 13005 adjust_subprog_starts(env, off, len); 13006 adjust_poke_descs(new_prog, off, len); 13007 return new_prog; 13008 } 13009 13010 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 13011 u32 off, u32 cnt) 13012 { 13013 int i, j; 13014 13015 /* find first prog starting at or after off (first to remove) */ 13016 for (i = 0; i < env->subprog_cnt; i++) 13017 if (env->subprog_info[i].start >= off) 13018 break; 13019 /* find first prog starting at or after off + cnt (first to stay) */ 13020 for (j = i; j < env->subprog_cnt; j++) 13021 if (env->subprog_info[j].start >= off + cnt) 13022 break; 13023 /* if j doesn't start exactly at off + cnt, we are just removing 13024 * the front of previous prog 13025 */ 13026 if (env->subprog_info[j].start != off + cnt) 13027 j--; 13028 13029 if (j > i) { 13030 struct bpf_prog_aux *aux = env->prog->aux; 13031 int move; 13032 13033 /* move fake 'exit' subprog as well */ 13034 move = env->subprog_cnt + 1 - j; 13035 13036 memmove(env->subprog_info + i, 13037 env->subprog_info + j, 13038 sizeof(*env->subprog_info) * move); 13039 env->subprog_cnt -= j - i; 13040 13041 /* remove func_info */ 13042 if (aux->func_info) { 13043 move = aux->func_info_cnt - j; 13044 13045 memmove(aux->func_info + i, 13046 aux->func_info + j, 13047 sizeof(*aux->func_info) * move); 13048 aux->func_info_cnt -= j - i; 13049 /* func_info->insn_off is set after all code rewrites, 13050 * in adjust_btf_func() - no need to adjust 13051 */ 13052 } 13053 } else { 13054 /* convert i from "first prog to remove" to "first to adjust" */ 13055 if (env->subprog_info[i].start == off) 13056 i++; 13057 } 13058 13059 /* update fake 'exit' subprog as well */ 13060 for (; i <= env->subprog_cnt; i++) 13061 env->subprog_info[i].start -= cnt; 13062 13063 return 0; 13064 } 13065 13066 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 13067 u32 cnt) 13068 { 13069 struct bpf_prog *prog = env->prog; 13070 u32 i, l_off, l_cnt, nr_linfo; 13071 struct bpf_line_info *linfo; 13072 13073 nr_linfo = prog->aux->nr_linfo; 13074 if (!nr_linfo) 13075 return 0; 13076 13077 linfo = prog->aux->linfo; 13078 13079 /* find first line info to remove, count lines to be removed */ 13080 for (i = 0; i < nr_linfo; i++) 13081 if (linfo[i].insn_off >= off) 13082 break; 13083 13084 l_off = i; 13085 l_cnt = 0; 13086 for (; i < nr_linfo; i++) 13087 if (linfo[i].insn_off < off + cnt) 13088 l_cnt++; 13089 else 13090 break; 13091 13092 /* First live insn doesn't match first live linfo, it needs to "inherit" 13093 * last removed linfo. prog is already modified, so prog->len == off 13094 * means no live instructions after (tail of the program was removed). 13095 */ 13096 if (prog->len != off && l_cnt && 13097 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 13098 l_cnt--; 13099 linfo[--i].insn_off = off + cnt; 13100 } 13101 13102 /* remove the line info which refer to the removed instructions */ 13103 if (l_cnt) { 13104 memmove(linfo + l_off, linfo + i, 13105 sizeof(*linfo) * (nr_linfo - i)); 13106 13107 prog->aux->nr_linfo -= l_cnt; 13108 nr_linfo = prog->aux->nr_linfo; 13109 } 13110 13111 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13112 for (i = l_off; i < nr_linfo; i++) 13113 linfo[i].insn_off -= cnt; 13114 13115 /* fix up all subprogs (incl. 'exit') which start >= off */ 13116 for (i = 0; i <= env->subprog_cnt; i++) 13117 if (env->subprog_info[i].linfo_idx > l_off) { 13118 /* program may have started in the removed region but 13119 * may not be fully removed 13120 */ 13121 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13122 env->subprog_info[i].linfo_idx -= l_cnt; 13123 else 13124 env->subprog_info[i].linfo_idx = l_off; 13125 } 13126 13127 return 0; 13128 } 13129 13130 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13131 { 13132 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13133 unsigned int orig_prog_len = env->prog->len; 13134 int err; 13135 13136 if (bpf_prog_is_dev_bound(env->prog->aux)) 13137 bpf_prog_offload_remove_insns(env, off, cnt); 13138 13139 err = bpf_remove_insns(env->prog, off, cnt); 13140 if (err) 13141 return err; 13142 13143 err = adjust_subprog_starts_after_remove(env, off, cnt); 13144 if (err) 13145 return err; 13146 13147 err = bpf_adj_linfo_after_remove(env, off, cnt); 13148 if (err) 13149 return err; 13150 13151 memmove(aux_data + off, aux_data + off + cnt, 13152 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13153 13154 return 0; 13155 } 13156 13157 /* The verifier does more data flow analysis than llvm and will not 13158 * explore branches that are dead at run time. Malicious programs can 13159 * have dead code too. Therefore replace all dead at-run-time code 13160 * with 'ja -1'. 13161 * 13162 * Just nops are not optimal, e.g. if they would sit at the end of the 13163 * program and through another bug we would manage to jump there, then 13164 * we'd execute beyond program memory otherwise. Returning exception 13165 * code also wouldn't work since we can have subprogs where the dead 13166 * code could be located. 13167 */ 13168 static void sanitize_dead_code(struct bpf_verifier_env *env) 13169 { 13170 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13171 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13172 struct bpf_insn *insn = env->prog->insnsi; 13173 const int insn_cnt = env->prog->len; 13174 int i; 13175 13176 for (i = 0; i < insn_cnt; i++) { 13177 if (aux_data[i].seen) 13178 continue; 13179 memcpy(insn + i, &trap, sizeof(trap)); 13180 aux_data[i].zext_dst = false; 13181 } 13182 } 13183 13184 static bool insn_is_cond_jump(u8 code) 13185 { 13186 u8 op; 13187 13188 if (BPF_CLASS(code) == BPF_JMP32) 13189 return true; 13190 13191 if (BPF_CLASS(code) != BPF_JMP) 13192 return false; 13193 13194 op = BPF_OP(code); 13195 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13196 } 13197 13198 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13199 { 13200 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13201 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13202 struct bpf_insn *insn = env->prog->insnsi; 13203 const int insn_cnt = env->prog->len; 13204 int i; 13205 13206 for (i = 0; i < insn_cnt; i++, insn++) { 13207 if (!insn_is_cond_jump(insn->code)) 13208 continue; 13209 13210 if (!aux_data[i + 1].seen) 13211 ja.off = insn->off; 13212 else if (!aux_data[i + 1 + insn->off].seen) 13213 ja.off = 0; 13214 else 13215 continue; 13216 13217 if (bpf_prog_is_dev_bound(env->prog->aux)) 13218 bpf_prog_offload_replace_insn(env, i, &ja); 13219 13220 memcpy(insn, &ja, sizeof(ja)); 13221 } 13222 } 13223 13224 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13225 { 13226 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13227 int insn_cnt = env->prog->len; 13228 int i, err; 13229 13230 for (i = 0; i < insn_cnt; i++) { 13231 int j; 13232 13233 j = 0; 13234 while (i + j < insn_cnt && !aux_data[i + j].seen) 13235 j++; 13236 if (!j) 13237 continue; 13238 13239 err = verifier_remove_insns(env, i, j); 13240 if (err) 13241 return err; 13242 insn_cnt = env->prog->len; 13243 } 13244 13245 return 0; 13246 } 13247 13248 static int opt_remove_nops(struct bpf_verifier_env *env) 13249 { 13250 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13251 struct bpf_insn *insn = env->prog->insnsi; 13252 int insn_cnt = env->prog->len; 13253 int i, err; 13254 13255 for (i = 0; i < insn_cnt; i++) { 13256 if (memcmp(&insn[i], &ja, sizeof(ja))) 13257 continue; 13258 13259 err = verifier_remove_insns(env, i, 1); 13260 if (err) 13261 return err; 13262 insn_cnt--; 13263 i--; 13264 } 13265 13266 return 0; 13267 } 13268 13269 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13270 const union bpf_attr *attr) 13271 { 13272 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13273 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13274 int i, patch_len, delta = 0, len = env->prog->len; 13275 struct bpf_insn *insns = env->prog->insnsi; 13276 struct bpf_prog *new_prog; 13277 bool rnd_hi32; 13278 13279 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13280 zext_patch[1] = BPF_ZEXT_REG(0); 13281 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13282 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13283 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13284 for (i = 0; i < len; i++) { 13285 int adj_idx = i + delta; 13286 struct bpf_insn insn; 13287 int load_reg; 13288 13289 insn = insns[adj_idx]; 13290 load_reg = insn_def_regno(&insn); 13291 if (!aux[adj_idx].zext_dst) { 13292 u8 code, class; 13293 u32 imm_rnd; 13294 13295 if (!rnd_hi32) 13296 continue; 13297 13298 code = insn.code; 13299 class = BPF_CLASS(code); 13300 if (load_reg == -1) 13301 continue; 13302 13303 /* NOTE: arg "reg" (the fourth one) is only used for 13304 * BPF_STX + SRC_OP, so it is safe to pass NULL 13305 * here. 13306 */ 13307 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13308 if (class == BPF_LD && 13309 BPF_MODE(code) == BPF_IMM) 13310 i++; 13311 continue; 13312 } 13313 13314 /* ctx load could be transformed into wider load. */ 13315 if (class == BPF_LDX && 13316 aux[adj_idx].ptr_type == PTR_TO_CTX) 13317 continue; 13318 13319 imm_rnd = get_random_int(); 13320 rnd_hi32_patch[0] = insn; 13321 rnd_hi32_patch[1].imm = imm_rnd; 13322 rnd_hi32_patch[3].dst_reg = load_reg; 13323 patch = rnd_hi32_patch; 13324 patch_len = 4; 13325 goto apply_patch_buffer; 13326 } 13327 13328 /* Add in an zero-extend instruction if a) the JIT has requested 13329 * it or b) it's a CMPXCHG. 13330 * 13331 * The latter is because: BPF_CMPXCHG always loads a value into 13332 * R0, therefore always zero-extends. However some archs' 13333 * equivalent instruction only does this load when the 13334 * comparison is successful. This detail of CMPXCHG is 13335 * orthogonal to the general zero-extension behaviour of the 13336 * CPU, so it's treated independently of bpf_jit_needs_zext. 13337 */ 13338 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13339 continue; 13340 13341 if (WARN_ON(load_reg == -1)) { 13342 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13343 return -EFAULT; 13344 } 13345 13346 zext_patch[0] = insn; 13347 zext_patch[1].dst_reg = load_reg; 13348 zext_patch[1].src_reg = load_reg; 13349 patch = zext_patch; 13350 patch_len = 2; 13351 apply_patch_buffer: 13352 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13353 if (!new_prog) 13354 return -ENOMEM; 13355 env->prog = new_prog; 13356 insns = new_prog->insnsi; 13357 aux = env->insn_aux_data; 13358 delta += patch_len - 1; 13359 } 13360 13361 return 0; 13362 } 13363 13364 /* convert load instructions that access fields of a context type into a 13365 * sequence of instructions that access fields of the underlying structure: 13366 * struct __sk_buff -> struct sk_buff 13367 * struct bpf_sock_ops -> struct sock 13368 */ 13369 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13370 { 13371 const struct bpf_verifier_ops *ops = env->ops; 13372 int i, cnt, size, ctx_field_size, delta = 0; 13373 const int insn_cnt = env->prog->len; 13374 struct bpf_insn insn_buf[16], *insn; 13375 u32 target_size, size_default, off; 13376 struct bpf_prog *new_prog; 13377 enum bpf_access_type type; 13378 bool is_narrower_load; 13379 13380 if (ops->gen_prologue || env->seen_direct_write) { 13381 if (!ops->gen_prologue) { 13382 verbose(env, "bpf verifier is misconfigured\n"); 13383 return -EINVAL; 13384 } 13385 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13386 env->prog); 13387 if (cnt >= ARRAY_SIZE(insn_buf)) { 13388 verbose(env, "bpf verifier is misconfigured\n"); 13389 return -EINVAL; 13390 } else if (cnt) { 13391 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13392 if (!new_prog) 13393 return -ENOMEM; 13394 13395 env->prog = new_prog; 13396 delta += cnt - 1; 13397 } 13398 } 13399 13400 if (bpf_prog_is_dev_bound(env->prog->aux)) 13401 return 0; 13402 13403 insn = env->prog->insnsi + delta; 13404 13405 for (i = 0; i < insn_cnt; i++, insn++) { 13406 bpf_convert_ctx_access_t convert_ctx_access; 13407 bool ctx_access; 13408 13409 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13410 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13411 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13412 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13413 type = BPF_READ; 13414 ctx_access = true; 13415 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13416 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13417 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13418 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13419 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13420 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13421 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13422 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13423 type = BPF_WRITE; 13424 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13425 } else { 13426 continue; 13427 } 13428 13429 if (type == BPF_WRITE && 13430 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13431 struct bpf_insn patch[] = { 13432 *insn, 13433 BPF_ST_NOSPEC(), 13434 }; 13435 13436 cnt = ARRAY_SIZE(patch); 13437 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13438 if (!new_prog) 13439 return -ENOMEM; 13440 13441 delta += cnt - 1; 13442 env->prog = new_prog; 13443 insn = new_prog->insnsi + i + delta; 13444 continue; 13445 } 13446 13447 if (!ctx_access) 13448 continue; 13449 13450 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13451 case PTR_TO_CTX: 13452 if (!ops->convert_ctx_access) 13453 continue; 13454 convert_ctx_access = ops->convert_ctx_access; 13455 break; 13456 case PTR_TO_SOCKET: 13457 case PTR_TO_SOCK_COMMON: 13458 convert_ctx_access = bpf_sock_convert_ctx_access; 13459 break; 13460 case PTR_TO_TCP_SOCK: 13461 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13462 break; 13463 case PTR_TO_XDP_SOCK: 13464 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13465 break; 13466 case PTR_TO_BTF_ID: 13467 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13468 if (type == BPF_READ) { 13469 insn->code = BPF_LDX | BPF_PROBE_MEM | 13470 BPF_SIZE((insn)->code); 13471 env->prog->aux->num_exentries++; 13472 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 13473 verbose(env, "Writes through BTF pointers are not allowed\n"); 13474 return -EINVAL; 13475 } 13476 continue; 13477 default: 13478 continue; 13479 } 13480 13481 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13482 size = BPF_LDST_BYTES(insn); 13483 13484 /* If the read access is a narrower load of the field, 13485 * convert to a 4/8-byte load, to minimum program type specific 13486 * convert_ctx_access changes. If conversion is successful, 13487 * we will apply proper mask to the result. 13488 */ 13489 is_narrower_load = size < ctx_field_size; 13490 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13491 off = insn->off; 13492 if (is_narrower_load) { 13493 u8 size_code; 13494 13495 if (type == BPF_WRITE) { 13496 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13497 return -EINVAL; 13498 } 13499 13500 size_code = BPF_H; 13501 if (ctx_field_size == 4) 13502 size_code = BPF_W; 13503 else if (ctx_field_size == 8) 13504 size_code = BPF_DW; 13505 13506 insn->off = off & ~(size_default - 1); 13507 insn->code = BPF_LDX | BPF_MEM | size_code; 13508 } 13509 13510 target_size = 0; 13511 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13512 &target_size); 13513 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13514 (ctx_field_size && !target_size)) { 13515 verbose(env, "bpf verifier is misconfigured\n"); 13516 return -EINVAL; 13517 } 13518 13519 if (is_narrower_load && size < target_size) { 13520 u8 shift = bpf_ctx_narrow_access_offset( 13521 off, size, size_default) * 8; 13522 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13523 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13524 return -EINVAL; 13525 } 13526 if (ctx_field_size <= 4) { 13527 if (shift) 13528 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13529 insn->dst_reg, 13530 shift); 13531 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13532 (1 << size * 8) - 1); 13533 } else { 13534 if (shift) 13535 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13536 insn->dst_reg, 13537 shift); 13538 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13539 (1ULL << size * 8) - 1); 13540 } 13541 } 13542 13543 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13544 if (!new_prog) 13545 return -ENOMEM; 13546 13547 delta += cnt - 1; 13548 13549 /* keep walking new program and skip insns we just inserted */ 13550 env->prog = new_prog; 13551 insn = new_prog->insnsi + i + delta; 13552 } 13553 13554 return 0; 13555 } 13556 13557 static int jit_subprogs(struct bpf_verifier_env *env) 13558 { 13559 struct bpf_prog *prog = env->prog, **func, *tmp; 13560 int i, j, subprog_start, subprog_end = 0, len, subprog; 13561 struct bpf_map *map_ptr; 13562 struct bpf_insn *insn; 13563 void *old_bpf_func; 13564 int err, num_exentries; 13565 13566 if (env->subprog_cnt <= 1) 13567 return 0; 13568 13569 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13570 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13571 continue; 13572 13573 /* Upon error here we cannot fall back to interpreter but 13574 * need a hard reject of the program. Thus -EFAULT is 13575 * propagated in any case. 13576 */ 13577 subprog = find_subprog(env, i + insn->imm + 1); 13578 if (subprog < 0) { 13579 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13580 i + insn->imm + 1); 13581 return -EFAULT; 13582 } 13583 /* temporarily remember subprog id inside insn instead of 13584 * aux_data, since next loop will split up all insns into funcs 13585 */ 13586 insn->off = subprog; 13587 /* remember original imm in case JIT fails and fallback 13588 * to interpreter will be needed 13589 */ 13590 env->insn_aux_data[i].call_imm = insn->imm; 13591 /* point imm to __bpf_call_base+1 from JITs point of view */ 13592 insn->imm = 1; 13593 if (bpf_pseudo_func(insn)) 13594 /* jit (e.g. x86_64) may emit fewer instructions 13595 * if it learns a u32 imm is the same as a u64 imm. 13596 * Force a non zero here. 13597 */ 13598 insn[1].imm = 1; 13599 } 13600 13601 err = bpf_prog_alloc_jited_linfo(prog); 13602 if (err) 13603 goto out_undo_insn; 13604 13605 err = -ENOMEM; 13606 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13607 if (!func) 13608 goto out_undo_insn; 13609 13610 for (i = 0; i < env->subprog_cnt; i++) { 13611 subprog_start = subprog_end; 13612 subprog_end = env->subprog_info[i + 1].start; 13613 13614 len = subprog_end - subprog_start; 13615 /* bpf_prog_run() doesn't call subprogs directly, 13616 * hence main prog stats include the runtime of subprogs. 13617 * subprogs don't have IDs and not reachable via prog_get_next_id 13618 * func[i]->stats will never be accessed and stays NULL 13619 */ 13620 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13621 if (!func[i]) 13622 goto out_free; 13623 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13624 len * sizeof(struct bpf_insn)); 13625 func[i]->type = prog->type; 13626 func[i]->len = len; 13627 if (bpf_prog_calc_tag(func[i])) 13628 goto out_free; 13629 func[i]->is_func = 1; 13630 func[i]->aux->func_idx = i; 13631 /* Below members will be freed only at prog->aux */ 13632 func[i]->aux->btf = prog->aux->btf; 13633 func[i]->aux->func_info = prog->aux->func_info; 13634 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 13635 func[i]->aux->poke_tab = prog->aux->poke_tab; 13636 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13637 13638 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13639 struct bpf_jit_poke_descriptor *poke; 13640 13641 poke = &prog->aux->poke_tab[j]; 13642 if (poke->insn_idx < subprog_end && 13643 poke->insn_idx >= subprog_start) 13644 poke->aux = func[i]->aux; 13645 } 13646 13647 func[i]->aux->name[0] = 'F'; 13648 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13649 func[i]->jit_requested = 1; 13650 func[i]->blinding_requested = prog->blinding_requested; 13651 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13652 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13653 func[i]->aux->linfo = prog->aux->linfo; 13654 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13655 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13656 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13657 num_exentries = 0; 13658 insn = func[i]->insnsi; 13659 for (j = 0; j < func[i]->len; j++, insn++) { 13660 if (BPF_CLASS(insn->code) == BPF_LDX && 13661 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13662 num_exentries++; 13663 } 13664 func[i]->aux->num_exentries = num_exentries; 13665 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13666 func[i] = bpf_int_jit_compile(func[i]); 13667 if (!func[i]->jited) { 13668 err = -ENOTSUPP; 13669 goto out_free; 13670 } 13671 cond_resched(); 13672 } 13673 13674 /* at this point all bpf functions were successfully JITed 13675 * now populate all bpf_calls with correct addresses and 13676 * run last pass of JIT 13677 */ 13678 for (i = 0; i < env->subprog_cnt; i++) { 13679 insn = func[i]->insnsi; 13680 for (j = 0; j < func[i]->len; j++, insn++) { 13681 if (bpf_pseudo_func(insn)) { 13682 subprog = insn->off; 13683 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13684 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13685 continue; 13686 } 13687 if (!bpf_pseudo_call(insn)) 13688 continue; 13689 subprog = insn->off; 13690 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13691 } 13692 13693 /* we use the aux data to keep a list of the start addresses 13694 * of the JITed images for each function in the program 13695 * 13696 * for some architectures, such as powerpc64, the imm field 13697 * might not be large enough to hold the offset of the start 13698 * address of the callee's JITed image from __bpf_call_base 13699 * 13700 * in such cases, we can lookup the start address of a callee 13701 * by using its subprog id, available from the off field of 13702 * the call instruction, as an index for this list 13703 */ 13704 func[i]->aux->func = func; 13705 func[i]->aux->func_cnt = env->subprog_cnt; 13706 } 13707 for (i = 0; i < env->subprog_cnt; i++) { 13708 old_bpf_func = func[i]->bpf_func; 13709 tmp = bpf_int_jit_compile(func[i]); 13710 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13711 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13712 err = -ENOTSUPP; 13713 goto out_free; 13714 } 13715 cond_resched(); 13716 } 13717 13718 /* finally lock prog and jit images for all functions and 13719 * populate kallsysm 13720 */ 13721 for (i = 0; i < env->subprog_cnt; i++) { 13722 bpf_prog_lock_ro(func[i]); 13723 bpf_prog_kallsyms_add(func[i]); 13724 } 13725 13726 /* Last step: make now unused interpreter insns from main 13727 * prog consistent for later dump requests, so they can 13728 * later look the same as if they were interpreted only. 13729 */ 13730 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13731 if (bpf_pseudo_func(insn)) { 13732 insn[0].imm = env->insn_aux_data[i].call_imm; 13733 insn[1].imm = insn->off; 13734 insn->off = 0; 13735 continue; 13736 } 13737 if (!bpf_pseudo_call(insn)) 13738 continue; 13739 insn->off = env->insn_aux_data[i].call_imm; 13740 subprog = find_subprog(env, i + insn->off + 1); 13741 insn->imm = subprog; 13742 } 13743 13744 prog->jited = 1; 13745 prog->bpf_func = func[0]->bpf_func; 13746 prog->jited_len = func[0]->jited_len; 13747 prog->aux->func = func; 13748 prog->aux->func_cnt = env->subprog_cnt; 13749 bpf_prog_jit_attempt_done(prog); 13750 return 0; 13751 out_free: 13752 /* We failed JIT'ing, so at this point we need to unregister poke 13753 * descriptors from subprogs, so that kernel is not attempting to 13754 * patch it anymore as we're freeing the subprog JIT memory. 13755 */ 13756 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13757 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13758 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13759 } 13760 /* At this point we're guaranteed that poke descriptors are not 13761 * live anymore. We can just unlink its descriptor table as it's 13762 * released with the main prog. 13763 */ 13764 for (i = 0; i < env->subprog_cnt; i++) { 13765 if (!func[i]) 13766 continue; 13767 func[i]->aux->poke_tab = NULL; 13768 bpf_jit_free(func[i]); 13769 } 13770 kfree(func); 13771 out_undo_insn: 13772 /* cleanup main prog to be interpreted */ 13773 prog->jit_requested = 0; 13774 prog->blinding_requested = 0; 13775 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13776 if (!bpf_pseudo_call(insn)) 13777 continue; 13778 insn->off = 0; 13779 insn->imm = env->insn_aux_data[i].call_imm; 13780 } 13781 bpf_prog_jit_attempt_done(prog); 13782 return err; 13783 } 13784 13785 static int fixup_call_args(struct bpf_verifier_env *env) 13786 { 13787 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13788 struct bpf_prog *prog = env->prog; 13789 struct bpf_insn *insn = prog->insnsi; 13790 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13791 int i, depth; 13792 #endif 13793 int err = 0; 13794 13795 if (env->prog->jit_requested && 13796 !bpf_prog_is_dev_bound(env->prog->aux)) { 13797 err = jit_subprogs(env); 13798 if (err == 0) 13799 return 0; 13800 if (err == -EFAULT) 13801 return err; 13802 } 13803 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13804 if (has_kfunc_call) { 13805 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13806 return -EINVAL; 13807 } 13808 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13809 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13810 * have to be rejected, since interpreter doesn't support them yet. 13811 */ 13812 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13813 return -EINVAL; 13814 } 13815 for (i = 0; i < prog->len; i++, insn++) { 13816 if (bpf_pseudo_func(insn)) { 13817 /* When JIT fails the progs with callback calls 13818 * have to be rejected, since interpreter doesn't support them yet. 13819 */ 13820 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13821 return -EINVAL; 13822 } 13823 13824 if (!bpf_pseudo_call(insn)) 13825 continue; 13826 depth = get_callee_stack_depth(env, insn, i); 13827 if (depth < 0) 13828 return depth; 13829 bpf_patch_call_args(insn, depth); 13830 } 13831 err = 0; 13832 #endif 13833 return err; 13834 } 13835 13836 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13837 struct bpf_insn *insn) 13838 { 13839 const struct bpf_kfunc_desc *desc; 13840 13841 if (!insn->imm) { 13842 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13843 return -EINVAL; 13844 } 13845 13846 /* insn->imm has the btf func_id. Replace it with 13847 * an address (relative to __bpf_base_call). 13848 */ 13849 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13850 if (!desc) { 13851 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13852 insn->imm); 13853 return -EFAULT; 13854 } 13855 13856 insn->imm = desc->imm; 13857 13858 return 0; 13859 } 13860 13861 /* Do various post-verification rewrites in a single program pass. 13862 * These rewrites simplify JIT and interpreter implementations. 13863 */ 13864 static int do_misc_fixups(struct bpf_verifier_env *env) 13865 { 13866 struct bpf_prog *prog = env->prog; 13867 enum bpf_attach_type eatype = prog->expected_attach_type; 13868 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13869 struct bpf_insn *insn = prog->insnsi; 13870 const struct bpf_func_proto *fn; 13871 const int insn_cnt = prog->len; 13872 const struct bpf_map_ops *ops; 13873 struct bpf_insn_aux_data *aux; 13874 struct bpf_insn insn_buf[16]; 13875 struct bpf_prog *new_prog; 13876 struct bpf_map *map_ptr; 13877 int i, ret, cnt, delta = 0; 13878 13879 for (i = 0; i < insn_cnt; i++, insn++) { 13880 /* Make divide-by-zero exceptions impossible. */ 13881 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13882 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13883 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13884 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13885 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13886 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13887 struct bpf_insn *patchlet; 13888 struct bpf_insn chk_and_div[] = { 13889 /* [R,W]x div 0 -> 0 */ 13890 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13891 BPF_JNE | BPF_K, insn->src_reg, 13892 0, 2, 0), 13893 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13894 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13895 *insn, 13896 }; 13897 struct bpf_insn chk_and_mod[] = { 13898 /* [R,W]x mod 0 -> [R,W]x */ 13899 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13900 BPF_JEQ | BPF_K, insn->src_reg, 13901 0, 1 + (is64 ? 0 : 1), 0), 13902 *insn, 13903 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13904 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13905 }; 13906 13907 patchlet = isdiv ? chk_and_div : chk_and_mod; 13908 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13909 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13910 13911 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13912 if (!new_prog) 13913 return -ENOMEM; 13914 13915 delta += cnt - 1; 13916 env->prog = prog = new_prog; 13917 insn = new_prog->insnsi + i + delta; 13918 continue; 13919 } 13920 13921 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13922 if (BPF_CLASS(insn->code) == BPF_LD && 13923 (BPF_MODE(insn->code) == BPF_ABS || 13924 BPF_MODE(insn->code) == BPF_IND)) { 13925 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13926 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13927 verbose(env, "bpf verifier is misconfigured\n"); 13928 return -EINVAL; 13929 } 13930 13931 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13932 if (!new_prog) 13933 return -ENOMEM; 13934 13935 delta += cnt - 1; 13936 env->prog = prog = new_prog; 13937 insn = new_prog->insnsi + i + delta; 13938 continue; 13939 } 13940 13941 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13942 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13943 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13944 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13945 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13946 struct bpf_insn *patch = &insn_buf[0]; 13947 bool issrc, isneg, isimm; 13948 u32 off_reg; 13949 13950 aux = &env->insn_aux_data[i + delta]; 13951 if (!aux->alu_state || 13952 aux->alu_state == BPF_ALU_NON_POINTER) 13953 continue; 13954 13955 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13956 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13957 BPF_ALU_SANITIZE_SRC; 13958 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13959 13960 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13961 if (isimm) { 13962 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13963 } else { 13964 if (isneg) 13965 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13966 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13967 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13968 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13969 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13970 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13971 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13972 } 13973 if (!issrc) 13974 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13975 insn->src_reg = BPF_REG_AX; 13976 if (isneg) 13977 insn->code = insn->code == code_add ? 13978 code_sub : code_add; 13979 *patch++ = *insn; 13980 if (issrc && isneg && !isimm) 13981 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13982 cnt = patch - insn_buf; 13983 13984 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13985 if (!new_prog) 13986 return -ENOMEM; 13987 13988 delta += cnt - 1; 13989 env->prog = prog = new_prog; 13990 insn = new_prog->insnsi + i + delta; 13991 continue; 13992 } 13993 13994 if (insn->code != (BPF_JMP | BPF_CALL)) 13995 continue; 13996 if (insn->src_reg == BPF_PSEUDO_CALL) 13997 continue; 13998 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13999 ret = fixup_kfunc_call(env, insn); 14000 if (ret) 14001 return ret; 14002 continue; 14003 } 14004 14005 if (insn->imm == BPF_FUNC_get_route_realm) 14006 prog->dst_needed = 1; 14007 if (insn->imm == BPF_FUNC_get_prandom_u32) 14008 bpf_user_rnd_init_once(); 14009 if (insn->imm == BPF_FUNC_override_return) 14010 prog->kprobe_override = 1; 14011 if (insn->imm == BPF_FUNC_tail_call) { 14012 /* If we tail call into other programs, we 14013 * cannot make any assumptions since they can 14014 * be replaced dynamically during runtime in 14015 * the program array. 14016 */ 14017 prog->cb_access = 1; 14018 if (!allow_tail_call_in_subprogs(env)) 14019 prog->aux->stack_depth = MAX_BPF_STACK; 14020 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 14021 14022 /* mark bpf_tail_call as different opcode to avoid 14023 * conditional branch in the interpreter for every normal 14024 * call and to prevent accidental JITing by JIT compiler 14025 * that doesn't support bpf_tail_call yet 14026 */ 14027 insn->imm = 0; 14028 insn->code = BPF_JMP | BPF_TAIL_CALL; 14029 14030 aux = &env->insn_aux_data[i + delta]; 14031 if (env->bpf_capable && !prog->blinding_requested && 14032 prog->jit_requested && 14033 !bpf_map_key_poisoned(aux) && 14034 !bpf_map_ptr_poisoned(aux) && 14035 !bpf_map_ptr_unpriv(aux)) { 14036 struct bpf_jit_poke_descriptor desc = { 14037 .reason = BPF_POKE_REASON_TAIL_CALL, 14038 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 14039 .tail_call.key = bpf_map_key_immediate(aux), 14040 .insn_idx = i + delta, 14041 }; 14042 14043 ret = bpf_jit_add_poke_descriptor(prog, &desc); 14044 if (ret < 0) { 14045 verbose(env, "adding tail call poke descriptor failed\n"); 14046 return ret; 14047 } 14048 14049 insn->imm = ret + 1; 14050 continue; 14051 } 14052 14053 if (!bpf_map_ptr_unpriv(aux)) 14054 continue; 14055 14056 /* instead of changing every JIT dealing with tail_call 14057 * emit two extra insns: 14058 * if (index >= max_entries) goto out; 14059 * index &= array->index_mask; 14060 * to avoid out-of-bounds cpu speculation 14061 */ 14062 if (bpf_map_ptr_poisoned(aux)) { 14063 verbose(env, "tail_call abusing map_ptr\n"); 14064 return -EINVAL; 14065 } 14066 14067 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14068 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 14069 map_ptr->max_entries, 2); 14070 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 14071 container_of(map_ptr, 14072 struct bpf_array, 14073 map)->index_mask); 14074 insn_buf[2] = *insn; 14075 cnt = 3; 14076 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14077 if (!new_prog) 14078 return -ENOMEM; 14079 14080 delta += cnt - 1; 14081 env->prog = prog = new_prog; 14082 insn = new_prog->insnsi + i + delta; 14083 continue; 14084 } 14085 14086 if (insn->imm == BPF_FUNC_timer_set_callback) { 14087 /* The verifier will process callback_fn as many times as necessary 14088 * with different maps and the register states prepared by 14089 * set_timer_callback_state will be accurate. 14090 * 14091 * The following use case is valid: 14092 * map1 is shared by prog1, prog2, prog3. 14093 * prog1 calls bpf_timer_init for some map1 elements 14094 * prog2 calls bpf_timer_set_callback for some map1 elements. 14095 * Those that were not bpf_timer_init-ed will return -EINVAL. 14096 * prog3 calls bpf_timer_start for some map1 elements. 14097 * Those that were not both bpf_timer_init-ed and 14098 * bpf_timer_set_callback-ed will return -EINVAL. 14099 */ 14100 struct bpf_insn ld_addrs[2] = { 14101 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 14102 }; 14103 14104 insn_buf[0] = ld_addrs[0]; 14105 insn_buf[1] = ld_addrs[1]; 14106 insn_buf[2] = *insn; 14107 cnt = 3; 14108 14109 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14110 if (!new_prog) 14111 return -ENOMEM; 14112 14113 delta += cnt - 1; 14114 env->prog = prog = new_prog; 14115 insn = new_prog->insnsi + i + delta; 14116 goto patch_call_imm; 14117 } 14118 14119 if (insn->imm == BPF_FUNC_task_storage_get || 14120 insn->imm == BPF_FUNC_sk_storage_get || 14121 insn->imm == BPF_FUNC_inode_storage_get) { 14122 if (env->prog->aux->sleepable) 14123 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14124 else 14125 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14126 insn_buf[1] = *insn; 14127 cnt = 2; 14128 14129 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14130 if (!new_prog) 14131 return -ENOMEM; 14132 14133 delta += cnt - 1; 14134 env->prog = prog = new_prog; 14135 insn = new_prog->insnsi + i + delta; 14136 goto patch_call_imm; 14137 } 14138 14139 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14140 * and other inlining handlers are currently limited to 64 bit 14141 * only. 14142 */ 14143 if (prog->jit_requested && BITS_PER_LONG == 64 && 14144 (insn->imm == BPF_FUNC_map_lookup_elem || 14145 insn->imm == BPF_FUNC_map_update_elem || 14146 insn->imm == BPF_FUNC_map_delete_elem || 14147 insn->imm == BPF_FUNC_map_push_elem || 14148 insn->imm == BPF_FUNC_map_pop_elem || 14149 insn->imm == BPF_FUNC_map_peek_elem || 14150 insn->imm == BPF_FUNC_redirect_map || 14151 insn->imm == BPF_FUNC_for_each_map_elem || 14152 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14153 aux = &env->insn_aux_data[i + delta]; 14154 if (bpf_map_ptr_poisoned(aux)) 14155 goto patch_call_imm; 14156 14157 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14158 ops = map_ptr->ops; 14159 if (insn->imm == BPF_FUNC_map_lookup_elem && 14160 ops->map_gen_lookup) { 14161 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14162 if (cnt == -EOPNOTSUPP) 14163 goto patch_map_ops_generic; 14164 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14165 verbose(env, "bpf verifier is misconfigured\n"); 14166 return -EINVAL; 14167 } 14168 14169 new_prog = bpf_patch_insn_data(env, i + delta, 14170 insn_buf, cnt); 14171 if (!new_prog) 14172 return -ENOMEM; 14173 14174 delta += cnt - 1; 14175 env->prog = prog = new_prog; 14176 insn = new_prog->insnsi + i + delta; 14177 continue; 14178 } 14179 14180 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14181 (void *(*)(struct bpf_map *map, void *key))NULL)); 14182 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14183 (int (*)(struct bpf_map *map, void *key))NULL)); 14184 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14185 (int (*)(struct bpf_map *map, void *key, void *value, 14186 u64 flags))NULL)); 14187 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14188 (int (*)(struct bpf_map *map, void *value, 14189 u64 flags))NULL)); 14190 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14191 (int (*)(struct bpf_map *map, void *value))NULL)); 14192 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14193 (int (*)(struct bpf_map *map, void *value))NULL)); 14194 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14195 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14196 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14197 (int (*)(struct bpf_map *map, 14198 bpf_callback_t callback_fn, 14199 void *callback_ctx, 14200 u64 flags))NULL)); 14201 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14202 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14203 14204 patch_map_ops_generic: 14205 switch (insn->imm) { 14206 case BPF_FUNC_map_lookup_elem: 14207 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14208 continue; 14209 case BPF_FUNC_map_update_elem: 14210 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14211 continue; 14212 case BPF_FUNC_map_delete_elem: 14213 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14214 continue; 14215 case BPF_FUNC_map_push_elem: 14216 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14217 continue; 14218 case BPF_FUNC_map_pop_elem: 14219 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14220 continue; 14221 case BPF_FUNC_map_peek_elem: 14222 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14223 continue; 14224 case BPF_FUNC_redirect_map: 14225 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14226 continue; 14227 case BPF_FUNC_for_each_map_elem: 14228 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14229 continue; 14230 case BPF_FUNC_map_lookup_percpu_elem: 14231 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14232 continue; 14233 } 14234 14235 goto patch_call_imm; 14236 } 14237 14238 /* Implement bpf_jiffies64 inline. */ 14239 if (prog->jit_requested && BITS_PER_LONG == 64 && 14240 insn->imm == BPF_FUNC_jiffies64) { 14241 struct bpf_insn ld_jiffies_addr[2] = { 14242 BPF_LD_IMM64(BPF_REG_0, 14243 (unsigned long)&jiffies), 14244 }; 14245 14246 insn_buf[0] = ld_jiffies_addr[0]; 14247 insn_buf[1] = ld_jiffies_addr[1]; 14248 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14249 BPF_REG_0, 0); 14250 cnt = 3; 14251 14252 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14253 cnt); 14254 if (!new_prog) 14255 return -ENOMEM; 14256 14257 delta += cnt - 1; 14258 env->prog = prog = new_prog; 14259 insn = new_prog->insnsi + i + delta; 14260 continue; 14261 } 14262 14263 /* Implement bpf_get_func_arg inline. */ 14264 if (prog_type == BPF_PROG_TYPE_TRACING && 14265 insn->imm == BPF_FUNC_get_func_arg) { 14266 /* Load nr_args from ctx - 8 */ 14267 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14268 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14269 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14270 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14271 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14272 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14273 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14274 insn_buf[7] = BPF_JMP_A(1); 14275 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14276 cnt = 9; 14277 14278 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14279 if (!new_prog) 14280 return -ENOMEM; 14281 14282 delta += cnt - 1; 14283 env->prog = prog = new_prog; 14284 insn = new_prog->insnsi + i + delta; 14285 continue; 14286 } 14287 14288 /* Implement bpf_get_func_ret inline. */ 14289 if (prog_type == BPF_PROG_TYPE_TRACING && 14290 insn->imm == BPF_FUNC_get_func_ret) { 14291 if (eatype == BPF_TRACE_FEXIT || 14292 eatype == BPF_MODIFY_RETURN) { 14293 /* Load nr_args from ctx - 8 */ 14294 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14295 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14296 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14297 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14298 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14299 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14300 cnt = 6; 14301 } else { 14302 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14303 cnt = 1; 14304 } 14305 14306 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14307 if (!new_prog) 14308 return -ENOMEM; 14309 14310 delta += cnt - 1; 14311 env->prog = prog = new_prog; 14312 insn = new_prog->insnsi + i + delta; 14313 continue; 14314 } 14315 14316 /* Implement get_func_arg_cnt inline. */ 14317 if (prog_type == BPF_PROG_TYPE_TRACING && 14318 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14319 /* Load nr_args from ctx - 8 */ 14320 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14321 14322 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14323 if (!new_prog) 14324 return -ENOMEM; 14325 14326 env->prog = prog = new_prog; 14327 insn = new_prog->insnsi + i + delta; 14328 continue; 14329 } 14330 14331 /* Implement bpf_get_func_ip inline. */ 14332 if (prog_type == BPF_PROG_TYPE_TRACING && 14333 insn->imm == BPF_FUNC_get_func_ip) { 14334 /* Load IP address from ctx - 16 */ 14335 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14336 14337 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14338 if (!new_prog) 14339 return -ENOMEM; 14340 14341 env->prog = prog = new_prog; 14342 insn = new_prog->insnsi + i + delta; 14343 continue; 14344 } 14345 14346 patch_call_imm: 14347 fn = env->ops->get_func_proto(insn->imm, env->prog); 14348 /* all functions that have prototype and verifier allowed 14349 * programs to call them, must be real in-kernel functions 14350 */ 14351 if (!fn->func) { 14352 verbose(env, 14353 "kernel subsystem misconfigured func %s#%d\n", 14354 func_id_name(insn->imm), insn->imm); 14355 return -EFAULT; 14356 } 14357 insn->imm = fn->func - __bpf_call_base; 14358 } 14359 14360 /* Since poke tab is now finalized, publish aux to tracker. */ 14361 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14362 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14363 if (!map_ptr->ops->map_poke_track || 14364 !map_ptr->ops->map_poke_untrack || 14365 !map_ptr->ops->map_poke_run) { 14366 verbose(env, "bpf verifier is misconfigured\n"); 14367 return -EINVAL; 14368 } 14369 14370 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14371 if (ret < 0) { 14372 verbose(env, "tracking tail call prog failed\n"); 14373 return ret; 14374 } 14375 } 14376 14377 sort_kfunc_descs_by_imm(env->prog); 14378 14379 return 0; 14380 } 14381 14382 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 14383 int position, 14384 s32 stack_base, 14385 u32 callback_subprogno, 14386 u32 *cnt) 14387 { 14388 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 14389 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 14390 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 14391 int reg_loop_max = BPF_REG_6; 14392 int reg_loop_cnt = BPF_REG_7; 14393 int reg_loop_ctx = BPF_REG_8; 14394 14395 struct bpf_prog *new_prog; 14396 u32 callback_start; 14397 u32 call_insn_offset; 14398 s32 callback_offset; 14399 14400 /* This represents an inlined version of bpf_iter.c:bpf_loop, 14401 * be careful to modify this code in sync. 14402 */ 14403 struct bpf_insn insn_buf[] = { 14404 /* Return error and jump to the end of the patch if 14405 * expected number of iterations is too big. 14406 */ 14407 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 14408 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 14409 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 14410 /* spill R6, R7, R8 to use these as loop vars */ 14411 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 14412 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 14413 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 14414 /* initialize loop vars */ 14415 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 14416 BPF_MOV32_IMM(reg_loop_cnt, 0), 14417 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 14418 /* loop header, 14419 * if reg_loop_cnt >= reg_loop_max skip the loop body 14420 */ 14421 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 14422 /* callback call, 14423 * correct callback offset would be set after patching 14424 */ 14425 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 14426 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 14427 BPF_CALL_REL(0), 14428 /* increment loop counter */ 14429 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 14430 /* jump to loop header if callback returned 0 */ 14431 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 14432 /* return value of bpf_loop, 14433 * set R0 to the number of iterations 14434 */ 14435 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 14436 /* restore original values of R6, R7, R8 */ 14437 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 14438 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 14439 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 14440 }; 14441 14442 *cnt = ARRAY_SIZE(insn_buf); 14443 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 14444 if (!new_prog) 14445 return new_prog; 14446 14447 /* callback start is known only after patching */ 14448 callback_start = env->subprog_info[callback_subprogno].start; 14449 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 14450 call_insn_offset = position + 12; 14451 callback_offset = callback_start - call_insn_offset - 1; 14452 new_prog->insnsi[call_insn_offset].imm = callback_offset; 14453 14454 return new_prog; 14455 } 14456 14457 static bool is_bpf_loop_call(struct bpf_insn *insn) 14458 { 14459 return insn->code == (BPF_JMP | BPF_CALL) && 14460 insn->src_reg == 0 && 14461 insn->imm == BPF_FUNC_loop; 14462 } 14463 14464 /* For all sub-programs in the program (including main) check 14465 * insn_aux_data to see if there are bpf_loop calls that require 14466 * inlining. If such calls are found the calls are replaced with a 14467 * sequence of instructions produced by `inline_bpf_loop` function and 14468 * subprog stack_depth is increased by the size of 3 registers. 14469 * This stack space is used to spill values of the R6, R7, R8. These 14470 * registers are used to store the loop bound, counter and context 14471 * variables. 14472 */ 14473 static int optimize_bpf_loop(struct bpf_verifier_env *env) 14474 { 14475 struct bpf_subprog_info *subprogs = env->subprog_info; 14476 int i, cur_subprog = 0, cnt, delta = 0; 14477 struct bpf_insn *insn = env->prog->insnsi; 14478 int insn_cnt = env->prog->len; 14479 u16 stack_depth = subprogs[cur_subprog].stack_depth; 14480 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14481 u16 stack_depth_extra = 0; 14482 14483 for (i = 0; i < insn_cnt; i++, insn++) { 14484 struct bpf_loop_inline_state *inline_state = 14485 &env->insn_aux_data[i + delta].loop_inline_state; 14486 14487 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 14488 struct bpf_prog *new_prog; 14489 14490 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 14491 new_prog = inline_bpf_loop(env, 14492 i + delta, 14493 -(stack_depth + stack_depth_extra), 14494 inline_state->callback_subprogno, 14495 &cnt); 14496 if (!new_prog) 14497 return -ENOMEM; 14498 14499 delta += cnt - 1; 14500 env->prog = new_prog; 14501 insn = new_prog->insnsi + i + delta; 14502 } 14503 14504 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 14505 subprogs[cur_subprog].stack_depth += stack_depth_extra; 14506 cur_subprog++; 14507 stack_depth = subprogs[cur_subprog].stack_depth; 14508 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14509 stack_depth_extra = 0; 14510 } 14511 } 14512 14513 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14514 14515 return 0; 14516 } 14517 14518 static void free_states(struct bpf_verifier_env *env) 14519 { 14520 struct bpf_verifier_state_list *sl, *sln; 14521 int i; 14522 14523 sl = env->free_list; 14524 while (sl) { 14525 sln = sl->next; 14526 free_verifier_state(&sl->state, false); 14527 kfree(sl); 14528 sl = sln; 14529 } 14530 env->free_list = NULL; 14531 14532 if (!env->explored_states) 14533 return; 14534 14535 for (i = 0; i < state_htab_size(env); i++) { 14536 sl = env->explored_states[i]; 14537 14538 while (sl) { 14539 sln = sl->next; 14540 free_verifier_state(&sl->state, false); 14541 kfree(sl); 14542 sl = sln; 14543 } 14544 env->explored_states[i] = NULL; 14545 } 14546 } 14547 14548 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14549 { 14550 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14551 struct bpf_verifier_state *state; 14552 struct bpf_reg_state *regs; 14553 int ret, i; 14554 14555 env->prev_linfo = NULL; 14556 env->pass_cnt++; 14557 14558 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14559 if (!state) 14560 return -ENOMEM; 14561 state->curframe = 0; 14562 state->speculative = false; 14563 state->branches = 1; 14564 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14565 if (!state->frame[0]) { 14566 kfree(state); 14567 return -ENOMEM; 14568 } 14569 env->cur_state = state; 14570 init_func_state(env, state->frame[0], 14571 BPF_MAIN_FUNC /* callsite */, 14572 0 /* frameno */, 14573 subprog); 14574 14575 regs = state->frame[state->curframe]->regs; 14576 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14577 ret = btf_prepare_func_args(env, subprog, regs); 14578 if (ret) 14579 goto out; 14580 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14581 if (regs[i].type == PTR_TO_CTX) 14582 mark_reg_known_zero(env, regs, i); 14583 else if (regs[i].type == SCALAR_VALUE) 14584 mark_reg_unknown(env, regs, i); 14585 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14586 const u32 mem_size = regs[i].mem_size; 14587 14588 mark_reg_known_zero(env, regs, i); 14589 regs[i].mem_size = mem_size; 14590 regs[i].id = ++env->id_gen; 14591 } 14592 } 14593 } else { 14594 /* 1st arg to a function */ 14595 regs[BPF_REG_1].type = PTR_TO_CTX; 14596 mark_reg_known_zero(env, regs, BPF_REG_1); 14597 ret = btf_check_subprog_arg_match(env, subprog, regs); 14598 if (ret == -EFAULT) 14599 /* unlikely verifier bug. abort. 14600 * ret == 0 and ret < 0 are sadly acceptable for 14601 * main() function due to backward compatibility. 14602 * Like socket filter program may be written as: 14603 * int bpf_prog(struct pt_regs *ctx) 14604 * and never dereference that ctx in the program. 14605 * 'struct pt_regs' is a type mismatch for socket 14606 * filter that should be using 'struct __sk_buff'. 14607 */ 14608 goto out; 14609 } 14610 14611 ret = do_check(env); 14612 out: 14613 /* check for NULL is necessary, since cur_state can be freed inside 14614 * do_check() under memory pressure. 14615 */ 14616 if (env->cur_state) { 14617 free_verifier_state(env->cur_state, true); 14618 env->cur_state = NULL; 14619 } 14620 while (!pop_stack(env, NULL, NULL, false)); 14621 if (!ret && pop_log) 14622 bpf_vlog_reset(&env->log, 0); 14623 free_states(env); 14624 return ret; 14625 } 14626 14627 /* Verify all global functions in a BPF program one by one based on their BTF. 14628 * All global functions must pass verification. Otherwise the whole program is rejected. 14629 * Consider: 14630 * int bar(int); 14631 * int foo(int f) 14632 * { 14633 * return bar(f); 14634 * } 14635 * int bar(int b) 14636 * { 14637 * ... 14638 * } 14639 * foo() will be verified first for R1=any_scalar_value. During verification it 14640 * will be assumed that bar() already verified successfully and call to bar() 14641 * from foo() will be checked for type match only. Later bar() will be verified 14642 * independently to check that it's safe for R1=any_scalar_value. 14643 */ 14644 static int do_check_subprogs(struct bpf_verifier_env *env) 14645 { 14646 struct bpf_prog_aux *aux = env->prog->aux; 14647 int i, ret; 14648 14649 if (!aux->func_info) 14650 return 0; 14651 14652 for (i = 1; i < env->subprog_cnt; i++) { 14653 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14654 continue; 14655 env->insn_idx = env->subprog_info[i].start; 14656 WARN_ON_ONCE(env->insn_idx == 0); 14657 ret = do_check_common(env, i); 14658 if (ret) { 14659 return ret; 14660 } else if (env->log.level & BPF_LOG_LEVEL) { 14661 verbose(env, 14662 "Func#%d is safe for any args that match its prototype\n", 14663 i); 14664 } 14665 } 14666 return 0; 14667 } 14668 14669 static int do_check_main(struct bpf_verifier_env *env) 14670 { 14671 int ret; 14672 14673 env->insn_idx = 0; 14674 ret = do_check_common(env, 0); 14675 if (!ret) 14676 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14677 return ret; 14678 } 14679 14680 14681 static void print_verification_stats(struct bpf_verifier_env *env) 14682 { 14683 int i; 14684 14685 if (env->log.level & BPF_LOG_STATS) { 14686 verbose(env, "verification time %lld usec\n", 14687 div_u64(env->verification_time, 1000)); 14688 verbose(env, "stack depth "); 14689 for (i = 0; i < env->subprog_cnt; i++) { 14690 u32 depth = env->subprog_info[i].stack_depth; 14691 14692 verbose(env, "%d", depth); 14693 if (i + 1 < env->subprog_cnt) 14694 verbose(env, "+"); 14695 } 14696 verbose(env, "\n"); 14697 } 14698 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14699 "total_states %d peak_states %d mark_read %d\n", 14700 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14701 env->max_states_per_insn, env->total_states, 14702 env->peak_states, env->longest_mark_read_walk); 14703 } 14704 14705 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14706 { 14707 const struct btf_type *t, *func_proto; 14708 const struct bpf_struct_ops *st_ops; 14709 const struct btf_member *member; 14710 struct bpf_prog *prog = env->prog; 14711 u32 btf_id, member_idx; 14712 const char *mname; 14713 14714 if (!prog->gpl_compatible) { 14715 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14716 return -EINVAL; 14717 } 14718 14719 btf_id = prog->aux->attach_btf_id; 14720 st_ops = bpf_struct_ops_find(btf_id); 14721 if (!st_ops) { 14722 verbose(env, "attach_btf_id %u is not a supported struct\n", 14723 btf_id); 14724 return -ENOTSUPP; 14725 } 14726 14727 t = st_ops->type; 14728 member_idx = prog->expected_attach_type; 14729 if (member_idx >= btf_type_vlen(t)) { 14730 verbose(env, "attach to invalid member idx %u of struct %s\n", 14731 member_idx, st_ops->name); 14732 return -EINVAL; 14733 } 14734 14735 member = &btf_type_member(t)[member_idx]; 14736 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14737 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14738 NULL); 14739 if (!func_proto) { 14740 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14741 mname, member_idx, st_ops->name); 14742 return -EINVAL; 14743 } 14744 14745 if (st_ops->check_member) { 14746 int err = st_ops->check_member(t, member); 14747 14748 if (err) { 14749 verbose(env, "attach to unsupported member %s of struct %s\n", 14750 mname, st_ops->name); 14751 return err; 14752 } 14753 } 14754 14755 prog->aux->attach_func_proto = func_proto; 14756 prog->aux->attach_func_name = mname; 14757 env->ops = st_ops->verifier_ops; 14758 14759 return 0; 14760 } 14761 #define SECURITY_PREFIX "security_" 14762 14763 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14764 { 14765 if (within_error_injection_list(addr) || 14766 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14767 return 0; 14768 14769 return -EINVAL; 14770 } 14771 14772 /* list of non-sleepable functions that are otherwise on 14773 * ALLOW_ERROR_INJECTION list 14774 */ 14775 BTF_SET_START(btf_non_sleepable_error_inject) 14776 /* Three functions below can be called from sleepable and non-sleepable context. 14777 * Assume non-sleepable from bpf safety point of view. 14778 */ 14779 BTF_ID(func, __filemap_add_folio) 14780 BTF_ID(func, should_fail_alloc_page) 14781 BTF_ID(func, should_failslab) 14782 BTF_SET_END(btf_non_sleepable_error_inject) 14783 14784 static int check_non_sleepable_error_inject(u32 btf_id) 14785 { 14786 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14787 } 14788 14789 int bpf_check_attach_target(struct bpf_verifier_log *log, 14790 const struct bpf_prog *prog, 14791 const struct bpf_prog *tgt_prog, 14792 u32 btf_id, 14793 struct bpf_attach_target_info *tgt_info) 14794 { 14795 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14796 const char prefix[] = "btf_trace_"; 14797 int ret = 0, subprog = -1, i; 14798 const struct btf_type *t; 14799 bool conservative = true; 14800 const char *tname; 14801 struct btf *btf; 14802 long addr = 0; 14803 14804 if (!btf_id) { 14805 bpf_log(log, "Tracing programs must provide btf_id\n"); 14806 return -EINVAL; 14807 } 14808 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14809 if (!btf) { 14810 bpf_log(log, 14811 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14812 return -EINVAL; 14813 } 14814 t = btf_type_by_id(btf, btf_id); 14815 if (!t) { 14816 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14817 return -EINVAL; 14818 } 14819 tname = btf_name_by_offset(btf, t->name_off); 14820 if (!tname) { 14821 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14822 return -EINVAL; 14823 } 14824 if (tgt_prog) { 14825 struct bpf_prog_aux *aux = tgt_prog->aux; 14826 14827 for (i = 0; i < aux->func_info_cnt; i++) 14828 if (aux->func_info[i].type_id == btf_id) { 14829 subprog = i; 14830 break; 14831 } 14832 if (subprog == -1) { 14833 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14834 return -EINVAL; 14835 } 14836 conservative = aux->func_info_aux[subprog].unreliable; 14837 if (prog_extension) { 14838 if (conservative) { 14839 bpf_log(log, 14840 "Cannot replace static functions\n"); 14841 return -EINVAL; 14842 } 14843 if (!prog->jit_requested) { 14844 bpf_log(log, 14845 "Extension programs should be JITed\n"); 14846 return -EINVAL; 14847 } 14848 } 14849 if (!tgt_prog->jited) { 14850 bpf_log(log, "Can attach to only JITed progs\n"); 14851 return -EINVAL; 14852 } 14853 if (tgt_prog->type == prog->type) { 14854 /* Cannot fentry/fexit another fentry/fexit program. 14855 * Cannot attach program extension to another extension. 14856 * It's ok to attach fentry/fexit to extension program. 14857 */ 14858 bpf_log(log, "Cannot recursively attach\n"); 14859 return -EINVAL; 14860 } 14861 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14862 prog_extension && 14863 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14864 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14865 /* Program extensions can extend all program types 14866 * except fentry/fexit. The reason is the following. 14867 * The fentry/fexit programs are used for performance 14868 * analysis, stats and can be attached to any program 14869 * type except themselves. When extension program is 14870 * replacing XDP function it is necessary to allow 14871 * performance analysis of all functions. Both original 14872 * XDP program and its program extension. Hence 14873 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14874 * allowed. If extending of fentry/fexit was allowed it 14875 * would be possible to create long call chain 14876 * fentry->extension->fentry->extension beyond 14877 * reasonable stack size. Hence extending fentry is not 14878 * allowed. 14879 */ 14880 bpf_log(log, "Cannot extend fentry/fexit\n"); 14881 return -EINVAL; 14882 } 14883 } else { 14884 if (prog_extension) { 14885 bpf_log(log, "Cannot replace kernel functions\n"); 14886 return -EINVAL; 14887 } 14888 } 14889 14890 switch (prog->expected_attach_type) { 14891 case BPF_TRACE_RAW_TP: 14892 if (tgt_prog) { 14893 bpf_log(log, 14894 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14895 return -EINVAL; 14896 } 14897 if (!btf_type_is_typedef(t)) { 14898 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14899 btf_id); 14900 return -EINVAL; 14901 } 14902 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14903 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14904 btf_id, tname); 14905 return -EINVAL; 14906 } 14907 tname += sizeof(prefix) - 1; 14908 t = btf_type_by_id(btf, t->type); 14909 if (!btf_type_is_ptr(t)) 14910 /* should never happen in valid vmlinux build */ 14911 return -EINVAL; 14912 t = btf_type_by_id(btf, t->type); 14913 if (!btf_type_is_func_proto(t)) 14914 /* should never happen in valid vmlinux build */ 14915 return -EINVAL; 14916 14917 break; 14918 case BPF_TRACE_ITER: 14919 if (!btf_type_is_func(t)) { 14920 bpf_log(log, "attach_btf_id %u is not a function\n", 14921 btf_id); 14922 return -EINVAL; 14923 } 14924 t = btf_type_by_id(btf, t->type); 14925 if (!btf_type_is_func_proto(t)) 14926 return -EINVAL; 14927 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14928 if (ret) 14929 return ret; 14930 break; 14931 default: 14932 if (!prog_extension) 14933 return -EINVAL; 14934 fallthrough; 14935 case BPF_MODIFY_RETURN: 14936 case BPF_LSM_MAC: 14937 case BPF_LSM_CGROUP: 14938 case BPF_TRACE_FENTRY: 14939 case BPF_TRACE_FEXIT: 14940 if (!btf_type_is_func(t)) { 14941 bpf_log(log, "attach_btf_id %u is not a function\n", 14942 btf_id); 14943 return -EINVAL; 14944 } 14945 if (prog_extension && 14946 btf_check_type_match(log, prog, btf, t)) 14947 return -EINVAL; 14948 t = btf_type_by_id(btf, t->type); 14949 if (!btf_type_is_func_proto(t)) 14950 return -EINVAL; 14951 14952 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14953 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14954 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14955 return -EINVAL; 14956 14957 if (tgt_prog && conservative) 14958 t = NULL; 14959 14960 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14961 if (ret < 0) 14962 return ret; 14963 14964 if (tgt_prog) { 14965 if (subprog == 0) 14966 addr = (long) tgt_prog->bpf_func; 14967 else 14968 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14969 } else { 14970 addr = kallsyms_lookup_name(tname); 14971 if (!addr) { 14972 bpf_log(log, 14973 "The address of function %s cannot be found\n", 14974 tname); 14975 return -ENOENT; 14976 } 14977 } 14978 14979 if (prog->aux->sleepable) { 14980 ret = -EINVAL; 14981 switch (prog->type) { 14982 case BPF_PROG_TYPE_TRACING: 14983 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14984 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14985 */ 14986 if (!check_non_sleepable_error_inject(btf_id) && 14987 within_error_injection_list(addr)) 14988 ret = 0; 14989 break; 14990 case BPF_PROG_TYPE_LSM: 14991 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14992 * Only some of them are sleepable. 14993 */ 14994 if (bpf_lsm_is_sleepable_hook(btf_id)) 14995 ret = 0; 14996 break; 14997 default: 14998 break; 14999 } 15000 if (ret) { 15001 bpf_log(log, "%s is not sleepable\n", tname); 15002 return ret; 15003 } 15004 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 15005 if (tgt_prog) { 15006 bpf_log(log, "can't modify return codes of BPF programs\n"); 15007 return -EINVAL; 15008 } 15009 ret = check_attach_modify_return(addr, tname); 15010 if (ret) { 15011 bpf_log(log, "%s() is not modifiable\n", tname); 15012 return ret; 15013 } 15014 } 15015 15016 break; 15017 } 15018 tgt_info->tgt_addr = addr; 15019 tgt_info->tgt_name = tname; 15020 tgt_info->tgt_type = t; 15021 return 0; 15022 } 15023 15024 BTF_SET_START(btf_id_deny) 15025 BTF_ID_UNUSED 15026 #ifdef CONFIG_SMP 15027 BTF_ID(func, migrate_disable) 15028 BTF_ID(func, migrate_enable) 15029 #endif 15030 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 15031 BTF_ID(func, rcu_read_unlock_strict) 15032 #endif 15033 BTF_SET_END(btf_id_deny) 15034 15035 static int check_attach_btf_id(struct bpf_verifier_env *env) 15036 { 15037 struct bpf_prog *prog = env->prog; 15038 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 15039 struct bpf_attach_target_info tgt_info = {}; 15040 u32 btf_id = prog->aux->attach_btf_id; 15041 struct bpf_trampoline *tr; 15042 int ret; 15043 u64 key; 15044 15045 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 15046 if (prog->aux->sleepable) 15047 /* attach_btf_id checked to be zero already */ 15048 return 0; 15049 verbose(env, "Syscall programs can only be sleepable\n"); 15050 return -EINVAL; 15051 } 15052 15053 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 15054 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 15055 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 15056 return -EINVAL; 15057 } 15058 15059 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 15060 return check_struct_ops_btf_id(env); 15061 15062 if (prog->type != BPF_PROG_TYPE_TRACING && 15063 prog->type != BPF_PROG_TYPE_LSM && 15064 prog->type != BPF_PROG_TYPE_EXT) 15065 return 0; 15066 15067 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 15068 if (ret) 15069 return ret; 15070 15071 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 15072 /* to make freplace equivalent to their targets, they need to 15073 * inherit env->ops and expected_attach_type for the rest of the 15074 * verification 15075 */ 15076 env->ops = bpf_verifier_ops[tgt_prog->type]; 15077 prog->expected_attach_type = tgt_prog->expected_attach_type; 15078 } 15079 15080 /* store info about the attachment target that will be used later */ 15081 prog->aux->attach_func_proto = tgt_info.tgt_type; 15082 prog->aux->attach_func_name = tgt_info.tgt_name; 15083 15084 if (tgt_prog) { 15085 prog->aux->saved_dst_prog_type = tgt_prog->type; 15086 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 15087 } 15088 15089 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 15090 prog->aux->attach_btf_trace = true; 15091 return 0; 15092 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 15093 if (!bpf_iter_prog_supported(prog)) 15094 return -EINVAL; 15095 return 0; 15096 } 15097 15098 if (prog->type == BPF_PROG_TYPE_LSM) { 15099 ret = bpf_lsm_verify_prog(&env->log, prog); 15100 if (ret < 0) 15101 return ret; 15102 } else if (prog->type == BPF_PROG_TYPE_TRACING && 15103 btf_id_set_contains(&btf_id_deny, btf_id)) { 15104 return -EINVAL; 15105 } 15106 15107 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 15108 tr = bpf_trampoline_get(key, &tgt_info); 15109 if (!tr) 15110 return -ENOMEM; 15111 15112 prog->aux->dst_trampoline = tr; 15113 return 0; 15114 } 15115 15116 struct btf *bpf_get_btf_vmlinux(void) 15117 { 15118 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 15119 mutex_lock(&bpf_verifier_lock); 15120 if (!btf_vmlinux) 15121 btf_vmlinux = btf_parse_vmlinux(); 15122 mutex_unlock(&bpf_verifier_lock); 15123 } 15124 return btf_vmlinux; 15125 } 15126 15127 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 15128 { 15129 u64 start_time = ktime_get_ns(); 15130 struct bpf_verifier_env *env; 15131 struct bpf_verifier_log *log; 15132 int i, len, ret = -EINVAL; 15133 bool is_priv; 15134 15135 /* no program is valid */ 15136 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 15137 return -EINVAL; 15138 15139 /* 'struct bpf_verifier_env' can be global, but since it's not small, 15140 * allocate/free it every time bpf_check() is called 15141 */ 15142 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 15143 if (!env) 15144 return -ENOMEM; 15145 log = &env->log; 15146 15147 len = (*prog)->len; 15148 env->insn_aux_data = 15149 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 15150 ret = -ENOMEM; 15151 if (!env->insn_aux_data) 15152 goto err_free_env; 15153 for (i = 0; i < len; i++) 15154 env->insn_aux_data[i].orig_idx = i; 15155 env->prog = *prog; 15156 env->ops = bpf_verifier_ops[env->prog->type]; 15157 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 15158 is_priv = bpf_capable(); 15159 15160 bpf_get_btf_vmlinux(); 15161 15162 /* grab the mutex to protect few globals used by verifier */ 15163 if (!is_priv) 15164 mutex_lock(&bpf_verifier_lock); 15165 15166 if (attr->log_level || attr->log_buf || attr->log_size) { 15167 /* user requested verbose verifier output 15168 * and supplied buffer to store the verification trace 15169 */ 15170 log->level = attr->log_level; 15171 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 15172 log->len_total = attr->log_size; 15173 15174 /* log attributes have to be sane */ 15175 if (!bpf_verifier_log_attr_valid(log)) { 15176 ret = -EINVAL; 15177 goto err_unlock; 15178 } 15179 } 15180 15181 mark_verifier_state_clean(env); 15182 15183 if (IS_ERR(btf_vmlinux)) { 15184 /* Either gcc or pahole or kernel are broken. */ 15185 verbose(env, "in-kernel BTF is malformed\n"); 15186 ret = PTR_ERR(btf_vmlinux); 15187 goto skip_full_check; 15188 } 15189 15190 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 15191 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 15192 env->strict_alignment = true; 15193 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 15194 env->strict_alignment = false; 15195 15196 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 15197 env->allow_uninit_stack = bpf_allow_uninit_stack(); 15198 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 15199 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 15200 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 15201 env->bpf_capable = bpf_capable(); 15202 15203 if (is_priv) 15204 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 15205 15206 env->explored_states = kvcalloc(state_htab_size(env), 15207 sizeof(struct bpf_verifier_state_list *), 15208 GFP_USER); 15209 ret = -ENOMEM; 15210 if (!env->explored_states) 15211 goto skip_full_check; 15212 15213 ret = add_subprog_and_kfunc(env); 15214 if (ret < 0) 15215 goto skip_full_check; 15216 15217 ret = check_subprogs(env); 15218 if (ret < 0) 15219 goto skip_full_check; 15220 15221 ret = check_btf_info(env, attr, uattr); 15222 if (ret < 0) 15223 goto skip_full_check; 15224 15225 ret = check_attach_btf_id(env); 15226 if (ret) 15227 goto skip_full_check; 15228 15229 ret = resolve_pseudo_ldimm64(env); 15230 if (ret < 0) 15231 goto skip_full_check; 15232 15233 if (bpf_prog_is_dev_bound(env->prog->aux)) { 15234 ret = bpf_prog_offload_verifier_prep(env->prog); 15235 if (ret) 15236 goto skip_full_check; 15237 } 15238 15239 ret = check_cfg(env); 15240 if (ret < 0) 15241 goto skip_full_check; 15242 15243 ret = do_check_subprogs(env); 15244 ret = ret ?: do_check_main(env); 15245 15246 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15247 ret = bpf_prog_offload_finalize(env); 15248 15249 skip_full_check: 15250 kvfree(env->explored_states); 15251 15252 if (ret == 0) 15253 ret = check_max_stack_depth(env); 15254 15255 /* instruction rewrites happen after this point */ 15256 if (ret == 0) 15257 ret = optimize_bpf_loop(env); 15258 15259 if (is_priv) { 15260 if (ret == 0) 15261 opt_hard_wire_dead_code_branches(env); 15262 if (ret == 0) 15263 ret = opt_remove_dead_code(env); 15264 if (ret == 0) 15265 ret = opt_remove_nops(env); 15266 } else { 15267 if (ret == 0) 15268 sanitize_dead_code(env); 15269 } 15270 15271 if (ret == 0) 15272 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15273 ret = convert_ctx_accesses(env); 15274 15275 if (ret == 0) 15276 ret = do_misc_fixups(env); 15277 15278 /* do 32-bit optimization after insn patching has done so those patched 15279 * insns could be handled correctly. 15280 */ 15281 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15282 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15283 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15284 : false; 15285 } 15286 15287 if (ret == 0) 15288 ret = fixup_call_args(env); 15289 15290 env->verification_time = ktime_get_ns() - start_time; 15291 print_verification_stats(env); 15292 env->prog->aux->verified_insns = env->insn_processed; 15293 15294 if (log->level && bpf_verifier_log_full(log)) 15295 ret = -ENOSPC; 15296 if (log->level && !log->ubuf) { 15297 ret = -EFAULT; 15298 goto err_release_maps; 15299 } 15300 15301 if (ret) 15302 goto err_release_maps; 15303 15304 if (env->used_map_cnt) { 15305 /* if program passed verifier, update used_maps in bpf_prog_info */ 15306 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15307 sizeof(env->used_maps[0]), 15308 GFP_KERNEL); 15309 15310 if (!env->prog->aux->used_maps) { 15311 ret = -ENOMEM; 15312 goto err_release_maps; 15313 } 15314 15315 memcpy(env->prog->aux->used_maps, env->used_maps, 15316 sizeof(env->used_maps[0]) * env->used_map_cnt); 15317 env->prog->aux->used_map_cnt = env->used_map_cnt; 15318 } 15319 if (env->used_btf_cnt) { 15320 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15321 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15322 sizeof(env->used_btfs[0]), 15323 GFP_KERNEL); 15324 if (!env->prog->aux->used_btfs) { 15325 ret = -ENOMEM; 15326 goto err_release_maps; 15327 } 15328 15329 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15330 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15331 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15332 } 15333 if (env->used_map_cnt || env->used_btf_cnt) { 15334 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15335 * bpf_ld_imm64 instructions 15336 */ 15337 convert_pseudo_ld_imm64(env); 15338 } 15339 15340 adjust_btf_func(env); 15341 15342 err_release_maps: 15343 if (!env->prog->aux->used_maps) 15344 /* if we didn't copy map pointers into bpf_prog_info, release 15345 * them now. Otherwise free_used_maps() will release them. 15346 */ 15347 release_maps(env); 15348 if (!env->prog->aux->used_btfs) 15349 release_btfs(env); 15350 15351 /* extension progs temporarily inherit the attach_type of their targets 15352 for verification purposes, so set it back to zero before returning 15353 */ 15354 if (env->prog->type == BPF_PROG_TYPE_EXT) 15355 env->prog->expected_attach_type = 0; 15356 15357 *prog = env->prog; 15358 err_unlock: 15359 if (!is_priv) 15360 mutex_unlock(&bpf_verifier_lock); 15361 vfree(env->insn_aux_data); 15362 err_free_env: 15363 kfree(env); 15364 return ret; 15365 } 15366