1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 25 #include "disasm.h" 26 27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 29 [_id] = & _name ## _verifier_ops, 30 #define BPF_MAP_TYPE(_id, _ops) 31 #define BPF_LINK_TYPE(_id, _name) 32 #include <linux/bpf_types.h> 33 #undef BPF_PROG_TYPE 34 #undef BPF_MAP_TYPE 35 #undef BPF_LINK_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 84 * four pointer types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 * 144 * The following reference types represent a potential reference to a kernel 145 * resource which, after first being allocated, must be checked and freed by 146 * the BPF program: 147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 148 * 149 * When the verifier sees a helper call return a reference type, it allocates a 150 * pointer id for the reference and stores it in the current function state. 151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 153 * passes through a NULL-check conditional. For the branch wherein the state is 154 * changed to CONST_IMM, the verifier releases the reference. 155 * 156 * For each helper function that allocates a reference, such as 157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 158 * bpf_sk_release(). When a reference type passes into the release function, 159 * the verifier also releases the reference. If any unchecked or unreleased 160 * reference remains at the end of the program, the verifier rejects it. 161 */ 162 163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 164 struct bpf_verifier_stack_elem { 165 /* verifer state is 'st' 166 * before processing instruction 'insn_idx' 167 * and after processing instruction 'prev_insn_idx' 168 */ 169 struct bpf_verifier_state st; 170 int insn_idx; 171 int prev_insn_idx; 172 struct bpf_verifier_stack_elem *next; 173 /* length of verifier log at the time this state was pushed on stack */ 174 u32 log_pos; 175 }; 176 177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 178 #define BPF_COMPLEXITY_LIMIT_STATES 64 179 180 #define BPF_MAP_KEY_POISON (1ULL << 63) 181 #define BPF_MAP_KEY_SEEN (1ULL << 62) 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_ptr_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_key_state & BPF_MAP_KEY_POISON; 210 } 211 212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 213 { 214 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 215 } 216 217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 220 } 221 222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 223 { 224 bool poisoned = bpf_map_key_poisoned(aux); 225 226 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 227 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 228 } 229 230 struct bpf_call_arg_meta { 231 struct bpf_map *map_ptr; 232 bool raw_mode; 233 bool pkt_access; 234 int regno; 235 int access_size; 236 int mem_size; 237 u64 msize_max_value; 238 int ref_obj_id; 239 int func_id; 240 u32 btf_id; 241 }; 242 243 struct btf *btf_vmlinux; 244 245 static DEFINE_MUTEX(bpf_verifier_lock); 246 247 static const struct bpf_line_info * 248 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 249 { 250 const struct bpf_line_info *linfo; 251 const struct bpf_prog *prog; 252 u32 i, nr_linfo; 253 254 prog = env->prog; 255 nr_linfo = prog->aux->nr_linfo; 256 257 if (!nr_linfo || insn_off >= prog->len) 258 return NULL; 259 260 linfo = prog->aux->linfo; 261 for (i = 1; i < nr_linfo; i++) 262 if (insn_off < linfo[i].insn_off) 263 break; 264 265 return &linfo[i - 1]; 266 } 267 268 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 269 va_list args) 270 { 271 unsigned int n; 272 273 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 274 275 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 276 "verifier log line truncated - local buffer too short\n"); 277 278 n = min(log->len_total - log->len_used - 1, n); 279 log->kbuf[n] = '\0'; 280 281 if (log->level == BPF_LOG_KERNEL) { 282 pr_err("BPF:%s\n", log->kbuf); 283 return; 284 } 285 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 286 log->len_used += n; 287 else 288 log->ubuf = NULL; 289 } 290 291 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 292 { 293 char zero = 0; 294 295 if (!bpf_verifier_log_needed(log)) 296 return; 297 298 log->len_used = new_pos; 299 if (put_user(zero, log->ubuf + new_pos)) 300 log->ubuf = NULL; 301 } 302 303 /* log_level controls verbosity level of eBPF verifier. 304 * bpf_verifier_log_write() is used to dump the verification trace to the log, 305 * so the user can figure out what's wrong with the program 306 */ 307 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 308 const char *fmt, ...) 309 { 310 va_list args; 311 312 if (!bpf_verifier_log_needed(&env->log)) 313 return; 314 315 va_start(args, fmt); 316 bpf_verifier_vlog(&env->log, fmt, args); 317 va_end(args); 318 } 319 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 320 321 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 322 { 323 struct bpf_verifier_env *env = private_data; 324 va_list args; 325 326 if (!bpf_verifier_log_needed(&env->log)) 327 return; 328 329 va_start(args, fmt); 330 bpf_verifier_vlog(&env->log, fmt, args); 331 va_end(args); 332 } 333 334 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(log, fmt, args); 344 va_end(args); 345 } 346 347 static const char *ltrim(const char *s) 348 { 349 while (isspace(*s)) 350 s++; 351 352 return s; 353 } 354 355 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 356 u32 insn_off, 357 const char *prefix_fmt, ...) 358 { 359 const struct bpf_line_info *linfo; 360 361 if (!bpf_verifier_log_needed(&env->log)) 362 return; 363 364 linfo = find_linfo(env, insn_off); 365 if (!linfo || linfo == env->prev_linfo) 366 return; 367 368 if (prefix_fmt) { 369 va_list args; 370 371 va_start(args, prefix_fmt); 372 bpf_verifier_vlog(&env->log, prefix_fmt, args); 373 va_end(args); 374 } 375 376 verbose(env, "%s\n", 377 ltrim(btf_name_by_offset(env->prog->aux->btf, 378 linfo->line_off))); 379 380 env->prev_linfo = linfo; 381 } 382 383 static bool type_is_pkt_pointer(enum bpf_reg_type type) 384 { 385 return type == PTR_TO_PACKET || 386 type == PTR_TO_PACKET_META; 387 } 388 389 static bool type_is_sk_pointer(enum bpf_reg_type type) 390 { 391 return type == PTR_TO_SOCKET || 392 type == PTR_TO_SOCK_COMMON || 393 type == PTR_TO_TCP_SOCK || 394 type == PTR_TO_XDP_SOCK; 395 } 396 397 static bool reg_type_not_null(enum bpf_reg_type type) 398 { 399 return type == PTR_TO_SOCKET || 400 type == PTR_TO_TCP_SOCK || 401 type == PTR_TO_MAP_VALUE || 402 type == PTR_TO_SOCK_COMMON || 403 type == PTR_TO_BTF_ID; 404 } 405 406 static bool reg_type_may_be_null(enum bpf_reg_type type) 407 { 408 return type == PTR_TO_MAP_VALUE_OR_NULL || 409 type == PTR_TO_SOCKET_OR_NULL || 410 type == PTR_TO_SOCK_COMMON_OR_NULL || 411 type == PTR_TO_TCP_SOCK_OR_NULL || 412 type == PTR_TO_BTF_ID_OR_NULL || 413 type == PTR_TO_MEM_OR_NULL; 414 } 415 416 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 417 { 418 return reg->type == PTR_TO_MAP_VALUE && 419 map_value_has_spin_lock(reg->map_ptr); 420 } 421 422 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 423 { 424 return type == PTR_TO_SOCKET || 425 type == PTR_TO_SOCKET_OR_NULL || 426 type == PTR_TO_TCP_SOCK || 427 type == PTR_TO_TCP_SOCK_OR_NULL || 428 type == PTR_TO_MEM || 429 type == PTR_TO_MEM_OR_NULL; 430 } 431 432 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 433 { 434 return type == ARG_PTR_TO_SOCK_COMMON; 435 } 436 437 /* Determine whether the function releases some resources allocated by another 438 * function call. The first reference type argument will be assumed to be 439 * released by release_reference(). 440 */ 441 static bool is_release_function(enum bpf_func_id func_id) 442 { 443 return func_id == BPF_FUNC_sk_release || 444 func_id == BPF_FUNC_ringbuf_submit || 445 func_id == BPF_FUNC_ringbuf_discard; 446 } 447 448 static bool may_be_acquire_function(enum bpf_func_id func_id) 449 { 450 return func_id == BPF_FUNC_sk_lookup_tcp || 451 func_id == BPF_FUNC_sk_lookup_udp || 452 func_id == BPF_FUNC_skc_lookup_tcp || 453 func_id == BPF_FUNC_map_lookup_elem || 454 func_id == BPF_FUNC_ringbuf_reserve; 455 } 456 457 static bool is_acquire_function(enum bpf_func_id func_id, 458 const struct bpf_map *map) 459 { 460 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 461 462 if (func_id == BPF_FUNC_sk_lookup_tcp || 463 func_id == BPF_FUNC_sk_lookup_udp || 464 func_id == BPF_FUNC_skc_lookup_tcp || 465 func_id == BPF_FUNC_ringbuf_reserve) 466 return true; 467 468 if (func_id == BPF_FUNC_map_lookup_elem && 469 (map_type == BPF_MAP_TYPE_SOCKMAP || 470 map_type == BPF_MAP_TYPE_SOCKHASH)) 471 return true; 472 473 return false; 474 } 475 476 static bool is_ptr_cast_function(enum bpf_func_id func_id) 477 { 478 return func_id == BPF_FUNC_tcp_sock || 479 func_id == BPF_FUNC_sk_fullsock; 480 } 481 482 /* string representation of 'enum bpf_reg_type' */ 483 static const char * const reg_type_str[] = { 484 [NOT_INIT] = "?", 485 [SCALAR_VALUE] = "inv", 486 [PTR_TO_CTX] = "ctx", 487 [CONST_PTR_TO_MAP] = "map_ptr", 488 [PTR_TO_MAP_VALUE] = "map_value", 489 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 490 [PTR_TO_STACK] = "fp", 491 [PTR_TO_PACKET] = "pkt", 492 [PTR_TO_PACKET_META] = "pkt_meta", 493 [PTR_TO_PACKET_END] = "pkt_end", 494 [PTR_TO_FLOW_KEYS] = "flow_keys", 495 [PTR_TO_SOCKET] = "sock", 496 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 497 [PTR_TO_SOCK_COMMON] = "sock_common", 498 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 499 [PTR_TO_TCP_SOCK] = "tcp_sock", 500 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 501 [PTR_TO_TP_BUFFER] = "tp_buffer", 502 [PTR_TO_XDP_SOCK] = "xdp_sock", 503 [PTR_TO_BTF_ID] = "ptr_", 504 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 505 [PTR_TO_MEM] = "mem", 506 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 507 }; 508 509 static char slot_type_char[] = { 510 [STACK_INVALID] = '?', 511 [STACK_SPILL] = 'r', 512 [STACK_MISC] = 'm', 513 [STACK_ZERO] = '0', 514 }; 515 516 static void print_liveness(struct bpf_verifier_env *env, 517 enum bpf_reg_liveness live) 518 { 519 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 520 verbose(env, "_"); 521 if (live & REG_LIVE_READ) 522 verbose(env, "r"); 523 if (live & REG_LIVE_WRITTEN) 524 verbose(env, "w"); 525 if (live & REG_LIVE_DONE) 526 verbose(env, "D"); 527 } 528 529 static struct bpf_func_state *func(struct bpf_verifier_env *env, 530 const struct bpf_reg_state *reg) 531 { 532 struct bpf_verifier_state *cur = env->cur_state; 533 534 return cur->frame[reg->frameno]; 535 } 536 537 const char *kernel_type_name(u32 id) 538 { 539 return btf_name_by_offset(btf_vmlinux, 540 btf_type_by_id(btf_vmlinux, id)->name_off); 541 } 542 543 static void print_verifier_state(struct bpf_verifier_env *env, 544 const struct bpf_func_state *state) 545 { 546 const struct bpf_reg_state *reg; 547 enum bpf_reg_type t; 548 int i; 549 550 if (state->frameno) 551 verbose(env, " frame%d:", state->frameno); 552 for (i = 0; i < MAX_BPF_REG; i++) { 553 reg = &state->regs[i]; 554 t = reg->type; 555 if (t == NOT_INIT) 556 continue; 557 verbose(env, " R%d", i); 558 print_liveness(env, reg->live); 559 verbose(env, "=%s", reg_type_str[t]); 560 if (t == SCALAR_VALUE && reg->precise) 561 verbose(env, "P"); 562 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 563 tnum_is_const(reg->var_off)) { 564 /* reg->off should be 0 for SCALAR_VALUE */ 565 verbose(env, "%lld", reg->var_off.value + reg->off); 566 } else { 567 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL) 568 verbose(env, "%s", kernel_type_name(reg->btf_id)); 569 verbose(env, "(id=%d", reg->id); 570 if (reg_type_may_be_refcounted_or_null(t)) 571 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 572 if (t != SCALAR_VALUE) 573 verbose(env, ",off=%d", reg->off); 574 if (type_is_pkt_pointer(t)) 575 verbose(env, ",r=%d", reg->range); 576 else if (t == CONST_PTR_TO_MAP || 577 t == PTR_TO_MAP_VALUE || 578 t == PTR_TO_MAP_VALUE_OR_NULL) 579 verbose(env, ",ks=%d,vs=%d", 580 reg->map_ptr->key_size, 581 reg->map_ptr->value_size); 582 if (tnum_is_const(reg->var_off)) { 583 /* Typically an immediate SCALAR_VALUE, but 584 * could be a pointer whose offset is too big 585 * for reg->off 586 */ 587 verbose(env, ",imm=%llx", reg->var_off.value); 588 } else { 589 if (reg->smin_value != reg->umin_value && 590 reg->smin_value != S64_MIN) 591 verbose(env, ",smin_value=%lld", 592 (long long)reg->smin_value); 593 if (reg->smax_value != reg->umax_value && 594 reg->smax_value != S64_MAX) 595 verbose(env, ",smax_value=%lld", 596 (long long)reg->smax_value); 597 if (reg->umin_value != 0) 598 verbose(env, ",umin_value=%llu", 599 (unsigned long long)reg->umin_value); 600 if (reg->umax_value != U64_MAX) 601 verbose(env, ",umax_value=%llu", 602 (unsigned long long)reg->umax_value); 603 if (!tnum_is_unknown(reg->var_off)) { 604 char tn_buf[48]; 605 606 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 607 verbose(env, ",var_off=%s", tn_buf); 608 } 609 if (reg->s32_min_value != reg->smin_value && 610 reg->s32_min_value != S32_MIN) 611 verbose(env, ",s32_min_value=%d", 612 (int)(reg->s32_min_value)); 613 if (reg->s32_max_value != reg->smax_value && 614 reg->s32_max_value != S32_MAX) 615 verbose(env, ",s32_max_value=%d", 616 (int)(reg->s32_max_value)); 617 if (reg->u32_min_value != reg->umin_value && 618 reg->u32_min_value != U32_MIN) 619 verbose(env, ",u32_min_value=%d", 620 (int)(reg->u32_min_value)); 621 if (reg->u32_max_value != reg->umax_value && 622 reg->u32_max_value != U32_MAX) 623 verbose(env, ",u32_max_value=%d", 624 (int)(reg->u32_max_value)); 625 } 626 verbose(env, ")"); 627 } 628 } 629 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 630 char types_buf[BPF_REG_SIZE + 1]; 631 bool valid = false; 632 int j; 633 634 for (j = 0; j < BPF_REG_SIZE; j++) { 635 if (state->stack[i].slot_type[j] != STACK_INVALID) 636 valid = true; 637 types_buf[j] = slot_type_char[ 638 state->stack[i].slot_type[j]]; 639 } 640 types_buf[BPF_REG_SIZE] = 0; 641 if (!valid) 642 continue; 643 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 644 print_liveness(env, state->stack[i].spilled_ptr.live); 645 if (state->stack[i].slot_type[0] == STACK_SPILL) { 646 reg = &state->stack[i].spilled_ptr; 647 t = reg->type; 648 verbose(env, "=%s", reg_type_str[t]); 649 if (t == SCALAR_VALUE && reg->precise) 650 verbose(env, "P"); 651 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 652 verbose(env, "%lld", reg->var_off.value + reg->off); 653 } else { 654 verbose(env, "=%s", types_buf); 655 } 656 } 657 if (state->acquired_refs && state->refs[0].id) { 658 verbose(env, " refs=%d", state->refs[0].id); 659 for (i = 1; i < state->acquired_refs; i++) 660 if (state->refs[i].id) 661 verbose(env, ",%d", state->refs[i].id); 662 } 663 verbose(env, "\n"); 664 } 665 666 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 667 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 668 const struct bpf_func_state *src) \ 669 { \ 670 if (!src->FIELD) \ 671 return 0; \ 672 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 673 /* internal bug, make state invalid to reject the program */ \ 674 memset(dst, 0, sizeof(*dst)); \ 675 return -EFAULT; \ 676 } \ 677 memcpy(dst->FIELD, src->FIELD, \ 678 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 679 return 0; \ 680 } 681 /* copy_reference_state() */ 682 COPY_STATE_FN(reference, acquired_refs, refs, 1) 683 /* copy_stack_state() */ 684 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 685 #undef COPY_STATE_FN 686 687 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 688 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 689 bool copy_old) \ 690 { \ 691 u32 old_size = state->COUNT; \ 692 struct bpf_##NAME##_state *new_##FIELD; \ 693 int slot = size / SIZE; \ 694 \ 695 if (size <= old_size || !size) { \ 696 if (copy_old) \ 697 return 0; \ 698 state->COUNT = slot * SIZE; \ 699 if (!size && old_size) { \ 700 kfree(state->FIELD); \ 701 state->FIELD = NULL; \ 702 } \ 703 return 0; \ 704 } \ 705 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 706 GFP_KERNEL); \ 707 if (!new_##FIELD) \ 708 return -ENOMEM; \ 709 if (copy_old) { \ 710 if (state->FIELD) \ 711 memcpy(new_##FIELD, state->FIELD, \ 712 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 713 memset(new_##FIELD + old_size / SIZE, 0, \ 714 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 715 } \ 716 state->COUNT = slot * SIZE; \ 717 kfree(state->FIELD); \ 718 state->FIELD = new_##FIELD; \ 719 return 0; \ 720 } 721 /* realloc_reference_state() */ 722 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 723 /* realloc_stack_state() */ 724 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 725 #undef REALLOC_STATE_FN 726 727 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 728 * make it consume minimal amount of memory. check_stack_write() access from 729 * the program calls into realloc_func_state() to grow the stack size. 730 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 731 * which realloc_stack_state() copies over. It points to previous 732 * bpf_verifier_state which is never reallocated. 733 */ 734 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 735 int refs_size, bool copy_old) 736 { 737 int err = realloc_reference_state(state, refs_size, copy_old); 738 if (err) 739 return err; 740 return realloc_stack_state(state, stack_size, copy_old); 741 } 742 743 /* Acquire a pointer id from the env and update the state->refs to include 744 * this new pointer reference. 745 * On success, returns a valid pointer id to associate with the register 746 * On failure, returns a negative errno. 747 */ 748 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 749 { 750 struct bpf_func_state *state = cur_func(env); 751 int new_ofs = state->acquired_refs; 752 int id, err; 753 754 err = realloc_reference_state(state, state->acquired_refs + 1, true); 755 if (err) 756 return err; 757 id = ++env->id_gen; 758 state->refs[new_ofs].id = id; 759 state->refs[new_ofs].insn_idx = insn_idx; 760 761 return id; 762 } 763 764 /* release function corresponding to acquire_reference_state(). Idempotent. */ 765 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 766 { 767 int i, last_idx; 768 769 last_idx = state->acquired_refs - 1; 770 for (i = 0; i < state->acquired_refs; i++) { 771 if (state->refs[i].id == ptr_id) { 772 if (last_idx && i != last_idx) 773 memcpy(&state->refs[i], &state->refs[last_idx], 774 sizeof(*state->refs)); 775 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 776 state->acquired_refs--; 777 return 0; 778 } 779 } 780 return -EINVAL; 781 } 782 783 static int transfer_reference_state(struct bpf_func_state *dst, 784 struct bpf_func_state *src) 785 { 786 int err = realloc_reference_state(dst, src->acquired_refs, false); 787 if (err) 788 return err; 789 err = copy_reference_state(dst, src); 790 if (err) 791 return err; 792 return 0; 793 } 794 795 static void free_func_state(struct bpf_func_state *state) 796 { 797 if (!state) 798 return; 799 kfree(state->refs); 800 kfree(state->stack); 801 kfree(state); 802 } 803 804 static void clear_jmp_history(struct bpf_verifier_state *state) 805 { 806 kfree(state->jmp_history); 807 state->jmp_history = NULL; 808 state->jmp_history_cnt = 0; 809 } 810 811 static void free_verifier_state(struct bpf_verifier_state *state, 812 bool free_self) 813 { 814 int i; 815 816 for (i = 0; i <= state->curframe; i++) { 817 free_func_state(state->frame[i]); 818 state->frame[i] = NULL; 819 } 820 clear_jmp_history(state); 821 if (free_self) 822 kfree(state); 823 } 824 825 /* copy verifier state from src to dst growing dst stack space 826 * when necessary to accommodate larger src stack 827 */ 828 static int copy_func_state(struct bpf_func_state *dst, 829 const struct bpf_func_state *src) 830 { 831 int err; 832 833 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 834 false); 835 if (err) 836 return err; 837 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 838 err = copy_reference_state(dst, src); 839 if (err) 840 return err; 841 return copy_stack_state(dst, src); 842 } 843 844 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 845 const struct bpf_verifier_state *src) 846 { 847 struct bpf_func_state *dst; 848 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 849 int i, err; 850 851 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 852 kfree(dst_state->jmp_history); 853 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 854 if (!dst_state->jmp_history) 855 return -ENOMEM; 856 } 857 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 858 dst_state->jmp_history_cnt = src->jmp_history_cnt; 859 860 /* if dst has more stack frames then src frame, free them */ 861 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 862 free_func_state(dst_state->frame[i]); 863 dst_state->frame[i] = NULL; 864 } 865 dst_state->speculative = src->speculative; 866 dst_state->curframe = src->curframe; 867 dst_state->active_spin_lock = src->active_spin_lock; 868 dst_state->branches = src->branches; 869 dst_state->parent = src->parent; 870 dst_state->first_insn_idx = src->first_insn_idx; 871 dst_state->last_insn_idx = src->last_insn_idx; 872 for (i = 0; i <= src->curframe; i++) { 873 dst = dst_state->frame[i]; 874 if (!dst) { 875 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 876 if (!dst) 877 return -ENOMEM; 878 dst_state->frame[i] = dst; 879 } 880 err = copy_func_state(dst, src->frame[i]); 881 if (err) 882 return err; 883 } 884 return 0; 885 } 886 887 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 888 { 889 while (st) { 890 u32 br = --st->branches; 891 892 /* WARN_ON(br > 1) technically makes sense here, 893 * but see comment in push_stack(), hence: 894 */ 895 WARN_ONCE((int)br < 0, 896 "BUG update_branch_counts:branches_to_explore=%d\n", 897 br); 898 if (br) 899 break; 900 st = st->parent; 901 } 902 } 903 904 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 905 int *insn_idx, bool pop_log) 906 { 907 struct bpf_verifier_state *cur = env->cur_state; 908 struct bpf_verifier_stack_elem *elem, *head = env->head; 909 int err; 910 911 if (env->head == NULL) 912 return -ENOENT; 913 914 if (cur) { 915 err = copy_verifier_state(cur, &head->st); 916 if (err) 917 return err; 918 } 919 if (pop_log) 920 bpf_vlog_reset(&env->log, head->log_pos); 921 if (insn_idx) 922 *insn_idx = head->insn_idx; 923 if (prev_insn_idx) 924 *prev_insn_idx = head->prev_insn_idx; 925 elem = head->next; 926 free_verifier_state(&head->st, false); 927 kfree(head); 928 env->head = elem; 929 env->stack_size--; 930 return 0; 931 } 932 933 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 934 int insn_idx, int prev_insn_idx, 935 bool speculative) 936 { 937 struct bpf_verifier_state *cur = env->cur_state; 938 struct bpf_verifier_stack_elem *elem; 939 int err; 940 941 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 942 if (!elem) 943 goto err; 944 945 elem->insn_idx = insn_idx; 946 elem->prev_insn_idx = prev_insn_idx; 947 elem->next = env->head; 948 elem->log_pos = env->log.len_used; 949 env->head = elem; 950 env->stack_size++; 951 err = copy_verifier_state(&elem->st, cur); 952 if (err) 953 goto err; 954 elem->st.speculative |= speculative; 955 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 956 verbose(env, "The sequence of %d jumps is too complex.\n", 957 env->stack_size); 958 goto err; 959 } 960 if (elem->st.parent) { 961 ++elem->st.parent->branches; 962 /* WARN_ON(branches > 2) technically makes sense here, 963 * but 964 * 1. speculative states will bump 'branches' for non-branch 965 * instructions 966 * 2. is_state_visited() heuristics may decide not to create 967 * a new state for a sequence of branches and all such current 968 * and cloned states will be pointing to a single parent state 969 * which might have large 'branches' count. 970 */ 971 } 972 return &elem->st; 973 err: 974 free_verifier_state(env->cur_state, true); 975 env->cur_state = NULL; 976 /* pop all elements and return */ 977 while (!pop_stack(env, NULL, NULL, false)); 978 return NULL; 979 } 980 981 #define CALLER_SAVED_REGS 6 982 static const int caller_saved[CALLER_SAVED_REGS] = { 983 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 984 }; 985 986 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 987 struct bpf_reg_state *reg); 988 989 /* Mark the unknown part of a register (variable offset or scalar value) as 990 * known to have the value @imm. 991 */ 992 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 993 { 994 /* Clear id, off, and union(map_ptr, range) */ 995 memset(((u8 *)reg) + sizeof(reg->type), 0, 996 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 997 reg->var_off = tnum_const(imm); 998 reg->smin_value = (s64)imm; 999 reg->smax_value = (s64)imm; 1000 reg->umin_value = imm; 1001 reg->umax_value = imm; 1002 1003 reg->s32_min_value = (s32)imm; 1004 reg->s32_max_value = (s32)imm; 1005 reg->u32_min_value = (u32)imm; 1006 reg->u32_max_value = (u32)imm; 1007 } 1008 1009 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1010 { 1011 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1012 reg->s32_min_value = (s32)imm; 1013 reg->s32_max_value = (s32)imm; 1014 reg->u32_min_value = (u32)imm; 1015 reg->u32_max_value = (u32)imm; 1016 } 1017 1018 /* Mark the 'variable offset' part of a register as zero. This should be 1019 * used only on registers holding a pointer type. 1020 */ 1021 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1022 { 1023 __mark_reg_known(reg, 0); 1024 } 1025 1026 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1027 { 1028 __mark_reg_known(reg, 0); 1029 reg->type = SCALAR_VALUE; 1030 } 1031 1032 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1033 struct bpf_reg_state *regs, u32 regno) 1034 { 1035 if (WARN_ON(regno >= MAX_BPF_REG)) { 1036 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1037 /* Something bad happened, let's kill all regs */ 1038 for (regno = 0; regno < MAX_BPF_REG; regno++) 1039 __mark_reg_not_init(env, regs + regno); 1040 return; 1041 } 1042 __mark_reg_known_zero(regs + regno); 1043 } 1044 1045 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1046 { 1047 return type_is_pkt_pointer(reg->type); 1048 } 1049 1050 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1051 { 1052 return reg_is_pkt_pointer(reg) || 1053 reg->type == PTR_TO_PACKET_END; 1054 } 1055 1056 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1057 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1058 enum bpf_reg_type which) 1059 { 1060 /* The register can already have a range from prior markings. 1061 * This is fine as long as it hasn't been advanced from its 1062 * origin. 1063 */ 1064 return reg->type == which && 1065 reg->id == 0 && 1066 reg->off == 0 && 1067 tnum_equals_const(reg->var_off, 0); 1068 } 1069 1070 /* Reset the min/max bounds of a register */ 1071 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1072 { 1073 reg->smin_value = S64_MIN; 1074 reg->smax_value = S64_MAX; 1075 reg->umin_value = 0; 1076 reg->umax_value = U64_MAX; 1077 1078 reg->s32_min_value = S32_MIN; 1079 reg->s32_max_value = S32_MAX; 1080 reg->u32_min_value = 0; 1081 reg->u32_max_value = U32_MAX; 1082 } 1083 1084 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1085 { 1086 reg->smin_value = S64_MIN; 1087 reg->smax_value = S64_MAX; 1088 reg->umin_value = 0; 1089 reg->umax_value = U64_MAX; 1090 } 1091 1092 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1093 { 1094 reg->s32_min_value = S32_MIN; 1095 reg->s32_max_value = S32_MAX; 1096 reg->u32_min_value = 0; 1097 reg->u32_max_value = U32_MAX; 1098 } 1099 1100 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1101 { 1102 struct tnum var32_off = tnum_subreg(reg->var_off); 1103 1104 /* min signed is max(sign bit) | min(other bits) */ 1105 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1106 var32_off.value | (var32_off.mask & S32_MIN)); 1107 /* max signed is min(sign bit) | max(other bits) */ 1108 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1109 var32_off.value | (var32_off.mask & S32_MAX)); 1110 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1111 reg->u32_max_value = min(reg->u32_max_value, 1112 (u32)(var32_off.value | var32_off.mask)); 1113 } 1114 1115 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1116 { 1117 /* min signed is max(sign bit) | min(other bits) */ 1118 reg->smin_value = max_t(s64, reg->smin_value, 1119 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1120 /* max signed is min(sign bit) | max(other bits) */ 1121 reg->smax_value = min_t(s64, reg->smax_value, 1122 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1123 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1124 reg->umax_value = min(reg->umax_value, 1125 reg->var_off.value | reg->var_off.mask); 1126 } 1127 1128 static void __update_reg_bounds(struct bpf_reg_state *reg) 1129 { 1130 __update_reg32_bounds(reg); 1131 __update_reg64_bounds(reg); 1132 } 1133 1134 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1135 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1136 { 1137 /* Learn sign from signed bounds. 1138 * If we cannot cross the sign boundary, then signed and unsigned bounds 1139 * are the same, so combine. This works even in the negative case, e.g. 1140 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1141 */ 1142 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1143 reg->s32_min_value = reg->u32_min_value = 1144 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1145 reg->s32_max_value = reg->u32_max_value = 1146 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1147 return; 1148 } 1149 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1150 * boundary, so we must be careful. 1151 */ 1152 if ((s32)reg->u32_max_value >= 0) { 1153 /* Positive. We can't learn anything from the smin, but smax 1154 * is positive, hence safe. 1155 */ 1156 reg->s32_min_value = reg->u32_min_value; 1157 reg->s32_max_value = reg->u32_max_value = 1158 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1159 } else if ((s32)reg->u32_min_value < 0) { 1160 /* Negative. We can't learn anything from the smax, but smin 1161 * is negative, hence safe. 1162 */ 1163 reg->s32_min_value = reg->u32_min_value = 1164 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1165 reg->s32_max_value = reg->u32_max_value; 1166 } 1167 } 1168 1169 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1170 { 1171 /* Learn sign from signed bounds. 1172 * If we cannot cross the sign boundary, then signed and unsigned bounds 1173 * are the same, so combine. This works even in the negative case, e.g. 1174 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1175 */ 1176 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1177 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1178 reg->umin_value); 1179 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1180 reg->umax_value); 1181 return; 1182 } 1183 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1184 * boundary, so we must be careful. 1185 */ 1186 if ((s64)reg->umax_value >= 0) { 1187 /* Positive. We can't learn anything from the smin, but smax 1188 * is positive, hence safe. 1189 */ 1190 reg->smin_value = reg->umin_value; 1191 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1192 reg->umax_value); 1193 } else if ((s64)reg->umin_value < 0) { 1194 /* Negative. We can't learn anything from the smax, but smin 1195 * is negative, hence safe. 1196 */ 1197 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1198 reg->umin_value); 1199 reg->smax_value = reg->umax_value; 1200 } 1201 } 1202 1203 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1204 { 1205 __reg32_deduce_bounds(reg); 1206 __reg64_deduce_bounds(reg); 1207 } 1208 1209 /* Attempts to improve var_off based on unsigned min/max information */ 1210 static void __reg_bound_offset(struct bpf_reg_state *reg) 1211 { 1212 struct tnum var64_off = tnum_intersect(reg->var_off, 1213 tnum_range(reg->umin_value, 1214 reg->umax_value)); 1215 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1216 tnum_range(reg->u32_min_value, 1217 reg->u32_max_value)); 1218 1219 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1220 } 1221 1222 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1223 { 1224 reg->umin_value = reg->u32_min_value; 1225 reg->umax_value = reg->u32_max_value; 1226 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1227 * but must be positive otherwise set to worse case bounds 1228 * and refine later from tnum. 1229 */ 1230 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1231 reg->smax_value = reg->s32_max_value; 1232 else 1233 reg->smax_value = U32_MAX; 1234 if (reg->s32_min_value >= 0) 1235 reg->smin_value = reg->s32_min_value; 1236 else 1237 reg->smin_value = 0; 1238 } 1239 1240 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1241 { 1242 /* special case when 64-bit register has upper 32-bit register 1243 * zeroed. Typically happens after zext or <<32, >>32 sequence 1244 * allowing us to use 32-bit bounds directly, 1245 */ 1246 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1247 __reg_assign_32_into_64(reg); 1248 } else { 1249 /* Otherwise the best we can do is push lower 32bit known and 1250 * unknown bits into register (var_off set from jmp logic) 1251 * then learn as much as possible from the 64-bit tnum 1252 * known and unknown bits. The previous smin/smax bounds are 1253 * invalid here because of jmp32 compare so mark them unknown 1254 * so they do not impact tnum bounds calculation. 1255 */ 1256 __mark_reg64_unbounded(reg); 1257 __update_reg_bounds(reg); 1258 } 1259 1260 /* Intersecting with the old var_off might have improved our bounds 1261 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1262 * then new var_off is (0; 0x7f...fc) which improves our umax. 1263 */ 1264 __reg_deduce_bounds(reg); 1265 __reg_bound_offset(reg); 1266 __update_reg_bounds(reg); 1267 } 1268 1269 static bool __reg64_bound_s32(s64 a) 1270 { 1271 if (a > S32_MIN && a < S32_MAX) 1272 return true; 1273 return false; 1274 } 1275 1276 static bool __reg64_bound_u32(u64 a) 1277 { 1278 if (a > U32_MIN && a < U32_MAX) 1279 return true; 1280 return false; 1281 } 1282 1283 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1284 { 1285 __mark_reg32_unbounded(reg); 1286 1287 if (__reg64_bound_s32(reg->smin_value)) 1288 reg->s32_min_value = (s32)reg->smin_value; 1289 if (__reg64_bound_s32(reg->smax_value)) 1290 reg->s32_max_value = (s32)reg->smax_value; 1291 if (__reg64_bound_u32(reg->umin_value)) 1292 reg->u32_min_value = (u32)reg->umin_value; 1293 if (__reg64_bound_u32(reg->umax_value)) 1294 reg->u32_max_value = (u32)reg->umax_value; 1295 1296 /* Intersecting with the old var_off might have improved our bounds 1297 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1298 * then new var_off is (0; 0x7f...fc) which improves our umax. 1299 */ 1300 __reg_deduce_bounds(reg); 1301 __reg_bound_offset(reg); 1302 __update_reg_bounds(reg); 1303 } 1304 1305 /* Mark a register as having a completely unknown (scalar) value. */ 1306 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1307 struct bpf_reg_state *reg) 1308 { 1309 /* 1310 * Clear type, id, off, and union(map_ptr, range) and 1311 * padding between 'type' and union 1312 */ 1313 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1314 reg->type = SCALAR_VALUE; 1315 reg->var_off = tnum_unknown; 1316 reg->frameno = 0; 1317 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1318 __mark_reg_unbounded(reg); 1319 } 1320 1321 static void mark_reg_unknown(struct bpf_verifier_env *env, 1322 struct bpf_reg_state *regs, u32 regno) 1323 { 1324 if (WARN_ON(regno >= MAX_BPF_REG)) { 1325 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1326 /* Something bad happened, let's kill all regs except FP */ 1327 for (regno = 0; regno < BPF_REG_FP; regno++) 1328 __mark_reg_not_init(env, regs + regno); 1329 return; 1330 } 1331 __mark_reg_unknown(env, regs + regno); 1332 } 1333 1334 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1335 struct bpf_reg_state *reg) 1336 { 1337 __mark_reg_unknown(env, reg); 1338 reg->type = NOT_INIT; 1339 } 1340 1341 static void mark_reg_not_init(struct bpf_verifier_env *env, 1342 struct bpf_reg_state *regs, u32 regno) 1343 { 1344 if (WARN_ON(regno >= MAX_BPF_REG)) { 1345 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1346 /* Something bad happened, let's kill all regs except FP */ 1347 for (regno = 0; regno < BPF_REG_FP; regno++) 1348 __mark_reg_not_init(env, regs + regno); 1349 return; 1350 } 1351 __mark_reg_not_init(env, regs + regno); 1352 } 1353 1354 #define DEF_NOT_SUBREG (0) 1355 static void init_reg_state(struct bpf_verifier_env *env, 1356 struct bpf_func_state *state) 1357 { 1358 struct bpf_reg_state *regs = state->regs; 1359 int i; 1360 1361 for (i = 0; i < MAX_BPF_REG; i++) { 1362 mark_reg_not_init(env, regs, i); 1363 regs[i].live = REG_LIVE_NONE; 1364 regs[i].parent = NULL; 1365 regs[i].subreg_def = DEF_NOT_SUBREG; 1366 } 1367 1368 /* frame pointer */ 1369 regs[BPF_REG_FP].type = PTR_TO_STACK; 1370 mark_reg_known_zero(env, regs, BPF_REG_FP); 1371 regs[BPF_REG_FP].frameno = state->frameno; 1372 } 1373 1374 #define BPF_MAIN_FUNC (-1) 1375 static void init_func_state(struct bpf_verifier_env *env, 1376 struct bpf_func_state *state, 1377 int callsite, int frameno, int subprogno) 1378 { 1379 state->callsite = callsite; 1380 state->frameno = frameno; 1381 state->subprogno = subprogno; 1382 init_reg_state(env, state); 1383 } 1384 1385 enum reg_arg_type { 1386 SRC_OP, /* register is used as source operand */ 1387 DST_OP, /* register is used as destination operand */ 1388 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1389 }; 1390 1391 static int cmp_subprogs(const void *a, const void *b) 1392 { 1393 return ((struct bpf_subprog_info *)a)->start - 1394 ((struct bpf_subprog_info *)b)->start; 1395 } 1396 1397 static int find_subprog(struct bpf_verifier_env *env, int off) 1398 { 1399 struct bpf_subprog_info *p; 1400 1401 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1402 sizeof(env->subprog_info[0]), cmp_subprogs); 1403 if (!p) 1404 return -ENOENT; 1405 return p - env->subprog_info; 1406 1407 } 1408 1409 static int add_subprog(struct bpf_verifier_env *env, int off) 1410 { 1411 int insn_cnt = env->prog->len; 1412 int ret; 1413 1414 if (off >= insn_cnt || off < 0) { 1415 verbose(env, "call to invalid destination\n"); 1416 return -EINVAL; 1417 } 1418 ret = find_subprog(env, off); 1419 if (ret >= 0) 1420 return 0; 1421 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1422 verbose(env, "too many subprograms\n"); 1423 return -E2BIG; 1424 } 1425 env->subprog_info[env->subprog_cnt++].start = off; 1426 sort(env->subprog_info, env->subprog_cnt, 1427 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1428 return 0; 1429 } 1430 1431 static int check_subprogs(struct bpf_verifier_env *env) 1432 { 1433 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1434 struct bpf_subprog_info *subprog = env->subprog_info; 1435 struct bpf_insn *insn = env->prog->insnsi; 1436 int insn_cnt = env->prog->len; 1437 1438 /* Add entry function. */ 1439 ret = add_subprog(env, 0); 1440 if (ret < 0) 1441 return ret; 1442 1443 /* determine subprog starts. The end is one before the next starts */ 1444 for (i = 0; i < insn_cnt; i++) { 1445 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1446 continue; 1447 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1448 continue; 1449 if (!env->bpf_capable) { 1450 verbose(env, 1451 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1452 return -EPERM; 1453 } 1454 ret = add_subprog(env, i + insn[i].imm + 1); 1455 if (ret < 0) 1456 return ret; 1457 } 1458 1459 /* Add a fake 'exit' subprog which could simplify subprog iteration 1460 * logic. 'subprog_cnt' should not be increased. 1461 */ 1462 subprog[env->subprog_cnt].start = insn_cnt; 1463 1464 if (env->log.level & BPF_LOG_LEVEL2) 1465 for (i = 0; i < env->subprog_cnt; i++) 1466 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1467 1468 /* now check that all jumps are within the same subprog */ 1469 subprog_start = subprog[cur_subprog].start; 1470 subprog_end = subprog[cur_subprog + 1].start; 1471 for (i = 0; i < insn_cnt; i++) { 1472 u8 code = insn[i].code; 1473 1474 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1475 goto next; 1476 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1477 goto next; 1478 off = i + insn[i].off + 1; 1479 if (off < subprog_start || off >= subprog_end) { 1480 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1481 return -EINVAL; 1482 } 1483 next: 1484 if (i == subprog_end - 1) { 1485 /* to avoid fall-through from one subprog into another 1486 * the last insn of the subprog should be either exit 1487 * or unconditional jump back 1488 */ 1489 if (code != (BPF_JMP | BPF_EXIT) && 1490 code != (BPF_JMP | BPF_JA)) { 1491 verbose(env, "last insn is not an exit or jmp\n"); 1492 return -EINVAL; 1493 } 1494 subprog_start = subprog_end; 1495 cur_subprog++; 1496 if (cur_subprog < env->subprog_cnt) 1497 subprog_end = subprog[cur_subprog + 1].start; 1498 } 1499 } 1500 return 0; 1501 } 1502 1503 /* Parentage chain of this register (or stack slot) should take care of all 1504 * issues like callee-saved registers, stack slot allocation time, etc. 1505 */ 1506 static int mark_reg_read(struct bpf_verifier_env *env, 1507 const struct bpf_reg_state *state, 1508 struct bpf_reg_state *parent, u8 flag) 1509 { 1510 bool writes = parent == state->parent; /* Observe write marks */ 1511 int cnt = 0; 1512 1513 while (parent) { 1514 /* if read wasn't screened by an earlier write ... */ 1515 if (writes && state->live & REG_LIVE_WRITTEN) 1516 break; 1517 if (parent->live & REG_LIVE_DONE) { 1518 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1519 reg_type_str[parent->type], 1520 parent->var_off.value, parent->off); 1521 return -EFAULT; 1522 } 1523 /* The first condition is more likely to be true than the 1524 * second, checked it first. 1525 */ 1526 if ((parent->live & REG_LIVE_READ) == flag || 1527 parent->live & REG_LIVE_READ64) 1528 /* The parentage chain never changes and 1529 * this parent was already marked as LIVE_READ. 1530 * There is no need to keep walking the chain again and 1531 * keep re-marking all parents as LIVE_READ. 1532 * This case happens when the same register is read 1533 * multiple times without writes into it in-between. 1534 * Also, if parent has the stronger REG_LIVE_READ64 set, 1535 * then no need to set the weak REG_LIVE_READ32. 1536 */ 1537 break; 1538 /* ... then we depend on parent's value */ 1539 parent->live |= flag; 1540 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1541 if (flag == REG_LIVE_READ64) 1542 parent->live &= ~REG_LIVE_READ32; 1543 state = parent; 1544 parent = state->parent; 1545 writes = true; 1546 cnt++; 1547 } 1548 1549 if (env->longest_mark_read_walk < cnt) 1550 env->longest_mark_read_walk = cnt; 1551 return 0; 1552 } 1553 1554 /* This function is supposed to be used by the following 32-bit optimization 1555 * code only. It returns TRUE if the source or destination register operates 1556 * on 64-bit, otherwise return FALSE. 1557 */ 1558 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1559 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1560 { 1561 u8 code, class, op; 1562 1563 code = insn->code; 1564 class = BPF_CLASS(code); 1565 op = BPF_OP(code); 1566 if (class == BPF_JMP) { 1567 /* BPF_EXIT for "main" will reach here. Return TRUE 1568 * conservatively. 1569 */ 1570 if (op == BPF_EXIT) 1571 return true; 1572 if (op == BPF_CALL) { 1573 /* BPF to BPF call will reach here because of marking 1574 * caller saved clobber with DST_OP_NO_MARK for which we 1575 * don't care the register def because they are anyway 1576 * marked as NOT_INIT already. 1577 */ 1578 if (insn->src_reg == BPF_PSEUDO_CALL) 1579 return false; 1580 /* Helper call will reach here because of arg type 1581 * check, conservatively return TRUE. 1582 */ 1583 if (t == SRC_OP) 1584 return true; 1585 1586 return false; 1587 } 1588 } 1589 1590 if (class == BPF_ALU64 || class == BPF_JMP || 1591 /* BPF_END always use BPF_ALU class. */ 1592 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1593 return true; 1594 1595 if (class == BPF_ALU || class == BPF_JMP32) 1596 return false; 1597 1598 if (class == BPF_LDX) { 1599 if (t != SRC_OP) 1600 return BPF_SIZE(code) == BPF_DW; 1601 /* LDX source must be ptr. */ 1602 return true; 1603 } 1604 1605 if (class == BPF_STX) { 1606 if (reg->type != SCALAR_VALUE) 1607 return true; 1608 return BPF_SIZE(code) == BPF_DW; 1609 } 1610 1611 if (class == BPF_LD) { 1612 u8 mode = BPF_MODE(code); 1613 1614 /* LD_IMM64 */ 1615 if (mode == BPF_IMM) 1616 return true; 1617 1618 /* Both LD_IND and LD_ABS return 32-bit data. */ 1619 if (t != SRC_OP) 1620 return false; 1621 1622 /* Implicit ctx ptr. */ 1623 if (regno == BPF_REG_6) 1624 return true; 1625 1626 /* Explicit source could be any width. */ 1627 return true; 1628 } 1629 1630 if (class == BPF_ST) 1631 /* The only source register for BPF_ST is a ptr. */ 1632 return true; 1633 1634 /* Conservatively return true at default. */ 1635 return true; 1636 } 1637 1638 /* Return TRUE if INSN doesn't have explicit value define. */ 1639 static bool insn_no_def(struct bpf_insn *insn) 1640 { 1641 u8 class = BPF_CLASS(insn->code); 1642 1643 return (class == BPF_JMP || class == BPF_JMP32 || 1644 class == BPF_STX || class == BPF_ST); 1645 } 1646 1647 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1648 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1649 { 1650 if (insn_no_def(insn)) 1651 return false; 1652 1653 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1654 } 1655 1656 static void mark_insn_zext(struct bpf_verifier_env *env, 1657 struct bpf_reg_state *reg) 1658 { 1659 s32 def_idx = reg->subreg_def; 1660 1661 if (def_idx == DEF_NOT_SUBREG) 1662 return; 1663 1664 env->insn_aux_data[def_idx - 1].zext_dst = true; 1665 /* The dst will be zero extended, so won't be sub-register anymore. */ 1666 reg->subreg_def = DEF_NOT_SUBREG; 1667 } 1668 1669 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1670 enum reg_arg_type t) 1671 { 1672 struct bpf_verifier_state *vstate = env->cur_state; 1673 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1674 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1675 struct bpf_reg_state *reg, *regs = state->regs; 1676 bool rw64; 1677 1678 if (regno >= MAX_BPF_REG) { 1679 verbose(env, "R%d is invalid\n", regno); 1680 return -EINVAL; 1681 } 1682 1683 reg = ®s[regno]; 1684 rw64 = is_reg64(env, insn, regno, reg, t); 1685 if (t == SRC_OP) { 1686 /* check whether register used as source operand can be read */ 1687 if (reg->type == NOT_INIT) { 1688 verbose(env, "R%d !read_ok\n", regno); 1689 return -EACCES; 1690 } 1691 /* We don't need to worry about FP liveness because it's read-only */ 1692 if (regno == BPF_REG_FP) 1693 return 0; 1694 1695 if (rw64) 1696 mark_insn_zext(env, reg); 1697 1698 return mark_reg_read(env, reg, reg->parent, 1699 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1700 } else { 1701 /* check whether register used as dest operand can be written to */ 1702 if (regno == BPF_REG_FP) { 1703 verbose(env, "frame pointer is read only\n"); 1704 return -EACCES; 1705 } 1706 reg->live |= REG_LIVE_WRITTEN; 1707 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1708 if (t == DST_OP) 1709 mark_reg_unknown(env, regs, regno); 1710 } 1711 return 0; 1712 } 1713 1714 /* for any branch, call, exit record the history of jmps in the given state */ 1715 static int push_jmp_history(struct bpf_verifier_env *env, 1716 struct bpf_verifier_state *cur) 1717 { 1718 u32 cnt = cur->jmp_history_cnt; 1719 struct bpf_idx_pair *p; 1720 1721 cnt++; 1722 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1723 if (!p) 1724 return -ENOMEM; 1725 p[cnt - 1].idx = env->insn_idx; 1726 p[cnt - 1].prev_idx = env->prev_insn_idx; 1727 cur->jmp_history = p; 1728 cur->jmp_history_cnt = cnt; 1729 return 0; 1730 } 1731 1732 /* Backtrack one insn at a time. If idx is not at the top of recorded 1733 * history then previous instruction came from straight line execution. 1734 */ 1735 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1736 u32 *history) 1737 { 1738 u32 cnt = *history; 1739 1740 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1741 i = st->jmp_history[cnt - 1].prev_idx; 1742 (*history)--; 1743 } else { 1744 i--; 1745 } 1746 return i; 1747 } 1748 1749 /* For given verifier state backtrack_insn() is called from the last insn to 1750 * the first insn. Its purpose is to compute a bitmask of registers and 1751 * stack slots that needs precision in the parent verifier state. 1752 */ 1753 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1754 u32 *reg_mask, u64 *stack_mask) 1755 { 1756 const struct bpf_insn_cbs cbs = { 1757 .cb_print = verbose, 1758 .private_data = env, 1759 }; 1760 struct bpf_insn *insn = env->prog->insnsi + idx; 1761 u8 class = BPF_CLASS(insn->code); 1762 u8 opcode = BPF_OP(insn->code); 1763 u8 mode = BPF_MODE(insn->code); 1764 u32 dreg = 1u << insn->dst_reg; 1765 u32 sreg = 1u << insn->src_reg; 1766 u32 spi; 1767 1768 if (insn->code == 0) 1769 return 0; 1770 if (env->log.level & BPF_LOG_LEVEL) { 1771 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1772 verbose(env, "%d: ", idx); 1773 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1774 } 1775 1776 if (class == BPF_ALU || class == BPF_ALU64) { 1777 if (!(*reg_mask & dreg)) 1778 return 0; 1779 if (opcode == BPF_MOV) { 1780 if (BPF_SRC(insn->code) == BPF_X) { 1781 /* dreg = sreg 1782 * dreg needs precision after this insn 1783 * sreg needs precision before this insn 1784 */ 1785 *reg_mask &= ~dreg; 1786 *reg_mask |= sreg; 1787 } else { 1788 /* dreg = K 1789 * dreg needs precision after this insn. 1790 * Corresponding register is already marked 1791 * as precise=true in this verifier state. 1792 * No further markings in parent are necessary 1793 */ 1794 *reg_mask &= ~dreg; 1795 } 1796 } else { 1797 if (BPF_SRC(insn->code) == BPF_X) { 1798 /* dreg += sreg 1799 * both dreg and sreg need precision 1800 * before this insn 1801 */ 1802 *reg_mask |= sreg; 1803 } /* else dreg += K 1804 * dreg still needs precision before this insn 1805 */ 1806 } 1807 } else if (class == BPF_LDX) { 1808 if (!(*reg_mask & dreg)) 1809 return 0; 1810 *reg_mask &= ~dreg; 1811 1812 /* scalars can only be spilled into stack w/o losing precision. 1813 * Load from any other memory can be zero extended. 1814 * The desire to keep that precision is already indicated 1815 * by 'precise' mark in corresponding register of this state. 1816 * No further tracking necessary. 1817 */ 1818 if (insn->src_reg != BPF_REG_FP) 1819 return 0; 1820 if (BPF_SIZE(insn->code) != BPF_DW) 1821 return 0; 1822 1823 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1824 * that [fp - off] slot contains scalar that needs to be 1825 * tracked with precision 1826 */ 1827 spi = (-insn->off - 1) / BPF_REG_SIZE; 1828 if (spi >= 64) { 1829 verbose(env, "BUG spi %d\n", spi); 1830 WARN_ONCE(1, "verifier backtracking bug"); 1831 return -EFAULT; 1832 } 1833 *stack_mask |= 1ull << spi; 1834 } else if (class == BPF_STX || class == BPF_ST) { 1835 if (*reg_mask & dreg) 1836 /* stx & st shouldn't be using _scalar_ dst_reg 1837 * to access memory. It means backtracking 1838 * encountered a case of pointer subtraction. 1839 */ 1840 return -ENOTSUPP; 1841 /* scalars can only be spilled into stack */ 1842 if (insn->dst_reg != BPF_REG_FP) 1843 return 0; 1844 if (BPF_SIZE(insn->code) != BPF_DW) 1845 return 0; 1846 spi = (-insn->off - 1) / BPF_REG_SIZE; 1847 if (spi >= 64) { 1848 verbose(env, "BUG spi %d\n", spi); 1849 WARN_ONCE(1, "verifier backtracking bug"); 1850 return -EFAULT; 1851 } 1852 if (!(*stack_mask & (1ull << spi))) 1853 return 0; 1854 *stack_mask &= ~(1ull << spi); 1855 if (class == BPF_STX) 1856 *reg_mask |= sreg; 1857 } else if (class == BPF_JMP || class == BPF_JMP32) { 1858 if (opcode == BPF_CALL) { 1859 if (insn->src_reg == BPF_PSEUDO_CALL) 1860 return -ENOTSUPP; 1861 /* regular helper call sets R0 */ 1862 *reg_mask &= ~1; 1863 if (*reg_mask & 0x3f) { 1864 /* if backtracing was looking for registers R1-R5 1865 * they should have been found already. 1866 */ 1867 verbose(env, "BUG regs %x\n", *reg_mask); 1868 WARN_ONCE(1, "verifier backtracking bug"); 1869 return -EFAULT; 1870 } 1871 } else if (opcode == BPF_EXIT) { 1872 return -ENOTSUPP; 1873 } 1874 } else if (class == BPF_LD) { 1875 if (!(*reg_mask & dreg)) 1876 return 0; 1877 *reg_mask &= ~dreg; 1878 /* It's ld_imm64 or ld_abs or ld_ind. 1879 * For ld_imm64 no further tracking of precision 1880 * into parent is necessary 1881 */ 1882 if (mode == BPF_IND || mode == BPF_ABS) 1883 /* to be analyzed */ 1884 return -ENOTSUPP; 1885 } 1886 return 0; 1887 } 1888 1889 /* the scalar precision tracking algorithm: 1890 * . at the start all registers have precise=false. 1891 * . scalar ranges are tracked as normal through alu and jmp insns. 1892 * . once precise value of the scalar register is used in: 1893 * . ptr + scalar alu 1894 * . if (scalar cond K|scalar) 1895 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1896 * backtrack through the verifier states and mark all registers and 1897 * stack slots with spilled constants that these scalar regisers 1898 * should be precise. 1899 * . during state pruning two registers (or spilled stack slots) 1900 * are equivalent if both are not precise. 1901 * 1902 * Note the verifier cannot simply walk register parentage chain, 1903 * since many different registers and stack slots could have been 1904 * used to compute single precise scalar. 1905 * 1906 * The approach of starting with precise=true for all registers and then 1907 * backtrack to mark a register as not precise when the verifier detects 1908 * that program doesn't care about specific value (e.g., when helper 1909 * takes register as ARG_ANYTHING parameter) is not safe. 1910 * 1911 * It's ok to walk single parentage chain of the verifier states. 1912 * It's possible that this backtracking will go all the way till 1st insn. 1913 * All other branches will be explored for needing precision later. 1914 * 1915 * The backtracking needs to deal with cases like: 1916 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1917 * r9 -= r8 1918 * r5 = r9 1919 * if r5 > 0x79f goto pc+7 1920 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1921 * r5 += 1 1922 * ... 1923 * call bpf_perf_event_output#25 1924 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1925 * 1926 * and this case: 1927 * r6 = 1 1928 * call foo // uses callee's r6 inside to compute r0 1929 * r0 += r6 1930 * if r0 == 0 goto 1931 * 1932 * to track above reg_mask/stack_mask needs to be independent for each frame. 1933 * 1934 * Also if parent's curframe > frame where backtracking started, 1935 * the verifier need to mark registers in both frames, otherwise callees 1936 * may incorrectly prune callers. This is similar to 1937 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1938 * 1939 * For now backtracking falls back into conservative marking. 1940 */ 1941 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1942 struct bpf_verifier_state *st) 1943 { 1944 struct bpf_func_state *func; 1945 struct bpf_reg_state *reg; 1946 int i, j; 1947 1948 /* big hammer: mark all scalars precise in this path. 1949 * pop_stack may still get !precise scalars. 1950 */ 1951 for (; st; st = st->parent) 1952 for (i = 0; i <= st->curframe; i++) { 1953 func = st->frame[i]; 1954 for (j = 0; j < BPF_REG_FP; j++) { 1955 reg = &func->regs[j]; 1956 if (reg->type != SCALAR_VALUE) 1957 continue; 1958 reg->precise = true; 1959 } 1960 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1961 if (func->stack[j].slot_type[0] != STACK_SPILL) 1962 continue; 1963 reg = &func->stack[j].spilled_ptr; 1964 if (reg->type != SCALAR_VALUE) 1965 continue; 1966 reg->precise = true; 1967 } 1968 } 1969 } 1970 1971 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1972 int spi) 1973 { 1974 struct bpf_verifier_state *st = env->cur_state; 1975 int first_idx = st->first_insn_idx; 1976 int last_idx = env->insn_idx; 1977 struct bpf_func_state *func; 1978 struct bpf_reg_state *reg; 1979 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1980 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1981 bool skip_first = true; 1982 bool new_marks = false; 1983 int i, err; 1984 1985 if (!env->bpf_capable) 1986 return 0; 1987 1988 func = st->frame[st->curframe]; 1989 if (regno >= 0) { 1990 reg = &func->regs[regno]; 1991 if (reg->type != SCALAR_VALUE) { 1992 WARN_ONCE(1, "backtracing misuse"); 1993 return -EFAULT; 1994 } 1995 if (!reg->precise) 1996 new_marks = true; 1997 else 1998 reg_mask = 0; 1999 reg->precise = true; 2000 } 2001 2002 while (spi >= 0) { 2003 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2004 stack_mask = 0; 2005 break; 2006 } 2007 reg = &func->stack[spi].spilled_ptr; 2008 if (reg->type != SCALAR_VALUE) { 2009 stack_mask = 0; 2010 break; 2011 } 2012 if (!reg->precise) 2013 new_marks = true; 2014 else 2015 stack_mask = 0; 2016 reg->precise = true; 2017 break; 2018 } 2019 2020 if (!new_marks) 2021 return 0; 2022 if (!reg_mask && !stack_mask) 2023 return 0; 2024 for (;;) { 2025 DECLARE_BITMAP(mask, 64); 2026 u32 history = st->jmp_history_cnt; 2027 2028 if (env->log.level & BPF_LOG_LEVEL) 2029 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2030 for (i = last_idx;;) { 2031 if (skip_first) { 2032 err = 0; 2033 skip_first = false; 2034 } else { 2035 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2036 } 2037 if (err == -ENOTSUPP) { 2038 mark_all_scalars_precise(env, st); 2039 return 0; 2040 } else if (err) { 2041 return err; 2042 } 2043 if (!reg_mask && !stack_mask) 2044 /* Found assignment(s) into tracked register in this state. 2045 * Since this state is already marked, just return. 2046 * Nothing to be tracked further in the parent state. 2047 */ 2048 return 0; 2049 if (i == first_idx) 2050 break; 2051 i = get_prev_insn_idx(st, i, &history); 2052 if (i >= env->prog->len) { 2053 /* This can happen if backtracking reached insn 0 2054 * and there are still reg_mask or stack_mask 2055 * to backtrack. 2056 * It means the backtracking missed the spot where 2057 * particular register was initialized with a constant. 2058 */ 2059 verbose(env, "BUG backtracking idx %d\n", i); 2060 WARN_ONCE(1, "verifier backtracking bug"); 2061 return -EFAULT; 2062 } 2063 } 2064 st = st->parent; 2065 if (!st) 2066 break; 2067 2068 new_marks = false; 2069 func = st->frame[st->curframe]; 2070 bitmap_from_u64(mask, reg_mask); 2071 for_each_set_bit(i, mask, 32) { 2072 reg = &func->regs[i]; 2073 if (reg->type != SCALAR_VALUE) { 2074 reg_mask &= ~(1u << i); 2075 continue; 2076 } 2077 if (!reg->precise) 2078 new_marks = true; 2079 reg->precise = true; 2080 } 2081 2082 bitmap_from_u64(mask, stack_mask); 2083 for_each_set_bit(i, mask, 64) { 2084 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2085 /* the sequence of instructions: 2086 * 2: (bf) r3 = r10 2087 * 3: (7b) *(u64 *)(r3 -8) = r0 2088 * 4: (79) r4 = *(u64 *)(r10 -8) 2089 * doesn't contain jmps. It's backtracked 2090 * as a single block. 2091 * During backtracking insn 3 is not recognized as 2092 * stack access, so at the end of backtracking 2093 * stack slot fp-8 is still marked in stack_mask. 2094 * However the parent state may not have accessed 2095 * fp-8 and it's "unallocated" stack space. 2096 * In such case fallback to conservative. 2097 */ 2098 mark_all_scalars_precise(env, st); 2099 return 0; 2100 } 2101 2102 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2103 stack_mask &= ~(1ull << i); 2104 continue; 2105 } 2106 reg = &func->stack[i].spilled_ptr; 2107 if (reg->type != SCALAR_VALUE) { 2108 stack_mask &= ~(1ull << i); 2109 continue; 2110 } 2111 if (!reg->precise) 2112 new_marks = true; 2113 reg->precise = true; 2114 } 2115 if (env->log.level & BPF_LOG_LEVEL) { 2116 print_verifier_state(env, func); 2117 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2118 new_marks ? "didn't have" : "already had", 2119 reg_mask, stack_mask); 2120 } 2121 2122 if (!reg_mask && !stack_mask) 2123 break; 2124 if (!new_marks) 2125 break; 2126 2127 last_idx = st->last_insn_idx; 2128 first_idx = st->first_insn_idx; 2129 } 2130 return 0; 2131 } 2132 2133 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2134 { 2135 return __mark_chain_precision(env, regno, -1); 2136 } 2137 2138 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2139 { 2140 return __mark_chain_precision(env, -1, spi); 2141 } 2142 2143 static bool is_spillable_regtype(enum bpf_reg_type type) 2144 { 2145 switch (type) { 2146 case PTR_TO_MAP_VALUE: 2147 case PTR_TO_MAP_VALUE_OR_NULL: 2148 case PTR_TO_STACK: 2149 case PTR_TO_CTX: 2150 case PTR_TO_PACKET: 2151 case PTR_TO_PACKET_META: 2152 case PTR_TO_PACKET_END: 2153 case PTR_TO_FLOW_KEYS: 2154 case CONST_PTR_TO_MAP: 2155 case PTR_TO_SOCKET: 2156 case PTR_TO_SOCKET_OR_NULL: 2157 case PTR_TO_SOCK_COMMON: 2158 case PTR_TO_SOCK_COMMON_OR_NULL: 2159 case PTR_TO_TCP_SOCK: 2160 case PTR_TO_TCP_SOCK_OR_NULL: 2161 case PTR_TO_XDP_SOCK: 2162 case PTR_TO_BTF_ID: 2163 case PTR_TO_BTF_ID_OR_NULL: 2164 return true; 2165 default: 2166 return false; 2167 } 2168 } 2169 2170 /* Does this register contain a constant zero? */ 2171 static bool register_is_null(struct bpf_reg_state *reg) 2172 { 2173 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2174 } 2175 2176 static bool register_is_const(struct bpf_reg_state *reg) 2177 { 2178 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2179 } 2180 2181 static bool __is_pointer_value(bool allow_ptr_leaks, 2182 const struct bpf_reg_state *reg) 2183 { 2184 if (allow_ptr_leaks) 2185 return false; 2186 2187 return reg->type != SCALAR_VALUE; 2188 } 2189 2190 static void save_register_state(struct bpf_func_state *state, 2191 int spi, struct bpf_reg_state *reg) 2192 { 2193 int i; 2194 2195 state->stack[spi].spilled_ptr = *reg; 2196 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2197 2198 for (i = 0; i < BPF_REG_SIZE; i++) 2199 state->stack[spi].slot_type[i] = STACK_SPILL; 2200 } 2201 2202 /* check_stack_read/write functions track spill/fill of registers, 2203 * stack boundary and alignment are checked in check_mem_access() 2204 */ 2205 static int check_stack_write(struct bpf_verifier_env *env, 2206 struct bpf_func_state *state, /* func where register points to */ 2207 int off, int size, int value_regno, int insn_idx) 2208 { 2209 struct bpf_func_state *cur; /* state of the current function */ 2210 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2211 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2212 struct bpf_reg_state *reg = NULL; 2213 2214 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2215 state->acquired_refs, true); 2216 if (err) 2217 return err; 2218 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2219 * so it's aligned access and [off, off + size) are within stack limits 2220 */ 2221 if (!env->allow_ptr_leaks && 2222 state->stack[spi].slot_type[0] == STACK_SPILL && 2223 size != BPF_REG_SIZE) { 2224 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2225 return -EACCES; 2226 } 2227 2228 cur = env->cur_state->frame[env->cur_state->curframe]; 2229 if (value_regno >= 0) 2230 reg = &cur->regs[value_regno]; 2231 2232 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2233 !register_is_null(reg) && env->bpf_capable) { 2234 if (dst_reg != BPF_REG_FP) { 2235 /* The backtracking logic can only recognize explicit 2236 * stack slot address like [fp - 8]. Other spill of 2237 * scalar via different register has to be conervative. 2238 * Backtrack from here and mark all registers as precise 2239 * that contributed into 'reg' being a constant. 2240 */ 2241 err = mark_chain_precision(env, value_regno); 2242 if (err) 2243 return err; 2244 } 2245 save_register_state(state, spi, reg); 2246 } else if (reg && is_spillable_regtype(reg->type)) { 2247 /* register containing pointer is being spilled into stack */ 2248 if (size != BPF_REG_SIZE) { 2249 verbose_linfo(env, insn_idx, "; "); 2250 verbose(env, "invalid size of register spill\n"); 2251 return -EACCES; 2252 } 2253 2254 if (state != cur && reg->type == PTR_TO_STACK) { 2255 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2256 return -EINVAL; 2257 } 2258 2259 if (!env->bypass_spec_v4) { 2260 bool sanitize = false; 2261 2262 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2263 register_is_const(&state->stack[spi].spilled_ptr)) 2264 sanitize = true; 2265 for (i = 0; i < BPF_REG_SIZE; i++) 2266 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2267 sanitize = true; 2268 break; 2269 } 2270 if (sanitize) { 2271 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2272 int soff = (-spi - 1) * BPF_REG_SIZE; 2273 2274 /* detected reuse of integer stack slot with a pointer 2275 * which means either llvm is reusing stack slot or 2276 * an attacker is trying to exploit CVE-2018-3639 2277 * (speculative store bypass) 2278 * Have to sanitize that slot with preemptive 2279 * store of zero. 2280 */ 2281 if (*poff && *poff != soff) { 2282 /* disallow programs where single insn stores 2283 * into two different stack slots, since verifier 2284 * cannot sanitize them 2285 */ 2286 verbose(env, 2287 "insn %d cannot access two stack slots fp%d and fp%d", 2288 insn_idx, *poff, soff); 2289 return -EINVAL; 2290 } 2291 *poff = soff; 2292 } 2293 } 2294 save_register_state(state, spi, reg); 2295 } else { 2296 u8 type = STACK_MISC; 2297 2298 /* regular write of data into stack destroys any spilled ptr */ 2299 state->stack[spi].spilled_ptr.type = NOT_INIT; 2300 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2301 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2302 for (i = 0; i < BPF_REG_SIZE; i++) 2303 state->stack[spi].slot_type[i] = STACK_MISC; 2304 2305 /* only mark the slot as written if all 8 bytes were written 2306 * otherwise read propagation may incorrectly stop too soon 2307 * when stack slots are partially written. 2308 * This heuristic means that read propagation will be 2309 * conservative, since it will add reg_live_read marks 2310 * to stack slots all the way to first state when programs 2311 * writes+reads less than 8 bytes 2312 */ 2313 if (size == BPF_REG_SIZE) 2314 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2315 2316 /* when we zero initialize stack slots mark them as such */ 2317 if (reg && register_is_null(reg)) { 2318 /* backtracking doesn't work for STACK_ZERO yet. */ 2319 err = mark_chain_precision(env, value_regno); 2320 if (err) 2321 return err; 2322 type = STACK_ZERO; 2323 } 2324 2325 /* Mark slots affected by this stack write. */ 2326 for (i = 0; i < size; i++) 2327 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2328 type; 2329 } 2330 return 0; 2331 } 2332 2333 static int check_stack_read(struct bpf_verifier_env *env, 2334 struct bpf_func_state *reg_state /* func where register points to */, 2335 int off, int size, int value_regno) 2336 { 2337 struct bpf_verifier_state *vstate = env->cur_state; 2338 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2339 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2340 struct bpf_reg_state *reg; 2341 u8 *stype; 2342 2343 if (reg_state->allocated_stack <= slot) { 2344 verbose(env, "invalid read from stack off %d+0 size %d\n", 2345 off, size); 2346 return -EACCES; 2347 } 2348 stype = reg_state->stack[spi].slot_type; 2349 reg = ®_state->stack[spi].spilled_ptr; 2350 2351 if (stype[0] == STACK_SPILL) { 2352 if (size != BPF_REG_SIZE) { 2353 if (reg->type != SCALAR_VALUE) { 2354 verbose_linfo(env, env->insn_idx, "; "); 2355 verbose(env, "invalid size of register fill\n"); 2356 return -EACCES; 2357 } 2358 if (value_regno >= 0) { 2359 mark_reg_unknown(env, state->regs, value_regno); 2360 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2361 } 2362 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2363 return 0; 2364 } 2365 for (i = 1; i < BPF_REG_SIZE; i++) { 2366 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2367 verbose(env, "corrupted spill memory\n"); 2368 return -EACCES; 2369 } 2370 } 2371 2372 if (value_regno >= 0) { 2373 /* restore register state from stack */ 2374 state->regs[value_regno] = *reg; 2375 /* mark reg as written since spilled pointer state likely 2376 * has its liveness marks cleared by is_state_visited() 2377 * which resets stack/reg liveness for state transitions 2378 */ 2379 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2380 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2381 /* If value_regno==-1, the caller is asking us whether 2382 * it is acceptable to use this value as a SCALAR_VALUE 2383 * (e.g. for XADD). 2384 * We must not allow unprivileged callers to do that 2385 * with spilled pointers. 2386 */ 2387 verbose(env, "leaking pointer from stack off %d\n", 2388 off); 2389 return -EACCES; 2390 } 2391 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2392 } else { 2393 int zeros = 0; 2394 2395 for (i = 0; i < size; i++) { 2396 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2397 continue; 2398 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2399 zeros++; 2400 continue; 2401 } 2402 verbose(env, "invalid read from stack off %d+%d size %d\n", 2403 off, i, size); 2404 return -EACCES; 2405 } 2406 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2407 if (value_regno >= 0) { 2408 if (zeros == size) { 2409 /* any size read into register is zero extended, 2410 * so the whole register == const_zero 2411 */ 2412 __mark_reg_const_zero(&state->regs[value_regno]); 2413 /* backtracking doesn't support STACK_ZERO yet, 2414 * so mark it precise here, so that later 2415 * backtracking can stop here. 2416 * Backtracking may not need this if this register 2417 * doesn't participate in pointer adjustment. 2418 * Forward propagation of precise flag is not 2419 * necessary either. This mark is only to stop 2420 * backtracking. Any register that contributed 2421 * to const 0 was marked precise before spill. 2422 */ 2423 state->regs[value_regno].precise = true; 2424 } else { 2425 /* have read misc data from the stack */ 2426 mark_reg_unknown(env, state->regs, value_regno); 2427 } 2428 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2429 } 2430 } 2431 return 0; 2432 } 2433 2434 static int check_stack_access(struct bpf_verifier_env *env, 2435 const struct bpf_reg_state *reg, 2436 int off, int size) 2437 { 2438 /* Stack accesses must be at a fixed offset, so that we 2439 * can determine what type of data were returned. See 2440 * check_stack_read(). 2441 */ 2442 if (!tnum_is_const(reg->var_off)) { 2443 char tn_buf[48]; 2444 2445 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2446 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2447 tn_buf, off, size); 2448 return -EACCES; 2449 } 2450 2451 if (off >= 0 || off < -MAX_BPF_STACK) { 2452 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2453 return -EACCES; 2454 } 2455 2456 return 0; 2457 } 2458 2459 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2460 int off, int size, enum bpf_access_type type) 2461 { 2462 struct bpf_reg_state *regs = cur_regs(env); 2463 struct bpf_map *map = regs[regno].map_ptr; 2464 u32 cap = bpf_map_flags_to_cap(map); 2465 2466 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2467 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2468 map->value_size, off, size); 2469 return -EACCES; 2470 } 2471 2472 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2473 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2474 map->value_size, off, size); 2475 return -EACCES; 2476 } 2477 2478 return 0; 2479 } 2480 2481 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2482 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2483 int off, int size, u32 mem_size, 2484 bool zero_size_allowed) 2485 { 2486 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2487 struct bpf_reg_state *reg; 2488 2489 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2490 return 0; 2491 2492 reg = &cur_regs(env)[regno]; 2493 switch (reg->type) { 2494 case PTR_TO_MAP_VALUE: 2495 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2496 mem_size, off, size); 2497 break; 2498 case PTR_TO_PACKET: 2499 case PTR_TO_PACKET_META: 2500 case PTR_TO_PACKET_END: 2501 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2502 off, size, regno, reg->id, off, mem_size); 2503 break; 2504 case PTR_TO_MEM: 2505 default: 2506 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2507 mem_size, off, size); 2508 } 2509 2510 return -EACCES; 2511 } 2512 2513 /* check read/write into a memory region with possible variable offset */ 2514 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2515 int off, int size, u32 mem_size, 2516 bool zero_size_allowed) 2517 { 2518 struct bpf_verifier_state *vstate = env->cur_state; 2519 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2520 struct bpf_reg_state *reg = &state->regs[regno]; 2521 int err; 2522 2523 /* We may have adjusted the register pointing to memory region, so we 2524 * need to try adding each of min_value and max_value to off 2525 * to make sure our theoretical access will be safe. 2526 */ 2527 if (env->log.level & BPF_LOG_LEVEL) 2528 print_verifier_state(env, state); 2529 2530 /* The minimum value is only important with signed 2531 * comparisons where we can't assume the floor of a 2532 * value is 0. If we are using signed variables for our 2533 * index'es we need to make sure that whatever we use 2534 * will have a set floor within our range. 2535 */ 2536 if (reg->smin_value < 0 && 2537 (reg->smin_value == S64_MIN || 2538 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2539 reg->smin_value + off < 0)) { 2540 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2541 regno); 2542 return -EACCES; 2543 } 2544 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2545 mem_size, zero_size_allowed); 2546 if (err) { 2547 verbose(env, "R%d min value is outside of the allowed memory range\n", 2548 regno); 2549 return err; 2550 } 2551 2552 /* If we haven't set a max value then we need to bail since we can't be 2553 * sure we won't do bad things. 2554 * If reg->umax_value + off could overflow, treat that as unbounded too. 2555 */ 2556 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2557 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2558 regno); 2559 return -EACCES; 2560 } 2561 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2562 mem_size, zero_size_allowed); 2563 if (err) { 2564 verbose(env, "R%d max value is outside of the allowed memory range\n", 2565 regno); 2566 return err; 2567 } 2568 2569 return 0; 2570 } 2571 2572 /* check read/write into a map element with possible variable offset */ 2573 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2574 int off, int size, bool zero_size_allowed) 2575 { 2576 struct bpf_verifier_state *vstate = env->cur_state; 2577 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2578 struct bpf_reg_state *reg = &state->regs[regno]; 2579 struct bpf_map *map = reg->map_ptr; 2580 int err; 2581 2582 err = check_mem_region_access(env, regno, off, size, map->value_size, 2583 zero_size_allowed); 2584 if (err) 2585 return err; 2586 2587 if (map_value_has_spin_lock(map)) { 2588 u32 lock = map->spin_lock_off; 2589 2590 /* if any part of struct bpf_spin_lock can be touched by 2591 * load/store reject this program. 2592 * To check that [x1, x2) overlaps with [y1, y2) 2593 * it is sufficient to check x1 < y2 && y1 < x2. 2594 */ 2595 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2596 lock < reg->umax_value + off + size) { 2597 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2598 return -EACCES; 2599 } 2600 } 2601 return err; 2602 } 2603 2604 #define MAX_PACKET_OFF 0xffff 2605 2606 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2607 const struct bpf_call_arg_meta *meta, 2608 enum bpf_access_type t) 2609 { 2610 switch (env->prog->type) { 2611 /* Program types only with direct read access go here! */ 2612 case BPF_PROG_TYPE_LWT_IN: 2613 case BPF_PROG_TYPE_LWT_OUT: 2614 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2615 case BPF_PROG_TYPE_SK_REUSEPORT: 2616 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2617 case BPF_PROG_TYPE_CGROUP_SKB: 2618 if (t == BPF_WRITE) 2619 return false; 2620 /* fallthrough */ 2621 2622 /* Program types with direct read + write access go here! */ 2623 case BPF_PROG_TYPE_SCHED_CLS: 2624 case BPF_PROG_TYPE_SCHED_ACT: 2625 case BPF_PROG_TYPE_XDP: 2626 case BPF_PROG_TYPE_LWT_XMIT: 2627 case BPF_PROG_TYPE_SK_SKB: 2628 case BPF_PROG_TYPE_SK_MSG: 2629 if (meta) 2630 return meta->pkt_access; 2631 2632 env->seen_direct_write = true; 2633 return true; 2634 2635 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2636 if (t == BPF_WRITE) 2637 env->seen_direct_write = true; 2638 2639 return true; 2640 2641 default: 2642 return false; 2643 } 2644 } 2645 2646 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2647 int size, bool zero_size_allowed) 2648 { 2649 struct bpf_reg_state *regs = cur_regs(env); 2650 struct bpf_reg_state *reg = ®s[regno]; 2651 int err; 2652 2653 /* We may have added a variable offset to the packet pointer; but any 2654 * reg->range we have comes after that. We are only checking the fixed 2655 * offset. 2656 */ 2657 2658 /* We don't allow negative numbers, because we aren't tracking enough 2659 * detail to prove they're safe. 2660 */ 2661 if (reg->smin_value < 0) { 2662 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2663 regno); 2664 return -EACCES; 2665 } 2666 err = __check_mem_access(env, regno, off, size, reg->range, 2667 zero_size_allowed); 2668 if (err) { 2669 verbose(env, "R%d offset is outside of the packet\n", regno); 2670 return err; 2671 } 2672 2673 /* __check_mem_access has made sure "off + size - 1" is within u16. 2674 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2675 * otherwise find_good_pkt_pointers would have refused to set range info 2676 * that __check_mem_access would have rejected this pkt access. 2677 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2678 */ 2679 env->prog->aux->max_pkt_offset = 2680 max_t(u32, env->prog->aux->max_pkt_offset, 2681 off + reg->umax_value + size - 1); 2682 2683 return err; 2684 } 2685 2686 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2687 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2688 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2689 u32 *btf_id) 2690 { 2691 struct bpf_insn_access_aux info = { 2692 .reg_type = *reg_type, 2693 .log = &env->log, 2694 }; 2695 2696 if (env->ops->is_valid_access && 2697 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2698 /* A non zero info.ctx_field_size indicates that this field is a 2699 * candidate for later verifier transformation to load the whole 2700 * field and then apply a mask when accessed with a narrower 2701 * access than actual ctx access size. A zero info.ctx_field_size 2702 * will only allow for whole field access and rejects any other 2703 * type of narrower access. 2704 */ 2705 *reg_type = info.reg_type; 2706 2707 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2708 *btf_id = info.btf_id; 2709 else 2710 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2711 /* remember the offset of last byte accessed in ctx */ 2712 if (env->prog->aux->max_ctx_offset < off + size) 2713 env->prog->aux->max_ctx_offset = off + size; 2714 return 0; 2715 } 2716 2717 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2718 return -EACCES; 2719 } 2720 2721 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2722 int size) 2723 { 2724 if (size < 0 || off < 0 || 2725 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2726 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2727 off, size); 2728 return -EACCES; 2729 } 2730 return 0; 2731 } 2732 2733 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2734 u32 regno, int off, int size, 2735 enum bpf_access_type t) 2736 { 2737 struct bpf_reg_state *regs = cur_regs(env); 2738 struct bpf_reg_state *reg = ®s[regno]; 2739 struct bpf_insn_access_aux info = {}; 2740 bool valid; 2741 2742 if (reg->smin_value < 0) { 2743 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2744 regno); 2745 return -EACCES; 2746 } 2747 2748 switch (reg->type) { 2749 case PTR_TO_SOCK_COMMON: 2750 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2751 break; 2752 case PTR_TO_SOCKET: 2753 valid = bpf_sock_is_valid_access(off, size, t, &info); 2754 break; 2755 case PTR_TO_TCP_SOCK: 2756 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2757 break; 2758 case PTR_TO_XDP_SOCK: 2759 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2760 break; 2761 default: 2762 valid = false; 2763 } 2764 2765 2766 if (valid) { 2767 env->insn_aux_data[insn_idx].ctx_field_size = 2768 info.ctx_field_size; 2769 return 0; 2770 } 2771 2772 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2773 regno, reg_type_str[reg->type], off, size); 2774 2775 return -EACCES; 2776 } 2777 2778 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2779 { 2780 return cur_regs(env) + regno; 2781 } 2782 2783 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2784 { 2785 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2786 } 2787 2788 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2789 { 2790 const struct bpf_reg_state *reg = reg_state(env, regno); 2791 2792 return reg->type == PTR_TO_CTX; 2793 } 2794 2795 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2796 { 2797 const struct bpf_reg_state *reg = reg_state(env, regno); 2798 2799 return type_is_sk_pointer(reg->type); 2800 } 2801 2802 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2803 { 2804 const struct bpf_reg_state *reg = reg_state(env, regno); 2805 2806 return type_is_pkt_pointer(reg->type); 2807 } 2808 2809 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2810 { 2811 const struct bpf_reg_state *reg = reg_state(env, regno); 2812 2813 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2814 return reg->type == PTR_TO_FLOW_KEYS; 2815 } 2816 2817 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2818 const struct bpf_reg_state *reg, 2819 int off, int size, bool strict) 2820 { 2821 struct tnum reg_off; 2822 int ip_align; 2823 2824 /* Byte size accesses are always allowed. */ 2825 if (!strict || size == 1) 2826 return 0; 2827 2828 /* For platforms that do not have a Kconfig enabling 2829 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2830 * NET_IP_ALIGN is universally set to '2'. And on platforms 2831 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2832 * to this code only in strict mode where we want to emulate 2833 * the NET_IP_ALIGN==2 checking. Therefore use an 2834 * unconditional IP align value of '2'. 2835 */ 2836 ip_align = 2; 2837 2838 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2839 if (!tnum_is_aligned(reg_off, size)) { 2840 char tn_buf[48]; 2841 2842 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2843 verbose(env, 2844 "misaligned packet access off %d+%s+%d+%d size %d\n", 2845 ip_align, tn_buf, reg->off, off, size); 2846 return -EACCES; 2847 } 2848 2849 return 0; 2850 } 2851 2852 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2853 const struct bpf_reg_state *reg, 2854 const char *pointer_desc, 2855 int off, int size, bool strict) 2856 { 2857 struct tnum reg_off; 2858 2859 /* Byte size accesses are always allowed. */ 2860 if (!strict || size == 1) 2861 return 0; 2862 2863 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2864 if (!tnum_is_aligned(reg_off, size)) { 2865 char tn_buf[48]; 2866 2867 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2868 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2869 pointer_desc, tn_buf, reg->off, off, size); 2870 return -EACCES; 2871 } 2872 2873 return 0; 2874 } 2875 2876 static int check_ptr_alignment(struct bpf_verifier_env *env, 2877 const struct bpf_reg_state *reg, int off, 2878 int size, bool strict_alignment_once) 2879 { 2880 bool strict = env->strict_alignment || strict_alignment_once; 2881 const char *pointer_desc = ""; 2882 2883 switch (reg->type) { 2884 case PTR_TO_PACKET: 2885 case PTR_TO_PACKET_META: 2886 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2887 * right in front, treat it the very same way. 2888 */ 2889 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2890 case PTR_TO_FLOW_KEYS: 2891 pointer_desc = "flow keys "; 2892 break; 2893 case PTR_TO_MAP_VALUE: 2894 pointer_desc = "value "; 2895 break; 2896 case PTR_TO_CTX: 2897 pointer_desc = "context "; 2898 break; 2899 case PTR_TO_STACK: 2900 pointer_desc = "stack "; 2901 /* The stack spill tracking logic in check_stack_write() 2902 * and check_stack_read() relies on stack accesses being 2903 * aligned. 2904 */ 2905 strict = true; 2906 break; 2907 case PTR_TO_SOCKET: 2908 pointer_desc = "sock "; 2909 break; 2910 case PTR_TO_SOCK_COMMON: 2911 pointer_desc = "sock_common "; 2912 break; 2913 case PTR_TO_TCP_SOCK: 2914 pointer_desc = "tcp_sock "; 2915 break; 2916 case PTR_TO_XDP_SOCK: 2917 pointer_desc = "xdp_sock "; 2918 break; 2919 default: 2920 break; 2921 } 2922 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2923 strict); 2924 } 2925 2926 static int update_stack_depth(struct bpf_verifier_env *env, 2927 const struct bpf_func_state *func, 2928 int off) 2929 { 2930 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2931 2932 if (stack >= -off) 2933 return 0; 2934 2935 /* update known max for given subprogram */ 2936 env->subprog_info[func->subprogno].stack_depth = -off; 2937 return 0; 2938 } 2939 2940 /* starting from main bpf function walk all instructions of the function 2941 * and recursively walk all callees that given function can call. 2942 * Ignore jump and exit insns. 2943 * Since recursion is prevented by check_cfg() this algorithm 2944 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2945 */ 2946 static int check_max_stack_depth(struct bpf_verifier_env *env) 2947 { 2948 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2949 struct bpf_subprog_info *subprog = env->subprog_info; 2950 struct bpf_insn *insn = env->prog->insnsi; 2951 int ret_insn[MAX_CALL_FRAMES]; 2952 int ret_prog[MAX_CALL_FRAMES]; 2953 2954 process_func: 2955 /* round up to 32-bytes, since this is granularity 2956 * of interpreter stack size 2957 */ 2958 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2959 if (depth > MAX_BPF_STACK) { 2960 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2961 frame + 1, depth); 2962 return -EACCES; 2963 } 2964 continue_func: 2965 subprog_end = subprog[idx + 1].start; 2966 for (; i < subprog_end; i++) { 2967 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2968 continue; 2969 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2970 continue; 2971 /* remember insn and function to return to */ 2972 ret_insn[frame] = i + 1; 2973 ret_prog[frame] = idx; 2974 2975 /* find the callee */ 2976 i = i + insn[i].imm + 1; 2977 idx = find_subprog(env, i); 2978 if (idx < 0) { 2979 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2980 i); 2981 return -EFAULT; 2982 } 2983 frame++; 2984 if (frame >= MAX_CALL_FRAMES) { 2985 verbose(env, "the call stack of %d frames is too deep !\n", 2986 frame); 2987 return -E2BIG; 2988 } 2989 goto process_func; 2990 } 2991 /* end of for() loop means the last insn of the 'subprog' 2992 * was reached. Doesn't matter whether it was JA or EXIT 2993 */ 2994 if (frame == 0) 2995 return 0; 2996 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2997 frame--; 2998 i = ret_insn[frame]; 2999 idx = ret_prog[frame]; 3000 goto continue_func; 3001 } 3002 3003 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3004 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3005 const struct bpf_insn *insn, int idx) 3006 { 3007 int start = idx + insn->imm + 1, subprog; 3008 3009 subprog = find_subprog(env, start); 3010 if (subprog < 0) { 3011 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3012 start); 3013 return -EFAULT; 3014 } 3015 return env->subprog_info[subprog].stack_depth; 3016 } 3017 #endif 3018 3019 int check_ctx_reg(struct bpf_verifier_env *env, 3020 const struct bpf_reg_state *reg, int regno) 3021 { 3022 /* Access to ctx or passing it to a helper is only allowed in 3023 * its original, unmodified form. 3024 */ 3025 3026 if (reg->off) { 3027 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3028 regno, reg->off); 3029 return -EACCES; 3030 } 3031 3032 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3033 char tn_buf[48]; 3034 3035 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3036 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3037 return -EACCES; 3038 } 3039 3040 return 0; 3041 } 3042 3043 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3044 const struct bpf_reg_state *reg, 3045 int regno, int off, int size) 3046 { 3047 if (off < 0) { 3048 verbose(env, 3049 "R%d invalid tracepoint buffer access: off=%d, size=%d", 3050 regno, off, size); 3051 return -EACCES; 3052 } 3053 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3054 char tn_buf[48]; 3055 3056 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3057 verbose(env, 3058 "R%d invalid variable buffer offset: off=%d, var_off=%s", 3059 regno, off, tn_buf); 3060 return -EACCES; 3061 } 3062 if (off + size > env->prog->aux->max_tp_access) 3063 env->prog->aux->max_tp_access = off + size; 3064 3065 return 0; 3066 } 3067 3068 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3069 static void zext_32_to_64(struct bpf_reg_state *reg) 3070 { 3071 reg->var_off = tnum_subreg(reg->var_off); 3072 __reg_assign_32_into_64(reg); 3073 } 3074 3075 /* truncate register to smaller size (in bytes) 3076 * must be called with size < BPF_REG_SIZE 3077 */ 3078 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3079 { 3080 u64 mask; 3081 3082 /* clear high bits in bit representation */ 3083 reg->var_off = tnum_cast(reg->var_off, size); 3084 3085 /* fix arithmetic bounds */ 3086 mask = ((u64)1 << (size * 8)) - 1; 3087 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3088 reg->umin_value &= mask; 3089 reg->umax_value &= mask; 3090 } else { 3091 reg->umin_value = 0; 3092 reg->umax_value = mask; 3093 } 3094 reg->smin_value = reg->umin_value; 3095 reg->smax_value = reg->umax_value; 3096 3097 /* If size is smaller than 32bit register the 32bit register 3098 * values are also truncated so we push 64-bit bounds into 3099 * 32-bit bounds. Above were truncated < 32-bits already. 3100 */ 3101 if (size >= 4) 3102 return; 3103 __reg_combine_64_into_32(reg); 3104 } 3105 3106 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3107 { 3108 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3109 } 3110 3111 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3112 { 3113 void *ptr; 3114 u64 addr; 3115 int err; 3116 3117 err = map->ops->map_direct_value_addr(map, &addr, off); 3118 if (err) 3119 return err; 3120 ptr = (void *)(long)addr + off; 3121 3122 switch (size) { 3123 case sizeof(u8): 3124 *val = (u64)*(u8 *)ptr; 3125 break; 3126 case sizeof(u16): 3127 *val = (u64)*(u16 *)ptr; 3128 break; 3129 case sizeof(u32): 3130 *val = (u64)*(u32 *)ptr; 3131 break; 3132 case sizeof(u64): 3133 *val = *(u64 *)ptr; 3134 break; 3135 default: 3136 return -EINVAL; 3137 } 3138 return 0; 3139 } 3140 3141 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3142 struct bpf_reg_state *regs, 3143 int regno, int off, int size, 3144 enum bpf_access_type atype, 3145 int value_regno) 3146 { 3147 struct bpf_reg_state *reg = regs + regno; 3148 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3149 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3150 u32 btf_id; 3151 int ret; 3152 3153 if (off < 0) { 3154 verbose(env, 3155 "R%d is ptr_%s invalid negative access: off=%d\n", 3156 regno, tname, off); 3157 return -EACCES; 3158 } 3159 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3160 char tn_buf[48]; 3161 3162 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3163 verbose(env, 3164 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3165 regno, tname, off, tn_buf); 3166 return -EACCES; 3167 } 3168 3169 if (env->ops->btf_struct_access) { 3170 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3171 atype, &btf_id); 3172 } else { 3173 if (atype != BPF_READ) { 3174 verbose(env, "only read is supported\n"); 3175 return -EACCES; 3176 } 3177 3178 ret = btf_struct_access(&env->log, t, off, size, atype, 3179 &btf_id); 3180 } 3181 3182 if (ret < 0) 3183 return ret; 3184 3185 if (atype == BPF_READ && value_regno >= 0) { 3186 if (ret == SCALAR_VALUE) { 3187 mark_reg_unknown(env, regs, value_regno); 3188 return 0; 3189 } 3190 mark_reg_known_zero(env, regs, value_regno); 3191 regs[value_regno].type = PTR_TO_BTF_ID; 3192 regs[value_regno].btf_id = btf_id; 3193 } 3194 3195 return 0; 3196 } 3197 3198 /* check whether memory at (regno + off) is accessible for t = (read | write) 3199 * if t==write, value_regno is a register which value is stored into memory 3200 * if t==read, value_regno is a register which will receive the value from memory 3201 * if t==write && value_regno==-1, some unknown value is stored into memory 3202 * if t==read && value_regno==-1, don't care what we read from memory 3203 */ 3204 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3205 int off, int bpf_size, enum bpf_access_type t, 3206 int value_regno, bool strict_alignment_once) 3207 { 3208 struct bpf_reg_state *regs = cur_regs(env); 3209 struct bpf_reg_state *reg = regs + regno; 3210 struct bpf_func_state *state; 3211 int size, err = 0; 3212 3213 size = bpf_size_to_bytes(bpf_size); 3214 if (size < 0) 3215 return size; 3216 3217 /* alignment checks will add in reg->off themselves */ 3218 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3219 if (err) 3220 return err; 3221 3222 /* for access checks, reg->off is just part of off */ 3223 off += reg->off; 3224 3225 if (reg->type == PTR_TO_MAP_VALUE) { 3226 if (t == BPF_WRITE && value_regno >= 0 && 3227 is_pointer_value(env, value_regno)) { 3228 verbose(env, "R%d leaks addr into map\n", value_regno); 3229 return -EACCES; 3230 } 3231 err = check_map_access_type(env, regno, off, size, t); 3232 if (err) 3233 return err; 3234 err = check_map_access(env, regno, off, size, false); 3235 if (!err && t == BPF_READ && value_regno >= 0) { 3236 struct bpf_map *map = reg->map_ptr; 3237 3238 /* if map is read-only, track its contents as scalars */ 3239 if (tnum_is_const(reg->var_off) && 3240 bpf_map_is_rdonly(map) && 3241 map->ops->map_direct_value_addr) { 3242 int map_off = off + reg->var_off.value; 3243 u64 val = 0; 3244 3245 err = bpf_map_direct_read(map, map_off, size, 3246 &val); 3247 if (err) 3248 return err; 3249 3250 regs[value_regno].type = SCALAR_VALUE; 3251 __mark_reg_known(®s[value_regno], val); 3252 } else { 3253 mark_reg_unknown(env, regs, value_regno); 3254 } 3255 } 3256 } else if (reg->type == PTR_TO_MEM) { 3257 if (t == BPF_WRITE && value_regno >= 0 && 3258 is_pointer_value(env, value_regno)) { 3259 verbose(env, "R%d leaks addr into mem\n", value_regno); 3260 return -EACCES; 3261 } 3262 err = check_mem_region_access(env, regno, off, size, 3263 reg->mem_size, false); 3264 if (!err && t == BPF_READ && value_regno >= 0) 3265 mark_reg_unknown(env, regs, value_regno); 3266 } else if (reg->type == PTR_TO_CTX) { 3267 enum bpf_reg_type reg_type = SCALAR_VALUE; 3268 u32 btf_id = 0; 3269 3270 if (t == BPF_WRITE && value_regno >= 0 && 3271 is_pointer_value(env, value_regno)) { 3272 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3273 return -EACCES; 3274 } 3275 3276 err = check_ctx_reg(env, reg, regno); 3277 if (err < 0) 3278 return err; 3279 3280 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3281 if (err) 3282 verbose_linfo(env, insn_idx, "; "); 3283 if (!err && t == BPF_READ && value_regno >= 0) { 3284 /* ctx access returns either a scalar, or a 3285 * PTR_TO_PACKET[_META,_END]. In the latter 3286 * case, we know the offset is zero. 3287 */ 3288 if (reg_type == SCALAR_VALUE) { 3289 mark_reg_unknown(env, regs, value_regno); 3290 } else { 3291 mark_reg_known_zero(env, regs, 3292 value_regno); 3293 if (reg_type_may_be_null(reg_type)) 3294 regs[value_regno].id = ++env->id_gen; 3295 /* A load of ctx field could have different 3296 * actual load size with the one encoded in the 3297 * insn. When the dst is PTR, it is for sure not 3298 * a sub-register. 3299 */ 3300 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3301 if (reg_type == PTR_TO_BTF_ID || 3302 reg_type == PTR_TO_BTF_ID_OR_NULL) 3303 regs[value_regno].btf_id = btf_id; 3304 } 3305 regs[value_regno].type = reg_type; 3306 } 3307 3308 } else if (reg->type == PTR_TO_STACK) { 3309 off += reg->var_off.value; 3310 err = check_stack_access(env, reg, off, size); 3311 if (err) 3312 return err; 3313 3314 state = func(env, reg); 3315 err = update_stack_depth(env, state, off); 3316 if (err) 3317 return err; 3318 3319 if (t == BPF_WRITE) 3320 err = check_stack_write(env, state, off, size, 3321 value_regno, insn_idx); 3322 else 3323 err = check_stack_read(env, state, off, size, 3324 value_regno); 3325 } else if (reg_is_pkt_pointer(reg)) { 3326 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3327 verbose(env, "cannot write into packet\n"); 3328 return -EACCES; 3329 } 3330 if (t == BPF_WRITE && value_regno >= 0 && 3331 is_pointer_value(env, value_regno)) { 3332 verbose(env, "R%d leaks addr into packet\n", 3333 value_regno); 3334 return -EACCES; 3335 } 3336 err = check_packet_access(env, regno, off, size, false); 3337 if (!err && t == BPF_READ && value_regno >= 0) 3338 mark_reg_unknown(env, regs, value_regno); 3339 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3340 if (t == BPF_WRITE && value_regno >= 0 && 3341 is_pointer_value(env, value_regno)) { 3342 verbose(env, "R%d leaks addr into flow keys\n", 3343 value_regno); 3344 return -EACCES; 3345 } 3346 3347 err = check_flow_keys_access(env, off, size); 3348 if (!err && t == BPF_READ && value_regno >= 0) 3349 mark_reg_unknown(env, regs, value_regno); 3350 } else if (type_is_sk_pointer(reg->type)) { 3351 if (t == BPF_WRITE) { 3352 verbose(env, "R%d cannot write into %s\n", 3353 regno, reg_type_str[reg->type]); 3354 return -EACCES; 3355 } 3356 err = check_sock_access(env, insn_idx, regno, off, size, t); 3357 if (!err && value_regno >= 0) 3358 mark_reg_unknown(env, regs, value_regno); 3359 } else if (reg->type == PTR_TO_TP_BUFFER) { 3360 err = check_tp_buffer_access(env, reg, regno, off, size); 3361 if (!err && t == BPF_READ && value_regno >= 0) 3362 mark_reg_unknown(env, regs, value_regno); 3363 } else if (reg->type == PTR_TO_BTF_ID) { 3364 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3365 value_regno); 3366 } else { 3367 verbose(env, "R%d invalid mem access '%s'\n", regno, 3368 reg_type_str[reg->type]); 3369 return -EACCES; 3370 } 3371 3372 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3373 regs[value_regno].type == SCALAR_VALUE) { 3374 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3375 coerce_reg_to_size(®s[value_regno], size); 3376 } 3377 return err; 3378 } 3379 3380 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3381 { 3382 int err; 3383 3384 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3385 insn->imm != 0) { 3386 verbose(env, "BPF_XADD uses reserved fields\n"); 3387 return -EINVAL; 3388 } 3389 3390 /* check src1 operand */ 3391 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3392 if (err) 3393 return err; 3394 3395 /* check src2 operand */ 3396 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3397 if (err) 3398 return err; 3399 3400 if (is_pointer_value(env, insn->src_reg)) { 3401 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3402 return -EACCES; 3403 } 3404 3405 if (is_ctx_reg(env, insn->dst_reg) || 3406 is_pkt_reg(env, insn->dst_reg) || 3407 is_flow_key_reg(env, insn->dst_reg) || 3408 is_sk_reg(env, insn->dst_reg)) { 3409 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3410 insn->dst_reg, 3411 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3412 return -EACCES; 3413 } 3414 3415 /* check whether atomic_add can read the memory */ 3416 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3417 BPF_SIZE(insn->code), BPF_READ, -1, true); 3418 if (err) 3419 return err; 3420 3421 /* check whether atomic_add can write into the same memory */ 3422 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3423 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3424 } 3425 3426 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3427 int off, int access_size, 3428 bool zero_size_allowed) 3429 { 3430 struct bpf_reg_state *reg = reg_state(env, regno); 3431 3432 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3433 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3434 if (tnum_is_const(reg->var_off)) { 3435 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3436 regno, off, access_size); 3437 } else { 3438 char tn_buf[48]; 3439 3440 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3441 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3442 regno, tn_buf, access_size); 3443 } 3444 return -EACCES; 3445 } 3446 return 0; 3447 } 3448 3449 /* when register 'regno' is passed into function that will read 'access_size' 3450 * bytes from that pointer, make sure that it's within stack boundary 3451 * and all elements of stack are initialized. 3452 * Unlike most pointer bounds-checking functions, this one doesn't take an 3453 * 'off' argument, so it has to add in reg->off itself. 3454 */ 3455 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3456 int access_size, bool zero_size_allowed, 3457 struct bpf_call_arg_meta *meta) 3458 { 3459 struct bpf_reg_state *reg = reg_state(env, regno); 3460 struct bpf_func_state *state = func(env, reg); 3461 int err, min_off, max_off, i, j, slot, spi; 3462 3463 if (reg->type != PTR_TO_STACK) { 3464 /* Allow zero-byte read from NULL, regardless of pointer type */ 3465 if (zero_size_allowed && access_size == 0 && 3466 register_is_null(reg)) 3467 return 0; 3468 3469 verbose(env, "R%d type=%s expected=%s\n", regno, 3470 reg_type_str[reg->type], 3471 reg_type_str[PTR_TO_STACK]); 3472 return -EACCES; 3473 } 3474 3475 if (tnum_is_const(reg->var_off)) { 3476 min_off = max_off = reg->var_off.value + reg->off; 3477 err = __check_stack_boundary(env, regno, min_off, access_size, 3478 zero_size_allowed); 3479 if (err) 3480 return err; 3481 } else { 3482 /* Variable offset is prohibited for unprivileged mode for 3483 * simplicity since it requires corresponding support in 3484 * Spectre masking for stack ALU. 3485 * See also retrieve_ptr_limit(). 3486 */ 3487 if (!env->bypass_spec_v1) { 3488 char tn_buf[48]; 3489 3490 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3491 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3492 regno, tn_buf); 3493 return -EACCES; 3494 } 3495 /* Only initialized buffer on stack is allowed to be accessed 3496 * with variable offset. With uninitialized buffer it's hard to 3497 * guarantee that whole memory is marked as initialized on 3498 * helper return since specific bounds are unknown what may 3499 * cause uninitialized stack leaking. 3500 */ 3501 if (meta && meta->raw_mode) 3502 meta = NULL; 3503 3504 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3505 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3506 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3507 regno); 3508 return -EACCES; 3509 } 3510 min_off = reg->smin_value + reg->off; 3511 max_off = reg->smax_value + reg->off; 3512 err = __check_stack_boundary(env, regno, min_off, access_size, 3513 zero_size_allowed); 3514 if (err) { 3515 verbose(env, "R%d min value is outside of stack bound\n", 3516 regno); 3517 return err; 3518 } 3519 err = __check_stack_boundary(env, regno, max_off, access_size, 3520 zero_size_allowed); 3521 if (err) { 3522 verbose(env, "R%d max value is outside of stack bound\n", 3523 regno); 3524 return err; 3525 } 3526 } 3527 3528 if (meta && meta->raw_mode) { 3529 meta->access_size = access_size; 3530 meta->regno = regno; 3531 return 0; 3532 } 3533 3534 for (i = min_off; i < max_off + access_size; i++) { 3535 u8 *stype; 3536 3537 slot = -i - 1; 3538 spi = slot / BPF_REG_SIZE; 3539 if (state->allocated_stack <= slot) 3540 goto err; 3541 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3542 if (*stype == STACK_MISC) 3543 goto mark; 3544 if (*stype == STACK_ZERO) { 3545 /* helper can write anything into the stack */ 3546 *stype = STACK_MISC; 3547 goto mark; 3548 } 3549 3550 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3551 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3552 goto mark; 3553 3554 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3555 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3556 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3557 for (j = 0; j < BPF_REG_SIZE; j++) 3558 state->stack[spi].slot_type[j] = STACK_MISC; 3559 goto mark; 3560 } 3561 3562 err: 3563 if (tnum_is_const(reg->var_off)) { 3564 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3565 min_off, i - min_off, access_size); 3566 } else { 3567 char tn_buf[48]; 3568 3569 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3570 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3571 tn_buf, i - min_off, access_size); 3572 } 3573 return -EACCES; 3574 mark: 3575 /* reading any byte out of 8-byte 'spill_slot' will cause 3576 * the whole slot to be marked as 'read' 3577 */ 3578 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3579 state->stack[spi].spilled_ptr.parent, 3580 REG_LIVE_READ64); 3581 } 3582 return update_stack_depth(env, state, min_off); 3583 } 3584 3585 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3586 int access_size, bool zero_size_allowed, 3587 struct bpf_call_arg_meta *meta) 3588 { 3589 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3590 3591 switch (reg->type) { 3592 case PTR_TO_PACKET: 3593 case PTR_TO_PACKET_META: 3594 return check_packet_access(env, regno, reg->off, access_size, 3595 zero_size_allowed); 3596 case PTR_TO_MAP_VALUE: 3597 if (check_map_access_type(env, regno, reg->off, access_size, 3598 meta && meta->raw_mode ? BPF_WRITE : 3599 BPF_READ)) 3600 return -EACCES; 3601 return check_map_access(env, regno, reg->off, access_size, 3602 zero_size_allowed); 3603 case PTR_TO_MEM: 3604 return check_mem_region_access(env, regno, reg->off, 3605 access_size, reg->mem_size, 3606 zero_size_allowed); 3607 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3608 return check_stack_boundary(env, regno, access_size, 3609 zero_size_allowed, meta); 3610 } 3611 } 3612 3613 /* Implementation details: 3614 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3615 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3616 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3617 * value_or_null->value transition, since the verifier only cares about 3618 * the range of access to valid map value pointer and doesn't care about actual 3619 * address of the map element. 3620 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3621 * reg->id > 0 after value_or_null->value transition. By doing so 3622 * two bpf_map_lookups will be considered two different pointers that 3623 * point to different bpf_spin_locks. 3624 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3625 * dead-locks. 3626 * Since only one bpf_spin_lock is allowed the checks are simpler than 3627 * reg_is_refcounted() logic. The verifier needs to remember only 3628 * one spin_lock instead of array of acquired_refs. 3629 * cur_state->active_spin_lock remembers which map value element got locked 3630 * and clears it after bpf_spin_unlock. 3631 */ 3632 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3633 bool is_lock) 3634 { 3635 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3636 struct bpf_verifier_state *cur = env->cur_state; 3637 bool is_const = tnum_is_const(reg->var_off); 3638 struct bpf_map *map = reg->map_ptr; 3639 u64 val = reg->var_off.value; 3640 3641 if (reg->type != PTR_TO_MAP_VALUE) { 3642 verbose(env, "R%d is not a pointer to map_value\n", regno); 3643 return -EINVAL; 3644 } 3645 if (!is_const) { 3646 verbose(env, 3647 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3648 regno); 3649 return -EINVAL; 3650 } 3651 if (!map->btf) { 3652 verbose(env, 3653 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3654 map->name); 3655 return -EINVAL; 3656 } 3657 if (!map_value_has_spin_lock(map)) { 3658 if (map->spin_lock_off == -E2BIG) 3659 verbose(env, 3660 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3661 map->name); 3662 else if (map->spin_lock_off == -ENOENT) 3663 verbose(env, 3664 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3665 map->name); 3666 else 3667 verbose(env, 3668 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3669 map->name); 3670 return -EINVAL; 3671 } 3672 if (map->spin_lock_off != val + reg->off) { 3673 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3674 val + reg->off); 3675 return -EINVAL; 3676 } 3677 if (is_lock) { 3678 if (cur->active_spin_lock) { 3679 verbose(env, 3680 "Locking two bpf_spin_locks are not allowed\n"); 3681 return -EINVAL; 3682 } 3683 cur->active_spin_lock = reg->id; 3684 } else { 3685 if (!cur->active_spin_lock) { 3686 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3687 return -EINVAL; 3688 } 3689 if (cur->active_spin_lock != reg->id) { 3690 verbose(env, "bpf_spin_unlock of different lock\n"); 3691 return -EINVAL; 3692 } 3693 cur->active_spin_lock = 0; 3694 } 3695 return 0; 3696 } 3697 3698 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3699 { 3700 return type == ARG_PTR_TO_MEM || 3701 type == ARG_PTR_TO_MEM_OR_NULL || 3702 type == ARG_PTR_TO_UNINIT_MEM; 3703 } 3704 3705 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3706 { 3707 return type == ARG_CONST_SIZE || 3708 type == ARG_CONST_SIZE_OR_ZERO; 3709 } 3710 3711 static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type) 3712 { 3713 return type == ARG_PTR_TO_ALLOC_MEM || 3714 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 3715 } 3716 3717 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 3718 { 3719 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 3720 } 3721 3722 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3723 { 3724 return type == ARG_PTR_TO_INT || 3725 type == ARG_PTR_TO_LONG; 3726 } 3727 3728 static int int_ptr_type_to_size(enum bpf_arg_type type) 3729 { 3730 if (type == ARG_PTR_TO_INT) 3731 return sizeof(u32); 3732 else if (type == ARG_PTR_TO_LONG) 3733 return sizeof(u64); 3734 3735 return -EINVAL; 3736 } 3737 3738 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3739 enum bpf_arg_type arg_type, 3740 struct bpf_call_arg_meta *meta) 3741 { 3742 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3743 enum bpf_reg_type expected_type, type = reg->type; 3744 int err = 0; 3745 3746 if (arg_type == ARG_DONTCARE) 3747 return 0; 3748 3749 err = check_reg_arg(env, regno, SRC_OP); 3750 if (err) 3751 return err; 3752 3753 if (arg_type == ARG_ANYTHING) { 3754 if (is_pointer_value(env, regno)) { 3755 verbose(env, "R%d leaks addr into helper function\n", 3756 regno); 3757 return -EACCES; 3758 } 3759 return 0; 3760 } 3761 3762 if (type_is_pkt_pointer(type) && 3763 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3764 verbose(env, "helper access to the packet is not allowed\n"); 3765 return -EACCES; 3766 } 3767 3768 if (arg_type == ARG_PTR_TO_MAP_KEY || 3769 arg_type == ARG_PTR_TO_MAP_VALUE || 3770 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3771 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3772 expected_type = PTR_TO_STACK; 3773 if (register_is_null(reg) && 3774 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3775 /* final test in check_stack_boundary() */; 3776 else if (!type_is_pkt_pointer(type) && 3777 type != PTR_TO_MAP_VALUE && 3778 type != expected_type) 3779 goto err_type; 3780 } else if (arg_type == ARG_CONST_SIZE || 3781 arg_type == ARG_CONST_SIZE_OR_ZERO || 3782 arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) { 3783 expected_type = SCALAR_VALUE; 3784 if (type != expected_type) 3785 goto err_type; 3786 } else if (arg_type == ARG_CONST_MAP_PTR) { 3787 expected_type = CONST_PTR_TO_MAP; 3788 if (type != expected_type) 3789 goto err_type; 3790 } else if (arg_type == ARG_PTR_TO_CTX || 3791 arg_type == ARG_PTR_TO_CTX_OR_NULL) { 3792 expected_type = PTR_TO_CTX; 3793 if (!(register_is_null(reg) && 3794 arg_type == ARG_PTR_TO_CTX_OR_NULL)) { 3795 if (type != expected_type) 3796 goto err_type; 3797 err = check_ctx_reg(env, reg, regno); 3798 if (err < 0) 3799 return err; 3800 } 3801 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3802 expected_type = PTR_TO_SOCK_COMMON; 3803 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3804 if (!type_is_sk_pointer(type)) 3805 goto err_type; 3806 if (reg->ref_obj_id) { 3807 if (meta->ref_obj_id) { 3808 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3809 regno, reg->ref_obj_id, 3810 meta->ref_obj_id); 3811 return -EFAULT; 3812 } 3813 meta->ref_obj_id = reg->ref_obj_id; 3814 } 3815 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3816 expected_type = PTR_TO_SOCKET; 3817 if (type != expected_type) 3818 goto err_type; 3819 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3820 expected_type = PTR_TO_BTF_ID; 3821 if (type != expected_type) 3822 goto err_type; 3823 if (reg->btf_id != meta->btf_id) { 3824 verbose(env, "Helper has type %s got %s in R%d\n", 3825 kernel_type_name(meta->btf_id), 3826 kernel_type_name(reg->btf_id), regno); 3827 3828 return -EACCES; 3829 } 3830 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3831 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3832 regno); 3833 return -EACCES; 3834 } 3835 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3836 if (meta->func_id == BPF_FUNC_spin_lock) { 3837 if (process_spin_lock(env, regno, true)) 3838 return -EACCES; 3839 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3840 if (process_spin_lock(env, regno, false)) 3841 return -EACCES; 3842 } else { 3843 verbose(env, "verifier internal error\n"); 3844 return -EFAULT; 3845 } 3846 } else if (arg_type_is_mem_ptr(arg_type)) { 3847 expected_type = PTR_TO_STACK; 3848 /* One exception here. In case function allows for NULL to be 3849 * passed in as argument, it's a SCALAR_VALUE type. Final test 3850 * happens during stack boundary checking. 3851 */ 3852 if (register_is_null(reg) && 3853 (arg_type == ARG_PTR_TO_MEM_OR_NULL || 3854 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)) 3855 /* final test in check_stack_boundary() */; 3856 else if (!type_is_pkt_pointer(type) && 3857 type != PTR_TO_MAP_VALUE && 3858 type != PTR_TO_MEM && 3859 type != expected_type) 3860 goto err_type; 3861 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3862 } else if (arg_type_is_alloc_mem_ptr(arg_type)) { 3863 expected_type = PTR_TO_MEM; 3864 if (register_is_null(reg) && 3865 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL) 3866 /* final test in check_stack_boundary() */; 3867 else if (type != expected_type) 3868 goto err_type; 3869 if (meta->ref_obj_id) { 3870 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3871 regno, reg->ref_obj_id, 3872 meta->ref_obj_id); 3873 return -EFAULT; 3874 } 3875 meta->ref_obj_id = reg->ref_obj_id; 3876 } else if (arg_type_is_int_ptr(arg_type)) { 3877 expected_type = PTR_TO_STACK; 3878 if (!type_is_pkt_pointer(type) && 3879 type != PTR_TO_MAP_VALUE && 3880 type != expected_type) 3881 goto err_type; 3882 } else { 3883 verbose(env, "unsupported arg_type %d\n", arg_type); 3884 return -EFAULT; 3885 } 3886 3887 if (arg_type == ARG_CONST_MAP_PTR) { 3888 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3889 meta->map_ptr = reg->map_ptr; 3890 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3891 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3892 * check that [key, key + map->key_size) are within 3893 * stack limits and initialized 3894 */ 3895 if (!meta->map_ptr) { 3896 /* in function declaration map_ptr must come before 3897 * map_key, so that it's verified and known before 3898 * we have to check map_key here. Otherwise it means 3899 * that kernel subsystem misconfigured verifier 3900 */ 3901 verbose(env, "invalid map_ptr to access map->key\n"); 3902 return -EACCES; 3903 } 3904 err = check_helper_mem_access(env, regno, 3905 meta->map_ptr->key_size, false, 3906 NULL); 3907 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3908 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3909 !register_is_null(reg)) || 3910 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3911 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3912 * check [value, value + map->value_size) validity 3913 */ 3914 if (!meta->map_ptr) { 3915 /* kernel subsystem misconfigured verifier */ 3916 verbose(env, "invalid map_ptr to access map->value\n"); 3917 return -EACCES; 3918 } 3919 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3920 err = check_helper_mem_access(env, regno, 3921 meta->map_ptr->value_size, false, 3922 meta); 3923 } else if (arg_type_is_mem_size(arg_type)) { 3924 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3925 3926 /* This is used to refine r0 return value bounds for helpers 3927 * that enforce this value as an upper bound on return values. 3928 * See do_refine_retval_range() for helpers that can refine 3929 * the return value. C type of helper is u32 so we pull register 3930 * bound from umax_value however, if negative verifier errors 3931 * out. Only upper bounds can be learned because retval is an 3932 * int type and negative retvals are allowed. 3933 */ 3934 meta->msize_max_value = reg->umax_value; 3935 3936 /* The register is SCALAR_VALUE; the access check 3937 * happens using its boundaries. 3938 */ 3939 if (!tnum_is_const(reg->var_off)) 3940 /* For unprivileged variable accesses, disable raw 3941 * mode so that the program is required to 3942 * initialize all the memory that the helper could 3943 * just partially fill up. 3944 */ 3945 meta = NULL; 3946 3947 if (reg->smin_value < 0) { 3948 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3949 regno); 3950 return -EACCES; 3951 } 3952 3953 if (reg->umin_value == 0) { 3954 err = check_helper_mem_access(env, regno - 1, 0, 3955 zero_size_allowed, 3956 meta); 3957 if (err) 3958 return err; 3959 } 3960 3961 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3962 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3963 regno); 3964 return -EACCES; 3965 } 3966 err = check_helper_mem_access(env, regno - 1, 3967 reg->umax_value, 3968 zero_size_allowed, meta); 3969 if (!err) 3970 err = mark_chain_precision(env, regno); 3971 } else if (arg_type_is_alloc_size(arg_type)) { 3972 if (!tnum_is_const(reg->var_off)) { 3973 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", 3974 regno); 3975 return -EACCES; 3976 } 3977 meta->mem_size = reg->var_off.value; 3978 } else if (arg_type_is_int_ptr(arg_type)) { 3979 int size = int_ptr_type_to_size(arg_type); 3980 3981 err = check_helper_mem_access(env, regno, size, false, meta); 3982 if (err) 3983 return err; 3984 err = check_ptr_alignment(env, reg, 0, size, true); 3985 } 3986 3987 return err; 3988 err_type: 3989 verbose(env, "R%d type=%s expected=%s\n", regno, 3990 reg_type_str[type], reg_type_str[expected_type]); 3991 return -EACCES; 3992 } 3993 3994 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3995 struct bpf_map *map, int func_id) 3996 { 3997 if (!map) 3998 return 0; 3999 4000 /* We need a two way check, first is from map perspective ... */ 4001 switch (map->map_type) { 4002 case BPF_MAP_TYPE_PROG_ARRAY: 4003 if (func_id != BPF_FUNC_tail_call) 4004 goto error; 4005 break; 4006 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4007 if (func_id != BPF_FUNC_perf_event_read && 4008 func_id != BPF_FUNC_perf_event_output && 4009 func_id != BPF_FUNC_skb_output && 4010 func_id != BPF_FUNC_perf_event_read_value && 4011 func_id != BPF_FUNC_xdp_output) 4012 goto error; 4013 break; 4014 case BPF_MAP_TYPE_RINGBUF: 4015 if (func_id != BPF_FUNC_ringbuf_output && 4016 func_id != BPF_FUNC_ringbuf_reserve && 4017 func_id != BPF_FUNC_ringbuf_submit && 4018 func_id != BPF_FUNC_ringbuf_discard && 4019 func_id != BPF_FUNC_ringbuf_query) 4020 goto error; 4021 break; 4022 case BPF_MAP_TYPE_STACK_TRACE: 4023 if (func_id != BPF_FUNC_get_stackid) 4024 goto error; 4025 break; 4026 case BPF_MAP_TYPE_CGROUP_ARRAY: 4027 if (func_id != BPF_FUNC_skb_under_cgroup && 4028 func_id != BPF_FUNC_current_task_under_cgroup) 4029 goto error; 4030 break; 4031 case BPF_MAP_TYPE_CGROUP_STORAGE: 4032 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4033 if (func_id != BPF_FUNC_get_local_storage) 4034 goto error; 4035 break; 4036 case BPF_MAP_TYPE_DEVMAP: 4037 case BPF_MAP_TYPE_DEVMAP_HASH: 4038 if (func_id != BPF_FUNC_redirect_map && 4039 func_id != BPF_FUNC_map_lookup_elem) 4040 goto error; 4041 break; 4042 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4043 * appear. 4044 */ 4045 case BPF_MAP_TYPE_CPUMAP: 4046 if (func_id != BPF_FUNC_redirect_map) 4047 goto error; 4048 break; 4049 case BPF_MAP_TYPE_XSKMAP: 4050 if (func_id != BPF_FUNC_redirect_map && 4051 func_id != BPF_FUNC_map_lookup_elem) 4052 goto error; 4053 break; 4054 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4055 case BPF_MAP_TYPE_HASH_OF_MAPS: 4056 if (func_id != BPF_FUNC_map_lookup_elem) 4057 goto error; 4058 break; 4059 case BPF_MAP_TYPE_SOCKMAP: 4060 if (func_id != BPF_FUNC_sk_redirect_map && 4061 func_id != BPF_FUNC_sock_map_update && 4062 func_id != BPF_FUNC_map_delete_elem && 4063 func_id != BPF_FUNC_msg_redirect_map && 4064 func_id != BPF_FUNC_sk_select_reuseport && 4065 func_id != BPF_FUNC_map_lookup_elem) 4066 goto error; 4067 break; 4068 case BPF_MAP_TYPE_SOCKHASH: 4069 if (func_id != BPF_FUNC_sk_redirect_hash && 4070 func_id != BPF_FUNC_sock_hash_update && 4071 func_id != BPF_FUNC_map_delete_elem && 4072 func_id != BPF_FUNC_msg_redirect_hash && 4073 func_id != BPF_FUNC_sk_select_reuseport && 4074 func_id != BPF_FUNC_map_lookup_elem) 4075 goto error; 4076 break; 4077 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4078 if (func_id != BPF_FUNC_sk_select_reuseport) 4079 goto error; 4080 break; 4081 case BPF_MAP_TYPE_QUEUE: 4082 case BPF_MAP_TYPE_STACK: 4083 if (func_id != BPF_FUNC_map_peek_elem && 4084 func_id != BPF_FUNC_map_pop_elem && 4085 func_id != BPF_FUNC_map_push_elem) 4086 goto error; 4087 break; 4088 case BPF_MAP_TYPE_SK_STORAGE: 4089 if (func_id != BPF_FUNC_sk_storage_get && 4090 func_id != BPF_FUNC_sk_storage_delete) 4091 goto error; 4092 break; 4093 default: 4094 break; 4095 } 4096 4097 /* ... and second from the function itself. */ 4098 switch (func_id) { 4099 case BPF_FUNC_tail_call: 4100 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4101 goto error; 4102 if (env->subprog_cnt > 1) { 4103 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 4104 return -EINVAL; 4105 } 4106 break; 4107 case BPF_FUNC_perf_event_read: 4108 case BPF_FUNC_perf_event_output: 4109 case BPF_FUNC_perf_event_read_value: 4110 case BPF_FUNC_skb_output: 4111 case BPF_FUNC_xdp_output: 4112 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4113 goto error; 4114 break; 4115 case BPF_FUNC_get_stackid: 4116 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4117 goto error; 4118 break; 4119 case BPF_FUNC_current_task_under_cgroup: 4120 case BPF_FUNC_skb_under_cgroup: 4121 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4122 goto error; 4123 break; 4124 case BPF_FUNC_redirect_map: 4125 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4126 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4127 map->map_type != BPF_MAP_TYPE_CPUMAP && 4128 map->map_type != BPF_MAP_TYPE_XSKMAP) 4129 goto error; 4130 break; 4131 case BPF_FUNC_sk_redirect_map: 4132 case BPF_FUNC_msg_redirect_map: 4133 case BPF_FUNC_sock_map_update: 4134 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4135 goto error; 4136 break; 4137 case BPF_FUNC_sk_redirect_hash: 4138 case BPF_FUNC_msg_redirect_hash: 4139 case BPF_FUNC_sock_hash_update: 4140 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4141 goto error; 4142 break; 4143 case BPF_FUNC_get_local_storage: 4144 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4145 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4146 goto error; 4147 break; 4148 case BPF_FUNC_sk_select_reuseport: 4149 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4150 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4151 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4152 goto error; 4153 break; 4154 case BPF_FUNC_map_peek_elem: 4155 case BPF_FUNC_map_pop_elem: 4156 case BPF_FUNC_map_push_elem: 4157 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4158 map->map_type != BPF_MAP_TYPE_STACK) 4159 goto error; 4160 break; 4161 case BPF_FUNC_sk_storage_get: 4162 case BPF_FUNC_sk_storage_delete: 4163 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4164 goto error; 4165 break; 4166 default: 4167 break; 4168 } 4169 4170 return 0; 4171 error: 4172 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4173 map->map_type, func_id_name(func_id), func_id); 4174 return -EINVAL; 4175 } 4176 4177 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4178 { 4179 int count = 0; 4180 4181 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4182 count++; 4183 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4184 count++; 4185 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4186 count++; 4187 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4188 count++; 4189 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4190 count++; 4191 4192 /* We only support one arg being in raw mode at the moment, 4193 * which is sufficient for the helper functions we have 4194 * right now. 4195 */ 4196 return count <= 1; 4197 } 4198 4199 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4200 enum bpf_arg_type arg_next) 4201 { 4202 return (arg_type_is_mem_ptr(arg_curr) && 4203 !arg_type_is_mem_size(arg_next)) || 4204 (!arg_type_is_mem_ptr(arg_curr) && 4205 arg_type_is_mem_size(arg_next)); 4206 } 4207 4208 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4209 { 4210 /* bpf_xxx(..., buf, len) call will access 'len' 4211 * bytes from memory 'buf'. Both arg types need 4212 * to be paired, so make sure there's no buggy 4213 * helper function specification. 4214 */ 4215 if (arg_type_is_mem_size(fn->arg1_type) || 4216 arg_type_is_mem_ptr(fn->arg5_type) || 4217 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4218 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4219 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4220 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4221 return false; 4222 4223 return true; 4224 } 4225 4226 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4227 { 4228 int count = 0; 4229 4230 if (arg_type_may_be_refcounted(fn->arg1_type)) 4231 count++; 4232 if (arg_type_may_be_refcounted(fn->arg2_type)) 4233 count++; 4234 if (arg_type_may_be_refcounted(fn->arg3_type)) 4235 count++; 4236 if (arg_type_may_be_refcounted(fn->arg4_type)) 4237 count++; 4238 if (arg_type_may_be_refcounted(fn->arg5_type)) 4239 count++; 4240 4241 /* A reference acquiring function cannot acquire 4242 * another refcounted ptr. 4243 */ 4244 if (may_be_acquire_function(func_id) && count) 4245 return false; 4246 4247 /* We only support one arg being unreferenced at the moment, 4248 * which is sufficient for the helper functions we have right now. 4249 */ 4250 return count <= 1; 4251 } 4252 4253 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4254 { 4255 return check_raw_mode_ok(fn) && 4256 check_arg_pair_ok(fn) && 4257 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4258 } 4259 4260 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4261 * are now invalid, so turn them into unknown SCALAR_VALUE. 4262 */ 4263 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4264 struct bpf_func_state *state) 4265 { 4266 struct bpf_reg_state *regs = state->regs, *reg; 4267 int i; 4268 4269 for (i = 0; i < MAX_BPF_REG; i++) 4270 if (reg_is_pkt_pointer_any(®s[i])) 4271 mark_reg_unknown(env, regs, i); 4272 4273 bpf_for_each_spilled_reg(i, state, reg) { 4274 if (!reg) 4275 continue; 4276 if (reg_is_pkt_pointer_any(reg)) 4277 __mark_reg_unknown(env, reg); 4278 } 4279 } 4280 4281 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4282 { 4283 struct bpf_verifier_state *vstate = env->cur_state; 4284 int i; 4285 4286 for (i = 0; i <= vstate->curframe; i++) 4287 __clear_all_pkt_pointers(env, vstate->frame[i]); 4288 } 4289 4290 static void release_reg_references(struct bpf_verifier_env *env, 4291 struct bpf_func_state *state, 4292 int ref_obj_id) 4293 { 4294 struct bpf_reg_state *regs = state->regs, *reg; 4295 int i; 4296 4297 for (i = 0; i < MAX_BPF_REG; i++) 4298 if (regs[i].ref_obj_id == ref_obj_id) 4299 mark_reg_unknown(env, regs, i); 4300 4301 bpf_for_each_spilled_reg(i, state, reg) { 4302 if (!reg) 4303 continue; 4304 if (reg->ref_obj_id == ref_obj_id) 4305 __mark_reg_unknown(env, reg); 4306 } 4307 } 4308 4309 /* The pointer with the specified id has released its reference to kernel 4310 * resources. Identify all copies of the same pointer and clear the reference. 4311 */ 4312 static int release_reference(struct bpf_verifier_env *env, 4313 int ref_obj_id) 4314 { 4315 struct bpf_verifier_state *vstate = env->cur_state; 4316 int err; 4317 int i; 4318 4319 err = release_reference_state(cur_func(env), ref_obj_id); 4320 if (err) 4321 return err; 4322 4323 for (i = 0; i <= vstate->curframe; i++) 4324 release_reg_references(env, vstate->frame[i], ref_obj_id); 4325 4326 return 0; 4327 } 4328 4329 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4330 struct bpf_reg_state *regs) 4331 { 4332 int i; 4333 4334 /* after the call registers r0 - r5 were scratched */ 4335 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4336 mark_reg_not_init(env, regs, caller_saved[i]); 4337 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4338 } 4339 } 4340 4341 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4342 int *insn_idx) 4343 { 4344 struct bpf_verifier_state *state = env->cur_state; 4345 struct bpf_func_info_aux *func_info_aux; 4346 struct bpf_func_state *caller, *callee; 4347 int i, err, subprog, target_insn; 4348 bool is_global = false; 4349 4350 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4351 verbose(env, "the call stack of %d frames is too deep\n", 4352 state->curframe + 2); 4353 return -E2BIG; 4354 } 4355 4356 target_insn = *insn_idx + insn->imm; 4357 subprog = find_subprog(env, target_insn + 1); 4358 if (subprog < 0) { 4359 verbose(env, "verifier bug. No program starts at insn %d\n", 4360 target_insn + 1); 4361 return -EFAULT; 4362 } 4363 4364 caller = state->frame[state->curframe]; 4365 if (state->frame[state->curframe + 1]) { 4366 verbose(env, "verifier bug. Frame %d already allocated\n", 4367 state->curframe + 1); 4368 return -EFAULT; 4369 } 4370 4371 func_info_aux = env->prog->aux->func_info_aux; 4372 if (func_info_aux) 4373 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4374 err = btf_check_func_arg_match(env, subprog, caller->regs); 4375 if (err == -EFAULT) 4376 return err; 4377 if (is_global) { 4378 if (err) { 4379 verbose(env, "Caller passes invalid args into func#%d\n", 4380 subprog); 4381 return err; 4382 } else { 4383 if (env->log.level & BPF_LOG_LEVEL) 4384 verbose(env, 4385 "Func#%d is global and valid. Skipping.\n", 4386 subprog); 4387 clear_caller_saved_regs(env, caller->regs); 4388 4389 /* All global functions return SCALAR_VALUE */ 4390 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4391 4392 /* continue with next insn after call */ 4393 return 0; 4394 } 4395 } 4396 4397 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4398 if (!callee) 4399 return -ENOMEM; 4400 state->frame[state->curframe + 1] = callee; 4401 4402 /* callee cannot access r0, r6 - r9 for reading and has to write 4403 * into its own stack before reading from it. 4404 * callee can read/write into caller's stack 4405 */ 4406 init_func_state(env, callee, 4407 /* remember the callsite, it will be used by bpf_exit */ 4408 *insn_idx /* callsite */, 4409 state->curframe + 1 /* frameno within this callchain */, 4410 subprog /* subprog number within this prog */); 4411 4412 /* Transfer references to the callee */ 4413 err = transfer_reference_state(callee, caller); 4414 if (err) 4415 return err; 4416 4417 /* copy r1 - r5 args that callee can access. The copy includes parent 4418 * pointers, which connects us up to the liveness chain 4419 */ 4420 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4421 callee->regs[i] = caller->regs[i]; 4422 4423 clear_caller_saved_regs(env, caller->regs); 4424 4425 /* only increment it after check_reg_arg() finished */ 4426 state->curframe++; 4427 4428 /* and go analyze first insn of the callee */ 4429 *insn_idx = target_insn; 4430 4431 if (env->log.level & BPF_LOG_LEVEL) { 4432 verbose(env, "caller:\n"); 4433 print_verifier_state(env, caller); 4434 verbose(env, "callee:\n"); 4435 print_verifier_state(env, callee); 4436 } 4437 return 0; 4438 } 4439 4440 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4441 { 4442 struct bpf_verifier_state *state = env->cur_state; 4443 struct bpf_func_state *caller, *callee; 4444 struct bpf_reg_state *r0; 4445 int err; 4446 4447 callee = state->frame[state->curframe]; 4448 r0 = &callee->regs[BPF_REG_0]; 4449 if (r0->type == PTR_TO_STACK) { 4450 /* technically it's ok to return caller's stack pointer 4451 * (or caller's caller's pointer) back to the caller, 4452 * since these pointers are valid. Only current stack 4453 * pointer will be invalid as soon as function exits, 4454 * but let's be conservative 4455 */ 4456 verbose(env, "cannot return stack pointer to the caller\n"); 4457 return -EINVAL; 4458 } 4459 4460 state->curframe--; 4461 caller = state->frame[state->curframe]; 4462 /* return to the caller whatever r0 had in the callee */ 4463 caller->regs[BPF_REG_0] = *r0; 4464 4465 /* Transfer references to the caller */ 4466 err = transfer_reference_state(caller, callee); 4467 if (err) 4468 return err; 4469 4470 *insn_idx = callee->callsite + 1; 4471 if (env->log.level & BPF_LOG_LEVEL) { 4472 verbose(env, "returning from callee:\n"); 4473 print_verifier_state(env, callee); 4474 verbose(env, "to caller at %d:\n", *insn_idx); 4475 print_verifier_state(env, caller); 4476 } 4477 /* clear everything in the callee */ 4478 free_func_state(callee); 4479 state->frame[state->curframe + 1] = NULL; 4480 return 0; 4481 } 4482 4483 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4484 int func_id, 4485 struct bpf_call_arg_meta *meta) 4486 { 4487 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4488 4489 if (ret_type != RET_INTEGER || 4490 (func_id != BPF_FUNC_get_stack && 4491 func_id != BPF_FUNC_probe_read_str && 4492 func_id != BPF_FUNC_probe_read_kernel_str && 4493 func_id != BPF_FUNC_probe_read_user_str)) 4494 return; 4495 4496 ret_reg->smax_value = meta->msize_max_value; 4497 ret_reg->s32_max_value = meta->msize_max_value; 4498 __reg_deduce_bounds(ret_reg); 4499 __reg_bound_offset(ret_reg); 4500 __update_reg_bounds(ret_reg); 4501 } 4502 4503 static int 4504 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4505 int func_id, int insn_idx) 4506 { 4507 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4508 struct bpf_map *map = meta->map_ptr; 4509 4510 if (func_id != BPF_FUNC_tail_call && 4511 func_id != BPF_FUNC_map_lookup_elem && 4512 func_id != BPF_FUNC_map_update_elem && 4513 func_id != BPF_FUNC_map_delete_elem && 4514 func_id != BPF_FUNC_map_push_elem && 4515 func_id != BPF_FUNC_map_pop_elem && 4516 func_id != BPF_FUNC_map_peek_elem) 4517 return 0; 4518 4519 if (map == NULL) { 4520 verbose(env, "kernel subsystem misconfigured verifier\n"); 4521 return -EINVAL; 4522 } 4523 4524 /* In case of read-only, some additional restrictions 4525 * need to be applied in order to prevent altering the 4526 * state of the map from program side. 4527 */ 4528 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4529 (func_id == BPF_FUNC_map_delete_elem || 4530 func_id == BPF_FUNC_map_update_elem || 4531 func_id == BPF_FUNC_map_push_elem || 4532 func_id == BPF_FUNC_map_pop_elem)) { 4533 verbose(env, "write into map forbidden\n"); 4534 return -EACCES; 4535 } 4536 4537 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4538 bpf_map_ptr_store(aux, meta->map_ptr, 4539 !meta->map_ptr->bypass_spec_v1); 4540 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4541 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4542 !meta->map_ptr->bypass_spec_v1); 4543 return 0; 4544 } 4545 4546 static int 4547 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4548 int func_id, int insn_idx) 4549 { 4550 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4551 struct bpf_reg_state *regs = cur_regs(env), *reg; 4552 struct bpf_map *map = meta->map_ptr; 4553 struct tnum range; 4554 u64 val; 4555 int err; 4556 4557 if (func_id != BPF_FUNC_tail_call) 4558 return 0; 4559 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4560 verbose(env, "kernel subsystem misconfigured verifier\n"); 4561 return -EINVAL; 4562 } 4563 4564 range = tnum_range(0, map->max_entries - 1); 4565 reg = ®s[BPF_REG_3]; 4566 4567 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4568 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4569 return 0; 4570 } 4571 4572 err = mark_chain_precision(env, BPF_REG_3); 4573 if (err) 4574 return err; 4575 4576 val = reg->var_off.value; 4577 if (bpf_map_key_unseen(aux)) 4578 bpf_map_key_store(aux, val); 4579 else if (!bpf_map_key_poisoned(aux) && 4580 bpf_map_key_immediate(aux) != val) 4581 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4582 return 0; 4583 } 4584 4585 static int check_reference_leak(struct bpf_verifier_env *env) 4586 { 4587 struct bpf_func_state *state = cur_func(env); 4588 int i; 4589 4590 for (i = 0; i < state->acquired_refs; i++) { 4591 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4592 state->refs[i].id, state->refs[i].insn_idx); 4593 } 4594 return state->acquired_refs ? -EINVAL : 0; 4595 } 4596 4597 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4598 { 4599 const struct bpf_func_proto *fn = NULL; 4600 struct bpf_reg_state *regs; 4601 struct bpf_call_arg_meta meta; 4602 bool changes_data; 4603 int i, err; 4604 4605 /* find function prototype */ 4606 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4607 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4608 func_id); 4609 return -EINVAL; 4610 } 4611 4612 if (env->ops->get_func_proto) 4613 fn = env->ops->get_func_proto(func_id, env->prog); 4614 if (!fn) { 4615 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4616 func_id); 4617 return -EINVAL; 4618 } 4619 4620 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4621 if (!env->prog->gpl_compatible && fn->gpl_only) { 4622 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4623 return -EINVAL; 4624 } 4625 4626 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4627 changes_data = bpf_helper_changes_pkt_data(fn->func); 4628 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4629 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4630 func_id_name(func_id), func_id); 4631 return -EINVAL; 4632 } 4633 4634 memset(&meta, 0, sizeof(meta)); 4635 meta.pkt_access = fn->pkt_access; 4636 4637 err = check_func_proto(fn, func_id); 4638 if (err) { 4639 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4640 func_id_name(func_id), func_id); 4641 return err; 4642 } 4643 4644 meta.func_id = func_id; 4645 /* check args */ 4646 for (i = 0; i < 5; i++) { 4647 err = btf_resolve_helper_id(&env->log, fn, i); 4648 if (err > 0) 4649 meta.btf_id = err; 4650 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4651 if (err) 4652 return err; 4653 } 4654 4655 err = record_func_map(env, &meta, func_id, insn_idx); 4656 if (err) 4657 return err; 4658 4659 err = record_func_key(env, &meta, func_id, insn_idx); 4660 if (err) 4661 return err; 4662 4663 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4664 * is inferred from register state. 4665 */ 4666 for (i = 0; i < meta.access_size; i++) { 4667 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4668 BPF_WRITE, -1, false); 4669 if (err) 4670 return err; 4671 } 4672 4673 if (func_id == BPF_FUNC_tail_call) { 4674 err = check_reference_leak(env); 4675 if (err) { 4676 verbose(env, "tail_call would lead to reference leak\n"); 4677 return err; 4678 } 4679 } else if (is_release_function(func_id)) { 4680 err = release_reference(env, meta.ref_obj_id); 4681 if (err) { 4682 verbose(env, "func %s#%d reference has not been acquired before\n", 4683 func_id_name(func_id), func_id); 4684 return err; 4685 } 4686 } 4687 4688 regs = cur_regs(env); 4689 4690 /* check that flags argument in get_local_storage(map, flags) is 0, 4691 * this is required because get_local_storage() can't return an error. 4692 */ 4693 if (func_id == BPF_FUNC_get_local_storage && 4694 !register_is_null(®s[BPF_REG_2])) { 4695 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4696 return -EINVAL; 4697 } 4698 4699 /* reset caller saved regs */ 4700 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4701 mark_reg_not_init(env, regs, caller_saved[i]); 4702 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4703 } 4704 4705 /* helper call returns 64-bit value. */ 4706 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4707 4708 /* update return register (already marked as written above) */ 4709 if (fn->ret_type == RET_INTEGER) { 4710 /* sets type to SCALAR_VALUE */ 4711 mark_reg_unknown(env, regs, BPF_REG_0); 4712 } else if (fn->ret_type == RET_VOID) { 4713 regs[BPF_REG_0].type = NOT_INIT; 4714 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4715 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4716 /* There is no offset yet applied, variable or fixed */ 4717 mark_reg_known_zero(env, regs, BPF_REG_0); 4718 /* remember map_ptr, so that check_map_access() 4719 * can check 'value_size' boundary of memory access 4720 * to map element returned from bpf_map_lookup_elem() 4721 */ 4722 if (meta.map_ptr == NULL) { 4723 verbose(env, 4724 "kernel subsystem misconfigured verifier\n"); 4725 return -EINVAL; 4726 } 4727 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4728 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4729 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4730 if (map_value_has_spin_lock(meta.map_ptr)) 4731 regs[BPF_REG_0].id = ++env->id_gen; 4732 } else { 4733 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4734 regs[BPF_REG_0].id = ++env->id_gen; 4735 } 4736 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4737 mark_reg_known_zero(env, regs, BPF_REG_0); 4738 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4739 regs[BPF_REG_0].id = ++env->id_gen; 4740 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4741 mark_reg_known_zero(env, regs, BPF_REG_0); 4742 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4743 regs[BPF_REG_0].id = ++env->id_gen; 4744 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4745 mark_reg_known_zero(env, regs, BPF_REG_0); 4746 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4747 regs[BPF_REG_0].id = ++env->id_gen; 4748 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 4749 mark_reg_known_zero(env, regs, BPF_REG_0); 4750 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 4751 regs[BPF_REG_0].id = ++env->id_gen; 4752 regs[BPF_REG_0].mem_size = meta.mem_size; 4753 } else { 4754 verbose(env, "unknown return type %d of func %s#%d\n", 4755 fn->ret_type, func_id_name(func_id), func_id); 4756 return -EINVAL; 4757 } 4758 4759 if (is_ptr_cast_function(func_id)) { 4760 /* For release_reference() */ 4761 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4762 } else if (is_acquire_function(func_id, meta.map_ptr)) { 4763 int id = acquire_reference_state(env, insn_idx); 4764 4765 if (id < 0) 4766 return id; 4767 /* For mark_ptr_or_null_reg() */ 4768 regs[BPF_REG_0].id = id; 4769 /* For release_reference() */ 4770 regs[BPF_REG_0].ref_obj_id = id; 4771 } 4772 4773 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4774 4775 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4776 if (err) 4777 return err; 4778 4779 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4780 const char *err_str; 4781 4782 #ifdef CONFIG_PERF_EVENTS 4783 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4784 err_str = "cannot get callchain buffer for func %s#%d\n"; 4785 #else 4786 err = -ENOTSUPP; 4787 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4788 #endif 4789 if (err) { 4790 verbose(env, err_str, func_id_name(func_id), func_id); 4791 return err; 4792 } 4793 4794 env->prog->has_callchain_buf = true; 4795 } 4796 4797 if (changes_data) 4798 clear_all_pkt_pointers(env); 4799 return 0; 4800 } 4801 4802 static bool signed_add_overflows(s64 a, s64 b) 4803 { 4804 /* Do the add in u64, where overflow is well-defined */ 4805 s64 res = (s64)((u64)a + (u64)b); 4806 4807 if (b < 0) 4808 return res > a; 4809 return res < a; 4810 } 4811 4812 static bool signed_add32_overflows(s64 a, s64 b) 4813 { 4814 /* Do the add in u32, where overflow is well-defined */ 4815 s32 res = (s32)((u32)a + (u32)b); 4816 4817 if (b < 0) 4818 return res > a; 4819 return res < a; 4820 } 4821 4822 static bool signed_sub_overflows(s32 a, s32 b) 4823 { 4824 /* Do the sub in u64, where overflow is well-defined */ 4825 s64 res = (s64)((u64)a - (u64)b); 4826 4827 if (b < 0) 4828 return res < a; 4829 return res > a; 4830 } 4831 4832 static bool signed_sub32_overflows(s32 a, s32 b) 4833 { 4834 /* Do the sub in u64, where overflow is well-defined */ 4835 s32 res = (s32)((u32)a - (u32)b); 4836 4837 if (b < 0) 4838 return res < a; 4839 return res > a; 4840 } 4841 4842 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4843 const struct bpf_reg_state *reg, 4844 enum bpf_reg_type type) 4845 { 4846 bool known = tnum_is_const(reg->var_off); 4847 s64 val = reg->var_off.value; 4848 s64 smin = reg->smin_value; 4849 4850 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4851 verbose(env, "math between %s pointer and %lld is not allowed\n", 4852 reg_type_str[type], val); 4853 return false; 4854 } 4855 4856 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4857 verbose(env, "%s pointer offset %d is not allowed\n", 4858 reg_type_str[type], reg->off); 4859 return false; 4860 } 4861 4862 if (smin == S64_MIN) { 4863 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4864 reg_type_str[type]); 4865 return false; 4866 } 4867 4868 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4869 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4870 smin, reg_type_str[type]); 4871 return false; 4872 } 4873 4874 return true; 4875 } 4876 4877 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4878 { 4879 return &env->insn_aux_data[env->insn_idx]; 4880 } 4881 4882 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4883 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4884 { 4885 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4886 (opcode == BPF_SUB && !off_is_neg); 4887 u32 off; 4888 4889 switch (ptr_reg->type) { 4890 case PTR_TO_STACK: 4891 /* Indirect variable offset stack access is prohibited in 4892 * unprivileged mode so it's not handled here. 4893 */ 4894 off = ptr_reg->off + ptr_reg->var_off.value; 4895 if (mask_to_left) 4896 *ptr_limit = MAX_BPF_STACK + off; 4897 else 4898 *ptr_limit = -off; 4899 return 0; 4900 case PTR_TO_MAP_VALUE: 4901 if (mask_to_left) { 4902 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4903 } else { 4904 off = ptr_reg->smin_value + ptr_reg->off; 4905 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4906 } 4907 return 0; 4908 default: 4909 return -EINVAL; 4910 } 4911 } 4912 4913 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4914 const struct bpf_insn *insn) 4915 { 4916 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 4917 } 4918 4919 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4920 u32 alu_state, u32 alu_limit) 4921 { 4922 /* If we arrived here from different branches with different 4923 * state or limits to sanitize, then this won't work. 4924 */ 4925 if (aux->alu_state && 4926 (aux->alu_state != alu_state || 4927 aux->alu_limit != alu_limit)) 4928 return -EACCES; 4929 4930 /* Corresponding fixup done in fixup_bpf_calls(). */ 4931 aux->alu_state = alu_state; 4932 aux->alu_limit = alu_limit; 4933 return 0; 4934 } 4935 4936 static int sanitize_val_alu(struct bpf_verifier_env *env, 4937 struct bpf_insn *insn) 4938 { 4939 struct bpf_insn_aux_data *aux = cur_aux(env); 4940 4941 if (can_skip_alu_sanitation(env, insn)) 4942 return 0; 4943 4944 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4945 } 4946 4947 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4948 struct bpf_insn *insn, 4949 const struct bpf_reg_state *ptr_reg, 4950 struct bpf_reg_state *dst_reg, 4951 bool off_is_neg) 4952 { 4953 struct bpf_verifier_state *vstate = env->cur_state; 4954 struct bpf_insn_aux_data *aux = cur_aux(env); 4955 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4956 u8 opcode = BPF_OP(insn->code); 4957 u32 alu_state, alu_limit; 4958 struct bpf_reg_state tmp; 4959 bool ret; 4960 4961 if (can_skip_alu_sanitation(env, insn)) 4962 return 0; 4963 4964 /* We already marked aux for masking from non-speculative 4965 * paths, thus we got here in the first place. We only care 4966 * to explore bad access from here. 4967 */ 4968 if (vstate->speculative) 4969 goto do_sim; 4970 4971 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4972 alu_state |= ptr_is_dst_reg ? 4973 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4974 4975 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4976 return 0; 4977 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4978 return -EACCES; 4979 do_sim: 4980 /* Simulate and find potential out-of-bounds access under 4981 * speculative execution from truncation as a result of 4982 * masking when off was not within expected range. If off 4983 * sits in dst, then we temporarily need to move ptr there 4984 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4985 * for cases where we use K-based arithmetic in one direction 4986 * and truncated reg-based in the other in order to explore 4987 * bad access. 4988 */ 4989 if (!ptr_is_dst_reg) { 4990 tmp = *dst_reg; 4991 *dst_reg = *ptr_reg; 4992 } 4993 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4994 if (!ptr_is_dst_reg && ret) 4995 *dst_reg = tmp; 4996 return !ret ? -EFAULT : 0; 4997 } 4998 4999 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5000 * Caller should also handle BPF_MOV case separately. 5001 * If we return -EACCES, caller may want to try again treating pointer as a 5002 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5003 */ 5004 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5005 struct bpf_insn *insn, 5006 const struct bpf_reg_state *ptr_reg, 5007 const struct bpf_reg_state *off_reg) 5008 { 5009 struct bpf_verifier_state *vstate = env->cur_state; 5010 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5011 struct bpf_reg_state *regs = state->regs, *dst_reg; 5012 bool known = tnum_is_const(off_reg->var_off); 5013 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5014 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 5015 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 5016 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 5017 u32 dst = insn->dst_reg, src = insn->src_reg; 5018 u8 opcode = BPF_OP(insn->code); 5019 int ret; 5020 5021 dst_reg = ®s[dst]; 5022 5023 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 5024 smin_val > smax_val || umin_val > umax_val) { 5025 /* Taint dst register if offset had invalid bounds derived from 5026 * e.g. dead branches. 5027 */ 5028 __mark_reg_unknown(env, dst_reg); 5029 return 0; 5030 } 5031 5032 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5033 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5034 verbose(env, 5035 "R%d 32-bit pointer arithmetic prohibited\n", 5036 dst); 5037 return -EACCES; 5038 } 5039 5040 switch (ptr_reg->type) { 5041 case PTR_TO_MAP_VALUE_OR_NULL: 5042 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 5043 dst, reg_type_str[ptr_reg->type]); 5044 return -EACCES; 5045 case CONST_PTR_TO_MAP: 5046 case PTR_TO_PACKET_END: 5047 case PTR_TO_SOCKET: 5048 case PTR_TO_SOCKET_OR_NULL: 5049 case PTR_TO_SOCK_COMMON: 5050 case PTR_TO_SOCK_COMMON_OR_NULL: 5051 case PTR_TO_TCP_SOCK: 5052 case PTR_TO_TCP_SOCK_OR_NULL: 5053 case PTR_TO_XDP_SOCK: 5054 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 5055 dst, reg_type_str[ptr_reg->type]); 5056 return -EACCES; 5057 case PTR_TO_MAP_VALUE: 5058 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 5059 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 5060 off_reg == dst_reg ? dst : src); 5061 return -EACCES; 5062 } 5063 /* fall-through */ 5064 default: 5065 break; 5066 } 5067 5068 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 5069 * The id may be overwritten later if we create a new variable offset. 5070 */ 5071 dst_reg->type = ptr_reg->type; 5072 dst_reg->id = ptr_reg->id; 5073 5074 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 5075 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 5076 return -EINVAL; 5077 5078 /* pointer types do not carry 32-bit bounds at the moment. */ 5079 __mark_reg32_unbounded(dst_reg); 5080 5081 switch (opcode) { 5082 case BPF_ADD: 5083 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5084 if (ret < 0) { 5085 verbose(env, "R%d tried to add from different maps or paths\n", dst); 5086 return ret; 5087 } 5088 /* We can take a fixed offset as long as it doesn't overflow 5089 * the s32 'off' field 5090 */ 5091 if (known && (ptr_reg->off + smin_val == 5092 (s64)(s32)(ptr_reg->off + smin_val))) { 5093 /* pointer += K. Accumulate it into fixed offset */ 5094 dst_reg->smin_value = smin_ptr; 5095 dst_reg->smax_value = smax_ptr; 5096 dst_reg->umin_value = umin_ptr; 5097 dst_reg->umax_value = umax_ptr; 5098 dst_reg->var_off = ptr_reg->var_off; 5099 dst_reg->off = ptr_reg->off + smin_val; 5100 dst_reg->raw = ptr_reg->raw; 5101 break; 5102 } 5103 /* A new variable offset is created. Note that off_reg->off 5104 * == 0, since it's a scalar. 5105 * dst_reg gets the pointer type and since some positive 5106 * integer value was added to the pointer, give it a new 'id' 5107 * if it's a PTR_TO_PACKET. 5108 * this creates a new 'base' pointer, off_reg (variable) gets 5109 * added into the variable offset, and we copy the fixed offset 5110 * from ptr_reg. 5111 */ 5112 if (signed_add_overflows(smin_ptr, smin_val) || 5113 signed_add_overflows(smax_ptr, smax_val)) { 5114 dst_reg->smin_value = S64_MIN; 5115 dst_reg->smax_value = S64_MAX; 5116 } else { 5117 dst_reg->smin_value = smin_ptr + smin_val; 5118 dst_reg->smax_value = smax_ptr + smax_val; 5119 } 5120 if (umin_ptr + umin_val < umin_ptr || 5121 umax_ptr + umax_val < umax_ptr) { 5122 dst_reg->umin_value = 0; 5123 dst_reg->umax_value = U64_MAX; 5124 } else { 5125 dst_reg->umin_value = umin_ptr + umin_val; 5126 dst_reg->umax_value = umax_ptr + umax_val; 5127 } 5128 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5129 dst_reg->off = ptr_reg->off; 5130 dst_reg->raw = ptr_reg->raw; 5131 if (reg_is_pkt_pointer(ptr_reg)) { 5132 dst_reg->id = ++env->id_gen; 5133 /* something was added to pkt_ptr, set range to zero */ 5134 dst_reg->raw = 0; 5135 } 5136 break; 5137 case BPF_SUB: 5138 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5139 if (ret < 0) { 5140 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5141 return ret; 5142 } 5143 if (dst_reg == off_reg) { 5144 /* scalar -= pointer. Creates an unknown scalar */ 5145 verbose(env, "R%d tried to subtract pointer from scalar\n", 5146 dst); 5147 return -EACCES; 5148 } 5149 /* We don't allow subtraction from FP, because (according to 5150 * test_verifier.c test "invalid fp arithmetic", JITs might not 5151 * be able to deal with it. 5152 */ 5153 if (ptr_reg->type == PTR_TO_STACK) { 5154 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5155 dst); 5156 return -EACCES; 5157 } 5158 if (known && (ptr_reg->off - smin_val == 5159 (s64)(s32)(ptr_reg->off - smin_val))) { 5160 /* pointer -= K. Subtract it from fixed offset */ 5161 dst_reg->smin_value = smin_ptr; 5162 dst_reg->smax_value = smax_ptr; 5163 dst_reg->umin_value = umin_ptr; 5164 dst_reg->umax_value = umax_ptr; 5165 dst_reg->var_off = ptr_reg->var_off; 5166 dst_reg->id = ptr_reg->id; 5167 dst_reg->off = ptr_reg->off - smin_val; 5168 dst_reg->raw = ptr_reg->raw; 5169 break; 5170 } 5171 /* A new variable offset is created. If the subtrahend is known 5172 * nonnegative, then any reg->range we had before is still good. 5173 */ 5174 if (signed_sub_overflows(smin_ptr, smax_val) || 5175 signed_sub_overflows(smax_ptr, smin_val)) { 5176 /* Overflow possible, we know nothing */ 5177 dst_reg->smin_value = S64_MIN; 5178 dst_reg->smax_value = S64_MAX; 5179 } else { 5180 dst_reg->smin_value = smin_ptr - smax_val; 5181 dst_reg->smax_value = smax_ptr - smin_val; 5182 } 5183 if (umin_ptr < umax_val) { 5184 /* Overflow possible, we know nothing */ 5185 dst_reg->umin_value = 0; 5186 dst_reg->umax_value = U64_MAX; 5187 } else { 5188 /* Cannot overflow (as long as bounds are consistent) */ 5189 dst_reg->umin_value = umin_ptr - umax_val; 5190 dst_reg->umax_value = umax_ptr - umin_val; 5191 } 5192 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5193 dst_reg->off = ptr_reg->off; 5194 dst_reg->raw = ptr_reg->raw; 5195 if (reg_is_pkt_pointer(ptr_reg)) { 5196 dst_reg->id = ++env->id_gen; 5197 /* something was added to pkt_ptr, set range to zero */ 5198 if (smin_val < 0) 5199 dst_reg->raw = 0; 5200 } 5201 break; 5202 case BPF_AND: 5203 case BPF_OR: 5204 case BPF_XOR: 5205 /* bitwise ops on pointers are troublesome, prohibit. */ 5206 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5207 dst, bpf_alu_string[opcode >> 4]); 5208 return -EACCES; 5209 default: 5210 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5211 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5212 dst, bpf_alu_string[opcode >> 4]); 5213 return -EACCES; 5214 } 5215 5216 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5217 return -EINVAL; 5218 5219 __update_reg_bounds(dst_reg); 5220 __reg_deduce_bounds(dst_reg); 5221 __reg_bound_offset(dst_reg); 5222 5223 /* For unprivileged we require that resulting offset must be in bounds 5224 * in order to be able to sanitize access later on. 5225 */ 5226 if (!env->bypass_spec_v1) { 5227 if (dst_reg->type == PTR_TO_MAP_VALUE && 5228 check_map_access(env, dst, dst_reg->off, 1, false)) { 5229 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5230 "prohibited for !root\n", dst); 5231 return -EACCES; 5232 } else if (dst_reg->type == PTR_TO_STACK && 5233 check_stack_access(env, dst_reg, dst_reg->off + 5234 dst_reg->var_off.value, 1)) { 5235 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5236 "prohibited for !root\n", dst); 5237 return -EACCES; 5238 } 5239 } 5240 5241 return 0; 5242 } 5243 5244 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5245 struct bpf_reg_state *src_reg) 5246 { 5247 s32 smin_val = src_reg->s32_min_value; 5248 s32 smax_val = src_reg->s32_max_value; 5249 u32 umin_val = src_reg->u32_min_value; 5250 u32 umax_val = src_reg->u32_max_value; 5251 5252 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5253 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5254 dst_reg->s32_min_value = S32_MIN; 5255 dst_reg->s32_max_value = S32_MAX; 5256 } else { 5257 dst_reg->s32_min_value += smin_val; 5258 dst_reg->s32_max_value += smax_val; 5259 } 5260 if (dst_reg->u32_min_value + umin_val < umin_val || 5261 dst_reg->u32_max_value + umax_val < umax_val) { 5262 dst_reg->u32_min_value = 0; 5263 dst_reg->u32_max_value = U32_MAX; 5264 } else { 5265 dst_reg->u32_min_value += umin_val; 5266 dst_reg->u32_max_value += umax_val; 5267 } 5268 } 5269 5270 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5271 struct bpf_reg_state *src_reg) 5272 { 5273 s64 smin_val = src_reg->smin_value; 5274 s64 smax_val = src_reg->smax_value; 5275 u64 umin_val = src_reg->umin_value; 5276 u64 umax_val = src_reg->umax_value; 5277 5278 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5279 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5280 dst_reg->smin_value = S64_MIN; 5281 dst_reg->smax_value = S64_MAX; 5282 } else { 5283 dst_reg->smin_value += smin_val; 5284 dst_reg->smax_value += smax_val; 5285 } 5286 if (dst_reg->umin_value + umin_val < umin_val || 5287 dst_reg->umax_value + umax_val < umax_val) { 5288 dst_reg->umin_value = 0; 5289 dst_reg->umax_value = U64_MAX; 5290 } else { 5291 dst_reg->umin_value += umin_val; 5292 dst_reg->umax_value += umax_val; 5293 } 5294 } 5295 5296 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5297 struct bpf_reg_state *src_reg) 5298 { 5299 s32 smin_val = src_reg->s32_min_value; 5300 s32 smax_val = src_reg->s32_max_value; 5301 u32 umin_val = src_reg->u32_min_value; 5302 u32 umax_val = src_reg->u32_max_value; 5303 5304 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5305 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5306 /* Overflow possible, we know nothing */ 5307 dst_reg->s32_min_value = S32_MIN; 5308 dst_reg->s32_max_value = S32_MAX; 5309 } else { 5310 dst_reg->s32_min_value -= smax_val; 5311 dst_reg->s32_max_value -= smin_val; 5312 } 5313 if (dst_reg->u32_min_value < umax_val) { 5314 /* Overflow possible, we know nothing */ 5315 dst_reg->u32_min_value = 0; 5316 dst_reg->u32_max_value = U32_MAX; 5317 } else { 5318 /* Cannot overflow (as long as bounds are consistent) */ 5319 dst_reg->u32_min_value -= umax_val; 5320 dst_reg->u32_max_value -= umin_val; 5321 } 5322 } 5323 5324 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5325 struct bpf_reg_state *src_reg) 5326 { 5327 s64 smin_val = src_reg->smin_value; 5328 s64 smax_val = src_reg->smax_value; 5329 u64 umin_val = src_reg->umin_value; 5330 u64 umax_val = src_reg->umax_value; 5331 5332 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5333 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5334 /* Overflow possible, we know nothing */ 5335 dst_reg->smin_value = S64_MIN; 5336 dst_reg->smax_value = S64_MAX; 5337 } else { 5338 dst_reg->smin_value -= smax_val; 5339 dst_reg->smax_value -= smin_val; 5340 } 5341 if (dst_reg->umin_value < umax_val) { 5342 /* Overflow possible, we know nothing */ 5343 dst_reg->umin_value = 0; 5344 dst_reg->umax_value = U64_MAX; 5345 } else { 5346 /* Cannot overflow (as long as bounds are consistent) */ 5347 dst_reg->umin_value -= umax_val; 5348 dst_reg->umax_value -= umin_val; 5349 } 5350 } 5351 5352 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5353 struct bpf_reg_state *src_reg) 5354 { 5355 s32 smin_val = src_reg->s32_min_value; 5356 u32 umin_val = src_reg->u32_min_value; 5357 u32 umax_val = src_reg->u32_max_value; 5358 5359 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5360 /* Ain't nobody got time to multiply that sign */ 5361 __mark_reg32_unbounded(dst_reg); 5362 return; 5363 } 5364 /* Both values are positive, so we can work with unsigned and 5365 * copy the result to signed (unless it exceeds S32_MAX). 5366 */ 5367 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5368 /* Potential overflow, we know nothing */ 5369 __mark_reg32_unbounded(dst_reg); 5370 return; 5371 } 5372 dst_reg->u32_min_value *= umin_val; 5373 dst_reg->u32_max_value *= umax_val; 5374 if (dst_reg->u32_max_value > S32_MAX) { 5375 /* Overflow possible, we know nothing */ 5376 dst_reg->s32_min_value = S32_MIN; 5377 dst_reg->s32_max_value = S32_MAX; 5378 } else { 5379 dst_reg->s32_min_value = dst_reg->u32_min_value; 5380 dst_reg->s32_max_value = dst_reg->u32_max_value; 5381 } 5382 } 5383 5384 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5385 struct bpf_reg_state *src_reg) 5386 { 5387 s64 smin_val = src_reg->smin_value; 5388 u64 umin_val = src_reg->umin_value; 5389 u64 umax_val = src_reg->umax_value; 5390 5391 if (smin_val < 0 || dst_reg->smin_value < 0) { 5392 /* Ain't nobody got time to multiply that sign */ 5393 __mark_reg64_unbounded(dst_reg); 5394 return; 5395 } 5396 /* Both values are positive, so we can work with unsigned and 5397 * copy the result to signed (unless it exceeds S64_MAX). 5398 */ 5399 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5400 /* Potential overflow, we know nothing */ 5401 __mark_reg64_unbounded(dst_reg); 5402 return; 5403 } 5404 dst_reg->umin_value *= umin_val; 5405 dst_reg->umax_value *= umax_val; 5406 if (dst_reg->umax_value > S64_MAX) { 5407 /* Overflow possible, we know nothing */ 5408 dst_reg->smin_value = S64_MIN; 5409 dst_reg->smax_value = S64_MAX; 5410 } else { 5411 dst_reg->smin_value = dst_reg->umin_value; 5412 dst_reg->smax_value = dst_reg->umax_value; 5413 } 5414 } 5415 5416 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5417 struct bpf_reg_state *src_reg) 5418 { 5419 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5420 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5421 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5422 s32 smin_val = src_reg->s32_min_value; 5423 u32 umax_val = src_reg->u32_max_value; 5424 5425 /* Assuming scalar64_min_max_and will be called so its safe 5426 * to skip updating register for known 32-bit case. 5427 */ 5428 if (src_known && dst_known) 5429 return; 5430 5431 /* We get our minimum from the var_off, since that's inherently 5432 * bitwise. Our maximum is the minimum of the operands' maxima. 5433 */ 5434 dst_reg->u32_min_value = var32_off.value; 5435 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5436 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5437 /* Lose signed bounds when ANDing negative numbers, 5438 * ain't nobody got time for that. 5439 */ 5440 dst_reg->s32_min_value = S32_MIN; 5441 dst_reg->s32_max_value = S32_MAX; 5442 } else { 5443 /* ANDing two positives gives a positive, so safe to 5444 * cast result into s64. 5445 */ 5446 dst_reg->s32_min_value = dst_reg->u32_min_value; 5447 dst_reg->s32_max_value = dst_reg->u32_max_value; 5448 } 5449 5450 } 5451 5452 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5453 struct bpf_reg_state *src_reg) 5454 { 5455 bool src_known = tnum_is_const(src_reg->var_off); 5456 bool dst_known = tnum_is_const(dst_reg->var_off); 5457 s64 smin_val = src_reg->smin_value; 5458 u64 umax_val = src_reg->umax_value; 5459 5460 if (src_known && dst_known) { 5461 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5462 src_reg->var_off.value); 5463 return; 5464 } 5465 5466 /* We get our minimum from the var_off, since that's inherently 5467 * bitwise. Our maximum is the minimum of the operands' maxima. 5468 */ 5469 dst_reg->umin_value = dst_reg->var_off.value; 5470 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5471 if (dst_reg->smin_value < 0 || smin_val < 0) { 5472 /* Lose signed bounds when ANDing negative numbers, 5473 * ain't nobody got time for that. 5474 */ 5475 dst_reg->smin_value = S64_MIN; 5476 dst_reg->smax_value = S64_MAX; 5477 } else { 5478 /* ANDing two positives gives a positive, so safe to 5479 * cast result into s64. 5480 */ 5481 dst_reg->smin_value = dst_reg->umin_value; 5482 dst_reg->smax_value = dst_reg->umax_value; 5483 } 5484 /* We may learn something more from the var_off */ 5485 __update_reg_bounds(dst_reg); 5486 } 5487 5488 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5489 struct bpf_reg_state *src_reg) 5490 { 5491 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5492 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5493 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5494 s32 smin_val = src_reg->smin_value; 5495 u32 umin_val = src_reg->umin_value; 5496 5497 /* Assuming scalar64_min_max_or will be called so it is safe 5498 * to skip updating register for known case. 5499 */ 5500 if (src_known && dst_known) 5501 return; 5502 5503 /* We get our maximum from the var_off, and our minimum is the 5504 * maximum of the operands' minima 5505 */ 5506 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5507 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5508 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5509 /* Lose signed bounds when ORing negative numbers, 5510 * ain't nobody got time for that. 5511 */ 5512 dst_reg->s32_min_value = S32_MIN; 5513 dst_reg->s32_max_value = S32_MAX; 5514 } else { 5515 /* ORing two positives gives a positive, so safe to 5516 * cast result into s64. 5517 */ 5518 dst_reg->s32_min_value = dst_reg->umin_value; 5519 dst_reg->s32_max_value = dst_reg->umax_value; 5520 } 5521 } 5522 5523 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5524 struct bpf_reg_state *src_reg) 5525 { 5526 bool src_known = tnum_is_const(src_reg->var_off); 5527 bool dst_known = tnum_is_const(dst_reg->var_off); 5528 s64 smin_val = src_reg->smin_value; 5529 u64 umin_val = src_reg->umin_value; 5530 5531 if (src_known && dst_known) { 5532 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5533 src_reg->var_off.value); 5534 return; 5535 } 5536 5537 /* We get our maximum from the var_off, and our minimum is the 5538 * maximum of the operands' minima 5539 */ 5540 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5541 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5542 if (dst_reg->smin_value < 0 || smin_val < 0) { 5543 /* Lose signed bounds when ORing negative numbers, 5544 * ain't nobody got time for that. 5545 */ 5546 dst_reg->smin_value = S64_MIN; 5547 dst_reg->smax_value = S64_MAX; 5548 } else { 5549 /* ORing two positives gives a positive, so safe to 5550 * cast result into s64. 5551 */ 5552 dst_reg->smin_value = dst_reg->umin_value; 5553 dst_reg->smax_value = dst_reg->umax_value; 5554 } 5555 /* We may learn something more from the var_off */ 5556 __update_reg_bounds(dst_reg); 5557 } 5558 5559 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5560 u64 umin_val, u64 umax_val) 5561 { 5562 /* We lose all sign bit information (except what we can pick 5563 * up from var_off) 5564 */ 5565 dst_reg->s32_min_value = S32_MIN; 5566 dst_reg->s32_max_value = S32_MAX; 5567 /* If we might shift our top bit out, then we know nothing */ 5568 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5569 dst_reg->u32_min_value = 0; 5570 dst_reg->u32_max_value = U32_MAX; 5571 } else { 5572 dst_reg->u32_min_value <<= umin_val; 5573 dst_reg->u32_max_value <<= umax_val; 5574 } 5575 } 5576 5577 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5578 struct bpf_reg_state *src_reg) 5579 { 5580 u32 umax_val = src_reg->u32_max_value; 5581 u32 umin_val = src_reg->u32_min_value; 5582 /* u32 alu operation will zext upper bits */ 5583 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5584 5585 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5586 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 5587 /* Not required but being careful mark reg64 bounds as unknown so 5588 * that we are forced to pick them up from tnum and zext later and 5589 * if some path skips this step we are still safe. 5590 */ 5591 __mark_reg64_unbounded(dst_reg); 5592 __update_reg32_bounds(dst_reg); 5593 } 5594 5595 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 5596 u64 umin_val, u64 umax_val) 5597 { 5598 /* Special case <<32 because it is a common compiler pattern to sign 5599 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 5600 * positive we know this shift will also be positive so we can track 5601 * bounds correctly. Otherwise we lose all sign bit information except 5602 * what we can pick up from var_off. Perhaps we can generalize this 5603 * later to shifts of any length. 5604 */ 5605 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 5606 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 5607 else 5608 dst_reg->smax_value = S64_MAX; 5609 5610 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 5611 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 5612 else 5613 dst_reg->smin_value = S64_MIN; 5614 5615 /* If we might shift our top bit out, then we know nothing */ 5616 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5617 dst_reg->umin_value = 0; 5618 dst_reg->umax_value = U64_MAX; 5619 } else { 5620 dst_reg->umin_value <<= umin_val; 5621 dst_reg->umax_value <<= umax_val; 5622 } 5623 } 5624 5625 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 5626 struct bpf_reg_state *src_reg) 5627 { 5628 u64 umax_val = src_reg->umax_value; 5629 u64 umin_val = src_reg->umin_value; 5630 5631 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 5632 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 5633 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5634 5635 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5636 /* We may learn something more from the var_off */ 5637 __update_reg_bounds(dst_reg); 5638 } 5639 5640 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 5641 struct bpf_reg_state *src_reg) 5642 { 5643 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5644 u32 umax_val = src_reg->u32_max_value; 5645 u32 umin_val = src_reg->u32_min_value; 5646 5647 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5648 * be negative, then either: 5649 * 1) src_reg might be zero, so the sign bit of the result is 5650 * unknown, so we lose our signed bounds 5651 * 2) it's known negative, thus the unsigned bounds capture the 5652 * signed bounds 5653 * 3) the signed bounds cross zero, so they tell us nothing 5654 * about the result 5655 * If the value in dst_reg is known nonnegative, then again the 5656 * unsigned bounts capture the signed bounds. 5657 * Thus, in all cases it suffices to blow away our signed bounds 5658 * and rely on inferring new ones from the unsigned bounds and 5659 * var_off of the result. 5660 */ 5661 dst_reg->s32_min_value = S32_MIN; 5662 dst_reg->s32_max_value = S32_MAX; 5663 5664 dst_reg->var_off = tnum_rshift(subreg, umin_val); 5665 dst_reg->u32_min_value >>= umax_val; 5666 dst_reg->u32_max_value >>= umin_val; 5667 5668 __mark_reg64_unbounded(dst_reg); 5669 __update_reg32_bounds(dst_reg); 5670 } 5671 5672 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 5673 struct bpf_reg_state *src_reg) 5674 { 5675 u64 umax_val = src_reg->umax_value; 5676 u64 umin_val = src_reg->umin_value; 5677 5678 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5679 * be negative, then either: 5680 * 1) src_reg might be zero, so the sign bit of the result is 5681 * unknown, so we lose our signed bounds 5682 * 2) it's known negative, thus the unsigned bounds capture the 5683 * signed bounds 5684 * 3) the signed bounds cross zero, so they tell us nothing 5685 * about the result 5686 * If the value in dst_reg is known nonnegative, then again the 5687 * unsigned bounts capture the signed bounds. 5688 * Thus, in all cases it suffices to blow away our signed bounds 5689 * and rely on inferring new ones from the unsigned bounds and 5690 * var_off of the result. 5691 */ 5692 dst_reg->smin_value = S64_MIN; 5693 dst_reg->smax_value = S64_MAX; 5694 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5695 dst_reg->umin_value >>= umax_val; 5696 dst_reg->umax_value >>= umin_val; 5697 5698 /* Its not easy to operate on alu32 bounds here because it depends 5699 * on bits being shifted in. Take easy way out and mark unbounded 5700 * so we can recalculate later from tnum. 5701 */ 5702 __mark_reg32_unbounded(dst_reg); 5703 __update_reg_bounds(dst_reg); 5704 } 5705 5706 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 5707 struct bpf_reg_state *src_reg) 5708 { 5709 u64 umin_val = src_reg->u32_min_value; 5710 5711 /* Upon reaching here, src_known is true and 5712 * umax_val is equal to umin_val. 5713 */ 5714 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 5715 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 5716 5717 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 5718 5719 /* blow away the dst_reg umin_value/umax_value and rely on 5720 * dst_reg var_off to refine the result. 5721 */ 5722 dst_reg->u32_min_value = 0; 5723 dst_reg->u32_max_value = U32_MAX; 5724 5725 __mark_reg64_unbounded(dst_reg); 5726 __update_reg32_bounds(dst_reg); 5727 } 5728 5729 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 5730 struct bpf_reg_state *src_reg) 5731 { 5732 u64 umin_val = src_reg->umin_value; 5733 5734 /* Upon reaching here, src_known is true and umax_val is equal 5735 * to umin_val. 5736 */ 5737 dst_reg->smin_value >>= umin_val; 5738 dst_reg->smax_value >>= umin_val; 5739 5740 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 5741 5742 /* blow away the dst_reg umin_value/umax_value and rely on 5743 * dst_reg var_off to refine the result. 5744 */ 5745 dst_reg->umin_value = 0; 5746 dst_reg->umax_value = U64_MAX; 5747 5748 /* Its not easy to operate on alu32 bounds here because it depends 5749 * on bits being shifted in from upper 32-bits. Take easy way out 5750 * and mark unbounded so we can recalculate later from tnum. 5751 */ 5752 __mark_reg32_unbounded(dst_reg); 5753 __update_reg_bounds(dst_reg); 5754 } 5755 5756 /* WARNING: This function does calculations on 64-bit values, but the actual 5757 * execution may occur on 32-bit values. Therefore, things like bitshifts 5758 * need extra checks in the 32-bit case. 5759 */ 5760 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 5761 struct bpf_insn *insn, 5762 struct bpf_reg_state *dst_reg, 5763 struct bpf_reg_state src_reg) 5764 { 5765 struct bpf_reg_state *regs = cur_regs(env); 5766 u8 opcode = BPF_OP(insn->code); 5767 bool src_known; 5768 s64 smin_val, smax_val; 5769 u64 umin_val, umax_val; 5770 s32 s32_min_val, s32_max_val; 5771 u32 u32_min_val, u32_max_val; 5772 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 5773 u32 dst = insn->dst_reg; 5774 int ret; 5775 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 5776 5777 smin_val = src_reg.smin_value; 5778 smax_val = src_reg.smax_value; 5779 umin_val = src_reg.umin_value; 5780 umax_val = src_reg.umax_value; 5781 5782 s32_min_val = src_reg.s32_min_value; 5783 s32_max_val = src_reg.s32_max_value; 5784 u32_min_val = src_reg.u32_min_value; 5785 u32_max_val = src_reg.u32_max_value; 5786 5787 if (alu32) { 5788 src_known = tnum_subreg_is_const(src_reg.var_off); 5789 if ((src_known && 5790 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 5791 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 5792 /* Taint dst register if offset had invalid bounds 5793 * derived from e.g. dead branches. 5794 */ 5795 __mark_reg_unknown(env, dst_reg); 5796 return 0; 5797 } 5798 } else { 5799 src_known = tnum_is_const(src_reg.var_off); 5800 if ((src_known && 5801 (smin_val != smax_val || umin_val != umax_val)) || 5802 smin_val > smax_val || umin_val > umax_val) { 5803 /* Taint dst register if offset had invalid bounds 5804 * derived from e.g. dead branches. 5805 */ 5806 __mark_reg_unknown(env, dst_reg); 5807 return 0; 5808 } 5809 } 5810 5811 if (!src_known && 5812 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 5813 __mark_reg_unknown(env, dst_reg); 5814 return 0; 5815 } 5816 5817 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 5818 * There are two classes of instructions: The first class we track both 5819 * alu32 and alu64 sign/unsigned bounds independently this provides the 5820 * greatest amount of precision when alu operations are mixed with jmp32 5821 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 5822 * and BPF_OR. This is possible because these ops have fairly easy to 5823 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 5824 * See alu32 verifier tests for examples. The second class of 5825 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 5826 * with regards to tracking sign/unsigned bounds because the bits may 5827 * cross subreg boundaries in the alu64 case. When this happens we mark 5828 * the reg unbounded in the subreg bound space and use the resulting 5829 * tnum to calculate an approximation of the sign/unsigned bounds. 5830 */ 5831 switch (opcode) { 5832 case BPF_ADD: 5833 ret = sanitize_val_alu(env, insn); 5834 if (ret < 0) { 5835 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 5836 return ret; 5837 } 5838 scalar32_min_max_add(dst_reg, &src_reg); 5839 scalar_min_max_add(dst_reg, &src_reg); 5840 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 5841 break; 5842 case BPF_SUB: 5843 ret = sanitize_val_alu(env, insn); 5844 if (ret < 0) { 5845 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 5846 return ret; 5847 } 5848 scalar32_min_max_sub(dst_reg, &src_reg); 5849 scalar_min_max_sub(dst_reg, &src_reg); 5850 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 5851 break; 5852 case BPF_MUL: 5853 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 5854 scalar32_min_max_mul(dst_reg, &src_reg); 5855 scalar_min_max_mul(dst_reg, &src_reg); 5856 break; 5857 case BPF_AND: 5858 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 5859 scalar32_min_max_and(dst_reg, &src_reg); 5860 scalar_min_max_and(dst_reg, &src_reg); 5861 break; 5862 case BPF_OR: 5863 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5864 scalar32_min_max_or(dst_reg, &src_reg); 5865 scalar_min_max_or(dst_reg, &src_reg); 5866 break; 5867 case BPF_LSH: 5868 if (umax_val >= insn_bitness) { 5869 /* Shifts greater than 31 or 63 are undefined. 5870 * This includes shifts by a negative number. 5871 */ 5872 mark_reg_unknown(env, regs, insn->dst_reg); 5873 break; 5874 } 5875 if (alu32) 5876 scalar32_min_max_lsh(dst_reg, &src_reg); 5877 else 5878 scalar_min_max_lsh(dst_reg, &src_reg); 5879 break; 5880 case BPF_RSH: 5881 if (umax_val >= insn_bitness) { 5882 /* Shifts greater than 31 or 63 are undefined. 5883 * This includes shifts by a negative number. 5884 */ 5885 mark_reg_unknown(env, regs, insn->dst_reg); 5886 break; 5887 } 5888 if (alu32) 5889 scalar32_min_max_rsh(dst_reg, &src_reg); 5890 else 5891 scalar_min_max_rsh(dst_reg, &src_reg); 5892 break; 5893 case BPF_ARSH: 5894 if (umax_val >= insn_bitness) { 5895 /* Shifts greater than 31 or 63 are undefined. 5896 * This includes shifts by a negative number. 5897 */ 5898 mark_reg_unknown(env, regs, insn->dst_reg); 5899 break; 5900 } 5901 if (alu32) 5902 scalar32_min_max_arsh(dst_reg, &src_reg); 5903 else 5904 scalar_min_max_arsh(dst_reg, &src_reg); 5905 break; 5906 default: 5907 mark_reg_unknown(env, regs, insn->dst_reg); 5908 break; 5909 } 5910 5911 /* ALU32 ops are zero extended into 64bit register */ 5912 if (alu32) 5913 zext_32_to_64(dst_reg); 5914 5915 __update_reg_bounds(dst_reg); 5916 __reg_deduce_bounds(dst_reg); 5917 __reg_bound_offset(dst_reg); 5918 return 0; 5919 } 5920 5921 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5922 * and var_off. 5923 */ 5924 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5925 struct bpf_insn *insn) 5926 { 5927 struct bpf_verifier_state *vstate = env->cur_state; 5928 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5929 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5930 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5931 u8 opcode = BPF_OP(insn->code); 5932 int err; 5933 5934 dst_reg = ®s[insn->dst_reg]; 5935 src_reg = NULL; 5936 if (dst_reg->type != SCALAR_VALUE) 5937 ptr_reg = dst_reg; 5938 if (BPF_SRC(insn->code) == BPF_X) { 5939 src_reg = ®s[insn->src_reg]; 5940 if (src_reg->type != SCALAR_VALUE) { 5941 if (dst_reg->type != SCALAR_VALUE) { 5942 /* Combining two pointers by any ALU op yields 5943 * an arbitrary scalar. Disallow all math except 5944 * pointer subtraction 5945 */ 5946 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5947 mark_reg_unknown(env, regs, insn->dst_reg); 5948 return 0; 5949 } 5950 verbose(env, "R%d pointer %s pointer prohibited\n", 5951 insn->dst_reg, 5952 bpf_alu_string[opcode >> 4]); 5953 return -EACCES; 5954 } else { 5955 /* scalar += pointer 5956 * This is legal, but we have to reverse our 5957 * src/dest handling in computing the range 5958 */ 5959 err = mark_chain_precision(env, insn->dst_reg); 5960 if (err) 5961 return err; 5962 return adjust_ptr_min_max_vals(env, insn, 5963 src_reg, dst_reg); 5964 } 5965 } else if (ptr_reg) { 5966 /* pointer += scalar */ 5967 err = mark_chain_precision(env, insn->src_reg); 5968 if (err) 5969 return err; 5970 return adjust_ptr_min_max_vals(env, insn, 5971 dst_reg, src_reg); 5972 } 5973 } else { 5974 /* Pretend the src is a reg with a known value, since we only 5975 * need to be able to read from this state. 5976 */ 5977 off_reg.type = SCALAR_VALUE; 5978 __mark_reg_known(&off_reg, insn->imm); 5979 src_reg = &off_reg; 5980 if (ptr_reg) /* pointer += K */ 5981 return adjust_ptr_min_max_vals(env, insn, 5982 ptr_reg, src_reg); 5983 } 5984 5985 /* Got here implies adding two SCALAR_VALUEs */ 5986 if (WARN_ON_ONCE(ptr_reg)) { 5987 print_verifier_state(env, state); 5988 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5989 return -EINVAL; 5990 } 5991 if (WARN_ON(!src_reg)) { 5992 print_verifier_state(env, state); 5993 verbose(env, "verifier internal error: no src_reg\n"); 5994 return -EINVAL; 5995 } 5996 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5997 } 5998 5999 /* check validity of 32-bit and 64-bit arithmetic operations */ 6000 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6001 { 6002 struct bpf_reg_state *regs = cur_regs(env); 6003 u8 opcode = BPF_OP(insn->code); 6004 int err; 6005 6006 if (opcode == BPF_END || opcode == BPF_NEG) { 6007 if (opcode == BPF_NEG) { 6008 if (BPF_SRC(insn->code) != 0 || 6009 insn->src_reg != BPF_REG_0 || 6010 insn->off != 0 || insn->imm != 0) { 6011 verbose(env, "BPF_NEG uses reserved fields\n"); 6012 return -EINVAL; 6013 } 6014 } else { 6015 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6016 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 6017 BPF_CLASS(insn->code) == BPF_ALU64) { 6018 verbose(env, "BPF_END uses reserved fields\n"); 6019 return -EINVAL; 6020 } 6021 } 6022 6023 /* check src operand */ 6024 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6025 if (err) 6026 return err; 6027 6028 if (is_pointer_value(env, insn->dst_reg)) { 6029 verbose(env, "R%d pointer arithmetic prohibited\n", 6030 insn->dst_reg); 6031 return -EACCES; 6032 } 6033 6034 /* check dest operand */ 6035 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6036 if (err) 6037 return err; 6038 6039 } else if (opcode == BPF_MOV) { 6040 6041 if (BPF_SRC(insn->code) == BPF_X) { 6042 if (insn->imm != 0 || insn->off != 0) { 6043 verbose(env, "BPF_MOV uses reserved fields\n"); 6044 return -EINVAL; 6045 } 6046 6047 /* check src operand */ 6048 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6049 if (err) 6050 return err; 6051 } else { 6052 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6053 verbose(env, "BPF_MOV uses reserved fields\n"); 6054 return -EINVAL; 6055 } 6056 } 6057 6058 /* check dest operand, mark as required later */ 6059 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6060 if (err) 6061 return err; 6062 6063 if (BPF_SRC(insn->code) == BPF_X) { 6064 struct bpf_reg_state *src_reg = regs + insn->src_reg; 6065 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 6066 6067 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6068 /* case: R1 = R2 6069 * copy register state to dest reg 6070 */ 6071 *dst_reg = *src_reg; 6072 dst_reg->live |= REG_LIVE_WRITTEN; 6073 dst_reg->subreg_def = DEF_NOT_SUBREG; 6074 } else { 6075 /* R1 = (u32) R2 */ 6076 if (is_pointer_value(env, insn->src_reg)) { 6077 verbose(env, 6078 "R%d partial copy of pointer\n", 6079 insn->src_reg); 6080 return -EACCES; 6081 } else if (src_reg->type == SCALAR_VALUE) { 6082 *dst_reg = *src_reg; 6083 dst_reg->live |= REG_LIVE_WRITTEN; 6084 dst_reg->subreg_def = env->insn_idx + 1; 6085 } else { 6086 mark_reg_unknown(env, regs, 6087 insn->dst_reg); 6088 } 6089 zext_32_to_64(dst_reg); 6090 } 6091 } else { 6092 /* case: R = imm 6093 * remember the value we stored into this reg 6094 */ 6095 /* clear any state __mark_reg_known doesn't set */ 6096 mark_reg_unknown(env, regs, insn->dst_reg); 6097 regs[insn->dst_reg].type = SCALAR_VALUE; 6098 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6099 __mark_reg_known(regs + insn->dst_reg, 6100 insn->imm); 6101 } else { 6102 __mark_reg_known(regs + insn->dst_reg, 6103 (u32)insn->imm); 6104 } 6105 } 6106 6107 } else if (opcode > BPF_END) { 6108 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6109 return -EINVAL; 6110 6111 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6112 6113 if (BPF_SRC(insn->code) == BPF_X) { 6114 if (insn->imm != 0 || insn->off != 0) { 6115 verbose(env, "BPF_ALU uses reserved fields\n"); 6116 return -EINVAL; 6117 } 6118 /* check src1 operand */ 6119 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6120 if (err) 6121 return err; 6122 } else { 6123 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6124 verbose(env, "BPF_ALU uses reserved fields\n"); 6125 return -EINVAL; 6126 } 6127 } 6128 6129 /* check src2 operand */ 6130 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6131 if (err) 6132 return err; 6133 6134 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6135 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6136 verbose(env, "div by zero\n"); 6137 return -EINVAL; 6138 } 6139 6140 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6141 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6142 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6143 6144 if (insn->imm < 0 || insn->imm >= size) { 6145 verbose(env, "invalid shift %d\n", insn->imm); 6146 return -EINVAL; 6147 } 6148 } 6149 6150 /* check dest operand */ 6151 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6152 if (err) 6153 return err; 6154 6155 return adjust_reg_min_max_vals(env, insn); 6156 } 6157 6158 return 0; 6159 } 6160 6161 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6162 struct bpf_reg_state *dst_reg, 6163 enum bpf_reg_type type, u16 new_range) 6164 { 6165 struct bpf_reg_state *reg; 6166 int i; 6167 6168 for (i = 0; i < MAX_BPF_REG; i++) { 6169 reg = &state->regs[i]; 6170 if (reg->type == type && reg->id == dst_reg->id) 6171 /* keep the maximum range already checked */ 6172 reg->range = max(reg->range, new_range); 6173 } 6174 6175 bpf_for_each_spilled_reg(i, state, reg) { 6176 if (!reg) 6177 continue; 6178 if (reg->type == type && reg->id == dst_reg->id) 6179 reg->range = max(reg->range, new_range); 6180 } 6181 } 6182 6183 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6184 struct bpf_reg_state *dst_reg, 6185 enum bpf_reg_type type, 6186 bool range_right_open) 6187 { 6188 u16 new_range; 6189 int i; 6190 6191 if (dst_reg->off < 0 || 6192 (dst_reg->off == 0 && range_right_open)) 6193 /* This doesn't give us any range */ 6194 return; 6195 6196 if (dst_reg->umax_value > MAX_PACKET_OFF || 6197 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6198 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6199 * than pkt_end, but that's because it's also less than pkt. 6200 */ 6201 return; 6202 6203 new_range = dst_reg->off; 6204 if (range_right_open) 6205 new_range--; 6206 6207 /* Examples for register markings: 6208 * 6209 * pkt_data in dst register: 6210 * 6211 * r2 = r3; 6212 * r2 += 8; 6213 * if (r2 > pkt_end) goto <handle exception> 6214 * <access okay> 6215 * 6216 * r2 = r3; 6217 * r2 += 8; 6218 * if (r2 < pkt_end) goto <access okay> 6219 * <handle exception> 6220 * 6221 * Where: 6222 * r2 == dst_reg, pkt_end == src_reg 6223 * r2=pkt(id=n,off=8,r=0) 6224 * r3=pkt(id=n,off=0,r=0) 6225 * 6226 * pkt_data in src register: 6227 * 6228 * r2 = r3; 6229 * r2 += 8; 6230 * if (pkt_end >= r2) goto <access okay> 6231 * <handle exception> 6232 * 6233 * r2 = r3; 6234 * r2 += 8; 6235 * if (pkt_end <= r2) goto <handle exception> 6236 * <access okay> 6237 * 6238 * Where: 6239 * pkt_end == dst_reg, r2 == src_reg 6240 * r2=pkt(id=n,off=8,r=0) 6241 * r3=pkt(id=n,off=0,r=0) 6242 * 6243 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6244 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6245 * and [r3, r3 + 8-1) respectively is safe to access depending on 6246 * the check. 6247 */ 6248 6249 /* If our ids match, then we must have the same max_value. And we 6250 * don't care about the other reg's fixed offset, since if it's too big 6251 * the range won't allow anything. 6252 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6253 */ 6254 for (i = 0; i <= vstate->curframe; i++) 6255 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6256 new_range); 6257 } 6258 6259 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6260 { 6261 struct tnum subreg = tnum_subreg(reg->var_off); 6262 s32 sval = (s32)val; 6263 6264 switch (opcode) { 6265 case BPF_JEQ: 6266 if (tnum_is_const(subreg)) 6267 return !!tnum_equals_const(subreg, val); 6268 break; 6269 case BPF_JNE: 6270 if (tnum_is_const(subreg)) 6271 return !tnum_equals_const(subreg, val); 6272 break; 6273 case BPF_JSET: 6274 if ((~subreg.mask & subreg.value) & val) 6275 return 1; 6276 if (!((subreg.mask | subreg.value) & val)) 6277 return 0; 6278 break; 6279 case BPF_JGT: 6280 if (reg->u32_min_value > val) 6281 return 1; 6282 else if (reg->u32_max_value <= val) 6283 return 0; 6284 break; 6285 case BPF_JSGT: 6286 if (reg->s32_min_value > sval) 6287 return 1; 6288 else if (reg->s32_max_value < sval) 6289 return 0; 6290 break; 6291 case BPF_JLT: 6292 if (reg->u32_max_value < val) 6293 return 1; 6294 else if (reg->u32_min_value >= val) 6295 return 0; 6296 break; 6297 case BPF_JSLT: 6298 if (reg->s32_max_value < sval) 6299 return 1; 6300 else if (reg->s32_min_value >= sval) 6301 return 0; 6302 break; 6303 case BPF_JGE: 6304 if (reg->u32_min_value >= val) 6305 return 1; 6306 else if (reg->u32_max_value < val) 6307 return 0; 6308 break; 6309 case BPF_JSGE: 6310 if (reg->s32_min_value >= sval) 6311 return 1; 6312 else if (reg->s32_max_value < sval) 6313 return 0; 6314 break; 6315 case BPF_JLE: 6316 if (reg->u32_max_value <= val) 6317 return 1; 6318 else if (reg->u32_min_value > val) 6319 return 0; 6320 break; 6321 case BPF_JSLE: 6322 if (reg->s32_max_value <= sval) 6323 return 1; 6324 else if (reg->s32_min_value > sval) 6325 return 0; 6326 break; 6327 } 6328 6329 return -1; 6330 } 6331 6332 6333 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6334 { 6335 s64 sval = (s64)val; 6336 6337 switch (opcode) { 6338 case BPF_JEQ: 6339 if (tnum_is_const(reg->var_off)) 6340 return !!tnum_equals_const(reg->var_off, val); 6341 break; 6342 case BPF_JNE: 6343 if (tnum_is_const(reg->var_off)) 6344 return !tnum_equals_const(reg->var_off, val); 6345 break; 6346 case BPF_JSET: 6347 if ((~reg->var_off.mask & reg->var_off.value) & val) 6348 return 1; 6349 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6350 return 0; 6351 break; 6352 case BPF_JGT: 6353 if (reg->umin_value > val) 6354 return 1; 6355 else if (reg->umax_value <= val) 6356 return 0; 6357 break; 6358 case BPF_JSGT: 6359 if (reg->smin_value > sval) 6360 return 1; 6361 else if (reg->smax_value < sval) 6362 return 0; 6363 break; 6364 case BPF_JLT: 6365 if (reg->umax_value < val) 6366 return 1; 6367 else if (reg->umin_value >= val) 6368 return 0; 6369 break; 6370 case BPF_JSLT: 6371 if (reg->smax_value < sval) 6372 return 1; 6373 else if (reg->smin_value >= sval) 6374 return 0; 6375 break; 6376 case BPF_JGE: 6377 if (reg->umin_value >= val) 6378 return 1; 6379 else if (reg->umax_value < val) 6380 return 0; 6381 break; 6382 case BPF_JSGE: 6383 if (reg->smin_value >= sval) 6384 return 1; 6385 else if (reg->smax_value < sval) 6386 return 0; 6387 break; 6388 case BPF_JLE: 6389 if (reg->umax_value <= val) 6390 return 1; 6391 else if (reg->umin_value > val) 6392 return 0; 6393 break; 6394 case BPF_JSLE: 6395 if (reg->smax_value <= sval) 6396 return 1; 6397 else if (reg->smin_value > sval) 6398 return 0; 6399 break; 6400 } 6401 6402 return -1; 6403 } 6404 6405 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6406 * and return: 6407 * 1 - branch will be taken and "goto target" will be executed 6408 * 0 - branch will not be taken and fall-through to next insn 6409 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6410 * range [0,10] 6411 */ 6412 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6413 bool is_jmp32) 6414 { 6415 if (__is_pointer_value(false, reg)) { 6416 if (!reg_type_not_null(reg->type)) 6417 return -1; 6418 6419 /* If pointer is valid tests against zero will fail so we can 6420 * use this to direct branch taken. 6421 */ 6422 if (val != 0) 6423 return -1; 6424 6425 switch (opcode) { 6426 case BPF_JEQ: 6427 return 0; 6428 case BPF_JNE: 6429 return 1; 6430 default: 6431 return -1; 6432 } 6433 } 6434 6435 if (is_jmp32) 6436 return is_branch32_taken(reg, val, opcode); 6437 return is_branch64_taken(reg, val, opcode); 6438 } 6439 6440 /* Adjusts the register min/max values in the case that the dst_reg is the 6441 * variable register that we are working on, and src_reg is a constant or we're 6442 * simply doing a BPF_K check. 6443 * In JEQ/JNE cases we also adjust the var_off values. 6444 */ 6445 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6446 struct bpf_reg_state *false_reg, 6447 u64 val, u32 val32, 6448 u8 opcode, bool is_jmp32) 6449 { 6450 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6451 struct tnum false_64off = false_reg->var_off; 6452 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6453 struct tnum true_64off = true_reg->var_off; 6454 s64 sval = (s64)val; 6455 s32 sval32 = (s32)val32; 6456 6457 /* If the dst_reg is a pointer, we can't learn anything about its 6458 * variable offset from the compare (unless src_reg were a pointer into 6459 * the same object, but we don't bother with that. 6460 * Since false_reg and true_reg have the same type by construction, we 6461 * only need to check one of them for pointerness. 6462 */ 6463 if (__is_pointer_value(false, false_reg)) 6464 return; 6465 6466 switch (opcode) { 6467 case BPF_JEQ: 6468 case BPF_JNE: 6469 { 6470 struct bpf_reg_state *reg = 6471 opcode == BPF_JEQ ? true_reg : false_reg; 6472 6473 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6474 * if it is true we know the value for sure. Likewise for 6475 * BPF_JNE. 6476 */ 6477 if (is_jmp32) 6478 __mark_reg32_known(reg, val32); 6479 else 6480 __mark_reg_known(reg, val); 6481 break; 6482 } 6483 case BPF_JSET: 6484 if (is_jmp32) { 6485 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6486 if (is_power_of_2(val32)) 6487 true_32off = tnum_or(true_32off, 6488 tnum_const(val32)); 6489 } else { 6490 false_64off = tnum_and(false_64off, tnum_const(~val)); 6491 if (is_power_of_2(val)) 6492 true_64off = tnum_or(true_64off, 6493 tnum_const(val)); 6494 } 6495 break; 6496 case BPF_JGE: 6497 case BPF_JGT: 6498 { 6499 if (is_jmp32) { 6500 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6501 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6502 6503 false_reg->u32_max_value = min(false_reg->u32_max_value, 6504 false_umax); 6505 true_reg->u32_min_value = max(true_reg->u32_min_value, 6506 true_umin); 6507 } else { 6508 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6509 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6510 6511 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6512 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6513 } 6514 break; 6515 } 6516 case BPF_JSGE: 6517 case BPF_JSGT: 6518 { 6519 if (is_jmp32) { 6520 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6521 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6522 6523 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6524 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6525 } else { 6526 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6527 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6528 6529 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6530 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6531 } 6532 break; 6533 } 6534 case BPF_JLE: 6535 case BPF_JLT: 6536 { 6537 if (is_jmp32) { 6538 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6539 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6540 6541 false_reg->u32_min_value = max(false_reg->u32_min_value, 6542 false_umin); 6543 true_reg->u32_max_value = min(true_reg->u32_max_value, 6544 true_umax); 6545 } else { 6546 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6547 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6548 6549 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6550 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6551 } 6552 break; 6553 } 6554 case BPF_JSLE: 6555 case BPF_JSLT: 6556 { 6557 if (is_jmp32) { 6558 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6559 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6560 6561 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6562 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6563 } else { 6564 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6565 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6566 6567 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6568 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6569 } 6570 break; 6571 } 6572 default: 6573 return; 6574 } 6575 6576 if (is_jmp32) { 6577 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 6578 tnum_subreg(false_32off)); 6579 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 6580 tnum_subreg(true_32off)); 6581 __reg_combine_32_into_64(false_reg); 6582 __reg_combine_32_into_64(true_reg); 6583 } else { 6584 false_reg->var_off = false_64off; 6585 true_reg->var_off = true_64off; 6586 __reg_combine_64_into_32(false_reg); 6587 __reg_combine_64_into_32(true_reg); 6588 } 6589 } 6590 6591 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 6592 * the variable reg. 6593 */ 6594 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 6595 struct bpf_reg_state *false_reg, 6596 u64 val, u32 val32, 6597 u8 opcode, bool is_jmp32) 6598 { 6599 /* How can we transform "a <op> b" into "b <op> a"? */ 6600 static const u8 opcode_flip[16] = { 6601 /* these stay the same */ 6602 [BPF_JEQ >> 4] = BPF_JEQ, 6603 [BPF_JNE >> 4] = BPF_JNE, 6604 [BPF_JSET >> 4] = BPF_JSET, 6605 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 6606 [BPF_JGE >> 4] = BPF_JLE, 6607 [BPF_JGT >> 4] = BPF_JLT, 6608 [BPF_JLE >> 4] = BPF_JGE, 6609 [BPF_JLT >> 4] = BPF_JGT, 6610 [BPF_JSGE >> 4] = BPF_JSLE, 6611 [BPF_JSGT >> 4] = BPF_JSLT, 6612 [BPF_JSLE >> 4] = BPF_JSGE, 6613 [BPF_JSLT >> 4] = BPF_JSGT 6614 }; 6615 opcode = opcode_flip[opcode >> 4]; 6616 /* This uses zero as "not present in table"; luckily the zero opcode, 6617 * BPF_JA, can't get here. 6618 */ 6619 if (opcode) 6620 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 6621 } 6622 6623 /* Regs are known to be equal, so intersect their min/max/var_off */ 6624 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 6625 struct bpf_reg_state *dst_reg) 6626 { 6627 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 6628 dst_reg->umin_value); 6629 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 6630 dst_reg->umax_value); 6631 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 6632 dst_reg->smin_value); 6633 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 6634 dst_reg->smax_value); 6635 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 6636 dst_reg->var_off); 6637 /* We might have learned new bounds from the var_off. */ 6638 __update_reg_bounds(src_reg); 6639 __update_reg_bounds(dst_reg); 6640 /* We might have learned something about the sign bit. */ 6641 __reg_deduce_bounds(src_reg); 6642 __reg_deduce_bounds(dst_reg); 6643 /* We might have learned some bits from the bounds. */ 6644 __reg_bound_offset(src_reg); 6645 __reg_bound_offset(dst_reg); 6646 /* Intersecting with the old var_off might have improved our bounds 6647 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 6648 * then new var_off is (0; 0x7f...fc) which improves our umax. 6649 */ 6650 __update_reg_bounds(src_reg); 6651 __update_reg_bounds(dst_reg); 6652 } 6653 6654 static void reg_combine_min_max(struct bpf_reg_state *true_src, 6655 struct bpf_reg_state *true_dst, 6656 struct bpf_reg_state *false_src, 6657 struct bpf_reg_state *false_dst, 6658 u8 opcode) 6659 { 6660 switch (opcode) { 6661 case BPF_JEQ: 6662 __reg_combine_min_max(true_src, true_dst); 6663 break; 6664 case BPF_JNE: 6665 __reg_combine_min_max(false_src, false_dst); 6666 break; 6667 } 6668 } 6669 6670 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 6671 struct bpf_reg_state *reg, u32 id, 6672 bool is_null) 6673 { 6674 if (reg_type_may_be_null(reg->type) && reg->id == id) { 6675 /* Old offset (both fixed and variable parts) should 6676 * have been known-zero, because we don't allow pointer 6677 * arithmetic on pointers that might be NULL. 6678 */ 6679 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 6680 !tnum_equals_const(reg->var_off, 0) || 6681 reg->off)) { 6682 __mark_reg_known_zero(reg); 6683 reg->off = 0; 6684 } 6685 if (is_null) { 6686 reg->type = SCALAR_VALUE; 6687 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 6688 const struct bpf_map *map = reg->map_ptr; 6689 6690 if (map->inner_map_meta) { 6691 reg->type = CONST_PTR_TO_MAP; 6692 reg->map_ptr = map->inner_map_meta; 6693 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 6694 reg->type = PTR_TO_XDP_SOCK; 6695 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 6696 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 6697 reg->type = PTR_TO_SOCKET; 6698 } else { 6699 reg->type = PTR_TO_MAP_VALUE; 6700 } 6701 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 6702 reg->type = PTR_TO_SOCKET; 6703 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 6704 reg->type = PTR_TO_SOCK_COMMON; 6705 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 6706 reg->type = PTR_TO_TCP_SOCK; 6707 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 6708 reg->type = PTR_TO_BTF_ID; 6709 } else if (reg->type == PTR_TO_MEM_OR_NULL) { 6710 reg->type = PTR_TO_MEM; 6711 } 6712 if (is_null) { 6713 /* We don't need id and ref_obj_id from this point 6714 * onwards anymore, thus we should better reset it, 6715 * so that state pruning has chances to take effect. 6716 */ 6717 reg->id = 0; 6718 reg->ref_obj_id = 0; 6719 } else if (!reg_may_point_to_spin_lock(reg)) { 6720 /* For not-NULL ptr, reg->ref_obj_id will be reset 6721 * in release_reg_references(). 6722 * 6723 * reg->id is still used by spin_lock ptr. Other 6724 * than spin_lock ptr type, reg->id can be reset. 6725 */ 6726 reg->id = 0; 6727 } 6728 } 6729 } 6730 6731 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 6732 bool is_null) 6733 { 6734 struct bpf_reg_state *reg; 6735 int i; 6736 6737 for (i = 0; i < MAX_BPF_REG; i++) 6738 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 6739 6740 bpf_for_each_spilled_reg(i, state, reg) { 6741 if (!reg) 6742 continue; 6743 mark_ptr_or_null_reg(state, reg, id, is_null); 6744 } 6745 } 6746 6747 /* The logic is similar to find_good_pkt_pointers(), both could eventually 6748 * be folded together at some point. 6749 */ 6750 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 6751 bool is_null) 6752 { 6753 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6754 struct bpf_reg_state *regs = state->regs; 6755 u32 ref_obj_id = regs[regno].ref_obj_id; 6756 u32 id = regs[regno].id; 6757 int i; 6758 6759 if (ref_obj_id && ref_obj_id == id && is_null) 6760 /* regs[regno] is in the " == NULL" branch. 6761 * No one could have freed the reference state before 6762 * doing the NULL check. 6763 */ 6764 WARN_ON_ONCE(release_reference_state(state, id)); 6765 6766 for (i = 0; i <= vstate->curframe; i++) 6767 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 6768 } 6769 6770 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 6771 struct bpf_reg_state *dst_reg, 6772 struct bpf_reg_state *src_reg, 6773 struct bpf_verifier_state *this_branch, 6774 struct bpf_verifier_state *other_branch) 6775 { 6776 if (BPF_SRC(insn->code) != BPF_X) 6777 return false; 6778 6779 /* Pointers are always 64-bit. */ 6780 if (BPF_CLASS(insn->code) == BPF_JMP32) 6781 return false; 6782 6783 switch (BPF_OP(insn->code)) { 6784 case BPF_JGT: 6785 if ((dst_reg->type == PTR_TO_PACKET && 6786 src_reg->type == PTR_TO_PACKET_END) || 6787 (dst_reg->type == PTR_TO_PACKET_META && 6788 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6789 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6790 find_good_pkt_pointers(this_branch, dst_reg, 6791 dst_reg->type, false); 6792 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6793 src_reg->type == PTR_TO_PACKET) || 6794 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6795 src_reg->type == PTR_TO_PACKET_META)) { 6796 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6797 find_good_pkt_pointers(other_branch, src_reg, 6798 src_reg->type, true); 6799 } else { 6800 return false; 6801 } 6802 break; 6803 case BPF_JLT: 6804 if ((dst_reg->type == PTR_TO_PACKET && 6805 src_reg->type == PTR_TO_PACKET_END) || 6806 (dst_reg->type == PTR_TO_PACKET_META && 6807 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6808 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6809 find_good_pkt_pointers(other_branch, dst_reg, 6810 dst_reg->type, true); 6811 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6812 src_reg->type == PTR_TO_PACKET) || 6813 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6814 src_reg->type == PTR_TO_PACKET_META)) { 6815 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6816 find_good_pkt_pointers(this_branch, src_reg, 6817 src_reg->type, false); 6818 } else { 6819 return false; 6820 } 6821 break; 6822 case BPF_JGE: 6823 if ((dst_reg->type == PTR_TO_PACKET && 6824 src_reg->type == PTR_TO_PACKET_END) || 6825 (dst_reg->type == PTR_TO_PACKET_META && 6826 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6827 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6828 find_good_pkt_pointers(this_branch, dst_reg, 6829 dst_reg->type, true); 6830 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6831 src_reg->type == PTR_TO_PACKET) || 6832 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6833 src_reg->type == PTR_TO_PACKET_META)) { 6834 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6835 find_good_pkt_pointers(other_branch, src_reg, 6836 src_reg->type, false); 6837 } else { 6838 return false; 6839 } 6840 break; 6841 case BPF_JLE: 6842 if ((dst_reg->type == PTR_TO_PACKET && 6843 src_reg->type == PTR_TO_PACKET_END) || 6844 (dst_reg->type == PTR_TO_PACKET_META && 6845 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6846 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6847 find_good_pkt_pointers(other_branch, dst_reg, 6848 dst_reg->type, false); 6849 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6850 src_reg->type == PTR_TO_PACKET) || 6851 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6852 src_reg->type == PTR_TO_PACKET_META)) { 6853 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6854 find_good_pkt_pointers(this_branch, src_reg, 6855 src_reg->type, true); 6856 } else { 6857 return false; 6858 } 6859 break; 6860 default: 6861 return false; 6862 } 6863 6864 return true; 6865 } 6866 6867 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6868 struct bpf_insn *insn, int *insn_idx) 6869 { 6870 struct bpf_verifier_state *this_branch = env->cur_state; 6871 struct bpf_verifier_state *other_branch; 6872 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6873 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6874 u8 opcode = BPF_OP(insn->code); 6875 bool is_jmp32; 6876 int pred = -1; 6877 int err; 6878 6879 /* Only conditional jumps are expected to reach here. */ 6880 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6881 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6882 return -EINVAL; 6883 } 6884 6885 if (BPF_SRC(insn->code) == BPF_X) { 6886 if (insn->imm != 0) { 6887 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6888 return -EINVAL; 6889 } 6890 6891 /* check src1 operand */ 6892 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6893 if (err) 6894 return err; 6895 6896 if (is_pointer_value(env, insn->src_reg)) { 6897 verbose(env, "R%d pointer comparison prohibited\n", 6898 insn->src_reg); 6899 return -EACCES; 6900 } 6901 src_reg = ®s[insn->src_reg]; 6902 } else { 6903 if (insn->src_reg != BPF_REG_0) { 6904 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6905 return -EINVAL; 6906 } 6907 } 6908 6909 /* check src2 operand */ 6910 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6911 if (err) 6912 return err; 6913 6914 dst_reg = ®s[insn->dst_reg]; 6915 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6916 6917 if (BPF_SRC(insn->code) == BPF_K) { 6918 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 6919 } else if (src_reg->type == SCALAR_VALUE && 6920 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 6921 pred = is_branch_taken(dst_reg, 6922 tnum_subreg(src_reg->var_off).value, 6923 opcode, 6924 is_jmp32); 6925 } else if (src_reg->type == SCALAR_VALUE && 6926 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 6927 pred = is_branch_taken(dst_reg, 6928 src_reg->var_off.value, 6929 opcode, 6930 is_jmp32); 6931 } 6932 6933 if (pred >= 0) { 6934 /* If we get here with a dst_reg pointer type it is because 6935 * above is_branch_taken() special cased the 0 comparison. 6936 */ 6937 if (!__is_pointer_value(false, dst_reg)) 6938 err = mark_chain_precision(env, insn->dst_reg); 6939 if (BPF_SRC(insn->code) == BPF_X && !err) 6940 err = mark_chain_precision(env, insn->src_reg); 6941 if (err) 6942 return err; 6943 } 6944 if (pred == 1) { 6945 /* only follow the goto, ignore fall-through */ 6946 *insn_idx += insn->off; 6947 return 0; 6948 } else if (pred == 0) { 6949 /* only follow fall-through branch, since 6950 * that's where the program will go 6951 */ 6952 return 0; 6953 } 6954 6955 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6956 false); 6957 if (!other_branch) 6958 return -EFAULT; 6959 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6960 6961 /* detect if we are comparing against a constant value so we can adjust 6962 * our min/max values for our dst register. 6963 * this is only legit if both are scalars (or pointers to the same 6964 * object, I suppose, but we don't support that right now), because 6965 * otherwise the different base pointers mean the offsets aren't 6966 * comparable. 6967 */ 6968 if (BPF_SRC(insn->code) == BPF_X) { 6969 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6970 6971 if (dst_reg->type == SCALAR_VALUE && 6972 src_reg->type == SCALAR_VALUE) { 6973 if (tnum_is_const(src_reg->var_off) || 6974 (is_jmp32 && 6975 tnum_is_const(tnum_subreg(src_reg->var_off)))) 6976 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6977 dst_reg, 6978 src_reg->var_off.value, 6979 tnum_subreg(src_reg->var_off).value, 6980 opcode, is_jmp32); 6981 else if (tnum_is_const(dst_reg->var_off) || 6982 (is_jmp32 && 6983 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 6984 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6985 src_reg, 6986 dst_reg->var_off.value, 6987 tnum_subreg(dst_reg->var_off).value, 6988 opcode, is_jmp32); 6989 else if (!is_jmp32 && 6990 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6991 /* Comparing for equality, we can combine knowledge */ 6992 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6993 &other_branch_regs[insn->dst_reg], 6994 src_reg, dst_reg, opcode); 6995 } 6996 } else if (dst_reg->type == SCALAR_VALUE) { 6997 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6998 dst_reg, insn->imm, (u32)insn->imm, 6999 opcode, is_jmp32); 7000 } 7001 7002 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7003 * NOTE: these optimizations below are related with pointer comparison 7004 * which will never be JMP32. 7005 */ 7006 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 7007 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7008 reg_type_may_be_null(dst_reg->type)) { 7009 /* Mark all identical registers in each branch as either 7010 * safe or unknown depending R == 0 or R != 0 conditional. 7011 */ 7012 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 7013 opcode == BPF_JNE); 7014 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 7015 opcode == BPF_JEQ); 7016 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 7017 this_branch, other_branch) && 7018 is_pointer_value(env, insn->dst_reg)) { 7019 verbose(env, "R%d pointer comparison prohibited\n", 7020 insn->dst_reg); 7021 return -EACCES; 7022 } 7023 if (env->log.level & BPF_LOG_LEVEL) 7024 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7025 return 0; 7026 } 7027 7028 /* verify BPF_LD_IMM64 instruction */ 7029 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7030 { 7031 struct bpf_insn_aux_data *aux = cur_aux(env); 7032 struct bpf_reg_state *regs = cur_regs(env); 7033 struct bpf_map *map; 7034 int err; 7035 7036 if (BPF_SIZE(insn->code) != BPF_DW) { 7037 verbose(env, "invalid BPF_LD_IMM insn\n"); 7038 return -EINVAL; 7039 } 7040 if (insn->off != 0) { 7041 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7042 return -EINVAL; 7043 } 7044 7045 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7046 if (err) 7047 return err; 7048 7049 if (insn->src_reg == 0) { 7050 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 7051 7052 regs[insn->dst_reg].type = SCALAR_VALUE; 7053 __mark_reg_known(®s[insn->dst_reg], imm); 7054 return 0; 7055 } 7056 7057 map = env->used_maps[aux->map_index]; 7058 mark_reg_known_zero(env, regs, insn->dst_reg); 7059 regs[insn->dst_reg].map_ptr = map; 7060 7061 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 7062 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 7063 regs[insn->dst_reg].off = aux->map_off; 7064 if (map_value_has_spin_lock(map)) 7065 regs[insn->dst_reg].id = ++env->id_gen; 7066 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7067 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 7068 } else { 7069 verbose(env, "bpf verifier is misconfigured\n"); 7070 return -EINVAL; 7071 } 7072 7073 return 0; 7074 } 7075 7076 static bool may_access_skb(enum bpf_prog_type type) 7077 { 7078 switch (type) { 7079 case BPF_PROG_TYPE_SOCKET_FILTER: 7080 case BPF_PROG_TYPE_SCHED_CLS: 7081 case BPF_PROG_TYPE_SCHED_ACT: 7082 return true; 7083 default: 7084 return false; 7085 } 7086 } 7087 7088 /* verify safety of LD_ABS|LD_IND instructions: 7089 * - they can only appear in the programs where ctx == skb 7090 * - since they are wrappers of function calls, they scratch R1-R5 registers, 7091 * preserve R6-R9, and store return value into R0 7092 * 7093 * Implicit input: 7094 * ctx == skb == R6 == CTX 7095 * 7096 * Explicit input: 7097 * SRC == any register 7098 * IMM == 32-bit immediate 7099 * 7100 * Output: 7101 * R0 - 8/16/32-bit skb data converted to cpu endianness 7102 */ 7103 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 7104 { 7105 struct bpf_reg_state *regs = cur_regs(env); 7106 static const int ctx_reg = BPF_REG_6; 7107 u8 mode = BPF_MODE(insn->code); 7108 int i, err; 7109 7110 if (!may_access_skb(env->prog->type)) { 7111 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 7112 return -EINVAL; 7113 } 7114 7115 if (!env->ops->gen_ld_abs) { 7116 verbose(env, "bpf verifier is misconfigured\n"); 7117 return -EINVAL; 7118 } 7119 7120 if (env->subprog_cnt > 1) { 7121 /* when program has LD_ABS insn JITs and interpreter assume 7122 * that r1 == ctx == skb which is not the case for callees 7123 * that can have arbitrary arguments. It's problematic 7124 * for main prog as well since JITs would need to analyze 7125 * all functions in order to make proper register save/restore 7126 * decisions in the main prog. Hence disallow LD_ABS with calls 7127 */ 7128 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 7129 return -EINVAL; 7130 } 7131 7132 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7133 BPF_SIZE(insn->code) == BPF_DW || 7134 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7135 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7136 return -EINVAL; 7137 } 7138 7139 /* check whether implicit source operand (register R6) is readable */ 7140 err = check_reg_arg(env, ctx_reg, SRC_OP); 7141 if (err) 7142 return err; 7143 7144 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7145 * gen_ld_abs() may terminate the program at runtime, leading to 7146 * reference leak. 7147 */ 7148 err = check_reference_leak(env); 7149 if (err) { 7150 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7151 return err; 7152 } 7153 7154 if (env->cur_state->active_spin_lock) { 7155 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7156 return -EINVAL; 7157 } 7158 7159 if (regs[ctx_reg].type != PTR_TO_CTX) { 7160 verbose(env, 7161 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7162 return -EINVAL; 7163 } 7164 7165 if (mode == BPF_IND) { 7166 /* check explicit source operand */ 7167 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7168 if (err) 7169 return err; 7170 } 7171 7172 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7173 if (err < 0) 7174 return err; 7175 7176 /* reset caller saved regs to unreadable */ 7177 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7178 mark_reg_not_init(env, regs, caller_saved[i]); 7179 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7180 } 7181 7182 /* mark destination R0 register as readable, since it contains 7183 * the value fetched from the packet. 7184 * Already marked as written above. 7185 */ 7186 mark_reg_unknown(env, regs, BPF_REG_0); 7187 /* ld_abs load up to 32-bit skb data. */ 7188 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7189 return 0; 7190 } 7191 7192 static int check_return_code(struct bpf_verifier_env *env) 7193 { 7194 struct tnum enforce_attach_type_range = tnum_unknown; 7195 const struct bpf_prog *prog = env->prog; 7196 struct bpf_reg_state *reg; 7197 struct tnum range = tnum_range(0, 1); 7198 int err; 7199 7200 /* LSM and struct_ops func-ptr's return type could be "void" */ 7201 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || 7202 env->prog->type == BPF_PROG_TYPE_LSM) && 7203 !prog->aux->attach_func_proto->type) 7204 return 0; 7205 7206 /* eBPF calling convetion is such that R0 is used 7207 * to return the value from eBPF program. 7208 * Make sure that it's readable at this time 7209 * of bpf_exit, which means that program wrote 7210 * something into it earlier 7211 */ 7212 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7213 if (err) 7214 return err; 7215 7216 if (is_pointer_value(env, BPF_REG_0)) { 7217 verbose(env, "R0 leaks addr as return value\n"); 7218 return -EACCES; 7219 } 7220 7221 switch (env->prog->type) { 7222 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7223 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7224 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7225 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7226 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7227 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7228 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7229 range = tnum_range(1, 1); 7230 break; 7231 case BPF_PROG_TYPE_CGROUP_SKB: 7232 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7233 range = tnum_range(0, 3); 7234 enforce_attach_type_range = tnum_range(2, 3); 7235 } 7236 break; 7237 case BPF_PROG_TYPE_CGROUP_SOCK: 7238 case BPF_PROG_TYPE_SOCK_OPS: 7239 case BPF_PROG_TYPE_CGROUP_DEVICE: 7240 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7241 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7242 break; 7243 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7244 if (!env->prog->aux->attach_btf_id) 7245 return 0; 7246 range = tnum_const(0); 7247 break; 7248 case BPF_PROG_TYPE_TRACING: 7249 switch (env->prog->expected_attach_type) { 7250 case BPF_TRACE_FENTRY: 7251 case BPF_TRACE_FEXIT: 7252 range = tnum_const(0); 7253 break; 7254 case BPF_TRACE_RAW_TP: 7255 case BPF_MODIFY_RETURN: 7256 return 0; 7257 case BPF_TRACE_ITER: 7258 break; 7259 default: 7260 return -ENOTSUPP; 7261 } 7262 break; 7263 case BPF_PROG_TYPE_EXT: 7264 /* freplace program can return anything as its return value 7265 * depends on the to-be-replaced kernel func or bpf program. 7266 */ 7267 default: 7268 return 0; 7269 } 7270 7271 reg = cur_regs(env) + BPF_REG_0; 7272 if (reg->type != SCALAR_VALUE) { 7273 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7274 reg_type_str[reg->type]); 7275 return -EINVAL; 7276 } 7277 7278 if (!tnum_in(range, reg->var_off)) { 7279 char tn_buf[48]; 7280 7281 verbose(env, "At program exit the register R0 "); 7282 if (!tnum_is_unknown(reg->var_off)) { 7283 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7284 verbose(env, "has value %s", tn_buf); 7285 } else { 7286 verbose(env, "has unknown scalar value"); 7287 } 7288 tnum_strn(tn_buf, sizeof(tn_buf), range); 7289 verbose(env, " should have been in %s\n", tn_buf); 7290 return -EINVAL; 7291 } 7292 7293 if (!tnum_is_unknown(enforce_attach_type_range) && 7294 tnum_in(enforce_attach_type_range, reg->var_off)) 7295 env->prog->enforce_expected_attach_type = 1; 7296 return 0; 7297 } 7298 7299 /* non-recursive DFS pseudo code 7300 * 1 procedure DFS-iterative(G,v): 7301 * 2 label v as discovered 7302 * 3 let S be a stack 7303 * 4 S.push(v) 7304 * 5 while S is not empty 7305 * 6 t <- S.pop() 7306 * 7 if t is what we're looking for: 7307 * 8 return t 7308 * 9 for all edges e in G.adjacentEdges(t) do 7309 * 10 if edge e is already labelled 7310 * 11 continue with the next edge 7311 * 12 w <- G.adjacentVertex(t,e) 7312 * 13 if vertex w is not discovered and not explored 7313 * 14 label e as tree-edge 7314 * 15 label w as discovered 7315 * 16 S.push(w) 7316 * 17 continue at 5 7317 * 18 else if vertex w is discovered 7318 * 19 label e as back-edge 7319 * 20 else 7320 * 21 // vertex w is explored 7321 * 22 label e as forward- or cross-edge 7322 * 23 label t as explored 7323 * 24 S.pop() 7324 * 7325 * convention: 7326 * 0x10 - discovered 7327 * 0x11 - discovered and fall-through edge labelled 7328 * 0x12 - discovered and fall-through and branch edges labelled 7329 * 0x20 - explored 7330 */ 7331 7332 enum { 7333 DISCOVERED = 0x10, 7334 EXPLORED = 0x20, 7335 FALLTHROUGH = 1, 7336 BRANCH = 2, 7337 }; 7338 7339 static u32 state_htab_size(struct bpf_verifier_env *env) 7340 { 7341 return env->prog->len; 7342 } 7343 7344 static struct bpf_verifier_state_list **explored_state( 7345 struct bpf_verifier_env *env, 7346 int idx) 7347 { 7348 struct bpf_verifier_state *cur = env->cur_state; 7349 struct bpf_func_state *state = cur->frame[cur->curframe]; 7350 7351 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7352 } 7353 7354 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7355 { 7356 env->insn_aux_data[idx].prune_point = true; 7357 } 7358 7359 /* t, w, e - match pseudo-code above: 7360 * t - index of current instruction 7361 * w - next instruction 7362 * e - edge 7363 */ 7364 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7365 bool loop_ok) 7366 { 7367 int *insn_stack = env->cfg.insn_stack; 7368 int *insn_state = env->cfg.insn_state; 7369 7370 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7371 return 0; 7372 7373 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7374 return 0; 7375 7376 if (w < 0 || w >= env->prog->len) { 7377 verbose_linfo(env, t, "%d: ", t); 7378 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7379 return -EINVAL; 7380 } 7381 7382 if (e == BRANCH) 7383 /* mark branch target for state pruning */ 7384 init_explored_state(env, w); 7385 7386 if (insn_state[w] == 0) { 7387 /* tree-edge */ 7388 insn_state[t] = DISCOVERED | e; 7389 insn_state[w] = DISCOVERED; 7390 if (env->cfg.cur_stack >= env->prog->len) 7391 return -E2BIG; 7392 insn_stack[env->cfg.cur_stack++] = w; 7393 return 1; 7394 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7395 if (loop_ok && env->bpf_capable) 7396 return 0; 7397 verbose_linfo(env, t, "%d: ", t); 7398 verbose_linfo(env, w, "%d: ", w); 7399 verbose(env, "back-edge from insn %d to %d\n", t, w); 7400 return -EINVAL; 7401 } else if (insn_state[w] == EXPLORED) { 7402 /* forward- or cross-edge */ 7403 insn_state[t] = DISCOVERED | e; 7404 } else { 7405 verbose(env, "insn state internal bug\n"); 7406 return -EFAULT; 7407 } 7408 return 0; 7409 } 7410 7411 /* non-recursive depth-first-search to detect loops in BPF program 7412 * loop == back-edge in directed graph 7413 */ 7414 static int check_cfg(struct bpf_verifier_env *env) 7415 { 7416 struct bpf_insn *insns = env->prog->insnsi; 7417 int insn_cnt = env->prog->len; 7418 int *insn_stack, *insn_state; 7419 int ret = 0; 7420 int i, t; 7421 7422 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7423 if (!insn_state) 7424 return -ENOMEM; 7425 7426 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7427 if (!insn_stack) { 7428 kvfree(insn_state); 7429 return -ENOMEM; 7430 } 7431 7432 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7433 insn_stack[0] = 0; /* 0 is the first instruction */ 7434 env->cfg.cur_stack = 1; 7435 7436 peek_stack: 7437 if (env->cfg.cur_stack == 0) 7438 goto check_state; 7439 t = insn_stack[env->cfg.cur_stack - 1]; 7440 7441 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7442 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7443 u8 opcode = BPF_OP(insns[t].code); 7444 7445 if (opcode == BPF_EXIT) { 7446 goto mark_explored; 7447 } else if (opcode == BPF_CALL) { 7448 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7449 if (ret == 1) 7450 goto peek_stack; 7451 else if (ret < 0) 7452 goto err_free; 7453 if (t + 1 < insn_cnt) 7454 init_explored_state(env, t + 1); 7455 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7456 init_explored_state(env, t); 7457 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7458 env, false); 7459 if (ret == 1) 7460 goto peek_stack; 7461 else if (ret < 0) 7462 goto err_free; 7463 } 7464 } else if (opcode == BPF_JA) { 7465 if (BPF_SRC(insns[t].code) != BPF_K) { 7466 ret = -EINVAL; 7467 goto err_free; 7468 } 7469 /* unconditional jump with single edge */ 7470 ret = push_insn(t, t + insns[t].off + 1, 7471 FALLTHROUGH, env, true); 7472 if (ret == 1) 7473 goto peek_stack; 7474 else if (ret < 0) 7475 goto err_free; 7476 /* unconditional jmp is not a good pruning point, 7477 * but it's marked, since backtracking needs 7478 * to record jmp history in is_state_visited(). 7479 */ 7480 init_explored_state(env, t + insns[t].off + 1); 7481 /* tell verifier to check for equivalent states 7482 * after every call and jump 7483 */ 7484 if (t + 1 < insn_cnt) 7485 init_explored_state(env, t + 1); 7486 } else { 7487 /* conditional jump with two edges */ 7488 init_explored_state(env, t); 7489 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7490 if (ret == 1) 7491 goto peek_stack; 7492 else if (ret < 0) 7493 goto err_free; 7494 7495 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7496 if (ret == 1) 7497 goto peek_stack; 7498 else if (ret < 0) 7499 goto err_free; 7500 } 7501 } else { 7502 /* all other non-branch instructions with single 7503 * fall-through edge 7504 */ 7505 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7506 if (ret == 1) 7507 goto peek_stack; 7508 else if (ret < 0) 7509 goto err_free; 7510 } 7511 7512 mark_explored: 7513 insn_state[t] = EXPLORED; 7514 if (env->cfg.cur_stack-- <= 0) { 7515 verbose(env, "pop stack internal bug\n"); 7516 ret = -EFAULT; 7517 goto err_free; 7518 } 7519 goto peek_stack; 7520 7521 check_state: 7522 for (i = 0; i < insn_cnt; i++) { 7523 if (insn_state[i] != EXPLORED) { 7524 verbose(env, "unreachable insn %d\n", i); 7525 ret = -EINVAL; 7526 goto err_free; 7527 } 7528 } 7529 ret = 0; /* cfg looks good */ 7530 7531 err_free: 7532 kvfree(insn_state); 7533 kvfree(insn_stack); 7534 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7535 return ret; 7536 } 7537 7538 /* The minimum supported BTF func info size */ 7539 #define MIN_BPF_FUNCINFO_SIZE 8 7540 #define MAX_FUNCINFO_REC_SIZE 252 7541 7542 static int check_btf_func(struct bpf_verifier_env *env, 7543 const union bpf_attr *attr, 7544 union bpf_attr __user *uattr) 7545 { 7546 u32 i, nfuncs, urec_size, min_size; 7547 u32 krec_size = sizeof(struct bpf_func_info); 7548 struct bpf_func_info *krecord; 7549 struct bpf_func_info_aux *info_aux = NULL; 7550 const struct btf_type *type; 7551 struct bpf_prog *prog; 7552 const struct btf *btf; 7553 void __user *urecord; 7554 u32 prev_offset = 0; 7555 int ret = -ENOMEM; 7556 7557 nfuncs = attr->func_info_cnt; 7558 if (!nfuncs) 7559 return 0; 7560 7561 if (nfuncs != env->subprog_cnt) { 7562 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 7563 return -EINVAL; 7564 } 7565 7566 urec_size = attr->func_info_rec_size; 7567 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 7568 urec_size > MAX_FUNCINFO_REC_SIZE || 7569 urec_size % sizeof(u32)) { 7570 verbose(env, "invalid func info rec size %u\n", urec_size); 7571 return -EINVAL; 7572 } 7573 7574 prog = env->prog; 7575 btf = prog->aux->btf; 7576 7577 urecord = u64_to_user_ptr(attr->func_info); 7578 min_size = min_t(u32, krec_size, urec_size); 7579 7580 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 7581 if (!krecord) 7582 return -ENOMEM; 7583 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 7584 if (!info_aux) 7585 goto err_free; 7586 7587 for (i = 0; i < nfuncs; i++) { 7588 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 7589 if (ret) { 7590 if (ret == -E2BIG) { 7591 verbose(env, "nonzero tailing record in func info"); 7592 /* set the size kernel expects so loader can zero 7593 * out the rest of the record. 7594 */ 7595 if (put_user(min_size, &uattr->func_info_rec_size)) 7596 ret = -EFAULT; 7597 } 7598 goto err_free; 7599 } 7600 7601 if (copy_from_user(&krecord[i], urecord, min_size)) { 7602 ret = -EFAULT; 7603 goto err_free; 7604 } 7605 7606 /* check insn_off */ 7607 if (i == 0) { 7608 if (krecord[i].insn_off) { 7609 verbose(env, 7610 "nonzero insn_off %u for the first func info record", 7611 krecord[i].insn_off); 7612 ret = -EINVAL; 7613 goto err_free; 7614 } 7615 } else if (krecord[i].insn_off <= prev_offset) { 7616 verbose(env, 7617 "same or smaller insn offset (%u) than previous func info record (%u)", 7618 krecord[i].insn_off, prev_offset); 7619 ret = -EINVAL; 7620 goto err_free; 7621 } 7622 7623 if (env->subprog_info[i].start != krecord[i].insn_off) { 7624 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 7625 ret = -EINVAL; 7626 goto err_free; 7627 } 7628 7629 /* check type_id */ 7630 type = btf_type_by_id(btf, krecord[i].type_id); 7631 if (!type || !btf_type_is_func(type)) { 7632 verbose(env, "invalid type id %d in func info", 7633 krecord[i].type_id); 7634 ret = -EINVAL; 7635 goto err_free; 7636 } 7637 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 7638 prev_offset = krecord[i].insn_off; 7639 urecord += urec_size; 7640 } 7641 7642 prog->aux->func_info = krecord; 7643 prog->aux->func_info_cnt = nfuncs; 7644 prog->aux->func_info_aux = info_aux; 7645 return 0; 7646 7647 err_free: 7648 kvfree(krecord); 7649 kfree(info_aux); 7650 return ret; 7651 } 7652 7653 static void adjust_btf_func(struct bpf_verifier_env *env) 7654 { 7655 struct bpf_prog_aux *aux = env->prog->aux; 7656 int i; 7657 7658 if (!aux->func_info) 7659 return; 7660 7661 for (i = 0; i < env->subprog_cnt; i++) 7662 aux->func_info[i].insn_off = env->subprog_info[i].start; 7663 } 7664 7665 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 7666 sizeof(((struct bpf_line_info *)(0))->line_col)) 7667 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 7668 7669 static int check_btf_line(struct bpf_verifier_env *env, 7670 const union bpf_attr *attr, 7671 union bpf_attr __user *uattr) 7672 { 7673 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 7674 struct bpf_subprog_info *sub; 7675 struct bpf_line_info *linfo; 7676 struct bpf_prog *prog; 7677 const struct btf *btf; 7678 void __user *ulinfo; 7679 int err; 7680 7681 nr_linfo = attr->line_info_cnt; 7682 if (!nr_linfo) 7683 return 0; 7684 7685 rec_size = attr->line_info_rec_size; 7686 if (rec_size < MIN_BPF_LINEINFO_SIZE || 7687 rec_size > MAX_LINEINFO_REC_SIZE || 7688 rec_size & (sizeof(u32) - 1)) 7689 return -EINVAL; 7690 7691 /* Need to zero it in case the userspace may 7692 * pass in a smaller bpf_line_info object. 7693 */ 7694 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 7695 GFP_KERNEL | __GFP_NOWARN); 7696 if (!linfo) 7697 return -ENOMEM; 7698 7699 prog = env->prog; 7700 btf = prog->aux->btf; 7701 7702 s = 0; 7703 sub = env->subprog_info; 7704 ulinfo = u64_to_user_ptr(attr->line_info); 7705 expected_size = sizeof(struct bpf_line_info); 7706 ncopy = min_t(u32, expected_size, rec_size); 7707 for (i = 0; i < nr_linfo; i++) { 7708 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 7709 if (err) { 7710 if (err == -E2BIG) { 7711 verbose(env, "nonzero tailing record in line_info"); 7712 if (put_user(expected_size, 7713 &uattr->line_info_rec_size)) 7714 err = -EFAULT; 7715 } 7716 goto err_free; 7717 } 7718 7719 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 7720 err = -EFAULT; 7721 goto err_free; 7722 } 7723 7724 /* 7725 * Check insn_off to ensure 7726 * 1) strictly increasing AND 7727 * 2) bounded by prog->len 7728 * 7729 * The linfo[0].insn_off == 0 check logically falls into 7730 * the later "missing bpf_line_info for func..." case 7731 * because the first linfo[0].insn_off must be the 7732 * first sub also and the first sub must have 7733 * subprog_info[0].start == 0. 7734 */ 7735 if ((i && linfo[i].insn_off <= prev_offset) || 7736 linfo[i].insn_off >= prog->len) { 7737 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 7738 i, linfo[i].insn_off, prev_offset, 7739 prog->len); 7740 err = -EINVAL; 7741 goto err_free; 7742 } 7743 7744 if (!prog->insnsi[linfo[i].insn_off].code) { 7745 verbose(env, 7746 "Invalid insn code at line_info[%u].insn_off\n", 7747 i); 7748 err = -EINVAL; 7749 goto err_free; 7750 } 7751 7752 if (!btf_name_by_offset(btf, linfo[i].line_off) || 7753 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 7754 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 7755 err = -EINVAL; 7756 goto err_free; 7757 } 7758 7759 if (s != env->subprog_cnt) { 7760 if (linfo[i].insn_off == sub[s].start) { 7761 sub[s].linfo_idx = i; 7762 s++; 7763 } else if (sub[s].start < linfo[i].insn_off) { 7764 verbose(env, "missing bpf_line_info for func#%u\n", s); 7765 err = -EINVAL; 7766 goto err_free; 7767 } 7768 } 7769 7770 prev_offset = linfo[i].insn_off; 7771 ulinfo += rec_size; 7772 } 7773 7774 if (s != env->subprog_cnt) { 7775 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 7776 env->subprog_cnt - s, s); 7777 err = -EINVAL; 7778 goto err_free; 7779 } 7780 7781 prog->aux->linfo = linfo; 7782 prog->aux->nr_linfo = nr_linfo; 7783 7784 return 0; 7785 7786 err_free: 7787 kvfree(linfo); 7788 return err; 7789 } 7790 7791 static int check_btf_info(struct bpf_verifier_env *env, 7792 const union bpf_attr *attr, 7793 union bpf_attr __user *uattr) 7794 { 7795 struct btf *btf; 7796 int err; 7797 7798 if (!attr->func_info_cnt && !attr->line_info_cnt) 7799 return 0; 7800 7801 btf = btf_get_by_fd(attr->prog_btf_fd); 7802 if (IS_ERR(btf)) 7803 return PTR_ERR(btf); 7804 env->prog->aux->btf = btf; 7805 7806 err = check_btf_func(env, attr, uattr); 7807 if (err) 7808 return err; 7809 7810 err = check_btf_line(env, attr, uattr); 7811 if (err) 7812 return err; 7813 7814 return 0; 7815 } 7816 7817 /* check %cur's range satisfies %old's */ 7818 static bool range_within(struct bpf_reg_state *old, 7819 struct bpf_reg_state *cur) 7820 { 7821 return old->umin_value <= cur->umin_value && 7822 old->umax_value >= cur->umax_value && 7823 old->smin_value <= cur->smin_value && 7824 old->smax_value >= cur->smax_value; 7825 } 7826 7827 /* Maximum number of register states that can exist at once */ 7828 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7829 struct idpair { 7830 u32 old; 7831 u32 cur; 7832 }; 7833 7834 /* If in the old state two registers had the same id, then they need to have 7835 * the same id in the new state as well. But that id could be different from 7836 * the old state, so we need to track the mapping from old to new ids. 7837 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7838 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7839 * regs with a different old id could still have new id 9, we don't care about 7840 * that. 7841 * So we look through our idmap to see if this old id has been seen before. If 7842 * so, we require the new id to match; otherwise, we add the id pair to the map. 7843 */ 7844 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7845 { 7846 unsigned int i; 7847 7848 for (i = 0; i < ID_MAP_SIZE; i++) { 7849 if (!idmap[i].old) { 7850 /* Reached an empty slot; haven't seen this id before */ 7851 idmap[i].old = old_id; 7852 idmap[i].cur = cur_id; 7853 return true; 7854 } 7855 if (idmap[i].old == old_id) 7856 return idmap[i].cur == cur_id; 7857 } 7858 /* We ran out of idmap slots, which should be impossible */ 7859 WARN_ON_ONCE(1); 7860 return false; 7861 } 7862 7863 static void clean_func_state(struct bpf_verifier_env *env, 7864 struct bpf_func_state *st) 7865 { 7866 enum bpf_reg_liveness live; 7867 int i, j; 7868 7869 for (i = 0; i < BPF_REG_FP; i++) { 7870 live = st->regs[i].live; 7871 /* liveness must not touch this register anymore */ 7872 st->regs[i].live |= REG_LIVE_DONE; 7873 if (!(live & REG_LIVE_READ)) 7874 /* since the register is unused, clear its state 7875 * to make further comparison simpler 7876 */ 7877 __mark_reg_not_init(env, &st->regs[i]); 7878 } 7879 7880 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7881 live = st->stack[i].spilled_ptr.live; 7882 /* liveness must not touch this stack slot anymore */ 7883 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7884 if (!(live & REG_LIVE_READ)) { 7885 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7886 for (j = 0; j < BPF_REG_SIZE; j++) 7887 st->stack[i].slot_type[j] = STACK_INVALID; 7888 } 7889 } 7890 } 7891 7892 static void clean_verifier_state(struct bpf_verifier_env *env, 7893 struct bpf_verifier_state *st) 7894 { 7895 int i; 7896 7897 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7898 /* all regs in this state in all frames were already marked */ 7899 return; 7900 7901 for (i = 0; i <= st->curframe; i++) 7902 clean_func_state(env, st->frame[i]); 7903 } 7904 7905 /* the parentage chains form a tree. 7906 * the verifier states are added to state lists at given insn and 7907 * pushed into state stack for future exploration. 7908 * when the verifier reaches bpf_exit insn some of the verifer states 7909 * stored in the state lists have their final liveness state already, 7910 * but a lot of states will get revised from liveness point of view when 7911 * the verifier explores other branches. 7912 * Example: 7913 * 1: r0 = 1 7914 * 2: if r1 == 100 goto pc+1 7915 * 3: r0 = 2 7916 * 4: exit 7917 * when the verifier reaches exit insn the register r0 in the state list of 7918 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7919 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7920 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7921 * 7922 * Since the verifier pushes the branch states as it sees them while exploring 7923 * the program the condition of walking the branch instruction for the second 7924 * time means that all states below this branch were already explored and 7925 * their final liveness markes are already propagated. 7926 * Hence when the verifier completes the search of state list in is_state_visited() 7927 * we can call this clean_live_states() function to mark all liveness states 7928 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7929 * will not be used. 7930 * This function also clears the registers and stack for states that !READ 7931 * to simplify state merging. 7932 * 7933 * Important note here that walking the same branch instruction in the callee 7934 * doesn't meant that the states are DONE. The verifier has to compare 7935 * the callsites 7936 */ 7937 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7938 struct bpf_verifier_state *cur) 7939 { 7940 struct bpf_verifier_state_list *sl; 7941 int i; 7942 7943 sl = *explored_state(env, insn); 7944 while (sl) { 7945 if (sl->state.branches) 7946 goto next; 7947 if (sl->state.insn_idx != insn || 7948 sl->state.curframe != cur->curframe) 7949 goto next; 7950 for (i = 0; i <= cur->curframe; i++) 7951 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7952 goto next; 7953 clean_verifier_state(env, &sl->state); 7954 next: 7955 sl = sl->next; 7956 } 7957 } 7958 7959 /* Returns true if (rold safe implies rcur safe) */ 7960 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7961 struct idpair *idmap) 7962 { 7963 bool equal; 7964 7965 if (!(rold->live & REG_LIVE_READ)) 7966 /* explored state didn't use this */ 7967 return true; 7968 7969 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7970 7971 if (rold->type == PTR_TO_STACK) 7972 /* two stack pointers are equal only if they're pointing to 7973 * the same stack frame, since fp-8 in foo != fp-8 in bar 7974 */ 7975 return equal && rold->frameno == rcur->frameno; 7976 7977 if (equal) 7978 return true; 7979 7980 if (rold->type == NOT_INIT) 7981 /* explored state can't have used this */ 7982 return true; 7983 if (rcur->type == NOT_INIT) 7984 return false; 7985 switch (rold->type) { 7986 case SCALAR_VALUE: 7987 if (rcur->type == SCALAR_VALUE) { 7988 if (!rold->precise && !rcur->precise) 7989 return true; 7990 /* new val must satisfy old val knowledge */ 7991 return range_within(rold, rcur) && 7992 tnum_in(rold->var_off, rcur->var_off); 7993 } else { 7994 /* We're trying to use a pointer in place of a scalar. 7995 * Even if the scalar was unbounded, this could lead to 7996 * pointer leaks because scalars are allowed to leak 7997 * while pointers are not. We could make this safe in 7998 * special cases if root is calling us, but it's 7999 * probably not worth the hassle. 8000 */ 8001 return false; 8002 } 8003 case PTR_TO_MAP_VALUE: 8004 /* If the new min/max/var_off satisfy the old ones and 8005 * everything else matches, we are OK. 8006 * 'id' is not compared, since it's only used for maps with 8007 * bpf_spin_lock inside map element and in such cases if 8008 * the rest of the prog is valid for one map element then 8009 * it's valid for all map elements regardless of the key 8010 * used in bpf_map_lookup() 8011 */ 8012 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 8013 range_within(rold, rcur) && 8014 tnum_in(rold->var_off, rcur->var_off); 8015 case PTR_TO_MAP_VALUE_OR_NULL: 8016 /* a PTR_TO_MAP_VALUE could be safe to use as a 8017 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 8018 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 8019 * checked, doing so could have affected others with the same 8020 * id, and we can't check for that because we lost the id when 8021 * we converted to a PTR_TO_MAP_VALUE. 8022 */ 8023 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 8024 return false; 8025 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 8026 return false; 8027 /* Check our ids match any regs they're supposed to */ 8028 return check_ids(rold->id, rcur->id, idmap); 8029 case PTR_TO_PACKET_META: 8030 case PTR_TO_PACKET: 8031 if (rcur->type != rold->type) 8032 return false; 8033 /* We must have at least as much range as the old ptr 8034 * did, so that any accesses which were safe before are 8035 * still safe. This is true even if old range < old off, 8036 * since someone could have accessed through (ptr - k), or 8037 * even done ptr -= k in a register, to get a safe access. 8038 */ 8039 if (rold->range > rcur->range) 8040 return false; 8041 /* If the offsets don't match, we can't trust our alignment; 8042 * nor can we be sure that we won't fall out of range. 8043 */ 8044 if (rold->off != rcur->off) 8045 return false; 8046 /* id relations must be preserved */ 8047 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 8048 return false; 8049 /* new val must satisfy old val knowledge */ 8050 return range_within(rold, rcur) && 8051 tnum_in(rold->var_off, rcur->var_off); 8052 case PTR_TO_CTX: 8053 case CONST_PTR_TO_MAP: 8054 case PTR_TO_PACKET_END: 8055 case PTR_TO_FLOW_KEYS: 8056 case PTR_TO_SOCKET: 8057 case PTR_TO_SOCKET_OR_NULL: 8058 case PTR_TO_SOCK_COMMON: 8059 case PTR_TO_SOCK_COMMON_OR_NULL: 8060 case PTR_TO_TCP_SOCK: 8061 case PTR_TO_TCP_SOCK_OR_NULL: 8062 case PTR_TO_XDP_SOCK: 8063 /* Only valid matches are exact, which memcmp() above 8064 * would have accepted 8065 */ 8066 default: 8067 /* Don't know what's going on, just say it's not safe */ 8068 return false; 8069 } 8070 8071 /* Shouldn't get here; if we do, say it's not safe */ 8072 WARN_ON_ONCE(1); 8073 return false; 8074 } 8075 8076 static bool stacksafe(struct bpf_func_state *old, 8077 struct bpf_func_state *cur, 8078 struct idpair *idmap) 8079 { 8080 int i, spi; 8081 8082 /* walk slots of the explored stack and ignore any additional 8083 * slots in the current stack, since explored(safe) state 8084 * didn't use them 8085 */ 8086 for (i = 0; i < old->allocated_stack; i++) { 8087 spi = i / BPF_REG_SIZE; 8088 8089 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 8090 i += BPF_REG_SIZE - 1; 8091 /* explored state didn't use this */ 8092 continue; 8093 } 8094 8095 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 8096 continue; 8097 8098 /* explored stack has more populated slots than current stack 8099 * and these slots were used 8100 */ 8101 if (i >= cur->allocated_stack) 8102 return false; 8103 8104 /* if old state was safe with misc data in the stack 8105 * it will be safe with zero-initialized stack. 8106 * The opposite is not true 8107 */ 8108 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 8109 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 8110 continue; 8111 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 8112 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 8113 /* Ex: old explored (safe) state has STACK_SPILL in 8114 * this stack slot, but current has has STACK_MISC -> 8115 * this verifier states are not equivalent, 8116 * return false to continue verification of this path 8117 */ 8118 return false; 8119 if (i % BPF_REG_SIZE) 8120 continue; 8121 if (old->stack[spi].slot_type[0] != STACK_SPILL) 8122 continue; 8123 if (!regsafe(&old->stack[spi].spilled_ptr, 8124 &cur->stack[spi].spilled_ptr, 8125 idmap)) 8126 /* when explored and current stack slot are both storing 8127 * spilled registers, check that stored pointers types 8128 * are the same as well. 8129 * Ex: explored safe path could have stored 8130 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8131 * but current path has stored: 8132 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8133 * such verifier states are not equivalent. 8134 * return false to continue verification of this path 8135 */ 8136 return false; 8137 } 8138 return true; 8139 } 8140 8141 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8142 { 8143 if (old->acquired_refs != cur->acquired_refs) 8144 return false; 8145 return !memcmp(old->refs, cur->refs, 8146 sizeof(*old->refs) * old->acquired_refs); 8147 } 8148 8149 /* compare two verifier states 8150 * 8151 * all states stored in state_list are known to be valid, since 8152 * verifier reached 'bpf_exit' instruction through them 8153 * 8154 * this function is called when verifier exploring different branches of 8155 * execution popped from the state stack. If it sees an old state that has 8156 * more strict register state and more strict stack state then this execution 8157 * branch doesn't need to be explored further, since verifier already 8158 * concluded that more strict state leads to valid finish. 8159 * 8160 * Therefore two states are equivalent if register state is more conservative 8161 * and explored stack state is more conservative than the current one. 8162 * Example: 8163 * explored current 8164 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8165 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8166 * 8167 * In other words if current stack state (one being explored) has more 8168 * valid slots than old one that already passed validation, it means 8169 * the verifier can stop exploring and conclude that current state is valid too 8170 * 8171 * Similarly with registers. If explored state has register type as invalid 8172 * whereas register type in current state is meaningful, it means that 8173 * the current state will reach 'bpf_exit' instruction safely 8174 */ 8175 static bool func_states_equal(struct bpf_func_state *old, 8176 struct bpf_func_state *cur) 8177 { 8178 struct idpair *idmap; 8179 bool ret = false; 8180 int i; 8181 8182 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8183 /* If we failed to allocate the idmap, just say it's not safe */ 8184 if (!idmap) 8185 return false; 8186 8187 for (i = 0; i < MAX_BPF_REG; i++) { 8188 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8189 goto out_free; 8190 } 8191 8192 if (!stacksafe(old, cur, idmap)) 8193 goto out_free; 8194 8195 if (!refsafe(old, cur)) 8196 goto out_free; 8197 ret = true; 8198 out_free: 8199 kfree(idmap); 8200 return ret; 8201 } 8202 8203 static bool states_equal(struct bpf_verifier_env *env, 8204 struct bpf_verifier_state *old, 8205 struct bpf_verifier_state *cur) 8206 { 8207 int i; 8208 8209 if (old->curframe != cur->curframe) 8210 return false; 8211 8212 /* Verification state from speculative execution simulation 8213 * must never prune a non-speculative execution one. 8214 */ 8215 if (old->speculative && !cur->speculative) 8216 return false; 8217 8218 if (old->active_spin_lock != cur->active_spin_lock) 8219 return false; 8220 8221 /* for states to be equal callsites have to be the same 8222 * and all frame states need to be equivalent 8223 */ 8224 for (i = 0; i <= old->curframe; i++) { 8225 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8226 return false; 8227 if (!func_states_equal(old->frame[i], cur->frame[i])) 8228 return false; 8229 } 8230 return true; 8231 } 8232 8233 /* Return 0 if no propagation happened. Return negative error code if error 8234 * happened. Otherwise, return the propagated bit. 8235 */ 8236 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8237 struct bpf_reg_state *reg, 8238 struct bpf_reg_state *parent_reg) 8239 { 8240 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8241 u8 flag = reg->live & REG_LIVE_READ; 8242 int err; 8243 8244 /* When comes here, read flags of PARENT_REG or REG could be any of 8245 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8246 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8247 */ 8248 if (parent_flag == REG_LIVE_READ64 || 8249 /* Or if there is no read flag from REG. */ 8250 !flag || 8251 /* Or if the read flag from REG is the same as PARENT_REG. */ 8252 parent_flag == flag) 8253 return 0; 8254 8255 err = mark_reg_read(env, reg, parent_reg, flag); 8256 if (err) 8257 return err; 8258 8259 return flag; 8260 } 8261 8262 /* A write screens off any subsequent reads; but write marks come from the 8263 * straight-line code between a state and its parent. When we arrive at an 8264 * equivalent state (jump target or such) we didn't arrive by the straight-line 8265 * code, so read marks in the state must propagate to the parent regardless 8266 * of the state's write marks. That's what 'parent == state->parent' comparison 8267 * in mark_reg_read() is for. 8268 */ 8269 static int propagate_liveness(struct bpf_verifier_env *env, 8270 const struct bpf_verifier_state *vstate, 8271 struct bpf_verifier_state *vparent) 8272 { 8273 struct bpf_reg_state *state_reg, *parent_reg; 8274 struct bpf_func_state *state, *parent; 8275 int i, frame, err = 0; 8276 8277 if (vparent->curframe != vstate->curframe) { 8278 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8279 vparent->curframe, vstate->curframe); 8280 return -EFAULT; 8281 } 8282 /* Propagate read liveness of registers... */ 8283 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8284 for (frame = 0; frame <= vstate->curframe; frame++) { 8285 parent = vparent->frame[frame]; 8286 state = vstate->frame[frame]; 8287 parent_reg = parent->regs; 8288 state_reg = state->regs; 8289 /* We don't need to worry about FP liveness, it's read-only */ 8290 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8291 err = propagate_liveness_reg(env, &state_reg[i], 8292 &parent_reg[i]); 8293 if (err < 0) 8294 return err; 8295 if (err == REG_LIVE_READ64) 8296 mark_insn_zext(env, &parent_reg[i]); 8297 } 8298 8299 /* Propagate stack slots. */ 8300 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8301 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8302 parent_reg = &parent->stack[i].spilled_ptr; 8303 state_reg = &state->stack[i].spilled_ptr; 8304 err = propagate_liveness_reg(env, state_reg, 8305 parent_reg); 8306 if (err < 0) 8307 return err; 8308 } 8309 } 8310 return 0; 8311 } 8312 8313 /* find precise scalars in the previous equivalent state and 8314 * propagate them into the current state 8315 */ 8316 static int propagate_precision(struct bpf_verifier_env *env, 8317 const struct bpf_verifier_state *old) 8318 { 8319 struct bpf_reg_state *state_reg; 8320 struct bpf_func_state *state; 8321 int i, err = 0; 8322 8323 state = old->frame[old->curframe]; 8324 state_reg = state->regs; 8325 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8326 if (state_reg->type != SCALAR_VALUE || 8327 !state_reg->precise) 8328 continue; 8329 if (env->log.level & BPF_LOG_LEVEL2) 8330 verbose(env, "propagating r%d\n", i); 8331 err = mark_chain_precision(env, i); 8332 if (err < 0) 8333 return err; 8334 } 8335 8336 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8337 if (state->stack[i].slot_type[0] != STACK_SPILL) 8338 continue; 8339 state_reg = &state->stack[i].spilled_ptr; 8340 if (state_reg->type != SCALAR_VALUE || 8341 !state_reg->precise) 8342 continue; 8343 if (env->log.level & BPF_LOG_LEVEL2) 8344 verbose(env, "propagating fp%d\n", 8345 (-i - 1) * BPF_REG_SIZE); 8346 err = mark_chain_precision_stack(env, i); 8347 if (err < 0) 8348 return err; 8349 } 8350 return 0; 8351 } 8352 8353 static bool states_maybe_looping(struct bpf_verifier_state *old, 8354 struct bpf_verifier_state *cur) 8355 { 8356 struct bpf_func_state *fold, *fcur; 8357 int i, fr = cur->curframe; 8358 8359 if (old->curframe != fr) 8360 return false; 8361 8362 fold = old->frame[fr]; 8363 fcur = cur->frame[fr]; 8364 for (i = 0; i < MAX_BPF_REG; i++) 8365 if (memcmp(&fold->regs[i], &fcur->regs[i], 8366 offsetof(struct bpf_reg_state, parent))) 8367 return false; 8368 return true; 8369 } 8370 8371 8372 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8373 { 8374 struct bpf_verifier_state_list *new_sl; 8375 struct bpf_verifier_state_list *sl, **pprev; 8376 struct bpf_verifier_state *cur = env->cur_state, *new; 8377 int i, j, err, states_cnt = 0; 8378 bool add_new_state = env->test_state_freq ? true : false; 8379 8380 cur->last_insn_idx = env->prev_insn_idx; 8381 if (!env->insn_aux_data[insn_idx].prune_point) 8382 /* this 'insn_idx' instruction wasn't marked, so we will not 8383 * be doing state search here 8384 */ 8385 return 0; 8386 8387 /* bpf progs typically have pruning point every 4 instructions 8388 * http://vger.kernel.org/bpfconf2019.html#session-1 8389 * Do not add new state for future pruning if the verifier hasn't seen 8390 * at least 2 jumps and at least 8 instructions. 8391 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8392 * In tests that amounts to up to 50% reduction into total verifier 8393 * memory consumption and 20% verifier time speedup. 8394 */ 8395 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8396 env->insn_processed - env->prev_insn_processed >= 8) 8397 add_new_state = true; 8398 8399 pprev = explored_state(env, insn_idx); 8400 sl = *pprev; 8401 8402 clean_live_states(env, insn_idx, cur); 8403 8404 while (sl) { 8405 states_cnt++; 8406 if (sl->state.insn_idx != insn_idx) 8407 goto next; 8408 if (sl->state.branches) { 8409 if (states_maybe_looping(&sl->state, cur) && 8410 states_equal(env, &sl->state, cur)) { 8411 verbose_linfo(env, insn_idx, "; "); 8412 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8413 return -EINVAL; 8414 } 8415 /* if the verifier is processing a loop, avoid adding new state 8416 * too often, since different loop iterations have distinct 8417 * states and may not help future pruning. 8418 * This threshold shouldn't be too low to make sure that 8419 * a loop with large bound will be rejected quickly. 8420 * The most abusive loop will be: 8421 * r1 += 1 8422 * if r1 < 1000000 goto pc-2 8423 * 1M insn_procssed limit / 100 == 10k peak states. 8424 * This threshold shouldn't be too high either, since states 8425 * at the end of the loop are likely to be useful in pruning. 8426 */ 8427 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8428 env->insn_processed - env->prev_insn_processed < 100) 8429 add_new_state = false; 8430 goto miss; 8431 } 8432 if (states_equal(env, &sl->state, cur)) { 8433 sl->hit_cnt++; 8434 /* reached equivalent register/stack state, 8435 * prune the search. 8436 * Registers read by the continuation are read by us. 8437 * If we have any write marks in env->cur_state, they 8438 * will prevent corresponding reads in the continuation 8439 * from reaching our parent (an explored_state). Our 8440 * own state will get the read marks recorded, but 8441 * they'll be immediately forgotten as we're pruning 8442 * this state and will pop a new one. 8443 */ 8444 err = propagate_liveness(env, &sl->state, cur); 8445 8446 /* if previous state reached the exit with precision and 8447 * current state is equivalent to it (except precsion marks) 8448 * the precision needs to be propagated back in 8449 * the current state. 8450 */ 8451 err = err ? : push_jmp_history(env, cur); 8452 err = err ? : propagate_precision(env, &sl->state); 8453 if (err) 8454 return err; 8455 return 1; 8456 } 8457 miss: 8458 /* when new state is not going to be added do not increase miss count. 8459 * Otherwise several loop iterations will remove the state 8460 * recorded earlier. The goal of these heuristics is to have 8461 * states from some iterations of the loop (some in the beginning 8462 * and some at the end) to help pruning. 8463 */ 8464 if (add_new_state) 8465 sl->miss_cnt++; 8466 /* heuristic to determine whether this state is beneficial 8467 * to keep checking from state equivalence point of view. 8468 * Higher numbers increase max_states_per_insn and verification time, 8469 * but do not meaningfully decrease insn_processed. 8470 */ 8471 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8472 /* the state is unlikely to be useful. Remove it to 8473 * speed up verification 8474 */ 8475 *pprev = sl->next; 8476 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8477 u32 br = sl->state.branches; 8478 8479 WARN_ONCE(br, 8480 "BUG live_done but branches_to_explore %d\n", 8481 br); 8482 free_verifier_state(&sl->state, false); 8483 kfree(sl); 8484 env->peak_states--; 8485 } else { 8486 /* cannot free this state, since parentage chain may 8487 * walk it later. Add it for free_list instead to 8488 * be freed at the end of verification 8489 */ 8490 sl->next = env->free_list; 8491 env->free_list = sl; 8492 } 8493 sl = *pprev; 8494 continue; 8495 } 8496 next: 8497 pprev = &sl->next; 8498 sl = *pprev; 8499 } 8500 8501 if (env->max_states_per_insn < states_cnt) 8502 env->max_states_per_insn = states_cnt; 8503 8504 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8505 return push_jmp_history(env, cur); 8506 8507 if (!add_new_state) 8508 return push_jmp_history(env, cur); 8509 8510 /* There were no equivalent states, remember the current one. 8511 * Technically the current state is not proven to be safe yet, 8512 * but it will either reach outer most bpf_exit (which means it's safe) 8513 * or it will be rejected. When there are no loops the verifier won't be 8514 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8515 * again on the way to bpf_exit. 8516 * When looping the sl->state.branches will be > 0 and this state 8517 * will not be considered for equivalence until branches == 0. 8518 */ 8519 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8520 if (!new_sl) 8521 return -ENOMEM; 8522 env->total_states++; 8523 env->peak_states++; 8524 env->prev_jmps_processed = env->jmps_processed; 8525 env->prev_insn_processed = env->insn_processed; 8526 8527 /* add new state to the head of linked list */ 8528 new = &new_sl->state; 8529 err = copy_verifier_state(new, cur); 8530 if (err) { 8531 free_verifier_state(new, false); 8532 kfree(new_sl); 8533 return err; 8534 } 8535 new->insn_idx = insn_idx; 8536 WARN_ONCE(new->branches != 1, 8537 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8538 8539 cur->parent = new; 8540 cur->first_insn_idx = insn_idx; 8541 clear_jmp_history(cur); 8542 new_sl->next = *explored_state(env, insn_idx); 8543 *explored_state(env, insn_idx) = new_sl; 8544 /* connect new state to parentage chain. Current frame needs all 8545 * registers connected. Only r6 - r9 of the callers are alive (pushed 8546 * to the stack implicitly by JITs) so in callers' frames connect just 8547 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 8548 * the state of the call instruction (with WRITTEN set), and r0 comes 8549 * from callee with its full parentage chain, anyway. 8550 */ 8551 /* clear write marks in current state: the writes we did are not writes 8552 * our child did, so they don't screen off its reads from us. 8553 * (There are no read marks in current state, because reads always mark 8554 * their parent and current state never has children yet. Only 8555 * explored_states can get read marks.) 8556 */ 8557 for (j = 0; j <= cur->curframe; j++) { 8558 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 8559 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 8560 for (i = 0; i < BPF_REG_FP; i++) 8561 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 8562 } 8563 8564 /* all stack frames are accessible from callee, clear them all */ 8565 for (j = 0; j <= cur->curframe; j++) { 8566 struct bpf_func_state *frame = cur->frame[j]; 8567 struct bpf_func_state *newframe = new->frame[j]; 8568 8569 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 8570 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 8571 frame->stack[i].spilled_ptr.parent = 8572 &newframe->stack[i].spilled_ptr; 8573 } 8574 } 8575 return 0; 8576 } 8577 8578 /* Return true if it's OK to have the same insn return a different type. */ 8579 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 8580 { 8581 switch (type) { 8582 case PTR_TO_CTX: 8583 case PTR_TO_SOCKET: 8584 case PTR_TO_SOCKET_OR_NULL: 8585 case PTR_TO_SOCK_COMMON: 8586 case PTR_TO_SOCK_COMMON_OR_NULL: 8587 case PTR_TO_TCP_SOCK: 8588 case PTR_TO_TCP_SOCK_OR_NULL: 8589 case PTR_TO_XDP_SOCK: 8590 case PTR_TO_BTF_ID: 8591 case PTR_TO_BTF_ID_OR_NULL: 8592 return false; 8593 default: 8594 return true; 8595 } 8596 } 8597 8598 /* If an instruction was previously used with particular pointer types, then we 8599 * need to be careful to avoid cases such as the below, where it may be ok 8600 * for one branch accessing the pointer, but not ok for the other branch: 8601 * 8602 * R1 = sock_ptr 8603 * goto X; 8604 * ... 8605 * R1 = some_other_valid_ptr; 8606 * goto X; 8607 * ... 8608 * R2 = *(u32 *)(R1 + 0); 8609 */ 8610 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 8611 { 8612 return src != prev && (!reg_type_mismatch_ok(src) || 8613 !reg_type_mismatch_ok(prev)); 8614 } 8615 8616 static int do_check(struct bpf_verifier_env *env) 8617 { 8618 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 8619 struct bpf_verifier_state *state = env->cur_state; 8620 struct bpf_insn *insns = env->prog->insnsi; 8621 struct bpf_reg_state *regs; 8622 int insn_cnt = env->prog->len; 8623 bool do_print_state = false; 8624 int prev_insn_idx = -1; 8625 8626 for (;;) { 8627 struct bpf_insn *insn; 8628 u8 class; 8629 int err; 8630 8631 env->prev_insn_idx = prev_insn_idx; 8632 if (env->insn_idx >= insn_cnt) { 8633 verbose(env, "invalid insn idx %d insn_cnt %d\n", 8634 env->insn_idx, insn_cnt); 8635 return -EFAULT; 8636 } 8637 8638 insn = &insns[env->insn_idx]; 8639 class = BPF_CLASS(insn->code); 8640 8641 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 8642 verbose(env, 8643 "BPF program is too large. Processed %d insn\n", 8644 env->insn_processed); 8645 return -E2BIG; 8646 } 8647 8648 err = is_state_visited(env, env->insn_idx); 8649 if (err < 0) 8650 return err; 8651 if (err == 1) { 8652 /* found equivalent state, can prune the search */ 8653 if (env->log.level & BPF_LOG_LEVEL) { 8654 if (do_print_state) 8655 verbose(env, "\nfrom %d to %d%s: safe\n", 8656 env->prev_insn_idx, env->insn_idx, 8657 env->cur_state->speculative ? 8658 " (speculative execution)" : ""); 8659 else 8660 verbose(env, "%d: safe\n", env->insn_idx); 8661 } 8662 goto process_bpf_exit; 8663 } 8664 8665 if (signal_pending(current)) 8666 return -EAGAIN; 8667 8668 if (need_resched()) 8669 cond_resched(); 8670 8671 if (env->log.level & BPF_LOG_LEVEL2 || 8672 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 8673 if (env->log.level & BPF_LOG_LEVEL2) 8674 verbose(env, "%d:", env->insn_idx); 8675 else 8676 verbose(env, "\nfrom %d to %d%s:", 8677 env->prev_insn_idx, env->insn_idx, 8678 env->cur_state->speculative ? 8679 " (speculative execution)" : ""); 8680 print_verifier_state(env, state->frame[state->curframe]); 8681 do_print_state = false; 8682 } 8683 8684 if (env->log.level & BPF_LOG_LEVEL) { 8685 const struct bpf_insn_cbs cbs = { 8686 .cb_print = verbose, 8687 .private_data = env, 8688 }; 8689 8690 verbose_linfo(env, env->insn_idx, "; "); 8691 verbose(env, "%d: ", env->insn_idx); 8692 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 8693 } 8694 8695 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8696 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 8697 env->prev_insn_idx); 8698 if (err) 8699 return err; 8700 } 8701 8702 regs = cur_regs(env); 8703 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8704 prev_insn_idx = env->insn_idx; 8705 8706 if (class == BPF_ALU || class == BPF_ALU64) { 8707 err = check_alu_op(env, insn); 8708 if (err) 8709 return err; 8710 8711 } else if (class == BPF_LDX) { 8712 enum bpf_reg_type *prev_src_type, src_reg_type; 8713 8714 /* check for reserved fields is already done */ 8715 8716 /* check src operand */ 8717 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8718 if (err) 8719 return err; 8720 8721 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8722 if (err) 8723 return err; 8724 8725 src_reg_type = regs[insn->src_reg].type; 8726 8727 /* check that memory (src_reg + off) is readable, 8728 * the state of dst_reg will be updated by this func 8729 */ 8730 err = check_mem_access(env, env->insn_idx, insn->src_reg, 8731 insn->off, BPF_SIZE(insn->code), 8732 BPF_READ, insn->dst_reg, false); 8733 if (err) 8734 return err; 8735 8736 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8737 8738 if (*prev_src_type == NOT_INIT) { 8739 /* saw a valid insn 8740 * dst_reg = *(u32 *)(src_reg + off) 8741 * save type to validate intersecting paths 8742 */ 8743 *prev_src_type = src_reg_type; 8744 8745 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 8746 /* ABuser program is trying to use the same insn 8747 * dst_reg = *(u32*) (src_reg + off) 8748 * with different pointer types: 8749 * src_reg == ctx in one branch and 8750 * src_reg == stack|map in some other branch. 8751 * Reject it. 8752 */ 8753 verbose(env, "same insn cannot be used with different pointers\n"); 8754 return -EINVAL; 8755 } 8756 8757 } else if (class == BPF_STX) { 8758 enum bpf_reg_type *prev_dst_type, dst_reg_type; 8759 8760 if (BPF_MODE(insn->code) == BPF_XADD) { 8761 err = check_xadd(env, env->insn_idx, insn); 8762 if (err) 8763 return err; 8764 env->insn_idx++; 8765 continue; 8766 } 8767 8768 /* check src1 operand */ 8769 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8770 if (err) 8771 return err; 8772 /* check src2 operand */ 8773 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8774 if (err) 8775 return err; 8776 8777 dst_reg_type = regs[insn->dst_reg].type; 8778 8779 /* check that memory (dst_reg + off) is writeable */ 8780 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8781 insn->off, BPF_SIZE(insn->code), 8782 BPF_WRITE, insn->src_reg, false); 8783 if (err) 8784 return err; 8785 8786 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8787 8788 if (*prev_dst_type == NOT_INIT) { 8789 *prev_dst_type = dst_reg_type; 8790 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 8791 verbose(env, "same insn cannot be used with different pointers\n"); 8792 return -EINVAL; 8793 } 8794 8795 } else if (class == BPF_ST) { 8796 if (BPF_MODE(insn->code) != BPF_MEM || 8797 insn->src_reg != BPF_REG_0) { 8798 verbose(env, "BPF_ST uses reserved fields\n"); 8799 return -EINVAL; 8800 } 8801 /* check src operand */ 8802 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8803 if (err) 8804 return err; 8805 8806 if (is_ctx_reg(env, insn->dst_reg)) { 8807 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 8808 insn->dst_reg, 8809 reg_type_str[reg_state(env, insn->dst_reg)->type]); 8810 return -EACCES; 8811 } 8812 8813 /* check that memory (dst_reg + off) is writeable */ 8814 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8815 insn->off, BPF_SIZE(insn->code), 8816 BPF_WRITE, -1, false); 8817 if (err) 8818 return err; 8819 8820 } else if (class == BPF_JMP || class == BPF_JMP32) { 8821 u8 opcode = BPF_OP(insn->code); 8822 8823 env->jmps_processed++; 8824 if (opcode == BPF_CALL) { 8825 if (BPF_SRC(insn->code) != BPF_K || 8826 insn->off != 0 || 8827 (insn->src_reg != BPF_REG_0 && 8828 insn->src_reg != BPF_PSEUDO_CALL) || 8829 insn->dst_reg != BPF_REG_0 || 8830 class == BPF_JMP32) { 8831 verbose(env, "BPF_CALL uses reserved fields\n"); 8832 return -EINVAL; 8833 } 8834 8835 if (env->cur_state->active_spin_lock && 8836 (insn->src_reg == BPF_PSEUDO_CALL || 8837 insn->imm != BPF_FUNC_spin_unlock)) { 8838 verbose(env, "function calls are not allowed while holding a lock\n"); 8839 return -EINVAL; 8840 } 8841 if (insn->src_reg == BPF_PSEUDO_CALL) 8842 err = check_func_call(env, insn, &env->insn_idx); 8843 else 8844 err = check_helper_call(env, insn->imm, env->insn_idx); 8845 if (err) 8846 return err; 8847 8848 } else if (opcode == BPF_JA) { 8849 if (BPF_SRC(insn->code) != BPF_K || 8850 insn->imm != 0 || 8851 insn->src_reg != BPF_REG_0 || 8852 insn->dst_reg != BPF_REG_0 || 8853 class == BPF_JMP32) { 8854 verbose(env, "BPF_JA uses reserved fields\n"); 8855 return -EINVAL; 8856 } 8857 8858 env->insn_idx += insn->off + 1; 8859 continue; 8860 8861 } else if (opcode == BPF_EXIT) { 8862 if (BPF_SRC(insn->code) != BPF_K || 8863 insn->imm != 0 || 8864 insn->src_reg != BPF_REG_0 || 8865 insn->dst_reg != BPF_REG_0 || 8866 class == BPF_JMP32) { 8867 verbose(env, "BPF_EXIT uses reserved fields\n"); 8868 return -EINVAL; 8869 } 8870 8871 if (env->cur_state->active_spin_lock) { 8872 verbose(env, "bpf_spin_unlock is missing\n"); 8873 return -EINVAL; 8874 } 8875 8876 if (state->curframe) { 8877 /* exit from nested function */ 8878 err = prepare_func_exit(env, &env->insn_idx); 8879 if (err) 8880 return err; 8881 do_print_state = true; 8882 continue; 8883 } 8884 8885 err = check_reference_leak(env); 8886 if (err) 8887 return err; 8888 8889 err = check_return_code(env); 8890 if (err) 8891 return err; 8892 process_bpf_exit: 8893 update_branch_counts(env, env->cur_state); 8894 err = pop_stack(env, &prev_insn_idx, 8895 &env->insn_idx, pop_log); 8896 if (err < 0) { 8897 if (err != -ENOENT) 8898 return err; 8899 break; 8900 } else { 8901 do_print_state = true; 8902 continue; 8903 } 8904 } else { 8905 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8906 if (err) 8907 return err; 8908 } 8909 } else if (class == BPF_LD) { 8910 u8 mode = BPF_MODE(insn->code); 8911 8912 if (mode == BPF_ABS || mode == BPF_IND) { 8913 err = check_ld_abs(env, insn); 8914 if (err) 8915 return err; 8916 8917 } else if (mode == BPF_IMM) { 8918 err = check_ld_imm(env, insn); 8919 if (err) 8920 return err; 8921 8922 env->insn_idx++; 8923 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8924 } else { 8925 verbose(env, "invalid BPF_LD mode\n"); 8926 return -EINVAL; 8927 } 8928 } else { 8929 verbose(env, "unknown insn class %d\n", class); 8930 return -EINVAL; 8931 } 8932 8933 env->insn_idx++; 8934 } 8935 8936 return 0; 8937 } 8938 8939 static int check_map_prealloc(struct bpf_map *map) 8940 { 8941 return (map->map_type != BPF_MAP_TYPE_HASH && 8942 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8943 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8944 !(map->map_flags & BPF_F_NO_PREALLOC); 8945 } 8946 8947 static bool is_tracing_prog_type(enum bpf_prog_type type) 8948 { 8949 switch (type) { 8950 case BPF_PROG_TYPE_KPROBE: 8951 case BPF_PROG_TYPE_TRACEPOINT: 8952 case BPF_PROG_TYPE_PERF_EVENT: 8953 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8954 return true; 8955 default: 8956 return false; 8957 } 8958 } 8959 8960 static bool is_preallocated_map(struct bpf_map *map) 8961 { 8962 if (!check_map_prealloc(map)) 8963 return false; 8964 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8965 return false; 8966 return true; 8967 } 8968 8969 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8970 struct bpf_map *map, 8971 struct bpf_prog *prog) 8972 8973 { 8974 /* 8975 * Validate that trace type programs use preallocated hash maps. 8976 * 8977 * For programs attached to PERF events this is mandatory as the 8978 * perf NMI can hit any arbitrary code sequence. 8979 * 8980 * All other trace types using preallocated hash maps are unsafe as 8981 * well because tracepoint or kprobes can be inside locked regions 8982 * of the memory allocator or at a place where a recursion into the 8983 * memory allocator would see inconsistent state. 8984 * 8985 * On RT enabled kernels run-time allocation of all trace type 8986 * programs is strictly prohibited due to lock type constraints. On 8987 * !RT kernels it is allowed for backwards compatibility reasons for 8988 * now, but warnings are emitted so developers are made aware of 8989 * the unsafety and can fix their programs before this is enforced. 8990 */ 8991 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8992 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8993 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8994 return -EINVAL; 8995 } 8996 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8997 verbose(env, "trace type programs can only use preallocated hash map\n"); 8998 return -EINVAL; 8999 } 9000 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 9001 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 9002 } 9003 9004 if ((is_tracing_prog_type(prog->type) || 9005 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 9006 map_value_has_spin_lock(map)) { 9007 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 9008 return -EINVAL; 9009 } 9010 9011 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 9012 !bpf_offload_prog_map_match(prog, map)) { 9013 verbose(env, "offload device mismatch between prog and map\n"); 9014 return -EINVAL; 9015 } 9016 9017 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 9018 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 9019 return -EINVAL; 9020 } 9021 9022 return 0; 9023 } 9024 9025 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 9026 { 9027 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 9028 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 9029 } 9030 9031 /* look for pseudo eBPF instructions that access map FDs and 9032 * replace them with actual map pointers 9033 */ 9034 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 9035 { 9036 struct bpf_insn *insn = env->prog->insnsi; 9037 int insn_cnt = env->prog->len; 9038 int i, j, err; 9039 9040 err = bpf_prog_calc_tag(env->prog); 9041 if (err) 9042 return err; 9043 9044 for (i = 0; i < insn_cnt; i++, insn++) { 9045 if (BPF_CLASS(insn->code) == BPF_LDX && 9046 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 9047 verbose(env, "BPF_LDX uses reserved fields\n"); 9048 return -EINVAL; 9049 } 9050 9051 if (BPF_CLASS(insn->code) == BPF_STX && 9052 ((BPF_MODE(insn->code) != BPF_MEM && 9053 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 9054 verbose(env, "BPF_STX uses reserved fields\n"); 9055 return -EINVAL; 9056 } 9057 9058 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 9059 struct bpf_insn_aux_data *aux; 9060 struct bpf_map *map; 9061 struct fd f; 9062 u64 addr; 9063 9064 if (i == insn_cnt - 1 || insn[1].code != 0 || 9065 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 9066 insn[1].off != 0) { 9067 verbose(env, "invalid bpf_ld_imm64 insn\n"); 9068 return -EINVAL; 9069 } 9070 9071 if (insn[0].src_reg == 0) 9072 /* valid generic load 64-bit imm */ 9073 goto next_insn; 9074 9075 /* In final convert_pseudo_ld_imm64() step, this is 9076 * converted into regular 64-bit imm load insn. 9077 */ 9078 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 9079 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 9080 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 9081 insn[1].imm != 0)) { 9082 verbose(env, 9083 "unrecognized bpf_ld_imm64 insn\n"); 9084 return -EINVAL; 9085 } 9086 9087 f = fdget(insn[0].imm); 9088 map = __bpf_map_get(f); 9089 if (IS_ERR(map)) { 9090 verbose(env, "fd %d is not pointing to valid bpf_map\n", 9091 insn[0].imm); 9092 return PTR_ERR(map); 9093 } 9094 9095 err = check_map_prog_compatibility(env, map, env->prog); 9096 if (err) { 9097 fdput(f); 9098 return err; 9099 } 9100 9101 aux = &env->insn_aux_data[i]; 9102 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 9103 addr = (unsigned long)map; 9104 } else { 9105 u32 off = insn[1].imm; 9106 9107 if (off >= BPF_MAX_VAR_OFF) { 9108 verbose(env, "direct value offset of %u is not allowed\n", off); 9109 fdput(f); 9110 return -EINVAL; 9111 } 9112 9113 if (!map->ops->map_direct_value_addr) { 9114 verbose(env, "no direct value access support for this map type\n"); 9115 fdput(f); 9116 return -EINVAL; 9117 } 9118 9119 err = map->ops->map_direct_value_addr(map, &addr, off); 9120 if (err) { 9121 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 9122 map->value_size, off); 9123 fdput(f); 9124 return err; 9125 } 9126 9127 aux->map_off = off; 9128 addr += off; 9129 } 9130 9131 insn[0].imm = (u32)addr; 9132 insn[1].imm = addr >> 32; 9133 9134 /* check whether we recorded this map already */ 9135 for (j = 0; j < env->used_map_cnt; j++) { 9136 if (env->used_maps[j] == map) { 9137 aux->map_index = j; 9138 fdput(f); 9139 goto next_insn; 9140 } 9141 } 9142 9143 if (env->used_map_cnt >= MAX_USED_MAPS) { 9144 fdput(f); 9145 return -E2BIG; 9146 } 9147 9148 /* hold the map. If the program is rejected by verifier, 9149 * the map will be released by release_maps() or it 9150 * will be used by the valid program until it's unloaded 9151 * and all maps are released in free_used_maps() 9152 */ 9153 bpf_map_inc(map); 9154 9155 aux->map_index = env->used_map_cnt; 9156 env->used_maps[env->used_map_cnt++] = map; 9157 9158 if (bpf_map_is_cgroup_storage(map) && 9159 bpf_cgroup_storage_assign(env->prog->aux, map)) { 9160 verbose(env, "only one cgroup storage of each type is allowed\n"); 9161 fdput(f); 9162 return -EBUSY; 9163 } 9164 9165 fdput(f); 9166 next_insn: 9167 insn++; 9168 i++; 9169 continue; 9170 } 9171 9172 /* Basic sanity check before we invest more work here. */ 9173 if (!bpf_opcode_in_insntable(insn->code)) { 9174 verbose(env, "unknown opcode %02x\n", insn->code); 9175 return -EINVAL; 9176 } 9177 } 9178 9179 /* now all pseudo BPF_LD_IMM64 instructions load valid 9180 * 'struct bpf_map *' into a register instead of user map_fd. 9181 * These pointers will be used later by verifier to validate map access. 9182 */ 9183 return 0; 9184 } 9185 9186 /* drop refcnt of maps used by the rejected program */ 9187 static void release_maps(struct bpf_verifier_env *env) 9188 { 9189 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9190 env->used_map_cnt); 9191 } 9192 9193 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9194 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9195 { 9196 struct bpf_insn *insn = env->prog->insnsi; 9197 int insn_cnt = env->prog->len; 9198 int i; 9199 9200 for (i = 0; i < insn_cnt; i++, insn++) 9201 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9202 insn->src_reg = 0; 9203 } 9204 9205 /* single env->prog->insni[off] instruction was replaced with the range 9206 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9207 * [0, off) and [off, end) to new locations, so the patched range stays zero 9208 */ 9209 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9210 struct bpf_prog *new_prog, u32 off, u32 cnt) 9211 { 9212 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9213 struct bpf_insn *insn = new_prog->insnsi; 9214 u32 prog_len; 9215 int i; 9216 9217 /* aux info at OFF always needs adjustment, no matter fast path 9218 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9219 * original insn at old prog. 9220 */ 9221 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9222 9223 if (cnt == 1) 9224 return 0; 9225 prog_len = new_prog->len; 9226 new_data = vzalloc(array_size(prog_len, 9227 sizeof(struct bpf_insn_aux_data))); 9228 if (!new_data) 9229 return -ENOMEM; 9230 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9231 memcpy(new_data + off + cnt - 1, old_data + off, 9232 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9233 for (i = off; i < off + cnt - 1; i++) { 9234 new_data[i].seen = env->pass_cnt; 9235 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9236 } 9237 env->insn_aux_data = new_data; 9238 vfree(old_data); 9239 return 0; 9240 } 9241 9242 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9243 { 9244 int i; 9245 9246 if (len == 1) 9247 return; 9248 /* NOTE: fake 'exit' subprog should be updated as well. */ 9249 for (i = 0; i <= env->subprog_cnt; i++) { 9250 if (env->subprog_info[i].start <= off) 9251 continue; 9252 env->subprog_info[i].start += len - 1; 9253 } 9254 } 9255 9256 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9257 const struct bpf_insn *patch, u32 len) 9258 { 9259 struct bpf_prog *new_prog; 9260 9261 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9262 if (IS_ERR(new_prog)) { 9263 if (PTR_ERR(new_prog) == -ERANGE) 9264 verbose(env, 9265 "insn %d cannot be patched due to 16-bit range\n", 9266 env->insn_aux_data[off].orig_idx); 9267 return NULL; 9268 } 9269 if (adjust_insn_aux_data(env, new_prog, off, len)) 9270 return NULL; 9271 adjust_subprog_starts(env, off, len); 9272 return new_prog; 9273 } 9274 9275 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9276 u32 off, u32 cnt) 9277 { 9278 int i, j; 9279 9280 /* find first prog starting at or after off (first to remove) */ 9281 for (i = 0; i < env->subprog_cnt; i++) 9282 if (env->subprog_info[i].start >= off) 9283 break; 9284 /* find first prog starting at or after off + cnt (first to stay) */ 9285 for (j = i; j < env->subprog_cnt; j++) 9286 if (env->subprog_info[j].start >= off + cnt) 9287 break; 9288 /* if j doesn't start exactly at off + cnt, we are just removing 9289 * the front of previous prog 9290 */ 9291 if (env->subprog_info[j].start != off + cnt) 9292 j--; 9293 9294 if (j > i) { 9295 struct bpf_prog_aux *aux = env->prog->aux; 9296 int move; 9297 9298 /* move fake 'exit' subprog as well */ 9299 move = env->subprog_cnt + 1 - j; 9300 9301 memmove(env->subprog_info + i, 9302 env->subprog_info + j, 9303 sizeof(*env->subprog_info) * move); 9304 env->subprog_cnt -= j - i; 9305 9306 /* remove func_info */ 9307 if (aux->func_info) { 9308 move = aux->func_info_cnt - j; 9309 9310 memmove(aux->func_info + i, 9311 aux->func_info + j, 9312 sizeof(*aux->func_info) * move); 9313 aux->func_info_cnt -= j - i; 9314 /* func_info->insn_off is set after all code rewrites, 9315 * in adjust_btf_func() - no need to adjust 9316 */ 9317 } 9318 } else { 9319 /* convert i from "first prog to remove" to "first to adjust" */ 9320 if (env->subprog_info[i].start == off) 9321 i++; 9322 } 9323 9324 /* update fake 'exit' subprog as well */ 9325 for (; i <= env->subprog_cnt; i++) 9326 env->subprog_info[i].start -= cnt; 9327 9328 return 0; 9329 } 9330 9331 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9332 u32 cnt) 9333 { 9334 struct bpf_prog *prog = env->prog; 9335 u32 i, l_off, l_cnt, nr_linfo; 9336 struct bpf_line_info *linfo; 9337 9338 nr_linfo = prog->aux->nr_linfo; 9339 if (!nr_linfo) 9340 return 0; 9341 9342 linfo = prog->aux->linfo; 9343 9344 /* find first line info to remove, count lines to be removed */ 9345 for (i = 0; i < nr_linfo; i++) 9346 if (linfo[i].insn_off >= off) 9347 break; 9348 9349 l_off = i; 9350 l_cnt = 0; 9351 for (; i < nr_linfo; i++) 9352 if (linfo[i].insn_off < off + cnt) 9353 l_cnt++; 9354 else 9355 break; 9356 9357 /* First live insn doesn't match first live linfo, it needs to "inherit" 9358 * last removed linfo. prog is already modified, so prog->len == off 9359 * means no live instructions after (tail of the program was removed). 9360 */ 9361 if (prog->len != off && l_cnt && 9362 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9363 l_cnt--; 9364 linfo[--i].insn_off = off + cnt; 9365 } 9366 9367 /* remove the line info which refer to the removed instructions */ 9368 if (l_cnt) { 9369 memmove(linfo + l_off, linfo + i, 9370 sizeof(*linfo) * (nr_linfo - i)); 9371 9372 prog->aux->nr_linfo -= l_cnt; 9373 nr_linfo = prog->aux->nr_linfo; 9374 } 9375 9376 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9377 for (i = l_off; i < nr_linfo; i++) 9378 linfo[i].insn_off -= cnt; 9379 9380 /* fix up all subprogs (incl. 'exit') which start >= off */ 9381 for (i = 0; i <= env->subprog_cnt; i++) 9382 if (env->subprog_info[i].linfo_idx > l_off) { 9383 /* program may have started in the removed region but 9384 * may not be fully removed 9385 */ 9386 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9387 env->subprog_info[i].linfo_idx -= l_cnt; 9388 else 9389 env->subprog_info[i].linfo_idx = l_off; 9390 } 9391 9392 return 0; 9393 } 9394 9395 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9396 { 9397 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9398 unsigned int orig_prog_len = env->prog->len; 9399 int err; 9400 9401 if (bpf_prog_is_dev_bound(env->prog->aux)) 9402 bpf_prog_offload_remove_insns(env, off, cnt); 9403 9404 err = bpf_remove_insns(env->prog, off, cnt); 9405 if (err) 9406 return err; 9407 9408 err = adjust_subprog_starts_after_remove(env, off, cnt); 9409 if (err) 9410 return err; 9411 9412 err = bpf_adj_linfo_after_remove(env, off, cnt); 9413 if (err) 9414 return err; 9415 9416 memmove(aux_data + off, aux_data + off + cnt, 9417 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9418 9419 return 0; 9420 } 9421 9422 /* The verifier does more data flow analysis than llvm and will not 9423 * explore branches that are dead at run time. Malicious programs can 9424 * have dead code too. Therefore replace all dead at-run-time code 9425 * with 'ja -1'. 9426 * 9427 * Just nops are not optimal, e.g. if they would sit at the end of the 9428 * program and through another bug we would manage to jump there, then 9429 * we'd execute beyond program memory otherwise. Returning exception 9430 * code also wouldn't work since we can have subprogs where the dead 9431 * code could be located. 9432 */ 9433 static void sanitize_dead_code(struct bpf_verifier_env *env) 9434 { 9435 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9436 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9437 struct bpf_insn *insn = env->prog->insnsi; 9438 const int insn_cnt = env->prog->len; 9439 int i; 9440 9441 for (i = 0; i < insn_cnt; i++) { 9442 if (aux_data[i].seen) 9443 continue; 9444 memcpy(insn + i, &trap, sizeof(trap)); 9445 } 9446 } 9447 9448 static bool insn_is_cond_jump(u8 code) 9449 { 9450 u8 op; 9451 9452 if (BPF_CLASS(code) == BPF_JMP32) 9453 return true; 9454 9455 if (BPF_CLASS(code) != BPF_JMP) 9456 return false; 9457 9458 op = BPF_OP(code); 9459 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9460 } 9461 9462 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9463 { 9464 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9465 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9466 struct bpf_insn *insn = env->prog->insnsi; 9467 const int insn_cnt = env->prog->len; 9468 int i; 9469 9470 for (i = 0; i < insn_cnt; i++, insn++) { 9471 if (!insn_is_cond_jump(insn->code)) 9472 continue; 9473 9474 if (!aux_data[i + 1].seen) 9475 ja.off = insn->off; 9476 else if (!aux_data[i + 1 + insn->off].seen) 9477 ja.off = 0; 9478 else 9479 continue; 9480 9481 if (bpf_prog_is_dev_bound(env->prog->aux)) 9482 bpf_prog_offload_replace_insn(env, i, &ja); 9483 9484 memcpy(insn, &ja, sizeof(ja)); 9485 } 9486 } 9487 9488 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9489 { 9490 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9491 int insn_cnt = env->prog->len; 9492 int i, err; 9493 9494 for (i = 0; i < insn_cnt; i++) { 9495 int j; 9496 9497 j = 0; 9498 while (i + j < insn_cnt && !aux_data[i + j].seen) 9499 j++; 9500 if (!j) 9501 continue; 9502 9503 err = verifier_remove_insns(env, i, j); 9504 if (err) 9505 return err; 9506 insn_cnt = env->prog->len; 9507 } 9508 9509 return 0; 9510 } 9511 9512 static int opt_remove_nops(struct bpf_verifier_env *env) 9513 { 9514 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9515 struct bpf_insn *insn = env->prog->insnsi; 9516 int insn_cnt = env->prog->len; 9517 int i, err; 9518 9519 for (i = 0; i < insn_cnt; i++) { 9520 if (memcmp(&insn[i], &ja, sizeof(ja))) 9521 continue; 9522 9523 err = verifier_remove_insns(env, i, 1); 9524 if (err) 9525 return err; 9526 insn_cnt--; 9527 i--; 9528 } 9529 9530 return 0; 9531 } 9532 9533 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 9534 const union bpf_attr *attr) 9535 { 9536 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 9537 struct bpf_insn_aux_data *aux = env->insn_aux_data; 9538 int i, patch_len, delta = 0, len = env->prog->len; 9539 struct bpf_insn *insns = env->prog->insnsi; 9540 struct bpf_prog *new_prog; 9541 bool rnd_hi32; 9542 9543 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 9544 zext_patch[1] = BPF_ZEXT_REG(0); 9545 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 9546 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 9547 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 9548 for (i = 0; i < len; i++) { 9549 int adj_idx = i + delta; 9550 struct bpf_insn insn; 9551 9552 insn = insns[adj_idx]; 9553 if (!aux[adj_idx].zext_dst) { 9554 u8 code, class; 9555 u32 imm_rnd; 9556 9557 if (!rnd_hi32) 9558 continue; 9559 9560 code = insn.code; 9561 class = BPF_CLASS(code); 9562 if (insn_no_def(&insn)) 9563 continue; 9564 9565 /* NOTE: arg "reg" (the fourth one) is only used for 9566 * BPF_STX which has been ruled out in above 9567 * check, it is safe to pass NULL here. 9568 */ 9569 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 9570 if (class == BPF_LD && 9571 BPF_MODE(code) == BPF_IMM) 9572 i++; 9573 continue; 9574 } 9575 9576 /* ctx load could be transformed into wider load. */ 9577 if (class == BPF_LDX && 9578 aux[adj_idx].ptr_type == PTR_TO_CTX) 9579 continue; 9580 9581 imm_rnd = get_random_int(); 9582 rnd_hi32_patch[0] = insn; 9583 rnd_hi32_patch[1].imm = imm_rnd; 9584 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 9585 patch = rnd_hi32_patch; 9586 patch_len = 4; 9587 goto apply_patch_buffer; 9588 } 9589 9590 if (!bpf_jit_needs_zext()) 9591 continue; 9592 9593 zext_patch[0] = insn; 9594 zext_patch[1].dst_reg = insn.dst_reg; 9595 zext_patch[1].src_reg = insn.dst_reg; 9596 patch = zext_patch; 9597 patch_len = 2; 9598 apply_patch_buffer: 9599 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 9600 if (!new_prog) 9601 return -ENOMEM; 9602 env->prog = new_prog; 9603 insns = new_prog->insnsi; 9604 aux = env->insn_aux_data; 9605 delta += patch_len - 1; 9606 } 9607 9608 return 0; 9609 } 9610 9611 /* convert load instructions that access fields of a context type into a 9612 * sequence of instructions that access fields of the underlying structure: 9613 * struct __sk_buff -> struct sk_buff 9614 * struct bpf_sock_ops -> struct sock 9615 */ 9616 static int convert_ctx_accesses(struct bpf_verifier_env *env) 9617 { 9618 const struct bpf_verifier_ops *ops = env->ops; 9619 int i, cnt, size, ctx_field_size, delta = 0; 9620 const int insn_cnt = env->prog->len; 9621 struct bpf_insn insn_buf[16], *insn; 9622 u32 target_size, size_default, off; 9623 struct bpf_prog *new_prog; 9624 enum bpf_access_type type; 9625 bool is_narrower_load; 9626 9627 if (ops->gen_prologue || env->seen_direct_write) { 9628 if (!ops->gen_prologue) { 9629 verbose(env, "bpf verifier is misconfigured\n"); 9630 return -EINVAL; 9631 } 9632 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 9633 env->prog); 9634 if (cnt >= ARRAY_SIZE(insn_buf)) { 9635 verbose(env, "bpf verifier is misconfigured\n"); 9636 return -EINVAL; 9637 } else if (cnt) { 9638 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 9639 if (!new_prog) 9640 return -ENOMEM; 9641 9642 env->prog = new_prog; 9643 delta += cnt - 1; 9644 } 9645 } 9646 9647 if (bpf_prog_is_dev_bound(env->prog->aux)) 9648 return 0; 9649 9650 insn = env->prog->insnsi + delta; 9651 9652 for (i = 0; i < insn_cnt; i++, insn++) { 9653 bpf_convert_ctx_access_t convert_ctx_access; 9654 9655 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 9656 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 9657 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 9658 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 9659 type = BPF_READ; 9660 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 9661 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 9662 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 9663 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 9664 type = BPF_WRITE; 9665 else 9666 continue; 9667 9668 if (type == BPF_WRITE && 9669 env->insn_aux_data[i + delta].sanitize_stack_off) { 9670 struct bpf_insn patch[] = { 9671 /* Sanitize suspicious stack slot with zero. 9672 * There are no memory dependencies for this store, 9673 * since it's only using frame pointer and immediate 9674 * constant of zero 9675 */ 9676 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 9677 env->insn_aux_data[i + delta].sanitize_stack_off, 9678 0), 9679 /* the original STX instruction will immediately 9680 * overwrite the same stack slot with appropriate value 9681 */ 9682 *insn, 9683 }; 9684 9685 cnt = ARRAY_SIZE(patch); 9686 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 9687 if (!new_prog) 9688 return -ENOMEM; 9689 9690 delta += cnt - 1; 9691 env->prog = new_prog; 9692 insn = new_prog->insnsi + i + delta; 9693 continue; 9694 } 9695 9696 switch (env->insn_aux_data[i + delta].ptr_type) { 9697 case PTR_TO_CTX: 9698 if (!ops->convert_ctx_access) 9699 continue; 9700 convert_ctx_access = ops->convert_ctx_access; 9701 break; 9702 case PTR_TO_SOCKET: 9703 case PTR_TO_SOCK_COMMON: 9704 convert_ctx_access = bpf_sock_convert_ctx_access; 9705 break; 9706 case PTR_TO_TCP_SOCK: 9707 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 9708 break; 9709 case PTR_TO_XDP_SOCK: 9710 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 9711 break; 9712 case PTR_TO_BTF_ID: 9713 if (type == BPF_READ) { 9714 insn->code = BPF_LDX | BPF_PROBE_MEM | 9715 BPF_SIZE((insn)->code); 9716 env->prog->aux->num_exentries++; 9717 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9718 verbose(env, "Writes through BTF pointers are not allowed\n"); 9719 return -EINVAL; 9720 } 9721 continue; 9722 default: 9723 continue; 9724 } 9725 9726 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 9727 size = BPF_LDST_BYTES(insn); 9728 9729 /* If the read access is a narrower load of the field, 9730 * convert to a 4/8-byte load, to minimum program type specific 9731 * convert_ctx_access changes. If conversion is successful, 9732 * we will apply proper mask to the result. 9733 */ 9734 is_narrower_load = size < ctx_field_size; 9735 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 9736 off = insn->off; 9737 if (is_narrower_load) { 9738 u8 size_code; 9739 9740 if (type == BPF_WRITE) { 9741 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 9742 return -EINVAL; 9743 } 9744 9745 size_code = BPF_H; 9746 if (ctx_field_size == 4) 9747 size_code = BPF_W; 9748 else if (ctx_field_size == 8) 9749 size_code = BPF_DW; 9750 9751 insn->off = off & ~(size_default - 1); 9752 insn->code = BPF_LDX | BPF_MEM | size_code; 9753 } 9754 9755 target_size = 0; 9756 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 9757 &target_size); 9758 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 9759 (ctx_field_size && !target_size)) { 9760 verbose(env, "bpf verifier is misconfigured\n"); 9761 return -EINVAL; 9762 } 9763 9764 if (is_narrower_load && size < target_size) { 9765 u8 shift = bpf_ctx_narrow_access_offset( 9766 off, size, size_default) * 8; 9767 if (ctx_field_size <= 4) { 9768 if (shift) 9769 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 9770 insn->dst_reg, 9771 shift); 9772 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 9773 (1 << size * 8) - 1); 9774 } else { 9775 if (shift) 9776 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 9777 insn->dst_reg, 9778 shift); 9779 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 9780 (1ULL << size * 8) - 1); 9781 } 9782 } 9783 9784 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9785 if (!new_prog) 9786 return -ENOMEM; 9787 9788 delta += cnt - 1; 9789 9790 /* keep walking new program and skip insns we just inserted */ 9791 env->prog = new_prog; 9792 insn = new_prog->insnsi + i + delta; 9793 } 9794 9795 return 0; 9796 } 9797 9798 static int jit_subprogs(struct bpf_verifier_env *env) 9799 { 9800 struct bpf_prog *prog = env->prog, **func, *tmp; 9801 int i, j, subprog_start, subprog_end = 0, len, subprog; 9802 struct bpf_insn *insn; 9803 void *old_bpf_func; 9804 int err; 9805 9806 if (env->subprog_cnt <= 1) 9807 return 0; 9808 9809 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9810 if (insn->code != (BPF_JMP | BPF_CALL) || 9811 insn->src_reg != BPF_PSEUDO_CALL) 9812 continue; 9813 /* Upon error here we cannot fall back to interpreter but 9814 * need a hard reject of the program. Thus -EFAULT is 9815 * propagated in any case. 9816 */ 9817 subprog = find_subprog(env, i + insn->imm + 1); 9818 if (subprog < 0) { 9819 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9820 i + insn->imm + 1); 9821 return -EFAULT; 9822 } 9823 /* temporarily remember subprog id inside insn instead of 9824 * aux_data, since next loop will split up all insns into funcs 9825 */ 9826 insn->off = subprog; 9827 /* remember original imm in case JIT fails and fallback 9828 * to interpreter will be needed 9829 */ 9830 env->insn_aux_data[i].call_imm = insn->imm; 9831 /* point imm to __bpf_call_base+1 from JITs point of view */ 9832 insn->imm = 1; 9833 } 9834 9835 err = bpf_prog_alloc_jited_linfo(prog); 9836 if (err) 9837 goto out_undo_insn; 9838 9839 err = -ENOMEM; 9840 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9841 if (!func) 9842 goto out_undo_insn; 9843 9844 for (i = 0; i < env->subprog_cnt; i++) { 9845 subprog_start = subprog_end; 9846 subprog_end = env->subprog_info[i + 1].start; 9847 9848 len = subprog_end - subprog_start; 9849 /* BPF_PROG_RUN doesn't call subprogs directly, 9850 * hence main prog stats include the runtime of subprogs. 9851 * subprogs don't have IDs and not reachable via prog_get_next_id 9852 * func[i]->aux->stats will never be accessed and stays NULL 9853 */ 9854 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9855 if (!func[i]) 9856 goto out_free; 9857 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9858 len * sizeof(struct bpf_insn)); 9859 func[i]->type = prog->type; 9860 func[i]->len = len; 9861 if (bpf_prog_calc_tag(func[i])) 9862 goto out_free; 9863 func[i]->is_func = 1; 9864 func[i]->aux->func_idx = i; 9865 /* the btf and func_info will be freed only at prog->aux */ 9866 func[i]->aux->btf = prog->aux->btf; 9867 func[i]->aux->func_info = prog->aux->func_info; 9868 9869 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9870 * Long term would need debug info to populate names 9871 */ 9872 func[i]->aux->name[0] = 'F'; 9873 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9874 func[i]->jit_requested = 1; 9875 func[i]->aux->linfo = prog->aux->linfo; 9876 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9877 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9878 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9879 func[i] = bpf_int_jit_compile(func[i]); 9880 if (!func[i]->jited) { 9881 err = -ENOTSUPP; 9882 goto out_free; 9883 } 9884 cond_resched(); 9885 } 9886 /* at this point all bpf functions were successfully JITed 9887 * now populate all bpf_calls with correct addresses and 9888 * run last pass of JIT 9889 */ 9890 for (i = 0; i < env->subprog_cnt; i++) { 9891 insn = func[i]->insnsi; 9892 for (j = 0; j < func[i]->len; j++, insn++) { 9893 if (insn->code != (BPF_JMP | BPF_CALL) || 9894 insn->src_reg != BPF_PSEUDO_CALL) 9895 continue; 9896 subprog = insn->off; 9897 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9898 __bpf_call_base; 9899 } 9900 9901 /* we use the aux data to keep a list of the start addresses 9902 * of the JITed images for each function in the program 9903 * 9904 * for some architectures, such as powerpc64, the imm field 9905 * might not be large enough to hold the offset of the start 9906 * address of the callee's JITed image from __bpf_call_base 9907 * 9908 * in such cases, we can lookup the start address of a callee 9909 * by using its subprog id, available from the off field of 9910 * the call instruction, as an index for this list 9911 */ 9912 func[i]->aux->func = func; 9913 func[i]->aux->func_cnt = env->subprog_cnt; 9914 } 9915 for (i = 0; i < env->subprog_cnt; i++) { 9916 old_bpf_func = func[i]->bpf_func; 9917 tmp = bpf_int_jit_compile(func[i]); 9918 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9919 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9920 err = -ENOTSUPP; 9921 goto out_free; 9922 } 9923 cond_resched(); 9924 } 9925 9926 /* finally lock prog and jit images for all functions and 9927 * populate kallsysm 9928 */ 9929 for (i = 0; i < env->subprog_cnt; i++) { 9930 bpf_prog_lock_ro(func[i]); 9931 bpf_prog_kallsyms_add(func[i]); 9932 } 9933 9934 /* Last step: make now unused interpreter insns from main 9935 * prog consistent for later dump requests, so they can 9936 * later look the same as if they were interpreted only. 9937 */ 9938 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9939 if (insn->code != (BPF_JMP | BPF_CALL) || 9940 insn->src_reg != BPF_PSEUDO_CALL) 9941 continue; 9942 insn->off = env->insn_aux_data[i].call_imm; 9943 subprog = find_subprog(env, i + insn->off + 1); 9944 insn->imm = subprog; 9945 } 9946 9947 prog->jited = 1; 9948 prog->bpf_func = func[0]->bpf_func; 9949 prog->aux->func = func; 9950 prog->aux->func_cnt = env->subprog_cnt; 9951 bpf_prog_free_unused_jited_linfo(prog); 9952 return 0; 9953 out_free: 9954 for (i = 0; i < env->subprog_cnt; i++) 9955 if (func[i]) 9956 bpf_jit_free(func[i]); 9957 kfree(func); 9958 out_undo_insn: 9959 /* cleanup main prog to be interpreted */ 9960 prog->jit_requested = 0; 9961 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9962 if (insn->code != (BPF_JMP | BPF_CALL) || 9963 insn->src_reg != BPF_PSEUDO_CALL) 9964 continue; 9965 insn->off = 0; 9966 insn->imm = env->insn_aux_data[i].call_imm; 9967 } 9968 bpf_prog_free_jited_linfo(prog); 9969 return err; 9970 } 9971 9972 static int fixup_call_args(struct bpf_verifier_env *env) 9973 { 9974 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9975 struct bpf_prog *prog = env->prog; 9976 struct bpf_insn *insn = prog->insnsi; 9977 int i, depth; 9978 #endif 9979 int err = 0; 9980 9981 if (env->prog->jit_requested && 9982 !bpf_prog_is_dev_bound(env->prog->aux)) { 9983 err = jit_subprogs(env); 9984 if (err == 0) 9985 return 0; 9986 if (err == -EFAULT) 9987 return err; 9988 } 9989 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9990 for (i = 0; i < prog->len; i++, insn++) { 9991 if (insn->code != (BPF_JMP | BPF_CALL) || 9992 insn->src_reg != BPF_PSEUDO_CALL) 9993 continue; 9994 depth = get_callee_stack_depth(env, insn, i); 9995 if (depth < 0) 9996 return depth; 9997 bpf_patch_call_args(insn, depth); 9998 } 9999 err = 0; 10000 #endif 10001 return err; 10002 } 10003 10004 /* fixup insn->imm field of bpf_call instructions 10005 * and inline eligible helpers as explicit sequence of BPF instructions 10006 * 10007 * this function is called after eBPF program passed verification 10008 */ 10009 static int fixup_bpf_calls(struct bpf_verifier_env *env) 10010 { 10011 struct bpf_prog *prog = env->prog; 10012 bool expect_blinding = bpf_jit_blinding_enabled(prog); 10013 struct bpf_insn *insn = prog->insnsi; 10014 const struct bpf_func_proto *fn; 10015 const int insn_cnt = prog->len; 10016 const struct bpf_map_ops *ops; 10017 struct bpf_insn_aux_data *aux; 10018 struct bpf_insn insn_buf[16]; 10019 struct bpf_prog *new_prog; 10020 struct bpf_map *map_ptr; 10021 int i, ret, cnt, delta = 0; 10022 10023 for (i = 0; i < insn_cnt; i++, insn++) { 10024 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 10025 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10026 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 10027 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10028 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 10029 struct bpf_insn mask_and_div[] = { 10030 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10031 /* Rx div 0 -> 0 */ 10032 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 10033 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 10034 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 10035 *insn, 10036 }; 10037 struct bpf_insn mask_and_mod[] = { 10038 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10039 /* Rx mod 0 -> Rx */ 10040 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 10041 *insn, 10042 }; 10043 struct bpf_insn *patchlet; 10044 10045 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10046 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10047 patchlet = mask_and_div + (is64 ? 1 : 0); 10048 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 10049 } else { 10050 patchlet = mask_and_mod + (is64 ? 1 : 0); 10051 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 10052 } 10053 10054 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 10055 if (!new_prog) 10056 return -ENOMEM; 10057 10058 delta += cnt - 1; 10059 env->prog = prog = new_prog; 10060 insn = new_prog->insnsi + i + delta; 10061 continue; 10062 } 10063 10064 if (BPF_CLASS(insn->code) == BPF_LD && 10065 (BPF_MODE(insn->code) == BPF_ABS || 10066 BPF_MODE(insn->code) == BPF_IND)) { 10067 cnt = env->ops->gen_ld_abs(insn, insn_buf); 10068 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10069 verbose(env, "bpf verifier is misconfigured\n"); 10070 return -EINVAL; 10071 } 10072 10073 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10074 if (!new_prog) 10075 return -ENOMEM; 10076 10077 delta += cnt - 1; 10078 env->prog = prog = new_prog; 10079 insn = new_prog->insnsi + i + delta; 10080 continue; 10081 } 10082 10083 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 10084 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 10085 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 10086 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 10087 struct bpf_insn insn_buf[16]; 10088 struct bpf_insn *patch = &insn_buf[0]; 10089 bool issrc, isneg; 10090 u32 off_reg; 10091 10092 aux = &env->insn_aux_data[i + delta]; 10093 if (!aux->alu_state || 10094 aux->alu_state == BPF_ALU_NON_POINTER) 10095 continue; 10096 10097 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 10098 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 10099 BPF_ALU_SANITIZE_SRC; 10100 10101 off_reg = issrc ? insn->src_reg : insn->dst_reg; 10102 if (isneg) 10103 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10104 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 10105 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 10106 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 10107 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 10108 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 10109 if (issrc) { 10110 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 10111 off_reg); 10112 insn->src_reg = BPF_REG_AX; 10113 } else { 10114 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 10115 BPF_REG_AX); 10116 } 10117 if (isneg) 10118 insn->code = insn->code == code_add ? 10119 code_sub : code_add; 10120 *patch++ = *insn; 10121 if (issrc && isneg) 10122 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10123 cnt = patch - insn_buf; 10124 10125 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10126 if (!new_prog) 10127 return -ENOMEM; 10128 10129 delta += cnt - 1; 10130 env->prog = prog = new_prog; 10131 insn = new_prog->insnsi + i + delta; 10132 continue; 10133 } 10134 10135 if (insn->code != (BPF_JMP | BPF_CALL)) 10136 continue; 10137 if (insn->src_reg == BPF_PSEUDO_CALL) 10138 continue; 10139 10140 if (insn->imm == BPF_FUNC_get_route_realm) 10141 prog->dst_needed = 1; 10142 if (insn->imm == BPF_FUNC_get_prandom_u32) 10143 bpf_user_rnd_init_once(); 10144 if (insn->imm == BPF_FUNC_override_return) 10145 prog->kprobe_override = 1; 10146 if (insn->imm == BPF_FUNC_tail_call) { 10147 /* If we tail call into other programs, we 10148 * cannot make any assumptions since they can 10149 * be replaced dynamically during runtime in 10150 * the program array. 10151 */ 10152 prog->cb_access = 1; 10153 env->prog->aux->stack_depth = MAX_BPF_STACK; 10154 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 10155 10156 /* mark bpf_tail_call as different opcode to avoid 10157 * conditional branch in the interpeter for every normal 10158 * call and to prevent accidental JITing by JIT compiler 10159 * that doesn't support bpf_tail_call yet 10160 */ 10161 insn->imm = 0; 10162 insn->code = BPF_JMP | BPF_TAIL_CALL; 10163 10164 aux = &env->insn_aux_data[i + delta]; 10165 if (env->bpf_capable && !expect_blinding && 10166 prog->jit_requested && 10167 !bpf_map_key_poisoned(aux) && 10168 !bpf_map_ptr_poisoned(aux) && 10169 !bpf_map_ptr_unpriv(aux)) { 10170 struct bpf_jit_poke_descriptor desc = { 10171 .reason = BPF_POKE_REASON_TAIL_CALL, 10172 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 10173 .tail_call.key = bpf_map_key_immediate(aux), 10174 }; 10175 10176 ret = bpf_jit_add_poke_descriptor(prog, &desc); 10177 if (ret < 0) { 10178 verbose(env, "adding tail call poke descriptor failed\n"); 10179 return ret; 10180 } 10181 10182 insn->imm = ret + 1; 10183 continue; 10184 } 10185 10186 if (!bpf_map_ptr_unpriv(aux)) 10187 continue; 10188 10189 /* instead of changing every JIT dealing with tail_call 10190 * emit two extra insns: 10191 * if (index >= max_entries) goto out; 10192 * index &= array->index_mask; 10193 * to avoid out-of-bounds cpu speculation 10194 */ 10195 if (bpf_map_ptr_poisoned(aux)) { 10196 verbose(env, "tail_call abusing map_ptr\n"); 10197 return -EINVAL; 10198 } 10199 10200 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10201 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 10202 map_ptr->max_entries, 2); 10203 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 10204 container_of(map_ptr, 10205 struct bpf_array, 10206 map)->index_mask); 10207 insn_buf[2] = *insn; 10208 cnt = 3; 10209 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10210 if (!new_prog) 10211 return -ENOMEM; 10212 10213 delta += cnt - 1; 10214 env->prog = prog = new_prog; 10215 insn = new_prog->insnsi + i + delta; 10216 continue; 10217 } 10218 10219 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10220 * and other inlining handlers are currently limited to 64 bit 10221 * only. 10222 */ 10223 if (prog->jit_requested && BITS_PER_LONG == 64 && 10224 (insn->imm == BPF_FUNC_map_lookup_elem || 10225 insn->imm == BPF_FUNC_map_update_elem || 10226 insn->imm == BPF_FUNC_map_delete_elem || 10227 insn->imm == BPF_FUNC_map_push_elem || 10228 insn->imm == BPF_FUNC_map_pop_elem || 10229 insn->imm == BPF_FUNC_map_peek_elem)) { 10230 aux = &env->insn_aux_data[i + delta]; 10231 if (bpf_map_ptr_poisoned(aux)) 10232 goto patch_call_imm; 10233 10234 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10235 ops = map_ptr->ops; 10236 if (insn->imm == BPF_FUNC_map_lookup_elem && 10237 ops->map_gen_lookup) { 10238 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10239 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10240 verbose(env, "bpf verifier is misconfigured\n"); 10241 return -EINVAL; 10242 } 10243 10244 new_prog = bpf_patch_insn_data(env, i + delta, 10245 insn_buf, cnt); 10246 if (!new_prog) 10247 return -ENOMEM; 10248 10249 delta += cnt - 1; 10250 env->prog = prog = new_prog; 10251 insn = new_prog->insnsi + i + delta; 10252 continue; 10253 } 10254 10255 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10256 (void *(*)(struct bpf_map *map, void *key))NULL)); 10257 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10258 (int (*)(struct bpf_map *map, void *key))NULL)); 10259 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10260 (int (*)(struct bpf_map *map, void *key, void *value, 10261 u64 flags))NULL)); 10262 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10263 (int (*)(struct bpf_map *map, void *value, 10264 u64 flags))NULL)); 10265 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10266 (int (*)(struct bpf_map *map, void *value))NULL)); 10267 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10268 (int (*)(struct bpf_map *map, void *value))NULL)); 10269 10270 switch (insn->imm) { 10271 case BPF_FUNC_map_lookup_elem: 10272 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10273 __bpf_call_base; 10274 continue; 10275 case BPF_FUNC_map_update_elem: 10276 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10277 __bpf_call_base; 10278 continue; 10279 case BPF_FUNC_map_delete_elem: 10280 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10281 __bpf_call_base; 10282 continue; 10283 case BPF_FUNC_map_push_elem: 10284 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10285 __bpf_call_base; 10286 continue; 10287 case BPF_FUNC_map_pop_elem: 10288 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10289 __bpf_call_base; 10290 continue; 10291 case BPF_FUNC_map_peek_elem: 10292 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10293 __bpf_call_base; 10294 continue; 10295 } 10296 10297 goto patch_call_imm; 10298 } 10299 10300 if (prog->jit_requested && BITS_PER_LONG == 64 && 10301 insn->imm == BPF_FUNC_jiffies64) { 10302 struct bpf_insn ld_jiffies_addr[2] = { 10303 BPF_LD_IMM64(BPF_REG_0, 10304 (unsigned long)&jiffies), 10305 }; 10306 10307 insn_buf[0] = ld_jiffies_addr[0]; 10308 insn_buf[1] = ld_jiffies_addr[1]; 10309 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10310 BPF_REG_0, 0); 10311 cnt = 3; 10312 10313 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10314 cnt); 10315 if (!new_prog) 10316 return -ENOMEM; 10317 10318 delta += cnt - 1; 10319 env->prog = prog = new_prog; 10320 insn = new_prog->insnsi + i + delta; 10321 continue; 10322 } 10323 10324 patch_call_imm: 10325 fn = env->ops->get_func_proto(insn->imm, env->prog); 10326 /* all functions that have prototype and verifier allowed 10327 * programs to call them, must be real in-kernel functions 10328 */ 10329 if (!fn->func) { 10330 verbose(env, 10331 "kernel subsystem misconfigured func %s#%d\n", 10332 func_id_name(insn->imm), insn->imm); 10333 return -EFAULT; 10334 } 10335 insn->imm = fn->func - __bpf_call_base; 10336 } 10337 10338 /* Since poke tab is now finalized, publish aux to tracker. */ 10339 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10340 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10341 if (!map_ptr->ops->map_poke_track || 10342 !map_ptr->ops->map_poke_untrack || 10343 !map_ptr->ops->map_poke_run) { 10344 verbose(env, "bpf verifier is misconfigured\n"); 10345 return -EINVAL; 10346 } 10347 10348 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10349 if (ret < 0) { 10350 verbose(env, "tracking tail call prog failed\n"); 10351 return ret; 10352 } 10353 } 10354 10355 return 0; 10356 } 10357 10358 static void free_states(struct bpf_verifier_env *env) 10359 { 10360 struct bpf_verifier_state_list *sl, *sln; 10361 int i; 10362 10363 sl = env->free_list; 10364 while (sl) { 10365 sln = sl->next; 10366 free_verifier_state(&sl->state, false); 10367 kfree(sl); 10368 sl = sln; 10369 } 10370 env->free_list = NULL; 10371 10372 if (!env->explored_states) 10373 return; 10374 10375 for (i = 0; i < state_htab_size(env); i++) { 10376 sl = env->explored_states[i]; 10377 10378 while (sl) { 10379 sln = sl->next; 10380 free_verifier_state(&sl->state, false); 10381 kfree(sl); 10382 sl = sln; 10383 } 10384 env->explored_states[i] = NULL; 10385 } 10386 } 10387 10388 /* The verifier is using insn_aux_data[] to store temporary data during 10389 * verification and to store information for passes that run after the 10390 * verification like dead code sanitization. do_check_common() for subprogram N 10391 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10392 * temporary data after do_check_common() finds that subprogram N cannot be 10393 * verified independently. pass_cnt counts the number of times 10394 * do_check_common() was run and insn->aux->seen tells the pass number 10395 * insn_aux_data was touched. These variables are compared to clear temporary 10396 * data from failed pass. For testing and experiments do_check_common() can be 10397 * run multiple times even when prior attempt to verify is unsuccessful. 10398 */ 10399 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10400 { 10401 struct bpf_insn *insn = env->prog->insnsi; 10402 struct bpf_insn_aux_data *aux; 10403 int i, class; 10404 10405 for (i = 0; i < env->prog->len; i++) { 10406 class = BPF_CLASS(insn[i].code); 10407 if (class != BPF_LDX && class != BPF_STX) 10408 continue; 10409 aux = &env->insn_aux_data[i]; 10410 if (aux->seen != env->pass_cnt) 10411 continue; 10412 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10413 } 10414 } 10415 10416 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10417 { 10418 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10419 struct bpf_verifier_state *state; 10420 struct bpf_reg_state *regs; 10421 int ret, i; 10422 10423 env->prev_linfo = NULL; 10424 env->pass_cnt++; 10425 10426 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10427 if (!state) 10428 return -ENOMEM; 10429 state->curframe = 0; 10430 state->speculative = false; 10431 state->branches = 1; 10432 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10433 if (!state->frame[0]) { 10434 kfree(state); 10435 return -ENOMEM; 10436 } 10437 env->cur_state = state; 10438 init_func_state(env, state->frame[0], 10439 BPF_MAIN_FUNC /* callsite */, 10440 0 /* frameno */, 10441 subprog); 10442 10443 regs = state->frame[state->curframe]->regs; 10444 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10445 ret = btf_prepare_func_args(env, subprog, regs); 10446 if (ret) 10447 goto out; 10448 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 10449 if (regs[i].type == PTR_TO_CTX) 10450 mark_reg_known_zero(env, regs, i); 10451 else if (regs[i].type == SCALAR_VALUE) 10452 mark_reg_unknown(env, regs, i); 10453 } 10454 } else { 10455 /* 1st arg to a function */ 10456 regs[BPF_REG_1].type = PTR_TO_CTX; 10457 mark_reg_known_zero(env, regs, BPF_REG_1); 10458 ret = btf_check_func_arg_match(env, subprog, regs); 10459 if (ret == -EFAULT) 10460 /* unlikely verifier bug. abort. 10461 * ret == 0 and ret < 0 are sadly acceptable for 10462 * main() function due to backward compatibility. 10463 * Like socket filter program may be written as: 10464 * int bpf_prog(struct pt_regs *ctx) 10465 * and never dereference that ctx in the program. 10466 * 'struct pt_regs' is a type mismatch for socket 10467 * filter that should be using 'struct __sk_buff'. 10468 */ 10469 goto out; 10470 } 10471 10472 ret = do_check(env); 10473 out: 10474 /* check for NULL is necessary, since cur_state can be freed inside 10475 * do_check() under memory pressure. 10476 */ 10477 if (env->cur_state) { 10478 free_verifier_state(env->cur_state, true); 10479 env->cur_state = NULL; 10480 } 10481 while (!pop_stack(env, NULL, NULL, false)); 10482 if (!ret && pop_log) 10483 bpf_vlog_reset(&env->log, 0); 10484 free_states(env); 10485 if (ret) 10486 /* clean aux data in case subprog was rejected */ 10487 sanitize_insn_aux_data(env); 10488 return ret; 10489 } 10490 10491 /* Verify all global functions in a BPF program one by one based on their BTF. 10492 * All global functions must pass verification. Otherwise the whole program is rejected. 10493 * Consider: 10494 * int bar(int); 10495 * int foo(int f) 10496 * { 10497 * return bar(f); 10498 * } 10499 * int bar(int b) 10500 * { 10501 * ... 10502 * } 10503 * foo() will be verified first for R1=any_scalar_value. During verification it 10504 * will be assumed that bar() already verified successfully and call to bar() 10505 * from foo() will be checked for type match only. Later bar() will be verified 10506 * independently to check that it's safe for R1=any_scalar_value. 10507 */ 10508 static int do_check_subprogs(struct bpf_verifier_env *env) 10509 { 10510 struct bpf_prog_aux *aux = env->prog->aux; 10511 int i, ret; 10512 10513 if (!aux->func_info) 10514 return 0; 10515 10516 for (i = 1; i < env->subprog_cnt; i++) { 10517 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 10518 continue; 10519 env->insn_idx = env->subprog_info[i].start; 10520 WARN_ON_ONCE(env->insn_idx == 0); 10521 ret = do_check_common(env, i); 10522 if (ret) { 10523 return ret; 10524 } else if (env->log.level & BPF_LOG_LEVEL) { 10525 verbose(env, 10526 "Func#%d is safe for any args that match its prototype\n", 10527 i); 10528 } 10529 } 10530 return 0; 10531 } 10532 10533 static int do_check_main(struct bpf_verifier_env *env) 10534 { 10535 int ret; 10536 10537 env->insn_idx = 0; 10538 ret = do_check_common(env, 0); 10539 if (!ret) 10540 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 10541 return ret; 10542 } 10543 10544 10545 static void print_verification_stats(struct bpf_verifier_env *env) 10546 { 10547 int i; 10548 10549 if (env->log.level & BPF_LOG_STATS) { 10550 verbose(env, "verification time %lld usec\n", 10551 div_u64(env->verification_time, 1000)); 10552 verbose(env, "stack depth "); 10553 for (i = 0; i < env->subprog_cnt; i++) { 10554 u32 depth = env->subprog_info[i].stack_depth; 10555 10556 verbose(env, "%d", depth); 10557 if (i + 1 < env->subprog_cnt) 10558 verbose(env, "+"); 10559 } 10560 verbose(env, "\n"); 10561 } 10562 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 10563 "total_states %d peak_states %d mark_read %d\n", 10564 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 10565 env->max_states_per_insn, env->total_states, 10566 env->peak_states, env->longest_mark_read_walk); 10567 } 10568 10569 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 10570 { 10571 const struct btf_type *t, *func_proto; 10572 const struct bpf_struct_ops *st_ops; 10573 const struct btf_member *member; 10574 struct bpf_prog *prog = env->prog; 10575 u32 btf_id, member_idx; 10576 const char *mname; 10577 10578 btf_id = prog->aux->attach_btf_id; 10579 st_ops = bpf_struct_ops_find(btf_id); 10580 if (!st_ops) { 10581 verbose(env, "attach_btf_id %u is not a supported struct\n", 10582 btf_id); 10583 return -ENOTSUPP; 10584 } 10585 10586 t = st_ops->type; 10587 member_idx = prog->expected_attach_type; 10588 if (member_idx >= btf_type_vlen(t)) { 10589 verbose(env, "attach to invalid member idx %u of struct %s\n", 10590 member_idx, st_ops->name); 10591 return -EINVAL; 10592 } 10593 10594 member = &btf_type_member(t)[member_idx]; 10595 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 10596 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 10597 NULL); 10598 if (!func_proto) { 10599 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 10600 mname, member_idx, st_ops->name); 10601 return -EINVAL; 10602 } 10603 10604 if (st_ops->check_member) { 10605 int err = st_ops->check_member(t, member); 10606 10607 if (err) { 10608 verbose(env, "attach to unsupported member %s of struct %s\n", 10609 mname, st_ops->name); 10610 return err; 10611 } 10612 } 10613 10614 prog->aux->attach_func_proto = func_proto; 10615 prog->aux->attach_func_name = mname; 10616 env->ops = st_ops->verifier_ops; 10617 10618 return 0; 10619 } 10620 #define SECURITY_PREFIX "security_" 10621 10622 static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr) 10623 { 10624 if (within_error_injection_list(addr) || 10625 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 10626 sizeof(SECURITY_PREFIX) - 1)) 10627 return 0; 10628 10629 return -EINVAL; 10630 } 10631 10632 static int check_attach_btf_id(struct bpf_verifier_env *env) 10633 { 10634 struct bpf_prog *prog = env->prog; 10635 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 10636 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 10637 u32 btf_id = prog->aux->attach_btf_id; 10638 const char prefix[] = "btf_trace_"; 10639 struct btf_func_model fmodel; 10640 int ret = 0, subprog = -1, i; 10641 struct bpf_trampoline *tr; 10642 const struct btf_type *t; 10643 bool conservative = true; 10644 const char *tname; 10645 struct btf *btf; 10646 long addr; 10647 u64 key; 10648 10649 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 10650 return check_struct_ops_btf_id(env); 10651 10652 if (prog->type != BPF_PROG_TYPE_TRACING && 10653 prog->type != BPF_PROG_TYPE_LSM && 10654 !prog_extension) 10655 return 0; 10656 10657 if (!btf_id) { 10658 verbose(env, "Tracing programs must provide btf_id\n"); 10659 return -EINVAL; 10660 } 10661 btf = bpf_prog_get_target_btf(prog); 10662 if (!btf) { 10663 verbose(env, 10664 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 10665 return -EINVAL; 10666 } 10667 t = btf_type_by_id(btf, btf_id); 10668 if (!t) { 10669 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 10670 return -EINVAL; 10671 } 10672 tname = btf_name_by_offset(btf, t->name_off); 10673 if (!tname) { 10674 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 10675 return -EINVAL; 10676 } 10677 if (tgt_prog) { 10678 struct bpf_prog_aux *aux = tgt_prog->aux; 10679 10680 for (i = 0; i < aux->func_info_cnt; i++) 10681 if (aux->func_info[i].type_id == btf_id) { 10682 subprog = i; 10683 break; 10684 } 10685 if (subprog == -1) { 10686 verbose(env, "Subprog %s doesn't exist\n", tname); 10687 return -EINVAL; 10688 } 10689 conservative = aux->func_info_aux[subprog].unreliable; 10690 if (prog_extension) { 10691 if (conservative) { 10692 verbose(env, 10693 "Cannot replace static functions\n"); 10694 return -EINVAL; 10695 } 10696 if (!prog->jit_requested) { 10697 verbose(env, 10698 "Extension programs should be JITed\n"); 10699 return -EINVAL; 10700 } 10701 env->ops = bpf_verifier_ops[tgt_prog->type]; 10702 prog->expected_attach_type = tgt_prog->expected_attach_type; 10703 } 10704 if (!tgt_prog->jited) { 10705 verbose(env, "Can attach to only JITed progs\n"); 10706 return -EINVAL; 10707 } 10708 if (tgt_prog->type == prog->type) { 10709 /* Cannot fentry/fexit another fentry/fexit program. 10710 * Cannot attach program extension to another extension. 10711 * It's ok to attach fentry/fexit to extension program. 10712 */ 10713 verbose(env, "Cannot recursively attach\n"); 10714 return -EINVAL; 10715 } 10716 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 10717 prog_extension && 10718 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 10719 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 10720 /* Program extensions can extend all program types 10721 * except fentry/fexit. The reason is the following. 10722 * The fentry/fexit programs are used for performance 10723 * analysis, stats and can be attached to any program 10724 * type except themselves. When extension program is 10725 * replacing XDP function it is necessary to allow 10726 * performance analysis of all functions. Both original 10727 * XDP program and its program extension. Hence 10728 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 10729 * allowed. If extending of fentry/fexit was allowed it 10730 * would be possible to create long call chain 10731 * fentry->extension->fentry->extension beyond 10732 * reasonable stack size. Hence extending fentry is not 10733 * allowed. 10734 */ 10735 verbose(env, "Cannot extend fentry/fexit\n"); 10736 return -EINVAL; 10737 } 10738 key = ((u64)aux->id) << 32 | btf_id; 10739 } else { 10740 if (prog_extension) { 10741 verbose(env, "Cannot replace kernel functions\n"); 10742 return -EINVAL; 10743 } 10744 key = btf_id; 10745 } 10746 10747 switch (prog->expected_attach_type) { 10748 case BPF_TRACE_RAW_TP: 10749 if (tgt_prog) { 10750 verbose(env, 10751 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 10752 return -EINVAL; 10753 } 10754 if (!btf_type_is_typedef(t)) { 10755 verbose(env, "attach_btf_id %u is not a typedef\n", 10756 btf_id); 10757 return -EINVAL; 10758 } 10759 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 10760 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 10761 btf_id, tname); 10762 return -EINVAL; 10763 } 10764 tname += sizeof(prefix) - 1; 10765 t = btf_type_by_id(btf, t->type); 10766 if (!btf_type_is_ptr(t)) 10767 /* should never happen in valid vmlinux build */ 10768 return -EINVAL; 10769 t = btf_type_by_id(btf, t->type); 10770 if (!btf_type_is_func_proto(t)) 10771 /* should never happen in valid vmlinux build */ 10772 return -EINVAL; 10773 10774 /* remember two read only pointers that are valid for 10775 * the life time of the kernel 10776 */ 10777 prog->aux->attach_func_name = tname; 10778 prog->aux->attach_func_proto = t; 10779 prog->aux->attach_btf_trace = true; 10780 return 0; 10781 case BPF_TRACE_ITER: 10782 if (!btf_type_is_func(t)) { 10783 verbose(env, "attach_btf_id %u is not a function\n", 10784 btf_id); 10785 return -EINVAL; 10786 } 10787 t = btf_type_by_id(btf, t->type); 10788 if (!btf_type_is_func_proto(t)) 10789 return -EINVAL; 10790 prog->aux->attach_func_name = tname; 10791 prog->aux->attach_func_proto = t; 10792 if (!bpf_iter_prog_supported(prog)) 10793 return -EINVAL; 10794 ret = btf_distill_func_proto(&env->log, btf, t, 10795 tname, &fmodel); 10796 return ret; 10797 default: 10798 if (!prog_extension) 10799 return -EINVAL; 10800 /* fallthrough */ 10801 case BPF_MODIFY_RETURN: 10802 case BPF_LSM_MAC: 10803 case BPF_TRACE_FENTRY: 10804 case BPF_TRACE_FEXIT: 10805 prog->aux->attach_func_name = tname; 10806 if (prog->type == BPF_PROG_TYPE_LSM) { 10807 ret = bpf_lsm_verify_prog(&env->log, prog); 10808 if (ret < 0) 10809 return ret; 10810 } 10811 10812 if (!btf_type_is_func(t)) { 10813 verbose(env, "attach_btf_id %u is not a function\n", 10814 btf_id); 10815 return -EINVAL; 10816 } 10817 if (prog_extension && 10818 btf_check_type_match(env, prog, btf, t)) 10819 return -EINVAL; 10820 t = btf_type_by_id(btf, t->type); 10821 if (!btf_type_is_func_proto(t)) 10822 return -EINVAL; 10823 tr = bpf_trampoline_lookup(key); 10824 if (!tr) 10825 return -ENOMEM; 10826 /* t is either vmlinux type or another program's type */ 10827 prog->aux->attach_func_proto = t; 10828 mutex_lock(&tr->mutex); 10829 if (tr->func.addr) { 10830 prog->aux->trampoline = tr; 10831 goto out; 10832 } 10833 if (tgt_prog && conservative) { 10834 prog->aux->attach_func_proto = NULL; 10835 t = NULL; 10836 } 10837 ret = btf_distill_func_proto(&env->log, btf, t, 10838 tname, &tr->func.model); 10839 if (ret < 0) 10840 goto out; 10841 if (tgt_prog) { 10842 if (subprog == 0) 10843 addr = (long) tgt_prog->bpf_func; 10844 else 10845 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 10846 } else { 10847 addr = kallsyms_lookup_name(tname); 10848 if (!addr) { 10849 verbose(env, 10850 "The address of function %s cannot be found\n", 10851 tname); 10852 ret = -ENOENT; 10853 goto out; 10854 } 10855 } 10856 10857 if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 10858 ret = check_attach_modify_return(prog, addr); 10859 if (ret) 10860 verbose(env, "%s() is not modifiable\n", 10861 prog->aux->attach_func_name); 10862 } 10863 10864 if (ret) 10865 goto out; 10866 tr->func.addr = (void *)addr; 10867 prog->aux->trampoline = tr; 10868 out: 10869 mutex_unlock(&tr->mutex); 10870 if (ret) 10871 bpf_trampoline_put(tr); 10872 return ret; 10873 } 10874 } 10875 10876 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10877 union bpf_attr __user *uattr) 10878 { 10879 u64 start_time = ktime_get_ns(); 10880 struct bpf_verifier_env *env; 10881 struct bpf_verifier_log *log; 10882 int i, len, ret = -EINVAL; 10883 bool is_priv; 10884 10885 /* no program is valid */ 10886 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10887 return -EINVAL; 10888 10889 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10890 * allocate/free it every time bpf_check() is called 10891 */ 10892 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10893 if (!env) 10894 return -ENOMEM; 10895 log = &env->log; 10896 10897 len = (*prog)->len; 10898 env->insn_aux_data = 10899 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10900 ret = -ENOMEM; 10901 if (!env->insn_aux_data) 10902 goto err_free_env; 10903 for (i = 0; i < len; i++) 10904 env->insn_aux_data[i].orig_idx = i; 10905 env->prog = *prog; 10906 env->ops = bpf_verifier_ops[env->prog->type]; 10907 is_priv = bpf_capable(); 10908 10909 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10910 mutex_lock(&bpf_verifier_lock); 10911 if (!btf_vmlinux) 10912 btf_vmlinux = btf_parse_vmlinux(); 10913 mutex_unlock(&bpf_verifier_lock); 10914 } 10915 10916 /* grab the mutex to protect few globals used by verifier */ 10917 if (!is_priv) 10918 mutex_lock(&bpf_verifier_lock); 10919 10920 if (attr->log_level || attr->log_buf || attr->log_size) { 10921 /* user requested verbose verifier output 10922 * and supplied buffer to store the verification trace 10923 */ 10924 log->level = attr->log_level; 10925 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10926 log->len_total = attr->log_size; 10927 10928 ret = -EINVAL; 10929 /* log attributes have to be sane */ 10930 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10931 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10932 goto err_unlock; 10933 } 10934 10935 if (IS_ERR(btf_vmlinux)) { 10936 /* Either gcc or pahole or kernel are broken. */ 10937 verbose(env, "in-kernel BTF is malformed\n"); 10938 ret = PTR_ERR(btf_vmlinux); 10939 goto skip_full_check; 10940 } 10941 10942 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10943 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10944 env->strict_alignment = true; 10945 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10946 env->strict_alignment = false; 10947 10948 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 10949 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 10950 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 10951 env->bpf_capable = bpf_capable(); 10952 10953 if (is_priv) 10954 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10955 10956 ret = replace_map_fd_with_map_ptr(env); 10957 if (ret < 0) 10958 goto skip_full_check; 10959 10960 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10961 ret = bpf_prog_offload_verifier_prep(env->prog); 10962 if (ret) 10963 goto skip_full_check; 10964 } 10965 10966 env->explored_states = kvcalloc(state_htab_size(env), 10967 sizeof(struct bpf_verifier_state_list *), 10968 GFP_USER); 10969 ret = -ENOMEM; 10970 if (!env->explored_states) 10971 goto skip_full_check; 10972 10973 ret = check_subprogs(env); 10974 if (ret < 0) 10975 goto skip_full_check; 10976 10977 ret = check_btf_info(env, attr, uattr); 10978 if (ret < 0) 10979 goto skip_full_check; 10980 10981 ret = check_attach_btf_id(env); 10982 if (ret) 10983 goto skip_full_check; 10984 10985 ret = check_cfg(env); 10986 if (ret < 0) 10987 goto skip_full_check; 10988 10989 ret = do_check_subprogs(env); 10990 ret = ret ?: do_check_main(env); 10991 10992 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 10993 ret = bpf_prog_offload_finalize(env); 10994 10995 skip_full_check: 10996 kvfree(env->explored_states); 10997 10998 if (ret == 0) 10999 ret = check_max_stack_depth(env); 11000 11001 /* instruction rewrites happen after this point */ 11002 if (is_priv) { 11003 if (ret == 0) 11004 opt_hard_wire_dead_code_branches(env); 11005 if (ret == 0) 11006 ret = opt_remove_dead_code(env); 11007 if (ret == 0) 11008 ret = opt_remove_nops(env); 11009 } else { 11010 if (ret == 0) 11011 sanitize_dead_code(env); 11012 } 11013 11014 if (ret == 0) 11015 /* program is valid, convert *(u32*)(ctx + off) accesses */ 11016 ret = convert_ctx_accesses(env); 11017 11018 if (ret == 0) 11019 ret = fixup_bpf_calls(env); 11020 11021 /* do 32-bit optimization after insn patching has done so those patched 11022 * insns could be handled correctly. 11023 */ 11024 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 11025 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 11026 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 11027 : false; 11028 } 11029 11030 if (ret == 0) 11031 ret = fixup_call_args(env); 11032 11033 env->verification_time = ktime_get_ns() - start_time; 11034 print_verification_stats(env); 11035 11036 if (log->level && bpf_verifier_log_full(log)) 11037 ret = -ENOSPC; 11038 if (log->level && !log->ubuf) { 11039 ret = -EFAULT; 11040 goto err_release_maps; 11041 } 11042 11043 if (ret == 0 && env->used_map_cnt) { 11044 /* if program passed verifier, update used_maps in bpf_prog_info */ 11045 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 11046 sizeof(env->used_maps[0]), 11047 GFP_KERNEL); 11048 11049 if (!env->prog->aux->used_maps) { 11050 ret = -ENOMEM; 11051 goto err_release_maps; 11052 } 11053 11054 memcpy(env->prog->aux->used_maps, env->used_maps, 11055 sizeof(env->used_maps[0]) * env->used_map_cnt); 11056 env->prog->aux->used_map_cnt = env->used_map_cnt; 11057 11058 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 11059 * bpf_ld_imm64 instructions 11060 */ 11061 convert_pseudo_ld_imm64(env); 11062 } 11063 11064 if (ret == 0) 11065 adjust_btf_func(env); 11066 11067 err_release_maps: 11068 if (!env->prog->aux->used_maps) 11069 /* if we didn't copy map pointers into bpf_prog_info, release 11070 * them now. Otherwise free_used_maps() will release them. 11071 */ 11072 release_maps(env); 11073 11074 /* extension progs temporarily inherit the attach_type of their targets 11075 for verification purposes, so set it back to zero before returning 11076 */ 11077 if (env->prog->type == BPF_PROG_TYPE_EXT) 11078 env->prog->expected_attach_type = 0; 11079 11080 *prog = env->prog; 11081 err_unlock: 11082 if (!is_priv) 11083 mutex_unlock(&bpf_verifier_lock); 11084 vfree(env->insn_aux_data); 11085 err_free_env: 11086 kfree(env); 11087 return ret; 11088 } 11089