1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 29 #include "disasm.h" 30 31 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 32 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 33 [_id] = & _name ## _verifier_ops, 34 #define BPF_MAP_TYPE(_id, _ops) 35 #define BPF_LINK_TYPE(_id, _name) 36 #include <linux/bpf_types.h> 37 #undef BPF_PROG_TYPE 38 #undef BPF_MAP_TYPE 39 #undef BPF_LINK_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all paths through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns either pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 /* length of verifier log at the time this state was pushed on stack */ 178 u32 log_pos; 179 }; 180 181 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 182 #define BPF_COMPLEXITY_LIMIT_STATES 64 183 184 #define BPF_MAP_KEY_POISON (1ULL << 63) 185 #define BPF_MAP_KEY_SEEN (1ULL << 62) 186 187 #define BPF_MAP_PTR_UNPRIV 1UL 188 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 189 POISON_POINTER_DELTA)) 190 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 191 192 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 193 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 195 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 196 static int ref_set_non_owning(struct bpf_verifier_env *env, 197 struct bpf_reg_state *reg); 198 static void specialize_kfunc(struct bpf_verifier_env *env, 199 u32 func_id, u16 offset, unsigned long *addr); 200 201 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 202 { 203 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 204 } 205 206 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 207 { 208 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 209 } 210 211 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 212 const struct bpf_map *map, bool unpriv) 213 { 214 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 215 unpriv |= bpf_map_ptr_unpriv(aux); 216 aux->map_ptr_state = (unsigned long)map | 217 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 218 } 219 220 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 221 { 222 return aux->map_key_state & BPF_MAP_KEY_POISON; 223 } 224 225 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 226 { 227 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 228 } 229 230 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 231 { 232 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 233 } 234 235 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 236 { 237 bool poisoned = bpf_map_key_poisoned(aux); 238 239 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 240 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 241 } 242 243 static bool bpf_helper_call(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_JMP | BPF_CALL) && 246 insn->src_reg == 0; 247 } 248 249 static bool bpf_pseudo_call(const struct bpf_insn *insn) 250 { 251 return insn->code == (BPF_JMP | BPF_CALL) && 252 insn->src_reg == BPF_PSEUDO_CALL; 253 } 254 255 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 256 { 257 return insn->code == (BPF_JMP | BPF_CALL) && 258 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 259 } 260 261 struct bpf_call_arg_meta { 262 struct bpf_map *map_ptr; 263 bool raw_mode; 264 bool pkt_access; 265 u8 release_regno; 266 int regno; 267 int access_size; 268 int mem_size; 269 u64 msize_max_value; 270 int ref_obj_id; 271 int dynptr_id; 272 int map_uid; 273 int func_id; 274 struct btf *btf; 275 u32 btf_id; 276 struct btf *ret_btf; 277 u32 ret_btf_id; 278 u32 subprogno; 279 struct btf_field *kptr_field; 280 }; 281 282 struct bpf_kfunc_call_arg_meta { 283 /* In parameters */ 284 struct btf *btf; 285 u32 func_id; 286 u32 kfunc_flags; 287 const struct btf_type *func_proto; 288 const char *func_name; 289 /* Out parameters */ 290 u32 ref_obj_id; 291 u8 release_regno; 292 bool r0_rdonly; 293 u32 ret_btf_id; 294 u64 r0_size; 295 u32 subprogno; 296 struct { 297 u64 value; 298 bool found; 299 } arg_constant; 300 301 /* arg_btf and arg_btf_id are used by kfunc-specific handling, 302 * generally to pass info about user-defined local kptr types to later 303 * verification logic 304 * bpf_obj_drop 305 * Record the local kptr type to be drop'd 306 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 307 * Record the local kptr type to be refcount_incr'd 308 */ 309 struct btf *arg_btf; 310 u32 arg_btf_id; 311 312 struct { 313 struct btf_field *field; 314 } arg_list_head; 315 struct { 316 struct btf_field *field; 317 } arg_rbtree_root; 318 struct { 319 enum bpf_dynptr_type type; 320 u32 id; 321 u32 ref_obj_id; 322 } initialized_dynptr; 323 struct { 324 u8 spi; 325 u8 frameno; 326 } iter; 327 u64 mem_size; 328 }; 329 330 struct btf *btf_vmlinux; 331 332 static DEFINE_MUTEX(bpf_verifier_lock); 333 334 static const struct bpf_line_info * 335 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 336 { 337 const struct bpf_line_info *linfo; 338 const struct bpf_prog *prog; 339 u32 i, nr_linfo; 340 341 prog = env->prog; 342 nr_linfo = prog->aux->nr_linfo; 343 344 if (!nr_linfo || insn_off >= prog->len) 345 return NULL; 346 347 linfo = prog->aux->linfo; 348 for (i = 1; i < nr_linfo; i++) 349 if (insn_off < linfo[i].insn_off) 350 break; 351 352 return &linfo[i - 1]; 353 } 354 355 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 356 { 357 struct bpf_verifier_env *env = private_data; 358 va_list args; 359 360 if (!bpf_verifier_log_needed(&env->log)) 361 return; 362 363 va_start(args, fmt); 364 bpf_verifier_vlog(&env->log, fmt, args); 365 va_end(args); 366 } 367 368 static const char *ltrim(const char *s) 369 { 370 while (isspace(*s)) 371 s++; 372 373 return s; 374 } 375 376 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 377 u32 insn_off, 378 const char *prefix_fmt, ...) 379 { 380 const struct bpf_line_info *linfo; 381 382 if (!bpf_verifier_log_needed(&env->log)) 383 return; 384 385 linfo = find_linfo(env, insn_off); 386 if (!linfo || linfo == env->prev_linfo) 387 return; 388 389 if (prefix_fmt) { 390 va_list args; 391 392 va_start(args, prefix_fmt); 393 bpf_verifier_vlog(&env->log, prefix_fmt, args); 394 va_end(args); 395 } 396 397 verbose(env, "%s\n", 398 ltrim(btf_name_by_offset(env->prog->aux->btf, 399 linfo->line_off))); 400 401 env->prev_linfo = linfo; 402 } 403 404 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 405 struct bpf_reg_state *reg, 406 struct tnum *range, const char *ctx, 407 const char *reg_name) 408 { 409 char tn_buf[48]; 410 411 verbose(env, "At %s the register %s ", ctx, reg_name); 412 if (!tnum_is_unknown(reg->var_off)) { 413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 414 verbose(env, "has value %s", tn_buf); 415 } else { 416 verbose(env, "has unknown scalar value"); 417 } 418 tnum_strn(tn_buf, sizeof(tn_buf), *range); 419 verbose(env, " should have been in %s\n", tn_buf); 420 } 421 422 static bool type_is_pkt_pointer(enum bpf_reg_type type) 423 { 424 type = base_type(type); 425 return type == PTR_TO_PACKET || 426 type == PTR_TO_PACKET_META; 427 } 428 429 static bool type_is_sk_pointer(enum bpf_reg_type type) 430 { 431 return type == PTR_TO_SOCKET || 432 type == PTR_TO_SOCK_COMMON || 433 type == PTR_TO_TCP_SOCK || 434 type == PTR_TO_XDP_SOCK; 435 } 436 437 static bool type_may_be_null(u32 type) 438 { 439 return type & PTR_MAYBE_NULL; 440 } 441 442 static bool reg_type_not_null(enum bpf_reg_type type) 443 { 444 if (type_may_be_null(type)) 445 return false; 446 447 type = base_type(type); 448 return type == PTR_TO_SOCKET || 449 type == PTR_TO_TCP_SOCK || 450 type == PTR_TO_MAP_VALUE || 451 type == PTR_TO_MAP_KEY || 452 type == PTR_TO_SOCK_COMMON || 453 type == PTR_TO_MEM; 454 } 455 456 static bool type_is_ptr_alloc_obj(u32 type) 457 { 458 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 459 } 460 461 static bool type_is_non_owning_ref(u32 type) 462 { 463 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 464 } 465 466 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 467 { 468 struct btf_record *rec = NULL; 469 struct btf_struct_meta *meta; 470 471 if (reg->type == PTR_TO_MAP_VALUE) { 472 rec = reg->map_ptr->record; 473 } else if (type_is_ptr_alloc_obj(reg->type)) { 474 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 475 if (meta) 476 rec = meta->record; 477 } 478 return rec; 479 } 480 481 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 482 { 483 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 484 485 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 486 } 487 488 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 489 { 490 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 491 } 492 493 static bool type_is_rdonly_mem(u32 type) 494 { 495 return type & MEM_RDONLY; 496 } 497 498 static bool is_acquire_function(enum bpf_func_id func_id, 499 const struct bpf_map *map) 500 { 501 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 502 503 if (func_id == BPF_FUNC_sk_lookup_tcp || 504 func_id == BPF_FUNC_sk_lookup_udp || 505 func_id == BPF_FUNC_skc_lookup_tcp || 506 func_id == BPF_FUNC_ringbuf_reserve || 507 func_id == BPF_FUNC_kptr_xchg) 508 return true; 509 510 if (func_id == BPF_FUNC_map_lookup_elem && 511 (map_type == BPF_MAP_TYPE_SOCKMAP || 512 map_type == BPF_MAP_TYPE_SOCKHASH)) 513 return true; 514 515 return false; 516 } 517 518 static bool is_ptr_cast_function(enum bpf_func_id func_id) 519 { 520 return func_id == BPF_FUNC_tcp_sock || 521 func_id == BPF_FUNC_sk_fullsock || 522 func_id == BPF_FUNC_skc_to_tcp_sock || 523 func_id == BPF_FUNC_skc_to_tcp6_sock || 524 func_id == BPF_FUNC_skc_to_udp6_sock || 525 func_id == BPF_FUNC_skc_to_mptcp_sock || 526 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 527 func_id == BPF_FUNC_skc_to_tcp_request_sock; 528 } 529 530 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 531 { 532 return func_id == BPF_FUNC_dynptr_data; 533 } 534 535 static bool is_callback_calling_kfunc(u32 btf_id); 536 537 static bool is_callback_calling_function(enum bpf_func_id func_id) 538 { 539 return func_id == BPF_FUNC_for_each_map_elem || 540 func_id == BPF_FUNC_timer_set_callback || 541 func_id == BPF_FUNC_find_vma || 542 func_id == BPF_FUNC_loop || 543 func_id == BPF_FUNC_user_ringbuf_drain; 544 } 545 546 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 547 { 548 return func_id == BPF_FUNC_timer_set_callback; 549 } 550 551 static bool is_storage_get_function(enum bpf_func_id func_id) 552 { 553 return func_id == BPF_FUNC_sk_storage_get || 554 func_id == BPF_FUNC_inode_storage_get || 555 func_id == BPF_FUNC_task_storage_get || 556 func_id == BPF_FUNC_cgrp_storage_get; 557 } 558 559 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 560 const struct bpf_map *map) 561 { 562 int ref_obj_uses = 0; 563 564 if (is_ptr_cast_function(func_id)) 565 ref_obj_uses++; 566 if (is_acquire_function(func_id, map)) 567 ref_obj_uses++; 568 if (is_dynptr_ref_function(func_id)) 569 ref_obj_uses++; 570 571 return ref_obj_uses > 1; 572 } 573 574 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 575 { 576 return BPF_CLASS(insn->code) == BPF_STX && 577 BPF_MODE(insn->code) == BPF_ATOMIC && 578 insn->imm == BPF_CMPXCHG; 579 } 580 581 /* string representation of 'enum bpf_reg_type' 582 * 583 * Note that reg_type_str() can not appear more than once in a single verbose() 584 * statement. 585 */ 586 static const char *reg_type_str(struct bpf_verifier_env *env, 587 enum bpf_reg_type type) 588 { 589 char postfix[16] = {0}, prefix[64] = {0}; 590 static const char * const str[] = { 591 [NOT_INIT] = "?", 592 [SCALAR_VALUE] = "scalar", 593 [PTR_TO_CTX] = "ctx", 594 [CONST_PTR_TO_MAP] = "map_ptr", 595 [PTR_TO_MAP_VALUE] = "map_value", 596 [PTR_TO_STACK] = "fp", 597 [PTR_TO_PACKET] = "pkt", 598 [PTR_TO_PACKET_META] = "pkt_meta", 599 [PTR_TO_PACKET_END] = "pkt_end", 600 [PTR_TO_FLOW_KEYS] = "flow_keys", 601 [PTR_TO_SOCKET] = "sock", 602 [PTR_TO_SOCK_COMMON] = "sock_common", 603 [PTR_TO_TCP_SOCK] = "tcp_sock", 604 [PTR_TO_TP_BUFFER] = "tp_buffer", 605 [PTR_TO_XDP_SOCK] = "xdp_sock", 606 [PTR_TO_BTF_ID] = "ptr_", 607 [PTR_TO_MEM] = "mem", 608 [PTR_TO_BUF] = "buf", 609 [PTR_TO_FUNC] = "func", 610 [PTR_TO_MAP_KEY] = "map_key", 611 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 612 }; 613 614 if (type & PTR_MAYBE_NULL) { 615 if (base_type(type) == PTR_TO_BTF_ID) 616 strncpy(postfix, "or_null_", 16); 617 else 618 strncpy(postfix, "_or_null", 16); 619 } 620 621 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 622 type & MEM_RDONLY ? "rdonly_" : "", 623 type & MEM_RINGBUF ? "ringbuf_" : "", 624 type & MEM_USER ? "user_" : "", 625 type & MEM_PERCPU ? "percpu_" : "", 626 type & MEM_RCU ? "rcu_" : "", 627 type & PTR_UNTRUSTED ? "untrusted_" : "", 628 type & PTR_TRUSTED ? "trusted_" : "" 629 ); 630 631 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 632 prefix, str[base_type(type)], postfix); 633 return env->tmp_str_buf; 634 } 635 636 static char slot_type_char[] = { 637 [STACK_INVALID] = '?', 638 [STACK_SPILL] = 'r', 639 [STACK_MISC] = 'm', 640 [STACK_ZERO] = '0', 641 [STACK_DYNPTR] = 'd', 642 [STACK_ITER] = 'i', 643 }; 644 645 static void print_liveness(struct bpf_verifier_env *env, 646 enum bpf_reg_liveness live) 647 { 648 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 649 verbose(env, "_"); 650 if (live & REG_LIVE_READ) 651 verbose(env, "r"); 652 if (live & REG_LIVE_WRITTEN) 653 verbose(env, "w"); 654 if (live & REG_LIVE_DONE) 655 verbose(env, "D"); 656 } 657 658 static int __get_spi(s32 off) 659 { 660 return (-off - 1) / BPF_REG_SIZE; 661 } 662 663 static struct bpf_func_state *func(struct bpf_verifier_env *env, 664 const struct bpf_reg_state *reg) 665 { 666 struct bpf_verifier_state *cur = env->cur_state; 667 668 return cur->frame[reg->frameno]; 669 } 670 671 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 672 { 673 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 674 675 /* We need to check that slots between [spi - nr_slots + 1, spi] are 676 * within [0, allocated_stack). 677 * 678 * Please note that the spi grows downwards. For example, a dynptr 679 * takes the size of two stack slots; the first slot will be at 680 * spi and the second slot will be at spi - 1. 681 */ 682 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 683 } 684 685 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 686 const char *obj_kind, int nr_slots) 687 { 688 int off, spi; 689 690 if (!tnum_is_const(reg->var_off)) { 691 verbose(env, "%s has to be at a constant offset\n", obj_kind); 692 return -EINVAL; 693 } 694 695 off = reg->off + reg->var_off.value; 696 if (off % BPF_REG_SIZE) { 697 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 698 return -EINVAL; 699 } 700 701 spi = __get_spi(off); 702 if (spi + 1 < nr_slots) { 703 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 704 return -EINVAL; 705 } 706 707 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 708 return -ERANGE; 709 return spi; 710 } 711 712 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 713 { 714 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 715 } 716 717 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 718 { 719 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 720 } 721 722 static const char *btf_type_name(const struct btf *btf, u32 id) 723 { 724 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 725 } 726 727 static const char *dynptr_type_str(enum bpf_dynptr_type type) 728 { 729 switch (type) { 730 case BPF_DYNPTR_TYPE_LOCAL: 731 return "local"; 732 case BPF_DYNPTR_TYPE_RINGBUF: 733 return "ringbuf"; 734 case BPF_DYNPTR_TYPE_SKB: 735 return "skb"; 736 case BPF_DYNPTR_TYPE_XDP: 737 return "xdp"; 738 case BPF_DYNPTR_TYPE_INVALID: 739 return "<invalid>"; 740 default: 741 WARN_ONCE(1, "unknown dynptr type %d\n", type); 742 return "<unknown>"; 743 } 744 } 745 746 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 747 { 748 if (!btf || btf_id == 0) 749 return "<invalid>"; 750 751 /* we already validated that type is valid and has conforming name */ 752 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 753 } 754 755 static const char *iter_state_str(enum bpf_iter_state state) 756 { 757 switch (state) { 758 case BPF_ITER_STATE_ACTIVE: 759 return "active"; 760 case BPF_ITER_STATE_DRAINED: 761 return "drained"; 762 case BPF_ITER_STATE_INVALID: 763 return "<invalid>"; 764 default: 765 WARN_ONCE(1, "unknown iter state %d\n", state); 766 return "<unknown>"; 767 } 768 } 769 770 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 771 { 772 env->scratched_regs |= 1U << regno; 773 } 774 775 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 776 { 777 env->scratched_stack_slots |= 1ULL << spi; 778 } 779 780 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 781 { 782 return (env->scratched_regs >> regno) & 1; 783 } 784 785 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 786 { 787 return (env->scratched_stack_slots >> regno) & 1; 788 } 789 790 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 791 { 792 return env->scratched_regs || env->scratched_stack_slots; 793 } 794 795 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 796 { 797 env->scratched_regs = 0U; 798 env->scratched_stack_slots = 0ULL; 799 } 800 801 /* Used for printing the entire verifier state. */ 802 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 803 { 804 env->scratched_regs = ~0U; 805 env->scratched_stack_slots = ~0ULL; 806 } 807 808 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 809 { 810 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 811 case DYNPTR_TYPE_LOCAL: 812 return BPF_DYNPTR_TYPE_LOCAL; 813 case DYNPTR_TYPE_RINGBUF: 814 return BPF_DYNPTR_TYPE_RINGBUF; 815 case DYNPTR_TYPE_SKB: 816 return BPF_DYNPTR_TYPE_SKB; 817 case DYNPTR_TYPE_XDP: 818 return BPF_DYNPTR_TYPE_XDP; 819 default: 820 return BPF_DYNPTR_TYPE_INVALID; 821 } 822 } 823 824 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 825 { 826 switch (type) { 827 case BPF_DYNPTR_TYPE_LOCAL: 828 return DYNPTR_TYPE_LOCAL; 829 case BPF_DYNPTR_TYPE_RINGBUF: 830 return DYNPTR_TYPE_RINGBUF; 831 case BPF_DYNPTR_TYPE_SKB: 832 return DYNPTR_TYPE_SKB; 833 case BPF_DYNPTR_TYPE_XDP: 834 return DYNPTR_TYPE_XDP; 835 default: 836 return 0; 837 } 838 } 839 840 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 841 { 842 return type == BPF_DYNPTR_TYPE_RINGBUF; 843 } 844 845 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 846 enum bpf_dynptr_type type, 847 bool first_slot, int dynptr_id); 848 849 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 850 struct bpf_reg_state *reg); 851 852 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 853 struct bpf_reg_state *sreg1, 854 struct bpf_reg_state *sreg2, 855 enum bpf_dynptr_type type) 856 { 857 int id = ++env->id_gen; 858 859 __mark_dynptr_reg(sreg1, type, true, id); 860 __mark_dynptr_reg(sreg2, type, false, id); 861 } 862 863 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 864 struct bpf_reg_state *reg, 865 enum bpf_dynptr_type type) 866 { 867 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 868 } 869 870 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 871 struct bpf_func_state *state, int spi); 872 873 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 874 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 875 { 876 struct bpf_func_state *state = func(env, reg); 877 enum bpf_dynptr_type type; 878 int spi, i, err; 879 880 spi = dynptr_get_spi(env, reg); 881 if (spi < 0) 882 return spi; 883 884 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 885 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 886 * to ensure that for the following example: 887 * [d1][d1][d2][d2] 888 * spi 3 2 1 0 889 * So marking spi = 2 should lead to destruction of both d1 and d2. In 890 * case they do belong to same dynptr, second call won't see slot_type 891 * as STACK_DYNPTR and will simply skip destruction. 892 */ 893 err = destroy_if_dynptr_stack_slot(env, state, spi); 894 if (err) 895 return err; 896 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 897 if (err) 898 return err; 899 900 for (i = 0; i < BPF_REG_SIZE; i++) { 901 state->stack[spi].slot_type[i] = STACK_DYNPTR; 902 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 903 } 904 905 type = arg_to_dynptr_type(arg_type); 906 if (type == BPF_DYNPTR_TYPE_INVALID) 907 return -EINVAL; 908 909 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 910 &state->stack[spi - 1].spilled_ptr, type); 911 912 if (dynptr_type_refcounted(type)) { 913 /* The id is used to track proper releasing */ 914 int id; 915 916 if (clone_ref_obj_id) 917 id = clone_ref_obj_id; 918 else 919 id = acquire_reference_state(env, insn_idx); 920 921 if (id < 0) 922 return id; 923 924 state->stack[spi].spilled_ptr.ref_obj_id = id; 925 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 926 } 927 928 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 929 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 930 931 return 0; 932 } 933 934 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 935 { 936 int i; 937 938 for (i = 0; i < BPF_REG_SIZE; i++) { 939 state->stack[spi].slot_type[i] = STACK_INVALID; 940 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 941 } 942 943 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 944 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 945 946 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 947 * 948 * While we don't allow reading STACK_INVALID, it is still possible to 949 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 950 * helpers or insns can do partial read of that part without failing, 951 * but check_stack_range_initialized, check_stack_read_var_off, and 952 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 953 * the slot conservatively. Hence we need to prevent those liveness 954 * marking walks. 955 * 956 * This was not a problem before because STACK_INVALID is only set by 957 * default (where the default reg state has its reg->parent as NULL), or 958 * in clean_live_states after REG_LIVE_DONE (at which point 959 * mark_reg_read won't walk reg->parent chain), but not randomly during 960 * verifier state exploration (like we did above). Hence, for our case 961 * parentage chain will still be live (i.e. reg->parent may be 962 * non-NULL), while earlier reg->parent was NULL, so we need 963 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 964 * done later on reads or by mark_dynptr_read as well to unnecessary 965 * mark registers in verifier state. 966 */ 967 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 968 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 969 } 970 971 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 972 { 973 struct bpf_func_state *state = func(env, reg); 974 int spi, ref_obj_id, i; 975 976 spi = dynptr_get_spi(env, reg); 977 if (spi < 0) 978 return spi; 979 980 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 981 invalidate_dynptr(env, state, spi); 982 return 0; 983 } 984 985 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 986 987 /* If the dynptr has a ref_obj_id, then we need to invalidate 988 * two things: 989 * 990 * 1) Any dynptrs with a matching ref_obj_id (clones) 991 * 2) Any slices derived from this dynptr. 992 */ 993 994 /* Invalidate any slices associated with this dynptr */ 995 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 996 997 /* Invalidate any dynptr clones */ 998 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 999 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1000 continue; 1001 1002 /* it should always be the case that if the ref obj id 1003 * matches then the stack slot also belongs to a 1004 * dynptr 1005 */ 1006 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1007 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1008 return -EFAULT; 1009 } 1010 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1011 invalidate_dynptr(env, state, i); 1012 } 1013 1014 return 0; 1015 } 1016 1017 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1018 struct bpf_reg_state *reg); 1019 1020 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1021 { 1022 if (!env->allow_ptr_leaks) 1023 __mark_reg_not_init(env, reg); 1024 else 1025 __mark_reg_unknown(env, reg); 1026 } 1027 1028 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1029 struct bpf_func_state *state, int spi) 1030 { 1031 struct bpf_func_state *fstate; 1032 struct bpf_reg_state *dreg; 1033 int i, dynptr_id; 1034 1035 /* We always ensure that STACK_DYNPTR is never set partially, 1036 * hence just checking for slot_type[0] is enough. This is 1037 * different for STACK_SPILL, where it may be only set for 1038 * 1 byte, so code has to use is_spilled_reg. 1039 */ 1040 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1041 return 0; 1042 1043 /* Reposition spi to first slot */ 1044 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1045 spi = spi + 1; 1046 1047 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1048 verbose(env, "cannot overwrite referenced dynptr\n"); 1049 return -EINVAL; 1050 } 1051 1052 mark_stack_slot_scratched(env, spi); 1053 mark_stack_slot_scratched(env, spi - 1); 1054 1055 /* Writing partially to one dynptr stack slot destroys both. */ 1056 for (i = 0; i < BPF_REG_SIZE; i++) { 1057 state->stack[spi].slot_type[i] = STACK_INVALID; 1058 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1059 } 1060 1061 dynptr_id = state->stack[spi].spilled_ptr.id; 1062 /* Invalidate any slices associated with this dynptr */ 1063 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1064 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1065 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1066 continue; 1067 if (dreg->dynptr_id == dynptr_id) 1068 mark_reg_invalid(env, dreg); 1069 })); 1070 1071 /* Do not release reference state, we are destroying dynptr on stack, 1072 * not using some helper to release it. Just reset register. 1073 */ 1074 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1075 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1076 1077 /* Same reason as unmark_stack_slots_dynptr above */ 1078 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1079 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1080 1081 return 0; 1082 } 1083 1084 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1085 { 1086 int spi; 1087 1088 if (reg->type == CONST_PTR_TO_DYNPTR) 1089 return false; 1090 1091 spi = dynptr_get_spi(env, reg); 1092 1093 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1094 * error because this just means the stack state hasn't been updated yet. 1095 * We will do check_mem_access to check and update stack bounds later. 1096 */ 1097 if (spi < 0 && spi != -ERANGE) 1098 return false; 1099 1100 /* We don't need to check if the stack slots are marked by previous 1101 * dynptr initializations because we allow overwriting existing unreferenced 1102 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1103 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1104 * touching are completely destructed before we reinitialize them for a new 1105 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1106 * instead of delaying it until the end where the user will get "Unreleased 1107 * reference" error. 1108 */ 1109 return true; 1110 } 1111 1112 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1113 { 1114 struct bpf_func_state *state = func(env, reg); 1115 int i, spi; 1116 1117 /* This already represents first slot of initialized bpf_dynptr. 1118 * 1119 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1120 * check_func_arg_reg_off's logic, so we don't need to check its 1121 * offset and alignment. 1122 */ 1123 if (reg->type == CONST_PTR_TO_DYNPTR) 1124 return true; 1125 1126 spi = dynptr_get_spi(env, reg); 1127 if (spi < 0) 1128 return false; 1129 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1130 return false; 1131 1132 for (i = 0; i < BPF_REG_SIZE; i++) { 1133 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1134 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1135 return false; 1136 } 1137 1138 return true; 1139 } 1140 1141 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1142 enum bpf_arg_type arg_type) 1143 { 1144 struct bpf_func_state *state = func(env, reg); 1145 enum bpf_dynptr_type dynptr_type; 1146 int spi; 1147 1148 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1149 if (arg_type == ARG_PTR_TO_DYNPTR) 1150 return true; 1151 1152 dynptr_type = arg_to_dynptr_type(arg_type); 1153 if (reg->type == CONST_PTR_TO_DYNPTR) { 1154 return reg->dynptr.type == dynptr_type; 1155 } else { 1156 spi = dynptr_get_spi(env, reg); 1157 if (spi < 0) 1158 return false; 1159 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1160 } 1161 } 1162 1163 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1164 1165 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1166 struct bpf_reg_state *reg, int insn_idx, 1167 struct btf *btf, u32 btf_id, int nr_slots) 1168 { 1169 struct bpf_func_state *state = func(env, reg); 1170 int spi, i, j, id; 1171 1172 spi = iter_get_spi(env, reg, nr_slots); 1173 if (spi < 0) 1174 return spi; 1175 1176 id = acquire_reference_state(env, insn_idx); 1177 if (id < 0) 1178 return id; 1179 1180 for (i = 0; i < nr_slots; i++) { 1181 struct bpf_stack_state *slot = &state->stack[spi - i]; 1182 struct bpf_reg_state *st = &slot->spilled_ptr; 1183 1184 __mark_reg_known_zero(st); 1185 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1186 st->live |= REG_LIVE_WRITTEN; 1187 st->ref_obj_id = i == 0 ? id : 0; 1188 st->iter.btf = btf; 1189 st->iter.btf_id = btf_id; 1190 st->iter.state = BPF_ITER_STATE_ACTIVE; 1191 st->iter.depth = 0; 1192 1193 for (j = 0; j < BPF_REG_SIZE; j++) 1194 slot->slot_type[j] = STACK_ITER; 1195 1196 mark_stack_slot_scratched(env, spi - i); 1197 } 1198 1199 return 0; 1200 } 1201 1202 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1203 struct bpf_reg_state *reg, int nr_slots) 1204 { 1205 struct bpf_func_state *state = func(env, reg); 1206 int spi, i, j; 1207 1208 spi = iter_get_spi(env, reg, nr_slots); 1209 if (spi < 0) 1210 return spi; 1211 1212 for (i = 0; i < nr_slots; i++) { 1213 struct bpf_stack_state *slot = &state->stack[spi - i]; 1214 struct bpf_reg_state *st = &slot->spilled_ptr; 1215 1216 if (i == 0) 1217 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1218 1219 __mark_reg_not_init(env, st); 1220 1221 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1222 st->live |= REG_LIVE_WRITTEN; 1223 1224 for (j = 0; j < BPF_REG_SIZE; j++) 1225 slot->slot_type[j] = STACK_INVALID; 1226 1227 mark_stack_slot_scratched(env, spi - i); 1228 } 1229 1230 return 0; 1231 } 1232 1233 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1234 struct bpf_reg_state *reg, int nr_slots) 1235 { 1236 struct bpf_func_state *state = func(env, reg); 1237 int spi, i, j; 1238 1239 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1240 * will do check_mem_access to check and update stack bounds later, so 1241 * return true for that case. 1242 */ 1243 spi = iter_get_spi(env, reg, nr_slots); 1244 if (spi == -ERANGE) 1245 return true; 1246 if (spi < 0) 1247 return false; 1248 1249 for (i = 0; i < nr_slots; i++) { 1250 struct bpf_stack_state *slot = &state->stack[spi - i]; 1251 1252 for (j = 0; j < BPF_REG_SIZE; j++) 1253 if (slot->slot_type[j] == STACK_ITER) 1254 return false; 1255 } 1256 1257 return true; 1258 } 1259 1260 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1261 struct btf *btf, u32 btf_id, int nr_slots) 1262 { 1263 struct bpf_func_state *state = func(env, reg); 1264 int spi, i, j; 1265 1266 spi = iter_get_spi(env, reg, nr_slots); 1267 if (spi < 0) 1268 return false; 1269 1270 for (i = 0; i < nr_slots; i++) { 1271 struct bpf_stack_state *slot = &state->stack[spi - i]; 1272 struct bpf_reg_state *st = &slot->spilled_ptr; 1273 1274 /* only main (first) slot has ref_obj_id set */ 1275 if (i == 0 && !st->ref_obj_id) 1276 return false; 1277 if (i != 0 && st->ref_obj_id) 1278 return false; 1279 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1280 return false; 1281 1282 for (j = 0; j < BPF_REG_SIZE; j++) 1283 if (slot->slot_type[j] != STACK_ITER) 1284 return false; 1285 } 1286 1287 return true; 1288 } 1289 1290 /* Check if given stack slot is "special": 1291 * - spilled register state (STACK_SPILL); 1292 * - dynptr state (STACK_DYNPTR); 1293 * - iter state (STACK_ITER). 1294 */ 1295 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1296 { 1297 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1298 1299 switch (type) { 1300 case STACK_SPILL: 1301 case STACK_DYNPTR: 1302 case STACK_ITER: 1303 return true; 1304 case STACK_INVALID: 1305 case STACK_MISC: 1306 case STACK_ZERO: 1307 return false; 1308 default: 1309 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1310 return true; 1311 } 1312 } 1313 1314 /* The reg state of a pointer or a bounded scalar was saved when 1315 * it was spilled to the stack. 1316 */ 1317 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1318 { 1319 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1320 } 1321 1322 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1323 { 1324 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1325 stack->spilled_ptr.type == SCALAR_VALUE; 1326 } 1327 1328 static void scrub_spilled_slot(u8 *stype) 1329 { 1330 if (*stype != STACK_INVALID) 1331 *stype = STACK_MISC; 1332 } 1333 1334 static void print_verifier_state(struct bpf_verifier_env *env, 1335 const struct bpf_func_state *state, 1336 bool print_all) 1337 { 1338 const struct bpf_reg_state *reg; 1339 enum bpf_reg_type t; 1340 int i; 1341 1342 if (state->frameno) 1343 verbose(env, " frame%d:", state->frameno); 1344 for (i = 0; i < MAX_BPF_REG; i++) { 1345 reg = &state->regs[i]; 1346 t = reg->type; 1347 if (t == NOT_INIT) 1348 continue; 1349 if (!print_all && !reg_scratched(env, i)) 1350 continue; 1351 verbose(env, " R%d", i); 1352 print_liveness(env, reg->live); 1353 verbose(env, "="); 1354 if (t == SCALAR_VALUE && reg->precise) 1355 verbose(env, "P"); 1356 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1357 tnum_is_const(reg->var_off)) { 1358 /* reg->off should be 0 for SCALAR_VALUE */ 1359 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1360 verbose(env, "%lld", reg->var_off.value + reg->off); 1361 } else { 1362 const char *sep = ""; 1363 1364 verbose(env, "%s", reg_type_str(env, t)); 1365 if (base_type(t) == PTR_TO_BTF_ID) 1366 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1367 verbose(env, "("); 1368 /* 1369 * _a stands for append, was shortened to avoid multiline statements below. 1370 * This macro is used to output a comma separated list of attributes. 1371 */ 1372 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1373 1374 if (reg->id) 1375 verbose_a("id=%d", reg->id); 1376 if (reg->ref_obj_id) 1377 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1378 if (type_is_non_owning_ref(reg->type)) 1379 verbose_a("%s", "non_own_ref"); 1380 if (t != SCALAR_VALUE) 1381 verbose_a("off=%d", reg->off); 1382 if (type_is_pkt_pointer(t)) 1383 verbose_a("r=%d", reg->range); 1384 else if (base_type(t) == CONST_PTR_TO_MAP || 1385 base_type(t) == PTR_TO_MAP_KEY || 1386 base_type(t) == PTR_TO_MAP_VALUE) 1387 verbose_a("ks=%d,vs=%d", 1388 reg->map_ptr->key_size, 1389 reg->map_ptr->value_size); 1390 if (tnum_is_const(reg->var_off)) { 1391 /* Typically an immediate SCALAR_VALUE, but 1392 * could be a pointer whose offset is too big 1393 * for reg->off 1394 */ 1395 verbose_a("imm=%llx", reg->var_off.value); 1396 } else { 1397 if (reg->smin_value != reg->umin_value && 1398 reg->smin_value != S64_MIN) 1399 verbose_a("smin=%lld", (long long)reg->smin_value); 1400 if (reg->smax_value != reg->umax_value && 1401 reg->smax_value != S64_MAX) 1402 verbose_a("smax=%lld", (long long)reg->smax_value); 1403 if (reg->umin_value != 0) 1404 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1405 if (reg->umax_value != U64_MAX) 1406 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1407 if (!tnum_is_unknown(reg->var_off)) { 1408 char tn_buf[48]; 1409 1410 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1411 verbose_a("var_off=%s", tn_buf); 1412 } 1413 if (reg->s32_min_value != reg->smin_value && 1414 reg->s32_min_value != S32_MIN) 1415 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1416 if (reg->s32_max_value != reg->smax_value && 1417 reg->s32_max_value != S32_MAX) 1418 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1419 if (reg->u32_min_value != reg->umin_value && 1420 reg->u32_min_value != U32_MIN) 1421 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1422 if (reg->u32_max_value != reg->umax_value && 1423 reg->u32_max_value != U32_MAX) 1424 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1425 } 1426 #undef verbose_a 1427 1428 verbose(env, ")"); 1429 } 1430 } 1431 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1432 char types_buf[BPF_REG_SIZE + 1]; 1433 bool valid = false; 1434 int j; 1435 1436 for (j = 0; j < BPF_REG_SIZE; j++) { 1437 if (state->stack[i].slot_type[j] != STACK_INVALID) 1438 valid = true; 1439 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1440 } 1441 types_buf[BPF_REG_SIZE] = 0; 1442 if (!valid) 1443 continue; 1444 if (!print_all && !stack_slot_scratched(env, i)) 1445 continue; 1446 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1447 case STACK_SPILL: 1448 reg = &state->stack[i].spilled_ptr; 1449 t = reg->type; 1450 1451 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1452 print_liveness(env, reg->live); 1453 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1454 if (t == SCALAR_VALUE && reg->precise) 1455 verbose(env, "P"); 1456 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1457 verbose(env, "%lld", reg->var_off.value + reg->off); 1458 break; 1459 case STACK_DYNPTR: 1460 i += BPF_DYNPTR_NR_SLOTS - 1; 1461 reg = &state->stack[i].spilled_ptr; 1462 1463 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1464 print_liveness(env, reg->live); 1465 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1466 if (reg->ref_obj_id) 1467 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1468 break; 1469 case STACK_ITER: 1470 /* only main slot has ref_obj_id set; skip others */ 1471 reg = &state->stack[i].spilled_ptr; 1472 if (!reg->ref_obj_id) 1473 continue; 1474 1475 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1476 print_liveness(env, reg->live); 1477 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1478 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1479 reg->ref_obj_id, iter_state_str(reg->iter.state), 1480 reg->iter.depth); 1481 break; 1482 case STACK_MISC: 1483 case STACK_ZERO: 1484 default: 1485 reg = &state->stack[i].spilled_ptr; 1486 1487 for (j = 0; j < BPF_REG_SIZE; j++) 1488 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1489 types_buf[BPF_REG_SIZE] = 0; 1490 1491 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1492 print_liveness(env, reg->live); 1493 verbose(env, "=%s", types_buf); 1494 break; 1495 } 1496 } 1497 if (state->acquired_refs && state->refs[0].id) { 1498 verbose(env, " refs=%d", state->refs[0].id); 1499 for (i = 1; i < state->acquired_refs; i++) 1500 if (state->refs[i].id) 1501 verbose(env, ",%d", state->refs[i].id); 1502 } 1503 if (state->in_callback_fn) 1504 verbose(env, " cb"); 1505 if (state->in_async_callback_fn) 1506 verbose(env, " async_cb"); 1507 verbose(env, "\n"); 1508 mark_verifier_state_clean(env); 1509 } 1510 1511 static inline u32 vlog_alignment(u32 pos) 1512 { 1513 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1514 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1515 } 1516 1517 static void print_insn_state(struct bpf_verifier_env *env, 1518 const struct bpf_func_state *state) 1519 { 1520 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1521 /* remove new line character */ 1522 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1523 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1524 } else { 1525 verbose(env, "%d:", env->insn_idx); 1526 } 1527 print_verifier_state(env, state, false); 1528 } 1529 1530 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1531 * small to hold src. This is different from krealloc since we don't want to preserve 1532 * the contents of dst. 1533 * 1534 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1535 * not be allocated. 1536 */ 1537 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1538 { 1539 size_t alloc_bytes; 1540 void *orig = dst; 1541 size_t bytes; 1542 1543 if (ZERO_OR_NULL_PTR(src)) 1544 goto out; 1545 1546 if (unlikely(check_mul_overflow(n, size, &bytes))) 1547 return NULL; 1548 1549 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1550 dst = krealloc(orig, alloc_bytes, flags); 1551 if (!dst) { 1552 kfree(orig); 1553 return NULL; 1554 } 1555 1556 memcpy(dst, src, bytes); 1557 out: 1558 return dst ? dst : ZERO_SIZE_PTR; 1559 } 1560 1561 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1562 * small to hold new_n items. new items are zeroed out if the array grows. 1563 * 1564 * Contrary to krealloc_array, does not free arr if new_n is zero. 1565 */ 1566 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1567 { 1568 size_t alloc_size; 1569 void *new_arr; 1570 1571 if (!new_n || old_n == new_n) 1572 goto out; 1573 1574 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1575 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1576 if (!new_arr) { 1577 kfree(arr); 1578 return NULL; 1579 } 1580 arr = new_arr; 1581 1582 if (new_n > old_n) 1583 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1584 1585 out: 1586 return arr ? arr : ZERO_SIZE_PTR; 1587 } 1588 1589 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1590 { 1591 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1592 sizeof(struct bpf_reference_state), GFP_KERNEL); 1593 if (!dst->refs) 1594 return -ENOMEM; 1595 1596 dst->acquired_refs = src->acquired_refs; 1597 return 0; 1598 } 1599 1600 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1601 { 1602 size_t n = src->allocated_stack / BPF_REG_SIZE; 1603 1604 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1605 GFP_KERNEL); 1606 if (!dst->stack) 1607 return -ENOMEM; 1608 1609 dst->allocated_stack = src->allocated_stack; 1610 return 0; 1611 } 1612 1613 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1614 { 1615 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1616 sizeof(struct bpf_reference_state)); 1617 if (!state->refs) 1618 return -ENOMEM; 1619 1620 state->acquired_refs = n; 1621 return 0; 1622 } 1623 1624 static int grow_stack_state(struct bpf_func_state *state, int size) 1625 { 1626 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1627 1628 if (old_n >= n) 1629 return 0; 1630 1631 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1632 if (!state->stack) 1633 return -ENOMEM; 1634 1635 state->allocated_stack = size; 1636 return 0; 1637 } 1638 1639 /* Acquire a pointer id from the env and update the state->refs to include 1640 * this new pointer reference. 1641 * On success, returns a valid pointer id to associate with the register 1642 * On failure, returns a negative errno. 1643 */ 1644 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1645 { 1646 struct bpf_func_state *state = cur_func(env); 1647 int new_ofs = state->acquired_refs; 1648 int id, err; 1649 1650 err = resize_reference_state(state, state->acquired_refs + 1); 1651 if (err) 1652 return err; 1653 id = ++env->id_gen; 1654 state->refs[new_ofs].id = id; 1655 state->refs[new_ofs].insn_idx = insn_idx; 1656 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1657 1658 return id; 1659 } 1660 1661 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1662 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1663 { 1664 int i, last_idx; 1665 1666 last_idx = state->acquired_refs - 1; 1667 for (i = 0; i < state->acquired_refs; i++) { 1668 if (state->refs[i].id == ptr_id) { 1669 /* Cannot release caller references in callbacks */ 1670 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1671 return -EINVAL; 1672 if (last_idx && i != last_idx) 1673 memcpy(&state->refs[i], &state->refs[last_idx], 1674 sizeof(*state->refs)); 1675 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1676 state->acquired_refs--; 1677 return 0; 1678 } 1679 } 1680 return -EINVAL; 1681 } 1682 1683 static void free_func_state(struct bpf_func_state *state) 1684 { 1685 if (!state) 1686 return; 1687 kfree(state->refs); 1688 kfree(state->stack); 1689 kfree(state); 1690 } 1691 1692 static void clear_jmp_history(struct bpf_verifier_state *state) 1693 { 1694 kfree(state->jmp_history); 1695 state->jmp_history = NULL; 1696 state->jmp_history_cnt = 0; 1697 } 1698 1699 static void free_verifier_state(struct bpf_verifier_state *state, 1700 bool free_self) 1701 { 1702 int i; 1703 1704 for (i = 0; i <= state->curframe; i++) { 1705 free_func_state(state->frame[i]); 1706 state->frame[i] = NULL; 1707 } 1708 clear_jmp_history(state); 1709 if (free_self) 1710 kfree(state); 1711 } 1712 1713 /* copy verifier state from src to dst growing dst stack space 1714 * when necessary to accommodate larger src stack 1715 */ 1716 static int copy_func_state(struct bpf_func_state *dst, 1717 const struct bpf_func_state *src) 1718 { 1719 int err; 1720 1721 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1722 err = copy_reference_state(dst, src); 1723 if (err) 1724 return err; 1725 return copy_stack_state(dst, src); 1726 } 1727 1728 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1729 const struct bpf_verifier_state *src) 1730 { 1731 struct bpf_func_state *dst; 1732 int i, err; 1733 1734 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1735 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1736 GFP_USER); 1737 if (!dst_state->jmp_history) 1738 return -ENOMEM; 1739 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1740 1741 /* if dst has more stack frames then src frame, free them */ 1742 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1743 free_func_state(dst_state->frame[i]); 1744 dst_state->frame[i] = NULL; 1745 } 1746 dst_state->speculative = src->speculative; 1747 dst_state->active_rcu_lock = src->active_rcu_lock; 1748 dst_state->curframe = src->curframe; 1749 dst_state->active_lock.ptr = src->active_lock.ptr; 1750 dst_state->active_lock.id = src->active_lock.id; 1751 dst_state->branches = src->branches; 1752 dst_state->parent = src->parent; 1753 dst_state->first_insn_idx = src->first_insn_idx; 1754 dst_state->last_insn_idx = src->last_insn_idx; 1755 for (i = 0; i <= src->curframe; i++) { 1756 dst = dst_state->frame[i]; 1757 if (!dst) { 1758 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1759 if (!dst) 1760 return -ENOMEM; 1761 dst_state->frame[i] = dst; 1762 } 1763 err = copy_func_state(dst, src->frame[i]); 1764 if (err) 1765 return err; 1766 } 1767 return 0; 1768 } 1769 1770 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1771 { 1772 while (st) { 1773 u32 br = --st->branches; 1774 1775 /* WARN_ON(br > 1) technically makes sense here, 1776 * but see comment in push_stack(), hence: 1777 */ 1778 WARN_ONCE((int)br < 0, 1779 "BUG update_branch_counts:branches_to_explore=%d\n", 1780 br); 1781 if (br) 1782 break; 1783 st = st->parent; 1784 } 1785 } 1786 1787 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1788 int *insn_idx, bool pop_log) 1789 { 1790 struct bpf_verifier_state *cur = env->cur_state; 1791 struct bpf_verifier_stack_elem *elem, *head = env->head; 1792 int err; 1793 1794 if (env->head == NULL) 1795 return -ENOENT; 1796 1797 if (cur) { 1798 err = copy_verifier_state(cur, &head->st); 1799 if (err) 1800 return err; 1801 } 1802 if (pop_log) 1803 bpf_vlog_reset(&env->log, head->log_pos); 1804 if (insn_idx) 1805 *insn_idx = head->insn_idx; 1806 if (prev_insn_idx) 1807 *prev_insn_idx = head->prev_insn_idx; 1808 elem = head->next; 1809 free_verifier_state(&head->st, false); 1810 kfree(head); 1811 env->head = elem; 1812 env->stack_size--; 1813 return 0; 1814 } 1815 1816 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1817 int insn_idx, int prev_insn_idx, 1818 bool speculative) 1819 { 1820 struct bpf_verifier_state *cur = env->cur_state; 1821 struct bpf_verifier_stack_elem *elem; 1822 int err; 1823 1824 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1825 if (!elem) 1826 goto err; 1827 1828 elem->insn_idx = insn_idx; 1829 elem->prev_insn_idx = prev_insn_idx; 1830 elem->next = env->head; 1831 elem->log_pos = env->log.end_pos; 1832 env->head = elem; 1833 env->stack_size++; 1834 err = copy_verifier_state(&elem->st, cur); 1835 if (err) 1836 goto err; 1837 elem->st.speculative |= speculative; 1838 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1839 verbose(env, "The sequence of %d jumps is too complex.\n", 1840 env->stack_size); 1841 goto err; 1842 } 1843 if (elem->st.parent) { 1844 ++elem->st.parent->branches; 1845 /* WARN_ON(branches > 2) technically makes sense here, 1846 * but 1847 * 1. speculative states will bump 'branches' for non-branch 1848 * instructions 1849 * 2. is_state_visited() heuristics may decide not to create 1850 * a new state for a sequence of branches and all such current 1851 * and cloned states will be pointing to a single parent state 1852 * which might have large 'branches' count. 1853 */ 1854 } 1855 return &elem->st; 1856 err: 1857 free_verifier_state(env->cur_state, true); 1858 env->cur_state = NULL; 1859 /* pop all elements and return */ 1860 while (!pop_stack(env, NULL, NULL, false)); 1861 return NULL; 1862 } 1863 1864 #define CALLER_SAVED_REGS 6 1865 static const int caller_saved[CALLER_SAVED_REGS] = { 1866 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1867 }; 1868 1869 /* This helper doesn't clear reg->id */ 1870 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1871 { 1872 reg->var_off = tnum_const(imm); 1873 reg->smin_value = (s64)imm; 1874 reg->smax_value = (s64)imm; 1875 reg->umin_value = imm; 1876 reg->umax_value = imm; 1877 1878 reg->s32_min_value = (s32)imm; 1879 reg->s32_max_value = (s32)imm; 1880 reg->u32_min_value = (u32)imm; 1881 reg->u32_max_value = (u32)imm; 1882 } 1883 1884 /* Mark the unknown part of a register (variable offset or scalar value) as 1885 * known to have the value @imm. 1886 */ 1887 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1888 { 1889 /* Clear off and union(map_ptr, range) */ 1890 memset(((u8 *)reg) + sizeof(reg->type), 0, 1891 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1892 reg->id = 0; 1893 reg->ref_obj_id = 0; 1894 ___mark_reg_known(reg, imm); 1895 } 1896 1897 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1898 { 1899 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1900 reg->s32_min_value = (s32)imm; 1901 reg->s32_max_value = (s32)imm; 1902 reg->u32_min_value = (u32)imm; 1903 reg->u32_max_value = (u32)imm; 1904 } 1905 1906 /* Mark the 'variable offset' part of a register as zero. This should be 1907 * used only on registers holding a pointer type. 1908 */ 1909 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1910 { 1911 __mark_reg_known(reg, 0); 1912 } 1913 1914 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1915 { 1916 __mark_reg_known(reg, 0); 1917 reg->type = SCALAR_VALUE; 1918 } 1919 1920 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1921 struct bpf_reg_state *regs, u32 regno) 1922 { 1923 if (WARN_ON(regno >= MAX_BPF_REG)) { 1924 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1925 /* Something bad happened, let's kill all regs */ 1926 for (regno = 0; regno < MAX_BPF_REG; regno++) 1927 __mark_reg_not_init(env, regs + regno); 1928 return; 1929 } 1930 __mark_reg_known_zero(regs + regno); 1931 } 1932 1933 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1934 bool first_slot, int dynptr_id) 1935 { 1936 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1937 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1938 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1939 */ 1940 __mark_reg_known_zero(reg); 1941 reg->type = CONST_PTR_TO_DYNPTR; 1942 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1943 reg->id = dynptr_id; 1944 reg->dynptr.type = type; 1945 reg->dynptr.first_slot = first_slot; 1946 } 1947 1948 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1949 { 1950 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1951 const struct bpf_map *map = reg->map_ptr; 1952 1953 if (map->inner_map_meta) { 1954 reg->type = CONST_PTR_TO_MAP; 1955 reg->map_ptr = map->inner_map_meta; 1956 /* transfer reg's id which is unique for every map_lookup_elem 1957 * as UID of the inner map. 1958 */ 1959 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1960 reg->map_uid = reg->id; 1961 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1962 reg->type = PTR_TO_XDP_SOCK; 1963 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1964 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1965 reg->type = PTR_TO_SOCKET; 1966 } else { 1967 reg->type = PTR_TO_MAP_VALUE; 1968 } 1969 return; 1970 } 1971 1972 reg->type &= ~PTR_MAYBE_NULL; 1973 } 1974 1975 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1976 struct btf_field_graph_root *ds_head) 1977 { 1978 __mark_reg_known_zero(®s[regno]); 1979 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1980 regs[regno].btf = ds_head->btf; 1981 regs[regno].btf_id = ds_head->value_btf_id; 1982 regs[regno].off = ds_head->node_offset; 1983 } 1984 1985 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1986 { 1987 return type_is_pkt_pointer(reg->type); 1988 } 1989 1990 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1991 { 1992 return reg_is_pkt_pointer(reg) || 1993 reg->type == PTR_TO_PACKET_END; 1994 } 1995 1996 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1997 { 1998 return base_type(reg->type) == PTR_TO_MEM && 1999 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2000 } 2001 2002 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2003 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2004 enum bpf_reg_type which) 2005 { 2006 /* The register can already have a range from prior markings. 2007 * This is fine as long as it hasn't been advanced from its 2008 * origin. 2009 */ 2010 return reg->type == which && 2011 reg->id == 0 && 2012 reg->off == 0 && 2013 tnum_equals_const(reg->var_off, 0); 2014 } 2015 2016 /* Reset the min/max bounds of a register */ 2017 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2018 { 2019 reg->smin_value = S64_MIN; 2020 reg->smax_value = S64_MAX; 2021 reg->umin_value = 0; 2022 reg->umax_value = U64_MAX; 2023 2024 reg->s32_min_value = S32_MIN; 2025 reg->s32_max_value = S32_MAX; 2026 reg->u32_min_value = 0; 2027 reg->u32_max_value = U32_MAX; 2028 } 2029 2030 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2031 { 2032 reg->smin_value = S64_MIN; 2033 reg->smax_value = S64_MAX; 2034 reg->umin_value = 0; 2035 reg->umax_value = U64_MAX; 2036 } 2037 2038 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2039 { 2040 reg->s32_min_value = S32_MIN; 2041 reg->s32_max_value = S32_MAX; 2042 reg->u32_min_value = 0; 2043 reg->u32_max_value = U32_MAX; 2044 } 2045 2046 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2047 { 2048 struct tnum var32_off = tnum_subreg(reg->var_off); 2049 2050 /* min signed is max(sign bit) | min(other bits) */ 2051 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2052 var32_off.value | (var32_off.mask & S32_MIN)); 2053 /* max signed is min(sign bit) | max(other bits) */ 2054 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2055 var32_off.value | (var32_off.mask & S32_MAX)); 2056 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2057 reg->u32_max_value = min(reg->u32_max_value, 2058 (u32)(var32_off.value | var32_off.mask)); 2059 } 2060 2061 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2062 { 2063 /* min signed is max(sign bit) | min(other bits) */ 2064 reg->smin_value = max_t(s64, reg->smin_value, 2065 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2066 /* max signed is min(sign bit) | max(other bits) */ 2067 reg->smax_value = min_t(s64, reg->smax_value, 2068 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2069 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2070 reg->umax_value = min(reg->umax_value, 2071 reg->var_off.value | reg->var_off.mask); 2072 } 2073 2074 static void __update_reg_bounds(struct bpf_reg_state *reg) 2075 { 2076 __update_reg32_bounds(reg); 2077 __update_reg64_bounds(reg); 2078 } 2079 2080 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2081 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2082 { 2083 /* Learn sign from signed bounds. 2084 * If we cannot cross the sign boundary, then signed and unsigned bounds 2085 * are the same, so combine. This works even in the negative case, e.g. 2086 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2087 */ 2088 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2089 reg->s32_min_value = reg->u32_min_value = 2090 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2091 reg->s32_max_value = reg->u32_max_value = 2092 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2093 return; 2094 } 2095 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2096 * boundary, so we must be careful. 2097 */ 2098 if ((s32)reg->u32_max_value >= 0) { 2099 /* Positive. We can't learn anything from the smin, but smax 2100 * is positive, hence safe. 2101 */ 2102 reg->s32_min_value = reg->u32_min_value; 2103 reg->s32_max_value = reg->u32_max_value = 2104 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2105 } else if ((s32)reg->u32_min_value < 0) { 2106 /* Negative. We can't learn anything from the smax, but smin 2107 * is negative, hence safe. 2108 */ 2109 reg->s32_min_value = reg->u32_min_value = 2110 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2111 reg->s32_max_value = reg->u32_max_value; 2112 } 2113 } 2114 2115 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2116 { 2117 /* Learn sign from signed bounds. 2118 * If we cannot cross the sign boundary, then signed and unsigned bounds 2119 * are the same, so combine. This works even in the negative case, e.g. 2120 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2121 */ 2122 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2123 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2124 reg->umin_value); 2125 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2126 reg->umax_value); 2127 return; 2128 } 2129 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2130 * boundary, so we must be careful. 2131 */ 2132 if ((s64)reg->umax_value >= 0) { 2133 /* Positive. We can't learn anything from the smin, but smax 2134 * is positive, hence safe. 2135 */ 2136 reg->smin_value = reg->umin_value; 2137 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2138 reg->umax_value); 2139 } else if ((s64)reg->umin_value < 0) { 2140 /* Negative. We can't learn anything from the smax, but smin 2141 * is negative, hence safe. 2142 */ 2143 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2144 reg->umin_value); 2145 reg->smax_value = reg->umax_value; 2146 } 2147 } 2148 2149 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2150 { 2151 __reg32_deduce_bounds(reg); 2152 __reg64_deduce_bounds(reg); 2153 } 2154 2155 /* Attempts to improve var_off based on unsigned min/max information */ 2156 static void __reg_bound_offset(struct bpf_reg_state *reg) 2157 { 2158 struct tnum var64_off = tnum_intersect(reg->var_off, 2159 tnum_range(reg->umin_value, 2160 reg->umax_value)); 2161 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2162 tnum_range(reg->u32_min_value, 2163 reg->u32_max_value)); 2164 2165 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2166 } 2167 2168 static void reg_bounds_sync(struct bpf_reg_state *reg) 2169 { 2170 /* We might have learned new bounds from the var_off. */ 2171 __update_reg_bounds(reg); 2172 /* We might have learned something about the sign bit. */ 2173 __reg_deduce_bounds(reg); 2174 /* We might have learned some bits from the bounds. */ 2175 __reg_bound_offset(reg); 2176 /* Intersecting with the old var_off might have improved our bounds 2177 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2178 * then new var_off is (0; 0x7f...fc) which improves our umax. 2179 */ 2180 __update_reg_bounds(reg); 2181 } 2182 2183 static bool __reg32_bound_s64(s32 a) 2184 { 2185 return a >= 0 && a <= S32_MAX; 2186 } 2187 2188 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2189 { 2190 reg->umin_value = reg->u32_min_value; 2191 reg->umax_value = reg->u32_max_value; 2192 2193 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2194 * be positive otherwise set to worse case bounds and refine later 2195 * from tnum. 2196 */ 2197 if (__reg32_bound_s64(reg->s32_min_value) && 2198 __reg32_bound_s64(reg->s32_max_value)) { 2199 reg->smin_value = reg->s32_min_value; 2200 reg->smax_value = reg->s32_max_value; 2201 } else { 2202 reg->smin_value = 0; 2203 reg->smax_value = U32_MAX; 2204 } 2205 } 2206 2207 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2208 { 2209 /* special case when 64-bit register has upper 32-bit register 2210 * zeroed. Typically happens after zext or <<32, >>32 sequence 2211 * allowing us to use 32-bit bounds directly, 2212 */ 2213 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2214 __reg_assign_32_into_64(reg); 2215 } else { 2216 /* Otherwise the best we can do is push lower 32bit known and 2217 * unknown bits into register (var_off set from jmp logic) 2218 * then learn as much as possible from the 64-bit tnum 2219 * known and unknown bits. The previous smin/smax bounds are 2220 * invalid here because of jmp32 compare so mark them unknown 2221 * so they do not impact tnum bounds calculation. 2222 */ 2223 __mark_reg64_unbounded(reg); 2224 } 2225 reg_bounds_sync(reg); 2226 } 2227 2228 static bool __reg64_bound_s32(s64 a) 2229 { 2230 return a >= S32_MIN && a <= S32_MAX; 2231 } 2232 2233 static bool __reg64_bound_u32(u64 a) 2234 { 2235 return a >= U32_MIN && a <= U32_MAX; 2236 } 2237 2238 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2239 { 2240 __mark_reg32_unbounded(reg); 2241 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2242 reg->s32_min_value = (s32)reg->smin_value; 2243 reg->s32_max_value = (s32)reg->smax_value; 2244 } 2245 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2246 reg->u32_min_value = (u32)reg->umin_value; 2247 reg->u32_max_value = (u32)reg->umax_value; 2248 } 2249 reg_bounds_sync(reg); 2250 } 2251 2252 /* Mark a register as having a completely unknown (scalar) value. */ 2253 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2254 struct bpf_reg_state *reg) 2255 { 2256 /* 2257 * Clear type, off, and union(map_ptr, range) and 2258 * padding between 'type' and union 2259 */ 2260 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2261 reg->type = SCALAR_VALUE; 2262 reg->id = 0; 2263 reg->ref_obj_id = 0; 2264 reg->var_off = tnum_unknown; 2265 reg->frameno = 0; 2266 reg->precise = !env->bpf_capable; 2267 __mark_reg_unbounded(reg); 2268 } 2269 2270 static void mark_reg_unknown(struct bpf_verifier_env *env, 2271 struct bpf_reg_state *regs, u32 regno) 2272 { 2273 if (WARN_ON(regno >= MAX_BPF_REG)) { 2274 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2275 /* Something bad happened, let's kill all regs except FP */ 2276 for (regno = 0; regno < BPF_REG_FP; regno++) 2277 __mark_reg_not_init(env, regs + regno); 2278 return; 2279 } 2280 __mark_reg_unknown(env, regs + regno); 2281 } 2282 2283 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2284 struct bpf_reg_state *reg) 2285 { 2286 __mark_reg_unknown(env, reg); 2287 reg->type = NOT_INIT; 2288 } 2289 2290 static void mark_reg_not_init(struct bpf_verifier_env *env, 2291 struct bpf_reg_state *regs, u32 regno) 2292 { 2293 if (WARN_ON(regno >= MAX_BPF_REG)) { 2294 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2295 /* Something bad happened, let's kill all regs except FP */ 2296 for (regno = 0; regno < BPF_REG_FP; regno++) 2297 __mark_reg_not_init(env, regs + regno); 2298 return; 2299 } 2300 __mark_reg_not_init(env, regs + regno); 2301 } 2302 2303 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2304 struct bpf_reg_state *regs, u32 regno, 2305 enum bpf_reg_type reg_type, 2306 struct btf *btf, u32 btf_id, 2307 enum bpf_type_flag flag) 2308 { 2309 if (reg_type == SCALAR_VALUE) { 2310 mark_reg_unknown(env, regs, regno); 2311 return; 2312 } 2313 mark_reg_known_zero(env, regs, regno); 2314 regs[regno].type = PTR_TO_BTF_ID | flag; 2315 regs[regno].btf = btf; 2316 regs[regno].btf_id = btf_id; 2317 } 2318 2319 #define DEF_NOT_SUBREG (0) 2320 static void init_reg_state(struct bpf_verifier_env *env, 2321 struct bpf_func_state *state) 2322 { 2323 struct bpf_reg_state *regs = state->regs; 2324 int i; 2325 2326 for (i = 0; i < MAX_BPF_REG; i++) { 2327 mark_reg_not_init(env, regs, i); 2328 regs[i].live = REG_LIVE_NONE; 2329 regs[i].parent = NULL; 2330 regs[i].subreg_def = DEF_NOT_SUBREG; 2331 } 2332 2333 /* frame pointer */ 2334 regs[BPF_REG_FP].type = PTR_TO_STACK; 2335 mark_reg_known_zero(env, regs, BPF_REG_FP); 2336 regs[BPF_REG_FP].frameno = state->frameno; 2337 } 2338 2339 #define BPF_MAIN_FUNC (-1) 2340 static void init_func_state(struct bpf_verifier_env *env, 2341 struct bpf_func_state *state, 2342 int callsite, int frameno, int subprogno) 2343 { 2344 state->callsite = callsite; 2345 state->frameno = frameno; 2346 state->subprogno = subprogno; 2347 state->callback_ret_range = tnum_range(0, 0); 2348 init_reg_state(env, state); 2349 mark_verifier_state_scratched(env); 2350 } 2351 2352 /* Similar to push_stack(), but for async callbacks */ 2353 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2354 int insn_idx, int prev_insn_idx, 2355 int subprog) 2356 { 2357 struct bpf_verifier_stack_elem *elem; 2358 struct bpf_func_state *frame; 2359 2360 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2361 if (!elem) 2362 goto err; 2363 2364 elem->insn_idx = insn_idx; 2365 elem->prev_insn_idx = prev_insn_idx; 2366 elem->next = env->head; 2367 elem->log_pos = env->log.end_pos; 2368 env->head = elem; 2369 env->stack_size++; 2370 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2371 verbose(env, 2372 "The sequence of %d jumps is too complex for async cb.\n", 2373 env->stack_size); 2374 goto err; 2375 } 2376 /* Unlike push_stack() do not copy_verifier_state(). 2377 * The caller state doesn't matter. 2378 * This is async callback. It starts in a fresh stack. 2379 * Initialize it similar to do_check_common(). 2380 */ 2381 elem->st.branches = 1; 2382 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2383 if (!frame) 2384 goto err; 2385 init_func_state(env, frame, 2386 BPF_MAIN_FUNC /* callsite */, 2387 0 /* frameno within this callchain */, 2388 subprog /* subprog number within this prog */); 2389 elem->st.frame[0] = frame; 2390 return &elem->st; 2391 err: 2392 free_verifier_state(env->cur_state, true); 2393 env->cur_state = NULL; 2394 /* pop all elements and return */ 2395 while (!pop_stack(env, NULL, NULL, false)); 2396 return NULL; 2397 } 2398 2399 2400 enum reg_arg_type { 2401 SRC_OP, /* register is used as source operand */ 2402 DST_OP, /* register is used as destination operand */ 2403 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2404 }; 2405 2406 static int cmp_subprogs(const void *a, const void *b) 2407 { 2408 return ((struct bpf_subprog_info *)a)->start - 2409 ((struct bpf_subprog_info *)b)->start; 2410 } 2411 2412 static int find_subprog(struct bpf_verifier_env *env, int off) 2413 { 2414 struct bpf_subprog_info *p; 2415 2416 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2417 sizeof(env->subprog_info[0]), cmp_subprogs); 2418 if (!p) 2419 return -ENOENT; 2420 return p - env->subprog_info; 2421 2422 } 2423 2424 static int add_subprog(struct bpf_verifier_env *env, int off) 2425 { 2426 int insn_cnt = env->prog->len; 2427 int ret; 2428 2429 if (off >= insn_cnt || off < 0) { 2430 verbose(env, "call to invalid destination\n"); 2431 return -EINVAL; 2432 } 2433 ret = find_subprog(env, off); 2434 if (ret >= 0) 2435 return ret; 2436 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2437 verbose(env, "too many subprograms\n"); 2438 return -E2BIG; 2439 } 2440 /* determine subprog starts. The end is one before the next starts */ 2441 env->subprog_info[env->subprog_cnt++].start = off; 2442 sort(env->subprog_info, env->subprog_cnt, 2443 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2444 return env->subprog_cnt - 1; 2445 } 2446 2447 #define MAX_KFUNC_DESCS 256 2448 #define MAX_KFUNC_BTFS 256 2449 2450 struct bpf_kfunc_desc { 2451 struct btf_func_model func_model; 2452 u32 func_id; 2453 s32 imm; 2454 u16 offset; 2455 unsigned long addr; 2456 }; 2457 2458 struct bpf_kfunc_btf { 2459 struct btf *btf; 2460 struct module *module; 2461 u16 offset; 2462 }; 2463 2464 struct bpf_kfunc_desc_tab { 2465 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2466 * verification. JITs do lookups by bpf_insn, where func_id may not be 2467 * available, therefore at the end of verification do_misc_fixups() 2468 * sorts this by imm and offset. 2469 */ 2470 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2471 u32 nr_descs; 2472 }; 2473 2474 struct bpf_kfunc_btf_tab { 2475 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2476 u32 nr_descs; 2477 }; 2478 2479 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2480 { 2481 const struct bpf_kfunc_desc *d0 = a; 2482 const struct bpf_kfunc_desc *d1 = b; 2483 2484 /* func_id is not greater than BTF_MAX_TYPE */ 2485 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2486 } 2487 2488 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2489 { 2490 const struct bpf_kfunc_btf *d0 = a; 2491 const struct bpf_kfunc_btf *d1 = b; 2492 2493 return d0->offset - d1->offset; 2494 } 2495 2496 static const struct bpf_kfunc_desc * 2497 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2498 { 2499 struct bpf_kfunc_desc desc = { 2500 .func_id = func_id, 2501 .offset = offset, 2502 }; 2503 struct bpf_kfunc_desc_tab *tab; 2504 2505 tab = prog->aux->kfunc_tab; 2506 return bsearch(&desc, tab->descs, tab->nr_descs, 2507 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2508 } 2509 2510 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2511 u16 btf_fd_idx, u8 **func_addr) 2512 { 2513 const struct bpf_kfunc_desc *desc; 2514 2515 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2516 if (!desc) 2517 return -EFAULT; 2518 2519 *func_addr = (u8 *)desc->addr; 2520 return 0; 2521 } 2522 2523 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2524 s16 offset) 2525 { 2526 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2527 struct bpf_kfunc_btf_tab *tab; 2528 struct bpf_kfunc_btf *b; 2529 struct module *mod; 2530 struct btf *btf; 2531 int btf_fd; 2532 2533 tab = env->prog->aux->kfunc_btf_tab; 2534 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2535 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2536 if (!b) { 2537 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2538 verbose(env, "too many different module BTFs\n"); 2539 return ERR_PTR(-E2BIG); 2540 } 2541 2542 if (bpfptr_is_null(env->fd_array)) { 2543 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2544 return ERR_PTR(-EPROTO); 2545 } 2546 2547 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2548 offset * sizeof(btf_fd), 2549 sizeof(btf_fd))) 2550 return ERR_PTR(-EFAULT); 2551 2552 btf = btf_get_by_fd(btf_fd); 2553 if (IS_ERR(btf)) { 2554 verbose(env, "invalid module BTF fd specified\n"); 2555 return btf; 2556 } 2557 2558 if (!btf_is_module(btf)) { 2559 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2560 btf_put(btf); 2561 return ERR_PTR(-EINVAL); 2562 } 2563 2564 mod = btf_try_get_module(btf); 2565 if (!mod) { 2566 btf_put(btf); 2567 return ERR_PTR(-ENXIO); 2568 } 2569 2570 b = &tab->descs[tab->nr_descs++]; 2571 b->btf = btf; 2572 b->module = mod; 2573 b->offset = offset; 2574 2575 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2576 kfunc_btf_cmp_by_off, NULL); 2577 } 2578 return b->btf; 2579 } 2580 2581 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2582 { 2583 if (!tab) 2584 return; 2585 2586 while (tab->nr_descs--) { 2587 module_put(tab->descs[tab->nr_descs].module); 2588 btf_put(tab->descs[tab->nr_descs].btf); 2589 } 2590 kfree(tab); 2591 } 2592 2593 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2594 { 2595 if (offset) { 2596 if (offset < 0) { 2597 /* In the future, this can be allowed to increase limit 2598 * of fd index into fd_array, interpreted as u16. 2599 */ 2600 verbose(env, "negative offset disallowed for kernel module function call\n"); 2601 return ERR_PTR(-EINVAL); 2602 } 2603 2604 return __find_kfunc_desc_btf(env, offset); 2605 } 2606 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2607 } 2608 2609 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2610 { 2611 const struct btf_type *func, *func_proto; 2612 struct bpf_kfunc_btf_tab *btf_tab; 2613 struct bpf_kfunc_desc_tab *tab; 2614 struct bpf_prog_aux *prog_aux; 2615 struct bpf_kfunc_desc *desc; 2616 const char *func_name; 2617 struct btf *desc_btf; 2618 unsigned long call_imm; 2619 unsigned long addr; 2620 int err; 2621 2622 prog_aux = env->prog->aux; 2623 tab = prog_aux->kfunc_tab; 2624 btf_tab = prog_aux->kfunc_btf_tab; 2625 if (!tab) { 2626 if (!btf_vmlinux) { 2627 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2628 return -ENOTSUPP; 2629 } 2630 2631 if (!env->prog->jit_requested) { 2632 verbose(env, "JIT is required for calling kernel function\n"); 2633 return -ENOTSUPP; 2634 } 2635 2636 if (!bpf_jit_supports_kfunc_call()) { 2637 verbose(env, "JIT does not support calling kernel function\n"); 2638 return -ENOTSUPP; 2639 } 2640 2641 if (!env->prog->gpl_compatible) { 2642 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2643 return -EINVAL; 2644 } 2645 2646 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2647 if (!tab) 2648 return -ENOMEM; 2649 prog_aux->kfunc_tab = tab; 2650 } 2651 2652 /* func_id == 0 is always invalid, but instead of returning an error, be 2653 * conservative and wait until the code elimination pass before returning 2654 * error, so that invalid calls that get pruned out can be in BPF programs 2655 * loaded from userspace. It is also required that offset be untouched 2656 * for such calls. 2657 */ 2658 if (!func_id && !offset) 2659 return 0; 2660 2661 if (!btf_tab && offset) { 2662 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2663 if (!btf_tab) 2664 return -ENOMEM; 2665 prog_aux->kfunc_btf_tab = btf_tab; 2666 } 2667 2668 desc_btf = find_kfunc_desc_btf(env, offset); 2669 if (IS_ERR(desc_btf)) { 2670 verbose(env, "failed to find BTF for kernel function\n"); 2671 return PTR_ERR(desc_btf); 2672 } 2673 2674 if (find_kfunc_desc(env->prog, func_id, offset)) 2675 return 0; 2676 2677 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2678 verbose(env, "too many different kernel function calls\n"); 2679 return -E2BIG; 2680 } 2681 2682 func = btf_type_by_id(desc_btf, func_id); 2683 if (!func || !btf_type_is_func(func)) { 2684 verbose(env, "kernel btf_id %u is not a function\n", 2685 func_id); 2686 return -EINVAL; 2687 } 2688 func_proto = btf_type_by_id(desc_btf, func->type); 2689 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2690 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2691 func_id); 2692 return -EINVAL; 2693 } 2694 2695 func_name = btf_name_by_offset(desc_btf, func->name_off); 2696 addr = kallsyms_lookup_name(func_name); 2697 if (!addr) { 2698 verbose(env, "cannot find address for kernel function %s\n", 2699 func_name); 2700 return -EINVAL; 2701 } 2702 specialize_kfunc(env, func_id, offset, &addr); 2703 2704 if (bpf_jit_supports_far_kfunc_call()) { 2705 call_imm = func_id; 2706 } else { 2707 call_imm = BPF_CALL_IMM(addr); 2708 /* Check whether the relative offset overflows desc->imm */ 2709 if ((unsigned long)(s32)call_imm != call_imm) { 2710 verbose(env, "address of kernel function %s is out of range\n", 2711 func_name); 2712 return -EINVAL; 2713 } 2714 } 2715 2716 if (bpf_dev_bound_kfunc_id(func_id)) { 2717 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2718 if (err) 2719 return err; 2720 } 2721 2722 desc = &tab->descs[tab->nr_descs++]; 2723 desc->func_id = func_id; 2724 desc->imm = call_imm; 2725 desc->offset = offset; 2726 desc->addr = addr; 2727 err = btf_distill_func_proto(&env->log, desc_btf, 2728 func_proto, func_name, 2729 &desc->func_model); 2730 if (!err) 2731 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2732 kfunc_desc_cmp_by_id_off, NULL); 2733 return err; 2734 } 2735 2736 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2737 { 2738 const struct bpf_kfunc_desc *d0 = a; 2739 const struct bpf_kfunc_desc *d1 = b; 2740 2741 if (d0->imm != d1->imm) 2742 return d0->imm < d1->imm ? -1 : 1; 2743 if (d0->offset != d1->offset) 2744 return d0->offset < d1->offset ? -1 : 1; 2745 return 0; 2746 } 2747 2748 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2749 { 2750 struct bpf_kfunc_desc_tab *tab; 2751 2752 tab = prog->aux->kfunc_tab; 2753 if (!tab) 2754 return; 2755 2756 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2757 kfunc_desc_cmp_by_imm_off, NULL); 2758 } 2759 2760 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2761 { 2762 return !!prog->aux->kfunc_tab; 2763 } 2764 2765 const struct btf_func_model * 2766 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2767 const struct bpf_insn *insn) 2768 { 2769 const struct bpf_kfunc_desc desc = { 2770 .imm = insn->imm, 2771 .offset = insn->off, 2772 }; 2773 const struct bpf_kfunc_desc *res; 2774 struct bpf_kfunc_desc_tab *tab; 2775 2776 tab = prog->aux->kfunc_tab; 2777 res = bsearch(&desc, tab->descs, tab->nr_descs, 2778 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2779 2780 return res ? &res->func_model : NULL; 2781 } 2782 2783 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2784 { 2785 struct bpf_subprog_info *subprog = env->subprog_info; 2786 struct bpf_insn *insn = env->prog->insnsi; 2787 int i, ret, insn_cnt = env->prog->len; 2788 2789 /* Add entry function. */ 2790 ret = add_subprog(env, 0); 2791 if (ret) 2792 return ret; 2793 2794 for (i = 0; i < insn_cnt; i++, insn++) { 2795 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2796 !bpf_pseudo_kfunc_call(insn)) 2797 continue; 2798 2799 if (!env->bpf_capable) { 2800 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2801 return -EPERM; 2802 } 2803 2804 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2805 ret = add_subprog(env, i + insn->imm + 1); 2806 else 2807 ret = add_kfunc_call(env, insn->imm, insn->off); 2808 2809 if (ret < 0) 2810 return ret; 2811 } 2812 2813 /* Add a fake 'exit' subprog which could simplify subprog iteration 2814 * logic. 'subprog_cnt' should not be increased. 2815 */ 2816 subprog[env->subprog_cnt].start = insn_cnt; 2817 2818 if (env->log.level & BPF_LOG_LEVEL2) 2819 for (i = 0; i < env->subprog_cnt; i++) 2820 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2821 2822 return 0; 2823 } 2824 2825 static int check_subprogs(struct bpf_verifier_env *env) 2826 { 2827 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2828 struct bpf_subprog_info *subprog = env->subprog_info; 2829 struct bpf_insn *insn = env->prog->insnsi; 2830 int insn_cnt = env->prog->len; 2831 2832 /* now check that all jumps are within the same subprog */ 2833 subprog_start = subprog[cur_subprog].start; 2834 subprog_end = subprog[cur_subprog + 1].start; 2835 for (i = 0; i < insn_cnt; i++) { 2836 u8 code = insn[i].code; 2837 2838 if (code == (BPF_JMP | BPF_CALL) && 2839 insn[i].src_reg == 0 && 2840 insn[i].imm == BPF_FUNC_tail_call) 2841 subprog[cur_subprog].has_tail_call = true; 2842 if (BPF_CLASS(code) == BPF_LD && 2843 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2844 subprog[cur_subprog].has_ld_abs = true; 2845 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2846 goto next; 2847 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2848 goto next; 2849 off = i + insn[i].off + 1; 2850 if (off < subprog_start || off >= subprog_end) { 2851 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2852 return -EINVAL; 2853 } 2854 next: 2855 if (i == subprog_end - 1) { 2856 /* to avoid fall-through from one subprog into another 2857 * the last insn of the subprog should be either exit 2858 * or unconditional jump back 2859 */ 2860 if (code != (BPF_JMP | BPF_EXIT) && 2861 code != (BPF_JMP | BPF_JA)) { 2862 verbose(env, "last insn is not an exit or jmp\n"); 2863 return -EINVAL; 2864 } 2865 subprog_start = subprog_end; 2866 cur_subprog++; 2867 if (cur_subprog < env->subprog_cnt) 2868 subprog_end = subprog[cur_subprog + 1].start; 2869 } 2870 } 2871 return 0; 2872 } 2873 2874 /* Parentage chain of this register (or stack slot) should take care of all 2875 * issues like callee-saved registers, stack slot allocation time, etc. 2876 */ 2877 static int mark_reg_read(struct bpf_verifier_env *env, 2878 const struct bpf_reg_state *state, 2879 struct bpf_reg_state *parent, u8 flag) 2880 { 2881 bool writes = parent == state->parent; /* Observe write marks */ 2882 int cnt = 0; 2883 2884 while (parent) { 2885 /* if read wasn't screened by an earlier write ... */ 2886 if (writes && state->live & REG_LIVE_WRITTEN) 2887 break; 2888 if (parent->live & REG_LIVE_DONE) { 2889 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2890 reg_type_str(env, parent->type), 2891 parent->var_off.value, parent->off); 2892 return -EFAULT; 2893 } 2894 /* The first condition is more likely to be true than the 2895 * second, checked it first. 2896 */ 2897 if ((parent->live & REG_LIVE_READ) == flag || 2898 parent->live & REG_LIVE_READ64) 2899 /* The parentage chain never changes and 2900 * this parent was already marked as LIVE_READ. 2901 * There is no need to keep walking the chain again and 2902 * keep re-marking all parents as LIVE_READ. 2903 * This case happens when the same register is read 2904 * multiple times without writes into it in-between. 2905 * Also, if parent has the stronger REG_LIVE_READ64 set, 2906 * then no need to set the weak REG_LIVE_READ32. 2907 */ 2908 break; 2909 /* ... then we depend on parent's value */ 2910 parent->live |= flag; 2911 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2912 if (flag == REG_LIVE_READ64) 2913 parent->live &= ~REG_LIVE_READ32; 2914 state = parent; 2915 parent = state->parent; 2916 writes = true; 2917 cnt++; 2918 } 2919 2920 if (env->longest_mark_read_walk < cnt) 2921 env->longest_mark_read_walk = cnt; 2922 return 0; 2923 } 2924 2925 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2926 { 2927 struct bpf_func_state *state = func(env, reg); 2928 int spi, ret; 2929 2930 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2931 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2932 * check_kfunc_call. 2933 */ 2934 if (reg->type == CONST_PTR_TO_DYNPTR) 2935 return 0; 2936 spi = dynptr_get_spi(env, reg); 2937 if (spi < 0) 2938 return spi; 2939 /* Caller ensures dynptr is valid and initialized, which means spi is in 2940 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2941 * read. 2942 */ 2943 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2944 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2945 if (ret) 2946 return ret; 2947 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2948 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2949 } 2950 2951 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2952 int spi, int nr_slots) 2953 { 2954 struct bpf_func_state *state = func(env, reg); 2955 int err, i; 2956 2957 for (i = 0; i < nr_slots; i++) { 2958 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2959 2960 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2961 if (err) 2962 return err; 2963 2964 mark_stack_slot_scratched(env, spi - i); 2965 } 2966 2967 return 0; 2968 } 2969 2970 /* This function is supposed to be used by the following 32-bit optimization 2971 * code only. It returns TRUE if the source or destination register operates 2972 * on 64-bit, otherwise return FALSE. 2973 */ 2974 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2975 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2976 { 2977 u8 code, class, op; 2978 2979 code = insn->code; 2980 class = BPF_CLASS(code); 2981 op = BPF_OP(code); 2982 if (class == BPF_JMP) { 2983 /* BPF_EXIT for "main" will reach here. Return TRUE 2984 * conservatively. 2985 */ 2986 if (op == BPF_EXIT) 2987 return true; 2988 if (op == BPF_CALL) { 2989 /* BPF to BPF call will reach here because of marking 2990 * caller saved clobber with DST_OP_NO_MARK for which we 2991 * don't care the register def because they are anyway 2992 * marked as NOT_INIT already. 2993 */ 2994 if (insn->src_reg == BPF_PSEUDO_CALL) 2995 return false; 2996 /* Helper call will reach here because of arg type 2997 * check, conservatively return TRUE. 2998 */ 2999 if (t == SRC_OP) 3000 return true; 3001 3002 return false; 3003 } 3004 } 3005 3006 if (class == BPF_ALU64 || class == BPF_JMP || 3007 /* BPF_END always use BPF_ALU class. */ 3008 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3009 return true; 3010 3011 if (class == BPF_ALU || class == BPF_JMP32) 3012 return false; 3013 3014 if (class == BPF_LDX) { 3015 if (t != SRC_OP) 3016 return BPF_SIZE(code) == BPF_DW; 3017 /* LDX source must be ptr. */ 3018 return true; 3019 } 3020 3021 if (class == BPF_STX) { 3022 /* BPF_STX (including atomic variants) has multiple source 3023 * operands, one of which is a ptr. Check whether the caller is 3024 * asking about it. 3025 */ 3026 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3027 return true; 3028 return BPF_SIZE(code) == BPF_DW; 3029 } 3030 3031 if (class == BPF_LD) { 3032 u8 mode = BPF_MODE(code); 3033 3034 /* LD_IMM64 */ 3035 if (mode == BPF_IMM) 3036 return true; 3037 3038 /* Both LD_IND and LD_ABS return 32-bit data. */ 3039 if (t != SRC_OP) 3040 return false; 3041 3042 /* Implicit ctx ptr. */ 3043 if (regno == BPF_REG_6) 3044 return true; 3045 3046 /* Explicit source could be any width. */ 3047 return true; 3048 } 3049 3050 if (class == BPF_ST) 3051 /* The only source register for BPF_ST is a ptr. */ 3052 return true; 3053 3054 /* Conservatively return true at default. */ 3055 return true; 3056 } 3057 3058 /* Return the regno defined by the insn, or -1. */ 3059 static int insn_def_regno(const struct bpf_insn *insn) 3060 { 3061 switch (BPF_CLASS(insn->code)) { 3062 case BPF_JMP: 3063 case BPF_JMP32: 3064 case BPF_ST: 3065 return -1; 3066 case BPF_STX: 3067 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3068 (insn->imm & BPF_FETCH)) { 3069 if (insn->imm == BPF_CMPXCHG) 3070 return BPF_REG_0; 3071 else 3072 return insn->src_reg; 3073 } else { 3074 return -1; 3075 } 3076 default: 3077 return insn->dst_reg; 3078 } 3079 } 3080 3081 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3082 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3083 { 3084 int dst_reg = insn_def_regno(insn); 3085 3086 if (dst_reg == -1) 3087 return false; 3088 3089 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3090 } 3091 3092 static void mark_insn_zext(struct bpf_verifier_env *env, 3093 struct bpf_reg_state *reg) 3094 { 3095 s32 def_idx = reg->subreg_def; 3096 3097 if (def_idx == DEF_NOT_SUBREG) 3098 return; 3099 3100 env->insn_aux_data[def_idx - 1].zext_dst = true; 3101 /* The dst will be zero extended, so won't be sub-register anymore. */ 3102 reg->subreg_def = DEF_NOT_SUBREG; 3103 } 3104 3105 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3106 enum reg_arg_type t) 3107 { 3108 struct bpf_verifier_state *vstate = env->cur_state; 3109 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3110 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3111 struct bpf_reg_state *reg, *regs = state->regs; 3112 bool rw64; 3113 3114 if (regno >= MAX_BPF_REG) { 3115 verbose(env, "R%d is invalid\n", regno); 3116 return -EINVAL; 3117 } 3118 3119 mark_reg_scratched(env, regno); 3120 3121 reg = ®s[regno]; 3122 rw64 = is_reg64(env, insn, regno, reg, t); 3123 if (t == SRC_OP) { 3124 /* check whether register used as source operand can be read */ 3125 if (reg->type == NOT_INIT) { 3126 verbose(env, "R%d !read_ok\n", regno); 3127 return -EACCES; 3128 } 3129 /* We don't need to worry about FP liveness because it's read-only */ 3130 if (regno == BPF_REG_FP) 3131 return 0; 3132 3133 if (rw64) 3134 mark_insn_zext(env, reg); 3135 3136 return mark_reg_read(env, reg, reg->parent, 3137 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3138 } else { 3139 /* check whether register used as dest operand can be written to */ 3140 if (regno == BPF_REG_FP) { 3141 verbose(env, "frame pointer is read only\n"); 3142 return -EACCES; 3143 } 3144 reg->live |= REG_LIVE_WRITTEN; 3145 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3146 if (t == DST_OP) 3147 mark_reg_unknown(env, regs, regno); 3148 } 3149 return 0; 3150 } 3151 3152 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3153 { 3154 env->insn_aux_data[idx].jmp_point = true; 3155 } 3156 3157 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3158 { 3159 return env->insn_aux_data[insn_idx].jmp_point; 3160 } 3161 3162 /* for any branch, call, exit record the history of jmps in the given state */ 3163 static int push_jmp_history(struct bpf_verifier_env *env, 3164 struct bpf_verifier_state *cur) 3165 { 3166 u32 cnt = cur->jmp_history_cnt; 3167 struct bpf_idx_pair *p; 3168 size_t alloc_size; 3169 3170 if (!is_jmp_point(env, env->insn_idx)) 3171 return 0; 3172 3173 cnt++; 3174 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3175 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3176 if (!p) 3177 return -ENOMEM; 3178 p[cnt - 1].idx = env->insn_idx; 3179 p[cnt - 1].prev_idx = env->prev_insn_idx; 3180 cur->jmp_history = p; 3181 cur->jmp_history_cnt = cnt; 3182 return 0; 3183 } 3184 3185 /* Backtrack one insn at a time. If idx is not at the top of recorded 3186 * history then previous instruction came from straight line execution. 3187 */ 3188 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3189 u32 *history) 3190 { 3191 u32 cnt = *history; 3192 3193 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3194 i = st->jmp_history[cnt - 1].prev_idx; 3195 (*history)--; 3196 } else { 3197 i--; 3198 } 3199 return i; 3200 } 3201 3202 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3203 { 3204 const struct btf_type *func; 3205 struct btf *desc_btf; 3206 3207 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3208 return NULL; 3209 3210 desc_btf = find_kfunc_desc_btf(data, insn->off); 3211 if (IS_ERR(desc_btf)) 3212 return "<error>"; 3213 3214 func = btf_type_by_id(desc_btf, insn->imm); 3215 return btf_name_by_offset(desc_btf, func->name_off); 3216 } 3217 3218 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3219 { 3220 bt->frame = frame; 3221 } 3222 3223 static inline void bt_reset(struct backtrack_state *bt) 3224 { 3225 struct bpf_verifier_env *env = bt->env; 3226 3227 memset(bt, 0, sizeof(*bt)); 3228 bt->env = env; 3229 } 3230 3231 static inline u32 bt_empty(struct backtrack_state *bt) 3232 { 3233 u64 mask = 0; 3234 int i; 3235 3236 for (i = 0; i <= bt->frame; i++) 3237 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3238 3239 return mask == 0; 3240 } 3241 3242 static inline int bt_subprog_enter(struct backtrack_state *bt) 3243 { 3244 if (bt->frame == MAX_CALL_FRAMES - 1) { 3245 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3246 WARN_ONCE(1, "verifier backtracking bug"); 3247 return -EFAULT; 3248 } 3249 bt->frame++; 3250 return 0; 3251 } 3252 3253 static inline int bt_subprog_exit(struct backtrack_state *bt) 3254 { 3255 if (bt->frame == 0) { 3256 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3257 WARN_ONCE(1, "verifier backtracking bug"); 3258 return -EFAULT; 3259 } 3260 bt->frame--; 3261 return 0; 3262 } 3263 3264 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3265 { 3266 bt->reg_masks[frame] |= 1 << reg; 3267 } 3268 3269 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3270 { 3271 bt->reg_masks[frame] &= ~(1 << reg); 3272 } 3273 3274 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3275 { 3276 bt_set_frame_reg(bt, bt->frame, reg); 3277 } 3278 3279 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3280 { 3281 bt_clear_frame_reg(bt, bt->frame, reg); 3282 } 3283 3284 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3285 { 3286 bt->stack_masks[frame] |= 1ull << slot; 3287 } 3288 3289 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3290 { 3291 bt->stack_masks[frame] &= ~(1ull << slot); 3292 } 3293 3294 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3295 { 3296 bt_set_frame_slot(bt, bt->frame, slot); 3297 } 3298 3299 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3300 { 3301 bt_clear_frame_slot(bt, bt->frame, slot); 3302 } 3303 3304 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3305 { 3306 return bt->reg_masks[frame]; 3307 } 3308 3309 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3310 { 3311 return bt->reg_masks[bt->frame]; 3312 } 3313 3314 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3315 { 3316 return bt->stack_masks[frame]; 3317 } 3318 3319 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3320 { 3321 return bt->stack_masks[bt->frame]; 3322 } 3323 3324 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3325 { 3326 return bt->reg_masks[bt->frame] & (1 << reg); 3327 } 3328 3329 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3330 { 3331 return bt->stack_masks[bt->frame] & (1ull << slot); 3332 } 3333 3334 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3335 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3336 { 3337 DECLARE_BITMAP(mask, 64); 3338 bool first = true; 3339 int i, n; 3340 3341 buf[0] = '\0'; 3342 3343 bitmap_from_u64(mask, reg_mask); 3344 for_each_set_bit(i, mask, 32) { 3345 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3346 first = false; 3347 buf += n; 3348 buf_sz -= n; 3349 if (buf_sz < 0) 3350 break; 3351 } 3352 } 3353 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3354 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3355 { 3356 DECLARE_BITMAP(mask, 64); 3357 bool first = true; 3358 int i, n; 3359 3360 buf[0] = '\0'; 3361 3362 bitmap_from_u64(mask, stack_mask); 3363 for_each_set_bit(i, mask, 64) { 3364 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3365 first = false; 3366 buf += n; 3367 buf_sz -= n; 3368 if (buf_sz < 0) 3369 break; 3370 } 3371 } 3372 3373 /* For given verifier state backtrack_insn() is called from the last insn to 3374 * the first insn. Its purpose is to compute a bitmask of registers and 3375 * stack slots that needs precision in the parent verifier state. 3376 * 3377 * @idx is an index of the instruction we are currently processing; 3378 * @subseq_idx is an index of the subsequent instruction that: 3379 * - *would be* executed next, if jump history is viewed in forward order; 3380 * - *was* processed previously during backtracking. 3381 */ 3382 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3383 struct backtrack_state *bt) 3384 { 3385 const struct bpf_insn_cbs cbs = { 3386 .cb_call = disasm_kfunc_name, 3387 .cb_print = verbose, 3388 .private_data = env, 3389 }; 3390 struct bpf_insn *insn = env->prog->insnsi + idx; 3391 u8 class = BPF_CLASS(insn->code); 3392 u8 opcode = BPF_OP(insn->code); 3393 u8 mode = BPF_MODE(insn->code); 3394 u32 dreg = insn->dst_reg; 3395 u32 sreg = insn->src_reg; 3396 u32 spi, i; 3397 3398 if (insn->code == 0) 3399 return 0; 3400 if (env->log.level & BPF_LOG_LEVEL2) { 3401 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3402 verbose(env, "mark_precise: frame%d: regs=%s ", 3403 bt->frame, env->tmp_str_buf); 3404 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3405 verbose(env, "stack=%s before ", env->tmp_str_buf); 3406 verbose(env, "%d: ", idx); 3407 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3408 } 3409 3410 if (class == BPF_ALU || class == BPF_ALU64) { 3411 if (!bt_is_reg_set(bt, dreg)) 3412 return 0; 3413 if (opcode == BPF_MOV) { 3414 if (BPF_SRC(insn->code) == BPF_X) { 3415 /* dreg = sreg 3416 * dreg needs precision after this insn 3417 * sreg needs precision before this insn 3418 */ 3419 bt_clear_reg(bt, dreg); 3420 bt_set_reg(bt, sreg); 3421 } else { 3422 /* dreg = K 3423 * dreg needs precision after this insn. 3424 * Corresponding register is already marked 3425 * as precise=true in this verifier state. 3426 * No further markings in parent are necessary 3427 */ 3428 bt_clear_reg(bt, dreg); 3429 } 3430 } else { 3431 if (BPF_SRC(insn->code) == BPF_X) { 3432 /* dreg += sreg 3433 * both dreg and sreg need precision 3434 * before this insn 3435 */ 3436 bt_set_reg(bt, sreg); 3437 } /* else dreg += K 3438 * dreg still needs precision before this insn 3439 */ 3440 } 3441 } else if (class == BPF_LDX) { 3442 if (!bt_is_reg_set(bt, dreg)) 3443 return 0; 3444 bt_clear_reg(bt, dreg); 3445 3446 /* scalars can only be spilled into stack w/o losing precision. 3447 * Load from any other memory can be zero extended. 3448 * The desire to keep that precision is already indicated 3449 * by 'precise' mark in corresponding register of this state. 3450 * No further tracking necessary. 3451 */ 3452 if (insn->src_reg != BPF_REG_FP) 3453 return 0; 3454 3455 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3456 * that [fp - off] slot contains scalar that needs to be 3457 * tracked with precision 3458 */ 3459 spi = (-insn->off - 1) / BPF_REG_SIZE; 3460 if (spi >= 64) { 3461 verbose(env, "BUG spi %d\n", spi); 3462 WARN_ONCE(1, "verifier backtracking bug"); 3463 return -EFAULT; 3464 } 3465 bt_set_slot(bt, spi); 3466 } else if (class == BPF_STX || class == BPF_ST) { 3467 if (bt_is_reg_set(bt, dreg)) 3468 /* stx & st shouldn't be using _scalar_ dst_reg 3469 * to access memory. It means backtracking 3470 * encountered a case of pointer subtraction. 3471 */ 3472 return -ENOTSUPP; 3473 /* scalars can only be spilled into stack */ 3474 if (insn->dst_reg != BPF_REG_FP) 3475 return 0; 3476 spi = (-insn->off - 1) / BPF_REG_SIZE; 3477 if (spi >= 64) { 3478 verbose(env, "BUG spi %d\n", spi); 3479 WARN_ONCE(1, "verifier backtracking bug"); 3480 return -EFAULT; 3481 } 3482 if (!bt_is_slot_set(bt, spi)) 3483 return 0; 3484 bt_clear_slot(bt, spi); 3485 if (class == BPF_STX) 3486 bt_set_reg(bt, sreg); 3487 } else if (class == BPF_JMP || class == BPF_JMP32) { 3488 if (bpf_pseudo_call(insn)) { 3489 int subprog_insn_idx, subprog; 3490 3491 subprog_insn_idx = idx + insn->imm + 1; 3492 subprog = find_subprog(env, subprog_insn_idx); 3493 if (subprog < 0) 3494 return -EFAULT; 3495 3496 if (subprog_is_global(env, subprog)) { 3497 /* check that jump history doesn't have any 3498 * extra instructions from subprog; the next 3499 * instruction after call to global subprog 3500 * should be literally next instruction in 3501 * caller program 3502 */ 3503 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3504 /* r1-r5 are invalidated after subprog call, 3505 * so for global func call it shouldn't be set 3506 * anymore 3507 */ 3508 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3509 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3510 WARN_ONCE(1, "verifier backtracking bug"); 3511 return -EFAULT; 3512 } 3513 /* global subprog always sets R0 */ 3514 bt_clear_reg(bt, BPF_REG_0); 3515 return 0; 3516 } else { 3517 /* static subprog call instruction, which 3518 * means that we are exiting current subprog, 3519 * so only r1-r5 could be still requested as 3520 * precise, r0 and r6-r10 or any stack slot in 3521 * the current frame should be zero by now 3522 */ 3523 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3524 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3525 WARN_ONCE(1, "verifier backtracking bug"); 3526 return -EFAULT; 3527 } 3528 /* we don't track register spills perfectly, 3529 * so fallback to force-precise instead of failing */ 3530 if (bt_stack_mask(bt) != 0) 3531 return -ENOTSUPP; 3532 /* propagate r1-r5 to the caller */ 3533 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3534 if (bt_is_reg_set(bt, i)) { 3535 bt_clear_reg(bt, i); 3536 bt_set_frame_reg(bt, bt->frame - 1, i); 3537 } 3538 } 3539 if (bt_subprog_exit(bt)) 3540 return -EFAULT; 3541 return 0; 3542 } 3543 } else if ((bpf_helper_call(insn) && 3544 is_callback_calling_function(insn->imm) && 3545 !is_async_callback_calling_function(insn->imm)) || 3546 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3547 /* callback-calling helper or kfunc call, which means 3548 * we are exiting from subprog, but unlike the subprog 3549 * call handling above, we shouldn't propagate 3550 * precision of r1-r5 (if any requested), as they are 3551 * not actually arguments passed directly to callback 3552 * subprogs 3553 */ 3554 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3555 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3556 WARN_ONCE(1, "verifier backtracking bug"); 3557 return -EFAULT; 3558 } 3559 if (bt_stack_mask(bt) != 0) 3560 return -ENOTSUPP; 3561 /* clear r1-r5 in callback subprog's mask */ 3562 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3563 bt_clear_reg(bt, i); 3564 if (bt_subprog_exit(bt)) 3565 return -EFAULT; 3566 return 0; 3567 } else if (opcode == BPF_CALL) { 3568 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3569 * catch this error later. Make backtracking conservative 3570 * with ENOTSUPP. 3571 */ 3572 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3573 return -ENOTSUPP; 3574 /* regular helper call sets R0 */ 3575 bt_clear_reg(bt, BPF_REG_0); 3576 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3577 /* if backtracing was looking for registers R1-R5 3578 * they should have been found already. 3579 */ 3580 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3581 WARN_ONCE(1, "verifier backtracking bug"); 3582 return -EFAULT; 3583 } 3584 } else if (opcode == BPF_EXIT) { 3585 bool r0_precise; 3586 3587 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3588 /* if backtracing was looking for registers R1-R5 3589 * they should have been found already. 3590 */ 3591 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3592 WARN_ONCE(1, "verifier backtracking bug"); 3593 return -EFAULT; 3594 } 3595 3596 /* BPF_EXIT in subprog or callback always returns 3597 * right after the call instruction, so by checking 3598 * whether the instruction at subseq_idx-1 is subprog 3599 * call or not we can distinguish actual exit from 3600 * *subprog* from exit from *callback*. In the former 3601 * case, we need to propagate r0 precision, if 3602 * necessary. In the former we never do that. 3603 */ 3604 r0_precise = subseq_idx - 1 >= 0 && 3605 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3606 bt_is_reg_set(bt, BPF_REG_0); 3607 3608 bt_clear_reg(bt, BPF_REG_0); 3609 if (bt_subprog_enter(bt)) 3610 return -EFAULT; 3611 3612 if (r0_precise) 3613 bt_set_reg(bt, BPF_REG_0); 3614 /* r6-r9 and stack slots will stay set in caller frame 3615 * bitmasks until we return back from callee(s) 3616 */ 3617 return 0; 3618 } else if (BPF_SRC(insn->code) == BPF_X) { 3619 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3620 return 0; 3621 /* dreg <cond> sreg 3622 * Both dreg and sreg need precision before 3623 * this insn. If only sreg was marked precise 3624 * before it would be equally necessary to 3625 * propagate it to dreg. 3626 */ 3627 bt_set_reg(bt, dreg); 3628 bt_set_reg(bt, sreg); 3629 /* else dreg <cond> K 3630 * Only dreg still needs precision before 3631 * this insn, so for the K-based conditional 3632 * there is nothing new to be marked. 3633 */ 3634 } 3635 } else if (class == BPF_LD) { 3636 if (!bt_is_reg_set(bt, dreg)) 3637 return 0; 3638 bt_clear_reg(bt, dreg); 3639 /* It's ld_imm64 or ld_abs or ld_ind. 3640 * For ld_imm64 no further tracking of precision 3641 * into parent is necessary 3642 */ 3643 if (mode == BPF_IND || mode == BPF_ABS) 3644 /* to be analyzed */ 3645 return -ENOTSUPP; 3646 } 3647 return 0; 3648 } 3649 3650 /* the scalar precision tracking algorithm: 3651 * . at the start all registers have precise=false. 3652 * . scalar ranges are tracked as normal through alu and jmp insns. 3653 * . once precise value of the scalar register is used in: 3654 * . ptr + scalar alu 3655 * . if (scalar cond K|scalar) 3656 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3657 * backtrack through the verifier states and mark all registers and 3658 * stack slots with spilled constants that these scalar regisers 3659 * should be precise. 3660 * . during state pruning two registers (or spilled stack slots) 3661 * are equivalent if both are not precise. 3662 * 3663 * Note the verifier cannot simply walk register parentage chain, 3664 * since many different registers and stack slots could have been 3665 * used to compute single precise scalar. 3666 * 3667 * The approach of starting with precise=true for all registers and then 3668 * backtrack to mark a register as not precise when the verifier detects 3669 * that program doesn't care about specific value (e.g., when helper 3670 * takes register as ARG_ANYTHING parameter) is not safe. 3671 * 3672 * It's ok to walk single parentage chain of the verifier states. 3673 * It's possible that this backtracking will go all the way till 1st insn. 3674 * All other branches will be explored for needing precision later. 3675 * 3676 * The backtracking needs to deal with cases like: 3677 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3678 * r9 -= r8 3679 * r5 = r9 3680 * if r5 > 0x79f goto pc+7 3681 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3682 * r5 += 1 3683 * ... 3684 * call bpf_perf_event_output#25 3685 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3686 * 3687 * and this case: 3688 * r6 = 1 3689 * call foo // uses callee's r6 inside to compute r0 3690 * r0 += r6 3691 * if r0 == 0 goto 3692 * 3693 * to track above reg_mask/stack_mask needs to be independent for each frame. 3694 * 3695 * Also if parent's curframe > frame where backtracking started, 3696 * the verifier need to mark registers in both frames, otherwise callees 3697 * may incorrectly prune callers. This is similar to 3698 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3699 * 3700 * For now backtracking falls back into conservative marking. 3701 */ 3702 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3703 struct bpf_verifier_state *st) 3704 { 3705 struct bpf_func_state *func; 3706 struct bpf_reg_state *reg; 3707 int i, j; 3708 3709 if (env->log.level & BPF_LOG_LEVEL2) { 3710 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3711 st->curframe); 3712 } 3713 3714 /* big hammer: mark all scalars precise in this path. 3715 * pop_stack may still get !precise scalars. 3716 * We also skip current state and go straight to first parent state, 3717 * because precision markings in current non-checkpointed state are 3718 * not needed. See why in the comment in __mark_chain_precision below. 3719 */ 3720 for (st = st->parent; st; st = st->parent) { 3721 for (i = 0; i <= st->curframe; i++) { 3722 func = st->frame[i]; 3723 for (j = 0; j < BPF_REG_FP; j++) { 3724 reg = &func->regs[j]; 3725 if (reg->type != SCALAR_VALUE || reg->precise) 3726 continue; 3727 reg->precise = true; 3728 if (env->log.level & BPF_LOG_LEVEL2) { 3729 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3730 i, j); 3731 } 3732 } 3733 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3734 if (!is_spilled_reg(&func->stack[j])) 3735 continue; 3736 reg = &func->stack[j].spilled_ptr; 3737 if (reg->type != SCALAR_VALUE || reg->precise) 3738 continue; 3739 reg->precise = true; 3740 if (env->log.level & BPF_LOG_LEVEL2) { 3741 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3742 i, -(j + 1) * 8); 3743 } 3744 } 3745 } 3746 } 3747 } 3748 3749 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3750 { 3751 struct bpf_func_state *func; 3752 struct bpf_reg_state *reg; 3753 int i, j; 3754 3755 for (i = 0; i <= st->curframe; i++) { 3756 func = st->frame[i]; 3757 for (j = 0; j < BPF_REG_FP; j++) { 3758 reg = &func->regs[j]; 3759 if (reg->type != SCALAR_VALUE) 3760 continue; 3761 reg->precise = false; 3762 } 3763 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3764 if (!is_spilled_reg(&func->stack[j])) 3765 continue; 3766 reg = &func->stack[j].spilled_ptr; 3767 if (reg->type != SCALAR_VALUE) 3768 continue; 3769 reg->precise = false; 3770 } 3771 } 3772 } 3773 3774 /* 3775 * __mark_chain_precision() backtracks BPF program instruction sequence and 3776 * chain of verifier states making sure that register *regno* (if regno >= 0) 3777 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3778 * SCALARS, as well as any other registers and slots that contribute to 3779 * a tracked state of given registers/stack slots, depending on specific BPF 3780 * assembly instructions (see backtrack_insns() for exact instruction handling 3781 * logic). This backtracking relies on recorded jmp_history and is able to 3782 * traverse entire chain of parent states. This process ends only when all the 3783 * necessary registers/slots and their transitive dependencies are marked as 3784 * precise. 3785 * 3786 * One important and subtle aspect is that precise marks *do not matter* in 3787 * the currently verified state (current state). It is important to understand 3788 * why this is the case. 3789 * 3790 * First, note that current state is the state that is not yet "checkpointed", 3791 * i.e., it is not yet put into env->explored_states, and it has no children 3792 * states as well. It's ephemeral, and can end up either a) being discarded if 3793 * compatible explored state is found at some point or BPF_EXIT instruction is 3794 * reached or b) checkpointed and put into env->explored_states, branching out 3795 * into one or more children states. 3796 * 3797 * In the former case, precise markings in current state are completely 3798 * ignored by state comparison code (see regsafe() for details). Only 3799 * checkpointed ("old") state precise markings are important, and if old 3800 * state's register/slot is precise, regsafe() assumes current state's 3801 * register/slot as precise and checks value ranges exactly and precisely. If 3802 * states turn out to be compatible, current state's necessary precise 3803 * markings and any required parent states' precise markings are enforced 3804 * after the fact with propagate_precision() logic, after the fact. But it's 3805 * important to realize that in this case, even after marking current state 3806 * registers/slots as precise, we immediately discard current state. So what 3807 * actually matters is any of the precise markings propagated into current 3808 * state's parent states, which are always checkpointed (due to b) case above). 3809 * As such, for scenario a) it doesn't matter if current state has precise 3810 * markings set or not. 3811 * 3812 * Now, for the scenario b), checkpointing and forking into child(ren) 3813 * state(s). Note that before current state gets to checkpointing step, any 3814 * processed instruction always assumes precise SCALAR register/slot 3815 * knowledge: if precise value or range is useful to prune jump branch, BPF 3816 * verifier takes this opportunity enthusiastically. Similarly, when 3817 * register's value is used to calculate offset or memory address, exact 3818 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3819 * what we mentioned above about state comparison ignoring precise markings 3820 * during state comparison, BPF verifier ignores and also assumes precise 3821 * markings *at will* during instruction verification process. But as verifier 3822 * assumes precision, it also propagates any precision dependencies across 3823 * parent states, which are not yet finalized, so can be further restricted 3824 * based on new knowledge gained from restrictions enforced by their children 3825 * states. This is so that once those parent states are finalized, i.e., when 3826 * they have no more active children state, state comparison logic in 3827 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3828 * required for correctness. 3829 * 3830 * To build a bit more intuition, note also that once a state is checkpointed, 3831 * the path we took to get to that state is not important. This is crucial 3832 * property for state pruning. When state is checkpointed and finalized at 3833 * some instruction index, it can be correctly and safely used to "short 3834 * circuit" any *compatible* state that reaches exactly the same instruction 3835 * index. I.e., if we jumped to that instruction from a completely different 3836 * code path than original finalized state was derived from, it doesn't 3837 * matter, current state can be discarded because from that instruction 3838 * forward having a compatible state will ensure we will safely reach the 3839 * exit. States describe preconditions for further exploration, but completely 3840 * forget the history of how we got here. 3841 * 3842 * This also means that even if we needed precise SCALAR range to get to 3843 * finalized state, but from that point forward *that same* SCALAR register is 3844 * never used in a precise context (i.e., it's precise value is not needed for 3845 * correctness), it's correct and safe to mark such register as "imprecise" 3846 * (i.e., precise marking set to false). This is what we rely on when we do 3847 * not set precise marking in current state. If no child state requires 3848 * precision for any given SCALAR register, it's safe to dictate that it can 3849 * be imprecise. If any child state does require this register to be precise, 3850 * we'll mark it precise later retroactively during precise markings 3851 * propagation from child state to parent states. 3852 * 3853 * Skipping precise marking setting in current state is a mild version of 3854 * relying on the above observation. But we can utilize this property even 3855 * more aggressively by proactively forgetting any precise marking in the 3856 * current state (which we inherited from the parent state), right before we 3857 * checkpoint it and branch off into new child state. This is done by 3858 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3859 * finalized states which help in short circuiting more future states. 3860 */ 3861 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3862 { 3863 struct backtrack_state *bt = &env->bt; 3864 struct bpf_verifier_state *st = env->cur_state; 3865 int first_idx = st->first_insn_idx; 3866 int last_idx = env->insn_idx; 3867 int subseq_idx = -1; 3868 struct bpf_func_state *func; 3869 struct bpf_reg_state *reg; 3870 bool skip_first = true; 3871 int i, fr, err; 3872 3873 if (!env->bpf_capable) 3874 return 0; 3875 3876 /* set frame number from which we are starting to backtrack */ 3877 bt_init(bt, env->cur_state->curframe); 3878 3879 /* Do sanity checks against current state of register and/or stack 3880 * slot, but don't set precise flag in current state, as precision 3881 * tracking in the current state is unnecessary. 3882 */ 3883 func = st->frame[bt->frame]; 3884 if (regno >= 0) { 3885 reg = &func->regs[regno]; 3886 if (reg->type != SCALAR_VALUE) { 3887 WARN_ONCE(1, "backtracing misuse"); 3888 return -EFAULT; 3889 } 3890 bt_set_reg(bt, regno); 3891 } 3892 3893 if (bt_empty(bt)) 3894 return 0; 3895 3896 for (;;) { 3897 DECLARE_BITMAP(mask, 64); 3898 u32 history = st->jmp_history_cnt; 3899 3900 if (env->log.level & BPF_LOG_LEVEL2) { 3901 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 3902 bt->frame, last_idx, first_idx, subseq_idx); 3903 } 3904 3905 if (last_idx < 0) { 3906 /* we are at the entry into subprog, which 3907 * is expected for global funcs, but only if 3908 * requested precise registers are R1-R5 3909 * (which are global func's input arguments) 3910 */ 3911 if (st->curframe == 0 && 3912 st->frame[0]->subprogno > 0 && 3913 st->frame[0]->callsite == BPF_MAIN_FUNC && 3914 bt_stack_mask(bt) == 0 && 3915 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 3916 bitmap_from_u64(mask, bt_reg_mask(bt)); 3917 for_each_set_bit(i, mask, 32) { 3918 reg = &st->frame[0]->regs[i]; 3919 if (reg->type != SCALAR_VALUE) { 3920 bt_clear_reg(bt, i); 3921 continue; 3922 } 3923 reg->precise = true; 3924 } 3925 return 0; 3926 } 3927 3928 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 3929 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 3930 WARN_ONCE(1, "verifier backtracking bug"); 3931 return -EFAULT; 3932 } 3933 3934 for (i = last_idx;;) { 3935 if (skip_first) { 3936 err = 0; 3937 skip_first = false; 3938 } else { 3939 err = backtrack_insn(env, i, subseq_idx, bt); 3940 } 3941 if (err == -ENOTSUPP) { 3942 mark_all_scalars_precise(env, env->cur_state); 3943 bt_reset(bt); 3944 return 0; 3945 } else if (err) { 3946 return err; 3947 } 3948 if (bt_empty(bt)) 3949 /* Found assignment(s) into tracked register in this state. 3950 * Since this state is already marked, just return. 3951 * Nothing to be tracked further in the parent state. 3952 */ 3953 return 0; 3954 if (i == first_idx) 3955 break; 3956 subseq_idx = i; 3957 i = get_prev_insn_idx(st, i, &history); 3958 if (i >= env->prog->len) { 3959 /* This can happen if backtracking reached insn 0 3960 * and there are still reg_mask or stack_mask 3961 * to backtrack. 3962 * It means the backtracking missed the spot where 3963 * particular register was initialized with a constant. 3964 */ 3965 verbose(env, "BUG backtracking idx %d\n", i); 3966 WARN_ONCE(1, "verifier backtracking bug"); 3967 return -EFAULT; 3968 } 3969 } 3970 st = st->parent; 3971 if (!st) 3972 break; 3973 3974 for (fr = bt->frame; fr >= 0; fr--) { 3975 func = st->frame[fr]; 3976 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3977 for_each_set_bit(i, mask, 32) { 3978 reg = &func->regs[i]; 3979 if (reg->type != SCALAR_VALUE) { 3980 bt_clear_frame_reg(bt, fr, i); 3981 continue; 3982 } 3983 if (reg->precise) 3984 bt_clear_frame_reg(bt, fr, i); 3985 else 3986 reg->precise = true; 3987 } 3988 3989 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3990 for_each_set_bit(i, mask, 64) { 3991 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3992 /* the sequence of instructions: 3993 * 2: (bf) r3 = r10 3994 * 3: (7b) *(u64 *)(r3 -8) = r0 3995 * 4: (79) r4 = *(u64 *)(r10 -8) 3996 * doesn't contain jmps. It's backtracked 3997 * as a single block. 3998 * During backtracking insn 3 is not recognized as 3999 * stack access, so at the end of backtracking 4000 * stack slot fp-8 is still marked in stack_mask. 4001 * However the parent state may not have accessed 4002 * fp-8 and it's "unallocated" stack space. 4003 * In such case fallback to conservative. 4004 */ 4005 mark_all_scalars_precise(env, env->cur_state); 4006 bt_reset(bt); 4007 return 0; 4008 } 4009 4010 if (!is_spilled_scalar_reg(&func->stack[i])) { 4011 bt_clear_frame_slot(bt, fr, i); 4012 continue; 4013 } 4014 reg = &func->stack[i].spilled_ptr; 4015 if (reg->precise) 4016 bt_clear_frame_slot(bt, fr, i); 4017 else 4018 reg->precise = true; 4019 } 4020 if (env->log.level & BPF_LOG_LEVEL2) { 4021 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4022 bt_frame_reg_mask(bt, fr)); 4023 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4024 fr, env->tmp_str_buf); 4025 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4026 bt_frame_stack_mask(bt, fr)); 4027 verbose(env, "stack=%s: ", env->tmp_str_buf); 4028 print_verifier_state(env, func, true); 4029 } 4030 } 4031 4032 if (bt_empty(bt)) 4033 return 0; 4034 4035 subseq_idx = first_idx; 4036 last_idx = st->last_insn_idx; 4037 first_idx = st->first_insn_idx; 4038 } 4039 4040 /* if we still have requested precise regs or slots, we missed 4041 * something (e.g., stack access through non-r10 register), so 4042 * fallback to marking all precise 4043 */ 4044 if (!bt_empty(bt)) { 4045 mark_all_scalars_precise(env, env->cur_state); 4046 bt_reset(bt); 4047 } 4048 4049 return 0; 4050 } 4051 4052 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4053 { 4054 return __mark_chain_precision(env, regno); 4055 } 4056 4057 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4058 * desired reg and stack masks across all relevant frames 4059 */ 4060 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4061 { 4062 return __mark_chain_precision(env, -1); 4063 } 4064 4065 static bool is_spillable_regtype(enum bpf_reg_type type) 4066 { 4067 switch (base_type(type)) { 4068 case PTR_TO_MAP_VALUE: 4069 case PTR_TO_STACK: 4070 case PTR_TO_CTX: 4071 case PTR_TO_PACKET: 4072 case PTR_TO_PACKET_META: 4073 case PTR_TO_PACKET_END: 4074 case PTR_TO_FLOW_KEYS: 4075 case CONST_PTR_TO_MAP: 4076 case PTR_TO_SOCKET: 4077 case PTR_TO_SOCK_COMMON: 4078 case PTR_TO_TCP_SOCK: 4079 case PTR_TO_XDP_SOCK: 4080 case PTR_TO_BTF_ID: 4081 case PTR_TO_BUF: 4082 case PTR_TO_MEM: 4083 case PTR_TO_FUNC: 4084 case PTR_TO_MAP_KEY: 4085 return true; 4086 default: 4087 return false; 4088 } 4089 } 4090 4091 /* Does this register contain a constant zero? */ 4092 static bool register_is_null(struct bpf_reg_state *reg) 4093 { 4094 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4095 } 4096 4097 static bool register_is_const(struct bpf_reg_state *reg) 4098 { 4099 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4100 } 4101 4102 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4103 { 4104 return tnum_is_unknown(reg->var_off) && 4105 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4106 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4107 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4108 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4109 } 4110 4111 static bool register_is_bounded(struct bpf_reg_state *reg) 4112 { 4113 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4114 } 4115 4116 static bool __is_pointer_value(bool allow_ptr_leaks, 4117 const struct bpf_reg_state *reg) 4118 { 4119 if (allow_ptr_leaks) 4120 return false; 4121 4122 return reg->type != SCALAR_VALUE; 4123 } 4124 4125 /* Copy src state preserving dst->parent and dst->live fields */ 4126 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4127 { 4128 struct bpf_reg_state *parent = dst->parent; 4129 enum bpf_reg_liveness live = dst->live; 4130 4131 *dst = *src; 4132 dst->parent = parent; 4133 dst->live = live; 4134 } 4135 4136 static void save_register_state(struct bpf_func_state *state, 4137 int spi, struct bpf_reg_state *reg, 4138 int size) 4139 { 4140 int i; 4141 4142 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4143 if (size == BPF_REG_SIZE) 4144 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4145 4146 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4147 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4148 4149 /* size < 8 bytes spill */ 4150 for (; i; i--) 4151 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4152 } 4153 4154 static bool is_bpf_st_mem(struct bpf_insn *insn) 4155 { 4156 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4157 } 4158 4159 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4160 * stack boundary and alignment are checked in check_mem_access() 4161 */ 4162 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4163 /* stack frame we're writing to */ 4164 struct bpf_func_state *state, 4165 int off, int size, int value_regno, 4166 int insn_idx) 4167 { 4168 struct bpf_func_state *cur; /* state of the current function */ 4169 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4170 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4171 struct bpf_reg_state *reg = NULL; 4172 u32 dst_reg = insn->dst_reg; 4173 4174 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4175 if (err) 4176 return err; 4177 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4178 * so it's aligned access and [off, off + size) are within stack limits 4179 */ 4180 if (!env->allow_ptr_leaks && 4181 state->stack[spi].slot_type[0] == STACK_SPILL && 4182 size != BPF_REG_SIZE) { 4183 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4184 return -EACCES; 4185 } 4186 4187 cur = env->cur_state->frame[env->cur_state->curframe]; 4188 if (value_regno >= 0) 4189 reg = &cur->regs[value_regno]; 4190 if (!env->bypass_spec_v4) { 4191 bool sanitize = reg && is_spillable_regtype(reg->type); 4192 4193 for (i = 0; i < size; i++) { 4194 u8 type = state->stack[spi].slot_type[i]; 4195 4196 if (type != STACK_MISC && type != STACK_ZERO) { 4197 sanitize = true; 4198 break; 4199 } 4200 } 4201 4202 if (sanitize) 4203 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4204 } 4205 4206 err = destroy_if_dynptr_stack_slot(env, state, spi); 4207 if (err) 4208 return err; 4209 4210 mark_stack_slot_scratched(env, spi); 4211 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4212 !register_is_null(reg) && env->bpf_capable) { 4213 if (dst_reg != BPF_REG_FP) { 4214 /* The backtracking logic can only recognize explicit 4215 * stack slot address like [fp - 8]. Other spill of 4216 * scalar via different register has to be conservative. 4217 * Backtrack from here and mark all registers as precise 4218 * that contributed into 'reg' being a constant. 4219 */ 4220 err = mark_chain_precision(env, value_regno); 4221 if (err) 4222 return err; 4223 } 4224 save_register_state(state, spi, reg, size); 4225 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4226 insn->imm != 0 && env->bpf_capable) { 4227 struct bpf_reg_state fake_reg = {}; 4228 4229 __mark_reg_known(&fake_reg, (u32)insn->imm); 4230 fake_reg.type = SCALAR_VALUE; 4231 save_register_state(state, spi, &fake_reg, size); 4232 } else if (reg && is_spillable_regtype(reg->type)) { 4233 /* register containing pointer is being spilled into stack */ 4234 if (size != BPF_REG_SIZE) { 4235 verbose_linfo(env, insn_idx, "; "); 4236 verbose(env, "invalid size of register spill\n"); 4237 return -EACCES; 4238 } 4239 if (state != cur && reg->type == PTR_TO_STACK) { 4240 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4241 return -EINVAL; 4242 } 4243 save_register_state(state, spi, reg, size); 4244 } else { 4245 u8 type = STACK_MISC; 4246 4247 /* regular write of data into stack destroys any spilled ptr */ 4248 state->stack[spi].spilled_ptr.type = NOT_INIT; 4249 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4250 if (is_stack_slot_special(&state->stack[spi])) 4251 for (i = 0; i < BPF_REG_SIZE; i++) 4252 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4253 4254 /* only mark the slot as written if all 8 bytes were written 4255 * otherwise read propagation may incorrectly stop too soon 4256 * when stack slots are partially written. 4257 * This heuristic means that read propagation will be 4258 * conservative, since it will add reg_live_read marks 4259 * to stack slots all the way to first state when programs 4260 * writes+reads less than 8 bytes 4261 */ 4262 if (size == BPF_REG_SIZE) 4263 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4264 4265 /* when we zero initialize stack slots mark them as such */ 4266 if ((reg && register_is_null(reg)) || 4267 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4268 /* backtracking doesn't work for STACK_ZERO yet. */ 4269 err = mark_chain_precision(env, value_regno); 4270 if (err) 4271 return err; 4272 type = STACK_ZERO; 4273 } 4274 4275 /* Mark slots affected by this stack write. */ 4276 for (i = 0; i < size; i++) 4277 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4278 type; 4279 } 4280 return 0; 4281 } 4282 4283 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4284 * known to contain a variable offset. 4285 * This function checks whether the write is permitted and conservatively 4286 * tracks the effects of the write, considering that each stack slot in the 4287 * dynamic range is potentially written to. 4288 * 4289 * 'off' includes 'regno->off'. 4290 * 'value_regno' can be -1, meaning that an unknown value is being written to 4291 * the stack. 4292 * 4293 * Spilled pointers in range are not marked as written because we don't know 4294 * what's going to be actually written. This means that read propagation for 4295 * future reads cannot be terminated by this write. 4296 * 4297 * For privileged programs, uninitialized stack slots are considered 4298 * initialized by this write (even though we don't know exactly what offsets 4299 * are going to be written to). The idea is that we don't want the verifier to 4300 * reject future reads that access slots written to through variable offsets. 4301 */ 4302 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4303 /* func where register points to */ 4304 struct bpf_func_state *state, 4305 int ptr_regno, int off, int size, 4306 int value_regno, int insn_idx) 4307 { 4308 struct bpf_func_state *cur; /* state of the current function */ 4309 int min_off, max_off; 4310 int i, err; 4311 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4312 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4313 bool writing_zero = false; 4314 /* set if the fact that we're writing a zero is used to let any 4315 * stack slots remain STACK_ZERO 4316 */ 4317 bool zero_used = false; 4318 4319 cur = env->cur_state->frame[env->cur_state->curframe]; 4320 ptr_reg = &cur->regs[ptr_regno]; 4321 min_off = ptr_reg->smin_value + off; 4322 max_off = ptr_reg->smax_value + off + size; 4323 if (value_regno >= 0) 4324 value_reg = &cur->regs[value_regno]; 4325 if ((value_reg && register_is_null(value_reg)) || 4326 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4327 writing_zero = true; 4328 4329 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4330 if (err) 4331 return err; 4332 4333 for (i = min_off; i < max_off; i++) { 4334 int spi; 4335 4336 spi = __get_spi(i); 4337 err = destroy_if_dynptr_stack_slot(env, state, spi); 4338 if (err) 4339 return err; 4340 } 4341 4342 /* Variable offset writes destroy any spilled pointers in range. */ 4343 for (i = min_off; i < max_off; i++) { 4344 u8 new_type, *stype; 4345 int slot, spi; 4346 4347 slot = -i - 1; 4348 spi = slot / BPF_REG_SIZE; 4349 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4350 mark_stack_slot_scratched(env, spi); 4351 4352 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4353 /* Reject the write if range we may write to has not 4354 * been initialized beforehand. If we didn't reject 4355 * here, the ptr status would be erased below (even 4356 * though not all slots are actually overwritten), 4357 * possibly opening the door to leaks. 4358 * 4359 * We do however catch STACK_INVALID case below, and 4360 * only allow reading possibly uninitialized memory 4361 * later for CAP_PERFMON, as the write may not happen to 4362 * that slot. 4363 */ 4364 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4365 insn_idx, i); 4366 return -EINVAL; 4367 } 4368 4369 /* Erase all spilled pointers. */ 4370 state->stack[spi].spilled_ptr.type = NOT_INIT; 4371 4372 /* Update the slot type. */ 4373 new_type = STACK_MISC; 4374 if (writing_zero && *stype == STACK_ZERO) { 4375 new_type = STACK_ZERO; 4376 zero_used = true; 4377 } 4378 /* If the slot is STACK_INVALID, we check whether it's OK to 4379 * pretend that it will be initialized by this write. The slot 4380 * might not actually be written to, and so if we mark it as 4381 * initialized future reads might leak uninitialized memory. 4382 * For privileged programs, we will accept such reads to slots 4383 * that may or may not be written because, if we're reject 4384 * them, the error would be too confusing. 4385 */ 4386 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4387 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4388 insn_idx, i); 4389 return -EINVAL; 4390 } 4391 *stype = new_type; 4392 } 4393 if (zero_used) { 4394 /* backtracking doesn't work for STACK_ZERO yet. */ 4395 err = mark_chain_precision(env, value_regno); 4396 if (err) 4397 return err; 4398 } 4399 return 0; 4400 } 4401 4402 /* When register 'dst_regno' is assigned some values from stack[min_off, 4403 * max_off), we set the register's type according to the types of the 4404 * respective stack slots. If all the stack values are known to be zeros, then 4405 * so is the destination reg. Otherwise, the register is considered to be 4406 * SCALAR. This function does not deal with register filling; the caller must 4407 * ensure that all spilled registers in the stack range have been marked as 4408 * read. 4409 */ 4410 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4411 /* func where src register points to */ 4412 struct bpf_func_state *ptr_state, 4413 int min_off, int max_off, int dst_regno) 4414 { 4415 struct bpf_verifier_state *vstate = env->cur_state; 4416 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4417 int i, slot, spi; 4418 u8 *stype; 4419 int zeros = 0; 4420 4421 for (i = min_off; i < max_off; i++) { 4422 slot = -i - 1; 4423 spi = slot / BPF_REG_SIZE; 4424 mark_stack_slot_scratched(env, spi); 4425 stype = ptr_state->stack[spi].slot_type; 4426 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4427 break; 4428 zeros++; 4429 } 4430 if (zeros == max_off - min_off) { 4431 /* any access_size read into register is zero extended, 4432 * so the whole register == const_zero 4433 */ 4434 __mark_reg_const_zero(&state->regs[dst_regno]); 4435 /* backtracking doesn't support STACK_ZERO yet, 4436 * so mark it precise here, so that later 4437 * backtracking can stop here. 4438 * Backtracking may not need this if this register 4439 * doesn't participate in pointer adjustment. 4440 * Forward propagation of precise flag is not 4441 * necessary either. This mark is only to stop 4442 * backtracking. Any register that contributed 4443 * to const 0 was marked precise before spill. 4444 */ 4445 state->regs[dst_regno].precise = true; 4446 } else { 4447 /* have read misc data from the stack */ 4448 mark_reg_unknown(env, state->regs, dst_regno); 4449 } 4450 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4451 } 4452 4453 /* Read the stack at 'off' and put the results into the register indicated by 4454 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4455 * spilled reg. 4456 * 4457 * 'dst_regno' can be -1, meaning that the read value is not going to a 4458 * register. 4459 * 4460 * The access is assumed to be within the current stack bounds. 4461 */ 4462 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4463 /* func where src register points to */ 4464 struct bpf_func_state *reg_state, 4465 int off, int size, int dst_regno) 4466 { 4467 struct bpf_verifier_state *vstate = env->cur_state; 4468 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4469 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4470 struct bpf_reg_state *reg; 4471 u8 *stype, type; 4472 4473 stype = reg_state->stack[spi].slot_type; 4474 reg = ®_state->stack[spi].spilled_ptr; 4475 4476 mark_stack_slot_scratched(env, spi); 4477 4478 if (is_spilled_reg(®_state->stack[spi])) { 4479 u8 spill_size = 1; 4480 4481 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4482 spill_size++; 4483 4484 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4485 if (reg->type != SCALAR_VALUE) { 4486 verbose_linfo(env, env->insn_idx, "; "); 4487 verbose(env, "invalid size of register fill\n"); 4488 return -EACCES; 4489 } 4490 4491 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4492 if (dst_regno < 0) 4493 return 0; 4494 4495 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4496 /* The earlier check_reg_arg() has decided the 4497 * subreg_def for this insn. Save it first. 4498 */ 4499 s32 subreg_def = state->regs[dst_regno].subreg_def; 4500 4501 copy_register_state(&state->regs[dst_regno], reg); 4502 state->regs[dst_regno].subreg_def = subreg_def; 4503 } else { 4504 for (i = 0; i < size; i++) { 4505 type = stype[(slot - i) % BPF_REG_SIZE]; 4506 if (type == STACK_SPILL) 4507 continue; 4508 if (type == STACK_MISC) 4509 continue; 4510 if (type == STACK_INVALID && env->allow_uninit_stack) 4511 continue; 4512 verbose(env, "invalid read from stack off %d+%d size %d\n", 4513 off, i, size); 4514 return -EACCES; 4515 } 4516 mark_reg_unknown(env, state->regs, dst_regno); 4517 } 4518 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4519 return 0; 4520 } 4521 4522 if (dst_regno >= 0) { 4523 /* restore register state from stack */ 4524 copy_register_state(&state->regs[dst_regno], reg); 4525 /* mark reg as written since spilled pointer state likely 4526 * has its liveness marks cleared by is_state_visited() 4527 * which resets stack/reg liveness for state transitions 4528 */ 4529 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4530 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4531 /* If dst_regno==-1, the caller is asking us whether 4532 * it is acceptable to use this value as a SCALAR_VALUE 4533 * (e.g. for XADD). 4534 * We must not allow unprivileged callers to do that 4535 * with spilled pointers. 4536 */ 4537 verbose(env, "leaking pointer from stack off %d\n", 4538 off); 4539 return -EACCES; 4540 } 4541 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4542 } else { 4543 for (i = 0; i < size; i++) { 4544 type = stype[(slot - i) % BPF_REG_SIZE]; 4545 if (type == STACK_MISC) 4546 continue; 4547 if (type == STACK_ZERO) 4548 continue; 4549 if (type == STACK_INVALID && env->allow_uninit_stack) 4550 continue; 4551 verbose(env, "invalid read from stack off %d+%d size %d\n", 4552 off, i, size); 4553 return -EACCES; 4554 } 4555 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4556 if (dst_regno >= 0) 4557 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4558 } 4559 return 0; 4560 } 4561 4562 enum bpf_access_src { 4563 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4564 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4565 }; 4566 4567 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4568 int regno, int off, int access_size, 4569 bool zero_size_allowed, 4570 enum bpf_access_src type, 4571 struct bpf_call_arg_meta *meta); 4572 4573 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4574 { 4575 return cur_regs(env) + regno; 4576 } 4577 4578 /* Read the stack at 'ptr_regno + off' and put the result into the register 4579 * 'dst_regno'. 4580 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4581 * but not its variable offset. 4582 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4583 * 4584 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4585 * filling registers (i.e. reads of spilled register cannot be detected when 4586 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4587 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4588 * offset; for a fixed offset check_stack_read_fixed_off should be used 4589 * instead. 4590 */ 4591 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4592 int ptr_regno, int off, int size, int dst_regno) 4593 { 4594 /* The state of the source register. */ 4595 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4596 struct bpf_func_state *ptr_state = func(env, reg); 4597 int err; 4598 int min_off, max_off; 4599 4600 /* Note that we pass a NULL meta, so raw access will not be permitted. 4601 */ 4602 err = check_stack_range_initialized(env, ptr_regno, off, size, 4603 false, ACCESS_DIRECT, NULL); 4604 if (err) 4605 return err; 4606 4607 min_off = reg->smin_value + off; 4608 max_off = reg->smax_value + off; 4609 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4610 return 0; 4611 } 4612 4613 /* check_stack_read dispatches to check_stack_read_fixed_off or 4614 * check_stack_read_var_off. 4615 * 4616 * The caller must ensure that the offset falls within the allocated stack 4617 * bounds. 4618 * 4619 * 'dst_regno' is a register which will receive the value from the stack. It 4620 * can be -1, meaning that the read value is not going to a register. 4621 */ 4622 static int check_stack_read(struct bpf_verifier_env *env, 4623 int ptr_regno, int off, int size, 4624 int dst_regno) 4625 { 4626 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4627 struct bpf_func_state *state = func(env, reg); 4628 int err; 4629 /* Some accesses are only permitted with a static offset. */ 4630 bool var_off = !tnum_is_const(reg->var_off); 4631 4632 /* The offset is required to be static when reads don't go to a 4633 * register, in order to not leak pointers (see 4634 * check_stack_read_fixed_off). 4635 */ 4636 if (dst_regno < 0 && var_off) { 4637 char tn_buf[48]; 4638 4639 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4640 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4641 tn_buf, off, size); 4642 return -EACCES; 4643 } 4644 /* Variable offset is prohibited for unprivileged mode for simplicity 4645 * since it requires corresponding support in Spectre masking for stack 4646 * ALU. See also retrieve_ptr_limit(). The check in 4647 * check_stack_access_for_ptr_arithmetic() called by 4648 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4649 * with variable offsets, therefore no check is required here. Further, 4650 * just checking it here would be insufficient as speculative stack 4651 * writes could still lead to unsafe speculative behaviour. 4652 */ 4653 if (!var_off) { 4654 off += reg->var_off.value; 4655 err = check_stack_read_fixed_off(env, state, off, size, 4656 dst_regno); 4657 } else { 4658 /* Variable offset stack reads need more conservative handling 4659 * than fixed offset ones. Note that dst_regno >= 0 on this 4660 * branch. 4661 */ 4662 err = check_stack_read_var_off(env, ptr_regno, off, size, 4663 dst_regno); 4664 } 4665 return err; 4666 } 4667 4668 4669 /* check_stack_write dispatches to check_stack_write_fixed_off or 4670 * check_stack_write_var_off. 4671 * 4672 * 'ptr_regno' is the register used as a pointer into the stack. 4673 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4674 * 'value_regno' is the register whose value we're writing to the stack. It can 4675 * be -1, meaning that we're not writing from a register. 4676 * 4677 * The caller must ensure that the offset falls within the maximum stack size. 4678 */ 4679 static int check_stack_write(struct bpf_verifier_env *env, 4680 int ptr_regno, int off, int size, 4681 int value_regno, int insn_idx) 4682 { 4683 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4684 struct bpf_func_state *state = func(env, reg); 4685 int err; 4686 4687 if (tnum_is_const(reg->var_off)) { 4688 off += reg->var_off.value; 4689 err = check_stack_write_fixed_off(env, state, off, size, 4690 value_regno, insn_idx); 4691 } else { 4692 /* Variable offset stack reads need more conservative handling 4693 * than fixed offset ones. 4694 */ 4695 err = check_stack_write_var_off(env, state, 4696 ptr_regno, off, size, 4697 value_regno, insn_idx); 4698 } 4699 return err; 4700 } 4701 4702 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4703 int off, int size, enum bpf_access_type type) 4704 { 4705 struct bpf_reg_state *regs = cur_regs(env); 4706 struct bpf_map *map = regs[regno].map_ptr; 4707 u32 cap = bpf_map_flags_to_cap(map); 4708 4709 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4710 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4711 map->value_size, off, size); 4712 return -EACCES; 4713 } 4714 4715 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4716 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4717 map->value_size, off, size); 4718 return -EACCES; 4719 } 4720 4721 return 0; 4722 } 4723 4724 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4725 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4726 int off, int size, u32 mem_size, 4727 bool zero_size_allowed) 4728 { 4729 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4730 struct bpf_reg_state *reg; 4731 4732 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4733 return 0; 4734 4735 reg = &cur_regs(env)[regno]; 4736 switch (reg->type) { 4737 case PTR_TO_MAP_KEY: 4738 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4739 mem_size, off, size); 4740 break; 4741 case PTR_TO_MAP_VALUE: 4742 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4743 mem_size, off, size); 4744 break; 4745 case PTR_TO_PACKET: 4746 case PTR_TO_PACKET_META: 4747 case PTR_TO_PACKET_END: 4748 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4749 off, size, regno, reg->id, off, mem_size); 4750 break; 4751 case PTR_TO_MEM: 4752 default: 4753 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4754 mem_size, off, size); 4755 } 4756 4757 return -EACCES; 4758 } 4759 4760 /* check read/write into a memory region with possible variable offset */ 4761 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4762 int off, int size, u32 mem_size, 4763 bool zero_size_allowed) 4764 { 4765 struct bpf_verifier_state *vstate = env->cur_state; 4766 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4767 struct bpf_reg_state *reg = &state->regs[regno]; 4768 int err; 4769 4770 /* We may have adjusted the register pointing to memory region, so we 4771 * need to try adding each of min_value and max_value to off 4772 * to make sure our theoretical access will be safe. 4773 * 4774 * The minimum value is only important with signed 4775 * comparisons where we can't assume the floor of a 4776 * value is 0. If we are using signed variables for our 4777 * index'es we need to make sure that whatever we use 4778 * will have a set floor within our range. 4779 */ 4780 if (reg->smin_value < 0 && 4781 (reg->smin_value == S64_MIN || 4782 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4783 reg->smin_value + off < 0)) { 4784 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4785 regno); 4786 return -EACCES; 4787 } 4788 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4789 mem_size, zero_size_allowed); 4790 if (err) { 4791 verbose(env, "R%d min value is outside of the allowed memory range\n", 4792 regno); 4793 return err; 4794 } 4795 4796 /* If we haven't set a max value then we need to bail since we can't be 4797 * sure we won't do bad things. 4798 * If reg->umax_value + off could overflow, treat that as unbounded too. 4799 */ 4800 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4801 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4802 regno); 4803 return -EACCES; 4804 } 4805 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4806 mem_size, zero_size_allowed); 4807 if (err) { 4808 verbose(env, "R%d max value is outside of the allowed memory range\n", 4809 regno); 4810 return err; 4811 } 4812 4813 return 0; 4814 } 4815 4816 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4817 const struct bpf_reg_state *reg, int regno, 4818 bool fixed_off_ok) 4819 { 4820 /* Access to this pointer-typed register or passing it to a helper 4821 * is only allowed in its original, unmodified form. 4822 */ 4823 4824 if (reg->off < 0) { 4825 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4826 reg_type_str(env, reg->type), regno, reg->off); 4827 return -EACCES; 4828 } 4829 4830 if (!fixed_off_ok && reg->off) { 4831 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4832 reg_type_str(env, reg->type), regno, reg->off); 4833 return -EACCES; 4834 } 4835 4836 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4837 char tn_buf[48]; 4838 4839 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4840 verbose(env, "variable %s access var_off=%s disallowed\n", 4841 reg_type_str(env, reg->type), tn_buf); 4842 return -EACCES; 4843 } 4844 4845 return 0; 4846 } 4847 4848 int check_ptr_off_reg(struct bpf_verifier_env *env, 4849 const struct bpf_reg_state *reg, int regno) 4850 { 4851 return __check_ptr_off_reg(env, reg, regno, false); 4852 } 4853 4854 static int map_kptr_match_type(struct bpf_verifier_env *env, 4855 struct btf_field *kptr_field, 4856 struct bpf_reg_state *reg, u32 regno) 4857 { 4858 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4859 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4860 const char *reg_name = ""; 4861 4862 /* Only unreferenced case accepts untrusted pointers */ 4863 if (kptr_field->type == BPF_KPTR_UNREF) 4864 perm_flags |= PTR_UNTRUSTED; 4865 4866 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4867 goto bad_type; 4868 4869 if (!btf_is_kernel(reg->btf)) { 4870 verbose(env, "R%d must point to kernel BTF\n", regno); 4871 return -EINVAL; 4872 } 4873 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 4874 reg_name = btf_type_name(reg->btf, reg->btf_id); 4875 4876 /* For ref_ptr case, release function check should ensure we get one 4877 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 4878 * normal store of unreferenced kptr, we must ensure var_off is zero. 4879 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 4880 * reg->off and reg->ref_obj_id are not needed here. 4881 */ 4882 if (__check_ptr_off_reg(env, reg, regno, true)) 4883 return -EACCES; 4884 4885 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 4886 * we also need to take into account the reg->off. 4887 * 4888 * We want to support cases like: 4889 * 4890 * struct foo { 4891 * struct bar br; 4892 * struct baz bz; 4893 * }; 4894 * 4895 * struct foo *v; 4896 * v = func(); // PTR_TO_BTF_ID 4897 * val->foo = v; // reg->off is zero, btf and btf_id match type 4898 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 4899 * // first member type of struct after comparison fails 4900 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 4901 * // to match type 4902 * 4903 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 4904 * is zero. We must also ensure that btf_struct_ids_match does not walk 4905 * the struct to match type against first member of struct, i.e. reject 4906 * second case from above. Hence, when type is BPF_KPTR_REF, we set 4907 * strict mode to true for type match. 4908 */ 4909 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4910 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 4911 kptr_field->type == BPF_KPTR_REF)) 4912 goto bad_type; 4913 return 0; 4914 bad_type: 4915 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 4916 reg_type_str(env, reg->type), reg_name); 4917 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 4918 if (kptr_field->type == BPF_KPTR_UNREF) 4919 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 4920 targ_name); 4921 else 4922 verbose(env, "\n"); 4923 return -EINVAL; 4924 } 4925 4926 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 4927 * can dereference RCU protected pointers and result is PTR_TRUSTED. 4928 */ 4929 static bool in_rcu_cs(struct bpf_verifier_env *env) 4930 { 4931 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable; 4932 } 4933 4934 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 4935 BTF_SET_START(rcu_protected_types) 4936 BTF_ID(struct, prog_test_ref_kfunc) 4937 BTF_ID(struct, cgroup) 4938 BTF_ID(struct, bpf_cpumask) 4939 BTF_ID(struct, task_struct) 4940 BTF_SET_END(rcu_protected_types) 4941 4942 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 4943 { 4944 if (!btf_is_kernel(btf)) 4945 return false; 4946 return btf_id_set_contains(&rcu_protected_types, btf_id); 4947 } 4948 4949 static bool rcu_safe_kptr(const struct btf_field *field) 4950 { 4951 const struct btf_field_kptr *kptr = &field->kptr; 4952 4953 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 4954 } 4955 4956 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 4957 int value_regno, int insn_idx, 4958 struct btf_field *kptr_field) 4959 { 4960 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4961 int class = BPF_CLASS(insn->code); 4962 struct bpf_reg_state *val_reg; 4963 4964 /* Things we already checked for in check_map_access and caller: 4965 * - Reject cases where variable offset may touch kptr 4966 * - size of access (must be BPF_DW) 4967 * - tnum_is_const(reg->var_off) 4968 * - kptr_field->offset == off + reg->var_off.value 4969 */ 4970 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4971 if (BPF_MODE(insn->code) != BPF_MEM) { 4972 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4973 return -EACCES; 4974 } 4975 4976 /* We only allow loading referenced kptr, since it will be marked as 4977 * untrusted, similar to unreferenced kptr. 4978 */ 4979 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4980 verbose(env, "store to referenced kptr disallowed\n"); 4981 return -EACCES; 4982 } 4983 4984 if (class == BPF_LDX) { 4985 val_reg = reg_state(env, value_regno); 4986 /* We can simply mark the value_regno receiving the pointer 4987 * value from map as PTR_TO_BTF_ID, with the correct type. 4988 */ 4989 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4990 kptr_field->kptr.btf_id, 4991 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 4992 PTR_MAYBE_NULL | MEM_RCU : 4993 PTR_MAYBE_NULL | PTR_UNTRUSTED); 4994 /* For mark_ptr_or_null_reg */ 4995 val_reg->id = ++env->id_gen; 4996 } else if (class == BPF_STX) { 4997 val_reg = reg_state(env, value_regno); 4998 if (!register_is_null(val_reg) && 4999 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5000 return -EACCES; 5001 } else if (class == BPF_ST) { 5002 if (insn->imm) { 5003 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5004 kptr_field->offset); 5005 return -EACCES; 5006 } 5007 } else { 5008 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5009 return -EACCES; 5010 } 5011 return 0; 5012 } 5013 5014 /* check read/write into a map element with possible variable offset */ 5015 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5016 int off, int size, bool zero_size_allowed, 5017 enum bpf_access_src src) 5018 { 5019 struct bpf_verifier_state *vstate = env->cur_state; 5020 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5021 struct bpf_reg_state *reg = &state->regs[regno]; 5022 struct bpf_map *map = reg->map_ptr; 5023 struct btf_record *rec; 5024 int err, i; 5025 5026 err = check_mem_region_access(env, regno, off, size, map->value_size, 5027 zero_size_allowed); 5028 if (err) 5029 return err; 5030 5031 if (IS_ERR_OR_NULL(map->record)) 5032 return 0; 5033 rec = map->record; 5034 for (i = 0; i < rec->cnt; i++) { 5035 struct btf_field *field = &rec->fields[i]; 5036 u32 p = field->offset; 5037 5038 /* If any part of a field can be touched by load/store, reject 5039 * this program. To check that [x1, x2) overlaps with [y1, y2), 5040 * it is sufficient to check x1 < y2 && y1 < x2. 5041 */ 5042 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5043 p < reg->umax_value + off + size) { 5044 switch (field->type) { 5045 case BPF_KPTR_UNREF: 5046 case BPF_KPTR_REF: 5047 if (src != ACCESS_DIRECT) { 5048 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5049 return -EACCES; 5050 } 5051 if (!tnum_is_const(reg->var_off)) { 5052 verbose(env, "kptr access cannot have variable offset\n"); 5053 return -EACCES; 5054 } 5055 if (p != off + reg->var_off.value) { 5056 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5057 p, off + reg->var_off.value); 5058 return -EACCES; 5059 } 5060 if (size != bpf_size_to_bytes(BPF_DW)) { 5061 verbose(env, "kptr access size must be BPF_DW\n"); 5062 return -EACCES; 5063 } 5064 break; 5065 default: 5066 verbose(env, "%s cannot be accessed directly by load/store\n", 5067 btf_field_type_name(field->type)); 5068 return -EACCES; 5069 } 5070 } 5071 } 5072 return 0; 5073 } 5074 5075 #define MAX_PACKET_OFF 0xffff 5076 5077 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5078 const struct bpf_call_arg_meta *meta, 5079 enum bpf_access_type t) 5080 { 5081 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5082 5083 switch (prog_type) { 5084 /* Program types only with direct read access go here! */ 5085 case BPF_PROG_TYPE_LWT_IN: 5086 case BPF_PROG_TYPE_LWT_OUT: 5087 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5088 case BPF_PROG_TYPE_SK_REUSEPORT: 5089 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5090 case BPF_PROG_TYPE_CGROUP_SKB: 5091 if (t == BPF_WRITE) 5092 return false; 5093 fallthrough; 5094 5095 /* Program types with direct read + write access go here! */ 5096 case BPF_PROG_TYPE_SCHED_CLS: 5097 case BPF_PROG_TYPE_SCHED_ACT: 5098 case BPF_PROG_TYPE_XDP: 5099 case BPF_PROG_TYPE_LWT_XMIT: 5100 case BPF_PROG_TYPE_SK_SKB: 5101 case BPF_PROG_TYPE_SK_MSG: 5102 if (meta) 5103 return meta->pkt_access; 5104 5105 env->seen_direct_write = true; 5106 return true; 5107 5108 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5109 if (t == BPF_WRITE) 5110 env->seen_direct_write = true; 5111 5112 return true; 5113 5114 default: 5115 return false; 5116 } 5117 } 5118 5119 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5120 int size, bool zero_size_allowed) 5121 { 5122 struct bpf_reg_state *regs = cur_regs(env); 5123 struct bpf_reg_state *reg = ®s[regno]; 5124 int err; 5125 5126 /* We may have added a variable offset to the packet pointer; but any 5127 * reg->range we have comes after that. We are only checking the fixed 5128 * offset. 5129 */ 5130 5131 /* We don't allow negative numbers, because we aren't tracking enough 5132 * detail to prove they're safe. 5133 */ 5134 if (reg->smin_value < 0) { 5135 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5136 regno); 5137 return -EACCES; 5138 } 5139 5140 err = reg->range < 0 ? -EINVAL : 5141 __check_mem_access(env, regno, off, size, reg->range, 5142 zero_size_allowed); 5143 if (err) { 5144 verbose(env, "R%d offset is outside of the packet\n", regno); 5145 return err; 5146 } 5147 5148 /* __check_mem_access has made sure "off + size - 1" is within u16. 5149 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5150 * otherwise find_good_pkt_pointers would have refused to set range info 5151 * that __check_mem_access would have rejected this pkt access. 5152 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5153 */ 5154 env->prog->aux->max_pkt_offset = 5155 max_t(u32, env->prog->aux->max_pkt_offset, 5156 off + reg->umax_value + size - 1); 5157 5158 return err; 5159 } 5160 5161 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5162 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5163 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5164 struct btf **btf, u32 *btf_id) 5165 { 5166 struct bpf_insn_access_aux info = { 5167 .reg_type = *reg_type, 5168 .log = &env->log, 5169 }; 5170 5171 if (env->ops->is_valid_access && 5172 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5173 /* A non zero info.ctx_field_size indicates that this field is a 5174 * candidate for later verifier transformation to load the whole 5175 * field and then apply a mask when accessed with a narrower 5176 * access than actual ctx access size. A zero info.ctx_field_size 5177 * will only allow for whole field access and rejects any other 5178 * type of narrower access. 5179 */ 5180 *reg_type = info.reg_type; 5181 5182 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5183 *btf = info.btf; 5184 *btf_id = info.btf_id; 5185 } else { 5186 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5187 } 5188 /* remember the offset of last byte accessed in ctx */ 5189 if (env->prog->aux->max_ctx_offset < off + size) 5190 env->prog->aux->max_ctx_offset = off + size; 5191 return 0; 5192 } 5193 5194 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5195 return -EACCES; 5196 } 5197 5198 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5199 int size) 5200 { 5201 if (size < 0 || off < 0 || 5202 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5203 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5204 off, size); 5205 return -EACCES; 5206 } 5207 return 0; 5208 } 5209 5210 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5211 u32 regno, int off, int size, 5212 enum bpf_access_type t) 5213 { 5214 struct bpf_reg_state *regs = cur_regs(env); 5215 struct bpf_reg_state *reg = ®s[regno]; 5216 struct bpf_insn_access_aux info = {}; 5217 bool valid; 5218 5219 if (reg->smin_value < 0) { 5220 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5221 regno); 5222 return -EACCES; 5223 } 5224 5225 switch (reg->type) { 5226 case PTR_TO_SOCK_COMMON: 5227 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5228 break; 5229 case PTR_TO_SOCKET: 5230 valid = bpf_sock_is_valid_access(off, size, t, &info); 5231 break; 5232 case PTR_TO_TCP_SOCK: 5233 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5234 break; 5235 case PTR_TO_XDP_SOCK: 5236 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5237 break; 5238 default: 5239 valid = false; 5240 } 5241 5242 5243 if (valid) { 5244 env->insn_aux_data[insn_idx].ctx_field_size = 5245 info.ctx_field_size; 5246 return 0; 5247 } 5248 5249 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5250 regno, reg_type_str(env, reg->type), off, size); 5251 5252 return -EACCES; 5253 } 5254 5255 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5256 { 5257 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5258 } 5259 5260 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5261 { 5262 const struct bpf_reg_state *reg = reg_state(env, regno); 5263 5264 return reg->type == PTR_TO_CTX; 5265 } 5266 5267 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5268 { 5269 const struct bpf_reg_state *reg = reg_state(env, regno); 5270 5271 return type_is_sk_pointer(reg->type); 5272 } 5273 5274 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5275 { 5276 const struct bpf_reg_state *reg = reg_state(env, regno); 5277 5278 return type_is_pkt_pointer(reg->type); 5279 } 5280 5281 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5282 { 5283 const struct bpf_reg_state *reg = reg_state(env, regno); 5284 5285 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5286 return reg->type == PTR_TO_FLOW_KEYS; 5287 } 5288 5289 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5290 { 5291 /* A referenced register is always trusted. */ 5292 if (reg->ref_obj_id) 5293 return true; 5294 5295 /* If a register is not referenced, it is trusted if it has the 5296 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5297 * other type modifiers may be safe, but we elect to take an opt-in 5298 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5299 * not. 5300 * 5301 * Eventually, we should make PTR_TRUSTED the single source of truth 5302 * for whether a register is trusted. 5303 */ 5304 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5305 !bpf_type_has_unsafe_modifiers(reg->type); 5306 } 5307 5308 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5309 { 5310 return reg->type & MEM_RCU; 5311 } 5312 5313 static void clear_trusted_flags(enum bpf_type_flag *flag) 5314 { 5315 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5316 } 5317 5318 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5319 const struct bpf_reg_state *reg, 5320 int off, int size, bool strict) 5321 { 5322 struct tnum reg_off; 5323 int ip_align; 5324 5325 /* Byte size accesses are always allowed. */ 5326 if (!strict || size == 1) 5327 return 0; 5328 5329 /* For platforms that do not have a Kconfig enabling 5330 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5331 * NET_IP_ALIGN is universally set to '2'. And on platforms 5332 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5333 * to this code only in strict mode where we want to emulate 5334 * the NET_IP_ALIGN==2 checking. Therefore use an 5335 * unconditional IP align value of '2'. 5336 */ 5337 ip_align = 2; 5338 5339 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5340 if (!tnum_is_aligned(reg_off, size)) { 5341 char tn_buf[48]; 5342 5343 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5344 verbose(env, 5345 "misaligned packet access off %d+%s+%d+%d size %d\n", 5346 ip_align, tn_buf, reg->off, off, size); 5347 return -EACCES; 5348 } 5349 5350 return 0; 5351 } 5352 5353 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5354 const struct bpf_reg_state *reg, 5355 const char *pointer_desc, 5356 int off, int size, bool strict) 5357 { 5358 struct tnum reg_off; 5359 5360 /* Byte size accesses are always allowed. */ 5361 if (!strict || size == 1) 5362 return 0; 5363 5364 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5365 if (!tnum_is_aligned(reg_off, size)) { 5366 char tn_buf[48]; 5367 5368 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5369 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5370 pointer_desc, tn_buf, reg->off, off, size); 5371 return -EACCES; 5372 } 5373 5374 return 0; 5375 } 5376 5377 static int check_ptr_alignment(struct bpf_verifier_env *env, 5378 const struct bpf_reg_state *reg, int off, 5379 int size, bool strict_alignment_once) 5380 { 5381 bool strict = env->strict_alignment || strict_alignment_once; 5382 const char *pointer_desc = ""; 5383 5384 switch (reg->type) { 5385 case PTR_TO_PACKET: 5386 case PTR_TO_PACKET_META: 5387 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5388 * right in front, treat it the very same way. 5389 */ 5390 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5391 case PTR_TO_FLOW_KEYS: 5392 pointer_desc = "flow keys "; 5393 break; 5394 case PTR_TO_MAP_KEY: 5395 pointer_desc = "key "; 5396 break; 5397 case PTR_TO_MAP_VALUE: 5398 pointer_desc = "value "; 5399 break; 5400 case PTR_TO_CTX: 5401 pointer_desc = "context "; 5402 break; 5403 case PTR_TO_STACK: 5404 pointer_desc = "stack "; 5405 /* The stack spill tracking logic in check_stack_write_fixed_off() 5406 * and check_stack_read_fixed_off() relies on stack accesses being 5407 * aligned. 5408 */ 5409 strict = true; 5410 break; 5411 case PTR_TO_SOCKET: 5412 pointer_desc = "sock "; 5413 break; 5414 case PTR_TO_SOCK_COMMON: 5415 pointer_desc = "sock_common "; 5416 break; 5417 case PTR_TO_TCP_SOCK: 5418 pointer_desc = "tcp_sock "; 5419 break; 5420 case PTR_TO_XDP_SOCK: 5421 pointer_desc = "xdp_sock "; 5422 break; 5423 default: 5424 break; 5425 } 5426 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5427 strict); 5428 } 5429 5430 static int update_stack_depth(struct bpf_verifier_env *env, 5431 const struct bpf_func_state *func, 5432 int off) 5433 { 5434 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5435 5436 if (stack >= -off) 5437 return 0; 5438 5439 /* update known max for given subprogram */ 5440 env->subprog_info[func->subprogno].stack_depth = -off; 5441 return 0; 5442 } 5443 5444 /* starting from main bpf function walk all instructions of the function 5445 * and recursively walk all callees that given function can call. 5446 * Ignore jump and exit insns. 5447 * Since recursion is prevented by check_cfg() this algorithm 5448 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5449 */ 5450 static int check_max_stack_depth(struct bpf_verifier_env *env) 5451 { 5452 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 5453 struct bpf_subprog_info *subprog = env->subprog_info; 5454 struct bpf_insn *insn = env->prog->insnsi; 5455 bool tail_call_reachable = false; 5456 int ret_insn[MAX_CALL_FRAMES]; 5457 int ret_prog[MAX_CALL_FRAMES]; 5458 int j; 5459 5460 process_func: 5461 /* protect against potential stack overflow that might happen when 5462 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5463 * depth for such case down to 256 so that the worst case scenario 5464 * would result in 8k stack size (32 which is tailcall limit * 256 = 5465 * 8k). 5466 * 5467 * To get the idea what might happen, see an example: 5468 * func1 -> sub rsp, 128 5469 * subfunc1 -> sub rsp, 256 5470 * tailcall1 -> add rsp, 256 5471 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5472 * subfunc2 -> sub rsp, 64 5473 * subfunc22 -> sub rsp, 128 5474 * tailcall2 -> add rsp, 128 5475 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5476 * 5477 * tailcall will unwind the current stack frame but it will not get rid 5478 * of caller's stack as shown on the example above. 5479 */ 5480 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5481 verbose(env, 5482 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5483 depth); 5484 return -EACCES; 5485 } 5486 /* round up to 32-bytes, since this is granularity 5487 * of interpreter stack size 5488 */ 5489 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5490 if (depth > MAX_BPF_STACK) { 5491 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5492 frame + 1, depth); 5493 return -EACCES; 5494 } 5495 continue_func: 5496 subprog_end = subprog[idx + 1].start; 5497 for (; i < subprog_end; i++) { 5498 int next_insn; 5499 5500 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5501 continue; 5502 /* remember insn and function to return to */ 5503 ret_insn[frame] = i + 1; 5504 ret_prog[frame] = idx; 5505 5506 /* find the callee */ 5507 next_insn = i + insn[i].imm + 1; 5508 idx = find_subprog(env, next_insn); 5509 if (idx < 0) { 5510 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5511 next_insn); 5512 return -EFAULT; 5513 } 5514 if (subprog[idx].is_async_cb) { 5515 if (subprog[idx].has_tail_call) { 5516 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5517 return -EFAULT; 5518 } 5519 /* async callbacks don't increase bpf prog stack size */ 5520 continue; 5521 } 5522 i = next_insn; 5523 5524 if (subprog[idx].has_tail_call) 5525 tail_call_reachable = true; 5526 5527 frame++; 5528 if (frame >= MAX_CALL_FRAMES) { 5529 verbose(env, "the call stack of %d frames is too deep !\n", 5530 frame); 5531 return -E2BIG; 5532 } 5533 goto process_func; 5534 } 5535 /* if tail call got detected across bpf2bpf calls then mark each of the 5536 * currently present subprog frames as tail call reachable subprogs; 5537 * this info will be utilized by JIT so that we will be preserving the 5538 * tail call counter throughout bpf2bpf calls combined with tailcalls 5539 */ 5540 if (tail_call_reachable) 5541 for (j = 0; j < frame; j++) 5542 subprog[ret_prog[j]].tail_call_reachable = true; 5543 if (subprog[0].tail_call_reachable) 5544 env->prog->aux->tail_call_reachable = true; 5545 5546 /* end of for() loop means the last insn of the 'subprog' 5547 * was reached. Doesn't matter whether it was JA or EXIT 5548 */ 5549 if (frame == 0) 5550 return 0; 5551 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5552 frame--; 5553 i = ret_insn[frame]; 5554 idx = ret_prog[frame]; 5555 goto continue_func; 5556 } 5557 5558 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5559 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5560 const struct bpf_insn *insn, int idx) 5561 { 5562 int start = idx + insn->imm + 1, subprog; 5563 5564 subprog = find_subprog(env, start); 5565 if (subprog < 0) { 5566 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5567 start); 5568 return -EFAULT; 5569 } 5570 return env->subprog_info[subprog].stack_depth; 5571 } 5572 #endif 5573 5574 static int __check_buffer_access(struct bpf_verifier_env *env, 5575 const char *buf_info, 5576 const struct bpf_reg_state *reg, 5577 int regno, int off, int size) 5578 { 5579 if (off < 0) { 5580 verbose(env, 5581 "R%d invalid %s buffer access: off=%d, size=%d\n", 5582 regno, buf_info, off, size); 5583 return -EACCES; 5584 } 5585 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5586 char tn_buf[48]; 5587 5588 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5589 verbose(env, 5590 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5591 regno, off, tn_buf); 5592 return -EACCES; 5593 } 5594 5595 return 0; 5596 } 5597 5598 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5599 const struct bpf_reg_state *reg, 5600 int regno, int off, int size) 5601 { 5602 int err; 5603 5604 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5605 if (err) 5606 return err; 5607 5608 if (off + size > env->prog->aux->max_tp_access) 5609 env->prog->aux->max_tp_access = off + size; 5610 5611 return 0; 5612 } 5613 5614 static int check_buffer_access(struct bpf_verifier_env *env, 5615 const struct bpf_reg_state *reg, 5616 int regno, int off, int size, 5617 bool zero_size_allowed, 5618 u32 *max_access) 5619 { 5620 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5621 int err; 5622 5623 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5624 if (err) 5625 return err; 5626 5627 if (off + size > *max_access) 5628 *max_access = off + size; 5629 5630 return 0; 5631 } 5632 5633 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5634 static void zext_32_to_64(struct bpf_reg_state *reg) 5635 { 5636 reg->var_off = tnum_subreg(reg->var_off); 5637 __reg_assign_32_into_64(reg); 5638 } 5639 5640 /* truncate register to smaller size (in bytes) 5641 * must be called with size < BPF_REG_SIZE 5642 */ 5643 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5644 { 5645 u64 mask; 5646 5647 /* clear high bits in bit representation */ 5648 reg->var_off = tnum_cast(reg->var_off, size); 5649 5650 /* fix arithmetic bounds */ 5651 mask = ((u64)1 << (size * 8)) - 1; 5652 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5653 reg->umin_value &= mask; 5654 reg->umax_value &= mask; 5655 } else { 5656 reg->umin_value = 0; 5657 reg->umax_value = mask; 5658 } 5659 reg->smin_value = reg->umin_value; 5660 reg->smax_value = reg->umax_value; 5661 5662 /* If size is smaller than 32bit register the 32bit register 5663 * values are also truncated so we push 64-bit bounds into 5664 * 32-bit bounds. Above were truncated < 32-bits already. 5665 */ 5666 if (size >= 4) 5667 return; 5668 __reg_combine_64_into_32(reg); 5669 } 5670 5671 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5672 { 5673 /* A map is considered read-only if the following condition are true: 5674 * 5675 * 1) BPF program side cannot change any of the map content. The 5676 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5677 * and was set at map creation time. 5678 * 2) The map value(s) have been initialized from user space by a 5679 * loader and then "frozen", such that no new map update/delete 5680 * operations from syscall side are possible for the rest of 5681 * the map's lifetime from that point onwards. 5682 * 3) Any parallel/pending map update/delete operations from syscall 5683 * side have been completed. Only after that point, it's safe to 5684 * assume that map value(s) are immutable. 5685 */ 5686 return (map->map_flags & BPF_F_RDONLY_PROG) && 5687 READ_ONCE(map->frozen) && 5688 !bpf_map_write_active(map); 5689 } 5690 5691 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 5692 { 5693 void *ptr; 5694 u64 addr; 5695 int err; 5696 5697 err = map->ops->map_direct_value_addr(map, &addr, off); 5698 if (err) 5699 return err; 5700 ptr = (void *)(long)addr + off; 5701 5702 switch (size) { 5703 case sizeof(u8): 5704 *val = (u64)*(u8 *)ptr; 5705 break; 5706 case sizeof(u16): 5707 *val = (u64)*(u16 *)ptr; 5708 break; 5709 case sizeof(u32): 5710 *val = (u64)*(u32 *)ptr; 5711 break; 5712 case sizeof(u64): 5713 *val = *(u64 *)ptr; 5714 break; 5715 default: 5716 return -EINVAL; 5717 } 5718 return 0; 5719 } 5720 5721 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 5722 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 5723 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 5724 5725 /* 5726 * Allow list few fields as RCU trusted or full trusted. 5727 * This logic doesn't allow mix tagging and will be removed once GCC supports 5728 * btf_type_tag. 5729 */ 5730 5731 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 5732 BTF_TYPE_SAFE_RCU(struct task_struct) { 5733 const cpumask_t *cpus_ptr; 5734 struct css_set __rcu *cgroups; 5735 struct task_struct __rcu *real_parent; 5736 struct task_struct *group_leader; 5737 }; 5738 5739 BTF_TYPE_SAFE_RCU(struct cgroup) { 5740 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 5741 struct kernfs_node *kn; 5742 }; 5743 5744 BTF_TYPE_SAFE_RCU(struct css_set) { 5745 struct cgroup *dfl_cgrp; 5746 }; 5747 5748 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 5749 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 5750 struct file __rcu *exe_file; 5751 }; 5752 5753 /* skb->sk, req->sk are not RCU protected, but we mark them as such 5754 * because bpf prog accessible sockets are SOCK_RCU_FREE. 5755 */ 5756 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 5757 struct sock *sk; 5758 }; 5759 5760 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 5761 struct sock *sk; 5762 }; 5763 5764 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 5765 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 5766 struct seq_file *seq; 5767 }; 5768 5769 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 5770 struct bpf_iter_meta *meta; 5771 struct task_struct *task; 5772 }; 5773 5774 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 5775 struct file *file; 5776 }; 5777 5778 BTF_TYPE_SAFE_TRUSTED(struct file) { 5779 struct inode *f_inode; 5780 }; 5781 5782 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 5783 /* no negative dentry-s in places where bpf can see it */ 5784 struct inode *d_inode; 5785 }; 5786 5787 BTF_TYPE_SAFE_TRUSTED(struct socket) { 5788 struct sock *sk; 5789 }; 5790 5791 static bool type_is_rcu(struct bpf_verifier_env *env, 5792 struct bpf_reg_state *reg, 5793 const char *field_name, u32 btf_id) 5794 { 5795 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 5796 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 5797 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 5798 5799 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 5800 } 5801 5802 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 5803 struct bpf_reg_state *reg, 5804 const char *field_name, u32 btf_id) 5805 { 5806 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 5807 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 5808 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 5809 5810 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 5811 } 5812 5813 static bool type_is_trusted(struct bpf_verifier_env *env, 5814 struct bpf_reg_state *reg, 5815 const char *field_name, u32 btf_id) 5816 { 5817 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 5818 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 5819 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 5820 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 5821 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 5822 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 5823 5824 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 5825 } 5826 5827 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5828 struct bpf_reg_state *regs, 5829 int regno, int off, int size, 5830 enum bpf_access_type atype, 5831 int value_regno) 5832 { 5833 struct bpf_reg_state *reg = regs + regno; 5834 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5835 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5836 const char *field_name = NULL; 5837 enum bpf_type_flag flag = 0; 5838 u32 btf_id = 0; 5839 int ret; 5840 5841 if (!env->allow_ptr_leaks) { 5842 verbose(env, 5843 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5844 tname); 5845 return -EPERM; 5846 } 5847 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 5848 verbose(env, 5849 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 5850 tname); 5851 return -EINVAL; 5852 } 5853 if (off < 0) { 5854 verbose(env, 5855 "R%d is ptr_%s invalid negative access: off=%d\n", 5856 regno, tname, off); 5857 return -EACCES; 5858 } 5859 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5860 char tn_buf[48]; 5861 5862 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5863 verbose(env, 5864 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 5865 regno, tname, off, tn_buf); 5866 return -EACCES; 5867 } 5868 5869 if (reg->type & MEM_USER) { 5870 verbose(env, 5871 "R%d is ptr_%s access user memory: off=%d\n", 5872 regno, tname, off); 5873 return -EACCES; 5874 } 5875 5876 if (reg->type & MEM_PERCPU) { 5877 verbose(env, 5878 "R%d is ptr_%s access percpu memory: off=%d\n", 5879 regno, tname, off); 5880 return -EACCES; 5881 } 5882 5883 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 5884 if (!btf_is_kernel(reg->btf)) { 5885 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 5886 return -EFAULT; 5887 } 5888 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 5889 } else { 5890 /* Writes are permitted with default btf_struct_access for 5891 * program allocated objects (which always have ref_obj_id > 0), 5892 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 5893 */ 5894 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 5895 verbose(env, "only read is supported\n"); 5896 return -EACCES; 5897 } 5898 5899 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 5900 !reg->ref_obj_id) { 5901 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 5902 return -EFAULT; 5903 } 5904 5905 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 5906 } 5907 5908 if (ret < 0) 5909 return ret; 5910 5911 if (ret != PTR_TO_BTF_ID) { 5912 /* just mark; */ 5913 5914 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 5915 /* If this is an untrusted pointer, all pointers formed by walking it 5916 * also inherit the untrusted flag. 5917 */ 5918 flag = PTR_UNTRUSTED; 5919 5920 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 5921 /* By default any pointer obtained from walking a trusted pointer is no 5922 * longer trusted, unless the field being accessed has explicitly been 5923 * marked as inheriting its parent's state of trust (either full or RCU). 5924 * For example: 5925 * 'cgroups' pointer is untrusted if task->cgroups dereference 5926 * happened in a sleepable program outside of bpf_rcu_read_lock() 5927 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 5928 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 5929 * 5930 * A regular RCU-protected pointer with __rcu tag can also be deemed 5931 * trusted if we are in an RCU CS. Such pointer can be NULL. 5932 */ 5933 if (type_is_trusted(env, reg, field_name, btf_id)) { 5934 flag |= PTR_TRUSTED; 5935 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 5936 if (type_is_rcu(env, reg, field_name, btf_id)) { 5937 /* ignore __rcu tag and mark it MEM_RCU */ 5938 flag |= MEM_RCU; 5939 } else if (flag & MEM_RCU || 5940 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 5941 /* __rcu tagged pointers can be NULL */ 5942 flag |= MEM_RCU | PTR_MAYBE_NULL; 5943 } else if (flag & (MEM_PERCPU | MEM_USER)) { 5944 /* keep as-is */ 5945 } else { 5946 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 5947 clear_trusted_flags(&flag); 5948 } 5949 } else { 5950 /* 5951 * If not in RCU CS or MEM_RCU pointer can be NULL then 5952 * aggressively mark as untrusted otherwise such 5953 * pointers will be plain PTR_TO_BTF_ID without flags 5954 * and will be allowed to be passed into helpers for 5955 * compat reasons. 5956 */ 5957 flag = PTR_UNTRUSTED; 5958 } 5959 } else { 5960 /* Old compat. Deprecated */ 5961 clear_trusted_flags(&flag); 5962 } 5963 5964 if (atype == BPF_READ && value_regno >= 0) 5965 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 5966 5967 return 0; 5968 } 5969 5970 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 5971 struct bpf_reg_state *regs, 5972 int regno, int off, int size, 5973 enum bpf_access_type atype, 5974 int value_regno) 5975 { 5976 struct bpf_reg_state *reg = regs + regno; 5977 struct bpf_map *map = reg->map_ptr; 5978 struct bpf_reg_state map_reg; 5979 enum bpf_type_flag flag = 0; 5980 const struct btf_type *t; 5981 const char *tname; 5982 u32 btf_id; 5983 int ret; 5984 5985 if (!btf_vmlinux) { 5986 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 5987 return -ENOTSUPP; 5988 } 5989 5990 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 5991 verbose(env, "map_ptr access not supported for map type %d\n", 5992 map->map_type); 5993 return -ENOTSUPP; 5994 } 5995 5996 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 5997 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5998 5999 if (!env->allow_ptr_leaks) { 6000 verbose(env, 6001 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6002 tname); 6003 return -EPERM; 6004 } 6005 6006 if (off < 0) { 6007 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6008 regno, tname, off); 6009 return -EACCES; 6010 } 6011 6012 if (atype != BPF_READ) { 6013 verbose(env, "only read from %s is supported\n", tname); 6014 return -EACCES; 6015 } 6016 6017 /* Simulate access to a PTR_TO_BTF_ID */ 6018 memset(&map_reg, 0, sizeof(map_reg)); 6019 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6020 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6021 if (ret < 0) 6022 return ret; 6023 6024 if (value_regno >= 0) 6025 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6026 6027 return 0; 6028 } 6029 6030 /* Check that the stack access at the given offset is within bounds. The 6031 * maximum valid offset is -1. 6032 * 6033 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6034 * -state->allocated_stack for reads. 6035 */ 6036 static int check_stack_slot_within_bounds(int off, 6037 struct bpf_func_state *state, 6038 enum bpf_access_type t) 6039 { 6040 int min_valid_off; 6041 6042 if (t == BPF_WRITE) 6043 min_valid_off = -MAX_BPF_STACK; 6044 else 6045 min_valid_off = -state->allocated_stack; 6046 6047 if (off < min_valid_off || off > -1) 6048 return -EACCES; 6049 return 0; 6050 } 6051 6052 /* Check that the stack access at 'regno + off' falls within the maximum stack 6053 * bounds. 6054 * 6055 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6056 */ 6057 static int check_stack_access_within_bounds( 6058 struct bpf_verifier_env *env, 6059 int regno, int off, int access_size, 6060 enum bpf_access_src src, enum bpf_access_type type) 6061 { 6062 struct bpf_reg_state *regs = cur_regs(env); 6063 struct bpf_reg_state *reg = regs + regno; 6064 struct bpf_func_state *state = func(env, reg); 6065 int min_off, max_off; 6066 int err; 6067 char *err_extra; 6068 6069 if (src == ACCESS_HELPER) 6070 /* We don't know if helpers are reading or writing (or both). */ 6071 err_extra = " indirect access to"; 6072 else if (type == BPF_READ) 6073 err_extra = " read from"; 6074 else 6075 err_extra = " write to"; 6076 6077 if (tnum_is_const(reg->var_off)) { 6078 min_off = reg->var_off.value + off; 6079 if (access_size > 0) 6080 max_off = min_off + access_size - 1; 6081 else 6082 max_off = min_off; 6083 } else { 6084 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6085 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6086 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6087 err_extra, regno); 6088 return -EACCES; 6089 } 6090 min_off = reg->smin_value + off; 6091 if (access_size > 0) 6092 max_off = reg->smax_value + off + access_size - 1; 6093 else 6094 max_off = min_off; 6095 } 6096 6097 err = check_stack_slot_within_bounds(min_off, state, type); 6098 if (!err) 6099 err = check_stack_slot_within_bounds(max_off, state, type); 6100 6101 if (err) { 6102 if (tnum_is_const(reg->var_off)) { 6103 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6104 err_extra, regno, off, access_size); 6105 } else { 6106 char tn_buf[48]; 6107 6108 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6109 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6110 err_extra, regno, tn_buf, access_size); 6111 } 6112 } 6113 return err; 6114 } 6115 6116 /* check whether memory at (regno + off) is accessible for t = (read | write) 6117 * if t==write, value_regno is a register which value is stored into memory 6118 * if t==read, value_regno is a register which will receive the value from memory 6119 * if t==write && value_regno==-1, some unknown value is stored into memory 6120 * if t==read && value_regno==-1, don't care what we read from memory 6121 */ 6122 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6123 int off, int bpf_size, enum bpf_access_type t, 6124 int value_regno, bool strict_alignment_once) 6125 { 6126 struct bpf_reg_state *regs = cur_regs(env); 6127 struct bpf_reg_state *reg = regs + regno; 6128 struct bpf_func_state *state; 6129 int size, err = 0; 6130 6131 size = bpf_size_to_bytes(bpf_size); 6132 if (size < 0) 6133 return size; 6134 6135 /* alignment checks will add in reg->off themselves */ 6136 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6137 if (err) 6138 return err; 6139 6140 /* for access checks, reg->off is just part of off */ 6141 off += reg->off; 6142 6143 if (reg->type == PTR_TO_MAP_KEY) { 6144 if (t == BPF_WRITE) { 6145 verbose(env, "write to change key R%d not allowed\n", regno); 6146 return -EACCES; 6147 } 6148 6149 err = check_mem_region_access(env, regno, off, size, 6150 reg->map_ptr->key_size, false); 6151 if (err) 6152 return err; 6153 if (value_regno >= 0) 6154 mark_reg_unknown(env, regs, value_regno); 6155 } else if (reg->type == PTR_TO_MAP_VALUE) { 6156 struct btf_field *kptr_field = NULL; 6157 6158 if (t == BPF_WRITE && value_regno >= 0 && 6159 is_pointer_value(env, value_regno)) { 6160 verbose(env, "R%d leaks addr into map\n", value_regno); 6161 return -EACCES; 6162 } 6163 err = check_map_access_type(env, regno, off, size, t); 6164 if (err) 6165 return err; 6166 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6167 if (err) 6168 return err; 6169 if (tnum_is_const(reg->var_off)) 6170 kptr_field = btf_record_find(reg->map_ptr->record, 6171 off + reg->var_off.value, BPF_KPTR); 6172 if (kptr_field) { 6173 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6174 } else if (t == BPF_READ && value_regno >= 0) { 6175 struct bpf_map *map = reg->map_ptr; 6176 6177 /* if map is read-only, track its contents as scalars */ 6178 if (tnum_is_const(reg->var_off) && 6179 bpf_map_is_rdonly(map) && 6180 map->ops->map_direct_value_addr) { 6181 int map_off = off + reg->var_off.value; 6182 u64 val = 0; 6183 6184 err = bpf_map_direct_read(map, map_off, size, 6185 &val); 6186 if (err) 6187 return err; 6188 6189 regs[value_regno].type = SCALAR_VALUE; 6190 __mark_reg_known(®s[value_regno], val); 6191 } else { 6192 mark_reg_unknown(env, regs, value_regno); 6193 } 6194 } 6195 } else if (base_type(reg->type) == PTR_TO_MEM) { 6196 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6197 6198 if (type_may_be_null(reg->type)) { 6199 verbose(env, "R%d invalid mem access '%s'\n", regno, 6200 reg_type_str(env, reg->type)); 6201 return -EACCES; 6202 } 6203 6204 if (t == BPF_WRITE && rdonly_mem) { 6205 verbose(env, "R%d cannot write into %s\n", 6206 regno, reg_type_str(env, reg->type)); 6207 return -EACCES; 6208 } 6209 6210 if (t == BPF_WRITE && value_regno >= 0 && 6211 is_pointer_value(env, value_regno)) { 6212 verbose(env, "R%d leaks addr into mem\n", value_regno); 6213 return -EACCES; 6214 } 6215 6216 err = check_mem_region_access(env, regno, off, size, 6217 reg->mem_size, false); 6218 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6219 mark_reg_unknown(env, regs, value_regno); 6220 } else if (reg->type == PTR_TO_CTX) { 6221 enum bpf_reg_type reg_type = SCALAR_VALUE; 6222 struct btf *btf = NULL; 6223 u32 btf_id = 0; 6224 6225 if (t == BPF_WRITE && value_regno >= 0 && 6226 is_pointer_value(env, value_regno)) { 6227 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6228 return -EACCES; 6229 } 6230 6231 err = check_ptr_off_reg(env, reg, regno); 6232 if (err < 0) 6233 return err; 6234 6235 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6236 &btf_id); 6237 if (err) 6238 verbose_linfo(env, insn_idx, "; "); 6239 if (!err && t == BPF_READ && value_regno >= 0) { 6240 /* ctx access returns either a scalar, or a 6241 * PTR_TO_PACKET[_META,_END]. In the latter 6242 * case, we know the offset is zero. 6243 */ 6244 if (reg_type == SCALAR_VALUE) { 6245 mark_reg_unknown(env, regs, value_regno); 6246 } else { 6247 mark_reg_known_zero(env, regs, 6248 value_regno); 6249 if (type_may_be_null(reg_type)) 6250 regs[value_regno].id = ++env->id_gen; 6251 /* A load of ctx field could have different 6252 * actual load size with the one encoded in the 6253 * insn. When the dst is PTR, it is for sure not 6254 * a sub-register. 6255 */ 6256 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6257 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6258 regs[value_regno].btf = btf; 6259 regs[value_regno].btf_id = btf_id; 6260 } 6261 } 6262 regs[value_regno].type = reg_type; 6263 } 6264 6265 } else if (reg->type == PTR_TO_STACK) { 6266 /* Basic bounds checks. */ 6267 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6268 if (err) 6269 return err; 6270 6271 state = func(env, reg); 6272 err = update_stack_depth(env, state, off); 6273 if (err) 6274 return err; 6275 6276 if (t == BPF_READ) 6277 err = check_stack_read(env, regno, off, size, 6278 value_regno); 6279 else 6280 err = check_stack_write(env, regno, off, size, 6281 value_regno, insn_idx); 6282 } else if (reg_is_pkt_pointer(reg)) { 6283 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6284 verbose(env, "cannot write into packet\n"); 6285 return -EACCES; 6286 } 6287 if (t == BPF_WRITE && value_regno >= 0 && 6288 is_pointer_value(env, value_regno)) { 6289 verbose(env, "R%d leaks addr into packet\n", 6290 value_regno); 6291 return -EACCES; 6292 } 6293 err = check_packet_access(env, regno, off, size, false); 6294 if (!err && t == BPF_READ && value_regno >= 0) 6295 mark_reg_unknown(env, regs, value_regno); 6296 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6297 if (t == BPF_WRITE && value_regno >= 0 && 6298 is_pointer_value(env, value_regno)) { 6299 verbose(env, "R%d leaks addr into flow keys\n", 6300 value_regno); 6301 return -EACCES; 6302 } 6303 6304 err = check_flow_keys_access(env, off, size); 6305 if (!err && t == BPF_READ && value_regno >= 0) 6306 mark_reg_unknown(env, regs, value_regno); 6307 } else if (type_is_sk_pointer(reg->type)) { 6308 if (t == BPF_WRITE) { 6309 verbose(env, "R%d cannot write into %s\n", 6310 regno, reg_type_str(env, reg->type)); 6311 return -EACCES; 6312 } 6313 err = check_sock_access(env, insn_idx, regno, off, size, t); 6314 if (!err && value_regno >= 0) 6315 mark_reg_unknown(env, regs, value_regno); 6316 } else if (reg->type == PTR_TO_TP_BUFFER) { 6317 err = check_tp_buffer_access(env, reg, regno, off, size); 6318 if (!err && t == BPF_READ && value_regno >= 0) 6319 mark_reg_unknown(env, regs, value_regno); 6320 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6321 !type_may_be_null(reg->type)) { 6322 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6323 value_regno); 6324 } else if (reg->type == CONST_PTR_TO_MAP) { 6325 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6326 value_regno); 6327 } else if (base_type(reg->type) == PTR_TO_BUF) { 6328 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6329 u32 *max_access; 6330 6331 if (rdonly_mem) { 6332 if (t == BPF_WRITE) { 6333 verbose(env, "R%d cannot write into %s\n", 6334 regno, reg_type_str(env, reg->type)); 6335 return -EACCES; 6336 } 6337 max_access = &env->prog->aux->max_rdonly_access; 6338 } else { 6339 max_access = &env->prog->aux->max_rdwr_access; 6340 } 6341 6342 err = check_buffer_access(env, reg, regno, off, size, false, 6343 max_access); 6344 6345 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6346 mark_reg_unknown(env, regs, value_regno); 6347 } else { 6348 verbose(env, "R%d invalid mem access '%s'\n", regno, 6349 reg_type_str(env, reg->type)); 6350 return -EACCES; 6351 } 6352 6353 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6354 regs[value_regno].type == SCALAR_VALUE) { 6355 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6356 coerce_reg_to_size(®s[value_regno], size); 6357 } 6358 return err; 6359 } 6360 6361 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6362 { 6363 int load_reg; 6364 int err; 6365 6366 switch (insn->imm) { 6367 case BPF_ADD: 6368 case BPF_ADD | BPF_FETCH: 6369 case BPF_AND: 6370 case BPF_AND | BPF_FETCH: 6371 case BPF_OR: 6372 case BPF_OR | BPF_FETCH: 6373 case BPF_XOR: 6374 case BPF_XOR | BPF_FETCH: 6375 case BPF_XCHG: 6376 case BPF_CMPXCHG: 6377 break; 6378 default: 6379 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6380 return -EINVAL; 6381 } 6382 6383 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6384 verbose(env, "invalid atomic operand size\n"); 6385 return -EINVAL; 6386 } 6387 6388 /* check src1 operand */ 6389 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6390 if (err) 6391 return err; 6392 6393 /* check src2 operand */ 6394 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6395 if (err) 6396 return err; 6397 6398 if (insn->imm == BPF_CMPXCHG) { 6399 /* Check comparison of R0 with memory location */ 6400 const u32 aux_reg = BPF_REG_0; 6401 6402 err = check_reg_arg(env, aux_reg, SRC_OP); 6403 if (err) 6404 return err; 6405 6406 if (is_pointer_value(env, aux_reg)) { 6407 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6408 return -EACCES; 6409 } 6410 } 6411 6412 if (is_pointer_value(env, insn->src_reg)) { 6413 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6414 return -EACCES; 6415 } 6416 6417 if (is_ctx_reg(env, insn->dst_reg) || 6418 is_pkt_reg(env, insn->dst_reg) || 6419 is_flow_key_reg(env, insn->dst_reg) || 6420 is_sk_reg(env, insn->dst_reg)) { 6421 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6422 insn->dst_reg, 6423 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6424 return -EACCES; 6425 } 6426 6427 if (insn->imm & BPF_FETCH) { 6428 if (insn->imm == BPF_CMPXCHG) 6429 load_reg = BPF_REG_0; 6430 else 6431 load_reg = insn->src_reg; 6432 6433 /* check and record load of old value */ 6434 err = check_reg_arg(env, load_reg, DST_OP); 6435 if (err) 6436 return err; 6437 } else { 6438 /* This instruction accesses a memory location but doesn't 6439 * actually load it into a register. 6440 */ 6441 load_reg = -1; 6442 } 6443 6444 /* Check whether we can read the memory, with second call for fetch 6445 * case to simulate the register fill. 6446 */ 6447 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6448 BPF_SIZE(insn->code), BPF_READ, -1, true); 6449 if (!err && load_reg >= 0) 6450 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6451 BPF_SIZE(insn->code), BPF_READ, load_reg, 6452 true); 6453 if (err) 6454 return err; 6455 6456 /* Check whether we can write into the same memory. */ 6457 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6458 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 6459 if (err) 6460 return err; 6461 6462 return 0; 6463 } 6464 6465 /* When register 'regno' is used to read the stack (either directly or through 6466 * a helper function) make sure that it's within stack boundary and, depending 6467 * on the access type, that all elements of the stack are initialized. 6468 * 6469 * 'off' includes 'regno->off', but not its dynamic part (if any). 6470 * 6471 * All registers that have been spilled on the stack in the slots within the 6472 * read offsets are marked as read. 6473 */ 6474 static int check_stack_range_initialized( 6475 struct bpf_verifier_env *env, int regno, int off, 6476 int access_size, bool zero_size_allowed, 6477 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6478 { 6479 struct bpf_reg_state *reg = reg_state(env, regno); 6480 struct bpf_func_state *state = func(env, reg); 6481 int err, min_off, max_off, i, j, slot, spi; 6482 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6483 enum bpf_access_type bounds_check_type; 6484 /* Some accesses can write anything into the stack, others are 6485 * read-only. 6486 */ 6487 bool clobber = false; 6488 6489 if (access_size == 0 && !zero_size_allowed) { 6490 verbose(env, "invalid zero-sized read\n"); 6491 return -EACCES; 6492 } 6493 6494 if (type == ACCESS_HELPER) { 6495 /* The bounds checks for writes are more permissive than for 6496 * reads. However, if raw_mode is not set, we'll do extra 6497 * checks below. 6498 */ 6499 bounds_check_type = BPF_WRITE; 6500 clobber = true; 6501 } else { 6502 bounds_check_type = BPF_READ; 6503 } 6504 err = check_stack_access_within_bounds(env, regno, off, access_size, 6505 type, bounds_check_type); 6506 if (err) 6507 return err; 6508 6509 6510 if (tnum_is_const(reg->var_off)) { 6511 min_off = max_off = reg->var_off.value + off; 6512 } else { 6513 /* Variable offset is prohibited for unprivileged mode for 6514 * simplicity since it requires corresponding support in 6515 * Spectre masking for stack ALU. 6516 * See also retrieve_ptr_limit(). 6517 */ 6518 if (!env->bypass_spec_v1) { 6519 char tn_buf[48]; 6520 6521 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6522 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6523 regno, err_extra, tn_buf); 6524 return -EACCES; 6525 } 6526 /* Only initialized buffer on stack is allowed to be accessed 6527 * with variable offset. With uninitialized buffer it's hard to 6528 * guarantee that whole memory is marked as initialized on 6529 * helper return since specific bounds are unknown what may 6530 * cause uninitialized stack leaking. 6531 */ 6532 if (meta && meta->raw_mode) 6533 meta = NULL; 6534 6535 min_off = reg->smin_value + off; 6536 max_off = reg->smax_value + off; 6537 } 6538 6539 if (meta && meta->raw_mode) { 6540 /* Ensure we won't be overwriting dynptrs when simulating byte 6541 * by byte access in check_helper_call using meta.access_size. 6542 * This would be a problem if we have a helper in the future 6543 * which takes: 6544 * 6545 * helper(uninit_mem, len, dynptr) 6546 * 6547 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6548 * may end up writing to dynptr itself when touching memory from 6549 * arg 1. This can be relaxed on a case by case basis for known 6550 * safe cases, but reject due to the possibilitiy of aliasing by 6551 * default. 6552 */ 6553 for (i = min_off; i < max_off + access_size; i++) { 6554 int stack_off = -i - 1; 6555 6556 spi = __get_spi(i); 6557 /* raw_mode may write past allocated_stack */ 6558 if (state->allocated_stack <= stack_off) 6559 continue; 6560 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6561 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6562 return -EACCES; 6563 } 6564 } 6565 meta->access_size = access_size; 6566 meta->regno = regno; 6567 return 0; 6568 } 6569 6570 for (i = min_off; i < max_off + access_size; i++) { 6571 u8 *stype; 6572 6573 slot = -i - 1; 6574 spi = slot / BPF_REG_SIZE; 6575 if (state->allocated_stack <= slot) 6576 goto err; 6577 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6578 if (*stype == STACK_MISC) 6579 goto mark; 6580 if ((*stype == STACK_ZERO) || 6581 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6582 if (clobber) { 6583 /* helper can write anything into the stack */ 6584 *stype = STACK_MISC; 6585 } 6586 goto mark; 6587 } 6588 6589 if (is_spilled_reg(&state->stack[spi]) && 6590 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6591 env->allow_ptr_leaks)) { 6592 if (clobber) { 6593 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6594 for (j = 0; j < BPF_REG_SIZE; j++) 6595 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6596 } 6597 goto mark; 6598 } 6599 6600 err: 6601 if (tnum_is_const(reg->var_off)) { 6602 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6603 err_extra, regno, min_off, i - min_off, access_size); 6604 } else { 6605 char tn_buf[48]; 6606 6607 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6608 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6609 err_extra, regno, tn_buf, i - min_off, access_size); 6610 } 6611 return -EACCES; 6612 mark: 6613 /* reading any byte out of 8-byte 'spill_slot' will cause 6614 * the whole slot to be marked as 'read' 6615 */ 6616 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6617 state->stack[spi].spilled_ptr.parent, 6618 REG_LIVE_READ64); 6619 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6620 * be sure that whether stack slot is written to or not. Hence, 6621 * we must still conservatively propagate reads upwards even if 6622 * helper may write to the entire memory range. 6623 */ 6624 } 6625 return update_stack_depth(env, state, min_off); 6626 } 6627 6628 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6629 int access_size, bool zero_size_allowed, 6630 struct bpf_call_arg_meta *meta) 6631 { 6632 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6633 u32 *max_access; 6634 6635 switch (base_type(reg->type)) { 6636 case PTR_TO_PACKET: 6637 case PTR_TO_PACKET_META: 6638 return check_packet_access(env, regno, reg->off, access_size, 6639 zero_size_allowed); 6640 case PTR_TO_MAP_KEY: 6641 if (meta && meta->raw_mode) { 6642 verbose(env, "R%d cannot write into %s\n", regno, 6643 reg_type_str(env, reg->type)); 6644 return -EACCES; 6645 } 6646 return check_mem_region_access(env, regno, reg->off, access_size, 6647 reg->map_ptr->key_size, false); 6648 case PTR_TO_MAP_VALUE: 6649 if (check_map_access_type(env, regno, reg->off, access_size, 6650 meta && meta->raw_mode ? BPF_WRITE : 6651 BPF_READ)) 6652 return -EACCES; 6653 return check_map_access(env, regno, reg->off, access_size, 6654 zero_size_allowed, ACCESS_HELPER); 6655 case PTR_TO_MEM: 6656 if (type_is_rdonly_mem(reg->type)) { 6657 if (meta && meta->raw_mode) { 6658 verbose(env, "R%d cannot write into %s\n", regno, 6659 reg_type_str(env, reg->type)); 6660 return -EACCES; 6661 } 6662 } 6663 return check_mem_region_access(env, regno, reg->off, 6664 access_size, reg->mem_size, 6665 zero_size_allowed); 6666 case PTR_TO_BUF: 6667 if (type_is_rdonly_mem(reg->type)) { 6668 if (meta && meta->raw_mode) { 6669 verbose(env, "R%d cannot write into %s\n", regno, 6670 reg_type_str(env, reg->type)); 6671 return -EACCES; 6672 } 6673 6674 max_access = &env->prog->aux->max_rdonly_access; 6675 } else { 6676 max_access = &env->prog->aux->max_rdwr_access; 6677 } 6678 return check_buffer_access(env, reg, regno, reg->off, 6679 access_size, zero_size_allowed, 6680 max_access); 6681 case PTR_TO_STACK: 6682 return check_stack_range_initialized( 6683 env, 6684 regno, reg->off, access_size, 6685 zero_size_allowed, ACCESS_HELPER, meta); 6686 case PTR_TO_BTF_ID: 6687 return check_ptr_to_btf_access(env, regs, regno, reg->off, 6688 access_size, BPF_READ, -1); 6689 case PTR_TO_CTX: 6690 /* in case the function doesn't know how to access the context, 6691 * (because we are in a program of type SYSCALL for example), we 6692 * can not statically check its size. 6693 * Dynamically check it now. 6694 */ 6695 if (!env->ops->convert_ctx_access) { 6696 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 6697 int offset = access_size - 1; 6698 6699 /* Allow zero-byte read from PTR_TO_CTX */ 6700 if (access_size == 0) 6701 return zero_size_allowed ? 0 : -EACCES; 6702 6703 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 6704 atype, -1, false); 6705 } 6706 6707 fallthrough; 6708 default: /* scalar_value or invalid ptr */ 6709 /* Allow zero-byte read from NULL, regardless of pointer type */ 6710 if (zero_size_allowed && access_size == 0 && 6711 register_is_null(reg)) 6712 return 0; 6713 6714 verbose(env, "R%d type=%s ", regno, 6715 reg_type_str(env, reg->type)); 6716 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 6717 return -EACCES; 6718 } 6719 } 6720 6721 static int check_mem_size_reg(struct bpf_verifier_env *env, 6722 struct bpf_reg_state *reg, u32 regno, 6723 bool zero_size_allowed, 6724 struct bpf_call_arg_meta *meta) 6725 { 6726 int err; 6727 6728 /* This is used to refine r0 return value bounds for helpers 6729 * that enforce this value as an upper bound on return values. 6730 * See do_refine_retval_range() for helpers that can refine 6731 * the return value. C type of helper is u32 so we pull register 6732 * bound from umax_value however, if negative verifier errors 6733 * out. Only upper bounds can be learned because retval is an 6734 * int type and negative retvals are allowed. 6735 */ 6736 meta->msize_max_value = reg->umax_value; 6737 6738 /* The register is SCALAR_VALUE; the access check 6739 * happens using its boundaries. 6740 */ 6741 if (!tnum_is_const(reg->var_off)) 6742 /* For unprivileged variable accesses, disable raw 6743 * mode so that the program is required to 6744 * initialize all the memory that the helper could 6745 * just partially fill up. 6746 */ 6747 meta = NULL; 6748 6749 if (reg->smin_value < 0) { 6750 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 6751 regno); 6752 return -EACCES; 6753 } 6754 6755 if (reg->umin_value == 0) { 6756 err = check_helper_mem_access(env, regno - 1, 0, 6757 zero_size_allowed, 6758 meta); 6759 if (err) 6760 return err; 6761 } 6762 6763 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 6764 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 6765 regno); 6766 return -EACCES; 6767 } 6768 err = check_helper_mem_access(env, regno - 1, 6769 reg->umax_value, 6770 zero_size_allowed, meta); 6771 if (!err) 6772 err = mark_chain_precision(env, regno); 6773 return err; 6774 } 6775 6776 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6777 u32 regno, u32 mem_size) 6778 { 6779 bool may_be_null = type_may_be_null(reg->type); 6780 struct bpf_reg_state saved_reg; 6781 struct bpf_call_arg_meta meta; 6782 int err; 6783 6784 if (register_is_null(reg)) 6785 return 0; 6786 6787 memset(&meta, 0, sizeof(meta)); 6788 /* Assuming that the register contains a value check if the memory 6789 * access is safe. Temporarily save and restore the register's state as 6790 * the conversion shouldn't be visible to a caller. 6791 */ 6792 if (may_be_null) { 6793 saved_reg = *reg; 6794 mark_ptr_not_null_reg(reg); 6795 } 6796 6797 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 6798 /* Check access for BPF_WRITE */ 6799 meta.raw_mode = true; 6800 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 6801 6802 if (may_be_null) 6803 *reg = saved_reg; 6804 6805 return err; 6806 } 6807 6808 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6809 u32 regno) 6810 { 6811 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 6812 bool may_be_null = type_may_be_null(mem_reg->type); 6813 struct bpf_reg_state saved_reg; 6814 struct bpf_call_arg_meta meta; 6815 int err; 6816 6817 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 6818 6819 memset(&meta, 0, sizeof(meta)); 6820 6821 if (may_be_null) { 6822 saved_reg = *mem_reg; 6823 mark_ptr_not_null_reg(mem_reg); 6824 } 6825 6826 err = check_mem_size_reg(env, reg, regno, true, &meta); 6827 /* Check access for BPF_WRITE */ 6828 meta.raw_mode = true; 6829 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 6830 6831 if (may_be_null) 6832 *mem_reg = saved_reg; 6833 return err; 6834 } 6835 6836 /* Implementation details: 6837 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 6838 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 6839 * Two bpf_map_lookups (even with the same key) will have different reg->id. 6840 * Two separate bpf_obj_new will also have different reg->id. 6841 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 6842 * clears reg->id after value_or_null->value transition, since the verifier only 6843 * cares about the range of access to valid map value pointer and doesn't care 6844 * about actual address of the map element. 6845 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 6846 * reg->id > 0 after value_or_null->value transition. By doing so 6847 * two bpf_map_lookups will be considered two different pointers that 6848 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 6849 * returned from bpf_obj_new. 6850 * The verifier allows taking only one bpf_spin_lock at a time to avoid 6851 * dead-locks. 6852 * Since only one bpf_spin_lock is allowed the checks are simpler than 6853 * reg_is_refcounted() logic. The verifier needs to remember only 6854 * one spin_lock instead of array of acquired_refs. 6855 * cur_state->active_lock remembers which map value element or allocated 6856 * object got locked and clears it after bpf_spin_unlock. 6857 */ 6858 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 6859 bool is_lock) 6860 { 6861 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6862 struct bpf_verifier_state *cur = env->cur_state; 6863 bool is_const = tnum_is_const(reg->var_off); 6864 u64 val = reg->var_off.value; 6865 struct bpf_map *map = NULL; 6866 struct btf *btf = NULL; 6867 struct btf_record *rec; 6868 6869 if (!is_const) { 6870 verbose(env, 6871 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 6872 regno); 6873 return -EINVAL; 6874 } 6875 if (reg->type == PTR_TO_MAP_VALUE) { 6876 map = reg->map_ptr; 6877 if (!map->btf) { 6878 verbose(env, 6879 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 6880 map->name); 6881 return -EINVAL; 6882 } 6883 } else { 6884 btf = reg->btf; 6885 } 6886 6887 rec = reg_btf_record(reg); 6888 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 6889 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 6890 map ? map->name : "kptr"); 6891 return -EINVAL; 6892 } 6893 if (rec->spin_lock_off != val + reg->off) { 6894 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 6895 val + reg->off, rec->spin_lock_off); 6896 return -EINVAL; 6897 } 6898 if (is_lock) { 6899 if (cur->active_lock.ptr) { 6900 verbose(env, 6901 "Locking two bpf_spin_locks are not allowed\n"); 6902 return -EINVAL; 6903 } 6904 if (map) 6905 cur->active_lock.ptr = map; 6906 else 6907 cur->active_lock.ptr = btf; 6908 cur->active_lock.id = reg->id; 6909 } else { 6910 void *ptr; 6911 6912 if (map) 6913 ptr = map; 6914 else 6915 ptr = btf; 6916 6917 if (!cur->active_lock.ptr) { 6918 verbose(env, "bpf_spin_unlock without taking a lock\n"); 6919 return -EINVAL; 6920 } 6921 if (cur->active_lock.ptr != ptr || 6922 cur->active_lock.id != reg->id) { 6923 verbose(env, "bpf_spin_unlock of different lock\n"); 6924 return -EINVAL; 6925 } 6926 6927 invalidate_non_owning_refs(env); 6928 6929 cur->active_lock.ptr = NULL; 6930 cur->active_lock.id = 0; 6931 } 6932 return 0; 6933 } 6934 6935 static int process_timer_func(struct bpf_verifier_env *env, int regno, 6936 struct bpf_call_arg_meta *meta) 6937 { 6938 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6939 bool is_const = tnum_is_const(reg->var_off); 6940 struct bpf_map *map = reg->map_ptr; 6941 u64 val = reg->var_off.value; 6942 6943 if (!is_const) { 6944 verbose(env, 6945 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 6946 regno); 6947 return -EINVAL; 6948 } 6949 if (!map->btf) { 6950 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 6951 map->name); 6952 return -EINVAL; 6953 } 6954 if (!btf_record_has_field(map->record, BPF_TIMER)) { 6955 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 6956 return -EINVAL; 6957 } 6958 if (map->record->timer_off != val + reg->off) { 6959 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 6960 val + reg->off, map->record->timer_off); 6961 return -EINVAL; 6962 } 6963 if (meta->map_ptr) { 6964 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 6965 return -EFAULT; 6966 } 6967 meta->map_uid = reg->map_uid; 6968 meta->map_ptr = map; 6969 return 0; 6970 } 6971 6972 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 6973 struct bpf_call_arg_meta *meta) 6974 { 6975 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6976 struct bpf_map *map_ptr = reg->map_ptr; 6977 struct btf_field *kptr_field; 6978 u32 kptr_off; 6979 6980 if (!tnum_is_const(reg->var_off)) { 6981 verbose(env, 6982 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 6983 regno); 6984 return -EINVAL; 6985 } 6986 if (!map_ptr->btf) { 6987 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 6988 map_ptr->name); 6989 return -EINVAL; 6990 } 6991 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 6992 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 6993 return -EINVAL; 6994 } 6995 6996 meta->map_ptr = map_ptr; 6997 kptr_off = reg->off + reg->var_off.value; 6998 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 6999 if (!kptr_field) { 7000 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7001 return -EACCES; 7002 } 7003 if (kptr_field->type != BPF_KPTR_REF) { 7004 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7005 return -EACCES; 7006 } 7007 meta->kptr_field = kptr_field; 7008 return 0; 7009 } 7010 7011 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7012 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7013 * 7014 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7015 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7016 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7017 * 7018 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7019 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7020 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7021 * mutate the view of the dynptr and also possibly destroy it. In the latter 7022 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7023 * memory that dynptr points to. 7024 * 7025 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7026 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7027 * readonly dynptr view yet, hence only the first case is tracked and checked. 7028 * 7029 * This is consistent with how C applies the const modifier to a struct object, 7030 * where the pointer itself inside bpf_dynptr becomes const but not what it 7031 * points to. 7032 * 7033 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7034 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7035 */ 7036 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7037 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7038 { 7039 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7040 int err; 7041 7042 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7043 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7044 */ 7045 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7046 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7047 return -EFAULT; 7048 } 7049 7050 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7051 * constructing a mutable bpf_dynptr object. 7052 * 7053 * Currently, this is only possible with PTR_TO_STACK 7054 * pointing to a region of at least 16 bytes which doesn't 7055 * contain an existing bpf_dynptr. 7056 * 7057 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7058 * mutated or destroyed. However, the memory it points to 7059 * may be mutated. 7060 * 7061 * None - Points to a initialized dynptr that can be mutated and 7062 * destroyed, including mutation of the memory it points 7063 * to. 7064 */ 7065 if (arg_type & MEM_UNINIT) { 7066 int i; 7067 7068 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7069 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7070 return -EINVAL; 7071 } 7072 7073 /* we write BPF_DW bits (8 bytes) at a time */ 7074 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7075 err = check_mem_access(env, insn_idx, regno, 7076 i, BPF_DW, BPF_WRITE, -1, false); 7077 if (err) 7078 return err; 7079 } 7080 7081 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7082 } else /* MEM_RDONLY and None case from above */ { 7083 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7084 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7085 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7086 return -EINVAL; 7087 } 7088 7089 if (!is_dynptr_reg_valid_init(env, reg)) { 7090 verbose(env, 7091 "Expected an initialized dynptr as arg #%d\n", 7092 regno); 7093 return -EINVAL; 7094 } 7095 7096 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7097 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7098 verbose(env, 7099 "Expected a dynptr of type %s as arg #%d\n", 7100 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7101 return -EINVAL; 7102 } 7103 7104 err = mark_dynptr_read(env, reg); 7105 } 7106 return err; 7107 } 7108 7109 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7110 { 7111 struct bpf_func_state *state = func(env, reg); 7112 7113 return state->stack[spi].spilled_ptr.ref_obj_id; 7114 } 7115 7116 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7117 { 7118 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7119 } 7120 7121 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7122 { 7123 return meta->kfunc_flags & KF_ITER_NEW; 7124 } 7125 7126 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7127 { 7128 return meta->kfunc_flags & KF_ITER_NEXT; 7129 } 7130 7131 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7132 { 7133 return meta->kfunc_flags & KF_ITER_DESTROY; 7134 } 7135 7136 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7137 { 7138 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7139 * kfunc is iter state pointer 7140 */ 7141 return arg == 0 && is_iter_kfunc(meta); 7142 } 7143 7144 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7145 struct bpf_kfunc_call_arg_meta *meta) 7146 { 7147 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7148 const struct btf_type *t; 7149 const struct btf_param *arg; 7150 int spi, err, i, nr_slots; 7151 u32 btf_id; 7152 7153 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7154 arg = &btf_params(meta->func_proto)[0]; 7155 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7156 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7157 nr_slots = t->size / BPF_REG_SIZE; 7158 7159 if (is_iter_new_kfunc(meta)) { 7160 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7161 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7162 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7163 iter_type_str(meta->btf, btf_id), regno); 7164 return -EINVAL; 7165 } 7166 7167 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7168 err = check_mem_access(env, insn_idx, regno, 7169 i, BPF_DW, BPF_WRITE, -1, false); 7170 if (err) 7171 return err; 7172 } 7173 7174 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7175 if (err) 7176 return err; 7177 } else { 7178 /* iter_next() or iter_destroy() expect initialized iter state*/ 7179 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7180 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7181 iter_type_str(meta->btf, btf_id), regno); 7182 return -EINVAL; 7183 } 7184 7185 spi = iter_get_spi(env, reg, nr_slots); 7186 if (spi < 0) 7187 return spi; 7188 7189 err = mark_iter_read(env, reg, spi, nr_slots); 7190 if (err) 7191 return err; 7192 7193 /* remember meta->iter info for process_iter_next_call() */ 7194 meta->iter.spi = spi; 7195 meta->iter.frameno = reg->frameno; 7196 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7197 7198 if (is_iter_destroy_kfunc(meta)) { 7199 err = unmark_stack_slots_iter(env, reg, nr_slots); 7200 if (err) 7201 return err; 7202 } 7203 } 7204 7205 return 0; 7206 } 7207 7208 /* process_iter_next_call() is called when verifier gets to iterator's next 7209 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7210 * to it as just "iter_next()" in comments below. 7211 * 7212 * BPF verifier relies on a crucial contract for any iter_next() 7213 * implementation: it should *eventually* return NULL, and once that happens 7214 * it should keep returning NULL. That is, once iterator exhausts elements to 7215 * iterate, it should never reset or spuriously return new elements. 7216 * 7217 * With the assumption of such contract, process_iter_next_call() simulates 7218 * a fork in the verifier state to validate loop logic correctness and safety 7219 * without having to simulate infinite amount of iterations. 7220 * 7221 * In current state, we first assume that iter_next() returned NULL and 7222 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7223 * conditions we should not form an infinite loop and should eventually reach 7224 * exit. 7225 * 7226 * Besides that, we also fork current state and enqueue it for later 7227 * verification. In a forked state we keep iterator state as ACTIVE 7228 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7229 * also bump iteration depth to prevent erroneous infinite loop detection 7230 * later on (see iter_active_depths_differ() comment for details). In this 7231 * state we assume that we'll eventually loop back to another iter_next() 7232 * calls (it could be in exactly same location or in some other instruction, 7233 * it doesn't matter, we don't make any unnecessary assumptions about this, 7234 * everything revolves around iterator state in a stack slot, not which 7235 * instruction is calling iter_next()). When that happens, we either will come 7236 * to iter_next() with equivalent state and can conclude that next iteration 7237 * will proceed in exactly the same way as we just verified, so it's safe to 7238 * assume that loop converges. If not, we'll go on another iteration 7239 * simulation with a different input state, until all possible starting states 7240 * are validated or we reach maximum number of instructions limit. 7241 * 7242 * This way, we will either exhaustively discover all possible input states 7243 * that iterator loop can start with and eventually will converge, or we'll 7244 * effectively regress into bounded loop simulation logic and either reach 7245 * maximum number of instructions if loop is not provably convergent, or there 7246 * is some statically known limit on number of iterations (e.g., if there is 7247 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7248 * 7249 * One very subtle but very important aspect is that we *always* simulate NULL 7250 * condition first (as the current state) before we simulate non-NULL case. 7251 * This has to do with intricacies of scalar precision tracking. By simulating 7252 * "exit condition" of iter_next() returning NULL first, we make sure all the 7253 * relevant precision marks *that will be set **after** we exit iterator loop* 7254 * are propagated backwards to common parent state of NULL and non-NULL 7255 * branches. Thanks to that, state equivalence checks done later in forked 7256 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7257 * precision marks are finalized and won't change. Because simulating another 7258 * ACTIVE iterator iteration won't change them (because given same input 7259 * states we'll end up with exactly same output states which we are currently 7260 * comparing; and verification after the loop already propagated back what 7261 * needs to be **additionally** tracked as precise). It's subtle, grok 7262 * precision tracking for more intuitive understanding. 7263 */ 7264 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7265 struct bpf_kfunc_call_arg_meta *meta) 7266 { 7267 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7268 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7269 struct bpf_reg_state *cur_iter, *queued_iter; 7270 int iter_frameno = meta->iter.frameno; 7271 int iter_spi = meta->iter.spi; 7272 7273 BTF_TYPE_EMIT(struct bpf_iter); 7274 7275 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7276 7277 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7278 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7279 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7280 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7281 return -EFAULT; 7282 } 7283 7284 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7285 /* branch out active iter state */ 7286 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7287 if (!queued_st) 7288 return -ENOMEM; 7289 7290 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7291 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7292 queued_iter->iter.depth++; 7293 7294 queued_fr = queued_st->frame[queued_st->curframe]; 7295 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7296 } 7297 7298 /* switch to DRAINED state, but keep the depth unchanged */ 7299 /* mark current iter state as drained and assume returned NULL */ 7300 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7301 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7302 7303 return 0; 7304 } 7305 7306 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7307 { 7308 return type == ARG_CONST_SIZE || 7309 type == ARG_CONST_SIZE_OR_ZERO; 7310 } 7311 7312 static bool arg_type_is_release(enum bpf_arg_type type) 7313 { 7314 return type & OBJ_RELEASE; 7315 } 7316 7317 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7318 { 7319 return base_type(type) == ARG_PTR_TO_DYNPTR; 7320 } 7321 7322 static int int_ptr_type_to_size(enum bpf_arg_type type) 7323 { 7324 if (type == ARG_PTR_TO_INT) 7325 return sizeof(u32); 7326 else if (type == ARG_PTR_TO_LONG) 7327 return sizeof(u64); 7328 7329 return -EINVAL; 7330 } 7331 7332 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7333 const struct bpf_call_arg_meta *meta, 7334 enum bpf_arg_type *arg_type) 7335 { 7336 if (!meta->map_ptr) { 7337 /* kernel subsystem misconfigured verifier */ 7338 verbose(env, "invalid map_ptr to access map->type\n"); 7339 return -EACCES; 7340 } 7341 7342 switch (meta->map_ptr->map_type) { 7343 case BPF_MAP_TYPE_SOCKMAP: 7344 case BPF_MAP_TYPE_SOCKHASH: 7345 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7346 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7347 } else { 7348 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7349 return -EINVAL; 7350 } 7351 break; 7352 case BPF_MAP_TYPE_BLOOM_FILTER: 7353 if (meta->func_id == BPF_FUNC_map_peek_elem) 7354 *arg_type = ARG_PTR_TO_MAP_VALUE; 7355 break; 7356 default: 7357 break; 7358 } 7359 return 0; 7360 } 7361 7362 struct bpf_reg_types { 7363 const enum bpf_reg_type types[10]; 7364 u32 *btf_id; 7365 }; 7366 7367 static const struct bpf_reg_types sock_types = { 7368 .types = { 7369 PTR_TO_SOCK_COMMON, 7370 PTR_TO_SOCKET, 7371 PTR_TO_TCP_SOCK, 7372 PTR_TO_XDP_SOCK, 7373 }, 7374 }; 7375 7376 #ifdef CONFIG_NET 7377 static const struct bpf_reg_types btf_id_sock_common_types = { 7378 .types = { 7379 PTR_TO_SOCK_COMMON, 7380 PTR_TO_SOCKET, 7381 PTR_TO_TCP_SOCK, 7382 PTR_TO_XDP_SOCK, 7383 PTR_TO_BTF_ID, 7384 PTR_TO_BTF_ID | PTR_TRUSTED, 7385 }, 7386 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7387 }; 7388 #endif 7389 7390 static const struct bpf_reg_types mem_types = { 7391 .types = { 7392 PTR_TO_STACK, 7393 PTR_TO_PACKET, 7394 PTR_TO_PACKET_META, 7395 PTR_TO_MAP_KEY, 7396 PTR_TO_MAP_VALUE, 7397 PTR_TO_MEM, 7398 PTR_TO_MEM | MEM_RINGBUF, 7399 PTR_TO_BUF, 7400 PTR_TO_BTF_ID | PTR_TRUSTED, 7401 }, 7402 }; 7403 7404 static const struct bpf_reg_types int_ptr_types = { 7405 .types = { 7406 PTR_TO_STACK, 7407 PTR_TO_PACKET, 7408 PTR_TO_PACKET_META, 7409 PTR_TO_MAP_KEY, 7410 PTR_TO_MAP_VALUE, 7411 }, 7412 }; 7413 7414 static const struct bpf_reg_types spin_lock_types = { 7415 .types = { 7416 PTR_TO_MAP_VALUE, 7417 PTR_TO_BTF_ID | MEM_ALLOC, 7418 } 7419 }; 7420 7421 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7422 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7423 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7424 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7425 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7426 static const struct bpf_reg_types btf_ptr_types = { 7427 .types = { 7428 PTR_TO_BTF_ID, 7429 PTR_TO_BTF_ID | PTR_TRUSTED, 7430 PTR_TO_BTF_ID | MEM_RCU, 7431 }, 7432 }; 7433 static const struct bpf_reg_types percpu_btf_ptr_types = { 7434 .types = { 7435 PTR_TO_BTF_ID | MEM_PERCPU, 7436 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7437 } 7438 }; 7439 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7440 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7441 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7442 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7443 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7444 static const struct bpf_reg_types dynptr_types = { 7445 .types = { 7446 PTR_TO_STACK, 7447 CONST_PTR_TO_DYNPTR, 7448 } 7449 }; 7450 7451 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7452 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7453 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7454 [ARG_CONST_SIZE] = &scalar_types, 7455 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7456 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7457 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7458 [ARG_PTR_TO_CTX] = &context_types, 7459 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7460 #ifdef CONFIG_NET 7461 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7462 #endif 7463 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7464 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7465 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7466 [ARG_PTR_TO_MEM] = &mem_types, 7467 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7468 [ARG_PTR_TO_INT] = &int_ptr_types, 7469 [ARG_PTR_TO_LONG] = &int_ptr_types, 7470 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7471 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7472 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7473 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7474 [ARG_PTR_TO_TIMER] = &timer_types, 7475 [ARG_PTR_TO_KPTR] = &kptr_types, 7476 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7477 }; 7478 7479 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7480 enum bpf_arg_type arg_type, 7481 const u32 *arg_btf_id, 7482 struct bpf_call_arg_meta *meta) 7483 { 7484 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7485 enum bpf_reg_type expected, type = reg->type; 7486 const struct bpf_reg_types *compatible; 7487 int i, j; 7488 7489 compatible = compatible_reg_types[base_type(arg_type)]; 7490 if (!compatible) { 7491 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7492 return -EFAULT; 7493 } 7494 7495 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7496 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7497 * 7498 * Same for MAYBE_NULL: 7499 * 7500 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7501 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7502 * 7503 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7504 * 7505 * Therefore we fold these flags depending on the arg_type before comparison. 7506 */ 7507 if (arg_type & MEM_RDONLY) 7508 type &= ~MEM_RDONLY; 7509 if (arg_type & PTR_MAYBE_NULL) 7510 type &= ~PTR_MAYBE_NULL; 7511 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7512 type &= ~DYNPTR_TYPE_FLAG_MASK; 7513 7514 if (meta->func_id == BPF_FUNC_kptr_xchg && type & MEM_ALLOC) 7515 type &= ~MEM_ALLOC; 7516 7517 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7518 expected = compatible->types[i]; 7519 if (expected == NOT_INIT) 7520 break; 7521 7522 if (type == expected) 7523 goto found; 7524 } 7525 7526 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7527 for (j = 0; j + 1 < i; j++) 7528 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7529 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7530 return -EACCES; 7531 7532 found: 7533 if (base_type(reg->type) != PTR_TO_BTF_ID) 7534 return 0; 7535 7536 if (compatible == &mem_types) { 7537 if (!(arg_type & MEM_RDONLY)) { 7538 verbose(env, 7539 "%s() may write into memory pointed by R%d type=%s\n", 7540 func_id_name(meta->func_id), 7541 regno, reg_type_str(env, reg->type)); 7542 return -EACCES; 7543 } 7544 return 0; 7545 } 7546 7547 switch ((int)reg->type) { 7548 case PTR_TO_BTF_ID: 7549 case PTR_TO_BTF_ID | PTR_TRUSTED: 7550 case PTR_TO_BTF_ID | MEM_RCU: 7551 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7552 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7553 { 7554 /* For bpf_sk_release, it needs to match against first member 7555 * 'struct sock_common', hence make an exception for it. This 7556 * allows bpf_sk_release to work for multiple socket types. 7557 */ 7558 bool strict_type_match = arg_type_is_release(arg_type) && 7559 meta->func_id != BPF_FUNC_sk_release; 7560 7561 if (type_may_be_null(reg->type) && 7562 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7563 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7564 return -EACCES; 7565 } 7566 7567 if (!arg_btf_id) { 7568 if (!compatible->btf_id) { 7569 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7570 return -EFAULT; 7571 } 7572 arg_btf_id = compatible->btf_id; 7573 } 7574 7575 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7576 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7577 return -EACCES; 7578 } else { 7579 if (arg_btf_id == BPF_PTR_POISON) { 7580 verbose(env, "verifier internal error:"); 7581 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7582 regno); 7583 return -EACCES; 7584 } 7585 7586 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7587 btf_vmlinux, *arg_btf_id, 7588 strict_type_match)) { 7589 verbose(env, "R%d is of type %s but %s is expected\n", 7590 regno, btf_type_name(reg->btf, reg->btf_id), 7591 btf_type_name(btf_vmlinux, *arg_btf_id)); 7592 return -EACCES; 7593 } 7594 } 7595 break; 7596 } 7597 case PTR_TO_BTF_ID | MEM_ALLOC: 7598 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7599 meta->func_id != BPF_FUNC_kptr_xchg) { 7600 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7601 return -EFAULT; 7602 } 7603 /* Handled by helper specific checks */ 7604 break; 7605 case PTR_TO_BTF_ID | MEM_PERCPU: 7606 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7607 /* Handled by helper specific checks */ 7608 break; 7609 default: 7610 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7611 return -EFAULT; 7612 } 7613 return 0; 7614 } 7615 7616 static struct btf_field * 7617 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7618 { 7619 struct btf_field *field; 7620 struct btf_record *rec; 7621 7622 rec = reg_btf_record(reg); 7623 if (!rec) 7624 return NULL; 7625 7626 field = btf_record_find(rec, off, fields); 7627 if (!field) 7628 return NULL; 7629 7630 return field; 7631 } 7632 7633 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7634 const struct bpf_reg_state *reg, int regno, 7635 enum bpf_arg_type arg_type) 7636 { 7637 u32 type = reg->type; 7638 7639 /* When referenced register is passed to release function, its fixed 7640 * offset must be 0. 7641 * 7642 * We will check arg_type_is_release reg has ref_obj_id when storing 7643 * meta->release_regno. 7644 */ 7645 if (arg_type_is_release(arg_type)) { 7646 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7647 * may not directly point to the object being released, but to 7648 * dynptr pointing to such object, which might be at some offset 7649 * on the stack. In that case, we simply to fallback to the 7650 * default handling. 7651 */ 7652 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7653 return 0; 7654 7655 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 7656 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 7657 return __check_ptr_off_reg(env, reg, regno, true); 7658 7659 verbose(env, "R%d must have zero offset when passed to release func\n", 7660 regno); 7661 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 7662 btf_type_name(reg->btf, reg->btf_id), reg->off); 7663 return -EINVAL; 7664 } 7665 7666 /* Doing check_ptr_off_reg check for the offset will catch this 7667 * because fixed_off_ok is false, but checking here allows us 7668 * to give the user a better error message. 7669 */ 7670 if (reg->off) { 7671 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7672 regno); 7673 return -EINVAL; 7674 } 7675 return __check_ptr_off_reg(env, reg, regno, false); 7676 } 7677 7678 switch (type) { 7679 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7680 case PTR_TO_STACK: 7681 case PTR_TO_PACKET: 7682 case PTR_TO_PACKET_META: 7683 case PTR_TO_MAP_KEY: 7684 case PTR_TO_MAP_VALUE: 7685 case PTR_TO_MEM: 7686 case PTR_TO_MEM | MEM_RDONLY: 7687 case PTR_TO_MEM | MEM_RINGBUF: 7688 case PTR_TO_BUF: 7689 case PTR_TO_BUF | MEM_RDONLY: 7690 case SCALAR_VALUE: 7691 return 0; 7692 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 7693 * fixed offset. 7694 */ 7695 case PTR_TO_BTF_ID: 7696 case PTR_TO_BTF_ID | MEM_ALLOC: 7697 case PTR_TO_BTF_ID | PTR_TRUSTED: 7698 case PTR_TO_BTF_ID | MEM_RCU: 7699 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 7700 /* When referenced PTR_TO_BTF_ID is passed to release function, 7701 * its fixed offset must be 0. In the other cases, fixed offset 7702 * can be non-zero. This was already checked above. So pass 7703 * fixed_off_ok as true to allow fixed offset for all other 7704 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 7705 * still need to do checks instead of returning. 7706 */ 7707 return __check_ptr_off_reg(env, reg, regno, true); 7708 default: 7709 return __check_ptr_off_reg(env, reg, regno, false); 7710 } 7711 } 7712 7713 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 7714 const struct bpf_func_proto *fn, 7715 struct bpf_reg_state *regs) 7716 { 7717 struct bpf_reg_state *state = NULL; 7718 int i; 7719 7720 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 7721 if (arg_type_is_dynptr(fn->arg_type[i])) { 7722 if (state) { 7723 verbose(env, "verifier internal error: multiple dynptr args\n"); 7724 return NULL; 7725 } 7726 state = ®s[BPF_REG_1 + i]; 7727 } 7728 7729 if (!state) 7730 verbose(env, "verifier internal error: no dynptr arg found\n"); 7731 7732 return state; 7733 } 7734 7735 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7736 { 7737 struct bpf_func_state *state = func(env, reg); 7738 int spi; 7739 7740 if (reg->type == CONST_PTR_TO_DYNPTR) 7741 return reg->id; 7742 spi = dynptr_get_spi(env, reg); 7743 if (spi < 0) 7744 return spi; 7745 return state->stack[spi].spilled_ptr.id; 7746 } 7747 7748 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7749 { 7750 struct bpf_func_state *state = func(env, reg); 7751 int spi; 7752 7753 if (reg->type == CONST_PTR_TO_DYNPTR) 7754 return reg->ref_obj_id; 7755 spi = dynptr_get_spi(env, reg); 7756 if (spi < 0) 7757 return spi; 7758 return state->stack[spi].spilled_ptr.ref_obj_id; 7759 } 7760 7761 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 7762 struct bpf_reg_state *reg) 7763 { 7764 struct bpf_func_state *state = func(env, reg); 7765 int spi; 7766 7767 if (reg->type == CONST_PTR_TO_DYNPTR) 7768 return reg->dynptr.type; 7769 7770 spi = __get_spi(reg->off); 7771 if (spi < 0) { 7772 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 7773 return BPF_DYNPTR_TYPE_INVALID; 7774 } 7775 7776 return state->stack[spi].spilled_ptr.dynptr.type; 7777 } 7778 7779 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 7780 struct bpf_call_arg_meta *meta, 7781 const struct bpf_func_proto *fn, 7782 int insn_idx) 7783 { 7784 u32 regno = BPF_REG_1 + arg; 7785 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7786 enum bpf_arg_type arg_type = fn->arg_type[arg]; 7787 enum bpf_reg_type type = reg->type; 7788 u32 *arg_btf_id = NULL; 7789 int err = 0; 7790 7791 if (arg_type == ARG_DONTCARE) 7792 return 0; 7793 7794 err = check_reg_arg(env, regno, SRC_OP); 7795 if (err) 7796 return err; 7797 7798 if (arg_type == ARG_ANYTHING) { 7799 if (is_pointer_value(env, regno)) { 7800 verbose(env, "R%d leaks addr into helper function\n", 7801 regno); 7802 return -EACCES; 7803 } 7804 return 0; 7805 } 7806 7807 if (type_is_pkt_pointer(type) && 7808 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 7809 verbose(env, "helper access to the packet is not allowed\n"); 7810 return -EACCES; 7811 } 7812 7813 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 7814 err = resolve_map_arg_type(env, meta, &arg_type); 7815 if (err) 7816 return err; 7817 } 7818 7819 if (register_is_null(reg) && type_may_be_null(arg_type)) 7820 /* A NULL register has a SCALAR_VALUE type, so skip 7821 * type checking. 7822 */ 7823 goto skip_type_check; 7824 7825 /* arg_btf_id and arg_size are in a union. */ 7826 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 7827 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 7828 arg_btf_id = fn->arg_btf_id[arg]; 7829 7830 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 7831 if (err) 7832 return err; 7833 7834 err = check_func_arg_reg_off(env, reg, regno, arg_type); 7835 if (err) 7836 return err; 7837 7838 skip_type_check: 7839 if (arg_type_is_release(arg_type)) { 7840 if (arg_type_is_dynptr(arg_type)) { 7841 struct bpf_func_state *state = func(env, reg); 7842 int spi; 7843 7844 /* Only dynptr created on stack can be released, thus 7845 * the get_spi and stack state checks for spilled_ptr 7846 * should only be done before process_dynptr_func for 7847 * PTR_TO_STACK. 7848 */ 7849 if (reg->type == PTR_TO_STACK) { 7850 spi = dynptr_get_spi(env, reg); 7851 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 7852 verbose(env, "arg %d is an unacquired reference\n", regno); 7853 return -EINVAL; 7854 } 7855 } else { 7856 verbose(env, "cannot release unowned const bpf_dynptr\n"); 7857 return -EINVAL; 7858 } 7859 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 7860 verbose(env, "R%d must be referenced when passed to release function\n", 7861 regno); 7862 return -EINVAL; 7863 } 7864 if (meta->release_regno) { 7865 verbose(env, "verifier internal error: more than one release argument\n"); 7866 return -EFAULT; 7867 } 7868 meta->release_regno = regno; 7869 } 7870 7871 if (reg->ref_obj_id) { 7872 if (meta->ref_obj_id) { 7873 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 7874 regno, reg->ref_obj_id, 7875 meta->ref_obj_id); 7876 return -EFAULT; 7877 } 7878 meta->ref_obj_id = reg->ref_obj_id; 7879 } 7880 7881 switch (base_type(arg_type)) { 7882 case ARG_CONST_MAP_PTR: 7883 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 7884 if (meta->map_ptr) { 7885 /* Use map_uid (which is unique id of inner map) to reject: 7886 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 7887 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 7888 * if (inner_map1 && inner_map2) { 7889 * timer = bpf_map_lookup_elem(inner_map1); 7890 * if (timer) 7891 * // mismatch would have been allowed 7892 * bpf_timer_init(timer, inner_map2); 7893 * } 7894 * 7895 * Comparing map_ptr is enough to distinguish normal and outer maps. 7896 */ 7897 if (meta->map_ptr != reg->map_ptr || 7898 meta->map_uid != reg->map_uid) { 7899 verbose(env, 7900 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 7901 meta->map_uid, reg->map_uid); 7902 return -EINVAL; 7903 } 7904 } 7905 meta->map_ptr = reg->map_ptr; 7906 meta->map_uid = reg->map_uid; 7907 break; 7908 case ARG_PTR_TO_MAP_KEY: 7909 /* bpf_map_xxx(..., map_ptr, ..., key) call: 7910 * check that [key, key + map->key_size) are within 7911 * stack limits and initialized 7912 */ 7913 if (!meta->map_ptr) { 7914 /* in function declaration map_ptr must come before 7915 * map_key, so that it's verified and known before 7916 * we have to check map_key here. Otherwise it means 7917 * that kernel subsystem misconfigured verifier 7918 */ 7919 verbose(env, "invalid map_ptr to access map->key\n"); 7920 return -EACCES; 7921 } 7922 err = check_helper_mem_access(env, regno, 7923 meta->map_ptr->key_size, false, 7924 NULL); 7925 break; 7926 case ARG_PTR_TO_MAP_VALUE: 7927 if (type_may_be_null(arg_type) && register_is_null(reg)) 7928 return 0; 7929 7930 /* bpf_map_xxx(..., map_ptr, ..., value) call: 7931 * check [value, value + map->value_size) validity 7932 */ 7933 if (!meta->map_ptr) { 7934 /* kernel subsystem misconfigured verifier */ 7935 verbose(env, "invalid map_ptr to access map->value\n"); 7936 return -EACCES; 7937 } 7938 meta->raw_mode = arg_type & MEM_UNINIT; 7939 err = check_helper_mem_access(env, regno, 7940 meta->map_ptr->value_size, false, 7941 meta); 7942 break; 7943 case ARG_PTR_TO_PERCPU_BTF_ID: 7944 if (!reg->btf_id) { 7945 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 7946 return -EACCES; 7947 } 7948 meta->ret_btf = reg->btf; 7949 meta->ret_btf_id = reg->btf_id; 7950 break; 7951 case ARG_PTR_TO_SPIN_LOCK: 7952 if (in_rbtree_lock_required_cb(env)) { 7953 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 7954 return -EACCES; 7955 } 7956 if (meta->func_id == BPF_FUNC_spin_lock) { 7957 err = process_spin_lock(env, regno, true); 7958 if (err) 7959 return err; 7960 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 7961 err = process_spin_lock(env, regno, false); 7962 if (err) 7963 return err; 7964 } else { 7965 verbose(env, "verifier internal error\n"); 7966 return -EFAULT; 7967 } 7968 break; 7969 case ARG_PTR_TO_TIMER: 7970 err = process_timer_func(env, regno, meta); 7971 if (err) 7972 return err; 7973 break; 7974 case ARG_PTR_TO_FUNC: 7975 meta->subprogno = reg->subprogno; 7976 break; 7977 case ARG_PTR_TO_MEM: 7978 /* The access to this pointer is only checked when we hit the 7979 * next is_mem_size argument below. 7980 */ 7981 meta->raw_mode = arg_type & MEM_UNINIT; 7982 if (arg_type & MEM_FIXED_SIZE) { 7983 err = check_helper_mem_access(env, regno, 7984 fn->arg_size[arg], false, 7985 meta); 7986 } 7987 break; 7988 case ARG_CONST_SIZE: 7989 err = check_mem_size_reg(env, reg, regno, false, meta); 7990 break; 7991 case ARG_CONST_SIZE_OR_ZERO: 7992 err = check_mem_size_reg(env, reg, regno, true, meta); 7993 break; 7994 case ARG_PTR_TO_DYNPTR: 7995 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 7996 if (err) 7997 return err; 7998 break; 7999 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8000 if (!tnum_is_const(reg->var_off)) { 8001 verbose(env, "R%d is not a known constant'\n", 8002 regno); 8003 return -EACCES; 8004 } 8005 meta->mem_size = reg->var_off.value; 8006 err = mark_chain_precision(env, regno); 8007 if (err) 8008 return err; 8009 break; 8010 case ARG_PTR_TO_INT: 8011 case ARG_PTR_TO_LONG: 8012 { 8013 int size = int_ptr_type_to_size(arg_type); 8014 8015 err = check_helper_mem_access(env, regno, size, false, meta); 8016 if (err) 8017 return err; 8018 err = check_ptr_alignment(env, reg, 0, size, true); 8019 break; 8020 } 8021 case ARG_PTR_TO_CONST_STR: 8022 { 8023 struct bpf_map *map = reg->map_ptr; 8024 int map_off; 8025 u64 map_addr; 8026 char *str_ptr; 8027 8028 if (!bpf_map_is_rdonly(map)) { 8029 verbose(env, "R%d does not point to a readonly map'\n", regno); 8030 return -EACCES; 8031 } 8032 8033 if (!tnum_is_const(reg->var_off)) { 8034 verbose(env, "R%d is not a constant address'\n", regno); 8035 return -EACCES; 8036 } 8037 8038 if (!map->ops->map_direct_value_addr) { 8039 verbose(env, "no direct value access support for this map type\n"); 8040 return -EACCES; 8041 } 8042 8043 err = check_map_access(env, regno, reg->off, 8044 map->value_size - reg->off, false, 8045 ACCESS_HELPER); 8046 if (err) 8047 return err; 8048 8049 map_off = reg->off + reg->var_off.value; 8050 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8051 if (err) { 8052 verbose(env, "direct value access on string failed\n"); 8053 return err; 8054 } 8055 8056 str_ptr = (char *)(long)(map_addr); 8057 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8058 verbose(env, "string is not zero-terminated\n"); 8059 return -EINVAL; 8060 } 8061 break; 8062 } 8063 case ARG_PTR_TO_KPTR: 8064 err = process_kptr_func(env, regno, meta); 8065 if (err) 8066 return err; 8067 break; 8068 } 8069 8070 return err; 8071 } 8072 8073 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8074 { 8075 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8076 enum bpf_prog_type type = resolve_prog_type(env->prog); 8077 8078 if (func_id != BPF_FUNC_map_update_elem) 8079 return false; 8080 8081 /* It's not possible to get access to a locked struct sock in these 8082 * contexts, so updating is safe. 8083 */ 8084 switch (type) { 8085 case BPF_PROG_TYPE_TRACING: 8086 if (eatype == BPF_TRACE_ITER) 8087 return true; 8088 break; 8089 case BPF_PROG_TYPE_SOCKET_FILTER: 8090 case BPF_PROG_TYPE_SCHED_CLS: 8091 case BPF_PROG_TYPE_SCHED_ACT: 8092 case BPF_PROG_TYPE_XDP: 8093 case BPF_PROG_TYPE_SK_REUSEPORT: 8094 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8095 case BPF_PROG_TYPE_SK_LOOKUP: 8096 return true; 8097 default: 8098 break; 8099 } 8100 8101 verbose(env, "cannot update sockmap in this context\n"); 8102 return false; 8103 } 8104 8105 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8106 { 8107 return env->prog->jit_requested && 8108 bpf_jit_supports_subprog_tailcalls(); 8109 } 8110 8111 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8112 struct bpf_map *map, int func_id) 8113 { 8114 if (!map) 8115 return 0; 8116 8117 /* We need a two way check, first is from map perspective ... */ 8118 switch (map->map_type) { 8119 case BPF_MAP_TYPE_PROG_ARRAY: 8120 if (func_id != BPF_FUNC_tail_call) 8121 goto error; 8122 break; 8123 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8124 if (func_id != BPF_FUNC_perf_event_read && 8125 func_id != BPF_FUNC_perf_event_output && 8126 func_id != BPF_FUNC_skb_output && 8127 func_id != BPF_FUNC_perf_event_read_value && 8128 func_id != BPF_FUNC_xdp_output) 8129 goto error; 8130 break; 8131 case BPF_MAP_TYPE_RINGBUF: 8132 if (func_id != BPF_FUNC_ringbuf_output && 8133 func_id != BPF_FUNC_ringbuf_reserve && 8134 func_id != BPF_FUNC_ringbuf_query && 8135 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8136 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8137 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8138 goto error; 8139 break; 8140 case BPF_MAP_TYPE_USER_RINGBUF: 8141 if (func_id != BPF_FUNC_user_ringbuf_drain) 8142 goto error; 8143 break; 8144 case BPF_MAP_TYPE_STACK_TRACE: 8145 if (func_id != BPF_FUNC_get_stackid) 8146 goto error; 8147 break; 8148 case BPF_MAP_TYPE_CGROUP_ARRAY: 8149 if (func_id != BPF_FUNC_skb_under_cgroup && 8150 func_id != BPF_FUNC_current_task_under_cgroup) 8151 goto error; 8152 break; 8153 case BPF_MAP_TYPE_CGROUP_STORAGE: 8154 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8155 if (func_id != BPF_FUNC_get_local_storage) 8156 goto error; 8157 break; 8158 case BPF_MAP_TYPE_DEVMAP: 8159 case BPF_MAP_TYPE_DEVMAP_HASH: 8160 if (func_id != BPF_FUNC_redirect_map && 8161 func_id != BPF_FUNC_map_lookup_elem) 8162 goto error; 8163 break; 8164 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8165 * appear. 8166 */ 8167 case BPF_MAP_TYPE_CPUMAP: 8168 if (func_id != BPF_FUNC_redirect_map) 8169 goto error; 8170 break; 8171 case BPF_MAP_TYPE_XSKMAP: 8172 if (func_id != BPF_FUNC_redirect_map && 8173 func_id != BPF_FUNC_map_lookup_elem) 8174 goto error; 8175 break; 8176 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8177 case BPF_MAP_TYPE_HASH_OF_MAPS: 8178 if (func_id != BPF_FUNC_map_lookup_elem) 8179 goto error; 8180 break; 8181 case BPF_MAP_TYPE_SOCKMAP: 8182 if (func_id != BPF_FUNC_sk_redirect_map && 8183 func_id != BPF_FUNC_sock_map_update && 8184 func_id != BPF_FUNC_map_delete_elem && 8185 func_id != BPF_FUNC_msg_redirect_map && 8186 func_id != BPF_FUNC_sk_select_reuseport && 8187 func_id != BPF_FUNC_map_lookup_elem && 8188 !may_update_sockmap(env, func_id)) 8189 goto error; 8190 break; 8191 case BPF_MAP_TYPE_SOCKHASH: 8192 if (func_id != BPF_FUNC_sk_redirect_hash && 8193 func_id != BPF_FUNC_sock_hash_update && 8194 func_id != BPF_FUNC_map_delete_elem && 8195 func_id != BPF_FUNC_msg_redirect_hash && 8196 func_id != BPF_FUNC_sk_select_reuseport && 8197 func_id != BPF_FUNC_map_lookup_elem && 8198 !may_update_sockmap(env, func_id)) 8199 goto error; 8200 break; 8201 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8202 if (func_id != BPF_FUNC_sk_select_reuseport) 8203 goto error; 8204 break; 8205 case BPF_MAP_TYPE_QUEUE: 8206 case BPF_MAP_TYPE_STACK: 8207 if (func_id != BPF_FUNC_map_peek_elem && 8208 func_id != BPF_FUNC_map_pop_elem && 8209 func_id != BPF_FUNC_map_push_elem) 8210 goto error; 8211 break; 8212 case BPF_MAP_TYPE_SK_STORAGE: 8213 if (func_id != BPF_FUNC_sk_storage_get && 8214 func_id != BPF_FUNC_sk_storage_delete && 8215 func_id != BPF_FUNC_kptr_xchg) 8216 goto error; 8217 break; 8218 case BPF_MAP_TYPE_INODE_STORAGE: 8219 if (func_id != BPF_FUNC_inode_storage_get && 8220 func_id != BPF_FUNC_inode_storage_delete && 8221 func_id != BPF_FUNC_kptr_xchg) 8222 goto error; 8223 break; 8224 case BPF_MAP_TYPE_TASK_STORAGE: 8225 if (func_id != BPF_FUNC_task_storage_get && 8226 func_id != BPF_FUNC_task_storage_delete && 8227 func_id != BPF_FUNC_kptr_xchg) 8228 goto error; 8229 break; 8230 case BPF_MAP_TYPE_CGRP_STORAGE: 8231 if (func_id != BPF_FUNC_cgrp_storage_get && 8232 func_id != BPF_FUNC_cgrp_storage_delete && 8233 func_id != BPF_FUNC_kptr_xchg) 8234 goto error; 8235 break; 8236 case BPF_MAP_TYPE_BLOOM_FILTER: 8237 if (func_id != BPF_FUNC_map_peek_elem && 8238 func_id != BPF_FUNC_map_push_elem) 8239 goto error; 8240 break; 8241 default: 8242 break; 8243 } 8244 8245 /* ... and second from the function itself. */ 8246 switch (func_id) { 8247 case BPF_FUNC_tail_call: 8248 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8249 goto error; 8250 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8251 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8252 return -EINVAL; 8253 } 8254 break; 8255 case BPF_FUNC_perf_event_read: 8256 case BPF_FUNC_perf_event_output: 8257 case BPF_FUNC_perf_event_read_value: 8258 case BPF_FUNC_skb_output: 8259 case BPF_FUNC_xdp_output: 8260 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8261 goto error; 8262 break; 8263 case BPF_FUNC_ringbuf_output: 8264 case BPF_FUNC_ringbuf_reserve: 8265 case BPF_FUNC_ringbuf_query: 8266 case BPF_FUNC_ringbuf_reserve_dynptr: 8267 case BPF_FUNC_ringbuf_submit_dynptr: 8268 case BPF_FUNC_ringbuf_discard_dynptr: 8269 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8270 goto error; 8271 break; 8272 case BPF_FUNC_user_ringbuf_drain: 8273 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8274 goto error; 8275 break; 8276 case BPF_FUNC_get_stackid: 8277 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8278 goto error; 8279 break; 8280 case BPF_FUNC_current_task_under_cgroup: 8281 case BPF_FUNC_skb_under_cgroup: 8282 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8283 goto error; 8284 break; 8285 case BPF_FUNC_redirect_map: 8286 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8287 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8288 map->map_type != BPF_MAP_TYPE_CPUMAP && 8289 map->map_type != BPF_MAP_TYPE_XSKMAP) 8290 goto error; 8291 break; 8292 case BPF_FUNC_sk_redirect_map: 8293 case BPF_FUNC_msg_redirect_map: 8294 case BPF_FUNC_sock_map_update: 8295 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8296 goto error; 8297 break; 8298 case BPF_FUNC_sk_redirect_hash: 8299 case BPF_FUNC_msg_redirect_hash: 8300 case BPF_FUNC_sock_hash_update: 8301 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8302 goto error; 8303 break; 8304 case BPF_FUNC_get_local_storage: 8305 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8306 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8307 goto error; 8308 break; 8309 case BPF_FUNC_sk_select_reuseport: 8310 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8311 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8312 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8313 goto error; 8314 break; 8315 case BPF_FUNC_map_pop_elem: 8316 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8317 map->map_type != BPF_MAP_TYPE_STACK) 8318 goto error; 8319 break; 8320 case BPF_FUNC_map_peek_elem: 8321 case BPF_FUNC_map_push_elem: 8322 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8323 map->map_type != BPF_MAP_TYPE_STACK && 8324 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8325 goto error; 8326 break; 8327 case BPF_FUNC_map_lookup_percpu_elem: 8328 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8329 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8330 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8331 goto error; 8332 break; 8333 case BPF_FUNC_sk_storage_get: 8334 case BPF_FUNC_sk_storage_delete: 8335 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8336 goto error; 8337 break; 8338 case BPF_FUNC_inode_storage_get: 8339 case BPF_FUNC_inode_storage_delete: 8340 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8341 goto error; 8342 break; 8343 case BPF_FUNC_task_storage_get: 8344 case BPF_FUNC_task_storage_delete: 8345 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8346 goto error; 8347 break; 8348 case BPF_FUNC_cgrp_storage_get: 8349 case BPF_FUNC_cgrp_storage_delete: 8350 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8351 goto error; 8352 break; 8353 default: 8354 break; 8355 } 8356 8357 return 0; 8358 error: 8359 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8360 map->map_type, func_id_name(func_id), func_id); 8361 return -EINVAL; 8362 } 8363 8364 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8365 { 8366 int count = 0; 8367 8368 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8369 count++; 8370 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8371 count++; 8372 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8373 count++; 8374 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8375 count++; 8376 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8377 count++; 8378 8379 /* We only support one arg being in raw mode at the moment, 8380 * which is sufficient for the helper functions we have 8381 * right now. 8382 */ 8383 return count <= 1; 8384 } 8385 8386 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8387 { 8388 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8389 bool has_size = fn->arg_size[arg] != 0; 8390 bool is_next_size = false; 8391 8392 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8393 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8394 8395 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8396 return is_next_size; 8397 8398 return has_size == is_next_size || is_next_size == is_fixed; 8399 } 8400 8401 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8402 { 8403 /* bpf_xxx(..., buf, len) call will access 'len' 8404 * bytes from memory 'buf'. Both arg types need 8405 * to be paired, so make sure there's no buggy 8406 * helper function specification. 8407 */ 8408 if (arg_type_is_mem_size(fn->arg1_type) || 8409 check_args_pair_invalid(fn, 0) || 8410 check_args_pair_invalid(fn, 1) || 8411 check_args_pair_invalid(fn, 2) || 8412 check_args_pair_invalid(fn, 3) || 8413 check_args_pair_invalid(fn, 4)) 8414 return false; 8415 8416 return true; 8417 } 8418 8419 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8420 { 8421 int i; 8422 8423 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8424 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8425 return !!fn->arg_btf_id[i]; 8426 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8427 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8428 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8429 /* arg_btf_id and arg_size are in a union. */ 8430 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8431 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8432 return false; 8433 } 8434 8435 return true; 8436 } 8437 8438 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8439 { 8440 return check_raw_mode_ok(fn) && 8441 check_arg_pair_ok(fn) && 8442 check_btf_id_ok(fn) ? 0 : -EINVAL; 8443 } 8444 8445 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8446 * are now invalid, so turn them into unknown SCALAR_VALUE. 8447 * 8448 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8449 * since these slices point to packet data. 8450 */ 8451 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8452 { 8453 struct bpf_func_state *state; 8454 struct bpf_reg_state *reg; 8455 8456 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8457 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8458 mark_reg_invalid(env, reg); 8459 })); 8460 } 8461 8462 enum { 8463 AT_PKT_END = -1, 8464 BEYOND_PKT_END = -2, 8465 }; 8466 8467 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8468 { 8469 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8470 struct bpf_reg_state *reg = &state->regs[regn]; 8471 8472 if (reg->type != PTR_TO_PACKET) 8473 /* PTR_TO_PACKET_META is not supported yet */ 8474 return; 8475 8476 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8477 * How far beyond pkt_end it goes is unknown. 8478 * if (!range_open) it's the case of pkt >= pkt_end 8479 * if (range_open) it's the case of pkt > pkt_end 8480 * hence this pointer is at least 1 byte bigger than pkt_end 8481 */ 8482 if (range_open) 8483 reg->range = BEYOND_PKT_END; 8484 else 8485 reg->range = AT_PKT_END; 8486 } 8487 8488 /* The pointer with the specified id has released its reference to kernel 8489 * resources. Identify all copies of the same pointer and clear the reference. 8490 */ 8491 static int release_reference(struct bpf_verifier_env *env, 8492 int ref_obj_id) 8493 { 8494 struct bpf_func_state *state; 8495 struct bpf_reg_state *reg; 8496 int err; 8497 8498 err = release_reference_state(cur_func(env), ref_obj_id); 8499 if (err) 8500 return err; 8501 8502 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8503 if (reg->ref_obj_id == ref_obj_id) 8504 mark_reg_invalid(env, reg); 8505 })); 8506 8507 return 0; 8508 } 8509 8510 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8511 { 8512 struct bpf_func_state *unused; 8513 struct bpf_reg_state *reg; 8514 8515 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8516 if (type_is_non_owning_ref(reg->type)) 8517 mark_reg_invalid(env, reg); 8518 })); 8519 } 8520 8521 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8522 struct bpf_reg_state *regs) 8523 { 8524 int i; 8525 8526 /* after the call registers r0 - r5 were scratched */ 8527 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8528 mark_reg_not_init(env, regs, caller_saved[i]); 8529 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8530 } 8531 } 8532 8533 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8534 struct bpf_func_state *caller, 8535 struct bpf_func_state *callee, 8536 int insn_idx); 8537 8538 static int set_callee_state(struct bpf_verifier_env *env, 8539 struct bpf_func_state *caller, 8540 struct bpf_func_state *callee, int insn_idx); 8541 8542 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8543 int *insn_idx, int subprog, 8544 set_callee_state_fn set_callee_state_cb) 8545 { 8546 struct bpf_verifier_state *state = env->cur_state; 8547 struct bpf_func_state *caller, *callee; 8548 int err; 8549 8550 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8551 verbose(env, "the call stack of %d frames is too deep\n", 8552 state->curframe + 2); 8553 return -E2BIG; 8554 } 8555 8556 caller = state->frame[state->curframe]; 8557 if (state->frame[state->curframe + 1]) { 8558 verbose(env, "verifier bug. Frame %d already allocated\n", 8559 state->curframe + 1); 8560 return -EFAULT; 8561 } 8562 8563 err = btf_check_subprog_call(env, subprog, caller->regs); 8564 if (err == -EFAULT) 8565 return err; 8566 if (subprog_is_global(env, subprog)) { 8567 if (err) { 8568 verbose(env, "Caller passes invalid args into func#%d\n", 8569 subprog); 8570 return err; 8571 } else { 8572 if (env->log.level & BPF_LOG_LEVEL) 8573 verbose(env, 8574 "Func#%d is global and valid. Skipping.\n", 8575 subprog); 8576 clear_caller_saved_regs(env, caller->regs); 8577 8578 /* All global functions return a 64-bit SCALAR_VALUE */ 8579 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8580 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8581 8582 /* continue with next insn after call */ 8583 return 0; 8584 } 8585 } 8586 8587 /* set_callee_state is used for direct subprog calls, but we are 8588 * interested in validating only BPF helpers that can call subprogs as 8589 * callbacks 8590 */ 8591 if (set_callee_state_cb != set_callee_state) { 8592 if (bpf_pseudo_kfunc_call(insn) && 8593 !is_callback_calling_kfunc(insn->imm)) { 8594 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8595 func_id_name(insn->imm), insn->imm); 8596 return -EFAULT; 8597 } else if (!bpf_pseudo_kfunc_call(insn) && 8598 !is_callback_calling_function(insn->imm)) { /* helper */ 8599 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8600 func_id_name(insn->imm), insn->imm); 8601 return -EFAULT; 8602 } 8603 } 8604 8605 if (insn->code == (BPF_JMP | BPF_CALL) && 8606 insn->src_reg == 0 && 8607 insn->imm == BPF_FUNC_timer_set_callback) { 8608 struct bpf_verifier_state *async_cb; 8609 8610 /* there is no real recursion here. timer callbacks are async */ 8611 env->subprog_info[subprog].is_async_cb = true; 8612 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8613 *insn_idx, subprog); 8614 if (!async_cb) 8615 return -EFAULT; 8616 callee = async_cb->frame[0]; 8617 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8618 8619 /* Convert bpf_timer_set_callback() args into timer callback args */ 8620 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8621 if (err) 8622 return err; 8623 8624 clear_caller_saved_regs(env, caller->regs); 8625 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8626 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8627 /* continue with next insn after call */ 8628 return 0; 8629 } 8630 8631 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8632 if (!callee) 8633 return -ENOMEM; 8634 state->frame[state->curframe + 1] = callee; 8635 8636 /* callee cannot access r0, r6 - r9 for reading and has to write 8637 * into its own stack before reading from it. 8638 * callee can read/write into caller's stack 8639 */ 8640 init_func_state(env, callee, 8641 /* remember the callsite, it will be used by bpf_exit */ 8642 *insn_idx /* callsite */, 8643 state->curframe + 1 /* frameno within this callchain */, 8644 subprog /* subprog number within this prog */); 8645 8646 /* Transfer references to the callee */ 8647 err = copy_reference_state(callee, caller); 8648 if (err) 8649 goto err_out; 8650 8651 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8652 if (err) 8653 goto err_out; 8654 8655 clear_caller_saved_regs(env, caller->regs); 8656 8657 /* only increment it after check_reg_arg() finished */ 8658 state->curframe++; 8659 8660 /* and go analyze first insn of the callee */ 8661 *insn_idx = env->subprog_info[subprog].start - 1; 8662 8663 if (env->log.level & BPF_LOG_LEVEL) { 8664 verbose(env, "caller:\n"); 8665 print_verifier_state(env, caller, true); 8666 verbose(env, "callee:\n"); 8667 print_verifier_state(env, callee, true); 8668 } 8669 return 0; 8670 8671 err_out: 8672 free_func_state(callee); 8673 state->frame[state->curframe + 1] = NULL; 8674 return err; 8675 } 8676 8677 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8678 struct bpf_func_state *caller, 8679 struct bpf_func_state *callee) 8680 { 8681 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8682 * void *callback_ctx, u64 flags); 8683 * callback_fn(struct bpf_map *map, void *key, void *value, 8684 * void *callback_ctx); 8685 */ 8686 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8687 8688 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8689 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8690 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8691 8692 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8693 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8694 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8695 8696 /* pointer to stack or null */ 8697 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 8698 8699 /* unused */ 8700 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8701 return 0; 8702 } 8703 8704 static int set_callee_state(struct bpf_verifier_env *env, 8705 struct bpf_func_state *caller, 8706 struct bpf_func_state *callee, int insn_idx) 8707 { 8708 int i; 8709 8710 /* copy r1 - r5 args that callee can access. The copy includes parent 8711 * pointers, which connects us up to the liveness chain 8712 */ 8713 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 8714 callee->regs[i] = caller->regs[i]; 8715 return 0; 8716 } 8717 8718 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8719 int *insn_idx) 8720 { 8721 int subprog, target_insn; 8722 8723 target_insn = *insn_idx + insn->imm + 1; 8724 subprog = find_subprog(env, target_insn); 8725 if (subprog < 0) { 8726 verbose(env, "verifier bug. No program starts at insn %d\n", 8727 target_insn); 8728 return -EFAULT; 8729 } 8730 8731 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 8732 } 8733 8734 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 8735 struct bpf_func_state *caller, 8736 struct bpf_func_state *callee, 8737 int insn_idx) 8738 { 8739 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 8740 struct bpf_map *map; 8741 int err; 8742 8743 if (bpf_map_ptr_poisoned(insn_aux)) { 8744 verbose(env, "tail_call abusing map_ptr\n"); 8745 return -EINVAL; 8746 } 8747 8748 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 8749 if (!map->ops->map_set_for_each_callback_args || 8750 !map->ops->map_for_each_callback) { 8751 verbose(env, "callback function not allowed for map\n"); 8752 return -ENOTSUPP; 8753 } 8754 8755 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 8756 if (err) 8757 return err; 8758 8759 callee->in_callback_fn = true; 8760 callee->callback_ret_range = tnum_range(0, 1); 8761 return 0; 8762 } 8763 8764 static int set_loop_callback_state(struct bpf_verifier_env *env, 8765 struct bpf_func_state *caller, 8766 struct bpf_func_state *callee, 8767 int insn_idx) 8768 { 8769 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 8770 * u64 flags); 8771 * callback_fn(u32 index, void *callback_ctx); 8772 */ 8773 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 8774 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8775 8776 /* unused */ 8777 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8778 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8779 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8780 8781 callee->in_callback_fn = true; 8782 callee->callback_ret_range = tnum_range(0, 1); 8783 return 0; 8784 } 8785 8786 static int set_timer_callback_state(struct bpf_verifier_env *env, 8787 struct bpf_func_state *caller, 8788 struct bpf_func_state *callee, 8789 int insn_idx) 8790 { 8791 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 8792 8793 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 8794 * callback_fn(struct bpf_map *map, void *key, void *value); 8795 */ 8796 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 8797 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 8798 callee->regs[BPF_REG_1].map_ptr = map_ptr; 8799 8800 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8801 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8802 callee->regs[BPF_REG_2].map_ptr = map_ptr; 8803 8804 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8805 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8806 callee->regs[BPF_REG_3].map_ptr = map_ptr; 8807 8808 /* unused */ 8809 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8810 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8811 callee->in_async_callback_fn = true; 8812 callee->callback_ret_range = tnum_range(0, 1); 8813 return 0; 8814 } 8815 8816 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 8817 struct bpf_func_state *caller, 8818 struct bpf_func_state *callee, 8819 int insn_idx) 8820 { 8821 /* bpf_find_vma(struct task_struct *task, u64 addr, 8822 * void *callback_fn, void *callback_ctx, u64 flags) 8823 * (callback_fn)(struct task_struct *task, 8824 * struct vm_area_struct *vma, void *callback_ctx); 8825 */ 8826 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8827 8828 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 8829 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8830 callee->regs[BPF_REG_2].btf = btf_vmlinux; 8831 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 8832 8833 /* pointer to stack or null */ 8834 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 8835 8836 /* unused */ 8837 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8838 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8839 callee->in_callback_fn = true; 8840 callee->callback_ret_range = tnum_range(0, 1); 8841 return 0; 8842 } 8843 8844 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 8845 struct bpf_func_state *caller, 8846 struct bpf_func_state *callee, 8847 int insn_idx) 8848 { 8849 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 8850 * callback_ctx, u64 flags); 8851 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 8852 */ 8853 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 8854 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 8855 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8856 8857 /* unused */ 8858 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8859 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8860 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8861 8862 callee->in_callback_fn = true; 8863 callee->callback_ret_range = tnum_range(0, 1); 8864 return 0; 8865 } 8866 8867 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 8868 struct bpf_func_state *caller, 8869 struct bpf_func_state *callee, 8870 int insn_idx) 8871 { 8872 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 8873 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 8874 * 8875 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 8876 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 8877 * by this point, so look at 'root' 8878 */ 8879 struct btf_field *field; 8880 8881 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 8882 BPF_RB_ROOT); 8883 if (!field || !field->graph_root.value_btf_id) 8884 return -EFAULT; 8885 8886 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 8887 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 8888 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 8889 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 8890 8891 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8892 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8893 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8894 callee->in_callback_fn = true; 8895 callee->callback_ret_range = tnum_range(0, 1); 8896 return 0; 8897 } 8898 8899 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 8900 8901 /* Are we currently verifying the callback for a rbtree helper that must 8902 * be called with lock held? If so, no need to complain about unreleased 8903 * lock 8904 */ 8905 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 8906 { 8907 struct bpf_verifier_state *state = env->cur_state; 8908 struct bpf_insn *insn = env->prog->insnsi; 8909 struct bpf_func_state *callee; 8910 int kfunc_btf_id; 8911 8912 if (!state->curframe) 8913 return false; 8914 8915 callee = state->frame[state->curframe]; 8916 8917 if (!callee->in_callback_fn) 8918 return false; 8919 8920 kfunc_btf_id = insn[callee->callsite].imm; 8921 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 8922 } 8923 8924 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 8925 { 8926 struct bpf_verifier_state *state = env->cur_state; 8927 struct bpf_func_state *caller, *callee; 8928 struct bpf_reg_state *r0; 8929 int err; 8930 8931 callee = state->frame[state->curframe]; 8932 r0 = &callee->regs[BPF_REG_0]; 8933 if (r0->type == PTR_TO_STACK) { 8934 /* technically it's ok to return caller's stack pointer 8935 * (or caller's caller's pointer) back to the caller, 8936 * since these pointers are valid. Only current stack 8937 * pointer will be invalid as soon as function exits, 8938 * but let's be conservative 8939 */ 8940 verbose(env, "cannot return stack pointer to the caller\n"); 8941 return -EINVAL; 8942 } 8943 8944 caller = state->frame[state->curframe - 1]; 8945 if (callee->in_callback_fn) { 8946 /* enforce R0 return value range [0, 1]. */ 8947 struct tnum range = callee->callback_ret_range; 8948 8949 if (r0->type != SCALAR_VALUE) { 8950 verbose(env, "R0 not a scalar value\n"); 8951 return -EACCES; 8952 } 8953 if (!tnum_in(range, r0->var_off)) { 8954 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 8955 return -EINVAL; 8956 } 8957 } else { 8958 /* return to the caller whatever r0 had in the callee */ 8959 caller->regs[BPF_REG_0] = *r0; 8960 } 8961 8962 /* callback_fn frame should have released its own additions to parent's 8963 * reference state at this point, or check_reference_leak would 8964 * complain, hence it must be the same as the caller. There is no need 8965 * to copy it back. 8966 */ 8967 if (!callee->in_callback_fn) { 8968 /* Transfer references to the caller */ 8969 err = copy_reference_state(caller, callee); 8970 if (err) 8971 return err; 8972 } 8973 8974 *insn_idx = callee->callsite + 1; 8975 if (env->log.level & BPF_LOG_LEVEL) { 8976 verbose(env, "returning from callee:\n"); 8977 print_verifier_state(env, callee, true); 8978 verbose(env, "to caller at %d:\n", *insn_idx); 8979 print_verifier_state(env, caller, true); 8980 } 8981 /* clear everything in the callee */ 8982 free_func_state(callee); 8983 state->frame[state->curframe--] = NULL; 8984 return 0; 8985 } 8986 8987 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 8988 int func_id, 8989 struct bpf_call_arg_meta *meta) 8990 { 8991 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 8992 8993 if (ret_type != RET_INTEGER || 8994 (func_id != BPF_FUNC_get_stack && 8995 func_id != BPF_FUNC_get_task_stack && 8996 func_id != BPF_FUNC_probe_read_str && 8997 func_id != BPF_FUNC_probe_read_kernel_str && 8998 func_id != BPF_FUNC_probe_read_user_str)) 8999 return; 9000 9001 ret_reg->smax_value = meta->msize_max_value; 9002 ret_reg->s32_max_value = meta->msize_max_value; 9003 ret_reg->smin_value = -MAX_ERRNO; 9004 ret_reg->s32_min_value = -MAX_ERRNO; 9005 reg_bounds_sync(ret_reg); 9006 } 9007 9008 static int 9009 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9010 int func_id, int insn_idx) 9011 { 9012 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9013 struct bpf_map *map = meta->map_ptr; 9014 9015 if (func_id != BPF_FUNC_tail_call && 9016 func_id != BPF_FUNC_map_lookup_elem && 9017 func_id != BPF_FUNC_map_update_elem && 9018 func_id != BPF_FUNC_map_delete_elem && 9019 func_id != BPF_FUNC_map_push_elem && 9020 func_id != BPF_FUNC_map_pop_elem && 9021 func_id != BPF_FUNC_map_peek_elem && 9022 func_id != BPF_FUNC_for_each_map_elem && 9023 func_id != BPF_FUNC_redirect_map && 9024 func_id != BPF_FUNC_map_lookup_percpu_elem) 9025 return 0; 9026 9027 if (map == NULL) { 9028 verbose(env, "kernel subsystem misconfigured verifier\n"); 9029 return -EINVAL; 9030 } 9031 9032 /* In case of read-only, some additional restrictions 9033 * need to be applied in order to prevent altering the 9034 * state of the map from program side. 9035 */ 9036 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9037 (func_id == BPF_FUNC_map_delete_elem || 9038 func_id == BPF_FUNC_map_update_elem || 9039 func_id == BPF_FUNC_map_push_elem || 9040 func_id == BPF_FUNC_map_pop_elem)) { 9041 verbose(env, "write into map forbidden\n"); 9042 return -EACCES; 9043 } 9044 9045 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9046 bpf_map_ptr_store(aux, meta->map_ptr, 9047 !meta->map_ptr->bypass_spec_v1); 9048 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9049 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9050 !meta->map_ptr->bypass_spec_v1); 9051 return 0; 9052 } 9053 9054 static int 9055 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9056 int func_id, int insn_idx) 9057 { 9058 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9059 struct bpf_reg_state *regs = cur_regs(env), *reg; 9060 struct bpf_map *map = meta->map_ptr; 9061 u64 val, max; 9062 int err; 9063 9064 if (func_id != BPF_FUNC_tail_call) 9065 return 0; 9066 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9067 verbose(env, "kernel subsystem misconfigured verifier\n"); 9068 return -EINVAL; 9069 } 9070 9071 reg = ®s[BPF_REG_3]; 9072 val = reg->var_off.value; 9073 max = map->max_entries; 9074 9075 if (!(register_is_const(reg) && val < max)) { 9076 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9077 return 0; 9078 } 9079 9080 err = mark_chain_precision(env, BPF_REG_3); 9081 if (err) 9082 return err; 9083 if (bpf_map_key_unseen(aux)) 9084 bpf_map_key_store(aux, val); 9085 else if (!bpf_map_key_poisoned(aux) && 9086 bpf_map_key_immediate(aux) != val) 9087 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9088 return 0; 9089 } 9090 9091 static int check_reference_leak(struct bpf_verifier_env *env) 9092 { 9093 struct bpf_func_state *state = cur_func(env); 9094 bool refs_lingering = false; 9095 int i; 9096 9097 if (state->frameno && !state->in_callback_fn) 9098 return 0; 9099 9100 for (i = 0; i < state->acquired_refs; i++) { 9101 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9102 continue; 9103 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9104 state->refs[i].id, state->refs[i].insn_idx); 9105 refs_lingering = true; 9106 } 9107 return refs_lingering ? -EINVAL : 0; 9108 } 9109 9110 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9111 struct bpf_reg_state *regs) 9112 { 9113 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9114 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9115 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9116 struct bpf_bprintf_data data = {}; 9117 int err, fmt_map_off, num_args; 9118 u64 fmt_addr; 9119 char *fmt; 9120 9121 /* data must be an array of u64 */ 9122 if (data_len_reg->var_off.value % 8) 9123 return -EINVAL; 9124 num_args = data_len_reg->var_off.value / 8; 9125 9126 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9127 * and map_direct_value_addr is set. 9128 */ 9129 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9130 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9131 fmt_map_off); 9132 if (err) { 9133 verbose(env, "verifier bug\n"); 9134 return -EFAULT; 9135 } 9136 fmt = (char *)(long)fmt_addr + fmt_map_off; 9137 9138 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9139 * can focus on validating the format specifiers. 9140 */ 9141 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9142 if (err < 0) 9143 verbose(env, "Invalid format string\n"); 9144 9145 return err; 9146 } 9147 9148 static int check_get_func_ip(struct bpf_verifier_env *env) 9149 { 9150 enum bpf_prog_type type = resolve_prog_type(env->prog); 9151 int func_id = BPF_FUNC_get_func_ip; 9152 9153 if (type == BPF_PROG_TYPE_TRACING) { 9154 if (!bpf_prog_has_trampoline(env->prog)) { 9155 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9156 func_id_name(func_id), func_id); 9157 return -ENOTSUPP; 9158 } 9159 return 0; 9160 } else if (type == BPF_PROG_TYPE_KPROBE) { 9161 return 0; 9162 } 9163 9164 verbose(env, "func %s#%d not supported for program type %d\n", 9165 func_id_name(func_id), func_id, type); 9166 return -ENOTSUPP; 9167 } 9168 9169 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9170 { 9171 return &env->insn_aux_data[env->insn_idx]; 9172 } 9173 9174 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9175 { 9176 struct bpf_reg_state *regs = cur_regs(env); 9177 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9178 bool reg_is_null = register_is_null(reg); 9179 9180 if (reg_is_null) 9181 mark_chain_precision(env, BPF_REG_4); 9182 9183 return reg_is_null; 9184 } 9185 9186 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9187 { 9188 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9189 9190 if (!state->initialized) { 9191 state->initialized = 1; 9192 state->fit_for_inline = loop_flag_is_zero(env); 9193 state->callback_subprogno = subprogno; 9194 return; 9195 } 9196 9197 if (!state->fit_for_inline) 9198 return; 9199 9200 state->fit_for_inline = (loop_flag_is_zero(env) && 9201 state->callback_subprogno == subprogno); 9202 } 9203 9204 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9205 int *insn_idx_p) 9206 { 9207 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9208 const struct bpf_func_proto *fn = NULL; 9209 enum bpf_return_type ret_type; 9210 enum bpf_type_flag ret_flag; 9211 struct bpf_reg_state *regs; 9212 struct bpf_call_arg_meta meta; 9213 int insn_idx = *insn_idx_p; 9214 bool changes_data; 9215 int i, err, func_id; 9216 9217 /* find function prototype */ 9218 func_id = insn->imm; 9219 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9220 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9221 func_id); 9222 return -EINVAL; 9223 } 9224 9225 if (env->ops->get_func_proto) 9226 fn = env->ops->get_func_proto(func_id, env->prog); 9227 if (!fn) { 9228 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9229 func_id); 9230 return -EINVAL; 9231 } 9232 9233 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9234 if (!env->prog->gpl_compatible && fn->gpl_only) { 9235 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9236 return -EINVAL; 9237 } 9238 9239 if (fn->allowed && !fn->allowed(env->prog)) { 9240 verbose(env, "helper call is not allowed in probe\n"); 9241 return -EINVAL; 9242 } 9243 9244 if (!env->prog->aux->sleepable && fn->might_sleep) { 9245 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9246 return -EINVAL; 9247 } 9248 9249 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9250 changes_data = bpf_helper_changes_pkt_data(fn->func); 9251 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9252 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9253 func_id_name(func_id), func_id); 9254 return -EINVAL; 9255 } 9256 9257 memset(&meta, 0, sizeof(meta)); 9258 meta.pkt_access = fn->pkt_access; 9259 9260 err = check_func_proto(fn, func_id); 9261 if (err) { 9262 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9263 func_id_name(func_id), func_id); 9264 return err; 9265 } 9266 9267 if (env->cur_state->active_rcu_lock) { 9268 if (fn->might_sleep) { 9269 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9270 func_id_name(func_id), func_id); 9271 return -EINVAL; 9272 } 9273 9274 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9275 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9276 } 9277 9278 meta.func_id = func_id; 9279 /* check args */ 9280 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9281 err = check_func_arg(env, i, &meta, fn, insn_idx); 9282 if (err) 9283 return err; 9284 } 9285 9286 err = record_func_map(env, &meta, func_id, insn_idx); 9287 if (err) 9288 return err; 9289 9290 err = record_func_key(env, &meta, func_id, insn_idx); 9291 if (err) 9292 return err; 9293 9294 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9295 * is inferred from register state. 9296 */ 9297 for (i = 0; i < meta.access_size; i++) { 9298 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9299 BPF_WRITE, -1, false); 9300 if (err) 9301 return err; 9302 } 9303 9304 regs = cur_regs(env); 9305 9306 if (meta.release_regno) { 9307 err = -EINVAL; 9308 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9309 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9310 * is safe to do directly. 9311 */ 9312 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9313 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9314 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9315 return -EFAULT; 9316 } 9317 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9318 } else if (meta.ref_obj_id) { 9319 err = release_reference(env, meta.ref_obj_id); 9320 } else if (register_is_null(®s[meta.release_regno])) { 9321 /* meta.ref_obj_id can only be 0 if register that is meant to be 9322 * released is NULL, which must be > R0. 9323 */ 9324 err = 0; 9325 } 9326 if (err) { 9327 verbose(env, "func %s#%d reference has not been acquired before\n", 9328 func_id_name(func_id), func_id); 9329 return err; 9330 } 9331 } 9332 9333 switch (func_id) { 9334 case BPF_FUNC_tail_call: 9335 err = check_reference_leak(env); 9336 if (err) { 9337 verbose(env, "tail_call would lead to reference leak\n"); 9338 return err; 9339 } 9340 break; 9341 case BPF_FUNC_get_local_storage: 9342 /* check that flags argument in get_local_storage(map, flags) is 0, 9343 * this is required because get_local_storage() can't return an error. 9344 */ 9345 if (!register_is_null(®s[BPF_REG_2])) { 9346 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9347 return -EINVAL; 9348 } 9349 break; 9350 case BPF_FUNC_for_each_map_elem: 9351 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9352 set_map_elem_callback_state); 9353 break; 9354 case BPF_FUNC_timer_set_callback: 9355 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9356 set_timer_callback_state); 9357 break; 9358 case BPF_FUNC_find_vma: 9359 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9360 set_find_vma_callback_state); 9361 break; 9362 case BPF_FUNC_snprintf: 9363 err = check_bpf_snprintf_call(env, regs); 9364 break; 9365 case BPF_FUNC_loop: 9366 update_loop_inline_state(env, meta.subprogno); 9367 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9368 set_loop_callback_state); 9369 break; 9370 case BPF_FUNC_dynptr_from_mem: 9371 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9372 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9373 reg_type_str(env, regs[BPF_REG_1].type)); 9374 return -EACCES; 9375 } 9376 break; 9377 case BPF_FUNC_set_retval: 9378 if (prog_type == BPF_PROG_TYPE_LSM && 9379 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9380 if (!env->prog->aux->attach_func_proto->type) { 9381 /* Make sure programs that attach to void 9382 * hooks don't try to modify return value. 9383 */ 9384 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9385 return -EINVAL; 9386 } 9387 } 9388 break; 9389 case BPF_FUNC_dynptr_data: 9390 { 9391 struct bpf_reg_state *reg; 9392 int id, ref_obj_id; 9393 9394 reg = get_dynptr_arg_reg(env, fn, regs); 9395 if (!reg) 9396 return -EFAULT; 9397 9398 9399 if (meta.dynptr_id) { 9400 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9401 return -EFAULT; 9402 } 9403 if (meta.ref_obj_id) { 9404 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9405 return -EFAULT; 9406 } 9407 9408 id = dynptr_id(env, reg); 9409 if (id < 0) { 9410 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9411 return id; 9412 } 9413 9414 ref_obj_id = dynptr_ref_obj_id(env, reg); 9415 if (ref_obj_id < 0) { 9416 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9417 return ref_obj_id; 9418 } 9419 9420 meta.dynptr_id = id; 9421 meta.ref_obj_id = ref_obj_id; 9422 9423 break; 9424 } 9425 case BPF_FUNC_dynptr_write: 9426 { 9427 enum bpf_dynptr_type dynptr_type; 9428 struct bpf_reg_state *reg; 9429 9430 reg = get_dynptr_arg_reg(env, fn, regs); 9431 if (!reg) 9432 return -EFAULT; 9433 9434 dynptr_type = dynptr_get_type(env, reg); 9435 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9436 return -EFAULT; 9437 9438 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9439 /* this will trigger clear_all_pkt_pointers(), which will 9440 * invalidate all dynptr slices associated with the skb 9441 */ 9442 changes_data = true; 9443 9444 break; 9445 } 9446 case BPF_FUNC_user_ringbuf_drain: 9447 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9448 set_user_ringbuf_callback_state); 9449 break; 9450 } 9451 9452 if (err) 9453 return err; 9454 9455 /* reset caller saved regs */ 9456 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9457 mark_reg_not_init(env, regs, caller_saved[i]); 9458 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9459 } 9460 9461 /* helper call returns 64-bit value. */ 9462 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9463 9464 /* update return register (already marked as written above) */ 9465 ret_type = fn->ret_type; 9466 ret_flag = type_flag(ret_type); 9467 9468 switch (base_type(ret_type)) { 9469 case RET_INTEGER: 9470 /* sets type to SCALAR_VALUE */ 9471 mark_reg_unknown(env, regs, BPF_REG_0); 9472 break; 9473 case RET_VOID: 9474 regs[BPF_REG_0].type = NOT_INIT; 9475 break; 9476 case RET_PTR_TO_MAP_VALUE: 9477 /* There is no offset yet applied, variable or fixed */ 9478 mark_reg_known_zero(env, regs, BPF_REG_0); 9479 /* remember map_ptr, so that check_map_access() 9480 * can check 'value_size' boundary of memory access 9481 * to map element returned from bpf_map_lookup_elem() 9482 */ 9483 if (meta.map_ptr == NULL) { 9484 verbose(env, 9485 "kernel subsystem misconfigured verifier\n"); 9486 return -EINVAL; 9487 } 9488 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9489 regs[BPF_REG_0].map_uid = meta.map_uid; 9490 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9491 if (!type_may_be_null(ret_type) && 9492 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9493 regs[BPF_REG_0].id = ++env->id_gen; 9494 } 9495 break; 9496 case RET_PTR_TO_SOCKET: 9497 mark_reg_known_zero(env, regs, BPF_REG_0); 9498 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9499 break; 9500 case RET_PTR_TO_SOCK_COMMON: 9501 mark_reg_known_zero(env, regs, BPF_REG_0); 9502 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9503 break; 9504 case RET_PTR_TO_TCP_SOCK: 9505 mark_reg_known_zero(env, regs, BPF_REG_0); 9506 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9507 break; 9508 case RET_PTR_TO_MEM: 9509 mark_reg_known_zero(env, regs, BPF_REG_0); 9510 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9511 regs[BPF_REG_0].mem_size = meta.mem_size; 9512 break; 9513 case RET_PTR_TO_MEM_OR_BTF_ID: 9514 { 9515 const struct btf_type *t; 9516 9517 mark_reg_known_zero(env, regs, BPF_REG_0); 9518 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9519 if (!btf_type_is_struct(t)) { 9520 u32 tsize; 9521 const struct btf_type *ret; 9522 const char *tname; 9523 9524 /* resolve the type size of ksym. */ 9525 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9526 if (IS_ERR(ret)) { 9527 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9528 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9529 tname, PTR_ERR(ret)); 9530 return -EINVAL; 9531 } 9532 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9533 regs[BPF_REG_0].mem_size = tsize; 9534 } else { 9535 /* MEM_RDONLY may be carried from ret_flag, but it 9536 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9537 * it will confuse the check of PTR_TO_BTF_ID in 9538 * check_mem_access(). 9539 */ 9540 ret_flag &= ~MEM_RDONLY; 9541 9542 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9543 regs[BPF_REG_0].btf = meta.ret_btf; 9544 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9545 } 9546 break; 9547 } 9548 case RET_PTR_TO_BTF_ID: 9549 { 9550 struct btf *ret_btf; 9551 int ret_btf_id; 9552 9553 mark_reg_known_zero(env, regs, BPF_REG_0); 9554 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9555 if (func_id == BPF_FUNC_kptr_xchg) { 9556 ret_btf = meta.kptr_field->kptr.btf; 9557 ret_btf_id = meta.kptr_field->kptr.btf_id; 9558 if (!btf_is_kernel(ret_btf)) 9559 regs[BPF_REG_0].type |= MEM_ALLOC; 9560 } else { 9561 if (fn->ret_btf_id == BPF_PTR_POISON) { 9562 verbose(env, "verifier internal error:"); 9563 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9564 func_id_name(func_id)); 9565 return -EINVAL; 9566 } 9567 ret_btf = btf_vmlinux; 9568 ret_btf_id = *fn->ret_btf_id; 9569 } 9570 if (ret_btf_id == 0) { 9571 verbose(env, "invalid return type %u of func %s#%d\n", 9572 base_type(ret_type), func_id_name(func_id), 9573 func_id); 9574 return -EINVAL; 9575 } 9576 regs[BPF_REG_0].btf = ret_btf; 9577 regs[BPF_REG_0].btf_id = ret_btf_id; 9578 break; 9579 } 9580 default: 9581 verbose(env, "unknown return type %u of func %s#%d\n", 9582 base_type(ret_type), func_id_name(func_id), func_id); 9583 return -EINVAL; 9584 } 9585 9586 if (type_may_be_null(regs[BPF_REG_0].type)) 9587 regs[BPF_REG_0].id = ++env->id_gen; 9588 9589 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9590 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9591 func_id_name(func_id), func_id); 9592 return -EFAULT; 9593 } 9594 9595 if (is_dynptr_ref_function(func_id)) 9596 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9597 9598 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9599 /* For release_reference() */ 9600 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9601 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9602 int id = acquire_reference_state(env, insn_idx); 9603 9604 if (id < 0) 9605 return id; 9606 /* For mark_ptr_or_null_reg() */ 9607 regs[BPF_REG_0].id = id; 9608 /* For release_reference() */ 9609 regs[BPF_REG_0].ref_obj_id = id; 9610 } 9611 9612 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9613 9614 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9615 if (err) 9616 return err; 9617 9618 if ((func_id == BPF_FUNC_get_stack || 9619 func_id == BPF_FUNC_get_task_stack) && 9620 !env->prog->has_callchain_buf) { 9621 const char *err_str; 9622 9623 #ifdef CONFIG_PERF_EVENTS 9624 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9625 err_str = "cannot get callchain buffer for func %s#%d\n"; 9626 #else 9627 err = -ENOTSUPP; 9628 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9629 #endif 9630 if (err) { 9631 verbose(env, err_str, func_id_name(func_id), func_id); 9632 return err; 9633 } 9634 9635 env->prog->has_callchain_buf = true; 9636 } 9637 9638 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9639 env->prog->call_get_stack = true; 9640 9641 if (func_id == BPF_FUNC_get_func_ip) { 9642 if (check_get_func_ip(env)) 9643 return -ENOTSUPP; 9644 env->prog->call_get_func_ip = true; 9645 } 9646 9647 if (changes_data) 9648 clear_all_pkt_pointers(env); 9649 return 0; 9650 } 9651 9652 /* mark_btf_func_reg_size() is used when the reg size is determined by 9653 * the BTF func_proto's return value size and argument. 9654 */ 9655 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9656 size_t reg_size) 9657 { 9658 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9659 9660 if (regno == BPF_REG_0) { 9661 /* Function return value */ 9662 reg->live |= REG_LIVE_WRITTEN; 9663 reg->subreg_def = reg_size == sizeof(u64) ? 9664 DEF_NOT_SUBREG : env->insn_idx + 1; 9665 } else { 9666 /* Function argument */ 9667 if (reg_size == sizeof(u64)) { 9668 mark_insn_zext(env, reg); 9669 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 9670 } else { 9671 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 9672 } 9673 } 9674 } 9675 9676 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 9677 { 9678 return meta->kfunc_flags & KF_ACQUIRE; 9679 } 9680 9681 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 9682 { 9683 return meta->kfunc_flags & KF_RET_NULL; 9684 } 9685 9686 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 9687 { 9688 return meta->kfunc_flags & KF_RELEASE; 9689 } 9690 9691 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 9692 { 9693 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 9694 } 9695 9696 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 9697 { 9698 return meta->kfunc_flags & KF_SLEEPABLE; 9699 } 9700 9701 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 9702 { 9703 return meta->kfunc_flags & KF_DESTRUCTIVE; 9704 } 9705 9706 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 9707 { 9708 return meta->kfunc_flags & KF_RCU; 9709 } 9710 9711 static bool __kfunc_param_match_suffix(const struct btf *btf, 9712 const struct btf_param *arg, 9713 const char *suffix) 9714 { 9715 int suffix_len = strlen(suffix), len; 9716 const char *param_name; 9717 9718 /* In the future, this can be ported to use BTF tagging */ 9719 param_name = btf_name_by_offset(btf, arg->name_off); 9720 if (str_is_empty(param_name)) 9721 return false; 9722 len = strlen(param_name); 9723 if (len < suffix_len) 9724 return false; 9725 param_name += len - suffix_len; 9726 return !strncmp(param_name, suffix, suffix_len); 9727 } 9728 9729 static bool is_kfunc_arg_mem_size(const struct btf *btf, 9730 const struct btf_param *arg, 9731 const struct bpf_reg_state *reg) 9732 { 9733 const struct btf_type *t; 9734 9735 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9736 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9737 return false; 9738 9739 return __kfunc_param_match_suffix(btf, arg, "__sz"); 9740 } 9741 9742 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 9743 const struct btf_param *arg, 9744 const struct bpf_reg_state *reg) 9745 { 9746 const struct btf_type *t; 9747 9748 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9749 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9750 return false; 9751 9752 return __kfunc_param_match_suffix(btf, arg, "__szk"); 9753 } 9754 9755 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 9756 { 9757 return __kfunc_param_match_suffix(btf, arg, "__opt"); 9758 } 9759 9760 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 9761 { 9762 return __kfunc_param_match_suffix(btf, arg, "__k"); 9763 } 9764 9765 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 9766 { 9767 return __kfunc_param_match_suffix(btf, arg, "__ign"); 9768 } 9769 9770 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 9771 { 9772 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 9773 } 9774 9775 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 9776 { 9777 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 9778 } 9779 9780 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 9781 { 9782 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 9783 } 9784 9785 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 9786 const struct btf_param *arg, 9787 const char *name) 9788 { 9789 int len, target_len = strlen(name); 9790 const char *param_name; 9791 9792 param_name = btf_name_by_offset(btf, arg->name_off); 9793 if (str_is_empty(param_name)) 9794 return false; 9795 len = strlen(param_name); 9796 if (len != target_len) 9797 return false; 9798 if (strcmp(param_name, name)) 9799 return false; 9800 9801 return true; 9802 } 9803 9804 enum { 9805 KF_ARG_DYNPTR_ID, 9806 KF_ARG_LIST_HEAD_ID, 9807 KF_ARG_LIST_NODE_ID, 9808 KF_ARG_RB_ROOT_ID, 9809 KF_ARG_RB_NODE_ID, 9810 }; 9811 9812 BTF_ID_LIST(kf_arg_btf_ids) 9813 BTF_ID(struct, bpf_dynptr_kern) 9814 BTF_ID(struct, bpf_list_head) 9815 BTF_ID(struct, bpf_list_node) 9816 BTF_ID(struct, bpf_rb_root) 9817 BTF_ID(struct, bpf_rb_node) 9818 9819 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 9820 const struct btf_param *arg, int type) 9821 { 9822 const struct btf_type *t; 9823 u32 res_id; 9824 9825 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9826 if (!t) 9827 return false; 9828 if (!btf_type_is_ptr(t)) 9829 return false; 9830 t = btf_type_skip_modifiers(btf, t->type, &res_id); 9831 if (!t) 9832 return false; 9833 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 9834 } 9835 9836 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 9837 { 9838 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 9839 } 9840 9841 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 9842 { 9843 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 9844 } 9845 9846 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 9847 { 9848 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 9849 } 9850 9851 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 9852 { 9853 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 9854 } 9855 9856 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 9857 { 9858 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 9859 } 9860 9861 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 9862 const struct btf_param *arg) 9863 { 9864 const struct btf_type *t; 9865 9866 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 9867 if (!t) 9868 return false; 9869 9870 return true; 9871 } 9872 9873 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 9874 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 9875 const struct btf *btf, 9876 const struct btf_type *t, int rec) 9877 { 9878 const struct btf_type *member_type; 9879 const struct btf_member *member; 9880 u32 i; 9881 9882 if (!btf_type_is_struct(t)) 9883 return false; 9884 9885 for_each_member(i, t, member) { 9886 const struct btf_array *array; 9887 9888 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 9889 if (btf_type_is_struct(member_type)) { 9890 if (rec >= 3) { 9891 verbose(env, "max struct nesting depth exceeded\n"); 9892 return false; 9893 } 9894 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 9895 return false; 9896 continue; 9897 } 9898 if (btf_type_is_array(member_type)) { 9899 array = btf_array(member_type); 9900 if (!array->nelems) 9901 return false; 9902 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 9903 if (!btf_type_is_scalar(member_type)) 9904 return false; 9905 continue; 9906 } 9907 if (!btf_type_is_scalar(member_type)) 9908 return false; 9909 } 9910 return true; 9911 } 9912 9913 9914 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 9915 #ifdef CONFIG_NET 9916 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 9917 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9918 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 9919 #endif 9920 }; 9921 9922 enum kfunc_ptr_arg_type { 9923 KF_ARG_PTR_TO_CTX, 9924 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 9925 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 9926 KF_ARG_PTR_TO_DYNPTR, 9927 KF_ARG_PTR_TO_ITER, 9928 KF_ARG_PTR_TO_LIST_HEAD, 9929 KF_ARG_PTR_TO_LIST_NODE, 9930 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 9931 KF_ARG_PTR_TO_MEM, 9932 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 9933 KF_ARG_PTR_TO_CALLBACK, 9934 KF_ARG_PTR_TO_RB_ROOT, 9935 KF_ARG_PTR_TO_RB_NODE, 9936 }; 9937 9938 enum special_kfunc_type { 9939 KF_bpf_obj_new_impl, 9940 KF_bpf_obj_drop_impl, 9941 KF_bpf_refcount_acquire_impl, 9942 KF_bpf_list_push_front_impl, 9943 KF_bpf_list_push_back_impl, 9944 KF_bpf_list_pop_front, 9945 KF_bpf_list_pop_back, 9946 KF_bpf_cast_to_kern_ctx, 9947 KF_bpf_rdonly_cast, 9948 KF_bpf_rcu_read_lock, 9949 KF_bpf_rcu_read_unlock, 9950 KF_bpf_rbtree_remove, 9951 KF_bpf_rbtree_add_impl, 9952 KF_bpf_rbtree_first, 9953 KF_bpf_dynptr_from_skb, 9954 KF_bpf_dynptr_from_xdp, 9955 KF_bpf_dynptr_slice, 9956 KF_bpf_dynptr_slice_rdwr, 9957 KF_bpf_dynptr_clone, 9958 }; 9959 9960 BTF_SET_START(special_kfunc_set) 9961 BTF_ID(func, bpf_obj_new_impl) 9962 BTF_ID(func, bpf_obj_drop_impl) 9963 BTF_ID(func, bpf_refcount_acquire_impl) 9964 BTF_ID(func, bpf_list_push_front_impl) 9965 BTF_ID(func, bpf_list_push_back_impl) 9966 BTF_ID(func, bpf_list_pop_front) 9967 BTF_ID(func, bpf_list_pop_back) 9968 BTF_ID(func, bpf_cast_to_kern_ctx) 9969 BTF_ID(func, bpf_rdonly_cast) 9970 BTF_ID(func, bpf_rbtree_remove) 9971 BTF_ID(func, bpf_rbtree_add_impl) 9972 BTF_ID(func, bpf_rbtree_first) 9973 BTF_ID(func, bpf_dynptr_from_skb) 9974 BTF_ID(func, bpf_dynptr_from_xdp) 9975 BTF_ID(func, bpf_dynptr_slice) 9976 BTF_ID(func, bpf_dynptr_slice_rdwr) 9977 BTF_ID(func, bpf_dynptr_clone) 9978 BTF_SET_END(special_kfunc_set) 9979 9980 BTF_ID_LIST(special_kfunc_list) 9981 BTF_ID(func, bpf_obj_new_impl) 9982 BTF_ID(func, bpf_obj_drop_impl) 9983 BTF_ID(func, bpf_refcount_acquire_impl) 9984 BTF_ID(func, bpf_list_push_front_impl) 9985 BTF_ID(func, bpf_list_push_back_impl) 9986 BTF_ID(func, bpf_list_pop_front) 9987 BTF_ID(func, bpf_list_pop_back) 9988 BTF_ID(func, bpf_cast_to_kern_ctx) 9989 BTF_ID(func, bpf_rdonly_cast) 9990 BTF_ID(func, bpf_rcu_read_lock) 9991 BTF_ID(func, bpf_rcu_read_unlock) 9992 BTF_ID(func, bpf_rbtree_remove) 9993 BTF_ID(func, bpf_rbtree_add_impl) 9994 BTF_ID(func, bpf_rbtree_first) 9995 BTF_ID(func, bpf_dynptr_from_skb) 9996 BTF_ID(func, bpf_dynptr_from_xdp) 9997 BTF_ID(func, bpf_dynptr_slice) 9998 BTF_ID(func, bpf_dynptr_slice_rdwr) 9999 BTF_ID(func, bpf_dynptr_clone) 10000 10001 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10002 { 10003 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10004 } 10005 10006 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10007 { 10008 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10009 } 10010 10011 static enum kfunc_ptr_arg_type 10012 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10013 struct bpf_kfunc_call_arg_meta *meta, 10014 const struct btf_type *t, const struct btf_type *ref_t, 10015 const char *ref_tname, const struct btf_param *args, 10016 int argno, int nargs) 10017 { 10018 u32 regno = argno + 1; 10019 struct bpf_reg_state *regs = cur_regs(env); 10020 struct bpf_reg_state *reg = ®s[regno]; 10021 bool arg_mem_size = false; 10022 10023 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10024 return KF_ARG_PTR_TO_CTX; 10025 10026 /* In this function, we verify the kfunc's BTF as per the argument type, 10027 * leaving the rest of the verification with respect to the register 10028 * type to our caller. When a set of conditions hold in the BTF type of 10029 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10030 */ 10031 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10032 return KF_ARG_PTR_TO_CTX; 10033 10034 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10035 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10036 10037 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10038 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10039 10040 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10041 return KF_ARG_PTR_TO_DYNPTR; 10042 10043 if (is_kfunc_arg_iter(meta, argno)) 10044 return KF_ARG_PTR_TO_ITER; 10045 10046 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10047 return KF_ARG_PTR_TO_LIST_HEAD; 10048 10049 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10050 return KF_ARG_PTR_TO_LIST_NODE; 10051 10052 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10053 return KF_ARG_PTR_TO_RB_ROOT; 10054 10055 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10056 return KF_ARG_PTR_TO_RB_NODE; 10057 10058 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10059 if (!btf_type_is_struct(ref_t)) { 10060 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10061 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10062 return -EINVAL; 10063 } 10064 return KF_ARG_PTR_TO_BTF_ID; 10065 } 10066 10067 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10068 return KF_ARG_PTR_TO_CALLBACK; 10069 10070 10071 if (argno + 1 < nargs && 10072 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10073 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10074 arg_mem_size = true; 10075 10076 /* This is the catch all argument type of register types supported by 10077 * check_helper_mem_access. However, we only allow when argument type is 10078 * pointer to scalar, or struct composed (recursively) of scalars. When 10079 * arg_mem_size is true, the pointer can be void *. 10080 */ 10081 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10082 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10083 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10084 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10085 return -EINVAL; 10086 } 10087 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10088 } 10089 10090 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10091 struct bpf_reg_state *reg, 10092 const struct btf_type *ref_t, 10093 const char *ref_tname, u32 ref_id, 10094 struct bpf_kfunc_call_arg_meta *meta, 10095 int argno) 10096 { 10097 const struct btf_type *reg_ref_t; 10098 bool strict_type_match = false; 10099 const struct btf *reg_btf; 10100 const char *reg_ref_tname; 10101 u32 reg_ref_id; 10102 10103 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10104 reg_btf = reg->btf; 10105 reg_ref_id = reg->btf_id; 10106 } else { 10107 reg_btf = btf_vmlinux; 10108 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10109 } 10110 10111 /* Enforce strict type matching for calls to kfuncs that are acquiring 10112 * or releasing a reference, or are no-cast aliases. We do _not_ 10113 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10114 * as we want to enable BPF programs to pass types that are bitwise 10115 * equivalent without forcing them to explicitly cast with something 10116 * like bpf_cast_to_kern_ctx(). 10117 * 10118 * For example, say we had a type like the following: 10119 * 10120 * struct bpf_cpumask { 10121 * cpumask_t cpumask; 10122 * refcount_t usage; 10123 * }; 10124 * 10125 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10126 * to a struct cpumask, so it would be safe to pass a struct 10127 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10128 * 10129 * The philosophy here is similar to how we allow scalars of different 10130 * types to be passed to kfuncs as long as the size is the same. The 10131 * only difference here is that we're simply allowing 10132 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10133 * resolve types. 10134 */ 10135 if (is_kfunc_acquire(meta) || 10136 (is_kfunc_release(meta) && reg->ref_obj_id) || 10137 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10138 strict_type_match = true; 10139 10140 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10141 10142 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10143 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10144 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10145 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10146 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10147 btf_type_str(reg_ref_t), reg_ref_tname); 10148 return -EINVAL; 10149 } 10150 return 0; 10151 } 10152 10153 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10154 { 10155 struct bpf_verifier_state *state = env->cur_state; 10156 10157 if (!state->active_lock.ptr) { 10158 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10159 return -EFAULT; 10160 } 10161 10162 if (type_flag(reg->type) & NON_OWN_REF) { 10163 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10164 return -EFAULT; 10165 } 10166 10167 reg->type |= NON_OWN_REF; 10168 return 0; 10169 } 10170 10171 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10172 { 10173 struct bpf_func_state *state, *unused; 10174 struct bpf_reg_state *reg; 10175 int i; 10176 10177 state = cur_func(env); 10178 10179 if (!ref_obj_id) { 10180 verbose(env, "verifier internal error: ref_obj_id is zero for " 10181 "owning -> non-owning conversion\n"); 10182 return -EFAULT; 10183 } 10184 10185 for (i = 0; i < state->acquired_refs; i++) { 10186 if (state->refs[i].id != ref_obj_id) 10187 continue; 10188 10189 /* Clear ref_obj_id here so release_reference doesn't clobber 10190 * the whole reg 10191 */ 10192 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10193 if (reg->ref_obj_id == ref_obj_id) { 10194 reg->ref_obj_id = 0; 10195 ref_set_non_owning(env, reg); 10196 } 10197 })); 10198 return 0; 10199 } 10200 10201 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10202 return -EFAULT; 10203 } 10204 10205 /* Implementation details: 10206 * 10207 * Each register points to some region of memory, which we define as an 10208 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10209 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10210 * allocation. The lock and the data it protects are colocated in the same 10211 * memory region. 10212 * 10213 * Hence, everytime a register holds a pointer value pointing to such 10214 * allocation, the verifier preserves a unique reg->id for it. 10215 * 10216 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10217 * bpf_spin_lock is called. 10218 * 10219 * To enable this, lock state in the verifier captures two values: 10220 * active_lock.ptr = Register's type specific pointer 10221 * active_lock.id = A unique ID for each register pointer value 10222 * 10223 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10224 * supported register types. 10225 * 10226 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10227 * allocated objects is the reg->btf pointer. 10228 * 10229 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10230 * can establish the provenance of the map value statically for each distinct 10231 * lookup into such maps. They always contain a single map value hence unique 10232 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10233 * 10234 * So, in case of global variables, they use array maps with max_entries = 1, 10235 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10236 * into the same map value as max_entries is 1, as described above). 10237 * 10238 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10239 * outer map pointer (in verifier context), but each lookup into an inner map 10240 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10241 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10242 * will get different reg->id assigned to each lookup, hence different 10243 * active_lock.id. 10244 * 10245 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10246 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10247 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10248 */ 10249 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10250 { 10251 void *ptr; 10252 u32 id; 10253 10254 switch ((int)reg->type) { 10255 case PTR_TO_MAP_VALUE: 10256 ptr = reg->map_ptr; 10257 break; 10258 case PTR_TO_BTF_ID | MEM_ALLOC: 10259 ptr = reg->btf; 10260 break; 10261 default: 10262 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10263 return -EFAULT; 10264 } 10265 id = reg->id; 10266 10267 if (!env->cur_state->active_lock.ptr) 10268 return -EINVAL; 10269 if (env->cur_state->active_lock.ptr != ptr || 10270 env->cur_state->active_lock.id != id) { 10271 verbose(env, "held lock and object are not in the same allocation\n"); 10272 return -EINVAL; 10273 } 10274 return 0; 10275 } 10276 10277 static bool is_bpf_list_api_kfunc(u32 btf_id) 10278 { 10279 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10280 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10281 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10282 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10283 } 10284 10285 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10286 { 10287 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10288 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10289 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10290 } 10291 10292 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10293 { 10294 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10295 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10296 } 10297 10298 static bool is_callback_calling_kfunc(u32 btf_id) 10299 { 10300 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10301 } 10302 10303 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10304 { 10305 return is_bpf_rbtree_api_kfunc(btf_id); 10306 } 10307 10308 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10309 enum btf_field_type head_field_type, 10310 u32 kfunc_btf_id) 10311 { 10312 bool ret; 10313 10314 switch (head_field_type) { 10315 case BPF_LIST_HEAD: 10316 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10317 break; 10318 case BPF_RB_ROOT: 10319 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10320 break; 10321 default: 10322 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10323 btf_field_type_name(head_field_type)); 10324 return false; 10325 } 10326 10327 if (!ret) 10328 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10329 btf_field_type_name(head_field_type)); 10330 return ret; 10331 } 10332 10333 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10334 enum btf_field_type node_field_type, 10335 u32 kfunc_btf_id) 10336 { 10337 bool ret; 10338 10339 switch (node_field_type) { 10340 case BPF_LIST_NODE: 10341 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10342 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10343 break; 10344 case BPF_RB_NODE: 10345 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10346 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10347 break; 10348 default: 10349 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10350 btf_field_type_name(node_field_type)); 10351 return false; 10352 } 10353 10354 if (!ret) 10355 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10356 btf_field_type_name(node_field_type)); 10357 return ret; 10358 } 10359 10360 static int 10361 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10362 struct bpf_reg_state *reg, u32 regno, 10363 struct bpf_kfunc_call_arg_meta *meta, 10364 enum btf_field_type head_field_type, 10365 struct btf_field **head_field) 10366 { 10367 const char *head_type_name; 10368 struct btf_field *field; 10369 struct btf_record *rec; 10370 u32 head_off; 10371 10372 if (meta->btf != btf_vmlinux) { 10373 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10374 return -EFAULT; 10375 } 10376 10377 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10378 return -EFAULT; 10379 10380 head_type_name = btf_field_type_name(head_field_type); 10381 if (!tnum_is_const(reg->var_off)) { 10382 verbose(env, 10383 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10384 regno, head_type_name); 10385 return -EINVAL; 10386 } 10387 10388 rec = reg_btf_record(reg); 10389 head_off = reg->off + reg->var_off.value; 10390 field = btf_record_find(rec, head_off, head_field_type); 10391 if (!field) { 10392 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10393 return -EINVAL; 10394 } 10395 10396 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10397 if (check_reg_allocation_locked(env, reg)) { 10398 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10399 rec->spin_lock_off, head_type_name); 10400 return -EINVAL; 10401 } 10402 10403 if (*head_field) { 10404 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10405 return -EFAULT; 10406 } 10407 *head_field = field; 10408 return 0; 10409 } 10410 10411 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10412 struct bpf_reg_state *reg, u32 regno, 10413 struct bpf_kfunc_call_arg_meta *meta) 10414 { 10415 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10416 &meta->arg_list_head.field); 10417 } 10418 10419 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10420 struct bpf_reg_state *reg, u32 regno, 10421 struct bpf_kfunc_call_arg_meta *meta) 10422 { 10423 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10424 &meta->arg_rbtree_root.field); 10425 } 10426 10427 static int 10428 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10429 struct bpf_reg_state *reg, u32 regno, 10430 struct bpf_kfunc_call_arg_meta *meta, 10431 enum btf_field_type head_field_type, 10432 enum btf_field_type node_field_type, 10433 struct btf_field **node_field) 10434 { 10435 const char *node_type_name; 10436 const struct btf_type *et, *t; 10437 struct btf_field *field; 10438 u32 node_off; 10439 10440 if (meta->btf != btf_vmlinux) { 10441 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10442 return -EFAULT; 10443 } 10444 10445 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10446 return -EFAULT; 10447 10448 node_type_name = btf_field_type_name(node_field_type); 10449 if (!tnum_is_const(reg->var_off)) { 10450 verbose(env, 10451 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10452 regno, node_type_name); 10453 return -EINVAL; 10454 } 10455 10456 node_off = reg->off + reg->var_off.value; 10457 field = reg_find_field_offset(reg, node_off, node_field_type); 10458 if (!field || field->offset != node_off) { 10459 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10460 return -EINVAL; 10461 } 10462 10463 field = *node_field; 10464 10465 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10466 t = btf_type_by_id(reg->btf, reg->btf_id); 10467 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10468 field->graph_root.value_btf_id, true)) { 10469 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10470 "in struct %s, but arg is at offset=%d in struct %s\n", 10471 btf_field_type_name(head_field_type), 10472 btf_field_type_name(node_field_type), 10473 field->graph_root.node_offset, 10474 btf_name_by_offset(field->graph_root.btf, et->name_off), 10475 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10476 return -EINVAL; 10477 } 10478 10479 if (node_off != field->graph_root.node_offset) { 10480 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10481 node_off, btf_field_type_name(node_field_type), 10482 field->graph_root.node_offset, 10483 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10484 return -EINVAL; 10485 } 10486 10487 return 0; 10488 } 10489 10490 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10491 struct bpf_reg_state *reg, u32 regno, 10492 struct bpf_kfunc_call_arg_meta *meta) 10493 { 10494 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10495 BPF_LIST_HEAD, BPF_LIST_NODE, 10496 &meta->arg_list_head.field); 10497 } 10498 10499 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10500 struct bpf_reg_state *reg, u32 regno, 10501 struct bpf_kfunc_call_arg_meta *meta) 10502 { 10503 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10504 BPF_RB_ROOT, BPF_RB_NODE, 10505 &meta->arg_rbtree_root.field); 10506 } 10507 10508 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10509 int insn_idx) 10510 { 10511 const char *func_name = meta->func_name, *ref_tname; 10512 const struct btf *btf = meta->btf; 10513 const struct btf_param *args; 10514 struct btf_record *rec; 10515 u32 i, nargs; 10516 int ret; 10517 10518 args = (const struct btf_param *)(meta->func_proto + 1); 10519 nargs = btf_type_vlen(meta->func_proto); 10520 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10521 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10522 MAX_BPF_FUNC_REG_ARGS); 10523 return -EINVAL; 10524 } 10525 10526 /* Check that BTF function arguments match actual types that the 10527 * verifier sees. 10528 */ 10529 for (i = 0; i < nargs; i++) { 10530 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10531 const struct btf_type *t, *ref_t, *resolve_ret; 10532 enum bpf_arg_type arg_type = ARG_DONTCARE; 10533 u32 regno = i + 1, ref_id, type_size; 10534 bool is_ret_buf_sz = false; 10535 int kf_arg_type; 10536 10537 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10538 10539 if (is_kfunc_arg_ignore(btf, &args[i])) 10540 continue; 10541 10542 if (btf_type_is_scalar(t)) { 10543 if (reg->type != SCALAR_VALUE) { 10544 verbose(env, "R%d is not a scalar\n", regno); 10545 return -EINVAL; 10546 } 10547 10548 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10549 if (meta->arg_constant.found) { 10550 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10551 return -EFAULT; 10552 } 10553 if (!tnum_is_const(reg->var_off)) { 10554 verbose(env, "R%d must be a known constant\n", regno); 10555 return -EINVAL; 10556 } 10557 ret = mark_chain_precision(env, regno); 10558 if (ret < 0) 10559 return ret; 10560 meta->arg_constant.found = true; 10561 meta->arg_constant.value = reg->var_off.value; 10562 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10563 meta->r0_rdonly = true; 10564 is_ret_buf_sz = true; 10565 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10566 is_ret_buf_sz = true; 10567 } 10568 10569 if (is_ret_buf_sz) { 10570 if (meta->r0_size) { 10571 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10572 return -EINVAL; 10573 } 10574 10575 if (!tnum_is_const(reg->var_off)) { 10576 verbose(env, "R%d is not a const\n", regno); 10577 return -EINVAL; 10578 } 10579 10580 meta->r0_size = reg->var_off.value; 10581 ret = mark_chain_precision(env, regno); 10582 if (ret) 10583 return ret; 10584 } 10585 continue; 10586 } 10587 10588 if (!btf_type_is_ptr(t)) { 10589 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10590 return -EINVAL; 10591 } 10592 10593 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10594 (register_is_null(reg) || type_may_be_null(reg->type))) { 10595 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10596 return -EACCES; 10597 } 10598 10599 if (reg->ref_obj_id) { 10600 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10601 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10602 regno, reg->ref_obj_id, 10603 meta->ref_obj_id); 10604 return -EFAULT; 10605 } 10606 meta->ref_obj_id = reg->ref_obj_id; 10607 if (is_kfunc_release(meta)) 10608 meta->release_regno = regno; 10609 } 10610 10611 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10612 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10613 10614 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10615 if (kf_arg_type < 0) 10616 return kf_arg_type; 10617 10618 switch (kf_arg_type) { 10619 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10620 case KF_ARG_PTR_TO_BTF_ID: 10621 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10622 break; 10623 10624 if (!is_trusted_reg(reg)) { 10625 if (!is_kfunc_rcu(meta)) { 10626 verbose(env, "R%d must be referenced or trusted\n", regno); 10627 return -EINVAL; 10628 } 10629 if (!is_rcu_reg(reg)) { 10630 verbose(env, "R%d must be a rcu pointer\n", regno); 10631 return -EINVAL; 10632 } 10633 } 10634 10635 fallthrough; 10636 case KF_ARG_PTR_TO_CTX: 10637 /* Trusted arguments have the same offset checks as release arguments */ 10638 arg_type |= OBJ_RELEASE; 10639 break; 10640 case KF_ARG_PTR_TO_DYNPTR: 10641 case KF_ARG_PTR_TO_ITER: 10642 case KF_ARG_PTR_TO_LIST_HEAD: 10643 case KF_ARG_PTR_TO_LIST_NODE: 10644 case KF_ARG_PTR_TO_RB_ROOT: 10645 case KF_ARG_PTR_TO_RB_NODE: 10646 case KF_ARG_PTR_TO_MEM: 10647 case KF_ARG_PTR_TO_MEM_SIZE: 10648 case KF_ARG_PTR_TO_CALLBACK: 10649 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10650 /* Trusted by default */ 10651 break; 10652 default: 10653 WARN_ON_ONCE(1); 10654 return -EFAULT; 10655 } 10656 10657 if (is_kfunc_release(meta) && reg->ref_obj_id) 10658 arg_type |= OBJ_RELEASE; 10659 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10660 if (ret < 0) 10661 return ret; 10662 10663 switch (kf_arg_type) { 10664 case KF_ARG_PTR_TO_CTX: 10665 if (reg->type != PTR_TO_CTX) { 10666 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10667 return -EINVAL; 10668 } 10669 10670 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10671 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 10672 if (ret < 0) 10673 return -EINVAL; 10674 meta->ret_btf_id = ret; 10675 } 10676 break; 10677 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10678 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10679 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10680 return -EINVAL; 10681 } 10682 if (!reg->ref_obj_id) { 10683 verbose(env, "allocated object must be referenced\n"); 10684 return -EINVAL; 10685 } 10686 if (meta->btf == btf_vmlinux && 10687 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 10688 meta->arg_btf = reg->btf; 10689 meta->arg_btf_id = reg->btf_id; 10690 } 10691 break; 10692 case KF_ARG_PTR_TO_DYNPTR: 10693 { 10694 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 10695 int clone_ref_obj_id = 0; 10696 10697 if (reg->type != PTR_TO_STACK && 10698 reg->type != CONST_PTR_TO_DYNPTR) { 10699 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 10700 return -EINVAL; 10701 } 10702 10703 if (reg->type == CONST_PTR_TO_DYNPTR) 10704 dynptr_arg_type |= MEM_RDONLY; 10705 10706 if (is_kfunc_arg_uninit(btf, &args[i])) 10707 dynptr_arg_type |= MEM_UNINIT; 10708 10709 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 10710 dynptr_arg_type |= DYNPTR_TYPE_SKB; 10711 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 10712 dynptr_arg_type |= DYNPTR_TYPE_XDP; 10713 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 10714 (dynptr_arg_type & MEM_UNINIT)) { 10715 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 10716 10717 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 10718 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 10719 return -EFAULT; 10720 } 10721 10722 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 10723 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 10724 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 10725 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 10726 return -EFAULT; 10727 } 10728 } 10729 10730 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 10731 if (ret < 0) 10732 return ret; 10733 10734 if (!(dynptr_arg_type & MEM_UNINIT)) { 10735 int id = dynptr_id(env, reg); 10736 10737 if (id < 0) { 10738 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10739 return id; 10740 } 10741 meta->initialized_dynptr.id = id; 10742 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 10743 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 10744 } 10745 10746 break; 10747 } 10748 case KF_ARG_PTR_TO_ITER: 10749 ret = process_iter_arg(env, regno, insn_idx, meta); 10750 if (ret < 0) 10751 return ret; 10752 break; 10753 case KF_ARG_PTR_TO_LIST_HEAD: 10754 if (reg->type != PTR_TO_MAP_VALUE && 10755 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10756 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10757 return -EINVAL; 10758 } 10759 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10760 verbose(env, "allocated object must be referenced\n"); 10761 return -EINVAL; 10762 } 10763 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 10764 if (ret < 0) 10765 return ret; 10766 break; 10767 case KF_ARG_PTR_TO_RB_ROOT: 10768 if (reg->type != PTR_TO_MAP_VALUE && 10769 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10770 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10771 return -EINVAL; 10772 } 10773 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10774 verbose(env, "allocated object must be referenced\n"); 10775 return -EINVAL; 10776 } 10777 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 10778 if (ret < 0) 10779 return ret; 10780 break; 10781 case KF_ARG_PTR_TO_LIST_NODE: 10782 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10783 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10784 return -EINVAL; 10785 } 10786 if (!reg->ref_obj_id) { 10787 verbose(env, "allocated object must be referenced\n"); 10788 return -EINVAL; 10789 } 10790 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 10791 if (ret < 0) 10792 return ret; 10793 break; 10794 case KF_ARG_PTR_TO_RB_NODE: 10795 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 10796 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 10797 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 10798 return -EINVAL; 10799 } 10800 if (in_rbtree_lock_required_cb(env)) { 10801 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 10802 return -EINVAL; 10803 } 10804 } else { 10805 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10806 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10807 return -EINVAL; 10808 } 10809 if (!reg->ref_obj_id) { 10810 verbose(env, "allocated object must be referenced\n"); 10811 return -EINVAL; 10812 } 10813 } 10814 10815 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 10816 if (ret < 0) 10817 return ret; 10818 break; 10819 case KF_ARG_PTR_TO_BTF_ID: 10820 /* Only base_type is checked, further checks are done here */ 10821 if ((base_type(reg->type) != PTR_TO_BTF_ID || 10822 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 10823 !reg2btf_ids[base_type(reg->type)]) { 10824 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 10825 verbose(env, "expected %s or socket\n", 10826 reg_type_str(env, base_type(reg->type) | 10827 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 10828 return -EINVAL; 10829 } 10830 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 10831 if (ret < 0) 10832 return ret; 10833 break; 10834 case KF_ARG_PTR_TO_MEM: 10835 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 10836 if (IS_ERR(resolve_ret)) { 10837 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 10838 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 10839 return -EINVAL; 10840 } 10841 ret = check_mem_reg(env, reg, regno, type_size); 10842 if (ret < 0) 10843 return ret; 10844 break; 10845 case KF_ARG_PTR_TO_MEM_SIZE: 10846 { 10847 struct bpf_reg_state *buff_reg = ®s[regno]; 10848 const struct btf_param *buff_arg = &args[i]; 10849 struct bpf_reg_state *size_reg = ®s[regno + 1]; 10850 const struct btf_param *size_arg = &args[i + 1]; 10851 10852 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 10853 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 10854 if (ret < 0) { 10855 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 10856 return ret; 10857 } 10858 } 10859 10860 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 10861 if (meta->arg_constant.found) { 10862 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10863 return -EFAULT; 10864 } 10865 if (!tnum_is_const(size_reg->var_off)) { 10866 verbose(env, "R%d must be a known constant\n", regno + 1); 10867 return -EINVAL; 10868 } 10869 meta->arg_constant.found = true; 10870 meta->arg_constant.value = size_reg->var_off.value; 10871 } 10872 10873 /* Skip next '__sz' or '__szk' argument */ 10874 i++; 10875 break; 10876 } 10877 case KF_ARG_PTR_TO_CALLBACK: 10878 meta->subprogno = reg->subprogno; 10879 break; 10880 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10881 if (!type_is_ptr_alloc_obj(reg->type) && !type_is_non_owning_ref(reg->type)) { 10882 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 10883 return -EINVAL; 10884 } 10885 10886 rec = reg_btf_record(reg); 10887 if (!rec) { 10888 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 10889 return -EFAULT; 10890 } 10891 10892 if (rec->refcount_off < 0) { 10893 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 10894 return -EINVAL; 10895 } 10896 if (rec->refcount_off >= 0) { 10897 verbose(env, "bpf_refcount_acquire calls are disabled for now\n"); 10898 return -EINVAL; 10899 } 10900 meta->arg_btf = reg->btf; 10901 meta->arg_btf_id = reg->btf_id; 10902 break; 10903 } 10904 } 10905 10906 if (is_kfunc_release(meta) && !meta->release_regno) { 10907 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 10908 func_name); 10909 return -EINVAL; 10910 } 10911 10912 return 0; 10913 } 10914 10915 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 10916 struct bpf_insn *insn, 10917 struct bpf_kfunc_call_arg_meta *meta, 10918 const char **kfunc_name) 10919 { 10920 const struct btf_type *func, *func_proto; 10921 u32 func_id, *kfunc_flags; 10922 const char *func_name; 10923 struct btf *desc_btf; 10924 10925 if (kfunc_name) 10926 *kfunc_name = NULL; 10927 10928 if (!insn->imm) 10929 return -EINVAL; 10930 10931 desc_btf = find_kfunc_desc_btf(env, insn->off); 10932 if (IS_ERR(desc_btf)) 10933 return PTR_ERR(desc_btf); 10934 10935 func_id = insn->imm; 10936 func = btf_type_by_id(desc_btf, func_id); 10937 func_name = btf_name_by_offset(desc_btf, func->name_off); 10938 if (kfunc_name) 10939 *kfunc_name = func_name; 10940 func_proto = btf_type_by_id(desc_btf, func->type); 10941 10942 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 10943 if (!kfunc_flags) { 10944 return -EACCES; 10945 } 10946 10947 memset(meta, 0, sizeof(*meta)); 10948 meta->btf = desc_btf; 10949 meta->func_id = func_id; 10950 meta->kfunc_flags = *kfunc_flags; 10951 meta->func_proto = func_proto; 10952 meta->func_name = func_name; 10953 10954 return 0; 10955 } 10956 10957 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10958 int *insn_idx_p) 10959 { 10960 const struct btf_type *t, *ptr_type; 10961 u32 i, nargs, ptr_type_id, release_ref_obj_id; 10962 struct bpf_reg_state *regs = cur_regs(env); 10963 const char *func_name, *ptr_type_name; 10964 bool sleepable, rcu_lock, rcu_unlock; 10965 struct bpf_kfunc_call_arg_meta meta; 10966 struct bpf_insn_aux_data *insn_aux; 10967 int err, insn_idx = *insn_idx_p; 10968 const struct btf_param *args; 10969 const struct btf_type *ret_t; 10970 struct btf *desc_btf; 10971 10972 /* skip for now, but return error when we find this in fixup_kfunc_call */ 10973 if (!insn->imm) 10974 return 0; 10975 10976 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 10977 if (err == -EACCES && func_name) 10978 verbose(env, "calling kernel function %s is not allowed\n", func_name); 10979 if (err) 10980 return err; 10981 desc_btf = meta.btf; 10982 insn_aux = &env->insn_aux_data[insn_idx]; 10983 10984 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 10985 10986 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 10987 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 10988 return -EACCES; 10989 } 10990 10991 sleepable = is_kfunc_sleepable(&meta); 10992 if (sleepable && !env->prog->aux->sleepable) { 10993 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 10994 return -EACCES; 10995 } 10996 10997 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 10998 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 10999 11000 if (env->cur_state->active_rcu_lock) { 11001 struct bpf_func_state *state; 11002 struct bpf_reg_state *reg; 11003 11004 if (rcu_lock) { 11005 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11006 return -EINVAL; 11007 } else if (rcu_unlock) { 11008 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11009 if (reg->type & MEM_RCU) { 11010 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11011 reg->type |= PTR_UNTRUSTED; 11012 } 11013 })); 11014 env->cur_state->active_rcu_lock = false; 11015 } else if (sleepable) { 11016 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11017 return -EACCES; 11018 } 11019 } else if (rcu_lock) { 11020 env->cur_state->active_rcu_lock = true; 11021 } else if (rcu_unlock) { 11022 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11023 return -EINVAL; 11024 } 11025 11026 /* Check the arguments */ 11027 err = check_kfunc_args(env, &meta, insn_idx); 11028 if (err < 0) 11029 return err; 11030 /* In case of release function, we get register number of refcounted 11031 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11032 */ 11033 if (meta.release_regno) { 11034 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11035 if (err) { 11036 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11037 func_name, meta.func_id); 11038 return err; 11039 } 11040 } 11041 11042 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11043 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11044 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11045 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11046 insn_aux->insert_off = regs[BPF_REG_2].off; 11047 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11048 if (err) { 11049 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11050 func_name, meta.func_id); 11051 return err; 11052 } 11053 11054 err = release_reference(env, release_ref_obj_id); 11055 if (err) { 11056 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11057 func_name, meta.func_id); 11058 return err; 11059 } 11060 } 11061 11062 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11063 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11064 set_rbtree_add_callback_state); 11065 if (err) { 11066 verbose(env, "kfunc %s#%d failed callback verification\n", 11067 func_name, meta.func_id); 11068 return err; 11069 } 11070 } 11071 11072 for (i = 0; i < CALLER_SAVED_REGS; i++) 11073 mark_reg_not_init(env, regs, caller_saved[i]); 11074 11075 /* Check return type */ 11076 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11077 11078 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11079 /* Only exception is bpf_obj_new_impl */ 11080 if (meta.btf != btf_vmlinux || 11081 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11082 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11083 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11084 return -EINVAL; 11085 } 11086 } 11087 11088 if (btf_type_is_scalar(t)) { 11089 mark_reg_unknown(env, regs, BPF_REG_0); 11090 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11091 } else if (btf_type_is_ptr(t)) { 11092 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11093 11094 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11095 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11096 struct btf *ret_btf; 11097 u32 ret_btf_id; 11098 11099 if (unlikely(!bpf_global_ma_set)) 11100 return -ENOMEM; 11101 11102 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11103 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11104 return -EINVAL; 11105 } 11106 11107 ret_btf = env->prog->aux->btf; 11108 ret_btf_id = meta.arg_constant.value; 11109 11110 /* This may be NULL due to user not supplying a BTF */ 11111 if (!ret_btf) { 11112 verbose(env, "bpf_obj_new requires prog BTF\n"); 11113 return -EINVAL; 11114 } 11115 11116 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11117 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11118 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11119 return -EINVAL; 11120 } 11121 11122 mark_reg_known_zero(env, regs, BPF_REG_0); 11123 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11124 regs[BPF_REG_0].btf = ret_btf; 11125 regs[BPF_REG_0].btf_id = ret_btf_id; 11126 11127 insn_aux->obj_new_size = ret_t->size; 11128 insn_aux->kptr_struct_meta = 11129 btf_find_struct_meta(ret_btf, ret_btf_id); 11130 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11131 mark_reg_known_zero(env, regs, BPF_REG_0); 11132 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11133 regs[BPF_REG_0].btf = meta.arg_btf; 11134 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11135 11136 insn_aux->kptr_struct_meta = 11137 btf_find_struct_meta(meta.arg_btf, 11138 meta.arg_btf_id); 11139 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11140 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11141 struct btf_field *field = meta.arg_list_head.field; 11142 11143 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11144 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11145 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11146 struct btf_field *field = meta.arg_rbtree_root.field; 11147 11148 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11149 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11150 mark_reg_known_zero(env, regs, BPF_REG_0); 11151 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11152 regs[BPF_REG_0].btf = desc_btf; 11153 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11154 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11155 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11156 if (!ret_t || !btf_type_is_struct(ret_t)) { 11157 verbose(env, 11158 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11159 return -EINVAL; 11160 } 11161 11162 mark_reg_known_zero(env, regs, BPF_REG_0); 11163 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11164 regs[BPF_REG_0].btf = desc_btf; 11165 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11166 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11167 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11168 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11169 11170 mark_reg_known_zero(env, regs, BPF_REG_0); 11171 11172 if (!meta.arg_constant.found) { 11173 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11174 return -EFAULT; 11175 } 11176 11177 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11178 11179 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11180 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11181 11182 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11183 regs[BPF_REG_0].type |= MEM_RDONLY; 11184 } else { 11185 /* this will set env->seen_direct_write to true */ 11186 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11187 verbose(env, "the prog does not allow writes to packet data\n"); 11188 return -EINVAL; 11189 } 11190 } 11191 11192 if (!meta.initialized_dynptr.id) { 11193 verbose(env, "verifier internal error: no dynptr id\n"); 11194 return -EFAULT; 11195 } 11196 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11197 11198 /* we don't need to set BPF_REG_0's ref obj id 11199 * because packet slices are not refcounted (see 11200 * dynptr_type_refcounted) 11201 */ 11202 } else { 11203 verbose(env, "kernel function %s unhandled dynamic return type\n", 11204 meta.func_name); 11205 return -EFAULT; 11206 } 11207 } else if (!__btf_type_is_struct(ptr_type)) { 11208 if (!meta.r0_size) { 11209 __u32 sz; 11210 11211 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11212 meta.r0_size = sz; 11213 meta.r0_rdonly = true; 11214 } 11215 } 11216 if (!meta.r0_size) { 11217 ptr_type_name = btf_name_by_offset(desc_btf, 11218 ptr_type->name_off); 11219 verbose(env, 11220 "kernel function %s returns pointer type %s %s is not supported\n", 11221 func_name, 11222 btf_type_str(ptr_type), 11223 ptr_type_name); 11224 return -EINVAL; 11225 } 11226 11227 mark_reg_known_zero(env, regs, BPF_REG_0); 11228 regs[BPF_REG_0].type = PTR_TO_MEM; 11229 regs[BPF_REG_0].mem_size = meta.r0_size; 11230 11231 if (meta.r0_rdonly) 11232 regs[BPF_REG_0].type |= MEM_RDONLY; 11233 11234 /* Ensures we don't access the memory after a release_reference() */ 11235 if (meta.ref_obj_id) 11236 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11237 } else { 11238 mark_reg_known_zero(env, regs, BPF_REG_0); 11239 regs[BPF_REG_0].btf = desc_btf; 11240 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11241 regs[BPF_REG_0].btf_id = ptr_type_id; 11242 } 11243 11244 if (is_kfunc_ret_null(&meta)) { 11245 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11246 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11247 regs[BPF_REG_0].id = ++env->id_gen; 11248 } 11249 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11250 if (is_kfunc_acquire(&meta)) { 11251 int id = acquire_reference_state(env, insn_idx); 11252 11253 if (id < 0) 11254 return id; 11255 if (is_kfunc_ret_null(&meta)) 11256 regs[BPF_REG_0].id = id; 11257 regs[BPF_REG_0].ref_obj_id = id; 11258 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11259 ref_set_non_owning(env, ®s[BPF_REG_0]); 11260 } 11261 11262 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11263 regs[BPF_REG_0].id = ++env->id_gen; 11264 } else if (btf_type_is_void(t)) { 11265 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11266 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11267 insn_aux->kptr_struct_meta = 11268 btf_find_struct_meta(meta.arg_btf, 11269 meta.arg_btf_id); 11270 } 11271 } 11272 } 11273 11274 nargs = btf_type_vlen(meta.func_proto); 11275 args = (const struct btf_param *)(meta.func_proto + 1); 11276 for (i = 0; i < nargs; i++) { 11277 u32 regno = i + 1; 11278 11279 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11280 if (btf_type_is_ptr(t)) 11281 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11282 else 11283 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11284 mark_btf_func_reg_size(env, regno, t->size); 11285 } 11286 11287 if (is_iter_next_kfunc(&meta)) { 11288 err = process_iter_next_call(env, insn_idx, &meta); 11289 if (err) 11290 return err; 11291 } 11292 11293 return 0; 11294 } 11295 11296 static bool signed_add_overflows(s64 a, s64 b) 11297 { 11298 /* Do the add in u64, where overflow is well-defined */ 11299 s64 res = (s64)((u64)a + (u64)b); 11300 11301 if (b < 0) 11302 return res > a; 11303 return res < a; 11304 } 11305 11306 static bool signed_add32_overflows(s32 a, s32 b) 11307 { 11308 /* Do the add in u32, where overflow is well-defined */ 11309 s32 res = (s32)((u32)a + (u32)b); 11310 11311 if (b < 0) 11312 return res > a; 11313 return res < a; 11314 } 11315 11316 static bool signed_sub_overflows(s64 a, s64 b) 11317 { 11318 /* Do the sub in u64, where overflow is well-defined */ 11319 s64 res = (s64)((u64)a - (u64)b); 11320 11321 if (b < 0) 11322 return res < a; 11323 return res > a; 11324 } 11325 11326 static bool signed_sub32_overflows(s32 a, s32 b) 11327 { 11328 /* Do the sub in u32, where overflow is well-defined */ 11329 s32 res = (s32)((u32)a - (u32)b); 11330 11331 if (b < 0) 11332 return res < a; 11333 return res > a; 11334 } 11335 11336 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11337 const struct bpf_reg_state *reg, 11338 enum bpf_reg_type type) 11339 { 11340 bool known = tnum_is_const(reg->var_off); 11341 s64 val = reg->var_off.value; 11342 s64 smin = reg->smin_value; 11343 11344 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11345 verbose(env, "math between %s pointer and %lld is not allowed\n", 11346 reg_type_str(env, type), val); 11347 return false; 11348 } 11349 11350 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11351 verbose(env, "%s pointer offset %d is not allowed\n", 11352 reg_type_str(env, type), reg->off); 11353 return false; 11354 } 11355 11356 if (smin == S64_MIN) { 11357 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11358 reg_type_str(env, type)); 11359 return false; 11360 } 11361 11362 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11363 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11364 smin, reg_type_str(env, type)); 11365 return false; 11366 } 11367 11368 return true; 11369 } 11370 11371 enum { 11372 REASON_BOUNDS = -1, 11373 REASON_TYPE = -2, 11374 REASON_PATHS = -3, 11375 REASON_LIMIT = -4, 11376 REASON_STACK = -5, 11377 }; 11378 11379 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11380 u32 *alu_limit, bool mask_to_left) 11381 { 11382 u32 max = 0, ptr_limit = 0; 11383 11384 switch (ptr_reg->type) { 11385 case PTR_TO_STACK: 11386 /* Offset 0 is out-of-bounds, but acceptable start for the 11387 * left direction, see BPF_REG_FP. Also, unknown scalar 11388 * offset where we would need to deal with min/max bounds is 11389 * currently prohibited for unprivileged. 11390 */ 11391 max = MAX_BPF_STACK + mask_to_left; 11392 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11393 break; 11394 case PTR_TO_MAP_VALUE: 11395 max = ptr_reg->map_ptr->value_size; 11396 ptr_limit = (mask_to_left ? 11397 ptr_reg->smin_value : 11398 ptr_reg->umax_value) + ptr_reg->off; 11399 break; 11400 default: 11401 return REASON_TYPE; 11402 } 11403 11404 if (ptr_limit >= max) 11405 return REASON_LIMIT; 11406 *alu_limit = ptr_limit; 11407 return 0; 11408 } 11409 11410 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11411 const struct bpf_insn *insn) 11412 { 11413 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11414 } 11415 11416 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11417 u32 alu_state, u32 alu_limit) 11418 { 11419 /* If we arrived here from different branches with different 11420 * state or limits to sanitize, then this won't work. 11421 */ 11422 if (aux->alu_state && 11423 (aux->alu_state != alu_state || 11424 aux->alu_limit != alu_limit)) 11425 return REASON_PATHS; 11426 11427 /* Corresponding fixup done in do_misc_fixups(). */ 11428 aux->alu_state = alu_state; 11429 aux->alu_limit = alu_limit; 11430 return 0; 11431 } 11432 11433 static int sanitize_val_alu(struct bpf_verifier_env *env, 11434 struct bpf_insn *insn) 11435 { 11436 struct bpf_insn_aux_data *aux = cur_aux(env); 11437 11438 if (can_skip_alu_sanitation(env, insn)) 11439 return 0; 11440 11441 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11442 } 11443 11444 static bool sanitize_needed(u8 opcode) 11445 { 11446 return opcode == BPF_ADD || opcode == BPF_SUB; 11447 } 11448 11449 struct bpf_sanitize_info { 11450 struct bpf_insn_aux_data aux; 11451 bool mask_to_left; 11452 }; 11453 11454 static struct bpf_verifier_state * 11455 sanitize_speculative_path(struct bpf_verifier_env *env, 11456 const struct bpf_insn *insn, 11457 u32 next_idx, u32 curr_idx) 11458 { 11459 struct bpf_verifier_state *branch; 11460 struct bpf_reg_state *regs; 11461 11462 branch = push_stack(env, next_idx, curr_idx, true); 11463 if (branch && insn) { 11464 regs = branch->frame[branch->curframe]->regs; 11465 if (BPF_SRC(insn->code) == BPF_K) { 11466 mark_reg_unknown(env, regs, insn->dst_reg); 11467 } else if (BPF_SRC(insn->code) == BPF_X) { 11468 mark_reg_unknown(env, regs, insn->dst_reg); 11469 mark_reg_unknown(env, regs, insn->src_reg); 11470 } 11471 } 11472 return branch; 11473 } 11474 11475 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11476 struct bpf_insn *insn, 11477 const struct bpf_reg_state *ptr_reg, 11478 const struct bpf_reg_state *off_reg, 11479 struct bpf_reg_state *dst_reg, 11480 struct bpf_sanitize_info *info, 11481 const bool commit_window) 11482 { 11483 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11484 struct bpf_verifier_state *vstate = env->cur_state; 11485 bool off_is_imm = tnum_is_const(off_reg->var_off); 11486 bool off_is_neg = off_reg->smin_value < 0; 11487 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11488 u8 opcode = BPF_OP(insn->code); 11489 u32 alu_state, alu_limit; 11490 struct bpf_reg_state tmp; 11491 bool ret; 11492 int err; 11493 11494 if (can_skip_alu_sanitation(env, insn)) 11495 return 0; 11496 11497 /* We already marked aux for masking from non-speculative 11498 * paths, thus we got here in the first place. We only care 11499 * to explore bad access from here. 11500 */ 11501 if (vstate->speculative) 11502 goto do_sim; 11503 11504 if (!commit_window) { 11505 if (!tnum_is_const(off_reg->var_off) && 11506 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11507 return REASON_BOUNDS; 11508 11509 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11510 (opcode == BPF_SUB && !off_is_neg); 11511 } 11512 11513 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11514 if (err < 0) 11515 return err; 11516 11517 if (commit_window) { 11518 /* In commit phase we narrow the masking window based on 11519 * the observed pointer move after the simulated operation. 11520 */ 11521 alu_state = info->aux.alu_state; 11522 alu_limit = abs(info->aux.alu_limit - alu_limit); 11523 } else { 11524 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11525 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11526 alu_state |= ptr_is_dst_reg ? 11527 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11528 11529 /* Limit pruning on unknown scalars to enable deep search for 11530 * potential masking differences from other program paths. 11531 */ 11532 if (!off_is_imm) 11533 env->explore_alu_limits = true; 11534 } 11535 11536 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11537 if (err < 0) 11538 return err; 11539 do_sim: 11540 /* If we're in commit phase, we're done here given we already 11541 * pushed the truncated dst_reg into the speculative verification 11542 * stack. 11543 * 11544 * Also, when register is a known constant, we rewrite register-based 11545 * operation to immediate-based, and thus do not need masking (and as 11546 * a consequence, do not need to simulate the zero-truncation either). 11547 */ 11548 if (commit_window || off_is_imm) 11549 return 0; 11550 11551 /* Simulate and find potential out-of-bounds access under 11552 * speculative execution from truncation as a result of 11553 * masking when off was not within expected range. If off 11554 * sits in dst, then we temporarily need to move ptr there 11555 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11556 * for cases where we use K-based arithmetic in one direction 11557 * and truncated reg-based in the other in order to explore 11558 * bad access. 11559 */ 11560 if (!ptr_is_dst_reg) { 11561 tmp = *dst_reg; 11562 copy_register_state(dst_reg, ptr_reg); 11563 } 11564 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11565 env->insn_idx); 11566 if (!ptr_is_dst_reg && ret) 11567 *dst_reg = tmp; 11568 return !ret ? REASON_STACK : 0; 11569 } 11570 11571 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11572 { 11573 struct bpf_verifier_state *vstate = env->cur_state; 11574 11575 /* If we simulate paths under speculation, we don't update the 11576 * insn as 'seen' such that when we verify unreachable paths in 11577 * the non-speculative domain, sanitize_dead_code() can still 11578 * rewrite/sanitize them. 11579 */ 11580 if (!vstate->speculative) 11581 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11582 } 11583 11584 static int sanitize_err(struct bpf_verifier_env *env, 11585 const struct bpf_insn *insn, int reason, 11586 const struct bpf_reg_state *off_reg, 11587 const struct bpf_reg_state *dst_reg) 11588 { 11589 static const char *err = "pointer arithmetic with it prohibited for !root"; 11590 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11591 u32 dst = insn->dst_reg, src = insn->src_reg; 11592 11593 switch (reason) { 11594 case REASON_BOUNDS: 11595 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11596 off_reg == dst_reg ? dst : src, err); 11597 break; 11598 case REASON_TYPE: 11599 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11600 off_reg == dst_reg ? src : dst, err); 11601 break; 11602 case REASON_PATHS: 11603 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11604 dst, op, err); 11605 break; 11606 case REASON_LIMIT: 11607 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11608 dst, op, err); 11609 break; 11610 case REASON_STACK: 11611 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11612 dst, err); 11613 break; 11614 default: 11615 verbose(env, "verifier internal error: unknown reason (%d)\n", 11616 reason); 11617 break; 11618 } 11619 11620 return -EACCES; 11621 } 11622 11623 /* check that stack access falls within stack limits and that 'reg' doesn't 11624 * have a variable offset. 11625 * 11626 * Variable offset is prohibited for unprivileged mode for simplicity since it 11627 * requires corresponding support in Spectre masking for stack ALU. See also 11628 * retrieve_ptr_limit(). 11629 * 11630 * 11631 * 'off' includes 'reg->off'. 11632 */ 11633 static int check_stack_access_for_ptr_arithmetic( 11634 struct bpf_verifier_env *env, 11635 int regno, 11636 const struct bpf_reg_state *reg, 11637 int off) 11638 { 11639 if (!tnum_is_const(reg->var_off)) { 11640 char tn_buf[48]; 11641 11642 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11643 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11644 regno, tn_buf, off); 11645 return -EACCES; 11646 } 11647 11648 if (off >= 0 || off < -MAX_BPF_STACK) { 11649 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11650 "prohibited for !root; off=%d\n", regno, off); 11651 return -EACCES; 11652 } 11653 11654 return 0; 11655 } 11656 11657 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11658 const struct bpf_insn *insn, 11659 const struct bpf_reg_state *dst_reg) 11660 { 11661 u32 dst = insn->dst_reg; 11662 11663 /* For unprivileged we require that resulting offset must be in bounds 11664 * in order to be able to sanitize access later on. 11665 */ 11666 if (env->bypass_spec_v1) 11667 return 0; 11668 11669 switch (dst_reg->type) { 11670 case PTR_TO_STACK: 11671 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 11672 dst_reg->off + dst_reg->var_off.value)) 11673 return -EACCES; 11674 break; 11675 case PTR_TO_MAP_VALUE: 11676 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 11677 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 11678 "prohibited for !root\n", dst); 11679 return -EACCES; 11680 } 11681 break; 11682 default: 11683 break; 11684 } 11685 11686 return 0; 11687 } 11688 11689 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 11690 * Caller should also handle BPF_MOV case separately. 11691 * If we return -EACCES, caller may want to try again treating pointer as a 11692 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 11693 */ 11694 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 11695 struct bpf_insn *insn, 11696 const struct bpf_reg_state *ptr_reg, 11697 const struct bpf_reg_state *off_reg) 11698 { 11699 struct bpf_verifier_state *vstate = env->cur_state; 11700 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11701 struct bpf_reg_state *regs = state->regs, *dst_reg; 11702 bool known = tnum_is_const(off_reg->var_off); 11703 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 11704 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 11705 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 11706 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 11707 struct bpf_sanitize_info info = {}; 11708 u8 opcode = BPF_OP(insn->code); 11709 u32 dst = insn->dst_reg; 11710 int ret; 11711 11712 dst_reg = ®s[dst]; 11713 11714 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 11715 smin_val > smax_val || umin_val > umax_val) { 11716 /* Taint dst register if offset had invalid bounds derived from 11717 * e.g. dead branches. 11718 */ 11719 __mark_reg_unknown(env, dst_reg); 11720 return 0; 11721 } 11722 11723 if (BPF_CLASS(insn->code) != BPF_ALU64) { 11724 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 11725 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11726 __mark_reg_unknown(env, dst_reg); 11727 return 0; 11728 } 11729 11730 verbose(env, 11731 "R%d 32-bit pointer arithmetic prohibited\n", 11732 dst); 11733 return -EACCES; 11734 } 11735 11736 if (ptr_reg->type & PTR_MAYBE_NULL) { 11737 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 11738 dst, reg_type_str(env, ptr_reg->type)); 11739 return -EACCES; 11740 } 11741 11742 switch (base_type(ptr_reg->type)) { 11743 case CONST_PTR_TO_MAP: 11744 /* smin_val represents the known value */ 11745 if (known && smin_val == 0 && opcode == BPF_ADD) 11746 break; 11747 fallthrough; 11748 case PTR_TO_PACKET_END: 11749 case PTR_TO_SOCKET: 11750 case PTR_TO_SOCK_COMMON: 11751 case PTR_TO_TCP_SOCK: 11752 case PTR_TO_XDP_SOCK: 11753 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 11754 dst, reg_type_str(env, ptr_reg->type)); 11755 return -EACCES; 11756 default: 11757 break; 11758 } 11759 11760 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 11761 * The id may be overwritten later if we create a new variable offset. 11762 */ 11763 dst_reg->type = ptr_reg->type; 11764 dst_reg->id = ptr_reg->id; 11765 11766 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 11767 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 11768 return -EINVAL; 11769 11770 /* pointer types do not carry 32-bit bounds at the moment. */ 11771 __mark_reg32_unbounded(dst_reg); 11772 11773 if (sanitize_needed(opcode)) { 11774 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 11775 &info, false); 11776 if (ret < 0) 11777 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11778 } 11779 11780 switch (opcode) { 11781 case BPF_ADD: 11782 /* We can take a fixed offset as long as it doesn't overflow 11783 * the s32 'off' field 11784 */ 11785 if (known && (ptr_reg->off + smin_val == 11786 (s64)(s32)(ptr_reg->off + smin_val))) { 11787 /* pointer += K. Accumulate it into fixed offset */ 11788 dst_reg->smin_value = smin_ptr; 11789 dst_reg->smax_value = smax_ptr; 11790 dst_reg->umin_value = umin_ptr; 11791 dst_reg->umax_value = umax_ptr; 11792 dst_reg->var_off = ptr_reg->var_off; 11793 dst_reg->off = ptr_reg->off + smin_val; 11794 dst_reg->raw = ptr_reg->raw; 11795 break; 11796 } 11797 /* A new variable offset is created. Note that off_reg->off 11798 * == 0, since it's a scalar. 11799 * dst_reg gets the pointer type and since some positive 11800 * integer value was added to the pointer, give it a new 'id' 11801 * if it's a PTR_TO_PACKET. 11802 * this creates a new 'base' pointer, off_reg (variable) gets 11803 * added into the variable offset, and we copy the fixed offset 11804 * from ptr_reg. 11805 */ 11806 if (signed_add_overflows(smin_ptr, smin_val) || 11807 signed_add_overflows(smax_ptr, smax_val)) { 11808 dst_reg->smin_value = S64_MIN; 11809 dst_reg->smax_value = S64_MAX; 11810 } else { 11811 dst_reg->smin_value = smin_ptr + smin_val; 11812 dst_reg->smax_value = smax_ptr + smax_val; 11813 } 11814 if (umin_ptr + umin_val < umin_ptr || 11815 umax_ptr + umax_val < umax_ptr) { 11816 dst_reg->umin_value = 0; 11817 dst_reg->umax_value = U64_MAX; 11818 } else { 11819 dst_reg->umin_value = umin_ptr + umin_val; 11820 dst_reg->umax_value = umax_ptr + umax_val; 11821 } 11822 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 11823 dst_reg->off = ptr_reg->off; 11824 dst_reg->raw = ptr_reg->raw; 11825 if (reg_is_pkt_pointer(ptr_reg)) { 11826 dst_reg->id = ++env->id_gen; 11827 /* something was added to pkt_ptr, set range to zero */ 11828 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 11829 } 11830 break; 11831 case BPF_SUB: 11832 if (dst_reg == off_reg) { 11833 /* scalar -= pointer. Creates an unknown scalar */ 11834 verbose(env, "R%d tried to subtract pointer from scalar\n", 11835 dst); 11836 return -EACCES; 11837 } 11838 /* We don't allow subtraction from FP, because (according to 11839 * test_verifier.c test "invalid fp arithmetic", JITs might not 11840 * be able to deal with it. 11841 */ 11842 if (ptr_reg->type == PTR_TO_STACK) { 11843 verbose(env, "R%d subtraction from stack pointer prohibited\n", 11844 dst); 11845 return -EACCES; 11846 } 11847 if (known && (ptr_reg->off - smin_val == 11848 (s64)(s32)(ptr_reg->off - smin_val))) { 11849 /* pointer -= K. Subtract it from fixed offset */ 11850 dst_reg->smin_value = smin_ptr; 11851 dst_reg->smax_value = smax_ptr; 11852 dst_reg->umin_value = umin_ptr; 11853 dst_reg->umax_value = umax_ptr; 11854 dst_reg->var_off = ptr_reg->var_off; 11855 dst_reg->id = ptr_reg->id; 11856 dst_reg->off = ptr_reg->off - smin_val; 11857 dst_reg->raw = ptr_reg->raw; 11858 break; 11859 } 11860 /* A new variable offset is created. If the subtrahend is known 11861 * nonnegative, then any reg->range we had before is still good. 11862 */ 11863 if (signed_sub_overflows(smin_ptr, smax_val) || 11864 signed_sub_overflows(smax_ptr, smin_val)) { 11865 /* Overflow possible, we know nothing */ 11866 dst_reg->smin_value = S64_MIN; 11867 dst_reg->smax_value = S64_MAX; 11868 } else { 11869 dst_reg->smin_value = smin_ptr - smax_val; 11870 dst_reg->smax_value = smax_ptr - smin_val; 11871 } 11872 if (umin_ptr < umax_val) { 11873 /* Overflow possible, we know nothing */ 11874 dst_reg->umin_value = 0; 11875 dst_reg->umax_value = U64_MAX; 11876 } else { 11877 /* Cannot overflow (as long as bounds are consistent) */ 11878 dst_reg->umin_value = umin_ptr - umax_val; 11879 dst_reg->umax_value = umax_ptr - umin_val; 11880 } 11881 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 11882 dst_reg->off = ptr_reg->off; 11883 dst_reg->raw = ptr_reg->raw; 11884 if (reg_is_pkt_pointer(ptr_reg)) { 11885 dst_reg->id = ++env->id_gen; 11886 /* something was added to pkt_ptr, set range to zero */ 11887 if (smin_val < 0) 11888 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 11889 } 11890 break; 11891 case BPF_AND: 11892 case BPF_OR: 11893 case BPF_XOR: 11894 /* bitwise ops on pointers are troublesome, prohibit. */ 11895 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 11896 dst, bpf_alu_string[opcode >> 4]); 11897 return -EACCES; 11898 default: 11899 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 11900 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 11901 dst, bpf_alu_string[opcode >> 4]); 11902 return -EACCES; 11903 } 11904 11905 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 11906 return -EINVAL; 11907 reg_bounds_sync(dst_reg); 11908 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 11909 return -EACCES; 11910 if (sanitize_needed(opcode)) { 11911 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 11912 &info, true); 11913 if (ret < 0) 11914 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11915 } 11916 11917 return 0; 11918 } 11919 11920 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 11921 struct bpf_reg_state *src_reg) 11922 { 11923 s32 smin_val = src_reg->s32_min_value; 11924 s32 smax_val = src_reg->s32_max_value; 11925 u32 umin_val = src_reg->u32_min_value; 11926 u32 umax_val = src_reg->u32_max_value; 11927 11928 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 11929 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 11930 dst_reg->s32_min_value = S32_MIN; 11931 dst_reg->s32_max_value = S32_MAX; 11932 } else { 11933 dst_reg->s32_min_value += smin_val; 11934 dst_reg->s32_max_value += smax_val; 11935 } 11936 if (dst_reg->u32_min_value + umin_val < umin_val || 11937 dst_reg->u32_max_value + umax_val < umax_val) { 11938 dst_reg->u32_min_value = 0; 11939 dst_reg->u32_max_value = U32_MAX; 11940 } else { 11941 dst_reg->u32_min_value += umin_val; 11942 dst_reg->u32_max_value += umax_val; 11943 } 11944 } 11945 11946 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 11947 struct bpf_reg_state *src_reg) 11948 { 11949 s64 smin_val = src_reg->smin_value; 11950 s64 smax_val = src_reg->smax_value; 11951 u64 umin_val = src_reg->umin_value; 11952 u64 umax_val = src_reg->umax_value; 11953 11954 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 11955 signed_add_overflows(dst_reg->smax_value, smax_val)) { 11956 dst_reg->smin_value = S64_MIN; 11957 dst_reg->smax_value = S64_MAX; 11958 } else { 11959 dst_reg->smin_value += smin_val; 11960 dst_reg->smax_value += smax_val; 11961 } 11962 if (dst_reg->umin_value + umin_val < umin_val || 11963 dst_reg->umax_value + umax_val < umax_val) { 11964 dst_reg->umin_value = 0; 11965 dst_reg->umax_value = U64_MAX; 11966 } else { 11967 dst_reg->umin_value += umin_val; 11968 dst_reg->umax_value += umax_val; 11969 } 11970 } 11971 11972 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 11973 struct bpf_reg_state *src_reg) 11974 { 11975 s32 smin_val = src_reg->s32_min_value; 11976 s32 smax_val = src_reg->s32_max_value; 11977 u32 umin_val = src_reg->u32_min_value; 11978 u32 umax_val = src_reg->u32_max_value; 11979 11980 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 11981 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 11982 /* Overflow possible, we know nothing */ 11983 dst_reg->s32_min_value = S32_MIN; 11984 dst_reg->s32_max_value = S32_MAX; 11985 } else { 11986 dst_reg->s32_min_value -= smax_val; 11987 dst_reg->s32_max_value -= smin_val; 11988 } 11989 if (dst_reg->u32_min_value < umax_val) { 11990 /* Overflow possible, we know nothing */ 11991 dst_reg->u32_min_value = 0; 11992 dst_reg->u32_max_value = U32_MAX; 11993 } else { 11994 /* Cannot overflow (as long as bounds are consistent) */ 11995 dst_reg->u32_min_value -= umax_val; 11996 dst_reg->u32_max_value -= umin_val; 11997 } 11998 } 11999 12000 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12001 struct bpf_reg_state *src_reg) 12002 { 12003 s64 smin_val = src_reg->smin_value; 12004 s64 smax_val = src_reg->smax_value; 12005 u64 umin_val = src_reg->umin_value; 12006 u64 umax_val = src_reg->umax_value; 12007 12008 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12009 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12010 /* Overflow possible, we know nothing */ 12011 dst_reg->smin_value = S64_MIN; 12012 dst_reg->smax_value = S64_MAX; 12013 } else { 12014 dst_reg->smin_value -= smax_val; 12015 dst_reg->smax_value -= smin_val; 12016 } 12017 if (dst_reg->umin_value < umax_val) { 12018 /* Overflow possible, we know nothing */ 12019 dst_reg->umin_value = 0; 12020 dst_reg->umax_value = U64_MAX; 12021 } else { 12022 /* Cannot overflow (as long as bounds are consistent) */ 12023 dst_reg->umin_value -= umax_val; 12024 dst_reg->umax_value -= umin_val; 12025 } 12026 } 12027 12028 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12029 struct bpf_reg_state *src_reg) 12030 { 12031 s32 smin_val = src_reg->s32_min_value; 12032 u32 umin_val = src_reg->u32_min_value; 12033 u32 umax_val = src_reg->u32_max_value; 12034 12035 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12036 /* Ain't nobody got time to multiply that sign */ 12037 __mark_reg32_unbounded(dst_reg); 12038 return; 12039 } 12040 /* Both values are positive, so we can work with unsigned and 12041 * copy the result to signed (unless it exceeds S32_MAX). 12042 */ 12043 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12044 /* Potential overflow, we know nothing */ 12045 __mark_reg32_unbounded(dst_reg); 12046 return; 12047 } 12048 dst_reg->u32_min_value *= umin_val; 12049 dst_reg->u32_max_value *= umax_val; 12050 if (dst_reg->u32_max_value > S32_MAX) { 12051 /* Overflow possible, we know nothing */ 12052 dst_reg->s32_min_value = S32_MIN; 12053 dst_reg->s32_max_value = S32_MAX; 12054 } else { 12055 dst_reg->s32_min_value = dst_reg->u32_min_value; 12056 dst_reg->s32_max_value = dst_reg->u32_max_value; 12057 } 12058 } 12059 12060 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12061 struct bpf_reg_state *src_reg) 12062 { 12063 s64 smin_val = src_reg->smin_value; 12064 u64 umin_val = src_reg->umin_value; 12065 u64 umax_val = src_reg->umax_value; 12066 12067 if (smin_val < 0 || dst_reg->smin_value < 0) { 12068 /* Ain't nobody got time to multiply that sign */ 12069 __mark_reg64_unbounded(dst_reg); 12070 return; 12071 } 12072 /* Both values are positive, so we can work with unsigned and 12073 * copy the result to signed (unless it exceeds S64_MAX). 12074 */ 12075 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12076 /* Potential overflow, we know nothing */ 12077 __mark_reg64_unbounded(dst_reg); 12078 return; 12079 } 12080 dst_reg->umin_value *= umin_val; 12081 dst_reg->umax_value *= umax_val; 12082 if (dst_reg->umax_value > S64_MAX) { 12083 /* Overflow possible, we know nothing */ 12084 dst_reg->smin_value = S64_MIN; 12085 dst_reg->smax_value = S64_MAX; 12086 } else { 12087 dst_reg->smin_value = dst_reg->umin_value; 12088 dst_reg->smax_value = dst_reg->umax_value; 12089 } 12090 } 12091 12092 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12093 struct bpf_reg_state *src_reg) 12094 { 12095 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12096 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12097 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12098 s32 smin_val = src_reg->s32_min_value; 12099 u32 umax_val = src_reg->u32_max_value; 12100 12101 if (src_known && dst_known) { 12102 __mark_reg32_known(dst_reg, var32_off.value); 12103 return; 12104 } 12105 12106 /* We get our minimum from the var_off, since that's inherently 12107 * bitwise. Our maximum is the minimum of the operands' maxima. 12108 */ 12109 dst_reg->u32_min_value = var32_off.value; 12110 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12111 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12112 /* Lose signed bounds when ANDing negative numbers, 12113 * ain't nobody got time for that. 12114 */ 12115 dst_reg->s32_min_value = S32_MIN; 12116 dst_reg->s32_max_value = S32_MAX; 12117 } else { 12118 /* ANDing two positives gives a positive, so safe to 12119 * cast result into s64. 12120 */ 12121 dst_reg->s32_min_value = dst_reg->u32_min_value; 12122 dst_reg->s32_max_value = dst_reg->u32_max_value; 12123 } 12124 } 12125 12126 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12127 struct bpf_reg_state *src_reg) 12128 { 12129 bool src_known = tnum_is_const(src_reg->var_off); 12130 bool dst_known = tnum_is_const(dst_reg->var_off); 12131 s64 smin_val = src_reg->smin_value; 12132 u64 umax_val = src_reg->umax_value; 12133 12134 if (src_known && dst_known) { 12135 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12136 return; 12137 } 12138 12139 /* We get our minimum from the var_off, since that's inherently 12140 * bitwise. Our maximum is the minimum of the operands' maxima. 12141 */ 12142 dst_reg->umin_value = dst_reg->var_off.value; 12143 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12144 if (dst_reg->smin_value < 0 || smin_val < 0) { 12145 /* Lose signed bounds when ANDing negative numbers, 12146 * ain't nobody got time for that. 12147 */ 12148 dst_reg->smin_value = S64_MIN; 12149 dst_reg->smax_value = S64_MAX; 12150 } else { 12151 /* ANDing two positives gives a positive, so safe to 12152 * cast result into s64. 12153 */ 12154 dst_reg->smin_value = dst_reg->umin_value; 12155 dst_reg->smax_value = dst_reg->umax_value; 12156 } 12157 /* We may learn something more from the var_off */ 12158 __update_reg_bounds(dst_reg); 12159 } 12160 12161 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12162 struct bpf_reg_state *src_reg) 12163 { 12164 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12165 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12166 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12167 s32 smin_val = src_reg->s32_min_value; 12168 u32 umin_val = src_reg->u32_min_value; 12169 12170 if (src_known && dst_known) { 12171 __mark_reg32_known(dst_reg, var32_off.value); 12172 return; 12173 } 12174 12175 /* We get our maximum from the var_off, and our minimum is the 12176 * maximum of the operands' minima 12177 */ 12178 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12179 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12180 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12181 /* Lose signed bounds when ORing negative numbers, 12182 * ain't nobody got time for that. 12183 */ 12184 dst_reg->s32_min_value = S32_MIN; 12185 dst_reg->s32_max_value = S32_MAX; 12186 } else { 12187 /* ORing two positives gives a positive, so safe to 12188 * cast result into s64. 12189 */ 12190 dst_reg->s32_min_value = dst_reg->u32_min_value; 12191 dst_reg->s32_max_value = dst_reg->u32_max_value; 12192 } 12193 } 12194 12195 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12196 struct bpf_reg_state *src_reg) 12197 { 12198 bool src_known = tnum_is_const(src_reg->var_off); 12199 bool dst_known = tnum_is_const(dst_reg->var_off); 12200 s64 smin_val = src_reg->smin_value; 12201 u64 umin_val = src_reg->umin_value; 12202 12203 if (src_known && dst_known) { 12204 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12205 return; 12206 } 12207 12208 /* We get our maximum from the var_off, and our minimum is the 12209 * maximum of the operands' minima 12210 */ 12211 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12212 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12213 if (dst_reg->smin_value < 0 || smin_val < 0) { 12214 /* Lose signed bounds when ORing negative numbers, 12215 * ain't nobody got time for that. 12216 */ 12217 dst_reg->smin_value = S64_MIN; 12218 dst_reg->smax_value = S64_MAX; 12219 } else { 12220 /* ORing two positives gives a positive, so safe to 12221 * cast result into s64. 12222 */ 12223 dst_reg->smin_value = dst_reg->umin_value; 12224 dst_reg->smax_value = dst_reg->umax_value; 12225 } 12226 /* We may learn something more from the var_off */ 12227 __update_reg_bounds(dst_reg); 12228 } 12229 12230 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12231 struct bpf_reg_state *src_reg) 12232 { 12233 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12234 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12235 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12236 s32 smin_val = src_reg->s32_min_value; 12237 12238 if (src_known && dst_known) { 12239 __mark_reg32_known(dst_reg, var32_off.value); 12240 return; 12241 } 12242 12243 /* We get both minimum and maximum from the var32_off. */ 12244 dst_reg->u32_min_value = var32_off.value; 12245 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12246 12247 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12248 /* XORing two positive sign numbers gives a positive, 12249 * so safe to cast u32 result into s32. 12250 */ 12251 dst_reg->s32_min_value = dst_reg->u32_min_value; 12252 dst_reg->s32_max_value = dst_reg->u32_max_value; 12253 } else { 12254 dst_reg->s32_min_value = S32_MIN; 12255 dst_reg->s32_max_value = S32_MAX; 12256 } 12257 } 12258 12259 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12260 struct bpf_reg_state *src_reg) 12261 { 12262 bool src_known = tnum_is_const(src_reg->var_off); 12263 bool dst_known = tnum_is_const(dst_reg->var_off); 12264 s64 smin_val = src_reg->smin_value; 12265 12266 if (src_known && dst_known) { 12267 /* dst_reg->var_off.value has been updated earlier */ 12268 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12269 return; 12270 } 12271 12272 /* We get both minimum and maximum from the var_off. */ 12273 dst_reg->umin_value = dst_reg->var_off.value; 12274 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12275 12276 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12277 /* XORing two positive sign numbers gives a positive, 12278 * so safe to cast u64 result into s64. 12279 */ 12280 dst_reg->smin_value = dst_reg->umin_value; 12281 dst_reg->smax_value = dst_reg->umax_value; 12282 } else { 12283 dst_reg->smin_value = S64_MIN; 12284 dst_reg->smax_value = S64_MAX; 12285 } 12286 12287 __update_reg_bounds(dst_reg); 12288 } 12289 12290 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12291 u64 umin_val, u64 umax_val) 12292 { 12293 /* We lose all sign bit information (except what we can pick 12294 * up from var_off) 12295 */ 12296 dst_reg->s32_min_value = S32_MIN; 12297 dst_reg->s32_max_value = S32_MAX; 12298 /* If we might shift our top bit out, then we know nothing */ 12299 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12300 dst_reg->u32_min_value = 0; 12301 dst_reg->u32_max_value = U32_MAX; 12302 } else { 12303 dst_reg->u32_min_value <<= umin_val; 12304 dst_reg->u32_max_value <<= umax_val; 12305 } 12306 } 12307 12308 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12309 struct bpf_reg_state *src_reg) 12310 { 12311 u32 umax_val = src_reg->u32_max_value; 12312 u32 umin_val = src_reg->u32_min_value; 12313 /* u32 alu operation will zext upper bits */ 12314 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12315 12316 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12317 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12318 /* Not required but being careful mark reg64 bounds as unknown so 12319 * that we are forced to pick them up from tnum and zext later and 12320 * if some path skips this step we are still safe. 12321 */ 12322 __mark_reg64_unbounded(dst_reg); 12323 __update_reg32_bounds(dst_reg); 12324 } 12325 12326 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12327 u64 umin_val, u64 umax_val) 12328 { 12329 /* Special case <<32 because it is a common compiler pattern to sign 12330 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12331 * positive we know this shift will also be positive so we can track 12332 * bounds correctly. Otherwise we lose all sign bit information except 12333 * what we can pick up from var_off. Perhaps we can generalize this 12334 * later to shifts of any length. 12335 */ 12336 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12337 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12338 else 12339 dst_reg->smax_value = S64_MAX; 12340 12341 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12342 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12343 else 12344 dst_reg->smin_value = S64_MIN; 12345 12346 /* If we might shift our top bit out, then we know nothing */ 12347 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12348 dst_reg->umin_value = 0; 12349 dst_reg->umax_value = U64_MAX; 12350 } else { 12351 dst_reg->umin_value <<= umin_val; 12352 dst_reg->umax_value <<= umax_val; 12353 } 12354 } 12355 12356 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12357 struct bpf_reg_state *src_reg) 12358 { 12359 u64 umax_val = src_reg->umax_value; 12360 u64 umin_val = src_reg->umin_value; 12361 12362 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12363 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12364 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12365 12366 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12367 /* We may learn something more from the var_off */ 12368 __update_reg_bounds(dst_reg); 12369 } 12370 12371 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12372 struct bpf_reg_state *src_reg) 12373 { 12374 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12375 u32 umax_val = src_reg->u32_max_value; 12376 u32 umin_val = src_reg->u32_min_value; 12377 12378 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12379 * be negative, then either: 12380 * 1) src_reg might be zero, so the sign bit of the result is 12381 * unknown, so we lose our signed bounds 12382 * 2) it's known negative, thus the unsigned bounds capture the 12383 * signed bounds 12384 * 3) the signed bounds cross zero, so they tell us nothing 12385 * about the result 12386 * If the value in dst_reg is known nonnegative, then again the 12387 * unsigned bounds capture the signed bounds. 12388 * Thus, in all cases it suffices to blow away our signed bounds 12389 * and rely on inferring new ones from the unsigned bounds and 12390 * var_off of the result. 12391 */ 12392 dst_reg->s32_min_value = S32_MIN; 12393 dst_reg->s32_max_value = S32_MAX; 12394 12395 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12396 dst_reg->u32_min_value >>= umax_val; 12397 dst_reg->u32_max_value >>= umin_val; 12398 12399 __mark_reg64_unbounded(dst_reg); 12400 __update_reg32_bounds(dst_reg); 12401 } 12402 12403 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12404 struct bpf_reg_state *src_reg) 12405 { 12406 u64 umax_val = src_reg->umax_value; 12407 u64 umin_val = src_reg->umin_value; 12408 12409 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12410 * be negative, then either: 12411 * 1) src_reg might be zero, so the sign bit of the result is 12412 * unknown, so we lose our signed bounds 12413 * 2) it's known negative, thus the unsigned bounds capture the 12414 * signed bounds 12415 * 3) the signed bounds cross zero, so they tell us nothing 12416 * about the result 12417 * If the value in dst_reg is known nonnegative, then again the 12418 * unsigned bounds capture the signed bounds. 12419 * Thus, in all cases it suffices to blow away our signed bounds 12420 * and rely on inferring new ones from the unsigned bounds and 12421 * var_off of the result. 12422 */ 12423 dst_reg->smin_value = S64_MIN; 12424 dst_reg->smax_value = S64_MAX; 12425 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12426 dst_reg->umin_value >>= umax_val; 12427 dst_reg->umax_value >>= umin_val; 12428 12429 /* Its not easy to operate on alu32 bounds here because it depends 12430 * on bits being shifted in. Take easy way out and mark unbounded 12431 * so we can recalculate later from tnum. 12432 */ 12433 __mark_reg32_unbounded(dst_reg); 12434 __update_reg_bounds(dst_reg); 12435 } 12436 12437 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12438 struct bpf_reg_state *src_reg) 12439 { 12440 u64 umin_val = src_reg->u32_min_value; 12441 12442 /* Upon reaching here, src_known is true and 12443 * umax_val is equal to umin_val. 12444 */ 12445 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12446 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12447 12448 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12449 12450 /* blow away the dst_reg umin_value/umax_value and rely on 12451 * dst_reg var_off to refine the result. 12452 */ 12453 dst_reg->u32_min_value = 0; 12454 dst_reg->u32_max_value = U32_MAX; 12455 12456 __mark_reg64_unbounded(dst_reg); 12457 __update_reg32_bounds(dst_reg); 12458 } 12459 12460 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12461 struct bpf_reg_state *src_reg) 12462 { 12463 u64 umin_val = src_reg->umin_value; 12464 12465 /* Upon reaching here, src_known is true and umax_val is equal 12466 * to umin_val. 12467 */ 12468 dst_reg->smin_value >>= umin_val; 12469 dst_reg->smax_value >>= umin_val; 12470 12471 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12472 12473 /* blow away the dst_reg umin_value/umax_value and rely on 12474 * dst_reg var_off to refine the result. 12475 */ 12476 dst_reg->umin_value = 0; 12477 dst_reg->umax_value = U64_MAX; 12478 12479 /* Its not easy to operate on alu32 bounds here because it depends 12480 * on bits being shifted in from upper 32-bits. Take easy way out 12481 * and mark unbounded so we can recalculate later from tnum. 12482 */ 12483 __mark_reg32_unbounded(dst_reg); 12484 __update_reg_bounds(dst_reg); 12485 } 12486 12487 /* WARNING: This function does calculations on 64-bit values, but the actual 12488 * execution may occur on 32-bit values. Therefore, things like bitshifts 12489 * need extra checks in the 32-bit case. 12490 */ 12491 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12492 struct bpf_insn *insn, 12493 struct bpf_reg_state *dst_reg, 12494 struct bpf_reg_state src_reg) 12495 { 12496 struct bpf_reg_state *regs = cur_regs(env); 12497 u8 opcode = BPF_OP(insn->code); 12498 bool src_known; 12499 s64 smin_val, smax_val; 12500 u64 umin_val, umax_val; 12501 s32 s32_min_val, s32_max_val; 12502 u32 u32_min_val, u32_max_val; 12503 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12504 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12505 int ret; 12506 12507 smin_val = src_reg.smin_value; 12508 smax_val = src_reg.smax_value; 12509 umin_val = src_reg.umin_value; 12510 umax_val = src_reg.umax_value; 12511 12512 s32_min_val = src_reg.s32_min_value; 12513 s32_max_val = src_reg.s32_max_value; 12514 u32_min_val = src_reg.u32_min_value; 12515 u32_max_val = src_reg.u32_max_value; 12516 12517 if (alu32) { 12518 src_known = tnum_subreg_is_const(src_reg.var_off); 12519 if ((src_known && 12520 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12521 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12522 /* Taint dst register if offset had invalid bounds 12523 * derived from e.g. dead branches. 12524 */ 12525 __mark_reg_unknown(env, dst_reg); 12526 return 0; 12527 } 12528 } else { 12529 src_known = tnum_is_const(src_reg.var_off); 12530 if ((src_known && 12531 (smin_val != smax_val || umin_val != umax_val)) || 12532 smin_val > smax_val || umin_val > umax_val) { 12533 /* Taint dst register if offset had invalid bounds 12534 * derived from e.g. dead branches. 12535 */ 12536 __mark_reg_unknown(env, dst_reg); 12537 return 0; 12538 } 12539 } 12540 12541 if (!src_known && 12542 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12543 __mark_reg_unknown(env, dst_reg); 12544 return 0; 12545 } 12546 12547 if (sanitize_needed(opcode)) { 12548 ret = sanitize_val_alu(env, insn); 12549 if (ret < 0) 12550 return sanitize_err(env, insn, ret, NULL, NULL); 12551 } 12552 12553 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12554 * There are two classes of instructions: The first class we track both 12555 * alu32 and alu64 sign/unsigned bounds independently this provides the 12556 * greatest amount of precision when alu operations are mixed with jmp32 12557 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12558 * and BPF_OR. This is possible because these ops have fairly easy to 12559 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12560 * See alu32 verifier tests for examples. The second class of 12561 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12562 * with regards to tracking sign/unsigned bounds because the bits may 12563 * cross subreg boundaries in the alu64 case. When this happens we mark 12564 * the reg unbounded in the subreg bound space and use the resulting 12565 * tnum to calculate an approximation of the sign/unsigned bounds. 12566 */ 12567 switch (opcode) { 12568 case BPF_ADD: 12569 scalar32_min_max_add(dst_reg, &src_reg); 12570 scalar_min_max_add(dst_reg, &src_reg); 12571 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12572 break; 12573 case BPF_SUB: 12574 scalar32_min_max_sub(dst_reg, &src_reg); 12575 scalar_min_max_sub(dst_reg, &src_reg); 12576 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12577 break; 12578 case BPF_MUL: 12579 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12580 scalar32_min_max_mul(dst_reg, &src_reg); 12581 scalar_min_max_mul(dst_reg, &src_reg); 12582 break; 12583 case BPF_AND: 12584 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12585 scalar32_min_max_and(dst_reg, &src_reg); 12586 scalar_min_max_and(dst_reg, &src_reg); 12587 break; 12588 case BPF_OR: 12589 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12590 scalar32_min_max_or(dst_reg, &src_reg); 12591 scalar_min_max_or(dst_reg, &src_reg); 12592 break; 12593 case BPF_XOR: 12594 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12595 scalar32_min_max_xor(dst_reg, &src_reg); 12596 scalar_min_max_xor(dst_reg, &src_reg); 12597 break; 12598 case BPF_LSH: 12599 if (umax_val >= insn_bitness) { 12600 /* Shifts greater than 31 or 63 are undefined. 12601 * This includes shifts by a negative number. 12602 */ 12603 mark_reg_unknown(env, regs, insn->dst_reg); 12604 break; 12605 } 12606 if (alu32) 12607 scalar32_min_max_lsh(dst_reg, &src_reg); 12608 else 12609 scalar_min_max_lsh(dst_reg, &src_reg); 12610 break; 12611 case BPF_RSH: 12612 if (umax_val >= insn_bitness) { 12613 /* Shifts greater than 31 or 63 are undefined. 12614 * This includes shifts by a negative number. 12615 */ 12616 mark_reg_unknown(env, regs, insn->dst_reg); 12617 break; 12618 } 12619 if (alu32) 12620 scalar32_min_max_rsh(dst_reg, &src_reg); 12621 else 12622 scalar_min_max_rsh(dst_reg, &src_reg); 12623 break; 12624 case BPF_ARSH: 12625 if (umax_val >= insn_bitness) { 12626 /* Shifts greater than 31 or 63 are undefined. 12627 * This includes shifts by a negative number. 12628 */ 12629 mark_reg_unknown(env, regs, insn->dst_reg); 12630 break; 12631 } 12632 if (alu32) 12633 scalar32_min_max_arsh(dst_reg, &src_reg); 12634 else 12635 scalar_min_max_arsh(dst_reg, &src_reg); 12636 break; 12637 default: 12638 mark_reg_unknown(env, regs, insn->dst_reg); 12639 break; 12640 } 12641 12642 /* ALU32 ops are zero extended into 64bit register */ 12643 if (alu32) 12644 zext_32_to_64(dst_reg); 12645 reg_bounds_sync(dst_reg); 12646 return 0; 12647 } 12648 12649 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12650 * and var_off. 12651 */ 12652 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12653 struct bpf_insn *insn) 12654 { 12655 struct bpf_verifier_state *vstate = env->cur_state; 12656 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12657 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12658 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12659 u8 opcode = BPF_OP(insn->code); 12660 int err; 12661 12662 dst_reg = ®s[insn->dst_reg]; 12663 src_reg = NULL; 12664 if (dst_reg->type != SCALAR_VALUE) 12665 ptr_reg = dst_reg; 12666 else 12667 /* Make sure ID is cleared otherwise dst_reg min/max could be 12668 * incorrectly propagated into other registers by find_equal_scalars() 12669 */ 12670 dst_reg->id = 0; 12671 if (BPF_SRC(insn->code) == BPF_X) { 12672 src_reg = ®s[insn->src_reg]; 12673 if (src_reg->type != SCALAR_VALUE) { 12674 if (dst_reg->type != SCALAR_VALUE) { 12675 /* Combining two pointers by any ALU op yields 12676 * an arbitrary scalar. Disallow all math except 12677 * pointer subtraction 12678 */ 12679 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12680 mark_reg_unknown(env, regs, insn->dst_reg); 12681 return 0; 12682 } 12683 verbose(env, "R%d pointer %s pointer prohibited\n", 12684 insn->dst_reg, 12685 bpf_alu_string[opcode >> 4]); 12686 return -EACCES; 12687 } else { 12688 /* scalar += pointer 12689 * This is legal, but we have to reverse our 12690 * src/dest handling in computing the range 12691 */ 12692 err = mark_chain_precision(env, insn->dst_reg); 12693 if (err) 12694 return err; 12695 return adjust_ptr_min_max_vals(env, insn, 12696 src_reg, dst_reg); 12697 } 12698 } else if (ptr_reg) { 12699 /* pointer += scalar */ 12700 err = mark_chain_precision(env, insn->src_reg); 12701 if (err) 12702 return err; 12703 return adjust_ptr_min_max_vals(env, insn, 12704 dst_reg, src_reg); 12705 } else if (dst_reg->precise) { 12706 /* if dst_reg is precise, src_reg should be precise as well */ 12707 err = mark_chain_precision(env, insn->src_reg); 12708 if (err) 12709 return err; 12710 } 12711 } else { 12712 /* Pretend the src is a reg with a known value, since we only 12713 * need to be able to read from this state. 12714 */ 12715 off_reg.type = SCALAR_VALUE; 12716 __mark_reg_known(&off_reg, insn->imm); 12717 src_reg = &off_reg; 12718 if (ptr_reg) /* pointer += K */ 12719 return adjust_ptr_min_max_vals(env, insn, 12720 ptr_reg, src_reg); 12721 } 12722 12723 /* Got here implies adding two SCALAR_VALUEs */ 12724 if (WARN_ON_ONCE(ptr_reg)) { 12725 print_verifier_state(env, state, true); 12726 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 12727 return -EINVAL; 12728 } 12729 if (WARN_ON(!src_reg)) { 12730 print_verifier_state(env, state, true); 12731 verbose(env, "verifier internal error: no src_reg\n"); 12732 return -EINVAL; 12733 } 12734 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 12735 } 12736 12737 /* check validity of 32-bit and 64-bit arithmetic operations */ 12738 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 12739 { 12740 struct bpf_reg_state *regs = cur_regs(env); 12741 u8 opcode = BPF_OP(insn->code); 12742 int err; 12743 12744 if (opcode == BPF_END || opcode == BPF_NEG) { 12745 if (opcode == BPF_NEG) { 12746 if (BPF_SRC(insn->code) != BPF_K || 12747 insn->src_reg != BPF_REG_0 || 12748 insn->off != 0 || insn->imm != 0) { 12749 verbose(env, "BPF_NEG uses reserved fields\n"); 12750 return -EINVAL; 12751 } 12752 } else { 12753 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 12754 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 12755 BPF_CLASS(insn->code) == BPF_ALU64) { 12756 verbose(env, "BPF_END uses reserved fields\n"); 12757 return -EINVAL; 12758 } 12759 } 12760 12761 /* check src operand */ 12762 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12763 if (err) 12764 return err; 12765 12766 if (is_pointer_value(env, insn->dst_reg)) { 12767 verbose(env, "R%d pointer arithmetic prohibited\n", 12768 insn->dst_reg); 12769 return -EACCES; 12770 } 12771 12772 /* check dest operand */ 12773 err = check_reg_arg(env, insn->dst_reg, DST_OP); 12774 if (err) 12775 return err; 12776 12777 } else if (opcode == BPF_MOV) { 12778 12779 if (BPF_SRC(insn->code) == BPF_X) { 12780 if (insn->imm != 0 || insn->off != 0) { 12781 verbose(env, "BPF_MOV uses reserved fields\n"); 12782 return -EINVAL; 12783 } 12784 12785 /* check src operand */ 12786 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12787 if (err) 12788 return err; 12789 } else { 12790 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 12791 verbose(env, "BPF_MOV uses reserved fields\n"); 12792 return -EINVAL; 12793 } 12794 } 12795 12796 /* check dest operand, mark as required later */ 12797 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12798 if (err) 12799 return err; 12800 12801 if (BPF_SRC(insn->code) == BPF_X) { 12802 struct bpf_reg_state *src_reg = regs + insn->src_reg; 12803 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 12804 12805 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12806 /* case: R1 = R2 12807 * copy register state to dest reg 12808 */ 12809 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 12810 /* Assign src and dst registers the same ID 12811 * that will be used by find_equal_scalars() 12812 * to propagate min/max range. 12813 */ 12814 src_reg->id = ++env->id_gen; 12815 copy_register_state(dst_reg, src_reg); 12816 dst_reg->live |= REG_LIVE_WRITTEN; 12817 dst_reg->subreg_def = DEF_NOT_SUBREG; 12818 } else { 12819 /* R1 = (u32) R2 */ 12820 if (is_pointer_value(env, insn->src_reg)) { 12821 verbose(env, 12822 "R%d partial copy of pointer\n", 12823 insn->src_reg); 12824 return -EACCES; 12825 } else if (src_reg->type == SCALAR_VALUE) { 12826 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 12827 12828 if (is_src_reg_u32 && !src_reg->id) 12829 src_reg->id = ++env->id_gen; 12830 copy_register_state(dst_reg, src_reg); 12831 /* Make sure ID is cleared if src_reg is not in u32 range otherwise 12832 * dst_reg min/max could be incorrectly 12833 * propagated into src_reg by find_equal_scalars() 12834 */ 12835 if (!is_src_reg_u32) 12836 dst_reg->id = 0; 12837 dst_reg->live |= REG_LIVE_WRITTEN; 12838 dst_reg->subreg_def = env->insn_idx + 1; 12839 } else { 12840 mark_reg_unknown(env, regs, 12841 insn->dst_reg); 12842 } 12843 zext_32_to_64(dst_reg); 12844 reg_bounds_sync(dst_reg); 12845 } 12846 } else { 12847 /* case: R = imm 12848 * remember the value we stored into this reg 12849 */ 12850 /* clear any state __mark_reg_known doesn't set */ 12851 mark_reg_unknown(env, regs, insn->dst_reg); 12852 regs[insn->dst_reg].type = SCALAR_VALUE; 12853 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12854 __mark_reg_known(regs + insn->dst_reg, 12855 insn->imm); 12856 } else { 12857 __mark_reg_known(regs + insn->dst_reg, 12858 (u32)insn->imm); 12859 } 12860 } 12861 12862 } else if (opcode > BPF_END) { 12863 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 12864 return -EINVAL; 12865 12866 } else { /* all other ALU ops: and, sub, xor, add, ... */ 12867 12868 if (BPF_SRC(insn->code) == BPF_X) { 12869 if (insn->imm != 0 || insn->off != 0) { 12870 verbose(env, "BPF_ALU uses reserved fields\n"); 12871 return -EINVAL; 12872 } 12873 /* check src1 operand */ 12874 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12875 if (err) 12876 return err; 12877 } else { 12878 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 12879 verbose(env, "BPF_ALU uses reserved fields\n"); 12880 return -EINVAL; 12881 } 12882 } 12883 12884 /* check src2 operand */ 12885 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12886 if (err) 12887 return err; 12888 12889 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 12890 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 12891 verbose(env, "div by zero\n"); 12892 return -EINVAL; 12893 } 12894 12895 if ((opcode == BPF_LSH || opcode == BPF_RSH || 12896 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 12897 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 12898 12899 if (insn->imm < 0 || insn->imm >= size) { 12900 verbose(env, "invalid shift %d\n", insn->imm); 12901 return -EINVAL; 12902 } 12903 } 12904 12905 /* check dest operand */ 12906 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12907 if (err) 12908 return err; 12909 12910 return adjust_reg_min_max_vals(env, insn); 12911 } 12912 12913 return 0; 12914 } 12915 12916 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 12917 struct bpf_reg_state *dst_reg, 12918 enum bpf_reg_type type, 12919 bool range_right_open) 12920 { 12921 struct bpf_func_state *state; 12922 struct bpf_reg_state *reg; 12923 int new_range; 12924 12925 if (dst_reg->off < 0 || 12926 (dst_reg->off == 0 && range_right_open)) 12927 /* This doesn't give us any range */ 12928 return; 12929 12930 if (dst_reg->umax_value > MAX_PACKET_OFF || 12931 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 12932 /* Risk of overflow. For instance, ptr + (1<<63) may be less 12933 * than pkt_end, but that's because it's also less than pkt. 12934 */ 12935 return; 12936 12937 new_range = dst_reg->off; 12938 if (range_right_open) 12939 new_range++; 12940 12941 /* Examples for register markings: 12942 * 12943 * pkt_data in dst register: 12944 * 12945 * r2 = r3; 12946 * r2 += 8; 12947 * if (r2 > pkt_end) goto <handle exception> 12948 * <access okay> 12949 * 12950 * r2 = r3; 12951 * r2 += 8; 12952 * if (r2 < pkt_end) goto <access okay> 12953 * <handle exception> 12954 * 12955 * Where: 12956 * r2 == dst_reg, pkt_end == src_reg 12957 * r2=pkt(id=n,off=8,r=0) 12958 * r3=pkt(id=n,off=0,r=0) 12959 * 12960 * pkt_data in src register: 12961 * 12962 * r2 = r3; 12963 * r2 += 8; 12964 * if (pkt_end >= r2) goto <access okay> 12965 * <handle exception> 12966 * 12967 * r2 = r3; 12968 * r2 += 8; 12969 * if (pkt_end <= r2) goto <handle exception> 12970 * <access okay> 12971 * 12972 * Where: 12973 * pkt_end == dst_reg, r2 == src_reg 12974 * r2=pkt(id=n,off=8,r=0) 12975 * r3=pkt(id=n,off=0,r=0) 12976 * 12977 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 12978 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 12979 * and [r3, r3 + 8-1) respectively is safe to access depending on 12980 * the check. 12981 */ 12982 12983 /* If our ids match, then we must have the same max_value. And we 12984 * don't care about the other reg's fixed offset, since if it's too big 12985 * the range won't allow anything. 12986 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 12987 */ 12988 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12989 if (reg->type == type && reg->id == dst_reg->id) 12990 /* keep the maximum range already checked */ 12991 reg->range = max(reg->range, new_range); 12992 })); 12993 } 12994 12995 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 12996 { 12997 struct tnum subreg = tnum_subreg(reg->var_off); 12998 s32 sval = (s32)val; 12999 13000 switch (opcode) { 13001 case BPF_JEQ: 13002 if (tnum_is_const(subreg)) 13003 return !!tnum_equals_const(subreg, val); 13004 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13005 return 0; 13006 break; 13007 case BPF_JNE: 13008 if (tnum_is_const(subreg)) 13009 return !tnum_equals_const(subreg, val); 13010 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13011 return 1; 13012 break; 13013 case BPF_JSET: 13014 if ((~subreg.mask & subreg.value) & val) 13015 return 1; 13016 if (!((subreg.mask | subreg.value) & val)) 13017 return 0; 13018 break; 13019 case BPF_JGT: 13020 if (reg->u32_min_value > val) 13021 return 1; 13022 else if (reg->u32_max_value <= val) 13023 return 0; 13024 break; 13025 case BPF_JSGT: 13026 if (reg->s32_min_value > sval) 13027 return 1; 13028 else if (reg->s32_max_value <= sval) 13029 return 0; 13030 break; 13031 case BPF_JLT: 13032 if (reg->u32_max_value < val) 13033 return 1; 13034 else if (reg->u32_min_value >= val) 13035 return 0; 13036 break; 13037 case BPF_JSLT: 13038 if (reg->s32_max_value < sval) 13039 return 1; 13040 else if (reg->s32_min_value >= sval) 13041 return 0; 13042 break; 13043 case BPF_JGE: 13044 if (reg->u32_min_value >= val) 13045 return 1; 13046 else if (reg->u32_max_value < val) 13047 return 0; 13048 break; 13049 case BPF_JSGE: 13050 if (reg->s32_min_value >= sval) 13051 return 1; 13052 else if (reg->s32_max_value < sval) 13053 return 0; 13054 break; 13055 case BPF_JLE: 13056 if (reg->u32_max_value <= val) 13057 return 1; 13058 else if (reg->u32_min_value > val) 13059 return 0; 13060 break; 13061 case BPF_JSLE: 13062 if (reg->s32_max_value <= sval) 13063 return 1; 13064 else if (reg->s32_min_value > sval) 13065 return 0; 13066 break; 13067 } 13068 13069 return -1; 13070 } 13071 13072 13073 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13074 { 13075 s64 sval = (s64)val; 13076 13077 switch (opcode) { 13078 case BPF_JEQ: 13079 if (tnum_is_const(reg->var_off)) 13080 return !!tnum_equals_const(reg->var_off, val); 13081 else if (val < reg->umin_value || val > reg->umax_value) 13082 return 0; 13083 break; 13084 case BPF_JNE: 13085 if (tnum_is_const(reg->var_off)) 13086 return !tnum_equals_const(reg->var_off, val); 13087 else if (val < reg->umin_value || val > reg->umax_value) 13088 return 1; 13089 break; 13090 case BPF_JSET: 13091 if ((~reg->var_off.mask & reg->var_off.value) & val) 13092 return 1; 13093 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13094 return 0; 13095 break; 13096 case BPF_JGT: 13097 if (reg->umin_value > val) 13098 return 1; 13099 else if (reg->umax_value <= val) 13100 return 0; 13101 break; 13102 case BPF_JSGT: 13103 if (reg->smin_value > sval) 13104 return 1; 13105 else if (reg->smax_value <= sval) 13106 return 0; 13107 break; 13108 case BPF_JLT: 13109 if (reg->umax_value < val) 13110 return 1; 13111 else if (reg->umin_value >= val) 13112 return 0; 13113 break; 13114 case BPF_JSLT: 13115 if (reg->smax_value < sval) 13116 return 1; 13117 else if (reg->smin_value >= sval) 13118 return 0; 13119 break; 13120 case BPF_JGE: 13121 if (reg->umin_value >= val) 13122 return 1; 13123 else if (reg->umax_value < val) 13124 return 0; 13125 break; 13126 case BPF_JSGE: 13127 if (reg->smin_value >= sval) 13128 return 1; 13129 else if (reg->smax_value < sval) 13130 return 0; 13131 break; 13132 case BPF_JLE: 13133 if (reg->umax_value <= val) 13134 return 1; 13135 else if (reg->umin_value > val) 13136 return 0; 13137 break; 13138 case BPF_JSLE: 13139 if (reg->smax_value <= sval) 13140 return 1; 13141 else if (reg->smin_value > sval) 13142 return 0; 13143 break; 13144 } 13145 13146 return -1; 13147 } 13148 13149 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13150 * and return: 13151 * 1 - branch will be taken and "goto target" will be executed 13152 * 0 - branch will not be taken and fall-through to next insn 13153 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13154 * range [0,10] 13155 */ 13156 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13157 bool is_jmp32) 13158 { 13159 if (__is_pointer_value(false, reg)) { 13160 if (!reg_type_not_null(reg->type)) 13161 return -1; 13162 13163 /* If pointer is valid tests against zero will fail so we can 13164 * use this to direct branch taken. 13165 */ 13166 if (val != 0) 13167 return -1; 13168 13169 switch (opcode) { 13170 case BPF_JEQ: 13171 return 0; 13172 case BPF_JNE: 13173 return 1; 13174 default: 13175 return -1; 13176 } 13177 } 13178 13179 if (is_jmp32) 13180 return is_branch32_taken(reg, val, opcode); 13181 return is_branch64_taken(reg, val, opcode); 13182 } 13183 13184 static int flip_opcode(u32 opcode) 13185 { 13186 /* How can we transform "a <op> b" into "b <op> a"? */ 13187 static const u8 opcode_flip[16] = { 13188 /* these stay the same */ 13189 [BPF_JEQ >> 4] = BPF_JEQ, 13190 [BPF_JNE >> 4] = BPF_JNE, 13191 [BPF_JSET >> 4] = BPF_JSET, 13192 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13193 [BPF_JGE >> 4] = BPF_JLE, 13194 [BPF_JGT >> 4] = BPF_JLT, 13195 [BPF_JLE >> 4] = BPF_JGE, 13196 [BPF_JLT >> 4] = BPF_JGT, 13197 [BPF_JSGE >> 4] = BPF_JSLE, 13198 [BPF_JSGT >> 4] = BPF_JSLT, 13199 [BPF_JSLE >> 4] = BPF_JSGE, 13200 [BPF_JSLT >> 4] = BPF_JSGT 13201 }; 13202 return opcode_flip[opcode >> 4]; 13203 } 13204 13205 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13206 struct bpf_reg_state *src_reg, 13207 u8 opcode) 13208 { 13209 struct bpf_reg_state *pkt; 13210 13211 if (src_reg->type == PTR_TO_PACKET_END) { 13212 pkt = dst_reg; 13213 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13214 pkt = src_reg; 13215 opcode = flip_opcode(opcode); 13216 } else { 13217 return -1; 13218 } 13219 13220 if (pkt->range >= 0) 13221 return -1; 13222 13223 switch (opcode) { 13224 case BPF_JLE: 13225 /* pkt <= pkt_end */ 13226 fallthrough; 13227 case BPF_JGT: 13228 /* pkt > pkt_end */ 13229 if (pkt->range == BEYOND_PKT_END) 13230 /* pkt has at last one extra byte beyond pkt_end */ 13231 return opcode == BPF_JGT; 13232 break; 13233 case BPF_JLT: 13234 /* pkt < pkt_end */ 13235 fallthrough; 13236 case BPF_JGE: 13237 /* pkt >= pkt_end */ 13238 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13239 return opcode == BPF_JGE; 13240 break; 13241 } 13242 return -1; 13243 } 13244 13245 /* Adjusts the register min/max values in the case that the dst_reg is the 13246 * variable register that we are working on, and src_reg is a constant or we're 13247 * simply doing a BPF_K check. 13248 * In JEQ/JNE cases we also adjust the var_off values. 13249 */ 13250 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13251 struct bpf_reg_state *false_reg, 13252 u64 val, u32 val32, 13253 u8 opcode, bool is_jmp32) 13254 { 13255 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13256 struct tnum false_64off = false_reg->var_off; 13257 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13258 struct tnum true_64off = true_reg->var_off; 13259 s64 sval = (s64)val; 13260 s32 sval32 = (s32)val32; 13261 13262 /* If the dst_reg is a pointer, we can't learn anything about its 13263 * variable offset from the compare (unless src_reg were a pointer into 13264 * the same object, but we don't bother with that. 13265 * Since false_reg and true_reg have the same type by construction, we 13266 * only need to check one of them for pointerness. 13267 */ 13268 if (__is_pointer_value(false, false_reg)) 13269 return; 13270 13271 switch (opcode) { 13272 /* JEQ/JNE comparison doesn't change the register equivalence. 13273 * 13274 * r1 = r2; 13275 * if (r1 == 42) goto label; 13276 * ... 13277 * label: // here both r1 and r2 are known to be 42. 13278 * 13279 * Hence when marking register as known preserve it's ID. 13280 */ 13281 case BPF_JEQ: 13282 if (is_jmp32) { 13283 __mark_reg32_known(true_reg, val32); 13284 true_32off = tnum_subreg(true_reg->var_off); 13285 } else { 13286 ___mark_reg_known(true_reg, val); 13287 true_64off = true_reg->var_off; 13288 } 13289 break; 13290 case BPF_JNE: 13291 if (is_jmp32) { 13292 __mark_reg32_known(false_reg, val32); 13293 false_32off = tnum_subreg(false_reg->var_off); 13294 } else { 13295 ___mark_reg_known(false_reg, val); 13296 false_64off = false_reg->var_off; 13297 } 13298 break; 13299 case BPF_JSET: 13300 if (is_jmp32) { 13301 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13302 if (is_power_of_2(val32)) 13303 true_32off = tnum_or(true_32off, 13304 tnum_const(val32)); 13305 } else { 13306 false_64off = tnum_and(false_64off, tnum_const(~val)); 13307 if (is_power_of_2(val)) 13308 true_64off = tnum_or(true_64off, 13309 tnum_const(val)); 13310 } 13311 break; 13312 case BPF_JGE: 13313 case BPF_JGT: 13314 { 13315 if (is_jmp32) { 13316 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13317 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13318 13319 false_reg->u32_max_value = min(false_reg->u32_max_value, 13320 false_umax); 13321 true_reg->u32_min_value = max(true_reg->u32_min_value, 13322 true_umin); 13323 } else { 13324 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13325 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13326 13327 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13328 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13329 } 13330 break; 13331 } 13332 case BPF_JSGE: 13333 case BPF_JSGT: 13334 { 13335 if (is_jmp32) { 13336 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13337 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13338 13339 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13340 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13341 } else { 13342 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13343 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13344 13345 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13346 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13347 } 13348 break; 13349 } 13350 case BPF_JLE: 13351 case BPF_JLT: 13352 { 13353 if (is_jmp32) { 13354 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13355 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13356 13357 false_reg->u32_min_value = max(false_reg->u32_min_value, 13358 false_umin); 13359 true_reg->u32_max_value = min(true_reg->u32_max_value, 13360 true_umax); 13361 } else { 13362 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13363 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13364 13365 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13366 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13367 } 13368 break; 13369 } 13370 case BPF_JSLE: 13371 case BPF_JSLT: 13372 { 13373 if (is_jmp32) { 13374 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13375 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13376 13377 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13378 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13379 } else { 13380 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13381 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13382 13383 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13384 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13385 } 13386 break; 13387 } 13388 default: 13389 return; 13390 } 13391 13392 if (is_jmp32) { 13393 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13394 tnum_subreg(false_32off)); 13395 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13396 tnum_subreg(true_32off)); 13397 __reg_combine_32_into_64(false_reg); 13398 __reg_combine_32_into_64(true_reg); 13399 } else { 13400 false_reg->var_off = false_64off; 13401 true_reg->var_off = true_64off; 13402 __reg_combine_64_into_32(false_reg); 13403 __reg_combine_64_into_32(true_reg); 13404 } 13405 } 13406 13407 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13408 * the variable reg. 13409 */ 13410 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13411 struct bpf_reg_state *false_reg, 13412 u64 val, u32 val32, 13413 u8 opcode, bool is_jmp32) 13414 { 13415 opcode = flip_opcode(opcode); 13416 /* This uses zero as "not present in table"; luckily the zero opcode, 13417 * BPF_JA, can't get here. 13418 */ 13419 if (opcode) 13420 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13421 } 13422 13423 /* Regs are known to be equal, so intersect their min/max/var_off */ 13424 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13425 struct bpf_reg_state *dst_reg) 13426 { 13427 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13428 dst_reg->umin_value); 13429 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13430 dst_reg->umax_value); 13431 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13432 dst_reg->smin_value); 13433 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13434 dst_reg->smax_value); 13435 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13436 dst_reg->var_off); 13437 reg_bounds_sync(src_reg); 13438 reg_bounds_sync(dst_reg); 13439 } 13440 13441 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13442 struct bpf_reg_state *true_dst, 13443 struct bpf_reg_state *false_src, 13444 struct bpf_reg_state *false_dst, 13445 u8 opcode) 13446 { 13447 switch (opcode) { 13448 case BPF_JEQ: 13449 __reg_combine_min_max(true_src, true_dst); 13450 break; 13451 case BPF_JNE: 13452 __reg_combine_min_max(false_src, false_dst); 13453 break; 13454 } 13455 } 13456 13457 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13458 struct bpf_reg_state *reg, u32 id, 13459 bool is_null) 13460 { 13461 if (type_may_be_null(reg->type) && reg->id == id && 13462 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13463 /* Old offset (both fixed and variable parts) should have been 13464 * known-zero, because we don't allow pointer arithmetic on 13465 * pointers that might be NULL. If we see this happening, don't 13466 * convert the register. 13467 * 13468 * But in some cases, some helpers that return local kptrs 13469 * advance offset for the returned pointer. In those cases, it 13470 * is fine to expect to see reg->off. 13471 */ 13472 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13473 return; 13474 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13475 WARN_ON_ONCE(reg->off)) 13476 return; 13477 13478 if (is_null) { 13479 reg->type = SCALAR_VALUE; 13480 /* We don't need id and ref_obj_id from this point 13481 * onwards anymore, thus we should better reset it, 13482 * so that state pruning has chances to take effect. 13483 */ 13484 reg->id = 0; 13485 reg->ref_obj_id = 0; 13486 13487 return; 13488 } 13489 13490 mark_ptr_not_null_reg(reg); 13491 13492 if (!reg_may_point_to_spin_lock(reg)) { 13493 /* For not-NULL ptr, reg->ref_obj_id will be reset 13494 * in release_reference(). 13495 * 13496 * reg->id is still used by spin_lock ptr. Other 13497 * than spin_lock ptr type, reg->id can be reset. 13498 */ 13499 reg->id = 0; 13500 } 13501 } 13502 } 13503 13504 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13505 * be folded together at some point. 13506 */ 13507 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13508 bool is_null) 13509 { 13510 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13511 struct bpf_reg_state *regs = state->regs, *reg; 13512 u32 ref_obj_id = regs[regno].ref_obj_id; 13513 u32 id = regs[regno].id; 13514 13515 if (ref_obj_id && ref_obj_id == id && is_null) 13516 /* regs[regno] is in the " == NULL" branch. 13517 * No one could have freed the reference state before 13518 * doing the NULL check. 13519 */ 13520 WARN_ON_ONCE(release_reference_state(state, id)); 13521 13522 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13523 mark_ptr_or_null_reg(state, reg, id, is_null); 13524 })); 13525 } 13526 13527 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13528 struct bpf_reg_state *dst_reg, 13529 struct bpf_reg_state *src_reg, 13530 struct bpf_verifier_state *this_branch, 13531 struct bpf_verifier_state *other_branch) 13532 { 13533 if (BPF_SRC(insn->code) != BPF_X) 13534 return false; 13535 13536 /* Pointers are always 64-bit. */ 13537 if (BPF_CLASS(insn->code) == BPF_JMP32) 13538 return false; 13539 13540 switch (BPF_OP(insn->code)) { 13541 case BPF_JGT: 13542 if ((dst_reg->type == PTR_TO_PACKET && 13543 src_reg->type == PTR_TO_PACKET_END) || 13544 (dst_reg->type == PTR_TO_PACKET_META && 13545 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13546 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13547 find_good_pkt_pointers(this_branch, dst_reg, 13548 dst_reg->type, false); 13549 mark_pkt_end(other_branch, insn->dst_reg, true); 13550 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13551 src_reg->type == PTR_TO_PACKET) || 13552 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13553 src_reg->type == PTR_TO_PACKET_META)) { 13554 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13555 find_good_pkt_pointers(other_branch, src_reg, 13556 src_reg->type, true); 13557 mark_pkt_end(this_branch, insn->src_reg, false); 13558 } else { 13559 return false; 13560 } 13561 break; 13562 case BPF_JLT: 13563 if ((dst_reg->type == PTR_TO_PACKET && 13564 src_reg->type == PTR_TO_PACKET_END) || 13565 (dst_reg->type == PTR_TO_PACKET_META && 13566 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13567 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13568 find_good_pkt_pointers(other_branch, dst_reg, 13569 dst_reg->type, true); 13570 mark_pkt_end(this_branch, insn->dst_reg, false); 13571 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13572 src_reg->type == PTR_TO_PACKET) || 13573 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13574 src_reg->type == PTR_TO_PACKET_META)) { 13575 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13576 find_good_pkt_pointers(this_branch, src_reg, 13577 src_reg->type, false); 13578 mark_pkt_end(other_branch, insn->src_reg, true); 13579 } else { 13580 return false; 13581 } 13582 break; 13583 case BPF_JGE: 13584 if ((dst_reg->type == PTR_TO_PACKET && 13585 src_reg->type == PTR_TO_PACKET_END) || 13586 (dst_reg->type == PTR_TO_PACKET_META && 13587 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13588 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13589 find_good_pkt_pointers(this_branch, dst_reg, 13590 dst_reg->type, true); 13591 mark_pkt_end(other_branch, insn->dst_reg, false); 13592 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13593 src_reg->type == PTR_TO_PACKET) || 13594 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13595 src_reg->type == PTR_TO_PACKET_META)) { 13596 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13597 find_good_pkt_pointers(other_branch, src_reg, 13598 src_reg->type, false); 13599 mark_pkt_end(this_branch, insn->src_reg, true); 13600 } else { 13601 return false; 13602 } 13603 break; 13604 case BPF_JLE: 13605 if ((dst_reg->type == PTR_TO_PACKET && 13606 src_reg->type == PTR_TO_PACKET_END) || 13607 (dst_reg->type == PTR_TO_PACKET_META && 13608 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13609 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 13610 find_good_pkt_pointers(other_branch, dst_reg, 13611 dst_reg->type, false); 13612 mark_pkt_end(this_branch, insn->dst_reg, true); 13613 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13614 src_reg->type == PTR_TO_PACKET) || 13615 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13616 src_reg->type == PTR_TO_PACKET_META)) { 13617 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 13618 find_good_pkt_pointers(this_branch, src_reg, 13619 src_reg->type, true); 13620 mark_pkt_end(other_branch, insn->src_reg, false); 13621 } else { 13622 return false; 13623 } 13624 break; 13625 default: 13626 return false; 13627 } 13628 13629 return true; 13630 } 13631 13632 static void find_equal_scalars(struct bpf_verifier_state *vstate, 13633 struct bpf_reg_state *known_reg) 13634 { 13635 struct bpf_func_state *state; 13636 struct bpf_reg_state *reg; 13637 13638 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13639 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 13640 copy_register_state(reg, known_reg); 13641 })); 13642 } 13643 13644 static int check_cond_jmp_op(struct bpf_verifier_env *env, 13645 struct bpf_insn *insn, int *insn_idx) 13646 { 13647 struct bpf_verifier_state *this_branch = env->cur_state; 13648 struct bpf_verifier_state *other_branch; 13649 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 13650 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 13651 struct bpf_reg_state *eq_branch_regs; 13652 u8 opcode = BPF_OP(insn->code); 13653 bool is_jmp32; 13654 int pred = -1; 13655 int err; 13656 13657 /* Only conditional jumps are expected to reach here. */ 13658 if (opcode == BPF_JA || opcode > BPF_JSLE) { 13659 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 13660 return -EINVAL; 13661 } 13662 13663 if (BPF_SRC(insn->code) == BPF_X) { 13664 if (insn->imm != 0) { 13665 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13666 return -EINVAL; 13667 } 13668 13669 /* check src1 operand */ 13670 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13671 if (err) 13672 return err; 13673 13674 if (is_pointer_value(env, insn->src_reg)) { 13675 verbose(env, "R%d pointer comparison prohibited\n", 13676 insn->src_reg); 13677 return -EACCES; 13678 } 13679 src_reg = ®s[insn->src_reg]; 13680 } else { 13681 if (insn->src_reg != BPF_REG_0) { 13682 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13683 return -EINVAL; 13684 } 13685 } 13686 13687 /* check src2 operand */ 13688 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13689 if (err) 13690 return err; 13691 13692 dst_reg = ®s[insn->dst_reg]; 13693 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 13694 13695 if (BPF_SRC(insn->code) == BPF_K) { 13696 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 13697 } else if (src_reg->type == SCALAR_VALUE && 13698 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 13699 pred = is_branch_taken(dst_reg, 13700 tnum_subreg(src_reg->var_off).value, 13701 opcode, 13702 is_jmp32); 13703 } else if (src_reg->type == SCALAR_VALUE && 13704 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 13705 pred = is_branch_taken(dst_reg, 13706 src_reg->var_off.value, 13707 opcode, 13708 is_jmp32); 13709 } else if (dst_reg->type == SCALAR_VALUE && 13710 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 13711 pred = is_branch_taken(src_reg, 13712 tnum_subreg(dst_reg->var_off).value, 13713 flip_opcode(opcode), 13714 is_jmp32); 13715 } else if (dst_reg->type == SCALAR_VALUE && 13716 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 13717 pred = is_branch_taken(src_reg, 13718 dst_reg->var_off.value, 13719 flip_opcode(opcode), 13720 is_jmp32); 13721 } else if (reg_is_pkt_pointer_any(dst_reg) && 13722 reg_is_pkt_pointer_any(src_reg) && 13723 !is_jmp32) { 13724 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 13725 } 13726 13727 if (pred >= 0) { 13728 /* If we get here with a dst_reg pointer type it is because 13729 * above is_branch_taken() special cased the 0 comparison. 13730 */ 13731 if (!__is_pointer_value(false, dst_reg)) 13732 err = mark_chain_precision(env, insn->dst_reg); 13733 if (BPF_SRC(insn->code) == BPF_X && !err && 13734 !__is_pointer_value(false, src_reg)) 13735 err = mark_chain_precision(env, insn->src_reg); 13736 if (err) 13737 return err; 13738 } 13739 13740 if (pred == 1) { 13741 /* Only follow the goto, ignore fall-through. If needed, push 13742 * the fall-through branch for simulation under speculative 13743 * execution. 13744 */ 13745 if (!env->bypass_spec_v1 && 13746 !sanitize_speculative_path(env, insn, *insn_idx + 1, 13747 *insn_idx)) 13748 return -EFAULT; 13749 *insn_idx += insn->off; 13750 return 0; 13751 } else if (pred == 0) { 13752 /* Only follow the fall-through branch, since that's where the 13753 * program will go. If needed, push the goto branch for 13754 * simulation under speculative execution. 13755 */ 13756 if (!env->bypass_spec_v1 && 13757 !sanitize_speculative_path(env, insn, 13758 *insn_idx + insn->off + 1, 13759 *insn_idx)) 13760 return -EFAULT; 13761 return 0; 13762 } 13763 13764 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 13765 false); 13766 if (!other_branch) 13767 return -EFAULT; 13768 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 13769 13770 /* detect if we are comparing against a constant value so we can adjust 13771 * our min/max values for our dst register. 13772 * this is only legit if both are scalars (or pointers to the same 13773 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 13774 * because otherwise the different base pointers mean the offsets aren't 13775 * comparable. 13776 */ 13777 if (BPF_SRC(insn->code) == BPF_X) { 13778 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 13779 13780 if (dst_reg->type == SCALAR_VALUE && 13781 src_reg->type == SCALAR_VALUE) { 13782 if (tnum_is_const(src_reg->var_off) || 13783 (is_jmp32 && 13784 tnum_is_const(tnum_subreg(src_reg->var_off)))) 13785 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13786 dst_reg, 13787 src_reg->var_off.value, 13788 tnum_subreg(src_reg->var_off).value, 13789 opcode, is_jmp32); 13790 else if (tnum_is_const(dst_reg->var_off) || 13791 (is_jmp32 && 13792 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 13793 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 13794 src_reg, 13795 dst_reg->var_off.value, 13796 tnum_subreg(dst_reg->var_off).value, 13797 opcode, is_jmp32); 13798 else if (!is_jmp32 && 13799 (opcode == BPF_JEQ || opcode == BPF_JNE)) 13800 /* Comparing for equality, we can combine knowledge */ 13801 reg_combine_min_max(&other_branch_regs[insn->src_reg], 13802 &other_branch_regs[insn->dst_reg], 13803 src_reg, dst_reg, opcode); 13804 if (src_reg->id && 13805 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 13806 find_equal_scalars(this_branch, src_reg); 13807 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 13808 } 13809 13810 } 13811 } else if (dst_reg->type == SCALAR_VALUE) { 13812 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13813 dst_reg, insn->imm, (u32)insn->imm, 13814 opcode, is_jmp32); 13815 } 13816 13817 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 13818 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 13819 find_equal_scalars(this_branch, dst_reg); 13820 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 13821 } 13822 13823 /* if one pointer register is compared to another pointer 13824 * register check if PTR_MAYBE_NULL could be lifted. 13825 * E.g. register A - maybe null 13826 * register B - not null 13827 * for JNE A, B, ... - A is not null in the false branch; 13828 * for JEQ A, B, ... - A is not null in the true branch. 13829 * 13830 * Since PTR_TO_BTF_ID points to a kernel struct that does 13831 * not need to be null checked by the BPF program, i.e., 13832 * could be null even without PTR_MAYBE_NULL marking, so 13833 * only propagate nullness when neither reg is that type. 13834 */ 13835 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 13836 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 13837 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 13838 base_type(src_reg->type) != PTR_TO_BTF_ID && 13839 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 13840 eq_branch_regs = NULL; 13841 switch (opcode) { 13842 case BPF_JEQ: 13843 eq_branch_regs = other_branch_regs; 13844 break; 13845 case BPF_JNE: 13846 eq_branch_regs = regs; 13847 break; 13848 default: 13849 /* do nothing */ 13850 break; 13851 } 13852 if (eq_branch_regs) { 13853 if (type_may_be_null(src_reg->type)) 13854 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 13855 else 13856 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 13857 } 13858 } 13859 13860 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 13861 * NOTE: these optimizations below are related with pointer comparison 13862 * which will never be JMP32. 13863 */ 13864 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 13865 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 13866 type_may_be_null(dst_reg->type)) { 13867 /* Mark all identical registers in each branch as either 13868 * safe or unknown depending R == 0 or R != 0 conditional. 13869 */ 13870 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 13871 opcode == BPF_JNE); 13872 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 13873 opcode == BPF_JEQ); 13874 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 13875 this_branch, other_branch) && 13876 is_pointer_value(env, insn->dst_reg)) { 13877 verbose(env, "R%d pointer comparison prohibited\n", 13878 insn->dst_reg); 13879 return -EACCES; 13880 } 13881 if (env->log.level & BPF_LOG_LEVEL) 13882 print_insn_state(env, this_branch->frame[this_branch->curframe]); 13883 return 0; 13884 } 13885 13886 /* verify BPF_LD_IMM64 instruction */ 13887 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 13888 { 13889 struct bpf_insn_aux_data *aux = cur_aux(env); 13890 struct bpf_reg_state *regs = cur_regs(env); 13891 struct bpf_reg_state *dst_reg; 13892 struct bpf_map *map; 13893 int err; 13894 13895 if (BPF_SIZE(insn->code) != BPF_DW) { 13896 verbose(env, "invalid BPF_LD_IMM insn\n"); 13897 return -EINVAL; 13898 } 13899 if (insn->off != 0) { 13900 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 13901 return -EINVAL; 13902 } 13903 13904 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13905 if (err) 13906 return err; 13907 13908 dst_reg = ®s[insn->dst_reg]; 13909 if (insn->src_reg == 0) { 13910 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 13911 13912 dst_reg->type = SCALAR_VALUE; 13913 __mark_reg_known(®s[insn->dst_reg], imm); 13914 return 0; 13915 } 13916 13917 /* All special src_reg cases are listed below. From this point onwards 13918 * we either succeed and assign a corresponding dst_reg->type after 13919 * zeroing the offset, or fail and reject the program. 13920 */ 13921 mark_reg_known_zero(env, regs, insn->dst_reg); 13922 13923 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 13924 dst_reg->type = aux->btf_var.reg_type; 13925 switch (base_type(dst_reg->type)) { 13926 case PTR_TO_MEM: 13927 dst_reg->mem_size = aux->btf_var.mem_size; 13928 break; 13929 case PTR_TO_BTF_ID: 13930 dst_reg->btf = aux->btf_var.btf; 13931 dst_reg->btf_id = aux->btf_var.btf_id; 13932 break; 13933 default: 13934 verbose(env, "bpf verifier is misconfigured\n"); 13935 return -EFAULT; 13936 } 13937 return 0; 13938 } 13939 13940 if (insn->src_reg == BPF_PSEUDO_FUNC) { 13941 struct bpf_prog_aux *aux = env->prog->aux; 13942 u32 subprogno = find_subprog(env, 13943 env->insn_idx + insn->imm + 1); 13944 13945 if (!aux->func_info) { 13946 verbose(env, "missing btf func_info\n"); 13947 return -EINVAL; 13948 } 13949 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 13950 verbose(env, "callback function not static\n"); 13951 return -EINVAL; 13952 } 13953 13954 dst_reg->type = PTR_TO_FUNC; 13955 dst_reg->subprogno = subprogno; 13956 return 0; 13957 } 13958 13959 map = env->used_maps[aux->map_index]; 13960 dst_reg->map_ptr = map; 13961 13962 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 13963 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 13964 dst_reg->type = PTR_TO_MAP_VALUE; 13965 dst_reg->off = aux->map_off; 13966 WARN_ON_ONCE(map->max_entries != 1); 13967 /* We want reg->id to be same (0) as map_value is not distinct */ 13968 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 13969 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 13970 dst_reg->type = CONST_PTR_TO_MAP; 13971 } else { 13972 verbose(env, "bpf verifier is misconfigured\n"); 13973 return -EINVAL; 13974 } 13975 13976 return 0; 13977 } 13978 13979 static bool may_access_skb(enum bpf_prog_type type) 13980 { 13981 switch (type) { 13982 case BPF_PROG_TYPE_SOCKET_FILTER: 13983 case BPF_PROG_TYPE_SCHED_CLS: 13984 case BPF_PROG_TYPE_SCHED_ACT: 13985 return true; 13986 default: 13987 return false; 13988 } 13989 } 13990 13991 /* verify safety of LD_ABS|LD_IND instructions: 13992 * - they can only appear in the programs where ctx == skb 13993 * - since they are wrappers of function calls, they scratch R1-R5 registers, 13994 * preserve R6-R9, and store return value into R0 13995 * 13996 * Implicit input: 13997 * ctx == skb == R6 == CTX 13998 * 13999 * Explicit input: 14000 * SRC == any register 14001 * IMM == 32-bit immediate 14002 * 14003 * Output: 14004 * R0 - 8/16/32-bit skb data converted to cpu endianness 14005 */ 14006 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14007 { 14008 struct bpf_reg_state *regs = cur_regs(env); 14009 static const int ctx_reg = BPF_REG_6; 14010 u8 mode = BPF_MODE(insn->code); 14011 int i, err; 14012 14013 if (!may_access_skb(resolve_prog_type(env->prog))) { 14014 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14015 return -EINVAL; 14016 } 14017 14018 if (!env->ops->gen_ld_abs) { 14019 verbose(env, "bpf verifier is misconfigured\n"); 14020 return -EINVAL; 14021 } 14022 14023 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14024 BPF_SIZE(insn->code) == BPF_DW || 14025 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14026 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14027 return -EINVAL; 14028 } 14029 14030 /* check whether implicit source operand (register R6) is readable */ 14031 err = check_reg_arg(env, ctx_reg, SRC_OP); 14032 if (err) 14033 return err; 14034 14035 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14036 * gen_ld_abs() may terminate the program at runtime, leading to 14037 * reference leak. 14038 */ 14039 err = check_reference_leak(env); 14040 if (err) { 14041 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14042 return err; 14043 } 14044 14045 if (env->cur_state->active_lock.ptr) { 14046 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14047 return -EINVAL; 14048 } 14049 14050 if (env->cur_state->active_rcu_lock) { 14051 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14052 return -EINVAL; 14053 } 14054 14055 if (regs[ctx_reg].type != PTR_TO_CTX) { 14056 verbose(env, 14057 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14058 return -EINVAL; 14059 } 14060 14061 if (mode == BPF_IND) { 14062 /* check explicit source operand */ 14063 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14064 if (err) 14065 return err; 14066 } 14067 14068 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14069 if (err < 0) 14070 return err; 14071 14072 /* reset caller saved regs to unreadable */ 14073 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14074 mark_reg_not_init(env, regs, caller_saved[i]); 14075 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14076 } 14077 14078 /* mark destination R0 register as readable, since it contains 14079 * the value fetched from the packet. 14080 * Already marked as written above. 14081 */ 14082 mark_reg_unknown(env, regs, BPF_REG_0); 14083 /* ld_abs load up to 32-bit skb data. */ 14084 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14085 return 0; 14086 } 14087 14088 static int check_return_code(struct bpf_verifier_env *env) 14089 { 14090 struct tnum enforce_attach_type_range = tnum_unknown; 14091 const struct bpf_prog *prog = env->prog; 14092 struct bpf_reg_state *reg; 14093 struct tnum range = tnum_range(0, 1); 14094 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14095 int err; 14096 struct bpf_func_state *frame = env->cur_state->frame[0]; 14097 const bool is_subprog = frame->subprogno; 14098 14099 /* LSM and struct_ops func-ptr's return type could be "void" */ 14100 if (!is_subprog) { 14101 switch (prog_type) { 14102 case BPF_PROG_TYPE_LSM: 14103 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14104 /* See below, can be 0 or 0-1 depending on hook. */ 14105 break; 14106 fallthrough; 14107 case BPF_PROG_TYPE_STRUCT_OPS: 14108 if (!prog->aux->attach_func_proto->type) 14109 return 0; 14110 break; 14111 default: 14112 break; 14113 } 14114 } 14115 14116 /* eBPF calling convention is such that R0 is used 14117 * to return the value from eBPF program. 14118 * Make sure that it's readable at this time 14119 * of bpf_exit, which means that program wrote 14120 * something into it earlier 14121 */ 14122 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14123 if (err) 14124 return err; 14125 14126 if (is_pointer_value(env, BPF_REG_0)) { 14127 verbose(env, "R0 leaks addr as return value\n"); 14128 return -EACCES; 14129 } 14130 14131 reg = cur_regs(env) + BPF_REG_0; 14132 14133 if (frame->in_async_callback_fn) { 14134 /* enforce return zero from async callbacks like timer */ 14135 if (reg->type != SCALAR_VALUE) { 14136 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14137 reg_type_str(env, reg->type)); 14138 return -EINVAL; 14139 } 14140 14141 if (!tnum_in(tnum_const(0), reg->var_off)) { 14142 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 14143 return -EINVAL; 14144 } 14145 return 0; 14146 } 14147 14148 if (is_subprog) { 14149 if (reg->type != SCALAR_VALUE) { 14150 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14151 reg_type_str(env, reg->type)); 14152 return -EINVAL; 14153 } 14154 return 0; 14155 } 14156 14157 switch (prog_type) { 14158 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14159 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14160 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14161 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14162 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14163 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14164 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14165 range = tnum_range(1, 1); 14166 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14167 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14168 range = tnum_range(0, 3); 14169 break; 14170 case BPF_PROG_TYPE_CGROUP_SKB: 14171 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14172 range = tnum_range(0, 3); 14173 enforce_attach_type_range = tnum_range(2, 3); 14174 } 14175 break; 14176 case BPF_PROG_TYPE_CGROUP_SOCK: 14177 case BPF_PROG_TYPE_SOCK_OPS: 14178 case BPF_PROG_TYPE_CGROUP_DEVICE: 14179 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14180 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14181 break; 14182 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14183 if (!env->prog->aux->attach_btf_id) 14184 return 0; 14185 range = tnum_const(0); 14186 break; 14187 case BPF_PROG_TYPE_TRACING: 14188 switch (env->prog->expected_attach_type) { 14189 case BPF_TRACE_FENTRY: 14190 case BPF_TRACE_FEXIT: 14191 range = tnum_const(0); 14192 break; 14193 case BPF_TRACE_RAW_TP: 14194 case BPF_MODIFY_RETURN: 14195 return 0; 14196 case BPF_TRACE_ITER: 14197 break; 14198 default: 14199 return -ENOTSUPP; 14200 } 14201 break; 14202 case BPF_PROG_TYPE_SK_LOOKUP: 14203 range = tnum_range(SK_DROP, SK_PASS); 14204 break; 14205 14206 case BPF_PROG_TYPE_LSM: 14207 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14208 /* Regular BPF_PROG_TYPE_LSM programs can return 14209 * any value. 14210 */ 14211 return 0; 14212 } 14213 if (!env->prog->aux->attach_func_proto->type) { 14214 /* Make sure programs that attach to void 14215 * hooks don't try to modify return value. 14216 */ 14217 range = tnum_range(1, 1); 14218 } 14219 break; 14220 14221 case BPF_PROG_TYPE_NETFILTER: 14222 range = tnum_range(NF_DROP, NF_ACCEPT); 14223 break; 14224 case BPF_PROG_TYPE_EXT: 14225 /* freplace program can return anything as its return value 14226 * depends on the to-be-replaced kernel func or bpf program. 14227 */ 14228 default: 14229 return 0; 14230 } 14231 14232 if (reg->type != SCALAR_VALUE) { 14233 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14234 reg_type_str(env, reg->type)); 14235 return -EINVAL; 14236 } 14237 14238 if (!tnum_in(range, reg->var_off)) { 14239 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14240 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14241 prog_type == BPF_PROG_TYPE_LSM && 14242 !prog->aux->attach_func_proto->type) 14243 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14244 return -EINVAL; 14245 } 14246 14247 if (!tnum_is_unknown(enforce_attach_type_range) && 14248 tnum_in(enforce_attach_type_range, reg->var_off)) 14249 env->prog->enforce_expected_attach_type = 1; 14250 return 0; 14251 } 14252 14253 /* non-recursive DFS pseudo code 14254 * 1 procedure DFS-iterative(G,v): 14255 * 2 label v as discovered 14256 * 3 let S be a stack 14257 * 4 S.push(v) 14258 * 5 while S is not empty 14259 * 6 t <- S.peek() 14260 * 7 if t is what we're looking for: 14261 * 8 return t 14262 * 9 for all edges e in G.adjacentEdges(t) do 14263 * 10 if edge e is already labelled 14264 * 11 continue with the next edge 14265 * 12 w <- G.adjacentVertex(t,e) 14266 * 13 if vertex w is not discovered and not explored 14267 * 14 label e as tree-edge 14268 * 15 label w as discovered 14269 * 16 S.push(w) 14270 * 17 continue at 5 14271 * 18 else if vertex w is discovered 14272 * 19 label e as back-edge 14273 * 20 else 14274 * 21 // vertex w is explored 14275 * 22 label e as forward- or cross-edge 14276 * 23 label t as explored 14277 * 24 S.pop() 14278 * 14279 * convention: 14280 * 0x10 - discovered 14281 * 0x11 - discovered and fall-through edge labelled 14282 * 0x12 - discovered and fall-through and branch edges labelled 14283 * 0x20 - explored 14284 */ 14285 14286 enum { 14287 DISCOVERED = 0x10, 14288 EXPLORED = 0x20, 14289 FALLTHROUGH = 1, 14290 BRANCH = 2, 14291 }; 14292 14293 static u32 state_htab_size(struct bpf_verifier_env *env) 14294 { 14295 return env->prog->len; 14296 } 14297 14298 static struct bpf_verifier_state_list **explored_state( 14299 struct bpf_verifier_env *env, 14300 int idx) 14301 { 14302 struct bpf_verifier_state *cur = env->cur_state; 14303 struct bpf_func_state *state = cur->frame[cur->curframe]; 14304 14305 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14306 } 14307 14308 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14309 { 14310 env->insn_aux_data[idx].prune_point = true; 14311 } 14312 14313 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14314 { 14315 return env->insn_aux_data[insn_idx].prune_point; 14316 } 14317 14318 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14319 { 14320 env->insn_aux_data[idx].force_checkpoint = true; 14321 } 14322 14323 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14324 { 14325 return env->insn_aux_data[insn_idx].force_checkpoint; 14326 } 14327 14328 14329 enum { 14330 DONE_EXPLORING = 0, 14331 KEEP_EXPLORING = 1, 14332 }; 14333 14334 /* t, w, e - match pseudo-code above: 14335 * t - index of current instruction 14336 * w - next instruction 14337 * e - edge 14338 */ 14339 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14340 bool loop_ok) 14341 { 14342 int *insn_stack = env->cfg.insn_stack; 14343 int *insn_state = env->cfg.insn_state; 14344 14345 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14346 return DONE_EXPLORING; 14347 14348 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14349 return DONE_EXPLORING; 14350 14351 if (w < 0 || w >= env->prog->len) { 14352 verbose_linfo(env, t, "%d: ", t); 14353 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14354 return -EINVAL; 14355 } 14356 14357 if (e == BRANCH) { 14358 /* mark branch target for state pruning */ 14359 mark_prune_point(env, w); 14360 mark_jmp_point(env, w); 14361 } 14362 14363 if (insn_state[w] == 0) { 14364 /* tree-edge */ 14365 insn_state[t] = DISCOVERED | e; 14366 insn_state[w] = DISCOVERED; 14367 if (env->cfg.cur_stack >= env->prog->len) 14368 return -E2BIG; 14369 insn_stack[env->cfg.cur_stack++] = w; 14370 return KEEP_EXPLORING; 14371 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14372 if (loop_ok && env->bpf_capable) 14373 return DONE_EXPLORING; 14374 verbose_linfo(env, t, "%d: ", t); 14375 verbose_linfo(env, w, "%d: ", w); 14376 verbose(env, "back-edge from insn %d to %d\n", t, w); 14377 return -EINVAL; 14378 } else if (insn_state[w] == EXPLORED) { 14379 /* forward- or cross-edge */ 14380 insn_state[t] = DISCOVERED | e; 14381 } else { 14382 verbose(env, "insn state internal bug\n"); 14383 return -EFAULT; 14384 } 14385 return DONE_EXPLORING; 14386 } 14387 14388 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14389 struct bpf_verifier_env *env, 14390 bool visit_callee) 14391 { 14392 int ret; 14393 14394 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14395 if (ret) 14396 return ret; 14397 14398 mark_prune_point(env, t + 1); 14399 /* when we exit from subprog, we need to record non-linear history */ 14400 mark_jmp_point(env, t + 1); 14401 14402 if (visit_callee) { 14403 mark_prune_point(env, t); 14404 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14405 /* It's ok to allow recursion from CFG point of 14406 * view. __check_func_call() will do the actual 14407 * check. 14408 */ 14409 bpf_pseudo_func(insns + t)); 14410 } 14411 return ret; 14412 } 14413 14414 /* Visits the instruction at index t and returns one of the following: 14415 * < 0 - an error occurred 14416 * DONE_EXPLORING - the instruction was fully explored 14417 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14418 */ 14419 static int visit_insn(int t, struct bpf_verifier_env *env) 14420 { 14421 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14422 int ret; 14423 14424 if (bpf_pseudo_func(insn)) 14425 return visit_func_call_insn(t, insns, env, true); 14426 14427 /* All non-branch instructions have a single fall-through edge. */ 14428 if (BPF_CLASS(insn->code) != BPF_JMP && 14429 BPF_CLASS(insn->code) != BPF_JMP32) 14430 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14431 14432 switch (BPF_OP(insn->code)) { 14433 case BPF_EXIT: 14434 return DONE_EXPLORING; 14435 14436 case BPF_CALL: 14437 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14438 /* Mark this call insn as a prune point to trigger 14439 * is_state_visited() check before call itself is 14440 * processed by __check_func_call(). Otherwise new 14441 * async state will be pushed for further exploration. 14442 */ 14443 mark_prune_point(env, t); 14444 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14445 struct bpf_kfunc_call_arg_meta meta; 14446 14447 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14448 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14449 mark_prune_point(env, t); 14450 /* Checking and saving state checkpoints at iter_next() call 14451 * is crucial for fast convergence of open-coded iterator loop 14452 * logic, so we need to force it. If we don't do that, 14453 * is_state_visited() might skip saving a checkpoint, causing 14454 * unnecessarily long sequence of not checkpointed 14455 * instructions and jumps, leading to exhaustion of jump 14456 * history buffer, and potentially other undesired outcomes. 14457 * It is expected that with correct open-coded iterators 14458 * convergence will happen quickly, so we don't run a risk of 14459 * exhausting memory. 14460 */ 14461 mark_force_checkpoint(env, t); 14462 } 14463 } 14464 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14465 14466 case BPF_JA: 14467 if (BPF_SRC(insn->code) != BPF_K) 14468 return -EINVAL; 14469 14470 /* unconditional jump with single edge */ 14471 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env, 14472 true); 14473 if (ret) 14474 return ret; 14475 14476 mark_prune_point(env, t + insn->off + 1); 14477 mark_jmp_point(env, t + insn->off + 1); 14478 14479 return ret; 14480 14481 default: 14482 /* conditional jump with two edges */ 14483 mark_prune_point(env, t); 14484 14485 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14486 if (ret) 14487 return ret; 14488 14489 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14490 } 14491 } 14492 14493 /* non-recursive depth-first-search to detect loops in BPF program 14494 * loop == back-edge in directed graph 14495 */ 14496 static int check_cfg(struct bpf_verifier_env *env) 14497 { 14498 int insn_cnt = env->prog->len; 14499 int *insn_stack, *insn_state; 14500 int ret = 0; 14501 int i; 14502 14503 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14504 if (!insn_state) 14505 return -ENOMEM; 14506 14507 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14508 if (!insn_stack) { 14509 kvfree(insn_state); 14510 return -ENOMEM; 14511 } 14512 14513 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14514 insn_stack[0] = 0; /* 0 is the first instruction */ 14515 env->cfg.cur_stack = 1; 14516 14517 while (env->cfg.cur_stack > 0) { 14518 int t = insn_stack[env->cfg.cur_stack - 1]; 14519 14520 ret = visit_insn(t, env); 14521 switch (ret) { 14522 case DONE_EXPLORING: 14523 insn_state[t] = EXPLORED; 14524 env->cfg.cur_stack--; 14525 break; 14526 case KEEP_EXPLORING: 14527 break; 14528 default: 14529 if (ret > 0) { 14530 verbose(env, "visit_insn internal bug\n"); 14531 ret = -EFAULT; 14532 } 14533 goto err_free; 14534 } 14535 } 14536 14537 if (env->cfg.cur_stack < 0) { 14538 verbose(env, "pop stack internal bug\n"); 14539 ret = -EFAULT; 14540 goto err_free; 14541 } 14542 14543 for (i = 0; i < insn_cnt; i++) { 14544 if (insn_state[i] != EXPLORED) { 14545 verbose(env, "unreachable insn %d\n", i); 14546 ret = -EINVAL; 14547 goto err_free; 14548 } 14549 } 14550 ret = 0; /* cfg looks good */ 14551 14552 err_free: 14553 kvfree(insn_state); 14554 kvfree(insn_stack); 14555 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14556 return ret; 14557 } 14558 14559 static int check_abnormal_return(struct bpf_verifier_env *env) 14560 { 14561 int i; 14562 14563 for (i = 1; i < env->subprog_cnt; i++) { 14564 if (env->subprog_info[i].has_ld_abs) { 14565 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14566 return -EINVAL; 14567 } 14568 if (env->subprog_info[i].has_tail_call) { 14569 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14570 return -EINVAL; 14571 } 14572 } 14573 return 0; 14574 } 14575 14576 /* The minimum supported BTF func info size */ 14577 #define MIN_BPF_FUNCINFO_SIZE 8 14578 #define MAX_FUNCINFO_REC_SIZE 252 14579 14580 static int check_btf_func(struct bpf_verifier_env *env, 14581 const union bpf_attr *attr, 14582 bpfptr_t uattr) 14583 { 14584 const struct btf_type *type, *func_proto, *ret_type; 14585 u32 i, nfuncs, urec_size, min_size; 14586 u32 krec_size = sizeof(struct bpf_func_info); 14587 struct bpf_func_info *krecord; 14588 struct bpf_func_info_aux *info_aux = NULL; 14589 struct bpf_prog *prog; 14590 const struct btf *btf; 14591 bpfptr_t urecord; 14592 u32 prev_offset = 0; 14593 bool scalar_return; 14594 int ret = -ENOMEM; 14595 14596 nfuncs = attr->func_info_cnt; 14597 if (!nfuncs) { 14598 if (check_abnormal_return(env)) 14599 return -EINVAL; 14600 return 0; 14601 } 14602 14603 if (nfuncs != env->subprog_cnt) { 14604 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 14605 return -EINVAL; 14606 } 14607 14608 urec_size = attr->func_info_rec_size; 14609 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 14610 urec_size > MAX_FUNCINFO_REC_SIZE || 14611 urec_size % sizeof(u32)) { 14612 verbose(env, "invalid func info rec size %u\n", urec_size); 14613 return -EINVAL; 14614 } 14615 14616 prog = env->prog; 14617 btf = prog->aux->btf; 14618 14619 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 14620 min_size = min_t(u32, krec_size, urec_size); 14621 14622 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 14623 if (!krecord) 14624 return -ENOMEM; 14625 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 14626 if (!info_aux) 14627 goto err_free; 14628 14629 for (i = 0; i < nfuncs; i++) { 14630 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 14631 if (ret) { 14632 if (ret == -E2BIG) { 14633 verbose(env, "nonzero tailing record in func info"); 14634 /* set the size kernel expects so loader can zero 14635 * out the rest of the record. 14636 */ 14637 if (copy_to_bpfptr_offset(uattr, 14638 offsetof(union bpf_attr, func_info_rec_size), 14639 &min_size, sizeof(min_size))) 14640 ret = -EFAULT; 14641 } 14642 goto err_free; 14643 } 14644 14645 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 14646 ret = -EFAULT; 14647 goto err_free; 14648 } 14649 14650 /* check insn_off */ 14651 ret = -EINVAL; 14652 if (i == 0) { 14653 if (krecord[i].insn_off) { 14654 verbose(env, 14655 "nonzero insn_off %u for the first func info record", 14656 krecord[i].insn_off); 14657 goto err_free; 14658 } 14659 } else if (krecord[i].insn_off <= prev_offset) { 14660 verbose(env, 14661 "same or smaller insn offset (%u) than previous func info record (%u)", 14662 krecord[i].insn_off, prev_offset); 14663 goto err_free; 14664 } 14665 14666 if (env->subprog_info[i].start != krecord[i].insn_off) { 14667 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 14668 goto err_free; 14669 } 14670 14671 /* check type_id */ 14672 type = btf_type_by_id(btf, krecord[i].type_id); 14673 if (!type || !btf_type_is_func(type)) { 14674 verbose(env, "invalid type id %d in func info", 14675 krecord[i].type_id); 14676 goto err_free; 14677 } 14678 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 14679 14680 func_proto = btf_type_by_id(btf, type->type); 14681 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 14682 /* btf_func_check() already verified it during BTF load */ 14683 goto err_free; 14684 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 14685 scalar_return = 14686 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 14687 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 14688 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 14689 goto err_free; 14690 } 14691 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 14692 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 14693 goto err_free; 14694 } 14695 14696 prev_offset = krecord[i].insn_off; 14697 bpfptr_add(&urecord, urec_size); 14698 } 14699 14700 prog->aux->func_info = krecord; 14701 prog->aux->func_info_cnt = nfuncs; 14702 prog->aux->func_info_aux = info_aux; 14703 return 0; 14704 14705 err_free: 14706 kvfree(krecord); 14707 kfree(info_aux); 14708 return ret; 14709 } 14710 14711 static void adjust_btf_func(struct bpf_verifier_env *env) 14712 { 14713 struct bpf_prog_aux *aux = env->prog->aux; 14714 int i; 14715 14716 if (!aux->func_info) 14717 return; 14718 14719 for (i = 0; i < env->subprog_cnt; i++) 14720 aux->func_info[i].insn_off = env->subprog_info[i].start; 14721 } 14722 14723 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 14724 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 14725 14726 static int check_btf_line(struct bpf_verifier_env *env, 14727 const union bpf_attr *attr, 14728 bpfptr_t uattr) 14729 { 14730 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 14731 struct bpf_subprog_info *sub; 14732 struct bpf_line_info *linfo; 14733 struct bpf_prog *prog; 14734 const struct btf *btf; 14735 bpfptr_t ulinfo; 14736 int err; 14737 14738 nr_linfo = attr->line_info_cnt; 14739 if (!nr_linfo) 14740 return 0; 14741 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 14742 return -EINVAL; 14743 14744 rec_size = attr->line_info_rec_size; 14745 if (rec_size < MIN_BPF_LINEINFO_SIZE || 14746 rec_size > MAX_LINEINFO_REC_SIZE || 14747 rec_size & (sizeof(u32) - 1)) 14748 return -EINVAL; 14749 14750 /* Need to zero it in case the userspace may 14751 * pass in a smaller bpf_line_info object. 14752 */ 14753 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 14754 GFP_KERNEL | __GFP_NOWARN); 14755 if (!linfo) 14756 return -ENOMEM; 14757 14758 prog = env->prog; 14759 btf = prog->aux->btf; 14760 14761 s = 0; 14762 sub = env->subprog_info; 14763 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 14764 expected_size = sizeof(struct bpf_line_info); 14765 ncopy = min_t(u32, expected_size, rec_size); 14766 for (i = 0; i < nr_linfo; i++) { 14767 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 14768 if (err) { 14769 if (err == -E2BIG) { 14770 verbose(env, "nonzero tailing record in line_info"); 14771 if (copy_to_bpfptr_offset(uattr, 14772 offsetof(union bpf_attr, line_info_rec_size), 14773 &expected_size, sizeof(expected_size))) 14774 err = -EFAULT; 14775 } 14776 goto err_free; 14777 } 14778 14779 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 14780 err = -EFAULT; 14781 goto err_free; 14782 } 14783 14784 /* 14785 * Check insn_off to ensure 14786 * 1) strictly increasing AND 14787 * 2) bounded by prog->len 14788 * 14789 * The linfo[0].insn_off == 0 check logically falls into 14790 * the later "missing bpf_line_info for func..." case 14791 * because the first linfo[0].insn_off must be the 14792 * first sub also and the first sub must have 14793 * subprog_info[0].start == 0. 14794 */ 14795 if ((i && linfo[i].insn_off <= prev_offset) || 14796 linfo[i].insn_off >= prog->len) { 14797 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 14798 i, linfo[i].insn_off, prev_offset, 14799 prog->len); 14800 err = -EINVAL; 14801 goto err_free; 14802 } 14803 14804 if (!prog->insnsi[linfo[i].insn_off].code) { 14805 verbose(env, 14806 "Invalid insn code at line_info[%u].insn_off\n", 14807 i); 14808 err = -EINVAL; 14809 goto err_free; 14810 } 14811 14812 if (!btf_name_by_offset(btf, linfo[i].line_off) || 14813 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 14814 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 14815 err = -EINVAL; 14816 goto err_free; 14817 } 14818 14819 if (s != env->subprog_cnt) { 14820 if (linfo[i].insn_off == sub[s].start) { 14821 sub[s].linfo_idx = i; 14822 s++; 14823 } else if (sub[s].start < linfo[i].insn_off) { 14824 verbose(env, "missing bpf_line_info for func#%u\n", s); 14825 err = -EINVAL; 14826 goto err_free; 14827 } 14828 } 14829 14830 prev_offset = linfo[i].insn_off; 14831 bpfptr_add(&ulinfo, rec_size); 14832 } 14833 14834 if (s != env->subprog_cnt) { 14835 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 14836 env->subprog_cnt - s, s); 14837 err = -EINVAL; 14838 goto err_free; 14839 } 14840 14841 prog->aux->linfo = linfo; 14842 prog->aux->nr_linfo = nr_linfo; 14843 14844 return 0; 14845 14846 err_free: 14847 kvfree(linfo); 14848 return err; 14849 } 14850 14851 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 14852 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 14853 14854 static int check_core_relo(struct bpf_verifier_env *env, 14855 const union bpf_attr *attr, 14856 bpfptr_t uattr) 14857 { 14858 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 14859 struct bpf_core_relo core_relo = {}; 14860 struct bpf_prog *prog = env->prog; 14861 const struct btf *btf = prog->aux->btf; 14862 struct bpf_core_ctx ctx = { 14863 .log = &env->log, 14864 .btf = btf, 14865 }; 14866 bpfptr_t u_core_relo; 14867 int err; 14868 14869 nr_core_relo = attr->core_relo_cnt; 14870 if (!nr_core_relo) 14871 return 0; 14872 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 14873 return -EINVAL; 14874 14875 rec_size = attr->core_relo_rec_size; 14876 if (rec_size < MIN_CORE_RELO_SIZE || 14877 rec_size > MAX_CORE_RELO_SIZE || 14878 rec_size % sizeof(u32)) 14879 return -EINVAL; 14880 14881 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 14882 expected_size = sizeof(struct bpf_core_relo); 14883 ncopy = min_t(u32, expected_size, rec_size); 14884 14885 /* Unlike func_info and line_info, copy and apply each CO-RE 14886 * relocation record one at a time. 14887 */ 14888 for (i = 0; i < nr_core_relo; i++) { 14889 /* future proofing when sizeof(bpf_core_relo) changes */ 14890 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 14891 if (err) { 14892 if (err == -E2BIG) { 14893 verbose(env, "nonzero tailing record in core_relo"); 14894 if (copy_to_bpfptr_offset(uattr, 14895 offsetof(union bpf_attr, core_relo_rec_size), 14896 &expected_size, sizeof(expected_size))) 14897 err = -EFAULT; 14898 } 14899 break; 14900 } 14901 14902 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 14903 err = -EFAULT; 14904 break; 14905 } 14906 14907 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 14908 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 14909 i, core_relo.insn_off, prog->len); 14910 err = -EINVAL; 14911 break; 14912 } 14913 14914 err = bpf_core_apply(&ctx, &core_relo, i, 14915 &prog->insnsi[core_relo.insn_off / 8]); 14916 if (err) 14917 break; 14918 bpfptr_add(&u_core_relo, rec_size); 14919 } 14920 return err; 14921 } 14922 14923 static int check_btf_info(struct bpf_verifier_env *env, 14924 const union bpf_attr *attr, 14925 bpfptr_t uattr) 14926 { 14927 struct btf *btf; 14928 int err; 14929 14930 if (!attr->func_info_cnt && !attr->line_info_cnt) { 14931 if (check_abnormal_return(env)) 14932 return -EINVAL; 14933 return 0; 14934 } 14935 14936 btf = btf_get_by_fd(attr->prog_btf_fd); 14937 if (IS_ERR(btf)) 14938 return PTR_ERR(btf); 14939 if (btf_is_kernel(btf)) { 14940 btf_put(btf); 14941 return -EACCES; 14942 } 14943 env->prog->aux->btf = btf; 14944 14945 err = check_btf_func(env, attr, uattr); 14946 if (err) 14947 return err; 14948 14949 err = check_btf_line(env, attr, uattr); 14950 if (err) 14951 return err; 14952 14953 err = check_core_relo(env, attr, uattr); 14954 if (err) 14955 return err; 14956 14957 return 0; 14958 } 14959 14960 /* check %cur's range satisfies %old's */ 14961 static bool range_within(struct bpf_reg_state *old, 14962 struct bpf_reg_state *cur) 14963 { 14964 return old->umin_value <= cur->umin_value && 14965 old->umax_value >= cur->umax_value && 14966 old->smin_value <= cur->smin_value && 14967 old->smax_value >= cur->smax_value && 14968 old->u32_min_value <= cur->u32_min_value && 14969 old->u32_max_value >= cur->u32_max_value && 14970 old->s32_min_value <= cur->s32_min_value && 14971 old->s32_max_value >= cur->s32_max_value; 14972 } 14973 14974 /* If in the old state two registers had the same id, then they need to have 14975 * the same id in the new state as well. But that id could be different from 14976 * the old state, so we need to track the mapping from old to new ids. 14977 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 14978 * regs with old id 5 must also have new id 9 for the new state to be safe. But 14979 * regs with a different old id could still have new id 9, we don't care about 14980 * that. 14981 * So we look through our idmap to see if this old id has been seen before. If 14982 * so, we require the new id to match; otherwise, we add the id pair to the map. 14983 */ 14984 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 14985 { 14986 unsigned int i; 14987 14988 /* either both IDs should be set or both should be zero */ 14989 if (!!old_id != !!cur_id) 14990 return false; 14991 14992 if (old_id == 0) /* cur_id == 0 as well */ 14993 return true; 14994 14995 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 14996 if (!idmap[i].old) { 14997 /* Reached an empty slot; haven't seen this id before */ 14998 idmap[i].old = old_id; 14999 idmap[i].cur = cur_id; 15000 return true; 15001 } 15002 if (idmap[i].old == old_id) 15003 return idmap[i].cur == cur_id; 15004 } 15005 /* We ran out of idmap slots, which should be impossible */ 15006 WARN_ON_ONCE(1); 15007 return false; 15008 } 15009 15010 static void clean_func_state(struct bpf_verifier_env *env, 15011 struct bpf_func_state *st) 15012 { 15013 enum bpf_reg_liveness live; 15014 int i, j; 15015 15016 for (i = 0; i < BPF_REG_FP; i++) { 15017 live = st->regs[i].live; 15018 /* liveness must not touch this register anymore */ 15019 st->regs[i].live |= REG_LIVE_DONE; 15020 if (!(live & REG_LIVE_READ)) 15021 /* since the register is unused, clear its state 15022 * to make further comparison simpler 15023 */ 15024 __mark_reg_not_init(env, &st->regs[i]); 15025 } 15026 15027 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15028 live = st->stack[i].spilled_ptr.live; 15029 /* liveness must not touch this stack slot anymore */ 15030 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15031 if (!(live & REG_LIVE_READ)) { 15032 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15033 for (j = 0; j < BPF_REG_SIZE; j++) 15034 st->stack[i].slot_type[j] = STACK_INVALID; 15035 } 15036 } 15037 } 15038 15039 static void clean_verifier_state(struct bpf_verifier_env *env, 15040 struct bpf_verifier_state *st) 15041 { 15042 int i; 15043 15044 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15045 /* all regs in this state in all frames were already marked */ 15046 return; 15047 15048 for (i = 0; i <= st->curframe; i++) 15049 clean_func_state(env, st->frame[i]); 15050 } 15051 15052 /* the parentage chains form a tree. 15053 * the verifier states are added to state lists at given insn and 15054 * pushed into state stack for future exploration. 15055 * when the verifier reaches bpf_exit insn some of the verifer states 15056 * stored in the state lists have their final liveness state already, 15057 * but a lot of states will get revised from liveness point of view when 15058 * the verifier explores other branches. 15059 * Example: 15060 * 1: r0 = 1 15061 * 2: if r1 == 100 goto pc+1 15062 * 3: r0 = 2 15063 * 4: exit 15064 * when the verifier reaches exit insn the register r0 in the state list of 15065 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15066 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15067 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15068 * 15069 * Since the verifier pushes the branch states as it sees them while exploring 15070 * the program the condition of walking the branch instruction for the second 15071 * time means that all states below this branch were already explored and 15072 * their final liveness marks are already propagated. 15073 * Hence when the verifier completes the search of state list in is_state_visited() 15074 * we can call this clean_live_states() function to mark all liveness states 15075 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15076 * will not be used. 15077 * This function also clears the registers and stack for states that !READ 15078 * to simplify state merging. 15079 * 15080 * Important note here that walking the same branch instruction in the callee 15081 * doesn't meant that the states are DONE. The verifier has to compare 15082 * the callsites 15083 */ 15084 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15085 struct bpf_verifier_state *cur) 15086 { 15087 struct bpf_verifier_state_list *sl; 15088 int i; 15089 15090 sl = *explored_state(env, insn); 15091 while (sl) { 15092 if (sl->state.branches) 15093 goto next; 15094 if (sl->state.insn_idx != insn || 15095 sl->state.curframe != cur->curframe) 15096 goto next; 15097 for (i = 0; i <= cur->curframe; i++) 15098 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15099 goto next; 15100 clean_verifier_state(env, &sl->state); 15101 next: 15102 sl = sl->next; 15103 } 15104 } 15105 15106 static bool regs_exact(const struct bpf_reg_state *rold, 15107 const struct bpf_reg_state *rcur, 15108 struct bpf_id_pair *idmap) 15109 { 15110 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15111 check_ids(rold->id, rcur->id, idmap) && 15112 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15113 } 15114 15115 /* Returns true if (rold safe implies rcur safe) */ 15116 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15117 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 15118 { 15119 if (!(rold->live & REG_LIVE_READ)) 15120 /* explored state didn't use this */ 15121 return true; 15122 if (rold->type == NOT_INIT) 15123 /* explored state can't have used this */ 15124 return true; 15125 if (rcur->type == NOT_INIT) 15126 return false; 15127 15128 /* Enforce that register types have to match exactly, including their 15129 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15130 * rule. 15131 * 15132 * One can make a point that using a pointer register as unbounded 15133 * SCALAR would be technically acceptable, but this could lead to 15134 * pointer leaks because scalars are allowed to leak while pointers 15135 * are not. We could make this safe in special cases if root is 15136 * calling us, but it's probably not worth the hassle. 15137 * 15138 * Also, register types that are *not* MAYBE_NULL could technically be 15139 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15140 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15141 * to the same map). 15142 * However, if the old MAYBE_NULL register then got NULL checked, 15143 * doing so could have affected others with the same id, and we can't 15144 * check for that because we lost the id when we converted to 15145 * a non-MAYBE_NULL variant. 15146 * So, as a general rule we don't allow mixing MAYBE_NULL and 15147 * non-MAYBE_NULL registers as well. 15148 */ 15149 if (rold->type != rcur->type) 15150 return false; 15151 15152 switch (base_type(rold->type)) { 15153 case SCALAR_VALUE: 15154 if (regs_exact(rold, rcur, idmap)) 15155 return true; 15156 if (env->explore_alu_limits) 15157 return false; 15158 if (!rold->precise) 15159 return true; 15160 /* new val must satisfy old val knowledge */ 15161 return range_within(rold, rcur) && 15162 tnum_in(rold->var_off, rcur->var_off); 15163 case PTR_TO_MAP_KEY: 15164 case PTR_TO_MAP_VALUE: 15165 case PTR_TO_MEM: 15166 case PTR_TO_BUF: 15167 case PTR_TO_TP_BUFFER: 15168 /* If the new min/max/var_off satisfy the old ones and 15169 * everything else matches, we are OK. 15170 */ 15171 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15172 range_within(rold, rcur) && 15173 tnum_in(rold->var_off, rcur->var_off) && 15174 check_ids(rold->id, rcur->id, idmap) && 15175 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15176 case PTR_TO_PACKET_META: 15177 case PTR_TO_PACKET: 15178 /* We must have at least as much range as the old ptr 15179 * did, so that any accesses which were safe before are 15180 * still safe. This is true even if old range < old off, 15181 * since someone could have accessed through (ptr - k), or 15182 * even done ptr -= k in a register, to get a safe access. 15183 */ 15184 if (rold->range > rcur->range) 15185 return false; 15186 /* If the offsets don't match, we can't trust our alignment; 15187 * nor can we be sure that we won't fall out of range. 15188 */ 15189 if (rold->off != rcur->off) 15190 return false; 15191 /* id relations must be preserved */ 15192 if (!check_ids(rold->id, rcur->id, idmap)) 15193 return false; 15194 /* new val must satisfy old val knowledge */ 15195 return range_within(rold, rcur) && 15196 tnum_in(rold->var_off, rcur->var_off); 15197 case PTR_TO_STACK: 15198 /* two stack pointers are equal only if they're pointing to 15199 * the same stack frame, since fp-8 in foo != fp-8 in bar 15200 */ 15201 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15202 default: 15203 return regs_exact(rold, rcur, idmap); 15204 } 15205 } 15206 15207 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15208 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 15209 { 15210 int i, spi; 15211 15212 /* walk slots of the explored stack and ignore any additional 15213 * slots in the current stack, since explored(safe) state 15214 * didn't use them 15215 */ 15216 for (i = 0; i < old->allocated_stack; i++) { 15217 struct bpf_reg_state *old_reg, *cur_reg; 15218 15219 spi = i / BPF_REG_SIZE; 15220 15221 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15222 i += BPF_REG_SIZE - 1; 15223 /* explored state didn't use this */ 15224 continue; 15225 } 15226 15227 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15228 continue; 15229 15230 if (env->allow_uninit_stack && 15231 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15232 continue; 15233 15234 /* explored stack has more populated slots than current stack 15235 * and these slots were used 15236 */ 15237 if (i >= cur->allocated_stack) 15238 return false; 15239 15240 /* if old state was safe with misc data in the stack 15241 * it will be safe with zero-initialized stack. 15242 * The opposite is not true 15243 */ 15244 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15245 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15246 continue; 15247 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15248 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15249 /* Ex: old explored (safe) state has STACK_SPILL in 15250 * this stack slot, but current has STACK_MISC -> 15251 * this verifier states are not equivalent, 15252 * return false to continue verification of this path 15253 */ 15254 return false; 15255 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15256 continue; 15257 /* Both old and cur are having same slot_type */ 15258 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15259 case STACK_SPILL: 15260 /* when explored and current stack slot are both storing 15261 * spilled registers, check that stored pointers types 15262 * are the same as well. 15263 * Ex: explored safe path could have stored 15264 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15265 * but current path has stored: 15266 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15267 * such verifier states are not equivalent. 15268 * return false to continue verification of this path 15269 */ 15270 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15271 &cur->stack[spi].spilled_ptr, idmap)) 15272 return false; 15273 break; 15274 case STACK_DYNPTR: 15275 old_reg = &old->stack[spi].spilled_ptr; 15276 cur_reg = &cur->stack[spi].spilled_ptr; 15277 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15278 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15279 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15280 return false; 15281 break; 15282 case STACK_ITER: 15283 old_reg = &old->stack[spi].spilled_ptr; 15284 cur_reg = &cur->stack[spi].spilled_ptr; 15285 /* iter.depth is not compared between states as it 15286 * doesn't matter for correctness and would otherwise 15287 * prevent convergence; we maintain it only to prevent 15288 * infinite loop check triggering, see 15289 * iter_active_depths_differ() 15290 */ 15291 if (old_reg->iter.btf != cur_reg->iter.btf || 15292 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15293 old_reg->iter.state != cur_reg->iter.state || 15294 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15295 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15296 return false; 15297 break; 15298 case STACK_MISC: 15299 case STACK_ZERO: 15300 case STACK_INVALID: 15301 continue; 15302 /* Ensure that new unhandled slot types return false by default */ 15303 default: 15304 return false; 15305 } 15306 } 15307 return true; 15308 } 15309 15310 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15311 struct bpf_id_pair *idmap) 15312 { 15313 int i; 15314 15315 if (old->acquired_refs != cur->acquired_refs) 15316 return false; 15317 15318 for (i = 0; i < old->acquired_refs; i++) { 15319 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15320 return false; 15321 } 15322 15323 return true; 15324 } 15325 15326 /* compare two verifier states 15327 * 15328 * all states stored in state_list are known to be valid, since 15329 * verifier reached 'bpf_exit' instruction through them 15330 * 15331 * this function is called when verifier exploring different branches of 15332 * execution popped from the state stack. If it sees an old state that has 15333 * more strict register state and more strict stack state then this execution 15334 * branch doesn't need to be explored further, since verifier already 15335 * concluded that more strict state leads to valid finish. 15336 * 15337 * Therefore two states are equivalent if register state is more conservative 15338 * and explored stack state is more conservative than the current one. 15339 * Example: 15340 * explored current 15341 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15342 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15343 * 15344 * In other words if current stack state (one being explored) has more 15345 * valid slots than old one that already passed validation, it means 15346 * the verifier can stop exploring and conclude that current state is valid too 15347 * 15348 * Similarly with registers. If explored state has register type as invalid 15349 * whereas register type in current state is meaningful, it means that 15350 * the current state will reach 'bpf_exit' instruction safely 15351 */ 15352 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15353 struct bpf_func_state *cur) 15354 { 15355 int i; 15356 15357 for (i = 0; i < MAX_BPF_REG; i++) 15358 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15359 env->idmap_scratch)) 15360 return false; 15361 15362 if (!stacksafe(env, old, cur, env->idmap_scratch)) 15363 return false; 15364 15365 if (!refsafe(old, cur, env->idmap_scratch)) 15366 return false; 15367 15368 return true; 15369 } 15370 15371 static bool states_equal(struct bpf_verifier_env *env, 15372 struct bpf_verifier_state *old, 15373 struct bpf_verifier_state *cur) 15374 { 15375 int i; 15376 15377 if (old->curframe != cur->curframe) 15378 return false; 15379 15380 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 15381 15382 /* Verification state from speculative execution simulation 15383 * must never prune a non-speculative execution one. 15384 */ 15385 if (old->speculative && !cur->speculative) 15386 return false; 15387 15388 if (old->active_lock.ptr != cur->active_lock.ptr) 15389 return false; 15390 15391 /* Old and cur active_lock's have to be either both present 15392 * or both absent. 15393 */ 15394 if (!!old->active_lock.id != !!cur->active_lock.id) 15395 return false; 15396 15397 if (old->active_lock.id && 15398 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 15399 return false; 15400 15401 if (old->active_rcu_lock != cur->active_rcu_lock) 15402 return false; 15403 15404 /* for states to be equal callsites have to be the same 15405 * and all frame states need to be equivalent 15406 */ 15407 for (i = 0; i <= old->curframe; i++) { 15408 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15409 return false; 15410 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15411 return false; 15412 } 15413 return true; 15414 } 15415 15416 /* Return 0 if no propagation happened. Return negative error code if error 15417 * happened. Otherwise, return the propagated bit. 15418 */ 15419 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15420 struct bpf_reg_state *reg, 15421 struct bpf_reg_state *parent_reg) 15422 { 15423 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15424 u8 flag = reg->live & REG_LIVE_READ; 15425 int err; 15426 15427 /* When comes here, read flags of PARENT_REG or REG could be any of 15428 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15429 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15430 */ 15431 if (parent_flag == REG_LIVE_READ64 || 15432 /* Or if there is no read flag from REG. */ 15433 !flag || 15434 /* Or if the read flag from REG is the same as PARENT_REG. */ 15435 parent_flag == flag) 15436 return 0; 15437 15438 err = mark_reg_read(env, reg, parent_reg, flag); 15439 if (err) 15440 return err; 15441 15442 return flag; 15443 } 15444 15445 /* A write screens off any subsequent reads; but write marks come from the 15446 * straight-line code between a state and its parent. When we arrive at an 15447 * equivalent state (jump target or such) we didn't arrive by the straight-line 15448 * code, so read marks in the state must propagate to the parent regardless 15449 * of the state's write marks. That's what 'parent == state->parent' comparison 15450 * in mark_reg_read() is for. 15451 */ 15452 static int propagate_liveness(struct bpf_verifier_env *env, 15453 const struct bpf_verifier_state *vstate, 15454 struct bpf_verifier_state *vparent) 15455 { 15456 struct bpf_reg_state *state_reg, *parent_reg; 15457 struct bpf_func_state *state, *parent; 15458 int i, frame, err = 0; 15459 15460 if (vparent->curframe != vstate->curframe) { 15461 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15462 vparent->curframe, vstate->curframe); 15463 return -EFAULT; 15464 } 15465 /* Propagate read liveness of registers... */ 15466 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15467 for (frame = 0; frame <= vstate->curframe; frame++) { 15468 parent = vparent->frame[frame]; 15469 state = vstate->frame[frame]; 15470 parent_reg = parent->regs; 15471 state_reg = state->regs; 15472 /* We don't need to worry about FP liveness, it's read-only */ 15473 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15474 err = propagate_liveness_reg(env, &state_reg[i], 15475 &parent_reg[i]); 15476 if (err < 0) 15477 return err; 15478 if (err == REG_LIVE_READ64) 15479 mark_insn_zext(env, &parent_reg[i]); 15480 } 15481 15482 /* Propagate stack slots. */ 15483 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15484 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15485 parent_reg = &parent->stack[i].spilled_ptr; 15486 state_reg = &state->stack[i].spilled_ptr; 15487 err = propagate_liveness_reg(env, state_reg, 15488 parent_reg); 15489 if (err < 0) 15490 return err; 15491 } 15492 } 15493 return 0; 15494 } 15495 15496 /* find precise scalars in the previous equivalent state and 15497 * propagate them into the current state 15498 */ 15499 static int propagate_precision(struct bpf_verifier_env *env, 15500 const struct bpf_verifier_state *old) 15501 { 15502 struct bpf_reg_state *state_reg; 15503 struct bpf_func_state *state; 15504 int i, err = 0, fr; 15505 bool first; 15506 15507 for (fr = old->curframe; fr >= 0; fr--) { 15508 state = old->frame[fr]; 15509 state_reg = state->regs; 15510 first = true; 15511 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15512 if (state_reg->type != SCALAR_VALUE || 15513 !state_reg->precise || 15514 !(state_reg->live & REG_LIVE_READ)) 15515 continue; 15516 if (env->log.level & BPF_LOG_LEVEL2) { 15517 if (first) 15518 verbose(env, "frame %d: propagating r%d", fr, i); 15519 else 15520 verbose(env, ",r%d", i); 15521 } 15522 bt_set_frame_reg(&env->bt, fr, i); 15523 first = false; 15524 } 15525 15526 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15527 if (!is_spilled_reg(&state->stack[i])) 15528 continue; 15529 state_reg = &state->stack[i].spilled_ptr; 15530 if (state_reg->type != SCALAR_VALUE || 15531 !state_reg->precise || 15532 !(state_reg->live & REG_LIVE_READ)) 15533 continue; 15534 if (env->log.level & BPF_LOG_LEVEL2) { 15535 if (first) 15536 verbose(env, "frame %d: propagating fp%d", 15537 fr, (-i - 1) * BPF_REG_SIZE); 15538 else 15539 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15540 } 15541 bt_set_frame_slot(&env->bt, fr, i); 15542 first = false; 15543 } 15544 if (!first) 15545 verbose(env, "\n"); 15546 } 15547 15548 err = mark_chain_precision_batch(env); 15549 if (err < 0) 15550 return err; 15551 15552 return 0; 15553 } 15554 15555 static bool states_maybe_looping(struct bpf_verifier_state *old, 15556 struct bpf_verifier_state *cur) 15557 { 15558 struct bpf_func_state *fold, *fcur; 15559 int i, fr = cur->curframe; 15560 15561 if (old->curframe != fr) 15562 return false; 15563 15564 fold = old->frame[fr]; 15565 fcur = cur->frame[fr]; 15566 for (i = 0; i < MAX_BPF_REG; i++) 15567 if (memcmp(&fold->regs[i], &fcur->regs[i], 15568 offsetof(struct bpf_reg_state, parent))) 15569 return false; 15570 return true; 15571 } 15572 15573 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 15574 { 15575 return env->insn_aux_data[insn_idx].is_iter_next; 15576 } 15577 15578 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 15579 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 15580 * states to match, which otherwise would look like an infinite loop. So while 15581 * iter_next() calls are taken care of, we still need to be careful and 15582 * prevent erroneous and too eager declaration of "ininite loop", when 15583 * iterators are involved. 15584 * 15585 * Here's a situation in pseudo-BPF assembly form: 15586 * 15587 * 0: again: ; set up iter_next() call args 15588 * 1: r1 = &it ; <CHECKPOINT HERE> 15589 * 2: call bpf_iter_num_next ; this is iter_next() call 15590 * 3: if r0 == 0 goto done 15591 * 4: ... something useful here ... 15592 * 5: goto again ; another iteration 15593 * 6: done: 15594 * 7: r1 = &it 15595 * 8: call bpf_iter_num_destroy ; clean up iter state 15596 * 9: exit 15597 * 15598 * This is a typical loop. Let's assume that we have a prune point at 1:, 15599 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 15600 * again`, assuming other heuristics don't get in a way). 15601 * 15602 * When we first time come to 1:, let's say we have some state X. We proceed 15603 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 15604 * Now we come back to validate that forked ACTIVE state. We proceed through 15605 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 15606 * are converging. But the problem is that we don't know that yet, as this 15607 * convergence has to happen at iter_next() call site only. So if nothing is 15608 * done, at 1: verifier will use bounded loop logic and declare infinite 15609 * looping (and would be *technically* correct, if not for iterator's 15610 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 15611 * don't want that. So what we do in process_iter_next_call() when we go on 15612 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 15613 * a different iteration. So when we suspect an infinite loop, we additionally 15614 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 15615 * pretend we are not looping and wait for next iter_next() call. 15616 * 15617 * This only applies to ACTIVE state. In DRAINED state we don't expect to 15618 * loop, because that would actually mean infinite loop, as DRAINED state is 15619 * "sticky", and so we'll keep returning into the same instruction with the 15620 * same state (at least in one of possible code paths). 15621 * 15622 * This approach allows to keep infinite loop heuristic even in the face of 15623 * active iterator. E.g., C snippet below is and will be detected as 15624 * inifintely looping: 15625 * 15626 * struct bpf_iter_num it; 15627 * int *p, x; 15628 * 15629 * bpf_iter_num_new(&it, 0, 10); 15630 * while ((p = bpf_iter_num_next(&t))) { 15631 * x = p; 15632 * while (x--) {} // <<-- infinite loop here 15633 * } 15634 * 15635 */ 15636 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 15637 { 15638 struct bpf_reg_state *slot, *cur_slot; 15639 struct bpf_func_state *state; 15640 int i, fr; 15641 15642 for (fr = old->curframe; fr >= 0; fr--) { 15643 state = old->frame[fr]; 15644 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15645 if (state->stack[i].slot_type[0] != STACK_ITER) 15646 continue; 15647 15648 slot = &state->stack[i].spilled_ptr; 15649 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 15650 continue; 15651 15652 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 15653 if (cur_slot->iter.depth != slot->iter.depth) 15654 return true; 15655 } 15656 } 15657 return false; 15658 } 15659 15660 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 15661 { 15662 struct bpf_verifier_state_list *new_sl; 15663 struct bpf_verifier_state_list *sl, **pprev; 15664 struct bpf_verifier_state *cur = env->cur_state, *new; 15665 int i, j, err, states_cnt = 0; 15666 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 15667 bool add_new_state = force_new_state; 15668 15669 /* bpf progs typically have pruning point every 4 instructions 15670 * http://vger.kernel.org/bpfconf2019.html#session-1 15671 * Do not add new state for future pruning if the verifier hasn't seen 15672 * at least 2 jumps and at least 8 instructions. 15673 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 15674 * In tests that amounts to up to 50% reduction into total verifier 15675 * memory consumption and 20% verifier time speedup. 15676 */ 15677 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 15678 env->insn_processed - env->prev_insn_processed >= 8) 15679 add_new_state = true; 15680 15681 pprev = explored_state(env, insn_idx); 15682 sl = *pprev; 15683 15684 clean_live_states(env, insn_idx, cur); 15685 15686 while (sl) { 15687 states_cnt++; 15688 if (sl->state.insn_idx != insn_idx) 15689 goto next; 15690 15691 if (sl->state.branches) { 15692 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 15693 15694 if (frame->in_async_callback_fn && 15695 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 15696 /* Different async_entry_cnt means that the verifier is 15697 * processing another entry into async callback. 15698 * Seeing the same state is not an indication of infinite 15699 * loop or infinite recursion. 15700 * But finding the same state doesn't mean that it's safe 15701 * to stop processing the current state. The previous state 15702 * hasn't yet reached bpf_exit, since state.branches > 0. 15703 * Checking in_async_callback_fn alone is not enough either. 15704 * Since the verifier still needs to catch infinite loops 15705 * inside async callbacks. 15706 */ 15707 goto skip_inf_loop_check; 15708 } 15709 /* BPF open-coded iterators loop detection is special. 15710 * states_maybe_looping() logic is too simplistic in detecting 15711 * states that *might* be equivalent, because it doesn't know 15712 * about ID remapping, so don't even perform it. 15713 * See process_iter_next_call() and iter_active_depths_differ() 15714 * for overview of the logic. When current and one of parent 15715 * states are detected as equivalent, it's a good thing: we prove 15716 * convergence and can stop simulating further iterations. 15717 * It's safe to assume that iterator loop will finish, taking into 15718 * account iter_next() contract of eventually returning 15719 * sticky NULL result. 15720 */ 15721 if (is_iter_next_insn(env, insn_idx)) { 15722 if (states_equal(env, &sl->state, cur)) { 15723 struct bpf_func_state *cur_frame; 15724 struct bpf_reg_state *iter_state, *iter_reg; 15725 int spi; 15726 15727 cur_frame = cur->frame[cur->curframe]; 15728 /* btf_check_iter_kfuncs() enforces that 15729 * iter state pointer is always the first arg 15730 */ 15731 iter_reg = &cur_frame->regs[BPF_REG_1]; 15732 /* current state is valid due to states_equal(), 15733 * so we can assume valid iter and reg state, 15734 * no need for extra (re-)validations 15735 */ 15736 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 15737 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 15738 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 15739 goto hit; 15740 } 15741 goto skip_inf_loop_check; 15742 } 15743 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 15744 if (states_maybe_looping(&sl->state, cur) && 15745 states_equal(env, &sl->state, cur) && 15746 !iter_active_depths_differ(&sl->state, cur)) { 15747 verbose_linfo(env, insn_idx, "; "); 15748 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 15749 return -EINVAL; 15750 } 15751 /* if the verifier is processing a loop, avoid adding new state 15752 * too often, since different loop iterations have distinct 15753 * states and may not help future pruning. 15754 * This threshold shouldn't be too low to make sure that 15755 * a loop with large bound will be rejected quickly. 15756 * The most abusive loop will be: 15757 * r1 += 1 15758 * if r1 < 1000000 goto pc-2 15759 * 1M insn_procssed limit / 100 == 10k peak states. 15760 * This threshold shouldn't be too high either, since states 15761 * at the end of the loop are likely to be useful in pruning. 15762 */ 15763 skip_inf_loop_check: 15764 if (!force_new_state && 15765 env->jmps_processed - env->prev_jmps_processed < 20 && 15766 env->insn_processed - env->prev_insn_processed < 100) 15767 add_new_state = false; 15768 goto miss; 15769 } 15770 if (states_equal(env, &sl->state, cur)) { 15771 hit: 15772 sl->hit_cnt++; 15773 /* reached equivalent register/stack state, 15774 * prune the search. 15775 * Registers read by the continuation are read by us. 15776 * If we have any write marks in env->cur_state, they 15777 * will prevent corresponding reads in the continuation 15778 * from reaching our parent (an explored_state). Our 15779 * own state will get the read marks recorded, but 15780 * they'll be immediately forgotten as we're pruning 15781 * this state and will pop a new one. 15782 */ 15783 err = propagate_liveness(env, &sl->state, cur); 15784 15785 /* if previous state reached the exit with precision and 15786 * current state is equivalent to it (except precsion marks) 15787 * the precision needs to be propagated back in 15788 * the current state. 15789 */ 15790 err = err ? : push_jmp_history(env, cur); 15791 err = err ? : propagate_precision(env, &sl->state); 15792 if (err) 15793 return err; 15794 return 1; 15795 } 15796 miss: 15797 /* when new state is not going to be added do not increase miss count. 15798 * Otherwise several loop iterations will remove the state 15799 * recorded earlier. The goal of these heuristics is to have 15800 * states from some iterations of the loop (some in the beginning 15801 * and some at the end) to help pruning. 15802 */ 15803 if (add_new_state) 15804 sl->miss_cnt++; 15805 /* heuristic to determine whether this state is beneficial 15806 * to keep checking from state equivalence point of view. 15807 * Higher numbers increase max_states_per_insn and verification time, 15808 * but do not meaningfully decrease insn_processed. 15809 */ 15810 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 15811 /* the state is unlikely to be useful. Remove it to 15812 * speed up verification 15813 */ 15814 *pprev = sl->next; 15815 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 15816 u32 br = sl->state.branches; 15817 15818 WARN_ONCE(br, 15819 "BUG live_done but branches_to_explore %d\n", 15820 br); 15821 free_verifier_state(&sl->state, false); 15822 kfree(sl); 15823 env->peak_states--; 15824 } else { 15825 /* cannot free this state, since parentage chain may 15826 * walk it later. Add it for free_list instead to 15827 * be freed at the end of verification 15828 */ 15829 sl->next = env->free_list; 15830 env->free_list = sl; 15831 } 15832 sl = *pprev; 15833 continue; 15834 } 15835 next: 15836 pprev = &sl->next; 15837 sl = *pprev; 15838 } 15839 15840 if (env->max_states_per_insn < states_cnt) 15841 env->max_states_per_insn = states_cnt; 15842 15843 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 15844 return 0; 15845 15846 if (!add_new_state) 15847 return 0; 15848 15849 /* There were no equivalent states, remember the current one. 15850 * Technically the current state is not proven to be safe yet, 15851 * but it will either reach outer most bpf_exit (which means it's safe) 15852 * or it will be rejected. When there are no loops the verifier won't be 15853 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 15854 * again on the way to bpf_exit. 15855 * When looping the sl->state.branches will be > 0 and this state 15856 * will not be considered for equivalence until branches == 0. 15857 */ 15858 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 15859 if (!new_sl) 15860 return -ENOMEM; 15861 env->total_states++; 15862 env->peak_states++; 15863 env->prev_jmps_processed = env->jmps_processed; 15864 env->prev_insn_processed = env->insn_processed; 15865 15866 /* forget precise markings we inherited, see __mark_chain_precision */ 15867 if (env->bpf_capable) 15868 mark_all_scalars_imprecise(env, cur); 15869 15870 /* add new state to the head of linked list */ 15871 new = &new_sl->state; 15872 err = copy_verifier_state(new, cur); 15873 if (err) { 15874 free_verifier_state(new, false); 15875 kfree(new_sl); 15876 return err; 15877 } 15878 new->insn_idx = insn_idx; 15879 WARN_ONCE(new->branches != 1, 15880 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 15881 15882 cur->parent = new; 15883 cur->first_insn_idx = insn_idx; 15884 clear_jmp_history(cur); 15885 new_sl->next = *explored_state(env, insn_idx); 15886 *explored_state(env, insn_idx) = new_sl; 15887 /* connect new state to parentage chain. Current frame needs all 15888 * registers connected. Only r6 - r9 of the callers are alive (pushed 15889 * to the stack implicitly by JITs) so in callers' frames connect just 15890 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 15891 * the state of the call instruction (with WRITTEN set), and r0 comes 15892 * from callee with its full parentage chain, anyway. 15893 */ 15894 /* clear write marks in current state: the writes we did are not writes 15895 * our child did, so they don't screen off its reads from us. 15896 * (There are no read marks in current state, because reads always mark 15897 * their parent and current state never has children yet. Only 15898 * explored_states can get read marks.) 15899 */ 15900 for (j = 0; j <= cur->curframe; j++) { 15901 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 15902 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 15903 for (i = 0; i < BPF_REG_FP; i++) 15904 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 15905 } 15906 15907 /* all stack frames are accessible from callee, clear them all */ 15908 for (j = 0; j <= cur->curframe; j++) { 15909 struct bpf_func_state *frame = cur->frame[j]; 15910 struct bpf_func_state *newframe = new->frame[j]; 15911 15912 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 15913 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 15914 frame->stack[i].spilled_ptr.parent = 15915 &newframe->stack[i].spilled_ptr; 15916 } 15917 } 15918 return 0; 15919 } 15920 15921 /* Return true if it's OK to have the same insn return a different type. */ 15922 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 15923 { 15924 switch (base_type(type)) { 15925 case PTR_TO_CTX: 15926 case PTR_TO_SOCKET: 15927 case PTR_TO_SOCK_COMMON: 15928 case PTR_TO_TCP_SOCK: 15929 case PTR_TO_XDP_SOCK: 15930 case PTR_TO_BTF_ID: 15931 return false; 15932 default: 15933 return true; 15934 } 15935 } 15936 15937 /* If an instruction was previously used with particular pointer types, then we 15938 * need to be careful to avoid cases such as the below, where it may be ok 15939 * for one branch accessing the pointer, but not ok for the other branch: 15940 * 15941 * R1 = sock_ptr 15942 * goto X; 15943 * ... 15944 * R1 = some_other_valid_ptr; 15945 * goto X; 15946 * ... 15947 * R2 = *(u32 *)(R1 + 0); 15948 */ 15949 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 15950 { 15951 return src != prev && (!reg_type_mismatch_ok(src) || 15952 !reg_type_mismatch_ok(prev)); 15953 } 15954 15955 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 15956 bool allow_trust_missmatch) 15957 { 15958 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 15959 15960 if (*prev_type == NOT_INIT) { 15961 /* Saw a valid insn 15962 * dst_reg = *(u32 *)(src_reg + off) 15963 * save type to validate intersecting paths 15964 */ 15965 *prev_type = type; 15966 } else if (reg_type_mismatch(type, *prev_type)) { 15967 /* Abuser program is trying to use the same insn 15968 * dst_reg = *(u32*) (src_reg + off) 15969 * with different pointer types: 15970 * src_reg == ctx in one branch and 15971 * src_reg == stack|map in some other branch. 15972 * Reject it. 15973 */ 15974 if (allow_trust_missmatch && 15975 base_type(type) == PTR_TO_BTF_ID && 15976 base_type(*prev_type) == PTR_TO_BTF_ID) { 15977 /* 15978 * Have to support a use case when one path through 15979 * the program yields TRUSTED pointer while another 15980 * is UNTRUSTED. Fallback to UNTRUSTED to generate 15981 * BPF_PROBE_MEM. 15982 */ 15983 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 15984 } else { 15985 verbose(env, "same insn cannot be used with different pointers\n"); 15986 return -EINVAL; 15987 } 15988 } 15989 15990 return 0; 15991 } 15992 15993 static int do_check(struct bpf_verifier_env *env) 15994 { 15995 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 15996 struct bpf_verifier_state *state = env->cur_state; 15997 struct bpf_insn *insns = env->prog->insnsi; 15998 struct bpf_reg_state *regs; 15999 int insn_cnt = env->prog->len; 16000 bool do_print_state = false; 16001 int prev_insn_idx = -1; 16002 16003 for (;;) { 16004 struct bpf_insn *insn; 16005 u8 class; 16006 int err; 16007 16008 env->prev_insn_idx = prev_insn_idx; 16009 if (env->insn_idx >= insn_cnt) { 16010 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16011 env->insn_idx, insn_cnt); 16012 return -EFAULT; 16013 } 16014 16015 insn = &insns[env->insn_idx]; 16016 class = BPF_CLASS(insn->code); 16017 16018 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16019 verbose(env, 16020 "BPF program is too large. Processed %d insn\n", 16021 env->insn_processed); 16022 return -E2BIG; 16023 } 16024 16025 state->last_insn_idx = env->prev_insn_idx; 16026 16027 if (is_prune_point(env, env->insn_idx)) { 16028 err = is_state_visited(env, env->insn_idx); 16029 if (err < 0) 16030 return err; 16031 if (err == 1) { 16032 /* found equivalent state, can prune the search */ 16033 if (env->log.level & BPF_LOG_LEVEL) { 16034 if (do_print_state) 16035 verbose(env, "\nfrom %d to %d%s: safe\n", 16036 env->prev_insn_idx, env->insn_idx, 16037 env->cur_state->speculative ? 16038 " (speculative execution)" : ""); 16039 else 16040 verbose(env, "%d: safe\n", env->insn_idx); 16041 } 16042 goto process_bpf_exit; 16043 } 16044 } 16045 16046 if (is_jmp_point(env, env->insn_idx)) { 16047 err = push_jmp_history(env, state); 16048 if (err) 16049 return err; 16050 } 16051 16052 if (signal_pending(current)) 16053 return -EAGAIN; 16054 16055 if (need_resched()) 16056 cond_resched(); 16057 16058 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16059 verbose(env, "\nfrom %d to %d%s:", 16060 env->prev_insn_idx, env->insn_idx, 16061 env->cur_state->speculative ? 16062 " (speculative execution)" : ""); 16063 print_verifier_state(env, state->frame[state->curframe], true); 16064 do_print_state = false; 16065 } 16066 16067 if (env->log.level & BPF_LOG_LEVEL) { 16068 const struct bpf_insn_cbs cbs = { 16069 .cb_call = disasm_kfunc_name, 16070 .cb_print = verbose, 16071 .private_data = env, 16072 }; 16073 16074 if (verifier_state_scratched(env)) 16075 print_insn_state(env, state->frame[state->curframe]); 16076 16077 verbose_linfo(env, env->insn_idx, "; "); 16078 env->prev_log_pos = env->log.end_pos; 16079 verbose(env, "%d: ", env->insn_idx); 16080 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16081 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16082 env->prev_log_pos = env->log.end_pos; 16083 } 16084 16085 if (bpf_prog_is_offloaded(env->prog->aux)) { 16086 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16087 env->prev_insn_idx); 16088 if (err) 16089 return err; 16090 } 16091 16092 regs = cur_regs(env); 16093 sanitize_mark_insn_seen(env); 16094 prev_insn_idx = env->insn_idx; 16095 16096 if (class == BPF_ALU || class == BPF_ALU64) { 16097 err = check_alu_op(env, insn); 16098 if (err) 16099 return err; 16100 16101 } else if (class == BPF_LDX) { 16102 enum bpf_reg_type src_reg_type; 16103 16104 /* check for reserved fields is already done */ 16105 16106 /* check src operand */ 16107 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16108 if (err) 16109 return err; 16110 16111 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16112 if (err) 16113 return err; 16114 16115 src_reg_type = regs[insn->src_reg].type; 16116 16117 /* check that memory (src_reg + off) is readable, 16118 * the state of dst_reg will be updated by this func 16119 */ 16120 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16121 insn->off, BPF_SIZE(insn->code), 16122 BPF_READ, insn->dst_reg, false); 16123 if (err) 16124 return err; 16125 16126 err = save_aux_ptr_type(env, src_reg_type, true); 16127 if (err) 16128 return err; 16129 } else if (class == BPF_STX) { 16130 enum bpf_reg_type dst_reg_type; 16131 16132 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16133 err = check_atomic(env, env->insn_idx, insn); 16134 if (err) 16135 return err; 16136 env->insn_idx++; 16137 continue; 16138 } 16139 16140 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16141 verbose(env, "BPF_STX uses reserved fields\n"); 16142 return -EINVAL; 16143 } 16144 16145 /* check src1 operand */ 16146 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16147 if (err) 16148 return err; 16149 /* check src2 operand */ 16150 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16151 if (err) 16152 return err; 16153 16154 dst_reg_type = regs[insn->dst_reg].type; 16155 16156 /* check that memory (dst_reg + off) is writeable */ 16157 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16158 insn->off, BPF_SIZE(insn->code), 16159 BPF_WRITE, insn->src_reg, false); 16160 if (err) 16161 return err; 16162 16163 err = save_aux_ptr_type(env, dst_reg_type, false); 16164 if (err) 16165 return err; 16166 } else if (class == BPF_ST) { 16167 enum bpf_reg_type dst_reg_type; 16168 16169 if (BPF_MODE(insn->code) != BPF_MEM || 16170 insn->src_reg != BPF_REG_0) { 16171 verbose(env, "BPF_ST uses reserved fields\n"); 16172 return -EINVAL; 16173 } 16174 /* check src operand */ 16175 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16176 if (err) 16177 return err; 16178 16179 dst_reg_type = regs[insn->dst_reg].type; 16180 16181 /* check that memory (dst_reg + off) is writeable */ 16182 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16183 insn->off, BPF_SIZE(insn->code), 16184 BPF_WRITE, -1, false); 16185 if (err) 16186 return err; 16187 16188 err = save_aux_ptr_type(env, dst_reg_type, false); 16189 if (err) 16190 return err; 16191 } else if (class == BPF_JMP || class == BPF_JMP32) { 16192 u8 opcode = BPF_OP(insn->code); 16193 16194 env->jmps_processed++; 16195 if (opcode == BPF_CALL) { 16196 if (BPF_SRC(insn->code) != BPF_K || 16197 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16198 && insn->off != 0) || 16199 (insn->src_reg != BPF_REG_0 && 16200 insn->src_reg != BPF_PSEUDO_CALL && 16201 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16202 insn->dst_reg != BPF_REG_0 || 16203 class == BPF_JMP32) { 16204 verbose(env, "BPF_CALL uses reserved fields\n"); 16205 return -EINVAL; 16206 } 16207 16208 if (env->cur_state->active_lock.ptr) { 16209 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16210 (insn->src_reg == BPF_PSEUDO_CALL) || 16211 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16212 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16213 verbose(env, "function calls are not allowed while holding a lock\n"); 16214 return -EINVAL; 16215 } 16216 } 16217 if (insn->src_reg == BPF_PSEUDO_CALL) 16218 err = check_func_call(env, insn, &env->insn_idx); 16219 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16220 err = check_kfunc_call(env, insn, &env->insn_idx); 16221 else 16222 err = check_helper_call(env, insn, &env->insn_idx); 16223 if (err) 16224 return err; 16225 16226 mark_reg_scratched(env, BPF_REG_0); 16227 } else if (opcode == BPF_JA) { 16228 if (BPF_SRC(insn->code) != BPF_K || 16229 insn->imm != 0 || 16230 insn->src_reg != BPF_REG_0 || 16231 insn->dst_reg != BPF_REG_0 || 16232 class == BPF_JMP32) { 16233 verbose(env, "BPF_JA uses reserved fields\n"); 16234 return -EINVAL; 16235 } 16236 16237 env->insn_idx += insn->off + 1; 16238 continue; 16239 16240 } else if (opcode == BPF_EXIT) { 16241 if (BPF_SRC(insn->code) != BPF_K || 16242 insn->imm != 0 || 16243 insn->src_reg != BPF_REG_0 || 16244 insn->dst_reg != BPF_REG_0 || 16245 class == BPF_JMP32) { 16246 verbose(env, "BPF_EXIT uses reserved fields\n"); 16247 return -EINVAL; 16248 } 16249 16250 if (env->cur_state->active_lock.ptr && 16251 !in_rbtree_lock_required_cb(env)) { 16252 verbose(env, "bpf_spin_unlock is missing\n"); 16253 return -EINVAL; 16254 } 16255 16256 if (env->cur_state->active_rcu_lock) { 16257 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16258 return -EINVAL; 16259 } 16260 16261 /* We must do check_reference_leak here before 16262 * prepare_func_exit to handle the case when 16263 * state->curframe > 0, it may be a callback 16264 * function, for which reference_state must 16265 * match caller reference state when it exits. 16266 */ 16267 err = check_reference_leak(env); 16268 if (err) 16269 return err; 16270 16271 if (state->curframe) { 16272 /* exit from nested function */ 16273 err = prepare_func_exit(env, &env->insn_idx); 16274 if (err) 16275 return err; 16276 do_print_state = true; 16277 continue; 16278 } 16279 16280 err = check_return_code(env); 16281 if (err) 16282 return err; 16283 process_bpf_exit: 16284 mark_verifier_state_scratched(env); 16285 update_branch_counts(env, env->cur_state); 16286 err = pop_stack(env, &prev_insn_idx, 16287 &env->insn_idx, pop_log); 16288 if (err < 0) { 16289 if (err != -ENOENT) 16290 return err; 16291 break; 16292 } else { 16293 do_print_state = true; 16294 continue; 16295 } 16296 } else { 16297 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16298 if (err) 16299 return err; 16300 } 16301 } else if (class == BPF_LD) { 16302 u8 mode = BPF_MODE(insn->code); 16303 16304 if (mode == BPF_ABS || mode == BPF_IND) { 16305 err = check_ld_abs(env, insn); 16306 if (err) 16307 return err; 16308 16309 } else if (mode == BPF_IMM) { 16310 err = check_ld_imm(env, insn); 16311 if (err) 16312 return err; 16313 16314 env->insn_idx++; 16315 sanitize_mark_insn_seen(env); 16316 } else { 16317 verbose(env, "invalid BPF_LD mode\n"); 16318 return -EINVAL; 16319 } 16320 } else { 16321 verbose(env, "unknown insn class %d\n", class); 16322 return -EINVAL; 16323 } 16324 16325 env->insn_idx++; 16326 } 16327 16328 return 0; 16329 } 16330 16331 static int find_btf_percpu_datasec(struct btf *btf) 16332 { 16333 const struct btf_type *t; 16334 const char *tname; 16335 int i, n; 16336 16337 /* 16338 * Both vmlinux and module each have their own ".data..percpu" 16339 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16340 * types to look at only module's own BTF types. 16341 */ 16342 n = btf_nr_types(btf); 16343 if (btf_is_module(btf)) 16344 i = btf_nr_types(btf_vmlinux); 16345 else 16346 i = 1; 16347 16348 for(; i < n; i++) { 16349 t = btf_type_by_id(btf, i); 16350 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16351 continue; 16352 16353 tname = btf_name_by_offset(btf, t->name_off); 16354 if (!strcmp(tname, ".data..percpu")) 16355 return i; 16356 } 16357 16358 return -ENOENT; 16359 } 16360 16361 /* replace pseudo btf_id with kernel symbol address */ 16362 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16363 struct bpf_insn *insn, 16364 struct bpf_insn_aux_data *aux) 16365 { 16366 const struct btf_var_secinfo *vsi; 16367 const struct btf_type *datasec; 16368 struct btf_mod_pair *btf_mod; 16369 const struct btf_type *t; 16370 const char *sym_name; 16371 bool percpu = false; 16372 u32 type, id = insn->imm; 16373 struct btf *btf; 16374 s32 datasec_id; 16375 u64 addr; 16376 int i, btf_fd, err; 16377 16378 btf_fd = insn[1].imm; 16379 if (btf_fd) { 16380 btf = btf_get_by_fd(btf_fd); 16381 if (IS_ERR(btf)) { 16382 verbose(env, "invalid module BTF object FD specified.\n"); 16383 return -EINVAL; 16384 } 16385 } else { 16386 if (!btf_vmlinux) { 16387 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16388 return -EINVAL; 16389 } 16390 btf = btf_vmlinux; 16391 btf_get(btf); 16392 } 16393 16394 t = btf_type_by_id(btf, id); 16395 if (!t) { 16396 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16397 err = -ENOENT; 16398 goto err_put; 16399 } 16400 16401 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16402 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16403 err = -EINVAL; 16404 goto err_put; 16405 } 16406 16407 sym_name = btf_name_by_offset(btf, t->name_off); 16408 addr = kallsyms_lookup_name(sym_name); 16409 if (!addr) { 16410 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16411 sym_name); 16412 err = -ENOENT; 16413 goto err_put; 16414 } 16415 insn[0].imm = (u32)addr; 16416 insn[1].imm = addr >> 32; 16417 16418 if (btf_type_is_func(t)) { 16419 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16420 aux->btf_var.mem_size = 0; 16421 goto check_btf; 16422 } 16423 16424 datasec_id = find_btf_percpu_datasec(btf); 16425 if (datasec_id > 0) { 16426 datasec = btf_type_by_id(btf, datasec_id); 16427 for_each_vsi(i, datasec, vsi) { 16428 if (vsi->type == id) { 16429 percpu = true; 16430 break; 16431 } 16432 } 16433 } 16434 16435 type = t->type; 16436 t = btf_type_skip_modifiers(btf, type, NULL); 16437 if (percpu) { 16438 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16439 aux->btf_var.btf = btf; 16440 aux->btf_var.btf_id = type; 16441 } else if (!btf_type_is_struct(t)) { 16442 const struct btf_type *ret; 16443 const char *tname; 16444 u32 tsize; 16445 16446 /* resolve the type size of ksym. */ 16447 ret = btf_resolve_size(btf, t, &tsize); 16448 if (IS_ERR(ret)) { 16449 tname = btf_name_by_offset(btf, t->name_off); 16450 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16451 tname, PTR_ERR(ret)); 16452 err = -EINVAL; 16453 goto err_put; 16454 } 16455 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16456 aux->btf_var.mem_size = tsize; 16457 } else { 16458 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16459 aux->btf_var.btf = btf; 16460 aux->btf_var.btf_id = type; 16461 } 16462 check_btf: 16463 /* check whether we recorded this BTF (and maybe module) already */ 16464 for (i = 0; i < env->used_btf_cnt; i++) { 16465 if (env->used_btfs[i].btf == btf) { 16466 btf_put(btf); 16467 return 0; 16468 } 16469 } 16470 16471 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16472 err = -E2BIG; 16473 goto err_put; 16474 } 16475 16476 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16477 btf_mod->btf = btf; 16478 btf_mod->module = NULL; 16479 16480 /* if we reference variables from kernel module, bump its refcount */ 16481 if (btf_is_module(btf)) { 16482 btf_mod->module = btf_try_get_module(btf); 16483 if (!btf_mod->module) { 16484 err = -ENXIO; 16485 goto err_put; 16486 } 16487 } 16488 16489 env->used_btf_cnt++; 16490 16491 return 0; 16492 err_put: 16493 btf_put(btf); 16494 return err; 16495 } 16496 16497 static bool is_tracing_prog_type(enum bpf_prog_type type) 16498 { 16499 switch (type) { 16500 case BPF_PROG_TYPE_KPROBE: 16501 case BPF_PROG_TYPE_TRACEPOINT: 16502 case BPF_PROG_TYPE_PERF_EVENT: 16503 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16504 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16505 return true; 16506 default: 16507 return false; 16508 } 16509 } 16510 16511 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16512 struct bpf_map *map, 16513 struct bpf_prog *prog) 16514 16515 { 16516 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16517 16518 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16519 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16520 if (is_tracing_prog_type(prog_type)) { 16521 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16522 return -EINVAL; 16523 } 16524 } 16525 16526 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16527 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16528 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16529 return -EINVAL; 16530 } 16531 16532 if (is_tracing_prog_type(prog_type)) { 16533 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16534 return -EINVAL; 16535 } 16536 16537 if (prog->aux->sleepable) { 16538 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 16539 return -EINVAL; 16540 } 16541 } 16542 16543 if (btf_record_has_field(map->record, BPF_TIMER)) { 16544 if (is_tracing_prog_type(prog_type)) { 16545 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16546 return -EINVAL; 16547 } 16548 } 16549 16550 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16551 !bpf_offload_prog_map_match(prog, map)) { 16552 verbose(env, "offload device mismatch between prog and map\n"); 16553 return -EINVAL; 16554 } 16555 16556 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16557 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16558 return -EINVAL; 16559 } 16560 16561 if (prog->aux->sleepable) 16562 switch (map->map_type) { 16563 case BPF_MAP_TYPE_HASH: 16564 case BPF_MAP_TYPE_LRU_HASH: 16565 case BPF_MAP_TYPE_ARRAY: 16566 case BPF_MAP_TYPE_PERCPU_HASH: 16567 case BPF_MAP_TYPE_PERCPU_ARRAY: 16568 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 16569 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 16570 case BPF_MAP_TYPE_HASH_OF_MAPS: 16571 case BPF_MAP_TYPE_RINGBUF: 16572 case BPF_MAP_TYPE_USER_RINGBUF: 16573 case BPF_MAP_TYPE_INODE_STORAGE: 16574 case BPF_MAP_TYPE_SK_STORAGE: 16575 case BPF_MAP_TYPE_TASK_STORAGE: 16576 case BPF_MAP_TYPE_CGRP_STORAGE: 16577 break; 16578 default: 16579 verbose(env, 16580 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 16581 return -EINVAL; 16582 } 16583 16584 return 0; 16585 } 16586 16587 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 16588 { 16589 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 16590 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 16591 } 16592 16593 /* find and rewrite pseudo imm in ld_imm64 instructions: 16594 * 16595 * 1. if it accesses map FD, replace it with actual map pointer. 16596 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 16597 * 16598 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 16599 */ 16600 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 16601 { 16602 struct bpf_insn *insn = env->prog->insnsi; 16603 int insn_cnt = env->prog->len; 16604 int i, j, err; 16605 16606 err = bpf_prog_calc_tag(env->prog); 16607 if (err) 16608 return err; 16609 16610 for (i = 0; i < insn_cnt; i++, insn++) { 16611 if (BPF_CLASS(insn->code) == BPF_LDX && 16612 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 16613 verbose(env, "BPF_LDX uses reserved fields\n"); 16614 return -EINVAL; 16615 } 16616 16617 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 16618 struct bpf_insn_aux_data *aux; 16619 struct bpf_map *map; 16620 struct fd f; 16621 u64 addr; 16622 u32 fd; 16623 16624 if (i == insn_cnt - 1 || insn[1].code != 0 || 16625 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 16626 insn[1].off != 0) { 16627 verbose(env, "invalid bpf_ld_imm64 insn\n"); 16628 return -EINVAL; 16629 } 16630 16631 if (insn[0].src_reg == 0) 16632 /* valid generic load 64-bit imm */ 16633 goto next_insn; 16634 16635 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 16636 aux = &env->insn_aux_data[i]; 16637 err = check_pseudo_btf_id(env, insn, aux); 16638 if (err) 16639 return err; 16640 goto next_insn; 16641 } 16642 16643 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 16644 aux = &env->insn_aux_data[i]; 16645 aux->ptr_type = PTR_TO_FUNC; 16646 goto next_insn; 16647 } 16648 16649 /* In final convert_pseudo_ld_imm64() step, this is 16650 * converted into regular 64-bit imm load insn. 16651 */ 16652 switch (insn[0].src_reg) { 16653 case BPF_PSEUDO_MAP_VALUE: 16654 case BPF_PSEUDO_MAP_IDX_VALUE: 16655 break; 16656 case BPF_PSEUDO_MAP_FD: 16657 case BPF_PSEUDO_MAP_IDX: 16658 if (insn[1].imm == 0) 16659 break; 16660 fallthrough; 16661 default: 16662 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 16663 return -EINVAL; 16664 } 16665 16666 switch (insn[0].src_reg) { 16667 case BPF_PSEUDO_MAP_IDX_VALUE: 16668 case BPF_PSEUDO_MAP_IDX: 16669 if (bpfptr_is_null(env->fd_array)) { 16670 verbose(env, "fd_idx without fd_array is invalid\n"); 16671 return -EPROTO; 16672 } 16673 if (copy_from_bpfptr_offset(&fd, env->fd_array, 16674 insn[0].imm * sizeof(fd), 16675 sizeof(fd))) 16676 return -EFAULT; 16677 break; 16678 default: 16679 fd = insn[0].imm; 16680 break; 16681 } 16682 16683 f = fdget(fd); 16684 map = __bpf_map_get(f); 16685 if (IS_ERR(map)) { 16686 verbose(env, "fd %d is not pointing to valid bpf_map\n", 16687 insn[0].imm); 16688 return PTR_ERR(map); 16689 } 16690 16691 err = check_map_prog_compatibility(env, map, env->prog); 16692 if (err) { 16693 fdput(f); 16694 return err; 16695 } 16696 16697 aux = &env->insn_aux_data[i]; 16698 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 16699 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 16700 addr = (unsigned long)map; 16701 } else { 16702 u32 off = insn[1].imm; 16703 16704 if (off >= BPF_MAX_VAR_OFF) { 16705 verbose(env, "direct value offset of %u is not allowed\n", off); 16706 fdput(f); 16707 return -EINVAL; 16708 } 16709 16710 if (!map->ops->map_direct_value_addr) { 16711 verbose(env, "no direct value access support for this map type\n"); 16712 fdput(f); 16713 return -EINVAL; 16714 } 16715 16716 err = map->ops->map_direct_value_addr(map, &addr, off); 16717 if (err) { 16718 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 16719 map->value_size, off); 16720 fdput(f); 16721 return err; 16722 } 16723 16724 aux->map_off = off; 16725 addr += off; 16726 } 16727 16728 insn[0].imm = (u32)addr; 16729 insn[1].imm = addr >> 32; 16730 16731 /* check whether we recorded this map already */ 16732 for (j = 0; j < env->used_map_cnt; j++) { 16733 if (env->used_maps[j] == map) { 16734 aux->map_index = j; 16735 fdput(f); 16736 goto next_insn; 16737 } 16738 } 16739 16740 if (env->used_map_cnt >= MAX_USED_MAPS) { 16741 fdput(f); 16742 return -E2BIG; 16743 } 16744 16745 /* hold the map. If the program is rejected by verifier, 16746 * the map will be released by release_maps() or it 16747 * will be used by the valid program until it's unloaded 16748 * and all maps are released in free_used_maps() 16749 */ 16750 bpf_map_inc(map); 16751 16752 aux->map_index = env->used_map_cnt; 16753 env->used_maps[env->used_map_cnt++] = map; 16754 16755 if (bpf_map_is_cgroup_storage(map) && 16756 bpf_cgroup_storage_assign(env->prog->aux, map)) { 16757 verbose(env, "only one cgroup storage of each type is allowed\n"); 16758 fdput(f); 16759 return -EBUSY; 16760 } 16761 16762 fdput(f); 16763 next_insn: 16764 insn++; 16765 i++; 16766 continue; 16767 } 16768 16769 /* Basic sanity check before we invest more work here. */ 16770 if (!bpf_opcode_in_insntable(insn->code)) { 16771 verbose(env, "unknown opcode %02x\n", insn->code); 16772 return -EINVAL; 16773 } 16774 } 16775 16776 /* now all pseudo BPF_LD_IMM64 instructions load valid 16777 * 'struct bpf_map *' into a register instead of user map_fd. 16778 * These pointers will be used later by verifier to validate map access. 16779 */ 16780 return 0; 16781 } 16782 16783 /* drop refcnt of maps used by the rejected program */ 16784 static void release_maps(struct bpf_verifier_env *env) 16785 { 16786 __bpf_free_used_maps(env->prog->aux, env->used_maps, 16787 env->used_map_cnt); 16788 } 16789 16790 /* drop refcnt of maps used by the rejected program */ 16791 static void release_btfs(struct bpf_verifier_env *env) 16792 { 16793 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 16794 env->used_btf_cnt); 16795 } 16796 16797 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 16798 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 16799 { 16800 struct bpf_insn *insn = env->prog->insnsi; 16801 int insn_cnt = env->prog->len; 16802 int i; 16803 16804 for (i = 0; i < insn_cnt; i++, insn++) { 16805 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 16806 continue; 16807 if (insn->src_reg == BPF_PSEUDO_FUNC) 16808 continue; 16809 insn->src_reg = 0; 16810 } 16811 } 16812 16813 /* single env->prog->insni[off] instruction was replaced with the range 16814 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 16815 * [0, off) and [off, end) to new locations, so the patched range stays zero 16816 */ 16817 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 16818 struct bpf_insn_aux_data *new_data, 16819 struct bpf_prog *new_prog, u32 off, u32 cnt) 16820 { 16821 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 16822 struct bpf_insn *insn = new_prog->insnsi; 16823 u32 old_seen = old_data[off].seen; 16824 u32 prog_len; 16825 int i; 16826 16827 /* aux info at OFF always needs adjustment, no matter fast path 16828 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 16829 * original insn at old prog. 16830 */ 16831 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 16832 16833 if (cnt == 1) 16834 return; 16835 prog_len = new_prog->len; 16836 16837 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 16838 memcpy(new_data + off + cnt - 1, old_data + off, 16839 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 16840 for (i = off; i < off + cnt - 1; i++) { 16841 /* Expand insni[off]'s seen count to the patched range. */ 16842 new_data[i].seen = old_seen; 16843 new_data[i].zext_dst = insn_has_def32(env, insn + i); 16844 } 16845 env->insn_aux_data = new_data; 16846 vfree(old_data); 16847 } 16848 16849 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 16850 { 16851 int i; 16852 16853 if (len == 1) 16854 return; 16855 /* NOTE: fake 'exit' subprog should be updated as well. */ 16856 for (i = 0; i <= env->subprog_cnt; i++) { 16857 if (env->subprog_info[i].start <= off) 16858 continue; 16859 env->subprog_info[i].start += len - 1; 16860 } 16861 } 16862 16863 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 16864 { 16865 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 16866 int i, sz = prog->aux->size_poke_tab; 16867 struct bpf_jit_poke_descriptor *desc; 16868 16869 for (i = 0; i < sz; i++) { 16870 desc = &tab[i]; 16871 if (desc->insn_idx <= off) 16872 continue; 16873 desc->insn_idx += len - 1; 16874 } 16875 } 16876 16877 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 16878 const struct bpf_insn *patch, u32 len) 16879 { 16880 struct bpf_prog *new_prog; 16881 struct bpf_insn_aux_data *new_data = NULL; 16882 16883 if (len > 1) { 16884 new_data = vzalloc(array_size(env->prog->len + len - 1, 16885 sizeof(struct bpf_insn_aux_data))); 16886 if (!new_data) 16887 return NULL; 16888 } 16889 16890 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 16891 if (IS_ERR(new_prog)) { 16892 if (PTR_ERR(new_prog) == -ERANGE) 16893 verbose(env, 16894 "insn %d cannot be patched due to 16-bit range\n", 16895 env->insn_aux_data[off].orig_idx); 16896 vfree(new_data); 16897 return NULL; 16898 } 16899 adjust_insn_aux_data(env, new_data, new_prog, off, len); 16900 adjust_subprog_starts(env, off, len); 16901 adjust_poke_descs(new_prog, off, len); 16902 return new_prog; 16903 } 16904 16905 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 16906 u32 off, u32 cnt) 16907 { 16908 int i, j; 16909 16910 /* find first prog starting at or after off (first to remove) */ 16911 for (i = 0; i < env->subprog_cnt; i++) 16912 if (env->subprog_info[i].start >= off) 16913 break; 16914 /* find first prog starting at or after off + cnt (first to stay) */ 16915 for (j = i; j < env->subprog_cnt; j++) 16916 if (env->subprog_info[j].start >= off + cnt) 16917 break; 16918 /* if j doesn't start exactly at off + cnt, we are just removing 16919 * the front of previous prog 16920 */ 16921 if (env->subprog_info[j].start != off + cnt) 16922 j--; 16923 16924 if (j > i) { 16925 struct bpf_prog_aux *aux = env->prog->aux; 16926 int move; 16927 16928 /* move fake 'exit' subprog as well */ 16929 move = env->subprog_cnt + 1 - j; 16930 16931 memmove(env->subprog_info + i, 16932 env->subprog_info + j, 16933 sizeof(*env->subprog_info) * move); 16934 env->subprog_cnt -= j - i; 16935 16936 /* remove func_info */ 16937 if (aux->func_info) { 16938 move = aux->func_info_cnt - j; 16939 16940 memmove(aux->func_info + i, 16941 aux->func_info + j, 16942 sizeof(*aux->func_info) * move); 16943 aux->func_info_cnt -= j - i; 16944 /* func_info->insn_off is set after all code rewrites, 16945 * in adjust_btf_func() - no need to adjust 16946 */ 16947 } 16948 } else { 16949 /* convert i from "first prog to remove" to "first to adjust" */ 16950 if (env->subprog_info[i].start == off) 16951 i++; 16952 } 16953 16954 /* update fake 'exit' subprog as well */ 16955 for (; i <= env->subprog_cnt; i++) 16956 env->subprog_info[i].start -= cnt; 16957 16958 return 0; 16959 } 16960 16961 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 16962 u32 cnt) 16963 { 16964 struct bpf_prog *prog = env->prog; 16965 u32 i, l_off, l_cnt, nr_linfo; 16966 struct bpf_line_info *linfo; 16967 16968 nr_linfo = prog->aux->nr_linfo; 16969 if (!nr_linfo) 16970 return 0; 16971 16972 linfo = prog->aux->linfo; 16973 16974 /* find first line info to remove, count lines to be removed */ 16975 for (i = 0; i < nr_linfo; i++) 16976 if (linfo[i].insn_off >= off) 16977 break; 16978 16979 l_off = i; 16980 l_cnt = 0; 16981 for (; i < nr_linfo; i++) 16982 if (linfo[i].insn_off < off + cnt) 16983 l_cnt++; 16984 else 16985 break; 16986 16987 /* First live insn doesn't match first live linfo, it needs to "inherit" 16988 * last removed linfo. prog is already modified, so prog->len == off 16989 * means no live instructions after (tail of the program was removed). 16990 */ 16991 if (prog->len != off && l_cnt && 16992 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 16993 l_cnt--; 16994 linfo[--i].insn_off = off + cnt; 16995 } 16996 16997 /* remove the line info which refer to the removed instructions */ 16998 if (l_cnt) { 16999 memmove(linfo + l_off, linfo + i, 17000 sizeof(*linfo) * (nr_linfo - i)); 17001 17002 prog->aux->nr_linfo -= l_cnt; 17003 nr_linfo = prog->aux->nr_linfo; 17004 } 17005 17006 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17007 for (i = l_off; i < nr_linfo; i++) 17008 linfo[i].insn_off -= cnt; 17009 17010 /* fix up all subprogs (incl. 'exit') which start >= off */ 17011 for (i = 0; i <= env->subprog_cnt; i++) 17012 if (env->subprog_info[i].linfo_idx > l_off) { 17013 /* program may have started in the removed region but 17014 * may not be fully removed 17015 */ 17016 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17017 env->subprog_info[i].linfo_idx -= l_cnt; 17018 else 17019 env->subprog_info[i].linfo_idx = l_off; 17020 } 17021 17022 return 0; 17023 } 17024 17025 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17026 { 17027 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17028 unsigned int orig_prog_len = env->prog->len; 17029 int err; 17030 17031 if (bpf_prog_is_offloaded(env->prog->aux)) 17032 bpf_prog_offload_remove_insns(env, off, cnt); 17033 17034 err = bpf_remove_insns(env->prog, off, cnt); 17035 if (err) 17036 return err; 17037 17038 err = adjust_subprog_starts_after_remove(env, off, cnt); 17039 if (err) 17040 return err; 17041 17042 err = bpf_adj_linfo_after_remove(env, off, cnt); 17043 if (err) 17044 return err; 17045 17046 memmove(aux_data + off, aux_data + off + cnt, 17047 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17048 17049 return 0; 17050 } 17051 17052 /* The verifier does more data flow analysis than llvm and will not 17053 * explore branches that are dead at run time. Malicious programs can 17054 * have dead code too. Therefore replace all dead at-run-time code 17055 * with 'ja -1'. 17056 * 17057 * Just nops are not optimal, e.g. if they would sit at the end of the 17058 * program and through another bug we would manage to jump there, then 17059 * we'd execute beyond program memory otherwise. Returning exception 17060 * code also wouldn't work since we can have subprogs where the dead 17061 * code could be located. 17062 */ 17063 static void sanitize_dead_code(struct bpf_verifier_env *env) 17064 { 17065 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17066 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17067 struct bpf_insn *insn = env->prog->insnsi; 17068 const int insn_cnt = env->prog->len; 17069 int i; 17070 17071 for (i = 0; i < insn_cnt; i++) { 17072 if (aux_data[i].seen) 17073 continue; 17074 memcpy(insn + i, &trap, sizeof(trap)); 17075 aux_data[i].zext_dst = false; 17076 } 17077 } 17078 17079 static bool insn_is_cond_jump(u8 code) 17080 { 17081 u8 op; 17082 17083 if (BPF_CLASS(code) == BPF_JMP32) 17084 return true; 17085 17086 if (BPF_CLASS(code) != BPF_JMP) 17087 return false; 17088 17089 op = BPF_OP(code); 17090 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17091 } 17092 17093 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17094 { 17095 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17096 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17097 struct bpf_insn *insn = env->prog->insnsi; 17098 const int insn_cnt = env->prog->len; 17099 int i; 17100 17101 for (i = 0; i < insn_cnt; i++, insn++) { 17102 if (!insn_is_cond_jump(insn->code)) 17103 continue; 17104 17105 if (!aux_data[i + 1].seen) 17106 ja.off = insn->off; 17107 else if (!aux_data[i + 1 + insn->off].seen) 17108 ja.off = 0; 17109 else 17110 continue; 17111 17112 if (bpf_prog_is_offloaded(env->prog->aux)) 17113 bpf_prog_offload_replace_insn(env, i, &ja); 17114 17115 memcpy(insn, &ja, sizeof(ja)); 17116 } 17117 } 17118 17119 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17120 { 17121 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17122 int insn_cnt = env->prog->len; 17123 int i, err; 17124 17125 for (i = 0; i < insn_cnt; i++) { 17126 int j; 17127 17128 j = 0; 17129 while (i + j < insn_cnt && !aux_data[i + j].seen) 17130 j++; 17131 if (!j) 17132 continue; 17133 17134 err = verifier_remove_insns(env, i, j); 17135 if (err) 17136 return err; 17137 insn_cnt = env->prog->len; 17138 } 17139 17140 return 0; 17141 } 17142 17143 static int opt_remove_nops(struct bpf_verifier_env *env) 17144 { 17145 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17146 struct bpf_insn *insn = env->prog->insnsi; 17147 int insn_cnt = env->prog->len; 17148 int i, err; 17149 17150 for (i = 0; i < insn_cnt; i++) { 17151 if (memcmp(&insn[i], &ja, sizeof(ja))) 17152 continue; 17153 17154 err = verifier_remove_insns(env, i, 1); 17155 if (err) 17156 return err; 17157 insn_cnt--; 17158 i--; 17159 } 17160 17161 return 0; 17162 } 17163 17164 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17165 const union bpf_attr *attr) 17166 { 17167 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17168 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17169 int i, patch_len, delta = 0, len = env->prog->len; 17170 struct bpf_insn *insns = env->prog->insnsi; 17171 struct bpf_prog *new_prog; 17172 bool rnd_hi32; 17173 17174 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17175 zext_patch[1] = BPF_ZEXT_REG(0); 17176 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17177 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17178 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17179 for (i = 0; i < len; i++) { 17180 int adj_idx = i + delta; 17181 struct bpf_insn insn; 17182 int load_reg; 17183 17184 insn = insns[adj_idx]; 17185 load_reg = insn_def_regno(&insn); 17186 if (!aux[adj_idx].zext_dst) { 17187 u8 code, class; 17188 u32 imm_rnd; 17189 17190 if (!rnd_hi32) 17191 continue; 17192 17193 code = insn.code; 17194 class = BPF_CLASS(code); 17195 if (load_reg == -1) 17196 continue; 17197 17198 /* NOTE: arg "reg" (the fourth one) is only used for 17199 * BPF_STX + SRC_OP, so it is safe to pass NULL 17200 * here. 17201 */ 17202 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17203 if (class == BPF_LD && 17204 BPF_MODE(code) == BPF_IMM) 17205 i++; 17206 continue; 17207 } 17208 17209 /* ctx load could be transformed into wider load. */ 17210 if (class == BPF_LDX && 17211 aux[adj_idx].ptr_type == PTR_TO_CTX) 17212 continue; 17213 17214 imm_rnd = get_random_u32(); 17215 rnd_hi32_patch[0] = insn; 17216 rnd_hi32_patch[1].imm = imm_rnd; 17217 rnd_hi32_patch[3].dst_reg = load_reg; 17218 patch = rnd_hi32_patch; 17219 patch_len = 4; 17220 goto apply_patch_buffer; 17221 } 17222 17223 /* Add in an zero-extend instruction if a) the JIT has requested 17224 * it or b) it's a CMPXCHG. 17225 * 17226 * The latter is because: BPF_CMPXCHG always loads a value into 17227 * R0, therefore always zero-extends. However some archs' 17228 * equivalent instruction only does this load when the 17229 * comparison is successful. This detail of CMPXCHG is 17230 * orthogonal to the general zero-extension behaviour of the 17231 * CPU, so it's treated independently of bpf_jit_needs_zext. 17232 */ 17233 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17234 continue; 17235 17236 /* Zero-extension is done by the caller. */ 17237 if (bpf_pseudo_kfunc_call(&insn)) 17238 continue; 17239 17240 if (WARN_ON(load_reg == -1)) { 17241 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17242 return -EFAULT; 17243 } 17244 17245 zext_patch[0] = insn; 17246 zext_patch[1].dst_reg = load_reg; 17247 zext_patch[1].src_reg = load_reg; 17248 patch = zext_patch; 17249 patch_len = 2; 17250 apply_patch_buffer: 17251 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17252 if (!new_prog) 17253 return -ENOMEM; 17254 env->prog = new_prog; 17255 insns = new_prog->insnsi; 17256 aux = env->insn_aux_data; 17257 delta += patch_len - 1; 17258 } 17259 17260 return 0; 17261 } 17262 17263 /* convert load instructions that access fields of a context type into a 17264 * sequence of instructions that access fields of the underlying structure: 17265 * struct __sk_buff -> struct sk_buff 17266 * struct bpf_sock_ops -> struct sock 17267 */ 17268 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17269 { 17270 const struct bpf_verifier_ops *ops = env->ops; 17271 int i, cnt, size, ctx_field_size, delta = 0; 17272 const int insn_cnt = env->prog->len; 17273 struct bpf_insn insn_buf[16], *insn; 17274 u32 target_size, size_default, off; 17275 struct bpf_prog *new_prog; 17276 enum bpf_access_type type; 17277 bool is_narrower_load; 17278 17279 if (ops->gen_prologue || env->seen_direct_write) { 17280 if (!ops->gen_prologue) { 17281 verbose(env, "bpf verifier is misconfigured\n"); 17282 return -EINVAL; 17283 } 17284 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17285 env->prog); 17286 if (cnt >= ARRAY_SIZE(insn_buf)) { 17287 verbose(env, "bpf verifier is misconfigured\n"); 17288 return -EINVAL; 17289 } else if (cnt) { 17290 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17291 if (!new_prog) 17292 return -ENOMEM; 17293 17294 env->prog = new_prog; 17295 delta += cnt - 1; 17296 } 17297 } 17298 17299 if (bpf_prog_is_offloaded(env->prog->aux)) 17300 return 0; 17301 17302 insn = env->prog->insnsi + delta; 17303 17304 for (i = 0; i < insn_cnt; i++, insn++) { 17305 bpf_convert_ctx_access_t convert_ctx_access; 17306 17307 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17308 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17309 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17310 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 17311 type = BPF_READ; 17312 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17313 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17314 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17315 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17316 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17317 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17318 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17319 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17320 type = BPF_WRITE; 17321 } else { 17322 continue; 17323 } 17324 17325 if (type == BPF_WRITE && 17326 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17327 struct bpf_insn patch[] = { 17328 *insn, 17329 BPF_ST_NOSPEC(), 17330 }; 17331 17332 cnt = ARRAY_SIZE(patch); 17333 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17334 if (!new_prog) 17335 return -ENOMEM; 17336 17337 delta += cnt - 1; 17338 env->prog = new_prog; 17339 insn = new_prog->insnsi + i + delta; 17340 continue; 17341 } 17342 17343 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17344 case PTR_TO_CTX: 17345 if (!ops->convert_ctx_access) 17346 continue; 17347 convert_ctx_access = ops->convert_ctx_access; 17348 break; 17349 case PTR_TO_SOCKET: 17350 case PTR_TO_SOCK_COMMON: 17351 convert_ctx_access = bpf_sock_convert_ctx_access; 17352 break; 17353 case PTR_TO_TCP_SOCK: 17354 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17355 break; 17356 case PTR_TO_XDP_SOCK: 17357 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17358 break; 17359 case PTR_TO_BTF_ID: 17360 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17361 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17362 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17363 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17364 * any faults for loads into such types. BPF_WRITE is disallowed 17365 * for this case. 17366 */ 17367 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17368 if (type == BPF_READ) { 17369 insn->code = BPF_LDX | BPF_PROBE_MEM | 17370 BPF_SIZE((insn)->code); 17371 env->prog->aux->num_exentries++; 17372 } 17373 continue; 17374 default: 17375 continue; 17376 } 17377 17378 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17379 size = BPF_LDST_BYTES(insn); 17380 17381 /* If the read access is a narrower load of the field, 17382 * convert to a 4/8-byte load, to minimum program type specific 17383 * convert_ctx_access changes. If conversion is successful, 17384 * we will apply proper mask to the result. 17385 */ 17386 is_narrower_load = size < ctx_field_size; 17387 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17388 off = insn->off; 17389 if (is_narrower_load) { 17390 u8 size_code; 17391 17392 if (type == BPF_WRITE) { 17393 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17394 return -EINVAL; 17395 } 17396 17397 size_code = BPF_H; 17398 if (ctx_field_size == 4) 17399 size_code = BPF_W; 17400 else if (ctx_field_size == 8) 17401 size_code = BPF_DW; 17402 17403 insn->off = off & ~(size_default - 1); 17404 insn->code = BPF_LDX | BPF_MEM | size_code; 17405 } 17406 17407 target_size = 0; 17408 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17409 &target_size); 17410 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17411 (ctx_field_size && !target_size)) { 17412 verbose(env, "bpf verifier is misconfigured\n"); 17413 return -EINVAL; 17414 } 17415 17416 if (is_narrower_load && size < target_size) { 17417 u8 shift = bpf_ctx_narrow_access_offset( 17418 off, size, size_default) * 8; 17419 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17420 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17421 return -EINVAL; 17422 } 17423 if (ctx_field_size <= 4) { 17424 if (shift) 17425 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17426 insn->dst_reg, 17427 shift); 17428 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17429 (1 << size * 8) - 1); 17430 } else { 17431 if (shift) 17432 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17433 insn->dst_reg, 17434 shift); 17435 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17436 (1ULL << size * 8) - 1); 17437 } 17438 } 17439 17440 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17441 if (!new_prog) 17442 return -ENOMEM; 17443 17444 delta += cnt - 1; 17445 17446 /* keep walking new program and skip insns we just inserted */ 17447 env->prog = new_prog; 17448 insn = new_prog->insnsi + i + delta; 17449 } 17450 17451 return 0; 17452 } 17453 17454 static int jit_subprogs(struct bpf_verifier_env *env) 17455 { 17456 struct bpf_prog *prog = env->prog, **func, *tmp; 17457 int i, j, subprog_start, subprog_end = 0, len, subprog; 17458 struct bpf_map *map_ptr; 17459 struct bpf_insn *insn; 17460 void *old_bpf_func; 17461 int err, num_exentries; 17462 17463 if (env->subprog_cnt <= 1) 17464 return 0; 17465 17466 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17467 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17468 continue; 17469 17470 /* Upon error here we cannot fall back to interpreter but 17471 * need a hard reject of the program. Thus -EFAULT is 17472 * propagated in any case. 17473 */ 17474 subprog = find_subprog(env, i + insn->imm + 1); 17475 if (subprog < 0) { 17476 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17477 i + insn->imm + 1); 17478 return -EFAULT; 17479 } 17480 /* temporarily remember subprog id inside insn instead of 17481 * aux_data, since next loop will split up all insns into funcs 17482 */ 17483 insn->off = subprog; 17484 /* remember original imm in case JIT fails and fallback 17485 * to interpreter will be needed 17486 */ 17487 env->insn_aux_data[i].call_imm = insn->imm; 17488 /* point imm to __bpf_call_base+1 from JITs point of view */ 17489 insn->imm = 1; 17490 if (bpf_pseudo_func(insn)) 17491 /* jit (e.g. x86_64) may emit fewer instructions 17492 * if it learns a u32 imm is the same as a u64 imm. 17493 * Force a non zero here. 17494 */ 17495 insn[1].imm = 1; 17496 } 17497 17498 err = bpf_prog_alloc_jited_linfo(prog); 17499 if (err) 17500 goto out_undo_insn; 17501 17502 err = -ENOMEM; 17503 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17504 if (!func) 17505 goto out_undo_insn; 17506 17507 for (i = 0; i < env->subprog_cnt; i++) { 17508 subprog_start = subprog_end; 17509 subprog_end = env->subprog_info[i + 1].start; 17510 17511 len = subprog_end - subprog_start; 17512 /* bpf_prog_run() doesn't call subprogs directly, 17513 * hence main prog stats include the runtime of subprogs. 17514 * subprogs don't have IDs and not reachable via prog_get_next_id 17515 * func[i]->stats will never be accessed and stays NULL 17516 */ 17517 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17518 if (!func[i]) 17519 goto out_free; 17520 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17521 len * sizeof(struct bpf_insn)); 17522 func[i]->type = prog->type; 17523 func[i]->len = len; 17524 if (bpf_prog_calc_tag(func[i])) 17525 goto out_free; 17526 func[i]->is_func = 1; 17527 func[i]->aux->func_idx = i; 17528 /* Below members will be freed only at prog->aux */ 17529 func[i]->aux->btf = prog->aux->btf; 17530 func[i]->aux->func_info = prog->aux->func_info; 17531 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17532 func[i]->aux->poke_tab = prog->aux->poke_tab; 17533 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17534 17535 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17536 struct bpf_jit_poke_descriptor *poke; 17537 17538 poke = &prog->aux->poke_tab[j]; 17539 if (poke->insn_idx < subprog_end && 17540 poke->insn_idx >= subprog_start) 17541 poke->aux = func[i]->aux; 17542 } 17543 17544 func[i]->aux->name[0] = 'F'; 17545 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 17546 func[i]->jit_requested = 1; 17547 func[i]->blinding_requested = prog->blinding_requested; 17548 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 17549 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 17550 func[i]->aux->linfo = prog->aux->linfo; 17551 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 17552 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 17553 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 17554 num_exentries = 0; 17555 insn = func[i]->insnsi; 17556 for (j = 0; j < func[i]->len; j++, insn++) { 17557 if (BPF_CLASS(insn->code) == BPF_LDX && 17558 BPF_MODE(insn->code) == BPF_PROBE_MEM) 17559 num_exentries++; 17560 } 17561 func[i]->aux->num_exentries = num_exentries; 17562 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 17563 func[i] = bpf_int_jit_compile(func[i]); 17564 if (!func[i]->jited) { 17565 err = -ENOTSUPP; 17566 goto out_free; 17567 } 17568 cond_resched(); 17569 } 17570 17571 /* at this point all bpf functions were successfully JITed 17572 * now populate all bpf_calls with correct addresses and 17573 * run last pass of JIT 17574 */ 17575 for (i = 0; i < env->subprog_cnt; i++) { 17576 insn = func[i]->insnsi; 17577 for (j = 0; j < func[i]->len; j++, insn++) { 17578 if (bpf_pseudo_func(insn)) { 17579 subprog = insn->off; 17580 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 17581 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 17582 continue; 17583 } 17584 if (!bpf_pseudo_call(insn)) 17585 continue; 17586 subprog = insn->off; 17587 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 17588 } 17589 17590 /* we use the aux data to keep a list of the start addresses 17591 * of the JITed images for each function in the program 17592 * 17593 * for some architectures, such as powerpc64, the imm field 17594 * might not be large enough to hold the offset of the start 17595 * address of the callee's JITed image from __bpf_call_base 17596 * 17597 * in such cases, we can lookup the start address of a callee 17598 * by using its subprog id, available from the off field of 17599 * the call instruction, as an index for this list 17600 */ 17601 func[i]->aux->func = func; 17602 func[i]->aux->func_cnt = env->subprog_cnt; 17603 } 17604 for (i = 0; i < env->subprog_cnt; i++) { 17605 old_bpf_func = func[i]->bpf_func; 17606 tmp = bpf_int_jit_compile(func[i]); 17607 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 17608 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 17609 err = -ENOTSUPP; 17610 goto out_free; 17611 } 17612 cond_resched(); 17613 } 17614 17615 /* finally lock prog and jit images for all functions and 17616 * populate kallsysm 17617 */ 17618 for (i = 0; i < env->subprog_cnt; i++) { 17619 bpf_prog_lock_ro(func[i]); 17620 bpf_prog_kallsyms_add(func[i]); 17621 } 17622 17623 /* Last step: make now unused interpreter insns from main 17624 * prog consistent for later dump requests, so they can 17625 * later look the same as if they were interpreted only. 17626 */ 17627 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17628 if (bpf_pseudo_func(insn)) { 17629 insn[0].imm = env->insn_aux_data[i].call_imm; 17630 insn[1].imm = insn->off; 17631 insn->off = 0; 17632 continue; 17633 } 17634 if (!bpf_pseudo_call(insn)) 17635 continue; 17636 insn->off = env->insn_aux_data[i].call_imm; 17637 subprog = find_subprog(env, i + insn->off + 1); 17638 insn->imm = subprog; 17639 } 17640 17641 prog->jited = 1; 17642 prog->bpf_func = func[0]->bpf_func; 17643 prog->jited_len = func[0]->jited_len; 17644 prog->aux->func = func; 17645 prog->aux->func_cnt = env->subprog_cnt; 17646 bpf_prog_jit_attempt_done(prog); 17647 return 0; 17648 out_free: 17649 /* We failed JIT'ing, so at this point we need to unregister poke 17650 * descriptors from subprogs, so that kernel is not attempting to 17651 * patch it anymore as we're freeing the subprog JIT memory. 17652 */ 17653 for (i = 0; i < prog->aux->size_poke_tab; i++) { 17654 map_ptr = prog->aux->poke_tab[i].tail_call.map; 17655 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 17656 } 17657 /* At this point we're guaranteed that poke descriptors are not 17658 * live anymore. We can just unlink its descriptor table as it's 17659 * released with the main prog. 17660 */ 17661 for (i = 0; i < env->subprog_cnt; i++) { 17662 if (!func[i]) 17663 continue; 17664 func[i]->aux->poke_tab = NULL; 17665 bpf_jit_free(func[i]); 17666 } 17667 kfree(func); 17668 out_undo_insn: 17669 /* cleanup main prog to be interpreted */ 17670 prog->jit_requested = 0; 17671 prog->blinding_requested = 0; 17672 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17673 if (!bpf_pseudo_call(insn)) 17674 continue; 17675 insn->off = 0; 17676 insn->imm = env->insn_aux_data[i].call_imm; 17677 } 17678 bpf_prog_jit_attempt_done(prog); 17679 return err; 17680 } 17681 17682 static int fixup_call_args(struct bpf_verifier_env *env) 17683 { 17684 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17685 struct bpf_prog *prog = env->prog; 17686 struct bpf_insn *insn = prog->insnsi; 17687 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 17688 int i, depth; 17689 #endif 17690 int err = 0; 17691 17692 if (env->prog->jit_requested && 17693 !bpf_prog_is_offloaded(env->prog->aux)) { 17694 err = jit_subprogs(env); 17695 if (err == 0) 17696 return 0; 17697 if (err == -EFAULT) 17698 return err; 17699 } 17700 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17701 if (has_kfunc_call) { 17702 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 17703 return -EINVAL; 17704 } 17705 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 17706 /* When JIT fails the progs with bpf2bpf calls and tail_calls 17707 * have to be rejected, since interpreter doesn't support them yet. 17708 */ 17709 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 17710 return -EINVAL; 17711 } 17712 for (i = 0; i < prog->len; i++, insn++) { 17713 if (bpf_pseudo_func(insn)) { 17714 /* When JIT fails the progs with callback calls 17715 * have to be rejected, since interpreter doesn't support them yet. 17716 */ 17717 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 17718 return -EINVAL; 17719 } 17720 17721 if (!bpf_pseudo_call(insn)) 17722 continue; 17723 depth = get_callee_stack_depth(env, insn, i); 17724 if (depth < 0) 17725 return depth; 17726 bpf_patch_call_args(insn, depth); 17727 } 17728 err = 0; 17729 #endif 17730 return err; 17731 } 17732 17733 /* replace a generic kfunc with a specialized version if necessary */ 17734 static void specialize_kfunc(struct bpf_verifier_env *env, 17735 u32 func_id, u16 offset, unsigned long *addr) 17736 { 17737 struct bpf_prog *prog = env->prog; 17738 bool seen_direct_write; 17739 void *xdp_kfunc; 17740 bool is_rdonly; 17741 17742 if (bpf_dev_bound_kfunc_id(func_id)) { 17743 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 17744 if (xdp_kfunc) { 17745 *addr = (unsigned long)xdp_kfunc; 17746 return; 17747 } 17748 /* fallback to default kfunc when not supported by netdev */ 17749 } 17750 17751 if (offset) 17752 return; 17753 17754 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 17755 seen_direct_write = env->seen_direct_write; 17756 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 17757 17758 if (is_rdonly) 17759 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 17760 17761 /* restore env->seen_direct_write to its original value, since 17762 * may_access_direct_pkt_data mutates it 17763 */ 17764 env->seen_direct_write = seen_direct_write; 17765 } 17766 } 17767 17768 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 17769 u16 struct_meta_reg, 17770 u16 node_offset_reg, 17771 struct bpf_insn *insn, 17772 struct bpf_insn *insn_buf, 17773 int *cnt) 17774 { 17775 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 17776 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 17777 17778 insn_buf[0] = addr[0]; 17779 insn_buf[1] = addr[1]; 17780 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 17781 insn_buf[3] = *insn; 17782 *cnt = 4; 17783 } 17784 17785 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 17786 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 17787 { 17788 const struct bpf_kfunc_desc *desc; 17789 17790 if (!insn->imm) { 17791 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 17792 return -EINVAL; 17793 } 17794 17795 *cnt = 0; 17796 17797 /* insn->imm has the btf func_id. Replace it with an offset relative to 17798 * __bpf_call_base, unless the JIT needs to call functions that are 17799 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 17800 */ 17801 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 17802 if (!desc) { 17803 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 17804 insn->imm); 17805 return -EFAULT; 17806 } 17807 17808 if (!bpf_jit_supports_far_kfunc_call()) 17809 insn->imm = BPF_CALL_IMM(desc->addr); 17810 if (insn->off) 17811 return 0; 17812 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 17813 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 17814 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 17815 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 17816 17817 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 17818 insn_buf[1] = addr[0]; 17819 insn_buf[2] = addr[1]; 17820 insn_buf[3] = *insn; 17821 *cnt = 4; 17822 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 17823 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 17824 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 17825 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 17826 17827 insn_buf[0] = addr[0]; 17828 insn_buf[1] = addr[1]; 17829 insn_buf[2] = *insn; 17830 *cnt = 3; 17831 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 17832 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 17833 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 17834 int struct_meta_reg = BPF_REG_3; 17835 int node_offset_reg = BPF_REG_4; 17836 17837 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 17838 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 17839 struct_meta_reg = BPF_REG_4; 17840 node_offset_reg = BPF_REG_5; 17841 } 17842 17843 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 17844 node_offset_reg, insn, insn_buf, cnt); 17845 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 17846 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 17847 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 17848 *cnt = 1; 17849 } 17850 return 0; 17851 } 17852 17853 /* Do various post-verification rewrites in a single program pass. 17854 * These rewrites simplify JIT and interpreter implementations. 17855 */ 17856 static int do_misc_fixups(struct bpf_verifier_env *env) 17857 { 17858 struct bpf_prog *prog = env->prog; 17859 enum bpf_attach_type eatype = prog->expected_attach_type; 17860 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17861 struct bpf_insn *insn = prog->insnsi; 17862 const struct bpf_func_proto *fn; 17863 const int insn_cnt = prog->len; 17864 const struct bpf_map_ops *ops; 17865 struct bpf_insn_aux_data *aux; 17866 struct bpf_insn insn_buf[16]; 17867 struct bpf_prog *new_prog; 17868 struct bpf_map *map_ptr; 17869 int i, ret, cnt, delta = 0; 17870 17871 for (i = 0; i < insn_cnt; i++, insn++) { 17872 /* Make divide-by-zero exceptions impossible. */ 17873 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 17874 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 17875 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 17876 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 17877 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 17878 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 17879 struct bpf_insn *patchlet; 17880 struct bpf_insn chk_and_div[] = { 17881 /* [R,W]x div 0 -> 0 */ 17882 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 17883 BPF_JNE | BPF_K, insn->src_reg, 17884 0, 2, 0), 17885 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 17886 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 17887 *insn, 17888 }; 17889 struct bpf_insn chk_and_mod[] = { 17890 /* [R,W]x mod 0 -> [R,W]x */ 17891 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 17892 BPF_JEQ | BPF_K, insn->src_reg, 17893 0, 1 + (is64 ? 0 : 1), 0), 17894 *insn, 17895 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 17896 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 17897 }; 17898 17899 patchlet = isdiv ? chk_and_div : chk_and_mod; 17900 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 17901 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 17902 17903 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 17904 if (!new_prog) 17905 return -ENOMEM; 17906 17907 delta += cnt - 1; 17908 env->prog = prog = new_prog; 17909 insn = new_prog->insnsi + i + delta; 17910 continue; 17911 } 17912 17913 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 17914 if (BPF_CLASS(insn->code) == BPF_LD && 17915 (BPF_MODE(insn->code) == BPF_ABS || 17916 BPF_MODE(insn->code) == BPF_IND)) { 17917 cnt = env->ops->gen_ld_abs(insn, insn_buf); 17918 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 17919 verbose(env, "bpf verifier is misconfigured\n"); 17920 return -EINVAL; 17921 } 17922 17923 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17924 if (!new_prog) 17925 return -ENOMEM; 17926 17927 delta += cnt - 1; 17928 env->prog = prog = new_prog; 17929 insn = new_prog->insnsi + i + delta; 17930 continue; 17931 } 17932 17933 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 17934 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 17935 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 17936 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 17937 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 17938 struct bpf_insn *patch = &insn_buf[0]; 17939 bool issrc, isneg, isimm; 17940 u32 off_reg; 17941 17942 aux = &env->insn_aux_data[i + delta]; 17943 if (!aux->alu_state || 17944 aux->alu_state == BPF_ALU_NON_POINTER) 17945 continue; 17946 17947 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 17948 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 17949 BPF_ALU_SANITIZE_SRC; 17950 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 17951 17952 off_reg = issrc ? insn->src_reg : insn->dst_reg; 17953 if (isimm) { 17954 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 17955 } else { 17956 if (isneg) 17957 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 17958 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 17959 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 17960 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 17961 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 17962 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 17963 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 17964 } 17965 if (!issrc) 17966 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 17967 insn->src_reg = BPF_REG_AX; 17968 if (isneg) 17969 insn->code = insn->code == code_add ? 17970 code_sub : code_add; 17971 *patch++ = *insn; 17972 if (issrc && isneg && !isimm) 17973 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 17974 cnt = patch - insn_buf; 17975 17976 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17977 if (!new_prog) 17978 return -ENOMEM; 17979 17980 delta += cnt - 1; 17981 env->prog = prog = new_prog; 17982 insn = new_prog->insnsi + i + delta; 17983 continue; 17984 } 17985 17986 if (insn->code != (BPF_JMP | BPF_CALL)) 17987 continue; 17988 if (insn->src_reg == BPF_PSEUDO_CALL) 17989 continue; 17990 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17991 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 17992 if (ret) 17993 return ret; 17994 if (cnt == 0) 17995 continue; 17996 17997 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17998 if (!new_prog) 17999 return -ENOMEM; 18000 18001 delta += cnt - 1; 18002 env->prog = prog = new_prog; 18003 insn = new_prog->insnsi + i + delta; 18004 continue; 18005 } 18006 18007 if (insn->imm == BPF_FUNC_get_route_realm) 18008 prog->dst_needed = 1; 18009 if (insn->imm == BPF_FUNC_get_prandom_u32) 18010 bpf_user_rnd_init_once(); 18011 if (insn->imm == BPF_FUNC_override_return) 18012 prog->kprobe_override = 1; 18013 if (insn->imm == BPF_FUNC_tail_call) { 18014 /* If we tail call into other programs, we 18015 * cannot make any assumptions since they can 18016 * be replaced dynamically during runtime in 18017 * the program array. 18018 */ 18019 prog->cb_access = 1; 18020 if (!allow_tail_call_in_subprogs(env)) 18021 prog->aux->stack_depth = MAX_BPF_STACK; 18022 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18023 18024 /* mark bpf_tail_call as different opcode to avoid 18025 * conditional branch in the interpreter for every normal 18026 * call and to prevent accidental JITing by JIT compiler 18027 * that doesn't support bpf_tail_call yet 18028 */ 18029 insn->imm = 0; 18030 insn->code = BPF_JMP | BPF_TAIL_CALL; 18031 18032 aux = &env->insn_aux_data[i + delta]; 18033 if (env->bpf_capable && !prog->blinding_requested && 18034 prog->jit_requested && 18035 !bpf_map_key_poisoned(aux) && 18036 !bpf_map_ptr_poisoned(aux) && 18037 !bpf_map_ptr_unpriv(aux)) { 18038 struct bpf_jit_poke_descriptor desc = { 18039 .reason = BPF_POKE_REASON_TAIL_CALL, 18040 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18041 .tail_call.key = bpf_map_key_immediate(aux), 18042 .insn_idx = i + delta, 18043 }; 18044 18045 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18046 if (ret < 0) { 18047 verbose(env, "adding tail call poke descriptor failed\n"); 18048 return ret; 18049 } 18050 18051 insn->imm = ret + 1; 18052 continue; 18053 } 18054 18055 if (!bpf_map_ptr_unpriv(aux)) 18056 continue; 18057 18058 /* instead of changing every JIT dealing with tail_call 18059 * emit two extra insns: 18060 * if (index >= max_entries) goto out; 18061 * index &= array->index_mask; 18062 * to avoid out-of-bounds cpu speculation 18063 */ 18064 if (bpf_map_ptr_poisoned(aux)) { 18065 verbose(env, "tail_call abusing map_ptr\n"); 18066 return -EINVAL; 18067 } 18068 18069 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18070 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18071 map_ptr->max_entries, 2); 18072 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18073 container_of(map_ptr, 18074 struct bpf_array, 18075 map)->index_mask); 18076 insn_buf[2] = *insn; 18077 cnt = 3; 18078 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18079 if (!new_prog) 18080 return -ENOMEM; 18081 18082 delta += cnt - 1; 18083 env->prog = prog = new_prog; 18084 insn = new_prog->insnsi + i + delta; 18085 continue; 18086 } 18087 18088 if (insn->imm == BPF_FUNC_timer_set_callback) { 18089 /* The verifier will process callback_fn as many times as necessary 18090 * with different maps and the register states prepared by 18091 * set_timer_callback_state will be accurate. 18092 * 18093 * The following use case is valid: 18094 * map1 is shared by prog1, prog2, prog3. 18095 * prog1 calls bpf_timer_init for some map1 elements 18096 * prog2 calls bpf_timer_set_callback for some map1 elements. 18097 * Those that were not bpf_timer_init-ed will return -EINVAL. 18098 * prog3 calls bpf_timer_start for some map1 elements. 18099 * Those that were not both bpf_timer_init-ed and 18100 * bpf_timer_set_callback-ed will return -EINVAL. 18101 */ 18102 struct bpf_insn ld_addrs[2] = { 18103 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18104 }; 18105 18106 insn_buf[0] = ld_addrs[0]; 18107 insn_buf[1] = ld_addrs[1]; 18108 insn_buf[2] = *insn; 18109 cnt = 3; 18110 18111 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18112 if (!new_prog) 18113 return -ENOMEM; 18114 18115 delta += cnt - 1; 18116 env->prog = prog = new_prog; 18117 insn = new_prog->insnsi + i + delta; 18118 goto patch_call_imm; 18119 } 18120 18121 if (is_storage_get_function(insn->imm)) { 18122 if (!env->prog->aux->sleepable || 18123 env->insn_aux_data[i + delta].storage_get_func_atomic) 18124 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18125 else 18126 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18127 insn_buf[1] = *insn; 18128 cnt = 2; 18129 18130 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18131 if (!new_prog) 18132 return -ENOMEM; 18133 18134 delta += cnt - 1; 18135 env->prog = prog = new_prog; 18136 insn = new_prog->insnsi + i + delta; 18137 goto patch_call_imm; 18138 } 18139 18140 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18141 * and other inlining handlers are currently limited to 64 bit 18142 * only. 18143 */ 18144 if (prog->jit_requested && BITS_PER_LONG == 64 && 18145 (insn->imm == BPF_FUNC_map_lookup_elem || 18146 insn->imm == BPF_FUNC_map_update_elem || 18147 insn->imm == BPF_FUNC_map_delete_elem || 18148 insn->imm == BPF_FUNC_map_push_elem || 18149 insn->imm == BPF_FUNC_map_pop_elem || 18150 insn->imm == BPF_FUNC_map_peek_elem || 18151 insn->imm == BPF_FUNC_redirect_map || 18152 insn->imm == BPF_FUNC_for_each_map_elem || 18153 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18154 aux = &env->insn_aux_data[i + delta]; 18155 if (bpf_map_ptr_poisoned(aux)) 18156 goto patch_call_imm; 18157 18158 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18159 ops = map_ptr->ops; 18160 if (insn->imm == BPF_FUNC_map_lookup_elem && 18161 ops->map_gen_lookup) { 18162 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18163 if (cnt == -EOPNOTSUPP) 18164 goto patch_map_ops_generic; 18165 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18166 verbose(env, "bpf verifier is misconfigured\n"); 18167 return -EINVAL; 18168 } 18169 18170 new_prog = bpf_patch_insn_data(env, i + delta, 18171 insn_buf, cnt); 18172 if (!new_prog) 18173 return -ENOMEM; 18174 18175 delta += cnt - 1; 18176 env->prog = prog = new_prog; 18177 insn = new_prog->insnsi + i + delta; 18178 continue; 18179 } 18180 18181 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18182 (void *(*)(struct bpf_map *map, void *key))NULL)); 18183 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18184 (long (*)(struct bpf_map *map, void *key))NULL)); 18185 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18186 (long (*)(struct bpf_map *map, void *key, void *value, 18187 u64 flags))NULL)); 18188 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18189 (long (*)(struct bpf_map *map, void *value, 18190 u64 flags))NULL)); 18191 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18192 (long (*)(struct bpf_map *map, void *value))NULL)); 18193 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18194 (long (*)(struct bpf_map *map, void *value))NULL)); 18195 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18196 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18197 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18198 (long (*)(struct bpf_map *map, 18199 bpf_callback_t callback_fn, 18200 void *callback_ctx, 18201 u64 flags))NULL)); 18202 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18203 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18204 18205 patch_map_ops_generic: 18206 switch (insn->imm) { 18207 case BPF_FUNC_map_lookup_elem: 18208 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18209 continue; 18210 case BPF_FUNC_map_update_elem: 18211 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18212 continue; 18213 case BPF_FUNC_map_delete_elem: 18214 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18215 continue; 18216 case BPF_FUNC_map_push_elem: 18217 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18218 continue; 18219 case BPF_FUNC_map_pop_elem: 18220 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18221 continue; 18222 case BPF_FUNC_map_peek_elem: 18223 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18224 continue; 18225 case BPF_FUNC_redirect_map: 18226 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18227 continue; 18228 case BPF_FUNC_for_each_map_elem: 18229 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18230 continue; 18231 case BPF_FUNC_map_lookup_percpu_elem: 18232 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18233 continue; 18234 } 18235 18236 goto patch_call_imm; 18237 } 18238 18239 /* Implement bpf_jiffies64 inline. */ 18240 if (prog->jit_requested && BITS_PER_LONG == 64 && 18241 insn->imm == BPF_FUNC_jiffies64) { 18242 struct bpf_insn ld_jiffies_addr[2] = { 18243 BPF_LD_IMM64(BPF_REG_0, 18244 (unsigned long)&jiffies), 18245 }; 18246 18247 insn_buf[0] = ld_jiffies_addr[0]; 18248 insn_buf[1] = ld_jiffies_addr[1]; 18249 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18250 BPF_REG_0, 0); 18251 cnt = 3; 18252 18253 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18254 cnt); 18255 if (!new_prog) 18256 return -ENOMEM; 18257 18258 delta += cnt - 1; 18259 env->prog = prog = new_prog; 18260 insn = new_prog->insnsi + i + delta; 18261 continue; 18262 } 18263 18264 /* Implement bpf_get_func_arg inline. */ 18265 if (prog_type == BPF_PROG_TYPE_TRACING && 18266 insn->imm == BPF_FUNC_get_func_arg) { 18267 /* Load nr_args from ctx - 8 */ 18268 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18269 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18270 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18271 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18272 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18273 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18274 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18275 insn_buf[7] = BPF_JMP_A(1); 18276 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18277 cnt = 9; 18278 18279 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18280 if (!new_prog) 18281 return -ENOMEM; 18282 18283 delta += cnt - 1; 18284 env->prog = prog = new_prog; 18285 insn = new_prog->insnsi + i + delta; 18286 continue; 18287 } 18288 18289 /* Implement bpf_get_func_ret inline. */ 18290 if (prog_type == BPF_PROG_TYPE_TRACING && 18291 insn->imm == BPF_FUNC_get_func_ret) { 18292 if (eatype == BPF_TRACE_FEXIT || 18293 eatype == BPF_MODIFY_RETURN) { 18294 /* Load nr_args from ctx - 8 */ 18295 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18296 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18297 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18298 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18299 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18300 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18301 cnt = 6; 18302 } else { 18303 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18304 cnt = 1; 18305 } 18306 18307 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18308 if (!new_prog) 18309 return -ENOMEM; 18310 18311 delta += cnt - 1; 18312 env->prog = prog = new_prog; 18313 insn = new_prog->insnsi + i + delta; 18314 continue; 18315 } 18316 18317 /* Implement get_func_arg_cnt inline. */ 18318 if (prog_type == BPF_PROG_TYPE_TRACING && 18319 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18320 /* Load nr_args from ctx - 8 */ 18321 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18322 18323 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18324 if (!new_prog) 18325 return -ENOMEM; 18326 18327 env->prog = prog = new_prog; 18328 insn = new_prog->insnsi + i + delta; 18329 continue; 18330 } 18331 18332 /* Implement bpf_get_func_ip inline. */ 18333 if (prog_type == BPF_PROG_TYPE_TRACING && 18334 insn->imm == BPF_FUNC_get_func_ip) { 18335 /* Load IP address from ctx - 16 */ 18336 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18337 18338 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18339 if (!new_prog) 18340 return -ENOMEM; 18341 18342 env->prog = prog = new_prog; 18343 insn = new_prog->insnsi + i + delta; 18344 continue; 18345 } 18346 18347 patch_call_imm: 18348 fn = env->ops->get_func_proto(insn->imm, env->prog); 18349 /* all functions that have prototype and verifier allowed 18350 * programs to call them, must be real in-kernel functions 18351 */ 18352 if (!fn->func) { 18353 verbose(env, 18354 "kernel subsystem misconfigured func %s#%d\n", 18355 func_id_name(insn->imm), insn->imm); 18356 return -EFAULT; 18357 } 18358 insn->imm = fn->func - __bpf_call_base; 18359 } 18360 18361 /* Since poke tab is now finalized, publish aux to tracker. */ 18362 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18363 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18364 if (!map_ptr->ops->map_poke_track || 18365 !map_ptr->ops->map_poke_untrack || 18366 !map_ptr->ops->map_poke_run) { 18367 verbose(env, "bpf verifier is misconfigured\n"); 18368 return -EINVAL; 18369 } 18370 18371 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18372 if (ret < 0) { 18373 verbose(env, "tracking tail call prog failed\n"); 18374 return ret; 18375 } 18376 } 18377 18378 sort_kfunc_descs_by_imm_off(env->prog); 18379 18380 return 0; 18381 } 18382 18383 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18384 int position, 18385 s32 stack_base, 18386 u32 callback_subprogno, 18387 u32 *cnt) 18388 { 18389 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18390 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18391 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18392 int reg_loop_max = BPF_REG_6; 18393 int reg_loop_cnt = BPF_REG_7; 18394 int reg_loop_ctx = BPF_REG_8; 18395 18396 struct bpf_prog *new_prog; 18397 u32 callback_start; 18398 u32 call_insn_offset; 18399 s32 callback_offset; 18400 18401 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18402 * be careful to modify this code in sync. 18403 */ 18404 struct bpf_insn insn_buf[] = { 18405 /* Return error and jump to the end of the patch if 18406 * expected number of iterations is too big. 18407 */ 18408 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18409 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18410 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18411 /* spill R6, R7, R8 to use these as loop vars */ 18412 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18413 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18414 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18415 /* initialize loop vars */ 18416 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18417 BPF_MOV32_IMM(reg_loop_cnt, 0), 18418 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18419 /* loop header, 18420 * if reg_loop_cnt >= reg_loop_max skip the loop body 18421 */ 18422 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18423 /* callback call, 18424 * correct callback offset would be set after patching 18425 */ 18426 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18427 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18428 BPF_CALL_REL(0), 18429 /* increment loop counter */ 18430 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18431 /* jump to loop header if callback returned 0 */ 18432 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18433 /* return value of bpf_loop, 18434 * set R0 to the number of iterations 18435 */ 18436 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18437 /* restore original values of R6, R7, R8 */ 18438 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18439 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18440 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18441 }; 18442 18443 *cnt = ARRAY_SIZE(insn_buf); 18444 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18445 if (!new_prog) 18446 return new_prog; 18447 18448 /* callback start is known only after patching */ 18449 callback_start = env->subprog_info[callback_subprogno].start; 18450 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18451 call_insn_offset = position + 12; 18452 callback_offset = callback_start - call_insn_offset - 1; 18453 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18454 18455 return new_prog; 18456 } 18457 18458 static bool is_bpf_loop_call(struct bpf_insn *insn) 18459 { 18460 return insn->code == (BPF_JMP | BPF_CALL) && 18461 insn->src_reg == 0 && 18462 insn->imm == BPF_FUNC_loop; 18463 } 18464 18465 /* For all sub-programs in the program (including main) check 18466 * insn_aux_data to see if there are bpf_loop calls that require 18467 * inlining. If such calls are found the calls are replaced with a 18468 * sequence of instructions produced by `inline_bpf_loop` function and 18469 * subprog stack_depth is increased by the size of 3 registers. 18470 * This stack space is used to spill values of the R6, R7, R8. These 18471 * registers are used to store the loop bound, counter and context 18472 * variables. 18473 */ 18474 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18475 { 18476 struct bpf_subprog_info *subprogs = env->subprog_info; 18477 int i, cur_subprog = 0, cnt, delta = 0; 18478 struct bpf_insn *insn = env->prog->insnsi; 18479 int insn_cnt = env->prog->len; 18480 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18481 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18482 u16 stack_depth_extra = 0; 18483 18484 for (i = 0; i < insn_cnt; i++, insn++) { 18485 struct bpf_loop_inline_state *inline_state = 18486 &env->insn_aux_data[i + delta].loop_inline_state; 18487 18488 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18489 struct bpf_prog *new_prog; 18490 18491 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18492 new_prog = inline_bpf_loop(env, 18493 i + delta, 18494 -(stack_depth + stack_depth_extra), 18495 inline_state->callback_subprogno, 18496 &cnt); 18497 if (!new_prog) 18498 return -ENOMEM; 18499 18500 delta += cnt - 1; 18501 env->prog = new_prog; 18502 insn = new_prog->insnsi + i + delta; 18503 } 18504 18505 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18506 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18507 cur_subprog++; 18508 stack_depth = subprogs[cur_subprog].stack_depth; 18509 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18510 stack_depth_extra = 0; 18511 } 18512 } 18513 18514 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18515 18516 return 0; 18517 } 18518 18519 static void free_states(struct bpf_verifier_env *env) 18520 { 18521 struct bpf_verifier_state_list *sl, *sln; 18522 int i; 18523 18524 sl = env->free_list; 18525 while (sl) { 18526 sln = sl->next; 18527 free_verifier_state(&sl->state, false); 18528 kfree(sl); 18529 sl = sln; 18530 } 18531 env->free_list = NULL; 18532 18533 if (!env->explored_states) 18534 return; 18535 18536 for (i = 0; i < state_htab_size(env); i++) { 18537 sl = env->explored_states[i]; 18538 18539 while (sl) { 18540 sln = sl->next; 18541 free_verifier_state(&sl->state, false); 18542 kfree(sl); 18543 sl = sln; 18544 } 18545 env->explored_states[i] = NULL; 18546 } 18547 } 18548 18549 static int do_check_common(struct bpf_verifier_env *env, int subprog) 18550 { 18551 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18552 struct bpf_verifier_state *state; 18553 struct bpf_reg_state *regs; 18554 int ret, i; 18555 18556 env->prev_linfo = NULL; 18557 env->pass_cnt++; 18558 18559 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 18560 if (!state) 18561 return -ENOMEM; 18562 state->curframe = 0; 18563 state->speculative = false; 18564 state->branches = 1; 18565 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 18566 if (!state->frame[0]) { 18567 kfree(state); 18568 return -ENOMEM; 18569 } 18570 env->cur_state = state; 18571 init_func_state(env, state->frame[0], 18572 BPF_MAIN_FUNC /* callsite */, 18573 0 /* frameno */, 18574 subprog); 18575 state->first_insn_idx = env->subprog_info[subprog].start; 18576 state->last_insn_idx = -1; 18577 18578 regs = state->frame[state->curframe]->regs; 18579 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 18580 ret = btf_prepare_func_args(env, subprog, regs); 18581 if (ret) 18582 goto out; 18583 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 18584 if (regs[i].type == PTR_TO_CTX) 18585 mark_reg_known_zero(env, regs, i); 18586 else if (regs[i].type == SCALAR_VALUE) 18587 mark_reg_unknown(env, regs, i); 18588 else if (base_type(regs[i].type) == PTR_TO_MEM) { 18589 const u32 mem_size = regs[i].mem_size; 18590 18591 mark_reg_known_zero(env, regs, i); 18592 regs[i].mem_size = mem_size; 18593 regs[i].id = ++env->id_gen; 18594 } 18595 } 18596 } else { 18597 /* 1st arg to a function */ 18598 regs[BPF_REG_1].type = PTR_TO_CTX; 18599 mark_reg_known_zero(env, regs, BPF_REG_1); 18600 ret = btf_check_subprog_arg_match(env, subprog, regs); 18601 if (ret == -EFAULT) 18602 /* unlikely verifier bug. abort. 18603 * ret == 0 and ret < 0 are sadly acceptable for 18604 * main() function due to backward compatibility. 18605 * Like socket filter program may be written as: 18606 * int bpf_prog(struct pt_regs *ctx) 18607 * and never dereference that ctx in the program. 18608 * 'struct pt_regs' is a type mismatch for socket 18609 * filter that should be using 'struct __sk_buff'. 18610 */ 18611 goto out; 18612 } 18613 18614 ret = do_check(env); 18615 out: 18616 /* check for NULL is necessary, since cur_state can be freed inside 18617 * do_check() under memory pressure. 18618 */ 18619 if (env->cur_state) { 18620 free_verifier_state(env->cur_state, true); 18621 env->cur_state = NULL; 18622 } 18623 while (!pop_stack(env, NULL, NULL, false)); 18624 if (!ret && pop_log) 18625 bpf_vlog_reset(&env->log, 0); 18626 free_states(env); 18627 return ret; 18628 } 18629 18630 /* Verify all global functions in a BPF program one by one based on their BTF. 18631 * All global functions must pass verification. Otherwise the whole program is rejected. 18632 * Consider: 18633 * int bar(int); 18634 * int foo(int f) 18635 * { 18636 * return bar(f); 18637 * } 18638 * int bar(int b) 18639 * { 18640 * ... 18641 * } 18642 * foo() will be verified first for R1=any_scalar_value. During verification it 18643 * will be assumed that bar() already verified successfully and call to bar() 18644 * from foo() will be checked for type match only. Later bar() will be verified 18645 * independently to check that it's safe for R1=any_scalar_value. 18646 */ 18647 static int do_check_subprogs(struct bpf_verifier_env *env) 18648 { 18649 struct bpf_prog_aux *aux = env->prog->aux; 18650 int i, ret; 18651 18652 if (!aux->func_info) 18653 return 0; 18654 18655 for (i = 1; i < env->subprog_cnt; i++) { 18656 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 18657 continue; 18658 env->insn_idx = env->subprog_info[i].start; 18659 WARN_ON_ONCE(env->insn_idx == 0); 18660 ret = do_check_common(env, i); 18661 if (ret) { 18662 return ret; 18663 } else if (env->log.level & BPF_LOG_LEVEL) { 18664 verbose(env, 18665 "Func#%d is safe for any args that match its prototype\n", 18666 i); 18667 } 18668 } 18669 return 0; 18670 } 18671 18672 static int do_check_main(struct bpf_verifier_env *env) 18673 { 18674 int ret; 18675 18676 env->insn_idx = 0; 18677 ret = do_check_common(env, 0); 18678 if (!ret) 18679 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18680 return ret; 18681 } 18682 18683 18684 static void print_verification_stats(struct bpf_verifier_env *env) 18685 { 18686 int i; 18687 18688 if (env->log.level & BPF_LOG_STATS) { 18689 verbose(env, "verification time %lld usec\n", 18690 div_u64(env->verification_time, 1000)); 18691 verbose(env, "stack depth "); 18692 for (i = 0; i < env->subprog_cnt; i++) { 18693 u32 depth = env->subprog_info[i].stack_depth; 18694 18695 verbose(env, "%d", depth); 18696 if (i + 1 < env->subprog_cnt) 18697 verbose(env, "+"); 18698 } 18699 verbose(env, "\n"); 18700 } 18701 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 18702 "total_states %d peak_states %d mark_read %d\n", 18703 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 18704 env->max_states_per_insn, env->total_states, 18705 env->peak_states, env->longest_mark_read_walk); 18706 } 18707 18708 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 18709 { 18710 const struct btf_type *t, *func_proto; 18711 const struct bpf_struct_ops *st_ops; 18712 const struct btf_member *member; 18713 struct bpf_prog *prog = env->prog; 18714 u32 btf_id, member_idx; 18715 const char *mname; 18716 18717 if (!prog->gpl_compatible) { 18718 verbose(env, "struct ops programs must have a GPL compatible license\n"); 18719 return -EINVAL; 18720 } 18721 18722 btf_id = prog->aux->attach_btf_id; 18723 st_ops = bpf_struct_ops_find(btf_id); 18724 if (!st_ops) { 18725 verbose(env, "attach_btf_id %u is not a supported struct\n", 18726 btf_id); 18727 return -ENOTSUPP; 18728 } 18729 18730 t = st_ops->type; 18731 member_idx = prog->expected_attach_type; 18732 if (member_idx >= btf_type_vlen(t)) { 18733 verbose(env, "attach to invalid member idx %u of struct %s\n", 18734 member_idx, st_ops->name); 18735 return -EINVAL; 18736 } 18737 18738 member = &btf_type_member(t)[member_idx]; 18739 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 18740 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 18741 NULL); 18742 if (!func_proto) { 18743 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 18744 mname, member_idx, st_ops->name); 18745 return -EINVAL; 18746 } 18747 18748 if (st_ops->check_member) { 18749 int err = st_ops->check_member(t, member, prog); 18750 18751 if (err) { 18752 verbose(env, "attach to unsupported member %s of struct %s\n", 18753 mname, st_ops->name); 18754 return err; 18755 } 18756 } 18757 18758 prog->aux->attach_func_proto = func_proto; 18759 prog->aux->attach_func_name = mname; 18760 env->ops = st_ops->verifier_ops; 18761 18762 return 0; 18763 } 18764 #define SECURITY_PREFIX "security_" 18765 18766 static int check_attach_modify_return(unsigned long addr, const char *func_name) 18767 { 18768 if (within_error_injection_list(addr) || 18769 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 18770 return 0; 18771 18772 return -EINVAL; 18773 } 18774 18775 /* list of non-sleepable functions that are otherwise on 18776 * ALLOW_ERROR_INJECTION list 18777 */ 18778 BTF_SET_START(btf_non_sleepable_error_inject) 18779 /* Three functions below can be called from sleepable and non-sleepable context. 18780 * Assume non-sleepable from bpf safety point of view. 18781 */ 18782 BTF_ID(func, __filemap_add_folio) 18783 BTF_ID(func, should_fail_alloc_page) 18784 BTF_ID(func, should_failslab) 18785 BTF_SET_END(btf_non_sleepable_error_inject) 18786 18787 static int check_non_sleepable_error_inject(u32 btf_id) 18788 { 18789 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 18790 } 18791 18792 int bpf_check_attach_target(struct bpf_verifier_log *log, 18793 const struct bpf_prog *prog, 18794 const struct bpf_prog *tgt_prog, 18795 u32 btf_id, 18796 struct bpf_attach_target_info *tgt_info) 18797 { 18798 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 18799 const char prefix[] = "btf_trace_"; 18800 int ret = 0, subprog = -1, i; 18801 const struct btf_type *t; 18802 bool conservative = true; 18803 const char *tname; 18804 struct btf *btf; 18805 long addr = 0; 18806 struct module *mod = NULL; 18807 18808 if (!btf_id) { 18809 bpf_log(log, "Tracing programs must provide btf_id\n"); 18810 return -EINVAL; 18811 } 18812 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 18813 if (!btf) { 18814 bpf_log(log, 18815 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 18816 return -EINVAL; 18817 } 18818 t = btf_type_by_id(btf, btf_id); 18819 if (!t) { 18820 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 18821 return -EINVAL; 18822 } 18823 tname = btf_name_by_offset(btf, t->name_off); 18824 if (!tname) { 18825 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 18826 return -EINVAL; 18827 } 18828 if (tgt_prog) { 18829 struct bpf_prog_aux *aux = tgt_prog->aux; 18830 18831 if (bpf_prog_is_dev_bound(prog->aux) && 18832 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 18833 bpf_log(log, "Target program bound device mismatch"); 18834 return -EINVAL; 18835 } 18836 18837 for (i = 0; i < aux->func_info_cnt; i++) 18838 if (aux->func_info[i].type_id == btf_id) { 18839 subprog = i; 18840 break; 18841 } 18842 if (subprog == -1) { 18843 bpf_log(log, "Subprog %s doesn't exist\n", tname); 18844 return -EINVAL; 18845 } 18846 conservative = aux->func_info_aux[subprog].unreliable; 18847 if (prog_extension) { 18848 if (conservative) { 18849 bpf_log(log, 18850 "Cannot replace static functions\n"); 18851 return -EINVAL; 18852 } 18853 if (!prog->jit_requested) { 18854 bpf_log(log, 18855 "Extension programs should be JITed\n"); 18856 return -EINVAL; 18857 } 18858 } 18859 if (!tgt_prog->jited) { 18860 bpf_log(log, "Can attach to only JITed progs\n"); 18861 return -EINVAL; 18862 } 18863 if (tgt_prog->type == prog->type) { 18864 /* Cannot fentry/fexit another fentry/fexit program. 18865 * Cannot attach program extension to another extension. 18866 * It's ok to attach fentry/fexit to extension program. 18867 */ 18868 bpf_log(log, "Cannot recursively attach\n"); 18869 return -EINVAL; 18870 } 18871 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 18872 prog_extension && 18873 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 18874 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 18875 /* Program extensions can extend all program types 18876 * except fentry/fexit. The reason is the following. 18877 * The fentry/fexit programs are used for performance 18878 * analysis, stats and can be attached to any program 18879 * type except themselves. When extension program is 18880 * replacing XDP function it is necessary to allow 18881 * performance analysis of all functions. Both original 18882 * XDP program and its program extension. Hence 18883 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 18884 * allowed. If extending of fentry/fexit was allowed it 18885 * would be possible to create long call chain 18886 * fentry->extension->fentry->extension beyond 18887 * reasonable stack size. Hence extending fentry is not 18888 * allowed. 18889 */ 18890 bpf_log(log, "Cannot extend fentry/fexit\n"); 18891 return -EINVAL; 18892 } 18893 } else { 18894 if (prog_extension) { 18895 bpf_log(log, "Cannot replace kernel functions\n"); 18896 return -EINVAL; 18897 } 18898 } 18899 18900 switch (prog->expected_attach_type) { 18901 case BPF_TRACE_RAW_TP: 18902 if (tgt_prog) { 18903 bpf_log(log, 18904 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 18905 return -EINVAL; 18906 } 18907 if (!btf_type_is_typedef(t)) { 18908 bpf_log(log, "attach_btf_id %u is not a typedef\n", 18909 btf_id); 18910 return -EINVAL; 18911 } 18912 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 18913 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 18914 btf_id, tname); 18915 return -EINVAL; 18916 } 18917 tname += sizeof(prefix) - 1; 18918 t = btf_type_by_id(btf, t->type); 18919 if (!btf_type_is_ptr(t)) 18920 /* should never happen in valid vmlinux build */ 18921 return -EINVAL; 18922 t = btf_type_by_id(btf, t->type); 18923 if (!btf_type_is_func_proto(t)) 18924 /* should never happen in valid vmlinux build */ 18925 return -EINVAL; 18926 18927 break; 18928 case BPF_TRACE_ITER: 18929 if (!btf_type_is_func(t)) { 18930 bpf_log(log, "attach_btf_id %u is not a function\n", 18931 btf_id); 18932 return -EINVAL; 18933 } 18934 t = btf_type_by_id(btf, t->type); 18935 if (!btf_type_is_func_proto(t)) 18936 return -EINVAL; 18937 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 18938 if (ret) 18939 return ret; 18940 break; 18941 default: 18942 if (!prog_extension) 18943 return -EINVAL; 18944 fallthrough; 18945 case BPF_MODIFY_RETURN: 18946 case BPF_LSM_MAC: 18947 case BPF_LSM_CGROUP: 18948 case BPF_TRACE_FENTRY: 18949 case BPF_TRACE_FEXIT: 18950 if (!btf_type_is_func(t)) { 18951 bpf_log(log, "attach_btf_id %u is not a function\n", 18952 btf_id); 18953 return -EINVAL; 18954 } 18955 if (prog_extension && 18956 btf_check_type_match(log, prog, btf, t)) 18957 return -EINVAL; 18958 t = btf_type_by_id(btf, t->type); 18959 if (!btf_type_is_func_proto(t)) 18960 return -EINVAL; 18961 18962 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 18963 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 18964 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 18965 return -EINVAL; 18966 18967 if (tgt_prog && conservative) 18968 t = NULL; 18969 18970 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 18971 if (ret < 0) 18972 return ret; 18973 18974 if (tgt_prog) { 18975 if (subprog == 0) 18976 addr = (long) tgt_prog->bpf_func; 18977 else 18978 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 18979 } else { 18980 if (btf_is_module(btf)) { 18981 mod = btf_try_get_module(btf); 18982 if (mod) 18983 addr = find_kallsyms_symbol_value(mod, tname); 18984 else 18985 addr = 0; 18986 } else { 18987 addr = kallsyms_lookup_name(tname); 18988 } 18989 if (!addr) { 18990 module_put(mod); 18991 bpf_log(log, 18992 "The address of function %s cannot be found\n", 18993 tname); 18994 return -ENOENT; 18995 } 18996 } 18997 18998 if (prog->aux->sleepable) { 18999 ret = -EINVAL; 19000 switch (prog->type) { 19001 case BPF_PROG_TYPE_TRACING: 19002 19003 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19004 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19005 */ 19006 if (!check_non_sleepable_error_inject(btf_id) && 19007 within_error_injection_list(addr)) 19008 ret = 0; 19009 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19010 * in the fmodret id set with the KF_SLEEPABLE flag. 19011 */ 19012 else { 19013 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19014 prog); 19015 19016 if (flags && (*flags & KF_SLEEPABLE)) 19017 ret = 0; 19018 } 19019 break; 19020 case BPF_PROG_TYPE_LSM: 19021 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19022 * Only some of them are sleepable. 19023 */ 19024 if (bpf_lsm_is_sleepable_hook(btf_id)) 19025 ret = 0; 19026 break; 19027 default: 19028 break; 19029 } 19030 if (ret) { 19031 module_put(mod); 19032 bpf_log(log, "%s is not sleepable\n", tname); 19033 return ret; 19034 } 19035 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19036 if (tgt_prog) { 19037 module_put(mod); 19038 bpf_log(log, "can't modify return codes of BPF programs\n"); 19039 return -EINVAL; 19040 } 19041 ret = -EINVAL; 19042 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19043 !check_attach_modify_return(addr, tname)) 19044 ret = 0; 19045 if (ret) { 19046 module_put(mod); 19047 bpf_log(log, "%s() is not modifiable\n", tname); 19048 return ret; 19049 } 19050 } 19051 19052 break; 19053 } 19054 tgt_info->tgt_addr = addr; 19055 tgt_info->tgt_name = tname; 19056 tgt_info->tgt_type = t; 19057 tgt_info->tgt_mod = mod; 19058 return 0; 19059 } 19060 19061 BTF_SET_START(btf_id_deny) 19062 BTF_ID_UNUSED 19063 #ifdef CONFIG_SMP 19064 BTF_ID(func, migrate_disable) 19065 BTF_ID(func, migrate_enable) 19066 #endif 19067 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19068 BTF_ID(func, rcu_read_unlock_strict) 19069 #endif 19070 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19071 BTF_ID(func, preempt_count_add) 19072 BTF_ID(func, preempt_count_sub) 19073 #endif 19074 #ifdef CONFIG_PREEMPT_RCU 19075 BTF_ID(func, __rcu_read_lock) 19076 BTF_ID(func, __rcu_read_unlock) 19077 #endif 19078 BTF_SET_END(btf_id_deny) 19079 19080 static bool can_be_sleepable(struct bpf_prog *prog) 19081 { 19082 if (prog->type == BPF_PROG_TYPE_TRACING) { 19083 switch (prog->expected_attach_type) { 19084 case BPF_TRACE_FENTRY: 19085 case BPF_TRACE_FEXIT: 19086 case BPF_MODIFY_RETURN: 19087 case BPF_TRACE_ITER: 19088 return true; 19089 default: 19090 return false; 19091 } 19092 } 19093 return prog->type == BPF_PROG_TYPE_LSM || 19094 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19095 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19096 } 19097 19098 static int check_attach_btf_id(struct bpf_verifier_env *env) 19099 { 19100 struct bpf_prog *prog = env->prog; 19101 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19102 struct bpf_attach_target_info tgt_info = {}; 19103 u32 btf_id = prog->aux->attach_btf_id; 19104 struct bpf_trampoline *tr; 19105 int ret; 19106 u64 key; 19107 19108 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19109 if (prog->aux->sleepable) 19110 /* attach_btf_id checked to be zero already */ 19111 return 0; 19112 verbose(env, "Syscall programs can only be sleepable\n"); 19113 return -EINVAL; 19114 } 19115 19116 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19117 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19118 return -EINVAL; 19119 } 19120 19121 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19122 return check_struct_ops_btf_id(env); 19123 19124 if (prog->type != BPF_PROG_TYPE_TRACING && 19125 prog->type != BPF_PROG_TYPE_LSM && 19126 prog->type != BPF_PROG_TYPE_EXT) 19127 return 0; 19128 19129 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19130 if (ret) 19131 return ret; 19132 19133 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19134 /* to make freplace equivalent to their targets, they need to 19135 * inherit env->ops and expected_attach_type for the rest of the 19136 * verification 19137 */ 19138 env->ops = bpf_verifier_ops[tgt_prog->type]; 19139 prog->expected_attach_type = tgt_prog->expected_attach_type; 19140 } 19141 19142 /* store info about the attachment target that will be used later */ 19143 prog->aux->attach_func_proto = tgt_info.tgt_type; 19144 prog->aux->attach_func_name = tgt_info.tgt_name; 19145 prog->aux->mod = tgt_info.tgt_mod; 19146 19147 if (tgt_prog) { 19148 prog->aux->saved_dst_prog_type = tgt_prog->type; 19149 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19150 } 19151 19152 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19153 prog->aux->attach_btf_trace = true; 19154 return 0; 19155 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19156 if (!bpf_iter_prog_supported(prog)) 19157 return -EINVAL; 19158 return 0; 19159 } 19160 19161 if (prog->type == BPF_PROG_TYPE_LSM) { 19162 ret = bpf_lsm_verify_prog(&env->log, prog); 19163 if (ret < 0) 19164 return ret; 19165 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19166 btf_id_set_contains(&btf_id_deny, btf_id)) { 19167 return -EINVAL; 19168 } 19169 19170 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19171 tr = bpf_trampoline_get(key, &tgt_info); 19172 if (!tr) 19173 return -ENOMEM; 19174 19175 prog->aux->dst_trampoline = tr; 19176 return 0; 19177 } 19178 19179 struct btf *bpf_get_btf_vmlinux(void) 19180 { 19181 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19182 mutex_lock(&bpf_verifier_lock); 19183 if (!btf_vmlinux) 19184 btf_vmlinux = btf_parse_vmlinux(); 19185 mutex_unlock(&bpf_verifier_lock); 19186 } 19187 return btf_vmlinux; 19188 } 19189 19190 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19191 { 19192 u64 start_time = ktime_get_ns(); 19193 struct bpf_verifier_env *env; 19194 int i, len, ret = -EINVAL, err; 19195 u32 log_true_size; 19196 bool is_priv; 19197 19198 /* no program is valid */ 19199 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19200 return -EINVAL; 19201 19202 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19203 * allocate/free it every time bpf_check() is called 19204 */ 19205 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19206 if (!env) 19207 return -ENOMEM; 19208 19209 env->bt.env = env; 19210 19211 len = (*prog)->len; 19212 env->insn_aux_data = 19213 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19214 ret = -ENOMEM; 19215 if (!env->insn_aux_data) 19216 goto err_free_env; 19217 for (i = 0; i < len; i++) 19218 env->insn_aux_data[i].orig_idx = i; 19219 env->prog = *prog; 19220 env->ops = bpf_verifier_ops[env->prog->type]; 19221 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19222 is_priv = bpf_capable(); 19223 19224 bpf_get_btf_vmlinux(); 19225 19226 /* grab the mutex to protect few globals used by verifier */ 19227 if (!is_priv) 19228 mutex_lock(&bpf_verifier_lock); 19229 19230 /* user could have requested verbose verifier output 19231 * and supplied buffer to store the verification trace 19232 */ 19233 ret = bpf_vlog_init(&env->log, attr->log_level, 19234 (char __user *) (unsigned long) attr->log_buf, 19235 attr->log_size); 19236 if (ret) 19237 goto err_unlock; 19238 19239 mark_verifier_state_clean(env); 19240 19241 if (IS_ERR(btf_vmlinux)) { 19242 /* Either gcc or pahole or kernel are broken. */ 19243 verbose(env, "in-kernel BTF is malformed\n"); 19244 ret = PTR_ERR(btf_vmlinux); 19245 goto skip_full_check; 19246 } 19247 19248 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19249 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19250 env->strict_alignment = true; 19251 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19252 env->strict_alignment = false; 19253 19254 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19255 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19256 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19257 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19258 env->bpf_capable = bpf_capable(); 19259 19260 if (is_priv) 19261 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19262 19263 env->explored_states = kvcalloc(state_htab_size(env), 19264 sizeof(struct bpf_verifier_state_list *), 19265 GFP_USER); 19266 ret = -ENOMEM; 19267 if (!env->explored_states) 19268 goto skip_full_check; 19269 19270 ret = add_subprog_and_kfunc(env); 19271 if (ret < 0) 19272 goto skip_full_check; 19273 19274 ret = check_subprogs(env); 19275 if (ret < 0) 19276 goto skip_full_check; 19277 19278 ret = check_btf_info(env, attr, uattr); 19279 if (ret < 0) 19280 goto skip_full_check; 19281 19282 ret = check_attach_btf_id(env); 19283 if (ret) 19284 goto skip_full_check; 19285 19286 ret = resolve_pseudo_ldimm64(env); 19287 if (ret < 0) 19288 goto skip_full_check; 19289 19290 if (bpf_prog_is_offloaded(env->prog->aux)) { 19291 ret = bpf_prog_offload_verifier_prep(env->prog); 19292 if (ret) 19293 goto skip_full_check; 19294 } 19295 19296 ret = check_cfg(env); 19297 if (ret < 0) 19298 goto skip_full_check; 19299 19300 ret = do_check_subprogs(env); 19301 ret = ret ?: do_check_main(env); 19302 19303 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19304 ret = bpf_prog_offload_finalize(env); 19305 19306 skip_full_check: 19307 kvfree(env->explored_states); 19308 19309 if (ret == 0) 19310 ret = check_max_stack_depth(env); 19311 19312 /* instruction rewrites happen after this point */ 19313 if (ret == 0) 19314 ret = optimize_bpf_loop(env); 19315 19316 if (is_priv) { 19317 if (ret == 0) 19318 opt_hard_wire_dead_code_branches(env); 19319 if (ret == 0) 19320 ret = opt_remove_dead_code(env); 19321 if (ret == 0) 19322 ret = opt_remove_nops(env); 19323 } else { 19324 if (ret == 0) 19325 sanitize_dead_code(env); 19326 } 19327 19328 if (ret == 0) 19329 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19330 ret = convert_ctx_accesses(env); 19331 19332 if (ret == 0) 19333 ret = do_misc_fixups(env); 19334 19335 /* do 32-bit optimization after insn patching has done so those patched 19336 * insns could be handled correctly. 19337 */ 19338 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19339 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19340 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19341 : false; 19342 } 19343 19344 if (ret == 0) 19345 ret = fixup_call_args(env); 19346 19347 env->verification_time = ktime_get_ns() - start_time; 19348 print_verification_stats(env); 19349 env->prog->aux->verified_insns = env->insn_processed; 19350 19351 /* preserve original error even if log finalization is successful */ 19352 err = bpf_vlog_finalize(&env->log, &log_true_size); 19353 if (err) 19354 ret = err; 19355 19356 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19357 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19358 &log_true_size, sizeof(log_true_size))) { 19359 ret = -EFAULT; 19360 goto err_release_maps; 19361 } 19362 19363 if (ret) 19364 goto err_release_maps; 19365 19366 if (env->used_map_cnt) { 19367 /* if program passed verifier, update used_maps in bpf_prog_info */ 19368 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19369 sizeof(env->used_maps[0]), 19370 GFP_KERNEL); 19371 19372 if (!env->prog->aux->used_maps) { 19373 ret = -ENOMEM; 19374 goto err_release_maps; 19375 } 19376 19377 memcpy(env->prog->aux->used_maps, env->used_maps, 19378 sizeof(env->used_maps[0]) * env->used_map_cnt); 19379 env->prog->aux->used_map_cnt = env->used_map_cnt; 19380 } 19381 if (env->used_btf_cnt) { 19382 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19383 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19384 sizeof(env->used_btfs[0]), 19385 GFP_KERNEL); 19386 if (!env->prog->aux->used_btfs) { 19387 ret = -ENOMEM; 19388 goto err_release_maps; 19389 } 19390 19391 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19392 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19393 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19394 } 19395 if (env->used_map_cnt || env->used_btf_cnt) { 19396 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19397 * bpf_ld_imm64 instructions 19398 */ 19399 convert_pseudo_ld_imm64(env); 19400 } 19401 19402 adjust_btf_func(env); 19403 19404 err_release_maps: 19405 if (!env->prog->aux->used_maps) 19406 /* if we didn't copy map pointers into bpf_prog_info, release 19407 * them now. Otherwise free_used_maps() will release them. 19408 */ 19409 release_maps(env); 19410 if (!env->prog->aux->used_btfs) 19411 release_btfs(env); 19412 19413 /* extension progs temporarily inherit the attach_type of their targets 19414 for verification purposes, so set it back to zero before returning 19415 */ 19416 if (env->prog->type == BPF_PROG_TYPE_EXT) 19417 env->prog->expected_attach_type = 0; 19418 19419 *prog = env->prog; 19420 err_unlock: 19421 if (!is_priv) 19422 mutex_unlock(&bpf_verifier_lock); 19423 vfree(env->insn_aux_data); 19424 err_free_env: 19425 kfree(env); 19426 return ret; 19427 } 19428