xref: /openbmc/linux/kernel/bpf/verifier.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 	       insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248 
249 struct bpf_call_arg_meta {
250 	struct bpf_map *map_ptr;
251 	bool raw_mode;
252 	bool pkt_access;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int func_id;
259 	struct btf *btf;
260 	u32 btf_id;
261 	struct btf *ret_btf;
262 	u32 ret_btf_id;
263 	u32 subprogno;
264 };
265 
266 struct btf *btf_vmlinux;
267 
268 static DEFINE_MUTEX(bpf_verifier_lock);
269 
270 static const struct bpf_line_info *
271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272 {
273 	const struct bpf_line_info *linfo;
274 	const struct bpf_prog *prog;
275 	u32 i, nr_linfo;
276 
277 	prog = env->prog;
278 	nr_linfo = prog->aux->nr_linfo;
279 
280 	if (!nr_linfo || insn_off >= prog->len)
281 		return NULL;
282 
283 	linfo = prog->aux->linfo;
284 	for (i = 1; i < nr_linfo; i++)
285 		if (insn_off < linfo[i].insn_off)
286 			break;
287 
288 	return &linfo[i - 1];
289 }
290 
291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 		       va_list args)
293 {
294 	unsigned int n;
295 
296 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
297 
298 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 		  "verifier log line truncated - local buffer too short\n");
300 
301 	n = min(log->len_total - log->len_used - 1, n);
302 	log->kbuf[n] = '\0';
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		pr_err("BPF:%s\n", log->kbuf);
306 		return;
307 	}
308 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 		log->len_used += n;
310 	else
311 		log->ubuf = NULL;
312 }
313 
314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315 {
316 	char zero = 0;
317 
318 	if (!bpf_verifier_log_needed(log))
319 		return;
320 
321 	log->len_used = new_pos;
322 	if (put_user(zero, log->ubuf + new_pos))
323 		log->ubuf = NULL;
324 }
325 
326 /* log_level controls verbosity level of eBPF verifier.
327  * bpf_verifier_log_write() is used to dump the verification trace to the log,
328  * so the user can figure out what's wrong with the program
329  */
330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 					   const char *fmt, ...)
332 {
333 	va_list args;
334 
335 	if (!bpf_verifier_log_needed(&env->log))
336 		return;
337 
338 	va_start(args, fmt);
339 	bpf_verifier_vlog(&env->log, fmt, args);
340 	va_end(args);
341 }
342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343 
344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345 {
346 	struct bpf_verifier_env *env = private_data;
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(&env->log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(&env->log, fmt, args);
354 	va_end(args);
355 }
356 
357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 			    const char *fmt, ...)
359 {
360 	va_list args;
361 
362 	if (!bpf_verifier_log_needed(log))
363 		return;
364 
365 	va_start(args, fmt);
366 	bpf_verifier_vlog(log, fmt, args);
367 	va_end(args);
368 }
369 
370 static const char *ltrim(const char *s)
371 {
372 	while (isspace(*s))
373 		s++;
374 
375 	return s;
376 }
377 
378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 					 u32 insn_off,
380 					 const char *prefix_fmt, ...)
381 {
382 	const struct bpf_line_info *linfo;
383 
384 	if (!bpf_verifier_log_needed(&env->log))
385 		return;
386 
387 	linfo = find_linfo(env, insn_off);
388 	if (!linfo || linfo == env->prev_linfo)
389 		return;
390 
391 	if (prefix_fmt) {
392 		va_list args;
393 
394 		va_start(args, prefix_fmt);
395 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 		va_end(args);
397 	}
398 
399 	verbose(env, "%s\n",
400 		ltrim(btf_name_by_offset(env->prog->aux->btf,
401 					 linfo->line_off)));
402 
403 	env->prev_linfo = linfo;
404 }
405 
406 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 				   struct bpf_reg_state *reg,
408 				   struct tnum *range, const char *ctx,
409 				   const char *reg_name)
410 {
411 	char tn_buf[48];
412 
413 	verbose(env, "At %s the register %s ", ctx, reg_name);
414 	if (!tnum_is_unknown(reg->var_off)) {
415 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 		verbose(env, "has value %s", tn_buf);
417 	} else {
418 		verbose(env, "has unknown scalar value");
419 	}
420 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 	verbose(env, " should have been in %s\n", tn_buf);
422 }
423 
424 static bool type_is_pkt_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_PACKET ||
427 	       type == PTR_TO_PACKET_META;
428 }
429 
430 static bool type_is_sk_pointer(enum bpf_reg_type type)
431 {
432 	return type == PTR_TO_SOCKET ||
433 		type == PTR_TO_SOCK_COMMON ||
434 		type == PTR_TO_TCP_SOCK ||
435 		type == PTR_TO_XDP_SOCK;
436 }
437 
438 static bool reg_type_not_null(enum bpf_reg_type type)
439 {
440 	return type == PTR_TO_SOCKET ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_MAP_VALUE ||
443 		type == PTR_TO_MAP_KEY ||
444 		type == PTR_TO_SOCK_COMMON;
445 }
446 
447 static bool reg_type_may_be_null(enum bpf_reg_type type)
448 {
449 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
450 	       type == PTR_TO_SOCKET_OR_NULL ||
451 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
452 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
453 	       type == PTR_TO_BTF_ID_OR_NULL ||
454 	       type == PTR_TO_MEM_OR_NULL ||
455 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 	       type == PTR_TO_RDWR_BUF_OR_NULL;
457 }
458 
459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460 {
461 	return reg->type == PTR_TO_MAP_VALUE &&
462 		map_value_has_spin_lock(reg->map_ptr);
463 }
464 
465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466 {
467 	return type == PTR_TO_SOCKET ||
468 		type == PTR_TO_SOCKET_OR_NULL ||
469 		type == PTR_TO_TCP_SOCK ||
470 		type == PTR_TO_TCP_SOCK_OR_NULL ||
471 		type == PTR_TO_MEM ||
472 		type == PTR_TO_MEM_OR_NULL;
473 }
474 
475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
476 {
477 	return type == ARG_PTR_TO_SOCK_COMMON;
478 }
479 
480 static bool arg_type_may_be_null(enum bpf_arg_type type)
481 {
482 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 	       type == ARG_PTR_TO_MEM_OR_NULL ||
484 	       type == ARG_PTR_TO_CTX_OR_NULL ||
485 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
486 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 	       type == ARG_PTR_TO_STACK_OR_NULL;
488 }
489 
490 /* Determine whether the function releases some resources allocated by another
491  * function call. The first reference type argument will be assumed to be
492  * released by release_reference().
493  */
494 static bool is_release_function(enum bpf_func_id func_id)
495 {
496 	return func_id == BPF_FUNC_sk_release ||
497 	       func_id == BPF_FUNC_ringbuf_submit ||
498 	       func_id == BPF_FUNC_ringbuf_discard;
499 }
500 
501 static bool may_be_acquire_function(enum bpf_func_id func_id)
502 {
503 	return func_id == BPF_FUNC_sk_lookup_tcp ||
504 		func_id == BPF_FUNC_sk_lookup_udp ||
505 		func_id == BPF_FUNC_skc_lookup_tcp ||
506 		func_id == BPF_FUNC_map_lookup_elem ||
507 	        func_id == BPF_FUNC_ringbuf_reserve;
508 }
509 
510 static bool is_acquire_function(enum bpf_func_id func_id,
511 				const struct bpf_map *map)
512 {
513 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514 
515 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 	    func_id == BPF_FUNC_sk_lookup_udp ||
517 	    func_id == BPF_FUNC_skc_lookup_tcp ||
518 	    func_id == BPF_FUNC_ringbuf_reserve)
519 		return true;
520 
521 	if (func_id == BPF_FUNC_map_lookup_elem &&
522 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 	     map_type == BPF_MAP_TYPE_SOCKHASH))
524 		return true;
525 
526 	return false;
527 }
528 
529 static bool is_ptr_cast_function(enum bpf_func_id func_id)
530 {
531 	return func_id == BPF_FUNC_tcp_sock ||
532 		func_id == BPF_FUNC_sk_fullsock ||
533 		func_id == BPF_FUNC_skc_to_tcp_sock ||
534 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 		func_id == BPF_FUNC_skc_to_udp6_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541 {
542 	return BPF_CLASS(insn->code) == BPF_STX &&
543 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
544 	       insn->imm == BPF_CMPXCHG;
545 }
546 
547 /* string representation of 'enum bpf_reg_type' */
548 static const char * const reg_type_str[] = {
549 	[NOT_INIT]		= "?",
550 	[SCALAR_VALUE]		= "inv",
551 	[PTR_TO_CTX]		= "ctx",
552 	[CONST_PTR_TO_MAP]	= "map_ptr",
553 	[PTR_TO_MAP_VALUE]	= "map_value",
554 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
555 	[PTR_TO_STACK]		= "fp",
556 	[PTR_TO_PACKET]		= "pkt",
557 	[PTR_TO_PACKET_META]	= "pkt_meta",
558 	[PTR_TO_PACKET_END]	= "pkt_end",
559 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
560 	[PTR_TO_SOCKET]		= "sock",
561 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
562 	[PTR_TO_SOCK_COMMON]	= "sock_common",
563 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
564 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
565 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
566 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
567 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
568 	[PTR_TO_BTF_ID]		= "ptr_",
569 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
570 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
571 	[PTR_TO_MEM]		= "mem",
572 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
573 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
574 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
576 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
577 	[PTR_TO_FUNC]		= "func",
578 	[PTR_TO_MAP_KEY]	= "map_key",
579 };
580 
581 static char slot_type_char[] = {
582 	[STACK_INVALID]	= '?',
583 	[STACK_SPILL]	= 'r',
584 	[STACK_MISC]	= 'm',
585 	[STACK_ZERO]	= '0',
586 };
587 
588 static void print_liveness(struct bpf_verifier_env *env,
589 			   enum bpf_reg_liveness live)
590 {
591 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
592 	    verbose(env, "_");
593 	if (live & REG_LIVE_READ)
594 		verbose(env, "r");
595 	if (live & REG_LIVE_WRITTEN)
596 		verbose(env, "w");
597 	if (live & REG_LIVE_DONE)
598 		verbose(env, "D");
599 }
600 
601 static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 				   const struct bpf_reg_state *reg)
603 {
604 	struct bpf_verifier_state *cur = env->cur_state;
605 
606 	return cur->frame[reg->frameno];
607 }
608 
609 static const char *kernel_type_name(const struct btf* btf, u32 id)
610 {
611 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
612 }
613 
614 static void print_verifier_state(struct bpf_verifier_env *env,
615 				 const struct bpf_func_state *state)
616 {
617 	const struct bpf_reg_state *reg;
618 	enum bpf_reg_type t;
619 	int i;
620 
621 	if (state->frameno)
622 		verbose(env, " frame%d:", state->frameno);
623 	for (i = 0; i < MAX_BPF_REG; i++) {
624 		reg = &state->regs[i];
625 		t = reg->type;
626 		if (t == NOT_INIT)
627 			continue;
628 		verbose(env, " R%d", i);
629 		print_liveness(env, reg->live);
630 		verbose(env, "=%s", reg_type_str[t]);
631 		if (t == SCALAR_VALUE && reg->precise)
632 			verbose(env, "P");
633 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 		    tnum_is_const(reg->var_off)) {
635 			/* reg->off should be 0 for SCALAR_VALUE */
636 			verbose(env, "%lld", reg->var_off.value + reg->off);
637 		} else {
638 			if (t == PTR_TO_BTF_ID ||
639 			    t == PTR_TO_BTF_ID_OR_NULL ||
640 			    t == PTR_TO_PERCPU_BTF_ID)
641 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
642 			verbose(env, "(id=%d", reg->id);
643 			if (reg_type_may_be_refcounted_or_null(t))
644 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
645 			if (t != SCALAR_VALUE)
646 				verbose(env, ",off=%d", reg->off);
647 			if (type_is_pkt_pointer(t))
648 				verbose(env, ",r=%d", reg->range);
649 			else if (t == CONST_PTR_TO_MAP ||
650 				 t == PTR_TO_MAP_KEY ||
651 				 t == PTR_TO_MAP_VALUE ||
652 				 t == PTR_TO_MAP_VALUE_OR_NULL)
653 				verbose(env, ",ks=%d,vs=%d",
654 					reg->map_ptr->key_size,
655 					reg->map_ptr->value_size);
656 			if (tnum_is_const(reg->var_off)) {
657 				/* Typically an immediate SCALAR_VALUE, but
658 				 * could be a pointer whose offset is too big
659 				 * for reg->off
660 				 */
661 				verbose(env, ",imm=%llx", reg->var_off.value);
662 			} else {
663 				if (reg->smin_value != reg->umin_value &&
664 				    reg->smin_value != S64_MIN)
665 					verbose(env, ",smin_value=%lld",
666 						(long long)reg->smin_value);
667 				if (reg->smax_value != reg->umax_value &&
668 				    reg->smax_value != S64_MAX)
669 					verbose(env, ",smax_value=%lld",
670 						(long long)reg->smax_value);
671 				if (reg->umin_value != 0)
672 					verbose(env, ",umin_value=%llu",
673 						(unsigned long long)reg->umin_value);
674 				if (reg->umax_value != U64_MAX)
675 					verbose(env, ",umax_value=%llu",
676 						(unsigned long long)reg->umax_value);
677 				if (!tnum_is_unknown(reg->var_off)) {
678 					char tn_buf[48];
679 
680 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
681 					verbose(env, ",var_off=%s", tn_buf);
682 				}
683 				if (reg->s32_min_value != reg->smin_value &&
684 				    reg->s32_min_value != S32_MIN)
685 					verbose(env, ",s32_min_value=%d",
686 						(int)(reg->s32_min_value));
687 				if (reg->s32_max_value != reg->smax_value &&
688 				    reg->s32_max_value != S32_MAX)
689 					verbose(env, ",s32_max_value=%d",
690 						(int)(reg->s32_max_value));
691 				if (reg->u32_min_value != reg->umin_value &&
692 				    reg->u32_min_value != U32_MIN)
693 					verbose(env, ",u32_min_value=%d",
694 						(int)(reg->u32_min_value));
695 				if (reg->u32_max_value != reg->umax_value &&
696 				    reg->u32_max_value != U32_MAX)
697 					verbose(env, ",u32_max_value=%d",
698 						(int)(reg->u32_max_value));
699 			}
700 			verbose(env, ")");
701 		}
702 	}
703 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
704 		char types_buf[BPF_REG_SIZE + 1];
705 		bool valid = false;
706 		int j;
707 
708 		for (j = 0; j < BPF_REG_SIZE; j++) {
709 			if (state->stack[i].slot_type[j] != STACK_INVALID)
710 				valid = true;
711 			types_buf[j] = slot_type_char[
712 					state->stack[i].slot_type[j]];
713 		}
714 		types_buf[BPF_REG_SIZE] = 0;
715 		if (!valid)
716 			continue;
717 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 		print_liveness(env, state->stack[i].spilled_ptr.live);
719 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 			reg = &state->stack[i].spilled_ptr;
721 			t = reg->type;
722 			verbose(env, "=%s", reg_type_str[t]);
723 			if (t == SCALAR_VALUE && reg->precise)
724 				verbose(env, "P");
725 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 				verbose(env, "%lld", reg->var_off.value + reg->off);
727 		} else {
728 			verbose(env, "=%s", types_buf);
729 		}
730 	}
731 	if (state->acquired_refs && state->refs[0].id) {
732 		verbose(env, " refs=%d", state->refs[0].id);
733 		for (i = 1; i < state->acquired_refs; i++)
734 			if (state->refs[i].id)
735 				verbose(env, ",%d", state->refs[i].id);
736 	}
737 	verbose(env, "\n");
738 }
739 
740 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
741  * small to hold src. This is different from krealloc since we don't want to preserve
742  * the contents of dst.
743  *
744  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
745  * not be allocated.
746  */
747 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
748 {
749 	size_t bytes;
750 
751 	if (ZERO_OR_NULL_PTR(src))
752 		goto out;
753 
754 	if (unlikely(check_mul_overflow(n, size, &bytes)))
755 		return NULL;
756 
757 	if (ksize(dst) < bytes) {
758 		kfree(dst);
759 		dst = kmalloc_track_caller(bytes, flags);
760 		if (!dst)
761 			return NULL;
762 	}
763 
764 	memcpy(dst, src, bytes);
765 out:
766 	return dst ? dst : ZERO_SIZE_PTR;
767 }
768 
769 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
770  * small to hold new_n items. new items are zeroed out if the array grows.
771  *
772  * Contrary to krealloc_array, does not free arr if new_n is zero.
773  */
774 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
775 {
776 	if (!new_n || old_n == new_n)
777 		goto out;
778 
779 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
780 	if (!arr)
781 		return NULL;
782 
783 	if (new_n > old_n)
784 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
785 
786 out:
787 	return arr ? arr : ZERO_SIZE_PTR;
788 }
789 
790 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
791 {
792 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
793 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
794 	if (!dst->refs)
795 		return -ENOMEM;
796 
797 	dst->acquired_refs = src->acquired_refs;
798 	return 0;
799 }
800 
801 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
802 {
803 	size_t n = src->allocated_stack / BPF_REG_SIZE;
804 
805 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
806 				GFP_KERNEL);
807 	if (!dst->stack)
808 		return -ENOMEM;
809 
810 	dst->allocated_stack = src->allocated_stack;
811 	return 0;
812 }
813 
814 static int resize_reference_state(struct bpf_func_state *state, size_t n)
815 {
816 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
817 				    sizeof(struct bpf_reference_state));
818 	if (!state->refs)
819 		return -ENOMEM;
820 
821 	state->acquired_refs = n;
822 	return 0;
823 }
824 
825 static int grow_stack_state(struct bpf_func_state *state, int size)
826 {
827 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
828 
829 	if (old_n >= n)
830 		return 0;
831 
832 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
833 	if (!state->stack)
834 		return -ENOMEM;
835 
836 	state->allocated_stack = size;
837 	return 0;
838 }
839 
840 /* Acquire a pointer id from the env and update the state->refs to include
841  * this new pointer reference.
842  * On success, returns a valid pointer id to associate with the register
843  * On failure, returns a negative errno.
844  */
845 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
846 {
847 	struct bpf_func_state *state = cur_func(env);
848 	int new_ofs = state->acquired_refs;
849 	int id, err;
850 
851 	err = resize_reference_state(state, state->acquired_refs + 1);
852 	if (err)
853 		return err;
854 	id = ++env->id_gen;
855 	state->refs[new_ofs].id = id;
856 	state->refs[new_ofs].insn_idx = insn_idx;
857 
858 	return id;
859 }
860 
861 /* release function corresponding to acquire_reference_state(). Idempotent. */
862 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
863 {
864 	int i, last_idx;
865 
866 	last_idx = state->acquired_refs - 1;
867 	for (i = 0; i < state->acquired_refs; i++) {
868 		if (state->refs[i].id == ptr_id) {
869 			if (last_idx && i != last_idx)
870 				memcpy(&state->refs[i], &state->refs[last_idx],
871 				       sizeof(*state->refs));
872 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
873 			state->acquired_refs--;
874 			return 0;
875 		}
876 	}
877 	return -EINVAL;
878 }
879 
880 static void free_func_state(struct bpf_func_state *state)
881 {
882 	if (!state)
883 		return;
884 	kfree(state->refs);
885 	kfree(state->stack);
886 	kfree(state);
887 }
888 
889 static void clear_jmp_history(struct bpf_verifier_state *state)
890 {
891 	kfree(state->jmp_history);
892 	state->jmp_history = NULL;
893 	state->jmp_history_cnt = 0;
894 }
895 
896 static void free_verifier_state(struct bpf_verifier_state *state,
897 				bool free_self)
898 {
899 	int i;
900 
901 	for (i = 0; i <= state->curframe; i++) {
902 		free_func_state(state->frame[i]);
903 		state->frame[i] = NULL;
904 	}
905 	clear_jmp_history(state);
906 	if (free_self)
907 		kfree(state);
908 }
909 
910 /* copy verifier state from src to dst growing dst stack space
911  * when necessary to accommodate larger src stack
912  */
913 static int copy_func_state(struct bpf_func_state *dst,
914 			   const struct bpf_func_state *src)
915 {
916 	int err;
917 
918 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
919 	err = copy_reference_state(dst, src);
920 	if (err)
921 		return err;
922 	return copy_stack_state(dst, src);
923 }
924 
925 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
926 			       const struct bpf_verifier_state *src)
927 {
928 	struct bpf_func_state *dst;
929 	int i, err;
930 
931 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
932 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
933 					    GFP_USER);
934 	if (!dst_state->jmp_history)
935 		return -ENOMEM;
936 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
937 
938 	/* if dst has more stack frames then src frame, free them */
939 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
940 		free_func_state(dst_state->frame[i]);
941 		dst_state->frame[i] = NULL;
942 	}
943 	dst_state->speculative = src->speculative;
944 	dst_state->curframe = src->curframe;
945 	dst_state->active_spin_lock = src->active_spin_lock;
946 	dst_state->branches = src->branches;
947 	dst_state->parent = src->parent;
948 	dst_state->first_insn_idx = src->first_insn_idx;
949 	dst_state->last_insn_idx = src->last_insn_idx;
950 	for (i = 0; i <= src->curframe; i++) {
951 		dst = dst_state->frame[i];
952 		if (!dst) {
953 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
954 			if (!dst)
955 				return -ENOMEM;
956 			dst_state->frame[i] = dst;
957 		}
958 		err = copy_func_state(dst, src->frame[i]);
959 		if (err)
960 			return err;
961 	}
962 	return 0;
963 }
964 
965 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
966 {
967 	while (st) {
968 		u32 br = --st->branches;
969 
970 		/* WARN_ON(br > 1) technically makes sense here,
971 		 * but see comment in push_stack(), hence:
972 		 */
973 		WARN_ONCE((int)br < 0,
974 			  "BUG update_branch_counts:branches_to_explore=%d\n",
975 			  br);
976 		if (br)
977 			break;
978 		st = st->parent;
979 	}
980 }
981 
982 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
983 		     int *insn_idx, bool pop_log)
984 {
985 	struct bpf_verifier_state *cur = env->cur_state;
986 	struct bpf_verifier_stack_elem *elem, *head = env->head;
987 	int err;
988 
989 	if (env->head == NULL)
990 		return -ENOENT;
991 
992 	if (cur) {
993 		err = copy_verifier_state(cur, &head->st);
994 		if (err)
995 			return err;
996 	}
997 	if (pop_log)
998 		bpf_vlog_reset(&env->log, head->log_pos);
999 	if (insn_idx)
1000 		*insn_idx = head->insn_idx;
1001 	if (prev_insn_idx)
1002 		*prev_insn_idx = head->prev_insn_idx;
1003 	elem = head->next;
1004 	free_verifier_state(&head->st, false);
1005 	kfree(head);
1006 	env->head = elem;
1007 	env->stack_size--;
1008 	return 0;
1009 }
1010 
1011 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1012 					     int insn_idx, int prev_insn_idx,
1013 					     bool speculative)
1014 {
1015 	struct bpf_verifier_state *cur = env->cur_state;
1016 	struct bpf_verifier_stack_elem *elem;
1017 	int err;
1018 
1019 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1020 	if (!elem)
1021 		goto err;
1022 
1023 	elem->insn_idx = insn_idx;
1024 	elem->prev_insn_idx = prev_insn_idx;
1025 	elem->next = env->head;
1026 	elem->log_pos = env->log.len_used;
1027 	env->head = elem;
1028 	env->stack_size++;
1029 	err = copy_verifier_state(&elem->st, cur);
1030 	if (err)
1031 		goto err;
1032 	elem->st.speculative |= speculative;
1033 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1034 		verbose(env, "The sequence of %d jumps is too complex.\n",
1035 			env->stack_size);
1036 		goto err;
1037 	}
1038 	if (elem->st.parent) {
1039 		++elem->st.parent->branches;
1040 		/* WARN_ON(branches > 2) technically makes sense here,
1041 		 * but
1042 		 * 1. speculative states will bump 'branches' for non-branch
1043 		 * instructions
1044 		 * 2. is_state_visited() heuristics may decide not to create
1045 		 * a new state for a sequence of branches and all such current
1046 		 * and cloned states will be pointing to a single parent state
1047 		 * which might have large 'branches' count.
1048 		 */
1049 	}
1050 	return &elem->st;
1051 err:
1052 	free_verifier_state(env->cur_state, true);
1053 	env->cur_state = NULL;
1054 	/* pop all elements and return */
1055 	while (!pop_stack(env, NULL, NULL, false));
1056 	return NULL;
1057 }
1058 
1059 #define CALLER_SAVED_REGS 6
1060 static const int caller_saved[CALLER_SAVED_REGS] = {
1061 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1062 };
1063 
1064 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1065 				struct bpf_reg_state *reg);
1066 
1067 /* This helper doesn't clear reg->id */
1068 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1069 {
1070 	reg->var_off = tnum_const(imm);
1071 	reg->smin_value = (s64)imm;
1072 	reg->smax_value = (s64)imm;
1073 	reg->umin_value = imm;
1074 	reg->umax_value = imm;
1075 
1076 	reg->s32_min_value = (s32)imm;
1077 	reg->s32_max_value = (s32)imm;
1078 	reg->u32_min_value = (u32)imm;
1079 	reg->u32_max_value = (u32)imm;
1080 }
1081 
1082 /* Mark the unknown part of a register (variable offset or scalar value) as
1083  * known to have the value @imm.
1084  */
1085 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1086 {
1087 	/* Clear id, off, and union(map_ptr, range) */
1088 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1089 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1090 	___mark_reg_known(reg, imm);
1091 }
1092 
1093 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1094 {
1095 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1096 	reg->s32_min_value = (s32)imm;
1097 	reg->s32_max_value = (s32)imm;
1098 	reg->u32_min_value = (u32)imm;
1099 	reg->u32_max_value = (u32)imm;
1100 }
1101 
1102 /* Mark the 'variable offset' part of a register as zero.  This should be
1103  * used only on registers holding a pointer type.
1104  */
1105 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1106 {
1107 	__mark_reg_known(reg, 0);
1108 }
1109 
1110 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1111 {
1112 	__mark_reg_known(reg, 0);
1113 	reg->type = SCALAR_VALUE;
1114 }
1115 
1116 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1117 				struct bpf_reg_state *regs, u32 regno)
1118 {
1119 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1120 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1121 		/* Something bad happened, let's kill all regs */
1122 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1123 			__mark_reg_not_init(env, regs + regno);
1124 		return;
1125 	}
1126 	__mark_reg_known_zero(regs + regno);
1127 }
1128 
1129 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1130 {
1131 	switch (reg->type) {
1132 	case PTR_TO_MAP_VALUE_OR_NULL: {
1133 		const struct bpf_map *map = reg->map_ptr;
1134 
1135 		if (map->inner_map_meta) {
1136 			reg->type = CONST_PTR_TO_MAP;
1137 			reg->map_ptr = map->inner_map_meta;
1138 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1139 			reg->type = PTR_TO_XDP_SOCK;
1140 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1141 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1142 			reg->type = PTR_TO_SOCKET;
1143 		} else {
1144 			reg->type = PTR_TO_MAP_VALUE;
1145 		}
1146 		break;
1147 	}
1148 	case PTR_TO_SOCKET_OR_NULL:
1149 		reg->type = PTR_TO_SOCKET;
1150 		break;
1151 	case PTR_TO_SOCK_COMMON_OR_NULL:
1152 		reg->type = PTR_TO_SOCK_COMMON;
1153 		break;
1154 	case PTR_TO_TCP_SOCK_OR_NULL:
1155 		reg->type = PTR_TO_TCP_SOCK;
1156 		break;
1157 	case PTR_TO_BTF_ID_OR_NULL:
1158 		reg->type = PTR_TO_BTF_ID;
1159 		break;
1160 	case PTR_TO_MEM_OR_NULL:
1161 		reg->type = PTR_TO_MEM;
1162 		break;
1163 	case PTR_TO_RDONLY_BUF_OR_NULL:
1164 		reg->type = PTR_TO_RDONLY_BUF;
1165 		break;
1166 	case PTR_TO_RDWR_BUF_OR_NULL:
1167 		reg->type = PTR_TO_RDWR_BUF;
1168 		break;
1169 	default:
1170 		WARN_ONCE(1, "unknown nullable register type");
1171 	}
1172 }
1173 
1174 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1175 {
1176 	return type_is_pkt_pointer(reg->type);
1177 }
1178 
1179 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1180 {
1181 	return reg_is_pkt_pointer(reg) ||
1182 	       reg->type == PTR_TO_PACKET_END;
1183 }
1184 
1185 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1186 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1187 				    enum bpf_reg_type which)
1188 {
1189 	/* The register can already have a range from prior markings.
1190 	 * This is fine as long as it hasn't been advanced from its
1191 	 * origin.
1192 	 */
1193 	return reg->type == which &&
1194 	       reg->id == 0 &&
1195 	       reg->off == 0 &&
1196 	       tnum_equals_const(reg->var_off, 0);
1197 }
1198 
1199 /* Reset the min/max bounds of a register */
1200 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1201 {
1202 	reg->smin_value = S64_MIN;
1203 	reg->smax_value = S64_MAX;
1204 	reg->umin_value = 0;
1205 	reg->umax_value = U64_MAX;
1206 
1207 	reg->s32_min_value = S32_MIN;
1208 	reg->s32_max_value = S32_MAX;
1209 	reg->u32_min_value = 0;
1210 	reg->u32_max_value = U32_MAX;
1211 }
1212 
1213 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1214 {
1215 	reg->smin_value = S64_MIN;
1216 	reg->smax_value = S64_MAX;
1217 	reg->umin_value = 0;
1218 	reg->umax_value = U64_MAX;
1219 }
1220 
1221 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1222 {
1223 	reg->s32_min_value = S32_MIN;
1224 	reg->s32_max_value = S32_MAX;
1225 	reg->u32_min_value = 0;
1226 	reg->u32_max_value = U32_MAX;
1227 }
1228 
1229 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1230 {
1231 	struct tnum var32_off = tnum_subreg(reg->var_off);
1232 
1233 	/* min signed is max(sign bit) | min(other bits) */
1234 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1235 			var32_off.value | (var32_off.mask & S32_MIN));
1236 	/* max signed is min(sign bit) | max(other bits) */
1237 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1238 			var32_off.value | (var32_off.mask & S32_MAX));
1239 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1240 	reg->u32_max_value = min(reg->u32_max_value,
1241 				 (u32)(var32_off.value | var32_off.mask));
1242 }
1243 
1244 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1245 {
1246 	/* min signed is max(sign bit) | min(other bits) */
1247 	reg->smin_value = max_t(s64, reg->smin_value,
1248 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1249 	/* max signed is min(sign bit) | max(other bits) */
1250 	reg->smax_value = min_t(s64, reg->smax_value,
1251 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1252 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1253 	reg->umax_value = min(reg->umax_value,
1254 			      reg->var_off.value | reg->var_off.mask);
1255 }
1256 
1257 static void __update_reg_bounds(struct bpf_reg_state *reg)
1258 {
1259 	__update_reg32_bounds(reg);
1260 	__update_reg64_bounds(reg);
1261 }
1262 
1263 /* Uses signed min/max values to inform unsigned, and vice-versa */
1264 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1265 {
1266 	/* Learn sign from signed bounds.
1267 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1268 	 * are the same, so combine.  This works even in the negative case, e.g.
1269 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1270 	 */
1271 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1272 		reg->s32_min_value = reg->u32_min_value =
1273 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1274 		reg->s32_max_value = reg->u32_max_value =
1275 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1276 		return;
1277 	}
1278 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1279 	 * boundary, so we must be careful.
1280 	 */
1281 	if ((s32)reg->u32_max_value >= 0) {
1282 		/* Positive.  We can't learn anything from the smin, but smax
1283 		 * is positive, hence safe.
1284 		 */
1285 		reg->s32_min_value = reg->u32_min_value;
1286 		reg->s32_max_value = reg->u32_max_value =
1287 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1288 	} else if ((s32)reg->u32_min_value < 0) {
1289 		/* Negative.  We can't learn anything from the smax, but smin
1290 		 * is negative, hence safe.
1291 		 */
1292 		reg->s32_min_value = reg->u32_min_value =
1293 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1294 		reg->s32_max_value = reg->u32_max_value;
1295 	}
1296 }
1297 
1298 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1299 {
1300 	/* Learn sign from signed bounds.
1301 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1302 	 * are the same, so combine.  This works even in the negative case, e.g.
1303 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1304 	 */
1305 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1306 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1307 							  reg->umin_value);
1308 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1309 							  reg->umax_value);
1310 		return;
1311 	}
1312 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1313 	 * boundary, so we must be careful.
1314 	 */
1315 	if ((s64)reg->umax_value >= 0) {
1316 		/* Positive.  We can't learn anything from the smin, but smax
1317 		 * is positive, hence safe.
1318 		 */
1319 		reg->smin_value = reg->umin_value;
1320 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1321 							  reg->umax_value);
1322 	} else if ((s64)reg->umin_value < 0) {
1323 		/* Negative.  We can't learn anything from the smax, but smin
1324 		 * is negative, hence safe.
1325 		 */
1326 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1327 							  reg->umin_value);
1328 		reg->smax_value = reg->umax_value;
1329 	}
1330 }
1331 
1332 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1333 {
1334 	__reg32_deduce_bounds(reg);
1335 	__reg64_deduce_bounds(reg);
1336 }
1337 
1338 /* Attempts to improve var_off based on unsigned min/max information */
1339 static void __reg_bound_offset(struct bpf_reg_state *reg)
1340 {
1341 	struct tnum var64_off = tnum_intersect(reg->var_off,
1342 					       tnum_range(reg->umin_value,
1343 							  reg->umax_value));
1344 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1345 						tnum_range(reg->u32_min_value,
1346 							   reg->u32_max_value));
1347 
1348 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1349 }
1350 
1351 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1352 {
1353 	reg->umin_value = reg->u32_min_value;
1354 	reg->umax_value = reg->u32_max_value;
1355 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1356 	 * but must be positive otherwise set to worse case bounds
1357 	 * and refine later from tnum.
1358 	 */
1359 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1360 		reg->smax_value = reg->s32_max_value;
1361 	else
1362 		reg->smax_value = U32_MAX;
1363 	if (reg->s32_min_value >= 0)
1364 		reg->smin_value = reg->s32_min_value;
1365 	else
1366 		reg->smin_value = 0;
1367 }
1368 
1369 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1370 {
1371 	/* special case when 64-bit register has upper 32-bit register
1372 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1373 	 * allowing us to use 32-bit bounds directly,
1374 	 */
1375 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1376 		__reg_assign_32_into_64(reg);
1377 	} else {
1378 		/* Otherwise the best we can do is push lower 32bit known and
1379 		 * unknown bits into register (var_off set from jmp logic)
1380 		 * then learn as much as possible from the 64-bit tnum
1381 		 * known and unknown bits. The previous smin/smax bounds are
1382 		 * invalid here because of jmp32 compare so mark them unknown
1383 		 * so they do not impact tnum bounds calculation.
1384 		 */
1385 		__mark_reg64_unbounded(reg);
1386 		__update_reg_bounds(reg);
1387 	}
1388 
1389 	/* Intersecting with the old var_off might have improved our bounds
1390 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1391 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1392 	 */
1393 	__reg_deduce_bounds(reg);
1394 	__reg_bound_offset(reg);
1395 	__update_reg_bounds(reg);
1396 }
1397 
1398 static bool __reg64_bound_s32(s64 a)
1399 {
1400 	return a > S32_MIN && a < S32_MAX;
1401 }
1402 
1403 static bool __reg64_bound_u32(u64 a)
1404 {
1405 	return a > U32_MIN && a < U32_MAX;
1406 }
1407 
1408 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1409 {
1410 	__mark_reg32_unbounded(reg);
1411 
1412 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1413 		reg->s32_min_value = (s32)reg->smin_value;
1414 		reg->s32_max_value = (s32)reg->smax_value;
1415 	}
1416 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1417 		reg->u32_min_value = (u32)reg->umin_value;
1418 		reg->u32_max_value = (u32)reg->umax_value;
1419 	}
1420 
1421 	/* Intersecting with the old var_off might have improved our bounds
1422 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1423 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1424 	 */
1425 	__reg_deduce_bounds(reg);
1426 	__reg_bound_offset(reg);
1427 	__update_reg_bounds(reg);
1428 }
1429 
1430 /* Mark a register as having a completely unknown (scalar) value. */
1431 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1432 			       struct bpf_reg_state *reg)
1433 {
1434 	/*
1435 	 * Clear type, id, off, and union(map_ptr, range) and
1436 	 * padding between 'type' and union
1437 	 */
1438 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1439 	reg->type = SCALAR_VALUE;
1440 	reg->var_off = tnum_unknown;
1441 	reg->frameno = 0;
1442 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1443 	__mark_reg_unbounded(reg);
1444 }
1445 
1446 static void mark_reg_unknown(struct bpf_verifier_env *env,
1447 			     struct bpf_reg_state *regs, u32 regno)
1448 {
1449 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1450 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1451 		/* Something bad happened, let's kill all regs except FP */
1452 		for (regno = 0; regno < BPF_REG_FP; regno++)
1453 			__mark_reg_not_init(env, regs + regno);
1454 		return;
1455 	}
1456 	__mark_reg_unknown(env, regs + regno);
1457 }
1458 
1459 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1460 				struct bpf_reg_state *reg)
1461 {
1462 	__mark_reg_unknown(env, reg);
1463 	reg->type = NOT_INIT;
1464 }
1465 
1466 static void mark_reg_not_init(struct bpf_verifier_env *env,
1467 			      struct bpf_reg_state *regs, u32 regno)
1468 {
1469 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1470 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1471 		/* Something bad happened, let's kill all regs except FP */
1472 		for (regno = 0; regno < BPF_REG_FP; regno++)
1473 			__mark_reg_not_init(env, regs + regno);
1474 		return;
1475 	}
1476 	__mark_reg_not_init(env, regs + regno);
1477 }
1478 
1479 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1480 			    struct bpf_reg_state *regs, u32 regno,
1481 			    enum bpf_reg_type reg_type,
1482 			    struct btf *btf, u32 btf_id)
1483 {
1484 	if (reg_type == SCALAR_VALUE) {
1485 		mark_reg_unknown(env, regs, regno);
1486 		return;
1487 	}
1488 	mark_reg_known_zero(env, regs, regno);
1489 	regs[regno].type = PTR_TO_BTF_ID;
1490 	regs[regno].btf = btf;
1491 	regs[regno].btf_id = btf_id;
1492 }
1493 
1494 #define DEF_NOT_SUBREG	(0)
1495 static void init_reg_state(struct bpf_verifier_env *env,
1496 			   struct bpf_func_state *state)
1497 {
1498 	struct bpf_reg_state *regs = state->regs;
1499 	int i;
1500 
1501 	for (i = 0; i < MAX_BPF_REG; i++) {
1502 		mark_reg_not_init(env, regs, i);
1503 		regs[i].live = REG_LIVE_NONE;
1504 		regs[i].parent = NULL;
1505 		regs[i].subreg_def = DEF_NOT_SUBREG;
1506 	}
1507 
1508 	/* frame pointer */
1509 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1510 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1511 	regs[BPF_REG_FP].frameno = state->frameno;
1512 }
1513 
1514 #define BPF_MAIN_FUNC (-1)
1515 static void init_func_state(struct bpf_verifier_env *env,
1516 			    struct bpf_func_state *state,
1517 			    int callsite, int frameno, int subprogno)
1518 {
1519 	state->callsite = callsite;
1520 	state->frameno = frameno;
1521 	state->subprogno = subprogno;
1522 	init_reg_state(env, state);
1523 }
1524 
1525 enum reg_arg_type {
1526 	SRC_OP,		/* register is used as source operand */
1527 	DST_OP,		/* register is used as destination operand */
1528 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1529 };
1530 
1531 static int cmp_subprogs(const void *a, const void *b)
1532 {
1533 	return ((struct bpf_subprog_info *)a)->start -
1534 	       ((struct bpf_subprog_info *)b)->start;
1535 }
1536 
1537 static int find_subprog(struct bpf_verifier_env *env, int off)
1538 {
1539 	struct bpf_subprog_info *p;
1540 
1541 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1542 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1543 	if (!p)
1544 		return -ENOENT;
1545 	return p - env->subprog_info;
1546 
1547 }
1548 
1549 static int add_subprog(struct bpf_verifier_env *env, int off)
1550 {
1551 	int insn_cnt = env->prog->len;
1552 	int ret;
1553 
1554 	if (off >= insn_cnt || off < 0) {
1555 		verbose(env, "call to invalid destination\n");
1556 		return -EINVAL;
1557 	}
1558 	ret = find_subprog(env, off);
1559 	if (ret >= 0)
1560 		return ret;
1561 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1562 		verbose(env, "too many subprograms\n");
1563 		return -E2BIG;
1564 	}
1565 	/* determine subprog starts. The end is one before the next starts */
1566 	env->subprog_info[env->subprog_cnt++].start = off;
1567 	sort(env->subprog_info, env->subprog_cnt,
1568 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1569 	return env->subprog_cnt - 1;
1570 }
1571 
1572 struct bpf_kfunc_desc {
1573 	struct btf_func_model func_model;
1574 	u32 func_id;
1575 	s32 imm;
1576 };
1577 
1578 #define MAX_KFUNC_DESCS 256
1579 struct bpf_kfunc_desc_tab {
1580 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1581 	u32 nr_descs;
1582 };
1583 
1584 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1585 {
1586 	const struct bpf_kfunc_desc *d0 = a;
1587 	const struct bpf_kfunc_desc *d1 = b;
1588 
1589 	/* func_id is not greater than BTF_MAX_TYPE */
1590 	return d0->func_id - d1->func_id;
1591 }
1592 
1593 static const struct bpf_kfunc_desc *
1594 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1595 {
1596 	struct bpf_kfunc_desc desc = {
1597 		.func_id = func_id,
1598 	};
1599 	struct bpf_kfunc_desc_tab *tab;
1600 
1601 	tab = prog->aux->kfunc_tab;
1602 	return bsearch(&desc, tab->descs, tab->nr_descs,
1603 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1604 }
1605 
1606 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1607 {
1608 	const struct btf_type *func, *func_proto;
1609 	struct bpf_kfunc_desc_tab *tab;
1610 	struct bpf_prog_aux *prog_aux;
1611 	struct bpf_kfunc_desc *desc;
1612 	const char *func_name;
1613 	unsigned long addr;
1614 	int err;
1615 
1616 	prog_aux = env->prog->aux;
1617 	tab = prog_aux->kfunc_tab;
1618 	if (!tab) {
1619 		if (!btf_vmlinux) {
1620 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1621 			return -ENOTSUPP;
1622 		}
1623 
1624 		if (!env->prog->jit_requested) {
1625 			verbose(env, "JIT is required for calling kernel function\n");
1626 			return -ENOTSUPP;
1627 		}
1628 
1629 		if (!bpf_jit_supports_kfunc_call()) {
1630 			verbose(env, "JIT does not support calling kernel function\n");
1631 			return -ENOTSUPP;
1632 		}
1633 
1634 		if (!env->prog->gpl_compatible) {
1635 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1636 			return -EINVAL;
1637 		}
1638 
1639 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1640 		if (!tab)
1641 			return -ENOMEM;
1642 		prog_aux->kfunc_tab = tab;
1643 	}
1644 
1645 	if (find_kfunc_desc(env->prog, func_id))
1646 		return 0;
1647 
1648 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1649 		verbose(env, "too many different kernel function calls\n");
1650 		return -E2BIG;
1651 	}
1652 
1653 	func = btf_type_by_id(btf_vmlinux, func_id);
1654 	if (!func || !btf_type_is_func(func)) {
1655 		verbose(env, "kernel btf_id %u is not a function\n",
1656 			func_id);
1657 		return -EINVAL;
1658 	}
1659 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
1660 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1661 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1662 			func_id);
1663 		return -EINVAL;
1664 	}
1665 
1666 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1667 	addr = kallsyms_lookup_name(func_name);
1668 	if (!addr) {
1669 		verbose(env, "cannot find address for kernel function %s\n",
1670 			func_name);
1671 		return -EINVAL;
1672 	}
1673 
1674 	desc = &tab->descs[tab->nr_descs++];
1675 	desc->func_id = func_id;
1676 	desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1677 	err = btf_distill_func_proto(&env->log, btf_vmlinux,
1678 				     func_proto, func_name,
1679 				     &desc->func_model);
1680 	if (!err)
1681 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1682 		     kfunc_desc_cmp_by_id, NULL);
1683 	return err;
1684 }
1685 
1686 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1687 {
1688 	const struct bpf_kfunc_desc *d0 = a;
1689 	const struct bpf_kfunc_desc *d1 = b;
1690 
1691 	if (d0->imm > d1->imm)
1692 		return 1;
1693 	else if (d0->imm < d1->imm)
1694 		return -1;
1695 	return 0;
1696 }
1697 
1698 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1699 {
1700 	struct bpf_kfunc_desc_tab *tab;
1701 
1702 	tab = prog->aux->kfunc_tab;
1703 	if (!tab)
1704 		return;
1705 
1706 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1707 	     kfunc_desc_cmp_by_imm, NULL);
1708 }
1709 
1710 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1711 {
1712 	return !!prog->aux->kfunc_tab;
1713 }
1714 
1715 const struct btf_func_model *
1716 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1717 			 const struct bpf_insn *insn)
1718 {
1719 	const struct bpf_kfunc_desc desc = {
1720 		.imm = insn->imm,
1721 	};
1722 	const struct bpf_kfunc_desc *res;
1723 	struct bpf_kfunc_desc_tab *tab;
1724 
1725 	tab = prog->aux->kfunc_tab;
1726 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1727 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1728 
1729 	return res ? &res->func_model : NULL;
1730 }
1731 
1732 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1733 {
1734 	struct bpf_subprog_info *subprog = env->subprog_info;
1735 	struct bpf_insn *insn = env->prog->insnsi;
1736 	int i, ret, insn_cnt = env->prog->len;
1737 
1738 	/* Add entry function. */
1739 	ret = add_subprog(env, 0);
1740 	if (ret)
1741 		return ret;
1742 
1743 	for (i = 0; i < insn_cnt; i++, insn++) {
1744 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1745 		    !bpf_pseudo_kfunc_call(insn))
1746 			continue;
1747 
1748 		if (!env->bpf_capable) {
1749 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1750 			return -EPERM;
1751 		}
1752 
1753 		if (bpf_pseudo_func(insn)) {
1754 			ret = add_subprog(env, i + insn->imm + 1);
1755 			if (ret >= 0)
1756 				/* remember subprog */
1757 				insn[1].imm = ret;
1758 		} else if (bpf_pseudo_call(insn)) {
1759 			ret = add_subprog(env, i + insn->imm + 1);
1760 		} else {
1761 			ret = add_kfunc_call(env, insn->imm);
1762 		}
1763 
1764 		if (ret < 0)
1765 			return ret;
1766 	}
1767 
1768 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1769 	 * logic. 'subprog_cnt' should not be increased.
1770 	 */
1771 	subprog[env->subprog_cnt].start = insn_cnt;
1772 
1773 	if (env->log.level & BPF_LOG_LEVEL2)
1774 		for (i = 0; i < env->subprog_cnt; i++)
1775 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1776 
1777 	return 0;
1778 }
1779 
1780 static int check_subprogs(struct bpf_verifier_env *env)
1781 {
1782 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1783 	struct bpf_subprog_info *subprog = env->subprog_info;
1784 	struct bpf_insn *insn = env->prog->insnsi;
1785 	int insn_cnt = env->prog->len;
1786 
1787 	/* now check that all jumps are within the same subprog */
1788 	subprog_start = subprog[cur_subprog].start;
1789 	subprog_end = subprog[cur_subprog + 1].start;
1790 	for (i = 0; i < insn_cnt; i++) {
1791 		u8 code = insn[i].code;
1792 
1793 		if (code == (BPF_JMP | BPF_CALL) &&
1794 		    insn[i].imm == BPF_FUNC_tail_call &&
1795 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1796 			subprog[cur_subprog].has_tail_call = true;
1797 		if (BPF_CLASS(code) == BPF_LD &&
1798 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1799 			subprog[cur_subprog].has_ld_abs = true;
1800 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1801 			goto next;
1802 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1803 			goto next;
1804 		off = i + insn[i].off + 1;
1805 		if (off < subprog_start || off >= subprog_end) {
1806 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1807 			return -EINVAL;
1808 		}
1809 next:
1810 		if (i == subprog_end - 1) {
1811 			/* to avoid fall-through from one subprog into another
1812 			 * the last insn of the subprog should be either exit
1813 			 * or unconditional jump back
1814 			 */
1815 			if (code != (BPF_JMP | BPF_EXIT) &&
1816 			    code != (BPF_JMP | BPF_JA)) {
1817 				verbose(env, "last insn is not an exit or jmp\n");
1818 				return -EINVAL;
1819 			}
1820 			subprog_start = subprog_end;
1821 			cur_subprog++;
1822 			if (cur_subprog < env->subprog_cnt)
1823 				subprog_end = subprog[cur_subprog + 1].start;
1824 		}
1825 	}
1826 	return 0;
1827 }
1828 
1829 /* Parentage chain of this register (or stack slot) should take care of all
1830  * issues like callee-saved registers, stack slot allocation time, etc.
1831  */
1832 static int mark_reg_read(struct bpf_verifier_env *env,
1833 			 const struct bpf_reg_state *state,
1834 			 struct bpf_reg_state *parent, u8 flag)
1835 {
1836 	bool writes = parent == state->parent; /* Observe write marks */
1837 	int cnt = 0;
1838 
1839 	while (parent) {
1840 		/* if read wasn't screened by an earlier write ... */
1841 		if (writes && state->live & REG_LIVE_WRITTEN)
1842 			break;
1843 		if (parent->live & REG_LIVE_DONE) {
1844 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1845 				reg_type_str[parent->type],
1846 				parent->var_off.value, parent->off);
1847 			return -EFAULT;
1848 		}
1849 		/* The first condition is more likely to be true than the
1850 		 * second, checked it first.
1851 		 */
1852 		if ((parent->live & REG_LIVE_READ) == flag ||
1853 		    parent->live & REG_LIVE_READ64)
1854 			/* The parentage chain never changes and
1855 			 * this parent was already marked as LIVE_READ.
1856 			 * There is no need to keep walking the chain again and
1857 			 * keep re-marking all parents as LIVE_READ.
1858 			 * This case happens when the same register is read
1859 			 * multiple times without writes into it in-between.
1860 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1861 			 * then no need to set the weak REG_LIVE_READ32.
1862 			 */
1863 			break;
1864 		/* ... then we depend on parent's value */
1865 		parent->live |= flag;
1866 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1867 		if (flag == REG_LIVE_READ64)
1868 			parent->live &= ~REG_LIVE_READ32;
1869 		state = parent;
1870 		parent = state->parent;
1871 		writes = true;
1872 		cnt++;
1873 	}
1874 
1875 	if (env->longest_mark_read_walk < cnt)
1876 		env->longest_mark_read_walk = cnt;
1877 	return 0;
1878 }
1879 
1880 /* This function is supposed to be used by the following 32-bit optimization
1881  * code only. It returns TRUE if the source or destination register operates
1882  * on 64-bit, otherwise return FALSE.
1883  */
1884 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1885 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1886 {
1887 	u8 code, class, op;
1888 
1889 	code = insn->code;
1890 	class = BPF_CLASS(code);
1891 	op = BPF_OP(code);
1892 	if (class == BPF_JMP) {
1893 		/* BPF_EXIT for "main" will reach here. Return TRUE
1894 		 * conservatively.
1895 		 */
1896 		if (op == BPF_EXIT)
1897 			return true;
1898 		if (op == BPF_CALL) {
1899 			/* BPF to BPF call will reach here because of marking
1900 			 * caller saved clobber with DST_OP_NO_MARK for which we
1901 			 * don't care the register def because they are anyway
1902 			 * marked as NOT_INIT already.
1903 			 */
1904 			if (insn->src_reg == BPF_PSEUDO_CALL)
1905 				return false;
1906 			/* Helper call will reach here because of arg type
1907 			 * check, conservatively return TRUE.
1908 			 */
1909 			if (t == SRC_OP)
1910 				return true;
1911 
1912 			return false;
1913 		}
1914 	}
1915 
1916 	if (class == BPF_ALU64 || class == BPF_JMP ||
1917 	    /* BPF_END always use BPF_ALU class. */
1918 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1919 		return true;
1920 
1921 	if (class == BPF_ALU || class == BPF_JMP32)
1922 		return false;
1923 
1924 	if (class == BPF_LDX) {
1925 		if (t != SRC_OP)
1926 			return BPF_SIZE(code) == BPF_DW;
1927 		/* LDX source must be ptr. */
1928 		return true;
1929 	}
1930 
1931 	if (class == BPF_STX) {
1932 		/* BPF_STX (including atomic variants) has multiple source
1933 		 * operands, one of which is a ptr. Check whether the caller is
1934 		 * asking about it.
1935 		 */
1936 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1937 			return true;
1938 		return BPF_SIZE(code) == BPF_DW;
1939 	}
1940 
1941 	if (class == BPF_LD) {
1942 		u8 mode = BPF_MODE(code);
1943 
1944 		/* LD_IMM64 */
1945 		if (mode == BPF_IMM)
1946 			return true;
1947 
1948 		/* Both LD_IND and LD_ABS return 32-bit data. */
1949 		if (t != SRC_OP)
1950 			return  false;
1951 
1952 		/* Implicit ctx ptr. */
1953 		if (regno == BPF_REG_6)
1954 			return true;
1955 
1956 		/* Explicit source could be any width. */
1957 		return true;
1958 	}
1959 
1960 	if (class == BPF_ST)
1961 		/* The only source register for BPF_ST is a ptr. */
1962 		return true;
1963 
1964 	/* Conservatively return true at default. */
1965 	return true;
1966 }
1967 
1968 /* Return the regno defined by the insn, or -1. */
1969 static int insn_def_regno(const struct bpf_insn *insn)
1970 {
1971 	switch (BPF_CLASS(insn->code)) {
1972 	case BPF_JMP:
1973 	case BPF_JMP32:
1974 	case BPF_ST:
1975 		return -1;
1976 	case BPF_STX:
1977 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1978 		    (insn->imm & BPF_FETCH)) {
1979 			if (insn->imm == BPF_CMPXCHG)
1980 				return BPF_REG_0;
1981 			else
1982 				return insn->src_reg;
1983 		} else {
1984 			return -1;
1985 		}
1986 	default:
1987 		return insn->dst_reg;
1988 	}
1989 }
1990 
1991 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1992 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1993 {
1994 	int dst_reg = insn_def_regno(insn);
1995 
1996 	if (dst_reg == -1)
1997 		return false;
1998 
1999 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2000 }
2001 
2002 static void mark_insn_zext(struct bpf_verifier_env *env,
2003 			   struct bpf_reg_state *reg)
2004 {
2005 	s32 def_idx = reg->subreg_def;
2006 
2007 	if (def_idx == DEF_NOT_SUBREG)
2008 		return;
2009 
2010 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2011 	/* The dst will be zero extended, so won't be sub-register anymore. */
2012 	reg->subreg_def = DEF_NOT_SUBREG;
2013 }
2014 
2015 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2016 			 enum reg_arg_type t)
2017 {
2018 	struct bpf_verifier_state *vstate = env->cur_state;
2019 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2020 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2021 	struct bpf_reg_state *reg, *regs = state->regs;
2022 	bool rw64;
2023 
2024 	if (regno >= MAX_BPF_REG) {
2025 		verbose(env, "R%d is invalid\n", regno);
2026 		return -EINVAL;
2027 	}
2028 
2029 	reg = &regs[regno];
2030 	rw64 = is_reg64(env, insn, regno, reg, t);
2031 	if (t == SRC_OP) {
2032 		/* check whether register used as source operand can be read */
2033 		if (reg->type == NOT_INIT) {
2034 			verbose(env, "R%d !read_ok\n", regno);
2035 			return -EACCES;
2036 		}
2037 		/* We don't need to worry about FP liveness because it's read-only */
2038 		if (regno == BPF_REG_FP)
2039 			return 0;
2040 
2041 		if (rw64)
2042 			mark_insn_zext(env, reg);
2043 
2044 		return mark_reg_read(env, reg, reg->parent,
2045 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2046 	} else {
2047 		/* check whether register used as dest operand can be written to */
2048 		if (regno == BPF_REG_FP) {
2049 			verbose(env, "frame pointer is read only\n");
2050 			return -EACCES;
2051 		}
2052 		reg->live |= REG_LIVE_WRITTEN;
2053 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2054 		if (t == DST_OP)
2055 			mark_reg_unknown(env, regs, regno);
2056 	}
2057 	return 0;
2058 }
2059 
2060 /* for any branch, call, exit record the history of jmps in the given state */
2061 static int push_jmp_history(struct bpf_verifier_env *env,
2062 			    struct bpf_verifier_state *cur)
2063 {
2064 	u32 cnt = cur->jmp_history_cnt;
2065 	struct bpf_idx_pair *p;
2066 
2067 	cnt++;
2068 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2069 	if (!p)
2070 		return -ENOMEM;
2071 	p[cnt - 1].idx = env->insn_idx;
2072 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2073 	cur->jmp_history = p;
2074 	cur->jmp_history_cnt = cnt;
2075 	return 0;
2076 }
2077 
2078 /* Backtrack one insn at a time. If idx is not at the top of recorded
2079  * history then previous instruction came from straight line execution.
2080  */
2081 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2082 			     u32 *history)
2083 {
2084 	u32 cnt = *history;
2085 
2086 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2087 		i = st->jmp_history[cnt - 1].prev_idx;
2088 		(*history)--;
2089 	} else {
2090 		i--;
2091 	}
2092 	return i;
2093 }
2094 
2095 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2096 {
2097 	const struct btf_type *func;
2098 
2099 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2100 		return NULL;
2101 
2102 	func = btf_type_by_id(btf_vmlinux, insn->imm);
2103 	return btf_name_by_offset(btf_vmlinux, func->name_off);
2104 }
2105 
2106 /* For given verifier state backtrack_insn() is called from the last insn to
2107  * the first insn. Its purpose is to compute a bitmask of registers and
2108  * stack slots that needs precision in the parent verifier state.
2109  */
2110 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2111 			  u32 *reg_mask, u64 *stack_mask)
2112 {
2113 	const struct bpf_insn_cbs cbs = {
2114 		.cb_call	= disasm_kfunc_name,
2115 		.cb_print	= verbose,
2116 		.private_data	= env,
2117 	};
2118 	struct bpf_insn *insn = env->prog->insnsi + idx;
2119 	u8 class = BPF_CLASS(insn->code);
2120 	u8 opcode = BPF_OP(insn->code);
2121 	u8 mode = BPF_MODE(insn->code);
2122 	u32 dreg = 1u << insn->dst_reg;
2123 	u32 sreg = 1u << insn->src_reg;
2124 	u32 spi;
2125 
2126 	if (insn->code == 0)
2127 		return 0;
2128 	if (env->log.level & BPF_LOG_LEVEL) {
2129 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2130 		verbose(env, "%d: ", idx);
2131 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2132 	}
2133 
2134 	if (class == BPF_ALU || class == BPF_ALU64) {
2135 		if (!(*reg_mask & dreg))
2136 			return 0;
2137 		if (opcode == BPF_MOV) {
2138 			if (BPF_SRC(insn->code) == BPF_X) {
2139 				/* dreg = sreg
2140 				 * dreg needs precision after this insn
2141 				 * sreg needs precision before this insn
2142 				 */
2143 				*reg_mask &= ~dreg;
2144 				*reg_mask |= sreg;
2145 			} else {
2146 				/* dreg = K
2147 				 * dreg needs precision after this insn.
2148 				 * Corresponding register is already marked
2149 				 * as precise=true in this verifier state.
2150 				 * No further markings in parent are necessary
2151 				 */
2152 				*reg_mask &= ~dreg;
2153 			}
2154 		} else {
2155 			if (BPF_SRC(insn->code) == BPF_X) {
2156 				/* dreg += sreg
2157 				 * both dreg and sreg need precision
2158 				 * before this insn
2159 				 */
2160 				*reg_mask |= sreg;
2161 			} /* else dreg += K
2162 			   * dreg still needs precision before this insn
2163 			   */
2164 		}
2165 	} else if (class == BPF_LDX) {
2166 		if (!(*reg_mask & dreg))
2167 			return 0;
2168 		*reg_mask &= ~dreg;
2169 
2170 		/* scalars can only be spilled into stack w/o losing precision.
2171 		 * Load from any other memory can be zero extended.
2172 		 * The desire to keep that precision is already indicated
2173 		 * by 'precise' mark in corresponding register of this state.
2174 		 * No further tracking necessary.
2175 		 */
2176 		if (insn->src_reg != BPF_REG_FP)
2177 			return 0;
2178 		if (BPF_SIZE(insn->code) != BPF_DW)
2179 			return 0;
2180 
2181 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2182 		 * that [fp - off] slot contains scalar that needs to be
2183 		 * tracked with precision
2184 		 */
2185 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2186 		if (spi >= 64) {
2187 			verbose(env, "BUG spi %d\n", spi);
2188 			WARN_ONCE(1, "verifier backtracking bug");
2189 			return -EFAULT;
2190 		}
2191 		*stack_mask |= 1ull << spi;
2192 	} else if (class == BPF_STX || class == BPF_ST) {
2193 		if (*reg_mask & dreg)
2194 			/* stx & st shouldn't be using _scalar_ dst_reg
2195 			 * to access memory. It means backtracking
2196 			 * encountered a case of pointer subtraction.
2197 			 */
2198 			return -ENOTSUPP;
2199 		/* scalars can only be spilled into stack */
2200 		if (insn->dst_reg != BPF_REG_FP)
2201 			return 0;
2202 		if (BPF_SIZE(insn->code) != BPF_DW)
2203 			return 0;
2204 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2205 		if (spi >= 64) {
2206 			verbose(env, "BUG spi %d\n", spi);
2207 			WARN_ONCE(1, "verifier backtracking bug");
2208 			return -EFAULT;
2209 		}
2210 		if (!(*stack_mask & (1ull << spi)))
2211 			return 0;
2212 		*stack_mask &= ~(1ull << spi);
2213 		if (class == BPF_STX)
2214 			*reg_mask |= sreg;
2215 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2216 		if (opcode == BPF_CALL) {
2217 			if (insn->src_reg == BPF_PSEUDO_CALL)
2218 				return -ENOTSUPP;
2219 			/* regular helper call sets R0 */
2220 			*reg_mask &= ~1;
2221 			if (*reg_mask & 0x3f) {
2222 				/* if backtracing was looking for registers R1-R5
2223 				 * they should have been found already.
2224 				 */
2225 				verbose(env, "BUG regs %x\n", *reg_mask);
2226 				WARN_ONCE(1, "verifier backtracking bug");
2227 				return -EFAULT;
2228 			}
2229 		} else if (opcode == BPF_EXIT) {
2230 			return -ENOTSUPP;
2231 		}
2232 	} else if (class == BPF_LD) {
2233 		if (!(*reg_mask & dreg))
2234 			return 0;
2235 		*reg_mask &= ~dreg;
2236 		/* It's ld_imm64 or ld_abs or ld_ind.
2237 		 * For ld_imm64 no further tracking of precision
2238 		 * into parent is necessary
2239 		 */
2240 		if (mode == BPF_IND || mode == BPF_ABS)
2241 			/* to be analyzed */
2242 			return -ENOTSUPP;
2243 	}
2244 	return 0;
2245 }
2246 
2247 /* the scalar precision tracking algorithm:
2248  * . at the start all registers have precise=false.
2249  * . scalar ranges are tracked as normal through alu and jmp insns.
2250  * . once precise value of the scalar register is used in:
2251  *   .  ptr + scalar alu
2252  *   . if (scalar cond K|scalar)
2253  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2254  *   backtrack through the verifier states and mark all registers and
2255  *   stack slots with spilled constants that these scalar regisers
2256  *   should be precise.
2257  * . during state pruning two registers (or spilled stack slots)
2258  *   are equivalent if both are not precise.
2259  *
2260  * Note the verifier cannot simply walk register parentage chain,
2261  * since many different registers and stack slots could have been
2262  * used to compute single precise scalar.
2263  *
2264  * The approach of starting with precise=true for all registers and then
2265  * backtrack to mark a register as not precise when the verifier detects
2266  * that program doesn't care about specific value (e.g., when helper
2267  * takes register as ARG_ANYTHING parameter) is not safe.
2268  *
2269  * It's ok to walk single parentage chain of the verifier states.
2270  * It's possible that this backtracking will go all the way till 1st insn.
2271  * All other branches will be explored for needing precision later.
2272  *
2273  * The backtracking needs to deal with cases like:
2274  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2275  * r9 -= r8
2276  * r5 = r9
2277  * if r5 > 0x79f goto pc+7
2278  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2279  * r5 += 1
2280  * ...
2281  * call bpf_perf_event_output#25
2282  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2283  *
2284  * and this case:
2285  * r6 = 1
2286  * call foo // uses callee's r6 inside to compute r0
2287  * r0 += r6
2288  * if r0 == 0 goto
2289  *
2290  * to track above reg_mask/stack_mask needs to be independent for each frame.
2291  *
2292  * Also if parent's curframe > frame where backtracking started,
2293  * the verifier need to mark registers in both frames, otherwise callees
2294  * may incorrectly prune callers. This is similar to
2295  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2296  *
2297  * For now backtracking falls back into conservative marking.
2298  */
2299 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2300 				     struct bpf_verifier_state *st)
2301 {
2302 	struct bpf_func_state *func;
2303 	struct bpf_reg_state *reg;
2304 	int i, j;
2305 
2306 	/* big hammer: mark all scalars precise in this path.
2307 	 * pop_stack may still get !precise scalars.
2308 	 */
2309 	for (; st; st = st->parent)
2310 		for (i = 0; i <= st->curframe; i++) {
2311 			func = st->frame[i];
2312 			for (j = 0; j < BPF_REG_FP; j++) {
2313 				reg = &func->regs[j];
2314 				if (reg->type != SCALAR_VALUE)
2315 					continue;
2316 				reg->precise = true;
2317 			}
2318 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2319 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2320 					continue;
2321 				reg = &func->stack[j].spilled_ptr;
2322 				if (reg->type != SCALAR_VALUE)
2323 					continue;
2324 				reg->precise = true;
2325 			}
2326 		}
2327 }
2328 
2329 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2330 				  int spi)
2331 {
2332 	struct bpf_verifier_state *st = env->cur_state;
2333 	int first_idx = st->first_insn_idx;
2334 	int last_idx = env->insn_idx;
2335 	struct bpf_func_state *func;
2336 	struct bpf_reg_state *reg;
2337 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2338 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2339 	bool skip_first = true;
2340 	bool new_marks = false;
2341 	int i, err;
2342 
2343 	if (!env->bpf_capable)
2344 		return 0;
2345 
2346 	func = st->frame[st->curframe];
2347 	if (regno >= 0) {
2348 		reg = &func->regs[regno];
2349 		if (reg->type != SCALAR_VALUE) {
2350 			WARN_ONCE(1, "backtracing misuse");
2351 			return -EFAULT;
2352 		}
2353 		if (!reg->precise)
2354 			new_marks = true;
2355 		else
2356 			reg_mask = 0;
2357 		reg->precise = true;
2358 	}
2359 
2360 	while (spi >= 0) {
2361 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2362 			stack_mask = 0;
2363 			break;
2364 		}
2365 		reg = &func->stack[spi].spilled_ptr;
2366 		if (reg->type != SCALAR_VALUE) {
2367 			stack_mask = 0;
2368 			break;
2369 		}
2370 		if (!reg->precise)
2371 			new_marks = true;
2372 		else
2373 			stack_mask = 0;
2374 		reg->precise = true;
2375 		break;
2376 	}
2377 
2378 	if (!new_marks)
2379 		return 0;
2380 	if (!reg_mask && !stack_mask)
2381 		return 0;
2382 	for (;;) {
2383 		DECLARE_BITMAP(mask, 64);
2384 		u32 history = st->jmp_history_cnt;
2385 
2386 		if (env->log.level & BPF_LOG_LEVEL)
2387 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2388 		for (i = last_idx;;) {
2389 			if (skip_first) {
2390 				err = 0;
2391 				skip_first = false;
2392 			} else {
2393 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2394 			}
2395 			if (err == -ENOTSUPP) {
2396 				mark_all_scalars_precise(env, st);
2397 				return 0;
2398 			} else if (err) {
2399 				return err;
2400 			}
2401 			if (!reg_mask && !stack_mask)
2402 				/* Found assignment(s) into tracked register in this state.
2403 				 * Since this state is already marked, just return.
2404 				 * Nothing to be tracked further in the parent state.
2405 				 */
2406 				return 0;
2407 			if (i == first_idx)
2408 				break;
2409 			i = get_prev_insn_idx(st, i, &history);
2410 			if (i >= env->prog->len) {
2411 				/* This can happen if backtracking reached insn 0
2412 				 * and there are still reg_mask or stack_mask
2413 				 * to backtrack.
2414 				 * It means the backtracking missed the spot where
2415 				 * particular register was initialized with a constant.
2416 				 */
2417 				verbose(env, "BUG backtracking idx %d\n", i);
2418 				WARN_ONCE(1, "verifier backtracking bug");
2419 				return -EFAULT;
2420 			}
2421 		}
2422 		st = st->parent;
2423 		if (!st)
2424 			break;
2425 
2426 		new_marks = false;
2427 		func = st->frame[st->curframe];
2428 		bitmap_from_u64(mask, reg_mask);
2429 		for_each_set_bit(i, mask, 32) {
2430 			reg = &func->regs[i];
2431 			if (reg->type != SCALAR_VALUE) {
2432 				reg_mask &= ~(1u << i);
2433 				continue;
2434 			}
2435 			if (!reg->precise)
2436 				new_marks = true;
2437 			reg->precise = true;
2438 		}
2439 
2440 		bitmap_from_u64(mask, stack_mask);
2441 		for_each_set_bit(i, mask, 64) {
2442 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2443 				/* the sequence of instructions:
2444 				 * 2: (bf) r3 = r10
2445 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2446 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2447 				 * doesn't contain jmps. It's backtracked
2448 				 * as a single block.
2449 				 * During backtracking insn 3 is not recognized as
2450 				 * stack access, so at the end of backtracking
2451 				 * stack slot fp-8 is still marked in stack_mask.
2452 				 * However the parent state may not have accessed
2453 				 * fp-8 and it's "unallocated" stack space.
2454 				 * In such case fallback to conservative.
2455 				 */
2456 				mark_all_scalars_precise(env, st);
2457 				return 0;
2458 			}
2459 
2460 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2461 				stack_mask &= ~(1ull << i);
2462 				continue;
2463 			}
2464 			reg = &func->stack[i].spilled_ptr;
2465 			if (reg->type != SCALAR_VALUE) {
2466 				stack_mask &= ~(1ull << i);
2467 				continue;
2468 			}
2469 			if (!reg->precise)
2470 				new_marks = true;
2471 			reg->precise = true;
2472 		}
2473 		if (env->log.level & BPF_LOG_LEVEL) {
2474 			print_verifier_state(env, func);
2475 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2476 				new_marks ? "didn't have" : "already had",
2477 				reg_mask, stack_mask);
2478 		}
2479 
2480 		if (!reg_mask && !stack_mask)
2481 			break;
2482 		if (!new_marks)
2483 			break;
2484 
2485 		last_idx = st->last_insn_idx;
2486 		first_idx = st->first_insn_idx;
2487 	}
2488 	return 0;
2489 }
2490 
2491 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2492 {
2493 	return __mark_chain_precision(env, regno, -1);
2494 }
2495 
2496 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2497 {
2498 	return __mark_chain_precision(env, -1, spi);
2499 }
2500 
2501 static bool is_spillable_regtype(enum bpf_reg_type type)
2502 {
2503 	switch (type) {
2504 	case PTR_TO_MAP_VALUE:
2505 	case PTR_TO_MAP_VALUE_OR_NULL:
2506 	case PTR_TO_STACK:
2507 	case PTR_TO_CTX:
2508 	case PTR_TO_PACKET:
2509 	case PTR_TO_PACKET_META:
2510 	case PTR_TO_PACKET_END:
2511 	case PTR_TO_FLOW_KEYS:
2512 	case CONST_PTR_TO_MAP:
2513 	case PTR_TO_SOCKET:
2514 	case PTR_TO_SOCKET_OR_NULL:
2515 	case PTR_TO_SOCK_COMMON:
2516 	case PTR_TO_SOCK_COMMON_OR_NULL:
2517 	case PTR_TO_TCP_SOCK:
2518 	case PTR_TO_TCP_SOCK_OR_NULL:
2519 	case PTR_TO_XDP_SOCK:
2520 	case PTR_TO_BTF_ID:
2521 	case PTR_TO_BTF_ID_OR_NULL:
2522 	case PTR_TO_RDONLY_BUF:
2523 	case PTR_TO_RDONLY_BUF_OR_NULL:
2524 	case PTR_TO_RDWR_BUF:
2525 	case PTR_TO_RDWR_BUF_OR_NULL:
2526 	case PTR_TO_PERCPU_BTF_ID:
2527 	case PTR_TO_MEM:
2528 	case PTR_TO_MEM_OR_NULL:
2529 	case PTR_TO_FUNC:
2530 	case PTR_TO_MAP_KEY:
2531 		return true;
2532 	default:
2533 		return false;
2534 	}
2535 }
2536 
2537 /* Does this register contain a constant zero? */
2538 static bool register_is_null(struct bpf_reg_state *reg)
2539 {
2540 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2541 }
2542 
2543 static bool register_is_const(struct bpf_reg_state *reg)
2544 {
2545 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2546 }
2547 
2548 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2549 {
2550 	return tnum_is_unknown(reg->var_off) &&
2551 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2552 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2553 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2554 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2555 }
2556 
2557 static bool register_is_bounded(struct bpf_reg_state *reg)
2558 {
2559 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2560 }
2561 
2562 static bool __is_pointer_value(bool allow_ptr_leaks,
2563 			       const struct bpf_reg_state *reg)
2564 {
2565 	if (allow_ptr_leaks)
2566 		return false;
2567 
2568 	return reg->type != SCALAR_VALUE;
2569 }
2570 
2571 static void save_register_state(struct bpf_func_state *state,
2572 				int spi, struct bpf_reg_state *reg)
2573 {
2574 	int i;
2575 
2576 	state->stack[spi].spilled_ptr = *reg;
2577 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2578 
2579 	for (i = 0; i < BPF_REG_SIZE; i++)
2580 		state->stack[spi].slot_type[i] = STACK_SPILL;
2581 }
2582 
2583 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2584  * stack boundary and alignment are checked in check_mem_access()
2585  */
2586 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2587 				       /* stack frame we're writing to */
2588 				       struct bpf_func_state *state,
2589 				       int off, int size, int value_regno,
2590 				       int insn_idx)
2591 {
2592 	struct bpf_func_state *cur; /* state of the current function */
2593 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2594 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2595 	struct bpf_reg_state *reg = NULL;
2596 
2597 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2598 	if (err)
2599 		return err;
2600 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2601 	 * so it's aligned access and [off, off + size) are within stack limits
2602 	 */
2603 	if (!env->allow_ptr_leaks &&
2604 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2605 	    size != BPF_REG_SIZE) {
2606 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2607 		return -EACCES;
2608 	}
2609 
2610 	cur = env->cur_state->frame[env->cur_state->curframe];
2611 	if (value_regno >= 0)
2612 		reg = &cur->regs[value_regno];
2613 
2614 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2615 	    !register_is_null(reg) && env->bpf_capable) {
2616 		if (dst_reg != BPF_REG_FP) {
2617 			/* The backtracking logic can only recognize explicit
2618 			 * stack slot address like [fp - 8]. Other spill of
2619 			 * scalar via different register has to be conservative.
2620 			 * Backtrack from here and mark all registers as precise
2621 			 * that contributed into 'reg' being a constant.
2622 			 */
2623 			err = mark_chain_precision(env, value_regno);
2624 			if (err)
2625 				return err;
2626 		}
2627 		save_register_state(state, spi, reg);
2628 	} else if (reg && is_spillable_regtype(reg->type)) {
2629 		/* register containing pointer is being spilled into stack */
2630 		if (size != BPF_REG_SIZE) {
2631 			verbose_linfo(env, insn_idx, "; ");
2632 			verbose(env, "invalid size of register spill\n");
2633 			return -EACCES;
2634 		}
2635 
2636 		if (state != cur && reg->type == PTR_TO_STACK) {
2637 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2638 			return -EINVAL;
2639 		}
2640 
2641 		if (!env->bypass_spec_v4) {
2642 			bool sanitize = false;
2643 
2644 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2645 			    register_is_const(&state->stack[spi].spilled_ptr))
2646 				sanitize = true;
2647 			for (i = 0; i < BPF_REG_SIZE; i++)
2648 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2649 					sanitize = true;
2650 					break;
2651 				}
2652 			if (sanitize) {
2653 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2654 				int soff = (-spi - 1) * BPF_REG_SIZE;
2655 
2656 				/* detected reuse of integer stack slot with a pointer
2657 				 * which means either llvm is reusing stack slot or
2658 				 * an attacker is trying to exploit CVE-2018-3639
2659 				 * (speculative store bypass)
2660 				 * Have to sanitize that slot with preemptive
2661 				 * store of zero.
2662 				 */
2663 				if (*poff && *poff != soff) {
2664 					/* disallow programs where single insn stores
2665 					 * into two different stack slots, since verifier
2666 					 * cannot sanitize them
2667 					 */
2668 					verbose(env,
2669 						"insn %d cannot access two stack slots fp%d and fp%d",
2670 						insn_idx, *poff, soff);
2671 					return -EINVAL;
2672 				}
2673 				*poff = soff;
2674 			}
2675 		}
2676 		save_register_state(state, spi, reg);
2677 	} else {
2678 		u8 type = STACK_MISC;
2679 
2680 		/* regular write of data into stack destroys any spilled ptr */
2681 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2682 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2683 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2684 			for (i = 0; i < BPF_REG_SIZE; i++)
2685 				state->stack[spi].slot_type[i] = STACK_MISC;
2686 
2687 		/* only mark the slot as written if all 8 bytes were written
2688 		 * otherwise read propagation may incorrectly stop too soon
2689 		 * when stack slots are partially written.
2690 		 * This heuristic means that read propagation will be
2691 		 * conservative, since it will add reg_live_read marks
2692 		 * to stack slots all the way to first state when programs
2693 		 * writes+reads less than 8 bytes
2694 		 */
2695 		if (size == BPF_REG_SIZE)
2696 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2697 
2698 		/* when we zero initialize stack slots mark them as such */
2699 		if (reg && register_is_null(reg)) {
2700 			/* backtracking doesn't work for STACK_ZERO yet. */
2701 			err = mark_chain_precision(env, value_regno);
2702 			if (err)
2703 				return err;
2704 			type = STACK_ZERO;
2705 		}
2706 
2707 		/* Mark slots affected by this stack write. */
2708 		for (i = 0; i < size; i++)
2709 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2710 				type;
2711 	}
2712 	return 0;
2713 }
2714 
2715 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2716  * known to contain a variable offset.
2717  * This function checks whether the write is permitted and conservatively
2718  * tracks the effects of the write, considering that each stack slot in the
2719  * dynamic range is potentially written to.
2720  *
2721  * 'off' includes 'regno->off'.
2722  * 'value_regno' can be -1, meaning that an unknown value is being written to
2723  * the stack.
2724  *
2725  * Spilled pointers in range are not marked as written because we don't know
2726  * what's going to be actually written. This means that read propagation for
2727  * future reads cannot be terminated by this write.
2728  *
2729  * For privileged programs, uninitialized stack slots are considered
2730  * initialized by this write (even though we don't know exactly what offsets
2731  * are going to be written to). The idea is that we don't want the verifier to
2732  * reject future reads that access slots written to through variable offsets.
2733  */
2734 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2735 				     /* func where register points to */
2736 				     struct bpf_func_state *state,
2737 				     int ptr_regno, int off, int size,
2738 				     int value_regno, int insn_idx)
2739 {
2740 	struct bpf_func_state *cur; /* state of the current function */
2741 	int min_off, max_off;
2742 	int i, err;
2743 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2744 	bool writing_zero = false;
2745 	/* set if the fact that we're writing a zero is used to let any
2746 	 * stack slots remain STACK_ZERO
2747 	 */
2748 	bool zero_used = false;
2749 
2750 	cur = env->cur_state->frame[env->cur_state->curframe];
2751 	ptr_reg = &cur->regs[ptr_regno];
2752 	min_off = ptr_reg->smin_value + off;
2753 	max_off = ptr_reg->smax_value + off + size;
2754 	if (value_regno >= 0)
2755 		value_reg = &cur->regs[value_regno];
2756 	if (value_reg && register_is_null(value_reg))
2757 		writing_zero = true;
2758 
2759 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2760 	if (err)
2761 		return err;
2762 
2763 
2764 	/* Variable offset writes destroy any spilled pointers in range. */
2765 	for (i = min_off; i < max_off; i++) {
2766 		u8 new_type, *stype;
2767 		int slot, spi;
2768 
2769 		slot = -i - 1;
2770 		spi = slot / BPF_REG_SIZE;
2771 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2772 
2773 		if (!env->allow_ptr_leaks
2774 				&& *stype != NOT_INIT
2775 				&& *stype != SCALAR_VALUE) {
2776 			/* Reject the write if there's are spilled pointers in
2777 			 * range. If we didn't reject here, the ptr status
2778 			 * would be erased below (even though not all slots are
2779 			 * actually overwritten), possibly opening the door to
2780 			 * leaks.
2781 			 */
2782 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2783 				insn_idx, i);
2784 			return -EINVAL;
2785 		}
2786 
2787 		/* Erase all spilled pointers. */
2788 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2789 
2790 		/* Update the slot type. */
2791 		new_type = STACK_MISC;
2792 		if (writing_zero && *stype == STACK_ZERO) {
2793 			new_type = STACK_ZERO;
2794 			zero_used = true;
2795 		}
2796 		/* If the slot is STACK_INVALID, we check whether it's OK to
2797 		 * pretend that it will be initialized by this write. The slot
2798 		 * might not actually be written to, and so if we mark it as
2799 		 * initialized future reads might leak uninitialized memory.
2800 		 * For privileged programs, we will accept such reads to slots
2801 		 * that may or may not be written because, if we're reject
2802 		 * them, the error would be too confusing.
2803 		 */
2804 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2805 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2806 					insn_idx, i);
2807 			return -EINVAL;
2808 		}
2809 		*stype = new_type;
2810 	}
2811 	if (zero_used) {
2812 		/* backtracking doesn't work for STACK_ZERO yet. */
2813 		err = mark_chain_precision(env, value_regno);
2814 		if (err)
2815 			return err;
2816 	}
2817 	return 0;
2818 }
2819 
2820 /* When register 'dst_regno' is assigned some values from stack[min_off,
2821  * max_off), we set the register's type according to the types of the
2822  * respective stack slots. If all the stack values are known to be zeros, then
2823  * so is the destination reg. Otherwise, the register is considered to be
2824  * SCALAR. This function does not deal with register filling; the caller must
2825  * ensure that all spilled registers in the stack range have been marked as
2826  * read.
2827  */
2828 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2829 				/* func where src register points to */
2830 				struct bpf_func_state *ptr_state,
2831 				int min_off, int max_off, int dst_regno)
2832 {
2833 	struct bpf_verifier_state *vstate = env->cur_state;
2834 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2835 	int i, slot, spi;
2836 	u8 *stype;
2837 	int zeros = 0;
2838 
2839 	for (i = min_off; i < max_off; i++) {
2840 		slot = -i - 1;
2841 		spi = slot / BPF_REG_SIZE;
2842 		stype = ptr_state->stack[spi].slot_type;
2843 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2844 			break;
2845 		zeros++;
2846 	}
2847 	if (zeros == max_off - min_off) {
2848 		/* any access_size read into register is zero extended,
2849 		 * so the whole register == const_zero
2850 		 */
2851 		__mark_reg_const_zero(&state->regs[dst_regno]);
2852 		/* backtracking doesn't support STACK_ZERO yet,
2853 		 * so mark it precise here, so that later
2854 		 * backtracking can stop here.
2855 		 * Backtracking may not need this if this register
2856 		 * doesn't participate in pointer adjustment.
2857 		 * Forward propagation of precise flag is not
2858 		 * necessary either. This mark is only to stop
2859 		 * backtracking. Any register that contributed
2860 		 * to const 0 was marked precise before spill.
2861 		 */
2862 		state->regs[dst_regno].precise = true;
2863 	} else {
2864 		/* have read misc data from the stack */
2865 		mark_reg_unknown(env, state->regs, dst_regno);
2866 	}
2867 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2868 }
2869 
2870 /* Read the stack at 'off' and put the results into the register indicated by
2871  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2872  * spilled reg.
2873  *
2874  * 'dst_regno' can be -1, meaning that the read value is not going to a
2875  * register.
2876  *
2877  * The access is assumed to be within the current stack bounds.
2878  */
2879 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2880 				      /* func where src register points to */
2881 				      struct bpf_func_state *reg_state,
2882 				      int off, int size, int dst_regno)
2883 {
2884 	struct bpf_verifier_state *vstate = env->cur_state;
2885 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2886 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2887 	struct bpf_reg_state *reg;
2888 	u8 *stype;
2889 
2890 	stype = reg_state->stack[spi].slot_type;
2891 	reg = &reg_state->stack[spi].spilled_ptr;
2892 
2893 	if (stype[0] == STACK_SPILL) {
2894 		if (size != BPF_REG_SIZE) {
2895 			if (reg->type != SCALAR_VALUE) {
2896 				verbose_linfo(env, env->insn_idx, "; ");
2897 				verbose(env, "invalid size of register fill\n");
2898 				return -EACCES;
2899 			}
2900 			if (dst_regno >= 0) {
2901 				mark_reg_unknown(env, state->regs, dst_regno);
2902 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2903 			}
2904 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2905 			return 0;
2906 		}
2907 		for (i = 1; i < BPF_REG_SIZE; i++) {
2908 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2909 				verbose(env, "corrupted spill memory\n");
2910 				return -EACCES;
2911 			}
2912 		}
2913 
2914 		if (dst_regno >= 0) {
2915 			/* restore register state from stack */
2916 			state->regs[dst_regno] = *reg;
2917 			/* mark reg as written since spilled pointer state likely
2918 			 * has its liveness marks cleared by is_state_visited()
2919 			 * which resets stack/reg liveness for state transitions
2920 			 */
2921 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2922 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2923 			/* If dst_regno==-1, the caller is asking us whether
2924 			 * it is acceptable to use this value as a SCALAR_VALUE
2925 			 * (e.g. for XADD).
2926 			 * We must not allow unprivileged callers to do that
2927 			 * with spilled pointers.
2928 			 */
2929 			verbose(env, "leaking pointer from stack off %d\n",
2930 				off);
2931 			return -EACCES;
2932 		}
2933 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2934 	} else {
2935 		u8 type;
2936 
2937 		for (i = 0; i < size; i++) {
2938 			type = stype[(slot - i) % BPF_REG_SIZE];
2939 			if (type == STACK_MISC)
2940 				continue;
2941 			if (type == STACK_ZERO)
2942 				continue;
2943 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2944 				off, i, size);
2945 			return -EACCES;
2946 		}
2947 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2948 		if (dst_regno >= 0)
2949 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2950 	}
2951 	return 0;
2952 }
2953 
2954 enum stack_access_src {
2955 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2956 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2957 };
2958 
2959 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2960 					 int regno, int off, int access_size,
2961 					 bool zero_size_allowed,
2962 					 enum stack_access_src type,
2963 					 struct bpf_call_arg_meta *meta);
2964 
2965 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2966 {
2967 	return cur_regs(env) + regno;
2968 }
2969 
2970 /* Read the stack at 'ptr_regno + off' and put the result into the register
2971  * 'dst_regno'.
2972  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2973  * but not its variable offset.
2974  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2975  *
2976  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2977  * filling registers (i.e. reads of spilled register cannot be detected when
2978  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2979  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2980  * offset; for a fixed offset check_stack_read_fixed_off should be used
2981  * instead.
2982  */
2983 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2984 				    int ptr_regno, int off, int size, int dst_regno)
2985 {
2986 	/* The state of the source register. */
2987 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2988 	struct bpf_func_state *ptr_state = func(env, reg);
2989 	int err;
2990 	int min_off, max_off;
2991 
2992 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2993 	 */
2994 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2995 					    false, ACCESS_DIRECT, NULL);
2996 	if (err)
2997 		return err;
2998 
2999 	min_off = reg->smin_value + off;
3000 	max_off = reg->smax_value + off;
3001 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3002 	return 0;
3003 }
3004 
3005 /* check_stack_read dispatches to check_stack_read_fixed_off or
3006  * check_stack_read_var_off.
3007  *
3008  * The caller must ensure that the offset falls within the allocated stack
3009  * bounds.
3010  *
3011  * 'dst_regno' is a register which will receive the value from the stack. It
3012  * can be -1, meaning that the read value is not going to a register.
3013  */
3014 static int check_stack_read(struct bpf_verifier_env *env,
3015 			    int ptr_regno, int off, int size,
3016 			    int dst_regno)
3017 {
3018 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3019 	struct bpf_func_state *state = func(env, reg);
3020 	int err;
3021 	/* Some accesses are only permitted with a static offset. */
3022 	bool var_off = !tnum_is_const(reg->var_off);
3023 
3024 	/* The offset is required to be static when reads don't go to a
3025 	 * register, in order to not leak pointers (see
3026 	 * check_stack_read_fixed_off).
3027 	 */
3028 	if (dst_regno < 0 && var_off) {
3029 		char tn_buf[48];
3030 
3031 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3032 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3033 			tn_buf, off, size);
3034 		return -EACCES;
3035 	}
3036 	/* Variable offset is prohibited for unprivileged mode for simplicity
3037 	 * since it requires corresponding support in Spectre masking for stack
3038 	 * ALU. See also retrieve_ptr_limit().
3039 	 */
3040 	if (!env->bypass_spec_v1 && var_off) {
3041 		char tn_buf[48];
3042 
3043 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3044 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3045 				ptr_regno, tn_buf);
3046 		return -EACCES;
3047 	}
3048 
3049 	if (!var_off) {
3050 		off += reg->var_off.value;
3051 		err = check_stack_read_fixed_off(env, state, off, size,
3052 						 dst_regno);
3053 	} else {
3054 		/* Variable offset stack reads need more conservative handling
3055 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3056 		 * branch.
3057 		 */
3058 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3059 					       dst_regno);
3060 	}
3061 	return err;
3062 }
3063 
3064 
3065 /* check_stack_write dispatches to check_stack_write_fixed_off or
3066  * check_stack_write_var_off.
3067  *
3068  * 'ptr_regno' is the register used as a pointer into the stack.
3069  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3070  * 'value_regno' is the register whose value we're writing to the stack. It can
3071  * be -1, meaning that we're not writing from a register.
3072  *
3073  * The caller must ensure that the offset falls within the maximum stack size.
3074  */
3075 static int check_stack_write(struct bpf_verifier_env *env,
3076 			     int ptr_regno, int off, int size,
3077 			     int value_regno, int insn_idx)
3078 {
3079 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3080 	struct bpf_func_state *state = func(env, reg);
3081 	int err;
3082 
3083 	if (tnum_is_const(reg->var_off)) {
3084 		off += reg->var_off.value;
3085 		err = check_stack_write_fixed_off(env, state, off, size,
3086 						  value_regno, insn_idx);
3087 	} else {
3088 		/* Variable offset stack reads need more conservative handling
3089 		 * than fixed offset ones.
3090 		 */
3091 		err = check_stack_write_var_off(env, state,
3092 						ptr_regno, off, size,
3093 						value_regno, insn_idx);
3094 	}
3095 	return err;
3096 }
3097 
3098 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3099 				 int off, int size, enum bpf_access_type type)
3100 {
3101 	struct bpf_reg_state *regs = cur_regs(env);
3102 	struct bpf_map *map = regs[regno].map_ptr;
3103 	u32 cap = bpf_map_flags_to_cap(map);
3104 
3105 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3106 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3107 			map->value_size, off, size);
3108 		return -EACCES;
3109 	}
3110 
3111 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3112 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3113 			map->value_size, off, size);
3114 		return -EACCES;
3115 	}
3116 
3117 	return 0;
3118 }
3119 
3120 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3121 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3122 			      int off, int size, u32 mem_size,
3123 			      bool zero_size_allowed)
3124 {
3125 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3126 	struct bpf_reg_state *reg;
3127 
3128 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3129 		return 0;
3130 
3131 	reg = &cur_regs(env)[regno];
3132 	switch (reg->type) {
3133 	case PTR_TO_MAP_KEY:
3134 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3135 			mem_size, off, size);
3136 		break;
3137 	case PTR_TO_MAP_VALUE:
3138 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3139 			mem_size, off, size);
3140 		break;
3141 	case PTR_TO_PACKET:
3142 	case PTR_TO_PACKET_META:
3143 	case PTR_TO_PACKET_END:
3144 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3145 			off, size, regno, reg->id, off, mem_size);
3146 		break;
3147 	case PTR_TO_MEM:
3148 	default:
3149 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3150 			mem_size, off, size);
3151 	}
3152 
3153 	return -EACCES;
3154 }
3155 
3156 /* check read/write into a memory region with possible variable offset */
3157 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3158 				   int off, int size, u32 mem_size,
3159 				   bool zero_size_allowed)
3160 {
3161 	struct bpf_verifier_state *vstate = env->cur_state;
3162 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3163 	struct bpf_reg_state *reg = &state->regs[regno];
3164 	int err;
3165 
3166 	/* We may have adjusted the register pointing to memory region, so we
3167 	 * need to try adding each of min_value and max_value to off
3168 	 * to make sure our theoretical access will be safe.
3169 	 */
3170 	if (env->log.level & BPF_LOG_LEVEL)
3171 		print_verifier_state(env, state);
3172 
3173 	/* The minimum value is only important with signed
3174 	 * comparisons where we can't assume the floor of a
3175 	 * value is 0.  If we are using signed variables for our
3176 	 * index'es we need to make sure that whatever we use
3177 	 * will have a set floor within our range.
3178 	 */
3179 	if (reg->smin_value < 0 &&
3180 	    (reg->smin_value == S64_MIN ||
3181 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3182 	      reg->smin_value + off < 0)) {
3183 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3184 			regno);
3185 		return -EACCES;
3186 	}
3187 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3188 				 mem_size, zero_size_allowed);
3189 	if (err) {
3190 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3191 			regno);
3192 		return err;
3193 	}
3194 
3195 	/* If we haven't set a max value then we need to bail since we can't be
3196 	 * sure we won't do bad things.
3197 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3198 	 */
3199 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3200 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3201 			regno);
3202 		return -EACCES;
3203 	}
3204 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3205 				 mem_size, zero_size_allowed);
3206 	if (err) {
3207 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3208 			regno);
3209 		return err;
3210 	}
3211 
3212 	return 0;
3213 }
3214 
3215 /* check read/write into a map element with possible variable offset */
3216 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3217 			    int off, int size, bool zero_size_allowed)
3218 {
3219 	struct bpf_verifier_state *vstate = env->cur_state;
3220 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3221 	struct bpf_reg_state *reg = &state->regs[regno];
3222 	struct bpf_map *map = reg->map_ptr;
3223 	int err;
3224 
3225 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3226 				      zero_size_allowed);
3227 	if (err)
3228 		return err;
3229 
3230 	if (map_value_has_spin_lock(map)) {
3231 		u32 lock = map->spin_lock_off;
3232 
3233 		/* if any part of struct bpf_spin_lock can be touched by
3234 		 * load/store reject this program.
3235 		 * To check that [x1, x2) overlaps with [y1, y2)
3236 		 * it is sufficient to check x1 < y2 && y1 < x2.
3237 		 */
3238 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3239 		     lock < reg->umax_value + off + size) {
3240 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3241 			return -EACCES;
3242 		}
3243 	}
3244 	return err;
3245 }
3246 
3247 #define MAX_PACKET_OFF 0xffff
3248 
3249 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3250 {
3251 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3252 }
3253 
3254 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3255 				       const struct bpf_call_arg_meta *meta,
3256 				       enum bpf_access_type t)
3257 {
3258 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3259 
3260 	switch (prog_type) {
3261 	/* Program types only with direct read access go here! */
3262 	case BPF_PROG_TYPE_LWT_IN:
3263 	case BPF_PROG_TYPE_LWT_OUT:
3264 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3265 	case BPF_PROG_TYPE_SK_REUSEPORT:
3266 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3267 	case BPF_PROG_TYPE_CGROUP_SKB:
3268 		if (t == BPF_WRITE)
3269 			return false;
3270 		fallthrough;
3271 
3272 	/* Program types with direct read + write access go here! */
3273 	case BPF_PROG_TYPE_SCHED_CLS:
3274 	case BPF_PROG_TYPE_SCHED_ACT:
3275 	case BPF_PROG_TYPE_XDP:
3276 	case BPF_PROG_TYPE_LWT_XMIT:
3277 	case BPF_PROG_TYPE_SK_SKB:
3278 	case BPF_PROG_TYPE_SK_MSG:
3279 		if (meta)
3280 			return meta->pkt_access;
3281 
3282 		env->seen_direct_write = true;
3283 		return true;
3284 
3285 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3286 		if (t == BPF_WRITE)
3287 			env->seen_direct_write = true;
3288 
3289 		return true;
3290 
3291 	default:
3292 		return false;
3293 	}
3294 }
3295 
3296 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3297 			       int size, bool zero_size_allowed)
3298 {
3299 	struct bpf_reg_state *regs = cur_regs(env);
3300 	struct bpf_reg_state *reg = &regs[regno];
3301 	int err;
3302 
3303 	/* We may have added a variable offset to the packet pointer; but any
3304 	 * reg->range we have comes after that.  We are only checking the fixed
3305 	 * offset.
3306 	 */
3307 
3308 	/* We don't allow negative numbers, because we aren't tracking enough
3309 	 * detail to prove they're safe.
3310 	 */
3311 	if (reg->smin_value < 0) {
3312 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3313 			regno);
3314 		return -EACCES;
3315 	}
3316 
3317 	err = reg->range < 0 ? -EINVAL :
3318 	      __check_mem_access(env, regno, off, size, reg->range,
3319 				 zero_size_allowed);
3320 	if (err) {
3321 		verbose(env, "R%d offset is outside of the packet\n", regno);
3322 		return err;
3323 	}
3324 
3325 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3326 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3327 	 * otherwise find_good_pkt_pointers would have refused to set range info
3328 	 * that __check_mem_access would have rejected this pkt access.
3329 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3330 	 */
3331 	env->prog->aux->max_pkt_offset =
3332 		max_t(u32, env->prog->aux->max_pkt_offset,
3333 		      off + reg->umax_value + size - 1);
3334 
3335 	return err;
3336 }
3337 
3338 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3339 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3340 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3341 			    struct btf **btf, u32 *btf_id)
3342 {
3343 	struct bpf_insn_access_aux info = {
3344 		.reg_type = *reg_type,
3345 		.log = &env->log,
3346 	};
3347 
3348 	if (env->ops->is_valid_access &&
3349 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3350 		/* A non zero info.ctx_field_size indicates that this field is a
3351 		 * candidate for later verifier transformation to load the whole
3352 		 * field and then apply a mask when accessed with a narrower
3353 		 * access than actual ctx access size. A zero info.ctx_field_size
3354 		 * will only allow for whole field access and rejects any other
3355 		 * type of narrower access.
3356 		 */
3357 		*reg_type = info.reg_type;
3358 
3359 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3360 			*btf = info.btf;
3361 			*btf_id = info.btf_id;
3362 		} else {
3363 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3364 		}
3365 		/* remember the offset of last byte accessed in ctx */
3366 		if (env->prog->aux->max_ctx_offset < off + size)
3367 			env->prog->aux->max_ctx_offset = off + size;
3368 		return 0;
3369 	}
3370 
3371 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3372 	return -EACCES;
3373 }
3374 
3375 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3376 				  int size)
3377 {
3378 	if (size < 0 || off < 0 ||
3379 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3380 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3381 			off, size);
3382 		return -EACCES;
3383 	}
3384 	return 0;
3385 }
3386 
3387 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3388 			     u32 regno, int off, int size,
3389 			     enum bpf_access_type t)
3390 {
3391 	struct bpf_reg_state *regs = cur_regs(env);
3392 	struct bpf_reg_state *reg = &regs[regno];
3393 	struct bpf_insn_access_aux info = {};
3394 	bool valid;
3395 
3396 	if (reg->smin_value < 0) {
3397 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3398 			regno);
3399 		return -EACCES;
3400 	}
3401 
3402 	switch (reg->type) {
3403 	case PTR_TO_SOCK_COMMON:
3404 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3405 		break;
3406 	case PTR_TO_SOCKET:
3407 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3408 		break;
3409 	case PTR_TO_TCP_SOCK:
3410 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3411 		break;
3412 	case PTR_TO_XDP_SOCK:
3413 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3414 		break;
3415 	default:
3416 		valid = false;
3417 	}
3418 
3419 
3420 	if (valid) {
3421 		env->insn_aux_data[insn_idx].ctx_field_size =
3422 			info.ctx_field_size;
3423 		return 0;
3424 	}
3425 
3426 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3427 		regno, reg_type_str[reg->type], off, size);
3428 
3429 	return -EACCES;
3430 }
3431 
3432 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3433 {
3434 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3435 }
3436 
3437 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3438 {
3439 	const struct bpf_reg_state *reg = reg_state(env, regno);
3440 
3441 	return reg->type == PTR_TO_CTX;
3442 }
3443 
3444 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3445 {
3446 	const struct bpf_reg_state *reg = reg_state(env, regno);
3447 
3448 	return type_is_sk_pointer(reg->type);
3449 }
3450 
3451 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3452 {
3453 	const struct bpf_reg_state *reg = reg_state(env, regno);
3454 
3455 	return type_is_pkt_pointer(reg->type);
3456 }
3457 
3458 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3459 {
3460 	const struct bpf_reg_state *reg = reg_state(env, regno);
3461 
3462 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3463 	return reg->type == PTR_TO_FLOW_KEYS;
3464 }
3465 
3466 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3467 				   const struct bpf_reg_state *reg,
3468 				   int off, int size, bool strict)
3469 {
3470 	struct tnum reg_off;
3471 	int ip_align;
3472 
3473 	/* Byte size accesses are always allowed. */
3474 	if (!strict || size == 1)
3475 		return 0;
3476 
3477 	/* For platforms that do not have a Kconfig enabling
3478 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3479 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3480 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3481 	 * to this code only in strict mode where we want to emulate
3482 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3483 	 * unconditional IP align value of '2'.
3484 	 */
3485 	ip_align = 2;
3486 
3487 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3488 	if (!tnum_is_aligned(reg_off, size)) {
3489 		char tn_buf[48];
3490 
3491 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3492 		verbose(env,
3493 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3494 			ip_align, tn_buf, reg->off, off, size);
3495 		return -EACCES;
3496 	}
3497 
3498 	return 0;
3499 }
3500 
3501 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3502 				       const struct bpf_reg_state *reg,
3503 				       const char *pointer_desc,
3504 				       int off, int size, bool strict)
3505 {
3506 	struct tnum reg_off;
3507 
3508 	/* Byte size accesses are always allowed. */
3509 	if (!strict || size == 1)
3510 		return 0;
3511 
3512 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3513 	if (!tnum_is_aligned(reg_off, size)) {
3514 		char tn_buf[48];
3515 
3516 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3517 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3518 			pointer_desc, tn_buf, reg->off, off, size);
3519 		return -EACCES;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 static int check_ptr_alignment(struct bpf_verifier_env *env,
3526 			       const struct bpf_reg_state *reg, int off,
3527 			       int size, bool strict_alignment_once)
3528 {
3529 	bool strict = env->strict_alignment || strict_alignment_once;
3530 	const char *pointer_desc = "";
3531 
3532 	switch (reg->type) {
3533 	case PTR_TO_PACKET:
3534 	case PTR_TO_PACKET_META:
3535 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3536 		 * right in front, treat it the very same way.
3537 		 */
3538 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3539 	case PTR_TO_FLOW_KEYS:
3540 		pointer_desc = "flow keys ";
3541 		break;
3542 	case PTR_TO_MAP_KEY:
3543 		pointer_desc = "key ";
3544 		break;
3545 	case PTR_TO_MAP_VALUE:
3546 		pointer_desc = "value ";
3547 		break;
3548 	case PTR_TO_CTX:
3549 		pointer_desc = "context ";
3550 		break;
3551 	case PTR_TO_STACK:
3552 		pointer_desc = "stack ";
3553 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3554 		 * and check_stack_read_fixed_off() relies on stack accesses being
3555 		 * aligned.
3556 		 */
3557 		strict = true;
3558 		break;
3559 	case PTR_TO_SOCKET:
3560 		pointer_desc = "sock ";
3561 		break;
3562 	case PTR_TO_SOCK_COMMON:
3563 		pointer_desc = "sock_common ";
3564 		break;
3565 	case PTR_TO_TCP_SOCK:
3566 		pointer_desc = "tcp_sock ";
3567 		break;
3568 	case PTR_TO_XDP_SOCK:
3569 		pointer_desc = "xdp_sock ";
3570 		break;
3571 	default:
3572 		break;
3573 	}
3574 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3575 					   strict);
3576 }
3577 
3578 static int update_stack_depth(struct bpf_verifier_env *env,
3579 			      const struct bpf_func_state *func,
3580 			      int off)
3581 {
3582 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3583 
3584 	if (stack >= -off)
3585 		return 0;
3586 
3587 	/* update known max for given subprogram */
3588 	env->subprog_info[func->subprogno].stack_depth = -off;
3589 	return 0;
3590 }
3591 
3592 /* starting from main bpf function walk all instructions of the function
3593  * and recursively walk all callees that given function can call.
3594  * Ignore jump and exit insns.
3595  * Since recursion is prevented by check_cfg() this algorithm
3596  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3597  */
3598 static int check_max_stack_depth(struct bpf_verifier_env *env)
3599 {
3600 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3601 	struct bpf_subprog_info *subprog = env->subprog_info;
3602 	struct bpf_insn *insn = env->prog->insnsi;
3603 	bool tail_call_reachable = false;
3604 	int ret_insn[MAX_CALL_FRAMES];
3605 	int ret_prog[MAX_CALL_FRAMES];
3606 	int j;
3607 
3608 process_func:
3609 	/* protect against potential stack overflow that might happen when
3610 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3611 	 * depth for such case down to 256 so that the worst case scenario
3612 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3613 	 * 8k).
3614 	 *
3615 	 * To get the idea what might happen, see an example:
3616 	 * func1 -> sub rsp, 128
3617 	 *  subfunc1 -> sub rsp, 256
3618 	 *  tailcall1 -> add rsp, 256
3619 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3620 	 *   subfunc2 -> sub rsp, 64
3621 	 *   subfunc22 -> sub rsp, 128
3622 	 *   tailcall2 -> add rsp, 128
3623 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3624 	 *
3625 	 * tailcall will unwind the current stack frame but it will not get rid
3626 	 * of caller's stack as shown on the example above.
3627 	 */
3628 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3629 		verbose(env,
3630 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3631 			depth);
3632 		return -EACCES;
3633 	}
3634 	/* round up to 32-bytes, since this is granularity
3635 	 * of interpreter stack size
3636 	 */
3637 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3638 	if (depth > MAX_BPF_STACK) {
3639 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3640 			frame + 1, depth);
3641 		return -EACCES;
3642 	}
3643 continue_func:
3644 	subprog_end = subprog[idx + 1].start;
3645 	for (; i < subprog_end; i++) {
3646 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3647 			continue;
3648 		/* remember insn and function to return to */
3649 		ret_insn[frame] = i + 1;
3650 		ret_prog[frame] = idx;
3651 
3652 		/* find the callee */
3653 		i = i + insn[i].imm + 1;
3654 		idx = find_subprog(env, i);
3655 		if (idx < 0) {
3656 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3657 				  i);
3658 			return -EFAULT;
3659 		}
3660 
3661 		if (subprog[idx].has_tail_call)
3662 			tail_call_reachable = true;
3663 
3664 		frame++;
3665 		if (frame >= MAX_CALL_FRAMES) {
3666 			verbose(env, "the call stack of %d frames is too deep !\n",
3667 				frame);
3668 			return -E2BIG;
3669 		}
3670 		goto process_func;
3671 	}
3672 	/* if tail call got detected across bpf2bpf calls then mark each of the
3673 	 * currently present subprog frames as tail call reachable subprogs;
3674 	 * this info will be utilized by JIT so that we will be preserving the
3675 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3676 	 */
3677 	if (tail_call_reachable)
3678 		for (j = 0; j < frame; j++)
3679 			subprog[ret_prog[j]].tail_call_reachable = true;
3680 
3681 	/* end of for() loop means the last insn of the 'subprog'
3682 	 * was reached. Doesn't matter whether it was JA or EXIT
3683 	 */
3684 	if (frame == 0)
3685 		return 0;
3686 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3687 	frame--;
3688 	i = ret_insn[frame];
3689 	idx = ret_prog[frame];
3690 	goto continue_func;
3691 }
3692 
3693 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3694 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3695 				  const struct bpf_insn *insn, int idx)
3696 {
3697 	int start = idx + insn->imm + 1, subprog;
3698 
3699 	subprog = find_subprog(env, start);
3700 	if (subprog < 0) {
3701 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3702 			  start);
3703 		return -EFAULT;
3704 	}
3705 	return env->subprog_info[subprog].stack_depth;
3706 }
3707 #endif
3708 
3709 int check_ctx_reg(struct bpf_verifier_env *env,
3710 		  const struct bpf_reg_state *reg, int regno)
3711 {
3712 	/* Access to ctx or passing it to a helper is only allowed in
3713 	 * its original, unmodified form.
3714 	 */
3715 
3716 	if (reg->off) {
3717 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3718 			regno, reg->off);
3719 		return -EACCES;
3720 	}
3721 
3722 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3723 		char tn_buf[48];
3724 
3725 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3726 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3727 		return -EACCES;
3728 	}
3729 
3730 	return 0;
3731 }
3732 
3733 static int __check_buffer_access(struct bpf_verifier_env *env,
3734 				 const char *buf_info,
3735 				 const struct bpf_reg_state *reg,
3736 				 int regno, int off, int size)
3737 {
3738 	if (off < 0) {
3739 		verbose(env,
3740 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3741 			regno, buf_info, off, size);
3742 		return -EACCES;
3743 	}
3744 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3745 		char tn_buf[48];
3746 
3747 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3748 		verbose(env,
3749 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3750 			regno, off, tn_buf);
3751 		return -EACCES;
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3758 				  const struct bpf_reg_state *reg,
3759 				  int regno, int off, int size)
3760 {
3761 	int err;
3762 
3763 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3764 	if (err)
3765 		return err;
3766 
3767 	if (off + size > env->prog->aux->max_tp_access)
3768 		env->prog->aux->max_tp_access = off + size;
3769 
3770 	return 0;
3771 }
3772 
3773 static int check_buffer_access(struct bpf_verifier_env *env,
3774 			       const struct bpf_reg_state *reg,
3775 			       int regno, int off, int size,
3776 			       bool zero_size_allowed,
3777 			       const char *buf_info,
3778 			       u32 *max_access)
3779 {
3780 	int err;
3781 
3782 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3783 	if (err)
3784 		return err;
3785 
3786 	if (off + size > *max_access)
3787 		*max_access = off + size;
3788 
3789 	return 0;
3790 }
3791 
3792 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3793 static void zext_32_to_64(struct bpf_reg_state *reg)
3794 {
3795 	reg->var_off = tnum_subreg(reg->var_off);
3796 	__reg_assign_32_into_64(reg);
3797 }
3798 
3799 /* truncate register to smaller size (in bytes)
3800  * must be called with size < BPF_REG_SIZE
3801  */
3802 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3803 {
3804 	u64 mask;
3805 
3806 	/* clear high bits in bit representation */
3807 	reg->var_off = tnum_cast(reg->var_off, size);
3808 
3809 	/* fix arithmetic bounds */
3810 	mask = ((u64)1 << (size * 8)) - 1;
3811 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3812 		reg->umin_value &= mask;
3813 		reg->umax_value &= mask;
3814 	} else {
3815 		reg->umin_value = 0;
3816 		reg->umax_value = mask;
3817 	}
3818 	reg->smin_value = reg->umin_value;
3819 	reg->smax_value = reg->umax_value;
3820 
3821 	/* If size is smaller than 32bit register the 32bit register
3822 	 * values are also truncated so we push 64-bit bounds into
3823 	 * 32-bit bounds. Above were truncated < 32-bits already.
3824 	 */
3825 	if (size >= 4)
3826 		return;
3827 	__reg_combine_64_into_32(reg);
3828 }
3829 
3830 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3831 {
3832 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3833 }
3834 
3835 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3836 {
3837 	void *ptr;
3838 	u64 addr;
3839 	int err;
3840 
3841 	err = map->ops->map_direct_value_addr(map, &addr, off);
3842 	if (err)
3843 		return err;
3844 	ptr = (void *)(long)addr + off;
3845 
3846 	switch (size) {
3847 	case sizeof(u8):
3848 		*val = (u64)*(u8 *)ptr;
3849 		break;
3850 	case sizeof(u16):
3851 		*val = (u64)*(u16 *)ptr;
3852 		break;
3853 	case sizeof(u32):
3854 		*val = (u64)*(u32 *)ptr;
3855 		break;
3856 	case sizeof(u64):
3857 		*val = *(u64 *)ptr;
3858 		break;
3859 	default:
3860 		return -EINVAL;
3861 	}
3862 	return 0;
3863 }
3864 
3865 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3866 				   struct bpf_reg_state *regs,
3867 				   int regno, int off, int size,
3868 				   enum bpf_access_type atype,
3869 				   int value_regno)
3870 {
3871 	struct bpf_reg_state *reg = regs + regno;
3872 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3873 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3874 	u32 btf_id;
3875 	int ret;
3876 
3877 	if (off < 0) {
3878 		verbose(env,
3879 			"R%d is ptr_%s invalid negative access: off=%d\n",
3880 			regno, tname, off);
3881 		return -EACCES;
3882 	}
3883 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3884 		char tn_buf[48];
3885 
3886 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3887 		verbose(env,
3888 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3889 			regno, tname, off, tn_buf);
3890 		return -EACCES;
3891 	}
3892 
3893 	if (env->ops->btf_struct_access) {
3894 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3895 						  off, size, atype, &btf_id);
3896 	} else {
3897 		if (atype != BPF_READ) {
3898 			verbose(env, "only read is supported\n");
3899 			return -EACCES;
3900 		}
3901 
3902 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3903 					atype, &btf_id);
3904 	}
3905 
3906 	if (ret < 0)
3907 		return ret;
3908 
3909 	if (atype == BPF_READ && value_regno >= 0)
3910 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3911 
3912 	return 0;
3913 }
3914 
3915 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3916 				   struct bpf_reg_state *regs,
3917 				   int regno, int off, int size,
3918 				   enum bpf_access_type atype,
3919 				   int value_regno)
3920 {
3921 	struct bpf_reg_state *reg = regs + regno;
3922 	struct bpf_map *map = reg->map_ptr;
3923 	const struct btf_type *t;
3924 	const char *tname;
3925 	u32 btf_id;
3926 	int ret;
3927 
3928 	if (!btf_vmlinux) {
3929 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3930 		return -ENOTSUPP;
3931 	}
3932 
3933 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3934 		verbose(env, "map_ptr access not supported for map type %d\n",
3935 			map->map_type);
3936 		return -ENOTSUPP;
3937 	}
3938 
3939 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3940 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3941 
3942 	if (!env->allow_ptr_to_map_access) {
3943 		verbose(env,
3944 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3945 			tname);
3946 		return -EPERM;
3947 	}
3948 
3949 	if (off < 0) {
3950 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3951 			regno, tname, off);
3952 		return -EACCES;
3953 	}
3954 
3955 	if (atype != BPF_READ) {
3956 		verbose(env, "only read from %s is supported\n", tname);
3957 		return -EACCES;
3958 	}
3959 
3960 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3961 	if (ret < 0)
3962 		return ret;
3963 
3964 	if (value_regno >= 0)
3965 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3966 
3967 	return 0;
3968 }
3969 
3970 /* Check that the stack access at the given offset is within bounds. The
3971  * maximum valid offset is -1.
3972  *
3973  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3974  * -state->allocated_stack for reads.
3975  */
3976 static int check_stack_slot_within_bounds(int off,
3977 					  struct bpf_func_state *state,
3978 					  enum bpf_access_type t)
3979 {
3980 	int min_valid_off;
3981 
3982 	if (t == BPF_WRITE)
3983 		min_valid_off = -MAX_BPF_STACK;
3984 	else
3985 		min_valid_off = -state->allocated_stack;
3986 
3987 	if (off < min_valid_off || off > -1)
3988 		return -EACCES;
3989 	return 0;
3990 }
3991 
3992 /* Check that the stack access at 'regno + off' falls within the maximum stack
3993  * bounds.
3994  *
3995  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3996  */
3997 static int check_stack_access_within_bounds(
3998 		struct bpf_verifier_env *env,
3999 		int regno, int off, int access_size,
4000 		enum stack_access_src src, enum bpf_access_type type)
4001 {
4002 	struct bpf_reg_state *regs = cur_regs(env);
4003 	struct bpf_reg_state *reg = regs + regno;
4004 	struct bpf_func_state *state = func(env, reg);
4005 	int min_off, max_off;
4006 	int err;
4007 	char *err_extra;
4008 
4009 	if (src == ACCESS_HELPER)
4010 		/* We don't know if helpers are reading or writing (or both). */
4011 		err_extra = " indirect access to";
4012 	else if (type == BPF_READ)
4013 		err_extra = " read from";
4014 	else
4015 		err_extra = " write to";
4016 
4017 	if (tnum_is_const(reg->var_off)) {
4018 		min_off = reg->var_off.value + off;
4019 		if (access_size > 0)
4020 			max_off = min_off + access_size - 1;
4021 		else
4022 			max_off = min_off;
4023 	} else {
4024 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4025 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4026 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4027 				err_extra, regno);
4028 			return -EACCES;
4029 		}
4030 		min_off = reg->smin_value + off;
4031 		if (access_size > 0)
4032 			max_off = reg->smax_value + off + access_size - 1;
4033 		else
4034 			max_off = min_off;
4035 	}
4036 
4037 	err = check_stack_slot_within_bounds(min_off, state, type);
4038 	if (!err)
4039 		err = check_stack_slot_within_bounds(max_off, state, type);
4040 
4041 	if (err) {
4042 		if (tnum_is_const(reg->var_off)) {
4043 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4044 				err_extra, regno, off, access_size);
4045 		} else {
4046 			char tn_buf[48];
4047 
4048 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4049 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4050 				err_extra, regno, tn_buf, access_size);
4051 		}
4052 	}
4053 	return err;
4054 }
4055 
4056 /* check whether memory at (regno + off) is accessible for t = (read | write)
4057  * if t==write, value_regno is a register which value is stored into memory
4058  * if t==read, value_regno is a register which will receive the value from memory
4059  * if t==write && value_regno==-1, some unknown value is stored into memory
4060  * if t==read && value_regno==-1, don't care what we read from memory
4061  */
4062 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4063 			    int off, int bpf_size, enum bpf_access_type t,
4064 			    int value_regno, bool strict_alignment_once)
4065 {
4066 	struct bpf_reg_state *regs = cur_regs(env);
4067 	struct bpf_reg_state *reg = regs + regno;
4068 	struct bpf_func_state *state;
4069 	int size, err = 0;
4070 
4071 	size = bpf_size_to_bytes(bpf_size);
4072 	if (size < 0)
4073 		return size;
4074 
4075 	/* alignment checks will add in reg->off themselves */
4076 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4077 	if (err)
4078 		return err;
4079 
4080 	/* for access checks, reg->off is just part of off */
4081 	off += reg->off;
4082 
4083 	if (reg->type == PTR_TO_MAP_KEY) {
4084 		if (t == BPF_WRITE) {
4085 			verbose(env, "write to change key R%d not allowed\n", regno);
4086 			return -EACCES;
4087 		}
4088 
4089 		err = check_mem_region_access(env, regno, off, size,
4090 					      reg->map_ptr->key_size, false);
4091 		if (err)
4092 			return err;
4093 		if (value_regno >= 0)
4094 			mark_reg_unknown(env, regs, value_regno);
4095 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4096 		if (t == BPF_WRITE && value_regno >= 0 &&
4097 		    is_pointer_value(env, value_regno)) {
4098 			verbose(env, "R%d leaks addr into map\n", value_regno);
4099 			return -EACCES;
4100 		}
4101 		err = check_map_access_type(env, regno, off, size, t);
4102 		if (err)
4103 			return err;
4104 		err = check_map_access(env, regno, off, size, false);
4105 		if (!err && t == BPF_READ && value_regno >= 0) {
4106 			struct bpf_map *map = reg->map_ptr;
4107 
4108 			/* if map is read-only, track its contents as scalars */
4109 			if (tnum_is_const(reg->var_off) &&
4110 			    bpf_map_is_rdonly(map) &&
4111 			    map->ops->map_direct_value_addr) {
4112 				int map_off = off + reg->var_off.value;
4113 				u64 val = 0;
4114 
4115 				err = bpf_map_direct_read(map, map_off, size,
4116 							  &val);
4117 				if (err)
4118 					return err;
4119 
4120 				regs[value_regno].type = SCALAR_VALUE;
4121 				__mark_reg_known(&regs[value_regno], val);
4122 			} else {
4123 				mark_reg_unknown(env, regs, value_regno);
4124 			}
4125 		}
4126 	} else if (reg->type == PTR_TO_MEM) {
4127 		if (t == BPF_WRITE && value_regno >= 0 &&
4128 		    is_pointer_value(env, value_regno)) {
4129 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4130 			return -EACCES;
4131 		}
4132 		err = check_mem_region_access(env, regno, off, size,
4133 					      reg->mem_size, false);
4134 		if (!err && t == BPF_READ && value_regno >= 0)
4135 			mark_reg_unknown(env, regs, value_regno);
4136 	} else if (reg->type == PTR_TO_CTX) {
4137 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4138 		struct btf *btf = NULL;
4139 		u32 btf_id = 0;
4140 
4141 		if (t == BPF_WRITE && value_regno >= 0 &&
4142 		    is_pointer_value(env, value_regno)) {
4143 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4144 			return -EACCES;
4145 		}
4146 
4147 		err = check_ctx_reg(env, reg, regno);
4148 		if (err < 0)
4149 			return err;
4150 
4151 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4152 		if (err)
4153 			verbose_linfo(env, insn_idx, "; ");
4154 		if (!err && t == BPF_READ && value_regno >= 0) {
4155 			/* ctx access returns either a scalar, or a
4156 			 * PTR_TO_PACKET[_META,_END]. In the latter
4157 			 * case, we know the offset is zero.
4158 			 */
4159 			if (reg_type == SCALAR_VALUE) {
4160 				mark_reg_unknown(env, regs, value_regno);
4161 			} else {
4162 				mark_reg_known_zero(env, regs,
4163 						    value_regno);
4164 				if (reg_type_may_be_null(reg_type))
4165 					regs[value_regno].id = ++env->id_gen;
4166 				/* A load of ctx field could have different
4167 				 * actual load size with the one encoded in the
4168 				 * insn. When the dst is PTR, it is for sure not
4169 				 * a sub-register.
4170 				 */
4171 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4172 				if (reg_type == PTR_TO_BTF_ID ||
4173 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4174 					regs[value_regno].btf = btf;
4175 					regs[value_regno].btf_id = btf_id;
4176 				}
4177 			}
4178 			regs[value_regno].type = reg_type;
4179 		}
4180 
4181 	} else if (reg->type == PTR_TO_STACK) {
4182 		/* Basic bounds checks. */
4183 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4184 		if (err)
4185 			return err;
4186 
4187 		state = func(env, reg);
4188 		err = update_stack_depth(env, state, off);
4189 		if (err)
4190 			return err;
4191 
4192 		if (t == BPF_READ)
4193 			err = check_stack_read(env, regno, off, size,
4194 					       value_regno);
4195 		else
4196 			err = check_stack_write(env, regno, off, size,
4197 						value_regno, insn_idx);
4198 	} else if (reg_is_pkt_pointer(reg)) {
4199 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4200 			verbose(env, "cannot write into packet\n");
4201 			return -EACCES;
4202 		}
4203 		if (t == BPF_WRITE && value_regno >= 0 &&
4204 		    is_pointer_value(env, value_regno)) {
4205 			verbose(env, "R%d leaks addr into packet\n",
4206 				value_regno);
4207 			return -EACCES;
4208 		}
4209 		err = check_packet_access(env, regno, off, size, false);
4210 		if (!err && t == BPF_READ && value_regno >= 0)
4211 			mark_reg_unknown(env, regs, value_regno);
4212 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4213 		if (t == BPF_WRITE && value_regno >= 0 &&
4214 		    is_pointer_value(env, value_regno)) {
4215 			verbose(env, "R%d leaks addr into flow keys\n",
4216 				value_regno);
4217 			return -EACCES;
4218 		}
4219 
4220 		err = check_flow_keys_access(env, off, size);
4221 		if (!err && t == BPF_READ && value_regno >= 0)
4222 			mark_reg_unknown(env, regs, value_regno);
4223 	} else if (type_is_sk_pointer(reg->type)) {
4224 		if (t == BPF_WRITE) {
4225 			verbose(env, "R%d cannot write into %s\n",
4226 				regno, reg_type_str[reg->type]);
4227 			return -EACCES;
4228 		}
4229 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4230 		if (!err && value_regno >= 0)
4231 			mark_reg_unknown(env, regs, value_regno);
4232 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4233 		err = check_tp_buffer_access(env, reg, regno, off, size);
4234 		if (!err && t == BPF_READ && value_regno >= 0)
4235 			mark_reg_unknown(env, regs, value_regno);
4236 	} else if (reg->type == PTR_TO_BTF_ID) {
4237 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4238 					      value_regno);
4239 	} else if (reg->type == CONST_PTR_TO_MAP) {
4240 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4241 					      value_regno);
4242 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4243 		if (t == BPF_WRITE) {
4244 			verbose(env, "R%d cannot write into %s\n",
4245 				regno, reg_type_str[reg->type]);
4246 			return -EACCES;
4247 		}
4248 		err = check_buffer_access(env, reg, regno, off, size, false,
4249 					  "rdonly",
4250 					  &env->prog->aux->max_rdonly_access);
4251 		if (!err && value_regno >= 0)
4252 			mark_reg_unknown(env, regs, value_regno);
4253 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4254 		err = check_buffer_access(env, reg, regno, off, size, false,
4255 					  "rdwr",
4256 					  &env->prog->aux->max_rdwr_access);
4257 		if (!err && t == BPF_READ && value_regno >= 0)
4258 			mark_reg_unknown(env, regs, value_regno);
4259 	} else {
4260 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4261 			reg_type_str[reg->type]);
4262 		return -EACCES;
4263 	}
4264 
4265 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4266 	    regs[value_regno].type == SCALAR_VALUE) {
4267 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4268 		coerce_reg_to_size(&regs[value_regno], size);
4269 	}
4270 	return err;
4271 }
4272 
4273 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4274 {
4275 	int load_reg;
4276 	int err;
4277 
4278 	switch (insn->imm) {
4279 	case BPF_ADD:
4280 	case BPF_ADD | BPF_FETCH:
4281 	case BPF_AND:
4282 	case BPF_AND | BPF_FETCH:
4283 	case BPF_OR:
4284 	case BPF_OR | BPF_FETCH:
4285 	case BPF_XOR:
4286 	case BPF_XOR | BPF_FETCH:
4287 	case BPF_XCHG:
4288 	case BPF_CMPXCHG:
4289 		break;
4290 	default:
4291 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4292 		return -EINVAL;
4293 	}
4294 
4295 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4296 		verbose(env, "invalid atomic operand size\n");
4297 		return -EINVAL;
4298 	}
4299 
4300 	/* check src1 operand */
4301 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4302 	if (err)
4303 		return err;
4304 
4305 	/* check src2 operand */
4306 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4307 	if (err)
4308 		return err;
4309 
4310 	if (insn->imm == BPF_CMPXCHG) {
4311 		/* Check comparison of R0 with memory location */
4312 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4313 		if (err)
4314 			return err;
4315 	}
4316 
4317 	if (is_pointer_value(env, insn->src_reg)) {
4318 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4319 		return -EACCES;
4320 	}
4321 
4322 	if (is_ctx_reg(env, insn->dst_reg) ||
4323 	    is_pkt_reg(env, insn->dst_reg) ||
4324 	    is_flow_key_reg(env, insn->dst_reg) ||
4325 	    is_sk_reg(env, insn->dst_reg)) {
4326 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4327 			insn->dst_reg,
4328 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4329 		return -EACCES;
4330 	}
4331 
4332 	if (insn->imm & BPF_FETCH) {
4333 		if (insn->imm == BPF_CMPXCHG)
4334 			load_reg = BPF_REG_0;
4335 		else
4336 			load_reg = insn->src_reg;
4337 
4338 		/* check and record load of old value */
4339 		err = check_reg_arg(env, load_reg, DST_OP);
4340 		if (err)
4341 			return err;
4342 	} else {
4343 		/* This instruction accesses a memory location but doesn't
4344 		 * actually load it into a register.
4345 		 */
4346 		load_reg = -1;
4347 	}
4348 
4349 	/* check whether we can read the memory */
4350 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4351 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4352 	if (err)
4353 		return err;
4354 
4355 	/* check whether we can write into the same memory */
4356 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4357 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4358 	if (err)
4359 		return err;
4360 
4361 	return 0;
4362 }
4363 
4364 /* When register 'regno' is used to read the stack (either directly or through
4365  * a helper function) make sure that it's within stack boundary and, depending
4366  * on the access type, that all elements of the stack are initialized.
4367  *
4368  * 'off' includes 'regno->off', but not its dynamic part (if any).
4369  *
4370  * All registers that have been spilled on the stack in the slots within the
4371  * read offsets are marked as read.
4372  */
4373 static int check_stack_range_initialized(
4374 		struct bpf_verifier_env *env, int regno, int off,
4375 		int access_size, bool zero_size_allowed,
4376 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4377 {
4378 	struct bpf_reg_state *reg = reg_state(env, regno);
4379 	struct bpf_func_state *state = func(env, reg);
4380 	int err, min_off, max_off, i, j, slot, spi;
4381 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4382 	enum bpf_access_type bounds_check_type;
4383 	/* Some accesses can write anything into the stack, others are
4384 	 * read-only.
4385 	 */
4386 	bool clobber = false;
4387 
4388 	if (access_size == 0 && !zero_size_allowed) {
4389 		verbose(env, "invalid zero-sized read\n");
4390 		return -EACCES;
4391 	}
4392 
4393 	if (type == ACCESS_HELPER) {
4394 		/* The bounds checks for writes are more permissive than for
4395 		 * reads. However, if raw_mode is not set, we'll do extra
4396 		 * checks below.
4397 		 */
4398 		bounds_check_type = BPF_WRITE;
4399 		clobber = true;
4400 	} else {
4401 		bounds_check_type = BPF_READ;
4402 	}
4403 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4404 					       type, bounds_check_type);
4405 	if (err)
4406 		return err;
4407 
4408 
4409 	if (tnum_is_const(reg->var_off)) {
4410 		min_off = max_off = reg->var_off.value + off;
4411 	} else {
4412 		/* Variable offset is prohibited for unprivileged mode for
4413 		 * simplicity since it requires corresponding support in
4414 		 * Spectre masking for stack ALU.
4415 		 * See also retrieve_ptr_limit().
4416 		 */
4417 		if (!env->bypass_spec_v1) {
4418 			char tn_buf[48];
4419 
4420 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4421 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4422 				regno, err_extra, tn_buf);
4423 			return -EACCES;
4424 		}
4425 		/* Only initialized buffer on stack is allowed to be accessed
4426 		 * with variable offset. With uninitialized buffer it's hard to
4427 		 * guarantee that whole memory is marked as initialized on
4428 		 * helper return since specific bounds are unknown what may
4429 		 * cause uninitialized stack leaking.
4430 		 */
4431 		if (meta && meta->raw_mode)
4432 			meta = NULL;
4433 
4434 		min_off = reg->smin_value + off;
4435 		max_off = reg->smax_value + off;
4436 	}
4437 
4438 	if (meta && meta->raw_mode) {
4439 		meta->access_size = access_size;
4440 		meta->regno = regno;
4441 		return 0;
4442 	}
4443 
4444 	for (i = min_off; i < max_off + access_size; i++) {
4445 		u8 *stype;
4446 
4447 		slot = -i - 1;
4448 		spi = slot / BPF_REG_SIZE;
4449 		if (state->allocated_stack <= slot)
4450 			goto err;
4451 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4452 		if (*stype == STACK_MISC)
4453 			goto mark;
4454 		if (*stype == STACK_ZERO) {
4455 			if (clobber) {
4456 				/* helper can write anything into the stack */
4457 				*stype = STACK_MISC;
4458 			}
4459 			goto mark;
4460 		}
4461 
4462 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4463 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4464 			goto mark;
4465 
4466 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4467 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4468 		     env->allow_ptr_leaks)) {
4469 			if (clobber) {
4470 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4471 				for (j = 0; j < BPF_REG_SIZE; j++)
4472 					state->stack[spi].slot_type[j] = STACK_MISC;
4473 			}
4474 			goto mark;
4475 		}
4476 
4477 err:
4478 		if (tnum_is_const(reg->var_off)) {
4479 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4480 				err_extra, regno, min_off, i - min_off, access_size);
4481 		} else {
4482 			char tn_buf[48];
4483 
4484 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4485 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4486 				err_extra, regno, tn_buf, i - min_off, access_size);
4487 		}
4488 		return -EACCES;
4489 mark:
4490 		/* reading any byte out of 8-byte 'spill_slot' will cause
4491 		 * the whole slot to be marked as 'read'
4492 		 */
4493 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4494 			      state->stack[spi].spilled_ptr.parent,
4495 			      REG_LIVE_READ64);
4496 	}
4497 	return update_stack_depth(env, state, min_off);
4498 }
4499 
4500 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4501 				   int access_size, bool zero_size_allowed,
4502 				   struct bpf_call_arg_meta *meta)
4503 {
4504 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4505 
4506 	switch (reg->type) {
4507 	case PTR_TO_PACKET:
4508 	case PTR_TO_PACKET_META:
4509 		return check_packet_access(env, regno, reg->off, access_size,
4510 					   zero_size_allowed);
4511 	case PTR_TO_MAP_KEY:
4512 		return check_mem_region_access(env, regno, reg->off, access_size,
4513 					       reg->map_ptr->key_size, false);
4514 	case PTR_TO_MAP_VALUE:
4515 		if (check_map_access_type(env, regno, reg->off, access_size,
4516 					  meta && meta->raw_mode ? BPF_WRITE :
4517 					  BPF_READ))
4518 			return -EACCES;
4519 		return check_map_access(env, regno, reg->off, access_size,
4520 					zero_size_allowed);
4521 	case PTR_TO_MEM:
4522 		return check_mem_region_access(env, regno, reg->off,
4523 					       access_size, reg->mem_size,
4524 					       zero_size_allowed);
4525 	case PTR_TO_RDONLY_BUF:
4526 		if (meta && meta->raw_mode)
4527 			return -EACCES;
4528 		return check_buffer_access(env, reg, regno, reg->off,
4529 					   access_size, zero_size_allowed,
4530 					   "rdonly",
4531 					   &env->prog->aux->max_rdonly_access);
4532 	case PTR_TO_RDWR_BUF:
4533 		return check_buffer_access(env, reg, regno, reg->off,
4534 					   access_size, zero_size_allowed,
4535 					   "rdwr",
4536 					   &env->prog->aux->max_rdwr_access);
4537 	case PTR_TO_STACK:
4538 		return check_stack_range_initialized(
4539 				env,
4540 				regno, reg->off, access_size,
4541 				zero_size_allowed, ACCESS_HELPER, meta);
4542 	default: /* scalar_value or invalid ptr */
4543 		/* Allow zero-byte read from NULL, regardless of pointer type */
4544 		if (zero_size_allowed && access_size == 0 &&
4545 		    register_is_null(reg))
4546 			return 0;
4547 
4548 		verbose(env, "R%d type=%s expected=%s\n", regno,
4549 			reg_type_str[reg->type],
4550 			reg_type_str[PTR_TO_STACK]);
4551 		return -EACCES;
4552 	}
4553 }
4554 
4555 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4556 		   u32 regno, u32 mem_size)
4557 {
4558 	if (register_is_null(reg))
4559 		return 0;
4560 
4561 	if (reg_type_may_be_null(reg->type)) {
4562 		/* Assuming that the register contains a value check if the memory
4563 		 * access is safe. Temporarily save and restore the register's state as
4564 		 * the conversion shouldn't be visible to a caller.
4565 		 */
4566 		const struct bpf_reg_state saved_reg = *reg;
4567 		int rv;
4568 
4569 		mark_ptr_not_null_reg(reg);
4570 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4571 		*reg = saved_reg;
4572 		return rv;
4573 	}
4574 
4575 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4576 }
4577 
4578 /* Implementation details:
4579  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4580  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4581  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4582  * value_or_null->value transition, since the verifier only cares about
4583  * the range of access to valid map value pointer and doesn't care about actual
4584  * address of the map element.
4585  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4586  * reg->id > 0 after value_or_null->value transition. By doing so
4587  * two bpf_map_lookups will be considered two different pointers that
4588  * point to different bpf_spin_locks.
4589  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4590  * dead-locks.
4591  * Since only one bpf_spin_lock is allowed the checks are simpler than
4592  * reg_is_refcounted() logic. The verifier needs to remember only
4593  * one spin_lock instead of array of acquired_refs.
4594  * cur_state->active_spin_lock remembers which map value element got locked
4595  * and clears it after bpf_spin_unlock.
4596  */
4597 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4598 			     bool is_lock)
4599 {
4600 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4601 	struct bpf_verifier_state *cur = env->cur_state;
4602 	bool is_const = tnum_is_const(reg->var_off);
4603 	struct bpf_map *map = reg->map_ptr;
4604 	u64 val = reg->var_off.value;
4605 
4606 	if (!is_const) {
4607 		verbose(env,
4608 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4609 			regno);
4610 		return -EINVAL;
4611 	}
4612 	if (!map->btf) {
4613 		verbose(env,
4614 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4615 			map->name);
4616 		return -EINVAL;
4617 	}
4618 	if (!map_value_has_spin_lock(map)) {
4619 		if (map->spin_lock_off == -E2BIG)
4620 			verbose(env,
4621 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4622 				map->name);
4623 		else if (map->spin_lock_off == -ENOENT)
4624 			verbose(env,
4625 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4626 				map->name);
4627 		else
4628 			verbose(env,
4629 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4630 				map->name);
4631 		return -EINVAL;
4632 	}
4633 	if (map->spin_lock_off != val + reg->off) {
4634 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4635 			val + reg->off);
4636 		return -EINVAL;
4637 	}
4638 	if (is_lock) {
4639 		if (cur->active_spin_lock) {
4640 			verbose(env,
4641 				"Locking two bpf_spin_locks are not allowed\n");
4642 			return -EINVAL;
4643 		}
4644 		cur->active_spin_lock = reg->id;
4645 	} else {
4646 		if (!cur->active_spin_lock) {
4647 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4648 			return -EINVAL;
4649 		}
4650 		if (cur->active_spin_lock != reg->id) {
4651 			verbose(env, "bpf_spin_unlock of different lock\n");
4652 			return -EINVAL;
4653 		}
4654 		cur->active_spin_lock = 0;
4655 	}
4656 	return 0;
4657 }
4658 
4659 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4660 {
4661 	return type == ARG_PTR_TO_MEM ||
4662 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4663 	       type == ARG_PTR_TO_UNINIT_MEM;
4664 }
4665 
4666 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4667 {
4668 	return type == ARG_CONST_SIZE ||
4669 	       type == ARG_CONST_SIZE_OR_ZERO;
4670 }
4671 
4672 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4673 {
4674 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4675 }
4676 
4677 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4678 {
4679 	return type == ARG_PTR_TO_INT ||
4680 	       type == ARG_PTR_TO_LONG;
4681 }
4682 
4683 static int int_ptr_type_to_size(enum bpf_arg_type type)
4684 {
4685 	if (type == ARG_PTR_TO_INT)
4686 		return sizeof(u32);
4687 	else if (type == ARG_PTR_TO_LONG)
4688 		return sizeof(u64);
4689 
4690 	return -EINVAL;
4691 }
4692 
4693 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4694 				 const struct bpf_call_arg_meta *meta,
4695 				 enum bpf_arg_type *arg_type)
4696 {
4697 	if (!meta->map_ptr) {
4698 		/* kernel subsystem misconfigured verifier */
4699 		verbose(env, "invalid map_ptr to access map->type\n");
4700 		return -EACCES;
4701 	}
4702 
4703 	switch (meta->map_ptr->map_type) {
4704 	case BPF_MAP_TYPE_SOCKMAP:
4705 	case BPF_MAP_TYPE_SOCKHASH:
4706 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4707 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4708 		} else {
4709 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4710 			return -EINVAL;
4711 		}
4712 		break;
4713 
4714 	default:
4715 		break;
4716 	}
4717 	return 0;
4718 }
4719 
4720 struct bpf_reg_types {
4721 	const enum bpf_reg_type types[10];
4722 	u32 *btf_id;
4723 };
4724 
4725 static const struct bpf_reg_types map_key_value_types = {
4726 	.types = {
4727 		PTR_TO_STACK,
4728 		PTR_TO_PACKET,
4729 		PTR_TO_PACKET_META,
4730 		PTR_TO_MAP_KEY,
4731 		PTR_TO_MAP_VALUE,
4732 	},
4733 };
4734 
4735 static const struct bpf_reg_types sock_types = {
4736 	.types = {
4737 		PTR_TO_SOCK_COMMON,
4738 		PTR_TO_SOCKET,
4739 		PTR_TO_TCP_SOCK,
4740 		PTR_TO_XDP_SOCK,
4741 	},
4742 };
4743 
4744 #ifdef CONFIG_NET
4745 static const struct bpf_reg_types btf_id_sock_common_types = {
4746 	.types = {
4747 		PTR_TO_SOCK_COMMON,
4748 		PTR_TO_SOCKET,
4749 		PTR_TO_TCP_SOCK,
4750 		PTR_TO_XDP_SOCK,
4751 		PTR_TO_BTF_ID,
4752 	},
4753 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4754 };
4755 #endif
4756 
4757 static const struct bpf_reg_types mem_types = {
4758 	.types = {
4759 		PTR_TO_STACK,
4760 		PTR_TO_PACKET,
4761 		PTR_TO_PACKET_META,
4762 		PTR_TO_MAP_KEY,
4763 		PTR_TO_MAP_VALUE,
4764 		PTR_TO_MEM,
4765 		PTR_TO_RDONLY_BUF,
4766 		PTR_TO_RDWR_BUF,
4767 	},
4768 };
4769 
4770 static const struct bpf_reg_types int_ptr_types = {
4771 	.types = {
4772 		PTR_TO_STACK,
4773 		PTR_TO_PACKET,
4774 		PTR_TO_PACKET_META,
4775 		PTR_TO_MAP_KEY,
4776 		PTR_TO_MAP_VALUE,
4777 	},
4778 };
4779 
4780 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4781 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4782 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4783 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4784 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4785 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4786 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4787 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4788 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4789 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4790 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4791 
4792 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4793 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4794 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4795 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4796 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4797 	[ARG_CONST_SIZE]		= &scalar_types,
4798 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4799 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4800 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4801 	[ARG_PTR_TO_CTX]		= &context_types,
4802 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4803 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4804 #ifdef CONFIG_NET
4805 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4806 #endif
4807 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4808 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4809 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4810 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4811 	[ARG_PTR_TO_MEM]		= &mem_types,
4812 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4813 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4814 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4815 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4816 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4817 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4818 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4819 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4820 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4821 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
4822 };
4823 
4824 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4825 			  enum bpf_arg_type arg_type,
4826 			  const u32 *arg_btf_id)
4827 {
4828 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4829 	enum bpf_reg_type expected, type = reg->type;
4830 	const struct bpf_reg_types *compatible;
4831 	int i, j;
4832 
4833 	compatible = compatible_reg_types[arg_type];
4834 	if (!compatible) {
4835 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4836 		return -EFAULT;
4837 	}
4838 
4839 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4840 		expected = compatible->types[i];
4841 		if (expected == NOT_INIT)
4842 			break;
4843 
4844 		if (type == expected)
4845 			goto found;
4846 	}
4847 
4848 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4849 	for (j = 0; j + 1 < i; j++)
4850 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4851 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4852 	return -EACCES;
4853 
4854 found:
4855 	if (type == PTR_TO_BTF_ID) {
4856 		if (!arg_btf_id) {
4857 			if (!compatible->btf_id) {
4858 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4859 				return -EFAULT;
4860 			}
4861 			arg_btf_id = compatible->btf_id;
4862 		}
4863 
4864 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4865 					  btf_vmlinux, *arg_btf_id)) {
4866 			verbose(env, "R%d is of type %s but %s is expected\n",
4867 				regno, kernel_type_name(reg->btf, reg->btf_id),
4868 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4869 			return -EACCES;
4870 		}
4871 
4872 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4873 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4874 				regno);
4875 			return -EACCES;
4876 		}
4877 	}
4878 
4879 	return 0;
4880 }
4881 
4882 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4883 			  struct bpf_call_arg_meta *meta,
4884 			  const struct bpf_func_proto *fn)
4885 {
4886 	u32 regno = BPF_REG_1 + arg;
4887 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4888 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4889 	enum bpf_reg_type type = reg->type;
4890 	int err = 0;
4891 
4892 	if (arg_type == ARG_DONTCARE)
4893 		return 0;
4894 
4895 	err = check_reg_arg(env, regno, SRC_OP);
4896 	if (err)
4897 		return err;
4898 
4899 	if (arg_type == ARG_ANYTHING) {
4900 		if (is_pointer_value(env, regno)) {
4901 			verbose(env, "R%d leaks addr into helper function\n",
4902 				regno);
4903 			return -EACCES;
4904 		}
4905 		return 0;
4906 	}
4907 
4908 	if (type_is_pkt_pointer(type) &&
4909 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4910 		verbose(env, "helper access to the packet is not allowed\n");
4911 		return -EACCES;
4912 	}
4913 
4914 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4915 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4916 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4917 		err = resolve_map_arg_type(env, meta, &arg_type);
4918 		if (err)
4919 			return err;
4920 	}
4921 
4922 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4923 		/* A NULL register has a SCALAR_VALUE type, so skip
4924 		 * type checking.
4925 		 */
4926 		goto skip_type_check;
4927 
4928 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4929 	if (err)
4930 		return err;
4931 
4932 	if (type == PTR_TO_CTX) {
4933 		err = check_ctx_reg(env, reg, regno);
4934 		if (err < 0)
4935 			return err;
4936 	}
4937 
4938 skip_type_check:
4939 	if (reg->ref_obj_id) {
4940 		if (meta->ref_obj_id) {
4941 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4942 				regno, reg->ref_obj_id,
4943 				meta->ref_obj_id);
4944 			return -EFAULT;
4945 		}
4946 		meta->ref_obj_id = reg->ref_obj_id;
4947 	}
4948 
4949 	if (arg_type == ARG_CONST_MAP_PTR) {
4950 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4951 		meta->map_ptr = reg->map_ptr;
4952 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4953 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4954 		 * check that [key, key + map->key_size) are within
4955 		 * stack limits and initialized
4956 		 */
4957 		if (!meta->map_ptr) {
4958 			/* in function declaration map_ptr must come before
4959 			 * map_key, so that it's verified and known before
4960 			 * we have to check map_key here. Otherwise it means
4961 			 * that kernel subsystem misconfigured verifier
4962 			 */
4963 			verbose(env, "invalid map_ptr to access map->key\n");
4964 			return -EACCES;
4965 		}
4966 		err = check_helper_mem_access(env, regno,
4967 					      meta->map_ptr->key_size, false,
4968 					      NULL);
4969 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4970 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4971 		    !register_is_null(reg)) ||
4972 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4973 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4974 		 * check [value, value + map->value_size) validity
4975 		 */
4976 		if (!meta->map_ptr) {
4977 			/* kernel subsystem misconfigured verifier */
4978 			verbose(env, "invalid map_ptr to access map->value\n");
4979 			return -EACCES;
4980 		}
4981 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4982 		err = check_helper_mem_access(env, regno,
4983 					      meta->map_ptr->value_size, false,
4984 					      meta);
4985 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4986 		if (!reg->btf_id) {
4987 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4988 			return -EACCES;
4989 		}
4990 		meta->ret_btf = reg->btf;
4991 		meta->ret_btf_id = reg->btf_id;
4992 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4993 		if (meta->func_id == BPF_FUNC_spin_lock) {
4994 			if (process_spin_lock(env, regno, true))
4995 				return -EACCES;
4996 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4997 			if (process_spin_lock(env, regno, false))
4998 				return -EACCES;
4999 		} else {
5000 			verbose(env, "verifier internal error\n");
5001 			return -EFAULT;
5002 		}
5003 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5004 		meta->subprogno = reg->subprogno;
5005 	} else if (arg_type_is_mem_ptr(arg_type)) {
5006 		/* The access to this pointer is only checked when we hit the
5007 		 * next is_mem_size argument below.
5008 		 */
5009 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5010 	} else if (arg_type_is_mem_size(arg_type)) {
5011 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5012 
5013 		/* This is used to refine r0 return value bounds for helpers
5014 		 * that enforce this value as an upper bound on return values.
5015 		 * See do_refine_retval_range() for helpers that can refine
5016 		 * the return value. C type of helper is u32 so we pull register
5017 		 * bound from umax_value however, if negative verifier errors
5018 		 * out. Only upper bounds can be learned because retval is an
5019 		 * int type and negative retvals are allowed.
5020 		 */
5021 		meta->msize_max_value = reg->umax_value;
5022 
5023 		/* The register is SCALAR_VALUE; the access check
5024 		 * happens using its boundaries.
5025 		 */
5026 		if (!tnum_is_const(reg->var_off))
5027 			/* For unprivileged variable accesses, disable raw
5028 			 * mode so that the program is required to
5029 			 * initialize all the memory that the helper could
5030 			 * just partially fill up.
5031 			 */
5032 			meta = NULL;
5033 
5034 		if (reg->smin_value < 0) {
5035 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5036 				regno);
5037 			return -EACCES;
5038 		}
5039 
5040 		if (reg->umin_value == 0) {
5041 			err = check_helper_mem_access(env, regno - 1, 0,
5042 						      zero_size_allowed,
5043 						      meta);
5044 			if (err)
5045 				return err;
5046 		}
5047 
5048 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5049 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5050 				regno);
5051 			return -EACCES;
5052 		}
5053 		err = check_helper_mem_access(env, regno - 1,
5054 					      reg->umax_value,
5055 					      zero_size_allowed, meta);
5056 		if (!err)
5057 			err = mark_chain_precision(env, regno);
5058 	} else if (arg_type_is_alloc_size(arg_type)) {
5059 		if (!tnum_is_const(reg->var_off)) {
5060 			verbose(env, "R%d is not a known constant'\n",
5061 				regno);
5062 			return -EACCES;
5063 		}
5064 		meta->mem_size = reg->var_off.value;
5065 	} else if (arg_type_is_int_ptr(arg_type)) {
5066 		int size = int_ptr_type_to_size(arg_type);
5067 
5068 		err = check_helper_mem_access(env, regno, size, false, meta);
5069 		if (err)
5070 			return err;
5071 		err = check_ptr_alignment(env, reg, 0, size, true);
5072 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5073 		struct bpf_map *map = reg->map_ptr;
5074 		int map_off;
5075 		u64 map_addr;
5076 		char *str_ptr;
5077 
5078 		if (!bpf_map_is_rdonly(map)) {
5079 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5080 			return -EACCES;
5081 		}
5082 
5083 		if (!tnum_is_const(reg->var_off)) {
5084 			verbose(env, "R%d is not a constant address'\n", regno);
5085 			return -EACCES;
5086 		}
5087 
5088 		if (!map->ops->map_direct_value_addr) {
5089 			verbose(env, "no direct value access support for this map type\n");
5090 			return -EACCES;
5091 		}
5092 
5093 		err = check_map_access(env, regno, reg->off,
5094 				       map->value_size - reg->off, false);
5095 		if (err)
5096 			return err;
5097 
5098 		map_off = reg->off + reg->var_off.value;
5099 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5100 		if (err) {
5101 			verbose(env, "direct value access on string failed\n");
5102 			return err;
5103 		}
5104 
5105 		str_ptr = (char *)(long)(map_addr);
5106 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5107 			verbose(env, "string is not zero-terminated\n");
5108 			return -EINVAL;
5109 		}
5110 	}
5111 
5112 	return err;
5113 }
5114 
5115 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5116 {
5117 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5118 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5119 
5120 	if (func_id != BPF_FUNC_map_update_elem)
5121 		return false;
5122 
5123 	/* It's not possible to get access to a locked struct sock in these
5124 	 * contexts, so updating is safe.
5125 	 */
5126 	switch (type) {
5127 	case BPF_PROG_TYPE_TRACING:
5128 		if (eatype == BPF_TRACE_ITER)
5129 			return true;
5130 		break;
5131 	case BPF_PROG_TYPE_SOCKET_FILTER:
5132 	case BPF_PROG_TYPE_SCHED_CLS:
5133 	case BPF_PROG_TYPE_SCHED_ACT:
5134 	case BPF_PROG_TYPE_XDP:
5135 	case BPF_PROG_TYPE_SK_REUSEPORT:
5136 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5137 	case BPF_PROG_TYPE_SK_LOOKUP:
5138 		return true;
5139 	default:
5140 		break;
5141 	}
5142 
5143 	verbose(env, "cannot update sockmap in this context\n");
5144 	return false;
5145 }
5146 
5147 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5148 {
5149 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5150 }
5151 
5152 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5153 					struct bpf_map *map, int func_id)
5154 {
5155 	if (!map)
5156 		return 0;
5157 
5158 	/* We need a two way check, first is from map perspective ... */
5159 	switch (map->map_type) {
5160 	case BPF_MAP_TYPE_PROG_ARRAY:
5161 		if (func_id != BPF_FUNC_tail_call)
5162 			goto error;
5163 		break;
5164 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5165 		if (func_id != BPF_FUNC_perf_event_read &&
5166 		    func_id != BPF_FUNC_perf_event_output &&
5167 		    func_id != BPF_FUNC_skb_output &&
5168 		    func_id != BPF_FUNC_perf_event_read_value &&
5169 		    func_id != BPF_FUNC_xdp_output)
5170 			goto error;
5171 		break;
5172 	case BPF_MAP_TYPE_RINGBUF:
5173 		if (func_id != BPF_FUNC_ringbuf_output &&
5174 		    func_id != BPF_FUNC_ringbuf_reserve &&
5175 		    func_id != BPF_FUNC_ringbuf_submit &&
5176 		    func_id != BPF_FUNC_ringbuf_discard &&
5177 		    func_id != BPF_FUNC_ringbuf_query)
5178 			goto error;
5179 		break;
5180 	case BPF_MAP_TYPE_STACK_TRACE:
5181 		if (func_id != BPF_FUNC_get_stackid)
5182 			goto error;
5183 		break;
5184 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5185 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5186 		    func_id != BPF_FUNC_current_task_under_cgroup)
5187 			goto error;
5188 		break;
5189 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5190 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5191 		if (func_id != BPF_FUNC_get_local_storage)
5192 			goto error;
5193 		break;
5194 	case BPF_MAP_TYPE_DEVMAP:
5195 	case BPF_MAP_TYPE_DEVMAP_HASH:
5196 		if (func_id != BPF_FUNC_redirect_map &&
5197 		    func_id != BPF_FUNC_map_lookup_elem)
5198 			goto error;
5199 		break;
5200 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5201 	 * appear.
5202 	 */
5203 	case BPF_MAP_TYPE_CPUMAP:
5204 		if (func_id != BPF_FUNC_redirect_map)
5205 			goto error;
5206 		break;
5207 	case BPF_MAP_TYPE_XSKMAP:
5208 		if (func_id != BPF_FUNC_redirect_map &&
5209 		    func_id != BPF_FUNC_map_lookup_elem)
5210 			goto error;
5211 		break;
5212 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5213 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5214 		if (func_id != BPF_FUNC_map_lookup_elem)
5215 			goto error;
5216 		break;
5217 	case BPF_MAP_TYPE_SOCKMAP:
5218 		if (func_id != BPF_FUNC_sk_redirect_map &&
5219 		    func_id != BPF_FUNC_sock_map_update &&
5220 		    func_id != BPF_FUNC_map_delete_elem &&
5221 		    func_id != BPF_FUNC_msg_redirect_map &&
5222 		    func_id != BPF_FUNC_sk_select_reuseport &&
5223 		    func_id != BPF_FUNC_map_lookup_elem &&
5224 		    !may_update_sockmap(env, func_id))
5225 			goto error;
5226 		break;
5227 	case BPF_MAP_TYPE_SOCKHASH:
5228 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5229 		    func_id != BPF_FUNC_sock_hash_update &&
5230 		    func_id != BPF_FUNC_map_delete_elem &&
5231 		    func_id != BPF_FUNC_msg_redirect_hash &&
5232 		    func_id != BPF_FUNC_sk_select_reuseport &&
5233 		    func_id != BPF_FUNC_map_lookup_elem &&
5234 		    !may_update_sockmap(env, func_id))
5235 			goto error;
5236 		break;
5237 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5238 		if (func_id != BPF_FUNC_sk_select_reuseport)
5239 			goto error;
5240 		break;
5241 	case BPF_MAP_TYPE_QUEUE:
5242 	case BPF_MAP_TYPE_STACK:
5243 		if (func_id != BPF_FUNC_map_peek_elem &&
5244 		    func_id != BPF_FUNC_map_pop_elem &&
5245 		    func_id != BPF_FUNC_map_push_elem)
5246 			goto error;
5247 		break;
5248 	case BPF_MAP_TYPE_SK_STORAGE:
5249 		if (func_id != BPF_FUNC_sk_storage_get &&
5250 		    func_id != BPF_FUNC_sk_storage_delete)
5251 			goto error;
5252 		break;
5253 	case BPF_MAP_TYPE_INODE_STORAGE:
5254 		if (func_id != BPF_FUNC_inode_storage_get &&
5255 		    func_id != BPF_FUNC_inode_storage_delete)
5256 			goto error;
5257 		break;
5258 	case BPF_MAP_TYPE_TASK_STORAGE:
5259 		if (func_id != BPF_FUNC_task_storage_get &&
5260 		    func_id != BPF_FUNC_task_storage_delete)
5261 			goto error;
5262 		break;
5263 	default:
5264 		break;
5265 	}
5266 
5267 	/* ... and second from the function itself. */
5268 	switch (func_id) {
5269 	case BPF_FUNC_tail_call:
5270 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5271 			goto error;
5272 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5273 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5274 			return -EINVAL;
5275 		}
5276 		break;
5277 	case BPF_FUNC_perf_event_read:
5278 	case BPF_FUNC_perf_event_output:
5279 	case BPF_FUNC_perf_event_read_value:
5280 	case BPF_FUNC_skb_output:
5281 	case BPF_FUNC_xdp_output:
5282 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5283 			goto error;
5284 		break;
5285 	case BPF_FUNC_get_stackid:
5286 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5287 			goto error;
5288 		break;
5289 	case BPF_FUNC_current_task_under_cgroup:
5290 	case BPF_FUNC_skb_under_cgroup:
5291 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5292 			goto error;
5293 		break;
5294 	case BPF_FUNC_redirect_map:
5295 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5296 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5297 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5298 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5299 			goto error;
5300 		break;
5301 	case BPF_FUNC_sk_redirect_map:
5302 	case BPF_FUNC_msg_redirect_map:
5303 	case BPF_FUNC_sock_map_update:
5304 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5305 			goto error;
5306 		break;
5307 	case BPF_FUNC_sk_redirect_hash:
5308 	case BPF_FUNC_msg_redirect_hash:
5309 	case BPF_FUNC_sock_hash_update:
5310 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5311 			goto error;
5312 		break;
5313 	case BPF_FUNC_get_local_storage:
5314 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5315 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5316 			goto error;
5317 		break;
5318 	case BPF_FUNC_sk_select_reuseport:
5319 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5320 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5321 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5322 			goto error;
5323 		break;
5324 	case BPF_FUNC_map_peek_elem:
5325 	case BPF_FUNC_map_pop_elem:
5326 	case BPF_FUNC_map_push_elem:
5327 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5328 		    map->map_type != BPF_MAP_TYPE_STACK)
5329 			goto error;
5330 		break;
5331 	case BPF_FUNC_sk_storage_get:
5332 	case BPF_FUNC_sk_storage_delete:
5333 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5334 			goto error;
5335 		break;
5336 	case BPF_FUNC_inode_storage_get:
5337 	case BPF_FUNC_inode_storage_delete:
5338 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5339 			goto error;
5340 		break;
5341 	case BPF_FUNC_task_storage_get:
5342 	case BPF_FUNC_task_storage_delete:
5343 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5344 			goto error;
5345 		break;
5346 	default:
5347 		break;
5348 	}
5349 
5350 	return 0;
5351 error:
5352 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5353 		map->map_type, func_id_name(func_id), func_id);
5354 	return -EINVAL;
5355 }
5356 
5357 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5358 {
5359 	int count = 0;
5360 
5361 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5362 		count++;
5363 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5364 		count++;
5365 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5366 		count++;
5367 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5368 		count++;
5369 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5370 		count++;
5371 
5372 	/* We only support one arg being in raw mode at the moment,
5373 	 * which is sufficient for the helper functions we have
5374 	 * right now.
5375 	 */
5376 	return count <= 1;
5377 }
5378 
5379 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5380 				    enum bpf_arg_type arg_next)
5381 {
5382 	return (arg_type_is_mem_ptr(arg_curr) &&
5383 	        !arg_type_is_mem_size(arg_next)) ||
5384 	       (!arg_type_is_mem_ptr(arg_curr) &&
5385 		arg_type_is_mem_size(arg_next));
5386 }
5387 
5388 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5389 {
5390 	/* bpf_xxx(..., buf, len) call will access 'len'
5391 	 * bytes from memory 'buf'. Both arg types need
5392 	 * to be paired, so make sure there's no buggy
5393 	 * helper function specification.
5394 	 */
5395 	if (arg_type_is_mem_size(fn->arg1_type) ||
5396 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5397 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5398 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5399 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5400 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5401 		return false;
5402 
5403 	return true;
5404 }
5405 
5406 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5407 {
5408 	int count = 0;
5409 
5410 	if (arg_type_may_be_refcounted(fn->arg1_type))
5411 		count++;
5412 	if (arg_type_may_be_refcounted(fn->arg2_type))
5413 		count++;
5414 	if (arg_type_may_be_refcounted(fn->arg3_type))
5415 		count++;
5416 	if (arg_type_may_be_refcounted(fn->arg4_type))
5417 		count++;
5418 	if (arg_type_may_be_refcounted(fn->arg5_type))
5419 		count++;
5420 
5421 	/* A reference acquiring function cannot acquire
5422 	 * another refcounted ptr.
5423 	 */
5424 	if (may_be_acquire_function(func_id) && count)
5425 		return false;
5426 
5427 	/* We only support one arg being unreferenced at the moment,
5428 	 * which is sufficient for the helper functions we have right now.
5429 	 */
5430 	return count <= 1;
5431 }
5432 
5433 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5434 {
5435 	int i;
5436 
5437 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5438 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5439 			return false;
5440 
5441 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5442 			return false;
5443 	}
5444 
5445 	return true;
5446 }
5447 
5448 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5449 {
5450 	return check_raw_mode_ok(fn) &&
5451 	       check_arg_pair_ok(fn) &&
5452 	       check_btf_id_ok(fn) &&
5453 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5454 }
5455 
5456 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5457  * are now invalid, so turn them into unknown SCALAR_VALUE.
5458  */
5459 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5460 				     struct bpf_func_state *state)
5461 {
5462 	struct bpf_reg_state *regs = state->regs, *reg;
5463 	int i;
5464 
5465 	for (i = 0; i < MAX_BPF_REG; i++)
5466 		if (reg_is_pkt_pointer_any(&regs[i]))
5467 			mark_reg_unknown(env, regs, i);
5468 
5469 	bpf_for_each_spilled_reg(i, state, reg) {
5470 		if (!reg)
5471 			continue;
5472 		if (reg_is_pkt_pointer_any(reg))
5473 			__mark_reg_unknown(env, reg);
5474 	}
5475 }
5476 
5477 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5478 {
5479 	struct bpf_verifier_state *vstate = env->cur_state;
5480 	int i;
5481 
5482 	for (i = 0; i <= vstate->curframe; i++)
5483 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5484 }
5485 
5486 enum {
5487 	AT_PKT_END = -1,
5488 	BEYOND_PKT_END = -2,
5489 };
5490 
5491 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5492 {
5493 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5494 	struct bpf_reg_state *reg = &state->regs[regn];
5495 
5496 	if (reg->type != PTR_TO_PACKET)
5497 		/* PTR_TO_PACKET_META is not supported yet */
5498 		return;
5499 
5500 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5501 	 * How far beyond pkt_end it goes is unknown.
5502 	 * if (!range_open) it's the case of pkt >= pkt_end
5503 	 * if (range_open) it's the case of pkt > pkt_end
5504 	 * hence this pointer is at least 1 byte bigger than pkt_end
5505 	 */
5506 	if (range_open)
5507 		reg->range = BEYOND_PKT_END;
5508 	else
5509 		reg->range = AT_PKT_END;
5510 }
5511 
5512 static void release_reg_references(struct bpf_verifier_env *env,
5513 				   struct bpf_func_state *state,
5514 				   int ref_obj_id)
5515 {
5516 	struct bpf_reg_state *regs = state->regs, *reg;
5517 	int i;
5518 
5519 	for (i = 0; i < MAX_BPF_REG; i++)
5520 		if (regs[i].ref_obj_id == ref_obj_id)
5521 			mark_reg_unknown(env, regs, i);
5522 
5523 	bpf_for_each_spilled_reg(i, state, reg) {
5524 		if (!reg)
5525 			continue;
5526 		if (reg->ref_obj_id == ref_obj_id)
5527 			__mark_reg_unknown(env, reg);
5528 	}
5529 }
5530 
5531 /* The pointer with the specified id has released its reference to kernel
5532  * resources. Identify all copies of the same pointer and clear the reference.
5533  */
5534 static int release_reference(struct bpf_verifier_env *env,
5535 			     int ref_obj_id)
5536 {
5537 	struct bpf_verifier_state *vstate = env->cur_state;
5538 	int err;
5539 	int i;
5540 
5541 	err = release_reference_state(cur_func(env), ref_obj_id);
5542 	if (err)
5543 		return err;
5544 
5545 	for (i = 0; i <= vstate->curframe; i++)
5546 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5547 
5548 	return 0;
5549 }
5550 
5551 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5552 				    struct bpf_reg_state *regs)
5553 {
5554 	int i;
5555 
5556 	/* after the call registers r0 - r5 were scratched */
5557 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5558 		mark_reg_not_init(env, regs, caller_saved[i]);
5559 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5560 	}
5561 }
5562 
5563 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5564 				   struct bpf_func_state *caller,
5565 				   struct bpf_func_state *callee,
5566 				   int insn_idx);
5567 
5568 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5569 			     int *insn_idx, int subprog,
5570 			     set_callee_state_fn set_callee_state_cb)
5571 {
5572 	struct bpf_verifier_state *state = env->cur_state;
5573 	struct bpf_func_info_aux *func_info_aux;
5574 	struct bpf_func_state *caller, *callee;
5575 	int err;
5576 	bool is_global = false;
5577 
5578 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5579 		verbose(env, "the call stack of %d frames is too deep\n",
5580 			state->curframe + 2);
5581 		return -E2BIG;
5582 	}
5583 
5584 	caller = state->frame[state->curframe];
5585 	if (state->frame[state->curframe + 1]) {
5586 		verbose(env, "verifier bug. Frame %d already allocated\n",
5587 			state->curframe + 1);
5588 		return -EFAULT;
5589 	}
5590 
5591 	func_info_aux = env->prog->aux->func_info_aux;
5592 	if (func_info_aux)
5593 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5594 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5595 	if (err == -EFAULT)
5596 		return err;
5597 	if (is_global) {
5598 		if (err) {
5599 			verbose(env, "Caller passes invalid args into func#%d\n",
5600 				subprog);
5601 			return err;
5602 		} else {
5603 			if (env->log.level & BPF_LOG_LEVEL)
5604 				verbose(env,
5605 					"Func#%d is global and valid. Skipping.\n",
5606 					subprog);
5607 			clear_caller_saved_regs(env, caller->regs);
5608 
5609 			/* All global functions return a 64-bit SCALAR_VALUE */
5610 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5611 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5612 
5613 			/* continue with next insn after call */
5614 			return 0;
5615 		}
5616 	}
5617 
5618 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5619 	if (!callee)
5620 		return -ENOMEM;
5621 	state->frame[state->curframe + 1] = callee;
5622 
5623 	/* callee cannot access r0, r6 - r9 for reading and has to write
5624 	 * into its own stack before reading from it.
5625 	 * callee can read/write into caller's stack
5626 	 */
5627 	init_func_state(env, callee,
5628 			/* remember the callsite, it will be used by bpf_exit */
5629 			*insn_idx /* callsite */,
5630 			state->curframe + 1 /* frameno within this callchain */,
5631 			subprog /* subprog number within this prog */);
5632 
5633 	/* Transfer references to the callee */
5634 	err = copy_reference_state(callee, caller);
5635 	if (err)
5636 		return err;
5637 
5638 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5639 	if (err)
5640 		return err;
5641 
5642 	clear_caller_saved_regs(env, caller->regs);
5643 
5644 	/* only increment it after check_reg_arg() finished */
5645 	state->curframe++;
5646 
5647 	/* and go analyze first insn of the callee */
5648 	*insn_idx = env->subprog_info[subprog].start - 1;
5649 
5650 	if (env->log.level & BPF_LOG_LEVEL) {
5651 		verbose(env, "caller:\n");
5652 		print_verifier_state(env, caller);
5653 		verbose(env, "callee:\n");
5654 		print_verifier_state(env, callee);
5655 	}
5656 	return 0;
5657 }
5658 
5659 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5660 				   struct bpf_func_state *caller,
5661 				   struct bpf_func_state *callee)
5662 {
5663 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5664 	 *      void *callback_ctx, u64 flags);
5665 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5666 	 *      void *callback_ctx);
5667 	 */
5668 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5669 
5670 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5671 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5672 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5673 
5674 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5675 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5676 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5677 
5678 	/* pointer to stack or null */
5679 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5680 
5681 	/* unused */
5682 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5683 	return 0;
5684 }
5685 
5686 static int set_callee_state(struct bpf_verifier_env *env,
5687 			    struct bpf_func_state *caller,
5688 			    struct bpf_func_state *callee, int insn_idx)
5689 {
5690 	int i;
5691 
5692 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5693 	 * pointers, which connects us up to the liveness chain
5694 	 */
5695 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5696 		callee->regs[i] = caller->regs[i];
5697 	return 0;
5698 }
5699 
5700 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5701 			   int *insn_idx)
5702 {
5703 	int subprog, target_insn;
5704 
5705 	target_insn = *insn_idx + insn->imm + 1;
5706 	subprog = find_subprog(env, target_insn);
5707 	if (subprog < 0) {
5708 		verbose(env, "verifier bug. No program starts at insn %d\n",
5709 			target_insn);
5710 		return -EFAULT;
5711 	}
5712 
5713 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5714 }
5715 
5716 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5717 				       struct bpf_func_state *caller,
5718 				       struct bpf_func_state *callee,
5719 				       int insn_idx)
5720 {
5721 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5722 	struct bpf_map *map;
5723 	int err;
5724 
5725 	if (bpf_map_ptr_poisoned(insn_aux)) {
5726 		verbose(env, "tail_call abusing map_ptr\n");
5727 		return -EINVAL;
5728 	}
5729 
5730 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5731 	if (!map->ops->map_set_for_each_callback_args ||
5732 	    !map->ops->map_for_each_callback) {
5733 		verbose(env, "callback function not allowed for map\n");
5734 		return -ENOTSUPP;
5735 	}
5736 
5737 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5738 	if (err)
5739 		return err;
5740 
5741 	callee->in_callback_fn = true;
5742 	return 0;
5743 }
5744 
5745 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5746 {
5747 	struct bpf_verifier_state *state = env->cur_state;
5748 	struct bpf_func_state *caller, *callee;
5749 	struct bpf_reg_state *r0;
5750 	int err;
5751 
5752 	callee = state->frame[state->curframe];
5753 	r0 = &callee->regs[BPF_REG_0];
5754 	if (r0->type == PTR_TO_STACK) {
5755 		/* technically it's ok to return caller's stack pointer
5756 		 * (or caller's caller's pointer) back to the caller,
5757 		 * since these pointers are valid. Only current stack
5758 		 * pointer will be invalid as soon as function exits,
5759 		 * but let's be conservative
5760 		 */
5761 		verbose(env, "cannot return stack pointer to the caller\n");
5762 		return -EINVAL;
5763 	}
5764 
5765 	state->curframe--;
5766 	caller = state->frame[state->curframe];
5767 	if (callee->in_callback_fn) {
5768 		/* enforce R0 return value range [0, 1]. */
5769 		struct tnum range = tnum_range(0, 1);
5770 
5771 		if (r0->type != SCALAR_VALUE) {
5772 			verbose(env, "R0 not a scalar value\n");
5773 			return -EACCES;
5774 		}
5775 		if (!tnum_in(range, r0->var_off)) {
5776 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5777 			return -EINVAL;
5778 		}
5779 	} else {
5780 		/* return to the caller whatever r0 had in the callee */
5781 		caller->regs[BPF_REG_0] = *r0;
5782 	}
5783 
5784 	/* Transfer references to the caller */
5785 	err = copy_reference_state(caller, callee);
5786 	if (err)
5787 		return err;
5788 
5789 	*insn_idx = callee->callsite + 1;
5790 	if (env->log.level & BPF_LOG_LEVEL) {
5791 		verbose(env, "returning from callee:\n");
5792 		print_verifier_state(env, callee);
5793 		verbose(env, "to caller at %d:\n", *insn_idx);
5794 		print_verifier_state(env, caller);
5795 	}
5796 	/* clear everything in the callee */
5797 	free_func_state(callee);
5798 	state->frame[state->curframe + 1] = NULL;
5799 	return 0;
5800 }
5801 
5802 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5803 				   int func_id,
5804 				   struct bpf_call_arg_meta *meta)
5805 {
5806 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5807 
5808 	if (ret_type != RET_INTEGER ||
5809 	    (func_id != BPF_FUNC_get_stack &&
5810 	     func_id != BPF_FUNC_get_task_stack &&
5811 	     func_id != BPF_FUNC_probe_read_str &&
5812 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5813 	     func_id != BPF_FUNC_probe_read_user_str))
5814 		return;
5815 
5816 	ret_reg->smax_value = meta->msize_max_value;
5817 	ret_reg->s32_max_value = meta->msize_max_value;
5818 	ret_reg->smin_value = -MAX_ERRNO;
5819 	ret_reg->s32_min_value = -MAX_ERRNO;
5820 	__reg_deduce_bounds(ret_reg);
5821 	__reg_bound_offset(ret_reg);
5822 	__update_reg_bounds(ret_reg);
5823 }
5824 
5825 static int
5826 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5827 		int func_id, int insn_idx)
5828 {
5829 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5830 	struct bpf_map *map = meta->map_ptr;
5831 
5832 	if (func_id != BPF_FUNC_tail_call &&
5833 	    func_id != BPF_FUNC_map_lookup_elem &&
5834 	    func_id != BPF_FUNC_map_update_elem &&
5835 	    func_id != BPF_FUNC_map_delete_elem &&
5836 	    func_id != BPF_FUNC_map_push_elem &&
5837 	    func_id != BPF_FUNC_map_pop_elem &&
5838 	    func_id != BPF_FUNC_map_peek_elem &&
5839 	    func_id != BPF_FUNC_for_each_map_elem &&
5840 	    func_id != BPF_FUNC_redirect_map)
5841 		return 0;
5842 
5843 	if (map == NULL) {
5844 		verbose(env, "kernel subsystem misconfigured verifier\n");
5845 		return -EINVAL;
5846 	}
5847 
5848 	/* In case of read-only, some additional restrictions
5849 	 * need to be applied in order to prevent altering the
5850 	 * state of the map from program side.
5851 	 */
5852 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5853 	    (func_id == BPF_FUNC_map_delete_elem ||
5854 	     func_id == BPF_FUNC_map_update_elem ||
5855 	     func_id == BPF_FUNC_map_push_elem ||
5856 	     func_id == BPF_FUNC_map_pop_elem)) {
5857 		verbose(env, "write into map forbidden\n");
5858 		return -EACCES;
5859 	}
5860 
5861 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5862 		bpf_map_ptr_store(aux, meta->map_ptr,
5863 				  !meta->map_ptr->bypass_spec_v1);
5864 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5865 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5866 				  !meta->map_ptr->bypass_spec_v1);
5867 	return 0;
5868 }
5869 
5870 static int
5871 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5872 		int func_id, int insn_idx)
5873 {
5874 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5875 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5876 	struct bpf_map *map = meta->map_ptr;
5877 	struct tnum range;
5878 	u64 val;
5879 	int err;
5880 
5881 	if (func_id != BPF_FUNC_tail_call)
5882 		return 0;
5883 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5884 		verbose(env, "kernel subsystem misconfigured verifier\n");
5885 		return -EINVAL;
5886 	}
5887 
5888 	range = tnum_range(0, map->max_entries - 1);
5889 	reg = &regs[BPF_REG_3];
5890 
5891 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5892 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5893 		return 0;
5894 	}
5895 
5896 	err = mark_chain_precision(env, BPF_REG_3);
5897 	if (err)
5898 		return err;
5899 
5900 	val = reg->var_off.value;
5901 	if (bpf_map_key_unseen(aux))
5902 		bpf_map_key_store(aux, val);
5903 	else if (!bpf_map_key_poisoned(aux) &&
5904 		  bpf_map_key_immediate(aux) != val)
5905 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5906 	return 0;
5907 }
5908 
5909 static int check_reference_leak(struct bpf_verifier_env *env)
5910 {
5911 	struct bpf_func_state *state = cur_func(env);
5912 	int i;
5913 
5914 	for (i = 0; i < state->acquired_refs; i++) {
5915 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5916 			state->refs[i].id, state->refs[i].insn_idx);
5917 	}
5918 	return state->acquired_refs ? -EINVAL : 0;
5919 }
5920 
5921 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5922 				   struct bpf_reg_state *regs)
5923 {
5924 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5925 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5926 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
5927 	int err, fmt_map_off, num_args;
5928 	u64 fmt_addr;
5929 	char *fmt;
5930 
5931 	/* data must be an array of u64 */
5932 	if (data_len_reg->var_off.value % 8)
5933 		return -EINVAL;
5934 	num_args = data_len_reg->var_off.value / 8;
5935 
5936 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5937 	 * and map_direct_value_addr is set.
5938 	 */
5939 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5940 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5941 						  fmt_map_off);
5942 	if (err) {
5943 		verbose(env, "verifier bug\n");
5944 		return -EFAULT;
5945 	}
5946 	fmt = (char *)(long)fmt_addr + fmt_map_off;
5947 
5948 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5949 	 * can focus on validating the format specifiers.
5950 	 */
5951 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5952 	if (err < 0)
5953 		verbose(env, "Invalid format string\n");
5954 
5955 	return err;
5956 }
5957 
5958 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5959 			     int *insn_idx_p)
5960 {
5961 	const struct bpf_func_proto *fn = NULL;
5962 	struct bpf_reg_state *regs;
5963 	struct bpf_call_arg_meta meta;
5964 	int insn_idx = *insn_idx_p;
5965 	bool changes_data;
5966 	int i, err, func_id;
5967 
5968 	/* find function prototype */
5969 	func_id = insn->imm;
5970 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5971 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5972 			func_id);
5973 		return -EINVAL;
5974 	}
5975 
5976 	if (env->ops->get_func_proto)
5977 		fn = env->ops->get_func_proto(func_id, env->prog);
5978 	if (!fn) {
5979 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5980 			func_id);
5981 		return -EINVAL;
5982 	}
5983 
5984 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5985 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5986 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5987 		return -EINVAL;
5988 	}
5989 
5990 	if (fn->allowed && !fn->allowed(env->prog)) {
5991 		verbose(env, "helper call is not allowed in probe\n");
5992 		return -EINVAL;
5993 	}
5994 
5995 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5996 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5997 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5998 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5999 			func_id_name(func_id), func_id);
6000 		return -EINVAL;
6001 	}
6002 
6003 	memset(&meta, 0, sizeof(meta));
6004 	meta.pkt_access = fn->pkt_access;
6005 
6006 	err = check_func_proto(fn, func_id);
6007 	if (err) {
6008 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6009 			func_id_name(func_id), func_id);
6010 		return err;
6011 	}
6012 
6013 	meta.func_id = func_id;
6014 	/* check args */
6015 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6016 		err = check_func_arg(env, i, &meta, fn);
6017 		if (err)
6018 			return err;
6019 	}
6020 
6021 	err = record_func_map(env, &meta, func_id, insn_idx);
6022 	if (err)
6023 		return err;
6024 
6025 	err = record_func_key(env, &meta, func_id, insn_idx);
6026 	if (err)
6027 		return err;
6028 
6029 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6030 	 * is inferred from register state.
6031 	 */
6032 	for (i = 0; i < meta.access_size; i++) {
6033 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6034 				       BPF_WRITE, -1, false);
6035 		if (err)
6036 			return err;
6037 	}
6038 
6039 	if (func_id == BPF_FUNC_tail_call) {
6040 		err = check_reference_leak(env);
6041 		if (err) {
6042 			verbose(env, "tail_call would lead to reference leak\n");
6043 			return err;
6044 		}
6045 	} else if (is_release_function(func_id)) {
6046 		err = release_reference(env, meta.ref_obj_id);
6047 		if (err) {
6048 			verbose(env, "func %s#%d reference has not been acquired before\n",
6049 				func_id_name(func_id), func_id);
6050 			return err;
6051 		}
6052 	}
6053 
6054 	regs = cur_regs(env);
6055 
6056 	/* check that flags argument in get_local_storage(map, flags) is 0,
6057 	 * this is required because get_local_storage() can't return an error.
6058 	 */
6059 	if (func_id == BPF_FUNC_get_local_storage &&
6060 	    !register_is_null(&regs[BPF_REG_2])) {
6061 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6062 		return -EINVAL;
6063 	}
6064 
6065 	if (func_id == BPF_FUNC_for_each_map_elem) {
6066 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6067 					set_map_elem_callback_state);
6068 		if (err < 0)
6069 			return -EINVAL;
6070 	}
6071 
6072 	if (func_id == BPF_FUNC_snprintf) {
6073 		err = check_bpf_snprintf_call(env, regs);
6074 		if (err < 0)
6075 			return err;
6076 	}
6077 
6078 	/* reset caller saved regs */
6079 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6080 		mark_reg_not_init(env, regs, caller_saved[i]);
6081 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6082 	}
6083 
6084 	/* helper call returns 64-bit value. */
6085 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6086 
6087 	/* update return register (already marked as written above) */
6088 	if (fn->ret_type == RET_INTEGER) {
6089 		/* sets type to SCALAR_VALUE */
6090 		mark_reg_unknown(env, regs, BPF_REG_0);
6091 	} else if (fn->ret_type == RET_VOID) {
6092 		regs[BPF_REG_0].type = NOT_INIT;
6093 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6094 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6095 		/* There is no offset yet applied, variable or fixed */
6096 		mark_reg_known_zero(env, regs, BPF_REG_0);
6097 		/* remember map_ptr, so that check_map_access()
6098 		 * can check 'value_size' boundary of memory access
6099 		 * to map element returned from bpf_map_lookup_elem()
6100 		 */
6101 		if (meta.map_ptr == NULL) {
6102 			verbose(env,
6103 				"kernel subsystem misconfigured verifier\n");
6104 			return -EINVAL;
6105 		}
6106 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6107 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6108 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6109 			if (map_value_has_spin_lock(meta.map_ptr))
6110 				regs[BPF_REG_0].id = ++env->id_gen;
6111 		} else {
6112 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6113 		}
6114 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6115 		mark_reg_known_zero(env, regs, BPF_REG_0);
6116 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6117 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6118 		mark_reg_known_zero(env, regs, BPF_REG_0);
6119 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6120 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6121 		mark_reg_known_zero(env, regs, BPF_REG_0);
6122 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6123 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6124 		mark_reg_known_zero(env, regs, BPF_REG_0);
6125 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6126 		regs[BPF_REG_0].mem_size = meta.mem_size;
6127 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6128 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6129 		const struct btf_type *t;
6130 
6131 		mark_reg_known_zero(env, regs, BPF_REG_0);
6132 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6133 		if (!btf_type_is_struct(t)) {
6134 			u32 tsize;
6135 			const struct btf_type *ret;
6136 			const char *tname;
6137 
6138 			/* resolve the type size of ksym. */
6139 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6140 			if (IS_ERR(ret)) {
6141 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6142 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6143 					tname, PTR_ERR(ret));
6144 				return -EINVAL;
6145 			}
6146 			regs[BPF_REG_0].type =
6147 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6148 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6149 			regs[BPF_REG_0].mem_size = tsize;
6150 		} else {
6151 			regs[BPF_REG_0].type =
6152 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6153 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6154 			regs[BPF_REG_0].btf = meta.ret_btf;
6155 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6156 		}
6157 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6158 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6159 		int ret_btf_id;
6160 
6161 		mark_reg_known_zero(env, regs, BPF_REG_0);
6162 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6163 						     PTR_TO_BTF_ID :
6164 						     PTR_TO_BTF_ID_OR_NULL;
6165 		ret_btf_id = *fn->ret_btf_id;
6166 		if (ret_btf_id == 0) {
6167 			verbose(env, "invalid return type %d of func %s#%d\n",
6168 				fn->ret_type, func_id_name(func_id), func_id);
6169 			return -EINVAL;
6170 		}
6171 		/* current BPF helper definitions are only coming from
6172 		 * built-in code with type IDs from  vmlinux BTF
6173 		 */
6174 		regs[BPF_REG_0].btf = btf_vmlinux;
6175 		regs[BPF_REG_0].btf_id = ret_btf_id;
6176 	} else {
6177 		verbose(env, "unknown return type %d of func %s#%d\n",
6178 			fn->ret_type, func_id_name(func_id), func_id);
6179 		return -EINVAL;
6180 	}
6181 
6182 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6183 		regs[BPF_REG_0].id = ++env->id_gen;
6184 
6185 	if (is_ptr_cast_function(func_id)) {
6186 		/* For release_reference() */
6187 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6188 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6189 		int id = acquire_reference_state(env, insn_idx);
6190 
6191 		if (id < 0)
6192 			return id;
6193 		/* For mark_ptr_or_null_reg() */
6194 		regs[BPF_REG_0].id = id;
6195 		/* For release_reference() */
6196 		regs[BPF_REG_0].ref_obj_id = id;
6197 	}
6198 
6199 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6200 
6201 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6202 	if (err)
6203 		return err;
6204 
6205 	if ((func_id == BPF_FUNC_get_stack ||
6206 	     func_id == BPF_FUNC_get_task_stack) &&
6207 	    !env->prog->has_callchain_buf) {
6208 		const char *err_str;
6209 
6210 #ifdef CONFIG_PERF_EVENTS
6211 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6212 		err_str = "cannot get callchain buffer for func %s#%d\n";
6213 #else
6214 		err = -ENOTSUPP;
6215 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6216 #endif
6217 		if (err) {
6218 			verbose(env, err_str, func_id_name(func_id), func_id);
6219 			return err;
6220 		}
6221 
6222 		env->prog->has_callchain_buf = true;
6223 	}
6224 
6225 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6226 		env->prog->call_get_stack = true;
6227 
6228 	if (changes_data)
6229 		clear_all_pkt_pointers(env);
6230 	return 0;
6231 }
6232 
6233 /* mark_btf_func_reg_size() is used when the reg size is determined by
6234  * the BTF func_proto's return value size and argument.
6235  */
6236 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6237 				   size_t reg_size)
6238 {
6239 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6240 
6241 	if (regno == BPF_REG_0) {
6242 		/* Function return value */
6243 		reg->live |= REG_LIVE_WRITTEN;
6244 		reg->subreg_def = reg_size == sizeof(u64) ?
6245 			DEF_NOT_SUBREG : env->insn_idx + 1;
6246 	} else {
6247 		/* Function argument */
6248 		if (reg_size == sizeof(u64)) {
6249 			mark_insn_zext(env, reg);
6250 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6251 		} else {
6252 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6253 		}
6254 	}
6255 }
6256 
6257 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6258 {
6259 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6260 	struct bpf_reg_state *regs = cur_regs(env);
6261 	const char *func_name, *ptr_type_name;
6262 	u32 i, nargs, func_id, ptr_type_id;
6263 	const struct btf_param *args;
6264 	int err;
6265 
6266 	func_id = insn->imm;
6267 	func = btf_type_by_id(btf_vmlinux, func_id);
6268 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6269 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
6270 
6271 	if (!env->ops->check_kfunc_call ||
6272 	    !env->ops->check_kfunc_call(func_id)) {
6273 		verbose(env, "calling kernel function %s is not allowed\n",
6274 			func_name);
6275 		return -EACCES;
6276 	}
6277 
6278 	/* Check the arguments */
6279 	err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6280 	if (err)
6281 		return err;
6282 
6283 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6284 		mark_reg_not_init(env, regs, caller_saved[i]);
6285 
6286 	/* Check return type */
6287 	t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6288 	if (btf_type_is_scalar(t)) {
6289 		mark_reg_unknown(env, regs, BPF_REG_0);
6290 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6291 	} else if (btf_type_is_ptr(t)) {
6292 		ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6293 						   &ptr_type_id);
6294 		if (!btf_type_is_struct(ptr_type)) {
6295 			ptr_type_name = btf_name_by_offset(btf_vmlinux,
6296 							   ptr_type->name_off);
6297 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6298 				func_name, btf_type_str(ptr_type),
6299 				ptr_type_name);
6300 			return -EINVAL;
6301 		}
6302 		mark_reg_known_zero(env, regs, BPF_REG_0);
6303 		regs[BPF_REG_0].btf = btf_vmlinux;
6304 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6305 		regs[BPF_REG_0].btf_id = ptr_type_id;
6306 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6307 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6308 
6309 	nargs = btf_type_vlen(func_proto);
6310 	args = (const struct btf_param *)(func_proto + 1);
6311 	for (i = 0; i < nargs; i++) {
6312 		u32 regno = i + 1;
6313 
6314 		t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6315 		if (btf_type_is_ptr(t))
6316 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6317 		else
6318 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6319 			mark_btf_func_reg_size(env, regno, t->size);
6320 	}
6321 
6322 	return 0;
6323 }
6324 
6325 static bool signed_add_overflows(s64 a, s64 b)
6326 {
6327 	/* Do the add in u64, where overflow is well-defined */
6328 	s64 res = (s64)((u64)a + (u64)b);
6329 
6330 	if (b < 0)
6331 		return res > a;
6332 	return res < a;
6333 }
6334 
6335 static bool signed_add32_overflows(s32 a, s32 b)
6336 {
6337 	/* Do the add in u32, where overflow is well-defined */
6338 	s32 res = (s32)((u32)a + (u32)b);
6339 
6340 	if (b < 0)
6341 		return res > a;
6342 	return res < a;
6343 }
6344 
6345 static bool signed_sub_overflows(s64 a, s64 b)
6346 {
6347 	/* Do the sub in u64, where overflow is well-defined */
6348 	s64 res = (s64)((u64)a - (u64)b);
6349 
6350 	if (b < 0)
6351 		return res < a;
6352 	return res > a;
6353 }
6354 
6355 static bool signed_sub32_overflows(s32 a, s32 b)
6356 {
6357 	/* Do the sub in u32, where overflow is well-defined */
6358 	s32 res = (s32)((u32)a - (u32)b);
6359 
6360 	if (b < 0)
6361 		return res < a;
6362 	return res > a;
6363 }
6364 
6365 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6366 				  const struct bpf_reg_state *reg,
6367 				  enum bpf_reg_type type)
6368 {
6369 	bool known = tnum_is_const(reg->var_off);
6370 	s64 val = reg->var_off.value;
6371 	s64 smin = reg->smin_value;
6372 
6373 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6374 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6375 			reg_type_str[type], val);
6376 		return false;
6377 	}
6378 
6379 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6380 		verbose(env, "%s pointer offset %d is not allowed\n",
6381 			reg_type_str[type], reg->off);
6382 		return false;
6383 	}
6384 
6385 	if (smin == S64_MIN) {
6386 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6387 			reg_type_str[type]);
6388 		return false;
6389 	}
6390 
6391 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6392 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6393 			smin, reg_type_str[type]);
6394 		return false;
6395 	}
6396 
6397 	return true;
6398 }
6399 
6400 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6401 {
6402 	return &env->insn_aux_data[env->insn_idx];
6403 }
6404 
6405 enum {
6406 	REASON_BOUNDS	= -1,
6407 	REASON_TYPE	= -2,
6408 	REASON_PATHS	= -3,
6409 	REASON_LIMIT	= -4,
6410 	REASON_STACK	= -5,
6411 };
6412 
6413 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6414 			      u32 *alu_limit, bool mask_to_left)
6415 {
6416 	u32 max = 0, ptr_limit = 0;
6417 
6418 	switch (ptr_reg->type) {
6419 	case PTR_TO_STACK:
6420 		/* Offset 0 is out-of-bounds, but acceptable start for the
6421 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6422 		 * offset where we would need to deal with min/max bounds is
6423 		 * currently prohibited for unprivileged.
6424 		 */
6425 		max = MAX_BPF_STACK + mask_to_left;
6426 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6427 		break;
6428 	case PTR_TO_MAP_VALUE:
6429 		max = ptr_reg->map_ptr->value_size;
6430 		ptr_limit = (mask_to_left ?
6431 			     ptr_reg->smin_value :
6432 			     ptr_reg->umax_value) + ptr_reg->off;
6433 		break;
6434 	default:
6435 		return REASON_TYPE;
6436 	}
6437 
6438 	if (ptr_limit >= max)
6439 		return REASON_LIMIT;
6440 	*alu_limit = ptr_limit;
6441 	return 0;
6442 }
6443 
6444 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6445 				    const struct bpf_insn *insn)
6446 {
6447 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6448 }
6449 
6450 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6451 				       u32 alu_state, u32 alu_limit)
6452 {
6453 	/* If we arrived here from different branches with different
6454 	 * state or limits to sanitize, then this won't work.
6455 	 */
6456 	if (aux->alu_state &&
6457 	    (aux->alu_state != alu_state ||
6458 	     aux->alu_limit != alu_limit))
6459 		return REASON_PATHS;
6460 
6461 	/* Corresponding fixup done in do_misc_fixups(). */
6462 	aux->alu_state = alu_state;
6463 	aux->alu_limit = alu_limit;
6464 	return 0;
6465 }
6466 
6467 static int sanitize_val_alu(struct bpf_verifier_env *env,
6468 			    struct bpf_insn *insn)
6469 {
6470 	struct bpf_insn_aux_data *aux = cur_aux(env);
6471 
6472 	if (can_skip_alu_sanitation(env, insn))
6473 		return 0;
6474 
6475 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6476 }
6477 
6478 static bool sanitize_needed(u8 opcode)
6479 {
6480 	return opcode == BPF_ADD || opcode == BPF_SUB;
6481 }
6482 
6483 struct bpf_sanitize_info {
6484 	struct bpf_insn_aux_data aux;
6485 	bool mask_to_left;
6486 };
6487 
6488 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6489 			    struct bpf_insn *insn,
6490 			    const struct bpf_reg_state *ptr_reg,
6491 			    const struct bpf_reg_state *off_reg,
6492 			    struct bpf_reg_state *dst_reg,
6493 			    struct bpf_sanitize_info *info,
6494 			    const bool commit_window)
6495 {
6496 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6497 	struct bpf_verifier_state *vstate = env->cur_state;
6498 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6499 	bool off_is_neg = off_reg->smin_value < 0;
6500 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6501 	u8 opcode = BPF_OP(insn->code);
6502 	u32 alu_state, alu_limit;
6503 	struct bpf_reg_state tmp;
6504 	bool ret;
6505 	int err;
6506 
6507 	if (can_skip_alu_sanitation(env, insn))
6508 		return 0;
6509 
6510 	/* We already marked aux for masking from non-speculative
6511 	 * paths, thus we got here in the first place. We only care
6512 	 * to explore bad access from here.
6513 	 */
6514 	if (vstate->speculative)
6515 		goto do_sim;
6516 
6517 	if (!commit_window) {
6518 		if (!tnum_is_const(off_reg->var_off) &&
6519 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6520 			return REASON_BOUNDS;
6521 
6522 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6523 				     (opcode == BPF_SUB && !off_is_neg);
6524 	}
6525 
6526 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6527 	if (err < 0)
6528 		return err;
6529 
6530 	if (commit_window) {
6531 		/* In commit phase we narrow the masking window based on
6532 		 * the observed pointer move after the simulated operation.
6533 		 */
6534 		alu_state = info->aux.alu_state;
6535 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6536 	} else {
6537 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6538 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6539 		alu_state |= ptr_is_dst_reg ?
6540 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6541 	}
6542 
6543 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6544 	if (err < 0)
6545 		return err;
6546 do_sim:
6547 	/* If we're in commit phase, we're done here given we already
6548 	 * pushed the truncated dst_reg into the speculative verification
6549 	 * stack.
6550 	 *
6551 	 * Also, when register is a known constant, we rewrite register-based
6552 	 * operation to immediate-based, and thus do not need masking (and as
6553 	 * a consequence, do not need to simulate the zero-truncation either).
6554 	 */
6555 	if (commit_window || off_is_imm)
6556 		return 0;
6557 
6558 	/* Simulate and find potential out-of-bounds access under
6559 	 * speculative execution from truncation as a result of
6560 	 * masking when off was not within expected range. If off
6561 	 * sits in dst, then we temporarily need to move ptr there
6562 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6563 	 * for cases where we use K-based arithmetic in one direction
6564 	 * and truncated reg-based in the other in order to explore
6565 	 * bad access.
6566 	 */
6567 	if (!ptr_is_dst_reg) {
6568 		tmp = *dst_reg;
6569 		*dst_reg = *ptr_reg;
6570 	}
6571 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
6572 	if (!ptr_is_dst_reg && ret)
6573 		*dst_reg = tmp;
6574 	return !ret ? REASON_STACK : 0;
6575 }
6576 
6577 static int sanitize_err(struct bpf_verifier_env *env,
6578 			const struct bpf_insn *insn, int reason,
6579 			const struct bpf_reg_state *off_reg,
6580 			const struct bpf_reg_state *dst_reg)
6581 {
6582 	static const char *err = "pointer arithmetic with it prohibited for !root";
6583 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6584 	u32 dst = insn->dst_reg, src = insn->src_reg;
6585 
6586 	switch (reason) {
6587 	case REASON_BOUNDS:
6588 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6589 			off_reg == dst_reg ? dst : src, err);
6590 		break;
6591 	case REASON_TYPE:
6592 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6593 			off_reg == dst_reg ? src : dst, err);
6594 		break;
6595 	case REASON_PATHS:
6596 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6597 			dst, op, err);
6598 		break;
6599 	case REASON_LIMIT:
6600 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6601 			dst, op, err);
6602 		break;
6603 	case REASON_STACK:
6604 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6605 			dst, err);
6606 		break;
6607 	default:
6608 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6609 			reason);
6610 		break;
6611 	}
6612 
6613 	return -EACCES;
6614 }
6615 
6616 /* check that stack access falls within stack limits and that 'reg' doesn't
6617  * have a variable offset.
6618  *
6619  * Variable offset is prohibited for unprivileged mode for simplicity since it
6620  * requires corresponding support in Spectre masking for stack ALU.  See also
6621  * retrieve_ptr_limit().
6622  *
6623  *
6624  * 'off' includes 'reg->off'.
6625  */
6626 static int check_stack_access_for_ptr_arithmetic(
6627 				struct bpf_verifier_env *env,
6628 				int regno,
6629 				const struct bpf_reg_state *reg,
6630 				int off)
6631 {
6632 	if (!tnum_is_const(reg->var_off)) {
6633 		char tn_buf[48];
6634 
6635 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6636 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6637 			regno, tn_buf, off);
6638 		return -EACCES;
6639 	}
6640 
6641 	if (off >= 0 || off < -MAX_BPF_STACK) {
6642 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6643 			"prohibited for !root; off=%d\n", regno, off);
6644 		return -EACCES;
6645 	}
6646 
6647 	return 0;
6648 }
6649 
6650 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6651 				 const struct bpf_insn *insn,
6652 				 const struct bpf_reg_state *dst_reg)
6653 {
6654 	u32 dst = insn->dst_reg;
6655 
6656 	/* For unprivileged we require that resulting offset must be in bounds
6657 	 * in order to be able to sanitize access later on.
6658 	 */
6659 	if (env->bypass_spec_v1)
6660 		return 0;
6661 
6662 	switch (dst_reg->type) {
6663 	case PTR_TO_STACK:
6664 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6665 					dst_reg->off + dst_reg->var_off.value))
6666 			return -EACCES;
6667 		break;
6668 	case PTR_TO_MAP_VALUE:
6669 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6670 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6671 				"prohibited for !root\n", dst);
6672 			return -EACCES;
6673 		}
6674 		break;
6675 	default:
6676 		break;
6677 	}
6678 
6679 	return 0;
6680 }
6681 
6682 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6683  * Caller should also handle BPF_MOV case separately.
6684  * If we return -EACCES, caller may want to try again treating pointer as a
6685  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6686  */
6687 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6688 				   struct bpf_insn *insn,
6689 				   const struct bpf_reg_state *ptr_reg,
6690 				   const struct bpf_reg_state *off_reg)
6691 {
6692 	struct bpf_verifier_state *vstate = env->cur_state;
6693 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6694 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6695 	bool known = tnum_is_const(off_reg->var_off);
6696 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6697 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6698 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6699 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6700 	struct bpf_sanitize_info info = {};
6701 	u8 opcode = BPF_OP(insn->code);
6702 	u32 dst = insn->dst_reg;
6703 	int ret;
6704 
6705 	dst_reg = &regs[dst];
6706 
6707 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6708 	    smin_val > smax_val || umin_val > umax_val) {
6709 		/* Taint dst register if offset had invalid bounds derived from
6710 		 * e.g. dead branches.
6711 		 */
6712 		__mark_reg_unknown(env, dst_reg);
6713 		return 0;
6714 	}
6715 
6716 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6717 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6718 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6719 			__mark_reg_unknown(env, dst_reg);
6720 			return 0;
6721 		}
6722 
6723 		verbose(env,
6724 			"R%d 32-bit pointer arithmetic prohibited\n",
6725 			dst);
6726 		return -EACCES;
6727 	}
6728 
6729 	switch (ptr_reg->type) {
6730 	case PTR_TO_MAP_VALUE_OR_NULL:
6731 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6732 			dst, reg_type_str[ptr_reg->type]);
6733 		return -EACCES;
6734 	case CONST_PTR_TO_MAP:
6735 		/* smin_val represents the known value */
6736 		if (known && smin_val == 0 && opcode == BPF_ADD)
6737 			break;
6738 		fallthrough;
6739 	case PTR_TO_PACKET_END:
6740 	case PTR_TO_SOCKET:
6741 	case PTR_TO_SOCKET_OR_NULL:
6742 	case PTR_TO_SOCK_COMMON:
6743 	case PTR_TO_SOCK_COMMON_OR_NULL:
6744 	case PTR_TO_TCP_SOCK:
6745 	case PTR_TO_TCP_SOCK_OR_NULL:
6746 	case PTR_TO_XDP_SOCK:
6747 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6748 			dst, reg_type_str[ptr_reg->type]);
6749 		return -EACCES;
6750 	default:
6751 		break;
6752 	}
6753 
6754 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6755 	 * The id may be overwritten later if we create a new variable offset.
6756 	 */
6757 	dst_reg->type = ptr_reg->type;
6758 	dst_reg->id = ptr_reg->id;
6759 
6760 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6761 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6762 		return -EINVAL;
6763 
6764 	/* pointer types do not carry 32-bit bounds at the moment. */
6765 	__mark_reg32_unbounded(dst_reg);
6766 
6767 	if (sanitize_needed(opcode)) {
6768 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6769 				       &info, false);
6770 		if (ret < 0)
6771 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6772 	}
6773 
6774 	switch (opcode) {
6775 	case BPF_ADD:
6776 		/* We can take a fixed offset as long as it doesn't overflow
6777 		 * the s32 'off' field
6778 		 */
6779 		if (known && (ptr_reg->off + smin_val ==
6780 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6781 			/* pointer += K.  Accumulate it into fixed offset */
6782 			dst_reg->smin_value = smin_ptr;
6783 			dst_reg->smax_value = smax_ptr;
6784 			dst_reg->umin_value = umin_ptr;
6785 			dst_reg->umax_value = umax_ptr;
6786 			dst_reg->var_off = ptr_reg->var_off;
6787 			dst_reg->off = ptr_reg->off + smin_val;
6788 			dst_reg->raw = ptr_reg->raw;
6789 			break;
6790 		}
6791 		/* A new variable offset is created.  Note that off_reg->off
6792 		 * == 0, since it's a scalar.
6793 		 * dst_reg gets the pointer type and since some positive
6794 		 * integer value was added to the pointer, give it a new 'id'
6795 		 * if it's a PTR_TO_PACKET.
6796 		 * this creates a new 'base' pointer, off_reg (variable) gets
6797 		 * added into the variable offset, and we copy the fixed offset
6798 		 * from ptr_reg.
6799 		 */
6800 		if (signed_add_overflows(smin_ptr, smin_val) ||
6801 		    signed_add_overflows(smax_ptr, smax_val)) {
6802 			dst_reg->smin_value = S64_MIN;
6803 			dst_reg->smax_value = S64_MAX;
6804 		} else {
6805 			dst_reg->smin_value = smin_ptr + smin_val;
6806 			dst_reg->smax_value = smax_ptr + smax_val;
6807 		}
6808 		if (umin_ptr + umin_val < umin_ptr ||
6809 		    umax_ptr + umax_val < umax_ptr) {
6810 			dst_reg->umin_value = 0;
6811 			dst_reg->umax_value = U64_MAX;
6812 		} else {
6813 			dst_reg->umin_value = umin_ptr + umin_val;
6814 			dst_reg->umax_value = umax_ptr + umax_val;
6815 		}
6816 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6817 		dst_reg->off = ptr_reg->off;
6818 		dst_reg->raw = ptr_reg->raw;
6819 		if (reg_is_pkt_pointer(ptr_reg)) {
6820 			dst_reg->id = ++env->id_gen;
6821 			/* something was added to pkt_ptr, set range to zero */
6822 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6823 		}
6824 		break;
6825 	case BPF_SUB:
6826 		if (dst_reg == off_reg) {
6827 			/* scalar -= pointer.  Creates an unknown scalar */
6828 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6829 				dst);
6830 			return -EACCES;
6831 		}
6832 		/* We don't allow subtraction from FP, because (according to
6833 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6834 		 * be able to deal with it.
6835 		 */
6836 		if (ptr_reg->type == PTR_TO_STACK) {
6837 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6838 				dst);
6839 			return -EACCES;
6840 		}
6841 		if (known && (ptr_reg->off - smin_val ==
6842 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6843 			/* pointer -= K.  Subtract it from fixed offset */
6844 			dst_reg->smin_value = smin_ptr;
6845 			dst_reg->smax_value = smax_ptr;
6846 			dst_reg->umin_value = umin_ptr;
6847 			dst_reg->umax_value = umax_ptr;
6848 			dst_reg->var_off = ptr_reg->var_off;
6849 			dst_reg->id = ptr_reg->id;
6850 			dst_reg->off = ptr_reg->off - smin_val;
6851 			dst_reg->raw = ptr_reg->raw;
6852 			break;
6853 		}
6854 		/* A new variable offset is created.  If the subtrahend is known
6855 		 * nonnegative, then any reg->range we had before is still good.
6856 		 */
6857 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6858 		    signed_sub_overflows(smax_ptr, smin_val)) {
6859 			/* Overflow possible, we know nothing */
6860 			dst_reg->smin_value = S64_MIN;
6861 			dst_reg->smax_value = S64_MAX;
6862 		} else {
6863 			dst_reg->smin_value = smin_ptr - smax_val;
6864 			dst_reg->smax_value = smax_ptr - smin_val;
6865 		}
6866 		if (umin_ptr < umax_val) {
6867 			/* Overflow possible, we know nothing */
6868 			dst_reg->umin_value = 0;
6869 			dst_reg->umax_value = U64_MAX;
6870 		} else {
6871 			/* Cannot overflow (as long as bounds are consistent) */
6872 			dst_reg->umin_value = umin_ptr - umax_val;
6873 			dst_reg->umax_value = umax_ptr - umin_val;
6874 		}
6875 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6876 		dst_reg->off = ptr_reg->off;
6877 		dst_reg->raw = ptr_reg->raw;
6878 		if (reg_is_pkt_pointer(ptr_reg)) {
6879 			dst_reg->id = ++env->id_gen;
6880 			/* something was added to pkt_ptr, set range to zero */
6881 			if (smin_val < 0)
6882 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6883 		}
6884 		break;
6885 	case BPF_AND:
6886 	case BPF_OR:
6887 	case BPF_XOR:
6888 		/* bitwise ops on pointers are troublesome, prohibit. */
6889 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6890 			dst, bpf_alu_string[opcode >> 4]);
6891 		return -EACCES;
6892 	default:
6893 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6894 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6895 			dst, bpf_alu_string[opcode >> 4]);
6896 		return -EACCES;
6897 	}
6898 
6899 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6900 		return -EINVAL;
6901 
6902 	__update_reg_bounds(dst_reg);
6903 	__reg_deduce_bounds(dst_reg);
6904 	__reg_bound_offset(dst_reg);
6905 
6906 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6907 		return -EACCES;
6908 	if (sanitize_needed(opcode)) {
6909 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6910 				       &info, true);
6911 		if (ret < 0)
6912 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6913 	}
6914 
6915 	return 0;
6916 }
6917 
6918 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6919 				 struct bpf_reg_state *src_reg)
6920 {
6921 	s32 smin_val = src_reg->s32_min_value;
6922 	s32 smax_val = src_reg->s32_max_value;
6923 	u32 umin_val = src_reg->u32_min_value;
6924 	u32 umax_val = src_reg->u32_max_value;
6925 
6926 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6927 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6928 		dst_reg->s32_min_value = S32_MIN;
6929 		dst_reg->s32_max_value = S32_MAX;
6930 	} else {
6931 		dst_reg->s32_min_value += smin_val;
6932 		dst_reg->s32_max_value += smax_val;
6933 	}
6934 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6935 	    dst_reg->u32_max_value + umax_val < umax_val) {
6936 		dst_reg->u32_min_value = 0;
6937 		dst_reg->u32_max_value = U32_MAX;
6938 	} else {
6939 		dst_reg->u32_min_value += umin_val;
6940 		dst_reg->u32_max_value += umax_val;
6941 	}
6942 }
6943 
6944 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6945 			       struct bpf_reg_state *src_reg)
6946 {
6947 	s64 smin_val = src_reg->smin_value;
6948 	s64 smax_val = src_reg->smax_value;
6949 	u64 umin_val = src_reg->umin_value;
6950 	u64 umax_val = src_reg->umax_value;
6951 
6952 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6953 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6954 		dst_reg->smin_value = S64_MIN;
6955 		dst_reg->smax_value = S64_MAX;
6956 	} else {
6957 		dst_reg->smin_value += smin_val;
6958 		dst_reg->smax_value += smax_val;
6959 	}
6960 	if (dst_reg->umin_value + umin_val < umin_val ||
6961 	    dst_reg->umax_value + umax_val < umax_val) {
6962 		dst_reg->umin_value = 0;
6963 		dst_reg->umax_value = U64_MAX;
6964 	} else {
6965 		dst_reg->umin_value += umin_val;
6966 		dst_reg->umax_value += umax_val;
6967 	}
6968 }
6969 
6970 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6971 				 struct bpf_reg_state *src_reg)
6972 {
6973 	s32 smin_val = src_reg->s32_min_value;
6974 	s32 smax_val = src_reg->s32_max_value;
6975 	u32 umin_val = src_reg->u32_min_value;
6976 	u32 umax_val = src_reg->u32_max_value;
6977 
6978 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6979 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6980 		/* Overflow possible, we know nothing */
6981 		dst_reg->s32_min_value = S32_MIN;
6982 		dst_reg->s32_max_value = S32_MAX;
6983 	} else {
6984 		dst_reg->s32_min_value -= smax_val;
6985 		dst_reg->s32_max_value -= smin_val;
6986 	}
6987 	if (dst_reg->u32_min_value < umax_val) {
6988 		/* Overflow possible, we know nothing */
6989 		dst_reg->u32_min_value = 0;
6990 		dst_reg->u32_max_value = U32_MAX;
6991 	} else {
6992 		/* Cannot overflow (as long as bounds are consistent) */
6993 		dst_reg->u32_min_value -= umax_val;
6994 		dst_reg->u32_max_value -= umin_val;
6995 	}
6996 }
6997 
6998 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6999 			       struct bpf_reg_state *src_reg)
7000 {
7001 	s64 smin_val = src_reg->smin_value;
7002 	s64 smax_val = src_reg->smax_value;
7003 	u64 umin_val = src_reg->umin_value;
7004 	u64 umax_val = src_reg->umax_value;
7005 
7006 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7007 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7008 		/* Overflow possible, we know nothing */
7009 		dst_reg->smin_value = S64_MIN;
7010 		dst_reg->smax_value = S64_MAX;
7011 	} else {
7012 		dst_reg->smin_value -= smax_val;
7013 		dst_reg->smax_value -= smin_val;
7014 	}
7015 	if (dst_reg->umin_value < umax_val) {
7016 		/* Overflow possible, we know nothing */
7017 		dst_reg->umin_value = 0;
7018 		dst_reg->umax_value = U64_MAX;
7019 	} else {
7020 		/* Cannot overflow (as long as bounds are consistent) */
7021 		dst_reg->umin_value -= umax_val;
7022 		dst_reg->umax_value -= umin_val;
7023 	}
7024 }
7025 
7026 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7027 				 struct bpf_reg_state *src_reg)
7028 {
7029 	s32 smin_val = src_reg->s32_min_value;
7030 	u32 umin_val = src_reg->u32_min_value;
7031 	u32 umax_val = src_reg->u32_max_value;
7032 
7033 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7034 		/* Ain't nobody got time to multiply that sign */
7035 		__mark_reg32_unbounded(dst_reg);
7036 		return;
7037 	}
7038 	/* Both values are positive, so we can work with unsigned and
7039 	 * copy the result to signed (unless it exceeds S32_MAX).
7040 	 */
7041 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7042 		/* Potential overflow, we know nothing */
7043 		__mark_reg32_unbounded(dst_reg);
7044 		return;
7045 	}
7046 	dst_reg->u32_min_value *= umin_val;
7047 	dst_reg->u32_max_value *= umax_val;
7048 	if (dst_reg->u32_max_value > S32_MAX) {
7049 		/* Overflow possible, we know nothing */
7050 		dst_reg->s32_min_value = S32_MIN;
7051 		dst_reg->s32_max_value = S32_MAX;
7052 	} else {
7053 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7054 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7055 	}
7056 }
7057 
7058 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7059 			       struct bpf_reg_state *src_reg)
7060 {
7061 	s64 smin_val = src_reg->smin_value;
7062 	u64 umin_val = src_reg->umin_value;
7063 	u64 umax_val = src_reg->umax_value;
7064 
7065 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7066 		/* Ain't nobody got time to multiply that sign */
7067 		__mark_reg64_unbounded(dst_reg);
7068 		return;
7069 	}
7070 	/* Both values are positive, so we can work with unsigned and
7071 	 * copy the result to signed (unless it exceeds S64_MAX).
7072 	 */
7073 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7074 		/* Potential overflow, we know nothing */
7075 		__mark_reg64_unbounded(dst_reg);
7076 		return;
7077 	}
7078 	dst_reg->umin_value *= umin_val;
7079 	dst_reg->umax_value *= umax_val;
7080 	if (dst_reg->umax_value > S64_MAX) {
7081 		/* Overflow possible, we know nothing */
7082 		dst_reg->smin_value = S64_MIN;
7083 		dst_reg->smax_value = S64_MAX;
7084 	} else {
7085 		dst_reg->smin_value = dst_reg->umin_value;
7086 		dst_reg->smax_value = dst_reg->umax_value;
7087 	}
7088 }
7089 
7090 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7091 				 struct bpf_reg_state *src_reg)
7092 {
7093 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7094 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7095 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7096 	s32 smin_val = src_reg->s32_min_value;
7097 	u32 umax_val = src_reg->u32_max_value;
7098 
7099 	if (src_known && dst_known) {
7100 		__mark_reg32_known(dst_reg, var32_off.value);
7101 		return;
7102 	}
7103 
7104 	/* We get our minimum from the var_off, since that's inherently
7105 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7106 	 */
7107 	dst_reg->u32_min_value = var32_off.value;
7108 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7109 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7110 		/* Lose signed bounds when ANDing negative numbers,
7111 		 * ain't nobody got time for that.
7112 		 */
7113 		dst_reg->s32_min_value = S32_MIN;
7114 		dst_reg->s32_max_value = S32_MAX;
7115 	} else {
7116 		/* ANDing two positives gives a positive, so safe to
7117 		 * cast result into s64.
7118 		 */
7119 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7120 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7121 	}
7122 }
7123 
7124 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7125 			       struct bpf_reg_state *src_reg)
7126 {
7127 	bool src_known = tnum_is_const(src_reg->var_off);
7128 	bool dst_known = tnum_is_const(dst_reg->var_off);
7129 	s64 smin_val = src_reg->smin_value;
7130 	u64 umax_val = src_reg->umax_value;
7131 
7132 	if (src_known && dst_known) {
7133 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7134 		return;
7135 	}
7136 
7137 	/* We get our minimum from the var_off, since that's inherently
7138 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7139 	 */
7140 	dst_reg->umin_value = dst_reg->var_off.value;
7141 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7142 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7143 		/* Lose signed bounds when ANDing negative numbers,
7144 		 * ain't nobody got time for that.
7145 		 */
7146 		dst_reg->smin_value = S64_MIN;
7147 		dst_reg->smax_value = S64_MAX;
7148 	} else {
7149 		/* ANDing two positives gives a positive, so safe to
7150 		 * cast result into s64.
7151 		 */
7152 		dst_reg->smin_value = dst_reg->umin_value;
7153 		dst_reg->smax_value = dst_reg->umax_value;
7154 	}
7155 	/* We may learn something more from the var_off */
7156 	__update_reg_bounds(dst_reg);
7157 }
7158 
7159 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7160 				struct bpf_reg_state *src_reg)
7161 {
7162 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7163 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7164 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7165 	s32 smin_val = src_reg->s32_min_value;
7166 	u32 umin_val = src_reg->u32_min_value;
7167 
7168 	if (src_known && dst_known) {
7169 		__mark_reg32_known(dst_reg, var32_off.value);
7170 		return;
7171 	}
7172 
7173 	/* We get our maximum from the var_off, and our minimum is the
7174 	 * maximum of the operands' minima
7175 	 */
7176 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7177 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7178 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7179 		/* Lose signed bounds when ORing negative numbers,
7180 		 * ain't nobody got time for that.
7181 		 */
7182 		dst_reg->s32_min_value = S32_MIN;
7183 		dst_reg->s32_max_value = S32_MAX;
7184 	} else {
7185 		/* ORing two positives gives a positive, so safe to
7186 		 * cast result into s64.
7187 		 */
7188 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7189 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7190 	}
7191 }
7192 
7193 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7194 			      struct bpf_reg_state *src_reg)
7195 {
7196 	bool src_known = tnum_is_const(src_reg->var_off);
7197 	bool dst_known = tnum_is_const(dst_reg->var_off);
7198 	s64 smin_val = src_reg->smin_value;
7199 	u64 umin_val = src_reg->umin_value;
7200 
7201 	if (src_known && dst_known) {
7202 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7203 		return;
7204 	}
7205 
7206 	/* We get our maximum from the var_off, and our minimum is the
7207 	 * maximum of the operands' minima
7208 	 */
7209 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7210 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7211 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7212 		/* Lose signed bounds when ORing negative numbers,
7213 		 * ain't nobody got time for that.
7214 		 */
7215 		dst_reg->smin_value = S64_MIN;
7216 		dst_reg->smax_value = S64_MAX;
7217 	} else {
7218 		/* ORing two positives gives a positive, so safe to
7219 		 * cast result into s64.
7220 		 */
7221 		dst_reg->smin_value = dst_reg->umin_value;
7222 		dst_reg->smax_value = dst_reg->umax_value;
7223 	}
7224 	/* We may learn something more from the var_off */
7225 	__update_reg_bounds(dst_reg);
7226 }
7227 
7228 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7229 				 struct bpf_reg_state *src_reg)
7230 {
7231 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7232 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7233 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7234 	s32 smin_val = src_reg->s32_min_value;
7235 
7236 	if (src_known && dst_known) {
7237 		__mark_reg32_known(dst_reg, var32_off.value);
7238 		return;
7239 	}
7240 
7241 	/* We get both minimum and maximum from the var32_off. */
7242 	dst_reg->u32_min_value = var32_off.value;
7243 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7244 
7245 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7246 		/* XORing two positive sign numbers gives a positive,
7247 		 * so safe to cast u32 result into s32.
7248 		 */
7249 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7250 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7251 	} else {
7252 		dst_reg->s32_min_value = S32_MIN;
7253 		dst_reg->s32_max_value = S32_MAX;
7254 	}
7255 }
7256 
7257 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7258 			       struct bpf_reg_state *src_reg)
7259 {
7260 	bool src_known = tnum_is_const(src_reg->var_off);
7261 	bool dst_known = tnum_is_const(dst_reg->var_off);
7262 	s64 smin_val = src_reg->smin_value;
7263 
7264 	if (src_known && dst_known) {
7265 		/* dst_reg->var_off.value has been updated earlier */
7266 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7267 		return;
7268 	}
7269 
7270 	/* We get both minimum and maximum from the var_off. */
7271 	dst_reg->umin_value = dst_reg->var_off.value;
7272 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7273 
7274 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7275 		/* XORing two positive sign numbers gives a positive,
7276 		 * so safe to cast u64 result into s64.
7277 		 */
7278 		dst_reg->smin_value = dst_reg->umin_value;
7279 		dst_reg->smax_value = dst_reg->umax_value;
7280 	} else {
7281 		dst_reg->smin_value = S64_MIN;
7282 		dst_reg->smax_value = S64_MAX;
7283 	}
7284 
7285 	__update_reg_bounds(dst_reg);
7286 }
7287 
7288 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7289 				   u64 umin_val, u64 umax_val)
7290 {
7291 	/* We lose all sign bit information (except what we can pick
7292 	 * up from var_off)
7293 	 */
7294 	dst_reg->s32_min_value = S32_MIN;
7295 	dst_reg->s32_max_value = S32_MAX;
7296 	/* If we might shift our top bit out, then we know nothing */
7297 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7298 		dst_reg->u32_min_value = 0;
7299 		dst_reg->u32_max_value = U32_MAX;
7300 	} else {
7301 		dst_reg->u32_min_value <<= umin_val;
7302 		dst_reg->u32_max_value <<= umax_val;
7303 	}
7304 }
7305 
7306 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7307 				 struct bpf_reg_state *src_reg)
7308 {
7309 	u32 umax_val = src_reg->u32_max_value;
7310 	u32 umin_val = src_reg->u32_min_value;
7311 	/* u32 alu operation will zext upper bits */
7312 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7313 
7314 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7315 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7316 	/* Not required but being careful mark reg64 bounds as unknown so
7317 	 * that we are forced to pick them up from tnum and zext later and
7318 	 * if some path skips this step we are still safe.
7319 	 */
7320 	__mark_reg64_unbounded(dst_reg);
7321 	__update_reg32_bounds(dst_reg);
7322 }
7323 
7324 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7325 				   u64 umin_val, u64 umax_val)
7326 {
7327 	/* Special case <<32 because it is a common compiler pattern to sign
7328 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7329 	 * positive we know this shift will also be positive so we can track
7330 	 * bounds correctly. Otherwise we lose all sign bit information except
7331 	 * what we can pick up from var_off. Perhaps we can generalize this
7332 	 * later to shifts of any length.
7333 	 */
7334 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7335 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7336 	else
7337 		dst_reg->smax_value = S64_MAX;
7338 
7339 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7340 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7341 	else
7342 		dst_reg->smin_value = S64_MIN;
7343 
7344 	/* If we might shift our top bit out, then we know nothing */
7345 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7346 		dst_reg->umin_value = 0;
7347 		dst_reg->umax_value = U64_MAX;
7348 	} else {
7349 		dst_reg->umin_value <<= umin_val;
7350 		dst_reg->umax_value <<= umax_val;
7351 	}
7352 }
7353 
7354 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7355 			       struct bpf_reg_state *src_reg)
7356 {
7357 	u64 umax_val = src_reg->umax_value;
7358 	u64 umin_val = src_reg->umin_value;
7359 
7360 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7361 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7362 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7363 
7364 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7365 	/* We may learn something more from the var_off */
7366 	__update_reg_bounds(dst_reg);
7367 }
7368 
7369 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7370 				 struct bpf_reg_state *src_reg)
7371 {
7372 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7373 	u32 umax_val = src_reg->u32_max_value;
7374 	u32 umin_val = src_reg->u32_min_value;
7375 
7376 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7377 	 * be negative, then either:
7378 	 * 1) src_reg might be zero, so the sign bit of the result is
7379 	 *    unknown, so we lose our signed bounds
7380 	 * 2) it's known negative, thus the unsigned bounds capture the
7381 	 *    signed bounds
7382 	 * 3) the signed bounds cross zero, so they tell us nothing
7383 	 *    about the result
7384 	 * If the value in dst_reg is known nonnegative, then again the
7385 	 * unsigned bounds capture the signed bounds.
7386 	 * Thus, in all cases it suffices to blow away our signed bounds
7387 	 * and rely on inferring new ones from the unsigned bounds and
7388 	 * var_off of the result.
7389 	 */
7390 	dst_reg->s32_min_value = S32_MIN;
7391 	dst_reg->s32_max_value = S32_MAX;
7392 
7393 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7394 	dst_reg->u32_min_value >>= umax_val;
7395 	dst_reg->u32_max_value >>= umin_val;
7396 
7397 	__mark_reg64_unbounded(dst_reg);
7398 	__update_reg32_bounds(dst_reg);
7399 }
7400 
7401 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7402 			       struct bpf_reg_state *src_reg)
7403 {
7404 	u64 umax_val = src_reg->umax_value;
7405 	u64 umin_val = src_reg->umin_value;
7406 
7407 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7408 	 * be negative, then either:
7409 	 * 1) src_reg might be zero, so the sign bit of the result is
7410 	 *    unknown, so we lose our signed bounds
7411 	 * 2) it's known negative, thus the unsigned bounds capture the
7412 	 *    signed bounds
7413 	 * 3) the signed bounds cross zero, so they tell us nothing
7414 	 *    about the result
7415 	 * If the value in dst_reg is known nonnegative, then again the
7416 	 * unsigned bounds capture the signed bounds.
7417 	 * Thus, in all cases it suffices to blow away our signed bounds
7418 	 * and rely on inferring new ones from the unsigned bounds and
7419 	 * var_off of the result.
7420 	 */
7421 	dst_reg->smin_value = S64_MIN;
7422 	dst_reg->smax_value = S64_MAX;
7423 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7424 	dst_reg->umin_value >>= umax_val;
7425 	dst_reg->umax_value >>= umin_val;
7426 
7427 	/* Its not easy to operate on alu32 bounds here because it depends
7428 	 * on bits being shifted in. Take easy way out and mark unbounded
7429 	 * so we can recalculate later from tnum.
7430 	 */
7431 	__mark_reg32_unbounded(dst_reg);
7432 	__update_reg_bounds(dst_reg);
7433 }
7434 
7435 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7436 				  struct bpf_reg_state *src_reg)
7437 {
7438 	u64 umin_val = src_reg->u32_min_value;
7439 
7440 	/* Upon reaching here, src_known is true and
7441 	 * umax_val is equal to umin_val.
7442 	 */
7443 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7444 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7445 
7446 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7447 
7448 	/* blow away the dst_reg umin_value/umax_value and rely on
7449 	 * dst_reg var_off to refine the result.
7450 	 */
7451 	dst_reg->u32_min_value = 0;
7452 	dst_reg->u32_max_value = U32_MAX;
7453 
7454 	__mark_reg64_unbounded(dst_reg);
7455 	__update_reg32_bounds(dst_reg);
7456 }
7457 
7458 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7459 				struct bpf_reg_state *src_reg)
7460 {
7461 	u64 umin_val = src_reg->umin_value;
7462 
7463 	/* Upon reaching here, src_known is true and umax_val is equal
7464 	 * to umin_val.
7465 	 */
7466 	dst_reg->smin_value >>= umin_val;
7467 	dst_reg->smax_value >>= umin_val;
7468 
7469 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7470 
7471 	/* blow away the dst_reg umin_value/umax_value and rely on
7472 	 * dst_reg var_off to refine the result.
7473 	 */
7474 	dst_reg->umin_value = 0;
7475 	dst_reg->umax_value = U64_MAX;
7476 
7477 	/* Its not easy to operate on alu32 bounds here because it depends
7478 	 * on bits being shifted in from upper 32-bits. Take easy way out
7479 	 * and mark unbounded so we can recalculate later from tnum.
7480 	 */
7481 	__mark_reg32_unbounded(dst_reg);
7482 	__update_reg_bounds(dst_reg);
7483 }
7484 
7485 /* WARNING: This function does calculations on 64-bit values, but the actual
7486  * execution may occur on 32-bit values. Therefore, things like bitshifts
7487  * need extra checks in the 32-bit case.
7488  */
7489 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7490 				      struct bpf_insn *insn,
7491 				      struct bpf_reg_state *dst_reg,
7492 				      struct bpf_reg_state src_reg)
7493 {
7494 	struct bpf_reg_state *regs = cur_regs(env);
7495 	u8 opcode = BPF_OP(insn->code);
7496 	bool src_known;
7497 	s64 smin_val, smax_val;
7498 	u64 umin_val, umax_val;
7499 	s32 s32_min_val, s32_max_val;
7500 	u32 u32_min_val, u32_max_val;
7501 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7502 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7503 	int ret;
7504 
7505 	smin_val = src_reg.smin_value;
7506 	smax_val = src_reg.smax_value;
7507 	umin_val = src_reg.umin_value;
7508 	umax_val = src_reg.umax_value;
7509 
7510 	s32_min_val = src_reg.s32_min_value;
7511 	s32_max_val = src_reg.s32_max_value;
7512 	u32_min_val = src_reg.u32_min_value;
7513 	u32_max_val = src_reg.u32_max_value;
7514 
7515 	if (alu32) {
7516 		src_known = tnum_subreg_is_const(src_reg.var_off);
7517 		if ((src_known &&
7518 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7519 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7520 			/* Taint dst register if offset had invalid bounds
7521 			 * derived from e.g. dead branches.
7522 			 */
7523 			__mark_reg_unknown(env, dst_reg);
7524 			return 0;
7525 		}
7526 	} else {
7527 		src_known = tnum_is_const(src_reg.var_off);
7528 		if ((src_known &&
7529 		     (smin_val != smax_val || umin_val != umax_val)) ||
7530 		    smin_val > smax_val || umin_val > umax_val) {
7531 			/* Taint dst register if offset had invalid bounds
7532 			 * derived from e.g. dead branches.
7533 			 */
7534 			__mark_reg_unknown(env, dst_reg);
7535 			return 0;
7536 		}
7537 	}
7538 
7539 	if (!src_known &&
7540 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7541 		__mark_reg_unknown(env, dst_reg);
7542 		return 0;
7543 	}
7544 
7545 	if (sanitize_needed(opcode)) {
7546 		ret = sanitize_val_alu(env, insn);
7547 		if (ret < 0)
7548 			return sanitize_err(env, insn, ret, NULL, NULL);
7549 	}
7550 
7551 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7552 	 * There are two classes of instructions: The first class we track both
7553 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7554 	 * greatest amount of precision when alu operations are mixed with jmp32
7555 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7556 	 * and BPF_OR. This is possible because these ops have fairly easy to
7557 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7558 	 * See alu32 verifier tests for examples. The second class of
7559 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7560 	 * with regards to tracking sign/unsigned bounds because the bits may
7561 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7562 	 * the reg unbounded in the subreg bound space and use the resulting
7563 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7564 	 */
7565 	switch (opcode) {
7566 	case BPF_ADD:
7567 		scalar32_min_max_add(dst_reg, &src_reg);
7568 		scalar_min_max_add(dst_reg, &src_reg);
7569 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7570 		break;
7571 	case BPF_SUB:
7572 		scalar32_min_max_sub(dst_reg, &src_reg);
7573 		scalar_min_max_sub(dst_reg, &src_reg);
7574 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7575 		break;
7576 	case BPF_MUL:
7577 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7578 		scalar32_min_max_mul(dst_reg, &src_reg);
7579 		scalar_min_max_mul(dst_reg, &src_reg);
7580 		break;
7581 	case BPF_AND:
7582 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7583 		scalar32_min_max_and(dst_reg, &src_reg);
7584 		scalar_min_max_and(dst_reg, &src_reg);
7585 		break;
7586 	case BPF_OR:
7587 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7588 		scalar32_min_max_or(dst_reg, &src_reg);
7589 		scalar_min_max_or(dst_reg, &src_reg);
7590 		break;
7591 	case BPF_XOR:
7592 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7593 		scalar32_min_max_xor(dst_reg, &src_reg);
7594 		scalar_min_max_xor(dst_reg, &src_reg);
7595 		break;
7596 	case BPF_LSH:
7597 		if (umax_val >= insn_bitness) {
7598 			/* Shifts greater than 31 or 63 are undefined.
7599 			 * This includes shifts by a negative number.
7600 			 */
7601 			mark_reg_unknown(env, regs, insn->dst_reg);
7602 			break;
7603 		}
7604 		if (alu32)
7605 			scalar32_min_max_lsh(dst_reg, &src_reg);
7606 		else
7607 			scalar_min_max_lsh(dst_reg, &src_reg);
7608 		break;
7609 	case BPF_RSH:
7610 		if (umax_val >= insn_bitness) {
7611 			/* Shifts greater than 31 or 63 are undefined.
7612 			 * This includes shifts by a negative number.
7613 			 */
7614 			mark_reg_unknown(env, regs, insn->dst_reg);
7615 			break;
7616 		}
7617 		if (alu32)
7618 			scalar32_min_max_rsh(dst_reg, &src_reg);
7619 		else
7620 			scalar_min_max_rsh(dst_reg, &src_reg);
7621 		break;
7622 	case BPF_ARSH:
7623 		if (umax_val >= insn_bitness) {
7624 			/* Shifts greater than 31 or 63 are undefined.
7625 			 * This includes shifts by a negative number.
7626 			 */
7627 			mark_reg_unknown(env, regs, insn->dst_reg);
7628 			break;
7629 		}
7630 		if (alu32)
7631 			scalar32_min_max_arsh(dst_reg, &src_reg);
7632 		else
7633 			scalar_min_max_arsh(dst_reg, &src_reg);
7634 		break;
7635 	default:
7636 		mark_reg_unknown(env, regs, insn->dst_reg);
7637 		break;
7638 	}
7639 
7640 	/* ALU32 ops are zero extended into 64bit register */
7641 	if (alu32)
7642 		zext_32_to_64(dst_reg);
7643 
7644 	__update_reg_bounds(dst_reg);
7645 	__reg_deduce_bounds(dst_reg);
7646 	__reg_bound_offset(dst_reg);
7647 	return 0;
7648 }
7649 
7650 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7651  * and var_off.
7652  */
7653 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7654 				   struct bpf_insn *insn)
7655 {
7656 	struct bpf_verifier_state *vstate = env->cur_state;
7657 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7658 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7659 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7660 	u8 opcode = BPF_OP(insn->code);
7661 	int err;
7662 
7663 	dst_reg = &regs[insn->dst_reg];
7664 	src_reg = NULL;
7665 	if (dst_reg->type != SCALAR_VALUE)
7666 		ptr_reg = dst_reg;
7667 	else
7668 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7669 		 * incorrectly propagated into other registers by find_equal_scalars()
7670 		 */
7671 		dst_reg->id = 0;
7672 	if (BPF_SRC(insn->code) == BPF_X) {
7673 		src_reg = &regs[insn->src_reg];
7674 		if (src_reg->type != SCALAR_VALUE) {
7675 			if (dst_reg->type != SCALAR_VALUE) {
7676 				/* Combining two pointers by any ALU op yields
7677 				 * an arbitrary scalar. Disallow all math except
7678 				 * pointer subtraction
7679 				 */
7680 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7681 					mark_reg_unknown(env, regs, insn->dst_reg);
7682 					return 0;
7683 				}
7684 				verbose(env, "R%d pointer %s pointer prohibited\n",
7685 					insn->dst_reg,
7686 					bpf_alu_string[opcode >> 4]);
7687 				return -EACCES;
7688 			} else {
7689 				/* scalar += pointer
7690 				 * This is legal, but we have to reverse our
7691 				 * src/dest handling in computing the range
7692 				 */
7693 				err = mark_chain_precision(env, insn->dst_reg);
7694 				if (err)
7695 					return err;
7696 				return adjust_ptr_min_max_vals(env, insn,
7697 							       src_reg, dst_reg);
7698 			}
7699 		} else if (ptr_reg) {
7700 			/* pointer += scalar */
7701 			err = mark_chain_precision(env, insn->src_reg);
7702 			if (err)
7703 				return err;
7704 			return adjust_ptr_min_max_vals(env, insn,
7705 						       dst_reg, src_reg);
7706 		}
7707 	} else {
7708 		/* Pretend the src is a reg with a known value, since we only
7709 		 * need to be able to read from this state.
7710 		 */
7711 		off_reg.type = SCALAR_VALUE;
7712 		__mark_reg_known(&off_reg, insn->imm);
7713 		src_reg = &off_reg;
7714 		if (ptr_reg) /* pointer += K */
7715 			return adjust_ptr_min_max_vals(env, insn,
7716 						       ptr_reg, src_reg);
7717 	}
7718 
7719 	/* Got here implies adding two SCALAR_VALUEs */
7720 	if (WARN_ON_ONCE(ptr_reg)) {
7721 		print_verifier_state(env, state);
7722 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7723 		return -EINVAL;
7724 	}
7725 	if (WARN_ON(!src_reg)) {
7726 		print_verifier_state(env, state);
7727 		verbose(env, "verifier internal error: no src_reg\n");
7728 		return -EINVAL;
7729 	}
7730 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7731 }
7732 
7733 /* check validity of 32-bit and 64-bit arithmetic operations */
7734 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7735 {
7736 	struct bpf_reg_state *regs = cur_regs(env);
7737 	u8 opcode = BPF_OP(insn->code);
7738 	int err;
7739 
7740 	if (opcode == BPF_END || opcode == BPF_NEG) {
7741 		if (opcode == BPF_NEG) {
7742 			if (BPF_SRC(insn->code) != 0 ||
7743 			    insn->src_reg != BPF_REG_0 ||
7744 			    insn->off != 0 || insn->imm != 0) {
7745 				verbose(env, "BPF_NEG uses reserved fields\n");
7746 				return -EINVAL;
7747 			}
7748 		} else {
7749 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7750 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7751 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7752 				verbose(env, "BPF_END uses reserved fields\n");
7753 				return -EINVAL;
7754 			}
7755 		}
7756 
7757 		/* check src operand */
7758 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7759 		if (err)
7760 			return err;
7761 
7762 		if (is_pointer_value(env, insn->dst_reg)) {
7763 			verbose(env, "R%d pointer arithmetic prohibited\n",
7764 				insn->dst_reg);
7765 			return -EACCES;
7766 		}
7767 
7768 		/* check dest operand */
7769 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7770 		if (err)
7771 			return err;
7772 
7773 	} else if (opcode == BPF_MOV) {
7774 
7775 		if (BPF_SRC(insn->code) == BPF_X) {
7776 			if (insn->imm != 0 || insn->off != 0) {
7777 				verbose(env, "BPF_MOV uses reserved fields\n");
7778 				return -EINVAL;
7779 			}
7780 
7781 			/* check src operand */
7782 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7783 			if (err)
7784 				return err;
7785 		} else {
7786 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7787 				verbose(env, "BPF_MOV uses reserved fields\n");
7788 				return -EINVAL;
7789 			}
7790 		}
7791 
7792 		/* check dest operand, mark as required later */
7793 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7794 		if (err)
7795 			return err;
7796 
7797 		if (BPF_SRC(insn->code) == BPF_X) {
7798 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7799 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7800 
7801 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7802 				/* case: R1 = R2
7803 				 * copy register state to dest reg
7804 				 */
7805 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7806 					/* Assign src and dst registers the same ID
7807 					 * that will be used by find_equal_scalars()
7808 					 * to propagate min/max range.
7809 					 */
7810 					src_reg->id = ++env->id_gen;
7811 				*dst_reg = *src_reg;
7812 				dst_reg->live |= REG_LIVE_WRITTEN;
7813 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7814 			} else {
7815 				/* R1 = (u32) R2 */
7816 				if (is_pointer_value(env, insn->src_reg)) {
7817 					verbose(env,
7818 						"R%d partial copy of pointer\n",
7819 						insn->src_reg);
7820 					return -EACCES;
7821 				} else if (src_reg->type == SCALAR_VALUE) {
7822 					*dst_reg = *src_reg;
7823 					/* Make sure ID is cleared otherwise
7824 					 * dst_reg min/max could be incorrectly
7825 					 * propagated into src_reg by find_equal_scalars()
7826 					 */
7827 					dst_reg->id = 0;
7828 					dst_reg->live |= REG_LIVE_WRITTEN;
7829 					dst_reg->subreg_def = env->insn_idx + 1;
7830 				} else {
7831 					mark_reg_unknown(env, regs,
7832 							 insn->dst_reg);
7833 				}
7834 				zext_32_to_64(dst_reg);
7835 			}
7836 		} else {
7837 			/* case: R = imm
7838 			 * remember the value we stored into this reg
7839 			 */
7840 			/* clear any state __mark_reg_known doesn't set */
7841 			mark_reg_unknown(env, regs, insn->dst_reg);
7842 			regs[insn->dst_reg].type = SCALAR_VALUE;
7843 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7844 				__mark_reg_known(regs + insn->dst_reg,
7845 						 insn->imm);
7846 			} else {
7847 				__mark_reg_known(regs + insn->dst_reg,
7848 						 (u32)insn->imm);
7849 			}
7850 		}
7851 
7852 	} else if (opcode > BPF_END) {
7853 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7854 		return -EINVAL;
7855 
7856 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7857 
7858 		if (BPF_SRC(insn->code) == BPF_X) {
7859 			if (insn->imm != 0 || insn->off != 0) {
7860 				verbose(env, "BPF_ALU uses reserved fields\n");
7861 				return -EINVAL;
7862 			}
7863 			/* check src1 operand */
7864 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7865 			if (err)
7866 				return err;
7867 		} else {
7868 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7869 				verbose(env, "BPF_ALU uses reserved fields\n");
7870 				return -EINVAL;
7871 			}
7872 		}
7873 
7874 		/* check src2 operand */
7875 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7876 		if (err)
7877 			return err;
7878 
7879 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7880 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7881 			verbose(env, "div by zero\n");
7882 			return -EINVAL;
7883 		}
7884 
7885 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7886 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7887 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7888 
7889 			if (insn->imm < 0 || insn->imm >= size) {
7890 				verbose(env, "invalid shift %d\n", insn->imm);
7891 				return -EINVAL;
7892 			}
7893 		}
7894 
7895 		/* check dest operand */
7896 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7897 		if (err)
7898 			return err;
7899 
7900 		return adjust_reg_min_max_vals(env, insn);
7901 	}
7902 
7903 	return 0;
7904 }
7905 
7906 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7907 				     struct bpf_reg_state *dst_reg,
7908 				     enum bpf_reg_type type, int new_range)
7909 {
7910 	struct bpf_reg_state *reg;
7911 	int i;
7912 
7913 	for (i = 0; i < MAX_BPF_REG; i++) {
7914 		reg = &state->regs[i];
7915 		if (reg->type == type && reg->id == dst_reg->id)
7916 			/* keep the maximum range already checked */
7917 			reg->range = max(reg->range, new_range);
7918 	}
7919 
7920 	bpf_for_each_spilled_reg(i, state, reg) {
7921 		if (!reg)
7922 			continue;
7923 		if (reg->type == type && reg->id == dst_reg->id)
7924 			reg->range = max(reg->range, new_range);
7925 	}
7926 }
7927 
7928 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7929 				   struct bpf_reg_state *dst_reg,
7930 				   enum bpf_reg_type type,
7931 				   bool range_right_open)
7932 {
7933 	int new_range, i;
7934 
7935 	if (dst_reg->off < 0 ||
7936 	    (dst_reg->off == 0 && range_right_open))
7937 		/* This doesn't give us any range */
7938 		return;
7939 
7940 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7941 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7942 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7943 		 * than pkt_end, but that's because it's also less than pkt.
7944 		 */
7945 		return;
7946 
7947 	new_range = dst_reg->off;
7948 	if (range_right_open)
7949 		new_range--;
7950 
7951 	/* Examples for register markings:
7952 	 *
7953 	 * pkt_data in dst register:
7954 	 *
7955 	 *   r2 = r3;
7956 	 *   r2 += 8;
7957 	 *   if (r2 > pkt_end) goto <handle exception>
7958 	 *   <access okay>
7959 	 *
7960 	 *   r2 = r3;
7961 	 *   r2 += 8;
7962 	 *   if (r2 < pkt_end) goto <access okay>
7963 	 *   <handle exception>
7964 	 *
7965 	 *   Where:
7966 	 *     r2 == dst_reg, pkt_end == src_reg
7967 	 *     r2=pkt(id=n,off=8,r=0)
7968 	 *     r3=pkt(id=n,off=0,r=0)
7969 	 *
7970 	 * pkt_data in src register:
7971 	 *
7972 	 *   r2 = r3;
7973 	 *   r2 += 8;
7974 	 *   if (pkt_end >= r2) goto <access okay>
7975 	 *   <handle exception>
7976 	 *
7977 	 *   r2 = r3;
7978 	 *   r2 += 8;
7979 	 *   if (pkt_end <= r2) goto <handle exception>
7980 	 *   <access okay>
7981 	 *
7982 	 *   Where:
7983 	 *     pkt_end == dst_reg, r2 == src_reg
7984 	 *     r2=pkt(id=n,off=8,r=0)
7985 	 *     r3=pkt(id=n,off=0,r=0)
7986 	 *
7987 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7988 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7989 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
7990 	 * the check.
7991 	 */
7992 
7993 	/* If our ids match, then we must have the same max_value.  And we
7994 	 * don't care about the other reg's fixed offset, since if it's too big
7995 	 * the range won't allow anything.
7996 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7997 	 */
7998 	for (i = 0; i <= vstate->curframe; i++)
7999 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8000 					 new_range);
8001 }
8002 
8003 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8004 {
8005 	struct tnum subreg = tnum_subreg(reg->var_off);
8006 	s32 sval = (s32)val;
8007 
8008 	switch (opcode) {
8009 	case BPF_JEQ:
8010 		if (tnum_is_const(subreg))
8011 			return !!tnum_equals_const(subreg, val);
8012 		break;
8013 	case BPF_JNE:
8014 		if (tnum_is_const(subreg))
8015 			return !tnum_equals_const(subreg, val);
8016 		break;
8017 	case BPF_JSET:
8018 		if ((~subreg.mask & subreg.value) & val)
8019 			return 1;
8020 		if (!((subreg.mask | subreg.value) & val))
8021 			return 0;
8022 		break;
8023 	case BPF_JGT:
8024 		if (reg->u32_min_value > val)
8025 			return 1;
8026 		else if (reg->u32_max_value <= val)
8027 			return 0;
8028 		break;
8029 	case BPF_JSGT:
8030 		if (reg->s32_min_value > sval)
8031 			return 1;
8032 		else if (reg->s32_max_value <= sval)
8033 			return 0;
8034 		break;
8035 	case BPF_JLT:
8036 		if (reg->u32_max_value < val)
8037 			return 1;
8038 		else if (reg->u32_min_value >= val)
8039 			return 0;
8040 		break;
8041 	case BPF_JSLT:
8042 		if (reg->s32_max_value < sval)
8043 			return 1;
8044 		else if (reg->s32_min_value >= sval)
8045 			return 0;
8046 		break;
8047 	case BPF_JGE:
8048 		if (reg->u32_min_value >= val)
8049 			return 1;
8050 		else if (reg->u32_max_value < val)
8051 			return 0;
8052 		break;
8053 	case BPF_JSGE:
8054 		if (reg->s32_min_value >= sval)
8055 			return 1;
8056 		else if (reg->s32_max_value < sval)
8057 			return 0;
8058 		break;
8059 	case BPF_JLE:
8060 		if (reg->u32_max_value <= val)
8061 			return 1;
8062 		else if (reg->u32_min_value > val)
8063 			return 0;
8064 		break;
8065 	case BPF_JSLE:
8066 		if (reg->s32_max_value <= sval)
8067 			return 1;
8068 		else if (reg->s32_min_value > sval)
8069 			return 0;
8070 		break;
8071 	}
8072 
8073 	return -1;
8074 }
8075 
8076 
8077 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8078 {
8079 	s64 sval = (s64)val;
8080 
8081 	switch (opcode) {
8082 	case BPF_JEQ:
8083 		if (tnum_is_const(reg->var_off))
8084 			return !!tnum_equals_const(reg->var_off, val);
8085 		break;
8086 	case BPF_JNE:
8087 		if (tnum_is_const(reg->var_off))
8088 			return !tnum_equals_const(reg->var_off, val);
8089 		break;
8090 	case BPF_JSET:
8091 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8092 			return 1;
8093 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8094 			return 0;
8095 		break;
8096 	case BPF_JGT:
8097 		if (reg->umin_value > val)
8098 			return 1;
8099 		else if (reg->umax_value <= val)
8100 			return 0;
8101 		break;
8102 	case BPF_JSGT:
8103 		if (reg->smin_value > sval)
8104 			return 1;
8105 		else if (reg->smax_value <= sval)
8106 			return 0;
8107 		break;
8108 	case BPF_JLT:
8109 		if (reg->umax_value < val)
8110 			return 1;
8111 		else if (reg->umin_value >= val)
8112 			return 0;
8113 		break;
8114 	case BPF_JSLT:
8115 		if (reg->smax_value < sval)
8116 			return 1;
8117 		else if (reg->smin_value >= sval)
8118 			return 0;
8119 		break;
8120 	case BPF_JGE:
8121 		if (reg->umin_value >= val)
8122 			return 1;
8123 		else if (reg->umax_value < val)
8124 			return 0;
8125 		break;
8126 	case BPF_JSGE:
8127 		if (reg->smin_value >= sval)
8128 			return 1;
8129 		else if (reg->smax_value < sval)
8130 			return 0;
8131 		break;
8132 	case BPF_JLE:
8133 		if (reg->umax_value <= val)
8134 			return 1;
8135 		else if (reg->umin_value > val)
8136 			return 0;
8137 		break;
8138 	case BPF_JSLE:
8139 		if (reg->smax_value <= sval)
8140 			return 1;
8141 		else if (reg->smin_value > sval)
8142 			return 0;
8143 		break;
8144 	}
8145 
8146 	return -1;
8147 }
8148 
8149 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8150  * and return:
8151  *  1 - branch will be taken and "goto target" will be executed
8152  *  0 - branch will not be taken and fall-through to next insn
8153  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8154  *      range [0,10]
8155  */
8156 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8157 			   bool is_jmp32)
8158 {
8159 	if (__is_pointer_value(false, reg)) {
8160 		if (!reg_type_not_null(reg->type))
8161 			return -1;
8162 
8163 		/* If pointer is valid tests against zero will fail so we can
8164 		 * use this to direct branch taken.
8165 		 */
8166 		if (val != 0)
8167 			return -1;
8168 
8169 		switch (opcode) {
8170 		case BPF_JEQ:
8171 			return 0;
8172 		case BPF_JNE:
8173 			return 1;
8174 		default:
8175 			return -1;
8176 		}
8177 	}
8178 
8179 	if (is_jmp32)
8180 		return is_branch32_taken(reg, val, opcode);
8181 	return is_branch64_taken(reg, val, opcode);
8182 }
8183 
8184 static int flip_opcode(u32 opcode)
8185 {
8186 	/* How can we transform "a <op> b" into "b <op> a"? */
8187 	static const u8 opcode_flip[16] = {
8188 		/* these stay the same */
8189 		[BPF_JEQ  >> 4] = BPF_JEQ,
8190 		[BPF_JNE  >> 4] = BPF_JNE,
8191 		[BPF_JSET >> 4] = BPF_JSET,
8192 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8193 		[BPF_JGE  >> 4] = BPF_JLE,
8194 		[BPF_JGT  >> 4] = BPF_JLT,
8195 		[BPF_JLE  >> 4] = BPF_JGE,
8196 		[BPF_JLT  >> 4] = BPF_JGT,
8197 		[BPF_JSGE >> 4] = BPF_JSLE,
8198 		[BPF_JSGT >> 4] = BPF_JSLT,
8199 		[BPF_JSLE >> 4] = BPF_JSGE,
8200 		[BPF_JSLT >> 4] = BPF_JSGT
8201 	};
8202 	return opcode_flip[opcode >> 4];
8203 }
8204 
8205 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8206 				   struct bpf_reg_state *src_reg,
8207 				   u8 opcode)
8208 {
8209 	struct bpf_reg_state *pkt;
8210 
8211 	if (src_reg->type == PTR_TO_PACKET_END) {
8212 		pkt = dst_reg;
8213 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8214 		pkt = src_reg;
8215 		opcode = flip_opcode(opcode);
8216 	} else {
8217 		return -1;
8218 	}
8219 
8220 	if (pkt->range >= 0)
8221 		return -1;
8222 
8223 	switch (opcode) {
8224 	case BPF_JLE:
8225 		/* pkt <= pkt_end */
8226 		fallthrough;
8227 	case BPF_JGT:
8228 		/* pkt > pkt_end */
8229 		if (pkt->range == BEYOND_PKT_END)
8230 			/* pkt has at last one extra byte beyond pkt_end */
8231 			return opcode == BPF_JGT;
8232 		break;
8233 	case BPF_JLT:
8234 		/* pkt < pkt_end */
8235 		fallthrough;
8236 	case BPF_JGE:
8237 		/* pkt >= pkt_end */
8238 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8239 			return opcode == BPF_JGE;
8240 		break;
8241 	}
8242 	return -1;
8243 }
8244 
8245 /* Adjusts the register min/max values in the case that the dst_reg is the
8246  * variable register that we are working on, and src_reg is a constant or we're
8247  * simply doing a BPF_K check.
8248  * In JEQ/JNE cases we also adjust the var_off values.
8249  */
8250 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8251 			    struct bpf_reg_state *false_reg,
8252 			    u64 val, u32 val32,
8253 			    u8 opcode, bool is_jmp32)
8254 {
8255 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8256 	struct tnum false_64off = false_reg->var_off;
8257 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8258 	struct tnum true_64off = true_reg->var_off;
8259 	s64 sval = (s64)val;
8260 	s32 sval32 = (s32)val32;
8261 
8262 	/* If the dst_reg is a pointer, we can't learn anything about its
8263 	 * variable offset from the compare (unless src_reg were a pointer into
8264 	 * the same object, but we don't bother with that.
8265 	 * Since false_reg and true_reg have the same type by construction, we
8266 	 * only need to check one of them for pointerness.
8267 	 */
8268 	if (__is_pointer_value(false, false_reg))
8269 		return;
8270 
8271 	switch (opcode) {
8272 	case BPF_JEQ:
8273 	case BPF_JNE:
8274 	{
8275 		struct bpf_reg_state *reg =
8276 			opcode == BPF_JEQ ? true_reg : false_reg;
8277 
8278 		/* JEQ/JNE comparison doesn't change the register equivalence.
8279 		 * r1 = r2;
8280 		 * if (r1 == 42) goto label;
8281 		 * ...
8282 		 * label: // here both r1 and r2 are known to be 42.
8283 		 *
8284 		 * Hence when marking register as known preserve it's ID.
8285 		 */
8286 		if (is_jmp32)
8287 			__mark_reg32_known(reg, val32);
8288 		else
8289 			___mark_reg_known(reg, val);
8290 		break;
8291 	}
8292 	case BPF_JSET:
8293 		if (is_jmp32) {
8294 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8295 			if (is_power_of_2(val32))
8296 				true_32off = tnum_or(true_32off,
8297 						     tnum_const(val32));
8298 		} else {
8299 			false_64off = tnum_and(false_64off, tnum_const(~val));
8300 			if (is_power_of_2(val))
8301 				true_64off = tnum_or(true_64off,
8302 						     tnum_const(val));
8303 		}
8304 		break;
8305 	case BPF_JGE:
8306 	case BPF_JGT:
8307 	{
8308 		if (is_jmp32) {
8309 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8310 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8311 
8312 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8313 						       false_umax);
8314 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8315 						      true_umin);
8316 		} else {
8317 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8318 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8319 
8320 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8321 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8322 		}
8323 		break;
8324 	}
8325 	case BPF_JSGE:
8326 	case BPF_JSGT:
8327 	{
8328 		if (is_jmp32) {
8329 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8330 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8331 
8332 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8333 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8334 		} else {
8335 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8336 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8337 
8338 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8339 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8340 		}
8341 		break;
8342 	}
8343 	case BPF_JLE:
8344 	case BPF_JLT:
8345 	{
8346 		if (is_jmp32) {
8347 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8348 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8349 
8350 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8351 						       false_umin);
8352 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8353 						      true_umax);
8354 		} else {
8355 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8356 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8357 
8358 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8359 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8360 		}
8361 		break;
8362 	}
8363 	case BPF_JSLE:
8364 	case BPF_JSLT:
8365 	{
8366 		if (is_jmp32) {
8367 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8368 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8369 
8370 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8371 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8372 		} else {
8373 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8374 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8375 
8376 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8377 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8378 		}
8379 		break;
8380 	}
8381 	default:
8382 		return;
8383 	}
8384 
8385 	if (is_jmp32) {
8386 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8387 					     tnum_subreg(false_32off));
8388 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8389 					    tnum_subreg(true_32off));
8390 		__reg_combine_32_into_64(false_reg);
8391 		__reg_combine_32_into_64(true_reg);
8392 	} else {
8393 		false_reg->var_off = false_64off;
8394 		true_reg->var_off = true_64off;
8395 		__reg_combine_64_into_32(false_reg);
8396 		__reg_combine_64_into_32(true_reg);
8397 	}
8398 }
8399 
8400 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8401  * the variable reg.
8402  */
8403 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8404 				struct bpf_reg_state *false_reg,
8405 				u64 val, u32 val32,
8406 				u8 opcode, bool is_jmp32)
8407 {
8408 	opcode = flip_opcode(opcode);
8409 	/* This uses zero as "not present in table"; luckily the zero opcode,
8410 	 * BPF_JA, can't get here.
8411 	 */
8412 	if (opcode)
8413 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8414 }
8415 
8416 /* Regs are known to be equal, so intersect their min/max/var_off */
8417 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8418 				  struct bpf_reg_state *dst_reg)
8419 {
8420 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8421 							dst_reg->umin_value);
8422 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8423 							dst_reg->umax_value);
8424 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8425 							dst_reg->smin_value);
8426 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8427 							dst_reg->smax_value);
8428 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8429 							     dst_reg->var_off);
8430 	/* We might have learned new bounds from the var_off. */
8431 	__update_reg_bounds(src_reg);
8432 	__update_reg_bounds(dst_reg);
8433 	/* We might have learned something about the sign bit. */
8434 	__reg_deduce_bounds(src_reg);
8435 	__reg_deduce_bounds(dst_reg);
8436 	/* We might have learned some bits from the bounds. */
8437 	__reg_bound_offset(src_reg);
8438 	__reg_bound_offset(dst_reg);
8439 	/* Intersecting with the old var_off might have improved our bounds
8440 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8441 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8442 	 */
8443 	__update_reg_bounds(src_reg);
8444 	__update_reg_bounds(dst_reg);
8445 }
8446 
8447 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8448 				struct bpf_reg_state *true_dst,
8449 				struct bpf_reg_state *false_src,
8450 				struct bpf_reg_state *false_dst,
8451 				u8 opcode)
8452 {
8453 	switch (opcode) {
8454 	case BPF_JEQ:
8455 		__reg_combine_min_max(true_src, true_dst);
8456 		break;
8457 	case BPF_JNE:
8458 		__reg_combine_min_max(false_src, false_dst);
8459 		break;
8460 	}
8461 }
8462 
8463 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8464 				 struct bpf_reg_state *reg, u32 id,
8465 				 bool is_null)
8466 {
8467 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8468 	    !WARN_ON_ONCE(!reg->id)) {
8469 		/* Old offset (both fixed and variable parts) should
8470 		 * have been known-zero, because we don't allow pointer
8471 		 * arithmetic on pointers that might be NULL.
8472 		 */
8473 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8474 				 !tnum_equals_const(reg->var_off, 0) ||
8475 				 reg->off)) {
8476 			__mark_reg_known_zero(reg);
8477 			reg->off = 0;
8478 		}
8479 		if (is_null) {
8480 			reg->type = SCALAR_VALUE;
8481 			/* We don't need id and ref_obj_id from this point
8482 			 * onwards anymore, thus we should better reset it,
8483 			 * so that state pruning has chances to take effect.
8484 			 */
8485 			reg->id = 0;
8486 			reg->ref_obj_id = 0;
8487 
8488 			return;
8489 		}
8490 
8491 		mark_ptr_not_null_reg(reg);
8492 
8493 		if (!reg_may_point_to_spin_lock(reg)) {
8494 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8495 			 * in release_reg_references().
8496 			 *
8497 			 * reg->id is still used by spin_lock ptr. Other
8498 			 * than spin_lock ptr type, reg->id can be reset.
8499 			 */
8500 			reg->id = 0;
8501 		}
8502 	}
8503 }
8504 
8505 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8506 				    bool is_null)
8507 {
8508 	struct bpf_reg_state *reg;
8509 	int i;
8510 
8511 	for (i = 0; i < MAX_BPF_REG; i++)
8512 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8513 
8514 	bpf_for_each_spilled_reg(i, state, reg) {
8515 		if (!reg)
8516 			continue;
8517 		mark_ptr_or_null_reg(state, reg, id, is_null);
8518 	}
8519 }
8520 
8521 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8522  * be folded together at some point.
8523  */
8524 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8525 				  bool is_null)
8526 {
8527 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8528 	struct bpf_reg_state *regs = state->regs;
8529 	u32 ref_obj_id = regs[regno].ref_obj_id;
8530 	u32 id = regs[regno].id;
8531 	int i;
8532 
8533 	if (ref_obj_id && ref_obj_id == id && is_null)
8534 		/* regs[regno] is in the " == NULL" branch.
8535 		 * No one could have freed the reference state before
8536 		 * doing the NULL check.
8537 		 */
8538 		WARN_ON_ONCE(release_reference_state(state, id));
8539 
8540 	for (i = 0; i <= vstate->curframe; i++)
8541 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8542 }
8543 
8544 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8545 				   struct bpf_reg_state *dst_reg,
8546 				   struct bpf_reg_state *src_reg,
8547 				   struct bpf_verifier_state *this_branch,
8548 				   struct bpf_verifier_state *other_branch)
8549 {
8550 	if (BPF_SRC(insn->code) != BPF_X)
8551 		return false;
8552 
8553 	/* Pointers are always 64-bit. */
8554 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8555 		return false;
8556 
8557 	switch (BPF_OP(insn->code)) {
8558 	case BPF_JGT:
8559 		if ((dst_reg->type == PTR_TO_PACKET &&
8560 		     src_reg->type == PTR_TO_PACKET_END) ||
8561 		    (dst_reg->type == PTR_TO_PACKET_META &&
8562 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8563 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8564 			find_good_pkt_pointers(this_branch, dst_reg,
8565 					       dst_reg->type, false);
8566 			mark_pkt_end(other_branch, insn->dst_reg, true);
8567 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8568 			    src_reg->type == PTR_TO_PACKET) ||
8569 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8570 			    src_reg->type == PTR_TO_PACKET_META)) {
8571 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8572 			find_good_pkt_pointers(other_branch, src_reg,
8573 					       src_reg->type, true);
8574 			mark_pkt_end(this_branch, insn->src_reg, false);
8575 		} else {
8576 			return false;
8577 		}
8578 		break;
8579 	case BPF_JLT:
8580 		if ((dst_reg->type == PTR_TO_PACKET &&
8581 		     src_reg->type == PTR_TO_PACKET_END) ||
8582 		    (dst_reg->type == PTR_TO_PACKET_META &&
8583 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8584 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8585 			find_good_pkt_pointers(other_branch, dst_reg,
8586 					       dst_reg->type, true);
8587 			mark_pkt_end(this_branch, insn->dst_reg, false);
8588 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8589 			    src_reg->type == PTR_TO_PACKET) ||
8590 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8591 			    src_reg->type == PTR_TO_PACKET_META)) {
8592 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8593 			find_good_pkt_pointers(this_branch, src_reg,
8594 					       src_reg->type, false);
8595 			mark_pkt_end(other_branch, insn->src_reg, true);
8596 		} else {
8597 			return false;
8598 		}
8599 		break;
8600 	case BPF_JGE:
8601 		if ((dst_reg->type == PTR_TO_PACKET &&
8602 		     src_reg->type == PTR_TO_PACKET_END) ||
8603 		    (dst_reg->type == PTR_TO_PACKET_META &&
8604 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8605 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8606 			find_good_pkt_pointers(this_branch, dst_reg,
8607 					       dst_reg->type, true);
8608 			mark_pkt_end(other_branch, insn->dst_reg, false);
8609 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8610 			    src_reg->type == PTR_TO_PACKET) ||
8611 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8612 			    src_reg->type == PTR_TO_PACKET_META)) {
8613 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8614 			find_good_pkt_pointers(other_branch, src_reg,
8615 					       src_reg->type, false);
8616 			mark_pkt_end(this_branch, insn->src_reg, true);
8617 		} else {
8618 			return false;
8619 		}
8620 		break;
8621 	case BPF_JLE:
8622 		if ((dst_reg->type == PTR_TO_PACKET &&
8623 		     src_reg->type == PTR_TO_PACKET_END) ||
8624 		    (dst_reg->type == PTR_TO_PACKET_META &&
8625 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8626 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8627 			find_good_pkt_pointers(other_branch, dst_reg,
8628 					       dst_reg->type, false);
8629 			mark_pkt_end(this_branch, insn->dst_reg, true);
8630 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8631 			    src_reg->type == PTR_TO_PACKET) ||
8632 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8633 			    src_reg->type == PTR_TO_PACKET_META)) {
8634 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8635 			find_good_pkt_pointers(this_branch, src_reg,
8636 					       src_reg->type, true);
8637 			mark_pkt_end(other_branch, insn->src_reg, false);
8638 		} else {
8639 			return false;
8640 		}
8641 		break;
8642 	default:
8643 		return false;
8644 	}
8645 
8646 	return true;
8647 }
8648 
8649 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8650 			       struct bpf_reg_state *known_reg)
8651 {
8652 	struct bpf_func_state *state;
8653 	struct bpf_reg_state *reg;
8654 	int i, j;
8655 
8656 	for (i = 0; i <= vstate->curframe; i++) {
8657 		state = vstate->frame[i];
8658 		for (j = 0; j < MAX_BPF_REG; j++) {
8659 			reg = &state->regs[j];
8660 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8661 				*reg = *known_reg;
8662 		}
8663 
8664 		bpf_for_each_spilled_reg(j, state, reg) {
8665 			if (!reg)
8666 				continue;
8667 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8668 				*reg = *known_reg;
8669 		}
8670 	}
8671 }
8672 
8673 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8674 			     struct bpf_insn *insn, int *insn_idx)
8675 {
8676 	struct bpf_verifier_state *this_branch = env->cur_state;
8677 	struct bpf_verifier_state *other_branch;
8678 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8679 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8680 	u8 opcode = BPF_OP(insn->code);
8681 	bool is_jmp32;
8682 	int pred = -1;
8683 	int err;
8684 
8685 	/* Only conditional jumps are expected to reach here. */
8686 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8687 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8688 		return -EINVAL;
8689 	}
8690 
8691 	if (BPF_SRC(insn->code) == BPF_X) {
8692 		if (insn->imm != 0) {
8693 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8694 			return -EINVAL;
8695 		}
8696 
8697 		/* check src1 operand */
8698 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8699 		if (err)
8700 			return err;
8701 
8702 		if (is_pointer_value(env, insn->src_reg)) {
8703 			verbose(env, "R%d pointer comparison prohibited\n",
8704 				insn->src_reg);
8705 			return -EACCES;
8706 		}
8707 		src_reg = &regs[insn->src_reg];
8708 	} else {
8709 		if (insn->src_reg != BPF_REG_0) {
8710 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8711 			return -EINVAL;
8712 		}
8713 	}
8714 
8715 	/* check src2 operand */
8716 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8717 	if (err)
8718 		return err;
8719 
8720 	dst_reg = &regs[insn->dst_reg];
8721 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8722 
8723 	if (BPF_SRC(insn->code) == BPF_K) {
8724 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8725 	} else if (src_reg->type == SCALAR_VALUE &&
8726 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8727 		pred = is_branch_taken(dst_reg,
8728 				       tnum_subreg(src_reg->var_off).value,
8729 				       opcode,
8730 				       is_jmp32);
8731 	} else if (src_reg->type == SCALAR_VALUE &&
8732 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8733 		pred = is_branch_taken(dst_reg,
8734 				       src_reg->var_off.value,
8735 				       opcode,
8736 				       is_jmp32);
8737 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8738 		   reg_is_pkt_pointer_any(src_reg) &&
8739 		   !is_jmp32) {
8740 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8741 	}
8742 
8743 	if (pred >= 0) {
8744 		/* If we get here with a dst_reg pointer type it is because
8745 		 * above is_branch_taken() special cased the 0 comparison.
8746 		 */
8747 		if (!__is_pointer_value(false, dst_reg))
8748 			err = mark_chain_precision(env, insn->dst_reg);
8749 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8750 		    !__is_pointer_value(false, src_reg))
8751 			err = mark_chain_precision(env, insn->src_reg);
8752 		if (err)
8753 			return err;
8754 	}
8755 	if (pred == 1) {
8756 		/* only follow the goto, ignore fall-through */
8757 		*insn_idx += insn->off;
8758 		return 0;
8759 	} else if (pred == 0) {
8760 		/* only follow fall-through branch, since
8761 		 * that's where the program will go
8762 		 */
8763 		return 0;
8764 	}
8765 
8766 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8767 				  false);
8768 	if (!other_branch)
8769 		return -EFAULT;
8770 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8771 
8772 	/* detect if we are comparing against a constant value so we can adjust
8773 	 * our min/max values for our dst register.
8774 	 * this is only legit if both are scalars (or pointers to the same
8775 	 * object, I suppose, but we don't support that right now), because
8776 	 * otherwise the different base pointers mean the offsets aren't
8777 	 * comparable.
8778 	 */
8779 	if (BPF_SRC(insn->code) == BPF_X) {
8780 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8781 
8782 		if (dst_reg->type == SCALAR_VALUE &&
8783 		    src_reg->type == SCALAR_VALUE) {
8784 			if (tnum_is_const(src_reg->var_off) ||
8785 			    (is_jmp32 &&
8786 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8787 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8788 						dst_reg,
8789 						src_reg->var_off.value,
8790 						tnum_subreg(src_reg->var_off).value,
8791 						opcode, is_jmp32);
8792 			else if (tnum_is_const(dst_reg->var_off) ||
8793 				 (is_jmp32 &&
8794 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8795 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8796 						    src_reg,
8797 						    dst_reg->var_off.value,
8798 						    tnum_subreg(dst_reg->var_off).value,
8799 						    opcode, is_jmp32);
8800 			else if (!is_jmp32 &&
8801 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8802 				/* Comparing for equality, we can combine knowledge */
8803 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8804 						    &other_branch_regs[insn->dst_reg],
8805 						    src_reg, dst_reg, opcode);
8806 			if (src_reg->id &&
8807 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8808 				find_equal_scalars(this_branch, src_reg);
8809 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8810 			}
8811 
8812 		}
8813 	} else if (dst_reg->type == SCALAR_VALUE) {
8814 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8815 					dst_reg, insn->imm, (u32)insn->imm,
8816 					opcode, is_jmp32);
8817 	}
8818 
8819 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8820 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8821 		find_equal_scalars(this_branch, dst_reg);
8822 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8823 	}
8824 
8825 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8826 	 * NOTE: these optimizations below are related with pointer comparison
8827 	 *       which will never be JMP32.
8828 	 */
8829 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8830 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8831 	    reg_type_may_be_null(dst_reg->type)) {
8832 		/* Mark all identical registers in each branch as either
8833 		 * safe or unknown depending R == 0 or R != 0 conditional.
8834 		 */
8835 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8836 				      opcode == BPF_JNE);
8837 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8838 				      opcode == BPF_JEQ);
8839 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8840 					   this_branch, other_branch) &&
8841 		   is_pointer_value(env, insn->dst_reg)) {
8842 		verbose(env, "R%d pointer comparison prohibited\n",
8843 			insn->dst_reg);
8844 		return -EACCES;
8845 	}
8846 	if (env->log.level & BPF_LOG_LEVEL)
8847 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8848 	return 0;
8849 }
8850 
8851 /* verify BPF_LD_IMM64 instruction */
8852 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8853 {
8854 	struct bpf_insn_aux_data *aux = cur_aux(env);
8855 	struct bpf_reg_state *regs = cur_regs(env);
8856 	struct bpf_reg_state *dst_reg;
8857 	struct bpf_map *map;
8858 	int err;
8859 
8860 	if (BPF_SIZE(insn->code) != BPF_DW) {
8861 		verbose(env, "invalid BPF_LD_IMM insn\n");
8862 		return -EINVAL;
8863 	}
8864 	if (insn->off != 0) {
8865 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8866 		return -EINVAL;
8867 	}
8868 
8869 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8870 	if (err)
8871 		return err;
8872 
8873 	dst_reg = &regs[insn->dst_reg];
8874 	if (insn->src_reg == 0) {
8875 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8876 
8877 		dst_reg->type = SCALAR_VALUE;
8878 		__mark_reg_known(&regs[insn->dst_reg], imm);
8879 		return 0;
8880 	}
8881 
8882 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8883 		mark_reg_known_zero(env, regs, insn->dst_reg);
8884 
8885 		dst_reg->type = aux->btf_var.reg_type;
8886 		switch (dst_reg->type) {
8887 		case PTR_TO_MEM:
8888 			dst_reg->mem_size = aux->btf_var.mem_size;
8889 			break;
8890 		case PTR_TO_BTF_ID:
8891 		case PTR_TO_PERCPU_BTF_ID:
8892 			dst_reg->btf = aux->btf_var.btf;
8893 			dst_reg->btf_id = aux->btf_var.btf_id;
8894 			break;
8895 		default:
8896 			verbose(env, "bpf verifier is misconfigured\n");
8897 			return -EFAULT;
8898 		}
8899 		return 0;
8900 	}
8901 
8902 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
8903 		struct bpf_prog_aux *aux = env->prog->aux;
8904 		u32 subprogno = insn[1].imm;
8905 
8906 		if (!aux->func_info) {
8907 			verbose(env, "missing btf func_info\n");
8908 			return -EINVAL;
8909 		}
8910 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8911 			verbose(env, "callback function not static\n");
8912 			return -EINVAL;
8913 		}
8914 
8915 		dst_reg->type = PTR_TO_FUNC;
8916 		dst_reg->subprogno = subprogno;
8917 		return 0;
8918 	}
8919 
8920 	map = env->used_maps[aux->map_index];
8921 	mark_reg_known_zero(env, regs, insn->dst_reg);
8922 	dst_reg->map_ptr = map;
8923 
8924 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
8925 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
8926 		dst_reg->type = PTR_TO_MAP_VALUE;
8927 		dst_reg->off = aux->map_off;
8928 		if (map_value_has_spin_lock(map))
8929 			dst_reg->id = ++env->id_gen;
8930 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
8931 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
8932 		dst_reg->type = CONST_PTR_TO_MAP;
8933 	} else {
8934 		verbose(env, "bpf verifier is misconfigured\n");
8935 		return -EINVAL;
8936 	}
8937 
8938 	return 0;
8939 }
8940 
8941 static bool may_access_skb(enum bpf_prog_type type)
8942 {
8943 	switch (type) {
8944 	case BPF_PROG_TYPE_SOCKET_FILTER:
8945 	case BPF_PROG_TYPE_SCHED_CLS:
8946 	case BPF_PROG_TYPE_SCHED_ACT:
8947 		return true;
8948 	default:
8949 		return false;
8950 	}
8951 }
8952 
8953 /* verify safety of LD_ABS|LD_IND instructions:
8954  * - they can only appear in the programs where ctx == skb
8955  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8956  *   preserve R6-R9, and store return value into R0
8957  *
8958  * Implicit input:
8959  *   ctx == skb == R6 == CTX
8960  *
8961  * Explicit input:
8962  *   SRC == any register
8963  *   IMM == 32-bit immediate
8964  *
8965  * Output:
8966  *   R0 - 8/16/32-bit skb data converted to cpu endianness
8967  */
8968 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8969 {
8970 	struct bpf_reg_state *regs = cur_regs(env);
8971 	static const int ctx_reg = BPF_REG_6;
8972 	u8 mode = BPF_MODE(insn->code);
8973 	int i, err;
8974 
8975 	if (!may_access_skb(resolve_prog_type(env->prog))) {
8976 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8977 		return -EINVAL;
8978 	}
8979 
8980 	if (!env->ops->gen_ld_abs) {
8981 		verbose(env, "bpf verifier is misconfigured\n");
8982 		return -EINVAL;
8983 	}
8984 
8985 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8986 	    BPF_SIZE(insn->code) == BPF_DW ||
8987 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8988 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8989 		return -EINVAL;
8990 	}
8991 
8992 	/* check whether implicit source operand (register R6) is readable */
8993 	err = check_reg_arg(env, ctx_reg, SRC_OP);
8994 	if (err)
8995 		return err;
8996 
8997 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8998 	 * gen_ld_abs() may terminate the program at runtime, leading to
8999 	 * reference leak.
9000 	 */
9001 	err = check_reference_leak(env);
9002 	if (err) {
9003 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9004 		return err;
9005 	}
9006 
9007 	if (env->cur_state->active_spin_lock) {
9008 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9009 		return -EINVAL;
9010 	}
9011 
9012 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9013 		verbose(env,
9014 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9015 		return -EINVAL;
9016 	}
9017 
9018 	if (mode == BPF_IND) {
9019 		/* check explicit source operand */
9020 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9021 		if (err)
9022 			return err;
9023 	}
9024 
9025 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9026 	if (err < 0)
9027 		return err;
9028 
9029 	/* reset caller saved regs to unreadable */
9030 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9031 		mark_reg_not_init(env, regs, caller_saved[i]);
9032 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9033 	}
9034 
9035 	/* mark destination R0 register as readable, since it contains
9036 	 * the value fetched from the packet.
9037 	 * Already marked as written above.
9038 	 */
9039 	mark_reg_unknown(env, regs, BPF_REG_0);
9040 	/* ld_abs load up to 32-bit skb data. */
9041 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9042 	return 0;
9043 }
9044 
9045 static int check_return_code(struct bpf_verifier_env *env)
9046 {
9047 	struct tnum enforce_attach_type_range = tnum_unknown;
9048 	const struct bpf_prog *prog = env->prog;
9049 	struct bpf_reg_state *reg;
9050 	struct tnum range = tnum_range(0, 1);
9051 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9052 	int err;
9053 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
9054 
9055 	/* LSM and struct_ops func-ptr's return type could be "void" */
9056 	if (!is_subprog &&
9057 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9058 	     prog_type == BPF_PROG_TYPE_LSM) &&
9059 	    !prog->aux->attach_func_proto->type)
9060 		return 0;
9061 
9062 	/* eBPF calling convention is such that R0 is used
9063 	 * to return the value from eBPF program.
9064 	 * Make sure that it's readable at this time
9065 	 * of bpf_exit, which means that program wrote
9066 	 * something into it earlier
9067 	 */
9068 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9069 	if (err)
9070 		return err;
9071 
9072 	if (is_pointer_value(env, BPF_REG_0)) {
9073 		verbose(env, "R0 leaks addr as return value\n");
9074 		return -EACCES;
9075 	}
9076 
9077 	reg = cur_regs(env) + BPF_REG_0;
9078 	if (is_subprog) {
9079 		if (reg->type != SCALAR_VALUE) {
9080 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9081 				reg_type_str[reg->type]);
9082 			return -EINVAL;
9083 		}
9084 		return 0;
9085 	}
9086 
9087 	switch (prog_type) {
9088 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9089 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9090 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9091 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9092 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9093 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9094 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9095 			range = tnum_range(1, 1);
9096 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9097 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9098 			range = tnum_range(0, 3);
9099 		break;
9100 	case BPF_PROG_TYPE_CGROUP_SKB:
9101 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9102 			range = tnum_range(0, 3);
9103 			enforce_attach_type_range = tnum_range(2, 3);
9104 		}
9105 		break;
9106 	case BPF_PROG_TYPE_CGROUP_SOCK:
9107 	case BPF_PROG_TYPE_SOCK_OPS:
9108 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9109 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9110 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9111 		break;
9112 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9113 		if (!env->prog->aux->attach_btf_id)
9114 			return 0;
9115 		range = tnum_const(0);
9116 		break;
9117 	case BPF_PROG_TYPE_TRACING:
9118 		switch (env->prog->expected_attach_type) {
9119 		case BPF_TRACE_FENTRY:
9120 		case BPF_TRACE_FEXIT:
9121 			range = tnum_const(0);
9122 			break;
9123 		case BPF_TRACE_RAW_TP:
9124 		case BPF_MODIFY_RETURN:
9125 			return 0;
9126 		case BPF_TRACE_ITER:
9127 			break;
9128 		default:
9129 			return -ENOTSUPP;
9130 		}
9131 		break;
9132 	case BPF_PROG_TYPE_SK_LOOKUP:
9133 		range = tnum_range(SK_DROP, SK_PASS);
9134 		break;
9135 	case BPF_PROG_TYPE_EXT:
9136 		/* freplace program can return anything as its return value
9137 		 * depends on the to-be-replaced kernel func or bpf program.
9138 		 */
9139 	default:
9140 		return 0;
9141 	}
9142 
9143 	if (reg->type != SCALAR_VALUE) {
9144 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9145 			reg_type_str[reg->type]);
9146 		return -EINVAL;
9147 	}
9148 
9149 	if (!tnum_in(range, reg->var_off)) {
9150 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9151 		return -EINVAL;
9152 	}
9153 
9154 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9155 	    tnum_in(enforce_attach_type_range, reg->var_off))
9156 		env->prog->enforce_expected_attach_type = 1;
9157 	return 0;
9158 }
9159 
9160 /* non-recursive DFS pseudo code
9161  * 1  procedure DFS-iterative(G,v):
9162  * 2      label v as discovered
9163  * 3      let S be a stack
9164  * 4      S.push(v)
9165  * 5      while S is not empty
9166  * 6            t <- S.pop()
9167  * 7            if t is what we're looking for:
9168  * 8                return t
9169  * 9            for all edges e in G.adjacentEdges(t) do
9170  * 10               if edge e is already labelled
9171  * 11                   continue with the next edge
9172  * 12               w <- G.adjacentVertex(t,e)
9173  * 13               if vertex w is not discovered and not explored
9174  * 14                   label e as tree-edge
9175  * 15                   label w as discovered
9176  * 16                   S.push(w)
9177  * 17                   continue at 5
9178  * 18               else if vertex w is discovered
9179  * 19                   label e as back-edge
9180  * 20               else
9181  * 21                   // vertex w is explored
9182  * 22                   label e as forward- or cross-edge
9183  * 23           label t as explored
9184  * 24           S.pop()
9185  *
9186  * convention:
9187  * 0x10 - discovered
9188  * 0x11 - discovered and fall-through edge labelled
9189  * 0x12 - discovered and fall-through and branch edges labelled
9190  * 0x20 - explored
9191  */
9192 
9193 enum {
9194 	DISCOVERED = 0x10,
9195 	EXPLORED = 0x20,
9196 	FALLTHROUGH = 1,
9197 	BRANCH = 2,
9198 };
9199 
9200 static u32 state_htab_size(struct bpf_verifier_env *env)
9201 {
9202 	return env->prog->len;
9203 }
9204 
9205 static struct bpf_verifier_state_list **explored_state(
9206 					struct bpf_verifier_env *env,
9207 					int idx)
9208 {
9209 	struct bpf_verifier_state *cur = env->cur_state;
9210 	struct bpf_func_state *state = cur->frame[cur->curframe];
9211 
9212 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9213 }
9214 
9215 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9216 {
9217 	env->insn_aux_data[idx].prune_point = true;
9218 }
9219 
9220 enum {
9221 	DONE_EXPLORING = 0,
9222 	KEEP_EXPLORING = 1,
9223 };
9224 
9225 /* t, w, e - match pseudo-code above:
9226  * t - index of current instruction
9227  * w - next instruction
9228  * e - edge
9229  */
9230 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9231 		     bool loop_ok)
9232 {
9233 	int *insn_stack = env->cfg.insn_stack;
9234 	int *insn_state = env->cfg.insn_state;
9235 
9236 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9237 		return DONE_EXPLORING;
9238 
9239 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9240 		return DONE_EXPLORING;
9241 
9242 	if (w < 0 || w >= env->prog->len) {
9243 		verbose_linfo(env, t, "%d: ", t);
9244 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9245 		return -EINVAL;
9246 	}
9247 
9248 	if (e == BRANCH)
9249 		/* mark branch target for state pruning */
9250 		init_explored_state(env, w);
9251 
9252 	if (insn_state[w] == 0) {
9253 		/* tree-edge */
9254 		insn_state[t] = DISCOVERED | e;
9255 		insn_state[w] = DISCOVERED;
9256 		if (env->cfg.cur_stack >= env->prog->len)
9257 			return -E2BIG;
9258 		insn_stack[env->cfg.cur_stack++] = w;
9259 		return KEEP_EXPLORING;
9260 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9261 		if (loop_ok && env->bpf_capable)
9262 			return DONE_EXPLORING;
9263 		verbose_linfo(env, t, "%d: ", t);
9264 		verbose_linfo(env, w, "%d: ", w);
9265 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9266 		return -EINVAL;
9267 	} else if (insn_state[w] == EXPLORED) {
9268 		/* forward- or cross-edge */
9269 		insn_state[t] = DISCOVERED | e;
9270 	} else {
9271 		verbose(env, "insn state internal bug\n");
9272 		return -EFAULT;
9273 	}
9274 	return DONE_EXPLORING;
9275 }
9276 
9277 static int visit_func_call_insn(int t, int insn_cnt,
9278 				struct bpf_insn *insns,
9279 				struct bpf_verifier_env *env,
9280 				bool visit_callee)
9281 {
9282 	int ret;
9283 
9284 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9285 	if (ret)
9286 		return ret;
9287 
9288 	if (t + 1 < insn_cnt)
9289 		init_explored_state(env, t + 1);
9290 	if (visit_callee) {
9291 		init_explored_state(env, t);
9292 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9293 				env, false);
9294 	}
9295 	return ret;
9296 }
9297 
9298 /* Visits the instruction at index t and returns one of the following:
9299  *  < 0 - an error occurred
9300  *  DONE_EXPLORING - the instruction was fully explored
9301  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9302  */
9303 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9304 {
9305 	struct bpf_insn *insns = env->prog->insnsi;
9306 	int ret;
9307 
9308 	if (bpf_pseudo_func(insns + t))
9309 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9310 
9311 	/* All non-branch instructions have a single fall-through edge. */
9312 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9313 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9314 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9315 
9316 	switch (BPF_OP(insns[t].code)) {
9317 	case BPF_EXIT:
9318 		return DONE_EXPLORING;
9319 
9320 	case BPF_CALL:
9321 		return visit_func_call_insn(t, insn_cnt, insns, env,
9322 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9323 
9324 	case BPF_JA:
9325 		if (BPF_SRC(insns[t].code) != BPF_K)
9326 			return -EINVAL;
9327 
9328 		/* unconditional jump with single edge */
9329 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9330 				true);
9331 		if (ret)
9332 			return ret;
9333 
9334 		/* unconditional jmp is not a good pruning point,
9335 		 * but it's marked, since backtracking needs
9336 		 * to record jmp history in is_state_visited().
9337 		 */
9338 		init_explored_state(env, t + insns[t].off + 1);
9339 		/* tell verifier to check for equivalent states
9340 		 * after every call and jump
9341 		 */
9342 		if (t + 1 < insn_cnt)
9343 			init_explored_state(env, t + 1);
9344 
9345 		return ret;
9346 
9347 	default:
9348 		/* conditional jump with two edges */
9349 		init_explored_state(env, t);
9350 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9351 		if (ret)
9352 			return ret;
9353 
9354 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9355 	}
9356 }
9357 
9358 /* non-recursive depth-first-search to detect loops in BPF program
9359  * loop == back-edge in directed graph
9360  */
9361 static int check_cfg(struct bpf_verifier_env *env)
9362 {
9363 	int insn_cnt = env->prog->len;
9364 	int *insn_stack, *insn_state;
9365 	int ret = 0;
9366 	int i;
9367 
9368 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9369 	if (!insn_state)
9370 		return -ENOMEM;
9371 
9372 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9373 	if (!insn_stack) {
9374 		kvfree(insn_state);
9375 		return -ENOMEM;
9376 	}
9377 
9378 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9379 	insn_stack[0] = 0; /* 0 is the first instruction */
9380 	env->cfg.cur_stack = 1;
9381 
9382 	while (env->cfg.cur_stack > 0) {
9383 		int t = insn_stack[env->cfg.cur_stack - 1];
9384 
9385 		ret = visit_insn(t, insn_cnt, env);
9386 		switch (ret) {
9387 		case DONE_EXPLORING:
9388 			insn_state[t] = EXPLORED;
9389 			env->cfg.cur_stack--;
9390 			break;
9391 		case KEEP_EXPLORING:
9392 			break;
9393 		default:
9394 			if (ret > 0) {
9395 				verbose(env, "visit_insn internal bug\n");
9396 				ret = -EFAULT;
9397 			}
9398 			goto err_free;
9399 		}
9400 	}
9401 
9402 	if (env->cfg.cur_stack < 0) {
9403 		verbose(env, "pop stack internal bug\n");
9404 		ret = -EFAULT;
9405 		goto err_free;
9406 	}
9407 
9408 	for (i = 0; i < insn_cnt; i++) {
9409 		if (insn_state[i] != EXPLORED) {
9410 			verbose(env, "unreachable insn %d\n", i);
9411 			ret = -EINVAL;
9412 			goto err_free;
9413 		}
9414 	}
9415 	ret = 0; /* cfg looks good */
9416 
9417 err_free:
9418 	kvfree(insn_state);
9419 	kvfree(insn_stack);
9420 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9421 	return ret;
9422 }
9423 
9424 static int check_abnormal_return(struct bpf_verifier_env *env)
9425 {
9426 	int i;
9427 
9428 	for (i = 1; i < env->subprog_cnt; i++) {
9429 		if (env->subprog_info[i].has_ld_abs) {
9430 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9431 			return -EINVAL;
9432 		}
9433 		if (env->subprog_info[i].has_tail_call) {
9434 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9435 			return -EINVAL;
9436 		}
9437 	}
9438 	return 0;
9439 }
9440 
9441 /* The minimum supported BTF func info size */
9442 #define MIN_BPF_FUNCINFO_SIZE	8
9443 #define MAX_FUNCINFO_REC_SIZE	252
9444 
9445 static int check_btf_func(struct bpf_verifier_env *env,
9446 			  const union bpf_attr *attr,
9447 			  bpfptr_t uattr)
9448 {
9449 	const struct btf_type *type, *func_proto, *ret_type;
9450 	u32 i, nfuncs, urec_size, min_size;
9451 	u32 krec_size = sizeof(struct bpf_func_info);
9452 	struct bpf_func_info *krecord;
9453 	struct bpf_func_info_aux *info_aux = NULL;
9454 	struct bpf_prog *prog;
9455 	const struct btf *btf;
9456 	bpfptr_t urecord;
9457 	u32 prev_offset = 0;
9458 	bool scalar_return;
9459 	int ret = -ENOMEM;
9460 
9461 	nfuncs = attr->func_info_cnt;
9462 	if (!nfuncs) {
9463 		if (check_abnormal_return(env))
9464 			return -EINVAL;
9465 		return 0;
9466 	}
9467 
9468 	if (nfuncs != env->subprog_cnt) {
9469 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9470 		return -EINVAL;
9471 	}
9472 
9473 	urec_size = attr->func_info_rec_size;
9474 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9475 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9476 	    urec_size % sizeof(u32)) {
9477 		verbose(env, "invalid func info rec size %u\n", urec_size);
9478 		return -EINVAL;
9479 	}
9480 
9481 	prog = env->prog;
9482 	btf = prog->aux->btf;
9483 
9484 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9485 	min_size = min_t(u32, krec_size, urec_size);
9486 
9487 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9488 	if (!krecord)
9489 		return -ENOMEM;
9490 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9491 	if (!info_aux)
9492 		goto err_free;
9493 
9494 	for (i = 0; i < nfuncs; i++) {
9495 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9496 		if (ret) {
9497 			if (ret == -E2BIG) {
9498 				verbose(env, "nonzero tailing record in func info");
9499 				/* set the size kernel expects so loader can zero
9500 				 * out the rest of the record.
9501 				 */
9502 				if (copy_to_bpfptr_offset(uattr,
9503 							  offsetof(union bpf_attr, func_info_rec_size),
9504 							  &min_size, sizeof(min_size)))
9505 					ret = -EFAULT;
9506 			}
9507 			goto err_free;
9508 		}
9509 
9510 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
9511 			ret = -EFAULT;
9512 			goto err_free;
9513 		}
9514 
9515 		/* check insn_off */
9516 		ret = -EINVAL;
9517 		if (i == 0) {
9518 			if (krecord[i].insn_off) {
9519 				verbose(env,
9520 					"nonzero insn_off %u for the first func info record",
9521 					krecord[i].insn_off);
9522 				goto err_free;
9523 			}
9524 		} else if (krecord[i].insn_off <= prev_offset) {
9525 			verbose(env,
9526 				"same or smaller insn offset (%u) than previous func info record (%u)",
9527 				krecord[i].insn_off, prev_offset);
9528 			goto err_free;
9529 		}
9530 
9531 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9532 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9533 			goto err_free;
9534 		}
9535 
9536 		/* check type_id */
9537 		type = btf_type_by_id(btf, krecord[i].type_id);
9538 		if (!type || !btf_type_is_func(type)) {
9539 			verbose(env, "invalid type id %d in func info",
9540 				krecord[i].type_id);
9541 			goto err_free;
9542 		}
9543 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9544 
9545 		func_proto = btf_type_by_id(btf, type->type);
9546 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9547 			/* btf_func_check() already verified it during BTF load */
9548 			goto err_free;
9549 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9550 		scalar_return =
9551 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9552 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9553 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9554 			goto err_free;
9555 		}
9556 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9557 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9558 			goto err_free;
9559 		}
9560 
9561 		prev_offset = krecord[i].insn_off;
9562 		bpfptr_add(&urecord, urec_size);
9563 	}
9564 
9565 	prog->aux->func_info = krecord;
9566 	prog->aux->func_info_cnt = nfuncs;
9567 	prog->aux->func_info_aux = info_aux;
9568 	return 0;
9569 
9570 err_free:
9571 	kvfree(krecord);
9572 	kfree(info_aux);
9573 	return ret;
9574 }
9575 
9576 static void adjust_btf_func(struct bpf_verifier_env *env)
9577 {
9578 	struct bpf_prog_aux *aux = env->prog->aux;
9579 	int i;
9580 
9581 	if (!aux->func_info)
9582 		return;
9583 
9584 	for (i = 0; i < env->subprog_cnt; i++)
9585 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9586 }
9587 
9588 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9589 		sizeof(((struct bpf_line_info *)(0))->line_col))
9590 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9591 
9592 static int check_btf_line(struct bpf_verifier_env *env,
9593 			  const union bpf_attr *attr,
9594 			  bpfptr_t uattr)
9595 {
9596 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9597 	struct bpf_subprog_info *sub;
9598 	struct bpf_line_info *linfo;
9599 	struct bpf_prog *prog;
9600 	const struct btf *btf;
9601 	bpfptr_t ulinfo;
9602 	int err;
9603 
9604 	nr_linfo = attr->line_info_cnt;
9605 	if (!nr_linfo)
9606 		return 0;
9607 
9608 	rec_size = attr->line_info_rec_size;
9609 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9610 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9611 	    rec_size & (sizeof(u32) - 1))
9612 		return -EINVAL;
9613 
9614 	/* Need to zero it in case the userspace may
9615 	 * pass in a smaller bpf_line_info object.
9616 	 */
9617 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9618 			 GFP_KERNEL | __GFP_NOWARN);
9619 	if (!linfo)
9620 		return -ENOMEM;
9621 
9622 	prog = env->prog;
9623 	btf = prog->aux->btf;
9624 
9625 	s = 0;
9626 	sub = env->subprog_info;
9627 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
9628 	expected_size = sizeof(struct bpf_line_info);
9629 	ncopy = min_t(u32, expected_size, rec_size);
9630 	for (i = 0; i < nr_linfo; i++) {
9631 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9632 		if (err) {
9633 			if (err == -E2BIG) {
9634 				verbose(env, "nonzero tailing record in line_info");
9635 				if (copy_to_bpfptr_offset(uattr,
9636 							  offsetof(union bpf_attr, line_info_rec_size),
9637 							  &expected_size, sizeof(expected_size)))
9638 					err = -EFAULT;
9639 			}
9640 			goto err_free;
9641 		}
9642 
9643 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
9644 			err = -EFAULT;
9645 			goto err_free;
9646 		}
9647 
9648 		/*
9649 		 * Check insn_off to ensure
9650 		 * 1) strictly increasing AND
9651 		 * 2) bounded by prog->len
9652 		 *
9653 		 * The linfo[0].insn_off == 0 check logically falls into
9654 		 * the later "missing bpf_line_info for func..." case
9655 		 * because the first linfo[0].insn_off must be the
9656 		 * first sub also and the first sub must have
9657 		 * subprog_info[0].start == 0.
9658 		 */
9659 		if ((i && linfo[i].insn_off <= prev_offset) ||
9660 		    linfo[i].insn_off >= prog->len) {
9661 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9662 				i, linfo[i].insn_off, prev_offset,
9663 				prog->len);
9664 			err = -EINVAL;
9665 			goto err_free;
9666 		}
9667 
9668 		if (!prog->insnsi[linfo[i].insn_off].code) {
9669 			verbose(env,
9670 				"Invalid insn code at line_info[%u].insn_off\n",
9671 				i);
9672 			err = -EINVAL;
9673 			goto err_free;
9674 		}
9675 
9676 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9677 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9678 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9679 			err = -EINVAL;
9680 			goto err_free;
9681 		}
9682 
9683 		if (s != env->subprog_cnt) {
9684 			if (linfo[i].insn_off == sub[s].start) {
9685 				sub[s].linfo_idx = i;
9686 				s++;
9687 			} else if (sub[s].start < linfo[i].insn_off) {
9688 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9689 				err = -EINVAL;
9690 				goto err_free;
9691 			}
9692 		}
9693 
9694 		prev_offset = linfo[i].insn_off;
9695 		bpfptr_add(&ulinfo, rec_size);
9696 	}
9697 
9698 	if (s != env->subprog_cnt) {
9699 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9700 			env->subprog_cnt - s, s);
9701 		err = -EINVAL;
9702 		goto err_free;
9703 	}
9704 
9705 	prog->aux->linfo = linfo;
9706 	prog->aux->nr_linfo = nr_linfo;
9707 
9708 	return 0;
9709 
9710 err_free:
9711 	kvfree(linfo);
9712 	return err;
9713 }
9714 
9715 static int check_btf_info(struct bpf_verifier_env *env,
9716 			  const union bpf_attr *attr,
9717 			  bpfptr_t uattr)
9718 {
9719 	struct btf *btf;
9720 	int err;
9721 
9722 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9723 		if (check_abnormal_return(env))
9724 			return -EINVAL;
9725 		return 0;
9726 	}
9727 
9728 	btf = btf_get_by_fd(attr->prog_btf_fd);
9729 	if (IS_ERR(btf))
9730 		return PTR_ERR(btf);
9731 	if (btf_is_kernel(btf)) {
9732 		btf_put(btf);
9733 		return -EACCES;
9734 	}
9735 	env->prog->aux->btf = btf;
9736 
9737 	err = check_btf_func(env, attr, uattr);
9738 	if (err)
9739 		return err;
9740 
9741 	err = check_btf_line(env, attr, uattr);
9742 	if (err)
9743 		return err;
9744 
9745 	return 0;
9746 }
9747 
9748 /* check %cur's range satisfies %old's */
9749 static bool range_within(struct bpf_reg_state *old,
9750 			 struct bpf_reg_state *cur)
9751 {
9752 	return old->umin_value <= cur->umin_value &&
9753 	       old->umax_value >= cur->umax_value &&
9754 	       old->smin_value <= cur->smin_value &&
9755 	       old->smax_value >= cur->smax_value &&
9756 	       old->u32_min_value <= cur->u32_min_value &&
9757 	       old->u32_max_value >= cur->u32_max_value &&
9758 	       old->s32_min_value <= cur->s32_min_value &&
9759 	       old->s32_max_value >= cur->s32_max_value;
9760 }
9761 
9762 /* If in the old state two registers had the same id, then they need to have
9763  * the same id in the new state as well.  But that id could be different from
9764  * the old state, so we need to track the mapping from old to new ids.
9765  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9766  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9767  * regs with a different old id could still have new id 9, we don't care about
9768  * that.
9769  * So we look through our idmap to see if this old id has been seen before.  If
9770  * so, we require the new id to match; otherwise, we add the id pair to the map.
9771  */
9772 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9773 {
9774 	unsigned int i;
9775 
9776 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9777 		if (!idmap[i].old) {
9778 			/* Reached an empty slot; haven't seen this id before */
9779 			idmap[i].old = old_id;
9780 			idmap[i].cur = cur_id;
9781 			return true;
9782 		}
9783 		if (idmap[i].old == old_id)
9784 			return idmap[i].cur == cur_id;
9785 	}
9786 	/* We ran out of idmap slots, which should be impossible */
9787 	WARN_ON_ONCE(1);
9788 	return false;
9789 }
9790 
9791 static void clean_func_state(struct bpf_verifier_env *env,
9792 			     struct bpf_func_state *st)
9793 {
9794 	enum bpf_reg_liveness live;
9795 	int i, j;
9796 
9797 	for (i = 0; i < BPF_REG_FP; i++) {
9798 		live = st->regs[i].live;
9799 		/* liveness must not touch this register anymore */
9800 		st->regs[i].live |= REG_LIVE_DONE;
9801 		if (!(live & REG_LIVE_READ))
9802 			/* since the register is unused, clear its state
9803 			 * to make further comparison simpler
9804 			 */
9805 			__mark_reg_not_init(env, &st->regs[i]);
9806 	}
9807 
9808 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9809 		live = st->stack[i].spilled_ptr.live;
9810 		/* liveness must not touch this stack slot anymore */
9811 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9812 		if (!(live & REG_LIVE_READ)) {
9813 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9814 			for (j = 0; j < BPF_REG_SIZE; j++)
9815 				st->stack[i].slot_type[j] = STACK_INVALID;
9816 		}
9817 	}
9818 }
9819 
9820 static void clean_verifier_state(struct bpf_verifier_env *env,
9821 				 struct bpf_verifier_state *st)
9822 {
9823 	int i;
9824 
9825 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9826 		/* all regs in this state in all frames were already marked */
9827 		return;
9828 
9829 	for (i = 0; i <= st->curframe; i++)
9830 		clean_func_state(env, st->frame[i]);
9831 }
9832 
9833 /* the parentage chains form a tree.
9834  * the verifier states are added to state lists at given insn and
9835  * pushed into state stack for future exploration.
9836  * when the verifier reaches bpf_exit insn some of the verifer states
9837  * stored in the state lists have their final liveness state already,
9838  * but a lot of states will get revised from liveness point of view when
9839  * the verifier explores other branches.
9840  * Example:
9841  * 1: r0 = 1
9842  * 2: if r1 == 100 goto pc+1
9843  * 3: r0 = 2
9844  * 4: exit
9845  * when the verifier reaches exit insn the register r0 in the state list of
9846  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9847  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9848  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9849  *
9850  * Since the verifier pushes the branch states as it sees them while exploring
9851  * the program the condition of walking the branch instruction for the second
9852  * time means that all states below this branch were already explored and
9853  * their final liveness marks are already propagated.
9854  * Hence when the verifier completes the search of state list in is_state_visited()
9855  * we can call this clean_live_states() function to mark all liveness states
9856  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9857  * will not be used.
9858  * This function also clears the registers and stack for states that !READ
9859  * to simplify state merging.
9860  *
9861  * Important note here that walking the same branch instruction in the callee
9862  * doesn't meant that the states are DONE. The verifier has to compare
9863  * the callsites
9864  */
9865 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9866 			      struct bpf_verifier_state *cur)
9867 {
9868 	struct bpf_verifier_state_list *sl;
9869 	int i;
9870 
9871 	sl = *explored_state(env, insn);
9872 	while (sl) {
9873 		if (sl->state.branches)
9874 			goto next;
9875 		if (sl->state.insn_idx != insn ||
9876 		    sl->state.curframe != cur->curframe)
9877 			goto next;
9878 		for (i = 0; i <= cur->curframe; i++)
9879 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9880 				goto next;
9881 		clean_verifier_state(env, &sl->state);
9882 next:
9883 		sl = sl->next;
9884 	}
9885 }
9886 
9887 /* Returns true if (rold safe implies rcur safe) */
9888 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9889 		    struct bpf_id_pair *idmap)
9890 {
9891 	bool equal;
9892 
9893 	if (!(rold->live & REG_LIVE_READ))
9894 		/* explored state didn't use this */
9895 		return true;
9896 
9897 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9898 
9899 	if (rold->type == PTR_TO_STACK)
9900 		/* two stack pointers are equal only if they're pointing to
9901 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9902 		 */
9903 		return equal && rold->frameno == rcur->frameno;
9904 
9905 	if (equal)
9906 		return true;
9907 
9908 	if (rold->type == NOT_INIT)
9909 		/* explored state can't have used this */
9910 		return true;
9911 	if (rcur->type == NOT_INIT)
9912 		return false;
9913 	switch (rold->type) {
9914 	case SCALAR_VALUE:
9915 		if (rcur->type == SCALAR_VALUE) {
9916 			if (!rold->precise && !rcur->precise)
9917 				return true;
9918 			/* new val must satisfy old val knowledge */
9919 			return range_within(rold, rcur) &&
9920 			       tnum_in(rold->var_off, rcur->var_off);
9921 		} else {
9922 			/* We're trying to use a pointer in place of a scalar.
9923 			 * Even if the scalar was unbounded, this could lead to
9924 			 * pointer leaks because scalars are allowed to leak
9925 			 * while pointers are not. We could make this safe in
9926 			 * special cases if root is calling us, but it's
9927 			 * probably not worth the hassle.
9928 			 */
9929 			return false;
9930 		}
9931 	case PTR_TO_MAP_KEY:
9932 	case PTR_TO_MAP_VALUE:
9933 		/* If the new min/max/var_off satisfy the old ones and
9934 		 * everything else matches, we are OK.
9935 		 * 'id' is not compared, since it's only used for maps with
9936 		 * bpf_spin_lock inside map element and in such cases if
9937 		 * the rest of the prog is valid for one map element then
9938 		 * it's valid for all map elements regardless of the key
9939 		 * used in bpf_map_lookup()
9940 		 */
9941 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9942 		       range_within(rold, rcur) &&
9943 		       tnum_in(rold->var_off, rcur->var_off);
9944 	case PTR_TO_MAP_VALUE_OR_NULL:
9945 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9946 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9947 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9948 		 * checked, doing so could have affected others with the same
9949 		 * id, and we can't check for that because we lost the id when
9950 		 * we converted to a PTR_TO_MAP_VALUE.
9951 		 */
9952 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9953 			return false;
9954 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9955 			return false;
9956 		/* Check our ids match any regs they're supposed to */
9957 		return check_ids(rold->id, rcur->id, idmap);
9958 	case PTR_TO_PACKET_META:
9959 	case PTR_TO_PACKET:
9960 		if (rcur->type != rold->type)
9961 			return false;
9962 		/* We must have at least as much range as the old ptr
9963 		 * did, so that any accesses which were safe before are
9964 		 * still safe.  This is true even if old range < old off,
9965 		 * since someone could have accessed through (ptr - k), or
9966 		 * even done ptr -= k in a register, to get a safe access.
9967 		 */
9968 		if (rold->range > rcur->range)
9969 			return false;
9970 		/* If the offsets don't match, we can't trust our alignment;
9971 		 * nor can we be sure that we won't fall out of range.
9972 		 */
9973 		if (rold->off != rcur->off)
9974 			return false;
9975 		/* id relations must be preserved */
9976 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9977 			return false;
9978 		/* new val must satisfy old val knowledge */
9979 		return range_within(rold, rcur) &&
9980 		       tnum_in(rold->var_off, rcur->var_off);
9981 	case PTR_TO_CTX:
9982 	case CONST_PTR_TO_MAP:
9983 	case PTR_TO_PACKET_END:
9984 	case PTR_TO_FLOW_KEYS:
9985 	case PTR_TO_SOCKET:
9986 	case PTR_TO_SOCKET_OR_NULL:
9987 	case PTR_TO_SOCK_COMMON:
9988 	case PTR_TO_SOCK_COMMON_OR_NULL:
9989 	case PTR_TO_TCP_SOCK:
9990 	case PTR_TO_TCP_SOCK_OR_NULL:
9991 	case PTR_TO_XDP_SOCK:
9992 		/* Only valid matches are exact, which memcmp() above
9993 		 * would have accepted
9994 		 */
9995 	default:
9996 		/* Don't know what's going on, just say it's not safe */
9997 		return false;
9998 	}
9999 
10000 	/* Shouldn't get here; if we do, say it's not safe */
10001 	WARN_ON_ONCE(1);
10002 	return false;
10003 }
10004 
10005 static bool stacksafe(struct bpf_func_state *old,
10006 		      struct bpf_func_state *cur,
10007 		      struct bpf_id_pair *idmap)
10008 {
10009 	int i, spi;
10010 
10011 	/* walk slots of the explored stack and ignore any additional
10012 	 * slots in the current stack, since explored(safe) state
10013 	 * didn't use them
10014 	 */
10015 	for (i = 0; i < old->allocated_stack; i++) {
10016 		spi = i / BPF_REG_SIZE;
10017 
10018 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10019 			i += BPF_REG_SIZE - 1;
10020 			/* explored state didn't use this */
10021 			continue;
10022 		}
10023 
10024 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10025 			continue;
10026 
10027 		/* explored stack has more populated slots than current stack
10028 		 * and these slots were used
10029 		 */
10030 		if (i >= cur->allocated_stack)
10031 			return false;
10032 
10033 		/* if old state was safe with misc data in the stack
10034 		 * it will be safe with zero-initialized stack.
10035 		 * The opposite is not true
10036 		 */
10037 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10038 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10039 			continue;
10040 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10041 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10042 			/* Ex: old explored (safe) state has STACK_SPILL in
10043 			 * this stack slot, but current has STACK_MISC ->
10044 			 * this verifier states are not equivalent,
10045 			 * return false to continue verification of this path
10046 			 */
10047 			return false;
10048 		if (i % BPF_REG_SIZE)
10049 			continue;
10050 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
10051 			continue;
10052 		if (!regsafe(&old->stack[spi].spilled_ptr,
10053 			     &cur->stack[spi].spilled_ptr,
10054 			     idmap))
10055 			/* when explored and current stack slot are both storing
10056 			 * spilled registers, check that stored pointers types
10057 			 * are the same as well.
10058 			 * Ex: explored safe path could have stored
10059 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10060 			 * but current path has stored:
10061 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10062 			 * such verifier states are not equivalent.
10063 			 * return false to continue verification of this path
10064 			 */
10065 			return false;
10066 	}
10067 	return true;
10068 }
10069 
10070 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10071 {
10072 	if (old->acquired_refs != cur->acquired_refs)
10073 		return false;
10074 	return !memcmp(old->refs, cur->refs,
10075 		       sizeof(*old->refs) * old->acquired_refs);
10076 }
10077 
10078 /* compare two verifier states
10079  *
10080  * all states stored in state_list are known to be valid, since
10081  * verifier reached 'bpf_exit' instruction through them
10082  *
10083  * this function is called when verifier exploring different branches of
10084  * execution popped from the state stack. If it sees an old state that has
10085  * more strict register state and more strict stack state then this execution
10086  * branch doesn't need to be explored further, since verifier already
10087  * concluded that more strict state leads to valid finish.
10088  *
10089  * Therefore two states are equivalent if register state is more conservative
10090  * and explored stack state is more conservative than the current one.
10091  * Example:
10092  *       explored                   current
10093  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10094  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10095  *
10096  * In other words if current stack state (one being explored) has more
10097  * valid slots than old one that already passed validation, it means
10098  * the verifier can stop exploring and conclude that current state is valid too
10099  *
10100  * Similarly with registers. If explored state has register type as invalid
10101  * whereas register type in current state is meaningful, it means that
10102  * the current state will reach 'bpf_exit' instruction safely
10103  */
10104 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10105 			      struct bpf_func_state *cur)
10106 {
10107 	int i;
10108 
10109 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10110 	for (i = 0; i < MAX_BPF_REG; i++)
10111 		if (!regsafe(&old->regs[i], &cur->regs[i], env->idmap_scratch))
10112 			return false;
10113 
10114 	if (!stacksafe(old, cur, env->idmap_scratch))
10115 		return false;
10116 
10117 	if (!refsafe(old, cur))
10118 		return false;
10119 
10120 	return true;
10121 }
10122 
10123 static bool states_equal(struct bpf_verifier_env *env,
10124 			 struct bpf_verifier_state *old,
10125 			 struct bpf_verifier_state *cur)
10126 {
10127 	int i;
10128 
10129 	if (old->curframe != cur->curframe)
10130 		return false;
10131 
10132 	/* Verification state from speculative execution simulation
10133 	 * must never prune a non-speculative execution one.
10134 	 */
10135 	if (old->speculative && !cur->speculative)
10136 		return false;
10137 
10138 	if (old->active_spin_lock != cur->active_spin_lock)
10139 		return false;
10140 
10141 	/* for states to be equal callsites have to be the same
10142 	 * and all frame states need to be equivalent
10143 	 */
10144 	for (i = 0; i <= old->curframe; i++) {
10145 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10146 			return false;
10147 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10148 			return false;
10149 	}
10150 	return true;
10151 }
10152 
10153 /* Return 0 if no propagation happened. Return negative error code if error
10154  * happened. Otherwise, return the propagated bit.
10155  */
10156 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10157 				  struct bpf_reg_state *reg,
10158 				  struct bpf_reg_state *parent_reg)
10159 {
10160 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10161 	u8 flag = reg->live & REG_LIVE_READ;
10162 	int err;
10163 
10164 	/* When comes here, read flags of PARENT_REG or REG could be any of
10165 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10166 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10167 	 */
10168 	if (parent_flag == REG_LIVE_READ64 ||
10169 	    /* Or if there is no read flag from REG. */
10170 	    !flag ||
10171 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10172 	    parent_flag == flag)
10173 		return 0;
10174 
10175 	err = mark_reg_read(env, reg, parent_reg, flag);
10176 	if (err)
10177 		return err;
10178 
10179 	return flag;
10180 }
10181 
10182 /* A write screens off any subsequent reads; but write marks come from the
10183  * straight-line code between a state and its parent.  When we arrive at an
10184  * equivalent state (jump target or such) we didn't arrive by the straight-line
10185  * code, so read marks in the state must propagate to the parent regardless
10186  * of the state's write marks. That's what 'parent == state->parent' comparison
10187  * in mark_reg_read() is for.
10188  */
10189 static int propagate_liveness(struct bpf_verifier_env *env,
10190 			      const struct bpf_verifier_state *vstate,
10191 			      struct bpf_verifier_state *vparent)
10192 {
10193 	struct bpf_reg_state *state_reg, *parent_reg;
10194 	struct bpf_func_state *state, *parent;
10195 	int i, frame, err = 0;
10196 
10197 	if (vparent->curframe != vstate->curframe) {
10198 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10199 		     vparent->curframe, vstate->curframe);
10200 		return -EFAULT;
10201 	}
10202 	/* Propagate read liveness of registers... */
10203 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10204 	for (frame = 0; frame <= vstate->curframe; frame++) {
10205 		parent = vparent->frame[frame];
10206 		state = vstate->frame[frame];
10207 		parent_reg = parent->regs;
10208 		state_reg = state->regs;
10209 		/* We don't need to worry about FP liveness, it's read-only */
10210 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10211 			err = propagate_liveness_reg(env, &state_reg[i],
10212 						     &parent_reg[i]);
10213 			if (err < 0)
10214 				return err;
10215 			if (err == REG_LIVE_READ64)
10216 				mark_insn_zext(env, &parent_reg[i]);
10217 		}
10218 
10219 		/* Propagate stack slots. */
10220 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10221 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10222 			parent_reg = &parent->stack[i].spilled_ptr;
10223 			state_reg = &state->stack[i].spilled_ptr;
10224 			err = propagate_liveness_reg(env, state_reg,
10225 						     parent_reg);
10226 			if (err < 0)
10227 				return err;
10228 		}
10229 	}
10230 	return 0;
10231 }
10232 
10233 /* find precise scalars in the previous equivalent state and
10234  * propagate them into the current state
10235  */
10236 static int propagate_precision(struct bpf_verifier_env *env,
10237 			       const struct bpf_verifier_state *old)
10238 {
10239 	struct bpf_reg_state *state_reg;
10240 	struct bpf_func_state *state;
10241 	int i, err = 0;
10242 
10243 	state = old->frame[old->curframe];
10244 	state_reg = state->regs;
10245 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10246 		if (state_reg->type != SCALAR_VALUE ||
10247 		    !state_reg->precise)
10248 			continue;
10249 		if (env->log.level & BPF_LOG_LEVEL2)
10250 			verbose(env, "propagating r%d\n", i);
10251 		err = mark_chain_precision(env, i);
10252 		if (err < 0)
10253 			return err;
10254 	}
10255 
10256 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10257 		if (state->stack[i].slot_type[0] != STACK_SPILL)
10258 			continue;
10259 		state_reg = &state->stack[i].spilled_ptr;
10260 		if (state_reg->type != SCALAR_VALUE ||
10261 		    !state_reg->precise)
10262 			continue;
10263 		if (env->log.level & BPF_LOG_LEVEL2)
10264 			verbose(env, "propagating fp%d\n",
10265 				(-i - 1) * BPF_REG_SIZE);
10266 		err = mark_chain_precision_stack(env, i);
10267 		if (err < 0)
10268 			return err;
10269 	}
10270 	return 0;
10271 }
10272 
10273 static bool states_maybe_looping(struct bpf_verifier_state *old,
10274 				 struct bpf_verifier_state *cur)
10275 {
10276 	struct bpf_func_state *fold, *fcur;
10277 	int i, fr = cur->curframe;
10278 
10279 	if (old->curframe != fr)
10280 		return false;
10281 
10282 	fold = old->frame[fr];
10283 	fcur = cur->frame[fr];
10284 	for (i = 0; i < MAX_BPF_REG; i++)
10285 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10286 			   offsetof(struct bpf_reg_state, parent)))
10287 			return false;
10288 	return true;
10289 }
10290 
10291 
10292 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10293 {
10294 	struct bpf_verifier_state_list *new_sl;
10295 	struct bpf_verifier_state_list *sl, **pprev;
10296 	struct bpf_verifier_state *cur = env->cur_state, *new;
10297 	int i, j, err, states_cnt = 0;
10298 	bool add_new_state = env->test_state_freq ? true : false;
10299 
10300 	cur->last_insn_idx = env->prev_insn_idx;
10301 	if (!env->insn_aux_data[insn_idx].prune_point)
10302 		/* this 'insn_idx' instruction wasn't marked, so we will not
10303 		 * be doing state search here
10304 		 */
10305 		return 0;
10306 
10307 	/* bpf progs typically have pruning point every 4 instructions
10308 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10309 	 * Do not add new state for future pruning if the verifier hasn't seen
10310 	 * at least 2 jumps and at least 8 instructions.
10311 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10312 	 * In tests that amounts to up to 50% reduction into total verifier
10313 	 * memory consumption and 20% verifier time speedup.
10314 	 */
10315 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10316 	    env->insn_processed - env->prev_insn_processed >= 8)
10317 		add_new_state = true;
10318 
10319 	pprev = explored_state(env, insn_idx);
10320 	sl = *pprev;
10321 
10322 	clean_live_states(env, insn_idx, cur);
10323 
10324 	while (sl) {
10325 		states_cnt++;
10326 		if (sl->state.insn_idx != insn_idx)
10327 			goto next;
10328 		if (sl->state.branches) {
10329 			if (states_maybe_looping(&sl->state, cur) &&
10330 			    states_equal(env, &sl->state, cur)) {
10331 				verbose_linfo(env, insn_idx, "; ");
10332 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10333 				return -EINVAL;
10334 			}
10335 			/* if the verifier is processing a loop, avoid adding new state
10336 			 * too often, since different loop iterations have distinct
10337 			 * states and may not help future pruning.
10338 			 * This threshold shouldn't be too low to make sure that
10339 			 * a loop with large bound will be rejected quickly.
10340 			 * The most abusive loop will be:
10341 			 * r1 += 1
10342 			 * if r1 < 1000000 goto pc-2
10343 			 * 1M insn_procssed limit / 100 == 10k peak states.
10344 			 * This threshold shouldn't be too high either, since states
10345 			 * at the end of the loop are likely to be useful in pruning.
10346 			 */
10347 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10348 			    env->insn_processed - env->prev_insn_processed < 100)
10349 				add_new_state = false;
10350 			goto miss;
10351 		}
10352 		if (states_equal(env, &sl->state, cur)) {
10353 			sl->hit_cnt++;
10354 			/* reached equivalent register/stack state,
10355 			 * prune the search.
10356 			 * Registers read by the continuation are read by us.
10357 			 * If we have any write marks in env->cur_state, they
10358 			 * will prevent corresponding reads in the continuation
10359 			 * from reaching our parent (an explored_state).  Our
10360 			 * own state will get the read marks recorded, but
10361 			 * they'll be immediately forgotten as we're pruning
10362 			 * this state and will pop a new one.
10363 			 */
10364 			err = propagate_liveness(env, &sl->state, cur);
10365 
10366 			/* if previous state reached the exit with precision and
10367 			 * current state is equivalent to it (except precsion marks)
10368 			 * the precision needs to be propagated back in
10369 			 * the current state.
10370 			 */
10371 			err = err ? : push_jmp_history(env, cur);
10372 			err = err ? : propagate_precision(env, &sl->state);
10373 			if (err)
10374 				return err;
10375 			return 1;
10376 		}
10377 miss:
10378 		/* when new state is not going to be added do not increase miss count.
10379 		 * Otherwise several loop iterations will remove the state
10380 		 * recorded earlier. The goal of these heuristics is to have
10381 		 * states from some iterations of the loop (some in the beginning
10382 		 * and some at the end) to help pruning.
10383 		 */
10384 		if (add_new_state)
10385 			sl->miss_cnt++;
10386 		/* heuristic to determine whether this state is beneficial
10387 		 * to keep checking from state equivalence point of view.
10388 		 * Higher numbers increase max_states_per_insn and verification time,
10389 		 * but do not meaningfully decrease insn_processed.
10390 		 */
10391 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10392 			/* the state is unlikely to be useful. Remove it to
10393 			 * speed up verification
10394 			 */
10395 			*pprev = sl->next;
10396 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10397 				u32 br = sl->state.branches;
10398 
10399 				WARN_ONCE(br,
10400 					  "BUG live_done but branches_to_explore %d\n",
10401 					  br);
10402 				free_verifier_state(&sl->state, false);
10403 				kfree(sl);
10404 				env->peak_states--;
10405 			} else {
10406 				/* cannot free this state, since parentage chain may
10407 				 * walk it later. Add it for free_list instead to
10408 				 * be freed at the end of verification
10409 				 */
10410 				sl->next = env->free_list;
10411 				env->free_list = sl;
10412 			}
10413 			sl = *pprev;
10414 			continue;
10415 		}
10416 next:
10417 		pprev = &sl->next;
10418 		sl = *pprev;
10419 	}
10420 
10421 	if (env->max_states_per_insn < states_cnt)
10422 		env->max_states_per_insn = states_cnt;
10423 
10424 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10425 		return push_jmp_history(env, cur);
10426 
10427 	if (!add_new_state)
10428 		return push_jmp_history(env, cur);
10429 
10430 	/* There were no equivalent states, remember the current one.
10431 	 * Technically the current state is not proven to be safe yet,
10432 	 * but it will either reach outer most bpf_exit (which means it's safe)
10433 	 * or it will be rejected. When there are no loops the verifier won't be
10434 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10435 	 * again on the way to bpf_exit.
10436 	 * When looping the sl->state.branches will be > 0 and this state
10437 	 * will not be considered for equivalence until branches == 0.
10438 	 */
10439 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10440 	if (!new_sl)
10441 		return -ENOMEM;
10442 	env->total_states++;
10443 	env->peak_states++;
10444 	env->prev_jmps_processed = env->jmps_processed;
10445 	env->prev_insn_processed = env->insn_processed;
10446 
10447 	/* add new state to the head of linked list */
10448 	new = &new_sl->state;
10449 	err = copy_verifier_state(new, cur);
10450 	if (err) {
10451 		free_verifier_state(new, false);
10452 		kfree(new_sl);
10453 		return err;
10454 	}
10455 	new->insn_idx = insn_idx;
10456 	WARN_ONCE(new->branches != 1,
10457 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10458 
10459 	cur->parent = new;
10460 	cur->first_insn_idx = insn_idx;
10461 	clear_jmp_history(cur);
10462 	new_sl->next = *explored_state(env, insn_idx);
10463 	*explored_state(env, insn_idx) = new_sl;
10464 	/* connect new state to parentage chain. Current frame needs all
10465 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10466 	 * to the stack implicitly by JITs) so in callers' frames connect just
10467 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10468 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10469 	 * from callee with its full parentage chain, anyway.
10470 	 */
10471 	/* clear write marks in current state: the writes we did are not writes
10472 	 * our child did, so they don't screen off its reads from us.
10473 	 * (There are no read marks in current state, because reads always mark
10474 	 * their parent and current state never has children yet.  Only
10475 	 * explored_states can get read marks.)
10476 	 */
10477 	for (j = 0; j <= cur->curframe; j++) {
10478 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10479 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10480 		for (i = 0; i < BPF_REG_FP; i++)
10481 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10482 	}
10483 
10484 	/* all stack frames are accessible from callee, clear them all */
10485 	for (j = 0; j <= cur->curframe; j++) {
10486 		struct bpf_func_state *frame = cur->frame[j];
10487 		struct bpf_func_state *newframe = new->frame[j];
10488 
10489 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10490 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10491 			frame->stack[i].spilled_ptr.parent =
10492 						&newframe->stack[i].spilled_ptr;
10493 		}
10494 	}
10495 	return 0;
10496 }
10497 
10498 /* Return true if it's OK to have the same insn return a different type. */
10499 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10500 {
10501 	switch (type) {
10502 	case PTR_TO_CTX:
10503 	case PTR_TO_SOCKET:
10504 	case PTR_TO_SOCKET_OR_NULL:
10505 	case PTR_TO_SOCK_COMMON:
10506 	case PTR_TO_SOCK_COMMON_OR_NULL:
10507 	case PTR_TO_TCP_SOCK:
10508 	case PTR_TO_TCP_SOCK_OR_NULL:
10509 	case PTR_TO_XDP_SOCK:
10510 	case PTR_TO_BTF_ID:
10511 	case PTR_TO_BTF_ID_OR_NULL:
10512 		return false;
10513 	default:
10514 		return true;
10515 	}
10516 }
10517 
10518 /* If an instruction was previously used with particular pointer types, then we
10519  * need to be careful to avoid cases such as the below, where it may be ok
10520  * for one branch accessing the pointer, but not ok for the other branch:
10521  *
10522  * R1 = sock_ptr
10523  * goto X;
10524  * ...
10525  * R1 = some_other_valid_ptr;
10526  * goto X;
10527  * ...
10528  * R2 = *(u32 *)(R1 + 0);
10529  */
10530 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10531 {
10532 	return src != prev && (!reg_type_mismatch_ok(src) ||
10533 			       !reg_type_mismatch_ok(prev));
10534 }
10535 
10536 static int do_check(struct bpf_verifier_env *env)
10537 {
10538 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10539 	struct bpf_verifier_state *state = env->cur_state;
10540 	struct bpf_insn *insns = env->prog->insnsi;
10541 	struct bpf_reg_state *regs;
10542 	int insn_cnt = env->prog->len;
10543 	bool do_print_state = false;
10544 	int prev_insn_idx = -1;
10545 
10546 	for (;;) {
10547 		struct bpf_insn *insn;
10548 		u8 class;
10549 		int err;
10550 
10551 		env->prev_insn_idx = prev_insn_idx;
10552 		if (env->insn_idx >= insn_cnt) {
10553 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10554 				env->insn_idx, insn_cnt);
10555 			return -EFAULT;
10556 		}
10557 
10558 		insn = &insns[env->insn_idx];
10559 		class = BPF_CLASS(insn->code);
10560 
10561 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10562 			verbose(env,
10563 				"BPF program is too large. Processed %d insn\n",
10564 				env->insn_processed);
10565 			return -E2BIG;
10566 		}
10567 
10568 		err = is_state_visited(env, env->insn_idx);
10569 		if (err < 0)
10570 			return err;
10571 		if (err == 1) {
10572 			/* found equivalent state, can prune the search */
10573 			if (env->log.level & BPF_LOG_LEVEL) {
10574 				if (do_print_state)
10575 					verbose(env, "\nfrom %d to %d%s: safe\n",
10576 						env->prev_insn_idx, env->insn_idx,
10577 						env->cur_state->speculative ?
10578 						" (speculative execution)" : "");
10579 				else
10580 					verbose(env, "%d: safe\n", env->insn_idx);
10581 			}
10582 			goto process_bpf_exit;
10583 		}
10584 
10585 		if (signal_pending(current))
10586 			return -EAGAIN;
10587 
10588 		if (need_resched())
10589 			cond_resched();
10590 
10591 		if (env->log.level & BPF_LOG_LEVEL2 ||
10592 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10593 			if (env->log.level & BPF_LOG_LEVEL2)
10594 				verbose(env, "%d:", env->insn_idx);
10595 			else
10596 				verbose(env, "\nfrom %d to %d%s:",
10597 					env->prev_insn_idx, env->insn_idx,
10598 					env->cur_state->speculative ?
10599 					" (speculative execution)" : "");
10600 			print_verifier_state(env, state->frame[state->curframe]);
10601 			do_print_state = false;
10602 		}
10603 
10604 		if (env->log.level & BPF_LOG_LEVEL) {
10605 			const struct bpf_insn_cbs cbs = {
10606 				.cb_call	= disasm_kfunc_name,
10607 				.cb_print	= verbose,
10608 				.private_data	= env,
10609 			};
10610 
10611 			verbose_linfo(env, env->insn_idx, "; ");
10612 			verbose(env, "%d: ", env->insn_idx);
10613 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10614 		}
10615 
10616 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10617 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10618 							   env->prev_insn_idx);
10619 			if (err)
10620 				return err;
10621 		}
10622 
10623 		regs = cur_regs(env);
10624 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10625 		prev_insn_idx = env->insn_idx;
10626 
10627 		if (class == BPF_ALU || class == BPF_ALU64) {
10628 			err = check_alu_op(env, insn);
10629 			if (err)
10630 				return err;
10631 
10632 		} else if (class == BPF_LDX) {
10633 			enum bpf_reg_type *prev_src_type, src_reg_type;
10634 
10635 			/* check for reserved fields is already done */
10636 
10637 			/* check src operand */
10638 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10639 			if (err)
10640 				return err;
10641 
10642 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10643 			if (err)
10644 				return err;
10645 
10646 			src_reg_type = regs[insn->src_reg].type;
10647 
10648 			/* check that memory (src_reg + off) is readable,
10649 			 * the state of dst_reg will be updated by this func
10650 			 */
10651 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10652 					       insn->off, BPF_SIZE(insn->code),
10653 					       BPF_READ, insn->dst_reg, false);
10654 			if (err)
10655 				return err;
10656 
10657 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10658 
10659 			if (*prev_src_type == NOT_INIT) {
10660 				/* saw a valid insn
10661 				 * dst_reg = *(u32 *)(src_reg + off)
10662 				 * save type to validate intersecting paths
10663 				 */
10664 				*prev_src_type = src_reg_type;
10665 
10666 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10667 				/* ABuser program is trying to use the same insn
10668 				 * dst_reg = *(u32*) (src_reg + off)
10669 				 * with different pointer types:
10670 				 * src_reg == ctx in one branch and
10671 				 * src_reg == stack|map in some other branch.
10672 				 * Reject it.
10673 				 */
10674 				verbose(env, "same insn cannot be used with different pointers\n");
10675 				return -EINVAL;
10676 			}
10677 
10678 		} else if (class == BPF_STX) {
10679 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10680 
10681 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10682 				err = check_atomic(env, env->insn_idx, insn);
10683 				if (err)
10684 					return err;
10685 				env->insn_idx++;
10686 				continue;
10687 			}
10688 
10689 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10690 				verbose(env, "BPF_STX uses reserved fields\n");
10691 				return -EINVAL;
10692 			}
10693 
10694 			/* check src1 operand */
10695 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10696 			if (err)
10697 				return err;
10698 			/* check src2 operand */
10699 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10700 			if (err)
10701 				return err;
10702 
10703 			dst_reg_type = regs[insn->dst_reg].type;
10704 
10705 			/* check that memory (dst_reg + off) is writeable */
10706 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10707 					       insn->off, BPF_SIZE(insn->code),
10708 					       BPF_WRITE, insn->src_reg, false);
10709 			if (err)
10710 				return err;
10711 
10712 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10713 
10714 			if (*prev_dst_type == NOT_INIT) {
10715 				*prev_dst_type = dst_reg_type;
10716 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10717 				verbose(env, "same insn cannot be used with different pointers\n");
10718 				return -EINVAL;
10719 			}
10720 
10721 		} else if (class == BPF_ST) {
10722 			if (BPF_MODE(insn->code) != BPF_MEM ||
10723 			    insn->src_reg != BPF_REG_0) {
10724 				verbose(env, "BPF_ST uses reserved fields\n");
10725 				return -EINVAL;
10726 			}
10727 			/* check src operand */
10728 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10729 			if (err)
10730 				return err;
10731 
10732 			if (is_ctx_reg(env, insn->dst_reg)) {
10733 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10734 					insn->dst_reg,
10735 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10736 				return -EACCES;
10737 			}
10738 
10739 			/* check that memory (dst_reg + off) is writeable */
10740 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10741 					       insn->off, BPF_SIZE(insn->code),
10742 					       BPF_WRITE, -1, false);
10743 			if (err)
10744 				return err;
10745 
10746 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10747 			u8 opcode = BPF_OP(insn->code);
10748 
10749 			env->jmps_processed++;
10750 			if (opcode == BPF_CALL) {
10751 				if (BPF_SRC(insn->code) != BPF_K ||
10752 				    insn->off != 0 ||
10753 				    (insn->src_reg != BPF_REG_0 &&
10754 				     insn->src_reg != BPF_PSEUDO_CALL &&
10755 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10756 				    insn->dst_reg != BPF_REG_0 ||
10757 				    class == BPF_JMP32) {
10758 					verbose(env, "BPF_CALL uses reserved fields\n");
10759 					return -EINVAL;
10760 				}
10761 
10762 				if (env->cur_state->active_spin_lock &&
10763 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10764 				     insn->imm != BPF_FUNC_spin_unlock)) {
10765 					verbose(env, "function calls are not allowed while holding a lock\n");
10766 					return -EINVAL;
10767 				}
10768 				if (insn->src_reg == BPF_PSEUDO_CALL)
10769 					err = check_func_call(env, insn, &env->insn_idx);
10770 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10771 					err = check_kfunc_call(env, insn);
10772 				else
10773 					err = check_helper_call(env, insn, &env->insn_idx);
10774 				if (err)
10775 					return err;
10776 			} else if (opcode == BPF_JA) {
10777 				if (BPF_SRC(insn->code) != BPF_K ||
10778 				    insn->imm != 0 ||
10779 				    insn->src_reg != BPF_REG_0 ||
10780 				    insn->dst_reg != BPF_REG_0 ||
10781 				    class == BPF_JMP32) {
10782 					verbose(env, "BPF_JA uses reserved fields\n");
10783 					return -EINVAL;
10784 				}
10785 
10786 				env->insn_idx += insn->off + 1;
10787 				continue;
10788 
10789 			} else if (opcode == BPF_EXIT) {
10790 				if (BPF_SRC(insn->code) != BPF_K ||
10791 				    insn->imm != 0 ||
10792 				    insn->src_reg != BPF_REG_0 ||
10793 				    insn->dst_reg != BPF_REG_0 ||
10794 				    class == BPF_JMP32) {
10795 					verbose(env, "BPF_EXIT uses reserved fields\n");
10796 					return -EINVAL;
10797 				}
10798 
10799 				if (env->cur_state->active_spin_lock) {
10800 					verbose(env, "bpf_spin_unlock is missing\n");
10801 					return -EINVAL;
10802 				}
10803 
10804 				if (state->curframe) {
10805 					/* exit from nested function */
10806 					err = prepare_func_exit(env, &env->insn_idx);
10807 					if (err)
10808 						return err;
10809 					do_print_state = true;
10810 					continue;
10811 				}
10812 
10813 				err = check_reference_leak(env);
10814 				if (err)
10815 					return err;
10816 
10817 				err = check_return_code(env);
10818 				if (err)
10819 					return err;
10820 process_bpf_exit:
10821 				update_branch_counts(env, env->cur_state);
10822 				err = pop_stack(env, &prev_insn_idx,
10823 						&env->insn_idx, pop_log);
10824 				if (err < 0) {
10825 					if (err != -ENOENT)
10826 						return err;
10827 					break;
10828 				} else {
10829 					do_print_state = true;
10830 					continue;
10831 				}
10832 			} else {
10833 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10834 				if (err)
10835 					return err;
10836 			}
10837 		} else if (class == BPF_LD) {
10838 			u8 mode = BPF_MODE(insn->code);
10839 
10840 			if (mode == BPF_ABS || mode == BPF_IND) {
10841 				err = check_ld_abs(env, insn);
10842 				if (err)
10843 					return err;
10844 
10845 			} else if (mode == BPF_IMM) {
10846 				err = check_ld_imm(env, insn);
10847 				if (err)
10848 					return err;
10849 
10850 				env->insn_idx++;
10851 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10852 			} else {
10853 				verbose(env, "invalid BPF_LD mode\n");
10854 				return -EINVAL;
10855 			}
10856 		} else {
10857 			verbose(env, "unknown insn class %d\n", class);
10858 			return -EINVAL;
10859 		}
10860 
10861 		env->insn_idx++;
10862 	}
10863 
10864 	return 0;
10865 }
10866 
10867 static int find_btf_percpu_datasec(struct btf *btf)
10868 {
10869 	const struct btf_type *t;
10870 	const char *tname;
10871 	int i, n;
10872 
10873 	/*
10874 	 * Both vmlinux and module each have their own ".data..percpu"
10875 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10876 	 * types to look at only module's own BTF types.
10877 	 */
10878 	n = btf_nr_types(btf);
10879 	if (btf_is_module(btf))
10880 		i = btf_nr_types(btf_vmlinux);
10881 	else
10882 		i = 1;
10883 
10884 	for(; i < n; i++) {
10885 		t = btf_type_by_id(btf, i);
10886 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10887 			continue;
10888 
10889 		tname = btf_name_by_offset(btf, t->name_off);
10890 		if (!strcmp(tname, ".data..percpu"))
10891 			return i;
10892 	}
10893 
10894 	return -ENOENT;
10895 }
10896 
10897 /* replace pseudo btf_id with kernel symbol address */
10898 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10899 			       struct bpf_insn *insn,
10900 			       struct bpf_insn_aux_data *aux)
10901 {
10902 	const struct btf_var_secinfo *vsi;
10903 	const struct btf_type *datasec;
10904 	struct btf_mod_pair *btf_mod;
10905 	const struct btf_type *t;
10906 	const char *sym_name;
10907 	bool percpu = false;
10908 	u32 type, id = insn->imm;
10909 	struct btf *btf;
10910 	s32 datasec_id;
10911 	u64 addr;
10912 	int i, btf_fd, err;
10913 
10914 	btf_fd = insn[1].imm;
10915 	if (btf_fd) {
10916 		btf = btf_get_by_fd(btf_fd);
10917 		if (IS_ERR(btf)) {
10918 			verbose(env, "invalid module BTF object FD specified.\n");
10919 			return -EINVAL;
10920 		}
10921 	} else {
10922 		if (!btf_vmlinux) {
10923 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10924 			return -EINVAL;
10925 		}
10926 		btf = btf_vmlinux;
10927 		btf_get(btf);
10928 	}
10929 
10930 	t = btf_type_by_id(btf, id);
10931 	if (!t) {
10932 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10933 		err = -ENOENT;
10934 		goto err_put;
10935 	}
10936 
10937 	if (!btf_type_is_var(t)) {
10938 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10939 		err = -EINVAL;
10940 		goto err_put;
10941 	}
10942 
10943 	sym_name = btf_name_by_offset(btf, t->name_off);
10944 	addr = kallsyms_lookup_name(sym_name);
10945 	if (!addr) {
10946 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10947 			sym_name);
10948 		err = -ENOENT;
10949 		goto err_put;
10950 	}
10951 
10952 	datasec_id = find_btf_percpu_datasec(btf);
10953 	if (datasec_id > 0) {
10954 		datasec = btf_type_by_id(btf, datasec_id);
10955 		for_each_vsi(i, datasec, vsi) {
10956 			if (vsi->type == id) {
10957 				percpu = true;
10958 				break;
10959 			}
10960 		}
10961 	}
10962 
10963 	insn[0].imm = (u32)addr;
10964 	insn[1].imm = addr >> 32;
10965 
10966 	type = t->type;
10967 	t = btf_type_skip_modifiers(btf, type, NULL);
10968 	if (percpu) {
10969 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10970 		aux->btf_var.btf = btf;
10971 		aux->btf_var.btf_id = type;
10972 	} else if (!btf_type_is_struct(t)) {
10973 		const struct btf_type *ret;
10974 		const char *tname;
10975 		u32 tsize;
10976 
10977 		/* resolve the type size of ksym. */
10978 		ret = btf_resolve_size(btf, t, &tsize);
10979 		if (IS_ERR(ret)) {
10980 			tname = btf_name_by_offset(btf, t->name_off);
10981 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10982 				tname, PTR_ERR(ret));
10983 			err = -EINVAL;
10984 			goto err_put;
10985 		}
10986 		aux->btf_var.reg_type = PTR_TO_MEM;
10987 		aux->btf_var.mem_size = tsize;
10988 	} else {
10989 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
10990 		aux->btf_var.btf = btf;
10991 		aux->btf_var.btf_id = type;
10992 	}
10993 
10994 	/* check whether we recorded this BTF (and maybe module) already */
10995 	for (i = 0; i < env->used_btf_cnt; i++) {
10996 		if (env->used_btfs[i].btf == btf) {
10997 			btf_put(btf);
10998 			return 0;
10999 		}
11000 	}
11001 
11002 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11003 		err = -E2BIG;
11004 		goto err_put;
11005 	}
11006 
11007 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11008 	btf_mod->btf = btf;
11009 	btf_mod->module = NULL;
11010 
11011 	/* if we reference variables from kernel module, bump its refcount */
11012 	if (btf_is_module(btf)) {
11013 		btf_mod->module = btf_try_get_module(btf);
11014 		if (!btf_mod->module) {
11015 			err = -ENXIO;
11016 			goto err_put;
11017 		}
11018 	}
11019 
11020 	env->used_btf_cnt++;
11021 
11022 	return 0;
11023 err_put:
11024 	btf_put(btf);
11025 	return err;
11026 }
11027 
11028 static int check_map_prealloc(struct bpf_map *map)
11029 {
11030 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11031 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11032 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11033 		!(map->map_flags & BPF_F_NO_PREALLOC);
11034 }
11035 
11036 static bool is_tracing_prog_type(enum bpf_prog_type type)
11037 {
11038 	switch (type) {
11039 	case BPF_PROG_TYPE_KPROBE:
11040 	case BPF_PROG_TYPE_TRACEPOINT:
11041 	case BPF_PROG_TYPE_PERF_EVENT:
11042 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11043 		return true;
11044 	default:
11045 		return false;
11046 	}
11047 }
11048 
11049 static bool is_preallocated_map(struct bpf_map *map)
11050 {
11051 	if (!check_map_prealloc(map))
11052 		return false;
11053 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11054 		return false;
11055 	return true;
11056 }
11057 
11058 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11059 					struct bpf_map *map,
11060 					struct bpf_prog *prog)
11061 
11062 {
11063 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11064 	/*
11065 	 * Validate that trace type programs use preallocated hash maps.
11066 	 *
11067 	 * For programs attached to PERF events this is mandatory as the
11068 	 * perf NMI can hit any arbitrary code sequence.
11069 	 *
11070 	 * All other trace types using preallocated hash maps are unsafe as
11071 	 * well because tracepoint or kprobes can be inside locked regions
11072 	 * of the memory allocator or at a place where a recursion into the
11073 	 * memory allocator would see inconsistent state.
11074 	 *
11075 	 * On RT enabled kernels run-time allocation of all trace type
11076 	 * programs is strictly prohibited due to lock type constraints. On
11077 	 * !RT kernels it is allowed for backwards compatibility reasons for
11078 	 * now, but warnings are emitted so developers are made aware of
11079 	 * the unsafety and can fix their programs before this is enforced.
11080 	 */
11081 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11082 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11083 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11084 			return -EINVAL;
11085 		}
11086 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11087 			verbose(env, "trace type programs can only use preallocated hash map\n");
11088 			return -EINVAL;
11089 		}
11090 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11091 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11092 	}
11093 
11094 	if (map_value_has_spin_lock(map)) {
11095 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11096 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11097 			return -EINVAL;
11098 		}
11099 
11100 		if (is_tracing_prog_type(prog_type)) {
11101 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11102 			return -EINVAL;
11103 		}
11104 
11105 		if (prog->aux->sleepable) {
11106 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11107 			return -EINVAL;
11108 		}
11109 	}
11110 
11111 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11112 	    !bpf_offload_prog_map_match(prog, map)) {
11113 		verbose(env, "offload device mismatch between prog and map\n");
11114 		return -EINVAL;
11115 	}
11116 
11117 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11118 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11119 		return -EINVAL;
11120 	}
11121 
11122 	if (prog->aux->sleepable)
11123 		switch (map->map_type) {
11124 		case BPF_MAP_TYPE_HASH:
11125 		case BPF_MAP_TYPE_LRU_HASH:
11126 		case BPF_MAP_TYPE_ARRAY:
11127 		case BPF_MAP_TYPE_PERCPU_HASH:
11128 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11129 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11130 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11131 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11132 			if (!is_preallocated_map(map)) {
11133 				verbose(env,
11134 					"Sleepable programs can only use preallocated maps\n");
11135 				return -EINVAL;
11136 			}
11137 			break;
11138 		case BPF_MAP_TYPE_RINGBUF:
11139 			break;
11140 		default:
11141 			verbose(env,
11142 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11143 			return -EINVAL;
11144 		}
11145 
11146 	return 0;
11147 }
11148 
11149 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11150 {
11151 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11152 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11153 }
11154 
11155 /* find and rewrite pseudo imm in ld_imm64 instructions:
11156  *
11157  * 1. if it accesses map FD, replace it with actual map pointer.
11158  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11159  *
11160  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11161  */
11162 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11163 {
11164 	struct bpf_insn *insn = env->prog->insnsi;
11165 	int insn_cnt = env->prog->len;
11166 	int i, j, err;
11167 
11168 	err = bpf_prog_calc_tag(env->prog);
11169 	if (err)
11170 		return err;
11171 
11172 	for (i = 0; i < insn_cnt; i++, insn++) {
11173 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11174 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11175 			verbose(env, "BPF_LDX uses reserved fields\n");
11176 			return -EINVAL;
11177 		}
11178 
11179 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11180 			struct bpf_insn_aux_data *aux;
11181 			struct bpf_map *map;
11182 			struct fd f;
11183 			u64 addr;
11184 			u32 fd;
11185 
11186 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11187 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11188 			    insn[1].off != 0) {
11189 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11190 				return -EINVAL;
11191 			}
11192 
11193 			if (insn[0].src_reg == 0)
11194 				/* valid generic load 64-bit imm */
11195 				goto next_insn;
11196 
11197 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11198 				aux = &env->insn_aux_data[i];
11199 				err = check_pseudo_btf_id(env, insn, aux);
11200 				if (err)
11201 					return err;
11202 				goto next_insn;
11203 			}
11204 
11205 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11206 				aux = &env->insn_aux_data[i];
11207 				aux->ptr_type = PTR_TO_FUNC;
11208 				goto next_insn;
11209 			}
11210 
11211 			/* In final convert_pseudo_ld_imm64() step, this is
11212 			 * converted into regular 64-bit imm load insn.
11213 			 */
11214 			switch (insn[0].src_reg) {
11215 			case BPF_PSEUDO_MAP_VALUE:
11216 			case BPF_PSEUDO_MAP_IDX_VALUE:
11217 				break;
11218 			case BPF_PSEUDO_MAP_FD:
11219 			case BPF_PSEUDO_MAP_IDX:
11220 				if (insn[1].imm == 0)
11221 					break;
11222 				fallthrough;
11223 			default:
11224 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11225 				return -EINVAL;
11226 			}
11227 
11228 			switch (insn[0].src_reg) {
11229 			case BPF_PSEUDO_MAP_IDX_VALUE:
11230 			case BPF_PSEUDO_MAP_IDX:
11231 				if (bpfptr_is_null(env->fd_array)) {
11232 					verbose(env, "fd_idx without fd_array is invalid\n");
11233 					return -EPROTO;
11234 				}
11235 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11236 							    insn[0].imm * sizeof(fd),
11237 							    sizeof(fd)))
11238 					return -EFAULT;
11239 				break;
11240 			default:
11241 				fd = insn[0].imm;
11242 				break;
11243 			}
11244 
11245 			f = fdget(fd);
11246 			map = __bpf_map_get(f);
11247 			if (IS_ERR(map)) {
11248 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11249 					insn[0].imm);
11250 				return PTR_ERR(map);
11251 			}
11252 
11253 			err = check_map_prog_compatibility(env, map, env->prog);
11254 			if (err) {
11255 				fdput(f);
11256 				return err;
11257 			}
11258 
11259 			aux = &env->insn_aux_data[i];
11260 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11261 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11262 				addr = (unsigned long)map;
11263 			} else {
11264 				u32 off = insn[1].imm;
11265 
11266 				if (off >= BPF_MAX_VAR_OFF) {
11267 					verbose(env, "direct value offset of %u is not allowed\n", off);
11268 					fdput(f);
11269 					return -EINVAL;
11270 				}
11271 
11272 				if (!map->ops->map_direct_value_addr) {
11273 					verbose(env, "no direct value access support for this map type\n");
11274 					fdput(f);
11275 					return -EINVAL;
11276 				}
11277 
11278 				err = map->ops->map_direct_value_addr(map, &addr, off);
11279 				if (err) {
11280 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11281 						map->value_size, off);
11282 					fdput(f);
11283 					return err;
11284 				}
11285 
11286 				aux->map_off = off;
11287 				addr += off;
11288 			}
11289 
11290 			insn[0].imm = (u32)addr;
11291 			insn[1].imm = addr >> 32;
11292 
11293 			/* check whether we recorded this map already */
11294 			for (j = 0; j < env->used_map_cnt; j++) {
11295 				if (env->used_maps[j] == map) {
11296 					aux->map_index = j;
11297 					fdput(f);
11298 					goto next_insn;
11299 				}
11300 			}
11301 
11302 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11303 				fdput(f);
11304 				return -E2BIG;
11305 			}
11306 
11307 			/* hold the map. If the program is rejected by verifier,
11308 			 * the map will be released by release_maps() or it
11309 			 * will be used by the valid program until it's unloaded
11310 			 * and all maps are released in free_used_maps()
11311 			 */
11312 			bpf_map_inc(map);
11313 
11314 			aux->map_index = env->used_map_cnt;
11315 			env->used_maps[env->used_map_cnt++] = map;
11316 
11317 			if (bpf_map_is_cgroup_storage(map) &&
11318 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11319 				verbose(env, "only one cgroup storage of each type is allowed\n");
11320 				fdput(f);
11321 				return -EBUSY;
11322 			}
11323 
11324 			fdput(f);
11325 next_insn:
11326 			insn++;
11327 			i++;
11328 			continue;
11329 		}
11330 
11331 		/* Basic sanity check before we invest more work here. */
11332 		if (!bpf_opcode_in_insntable(insn->code)) {
11333 			verbose(env, "unknown opcode %02x\n", insn->code);
11334 			return -EINVAL;
11335 		}
11336 	}
11337 
11338 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11339 	 * 'struct bpf_map *' into a register instead of user map_fd.
11340 	 * These pointers will be used later by verifier to validate map access.
11341 	 */
11342 	return 0;
11343 }
11344 
11345 /* drop refcnt of maps used by the rejected program */
11346 static void release_maps(struct bpf_verifier_env *env)
11347 {
11348 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11349 			     env->used_map_cnt);
11350 }
11351 
11352 /* drop refcnt of maps used by the rejected program */
11353 static void release_btfs(struct bpf_verifier_env *env)
11354 {
11355 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11356 			     env->used_btf_cnt);
11357 }
11358 
11359 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11360 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11361 {
11362 	struct bpf_insn *insn = env->prog->insnsi;
11363 	int insn_cnt = env->prog->len;
11364 	int i;
11365 
11366 	for (i = 0; i < insn_cnt; i++, insn++) {
11367 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11368 			continue;
11369 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11370 			continue;
11371 		insn->src_reg = 0;
11372 	}
11373 }
11374 
11375 /* single env->prog->insni[off] instruction was replaced with the range
11376  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11377  * [0, off) and [off, end) to new locations, so the patched range stays zero
11378  */
11379 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11380 				struct bpf_prog *new_prog, u32 off, u32 cnt)
11381 {
11382 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
11383 	struct bpf_insn *insn = new_prog->insnsi;
11384 	u32 prog_len;
11385 	int i;
11386 
11387 	/* aux info at OFF always needs adjustment, no matter fast path
11388 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11389 	 * original insn at old prog.
11390 	 */
11391 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11392 
11393 	if (cnt == 1)
11394 		return 0;
11395 	prog_len = new_prog->len;
11396 	new_data = vzalloc(array_size(prog_len,
11397 				      sizeof(struct bpf_insn_aux_data)));
11398 	if (!new_data)
11399 		return -ENOMEM;
11400 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11401 	memcpy(new_data + off + cnt - 1, old_data + off,
11402 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11403 	for (i = off; i < off + cnt - 1; i++) {
11404 		new_data[i].seen = env->pass_cnt;
11405 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11406 	}
11407 	env->insn_aux_data = new_data;
11408 	vfree(old_data);
11409 	return 0;
11410 }
11411 
11412 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11413 {
11414 	int i;
11415 
11416 	if (len == 1)
11417 		return;
11418 	/* NOTE: fake 'exit' subprog should be updated as well. */
11419 	for (i = 0; i <= env->subprog_cnt; i++) {
11420 		if (env->subprog_info[i].start <= off)
11421 			continue;
11422 		env->subprog_info[i].start += len - 1;
11423 	}
11424 }
11425 
11426 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
11427 {
11428 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11429 	int i, sz = prog->aux->size_poke_tab;
11430 	struct bpf_jit_poke_descriptor *desc;
11431 
11432 	for (i = 0; i < sz; i++) {
11433 		desc = &tab[i];
11434 		desc->insn_idx += len - 1;
11435 	}
11436 }
11437 
11438 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11439 					    const struct bpf_insn *patch, u32 len)
11440 {
11441 	struct bpf_prog *new_prog;
11442 
11443 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11444 	if (IS_ERR(new_prog)) {
11445 		if (PTR_ERR(new_prog) == -ERANGE)
11446 			verbose(env,
11447 				"insn %d cannot be patched due to 16-bit range\n",
11448 				env->insn_aux_data[off].orig_idx);
11449 		return NULL;
11450 	}
11451 	if (adjust_insn_aux_data(env, new_prog, off, len))
11452 		return NULL;
11453 	adjust_subprog_starts(env, off, len);
11454 	adjust_poke_descs(new_prog, len);
11455 	return new_prog;
11456 }
11457 
11458 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11459 					      u32 off, u32 cnt)
11460 {
11461 	int i, j;
11462 
11463 	/* find first prog starting at or after off (first to remove) */
11464 	for (i = 0; i < env->subprog_cnt; i++)
11465 		if (env->subprog_info[i].start >= off)
11466 			break;
11467 	/* find first prog starting at or after off + cnt (first to stay) */
11468 	for (j = i; j < env->subprog_cnt; j++)
11469 		if (env->subprog_info[j].start >= off + cnt)
11470 			break;
11471 	/* if j doesn't start exactly at off + cnt, we are just removing
11472 	 * the front of previous prog
11473 	 */
11474 	if (env->subprog_info[j].start != off + cnt)
11475 		j--;
11476 
11477 	if (j > i) {
11478 		struct bpf_prog_aux *aux = env->prog->aux;
11479 		int move;
11480 
11481 		/* move fake 'exit' subprog as well */
11482 		move = env->subprog_cnt + 1 - j;
11483 
11484 		memmove(env->subprog_info + i,
11485 			env->subprog_info + j,
11486 			sizeof(*env->subprog_info) * move);
11487 		env->subprog_cnt -= j - i;
11488 
11489 		/* remove func_info */
11490 		if (aux->func_info) {
11491 			move = aux->func_info_cnt - j;
11492 
11493 			memmove(aux->func_info + i,
11494 				aux->func_info + j,
11495 				sizeof(*aux->func_info) * move);
11496 			aux->func_info_cnt -= j - i;
11497 			/* func_info->insn_off is set after all code rewrites,
11498 			 * in adjust_btf_func() - no need to adjust
11499 			 */
11500 		}
11501 	} else {
11502 		/* convert i from "first prog to remove" to "first to adjust" */
11503 		if (env->subprog_info[i].start == off)
11504 			i++;
11505 	}
11506 
11507 	/* update fake 'exit' subprog as well */
11508 	for (; i <= env->subprog_cnt; i++)
11509 		env->subprog_info[i].start -= cnt;
11510 
11511 	return 0;
11512 }
11513 
11514 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11515 				      u32 cnt)
11516 {
11517 	struct bpf_prog *prog = env->prog;
11518 	u32 i, l_off, l_cnt, nr_linfo;
11519 	struct bpf_line_info *linfo;
11520 
11521 	nr_linfo = prog->aux->nr_linfo;
11522 	if (!nr_linfo)
11523 		return 0;
11524 
11525 	linfo = prog->aux->linfo;
11526 
11527 	/* find first line info to remove, count lines to be removed */
11528 	for (i = 0; i < nr_linfo; i++)
11529 		if (linfo[i].insn_off >= off)
11530 			break;
11531 
11532 	l_off = i;
11533 	l_cnt = 0;
11534 	for (; i < nr_linfo; i++)
11535 		if (linfo[i].insn_off < off + cnt)
11536 			l_cnt++;
11537 		else
11538 			break;
11539 
11540 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11541 	 * last removed linfo.  prog is already modified, so prog->len == off
11542 	 * means no live instructions after (tail of the program was removed).
11543 	 */
11544 	if (prog->len != off && l_cnt &&
11545 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11546 		l_cnt--;
11547 		linfo[--i].insn_off = off + cnt;
11548 	}
11549 
11550 	/* remove the line info which refer to the removed instructions */
11551 	if (l_cnt) {
11552 		memmove(linfo + l_off, linfo + i,
11553 			sizeof(*linfo) * (nr_linfo - i));
11554 
11555 		prog->aux->nr_linfo -= l_cnt;
11556 		nr_linfo = prog->aux->nr_linfo;
11557 	}
11558 
11559 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11560 	for (i = l_off; i < nr_linfo; i++)
11561 		linfo[i].insn_off -= cnt;
11562 
11563 	/* fix up all subprogs (incl. 'exit') which start >= off */
11564 	for (i = 0; i <= env->subprog_cnt; i++)
11565 		if (env->subprog_info[i].linfo_idx > l_off) {
11566 			/* program may have started in the removed region but
11567 			 * may not be fully removed
11568 			 */
11569 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11570 				env->subprog_info[i].linfo_idx -= l_cnt;
11571 			else
11572 				env->subprog_info[i].linfo_idx = l_off;
11573 		}
11574 
11575 	return 0;
11576 }
11577 
11578 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11579 {
11580 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11581 	unsigned int orig_prog_len = env->prog->len;
11582 	int err;
11583 
11584 	if (bpf_prog_is_dev_bound(env->prog->aux))
11585 		bpf_prog_offload_remove_insns(env, off, cnt);
11586 
11587 	err = bpf_remove_insns(env->prog, off, cnt);
11588 	if (err)
11589 		return err;
11590 
11591 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11592 	if (err)
11593 		return err;
11594 
11595 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11596 	if (err)
11597 		return err;
11598 
11599 	memmove(aux_data + off,	aux_data + off + cnt,
11600 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11601 
11602 	return 0;
11603 }
11604 
11605 /* The verifier does more data flow analysis than llvm and will not
11606  * explore branches that are dead at run time. Malicious programs can
11607  * have dead code too. Therefore replace all dead at-run-time code
11608  * with 'ja -1'.
11609  *
11610  * Just nops are not optimal, e.g. if they would sit at the end of the
11611  * program and through another bug we would manage to jump there, then
11612  * we'd execute beyond program memory otherwise. Returning exception
11613  * code also wouldn't work since we can have subprogs where the dead
11614  * code could be located.
11615  */
11616 static void sanitize_dead_code(struct bpf_verifier_env *env)
11617 {
11618 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11619 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11620 	struct bpf_insn *insn = env->prog->insnsi;
11621 	const int insn_cnt = env->prog->len;
11622 	int i;
11623 
11624 	for (i = 0; i < insn_cnt; i++) {
11625 		if (aux_data[i].seen)
11626 			continue;
11627 		memcpy(insn + i, &trap, sizeof(trap));
11628 	}
11629 }
11630 
11631 static bool insn_is_cond_jump(u8 code)
11632 {
11633 	u8 op;
11634 
11635 	if (BPF_CLASS(code) == BPF_JMP32)
11636 		return true;
11637 
11638 	if (BPF_CLASS(code) != BPF_JMP)
11639 		return false;
11640 
11641 	op = BPF_OP(code);
11642 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11643 }
11644 
11645 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11646 {
11647 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11648 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11649 	struct bpf_insn *insn = env->prog->insnsi;
11650 	const int insn_cnt = env->prog->len;
11651 	int i;
11652 
11653 	for (i = 0; i < insn_cnt; i++, insn++) {
11654 		if (!insn_is_cond_jump(insn->code))
11655 			continue;
11656 
11657 		if (!aux_data[i + 1].seen)
11658 			ja.off = insn->off;
11659 		else if (!aux_data[i + 1 + insn->off].seen)
11660 			ja.off = 0;
11661 		else
11662 			continue;
11663 
11664 		if (bpf_prog_is_dev_bound(env->prog->aux))
11665 			bpf_prog_offload_replace_insn(env, i, &ja);
11666 
11667 		memcpy(insn, &ja, sizeof(ja));
11668 	}
11669 }
11670 
11671 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11672 {
11673 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11674 	int insn_cnt = env->prog->len;
11675 	int i, err;
11676 
11677 	for (i = 0; i < insn_cnt; i++) {
11678 		int j;
11679 
11680 		j = 0;
11681 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11682 			j++;
11683 		if (!j)
11684 			continue;
11685 
11686 		err = verifier_remove_insns(env, i, j);
11687 		if (err)
11688 			return err;
11689 		insn_cnt = env->prog->len;
11690 	}
11691 
11692 	return 0;
11693 }
11694 
11695 static int opt_remove_nops(struct bpf_verifier_env *env)
11696 {
11697 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11698 	struct bpf_insn *insn = env->prog->insnsi;
11699 	int insn_cnt = env->prog->len;
11700 	int i, err;
11701 
11702 	for (i = 0; i < insn_cnt; i++) {
11703 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11704 			continue;
11705 
11706 		err = verifier_remove_insns(env, i, 1);
11707 		if (err)
11708 			return err;
11709 		insn_cnt--;
11710 		i--;
11711 	}
11712 
11713 	return 0;
11714 }
11715 
11716 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11717 					 const union bpf_attr *attr)
11718 {
11719 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11720 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11721 	int i, patch_len, delta = 0, len = env->prog->len;
11722 	struct bpf_insn *insns = env->prog->insnsi;
11723 	struct bpf_prog *new_prog;
11724 	bool rnd_hi32;
11725 
11726 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11727 	zext_patch[1] = BPF_ZEXT_REG(0);
11728 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11729 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11730 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11731 	for (i = 0; i < len; i++) {
11732 		int adj_idx = i + delta;
11733 		struct bpf_insn insn;
11734 		int load_reg;
11735 
11736 		insn = insns[adj_idx];
11737 		load_reg = insn_def_regno(&insn);
11738 		if (!aux[adj_idx].zext_dst) {
11739 			u8 code, class;
11740 			u32 imm_rnd;
11741 
11742 			if (!rnd_hi32)
11743 				continue;
11744 
11745 			code = insn.code;
11746 			class = BPF_CLASS(code);
11747 			if (load_reg == -1)
11748 				continue;
11749 
11750 			/* NOTE: arg "reg" (the fourth one) is only used for
11751 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11752 			 *       here.
11753 			 */
11754 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11755 				if (class == BPF_LD &&
11756 				    BPF_MODE(code) == BPF_IMM)
11757 					i++;
11758 				continue;
11759 			}
11760 
11761 			/* ctx load could be transformed into wider load. */
11762 			if (class == BPF_LDX &&
11763 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11764 				continue;
11765 
11766 			imm_rnd = get_random_int();
11767 			rnd_hi32_patch[0] = insn;
11768 			rnd_hi32_patch[1].imm = imm_rnd;
11769 			rnd_hi32_patch[3].dst_reg = load_reg;
11770 			patch = rnd_hi32_patch;
11771 			patch_len = 4;
11772 			goto apply_patch_buffer;
11773 		}
11774 
11775 		/* Add in an zero-extend instruction if a) the JIT has requested
11776 		 * it or b) it's a CMPXCHG.
11777 		 *
11778 		 * The latter is because: BPF_CMPXCHG always loads a value into
11779 		 * R0, therefore always zero-extends. However some archs'
11780 		 * equivalent instruction only does this load when the
11781 		 * comparison is successful. This detail of CMPXCHG is
11782 		 * orthogonal to the general zero-extension behaviour of the
11783 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11784 		 */
11785 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11786 			continue;
11787 
11788 		if (WARN_ON(load_reg == -1)) {
11789 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11790 			return -EFAULT;
11791 		}
11792 
11793 		zext_patch[0] = insn;
11794 		zext_patch[1].dst_reg = load_reg;
11795 		zext_patch[1].src_reg = load_reg;
11796 		patch = zext_patch;
11797 		patch_len = 2;
11798 apply_patch_buffer:
11799 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11800 		if (!new_prog)
11801 			return -ENOMEM;
11802 		env->prog = new_prog;
11803 		insns = new_prog->insnsi;
11804 		aux = env->insn_aux_data;
11805 		delta += patch_len - 1;
11806 	}
11807 
11808 	return 0;
11809 }
11810 
11811 /* convert load instructions that access fields of a context type into a
11812  * sequence of instructions that access fields of the underlying structure:
11813  *     struct __sk_buff    -> struct sk_buff
11814  *     struct bpf_sock_ops -> struct sock
11815  */
11816 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11817 {
11818 	const struct bpf_verifier_ops *ops = env->ops;
11819 	int i, cnt, size, ctx_field_size, delta = 0;
11820 	const int insn_cnt = env->prog->len;
11821 	struct bpf_insn insn_buf[16], *insn;
11822 	u32 target_size, size_default, off;
11823 	struct bpf_prog *new_prog;
11824 	enum bpf_access_type type;
11825 	bool is_narrower_load;
11826 
11827 	if (ops->gen_prologue || env->seen_direct_write) {
11828 		if (!ops->gen_prologue) {
11829 			verbose(env, "bpf verifier is misconfigured\n");
11830 			return -EINVAL;
11831 		}
11832 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11833 					env->prog);
11834 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11835 			verbose(env, "bpf verifier is misconfigured\n");
11836 			return -EINVAL;
11837 		} else if (cnt) {
11838 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11839 			if (!new_prog)
11840 				return -ENOMEM;
11841 
11842 			env->prog = new_prog;
11843 			delta += cnt - 1;
11844 		}
11845 	}
11846 
11847 	if (bpf_prog_is_dev_bound(env->prog->aux))
11848 		return 0;
11849 
11850 	insn = env->prog->insnsi + delta;
11851 
11852 	for (i = 0; i < insn_cnt; i++, insn++) {
11853 		bpf_convert_ctx_access_t convert_ctx_access;
11854 
11855 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11856 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11857 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11858 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11859 			type = BPF_READ;
11860 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11861 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11862 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11863 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11864 			type = BPF_WRITE;
11865 		else
11866 			continue;
11867 
11868 		if (type == BPF_WRITE &&
11869 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11870 			struct bpf_insn patch[] = {
11871 				/* Sanitize suspicious stack slot with zero.
11872 				 * There are no memory dependencies for this store,
11873 				 * since it's only using frame pointer and immediate
11874 				 * constant of zero
11875 				 */
11876 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11877 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11878 					   0),
11879 				/* the original STX instruction will immediately
11880 				 * overwrite the same stack slot with appropriate value
11881 				 */
11882 				*insn,
11883 			};
11884 
11885 			cnt = ARRAY_SIZE(patch);
11886 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11887 			if (!new_prog)
11888 				return -ENOMEM;
11889 
11890 			delta    += cnt - 1;
11891 			env->prog = new_prog;
11892 			insn      = new_prog->insnsi + i + delta;
11893 			continue;
11894 		}
11895 
11896 		switch (env->insn_aux_data[i + delta].ptr_type) {
11897 		case PTR_TO_CTX:
11898 			if (!ops->convert_ctx_access)
11899 				continue;
11900 			convert_ctx_access = ops->convert_ctx_access;
11901 			break;
11902 		case PTR_TO_SOCKET:
11903 		case PTR_TO_SOCK_COMMON:
11904 			convert_ctx_access = bpf_sock_convert_ctx_access;
11905 			break;
11906 		case PTR_TO_TCP_SOCK:
11907 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11908 			break;
11909 		case PTR_TO_XDP_SOCK:
11910 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11911 			break;
11912 		case PTR_TO_BTF_ID:
11913 			if (type == BPF_READ) {
11914 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11915 					BPF_SIZE((insn)->code);
11916 				env->prog->aux->num_exentries++;
11917 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11918 				verbose(env, "Writes through BTF pointers are not allowed\n");
11919 				return -EINVAL;
11920 			}
11921 			continue;
11922 		default:
11923 			continue;
11924 		}
11925 
11926 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11927 		size = BPF_LDST_BYTES(insn);
11928 
11929 		/* If the read access is a narrower load of the field,
11930 		 * convert to a 4/8-byte load, to minimum program type specific
11931 		 * convert_ctx_access changes. If conversion is successful,
11932 		 * we will apply proper mask to the result.
11933 		 */
11934 		is_narrower_load = size < ctx_field_size;
11935 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11936 		off = insn->off;
11937 		if (is_narrower_load) {
11938 			u8 size_code;
11939 
11940 			if (type == BPF_WRITE) {
11941 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11942 				return -EINVAL;
11943 			}
11944 
11945 			size_code = BPF_H;
11946 			if (ctx_field_size == 4)
11947 				size_code = BPF_W;
11948 			else if (ctx_field_size == 8)
11949 				size_code = BPF_DW;
11950 
11951 			insn->off = off & ~(size_default - 1);
11952 			insn->code = BPF_LDX | BPF_MEM | size_code;
11953 		}
11954 
11955 		target_size = 0;
11956 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11957 					 &target_size);
11958 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11959 		    (ctx_field_size && !target_size)) {
11960 			verbose(env, "bpf verifier is misconfigured\n");
11961 			return -EINVAL;
11962 		}
11963 
11964 		if (is_narrower_load && size < target_size) {
11965 			u8 shift = bpf_ctx_narrow_access_offset(
11966 				off, size, size_default) * 8;
11967 			if (ctx_field_size <= 4) {
11968 				if (shift)
11969 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11970 									insn->dst_reg,
11971 									shift);
11972 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11973 								(1 << size * 8) - 1);
11974 			} else {
11975 				if (shift)
11976 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11977 									insn->dst_reg,
11978 									shift);
11979 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11980 								(1ULL << size * 8) - 1);
11981 			}
11982 		}
11983 
11984 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11985 		if (!new_prog)
11986 			return -ENOMEM;
11987 
11988 		delta += cnt - 1;
11989 
11990 		/* keep walking new program and skip insns we just inserted */
11991 		env->prog = new_prog;
11992 		insn      = new_prog->insnsi + i + delta;
11993 	}
11994 
11995 	return 0;
11996 }
11997 
11998 static int jit_subprogs(struct bpf_verifier_env *env)
11999 {
12000 	struct bpf_prog *prog = env->prog, **func, *tmp;
12001 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12002 	struct bpf_map *map_ptr;
12003 	struct bpf_insn *insn;
12004 	void *old_bpf_func;
12005 	int err, num_exentries;
12006 
12007 	if (env->subprog_cnt <= 1)
12008 		return 0;
12009 
12010 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12011 		if (bpf_pseudo_func(insn)) {
12012 			env->insn_aux_data[i].call_imm = insn->imm;
12013 			/* subprog is encoded in insn[1].imm */
12014 			continue;
12015 		}
12016 
12017 		if (!bpf_pseudo_call(insn))
12018 			continue;
12019 		/* Upon error here we cannot fall back to interpreter but
12020 		 * need a hard reject of the program. Thus -EFAULT is
12021 		 * propagated in any case.
12022 		 */
12023 		subprog = find_subprog(env, i + insn->imm + 1);
12024 		if (subprog < 0) {
12025 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12026 				  i + insn->imm + 1);
12027 			return -EFAULT;
12028 		}
12029 		/* temporarily remember subprog id inside insn instead of
12030 		 * aux_data, since next loop will split up all insns into funcs
12031 		 */
12032 		insn->off = subprog;
12033 		/* remember original imm in case JIT fails and fallback
12034 		 * to interpreter will be needed
12035 		 */
12036 		env->insn_aux_data[i].call_imm = insn->imm;
12037 		/* point imm to __bpf_call_base+1 from JITs point of view */
12038 		insn->imm = 1;
12039 	}
12040 
12041 	err = bpf_prog_alloc_jited_linfo(prog);
12042 	if (err)
12043 		goto out_undo_insn;
12044 
12045 	err = -ENOMEM;
12046 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12047 	if (!func)
12048 		goto out_undo_insn;
12049 
12050 	for (i = 0; i < env->subprog_cnt; i++) {
12051 		subprog_start = subprog_end;
12052 		subprog_end = env->subprog_info[i + 1].start;
12053 
12054 		len = subprog_end - subprog_start;
12055 		/* BPF_PROG_RUN doesn't call subprogs directly,
12056 		 * hence main prog stats include the runtime of subprogs.
12057 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12058 		 * func[i]->stats will never be accessed and stays NULL
12059 		 */
12060 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12061 		if (!func[i])
12062 			goto out_free;
12063 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12064 		       len * sizeof(struct bpf_insn));
12065 		func[i]->type = prog->type;
12066 		func[i]->len = len;
12067 		if (bpf_prog_calc_tag(func[i]))
12068 			goto out_free;
12069 		func[i]->is_func = 1;
12070 		func[i]->aux->func_idx = i;
12071 		/* the btf and func_info will be freed only at prog->aux */
12072 		func[i]->aux->btf = prog->aux->btf;
12073 		func[i]->aux->func_info = prog->aux->func_info;
12074 
12075 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12076 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
12077 			int ret;
12078 
12079 			if (!(insn_idx >= subprog_start &&
12080 			      insn_idx <= subprog_end))
12081 				continue;
12082 
12083 			ret = bpf_jit_add_poke_descriptor(func[i],
12084 							  &prog->aux->poke_tab[j]);
12085 			if (ret < 0) {
12086 				verbose(env, "adding tail call poke descriptor failed\n");
12087 				goto out_free;
12088 			}
12089 
12090 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
12091 
12092 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
12093 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
12094 			if (ret < 0) {
12095 				verbose(env, "tracking tail call prog failed\n");
12096 				goto out_free;
12097 			}
12098 		}
12099 
12100 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12101 		 * Long term would need debug info to populate names
12102 		 */
12103 		func[i]->aux->name[0] = 'F';
12104 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12105 		func[i]->jit_requested = 1;
12106 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12107 		func[i]->aux->linfo = prog->aux->linfo;
12108 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12109 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12110 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12111 		num_exentries = 0;
12112 		insn = func[i]->insnsi;
12113 		for (j = 0; j < func[i]->len; j++, insn++) {
12114 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12115 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12116 				num_exentries++;
12117 		}
12118 		func[i]->aux->num_exentries = num_exentries;
12119 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12120 		func[i] = bpf_int_jit_compile(func[i]);
12121 		if (!func[i]->jited) {
12122 			err = -ENOTSUPP;
12123 			goto out_free;
12124 		}
12125 		cond_resched();
12126 	}
12127 
12128 	/* Untrack main program's aux structs so that during map_poke_run()
12129 	 * we will not stumble upon the unfilled poke descriptors; each
12130 	 * of the main program's poke descs got distributed across subprogs
12131 	 * and got tracked onto map, so we are sure that none of them will
12132 	 * be missed after the operation below
12133 	 */
12134 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12135 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12136 
12137 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12138 	}
12139 
12140 	/* at this point all bpf functions were successfully JITed
12141 	 * now populate all bpf_calls with correct addresses and
12142 	 * run last pass of JIT
12143 	 */
12144 	for (i = 0; i < env->subprog_cnt; i++) {
12145 		insn = func[i]->insnsi;
12146 		for (j = 0; j < func[i]->len; j++, insn++) {
12147 			if (bpf_pseudo_func(insn)) {
12148 				subprog = insn[1].imm;
12149 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12150 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12151 				continue;
12152 			}
12153 			if (!bpf_pseudo_call(insn))
12154 				continue;
12155 			subprog = insn->off;
12156 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12157 				    __bpf_call_base;
12158 		}
12159 
12160 		/* we use the aux data to keep a list of the start addresses
12161 		 * of the JITed images for each function in the program
12162 		 *
12163 		 * for some architectures, such as powerpc64, the imm field
12164 		 * might not be large enough to hold the offset of the start
12165 		 * address of the callee's JITed image from __bpf_call_base
12166 		 *
12167 		 * in such cases, we can lookup the start address of a callee
12168 		 * by using its subprog id, available from the off field of
12169 		 * the call instruction, as an index for this list
12170 		 */
12171 		func[i]->aux->func = func;
12172 		func[i]->aux->func_cnt = env->subprog_cnt;
12173 	}
12174 	for (i = 0; i < env->subprog_cnt; i++) {
12175 		old_bpf_func = func[i]->bpf_func;
12176 		tmp = bpf_int_jit_compile(func[i]);
12177 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12178 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12179 			err = -ENOTSUPP;
12180 			goto out_free;
12181 		}
12182 		cond_resched();
12183 	}
12184 
12185 	/* finally lock prog and jit images for all functions and
12186 	 * populate kallsysm
12187 	 */
12188 	for (i = 0; i < env->subprog_cnt; i++) {
12189 		bpf_prog_lock_ro(func[i]);
12190 		bpf_prog_kallsyms_add(func[i]);
12191 	}
12192 
12193 	/* Last step: make now unused interpreter insns from main
12194 	 * prog consistent for later dump requests, so they can
12195 	 * later look the same as if they were interpreted only.
12196 	 */
12197 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12198 		if (bpf_pseudo_func(insn)) {
12199 			insn[0].imm = env->insn_aux_data[i].call_imm;
12200 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12201 			continue;
12202 		}
12203 		if (!bpf_pseudo_call(insn))
12204 			continue;
12205 		insn->off = env->insn_aux_data[i].call_imm;
12206 		subprog = find_subprog(env, i + insn->off + 1);
12207 		insn->imm = subprog;
12208 	}
12209 
12210 	prog->jited = 1;
12211 	prog->bpf_func = func[0]->bpf_func;
12212 	prog->aux->func = func;
12213 	prog->aux->func_cnt = env->subprog_cnt;
12214 	bpf_prog_jit_attempt_done(prog);
12215 	return 0;
12216 out_free:
12217 	for (i = 0; i < env->subprog_cnt; i++) {
12218 		if (!func[i])
12219 			continue;
12220 
12221 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
12222 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
12223 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
12224 		}
12225 		bpf_jit_free(func[i]);
12226 	}
12227 	kfree(func);
12228 out_undo_insn:
12229 	/* cleanup main prog to be interpreted */
12230 	prog->jit_requested = 0;
12231 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12232 		if (!bpf_pseudo_call(insn))
12233 			continue;
12234 		insn->off = 0;
12235 		insn->imm = env->insn_aux_data[i].call_imm;
12236 	}
12237 	bpf_prog_jit_attempt_done(prog);
12238 	return err;
12239 }
12240 
12241 static int fixup_call_args(struct bpf_verifier_env *env)
12242 {
12243 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12244 	struct bpf_prog *prog = env->prog;
12245 	struct bpf_insn *insn = prog->insnsi;
12246 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12247 	int i, depth;
12248 #endif
12249 	int err = 0;
12250 
12251 	if (env->prog->jit_requested &&
12252 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12253 		err = jit_subprogs(env);
12254 		if (err == 0)
12255 			return 0;
12256 		if (err == -EFAULT)
12257 			return err;
12258 	}
12259 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12260 	if (has_kfunc_call) {
12261 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12262 		return -EINVAL;
12263 	}
12264 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12265 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12266 		 * have to be rejected, since interpreter doesn't support them yet.
12267 		 */
12268 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12269 		return -EINVAL;
12270 	}
12271 	for (i = 0; i < prog->len; i++, insn++) {
12272 		if (bpf_pseudo_func(insn)) {
12273 			/* When JIT fails the progs with callback calls
12274 			 * have to be rejected, since interpreter doesn't support them yet.
12275 			 */
12276 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12277 			return -EINVAL;
12278 		}
12279 
12280 		if (!bpf_pseudo_call(insn))
12281 			continue;
12282 		depth = get_callee_stack_depth(env, insn, i);
12283 		if (depth < 0)
12284 			return depth;
12285 		bpf_patch_call_args(insn, depth);
12286 	}
12287 	err = 0;
12288 #endif
12289 	return err;
12290 }
12291 
12292 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12293 			    struct bpf_insn *insn)
12294 {
12295 	const struct bpf_kfunc_desc *desc;
12296 
12297 	/* insn->imm has the btf func_id. Replace it with
12298 	 * an address (relative to __bpf_base_call).
12299 	 */
12300 	desc = find_kfunc_desc(env->prog, insn->imm);
12301 	if (!desc) {
12302 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12303 			insn->imm);
12304 		return -EFAULT;
12305 	}
12306 
12307 	insn->imm = desc->imm;
12308 
12309 	return 0;
12310 }
12311 
12312 /* Do various post-verification rewrites in a single program pass.
12313  * These rewrites simplify JIT and interpreter implementations.
12314  */
12315 static int do_misc_fixups(struct bpf_verifier_env *env)
12316 {
12317 	struct bpf_prog *prog = env->prog;
12318 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12319 	struct bpf_insn *insn = prog->insnsi;
12320 	const struct bpf_func_proto *fn;
12321 	const int insn_cnt = prog->len;
12322 	const struct bpf_map_ops *ops;
12323 	struct bpf_insn_aux_data *aux;
12324 	struct bpf_insn insn_buf[16];
12325 	struct bpf_prog *new_prog;
12326 	struct bpf_map *map_ptr;
12327 	int i, ret, cnt, delta = 0;
12328 
12329 	for (i = 0; i < insn_cnt; i++, insn++) {
12330 		/* Make divide-by-zero exceptions impossible. */
12331 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12332 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12333 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12334 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12335 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12336 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12337 			struct bpf_insn *patchlet;
12338 			struct bpf_insn chk_and_div[] = {
12339 				/* [R,W]x div 0 -> 0 */
12340 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12341 					     BPF_JNE | BPF_K, insn->src_reg,
12342 					     0, 2, 0),
12343 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12344 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12345 				*insn,
12346 			};
12347 			struct bpf_insn chk_and_mod[] = {
12348 				/* [R,W]x mod 0 -> [R,W]x */
12349 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12350 					     BPF_JEQ | BPF_K, insn->src_reg,
12351 					     0, 1 + (is64 ? 0 : 1), 0),
12352 				*insn,
12353 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12354 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12355 			};
12356 
12357 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12358 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12359 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12360 
12361 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12362 			if (!new_prog)
12363 				return -ENOMEM;
12364 
12365 			delta    += cnt - 1;
12366 			env->prog = prog = new_prog;
12367 			insn      = new_prog->insnsi + i + delta;
12368 			continue;
12369 		}
12370 
12371 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12372 		if (BPF_CLASS(insn->code) == BPF_LD &&
12373 		    (BPF_MODE(insn->code) == BPF_ABS ||
12374 		     BPF_MODE(insn->code) == BPF_IND)) {
12375 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12376 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12377 				verbose(env, "bpf verifier is misconfigured\n");
12378 				return -EINVAL;
12379 			}
12380 
12381 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12382 			if (!new_prog)
12383 				return -ENOMEM;
12384 
12385 			delta    += cnt - 1;
12386 			env->prog = prog = new_prog;
12387 			insn      = new_prog->insnsi + i + delta;
12388 			continue;
12389 		}
12390 
12391 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12392 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12393 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12394 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12395 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12396 			struct bpf_insn *patch = &insn_buf[0];
12397 			bool issrc, isneg, isimm;
12398 			u32 off_reg;
12399 
12400 			aux = &env->insn_aux_data[i + delta];
12401 			if (!aux->alu_state ||
12402 			    aux->alu_state == BPF_ALU_NON_POINTER)
12403 				continue;
12404 
12405 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12406 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12407 				BPF_ALU_SANITIZE_SRC;
12408 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12409 
12410 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12411 			if (isimm) {
12412 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12413 			} else {
12414 				if (isneg)
12415 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12416 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12417 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12418 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12419 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12420 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12421 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12422 			}
12423 			if (!issrc)
12424 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12425 			insn->src_reg = BPF_REG_AX;
12426 			if (isneg)
12427 				insn->code = insn->code == code_add ?
12428 					     code_sub : code_add;
12429 			*patch++ = *insn;
12430 			if (issrc && isneg && !isimm)
12431 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12432 			cnt = patch - insn_buf;
12433 
12434 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12435 			if (!new_prog)
12436 				return -ENOMEM;
12437 
12438 			delta    += cnt - 1;
12439 			env->prog = prog = new_prog;
12440 			insn      = new_prog->insnsi + i + delta;
12441 			continue;
12442 		}
12443 
12444 		if (insn->code != (BPF_JMP | BPF_CALL))
12445 			continue;
12446 		if (insn->src_reg == BPF_PSEUDO_CALL)
12447 			continue;
12448 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12449 			ret = fixup_kfunc_call(env, insn);
12450 			if (ret)
12451 				return ret;
12452 			continue;
12453 		}
12454 
12455 		if (insn->imm == BPF_FUNC_get_route_realm)
12456 			prog->dst_needed = 1;
12457 		if (insn->imm == BPF_FUNC_get_prandom_u32)
12458 			bpf_user_rnd_init_once();
12459 		if (insn->imm == BPF_FUNC_override_return)
12460 			prog->kprobe_override = 1;
12461 		if (insn->imm == BPF_FUNC_tail_call) {
12462 			/* If we tail call into other programs, we
12463 			 * cannot make any assumptions since they can
12464 			 * be replaced dynamically during runtime in
12465 			 * the program array.
12466 			 */
12467 			prog->cb_access = 1;
12468 			if (!allow_tail_call_in_subprogs(env))
12469 				prog->aux->stack_depth = MAX_BPF_STACK;
12470 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12471 
12472 			/* mark bpf_tail_call as different opcode to avoid
12473 			 * conditional branch in the interpreter for every normal
12474 			 * call and to prevent accidental JITing by JIT compiler
12475 			 * that doesn't support bpf_tail_call yet
12476 			 */
12477 			insn->imm = 0;
12478 			insn->code = BPF_JMP | BPF_TAIL_CALL;
12479 
12480 			aux = &env->insn_aux_data[i + delta];
12481 			if (env->bpf_capable && !expect_blinding &&
12482 			    prog->jit_requested &&
12483 			    !bpf_map_key_poisoned(aux) &&
12484 			    !bpf_map_ptr_poisoned(aux) &&
12485 			    !bpf_map_ptr_unpriv(aux)) {
12486 				struct bpf_jit_poke_descriptor desc = {
12487 					.reason = BPF_POKE_REASON_TAIL_CALL,
12488 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12489 					.tail_call.key = bpf_map_key_immediate(aux),
12490 					.insn_idx = i + delta,
12491 				};
12492 
12493 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
12494 				if (ret < 0) {
12495 					verbose(env, "adding tail call poke descriptor failed\n");
12496 					return ret;
12497 				}
12498 
12499 				insn->imm = ret + 1;
12500 				continue;
12501 			}
12502 
12503 			if (!bpf_map_ptr_unpriv(aux))
12504 				continue;
12505 
12506 			/* instead of changing every JIT dealing with tail_call
12507 			 * emit two extra insns:
12508 			 * if (index >= max_entries) goto out;
12509 			 * index &= array->index_mask;
12510 			 * to avoid out-of-bounds cpu speculation
12511 			 */
12512 			if (bpf_map_ptr_poisoned(aux)) {
12513 				verbose(env, "tail_call abusing map_ptr\n");
12514 				return -EINVAL;
12515 			}
12516 
12517 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12518 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12519 						  map_ptr->max_entries, 2);
12520 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12521 						    container_of(map_ptr,
12522 								 struct bpf_array,
12523 								 map)->index_mask);
12524 			insn_buf[2] = *insn;
12525 			cnt = 3;
12526 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12527 			if (!new_prog)
12528 				return -ENOMEM;
12529 
12530 			delta    += cnt - 1;
12531 			env->prog = prog = new_prog;
12532 			insn      = new_prog->insnsi + i + delta;
12533 			continue;
12534 		}
12535 
12536 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12537 		 * and other inlining handlers are currently limited to 64 bit
12538 		 * only.
12539 		 */
12540 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12541 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12542 		     insn->imm == BPF_FUNC_map_update_elem ||
12543 		     insn->imm == BPF_FUNC_map_delete_elem ||
12544 		     insn->imm == BPF_FUNC_map_push_elem   ||
12545 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12546 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12547 		     insn->imm == BPF_FUNC_redirect_map)) {
12548 			aux = &env->insn_aux_data[i + delta];
12549 			if (bpf_map_ptr_poisoned(aux))
12550 				goto patch_call_imm;
12551 
12552 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12553 			ops = map_ptr->ops;
12554 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12555 			    ops->map_gen_lookup) {
12556 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12557 				if (cnt == -EOPNOTSUPP)
12558 					goto patch_map_ops_generic;
12559 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12560 					verbose(env, "bpf verifier is misconfigured\n");
12561 					return -EINVAL;
12562 				}
12563 
12564 				new_prog = bpf_patch_insn_data(env, i + delta,
12565 							       insn_buf, cnt);
12566 				if (!new_prog)
12567 					return -ENOMEM;
12568 
12569 				delta    += cnt - 1;
12570 				env->prog = prog = new_prog;
12571 				insn      = new_prog->insnsi + i + delta;
12572 				continue;
12573 			}
12574 
12575 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12576 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12577 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12578 				     (int (*)(struct bpf_map *map, void *key))NULL));
12579 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12580 				     (int (*)(struct bpf_map *map, void *key, void *value,
12581 					      u64 flags))NULL));
12582 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12583 				     (int (*)(struct bpf_map *map, void *value,
12584 					      u64 flags))NULL));
12585 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12586 				     (int (*)(struct bpf_map *map, void *value))NULL));
12587 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12588 				     (int (*)(struct bpf_map *map, void *value))NULL));
12589 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12590 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12591 
12592 patch_map_ops_generic:
12593 			switch (insn->imm) {
12594 			case BPF_FUNC_map_lookup_elem:
12595 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12596 					    __bpf_call_base;
12597 				continue;
12598 			case BPF_FUNC_map_update_elem:
12599 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12600 					    __bpf_call_base;
12601 				continue;
12602 			case BPF_FUNC_map_delete_elem:
12603 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12604 					    __bpf_call_base;
12605 				continue;
12606 			case BPF_FUNC_map_push_elem:
12607 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12608 					    __bpf_call_base;
12609 				continue;
12610 			case BPF_FUNC_map_pop_elem:
12611 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12612 					    __bpf_call_base;
12613 				continue;
12614 			case BPF_FUNC_map_peek_elem:
12615 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12616 					    __bpf_call_base;
12617 				continue;
12618 			case BPF_FUNC_redirect_map:
12619 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12620 					    __bpf_call_base;
12621 				continue;
12622 			}
12623 
12624 			goto patch_call_imm;
12625 		}
12626 
12627 		/* Implement bpf_jiffies64 inline. */
12628 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12629 		    insn->imm == BPF_FUNC_jiffies64) {
12630 			struct bpf_insn ld_jiffies_addr[2] = {
12631 				BPF_LD_IMM64(BPF_REG_0,
12632 					     (unsigned long)&jiffies),
12633 			};
12634 
12635 			insn_buf[0] = ld_jiffies_addr[0];
12636 			insn_buf[1] = ld_jiffies_addr[1];
12637 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12638 						  BPF_REG_0, 0);
12639 			cnt = 3;
12640 
12641 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12642 						       cnt);
12643 			if (!new_prog)
12644 				return -ENOMEM;
12645 
12646 			delta    += cnt - 1;
12647 			env->prog = prog = new_prog;
12648 			insn      = new_prog->insnsi + i + delta;
12649 			continue;
12650 		}
12651 
12652 patch_call_imm:
12653 		fn = env->ops->get_func_proto(insn->imm, env->prog);
12654 		/* all functions that have prototype and verifier allowed
12655 		 * programs to call them, must be real in-kernel functions
12656 		 */
12657 		if (!fn->func) {
12658 			verbose(env,
12659 				"kernel subsystem misconfigured func %s#%d\n",
12660 				func_id_name(insn->imm), insn->imm);
12661 			return -EFAULT;
12662 		}
12663 		insn->imm = fn->func - __bpf_call_base;
12664 	}
12665 
12666 	/* Since poke tab is now finalized, publish aux to tracker. */
12667 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12668 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12669 		if (!map_ptr->ops->map_poke_track ||
12670 		    !map_ptr->ops->map_poke_untrack ||
12671 		    !map_ptr->ops->map_poke_run) {
12672 			verbose(env, "bpf verifier is misconfigured\n");
12673 			return -EINVAL;
12674 		}
12675 
12676 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12677 		if (ret < 0) {
12678 			verbose(env, "tracking tail call prog failed\n");
12679 			return ret;
12680 		}
12681 	}
12682 
12683 	sort_kfunc_descs_by_imm(env->prog);
12684 
12685 	return 0;
12686 }
12687 
12688 static void free_states(struct bpf_verifier_env *env)
12689 {
12690 	struct bpf_verifier_state_list *sl, *sln;
12691 	int i;
12692 
12693 	sl = env->free_list;
12694 	while (sl) {
12695 		sln = sl->next;
12696 		free_verifier_state(&sl->state, false);
12697 		kfree(sl);
12698 		sl = sln;
12699 	}
12700 	env->free_list = NULL;
12701 
12702 	if (!env->explored_states)
12703 		return;
12704 
12705 	for (i = 0; i < state_htab_size(env); i++) {
12706 		sl = env->explored_states[i];
12707 
12708 		while (sl) {
12709 			sln = sl->next;
12710 			free_verifier_state(&sl->state, false);
12711 			kfree(sl);
12712 			sl = sln;
12713 		}
12714 		env->explored_states[i] = NULL;
12715 	}
12716 }
12717 
12718 /* The verifier is using insn_aux_data[] to store temporary data during
12719  * verification and to store information for passes that run after the
12720  * verification like dead code sanitization. do_check_common() for subprogram N
12721  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12722  * temporary data after do_check_common() finds that subprogram N cannot be
12723  * verified independently. pass_cnt counts the number of times
12724  * do_check_common() was run and insn->aux->seen tells the pass number
12725  * insn_aux_data was touched. These variables are compared to clear temporary
12726  * data from failed pass. For testing and experiments do_check_common() can be
12727  * run multiple times even when prior attempt to verify is unsuccessful.
12728  */
12729 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12730 {
12731 	struct bpf_insn *insn = env->prog->insnsi;
12732 	struct bpf_insn_aux_data *aux;
12733 	int i, class;
12734 
12735 	for (i = 0; i < env->prog->len; i++) {
12736 		class = BPF_CLASS(insn[i].code);
12737 		if (class != BPF_LDX && class != BPF_STX)
12738 			continue;
12739 		aux = &env->insn_aux_data[i];
12740 		if (aux->seen != env->pass_cnt)
12741 			continue;
12742 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12743 	}
12744 }
12745 
12746 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12747 {
12748 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12749 	struct bpf_verifier_state *state;
12750 	struct bpf_reg_state *regs;
12751 	int ret, i;
12752 
12753 	env->prev_linfo = NULL;
12754 	env->pass_cnt++;
12755 
12756 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12757 	if (!state)
12758 		return -ENOMEM;
12759 	state->curframe = 0;
12760 	state->speculative = false;
12761 	state->branches = 1;
12762 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12763 	if (!state->frame[0]) {
12764 		kfree(state);
12765 		return -ENOMEM;
12766 	}
12767 	env->cur_state = state;
12768 	init_func_state(env, state->frame[0],
12769 			BPF_MAIN_FUNC /* callsite */,
12770 			0 /* frameno */,
12771 			subprog);
12772 
12773 	regs = state->frame[state->curframe]->regs;
12774 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12775 		ret = btf_prepare_func_args(env, subprog, regs);
12776 		if (ret)
12777 			goto out;
12778 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12779 			if (regs[i].type == PTR_TO_CTX)
12780 				mark_reg_known_zero(env, regs, i);
12781 			else if (regs[i].type == SCALAR_VALUE)
12782 				mark_reg_unknown(env, regs, i);
12783 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12784 				const u32 mem_size = regs[i].mem_size;
12785 
12786 				mark_reg_known_zero(env, regs, i);
12787 				regs[i].mem_size = mem_size;
12788 				regs[i].id = ++env->id_gen;
12789 			}
12790 		}
12791 	} else {
12792 		/* 1st arg to a function */
12793 		regs[BPF_REG_1].type = PTR_TO_CTX;
12794 		mark_reg_known_zero(env, regs, BPF_REG_1);
12795 		ret = btf_check_subprog_arg_match(env, subprog, regs);
12796 		if (ret == -EFAULT)
12797 			/* unlikely verifier bug. abort.
12798 			 * ret == 0 and ret < 0 are sadly acceptable for
12799 			 * main() function due to backward compatibility.
12800 			 * Like socket filter program may be written as:
12801 			 * int bpf_prog(struct pt_regs *ctx)
12802 			 * and never dereference that ctx in the program.
12803 			 * 'struct pt_regs' is a type mismatch for socket
12804 			 * filter that should be using 'struct __sk_buff'.
12805 			 */
12806 			goto out;
12807 	}
12808 
12809 	ret = do_check(env);
12810 out:
12811 	/* check for NULL is necessary, since cur_state can be freed inside
12812 	 * do_check() under memory pressure.
12813 	 */
12814 	if (env->cur_state) {
12815 		free_verifier_state(env->cur_state, true);
12816 		env->cur_state = NULL;
12817 	}
12818 	while (!pop_stack(env, NULL, NULL, false));
12819 	if (!ret && pop_log)
12820 		bpf_vlog_reset(&env->log, 0);
12821 	free_states(env);
12822 	if (ret)
12823 		/* clean aux data in case subprog was rejected */
12824 		sanitize_insn_aux_data(env);
12825 	return ret;
12826 }
12827 
12828 /* Verify all global functions in a BPF program one by one based on their BTF.
12829  * All global functions must pass verification. Otherwise the whole program is rejected.
12830  * Consider:
12831  * int bar(int);
12832  * int foo(int f)
12833  * {
12834  *    return bar(f);
12835  * }
12836  * int bar(int b)
12837  * {
12838  *    ...
12839  * }
12840  * foo() will be verified first for R1=any_scalar_value. During verification it
12841  * will be assumed that bar() already verified successfully and call to bar()
12842  * from foo() will be checked for type match only. Later bar() will be verified
12843  * independently to check that it's safe for R1=any_scalar_value.
12844  */
12845 static int do_check_subprogs(struct bpf_verifier_env *env)
12846 {
12847 	struct bpf_prog_aux *aux = env->prog->aux;
12848 	int i, ret;
12849 
12850 	if (!aux->func_info)
12851 		return 0;
12852 
12853 	for (i = 1; i < env->subprog_cnt; i++) {
12854 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12855 			continue;
12856 		env->insn_idx = env->subprog_info[i].start;
12857 		WARN_ON_ONCE(env->insn_idx == 0);
12858 		ret = do_check_common(env, i);
12859 		if (ret) {
12860 			return ret;
12861 		} else if (env->log.level & BPF_LOG_LEVEL) {
12862 			verbose(env,
12863 				"Func#%d is safe for any args that match its prototype\n",
12864 				i);
12865 		}
12866 	}
12867 	return 0;
12868 }
12869 
12870 static int do_check_main(struct bpf_verifier_env *env)
12871 {
12872 	int ret;
12873 
12874 	env->insn_idx = 0;
12875 	ret = do_check_common(env, 0);
12876 	if (!ret)
12877 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12878 	return ret;
12879 }
12880 
12881 
12882 static void print_verification_stats(struct bpf_verifier_env *env)
12883 {
12884 	int i;
12885 
12886 	if (env->log.level & BPF_LOG_STATS) {
12887 		verbose(env, "verification time %lld usec\n",
12888 			div_u64(env->verification_time, 1000));
12889 		verbose(env, "stack depth ");
12890 		for (i = 0; i < env->subprog_cnt; i++) {
12891 			u32 depth = env->subprog_info[i].stack_depth;
12892 
12893 			verbose(env, "%d", depth);
12894 			if (i + 1 < env->subprog_cnt)
12895 				verbose(env, "+");
12896 		}
12897 		verbose(env, "\n");
12898 	}
12899 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12900 		"total_states %d peak_states %d mark_read %d\n",
12901 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12902 		env->max_states_per_insn, env->total_states,
12903 		env->peak_states, env->longest_mark_read_walk);
12904 }
12905 
12906 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12907 {
12908 	const struct btf_type *t, *func_proto;
12909 	const struct bpf_struct_ops *st_ops;
12910 	const struct btf_member *member;
12911 	struct bpf_prog *prog = env->prog;
12912 	u32 btf_id, member_idx;
12913 	const char *mname;
12914 
12915 	if (!prog->gpl_compatible) {
12916 		verbose(env, "struct ops programs must have a GPL compatible license\n");
12917 		return -EINVAL;
12918 	}
12919 
12920 	btf_id = prog->aux->attach_btf_id;
12921 	st_ops = bpf_struct_ops_find(btf_id);
12922 	if (!st_ops) {
12923 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12924 			btf_id);
12925 		return -ENOTSUPP;
12926 	}
12927 
12928 	t = st_ops->type;
12929 	member_idx = prog->expected_attach_type;
12930 	if (member_idx >= btf_type_vlen(t)) {
12931 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12932 			member_idx, st_ops->name);
12933 		return -EINVAL;
12934 	}
12935 
12936 	member = &btf_type_member(t)[member_idx];
12937 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12938 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12939 					       NULL);
12940 	if (!func_proto) {
12941 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12942 			mname, member_idx, st_ops->name);
12943 		return -EINVAL;
12944 	}
12945 
12946 	if (st_ops->check_member) {
12947 		int err = st_ops->check_member(t, member);
12948 
12949 		if (err) {
12950 			verbose(env, "attach to unsupported member %s of struct %s\n",
12951 				mname, st_ops->name);
12952 			return err;
12953 		}
12954 	}
12955 
12956 	prog->aux->attach_func_proto = func_proto;
12957 	prog->aux->attach_func_name = mname;
12958 	env->ops = st_ops->verifier_ops;
12959 
12960 	return 0;
12961 }
12962 #define SECURITY_PREFIX "security_"
12963 
12964 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12965 {
12966 	if (within_error_injection_list(addr) ||
12967 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12968 		return 0;
12969 
12970 	return -EINVAL;
12971 }
12972 
12973 /* list of non-sleepable functions that are otherwise on
12974  * ALLOW_ERROR_INJECTION list
12975  */
12976 BTF_SET_START(btf_non_sleepable_error_inject)
12977 /* Three functions below can be called from sleepable and non-sleepable context.
12978  * Assume non-sleepable from bpf safety point of view.
12979  */
12980 BTF_ID(func, __add_to_page_cache_locked)
12981 BTF_ID(func, should_fail_alloc_page)
12982 BTF_ID(func, should_failslab)
12983 BTF_SET_END(btf_non_sleepable_error_inject)
12984 
12985 static int check_non_sleepable_error_inject(u32 btf_id)
12986 {
12987 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12988 }
12989 
12990 int bpf_check_attach_target(struct bpf_verifier_log *log,
12991 			    const struct bpf_prog *prog,
12992 			    const struct bpf_prog *tgt_prog,
12993 			    u32 btf_id,
12994 			    struct bpf_attach_target_info *tgt_info)
12995 {
12996 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12997 	const char prefix[] = "btf_trace_";
12998 	int ret = 0, subprog = -1, i;
12999 	const struct btf_type *t;
13000 	bool conservative = true;
13001 	const char *tname;
13002 	struct btf *btf;
13003 	long addr = 0;
13004 
13005 	if (!btf_id) {
13006 		bpf_log(log, "Tracing programs must provide btf_id\n");
13007 		return -EINVAL;
13008 	}
13009 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13010 	if (!btf) {
13011 		bpf_log(log,
13012 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13013 		return -EINVAL;
13014 	}
13015 	t = btf_type_by_id(btf, btf_id);
13016 	if (!t) {
13017 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13018 		return -EINVAL;
13019 	}
13020 	tname = btf_name_by_offset(btf, t->name_off);
13021 	if (!tname) {
13022 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13023 		return -EINVAL;
13024 	}
13025 	if (tgt_prog) {
13026 		struct bpf_prog_aux *aux = tgt_prog->aux;
13027 
13028 		for (i = 0; i < aux->func_info_cnt; i++)
13029 			if (aux->func_info[i].type_id == btf_id) {
13030 				subprog = i;
13031 				break;
13032 			}
13033 		if (subprog == -1) {
13034 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13035 			return -EINVAL;
13036 		}
13037 		conservative = aux->func_info_aux[subprog].unreliable;
13038 		if (prog_extension) {
13039 			if (conservative) {
13040 				bpf_log(log,
13041 					"Cannot replace static functions\n");
13042 				return -EINVAL;
13043 			}
13044 			if (!prog->jit_requested) {
13045 				bpf_log(log,
13046 					"Extension programs should be JITed\n");
13047 				return -EINVAL;
13048 			}
13049 		}
13050 		if (!tgt_prog->jited) {
13051 			bpf_log(log, "Can attach to only JITed progs\n");
13052 			return -EINVAL;
13053 		}
13054 		if (tgt_prog->type == prog->type) {
13055 			/* Cannot fentry/fexit another fentry/fexit program.
13056 			 * Cannot attach program extension to another extension.
13057 			 * It's ok to attach fentry/fexit to extension program.
13058 			 */
13059 			bpf_log(log, "Cannot recursively attach\n");
13060 			return -EINVAL;
13061 		}
13062 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13063 		    prog_extension &&
13064 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13065 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13066 			/* Program extensions can extend all program types
13067 			 * except fentry/fexit. The reason is the following.
13068 			 * The fentry/fexit programs are used for performance
13069 			 * analysis, stats and can be attached to any program
13070 			 * type except themselves. When extension program is
13071 			 * replacing XDP function it is necessary to allow
13072 			 * performance analysis of all functions. Both original
13073 			 * XDP program and its program extension. Hence
13074 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13075 			 * allowed. If extending of fentry/fexit was allowed it
13076 			 * would be possible to create long call chain
13077 			 * fentry->extension->fentry->extension beyond
13078 			 * reasonable stack size. Hence extending fentry is not
13079 			 * allowed.
13080 			 */
13081 			bpf_log(log, "Cannot extend fentry/fexit\n");
13082 			return -EINVAL;
13083 		}
13084 	} else {
13085 		if (prog_extension) {
13086 			bpf_log(log, "Cannot replace kernel functions\n");
13087 			return -EINVAL;
13088 		}
13089 	}
13090 
13091 	switch (prog->expected_attach_type) {
13092 	case BPF_TRACE_RAW_TP:
13093 		if (tgt_prog) {
13094 			bpf_log(log,
13095 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13096 			return -EINVAL;
13097 		}
13098 		if (!btf_type_is_typedef(t)) {
13099 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13100 				btf_id);
13101 			return -EINVAL;
13102 		}
13103 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13104 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13105 				btf_id, tname);
13106 			return -EINVAL;
13107 		}
13108 		tname += sizeof(prefix) - 1;
13109 		t = btf_type_by_id(btf, t->type);
13110 		if (!btf_type_is_ptr(t))
13111 			/* should never happen in valid vmlinux build */
13112 			return -EINVAL;
13113 		t = btf_type_by_id(btf, t->type);
13114 		if (!btf_type_is_func_proto(t))
13115 			/* should never happen in valid vmlinux build */
13116 			return -EINVAL;
13117 
13118 		break;
13119 	case BPF_TRACE_ITER:
13120 		if (!btf_type_is_func(t)) {
13121 			bpf_log(log, "attach_btf_id %u is not a function\n",
13122 				btf_id);
13123 			return -EINVAL;
13124 		}
13125 		t = btf_type_by_id(btf, t->type);
13126 		if (!btf_type_is_func_proto(t))
13127 			return -EINVAL;
13128 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13129 		if (ret)
13130 			return ret;
13131 		break;
13132 	default:
13133 		if (!prog_extension)
13134 			return -EINVAL;
13135 		fallthrough;
13136 	case BPF_MODIFY_RETURN:
13137 	case BPF_LSM_MAC:
13138 	case BPF_TRACE_FENTRY:
13139 	case BPF_TRACE_FEXIT:
13140 		if (!btf_type_is_func(t)) {
13141 			bpf_log(log, "attach_btf_id %u is not a function\n",
13142 				btf_id);
13143 			return -EINVAL;
13144 		}
13145 		if (prog_extension &&
13146 		    btf_check_type_match(log, prog, btf, t))
13147 			return -EINVAL;
13148 		t = btf_type_by_id(btf, t->type);
13149 		if (!btf_type_is_func_proto(t))
13150 			return -EINVAL;
13151 
13152 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13153 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13154 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13155 			return -EINVAL;
13156 
13157 		if (tgt_prog && conservative)
13158 			t = NULL;
13159 
13160 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13161 		if (ret < 0)
13162 			return ret;
13163 
13164 		if (tgt_prog) {
13165 			if (subprog == 0)
13166 				addr = (long) tgt_prog->bpf_func;
13167 			else
13168 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13169 		} else {
13170 			addr = kallsyms_lookup_name(tname);
13171 			if (!addr) {
13172 				bpf_log(log,
13173 					"The address of function %s cannot be found\n",
13174 					tname);
13175 				return -ENOENT;
13176 			}
13177 		}
13178 
13179 		if (prog->aux->sleepable) {
13180 			ret = -EINVAL;
13181 			switch (prog->type) {
13182 			case BPF_PROG_TYPE_TRACING:
13183 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13184 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13185 				 */
13186 				if (!check_non_sleepable_error_inject(btf_id) &&
13187 				    within_error_injection_list(addr))
13188 					ret = 0;
13189 				break;
13190 			case BPF_PROG_TYPE_LSM:
13191 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13192 				 * Only some of them are sleepable.
13193 				 */
13194 				if (bpf_lsm_is_sleepable_hook(btf_id))
13195 					ret = 0;
13196 				break;
13197 			default:
13198 				break;
13199 			}
13200 			if (ret) {
13201 				bpf_log(log, "%s is not sleepable\n", tname);
13202 				return ret;
13203 			}
13204 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13205 			if (tgt_prog) {
13206 				bpf_log(log, "can't modify return codes of BPF programs\n");
13207 				return -EINVAL;
13208 			}
13209 			ret = check_attach_modify_return(addr, tname);
13210 			if (ret) {
13211 				bpf_log(log, "%s() is not modifiable\n", tname);
13212 				return ret;
13213 			}
13214 		}
13215 
13216 		break;
13217 	}
13218 	tgt_info->tgt_addr = addr;
13219 	tgt_info->tgt_name = tname;
13220 	tgt_info->tgt_type = t;
13221 	return 0;
13222 }
13223 
13224 BTF_SET_START(btf_id_deny)
13225 BTF_ID_UNUSED
13226 #ifdef CONFIG_SMP
13227 BTF_ID(func, migrate_disable)
13228 BTF_ID(func, migrate_enable)
13229 #endif
13230 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13231 BTF_ID(func, rcu_read_unlock_strict)
13232 #endif
13233 BTF_SET_END(btf_id_deny)
13234 
13235 static int check_attach_btf_id(struct bpf_verifier_env *env)
13236 {
13237 	struct bpf_prog *prog = env->prog;
13238 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13239 	struct bpf_attach_target_info tgt_info = {};
13240 	u32 btf_id = prog->aux->attach_btf_id;
13241 	struct bpf_trampoline *tr;
13242 	int ret;
13243 	u64 key;
13244 
13245 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13246 		if (prog->aux->sleepable)
13247 			/* attach_btf_id checked to be zero already */
13248 			return 0;
13249 		verbose(env, "Syscall programs can only be sleepable\n");
13250 		return -EINVAL;
13251 	}
13252 
13253 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13254 	    prog->type != BPF_PROG_TYPE_LSM) {
13255 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13256 		return -EINVAL;
13257 	}
13258 
13259 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13260 		return check_struct_ops_btf_id(env);
13261 
13262 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13263 	    prog->type != BPF_PROG_TYPE_LSM &&
13264 	    prog->type != BPF_PROG_TYPE_EXT)
13265 		return 0;
13266 
13267 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13268 	if (ret)
13269 		return ret;
13270 
13271 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13272 		/* to make freplace equivalent to their targets, they need to
13273 		 * inherit env->ops and expected_attach_type for the rest of the
13274 		 * verification
13275 		 */
13276 		env->ops = bpf_verifier_ops[tgt_prog->type];
13277 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13278 	}
13279 
13280 	/* store info about the attachment target that will be used later */
13281 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13282 	prog->aux->attach_func_name = tgt_info.tgt_name;
13283 
13284 	if (tgt_prog) {
13285 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13286 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13287 	}
13288 
13289 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13290 		prog->aux->attach_btf_trace = true;
13291 		return 0;
13292 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13293 		if (!bpf_iter_prog_supported(prog))
13294 			return -EINVAL;
13295 		return 0;
13296 	}
13297 
13298 	if (prog->type == BPF_PROG_TYPE_LSM) {
13299 		ret = bpf_lsm_verify_prog(&env->log, prog);
13300 		if (ret < 0)
13301 			return ret;
13302 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13303 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13304 		return -EINVAL;
13305 	}
13306 
13307 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13308 	tr = bpf_trampoline_get(key, &tgt_info);
13309 	if (!tr)
13310 		return -ENOMEM;
13311 
13312 	prog->aux->dst_trampoline = tr;
13313 	return 0;
13314 }
13315 
13316 struct btf *bpf_get_btf_vmlinux(void)
13317 {
13318 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13319 		mutex_lock(&bpf_verifier_lock);
13320 		if (!btf_vmlinux)
13321 			btf_vmlinux = btf_parse_vmlinux();
13322 		mutex_unlock(&bpf_verifier_lock);
13323 	}
13324 	return btf_vmlinux;
13325 }
13326 
13327 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13328 {
13329 	u64 start_time = ktime_get_ns();
13330 	struct bpf_verifier_env *env;
13331 	struct bpf_verifier_log *log;
13332 	int i, len, ret = -EINVAL;
13333 	bool is_priv;
13334 
13335 	/* no program is valid */
13336 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13337 		return -EINVAL;
13338 
13339 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13340 	 * allocate/free it every time bpf_check() is called
13341 	 */
13342 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13343 	if (!env)
13344 		return -ENOMEM;
13345 	log = &env->log;
13346 
13347 	len = (*prog)->len;
13348 	env->insn_aux_data =
13349 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13350 	ret = -ENOMEM;
13351 	if (!env->insn_aux_data)
13352 		goto err_free_env;
13353 	for (i = 0; i < len; i++)
13354 		env->insn_aux_data[i].orig_idx = i;
13355 	env->prog = *prog;
13356 	env->ops = bpf_verifier_ops[env->prog->type];
13357 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13358 	is_priv = bpf_capable();
13359 
13360 	bpf_get_btf_vmlinux();
13361 
13362 	/* grab the mutex to protect few globals used by verifier */
13363 	if (!is_priv)
13364 		mutex_lock(&bpf_verifier_lock);
13365 
13366 	if (attr->log_level || attr->log_buf || attr->log_size) {
13367 		/* user requested verbose verifier output
13368 		 * and supplied buffer to store the verification trace
13369 		 */
13370 		log->level = attr->log_level;
13371 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13372 		log->len_total = attr->log_size;
13373 
13374 		ret = -EINVAL;
13375 		/* log attributes have to be sane */
13376 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13377 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13378 			goto err_unlock;
13379 	}
13380 
13381 	if (IS_ERR(btf_vmlinux)) {
13382 		/* Either gcc or pahole or kernel are broken. */
13383 		verbose(env, "in-kernel BTF is malformed\n");
13384 		ret = PTR_ERR(btf_vmlinux);
13385 		goto skip_full_check;
13386 	}
13387 
13388 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13389 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13390 		env->strict_alignment = true;
13391 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13392 		env->strict_alignment = false;
13393 
13394 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13395 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13396 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13397 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13398 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13399 	env->bpf_capable = bpf_capable();
13400 
13401 	if (is_priv)
13402 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13403 
13404 	env->explored_states = kvcalloc(state_htab_size(env),
13405 				       sizeof(struct bpf_verifier_state_list *),
13406 				       GFP_USER);
13407 	ret = -ENOMEM;
13408 	if (!env->explored_states)
13409 		goto skip_full_check;
13410 
13411 	ret = add_subprog_and_kfunc(env);
13412 	if (ret < 0)
13413 		goto skip_full_check;
13414 
13415 	ret = check_subprogs(env);
13416 	if (ret < 0)
13417 		goto skip_full_check;
13418 
13419 	ret = check_btf_info(env, attr, uattr);
13420 	if (ret < 0)
13421 		goto skip_full_check;
13422 
13423 	ret = check_attach_btf_id(env);
13424 	if (ret)
13425 		goto skip_full_check;
13426 
13427 	ret = resolve_pseudo_ldimm64(env);
13428 	if (ret < 0)
13429 		goto skip_full_check;
13430 
13431 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
13432 		ret = bpf_prog_offload_verifier_prep(env->prog);
13433 		if (ret)
13434 			goto skip_full_check;
13435 	}
13436 
13437 	ret = check_cfg(env);
13438 	if (ret < 0)
13439 		goto skip_full_check;
13440 
13441 	ret = do_check_subprogs(env);
13442 	ret = ret ?: do_check_main(env);
13443 
13444 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13445 		ret = bpf_prog_offload_finalize(env);
13446 
13447 skip_full_check:
13448 	kvfree(env->explored_states);
13449 
13450 	if (ret == 0)
13451 		ret = check_max_stack_depth(env);
13452 
13453 	/* instruction rewrites happen after this point */
13454 	if (is_priv) {
13455 		if (ret == 0)
13456 			opt_hard_wire_dead_code_branches(env);
13457 		if (ret == 0)
13458 			ret = opt_remove_dead_code(env);
13459 		if (ret == 0)
13460 			ret = opt_remove_nops(env);
13461 	} else {
13462 		if (ret == 0)
13463 			sanitize_dead_code(env);
13464 	}
13465 
13466 	if (ret == 0)
13467 		/* program is valid, convert *(u32*)(ctx + off) accesses */
13468 		ret = convert_ctx_accesses(env);
13469 
13470 	if (ret == 0)
13471 		ret = do_misc_fixups(env);
13472 
13473 	/* do 32-bit optimization after insn patching has done so those patched
13474 	 * insns could be handled correctly.
13475 	 */
13476 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13477 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13478 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13479 								     : false;
13480 	}
13481 
13482 	if (ret == 0)
13483 		ret = fixup_call_args(env);
13484 
13485 	env->verification_time = ktime_get_ns() - start_time;
13486 	print_verification_stats(env);
13487 
13488 	if (log->level && bpf_verifier_log_full(log))
13489 		ret = -ENOSPC;
13490 	if (log->level && !log->ubuf) {
13491 		ret = -EFAULT;
13492 		goto err_release_maps;
13493 	}
13494 
13495 	if (ret)
13496 		goto err_release_maps;
13497 
13498 	if (env->used_map_cnt) {
13499 		/* if program passed verifier, update used_maps in bpf_prog_info */
13500 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13501 							  sizeof(env->used_maps[0]),
13502 							  GFP_KERNEL);
13503 
13504 		if (!env->prog->aux->used_maps) {
13505 			ret = -ENOMEM;
13506 			goto err_release_maps;
13507 		}
13508 
13509 		memcpy(env->prog->aux->used_maps, env->used_maps,
13510 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
13511 		env->prog->aux->used_map_cnt = env->used_map_cnt;
13512 	}
13513 	if (env->used_btf_cnt) {
13514 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
13515 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13516 							  sizeof(env->used_btfs[0]),
13517 							  GFP_KERNEL);
13518 		if (!env->prog->aux->used_btfs) {
13519 			ret = -ENOMEM;
13520 			goto err_release_maps;
13521 		}
13522 
13523 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
13524 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13525 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13526 	}
13527 	if (env->used_map_cnt || env->used_btf_cnt) {
13528 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
13529 		 * bpf_ld_imm64 instructions
13530 		 */
13531 		convert_pseudo_ld_imm64(env);
13532 	}
13533 
13534 	adjust_btf_func(env);
13535 
13536 err_release_maps:
13537 	if (!env->prog->aux->used_maps)
13538 		/* if we didn't copy map pointers into bpf_prog_info, release
13539 		 * them now. Otherwise free_used_maps() will release them.
13540 		 */
13541 		release_maps(env);
13542 	if (!env->prog->aux->used_btfs)
13543 		release_btfs(env);
13544 
13545 	/* extension progs temporarily inherit the attach_type of their targets
13546 	   for verification purposes, so set it back to zero before returning
13547 	 */
13548 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13549 		env->prog->expected_attach_type = 0;
13550 
13551 	*prog = env->prog;
13552 err_unlock:
13553 	if (!is_priv)
13554 		mutex_unlock(&bpf_verifier_lock);
13555 	vfree(env->insn_aux_data);
13556 err_free_env:
13557 	kfree(env);
13558 	return ret;
13559 }
13560