1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 195 { 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 197 } 198 199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 200 { 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 202 } 203 204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 205 const struct bpf_map *map, bool unpriv) 206 { 207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 208 unpriv |= bpf_map_ptr_unpriv(aux); 209 aux->map_ptr_state = (unsigned long)map | 210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 211 } 212 213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & BPF_MAP_KEY_POISON; 216 } 217 218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 219 { 220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 221 } 222 223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 226 } 227 228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 229 { 230 bool poisoned = bpf_map_key_poisoned(aux); 231 232 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 234 } 235 236 static bool bpf_pseudo_call(const struct bpf_insn *insn) 237 { 238 return insn->code == (BPF_JMP | BPF_CALL) && 239 insn->src_reg == BPF_PSEUDO_CALL; 240 } 241 242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 243 { 244 return insn->code == (BPF_JMP | BPF_CALL) && 245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 246 } 247 248 struct bpf_call_arg_meta { 249 struct bpf_map *map_ptr; 250 bool raw_mode; 251 bool pkt_access; 252 u8 release_regno; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 struct bpf_map_value_off_desc *kptr_off_desc; 266 u8 uninit_dynptr_regno; 267 }; 268 269 struct btf *btf_vmlinux; 270 271 static DEFINE_MUTEX(bpf_verifier_lock); 272 273 static const struct bpf_line_info * 274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 275 { 276 const struct bpf_line_info *linfo; 277 const struct bpf_prog *prog; 278 u32 i, nr_linfo; 279 280 prog = env->prog; 281 nr_linfo = prog->aux->nr_linfo; 282 283 if (!nr_linfo || insn_off >= prog->len) 284 return NULL; 285 286 linfo = prog->aux->linfo; 287 for (i = 1; i < nr_linfo; i++) 288 if (insn_off < linfo[i].insn_off) 289 break; 290 291 return &linfo[i - 1]; 292 } 293 294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 295 va_list args) 296 { 297 unsigned int n; 298 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 300 301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 302 "verifier log line truncated - local buffer too short\n"); 303 304 if (log->level == BPF_LOG_KERNEL) { 305 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 306 307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 308 return; 309 } 310 311 n = min(log->len_total - log->len_used - 1, n); 312 log->kbuf[n] = '\0'; 313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 314 log->len_used += n; 315 else 316 log->ubuf = NULL; 317 } 318 319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 320 { 321 char zero = 0; 322 323 if (!bpf_verifier_log_needed(log)) 324 return; 325 326 log->len_used = new_pos; 327 if (put_user(zero, log->ubuf + new_pos)) 328 log->ubuf = NULL; 329 } 330 331 /* log_level controls verbosity level of eBPF verifier. 332 * bpf_verifier_log_write() is used to dump the verification trace to the log, 333 * so the user can figure out what's wrong with the program 334 */ 335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 336 const char *fmt, ...) 337 { 338 va_list args; 339 340 if (!bpf_verifier_log_needed(&env->log)) 341 return; 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346 } 347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 348 349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 350 { 351 struct bpf_verifier_env *env = private_data; 352 va_list args; 353 354 if (!bpf_verifier_log_needed(&env->log)) 355 return; 356 357 va_start(args, fmt); 358 bpf_verifier_vlog(&env->log, fmt, args); 359 va_end(args); 360 } 361 362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 363 const char *fmt, ...) 364 { 365 va_list args; 366 367 if (!bpf_verifier_log_needed(log)) 368 return; 369 370 va_start(args, fmt); 371 bpf_verifier_vlog(log, fmt, args); 372 va_end(args); 373 } 374 EXPORT_SYMBOL_GPL(bpf_log); 375 376 static const char *ltrim(const char *s) 377 { 378 while (isspace(*s)) 379 s++; 380 381 return s; 382 } 383 384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 385 u32 insn_off, 386 const char *prefix_fmt, ...) 387 { 388 const struct bpf_line_info *linfo; 389 390 if (!bpf_verifier_log_needed(&env->log)) 391 return; 392 393 linfo = find_linfo(env, insn_off); 394 if (!linfo || linfo == env->prev_linfo) 395 return; 396 397 if (prefix_fmt) { 398 va_list args; 399 400 va_start(args, prefix_fmt); 401 bpf_verifier_vlog(&env->log, prefix_fmt, args); 402 va_end(args); 403 } 404 405 verbose(env, "%s\n", 406 ltrim(btf_name_by_offset(env->prog->aux->btf, 407 linfo->line_off))); 408 409 env->prev_linfo = linfo; 410 } 411 412 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 413 struct bpf_reg_state *reg, 414 struct tnum *range, const char *ctx, 415 const char *reg_name) 416 { 417 char tn_buf[48]; 418 419 verbose(env, "At %s the register %s ", ctx, reg_name); 420 if (!tnum_is_unknown(reg->var_off)) { 421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 422 verbose(env, "has value %s", tn_buf); 423 } else { 424 verbose(env, "has unknown scalar value"); 425 } 426 tnum_strn(tn_buf, sizeof(tn_buf), *range); 427 verbose(env, " should have been in %s\n", tn_buf); 428 } 429 430 static bool type_is_pkt_pointer(enum bpf_reg_type type) 431 { 432 type = base_type(type); 433 return type == PTR_TO_PACKET || 434 type == PTR_TO_PACKET_META; 435 } 436 437 static bool type_is_sk_pointer(enum bpf_reg_type type) 438 { 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_SOCK_COMMON || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_XDP_SOCK; 443 } 444 445 static bool reg_type_not_null(enum bpf_reg_type type) 446 { 447 return type == PTR_TO_SOCKET || 448 type == PTR_TO_TCP_SOCK || 449 type == PTR_TO_MAP_VALUE || 450 type == PTR_TO_MAP_KEY || 451 type == PTR_TO_SOCK_COMMON; 452 } 453 454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 455 { 456 return reg->type == PTR_TO_MAP_VALUE && 457 map_value_has_spin_lock(reg->map_ptr); 458 } 459 460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 461 { 462 type = base_type(type); 463 return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK || 464 type == PTR_TO_MEM || type == PTR_TO_BTF_ID; 465 } 466 467 static bool type_is_rdonly_mem(u32 type) 468 { 469 return type & MEM_RDONLY; 470 } 471 472 static bool type_may_be_null(u32 type) 473 { 474 return type & PTR_MAYBE_NULL; 475 } 476 477 static bool is_acquire_function(enum bpf_func_id func_id, 478 const struct bpf_map *map) 479 { 480 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 481 482 if (func_id == BPF_FUNC_sk_lookup_tcp || 483 func_id == BPF_FUNC_sk_lookup_udp || 484 func_id == BPF_FUNC_skc_lookup_tcp || 485 func_id == BPF_FUNC_ringbuf_reserve || 486 func_id == BPF_FUNC_kptr_xchg) 487 return true; 488 489 if (func_id == BPF_FUNC_map_lookup_elem && 490 (map_type == BPF_MAP_TYPE_SOCKMAP || 491 map_type == BPF_MAP_TYPE_SOCKHASH)) 492 return true; 493 494 return false; 495 } 496 497 static bool is_ptr_cast_function(enum bpf_func_id func_id) 498 { 499 return func_id == BPF_FUNC_tcp_sock || 500 func_id == BPF_FUNC_sk_fullsock || 501 func_id == BPF_FUNC_skc_to_tcp_sock || 502 func_id == BPF_FUNC_skc_to_tcp6_sock || 503 func_id == BPF_FUNC_skc_to_udp6_sock || 504 func_id == BPF_FUNC_skc_to_mptcp_sock || 505 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 506 func_id == BPF_FUNC_skc_to_tcp_request_sock; 507 } 508 509 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_dynptr_data; 512 } 513 514 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 515 const struct bpf_map *map) 516 { 517 int ref_obj_uses = 0; 518 519 if (is_ptr_cast_function(func_id)) 520 ref_obj_uses++; 521 if (is_acquire_function(func_id, map)) 522 ref_obj_uses++; 523 if (is_dynptr_ref_function(func_id)) 524 ref_obj_uses++; 525 526 return ref_obj_uses > 1; 527 } 528 529 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 530 { 531 return BPF_CLASS(insn->code) == BPF_STX && 532 BPF_MODE(insn->code) == BPF_ATOMIC && 533 insn->imm == BPF_CMPXCHG; 534 } 535 536 /* string representation of 'enum bpf_reg_type' 537 * 538 * Note that reg_type_str() can not appear more than once in a single verbose() 539 * statement. 540 */ 541 static const char *reg_type_str(struct bpf_verifier_env *env, 542 enum bpf_reg_type type) 543 { 544 char postfix[16] = {0}, prefix[32] = {0}; 545 static const char * const str[] = { 546 [NOT_INIT] = "?", 547 [SCALAR_VALUE] = "scalar", 548 [PTR_TO_CTX] = "ctx", 549 [CONST_PTR_TO_MAP] = "map_ptr", 550 [PTR_TO_MAP_VALUE] = "map_value", 551 [PTR_TO_STACK] = "fp", 552 [PTR_TO_PACKET] = "pkt", 553 [PTR_TO_PACKET_META] = "pkt_meta", 554 [PTR_TO_PACKET_END] = "pkt_end", 555 [PTR_TO_FLOW_KEYS] = "flow_keys", 556 [PTR_TO_SOCKET] = "sock", 557 [PTR_TO_SOCK_COMMON] = "sock_common", 558 [PTR_TO_TCP_SOCK] = "tcp_sock", 559 [PTR_TO_TP_BUFFER] = "tp_buffer", 560 [PTR_TO_XDP_SOCK] = "xdp_sock", 561 [PTR_TO_BTF_ID] = "ptr_", 562 [PTR_TO_MEM] = "mem", 563 [PTR_TO_BUF] = "buf", 564 [PTR_TO_FUNC] = "func", 565 [PTR_TO_MAP_KEY] = "map_key", 566 [PTR_TO_DYNPTR] = "dynptr_ptr", 567 }; 568 569 if (type & PTR_MAYBE_NULL) { 570 if (base_type(type) == PTR_TO_BTF_ID) 571 strncpy(postfix, "or_null_", 16); 572 else 573 strncpy(postfix, "_or_null", 16); 574 } 575 576 if (type & MEM_RDONLY) 577 strncpy(prefix, "rdonly_", 32); 578 if (type & MEM_ALLOC) 579 strncpy(prefix, "alloc_", 32); 580 if (type & MEM_USER) 581 strncpy(prefix, "user_", 32); 582 if (type & MEM_PERCPU) 583 strncpy(prefix, "percpu_", 32); 584 if (type & PTR_UNTRUSTED) 585 strncpy(prefix, "untrusted_", 32); 586 587 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 588 prefix, str[base_type(type)], postfix); 589 return env->type_str_buf; 590 } 591 592 static char slot_type_char[] = { 593 [STACK_INVALID] = '?', 594 [STACK_SPILL] = 'r', 595 [STACK_MISC] = 'm', 596 [STACK_ZERO] = '0', 597 [STACK_DYNPTR] = 'd', 598 }; 599 600 static void print_liveness(struct bpf_verifier_env *env, 601 enum bpf_reg_liveness live) 602 { 603 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 604 verbose(env, "_"); 605 if (live & REG_LIVE_READ) 606 verbose(env, "r"); 607 if (live & REG_LIVE_WRITTEN) 608 verbose(env, "w"); 609 if (live & REG_LIVE_DONE) 610 verbose(env, "D"); 611 } 612 613 static int get_spi(s32 off) 614 { 615 return (-off - 1) / BPF_REG_SIZE; 616 } 617 618 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 619 { 620 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 621 622 /* We need to check that slots between [spi - nr_slots + 1, spi] are 623 * within [0, allocated_stack). 624 * 625 * Please note that the spi grows downwards. For example, a dynptr 626 * takes the size of two stack slots; the first slot will be at 627 * spi and the second slot will be at spi - 1. 628 */ 629 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 630 } 631 632 static struct bpf_func_state *func(struct bpf_verifier_env *env, 633 const struct bpf_reg_state *reg) 634 { 635 struct bpf_verifier_state *cur = env->cur_state; 636 637 return cur->frame[reg->frameno]; 638 } 639 640 static const char *kernel_type_name(const struct btf* btf, u32 id) 641 { 642 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 643 } 644 645 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 646 { 647 env->scratched_regs |= 1U << regno; 648 } 649 650 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 651 { 652 env->scratched_stack_slots |= 1ULL << spi; 653 } 654 655 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 656 { 657 return (env->scratched_regs >> regno) & 1; 658 } 659 660 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 661 { 662 return (env->scratched_stack_slots >> regno) & 1; 663 } 664 665 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 666 { 667 return env->scratched_regs || env->scratched_stack_slots; 668 } 669 670 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 671 { 672 env->scratched_regs = 0U; 673 env->scratched_stack_slots = 0ULL; 674 } 675 676 /* Used for printing the entire verifier state. */ 677 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 678 { 679 env->scratched_regs = ~0U; 680 env->scratched_stack_slots = ~0ULL; 681 } 682 683 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 684 { 685 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 686 case DYNPTR_TYPE_LOCAL: 687 return BPF_DYNPTR_TYPE_LOCAL; 688 case DYNPTR_TYPE_RINGBUF: 689 return BPF_DYNPTR_TYPE_RINGBUF; 690 default: 691 return BPF_DYNPTR_TYPE_INVALID; 692 } 693 } 694 695 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 696 { 697 return type == BPF_DYNPTR_TYPE_RINGBUF; 698 } 699 700 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 701 enum bpf_arg_type arg_type, int insn_idx) 702 { 703 struct bpf_func_state *state = func(env, reg); 704 enum bpf_dynptr_type type; 705 int spi, i, id; 706 707 spi = get_spi(reg->off); 708 709 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 710 return -EINVAL; 711 712 for (i = 0; i < BPF_REG_SIZE; i++) { 713 state->stack[spi].slot_type[i] = STACK_DYNPTR; 714 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 715 } 716 717 type = arg_to_dynptr_type(arg_type); 718 if (type == BPF_DYNPTR_TYPE_INVALID) 719 return -EINVAL; 720 721 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 722 state->stack[spi].spilled_ptr.dynptr.type = type; 723 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 724 725 if (dynptr_type_refcounted(type)) { 726 /* The id is used to track proper releasing */ 727 id = acquire_reference_state(env, insn_idx); 728 if (id < 0) 729 return id; 730 731 state->stack[spi].spilled_ptr.id = id; 732 state->stack[spi - 1].spilled_ptr.id = id; 733 } 734 735 return 0; 736 } 737 738 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 739 { 740 struct bpf_func_state *state = func(env, reg); 741 int spi, i; 742 743 spi = get_spi(reg->off); 744 745 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 746 return -EINVAL; 747 748 for (i = 0; i < BPF_REG_SIZE; i++) { 749 state->stack[spi].slot_type[i] = STACK_INVALID; 750 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 751 } 752 753 /* Invalidate any slices associated with this dynptr */ 754 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 755 release_reference(env, state->stack[spi].spilled_ptr.id); 756 state->stack[spi].spilled_ptr.id = 0; 757 state->stack[spi - 1].spilled_ptr.id = 0; 758 } 759 760 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 761 state->stack[spi].spilled_ptr.dynptr.type = 0; 762 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 763 764 return 0; 765 } 766 767 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 768 { 769 struct bpf_func_state *state = func(env, reg); 770 int spi = get_spi(reg->off); 771 int i; 772 773 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 774 return true; 775 776 for (i = 0; i < BPF_REG_SIZE; i++) { 777 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 778 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 779 return false; 780 } 781 782 return true; 783 } 784 785 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, 786 struct bpf_reg_state *reg) 787 { 788 struct bpf_func_state *state = func(env, reg); 789 int spi = get_spi(reg->off); 790 int i; 791 792 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 793 !state->stack[spi].spilled_ptr.dynptr.first_slot) 794 return false; 795 796 for (i = 0; i < BPF_REG_SIZE; i++) { 797 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 798 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 799 return false; 800 } 801 802 return true; 803 } 804 805 bool is_dynptr_type_expected(struct bpf_verifier_env *env, 806 struct bpf_reg_state *reg, 807 enum bpf_arg_type arg_type) 808 { 809 struct bpf_func_state *state = func(env, reg); 810 enum bpf_dynptr_type dynptr_type; 811 int spi = get_spi(reg->off); 812 813 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 814 if (arg_type == ARG_PTR_TO_DYNPTR) 815 return true; 816 817 dynptr_type = arg_to_dynptr_type(arg_type); 818 819 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 820 } 821 822 /* The reg state of a pointer or a bounded scalar was saved when 823 * it was spilled to the stack. 824 */ 825 static bool is_spilled_reg(const struct bpf_stack_state *stack) 826 { 827 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 828 } 829 830 static void scrub_spilled_slot(u8 *stype) 831 { 832 if (*stype != STACK_INVALID) 833 *stype = STACK_MISC; 834 } 835 836 static void print_verifier_state(struct bpf_verifier_env *env, 837 const struct bpf_func_state *state, 838 bool print_all) 839 { 840 const struct bpf_reg_state *reg; 841 enum bpf_reg_type t; 842 int i; 843 844 if (state->frameno) 845 verbose(env, " frame%d:", state->frameno); 846 for (i = 0; i < MAX_BPF_REG; i++) { 847 reg = &state->regs[i]; 848 t = reg->type; 849 if (t == NOT_INIT) 850 continue; 851 if (!print_all && !reg_scratched(env, i)) 852 continue; 853 verbose(env, " R%d", i); 854 print_liveness(env, reg->live); 855 verbose(env, "="); 856 if (t == SCALAR_VALUE && reg->precise) 857 verbose(env, "P"); 858 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 859 tnum_is_const(reg->var_off)) { 860 /* reg->off should be 0 for SCALAR_VALUE */ 861 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 862 verbose(env, "%lld", reg->var_off.value + reg->off); 863 } else { 864 const char *sep = ""; 865 866 verbose(env, "%s", reg_type_str(env, t)); 867 if (base_type(t) == PTR_TO_BTF_ID) 868 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 869 verbose(env, "("); 870 /* 871 * _a stands for append, was shortened to avoid multiline statements below. 872 * This macro is used to output a comma separated list of attributes. 873 */ 874 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 875 876 if (reg->id) 877 verbose_a("id=%d", reg->id); 878 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 879 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 880 if (t != SCALAR_VALUE) 881 verbose_a("off=%d", reg->off); 882 if (type_is_pkt_pointer(t)) 883 verbose_a("r=%d", reg->range); 884 else if (base_type(t) == CONST_PTR_TO_MAP || 885 base_type(t) == PTR_TO_MAP_KEY || 886 base_type(t) == PTR_TO_MAP_VALUE) 887 verbose_a("ks=%d,vs=%d", 888 reg->map_ptr->key_size, 889 reg->map_ptr->value_size); 890 if (tnum_is_const(reg->var_off)) { 891 /* Typically an immediate SCALAR_VALUE, but 892 * could be a pointer whose offset is too big 893 * for reg->off 894 */ 895 verbose_a("imm=%llx", reg->var_off.value); 896 } else { 897 if (reg->smin_value != reg->umin_value && 898 reg->smin_value != S64_MIN) 899 verbose_a("smin=%lld", (long long)reg->smin_value); 900 if (reg->smax_value != reg->umax_value && 901 reg->smax_value != S64_MAX) 902 verbose_a("smax=%lld", (long long)reg->smax_value); 903 if (reg->umin_value != 0) 904 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 905 if (reg->umax_value != U64_MAX) 906 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 907 if (!tnum_is_unknown(reg->var_off)) { 908 char tn_buf[48]; 909 910 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 911 verbose_a("var_off=%s", tn_buf); 912 } 913 if (reg->s32_min_value != reg->smin_value && 914 reg->s32_min_value != S32_MIN) 915 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 916 if (reg->s32_max_value != reg->smax_value && 917 reg->s32_max_value != S32_MAX) 918 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 919 if (reg->u32_min_value != reg->umin_value && 920 reg->u32_min_value != U32_MIN) 921 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 922 if (reg->u32_max_value != reg->umax_value && 923 reg->u32_max_value != U32_MAX) 924 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 925 } 926 #undef verbose_a 927 928 verbose(env, ")"); 929 } 930 } 931 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 932 char types_buf[BPF_REG_SIZE + 1]; 933 bool valid = false; 934 int j; 935 936 for (j = 0; j < BPF_REG_SIZE; j++) { 937 if (state->stack[i].slot_type[j] != STACK_INVALID) 938 valid = true; 939 types_buf[j] = slot_type_char[ 940 state->stack[i].slot_type[j]]; 941 } 942 types_buf[BPF_REG_SIZE] = 0; 943 if (!valid) 944 continue; 945 if (!print_all && !stack_slot_scratched(env, i)) 946 continue; 947 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 948 print_liveness(env, state->stack[i].spilled_ptr.live); 949 if (is_spilled_reg(&state->stack[i])) { 950 reg = &state->stack[i].spilled_ptr; 951 t = reg->type; 952 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 953 if (t == SCALAR_VALUE && reg->precise) 954 verbose(env, "P"); 955 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 956 verbose(env, "%lld", reg->var_off.value + reg->off); 957 } else { 958 verbose(env, "=%s", types_buf); 959 } 960 } 961 if (state->acquired_refs && state->refs[0].id) { 962 verbose(env, " refs=%d", state->refs[0].id); 963 for (i = 1; i < state->acquired_refs; i++) 964 if (state->refs[i].id) 965 verbose(env, ",%d", state->refs[i].id); 966 } 967 if (state->in_callback_fn) 968 verbose(env, " cb"); 969 if (state->in_async_callback_fn) 970 verbose(env, " async_cb"); 971 verbose(env, "\n"); 972 mark_verifier_state_clean(env); 973 } 974 975 static inline u32 vlog_alignment(u32 pos) 976 { 977 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 978 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 979 } 980 981 static void print_insn_state(struct bpf_verifier_env *env, 982 const struct bpf_func_state *state) 983 { 984 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 985 /* remove new line character */ 986 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 987 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 988 } else { 989 verbose(env, "%d:", env->insn_idx); 990 } 991 print_verifier_state(env, state, false); 992 } 993 994 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 995 * small to hold src. This is different from krealloc since we don't want to preserve 996 * the contents of dst. 997 * 998 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 999 * not be allocated. 1000 */ 1001 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1002 { 1003 size_t bytes; 1004 1005 if (ZERO_OR_NULL_PTR(src)) 1006 goto out; 1007 1008 if (unlikely(check_mul_overflow(n, size, &bytes))) 1009 return NULL; 1010 1011 if (ksize(dst) < bytes) { 1012 kfree(dst); 1013 dst = kmalloc_track_caller(bytes, flags); 1014 if (!dst) 1015 return NULL; 1016 } 1017 1018 memcpy(dst, src, bytes); 1019 out: 1020 return dst ? dst : ZERO_SIZE_PTR; 1021 } 1022 1023 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1024 * small to hold new_n items. new items are zeroed out if the array grows. 1025 * 1026 * Contrary to krealloc_array, does not free arr if new_n is zero. 1027 */ 1028 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1029 { 1030 void *new_arr; 1031 1032 if (!new_n || old_n == new_n) 1033 goto out; 1034 1035 new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1036 if (!new_arr) { 1037 kfree(arr); 1038 return NULL; 1039 } 1040 arr = new_arr; 1041 1042 if (new_n > old_n) 1043 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1044 1045 out: 1046 return arr ? arr : ZERO_SIZE_PTR; 1047 } 1048 1049 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1050 { 1051 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1052 sizeof(struct bpf_reference_state), GFP_KERNEL); 1053 if (!dst->refs) 1054 return -ENOMEM; 1055 1056 dst->acquired_refs = src->acquired_refs; 1057 return 0; 1058 } 1059 1060 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1061 { 1062 size_t n = src->allocated_stack / BPF_REG_SIZE; 1063 1064 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1065 GFP_KERNEL); 1066 if (!dst->stack) 1067 return -ENOMEM; 1068 1069 dst->allocated_stack = src->allocated_stack; 1070 return 0; 1071 } 1072 1073 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1074 { 1075 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1076 sizeof(struct bpf_reference_state)); 1077 if (!state->refs) 1078 return -ENOMEM; 1079 1080 state->acquired_refs = n; 1081 return 0; 1082 } 1083 1084 static int grow_stack_state(struct bpf_func_state *state, int size) 1085 { 1086 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1087 1088 if (old_n >= n) 1089 return 0; 1090 1091 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1092 if (!state->stack) 1093 return -ENOMEM; 1094 1095 state->allocated_stack = size; 1096 return 0; 1097 } 1098 1099 /* Acquire a pointer id from the env and update the state->refs to include 1100 * this new pointer reference. 1101 * On success, returns a valid pointer id to associate with the register 1102 * On failure, returns a negative errno. 1103 */ 1104 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1105 { 1106 struct bpf_func_state *state = cur_func(env); 1107 int new_ofs = state->acquired_refs; 1108 int id, err; 1109 1110 err = resize_reference_state(state, state->acquired_refs + 1); 1111 if (err) 1112 return err; 1113 id = ++env->id_gen; 1114 state->refs[new_ofs].id = id; 1115 state->refs[new_ofs].insn_idx = insn_idx; 1116 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1117 1118 return id; 1119 } 1120 1121 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1122 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1123 { 1124 int i, last_idx; 1125 1126 last_idx = state->acquired_refs - 1; 1127 for (i = 0; i < state->acquired_refs; i++) { 1128 if (state->refs[i].id == ptr_id) { 1129 /* Cannot release caller references in callbacks */ 1130 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1131 return -EINVAL; 1132 if (last_idx && i != last_idx) 1133 memcpy(&state->refs[i], &state->refs[last_idx], 1134 sizeof(*state->refs)); 1135 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1136 state->acquired_refs--; 1137 return 0; 1138 } 1139 } 1140 return -EINVAL; 1141 } 1142 1143 static void free_func_state(struct bpf_func_state *state) 1144 { 1145 if (!state) 1146 return; 1147 kfree(state->refs); 1148 kfree(state->stack); 1149 kfree(state); 1150 } 1151 1152 static void clear_jmp_history(struct bpf_verifier_state *state) 1153 { 1154 kfree(state->jmp_history); 1155 state->jmp_history = NULL; 1156 state->jmp_history_cnt = 0; 1157 } 1158 1159 static void free_verifier_state(struct bpf_verifier_state *state, 1160 bool free_self) 1161 { 1162 int i; 1163 1164 for (i = 0; i <= state->curframe; i++) { 1165 free_func_state(state->frame[i]); 1166 state->frame[i] = NULL; 1167 } 1168 clear_jmp_history(state); 1169 if (free_self) 1170 kfree(state); 1171 } 1172 1173 /* copy verifier state from src to dst growing dst stack space 1174 * when necessary to accommodate larger src stack 1175 */ 1176 static int copy_func_state(struct bpf_func_state *dst, 1177 const struct bpf_func_state *src) 1178 { 1179 int err; 1180 1181 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1182 err = copy_reference_state(dst, src); 1183 if (err) 1184 return err; 1185 return copy_stack_state(dst, src); 1186 } 1187 1188 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1189 const struct bpf_verifier_state *src) 1190 { 1191 struct bpf_func_state *dst; 1192 int i, err; 1193 1194 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1195 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1196 GFP_USER); 1197 if (!dst_state->jmp_history) 1198 return -ENOMEM; 1199 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1200 1201 /* if dst has more stack frames then src frame, free them */ 1202 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1203 free_func_state(dst_state->frame[i]); 1204 dst_state->frame[i] = NULL; 1205 } 1206 dst_state->speculative = src->speculative; 1207 dst_state->curframe = src->curframe; 1208 dst_state->active_spin_lock = src->active_spin_lock; 1209 dst_state->branches = src->branches; 1210 dst_state->parent = src->parent; 1211 dst_state->first_insn_idx = src->first_insn_idx; 1212 dst_state->last_insn_idx = src->last_insn_idx; 1213 for (i = 0; i <= src->curframe; i++) { 1214 dst = dst_state->frame[i]; 1215 if (!dst) { 1216 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1217 if (!dst) 1218 return -ENOMEM; 1219 dst_state->frame[i] = dst; 1220 } 1221 err = copy_func_state(dst, src->frame[i]); 1222 if (err) 1223 return err; 1224 } 1225 return 0; 1226 } 1227 1228 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1229 { 1230 while (st) { 1231 u32 br = --st->branches; 1232 1233 /* WARN_ON(br > 1) technically makes sense here, 1234 * but see comment in push_stack(), hence: 1235 */ 1236 WARN_ONCE((int)br < 0, 1237 "BUG update_branch_counts:branches_to_explore=%d\n", 1238 br); 1239 if (br) 1240 break; 1241 st = st->parent; 1242 } 1243 } 1244 1245 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1246 int *insn_idx, bool pop_log) 1247 { 1248 struct bpf_verifier_state *cur = env->cur_state; 1249 struct bpf_verifier_stack_elem *elem, *head = env->head; 1250 int err; 1251 1252 if (env->head == NULL) 1253 return -ENOENT; 1254 1255 if (cur) { 1256 err = copy_verifier_state(cur, &head->st); 1257 if (err) 1258 return err; 1259 } 1260 if (pop_log) 1261 bpf_vlog_reset(&env->log, head->log_pos); 1262 if (insn_idx) 1263 *insn_idx = head->insn_idx; 1264 if (prev_insn_idx) 1265 *prev_insn_idx = head->prev_insn_idx; 1266 elem = head->next; 1267 free_verifier_state(&head->st, false); 1268 kfree(head); 1269 env->head = elem; 1270 env->stack_size--; 1271 return 0; 1272 } 1273 1274 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1275 int insn_idx, int prev_insn_idx, 1276 bool speculative) 1277 { 1278 struct bpf_verifier_state *cur = env->cur_state; 1279 struct bpf_verifier_stack_elem *elem; 1280 int err; 1281 1282 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1283 if (!elem) 1284 goto err; 1285 1286 elem->insn_idx = insn_idx; 1287 elem->prev_insn_idx = prev_insn_idx; 1288 elem->next = env->head; 1289 elem->log_pos = env->log.len_used; 1290 env->head = elem; 1291 env->stack_size++; 1292 err = copy_verifier_state(&elem->st, cur); 1293 if (err) 1294 goto err; 1295 elem->st.speculative |= speculative; 1296 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1297 verbose(env, "The sequence of %d jumps is too complex.\n", 1298 env->stack_size); 1299 goto err; 1300 } 1301 if (elem->st.parent) { 1302 ++elem->st.parent->branches; 1303 /* WARN_ON(branches > 2) technically makes sense here, 1304 * but 1305 * 1. speculative states will bump 'branches' for non-branch 1306 * instructions 1307 * 2. is_state_visited() heuristics may decide not to create 1308 * a new state for a sequence of branches and all such current 1309 * and cloned states will be pointing to a single parent state 1310 * which might have large 'branches' count. 1311 */ 1312 } 1313 return &elem->st; 1314 err: 1315 free_verifier_state(env->cur_state, true); 1316 env->cur_state = NULL; 1317 /* pop all elements and return */ 1318 while (!pop_stack(env, NULL, NULL, false)); 1319 return NULL; 1320 } 1321 1322 #define CALLER_SAVED_REGS 6 1323 static const int caller_saved[CALLER_SAVED_REGS] = { 1324 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1325 }; 1326 1327 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1328 struct bpf_reg_state *reg); 1329 1330 /* This helper doesn't clear reg->id */ 1331 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1332 { 1333 reg->var_off = tnum_const(imm); 1334 reg->smin_value = (s64)imm; 1335 reg->smax_value = (s64)imm; 1336 reg->umin_value = imm; 1337 reg->umax_value = imm; 1338 1339 reg->s32_min_value = (s32)imm; 1340 reg->s32_max_value = (s32)imm; 1341 reg->u32_min_value = (u32)imm; 1342 reg->u32_max_value = (u32)imm; 1343 } 1344 1345 /* Mark the unknown part of a register (variable offset or scalar value) as 1346 * known to have the value @imm. 1347 */ 1348 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1349 { 1350 /* Clear id, off, and union(map_ptr, range) */ 1351 memset(((u8 *)reg) + sizeof(reg->type), 0, 1352 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1353 ___mark_reg_known(reg, imm); 1354 } 1355 1356 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1357 { 1358 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1359 reg->s32_min_value = (s32)imm; 1360 reg->s32_max_value = (s32)imm; 1361 reg->u32_min_value = (u32)imm; 1362 reg->u32_max_value = (u32)imm; 1363 } 1364 1365 /* Mark the 'variable offset' part of a register as zero. This should be 1366 * used only on registers holding a pointer type. 1367 */ 1368 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1369 { 1370 __mark_reg_known(reg, 0); 1371 } 1372 1373 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1374 { 1375 __mark_reg_known(reg, 0); 1376 reg->type = SCALAR_VALUE; 1377 } 1378 1379 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1380 struct bpf_reg_state *regs, u32 regno) 1381 { 1382 if (WARN_ON(regno >= MAX_BPF_REG)) { 1383 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1384 /* Something bad happened, let's kill all regs */ 1385 for (regno = 0; regno < MAX_BPF_REG; regno++) 1386 __mark_reg_not_init(env, regs + regno); 1387 return; 1388 } 1389 __mark_reg_known_zero(regs + regno); 1390 } 1391 1392 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1393 { 1394 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1395 const struct bpf_map *map = reg->map_ptr; 1396 1397 if (map->inner_map_meta) { 1398 reg->type = CONST_PTR_TO_MAP; 1399 reg->map_ptr = map->inner_map_meta; 1400 /* transfer reg's id which is unique for every map_lookup_elem 1401 * as UID of the inner map. 1402 */ 1403 if (map_value_has_timer(map->inner_map_meta)) 1404 reg->map_uid = reg->id; 1405 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1406 reg->type = PTR_TO_XDP_SOCK; 1407 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1408 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1409 reg->type = PTR_TO_SOCKET; 1410 } else { 1411 reg->type = PTR_TO_MAP_VALUE; 1412 } 1413 return; 1414 } 1415 1416 reg->type &= ~PTR_MAYBE_NULL; 1417 } 1418 1419 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1420 { 1421 return type_is_pkt_pointer(reg->type); 1422 } 1423 1424 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1425 { 1426 return reg_is_pkt_pointer(reg) || 1427 reg->type == PTR_TO_PACKET_END; 1428 } 1429 1430 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1431 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1432 enum bpf_reg_type which) 1433 { 1434 /* The register can already have a range from prior markings. 1435 * This is fine as long as it hasn't been advanced from its 1436 * origin. 1437 */ 1438 return reg->type == which && 1439 reg->id == 0 && 1440 reg->off == 0 && 1441 tnum_equals_const(reg->var_off, 0); 1442 } 1443 1444 /* Reset the min/max bounds of a register */ 1445 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1446 { 1447 reg->smin_value = S64_MIN; 1448 reg->smax_value = S64_MAX; 1449 reg->umin_value = 0; 1450 reg->umax_value = U64_MAX; 1451 1452 reg->s32_min_value = S32_MIN; 1453 reg->s32_max_value = S32_MAX; 1454 reg->u32_min_value = 0; 1455 reg->u32_max_value = U32_MAX; 1456 } 1457 1458 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1459 { 1460 reg->smin_value = S64_MIN; 1461 reg->smax_value = S64_MAX; 1462 reg->umin_value = 0; 1463 reg->umax_value = U64_MAX; 1464 } 1465 1466 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1467 { 1468 reg->s32_min_value = S32_MIN; 1469 reg->s32_max_value = S32_MAX; 1470 reg->u32_min_value = 0; 1471 reg->u32_max_value = U32_MAX; 1472 } 1473 1474 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1475 { 1476 struct tnum var32_off = tnum_subreg(reg->var_off); 1477 1478 /* min signed is max(sign bit) | min(other bits) */ 1479 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1480 var32_off.value | (var32_off.mask & S32_MIN)); 1481 /* max signed is min(sign bit) | max(other bits) */ 1482 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1483 var32_off.value | (var32_off.mask & S32_MAX)); 1484 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1485 reg->u32_max_value = min(reg->u32_max_value, 1486 (u32)(var32_off.value | var32_off.mask)); 1487 } 1488 1489 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1490 { 1491 /* min signed is max(sign bit) | min(other bits) */ 1492 reg->smin_value = max_t(s64, reg->smin_value, 1493 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1494 /* max signed is min(sign bit) | max(other bits) */ 1495 reg->smax_value = min_t(s64, reg->smax_value, 1496 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1497 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1498 reg->umax_value = min(reg->umax_value, 1499 reg->var_off.value | reg->var_off.mask); 1500 } 1501 1502 static void __update_reg_bounds(struct bpf_reg_state *reg) 1503 { 1504 __update_reg32_bounds(reg); 1505 __update_reg64_bounds(reg); 1506 } 1507 1508 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1509 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1510 { 1511 /* Learn sign from signed bounds. 1512 * If we cannot cross the sign boundary, then signed and unsigned bounds 1513 * are the same, so combine. This works even in the negative case, e.g. 1514 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1515 */ 1516 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1517 reg->s32_min_value = reg->u32_min_value = 1518 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1519 reg->s32_max_value = reg->u32_max_value = 1520 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1521 return; 1522 } 1523 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1524 * boundary, so we must be careful. 1525 */ 1526 if ((s32)reg->u32_max_value >= 0) { 1527 /* Positive. We can't learn anything from the smin, but smax 1528 * is positive, hence safe. 1529 */ 1530 reg->s32_min_value = reg->u32_min_value; 1531 reg->s32_max_value = reg->u32_max_value = 1532 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1533 } else if ((s32)reg->u32_min_value < 0) { 1534 /* Negative. We can't learn anything from the smax, but smin 1535 * is negative, hence safe. 1536 */ 1537 reg->s32_min_value = reg->u32_min_value = 1538 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1539 reg->s32_max_value = reg->u32_max_value; 1540 } 1541 } 1542 1543 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1544 { 1545 /* Learn sign from signed bounds. 1546 * If we cannot cross the sign boundary, then signed and unsigned bounds 1547 * are the same, so combine. This works even in the negative case, e.g. 1548 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1549 */ 1550 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1551 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1552 reg->umin_value); 1553 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1554 reg->umax_value); 1555 return; 1556 } 1557 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1558 * boundary, so we must be careful. 1559 */ 1560 if ((s64)reg->umax_value >= 0) { 1561 /* Positive. We can't learn anything from the smin, but smax 1562 * is positive, hence safe. 1563 */ 1564 reg->smin_value = reg->umin_value; 1565 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1566 reg->umax_value); 1567 } else if ((s64)reg->umin_value < 0) { 1568 /* Negative. We can't learn anything from the smax, but smin 1569 * is negative, hence safe. 1570 */ 1571 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1572 reg->umin_value); 1573 reg->smax_value = reg->umax_value; 1574 } 1575 } 1576 1577 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1578 { 1579 __reg32_deduce_bounds(reg); 1580 __reg64_deduce_bounds(reg); 1581 } 1582 1583 /* Attempts to improve var_off based on unsigned min/max information */ 1584 static void __reg_bound_offset(struct bpf_reg_state *reg) 1585 { 1586 struct tnum var64_off = tnum_intersect(reg->var_off, 1587 tnum_range(reg->umin_value, 1588 reg->umax_value)); 1589 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1590 tnum_range(reg->u32_min_value, 1591 reg->u32_max_value)); 1592 1593 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1594 } 1595 1596 static void reg_bounds_sync(struct bpf_reg_state *reg) 1597 { 1598 /* We might have learned new bounds from the var_off. */ 1599 __update_reg_bounds(reg); 1600 /* We might have learned something about the sign bit. */ 1601 __reg_deduce_bounds(reg); 1602 /* We might have learned some bits from the bounds. */ 1603 __reg_bound_offset(reg); 1604 /* Intersecting with the old var_off might have improved our bounds 1605 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1606 * then new var_off is (0; 0x7f...fc) which improves our umax. 1607 */ 1608 __update_reg_bounds(reg); 1609 } 1610 1611 static bool __reg32_bound_s64(s32 a) 1612 { 1613 return a >= 0 && a <= S32_MAX; 1614 } 1615 1616 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1617 { 1618 reg->umin_value = reg->u32_min_value; 1619 reg->umax_value = reg->u32_max_value; 1620 1621 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1622 * be positive otherwise set to worse case bounds and refine later 1623 * from tnum. 1624 */ 1625 if (__reg32_bound_s64(reg->s32_min_value) && 1626 __reg32_bound_s64(reg->s32_max_value)) { 1627 reg->smin_value = reg->s32_min_value; 1628 reg->smax_value = reg->s32_max_value; 1629 } else { 1630 reg->smin_value = 0; 1631 reg->smax_value = U32_MAX; 1632 } 1633 } 1634 1635 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1636 { 1637 /* special case when 64-bit register has upper 32-bit register 1638 * zeroed. Typically happens after zext or <<32, >>32 sequence 1639 * allowing us to use 32-bit bounds directly, 1640 */ 1641 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1642 __reg_assign_32_into_64(reg); 1643 } else { 1644 /* Otherwise the best we can do is push lower 32bit known and 1645 * unknown bits into register (var_off set from jmp logic) 1646 * then learn as much as possible from the 64-bit tnum 1647 * known and unknown bits. The previous smin/smax bounds are 1648 * invalid here because of jmp32 compare so mark them unknown 1649 * so they do not impact tnum bounds calculation. 1650 */ 1651 __mark_reg64_unbounded(reg); 1652 } 1653 reg_bounds_sync(reg); 1654 } 1655 1656 static bool __reg64_bound_s32(s64 a) 1657 { 1658 return a >= S32_MIN && a <= S32_MAX; 1659 } 1660 1661 static bool __reg64_bound_u32(u64 a) 1662 { 1663 return a >= U32_MIN && a <= U32_MAX; 1664 } 1665 1666 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1667 { 1668 __mark_reg32_unbounded(reg); 1669 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1670 reg->s32_min_value = (s32)reg->smin_value; 1671 reg->s32_max_value = (s32)reg->smax_value; 1672 } 1673 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1674 reg->u32_min_value = (u32)reg->umin_value; 1675 reg->u32_max_value = (u32)reg->umax_value; 1676 } 1677 reg_bounds_sync(reg); 1678 } 1679 1680 /* Mark a register as having a completely unknown (scalar) value. */ 1681 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1682 struct bpf_reg_state *reg) 1683 { 1684 /* 1685 * Clear type, id, off, and union(map_ptr, range) and 1686 * padding between 'type' and union 1687 */ 1688 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1689 reg->type = SCALAR_VALUE; 1690 reg->var_off = tnum_unknown; 1691 reg->frameno = 0; 1692 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1693 __mark_reg_unbounded(reg); 1694 } 1695 1696 static void mark_reg_unknown(struct bpf_verifier_env *env, 1697 struct bpf_reg_state *regs, u32 regno) 1698 { 1699 if (WARN_ON(regno >= MAX_BPF_REG)) { 1700 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1701 /* Something bad happened, let's kill all regs except FP */ 1702 for (regno = 0; regno < BPF_REG_FP; regno++) 1703 __mark_reg_not_init(env, regs + regno); 1704 return; 1705 } 1706 __mark_reg_unknown(env, regs + regno); 1707 } 1708 1709 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1710 struct bpf_reg_state *reg) 1711 { 1712 __mark_reg_unknown(env, reg); 1713 reg->type = NOT_INIT; 1714 } 1715 1716 static void mark_reg_not_init(struct bpf_verifier_env *env, 1717 struct bpf_reg_state *regs, u32 regno) 1718 { 1719 if (WARN_ON(regno >= MAX_BPF_REG)) { 1720 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1721 /* Something bad happened, let's kill all regs except FP */ 1722 for (regno = 0; regno < BPF_REG_FP; regno++) 1723 __mark_reg_not_init(env, regs + regno); 1724 return; 1725 } 1726 __mark_reg_not_init(env, regs + regno); 1727 } 1728 1729 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1730 struct bpf_reg_state *regs, u32 regno, 1731 enum bpf_reg_type reg_type, 1732 struct btf *btf, u32 btf_id, 1733 enum bpf_type_flag flag) 1734 { 1735 if (reg_type == SCALAR_VALUE) { 1736 mark_reg_unknown(env, regs, regno); 1737 return; 1738 } 1739 mark_reg_known_zero(env, regs, regno); 1740 regs[regno].type = PTR_TO_BTF_ID | flag; 1741 regs[regno].btf = btf; 1742 regs[regno].btf_id = btf_id; 1743 } 1744 1745 #define DEF_NOT_SUBREG (0) 1746 static void init_reg_state(struct bpf_verifier_env *env, 1747 struct bpf_func_state *state) 1748 { 1749 struct bpf_reg_state *regs = state->regs; 1750 int i; 1751 1752 for (i = 0; i < MAX_BPF_REG; i++) { 1753 mark_reg_not_init(env, regs, i); 1754 regs[i].live = REG_LIVE_NONE; 1755 regs[i].parent = NULL; 1756 regs[i].subreg_def = DEF_NOT_SUBREG; 1757 } 1758 1759 /* frame pointer */ 1760 regs[BPF_REG_FP].type = PTR_TO_STACK; 1761 mark_reg_known_zero(env, regs, BPF_REG_FP); 1762 regs[BPF_REG_FP].frameno = state->frameno; 1763 } 1764 1765 #define BPF_MAIN_FUNC (-1) 1766 static void init_func_state(struct bpf_verifier_env *env, 1767 struct bpf_func_state *state, 1768 int callsite, int frameno, int subprogno) 1769 { 1770 state->callsite = callsite; 1771 state->frameno = frameno; 1772 state->subprogno = subprogno; 1773 state->callback_ret_range = tnum_range(0, 0); 1774 init_reg_state(env, state); 1775 mark_verifier_state_scratched(env); 1776 } 1777 1778 /* Similar to push_stack(), but for async callbacks */ 1779 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1780 int insn_idx, int prev_insn_idx, 1781 int subprog) 1782 { 1783 struct bpf_verifier_stack_elem *elem; 1784 struct bpf_func_state *frame; 1785 1786 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1787 if (!elem) 1788 goto err; 1789 1790 elem->insn_idx = insn_idx; 1791 elem->prev_insn_idx = prev_insn_idx; 1792 elem->next = env->head; 1793 elem->log_pos = env->log.len_used; 1794 env->head = elem; 1795 env->stack_size++; 1796 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1797 verbose(env, 1798 "The sequence of %d jumps is too complex for async cb.\n", 1799 env->stack_size); 1800 goto err; 1801 } 1802 /* Unlike push_stack() do not copy_verifier_state(). 1803 * The caller state doesn't matter. 1804 * This is async callback. It starts in a fresh stack. 1805 * Initialize it similar to do_check_common(). 1806 */ 1807 elem->st.branches = 1; 1808 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1809 if (!frame) 1810 goto err; 1811 init_func_state(env, frame, 1812 BPF_MAIN_FUNC /* callsite */, 1813 0 /* frameno within this callchain */, 1814 subprog /* subprog number within this prog */); 1815 elem->st.frame[0] = frame; 1816 return &elem->st; 1817 err: 1818 free_verifier_state(env->cur_state, true); 1819 env->cur_state = NULL; 1820 /* pop all elements and return */ 1821 while (!pop_stack(env, NULL, NULL, false)); 1822 return NULL; 1823 } 1824 1825 1826 enum reg_arg_type { 1827 SRC_OP, /* register is used as source operand */ 1828 DST_OP, /* register is used as destination operand */ 1829 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1830 }; 1831 1832 static int cmp_subprogs(const void *a, const void *b) 1833 { 1834 return ((struct bpf_subprog_info *)a)->start - 1835 ((struct bpf_subprog_info *)b)->start; 1836 } 1837 1838 static int find_subprog(struct bpf_verifier_env *env, int off) 1839 { 1840 struct bpf_subprog_info *p; 1841 1842 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1843 sizeof(env->subprog_info[0]), cmp_subprogs); 1844 if (!p) 1845 return -ENOENT; 1846 return p - env->subprog_info; 1847 1848 } 1849 1850 static int add_subprog(struct bpf_verifier_env *env, int off) 1851 { 1852 int insn_cnt = env->prog->len; 1853 int ret; 1854 1855 if (off >= insn_cnt || off < 0) { 1856 verbose(env, "call to invalid destination\n"); 1857 return -EINVAL; 1858 } 1859 ret = find_subprog(env, off); 1860 if (ret >= 0) 1861 return ret; 1862 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1863 verbose(env, "too many subprograms\n"); 1864 return -E2BIG; 1865 } 1866 /* determine subprog starts. The end is one before the next starts */ 1867 env->subprog_info[env->subprog_cnt++].start = off; 1868 sort(env->subprog_info, env->subprog_cnt, 1869 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1870 return env->subprog_cnt - 1; 1871 } 1872 1873 #define MAX_KFUNC_DESCS 256 1874 #define MAX_KFUNC_BTFS 256 1875 1876 struct bpf_kfunc_desc { 1877 struct btf_func_model func_model; 1878 u32 func_id; 1879 s32 imm; 1880 u16 offset; 1881 }; 1882 1883 struct bpf_kfunc_btf { 1884 struct btf *btf; 1885 struct module *module; 1886 u16 offset; 1887 }; 1888 1889 struct bpf_kfunc_desc_tab { 1890 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1891 u32 nr_descs; 1892 }; 1893 1894 struct bpf_kfunc_btf_tab { 1895 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1896 u32 nr_descs; 1897 }; 1898 1899 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1900 { 1901 const struct bpf_kfunc_desc *d0 = a; 1902 const struct bpf_kfunc_desc *d1 = b; 1903 1904 /* func_id is not greater than BTF_MAX_TYPE */ 1905 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1906 } 1907 1908 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1909 { 1910 const struct bpf_kfunc_btf *d0 = a; 1911 const struct bpf_kfunc_btf *d1 = b; 1912 1913 return d0->offset - d1->offset; 1914 } 1915 1916 static const struct bpf_kfunc_desc * 1917 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1918 { 1919 struct bpf_kfunc_desc desc = { 1920 .func_id = func_id, 1921 .offset = offset, 1922 }; 1923 struct bpf_kfunc_desc_tab *tab; 1924 1925 tab = prog->aux->kfunc_tab; 1926 return bsearch(&desc, tab->descs, tab->nr_descs, 1927 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1928 } 1929 1930 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1931 s16 offset) 1932 { 1933 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1934 struct bpf_kfunc_btf_tab *tab; 1935 struct bpf_kfunc_btf *b; 1936 struct module *mod; 1937 struct btf *btf; 1938 int btf_fd; 1939 1940 tab = env->prog->aux->kfunc_btf_tab; 1941 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1942 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1943 if (!b) { 1944 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1945 verbose(env, "too many different module BTFs\n"); 1946 return ERR_PTR(-E2BIG); 1947 } 1948 1949 if (bpfptr_is_null(env->fd_array)) { 1950 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1951 return ERR_PTR(-EPROTO); 1952 } 1953 1954 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1955 offset * sizeof(btf_fd), 1956 sizeof(btf_fd))) 1957 return ERR_PTR(-EFAULT); 1958 1959 btf = btf_get_by_fd(btf_fd); 1960 if (IS_ERR(btf)) { 1961 verbose(env, "invalid module BTF fd specified\n"); 1962 return btf; 1963 } 1964 1965 if (!btf_is_module(btf)) { 1966 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1967 btf_put(btf); 1968 return ERR_PTR(-EINVAL); 1969 } 1970 1971 mod = btf_try_get_module(btf); 1972 if (!mod) { 1973 btf_put(btf); 1974 return ERR_PTR(-ENXIO); 1975 } 1976 1977 b = &tab->descs[tab->nr_descs++]; 1978 b->btf = btf; 1979 b->module = mod; 1980 b->offset = offset; 1981 1982 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1983 kfunc_btf_cmp_by_off, NULL); 1984 } 1985 return b->btf; 1986 } 1987 1988 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1989 { 1990 if (!tab) 1991 return; 1992 1993 while (tab->nr_descs--) { 1994 module_put(tab->descs[tab->nr_descs].module); 1995 btf_put(tab->descs[tab->nr_descs].btf); 1996 } 1997 kfree(tab); 1998 } 1999 2000 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2001 { 2002 if (offset) { 2003 if (offset < 0) { 2004 /* In the future, this can be allowed to increase limit 2005 * of fd index into fd_array, interpreted as u16. 2006 */ 2007 verbose(env, "negative offset disallowed for kernel module function call\n"); 2008 return ERR_PTR(-EINVAL); 2009 } 2010 2011 return __find_kfunc_desc_btf(env, offset); 2012 } 2013 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2014 } 2015 2016 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2017 { 2018 const struct btf_type *func, *func_proto; 2019 struct bpf_kfunc_btf_tab *btf_tab; 2020 struct bpf_kfunc_desc_tab *tab; 2021 struct bpf_prog_aux *prog_aux; 2022 struct bpf_kfunc_desc *desc; 2023 const char *func_name; 2024 struct btf *desc_btf; 2025 unsigned long call_imm; 2026 unsigned long addr; 2027 int err; 2028 2029 prog_aux = env->prog->aux; 2030 tab = prog_aux->kfunc_tab; 2031 btf_tab = prog_aux->kfunc_btf_tab; 2032 if (!tab) { 2033 if (!btf_vmlinux) { 2034 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2035 return -ENOTSUPP; 2036 } 2037 2038 if (!env->prog->jit_requested) { 2039 verbose(env, "JIT is required for calling kernel function\n"); 2040 return -ENOTSUPP; 2041 } 2042 2043 if (!bpf_jit_supports_kfunc_call()) { 2044 verbose(env, "JIT does not support calling kernel function\n"); 2045 return -ENOTSUPP; 2046 } 2047 2048 if (!env->prog->gpl_compatible) { 2049 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2050 return -EINVAL; 2051 } 2052 2053 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2054 if (!tab) 2055 return -ENOMEM; 2056 prog_aux->kfunc_tab = tab; 2057 } 2058 2059 /* func_id == 0 is always invalid, but instead of returning an error, be 2060 * conservative and wait until the code elimination pass before returning 2061 * error, so that invalid calls that get pruned out can be in BPF programs 2062 * loaded from userspace. It is also required that offset be untouched 2063 * for such calls. 2064 */ 2065 if (!func_id && !offset) 2066 return 0; 2067 2068 if (!btf_tab && offset) { 2069 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2070 if (!btf_tab) 2071 return -ENOMEM; 2072 prog_aux->kfunc_btf_tab = btf_tab; 2073 } 2074 2075 desc_btf = find_kfunc_desc_btf(env, offset); 2076 if (IS_ERR(desc_btf)) { 2077 verbose(env, "failed to find BTF for kernel function\n"); 2078 return PTR_ERR(desc_btf); 2079 } 2080 2081 if (find_kfunc_desc(env->prog, func_id, offset)) 2082 return 0; 2083 2084 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2085 verbose(env, "too many different kernel function calls\n"); 2086 return -E2BIG; 2087 } 2088 2089 func = btf_type_by_id(desc_btf, func_id); 2090 if (!func || !btf_type_is_func(func)) { 2091 verbose(env, "kernel btf_id %u is not a function\n", 2092 func_id); 2093 return -EINVAL; 2094 } 2095 func_proto = btf_type_by_id(desc_btf, func->type); 2096 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2097 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2098 func_id); 2099 return -EINVAL; 2100 } 2101 2102 func_name = btf_name_by_offset(desc_btf, func->name_off); 2103 addr = kallsyms_lookup_name(func_name); 2104 if (!addr) { 2105 verbose(env, "cannot find address for kernel function %s\n", 2106 func_name); 2107 return -EINVAL; 2108 } 2109 2110 call_imm = BPF_CALL_IMM(addr); 2111 /* Check whether or not the relative offset overflows desc->imm */ 2112 if ((unsigned long)(s32)call_imm != call_imm) { 2113 verbose(env, "address of kernel function %s is out of range\n", 2114 func_name); 2115 return -EINVAL; 2116 } 2117 2118 desc = &tab->descs[tab->nr_descs++]; 2119 desc->func_id = func_id; 2120 desc->imm = call_imm; 2121 desc->offset = offset; 2122 err = btf_distill_func_proto(&env->log, desc_btf, 2123 func_proto, func_name, 2124 &desc->func_model); 2125 if (!err) 2126 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2127 kfunc_desc_cmp_by_id_off, NULL); 2128 return err; 2129 } 2130 2131 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2132 { 2133 const struct bpf_kfunc_desc *d0 = a; 2134 const struct bpf_kfunc_desc *d1 = b; 2135 2136 if (d0->imm > d1->imm) 2137 return 1; 2138 else if (d0->imm < d1->imm) 2139 return -1; 2140 return 0; 2141 } 2142 2143 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2144 { 2145 struct bpf_kfunc_desc_tab *tab; 2146 2147 tab = prog->aux->kfunc_tab; 2148 if (!tab) 2149 return; 2150 2151 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2152 kfunc_desc_cmp_by_imm, NULL); 2153 } 2154 2155 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2156 { 2157 return !!prog->aux->kfunc_tab; 2158 } 2159 2160 const struct btf_func_model * 2161 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2162 const struct bpf_insn *insn) 2163 { 2164 const struct bpf_kfunc_desc desc = { 2165 .imm = insn->imm, 2166 }; 2167 const struct bpf_kfunc_desc *res; 2168 struct bpf_kfunc_desc_tab *tab; 2169 2170 tab = prog->aux->kfunc_tab; 2171 res = bsearch(&desc, tab->descs, tab->nr_descs, 2172 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2173 2174 return res ? &res->func_model : NULL; 2175 } 2176 2177 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2178 { 2179 struct bpf_subprog_info *subprog = env->subprog_info; 2180 struct bpf_insn *insn = env->prog->insnsi; 2181 int i, ret, insn_cnt = env->prog->len; 2182 2183 /* Add entry function. */ 2184 ret = add_subprog(env, 0); 2185 if (ret) 2186 return ret; 2187 2188 for (i = 0; i < insn_cnt; i++, insn++) { 2189 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2190 !bpf_pseudo_kfunc_call(insn)) 2191 continue; 2192 2193 if (!env->bpf_capable) { 2194 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2195 return -EPERM; 2196 } 2197 2198 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2199 ret = add_subprog(env, i + insn->imm + 1); 2200 else 2201 ret = add_kfunc_call(env, insn->imm, insn->off); 2202 2203 if (ret < 0) 2204 return ret; 2205 } 2206 2207 /* Add a fake 'exit' subprog which could simplify subprog iteration 2208 * logic. 'subprog_cnt' should not be increased. 2209 */ 2210 subprog[env->subprog_cnt].start = insn_cnt; 2211 2212 if (env->log.level & BPF_LOG_LEVEL2) 2213 for (i = 0; i < env->subprog_cnt; i++) 2214 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2215 2216 return 0; 2217 } 2218 2219 static int check_subprogs(struct bpf_verifier_env *env) 2220 { 2221 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2222 struct bpf_subprog_info *subprog = env->subprog_info; 2223 struct bpf_insn *insn = env->prog->insnsi; 2224 int insn_cnt = env->prog->len; 2225 2226 /* now check that all jumps are within the same subprog */ 2227 subprog_start = subprog[cur_subprog].start; 2228 subprog_end = subprog[cur_subprog + 1].start; 2229 for (i = 0; i < insn_cnt; i++) { 2230 u8 code = insn[i].code; 2231 2232 if (code == (BPF_JMP | BPF_CALL) && 2233 insn[i].imm == BPF_FUNC_tail_call && 2234 insn[i].src_reg != BPF_PSEUDO_CALL) 2235 subprog[cur_subprog].has_tail_call = true; 2236 if (BPF_CLASS(code) == BPF_LD && 2237 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2238 subprog[cur_subprog].has_ld_abs = true; 2239 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2240 goto next; 2241 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2242 goto next; 2243 off = i + insn[i].off + 1; 2244 if (off < subprog_start || off >= subprog_end) { 2245 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2246 return -EINVAL; 2247 } 2248 next: 2249 if (i == subprog_end - 1) { 2250 /* to avoid fall-through from one subprog into another 2251 * the last insn of the subprog should be either exit 2252 * or unconditional jump back 2253 */ 2254 if (code != (BPF_JMP | BPF_EXIT) && 2255 code != (BPF_JMP | BPF_JA)) { 2256 verbose(env, "last insn is not an exit or jmp\n"); 2257 return -EINVAL; 2258 } 2259 subprog_start = subprog_end; 2260 cur_subprog++; 2261 if (cur_subprog < env->subprog_cnt) 2262 subprog_end = subprog[cur_subprog + 1].start; 2263 } 2264 } 2265 return 0; 2266 } 2267 2268 /* Parentage chain of this register (or stack slot) should take care of all 2269 * issues like callee-saved registers, stack slot allocation time, etc. 2270 */ 2271 static int mark_reg_read(struct bpf_verifier_env *env, 2272 const struct bpf_reg_state *state, 2273 struct bpf_reg_state *parent, u8 flag) 2274 { 2275 bool writes = parent == state->parent; /* Observe write marks */ 2276 int cnt = 0; 2277 2278 while (parent) { 2279 /* if read wasn't screened by an earlier write ... */ 2280 if (writes && state->live & REG_LIVE_WRITTEN) 2281 break; 2282 if (parent->live & REG_LIVE_DONE) { 2283 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2284 reg_type_str(env, parent->type), 2285 parent->var_off.value, parent->off); 2286 return -EFAULT; 2287 } 2288 /* The first condition is more likely to be true than the 2289 * second, checked it first. 2290 */ 2291 if ((parent->live & REG_LIVE_READ) == flag || 2292 parent->live & REG_LIVE_READ64) 2293 /* The parentage chain never changes and 2294 * this parent was already marked as LIVE_READ. 2295 * There is no need to keep walking the chain again and 2296 * keep re-marking all parents as LIVE_READ. 2297 * This case happens when the same register is read 2298 * multiple times without writes into it in-between. 2299 * Also, if parent has the stronger REG_LIVE_READ64 set, 2300 * then no need to set the weak REG_LIVE_READ32. 2301 */ 2302 break; 2303 /* ... then we depend on parent's value */ 2304 parent->live |= flag; 2305 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2306 if (flag == REG_LIVE_READ64) 2307 parent->live &= ~REG_LIVE_READ32; 2308 state = parent; 2309 parent = state->parent; 2310 writes = true; 2311 cnt++; 2312 } 2313 2314 if (env->longest_mark_read_walk < cnt) 2315 env->longest_mark_read_walk = cnt; 2316 return 0; 2317 } 2318 2319 /* This function is supposed to be used by the following 32-bit optimization 2320 * code only. It returns TRUE if the source or destination register operates 2321 * on 64-bit, otherwise return FALSE. 2322 */ 2323 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2324 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2325 { 2326 u8 code, class, op; 2327 2328 code = insn->code; 2329 class = BPF_CLASS(code); 2330 op = BPF_OP(code); 2331 if (class == BPF_JMP) { 2332 /* BPF_EXIT for "main" will reach here. Return TRUE 2333 * conservatively. 2334 */ 2335 if (op == BPF_EXIT) 2336 return true; 2337 if (op == BPF_CALL) { 2338 /* BPF to BPF call will reach here because of marking 2339 * caller saved clobber with DST_OP_NO_MARK for which we 2340 * don't care the register def because they are anyway 2341 * marked as NOT_INIT already. 2342 */ 2343 if (insn->src_reg == BPF_PSEUDO_CALL) 2344 return false; 2345 /* Helper call will reach here because of arg type 2346 * check, conservatively return TRUE. 2347 */ 2348 if (t == SRC_OP) 2349 return true; 2350 2351 return false; 2352 } 2353 } 2354 2355 if (class == BPF_ALU64 || class == BPF_JMP || 2356 /* BPF_END always use BPF_ALU class. */ 2357 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2358 return true; 2359 2360 if (class == BPF_ALU || class == BPF_JMP32) 2361 return false; 2362 2363 if (class == BPF_LDX) { 2364 if (t != SRC_OP) 2365 return BPF_SIZE(code) == BPF_DW; 2366 /* LDX source must be ptr. */ 2367 return true; 2368 } 2369 2370 if (class == BPF_STX) { 2371 /* BPF_STX (including atomic variants) has multiple source 2372 * operands, one of which is a ptr. Check whether the caller is 2373 * asking about it. 2374 */ 2375 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2376 return true; 2377 return BPF_SIZE(code) == BPF_DW; 2378 } 2379 2380 if (class == BPF_LD) { 2381 u8 mode = BPF_MODE(code); 2382 2383 /* LD_IMM64 */ 2384 if (mode == BPF_IMM) 2385 return true; 2386 2387 /* Both LD_IND and LD_ABS return 32-bit data. */ 2388 if (t != SRC_OP) 2389 return false; 2390 2391 /* Implicit ctx ptr. */ 2392 if (regno == BPF_REG_6) 2393 return true; 2394 2395 /* Explicit source could be any width. */ 2396 return true; 2397 } 2398 2399 if (class == BPF_ST) 2400 /* The only source register for BPF_ST is a ptr. */ 2401 return true; 2402 2403 /* Conservatively return true at default. */ 2404 return true; 2405 } 2406 2407 /* Return the regno defined by the insn, or -1. */ 2408 static int insn_def_regno(const struct bpf_insn *insn) 2409 { 2410 switch (BPF_CLASS(insn->code)) { 2411 case BPF_JMP: 2412 case BPF_JMP32: 2413 case BPF_ST: 2414 return -1; 2415 case BPF_STX: 2416 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2417 (insn->imm & BPF_FETCH)) { 2418 if (insn->imm == BPF_CMPXCHG) 2419 return BPF_REG_0; 2420 else 2421 return insn->src_reg; 2422 } else { 2423 return -1; 2424 } 2425 default: 2426 return insn->dst_reg; 2427 } 2428 } 2429 2430 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2431 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2432 { 2433 int dst_reg = insn_def_regno(insn); 2434 2435 if (dst_reg == -1) 2436 return false; 2437 2438 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2439 } 2440 2441 static void mark_insn_zext(struct bpf_verifier_env *env, 2442 struct bpf_reg_state *reg) 2443 { 2444 s32 def_idx = reg->subreg_def; 2445 2446 if (def_idx == DEF_NOT_SUBREG) 2447 return; 2448 2449 env->insn_aux_data[def_idx - 1].zext_dst = true; 2450 /* The dst will be zero extended, so won't be sub-register anymore. */ 2451 reg->subreg_def = DEF_NOT_SUBREG; 2452 } 2453 2454 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2455 enum reg_arg_type t) 2456 { 2457 struct bpf_verifier_state *vstate = env->cur_state; 2458 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2459 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2460 struct bpf_reg_state *reg, *regs = state->regs; 2461 bool rw64; 2462 2463 if (regno >= MAX_BPF_REG) { 2464 verbose(env, "R%d is invalid\n", regno); 2465 return -EINVAL; 2466 } 2467 2468 mark_reg_scratched(env, regno); 2469 2470 reg = ®s[regno]; 2471 rw64 = is_reg64(env, insn, regno, reg, t); 2472 if (t == SRC_OP) { 2473 /* check whether register used as source operand can be read */ 2474 if (reg->type == NOT_INIT) { 2475 verbose(env, "R%d !read_ok\n", regno); 2476 return -EACCES; 2477 } 2478 /* We don't need to worry about FP liveness because it's read-only */ 2479 if (regno == BPF_REG_FP) 2480 return 0; 2481 2482 if (rw64) 2483 mark_insn_zext(env, reg); 2484 2485 return mark_reg_read(env, reg, reg->parent, 2486 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2487 } else { 2488 /* check whether register used as dest operand can be written to */ 2489 if (regno == BPF_REG_FP) { 2490 verbose(env, "frame pointer is read only\n"); 2491 return -EACCES; 2492 } 2493 reg->live |= REG_LIVE_WRITTEN; 2494 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2495 if (t == DST_OP) 2496 mark_reg_unknown(env, regs, regno); 2497 } 2498 return 0; 2499 } 2500 2501 /* for any branch, call, exit record the history of jmps in the given state */ 2502 static int push_jmp_history(struct bpf_verifier_env *env, 2503 struct bpf_verifier_state *cur) 2504 { 2505 u32 cnt = cur->jmp_history_cnt; 2506 struct bpf_idx_pair *p; 2507 2508 cnt++; 2509 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2510 if (!p) 2511 return -ENOMEM; 2512 p[cnt - 1].idx = env->insn_idx; 2513 p[cnt - 1].prev_idx = env->prev_insn_idx; 2514 cur->jmp_history = p; 2515 cur->jmp_history_cnt = cnt; 2516 return 0; 2517 } 2518 2519 /* Backtrack one insn at a time. If idx is not at the top of recorded 2520 * history then previous instruction came from straight line execution. 2521 */ 2522 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2523 u32 *history) 2524 { 2525 u32 cnt = *history; 2526 2527 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2528 i = st->jmp_history[cnt - 1].prev_idx; 2529 (*history)--; 2530 } else { 2531 i--; 2532 } 2533 return i; 2534 } 2535 2536 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2537 { 2538 const struct btf_type *func; 2539 struct btf *desc_btf; 2540 2541 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2542 return NULL; 2543 2544 desc_btf = find_kfunc_desc_btf(data, insn->off); 2545 if (IS_ERR(desc_btf)) 2546 return "<error>"; 2547 2548 func = btf_type_by_id(desc_btf, insn->imm); 2549 return btf_name_by_offset(desc_btf, func->name_off); 2550 } 2551 2552 /* For given verifier state backtrack_insn() is called from the last insn to 2553 * the first insn. Its purpose is to compute a bitmask of registers and 2554 * stack slots that needs precision in the parent verifier state. 2555 */ 2556 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2557 u32 *reg_mask, u64 *stack_mask) 2558 { 2559 const struct bpf_insn_cbs cbs = { 2560 .cb_call = disasm_kfunc_name, 2561 .cb_print = verbose, 2562 .private_data = env, 2563 }; 2564 struct bpf_insn *insn = env->prog->insnsi + idx; 2565 u8 class = BPF_CLASS(insn->code); 2566 u8 opcode = BPF_OP(insn->code); 2567 u8 mode = BPF_MODE(insn->code); 2568 u32 dreg = 1u << insn->dst_reg; 2569 u32 sreg = 1u << insn->src_reg; 2570 u32 spi; 2571 2572 if (insn->code == 0) 2573 return 0; 2574 if (env->log.level & BPF_LOG_LEVEL2) { 2575 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2576 verbose(env, "%d: ", idx); 2577 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2578 } 2579 2580 if (class == BPF_ALU || class == BPF_ALU64) { 2581 if (!(*reg_mask & dreg)) 2582 return 0; 2583 if (opcode == BPF_MOV) { 2584 if (BPF_SRC(insn->code) == BPF_X) { 2585 /* dreg = sreg 2586 * dreg needs precision after this insn 2587 * sreg needs precision before this insn 2588 */ 2589 *reg_mask &= ~dreg; 2590 *reg_mask |= sreg; 2591 } else { 2592 /* dreg = K 2593 * dreg needs precision after this insn. 2594 * Corresponding register is already marked 2595 * as precise=true in this verifier state. 2596 * No further markings in parent are necessary 2597 */ 2598 *reg_mask &= ~dreg; 2599 } 2600 } else { 2601 if (BPF_SRC(insn->code) == BPF_X) { 2602 /* dreg += sreg 2603 * both dreg and sreg need precision 2604 * before this insn 2605 */ 2606 *reg_mask |= sreg; 2607 } /* else dreg += K 2608 * dreg still needs precision before this insn 2609 */ 2610 } 2611 } else if (class == BPF_LDX) { 2612 if (!(*reg_mask & dreg)) 2613 return 0; 2614 *reg_mask &= ~dreg; 2615 2616 /* scalars can only be spilled into stack w/o losing precision. 2617 * Load from any other memory can be zero extended. 2618 * The desire to keep that precision is already indicated 2619 * by 'precise' mark in corresponding register of this state. 2620 * No further tracking necessary. 2621 */ 2622 if (insn->src_reg != BPF_REG_FP) 2623 return 0; 2624 2625 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2626 * that [fp - off] slot contains scalar that needs to be 2627 * tracked with precision 2628 */ 2629 spi = (-insn->off - 1) / BPF_REG_SIZE; 2630 if (spi >= 64) { 2631 verbose(env, "BUG spi %d\n", spi); 2632 WARN_ONCE(1, "verifier backtracking bug"); 2633 return -EFAULT; 2634 } 2635 *stack_mask |= 1ull << spi; 2636 } else if (class == BPF_STX || class == BPF_ST) { 2637 if (*reg_mask & dreg) 2638 /* stx & st shouldn't be using _scalar_ dst_reg 2639 * to access memory. It means backtracking 2640 * encountered a case of pointer subtraction. 2641 */ 2642 return -ENOTSUPP; 2643 /* scalars can only be spilled into stack */ 2644 if (insn->dst_reg != BPF_REG_FP) 2645 return 0; 2646 spi = (-insn->off - 1) / BPF_REG_SIZE; 2647 if (spi >= 64) { 2648 verbose(env, "BUG spi %d\n", spi); 2649 WARN_ONCE(1, "verifier backtracking bug"); 2650 return -EFAULT; 2651 } 2652 if (!(*stack_mask & (1ull << spi))) 2653 return 0; 2654 *stack_mask &= ~(1ull << spi); 2655 if (class == BPF_STX) 2656 *reg_mask |= sreg; 2657 } else if (class == BPF_JMP || class == BPF_JMP32) { 2658 if (opcode == BPF_CALL) { 2659 if (insn->src_reg == BPF_PSEUDO_CALL) 2660 return -ENOTSUPP; 2661 /* regular helper call sets R0 */ 2662 *reg_mask &= ~1; 2663 if (*reg_mask & 0x3f) { 2664 /* if backtracing was looking for registers R1-R5 2665 * they should have been found already. 2666 */ 2667 verbose(env, "BUG regs %x\n", *reg_mask); 2668 WARN_ONCE(1, "verifier backtracking bug"); 2669 return -EFAULT; 2670 } 2671 } else if (opcode == BPF_EXIT) { 2672 return -ENOTSUPP; 2673 } 2674 } else if (class == BPF_LD) { 2675 if (!(*reg_mask & dreg)) 2676 return 0; 2677 *reg_mask &= ~dreg; 2678 /* It's ld_imm64 or ld_abs or ld_ind. 2679 * For ld_imm64 no further tracking of precision 2680 * into parent is necessary 2681 */ 2682 if (mode == BPF_IND || mode == BPF_ABS) 2683 /* to be analyzed */ 2684 return -ENOTSUPP; 2685 } 2686 return 0; 2687 } 2688 2689 /* the scalar precision tracking algorithm: 2690 * . at the start all registers have precise=false. 2691 * . scalar ranges are tracked as normal through alu and jmp insns. 2692 * . once precise value of the scalar register is used in: 2693 * . ptr + scalar alu 2694 * . if (scalar cond K|scalar) 2695 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2696 * backtrack through the verifier states and mark all registers and 2697 * stack slots with spilled constants that these scalar regisers 2698 * should be precise. 2699 * . during state pruning two registers (or spilled stack slots) 2700 * are equivalent if both are not precise. 2701 * 2702 * Note the verifier cannot simply walk register parentage chain, 2703 * since many different registers and stack slots could have been 2704 * used to compute single precise scalar. 2705 * 2706 * The approach of starting with precise=true for all registers and then 2707 * backtrack to mark a register as not precise when the verifier detects 2708 * that program doesn't care about specific value (e.g., when helper 2709 * takes register as ARG_ANYTHING parameter) is not safe. 2710 * 2711 * It's ok to walk single parentage chain of the verifier states. 2712 * It's possible that this backtracking will go all the way till 1st insn. 2713 * All other branches will be explored for needing precision later. 2714 * 2715 * The backtracking needs to deal with cases like: 2716 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2717 * r9 -= r8 2718 * r5 = r9 2719 * if r5 > 0x79f goto pc+7 2720 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2721 * r5 += 1 2722 * ... 2723 * call bpf_perf_event_output#25 2724 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2725 * 2726 * and this case: 2727 * r6 = 1 2728 * call foo // uses callee's r6 inside to compute r0 2729 * r0 += r6 2730 * if r0 == 0 goto 2731 * 2732 * to track above reg_mask/stack_mask needs to be independent for each frame. 2733 * 2734 * Also if parent's curframe > frame where backtracking started, 2735 * the verifier need to mark registers in both frames, otherwise callees 2736 * may incorrectly prune callers. This is similar to 2737 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2738 * 2739 * For now backtracking falls back into conservative marking. 2740 */ 2741 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2742 struct bpf_verifier_state *st) 2743 { 2744 struct bpf_func_state *func; 2745 struct bpf_reg_state *reg; 2746 int i, j; 2747 2748 /* big hammer: mark all scalars precise in this path. 2749 * pop_stack may still get !precise scalars. 2750 */ 2751 for (; st; st = st->parent) 2752 for (i = 0; i <= st->curframe; i++) { 2753 func = st->frame[i]; 2754 for (j = 0; j < BPF_REG_FP; j++) { 2755 reg = &func->regs[j]; 2756 if (reg->type != SCALAR_VALUE) 2757 continue; 2758 reg->precise = true; 2759 } 2760 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2761 if (!is_spilled_reg(&func->stack[j])) 2762 continue; 2763 reg = &func->stack[j].spilled_ptr; 2764 if (reg->type != SCALAR_VALUE) 2765 continue; 2766 reg->precise = true; 2767 } 2768 } 2769 } 2770 2771 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2772 int spi) 2773 { 2774 struct bpf_verifier_state *st = env->cur_state; 2775 int first_idx = st->first_insn_idx; 2776 int last_idx = env->insn_idx; 2777 struct bpf_func_state *func; 2778 struct bpf_reg_state *reg; 2779 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2780 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2781 bool skip_first = true; 2782 bool new_marks = false; 2783 int i, err; 2784 2785 if (!env->bpf_capable) 2786 return 0; 2787 2788 func = st->frame[st->curframe]; 2789 if (regno >= 0) { 2790 reg = &func->regs[regno]; 2791 if (reg->type != SCALAR_VALUE) { 2792 WARN_ONCE(1, "backtracing misuse"); 2793 return -EFAULT; 2794 } 2795 if (!reg->precise) 2796 new_marks = true; 2797 else 2798 reg_mask = 0; 2799 reg->precise = true; 2800 } 2801 2802 while (spi >= 0) { 2803 if (!is_spilled_reg(&func->stack[spi])) { 2804 stack_mask = 0; 2805 break; 2806 } 2807 reg = &func->stack[spi].spilled_ptr; 2808 if (reg->type != SCALAR_VALUE) { 2809 stack_mask = 0; 2810 break; 2811 } 2812 if (!reg->precise) 2813 new_marks = true; 2814 else 2815 stack_mask = 0; 2816 reg->precise = true; 2817 break; 2818 } 2819 2820 if (!new_marks) 2821 return 0; 2822 if (!reg_mask && !stack_mask) 2823 return 0; 2824 for (;;) { 2825 DECLARE_BITMAP(mask, 64); 2826 u32 history = st->jmp_history_cnt; 2827 2828 if (env->log.level & BPF_LOG_LEVEL2) 2829 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2830 for (i = last_idx;;) { 2831 if (skip_first) { 2832 err = 0; 2833 skip_first = false; 2834 } else { 2835 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2836 } 2837 if (err == -ENOTSUPP) { 2838 mark_all_scalars_precise(env, st); 2839 return 0; 2840 } else if (err) { 2841 return err; 2842 } 2843 if (!reg_mask && !stack_mask) 2844 /* Found assignment(s) into tracked register in this state. 2845 * Since this state is already marked, just return. 2846 * Nothing to be tracked further in the parent state. 2847 */ 2848 return 0; 2849 if (i == first_idx) 2850 break; 2851 i = get_prev_insn_idx(st, i, &history); 2852 if (i >= env->prog->len) { 2853 /* This can happen if backtracking reached insn 0 2854 * and there are still reg_mask or stack_mask 2855 * to backtrack. 2856 * It means the backtracking missed the spot where 2857 * particular register was initialized with a constant. 2858 */ 2859 verbose(env, "BUG backtracking idx %d\n", i); 2860 WARN_ONCE(1, "verifier backtracking bug"); 2861 return -EFAULT; 2862 } 2863 } 2864 st = st->parent; 2865 if (!st) 2866 break; 2867 2868 new_marks = false; 2869 func = st->frame[st->curframe]; 2870 bitmap_from_u64(mask, reg_mask); 2871 for_each_set_bit(i, mask, 32) { 2872 reg = &func->regs[i]; 2873 if (reg->type != SCALAR_VALUE) { 2874 reg_mask &= ~(1u << i); 2875 continue; 2876 } 2877 if (!reg->precise) 2878 new_marks = true; 2879 reg->precise = true; 2880 } 2881 2882 bitmap_from_u64(mask, stack_mask); 2883 for_each_set_bit(i, mask, 64) { 2884 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2885 /* the sequence of instructions: 2886 * 2: (bf) r3 = r10 2887 * 3: (7b) *(u64 *)(r3 -8) = r0 2888 * 4: (79) r4 = *(u64 *)(r10 -8) 2889 * doesn't contain jmps. It's backtracked 2890 * as a single block. 2891 * During backtracking insn 3 is not recognized as 2892 * stack access, so at the end of backtracking 2893 * stack slot fp-8 is still marked in stack_mask. 2894 * However the parent state may not have accessed 2895 * fp-8 and it's "unallocated" stack space. 2896 * In such case fallback to conservative. 2897 */ 2898 mark_all_scalars_precise(env, st); 2899 return 0; 2900 } 2901 2902 if (!is_spilled_reg(&func->stack[i])) { 2903 stack_mask &= ~(1ull << i); 2904 continue; 2905 } 2906 reg = &func->stack[i].spilled_ptr; 2907 if (reg->type != SCALAR_VALUE) { 2908 stack_mask &= ~(1ull << i); 2909 continue; 2910 } 2911 if (!reg->precise) 2912 new_marks = true; 2913 reg->precise = true; 2914 } 2915 if (env->log.level & BPF_LOG_LEVEL2) { 2916 verbose(env, "parent %s regs=%x stack=%llx marks:", 2917 new_marks ? "didn't have" : "already had", 2918 reg_mask, stack_mask); 2919 print_verifier_state(env, func, true); 2920 } 2921 2922 if (!reg_mask && !stack_mask) 2923 break; 2924 if (!new_marks) 2925 break; 2926 2927 last_idx = st->last_insn_idx; 2928 first_idx = st->first_insn_idx; 2929 } 2930 return 0; 2931 } 2932 2933 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2934 { 2935 return __mark_chain_precision(env, regno, -1); 2936 } 2937 2938 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2939 { 2940 return __mark_chain_precision(env, -1, spi); 2941 } 2942 2943 static bool is_spillable_regtype(enum bpf_reg_type type) 2944 { 2945 switch (base_type(type)) { 2946 case PTR_TO_MAP_VALUE: 2947 case PTR_TO_STACK: 2948 case PTR_TO_CTX: 2949 case PTR_TO_PACKET: 2950 case PTR_TO_PACKET_META: 2951 case PTR_TO_PACKET_END: 2952 case PTR_TO_FLOW_KEYS: 2953 case CONST_PTR_TO_MAP: 2954 case PTR_TO_SOCKET: 2955 case PTR_TO_SOCK_COMMON: 2956 case PTR_TO_TCP_SOCK: 2957 case PTR_TO_XDP_SOCK: 2958 case PTR_TO_BTF_ID: 2959 case PTR_TO_BUF: 2960 case PTR_TO_MEM: 2961 case PTR_TO_FUNC: 2962 case PTR_TO_MAP_KEY: 2963 return true; 2964 default: 2965 return false; 2966 } 2967 } 2968 2969 /* Does this register contain a constant zero? */ 2970 static bool register_is_null(struct bpf_reg_state *reg) 2971 { 2972 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2973 } 2974 2975 static bool register_is_const(struct bpf_reg_state *reg) 2976 { 2977 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2978 } 2979 2980 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2981 { 2982 return tnum_is_unknown(reg->var_off) && 2983 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2984 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2985 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2986 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2987 } 2988 2989 static bool register_is_bounded(struct bpf_reg_state *reg) 2990 { 2991 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2992 } 2993 2994 static bool __is_pointer_value(bool allow_ptr_leaks, 2995 const struct bpf_reg_state *reg) 2996 { 2997 if (allow_ptr_leaks) 2998 return false; 2999 3000 return reg->type != SCALAR_VALUE; 3001 } 3002 3003 static void save_register_state(struct bpf_func_state *state, 3004 int spi, struct bpf_reg_state *reg, 3005 int size) 3006 { 3007 int i; 3008 3009 state->stack[spi].spilled_ptr = *reg; 3010 if (size == BPF_REG_SIZE) 3011 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3012 3013 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3014 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3015 3016 /* size < 8 bytes spill */ 3017 for (; i; i--) 3018 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3019 } 3020 3021 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3022 * stack boundary and alignment are checked in check_mem_access() 3023 */ 3024 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3025 /* stack frame we're writing to */ 3026 struct bpf_func_state *state, 3027 int off, int size, int value_regno, 3028 int insn_idx) 3029 { 3030 struct bpf_func_state *cur; /* state of the current function */ 3031 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3032 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3033 struct bpf_reg_state *reg = NULL; 3034 3035 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3036 if (err) 3037 return err; 3038 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3039 * so it's aligned access and [off, off + size) are within stack limits 3040 */ 3041 if (!env->allow_ptr_leaks && 3042 state->stack[spi].slot_type[0] == STACK_SPILL && 3043 size != BPF_REG_SIZE) { 3044 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3045 return -EACCES; 3046 } 3047 3048 cur = env->cur_state->frame[env->cur_state->curframe]; 3049 if (value_regno >= 0) 3050 reg = &cur->regs[value_regno]; 3051 if (!env->bypass_spec_v4) { 3052 bool sanitize = reg && is_spillable_regtype(reg->type); 3053 3054 for (i = 0; i < size; i++) { 3055 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3056 sanitize = true; 3057 break; 3058 } 3059 } 3060 3061 if (sanitize) 3062 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3063 } 3064 3065 mark_stack_slot_scratched(env, spi); 3066 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3067 !register_is_null(reg) && env->bpf_capable) { 3068 if (dst_reg != BPF_REG_FP) { 3069 /* The backtracking logic can only recognize explicit 3070 * stack slot address like [fp - 8]. Other spill of 3071 * scalar via different register has to be conservative. 3072 * Backtrack from here and mark all registers as precise 3073 * that contributed into 'reg' being a constant. 3074 */ 3075 err = mark_chain_precision(env, value_regno); 3076 if (err) 3077 return err; 3078 } 3079 save_register_state(state, spi, reg, size); 3080 } else if (reg && is_spillable_regtype(reg->type)) { 3081 /* register containing pointer is being spilled into stack */ 3082 if (size != BPF_REG_SIZE) { 3083 verbose_linfo(env, insn_idx, "; "); 3084 verbose(env, "invalid size of register spill\n"); 3085 return -EACCES; 3086 } 3087 if (state != cur && reg->type == PTR_TO_STACK) { 3088 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3089 return -EINVAL; 3090 } 3091 save_register_state(state, spi, reg, size); 3092 } else { 3093 u8 type = STACK_MISC; 3094 3095 /* regular write of data into stack destroys any spilled ptr */ 3096 state->stack[spi].spilled_ptr.type = NOT_INIT; 3097 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3098 if (is_spilled_reg(&state->stack[spi])) 3099 for (i = 0; i < BPF_REG_SIZE; i++) 3100 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3101 3102 /* only mark the slot as written if all 8 bytes were written 3103 * otherwise read propagation may incorrectly stop too soon 3104 * when stack slots are partially written. 3105 * This heuristic means that read propagation will be 3106 * conservative, since it will add reg_live_read marks 3107 * to stack slots all the way to first state when programs 3108 * writes+reads less than 8 bytes 3109 */ 3110 if (size == BPF_REG_SIZE) 3111 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3112 3113 /* when we zero initialize stack slots mark them as such */ 3114 if (reg && register_is_null(reg)) { 3115 /* backtracking doesn't work for STACK_ZERO yet. */ 3116 err = mark_chain_precision(env, value_regno); 3117 if (err) 3118 return err; 3119 type = STACK_ZERO; 3120 } 3121 3122 /* Mark slots affected by this stack write. */ 3123 for (i = 0; i < size; i++) 3124 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3125 type; 3126 } 3127 return 0; 3128 } 3129 3130 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3131 * known to contain a variable offset. 3132 * This function checks whether the write is permitted and conservatively 3133 * tracks the effects of the write, considering that each stack slot in the 3134 * dynamic range is potentially written to. 3135 * 3136 * 'off' includes 'regno->off'. 3137 * 'value_regno' can be -1, meaning that an unknown value is being written to 3138 * the stack. 3139 * 3140 * Spilled pointers in range are not marked as written because we don't know 3141 * what's going to be actually written. This means that read propagation for 3142 * future reads cannot be terminated by this write. 3143 * 3144 * For privileged programs, uninitialized stack slots are considered 3145 * initialized by this write (even though we don't know exactly what offsets 3146 * are going to be written to). The idea is that we don't want the verifier to 3147 * reject future reads that access slots written to through variable offsets. 3148 */ 3149 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3150 /* func where register points to */ 3151 struct bpf_func_state *state, 3152 int ptr_regno, int off, int size, 3153 int value_regno, int insn_idx) 3154 { 3155 struct bpf_func_state *cur; /* state of the current function */ 3156 int min_off, max_off; 3157 int i, err; 3158 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3159 bool writing_zero = false; 3160 /* set if the fact that we're writing a zero is used to let any 3161 * stack slots remain STACK_ZERO 3162 */ 3163 bool zero_used = false; 3164 3165 cur = env->cur_state->frame[env->cur_state->curframe]; 3166 ptr_reg = &cur->regs[ptr_regno]; 3167 min_off = ptr_reg->smin_value + off; 3168 max_off = ptr_reg->smax_value + off + size; 3169 if (value_regno >= 0) 3170 value_reg = &cur->regs[value_regno]; 3171 if (value_reg && register_is_null(value_reg)) 3172 writing_zero = true; 3173 3174 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3175 if (err) 3176 return err; 3177 3178 3179 /* Variable offset writes destroy any spilled pointers in range. */ 3180 for (i = min_off; i < max_off; i++) { 3181 u8 new_type, *stype; 3182 int slot, spi; 3183 3184 slot = -i - 1; 3185 spi = slot / BPF_REG_SIZE; 3186 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3187 mark_stack_slot_scratched(env, spi); 3188 3189 if (!env->allow_ptr_leaks 3190 && *stype != NOT_INIT 3191 && *stype != SCALAR_VALUE) { 3192 /* Reject the write if there's are spilled pointers in 3193 * range. If we didn't reject here, the ptr status 3194 * would be erased below (even though not all slots are 3195 * actually overwritten), possibly opening the door to 3196 * leaks. 3197 */ 3198 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3199 insn_idx, i); 3200 return -EINVAL; 3201 } 3202 3203 /* Erase all spilled pointers. */ 3204 state->stack[spi].spilled_ptr.type = NOT_INIT; 3205 3206 /* Update the slot type. */ 3207 new_type = STACK_MISC; 3208 if (writing_zero && *stype == STACK_ZERO) { 3209 new_type = STACK_ZERO; 3210 zero_used = true; 3211 } 3212 /* If the slot is STACK_INVALID, we check whether it's OK to 3213 * pretend that it will be initialized by this write. The slot 3214 * might not actually be written to, and so if we mark it as 3215 * initialized future reads might leak uninitialized memory. 3216 * For privileged programs, we will accept such reads to slots 3217 * that may or may not be written because, if we're reject 3218 * them, the error would be too confusing. 3219 */ 3220 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3221 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3222 insn_idx, i); 3223 return -EINVAL; 3224 } 3225 *stype = new_type; 3226 } 3227 if (zero_used) { 3228 /* backtracking doesn't work for STACK_ZERO yet. */ 3229 err = mark_chain_precision(env, value_regno); 3230 if (err) 3231 return err; 3232 } 3233 return 0; 3234 } 3235 3236 /* When register 'dst_regno' is assigned some values from stack[min_off, 3237 * max_off), we set the register's type according to the types of the 3238 * respective stack slots. If all the stack values are known to be zeros, then 3239 * so is the destination reg. Otherwise, the register is considered to be 3240 * SCALAR. This function does not deal with register filling; the caller must 3241 * ensure that all spilled registers in the stack range have been marked as 3242 * read. 3243 */ 3244 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3245 /* func where src register points to */ 3246 struct bpf_func_state *ptr_state, 3247 int min_off, int max_off, int dst_regno) 3248 { 3249 struct bpf_verifier_state *vstate = env->cur_state; 3250 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3251 int i, slot, spi; 3252 u8 *stype; 3253 int zeros = 0; 3254 3255 for (i = min_off; i < max_off; i++) { 3256 slot = -i - 1; 3257 spi = slot / BPF_REG_SIZE; 3258 stype = ptr_state->stack[spi].slot_type; 3259 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3260 break; 3261 zeros++; 3262 } 3263 if (zeros == max_off - min_off) { 3264 /* any access_size read into register is zero extended, 3265 * so the whole register == const_zero 3266 */ 3267 __mark_reg_const_zero(&state->regs[dst_regno]); 3268 /* backtracking doesn't support STACK_ZERO yet, 3269 * so mark it precise here, so that later 3270 * backtracking can stop here. 3271 * Backtracking may not need this if this register 3272 * doesn't participate in pointer adjustment. 3273 * Forward propagation of precise flag is not 3274 * necessary either. This mark is only to stop 3275 * backtracking. Any register that contributed 3276 * to const 0 was marked precise before spill. 3277 */ 3278 state->regs[dst_regno].precise = true; 3279 } else { 3280 /* have read misc data from the stack */ 3281 mark_reg_unknown(env, state->regs, dst_regno); 3282 } 3283 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3284 } 3285 3286 /* Read the stack at 'off' and put the results into the register indicated by 3287 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3288 * spilled reg. 3289 * 3290 * 'dst_regno' can be -1, meaning that the read value is not going to a 3291 * register. 3292 * 3293 * The access is assumed to be within the current stack bounds. 3294 */ 3295 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3296 /* func where src register points to */ 3297 struct bpf_func_state *reg_state, 3298 int off, int size, int dst_regno) 3299 { 3300 struct bpf_verifier_state *vstate = env->cur_state; 3301 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3302 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3303 struct bpf_reg_state *reg; 3304 u8 *stype, type; 3305 3306 stype = reg_state->stack[spi].slot_type; 3307 reg = ®_state->stack[spi].spilled_ptr; 3308 3309 if (is_spilled_reg(®_state->stack[spi])) { 3310 u8 spill_size = 1; 3311 3312 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3313 spill_size++; 3314 3315 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3316 if (reg->type != SCALAR_VALUE) { 3317 verbose_linfo(env, env->insn_idx, "; "); 3318 verbose(env, "invalid size of register fill\n"); 3319 return -EACCES; 3320 } 3321 3322 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3323 if (dst_regno < 0) 3324 return 0; 3325 3326 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3327 /* The earlier check_reg_arg() has decided the 3328 * subreg_def for this insn. Save it first. 3329 */ 3330 s32 subreg_def = state->regs[dst_regno].subreg_def; 3331 3332 state->regs[dst_regno] = *reg; 3333 state->regs[dst_regno].subreg_def = subreg_def; 3334 } else { 3335 for (i = 0; i < size; i++) { 3336 type = stype[(slot - i) % BPF_REG_SIZE]; 3337 if (type == STACK_SPILL) 3338 continue; 3339 if (type == STACK_MISC) 3340 continue; 3341 verbose(env, "invalid read from stack off %d+%d size %d\n", 3342 off, i, size); 3343 return -EACCES; 3344 } 3345 mark_reg_unknown(env, state->regs, dst_regno); 3346 } 3347 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3348 return 0; 3349 } 3350 3351 if (dst_regno >= 0) { 3352 /* restore register state from stack */ 3353 state->regs[dst_regno] = *reg; 3354 /* mark reg as written since spilled pointer state likely 3355 * has its liveness marks cleared by is_state_visited() 3356 * which resets stack/reg liveness for state transitions 3357 */ 3358 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3359 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3360 /* If dst_regno==-1, the caller is asking us whether 3361 * it is acceptable to use this value as a SCALAR_VALUE 3362 * (e.g. for XADD). 3363 * We must not allow unprivileged callers to do that 3364 * with spilled pointers. 3365 */ 3366 verbose(env, "leaking pointer from stack off %d\n", 3367 off); 3368 return -EACCES; 3369 } 3370 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3371 } else { 3372 for (i = 0; i < size; i++) { 3373 type = stype[(slot - i) % BPF_REG_SIZE]; 3374 if (type == STACK_MISC) 3375 continue; 3376 if (type == STACK_ZERO) 3377 continue; 3378 verbose(env, "invalid read from stack off %d+%d size %d\n", 3379 off, i, size); 3380 return -EACCES; 3381 } 3382 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3383 if (dst_regno >= 0) 3384 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3385 } 3386 return 0; 3387 } 3388 3389 enum bpf_access_src { 3390 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3391 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3392 }; 3393 3394 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3395 int regno, int off, int access_size, 3396 bool zero_size_allowed, 3397 enum bpf_access_src type, 3398 struct bpf_call_arg_meta *meta); 3399 3400 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3401 { 3402 return cur_regs(env) + regno; 3403 } 3404 3405 /* Read the stack at 'ptr_regno + off' and put the result into the register 3406 * 'dst_regno'. 3407 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3408 * but not its variable offset. 3409 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3410 * 3411 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3412 * filling registers (i.e. reads of spilled register cannot be detected when 3413 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3414 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3415 * offset; for a fixed offset check_stack_read_fixed_off should be used 3416 * instead. 3417 */ 3418 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3419 int ptr_regno, int off, int size, int dst_regno) 3420 { 3421 /* The state of the source register. */ 3422 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3423 struct bpf_func_state *ptr_state = func(env, reg); 3424 int err; 3425 int min_off, max_off; 3426 3427 /* Note that we pass a NULL meta, so raw access will not be permitted. 3428 */ 3429 err = check_stack_range_initialized(env, ptr_regno, off, size, 3430 false, ACCESS_DIRECT, NULL); 3431 if (err) 3432 return err; 3433 3434 min_off = reg->smin_value + off; 3435 max_off = reg->smax_value + off; 3436 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3437 return 0; 3438 } 3439 3440 /* check_stack_read dispatches to check_stack_read_fixed_off or 3441 * check_stack_read_var_off. 3442 * 3443 * The caller must ensure that the offset falls within the allocated stack 3444 * bounds. 3445 * 3446 * 'dst_regno' is a register which will receive the value from the stack. It 3447 * can be -1, meaning that the read value is not going to a register. 3448 */ 3449 static int check_stack_read(struct bpf_verifier_env *env, 3450 int ptr_regno, int off, int size, 3451 int dst_regno) 3452 { 3453 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3454 struct bpf_func_state *state = func(env, reg); 3455 int err; 3456 /* Some accesses are only permitted with a static offset. */ 3457 bool var_off = !tnum_is_const(reg->var_off); 3458 3459 /* The offset is required to be static when reads don't go to a 3460 * register, in order to not leak pointers (see 3461 * check_stack_read_fixed_off). 3462 */ 3463 if (dst_regno < 0 && var_off) { 3464 char tn_buf[48]; 3465 3466 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3467 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3468 tn_buf, off, size); 3469 return -EACCES; 3470 } 3471 /* Variable offset is prohibited for unprivileged mode for simplicity 3472 * since it requires corresponding support in Spectre masking for stack 3473 * ALU. See also retrieve_ptr_limit(). 3474 */ 3475 if (!env->bypass_spec_v1 && var_off) { 3476 char tn_buf[48]; 3477 3478 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3479 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3480 ptr_regno, tn_buf); 3481 return -EACCES; 3482 } 3483 3484 if (!var_off) { 3485 off += reg->var_off.value; 3486 err = check_stack_read_fixed_off(env, state, off, size, 3487 dst_regno); 3488 } else { 3489 /* Variable offset stack reads need more conservative handling 3490 * than fixed offset ones. Note that dst_regno >= 0 on this 3491 * branch. 3492 */ 3493 err = check_stack_read_var_off(env, ptr_regno, off, size, 3494 dst_regno); 3495 } 3496 return err; 3497 } 3498 3499 3500 /* check_stack_write dispatches to check_stack_write_fixed_off or 3501 * check_stack_write_var_off. 3502 * 3503 * 'ptr_regno' is the register used as a pointer into the stack. 3504 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3505 * 'value_regno' is the register whose value we're writing to the stack. It can 3506 * be -1, meaning that we're not writing from a register. 3507 * 3508 * The caller must ensure that the offset falls within the maximum stack size. 3509 */ 3510 static int check_stack_write(struct bpf_verifier_env *env, 3511 int ptr_regno, int off, int size, 3512 int value_regno, int insn_idx) 3513 { 3514 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3515 struct bpf_func_state *state = func(env, reg); 3516 int err; 3517 3518 if (tnum_is_const(reg->var_off)) { 3519 off += reg->var_off.value; 3520 err = check_stack_write_fixed_off(env, state, off, size, 3521 value_regno, insn_idx); 3522 } else { 3523 /* Variable offset stack reads need more conservative handling 3524 * than fixed offset ones. 3525 */ 3526 err = check_stack_write_var_off(env, state, 3527 ptr_regno, off, size, 3528 value_regno, insn_idx); 3529 } 3530 return err; 3531 } 3532 3533 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3534 int off, int size, enum bpf_access_type type) 3535 { 3536 struct bpf_reg_state *regs = cur_regs(env); 3537 struct bpf_map *map = regs[regno].map_ptr; 3538 u32 cap = bpf_map_flags_to_cap(map); 3539 3540 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3541 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3542 map->value_size, off, size); 3543 return -EACCES; 3544 } 3545 3546 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3547 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3548 map->value_size, off, size); 3549 return -EACCES; 3550 } 3551 3552 return 0; 3553 } 3554 3555 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3556 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3557 int off, int size, u32 mem_size, 3558 bool zero_size_allowed) 3559 { 3560 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3561 struct bpf_reg_state *reg; 3562 3563 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3564 return 0; 3565 3566 reg = &cur_regs(env)[regno]; 3567 switch (reg->type) { 3568 case PTR_TO_MAP_KEY: 3569 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3570 mem_size, off, size); 3571 break; 3572 case PTR_TO_MAP_VALUE: 3573 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3574 mem_size, off, size); 3575 break; 3576 case PTR_TO_PACKET: 3577 case PTR_TO_PACKET_META: 3578 case PTR_TO_PACKET_END: 3579 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3580 off, size, regno, reg->id, off, mem_size); 3581 break; 3582 case PTR_TO_MEM: 3583 default: 3584 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3585 mem_size, off, size); 3586 } 3587 3588 return -EACCES; 3589 } 3590 3591 /* check read/write into a memory region with possible variable offset */ 3592 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3593 int off, int size, u32 mem_size, 3594 bool zero_size_allowed) 3595 { 3596 struct bpf_verifier_state *vstate = env->cur_state; 3597 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3598 struct bpf_reg_state *reg = &state->regs[regno]; 3599 int err; 3600 3601 /* We may have adjusted the register pointing to memory region, so we 3602 * need to try adding each of min_value and max_value to off 3603 * to make sure our theoretical access will be safe. 3604 * 3605 * The minimum value is only important with signed 3606 * comparisons where we can't assume the floor of a 3607 * value is 0. If we are using signed variables for our 3608 * index'es we need to make sure that whatever we use 3609 * will have a set floor within our range. 3610 */ 3611 if (reg->smin_value < 0 && 3612 (reg->smin_value == S64_MIN || 3613 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3614 reg->smin_value + off < 0)) { 3615 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3616 regno); 3617 return -EACCES; 3618 } 3619 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3620 mem_size, zero_size_allowed); 3621 if (err) { 3622 verbose(env, "R%d min value is outside of the allowed memory range\n", 3623 regno); 3624 return err; 3625 } 3626 3627 /* If we haven't set a max value then we need to bail since we can't be 3628 * sure we won't do bad things. 3629 * If reg->umax_value + off could overflow, treat that as unbounded too. 3630 */ 3631 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3632 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3633 regno); 3634 return -EACCES; 3635 } 3636 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3637 mem_size, zero_size_allowed); 3638 if (err) { 3639 verbose(env, "R%d max value is outside of the allowed memory range\n", 3640 regno); 3641 return err; 3642 } 3643 3644 return 0; 3645 } 3646 3647 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3648 const struct bpf_reg_state *reg, int regno, 3649 bool fixed_off_ok) 3650 { 3651 /* Access to this pointer-typed register or passing it to a helper 3652 * is only allowed in its original, unmodified form. 3653 */ 3654 3655 if (reg->off < 0) { 3656 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3657 reg_type_str(env, reg->type), regno, reg->off); 3658 return -EACCES; 3659 } 3660 3661 if (!fixed_off_ok && reg->off) { 3662 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3663 reg_type_str(env, reg->type), regno, reg->off); 3664 return -EACCES; 3665 } 3666 3667 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3668 char tn_buf[48]; 3669 3670 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3671 verbose(env, "variable %s access var_off=%s disallowed\n", 3672 reg_type_str(env, reg->type), tn_buf); 3673 return -EACCES; 3674 } 3675 3676 return 0; 3677 } 3678 3679 int check_ptr_off_reg(struct bpf_verifier_env *env, 3680 const struct bpf_reg_state *reg, int regno) 3681 { 3682 return __check_ptr_off_reg(env, reg, regno, false); 3683 } 3684 3685 static int map_kptr_match_type(struct bpf_verifier_env *env, 3686 struct bpf_map_value_off_desc *off_desc, 3687 struct bpf_reg_state *reg, u32 regno) 3688 { 3689 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id); 3690 int perm_flags = PTR_MAYBE_NULL; 3691 const char *reg_name = ""; 3692 3693 /* Only unreferenced case accepts untrusted pointers */ 3694 if (off_desc->type == BPF_KPTR_UNREF) 3695 perm_flags |= PTR_UNTRUSTED; 3696 3697 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3698 goto bad_type; 3699 3700 if (!btf_is_kernel(reg->btf)) { 3701 verbose(env, "R%d must point to kernel BTF\n", regno); 3702 return -EINVAL; 3703 } 3704 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3705 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3706 3707 /* For ref_ptr case, release function check should ensure we get one 3708 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3709 * normal store of unreferenced kptr, we must ensure var_off is zero. 3710 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3711 * reg->off and reg->ref_obj_id are not needed here. 3712 */ 3713 if (__check_ptr_off_reg(env, reg, regno, true)) 3714 return -EACCES; 3715 3716 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3717 * we also need to take into account the reg->off. 3718 * 3719 * We want to support cases like: 3720 * 3721 * struct foo { 3722 * struct bar br; 3723 * struct baz bz; 3724 * }; 3725 * 3726 * struct foo *v; 3727 * v = func(); // PTR_TO_BTF_ID 3728 * val->foo = v; // reg->off is zero, btf and btf_id match type 3729 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3730 * // first member type of struct after comparison fails 3731 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3732 * // to match type 3733 * 3734 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3735 * is zero. We must also ensure that btf_struct_ids_match does not walk 3736 * the struct to match type against first member of struct, i.e. reject 3737 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3738 * strict mode to true for type match. 3739 */ 3740 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3741 off_desc->kptr.btf, off_desc->kptr.btf_id, 3742 off_desc->type == BPF_KPTR_REF)) 3743 goto bad_type; 3744 return 0; 3745 bad_type: 3746 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3747 reg_type_str(env, reg->type), reg_name); 3748 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3749 if (off_desc->type == BPF_KPTR_UNREF) 3750 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3751 targ_name); 3752 else 3753 verbose(env, "\n"); 3754 return -EINVAL; 3755 } 3756 3757 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3758 int value_regno, int insn_idx, 3759 struct bpf_map_value_off_desc *off_desc) 3760 { 3761 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3762 int class = BPF_CLASS(insn->code); 3763 struct bpf_reg_state *val_reg; 3764 3765 /* Things we already checked for in check_map_access and caller: 3766 * - Reject cases where variable offset may touch kptr 3767 * - size of access (must be BPF_DW) 3768 * - tnum_is_const(reg->var_off) 3769 * - off_desc->offset == off + reg->var_off.value 3770 */ 3771 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3772 if (BPF_MODE(insn->code) != BPF_MEM) { 3773 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3774 return -EACCES; 3775 } 3776 3777 /* We only allow loading referenced kptr, since it will be marked as 3778 * untrusted, similar to unreferenced kptr. 3779 */ 3780 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) { 3781 verbose(env, "store to referenced kptr disallowed\n"); 3782 return -EACCES; 3783 } 3784 3785 if (class == BPF_LDX) { 3786 val_reg = reg_state(env, value_regno); 3787 /* We can simply mark the value_regno receiving the pointer 3788 * value from map as PTR_TO_BTF_ID, with the correct type. 3789 */ 3790 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf, 3791 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3792 /* For mark_ptr_or_null_reg */ 3793 val_reg->id = ++env->id_gen; 3794 } else if (class == BPF_STX) { 3795 val_reg = reg_state(env, value_regno); 3796 if (!register_is_null(val_reg) && 3797 map_kptr_match_type(env, off_desc, val_reg, value_regno)) 3798 return -EACCES; 3799 } else if (class == BPF_ST) { 3800 if (insn->imm) { 3801 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3802 off_desc->offset); 3803 return -EACCES; 3804 } 3805 } else { 3806 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3807 return -EACCES; 3808 } 3809 return 0; 3810 } 3811 3812 /* check read/write into a map element with possible variable offset */ 3813 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3814 int off, int size, bool zero_size_allowed, 3815 enum bpf_access_src src) 3816 { 3817 struct bpf_verifier_state *vstate = env->cur_state; 3818 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3819 struct bpf_reg_state *reg = &state->regs[regno]; 3820 struct bpf_map *map = reg->map_ptr; 3821 int err; 3822 3823 err = check_mem_region_access(env, regno, off, size, map->value_size, 3824 zero_size_allowed); 3825 if (err) 3826 return err; 3827 3828 if (map_value_has_spin_lock(map)) { 3829 u32 lock = map->spin_lock_off; 3830 3831 /* if any part of struct bpf_spin_lock can be touched by 3832 * load/store reject this program. 3833 * To check that [x1, x2) overlaps with [y1, y2) 3834 * it is sufficient to check x1 < y2 && y1 < x2. 3835 */ 3836 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3837 lock < reg->umax_value + off + size) { 3838 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3839 return -EACCES; 3840 } 3841 } 3842 if (map_value_has_timer(map)) { 3843 u32 t = map->timer_off; 3844 3845 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3846 t < reg->umax_value + off + size) { 3847 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3848 return -EACCES; 3849 } 3850 } 3851 if (map_value_has_kptrs(map)) { 3852 struct bpf_map_value_off *tab = map->kptr_off_tab; 3853 int i; 3854 3855 for (i = 0; i < tab->nr_off; i++) { 3856 u32 p = tab->off[i].offset; 3857 3858 if (reg->smin_value + off < p + sizeof(u64) && 3859 p < reg->umax_value + off + size) { 3860 if (src != ACCESS_DIRECT) { 3861 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 3862 return -EACCES; 3863 } 3864 if (!tnum_is_const(reg->var_off)) { 3865 verbose(env, "kptr access cannot have variable offset\n"); 3866 return -EACCES; 3867 } 3868 if (p != off + reg->var_off.value) { 3869 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 3870 p, off + reg->var_off.value); 3871 return -EACCES; 3872 } 3873 if (size != bpf_size_to_bytes(BPF_DW)) { 3874 verbose(env, "kptr access size must be BPF_DW\n"); 3875 return -EACCES; 3876 } 3877 break; 3878 } 3879 } 3880 } 3881 return err; 3882 } 3883 3884 #define MAX_PACKET_OFF 0xffff 3885 3886 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3887 const struct bpf_call_arg_meta *meta, 3888 enum bpf_access_type t) 3889 { 3890 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3891 3892 switch (prog_type) { 3893 /* Program types only with direct read access go here! */ 3894 case BPF_PROG_TYPE_LWT_IN: 3895 case BPF_PROG_TYPE_LWT_OUT: 3896 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3897 case BPF_PROG_TYPE_SK_REUSEPORT: 3898 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3899 case BPF_PROG_TYPE_CGROUP_SKB: 3900 if (t == BPF_WRITE) 3901 return false; 3902 fallthrough; 3903 3904 /* Program types with direct read + write access go here! */ 3905 case BPF_PROG_TYPE_SCHED_CLS: 3906 case BPF_PROG_TYPE_SCHED_ACT: 3907 case BPF_PROG_TYPE_XDP: 3908 case BPF_PROG_TYPE_LWT_XMIT: 3909 case BPF_PROG_TYPE_SK_SKB: 3910 case BPF_PROG_TYPE_SK_MSG: 3911 if (meta) 3912 return meta->pkt_access; 3913 3914 env->seen_direct_write = true; 3915 return true; 3916 3917 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3918 if (t == BPF_WRITE) 3919 env->seen_direct_write = true; 3920 3921 return true; 3922 3923 default: 3924 return false; 3925 } 3926 } 3927 3928 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3929 int size, bool zero_size_allowed) 3930 { 3931 struct bpf_reg_state *regs = cur_regs(env); 3932 struct bpf_reg_state *reg = ®s[regno]; 3933 int err; 3934 3935 /* We may have added a variable offset to the packet pointer; but any 3936 * reg->range we have comes after that. We are only checking the fixed 3937 * offset. 3938 */ 3939 3940 /* We don't allow negative numbers, because we aren't tracking enough 3941 * detail to prove they're safe. 3942 */ 3943 if (reg->smin_value < 0) { 3944 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3945 regno); 3946 return -EACCES; 3947 } 3948 3949 err = reg->range < 0 ? -EINVAL : 3950 __check_mem_access(env, regno, off, size, reg->range, 3951 zero_size_allowed); 3952 if (err) { 3953 verbose(env, "R%d offset is outside of the packet\n", regno); 3954 return err; 3955 } 3956 3957 /* __check_mem_access has made sure "off + size - 1" is within u16. 3958 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3959 * otherwise find_good_pkt_pointers would have refused to set range info 3960 * that __check_mem_access would have rejected this pkt access. 3961 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3962 */ 3963 env->prog->aux->max_pkt_offset = 3964 max_t(u32, env->prog->aux->max_pkt_offset, 3965 off + reg->umax_value + size - 1); 3966 3967 return err; 3968 } 3969 3970 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3971 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3972 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3973 struct btf **btf, u32 *btf_id) 3974 { 3975 struct bpf_insn_access_aux info = { 3976 .reg_type = *reg_type, 3977 .log = &env->log, 3978 }; 3979 3980 if (env->ops->is_valid_access && 3981 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3982 /* A non zero info.ctx_field_size indicates that this field is a 3983 * candidate for later verifier transformation to load the whole 3984 * field and then apply a mask when accessed with a narrower 3985 * access than actual ctx access size. A zero info.ctx_field_size 3986 * will only allow for whole field access and rejects any other 3987 * type of narrower access. 3988 */ 3989 *reg_type = info.reg_type; 3990 3991 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3992 *btf = info.btf; 3993 *btf_id = info.btf_id; 3994 } else { 3995 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3996 } 3997 /* remember the offset of last byte accessed in ctx */ 3998 if (env->prog->aux->max_ctx_offset < off + size) 3999 env->prog->aux->max_ctx_offset = off + size; 4000 return 0; 4001 } 4002 4003 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4004 return -EACCES; 4005 } 4006 4007 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4008 int size) 4009 { 4010 if (size < 0 || off < 0 || 4011 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4012 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4013 off, size); 4014 return -EACCES; 4015 } 4016 return 0; 4017 } 4018 4019 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4020 u32 regno, int off, int size, 4021 enum bpf_access_type t) 4022 { 4023 struct bpf_reg_state *regs = cur_regs(env); 4024 struct bpf_reg_state *reg = ®s[regno]; 4025 struct bpf_insn_access_aux info = {}; 4026 bool valid; 4027 4028 if (reg->smin_value < 0) { 4029 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4030 regno); 4031 return -EACCES; 4032 } 4033 4034 switch (reg->type) { 4035 case PTR_TO_SOCK_COMMON: 4036 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4037 break; 4038 case PTR_TO_SOCKET: 4039 valid = bpf_sock_is_valid_access(off, size, t, &info); 4040 break; 4041 case PTR_TO_TCP_SOCK: 4042 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4043 break; 4044 case PTR_TO_XDP_SOCK: 4045 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4046 break; 4047 default: 4048 valid = false; 4049 } 4050 4051 4052 if (valid) { 4053 env->insn_aux_data[insn_idx].ctx_field_size = 4054 info.ctx_field_size; 4055 return 0; 4056 } 4057 4058 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4059 regno, reg_type_str(env, reg->type), off, size); 4060 4061 return -EACCES; 4062 } 4063 4064 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4065 { 4066 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4067 } 4068 4069 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4070 { 4071 const struct bpf_reg_state *reg = reg_state(env, regno); 4072 4073 return reg->type == PTR_TO_CTX; 4074 } 4075 4076 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4077 { 4078 const struct bpf_reg_state *reg = reg_state(env, regno); 4079 4080 return type_is_sk_pointer(reg->type); 4081 } 4082 4083 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4084 { 4085 const struct bpf_reg_state *reg = reg_state(env, regno); 4086 4087 return type_is_pkt_pointer(reg->type); 4088 } 4089 4090 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4091 { 4092 const struct bpf_reg_state *reg = reg_state(env, regno); 4093 4094 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4095 return reg->type == PTR_TO_FLOW_KEYS; 4096 } 4097 4098 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4099 const struct bpf_reg_state *reg, 4100 int off, int size, bool strict) 4101 { 4102 struct tnum reg_off; 4103 int ip_align; 4104 4105 /* Byte size accesses are always allowed. */ 4106 if (!strict || size == 1) 4107 return 0; 4108 4109 /* For platforms that do not have a Kconfig enabling 4110 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4111 * NET_IP_ALIGN is universally set to '2'. And on platforms 4112 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4113 * to this code only in strict mode where we want to emulate 4114 * the NET_IP_ALIGN==2 checking. Therefore use an 4115 * unconditional IP align value of '2'. 4116 */ 4117 ip_align = 2; 4118 4119 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4120 if (!tnum_is_aligned(reg_off, size)) { 4121 char tn_buf[48]; 4122 4123 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4124 verbose(env, 4125 "misaligned packet access off %d+%s+%d+%d size %d\n", 4126 ip_align, tn_buf, reg->off, off, size); 4127 return -EACCES; 4128 } 4129 4130 return 0; 4131 } 4132 4133 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4134 const struct bpf_reg_state *reg, 4135 const char *pointer_desc, 4136 int off, int size, bool strict) 4137 { 4138 struct tnum reg_off; 4139 4140 /* Byte size accesses are always allowed. */ 4141 if (!strict || size == 1) 4142 return 0; 4143 4144 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4145 if (!tnum_is_aligned(reg_off, size)) { 4146 char tn_buf[48]; 4147 4148 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4149 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4150 pointer_desc, tn_buf, reg->off, off, size); 4151 return -EACCES; 4152 } 4153 4154 return 0; 4155 } 4156 4157 static int check_ptr_alignment(struct bpf_verifier_env *env, 4158 const struct bpf_reg_state *reg, int off, 4159 int size, bool strict_alignment_once) 4160 { 4161 bool strict = env->strict_alignment || strict_alignment_once; 4162 const char *pointer_desc = ""; 4163 4164 switch (reg->type) { 4165 case PTR_TO_PACKET: 4166 case PTR_TO_PACKET_META: 4167 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4168 * right in front, treat it the very same way. 4169 */ 4170 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4171 case PTR_TO_FLOW_KEYS: 4172 pointer_desc = "flow keys "; 4173 break; 4174 case PTR_TO_MAP_KEY: 4175 pointer_desc = "key "; 4176 break; 4177 case PTR_TO_MAP_VALUE: 4178 pointer_desc = "value "; 4179 break; 4180 case PTR_TO_CTX: 4181 pointer_desc = "context "; 4182 break; 4183 case PTR_TO_STACK: 4184 pointer_desc = "stack "; 4185 /* The stack spill tracking logic in check_stack_write_fixed_off() 4186 * and check_stack_read_fixed_off() relies on stack accesses being 4187 * aligned. 4188 */ 4189 strict = true; 4190 break; 4191 case PTR_TO_SOCKET: 4192 pointer_desc = "sock "; 4193 break; 4194 case PTR_TO_SOCK_COMMON: 4195 pointer_desc = "sock_common "; 4196 break; 4197 case PTR_TO_TCP_SOCK: 4198 pointer_desc = "tcp_sock "; 4199 break; 4200 case PTR_TO_XDP_SOCK: 4201 pointer_desc = "xdp_sock "; 4202 break; 4203 default: 4204 break; 4205 } 4206 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4207 strict); 4208 } 4209 4210 static int update_stack_depth(struct bpf_verifier_env *env, 4211 const struct bpf_func_state *func, 4212 int off) 4213 { 4214 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4215 4216 if (stack >= -off) 4217 return 0; 4218 4219 /* update known max for given subprogram */ 4220 env->subprog_info[func->subprogno].stack_depth = -off; 4221 return 0; 4222 } 4223 4224 /* starting from main bpf function walk all instructions of the function 4225 * and recursively walk all callees that given function can call. 4226 * Ignore jump and exit insns. 4227 * Since recursion is prevented by check_cfg() this algorithm 4228 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4229 */ 4230 static int check_max_stack_depth(struct bpf_verifier_env *env) 4231 { 4232 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4233 struct bpf_subprog_info *subprog = env->subprog_info; 4234 struct bpf_insn *insn = env->prog->insnsi; 4235 bool tail_call_reachable = false; 4236 int ret_insn[MAX_CALL_FRAMES]; 4237 int ret_prog[MAX_CALL_FRAMES]; 4238 int j; 4239 4240 process_func: 4241 /* protect against potential stack overflow that might happen when 4242 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4243 * depth for such case down to 256 so that the worst case scenario 4244 * would result in 8k stack size (32 which is tailcall limit * 256 = 4245 * 8k). 4246 * 4247 * To get the idea what might happen, see an example: 4248 * func1 -> sub rsp, 128 4249 * subfunc1 -> sub rsp, 256 4250 * tailcall1 -> add rsp, 256 4251 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4252 * subfunc2 -> sub rsp, 64 4253 * subfunc22 -> sub rsp, 128 4254 * tailcall2 -> add rsp, 128 4255 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4256 * 4257 * tailcall will unwind the current stack frame but it will not get rid 4258 * of caller's stack as shown on the example above. 4259 */ 4260 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4261 verbose(env, 4262 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4263 depth); 4264 return -EACCES; 4265 } 4266 /* round up to 32-bytes, since this is granularity 4267 * of interpreter stack size 4268 */ 4269 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4270 if (depth > MAX_BPF_STACK) { 4271 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4272 frame + 1, depth); 4273 return -EACCES; 4274 } 4275 continue_func: 4276 subprog_end = subprog[idx + 1].start; 4277 for (; i < subprog_end; i++) { 4278 int next_insn; 4279 4280 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4281 continue; 4282 /* remember insn and function to return to */ 4283 ret_insn[frame] = i + 1; 4284 ret_prog[frame] = idx; 4285 4286 /* find the callee */ 4287 next_insn = i + insn[i].imm + 1; 4288 idx = find_subprog(env, next_insn); 4289 if (idx < 0) { 4290 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4291 next_insn); 4292 return -EFAULT; 4293 } 4294 if (subprog[idx].is_async_cb) { 4295 if (subprog[idx].has_tail_call) { 4296 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4297 return -EFAULT; 4298 } 4299 /* async callbacks don't increase bpf prog stack size */ 4300 continue; 4301 } 4302 i = next_insn; 4303 4304 if (subprog[idx].has_tail_call) 4305 tail_call_reachable = true; 4306 4307 frame++; 4308 if (frame >= MAX_CALL_FRAMES) { 4309 verbose(env, "the call stack of %d frames is too deep !\n", 4310 frame); 4311 return -E2BIG; 4312 } 4313 goto process_func; 4314 } 4315 /* if tail call got detected across bpf2bpf calls then mark each of the 4316 * currently present subprog frames as tail call reachable subprogs; 4317 * this info will be utilized by JIT so that we will be preserving the 4318 * tail call counter throughout bpf2bpf calls combined with tailcalls 4319 */ 4320 if (tail_call_reachable) 4321 for (j = 0; j < frame; j++) 4322 subprog[ret_prog[j]].tail_call_reachable = true; 4323 if (subprog[0].tail_call_reachable) 4324 env->prog->aux->tail_call_reachable = true; 4325 4326 /* end of for() loop means the last insn of the 'subprog' 4327 * was reached. Doesn't matter whether it was JA or EXIT 4328 */ 4329 if (frame == 0) 4330 return 0; 4331 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4332 frame--; 4333 i = ret_insn[frame]; 4334 idx = ret_prog[frame]; 4335 goto continue_func; 4336 } 4337 4338 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4339 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4340 const struct bpf_insn *insn, int idx) 4341 { 4342 int start = idx + insn->imm + 1, subprog; 4343 4344 subprog = find_subprog(env, start); 4345 if (subprog < 0) { 4346 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4347 start); 4348 return -EFAULT; 4349 } 4350 return env->subprog_info[subprog].stack_depth; 4351 } 4352 #endif 4353 4354 static int __check_buffer_access(struct bpf_verifier_env *env, 4355 const char *buf_info, 4356 const struct bpf_reg_state *reg, 4357 int regno, int off, int size) 4358 { 4359 if (off < 0) { 4360 verbose(env, 4361 "R%d invalid %s buffer access: off=%d, size=%d\n", 4362 regno, buf_info, off, size); 4363 return -EACCES; 4364 } 4365 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4366 char tn_buf[48]; 4367 4368 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4369 verbose(env, 4370 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4371 regno, off, tn_buf); 4372 return -EACCES; 4373 } 4374 4375 return 0; 4376 } 4377 4378 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4379 const struct bpf_reg_state *reg, 4380 int regno, int off, int size) 4381 { 4382 int err; 4383 4384 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4385 if (err) 4386 return err; 4387 4388 if (off + size > env->prog->aux->max_tp_access) 4389 env->prog->aux->max_tp_access = off + size; 4390 4391 return 0; 4392 } 4393 4394 static int check_buffer_access(struct bpf_verifier_env *env, 4395 const struct bpf_reg_state *reg, 4396 int regno, int off, int size, 4397 bool zero_size_allowed, 4398 u32 *max_access) 4399 { 4400 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4401 int err; 4402 4403 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4404 if (err) 4405 return err; 4406 4407 if (off + size > *max_access) 4408 *max_access = off + size; 4409 4410 return 0; 4411 } 4412 4413 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4414 static void zext_32_to_64(struct bpf_reg_state *reg) 4415 { 4416 reg->var_off = tnum_subreg(reg->var_off); 4417 __reg_assign_32_into_64(reg); 4418 } 4419 4420 /* truncate register to smaller size (in bytes) 4421 * must be called with size < BPF_REG_SIZE 4422 */ 4423 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4424 { 4425 u64 mask; 4426 4427 /* clear high bits in bit representation */ 4428 reg->var_off = tnum_cast(reg->var_off, size); 4429 4430 /* fix arithmetic bounds */ 4431 mask = ((u64)1 << (size * 8)) - 1; 4432 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4433 reg->umin_value &= mask; 4434 reg->umax_value &= mask; 4435 } else { 4436 reg->umin_value = 0; 4437 reg->umax_value = mask; 4438 } 4439 reg->smin_value = reg->umin_value; 4440 reg->smax_value = reg->umax_value; 4441 4442 /* If size is smaller than 32bit register the 32bit register 4443 * values are also truncated so we push 64-bit bounds into 4444 * 32-bit bounds. Above were truncated < 32-bits already. 4445 */ 4446 if (size >= 4) 4447 return; 4448 __reg_combine_64_into_32(reg); 4449 } 4450 4451 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4452 { 4453 /* A map is considered read-only if the following condition are true: 4454 * 4455 * 1) BPF program side cannot change any of the map content. The 4456 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4457 * and was set at map creation time. 4458 * 2) The map value(s) have been initialized from user space by a 4459 * loader and then "frozen", such that no new map update/delete 4460 * operations from syscall side are possible for the rest of 4461 * the map's lifetime from that point onwards. 4462 * 3) Any parallel/pending map update/delete operations from syscall 4463 * side have been completed. Only after that point, it's safe to 4464 * assume that map value(s) are immutable. 4465 */ 4466 return (map->map_flags & BPF_F_RDONLY_PROG) && 4467 READ_ONCE(map->frozen) && 4468 !bpf_map_write_active(map); 4469 } 4470 4471 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4472 { 4473 void *ptr; 4474 u64 addr; 4475 int err; 4476 4477 err = map->ops->map_direct_value_addr(map, &addr, off); 4478 if (err) 4479 return err; 4480 ptr = (void *)(long)addr + off; 4481 4482 switch (size) { 4483 case sizeof(u8): 4484 *val = (u64)*(u8 *)ptr; 4485 break; 4486 case sizeof(u16): 4487 *val = (u64)*(u16 *)ptr; 4488 break; 4489 case sizeof(u32): 4490 *val = (u64)*(u32 *)ptr; 4491 break; 4492 case sizeof(u64): 4493 *val = *(u64 *)ptr; 4494 break; 4495 default: 4496 return -EINVAL; 4497 } 4498 return 0; 4499 } 4500 4501 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4502 struct bpf_reg_state *regs, 4503 int regno, int off, int size, 4504 enum bpf_access_type atype, 4505 int value_regno) 4506 { 4507 struct bpf_reg_state *reg = regs + regno; 4508 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4509 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4510 enum bpf_type_flag flag = 0; 4511 u32 btf_id; 4512 int ret; 4513 4514 if (off < 0) { 4515 verbose(env, 4516 "R%d is ptr_%s invalid negative access: off=%d\n", 4517 regno, tname, off); 4518 return -EACCES; 4519 } 4520 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4521 char tn_buf[48]; 4522 4523 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4524 verbose(env, 4525 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4526 regno, tname, off, tn_buf); 4527 return -EACCES; 4528 } 4529 4530 if (reg->type & MEM_USER) { 4531 verbose(env, 4532 "R%d is ptr_%s access user memory: off=%d\n", 4533 regno, tname, off); 4534 return -EACCES; 4535 } 4536 4537 if (reg->type & MEM_PERCPU) { 4538 verbose(env, 4539 "R%d is ptr_%s access percpu memory: off=%d\n", 4540 regno, tname, off); 4541 return -EACCES; 4542 } 4543 4544 if (env->ops->btf_struct_access) { 4545 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4546 off, size, atype, &btf_id, &flag); 4547 } else { 4548 if (atype != BPF_READ) { 4549 verbose(env, "only read is supported\n"); 4550 return -EACCES; 4551 } 4552 4553 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4554 atype, &btf_id, &flag); 4555 } 4556 4557 if (ret < 0) 4558 return ret; 4559 4560 /* If this is an untrusted pointer, all pointers formed by walking it 4561 * also inherit the untrusted flag. 4562 */ 4563 if (type_flag(reg->type) & PTR_UNTRUSTED) 4564 flag |= PTR_UNTRUSTED; 4565 4566 if (atype == BPF_READ && value_regno >= 0) 4567 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4568 4569 return 0; 4570 } 4571 4572 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4573 struct bpf_reg_state *regs, 4574 int regno, int off, int size, 4575 enum bpf_access_type atype, 4576 int value_regno) 4577 { 4578 struct bpf_reg_state *reg = regs + regno; 4579 struct bpf_map *map = reg->map_ptr; 4580 enum bpf_type_flag flag = 0; 4581 const struct btf_type *t; 4582 const char *tname; 4583 u32 btf_id; 4584 int ret; 4585 4586 if (!btf_vmlinux) { 4587 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4588 return -ENOTSUPP; 4589 } 4590 4591 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4592 verbose(env, "map_ptr access not supported for map type %d\n", 4593 map->map_type); 4594 return -ENOTSUPP; 4595 } 4596 4597 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4598 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4599 4600 if (!env->allow_ptr_to_map_access) { 4601 verbose(env, 4602 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4603 tname); 4604 return -EPERM; 4605 } 4606 4607 if (off < 0) { 4608 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4609 regno, tname, off); 4610 return -EACCES; 4611 } 4612 4613 if (atype != BPF_READ) { 4614 verbose(env, "only read from %s is supported\n", tname); 4615 return -EACCES; 4616 } 4617 4618 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4619 if (ret < 0) 4620 return ret; 4621 4622 if (value_regno >= 0) 4623 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4624 4625 return 0; 4626 } 4627 4628 /* Check that the stack access at the given offset is within bounds. The 4629 * maximum valid offset is -1. 4630 * 4631 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4632 * -state->allocated_stack for reads. 4633 */ 4634 static int check_stack_slot_within_bounds(int off, 4635 struct bpf_func_state *state, 4636 enum bpf_access_type t) 4637 { 4638 int min_valid_off; 4639 4640 if (t == BPF_WRITE) 4641 min_valid_off = -MAX_BPF_STACK; 4642 else 4643 min_valid_off = -state->allocated_stack; 4644 4645 if (off < min_valid_off || off > -1) 4646 return -EACCES; 4647 return 0; 4648 } 4649 4650 /* Check that the stack access at 'regno + off' falls within the maximum stack 4651 * bounds. 4652 * 4653 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4654 */ 4655 static int check_stack_access_within_bounds( 4656 struct bpf_verifier_env *env, 4657 int regno, int off, int access_size, 4658 enum bpf_access_src src, enum bpf_access_type type) 4659 { 4660 struct bpf_reg_state *regs = cur_regs(env); 4661 struct bpf_reg_state *reg = regs + regno; 4662 struct bpf_func_state *state = func(env, reg); 4663 int min_off, max_off; 4664 int err; 4665 char *err_extra; 4666 4667 if (src == ACCESS_HELPER) 4668 /* We don't know if helpers are reading or writing (or both). */ 4669 err_extra = " indirect access to"; 4670 else if (type == BPF_READ) 4671 err_extra = " read from"; 4672 else 4673 err_extra = " write to"; 4674 4675 if (tnum_is_const(reg->var_off)) { 4676 min_off = reg->var_off.value + off; 4677 if (access_size > 0) 4678 max_off = min_off + access_size - 1; 4679 else 4680 max_off = min_off; 4681 } else { 4682 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4683 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4684 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4685 err_extra, regno); 4686 return -EACCES; 4687 } 4688 min_off = reg->smin_value + off; 4689 if (access_size > 0) 4690 max_off = reg->smax_value + off + access_size - 1; 4691 else 4692 max_off = min_off; 4693 } 4694 4695 err = check_stack_slot_within_bounds(min_off, state, type); 4696 if (!err) 4697 err = check_stack_slot_within_bounds(max_off, state, type); 4698 4699 if (err) { 4700 if (tnum_is_const(reg->var_off)) { 4701 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4702 err_extra, regno, off, access_size); 4703 } else { 4704 char tn_buf[48]; 4705 4706 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4707 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4708 err_extra, regno, tn_buf, access_size); 4709 } 4710 } 4711 return err; 4712 } 4713 4714 /* check whether memory at (regno + off) is accessible for t = (read | write) 4715 * if t==write, value_regno is a register which value is stored into memory 4716 * if t==read, value_regno is a register which will receive the value from memory 4717 * if t==write && value_regno==-1, some unknown value is stored into memory 4718 * if t==read && value_regno==-1, don't care what we read from memory 4719 */ 4720 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4721 int off, int bpf_size, enum bpf_access_type t, 4722 int value_regno, bool strict_alignment_once) 4723 { 4724 struct bpf_reg_state *regs = cur_regs(env); 4725 struct bpf_reg_state *reg = regs + regno; 4726 struct bpf_func_state *state; 4727 int size, err = 0; 4728 4729 size = bpf_size_to_bytes(bpf_size); 4730 if (size < 0) 4731 return size; 4732 4733 /* alignment checks will add in reg->off themselves */ 4734 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4735 if (err) 4736 return err; 4737 4738 /* for access checks, reg->off is just part of off */ 4739 off += reg->off; 4740 4741 if (reg->type == PTR_TO_MAP_KEY) { 4742 if (t == BPF_WRITE) { 4743 verbose(env, "write to change key R%d not allowed\n", regno); 4744 return -EACCES; 4745 } 4746 4747 err = check_mem_region_access(env, regno, off, size, 4748 reg->map_ptr->key_size, false); 4749 if (err) 4750 return err; 4751 if (value_regno >= 0) 4752 mark_reg_unknown(env, regs, value_regno); 4753 } else if (reg->type == PTR_TO_MAP_VALUE) { 4754 struct bpf_map_value_off_desc *kptr_off_desc = NULL; 4755 4756 if (t == BPF_WRITE && value_regno >= 0 && 4757 is_pointer_value(env, value_regno)) { 4758 verbose(env, "R%d leaks addr into map\n", value_regno); 4759 return -EACCES; 4760 } 4761 err = check_map_access_type(env, regno, off, size, t); 4762 if (err) 4763 return err; 4764 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4765 if (err) 4766 return err; 4767 if (tnum_is_const(reg->var_off)) 4768 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr, 4769 off + reg->var_off.value); 4770 if (kptr_off_desc) { 4771 err = check_map_kptr_access(env, regno, value_regno, insn_idx, 4772 kptr_off_desc); 4773 } else if (t == BPF_READ && value_regno >= 0) { 4774 struct bpf_map *map = reg->map_ptr; 4775 4776 /* if map is read-only, track its contents as scalars */ 4777 if (tnum_is_const(reg->var_off) && 4778 bpf_map_is_rdonly(map) && 4779 map->ops->map_direct_value_addr) { 4780 int map_off = off + reg->var_off.value; 4781 u64 val = 0; 4782 4783 err = bpf_map_direct_read(map, map_off, size, 4784 &val); 4785 if (err) 4786 return err; 4787 4788 regs[value_regno].type = SCALAR_VALUE; 4789 __mark_reg_known(®s[value_regno], val); 4790 } else { 4791 mark_reg_unknown(env, regs, value_regno); 4792 } 4793 } 4794 } else if (base_type(reg->type) == PTR_TO_MEM) { 4795 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4796 4797 if (type_may_be_null(reg->type)) { 4798 verbose(env, "R%d invalid mem access '%s'\n", regno, 4799 reg_type_str(env, reg->type)); 4800 return -EACCES; 4801 } 4802 4803 if (t == BPF_WRITE && rdonly_mem) { 4804 verbose(env, "R%d cannot write into %s\n", 4805 regno, reg_type_str(env, reg->type)); 4806 return -EACCES; 4807 } 4808 4809 if (t == BPF_WRITE && value_regno >= 0 && 4810 is_pointer_value(env, value_regno)) { 4811 verbose(env, "R%d leaks addr into mem\n", value_regno); 4812 return -EACCES; 4813 } 4814 4815 err = check_mem_region_access(env, regno, off, size, 4816 reg->mem_size, false); 4817 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4818 mark_reg_unknown(env, regs, value_regno); 4819 } else if (reg->type == PTR_TO_CTX) { 4820 enum bpf_reg_type reg_type = SCALAR_VALUE; 4821 struct btf *btf = NULL; 4822 u32 btf_id = 0; 4823 4824 if (t == BPF_WRITE && value_regno >= 0 && 4825 is_pointer_value(env, value_regno)) { 4826 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4827 return -EACCES; 4828 } 4829 4830 err = check_ptr_off_reg(env, reg, regno); 4831 if (err < 0) 4832 return err; 4833 4834 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4835 &btf_id); 4836 if (err) 4837 verbose_linfo(env, insn_idx, "; "); 4838 if (!err && t == BPF_READ && value_regno >= 0) { 4839 /* ctx access returns either a scalar, or a 4840 * PTR_TO_PACKET[_META,_END]. In the latter 4841 * case, we know the offset is zero. 4842 */ 4843 if (reg_type == SCALAR_VALUE) { 4844 mark_reg_unknown(env, regs, value_regno); 4845 } else { 4846 mark_reg_known_zero(env, regs, 4847 value_regno); 4848 if (type_may_be_null(reg_type)) 4849 regs[value_regno].id = ++env->id_gen; 4850 /* A load of ctx field could have different 4851 * actual load size with the one encoded in the 4852 * insn. When the dst is PTR, it is for sure not 4853 * a sub-register. 4854 */ 4855 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4856 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4857 regs[value_regno].btf = btf; 4858 regs[value_regno].btf_id = btf_id; 4859 } 4860 } 4861 regs[value_regno].type = reg_type; 4862 } 4863 4864 } else if (reg->type == PTR_TO_STACK) { 4865 /* Basic bounds checks. */ 4866 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4867 if (err) 4868 return err; 4869 4870 state = func(env, reg); 4871 err = update_stack_depth(env, state, off); 4872 if (err) 4873 return err; 4874 4875 if (t == BPF_READ) 4876 err = check_stack_read(env, regno, off, size, 4877 value_regno); 4878 else 4879 err = check_stack_write(env, regno, off, size, 4880 value_regno, insn_idx); 4881 } else if (reg_is_pkt_pointer(reg)) { 4882 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4883 verbose(env, "cannot write into packet\n"); 4884 return -EACCES; 4885 } 4886 if (t == BPF_WRITE && value_regno >= 0 && 4887 is_pointer_value(env, value_regno)) { 4888 verbose(env, "R%d leaks addr into packet\n", 4889 value_regno); 4890 return -EACCES; 4891 } 4892 err = check_packet_access(env, regno, off, size, false); 4893 if (!err && t == BPF_READ && value_regno >= 0) 4894 mark_reg_unknown(env, regs, value_regno); 4895 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4896 if (t == BPF_WRITE && value_regno >= 0 && 4897 is_pointer_value(env, value_regno)) { 4898 verbose(env, "R%d leaks addr into flow keys\n", 4899 value_regno); 4900 return -EACCES; 4901 } 4902 4903 err = check_flow_keys_access(env, off, size); 4904 if (!err && t == BPF_READ && value_regno >= 0) 4905 mark_reg_unknown(env, regs, value_regno); 4906 } else if (type_is_sk_pointer(reg->type)) { 4907 if (t == BPF_WRITE) { 4908 verbose(env, "R%d cannot write into %s\n", 4909 regno, reg_type_str(env, reg->type)); 4910 return -EACCES; 4911 } 4912 err = check_sock_access(env, insn_idx, regno, off, size, t); 4913 if (!err && value_regno >= 0) 4914 mark_reg_unknown(env, regs, value_regno); 4915 } else if (reg->type == PTR_TO_TP_BUFFER) { 4916 err = check_tp_buffer_access(env, reg, regno, off, size); 4917 if (!err && t == BPF_READ && value_regno >= 0) 4918 mark_reg_unknown(env, regs, value_regno); 4919 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4920 !type_may_be_null(reg->type)) { 4921 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4922 value_regno); 4923 } else if (reg->type == CONST_PTR_TO_MAP) { 4924 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4925 value_regno); 4926 } else if (base_type(reg->type) == PTR_TO_BUF) { 4927 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4928 u32 *max_access; 4929 4930 if (rdonly_mem) { 4931 if (t == BPF_WRITE) { 4932 verbose(env, "R%d cannot write into %s\n", 4933 regno, reg_type_str(env, reg->type)); 4934 return -EACCES; 4935 } 4936 max_access = &env->prog->aux->max_rdonly_access; 4937 } else { 4938 max_access = &env->prog->aux->max_rdwr_access; 4939 } 4940 4941 err = check_buffer_access(env, reg, regno, off, size, false, 4942 max_access); 4943 4944 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4945 mark_reg_unknown(env, regs, value_regno); 4946 } else { 4947 verbose(env, "R%d invalid mem access '%s'\n", regno, 4948 reg_type_str(env, reg->type)); 4949 return -EACCES; 4950 } 4951 4952 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4953 regs[value_regno].type == SCALAR_VALUE) { 4954 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4955 coerce_reg_to_size(®s[value_regno], size); 4956 } 4957 return err; 4958 } 4959 4960 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4961 { 4962 int load_reg; 4963 int err; 4964 4965 switch (insn->imm) { 4966 case BPF_ADD: 4967 case BPF_ADD | BPF_FETCH: 4968 case BPF_AND: 4969 case BPF_AND | BPF_FETCH: 4970 case BPF_OR: 4971 case BPF_OR | BPF_FETCH: 4972 case BPF_XOR: 4973 case BPF_XOR | BPF_FETCH: 4974 case BPF_XCHG: 4975 case BPF_CMPXCHG: 4976 break; 4977 default: 4978 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4979 return -EINVAL; 4980 } 4981 4982 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4983 verbose(env, "invalid atomic operand size\n"); 4984 return -EINVAL; 4985 } 4986 4987 /* check src1 operand */ 4988 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4989 if (err) 4990 return err; 4991 4992 /* check src2 operand */ 4993 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4994 if (err) 4995 return err; 4996 4997 if (insn->imm == BPF_CMPXCHG) { 4998 /* Check comparison of R0 with memory location */ 4999 const u32 aux_reg = BPF_REG_0; 5000 5001 err = check_reg_arg(env, aux_reg, SRC_OP); 5002 if (err) 5003 return err; 5004 5005 if (is_pointer_value(env, aux_reg)) { 5006 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5007 return -EACCES; 5008 } 5009 } 5010 5011 if (is_pointer_value(env, insn->src_reg)) { 5012 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5013 return -EACCES; 5014 } 5015 5016 if (is_ctx_reg(env, insn->dst_reg) || 5017 is_pkt_reg(env, insn->dst_reg) || 5018 is_flow_key_reg(env, insn->dst_reg) || 5019 is_sk_reg(env, insn->dst_reg)) { 5020 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5021 insn->dst_reg, 5022 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5023 return -EACCES; 5024 } 5025 5026 if (insn->imm & BPF_FETCH) { 5027 if (insn->imm == BPF_CMPXCHG) 5028 load_reg = BPF_REG_0; 5029 else 5030 load_reg = insn->src_reg; 5031 5032 /* check and record load of old value */ 5033 err = check_reg_arg(env, load_reg, DST_OP); 5034 if (err) 5035 return err; 5036 } else { 5037 /* This instruction accesses a memory location but doesn't 5038 * actually load it into a register. 5039 */ 5040 load_reg = -1; 5041 } 5042 5043 /* Check whether we can read the memory, with second call for fetch 5044 * case to simulate the register fill. 5045 */ 5046 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5047 BPF_SIZE(insn->code), BPF_READ, -1, true); 5048 if (!err && load_reg >= 0) 5049 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5050 BPF_SIZE(insn->code), BPF_READ, load_reg, 5051 true); 5052 if (err) 5053 return err; 5054 5055 /* Check whether we can write into the same memory. */ 5056 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5057 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5058 if (err) 5059 return err; 5060 5061 return 0; 5062 } 5063 5064 /* When register 'regno' is used to read the stack (either directly or through 5065 * a helper function) make sure that it's within stack boundary and, depending 5066 * on the access type, that all elements of the stack are initialized. 5067 * 5068 * 'off' includes 'regno->off', but not its dynamic part (if any). 5069 * 5070 * All registers that have been spilled on the stack in the slots within the 5071 * read offsets are marked as read. 5072 */ 5073 static int check_stack_range_initialized( 5074 struct bpf_verifier_env *env, int regno, int off, 5075 int access_size, bool zero_size_allowed, 5076 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5077 { 5078 struct bpf_reg_state *reg = reg_state(env, regno); 5079 struct bpf_func_state *state = func(env, reg); 5080 int err, min_off, max_off, i, j, slot, spi; 5081 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5082 enum bpf_access_type bounds_check_type; 5083 /* Some accesses can write anything into the stack, others are 5084 * read-only. 5085 */ 5086 bool clobber = false; 5087 5088 if (access_size == 0 && !zero_size_allowed) { 5089 verbose(env, "invalid zero-sized read\n"); 5090 return -EACCES; 5091 } 5092 5093 if (type == ACCESS_HELPER) { 5094 /* The bounds checks for writes are more permissive than for 5095 * reads. However, if raw_mode is not set, we'll do extra 5096 * checks below. 5097 */ 5098 bounds_check_type = BPF_WRITE; 5099 clobber = true; 5100 } else { 5101 bounds_check_type = BPF_READ; 5102 } 5103 err = check_stack_access_within_bounds(env, regno, off, access_size, 5104 type, bounds_check_type); 5105 if (err) 5106 return err; 5107 5108 5109 if (tnum_is_const(reg->var_off)) { 5110 min_off = max_off = reg->var_off.value + off; 5111 } else { 5112 /* Variable offset is prohibited for unprivileged mode for 5113 * simplicity since it requires corresponding support in 5114 * Spectre masking for stack ALU. 5115 * See also retrieve_ptr_limit(). 5116 */ 5117 if (!env->bypass_spec_v1) { 5118 char tn_buf[48]; 5119 5120 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5121 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5122 regno, err_extra, tn_buf); 5123 return -EACCES; 5124 } 5125 /* Only initialized buffer on stack is allowed to be accessed 5126 * with variable offset. With uninitialized buffer it's hard to 5127 * guarantee that whole memory is marked as initialized on 5128 * helper return since specific bounds are unknown what may 5129 * cause uninitialized stack leaking. 5130 */ 5131 if (meta && meta->raw_mode) 5132 meta = NULL; 5133 5134 min_off = reg->smin_value + off; 5135 max_off = reg->smax_value + off; 5136 } 5137 5138 if (meta && meta->raw_mode) { 5139 meta->access_size = access_size; 5140 meta->regno = regno; 5141 return 0; 5142 } 5143 5144 for (i = min_off; i < max_off + access_size; i++) { 5145 u8 *stype; 5146 5147 slot = -i - 1; 5148 spi = slot / BPF_REG_SIZE; 5149 if (state->allocated_stack <= slot) 5150 goto err; 5151 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5152 if (*stype == STACK_MISC) 5153 goto mark; 5154 if (*stype == STACK_ZERO) { 5155 if (clobber) { 5156 /* helper can write anything into the stack */ 5157 *stype = STACK_MISC; 5158 } 5159 goto mark; 5160 } 5161 5162 if (is_spilled_reg(&state->stack[spi]) && 5163 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 5164 goto mark; 5165 5166 if (is_spilled_reg(&state->stack[spi]) && 5167 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5168 env->allow_ptr_leaks)) { 5169 if (clobber) { 5170 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5171 for (j = 0; j < BPF_REG_SIZE; j++) 5172 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5173 } 5174 goto mark; 5175 } 5176 5177 err: 5178 if (tnum_is_const(reg->var_off)) { 5179 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5180 err_extra, regno, min_off, i - min_off, access_size); 5181 } else { 5182 char tn_buf[48]; 5183 5184 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5185 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5186 err_extra, regno, tn_buf, i - min_off, access_size); 5187 } 5188 return -EACCES; 5189 mark: 5190 /* reading any byte out of 8-byte 'spill_slot' will cause 5191 * the whole slot to be marked as 'read' 5192 */ 5193 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5194 state->stack[spi].spilled_ptr.parent, 5195 REG_LIVE_READ64); 5196 } 5197 return update_stack_depth(env, state, min_off); 5198 } 5199 5200 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5201 int access_size, bool zero_size_allowed, 5202 struct bpf_call_arg_meta *meta) 5203 { 5204 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5205 u32 *max_access; 5206 5207 switch (base_type(reg->type)) { 5208 case PTR_TO_PACKET: 5209 case PTR_TO_PACKET_META: 5210 return check_packet_access(env, regno, reg->off, access_size, 5211 zero_size_allowed); 5212 case PTR_TO_MAP_KEY: 5213 if (meta && meta->raw_mode) { 5214 verbose(env, "R%d cannot write into %s\n", regno, 5215 reg_type_str(env, reg->type)); 5216 return -EACCES; 5217 } 5218 return check_mem_region_access(env, regno, reg->off, access_size, 5219 reg->map_ptr->key_size, false); 5220 case PTR_TO_MAP_VALUE: 5221 if (check_map_access_type(env, regno, reg->off, access_size, 5222 meta && meta->raw_mode ? BPF_WRITE : 5223 BPF_READ)) 5224 return -EACCES; 5225 return check_map_access(env, regno, reg->off, access_size, 5226 zero_size_allowed, ACCESS_HELPER); 5227 case PTR_TO_MEM: 5228 if (type_is_rdonly_mem(reg->type)) { 5229 if (meta && meta->raw_mode) { 5230 verbose(env, "R%d cannot write into %s\n", regno, 5231 reg_type_str(env, reg->type)); 5232 return -EACCES; 5233 } 5234 } 5235 return check_mem_region_access(env, regno, reg->off, 5236 access_size, reg->mem_size, 5237 zero_size_allowed); 5238 case PTR_TO_BUF: 5239 if (type_is_rdonly_mem(reg->type)) { 5240 if (meta && meta->raw_mode) { 5241 verbose(env, "R%d cannot write into %s\n", regno, 5242 reg_type_str(env, reg->type)); 5243 return -EACCES; 5244 } 5245 5246 max_access = &env->prog->aux->max_rdonly_access; 5247 } else { 5248 max_access = &env->prog->aux->max_rdwr_access; 5249 } 5250 return check_buffer_access(env, reg, regno, reg->off, 5251 access_size, zero_size_allowed, 5252 max_access); 5253 case PTR_TO_STACK: 5254 return check_stack_range_initialized( 5255 env, 5256 regno, reg->off, access_size, 5257 zero_size_allowed, ACCESS_HELPER, meta); 5258 case PTR_TO_CTX: 5259 /* in case the function doesn't know how to access the context, 5260 * (because we are in a program of type SYSCALL for example), we 5261 * can not statically check its size. 5262 * Dynamically check it now. 5263 */ 5264 if (!env->ops->convert_ctx_access) { 5265 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5266 int offset = access_size - 1; 5267 5268 /* Allow zero-byte read from PTR_TO_CTX */ 5269 if (access_size == 0) 5270 return zero_size_allowed ? 0 : -EACCES; 5271 5272 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5273 atype, -1, false); 5274 } 5275 5276 fallthrough; 5277 default: /* scalar_value or invalid ptr */ 5278 /* Allow zero-byte read from NULL, regardless of pointer type */ 5279 if (zero_size_allowed && access_size == 0 && 5280 register_is_null(reg)) 5281 return 0; 5282 5283 verbose(env, "R%d type=%s ", regno, 5284 reg_type_str(env, reg->type)); 5285 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5286 return -EACCES; 5287 } 5288 } 5289 5290 static int check_mem_size_reg(struct bpf_verifier_env *env, 5291 struct bpf_reg_state *reg, u32 regno, 5292 bool zero_size_allowed, 5293 struct bpf_call_arg_meta *meta) 5294 { 5295 int err; 5296 5297 /* This is used to refine r0 return value bounds for helpers 5298 * that enforce this value as an upper bound on return values. 5299 * See do_refine_retval_range() for helpers that can refine 5300 * the return value. C type of helper is u32 so we pull register 5301 * bound from umax_value however, if negative verifier errors 5302 * out. Only upper bounds can be learned because retval is an 5303 * int type and negative retvals are allowed. 5304 */ 5305 meta->msize_max_value = reg->umax_value; 5306 5307 /* The register is SCALAR_VALUE; the access check 5308 * happens using its boundaries. 5309 */ 5310 if (!tnum_is_const(reg->var_off)) 5311 /* For unprivileged variable accesses, disable raw 5312 * mode so that the program is required to 5313 * initialize all the memory that the helper could 5314 * just partially fill up. 5315 */ 5316 meta = NULL; 5317 5318 if (reg->smin_value < 0) { 5319 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5320 regno); 5321 return -EACCES; 5322 } 5323 5324 if (reg->umin_value == 0) { 5325 err = check_helper_mem_access(env, regno - 1, 0, 5326 zero_size_allowed, 5327 meta); 5328 if (err) 5329 return err; 5330 } 5331 5332 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5333 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5334 regno); 5335 return -EACCES; 5336 } 5337 err = check_helper_mem_access(env, regno - 1, 5338 reg->umax_value, 5339 zero_size_allowed, meta); 5340 if (!err) 5341 err = mark_chain_precision(env, regno); 5342 return err; 5343 } 5344 5345 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5346 u32 regno, u32 mem_size) 5347 { 5348 bool may_be_null = type_may_be_null(reg->type); 5349 struct bpf_reg_state saved_reg; 5350 struct bpf_call_arg_meta meta; 5351 int err; 5352 5353 if (register_is_null(reg)) 5354 return 0; 5355 5356 memset(&meta, 0, sizeof(meta)); 5357 /* Assuming that the register contains a value check if the memory 5358 * access is safe. Temporarily save and restore the register's state as 5359 * the conversion shouldn't be visible to a caller. 5360 */ 5361 if (may_be_null) { 5362 saved_reg = *reg; 5363 mark_ptr_not_null_reg(reg); 5364 } 5365 5366 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5367 /* Check access for BPF_WRITE */ 5368 meta.raw_mode = true; 5369 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5370 5371 if (may_be_null) 5372 *reg = saved_reg; 5373 5374 return err; 5375 } 5376 5377 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5378 u32 regno) 5379 { 5380 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5381 bool may_be_null = type_may_be_null(mem_reg->type); 5382 struct bpf_reg_state saved_reg; 5383 struct bpf_call_arg_meta meta; 5384 int err; 5385 5386 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5387 5388 memset(&meta, 0, sizeof(meta)); 5389 5390 if (may_be_null) { 5391 saved_reg = *mem_reg; 5392 mark_ptr_not_null_reg(mem_reg); 5393 } 5394 5395 err = check_mem_size_reg(env, reg, regno, true, &meta); 5396 /* Check access for BPF_WRITE */ 5397 meta.raw_mode = true; 5398 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5399 5400 if (may_be_null) 5401 *mem_reg = saved_reg; 5402 return err; 5403 } 5404 5405 /* Implementation details: 5406 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5407 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5408 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5409 * value_or_null->value transition, since the verifier only cares about 5410 * the range of access to valid map value pointer and doesn't care about actual 5411 * address of the map element. 5412 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5413 * reg->id > 0 after value_or_null->value transition. By doing so 5414 * two bpf_map_lookups will be considered two different pointers that 5415 * point to different bpf_spin_locks. 5416 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5417 * dead-locks. 5418 * Since only one bpf_spin_lock is allowed the checks are simpler than 5419 * reg_is_refcounted() logic. The verifier needs to remember only 5420 * one spin_lock instead of array of acquired_refs. 5421 * cur_state->active_spin_lock remembers which map value element got locked 5422 * and clears it after bpf_spin_unlock. 5423 */ 5424 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5425 bool is_lock) 5426 { 5427 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5428 struct bpf_verifier_state *cur = env->cur_state; 5429 bool is_const = tnum_is_const(reg->var_off); 5430 struct bpf_map *map = reg->map_ptr; 5431 u64 val = reg->var_off.value; 5432 5433 if (!is_const) { 5434 verbose(env, 5435 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5436 regno); 5437 return -EINVAL; 5438 } 5439 if (!map->btf) { 5440 verbose(env, 5441 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5442 map->name); 5443 return -EINVAL; 5444 } 5445 if (!map_value_has_spin_lock(map)) { 5446 if (map->spin_lock_off == -E2BIG) 5447 verbose(env, 5448 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5449 map->name); 5450 else if (map->spin_lock_off == -ENOENT) 5451 verbose(env, 5452 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5453 map->name); 5454 else 5455 verbose(env, 5456 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5457 map->name); 5458 return -EINVAL; 5459 } 5460 if (map->spin_lock_off != val + reg->off) { 5461 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5462 val + reg->off); 5463 return -EINVAL; 5464 } 5465 if (is_lock) { 5466 if (cur->active_spin_lock) { 5467 verbose(env, 5468 "Locking two bpf_spin_locks are not allowed\n"); 5469 return -EINVAL; 5470 } 5471 cur->active_spin_lock = reg->id; 5472 } else { 5473 if (!cur->active_spin_lock) { 5474 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5475 return -EINVAL; 5476 } 5477 if (cur->active_spin_lock != reg->id) { 5478 verbose(env, "bpf_spin_unlock of different lock\n"); 5479 return -EINVAL; 5480 } 5481 cur->active_spin_lock = 0; 5482 } 5483 return 0; 5484 } 5485 5486 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5487 struct bpf_call_arg_meta *meta) 5488 { 5489 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5490 bool is_const = tnum_is_const(reg->var_off); 5491 struct bpf_map *map = reg->map_ptr; 5492 u64 val = reg->var_off.value; 5493 5494 if (!is_const) { 5495 verbose(env, 5496 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5497 regno); 5498 return -EINVAL; 5499 } 5500 if (!map->btf) { 5501 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5502 map->name); 5503 return -EINVAL; 5504 } 5505 if (!map_value_has_timer(map)) { 5506 if (map->timer_off == -E2BIG) 5507 verbose(env, 5508 "map '%s' has more than one 'struct bpf_timer'\n", 5509 map->name); 5510 else if (map->timer_off == -ENOENT) 5511 verbose(env, 5512 "map '%s' doesn't have 'struct bpf_timer'\n", 5513 map->name); 5514 else 5515 verbose(env, 5516 "map '%s' is not a struct type or bpf_timer is mangled\n", 5517 map->name); 5518 return -EINVAL; 5519 } 5520 if (map->timer_off != val + reg->off) { 5521 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5522 val + reg->off, map->timer_off); 5523 return -EINVAL; 5524 } 5525 if (meta->map_ptr) { 5526 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5527 return -EFAULT; 5528 } 5529 meta->map_uid = reg->map_uid; 5530 meta->map_ptr = map; 5531 return 0; 5532 } 5533 5534 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5535 struct bpf_call_arg_meta *meta) 5536 { 5537 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5538 struct bpf_map_value_off_desc *off_desc; 5539 struct bpf_map *map_ptr = reg->map_ptr; 5540 u32 kptr_off; 5541 int ret; 5542 5543 if (!tnum_is_const(reg->var_off)) { 5544 verbose(env, 5545 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5546 regno); 5547 return -EINVAL; 5548 } 5549 if (!map_ptr->btf) { 5550 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5551 map_ptr->name); 5552 return -EINVAL; 5553 } 5554 if (!map_value_has_kptrs(map_ptr)) { 5555 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab); 5556 if (ret == -E2BIG) 5557 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name, 5558 BPF_MAP_VALUE_OFF_MAX); 5559 else if (ret == -EEXIST) 5560 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name); 5561 else 5562 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5563 return -EINVAL; 5564 } 5565 5566 meta->map_ptr = map_ptr; 5567 kptr_off = reg->off + reg->var_off.value; 5568 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off); 5569 if (!off_desc) { 5570 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5571 return -EACCES; 5572 } 5573 if (off_desc->type != BPF_KPTR_REF) { 5574 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5575 return -EACCES; 5576 } 5577 meta->kptr_off_desc = off_desc; 5578 return 0; 5579 } 5580 5581 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5582 { 5583 return type == ARG_CONST_SIZE || 5584 type == ARG_CONST_SIZE_OR_ZERO; 5585 } 5586 5587 static bool arg_type_is_release(enum bpf_arg_type type) 5588 { 5589 return type & OBJ_RELEASE; 5590 } 5591 5592 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5593 { 5594 return base_type(type) == ARG_PTR_TO_DYNPTR; 5595 } 5596 5597 static int int_ptr_type_to_size(enum bpf_arg_type type) 5598 { 5599 if (type == ARG_PTR_TO_INT) 5600 return sizeof(u32); 5601 else if (type == ARG_PTR_TO_LONG) 5602 return sizeof(u64); 5603 5604 return -EINVAL; 5605 } 5606 5607 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5608 const struct bpf_call_arg_meta *meta, 5609 enum bpf_arg_type *arg_type) 5610 { 5611 if (!meta->map_ptr) { 5612 /* kernel subsystem misconfigured verifier */ 5613 verbose(env, "invalid map_ptr to access map->type\n"); 5614 return -EACCES; 5615 } 5616 5617 switch (meta->map_ptr->map_type) { 5618 case BPF_MAP_TYPE_SOCKMAP: 5619 case BPF_MAP_TYPE_SOCKHASH: 5620 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5621 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5622 } else { 5623 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5624 return -EINVAL; 5625 } 5626 break; 5627 case BPF_MAP_TYPE_BLOOM_FILTER: 5628 if (meta->func_id == BPF_FUNC_map_peek_elem) 5629 *arg_type = ARG_PTR_TO_MAP_VALUE; 5630 break; 5631 default: 5632 break; 5633 } 5634 return 0; 5635 } 5636 5637 struct bpf_reg_types { 5638 const enum bpf_reg_type types[10]; 5639 u32 *btf_id; 5640 }; 5641 5642 static const struct bpf_reg_types map_key_value_types = { 5643 .types = { 5644 PTR_TO_STACK, 5645 PTR_TO_PACKET, 5646 PTR_TO_PACKET_META, 5647 PTR_TO_MAP_KEY, 5648 PTR_TO_MAP_VALUE, 5649 }, 5650 }; 5651 5652 static const struct bpf_reg_types sock_types = { 5653 .types = { 5654 PTR_TO_SOCK_COMMON, 5655 PTR_TO_SOCKET, 5656 PTR_TO_TCP_SOCK, 5657 PTR_TO_XDP_SOCK, 5658 }, 5659 }; 5660 5661 #ifdef CONFIG_NET 5662 static const struct bpf_reg_types btf_id_sock_common_types = { 5663 .types = { 5664 PTR_TO_SOCK_COMMON, 5665 PTR_TO_SOCKET, 5666 PTR_TO_TCP_SOCK, 5667 PTR_TO_XDP_SOCK, 5668 PTR_TO_BTF_ID, 5669 }, 5670 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5671 }; 5672 #endif 5673 5674 static const struct bpf_reg_types mem_types = { 5675 .types = { 5676 PTR_TO_STACK, 5677 PTR_TO_PACKET, 5678 PTR_TO_PACKET_META, 5679 PTR_TO_MAP_KEY, 5680 PTR_TO_MAP_VALUE, 5681 PTR_TO_MEM, 5682 PTR_TO_MEM | MEM_ALLOC, 5683 PTR_TO_BUF, 5684 }, 5685 }; 5686 5687 static const struct bpf_reg_types int_ptr_types = { 5688 .types = { 5689 PTR_TO_STACK, 5690 PTR_TO_PACKET, 5691 PTR_TO_PACKET_META, 5692 PTR_TO_MAP_KEY, 5693 PTR_TO_MAP_VALUE, 5694 }, 5695 }; 5696 5697 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5698 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5699 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5700 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5701 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5702 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5703 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5704 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5705 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5706 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5707 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5708 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5709 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5710 static const struct bpf_reg_types dynptr_types = { 5711 .types = { 5712 PTR_TO_STACK, 5713 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL, 5714 } 5715 }; 5716 5717 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5718 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5719 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5720 [ARG_CONST_SIZE] = &scalar_types, 5721 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5722 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5723 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5724 [ARG_PTR_TO_CTX] = &context_types, 5725 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5726 #ifdef CONFIG_NET 5727 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5728 #endif 5729 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5730 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5731 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5732 [ARG_PTR_TO_MEM] = &mem_types, 5733 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5734 [ARG_PTR_TO_INT] = &int_ptr_types, 5735 [ARG_PTR_TO_LONG] = &int_ptr_types, 5736 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5737 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5738 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5739 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5740 [ARG_PTR_TO_TIMER] = &timer_types, 5741 [ARG_PTR_TO_KPTR] = &kptr_types, 5742 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 5743 }; 5744 5745 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5746 enum bpf_arg_type arg_type, 5747 const u32 *arg_btf_id, 5748 struct bpf_call_arg_meta *meta) 5749 { 5750 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5751 enum bpf_reg_type expected, type = reg->type; 5752 const struct bpf_reg_types *compatible; 5753 int i, j; 5754 5755 compatible = compatible_reg_types[base_type(arg_type)]; 5756 if (!compatible) { 5757 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5758 return -EFAULT; 5759 } 5760 5761 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5762 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5763 * 5764 * Same for MAYBE_NULL: 5765 * 5766 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5767 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5768 * 5769 * Therefore we fold these flags depending on the arg_type before comparison. 5770 */ 5771 if (arg_type & MEM_RDONLY) 5772 type &= ~MEM_RDONLY; 5773 if (arg_type & PTR_MAYBE_NULL) 5774 type &= ~PTR_MAYBE_NULL; 5775 5776 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5777 expected = compatible->types[i]; 5778 if (expected == NOT_INIT) 5779 break; 5780 5781 if (type == expected) 5782 goto found; 5783 } 5784 5785 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5786 for (j = 0; j + 1 < i; j++) 5787 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5788 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5789 return -EACCES; 5790 5791 found: 5792 if (reg->type == PTR_TO_BTF_ID) { 5793 /* For bpf_sk_release, it needs to match against first member 5794 * 'struct sock_common', hence make an exception for it. This 5795 * allows bpf_sk_release to work for multiple socket types. 5796 */ 5797 bool strict_type_match = arg_type_is_release(arg_type) && 5798 meta->func_id != BPF_FUNC_sk_release; 5799 5800 if (!arg_btf_id) { 5801 if (!compatible->btf_id) { 5802 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5803 return -EFAULT; 5804 } 5805 arg_btf_id = compatible->btf_id; 5806 } 5807 5808 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5809 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno)) 5810 return -EACCES; 5811 } else { 5812 if (arg_btf_id == BPF_PTR_POISON) { 5813 verbose(env, "verifier internal error:"); 5814 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 5815 regno); 5816 return -EACCES; 5817 } 5818 5819 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5820 btf_vmlinux, *arg_btf_id, 5821 strict_type_match)) { 5822 verbose(env, "R%d is of type %s but %s is expected\n", 5823 regno, kernel_type_name(reg->btf, reg->btf_id), 5824 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5825 return -EACCES; 5826 } 5827 } 5828 } 5829 5830 return 0; 5831 } 5832 5833 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5834 const struct bpf_reg_state *reg, int regno, 5835 enum bpf_arg_type arg_type) 5836 { 5837 enum bpf_reg_type type = reg->type; 5838 bool fixed_off_ok = false; 5839 5840 switch ((u32)type) { 5841 /* Pointer types where reg offset is explicitly allowed: */ 5842 case PTR_TO_STACK: 5843 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5844 verbose(env, "cannot pass in dynptr at an offset\n"); 5845 return -EINVAL; 5846 } 5847 fallthrough; 5848 case PTR_TO_PACKET: 5849 case PTR_TO_PACKET_META: 5850 case PTR_TO_MAP_KEY: 5851 case PTR_TO_MAP_VALUE: 5852 case PTR_TO_MEM: 5853 case PTR_TO_MEM | MEM_RDONLY: 5854 case PTR_TO_MEM | MEM_ALLOC: 5855 case PTR_TO_BUF: 5856 case PTR_TO_BUF | MEM_RDONLY: 5857 case SCALAR_VALUE: 5858 /* Some of the argument types nevertheless require a 5859 * zero register offset. 5860 */ 5861 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5862 return 0; 5863 break; 5864 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5865 * fixed offset. 5866 */ 5867 case PTR_TO_BTF_ID: 5868 /* When referenced PTR_TO_BTF_ID is passed to release function, 5869 * it's fixed offset must be 0. In the other cases, fixed offset 5870 * can be non-zero. 5871 */ 5872 if (arg_type_is_release(arg_type) && reg->off) { 5873 verbose(env, "R%d must have zero offset when passed to release func\n", 5874 regno); 5875 return -EINVAL; 5876 } 5877 /* For arg is release pointer, fixed_off_ok must be false, but 5878 * we already checked and rejected reg->off != 0 above, so set 5879 * to true to allow fixed offset for all other cases. 5880 */ 5881 fixed_off_ok = true; 5882 break; 5883 default: 5884 break; 5885 } 5886 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5887 } 5888 5889 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5890 { 5891 struct bpf_func_state *state = func(env, reg); 5892 int spi = get_spi(reg->off); 5893 5894 return state->stack[spi].spilled_ptr.id; 5895 } 5896 5897 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5898 struct bpf_call_arg_meta *meta, 5899 const struct bpf_func_proto *fn) 5900 { 5901 u32 regno = BPF_REG_1 + arg; 5902 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5903 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5904 enum bpf_reg_type type = reg->type; 5905 u32 *arg_btf_id = NULL; 5906 int err = 0; 5907 5908 if (arg_type == ARG_DONTCARE) 5909 return 0; 5910 5911 err = check_reg_arg(env, regno, SRC_OP); 5912 if (err) 5913 return err; 5914 5915 if (arg_type == ARG_ANYTHING) { 5916 if (is_pointer_value(env, regno)) { 5917 verbose(env, "R%d leaks addr into helper function\n", 5918 regno); 5919 return -EACCES; 5920 } 5921 return 0; 5922 } 5923 5924 if (type_is_pkt_pointer(type) && 5925 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5926 verbose(env, "helper access to the packet is not allowed\n"); 5927 return -EACCES; 5928 } 5929 5930 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5931 err = resolve_map_arg_type(env, meta, &arg_type); 5932 if (err) 5933 return err; 5934 } 5935 5936 if (register_is_null(reg) && type_may_be_null(arg_type)) 5937 /* A NULL register has a SCALAR_VALUE type, so skip 5938 * type checking. 5939 */ 5940 goto skip_type_check; 5941 5942 /* arg_btf_id and arg_size are in a union. */ 5943 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID) 5944 arg_btf_id = fn->arg_btf_id[arg]; 5945 5946 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 5947 if (err) 5948 return err; 5949 5950 err = check_func_arg_reg_off(env, reg, regno, arg_type); 5951 if (err) 5952 return err; 5953 5954 skip_type_check: 5955 if (arg_type_is_release(arg_type)) { 5956 if (arg_type_is_dynptr(arg_type)) { 5957 struct bpf_func_state *state = func(env, reg); 5958 int spi = get_spi(reg->off); 5959 5960 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 5961 !state->stack[spi].spilled_ptr.id) { 5962 verbose(env, "arg %d is an unacquired reference\n", regno); 5963 return -EINVAL; 5964 } 5965 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 5966 verbose(env, "R%d must be referenced when passed to release function\n", 5967 regno); 5968 return -EINVAL; 5969 } 5970 if (meta->release_regno) { 5971 verbose(env, "verifier internal error: more than one release argument\n"); 5972 return -EFAULT; 5973 } 5974 meta->release_regno = regno; 5975 } 5976 5977 if (reg->ref_obj_id) { 5978 if (meta->ref_obj_id) { 5979 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5980 regno, reg->ref_obj_id, 5981 meta->ref_obj_id); 5982 return -EFAULT; 5983 } 5984 meta->ref_obj_id = reg->ref_obj_id; 5985 } 5986 5987 switch (base_type(arg_type)) { 5988 case ARG_CONST_MAP_PTR: 5989 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5990 if (meta->map_ptr) { 5991 /* Use map_uid (which is unique id of inner map) to reject: 5992 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5993 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5994 * if (inner_map1 && inner_map2) { 5995 * timer = bpf_map_lookup_elem(inner_map1); 5996 * if (timer) 5997 * // mismatch would have been allowed 5998 * bpf_timer_init(timer, inner_map2); 5999 * } 6000 * 6001 * Comparing map_ptr is enough to distinguish normal and outer maps. 6002 */ 6003 if (meta->map_ptr != reg->map_ptr || 6004 meta->map_uid != reg->map_uid) { 6005 verbose(env, 6006 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6007 meta->map_uid, reg->map_uid); 6008 return -EINVAL; 6009 } 6010 } 6011 meta->map_ptr = reg->map_ptr; 6012 meta->map_uid = reg->map_uid; 6013 break; 6014 case ARG_PTR_TO_MAP_KEY: 6015 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6016 * check that [key, key + map->key_size) are within 6017 * stack limits and initialized 6018 */ 6019 if (!meta->map_ptr) { 6020 /* in function declaration map_ptr must come before 6021 * map_key, so that it's verified and known before 6022 * we have to check map_key here. Otherwise it means 6023 * that kernel subsystem misconfigured verifier 6024 */ 6025 verbose(env, "invalid map_ptr to access map->key\n"); 6026 return -EACCES; 6027 } 6028 err = check_helper_mem_access(env, regno, 6029 meta->map_ptr->key_size, false, 6030 NULL); 6031 break; 6032 case ARG_PTR_TO_MAP_VALUE: 6033 if (type_may_be_null(arg_type) && register_is_null(reg)) 6034 return 0; 6035 6036 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6037 * check [value, value + map->value_size) validity 6038 */ 6039 if (!meta->map_ptr) { 6040 /* kernel subsystem misconfigured verifier */ 6041 verbose(env, "invalid map_ptr to access map->value\n"); 6042 return -EACCES; 6043 } 6044 meta->raw_mode = arg_type & MEM_UNINIT; 6045 err = check_helper_mem_access(env, regno, 6046 meta->map_ptr->value_size, false, 6047 meta); 6048 break; 6049 case ARG_PTR_TO_PERCPU_BTF_ID: 6050 if (!reg->btf_id) { 6051 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6052 return -EACCES; 6053 } 6054 meta->ret_btf = reg->btf; 6055 meta->ret_btf_id = reg->btf_id; 6056 break; 6057 case ARG_PTR_TO_SPIN_LOCK: 6058 if (meta->func_id == BPF_FUNC_spin_lock) { 6059 if (process_spin_lock(env, regno, true)) 6060 return -EACCES; 6061 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6062 if (process_spin_lock(env, regno, false)) 6063 return -EACCES; 6064 } else { 6065 verbose(env, "verifier internal error\n"); 6066 return -EFAULT; 6067 } 6068 break; 6069 case ARG_PTR_TO_TIMER: 6070 if (process_timer_func(env, regno, meta)) 6071 return -EACCES; 6072 break; 6073 case ARG_PTR_TO_FUNC: 6074 meta->subprogno = reg->subprogno; 6075 break; 6076 case ARG_PTR_TO_MEM: 6077 /* The access to this pointer is only checked when we hit the 6078 * next is_mem_size argument below. 6079 */ 6080 meta->raw_mode = arg_type & MEM_UNINIT; 6081 if (arg_type & MEM_FIXED_SIZE) { 6082 err = check_helper_mem_access(env, regno, 6083 fn->arg_size[arg], false, 6084 meta); 6085 } 6086 break; 6087 case ARG_CONST_SIZE: 6088 err = check_mem_size_reg(env, reg, regno, false, meta); 6089 break; 6090 case ARG_CONST_SIZE_OR_ZERO: 6091 err = check_mem_size_reg(env, reg, regno, true, meta); 6092 break; 6093 case ARG_PTR_TO_DYNPTR: 6094 /* We only need to check for initialized / uninitialized helper 6095 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the 6096 * assumption is that if it is, that a helper function 6097 * initialized the dynptr on behalf of the BPF program. 6098 */ 6099 if (base_type(reg->type) == PTR_TO_DYNPTR) 6100 break; 6101 if (arg_type & MEM_UNINIT) { 6102 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6103 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6104 return -EINVAL; 6105 } 6106 6107 /* We only support one dynptr being uninitialized at the moment, 6108 * which is sufficient for the helper functions we have right now. 6109 */ 6110 if (meta->uninit_dynptr_regno) { 6111 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6112 return -EFAULT; 6113 } 6114 6115 meta->uninit_dynptr_regno = regno; 6116 } else if (!is_dynptr_reg_valid_init(env, reg)) { 6117 verbose(env, 6118 "Expected an initialized dynptr as arg #%d\n", 6119 arg + 1); 6120 return -EINVAL; 6121 } else if (!is_dynptr_type_expected(env, reg, arg_type)) { 6122 const char *err_extra = ""; 6123 6124 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6125 case DYNPTR_TYPE_LOCAL: 6126 err_extra = "local"; 6127 break; 6128 case DYNPTR_TYPE_RINGBUF: 6129 err_extra = "ringbuf"; 6130 break; 6131 default: 6132 err_extra = "<unknown>"; 6133 break; 6134 } 6135 verbose(env, 6136 "Expected a dynptr of type %s as arg #%d\n", 6137 err_extra, arg + 1); 6138 return -EINVAL; 6139 } 6140 break; 6141 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6142 if (!tnum_is_const(reg->var_off)) { 6143 verbose(env, "R%d is not a known constant'\n", 6144 regno); 6145 return -EACCES; 6146 } 6147 meta->mem_size = reg->var_off.value; 6148 err = mark_chain_precision(env, regno); 6149 if (err) 6150 return err; 6151 break; 6152 case ARG_PTR_TO_INT: 6153 case ARG_PTR_TO_LONG: 6154 { 6155 int size = int_ptr_type_to_size(arg_type); 6156 6157 err = check_helper_mem_access(env, regno, size, false, meta); 6158 if (err) 6159 return err; 6160 err = check_ptr_alignment(env, reg, 0, size, true); 6161 break; 6162 } 6163 case ARG_PTR_TO_CONST_STR: 6164 { 6165 struct bpf_map *map = reg->map_ptr; 6166 int map_off; 6167 u64 map_addr; 6168 char *str_ptr; 6169 6170 if (!bpf_map_is_rdonly(map)) { 6171 verbose(env, "R%d does not point to a readonly map'\n", regno); 6172 return -EACCES; 6173 } 6174 6175 if (!tnum_is_const(reg->var_off)) { 6176 verbose(env, "R%d is not a constant address'\n", regno); 6177 return -EACCES; 6178 } 6179 6180 if (!map->ops->map_direct_value_addr) { 6181 verbose(env, "no direct value access support for this map type\n"); 6182 return -EACCES; 6183 } 6184 6185 err = check_map_access(env, regno, reg->off, 6186 map->value_size - reg->off, false, 6187 ACCESS_HELPER); 6188 if (err) 6189 return err; 6190 6191 map_off = reg->off + reg->var_off.value; 6192 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6193 if (err) { 6194 verbose(env, "direct value access on string failed\n"); 6195 return err; 6196 } 6197 6198 str_ptr = (char *)(long)(map_addr); 6199 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6200 verbose(env, "string is not zero-terminated\n"); 6201 return -EINVAL; 6202 } 6203 break; 6204 } 6205 case ARG_PTR_TO_KPTR: 6206 if (process_kptr_func(env, regno, meta)) 6207 return -EACCES; 6208 break; 6209 } 6210 6211 return err; 6212 } 6213 6214 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6215 { 6216 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6217 enum bpf_prog_type type = resolve_prog_type(env->prog); 6218 6219 if (func_id != BPF_FUNC_map_update_elem) 6220 return false; 6221 6222 /* It's not possible to get access to a locked struct sock in these 6223 * contexts, so updating is safe. 6224 */ 6225 switch (type) { 6226 case BPF_PROG_TYPE_TRACING: 6227 if (eatype == BPF_TRACE_ITER) 6228 return true; 6229 break; 6230 case BPF_PROG_TYPE_SOCKET_FILTER: 6231 case BPF_PROG_TYPE_SCHED_CLS: 6232 case BPF_PROG_TYPE_SCHED_ACT: 6233 case BPF_PROG_TYPE_XDP: 6234 case BPF_PROG_TYPE_SK_REUSEPORT: 6235 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6236 case BPF_PROG_TYPE_SK_LOOKUP: 6237 return true; 6238 default: 6239 break; 6240 } 6241 6242 verbose(env, "cannot update sockmap in this context\n"); 6243 return false; 6244 } 6245 6246 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6247 { 6248 return env->prog->jit_requested && 6249 bpf_jit_supports_subprog_tailcalls(); 6250 } 6251 6252 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6253 struct bpf_map *map, int func_id) 6254 { 6255 if (!map) 6256 return 0; 6257 6258 /* We need a two way check, first is from map perspective ... */ 6259 switch (map->map_type) { 6260 case BPF_MAP_TYPE_PROG_ARRAY: 6261 if (func_id != BPF_FUNC_tail_call) 6262 goto error; 6263 break; 6264 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6265 if (func_id != BPF_FUNC_perf_event_read && 6266 func_id != BPF_FUNC_perf_event_output && 6267 func_id != BPF_FUNC_skb_output && 6268 func_id != BPF_FUNC_perf_event_read_value && 6269 func_id != BPF_FUNC_xdp_output) 6270 goto error; 6271 break; 6272 case BPF_MAP_TYPE_RINGBUF: 6273 if (func_id != BPF_FUNC_ringbuf_output && 6274 func_id != BPF_FUNC_ringbuf_reserve && 6275 func_id != BPF_FUNC_ringbuf_query && 6276 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6277 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6278 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6279 goto error; 6280 break; 6281 case BPF_MAP_TYPE_USER_RINGBUF: 6282 if (func_id != BPF_FUNC_user_ringbuf_drain) 6283 goto error; 6284 break; 6285 case BPF_MAP_TYPE_STACK_TRACE: 6286 if (func_id != BPF_FUNC_get_stackid) 6287 goto error; 6288 break; 6289 case BPF_MAP_TYPE_CGROUP_ARRAY: 6290 if (func_id != BPF_FUNC_skb_under_cgroup && 6291 func_id != BPF_FUNC_current_task_under_cgroup) 6292 goto error; 6293 break; 6294 case BPF_MAP_TYPE_CGROUP_STORAGE: 6295 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6296 if (func_id != BPF_FUNC_get_local_storage) 6297 goto error; 6298 break; 6299 case BPF_MAP_TYPE_DEVMAP: 6300 case BPF_MAP_TYPE_DEVMAP_HASH: 6301 if (func_id != BPF_FUNC_redirect_map && 6302 func_id != BPF_FUNC_map_lookup_elem) 6303 goto error; 6304 break; 6305 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6306 * appear. 6307 */ 6308 case BPF_MAP_TYPE_CPUMAP: 6309 if (func_id != BPF_FUNC_redirect_map) 6310 goto error; 6311 break; 6312 case BPF_MAP_TYPE_XSKMAP: 6313 if (func_id != BPF_FUNC_redirect_map && 6314 func_id != BPF_FUNC_map_lookup_elem) 6315 goto error; 6316 break; 6317 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6318 case BPF_MAP_TYPE_HASH_OF_MAPS: 6319 if (func_id != BPF_FUNC_map_lookup_elem) 6320 goto error; 6321 break; 6322 case BPF_MAP_TYPE_SOCKMAP: 6323 if (func_id != BPF_FUNC_sk_redirect_map && 6324 func_id != BPF_FUNC_sock_map_update && 6325 func_id != BPF_FUNC_map_delete_elem && 6326 func_id != BPF_FUNC_msg_redirect_map && 6327 func_id != BPF_FUNC_sk_select_reuseport && 6328 func_id != BPF_FUNC_map_lookup_elem && 6329 !may_update_sockmap(env, func_id)) 6330 goto error; 6331 break; 6332 case BPF_MAP_TYPE_SOCKHASH: 6333 if (func_id != BPF_FUNC_sk_redirect_hash && 6334 func_id != BPF_FUNC_sock_hash_update && 6335 func_id != BPF_FUNC_map_delete_elem && 6336 func_id != BPF_FUNC_msg_redirect_hash && 6337 func_id != BPF_FUNC_sk_select_reuseport && 6338 func_id != BPF_FUNC_map_lookup_elem && 6339 !may_update_sockmap(env, func_id)) 6340 goto error; 6341 break; 6342 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6343 if (func_id != BPF_FUNC_sk_select_reuseport) 6344 goto error; 6345 break; 6346 case BPF_MAP_TYPE_QUEUE: 6347 case BPF_MAP_TYPE_STACK: 6348 if (func_id != BPF_FUNC_map_peek_elem && 6349 func_id != BPF_FUNC_map_pop_elem && 6350 func_id != BPF_FUNC_map_push_elem) 6351 goto error; 6352 break; 6353 case BPF_MAP_TYPE_SK_STORAGE: 6354 if (func_id != BPF_FUNC_sk_storage_get && 6355 func_id != BPF_FUNC_sk_storage_delete) 6356 goto error; 6357 break; 6358 case BPF_MAP_TYPE_INODE_STORAGE: 6359 if (func_id != BPF_FUNC_inode_storage_get && 6360 func_id != BPF_FUNC_inode_storage_delete) 6361 goto error; 6362 break; 6363 case BPF_MAP_TYPE_TASK_STORAGE: 6364 if (func_id != BPF_FUNC_task_storage_get && 6365 func_id != BPF_FUNC_task_storage_delete) 6366 goto error; 6367 break; 6368 case BPF_MAP_TYPE_BLOOM_FILTER: 6369 if (func_id != BPF_FUNC_map_peek_elem && 6370 func_id != BPF_FUNC_map_push_elem) 6371 goto error; 6372 break; 6373 default: 6374 break; 6375 } 6376 6377 /* ... and second from the function itself. */ 6378 switch (func_id) { 6379 case BPF_FUNC_tail_call: 6380 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6381 goto error; 6382 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6383 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6384 return -EINVAL; 6385 } 6386 break; 6387 case BPF_FUNC_perf_event_read: 6388 case BPF_FUNC_perf_event_output: 6389 case BPF_FUNC_perf_event_read_value: 6390 case BPF_FUNC_skb_output: 6391 case BPF_FUNC_xdp_output: 6392 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6393 goto error; 6394 break; 6395 case BPF_FUNC_ringbuf_output: 6396 case BPF_FUNC_ringbuf_reserve: 6397 case BPF_FUNC_ringbuf_query: 6398 case BPF_FUNC_ringbuf_reserve_dynptr: 6399 case BPF_FUNC_ringbuf_submit_dynptr: 6400 case BPF_FUNC_ringbuf_discard_dynptr: 6401 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6402 goto error; 6403 break; 6404 case BPF_FUNC_user_ringbuf_drain: 6405 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 6406 goto error; 6407 break; 6408 case BPF_FUNC_get_stackid: 6409 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6410 goto error; 6411 break; 6412 case BPF_FUNC_current_task_under_cgroup: 6413 case BPF_FUNC_skb_under_cgroup: 6414 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6415 goto error; 6416 break; 6417 case BPF_FUNC_redirect_map: 6418 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6419 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6420 map->map_type != BPF_MAP_TYPE_CPUMAP && 6421 map->map_type != BPF_MAP_TYPE_XSKMAP) 6422 goto error; 6423 break; 6424 case BPF_FUNC_sk_redirect_map: 6425 case BPF_FUNC_msg_redirect_map: 6426 case BPF_FUNC_sock_map_update: 6427 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6428 goto error; 6429 break; 6430 case BPF_FUNC_sk_redirect_hash: 6431 case BPF_FUNC_msg_redirect_hash: 6432 case BPF_FUNC_sock_hash_update: 6433 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6434 goto error; 6435 break; 6436 case BPF_FUNC_get_local_storage: 6437 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6438 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6439 goto error; 6440 break; 6441 case BPF_FUNC_sk_select_reuseport: 6442 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6443 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6444 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6445 goto error; 6446 break; 6447 case BPF_FUNC_map_pop_elem: 6448 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6449 map->map_type != BPF_MAP_TYPE_STACK) 6450 goto error; 6451 break; 6452 case BPF_FUNC_map_peek_elem: 6453 case BPF_FUNC_map_push_elem: 6454 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6455 map->map_type != BPF_MAP_TYPE_STACK && 6456 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6457 goto error; 6458 break; 6459 case BPF_FUNC_map_lookup_percpu_elem: 6460 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6461 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6462 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6463 goto error; 6464 break; 6465 case BPF_FUNC_sk_storage_get: 6466 case BPF_FUNC_sk_storage_delete: 6467 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6468 goto error; 6469 break; 6470 case BPF_FUNC_inode_storage_get: 6471 case BPF_FUNC_inode_storage_delete: 6472 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6473 goto error; 6474 break; 6475 case BPF_FUNC_task_storage_get: 6476 case BPF_FUNC_task_storage_delete: 6477 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6478 goto error; 6479 break; 6480 default: 6481 break; 6482 } 6483 6484 return 0; 6485 error: 6486 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6487 map->map_type, func_id_name(func_id), func_id); 6488 return -EINVAL; 6489 } 6490 6491 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6492 { 6493 int count = 0; 6494 6495 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6496 count++; 6497 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6498 count++; 6499 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6500 count++; 6501 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6502 count++; 6503 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6504 count++; 6505 6506 /* We only support one arg being in raw mode at the moment, 6507 * which is sufficient for the helper functions we have 6508 * right now. 6509 */ 6510 return count <= 1; 6511 } 6512 6513 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6514 { 6515 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6516 bool has_size = fn->arg_size[arg] != 0; 6517 bool is_next_size = false; 6518 6519 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6520 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6521 6522 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6523 return is_next_size; 6524 6525 return has_size == is_next_size || is_next_size == is_fixed; 6526 } 6527 6528 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6529 { 6530 /* bpf_xxx(..., buf, len) call will access 'len' 6531 * bytes from memory 'buf'. Both arg types need 6532 * to be paired, so make sure there's no buggy 6533 * helper function specification. 6534 */ 6535 if (arg_type_is_mem_size(fn->arg1_type) || 6536 check_args_pair_invalid(fn, 0) || 6537 check_args_pair_invalid(fn, 1) || 6538 check_args_pair_invalid(fn, 2) || 6539 check_args_pair_invalid(fn, 3) || 6540 check_args_pair_invalid(fn, 4)) 6541 return false; 6542 6543 return true; 6544 } 6545 6546 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6547 { 6548 int i; 6549 6550 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6551 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6552 return false; 6553 6554 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6555 /* arg_btf_id and arg_size are in a union. */ 6556 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 6557 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 6558 return false; 6559 } 6560 6561 return true; 6562 } 6563 6564 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 6565 { 6566 return check_raw_mode_ok(fn) && 6567 check_arg_pair_ok(fn) && 6568 check_btf_id_ok(fn) ? 0 : -EINVAL; 6569 } 6570 6571 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6572 * are now invalid, so turn them into unknown SCALAR_VALUE. 6573 */ 6574 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6575 { 6576 struct bpf_func_state *state; 6577 struct bpf_reg_state *reg; 6578 6579 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6580 if (reg_is_pkt_pointer_any(reg)) 6581 __mark_reg_unknown(env, reg); 6582 })); 6583 } 6584 6585 enum { 6586 AT_PKT_END = -1, 6587 BEYOND_PKT_END = -2, 6588 }; 6589 6590 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6591 { 6592 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6593 struct bpf_reg_state *reg = &state->regs[regn]; 6594 6595 if (reg->type != PTR_TO_PACKET) 6596 /* PTR_TO_PACKET_META is not supported yet */ 6597 return; 6598 6599 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6600 * How far beyond pkt_end it goes is unknown. 6601 * if (!range_open) it's the case of pkt >= pkt_end 6602 * if (range_open) it's the case of pkt > pkt_end 6603 * hence this pointer is at least 1 byte bigger than pkt_end 6604 */ 6605 if (range_open) 6606 reg->range = BEYOND_PKT_END; 6607 else 6608 reg->range = AT_PKT_END; 6609 } 6610 6611 /* The pointer with the specified id has released its reference to kernel 6612 * resources. Identify all copies of the same pointer and clear the reference. 6613 */ 6614 static int release_reference(struct bpf_verifier_env *env, 6615 int ref_obj_id) 6616 { 6617 struct bpf_func_state *state; 6618 struct bpf_reg_state *reg; 6619 int err; 6620 6621 err = release_reference_state(cur_func(env), ref_obj_id); 6622 if (err) 6623 return err; 6624 6625 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6626 if (reg->ref_obj_id == ref_obj_id) { 6627 if (!env->allow_ptr_leaks) 6628 __mark_reg_not_init(env, reg); 6629 else 6630 __mark_reg_unknown(env, reg); 6631 } 6632 })); 6633 6634 return 0; 6635 } 6636 6637 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6638 struct bpf_reg_state *regs) 6639 { 6640 int i; 6641 6642 /* after the call registers r0 - r5 were scratched */ 6643 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6644 mark_reg_not_init(env, regs, caller_saved[i]); 6645 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6646 } 6647 } 6648 6649 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6650 struct bpf_func_state *caller, 6651 struct bpf_func_state *callee, 6652 int insn_idx); 6653 6654 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6655 int *insn_idx, int subprog, 6656 set_callee_state_fn set_callee_state_cb) 6657 { 6658 struct bpf_verifier_state *state = env->cur_state; 6659 struct bpf_func_info_aux *func_info_aux; 6660 struct bpf_func_state *caller, *callee; 6661 int err; 6662 bool is_global = false; 6663 6664 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6665 verbose(env, "the call stack of %d frames is too deep\n", 6666 state->curframe + 2); 6667 return -E2BIG; 6668 } 6669 6670 caller = state->frame[state->curframe]; 6671 if (state->frame[state->curframe + 1]) { 6672 verbose(env, "verifier bug. Frame %d already allocated\n", 6673 state->curframe + 1); 6674 return -EFAULT; 6675 } 6676 6677 func_info_aux = env->prog->aux->func_info_aux; 6678 if (func_info_aux) 6679 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6680 err = btf_check_subprog_call(env, subprog, caller->regs); 6681 if (err == -EFAULT) 6682 return err; 6683 if (is_global) { 6684 if (err) { 6685 verbose(env, "Caller passes invalid args into func#%d\n", 6686 subprog); 6687 return err; 6688 } else { 6689 if (env->log.level & BPF_LOG_LEVEL) 6690 verbose(env, 6691 "Func#%d is global and valid. Skipping.\n", 6692 subprog); 6693 clear_caller_saved_regs(env, caller->regs); 6694 6695 /* All global functions return a 64-bit SCALAR_VALUE */ 6696 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6697 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6698 6699 /* continue with next insn after call */ 6700 return 0; 6701 } 6702 } 6703 6704 if (insn->code == (BPF_JMP | BPF_CALL) && 6705 insn->src_reg == 0 && 6706 insn->imm == BPF_FUNC_timer_set_callback) { 6707 struct bpf_verifier_state *async_cb; 6708 6709 /* there is no real recursion here. timer callbacks are async */ 6710 env->subprog_info[subprog].is_async_cb = true; 6711 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6712 *insn_idx, subprog); 6713 if (!async_cb) 6714 return -EFAULT; 6715 callee = async_cb->frame[0]; 6716 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6717 6718 /* Convert bpf_timer_set_callback() args into timer callback args */ 6719 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6720 if (err) 6721 return err; 6722 6723 clear_caller_saved_regs(env, caller->regs); 6724 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6725 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6726 /* continue with next insn after call */ 6727 return 0; 6728 } 6729 6730 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6731 if (!callee) 6732 return -ENOMEM; 6733 state->frame[state->curframe + 1] = callee; 6734 6735 /* callee cannot access r0, r6 - r9 for reading and has to write 6736 * into its own stack before reading from it. 6737 * callee can read/write into caller's stack 6738 */ 6739 init_func_state(env, callee, 6740 /* remember the callsite, it will be used by bpf_exit */ 6741 *insn_idx /* callsite */, 6742 state->curframe + 1 /* frameno within this callchain */, 6743 subprog /* subprog number within this prog */); 6744 6745 /* Transfer references to the callee */ 6746 err = copy_reference_state(callee, caller); 6747 if (err) 6748 goto err_out; 6749 6750 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6751 if (err) 6752 goto err_out; 6753 6754 clear_caller_saved_regs(env, caller->regs); 6755 6756 /* only increment it after check_reg_arg() finished */ 6757 state->curframe++; 6758 6759 /* and go analyze first insn of the callee */ 6760 *insn_idx = env->subprog_info[subprog].start - 1; 6761 6762 if (env->log.level & BPF_LOG_LEVEL) { 6763 verbose(env, "caller:\n"); 6764 print_verifier_state(env, caller, true); 6765 verbose(env, "callee:\n"); 6766 print_verifier_state(env, callee, true); 6767 } 6768 return 0; 6769 6770 err_out: 6771 free_func_state(callee); 6772 state->frame[state->curframe + 1] = NULL; 6773 return err; 6774 } 6775 6776 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6777 struct bpf_func_state *caller, 6778 struct bpf_func_state *callee) 6779 { 6780 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6781 * void *callback_ctx, u64 flags); 6782 * callback_fn(struct bpf_map *map, void *key, void *value, 6783 * void *callback_ctx); 6784 */ 6785 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6786 6787 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6788 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6789 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6790 6791 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6792 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6793 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6794 6795 /* pointer to stack or null */ 6796 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6797 6798 /* unused */ 6799 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6800 return 0; 6801 } 6802 6803 static int set_callee_state(struct bpf_verifier_env *env, 6804 struct bpf_func_state *caller, 6805 struct bpf_func_state *callee, int insn_idx) 6806 { 6807 int i; 6808 6809 /* copy r1 - r5 args that callee can access. The copy includes parent 6810 * pointers, which connects us up to the liveness chain 6811 */ 6812 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6813 callee->regs[i] = caller->regs[i]; 6814 return 0; 6815 } 6816 6817 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6818 int *insn_idx) 6819 { 6820 int subprog, target_insn; 6821 6822 target_insn = *insn_idx + insn->imm + 1; 6823 subprog = find_subprog(env, target_insn); 6824 if (subprog < 0) { 6825 verbose(env, "verifier bug. No program starts at insn %d\n", 6826 target_insn); 6827 return -EFAULT; 6828 } 6829 6830 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6831 } 6832 6833 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6834 struct bpf_func_state *caller, 6835 struct bpf_func_state *callee, 6836 int insn_idx) 6837 { 6838 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6839 struct bpf_map *map; 6840 int err; 6841 6842 if (bpf_map_ptr_poisoned(insn_aux)) { 6843 verbose(env, "tail_call abusing map_ptr\n"); 6844 return -EINVAL; 6845 } 6846 6847 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6848 if (!map->ops->map_set_for_each_callback_args || 6849 !map->ops->map_for_each_callback) { 6850 verbose(env, "callback function not allowed for map\n"); 6851 return -ENOTSUPP; 6852 } 6853 6854 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6855 if (err) 6856 return err; 6857 6858 callee->in_callback_fn = true; 6859 callee->callback_ret_range = tnum_range(0, 1); 6860 return 0; 6861 } 6862 6863 static int set_loop_callback_state(struct bpf_verifier_env *env, 6864 struct bpf_func_state *caller, 6865 struct bpf_func_state *callee, 6866 int insn_idx) 6867 { 6868 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6869 * u64 flags); 6870 * callback_fn(u32 index, void *callback_ctx); 6871 */ 6872 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6873 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6874 6875 /* unused */ 6876 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6877 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6878 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6879 6880 callee->in_callback_fn = true; 6881 callee->callback_ret_range = tnum_range(0, 1); 6882 return 0; 6883 } 6884 6885 static int set_timer_callback_state(struct bpf_verifier_env *env, 6886 struct bpf_func_state *caller, 6887 struct bpf_func_state *callee, 6888 int insn_idx) 6889 { 6890 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6891 6892 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6893 * callback_fn(struct bpf_map *map, void *key, void *value); 6894 */ 6895 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6896 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6897 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6898 6899 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6900 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6901 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6902 6903 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6904 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6905 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6906 6907 /* unused */ 6908 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6909 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6910 callee->in_async_callback_fn = true; 6911 callee->callback_ret_range = tnum_range(0, 1); 6912 return 0; 6913 } 6914 6915 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6916 struct bpf_func_state *caller, 6917 struct bpf_func_state *callee, 6918 int insn_idx) 6919 { 6920 /* bpf_find_vma(struct task_struct *task, u64 addr, 6921 * void *callback_fn, void *callback_ctx, u64 flags) 6922 * (callback_fn)(struct task_struct *task, 6923 * struct vm_area_struct *vma, void *callback_ctx); 6924 */ 6925 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6926 6927 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6928 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6929 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6930 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6931 6932 /* pointer to stack or null */ 6933 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6934 6935 /* unused */ 6936 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6937 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6938 callee->in_callback_fn = true; 6939 callee->callback_ret_range = tnum_range(0, 1); 6940 return 0; 6941 } 6942 6943 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 6944 struct bpf_func_state *caller, 6945 struct bpf_func_state *callee, 6946 int insn_idx) 6947 { 6948 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 6949 * callback_ctx, u64 flags); 6950 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx); 6951 */ 6952 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 6953 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL; 6954 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6955 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6956 6957 /* unused */ 6958 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6959 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6960 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6961 6962 callee->in_callback_fn = true; 6963 callee->callback_ret_range = tnum_range(0, 1); 6964 return 0; 6965 } 6966 6967 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6968 { 6969 struct bpf_verifier_state *state = env->cur_state; 6970 struct bpf_func_state *caller, *callee; 6971 struct bpf_reg_state *r0; 6972 int err; 6973 6974 callee = state->frame[state->curframe]; 6975 r0 = &callee->regs[BPF_REG_0]; 6976 if (r0->type == PTR_TO_STACK) { 6977 /* technically it's ok to return caller's stack pointer 6978 * (or caller's caller's pointer) back to the caller, 6979 * since these pointers are valid. Only current stack 6980 * pointer will be invalid as soon as function exits, 6981 * but let's be conservative 6982 */ 6983 verbose(env, "cannot return stack pointer to the caller\n"); 6984 return -EINVAL; 6985 } 6986 6987 caller = state->frame[state->curframe - 1]; 6988 if (callee->in_callback_fn) { 6989 /* enforce R0 return value range [0, 1]. */ 6990 struct tnum range = callee->callback_ret_range; 6991 6992 if (r0->type != SCALAR_VALUE) { 6993 verbose(env, "R0 not a scalar value\n"); 6994 return -EACCES; 6995 } 6996 if (!tnum_in(range, r0->var_off)) { 6997 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6998 return -EINVAL; 6999 } 7000 } else { 7001 /* return to the caller whatever r0 had in the callee */ 7002 caller->regs[BPF_REG_0] = *r0; 7003 } 7004 7005 /* callback_fn frame should have released its own additions to parent's 7006 * reference state at this point, or check_reference_leak would 7007 * complain, hence it must be the same as the caller. There is no need 7008 * to copy it back. 7009 */ 7010 if (!callee->in_callback_fn) { 7011 /* Transfer references to the caller */ 7012 err = copy_reference_state(caller, callee); 7013 if (err) 7014 return err; 7015 } 7016 7017 *insn_idx = callee->callsite + 1; 7018 if (env->log.level & BPF_LOG_LEVEL) { 7019 verbose(env, "returning from callee:\n"); 7020 print_verifier_state(env, callee, true); 7021 verbose(env, "to caller at %d:\n", *insn_idx); 7022 print_verifier_state(env, caller, true); 7023 } 7024 /* clear everything in the callee */ 7025 free_func_state(callee); 7026 state->frame[state->curframe--] = NULL; 7027 return 0; 7028 } 7029 7030 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7031 int func_id, 7032 struct bpf_call_arg_meta *meta) 7033 { 7034 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7035 7036 if (ret_type != RET_INTEGER || 7037 (func_id != BPF_FUNC_get_stack && 7038 func_id != BPF_FUNC_get_task_stack && 7039 func_id != BPF_FUNC_probe_read_str && 7040 func_id != BPF_FUNC_probe_read_kernel_str && 7041 func_id != BPF_FUNC_probe_read_user_str)) 7042 return; 7043 7044 ret_reg->smax_value = meta->msize_max_value; 7045 ret_reg->s32_max_value = meta->msize_max_value; 7046 ret_reg->smin_value = -MAX_ERRNO; 7047 ret_reg->s32_min_value = -MAX_ERRNO; 7048 reg_bounds_sync(ret_reg); 7049 } 7050 7051 static int 7052 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7053 int func_id, int insn_idx) 7054 { 7055 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7056 struct bpf_map *map = meta->map_ptr; 7057 7058 if (func_id != BPF_FUNC_tail_call && 7059 func_id != BPF_FUNC_map_lookup_elem && 7060 func_id != BPF_FUNC_map_update_elem && 7061 func_id != BPF_FUNC_map_delete_elem && 7062 func_id != BPF_FUNC_map_push_elem && 7063 func_id != BPF_FUNC_map_pop_elem && 7064 func_id != BPF_FUNC_map_peek_elem && 7065 func_id != BPF_FUNC_for_each_map_elem && 7066 func_id != BPF_FUNC_redirect_map && 7067 func_id != BPF_FUNC_map_lookup_percpu_elem) 7068 return 0; 7069 7070 if (map == NULL) { 7071 verbose(env, "kernel subsystem misconfigured verifier\n"); 7072 return -EINVAL; 7073 } 7074 7075 /* In case of read-only, some additional restrictions 7076 * need to be applied in order to prevent altering the 7077 * state of the map from program side. 7078 */ 7079 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7080 (func_id == BPF_FUNC_map_delete_elem || 7081 func_id == BPF_FUNC_map_update_elem || 7082 func_id == BPF_FUNC_map_push_elem || 7083 func_id == BPF_FUNC_map_pop_elem)) { 7084 verbose(env, "write into map forbidden\n"); 7085 return -EACCES; 7086 } 7087 7088 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7089 bpf_map_ptr_store(aux, meta->map_ptr, 7090 !meta->map_ptr->bypass_spec_v1); 7091 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7092 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7093 !meta->map_ptr->bypass_spec_v1); 7094 return 0; 7095 } 7096 7097 static int 7098 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7099 int func_id, int insn_idx) 7100 { 7101 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7102 struct bpf_reg_state *regs = cur_regs(env), *reg; 7103 struct bpf_map *map = meta->map_ptr; 7104 u64 val, max; 7105 int err; 7106 7107 if (func_id != BPF_FUNC_tail_call) 7108 return 0; 7109 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7110 verbose(env, "kernel subsystem misconfigured verifier\n"); 7111 return -EINVAL; 7112 } 7113 7114 reg = ®s[BPF_REG_3]; 7115 val = reg->var_off.value; 7116 max = map->max_entries; 7117 7118 if (!(register_is_const(reg) && val < max)) { 7119 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7120 return 0; 7121 } 7122 7123 err = mark_chain_precision(env, BPF_REG_3); 7124 if (err) 7125 return err; 7126 if (bpf_map_key_unseen(aux)) 7127 bpf_map_key_store(aux, val); 7128 else if (!bpf_map_key_poisoned(aux) && 7129 bpf_map_key_immediate(aux) != val) 7130 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7131 return 0; 7132 } 7133 7134 static int check_reference_leak(struct bpf_verifier_env *env) 7135 { 7136 struct bpf_func_state *state = cur_func(env); 7137 bool refs_lingering = false; 7138 int i; 7139 7140 if (state->frameno && !state->in_callback_fn) 7141 return 0; 7142 7143 for (i = 0; i < state->acquired_refs; i++) { 7144 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7145 continue; 7146 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7147 state->refs[i].id, state->refs[i].insn_idx); 7148 refs_lingering = true; 7149 } 7150 return refs_lingering ? -EINVAL : 0; 7151 } 7152 7153 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7154 struct bpf_reg_state *regs) 7155 { 7156 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7157 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7158 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7159 int err, fmt_map_off, num_args; 7160 u64 fmt_addr; 7161 char *fmt; 7162 7163 /* data must be an array of u64 */ 7164 if (data_len_reg->var_off.value % 8) 7165 return -EINVAL; 7166 num_args = data_len_reg->var_off.value / 8; 7167 7168 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7169 * and map_direct_value_addr is set. 7170 */ 7171 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7172 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7173 fmt_map_off); 7174 if (err) { 7175 verbose(env, "verifier bug\n"); 7176 return -EFAULT; 7177 } 7178 fmt = (char *)(long)fmt_addr + fmt_map_off; 7179 7180 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7181 * can focus on validating the format specifiers. 7182 */ 7183 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7184 if (err < 0) 7185 verbose(env, "Invalid format string\n"); 7186 7187 return err; 7188 } 7189 7190 static int check_get_func_ip(struct bpf_verifier_env *env) 7191 { 7192 enum bpf_prog_type type = resolve_prog_type(env->prog); 7193 int func_id = BPF_FUNC_get_func_ip; 7194 7195 if (type == BPF_PROG_TYPE_TRACING) { 7196 if (!bpf_prog_has_trampoline(env->prog)) { 7197 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7198 func_id_name(func_id), func_id); 7199 return -ENOTSUPP; 7200 } 7201 return 0; 7202 } else if (type == BPF_PROG_TYPE_KPROBE) { 7203 return 0; 7204 } 7205 7206 verbose(env, "func %s#%d not supported for program type %d\n", 7207 func_id_name(func_id), func_id, type); 7208 return -ENOTSUPP; 7209 } 7210 7211 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7212 { 7213 return &env->insn_aux_data[env->insn_idx]; 7214 } 7215 7216 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7217 { 7218 struct bpf_reg_state *regs = cur_regs(env); 7219 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7220 bool reg_is_null = register_is_null(reg); 7221 7222 if (reg_is_null) 7223 mark_chain_precision(env, BPF_REG_4); 7224 7225 return reg_is_null; 7226 } 7227 7228 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7229 { 7230 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7231 7232 if (!state->initialized) { 7233 state->initialized = 1; 7234 state->fit_for_inline = loop_flag_is_zero(env); 7235 state->callback_subprogno = subprogno; 7236 return; 7237 } 7238 7239 if (!state->fit_for_inline) 7240 return; 7241 7242 state->fit_for_inline = (loop_flag_is_zero(env) && 7243 state->callback_subprogno == subprogno); 7244 } 7245 7246 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7247 int *insn_idx_p) 7248 { 7249 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7250 const struct bpf_func_proto *fn = NULL; 7251 enum bpf_return_type ret_type; 7252 enum bpf_type_flag ret_flag; 7253 struct bpf_reg_state *regs; 7254 struct bpf_call_arg_meta meta; 7255 int insn_idx = *insn_idx_p; 7256 bool changes_data; 7257 int i, err, func_id; 7258 7259 /* find function prototype */ 7260 func_id = insn->imm; 7261 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7262 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7263 func_id); 7264 return -EINVAL; 7265 } 7266 7267 if (env->ops->get_func_proto) 7268 fn = env->ops->get_func_proto(func_id, env->prog); 7269 if (!fn) { 7270 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7271 func_id); 7272 return -EINVAL; 7273 } 7274 7275 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7276 if (!env->prog->gpl_compatible && fn->gpl_only) { 7277 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7278 return -EINVAL; 7279 } 7280 7281 if (fn->allowed && !fn->allowed(env->prog)) { 7282 verbose(env, "helper call is not allowed in probe\n"); 7283 return -EINVAL; 7284 } 7285 7286 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7287 changes_data = bpf_helper_changes_pkt_data(fn->func); 7288 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7289 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7290 func_id_name(func_id), func_id); 7291 return -EINVAL; 7292 } 7293 7294 memset(&meta, 0, sizeof(meta)); 7295 meta.pkt_access = fn->pkt_access; 7296 7297 err = check_func_proto(fn, func_id); 7298 if (err) { 7299 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7300 func_id_name(func_id), func_id); 7301 return err; 7302 } 7303 7304 meta.func_id = func_id; 7305 /* check args */ 7306 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7307 err = check_func_arg(env, i, &meta, fn); 7308 if (err) 7309 return err; 7310 } 7311 7312 err = record_func_map(env, &meta, func_id, insn_idx); 7313 if (err) 7314 return err; 7315 7316 err = record_func_key(env, &meta, func_id, insn_idx); 7317 if (err) 7318 return err; 7319 7320 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7321 * is inferred from register state. 7322 */ 7323 for (i = 0; i < meta.access_size; i++) { 7324 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7325 BPF_WRITE, -1, false); 7326 if (err) 7327 return err; 7328 } 7329 7330 regs = cur_regs(env); 7331 7332 if (meta.uninit_dynptr_regno) { 7333 /* we write BPF_DW bits (8 bytes) at a time */ 7334 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7335 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7336 i, BPF_DW, BPF_WRITE, -1, false); 7337 if (err) 7338 return err; 7339 } 7340 7341 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7342 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7343 insn_idx); 7344 if (err) 7345 return err; 7346 } 7347 7348 if (meta.release_regno) { 7349 err = -EINVAL; 7350 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7351 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7352 else if (meta.ref_obj_id) 7353 err = release_reference(env, meta.ref_obj_id); 7354 /* meta.ref_obj_id can only be 0 if register that is meant to be 7355 * released is NULL, which must be > R0. 7356 */ 7357 else if (register_is_null(®s[meta.release_regno])) 7358 err = 0; 7359 if (err) { 7360 verbose(env, "func %s#%d reference has not been acquired before\n", 7361 func_id_name(func_id), func_id); 7362 return err; 7363 } 7364 } 7365 7366 switch (func_id) { 7367 case BPF_FUNC_tail_call: 7368 err = check_reference_leak(env); 7369 if (err) { 7370 verbose(env, "tail_call would lead to reference leak\n"); 7371 return err; 7372 } 7373 break; 7374 case BPF_FUNC_get_local_storage: 7375 /* check that flags argument in get_local_storage(map, flags) is 0, 7376 * this is required because get_local_storage() can't return an error. 7377 */ 7378 if (!register_is_null(®s[BPF_REG_2])) { 7379 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7380 return -EINVAL; 7381 } 7382 break; 7383 case BPF_FUNC_for_each_map_elem: 7384 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7385 set_map_elem_callback_state); 7386 break; 7387 case BPF_FUNC_timer_set_callback: 7388 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7389 set_timer_callback_state); 7390 break; 7391 case BPF_FUNC_find_vma: 7392 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7393 set_find_vma_callback_state); 7394 break; 7395 case BPF_FUNC_snprintf: 7396 err = check_bpf_snprintf_call(env, regs); 7397 break; 7398 case BPF_FUNC_loop: 7399 update_loop_inline_state(env, meta.subprogno); 7400 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7401 set_loop_callback_state); 7402 break; 7403 case BPF_FUNC_dynptr_from_mem: 7404 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7405 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7406 reg_type_str(env, regs[BPF_REG_1].type)); 7407 return -EACCES; 7408 } 7409 break; 7410 case BPF_FUNC_set_retval: 7411 if (prog_type == BPF_PROG_TYPE_LSM && 7412 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7413 if (!env->prog->aux->attach_func_proto->type) { 7414 /* Make sure programs that attach to void 7415 * hooks don't try to modify return value. 7416 */ 7417 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7418 return -EINVAL; 7419 } 7420 } 7421 break; 7422 case BPF_FUNC_dynptr_data: 7423 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7424 if (arg_type_is_dynptr(fn->arg_type[i])) { 7425 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 7426 7427 if (meta.ref_obj_id) { 7428 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7429 return -EFAULT; 7430 } 7431 7432 if (base_type(reg->type) != PTR_TO_DYNPTR) 7433 /* Find the id of the dynptr we're 7434 * tracking the reference of 7435 */ 7436 meta.ref_obj_id = stack_slot_get_id(env, reg); 7437 break; 7438 } 7439 } 7440 if (i == MAX_BPF_FUNC_REG_ARGS) { 7441 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7442 return -EFAULT; 7443 } 7444 break; 7445 case BPF_FUNC_user_ringbuf_drain: 7446 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7447 set_user_ringbuf_callback_state); 7448 break; 7449 } 7450 7451 if (err) 7452 return err; 7453 7454 /* reset caller saved regs */ 7455 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7456 mark_reg_not_init(env, regs, caller_saved[i]); 7457 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7458 } 7459 7460 /* helper call returns 64-bit value. */ 7461 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7462 7463 /* update return register (already marked as written above) */ 7464 ret_type = fn->ret_type; 7465 ret_flag = type_flag(ret_type); 7466 7467 switch (base_type(ret_type)) { 7468 case RET_INTEGER: 7469 /* sets type to SCALAR_VALUE */ 7470 mark_reg_unknown(env, regs, BPF_REG_0); 7471 break; 7472 case RET_VOID: 7473 regs[BPF_REG_0].type = NOT_INIT; 7474 break; 7475 case RET_PTR_TO_MAP_VALUE: 7476 /* There is no offset yet applied, variable or fixed */ 7477 mark_reg_known_zero(env, regs, BPF_REG_0); 7478 /* remember map_ptr, so that check_map_access() 7479 * can check 'value_size' boundary of memory access 7480 * to map element returned from bpf_map_lookup_elem() 7481 */ 7482 if (meta.map_ptr == NULL) { 7483 verbose(env, 7484 "kernel subsystem misconfigured verifier\n"); 7485 return -EINVAL; 7486 } 7487 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7488 regs[BPF_REG_0].map_uid = meta.map_uid; 7489 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7490 if (!type_may_be_null(ret_type) && 7491 map_value_has_spin_lock(meta.map_ptr)) { 7492 regs[BPF_REG_0].id = ++env->id_gen; 7493 } 7494 break; 7495 case RET_PTR_TO_SOCKET: 7496 mark_reg_known_zero(env, regs, BPF_REG_0); 7497 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7498 break; 7499 case RET_PTR_TO_SOCK_COMMON: 7500 mark_reg_known_zero(env, regs, BPF_REG_0); 7501 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7502 break; 7503 case RET_PTR_TO_TCP_SOCK: 7504 mark_reg_known_zero(env, regs, BPF_REG_0); 7505 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7506 break; 7507 case RET_PTR_TO_ALLOC_MEM: 7508 mark_reg_known_zero(env, regs, BPF_REG_0); 7509 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7510 regs[BPF_REG_0].mem_size = meta.mem_size; 7511 break; 7512 case RET_PTR_TO_MEM_OR_BTF_ID: 7513 { 7514 const struct btf_type *t; 7515 7516 mark_reg_known_zero(env, regs, BPF_REG_0); 7517 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7518 if (!btf_type_is_struct(t)) { 7519 u32 tsize; 7520 const struct btf_type *ret; 7521 const char *tname; 7522 7523 /* resolve the type size of ksym. */ 7524 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7525 if (IS_ERR(ret)) { 7526 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7527 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7528 tname, PTR_ERR(ret)); 7529 return -EINVAL; 7530 } 7531 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7532 regs[BPF_REG_0].mem_size = tsize; 7533 } else { 7534 /* MEM_RDONLY may be carried from ret_flag, but it 7535 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7536 * it will confuse the check of PTR_TO_BTF_ID in 7537 * check_mem_access(). 7538 */ 7539 ret_flag &= ~MEM_RDONLY; 7540 7541 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7542 regs[BPF_REG_0].btf = meta.ret_btf; 7543 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7544 } 7545 break; 7546 } 7547 case RET_PTR_TO_BTF_ID: 7548 { 7549 struct btf *ret_btf; 7550 int ret_btf_id; 7551 7552 mark_reg_known_zero(env, regs, BPF_REG_0); 7553 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7554 if (func_id == BPF_FUNC_kptr_xchg) { 7555 ret_btf = meta.kptr_off_desc->kptr.btf; 7556 ret_btf_id = meta.kptr_off_desc->kptr.btf_id; 7557 } else { 7558 if (fn->ret_btf_id == BPF_PTR_POISON) { 7559 verbose(env, "verifier internal error:"); 7560 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 7561 func_id_name(func_id)); 7562 return -EINVAL; 7563 } 7564 ret_btf = btf_vmlinux; 7565 ret_btf_id = *fn->ret_btf_id; 7566 } 7567 if (ret_btf_id == 0) { 7568 verbose(env, "invalid return type %u of func %s#%d\n", 7569 base_type(ret_type), func_id_name(func_id), 7570 func_id); 7571 return -EINVAL; 7572 } 7573 regs[BPF_REG_0].btf = ret_btf; 7574 regs[BPF_REG_0].btf_id = ret_btf_id; 7575 break; 7576 } 7577 default: 7578 verbose(env, "unknown return type %u of func %s#%d\n", 7579 base_type(ret_type), func_id_name(func_id), func_id); 7580 return -EINVAL; 7581 } 7582 7583 if (type_may_be_null(regs[BPF_REG_0].type)) 7584 regs[BPF_REG_0].id = ++env->id_gen; 7585 7586 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 7587 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 7588 func_id_name(func_id), func_id); 7589 return -EFAULT; 7590 } 7591 7592 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 7593 /* For release_reference() */ 7594 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7595 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7596 int id = acquire_reference_state(env, insn_idx); 7597 7598 if (id < 0) 7599 return id; 7600 /* For mark_ptr_or_null_reg() */ 7601 regs[BPF_REG_0].id = id; 7602 /* For release_reference() */ 7603 regs[BPF_REG_0].ref_obj_id = id; 7604 } 7605 7606 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7607 7608 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7609 if (err) 7610 return err; 7611 7612 if ((func_id == BPF_FUNC_get_stack || 7613 func_id == BPF_FUNC_get_task_stack) && 7614 !env->prog->has_callchain_buf) { 7615 const char *err_str; 7616 7617 #ifdef CONFIG_PERF_EVENTS 7618 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7619 err_str = "cannot get callchain buffer for func %s#%d\n"; 7620 #else 7621 err = -ENOTSUPP; 7622 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7623 #endif 7624 if (err) { 7625 verbose(env, err_str, func_id_name(func_id), func_id); 7626 return err; 7627 } 7628 7629 env->prog->has_callchain_buf = true; 7630 } 7631 7632 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7633 env->prog->call_get_stack = true; 7634 7635 if (func_id == BPF_FUNC_get_func_ip) { 7636 if (check_get_func_ip(env)) 7637 return -ENOTSUPP; 7638 env->prog->call_get_func_ip = true; 7639 } 7640 7641 if (changes_data) 7642 clear_all_pkt_pointers(env); 7643 return 0; 7644 } 7645 7646 /* mark_btf_func_reg_size() is used when the reg size is determined by 7647 * the BTF func_proto's return value size and argument. 7648 */ 7649 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7650 size_t reg_size) 7651 { 7652 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7653 7654 if (regno == BPF_REG_0) { 7655 /* Function return value */ 7656 reg->live |= REG_LIVE_WRITTEN; 7657 reg->subreg_def = reg_size == sizeof(u64) ? 7658 DEF_NOT_SUBREG : env->insn_idx + 1; 7659 } else { 7660 /* Function argument */ 7661 if (reg_size == sizeof(u64)) { 7662 mark_insn_zext(env, reg); 7663 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7664 } else { 7665 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7666 } 7667 } 7668 } 7669 7670 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7671 int *insn_idx_p) 7672 { 7673 const struct btf_type *t, *func, *func_proto, *ptr_type; 7674 struct bpf_reg_state *regs = cur_regs(env); 7675 struct bpf_kfunc_arg_meta meta = { 0 }; 7676 const char *func_name, *ptr_type_name; 7677 u32 i, nargs, func_id, ptr_type_id; 7678 int err, insn_idx = *insn_idx_p; 7679 const struct btf_param *args; 7680 struct btf *desc_btf; 7681 u32 *kfunc_flags; 7682 bool acq; 7683 7684 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7685 if (!insn->imm) 7686 return 0; 7687 7688 desc_btf = find_kfunc_desc_btf(env, insn->off); 7689 if (IS_ERR(desc_btf)) 7690 return PTR_ERR(desc_btf); 7691 7692 func_id = insn->imm; 7693 func = btf_type_by_id(desc_btf, func_id); 7694 func_name = btf_name_by_offset(desc_btf, func->name_off); 7695 func_proto = btf_type_by_id(desc_btf, func->type); 7696 7697 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 7698 if (!kfunc_flags) { 7699 verbose(env, "calling kernel function %s is not allowed\n", 7700 func_name); 7701 return -EACCES; 7702 } 7703 if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) { 7704 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n"); 7705 return -EACCES; 7706 } 7707 7708 acq = *kfunc_flags & KF_ACQUIRE; 7709 7710 meta.flags = *kfunc_flags; 7711 7712 /* Check the arguments */ 7713 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta); 7714 if (err < 0) 7715 return err; 7716 /* In case of release function, we get register number of refcounted 7717 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7718 */ 7719 if (err) { 7720 err = release_reference(env, regs[err].ref_obj_id); 7721 if (err) { 7722 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7723 func_name, func_id); 7724 return err; 7725 } 7726 } 7727 7728 for (i = 0; i < CALLER_SAVED_REGS; i++) 7729 mark_reg_not_init(env, regs, caller_saved[i]); 7730 7731 /* Check return type */ 7732 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7733 7734 if (acq && !btf_type_is_struct_ptr(desc_btf, t)) { 7735 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7736 return -EINVAL; 7737 } 7738 7739 if (btf_type_is_scalar(t)) { 7740 mark_reg_unknown(env, regs, BPF_REG_0); 7741 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7742 } else if (btf_type_is_ptr(t)) { 7743 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7744 &ptr_type_id); 7745 if (!btf_type_is_struct(ptr_type)) { 7746 if (!meta.r0_size) { 7747 ptr_type_name = btf_name_by_offset(desc_btf, 7748 ptr_type->name_off); 7749 verbose(env, 7750 "kernel function %s returns pointer type %s %s is not supported\n", 7751 func_name, 7752 btf_type_str(ptr_type), 7753 ptr_type_name); 7754 return -EINVAL; 7755 } 7756 7757 mark_reg_known_zero(env, regs, BPF_REG_0); 7758 regs[BPF_REG_0].type = PTR_TO_MEM; 7759 regs[BPF_REG_0].mem_size = meta.r0_size; 7760 7761 if (meta.r0_rdonly) 7762 regs[BPF_REG_0].type |= MEM_RDONLY; 7763 7764 /* Ensures we don't access the memory after a release_reference() */ 7765 if (meta.ref_obj_id) 7766 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7767 } else { 7768 mark_reg_known_zero(env, regs, BPF_REG_0); 7769 regs[BPF_REG_0].btf = desc_btf; 7770 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7771 regs[BPF_REG_0].btf_id = ptr_type_id; 7772 } 7773 if (*kfunc_flags & KF_RET_NULL) { 7774 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7775 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7776 regs[BPF_REG_0].id = ++env->id_gen; 7777 } 7778 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7779 if (acq) { 7780 int id = acquire_reference_state(env, insn_idx); 7781 7782 if (id < 0) 7783 return id; 7784 regs[BPF_REG_0].id = id; 7785 regs[BPF_REG_0].ref_obj_id = id; 7786 } 7787 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7788 7789 nargs = btf_type_vlen(func_proto); 7790 args = (const struct btf_param *)(func_proto + 1); 7791 for (i = 0; i < nargs; i++) { 7792 u32 regno = i + 1; 7793 7794 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7795 if (btf_type_is_ptr(t)) 7796 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7797 else 7798 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7799 mark_btf_func_reg_size(env, regno, t->size); 7800 } 7801 7802 return 0; 7803 } 7804 7805 static bool signed_add_overflows(s64 a, s64 b) 7806 { 7807 /* Do the add in u64, where overflow is well-defined */ 7808 s64 res = (s64)((u64)a + (u64)b); 7809 7810 if (b < 0) 7811 return res > a; 7812 return res < a; 7813 } 7814 7815 static bool signed_add32_overflows(s32 a, s32 b) 7816 { 7817 /* Do the add in u32, where overflow is well-defined */ 7818 s32 res = (s32)((u32)a + (u32)b); 7819 7820 if (b < 0) 7821 return res > a; 7822 return res < a; 7823 } 7824 7825 static bool signed_sub_overflows(s64 a, s64 b) 7826 { 7827 /* Do the sub in u64, where overflow is well-defined */ 7828 s64 res = (s64)((u64)a - (u64)b); 7829 7830 if (b < 0) 7831 return res < a; 7832 return res > a; 7833 } 7834 7835 static bool signed_sub32_overflows(s32 a, s32 b) 7836 { 7837 /* Do the sub in u32, where overflow is well-defined */ 7838 s32 res = (s32)((u32)a - (u32)b); 7839 7840 if (b < 0) 7841 return res < a; 7842 return res > a; 7843 } 7844 7845 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7846 const struct bpf_reg_state *reg, 7847 enum bpf_reg_type type) 7848 { 7849 bool known = tnum_is_const(reg->var_off); 7850 s64 val = reg->var_off.value; 7851 s64 smin = reg->smin_value; 7852 7853 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7854 verbose(env, "math between %s pointer and %lld is not allowed\n", 7855 reg_type_str(env, type), val); 7856 return false; 7857 } 7858 7859 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7860 verbose(env, "%s pointer offset %d is not allowed\n", 7861 reg_type_str(env, type), reg->off); 7862 return false; 7863 } 7864 7865 if (smin == S64_MIN) { 7866 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7867 reg_type_str(env, type)); 7868 return false; 7869 } 7870 7871 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7872 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7873 smin, reg_type_str(env, type)); 7874 return false; 7875 } 7876 7877 return true; 7878 } 7879 7880 enum { 7881 REASON_BOUNDS = -1, 7882 REASON_TYPE = -2, 7883 REASON_PATHS = -3, 7884 REASON_LIMIT = -4, 7885 REASON_STACK = -5, 7886 }; 7887 7888 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7889 u32 *alu_limit, bool mask_to_left) 7890 { 7891 u32 max = 0, ptr_limit = 0; 7892 7893 switch (ptr_reg->type) { 7894 case PTR_TO_STACK: 7895 /* Offset 0 is out-of-bounds, but acceptable start for the 7896 * left direction, see BPF_REG_FP. Also, unknown scalar 7897 * offset where we would need to deal with min/max bounds is 7898 * currently prohibited for unprivileged. 7899 */ 7900 max = MAX_BPF_STACK + mask_to_left; 7901 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7902 break; 7903 case PTR_TO_MAP_VALUE: 7904 max = ptr_reg->map_ptr->value_size; 7905 ptr_limit = (mask_to_left ? 7906 ptr_reg->smin_value : 7907 ptr_reg->umax_value) + ptr_reg->off; 7908 break; 7909 default: 7910 return REASON_TYPE; 7911 } 7912 7913 if (ptr_limit >= max) 7914 return REASON_LIMIT; 7915 *alu_limit = ptr_limit; 7916 return 0; 7917 } 7918 7919 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7920 const struct bpf_insn *insn) 7921 { 7922 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7923 } 7924 7925 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7926 u32 alu_state, u32 alu_limit) 7927 { 7928 /* If we arrived here from different branches with different 7929 * state or limits to sanitize, then this won't work. 7930 */ 7931 if (aux->alu_state && 7932 (aux->alu_state != alu_state || 7933 aux->alu_limit != alu_limit)) 7934 return REASON_PATHS; 7935 7936 /* Corresponding fixup done in do_misc_fixups(). */ 7937 aux->alu_state = alu_state; 7938 aux->alu_limit = alu_limit; 7939 return 0; 7940 } 7941 7942 static int sanitize_val_alu(struct bpf_verifier_env *env, 7943 struct bpf_insn *insn) 7944 { 7945 struct bpf_insn_aux_data *aux = cur_aux(env); 7946 7947 if (can_skip_alu_sanitation(env, insn)) 7948 return 0; 7949 7950 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7951 } 7952 7953 static bool sanitize_needed(u8 opcode) 7954 { 7955 return opcode == BPF_ADD || opcode == BPF_SUB; 7956 } 7957 7958 struct bpf_sanitize_info { 7959 struct bpf_insn_aux_data aux; 7960 bool mask_to_left; 7961 }; 7962 7963 static struct bpf_verifier_state * 7964 sanitize_speculative_path(struct bpf_verifier_env *env, 7965 const struct bpf_insn *insn, 7966 u32 next_idx, u32 curr_idx) 7967 { 7968 struct bpf_verifier_state *branch; 7969 struct bpf_reg_state *regs; 7970 7971 branch = push_stack(env, next_idx, curr_idx, true); 7972 if (branch && insn) { 7973 regs = branch->frame[branch->curframe]->regs; 7974 if (BPF_SRC(insn->code) == BPF_K) { 7975 mark_reg_unknown(env, regs, insn->dst_reg); 7976 } else if (BPF_SRC(insn->code) == BPF_X) { 7977 mark_reg_unknown(env, regs, insn->dst_reg); 7978 mark_reg_unknown(env, regs, insn->src_reg); 7979 } 7980 } 7981 return branch; 7982 } 7983 7984 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7985 struct bpf_insn *insn, 7986 const struct bpf_reg_state *ptr_reg, 7987 const struct bpf_reg_state *off_reg, 7988 struct bpf_reg_state *dst_reg, 7989 struct bpf_sanitize_info *info, 7990 const bool commit_window) 7991 { 7992 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7993 struct bpf_verifier_state *vstate = env->cur_state; 7994 bool off_is_imm = tnum_is_const(off_reg->var_off); 7995 bool off_is_neg = off_reg->smin_value < 0; 7996 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7997 u8 opcode = BPF_OP(insn->code); 7998 u32 alu_state, alu_limit; 7999 struct bpf_reg_state tmp; 8000 bool ret; 8001 int err; 8002 8003 if (can_skip_alu_sanitation(env, insn)) 8004 return 0; 8005 8006 /* We already marked aux for masking from non-speculative 8007 * paths, thus we got here in the first place. We only care 8008 * to explore bad access from here. 8009 */ 8010 if (vstate->speculative) 8011 goto do_sim; 8012 8013 if (!commit_window) { 8014 if (!tnum_is_const(off_reg->var_off) && 8015 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 8016 return REASON_BOUNDS; 8017 8018 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 8019 (opcode == BPF_SUB && !off_is_neg); 8020 } 8021 8022 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 8023 if (err < 0) 8024 return err; 8025 8026 if (commit_window) { 8027 /* In commit phase we narrow the masking window based on 8028 * the observed pointer move after the simulated operation. 8029 */ 8030 alu_state = info->aux.alu_state; 8031 alu_limit = abs(info->aux.alu_limit - alu_limit); 8032 } else { 8033 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 8034 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 8035 alu_state |= ptr_is_dst_reg ? 8036 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 8037 8038 /* Limit pruning on unknown scalars to enable deep search for 8039 * potential masking differences from other program paths. 8040 */ 8041 if (!off_is_imm) 8042 env->explore_alu_limits = true; 8043 } 8044 8045 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 8046 if (err < 0) 8047 return err; 8048 do_sim: 8049 /* If we're in commit phase, we're done here given we already 8050 * pushed the truncated dst_reg into the speculative verification 8051 * stack. 8052 * 8053 * Also, when register is a known constant, we rewrite register-based 8054 * operation to immediate-based, and thus do not need masking (and as 8055 * a consequence, do not need to simulate the zero-truncation either). 8056 */ 8057 if (commit_window || off_is_imm) 8058 return 0; 8059 8060 /* Simulate and find potential out-of-bounds access under 8061 * speculative execution from truncation as a result of 8062 * masking when off was not within expected range. If off 8063 * sits in dst, then we temporarily need to move ptr there 8064 * to simulate dst (== 0) +/-= ptr. Needed, for example, 8065 * for cases where we use K-based arithmetic in one direction 8066 * and truncated reg-based in the other in order to explore 8067 * bad access. 8068 */ 8069 if (!ptr_is_dst_reg) { 8070 tmp = *dst_reg; 8071 *dst_reg = *ptr_reg; 8072 } 8073 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 8074 env->insn_idx); 8075 if (!ptr_is_dst_reg && ret) 8076 *dst_reg = tmp; 8077 return !ret ? REASON_STACK : 0; 8078 } 8079 8080 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 8081 { 8082 struct bpf_verifier_state *vstate = env->cur_state; 8083 8084 /* If we simulate paths under speculation, we don't update the 8085 * insn as 'seen' such that when we verify unreachable paths in 8086 * the non-speculative domain, sanitize_dead_code() can still 8087 * rewrite/sanitize them. 8088 */ 8089 if (!vstate->speculative) 8090 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8091 } 8092 8093 static int sanitize_err(struct bpf_verifier_env *env, 8094 const struct bpf_insn *insn, int reason, 8095 const struct bpf_reg_state *off_reg, 8096 const struct bpf_reg_state *dst_reg) 8097 { 8098 static const char *err = "pointer arithmetic with it prohibited for !root"; 8099 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 8100 u32 dst = insn->dst_reg, src = insn->src_reg; 8101 8102 switch (reason) { 8103 case REASON_BOUNDS: 8104 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 8105 off_reg == dst_reg ? dst : src, err); 8106 break; 8107 case REASON_TYPE: 8108 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 8109 off_reg == dst_reg ? src : dst, err); 8110 break; 8111 case REASON_PATHS: 8112 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 8113 dst, op, err); 8114 break; 8115 case REASON_LIMIT: 8116 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 8117 dst, op, err); 8118 break; 8119 case REASON_STACK: 8120 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 8121 dst, err); 8122 break; 8123 default: 8124 verbose(env, "verifier internal error: unknown reason (%d)\n", 8125 reason); 8126 break; 8127 } 8128 8129 return -EACCES; 8130 } 8131 8132 /* check that stack access falls within stack limits and that 'reg' doesn't 8133 * have a variable offset. 8134 * 8135 * Variable offset is prohibited for unprivileged mode for simplicity since it 8136 * requires corresponding support in Spectre masking for stack ALU. See also 8137 * retrieve_ptr_limit(). 8138 * 8139 * 8140 * 'off' includes 'reg->off'. 8141 */ 8142 static int check_stack_access_for_ptr_arithmetic( 8143 struct bpf_verifier_env *env, 8144 int regno, 8145 const struct bpf_reg_state *reg, 8146 int off) 8147 { 8148 if (!tnum_is_const(reg->var_off)) { 8149 char tn_buf[48]; 8150 8151 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8152 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 8153 regno, tn_buf, off); 8154 return -EACCES; 8155 } 8156 8157 if (off >= 0 || off < -MAX_BPF_STACK) { 8158 verbose(env, "R%d stack pointer arithmetic goes out of range, " 8159 "prohibited for !root; off=%d\n", regno, off); 8160 return -EACCES; 8161 } 8162 8163 return 0; 8164 } 8165 8166 static int sanitize_check_bounds(struct bpf_verifier_env *env, 8167 const struct bpf_insn *insn, 8168 const struct bpf_reg_state *dst_reg) 8169 { 8170 u32 dst = insn->dst_reg; 8171 8172 /* For unprivileged we require that resulting offset must be in bounds 8173 * in order to be able to sanitize access later on. 8174 */ 8175 if (env->bypass_spec_v1) 8176 return 0; 8177 8178 switch (dst_reg->type) { 8179 case PTR_TO_STACK: 8180 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 8181 dst_reg->off + dst_reg->var_off.value)) 8182 return -EACCES; 8183 break; 8184 case PTR_TO_MAP_VALUE: 8185 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 8186 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 8187 "prohibited for !root\n", dst); 8188 return -EACCES; 8189 } 8190 break; 8191 default: 8192 break; 8193 } 8194 8195 return 0; 8196 } 8197 8198 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 8199 * Caller should also handle BPF_MOV case separately. 8200 * If we return -EACCES, caller may want to try again treating pointer as a 8201 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 8202 */ 8203 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 8204 struct bpf_insn *insn, 8205 const struct bpf_reg_state *ptr_reg, 8206 const struct bpf_reg_state *off_reg) 8207 { 8208 struct bpf_verifier_state *vstate = env->cur_state; 8209 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8210 struct bpf_reg_state *regs = state->regs, *dst_reg; 8211 bool known = tnum_is_const(off_reg->var_off); 8212 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 8213 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8214 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8215 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8216 struct bpf_sanitize_info info = {}; 8217 u8 opcode = BPF_OP(insn->code); 8218 u32 dst = insn->dst_reg; 8219 int ret; 8220 8221 dst_reg = ®s[dst]; 8222 8223 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8224 smin_val > smax_val || umin_val > umax_val) { 8225 /* Taint dst register if offset had invalid bounds derived from 8226 * e.g. dead branches. 8227 */ 8228 __mark_reg_unknown(env, dst_reg); 8229 return 0; 8230 } 8231 8232 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8233 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8234 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8235 __mark_reg_unknown(env, dst_reg); 8236 return 0; 8237 } 8238 8239 verbose(env, 8240 "R%d 32-bit pointer arithmetic prohibited\n", 8241 dst); 8242 return -EACCES; 8243 } 8244 8245 if (ptr_reg->type & PTR_MAYBE_NULL) { 8246 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8247 dst, reg_type_str(env, ptr_reg->type)); 8248 return -EACCES; 8249 } 8250 8251 switch (base_type(ptr_reg->type)) { 8252 case CONST_PTR_TO_MAP: 8253 /* smin_val represents the known value */ 8254 if (known && smin_val == 0 && opcode == BPF_ADD) 8255 break; 8256 fallthrough; 8257 case PTR_TO_PACKET_END: 8258 case PTR_TO_SOCKET: 8259 case PTR_TO_SOCK_COMMON: 8260 case PTR_TO_TCP_SOCK: 8261 case PTR_TO_XDP_SOCK: 8262 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8263 dst, reg_type_str(env, ptr_reg->type)); 8264 return -EACCES; 8265 default: 8266 break; 8267 } 8268 8269 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8270 * The id may be overwritten later if we create a new variable offset. 8271 */ 8272 dst_reg->type = ptr_reg->type; 8273 dst_reg->id = ptr_reg->id; 8274 8275 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8276 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8277 return -EINVAL; 8278 8279 /* pointer types do not carry 32-bit bounds at the moment. */ 8280 __mark_reg32_unbounded(dst_reg); 8281 8282 if (sanitize_needed(opcode)) { 8283 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8284 &info, false); 8285 if (ret < 0) 8286 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8287 } 8288 8289 switch (opcode) { 8290 case BPF_ADD: 8291 /* We can take a fixed offset as long as it doesn't overflow 8292 * the s32 'off' field 8293 */ 8294 if (known && (ptr_reg->off + smin_val == 8295 (s64)(s32)(ptr_reg->off + smin_val))) { 8296 /* pointer += K. Accumulate it into fixed offset */ 8297 dst_reg->smin_value = smin_ptr; 8298 dst_reg->smax_value = smax_ptr; 8299 dst_reg->umin_value = umin_ptr; 8300 dst_reg->umax_value = umax_ptr; 8301 dst_reg->var_off = ptr_reg->var_off; 8302 dst_reg->off = ptr_reg->off + smin_val; 8303 dst_reg->raw = ptr_reg->raw; 8304 break; 8305 } 8306 /* A new variable offset is created. Note that off_reg->off 8307 * == 0, since it's a scalar. 8308 * dst_reg gets the pointer type and since some positive 8309 * integer value was added to the pointer, give it a new 'id' 8310 * if it's a PTR_TO_PACKET. 8311 * this creates a new 'base' pointer, off_reg (variable) gets 8312 * added into the variable offset, and we copy the fixed offset 8313 * from ptr_reg. 8314 */ 8315 if (signed_add_overflows(smin_ptr, smin_val) || 8316 signed_add_overflows(smax_ptr, smax_val)) { 8317 dst_reg->smin_value = S64_MIN; 8318 dst_reg->smax_value = S64_MAX; 8319 } else { 8320 dst_reg->smin_value = smin_ptr + smin_val; 8321 dst_reg->smax_value = smax_ptr + smax_val; 8322 } 8323 if (umin_ptr + umin_val < umin_ptr || 8324 umax_ptr + umax_val < umax_ptr) { 8325 dst_reg->umin_value = 0; 8326 dst_reg->umax_value = U64_MAX; 8327 } else { 8328 dst_reg->umin_value = umin_ptr + umin_val; 8329 dst_reg->umax_value = umax_ptr + umax_val; 8330 } 8331 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8332 dst_reg->off = ptr_reg->off; 8333 dst_reg->raw = ptr_reg->raw; 8334 if (reg_is_pkt_pointer(ptr_reg)) { 8335 dst_reg->id = ++env->id_gen; 8336 /* something was added to pkt_ptr, set range to zero */ 8337 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8338 } 8339 break; 8340 case BPF_SUB: 8341 if (dst_reg == off_reg) { 8342 /* scalar -= pointer. Creates an unknown scalar */ 8343 verbose(env, "R%d tried to subtract pointer from scalar\n", 8344 dst); 8345 return -EACCES; 8346 } 8347 /* We don't allow subtraction from FP, because (according to 8348 * test_verifier.c test "invalid fp arithmetic", JITs might not 8349 * be able to deal with it. 8350 */ 8351 if (ptr_reg->type == PTR_TO_STACK) { 8352 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8353 dst); 8354 return -EACCES; 8355 } 8356 if (known && (ptr_reg->off - smin_val == 8357 (s64)(s32)(ptr_reg->off - smin_val))) { 8358 /* pointer -= K. Subtract it from fixed offset */ 8359 dst_reg->smin_value = smin_ptr; 8360 dst_reg->smax_value = smax_ptr; 8361 dst_reg->umin_value = umin_ptr; 8362 dst_reg->umax_value = umax_ptr; 8363 dst_reg->var_off = ptr_reg->var_off; 8364 dst_reg->id = ptr_reg->id; 8365 dst_reg->off = ptr_reg->off - smin_val; 8366 dst_reg->raw = ptr_reg->raw; 8367 break; 8368 } 8369 /* A new variable offset is created. If the subtrahend is known 8370 * nonnegative, then any reg->range we had before is still good. 8371 */ 8372 if (signed_sub_overflows(smin_ptr, smax_val) || 8373 signed_sub_overflows(smax_ptr, smin_val)) { 8374 /* Overflow possible, we know nothing */ 8375 dst_reg->smin_value = S64_MIN; 8376 dst_reg->smax_value = S64_MAX; 8377 } else { 8378 dst_reg->smin_value = smin_ptr - smax_val; 8379 dst_reg->smax_value = smax_ptr - smin_val; 8380 } 8381 if (umin_ptr < umax_val) { 8382 /* Overflow possible, we know nothing */ 8383 dst_reg->umin_value = 0; 8384 dst_reg->umax_value = U64_MAX; 8385 } else { 8386 /* Cannot overflow (as long as bounds are consistent) */ 8387 dst_reg->umin_value = umin_ptr - umax_val; 8388 dst_reg->umax_value = umax_ptr - umin_val; 8389 } 8390 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8391 dst_reg->off = ptr_reg->off; 8392 dst_reg->raw = ptr_reg->raw; 8393 if (reg_is_pkt_pointer(ptr_reg)) { 8394 dst_reg->id = ++env->id_gen; 8395 /* something was added to pkt_ptr, set range to zero */ 8396 if (smin_val < 0) 8397 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8398 } 8399 break; 8400 case BPF_AND: 8401 case BPF_OR: 8402 case BPF_XOR: 8403 /* bitwise ops on pointers are troublesome, prohibit. */ 8404 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8405 dst, bpf_alu_string[opcode >> 4]); 8406 return -EACCES; 8407 default: 8408 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8409 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8410 dst, bpf_alu_string[opcode >> 4]); 8411 return -EACCES; 8412 } 8413 8414 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8415 return -EINVAL; 8416 reg_bounds_sync(dst_reg); 8417 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8418 return -EACCES; 8419 if (sanitize_needed(opcode)) { 8420 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8421 &info, true); 8422 if (ret < 0) 8423 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8424 } 8425 8426 return 0; 8427 } 8428 8429 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8430 struct bpf_reg_state *src_reg) 8431 { 8432 s32 smin_val = src_reg->s32_min_value; 8433 s32 smax_val = src_reg->s32_max_value; 8434 u32 umin_val = src_reg->u32_min_value; 8435 u32 umax_val = src_reg->u32_max_value; 8436 8437 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8438 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8439 dst_reg->s32_min_value = S32_MIN; 8440 dst_reg->s32_max_value = S32_MAX; 8441 } else { 8442 dst_reg->s32_min_value += smin_val; 8443 dst_reg->s32_max_value += smax_val; 8444 } 8445 if (dst_reg->u32_min_value + umin_val < umin_val || 8446 dst_reg->u32_max_value + umax_val < umax_val) { 8447 dst_reg->u32_min_value = 0; 8448 dst_reg->u32_max_value = U32_MAX; 8449 } else { 8450 dst_reg->u32_min_value += umin_val; 8451 dst_reg->u32_max_value += umax_val; 8452 } 8453 } 8454 8455 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8456 struct bpf_reg_state *src_reg) 8457 { 8458 s64 smin_val = src_reg->smin_value; 8459 s64 smax_val = src_reg->smax_value; 8460 u64 umin_val = src_reg->umin_value; 8461 u64 umax_val = src_reg->umax_value; 8462 8463 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8464 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8465 dst_reg->smin_value = S64_MIN; 8466 dst_reg->smax_value = S64_MAX; 8467 } else { 8468 dst_reg->smin_value += smin_val; 8469 dst_reg->smax_value += smax_val; 8470 } 8471 if (dst_reg->umin_value + umin_val < umin_val || 8472 dst_reg->umax_value + umax_val < umax_val) { 8473 dst_reg->umin_value = 0; 8474 dst_reg->umax_value = U64_MAX; 8475 } else { 8476 dst_reg->umin_value += umin_val; 8477 dst_reg->umax_value += umax_val; 8478 } 8479 } 8480 8481 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8482 struct bpf_reg_state *src_reg) 8483 { 8484 s32 smin_val = src_reg->s32_min_value; 8485 s32 smax_val = src_reg->s32_max_value; 8486 u32 umin_val = src_reg->u32_min_value; 8487 u32 umax_val = src_reg->u32_max_value; 8488 8489 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8490 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8491 /* Overflow possible, we know nothing */ 8492 dst_reg->s32_min_value = S32_MIN; 8493 dst_reg->s32_max_value = S32_MAX; 8494 } else { 8495 dst_reg->s32_min_value -= smax_val; 8496 dst_reg->s32_max_value -= smin_val; 8497 } 8498 if (dst_reg->u32_min_value < umax_val) { 8499 /* Overflow possible, we know nothing */ 8500 dst_reg->u32_min_value = 0; 8501 dst_reg->u32_max_value = U32_MAX; 8502 } else { 8503 /* Cannot overflow (as long as bounds are consistent) */ 8504 dst_reg->u32_min_value -= umax_val; 8505 dst_reg->u32_max_value -= umin_val; 8506 } 8507 } 8508 8509 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8510 struct bpf_reg_state *src_reg) 8511 { 8512 s64 smin_val = src_reg->smin_value; 8513 s64 smax_val = src_reg->smax_value; 8514 u64 umin_val = src_reg->umin_value; 8515 u64 umax_val = src_reg->umax_value; 8516 8517 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8518 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8519 /* Overflow possible, we know nothing */ 8520 dst_reg->smin_value = S64_MIN; 8521 dst_reg->smax_value = S64_MAX; 8522 } else { 8523 dst_reg->smin_value -= smax_val; 8524 dst_reg->smax_value -= smin_val; 8525 } 8526 if (dst_reg->umin_value < umax_val) { 8527 /* Overflow possible, we know nothing */ 8528 dst_reg->umin_value = 0; 8529 dst_reg->umax_value = U64_MAX; 8530 } else { 8531 /* Cannot overflow (as long as bounds are consistent) */ 8532 dst_reg->umin_value -= umax_val; 8533 dst_reg->umax_value -= umin_val; 8534 } 8535 } 8536 8537 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8538 struct bpf_reg_state *src_reg) 8539 { 8540 s32 smin_val = src_reg->s32_min_value; 8541 u32 umin_val = src_reg->u32_min_value; 8542 u32 umax_val = src_reg->u32_max_value; 8543 8544 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8545 /* Ain't nobody got time to multiply that sign */ 8546 __mark_reg32_unbounded(dst_reg); 8547 return; 8548 } 8549 /* Both values are positive, so we can work with unsigned and 8550 * copy the result to signed (unless it exceeds S32_MAX). 8551 */ 8552 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8553 /* Potential overflow, we know nothing */ 8554 __mark_reg32_unbounded(dst_reg); 8555 return; 8556 } 8557 dst_reg->u32_min_value *= umin_val; 8558 dst_reg->u32_max_value *= umax_val; 8559 if (dst_reg->u32_max_value > S32_MAX) { 8560 /* Overflow possible, we know nothing */ 8561 dst_reg->s32_min_value = S32_MIN; 8562 dst_reg->s32_max_value = S32_MAX; 8563 } else { 8564 dst_reg->s32_min_value = dst_reg->u32_min_value; 8565 dst_reg->s32_max_value = dst_reg->u32_max_value; 8566 } 8567 } 8568 8569 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8570 struct bpf_reg_state *src_reg) 8571 { 8572 s64 smin_val = src_reg->smin_value; 8573 u64 umin_val = src_reg->umin_value; 8574 u64 umax_val = src_reg->umax_value; 8575 8576 if (smin_val < 0 || dst_reg->smin_value < 0) { 8577 /* Ain't nobody got time to multiply that sign */ 8578 __mark_reg64_unbounded(dst_reg); 8579 return; 8580 } 8581 /* Both values are positive, so we can work with unsigned and 8582 * copy the result to signed (unless it exceeds S64_MAX). 8583 */ 8584 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8585 /* Potential overflow, we know nothing */ 8586 __mark_reg64_unbounded(dst_reg); 8587 return; 8588 } 8589 dst_reg->umin_value *= umin_val; 8590 dst_reg->umax_value *= umax_val; 8591 if (dst_reg->umax_value > S64_MAX) { 8592 /* Overflow possible, we know nothing */ 8593 dst_reg->smin_value = S64_MIN; 8594 dst_reg->smax_value = S64_MAX; 8595 } else { 8596 dst_reg->smin_value = dst_reg->umin_value; 8597 dst_reg->smax_value = dst_reg->umax_value; 8598 } 8599 } 8600 8601 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8602 struct bpf_reg_state *src_reg) 8603 { 8604 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8605 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8606 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8607 s32 smin_val = src_reg->s32_min_value; 8608 u32 umax_val = src_reg->u32_max_value; 8609 8610 if (src_known && dst_known) { 8611 __mark_reg32_known(dst_reg, var32_off.value); 8612 return; 8613 } 8614 8615 /* We get our minimum from the var_off, since that's inherently 8616 * bitwise. Our maximum is the minimum of the operands' maxima. 8617 */ 8618 dst_reg->u32_min_value = var32_off.value; 8619 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8620 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8621 /* Lose signed bounds when ANDing negative numbers, 8622 * ain't nobody got time for that. 8623 */ 8624 dst_reg->s32_min_value = S32_MIN; 8625 dst_reg->s32_max_value = S32_MAX; 8626 } else { 8627 /* ANDing two positives gives a positive, so safe to 8628 * cast result into s64. 8629 */ 8630 dst_reg->s32_min_value = dst_reg->u32_min_value; 8631 dst_reg->s32_max_value = dst_reg->u32_max_value; 8632 } 8633 } 8634 8635 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8636 struct bpf_reg_state *src_reg) 8637 { 8638 bool src_known = tnum_is_const(src_reg->var_off); 8639 bool dst_known = tnum_is_const(dst_reg->var_off); 8640 s64 smin_val = src_reg->smin_value; 8641 u64 umax_val = src_reg->umax_value; 8642 8643 if (src_known && dst_known) { 8644 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8645 return; 8646 } 8647 8648 /* We get our minimum from the var_off, since that's inherently 8649 * bitwise. Our maximum is the minimum of the operands' maxima. 8650 */ 8651 dst_reg->umin_value = dst_reg->var_off.value; 8652 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8653 if (dst_reg->smin_value < 0 || smin_val < 0) { 8654 /* Lose signed bounds when ANDing negative numbers, 8655 * ain't nobody got time for that. 8656 */ 8657 dst_reg->smin_value = S64_MIN; 8658 dst_reg->smax_value = S64_MAX; 8659 } else { 8660 /* ANDing two positives gives a positive, so safe to 8661 * cast result into s64. 8662 */ 8663 dst_reg->smin_value = dst_reg->umin_value; 8664 dst_reg->smax_value = dst_reg->umax_value; 8665 } 8666 /* We may learn something more from the var_off */ 8667 __update_reg_bounds(dst_reg); 8668 } 8669 8670 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8671 struct bpf_reg_state *src_reg) 8672 { 8673 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8674 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8675 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8676 s32 smin_val = src_reg->s32_min_value; 8677 u32 umin_val = src_reg->u32_min_value; 8678 8679 if (src_known && dst_known) { 8680 __mark_reg32_known(dst_reg, var32_off.value); 8681 return; 8682 } 8683 8684 /* We get our maximum from the var_off, and our minimum is the 8685 * maximum of the operands' minima 8686 */ 8687 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8688 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8689 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8690 /* Lose signed bounds when ORing negative numbers, 8691 * ain't nobody got time for that. 8692 */ 8693 dst_reg->s32_min_value = S32_MIN; 8694 dst_reg->s32_max_value = S32_MAX; 8695 } else { 8696 /* ORing two positives gives a positive, so safe to 8697 * cast result into s64. 8698 */ 8699 dst_reg->s32_min_value = dst_reg->u32_min_value; 8700 dst_reg->s32_max_value = dst_reg->u32_max_value; 8701 } 8702 } 8703 8704 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8705 struct bpf_reg_state *src_reg) 8706 { 8707 bool src_known = tnum_is_const(src_reg->var_off); 8708 bool dst_known = tnum_is_const(dst_reg->var_off); 8709 s64 smin_val = src_reg->smin_value; 8710 u64 umin_val = src_reg->umin_value; 8711 8712 if (src_known && dst_known) { 8713 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8714 return; 8715 } 8716 8717 /* We get our maximum from the var_off, and our minimum is the 8718 * maximum of the operands' minima 8719 */ 8720 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8721 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8722 if (dst_reg->smin_value < 0 || smin_val < 0) { 8723 /* Lose signed bounds when ORing negative numbers, 8724 * ain't nobody got time for that. 8725 */ 8726 dst_reg->smin_value = S64_MIN; 8727 dst_reg->smax_value = S64_MAX; 8728 } else { 8729 /* ORing two positives gives a positive, so safe to 8730 * cast result into s64. 8731 */ 8732 dst_reg->smin_value = dst_reg->umin_value; 8733 dst_reg->smax_value = dst_reg->umax_value; 8734 } 8735 /* We may learn something more from the var_off */ 8736 __update_reg_bounds(dst_reg); 8737 } 8738 8739 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8740 struct bpf_reg_state *src_reg) 8741 { 8742 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8743 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8744 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8745 s32 smin_val = src_reg->s32_min_value; 8746 8747 if (src_known && dst_known) { 8748 __mark_reg32_known(dst_reg, var32_off.value); 8749 return; 8750 } 8751 8752 /* We get both minimum and maximum from the var32_off. */ 8753 dst_reg->u32_min_value = var32_off.value; 8754 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8755 8756 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8757 /* XORing two positive sign numbers gives a positive, 8758 * so safe to cast u32 result into s32. 8759 */ 8760 dst_reg->s32_min_value = dst_reg->u32_min_value; 8761 dst_reg->s32_max_value = dst_reg->u32_max_value; 8762 } else { 8763 dst_reg->s32_min_value = S32_MIN; 8764 dst_reg->s32_max_value = S32_MAX; 8765 } 8766 } 8767 8768 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8769 struct bpf_reg_state *src_reg) 8770 { 8771 bool src_known = tnum_is_const(src_reg->var_off); 8772 bool dst_known = tnum_is_const(dst_reg->var_off); 8773 s64 smin_val = src_reg->smin_value; 8774 8775 if (src_known && dst_known) { 8776 /* dst_reg->var_off.value has been updated earlier */ 8777 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8778 return; 8779 } 8780 8781 /* We get both minimum and maximum from the var_off. */ 8782 dst_reg->umin_value = dst_reg->var_off.value; 8783 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8784 8785 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8786 /* XORing two positive sign numbers gives a positive, 8787 * so safe to cast u64 result into s64. 8788 */ 8789 dst_reg->smin_value = dst_reg->umin_value; 8790 dst_reg->smax_value = dst_reg->umax_value; 8791 } else { 8792 dst_reg->smin_value = S64_MIN; 8793 dst_reg->smax_value = S64_MAX; 8794 } 8795 8796 __update_reg_bounds(dst_reg); 8797 } 8798 8799 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8800 u64 umin_val, u64 umax_val) 8801 { 8802 /* We lose all sign bit information (except what we can pick 8803 * up from var_off) 8804 */ 8805 dst_reg->s32_min_value = S32_MIN; 8806 dst_reg->s32_max_value = S32_MAX; 8807 /* If we might shift our top bit out, then we know nothing */ 8808 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8809 dst_reg->u32_min_value = 0; 8810 dst_reg->u32_max_value = U32_MAX; 8811 } else { 8812 dst_reg->u32_min_value <<= umin_val; 8813 dst_reg->u32_max_value <<= umax_val; 8814 } 8815 } 8816 8817 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8818 struct bpf_reg_state *src_reg) 8819 { 8820 u32 umax_val = src_reg->u32_max_value; 8821 u32 umin_val = src_reg->u32_min_value; 8822 /* u32 alu operation will zext upper bits */ 8823 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8824 8825 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8826 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8827 /* Not required but being careful mark reg64 bounds as unknown so 8828 * that we are forced to pick them up from tnum and zext later and 8829 * if some path skips this step we are still safe. 8830 */ 8831 __mark_reg64_unbounded(dst_reg); 8832 __update_reg32_bounds(dst_reg); 8833 } 8834 8835 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8836 u64 umin_val, u64 umax_val) 8837 { 8838 /* Special case <<32 because it is a common compiler pattern to sign 8839 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8840 * positive we know this shift will also be positive so we can track 8841 * bounds correctly. Otherwise we lose all sign bit information except 8842 * what we can pick up from var_off. Perhaps we can generalize this 8843 * later to shifts of any length. 8844 */ 8845 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8846 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8847 else 8848 dst_reg->smax_value = S64_MAX; 8849 8850 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8851 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8852 else 8853 dst_reg->smin_value = S64_MIN; 8854 8855 /* If we might shift our top bit out, then we know nothing */ 8856 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8857 dst_reg->umin_value = 0; 8858 dst_reg->umax_value = U64_MAX; 8859 } else { 8860 dst_reg->umin_value <<= umin_val; 8861 dst_reg->umax_value <<= umax_val; 8862 } 8863 } 8864 8865 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8866 struct bpf_reg_state *src_reg) 8867 { 8868 u64 umax_val = src_reg->umax_value; 8869 u64 umin_val = src_reg->umin_value; 8870 8871 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8872 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8873 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8874 8875 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8876 /* We may learn something more from the var_off */ 8877 __update_reg_bounds(dst_reg); 8878 } 8879 8880 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8881 struct bpf_reg_state *src_reg) 8882 { 8883 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8884 u32 umax_val = src_reg->u32_max_value; 8885 u32 umin_val = src_reg->u32_min_value; 8886 8887 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8888 * be negative, then either: 8889 * 1) src_reg might be zero, so the sign bit of the result is 8890 * unknown, so we lose our signed bounds 8891 * 2) it's known negative, thus the unsigned bounds capture the 8892 * signed bounds 8893 * 3) the signed bounds cross zero, so they tell us nothing 8894 * about the result 8895 * If the value in dst_reg is known nonnegative, then again the 8896 * unsigned bounds capture the signed bounds. 8897 * Thus, in all cases it suffices to blow away our signed bounds 8898 * and rely on inferring new ones from the unsigned bounds and 8899 * var_off of the result. 8900 */ 8901 dst_reg->s32_min_value = S32_MIN; 8902 dst_reg->s32_max_value = S32_MAX; 8903 8904 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8905 dst_reg->u32_min_value >>= umax_val; 8906 dst_reg->u32_max_value >>= umin_val; 8907 8908 __mark_reg64_unbounded(dst_reg); 8909 __update_reg32_bounds(dst_reg); 8910 } 8911 8912 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8913 struct bpf_reg_state *src_reg) 8914 { 8915 u64 umax_val = src_reg->umax_value; 8916 u64 umin_val = src_reg->umin_value; 8917 8918 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8919 * be negative, then either: 8920 * 1) src_reg might be zero, so the sign bit of the result is 8921 * unknown, so we lose our signed bounds 8922 * 2) it's known negative, thus the unsigned bounds capture the 8923 * signed bounds 8924 * 3) the signed bounds cross zero, so they tell us nothing 8925 * about the result 8926 * If the value in dst_reg is known nonnegative, then again the 8927 * unsigned bounds capture the signed bounds. 8928 * Thus, in all cases it suffices to blow away our signed bounds 8929 * and rely on inferring new ones from the unsigned bounds and 8930 * var_off of the result. 8931 */ 8932 dst_reg->smin_value = S64_MIN; 8933 dst_reg->smax_value = S64_MAX; 8934 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8935 dst_reg->umin_value >>= umax_val; 8936 dst_reg->umax_value >>= umin_val; 8937 8938 /* Its not easy to operate on alu32 bounds here because it depends 8939 * on bits being shifted in. Take easy way out and mark unbounded 8940 * so we can recalculate later from tnum. 8941 */ 8942 __mark_reg32_unbounded(dst_reg); 8943 __update_reg_bounds(dst_reg); 8944 } 8945 8946 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8947 struct bpf_reg_state *src_reg) 8948 { 8949 u64 umin_val = src_reg->u32_min_value; 8950 8951 /* Upon reaching here, src_known is true and 8952 * umax_val is equal to umin_val. 8953 */ 8954 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8955 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8956 8957 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8958 8959 /* blow away the dst_reg umin_value/umax_value and rely on 8960 * dst_reg var_off to refine the result. 8961 */ 8962 dst_reg->u32_min_value = 0; 8963 dst_reg->u32_max_value = U32_MAX; 8964 8965 __mark_reg64_unbounded(dst_reg); 8966 __update_reg32_bounds(dst_reg); 8967 } 8968 8969 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8970 struct bpf_reg_state *src_reg) 8971 { 8972 u64 umin_val = src_reg->umin_value; 8973 8974 /* Upon reaching here, src_known is true and umax_val is equal 8975 * to umin_val. 8976 */ 8977 dst_reg->smin_value >>= umin_val; 8978 dst_reg->smax_value >>= umin_val; 8979 8980 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8981 8982 /* blow away the dst_reg umin_value/umax_value and rely on 8983 * dst_reg var_off to refine the result. 8984 */ 8985 dst_reg->umin_value = 0; 8986 dst_reg->umax_value = U64_MAX; 8987 8988 /* Its not easy to operate on alu32 bounds here because it depends 8989 * on bits being shifted in from upper 32-bits. Take easy way out 8990 * and mark unbounded so we can recalculate later from tnum. 8991 */ 8992 __mark_reg32_unbounded(dst_reg); 8993 __update_reg_bounds(dst_reg); 8994 } 8995 8996 /* WARNING: This function does calculations on 64-bit values, but the actual 8997 * execution may occur on 32-bit values. Therefore, things like bitshifts 8998 * need extra checks in the 32-bit case. 8999 */ 9000 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 9001 struct bpf_insn *insn, 9002 struct bpf_reg_state *dst_reg, 9003 struct bpf_reg_state src_reg) 9004 { 9005 struct bpf_reg_state *regs = cur_regs(env); 9006 u8 opcode = BPF_OP(insn->code); 9007 bool src_known; 9008 s64 smin_val, smax_val; 9009 u64 umin_val, umax_val; 9010 s32 s32_min_val, s32_max_val; 9011 u32 u32_min_val, u32_max_val; 9012 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 9013 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 9014 int ret; 9015 9016 smin_val = src_reg.smin_value; 9017 smax_val = src_reg.smax_value; 9018 umin_val = src_reg.umin_value; 9019 umax_val = src_reg.umax_value; 9020 9021 s32_min_val = src_reg.s32_min_value; 9022 s32_max_val = src_reg.s32_max_value; 9023 u32_min_val = src_reg.u32_min_value; 9024 u32_max_val = src_reg.u32_max_value; 9025 9026 if (alu32) { 9027 src_known = tnum_subreg_is_const(src_reg.var_off); 9028 if ((src_known && 9029 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 9030 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 9031 /* Taint dst register if offset had invalid bounds 9032 * derived from e.g. dead branches. 9033 */ 9034 __mark_reg_unknown(env, dst_reg); 9035 return 0; 9036 } 9037 } else { 9038 src_known = tnum_is_const(src_reg.var_off); 9039 if ((src_known && 9040 (smin_val != smax_val || umin_val != umax_val)) || 9041 smin_val > smax_val || umin_val > umax_val) { 9042 /* Taint dst register if offset had invalid bounds 9043 * derived from e.g. dead branches. 9044 */ 9045 __mark_reg_unknown(env, dst_reg); 9046 return 0; 9047 } 9048 } 9049 9050 if (!src_known && 9051 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 9052 __mark_reg_unknown(env, dst_reg); 9053 return 0; 9054 } 9055 9056 if (sanitize_needed(opcode)) { 9057 ret = sanitize_val_alu(env, insn); 9058 if (ret < 0) 9059 return sanitize_err(env, insn, ret, NULL, NULL); 9060 } 9061 9062 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 9063 * There are two classes of instructions: The first class we track both 9064 * alu32 and alu64 sign/unsigned bounds independently this provides the 9065 * greatest amount of precision when alu operations are mixed with jmp32 9066 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 9067 * and BPF_OR. This is possible because these ops have fairly easy to 9068 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 9069 * See alu32 verifier tests for examples. The second class of 9070 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 9071 * with regards to tracking sign/unsigned bounds because the bits may 9072 * cross subreg boundaries in the alu64 case. When this happens we mark 9073 * the reg unbounded in the subreg bound space and use the resulting 9074 * tnum to calculate an approximation of the sign/unsigned bounds. 9075 */ 9076 switch (opcode) { 9077 case BPF_ADD: 9078 scalar32_min_max_add(dst_reg, &src_reg); 9079 scalar_min_max_add(dst_reg, &src_reg); 9080 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 9081 break; 9082 case BPF_SUB: 9083 scalar32_min_max_sub(dst_reg, &src_reg); 9084 scalar_min_max_sub(dst_reg, &src_reg); 9085 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 9086 break; 9087 case BPF_MUL: 9088 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 9089 scalar32_min_max_mul(dst_reg, &src_reg); 9090 scalar_min_max_mul(dst_reg, &src_reg); 9091 break; 9092 case BPF_AND: 9093 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 9094 scalar32_min_max_and(dst_reg, &src_reg); 9095 scalar_min_max_and(dst_reg, &src_reg); 9096 break; 9097 case BPF_OR: 9098 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 9099 scalar32_min_max_or(dst_reg, &src_reg); 9100 scalar_min_max_or(dst_reg, &src_reg); 9101 break; 9102 case BPF_XOR: 9103 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 9104 scalar32_min_max_xor(dst_reg, &src_reg); 9105 scalar_min_max_xor(dst_reg, &src_reg); 9106 break; 9107 case BPF_LSH: 9108 if (umax_val >= insn_bitness) { 9109 /* Shifts greater than 31 or 63 are undefined. 9110 * This includes shifts by a negative number. 9111 */ 9112 mark_reg_unknown(env, regs, insn->dst_reg); 9113 break; 9114 } 9115 if (alu32) 9116 scalar32_min_max_lsh(dst_reg, &src_reg); 9117 else 9118 scalar_min_max_lsh(dst_reg, &src_reg); 9119 break; 9120 case BPF_RSH: 9121 if (umax_val >= insn_bitness) { 9122 /* Shifts greater than 31 or 63 are undefined. 9123 * This includes shifts by a negative number. 9124 */ 9125 mark_reg_unknown(env, regs, insn->dst_reg); 9126 break; 9127 } 9128 if (alu32) 9129 scalar32_min_max_rsh(dst_reg, &src_reg); 9130 else 9131 scalar_min_max_rsh(dst_reg, &src_reg); 9132 break; 9133 case BPF_ARSH: 9134 if (umax_val >= insn_bitness) { 9135 /* Shifts greater than 31 or 63 are undefined. 9136 * This includes shifts by a negative number. 9137 */ 9138 mark_reg_unknown(env, regs, insn->dst_reg); 9139 break; 9140 } 9141 if (alu32) 9142 scalar32_min_max_arsh(dst_reg, &src_reg); 9143 else 9144 scalar_min_max_arsh(dst_reg, &src_reg); 9145 break; 9146 default: 9147 mark_reg_unknown(env, regs, insn->dst_reg); 9148 break; 9149 } 9150 9151 /* ALU32 ops are zero extended into 64bit register */ 9152 if (alu32) 9153 zext_32_to_64(dst_reg); 9154 reg_bounds_sync(dst_reg); 9155 return 0; 9156 } 9157 9158 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 9159 * and var_off. 9160 */ 9161 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 9162 struct bpf_insn *insn) 9163 { 9164 struct bpf_verifier_state *vstate = env->cur_state; 9165 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9166 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 9167 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 9168 u8 opcode = BPF_OP(insn->code); 9169 int err; 9170 9171 dst_reg = ®s[insn->dst_reg]; 9172 src_reg = NULL; 9173 if (dst_reg->type != SCALAR_VALUE) 9174 ptr_reg = dst_reg; 9175 else 9176 /* Make sure ID is cleared otherwise dst_reg min/max could be 9177 * incorrectly propagated into other registers by find_equal_scalars() 9178 */ 9179 dst_reg->id = 0; 9180 if (BPF_SRC(insn->code) == BPF_X) { 9181 src_reg = ®s[insn->src_reg]; 9182 if (src_reg->type != SCALAR_VALUE) { 9183 if (dst_reg->type != SCALAR_VALUE) { 9184 /* Combining two pointers by any ALU op yields 9185 * an arbitrary scalar. Disallow all math except 9186 * pointer subtraction 9187 */ 9188 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9189 mark_reg_unknown(env, regs, insn->dst_reg); 9190 return 0; 9191 } 9192 verbose(env, "R%d pointer %s pointer prohibited\n", 9193 insn->dst_reg, 9194 bpf_alu_string[opcode >> 4]); 9195 return -EACCES; 9196 } else { 9197 /* scalar += pointer 9198 * This is legal, but we have to reverse our 9199 * src/dest handling in computing the range 9200 */ 9201 err = mark_chain_precision(env, insn->dst_reg); 9202 if (err) 9203 return err; 9204 return adjust_ptr_min_max_vals(env, insn, 9205 src_reg, dst_reg); 9206 } 9207 } else if (ptr_reg) { 9208 /* pointer += scalar */ 9209 err = mark_chain_precision(env, insn->src_reg); 9210 if (err) 9211 return err; 9212 return adjust_ptr_min_max_vals(env, insn, 9213 dst_reg, src_reg); 9214 } 9215 } else { 9216 /* Pretend the src is a reg with a known value, since we only 9217 * need to be able to read from this state. 9218 */ 9219 off_reg.type = SCALAR_VALUE; 9220 __mark_reg_known(&off_reg, insn->imm); 9221 src_reg = &off_reg; 9222 if (ptr_reg) /* pointer += K */ 9223 return adjust_ptr_min_max_vals(env, insn, 9224 ptr_reg, src_reg); 9225 } 9226 9227 /* Got here implies adding two SCALAR_VALUEs */ 9228 if (WARN_ON_ONCE(ptr_reg)) { 9229 print_verifier_state(env, state, true); 9230 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9231 return -EINVAL; 9232 } 9233 if (WARN_ON(!src_reg)) { 9234 print_verifier_state(env, state, true); 9235 verbose(env, "verifier internal error: no src_reg\n"); 9236 return -EINVAL; 9237 } 9238 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9239 } 9240 9241 /* check validity of 32-bit and 64-bit arithmetic operations */ 9242 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9243 { 9244 struct bpf_reg_state *regs = cur_regs(env); 9245 u8 opcode = BPF_OP(insn->code); 9246 int err; 9247 9248 if (opcode == BPF_END || opcode == BPF_NEG) { 9249 if (opcode == BPF_NEG) { 9250 if (BPF_SRC(insn->code) != BPF_K || 9251 insn->src_reg != BPF_REG_0 || 9252 insn->off != 0 || insn->imm != 0) { 9253 verbose(env, "BPF_NEG uses reserved fields\n"); 9254 return -EINVAL; 9255 } 9256 } else { 9257 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9258 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9259 BPF_CLASS(insn->code) == BPF_ALU64) { 9260 verbose(env, "BPF_END uses reserved fields\n"); 9261 return -EINVAL; 9262 } 9263 } 9264 9265 /* check src operand */ 9266 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9267 if (err) 9268 return err; 9269 9270 if (is_pointer_value(env, insn->dst_reg)) { 9271 verbose(env, "R%d pointer arithmetic prohibited\n", 9272 insn->dst_reg); 9273 return -EACCES; 9274 } 9275 9276 /* check dest operand */ 9277 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9278 if (err) 9279 return err; 9280 9281 } else if (opcode == BPF_MOV) { 9282 9283 if (BPF_SRC(insn->code) == BPF_X) { 9284 if (insn->imm != 0 || insn->off != 0) { 9285 verbose(env, "BPF_MOV uses reserved fields\n"); 9286 return -EINVAL; 9287 } 9288 9289 /* check src operand */ 9290 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9291 if (err) 9292 return err; 9293 } else { 9294 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9295 verbose(env, "BPF_MOV uses reserved fields\n"); 9296 return -EINVAL; 9297 } 9298 } 9299 9300 /* check dest operand, mark as required later */ 9301 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9302 if (err) 9303 return err; 9304 9305 if (BPF_SRC(insn->code) == BPF_X) { 9306 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9307 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9308 9309 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9310 /* case: R1 = R2 9311 * copy register state to dest reg 9312 */ 9313 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9314 /* Assign src and dst registers the same ID 9315 * that will be used by find_equal_scalars() 9316 * to propagate min/max range. 9317 */ 9318 src_reg->id = ++env->id_gen; 9319 *dst_reg = *src_reg; 9320 dst_reg->live |= REG_LIVE_WRITTEN; 9321 dst_reg->subreg_def = DEF_NOT_SUBREG; 9322 } else { 9323 /* R1 = (u32) R2 */ 9324 if (is_pointer_value(env, insn->src_reg)) { 9325 verbose(env, 9326 "R%d partial copy of pointer\n", 9327 insn->src_reg); 9328 return -EACCES; 9329 } else if (src_reg->type == SCALAR_VALUE) { 9330 *dst_reg = *src_reg; 9331 /* Make sure ID is cleared otherwise 9332 * dst_reg min/max could be incorrectly 9333 * propagated into src_reg by find_equal_scalars() 9334 */ 9335 dst_reg->id = 0; 9336 dst_reg->live |= REG_LIVE_WRITTEN; 9337 dst_reg->subreg_def = env->insn_idx + 1; 9338 } else { 9339 mark_reg_unknown(env, regs, 9340 insn->dst_reg); 9341 } 9342 zext_32_to_64(dst_reg); 9343 reg_bounds_sync(dst_reg); 9344 } 9345 } else { 9346 /* case: R = imm 9347 * remember the value we stored into this reg 9348 */ 9349 /* clear any state __mark_reg_known doesn't set */ 9350 mark_reg_unknown(env, regs, insn->dst_reg); 9351 regs[insn->dst_reg].type = SCALAR_VALUE; 9352 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9353 __mark_reg_known(regs + insn->dst_reg, 9354 insn->imm); 9355 } else { 9356 __mark_reg_known(regs + insn->dst_reg, 9357 (u32)insn->imm); 9358 } 9359 } 9360 9361 } else if (opcode > BPF_END) { 9362 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9363 return -EINVAL; 9364 9365 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9366 9367 if (BPF_SRC(insn->code) == BPF_X) { 9368 if (insn->imm != 0 || insn->off != 0) { 9369 verbose(env, "BPF_ALU uses reserved fields\n"); 9370 return -EINVAL; 9371 } 9372 /* check src1 operand */ 9373 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9374 if (err) 9375 return err; 9376 } else { 9377 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9378 verbose(env, "BPF_ALU uses reserved fields\n"); 9379 return -EINVAL; 9380 } 9381 } 9382 9383 /* check src2 operand */ 9384 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9385 if (err) 9386 return err; 9387 9388 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9389 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9390 verbose(env, "div by zero\n"); 9391 return -EINVAL; 9392 } 9393 9394 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9395 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9396 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9397 9398 if (insn->imm < 0 || insn->imm >= size) { 9399 verbose(env, "invalid shift %d\n", insn->imm); 9400 return -EINVAL; 9401 } 9402 } 9403 9404 /* check dest operand */ 9405 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9406 if (err) 9407 return err; 9408 9409 return adjust_reg_min_max_vals(env, insn); 9410 } 9411 9412 return 0; 9413 } 9414 9415 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9416 struct bpf_reg_state *dst_reg, 9417 enum bpf_reg_type type, 9418 bool range_right_open) 9419 { 9420 struct bpf_func_state *state; 9421 struct bpf_reg_state *reg; 9422 int new_range; 9423 9424 if (dst_reg->off < 0 || 9425 (dst_reg->off == 0 && range_right_open)) 9426 /* This doesn't give us any range */ 9427 return; 9428 9429 if (dst_reg->umax_value > MAX_PACKET_OFF || 9430 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9431 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9432 * than pkt_end, but that's because it's also less than pkt. 9433 */ 9434 return; 9435 9436 new_range = dst_reg->off; 9437 if (range_right_open) 9438 new_range++; 9439 9440 /* Examples for register markings: 9441 * 9442 * pkt_data in dst register: 9443 * 9444 * r2 = r3; 9445 * r2 += 8; 9446 * if (r2 > pkt_end) goto <handle exception> 9447 * <access okay> 9448 * 9449 * r2 = r3; 9450 * r2 += 8; 9451 * if (r2 < pkt_end) goto <access okay> 9452 * <handle exception> 9453 * 9454 * Where: 9455 * r2 == dst_reg, pkt_end == src_reg 9456 * r2=pkt(id=n,off=8,r=0) 9457 * r3=pkt(id=n,off=0,r=0) 9458 * 9459 * pkt_data in src register: 9460 * 9461 * r2 = r3; 9462 * r2 += 8; 9463 * if (pkt_end >= r2) goto <access okay> 9464 * <handle exception> 9465 * 9466 * r2 = r3; 9467 * r2 += 8; 9468 * if (pkt_end <= r2) goto <handle exception> 9469 * <access okay> 9470 * 9471 * Where: 9472 * pkt_end == dst_reg, r2 == src_reg 9473 * r2=pkt(id=n,off=8,r=0) 9474 * r3=pkt(id=n,off=0,r=0) 9475 * 9476 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9477 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9478 * and [r3, r3 + 8-1) respectively is safe to access depending on 9479 * the check. 9480 */ 9481 9482 /* If our ids match, then we must have the same max_value. And we 9483 * don't care about the other reg's fixed offset, since if it's too big 9484 * the range won't allow anything. 9485 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9486 */ 9487 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 9488 if (reg->type == type && reg->id == dst_reg->id) 9489 /* keep the maximum range already checked */ 9490 reg->range = max(reg->range, new_range); 9491 })); 9492 } 9493 9494 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9495 { 9496 struct tnum subreg = tnum_subreg(reg->var_off); 9497 s32 sval = (s32)val; 9498 9499 switch (opcode) { 9500 case BPF_JEQ: 9501 if (tnum_is_const(subreg)) 9502 return !!tnum_equals_const(subreg, val); 9503 break; 9504 case BPF_JNE: 9505 if (tnum_is_const(subreg)) 9506 return !tnum_equals_const(subreg, val); 9507 break; 9508 case BPF_JSET: 9509 if ((~subreg.mask & subreg.value) & val) 9510 return 1; 9511 if (!((subreg.mask | subreg.value) & val)) 9512 return 0; 9513 break; 9514 case BPF_JGT: 9515 if (reg->u32_min_value > val) 9516 return 1; 9517 else if (reg->u32_max_value <= val) 9518 return 0; 9519 break; 9520 case BPF_JSGT: 9521 if (reg->s32_min_value > sval) 9522 return 1; 9523 else if (reg->s32_max_value <= sval) 9524 return 0; 9525 break; 9526 case BPF_JLT: 9527 if (reg->u32_max_value < val) 9528 return 1; 9529 else if (reg->u32_min_value >= val) 9530 return 0; 9531 break; 9532 case BPF_JSLT: 9533 if (reg->s32_max_value < sval) 9534 return 1; 9535 else if (reg->s32_min_value >= sval) 9536 return 0; 9537 break; 9538 case BPF_JGE: 9539 if (reg->u32_min_value >= val) 9540 return 1; 9541 else if (reg->u32_max_value < val) 9542 return 0; 9543 break; 9544 case BPF_JSGE: 9545 if (reg->s32_min_value >= sval) 9546 return 1; 9547 else if (reg->s32_max_value < sval) 9548 return 0; 9549 break; 9550 case BPF_JLE: 9551 if (reg->u32_max_value <= val) 9552 return 1; 9553 else if (reg->u32_min_value > val) 9554 return 0; 9555 break; 9556 case BPF_JSLE: 9557 if (reg->s32_max_value <= sval) 9558 return 1; 9559 else if (reg->s32_min_value > sval) 9560 return 0; 9561 break; 9562 } 9563 9564 return -1; 9565 } 9566 9567 9568 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9569 { 9570 s64 sval = (s64)val; 9571 9572 switch (opcode) { 9573 case BPF_JEQ: 9574 if (tnum_is_const(reg->var_off)) 9575 return !!tnum_equals_const(reg->var_off, val); 9576 break; 9577 case BPF_JNE: 9578 if (tnum_is_const(reg->var_off)) 9579 return !tnum_equals_const(reg->var_off, val); 9580 break; 9581 case BPF_JSET: 9582 if ((~reg->var_off.mask & reg->var_off.value) & val) 9583 return 1; 9584 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9585 return 0; 9586 break; 9587 case BPF_JGT: 9588 if (reg->umin_value > val) 9589 return 1; 9590 else if (reg->umax_value <= val) 9591 return 0; 9592 break; 9593 case BPF_JSGT: 9594 if (reg->smin_value > sval) 9595 return 1; 9596 else if (reg->smax_value <= sval) 9597 return 0; 9598 break; 9599 case BPF_JLT: 9600 if (reg->umax_value < val) 9601 return 1; 9602 else if (reg->umin_value >= val) 9603 return 0; 9604 break; 9605 case BPF_JSLT: 9606 if (reg->smax_value < sval) 9607 return 1; 9608 else if (reg->smin_value >= sval) 9609 return 0; 9610 break; 9611 case BPF_JGE: 9612 if (reg->umin_value >= val) 9613 return 1; 9614 else if (reg->umax_value < val) 9615 return 0; 9616 break; 9617 case BPF_JSGE: 9618 if (reg->smin_value >= sval) 9619 return 1; 9620 else if (reg->smax_value < sval) 9621 return 0; 9622 break; 9623 case BPF_JLE: 9624 if (reg->umax_value <= val) 9625 return 1; 9626 else if (reg->umin_value > val) 9627 return 0; 9628 break; 9629 case BPF_JSLE: 9630 if (reg->smax_value <= sval) 9631 return 1; 9632 else if (reg->smin_value > sval) 9633 return 0; 9634 break; 9635 } 9636 9637 return -1; 9638 } 9639 9640 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9641 * and return: 9642 * 1 - branch will be taken and "goto target" will be executed 9643 * 0 - branch will not be taken and fall-through to next insn 9644 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9645 * range [0,10] 9646 */ 9647 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9648 bool is_jmp32) 9649 { 9650 if (__is_pointer_value(false, reg)) { 9651 if (!reg_type_not_null(reg->type)) 9652 return -1; 9653 9654 /* If pointer is valid tests against zero will fail so we can 9655 * use this to direct branch taken. 9656 */ 9657 if (val != 0) 9658 return -1; 9659 9660 switch (opcode) { 9661 case BPF_JEQ: 9662 return 0; 9663 case BPF_JNE: 9664 return 1; 9665 default: 9666 return -1; 9667 } 9668 } 9669 9670 if (is_jmp32) 9671 return is_branch32_taken(reg, val, opcode); 9672 return is_branch64_taken(reg, val, opcode); 9673 } 9674 9675 static int flip_opcode(u32 opcode) 9676 { 9677 /* How can we transform "a <op> b" into "b <op> a"? */ 9678 static const u8 opcode_flip[16] = { 9679 /* these stay the same */ 9680 [BPF_JEQ >> 4] = BPF_JEQ, 9681 [BPF_JNE >> 4] = BPF_JNE, 9682 [BPF_JSET >> 4] = BPF_JSET, 9683 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9684 [BPF_JGE >> 4] = BPF_JLE, 9685 [BPF_JGT >> 4] = BPF_JLT, 9686 [BPF_JLE >> 4] = BPF_JGE, 9687 [BPF_JLT >> 4] = BPF_JGT, 9688 [BPF_JSGE >> 4] = BPF_JSLE, 9689 [BPF_JSGT >> 4] = BPF_JSLT, 9690 [BPF_JSLE >> 4] = BPF_JSGE, 9691 [BPF_JSLT >> 4] = BPF_JSGT 9692 }; 9693 return opcode_flip[opcode >> 4]; 9694 } 9695 9696 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9697 struct bpf_reg_state *src_reg, 9698 u8 opcode) 9699 { 9700 struct bpf_reg_state *pkt; 9701 9702 if (src_reg->type == PTR_TO_PACKET_END) { 9703 pkt = dst_reg; 9704 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9705 pkt = src_reg; 9706 opcode = flip_opcode(opcode); 9707 } else { 9708 return -1; 9709 } 9710 9711 if (pkt->range >= 0) 9712 return -1; 9713 9714 switch (opcode) { 9715 case BPF_JLE: 9716 /* pkt <= pkt_end */ 9717 fallthrough; 9718 case BPF_JGT: 9719 /* pkt > pkt_end */ 9720 if (pkt->range == BEYOND_PKT_END) 9721 /* pkt has at last one extra byte beyond pkt_end */ 9722 return opcode == BPF_JGT; 9723 break; 9724 case BPF_JLT: 9725 /* pkt < pkt_end */ 9726 fallthrough; 9727 case BPF_JGE: 9728 /* pkt >= pkt_end */ 9729 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9730 return opcode == BPF_JGE; 9731 break; 9732 } 9733 return -1; 9734 } 9735 9736 /* Adjusts the register min/max values in the case that the dst_reg is the 9737 * variable register that we are working on, and src_reg is a constant or we're 9738 * simply doing a BPF_K check. 9739 * In JEQ/JNE cases we also adjust the var_off values. 9740 */ 9741 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9742 struct bpf_reg_state *false_reg, 9743 u64 val, u32 val32, 9744 u8 opcode, bool is_jmp32) 9745 { 9746 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9747 struct tnum false_64off = false_reg->var_off; 9748 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9749 struct tnum true_64off = true_reg->var_off; 9750 s64 sval = (s64)val; 9751 s32 sval32 = (s32)val32; 9752 9753 /* If the dst_reg is a pointer, we can't learn anything about its 9754 * variable offset from the compare (unless src_reg were a pointer into 9755 * the same object, but we don't bother with that. 9756 * Since false_reg and true_reg have the same type by construction, we 9757 * only need to check one of them for pointerness. 9758 */ 9759 if (__is_pointer_value(false, false_reg)) 9760 return; 9761 9762 switch (opcode) { 9763 /* JEQ/JNE comparison doesn't change the register equivalence. 9764 * 9765 * r1 = r2; 9766 * if (r1 == 42) goto label; 9767 * ... 9768 * label: // here both r1 and r2 are known to be 42. 9769 * 9770 * Hence when marking register as known preserve it's ID. 9771 */ 9772 case BPF_JEQ: 9773 if (is_jmp32) { 9774 __mark_reg32_known(true_reg, val32); 9775 true_32off = tnum_subreg(true_reg->var_off); 9776 } else { 9777 ___mark_reg_known(true_reg, val); 9778 true_64off = true_reg->var_off; 9779 } 9780 break; 9781 case BPF_JNE: 9782 if (is_jmp32) { 9783 __mark_reg32_known(false_reg, val32); 9784 false_32off = tnum_subreg(false_reg->var_off); 9785 } else { 9786 ___mark_reg_known(false_reg, val); 9787 false_64off = false_reg->var_off; 9788 } 9789 break; 9790 case BPF_JSET: 9791 if (is_jmp32) { 9792 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9793 if (is_power_of_2(val32)) 9794 true_32off = tnum_or(true_32off, 9795 tnum_const(val32)); 9796 } else { 9797 false_64off = tnum_and(false_64off, tnum_const(~val)); 9798 if (is_power_of_2(val)) 9799 true_64off = tnum_or(true_64off, 9800 tnum_const(val)); 9801 } 9802 break; 9803 case BPF_JGE: 9804 case BPF_JGT: 9805 { 9806 if (is_jmp32) { 9807 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9808 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9809 9810 false_reg->u32_max_value = min(false_reg->u32_max_value, 9811 false_umax); 9812 true_reg->u32_min_value = max(true_reg->u32_min_value, 9813 true_umin); 9814 } else { 9815 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9816 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9817 9818 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9819 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9820 } 9821 break; 9822 } 9823 case BPF_JSGE: 9824 case BPF_JSGT: 9825 { 9826 if (is_jmp32) { 9827 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9828 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9829 9830 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9831 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9832 } else { 9833 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9834 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9835 9836 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9837 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9838 } 9839 break; 9840 } 9841 case BPF_JLE: 9842 case BPF_JLT: 9843 { 9844 if (is_jmp32) { 9845 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9846 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9847 9848 false_reg->u32_min_value = max(false_reg->u32_min_value, 9849 false_umin); 9850 true_reg->u32_max_value = min(true_reg->u32_max_value, 9851 true_umax); 9852 } else { 9853 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9854 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9855 9856 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9857 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9858 } 9859 break; 9860 } 9861 case BPF_JSLE: 9862 case BPF_JSLT: 9863 { 9864 if (is_jmp32) { 9865 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9866 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9867 9868 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9869 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9870 } else { 9871 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9872 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9873 9874 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9875 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9876 } 9877 break; 9878 } 9879 default: 9880 return; 9881 } 9882 9883 if (is_jmp32) { 9884 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9885 tnum_subreg(false_32off)); 9886 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9887 tnum_subreg(true_32off)); 9888 __reg_combine_32_into_64(false_reg); 9889 __reg_combine_32_into_64(true_reg); 9890 } else { 9891 false_reg->var_off = false_64off; 9892 true_reg->var_off = true_64off; 9893 __reg_combine_64_into_32(false_reg); 9894 __reg_combine_64_into_32(true_reg); 9895 } 9896 } 9897 9898 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9899 * the variable reg. 9900 */ 9901 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9902 struct bpf_reg_state *false_reg, 9903 u64 val, u32 val32, 9904 u8 opcode, bool is_jmp32) 9905 { 9906 opcode = flip_opcode(opcode); 9907 /* This uses zero as "not present in table"; luckily the zero opcode, 9908 * BPF_JA, can't get here. 9909 */ 9910 if (opcode) 9911 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9912 } 9913 9914 /* Regs are known to be equal, so intersect their min/max/var_off */ 9915 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9916 struct bpf_reg_state *dst_reg) 9917 { 9918 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9919 dst_reg->umin_value); 9920 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9921 dst_reg->umax_value); 9922 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9923 dst_reg->smin_value); 9924 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9925 dst_reg->smax_value); 9926 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9927 dst_reg->var_off); 9928 reg_bounds_sync(src_reg); 9929 reg_bounds_sync(dst_reg); 9930 } 9931 9932 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9933 struct bpf_reg_state *true_dst, 9934 struct bpf_reg_state *false_src, 9935 struct bpf_reg_state *false_dst, 9936 u8 opcode) 9937 { 9938 switch (opcode) { 9939 case BPF_JEQ: 9940 __reg_combine_min_max(true_src, true_dst); 9941 break; 9942 case BPF_JNE: 9943 __reg_combine_min_max(false_src, false_dst); 9944 break; 9945 } 9946 } 9947 9948 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9949 struct bpf_reg_state *reg, u32 id, 9950 bool is_null) 9951 { 9952 if (type_may_be_null(reg->type) && reg->id == id && 9953 !WARN_ON_ONCE(!reg->id)) { 9954 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9955 !tnum_equals_const(reg->var_off, 0) || 9956 reg->off)) { 9957 /* Old offset (both fixed and variable parts) should 9958 * have been known-zero, because we don't allow pointer 9959 * arithmetic on pointers that might be NULL. If we 9960 * see this happening, don't convert the register. 9961 */ 9962 return; 9963 } 9964 if (is_null) { 9965 reg->type = SCALAR_VALUE; 9966 /* We don't need id and ref_obj_id from this point 9967 * onwards anymore, thus we should better reset it, 9968 * so that state pruning has chances to take effect. 9969 */ 9970 reg->id = 0; 9971 reg->ref_obj_id = 0; 9972 9973 return; 9974 } 9975 9976 mark_ptr_not_null_reg(reg); 9977 9978 if (!reg_may_point_to_spin_lock(reg)) { 9979 /* For not-NULL ptr, reg->ref_obj_id will be reset 9980 * in release_reference(). 9981 * 9982 * reg->id is still used by spin_lock ptr. Other 9983 * than spin_lock ptr type, reg->id can be reset. 9984 */ 9985 reg->id = 0; 9986 } 9987 } 9988 } 9989 9990 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9991 * be folded together at some point. 9992 */ 9993 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9994 bool is_null) 9995 { 9996 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9997 struct bpf_reg_state *regs = state->regs, *reg; 9998 u32 ref_obj_id = regs[regno].ref_obj_id; 9999 u32 id = regs[regno].id; 10000 10001 if (ref_obj_id && ref_obj_id == id && is_null) 10002 /* regs[regno] is in the " == NULL" branch. 10003 * No one could have freed the reference state before 10004 * doing the NULL check. 10005 */ 10006 WARN_ON_ONCE(release_reference_state(state, id)); 10007 10008 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10009 mark_ptr_or_null_reg(state, reg, id, is_null); 10010 })); 10011 } 10012 10013 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 10014 struct bpf_reg_state *dst_reg, 10015 struct bpf_reg_state *src_reg, 10016 struct bpf_verifier_state *this_branch, 10017 struct bpf_verifier_state *other_branch) 10018 { 10019 if (BPF_SRC(insn->code) != BPF_X) 10020 return false; 10021 10022 /* Pointers are always 64-bit. */ 10023 if (BPF_CLASS(insn->code) == BPF_JMP32) 10024 return false; 10025 10026 switch (BPF_OP(insn->code)) { 10027 case BPF_JGT: 10028 if ((dst_reg->type == PTR_TO_PACKET && 10029 src_reg->type == PTR_TO_PACKET_END) || 10030 (dst_reg->type == PTR_TO_PACKET_META && 10031 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10032 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 10033 find_good_pkt_pointers(this_branch, dst_reg, 10034 dst_reg->type, false); 10035 mark_pkt_end(other_branch, insn->dst_reg, true); 10036 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10037 src_reg->type == PTR_TO_PACKET) || 10038 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10039 src_reg->type == PTR_TO_PACKET_META)) { 10040 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 10041 find_good_pkt_pointers(other_branch, src_reg, 10042 src_reg->type, true); 10043 mark_pkt_end(this_branch, insn->src_reg, false); 10044 } else { 10045 return false; 10046 } 10047 break; 10048 case BPF_JLT: 10049 if ((dst_reg->type == PTR_TO_PACKET && 10050 src_reg->type == PTR_TO_PACKET_END) || 10051 (dst_reg->type == PTR_TO_PACKET_META && 10052 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10053 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 10054 find_good_pkt_pointers(other_branch, dst_reg, 10055 dst_reg->type, true); 10056 mark_pkt_end(this_branch, insn->dst_reg, false); 10057 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10058 src_reg->type == PTR_TO_PACKET) || 10059 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10060 src_reg->type == PTR_TO_PACKET_META)) { 10061 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 10062 find_good_pkt_pointers(this_branch, src_reg, 10063 src_reg->type, false); 10064 mark_pkt_end(other_branch, insn->src_reg, true); 10065 } else { 10066 return false; 10067 } 10068 break; 10069 case BPF_JGE: 10070 if ((dst_reg->type == PTR_TO_PACKET && 10071 src_reg->type == PTR_TO_PACKET_END) || 10072 (dst_reg->type == PTR_TO_PACKET_META && 10073 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10074 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 10075 find_good_pkt_pointers(this_branch, dst_reg, 10076 dst_reg->type, true); 10077 mark_pkt_end(other_branch, insn->dst_reg, false); 10078 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10079 src_reg->type == PTR_TO_PACKET) || 10080 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10081 src_reg->type == PTR_TO_PACKET_META)) { 10082 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 10083 find_good_pkt_pointers(other_branch, src_reg, 10084 src_reg->type, false); 10085 mark_pkt_end(this_branch, insn->src_reg, true); 10086 } else { 10087 return false; 10088 } 10089 break; 10090 case BPF_JLE: 10091 if ((dst_reg->type == PTR_TO_PACKET && 10092 src_reg->type == PTR_TO_PACKET_END) || 10093 (dst_reg->type == PTR_TO_PACKET_META && 10094 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10095 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 10096 find_good_pkt_pointers(other_branch, dst_reg, 10097 dst_reg->type, false); 10098 mark_pkt_end(this_branch, insn->dst_reg, true); 10099 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10100 src_reg->type == PTR_TO_PACKET) || 10101 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10102 src_reg->type == PTR_TO_PACKET_META)) { 10103 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 10104 find_good_pkt_pointers(this_branch, src_reg, 10105 src_reg->type, true); 10106 mark_pkt_end(other_branch, insn->src_reg, false); 10107 } else { 10108 return false; 10109 } 10110 break; 10111 default: 10112 return false; 10113 } 10114 10115 return true; 10116 } 10117 10118 static void find_equal_scalars(struct bpf_verifier_state *vstate, 10119 struct bpf_reg_state *known_reg) 10120 { 10121 struct bpf_func_state *state; 10122 struct bpf_reg_state *reg; 10123 10124 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10125 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10126 *reg = *known_reg; 10127 })); 10128 } 10129 10130 static int check_cond_jmp_op(struct bpf_verifier_env *env, 10131 struct bpf_insn *insn, int *insn_idx) 10132 { 10133 struct bpf_verifier_state *this_branch = env->cur_state; 10134 struct bpf_verifier_state *other_branch; 10135 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 10136 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 10137 u8 opcode = BPF_OP(insn->code); 10138 bool is_jmp32; 10139 int pred = -1; 10140 int err; 10141 10142 /* Only conditional jumps are expected to reach here. */ 10143 if (opcode == BPF_JA || opcode > BPF_JSLE) { 10144 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 10145 return -EINVAL; 10146 } 10147 10148 if (BPF_SRC(insn->code) == BPF_X) { 10149 if (insn->imm != 0) { 10150 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10151 return -EINVAL; 10152 } 10153 10154 /* check src1 operand */ 10155 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10156 if (err) 10157 return err; 10158 10159 if (is_pointer_value(env, insn->src_reg)) { 10160 verbose(env, "R%d pointer comparison prohibited\n", 10161 insn->src_reg); 10162 return -EACCES; 10163 } 10164 src_reg = ®s[insn->src_reg]; 10165 } else { 10166 if (insn->src_reg != BPF_REG_0) { 10167 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10168 return -EINVAL; 10169 } 10170 } 10171 10172 /* check src2 operand */ 10173 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10174 if (err) 10175 return err; 10176 10177 dst_reg = ®s[insn->dst_reg]; 10178 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10179 10180 if (BPF_SRC(insn->code) == BPF_K) { 10181 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10182 } else if (src_reg->type == SCALAR_VALUE && 10183 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10184 pred = is_branch_taken(dst_reg, 10185 tnum_subreg(src_reg->var_off).value, 10186 opcode, 10187 is_jmp32); 10188 } else if (src_reg->type == SCALAR_VALUE && 10189 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10190 pred = is_branch_taken(dst_reg, 10191 src_reg->var_off.value, 10192 opcode, 10193 is_jmp32); 10194 } else if (reg_is_pkt_pointer_any(dst_reg) && 10195 reg_is_pkt_pointer_any(src_reg) && 10196 !is_jmp32) { 10197 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10198 } 10199 10200 if (pred >= 0) { 10201 /* If we get here with a dst_reg pointer type it is because 10202 * above is_branch_taken() special cased the 0 comparison. 10203 */ 10204 if (!__is_pointer_value(false, dst_reg)) 10205 err = mark_chain_precision(env, insn->dst_reg); 10206 if (BPF_SRC(insn->code) == BPF_X && !err && 10207 !__is_pointer_value(false, src_reg)) 10208 err = mark_chain_precision(env, insn->src_reg); 10209 if (err) 10210 return err; 10211 } 10212 10213 if (pred == 1) { 10214 /* Only follow the goto, ignore fall-through. If needed, push 10215 * the fall-through branch for simulation under speculative 10216 * execution. 10217 */ 10218 if (!env->bypass_spec_v1 && 10219 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10220 *insn_idx)) 10221 return -EFAULT; 10222 *insn_idx += insn->off; 10223 return 0; 10224 } else if (pred == 0) { 10225 /* Only follow the fall-through branch, since that's where the 10226 * program will go. If needed, push the goto branch for 10227 * simulation under speculative execution. 10228 */ 10229 if (!env->bypass_spec_v1 && 10230 !sanitize_speculative_path(env, insn, 10231 *insn_idx + insn->off + 1, 10232 *insn_idx)) 10233 return -EFAULT; 10234 return 0; 10235 } 10236 10237 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10238 false); 10239 if (!other_branch) 10240 return -EFAULT; 10241 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10242 10243 /* detect if we are comparing against a constant value so we can adjust 10244 * our min/max values for our dst register. 10245 * this is only legit if both are scalars (or pointers to the same 10246 * object, I suppose, but we don't support that right now), because 10247 * otherwise the different base pointers mean the offsets aren't 10248 * comparable. 10249 */ 10250 if (BPF_SRC(insn->code) == BPF_X) { 10251 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10252 10253 if (dst_reg->type == SCALAR_VALUE && 10254 src_reg->type == SCALAR_VALUE) { 10255 if (tnum_is_const(src_reg->var_off) || 10256 (is_jmp32 && 10257 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10258 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10259 dst_reg, 10260 src_reg->var_off.value, 10261 tnum_subreg(src_reg->var_off).value, 10262 opcode, is_jmp32); 10263 else if (tnum_is_const(dst_reg->var_off) || 10264 (is_jmp32 && 10265 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10266 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10267 src_reg, 10268 dst_reg->var_off.value, 10269 tnum_subreg(dst_reg->var_off).value, 10270 opcode, is_jmp32); 10271 else if (!is_jmp32 && 10272 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10273 /* Comparing for equality, we can combine knowledge */ 10274 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10275 &other_branch_regs[insn->dst_reg], 10276 src_reg, dst_reg, opcode); 10277 if (src_reg->id && 10278 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10279 find_equal_scalars(this_branch, src_reg); 10280 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10281 } 10282 10283 } 10284 } else if (dst_reg->type == SCALAR_VALUE) { 10285 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10286 dst_reg, insn->imm, (u32)insn->imm, 10287 opcode, is_jmp32); 10288 } 10289 10290 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10291 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10292 find_equal_scalars(this_branch, dst_reg); 10293 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10294 } 10295 10296 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10297 * NOTE: these optimizations below are related with pointer comparison 10298 * which will never be JMP32. 10299 */ 10300 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10301 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10302 type_may_be_null(dst_reg->type)) { 10303 /* Mark all identical registers in each branch as either 10304 * safe or unknown depending R == 0 or R != 0 conditional. 10305 */ 10306 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10307 opcode == BPF_JNE); 10308 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10309 opcode == BPF_JEQ); 10310 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10311 this_branch, other_branch) && 10312 is_pointer_value(env, insn->dst_reg)) { 10313 verbose(env, "R%d pointer comparison prohibited\n", 10314 insn->dst_reg); 10315 return -EACCES; 10316 } 10317 if (env->log.level & BPF_LOG_LEVEL) 10318 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10319 return 0; 10320 } 10321 10322 /* verify BPF_LD_IMM64 instruction */ 10323 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10324 { 10325 struct bpf_insn_aux_data *aux = cur_aux(env); 10326 struct bpf_reg_state *regs = cur_regs(env); 10327 struct bpf_reg_state *dst_reg; 10328 struct bpf_map *map; 10329 int err; 10330 10331 if (BPF_SIZE(insn->code) != BPF_DW) { 10332 verbose(env, "invalid BPF_LD_IMM insn\n"); 10333 return -EINVAL; 10334 } 10335 if (insn->off != 0) { 10336 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10337 return -EINVAL; 10338 } 10339 10340 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10341 if (err) 10342 return err; 10343 10344 dst_reg = ®s[insn->dst_reg]; 10345 if (insn->src_reg == 0) { 10346 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10347 10348 dst_reg->type = SCALAR_VALUE; 10349 __mark_reg_known(®s[insn->dst_reg], imm); 10350 return 0; 10351 } 10352 10353 /* All special src_reg cases are listed below. From this point onwards 10354 * we either succeed and assign a corresponding dst_reg->type after 10355 * zeroing the offset, or fail and reject the program. 10356 */ 10357 mark_reg_known_zero(env, regs, insn->dst_reg); 10358 10359 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10360 dst_reg->type = aux->btf_var.reg_type; 10361 switch (base_type(dst_reg->type)) { 10362 case PTR_TO_MEM: 10363 dst_reg->mem_size = aux->btf_var.mem_size; 10364 break; 10365 case PTR_TO_BTF_ID: 10366 dst_reg->btf = aux->btf_var.btf; 10367 dst_reg->btf_id = aux->btf_var.btf_id; 10368 break; 10369 default: 10370 verbose(env, "bpf verifier is misconfigured\n"); 10371 return -EFAULT; 10372 } 10373 return 0; 10374 } 10375 10376 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10377 struct bpf_prog_aux *aux = env->prog->aux; 10378 u32 subprogno = find_subprog(env, 10379 env->insn_idx + insn->imm + 1); 10380 10381 if (!aux->func_info) { 10382 verbose(env, "missing btf func_info\n"); 10383 return -EINVAL; 10384 } 10385 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10386 verbose(env, "callback function not static\n"); 10387 return -EINVAL; 10388 } 10389 10390 dst_reg->type = PTR_TO_FUNC; 10391 dst_reg->subprogno = subprogno; 10392 return 0; 10393 } 10394 10395 map = env->used_maps[aux->map_index]; 10396 dst_reg->map_ptr = map; 10397 10398 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10399 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10400 dst_reg->type = PTR_TO_MAP_VALUE; 10401 dst_reg->off = aux->map_off; 10402 if (map_value_has_spin_lock(map)) 10403 dst_reg->id = ++env->id_gen; 10404 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10405 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10406 dst_reg->type = CONST_PTR_TO_MAP; 10407 } else { 10408 verbose(env, "bpf verifier is misconfigured\n"); 10409 return -EINVAL; 10410 } 10411 10412 return 0; 10413 } 10414 10415 static bool may_access_skb(enum bpf_prog_type type) 10416 { 10417 switch (type) { 10418 case BPF_PROG_TYPE_SOCKET_FILTER: 10419 case BPF_PROG_TYPE_SCHED_CLS: 10420 case BPF_PROG_TYPE_SCHED_ACT: 10421 return true; 10422 default: 10423 return false; 10424 } 10425 } 10426 10427 /* verify safety of LD_ABS|LD_IND instructions: 10428 * - they can only appear in the programs where ctx == skb 10429 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10430 * preserve R6-R9, and store return value into R0 10431 * 10432 * Implicit input: 10433 * ctx == skb == R6 == CTX 10434 * 10435 * Explicit input: 10436 * SRC == any register 10437 * IMM == 32-bit immediate 10438 * 10439 * Output: 10440 * R0 - 8/16/32-bit skb data converted to cpu endianness 10441 */ 10442 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10443 { 10444 struct bpf_reg_state *regs = cur_regs(env); 10445 static const int ctx_reg = BPF_REG_6; 10446 u8 mode = BPF_MODE(insn->code); 10447 int i, err; 10448 10449 if (!may_access_skb(resolve_prog_type(env->prog))) { 10450 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10451 return -EINVAL; 10452 } 10453 10454 if (!env->ops->gen_ld_abs) { 10455 verbose(env, "bpf verifier is misconfigured\n"); 10456 return -EINVAL; 10457 } 10458 10459 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10460 BPF_SIZE(insn->code) == BPF_DW || 10461 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10462 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10463 return -EINVAL; 10464 } 10465 10466 /* check whether implicit source operand (register R6) is readable */ 10467 err = check_reg_arg(env, ctx_reg, SRC_OP); 10468 if (err) 10469 return err; 10470 10471 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10472 * gen_ld_abs() may terminate the program at runtime, leading to 10473 * reference leak. 10474 */ 10475 err = check_reference_leak(env); 10476 if (err) { 10477 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10478 return err; 10479 } 10480 10481 if (env->cur_state->active_spin_lock) { 10482 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10483 return -EINVAL; 10484 } 10485 10486 if (regs[ctx_reg].type != PTR_TO_CTX) { 10487 verbose(env, 10488 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10489 return -EINVAL; 10490 } 10491 10492 if (mode == BPF_IND) { 10493 /* check explicit source operand */ 10494 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10495 if (err) 10496 return err; 10497 } 10498 10499 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10500 if (err < 0) 10501 return err; 10502 10503 /* reset caller saved regs to unreadable */ 10504 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10505 mark_reg_not_init(env, regs, caller_saved[i]); 10506 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10507 } 10508 10509 /* mark destination R0 register as readable, since it contains 10510 * the value fetched from the packet. 10511 * Already marked as written above. 10512 */ 10513 mark_reg_unknown(env, regs, BPF_REG_0); 10514 /* ld_abs load up to 32-bit skb data. */ 10515 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10516 return 0; 10517 } 10518 10519 static int check_return_code(struct bpf_verifier_env *env) 10520 { 10521 struct tnum enforce_attach_type_range = tnum_unknown; 10522 const struct bpf_prog *prog = env->prog; 10523 struct bpf_reg_state *reg; 10524 struct tnum range = tnum_range(0, 1); 10525 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10526 int err; 10527 struct bpf_func_state *frame = env->cur_state->frame[0]; 10528 const bool is_subprog = frame->subprogno; 10529 10530 /* LSM and struct_ops func-ptr's return type could be "void" */ 10531 if (!is_subprog) { 10532 switch (prog_type) { 10533 case BPF_PROG_TYPE_LSM: 10534 if (prog->expected_attach_type == BPF_LSM_CGROUP) 10535 /* See below, can be 0 or 0-1 depending on hook. */ 10536 break; 10537 fallthrough; 10538 case BPF_PROG_TYPE_STRUCT_OPS: 10539 if (!prog->aux->attach_func_proto->type) 10540 return 0; 10541 break; 10542 default: 10543 break; 10544 } 10545 } 10546 10547 /* eBPF calling convention is such that R0 is used 10548 * to return the value from eBPF program. 10549 * Make sure that it's readable at this time 10550 * of bpf_exit, which means that program wrote 10551 * something into it earlier 10552 */ 10553 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10554 if (err) 10555 return err; 10556 10557 if (is_pointer_value(env, BPF_REG_0)) { 10558 verbose(env, "R0 leaks addr as return value\n"); 10559 return -EACCES; 10560 } 10561 10562 reg = cur_regs(env) + BPF_REG_0; 10563 10564 if (frame->in_async_callback_fn) { 10565 /* enforce return zero from async callbacks like timer */ 10566 if (reg->type != SCALAR_VALUE) { 10567 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10568 reg_type_str(env, reg->type)); 10569 return -EINVAL; 10570 } 10571 10572 if (!tnum_in(tnum_const(0), reg->var_off)) { 10573 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10574 return -EINVAL; 10575 } 10576 return 0; 10577 } 10578 10579 if (is_subprog) { 10580 if (reg->type != SCALAR_VALUE) { 10581 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10582 reg_type_str(env, reg->type)); 10583 return -EINVAL; 10584 } 10585 return 0; 10586 } 10587 10588 switch (prog_type) { 10589 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10590 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10591 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10592 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10593 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10594 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10595 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10596 range = tnum_range(1, 1); 10597 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10598 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10599 range = tnum_range(0, 3); 10600 break; 10601 case BPF_PROG_TYPE_CGROUP_SKB: 10602 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10603 range = tnum_range(0, 3); 10604 enforce_attach_type_range = tnum_range(2, 3); 10605 } 10606 break; 10607 case BPF_PROG_TYPE_CGROUP_SOCK: 10608 case BPF_PROG_TYPE_SOCK_OPS: 10609 case BPF_PROG_TYPE_CGROUP_DEVICE: 10610 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10611 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10612 break; 10613 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10614 if (!env->prog->aux->attach_btf_id) 10615 return 0; 10616 range = tnum_const(0); 10617 break; 10618 case BPF_PROG_TYPE_TRACING: 10619 switch (env->prog->expected_attach_type) { 10620 case BPF_TRACE_FENTRY: 10621 case BPF_TRACE_FEXIT: 10622 range = tnum_const(0); 10623 break; 10624 case BPF_TRACE_RAW_TP: 10625 case BPF_MODIFY_RETURN: 10626 return 0; 10627 case BPF_TRACE_ITER: 10628 break; 10629 default: 10630 return -ENOTSUPP; 10631 } 10632 break; 10633 case BPF_PROG_TYPE_SK_LOOKUP: 10634 range = tnum_range(SK_DROP, SK_PASS); 10635 break; 10636 10637 case BPF_PROG_TYPE_LSM: 10638 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 10639 /* Regular BPF_PROG_TYPE_LSM programs can return 10640 * any value. 10641 */ 10642 return 0; 10643 } 10644 if (!env->prog->aux->attach_func_proto->type) { 10645 /* Make sure programs that attach to void 10646 * hooks don't try to modify return value. 10647 */ 10648 range = tnum_range(1, 1); 10649 } 10650 break; 10651 10652 case BPF_PROG_TYPE_EXT: 10653 /* freplace program can return anything as its return value 10654 * depends on the to-be-replaced kernel func or bpf program. 10655 */ 10656 default: 10657 return 0; 10658 } 10659 10660 if (reg->type != SCALAR_VALUE) { 10661 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10662 reg_type_str(env, reg->type)); 10663 return -EINVAL; 10664 } 10665 10666 if (!tnum_in(range, reg->var_off)) { 10667 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10668 if (prog->expected_attach_type == BPF_LSM_CGROUP && 10669 prog_type == BPF_PROG_TYPE_LSM && 10670 !prog->aux->attach_func_proto->type) 10671 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10672 return -EINVAL; 10673 } 10674 10675 if (!tnum_is_unknown(enforce_attach_type_range) && 10676 tnum_in(enforce_attach_type_range, reg->var_off)) 10677 env->prog->enforce_expected_attach_type = 1; 10678 return 0; 10679 } 10680 10681 /* non-recursive DFS pseudo code 10682 * 1 procedure DFS-iterative(G,v): 10683 * 2 label v as discovered 10684 * 3 let S be a stack 10685 * 4 S.push(v) 10686 * 5 while S is not empty 10687 * 6 t <- S.pop() 10688 * 7 if t is what we're looking for: 10689 * 8 return t 10690 * 9 for all edges e in G.adjacentEdges(t) do 10691 * 10 if edge e is already labelled 10692 * 11 continue with the next edge 10693 * 12 w <- G.adjacentVertex(t,e) 10694 * 13 if vertex w is not discovered and not explored 10695 * 14 label e as tree-edge 10696 * 15 label w as discovered 10697 * 16 S.push(w) 10698 * 17 continue at 5 10699 * 18 else if vertex w is discovered 10700 * 19 label e as back-edge 10701 * 20 else 10702 * 21 // vertex w is explored 10703 * 22 label e as forward- or cross-edge 10704 * 23 label t as explored 10705 * 24 S.pop() 10706 * 10707 * convention: 10708 * 0x10 - discovered 10709 * 0x11 - discovered and fall-through edge labelled 10710 * 0x12 - discovered and fall-through and branch edges labelled 10711 * 0x20 - explored 10712 */ 10713 10714 enum { 10715 DISCOVERED = 0x10, 10716 EXPLORED = 0x20, 10717 FALLTHROUGH = 1, 10718 BRANCH = 2, 10719 }; 10720 10721 static u32 state_htab_size(struct bpf_verifier_env *env) 10722 { 10723 return env->prog->len; 10724 } 10725 10726 static struct bpf_verifier_state_list **explored_state( 10727 struct bpf_verifier_env *env, 10728 int idx) 10729 { 10730 struct bpf_verifier_state *cur = env->cur_state; 10731 struct bpf_func_state *state = cur->frame[cur->curframe]; 10732 10733 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10734 } 10735 10736 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10737 { 10738 env->insn_aux_data[idx].prune_point = true; 10739 } 10740 10741 enum { 10742 DONE_EXPLORING = 0, 10743 KEEP_EXPLORING = 1, 10744 }; 10745 10746 /* t, w, e - match pseudo-code above: 10747 * t - index of current instruction 10748 * w - next instruction 10749 * e - edge 10750 */ 10751 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10752 bool loop_ok) 10753 { 10754 int *insn_stack = env->cfg.insn_stack; 10755 int *insn_state = env->cfg.insn_state; 10756 10757 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10758 return DONE_EXPLORING; 10759 10760 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10761 return DONE_EXPLORING; 10762 10763 if (w < 0 || w >= env->prog->len) { 10764 verbose_linfo(env, t, "%d: ", t); 10765 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10766 return -EINVAL; 10767 } 10768 10769 if (e == BRANCH) 10770 /* mark branch target for state pruning */ 10771 init_explored_state(env, w); 10772 10773 if (insn_state[w] == 0) { 10774 /* tree-edge */ 10775 insn_state[t] = DISCOVERED | e; 10776 insn_state[w] = DISCOVERED; 10777 if (env->cfg.cur_stack >= env->prog->len) 10778 return -E2BIG; 10779 insn_stack[env->cfg.cur_stack++] = w; 10780 return KEEP_EXPLORING; 10781 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10782 if (loop_ok && env->bpf_capable) 10783 return DONE_EXPLORING; 10784 verbose_linfo(env, t, "%d: ", t); 10785 verbose_linfo(env, w, "%d: ", w); 10786 verbose(env, "back-edge from insn %d to %d\n", t, w); 10787 return -EINVAL; 10788 } else if (insn_state[w] == EXPLORED) { 10789 /* forward- or cross-edge */ 10790 insn_state[t] = DISCOVERED | e; 10791 } else { 10792 verbose(env, "insn state internal bug\n"); 10793 return -EFAULT; 10794 } 10795 return DONE_EXPLORING; 10796 } 10797 10798 static int visit_func_call_insn(int t, int insn_cnt, 10799 struct bpf_insn *insns, 10800 struct bpf_verifier_env *env, 10801 bool visit_callee) 10802 { 10803 int ret; 10804 10805 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10806 if (ret) 10807 return ret; 10808 10809 if (t + 1 < insn_cnt) 10810 init_explored_state(env, t + 1); 10811 if (visit_callee) { 10812 init_explored_state(env, t); 10813 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10814 /* It's ok to allow recursion from CFG point of 10815 * view. __check_func_call() will do the actual 10816 * check. 10817 */ 10818 bpf_pseudo_func(insns + t)); 10819 } 10820 return ret; 10821 } 10822 10823 /* Visits the instruction at index t and returns one of the following: 10824 * < 0 - an error occurred 10825 * DONE_EXPLORING - the instruction was fully explored 10826 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10827 */ 10828 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10829 { 10830 struct bpf_insn *insns = env->prog->insnsi; 10831 int ret; 10832 10833 if (bpf_pseudo_func(insns + t)) 10834 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10835 10836 /* All non-branch instructions have a single fall-through edge. */ 10837 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10838 BPF_CLASS(insns[t].code) != BPF_JMP32) 10839 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10840 10841 switch (BPF_OP(insns[t].code)) { 10842 case BPF_EXIT: 10843 return DONE_EXPLORING; 10844 10845 case BPF_CALL: 10846 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10847 /* Mark this call insn to trigger is_state_visited() check 10848 * before call itself is processed by __check_func_call(). 10849 * Otherwise new async state will be pushed for further 10850 * exploration. 10851 */ 10852 init_explored_state(env, t); 10853 return visit_func_call_insn(t, insn_cnt, insns, env, 10854 insns[t].src_reg == BPF_PSEUDO_CALL); 10855 10856 case BPF_JA: 10857 if (BPF_SRC(insns[t].code) != BPF_K) 10858 return -EINVAL; 10859 10860 /* unconditional jump with single edge */ 10861 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10862 true); 10863 if (ret) 10864 return ret; 10865 10866 /* unconditional jmp is not a good pruning point, 10867 * but it's marked, since backtracking needs 10868 * to record jmp history in is_state_visited(). 10869 */ 10870 init_explored_state(env, t + insns[t].off + 1); 10871 /* tell verifier to check for equivalent states 10872 * after every call and jump 10873 */ 10874 if (t + 1 < insn_cnt) 10875 init_explored_state(env, t + 1); 10876 10877 return ret; 10878 10879 default: 10880 /* conditional jump with two edges */ 10881 init_explored_state(env, t); 10882 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10883 if (ret) 10884 return ret; 10885 10886 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10887 } 10888 } 10889 10890 /* non-recursive depth-first-search to detect loops in BPF program 10891 * loop == back-edge in directed graph 10892 */ 10893 static int check_cfg(struct bpf_verifier_env *env) 10894 { 10895 int insn_cnt = env->prog->len; 10896 int *insn_stack, *insn_state; 10897 int ret = 0; 10898 int i; 10899 10900 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10901 if (!insn_state) 10902 return -ENOMEM; 10903 10904 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10905 if (!insn_stack) { 10906 kvfree(insn_state); 10907 return -ENOMEM; 10908 } 10909 10910 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10911 insn_stack[0] = 0; /* 0 is the first instruction */ 10912 env->cfg.cur_stack = 1; 10913 10914 while (env->cfg.cur_stack > 0) { 10915 int t = insn_stack[env->cfg.cur_stack - 1]; 10916 10917 ret = visit_insn(t, insn_cnt, env); 10918 switch (ret) { 10919 case DONE_EXPLORING: 10920 insn_state[t] = EXPLORED; 10921 env->cfg.cur_stack--; 10922 break; 10923 case KEEP_EXPLORING: 10924 break; 10925 default: 10926 if (ret > 0) { 10927 verbose(env, "visit_insn internal bug\n"); 10928 ret = -EFAULT; 10929 } 10930 goto err_free; 10931 } 10932 } 10933 10934 if (env->cfg.cur_stack < 0) { 10935 verbose(env, "pop stack internal bug\n"); 10936 ret = -EFAULT; 10937 goto err_free; 10938 } 10939 10940 for (i = 0; i < insn_cnt; i++) { 10941 if (insn_state[i] != EXPLORED) { 10942 verbose(env, "unreachable insn %d\n", i); 10943 ret = -EINVAL; 10944 goto err_free; 10945 } 10946 } 10947 ret = 0; /* cfg looks good */ 10948 10949 err_free: 10950 kvfree(insn_state); 10951 kvfree(insn_stack); 10952 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10953 return ret; 10954 } 10955 10956 static int check_abnormal_return(struct bpf_verifier_env *env) 10957 { 10958 int i; 10959 10960 for (i = 1; i < env->subprog_cnt; i++) { 10961 if (env->subprog_info[i].has_ld_abs) { 10962 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10963 return -EINVAL; 10964 } 10965 if (env->subprog_info[i].has_tail_call) { 10966 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10967 return -EINVAL; 10968 } 10969 } 10970 return 0; 10971 } 10972 10973 /* The minimum supported BTF func info size */ 10974 #define MIN_BPF_FUNCINFO_SIZE 8 10975 #define MAX_FUNCINFO_REC_SIZE 252 10976 10977 static int check_btf_func(struct bpf_verifier_env *env, 10978 const union bpf_attr *attr, 10979 bpfptr_t uattr) 10980 { 10981 const struct btf_type *type, *func_proto, *ret_type; 10982 u32 i, nfuncs, urec_size, min_size; 10983 u32 krec_size = sizeof(struct bpf_func_info); 10984 struct bpf_func_info *krecord; 10985 struct bpf_func_info_aux *info_aux = NULL; 10986 struct bpf_prog *prog; 10987 const struct btf *btf; 10988 bpfptr_t urecord; 10989 u32 prev_offset = 0; 10990 bool scalar_return; 10991 int ret = -ENOMEM; 10992 10993 nfuncs = attr->func_info_cnt; 10994 if (!nfuncs) { 10995 if (check_abnormal_return(env)) 10996 return -EINVAL; 10997 return 0; 10998 } 10999 11000 if (nfuncs != env->subprog_cnt) { 11001 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 11002 return -EINVAL; 11003 } 11004 11005 urec_size = attr->func_info_rec_size; 11006 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 11007 urec_size > MAX_FUNCINFO_REC_SIZE || 11008 urec_size % sizeof(u32)) { 11009 verbose(env, "invalid func info rec size %u\n", urec_size); 11010 return -EINVAL; 11011 } 11012 11013 prog = env->prog; 11014 btf = prog->aux->btf; 11015 11016 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 11017 min_size = min_t(u32, krec_size, urec_size); 11018 11019 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 11020 if (!krecord) 11021 return -ENOMEM; 11022 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 11023 if (!info_aux) 11024 goto err_free; 11025 11026 for (i = 0; i < nfuncs; i++) { 11027 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 11028 if (ret) { 11029 if (ret == -E2BIG) { 11030 verbose(env, "nonzero tailing record in func info"); 11031 /* set the size kernel expects so loader can zero 11032 * out the rest of the record. 11033 */ 11034 if (copy_to_bpfptr_offset(uattr, 11035 offsetof(union bpf_attr, func_info_rec_size), 11036 &min_size, sizeof(min_size))) 11037 ret = -EFAULT; 11038 } 11039 goto err_free; 11040 } 11041 11042 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 11043 ret = -EFAULT; 11044 goto err_free; 11045 } 11046 11047 /* check insn_off */ 11048 ret = -EINVAL; 11049 if (i == 0) { 11050 if (krecord[i].insn_off) { 11051 verbose(env, 11052 "nonzero insn_off %u for the first func info record", 11053 krecord[i].insn_off); 11054 goto err_free; 11055 } 11056 } else if (krecord[i].insn_off <= prev_offset) { 11057 verbose(env, 11058 "same or smaller insn offset (%u) than previous func info record (%u)", 11059 krecord[i].insn_off, prev_offset); 11060 goto err_free; 11061 } 11062 11063 if (env->subprog_info[i].start != krecord[i].insn_off) { 11064 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 11065 goto err_free; 11066 } 11067 11068 /* check type_id */ 11069 type = btf_type_by_id(btf, krecord[i].type_id); 11070 if (!type || !btf_type_is_func(type)) { 11071 verbose(env, "invalid type id %d in func info", 11072 krecord[i].type_id); 11073 goto err_free; 11074 } 11075 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 11076 11077 func_proto = btf_type_by_id(btf, type->type); 11078 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 11079 /* btf_func_check() already verified it during BTF load */ 11080 goto err_free; 11081 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 11082 scalar_return = 11083 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 11084 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 11085 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 11086 goto err_free; 11087 } 11088 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 11089 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 11090 goto err_free; 11091 } 11092 11093 prev_offset = krecord[i].insn_off; 11094 bpfptr_add(&urecord, urec_size); 11095 } 11096 11097 prog->aux->func_info = krecord; 11098 prog->aux->func_info_cnt = nfuncs; 11099 prog->aux->func_info_aux = info_aux; 11100 return 0; 11101 11102 err_free: 11103 kvfree(krecord); 11104 kfree(info_aux); 11105 return ret; 11106 } 11107 11108 static void adjust_btf_func(struct bpf_verifier_env *env) 11109 { 11110 struct bpf_prog_aux *aux = env->prog->aux; 11111 int i; 11112 11113 if (!aux->func_info) 11114 return; 11115 11116 for (i = 0; i < env->subprog_cnt; i++) 11117 aux->func_info[i].insn_off = env->subprog_info[i].start; 11118 } 11119 11120 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 11121 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 11122 11123 static int check_btf_line(struct bpf_verifier_env *env, 11124 const union bpf_attr *attr, 11125 bpfptr_t uattr) 11126 { 11127 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 11128 struct bpf_subprog_info *sub; 11129 struct bpf_line_info *linfo; 11130 struct bpf_prog *prog; 11131 const struct btf *btf; 11132 bpfptr_t ulinfo; 11133 int err; 11134 11135 nr_linfo = attr->line_info_cnt; 11136 if (!nr_linfo) 11137 return 0; 11138 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 11139 return -EINVAL; 11140 11141 rec_size = attr->line_info_rec_size; 11142 if (rec_size < MIN_BPF_LINEINFO_SIZE || 11143 rec_size > MAX_LINEINFO_REC_SIZE || 11144 rec_size & (sizeof(u32) - 1)) 11145 return -EINVAL; 11146 11147 /* Need to zero it in case the userspace may 11148 * pass in a smaller bpf_line_info object. 11149 */ 11150 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 11151 GFP_KERNEL | __GFP_NOWARN); 11152 if (!linfo) 11153 return -ENOMEM; 11154 11155 prog = env->prog; 11156 btf = prog->aux->btf; 11157 11158 s = 0; 11159 sub = env->subprog_info; 11160 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 11161 expected_size = sizeof(struct bpf_line_info); 11162 ncopy = min_t(u32, expected_size, rec_size); 11163 for (i = 0; i < nr_linfo; i++) { 11164 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 11165 if (err) { 11166 if (err == -E2BIG) { 11167 verbose(env, "nonzero tailing record in line_info"); 11168 if (copy_to_bpfptr_offset(uattr, 11169 offsetof(union bpf_attr, line_info_rec_size), 11170 &expected_size, sizeof(expected_size))) 11171 err = -EFAULT; 11172 } 11173 goto err_free; 11174 } 11175 11176 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 11177 err = -EFAULT; 11178 goto err_free; 11179 } 11180 11181 /* 11182 * Check insn_off to ensure 11183 * 1) strictly increasing AND 11184 * 2) bounded by prog->len 11185 * 11186 * The linfo[0].insn_off == 0 check logically falls into 11187 * the later "missing bpf_line_info for func..." case 11188 * because the first linfo[0].insn_off must be the 11189 * first sub also and the first sub must have 11190 * subprog_info[0].start == 0. 11191 */ 11192 if ((i && linfo[i].insn_off <= prev_offset) || 11193 linfo[i].insn_off >= prog->len) { 11194 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 11195 i, linfo[i].insn_off, prev_offset, 11196 prog->len); 11197 err = -EINVAL; 11198 goto err_free; 11199 } 11200 11201 if (!prog->insnsi[linfo[i].insn_off].code) { 11202 verbose(env, 11203 "Invalid insn code at line_info[%u].insn_off\n", 11204 i); 11205 err = -EINVAL; 11206 goto err_free; 11207 } 11208 11209 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11210 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11211 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11212 err = -EINVAL; 11213 goto err_free; 11214 } 11215 11216 if (s != env->subprog_cnt) { 11217 if (linfo[i].insn_off == sub[s].start) { 11218 sub[s].linfo_idx = i; 11219 s++; 11220 } else if (sub[s].start < linfo[i].insn_off) { 11221 verbose(env, "missing bpf_line_info for func#%u\n", s); 11222 err = -EINVAL; 11223 goto err_free; 11224 } 11225 } 11226 11227 prev_offset = linfo[i].insn_off; 11228 bpfptr_add(&ulinfo, rec_size); 11229 } 11230 11231 if (s != env->subprog_cnt) { 11232 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11233 env->subprog_cnt - s, s); 11234 err = -EINVAL; 11235 goto err_free; 11236 } 11237 11238 prog->aux->linfo = linfo; 11239 prog->aux->nr_linfo = nr_linfo; 11240 11241 return 0; 11242 11243 err_free: 11244 kvfree(linfo); 11245 return err; 11246 } 11247 11248 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11249 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11250 11251 static int check_core_relo(struct bpf_verifier_env *env, 11252 const union bpf_attr *attr, 11253 bpfptr_t uattr) 11254 { 11255 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11256 struct bpf_core_relo core_relo = {}; 11257 struct bpf_prog *prog = env->prog; 11258 const struct btf *btf = prog->aux->btf; 11259 struct bpf_core_ctx ctx = { 11260 .log = &env->log, 11261 .btf = btf, 11262 }; 11263 bpfptr_t u_core_relo; 11264 int err; 11265 11266 nr_core_relo = attr->core_relo_cnt; 11267 if (!nr_core_relo) 11268 return 0; 11269 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11270 return -EINVAL; 11271 11272 rec_size = attr->core_relo_rec_size; 11273 if (rec_size < MIN_CORE_RELO_SIZE || 11274 rec_size > MAX_CORE_RELO_SIZE || 11275 rec_size % sizeof(u32)) 11276 return -EINVAL; 11277 11278 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11279 expected_size = sizeof(struct bpf_core_relo); 11280 ncopy = min_t(u32, expected_size, rec_size); 11281 11282 /* Unlike func_info and line_info, copy and apply each CO-RE 11283 * relocation record one at a time. 11284 */ 11285 for (i = 0; i < nr_core_relo; i++) { 11286 /* future proofing when sizeof(bpf_core_relo) changes */ 11287 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11288 if (err) { 11289 if (err == -E2BIG) { 11290 verbose(env, "nonzero tailing record in core_relo"); 11291 if (copy_to_bpfptr_offset(uattr, 11292 offsetof(union bpf_attr, core_relo_rec_size), 11293 &expected_size, sizeof(expected_size))) 11294 err = -EFAULT; 11295 } 11296 break; 11297 } 11298 11299 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11300 err = -EFAULT; 11301 break; 11302 } 11303 11304 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11305 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11306 i, core_relo.insn_off, prog->len); 11307 err = -EINVAL; 11308 break; 11309 } 11310 11311 err = bpf_core_apply(&ctx, &core_relo, i, 11312 &prog->insnsi[core_relo.insn_off / 8]); 11313 if (err) 11314 break; 11315 bpfptr_add(&u_core_relo, rec_size); 11316 } 11317 return err; 11318 } 11319 11320 static int check_btf_info(struct bpf_verifier_env *env, 11321 const union bpf_attr *attr, 11322 bpfptr_t uattr) 11323 { 11324 struct btf *btf; 11325 int err; 11326 11327 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11328 if (check_abnormal_return(env)) 11329 return -EINVAL; 11330 return 0; 11331 } 11332 11333 btf = btf_get_by_fd(attr->prog_btf_fd); 11334 if (IS_ERR(btf)) 11335 return PTR_ERR(btf); 11336 if (btf_is_kernel(btf)) { 11337 btf_put(btf); 11338 return -EACCES; 11339 } 11340 env->prog->aux->btf = btf; 11341 11342 err = check_btf_func(env, attr, uattr); 11343 if (err) 11344 return err; 11345 11346 err = check_btf_line(env, attr, uattr); 11347 if (err) 11348 return err; 11349 11350 err = check_core_relo(env, attr, uattr); 11351 if (err) 11352 return err; 11353 11354 return 0; 11355 } 11356 11357 /* check %cur's range satisfies %old's */ 11358 static bool range_within(struct bpf_reg_state *old, 11359 struct bpf_reg_state *cur) 11360 { 11361 return old->umin_value <= cur->umin_value && 11362 old->umax_value >= cur->umax_value && 11363 old->smin_value <= cur->smin_value && 11364 old->smax_value >= cur->smax_value && 11365 old->u32_min_value <= cur->u32_min_value && 11366 old->u32_max_value >= cur->u32_max_value && 11367 old->s32_min_value <= cur->s32_min_value && 11368 old->s32_max_value >= cur->s32_max_value; 11369 } 11370 11371 /* If in the old state two registers had the same id, then they need to have 11372 * the same id in the new state as well. But that id could be different from 11373 * the old state, so we need to track the mapping from old to new ids. 11374 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11375 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11376 * regs with a different old id could still have new id 9, we don't care about 11377 * that. 11378 * So we look through our idmap to see if this old id has been seen before. If 11379 * so, we require the new id to match; otherwise, we add the id pair to the map. 11380 */ 11381 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11382 { 11383 unsigned int i; 11384 11385 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11386 if (!idmap[i].old) { 11387 /* Reached an empty slot; haven't seen this id before */ 11388 idmap[i].old = old_id; 11389 idmap[i].cur = cur_id; 11390 return true; 11391 } 11392 if (idmap[i].old == old_id) 11393 return idmap[i].cur == cur_id; 11394 } 11395 /* We ran out of idmap slots, which should be impossible */ 11396 WARN_ON_ONCE(1); 11397 return false; 11398 } 11399 11400 static void clean_func_state(struct bpf_verifier_env *env, 11401 struct bpf_func_state *st) 11402 { 11403 enum bpf_reg_liveness live; 11404 int i, j; 11405 11406 for (i = 0; i < BPF_REG_FP; i++) { 11407 live = st->regs[i].live; 11408 /* liveness must not touch this register anymore */ 11409 st->regs[i].live |= REG_LIVE_DONE; 11410 if (!(live & REG_LIVE_READ)) 11411 /* since the register is unused, clear its state 11412 * to make further comparison simpler 11413 */ 11414 __mark_reg_not_init(env, &st->regs[i]); 11415 } 11416 11417 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11418 live = st->stack[i].spilled_ptr.live; 11419 /* liveness must not touch this stack slot anymore */ 11420 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11421 if (!(live & REG_LIVE_READ)) { 11422 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11423 for (j = 0; j < BPF_REG_SIZE; j++) 11424 st->stack[i].slot_type[j] = STACK_INVALID; 11425 } 11426 } 11427 } 11428 11429 static void clean_verifier_state(struct bpf_verifier_env *env, 11430 struct bpf_verifier_state *st) 11431 { 11432 int i; 11433 11434 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11435 /* all regs in this state in all frames were already marked */ 11436 return; 11437 11438 for (i = 0; i <= st->curframe; i++) 11439 clean_func_state(env, st->frame[i]); 11440 } 11441 11442 /* the parentage chains form a tree. 11443 * the verifier states are added to state lists at given insn and 11444 * pushed into state stack for future exploration. 11445 * when the verifier reaches bpf_exit insn some of the verifer states 11446 * stored in the state lists have their final liveness state already, 11447 * but a lot of states will get revised from liveness point of view when 11448 * the verifier explores other branches. 11449 * Example: 11450 * 1: r0 = 1 11451 * 2: if r1 == 100 goto pc+1 11452 * 3: r0 = 2 11453 * 4: exit 11454 * when the verifier reaches exit insn the register r0 in the state list of 11455 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11456 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11457 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11458 * 11459 * Since the verifier pushes the branch states as it sees them while exploring 11460 * the program the condition of walking the branch instruction for the second 11461 * time means that all states below this branch were already explored and 11462 * their final liveness marks are already propagated. 11463 * Hence when the verifier completes the search of state list in is_state_visited() 11464 * we can call this clean_live_states() function to mark all liveness states 11465 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11466 * will not be used. 11467 * This function also clears the registers and stack for states that !READ 11468 * to simplify state merging. 11469 * 11470 * Important note here that walking the same branch instruction in the callee 11471 * doesn't meant that the states are DONE. The verifier has to compare 11472 * the callsites 11473 */ 11474 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11475 struct bpf_verifier_state *cur) 11476 { 11477 struct bpf_verifier_state_list *sl; 11478 int i; 11479 11480 sl = *explored_state(env, insn); 11481 while (sl) { 11482 if (sl->state.branches) 11483 goto next; 11484 if (sl->state.insn_idx != insn || 11485 sl->state.curframe != cur->curframe) 11486 goto next; 11487 for (i = 0; i <= cur->curframe; i++) 11488 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11489 goto next; 11490 clean_verifier_state(env, &sl->state); 11491 next: 11492 sl = sl->next; 11493 } 11494 } 11495 11496 /* Returns true if (rold safe implies rcur safe) */ 11497 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11498 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11499 { 11500 bool equal; 11501 11502 if (!(rold->live & REG_LIVE_READ)) 11503 /* explored state didn't use this */ 11504 return true; 11505 11506 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11507 11508 if (rold->type == PTR_TO_STACK) 11509 /* two stack pointers are equal only if they're pointing to 11510 * the same stack frame, since fp-8 in foo != fp-8 in bar 11511 */ 11512 return equal && rold->frameno == rcur->frameno; 11513 11514 if (equal) 11515 return true; 11516 11517 if (rold->type == NOT_INIT) 11518 /* explored state can't have used this */ 11519 return true; 11520 if (rcur->type == NOT_INIT) 11521 return false; 11522 switch (base_type(rold->type)) { 11523 case SCALAR_VALUE: 11524 if (env->explore_alu_limits) 11525 return false; 11526 if (rcur->type == SCALAR_VALUE) { 11527 if (!rold->precise && !rcur->precise) 11528 return true; 11529 /* new val must satisfy old val knowledge */ 11530 return range_within(rold, rcur) && 11531 tnum_in(rold->var_off, rcur->var_off); 11532 } else { 11533 /* We're trying to use a pointer in place of a scalar. 11534 * Even if the scalar was unbounded, this could lead to 11535 * pointer leaks because scalars are allowed to leak 11536 * while pointers are not. We could make this safe in 11537 * special cases if root is calling us, but it's 11538 * probably not worth the hassle. 11539 */ 11540 return false; 11541 } 11542 case PTR_TO_MAP_KEY: 11543 case PTR_TO_MAP_VALUE: 11544 /* a PTR_TO_MAP_VALUE could be safe to use as a 11545 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11546 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11547 * checked, doing so could have affected others with the same 11548 * id, and we can't check for that because we lost the id when 11549 * we converted to a PTR_TO_MAP_VALUE. 11550 */ 11551 if (type_may_be_null(rold->type)) { 11552 if (!type_may_be_null(rcur->type)) 11553 return false; 11554 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11555 return false; 11556 /* Check our ids match any regs they're supposed to */ 11557 return check_ids(rold->id, rcur->id, idmap); 11558 } 11559 11560 /* If the new min/max/var_off satisfy the old ones and 11561 * everything else matches, we are OK. 11562 * 'id' is not compared, since it's only used for maps with 11563 * bpf_spin_lock inside map element and in such cases if 11564 * the rest of the prog is valid for one map element then 11565 * it's valid for all map elements regardless of the key 11566 * used in bpf_map_lookup() 11567 */ 11568 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11569 range_within(rold, rcur) && 11570 tnum_in(rold->var_off, rcur->var_off); 11571 case PTR_TO_PACKET_META: 11572 case PTR_TO_PACKET: 11573 if (rcur->type != rold->type) 11574 return false; 11575 /* We must have at least as much range as the old ptr 11576 * did, so that any accesses which were safe before are 11577 * still safe. This is true even if old range < old off, 11578 * since someone could have accessed through (ptr - k), or 11579 * even done ptr -= k in a register, to get a safe access. 11580 */ 11581 if (rold->range > rcur->range) 11582 return false; 11583 /* If the offsets don't match, we can't trust our alignment; 11584 * nor can we be sure that we won't fall out of range. 11585 */ 11586 if (rold->off != rcur->off) 11587 return false; 11588 /* id relations must be preserved */ 11589 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11590 return false; 11591 /* new val must satisfy old val knowledge */ 11592 return range_within(rold, rcur) && 11593 tnum_in(rold->var_off, rcur->var_off); 11594 case PTR_TO_CTX: 11595 case CONST_PTR_TO_MAP: 11596 case PTR_TO_PACKET_END: 11597 case PTR_TO_FLOW_KEYS: 11598 case PTR_TO_SOCKET: 11599 case PTR_TO_SOCK_COMMON: 11600 case PTR_TO_TCP_SOCK: 11601 case PTR_TO_XDP_SOCK: 11602 /* Only valid matches are exact, which memcmp() above 11603 * would have accepted 11604 */ 11605 default: 11606 /* Don't know what's going on, just say it's not safe */ 11607 return false; 11608 } 11609 11610 /* Shouldn't get here; if we do, say it's not safe */ 11611 WARN_ON_ONCE(1); 11612 return false; 11613 } 11614 11615 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11616 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11617 { 11618 int i, spi; 11619 11620 /* walk slots of the explored stack and ignore any additional 11621 * slots in the current stack, since explored(safe) state 11622 * didn't use them 11623 */ 11624 for (i = 0; i < old->allocated_stack; i++) { 11625 spi = i / BPF_REG_SIZE; 11626 11627 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11628 i += BPF_REG_SIZE - 1; 11629 /* explored state didn't use this */ 11630 continue; 11631 } 11632 11633 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11634 continue; 11635 11636 /* explored stack has more populated slots than current stack 11637 * and these slots were used 11638 */ 11639 if (i >= cur->allocated_stack) 11640 return false; 11641 11642 /* if old state was safe with misc data in the stack 11643 * it will be safe with zero-initialized stack. 11644 * The opposite is not true 11645 */ 11646 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11647 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11648 continue; 11649 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11650 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11651 /* Ex: old explored (safe) state has STACK_SPILL in 11652 * this stack slot, but current has STACK_MISC -> 11653 * this verifier states are not equivalent, 11654 * return false to continue verification of this path 11655 */ 11656 return false; 11657 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11658 continue; 11659 if (!is_spilled_reg(&old->stack[spi])) 11660 continue; 11661 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11662 &cur->stack[spi].spilled_ptr, idmap)) 11663 /* when explored and current stack slot are both storing 11664 * spilled registers, check that stored pointers types 11665 * are the same as well. 11666 * Ex: explored safe path could have stored 11667 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11668 * but current path has stored: 11669 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11670 * such verifier states are not equivalent. 11671 * return false to continue verification of this path 11672 */ 11673 return false; 11674 } 11675 return true; 11676 } 11677 11678 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11679 { 11680 if (old->acquired_refs != cur->acquired_refs) 11681 return false; 11682 return !memcmp(old->refs, cur->refs, 11683 sizeof(*old->refs) * old->acquired_refs); 11684 } 11685 11686 /* compare two verifier states 11687 * 11688 * all states stored in state_list are known to be valid, since 11689 * verifier reached 'bpf_exit' instruction through them 11690 * 11691 * this function is called when verifier exploring different branches of 11692 * execution popped from the state stack. If it sees an old state that has 11693 * more strict register state and more strict stack state then this execution 11694 * branch doesn't need to be explored further, since verifier already 11695 * concluded that more strict state leads to valid finish. 11696 * 11697 * Therefore two states are equivalent if register state is more conservative 11698 * and explored stack state is more conservative than the current one. 11699 * Example: 11700 * explored current 11701 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11702 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11703 * 11704 * In other words if current stack state (one being explored) has more 11705 * valid slots than old one that already passed validation, it means 11706 * the verifier can stop exploring and conclude that current state is valid too 11707 * 11708 * Similarly with registers. If explored state has register type as invalid 11709 * whereas register type in current state is meaningful, it means that 11710 * the current state will reach 'bpf_exit' instruction safely 11711 */ 11712 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11713 struct bpf_func_state *cur) 11714 { 11715 int i; 11716 11717 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11718 for (i = 0; i < MAX_BPF_REG; i++) 11719 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11720 env->idmap_scratch)) 11721 return false; 11722 11723 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11724 return false; 11725 11726 if (!refsafe(old, cur)) 11727 return false; 11728 11729 return true; 11730 } 11731 11732 static bool states_equal(struct bpf_verifier_env *env, 11733 struct bpf_verifier_state *old, 11734 struct bpf_verifier_state *cur) 11735 { 11736 int i; 11737 11738 if (old->curframe != cur->curframe) 11739 return false; 11740 11741 /* Verification state from speculative execution simulation 11742 * must never prune a non-speculative execution one. 11743 */ 11744 if (old->speculative && !cur->speculative) 11745 return false; 11746 11747 if (old->active_spin_lock != cur->active_spin_lock) 11748 return false; 11749 11750 /* for states to be equal callsites have to be the same 11751 * and all frame states need to be equivalent 11752 */ 11753 for (i = 0; i <= old->curframe; i++) { 11754 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11755 return false; 11756 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11757 return false; 11758 } 11759 return true; 11760 } 11761 11762 /* Return 0 if no propagation happened. Return negative error code if error 11763 * happened. Otherwise, return the propagated bit. 11764 */ 11765 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11766 struct bpf_reg_state *reg, 11767 struct bpf_reg_state *parent_reg) 11768 { 11769 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11770 u8 flag = reg->live & REG_LIVE_READ; 11771 int err; 11772 11773 /* When comes here, read flags of PARENT_REG or REG could be any of 11774 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11775 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11776 */ 11777 if (parent_flag == REG_LIVE_READ64 || 11778 /* Or if there is no read flag from REG. */ 11779 !flag || 11780 /* Or if the read flag from REG is the same as PARENT_REG. */ 11781 parent_flag == flag) 11782 return 0; 11783 11784 err = mark_reg_read(env, reg, parent_reg, flag); 11785 if (err) 11786 return err; 11787 11788 return flag; 11789 } 11790 11791 /* A write screens off any subsequent reads; but write marks come from the 11792 * straight-line code between a state and its parent. When we arrive at an 11793 * equivalent state (jump target or such) we didn't arrive by the straight-line 11794 * code, so read marks in the state must propagate to the parent regardless 11795 * of the state's write marks. That's what 'parent == state->parent' comparison 11796 * in mark_reg_read() is for. 11797 */ 11798 static int propagate_liveness(struct bpf_verifier_env *env, 11799 const struct bpf_verifier_state *vstate, 11800 struct bpf_verifier_state *vparent) 11801 { 11802 struct bpf_reg_state *state_reg, *parent_reg; 11803 struct bpf_func_state *state, *parent; 11804 int i, frame, err = 0; 11805 11806 if (vparent->curframe != vstate->curframe) { 11807 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11808 vparent->curframe, vstate->curframe); 11809 return -EFAULT; 11810 } 11811 /* Propagate read liveness of registers... */ 11812 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11813 for (frame = 0; frame <= vstate->curframe; frame++) { 11814 parent = vparent->frame[frame]; 11815 state = vstate->frame[frame]; 11816 parent_reg = parent->regs; 11817 state_reg = state->regs; 11818 /* We don't need to worry about FP liveness, it's read-only */ 11819 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11820 err = propagate_liveness_reg(env, &state_reg[i], 11821 &parent_reg[i]); 11822 if (err < 0) 11823 return err; 11824 if (err == REG_LIVE_READ64) 11825 mark_insn_zext(env, &parent_reg[i]); 11826 } 11827 11828 /* Propagate stack slots. */ 11829 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11830 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11831 parent_reg = &parent->stack[i].spilled_ptr; 11832 state_reg = &state->stack[i].spilled_ptr; 11833 err = propagate_liveness_reg(env, state_reg, 11834 parent_reg); 11835 if (err < 0) 11836 return err; 11837 } 11838 } 11839 return 0; 11840 } 11841 11842 /* find precise scalars in the previous equivalent state and 11843 * propagate them into the current state 11844 */ 11845 static int propagate_precision(struct bpf_verifier_env *env, 11846 const struct bpf_verifier_state *old) 11847 { 11848 struct bpf_reg_state *state_reg; 11849 struct bpf_func_state *state; 11850 int i, err = 0; 11851 11852 state = old->frame[old->curframe]; 11853 state_reg = state->regs; 11854 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11855 if (state_reg->type != SCALAR_VALUE || 11856 !state_reg->precise) 11857 continue; 11858 if (env->log.level & BPF_LOG_LEVEL2) 11859 verbose(env, "propagating r%d\n", i); 11860 err = mark_chain_precision(env, i); 11861 if (err < 0) 11862 return err; 11863 } 11864 11865 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11866 if (!is_spilled_reg(&state->stack[i])) 11867 continue; 11868 state_reg = &state->stack[i].spilled_ptr; 11869 if (state_reg->type != SCALAR_VALUE || 11870 !state_reg->precise) 11871 continue; 11872 if (env->log.level & BPF_LOG_LEVEL2) 11873 verbose(env, "propagating fp%d\n", 11874 (-i - 1) * BPF_REG_SIZE); 11875 err = mark_chain_precision_stack(env, i); 11876 if (err < 0) 11877 return err; 11878 } 11879 return 0; 11880 } 11881 11882 static bool states_maybe_looping(struct bpf_verifier_state *old, 11883 struct bpf_verifier_state *cur) 11884 { 11885 struct bpf_func_state *fold, *fcur; 11886 int i, fr = cur->curframe; 11887 11888 if (old->curframe != fr) 11889 return false; 11890 11891 fold = old->frame[fr]; 11892 fcur = cur->frame[fr]; 11893 for (i = 0; i < MAX_BPF_REG; i++) 11894 if (memcmp(&fold->regs[i], &fcur->regs[i], 11895 offsetof(struct bpf_reg_state, parent))) 11896 return false; 11897 return true; 11898 } 11899 11900 11901 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11902 { 11903 struct bpf_verifier_state_list *new_sl; 11904 struct bpf_verifier_state_list *sl, **pprev; 11905 struct bpf_verifier_state *cur = env->cur_state, *new; 11906 int i, j, err, states_cnt = 0; 11907 bool add_new_state = env->test_state_freq ? true : false; 11908 11909 cur->last_insn_idx = env->prev_insn_idx; 11910 if (!env->insn_aux_data[insn_idx].prune_point) 11911 /* this 'insn_idx' instruction wasn't marked, so we will not 11912 * be doing state search here 11913 */ 11914 return 0; 11915 11916 /* bpf progs typically have pruning point every 4 instructions 11917 * http://vger.kernel.org/bpfconf2019.html#session-1 11918 * Do not add new state for future pruning if the verifier hasn't seen 11919 * at least 2 jumps and at least 8 instructions. 11920 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11921 * In tests that amounts to up to 50% reduction into total verifier 11922 * memory consumption and 20% verifier time speedup. 11923 */ 11924 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11925 env->insn_processed - env->prev_insn_processed >= 8) 11926 add_new_state = true; 11927 11928 pprev = explored_state(env, insn_idx); 11929 sl = *pprev; 11930 11931 clean_live_states(env, insn_idx, cur); 11932 11933 while (sl) { 11934 states_cnt++; 11935 if (sl->state.insn_idx != insn_idx) 11936 goto next; 11937 11938 if (sl->state.branches) { 11939 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11940 11941 if (frame->in_async_callback_fn && 11942 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11943 /* Different async_entry_cnt means that the verifier is 11944 * processing another entry into async callback. 11945 * Seeing the same state is not an indication of infinite 11946 * loop or infinite recursion. 11947 * But finding the same state doesn't mean that it's safe 11948 * to stop processing the current state. The previous state 11949 * hasn't yet reached bpf_exit, since state.branches > 0. 11950 * Checking in_async_callback_fn alone is not enough either. 11951 * Since the verifier still needs to catch infinite loops 11952 * inside async callbacks. 11953 */ 11954 } else if (states_maybe_looping(&sl->state, cur) && 11955 states_equal(env, &sl->state, cur)) { 11956 verbose_linfo(env, insn_idx, "; "); 11957 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11958 return -EINVAL; 11959 } 11960 /* if the verifier is processing a loop, avoid adding new state 11961 * too often, since different loop iterations have distinct 11962 * states and may not help future pruning. 11963 * This threshold shouldn't be too low to make sure that 11964 * a loop with large bound will be rejected quickly. 11965 * The most abusive loop will be: 11966 * r1 += 1 11967 * if r1 < 1000000 goto pc-2 11968 * 1M insn_procssed limit / 100 == 10k peak states. 11969 * This threshold shouldn't be too high either, since states 11970 * at the end of the loop are likely to be useful in pruning. 11971 */ 11972 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11973 env->insn_processed - env->prev_insn_processed < 100) 11974 add_new_state = false; 11975 goto miss; 11976 } 11977 if (states_equal(env, &sl->state, cur)) { 11978 sl->hit_cnt++; 11979 /* reached equivalent register/stack state, 11980 * prune the search. 11981 * Registers read by the continuation are read by us. 11982 * If we have any write marks in env->cur_state, they 11983 * will prevent corresponding reads in the continuation 11984 * from reaching our parent (an explored_state). Our 11985 * own state will get the read marks recorded, but 11986 * they'll be immediately forgotten as we're pruning 11987 * this state and will pop a new one. 11988 */ 11989 err = propagate_liveness(env, &sl->state, cur); 11990 11991 /* if previous state reached the exit with precision and 11992 * current state is equivalent to it (except precsion marks) 11993 * the precision needs to be propagated back in 11994 * the current state. 11995 */ 11996 err = err ? : push_jmp_history(env, cur); 11997 err = err ? : propagate_precision(env, &sl->state); 11998 if (err) 11999 return err; 12000 return 1; 12001 } 12002 miss: 12003 /* when new state is not going to be added do not increase miss count. 12004 * Otherwise several loop iterations will remove the state 12005 * recorded earlier. The goal of these heuristics is to have 12006 * states from some iterations of the loop (some in the beginning 12007 * and some at the end) to help pruning. 12008 */ 12009 if (add_new_state) 12010 sl->miss_cnt++; 12011 /* heuristic to determine whether this state is beneficial 12012 * to keep checking from state equivalence point of view. 12013 * Higher numbers increase max_states_per_insn and verification time, 12014 * but do not meaningfully decrease insn_processed. 12015 */ 12016 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 12017 /* the state is unlikely to be useful. Remove it to 12018 * speed up verification 12019 */ 12020 *pprev = sl->next; 12021 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 12022 u32 br = sl->state.branches; 12023 12024 WARN_ONCE(br, 12025 "BUG live_done but branches_to_explore %d\n", 12026 br); 12027 free_verifier_state(&sl->state, false); 12028 kfree(sl); 12029 env->peak_states--; 12030 } else { 12031 /* cannot free this state, since parentage chain may 12032 * walk it later. Add it for free_list instead to 12033 * be freed at the end of verification 12034 */ 12035 sl->next = env->free_list; 12036 env->free_list = sl; 12037 } 12038 sl = *pprev; 12039 continue; 12040 } 12041 next: 12042 pprev = &sl->next; 12043 sl = *pprev; 12044 } 12045 12046 if (env->max_states_per_insn < states_cnt) 12047 env->max_states_per_insn = states_cnt; 12048 12049 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 12050 return push_jmp_history(env, cur); 12051 12052 if (!add_new_state) 12053 return push_jmp_history(env, cur); 12054 12055 /* There were no equivalent states, remember the current one. 12056 * Technically the current state is not proven to be safe yet, 12057 * but it will either reach outer most bpf_exit (which means it's safe) 12058 * or it will be rejected. When there are no loops the verifier won't be 12059 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 12060 * again on the way to bpf_exit. 12061 * When looping the sl->state.branches will be > 0 and this state 12062 * will not be considered for equivalence until branches == 0. 12063 */ 12064 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 12065 if (!new_sl) 12066 return -ENOMEM; 12067 env->total_states++; 12068 env->peak_states++; 12069 env->prev_jmps_processed = env->jmps_processed; 12070 env->prev_insn_processed = env->insn_processed; 12071 12072 /* add new state to the head of linked list */ 12073 new = &new_sl->state; 12074 err = copy_verifier_state(new, cur); 12075 if (err) { 12076 free_verifier_state(new, false); 12077 kfree(new_sl); 12078 return err; 12079 } 12080 new->insn_idx = insn_idx; 12081 WARN_ONCE(new->branches != 1, 12082 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 12083 12084 cur->parent = new; 12085 cur->first_insn_idx = insn_idx; 12086 clear_jmp_history(cur); 12087 new_sl->next = *explored_state(env, insn_idx); 12088 *explored_state(env, insn_idx) = new_sl; 12089 /* connect new state to parentage chain. Current frame needs all 12090 * registers connected. Only r6 - r9 of the callers are alive (pushed 12091 * to the stack implicitly by JITs) so in callers' frames connect just 12092 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 12093 * the state of the call instruction (with WRITTEN set), and r0 comes 12094 * from callee with its full parentage chain, anyway. 12095 */ 12096 /* clear write marks in current state: the writes we did are not writes 12097 * our child did, so they don't screen off its reads from us. 12098 * (There are no read marks in current state, because reads always mark 12099 * their parent and current state never has children yet. Only 12100 * explored_states can get read marks.) 12101 */ 12102 for (j = 0; j <= cur->curframe; j++) { 12103 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 12104 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 12105 for (i = 0; i < BPF_REG_FP; i++) 12106 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 12107 } 12108 12109 /* all stack frames are accessible from callee, clear them all */ 12110 for (j = 0; j <= cur->curframe; j++) { 12111 struct bpf_func_state *frame = cur->frame[j]; 12112 struct bpf_func_state *newframe = new->frame[j]; 12113 12114 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 12115 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 12116 frame->stack[i].spilled_ptr.parent = 12117 &newframe->stack[i].spilled_ptr; 12118 } 12119 } 12120 return 0; 12121 } 12122 12123 /* Return true if it's OK to have the same insn return a different type. */ 12124 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 12125 { 12126 switch (base_type(type)) { 12127 case PTR_TO_CTX: 12128 case PTR_TO_SOCKET: 12129 case PTR_TO_SOCK_COMMON: 12130 case PTR_TO_TCP_SOCK: 12131 case PTR_TO_XDP_SOCK: 12132 case PTR_TO_BTF_ID: 12133 return false; 12134 default: 12135 return true; 12136 } 12137 } 12138 12139 /* If an instruction was previously used with particular pointer types, then we 12140 * need to be careful to avoid cases such as the below, where it may be ok 12141 * for one branch accessing the pointer, but not ok for the other branch: 12142 * 12143 * R1 = sock_ptr 12144 * goto X; 12145 * ... 12146 * R1 = some_other_valid_ptr; 12147 * goto X; 12148 * ... 12149 * R2 = *(u32 *)(R1 + 0); 12150 */ 12151 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 12152 { 12153 return src != prev && (!reg_type_mismatch_ok(src) || 12154 !reg_type_mismatch_ok(prev)); 12155 } 12156 12157 static int do_check(struct bpf_verifier_env *env) 12158 { 12159 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12160 struct bpf_verifier_state *state = env->cur_state; 12161 struct bpf_insn *insns = env->prog->insnsi; 12162 struct bpf_reg_state *regs; 12163 int insn_cnt = env->prog->len; 12164 bool do_print_state = false; 12165 int prev_insn_idx = -1; 12166 12167 for (;;) { 12168 struct bpf_insn *insn; 12169 u8 class; 12170 int err; 12171 12172 env->prev_insn_idx = prev_insn_idx; 12173 if (env->insn_idx >= insn_cnt) { 12174 verbose(env, "invalid insn idx %d insn_cnt %d\n", 12175 env->insn_idx, insn_cnt); 12176 return -EFAULT; 12177 } 12178 12179 insn = &insns[env->insn_idx]; 12180 class = BPF_CLASS(insn->code); 12181 12182 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 12183 verbose(env, 12184 "BPF program is too large. Processed %d insn\n", 12185 env->insn_processed); 12186 return -E2BIG; 12187 } 12188 12189 err = is_state_visited(env, env->insn_idx); 12190 if (err < 0) 12191 return err; 12192 if (err == 1) { 12193 /* found equivalent state, can prune the search */ 12194 if (env->log.level & BPF_LOG_LEVEL) { 12195 if (do_print_state) 12196 verbose(env, "\nfrom %d to %d%s: safe\n", 12197 env->prev_insn_idx, env->insn_idx, 12198 env->cur_state->speculative ? 12199 " (speculative execution)" : ""); 12200 else 12201 verbose(env, "%d: safe\n", env->insn_idx); 12202 } 12203 goto process_bpf_exit; 12204 } 12205 12206 if (signal_pending(current)) 12207 return -EAGAIN; 12208 12209 if (need_resched()) 12210 cond_resched(); 12211 12212 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12213 verbose(env, "\nfrom %d to %d%s:", 12214 env->prev_insn_idx, env->insn_idx, 12215 env->cur_state->speculative ? 12216 " (speculative execution)" : ""); 12217 print_verifier_state(env, state->frame[state->curframe], true); 12218 do_print_state = false; 12219 } 12220 12221 if (env->log.level & BPF_LOG_LEVEL) { 12222 const struct bpf_insn_cbs cbs = { 12223 .cb_call = disasm_kfunc_name, 12224 .cb_print = verbose, 12225 .private_data = env, 12226 }; 12227 12228 if (verifier_state_scratched(env)) 12229 print_insn_state(env, state->frame[state->curframe]); 12230 12231 verbose_linfo(env, env->insn_idx, "; "); 12232 env->prev_log_len = env->log.len_used; 12233 verbose(env, "%d: ", env->insn_idx); 12234 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12235 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12236 env->prev_log_len = env->log.len_used; 12237 } 12238 12239 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12240 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12241 env->prev_insn_idx); 12242 if (err) 12243 return err; 12244 } 12245 12246 regs = cur_regs(env); 12247 sanitize_mark_insn_seen(env); 12248 prev_insn_idx = env->insn_idx; 12249 12250 if (class == BPF_ALU || class == BPF_ALU64) { 12251 err = check_alu_op(env, insn); 12252 if (err) 12253 return err; 12254 12255 } else if (class == BPF_LDX) { 12256 enum bpf_reg_type *prev_src_type, src_reg_type; 12257 12258 /* check for reserved fields is already done */ 12259 12260 /* check src operand */ 12261 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12262 if (err) 12263 return err; 12264 12265 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12266 if (err) 12267 return err; 12268 12269 src_reg_type = regs[insn->src_reg].type; 12270 12271 /* check that memory (src_reg + off) is readable, 12272 * the state of dst_reg will be updated by this func 12273 */ 12274 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12275 insn->off, BPF_SIZE(insn->code), 12276 BPF_READ, insn->dst_reg, false); 12277 if (err) 12278 return err; 12279 12280 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12281 12282 if (*prev_src_type == NOT_INIT) { 12283 /* saw a valid insn 12284 * dst_reg = *(u32 *)(src_reg + off) 12285 * save type to validate intersecting paths 12286 */ 12287 *prev_src_type = src_reg_type; 12288 12289 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12290 /* ABuser program is trying to use the same insn 12291 * dst_reg = *(u32*) (src_reg + off) 12292 * with different pointer types: 12293 * src_reg == ctx in one branch and 12294 * src_reg == stack|map in some other branch. 12295 * Reject it. 12296 */ 12297 verbose(env, "same insn cannot be used with different pointers\n"); 12298 return -EINVAL; 12299 } 12300 12301 } else if (class == BPF_STX) { 12302 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12303 12304 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12305 err = check_atomic(env, env->insn_idx, insn); 12306 if (err) 12307 return err; 12308 env->insn_idx++; 12309 continue; 12310 } 12311 12312 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12313 verbose(env, "BPF_STX uses reserved fields\n"); 12314 return -EINVAL; 12315 } 12316 12317 /* check src1 operand */ 12318 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12319 if (err) 12320 return err; 12321 /* check src2 operand */ 12322 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12323 if (err) 12324 return err; 12325 12326 dst_reg_type = regs[insn->dst_reg].type; 12327 12328 /* check that memory (dst_reg + off) is writeable */ 12329 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12330 insn->off, BPF_SIZE(insn->code), 12331 BPF_WRITE, insn->src_reg, false); 12332 if (err) 12333 return err; 12334 12335 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12336 12337 if (*prev_dst_type == NOT_INIT) { 12338 *prev_dst_type = dst_reg_type; 12339 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12340 verbose(env, "same insn cannot be used with different pointers\n"); 12341 return -EINVAL; 12342 } 12343 12344 } else if (class == BPF_ST) { 12345 if (BPF_MODE(insn->code) != BPF_MEM || 12346 insn->src_reg != BPF_REG_0) { 12347 verbose(env, "BPF_ST uses reserved fields\n"); 12348 return -EINVAL; 12349 } 12350 /* check src operand */ 12351 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12352 if (err) 12353 return err; 12354 12355 if (is_ctx_reg(env, insn->dst_reg)) { 12356 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12357 insn->dst_reg, 12358 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12359 return -EACCES; 12360 } 12361 12362 /* check that memory (dst_reg + off) is writeable */ 12363 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12364 insn->off, BPF_SIZE(insn->code), 12365 BPF_WRITE, -1, false); 12366 if (err) 12367 return err; 12368 12369 } else if (class == BPF_JMP || class == BPF_JMP32) { 12370 u8 opcode = BPF_OP(insn->code); 12371 12372 env->jmps_processed++; 12373 if (opcode == BPF_CALL) { 12374 if (BPF_SRC(insn->code) != BPF_K || 12375 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12376 && insn->off != 0) || 12377 (insn->src_reg != BPF_REG_0 && 12378 insn->src_reg != BPF_PSEUDO_CALL && 12379 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12380 insn->dst_reg != BPF_REG_0 || 12381 class == BPF_JMP32) { 12382 verbose(env, "BPF_CALL uses reserved fields\n"); 12383 return -EINVAL; 12384 } 12385 12386 if (env->cur_state->active_spin_lock && 12387 (insn->src_reg == BPF_PSEUDO_CALL || 12388 insn->imm != BPF_FUNC_spin_unlock)) { 12389 verbose(env, "function calls are not allowed while holding a lock\n"); 12390 return -EINVAL; 12391 } 12392 if (insn->src_reg == BPF_PSEUDO_CALL) 12393 err = check_func_call(env, insn, &env->insn_idx); 12394 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12395 err = check_kfunc_call(env, insn, &env->insn_idx); 12396 else 12397 err = check_helper_call(env, insn, &env->insn_idx); 12398 if (err) 12399 return err; 12400 } else if (opcode == BPF_JA) { 12401 if (BPF_SRC(insn->code) != BPF_K || 12402 insn->imm != 0 || 12403 insn->src_reg != BPF_REG_0 || 12404 insn->dst_reg != BPF_REG_0 || 12405 class == BPF_JMP32) { 12406 verbose(env, "BPF_JA uses reserved fields\n"); 12407 return -EINVAL; 12408 } 12409 12410 env->insn_idx += insn->off + 1; 12411 continue; 12412 12413 } else if (opcode == BPF_EXIT) { 12414 if (BPF_SRC(insn->code) != BPF_K || 12415 insn->imm != 0 || 12416 insn->src_reg != BPF_REG_0 || 12417 insn->dst_reg != BPF_REG_0 || 12418 class == BPF_JMP32) { 12419 verbose(env, "BPF_EXIT uses reserved fields\n"); 12420 return -EINVAL; 12421 } 12422 12423 if (env->cur_state->active_spin_lock) { 12424 verbose(env, "bpf_spin_unlock is missing\n"); 12425 return -EINVAL; 12426 } 12427 12428 /* We must do check_reference_leak here before 12429 * prepare_func_exit to handle the case when 12430 * state->curframe > 0, it may be a callback 12431 * function, for which reference_state must 12432 * match caller reference state when it exits. 12433 */ 12434 err = check_reference_leak(env); 12435 if (err) 12436 return err; 12437 12438 if (state->curframe) { 12439 /* exit from nested function */ 12440 err = prepare_func_exit(env, &env->insn_idx); 12441 if (err) 12442 return err; 12443 do_print_state = true; 12444 continue; 12445 } 12446 12447 err = check_return_code(env); 12448 if (err) 12449 return err; 12450 process_bpf_exit: 12451 mark_verifier_state_scratched(env); 12452 update_branch_counts(env, env->cur_state); 12453 err = pop_stack(env, &prev_insn_idx, 12454 &env->insn_idx, pop_log); 12455 if (err < 0) { 12456 if (err != -ENOENT) 12457 return err; 12458 break; 12459 } else { 12460 do_print_state = true; 12461 continue; 12462 } 12463 } else { 12464 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12465 if (err) 12466 return err; 12467 } 12468 } else if (class == BPF_LD) { 12469 u8 mode = BPF_MODE(insn->code); 12470 12471 if (mode == BPF_ABS || mode == BPF_IND) { 12472 err = check_ld_abs(env, insn); 12473 if (err) 12474 return err; 12475 12476 } else if (mode == BPF_IMM) { 12477 err = check_ld_imm(env, insn); 12478 if (err) 12479 return err; 12480 12481 env->insn_idx++; 12482 sanitize_mark_insn_seen(env); 12483 } else { 12484 verbose(env, "invalid BPF_LD mode\n"); 12485 return -EINVAL; 12486 } 12487 } else { 12488 verbose(env, "unknown insn class %d\n", class); 12489 return -EINVAL; 12490 } 12491 12492 env->insn_idx++; 12493 } 12494 12495 return 0; 12496 } 12497 12498 static int find_btf_percpu_datasec(struct btf *btf) 12499 { 12500 const struct btf_type *t; 12501 const char *tname; 12502 int i, n; 12503 12504 /* 12505 * Both vmlinux and module each have their own ".data..percpu" 12506 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12507 * types to look at only module's own BTF types. 12508 */ 12509 n = btf_nr_types(btf); 12510 if (btf_is_module(btf)) 12511 i = btf_nr_types(btf_vmlinux); 12512 else 12513 i = 1; 12514 12515 for(; i < n; i++) { 12516 t = btf_type_by_id(btf, i); 12517 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12518 continue; 12519 12520 tname = btf_name_by_offset(btf, t->name_off); 12521 if (!strcmp(tname, ".data..percpu")) 12522 return i; 12523 } 12524 12525 return -ENOENT; 12526 } 12527 12528 /* replace pseudo btf_id with kernel symbol address */ 12529 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12530 struct bpf_insn *insn, 12531 struct bpf_insn_aux_data *aux) 12532 { 12533 const struct btf_var_secinfo *vsi; 12534 const struct btf_type *datasec; 12535 struct btf_mod_pair *btf_mod; 12536 const struct btf_type *t; 12537 const char *sym_name; 12538 bool percpu = false; 12539 u32 type, id = insn->imm; 12540 struct btf *btf; 12541 s32 datasec_id; 12542 u64 addr; 12543 int i, btf_fd, err; 12544 12545 btf_fd = insn[1].imm; 12546 if (btf_fd) { 12547 btf = btf_get_by_fd(btf_fd); 12548 if (IS_ERR(btf)) { 12549 verbose(env, "invalid module BTF object FD specified.\n"); 12550 return -EINVAL; 12551 } 12552 } else { 12553 if (!btf_vmlinux) { 12554 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12555 return -EINVAL; 12556 } 12557 btf = btf_vmlinux; 12558 btf_get(btf); 12559 } 12560 12561 t = btf_type_by_id(btf, id); 12562 if (!t) { 12563 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12564 err = -ENOENT; 12565 goto err_put; 12566 } 12567 12568 if (!btf_type_is_var(t)) { 12569 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12570 err = -EINVAL; 12571 goto err_put; 12572 } 12573 12574 sym_name = btf_name_by_offset(btf, t->name_off); 12575 addr = kallsyms_lookup_name(sym_name); 12576 if (!addr) { 12577 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12578 sym_name); 12579 err = -ENOENT; 12580 goto err_put; 12581 } 12582 12583 datasec_id = find_btf_percpu_datasec(btf); 12584 if (datasec_id > 0) { 12585 datasec = btf_type_by_id(btf, datasec_id); 12586 for_each_vsi(i, datasec, vsi) { 12587 if (vsi->type == id) { 12588 percpu = true; 12589 break; 12590 } 12591 } 12592 } 12593 12594 insn[0].imm = (u32)addr; 12595 insn[1].imm = addr >> 32; 12596 12597 type = t->type; 12598 t = btf_type_skip_modifiers(btf, type, NULL); 12599 if (percpu) { 12600 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12601 aux->btf_var.btf = btf; 12602 aux->btf_var.btf_id = type; 12603 } else if (!btf_type_is_struct(t)) { 12604 const struct btf_type *ret; 12605 const char *tname; 12606 u32 tsize; 12607 12608 /* resolve the type size of ksym. */ 12609 ret = btf_resolve_size(btf, t, &tsize); 12610 if (IS_ERR(ret)) { 12611 tname = btf_name_by_offset(btf, t->name_off); 12612 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12613 tname, PTR_ERR(ret)); 12614 err = -EINVAL; 12615 goto err_put; 12616 } 12617 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12618 aux->btf_var.mem_size = tsize; 12619 } else { 12620 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12621 aux->btf_var.btf = btf; 12622 aux->btf_var.btf_id = type; 12623 } 12624 12625 /* check whether we recorded this BTF (and maybe module) already */ 12626 for (i = 0; i < env->used_btf_cnt; i++) { 12627 if (env->used_btfs[i].btf == btf) { 12628 btf_put(btf); 12629 return 0; 12630 } 12631 } 12632 12633 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12634 err = -E2BIG; 12635 goto err_put; 12636 } 12637 12638 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12639 btf_mod->btf = btf; 12640 btf_mod->module = NULL; 12641 12642 /* if we reference variables from kernel module, bump its refcount */ 12643 if (btf_is_module(btf)) { 12644 btf_mod->module = btf_try_get_module(btf); 12645 if (!btf_mod->module) { 12646 err = -ENXIO; 12647 goto err_put; 12648 } 12649 } 12650 12651 env->used_btf_cnt++; 12652 12653 return 0; 12654 err_put: 12655 btf_put(btf); 12656 return err; 12657 } 12658 12659 static bool is_tracing_prog_type(enum bpf_prog_type type) 12660 { 12661 switch (type) { 12662 case BPF_PROG_TYPE_KPROBE: 12663 case BPF_PROG_TYPE_TRACEPOINT: 12664 case BPF_PROG_TYPE_PERF_EVENT: 12665 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12666 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 12667 return true; 12668 default: 12669 return false; 12670 } 12671 } 12672 12673 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12674 struct bpf_map *map, 12675 struct bpf_prog *prog) 12676 12677 { 12678 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12679 12680 if (map_value_has_spin_lock(map)) { 12681 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12682 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12683 return -EINVAL; 12684 } 12685 12686 if (is_tracing_prog_type(prog_type)) { 12687 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12688 return -EINVAL; 12689 } 12690 12691 if (prog->aux->sleepable) { 12692 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12693 return -EINVAL; 12694 } 12695 } 12696 12697 if (map_value_has_timer(map)) { 12698 if (is_tracing_prog_type(prog_type)) { 12699 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12700 return -EINVAL; 12701 } 12702 } 12703 12704 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12705 !bpf_offload_prog_map_match(prog, map)) { 12706 verbose(env, "offload device mismatch between prog and map\n"); 12707 return -EINVAL; 12708 } 12709 12710 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12711 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12712 return -EINVAL; 12713 } 12714 12715 if (prog->aux->sleepable) 12716 switch (map->map_type) { 12717 case BPF_MAP_TYPE_HASH: 12718 case BPF_MAP_TYPE_LRU_HASH: 12719 case BPF_MAP_TYPE_ARRAY: 12720 case BPF_MAP_TYPE_PERCPU_HASH: 12721 case BPF_MAP_TYPE_PERCPU_ARRAY: 12722 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12723 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12724 case BPF_MAP_TYPE_HASH_OF_MAPS: 12725 case BPF_MAP_TYPE_RINGBUF: 12726 case BPF_MAP_TYPE_USER_RINGBUF: 12727 case BPF_MAP_TYPE_INODE_STORAGE: 12728 case BPF_MAP_TYPE_SK_STORAGE: 12729 case BPF_MAP_TYPE_TASK_STORAGE: 12730 break; 12731 default: 12732 verbose(env, 12733 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12734 return -EINVAL; 12735 } 12736 12737 return 0; 12738 } 12739 12740 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12741 { 12742 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12743 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12744 } 12745 12746 /* find and rewrite pseudo imm in ld_imm64 instructions: 12747 * 12748 * 1. if it accesses map FD, replace it with actual map pointer. 12749 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12750 * 12751 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12752 */ 12753 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12754 { 12755 struct bpf_insn *insn = env->prog->insnsi; 12756 int insn_cnt = env->prog->len; 12757 int i, j, err; 12758 12759 err = bpf_prog_calc_tag(env->prog); 12760 if (err) 12761 return err; 12762 12763 for (i = 0; i < insn_cnt; i++, insn++) { 12764 if (BPF_CLASS(insn->code) == BPF_LDX && 12765 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12766 verbose(env, "BPF_LDX uses reserved fields\n"); 12767 return -EINVAL; 12768 } 12769 12770 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12771 struct bpf_insn_aux_data *aux; 12772 struct bpf_map *map; 12773 struct fd f; 12774 u64 addr; 12775 u32 fd; 12776 12777 if (i == insn_cnt - 1 || insn[1].code != 0 || 12778 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12779 insn[1].off != 0) { 12780 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12781 return -EINVAL; 12782 } 12783 12784 if (insn[0].src_reg == 0) 12785 /* valid generic load 64-bit imm */ 12786 goto next_insn; 12787 12788 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12789 aux = &env->insn_aux_data[i]; 12790 err = check_pseudo_btf_id(env, insn, aux); 12791 if (err) 12792 return err; 12793 goto next_insn; 12794 } 12795 12796 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12797 aux = &env->insn_aux_data[i]; 12798 aux->ptr_type = PTR_TO_FUNC; 12799 goto next_insn; 12800 } 12801 12802 /* In final convert_pseudo_ld_imm64() step, this is 12803 * converted into regular 64-bit imm load insn. 12804 */ 12805 switch (insn[0].src_reg) { 12806 case BPF_PSEUDO_MAP_VALUE: 12807 case BPF_PSEUDO_MAP_IDX_VALUE: 12808 break; 12809 case BPF_PSEUDO_MAP_FD: 12810 case BPF_PSEUDO_MAP_IDX: 12811 if (insn[1].imm == 0) 12812 break; 12813 fallthrough; 12814 default: 12815 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12816 return -EINVAL; 12817 } 12818 12819 switch (insn[0].src_reg) { 12820 case BPF_PSEUDO_MAP_IDX_VALUE: 12821 case BPF_PSEUDO_MAP_IDX: 12822 if (bpfptr_is_null(env->fd_array)) { 12823 verbose(env, "fd_idx without fd_array is invalid\n"); 12824 return -EPROTO; 12825 } 12826 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12827 insn[0].imm * sizeof(fd), 12828 sizeof(fd))) 12829 return -EFAULT; 12830 break; 12831 default: 12832 fd = insn[0].imm; 12833 break; 12834 } 12835 12836 f = fdget(fd); 12837 map = __bpf_map_get(f); 12838 if (IS_ERR(map)) { 12839 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12840 insn[0].imm); 12841 return PTR_ERR(map); 12842 } 12843 12844 err = check_map_prog_compatibility(env, map, env->prog); 12845 if (err) { 12846 fdput(f); 12847 return err; 12848 } 12849 12850 aux = &env->insn_aux_data[i]; 12851 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12852 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12853 addr = (unsigned long)map; 12854 } else { 12855 u32 off = insn[1].imm; 12856 12857 if (off >= BPF_MAX_VAR_OFF) { 12858 verbose(env, "direct value offset of %u is not allowed\n", off); 12859 fdput(f); 12860 return -EINVAL; 12861 } 12862 12863 if (!map->ops->map_direct_value_addr) { 12864 verbose(env, "no direct value access support for this map type\n"); 12865 fdput(f); 12866 return -EINVAL; 12867 } 12868 12869 err = map->ops->map_direct_value_addr(map, &addr, off); 12870 if (err) { 12871 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12872 map->value_size, off); 12873 fdput(f); 12874 return err; 12875 } 12876 12877 aux->map_off = off; 12878 addr += off; 12879 } 12880 12881 insn[0].imm = (u32)addr; 12882 insn[1].imm = addr >> 32; 12883 12884 /* check whether we recorded this map already */ 12885 for (j = 0; j < env->used_map_cnt; j++) { 12886 if (env->used_maps[j] == map) { 12887 aux->map_index = j; 12888 fdput(f); 12889 goto next_insn; 12890 } 12891 } 12892 12893 if (env->used_map_cnt >= MAX_USED_MAPS) { 12894 fdput(f); 12895 return -E2BIG; 12896 } 12897 12898 /* hold the map. If the program is rejected by verifier, 12899 * the map will be released by release_maps() or it 12900 * will be used by the valid program until it's unloaded 12901 * and all maps are released in free_used_maps() 12902 */ 12903 bpf_map_inc(map); 12904 12905 aux->map_index = env->used_map_cnt; 12906 env->used_maps[env->used_map_cnt++] = map; 12907 12908 if (bpf_map_is_cgroup_storage(map) && 12909 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12910 verbose(env, "only one cgroup storage of each type is allowed\n"); 12911 fdput(f); 12912 return -EBUSY; 12913 } 12914 12915 fdput(f); 12916 next_insn: 12917 insn++; 12918 i++; 12919 continue; 12920 } 12921 12922 /* Basic sanity check before we invest more work here. */ 12923 if (!bpf_opcode_in_insntable(insn->code)) { 12924 verbose(env, "unknown opcode %02x\n", insn->code); 12925 return -EINVAL; 12926 } 12927 } 12928 12929 /* now all pseudo BPF_LD_IMM64 instructions load valid 12930 * 'struct bpf_map *' into a register instead of user map_fd. 12931 * These pointers will be used later by verifier to validate map access. 12932 */ 12933 return 0; 12934 } 12935 12936 /* drop refcnt of maps used by the rejected program */ 12937 static void release_maps(struct bpf_verifier_env *env) 12938 { 12939 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12940 env->used_map_cnt); 12941 } 12942 12943 /* drop refcnt of maps used by the rejected program */ 12944 static void release_btfs(struct bpf_verifier_env *env) 12945 { 12946 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12947 env->used_btf_cnt); 12948 } 12949 12950 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12951 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12952 { 12953 struct bpf_insn *insn = env->prog->insnsi; 12954 int insn_cnt = env->prog->len; 12955 int i; 12956 12957 for (i = 0; i < insn_cnt; i++, insn++) { 12958 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12959 continue; 12960 if (insn->src_reg == BPF_PSEUDO_FUNC) 12961 continue; 12962 insn->src_reg = 0; 12963 } 12964 } 12965 12966 /* single env->prog->insni[off] instruction was replaced with the range 12967 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12968 * [0, off) and [off, end) to new locations, so the patched range stays zero 12969 */ 12970 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12971 struct bpf_insn_aux_data *new_data, 12972 struct bpf_prog *new_prog, u32 off, u32 cnt) 12973 { 12974 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12975 struct bpf_insn *insn = new_prog->insnsi; 12976 u32 old_seen = old_data[off].seen; 12977 u32 prog_len; 12978 int i; 12979 12980 /* aux info at OFF always needs adjustment, no matter fast path 12981 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12982 * original insn at old prog. 12983 */ 12984 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12985 12986 if (cnt == 1) 12987 return; 12988 prog_len = new_prog->len; 12989 12990 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12991 memcpy(new_data + off + cnt - 1, old_data + off, 12992 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12993 for (i = off; i < off + cnt - 1; i++) { 12994 /* Expand insni[off]'s seen count to the patched range. */ 12995 new_data[i].seen = old_seen; 12996 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12997 } 12998 env->insn_aux_data = new_data; 12999 vfree(old_data); 13000 } 13001 13002 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 13003 { 13004 int i; 13005 13006 if (len == 1) 13007 return; 13008 /* NOTE: fake 'exit' subprog should be updated as well. */ 13009 for (i = 0; i <= env->subprog_cnt; i++) { 13010 if (env->subprog_info[i].start <= off) 13011 continue; 13012 env->subprog_info[i].start += len - 1; 13013 } 13014 } 13015 13016 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 13017 { 13018 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 13019 int i, sz = prog->aux->size_poke_tab; 13020 struct bpf_jit_poke_descriptor *desc; 13021 13022 for (i = 0; i < sz; i++) { 13023 desc = &tab[i]; 13024 if (desc->insn_idx <= off) 13025 continue; 13026 desc->insn_idx += len - 1; 13027 } 13028 } 13029 13030 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 13031 const struct bpf_insn *patch, u32 len) 13032 { 13033 struct bpf_prog *new_prog; 13034 struct bpf_insn_aux_data *new_data = NULL; 13035 13036 if (len > 1) { 13037 new_data = vzalloc(array_size(env->prog->len + len - 1, 13038 sizeof(struct bpf_insn_aux_data))); 13039 if (!new_data) 13040 return NULL; 13041 } 13042 13043 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 13044 if (IS_ERR(new_prog)) { 13045 if (PTR_ERR(new_prog) == -ERANGE) 13046 verbose(env, 13047 "insn %d cannot be patched due to 16-bit range\n", 13048 env->insn_aux_data[off].orig_idx); 13049 vfree(new_data); 13050 return NULL; 13051 } 13052 adjust_insn_aux_data(env, new_data, new_prog, off, len); 13053 adjust_subprog_starts(env, off, len); 13054 adjust_poke_descs(new_prog, off, len); 13055 return new_prog; 13056 } 13057 13058 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 13059 u32 off, u32 cnt) 13060 { 13061 int i, j; 13062 13063 /* find first prog starting at or after off (first to remove) */ 13064 for (i = 0; i < env->subprog_cnt; i++) 13065 if (env->subprog_info[i].start >= off) 13066 break; 13067 /* find first prog starting at or after off + cnt (first to stay) */ 13068 for (j = i; j < env->subprog_cnt; j++) 13069 if (env->subprog_info[j].start >= off + cnt) 13070 break; 13071 /* if j doesn't start exactly at off + cnt, we are just removing 13072 * the front of previous prog 13073 */ 13074 if (env->subprog_info[j].start != off + cnt) 13075 j--; 13076 13077 if (j > i) { 13078 struct bpf_prog_aux *aux = env->prog->aux; 13079 int move; 13080 13081 /* move fake 'exit' subprog as well */ 13082 move = env->subprog_cnt + 1 - j; 13083 13084 memmove(env->subprog_info + i, 13085 env->subprog_info + j, 13086 sizeof(*env->subprog_info) * move); 13087 env->subprog_cnt -= j - i; 13088 13089 /* remove func_info */ 13090 if (aux->func_info) { 13091 move = aux->func_info_cnt - j; 13092 13093 memmove(aux->func_info + i, 13094 aux->func_info + j, 13095 sizeof(*aux->func_info) * move); 13096 aux->func_info_cnt -= j - i; 13097 /* func_info->insn_off is set after all code rewrites, 13098 * in adjust_btf_func() - no need to adjust 13099 */ 13100 } 13101 } else { 13102 /* convert i from "first prog to remove" to "first to adjust" */ 13103 if (env->subprog_info[i].start == off) 13104 i++; 13105 } 13106 13107 /* update fake 'exit' subprog as well */ 13108 for (; i <= env->subprog_cnt; i++) 13109 env->subprog_info[i].start -= cnt; 13110 13111 return 0; 13112 } 13113 13114 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 13115 u32 cnt) 13116 { 13117 struct bpf_prog *prog = env->prog; 13118 u32 i, l_off, l_cnt, nr_linfo; 13119 struct bpf_line_info *linfo; 13120 13121 nr_linfo = prog->aux->nr_linfo; 13122 if (!nr_linfo) 13123 return 0; 13124 13125 linfo = prog->aux->linfo; 13126 13127 /* find first line info to remove, count lines to be removed */ 13128 for (i = 0; i < nr_linfo; i++) 13129 if (linfo[i].insn_off >= off) 13130 break; 13131 13132 l_off = i; 13133 l_cnt = 0; 13134 for (; i < nr_linfo; i++) 13135 if (linfo[i].insn_off < off + cnt) 13136 l_cnt++; 13137 else 13138 break; 13139 13140 /* First live insn doesn't match first live linfo, it needs to "inherit" 13141 * last removed linfo. prog is already modified, so prog->len == off 13142 * means no live instructions after (tail of the program was removed). 13143 */ 13144 if (prog->len != off && l_cnt && 13145 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 13146 l_cnt--; 13147 linfo[--i].insn_off = off + cnt; 13148 } 13149 13150 /* remove the line info which refer to the removed instructions */ 13151 if (l_cnt) { 13152 memmove(linfo + l_off, linfo + i, 13153 sizeof(*linfo) * (nr_linfo - i)); 13154 13155 prog->aux->nr_linfo -= l_cnt; 13156 nr_linfo = prog->aux->nr_linfo; 13157 } 13158 13159 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13160 for (i = l_off; i < nr_linfo; i++) 13161 linfo[i].insn_off -= cnt; 13162 13163 /* fix up all subprogs (incl. 'exit') which start >= off */ 13164 for (i = 0; i <= env->subprog_cnt; i++) 13165 if (env->subprog_info[i].linfo_idx > l_off) { 13166 /* program may have started in the removed region but 13167 * may not be fully removed 13168 */ 13169 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13170 env->subprog_info[i].linfo_idx -= l_cnt; 13171 else 13172 env->subprog_info[i].linfo_idx = l_off; 13173 } 13174 13175 return 0; 13176 } 13177 13178 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13179 { 13180 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13181 unsigned int orig_prog_len = env->prog->len; 13182 int err; 13183 13184 if (bpf_prog_is_dev_bound(env->prog->aux)) 13185 bpf_prog_offload_remove_insns(env, off, cnt); 13186 13187 err = bpf_remove_insns(env->prog, off, cnt); 13188 if (err) 13189 return err; 13190 13191 err = adjust_subprog_starts_after_remove(env, off, cnt); 13192 if (err) 13193 return err; 13194 13195 err = bpf_adj_linfo_after_remove(env, off, cnt); 13196 if (err) 13197 return err; 13198 13199 memmove(aux_data + off, aux_data + off + cnt, 13200 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13201 13202 return 0; 13203 } 13204 13205 /* The verifier does more data flow analysis than llvm and will not 13206 * explore branches that are dead at run time. Malicious programs can 13207 * have dead code too. Therefore replace all dead at-run-time code 13208 * with 'ja -1'. 13209 * 13210 * Just nops are not optimal, e.g. if they would sit at the end of the 13211 * program and through another bug we would manage to jump there, then 13212 * we'd execute beyond program memory otherwise. Returning exception 13213 * code also wouldn't work since we can have subprogs where the dead 13214 * code could be located. 13215 */ 13216 static void sanitize_dead_code(struct bpf_verifier_env *env) 13217 { 13218 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13219 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13220 struct bpf_insn *insn = env->prog->insnsi; 13221 const int insn_cnt = env->prog->len; 13222 int i; 13223 13224 for (i = 0; i < insn_cnt; i++) { 13225 if (aux_data[i].seen) 13226 continue; 13227 memcpy(insn + i, &trap, sizeof(trap)); 13228 aux_data[i].zext_dst = false; 13229 } 13230 } 13231 13232 static bool insn_is_cond_jump(u8 code) 13233 { 13234 u8 op; 13235 13236 if (BPF_CLASS(code) == BPF_JMP32) 13237 return true; 13238 13239 if (BPF_CLASS(code) != BPF_JMP) 13240 return false; 13241 13242 op = BPF_OP(code); 13243 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13244 } 13245 13246 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13247 { 13248 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13249 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13250 struct bpf_insn *insn = env->prog->insnsi; 13251 const int insn_cnt = env->prog->len; 13252 int i; 13253 13254 for (i = 0; i < insn_cnt; i++, insn++) { 13255 if (!insn_is_cond_jump(insn->code)) 13256 continue; 13257 13258 if (!aux_data[i + 1].seen) 13259 ja.off = insn->off; 13260 else if (!aux_data[i + 1 + insn->off].seen) 13261 ja.off = 0; 13262 else 13263 continue; 13264 13265 if (bpf_prog_is_dev_bound(env->prog->aux)) 13266 bpf_prog_offload_replace_insn(env, i, &ja); 13267 13268 memcpy(insn, &ja, sizeof(ja)); 13269 } 13270 } 13271 13272 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13273 { 13274 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13275 int insn_cnt = env->prog->len; 13276 int i, err; 13277 13278 for (i = 0; i < insn_cnt; i++) { 13279 int j; 13280 13281 j = 0; 13282 while (i + j < insn_cnt && !aux_data[i + j].seen) 13283 j++; 13284 if (!j) 13285 continue; 13286 13287 err = verifier_remove_insns(env, i, j); 13288 if (err) 13289 return err; 13290 insn_cnt = env->prog->len; 13291 } 13292 13293 return 0; 13294 } 13295 13296 static int opt_remove_nops(struct bpf_verifier_env *env) 13297 { 13298 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13299 struct bpf_insn *insn = env->prog->insnsi; 13300 int insn_cnt = env->prog->len; 13301 int i, err; 13302 13303 for (i = 0; i < insn_cnt; i++) { 13304 if (memcmp(&insn[i], &ja, sizeof(ja))) 13305 continue; 13306 13307 err = verifier_remove_insns(env, i, 1); 13308 if (err) 13309 return err; 13310 insn_cnt--; 13311 i--; 13312 } 13313 13314 return 0; 13315 } 13316 13317 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13318 const union bpf_attr *attr) 13319 { 13320 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13321 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13322 int i, patch_len, delta = 0, len = env->prog->len; 13323 struct bpf_insn *insns = env->prog->insnsi; 13324 struct bpf_prog *new_prog; 13325 bool rnd_hi32; 13326 13327 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13328 zext_patch[1] = BPF_ZEXT_REG(0); 13329 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13330 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13331 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13332 for (i = 0; i < len; i++) { 13333 int adj_idx = i + delta; 13334 struct bpf_insn insn; 13335 int load_reg; 13336 13337 insn = insns[adj_idx]; 13338 load_reg = insn_def_regno(&insn); 13339 if (!aux[adj_idx].zext_dst) { 13340 u8 code, class; 13341 u32 imm_rnd; 13342 13343 if (!rnd_hi32) 13344 continue; 13345 13346 code = insn.code; 13347 class = BPF_CLASS(code); 13348 if (load_reg == -1) 13349 continue; 13350 13351 /* NOTE: arg "reg" (the fourth one) is only used for 13352 * BPF_STX + SRC_OP, so it is safe to pass NULL 13353 * here. 13354 */ 13355 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13356 if (class == BPF_LD && 13357 BPF_MODE(code) == BPF_IMM) 13358 i++; 13359 continue; 13360 } 13361 13362 /* ctx load could be transformed into wider load. */ 13363 if (class == BPF_LDX && 13364 aux[adj_idx].ptr_type == PTR_TO_CTX) 13365 continue; 13366 13367 imm_rnd = get_random_u32(); 13368 rnd_hi32_patch[0] = insn; 13369 rnd_hi32_patch[1].imm = imm_rnd; 13370 rnd_hi32_patch[3].dst_reg = load_reg; 13371 patch = rnd_hi32_patch; 13372 patch_len = 4; 13373 goto apply_patch_buffer; 13374 } 13375 13376 /* Add in an zero-extend instruction if a) the JIT has requested 13377 * it or b) it's a CMPXCHG. 13378 * 13379 * The latter is because: BPF_CMPXCHG always loads a value into 13380 * R0, therefore always zero-extends. However some archs' 13381 * equivalent instruction only does this load when the 13382 * comparison is successful. This detail of CMPXCHG is 13383 * orthogonal to the general zero-extension behaviour of the 13384 * CPU, so it's treated independently of bpf_jit_needs_zext. 13385 */ 13386 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13387 continue; 13388 13389 if (WARN_ON(load_reg == -1)) { 13390 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13391 return -EFAULT; 13392 } 13393 13394 zext_patch[0] = insn; 13395 zext_patch[1].dst_reg = load_reg; 13396 zext_patch[1].src_reg = load_reg; 13397 patch = zext_patch; 13398 patch_len = 2; 13399 apply_patch_buffer: 13400 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13401 if (!new_prog) 13402 return -ENOMEM; 13403 env->prog = new_prog; 13404 insns = new_prog->insnsi; 13405 aux = env->insn_aux_data; 13406 delta += patch_len - 1; 13407 } 13408 13409 return 0; 13410 } 13411 13412 /* convert load instructions that access fields of a context type into a 13413 * sequence of instructions that access fields of the underlying structure: 13414 * struct __sk_buff -> struct sk_buff 13415 * struct bpf_sock_ops -> struct sock 13416 */ 13417 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13418 { 13419 const struct bpf_verifier_ops *ops = env->ops; 13420 int i, cnt, size, ctx_field_size, delta = 0; 13421 const int insn_cnt = env->prog->len; 13422 struct bpf_insn insn_buf[16], *insn; 13423 u32 target_size, size_default, off; 13424 struct bpf_prog *new_prog; 13425 enum bpf_access_type type; 13426 bool is_narrower_load; 13427 13428 if (ops->gen_prologue || env->seen_direct_write) { 13429 if (!ops->gen_prologue) { 13430 verbose(env, "bpf verifier is misconfigured\n"); 13431 return -EINVAL; 13432 } 13433 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13434 env->prog); 13435 if (cnt >= ARRAY_SIZE(insn_buf)) { 13436 verbose(env, "bpf verifier is misconfigured\n"); 13437 return -EINVAL; 13438 } else if (cnt) { 13439 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13440 if (!new_prog) 13441 return -ENOMEM; 13442 13443 env->prog = new_prog; 13444 delta += cnt - 1; 13445 } 13446 } 13447 13448 if (bpf_prog_is_dev_bound(env->prog->aux)) 13449 return 0; 13450 13451 insn = env->prog->insnsi + delta; 13452 13453 for (i = 0; i < insn_cnt; i++, insn++) { 13454 bpf_convert_ctx_access_t convert_ctx_access; 13455 bool ctx_access; 13456 13457 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13458 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13459 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13460 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13461 type = BPF_READ; 13462 ctx_access = true; 13463 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13464 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13465 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13466 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13467 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13468 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13469 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13470 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13471 type = BPF_WRITE; 13472 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13473 } else { 13474 continue; 13475 } 13476 13477 if (type == BPF_WRITE && 13478 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13479 struct bpf_insn patch[] = { 13480 *insn, 13481 BPF_ST_NOSPEC(), 13482 }; 13483 13484 cnt = ARRAY_SIZE(patch); 13485 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13486 if (!new_prog) 13487 return -ENOMEM; 13488 13489 delta += cnt - 1; 13490 env->prog = new_prog; 13491 insn = new_prog->insnsi + i + delta; 13492 continue; 13493 } 13494 13495 if (!ctx_access) 13496 continue; 13497 13498 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13499 case PTR_TO_CTX: 13500 if (!ops->convert_ctx_access) 13501 continue; 13502 convert_ctx_access = ops->convert_ctx_access; 13503 break; 13504 case PTR_TO_SOCKET: 13505 case PTR_TO_SOCK_COMMON: 13506 convert_ctx_access = bpf_sock_convert_ctx_access; 13507 break; 13508 case PTR_TO_TCP_SOCK: 13509 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13510 break; 13511 case PTR_TO_XDP_SOCK: 13512 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13513 break; 13514 case PTR_TO_BTF_ID: 13515 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13516 if (type == BPF_READ) { 13517 insn->code = BPF_LDX | BPF_PROBE_MEM | 13518 BPF_SIZE((insn)->code); 13519 env->prog->aux->num_exentries++; 13520 } 13521 continue; 13522 default: 13523 continue; 13524 } 13525 13526 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13527 size = BPF_LDST_BYTES(insn); 13528 13529 /* If the read access is a narrower load of the field, 13530 * convert to a 4/8-byte load, to minimum program type specific 13531 * convert_ctx_access changes. If conversion is successful, 13532 * we will apply proper mask to the result. 13533 */ 13534 is_narrower_load = size < ctx_field_size; 13535 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13536 off = insn->off; 13537 if (is_narrower_load) { 13538 u8 size_code; 13539 13540 if (type == BPF_WRITE) { 13541 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13542 return -EINVAL; 13543 } 13544 13545 size_code = BPF_H; 13546 if (ctx_field_size == 4) 13547 size_code = BPF_W; 13548 else if (ctx_field_size == 8) 13549 size_code = BPF_DW; 13550 13551 insn->off = off & ~(size_default - 1); 13552 insn->code = BPF_LDX | BPF_MEM | size_code; 13553 } 13554 13555 target_size = 0; 13556 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13557 &target_size); 13558 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13559 (ctx_field_size && !target_size)) { 13560 verbose(env, "bpf verifier is misconfigured\n"); 13561 return -EINVAL; 13562 } 13563 13564 if (is_narrower_load && size < target_size) { 13565 u8 shift = bpf_ctx_narrow_access_offset( 13566 off, size, size_default) * 8; 13567 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13568 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13569 return -EINVAL; 13570 } 13571 if (ctx_field_size <= 4) { 13572 if (shift) 13573 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13574 insn->dst_reg, 13575 shift); 13576 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13577 (1 << size * 8) - 1); 13578 } else { 13579 if (shift) 13580 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13581 insn->dst_reg, 13582 shift); 13583 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13584 (1ULL << size * 8) - 1); 13585 } 13586 } 13587 13588 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13589 if (!new_prog) 13590 return -ENOMEM; 13591 13592 delta += cnt - 1; 13593 13594 /* keep walking new program and skip insns we just inserted */ 13595 env->prog = new_prog; 13596 insn = new_prog->insnsi + i + delta; 13597 } 13598 13599 return 0; 13600 } 13601 13602 static int jit_subprogs(struct bpf_verifier_env *env) 13603 { 13604 struct bpf_prog *prog = env->prog, **func, *tmp; 13605 int i, j, subprog_start, subprog_end = 0, len, subprog; 13606 struct bpf_map *map_ptr; 13607 struct bpf_insn *insn; 13608 void *old_bpf_func; 13609 int err, num_exentries; 13610 13611 if (env->subprog_cnt <= 1) 13612 return 0; 13613 13614 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13615 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13616 continue; 13617 13618 /* Upon error here we cannot fall back to interpreter but 13619 * need a hard reject of the program. Thus -EFAULT is 13620 * propagated in any case. 13621 */ 13622 subprog = find_subprog(env, i + insn->imm + 1); 13623 if (subprog < 0) { 13624 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13625 i + insn->imm + 1); 13626 return -EFAULT; 13627 } 13628 /* temporarily remember subprog id inside insn instead of 13629 * aux_data, since next loop will split up all insns into funcs 13630 */ 13631 insn->off = subprog; 13632 /* remember original imm in case JIT fails and fallback 13633 * to interpreter will be needed 13634 */ 13635 env->insn_aux_data[i].call_imm = insn->imm; 13636 /* point imm to __bpf_call_base+1 from JITs point of view */ 13637 insn->imm = 1; 13638 if (bpf_pseudo_func(insn)) 13639 /* jit (e.g. x86_64) may emit fewer instructions 13640 * if it learns a u32 imm is the same as a u64 imm. 13641 * Force a non zero here. 13642 */ 13643 insn[1].imm = 1; 13644 } 13645 13646 err = bpf_prog_alloc_jited_linfo(prog); 13647 if (err) 13648 goto out_undo_insn; 13649 13650 err = -ENOMEM; 13651 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13652 if (!func) 13653 goto out_undo_insn; 13654 13655 for (i = 0; i < env->subprog_cnt; i++) { 13656 subprog_start = subprog_end; 13657 subprog_end = env->subprog_info[i + 1].start; 13658 13659 len = subprog_end - subprog_start; 13660 /* bpf_prog_run() doesn't call subprogs directly, 13661 * hence main prog stats include the runtime of subprogs. 13662 * subprogs don't have IDs and not reachable via prog_get_next_id 13663 * func[i]->stats will never be accessed and stays NULL 13664 */ 13665 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13666 if (!func[i]) 13667 goto out_free; 13668 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13669 len * sizeof(struct bpf_insn)); 13670 func[i]->type = prog->type; 13671 func[i]->len = len; 13672 if (bpf_prog_calc_tag(func[i])) 13673 goto out_free; 13674 func[i]->is_func = 1; 13675 func[i]->aux->func_idx = i; 13676 /* Below members will be freed only at prog->aux */ 13677 func[i]->aux->btf = prog->aux->btf; 13678 func[i]->aux->func_info = prog->aux->func_info; 13679 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 13680 func[i]->aux->poke_tab = prog->aux->poke_tab; 13681 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13682 13683 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13684 struct bpf_jit_poke_descriptor *poke; 13685 13686 poke = &prog->aux->poke_tab[j]; 13687 if (poke->insn_idx < subprog_end && 13688 poke->insn_idx >= subprog_start) 13689 poke->aux = func[i]->aux; 13690 } 13691 13692 func[i]->aux->name[0] = 'F'; 13693 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13694 func[i]->jit_requested = 1; 13695 func[i]->blinding_requested = prog->blinding_requested; 13696 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13697 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13698 func[i]->aux->linfo = prog->aux->linfo; 13699 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13700 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13701 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13702 num_exentries = 0; 13703 insn = func[i]->insnsi; 13704 for (j = 0; j < func[i]->len; j++, insn++) { 13705 if (BPF_CLASS(insn->code) == BPF_LDX && 13706 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13707 num_exentries++; 13708 } 13709 func[i]->aux->num_exentries = num_exentries; 13710 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13711 func[i] = bpf_int_jit_compile(func[i]); 13712 if (!func[i]->jited) { 13713 err = -ENOTSUPP; 13714 goto out_free; 13715 } 13716 cond_resched(); 13717 } 13718 13719 /* at this point all bpf functions were successfully JITed 13720 * now populate all bpf_calls with correct addresses and 13721 * run last pass of JIT 13722 */ 13723 for (i = 0; i < env->subprog_cnt; i++) { 13724 insn = func[i]->insnsi; 13725 for (j = 0; j < func[i]->len; j++, insn++) { 13726 if (bpf_pseudo_func(insn)) { 13727 subprog = insn->off; 13728 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13729 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13730 continue; 13731 } 13732 if (!bpf_pseudo_call(insn)) 13733 continue; 13734 subprog = insn->off; 13735 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13736 } 13737 13738 /* we use the aux data to keep a list of the start addresses 13739 * of the JITed images for each function in the program 13740 * 13741 * for some architectures, such as powerpc64, the imm field 13742 * might not be large enough to hold the offset of the start 13743 * address of the callee's JITed image from __bpf_call_base 13744 * 13745 * in such cases, we can lookup the start address of a callee 13746 * by using its subprog id, available from the off field of 13747 * the call instruction, as an index for this list 13748 */ 13749 func[i]->aux->func = func; 13750 func[i]->aux->func_cnt = env->subprog_cnt; 13751 } 13752 for (i = 0; i < env->subprog_cnt; i++) { 13753 old_bpf_func = func[i]->bpf_func; 13754 tmp = bpf_int_jit_compile(func[i]); 13755 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13756 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13757 err = -ENOTSUPP; 13758 goto out_free; 13759 } 13760 cond_resched(); 13761 } 13762 13763 /* finally lock prog and jit images for all functions and 13764 * populate kallsysm 13765 */ 13766 for (i = 0; i < env->subprog_cnt; i++) { 13767 bpf_prog_lock_ro(func[i]); 13768 bpf_prog_kallsyms_add(func[i]); 13769 } 13770 13771 /* Last step: make now unused interpreter insns from main 13772 * prog consistent for later dump requests, so they can 13773 * later look the same as if they were interpreted only. 13774 */ 13775 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13776 if (bpf_pseudo_func(insn)) { 13777 insn[0].imm = env->insn_aux_data[i].call_imm; 13778 insn[1].imm = insn->off; 13779 insn->off = 0; 13780 continue; 13781 } 13782 if (!bpf_pseudo_call(insn)) 13783 continue; 13784 insn->off = env->insn_aux_data[i].call_imm; 13785 subprog = find_subprog(env, i + insn->off + 1); 13786 insn->imm = subprog; 13787 } 13788 13789 prog->jited = 1; 13790 prog->bpf_func = func[0]->bpf_func; 13791 prog->jited_len = func[0]->jited_len; 13792 prog->aux->func = func; 13793 prog->aux->func_cnt = env->subprog_cnt; 13794 bpf_prog_jit_attempt_done(prog); 13795 return 0; 13796 out_free: 13797 /* We failed JIT'ing, so at this point we need to unregister poke 13798 * descriptors from subprogs, so that kernel is not attempting to 13799 * patch it anymore as we're freeing the subprog JIT memory. 13800 */ 13801 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13802 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13803 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13804 } 13805 /* At this point we're guaranteed that poke descriptors are not 13806 * live anymore. We can just unlink its descriptor table as it's 13807 * released with the main prog. 13808 */ 13809 for (i = 0; i < env->subprog_cnt; i++) { 13810 if (!func[i]) 13811 continue; 13812 func[i]->aux->poke_tab = NULL; 13813 bpf_jit_free(func[i]); 13814 } 13815 kfree(func); 13816 out_undo_insn: 13817 /* cleanup main prog to be interpreted */ 13818 prog->jit_requested = 0; 13819 prog->blinding_requested = 0; 13820 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13821 if (!bpf_pseudo_call(insn)) 13822 continue; 13823 insn->off = 0; 13824 insn->imm = env->insn_aux_data[i].call_imm; 13825 } 13826 bpf_prog_jit_attempt_done(prog); 13827 return err; 13828 } 13829 13830 static int fixup_call_args(struct bpf_verifier_env *env) 13831 { 13832 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13833 struct bpf_prog *prog = env->prog; 13834 struct bpf_insn *insn = prog->insnsi; 13835 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13836 int i, depth; 13837 #endif 13838 int err = 0; 13839 13840 if (env->prog->jit_requested && 13841 !bpf_prog_is_dev_bound(env->prog->aux)) { 13842 err = jit_subprogs(env); 13843 if (err == 0) 13844 return 0; 13845 if (err == -EFAULT) 13846 return err; 13847 } 13848 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13849 if (has_kfunc_call) { 13850 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13851 return -EINVAL; 13852 } 13853 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13854 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13855 * have to be rejected, since interpreter doesn't support them yet. 13856 */ 13857 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13858 return -EINVAL; 13859 } 13860 for (i = 0; i < prog->len; i++, insn++) { 13861 if (bpf_pseudo_func(insn)) { 13862 /* When JIT fails the progs with callback calls 13863 * have to be rejected, since interpreter doesn't support them yet. 13864 */ 13865 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13866 return -EINVAL; 13867 } 13868 13869 if (!bpf_pseudo_call(insn)) 13870 continue; 13871 depth = get_callee_stack_depth(env, insn, i); 13872 if (depth < 0) 13873 return depth; 13874 bpf_patch_call_args(insn, depth); 13875 } 13876 err = 0; 13877 #endif 13878 return err; 13879 } 13880 13881 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13882 struct bpf_insn *insn) 13883 { 13884 const struct bpf_kfunc_desc *desc; 13885 13886 if (!insn->imm) { 13887 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13888 return -EINVAL; 13889 } 13890 13891 /* insn->imm has the btf func_id. Replace it with 13892 * an address (relative to __bpf_base_call). 13893 */ 13894 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13895 if (!desc) { 13896 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13897 insn->imm); 13898 return -EFAULT; 13899 } 13900 13901 insn->imm = desc->imm; 13902 13903 return 0; 13904 } 13905 13906 /* Do various post-verification rewrites in a single program pass. 13907 * These rewrites simplify JIT and interpreter implementations. 13908 */ 13909 static int do_misc_fixups(struct bpf_verifier_env *env) 13910 { 13911 struct bpf_prog *prog = env->prog; 13912 enum bpf_attach_type eatype = prog->expected_attach_type; 13913 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13914 struct bpf_insn *insn = prog->insnsi; 13915 const struct bpf_func_proto *fn; 13916 const int insn_cnt = prog->len; 13917 const struct bpf_map_ops *ops; 13918 struct bpf_insn_aux_data *aux; 13919 struct bpf_insn insn_buf[16]; 13920 struct bpf_prog *new_prog; 13921 struct bpf_map *map_ptr; 13922 int i, ret, cnt, delta = 0; 13923 13924 for (i = 0; i < insn_cnt; i++, insn++) { 13925 /* Make divide-by-zero exceptions impossible. */ 13926 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13927 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13928 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13929 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13930 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13931 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13932 struct bpf_insn *patchlet; 13933 struct bpf_insn chk_and_div[] = { 13934 /* [R,W]x div 0 -> 0 */ 13935 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13936 BPF_JNE | BPF_K, insn->src_reg, 13937 0, 2, 0), 13938 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13939 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13940 *insn, 13941 }; 13942 struct bpf_insn chk_and_mod[] = { 13943 /* [R,W]x mod 0 -> [R,W]x */ 13944 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13945 BPF_JEQ | BPF_K, insn->src_reg, 13946 0, 1 + (is64 ? 0 : 1), 0), 13947 *insn, 13948 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13949 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13950 }; 13951 13952 patchlet = isdiv ? chk_and_div : chk_and_mod; 13953 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13954 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13955 13956 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13957 if (!new_prog) 13958 return -ENOMEM; 13959 13960 delta += cnt - 1; 13961 env->prog = prog = new_prog; 13962 insn = new_prog->insnsi + i + delta; 13963 continue; 13964 } 13965 13966 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13967 if (BPF_CLASS(insn->code) == BPF_LD && 13968 (BPF_MODE(insn->code) == BPF_ABS || 13969 BPF_MODE(insn->code) == BPF_IND)) { 13970 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13971 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13972 verbose(env, "bpf verifier is misconfigured\n"); 13973 return -EINVAL; 13974 } 13975 13976 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13977 if (!new_prog) 13978 return -ENOMEM; 13979 13980 delta += cnt - 1; 13981 env->prog = prog = new_prog; 13982 insn = new_prog->insnsi + i + delta; 13983 continue; 13984 } 13985 13986 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13987 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13988 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13989 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13990 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13991 struct bpf_insn *patch = &insn_buf[0]; 13992 bool issrc, isneg, isimm; 13993 u32 off_reg; 13994 13995 aux = &env->insn_aux_data[i + delta]; 13996 if (!aux->alu_state || 13997 aux->alu_state == BPF_ALU_NON_POINTER) 13998 continue; 13999 14000 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 14001 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 14002 BPF_ALU_SANITIZE_SRC; 14003 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 14004 14005 off_reg = issrc ? insn->src_reg : insn->dst_reg; 14006 if (isimm) { 14007 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 14008 } else { 14009 if (isneg) 14010 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 14011 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 14012 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 14013 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 14014 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 14015 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 14016 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 14017 } 14018 if (!issrc) 14019 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 14020 insn->src_reg = BPF_REG_AX; 14021 if (isneg) 14022 insn->code = insn->code == code_add ? 14023 code_sub : code_add; 14024 *patch++ = *insn; 14025 if (issrc && isneg && !isimm) 14026 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 14027 cnt = patch - insn_buf; 14028 14029 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14030 if (!new_prog) 14031 return -ENOMEM; 14032 14033 delta += cnt - 1; 14034 env->prog = prog = new_prog; 14035 insn = new_prog->insnsi + i + delta; 14036 continue; 14037 } 14038 14039 if (insn->code != (BPF_JMP | BPF_CALL)) 14040 continue; 14041 if (insn->src_reg == BPF_PSEUDO_CALL) 14042 continue; 14043 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14044 ret = fixup_kfunc_call(env, insn); 14045 if (ret) 14046 return ret; 14047 continue; 14048 } 14049 14050 if (insn->imm == BPF_FUNC_get_route_realm) 14051 prog->dst_needed = 1; 14052 if (insn->imm == BPF_FUNC_get_prandom_u32) 14053 bpf_user_rnd_init_once(); 14054 if (insn->imm == BPF_FUNC_override_return) 14055 prog->kprobe_override = 1; 14056 if (insn->imm == BPF_FUNC_tail_call) { 14057 /* If we tail call into other programs, we 14058 * cannot make any assumptions since they can 14059 * be replaced dynamically during runtime in 14060 * the program array. 14061 */ 14062 prog->cb_access = 1; 14063 if (!allow_tail_call_in_subprogs(env)) 14064 prog->aux->stack_depth = MAX_BPF_STACK; 14065 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 14066 14067 /* mark bpf_tail_call as different opcode to avoid 14068 * conditional branch in the interpreter for every normal 14069 * call and to prevent accidental JITing by JIT compiler 14070 * that doesn't support bpf_tail_call yet 14071 */ 14072 insn->imm = 0; 14073 insn->code = BPF_JMP | BPF_TAIL_CALL; 14074 14075 aux = &env->insn_aux_data[i + delta]; 14076 if (env->bpf_capable && !prog->blinding_requested && 14077 prog->jit_requested && 14078 !bpf_map_key_poisoned(aux) && 14079 !bpf_map_ptr_poisoned(aux) && 14080 !bpf_map_ptr_unpriv(aux)) { 14081 struct bpf_jit_poke_descriptor desc = { 14082 .reason = BPF_POKE_REASON_TAIL_CALL, 14083 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 14084 .tail_call.key = bpf_map_key_immediate(aux), 14085 .insn_idx = i + delta, 14086 }; 14087 14088 ret = bpf_jit_add_poke_descriptor(prog, &desc); 14089 if (ret < 0) { 14090 verbose(env, "adding tail call poke descriptor failed\n"); 14091 return ret; 14092 } 14093 14094 insn->imm = ret + 1; 14095 continue; 14096 } 14097 14098 if (!bpf_map_ptr_unpriv(aux)) 14099 continue; 14100 14101 /* instead of changing every JIT dealing with tail_call 14102 * emit two extra insns: 14103 * if (index >= max_entries) goto out; 14104 * index &= array->index_mask; 14105 * to avoid out-of-bounds cpu speculation 14106 */ 14107 if (bpf_map_ptr_poisoned(aux)) { 14108 verbose(env, "tail_call abusing map_ptr\n"); 14109 return -EINVAL; 14110 } 14111 14112 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14113 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 14114 map_ptr->max_entries, 2); 14115 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 14116 container_of(map_ptr, 14117 struct bpf_array, 14118 map)->index_mask); 14119 insn_buf[2] = *insn; 14120 cnt = 3; 14121 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14122 if (!new_prog) 14123 return -ENOMEM; 14124 14125 delta += cnt - 1; 14126 env->prog = prog = new_prog; 14127 insn = new_prog->insnsi + i + delta; 14128 continue; 14129 } 14130 14131 if (insn->imm == BPF_FUNC_timer_set_callback) { 14132 /* The verifier will process callback_fn as many times as necessary 14133 * with different maps and the register states prepared by 14134 * set_timer_callback_state will be accurate. 14135 * 14136 * The following use case is valid: 14137 * map1 is shared by prog1, prog2, prog3. 14138 * prog1 calls bpf_timer_init for some map1 elements 14139 * prog2 calls bpf_timer_set_callback for some map1 elements. 14140 * Those that were not bpf_timer_init-ed will return -EINVAL. 14141 * prog3 calls bpf_timer_start for some map1 elements. 14142 * Those that were not both bpf_timer_init-ed and 14143 * bpf_timer_set_callback-ed will return -EINVAL. 14144 */ 14145 struct bpf_insn ld_addrs[2] = { 14146 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 14147 }; 14148 14149 insn_buf[0] = ld_addrs[0]; 14150 insn_buf[1] = ld_addrs[1]; 14151 insn_buf[2] = *insn; 14152 cnt = 3; 14153 14154 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14155 if (!new_prog) 14156 return -ENOMEM; 14157 14158 delta += cnt - 1; 14159 env->prog = prog = new_prog; 14160 insn = new_prog->insnsi + i + delta; 14161 goto patch_call_imm; 14162 } 14163 14164 if (insn->imm == BPF_FUNC_task_storage_get || 14165 insn->imm == BPF_FUNC_sk_storage_get || 14166 insn->imm == BPF_FUNC_inode_storage_get) { 14167 if (env->prog->aux->sleepable) 14168 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14169 else 14170 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14171 insn_buf[1] = *insn; 14172 cnt = 2; 14173 14174 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14175 if (!new_prog) 14176 return -ENOMEM; 14177 14178 delta += cnt - 1; 14179 env->prog = prog = new_prog; 14180 insn = new_prog->insnsi + i + delta; 14181 goto patch_call_imm; 14182 } 14183 14184 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14185 * and other inlining handlers are currently limited to 64 bit 14186 * only. 14187 */ 14188 if (prog->jit_requested && BITS_PER_LONG == 64 && 14189 (insn->imm == BPF_FUNC_map_lookup_elem || 14190 insn->imm == BPF_FUNC_map_update_elem || 14191 insn->imm == BPF_FUNC_map_delete_elem || 14192 insn->imm == BPF_FUNC_map_push_elem || 14193 insn->imm == BPF_FUNC_map_pop_elem || 14194 insn->imm == BPF_FUNC_map_peek_elem || 14195 insn->imm == BPF_FUNC_redirect_map || 14196 insn->imm == BPF_FUNC_for_each_map_elem || 14197 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14198 aux = &env->insn_aux_data[i + delta]; 14199 if (bpf_map_ptr_poisoned(aux)) 14200 goto patch_call_imm; 14201 14202 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14203 ops = map_ptr->ops; 14204 if (insn->imm == BPF_FUNC_map_lookup_elem && 14205 ops->map_gen_lookup) { 14206 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14207 if (cnt == -EOPNOTSUPP) 14208 goto patch_map_ops_generic; 14209 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14210 verbose(env, "bpf verifier is misconfigured\n"); 14211 return -EINVAL; 14212 } 14213 14214 new_prog = bpf_patch_insn_data(env, i + delta, 14215 insn_buf, cnt); 14216 if (!new_prog) 14217 return -ENOMEM; 14218 14219 delta += cnt - 1; 14220 env->prog = prog = new_prog; 14221 insn = new_prog->insnsi + i + delta; 14222 continue; 14223 } 14224 14225 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14226 (void *(*)(struct bpf_map *map, void *key))NULL)); 14227 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14228 (int (*)(struct bpf_map *map, void *key))NULL)); 14229 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14230 (int (*)(struct bpf_map *map, void *key, void *value, 14231 u64 flags))NULL)); 14232 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14233 (int (*)(struct bpf_map *map, void *value, 14234 u64 flags))NULL)); 14235 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14236 (int (*)(struct bpf_map *map, void *value))NULL)); 14237 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14238 (int (*)(struct bpf_map *map, void *value))NULL)); 14239 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14240 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14241 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14242 (int (*)(struct bpf_map *map, 14243 bpf_callback_t callback_fn, 14244 void *callback_ctx, 14245 u64 flags))NULL)); 14246 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14247 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14248 14249 patch_map_ops_generic: 14250 switch (insn->imm) { 14251 case BPF_FUNC_map_lookup_elem: 14252 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14253 continue; 14254 case BPF_FUNC_map_update_elem: 14255 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14256 continue; 14257 case BPF_FUNC_map_delete_elem: 14258 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14259 continue; 14260 case BPF_FUNC_map_push_elem: 14261 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14262 continue; 14263 case BPF_FUNC_map_pop_elem: 14264 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14265 continue; 14266 case BPF_FUNC_map_peek_elem: 14267 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14268 continue; 14269 case BPF_FUNC_redirect_map: 14270 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14271 continue; 14272 case BPF_FUNC_for_each_map_elem: 14273 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14274 continue; 14275 case BPF_FUNC_map_lookup_percpu_elem: 14276 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14277 continue; 14278 } 14279 14280 goto patch_call_imm; 14281 } 14282 14283 /* Implement bpf_jiffies64 inline. */ 14284 if (prog->jit_requested && BITS_PER_LONG == 64 && 14285 insn->imm == BPF_FUNC_jiffies64) { 14286 struct bpf_insn ld_jiffies_addr[2] = { 14287 BPF_LD_IMM64(BPF_REG_0, 14288 (unsigned long)&jiffies), 14289 }; 14290 14291 insn_buf[0] = ld_jiffies_addr[0]; 14292 insn_buf[1] = ld_jiffies_addr[1]; 14293 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14294 BPF_REG_0, 0); 14295 cnt = 3; 14296 14297 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14298 cnt); 14299 if (!new_prog) 14300 return -ENOMEM; 14301 14302 delta += cnt - 1; 14303 env->prog = prog = new_prog; 14304 insn = new_prog->insnsi + i + delta; 14305 continue; 14306 } 14307 14308 /* Implement bpf_get_func_arg inline. */ 14309 if (prog_type == BPF_PROG_TYPE_TRACING && 14310 insn->imm == BPF_FUNC_get_func_arg) { 14311 /* Load nr_args from ctx - 8 */ 14312 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14313 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14314 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14315 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14316 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14317 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14318 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14319 insn_buf[7] = BPF_JMP_A(1); 14320 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14321 cnt = 9; 14322 14323 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14324 if (!new_prog) 14325 return -ENOMEM; 14326 14327 delta += cnt - 1; 14328 env->prog = prog = new_prog; 14329 insn = new_prog->insnsi + i + delta; 14330 continue; 14331 } 14332 14333 /* Implement bpf_get_func_ret inline. */ 14334 if (prog_type == BPF_PROG_TYPE_TRACING && 14335 insn->imm == BPF_FUNC_get_func_ret) { 14336 if (eatype == BPF_TRACE_FEXIT || 14337 eatype == BPF_MODIFY_RETURN) { 14338 /* Load nr_args from ctx - 8 */ 14339 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14340 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14341 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14342 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14343 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14344 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14345 cnt = 6; 14346 } else { 14347 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14348 cnt = 1; 14349 } 14350 14351 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14352 if (!new_prog) 14353 return -ENOMEM; 14354 14355 delta += cnt - 1; 14356 env->prog = prog = new_prog; 14357 insn = new_prog->insnsi + i + delta; 14358 continue; 14359 } 14360 14361 /* Implement get_func_arg_cnt inline. */ 14362 if (prog_type == BPF_PROG_TYPE_TRACING && 14363 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14364 /* Load nr_args from ctx - 8 */ 14365 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14366 14367 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14368 if (!new_prog) 14369 return -ENOMEM; 14370 14371 env->prog = prog = new_prog; 14372 insn = new_prog->insnsi + i + delta; 14373 continue; 14374 } 14375 14376 /* Implement bpf_get_func_ip inline. */ 14377 if (prog_type == BPF_PROG_TYPE_TRACING && 14378 insn->imm == BPF_FUNC_get_func_ip) { 14379 /* Load IP address from ctx - 16 */ 14380 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14381 14382 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14383 if (!new_prog) 14384 return -ENOMEM; 14385 14386 env->prog = prog = new_prog; 14387 insn = new_prog->insnsi + i + delta; 14388 continue; 14389 } 14390 14391 patch_call_imm: 14392 fn = env->ops->get_func_proto(insn->imm, env->prog); 14393 /* all functions that have prototype and verifier allowed 14394 * programs to call them, must be real in-kernel functions 14395 */ 14396 if (!fn->func) { 14397 verbose(env, 14398 "kernel subsystem misconfigured func %s#%d\n", 14399 func_id_name(insn->imm), insn->imm); 14400 return -EFAULT; 14401 } 14402 insn->imm = fn->func - __bpf_call_base; 14403 } 14404 14405 /* Since poke tab is now finalized, publish aux to tracker. */ 14406 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14407 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14408 if (!map_ptr->ops->map_poke_track || 14409 !map_ptr->ops->map_poke_untrack || 14410 !map_ptr->ops->map_poke_run) { 14411 verbose(env, "bpf verifier is misconfigured\n"); 14412 return -EINVAL; 14413 } 14414 14415 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14416 if (ret < 0) { 14417 verbose(env, "tracking tail call prog failed\n"); 14418 return ret; 14419 } 14420 } 14421 14422 sort_kfunc_descs_by_imm(env->prog); 14423 14424 return 0; 14425 } 14426 14427 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 14428 int position, 14429 s32 stack_base, 14430 u32 callback_subprogno, 14431 u32 *cnt) 14432 { 14433 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 14434 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 14435 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 14436 int reg_loop_max = BPF_REG_6; 14437 int reg_loop_cnt = BPF_REG_7; 14438 int reg_loop_ctx = BPF_REG_8; 14439 14440 struct bpf_prog *new_prog; 14441 u32 callback_start; 14442 u32 call_insn_offset; 14443 s32 callback_offset; 14444 14445 /* This represents an inlined version of bpf_iter.c:bpf_loop, 14446 * be careful to modify this code in sync. 14447 */ 14448 struct bpf_insn insn_buf[] = { 14449 /* Return error and jump to the end of the patch if 14450 * expected number of iterations is too big. 14451 */ 14452 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 14453 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 14454 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 14455 /* spill R6, R7, R8 to use these as loop vars */ 14456 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 14457 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 14458 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 14459 /* initialize loop vars */ 14460 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 14461 BPF_MOV32_IMM(reg_loop_cnt, 0), 14462 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 14463 /* loop header, 14464 * if reg_loop_cnt >= reg_loop_max skip the loop body 14465 */ 14466 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 14467 /* callback call, 14468 * correct callback offset would be set after patching 14469 */ 14470 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 14471 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 14472 BPF_CALL_REL(0), 14473 /* increment loop counter */ 14474 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 14475 /* jump to loop header if callback returned 0 */ 14476 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 14477 /* return value of bpf_loop, 14478 * set R0 to the number of iterations 14479 */ 14480 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 14481 /* restore original values of R6, R7, R8 */ 14482 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 14483 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 14484 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 14485 }; 14486 14487 *cnt = ARRAY_SIZE(insn_buf); 14488 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 14489 if (!new_prog) 14490 return new_prog; 14491 14492 /* callback start is known only after patching */ 14493 callback_start = env->subprog_info[callback_subprogno].start; 14494 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 14495 call_insn_offset = position + 12; 14496 callback_offset = callback_start - call_insn_offset - 1; 14497 new_prog->insnsi[call_insn_offset].imm = callback_offset; 14498 14499 return new_prog; 14500 } 14501 14502 static bool is_bpf_loop_call(struct bpf_insn *insn) 14503 { 14504 return insn->code == (BPF_JMP | BPF_CALL) && 14505 insn->src_reg == 0 && 14506 insn->imm == BPF_FUNC_loop; 14507 } 14508 14509 /* For all sub-programs in the program (including main) check 14510 * insn_aux_data to see if there are bpf_loop calls that require 14511 * inlining. If such calls are found the calls are replaced with a 14512 * sequence of instructions produced by `inline_bpf_loop` function and 14513 * subprog stack_depth is increased by the size of 3 registers. 14514 * This stack space is used to spill values of the R6, R7, R8. These 14515 * registers are used to store the loop bound, counter and context 14516 * variables. 14517 */ 14518 static int optimize_bpf_loop(struct bpf_verifier_env *env) 14519 { 14520 struct bpf_subprog_info *subprogs = env->subprog_info; 14521 int i, cur_subprog = 0, cnt, delta = 0; 14522 struct bpf_insn *insn = env->prog->insnsi; 14523 int insn_cnt = env->prog->len; 14524 u16 stack_depth = subprogs[cur_subprog].stack_depth; 14525 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14526 u16 stack_depth_extra = 0; 14527 14528 for (i = 0; i < insn_cnt; i++, insn++) { 14529 struct bpf_loop_inline_state *inline_state = 14530 &env->insn_aux_data[i + delta].loop_inline_state; 14531 14532 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 14533 struct bpf_prog *new_prog; 14534 14535 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 14536 new_prog = inline_bpf_loop(env, 14537 i + delta, 14538 -(stack_depth + stack_depth_extra), 14539 inline_state->callback_subprogno, 14540 &cnt); 14541 if (!new_prog) 14542 return -ENOMEM; 14543 14544 delta += cnt - 1; 14545 env->prog = new_prog; 14546 insn = new_prog->insnsi + i + delta; 14547 } 14548 14549 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 14550 subprogs[cur_subprog].stack_depth += stack_depth_extra; 14551 cur_subprog++; 14552 stack_depth = subprogs[cur_subprog].stack_depth; 14553 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14554 stack_depth_extra = 0; 14555 } 14556 } 14557 14558 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14559 14560 return 0; 14561 } 14562 14563 static void free_states(struct bpf_verifier_env *env) 14564 { 14565 struct bpf_verifier_state_list *sl, *sln; 14566 int i; 14567 14568 sl = env->free_list; 14569 while (sl) { 14570 sln = sl->next; 14571 free_verifier_state(&sl->state, false); 14572 kfree(sl); 14573 sl = sln; 14574 } 14575 env->free_list = NULL; 14576 14577 if (!env->explored_states) 14578 return; 14579 14580 for (i = 0; i < state_htab_size(env); i++) { 14581 sl = env->explored_states[i]; 14582 14583 while (sl) { 14584 sln = sl->next; 14585 free_verifier_state(&sl->state, false); 14586 kfree(sl); 14587 sl = sln; 14588 } 14589 env->explored_states[i] = NULL; 14590 } 14591 } 14592 14593 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14594 { 14595 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14596 struct bpf_verifier_state *state; 14597 struct bpf_reg_state *regs; 14598 int ret, i; 14599 14600 env->prev_linfo = NULL; 14601 env->pass_cnt++; 14602 14603 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14604 if (!state) 14605 return -ENOMEM; 14606 state->curframe = 0; 14607 state->speculative = false; 14608 state->branches = 1; 14609 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14610 if (!state->frame[0]) { 14611 kfree(state); 14612 return -ENOMEM; 14613 } 14614 env->cur_state = state; 14615 init_func_state(env, state->frame[0], 14616 BPF_MAIN_FUNC /* callsite */, 14617 0 /* frameno */, 14618 subprog); 14619 14620 regs = state->frame[state->curframe]->regs; 14621 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14622 ret = btf_prepare_func_args(env, subprog, regs); 14623 if (ret) 14624 goto out; 14625 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14626 if (regs[i].type == PTR_TO_CTX) 14627 mark_reg_known_zero(env, regs, i); 14628 else if (regs[i].type == SCALAR_VALUE) 14629 mark_reg_unknown(env, regs, i); 14630 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14631 const u32 mem_size = regs[i].mem_size; 14632 14633 mark_reg_known_zero(env, regs, i); 14634 regs[i].mem_size = mem_size; 14635 regs[i].id = ++env->id_gen; 14636 } 14637 } 14638 } else { 14639 /* 1st arg to a function */ 14640 regs[BPF_REG_1].type = PTR_TO_CTX; 14641 mark_reg_known_zero(env, regs, BPF_REG_1); 14642 ret = btf_check_subprog_arg_match(env, subprog, regs); 14643 if (ret == -EFAULT) 14644 /* unlikely verifier bug. abort. 14645 * ret == 0 and ret < 0 are sadly acceptable for 14646 * main() function due to backward compatibility. 14647 * Like socket filter program may be written as: 14648 * int bpf_prog(struct pt_regs *ctx) 14649 * and never dereference that ctx in the program. 14650 * 'struct pt_regs' is a type mismatch for socket 14651 * filter that should be using 'struct __sk_buff'. 14652 */ 14653 goto out; 14654 } 14655 14656 ret = do_check(env); 14657 out: 14658 /* check for NULL is necessary, since cur_state can be freed inside 14659 * do_check() under memory pressure. 14660 */ 14661 if (env->cur_state) { 14662 free_verifier_state(env->cur_state, true); 14663 env->cur_state = NULL; 14664 } 14665 while (!pop_stack(env, NULL, NULL, false)); 14666 if (!ret && pop_log) 14667 bpf_vlog_reset(&env->log, 0); 14668 free_states(env); 14669 return ret; 14670 } 14671 14672 /* Verify all global functions in a BPF program one by one based on their BTF. 14673 * All global functions must pass verification. Otherwise the whole program is rejected. 14674 * Consider: 14675 * int bar(int); 14676 * int foo(int f) 14677 * { 14678 * return bar(f); 14679 * } 14680 * int bar(int b) 14681 * { 14682 * ... 14683 * } 14684 * foo() will be verified first for R1=any_scalar_value. During verification it 14685 * will be assumed that bar() already verified successfully and call to bar() 14686 * from foo() will be checked for type match only. Later bar() will be verified 14687 * independently to check that it's safe for R1=any_scalar_value. 14688 */ 14689 static int do_check_subprogs(struct bpf_verifier_env *env) 14690 { 14691 struct bpf_prog_aux *aux = env->prog->aux; 14692 int i, ret; 14693 14694 if (!aux->func_info) 14695 return 0; 14696 14697 for (i = 1; i < env->subprog_cnt; i++) { 14698 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14699 continue; 14700 env->insn_idx = env->subprog_info[i].start; 14701 WARN_ON_ONCE(env->insn_idx == 0); 14702 ret = do_check_common(env, i); 14703 if (ret) { 14704 return ret; 14705 } else if (env->log.level & BPF_LOG_LEVEL) { 14706 verbose(env, 14707 "Func#%d is safe for any args that match its prototype\n", 14708 i); 14709 } 14710 } 14711 return 0; 14712 } 14713 14714 static int do_check_main(struct bpf_verifier_env *env) 14715 { 14716 int ret; 14717 14718 env->insn_idx = 0; 14719 ret = do_check_common(env, 0); 14720 if (!ret) 14721 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14722 return ret; 14723 } 14724 14725 14726 static void print_verification_stats(struct bpf_verifier_env *env) 14727 { 14728 int i; 14729 14730 if (env->log.level & BPF_LOG_STATS) { 14731 verbose(env, "verification time %lld usec\n", 14732 div_u64(env->verification_time, 1000)); 14733 verbose(env, "stack depth "); 14734 for (i = 0; i < env->subprog_cnt; i++) { 14735 u32 depth = env->subprog_info[i].stack_depth; 14736 14737 verbose(env, "%d", depth); 14738 if (i + 1 < env->subprog_cnt) 14739 verbose(env, "+"); 14740 } 14741 verbose(env, "\n"); 14742 } 14743 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14744 "total_states %d peak_states %d mark_read %d\n", 14745 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14746 env->max_states_per_insn, env->total_states, 14747 env->peak_states, env->longest_mark_read_walk); 14748 } 14749 14750 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14751 { 14752 const struct btf_type *t, *func_proto; 14753 const struct bpf_struct_ops *st_ops; 14754 const struct btf_member *member; 14755 struct bpf_prog *prog = env->prog; 14756 u32 btf_id, member_idx; 14757 const char *mname; 14758 14759 if (!prog->gpl_compatible) { 14760 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14761 return -EINVAL; 14762 } 14763 14764 btf_id = prog->aux->attach_btf_id; 14765 st_ops = bpf_struct_ops_find(btf_id); 14766 if (!st_ops) { 14767 verbose(env, "attach_btf_id %u is not a supported struct\n", 14768 btf_id); 14769 return -ENOTSUPP; 14770 } 14771 14772 t = st_ops->type; 14773 member_idx = prog->expected_attach_type; 14774 if (member_idx >= btf_type_vlen(t)) { 14775 verbose(env, "attach to invalid member idx %u of struct %s\n", 14776 member_idx, st_ops->name); 14777 return -EINVAL; 14778 } 14779 14780 member = &btf_type_member(t)[member_idx]; 14781 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14782 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14783 NULL); 14784 if (!func_proto) { 14785 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14786 mname, member_idx, st_ops->name); 14787 return -EINVAL; 14788 } 14789 14790 if (st_ops->check_member) { 14791 int err = st_ops->check_member(t, member); 14792 14793 if (err) { 14794 verbose(env, "attach to unsupported member %s of struct %s\n", 14795 mname, st_ops->name); 14796 return err; 14797 } 14798 } 14799 14800 prog->aux->attach_func_proto = func_proto; 14801 prog->aux->attach_func_name = mname; 14802 env->ops = st_ops->verifier_ops; 14803 14804 return 0; 14805 } 14806 #define SECURITY_PREFIX "security_" 14807 14808 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14809 { 14810 if (within_error_injection_list(addr) || 14811 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14812 return 0; 14813 14814 return -EINVAL; 14815 } 14816 14817 /* list of non-sleepable functions that are otherwise on 14818 * ALLOW_ERROR_INJECTION list 14819 */ 14820 BTF_SET_START(btf_non_sleepable_error_inject) 14821 /* Three functions below can be called from sleepable and non-sleepable context. 14822 * Assume non-sleepable from bpf safety point of view. 14823 */ 14824 BTF_ID(func, __filemap_add_folio) 14825 BTF_ID(func, should_fail_alloc_page) 14826 BTF_ID(func, should_failslab) 14827 BTF_SET_END(btf_non_sleepable_error_inject) 14828 14829 static int check_non_sleepable_error_inject(u32 btf_id) 14830 { 14831 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14832 } 14833 14834 int bpf_check_attach_target(struct bpf_verifier_log *log, 14835 const struct bpf_prog *prog, 14836 const struct bpf_prog *tgt_prog, 14837 u32 btf_id, 14838 struct bpf_attach_target_info *tgt_info) 14839 { 14840 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14841 const char prefix[] = "btf_trace_"; 14842 int ret = 0, subprog = -1, i; 14843 const struct btf_type *t; 14844 bool conservative = true; 14845 const char *tname; 14846 struct btf *btf; 14847 long addr = 0; 14848 14849 if (!btf_id) { 14850 bpf_log(log, "Tracing programs must provide btf_id\n"); 14851 return -EINVAL; 14852 } 14853 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14854 if (!btf) { 14855 bpf_log(log, 14856 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14857 return -EINVAL; 14858 } 14859 t = btf_type_by_id(btf, btf_id); 14860 if (!t) { 14861 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14862 return -EINVAL; 14863 } 14864 tname = btf_name_by_offset(btf, t->name_off); 14865 if (!tname) { 14866 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14867 return -EINVAL; 14868 } 14869 if (tgt_prog) { 14870 struct bpf_prog_aux *aux = tgt_prog->aux; 14871 14872 for (i = 0; i < aux->func_info_cnt; i++) 14873 if (aux->func_info[i].type_id == btf_id) { 14874 subprog = i; 14875 break; 14876 } 14877 if (subprog == -1) { 14878 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14879 return -EINVAL; 14880 } 14881 conservative = aux->func_info_aux[subprog].unreliable; 14882 if (prog_extension) { 14883 if (conservative) { 14884 bpf_log(log, 14885 "Cannot replace static functions\n"); 14886 return -EINVAL; 14887 } 14888 if (!prog->jit_requested) { 14889 bpf_log(log, 14890 "Extension programs should be JITed\n"); 14891 return -EINVAL; 14892 } 14893 } 14894 if (!tgt_prog->jited) { 14895 bpf_log(log, "Can attach to only JITed progs\n"); 14896 return -EINVAL; 14897 } 14898 if (tgt_prog->type == prog->type) { 14899 /* Cannot fentry/fexit another fentry/fexit program. 14900 * Cannot attach program extension to another extension. 14901 * It's ok to attach fentry/fexit to extension program. 14902 */ 14903 bpf_log(log, "Cannot recursively attach\n"); 14904 return -EINVAL; 14905 } 14906 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14907 prog_extension && 14908 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14909 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14910 /* Program extensions can extend all program types 14911 * except fentry/fexit. The reason is the following. 14912 * The fentry/fexit programs are used for performance 14913 * analysis, stats and can be attached to any program 14914 * type except themselves. When extension program is 14915 * replacing XDP function it is necessary to allow 14916 * performance analysis of all functions. Both original 14917 * XDP program and its program extension. Hence 14918 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14919 * allowed. If extending of fentry/fexit was allowed it 14920 * would be possible to create long call chain 14921 * fentry->extension->fentry->extension beyond 14922 * reasonable stack size. Hence extending fentry is not 14923 * allowed. 14924 */ 14925 bpf_log(log, "Cannot extend fentry/fexit\n"); 14926 return -EINVAL; 14927 } 14928 } else { 14929 if (prog_extension) { 14930 bpf_log(log, "Cannot replace kernel functions\n"); 14931 return -EINVAL; 14932 } 14933 } 14934 14935 switch (prog->expected_attach_type) { 14936 case BPF_TRACE_RAW_TP: 14937 if (tgt_prog) { 14938 bpf_log(log, 14939 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14940 return -EINVAL; 14941 } 14942 if (!btf_type_is_typedef(t)) { 14943 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14944 btf_id); 14945 return -EINVAL; 14946 } 14947 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14948 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14949 btf_id, tname); 14950 return -EINVAL; 14951 } 14952 tname += sizeof(prefix) - 1; 14953 t = btf_type_by_id(btf, t->type); 14954 if (!btf_type_is_ptr(t)) 14955 /* should never happen in valid vmlinux build */ 14956 return -EINVAL; 14957 t = btf_type_by_id(btf, t->type); 14958 if (!btf_type_is_func_proto(t)) 14959 /* should never happen in valid vmlinux build */ 14960 return -EINVAL; 14961 14962 break; 14963 case BPF_TRACE_ITER: 14964 if (!btf_type_is_func(t)) { 14965 bpf_log(log, "attach_btf_id %u is not a function\n", 14966 btf_id); 14967 return -EINVAL; 14968 } 14969 t = btf_type_by_id(btf, t->type); 14970 if (!btf_type_is_func_proto(t)) 14971 return -EINVAL; 14972 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14973 if (ret) 14974 return ret; 14975 break; 14976 default: 14977 if (!prog_extension) 14978 return -EINVAL; 14979 fallthrough; 14980 case BPF_MODIFY_RETURN: 14981 case BPF_LSM_MAC: 14982 case BPF_LSM_CGROUP: 14983 case BPF_TRACE_FENTRY: 14984 case BPF_TRACE_FEXIT: 14985 if (!btf_type_is_func(t)) { 14986 bpf_log(log, "attach_btf_id %u is not a function\n", 14987 btf_id); 14988 return -EINVAL; 14989 } 14990 if (prog_extension && 14991 btf_check_type_match(log, prog, btf, t)) 14992 return -EINVAL; 14993 t = btf_type_by_id(btf, t->type); 14994 if (!btf_type_is_func_proto(t)) 14995 return -EINVAL; 14996 14997 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14998 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14999 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 15000 return -EINVAL; 15001 15002 if (tgt_prog && conservative) 15003 t = NULL; 15004 15005 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 15006 if (ret < 0) 15007 return ret; 15008 15009 if (tgt_prog) { 15010 if (subprog == 0) 15011 addr = (long) tgt_prog->bpf_func; 15012 else 15013 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 15014 } else { 15015 addr = kallsyms_lookup_name(tname); 15016 if (!addr) { 15017 bpf_log(log, 15018 "The address of function %s cannot be found\n", 15019 tname); 15020 return -ENOENT; 15021 } 15022 } 15023 15024 if (prog->aux->sleepable) { 15025 ret = -EINVAL; 15026 switch (prog->type) { 15027 case BPF_PROG_TYPE_TRACING: 15028 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 15029 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 15030 */ 15031 if (!check_non_sleepable_error_inject(btf_id) && 15032 within_error_injection_list(addr)) 15033 ret = 0; 15034 break; 15035 case BPF_PROG_TYPE_LSM: 15036 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 15037 * Only some of them are sleepable. 15038 */ 15039 if (bpf_lsm_is_sleepable_hook(btf_id)) 15040 ret = 0; 15041 break; 15042 default: 15043 break; 15044 } 15045 if (ret) { 15046 bpf_log(log, "%s is not sleepable\n", tname); 15047 return ret; 15048 } 15049 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 15050 if (tgt_prog) { 15051 bpf_log(log, "can't modify return codes of BPF programs\n"); 15052 return -EINVAL; 15053 } 15054 ret = check_attach_modify_return(addr, tname); 15055 if (ret) { 15056 bpf_log(log, "%s() is not modifiable\n", tname); 15057 return ret; 15058 } 15059 } 15060 15061 break; 15062 } 15063 tgt_info->tgt_addr = addr; 15064 tgt_info->tgt_name = tname; 15065 tgt_info->tgt_type = t; 15066 return 0; 15067 } 15068 15069 BTF_SET_START(btf_id_deny) 15070 BTF_ID_UNUSED 15071 #ifdef CONFIG_SMP 15072 BTF_ID(func, migrate_disable) 15073 BTF_ID(func, migrate_enable) 15074 #endif 15075 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 15076 BTF_ID(func, rcu_read_unlock_strict) 15077 #endif 15078 BTF_SET_END(btf_id_deny) 15079 15080 static int check_attach_btf_id(struct bpf_verifier_env *env) 15081 { 15082 struct bpf_prog *prog = env->prog; 15083 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 15084 struct bpf_attach_target_info tgt_info = {}; 15085 u32 btf_id = prog->aux->attach_btf_id; 15086 struct bpf_trampoline *tr; 15087 int ret; 15088 u64 key; 15089 15090 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 15091 if (prog->aux->sleepable) 15092 /* attach_btf_id checked to be zero already */ 15093 return 0; 15094 verbose(env, "Syscall programs can only be sleepable\n"); 15095 return -EINVAL; 15096 } 15097 15098 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 15099 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 15100 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 15101 return -EINVAL; 15102 } 15103 15104 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 15105 return check_struct_ops_btf_id(env); 15106 15107 if (prog->type != BPF_PROG_TYPE_TRACING && 15108 prog->type != BPF_PROG_TYPE_LSM && 15109 prog->type != BPF_PROG_TYPE_EXT) 15110 return 0; 15111 15112 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 15113 if (ret) 15114 return ret; 15115 15116 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 15117 /* to make freplace equivalent to their targets, they need to 15118 * inherit env->ops and expected_attach_type for the rest of the 15119 * verification 15120 */ 15121 env->ops = bpf_verifier_ops[tgt_prog->type]; 15122 prog->expected_attach_type = tgt_prog->expected_attach_type; 15123 } 15124 15125 /* store info about the attachment target that will be used later */ 15126 prog->aux->attach_func_proto = tgt_info.tgt_type; 15127 prog->aux->attach_func_name = tgt_info.tgt_name; 15128 15129 if (tgt_prog) { 15130 prog->aux->saved_dst_prog_type = tgt_prog->type; 15131 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 15132 } 15133 15134 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 15135 prog->aux->attach_btf_trace = true; 15136 return 0; 15137 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 15138 if (!bpf_iter_prog_supported(prog)) 15139 return -EINVAL; 15140 return 0; 15141 } 15142 15143 if (prog->type == BPF_PROG_TYPE_LSM) { 15144 ret = bpf_lsm_verify_prog(&env->log, prog); 15145 if (ret < 0) 15146 return ret; 15147 } else if (prog->type == BPF_PROG_TYPE_TRACING && 15148 btf_id_set_contains(&btf_id_deny, btf_id)) { 15149 return -EINVAL; 15150 } 15151 15152 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 15153 tr = bpf_trampoline_get(key, &tgt_info); 15154 if (!tr) 15155 return -ENOMEM; 15156 15157 prog->aux->dst_trampoline = tr; 15158 return 0; 15159 } 15160 15161 struct btf *bpf_get_btf_vmlinux(void) 15162 { 15163 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 15164 mutex_lock(&bpf_verifier_lock); 15165 if (!btf_vmlinux) 15166 btf_vmlinux = btf_parse_vmlinux(); 15167 mutex_unlock(&bpf_verifier_lock); 15168 } 15169 return btf_vmlinux; 15170 } 15171 15172 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 15173 { 15174 u64 start_time = ktime_get_ns(); 15175 struct bpf_verifier_env *env; 15176 struct bpf_verifier_log *log; 15177 int i, len, ret = -EINVAL; 15178 bool is_priv; 15179 15180 /* no program is valid */ 15181 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 15182 return -EINVAL; 15183 15184 /* 'struct bpf_verifier_env' can be global, but since it's not small, 15185 * allocate/free it every time bpf_check() is called 15186 */ 15187 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 15188 if (!env) 15189 return -ENOMEM; 15190 log = &env->log; 15191 15192 len = (*prog)->len; 15193 env->insn_aux_data = 15194 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 15195 ret = -ENOMEM; 15196 if (!env->insn_aux_data) 15197 goto err_free_env; 15198 for (i = 0; i < len; i++) 15199 env->insn_aux_data[i].orig_idx = i; 15200 env->prog = *prog; 15201 env->ops = bpf_verifier_ops[env->prog->type]; 15202 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 15203 is_priv = bpf_capable(); 15204 15205 bpf_get_btf_vmlinux(); 15206 15207 /* grab the mutex to protect few globals used by verifier */ 15208 if (!is_priv) 15209 mutex_lock(&bpf_verifier_lock); 15210 15211 if (attr->log_level || attr->log_buf || attr->log_size) { 15212 /* user requested verbose verifier output 15213 * and supplied buffer to store the verification trace 15214 */ 15215 log->level = attr->log_level; 15216 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 15217 log->len_total = attr->log_size; 15218 15219 /* log attributes have to be sane */ 15220 if (!bpf_verifier_log_attr_valid(log)) { 15221 ret = -EINVAL; 15222 goto err_unlock; 15223 } 15224 } 15225 15226 mark_verifier_state_clean(env); 15227 15228 if (IS_ERR(btf_vmlinux)) { 15229 /* Either gcc or pahole or kernel are broken. */ 15230 verbose(env, "in-kernel BTF is malformed\n"); 15231 ret = PTR_ERR(btf_vmlinux); 15232 goto skip_full_check; 15233 } 15234 15235 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 15236 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 15237 env->strict_alignment = true; 15238 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 15239 env->strict_alignment = false; 15240 15241 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 15242 env->allow_uninit_stack = bpf_allow_uninit_stack(); 15243 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 15244 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 15245 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 15246 env->bpf_capable = bpf_capable(); 15247 15248 if (is_priv) 15249 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 15250 15251 env->explored_states = kvcalloc(state_htab_size(env), 15252 sizeof(struct bpf_verifier_state_list *), 15253 GFP_USER); 15254 ret = -ENOMEM; 15255 if (!env->explored_states) 15256 goto skip_full_check; 15257 15258 ret = add_subprog_and_kfunc(env); 15259 if (ret < 0) 15260 goto skip_full_check; 15261 15262 ret = check_subprogs(env); 15263 if (ret < 0) 15264 goto skip_full_check; 15265 15266 ret = check_btf_info(env, attr, uattr); 15267 if (ret < 0) 15268 goto skip_full_check; 15269 15270 ret = check_attach_btf_id(env); 15271 if (ret) 15272 goto skip_full_check; 15273 15274 ret = resolve_pseudo_ldimm64(env); 15275 if (ret < 0) 15276 goto skip_full_check; 15277 15278 if (bpf_prog_is_dev_bound(env->prog->aux)) { 15279 ret = bpf_prog_offload_verifier_prep(env->prog); 15280 if (ret) 15281 goto skip_full_check; 15282 } 15283 15284 ret = check_cfg(env); 15285 if (ret < 0) 15286 goto skip_full_check; 15287 15288 ret = do_check_subprogs(env); 15289 ret = ret ?: do_check_main(env); 15290 15291 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15292 ret = bpf_prog_offload_finalize(env); 15293 15294 skip_full_check: 15295 kvfree(env->explored_states); 15296 15297 if (ret == 0) 15298 ret = check_max_stack_depth(env); 15299 15300 /* instruction rewrites happen after this point */ 15301 if (ret == 0) 15302 ret = optimize_bpf_loop(env); 15303 15304 if (is_priv) { 15305 if (ret == 0) 15306 opt_hard_wire_dead_code_branches(env); 15307 if (ret == 0) 15308 ret = opt_remove_dead_code(env); 15309 if (ret == 0) 15310 ret = opt_remove_nops(env); 15311 } else { 15312 if (ret == 0) 15313 sanitize_dead_code(env); 15314 } 15315 15316 if (ret == 0) 15317 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15318 ret = convert_ctx_accesses(env); 15319 15320 if (ret == 0) 15321 ret = do_misc_fixups(env); 15322 15323 /* do 32-bit optimization after insn patching has done so those patched 15324 * insns could be handled correctly. 15325 */ 15326 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15327 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15328 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15329 : false; 15330 } 15331 15332 if (ret == 0) 15333 ret = fixup_call_args(env); 15334 15335 env->verification_time = ktime_get_ns() - start_time; 15336 print_verification_stats(env); 15337 env->prog->aux->verified_insns = env->insn_processed; 15338 15339 if (log->level && bpf_verifier_log_full(log)) 15340 ret = -ENOSPC; 15341 if (log->level && !log->ubuf) { 15342 ret = -EFAULT; 15343 goto err_release_maps; 15344 } 15345 15346 if (ret) 15347 goto err_release_maps; 15348 15349 if (env->used_map_cnt) { 15350 /* if program passed verifier, update used_maps in bpf_prog_info */ 15351 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15352 sizeof(env->used_maps[0]), 15353 GFP_KERNEL); 15354 15355 if (!env->prog->aux->used_maps) { 15356 ret = -ENOMEM; 15357 goto err_release_maps; 15358 } 15359 15360 memcpy(env->prog->aux->used_maps, env->used_maps, 15361 sizeof(env->used_maps[0]) * env->used_map_cnt); 15362 env->prog->aux->used_map_cnt = env->used_map_cnt; 15363 } 15364 if (env->used_btf_cnt) { 15365 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15366 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15367 sizeof(env->used_btfs[0]), 15368 GFP_KERNEL); 15369 if (!env->prog->aux->used_btfs) { 15370 ret = -ENOMEM; 15371 goto err_release_maps; 15372 } 15373 15374 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15375 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15376 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15377 } 15378 if (env->used_map_cnt || env->used_btf_cnt) { 15379 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15380 * bpf_ld_imm64 instructions 15381 */ 15382 convert_pseudo_ld_imm64(env); 15383 } 15384 15385 adjust_btf_func(env); 15386 15387 err_release_maps: 15388 if (!env->prog->aux->used_maps) 15389 /* if we didn't copy map pointers into bpf_prog_info, release 15390 * them now. Otherwise free_used_maps() will release them. 15391 */ 15392 release_maps(env); 15393 if (!env->prog->aux->used_btfs) 15394 release_btfs(env); 15395 15396 /* extension progs temporarily inherit the attach_type of their targets 15397 for verification purposes, so set it back to zero before returning 15398 */ 15399 if (env->prog->type == BPF_PROG_TYPE_EXT) 15400 env->prog->expected_attach_type = 0; 15401 15402 *prog = env->prog; 15403 err_unlock: 15404 if (!is_priv) 15405 mutex_unlock(&bpf_verifier_lock); 15406 vfree(env->insn_aux_data); 15407 err_free_env: 15408 kfree(env); 15409 return ret; 15410 } 15411