1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all paths through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns either pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 static bool bpf_pseudo_func(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 246 insn->src_reg == BPF_PSEUDO_FUNC; 247 } 248 249 struct bpf_call_arg_meta { 250 struct bpf_map *map_ptr; 251 bool raw_mode; 252 bool pkt_access; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 }; 266 267 struct btf *btf_vmlinux; 268 269 static DEFINE_MUTEX(bpf_verifier_lock); 270 271 static const struct bpf_line_info * 272 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 273 { 274 const struct bpf_line_info *linfo; 275 const struct bpf_prog *prog; 276 u32 i, nr_linfo; 277 278 prog = env->prog; 279 nr_linfo = prog->aux->nr_linfo; 280 281 if (!nr_linfo || insn_off >= prog->len) 282 return NULL; 283 284 linfo = prog->aux->linfo; 285 for (i = 1; i < nr_linfo; i++) 286 if (insn_off < linfo[i].insn_off) 287 break; 288 289 return &linfo[i - 1]; 290 } 291 292 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 293 va_list args) 294 { 295 unsigned int n; 296 297 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 298 299 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 300 "verifier log line truncated - local buffer too short\n"); 301 302 n = min(log->len_total - log->len_used - 1, n); 303 log->kbuf[n] = '\0'; 304 305 if (log->level == BPF_LOG_KERNEL) { 306 pr_err("BPF:%s\n", log->kbuf); 307 return; 308 } 309 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 310 log->len_used += n; 311 else 312 log->ubuf = NULL; 313 } 314 315 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 316 { 317 char zero = 0; 318 319 if (!bpf_verifier_log_needed(log)) 320 return; 321 322 log->len_used = new_pos; 323 if (put_user(zero, log->ubuf + new_pos)) 324 log->ubuf = NULL; 325 } 326 327 /* log_level controls verbosity level of eBPF verifier. 328 * bpf_verifier_log_write() is used to dump the verification trace to the log, 329 * so the user can figure out what's wrong with the program 330 */ 331 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 332 const char *fmt, ...) 333 { 334 va_list args; 335 336 if (!bpf_verifier_log_needed(&env->log)) 337 return; 338 339 va_start(args, fmt); 340 bpf_verifier_vlog(&env->log, fmt, args); 341 va_end(args); 342 } 343 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 344 345 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 346 { 347 struct bpf_verifier_env *env = private_data; 348 va_list args; 349 350 if (!bpf_verifier_log_needed(&env->log)) 351 return; 352 353 va_start(args, fmt); 354 bpf_verifier_vlog(&env->log, fmt, args); 355 va_end(args); 356 } 357 358 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 359 const char *fmt, ...) 360 { 361 va_list args; 362 363 if (!bpf_verifier_log_needed(log)) 364 return; 365 366 va_start(args, fmt); 367 bpf_verifier_vlog(log, fmt, args); 368 va_end(args); 369 } 370 371 static const char *ltrim(const char *s) 372 { 373 while (isspace(*s)) 374 s++; 375 376 return s; 377 } 378 379 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 380 u32 insn_off, 381 const char *prefix_fmt, ...) 382 { 383 const struct bpf_line_info *linfo; 384 385 if (!bpf_verifier_log_needed(&env->log)) 386 return; 387 388 linfo = find_linfo(env, insn_off); 389 if (!linfo || linfo == env->prev_linfo) 390 return; 391 392 if (prefix_fmt) { 393 va_list args; 394 395 va_start(args, prefix_fmt); 396 bpf_verifier_vlog(&env->log, prefix_fmt, args); 397 va_end(args); 398 } 399 400 verbose(env, "%s\n", 401 ltrim(btf_name_by_offset(env->prog->aux->btf, 402 linfo->line_off))); 403 404 env->prev_linfo = linfo; 405 } 406 407 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 408 struct bpf_reg_state *reg, 409 struct tnum *range, const char *ctx, 410 const char *reg_name) 411 { 412 char tn_buf[48]; 413 414 verbose(env, "At %s the register %s ", ctx, reg_name); 415 if (!tnum_is_unknown(reg->var_off)) { 416 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 417 verbose(env, "has value %s", tn_buf); 418 } else { 419 verbose(env, "has unknown scalar value"); 420 } 421 tnum_strn(tn_buf, sizeof(tn_buf), *range); 422 verbose(env, " should have been in %s\n", tn_buf); 423 } 424 425 static bool type_is_pkt_pointer(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_PACKET || 428 type == PTR_TO_PACKET_META; 429 } 430 431 static bool type_is_sk_pointer(enum bpf_reg_type type) 432 { 433 return type == PTR_TO_SOCKET || 434 type == PTR_TO_SOCK_COMMON || 435 type == PTR_TO_TCP_SOCK || 436 type == PTR_TO_XDP_SOCK; 437 } 438 439 static bool reg_type_not_null(enum bpf_reg_type type) 440 { 441 return type == PTR_TO_SOCKET || 442 type == PTR_TO_TCP_SOCK || 443 type == PTR_TO_MAP_VALUE || 444 type == PTR_TO_MAP_KEY || 445 type == PTR_TO_SOCK_COMMON; 446 } 447 448 static bool reg_type_may_be_null(enum bpf_reg_type type) 449 { 450 return type == PTR_TO_MAP_VALUE_OR_NULL || 451 type == PTR_TO_SOCKET_OR_NULL || 452 type == PTR_TO_SOCK_COMMON_OR_NULL || 453 type == PTR_TO_TCP_SOCK_OR_NULL || 454 type == PTR_TO_BTF_ID_OR_NULL || 455 type == PTR_TO_MEM_OR_NULL || 456 type == PTR_TO_RDONLY_BUF_OR_NULL || 457 type == PTR_TO_RDWR_BUF_OR_NULL; 458 } 459 460 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 461 { 462 return reg->type == PTR_TO_MAP_VALUE && 463 map_value_has_spin_lock(reg->map_ptr); 464 } 465 466 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 467 { 468 return type == PTR_TO_SOCKET || 469 type == PTR_TO_SOCKET_OR_NULL || 470 type == PTR_TO_TCP_SOCK || 471 type == PTR_TO_TCP_SOCK_OR_NULL || 472 type == PTR_TO_MEM || 473 type == PTR_TO_MEM_OR_NULL; 474 } 475 476 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 477 { 478 return type == ARG_PTR_TO_SOCK_COMMON; 479 } 480 481 static bool arg_type_may_be_null(enum bpf_arg_type type) 482 { 483 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 484 type == ARG_PTR_TO_MEM_OR_NULL || 485 type == ARG_PTR_TO_CTX_OR_NULL || 486 type == ARG_PTR_TO_SOCKET_OR_NULL || 487 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 488 type == ARG_PTR_TO_STACK_OR_NULL; 489 } 490 491 /* Determine whether the function releases some resources allocated by another 492 * function call. The first reference type argument will be assumed to be 493 * released by release_reference(). 494 */ 495 static bool is_release_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_sk_release || 498 func_id == BPF_FUNC_ringbuf_submit || 499 func_id == BPF_FUNC_ringbuf_discard; 500 } 501 502 static bool may_be_acquire_function(enum bpf_func_id func_id) 503 { 504 return func_id == BPF_FUNC_sk_lookup_tcp || 505 func_id == BPF_FUNC_sk_lookup_udp || 506 func_id == BPF_FUNC_skc_lookup_tcp || 507 func_id == BPF_FUNC_map_lookup_elem || 508 func_id == BPF_FUNC_ringbuf_reserve; 509 } 510 511 static bool is_acquire_function(enum bpf_func_id func_id, 512 const struct bpf_map *map) 513 { 514 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 515 516 if (func_id == BPF_FUNC_sk_lookup_tcp || 517 func_id == BPF_FUNC_sk_lookup_udp || 518 func_id == BPF_FUNC_skc_lookup_tcp || 519 func_id == BPF_FUNC_ringbuf_reserve) 520 return true; 521 522 if (func_id == BPF_FUNC_map_lookup_elem && 523 (map_type == BPF_MAP_TYPE_SOCKMAP || 524 map_type == BPF_MAP_TYPE_SOCKHASH)) 525 return true; 526 527 return false; 528 } 529 530 static bool is_ptr_cast_function(enum bpf_func_id func_id) 531 { 532 return func_id == BPF_FUNC_tcp_sock || 533 func_id == BPF_FUNC_sk_fullsock || 534 func_id == BPF_FUNC_skc_to_tcp_sock || 535 func_id == BPF_FUNC_skc_to_tcp6_sock || 536 func_id == BPF_FUNC_skc_to_udp6_sock || 537 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 538 func_id == BPF_FUNC_skc_to_tcp_request_sock; 539 } 540 541 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 542 { 543 return BPF_CLASS(insn->code) == BPF_STX && 544 BPF_MODE(insn->code) == BPF_ATOMIC && 545 insn->imm == BPF_CMPXCHG; 546 } 547 548 /* string representation of 'enum bpf_reg_type' */ 549 static const char * const reg_type_str[] = { 550 [NOT_INIT] = "?", 551 [SCALAR_VALUE] = "inv", 552 [PTR_TO_CTX] = "ctx", 553 [CONST_PTR_TO_MAP] = "map_ptr", 554 [PTR_TO_MAP_VALUE] = "map_value", 555 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 556 [PTR_TO_STACK] = "fp", 557 [PTR_TO_PACKET] = "pkt", 558 [PTR_TO_PACKET_META] = "pkt_meta", 559 [PTR_TO_PACKET_END] = "pkt_end", 560 [PTR_TO_FLOW_KEYS] = "flow_keys", 561 [PTR_TO_SOCKET] = "sock", 562 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 563 [PTR_TO_SOCK_COMMON] = "sock_common", 564 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 565 [PTR_TO_TCP_SOCK] = "tcp_sock", 566 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 567 [PTR_TO_TP_BUFFER] = "tp_buffer", 568 [PTR_TO_XDP_SOCK] = "xdp_sock", 569 [PTR_TO_BTF_ID] = "ptr_", 570 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 571 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 572 [PTR_TO_MEM] = "mem", 573 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 574 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 575 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 576 [PTR_TO_RDWR_BUF] = "rdwr_buf", 577 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 578 [PTR_TO_FUNC] = "func", 579 [PTR_TO_MAP_KEY] = "map_key", 580 }; 581 582 static char slot_type_char[] = { 583 [STACK_INVALID] = '?', 584 [STACK_SPILL] = 'r', 585 [STACK_MISC] = 'm', 586 [STACK_ZERO] = '0', 587 }; 588 589 static void print_liveness(struct bpf_verifier_env *env, 590 enum bpf_reg_liveness live) 591 { 592 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 593 verbose(env, "_"); 594 if (live & REG_LIVE_READ) 595 verbose(env, "r"); 596 if (live & REG_LIVE_WRITTEN) 597 verbose(env, "w"); 598 if (live & REG_LIVE_DONE) 599 verbose(env, "D"); 600 } 601 602 static struct bpf_func_state *func(struct bpf_verifier_env *env, 603 const struct bpf_reg_state *reg) 604 { 605 struct bpf_verifier_state *cur = env->cur_state; 606 607 return cur->frame[reg->frameno]; 608 } 609 610 static const char *kernel_type_name(const struct btf* btf, u32 id) 611 { 612 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 613 } 614 615 /* The reg state of a pointer or a bounded scalar was saved when 616 * it was spilled to the stack. 617 */ 618 static bool is_spilled_reg(const struct bpf_stack_state *stack) 619 { 620 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 621 } 622 623 static void scrub_spilled_slot(u8 *stype) 624 { 625 if (*stype != STACK_INVALID) 626 *stype = STACK_MISC; 627 } 628 629 static void print_verifier_state(struct bpf_verifier_env *env, 630 const struct bpf_func_state *state) 631 { 632 const struct bpf_reg_state *reg; 633 enum bpf_reg_type t; 634 int i; 635 636 if (state->frameno) 637 verbose(env, " frame%d:", state->frameno); 638 for (i = 0; i < MAX_BPF_REG; i++) { 639 reg = &state->regs[i]; 640 t = reg->type; 641 if (t == NOT_INIT) 642 continue; 643 verbose(env, " R%d", i); 644 print_liveness(env, reg->live); 645 verbose(env, "=%s", reg_type_str[t]); 646 if (t == SCALAR_VALUE && reg->precise) 647 verbose(env, "P"); 648 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 649 tnum_is_const(reg->var_off)) { 650 /* reg->off should be 0 for SCALAR_VALUE */ 651 verbose(env, "%lld", reg->var_off.value + reg->off); 652 } else { 653 if (t == PTR_TO_BTF_ID || 654 t == PTR_TO_BTF_ID_OR_NULL || 655 t == PTR_TO_PERCPU_BTF_ID) 656 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 657 verbose(env, "(id=%d", reg->id); 658 if (reg_type_may_be_refcounted_or_null(t)) 659 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 660 if (t != SCALAR_VALUE) 661 verbose(env, ",off=%d", reg->off); 662 if (type_is_pkt_pointer(t)) 663 verbose(env, ",r=%d", reg->range); 664 else if (t == CONST_PTR_TO_MAP || 665 t == PTR_TO_MAP_KEY || 666 t == PTR_TO_MAP_VALUE || 667 t == PTR_TO_MAP_VALUE_OR_NULL) 668 verbose(env, ",ks=%d,vs=%d", 669 reg->map_ptr->key_size, 670 reg->map_ptr->value_size); 671 if (tnum_is_const(reg->var_off)) { 672 /* Typically an immediate SCALAR_VALUE, but 673 * could be a pointer whose offset is too big 674 * for reg->off 675 */ 676 verbose(env, ",imm=%llx", reg->var_off.value); 677 } else { 678 if (reg->smin_value != reg->umin_value && 679 reg->smin_value != S64_MIN) 680 verbose(env, ",smin_value=%lld", 681 (long long)reg->smin_value); 682 if (reg->smax_value != reg->umax_value && 683 reg->smax_value != S64_MAX) 684 verbose(env, ",smax_value=%lld", 685 (long long)reg->smax_value); 686 if (reg->umin_value != 0) 687 verbose(env, ",umin_value=%llu", 688 (unsigned long long)reg->umin_value); 689 if (reg->umax_value != U64_MAX) 690 verbose(env, ",umax_value=%llu", 691 (unsigned long long)reg->umax_value); 692 if (!tnum_is_unknown(reg->var_off)) { 693 char tn_buf[48]; 694 695 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 696 verbose(env, ",var_off=%s", tn_buf); 697 } 698 if (reg->s32_min_value != reg->smin_value && 699 reg->s32_min_value != S32_MIN) 700 verbose(env, ",s32_min_value=%d", 701 (int)(reg->s32_min_value)); 702 if (reg->s32_max_value != reg->smax_value && 703 reg->s32_max_value != S32_MAX) 704 verbose(env, ",s32_max_value=%d", 705 (int)(reg->s32_max_value)); 706 if (reg->u32_min_value != reg->umin_value && 707 reg->u32_min_value != U32_MIN) 708 verbose(env, ",u32_min_value=%d", 709 (int)(reg->u32_min_value)); 710 if (reg->u32_max_value != reg->umax_value && 711 reg->u32_max_value != U32_MAX) 712 verbose(env, ",u32_max_value=%d", 713 (int)(reg->u32_max_value)); 714 } 715 verbose(env, ")"); 716 } 717 } 718 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 719 char types_buf[BPF_REG_SIZE + 1]; 720 bool valid = false; 721 int j; 722 723 for (j = 0; j < BPF_REG_SIZE; j++) { 724 if (state->stack[i].slot_type[j] != STACK_INVALID) 725 valid = true; 726 types_buf[j] = slot_type_char[ 727 state->stack[i].slot_type[j]]; 728 } 729 types_buf[BPF_REG_SIZE] = 0; 730 if (!valid) 731 continue; 732 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 733 print_liveness(env, state->stack[i].spilled_ptr.live); 734 if (is_spilled_reg(&state->stack[i])) { 735 reg = &state->stack[i].spilled_ptr; 736 t = reg->type; 737 verbose(env, "=%s", reg_type_str[t]); 738 if (t == SCALAR_VALUE && reg->precise) 739 verbose(env, "P"); 740 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 741 verbose(env, "%lld", reg->var_off.value + reg->off); 742 } else { 743 verbose(env, "=%s", types_buf); 744 } 745 } 746 if (state->acquired_refs && state->refs[0].id) { 747 verbose(env, " refs=%d", state->refs[0].id); 748 for (i = 1; i < state->acquired_refs; i++) 749 if (state->refs[i].id) 750 verbose(env, ",%d", state->refs[i].id); 751 } 752 if (state->in_callback_fn) 753 verbose(env, " cb"); 754 if (state->in_async_callback_fn) 755 verbose(env, " async_cb"); 756 verbose(env, "\n"); 757 } 758 759 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 760 * small to hold src. This is different from krealloc since we don't want to preserve 761 * the contents of dst. 762 * 763 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 764 * not be allocated. 765 */ 766 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 767 { 768 size_t bytes; 769 770 if (ZERO_OR_NULL_PTR(src)) 771 goto out; 772 773 if (unlikely(check_mul_overflow(n, size, &bytes))) 774 return NULL; 775 776 if (ksize(dst) < bytes) { 777 kfree(dst); 778 dst = kmalloc_track_caller(bytes, flags); 779 if (!dst) 780 return NULL; 781 } 782 783 memcpy(dst, src, bytes); 784 out: 785 return dst ? dst : ZERO_SIZE_PTR; 786 } 787 788 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 789 * small to hold new_n items. new items are zeroed out if the array grows. 790 * 791 * Contrary to krealloc_array, does not free arr if new_n is zero. 792 */ 793 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 794 { 795 if (!new_n || old_n == new_n) 796 goto out; 797 798 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 799 if (!arr) 800 return NULL; 801 802 if (new_n > old_n) 803 memset(arr + old_n * size, 0, (new_n - old_n) * size); 804 805 out: 806 return arr ? arr : ZERO_SIZE_PTR; 807 } 808 809 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 810 { 811 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 812 sizeof(struct bpf_reference_state), GFP_KERNEL); 813 if (!dst->refs) 814 return -ENOMEM; 815 816 dst->acquired_refs = src->acquired_refs; 817 return 0; 818 } 819 820 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 821 { 822 size_t n = src->allocated_stack / BPF_REG_SIZE; 823 824 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 825 GFP_KERNEL); 826 if (!dst->stack) 827 return -ENOMEM; 828 829 dst->allocated_stack = src->allocated_stack; 830 return 0; 831 } 832 833 static int resize_reference_state(struct bpf_func_state *state, size_t n) 834 { 835 state->refs = realloc_array(state->refs, state->acquired_refs, n, 836 sizeof(struct bpf_reference_state)); 837 if (!state->refs) 838 return -ENOMEM; 839 840 state->acquired_refs = n; 841 return 0; 842 } 843 844 static int grow_stack_state(struct bpf_func_state *state, int size) 845 { 846 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 847 848 if (old_n >= n) 849 return 0; 850 851 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 852 if (!state->stack) 853 return -ENOMEM; 854 855 state->allocated_stack = size; 856 return 0; 857 } 858 859 /* Acquire a pointer id from the env and update the state->refs to include 860 * this new pointer reference. 861 * On success, returns a valid pointer id to associate with the register 862 * On failure, returns a negative errno. 863 */ 864 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 865 { 866 struct bpf_func_state *state = cur_func(env); 867 int new_ofs = state->acquired_refs; 868 int id, err; 869 870 err = resize_reference_state(state, state->acquired_refs + 1); 871 if (err) 872 return err; 873 id = ++env->id_gen; 874 state->refs[new_ofs].id = id; 875 state->refs[new_ofs].insn_idx = insn_idx; 876 877 return id; 878 } 879 880 /* release function corresponding to acquire_reference_state(). Idempotent. */ 881 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 882 { 883 int i, last_idx; 884 885 last_idx = state->acquired_refs - 1; 886 for (i = 0; i < state->acquired_refs; i++) { 887 if (state->refs[i].id == ptr_id) { 888 if (last_idx && i != last_idx) 889 memcpy(&state->refs[i], &state->refs[last_idx], 890 sizeof(*state->refs)); 891 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 892 state->acquired_refs--; 893 return 0; 894 } 895 } 896 return -EINVAL; 897 } 898 899 static void free_func_state(struct bpf_func_state *state) 900 { 901 if (!state) 902 return; 903 kfree(state->refs); 904 kfree(state->stack); 905 kfree(state); 906 } 907 908 static void clear_jmp_history(struct bpf_verifier_state *state) 909 { 910 kfree(state->jmp_history); 911 state->jmp_history = NULL; 912 state->jmp_history_cnt = 0; 913 } 914 915 static void free_verifier_state(struct bpf_verifier_state *state, 916 bool free_self) 917 { 918 int i; 919 920 for (i = 0; i <= state->curframe; i++) { 921 free_func_state(state->frame[i]); 922 state->frame[i] = NULL; 923 } 924 clear_jmp_history(state); 925 if (free_self) 926 kfree(state); 927 } 928 929 /* copy verifier state from src to dst growing dst stack space 930 * when necessary to accommodate larger src stack 931 */ 932 static int copy_func_state(struct bpf_func_state *dst, 933 const struct bpf_func_state *src) 934 { 935 int err; 936 937 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 938 err = copy_reference_state(dst, src); 939 if (err) 940 return err; 941 return copy_stack_state(dst, src); 942 } 943 944 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 945 const struct bpf_verifier_state *src) 946 { 947 struct bpf_func_state *dst; 948 int i, err; 949 950 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 951 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 952 GFP_USER); 953 if (!dst_state->jmp_history) 954 return -ENOMEM; 955 dst_state->jmp_history_cnt = src->jmp_history_cnt; 956 957 /* if dst has more stack frames then src frame, free them */ 958 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 959 free_func_state(dst_state->frame[i]); 960 dst_state->frame[i] = NULL; 961 } 962 dst_state->speculative = src->speculative; 963 dst_state->curframe = src->curframe; 964 dst_state->active_spin_lock = src->active_spin_lock; 965 dst_state->branches = src->branches; 966 dst_state->parent = src->parent; 967 dst_state->first_insn_idx = src->first_insn_idx; 968 dst_state->last_insn_idx = src->last_insn_idx; 969 for (i = 0; i <= src->curframe; i++) { 970 dst = dst_state->frame[i]; 971 if (!dst) { 972 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 973 if (!dst) 974 return -ENOMEM; 975 dst_state->frame[i] = dst; 976 } 977 err = copy_func_state(dst, src->frame[i]); 978 if (err) 979 return err; 980 } 981 return 0; 982 } 983 984 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 985 { 986 while (st) { 987 u32 br = --st->branches; 988 989 /* WARN_ON(br > 1) technically makes sense here, 990 * but see comment in push_stack(), hence: 991 */ 992 WARN_ONCE((int)br < 0, 993 "BUG update_branch_counts:branches_to_explore=%d\n", 994 br); 995 if (br) 996 break; 997 st = st->parent; 998 } 999 } 1000 1001 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1002 int *insn_idx, bool pop_log) 1003 { 1004 struct bpf_verifier_state *cur = env->cur_state; 1005 struct bpf_verifier_stack_elem *elem, *head = env->head; 1006 int err; 1007 1008 if (env->head == NULL) 1009 return -ENOENT; 1010 1011 if (cur) { 1012 err = copy_verifier_state(cur, &head->st); 1013 if (err) 1014 return err; 1015 } 1016 if (pop_log) 1017 bpf_vlog_reset(&env->log, head->log_pos); 1018 if (insn_idx) 1019 *insn_idx = head->insn_idx; 1020 if (prev_insn_idx) 1021 *prev_insn_idx = head->prev_insn_idx; 1022 elem = head->next; 1023 free_verifier_state(&head->st, false); 1024 kfree(head); 1025 env->head = elem; 1026 env->stack_size--; 1027 return 0; 1028 } 1029 1030 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1031 int insn_idx, int prev_insn_idx, 1032 bool speculative) 1033 { 1034 struct bpf_verifier_state *cur = env->cur_state; 1035 struct bpf_verifier_stack_elem *elem; 1036 int err; 1037 1038 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1039 if (!elem) 1040 goto err; 1041 1042 elem->insn_idx = insn_idx; 1043 elem->prev_insn_idx = prev_insn_idx; 1044 elem->next = env->head; 1045 elem->log_pos = env->log.len_used; 1046 env->head = elem; 1047 env->stack_size++; 1048 err = copy_verifier_state(&elem->st, cur); 1049 if (err) 1050 goto err; 1051 elem->st.speculative |= speculative; 1052 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1053 verbose(env, "The sequence of %d jumps is too complex.\n", 1054 env->stack_size); 1055 goto err; 1056 } 1057 if (elem->st.parent) { 1058 ++elem->st.parent->branches; 1059 /* WARN_ON(branches > 2) technically makes sense here, 1060 * but 1061 * 1. speculative states will bump 'branches' for non-branch 1062 * instructions 1063 * 2. is_state_visited() heuristics may decide not to create 1064 * a new state for a sequence of branches and all such current 1065 * and cloned states will be pointing to a single parent state 1066 * which might have large 'branches' count. 1067 */ 1068 } 1069 return &elem->st; 1070 err: 1071 free_verifier_state(env->cur_state, true); 1072 env->cur_state = NULL; 1073 /* pop all elements and return */ 1074 while (!pop_stack(env, NULL, NULL, false)); 1075 return NULL; 1076 } 1077 1078 #define CALLER_SAVED_REGS 6 1079 static const int caller_saved[CALLER_SAVED_REGS] = { 1080 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1081 }; 1082 1083 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1084 struct bpf_reg_state *reg); 1085 1086 /* This helper doesn't clear reg->id */ 1087 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1088 { 1089 reg->var_off = tnum_const(imm); 1090 reg->smin_value = (s64)imm; 1091 reg->smax_value = (s64)imm; 1092 reg->umin_value = imm; 1093 reg->umax_value = imm; 1094 1095 reg->s32_min_value = (s32)imm; 1096 reg->s32_max_value = (s32)imm; 1097 reg->u32_min_value = (u32)imm; 1098 reg->u32_max_value = (u32)imm; 1099 } 1100 1101 /* Mark the unknown part of a register (variable offset or scalar value) as 1102 * known to have the value @imm. 1103 */ 1104 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1105 { 1106 /* Clear id, off, and union(map_ptr, range) */ 1107 memset(((u8 *)reg) + sizeof(reg->type), 0, 1108 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1109 ___mark_reg_known(reg, imm); 1110 } 1111 1112 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1113 { 1114 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1115 reg->s32_min_value = (s32)imm; 1116 reg->s32_max_value = (s32)imm; 1117 reg->u32_min_value = (u32)imm; 1118 reg->u32_max_value = (u32)imm; 1119 } 1120 1121 /* Mark the 'variable offset' part of a register as zero. This should be 1122 * used only on registers holding a pointer type. 1123 */ 1124 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1125 { 1126 __mark_reg_known(reg, 0); 1127 } 1128 1129 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1130 { 1131 __mark_reg_known(reg, 0); 1132 reg->type = SCALAR_VALUE; 1133 } 1134 1135 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1136 struct bpf_reg_state *regs, u32 regno) 1137 { 1138 if (WARN_ON(regno >= MAX_BPF_REG)) { 1139 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1140 /* Something bad happened, let's kill all regs */ 1141 for (regno = 0; regno < MAX_BPF_REG; regno++) 1142 __mark_reg_not_init(env, regs + regno); 1143 return; 1144 } 1145 __mark_reg_known_zero(regs + regno); 1146 } 1147 1148 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1149 { 1150 switch (reg->type) { 1151 case PTR_TO_MAP_VALUE_OR_NULL: { 1152 const struct bpf_map *map = reg->map_ptr; 1153 1154 if (map->inner_map_meta) { 1155 reg->type = CONST_PTR_TO_MAP; 1156 reg->map_ptr = map->inner_map_meta; 1157 /* transfer reg's id which is unique for every map_lookup_elem 1158 * as UID of the inner map. 1159 */ 1160 reg->map_uid = reg->id; 1161 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1162 reg->type = PTR_TO_XDP_SOCK; 1163 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1164 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1165 reg->type = PTR_TO_SOCKET; 1166 } else { 1167 reg->type = PTR_TO_MAP_VALUE; 1168 } 1169 break; 1170 } 1171 case PTR_TO_SOCKET_OR_NULL: 1172 reg->type = PTR_TO_SOCKET; 1173 break; 1174 case PTR_TO_SOCK_COMMON_OR_NULL: 1175 reg->type = PTR_TO_SOCK_COMMON; 1176 break; 1177 case PTR_TO_TCP_SOCK_OR_NULL: 1178 reg->type = PTR_TO_TCP_SOCK; 1179 break; 1180 case PTR_TO_BTF_ID_OR_NULL: 1181 reg->type = PTR_TO_BTF_ID; 1182 break; 1183 case PTR_TO_MEM_OR_NULL: 1184 reg->type = PTR_TO_MEM; 1185 break; 1186 case PTR_TO_RDONLY_BUF_OR_NULL: 1187 reg->type = PTR_TO_RDONLY_BUF; 1188 break; 1189 case PTR_TO_RDWR_BUF_OR_NULL: 1190 reg->type = PTR_TO_RDWR_BUF; 1191 break; 1192 default: 1193 WARN_ONCE(1, "unknown nullable register type"); 1194 } 1195 } 1196 1197 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1198 { 1199 return type_is_pkt_pointer(reg->type); 1200 } 1201 1202 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1203 { 1204 return reg_is_pkt_pointer(reg) || 1205 reg->type == PTR_TO_PACKET_END; 1206 } 1207 1208 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1209 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1210 enum bpf_reg_type which) 1211 { 1212 /* The register can already have a range from prior markings. 1213 * This is fine as long as it hasn't been advanced from its 1214 * origin. 1215 */ 1216 return reg->type == which && 1217 reg->id == 0 && 1218 reg->off == 0 && 1219 tnum_equals_const(reg->var_off, 0); 1220 } 1221 1222 /* Reset the min/max bounds of a register */ 1223 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1224 { 1225 reg->smin_value = S64_MIN; 1226 reg->smax_value = S64_MAX; 1227 reg->umin_value = 0; 1228 reg->umax_value = U64_MAX; 1229 1230 reg->s32_min_value = S32_MIN; 1231 reg->s32_max_value = S32_MAX; 1232 reg->u32_min_value = 0; 1233 reg->u32_max_value = U32_MAX; 1234 } 1235 1236 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1237 { 1238 reg->smin_value = S64_MIN; 1239 reg->smax_value = S64_MAX; 1240 reg->umin_value = 0; 1241 reg->umax_value = U64_MAX; 1242 } 1243 1244 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1245 { 1246 reg->s32_min_value = S32_MIN; 1247 reg->s32_max_value = S32_MAX; 1248 reg->u32_min_value = 0; 1249 reg->u32_max_value = U32_MAX; 1250 } 1251 1252 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1253 { 1254 struct tnum var32_off = tnum_subreg(reg->var_off); 1255 1256 /* min signed is max(sign bit) | min(other bits) */ 1257 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1258 var32_off.value | (var32_off.mask & S32_MIN)); 1259 /* max signed is min(sign bit) | max(other bits) */ 1260 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1261 var32_off.value | (var32_off.mask & S32_MAX)); 1262 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1263 reg->u32_max_value = min(reg->u32_max_value, 1264 (u32)(var32_off.value | var32_off.mask)); 1265 } 1266 1267 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1268 { 1269 /* min signed is max(sign bit) | min(other bits) */ 1270 reg->smin_value = max_t(s64, reg->smin_value, 1271 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1272 /* max signed is min(sign bit) | max(other bits) */ 1273 reg->smax_value = min_t(s64, reg->smax_value, 1274 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1275 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1276 reg->umax_value = min(reg->umax_value, 1277 reg->var_off.value | reg->var_off.mask); 1278 } 1279 1280 static void __update_reg_bounds(struct bpf_reg_state *reg) 1281 { 1282 __update_reg32_bounds(reg); 1283 __update_reg64_bounds(reg); 1284 } 1285 1286 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1287 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1288 { 1289 /* Learn sign from signed bounds. 1290 * If we cannot cross the sign boundary, then signed and unsigned bounds 1291 * are the same, so combine. This works even in the negative case, e.g. 1292 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1293 */ 1294 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1295 reg->s32_min_value = reg->u32_min_value = 1296 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1297 reg->s32_max_value = reg->u32_max_value = 1298 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1299 return; 1300 } 1301 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1302 * boundary, so we must be careful. 1303 */ 1304 if ((s32)reg->u32_max_value >= 0) { 1305 /* Positive. We can't learn anything from the smin, but smax 1306 * is positive, hence safe. 1307 */ 1308 reg->s32_min_value = reg->u32_min_value; 1309 reg->s32_max_value = reg->u32_max_value = 1310 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1311 } else if ((s32)reg->u32_min_value < 0) { 1312 /* Negative. We can't learn anything from the smax, but smin 1313 * is negative, hence safe. 1314 */ 1315 reg->s32_min_value = reg->u32_min_value = 1316 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1317 reg->s32_max_value = reg->u32_max_value; 1318 } 1319 } 1320 1321 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1322 { 1323 /* Learn sign from signed bounds. 1324 * If we cannot cross the sign boundary, then signed and unsigned bounds 1325 * are the same, so combine. This works even in the negative case, e.g. 1326 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1327 */ 1328 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1329 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1330 reg->umin_value); 1331 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1332 reg->umax_value); 1333 return; 1334 } 1335 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1336 * boundary, so we must be careful. 1337 */ 1338 if ((s64)reg->umax_value >= 0) { 1339 /* Positive. We can't learn anything from the smin, but smax 1340 * is positive, hence safe. 1341 */ 1342 reg->smin_value = reg->umin_value; 1343 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1344 reg->umax_value); 1345 } else if ((s64)reg->umin_value < 0) { 1346 /* Negative. We can't learn anything from the smax, but smin 1347 * is negative, hence safe. 1348 */ 1349 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1350 reg->umin_value); 1351 reg->smax_value = reg->umax_value; 1352 } 1353 } 1354 1355 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1356 { 1357 __reg32_deduce_bounds(reg); 1358 __reg64_deduce_bounds(reg); 1359 } 1360 1361 /* Attempts to improve var_off based on unsigned min/max information */ 1362 static void __reg_bound_offset(struct bpf_reg_state *reg) 1363 { 1364 struct tnum var64_off = tnum_intersect(reg->var_off, 1365 tnum_range(reg->umin_value, 1366 reg->umax_value)); 1367 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1368 tnum_range(reg->u32_min_value, 1369 reg->u32_max_value)); 1370 1371 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1372 } 1373 1374 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1375 { 1376 reg->umin_value = reg->u32_min_value; 1377 reg->umax_value = reg->u32_max_value; 1378 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1379 * but must be positive otherwise set to worse case bounds 1380 * and refine later from tnum. 1381 */ 1382 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1383 reg->smax_value = reg->s32_max_value; 1384 else 1385 reg->smax_value = U32_MAX; 1386 if (reg->s32_min_value >= 0) 1387 reg->smin_value = reg->s32_min_value; 1388 else 1389 reg->smin_value = 0; 1390 } 1391 1392 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1393 { 1394 /* special case when 64-bit register has upper 32-bit register 1395 * zeroed. Typically happens after zext or <<32, >>32 sequence 1396 * allowing us to use 32-bit bounds directly, 1397 */ 1398 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1399 __reg_assign_32_into_64(reg); 1400 } else { 1401 /* Otherwise the best we can do is push lower 32bit known and 1402 * unknown bits into register (var_off set from jmp logic) 1403 * then learn as much as possible from the 64-bit tnum 1404 * known and unknown bits. The previous smin/smax bounds are 1405 * invalid here because of jmp32 compare so mark them unknown 1406 * so they do not impact tnum bounds calculation. 1407 */ 1408 __mark_reg64_unbounded(reg); 1409 __update_reg_bounds(reg); 1410 } 1411 1412 /* Intersecting with the old var_off might have improved our bounds 1413 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1414 * then new var_off is (0; 0x7f...fc) which improves our umax. 1415 */ 1416 __reg_deduce_bounds(reg); 1417 __reg_bound_offset(reg); 1418 __update_reg_bounds(reg); 1419 } 1420 1421 static bool __reg64_bound_s32(s64 a) 1422 { 1423 return a > S32_MIN && a < S32_MAX; 1424 } 1425 1426 static bool __reg64_bound_u32(u64 a) 1427 { 1428 return a > U32_MIN && a < U32_MAX; 1429 } 1430 1431 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1432 { 1433 __mark_reg32_unbounded(reg); 1434 1435 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1436 reg->s32_min_value = (s32)reg->smin_value; 1437 reg->s32_max_value = (s32)reg->smax_value; 1438 } 1439 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1440 reg->u32_min_value = (u32)reg->umin_value; 1441 reg->u32_max_value = (u32)reg->umax_value; 1442 } 1443 1444 /* Intersecting with the old var_off might have improved our bounds 1445 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1446 * then new var_off is (0; 0x7f...fc) which improves our umax. 1447 */ 1448 __reg_deduce_bounds(reg); 1449 __reg_bound_offset(reg); 1450 __update_reg_bounds(reg); 1451 } 1452 1453 /* Mark a register as having a completely unknown (scalar) value. */ 1454 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1455 struct bpf_reg_state *reg) 1456 { 1457 /* 1458 * Clear type, id, off, and union(map_ptr, range) and 1459 * padding between 'type' and union 1460 */ 1461 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1462 reg->type = SCALAR_VALUE; 1463 reg->var_off = tnum_unknown; 1464 reg->frameno = 0; 1465 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1466 __mark_reg_unbounded(reg); 1467 } 1468 1469 static void mark_reg_unknown(struct bpf_verifier_env *env, 1470 struct bpf_reg_state *regs, u32 regno) 1471 { 1472 if (WARN_ON(regno >= MAX_BPF_REG)) { 1473 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1474 /* Something bad happened, let's kill all regs except FP */ 1475 for (regno = 0; regno < BPF_REG_FP; regno++) 1476 __mark_reg_not_init(env, regs + regno); 1477 return; 1478 } 1479 __mark_reg_unknown(env, regs + regno); 1480 } 1481 1482 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1483 struct bpf_reg_state *reg) 1484 { 1485 __mark_reg_unknown(env, reg); 1486 reg->type = NOT_INIT; 1487 } 1488 1489 static void mark_reg_not_init(struct bpf_verifier_env *env, 1490 struct bpf_reg_state *regs, u32 regno) 1491 { 1492 if (WARN_ON(regno >= MAX_BPF_REG)) { 1493 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1494 /* Something bad happened, let's kill all regs except FP */ 1495 for (regno = 0; regno < BPF_REG_FP; regno++) 1496 __mark_reg_not_init(env, regs + regno); 1497 return; 1498 } 1499 __mark_reg_not_init(env, regs + regno); 1500 } 1501 1502 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1503 struct bpf_reg_state *regs, u32 regno, 1504 enum bpf_reg_type reg_type, 1505 struct btf *btf, u32 btf_id) 1506 { 1507 if (reg_type == SCALAR_VALUE) { 1508 mark_reg_unknown(env, regs, regno); 1509 return; 1510 } 1511 mark_reg_known_zero(env, regs, regno); 1512 regs[regno].type = PTR_TO_BTF_ID; 1513 regs[regno].btf = btf; 1514 regs[regno].btf_id = btf_id; 1515 } 1516 1517 #define DEF_NOT_SUBREG (0) 1518 static void init_reg_state(struct bpf_verifier_env *env, 1519 struct bpf_func_state *state) 1520 { 1521 struct bpf_reg_state *regs = state->regs; 1522 int i; 1523 1524 for (i = 0; i < MAX_BPF_REG; i++) { 1525 mark_reg_not_init(env, regs, i); 1526 regs[i].live = REG_LIVE_NONE; 1527 regs[i].parent = NULL; 1528 regs[i].subreg_def = DEF_NOT_SUBREG; 1529 } 1530 1531 /* frame pointer */ 1532 regs[BPF_REG_FP].type = PTR_TO_STACK; 1533 mark_reg_known_zero(env, regs, BPF_REG_FP); 1534 regs[BPF_REG_FP].frameno = state->frameno; 1535 } 1536 1537 #define BPF_MAIN_FUNC (-1) 1538 static void init_func_state(struct bpf_verifier_env *env, 1539 struct bpf_func_state *state, 1540 int callsite, int frameno, int subprogno) 1541 { 1542 state->callsite = callsite; 1543 state->frameno = frameno; 1544 state->subprogno = subprogno; 1545 init_reg_state(env, state); 1546 } 1547 1548 /* Similar to push_stack(), but for async callbacks */ 1549 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1550 int insn_idx, int prev_insn_idx, 1551 int subprog) 1552 { 1553 struct bpf_verifier_stack_elem *elem; 1554 struct bpf_func_state *frame; 1555 1556 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1557 if (!elem) 1558 goto err; 1559 1560 elem->insn_idx = insn_idx; 1561 elem->prev_insn_idx = prev_insn_idx; 1562 elem->next = env->head; 1563 elem->log_pos = env->log.len_used; 1564 env->head = elem; 1565 env->stack_size++; 1566 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1567 verbose(env, 1568 "The sequence of %d jumps is too complex for async cb.\n", 1569 env->stack_size); 1570 goto err; 1571 } 1572 /* Unlike push_stack() do not copy_verifier_state(). 1573 * The caller state doesn't matter. 1574 * This is async callback. It starts in a fresh stack. 1575 * Initialize it similar to do_check_common(). 1576 */ 1577 elem->st.branches = 1; 1578 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1579 if (!frame) 1580 goto err; 1581 init_func_state(env, frame, 1582 BPF_MAIN_FUNC /* callsite */, 1583 0 /* frameno within this callchain */, 1584 subprog /* subprog number within this prog */); 1585 elem->st.frame[0] = frame; 1586 return &elem->st; 1587 err: 1588 free_verifier_state(env->cur_state, true); 1589 env->cur_state = NULL; 1590 /* pop all elements and return */ 1591 while (!pop_stack(env, NULL, NULL, false)); 1592 return NULL; 1593 } 1594 1595 1596 enum reg_arg_type { 1597 SRC_OP, /* register is used as source operand */ 1598 DST_OP, /* register is used as destination operand */ 1599 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1600 }; 1601 1602 static int cmp_subprogs(const void *a, const void *b) 1603 { 1604 return ((struct bpf_subprog_info *)a)->start - 1605 ((struct bpf_subprog_info *)b)->start; 1606 } 1607 1608 static int find_subprog(struct bpf_verifier_env *env, int off) 1609 { 1610 struct bpf_subprog_info *p; 1611 1612 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1613 sizeof(env->subprog_info[0]), cmp_subprogs); 1614 if (!p) 1615 return -ENOENT; 1616 return p - env->subprog_info; 1617 1618 } 1619 1620 static int add_subprog(struct bpf_verifier_env *env, int off) 1621 { 1622 int insn_cnt = env->prog->len; 1623 int ret; 1624 1625 if (off >= insn_cnt || off < 0) { 1626 verbose(env, "call to invalid destination\n"); 1627 return -EINVAL; 1628 } 1629 ret = find_subprog(env, off); 1630 if (ret >= 0) 1631 return ret; 1632 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1633 verbose(env, "too many subprograms\n"); 1634 return -E2BIG; 1635 } 1636 /* determine subprog starts. The end is one before the next starts */ 1637 env->subprog_info[env->subprog_cnt++].start = off; 1638 sort(env->subprog_info, env->subprog_cnt, 1639 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1640 return env->subprog_cnt - 1; 1641 } 1642 1643 struct bpf_kfunc_desc { 1644 struct btf_func_model func_model; 1645 u32 func_id; 1646 s32 imm; 1647 }; 1648 1649 #define MAX_KFUNC_DESCS 256 1650 struct bpf_kfunc_desc_tab { 1651 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1652 u32 nr_descs; 1653 }; 1654 1655 static int kfunc_desc_cmp_by_id(const void *a, const void *b) 1656 { 1657 const struct bpf_kfunc_desc *d0 = a; 1658 const struct bpf_kfunc_desc *d1 = b; 1659 1660 /* func_id is not greater than BTF_MAX_TYPE */ 1661 return d0->func_id - d1->func_id; 1662 } 1663 1664 static const struct bpf_kfunc_desc * 1665 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id) 1666 { 1667 struct bpf_kfunc_desc desc = { 1668 .func_id = func_id, 1669 }; 1670 struct bpf_kfunc_desc_tab *tab; 1671 1672 tab = prog->aux->kfunc_tab; 1673 return bsearch(&desc, tab->descs, tab->nr_descs, 1674 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id); 1675 } 1676 1677 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id) 1678 { 1679 const struct btf_type *func, *func_proto; 1680 struct bpf_kfunc_desc_tab *tab; 1681 struct bpf_prog_aux *prog_aux; 1682 struct bpf_kfunc_desc *desc; 1683 const char *func_name; 1684 unsigned long addr; 1685 int err; 1686 1687 prog_aux = env->prog->aux; 1688 tab = prog_aux->kfunc_tab; 1689 if (!tab) { 1690 if (!btf_vmlinux) { 1691 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1692 return -ENOTSUPP; 1693 } 1694 1695 if (!env->prog->jit_requested) { 1696 verbose(env, "JIT is required for calling kernel function\n"); 1697 return -ENOTSUPP; 1698 } 1699 1700 if (!bpf_jit_supports_kfunc_call()) { 1701 verbose(env, "JIT does not support calling kernel function\n"); 1702 return -ENOTSUPP; 1703 } 1704 1705 if (!env->prog->gpl_compatible) { 1706 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1707 return -EINVAL; 1708 } 1709 1710 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1711 if (!tab) 1712 return -ENOMEM; 1713 prog_aux->kfunc_tab = tab; 1714 } 1715 1716 if (find_kfunc_desc(env->prog, func_id)) 1717 return 0; 1718 1719 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1720 verbose(env, "too many different kernel function calls\n"); 1721 return -E2BIG; 1722 } 1723 1724 func = btf_type_by_id(btf_vmlinux, func_id); 1725 if (!func || !btf_type_is_func(func)) { 1726 verbose(env, "kernel btf_id %u is not a function\n", 1727 func_id); 1728 return -EINVAL; 1729 } 1730 func_proto = btf_type_by_id(btf_vmlinux, func->type); 1731 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1732 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1733 func_id); 1734 return -EINVAL; 1735 } 1736 1737 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 1738 addr = kallsyms_lookup_name(func_name); 1739 if (!addr) { 1740 verbose(env, "cannot find address for kernel function %s\n", 1741 func_name); 1742 return -EINVAL; 1743 } 1744 1745 desc = &tab->descs[tab->nr_descs++]; 1746 desc->func_id = func_id; 1747 desc->imm = BPF_CALL_IMM(addr); 1748 err = btf_distill_func_proto(&env->log, btf_vmlinux, 1749 func_proto, func_name, 1750 &desc->func_model); 1751 if (!err) 1752 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1753 kfunc_desc_cmp_by_id, NULL); 1754 return err; 1755 } 1756 1757 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1758 { 1759 const struct bpf_kfunc_desc *d0 = a; 1760 const struct bpf_kfunc_desc *d1 = b; 1761 1762 if (d0->imm > d1->imm) 1763 return 1; 1764 else if (d0->imm < d1->imm) 1765 return -1; 1766 return 0; 1767 } 1768 1769 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1770 { 1771 struct bpf_kfunc_desc_tab *tab; 1772 1773 tab = prog->aux->kfunc_tab; 1774 if (!tab) 1775 return; 1776 1777 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1778 kfunc_desc_cmp_by_imm, NULL); 1779 } 1780 1781 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1782 { 1783 return !!prog->aux->kfunc_tab; 1784 } 1785 1786 const struct btf_func_model * 1787 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1788 const struct bpf_insn *insn) 1789 { 1790 const struct bpf_kfunc_desc desc = { 1791 .imm = insn->imm, 1792 }; 1793 const struct bpf_kfunc_desc *res; 1794 struct bpf_kfunc_desc_tab *tab; 1795 1796 tab = prog->aux->kfunc_tab; 1797 res = bsearch(&desc, tab->descs, tab->nr_descs, 1798 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1799 1800 return res ? &res->func_model : NULL; 1801 } 1802 1803 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1804 { 1805 struct bpf_subprog_info *subprog = env->subprog_info; 1806 struct bpf_insn *insn = env->prog->insnsi; 1807 int i, ret, insn_cnt = env->prog->len; 1808 1809 /* Add entry function. */ 1810 ret = add_subprog(env, 0); 1811 if (ret) 1812 return ret; 1813 1814 for (i = 0; i < insn_cnt; i++, insn++) { 1815 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1816 !bpf_pseudo_kfunc_call(insn)) 1817 continue; 1818 1819 if (!env->bpf_capable) { 1820 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1821 return -EPERM; 1822 } 1823 1824 if (bpf_pseudo_func(insn)) { 1825 ret = add_subprog(env, i + insn->imm + 1); 1826 if (ret >= 0) 1827 /* remember subprog */ 1828 insn[1].imm = ret; 1829 } else if (bpf_pseudo_call(insn)) { 1830 ret = add_subprog(env, i + insn->imm + 1); 1831 } else { 1832 ret = add_kfunc_call(env, insn->imm); 1833 } 1834 1835 if (ret < 0) 1836 return ret; 1837 } 1838 1839 /* Add a fake 'exit' subprog which could simplify subprog iteration 1840 * logic. 'subprog_cnt' should not be increased. 1841 */ 1842 subprog[env->subprog_cnt].start = insn_cnt; 1843 1844 if (env->log.level & BPF_LOG_LEVEL2) 1845 for (i = 0; i < env->subprog_cnt; i++) 1846 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1847 1848 return 0; 1849 } 1850 1851 static int check_subprogs(struct bpf_verifier_env *env) 1852 { 1853 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1854 struct bpf_subprog_info *subprog = env->subprog_info; 1855 struct bpf_insn *insn = env->prog->insnsi; 1856 int insn_cnt = env->prog->len; 1857 1858 /* now check that all jumps are within the same subprog */ 1859 subprog_start = subprog[cur_subprog].start; 1860 subprog_end = subprog[cur_subprog + 1].start; 1861 for (i = 0; i < insn_cnt; i++) { 1862 u8 code = insn[i].code; 1863 1864 if (code == (BPF_JMP | BPF_CALL) && 1865 insn[i].imm == BPF_FUNC_tail_call && 1866 insn[i].src_reg != BPF_PSEUDO_CALL) 1867 subprog[cur_subprog].has_tail_call = true; 1868 if (BPF_CLASS(code) == BPF_LD && 1869 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1870 subprog[cur_subprog].has_ld_abs = true; 1871 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1872 goto next; 1873 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1874 goto next; 1875 off = i + insn[i].off + 1; 1876 if (off < subprog_start || off >= subprog_end) { 1877 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1878 return -EINVAL; 1879 } 1880 next: 1881 if (i == subprog_end - 1) { 1882 /* to avoid fall-through from one subprog into another 1883 * the last insn of the subprog should be either exit 1884 * or unconditional jump back 1885 */ 1886 if (code != (BPF_JMP | BPF_EXIT) && 1887 code != (BPF_JMP | BPF_JA)) { 1888 verbose(env, "last insn is not an exit or jmp\n"); 1889 return -EINVAL; 1890 } 1891 subprog_start = subprog_end; 1892 cur_subprog++; 1893 if (cur_subprog < env->subprog_cnt) 1894 subprog_end = subprog[cur_subprog + 1].start; 1895 } 1896 } 1897 return 0; 1898 } 1899 1900 /* Parentage chain of this register (or stack slot) should take care of all 1901 * issues like callee-saved registers, stack slot allocation time, etc. 1902 */ 1903 static int mark_reg_read(struct bpf_verifier_env *env, 1904 const struct bpf_reg_state *state, 1905 struct bpf_reg_state *parent, u8 flag) 1906 { 1907 bool writes = parent == state->parent; /* Observe write marks */ 1908 int cnt = 0; 1909 1910 while (parent) { 1911 /* if read wasn't screened by an earlier write ... */ 1912 if (writes && state->live & REG_LIVE_WRITTEN) 1913 break; 1914 if (parent->live & REG_LIVE_DONE) { 1915 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1916 reg_type_str[parent->type], 1917 parent->var_off.value, parent->off); 1918 return -EFAULT; 1919 } 1920 /* The first condition is more likely to be true than the 1921 * second, checked it first. 1922 */ 1923 if ((parent->live & REG_LIVE_READ) == flag || 1924 parent->live & REG_LIVE_READ64) 1925 /* The parentage chain never changes and 1926 * this parent was already marked as LIVE_READ. 1927 * There is no need to keep walking the chain again and 1928 * keep re-marking all parents as LIVE_READ. 1929 * This case happens when the same register is read 1930 * multiple times without writes into it in-between. 1931 * Also, if parent has the stronger REG_LIVE_READ64 set, 1932 * then no need to set the weak REG_LIVE_READ32. 1933 */ 1934 break; 1935 /* ... then we depend on parent's value */ 1936 parent->live |= flag; 1937 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1938 if (flag == REG_LIVE_READ64) 1939 parent->live &= ~REG_LIVE_READ32; 1940 state = parent; 1941 parent = state->parent; 1942 writes = true; 1943 cnt++; 1944 } 1945 1946 if (env->longest_mark_read_walk < cnt) 1947 env->longest_mark_read_walk = cnt; 1948 return 0; 1949 } 1950 1951 /* This function is supposed to be used by the following 32-bit optimization 1952 * code only. It returns TRUE if the source or destination register operates 1953 * on 64-bit, otherwise return FALSE. 1954 */ 1955 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1956 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1957 { 1958 u8 code, class, op; 1959 1960 code = insn->code; 1961 class = BPF_CLASS(code); 1962 op = BPF_OP(code); 1963 if (class == BPF_JMP) { 1964 /* BPF_EXIT for "main" will reach here. Return TRUE 1965 * conservatively. 1966 */ 1967 if (op == BPF_EXIT) 1968 return true; 1969 if (op == BPF_CALL) { 1970 /* BPF to BPF call will reach here because of marking 1971 * caller saved clobber with DST_OP_NO_MARK for which we 1972 * don't care the register def because they are anyway 1973 * marked as NOT_INIT already. 1974 */ 1975 if (insn->src_reg == BPF_PSEUDO_CALL) 1976 return false; 1977 /* Helper call will reach here because of arg type 1978 * check, conservatively return TRUE. 1979 */ 1980 if (t == SRC_OP) 1981 return true; 1982 1983 return false; 1984 } 1985 } 1986 1987 if (class == BPF_ALU64 || class == BPF_JMP || 1988 /* BPF_END always use BPF_ALU class. */ 1989 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1990 return true; 1991 1992 if (class == BPF_ALU || class == BPF_JMP32) 1993 return false; 1994 1995 if (class == BPF_LDX) { 1996 if (t != SRC_OP) 1997 return BPF_SIZE(code) == BPF_DW; 1998 /* LDX source must be ptr. */ 1999 return true; 2000 } 2001 2002 if (class == BPF_STX) { 2003 /* BPF_STX (including atomic variants) has multiple source 2004 * operands, one of which is a ptr. Check whether the caller is 2005 * asking about it. 2006 */ 2007 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2008 return true; 2009 return BPF_SIZE(code) == BPF_DW; 2010 } 2011 2012 if (class == BPF_LD) { 2013 u8 mode = BPF_MODE(code); 2014 2015 /* LD_IMM64 */ 2016 if (mode == BPF_IMM) 2017 return true; 2018 2019 /* Both LD_IND and LD_ABS return 32-bit data. */ 2020 if (t != SRC_OP) 2021 return false; 2022 2023 /* Implicit ctx ptr. */ 2024 if (regno == BPF_REG_6) 2025 return true; 2026 2027 /* Explicit source could be any width. */ 2028 return true; 2029 } 2030 2031 if (class == BPF_ST) 2032 /* The only source register for BPF_ST is a ptr. */ 2033 return true; 2034 2035 /* Conservatively return true at default. */ 2036 return true; 2037 } 2038 2039 /* Return the regno defined by the insn, or -1. */ 2040 static int insn_def_regno(const struct bpf_insn *insn) 2041 { 2042 switch (BPF_CLASS(insn->code)) { 2043 case BPF_JMP: 2044 case BPF_JMP32: 2045 case BPF_ST: 2046 return -1; 2047 case BPF_STX: 2048 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2049 (insn->imm & BPF_FETCH)) { 2050 if (insn->imm == BPF_CMPXCHG) 2051 return BPF_REG_0; 2052 else 2053 return insn->src_reg; 2054 } else { 2055 return -1; 2056 } 2057 default: 2058 return insn->dst_reg; 2059 } 2060 } 2061 2062 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2063 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2064 { 2065 int dst_reg = insn_def_regno(insn); 2066 2067 if (dst_reg == -1) 2068 return false; 2069 2070 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2071 } 2072 2073 static void mark_insn_zext(struct bpf_verifier_env *env, 2074 struct bpf_reg_state *reg) 2075 { 2076 s32 def_idx = reg->subreg_def; 2077 2078 if (def_idx == DEF_NOT_SUBREG) 2079 return; 2080 2081 env->insn_aux_data[def_idx - 1].zext_dst = true; 2082 /* The dst will be zero extended, so won't be sub-register anymore. */ 2083 reg->subreg_def = DEF_NOT_SUBREG; 2084 } 2085 2086 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2087 enum reg_arg_type t) 2088 { 2089 struct bpf_verifier_state *vstate = env->cur_state; 2090 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2091 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2092 struct bpf_reg_state *reg, *regs = state->regs; 2093 bool rw64; 2094 2095 if (regno >= MAX_BPF_REG) { 2096 verbose(env, "R%d is invalid\n", regno); 2097 return -EINVAL; 2098 } 2099 2100 reg = ®s[regno]; 2101 rw64 = is_reg64(env, insn, regno, reg, t); 2102 if (t == SRC_OP) { 2103 /* check whether register used as source operand can be read */ 2104 if (reg->type == NOT_INIT) { 2105 verbose(env, "R%d !read_ok\n", regno); 2106 return -EACCES; 2107 } 2108 /* We don't need to worry about FP liveness because it's read-only */ 2109 if (regno == BPF_REG_FP) 2110 return 0; 2111 2112 if (rw64) 2113 mark_insn_zext(env, reg); 2114 2115 return mark_reg_read(env, reg, reg->parent, 2116 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2117 } else { 2118 /* check whether register used as dest operand can be written to */ 2119 if (regno == BPF_REG_FP) { 2120 verbose(env, "frame pointer is read only\n"); 2121 return -EACCES; 2122 } 2123 reg->live |= REG_LIVE_WRITTEN; 2124 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2125 if (t == DST_OP) 2126 mark_reg_unknown(env, regs, regno); 2127 } 2128 return 0; 2129 } 2130 2131 /* for any branch, call, exit record the history of jmps in the given state */ 2132 static int push_jmp_history(struct bpf_verifier_env *env, 2133 struct bpf_verifier_state *cur) 2134 { 2135 u32 cnt = cur->jmp_history_cnt; 2136 struct bpf_idx_pair *p; 2137 2138 cnt++; 2139 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2140 if (!p) 2141 return -ENOMEM; 2142 p[cnt - 1].idx = env->insn_idx; 2143 p[cnt - 1].prev_idx = env->prev_insn_idx; 2144 cur->jmp_history = p; 2145 cur->jmp_history_cnt = cnt; 2146 return 0; 2147 } 2148 2149 /* Backtrack one insn at a time. If idx is not at the top of recorded 2150 * history then previous instruction came from straight line execution. 2151 */ 2152 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2153 u32 *history) 2154 { 2155 u32 cnt = *history; 2156 2157 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2158 i = st->jmp_history[cnt - 1].prev_idx; 2159 (*history)--; 2160 } else { 2161 i--; 2162 } 2163 return i; 2164 } 2165 2166 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2167 { 2168 const struct btf_type *func; 2169 2170 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2171 return NULL; 2172 2173 func = btf_type_by_id(btf_vmlinux, insn->imm); 2174 return btf_name_by_offset(btf_vmlinux, func->name_off); 2175 } 2176 2177 /* For given verifier state backtrack_insn() is called from the last insn to 2178 * the first insn. Its purpose is to compute a bitmask of registers and 2179 * stack slots that needs precision in the parent verifier state. 2180 */ 2181 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2182 u32 *reg_mask, u64 *stack_mask) 2183 { 2184 const struct bpf_insn_cbs cbs = { 2185 .cb_call = disasm_kfunc_name, 2186 .cb_print = verbose, 2187 .private_data = env, 2188 }; 2189 struct bpf_insn *insn = env->prog->insnsi + idx; 2190 u8 class = BPF_CLASS(insn->code); 2191 u8 opcode = BPF_OP(insn->code); 2192 u8 mode = BPF_MODE(insn->code); 2193 u32 dreg = 1u << insn->dst_reg; 2194 u32 sreg = 1u << insn->src_reg; 2195 u32 spi; 2196 2197 if (insn->code == 0) 2198 return 0; 2199 if (env->log.level & BPF_LOG_LEVEL) { 2200 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2201 verbose(env, "%d: ", idx); 2202 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2203 } 2204 2205 if (class == BPF_ALU || class == BPF_ALU64) { 2206 if (!(*reg_mask & dreg)) 2207 return 0; 2208 if (opcode == BPF_MOV) { 2209 if (BPF_SRC(insn->code) == BPF_X) { 2210 /* dreg = sreg 2211 * dreg needs precision after this insn 2212 * sreg needs precision before this insn 2213 */ 2214 *reg_mask &= ~dreg; 2215 *reg_mask |= sreg; 2216 } else { 2217 /* dreg = K 2218 * dreg needs precision after this insn. 2219 * Corresponding register is already marked 2220 * as precise=true in this verifier state. 2221 * No further markings in parent are necessary 2222 */ 2223 *reg_mask &= ~dreg; 2224 } 2225 } else { 2226 if (BPF_SRC(insn->code) == BPF_X) { 2227 /* dreg += sreg 2228 * both dreg and sreg need precision 2229 * before this insn 2230 */ 2231 *reg_mask |= sreg; 2232 } /* else dreg += K 2233 * dreg still needs precision before this insn 2234 */ 2235 } 2236 } else if (class == BPF_LDX) { 2237 if (!(*reg_mask & dreg)) 2238 return 0; 2239 *reg_mask &= ~dreg; 2240 2241 /* scalars can only be spilled into stack w/o losing precision. 2242 * Load from any other memory can be zero extended. 2243 * The desire to keep that precision is already indicated 2244 * by 'precise' mark in corresponding register of this state. 2245 * No further tracking necessary. 2246 */ 2247 if (insn->src_reg != BPF_REG_FP) 2248 return 0; 2249 if (BPF_SIZE(insn->code) != BPF_DW) 2250 return 0; 2251 2252 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2253 * that [fp - off] slot contains scalar that needs to be 2254 * tracked with precision 2255 */ 2256 spi = (-insn->off - 1) / BPF_REG_SIZE; 2257 if (spi >= 64) { 2258 verbose(env, "BUG spi %d\n", spi); 2259 WARN_ONCE(1, "verifier backtracking bug"); 2260 return -EFAULT; 2261 } 2262 *stack_mask |= 1ull << spi; 2263 } else if (class == BPF_STX || class == BPF_ST) { 2264 if (*reg_mask & dreg) 2265 /* stx & st shouldn't be using _scalar_ dst_reg 2266 * to access memory. It means backtracking 2267 * encountered a case of pointer subtraction. 2268 */ 2269 return -ENOTSUPP; 2270 /* scalars can only be spilled into stack */ 2271 if (insn->dst_reg != BPF_REG_FP) 2272 return 0; 2273 if (BPF_SIZE(insn->code) != BPF_DW) 2274 return 0; 2275 spi = (-insn->off - 1) / BPF_REG_SIZE; 2276 if (spi >= 64) { 2277 verbose(env, "BUG spi %d\n", spi); 2278 WARN_ONCE(1, "verifier backtracking bug"); 2279 return -EFAULT; 2280 } 2281 if (!(*stack_mask & (1ull << spi))) 2282 return 0; 2283 *stack_mask &= ~(1ull << spi); 2284 if (class == BPF_STX) 2285 *reg_mask |= sreg; 2286 } else if (class == BPF_JMP || class == BPF_JMP32) { 2287 if (opcode == BPF_CALL) { 2288 if (insn->src_reg == BPF_PSEUDO_CALL) 2289 return -ENOTSUPP; 2290 /* regular helper call sets R0 */ 2291 *reg_mask &= ~1; 2292 if (*reg_mask & 0x3f) { 2293 /* if backtracing was looking for registers R1-R5 2294 * they should have been found already. 2295 */ 2296 verbose(env, "BUG regs %x\n", *reg_mask); 2297 WARN_ONCE(1, "verifier backtracking bug"); 2298 return -EFAULT; 2299 } 2300 } else if (opcode == BPF_EXIT) { 2301 return -ENOTSUPP; 2302 } 2303 } else if (class == BPF_LD) { 2304 if (!(*reg_mask & dreg)) 2305 return 0; 2306 *reg_mask &= ~dreg; 2307 /* It's ld_imm64 or ld_abs or ld_ind. 2308 * For ld_imm64 no further tracking of precision 2309 * into parent is necessary 2310 */ 2311 if (mode == BPF_IND || mode == BPF_ABS) 2312 /* to be analyzed */ 2313 return -ENOTSUPP; 2314 } 2315 return 0; 2316 } 2317 2318 /* the scalar precision tracking algorithm: 2319 * . at the start all registers have precise=false. 2320 * . scalar ranges are tracked as normal through alu and jmp insns. 2321 * . once precise value of the scalar register is used in: 2322 * . ptr + scalar alu 2323 * . if (scalar cond K|scalar) 2324 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2325 * backtrack through the verifier states and mark all registers and 2326 * stack slots with spilled constants that these scalar regisers 2327 * should be precise. 2328 * . during state pruning two registers (or spilled stack slots) 2329 * are equivalent if both are not precise. 2330 * 2331 * Note the verifier cannot simply walk register parentage chain, 2332 * since many different registers and stack slots could have been 2333 * used to compute single precise scalar. 2334 * 2335 * The approach of starting with precise=true for all registers and then 2336 * backtrack to mark a register as not precise when the verifier detects 2337 * that program doesn't care about specific value (e.g., when helper 2338 * takes register as ARG_ANYTHING parameter) is not safe. 2339 * 2340 * It's ok to walk single parentage chain of the verifier states. 2341 * It's possible that this backtracking will go all the way till 1st insn. 2342 * All other branches will be explored for needing precision later. 2343 * 2344 * The backtracking needs to deal with cases like: 2345 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2346 * r9 -= r8 2347 * r5 = r9 2348 * if r5 > 0x79f goto pc+7 2349 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2350 * r5 += 1 2351 * ... 2352 * call bpf_perf_event_output#25 2353 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2354 * 2355 * and this case: 2356 * r6 = 1 2357 * call foo // uses callee's r6 inside to compute r0 2358 * r0 += r6 2359 * if r0 == 0 goto 2360 * 2361 * to track above reg_mask/stack_mask needs to be independent for each frame. 2362 * 2363 * Also if parent's curframe > frame where backtracking started, 2364 * the verifier need to mark registers in both frames, otherwise callees 2365 * may incorrectly prune callers. This is similar to 2366 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2367 * 2368 * For now backtracking falls back into conservative marking. 2369 */ 2370 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2371 struct bpf_verifier_state *st) 2372 { 2373 struct bpf_func_state *func; 2374 struct bpf_reg_state *reg; 2375 int i, j; 2376 2377 /* big hammer: mark all scalars precise in this path. 2378 * pop_stack may still get !precise scalars. 2379 */ 2380 for (; st; st = st->parent) 2381 for (i = 0; i <= st->curframe; i++) { 2382 func = st->frame[i]; 2383 for (j = 0; j < BPF_REG_FP; j++) { 2384 reg = &func->regs[j]; 2385 if (reg->type != SCALAR_VALUE) 2386 continue; 2387 reg->precise = true; 2388 } 2389 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2390 if (!is_spilled_reg(&func->stack[j])) 2391 continue; 2392 reg = &func->stack[j].spilled_ptr; 2393 if (reg->type != SCALAR_VALUE) 2394 continue; 2395 reg->precise = true; 2396 } 2397 } 2398 } 2399 2400 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2401 int spi) 2402 { 2403 struct bpf_verifier_state *st = env->cur_state; 2404 int first_idx = st->first_insn_idx; 2405 int last_idx = env->insn_idx; 2406 struct bpf_func_state *func; 2407 struct bpf_reg_state *reg; 2408 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2409 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2410 bool skip_first = true; 2411 bool new_marks = false; 2412 int i, err; 2413 2414 if (!env->bpf_capable) 2415 return 0; 2416 2417 func = st->frame[st->curframe]; 2418 if (regno >= 0) { 2419 reg = &func->regs[regno]; 2420 if (reg->type != SCALAR_VALUE) { 2421 WARN_ONCE(1, "backtracing misuse"); 2422 return -EFAULT; 2423 } 2424 if (!reg->precise) 2425 new_marks = true; 2426 else 2427 reg_mask = 0; 2428 reg->precise = true; 2429 } 2430 2431 while (spi >= 0) { 2432 if (!is_spilled_reg(&func->stack[spi])) { 2433 stack_mask = 0; 2434 break; 2435 } 2436 reg = &func->stack[spi].spilled_ptr; 2437 if (reg->type != SCALAR_VALUE) { 2438 stack_mask = 0; 2439 break; 2440 } 2441 if (!reg->precise) 2442 new_marks = true; 2443 else 2444 stack_mask = 0; 2445 reg->precise = true; 2446 break; 2447 } 2448 2449 if (!new_marks) 2450 return 0; 2451 if (!reg_mask && !stack_mask) 2452 return 0; 2453 for (;;) { 2454 DECLARE_BITMAP(mask, 64); 2455 u32 history = st->jmp_history_cnt; 2456 2457 if (env->log.level & BPF_LOG_LEVEL) 2458 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2459 for (i = last_idx;;) { 2460 if (skip_first) { 2461 err = 0; 2462 skip_first = false; 2463 } else { 2464 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2465 } 2466 if (err == -ENOTSUPP) { 2467 mark_all_scalars_precise(env, st); 2468 return 0; 2469 } else if (err) { 2470 return err; 2471 } 2472 if (!reg_mask && !stack_mask) 2473 /* Found assignment(s) into tracked register in this state. 2474 * Since this state is already marked, just return. 2475 * Nothing to be tracked further in the parent state. 2476 */ 2477 return 0; 2478 if (i == first_idx) 2479 break; 2480 i = get_prev_insn_idx(st, i, &history); 2481 if (i >= env->prog->len) { 2482 /* This can happen if backtracking reached insn 0 2483 * and there are still reg_mask or stack_mask 2484 * to backtrack. 2485 * It means the backtracking missed the spot where 2486 * particular register was initialized with a constant. 2487 */ 2488 verbose(env, "BUG backtracking idx %d\n", i); 2489 WARN_ONCE(1, "verifier backtracking bug"); 2490 return -EFAULT; 2491 } 2492 } 2493 st = st->parent; 2494 if (!st) 2495 break; 2496 2497 new_marks = false; 2498 func = st->frame[st->curframe]; 2499 bitmap_from_u64(mask, reg_mask); 2500 for_each_set_bit(i, mask, 32) { 2501 reg = &func->regs[i]; 2502 if (reg->type != SCALAR_VALUE) { 2503 reg_mask &= ~(1u << i); 2504 continue; 2505 } 2506 if (!reg->precise) 2507 new_marks = true; 2508 reg->precise = true; 2509 } 2510 2511 bitmap_from_u64(mask, stack_mask); 2512 for_each_set_bit(i, mask, 64) { 2513 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2514 /* the sequence of instructions: 2515 * 2: (bf) r3 = r10 2516 * 3: (7b) *(u64 *)(r3 -8) = r0 2517 * 4: (79) r4 = *(u64 *)(r10 -8) 2518 * doesn't contain jmps. It's backtracked 2519 * as a single block. 2520 * During backtracking insn 3 is not recognized as 2521 * stack access, so at the end of backtracking 2522 * stack slot fp-8 is still marked in stack_mask. 2523 * However the parent state may not have accessed 2524 * fp-8 and it's "unallocated" stack space. 2525 * In such case fallback to conservative. 2526 */ 2527 mark_all_scalars_precise(env, st); 2528 return 0; 2529 } 2530 2531 if (!is_spilled_reg(&func->stack[i])) { 2532 stack_mask &= ~(1ull << i); 2533 continue; 2534 } 2535 reg = &func->stack[i].spilled_ptr; 2536 if (reg->type != SCALAR_VALUE) { 2537 stack_mask &= ~(1ull << i); 2538 continue; 2539 } 2540 if (!reg->precise) 2541 new_marks = true; 2542 reg->precise = true; 2543 } 2544 if (env->log.level & BPF_LOG_LEVEL) { 2545 print_verifier_state(env, func); 2546 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2547 new_marks ? "didn't have" : "already had", 2548 reg_mask, stack_mask); 2549 } 2550 2551 if (!reg_mask && !stack_mask) 2552 break; 2553 if (!new_marks) 2554 break; 2555 2556 last_idx = st->last_insn_idx; 2557 first_idx = st->first_insn_idx; 2558 } 2559 return 0; 2560 } 2561 2562 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2563 { 2564 return __mark_chain_precision(env, regno, -1); 2565 } 2566 2567 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2568 { 2569 return __mark_chain_precision(env, -1, spi); 2570 } 2571 2572 static bool is_spillable_regtype(enum bpf_reg_type type) 2573 { 2574 switch (type) { 2575 case PTR_TO_MAP_VALUE: 2576 case PTR_TO_MAP_VALUE_OR_NULL: 2577 case PTR_TO_STACK: 2578 case PTR_TO_CTX: 2579 case PTR_TO_PACKET: 2580 case PTR_TO_PACKET_META: 2581 case PTR_TO_PACKET_END: 2582 case PTR_TO_FLOW_KEYS: 2583 case CONST_PTR_TO_MAP: 2584 case PTR_TO_SOCKET: 2585 case PTR_TO_SOCKET_OR_NULL: 2586 case PTR_TO_SOCK_COMMON: 2587 case PTR_TO_SOCK_COMMON_OR_NULL: 2588 case PTR_TO_TCP_SOCK: 2589 case PTR_TO_TCP_SOCK_OR_NULL: 2590 case PTR_TO_XDP_SOCK: 2591 case PTR_TO_BTF_ID: 2592 case PTR_TO_BTF_ID_OR_NULL: 2593 case PTR_TO_RDONLY_BUF: 2594 case PTR_TO_RDONLY_BUF_OR_NULL: 2595 case PTR_TO_RDWR_BUF: 2596 case PTR_TO_RDWR_BUF_OR_NULL: 2597 case PTR_TO_PERCPU_BTF_ID: 2598 case PTR_TO_MEM: 2599 case PTR_TO_MEM_OR_NULL: 2600 case PTR_TO_FUNC: 2601 case PTR_TO_MAP_KEY: 2602 return true; 2603 default: 2604 return false; 2605 } 2606 } 2607 2608 /* Does this register contain a constant zero? */ 2609 static bool register_is_null(struct bpf_reg_state *reg) 2610 { 2611 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2612 } 2613 2614 static bool register_is_const(struct bpf_reg_state *reg) 2615 { 2616 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2617 } 2618 2619 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2620 { 2621 return tnum_is_unknown(reg->var_off) && 2622 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2623 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2624 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2625 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2626 } 2627 2628 static bool register_is_bounded(struct bpf_reg_state *reg) 2629 { 2630 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2631 } 2632 2633 static bool __is_pointer_value(bool allow_ptr_leaks, 2634 const struct bpf_reg_state *reg) 2635 { 2636 if (allow_ptr_leaks) 2637 return false; 2638 2639 return reg->type != SCALAR_VALUE; 2640 } 2641 2642 static void save_register_state(struct bpf_func_state *state, 2643 int spi, struct bpf_reg_state *reg, 2644 int size) 2645 { 2646 int i; 2647 2648 state->stack[spi].spilled_ptr = *reg; 2649 if (size == BPF_REG_SIZE) 2650 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2651 2652 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2653 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2654 2655 /* size < 8 bytes spill */ 2656 for (; i; i--) 2657 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2658 } 2659 2660 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2661 * stack boundary and alignment are checked in check_mem_access() 2662 */ 2663 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2664 /* stack frame we're writing to */ 2665 struct bpf_func_state *state, 2666 int off, int size, int value_regno, 2667 int insn_idx) 2668 { 2669 struct bpf_func_state *cur; /* state of the current function */ 2670 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2671 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2672 struct bpf_reg_state *reg = NULL; 2673 2674 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2675 if (err) 2676 return err; 2677 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2678 * so it's aligned access and [off, off + size) are within stack limits 2679 */ 2680 if (!env->allow_ptr_leaks && 2681 state->stack[spi].slot_type[0] == STACK_SPILL && 2682 size != BPF_REG_SIZE) { 2683 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2684 return -EACCES; 2685 } 2686 2687 cur = env->cur_state->frame[env->cur_state->curframe]; 2688 if (value_regno >= 0) 2689 reg = &cur->regs[value_regno]; 2690 if (!env->bypass_spec_v4) { 2691 bool sanitize = reg && is_spillable_regtype(reg->type); 2692 2693 for (i = 0; i < size; i++) { 2694 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2695 sanitize = true; 2696 break; 2697 } 2698 } 2699 2700 if (sanitize) 2701 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2702 } 2703 2704 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2705 !register_is_null(reg) && env->bpf_capable) { 2706 if (dst_reg != BPF_REG_FP) { 2707 /* The backtracking logic can only recognize explicit 2708 * stack slot address like [fp - 8]. Other spill of 2709 * scalar via different register has to be conservative. 2710 * Backtrack from here and mark all registers as precise 2711 * that contributed into 'reg' being a constant. 2712 */ 2713 err = mark_chain_precision(env, value_regno); 2714 if (err) 2715 return err; 2716 } 2717 save_register_state(state, spi, reg, size); 2718 } else if (reg && is_spillable_regtype(reg->type)) { 2719 /* register containing pointer is being spilled into stack */ 2720 if (size != BPF_REG_SIZE) { 2721 verbose_linfo(env, insn_idx, "; "); 2722 verbose(env, "invalid size of register spill\n"); 2723 return -EACCES; 2724 } 2725 if (state != cur && reg->type == PTR_TO_STACK) { 2726 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2727 return -EINVAL; 2728 } 2729 save_register_state(state, spi, reg, size); 2730 } else { 2731 u8 type = STACK_MISC; 2732 2733 /* regular write of data into stack destroys any spilled ptr */ 2734 state->stack[spi].spilled_ptr.type = NOT_INIT; 2735 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2736 if (is_spilled_reg(&state->stack[spi])) 2737 for (i = 0; i < BPF_REG_SIZE; i++) 2738 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2739 2740 /* only mark the slot as written if all 8 bytes were written 2741 * otherwise read propagation may incorrectly stop too soon 2742 * when stack slots are partially written. 2743 * This heuristic means that read propagation will be 2744 * conservative, since it will add reg_live_read marks 2745 * to stack slots all the way to first state when programs 2746 * writes+reads less than 8 bytes 2747 */ 2748 if (size == BPF_REG_SIZE) 2749 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2750 2751 /* when we zero initialize stack slots mark them as such */ 2752 if (reg && register_is_null(reg)) { 2753 /* backtracking doesn't work for STACK_ZERO yet. */ 2754 err = mark_chain_precision(env, value_regno); 2755 if (err) 2756 return err; 2757 type = STACK_ZERO; 2758 } 2759 2760 /* Mark slots affected by this stack write. */ 2761 for (i = 0; i < size; i++) 2762 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2763 type; 2764 } 2765 return 0; 2766 } 2767 2768 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2769 * known to contain a variable offset. 2770 * This function checks whether the write is permitted and conservatively 2771 * tracks the effects of the write, considering that each stack slot in the 2772 * dynamic range is potentially written to. 2773 * 2774 * 'off' includes 'regno->off'. 2775 * 'value_regno' can be -1, meaning that an unknown value is being written to 2776 * the stack. 2777 * 2778 * Spilled pointers in range are not marked as written because we don't know 2779 * what's going to be actually written. This means that read propagation for 2780 * future reads cannot be terminated by this write. 2781 * 2782 * For privileged programs, uninitialized stack slots are considered 2783 * initialized by this write (even though we don't know exactly what offsets 2784 * are going to be written to). The idea is that we don't want the verifier to 2785 * reject future reads that access slots written to through variable offsets. 2786 */ 2787 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2788 /* func where register points to */ 2789 struct bpf_func_state *state, 2790 int ptr_regno, int off, int size, 2791 int value_regno, int insn_idx) 2792 { 2793 struct bpf_func_state *cur; /* state of the current function */ 2794 int min_off, max_off; 2795 int i, err; 2796 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2797 bool writing_zero = false; 2798 /* set if the fact that we're writing a zero is used to let any 2799 * stack slots remain STACK_ZERO 2800 */ 2801 bool zero_used = false; 2802 2803 cur = env->cur_state->frame[env->cur_state->curframe]; 2804 ptr_reg = &cur->regs[ptr_regno]; 2805 min_off = ptr_reg->smin_value + off; 2806 max_off = ptr_reg->smax_value + off + size; 2807 if (value_regno >= 0) 2808 value_reg = &cur->regs[value_regno]; 2809 if (value_reg && register_is_null(value_reg)) 2810 writing_zero = true; 2811 2812 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2813 if (err) 2814 return err; 2815 2816 2817 /* Variable offset writes destroy any spilled pointers in range. */ 2818 for (i = min_off; i < max_off; i++) { 2819 u8 new_type, *stype; 2820 int slot, spi; 2821 2822 slot = -i - 1; 2823 spi = slot / BPF_REG_SIZE; 2824 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2825 2826 if (!env->allow_ptr_leaks 2827 && *stype != NOT_INIT 2828 && *stype != SCALAR_VALUE) { 2829 /* Reject the write if there's are spilled pointers in 2830 * range. If we didn't reject here, the ptr status 2831 * would be erased below (even though not all slots are 2832 * actually overwritten), possibly opening the door to 2833 * leaks. 2834 */ 2835 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2836 insn_idx, i); 2837 return -EINVAL; 2838 } 2839 2840 /* Erase all spilled pointers. */ 2841 state->stack[spi].spilled_ptr.type = NOT_INIT; 2842 2843 /* Update the slot type. */ 2844 new_type = STACK_MISC; 2845 if (writing_zero && *stype == STACK_ZERO) { 2846 new_type = STACK_ZERO; 2847 zero_used = true; 2848 } 2849 /* If the slot is STACK_INVALID, we check whether it's OK to 2850 * pretend that it will be initialized by this write. The slot 2851 * might not actually be written to, and so if we mark it as 2852 * initialized future reads might leak uninitialized memory. 2853 * For privileged programs, we will accept such reads to slots 2854 * that may or may not be written because, if we're reject 2855 * them, the error would be too confusing. 2856 */ 2857 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2858 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2859 insn_idx, i); 2860 return -EINVAL; 2861 } 2862 *stype = new_type; 2863 } 2864 if (zero_used) { 2865 /* backtracking doesn't work for STACK_ZERO yet. */ 2866 err = mark_chain_precision(env, value_regno); 2867 if (err) 2868 return err; 2869 } 2870 return 0; 2871 } 2872 2873 /* When register 'dst_regno' is assigned some values from stack[min_off, 2874 * max_off), we set the register's type according to the types of the 2875 * respective stack slots. If all the stack values are known to be zeros, then 2876 * so is the destination reg. Otherwise, the register is considered to be 2877 * SCALAR. This function does not deal with register filling; the caller must 2878 * ensure that all spilled registers in the stack range have been marked as 2879 * read. 2880 */ 2881 static void mark_reg_stack_read(struct bpf_verifier_env *env, 2882 /* func where src register points to */ 2883 struct bpf_func_state *ptr_state, 2884 int min_off, int max_off, int dst_regno) 2885 { 2886 struct bpf_verifier_state *vstate = env->cur_state; 2887 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2888 int i, slot, spi; 2889 u8 *stype; 2890 int zeros = 0; 2891 2892 for (i = min_off; i < max_off; i++) { 2893 slot = -i - 1; 2894 spi = slot / BPF_REG_SIZE; 2895 stype = ptr_state->stack[spi].slot_type; 2896 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 2897 break; 2898 zeros++; 2899 } 2900 if (zeros == max_off - min_off) { 2901 /* any access_size read into register is zero extended, 2902 * so the whole register == const_zero 2903 */ 2904 __mark_reg_const_zero(&state->regs[dst_regno]); 2905 /* backtracking doesn't support STACK_ZERO yet, 2906 * so mark it precise here, so that later 2907 * backtracking can stop here. 2908 * Backtracking may not need this if this register 2909 * doesn't participate in pointer adjustment. 2910 * Forward propagation of precise flag is not 2911 * necessary either. This mark is only to stop 2912 * backtracking. Any register that contributed 2913 * to const 0 was marked precise before spill. 2914 */ 2915 state->regs[dst_regno].precise = true; 2916 } else { 2917 /* have read misc data from the stack */ 2918 mark_reg_unknown(env, state->regs, dst_regno); 2919 } 2920 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2921 } 2922 2923 /* Read the stack at 'off' and put the results into the register indicated by 2924 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 2925 * spilled reg. 2926 * 2927 * 'dst_regno' can be -1, meaning that the read value is not going to a 2928 * register. 2929 * 2930 * The access is assumed to be within the current stack bounds. 2931 */ 2932 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 2933 /* func where src register points to */ 2934 struct bpf_func_state *reg_state, 2935 int off, int size, int dst_regno) 2936 { 2937 struct bpf_verifier_state *vstate = env->cur_state; 2938 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2939 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2940 struct bpf_reg_state *reg; 2941 u8 *stype, type; 2942 2943 stype = reg_state->stack[spi].slot_type; 2944 reg = ®_state->stack[spi].spilled_ptr; 2945 2946 if (is_spilled_reg(®_state->stack[spi])) { 2947 if (size != BPF_REG_SIZE) { 2948 u8 scalar_size = 0; 2949 2950 if (reg->type != SCALAR_VALUE) { 2951 verbose_linfo(env, env->insn_idx, "; "); 2952 verbose(env, "invalid size of register fill\n"); 2953 return -EACCES; 2954 } 2955 2956 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2957 if (dst_regno < 0) 2958 return 0; 2959 2960 for (i = BPF_REG_SIZE; i > 0 && stype[i - 1] == STACK_SPILL; i--) 2961 scalar_size++; 2962 2963 if (!(off % BPF_REG_SIZE) && size == scalar_size) { 2964 /* The earlier check_reg_arg() has decided the 2965 * subreg_def for this insn. Save it first. 2966 */ 2967 s32 subreg_def = state->regs[dst_regno].subreg_def; 2968 2969 state->regs[dst_regno] = *reg; 2970 state->regs[dst_regno].subreg_def = subreg_def; 2971 } else { 2972 for (i = 0; i < size; i++) { 2973 type = stype[(slot - i) % BPF_REG_SIZE]; 2974 if (type == STACK_SPILL) 2975 continue; 2976 if (type == STACK_MISC) 2977 continue; 2978 verbose(env, "invalid read from stack off %d+%d size %d\n", 2979 off, i, size); 2980 return -EACCES; 2981 } 2982 mark_reg_unknown(env, state->regs, dst_regno); 2983 } 2984 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2985 return 0; 2986 } 2987 for (i = 1; i < BPF_REG_SIZE; i++) { 2988 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2989 verbose(env, "corrupted spill memory\n"); 2990 return -EACCES; 2991 } 2992 } 2993 2994 if (dst_regno >= 0) { 2995 /* restore register state from stack */ 2996 state->regs[dst_regno] = *reg; 2997 /* mark reg as written since spilled pointer state likely 2998 * has its liveness marks cleared by is_state_visited() 2999 * which resets stack/reg liveness for state transitions 3000 */ 3001 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3002 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3003 /* If dst_regno==-1, the caller is asking us whether 3004 * it is acceptable to use this value as a SCALAR_VALUE 3005 * (e.g. for XADD). 3006 * We must not allow unprivileged callers to do that 3007 * with spilled pointers. 3008 */ 3009 verbose(env, "leaking pointer from stack off %d\n", 3010 off); 3011 return -EACCES; 3012 } 3013 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3014 } else { 3015 for (i = 0; i < size; i++) { 3016 type = stype[(slot - i) % BPF_REG_SIZE]; 3017 if (type == STACK_MISC) 3018 continue; 3019 if (type == STACK_ZERO) 3020 continue; 3021 verbose(env, "invalid read from stack off %d+%d size %d\n", 3022 off, i, size); 3023 return -EACCES; 3024 } 3025 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3026 if (dst_regno >= 0) 3027 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3028 } 3029 return 0; 3030 } 3031 3032 enum stack_access_src { 3033 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3034 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3035 }; 3036 3037 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3038 int regno, int off, int access_size, 3039 bool zero_size_allowed, 3040 enum stack_access_src type, 3041 struct bpf_call_arg_meta *meta); 3042 3043 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3044 { 3045 return cur_regs(env) + regno; 3046 } 3047 3048 /* Read the stack at 'ptr_regno + off' and put the result into the register 3049 * 'dst_regno'. 3050 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3051 * but not its variable offset. 3052 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3053 * 3054 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3055 * filling registers (i.e. reads of spilled register cannot be detected when 3056 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3057 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3058 * offset; for a fixed offset check_stack_read_fixed_off should be used 3059 * instead. 3060 */ 3061 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3062 int ptr_regno, int off, int size, int dst_regno) 3063 { 3064 /* The state of the source register. */ 3065 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3066 struct bpf_func_state *ptr_state = func(env, reg); 3067 int err; 3068 int min_off, max_off; 3069 3070 /* Note that we pass a NULL meta, so raw access will not be permitted. 3071 */ 3072 err = check_stack_range_initialized(env, ptr_regno, off, size, 3073 false, ACCESS_DIRECT, NULL); 3074 if (err) 3075 return err; 3076 3077 min_off = reg->smin_value + off; 3078 max_off = reg->smax_value + off; 3079 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3080 return 0; 3081 } 3082 3083 /* check_stack_read dispatches to check_stack_read_fixed_off or 3084 * check_stack_read_var_off. 3085 * 3086 * The caller must ensure that the offset falls within the allocated stack 3087 * bounds. 3088 * 3089 * 'dst_regno' is a register which will receive the value from the stack. It 3090 * can be -1, meaning that the read value is not going to a register. 3091 */ 3092 static int check_stack_read(struct bpf_verifier_env *env, 3093 int ptr_regno, int off, int size, 3094 int dst_regno) 3095 { 3096 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3097 struct bpf_func_state *state = func(env, reg); 3098 int err; 3099 /* Some accesses are only permitted with a static offset. */ 3100 bool var_off = !tnum_is_const(reg->var_off); 3101 3102 /* The offset is required to be static when reads don't go to a 3103 * register, in order to not leak pointers (see 3104 * check_stack_read_fixed_off). 3105 */ 3106 if (dst_regno < 0 && var_off) { 3107 char tn_buf[48]; 3108 3109 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3110 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3111 tn_buf, off, size); 3112 return -EACCES; 3113 } 3114 /* Variable offset is prohibited for unprivileged mode for simplicity 3115 * since it requires corresponding support in Spectre masking for stack 3116 * ALU. See also retrieve_ptr_limit(). 3117 */ 3118 if (!env->bypass_spec_v1 && var_off) { 3119 char tn_buf[48]; 3120 3121 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3122 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3123 ptr_regno, tn_buf); 3124 return -EACCES; 3125 } 3126 3127 if (!var_off) { 3128 off += reg->var_off.value; 3129 err = check_stack_read_fixed_off(env, state, off, size, 3130 dst_regno); 3131 } else { 3132 /* Variable offset stack reads need more conservative handling 3133 * than fixed offset ones. Note that dst_regno >= 0 on this 3134 * branch. 3135 */ 3136 err = check_stack_read_var_off(env, ptr_regno, off, size, 3137 dst_regno); 3138 } 3139 return err; 3140 } 3141 3142 3143 /* check_stack_write dispatches to check_stack_write_fixed_off or 3144 * check_stack_write_var_off. 3145 * 3146 * 'ptr_regno' is the register used as a pointer into the stack. 3147 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3148 * 'value_regno' is the register whose value we're writing to the stack. It can 3149 * be -1, meaning that we're not writing from a register. 3150 * 3151 * The caller must ensure that the offset falls within the maximum stack size. 3152 */ 3153 static int check_stack_write(struct bpf_verifier_env *env, 3154 int ptr_regno, int off, int size, 3155 int value_regno, int insn_idx) 3156 { 3157 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3158 struct bpf_func_state *state = func(env, reg); 3159 int err; 3160 3161 if (tnum_is_const(reg->var_off)) { 3162 off += reg->var_off.value; 3163 err = check_stack_write_fixed_off(env, state, off, size, 3164 value_regno, insn_idx); 3165 } else { 3166 /* Variable offset stack reads need more conservative handling 3167 * than fixed offset ones. 3168 */ 3169 err = check_stack_write_var_off(env, state, 3170 ptr_regno, off, size, 3171 value_regno, insn_idx); 3172 } 3173 return err; 3174 } 3175 3176 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3177 int off, int size, enum bpf_access_type type) 3178 { 3179 struct bpf_reg_state *regs = cur_regs(env); 3180 struct bpf_map *map = regs[regno].map_ptr; 3181 u32 cap = bpf_map_flags_to_cap(map); 3182 3183 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3184 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3185 map->value_size, off, size); 3186 return -EACCES; 3187 } 3188 3189 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3190 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3191 map->value_size, off, size); 3192 return -EACCES; 3193 } 3194 3195 return 0; 3196 } 3197 3198 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3199 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3200 int off, int size, u32 mem_size, 3201 bool zero_size_allowed) 3202 { 3203 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3204 struct bpf_reg_state *reg; 3205 3206 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3207 return 0; 3208 3209 reg = &cur_regs(env)[regno]; 3210 switch (reg->type) { 3211 case PTR_TO_MAP_KEY: 3212 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3213 mem_size, off, size); 3214 break; 3215 case PTR_TO_MAP_VALUE: 3216 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3217 mem_size, off, size); 3218 break; 3219 case PTR_TO_PACKET: 3220 case PTR_TO_PACKET_META: 3221 case PTR_TO_PACKET_END: 3222 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3223 off, size, regno, reg->id, off, mem_size); 3224 break; 3225 case PTR_TO_MEM: 3226 default: 3227 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3228 mem_size, off, size); 3229 } 3230 3231 return -EACCES; 3232 } 3233 3234 /* check read/write into a memory region with possible variable offset */ 3235 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3236 int off, int size, u32 mem_size, 3237 bool zero_size_allowed) 3238 { 3239 struct bpf_verifier_state *vstate = env->cur_state; 3240 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3241 struct bpf_reg_state *reg = &state->regs[regno]; 3242 int err; 3243 3244 /* We may have adjusted the register pointing to memory region, so we 3245 * need to try adding each of min_value and max_value to off 3246 * to make sure our theoretical access will be safe. 3247 */ 3248 if (env->log.level & BPF_LOG_LEVEL) 3249 print_verifier_state(env, state); 3250 3251 /* The minimum value is only important with signed 3252 * comparisons where we can't assume the floor of a 3253 * value is 0. If we are using signed variables for our 3254 * index'es we need to make sure that whatever we use 3255 * will have a set floor within our range. 3256 */ 3257 if (reg->smin_value < 0 && 3258 (reg->smin_value == S64_MIN || 3259 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3260 reg->smin_value + off < 0)) { 3261 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3262 regno); 3263 return -EACCES; 3264 } 3265 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3266 mem_size, zero_size_allowed); 3267 if (err) { 3268 verbose(env, "R%d min value is outside of the allowed memory range\n", 3269 regno); 3270 return err; 3271 } 3272 3273 /* If we haven't set a max value then we need to bail since we can't be 3274 * sure we won't do bad things. 3275 * If reg->umax_value + off could overflow, treat that as unbounded too. 3276 */ 3277 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3278 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3279 regno); 3280 return -EACCES; 3281 } 3282 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3283 mem_size, zero_size_allowed); 3284 if (err) { 3285 verbose(env, "R%d max value is outside of the allowed memory range\n", 3286 regno); 3287 return err; 3288 } 3289 3290 return 0; 3291 } 3292 3293 /* check read/write into a map element with possible variable offset */ 3294 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3295 int off, int size, bool zero_size_allowed) 3296 { 3297 struct bpf_verifier_state *vstate = env->cur_state; 3298 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3299 struct bpf_reg_state *reg = &state->regs[regno]; 3300 struct bpf_map *map = reg->map_ptr; 3301 int err; 3302 3303 err = check_mem_region_access(env, regno, off, size, map->value_size, 3304 zero_size_allowed); 3305 if (err) 3306 return err; 3307 3308 if (map_value_has_spin_lock(map)) { 3309 u32 lock = map->spin_lock_off; 3310 3311 /* if any part of struct bpf_spin_lock can be touched by 3312 * load/store reject this program. 3313 * To check that [x1, x2) overlaps with [y1, y2) 3314 * it is sufficient to check x1 < y2 && y1 < x2. 3315 */ 3316 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3317 lock < reg->umax_value + off + size) { 3318 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3319 return -EACCES; 3320 } 3321 } 3322 if (map_value_has_timer(map)) { 3323 u32 t = map->timer_off; 3324 3325 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3326 t < reg->umax_value + off + size) { 3327 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3328 return -EACCES; 3329 } 3330 } 3331 return err; 3332 } 3333 3334 #define MAX_PACKET_OFF 0xffff 3335 3336 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3337 { 3338 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3339 } 3340 3341 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3342 const struct bpf_call_arg_meta *meta, 3343 enum bpf_access_type t) 3344 { 3345 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3346 3347 switch (prog_type) { 3348 /* Program types only with direct read access go here! */ 3349 case BPF_PROG_TYPE_LWT_IN: 3350 case BPF_PROG_TYPE_LWT_OUT: 3351 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3352 case BPF_PROG_TYPE_SK_REUSEPORT: 3353 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3354 case BPF_PROG_TYPE_CGROUP_SKB: 3355 if (t == BPF_WRITE) 3356 return false; 3357 fallthrough; 3358 3359 /* Program types with direct read + write access go here! */ 3360 case BPF_PROG_TYPE_SCHED_CLS: 3361 case BPF_PROG_TYPE_SCHED_ACT: 3362 case BPF_PROG_TYPE_XDP: 3363 case BPF_PROG_TYPE_LWT_XMIT: 3364 case BPF_PROG_TYPE_SK_SKB: 3365 case BPF_PROG_TYPE_SK_MSG: 3366 if (meta) 3367 return meta->pkt_access; 3368 3369 env->seen_direct_write = true; 3370 return true; 3371 3372 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3373 if (t == BPF_WRITE) 3374 env->seen_direct_write = true; 3375 3376 return true; 3377 3378 default: 3379 return false; 3380 } 3381 } 3382 3383 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3384 int size, bool zero_size_allowed) 3385 { 3386 struct bpf_reg_state *regs = cur_regs(env); 3387 struct bpf_reg_state *reg = ®s[regno]; 3388 int err; 3389 3390 /* We may have added a variable offset to the packet pointer; but any 3391 * reg->range we have comes after that. We are only checking the fixed 3392 * offset. 3393 */ 3394 3395 /* We don't allow negative numbers, because we aren't tracking enough 3396 * detail to prove they're safe. 3397 */ 3398 if (reg->smin_value < 0) { 3399 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3400 regno); 3401 return -EACCES; 3402 } 3403 3404 err = reg->range < 0 ? -EINVAL : 3405 __check_mem_access(env, regno, off, size, reg->range, 3406 zero_size_allowed); 3407 if (err) { 3408 verbose(env, "R%d offset is outside of the packet\n", regno); 3409 return err; 3410 } 3411 3412 /* __check_mem_access has made sure "off + size - 1" is within u16. 3413 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3414 * otherwise find_good_pkt_pointers would have refused to set range info 3415 * that __check_mem_access would have rejected this pkt access. 3416 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3417 */ 3418 env->prog->aux->max_pkt_offset = 3419 max_t(u32, env->prog->aux->max_pkt_offset, 3420 off + reg->umax_value + size - 1); 3421 3422 return err; 3423 } 3424 3425 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3426 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3427 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3428 struct btf **btf, u32 *btf_id) 3429 { 3430 struct bpf_insn_access_aux info = { 3431 .reg_type = *reg_type, 3432 .log = &env->log, 3433 }; 3434 3435 if (env->ops->is_valid_access && 3436 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3437 /* A non zero info.ctx_field_size indicates that this field is a 3438 * candidate for later verifier transformation to load the whole 3439 * field and then apply a mask when accessed with a narrower 3440 * access than actual ctx access size. A zero info.ctx_field_size 3441 * will only allow for whole field access and rejects any other 3442 * type of narrower access. 3443 */ 3444 *reg_type = info.reg_type; 3445 3446 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3447 *btf = info.btf; 3448 *btf_id = info.btf_id; 3449 } else { 3450 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3451 } 3452 /* remember the offset of last byte accessed in ctx */ 3453 if (env->prog->aux->max_ctx_offset < off + size) 3454 env->prog->aux->max_ctx_offset = off + size; 3455 return 0; 3456 } 3457 3458 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3459 return -EACCES; 3460 } 3461 3462 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3463 int size) 3464 { 3465 if (size < 0 || off < 0 || 3466 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3467 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3468 off, size); 3469 return -EACCES; 3470 } 3471 return 0; 3472 } 3473 3474 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3475 u32 regno, int off, int size, 3476 enum bpf_access_type t) 3477 { 3478 struct bpf_reg_state *regs = cur_regs(env); 3479 struct bpf_reg_state *reg = ®s[regno]; 3480 struct bpf_insn_access_aux info = {}; 3481 bool valid; 3482 3483 if (reg->smin_value < 0) { 3484 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3485 regno); 3486 return -EACCES; 3487 } 3488 3489 switch (reg->type) { 3490 case PTR_TO_SOCK_COMMON: 3491 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3492 break; 3493 case PTR_TO_SOCKET: 3494 valid = bpf_sock_is_valid_access(off, size, t, &info); 3495 break; 3496 case PTR_TO_TCP_SOCK: 3497 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3498 break; 3499 case PTR_TO_XDP_SOCK: 3500 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3501 break; 3502 default: 3503 valid = false; 3504 } 3505 3506 3507 if (valid) { 3508 env->insn_aux_data[insn_idx].ctx_field_size = 3509 info.ctx_field_size; 3510 return 0; 3511 } 3512 3513 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3514 regno, reg_type_str[reg->type], off, size); 3515 3516 return -EACCES; 3517 } 3518 3519 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3520 { 3521 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3522 } 3523 3524 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3525 { 3526 const struct bpf_reg_state *reg = reg_state(env, regno); 3527 3528 return reg->type == PTR_TO_CTX; 3529 } 3530 3531 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3532 { 3533 const struct bpf_reg_state *reg = reg_state(env, regno); 3534 3535 return type_is_sk_pointer(reg->type); 3536 } 3537 3538 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3539 { 3540 const struct bpf_reg_state *reg = reg_state(env, regno); 3541 3542 return type_is_pkt_pointer(reg->type); 3543 } 3544 3545 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3546 { 3547 const struct bpf_reg_state *reg = reg_state(env, regno); 3548 3549 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3550 return reg->type == PTR_TO_FLOW_KEYS; 3551 } 3552 3553 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3554 const struct bpf_reg_state *reg, 3555 int off, int size, bool strict) 3556 { 3557 struct tnum reg_off; 3558 int ip_align; 3559 3560 /* Byte size accesses are always allowed. */ 3561 if (!strict || size == 1) 3562 return 0; 3563 3564 /* For platforms that do not have a Kconfig enabling 3565 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3566 * NET_IP_ALIGN is universally set to '2'. And on platforms 3567 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3568 * to this code only in strict mode where we want to emulate 3569 * the NET_IP_ALIGN==2 checking. Therefore use an 3570 * unconditional IP align value of '2'. 3571 */ 3572 ip_align = 2; 3573 3574 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3575 if (!tnum_is_aligned(reg_off, size)) { 3576 char tn_buf[48]; 3577 3578 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3579 verbose(env, 3580 "misaligned packet access off %d+%s+%d+%d size %d\n", 3581 ip_align, tn_buf, reg->off, off, size); 3582 return -EACCES; 3583 } 3584 3585 return 0; 3586 } 3587 3588 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3589 const struct bpf_reg_state *reg, 3590 const char *pointer_desc, 3591 int off, int size, bool strict) 3592 { 3593 struct tnum reg_off; 3594 3595 /* Byte size accesses are always allowed. */ 3596 if (!strict || size == 1) 3597 return 0; 3598 3599 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3600 if (!tnum_is_aligned(reg_off, size)) { 3601 char tn_buf[48]; 3602 3603 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3604 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3605 pointer_desc, tn_buf, reg->off, off, size); 3606 return -EACCES; 3607 } 3608 3609 return 0; 3610 } 3611 3612 static int check_ptr_alignment(struct bpf_verifier_env *env, 3613 const struct bpf_reg_state *reg, int off, 3614 int size, bool strict_alignment_once) 3615 { 3616 bool strict = env->strict_alignment || strict_alignment_once; 3617 const char *pointer_desc = ""; 3618 3619 switch (reg->type) { 3620 case PTR_TO_PACKET: 3621 case PTR_TO_PACKET_META: 3622 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3623 * right in front, treat it the very same way. 3624 */ 3625 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3626 case PTR_TO_FLOW_KEYS: 3627 pointer_desc = "flow keys "; 3628 break; 3629 case PTR_TO_MAP_KEY: 3630 pointer_desc = "key "; 3631 break; 3632 case PTR_TO_MAP_VALUE: 3633 pointer_desc = "value "; 3634 break; 3635 case PTR_TO_CTX: 3636 pointer_desc = "context "; 3637 break; 3638 case PTR_TO_STACK: 3639 pointer_desc = "stack "; 3640 /* The stack spill tracking logic in check_stack_write_fixed_off() 3641 * and check_stack_read_fixed_off() relies on stack accesses being 3642 * aligned. 3643 */ 3644 strict = true; 3645 break; 3646 case PTR_TO_SOCKET: 3647 pointer_desc = "sock "; 3648 break; 3649 case PTR_TO_SOCK_COMMON: 3650 pointer_desc = "sock_common "; 3651 break; 3652 case PTR_TO_TCP_SOCK: 3653 pointer_desc = "tcp_sock "; 3654 break; 3655 case PTR_TO_XDP_SOCK: 3656 pointer_desc = "xdp_sock "; 3657 break; 3658 default: 3659 break; 3660 } 3661 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3662 strict); 3663 } 3664 3665 static int update_stack_depth(struct bpf_verifier_env *env, 3666 const struct bpf_func_state *func, 3667 int off) 3668 { 3669 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3670 3671 if (stack >= -off) 3672 return 0; 3673 3674 /* update known max for given subprogram */ 3675 env->subprog_info[func->subprogno].stack_depth = -off; 3676 return 0; 3677 } 3678 3679 /* starting from main bpf function walk all instructions of the function 3680 * and recursively walk all callees that given function can call. 3681 * Ignore jump and exit insns. 3682 * Since recursion is prevented by check_cfg() this algorithm 3683 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3684 */ 3685 static int check_max_stack_depth(struct bpf_verifier_env *env) 3686 { 3687 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3688 struct bpf_subprog_info *subprog = env->subprog_info; 3689 struct bpf_insn *insn = env->prog->insnsi; 3690 bool tail_call_reachable = false; 3691 int ret_insn[MAX_CALL_FRAMES]; 3692 int ret_prog[MAX_CALL_FRAMES]; 3693 int j; 3694 3695 process_func: 3696 /* protect against potential stack overflow that might happen when 3697 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3698 * depth for such case down to 256 so that the worst case scenario 3699 * would result in 8k stack size (32 which is tailcall limit * 256 = 3700 * 8k). 3701 * 3702 * To get the idea what might happen, see an example: 3703 * func1 -> sub rsp, 128 3704 * subfunc1 -> sub rsp, 256 3705 * tailcall1 -> add rsp, 256 3706 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3707 * subfunc2 -> sub rsp, 64 3708 * subfunc22 -> sub rsp, 128 3709 * tailcall2 -> add rsp, 128 3710 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3711 * 3712 * tailcall will unwind the current stack frame but it will not get rid 3713 * of caller's stack as shown on the example above. 3714 */ 3715 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3716 verbose(env, 3717 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3718 depth); 3719 return -EACCES; 3720 } 3721 /* round up to 32-bytes, since this is granularity 3722 * of interpreter stack size 3723 */ 3724 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3725 if (depth > MAX_BPF_STACK) { 3726 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3727 frame + 1, depth); 3728 return -EACCES; 3729 } 3730 continue_func: 3731 subprog_end = subprog[idx + 1].start; 3732 for (; i < subprog_end; i++) { 3733 int next_insn; 3734 3735 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3736 continue; 3737 /* remember insn and function to return to */ 3738 ret_insn[frame] = i + 1; 3739 ret_prog[frame] = idx; 3740 3741 /* find the callee */ 3742 next_insn = i + insn[i].imm + 1; 3743 idx = find_subprog(env, next_insn); 3744 if (idx < 0) { 3745 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3746 next_insn); 3747 return -EFAULT; 3748 } 3749 if (subprog[idx].is_async_cb) { 3750 if (subprog[idx].has_tail_call) { 3751 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3752 return -EFAULT; 3753 } 3754 /* async callbacks don't increase bpf prog stack size */ 3755 continue; 3756 } 3757 i = next_insn; 3758 3759 if (subprog[idx].has_tail_call) 3760 tail_call_reachable = true; 3761 3762 frame++; 3763 if (frame >= MAX_CALL_FRAMES) { 3764 verbose(env, "the call stack of %d frames is too deep !\n", 3765 frame); 3766 return -E2BIG; 3767 } 3768 goto process_func; 3769 } 3770 /* if tail call got detected across bpf2bpf calls then mark each of the 3771 * currently present subprog frames as tail call reachable subprogs; 3772 * this info will be utilized by JIT so that we will be preserving the 3773 * tail call counter throughout bpf2bpf calls combined with tailcalls 3774 */ 3775 if (tail_call_reachable) 3776 for (j = 0; j < frame; j++) 3777 subprog[ret_prog[j]].tail_call_reachable = true; 3778 if (subprog[0].tail_call_reachable) 3779 env->prog->aux->tail_call_reachable = true; 3780 3781 /* end of for() loop means the last insn of the 'subprog' 3782 * was reached. Doesn't matter whether it was JA or EXIT 3783 */ 3784 if (frame == 0) 3785 return 0; 3786 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3787 frame--; 3788 i = ret_insn[frame]; 3789 idx = ret_prog[frame]; 3790 goto continue_func; 3791 } 3792 3793 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3794 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3795 const struct bpf_insn *insn, int idx) 3796 { 3797 int start = idx + insn->imm + 1, subprog; 3798 3799 subprog = find_subprog(env, start); 3800 if (subprog < 0) { 3801 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3802 start); 3803 return -EFAULT; 3804 } 3805 return env->subprog_info[subprog].stack_depth; 3806 } 3807 #endif 3808 3809 int check_ctx_reg(struct bpf_verifier_env *env, 3810 const struct bpf_reg_state *reg, int regno) 3811 { 3812 /* Access to ctx or passing it to a helper is only allowed in 3813 * its original, unmodified form. 3814 */ 3815 3816 if (reg->off) { 3817 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3818 regno, reg->off); 3819 return -EACCES; 3820 } 3821 3822 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3823 char tn_buf[48]; 3824 3825 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3826 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3827 return -EACCES; 3828 } 3829 3830 return 0; 3831 } 3832 3833 static int __check_buffer_access(struct bpf_verifier_env *env, 3834 const char *buf_info, 3835 const struct bpf_reg_state *reg, 3836 int regno, int off, int size) 3837 { 3838 if (off < 0) { 3839 verbose(env, 3840 "R%d invalid %s buffer access: off=%d, size=%d\n", 3841 regno, buf_info, off, size); 3842 return -EACCES; 3843 } 3844 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3845 char tn_buf[48]; 3846 3847 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3848 verbose(env, 3849 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3850 regno, off, tn_buf); 3851 return -EACCES; 3852 } 3853 3854 return 0; 3855 } 3856 3857 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3858 const struct bpf_reg_state *reg, 3859 int regno, int off, int size) 3860 { 3861 int err; 3862 3863 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3864 if (err) 3865 return err; 3866 3867 if (off + size > env->prog->aux->max_tp_access) 3868 env->prog->aux->max_tp_access = off + size; 3869 3870 return 0; 3871 } 3872 3873 static int check_buffer_access(struct bpf_verifier_env *env, 3874 const struct bpf_reg_state *reg, 3875 int regno, int off, int size, 3876 bool zero_size_allowed, 3877 const char *buf_info, 3878 u32 *max_access) 3879 { 3880 int err; 3881 3882 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3883 if (err) 3884 return err; 3885 3886 if (off + size > *max_access) 3887 *max_access = off + size; 3888 3889 return 0; 3890 } 3891 3892 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3893 static void zext_32_to_64(struct bpf_reg_state *reg) 3894 { 3895 reg->var_off = tnum_subreg(reg->var_off); 3896 __reg_assign_32_into_64(reg); 3897 } 3898 3899 /* truncate register to smaller size (in bytes) 3900 * must be called with size < BPF_REG_SIZE 3901 */ 3902 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3903 { 3904 u64 mask; 3905 3906 /* clear high bits in bit representation */ 3907 reg->var_off = tnum_cast(reg->var_off, size); 3908 3909 /* fix arithmetic bounds */ 3910 mask = ((u64)1 << (size * 8)) - 1; 3911 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3912 reg->umin_value &= mask; 3913 reg->umax_value &= mask; 3914 } else { 3915 reg->umin_value = 0; 3916 reg->umax_value = mask; 3917 } 3918 reg->smin_value = reg->umin_value; 3919 reg->smax_value = reg->umax_value; 3920 3921 /* If size is smaller than 32bit register the 32bit register 3922 * values are also truncated so we push 64-bit bounds into 3923 * 32-bit bounds. Above were truncated < 32-bits already. 3924 */ 3925 if (size >= 4) 3926 return; 3927 __reg_combine_64_into_32(reg); 3928 } 3929 3930 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3931 { 3932 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3933 } 3934 3935 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3936 { 3937 void *ptr; 3938 u64 addr; 3939 int err; 3940 3941 err = map->ops->map_direct_value_addr(map, &addr, off); 3942 if (err) 3943 return err; 3944 ptr = (void *)(long)addr + off; 3945 3946 switch (size) { 3947 case sizeof(u8): 3948 *val = (u64)*(u8 *)ptr; 3949 break; 3950 case sizeof(u16): 3951 *val = (u64)*(u16 *)ptr; 3952 break; 3953 case sizeof(u32): 3954 *val = (u64)*(u32 *)ptr; 3955 break; 3956 case sizeof(u64): 3957 *val = *(u64 *)ptr; 3958 break; 3959 default: 3960 return -EINVAL; 3961 } 3962 return 0; 3963 } 3964 3965 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3966 struct bpf_reg_state *regs, 3967 int regno, int off, int size, 3968 enum bpf_access_type atype, 3969 int value_regno) 3970 { 3971 struct bpf_reg_state *reg = regs + regno; 3972 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 3973 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 3974 u32 btf_id; 3975 int ret; 3976 3977 if (off < 0) { 3978 verbose(env, 3979 "R%d is ptr_%s invalid negative access: off=%d\n", 3980 regno, tname, off); 3981 return -EACCES; 3982 } 3983 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3984 char tn_buf[48]; 3985 3986 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3987 verbose(env, 3988 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3989 regno, tname, off, tn_buf); 3990 return -EACCES; 3991 } 3992 3993 if (env->ops->btf_struct_access) { 3994 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 3995 off, size, atype, &btf_id); 3996 } else { 3997 if (atype != BPF_READ) { 3998 verbose(env, "only read is supported\n"); 3999 return -EACCES; 4000 } 4001 4002 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4003 atype, &btf_id); 4004 } 4005 4006 if (ret < 0) 4007 return ret; 4008 4009 if (atype == BPF_READ && value_regno >= 0) 4010 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 4011 4012 return 0; 4013 } 4014 4015 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4016 struct bpf_reg_state *regs, 4017 int regno, int off, int size, 4018 enum bpf_access_type atype, 4019 int value_regno) 4020 { 4021 struct bpf_reg_state *reg = regs + regno; 4022 struct bpf_map *map = reg->map_ptr; 4023 const struct btf_type *t; 4024 const char *tname; 4025 u32 btf_id; 4026 int ret; 4027 4028 if (!btf_vmlinux) { 4029 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4030 return -ENOTSUPP; 4031 } 4032 4033 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4034 verbose(env, "map_ptr access not supported for map type %d\n", 4035 map->map_type); 4036 return -ENOTSUPP; 4037 } 4038 4039 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4040 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4041 4042 if (!env->allow_ptr_to_map_access) { 4043 verbose(env, 4044 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4045 tname); 4046 return -EPERM; 4047 } 4048 4049 if (off < 0) { 4050 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4051 regno, tname, off); 4052 return -EACCES; 4053 } 4054 4055 if (atype != BPF_READ) { 4056 verbose(env, "only read from %s is supported\n", tname); 4057 return -EACCES; 4058 } 4059 4060 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 4061 if (ret < 0) 4062 return ret; 4063 4064 if (value_regno >= 0) 4065 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 4066 4067 return 0; 4068 } 4069 4070 /* Check that the stack access at the given offset is within bounds. The 4071 * maximum valid offset is -1. 4072 * 4073 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4074 * -state->allocated_stack for reads. 4075 */ 4076 static int check_stack_slot_within_bounds(int off, 4077 struct bpf_func_state *state, 4078 enum bpf_access_type t) 4079 { 4080 int min_valid_off; 4081 4082 if (t == BPF_WRITE) 4083 min_valid_off = -MAX_BPF_STACK; 4084 else 4085 min_valid_off = -state->allocated_stack; 4086 4087 if (off < min_valid_off || off > -1) 4088 return -EACCES; 4089 return 0; 4090 } 4091 4092 /* Check that the stack access at 'regno + off' falls within the maximum stack 4093 * bounds. 4094 * 4095 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4096 */ 4097 static int check_stack_access_within_bounds( 4098 struct bpf_verifier_env *env, 4099 int regno, int off, int access_size, 4100 enum stack_access_src src, enum bpf_access_type type) 4101 { 4102 struct bpf_reg_state *regs = cur_regs(env); 4103 struct bpf_reg_state *reg = regs + regno; 4104 struct bpf_func_state *state = func(env, reg); 4105 int min_off, max_off; 4106 int err; 4107 char *err_extra; 4108 4109 if (src == ACCESS_HELPER) 4110 /* We don't know if helpers are reading or writing (or both). */ 4111 err_extra = " indirect access to"; 4112 else if (type == BPF_READ) 4113 err_extra = " read from"; 4114 else 4115 err_extra = " write to"; 4116 4117 if (tnum_is_const(reg->var_off)) { 4118 min_off = reg->var_off.value + off; 4119 if (access_size > 0) 4120 max_off = min_off + access_size - 1; 4121 else 4122 max_off = min_off; 4123 } else { 4124 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4125 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4126 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4127 err_extra, regno); 4128 return -EACCES; 4129 } 4130 min_off = reg->smin_value + off; 4131 if (access_size > 0) 4132 max_off = reg->smax_value + off + access_size - 1; 4133 else 4134 max_off = min_off; 4135 } 4136 4137 err = check_stack_slot_within_bounds(min_off, state, type); 4138 if (!err) 4139 err = check_stack_slot_within_bounds(max_off, state, type); 4140 4141 if (err) { 4142 if (tnum_is_const(reg->var_off)) { 4143 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4144 err_extra, regno, off, access_size); 4145 } else { 4146 char tn_buf[48]; 4147 4148 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4149 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4150 err_extra, regno, tn_buf, access_size); 4151 } 4152 } 4153 return err; 4154 } 4155 4156 /* check whether memory at (regno + off) is accessible for t = (read | write) 4157 * if t==write, value_regno is a register which value is stored into memory 4158 * if t==read, value_regno is a register which will receive the value from memory 4159 * if t==write && value_regno==-1, some unknown value is stored into memory 4160 * if t==read && value_regno==-1, don't care what we read from memory 4161 */ 4162 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4163 int off, int bpf_size, enum bpf_access_type t, 4164 int value_regno, bool strict_alignment_once) 4165 { 4166 struct bpf_reg_state *regs = cur_regs(env); 4167 struct bpf_reg_state *reg = regs + regno; 4168 struct bpf_func_state *state; 4169 int size, err = 0; 4170 4171 size = bpf_size_to_bytes(bpf_size); 4172 if (size < 0) 4173 return size; 4174 4175 /* alignment checks will add in reg->off themselves */ 4176 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4177 if (err) 4178 return err; 4179 4180 /* for access checks, reg->off is just part of off */ 4181 off += reg->off; 4182 4183 if (reg->type == PTR_TO_MAP_KEY) { 4184 if (t == BPF_WRITE) { 4185 verbose(env, "write to change key R%d not allowed\n", regno); 4186 return -EACCES; 4187 } 4188 4189 err = check_mem_region_access(env, regno, off, size, 4190 reg->map_ptr->key_size, false); 4191 if (err) 4192 return err; 4193 if (value_regno >= 0) 4194 mark_reg_unknown(env, regs, value_regno); 4195 } else if (reg->type == PTR_TO_MAP_VALUE) { 4196 if (t == BPF_WRITE && value_regno >= 0 && 4197 is_pointer_value(env, value_regno)) { 4198 verbose(env, "R%d leaks addr into map\n", value_regno); 4199 return -EACCES; 4200 } 4201 err = check_map_access_type(env, regno, off, size, t); 4202 if (err) 4203 return err; 4204 err = check_map_access(env, regno, off, size, false); 4205 if (!err && t == BPF_READ && value_regno >= 0) { 4206 struct bpf_map *map = reg->map_ptr; 4207 4208 /* if map is read-only, track its contents as scalars */ 4209 if (tnum_is_const(reg->var_off) && 4210 bpf_map_is_rdonly(map) && 4211 map->ops->map_direct_value_addr) { 4212 int map_off = off + reg->var_off.value; 4213 u64 val = 0; 4214 4215 err = bpf_map_direct_read(map, map_off, size, 4216 &val); 4217 if (err) 4218 return err; 4219 4220 regs[value_regno].type = SCALAR_VALUE; 4221 __mark_reg_known(®s[value_regno], val); 4222 } else { 4223 mark_reg_unknown(env, regs, value_regno); 4224 } 4225 } 4226 } else if (reg->type == PTR_TO_MEM) { 4227 if (t == BPF_WRITE && value_regno >= 0 && 4228 is_pointer_value(env, value_regno)) { 4229 verbose(env, "R%d leaks addr into mem\n", value_regno); 4230 return -EACCES; 4231 } 4232 err = check_mem_region_access(env, regno, off, size, 4233 reg->mem_size, false); 4234 if (!err && t == BPF_READ && value_regno >= 0) 4235 mark_reg_unknown(env, regs, value_regno); 4236 } else if (reg->type == PTR_TO_CTX) { 4237 enum bpf_reg_type reg_type = SCALAR_VALUE; 4238 struct btf *btf = NULL; 4239 u32 btf_id = 0; 4240 4241 if (t == BPF_WRITE && value_regno >= 0 && 4242 is_pointer_value(env, value_regno)) { 4243 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4244 return -EACCES; 4245 } 4246 4247 err = check_ctx_reg(env, reg, regno); 4248 if (err < 0) 4249 return err; 4250 4251 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4252 if (err) 4253 verbose_linfo(env, insn_idx, "; "); 4254 if (!err && t == BPF_READ && value_regno >= 0) { 4255 /* ctx access returns either a scalar, or a 4256 * PTR_TO_PACKET[_META,_END]. In the latter 4257 * case, we know the offset is zero. 4258 */ 4259 if (reg_type == SCALAR_VALUE) { 4260 mark_reg_unknown(env, regs, value_regno); 4261 } else { 4262 mark_reg_known_zero(env, regs, 4263 value_regno); 4264 if (reg_type_may_be_null(reg_type)) 4265 regs[value_regno].id = ++env->id_gen; 4266 /* A load of ctx field could have different 4267 * actual load size with the one encoded in the 4268 * insn. When the dst is PTR, it is for sure not 4269 * a sub-register. 4270 */ 4271 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4272 if (reg_type == PTR_TO_BTF_ID || 4273 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4274 regs[value_regno].btf = btf; 4275 regs[value_regno].btf_id = btf_id; 4276 } 4277 } 4278 regs[value_regno].type = reg_type; 4279 } 4280 4281 } else if (reg->type == PTR_TO_STACK) { 4282 /* Basic bounds checks. */ 4283 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4284 if (err) 4285 return err; 4286 4287 state = func(env, reg); 4288 err = update_stack_depth(env, state, off); 4289 if (err) 4290 return err; 4291 4292 if (t == BPF_READ) 4293 err = check_stack_read(env, regno, off, size, 4294 value_regno); 4295 else 4296 err = check_stack_write(env, regno, off, size, 4297 value_regno, insn_idx); 4298 } else if (reg_is_pkt_pointer(reg)) { 4299 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4300 verbose(env, "cannot write into packet\n"); 4301 return -EACCES; 4302 } 4303 if (t == BPF_WRITE && value_regno >= 0 && 4304 is_pointer_value(env, value_regno)) { 4305 verbose(env, "R%d leaks addr into packet\n", 4306 value_regno); 4307 return -EACCES; 4308 } 4309 err = check_packet_access(env, regno, off, size, false); 4310 if (!err && t == BPF_READ && value_regno >= 0) 4311 mark_reg_unknown(env, regs, value_regno); 4312 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4313 if (t == BPF_WRITE && value_regno >= 0 && 4314 is_pointer_value(env, value_regno)) { 4315 verbose(env, "R%d leaks addr into flow keys\n", 4316 value_regno); 4317 return -EACCES; 4318 } 4319 4320 err = check_flow_keys_access(env, off, size); 4321 if (!err && t == BPF_READ && value_regno >= 0) 4322 mark_reg_unknown(env, regs, value_regno); 4323 } else if (type_is_sk_pointer(reg->type)) { 4324 if (t == BPF_WRITE) { 4325 verbose(env, "R%d cannot write into %s\n", 4326 regno, reg_type_str[reg->type]); 4327 return -EACCES; 4328 } 4329 err = check_sock_access(env, insn_idx, regno, off, size, t); 4330 if (!err && value_regno >= 0) 4331 mark_reg_unknown(env, regs, value_regno); 4332 } else if (reg->type == PTR_TO_TP_BUFFER) { 4333 err = check_tp_buffer_access(env, reg, regno, off, size); 4334 if (!err && t == BPF_READ && value_regno >= 0) 4335 mark_reg_unknown(env, regs, value_regno); 4336 } else if (reg->type == PTR_TO_BTF_ID) { 4337 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4338 value_regno); 4339 } else if (reg->type == CONST_PTR_TO_MAP) { 4340 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4341 value_regno); 4342 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4343 if (t == BPF_WRITE) { 4344 verbose(env, "R%d cannot write into %s\n", 4345 regno, reg_type_str[reg->type]); 4346 return -EACCES; 4347 } 4348 err = check_buffer_access(env, reg, regno, off, size, false, 4349 "rdonly", 4350 &env->prog->aux->max_rdonly_access); 4351 if (!err && value_regno >= 0) 4352 mark_reg_unknown(env, regs, value_regno); 4353 } else if (reg->type == PTR_TO_RDWR_BUF) { 4354 err = check_buffer_access(env, reg, regno, off, size, false, 4355 "rdwr", 4356 &env->prog->aux->max_rdwr_access); 4357 if (!err && t == BPF_READ && value_regno >= 0) 4358 mark_reg_unknown(env, regs, value_regno); 4359 } else { 4360 verbose(env, "R%d invalid mem access '%s'\n", regno, 4361 reg_type_str[reg->type]); 4362 return -EACCES; 4363 } 4364 4365 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4366 regs[value_regno].type == SCALAR_VALUE) { 4367 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4368 coerce_reg_to_size(®s[value_regno], size); 4369 } 4370 return err; 4371 } 4372 4373 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4374 { 4375 int load_reg; 4376 int err; 4377 4378 switch (insn->imm) { 4379 case BPF_ADD: 4380 case BPF_ADD | BPF_FETCH: 4381 case BPF_AND: 4382 case BPF_AND | BPF_FETCH: 4383 case BPF_OR: 4384 case BPF_OR | BPF_FETCH: 4385 case BPF_XOR: 4386 case BPF_XOR | BPF_FETCH: 4387 case BPF_XCHG: 4388 case BPF_CMPXCHG: 4389 break; 4390 default: 4391 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4392 return -EINVAL; 4393 } 4394 4395 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4396 verbose(env, "invalid atomic operand size\n"); 4397 return -EINVAL; 4398 } 4399 4400 /* check src1 operand */ 4401 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4402 if (err) 4403 return err; 4404 4405 /* check src2 operand */ 4406 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4407 if (err) 4408 return err; 4409 4410 if (insn->imm == BPF_CMPXCHG) { 4411 /* Check comparison of R0 with memory location */ 4412 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4413 if (err) 4414 return err; 4415 } 4416 4417 if (is_pointer_value(env, insn->src_reg)) { 4418 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4419 return -EACCES; 4420 } 4421 4422 if (is_ctx_reg(env, insn->dst_reg) || 4423 is_pkt_reg(env, insn->dst_reg) || 4424 is_flow_key_reg(env, insn->dst_reg) || 4425 is_sk_reg(env, insn->dst_reg)) { 4426 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4427 insn->dst_reg, 4428 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4429 return -EACCES; 4430 } 4431 4432 if (insn->imm & BPF_FETCH) { 4433 if (insn->imm == BPF_CMPXCHG) 4434 load_reg = BPF_REG_0; 4435 else 4436 load_reg = insn->src_reg; 4437 4438 /* check and record load of old value */ 4439 err = check_reg_arg(env, load_reg, DST_OP); 4440 if (err) 4441 return err; 4442 } else { 4443 /* This instruction accesses a memory location but doesn't 4444 * actually load it into a register. 4445 */ 4446 load_reg = -1; 4447 } 4448 4449 /* check whether we can read the memory */ 4450 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4451 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4452 if (err) 4453 return err; 4454 4455 /* check whether we can write into the same memory */ 4456 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4457 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4458 if (err) 4459 return err; 4460 4461 return 0; 4462 } 4463 4464 /* When register 'regno' is used to read the stack (either directly or through 4465 * a helper function) make sure that it's within stack boundary and, depending 4466 * on the access type, that all elements of the stack are initialized. 4467 * 4468 * 'off' includes 'regno->off', but not its dynamic part (if any). 4469 * 4470 * All registers that have been spilled on the stack in the slots within the 4471 * read offsets are marked as read. 4472 */ 4473 static int check_stack_range_initialized( 4474 struct bpf_verifier_env *env, int regno, int off, 4475 int access_size, bool zero_size_allowed, 4476 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4477 { 4478 struct bpf_reg_state *reg = reg_state(env, regno); 4479 struct bpf_func_state *state = func(env, reg); 4480 int err, min_off, max_off, i, j, slot, spi; 4481 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4482 enum bpf_access_type bounds_check_type; 4483 /* Some accesses can write anything into the stack, others are 4484 * read-only. 4485 */ 4486 bool clobber = false; 4487 4488 if (access_size == 0 && !zero_size_allowed) { 4489 verbose(env, "invalid zero-sized read\n"); 4490 return -EACCES; 4491 } 4492 4493 if (type == ACCESS_HELPER) { 4494 /* The bounds checks for writes are more permissive than for 4495 * reads. However, if raw_mode is not set, we'll do extra 4496 * checks below. 4497 */ 4498 bounds_check_type = BPF_WRITE; 4499 clobber = true; 4500 } else { 4501 bounds_check_type = BPF_READ; 4502 } 4503 err = check_stack_access_within_bounds(env, regno, off, access_size, 4504 type, bounds_check_type); 4505 if (err) 4506 return err; 4507 4508 4509 if (tnum_is_const(reg->var_off)) { 4510 min_off = max_off = reg->var_off.value + off; 4511 } else { 4512 /* Variable offset is prohibited for unprivileged mode for 4513 * simplicity since it requires corresponding support in 4514 * Spectre masking for stack ALU. 4515 * See also retrieve_ptr_limit(). 4516 */ 4517 if (!env->bypass_spec_v1) { 4518 char tn_buf[48]; 4519 4520 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4521 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4522 regno, err_extra, tn_buf); 4523 return -EACCES; 4524 } 4525 /* Only initialized buffer on stack is allowed to be accessed 4526 * with variable offset. With uninitialized buffer it's hard to 4527 * guarantee that whole memory is marked as initialized on 4528 * helper return since specific bounds are unknown what may 4529 * cause uninitialized stack leaking. 4530 */ 4531 if (meta && meta->raw_mode) 4532 meta = NULL; 4533 4534 min_off = reg->smin_value + off; 4535 max_off = reg->smax_value + off; 4536 } 4537 4538 if (meta && meta->raw_mode) { 4539 meta->access_size = access_size; 4540 meta->regno = regno; 4541 return 0; 4542 } 4543 4544 for (i = min_off; i < max_off + access_size; i++) { 4545 u8 *stype; 4546 4547 slot = -i - 1; 4548 spi = slot / BPF_REG_SIZE; 4549 if (state->allocated_stack <= slot) 4550 goto err; 4551 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4552 if (*stype == STACK_MISC) 4553 goto mark; 4554 if (*stype == STACK_ZERO) { 4555 if (clobber) { 4556 /* helper can write anything into the stack */ 4557 *stype = STACK_MISC; 4558 } 4559 goto mark; 4560 } 4561 4562 if (is_spilled_reg(&state->stack[spi]) && 4563 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4564 goto mark; 4565 4566 if (is_spilled_reg(&state->stack[spi]) && 4567 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4568 env->allow_ptr_leaks)) { 4569 if (clobber) { 4570 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4571 for (j = 0; j < BPF_REG_SIZE; j++) 4572 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4573 } 4574 goto mark; 4575 } 4576 4577 err: 4578 if (tnum_is_const(reg->var_off)) { 4579 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4580 err_extra, regno, min_off, i - min_off, access_size); 4581 } else { 4582 char tn_buf[48]; 4583 4584 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4585 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4586 err_extra, regno, tn_buf, i - min_off, access_size); 4587 } 4588 return -EACCES; 4589 mark: 4590 /* reading any byte out of 8-byte 'spill_slot' will cause 4591 * the whole slot to be marked as 'read' 4592 */ 4593 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4594 state->stack[spi].spilled_ptr.parent, 4595 REG_LIVE_READ64); 4596 } 4597 return update_stack_depth(env, state, min_off); 4598 } 4599 4600 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4601 int access_size, bool zero_size_allowed, 4602 struct bpf_call_arg_meta *meta) 4603 { 4604 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4605 4606 switch (reg->type) { 4607 case PTR_TO_PACKET: 4608 case PTR_TO_PACKET_META: 4609 return check_packet_access(env, regno, reg->off, access_size, 4610 zero_size_allowed); 4611 case PTR_TO_MAP_KEY: 4612 return check_mem_region_access(env, regno, reg->off, access_size, 4613 reg->map_ptr->key_size, false); 4614 case PTR_TO_MAP_VALUE: 4615 if (check_map_access_type(env, regno, reg->off, access_size, 4616 meta && meta->raw_mode ? BPF_WRITE : 4617 BPF_READ)) 4618 return -EACCES; 4619 return check_map_access(env, regno, reg->off, access_size, 4620 zero_size_allowed); 4621 case PTR_TO_MEM: 4622 return check_mem_region_access(env, regno, reg->off, 4623 access_size, reg->mem_size, 4624 zero_size_allowed); 4625 case PTR_TO_RDONLY_BUF: 4626 if (meta && meta->raw_mode) 4627 return -EACCES; 4628 return check_buffer_access(env, reg, regno, reg->off, 4629 access_size, zero_size_allowed, 4630 "rdonly", 4631 &env->prog->aux->max_rdonly_access); 4632 case PTR_TO_RDWR_BUF: 4633 return check_buffer_access(env, reg, regno, reg->off, 4634 access_size, zero_size_allowed, 4635 "rdwr", 4636 &env->prog->aux->max_rdwr_access); 4637 case PTR_TO_STACK: 4638 return check_stack_range_initialized( 4639 env, 4640 regno, reg->off, access_size, 4641 zero_size_allowed, ACCESS_HELPER, meta); 4642 default: /* scalar_value or invalid ptr */ 4643 /* Allow zero-byte read from NULL, regardless of pointer type */ 4644 if (zero_size_allowed && access_size == 0 && 4645 register_is_null(reg)) 4646 return 0; 4647 4648 verbose(env, "R%d type=%s expected=%s\n", regno, 4649 reg_type_str[reg->type], 4650 reg_type_str[PTR_TO_STACK]); 4651 return -EACCES; 4652 } 4653 } 4654 4655 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4656 u32 regno, u32 mem_size) 4657 { 4658 if (register_is_null(reg)) 4659 return 0; 4660 4661 if (reg_type_may_be_null(reg->type)) { 4662 /* Assuming that the register contains a value check if the memory 4663 * access is safe. Temporarily save and restore the register's state as 4664 * the conversion shouldn't be visible to a caller. 4665 */ 4666 const struct bpf_reg_state saved_reg = *reg; 4667 int rv; 4668 4669 mark_ptr_not_null_reg(reg); 4670 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4671 *reg = saved_reg; 4672 return rv; 4673 } 4674 4675 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4676 } 4677 4678 /* Implementation details: 4679 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4680 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4681 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4682 * value_or_null->value transition, since the verifier only cares about 4683 * the range of access to valid map value pointer and doesn't care about actual 4684 * address of the map element. 4685 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4686 * reg->id > 0 after value_or_null->value transition. By doing so 4687 * two bpf_map_lookups will be considered two different pointers that 4688 * point to different bpf_spin_locks. 4689 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4690 * dead-locks. 4691 * Since only one bpf_spin_lock is allowed the checks are simpler than 4692 * reg_is_refcounted() logic. The verifier needs to remember only 4693 * one spin_lock instead of array of acquired_refs. 4694 * cur_state->active_spin_lock remembers which map value element got locked 4695 * and clears it after bpf_spin_unlock. 4696 */ 4697 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4698 bool is_lock) 4699 { 4700 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4701 struct bpf_verifier_state *cur = env->cur_state; 4702 bool is_const = tnum_is_const(reg->var_off); 4703 struct bpf_map *map = reg->map_ptr; 4704 u64 val = reg->var_off.value; 4705 4706 if (!is_const) { 4707 verbose(env, 4708 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4709 regno); 4710 return -EINVAL; 4711 } 4712 if (!map->btf) { 4713 verbose(env, 4714 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4715 map->name); 4716 return -EINVAL; 4717 } 4718 if (!map_value_has_spin_lock(map)) { 4719 if (map->spin_lock_off == -E2BIG) 4720 verbose(env, 4721 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4722 map->name); 4723 else if (map->spin_lock_off == -ENOENT) 4724 verbose(env, 4725 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4726 map->name); 4727 else 4728 verbose(env, 4729 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4730 map->name); 4731 return -EINVAL; 4732 } 4733 if (map->spin_lock_off != val + reg->off) { 4734 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4735 val + reg->off); 4736 return -EINVAL; 4737 } 4738 if (is_lock) { 4739 if (cur->active_spin_lock) { 4740 verbose(env, 4741 "Locking two bpf_spin_locks are not allowed\n"); 4742 return -EINVAL; 4743 } 4744 cur->active_spin_lock = reg->id; 4745 } else { 4746 if (!cur->active_spin_lock) { 4747 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4748 return -EINVAL; 4749 } 4750 if (cur->active_spin_lock != reg->id) { 4751 verbose(env, "bpf_spin_unlock of different lock\n"); 4752 return -EINVAL; 4753 } 4754 cur->active_spin_lock = 0; 4755 } 4756 return 0; 4757 } 4758 4759 static int process_timer_func(struct bpf_verifier_env *env, int regno, 4760 struct bpf_call_arg_meta *meta) 4761 { 4762 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4763 bool is_const = tnum_is_const(reg->var_off); 4764 struct bpf_map *map = reg->map_ptr; 4765 u64 val = reg->var_off.value; 4766 4767 if (!is_const) { 4768 verbose(env, 4769 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 4770 regno); 4771 return -EINVAL; 4772 } 4773 if (!map->btf) { 4774 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 4775 map->name); 4776 return -EINVAL; 4777 } 4778 if (!map_value_has_timer(map)) { 4779 if (map->timer_off == -E2BIG) 4780 verbose(env, 4781 "map '%s' has more than one 'struct bpf_timer'\n", 4782 map->name); 4783 else if (map->timer_off == -ENOENT) 4784 verbose(env, 4785 "map '%s' doesn't have 'struct bpf_timer'\n", 4786 map->name); 4787 else 4788 verbose(env, 4789 "map '%s' is not a struct type or bpf_timer is mangled\n", 4790 map->name); 4791 return -EINVAL; 4792 } 4793 if (map->timer_off != val + reg->off) { 4794 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 4795 val + reg->off, map->timer_off); 4796 return -EINVAL; 4797 } 4798 if (meta->map_ptr) { 4799 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 4800 return -EFAULT; 4801 } 4802 meta->map_uid = reg->map_uid; 4803 meta->map_ptr = map; 4804 return 0; 4805 } 4806 4807 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4808 { 4809 return type == ARG_PTR_TO_MEM || 4810 type == ARG_PTR_TO_MEM_OR_NULL || 4811 type == ARG_PTR_TO_UNINIT_MEM; 4812 } 4813 4814 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4815 { 4816 return type == ARG_CONST_SIZE || 4817 type == ARG_CONST_SIZE_OR_ZERO; 4818 } 4819 4820 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4821 { 4822 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4823 } 4824 4825 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4826 { 4827 return type == ARG_PTR_TO_INT || 4828 type == ARG_PTR_TO_LONG; 4829 } 4830 4831 static int int_ptr_type_to_size(enum bpf_arg_type type) 4832 { 4833 if (type == ARG_PTR_TO_INT) 4834 return sizeof(u32); 4835 else if (type == ARG_PTR_TO_LONG) 4836 return sizeof(u64); 4837 4838 return -EINVAL; 4839 } 4840 4841 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4842 const struct bpf_call_arg_meta *meta, 4843 enum bpf_arg_type *arg_type) 4844 { 4845 if (!meta->map_ptr) { 4846 /* kernel subsystem misconfigured verifier */ 4847 verbose(env, "invalid map_ptr to access map->type\n"); 4848 return -EACCES; 4849 } 4850 4851 switch (meta->map_ptr->map_type) { 4852 case BPF_MAP_TYPE_SOCKMAP: 4853 case BPF_MAP_TYPE_SOCKHASH: 4854 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4855 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4856 } else { 4857 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 4858 return -EINVAL; 4859 } 4860 break; 4861 4862 default: 4863 break; 4864 } 4865 return 0; 4866 } 4867 4868 struct bpf_reg_types { 4869 const enum bpf_reg_type types[10]; 4870 u32 *btf_id; 4871 }; 4872 4873 static const struct bpf_reg_types map_key_value_types = { 4874 .types = { 4875 PTR_TO_STACK, 4876 PTR_TO_PACKET, 4877 PTR_TO_PACKET_META, 4878 PTR_TO_MAP_KEY, 4879 PTR_TO_MAP_VALUE, 4880 }, 4881 }; 4882 4883 static const struct bpf_reg_types sock_types = { 4884 .types = { 4885 PTR_TO_SOCK_COMMON, 4886 PTR_TO_SOCKET, 4887 PTR_TO_TCP_SOCK, 4888 PTR_TO_XDP_SOCK, 4889 }, 4890 }; 4891 4892 #ifdef CONFIG_NET 4893 static const struct bpf_reg_types btf_id_sock_common_types = { 4894 .types = { 4895 PTR_TO_SOCK_COMMON, 4896 PTR_TO_SOCKET, 4897 PTR_TO_TCP_SOCK, 4898 PTR_TO_XDP_SOCK, 4899 PTR_TO_BTF_ID, 4900 }, 4901 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4902 }; 4903 #endif 4904 4905 static const struct bpf_reg_types mem_types = { 4906 .types = { 4907 PTR_TO_STACK, 4908 PTR_TO_PACKET, 4909 PTR_TO_PACKET_META, 4910 PTR_TO_MAP_KEY, 4911 PTR_TO_MAP_VALUE, 4912 PTR_TO_MEM, 4913 PTR_TO_RDONLY_BUF, 4914 PTR_TO_RDWR_BUF, 4915 }, 4916 }; 4917 4918 static const struct bpf_reg_types int_ptr_types = { 4919 .types = { 4920 PTR_TO_STACK, 4921 PTR_TO_PACKET, 4922 PTR_TO_PACKET_META, 4923 PTR_TO_MAP_KEY, 4924 PTR_TO_MAP_VALUE, 4925 }, 4926 }; 4927 4928 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4929 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4930 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4931 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4932 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4933 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4934 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4935 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4936 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 4937 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 4938 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 4939 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 4940 4941 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4942 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4943 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4944 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4945 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4946 [ARG_CONST_SIZE] = &scalar_types, 4947 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4948 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4949 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4950 [ARG_PTR_TO_CTX] = &context_types, 4951 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4952 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4953 #ifdef CONFIG_NET 4954 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4955 #endif 4956 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4957 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4958 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4959 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4960 [ARG_PTR_TO_MEM] = &mem_types, 4961 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4962 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4963 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4964 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4965 [ARG_PTR_TO_INT] = &int_ptr_types, 4966 [ARG_PTR_TO_LONG] = &int_ptr_types, 4967 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4968 [ARG_PTR_TO_FUNC] = &func_ptr_types, 4969 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 4970 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 4971 [ARG_PTR_TO_TIMER] = &timer_types, 4972 }; 4973 4974 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4975 enum bpf_arg_type arg_type, 4976 const u32 *arg_btf_id) 4977 { 4978 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4979 enum bpf_reg_type expected, type = reg->type; 4980 const struct bpf_reg_types *compatible; 4981 int i, j; 4982 4983 compatible = compatible_reg_types[arg_type]; 4984 if (!compatible) { 4985 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4986 return -EFAULT; 4987 } 4988 4989 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4990 expected = compatible->types[i]; 4991 if (expected == NOT_INIT) 4992 break; 4993 4994 if (type == expected) 4995 goto found; 4996 } 4997 4998 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4999 for (j = 0; j + 1 < i; j++) 5000 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 5001 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 5002 return -EACCES; 5003 5004 found: 5005 if (type == PTR_TO_BTF_ID) { 5006 if (!arg_btf_id) { 5007 if (!compatible->btf_id) { 5008 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5009 return -EFAULT; 5010 } 5011 arg_btf_id = compatible->btf_id; 5012 } 5013 5014 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5015 btf_vmlinux, *arg_btf_id)) { 5016 verbose(env, "R%d is of type %s but %s is expected\n", 5017 regno, kernel_type_name(reg->btf, reg->btf_id), 5018 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5019 return -EACCES; 5020 } 5021 5022 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5023 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 5024 regno); 5025 return -EACCES; 5026 } 5027 } 5028 5029 return 0; 5030 } 5031 5032 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5033 struct bpf_call_arg_meta *meta, 5034 const struct bpf_func_proto *fn) 5035 { 5036 u32 regno = BPF_REG_1 + arg; 5037 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5038 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5039 enum bpf_reg_type type = reg->type; 5040 int err = 0; 5041 5042 if (arg_type == ARG_DONTCARE) 5043 return 0; 5044 5045 err = check_reg_arg(env, regno, SRC_OP); 5046 if (err) 5047 return err; 5048 5049 if (arg_type == ARG_ANYTHING) { 5050 if (is_pointer_value(env, regno)) { 5051 verbose(env, "R%d leaks addr into helper function\n", 5052 regno); 5053 return -EACCES; 5054 } 5055 return 0; 5056 } 5057 5058 if (type_is_pkt_pointer(type) && 5059 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5060 verbose(env, "helper access to the packet is not allowed\n"); 5061 return -EACCES; 5062 } 5063 5064 if (arg_type == ARG_PTR_TO_MAP_VALUE || 5065 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 5066 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 5067 err = resolve_map_arg_type(env, meta, &arg_type); 5068 if (err) 5069 return err; 5070 } 5071 5072 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 5073 /* A NULL register has a SCALAR_VALUE type, so skip 5074 * type checking. 5075 */ 5076 goto skip_type_check; 5077 5078 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5079 if (err) 5080 return err; 5081 5082 if (type == PTR_TO_CTX) { 5083 err = check_ctx_reg(env, reg, regno); 5084 if (err < 0) 5085 return err; 5086 } 5087 5088 skip_type_check: 5089 if (reg->ref_obj_id) { 5090 if (meta->ref_obj_id) { 5091 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5092 regno, reg->ref_obj_id, 5093 meta->ref_obj_id); 5094 return -EFAULT; 5095 } 5096 meta->ref_obj_id = reg->ref_obj_id; 5097 } 5098 5099 if (arg_type == ARG_CONST_MAP_PTR) { 5100 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5101 if (meta->map_ptr) { 5102 /* Use map_uid (which is unique id of inner map) to reject: 5103 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5104 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5105 * if (inner_map1 && inner_map2) { 5106 * timer = bpf_map_lookup_elem(inner_map1); 5107 * if (timer) 5108 * // mismatch would have been allowed 5109 * bpf_timer_init(timer, inner_map2); 5110 * } 5111 * 5112 * Comparing map_ptr is enough to distinguish normal and outer maps. 5113 */ 5114 if (meta->map_ptr != reg->map_ptr || 5115 meta->map_uid != reg->map_uid) { 5116 verbose(env, 5117 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5118 meta->map_uid, reg->map_uid); 5119 return -EINVAL; 5120 } 5121 } 5122 meta->map_ptr = reg->map_ptr; 5123 meta->map_uid = reg->map_uid; 5124 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5125 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5126 * check that [key, key + map->key_size) are within 5127 * stack limits and initialized 5128 */ 5129 if (!meta->map_ptr) { 5130 /* in function declaration map_ptr must come before 5131 * map_key, so that it's verified and known before 5132 * we have to check map_key here. Otherwise it means 5133 * that kernel subsystem misconfigured verifier 5134 */ 5135 verbose(env, "invalid map_ptr to access map->key\n"); 5136 return -EACCES; 5137 } 5138 err = check_helper_mem_access(env, regno, 5139 meta->map_ptr->key_size, false, 5140 NULL); 5141 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 5142 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 5143 !register_is_null(reg)) || 5144 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5145 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5146 * check [value, value + map->value_size) validity 5147 */ 5148 if (!meta->map_ptr) { 5149 /* kernel subsystem misconfigured verifier */ 5150 verbose(env, "invalid map_ptr to access map->value\n"); 5151 return -EACCES; 5152 } 5153 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5154 err = check_helper_mem_access(env, regno, 5155 meta->map_ptr->value_size, false, 5156 meta); 5157 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5158 if (!reg->btf_id) { 5159 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5160 return -EACCES; 5161 } 5162 meta->ret_btf = reg->btf; 5163 meta->ret_btf_id = reg->btf_id; 5164 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5165 if (meta->func_id == BPF_FUNC_spin_lock) { 5166 if (process_spin_lock(env, regno, true)) 5167 return -EACCES; 5168 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5169 if (process_spin_lock(env, regno, false)) 5170 return -EACCES; 5171 } else { 5172 verbose(env, "verifier internal error\n"); 5173 return -EFAULT; 5174 } 5175 } else if (arg_type == ARG_PTR_TO_TIMER) { 5176 if (process_timer_func(env, regno, meta)) 5177 return -EACCES; 5178 } else if (arg_type == ARG_PTR_TO_FUNC) { 5179 meta->subprogno = reg->subprogno; 5180 } else if (arg_type_is_mem_ptr(arg_type)) { 5181 /* The access to this pointer is only checked when we hit the 5182 * next is_mem_size argument below. 5183 */ 5184 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5185 } else if (arg_type_is_mem_size(arg_type)) { 5186 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5187 5188 /* This is used to refine r0 return value bounds for helpers 5189 * that enforce this value as an upper bound on return values. 5190 * See do_refine_retval_range() for helpers that can refine 5191 * the return value. C type of helper is u32 so we pull register 5192 * bound from umax_value however, if negative verifier errors 5193 * out. Only upper bounds can be learned because retval is an 5194 * int type and negative retvals are allowed. 5195 */ 5196 meta->msize_max_value = reg->umax_value; 5197 5198 /* The register is SCALAR_VALUE; the access check 5199 * happens using its boundaries. 5200 */ 5201 if (!tnum_is_const(reg->var_off)) 5202 /* For unprivileged variable accesses, disable raw 5203 * mode so that the program is required to 5204 * initialize all the memory that the helper could 5205 * just partially fill up. 5206 */ 5207 meta = NULL; 5208 5209 if (reg->smin_value < 0) { 5210 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5211 regno); 5212 return -EACCES; 5213 } 5214 5215 if (reg->umin_value == 0) { 5216 err = check_helper_mem_access(env, regno - 1, 0, 5217 zero_size_allowed, 5218 meta); 5219 if (err) 5220 return err; 5221 } 5222 5223 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5224 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5225 regno); 5226 return -EACCES; 5227 } 5228 err = check_helper_mem_access(env, regno - 1, 5229 reg->umax_value, 5230 zero_size_allowed, meta); 5231 if (!err) 5232 err = mark_chain_precision(env, regno); 5233 } else if (arg_type_is_alloc_size(arg_type)) { 5234 if (!tnum_is_const(reg->var_off)) { 5235 verbose(env, "R%d is not a known constant'\n", 5236 regno); 5237 return -EACCES; 5238 } 5239 meta->mem_size = reg->var_off.value; 5240 } else if (arg_type_is_int_ptr(arg_type)) { 5241 int size = int_ptr_type_to_size(arg_type); 5242 5243 err = check_helper_mem_access(env, regno, size, false, meta); 5244 if (err) 5245 return err; 5246 err = check_ptr_alignment(env, reg, 0, size, true); 5247 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5248 struct bpf_map *map = reg->map_ptr; 5249 int map_off; 5250 u64 map_addr; 5251 char *str_ptr; 5252 5253 if (!bpf_map_is_rdonly(map)) { 5254 verbose(env, "R%d does not point to a readonly map'\n", regno); 5255 return -EACCES; 5256 } 5257 5258 if (!tnum_is_const(reg->var_off)) { 5259 verbose(env, "R%d is not a constant address'\n", regno); 5260 return -EACCES; 5261 } 5262 5263 if (!map->ops->map_direct_value_addr) { 5264 verbose(env, "no direct value access support for this map type\n"); 5265 return -EACCES; 5266 } 5267 5268 err = check_map_access(env, regno, reg->off, 5269 map->value_size - reg->off, false); 5270 if (err) 5271 return err; 5272 5273 map_off = reg->off + reg->var_off.value; 5274 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5275 if (err) { 5276 verbose(env, "direct value access on string failed\n"); 5277 return err; 5278 } 5279 5280 str_ptr = (char *)(long)(map_addr); 5281 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5282 verbose(env, "string is not zero-terminated\n"); 5283 return -EINVAL; 5284 } 5285 } 5286 5287 return err; 5288 } 5289 5290 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5291 { 5292 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5293 enum bpf_prog_type type = resolve_prog_type(env->prog); 5294 5295 if (func_id != BPF_FUNC_map_update_elem) 5296 return false; 5297 5298 /* It's not possible to get access to a locked struct sock in these 5299 * contexts, so updating is safe. 5300 */ 5301 switch (type) { 5302 case BPF_PROG_TYPE_TRACING: 5303 if (eatype == BPF_TRACE_ITER) 5304 return true; 5305 break; 5306 case BPF_PROG_TYPE_SOCKET_FILTER: 5307 case BPF_PROG_TYPE_SCHED_CLS: 5308 case BPF_PROG_TYPE_SCHED_ACT: 5309 case BPF_PROG_TYPE_XDP: 5310 case BPF_PROG_TYPE_SK_REUSEPORT: 5311 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5312 case BPF_PROG_TYPE_SK_LOOKUP: 5313 return true; 5314 default: 5315 break; 5316 } 5317 5318 verbose(env, "cannot update sockmap in this context\n"); 5319 return false; 5320 } 5321 5322 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5323 { 5324 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5325 } 5326 5327 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5328 struct bpf_map *map, int func_id) 5329 { 5330 if (!map) 5331 return 0; 5332 5333 /* We need a two way check, first is from map perspective ... */ 5334 switch (map->map_type) { 5335 case BPF_MAP_TYPE_PROG_ARRAY: 5336 if (func_id != BPF_FUNC_tail_call) 5337 goto error; 5338 break; 5339 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5340 if (func_id != BPF_FUNC_perf_event_read && 5341 func_id != BPF_FUNC_perf_event_output && 5342 func_id != BPF_FUNC_skb_output && 5343 func_id != BPF_FUNC_perf_event_read_value && 5344 func_id != BPF_FUNC_xdp_output) 5345 goto error; 5346 break; 5347 case BPF_MAP_TYPE_RINGBUF: 5348 if (func_id != BPF_FUNC_ringbuf_output && 5349 func_id != BPF_FUNC_ringbuf_reserve && 5350 func_id != BPF_FUNC_ringbuf_query) 5351 goto error; 5352 break; 5353 case BPF_MAP_TYPE_STACK_TRACE: 5354 if (func_id != BPF_FUNC_get_stackid) 5355 goto error; 5356 break; 5357 case BPF_MAP_TYPE_CGROUP_ARRAY: 5358 if (func_id != BPF_FUNC_skb_under_cgroup && 5359 func_id != BPF_FUNC_current_task_under_cgroup) 5360 goto error; 5361 break; 5362 case BPF_MAP_TYPE_CGROUP_STORAGE: 5363 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5364 if (func_id != BPF_FUNC_get_local_storage) 5365 goto error; 5366 break; 5367 case BPF_MAP_TYPE_DEVMAP: 5368 case BPF_MAP_TYPE_DEVMAP_HASH: 5369 if (func_id != BPF_FUNC_redirect_map && 5370 func_id != BPF_FUNC_map_lookup_elem) 5371 goto error; 5372 break; 5373 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5374 * appear. 5375 */ 5376 case BPF_MAP_TYPE_CPUMAP: 5377 if (func_id != BPF_FUNC_redirect_map) 5378 goto error; 5379 break; 5380 case BPF_MAP_TYPE_XSKMAP: 5381 if (func_id != BPF_FUNC_redirect_map && 5382 func_id != BPF_FUNC_map_lookup_elem) 5383 goto error; 5384 break; 5385 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5386 case BPF_MAP_TYPE_HASH_OF_MAPS: 5387 if (func_id != BPF_FUNC_map_lookup_elem) 5388 goto error; 5389 break; 5390 case BPF_MAP_TYPE_SOCKMAP: 5391 if (func_id != BPF_FUNC_sk_redirect_map && 5392 func_id != BPF_FUNC_sock_map_update && 5393 func_id != BPF_FUNC_map_delete_elem && 5394 func_id != BPF_FUNC_msg_redirect_map && 5395 func_id != BPF_FUNC_sk_select_reuseport && 5396 func_id != BPF_FUNC_map_lookup_elem && 5397 !may_update_sockmap(env, func_id)) 5398 goto error; 5399 break; 5400 case BPF_MAP_TYPE_SOCKHASH: 5401 if (func_id != BPF_FUNC_sk_redirect_hash && 5402 func_id != BPF_FUNC_sock_hash_update && 5403 func_id != BPF_FUNC_map_delete_elem && 5404 func_id != BPF_FUNC_msg_redirect_hash && 5405 func_id != BPF_FUNC_sk_select_reuseport && 5406 func_id != BPF_FUNC_map_lookup_elem && 5407 !may_update_sockmap(env, func_id)) 5408 goto error; 5409 break; 5410 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5411 if (func_id != BPF_FUNC_sk_select_reuseport) 5412 goto error; 5413 break; 5414 case BPF_MAP_TYPE_QUEUE: 5415 case BPF_MAP_TYPE_STACK: 5416 if (func_id != BPF_FUNC_map_peek_elem && 5417 func_id != BPF_FUNC_map_pop_elem && 5418 func_id != BPF_FUNC_map_push_elem) 5419 goto error; 5420 break; 5421 case BPF_MAP_TYPE_SK_STORAGE: 5422 if (func_id != BPF_FUNC_sk_storage_get && 5423 func_id != BPF_FUNC_sk_storage_delete) 5424 goto error; 5425 break; 5426 case BPF_MAP_TYPE_INODE_STORAGE: 5427 if (func_id != BPF_FUNC_inode_storage_get && 5428 func_id != BPF_FUNC_inode_storage_delete) 5429 goto error; 5430 break; 5431 case BPF_MAP_TYPE_TASK_STORAGE: 5432 if (func_id != BPF_FUNC_task_storage_get && 5433 func_id != BPF_FUNC_task_storage_delete) 5434 goto error; 5435 break; 5436 default: 5437 break; 5438 } 5439 5440 /* ... and second from the function itself. */ 5441 switch (func_id) { 5442 case BPF_FUNC_tail_call: 5443 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5444 goto error; 5445 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5446 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5447 return -EINVAL; 5448 } 5449 break; 5450 case BPF_FUNC_perf_event_read: 5451 case BPF_FUNC_perf_event_output: 5452 case BPF_FUNC_perf_event_read_value: 5453 case BPF_FUNC_skb_output: 5454 case BPF_FUNC_xdp_output: 5455 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5456 goto error; 5457 break; 5458 case BPF_FUNC_ringbuf_output: 5459 case BPF_FUNC_ringbuf_reserve: 5460 case BPF_FUNC_ringbuf_query: 5461 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5462 goto error; 5463 break; 5464 case BPF_FUNC_get_stackid: 5465 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5466 goto error; 5467 break; 5468 case BPF_FUNC_current_task_under_cgroup: 5469 case BPF_FUNC_skb_under_cgroup: 5470 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5471 goto error; 5472 break; 5473 case BPF_FUNC_redirect_map: 5474 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5475 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5476 map->map_type != BPF_MAP_TYPE_CPUMAP && 5477 map->map_type != BPF_MAP_TYPE_XSKMAP) 5478 goto error; 5479 break; 5480 case BPF_FUNC_sk_redirect_map: 5481 case BPF_FUNC_msg_redirect_map: 5482 case BPF_FUNC_sock_map_update: 5483 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5484 goto error; 5485 break; 5486 case BPF_FUNC_sk_redirect_hash: 5487 case BPF_FUNC_msg_redirect_hash: 5488 case BPF_FUNC_sock_hash_update: 5489 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5490 goto error; 5491 break; 5492 case BPF_FUNC_get_local_storage: 5493 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5494 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5495 goto error; 5496 break; 5497 case BPF_FUNC_sk_select_reuseport: 5498 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5499 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5500 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5501 goto error; 5502 break; 5503 case BPF_FUNC_map_peek_elem: 5504 case BPF_FUNC_map_pop_elem: 5505 case BPF_FUNC_map_push_elem: 5506 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5507 map->map_type != BPF_MAP_TYPE_STACK) 5508 goto error; 5509 break; 5510 case BPF_FUNC_sk_storage_get: 5511 case BPF_FUNC_sk_storage_delete: 5512 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5513 goto error; 5514 break; 5515 case BPF_FUNC_inode_storage_get: 5516 case BPF_FUNC_inode_storage_delete: 5517 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5518 goto error; 5519 break; 5520 case BPF_FUNC_task_storage_get: 5521 case BPF_FUNC_task_storage_delete: 5522 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5523 goto error; 5524 break; 5525 default: 5526 break; 5527 } 5528 5529 return 0; 5530 error: 5531 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5532 map->map_type, func_id_name(func_id), func_id); 5533 return -EINVAL; 5534 } 5535 5536 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5537 { 5538 int count = 0; 5539 5540 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5541 count++; 5542 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5543 count++; 5544 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5545 count++; 5546 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5547 count++; 5548 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5549 count++; 5550 5551 /* We only support one arg being in raw mode at the moment, 5552 * which is sufficient for the helper functions we have 5553 * right now. 5554 */ 5555 return count <= 1; 5556 } 5557 5558 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5559 enum bpf_arg_type arg_next) 5560 { 5561 return (arg_type_is_mem_ptr(arg_curr) && 5562 !arg_type_is_mem_size(arg_next)) || 5563 (!arg_type_is_mem_ptr(arg_curr) && 5564 arg_type_is_mem_size(arg_next)); 5565 } 5566 5567 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5568 { 5569 /* bpf_xxx(..., buf, len) call will access 'len' 5570 * bytes from memory 'buf'. Both arg types need 5571 * to be paired, so make sure there's no buggy 5572 * helper function specification. 5573 */ 5574 if (arg_type_is_mem_size(fn->arg1_type) || 5575 arg_type_is_mem_ptr(fn->arg5_type) || 5576 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5577 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5578 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5579 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5580 return false; 5581 5582 return true; 5583 } 5584 5585 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5586 { 5587 int count = 0; 5588 5589 if (arg_type_may_be_refcounted(fn->arg1_type)) 5590 count++; 5591 if (arg_type_may_be_refcounted(fn->arg2_type)) 5592 count++; 5593 if (arg_type_may_be_refcounted(fn->arg3_type)) 5594 count++; 5595 if (arg_type_may_be_refcounted(fn->arg4_type)) 5596 count++; 5597 if (arg_type_may_be_refcounted(fn->arg5_type)) 5598 count++; 5599 5600 /* A reference acquiring function cannot acquire 5601 * another refcounted ptr. 5602 */ 5603 if (may_be_acquire_function(func_id) && count) 5604 return false; 5605 5606 /* We only support one arg being unreferenced at the moment, 5607 * which is sufficient for the helper functions we have right now. 5608 */ 5609 return count <= 1; 5610 } 5611 5612 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5613 { 5614 int i; 5615 5616 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5617 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5618 return false; 5619 5620 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5621 return false; 5622 } 5623 5624 return true; 5625 } 5626 5627 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5628 { 5629 return check_raw_mode_ok(fn) && 5630 check_arg_pair_ok(fn) && 5631 check_btf_id_ok(fn) && 5632 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5633 } 5634 5635 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5636 * are now invalid, so turn them into unknown SCALAR_VALUE. 5637 */ 5638 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5639 struct bpf_func_state *state) 5640 { 5641 struct bpf_reg_state *regs = state->regs, *reg; 5642 int i; 5643 5644 for (i = 0; i < MAX_BPF_REG; i++) 5645 if (reg_is_pkt_pointer_any(®s[i])) 5646 mark_reg_unknown(env, regs, i); 5647 5648 bpf_for_each_spilled_reg(i, state, reg) { 5649 if (!reg) 5650 continue; 5651 if (reg_is_pkt_pointer_any(reg)) 5652 __mark_reg_unknown(env, reg); 5653 } 5654 } 5655 5656 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5657 { 5658 struct bpf_verifier_state *vstate = env->cur_state; 5659 int i; 5660 5661 for (i = 0; i <= vstate->curframe; i++) 5662 __clear_all_pkt_pointers(env, vstate->frame[i]); 5663 } 5664 5665 enum { 5666 AT_PKT_END = -1, 5667 BEYOND_PKT_END = -2, 5668 }; 5669 5670 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5671 { 5672 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5673 struct bpf_reg_state *reg = &state->regs[regn]; 5674 5675 if (reg->type != PTR_TO_PACKET) 5676 /* PTR_TO_PACKET_META is not supported yet */ 5677 return; 5678 5679 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5680 * How far beyond pkt_end it goes is unknown. 5681 * if (!range_open) it's the case of pkt >= pkt_end 5682 * if (range_open) it's the case of pkt > pkt_end 5683 * hence this pointer is at least 1 byte bigger than pkt_end 5684 */ 5685 if (range_open) 5686 reg->range = BEYOND_PKT_END; 5687 else 5688 reg->range = AT_PKT_END; 5689 } 5690 5691 static void release_reg_references(struct bpf_verifier_env *env, 5692 struct bpf_func_state *state, 5693 int ref_obj_id) 5694 { 5695 struct bpf_reg_state *regs = state->regs, *reg; 5696 int i; 5697 5698 for (i = 0; i < MAX_BPF_REG; i++) 5699 if (regs[i].ref_obj_id == ref_obj_id) 5700 mark_reg_unknown(env, regs, i); 5701 5702 bpf_for_each_spilled_reg(i, state, reg) { 5703 if (!reg) 5704 continue; 5705 if (reg->ref_obj_id == ref_obj_id) 5706 __mark_reg_unknown(env, reg); 5707 } 5708 } 5709 5710 /* The pointer with the specified id has released its reference to kernel 5711 * resources. Identify all copies of the same pointer and clear the reference. 5712 */ 5713 static int release_reference(struct bpf_verifier_env *env, 5714 int ref_obj_id) 5715 { 5716 struct bpf_verifier_state *vstate = env->cur_state; 5717 int err; 5718 int i; 5719 5720 err = release_reference_state(cur_func(env), ref_obj_id); 5721 if (err) 5722 return err; 5723 5724 for (i = 0; i <= vstate->curframe; i++) 5725 release_reg_references(env, vstate->frame[i], ref_obj_id); 5726 5727 return 0; 5728 } 5729 5730 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5731 struct bpf_reg_state *regs) 5732 { 5733 int i; 5734 5735 /* after the call registers r0 - r5 were scratched */ 5736 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5737 mark_reg_not_init(env, regs, caller_saved[i]); 5738 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5739 } 5740 } 5741 5742 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5743 struct bpf_func_state *caller, 5744 struct bpf_func_state *callee, 5745 int insn_idx); 5746 5747 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5748 int *insn_idx, int subprog, 5749 set_callee_state_fn set_callee_state_cb) 5750 { 5751 struct bpf_verifier_state *state = env->cur_state; 5752 struct bpf_func_info_aux *func_info_aux; 5753 struct bpf_func_state *caller, *callee; 5754 int err; 5755 bool is_global = false; 5756 5757 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5758 verbose(env, "the call stack of %d frames is too deep\n", 5759 state->curframe + 2); 5760 return -E2BIG; 5761 } 5762 5763 caller = state->frame[state->curframe]; 5764 if (state->frame[state->curframe + 1]) { 5765 verbose(env, "verifier bug. Frame %d already allocated\n", 5766 state->curframe + 1); 5767 return -EFAULT; 5768 } 5769 5770 func_info_aux = env->prog->aux->func_info_aux; 5771 if (func_info_aux) 5772 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5773 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5774 if (err == -EFAULT) 5775 return err; 5776 if (is_global) { 5777 if (err) { 5778 verbose(env, "Caller passes invalid args into func#%d\n", 5779 subprog); 5780 return err; 5781 } else { 5782 if (env->log.level & BPF_LOG_LEVEL) 5783 verbose(env, 5784 "Func#%d is global and valid. Skipping.\n", 5785 subprog); 5786 clear_caller_saved_regs(env, caller->regs); 5787 5788 /* All global functions return a 64-bit SCALAR_VALUE */ 5789 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5790 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5791 5792 /* continue with next insn after call */ 5793 return 0; 5794 } 5795 } 5796 5797 if (insn->code == (BPF_JMP | BPF_CALL) && 5798 insn->imm == BPF_FUNC_timer_set_callback) { 5799 struct bpf_verifier_state *async_cb; 5800 5801 /* there is no real recursion here. timer callbacks are async */ 5802 env->subprog_info[subprog].is_async_cb = true; 5803 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 5804 *insn_idx, subprog); 5805 if (!async_cb) 5806 return -EFAULT; 5807 callee = async_cb->frame[0]; 5808 callee->async_entry_cnt = caller->async_entry_cnt + 1; 5809 5810 /* Convert bpf_timer_set_callback() args into timer callback args */ 5811 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5812 if (err) 5813 return err; 5814 5815 clear_caller_saved_regs(env, caller->regs); 5816 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5817 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5818 /* continue with next insn after call */ 5819 return 0; 5820 } 5821 5822 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5823 if (!callee) 5824 return -ENOMEM; 5825 state->frame[state->curframe + 1] = callee; 5826 5827 /* callee cannot access r0, r6 - r9 for reading and has to write 5828 * into its own stack before reading from it. 5829 * callee can read/write into caller's stack 5830 */ 5831 init_func_state(env, callee, 5832 /* remember the callsite, it will be used by bpf_exit */ 5833 *insn_idx /* callsite */, 5834 state->curframe + 1 /* frameno within this callchain */, 5835 subprog /* subprog number within this prog */); 5836 5837 /* Transfer references to the callee */ 5838 err = copy_reference_state(callee, caller); 5839 if (err) 5840 return err; 5841 5842 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5843 if (err) 5844 return err; 5845 5846 clear_caller_saved_regs(env, caller->regs); 5847 5848 /* only increment it after check_reg_arg() finished */ 5849 state->curframe++; 5850 5851 /* and go analyze first insn of the callee */ 5852 *insn_idx = env->subprog_info[subprog].start - 1; 5853 5854 if (env->log.level & BPF_LOG_LEVEL) { 5855 verbose(env, "caller:\n"); 5856 print_verifier_state(env, caller); 5857 verbose(env, "callee:\n"); 5858 print_verifier_state(env, callee); 5859 } 5860 return 0; 5861 } 5862 5863 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 5864 struct bpf_func_state *caller, 5865 struct bpf_func_state *callee) 5866 { 5867 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 5868 * void *callback_ctx, u64 flags); 5869 * callback_fn(struct bpf_map *map, void *key, void *value, 5870 * void *callback_ctx); 5871 */ 5872 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 5873 5874 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 5875 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 5876 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5877 5878 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 5879 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 5880 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5881 5882 /* pointer to stack or null */ 5883 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 5884 5885 /* unused */ 5886 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 5887 return 0; 5888 } 5889 5890 static int set_callee_state(struct bpf_verifier_env *env, 5891 struct bpf_func_state *caller, 5892 struct bpf_func_state *callee, int insn_idx) 5893 { 5894 int i; 5895 5896 /* copy r1 - r5 args that callee can access. The copy includes parent 5897 * pointers, which connects us up to the liveness chain 5898 */ 5899 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 5900 callee->regs[i] = caller->regs[i]; 5901 return 0; 5902 } 5903 5904 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5905 int *insn_idx) 5906 { 5907 int subprog, target_insn; 5908 5909 target_insn = *insn_idx + insn->imm + 1; 5910 subprog = find_subprog(env, target_insn); 5911 if (subprog < 0) { 5912 verbose(env, "verifier bug. No program starts at insn %d\n", 5913 target_insn); 5914 return -EFAULT; 5915 } 5916 5917 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 5918 } 5919 5920 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 5921 struct bpf_func_state *caller, 5922 struct bpf_func_state *callee, 5923 int insn_idx) 5924 { 5925 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 5926 struct bpf_map *map; 5927 int err; 5928 5929 if (bpf_map_ptr_poisoned(insn_aux)) { 5930 verbose(env, "tail_call abusing map_ptr\n"); 5931 return -EINVAL; 5932 } 5933 5934 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 5935 if (!map->ops->map_set_for_each_callback_args || 5936 !map->ops->map_for_each_callback) { 5937 verbose(env, "callback function not allowed for map\n"); 5938 return -ENOTSUPP; 5939 } 5940 5941 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 5942 if (err) 5943 return err; 5944 5945 callee->in_callback_fn = true; 5946 return 0; 5947 } 5948 5949 static int set_timer_callback_state(struct bpf_verifier_env *env, 5950 struct bpf_func_state *caller, 5951 struct bpf_func_state *callee, 5952 int insn_idx) 5953 { 5954 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 5955 5956 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 5957 * callback_fn(struct bpf_map *map, void *key, void *value); 5958 */ 5959 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 5960 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 5961 callee->regs[BPF_REG_1].map_ptr = map_ptr; 5962 5963 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 5964 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 5965 callee->regs[BPF_REG_2].map_ptr = map_ptr; 5966 5967 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 5968 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 5969 callee->regs[BPF_REG_3].map_ptr = map_ptr; 5970 5971 /* unused */ 5972 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 5973 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 5974 callee->in_async_callback_fn = true; 5975 return 0; 5976 } 5977 5978 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 5979 { 5980 struct bpf_verifier_state *state = env->cur_state; 5981 struct bpf_func_state *caller, *callee; 5982 struct bpf_reg_state *r0; 5983 int err; 5984 5985 callee = state->frame[state->curframe]; 5986 r0 = &callee->regs[BPF_REG_0]; 5987 if (r0->type == PTR_TO_STACK) { 5988 /* technically it's ok to return caller's stack pointer 5989 * (or caller's caller's pointer) back to the caller, 5990 * since these pointers are valid. Only current stack 5991 * pointer will be invalid as soon as function exits, 5992 * but let's be conservative 5993 */ 5994 verbose(env, "cannot return stack pointer to the caller\n"); 5995 return -EINVAL; 5996 } 5997 5998 state->curframe--; 5999 caller = state->frame[state->curframe]; 6000 if (callee->in_callback_fn) { 6001 /* enforce R0 return value range [0, 1]. */ 6002 struct tnum range = tnum_range(0, 1); 6003 6004 if (r0->type != SCALAR_VALUE) { 6005 verbose(env, "R0 not a scalar value\n"); 6006 return -EACCES; 6007 } 6008 if (!tnum_in(range, r0->var_off)) { 6009 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6010 return -EINVAL; 6011 } 6012 } else { 6013 /* return to the caller whatever r0 had in the callee */ 6014 caller->regs[BPF_REG_0] = *r0; 6015 } 6016 6017 /* Transfer references to the caller */ 6018 err = copy_reference_state(caller, callee); 6019 if (err) 6020 return err; 6021 6022 *insn_idx = callee->callsite + 1; 6023 if (env->log.level & BPF_LOG_LEVEL) { 6024 verbose(env, "returning from callee:\n"); 6025 print_verifier_state(env, callee); 6026 verbose(env, "to caller at %d:\n", *insn_idx); 6027 print_verifier_state(env, caller); 6028 } 6029 /* clear everything in the callee */ 6030 free_func_state(callee); 6031 state->frame[state->curframe + 1] = NULL; 6032 return 0; 6033 } 6034 6035 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6036 int func_id, 6037 struct bpf_call_arg_meta *meta) 6038 { 6039 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6040 6041 if (ret_type != RET_INTEGER || 6042 (func_id != BPF_FUNC_get_stack && 6043 func_id != BPF_FUNC_get_task_stack && 6044 func_id != BPF_FUNC_probe_read_str && 6045 func_id != BPF_FUNC_probe_read_kernel_str && 6046 func_id != BPF_FUNC_probe_read_user_str)) 6047 return; 6048 6049 ret_reg->smax_value = meta->msize_max_value; 6050 ret_reg->s32_max_value = meta->msize_max_value; 6051 ret_reg->smin_value = -MAX_ERRNO; 6052 ret_reg->s32_min_value = -MAX_ERRNO; 6053 __reg_deduce_bounds(ret_reg); 6054 __reg_bound_offset(ret_reg); 6055 __update_reg_bounds(ret_reg); 6056 } 6057 6058 static int 6059 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6060 int func_id, int insn_idx) 6061 { 6062 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6063 struct bpf_map *map = meta->map_ptr; 6064 6065 if (func_id != BPF_FUNC_tail_call && 6066 func_id != BPF_FUNC_map_lookup_elem && 6067 func_id != BPF_FUNC_map_update_elem && 6068 func_id != BPF_FUNC_map_delete_elem && 6069 func_id != BPF_FUNC_map_push_elem && 6070 func_id != BPF_FUNC_map_pop_elem && 6071 func_id != BPF_FUNC_map_peek_elem && 6072 func_id != BPF_FUNC_for_each_map_elem && 6073 func_id != BPF_FUNC_redirect_map) 6074 return 0; 6075 6076 if (map == NULL) { 6077 verbose(env, "kernel subsystem misconfigured verifier\n"); 6078 return -EINVAL; 6079 } 6080 6081 /* In case of read-only, some additional restrictions 6082 * need to be applied in order to prevent altering the 6083 * state of the map from program side. 6084 */ 6085 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6086 (func_id == BPF_FUNC_map_delete_elem || 6087 func_id == BPF_FUNC_map_update_elem || 6088 func_id == BPF_FUNC_map_push_elem || 6089 func_id == BPF_FUNC_map_pop_elem)) { 6090 verbose(env, "write into map forbidden\n"); 6091 return -EACCES; 6092 } 6093 6094 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6095 bpf_map_ptr_store(aux, meta->map_ptr, 6096 !meta->map_ptr->bypass_spec_v1); 6097 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6098 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6099 !meta->map_ptr->bypass_spec_v1); 6100 return 0; 6101 } 6102 6103 static int 6104 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6105 int func_id, int insn_idx) 6106 { 6107 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6108 struct bpf_reg_state *regs = cur_regs(env), *reg; 6109 struct bpf_map *map = meta->map_ptr; 6110 struct tnum range; 6111 u64 val; 6112 int err; 6113 6114 if (func_id != BPF_FUNC_tail_call) 6115 return 0; 6116 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6117 verbose(env, "kernel subsystem misconfigured verifier\n"); 6118 return -EINVAL; 6119 } 6120 6121 range = tnum_range(0, map->max_entries - 1); 6122 reg = ®s[BPF_REG_3]; 6123 6124 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6125 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6126 return 0; 6127 } 6128 6129 err = mark_chain_precision(env, BPF_REG_3); 6130 if (err) 6131 return err; 6132 6133 val = reg->var_off.value; 6134 if (bpf_map_key_unseen(aux)) 6135 bpf_map_key_store(aux, val); 6136 else if (!bpf_map_key_poisoned(aux) && 6137 bpf_map_key_immediate(aux) != val) 6138 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6139 return 0; 6140 } 6141 6142 static int check_reference_leak(struct bpf_verifier_env *env) 6143 { 6144 struct bpf_func_state *state = cur_func(env); 6145 int i; 6146 6147 for (i = 0; i < state->acquired_refs; i++) { 6148 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6149 state->refs[i].id, state->refs[i].insn_idx); 6150 } 6151 return state->acquired_refs ? -EINVAL : 0; 6152 } 6153 6154 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6155 struct bpf_reg_state *regs) 6156 { 6157 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6158 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6159 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6160 int err, fmt_map_off, num_args; 6161 u64 fmt_addr; 6162 char *fmt; 6163 6164 /* data must be an array of u64 */ 6165 if (data_len_reg->var_off.value % 8) 6166 return -EINVAL; 6167 num_args = data_len_reg->var_off.value / 8; 6168 6169 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6170 * and map_direct_value_addr is set. 6171 */ 6172 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6173 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6174 fmt_map_off); 6175 if (err) { 6176 verbose(env, "verifier bug\n"); 6177 return -EFAULT; 6178 } 6179 fmt = (char *)(long)fmt_addr + fmt_map_off; 6180 6181 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6182 * can focus on validating the format specifiers. 6183 */ 6184 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6185 if (err < 0) 6186 verbose(env, "Invalid format string\n"); 6187 6188 return err; 6189 } 6190 6191 static int check_get_func_ip(struct bpf_verifier_env *env) 6192 { 6193 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6194 enum bpf_prog_type type = resolve_prog_type(env->prog); 6195 int func_id = BPF_FUNC_get_func_ip; 6196 6197 if (type == BPF_PROG_TYPE_TRACING) { 6198 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT && 6199 eatype != BPF_MODIFY_RETURN) { 6200 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6201 func_id_name(func_id), func_id); 6202 return -ENOTSUPP; 6203 } 6204 return 0; 6205 } else if (type == BPF_PROG_TYPE_KPROBE) { 6206 return 0; 6207 } 6208 6209 verbose(env, "func %s#%d not supported for program type %d\n", 6210 func_id_name(func_id), func_id, type); 6211 return -ENOTSUPP; 6212 } 6213 6214 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6215 int *insn_idx_p) 6216 { 6217 const struct bpf_func_proto *fn = NULL; 6218 struct bpf_reg_state *regs; 6219 struct bpf_call_arg_meta meta; 6220 int insn_idx = *insn_idx_p; 6221 bool changes_data; 6222 int i, err, func_id; 6223 6224 /* find function prototype */ 6225 func_id = insn->imm; 6226 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6227 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6228 func_id); 6229 return -EINVAL; 6230 } 6231 6232 if (env->ops->get_func_proto) 6233 fn = env->ops->get_func_proto(func_id, env->prog); 6234 if (!fn) { 6235 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6236 func_id); 6237 return -EINVAL; 6238 } 6239 6240 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6241 if (!env->prog->gpl_compatible && fn->gpl_only) { 6242 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6243 return -EINVAL; 6244 } 6245 6246 if (fn->allowed && !fn->allowed(env->prog)) { 6247 verbose(env, "helper call is not allowed in probe\n"); 6248 return -EINVAL; 6249 } 6250 6251 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6252 changes_data = bpf_helper_changes_pkt_data(fn->func); 6253 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6254 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6255 func_id_name(func_id), func_id); 6256 return -EINVAL; 6257 } 6258 6259 memset(&meta, 0, sizeof(meta)); 6260 meta.pkt_access = fn->pkt_access; 6261 6262 err = check_func_proto(fn, func_id); 6263 if (err) { 6264 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6265 func_id_name(func_id), func_id); 6266 return err; 6267 } 6268 6269 meta.func_id = func_id; 6270 /* check args */ 6271 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6272 err = check_func_arg(env, i, &meta, fn); 6273 if (err) 6274 return err; 6275 } 6276 6277 err = record_func_map(env, &meta, func_id, insn_idx); 6278 if (err) 6279 return err; 6280 6281 err = record_func_key(env, &meta, func_id, insn_idx); 6282 if (err) 6283 return err; 6284 6285 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6286 * is inferred from register state. 6287 */ 6288 for (i = 0; i < meta.access_size; i++) { 6289 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6290 BPF_WRITE, -1, false); 6291 if (err) 6292 return err; 6293 } 6294 6295 if (func_id == BPF_FUNC_tail_call) { 6296 err = check_reference_leak(env); 6297 if (err) { 6298 verbose(env, "tail_call would lead to reference leak\n"); 6299 return err; 6300 } 6301 } else if (is_release_function(func_id)) { 6302 err = release_reference(env, meta.ref_obj_id); 6303 if (err) { 6304 verbose(env, "func %s#%d reference has not been acquired before\n", 6305 func_id_name(func_id), func_id); 6306 return err; 6307 } 6308 } 6309 6310 regs = cur_regs(env); 6311 6312 /* check that flags argument in get_local_storage(map, flags) is 0, 6313 * this is required because get_local_storage() can't return an error. 6314 */ 6315 if (func_id == BPF_FUNC_get_local_storage && 6316 !register_is_null(®s[BPF_REG_2])) { 6317 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6318 return -EINVAL; 6319 } 6320 6321 if (func_id == BPF_FUNC_for_each_map_elem) { 6322 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6323 set_map_elem_callback_state); 6324 if (err < 0) 6325 return -EINVAL; 6326 } 6327 6328 if (func_id == BPF_FUNC_timer_set_callback) { 6329 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6330 set_timer_callback_state); 6331 if (err < 0) 6332 return -EINVAL; 6333 } 6334 6335 if (func_id == BPF_FUNC_snprintf) { 6336 err = check_bpf_snprintf_call(env, regs); 6337 if (err < 0) 6338 return err; 6339 } 6340 6341 /* reset caller saved regs */ 6342 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6343 mark_reg_not_init(env, regs, caller_saved[i]); 6344 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6345 } 6346 6347 /* helper call returns 64-bit value. */ 6348 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6349 6350 /* update return register (already marked as written above) */ 6351 if (fn->ret_type == RET_INTEGER) { 6352 /* sets type to SCALAR_VALUE */ 6353 mark_reg_unknown(env, regs, BPF_REG_0); 6354 } else if (fn->ret_type == RET_VOID) { 6355 regs[BPF_REG_0].type = NOT_INIT; 6356 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6357 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6358 /* There is no offset yet applied, variable or fixed */ 6359 mark_reg_known_zero(env, regs, BPF_REG_0); 6360 /* remember map_ptr, so that check_map_access() 6361 * can check 'value_size' boundary of memory access 6362 * to map element returned from bpf_map_lookup_elem() 6363 */ 6364 if (meta.map_ptr == NULL) { 6365 verbose(env, 6366 "kernel subsystem misconfigured verifier\n"); 6367 return -EINVAL; 6368 } 6369 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6370 regs[BPF_REG_0].map_uid = meta.map_uid; 6371 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6372 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6373 if (map_value_has_spin_lock(meta.map_ptr)) 6374 regs[BPF_REG_0].id = ++env->id_gen; 6375 } else { 6376 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6377 } 6378 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6379 mark_reg_known_zero(env, regs, BPF_REG_0); 6380 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6381 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6382 mark_reg_known_zero(env, regs, BPF_REG_0); 6383 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6384 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6385 mark_reg_known_zero(env, regs, BPF_REG_0); 6386 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6387 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6388 mark_reg_known_zero(env, regs, BPF_REG_0); 6389 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6390 regs[BPF_REG_0].mem_size = meta.mem_size; 6391 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6392 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6393 const struct btf_type *t; 6394 6395 mark_reg_known_zero(env, regs, BPF_REG_0); 6396 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6397 if (!btf_type_is_struct(t)) { 6398 u32 tsize; 6399 const struct btf_type *ret; 6400 const char *tname; 6401 6402 /* resolve the type size of ksym. */ 6403 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6404 if (IS_ERR(ret)) { 6405 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6406 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6407 tname, PTR_ERR(ret)); 6408 return -EINVAL; 6409 } 6410 regs[BPF_REG_0].type = 6411 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6412 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6413 regs[BPF_REG_0].mem_size = tsize; 6414 } else { 6415 regs[BPF_REG_0].type = 6416 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6417 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6418 regs[BPF_REG_0].btf = meta.ret_btf; 6419 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6420 } 6421 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6422 fn->ret_type == RET_PTR_TO_BTF_ID) { 6423 int ret_btf_id; 6424 6425 mark_reg_known_zero(env, regs, BPF_REG_0); 6426 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6427 PTR_TO_BTF_ID : 6428 PTR_TO_BTF_ID_OR_NULL; 6429 ret_btf_id = *fn->ret_btf_id; 6430 if (ret_btf_id == 0) { 6431 verbose(env, "invalid return type %d of func %s#%d\n", 6432 fn->ret_type, func_id_name(func_id), func_id); 6433 return -EINVAL; 6434 } 6435 /* current BPF helper definitions are only coming from 6436 * built-in code with type IDs from vmlinux BTF 6437 */ 6438 regs[BPF_REG_0].btf = btf_vmlinux; 6439 regs[BPF_REG_0].btf_id = ret_btf_id; 6440 } else { 6441 verbose(env, "unknown return type %d of func %s#%d\n", 6442 fn->ret_type, func_id_name(func_id), func_id); 6443 return -EINVAL; 6444 } 6445 6446 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6447 regs[BPF_REG_0].id = ++env->id_gen; 6448 6449 if (is_ptr_cast_function(func_id)) { 6450 /* For release_reference() */ 6451 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6452 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6453 int id = acquire_reference_state(env, insn_idx); 6454 6455 if (id < 0) 6456 return id; 6457 /* For mark_ptr_or_null_reg() */ 6458 regs[BPF_REG_0].id = id; 6459 /* For release_reference() */ 6460 regs[BPF_REG_0].ref_obj_id = id; 6461 } 6462 6463 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6464 6465 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6466 if (err) 6467 return err; 6468 6469 if ((func_id == BPF_FUNC_get_stack || 6470 func_id == BPF_FUNC_get_task_stack) && 6471 !env->prog->has_callchain_buf) { 6472 const char *err_str; 6473 6474 #ifdef CONFIG_PERF_EVENTS 6475 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6476 err_str = "cannot get callchain buffer for func %s#%d\n"; 6477 #else 6478 err = -ENOTSUPP; 6479 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6480 #endif 6481 if (err) { 6482 verbose(env, err_str, func_id_name(func_id), func_id); 6483 return err; 6484 } 6485 6486 env->prog->has_callchain_buf = true; 6487 } 6488 6489 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6490 env->prog->call_get_stack = true; 6491 6492 if (func_id == BPF_FUNC_get_func_ip) { 6493 if (check_get_func_ip(env)) 6494 return -ENOTSUPP; 6495 env->prog->call_get_func_ip = true; 6496 } 6497 6498 if (changes_data) 6499 clear_all_pkt_pointers(env); 6500 return 0; 6501 } 6502 6503 /* mark_btf_func_reg_size() is used when the reg size is determined by 6504 * the BTF func_proto's return value size and argument. 6505 */ 6506 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6507 size_t reg_size) 6508 { 6509 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6510 6511 if (regno == BPF_REG_0) { 6512 /* Function return value */ 6513 reg->live |= REG_LIVE_WRITTEN; 6514 reg->subreg_def = reg_size == sizeof(u64) ? 6515 DEF_NOT_SUBREG : env->insn_idx + 1; 6516 } else { 6517 /* Function argument */ 6518 if (reg_size == sizeof(u64)) { 6519 mark_insn_zext(env, reg); 6520 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6521 } else { 6522 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6523 } 6524 } 6525 } 6526 6527 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6528 { 6529 const struct btf_type *t, *func, *func_proto, *ptr_type; 6530 struct bpf_reg_state *regs = cur_regs(env); 6531 const char *func_name, *ptr_type_name; 6532 u32 i, nargs, func_id, ptr_type_id; 6533 const struct btf_param *args; 6534 int err; 6535 6536 func_id = insn->imm; 6537 func = btf_type_by_id(btf_vmlinux, func_id); 6538 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 6539 func_proto = btf_type_by_id(btf_vmlinux, func->type); 6540 6541 if (!env->ops->check_kfunc_call || 6542 !env->ops->check_kfunc_call(func_id)) { 6543 verbose(env, "calling kernel function %s is not allowed\n", 6544 func_name); 6545 return -EACCES; 6546 } 6547 6548 /* Check the arguments */ 6549 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs); 6550 if (err) 6551 return err; 6552 6553 for (i = 0; i < CALLER_SAVED_REGS; i++) 6554 mark_reg_not_init(env, regs, caller_saved[i]); 6555 6556 /* Check return type */ 6557 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL); 6558 if (btf_type_is_scalar(t)) { 6559 mark_reg_unknown(env, regs, BPF_REG_0); 6560 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6561 } else if (btf_type_is_ptr(t)) { 6562 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type, 6563 &ptr_type_id); 6564 if (!btf_type_is_struct(ptr_type)) { 6565 ptr_type_name = btf_name_by_offset(btf_vmlinux, 6566 ptr_type->name_off); 6567 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6568 func_name, btf_type_str(ptr_type), 6569 ptr_type_name); 6570 return -EINVAL; 6571 } 6572 mark_reg_known_zero(env, regs, BPF_REG_0); 6573 regs[BPF_REG_0].btf = btf_vmlinux; 6574 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6575 regs[BPF_REG_0].btf_id = ptr_type_id; 6576 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6577 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6578 6579 nargs = btf_type_vlen(func_proto); 6580 args = (const struct btf_param *)(func_proto + 1); 6581 for (i = 0; i < nargs; i++) { 6582 u32 regno = i + 1; 6583 6584 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL); 6585 if (btf_type_is_ptr(t)) 6586 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6587 else 6588 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6589 mark_btf_func_reg_size(env, regno, t->size); 6590 } 6591 6592 return 0; 6593 } 6594 6595 static bool signed_add_overflows(s64 a, s64 b) 6596 { 6597 /* Do the add in u64, where overflow is well-defined */ 6598 s64 res = (s64)((u64)a + (u64)b); 6599 6600 if (b < 0) 6601 return res > a; 6602 return res < a; 6603 } 6604 6605 static bool signed_add32_overflows(s32 a, s32 b) 6606 { 6607 /* Do the add in u32, where overflow is well-defined */ 6608 s32 res = (s32)((u32)a + (u32)b); 6609 6610 if (b < 0) 6611 return res > a; 6612 return res < a; 6613 } 6614 6615 static bool signed_sub_overflows(s64 a, s64 b) 6616 { 6617 /* Do the sub in u64, where overflow is well-defined */ 6618 s64 res = (s64)((u64)a - (u64)b); 6619 6620 if (b < 0) 6621 return res < a; 6622 return res > a; 6623 } 6624 6625 static bool signed_sub32_overflows(s32 a, s32 b) 6626 { 6627 /* Do the sub in u32, where overflow is well-defined */ 6628 s32 res = (s32)((u32)a - (u32)b); 6629 6630 if (b < 0) 6631 return res < a; 6632 return res > a; 6633 } 6634 6635 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6636 const struct bpf_reg_state *reg, 6637 enum bpf_reg_type type) 6638 { 6639 bool known = tnum_is_const(reg->var_off); 6640 s64 val = reg->var_off.value; 6641 s64 smin = reg->smin_value; 6642 6643 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6644 verbose(env, "math between %s pointer and %lld is not allowed\n", 6645 reg_type_str[type], val); 6646 return false; 6647 } 6648 6649 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6650 verbose(env, "%s pointer offset %d is not allowed\n", 6651 reg_type_str[type], reg->off); 6652 return false; 6653 } 6654 6655 if (smin == S64_MIN) { 6656 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6657 reg_type_str[type]); 6658 return false; 6659 } 6660 6661 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6662 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6663 smin, reg_type_str[type]); 6664 return false; 6665 } 6666 6667 return true; 6668 } 6669 6670 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6671 { 6672 return &env->insn_aux_data[env->insn_idx]; 6673 } 6674 6675 enum { 6676 REASON_BOUNDS = -1, 6677 REASON_TYPE = -2, 6678 REASON_PATHS = -3, 6679 REASON_LIMIT = -4, 6680 REASON_STACK = -5, 6681 }; 6682 6683 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6684 u32 *alu_limit, bool mask_to_left) 6685 { 6686 u32 max = 0, ptr_limit = 0; 6687 6688 switch (ptr_reg->type) { 6689 case PTR_TO_STACK: 6690 /* Offset 0 is out-of-bounds, but acceptable start for the 6691 * left direction, see BPF_REG_FP. Also, unknown scalar 6692 * offset where we would need to deal with min/max bounds is 6693 * currently prohibited for unprivileged. 6694 */ 6695 max = MAX_BPF_STACK + mask_to_left; 6696 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6697 break; 6698 case PTR_TO_MAP_VALUE: 6699 max = ptr_reg->map_ptr->value_size; 6700 ptr_limit = (mask_to_left ? 6701 ptr_reg->smin_value : 6702 ptr_reg->umax_value) + ptr_reg->off; 6703 break; 6704 default: 6705 return REASON_TYPE; 6706 } 6707 6708 if (ptr_limit >= max) 6709 return REASON_LIMIT; 6710 *alu_limit = ptr_limit; 6711 return 0; 6712 } 6713 6714 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6715 const struct bpf_insn *insn) 6716 { 6717 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6718 } 6719 6720 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6721 u32 alu_state, u32 alu_limit) 6722 { 6723 /* If we arrived here from different branches with different 6724 * state or limits to sanitize, then this won't work. 6725 */ 6726 if (aux->alu_state && 6727 (aux->alu_state != alu_state || 6728 aux->alu_limit != alu_limit)) 6729 return REASON_PATHS; 6730 6731 /* Corresponding fixup done in do_misc_fixups(). */ 6732 aux->alu_state = alu_state; 6733 aux->alu_limit = alu_limit; 6734 return 0; 6735 } 6736 6737 static int sanitize_val_alu(struct bpf_verifier_env *env, 6738 struct bpf_insn *insn) 6739 { 6740 struct bpf_insn_aux_data *aux = cur_aux(env); 6741 6742 if (can_skip_alu_sanitation(env, insn)) 6743 return 0; 6744 6745 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6746 } 6747 6748 static bool sanitize_needed(u8 opcode) 6749 { 6750 return opcode == BPF_ADD || opcode == BPF_SUB; 6751 } 6752 6753 struct bpf_sanitize_info { 6754 struct bpf_insn_aux_data aux; 6755 bool mask_to_left; 6756 }; 6757 6758 static struct bpf_verifier_state * 6759 sanitize_speculative_path(struct bpf_verifier_env *env, 6760 const struct bpf_insn *insn, 6761 u32 next_idx, u32 curr_idx) 6762 { 6763 struct bpf_verifier_state *branch; 6764 struct bpf_reg_state *regs; 6765 6766 branch = push_stack(env, next_idx, curr_idx, true); 6767 if (branch && insn) { 6768 regs = branch->frame[branch->curframe]->regs; 6769 if (BPF_SRC(insn->code) == BPF_K) { 6770 mark_reg_unknown(env, regs, insn->dst_reg); 6771 } else if (BPF_SRC(insn->code) == BPF_X) { 6772 mark_reg_unknown(env, regs, insn->dst_reg); 6773 mark_reg_unknown(env, regs, insn->src_reg); 6774 } 6775 } 6776 return branch; 6777 } 6778 6779 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6780 struct bpf_insn *insn, 6781 const struct bpf_reg_state *ptr_reg, 6782 const struct bpf_reg_state *off_reg, 6783 struct bpf_reg_state *dst_reg, 6784 struct bpf_sanitize_info *info, 6785 const bool commit_window) 6786 { 6787 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 6788 struct bpf_verifier_state *vstate = env->cur_state; 6789 bool off_is_imm = tnum_is_const(off_reg->var_off); 6790 bool off_is_neg = off_reg->smin_value < 0; 6791 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6792 u8 opcode = BPF_OP(insn->code); 6793 u32 alu_state, alu_limit; 6794 struct bpf_reg_state tmp; 6795 bool ret; 6796 int err; 6797 6798 if (can_skip_alu_sanitation(env, insn)) 6799 return 0; 6800 6801 /* We already marked aux for masking from non-speculative 6802 * paths, thus we got here in the first place. We only care 6803 * to explore bad access from here. 6804 */ 6805 if (vstate->speculative) 6806 goto do_sim; 6807 6808 if (!commit_window) { 6809 if (!tnum_is_const(off_reg->var_off) && 6810 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 6811 return REASON_BOUNDS; 6812 6813 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 6814 (opcode == BPF_SUB && !off_is_neg); 6815 } 6816 6817 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 6818 if (err < 0) 6819 return err; 6820 6821 if (commit_window) { 6822 /* In commit phase we narrow the masking window based on 6823 * the observed pointer move after the simulated operation. 6824 */ 6825 alu_state = info->aux.alu_state; 6826 alu_limit = abs(info->aux.alu_limit - alu_limit); 6827 } else { 6828 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 6829 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 6830 alu_state |= ptr_is_dst_reg ? 6831 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 6832 6833 /* Limit pruning on unknown scalars to enable deep search for 6834 * potential masking differences from other program paths. 6835 */ 6836 if (!off_is_imm) 6837 env->explore_alu_limits = true; 6838 } 6839 6840 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 6841 if (err < 0) 6842 return err; 6843 do_sim: 6844 /* If we're in commit phase, we're done here given we already 6845 * pushed the truncated dst_reg into the speculative verification 6846 * stack. 6847 * 6848 * Also, when register is a known constant, we rewrite register-based 6849 * operation to immediate-based, and thus do not need masking (and as 6850 * a consequence, do not need to simulate the zero-truncation either). 6851 */ 6852 if (commit_window || off_is_imm) 6853 return 0; 6854 6855 /* Simulate and find potential out-of-bounds access under 6856 * speculative execution from truncation as a result of 6857 * masking when off was not within expected range. If off 6858 * sits in dst, then we temporarily need to move ptr there 6859 * to simulate dst (== 0) +/-= ptr. Needed, for example, 6860 * for cases where we use K-based arithmetic in one direction 6861 * and truncated reg-based in the other in order to explore 6862 * bad access. 6863 */ 6864 if (!ptr_is_dst_reg) { 6865 tmp = *dst_reg; 6866 *dst_reg = *ptr_reg; 6867 } 6868 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 6869 env->insn_idx); 6870 if (!ptr_is_dst_reg && ret) 6871 *dst_reg = tmp; 6872 return !ret ? REASON_STACK : 0; 6873 } 6874 6875 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 6876 { 6877 struct bpf_verifier_state *vstate = env->cur_state; 6878 6879 /* If we simulate paths under speculation, we don't update the 6880 * insn as 'seen' such that when we verify unreachable paths in 6881 * the non-speculative domain, sanitize_dead_code() can still 6882 * rewrite/sanitize them. 6883 */ 6884 if (!vstate->speculative) 6885 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 6886 } 6887 6888 static int sanitize_err(struct bpf_verifier_env *env, 6889 const struct bpf_insn *insn, int reason, 6890 const struct bpf_reg_state *off_reg, 6891 const struct bpf_reg_state *dst_reg) 6892 { 6893 static const char *err = "pointer arithmetic with it prohibited for !root"; 6894 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 6895 u32 dst = insn->dst_reg, src = insn->src_reg; 6896 6897 switch (reason) { 6898 case REASON_BOUNDS: 6899 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 6900 off_reg == dst_reg ? dst : src, err); 6901 break; 6902 case REASON_TYPE: 6903 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 6904 off_reg == dst_reg ? src : dst, err); 6905 break; 6906 case REASON_PATHS: 6907 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 6908 dst, op, err); 6909 break; 6910 case REASON_LIMIT: 6911 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 6912 dst, op, err); 6913 break; 6914 case REASON_STACK: 6915 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 6916 dst, err); 6917 break; 6918 default: 6919 verbose(env, "verifier internal error: unknown reason (%d)\n", 6920 reason); 6921 break; 6922 } 6923 6924 return -EACCES; 6925 } 6926 6927 /* check that stack access falls within stack limits and that 'reg' doesn't 6928 * have a variable offset. 6929 * 6930 * Variable offset is prohibited for unprivileged mode for simplicity since it 6931 * requires corresponding support in Spectre masking for stack ALU. See also 6932 * retrieve_ptr_limit(). 6933 * 6934 * 6935 * 'off' includes 'reg->off'. 6936 */ 6937 static int check_stack_access_for_ptr_arithmetic( 6938 struct bpf_verifier_env *env, 6939 int regno, 6940 const struct bpf_reg_state *reg, 6941 int off) 6942 { 6943 if (!tnum_is_const(reg->var_off)) { 6944 char tn_buf[48]; 6945 6946 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6947 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 6948 regno, tn_buf, off); 6949 return -EACCES; 6950 } 6951 6952 if (off >= 0 || off < -MAX_BPF_STACK) { 6953 verbose(env, "R%d stack pointer arithmetic goes out of range, " 6954 "prohibited for !root; off=%d\n", regno, off); 6955 return -EACCES; 6956 } 6957 6958 return 0; 6959 } 6960 6961 static int sanitize_check_bounds(struct bpf_verifier_env *env, 6962 const struct bpf_insn *insn, 6963 const struct bpf_reg_state *dst_reg) 6964 { 6965 u32 dst = insn->dst_reg; 6966 6967 /* For unprivileged we require that resulting offset must be in bounds 6968 * in order to be able to sanitize access later on. 6969 */ 6970 if (env->bypass_spec_v1) 6971 return 0; 6972 6973 switch (dst_reg->type) { 6974 case PTR_TO_STACK: 6975 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 6976 dst_reg->off + dst_reg->var_off.value)) 6977 return -EACCES; 6978 break; 6979 case PTR_TO_MAP_VALUE: 6980 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 6981 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 6982 "prohibited for !root\n", dst); 6983 return -EACCES; 6984 } 6985 break; 6986 default: 6987 break; 6988 } 6989 6990 return 0; 6991 } 6992 6993 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 6994 * Caller should also handle BPF_MOV case separately. 6995 * If we return -EACCES, caller may want to try again treating pointer as a 6996 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 6997 */ 6998 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 6999 struct bpf_insn *insn, 7000 const struct bpf_reg_state *ptr_reg, 7001 const struct bpf_reg_state *off_reg) 7002 { 7003 struct bpf_verifier_state *vstate = env->cur_state; 7004 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7005 struct bpf_reg_state *regs = state->regs, *dst_reg; 7006 bool known = tnum_is_const(off_reg->var_off); 7007 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7008 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7009 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7010 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7011 struct bpf_sanitize_info info = {}; 7012 u8 opcode = BPF_OP(insn->code); 7013 u32 dst = insn->dst_reg; 7014 int ret; 7015 7016 dst_reg = ®s[dst]; 7017 7018 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7019 smin_val > smax_val || umin_val > umax_val) { 7020 /* Taint dst register if offset had invalid bounds derived from 7021 * e.g. dead branches. 7022 */ 7023 __mark_reg_unknown(env, dst_reg); 7024 return 0; 7025 } 7026 7027 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7028 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7029 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7030 __mark_reg_unknown(env, dst_reg); 7031 return 0; 7032 } 7033 7034 verbose(env, 7035 "R%d 32-bit pointer arithmetic prohibited\n", 7036 dst); 7037 return -EACCES; 7038 } 7039 7040 switch (ptr_reg->type) { 7041 case PTR_TO_MAP_VALUE_OR_NULL: 7042 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7043 dst, reg_type_str[ptr_reg->type]); 7044 return -EACCES; 7045 case CONST_PTR_TO_MAP: 7046 /* smin_val represents the known value */ 7047 if (known && smin_val == 0 && opcode == BPF_ADD) 7048 break; 7049 fallthrough; 7050 case PTR_TO_PACKET_END: 7051 case PTR_TO_SOCKET: 7052 case PTR_TO_SOCKET_OR_NULL: 7053 case PTR_TO_SOCK_COMMON: 7054 case PTR_TO_SOCK_COMMON_OR_NULL: 7055 case PTR_TO_TCP_SOCK: 7056 case PTR_TO_TCP_SOCK_OR_NULL: 7057 case PTR_TO_XDP_SOCK: 7058 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7059 dst, reg_type_str[ptr_reg->type]); 7060 return -EACCES; 7061 default: 7062 break; 7063 } 7064 7065 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7066 * The id may be overwritten later if we create a new variable offset. 7067 */ 7068 dst_reg->type = ptr_reg->type; 7069 dst_reg->id = ptr_reg->id; 7070 7071 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7072 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7073 return -EINVAL; 7074 7075 /* pointer types do not carry 32-bit bounds at the moment. */ 7076 __mark_reg32_unbounded(dst_reg); 7077 7078 if (sanitize_needed(opcode)) { 7079 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7080 &info, false); 7081 if (ret < 0) 7082 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7083 } 7084 7085 switch (opcode) { 7086 case BPF_ADD: 7087 /* We can take a fixed offset as long as it doesn't overflow 7088 * the s32 'off' field 7089 */ 7090 if (known && (ptr_reg->off + smin_val == 7091 (s64)(s32)(ptr_reg->off + smin_val))) { 7092 /* pointer += K. Accumulate it into fixed offset */ 7093 dst_reg->smin_value = smin_ptr; 7094 dst_reg->smax_value = smax_ptr; 7095 dst_reg->umin_value = umin_ptr; 7096 dst_reg->umax_value = umax_ptr; 7097 dst_reg->var_off = ptr_reg->var_off; 7098 dst_reg->off = ptr_reg->off + smin_val; 7099 dst_reg->raw = ptr_reg->raw; 7100 break; 7101 } 7102 /* A new variable offset is created. Note that off_reg->off 7103 * == 0, since it's a scalar. 7104 * dst_reg gets the pointer type and since some positive 7105 * integer value was added to the pointer, give it a new 'id' 7106 * if it's a PTR_TO_PACKET. 7107 * this creates a new 'base' pointer, off_reg (variable) gets 7108 * added into the variable offset, and we copy the fixed offset 7109 * from ptr_reg. 7110 */ 7111 if (signed_add_overflows(smin_ptr, smin_val) || 7112 signed_add_overflows(smax_ptr, smax_val)) { 7113 dst_reg->smin_value = S64_MIN; 7114 dst_reg->smax_value = S64_MAX; 7115 } else { 7116 dst_reg->smin_value = smin_ptr + smin_val; 7117 dst_reg->smax_value = smax_ptr + smax_val; 7118 } 7119 if (umin_ptr + umin_val < umin_ptr || 7120 umax_ptr + umax_val < umax_ptr) { 7121 dst_reg->umin_value = 0; 7122 dst_reg->umax_value = U64_MAX; 7123 } else { 7124 dst_reg->umin_value = umin_ptr + umin_val; 7125 dst_reg->umax_value = umax_ptr + umax_val; 7126 } 7127 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7128 dst_reg->off = ptr_reg->off; 7129 dst_reg->raw = ptr_reg->raw; 7130 if (reg_is_pkt_pointer(ptr_reg)) { 7131 dst_reg->id = ++env->id_gen; 7132 /* something was added to pkt_ptr, set range to zero */ 7133 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7134 } 7135 break; 7136 case BPF_SUB: 7137 if (dst_reg == off_reg) { 7138 /* scalar -= pointer. Creates an unknown scalar */ 7139 verbose(env, "R%d tried to subtract pointer from scalar\n", 7140 dst); 7141 return -EACCES; 7142 } 7143 /* We don't allow subtraction from FP, because (according to 7144 * test_verifier.c test "invalid fp arithmetic", JITs might not 7145 * be able to deal with it. 7146 */ 7147 if (ptr_reg->type == PTR_TO_STACK) { 7148 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7149 dst); 7150 return -EACCES; 7151 } 7152 if (known && (ptr_reg->off - smin_val == 7153 (s64)(s32)(ptr_reg->off - smin_val))) { 7154 /* pointer -= K. Subtract it from fixed offset */ 7155 dst_reg->smin_value = smin_ptr; 7156 dst_reg->smax_value = smax_ptr; 7157 dst_reg->umin_value = umin_ptr; 7158 dst_reg->umax_value = umax_ptr; 7159 dst_reg->var_off = ptr_reg->var_off; 7160 dst_reg->id = ptr_reg->id; 7161 dst_reg->off = ptr_reg->off - smin_val; 7162 dst_reg->raw = ptr_reg->raw; 7163 break; 7164 } 7165 /* A new variable offset is created. If the subtrahend is known 7166 * nonnegative, then any reg->range we had before is still good. 7167 */ 7168 if (signed_sub_overflows(smin_ptr, smax_val) || 7169 signed_sub_overflows(smax_ptr, smin_val)) { 7170 /* Overflow possible, we know nothing */ 7171 dst_reg->smin_value = S64_MIN; 7172 dst_reg->smax_value = S64_MAX; 7173 } else { 7174 dst_reg->smin_value = smin_ptr - smax_val; 7175 dst_reg->smax_value = smax_ptr - smin_val; 7176 } 7177 if (umin_ptr < umax_val) { 7178 /* Overflow possible, we know nothing */ 7179 dst_reg->umin_value = 0; 7180 dst_reg->umax_value = U64_MAX; 7181 } else { 7182 /* Cannot overflow (as long as bounds are consistent) */ 7183 dst_reg->umin_value = umin_ptr - umax_val; 7184 dst_reg->umax_value = umax_ptr - umin_val; 7185 } 7186 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7187 dst_reg->off = ptr_reg->off; 7188 dst_reg->raw = ptr_reg->raw; 7189 if (reg_is_pkt_pointer(ptr_reg)) { 7190 dst_reg->id = ++env->id_gen; 7191 /* something was added to pkt_ptr, set range to zero */ 7192 if (smin_val < 0) 7193 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7194 } 7195 break; 7196 case BPF_AND: 7197 case BPF_OR: 7198 case BPF_XOR: 7199 /* bitwise ops on pointers are troublesome, prohibit. */ 7200 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7201 dst, bpf_alu_string[opcode >> 4]); 7202 return -EACCES; 7203 default: 7204 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7205 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7206 dst, bpf_alu_string[opcode >> 4]); 7207 return -EACCES; 7208 } 7209 7210 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7211 return -EINVAL; 7212 7213 __update_reg_bounds(dst_reg); 7214 __reg_deduce_bounds(dst_reg); 7215 __reg_bound_offset(dst_reg); 7216 7217 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7218 return -EACCES; 7219 if (sanitize_needed(opcode)) { 7220 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7221 &info, true); 7222 if (ret < 0) 7223 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7224 } 7225 7226 return 0; 7227 } 7228 7229 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7230 struct bpf_reg_state *src_reg) 7231 { 7232 s32 smin_val = src_reg->s32_min_value; 7233 s32 smax_val = src_reg->s32_max_value; 7234 u32 umin_val = src_reg->u32_min_value; 7235 u32 umax_val = src_reg->u32_max_value; 7236 7237 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7238 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7239 dst_reg->s32_min_value = S32_MIN; 7240 dst_reg->s32_max_value = S32_MAX; 7241 } else { 7242 dst_reg->s32_min_value += smin_val; 7243 dst_reg->s32_max_value += smax_val; 7244 } 7245 if (dst_reg->u32_min_value + umin_val < umin_val || 7246 dst_reg->u32_max_value + umax_val < umax_val) { 7247 dst_reg->u32_min_value = 0; 7248 dst_reg->u32_max_value = U32_MAX; 7249 } else { 7250 dst_reg->u32_min_value += umin_val; 7251 dst_reg->u32_max_value += umax_val; 7252 } 7253 } 7254 7255 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7256 struct bpf_reg_state *src_reg) 7257 { 7258 s64 smin_val = src_reg->smin_value; 7259 s64 smax_val = src_reg->smax_value; 7260 u64 umin_val = src_reg->umin_value; 7261 u64 umax_val = src_reg->umax_value; 7262 7263 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7264 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7265 dst_reg->smin_value = S64_MIN; 7266 dst_reg->smax_value = S64_MAX; 7267 } else { 7268 dst_reg->smin_value += smin_val; 7269 dst_reg->smax_value += smax_val; 7270 } 7271 if (dst_reg->umin_value + umin_val < umin_val || 7272 dst_reg->umax_value + umax_val < umax_val) { 7273 dst_reg->umin_value = 0; 7274 dst_reg->umax_value = U64_MAX; 7275 } else { 7276 dst_reg->umin_value += umin_val; 7277 dst_reg->umax_value += umax_val; 7278 } 7279 } 7280 7281 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7282 struct bpf_reg_state *src_reg) 7283 { 7284 s32 smin_val = src_reg->s32_min_value; 7285 s32 smax_val = src_reg->s32_max_value; 7286 u32 umin_val = src_reg->u32_min_value; 7287 u32 umax_val = src_reg->u32_max_value; 7288 7289 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7290 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7291 /* Overflow possible, we know nothing */ 7292 dst_reg->s32_min_value = S32_MIN; 7293 dst_reg->s32_max_value = S32_MAX; 7294 } else { 7295 dst_reg->s32_min_value -= smax_val; 7296 dst_reg->s32_max_value -= smin_val; 7297 } 7298 if (dst_reg->u32_min_value < umax_val) { 7299 /* Overflow possible, we know nothing */ 7300 dst_reg->u32_min_value = 0; 7301 dst_reg->u32_max_value = U32_MAX; 7302 } else { 7303 /* Cannot overflow (as long as bounds are consistent) */ 7304 dst_reg->u32_min_value -= umax_val; 7305 dst_reg->u32_max_value -= umin_val; 7306 } 7307 } 7308 7309 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7310 struct bpf_reg_state *src_reg) 7311 { 7312 s64 smin_val = src_reg->smin_value; 7313 s64 smax_val = src_reg->smax_value; 7314 u64 umin_val = src_reg->umin_value; 7315 u64 umax_val = src_reg->umax_value; 7316 7317 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7318 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7319 /* Overflow possible, we know nothing */ 7320 dst_reg->smin_value = S64_MIN; 7321 dst_reg->smax_value = S64_MAX; 7322 } else { 7323 dst_reg->smin_value -= smax_val; 7324 dst_reg->smax_value -= smin_val; 7325 } 7326 if (dst_reg->umin_value < umax_val) { 7327 /* Overflow possible, we know nothing */ 7328 dst_reg->umin_value = 0; 7329 dst_reg->umax_value = U64_MAX; 7330 } else { 7331 /* Cannot overflow (as long as bounds are consistent) */ 7332 dst_reg->umin_value -= umax_val; 7333 dst_reg->umax_value -= umin_val; 7334 } 7335 } 7336 7337 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7338 struct bpf_reg_state *src_reg) 7339 { 7340 s32 smin_val = src_reg->s32_min_value; 7341 u32 umin_val = src_reg->u32_min_value; 7342 u32 umax_val = src_reg->u32_max_value; 7343 7344 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7345 /* Ain't nobody got time to multiply that sign */ 7346 __mark_reg32_unbounded(dst_reg); 7347 return; 7348 } 7349 /* Both values are positive, so we can work with unsigned and 7350 * copy the result to signed (unless it exceeds S32_MAX). 7351 */ 7352 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7353 /* Potential overflow, we know nothing */ 7354 __mark_reg32_unbounded(dst_reg); 7355 return; 7356 } 7357 dst_reg->u32_min_value *= umin_val; 7358 dst_reg->u32_max_value *= umax_val; 7359 if (dst_reg->u32_max_value > S32_MAX) { 7360 /* Overflow possible, we know nothing */ 7361 dst_reg->s32_min_value = S32_MIN; 7362 dst_reg->s32_max_value = S32_MAX; 7363 } else { 7364 dst_reg->s32_min_value = dst_reg->u32_min_value; 7365 dst_reg->s32_max_value = dst_reg->u32_max_value; 7366 } 7367 } 7368 7369 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7370 struct bpf_reg_state *src_reg) 7371 { 7372 s64 smin_val = src_reg->smin_value; 7373 u64 umin_val = src_reg->umin_value; 7374 u64 umax_val = src_reg->umax_value; 7375 7376 if (smin_val < 0 || dst_reg->smin_value < 0) { 7377 /* Ain't nobody got time to multiply that sign */ 7378 __mark_reg64_unbounded(dst_reg); 7379 return; 7380 } 7381 /* Both values are positive, so we can work with unsigned and 7382 * copy the result to signed (unless it exceeds S64_MAX). 7383 */ 7384 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7385 /* Potential overflow, we know nothing */ 7386 __mark_reg64_unbounded(dst_reg); 7387 return; 7388 } 7389 dst_reg->umin_value *= umin_val; 7390 dst_reg->umax_value *= umax_val; 7391 if (dst_reg->umax_value > S64_MAX) { 7392 /* Overflow possible, we know nothing */ 7393 dst_reg->smin_value = S64_MIN; 7394 dst_reg->smax_value = S64_MAX; 7395 } else { 7396 dst_reg->smin_value = dst_reg->umin_value; 7397 dst_reg->smax_value = dst_reg->umax_value; 7398 } 7399 } 7400 7401 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7402 struct bpf_reg_state *src_reg) 7403 { 7404 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7405 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7406 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7407 s32 smin_val = src_reg->s32_min_value; 7408 u32 umax_val = src_reg->u32_max_value; 7409 7410 if (src_known && dst_known) { 7411 __mark_reg32_known(dst_reg, var32_off.value); 7412 return; 7413 } 7414 7415 /* We get our minimum from the var_off, since that's inherently 7416 * bitwise. Our maximum is the minimum of the operands' maxima. 7417 */ 7418 dst_reg->u32_min_value = var32_off.value; 7419 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7420 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7421 /* Lose signed bounds when ANDing negative numbers, 7422 * ain't nobody got time for that. 7423 */ 7424 dst_reg->s32_min_value = S32_MIN; 7425 dst_reg->s32_max_value = S32_MAX; 7426 } else { 7427 /* ANDing two positives gives a positive, so safe to 7428 * cast result into s64. 7429 */ 7430 dst_reg->s32_min_value = dst_reg->u32_min_value; 7431 dst_reg->s32_max_value = dst_reg->u32_max_value; 7432 } 7433 } 7434 7435 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7436 struct bpf_reg_state *src_reg) 7437 { 7438 bool src_known = tnum_is_const(src_reg->var_off); 7439 bool dst_known = tnum_is_const(dst_reg->var_off); 7440 s64 smin_val = src_reg->smin_value; 7441 u64 umax_val = src_reg->umax_value; 7442 7443 if (src_known && dst_known) { 7444 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7445 return; 7446 } 7447 7448 /* We get our minimum from the var_off, since that's inherently 7449 * bitwise. Our maximum is the minimum of the operands' maxima. 7450 */ 7451 dst_reg->umin_value = dst_reg->var_off.value; 7452 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7453 if (dst_reg->smin_value < 0 || smin_val < 0) { 7454 /* Lose signed bounds when ANDing negative numbers, 7455 * ain't nobody got time for that. 7456 */ 7457 dst_reg->smin_value = S64_MIN; 7458 dst_reg->smax_value = S64_MAX; 7459 } else { 7460 /* ANDing two positives gives a positive, so safe to 7461 * cast result into s64. 7462 */ 7463 dst_reg->smin_value = dst_reg->umin_value; 7464 dst_reg->smax_value = dst_reg->umax_value; 7465 } 7466 /* We may learn something more from the var_off */ 7467 __update_reg_bounds(dst_reg); 7468 } 7469 7470 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7471 struct bpf_reg_state *src_reg) 7472 { 7473 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7474 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7475 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7476 s32 smin_val = src_reg->s32_min_value; 7477 u32 umin_val = src_reg->u32_min_value; 7478 7479 if (src_known && dst_known) { 7480 __mark_reg32_known(dst_reg, var32_off.value); 7481 return; 7482 } 7483 7484 /* We get our maximum from the var_off, and our minimum is the 7485 * maximum of the operands' minima 7486 */ 7487 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7488 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7489 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7490 /* Lose signed bounds when ORing negative numbers, 7491 * ain't nobody got time for that. 7492 */ 7493 dst_reg->s32_min_value = S32_MIN; 7494 dst_reg->s32_max_value = S32_MAX; 7495 } else { 7496 /* ORing two positives gives a positive, so safe to 7497 * cast result into s64. 7498 */ 7499 dst_reg->s32_min_value = dst_reg->u32_min_value; 7500 dst_reg->s32_max_value = dst_reg->u32_max_value; 7501 } 7502 } 7503 7504 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7505 struct bpf_reg_state *src_reg) 7506 { 7507 bool src_known = tnum_is_const(src_reg->var_off); 7508 bool dst_known = tnum_is_const(dst_reg->var_off); 7509 s64 smin_val = src_reg->smin_value; 7510 u64 umin_val = src_reg->umin_value; 7511 7512 if (src_known && dst_known) { 7513 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7514 return; 7515 } 7516 7517 /* We get our maximum from the var_off, and our minimum is the 7518 * maximum of the operands' minima 7519 */ 7520 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7521 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7522 if (dst_reg->smin_value < 0 || smin_val < 0) { 7523 /* Lose signed bounds when ORing negative numbers, 7524 * ain't nobody got time for that. 7525 */ 7526 dst_reg->smin_value = S64_MIN; 7527 dst_reg->smax_value = S64_MAX; 7528 } else { 7529 /* ORing two positives gives a positive, so safe to 7530 * cast result into s64. 7531 */ 7532 dst_reg->smin_value = dst_reg->umin_value; 7533 dst_reg->smax_value = dst_reg->umax_value; 7534 } 7535 /* We may learn something more from the var_off */ 7536 __update_reg_bounds(dst_reg); 7537 } 7538 7539 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7540 struct bpf_reg_state *src_reg) 7541 { 7542 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7543 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7544 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7545 s32 smin_val = src_reg->s32_min_value; 7546 7547 if (src_known && dst_known) { 7548 __mark_reg32_known(dst_reg, var32_off.value); 7549 return; 7550 } 7551 7552 /* We get both minimum and maximum from the var32_off. */ 7553 dst_reg->u32_min_value = var32_off.value; 7554 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7555 7556 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7557 /* XORing two positive sign numbers gives a positive, 7558 * so safe to cast u32 result into s32. 7559 */ 7560 dst_reg->s32_min_value = dst_reg->u32_min_value; 7561 dst_reg->s32_max_value = dst_reg->u32_max_value; 7562 } else { 7563 dst_reg->s32_min_value = S32_MIN; 7564 dst_reg->s32_max_value = S32_MAX; 7565 } 7566 } 7567 7568 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7569 struct bpf_reg_state *src_reg) 7570 { 7571 bool src_known = tnum_is_const(src_reg->var_off); 7572 bool dst_known = tnum_is_const(dst_reg->var_off); 7573 s64 smin_val = src_reg->smin_value; 7574 7575 if (src_known && dst_known) { 7576 /* dst_reg->var_off.value has been updated earlier */ 7577 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7578 return; 7579 } 7580 7581 /* We get both minimum and maximum from the var_off. */ 7582 dst_reg->umin_value = dst_reg->var_off.value; 7583 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7584 7585 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7586 /* XORing two positive sign numbers gives a positive, 7587 * so safe to cast u64 result into s64. 7588 */ 7589 dst_reg->smin_value = dst_reg->umin_value; 7590 dst_reg->smax_value = dst_reg->umax_value; 7591 } else { 7592 dst_reg->smin_value = S64_MIN; 7593 dst_reg->smax_value = S64_MAX; 7594 } 7595 7596 __update_reg_bounds(dst_reg); 7597 } 7598 7599 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7600 u64 umin_val, u64 umax_val) 7601 { 7602 /* We lose all sign bit information (except what we can pick 7603 * up from var_off) 7604 */ 7605 dst_reg->s32_min_value = S32_MIN; 7606 dst_reg->s32_max_value = S32_MAX; 7607 /* If we might shift our top bit out, then we know nothing */ 7608 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7609 dst_reg->u32_min_value = 0; 7610 dst_reg->u32_max_value = U32_MAX; 7611 } else { 7612 dst_reg->u32_min_value <<= umin_val; 7613 dst_reg->u32_max_value <<= umax_val; 7614 } 7615 } 7616 7617 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7618 struct bpf_reg_state *src_reg) 7619 { 7620 u32 umax_val = src_reg->u32_max_value; 7621 u32 umin_val = src_reg->u32_min_value; 7622 /* u32 alu operation will zext upper bits */ 7623 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7624 7625 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7626 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7627 /* Not required but being careful mark reg64 bounds as unknown so 7628 * that we are forced to pick them up from tnum and zext later and 7629 * if some path skips this step we are still safe. 7630 */ 7631 __mark_reg64_unbounded(dst_reg); 7632 __update_reg32_bounds(dst_reg); 7633 } 7634 7635 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7636 u64 umin_val, u64 umax_val) 7637 { 7638 /* Special case <<32 because it is a common compiler pattern to sign 7639 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7640 * positive we know this shift will also be positive so we can track 7641 * bounds correctly. Otherwise we lose all sign bit information except 7642 * what we can pick up from var_off. Perhaps we can generalize this 7643 * later to shifts of any length. 7644 */ 7645 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7646 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7647 else 7648 dst_reg->smax_value = S64_MAX; 7649 7650 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7651 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7652 else 7653 dst_reg->smin_value = S64_MIN; 7654 7655 /* If we might shift our top bit out, then we know nothing */ 7656 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7657 dst_reg->umin_value = 0; 7658 dst_reg->umax_value = U64_MAX; 7659 } else { 7660 dst_reg->umin_value <<= umin_val; 7661 dst_reg->umax_value <<= umax_val; 7662 } 7663 } 7664 7665 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7666 struct bpf_reg_state *src_reg) 7667 { 7668 u64 umax_val = src_reg->umax_value; 7669 u64 umin_val = src_reg->umin_value; 7670 7671 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7672 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7673 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7674 7675 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7676 /* We may learn something more from the var_off */ 7677 __update_reg_bounds(dst_reg); 7678 } 7679 7680 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7681 struct bpf_reg_state *src_reg) 7682 { 7683 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7684 u32 umax_val = src_reg->u32_max_value; 7685 u32 umin_val = src_reg->u32_min_value; 7686 7687 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7688 * be negative, then either: 7689 * 1) src_reg might be zero, so the sign bit of the result is 7690 * unknown, so we lose our signed bounds 7691 * 2) it's known negative, thus the unsigned bounds capture the 7692 * signed bounds 7693 * 3) the signed bounds cross zero, so they tell us nothing 7694 * about the result 7695 * If the value in dst_reg is known nonnegative, then again the 7696 * unsigned bounds capture the signed bounds. 7697 * Thus, in all cases it suffices to blow away our signed bounds 7698 * and rely on inferring new ones from the unsigned bounds and 7699 * var_off of the result. 7700 */ 7701 dst_reg->s32_min_value = S32_MIN; 7702 dst_reg->s32_max_value = S32_MAX; 7703 7704 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7705 dst_reg->u32_min_value >>= umax_val; 7706 dst_reg->u32_max_value >>= umin_val; 7707 7708 __mark_reg64_unbounded(dst_reg); 7709 __update_reg32_bounds(dst_reg); 7710 } 7711 7712 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7713 struct bpf_reg_state *src_reg) 7714 { 7715 u64 umax_val = src_reg->umax_value; 7716 u64 umin_val = src_reg->umin_value; 7717 7718 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7719 * be negative, then either: 7720 * 1) src_reg might be zero, so the sign bit of the result is 7721 * unknown, so we lose our signed bounds 7722 * 2) it's known negative, thus the unsigned bounds capture the 7723 * signed bounds 7724 * 3) the signed bounds cross zero, so they tell us nothing 7725 * about the result 7726 * If the value in dst_reg is known nonnegative, then again the 7727 * unsigned bounds capture the signed bounds. 7728 * Thus, in all cases it suffices to blow away our signed bounds 7729 * and rely on inferring new ones from the unsigned bounds and 7730 * var_off of the result. 7731 */ 7732 dst_reg->smin_value = S64_MIN; 7733 dst_reg->smax_value = S64_MAX; 7734 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7735 dst_reg->umin_value >>= umax_val; 7736 dst_reg->umax_value >>= umin_val; 7737 7738 /* Its not easy to operate on alu32 bounds here because it depends 7739 * on bits being shifted in. Take easy way out and mark unbounded 7740 * so we can recalculate later from tnum. 7741 */ 7742 __mark_reg32_unbounded(dst_reg); 7743 __update_reg_bounds(dst_reg); 7744 } 7745 7746 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7747 struct bpf_reg_state *src_reg) 7748 { 7749 u64 umin_val = src_reg->u32_min_value; 7750 7751 /* Upon reaching here, src_known is true and 7752 * umax_val is equal to umin_val. 7753 */ 7754 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7755 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7756 7757 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7758 7759 /* blow away the dst_reg umin_value/umax_value and rely on 7760 * dst_reg var_off to refine the result. 7761 */ 7762 dst_reg->u32_min_value = 0; 7763 dst_reg->u32_max_value = U32_MAX; 7764 7765 __mark_reg64_unbounded(dst_reg); 7766 __update_reg32_bounds(dst_reg); 7767 } 7768 7769 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7770 struct bpf_reg_state *src_reg) 7771 { 7772 u64 umin_val = src_reg->umin_value; 7773 7774 /* Upon reaching here, src_known is true and umax_val is equal 7775 * to umin_val. 7776 */ 7777 dst_reg->smin_value >>= umin_val; 7778 dst_reg->smax_value >>= umin_val; 7779 7780 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7781 7782 /* blow away the dst_reg umin_value/umax_value and rely on 7783 * dst_reg var_off to refine the result. 7784 */ 7785 dst_reg->umin_value = 0; 7786 dst_reg->umax_value = U64_MAX; 7787 7788 /* Its not easy to operate on alu32 bounds here because it depends 7789 * on bits being shifted in from upper 32-bits. Take easy way out 7790 * and mark unbounded so we can recalculate later from tnum. 7791 */ 7792 __mark_reg32_unbounded(dst_reg); 7793 __update_reg_bounds(dst_reg); 7794 } 7795 7796 /* WARNING: This function does calculations on 64-bit values, but the actual 7797 * execution may occur on 32-bit values. Therefore, things like bitshifts 7798 * need extra checks in the 32-bit case. 7799 */ 7800 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 7801 struct bpf_insn *insn, 7802 struct bpf_reg_state *dst_reg, 7803 struct bpf_reg_state src_reg) 7804 { 7805 struct bpf_reg_state *regs = cur_regs(env); 7806 u8 opcode = BPF_OP(insn->code); 7807 bool src_known; 7808 s64 smin_val, smax_val; 7809 u64 umin_val, umax_val; 7810 s32 s32_min_val, s32_max_val; 7811 u32 u32_min_val, u32_max_val; 7812 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 7813 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 7814 int ret; 7815 7816 smin_val = src_reg.smin_value; 7817 smax_val = src_reg.smax_value; 7818 umin_val = src_reg.umin_value; 7819 umax_val = src_reg.umax_value; 7820 7821 s32_min_val = src_reg.s32_min_value; 7822 s32_max_val = src_reg.s32_max_value; 7823 u32_min_val = src_reg.u32_min_value; 7824 u32_max_val = src_reg.u32_max_value; 7825 7826 if (alu32) { 7827 src_known = tnum_subreg_is_const(src_reg.var_off); 7828 if ((src_known && 7829 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 7830 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 7831 /* Taint dst register if offset had invalid bounds 7832 * derived from e.g. dead branches. 7833 */ 7834 __mark_reg_unknown(env, dst_reg); 7835 return 0; 7836 } 7837 } else { 7838 src_known = tnum_is_const(src_reg.var_off); 7839 if ((src_known && 7840 (smin_val != smax_val || umin_val != umax_val)) || 7841 smin_val > smax_val || umin_val > umax_val) { 7842 /* Taint dst register if offset had invalid bounds 7843 * derived from e.g. dead branches. 7844 */ 7845 __mark_reg_unknown(env, dst_reg); 7846 return 0; 7847 } 7848 } 7849 7850 if (!src_known && 7851 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 7852 __mark_reg_unknown(env, dst_reg); 7853 return 0; 7854 } 7855 7856 if (sanitize_needed(opcode)) { 7857 ret = sanitize_val_alu(env, insn); 7858 if (ret < 0) 7859 return sanitize_err(env, insn, ret, NULL, NULL); 7860 } 7861 7862 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 7863 * There are two classes of instructions: The first class we track both 7864 * alu32 and alu64 sign/unsigned bounds independently this provides the 7865 * greatest amount of precision when alu operations are mixed with jmp32 7866 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 7867 * and BPF_OR. This is possible because these ops have fairly easy to 7868 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 7869 * See alu32 verifier tests for examples. The second class of 7870 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 7871 * with regards to tracking sign/unsigned bounds because the bits may 7872 * cross subreg boundaries in the alu64 case. When this happens we mark 7873 * the reg unbounded in the subreg bound space and use the resulting 7874 * tnum to calculate an approximation of the sign/unsigned bounds. 7875 */ 7876 switch (opcode) { 7877 case BPF_ADD: 7878 scalar32_min_max_add(dst_reg, &src_reg); 7879 scalar_min_max_add(dst_reg, &src_reg); 7880 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 7881 break; 7882 case BPF_SUB: 7883 scalar32_min_max_sub(dst_reg, &src_reg); 7884 scalar_min_max_sub(dst_reg, &src_reg); 7885 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 7886 break; 7887 case BPF_MUL: 7888 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 7889 scalar32_min_max_mul(dst_reg, &src_reg); 7890 scalar_min_max_mul(dst_reg, &src_reg); 7891 break; 7892 case BPF_AND: 7893 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 7894 scalar32_min_max_and(dst_reg, &src_reg); 7895 scalar_min_max_and(dst_reg, &src_reg); 7896 break; 7897 case BPF_OR: 7898 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 7899 scalar32_min_max_or(dst_reg, &src_reg); 7900 scalar_min_max_or(dst_reg, &src_reg); 7901 break; 7902 case BPF_XOR: 7903 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 7904 scalar32_min_max_xor(dst_reg, &src_reg); 7905 scalar_min_max_xor(dst_reg, &src_reg); 7906 break; 7907 case BPF_LSH: 7908 if (umax_val >= insn_bitness) { 7909 /* Shifts greater than 31 or 63 are undefined. 7910 * This includes shifts by a negative number. 7911 */ 7912 mark_reg_unknown(env, regs, insn->dst_reg); 7913 break; 7914 } 7915 if (alu32) 7916 scalar32_min_max_lsh(dst_reg, &src_reg); 7917 else 7918 scalar_min_max_lsh(dst_reg, &src_reg); 7919 break; 7920 case BPF_RSH: 7921 if (umax_val >= insn_bitness) { 7922 /* Shifts greater than 31 or 63 are undefined. 7923 * This includes shifts by a negative number. 7924 */ 7925 mark_reg_unknown(env, regs, insn->dst_reg); 7926 break; 7927 } 7928 if (alu32) 7929 scalar32_min_max_rsh(dst_reg, &src_reg); 7930 else 7931 scalar_min_max_rsh(dst_reg, &src_reg); 7932 break; 7933 case BPF_ARSH: 7934 if (umax_val >= insn_bitness) { 7935 /* Shifts greater than 31 or 63 are undefined. 7936 * This includes shifts by a negative number. 7937 */ 7938 mark_reg_unknown(env, regs, insn->dst_reg); 7939 break; 7940 } 7941 if (alu32) 7942 scalar32_min_max_arsh(dst_reg, &src_reg); 7943 else 7944 scalar_min_max_arsh(dst_reg, &src_reg); 7945 break; 7946 default: 7947 mark_reg_unknown(env, regs, insn->dst_reg); 7948 break; 7949 } 7950 7951 /* ALU32 ops are zero extended into 64bit register */ 7952 if (alu32) 7953 zext_32_to_64(dst_reg); 7954 7955 __update_reg_bounds(dst_reg); 7956 __reg_deduce_bounds(dst_reg); 7957 __reg_bound_offset(dst_reg); 7958 return 0; 7959 } 7960 7961 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 7962 * and var_off. 7963 */ 7964 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 7965 struct bpf_insn *insn) 7966 { 7967 struct bpf_verifier_state *vstate = env->cur_state; 7968 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7969 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 7970 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 7971 u8 opcode = BPF_OP(insn->code); 7972 int err; 7973 7974 dst_reg = ®s[insn->dst_reg]; 7975 src_reg = NULL; 7976 if (dst_reg->type != SCALAR_VALUE) 7977 ptr_reg = dst_reg; 7978 else 7979 /* Make sure ID is cleared otherwise dst_reg min/max could be 7980 * incorrectly propagated into other registers by find_equal_scalars() 7981 */ 7982 dst_reg->id = 0; 7983 if (BPF_SRC(insn->code) == BPF_X) { 7984 src_reg = ®s[insn->src_reg]; 7985 if (src_reg->type != SCALAR_VALUE) { 7986 if (dst_reg->type != SCALAR_VALUE) { 7987 /* Combining two pointers by any ALU op yields 7988 * an arbitrary scalar. Disallow all math except 7989 * pointer subtraction 7990 */ 7991 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7992 mark_reg_unknown(env, regs, insn->dst_reg); 7993 return 0; 7994 } 7995 verbose(env, "R%d pointer %s pointer prohibited\n", 7996 insn->dst_reg, 7997 bpf_alu_string[opcode >> 4]); 7998 return -EACCES; 7999 } else { 8000 /* scalar += pointer 8001 * This is legal, but we have to reverse our 8002 * src/dest handling in computing the range 8003 */ 8004 err = mark_chain_precision(env, insn->dst_reg); 8005 if (err) 8006 return err; 8007 return adjust_ptr_min_max_vals(env, insn, 8008 src_reg, dst_reg); 8009 } 8010 } else if (ptr_reg) { 8011 /* pointer += scalar */ 8012 err = mark_chain_precision(env, insn->src_reg); 8013 if (err) 8014 return err; 8015 return adjust_ptr_min_max_vals(env, insn, 8016 dst_reg, src_reg); 8017 } 8018 } else { 8019 /* Pretend the src is a reg with a known value, since we only 8020 * need to be able to read from this state. 8021 */ 8022 off_reg.type = SCALAR_VALUE; 8023 __mark_reg_known(&off_reg, insn->imm); 8024 src_reg = &off_reg; 8025 if (ptr_reg) /* pointer += K */ 8026 return adjust_ptr_min_max_vals(env, insn, 8027 ptr_reg, src_reg); 8028 } 8029 8030 /* Got here implies adding two SCALAR_VALUEs */ 8031 if (WARN_ON_ONCE(ptr_reg)) { 8032 print_verifier_state(env, state); 8033 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8034 return -EINVAL; 8035 } 8036 if (WARN_ON(!src_reg)) { 8037 print_verifier_state(env, state); 8038 verbose(env, "verifier internal error: no src_reg\n"); 8039 return -EINVAL; 8040 } 8041 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8042 } 8043 8044 /* check validity of 32-bit and 64-bit arithmetic operations */ 8045 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8046 { 8047 struct bpf_reg_state *regs = cur_regs(env); 8048 u8 opcode = BPF_OP(insn->code); 8049 int err; 8050 8051 if (opcode == BPF_END || opcode == BPF_NEG) { 8052 if (opcode == BPF_NEG) { 8053 if (BPF_SRC(insn->code) != 0 || 8054 insn->src_reg != BPF_REG_0 || 8055 insn->off != 0 || insn->imm != 0) { 8056 verbose(env, "BPF_NEG uses reserved fields\n"); 8057 return -EINVAL; 8058 } 8059 } else { 8060 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8061 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8062 BPF_CLASS(insn->code) == BPF_ALU64) { 8063 verbose(env, "BPF_END uses reserved fields\n"); 8064 return -EINVAL; 8065 } 8066 } 8067 8068 /* check src operand */ 8069 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8070 if (err) 8071 return err; 8072 8073 if (is_pointer_value(env, insn->dst_reg)) { 8074 verbose(env, "R%d pointer arithmetic prohibited\n", 8075 insn->dst_reg); 8076 return -EACCES; 8077 } 8078 8079 /* check dest operand */ 8080 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8081 if (err) 8082 return err; 8083 8084 } else if (opcode == BPF_MOV) { 8085 8086 if (BPF_SRC(insn->code) == BPF_X) { 8087 if (insn->imm != 0 || insn->off != 0) { 8088 verbose(env, "BPF_MOV uses reserved fields\n"); 8089 return -EINVAL; 8090 } 8091 8092 /* check src operand */ 8093 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8094 if (err) 8095 return err; 8096 } else { 8097 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8098 verbose(env, "BPF_MOV uses reserved fields\n"); 8099 return -EINVAL; 8100 } 8101 } 8102 8103 /* check dest operand, mark as required later */ 8104 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8105 if (err) 8106 return err; 8107 8108 if (BPF_SRC(insn->code) == BPF_X) { 8109 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8110 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8111 8112 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8113 /* case: R1 = R2 8114 * copy register state to dest reg 8115 */ 8116 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8117 /* Assign src and dst registers the same ID 8118 * that will be used by find_equal_scalars() 8119 * to propagate min/max range. 8120 */ 8121 src_reg->id = ++env->id_gen; 8122 *dst_reg = *src_reg; 8123 dst_reg->live |= REG_LIVE_WRITTEN; 8124 dst_reg->subreg_def = DEF_NOT_SUBREG; 8125 } else { 8126 /* R1 = (u32) R2 */ 8127 if (is_pointer_value(env, insn->src_reg)) { 8128 verbose(env, 8129 "R%d partial copy of pointer\n", 8130 insn->src_reg); 8131 return -EACCES; 8132 } else if (src_reg->type == SCALAR_VALUE) { 8133 *dst_reg = *src_reg; 8134 /* Make sure ID is cleared otherwise 8135 * dst_reg min/max could be incorrectly 8136 * propagated into src_reg by find_equal_scalars() 8137 */ 8138 dst_reg->id = 0; 8139 dst_reg->live |= REG_LIVE_WRITTEN; 8140 dst_reg->subreg_def = env->insn_idx + 1; 8141 } else { 8142 mark_reg_unknown(env, regs, 8143 insn->dst_reg); 8144 } 8145 zext_32_to_64(dst_reg); 8146 } 8147 } else { 8148 /* case: R = imm 8149 * remember the value we stored into this reg 8150 */ 8151 /* clear any state __mark_reg_known doesn't set */ 8152 mark_reg_unknown(env, regs, insn->dst_reg); 8153 regs[insn->dst_reg].type = SCALAR_VALUE; 8154 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8155 __mark_reg_known(regs + insn->dst_reg, 8156 insn->imm); 8157 } else { 8158 __mark_reg_known(regs + insn->dst_reg, 8159 (u32)insn->imm); 8160 } 8161 } 8162 8163 } else if (opcode > BPF_END) { 8164 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8165 return -EINVAL; 8166 8167 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8168 8169 if (BPF_SRC(insn->code) == BPF_X) { 8170 if (insn->imm != 0 || insn->off != 0) { 8171 verbose(env, "BPF_ALU uses reserved fields\n"); 8172 return -EINVAL; 8173 } 8174 /* check src1 operand */ 8175 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8176 if (err) 8177 return err; 8178 } else { 8179 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8180 verbose(env, "BPF_ALU uses reserved fields\n"); 8181 return -EINVAL; 8182 } 8183 } 8184 8185 /* check src2 operand */ 8186 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8187 if (err) 8188 return err; 8189 8190 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8191 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8192 verbose(env, "div by zero\n"); 8193 return -EINVAL; 8194 } 8195 8196 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8197 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8198 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8199 8200 if (insn->imm < 0 || insn->imm >= size) { 8201 verbose(env, "invalid shift %d\n", insn->imm); 8202 return -EINVAL; 8203 } 8204 } 8205 8206 /* check dest operand */ 8207 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8208 if (err) 8209 return err; 8210 8211 return adjust_reg_min_max_vals(env, insn); 8212 } 8213 8214 return 0; 8215 } 8216 8217 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8218 struct bpf_reg_state *dst_reg, 8219 enum bpf_reg_type type, int new_range) 8220 { 8221 struct bpf_reg_state *reg; 8222 int i; 8223 8224 for (i = 0; i < MAX_BPF_REG; i++) { 8225 reg = &state->regs[i]; 8226 if (reg->type == type && reg->id == dst_reg->id) 8227 /* keep the maximum range already checked */ 8228 reg->range = max(reg->range, new_range); 8229 } 8230 8231 bpf_for_each_spilled_reg(i, state, reg) { 8232 if (!reg) 8233 continue; 8234 if (reg->type == type && reg->id == dst_reg->id) 8235 reg->range = max(reg->range, new_range); 8236 } 8237 } 8238 8239 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8240 struct bpf_reg_state *dst_reg, 8241 enum bpf_reg_type type, 8242 bool range_right_open) 8243 { 8244 int new_range, i; 8245 8246 if (dst_reg->off < 0 || 8247 (dst_reg->off == 0 && range_right_open)) 8248 /* This doesn't give us any range */ 8249 return; 8250 8251 if (dst_reg->umax_value > MAX_PACKET_OFF || 8252 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8253 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8254 * than pkt_end, but that's because it's also less than pkt. 8255 */ 8256 return; 8257 8258 new_range = dst_reg->off; 8259 if (range_right_open) 8260 new_range--; 8261 8262 /* Examples for register markings: 8263 * 8264 * pkt_data in dst register: 8265 * 8266 * r2 = r3; 8267 * r2 += 8; 8268 * if (r2 > pkt_end) goto <handle exception> 8269 * <access okay> 8270 * 8271 * r2 = r3; 8272 * r2 += 8; 8273 * if (r2 < pkt_end) goto <access okay> 8274 * <handle exception> 8275 * 8276 * Where: 8277 * r2 == dst_reg, pkt_end == src_reg 8278 * r2=pkt(id=n,off=8,r=0) 8279 * r3=pkt(id=n,off=0,r=0) 8280 * 8281 * pkt_data in src register: 8282 * 8283 * r2 = r3; 8284 * r2 += 8; 8285 * if (pkt_end >= r2) goto <access okay> 8286 * <handle exception> 8287 * 8288 * r2 = r3; 8289 * r2 += 8; 8290 * if (pkt_end <= r2) goto <handle exception> 8291 * <access okay> 8292 * 8293 * Where: 8294 * pkt_end == dst_reg, r2 == src_reg 8295 * r2=pkt(id=n,off=8,r=0) 8296 * r3=pkt(id=n,off=0,r=0) 8297 * 8298 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8299 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8300 * and [r3, r3 + 8-1) respectively is safe to access depending on 8301 * the check. 8302 */ 8303 8304 /* If our ids match, then we must have the same max_value. And we 8305 * don't care about the other reg's fixed offset, since if it's too big 8306 * the range won't allow anything. 8307 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8308 */ 8309 for (i = 0; i <= vstate->curframe; i++) 8310 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8311 new_range); 8312 } 8313 8314 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8315 { 8316 struct tnum subreg = tnum_subreg(reg->var_off); 8317 s32 sval = (s32)val; 8318 8319 switch (opcode) { 8320 case BPF_JEQ: 8321 if (tnum_is_const(subreg)) 8322 return !!tnum_equals_const(subreg, val); 8323 break; 8324 case BPF_JNE: 8325 if (tnum_is_const(subreg)) 8326 return !tnum_equals_const(subreg, val); 8327 break; 8328 case BPF_JSET: 8329 if ((~subreg.mask & subreg.value) & val) 8330 return 1; 8331 if (!((subreg.mask | subreg.value) & val)) 8332 return 0; 8333 break; 8334 case BPF_JGT: 8335 if (reg->u32_min_value > val) 8336 return 1; 8337 else if (reg->u32_max_value <= val) 8338 return 0; 8339 break; 8340 case BPF_JSGT: 8341 if (reg->s32_min_value > sval) 8342 return 1; 8343 else if (reg->s32_max_value <= sval) 8344 return 0; 8345 break; 8346 case BPF_JLT: 8347 if (reg->u32_max_value < val) 8348 return 1; 8349 else if (reg->u32_min_value >= val) 8350 return 0; 8351 break; 8352 case BPF_JSLT: 8353 if (reg->s32_max_value < sval) 8354 return 1; 8355 else if (reg->s32_min_value >= sval) 8356 return 0; 8357 break; 8358 case BPF_JGE: 8359 if (reg->u32_min_value >= val) 8360 return 1; 8361 else if (reg->u32_max_value < val) 8362 return 0; 8363 break; 8364 case BPF_JSGE: 8365 if (reg->s32_min_value >= sval) 8366 return 1; 8367 else if (reg->s32_max_value < sval) 8368 return 0; 8369 break; 8370 case BPF_JLE: 8371 if (reg->u32_max_value <= val) 8372 return 1; 8373 else if (reg->u32_min_value > val) 8374 return 0; 8375 break; 8376 case BPF_JSLE: 8377 if (reg->s32_max_value <= sval) 8378 return 1; 8379 else if (reg->s32_min_value > sval) 8380 return 0; 8381 break; 8382 } 8383 8384 return -1; 8385 } 8386 8387 8388 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8389 { 8390 s64 sval = (s64)val; 8391 8392 switch (opcode) { 8393 case BPF_JEQ: 8394 if (tnum_is_const(reg->var_off)) 8395 return !!tnum_equals_const(reg->var_off, val); 8396 break; 8397 case BPF_JNE: 8398 if (tnum_is_const(reg->var_off)) 8399 return !tnum_equals_const(reg->var_off, val); 8400 break; 8401 case BPF_JSET: 8402 if ((~reg->var_off.mask & reg->var_off.value) & val) 8403 return 1; 8404 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8405 return 0; 8406 break; 8407 case BPF_JGT: 8408 if (reg->umin_value > val) 8409 return 1; 8410 else if (reg->umax_value <= val) 8411 return 0; 8412 break; 8413 case BPF_JSGT: 8414 if (reg->smin_value > sval) 8415 return 1; 8416 else if (reg->smax_value <= sval) 8417 return 0; 8418 break; 8419 case BPF_JLT: 8420 if (reg->umax_value < val) 8421 return 1; 8422 else if (reg->umin_value >= val) 8423 return 0; 8424 break; 8425 case BPF_JSLT: 8426 if (reg->smax_value < sval) 8427 return 1; 8428 else if (reg->smin_value >= sval) 8429 return 0; 8430 break; 8431 case BPF_JGE: 8432 if (reg->umin_value >= val) 8433 return 1; 8434 else if (reg->umax_value < val) 8435 return 0; 8436 break; 8437 case BPF_JSGE: 8438 if (reg->smin_value >= sval) 8439 return 1; 8440 else if (reg->smax_value < sval) 8441 return 0; 8442 break; 8443 case BPF_JLE: 8444 if (reg->umax_value <= val) 8445 return 1; 8446 else if (reg->umin_value > val) 8447 return 0; 8448 break; 8449 case BPF_JSLE: 8450 if (reg->smax_value <= sval) 8451 return 1; 8452 else if (reg->smin_value > sval) 8453 return 0; 8454 break; 8455 } 8456 8457 return -1; 8458 } 8459 8460 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8461 * and return: 8462 * 1 - branch will be taken and "goto target" will be executed 8463 * 0 - branch will not be taken and fall-through to next insn 8464 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8465 * range [0,10] 8466 */ 8467 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8468 bool is_jmp32) 8469 { 8470 if (__is_pointer_value(false, reg)) { 8471 if (!reg_type_not_null(reg->type)) 8472 return -1; 8473 8474 /* If pointer is valid tests against zero will fail so we can 8475 * use this to direct branch taken. 8476 */ 8477 if (val != 0) 8478 return -1; 8479 8480 switch (opcode) { 8481 case BPF_JEQ: 8482 return 0; 8483 case BPF_JNE: 8484 return 1; 8485 default: 8486 return -1; 8487 } 8488 } 8489 8490 if (is_jmp32) 8491 return is_branch32_taken(reg, val, opcode); 8492 return is_branch64_taken(reg, val, opcode); 8493 } 8494 8495 static int flip_opcode(u32 opcode) 8496 { 8497 /* How can we transform "a <op> b" into "b <op> a"? */ 8498 static const u8 opcode_flip[16] = { 8499 /* these stay the same */ 8500 [BPF_JEQ >> 4] = BPF_JEQ, 8501 [BPF_JNE >> 4] = BPF_JNE, 8502 [BPF_JSET >> 4] = BPF_JSET, 8503 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8504 [BPF_JGE >> 4] = BPF_JLE, 8505 [BPF_JGT >> 4] = BPF_JLT, 8506 [BPF_JLE >> 4] = BPF_JGE, 8507 [BPF_JLT >> 4] = BPF_JGT, 8508 [BPF_JSGE >> 4] = BPF_JSLE, 8509 [BPF_JSGT >> 4] = BPF_JSLT, 8510 [BPF_JSLE >> 4] = BPF_JSGE, 8511 [BPF_JSLT >> 4] = BPF_JSGT 8512 }; 8513 return opcode_flip[opcode >> 4]; 8514 } 8515 8516 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8517 struct bpf_reg_state *src_reg, 8518 u8 opcode) 8519 { 8520 struct bpf_reg_state *pkt; 8521 8522 if (src_reg->type == PTR_TO_PACKET_END) { 8523 pkt = dst_reg; 8524 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8525 pkt = src_reg; 8526 opcode = flip_opcode(opcode); 8527 } else { 8528 return -1; 8529 } 8530 8531 if (pkt->range >= 0) 8532 return -1; 8533 8534 switch (opcode) { 8535 case BPF_JLE: 8536 /* pkt <= pkt_end */ 8537 fallthrough; 8538 case BPF_JGT: 8539 /* pkt > pkt_end */ 8540 if (pkt->range == BEYOND_PKT_END) 8541 /* pkt has at last one extra byte beyond pkt_end */ 8542 return opcode == BPF_JGT; 8543 break; 8544 case BPF_JLT: 8545 /* pkt < pkt_end */ 8546 fallthrough; 8547 case BPF_JGE: 8548 /* pkt >= pkt_end */ 8549 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8550 return opcode == BPF_JGE; 8551 break; 8552 } 8553 return -1; 8554 } 8555 8556 /* Adjusts the register min/max values in the case that the dst_reg is the 8557 * variable register that we are working on, and src_reg is a constant or we're 8558 * simply doing a BPF_K check. 8559 * In JEQ/JNE cases we also adjust the var_off values. 8560 */ 8561 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8562 struct bpf_reg_state *false_reg, 8563 u64 val, u32 val32, 8564 u8 opcode, bool is_jmp32) 8565 { 8566 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8567 struct tnum false_64off = false_reg->var_off; 8568 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8569 struct tnum true_64off = true_reg->var_off; 8570 s64 sval = (s64)val; 8571 s32 sval32 = (s32)val32; 8572 8573 /* If the dst_reg is a pointer, we can't learn anything about its 8574 * variable offset from the compare (unless src_reg were a pointer into 8575 * the same object, but we don't bother with that. 8576 * Since false_reg and true_reg have the same type by construction, we 8577 * only need to check one of them for pointerness. 8578 */ 8579 if (__is_pointer_value(false, false_reg)) 8580 return; 8581 8582 switch (opcode) { 8583 case BPF_JEQ: 8584 case BPF_JNE: 8585 { 8586 struct bpf_reg_state *reg = 8587 opcode == BPF_JEQ ? true_reg : false_reg; 8588 8589 /* JEQ/JNE comparison doesn't change the register equivalence. 8590 * r1 = r2; 8591 * if (r1 == 42) goto label; 8592 * ... 8593 * label: // here both r1 and r2 are known to be 42. 8594 * 8595 * Hence when marking register as known preserve it's ID. 8596 */ 8597 if (is_jmp32) 8598 __mark_reg32_known(reg, val32); 8599 else 8600 ___mark_reg_known(reg, val); 8601 break; 8602 } 8603 case BPF_JSET: 8604 if (is_jmp32) { 8605 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8606 if (is_power_of_2(val32)) 8607 true_32off = tnum_or(true_32off, 8608 tnum_const(val32)); 8609 } else { 8610 false_64off = tnum_and(false_64off, tnum_const(~val)); 8611 if (is_power_of_2(val)) 8612 true_64off = tnum_or(true_64off, 8613 tnum_const(val)); 8614 } 8615 break; 8616 case BPF_JGE: 8617 case BPF_JGT: 8618 { 8619 if (is_jmp32) { 8620 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8621 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8622 8623 false_reg->u32_max_value = min(false_reg->u32_max_value, 8624 false_umax); 8625 true_reg->u32_min_value = max(true_reg->u32_min_value, 8626 true_umin); 8627 } else { 8628 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8629 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8630 8631 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8632 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8633 } 8634 break; 8635 } 8636 case BPF_JSGE: 8637 case BPF_JSGT: 8638 { 8639 if (is_jmp32) { 8640 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8641 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8642 8643 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8644 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8645 } else { 8646 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8647 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8648 8649 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8650 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8651 } 8652 break; 8653 } 8654 case BPF_JLE: 8655 case BPF_JLT: 8656 { 8657 if (is_jmp32) { 8658 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8659 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8660 8661 false_reg->u32_min_value = max(false_reg->u32_min_value, 8662 false_umin); 8663 true_reg->u32_max_value = min(true_reg->u32_max_value, 8664 true_umax); 8665 } else { 8666 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8667 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8668 8669 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8670 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8671 } 8672 break; 8673 } 8674 case BPF_JSLE: 8675 case BPF_JSLT: 8676 { 8677 if (is_jmp32) { 8678 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8679 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8680 8681 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8682 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8683 } else { 8684 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8685 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8686 8687 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8688 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8689 } 8690 break; 8691 } 8692 default: 8693 return; 8694 } 8695 8696 if (is_jmp32) { 8697 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8698 tnum_subreg(false_32off)); 8699 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8700 tnum_subreg(true_32off)); 8701 __reg_combine_32_into_64(false_reg); 8702 __reg_combine_32_into_64(true_reg); 8703 } else { 8704 false_reg->var_off = false_64off; 8705 true_reg->var_off = true_64off; 8706 __reg_combine_64_into_32(false_reg); 8707 __reg_combine_64_into_32(true_reg); 8708 } 8709 } 8710 8711 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8712 * the variable reg. 8713 */ 8714 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8715 struct bpf_reg_state *false_reg, 8716 u64 val, u32 val32, 8717 u8 opcode, bool is_jmp32) 8718 { 8719 opcode = flip_opcode(opcode); 8720 /* This uses zero as "not present in table"; luckily the zero opcode, 8721 * BPF_JA, can't get here. 8722 */ 8723 if (opcode) 8724 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8725 } 8726 8727 /* Regs are known to be equal, so intersect their min/max/var_off */ 8728 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8729 struct bpf_reg_state *dst_reg) 8730 { 8731 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8732 dst_reg->umin_value); 8733 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8734 dst_reg->umax_value); 8735 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8736 dst_reg->smin_value); 8737 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8738 dst_reg->smax_value); 8739 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8740 dst_reg->var_off); 8741 /* We might have learned new bounds from the var_off. */ 8742 __update_reg_bounds(src_reg); 8743 __update_reg_bounds(dst_reg); 8744 /* We might have learned something about the sign bit. */ 8745 __reg_deduce_bounds(src_reg); 8746 __reg_deduce_bounds(dst_reg); 8747 /* We might have learned some bits from the bounds. */ 8748 __reg_bound_offset(src_reg); 8749 __reg_bound_offset(dst_reg); 8750 /* Intersecting with the old var_off might have improved our bounds 8751 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8752 * then new var_off is (0; 0x7f...fc) which improves our umax. 8753 */ 8754 __update_reg_bounds(src_reg); 8755 __update_reg_bounds(dst_reg); 8756 } 8757 8758 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8759 struct bpf_reg_state *true_dst, 8760 struct bpf_reg_state *false_src, 8761 struct bpf_reg_state *false_dst, 8762 u8 opcode) 8763 { 8764 switch (opcode) { 8765 case BPF_JEQ: 8766 __reg_combine_min_max(true_src, true_dst); 8767 break; 8768 case BPF_JNE: 8769 __reg_combine_min_max(false_src, false_dst); 8770 break; 8771 } 8772 } 8773 8774 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8775 struct bpf_reg_state *reg, u32 id, 8776 bool is_null) 8777 { 8778 if (reg_type_may_be_null(reg->type) && reg->id == id && 8779 !WARN_ON_ONCE(!reg->id)) { 8780 /* Old offset (both fixed and variable parts) should 8781 * have been known-zero, because we don't allow pointer 8782 * arithmetic on pointers that might be NULL. 8783 */ 8784 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8785 !tnum_equals_const(reg->var_off, 0) || 8786 reg->off)) { 8787 __mark_reg_known_zero(reg); 8788 reg->off = 0; 8789 } 8790 if (is_null) { 8791 reg->type = SCALAR_VALUE; 8792 /* We don't need id and ref_obj_id from this point 8793 * onwards anymore, thus we should better reset it, 8794 * so that state pruning has chances to take effect. 8795 */ 8796 reg->id = 0; 8797 reg->ref_obj_id = 0; 8798 8799 return; 8800 } 8801 8802 mark_ptr_not_null_reg(reg); 8803 8804 if (!reg_may_point_to_spin_lock(reg)) { 8805 /* For not-NULL ptr, reg->ref_obj_id will be reset 8806 * in release_reg_references(). 8807 * 8808 * reg->id is still used by spin_lock ptr. Other 8809 * than spin_lock ptr type, reg->id can be reset. 8810 */ 8811 reg->id = 0; 8812 } 8813 } 8814 } 8815 8816 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 8817 bool is_null) 8818 { 8819 struct bpf_reg_state *reg; 8820 int i; 8821 8822 for (i = 0; i < MAX_BPF_REG; i++) 8823 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 8824 8825 bpf_for_each_spilled_reg(i, state, reg) { 8826 if (!reg) 8827 continue; 8828 mark_ptr_or_null_reg(state, reg, id, is_null); 8829 } 8830 } 8831 8832 /* The logic is similar to find_good_pkt_pointers(), both could eventually 8833 * be folded together at some point. 8834 */ 8835 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 8836 bool is_null) 8837 { 8838 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8839 struct bpf_reg_state *regs = state->regs; 8840 u32 ref_obj_id = regs[regno].ref_obj_id; 8841 u32 id = regs[regno].id; 8842 int i; 8843 8844 if (ref_obj_id && ref_obj_id == id && is_null) 8845 /* regs[regno] is in the " == NULL" branch. 8846 * No one could have freed the reference state before 8847 * doing the NULL check. 8848 */ 8849 WARN_ON_ONCE(release_reference_state(state, id)); 8850 8851 for (i = 0; i <= vstate->curframe; i++) 8852 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 8853 } 8854 8855 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 8856 struct bpf_reg_state *dst_reg, 8857 struct bpf_reg_state *src_reg, 8858 struct bpf_verifier_state *this_branch, 8859 struct bpf_verifier_state *other_branch) 8860 { 8861 if (BPF_SRC(insn->code) != BPF_X) 8862 return false; 8863 8864 /* Pointers are always 64-bit. */ 8865 if (BPF_CLASS(insn->code) == BPF_JMP32) 8866 return false; 8867 8868 switch (BPF_OP(insn->code)) { 8869 case BPF_JGT: 8870 if ((dst_reg->type == PTR_TO_PACKET && 8871 src_reg->type == PTR_TO_PACKET_END) || 8872 (dst_reg->type == PTR_TO_PACKET_META && 8873 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8874 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 8875 find_good_pkt_pointers(this_branch, dst_reg, 8876 dst_reg->type, false); 8877 mark_pkt_end(other_branch, insn->dst_reg, true); 8878 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8879 src_reg->type == PTR_TO_PACKET) || 8880 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8881 src_reg->type == PTR_TO_PACKET_META)) { 8882 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 8883 find_good_pkt_pointers(other_branch, src_reg, 8884 src_reg->type, true); 8885 mark_pkt_end(this_branch, insn->src_reg, false); 8886 } else { 8887 return false; 8888 } 8889 break; 8890 case BPF_JLT: 8891 if ((dst_reg->type == PTR_TO_PACKET && 8892 src_reg->type == PTR_TO_PACKET_END) || 8893 (dst_reg->type == PTR_TO_PACKET_META && 8894 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8895 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 8896 find_good_pkt_pointers(other_branch, dst_reg, 8897 dst_reg->type, true); 8898 mark_pkt_end(this_branch, insn->dst_reg, false); 8899 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8900 src_reg->type == PTR_TO_PACKET) || 8901 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8902 src_reg->type == PTR_TO_PACKET_META)) { 8903 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 8904 find_good_pkt_pointers(this_branch, src_reg, 8905 src_reg->type, false); 8906 mark_pkt_end(other_branch, insn->src_reg, true); 8907 } else { 8908 return false; 8909 } 8910 break; 8911 case BPF_JGE: 8912 if ((dst_reg->type == PTR_TO_PACKET && 8913 src_reg->type == PTR_TO_PACKET_END) || 8914 (dst_reg->type == PTR_TO_PACKET_META && 8915 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8916 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 8917 find_good_pkt_pointers(this_branch, dst_reg, 8918 dst_reg->type, true); 8919 mark_pkt_end(other_branch, insn->dst_reg, false); 8920 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8921 src_reg->type == PTR_TO_PACKET) || 8922 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8923 src_reg->type == PTR_TO_PACKET_META)) { 8924 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 8925 find_good_pkt_pointers(other_branch, src_reg, 8926 src_reg->type, false); 8927 mark_pkt_end(this_branch, insn->src_reg, true); 8928 } else { 8929 return false; 8930 } 8931 break; 8932 case BPF_JLE: 8933 if ((dst_reg->type == PTR_TO_PACKET && 8934 src_reg->type == PTR_TO_PACKET_END) || 8935 (dst_reg->type == PTR_TO_PACKET_META && 8936 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8937 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 8938 find_good_pkt_pointers(other_branch, dst_reg, 8939 dst_reg->type, false); 8940 mark_pkt_end(this_branch, insn->dst_reg, true); 8941 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8942 src_reg->type == PTR_TO_PACKET) || 8943 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8944 src_reg->type == PTR_TO_PACKET_META)) { 8945 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 8946 find_good_pkt_pointers(this_branch, src_reg, 8947 src_reg->type, true); 8948 mark_pkt_end(other_branch, insn->src_reg, false); 8949 } else { 8950 return false; 8951 } 8952 break; 8953 default: 8954 return false; 8955 } 8956 8957 return true; 8958 } 8959 8960 static void find_equal_scalars(struct bpf_verifier_state *vstate, 8961 struct bpf_reg_state *known_reg) 8962 { 8963 struct bpf_func_state *state; 8964 struct bpf_reg_state *reg; 8965 int i, j; 8966 8967 for (i = 0; i <= vstate->curframe; i++) { 8968 state = vstate->frame[i]; 8969 for (j = 0; j < MAX_BPF_REG; j++) { 8970 reg = &state->regs[j]; 8971 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8972 *reg = *known_reg; 8973 } 8974 8975 bpf_for_each_spilled_reg(j, state, reg) { 8976 if (!reg) 8977 continue; 8978 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8979 *reg = *known_reg; 8980 } 8981 } 8982 } 8983 8984 static int check_cond_jmp_op(struct bpf_verifier_env *env, 8985 struct bpf_insn *insn, int *insn_idx) 8986 { 8987 struct bpf_verifier_state *this_branch = env->cur_state; 8988 struct bpf_verifier_state *other_branch; 8989 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 8990 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 8991 u8 opcode = BPF_OP(insn->code); 8992 bool is_jmp32; 8993 int pred = -1; 8994 int err; 8995 8996 /* Only conditional jumps are expected to reach here. */ 8997 if (opcode == BPF_JA || opcode > BPF_JSLE) { 8998 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 8999 return -EINVAL; 9000 } 9001 9002 if (BPF_SRC(insn->code) == BPF_X) { 9003 if (insn->imm != 0) { 9004 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9005 return -EINVAL; 9006 } 9007 9008 /* check src1 operand */ 9009 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9010 if (err) 9011 return err; 9012 9013 if (is_pointer_value(env, insn->src_reg)) { 9014 verbose(env, "R%d pointer comparison prohibited\n", 9015 insn->src_reg); 9016 return -EACCES; 9017 } 9018 src_reg = ®s[insn->src_reg]; 9019 } else { 9020 if (insn->src_reg != BPF_REG_0) { 9021 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9022 return -EINVAL; 9023 } 9024 } 9025 9026 /* check src2 operand */ 9027 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9028 if (err) 9029 return err; 9030 9031 dst_reg = ®s[insn->dst_reg]; 9032 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9033 9034 if (BPF_SRC(insn->code) == BPF_K) { 9035 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9036 } else if (src_reg->type == SCALAR_VALUE && 9037 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9038 pred = is_branch_taken(dst_reg, 9039 tnum_subreg(src_reg->var_off).value, 9040 opcode, 9041 is_jmp32); 9042 } else if (src_reg->type == SCALAR_VALUE && 9043 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9044 pred = is_branch_taken(dst_reg, 9045 src_reg->var_off.value, 9046 opcode, 9047 is_jmp32); 9048 } else if (reg_is_pkt_pointer_any(dst_reg) && 9049 reg_is_pkt_pointer_any(src_reg) && 9050 !is_jmp32) { 9051 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9052 } 9053 9054 if (pred >= 0) { 9055 /* If we get here with a dst_reg pointer type it is because 9056 * above is_branch_taken() special cased the 0 comparison. 9057 */ 9058 if (!__is_pointer_value(false, dst_reg)) 9059 err = mark_chain_precision(env, insn->dst_reg); 9060 if (BPF_SRC(insn->code) == BPF_X && !err && 9061 !__is_pointer_value(false, src_reg)) 9062 err = mark_chain_precision(env, insn->src_reg); 9063 if (err) 9064 return err; 9065 } 9066 9067 if (pred == 1) { 9068 /* Only follow the goto, ignore fall-through. If needed, push 9069 * the fall-through branch for simulation under speculative 9070 * execution. 9071 */ 9072 if (!env->bypass_spec_v1 && 9073 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9074 *insn_idx)) 9075 return -EFAULT; 9076 *insn_idx += insn->off; 9077 return 0; 9078 } else if (pred == 0) { 9079 /* Only follow the fall-through branch, since that's where the 9080 * program will go. If needed, push the goto branch for 9081 * simulation under speculative execution. 9082 */ 9083 if (!env->bypass_spec_v1 && 9084 !sanitize_speculative_path(env, insn, 9085 *insn_idx + insn->off + 1, 9086 *insn_idx)) 9087 return -EFAULT; 9088 return 0; 9089 } 9090 9091 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9092 false); 9093 if (!other_branch) 9094 return -EFAULT; 9095 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9096 9097 /* detect if we are comparing against a constant value so we can adjust 9098 * our min/max values for our dst register. 9099 * this is only legit if both are scalars (or pointers to the same 9100 * object, I suppose, but we don't support that right now), because 9101 * otherwise the different base pointers mean the offsets aren't 9102 * comparable. 9103 */ 9104 if (BPF_SRC(insn->code) == BPF_X) { 9105 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9106 9107 if (dst_reg->type == SCALAR_VALUE && 9108 src_reg->type == SCALAR_VALUE) { 9109 if (tnum_is_const(src_reg->var_off) || 9110 (is_jmp32 && 9111 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9112 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9113 dst_reg, 9114 src_reg->var_off.value, 9115 tnum_subreg(src_reg->var_off).value, 9116 opcode, is_jmp32); 9117 else if (tnum_is_const(dst_reg->var_off) || 9118 (is_jmp32 && 9119 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9120 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9121 src_reg, 9122 dst_reg->var_off.value, 9123 tnum_subreg(dst_reg->var_off).value, 9124 opcode, is_jmp32); 9125 else if (!is_jmp32 && 9126 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9127 /* Comparing for equality, we can combine knowledge */ 9128 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9129 &other_branch_regs[insn->dst_reg], 9130 src_reg, dst_reg, opcode); 9131 if (src_reg->id && 9132 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9133 find_equal_scalars(this_branch, src_reg); 9134 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9135 } 9136 9137 } 9138 } else if (dst_reg->type == SCALAR_VALUE) { 9139 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9140 dst_reg, insn->imm, (u32)insn->imm, 9141 opcode, is_jmp32); 9142 } 9143 9144 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9145 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9146 find_equal_scalars(this_branch, dst_reg); 9147 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9148 } 9149 9150 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9151 * NOTE: these optimizations below are related with pointer comparison 9152 * which will never be JMP32. 9153 */ 9154 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9155 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9156 reg_type_may_be_null(dst_reg->type)) { 9157 /* Mark all identical registers in each branch as either 9158 * safe or unknown depending R == 0 or R != 0 conditional. 9159 */ 9160 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9161 opcode == BPF_JNE); 9162 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9163 opcode == BPF_JEQ); 9164 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9165 this_branch, other_branch) && 9166 is_pointer_value(env, insn->dst_reg)) { 9167 verbose(env, "R%d pointer comparison prohibited\n", 9168 insn->dst_reg); 9169 return -EACCES; 9170 } 9171 if (env->log.level & BPF_LOG_LEVEL) 9172 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 9173 return 0; 9174 } 9175 9176 /* verify BPF_LD_IMM64 instruction */ 9177 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9178 { 9179 struct bpf_insn_aux_data *aux = cur_aux(env); 9180 struct bpf_reg_state *regs = cur_regs(env); 9181 struct bpf_reg_state *dst_reg; 9182 struct bpf_map *map; 9183 int err; 9184 9185 if (BPF_SIZE(insn->code) != BPF_DW) { 9186 verbose(env, "invalid BPF_LD_IMM insn\n"); 9187 return -EINVAL; 9188 } 9189 if (insn->off != 0) { 9190 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9191 return -EINVAL; 9192 } 9193 9194 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9195 if (err) 9196 return err; 9197 9198 dst_reg = ®s[insn->dst_reg]; 9199 if (insn->src_reg == 0) { 9200 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9201 9202 dst_reg->type = SCALAR_VALUE; 9203 __mark_reg_known(®s[insn->dst_reg], imm); 9204 return 0; 9205 } 9206 9207 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9208 mark_reg_known_zero(env, regs, insn->dst_reg); 9209 9210 dst_reg->type = aux->btf_var.reg_type; 9211 switch (dst_reg->type) { 9212 case PTR_TO_MEM: 9213 dst_reg->mem_size = aux->btf_var.mem_size; 9214 break; 9215 case PTR_TO_BTF_ID: 9216 case PTR_TO_PERCPU_BTF_ID: 9217 dst_reg->btf = aux->btf_var.btf; 9218 dst_reg->btf_id = aux->btf_var.btf_id; 9219 break; 9220 default: 9221 verbose(env, "bpf verifier is misconfigured\n"); 9222 return -EFAULT; 9223 } 9224 return 0; 9225 } 9226 9227 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9228 struct bpf_prog_aux *aux = env->prog->aux; 9229 u32 subprogno = insn[1].imm; 9230 9231 if (!aux->func_info) { 9232 verbose(env, "missing btf func_info\n"); 9233 return -EINVAL; 9234 } 9235 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9236 verbose(env, "callback function not static\n"); 9237 return -EINVAL; 9238 } 9239 9240 dst_reg->type = PTR_TO_FUNC; 9241 dst_reg->subprogno = subprogno; 9242 return 0; 9243 } 9244 9245 map = env->used_maps[aux->map_index]; 9246 mark_reg_known_zero(env, regs, insn->dst_reg); 9247 dst_reg->map_ptr = map; 9248 9249 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9250 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9251 dst_reg->type = PTR_TO_MAP_VALUE; 9252 dst_reg->off = aux->map_off; 9253 if (map_value_has_spin_lock(map)) 9254 dst_reg->id = ++env->id_gen; 9255 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9256 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9257 dst_reg->type = CONST_PTR_TO_MAP; 9258 } else { 9259 verbose(env, "bpf verifier is misconfigured\n"); 9260 return -EINVAL; 9261 } 9262 9263 return 0; 9264 } 9265 9266 static bool may_access_skb(enum bpf_prog_type type) 9267 { 9268 switch (type) { 9269 case BPF_PROG_TYPE_SOCKET_FILTER: 9270 case BPF_PROG_TYPE_SCHED_CLS: 9271 case BPF_PROG_TYPE_SCHED_ACT: 9272 return true; 9273 default: 9274 return false; 9275 } 9276 } 9277 9278 /* verify safety of LD_ABS|LD_IND instructions: 9279 * - they can only appear in the programs where ctx == skb 9280 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9281 * preserve R6-R9, and store return value into R0 9282 * 9283 * Implicit input: 9284 * ctx == skb == R6 == CTX 9285 * 9286 * Explicit input: 9287 * SRC == any register 9288 * IMM == 32-bit immediate 9289 * 9290 * Output: 9291 * R0 - 8/16/32-bit skb data converted to cpu endianness 9292 */ 9293 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9294 { 9295 struct bpf_reg_state *regs = cur_regs(env); 9296 static const int ctx_reg = BPF_REG_6; 9297 u8 mode = BPF_MODE(insn->code); 9298 int i, err; 9299 9300 if (!may_access_skb(resolve_prog_type(env->prog))) { 9301 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9302 return -EINVAL; 9303 } 9304 9305 if (!env->ops->gen_ld_abs) { 9306 verbose(env, "bpf verifier is misconfigured\n"); 9307 return -EINVAL; 9308 } 9309 9310 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9311 BPF_SIZE(insn->code) == BPF_DW || 9312 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9313 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9314 return -EINVAL; 9315 } 9316 9317 /* check whether implicit source operand (register R6) is readable */ 9318 err = check_reg_arg(env, ctx_reg, SRC_OP); 9319 if (err) 9320 return err; 9321 9322 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9323 * gen_ld_abs() may terminate the program at runtime, leading to 9324 * reference leak. 9325 */ 9326 err = check_reference_leak(env); 9327 if (err) { 9328 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9329 return err; 9330 } 9331 9332 if (env->cur_state->active_spin_lock) { 9333 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9334 return -EINVAL; 9335 } 9336 9337 if (regs[ctx_reg].type != PTR_TO_CTX) { 9338 verbose(env, 9339 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9340 return -EINVAL; 9341 } 9342 9343 if (mode == BPF_IND) { 9344 /* check explicit source operand */ 9345 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9346 if (err) 9347 return err; 9348 } 9349 9350 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9351 if (err < 0) 9352 return err; 9353 9354 /* reset caller saved regs to unreadable */ 9355 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9356 mark_reg_not_init(env, regs, caller_saved[i]); 9357 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9358 } 9359 9360 /* mark destination R0 register as readable, since it contains 9361 * the value fetched from the packet. 9362 * Already marked as written above. 9363 */ 9364 mark_reg_unknown(env, regs, BPF_REG_0); 9365 /* ld_abs load up to 32-bit skb data. */ 9366 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9367 return 0; 9368 } 9369 9370 static int check_return_code(struct bpf_verifier_env *env) 9371 { 9372 struct tnum enforce_attach_type_range = tnum_unknown; 9373 const struct bpf_prog *prog = env->prog; 9374 struct bpf_reg_state *reg; 9375 struct tnum range = tnum_range(0, 1); 9376 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9377 int err; 9378 struct bpf_func_state *frame = env->cur_state->frame[0]; 9379 const bool is_subprog = frame->subprogno; 9380 9381 /* LSM and struct_ops func-ptr's return type could be "void" */ 9382 if (!is_subprog && 9383 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9384 prog_type == BPF_PROG_TYPE_LSM) && 9385 !prog->aux->attach_func_proto->type) 9386 return 0; 9387 9388 /* eBPF calling convention is such that R0 is used 9389 * to return the value from eBPF program. 9390 * Make sure that it's readable at this time 9391 * of bpf_exit, which means that program wrote 9392 * something into it earlier 9393 */ 9394 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9395 if (err) 9396 return err; 9397 9398 if (is_pointer_value(env, BPF_REG_0)) { 9399 verbose(env, "R0 leaks addr as return value\n"); 9400 return -EACCES; 9401 } 9402 9403 reg = cur_regs(env) + BPF_REG_0; 9404 9405 if (frame->in_async_callback_fn) { 9406 /* enforce return zero from async callbacks like timer */ 9407 if (reg->type != SCALAR_VALUE) { 9408 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9409 reg_type_str[reg->type]); 9410 return -EINVAL; 9411 } 9412 9413 if (!tnum_in(tnum_const(0), reg->var_off)) { 9414 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9415 return -EINVAL; 9416 } 9417 return 0; 9418 } 9419 9420 if (is_subprog) { 9421 if (reg->type != SCALAR_VALUE) { 9422 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9423 reg_type_str[reg->type]); 9424 return -EINVAL; 9425 } 9426 return 0; 9427 } 9428 9429 switch (prog_type) { 9430 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9431 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9432 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9433 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9434 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9435 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9436 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9437 range = tnum_range(1, 1); 9438 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9439 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9440 range = tnum_range(0, 3); 9441 break; 9442 case BPF_PROG_TYPE_CGROUP_SKB: 9443 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9444 range = tnum_range(0, 3); 9445 enforce_attach_type_range = tnum_range(2, 3); 9446 } 9447 break; 9448 case BPF_PROG_TYPE_CGROUP_SOCK: 9449 case BPF_PROG_TYPE_SOCK_OPS: 9450 case BPF_PROG_TYPE_CGROUP_DEVICE: 9451 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9452 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9453 break; 9454 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9455 if (!env->prog->aux->attach_btf_id) 9456 return 0; 9457 range = tnum_const(0); 9458 break; 9459 case BPF_PROG_TYPE_TRACING: 9460 switch (env->prog->expected_attach_type) { 9461 case BPF_TRACE_FENTRY: 9462 case BPF_TRACE_FEXIT: 9463 range = tnum_const(0); 9464 break; 9465 case BPF_TRACE_RAW_TP: 9466 case BPF_MODIFY_RETURN: 9467 return 0; 9468 case BPF_TRACE_ITER: 9469 break; 9470 default: 9471 return -ENOTSUPP; 9472 } 9473 break; 9474 case BPF_PROG_TYPE_SK_LOOKUP: 9475 range = tnum_range(SK_DROP, SK_PASS); 9476 break; 9477 case BPF_PROG_TYPE_EXT: 9478 /* freplace program can return anything as its return value 9479 * depends on the to-be-replaced kernel func or bpf program. 9480 */ 9481 default: 9482 return 0; 9483 } 9484 9485 if (reg->type != SCALAR_VALUE) { 9486 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9487 reg_type_str[reg->type]); 9488 return -EINVAL; 9489 } 9490 9491 if (!tnum_in(range, reg->var_off)) { 9492 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9493 return -EINVAL; 9494 } 9495 9496 if (!tnum_is_unknown(enforce_attach_type_range) && 9497 tnum_in(enforce_attach_type_range, reg->var_off)) 9498 env->prog->enforce_expected_attach_type = 1; 9499 return 0; 9500 } 9501 9502 /* non-recursive DFS pseudo code 9503 * 1 procedure DFS-iterative(G,v): 9504 * 2 label v as discovered 9505 * 3 let S be a stack 9506 * 4 S.push(v) 9507 * 5 while S is not empty 9508 * 6 t <- S.pop() 9509 * 7 if t is what we're looking for: 9510 * 8 return t 9511 * 9 for all edges e in G.adjacentEdges(t) do 9512 * 10 if edge e is already labelled 9513 * 11 continue with the next edge 9514 * 12 w <- G.adjacentVertex(t,e) 9515 * 13 if vertex w is not discovered and not explored 9516 * 14 label e as tree-edge 9517 * 15 label w as discovered 9518 * 16 S.push(w) 9519 * 17 continue at 5 9520 * 18 else if vertex w is discovered 9521 * 19 label e as back-edge 9522 * 20 else 9523 * 21 // vertex w is explored 9524 * 22 label e as forward- or cross-edge 9525 * 23 label t as explored 9526 * 24 S.pop() 9527 * 9528 * convention: 9529 * 0x10 - discovered 9530 * 0x11 - discovered and fall-through edge labelled 9531 * 0x12 - discovered and fall-through and branch edges labelled 9532 * 0x20 - explored 9533 */ 9534 9535 enum { 9536 DISCOVERED = 0x10, 9537 EXPLORED = 0x20, 9538 FALLTHROUGH = 1, 9539 BRANCH = 2, 9540 }; 9541 9542 static u32 state_htab_size(struct bpf_verifier_env *env) 9543 { 9544 return env->prog->len; 9545 } 9546 9547 static struct bpf_verifier_state_list **explored_state( 9548 struct bpf_verifier_env *env, 9549 int idx) 9550 { 9551 struct bpf_verifier_state *cur = env->cur_state; 9552 struct bpf_func_state *state = cur->frame[cur->curframe]; 9553 9554 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9555 } 9556 9557 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9558 { 9559 env->insn_aux_data[idx].prune_point = true; 9560 } 9561 9562 enum { 9563 DONE_EXPLORING = 0, 9564 KEEP_EXPLORING = 1, 9565 }; 9566 9567 /* t, w, e - match pseudo-code above: 9568 * t - index of current instruction 9569 * w - next instruction 9570 * e - edge 9571 */ 9572 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9573 bool loop_ok) 9574 { 9575 int *insn_stack = env->cfg.insn_stack; 9576 int *insn_state = env->cfg.insn_state; 9577 9578 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9579 return DONE_EXPLORING; 9580 9581 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9582 return DONE_EXPLORING; 9583 9584 if (w < 0 || w >= env->prog->len) { 9585 verbose_linfo(env, t, "%d: ", t); 9586 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9587 return -EINVAL; 9588 } 9589 9590 if (e == BRANCH) 9591 /* mark branch target for state pruning */ 9592 init_explored_state(env, w); 9593 9594 if (insn_state[w] == 0) { 9595 /* tree-edge */ 9596 insn_state[t] = DISCOVERED | e; 9597 insn_state[w] = DISCOVERED; 9598 if (env->cfg.cur_stack >= env->prog->len) 9599 return -E2BIG; 9600 insn_stack[env->cfg.cur_stack++] = w; 9601 return KEEP_EXPLORING; 9602 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9603 if (loop_ok && env->bpf_capable) 9604 return DONE_EXPLORING; 9605 verbose_linfo(env, t, "%d: ", t); 9606 verbose_linfo(env, w, "%d: ", w); 9607 verbose(env, "back-edge from insn %d to %d\n", t, w); 9608 return -EINVAL; 9609 } else if (insn_state[w] == EXPLORED) { 9610 /* forward- or cross-edge */ 9611 insn_state[t] = DISCOVERED | e; 9612 } else { 9613 verbose(env, "insn state internal bug\n"); 9614 return -EFAULT; 9615 } 9616 return DONE_EXPLORING; 9617 } 9618 9619 static int visit_func_call_insn(int t, int insn_cnt, 9620 struct bpf_insn *insns, 9621 struct bpf_verifier_env *env, 9622 bool visit_callee) 9623 { 9624 int ret; 9625 9626 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9627 if (ret) 9628 return ret; 9629 9630 if (t + 1 < insn_cnt) 9631 init_explored_state(env, t + 1); 9632 if (visit_callee) { 9633 init_explored_state(env, t); 9634 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 9635 /* It's ok to allow recursion from CFG point of 9636 * view. __check_func_call() will do the actual 9637 * check. 9638 */ 9639 bpf_pseudo_func(insns + t)); 9640 } 9641 return ret; 9642 } 9643 9644 /* Visits the instruction at index t and returns one of the following: 9645 * < 0 - an error occurred 9646 * DONE_EXPLORING - the instruction was fully explored 9647 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9648 */ 9649 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9650 { 9651 struct bpf_insn *insns = env->prog->insnsi; 9652 int ret; 9653 9654 if (bpf_pseudo_func(insns + t)) 9655 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9656 9657 /* All non-branch instructions have a single fall-through edge. */ 9658 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9659 BPF_CLASS(insns[t].code) != BPF_JMP32) 9660 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9661 9662 switch (BPF_OP(insns[t].code)) { 9663 case BPF_EXIT: 9664 return DONE_EXPLORING; 9665 9666 case BPF_CALL: 9667 if (insns[t].imm == BPF_FUNC_timer_set_callback) 9668 /* Mark this call insn to trigger is_state_visited() check 9669 * before call itself is processed by __check_func_call(). 9670 * Otherwise new async state will be pushed for further 9671 * exploration. 9672 */ 9673 init_explored_state(env, t); 9674 return visit_func_call_insn(t, insn_cnt, insns, env, 9675 insns[t].src_reg == BPF_PSEUDO_CALL); 9676 9677 case BPF_JA: 9678 if (BPF_SRC(insns[t].code) != BPF_K) 9679 return -EINVAL; 9680 9681 /* unconditional jump with single edge */ 9682 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9683 true); 9684 if (ret) 9685 return ret; 9686 9687 /* unconditional jmp is not a good pruning point, 9688 * but it's marked, since backtracking needs 9689 * to record jmp history in is_state_visited(). 9690 */ 9691 init_explored_state(env, t + insns[t].off + 1); 9692 /* tell verifier to check for equivalent states 9693 * after every call and jump 9694 */ 9695 if (t + 1 < insn_cnt) 9696 init_explored_state(env, t + 1); 9697 9698 return ret; 9699 9700 default: 9701 /* conditional jump with two edges */ 9702 init_explored_state(env, t); 9703 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9704 if (ret) 9705 return ret; 9706 9707 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9708 } 9709 } 9710 9711 /* non-recursive depth-first-search to detect loops in BPF program 9712 * loop == back-edge in directed graph 9713 */ 9714 static int check_cfg(struct bpf_verifier_env *env) 9715 { 9716 int insn_cnt = env->prog->len; 9717 int *insn_stack, *insn_state; 9718 int ret = 0; 9719 int i; 9720 9721 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9722 if (!insn_state) 9723 return -ENOMEM; 9724 9725 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9726 if (!insn_stack) { 9727 kvfree(insn_state); 9728 return -ENOMEM; 9729 } 9730 9731 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9732 insn_stack[0] = 0; /* 0 is the first instruction */ 9733 env->cfg.cur_stack = 1; 9734 9735 while (env->cfg.cur_stack > 0) { 9736 int t = insn_stack[env->cfg.cur_stack - 1]; 9737 9738 ret = visit_insn(t, insn_cnt, env); 9739 switch (ret) { 9740 case DONE_EXPLORING: 9741 insn_state[t] = EXPLORED; 9742 env->cfg.cur_stack--; 9743 break; 9744 case KEEP_EXPLORING: 9745 break; 9746 default: 9747 if (ret > 0) { 9748 verbose(env, "visit_insn internal bug\n"); 9749 ret = -EFAULT; 9750 } 9751 goto err_free; 9752 } 9753 } 9754 9755 if (env->cfg.cur_stack < 0) { 9756 verbose(env, "pop stack internal bug\n"); 9757 ret = -EFAULT; 9758 goto err_free; 9759 } 9760 9761 for (i = 0; i < insn_cnt; i++) { 9762 if (insn_state[i] != EXPLORED) { 9763 verbose(env, "unreachable insn %d\n", i); 9764 ret = -EINVAL; 9765 goto err_free; 9766 } 9767 } 9768 ret = 0; /* cfg looks good */ 9769 9770 err_free: 9771 kvfree(insn_state); 9772 kvfree(insn_stack); 9773 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9774 return ret; 9775 } 9776 9777 static int check_abnormal_return(struct bpf_verifier_env *env) 9778 { 9779 int i; 9780 9781 for (i = 1; i < env->subprog_cnt; i++) { 9782 if (env->subprog_info[i].has_ld_abs) { 9783 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9784 return -EINVAL; 9785 } 9786 if (env->subprog_info[i].has_tail_call) { 9787 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9788 return -EINVAL; 9789 } 9790 } 9791 return 0; 9792 } 9793 9794 /* The minimum supported BTF func info size */ 9795 #define MIN_BPF_FUNCINFO_SIZE 8 9796 #define MAX_FUNCINFO_REC_SIZE 252 9797 9798 static int check_btf_func(struct bpf_verifier_env *env, 9799 const union bpf_attr *attr, 9800 bpfptr_t uattr) 9801 { 9802 const struct btf_type *type, *func_proto, *ret_type; 9803 u32 i, nfuncs, urec_size, min_size; 9804 u32 krec_size = sizeof(struct bpf_func_info); 9805 struct bpf_func_info *krecord; 9806 struct bpf_func_info_aux *info_aux = NULL; 9807 struct bpf_prog *prog; 9808 const struct btf *btf; 9809 bpfptr_t urecord; 9810 u32 prev_offset = 0; 9811 bool scalar_return; 9812 int ret = -ENOMEM; 9813 9814 nfuncs = attr->func_info_cnt; 9815 if (!nfuncs) { 9816 if (check_abnormal_return(env)) 9817 return -EINVAL; 9818 return 0; 9819 } 9820 9821 if (nfuncs != env->subprog_cnt) { 9822 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 9823 return -EINVAL; 9824 } 9825 9826 urec_size = attr->func_info_rec_size; 9827 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 9828 urec_size > MAX_FUNCINFO_REC_SIZE || 9829 urec_size % sizeof(u32)) { 9830 verbose(env, "invalid func info rec size %u\n", urec_size); 9831 return -EINVAL; 9832 } 9833 9834 prog = env->prog; 9835 btf = prog->aux->btf; 9836 9837 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 9838 min_size = min_t(u32, krec_size, urec_size); 9839 9840 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 9841 if (!krecord) 9842 return -ENOMEM; 9843 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 9844 if (!info_aux) 9845 goto err_free; 9846 9847 for (i = 0; i < nfuncs; i++) { 9848 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 9849 if (ret) { 9850 if (ret == -E2BIG) { 9851 verbose(env, "nonzero tailing record in func info"); 9852 /* set the size kernel expects so loader can zero 9853 * out the rest of the record. 9854 */ 9855 if (copy_to_bpfptr_offset(uattr, 9856 offsetof(union bpf_attr, func_info_rec_size), 9857 &min_size, sizeof(min_size))) 9858 ret = -EFAULT; 9859 } 9860 goto err_free; 9861 } 9862 9863 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 9864 ret = -EFAULT; 9865 goto err_free; 9866 } 9867 9868 /* check insn_off */ 9869 ret = -EINVAL; 9870 if (i == 0) { 9871 if (krecord[i].insn_off) { 9872 verbose(env, 9873 "nonzero insn_off %u for the first func info record", 9874 krecord[i].insn_off); 9875 goto err_free; 9876 } 9877 } else if (krecord[i].insn_off <= prev_offset) { 9878 verbose(env, 9879 "same or smaller insn offset (%u) than previous func info record (%u)", 9880 krecord[i].insn_off, prev_offset); 9881 goto err_free; 9882 } 9883 9884 if (env->subprog_info[i].start != krecord[i].insn_off) { 9885 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 9886 goto err_free; 9887 } 9888 9889 /* check type_id */ 9890 type = btf_type_by_id(btf, krecord[i].type_id); 9891 if (!type || !btf_type_is_func(type)) { 9892 verbose(env, "invalid type id %d in func info", 9893 krecord[i].type_id); 9894 goto err_free; 9895 } 9896 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 9897 9898 func_proto = btf_type_by_id(btf, type->type); 9899 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 9900 /* btf_func_check() already verified it during BTF load */ 9901 goto err_free; 9902 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 9903 scalar_return = 9904 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 9905 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 9906 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 9907 goto err_free; 9908 } 9909 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 9910 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 9911 goto err_free; 9912 } 9913 9914 prev_offset = krecord[i].insn_off; 9915 bpfptr_add(&urecord, urec_size); 9916 } 9917 9918 prog->aux->func_info = krecord; 9919 prog->aux->func_info_cnt = nfuncs; 9920 prog->aux->func_info_aux = info_aux; 9921 return 0; 9922 9923 err_free: 9924 kvfree(krecord); 9925 kfree(info_aux); 9926 return ret; 9927 } 9928 9929 static void adjust_btf_func(struct bpf_verifier_env *env) 9930 { 9931 struct bpf_prog_aux *aux = env->prog->aux; 9932 int i; 9933 9934 if (!aux->func_info) 9935 return; 9936 9937 for (i = 0; i < env->subprog_cnt; i++) 9938 aux->func_info[i].insn_off = env->subprog_info[i].start; 9939 } 9940 9941 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 9942 sizeof(((struct bpf_line_info *)(0))->line_col)) 9943 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 9944 9945 static int check_btf_line(struct bpf_verifier_env *env, 9946 const union bpf_attr *attr, 9947 bpfptr_t uattr) 9948 { 9949 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 9950 struct bpf_subprog_info *sub; 9951 struct bpf_line_info *linfo; 9952 struct bpf_prog *prog; 9953 const struct btf *btf; 9954 bpfptr_t ulinfo; 9955 int err; 9956 9957 nr_linfo = attr->line_info_cnt; 9958 if (!nr_linfo) 9959 return 0; 9960 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 9961 return -EINVAL; 9962 9963 rec_size = attr->line_info_rec_size; 9964 if (rec_size < MIN_BPF_LINEINFO_SIZE || 9965 rec_size > MAX_LINEINFO_REC_SIZE || 9966 rec_size & (sizeof(u32) - 1)) 9967 return -EINVAL; 9968 9969 /* Need to zero it in case the userspace may 9970 * pass in a smaller bpf_line_info object. 9971 */ 9972 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 9973 GFP_KERNEL | __GFP_NOWARN); 9974 if (!linfo) 9975 return -ENOMEM; 9976 9977 prog = env->prog; 9978 btf = prog->aux->btf; 9979 9980 s = 0; 9981 sub = env->subprog_info; 9982 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 9983 expected_size = sizeof(struct bpf_line_info); 9984 ncopy = min_t(u32, expected_size, rec_size); 9985 for (i = 0; i < nr_linfo; i++) { 9986 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 9987 if (err) { 9988 if (err == -E2BIG) { 9989 verbose(env, "nonzero tailing record in line_info"); 9990 if (copy_to_bpfptr_offset(uattr, 9991 offsetof(union bpf_attr, line_info_rec_size), 9992 &expected_size, sizeof(expected_size))) 9993 err = -EFAULT; 9994 } 9995 goto err_free; 9996 } 9997 9998 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 9999 err = -EFAULT; 10000 goto err_free; 10001 } 10002 10003 /* 10004 * Check insn_off to ensure 10005 * 1) strictly increasing AND 10006 * 2) bounded by prog->len 10007 * 10008 * The linfo[0].insn_off == 0 check logically falls into 10009 * the later "missing bpf_line_info for func..." case 10010 * because the first linfo[0].insn_off must be the 10011 * first sub also and the first sub must have 10012 * subprog_info[0].start == 0. 10013 */ 10014 if ((i && linfo[i].insn_off <= prev_offset) || 10015 linfo[i].insn_off >= prog->len) { 10016 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10017 i, linfo[i].insn_off, prev_offset, 10018 prog->len); 10019 err = -EINVAL; 10020 goto err_free; 10021 } 10022 10023 if (!prog->insnsi[linfo[i].insn_off].code) { 10024 verbose(env, 10025 "Invalid insn code at line_info[%u].insn_off\n", 10026 i); 10027 err = -EINVAL; 10028 goto err_free; 10029 } 10030 10031 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10032 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10033 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10034 err = -EINVAL; 10035 goto err_free; 10036 } 10037 10038 if (s != env->subprog_cnt) { 10039 if (linfo[i].insn_off == sub[s].start) { 10040 sub[s].linfo_idx = i; 10041 s++; 10042 } else if (sub[s].start < linfo[i].insn_off) { 10043 verbose(env, "missing bpf_line_info for func#%u\n", s); 10044 err = -EINVAL; 10045 goto err_free; 10046 } 10047 } 10048 10049 prev_offset = linfo[i].insn_off; 10050 bpfptr_add(&ulinfo, rec_size); 10051 } 10052 10053 if (s != env->subprog_cnt) { 10054 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10055 env->subprog_cnt - s, s); 10056 err = -EINVAL; 10057 goto err_free; 10058 } 10059 10060 prog->aux->linfo = linfo; 10061 prog->aux->nr_linfo = nr_linfo; 10062 10063 return 0; 10064 10065 err_free: 10066 kvfree(linfo); 10067 return err; 10068 } 10069 10070 static int check_btf_info(struct bpf_verifier_env *env, 10071 const union bpf_attr *attr, 10072 bpfptr_t uattr) 10073 { 10074 struct btf *btf; 10075 int err; 10076 10077 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10078 if (check_abnormal_return(env)) 10079 return -EINVAL; 10080 return 0; 10081 } 10082 10083 btf = btf_get_by_fd(attr->prog_btf_fd); 10084 if (IS_ERR(btf)) 10085 return PTR_ERR(btf); 10086 if (btf_is_kernel(btf)) { 10087 btf_put(btf); 10088 return -EACCES; 10089 } 10090 env->prog->aux->btf = btf; 10091 10092 err = check_btf_func(env, attr, uattr); 10093 if (err) 10094 return err; 10095 10096 err = check_btf_line(env, attr, uattr); 10097 if (err) 10098 return err; 10099 10100 return 0; 10101 } 10102 10103 /* check %cur's range satisfies %old's */ 10104 static bool range_within(struct bpf_reg_state *old, 10105 struct bpf_reg_state *cur) 10106 { 10107 return old->umin_value <= cur->umin_value && 10108 old->umax_value >= cur->umax_value && 10109 old->smin_value <= cur->smin_value && 10110 old->smax_value >= cur->smax_value && 10111 old->u32_min_value <= cur->u32_min_value && 10112 old->u32_max_value >= cur->u32_max_value && 10113 old->s32_min_value <= cur->s32_min_value && 10114 old->s32_max_value >= cur->s32_max_value; 10115 } 10116 10117 /* If in the old state two registers had the same id, then they need to have 10118 * the same id in the new state as well. But that id could be different from 10119 * the old state, so we need to track the mapping from old to new ids. 10120 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10121 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10122 * regs with a different old id could still have new id 9, we don't care about 10123 * that. 10124 * So we look through our idmap to see if this old id has been seen before. If 10125 * so, we require the new id to match; otherwise, we add the id pair to the map. 10126 */ 10127 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10128 { 10129 unsigned int i; 10130 10131 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10132 if (!idmap[i].old) { 10133 /* Reached an empty slot; haven't seen this id before */ 10134 idmap[i].old = old_id; 10135 idmap[i].cur = cur_id; 10136 return true; 10137 } 10138 if (idmap[i].old == old_id) 10139 return idmap[i].cur == cur_id; 10140 } 10141 /* We ran out of idmap slots, which should be impossible */ 10142 WARN_ON_ONCE(1); 10143 return false; 10144 } 10145 10146 static void clean_func_state(struct bpf_verifier_env *env, 10147 struct bpf_func_state *st) 10148 { 10149 enum bpf_reg_liveness live; 10150 int i, j; 10151 10152 for (i = 0; i < BPF_REG_FP; i++) { 10153 live = st->regs[i].live; 10154 /* liveness must not touch this register anymore */ 10155 st->regs[i].live |= REG_LIVE_DONE; 10156 if (!(live & REG_LIVE_READ)) 10157 /* since the register is unused, clear its state 10158 * to make further comparison simpler 10159 */ 10160 __mark_reg_not_init(env, &st->regs[i]); 10161 } 10162 10163 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10164 live = st->stack[i].spilled_ptr.live; 10165 /* liveness must not touch this stack slot anymore */ 10166 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10167 if (!(live & REG_LIVE_READ)) { 10168 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10169 for (j = 0; j < BPF_REG_SIZE; j++) 10170 st->stack[i].slot_type[j] = STACK_INVALID; 10171 } 10172 } 10173 } 10174 10175 static void clean_verifier_state(struct bpf_verifier_env *env, 10176 struct bpf_verifier_state *st) 10177 { 10178 int i; 10179 10180 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10181 /* all regs in this state in all frames were already marked */ 10182 return; 10183 10184 for (i = 0; i <= st->curframe; i++) 10185 clean_func_state(env, st->frame[i]); 10186 } 10187 10188 /* the parentage chains form a tree. 10189 * the verifier states are added to state lists at given insn and 10190 * pushed into state stack for future exploration. 10191 * when the verifier reaches bpf_exit insn some of the verifer states 10192 * stored in the state lists have their final liveness state already, 10193 * but a lot of states will get revised from liveness point of view when 10194 * the verifier explores other branches. 10195 * Example: 10196 * 1: r0 = 1 10197 * 2: if r1 == 100 goto pc+1 10198 * 3: r0 = 2 10199 * 4: exit 10200 * when the verifier reaches exit insn the register r0 in the state list of 10201 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10202 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10203 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10204 * 10205 * Since the verifier pushes the branch states as it sees them while exploring 10206 * the program the condition of walking the branch instruction for the second 10207 * time means that all states below this branch were already explored and 10208 * their final liveness marks are already propagated. 10209 * Hence when the verifier completes the search of state list in is_state_visited() 10210 * we can call this clean_live_states() function to mark all liveness states 10211 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10212 * will not be used. 10213 * This function also clears the registers and stack for states that !READ 10214 * to simplify state merging. 10215 * 10216 * Important note here that walking the same branch instruction in the callee 10217 * doesn't meant that the states are DONE. The verifier has to compare 10218 * the callsites 10219 */ 10220 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10221 struct bpf_verifier_state *cur) 10222 { 10223 struct bpf_verifier_state_list *sl; 10224 int i; 10225 10226 sl = *explored_state(env, insn); 10227 while (sl) { 10228 if (sl->state.branches) 10229 goto next; 10230 if (sl->state.insn_idx != insn || 10231 sl->state.curframe != cur->curframe) 10232 goto next; 10233 for (i = 0; i <= cur->curframe; i++) 10234 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10235 goto next; 10236 clean_verifier_state(env, &sl->state); 10237 next: 10238 sl = sl->next; 10239 } 10240 } 10241 10242 /* Returns true if (rold safe implies rcur safe) */ 10243 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10244 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10245 { 10246 bool equal; 10247 10248 if (!(rold->live & REG_LIVE_READ)) 10249 /* explored state didn't use this */ 10250 return true; 10251 10252 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10253 10254 if (rold->type == PTR_TO_STACK) 10255 /* two stack pointers are equal only if they're pointing to 10256 * the same stack frame, since fp-8 in foo != fp-8 in bar 10257 */ 10258 return equal && rold->frameno == rcur->frameno; 10259 10260 if (equal) 10261 return true; 10262 10263 if (rold->type == NOT_INIT) 10264 /* explored state can't have used this */ 10265 return true; 10266 if (rcur->type == NOT_INIT) 10267 return false; 10268 switch (rold->type) { 10269 case SCALAR_VALUE: 10270 if (env->explore_alu_limits) 10271 return false; 10272 if (rcur->type == SCALAR_VALUE) { 10273 if (!rold->precise && !rcur->precise) 10274 return true; 10275 /* new val must satisfy old val knowledge */ 10276 return range_within(rold, rcur) && 10277 tnum_in(rold->var_off, rcur->var_off); 10278 } else { 10279 /* We're trying to use a pointer in place of a scalar. 10280 * Even if the scalar was unbounded, this could lead to 10281 * pointer leaks because scalars are allowed to leak 10282 * while pointers are not. We could make this safe in 10283 * special cases if root is calling us, but it's 10284 * probably not worth the hassle. 10285 */ 10286 return false; 10287 } 10288 case PTR_TO_MAP_KEY: 10289 case PTR_TO_MAP_VALUE: 10290 /* If the new min/max/var_off satisfy the old ones and 10291 * everything else matches, we are OK. 10292 * 'id' is not compared, since it's only used for maps with 10293 * bpf_spin_lock inside map element and in such cases if 10294 * the rest of the prog is valid for one map element then 10295 * it's valid for all map elements regardless of the key 10296 * used in bpf_map_lookup() 10297 */ 10298 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10299 range_within(rold, rcur) && 10300 tnum_in(rold->var_off, rcur->var_off); 10301 case PTR_TO_MAP_VALUE_OR_NULL: 10302 /* a PTR_TO_MAP_VALUE could be safe to use as a 10303 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10304 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10305 * checked, doing so could have affected others with the same 10306 * id, and we can't check for that because we lost the id when 10307 * we converted to a PTR_TO_MAP_VALUE. 10308 */ 10309 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 10310 return false; 10311 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10312 return false; 10313 /* Check our ids match any regs they're supposed to */ 10314 return check_ids(rold->id, rcur->id, idmap); 10315 case PTR_TO_PACKET_META: 10316 case PTR_TO_PACKET: 10317 if (rcur->type != rold->type) 10318 return false; 10319 /* We must have at least as much range as the old ptr 10320 * did, so that any accesses which were safe before are 10321 * still safe. This is true even if old range < old off, 10322 * since someone could have accessed through (ptr - k), or 10323 * even done ptr -= k in a register, to get a safe access. 10324 */ 10325 if (rold->range > rcur->range) 10326 return false; 10327 /* If the offsets don't match, we can't trust our alignment; 10328 * nor can we be sure that we won't fall out of range. 10329 */ 10330 if (rold->off != rcur->off) 10331 return false; 10332 /* id relations must be preserved */ 10333 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10334 return false; 10335 /* new val must satisfy old val knowledge */ 10336 return range_within(rold, rcur) && 10337 tnum_in(rold->var_off, rcur->var_off); 10338 case PTR_TO_CTX: 10339 case CONST_PTR_TO_MAP: 10340 case PTR_TO_PACKET_END: 10341 case PTR_TO_FLOW_KEYS: 10342 case PTR_TO_SOCKET: 10343 case PTR_TO_SOCKET_OR_NULL: 10344 case PTR_TO_SOCK_COMMON: 10345 case PTR_TO_SOCK_COMMON_OR_NULL: 10346 case PTR_TO_TCP_SOCK: 10347 case PTR_TO_TCP_SOCK_OR_NULL: 10348 case PTR_TO_XDP_SOCK: 10349 /* Only valid matches are exact, which memcmp() above 10350 * would have accepted 10351 */ 10352 default: 10353 /* Don't know what's going on, just say it's not safe */ 10354 return false; 10355 } 10356 10357 /* Shouldn't get here; if we do, say it's not safe */ 10358 WARN_ON_ONCE(1); 10359 return false; 10360 } 10361 10362 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10363 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10364 { 10365 int i, spi; 10366 10367 /* walk slots of the explored stack and ignore any additional 10368 * slots in the current stack, since explored(safe) state 10369 * didn't use them 10370 */ 10371 for (i = 0; i < old->allocated_stack; i++) { 10372 spi = i / BPF_REG_SIZE; 10373 10374 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10375 i += BPF_REG_SIZE - 1; 10376 /* explored state didn't use this */ 10377 continue; 10378 } 10379 10380 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10381 continue; 10382 10383 /* explored stack has more populated slots than current stack 10384 * and these slots were used 10385 */ 10386 if (i >= cur->allocated_stack) 10387 return false; 10388 10389 /* if old state was safe with misc data in the stack 10390 * it will be safe with zero-initialized stack. 10391 * The opposite is not true 10392 */ 10393 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10394 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10395 continue; 10396 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10397 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10398 /* Ex: old explored (safe) state has STACK_SPILL in 10399 * this stack slot, but current has STACK_MISC -> 10400 * this verifier states are not equivalent, 10401 * return false to continue verification of this path 10402 */ 10403 return false; 10404 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10405 continue; 10406 if (!is_spilled_reg(&old->stack[spi])) 10407 continue; 10408 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10409 &cur->stack[spi].spilled_ptr, idmap)) 10410 /* when explored and current stack slot are both storing 10411 * spilled registers, check that stored pointers types 10412 * are the same as well. 10413 * Ex: explored safe path could have stored 10414 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10415 * but current path has stored: 10416 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10417 * such verifier states are not equivalent. 10418 * return false to continue verification of this path 10419 */ 10420 return false; 10421 } 10422 return true; 10423 } 10424 10425 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10426 { 10427 if (old->acquired_refs != cur->acquired_refs) 10428 return false; 10429 return !memcmp(old->refs, cur->refs, 10430 sizeof(*old->refs) * old->acquired_refs); 10431 } 10432 10433 /* compare two verifier states 10434 * 10435 * all states stored in state_list are known to be valid, since 10436 * verifier reached 'bpf_exit' instruction through them 10437 * 10438 * this function is called when verifier exploring different branches of 10439 * execution popped from the state stack. If it sees an old state that has 10440 * more strict register state and more strict stack state then this execution 10441 * branch doesn't need to be explored further, since verifier already 10442 * concluded that more strict state leads to valid finish. 10443 * 10444 * Therefore two states are equivalent if register state is more conservative 10445 * and explored stack state is more conservative than the current one. 10446 * Example: 10447 * explored current 10448 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10449 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10450 * 10451 * In other words if current stack state (one being explored) has more 10452 * valid slots than old one that already passed validation, it means 10453 * the verifier can stop exploring and conclude that current state is valid too 10454 * 10455 * Similarly with registers. If explored state has register type as invalid 10456 * whereas register type in current state is meaningful, it means that 10457 * the current state will reach 'bpf_exit' instruction safely 10458 */ 10459 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10460 struct bpf_func_state *cur) 10461 { 10462 int i; 10463 10464 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10465 for (i = 0; i < MAX_BPF_REG; i++) 10466 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10467 env->idmap_scratch)) 10468 return false; 10469 10470 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10471 return false; 10472 10473 if (!refsafe(old, cur)) 10474 return false; 10475 10476 return true; 10477 } 10478 10479 static bool states_equal(struct bpf_verifier_env *env, 10480 struct bpf_verifier_state *old, 10481 struct bpf_verifier_state *cur) 10482 { 10483 int i; 10484 10485 if (old->curframe != cur->curframe) 10486 return false; 10487 10488 /* Verification state from speculative execution simulation 10489 * must never prune a non-speculative execution one. 10490 */ 10491 if (old->speculative && !cur->speculative) 10492 return false; 10493 10494 if (old->active_spin_lock != cur->active_spin_lock) 10495 return false; 10496 10497 /* for states to be equal callsites have to be the same 10498 * and all frame states need to be equivalent 10499 */ 10500 for (i = 0; i <= old->curframe; i++) { 10501 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10502 return false; 10503 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10504 return false; 10505 } 10506 return true; 10507 } 10508 10509 /* Return 0 if no propagation happened. Return negative error code if error 10510 * happened. Otherwise, return the propagated bit. 10511 */ 10512 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10513 struct bpf_reg_state *reg, 10514 struct bpf_reg_state *parent_reg) 10515 { 10516 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10517 u8 flag = reg->live & REG_LIVE_READ; 10518 int err; 10519 10520 /* When comes here, read flags of PARENT_REG or REG could be any of 10521 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10522 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10523 */ 10524 if (parent_flag == REG_LIVE_READ64 || 10525 /* Or if there is no read flag from REG. */ 10526 !flag || 10527 /* Or if the read flag from REG is the same as PARENT_REG. */ 10528 parent_flag == flag) 10529 return 0; 10530 10531 err = mark_reg_read(env, reg, parent_reg, flag); 10532 if (err) 10533 return err; 10534 10535 return flag; 10536 } 10537 10538 /* A write screens off any subsequent reads; but write marks come from the 10539 * straight-line code between a state and its parent. When we arrive at an 10540 * equivalent state (jump target or such) we didn't arrive by the straight-line 10541 * code, so read marks in the state must propagate to the parent regardless 10542 * of the state's write marks. That's what 'parent == state->parent' comparison 10543 * in mark_reg_read() is for. 10544 */ 10545 static int propagate_liveness(struct bpf_verifier_env *env, 10546 const struct bpf_verifier_state *vstate, 10547 struct bpf_verifier_state *vparent) 10548 { 10549 struct bpf_reg_state *state_reg, *parent_reg; 10550 struct bpf_func_state *state, *parent; 10551 int i, frame, err = 0; 10552 10553 if (vparent->curframe != vstate->curframe) { 10554 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10555 vparent->curframe, vstate->curframe); 10556 return -EFAULT; 10557 } 10558 /* Propagate read liveness of registers... */ 10559 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10560 for (frame = 0; frame <= vstate->curframe; frame++) { 10561 parent = vparent->frame[frame]; 10562 state = vstate->frame[frame]; 10563 parent_reg = parent->regs; 10564 state_reg = state->regs; 10565 /* We don't need to worry about FP liveness, it's read-only */ 10566 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10567 err = propagate_liveness_reg(env, &state_reg[i], 10568 &parent_reg[i]); 10569 if (err < 0) 10570 return err; 10571 if (err == REG_LIVE_READ64) 10572 mark_insn_zext(env, &parent_reg[i]); 10573 } 10574 10575 /* Propagate stack slots. */ 10576 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10577 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10578 parent_reg = &parent->stack[i].spilled_ptr; 10579 state_reg = &state->stack[i].spilled_ptr; 10580 err = propagate_liveness_reg(env, state_reg, 10581 parent_reg); 10582 if (err < 0) 10583 return err; 10584 } 10585 } 10586 return 0; 10587 } 10588 10589 /* find precise scalars in the previous equivalent state and 10590 * propagate them into the current state 10591 */ 10592 static int propagate_precision(struct bpf_verifier_env *env, 10593 const struct bpf_verifier_state *old) 10594 { 10595 struct bpf_reg_state *state_reg; 10596 struct bpf_func_state *state; 10597 int i, err = 0; 10598 10599 state = old->frame[old->curframe]; 10600 state_reg = state->regs; 10601 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10602 if (state_reg->type != SCALAR_VALUE || 10603 !state_reg->precise) 10604 continue; 10605 if (env->log.level & BPF_LOG_LEVEL2) 10606 verbose(env, "propagating r%d\n", i); 10607 err = mark_chain_precision(env, i); 10608 if (err < 0) 10609 return err; 10610 } 10611 10612 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10613 if (!is_spilled_reg(&state->stack[i])) 10614 continue; 10615 state_reg = &state->stack[i].spilled_ptr; 10616 if (state_reg->type != SCALAR_VALUE || 10617 !state_reg->precise) 10618 continue; 10619 if (env->log.level & BPF_LOG_LEVEL2) 10620 verbose(env, "propagating fp%d\n", 10621 (-i - 1) * BPF_REG_SIZE); 10622 err = mark_chain_precision_stack(env, i); 10623 if (err < 0) 10624 return err; 10625 } 10626 return 0; 10627 } 10628 10629 static bool states_maybe_looping(struct bpf_verifier_state *old, 10630 struct bpf_verifier_state *cur) 10631 { 10632 struct bpf_func_state *fold, *fcur; 10633 int i, fr = cur->curframe; 10634 10635 if (old->curframe != fr) 10636 return false; 10637 10638 fold = old->frame[fr]; 10639 fcur = cur->frame[fr]; 10640 for (i = 0; i < MAX_BPF_REG; i++) 10641 if (memcmp(&fold->regs[i], &fcur->regs[i], 10642 offsetof(struct bpf_reg_state, parent))) 10643 return false; 10644 return true; 10645 } 10646 10647 10648 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10649 { 10650 struct bpf_verifier_state_list *new_sl; 10651 struct bpf_verifier_state_list *sl, **pprev; 10652 struct bpf_verifier_state *cur = env->cur_state, *new; 10653 int i, j, err, states_cnt = 0; 10654 bool add_new_state = env->test_state_freq ? true : false; 10655 10656 cur->last_insn_idx = env->prev_insn_idx; 10657 if (!env->insn_aux_data[insn_idx].prune_point) 10658 /* this 'insn_idx' instruction wasn't marked, so we will not 10659 * be doing state search here 10660 */ 10661 return 0; 10662 10663 /* bpf progs typically have pruning point every 4 instructions 10664 * http://vger.kernel.org/bpfconf2019.html#session-1 10665 * Do not add new state for future pruning if the verifier hasn't seen 10666 * at least 2 jumps and at least 8 instructions. 10667 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10668 * In tests that amounts to up to 50% reduction into total verifier 10669 * memory consumption and 20% verifier time speedup. 10670 */ 10671 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10672 env->insn_processed - env->prev_insn_processed >= 8) 10673 add_new_state = true; 10674 10675 pprev = explored_state(env, insn_idx); 10676 sl = *pprev; 10677 10678 clean_live_states(env, insn_idx, cur); 10679 10680 while (sl) { 10681 states_cnt++; 10682 if (sl->state.insn_idx != insn_idx) 10683 goto next; 10684 10685 if (sl->state.branches) { 10686 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 10687 10688 if (frame->in_async_callback_fn && 10689 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 10690 /* Different async_entry_cnt means that the verifier is 10691 * processing another entry into async callback. 10692 * Seeing the same state is not an indication of infinite 10693 * loop or infinite recursion. 10694 * But finding the same state doesn't mean that it's safe 10695 * to stop processing the current state. The previous state 10696 * hasn't yet reached bpf_exit, since state.branches > 0. 10697 * Checking in_async_callback_fn alone is not enough either. 10698 * Since the verifier still needs to catch infinite loops 10699 * inside async callbacks. 10700 */ 10701 } else if (states_maybe_looping(&sl->state, cur) && 10702 states_equal(env, &sl->state, cur)) { 10703 verbose_linfo(env, insn_idx, "; "); 10704 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10705 return -EINVAL; 10706 } 10707 /* if the verifier is processing a loop, avoid adding new state 10708 * too often, since different loop iterations have distinct 10709 * states and may not help future pruning. 10710 * This threshold shouldn't be too low to make sure that 10711 * a loop with large bound will be rejected quickly. 10712 * The most abusive loop will be: 10713 * r1 += 1 10714 * if r1 < 1000000 goto pc-2 10715 * 1M insn_procssed limit / 100 == 10k peak states. 10716 * This threshold shouldn't be too high either, since states 10717 * at the end of the loop are likely to be useful in pruning. 10718 */ 10719 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10720 env->insn_processed - env->prev_insn_processed < 100) 10721 add_new_state = false; 10722 goto miss; 10723 } 10724 if (states_equal(env, &sl->state, cur)) { 10725 sl->hit_cnt++; 10726 /* reached equivalent register/stack state, 10727 * prune the search. 10728 * Registers read by the continuation are read by us. 10729 * If we have any write marks in env->cur_state, they 10730 * will prevent corresponding reads in the continuation 10731 * from reaching our parent (an explored_state). Our 10732 * own state will get the read marks recorded, but 10733 * they'll be immediately forgotten as we're pruning 10734 * this state and will pop a new one. 10735 */ 10736 err = propagate_liveness(env, &sl->state, cur); 10737 10738 /* if previous state reached the exit with precision and 10739 * current state is equivalent to it (except precsion marks) 10740 * the precision needs to be propagated back in 10741 * the current state. 10742 */ 10743 err = err ? : push_jmp_history(env, cur); 10744 err = err ? : propagate_precision(env, &sl->state); 10745 if (err) 10746 return err; 10747 return 1; 10748 } 10749 miss: 10750 /* when new state is not going to be added do not increase miss count. 10751 * Otherwise several loop iterations will remove the state 10752 * recorded earlier. The goal of these heuristics is to have 10753 * states from some iterations of the loop (some in the beginning 10754 * and some at the end) to help pruning. 10755 */ 10756 if (add_new_state) 10757 sl->miss_cnt++; 10758 /* heuristic to determine whether this state is beneficial 10759 * to keep checking from state equivalence point of view. 10760 * Higher numbers increase max_states_per_insn and verification time, 10761 * but do not meaningfully decrease insn_processed. 10762 */ 10763 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10764 /* the state is unlikely to be useful. Remove it to 10765 * speed up verification 10766 */ 10767 *pprev = sl->next; 10768 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10769 u32 br = sl->state.branches; 10770 10771 WARN_ONCE(br, 10772 "BUG live_done but branches_to_explore %d\n", 10773 br); 10774 free_verifier_state(&sl->state, false); 10775 kfree(sl); 10776 env->peak_states--; 10777 } else { 10778 /* cannot free this state, since parentage chain may 10779 * walk it later. Add it for free_list instead to 10780 * be freed at the end of verification 10781 */ 10782 sl->next = env->free_list; 10783 env->free_list = sl; 10784 } 10785 sl = *pprev; 10786 continue; 10787 } 10788 next: 10789 pprev = &sl->next; 10790 sl = *pprev; 10791 } 10792 10793 if (env->max_states_per_insn < states_cnt) 10794 env->max_states_per_insn = states_cnt; 10795 10796 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10797 return push_jmp_history(env, cur); 10798 10799 if (!add_new_state) 10800 return push_jmp_history(env, cur); 10801 10802 /* There were no equivalent states, remember the current one. 10803 * Technically the current state is not proven to be safe yet, 10804 * but it will either reach outer most bpf_exit (which means it's safe) 10805 * or it will be rejected. When there are no loops the verifier won't be 10806 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 10807 * again on the way to bpf_exit. 10808 * When looping the sl->state.branches will be > 0 and this state 10809 * will not be considered for equivalence until branches == 0. 10810 */ 10811 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 10812 if (!new_sl) 10813 return -ENOMEM; 10814 env->total_states++; 10815 env->peak_states++; 10816 env->prev_jmps_processed = env->jmps_processed; 10817 env->prev_insn_processed = env->insn_processed; 10818 10819 /* add new state to the head of linked list */ 10820 new = &new_sl->state; 10821 err = copy_verifier_state(new, cur); 10822 if (err) { 10823 free_verifier_state(new, false); 10824 kfree(new_sl); 10825 return err; 10826 } 10827 new->insn_idx = insn_idx; 10828 WARN_ONCE(new->branches != 1, 10829 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 10830 10831 cur->parent = new; 10832 cur->first_insn_idx = insn_idx; 10833 clear_jmp_history(cur); 10834 new_sl->next = *explored_state(env, insn_idx); 10835 *explored_state(env, insn_idx) = new_sl; 10836 /* connect new state to parentage chain. Current frame needs all 10837 * registers connected. Only r6 - r9 of the callers are alive (pushed 10838 * to the stack implicitly by JITs) so in callers' frames connect just 10839 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 10840 * the state of the call instruction (with WRITTEN set), and r0 comes 10841 * from callee with its full parentage chain, anyway. 10842 */ 10843 /* clear write marks in current state: the writes we did are not writes 10844 * our child did, so they don't screen off its reads from us. 10845 * (There are no read marks in current state, because reads always mark 10846 * their parent and current state never has children yet. Only 10847 * explored_states can get read marks.) 10848 */ 10849 for (j = 0; j <= cur->curframe; j++) { 10850 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 10851 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 10852 for (i = 0; i < BPF_REG_FP; i++) 10853 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 10854 } 10855 10856 /* all stack frames are accessible from callee, clear them all */ 10857 for (j = 0; j <= cur->curframe; j++) { 10858 struct bpf_func_state *frame = cur->frame[j]; 10859 struct bpf_func_state *newframe = new->frame[j]; 10860 10861 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 10862 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 10863 frame->stack[i].spilled_ptr.parent = 10864 &newframe->stack[i].spilled_ptr; 10865 } 10866 } 10867 return 0; 10868 } 10869 10870 /* Return true if it's OK to have the same insn return a different type. */ 10871 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 10872 { 10873 switch (type) { 10874 case PTR_TO_CTX: 10875 case PTR_TO_SOCKET: 10876 case PTR_TO_SOCKET_OR_NULL: 10877 case PTR_TO_SOCK_COMMON: 10878 case PTR_TO_SOCK_COMMON_OR_NULL: 10879 case PTR_TO_TCP_SOCK: 10880 case PTR_TO_TCP_SOCK_OR_NULL: 10881 case PTR_TO_XDP_SOCK: 10882 case PTR_TO_BTF_ID: 10883 case PTR_TO_BTF_ID_OR_NULL: 10884 return false; 10885 default: 10886 return true; 10887 } 10888 } 10889 10890 /* If an instruction was previously used with particular pointer types, then we 10891 * need to be careful to avoid cases such as the below, where it may be ok 10892 * for one branch accessing the pointer, but not ok for the other branch: 10893 * 10894 * R1 = sock_ptr 10895 * goto X; 10896 * ... 10897 * R1 = some_other_valid_ptr; 10898 * goto X; 10899 * ... 10900 * R2 = *(u32 *)(R1 + 0); 10901 */ 10902 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 10903 { 10904 return src != prev && (!reg_type_mismatch_ok(src) || 10905 !reg_type_mismatch_ok(prev)); 10906 } 10907 10908 static int do_check(struct bpf_verifier_env *env) 10909 { 10910 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10911 struct bpf_verifier_state *state = env->cur_state; 10912 struct bpf_insn *insns = env->prog->insnsi; 10913 struct bpf_reg_state *regs; 10914 int insn_cnt = env->prog->len; 10915 bool do_print_state = false; 10916 int prev_insn_idx = -1; 10917 10918 for (;;) { 10919 struct bpf_insn *insn; 10920 u8 class; 10921 int err; 10922 10923 env->prev_insn_idx = prev_insn_idx; 10924 if (env->insn_idx >= insn_cnt) { 10925 verbose(env, "invalid insn idx %d insn_cnt %d\n", 10926 env->insn_idx, insn_cnt); 10927 return -EFAULT; 10928 } 10929 10930 insn = &insns[env->insn_idx]; 10931 class = BPF_CLASS(insn->code); 10932 10933 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 10934 verbose(env, 10935 "BPF program is too large. Processed %d insn\n", 10936 env->insn_processed); 10937 return -E2BIG; 10938 } 10939 10940 err = is_state_visited(env, env->insn_idx); 10941 if (err < 0) 10942 return err; 10943 if (err == 1) { 10944 /* found equivalent state, can prune the search */ 10945 if (env->log.level & BPF_LOG_LEVEL) { 10946 if (do_print_state) 10947 verbose(env, "\nfrom %d to %d%s: safe\n", 10948 env->prev_insn_idx, env->insn_idx, 10949 env->cur_state->speculative ? 10950 " (speculative execution)" : ""); 10951 else 10952 verbose(env, "%d: safe\n", env->insn_idx); 10953 } 10954 goto process_bpf_exit; 10955 } 10956 10957 if (signal_pending(current)) 10958 return -EAGAIN; 10959 10960 if (need_resched()) 10961 cond_resched(); 10962 10963 if (env->log.level & BPF_LOG_LEVEL2 || 10964 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 10965 if (env->log.level & BPF_LOG_LEVEL2) 10966 verbose(env, "%d:", env->insn_idx); 10967 else 10968 verbose(env, "\nfrom %d to %d%s:", 10969 env->prev_insn_idx, env->insn_idx, 10970 env->cur_state->speculative ? 10971 " (speculative execution)" : ""); 10972 print_verifier_state(env, state->frame[state->curframe]); 10973 do_print_state = false; 10974 } 10975 10976 if (env->log.level & BPF_LOG_LEVEL) { 10977 const struct bpf_insn_cbs cbs = { 10978 .cb_call = disasm_kfunc_name, 10979 .cb_print = verbose, 10980 .private_data = env, 10981 }; 10982 10983 verbose_linfo(env, env->insn_idx, "; "); 10984 verbose(env, "%d: ", env->insn_idx); 10985 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 10986 } 10987 10988 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10989 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 10990 env->prev_insn_idx); 10991 if (err) 10992 return err; 10993 } 10994 10995 regs = cur_regs(env); 10996 sanitize_mark_insn_seen(env); 10997 prev_insn_idx = env->insn_idx; 10998 10999 if (class == BPF_ALU || class == BPF_ALU64) { 11000 err = check_alu_op(env, insn); 11001 if (err) 11002 return err; 11003 11004 } else if (class == BPF_LDX) { 11005 enum bpf_reg_type *prev_src_type, src_reg_type; 11006 11007 /* check for reserved fields is already done */ 11008 11009 /* check src operand */ 11010 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11011 if (err) 11012 return err; 11013 11014 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11015 if (err) 11016 return err; 11017 11018 src_reg_type = regs[insn->src_reg].type; 11019 11020 /* check that memory (src_reg + off) is readable, 11021 * the state of dst_reg will be updated by this func 11022 */ 11023 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11024 insn->off, BPF_SIZE(insn->code), 11025 BPF_READ, insn->dst_reg, false); 11026 if (err) 11027 return err; 11028 11029 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11030 11031 if (*prev_src_type == NOT_INIT) { 11032 /* saw a valid insn 11033 * dst_reg = *(u32 *)(src_reg + off) 11034 * save type to validate intersecting paths 11035 */ 11036 *prev_src_type = src_reg_type; 11037 11038 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11039 /* ABuser program is trying to use the same insn 11040 * dst_reg = *(u32*) (src_reg + off) 11041 * with different pointer types: 11042 * src_reg == ctx in one branch and 11043 * src_reg == stack|map in some other branch. 11044 * Reject it. 11045 */ 11046 verbose(env, "same insn cannot be used with different pointers\n"); 11047 return -EINVAL; 11048 } 11049 11050 } else if (class == BPF_STX) { 11051 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11052 11053 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11054 err = check_atomic(env, env->insn_idx, insn); 11055 if (err) 11056 return err; 11057 env->insn_idx++; 11058 continue; 11059 } 11060 11061 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11062 verbose(env, "BPF_STX uses reserved fields\n"); 11063 return -EINVAL; 11064 } 11065 11066 /* check src1 operand */ 11067 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11068 if (err) 11069 return err; 11070 /* check src2 operand */ 11071 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11072 if (err) 11073 return err; 11074 11075 dst_reg_type = regs[insn->dst_reg].type; 11076 11077 /* check that memory (dst_reg + off) is writeable */ 11078 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11079 insn->off, BPF_SIZE(insn->code), 11080 BPF_WRITE, insn->src_reg, false); 11081 if (err) 11082 return err; 11083 11084 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11085 11086 if (*prev_dst_type == NOT_INIT) { 11087 *prev_dst_type = dst_reg_type; 11088 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11089 verbose(env, "same insn cannot be used with different pointers\n"); 11090 return -EINVAL; 11091 } 11092 11093 } else if (class == BPF_ST) { 11094 if (BPF_MODE(insn->code) != BPF_MEM || 11095 insn->src_reg != BPF_REG_0) { 11096 verbose(env, "BPF_ST uses reserved fields\n"); 11097 return -EINVAL; 11098 } 11099 /* check src operand */ 11100 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11101 if (err) 11102 return err; 11103 11104 if (is_ctx_reg(env, insn->dst_reg)) { 11105 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11106 insn->dst_reg, 11107 reg_type_str[reg_state(env, insn->dst_reg)->type]); 11108 return -EACCES; 11109 } 11110 11111 /* check that memory (dst_reg + off) is writeable */ 11112 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11113 insn->off, BPF_SIZE(insn->code), 11114 BPF_WRITE, -1, false); 11115 if (err) 11116 return err; 11117 11118 } else if (class == BPF_JMP || class == BPF_JMP32) { 11119 u8 opcode = BPF_OP(insn->code); 11120 11121 env->jmps_processed++; 11122 if (opcode == BPF_CALL) { 11123 if (BPF_SRC(insn->code) != BPF_K || 11124 insn->off != 0 || 11125 (insn->src_reg != BPF_REG_0 && 11126 insn->src_reg != BPF_PSEUDO_CALL && 11127 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11128 insn->dst_reg != BPF_REG_0 || 11129 class == BPF_JMP32) { 11130 verbose(env, "BPF_CALL uses reserved fields\n"); 11131 return -EINVAL; 11132 } 11133 11134 if (env->cur_state->active_spin_lock && 11135 (insn->src_reg == BPF_PSEUDO_CALL || 11136 insn->imm != BPF_FUNC_spin_unlock)) { 11137 verbose(env, "function calls are not allowed while holding a lock\n"); 11138 return -EINVAL; 11139 } 11140 if (insn->src_reg == BPF_PSEUDO_CALL) 11141 err = check_func_call(env, insn, &env->insn_idx); 11142 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11143 err = check_kfunc_call(env, insn); 11144 else 11145 err = check_helper_call(env, insn, &env->insn_idx); 11146 if (err) 11147 return err; 11148 } else if (opcode == BPF_JA) { 11149 if (BPF_SRC(insn->code) != BPF_K || 11150 insn->imm != 0 || 11151 insn->src_reg != BPF_REG_0 || 11152 insn->dst_reg != BPF_REG_0 || 11153 class == BPF_JMP32) { 11154 verbose(env, "BPF_JA uses reserved fields\n"); 11155 return -EINVAL; 11156 } 11157 11158 env->insn_idx += insn->off + 1; 11159 continue; 11160 11161 } else if (opcode == BPF_EXIT) { 11162 if (BPF_SRC(insn->code) != BPF_K || 11163 insn->imm != 0 || 11164 insn->src_reg != BPF_REG_0 || 11165 insn->dst_reg != BPF_REG_0 || 11166 class == BPF_JMP32) { 11167 verbose(env, "BPF_EXIT uses reserved fields\n"); 11168 return -EINVAL; 11169 } 11170 11171 if (env->cur_state->active_spin_lock) { 11172 verbose(env, "bpf_spin_unlock is missing\n"); 11173 return -EINVAL; 11174 } 11175 11176 if (state->curframe) { 11177 /* exit from nested function */ 11178 err = prepare_func_exit(env, &env->insn_idx); 11179 if (err) 11180 return err; 11181 do_print_state = true; 11182 continue; 11183 } 11184 11185 err = check_reference_leak(env); 11186 if (err) 11187 return err; 11188 11189 err = check_return_code(env); 11190 if (err) 11191 return err; 11192 process_bpf_exit: 11193 update_branch_counts(env, env->cur_state); 11194 err = pop_stack(env, &prev_insn_idx, 11195 &env->insn_idx, pop_log); 11196 if (err < 0) { 11197 if (err != -ENOENT) 11198 return err; 11199 break; 11200 } else { 11201 do_print_state = true; 11202 continue; 11203 } 11204 } else { 11205 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11206 if (err) 11207 return err; 11208 } 11209 } else if (class == BPF_LD) { 11210 u8 mode = BPF_MODE(insn->code); 11211 11212 if (mode == BPF_ABS || mode == BPF_IND) { 11213 err = check_ld_abs(env, insn); 11214 if (err) 11215 return err; 11216 11217 } else if (mode == BPF_IMM) { 11218 err = check_ld_imm(env, insn); 11219 if (err) 11220 return err; 11221 11222 env->insn_idx++; 11223 sanitize_mark_insn_seen(env); 11224 } else { 11225 verbose(env, "invalid BPF_LD mode\n"); 11226 return -EINVAL; 11227 } 11228 } else { 11229 verbose(env, "unknown insn class %d\n", class); 11230 return -EINVAL; 11231 } 11232 11233 env->insn_idx++; 11234 } 11235 11236 return 0; 11237 } 11238 11239 static int find_btf_percpu_datasec(struct btf *btf) 11240 { 11241 const struct btf_type *t; 11242 const char *tname; 11243 int i, n; 11244 11245 /* 11246 * Both vmlinux and module each have their own ".data..percpu" 11247 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11248 * types to look at only module's own BTF types. 11249 */ 11250 n = btf_nr_types(btf); 11251 if (btf_is_module(btf)) 11252 i = btf_nr_types(btf_vmlinux); 11253 else 11254 i = 1; 11255 11256 for(; i < n; i++) { 11257 t = btf_type_by_id(btf, i); 11258 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11259 continue; 11260 11261 tname = btf_name_by_offset(btf, t->name_off); 11262 if (!strcmp(tname, ".data..percpu")) 11263 return i; 11264 } 11265 11266 return -ENOENT; 11267 } 11268 11269 /* replace pseudo btf_id with kernel symbol address */ 11270 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11271 struct bpf_insn *insn, 11272 struct bpf_insn_aux_data *aux) 11273 { 11274 const struct btf_var_secinfo *vsi; 11275 const struct btf_type *datasec; 11276 struct btf_mod_pair *btf_mod; 11277 const struct btf_type *t; 11278 const char *sym_name; 11279 bool percpu = false; 11280 u32 type, id = insn->imm; 11281 struct btf *btf; 11282 s32 datasec_id; 11283 u64 addr; 11284 int i, btf_fd, err; 11285 11286 btf_fd = insn[1].imm; 11287 if (btf_fd) { 11288 btf = btf_get_by_fd(btf_fd); 11289 if (IS_ERR(btf)) { 11290 verbose(env, "invalid module BTF object FD specified.\n"); 11291 return -EINVAL; 11292 } 11293 } else { 11294 if (!btf_vmlinux) { 11295 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11296 return -EINVAL; 11297 } 11298 btf = btf_vmlinux; 11299 btf_get(btf); 11300 } 11301 11302 t = btf_type_by_id(btf, id); 11303 if (!t) { 11304 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11305 err = -ENOENT; 11306 goto err_put; 11307 } 11308 11309 if (!btf_type_is_var(t)) { 11310 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11311 err = -EINVAL; 11312 goto err_put; 11313 } 11314 11315 sym_name = btf_name_by_offset(btf, t->name_off); 11316 addr = kallsyms_lookup_name(sym_name); 11317 if (!addr) { 11318 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11319 sym_name); 11320 err = -ENOENT; 11321 goto err_put; 11322 } 11323 11324 datasec_id = find_btf_percpu_datasec(btf); 11325 if (datasec_id > 0) { 11326 datasec = btf_type_by_id(btf, datasec_id); 11327 for_each_vsi(i, datasec, vsi) { 11328 if (vsi->type == id) { 11329 percpu = true; 11330 break; 11331 } 11332 } 11333 } 11334 11335 insn[0].imm = (u32)addr; 11336 insn[1].imm = addr >> 32; 11337 11338 type = t->type; 11339 t = btf_type_skip_modifiers(btf, type, NULL); 11340 if (percpu) { 11341 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11342 aux->btf_var.btf = btf; 11343 aux->btf_var.btf_id = type; 11344 } else if (!btf_type_is_struct(t)) { 11345 const struct btf_type *ret; 11346 const char *tname; 11347 u32 tsize; 11348 11349 /* resolve the type size of ksym. */ 11350 ret = btf_resolve_size(btf, t, &tsize); 11351 if (IS_ERR(ret)) { 11352 tname = btf_name_by_offset(btf, t->name_off); 11353 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11354 tname, PTR_ERR(ret)); 11355 err = -EINVAL; 11356 goto err_put; 11357 } 11358 aux->btf_var.reg_type = PTR_TO_MEM; 11359 aux->btf_var.mem_size = tsize; 11360 } else { 11361 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11362 aux->btf_var.btf = btf; 11363 aux->btf_var.btf_id = type; 11364 } 11365 11366 /* check whether we recorded this BTF (and maybe module) already */ 11367 for (i = 0; i < env->used_btf_cnt; i++) { 11368 if (env->used_btfs[i].btf == btf) { 11369 btf_put(btf); 11370 return 0; 11371 } 11372 } 11373 11374 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11375 err = -E2BIG; 11376 goto err_put; 11377 } 11378 11379 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11380 btf_mod->btf = btf; 11381 btf_mod->module = NULL; 11382 11383 /* if we reference variables from kernel module, bump its refcount */ 11384 if (btf_is_module(btf)) { 11385 btf_mod->module = btf_try_get_module(btf); 11386 if (!btf_mod->module) { 11387 err = -ENXIO; 11388 goto err_put; 11389 } 11390 } 11391 11392 env->used_btf_cnt++; 11393 11394 return 0; 11395 err_put: 11396 btf_put(btf); 11397 return err; 11398 } 11399 11400 static int check_map_prealloc(struct bpf_map *map) 11401 { 11402 return (map->map_type != BPF_MAP_TYPE_HASH && 11403 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11404 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11405 !(map->map_flags & BPF_F_NO_PREALLOC); 11406 } 11407 11408 static bool is_tracing_prog_type(enum bpf_prog_type type) 11409 { 11410 switch (type) { 11411 case BPF_PROG_TYPE_KPROBE: 11412 case BPF_PROG_TYPE_TRACEPOINT: 11413 case BPF_PROG_TYPE_PERF_EVENT: 11414 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11415 return true; 11416 default: 11417 return false; 11418 } 11419 } 11420 11421 static bool is_preallocated_map(struct bpf_map *map) 11422 { 11423 if (!check_map_prealloc(map)) 11424 return false; 11425 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11426 return false; 11427 return true; 11428 } 11429 11430 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11431 struct bpf_map *map, 11432 struct bpf_prog *prog) 11433 11434 { 11435 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11436 /* 11437 * Validate that trace type programs use preallocated hash maps. 11438 * 11439 * For programs attached to PERF events this is mandatory as the 11440 * perf NMI can hit any arbitrary code sequence. 11441 * 11442 * All other trace types using preallocated hash maps are unsafe as 11443 * well because tracepoint or kprobes can be inside locked regions 11444 * of the memory allocator or at a place where a recursion into the 11445 * memory allocator would see inconsistent state. 11446 * 11447 * On RT enabled kernels run-time allocation of all trace type 11448 * programs is strictly prohibited due to lock type constraints. On 11449 * !RT kernels it is allowed for backwards compatibility reasons for 11450 * now, but warnings are emitted so developers are made aware of 11451 * the unsafety and can fix their programs before this is enforced. 11452 */ 11453 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11454 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11455 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11456 return -EINVAL; 11457 } 11458 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11459 verbose(env, "trace type programs can only use preallocated hash map\n"); 11460 return -EINVAL; 11461 } 11462 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11463 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11464 } 11465 11466 if (map_value_has_spin_lock(map)) { 11467 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11468 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11469 return -EINVAL; 11470 } 11471 11472 if (is_tracing_prog_type(prog_type)) { 11473 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11474 return -EINVAL; 11475 } 11476 11477 if (prog->aux->sleepable) { 11478 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11479 return -EINVAL; 11480 } 11481 } 11482 11483 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11484 !bpf_offload_prog_map_match(prog, map)) { 11485 verbose(env, "offload device mismatch between prog and map\n"); 11486 return -EINVAL; 11487 } 11488 11489 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11490 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11491 return -EINVAL; 11492 } 11493 11494 if (prog->aux->sleepable) 11495 switch (map->map_type) { 11496 case BPF_MAP_TYPE_HASH: 11497 case BPF_MAP_TYPE_LRU_HASH: 11498 case BPF_MAP_TYPE_ARRAY: 11499 case BPF_MAP_TYPE_PERCPU_HASH: 11500 case BPF_MAP_TYPE_PERCPU_ARRAY: 11501 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11502 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11503 case BPF_MAP_TYPE_HASH_OF_MAPS: 11504 if (!is_preallocated_map(map)) { 11505 verbose(env, 11506 "Sleepable programs can only use preallocated maps\n"); 11507 return -EINVAL; 11508 } 11509 break; 11510 case BPF_MAP_TYPE_RINGBUF: 11511 break; 11512 default: 11513 verbose(env, 11514 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11515 return -EINVAL; 11516 } 11517 11518 return 0; 11519 } 11520 11521 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11522 { 11523 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11524 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11525 } 11526 11527 /* find and rewrite pseudo imm in ld_imm64 instructions: 11528 * 11529 * 1. if it accesses map FD, replace it with actual map pointer. 11530 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11531 * 11532 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11533 */ 11534 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11535 { 11536 struct bpf_insn *insn = env->prog->insnsi; 11537 int insn_cnt = env->prog->len; 11538 int i, j, err; 11539 11540 err = bpf_prog_calc_tag(env->prog); 11541 if (err) 11542 return err; 11543 11544 for (i = 0; i < insn_cnt; i++, insn++) { 11545 if (BPF_CLASS(insn->code) == BPF_LDX && 11546 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11547 verbose(env, "BPF_LDX uses reserved fields\n"); 11548 return -EINVAL; 11549 } 11550 11551 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11552 struct bpf_insn_aux_data *aux; 11553 struct bpf_map *map; 11554 struct fd f; 11555 u64 addr; 11556 u32 fd; 11557 11558 if (i == insn_cnt - 1 || insn[1].code != 0 || 11559 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11560 insn[1].off != 0) { 11561 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11562 return -EINVAL; 11563 } 11564 11565 if (insn[0].src_reg == 0) 11566 /* valid generic load 64-bit imm */ 11567 goto next_insn; 11568 11569 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11570 aux = &env->insn_aux_data[i]; 11571 err = check_pseudo_btf_id(env, insn, aux); 11572 if (err) 11573 return err; 11574 goto next_insn; 11575 } 11576 11577 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11578 aux = &env->insn_aux_data[i]; 11579 aux->ptr_type = PTR_TO_FUNC; 11580 goto next_insn; 11581 } 11582 11583 /* In final convert_pseudo_ld_imm64() step, this is 11584 * converted into regular 64-bit imm load insn. 11585 */ 11586 switch (insn[0].src_reg) { 11587 case BPF_PSEUDO_MAP_VALUE: 11588 case BPF_PSEUDO_MAP_IDX_VALUE: 11589 break; 11590 case BPF_PSEUDO_MAP_FD: 11591 case BPF_PSEUDO_MAP_IDX: 11592 if (insn[1].imm == 0) 11593 break; 11594 fallthrough; 11595 default: 11596 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11597 return -EINVAL; 11598 } 11599 11600 switch (insn[0].src_reg) { 11601 case BPF_PSEUDO_MAP_IDX_VALUE: 11602 case BPF_PSEUDO_MAP_IDX: 11603 if (bpfptr_is_null(env->fd_array)) { 11604 verbose(env, "fd_idx without fd_array is invalid\n"); 11605 return -EPROTO; 11606 } 11607 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11608 insn[0].imm * sizeof(fd), 11609 sizeof(fd))) 11610 return -EFAULT; 11611 break; 11612 default: 11613 fd = insn[0].imm; 11614 break; 11615 } 11616 11617 f = fdget(fd); 11618 map = __bpf_map_get(f); 11619 if (IS_ERR(map)) { 11620 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11621 insn[0].imm); 11622 return PTR_ERR(map); 11623 } 11624 11625 err = check_map_prog_compatibility(env, map, env->prog); 11626 if (err) { 11627 fdput(f); 11628 return err; 11629 } 11630 11631 aux = &env->insn_aux_data[i]; 11632 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 11633 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 11634 addr = (unsigned long)map; 11635 } else { 11636 u32 off = insn[1].imm; 11637 11638 if (off >= BPF_MAX_VAR_OFF) { 11639 verbose(env, "direct value offset of %u is not allowed\n", off); 11640 fdput(f); 11641 return -EINVAL; 11642 } 11643 11644 if (!map->ops->map_direct_value_addr) { 11645 verbose(env, "no direct value access support for this map type\n"); 11646 fdput(f); 11647 return -EINVAL; 11648 } 11649 11650 err = map->ops->map_direct_value_addr(map, &addr, off); 11651 if (err) { 11652 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11653 map->value_size, off); 11654 fdput(f); 11655 return err; 11656 } 11657 11658 aux->map_off = off; 11659 addr += off; 11660 } 11661 11662 insn[0].imm = (u32)addr; 11663 insn[1].imm = addr >> 32; 11664 11665 /* check whether we recorded this map already */ 11666 for (j = 0; j < env->used_map_cnt; j++) { 11667 if (env->used_maps[j] == map) { 11668 aux->map_index = j; 11669 fdput(f); 11670 goto next_insn; 11671 } 11672 } 11673 11674 if (env->used_map_cnt >= MAX_USED_MAPS) { 11675 fdput(f); 11676 return -E2BIG; 11677 } 11678 11679 /* hold the map. If the program is rejected by verifier, 11680 * the map will be released by release_maps() or it 11681 * will be used by the valid program until it's unloaded 11682 * and all maps are released in free_used_maps() 11683 */ 11684 bpf_map_inc(map); 11685 11686 aux->map_index = env->used_map_cnt; 11687 env->used_maps[env->used_map_cnt++] = map; 11688 11689 if (bpf_map_is_cgroup_storage(map) && 11690 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11691 verbose(env, "only one cgroup storage of each type is allowed\n"); 11692 fdput(f); 11693 return -EBUSY; 11694 } 11695 11696 fdput(f); 11697 next_insn: 11698 insn++; 11699 i++; 11700 continue; 11701 } 11702 11703 /* Basic sanity check before we invest more work here. */ 11704 if (!bpf_opcode_in_insntable(insn->code)) { 11705 verbose(env, "unknown opcode %02x\n", insn->code); 11706 return -EINVAL; 11707 } 11708 } 11709 11710 /* now all pseudo BPF_LD_IMM64 instructions load valid 11711 * 'struct bpf_map *' into a register instead of user map_fd. 11712 * These pointers will be used later by verifier to validate map access. 11713 */ 11714 return 0; 11715 } 11716 11717 /* drop refcnt of maps used by the rejected program */ 11718 static void release_maps(struct bpf_verifier_env *env) 11719 { 11720 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11721 env->used_map_cnt); 11722 } 11723 11724 /* drop refcnt of maps used by the rejected program */ 11725 static void release_btfs(struct bpf_verifier_env *env) 11726 { 11727 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11728 env->used_btf_cnt); 11729 } 11730 11731 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11732 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11733 { 11734 struct bpf_insn *insn = env->prog->insnsi; 11735 int insn_cnt = env->prog->len; 11736 int i; 11737 11738 for (i = 0; i < insn_cnt; i++, insn++) { 11739 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11740 continue; 11741 if (insn->src_reg == BPF_PSEUDO_FUNC) 11742 continue; 11743 insn->src_reg = 0; 11744 } 11745 } 11746 11747 /* single env->prog->insni[off] instruction was replaced with the range 11748 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11749 * [0, off) and [off, end) to new locations, so the patched range stays zero 11750 */ 11751 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 11752 struct bpf_insn_aux_data *new_data, 11753 struct bpf_prog *new_prog, u32 off, u32 cnt) 11754 { 11755 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 11756 struct bpf_insn *insn = new_prog->insnsi; 11757 u32 old_seen = old_data[off].seen; 11758 u32 prog_len; 11759 int i; 11760 11761 /* aux info at OFF always needs adjustment, no matter fast path 11762 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11763 * original insn at old prog. 11764 */ 11765 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11766 11767 if (cnt == 1) 11768 return; 11769 prog_len = new_prog->len; 11770 11771 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11772 memcpy(new_data + off + cnt - 1, old_data + off, 11773 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11774 for (i = off; i < off + cnt - 1; i++) { 11775 /* Expand insni[off]'s seen count to the patched range. */ 11776 new_data[i].seen = old_seen; 11777 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11778 } 11779 env->insn_aux_data = new_data; 11780 vfree(old_data); 11781 } 11782 11783 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11784 { 11785 int i; 11786 11787 if (len == 1) 11788 return; 11789 /* NOTE: fake 'exit' subprog should be updated as well. */ 11790 for (i = 0; i <= env->subprog_cnt; i++) { 11791 if (env->subprog_info[i].start <= off) 11792 continue; 11793 env->subprog_info[i].start += len - 1; 11794 } 11795 } 11796 11797 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 11798 { 11799 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 11800 int i, sz = prog->aux->size_poke_tab; 11801 struct bpf_jit_poke_descriptor *desc; 11802 11803 for (i = 0; i < sz; i++) { 11804 desc = &tab[i]; 11805 if (desc->insn_idx <= off) 11806 continue; 11807 desc->insn_idx += len - 1; 11808 } 11809 } 11810 11811 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 11812 const struct bpf_insn *patch, u32 len) 11813 { 11814 struct bpf_prog *new_prog; 11815 struct bpf_insn_aux_data *new_data = NULL; 11816 11817 if (len > 1) { 11818 new_data = vzalloc(array_size(env->prog->len + len - 1, 11819 sizeof(struct bpf_insn_aux_data))); 11820 if (!new_data) 11821 return NULL; 11822 } 11823 11824 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 11825 if (IS_ERR(new_prog)) { 11826 if (PTR_ERR(new_prog) == -ERANGE) 11827 verbose(env, 11828 "insn %d cannot be patched due to 16-bit range\n", 11829 env->insn_aux_data[off].orig_idx); 11830 vfree(new_data); 11831 return NULL; 11832 } 11833 adjust_insn_aux_data(env, new_data, new_prog, off, len); 11834 adjust_subprog_starts(env, off, len); 11835 adjust_poke_descs(new_prog, off, len); 11836 return new_prog; 11837 } 11838 11839 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 11840 u32 off, u32 cnt) 11841 { 11842 int i, j; 11843 11844 /* find first prog starting at or after off (first to remove) */ 11845 for (i = 0; i < env->subprog_cnt; i++) 11846 if (env->subprog_info[i].start >= off) 11847 break; 11848 /* find first prog starting at or after off + cnt (first to stay) */ 11849 for (j = i; j < env->subprog_cnt; j++) 11850 if (env->subprog_info[j].start >= off + cnt) 11851 break; 11852 /* if j doesn't start exactly at off + cnt, we are just removing 11853 * the front of previous prog 11854 */ 11855 if (env->subprog_info[j].start != off + cnt) 11856 j--; 11857 11858 if (j > i) { 11859 struct bpf_prog_aux *aux = env->prog->aux; 11860 int move; 11861 11862 /* move fake 'exit' subprog as well */ 11863 move = env->subprog_cnt + 1 - j; 11864 11865 memmove(env->subprog_info + i, 11866 env->subprog_info + j, 11867 sizeof(*env->subprog_info) * move); 11868 env->subprog_cnt -= j - i; 11869 11870 /* remove func_info */ 11871 if (aux->func_info) { 11872 move = aux->func_info_cnt - j; 11873 11874 memmove(aux->func_info + i, 11875 aux->func_info + j, 11876 sizeof(*aux->func_info) * move); 11877 aux->func_info_cnt -= j - i; 11878 /* func_info->insn_off is set after all code rewrites, 11879 * in adjust_btf_func() - no need to adjust 11880 */ 11881 } 11882 } else { 11883 /* convert i from "first prog to remove" to "first to adjust" */ 11884 if (env->subprog_info[i].start == off) 11885 i++; 11886 } 11887 11888 /* update fake 'exit' subprog as well */ 11889 for (; i <= env->subprog_cnt; i++) 11890 env->subprog_info[i].start -= cnt; 11891 11892 return 0; 11893 } 11894 11895 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 11896 u32 cnt) 11897 { 11898 struct bpf_prog *prog = env->prog; 11899 u32 i, l_off, l_cnt, nr_linfo; 11900 struct bpf_line_info *linfo; 11901 11902 nr_linfo = prog->aux->nr_linfo; 11903 if (!nr_linfo) 11904 return 0; 11905 11906 linfo = prog->aux->linfo; 11907 11908 /* find first line info to remove, count lines to be removed */ 11909 for (i = 0; i < nr_linfo; i++) 11910 if (linfo[i].insn_off >= off) 11911 break; 11912 11913 l_off = i; 11914 l_cnt = 0; 11915 for (; i < nr_linfo; i++) 11916 if (linfo[i].insn_off < off + cnt) 11917 l_cnt++; 11918 else 11919 break; 11920 11921 /* First live insn doesn't match first live linfo, it needs to "inherit" 11922 * last removed linfo. prog is already modified, so prog->len == off 11923 * means no live instructions after (tail of the program was removed). 11924 */ 11925 if (prog->len != off && l_cnt && 11926 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 11927 l_cnt--; 11928 linfo[--i].insn_off = off + cnt; 11929 } 11930 11931 /* remove the line info which refer to the removed instructions */ 11932 if (l_cnt) { 11933 memmove(linfo + l_off, linfo + i, 11934 sizeof(*linfo) * (nr_linfo - i)); 11935 11936 prog->aux->nr_linfo -= l_cnt; 11937 nr_linfo = prog->aux->nr_linfo; 11938 } 11939 11940 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 11941 for (i = l_off; i < nr_linfo; i++) 11942 linfo[i].insn_off -= cnt; 11943 11944 /* fix up all subprogs (incl. 'exit') which start >= off */ 11945 for (i = 0; i <= env->subprog_cnt; i++) 11946 if (env->subprog_info[i].linfo_idx > l_off) { 11947 /* program may have started in the removed region but 11948 * may not be fully removed 11949 */ 11950 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 11951 env->subprog_info[i].linfo_idx -= l_cnt; 11952 else 11953 env->subprog_info[i].linfo_idx = l_off; 11954 } 11955 11956 return 0; 11957 } 11958 11959 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 11960 { 11961 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11962 unsigned int orig_prog_len = env->prog->len; 11963 int err; 11964 11965 if (bpf_prog_is_dev_bound(env->prog->aux)) 11966 bpf_prog_offload_remove_insns(env, off, cnt); 11967 11968 err = bpf_remove_insns(env->prog, off, cnt); 11969 if (err) 11970 return err; 11971 11972 err = adjust_subprog_starts_after_remove(env, off, cnt); 11973 if (err) 11974 return err; 11975 11976 err = bpf_adj_linfo_after_remove(env, off, cnt); 11977 if (err) 11978 return err; 11979 11980 memmove(aux_data + off, aux_data + off + cnt, 11981 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 11982 11983 return 0; 11984 } 11985 11986 /* The verifier does more data flow analysis than llvm and will not 11987 * explore branches that are dead at run time. Malicious programs can 11988 * have dead code too. Therefore replace all dead at-run-time code 11989 * with 'ja -1'. 11990 * 11991 * Just nops are not optimal, e.g. if they would sit at the end of the 11992 * program and through another bug we would manage to jump there, then 11993 * we'd execute beyond program memory otherwise. Returning exception 11994 * code also wouldn't work since we can have subprogs where the dead 11995 * code could be located. 11996 */ 11997 static void sanitize_dead_code(struct bpf_verifier_env *env) 11998 { 11999 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12000 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12001 struct bpf_insn *insn = env->prog->insnsi; 12002 const int insn_cnt = env->prog->len; 12003 int i; 12004 12005 for (i = 0; i < insn_cnt; i++) { 12006 if (aux_data[i].seen) 12007 continue; 12008 memcpy(insn + i, &trap, sizeof(trap)); 12009 aux_data[i].zext_dst = false; 12010 } 12011 } 12012 12013 static bool insn_is_cond_jump(u8 code) 12014 { 12015 u8 op; 12016 12017 if (BPF_CLASS(code) == BPF_JMP32) 12018 return true; 12019 12020 if (BPF_CLASS(code) != BPF_JMP) 12021 return false; 12022 12023 op = BPF_OP(code); 12024 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12025 } 12026 12027 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12028 { 12029 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12030 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12031 struct bpf_insn *insn = env->prog->insnsi; 12032 const int insn_cnt = env->prog->len; 12033 int i; 12034 12035 for (i = 0; i < insn_cnt; i++, insn++) { 12036 if (!insn_is_cond_jump(insn->code)) 12037 continue; 12038 12039 if (!aux_data[i + 1].seen) 12040 ja.off = insn->off; 12041 else if (!aux_data[i + 1 + insn->off].seen) 12042 ja.off = 0; 12043 else 12044 continue; 12045 12046 if (bpf_prog_is_dev_bound(env->prog->aux)) 12047 bpf_prog_offload_replace_insn(env, i, &ja); 12048 12049 memcpy(insn, &ja, sizeof(ja)); 12050 } 12051 } 12052 12053 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12054 { 12055 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12056 int insn_cnt = env->prog->len; 12057 int i, err; 12058 12059 for (i = 0; i < insn_cnt; i++) { 12060 int j; 12061 12062 j = 0; 12063 while (i + j < insn_cnt && !aux_data[i + j].seen) 12064 j++; 12065 if (!j) 12066 continue; 12067 12068 err = verifier_remove_insns(env, i, j); 12069 if (err) 12070 return err; 12071 insn_cnt = env->prog->len; 12072 } 12073 12074 return 0; 12075 } 12076 12077 static int opt_remove_nops(struct bpf_verifier_env *env) 12078 { 12079 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12080 struct bpf_insn *insn = env->prog->insnsi; 12081 int insn_cnt = env->prog->len; 12082 int i, err; 12083 12084 for (i = 0; i < insn_cnt; i++) { 12085 if (memcmp(&insn[i], &ja, sizeof(ja))) 12086 continue; 12087 12088 err = verifier_remove_insns(env, i, 1); 12089 if (err) 12090 return err; 12091 insn_cnt--; 12092 i--; 12093 } 12094 12095 return 0; 12096 } 12097 12098 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12099 const union bpf_attr *attr) 12100 { 12101 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12102 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12103 int i, patch_len, delta = 0, len = env->prog->len; 12104 struct bpf_insn *insns = env->prog->insnsi; 12105 struct bpf_prog *new_prog; 12106 bool rnd_hi32; 12107 12108 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12109 zext_patch[1] = BPF_ZEXT_REG(0); 12110 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12111 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12112 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12113 for (i = 0; i < len; i++) { 12114 int adj_idx = i + delta; 12115 struct bpf_insn insn; 12116 int load_reg; 12117 12118 insn = insns[adj_idx]; 12119 load_reg = insn_def_regno(&insn); 12120 if (!aux[adj_idx].zext_dst) { 12121 u8 code, class; 12122 u32 imm_rnd; 12123 12124 if (!rnd_hi32) 12125 continue; 12126 12127 code = insn.code; 12128 class = BPF_CLASS(code); 12129 if (load_reg == -1) 12130 continue; 12131 12132 /* NOTE: arg "reg" (the fourth one) is only used for 12133 * BPF_STX + SRC_OP, so it is safe to pass NULL 12134 * here. 12135 */ 12136 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12137 if (class == BPF_LD && 12138 BPF_MODE(code) == BPF_IMM) 12139 i++; 12140 continue; 12141 } 12142 12143 /* ctx load could be transformed into wider load. */ 12144 if (class == BPF_LDX && 12145 aux[adj_idx].ptr_type == PTR_TO_CTX) 12146 continue; 12147 12148 imm_rnd = get_random_int(); 12149 rnd_hi32_patch[0] = insn; 12150 rnd_hi32_patch[1].imm = imm_rnd; 12151 rnd_hi32_patch[3].dst_reg = load_reg; 12152 patch = rnd_hi32_patch; 12153 patch_len = 4; 12154 goto apply_patch_buffer; 12155 } 12156 12157 /* Add in an zero-extend instruction if a) the JIT has requested 12158 * it or b) it's a CMPXCHG. 12159 * 12160 * The latter is because: BPF_CMPXCHG always loads a value into 12161 * R0, therefore always zero-extends. However some archs' 12162 * equivalent instruction only does this load when the 12163 * comparison is successful. This detail of CMPXCHG is 12164 * orthogonal to the general zero-extension behaviour of the 12165 * CPU, so it's treated independently of bpf_jit_needs_zext. 12166 */ 12167 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12168 continue; 12169 12170 if (WARN_ON(load_reg == -1)) { 12171 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12172 return -EFAULT; 12173 } 12174 12175 zext_patch[0] = insn; 12176 zext_patch[1].dst_reg = load_reg; 12177 zext_patch[1].src_reg = load_reg; 12178 patch = zext_patch; 12179 patch_len = 2; 12180 apply_patch_buffer: 12181 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12182 if (!new_prog) 12183 return -ENOMEM; 12184 env->prog = new_prog; 12185 insns = new_prog->insnsi; 12186 aux = env->insn_aux_data; 12187 delta += patch_len - 1; 12188 } 12189 12190 return 0; 12191 } 12192 12193 /* convert load instructions that access fields of a context type into a 12194 * sequence of instructions that access fields of the underlying structure: 12195 * struct __sk_buff -> struct sk_buff 12196 * struct bpf_sock_ops -> struct sock 12197 */ 12198 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12199 { 12200 const struct bpf_verifier_ops *ops = env->ops; 12201 int i, cnt, size, ctx_field_size, delta = 0; 12202 const int insn_cnt = env->prog->len; 12203 struct bpf_insn insn_buf[16], *insn; 12204 u32 target_size, size_default, off; 12205 struct bpf_prog *new_prog; 12206 enum bpf_access_type type; 12207 bool is_narrower_load; 12208 12209 if (ops->gen_prologue || env->seen_direct_write) { 12210 if (!ops->gen_prologue) { 12211 verbose(env, "bpf verifier is misconfigured\n"); 12212 return -EINVAL; 12213 } 12214 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12215 env->prog); 12216 if (cnt >= ARRAY_SIZE(insn_buf)) { 12217 verbose(env, "bpf verifier is misconfigured\n"); 12218 return -EINVAL; 12219 } else if (cnt) { 12220 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12221 if (!new_prog) 12222 return -ENOMEM; 12223 12224 env->prog = new_prog; 12225 delta += cnt - 1; 12226 } 12227 } 12228 12229 if (bpf_prog_is_dev_bound(env->prog->aux)) 12230 return 0; 12231 12232 insn = env->prog->insnsi + delta; 12233 12234 for (i = 0; i < insn_cnt; i++, insn++) { 12235 bpf_convert_ctx_access_t convert_ctx_access; 12236 bool ctx_access; 12237 12238 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12239 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12240 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12241 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12242 type = BPF_READ; 12243 ctx_access = true; 12244 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12245 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12246 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12247 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12248 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12249 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12250 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12251 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12252 type = BPF_WRITE; 12253 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12254 } else { 12255 continue; 12256 } 12257 12258 if (type == BPF_WRITE && 12259 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12260 struct bpf_insn patch[] = { 12261 *insn, 12262 BPF_ST_NOSPEC(), 12263 }; 12264 12265 cnt = ARRAY_SIZE(patch); 12266 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12267 if (!new_prog) 12268 return -ENOMEM; 12269 12270 delta += cnt - 1; 12271 env->prog = new_prog; 12272 insn = new_prog->insnsi + i + delta; 12273 continue; 12274 } 12275 12276 if (!ctx_access) 12277 continue; 12278 12279 switch (env->insn_aux_data[i + delta].ptr_type) { 12280 case PTR_TO_CTX: 12281 if (!ops->convert_ctx_access) 12282 continue; 12283 convert_ctx_access = ops->convert_ctx_access; 12284 break; 12285 case PTR_TO_SOCKET: 12286 case PTR_TO_SOCK_COMMON: 12287 convert_ctx_access = bpf_sock_convert_ctx_access; 12288 break; 12289 case PTR_TO_TCP_SOCK: 12290 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12291 break; 12292 case PTR_TO_XDP_SOCK: 12293 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12294 break; 12295 case PTR_TO_BTF_ID: 12296 if (type == BPF_READ) { 12297 insn->code = BPF_LDX | BPF_PROBE_MEM | 12298 BPF_SIZE((insn)->code); 12299 env->prog->aux->num_exentries++; 12300 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12301 verbose(env, "Writes through BTF pointers are not allowed\n"); 12302 return -EINVAL; 12303 } 12304 continue; 12305 default: 12306 continue; 12307 } 12308 12309 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12310 size = BPF_LDST_BYTES(insn); 12311 12312 /* If the read access is a narrower load of the field, 12313 * convert to a 4/8-byte load, to minimum program type specific 12314 * convert_ctx_access changes. If conversion is successful, 12315 * we will apply proper mask to the result. 12316 */ 12317 is_narrower_load = size < ctx_field_size; 12318 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12319 off = insn->off; 12320 if (is_narrower_load) { 12321 u8 size_code; 12322 12323 if (type == BPF_WRITE) { 12324 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12325 return -EINVAL; 12326 } 12327 12328 size_code = BPF_H; 12329 if (ctx_field_size == 4) 12330 size_code = BPF_W; 12331 else if (ctx_field_size == 8) 12332 size_code = BPF_DW; 12333 12334 insn->off = off & ~(size_default - 1); 12335 insn->code = BPF_LDX | BPF_MEM | size_code; 12336 } 12337 12338 target_size = 0; 12339 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12340 &target_size); 12341 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12342 (ctx_field_size && !target_size)) { 12343 verbose(env, "bpf verifier is misconfigured\n"); 12344 return -EINVAL; 12345 } 12346 12347 if (is_narrower_load && size < target_size) { 12348 u8 shift = bpf_ctx_narrow_access_offset( 12349 off, size, size_default) * 8; 12350 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12351 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12352 return -EINVAL; 12353 } 12354 if (ctx_field_size <= 4) { 12355 if (shift) 12356 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12357 insn->dst_reg, 12358 shift); 12359 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12360 (1 << size * 8) - 1); 12361 } else { 12362 if (shift) 12363 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12364 insn->dst_reg, 12365 shift); 12366 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12367 (1ULL << size * 8) - 1); 12368 } 12369 } 12370 12371 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12372 if (!new_prog) 12373 return -ENOMEM; 12374 12375 delta += cnt - 1; 12376 12377 /* keep walking new program and skip insns we just inserted */ 12378 env->prog = new_prog; 12379 insn = new_prog->insnsi + i + delta; 12380 } 12381 12382 return 0; 12383 } 12384 12385 static int jit_subprogs(struct bpf_verifier_env *env) 12386 { 12387 struct bpf_prog *prog = env->prog, **func, *tmp; 12388 int i, j, subprog_start, subprog_end = 0, len, subprog; 12389 struct bpf_map *map_ptr; 12390 struct bpf_insn *insn; 12391 void *old_bpf_func; 12392 int err, num_exentries; 12393 12394 if (env->subprog_cnt <= 1) 12395 return 0; 12396 12397 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12398 if (bpf_pseudo_func(insn)) { 12399 env->insn_aux_data[i].call_imm = insn->imm; 12400 /* subprog is encoded in insn[1].imm */ 12401 continue; 12402 } 12403 12404 if (!bpf_pseudo_call(insn)) 12405 continue; 12406 /* Upon error here we cannot fall back to interpreter but 12407 * need a hard reject of the program. Thus -EFAULT is 12408 * propagated in any case. 12409 */ 12410 subprog = find_subprog(env, i + insn->imm + 1); 12411 if (subprog < 0) { 12412 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12413 i + insn->imm + 1); 12414 return -EFAULT; 12415 } 12416 /* temporarily remember subprog id inside insn instead of 12417 * aux_data, since next loop will split up all insns into funcs 12418 */ 12419 insn->off = subprog; 12420 /* remember original imm in case JIT fails and fallback 12421 * to interpreter will be needed 12422 */ 12423 env->insn_aux_data[i].call_imm = insn->imm; 12424 /* point imm to __bpf_call_base+1 from JITs point of view */ 12425 insn->imm = 1; 12426 } 12427 12428 err = bpf_prog_alloc_jited_linfo(prog); 12429 if (err) 12430 goto out_undo_insn; 12431 12432 err = -ENOMEM; 12433 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12434 if (!func) 12435 goto out_undo_insn; 12436 12437 for (i = 0; i < env->subprog_cnt; i++) { 12438 subprog_start = subprog_end; 12439 subprog_end = env->subprog_info[i + 1].start; 12440 12441 len = subprog_end - subprog_start; 12442 /* bpf_prog_run() doesn't call subprogs directly, 12443 * hence main prog stats include the runtime of subprogs. 12444 * subprogs don't have IDs and not reachable via prog_get_next_id 12445 * func[i]->stats will never be accessed and stays NULL 12446 */ 12447 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12448 if (!func[i]) 12449 goto out_free; 12450 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12451 len * sizeof(struct bpf_insn)); 12452 func[i]->type = prog->type; 12453 func[i]->len = len; 12454 if (bpf_prog_calc_tag(func[i])) 12455 goto out_free; 12456 func[i]->is_func = 1; 12457 func[i]->aux->func_idx = i; 12458 /* Below members will be freed only at prog->aux */ 12459 func[i]->aux->btf = prog->aux->btf; 12460 func[i]->aux->func_info = prog->aux->func_info; 12461 func[i]->aux->poke_tab = prog->aux->poke_tab; 12462 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12463 12464 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12465 struct bpf_jit_poke_descriptor *poke; 12466 12467 poke = &prog->aux->poke_tab[j]; 12468 if (poke->insn_idx < subprog_end && 12469 poke->insn_idx >= subprog_start) 12470 poke->aux = func[i]->aux; 12471 } 12472 12473 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12474 * Long term would need debug info to populate names 12475 */ 12476 func[i]->aux->name[0] = 'F'; 12477 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12478 func[i]->jit_requested = 1; 12479 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12480 func[i]->aux->linfo = prog->aux->linfo; 12481 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12482 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12483 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12484 num_exentries = 0; 12485 insn = func[i]->insnsi; 12486 for (j = 0; j < func[i]->len; j++, insn++) { 12487 if (BPF_CLASS(insn->code) == BPF_LDX && 12488 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12489 num_exentries++; 12490 } 12491 func[i]->aux->num_exentries = num_exentries; 12492 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12493 func[i] = bpf_int_jit_compile(func[i]); 12494 if (!func[i]->jited) { 12495 err = -ENOTSUPP; 12496 goto out_free; 12497 } 12498 cond_resched(); 12499 } 12500 12501 /* at this point all bpf functions were successfully JITed 12502 * now populate all bpf_calls with correct addresses and 12503 * run last pass of JIT 12504 */ 12505 for (i = 0; i < env->subprog_cnt; i++) { 12506 insn = func[i]->insnsi; 12507 for (j = 0; j < func[i]->len; j++, insn++) { 12508 if (bpf_pseudo_func(insn)) { 12509 subprog = insn[1].imm; 12510 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12511 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12512 continue; 12513 } 12514 if (!bpf_pseudo_call(insn)) 12515 continue; 12516 subprog = insn->off; 12517 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 12518 } 12519 12520 /* we use the aux data to keep a list of the start addresses 12521 * of the JITed images for each function in the program 12522 * 12523 * for some architectures, such as powerpc64, the imm field 12524 * might not be large enough to hold the offset of the start 12525 * address of the callee's JITed image from __bpf_call_base 12526 * 12527 * in such cases, we can lookup the start address of a callee 12528 * by using its subprog id, available from the off field of 12529 * the call instruction, as an index for this list 12530 */ 12531 func[i]->aux->func = func; 12532 func[i]->aux->func_cnt = env->subprog_cnt; 12533 } 12534 for (i = 0; i < env->subprog_cnt; i++) { 12535 old_bpf_func = func[i]->bpf_func; 12536 tmp = bpf_int_jit_compile(func[i]); 12537 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12538 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12539 err = -ENOTSUPP; 12540 goto out_free; 12541 } 12542 cond_resched(); 12543 } 12544 12545 /* finally lock prog and jit images for all functions and 12546 * populate kallsysm 12547 */ 12548 for (i = 0; i < env->subprog_cnt; i++) { 12549 bpf_prog_lock_ro(func[i]); 12550 bpf_prog_kallsyms_add(func[i]); 12551 } 12552 12553 /* Last step: make now unused interpreter insns from main 12554 * prog consistent for later dump requests, so they can 12555 * later look the same as if they were interpreted only. 12556 */ 12557 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12558 if (bpf_pseudo_func(insn)) { 12559 insn[0].imm = env->insn_aux_data[i].call_imm; 12560 insn[1].imm = find_subprog(env, i + insn[0].imm + 1); 12561 continue; 12562 } 12563 if (!bpf_pseudo_call(insn)) 12564 continue; 12565 insn->off = env->insn_aux_data[i].call_imm; 12566 subprog = find_subprog(env, i + insn->off + 1); 12567 insn->imm = subprog; 12568 } 12569 12570 prog->jited = 1; 12571 prog->bpf_func = func[0]->bpf_func; 12572 prog->aux->func = func; 12573 prog->aux->func_cnt = env->subprog_cnt; 12574 bpf_prog_jit_attempt_done(prog); 12575 return 0; 12576 out_free: 12577 /* We failed JIT'ing, so at this point we need to unregister poke 12578 * descriptors from subprogs, so that kernel is not attempting to 12579 * patch it anymore as we're freeing the subprog JIT memory. 12580 */ 12581 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12582 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12583 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12584 } 12585 /* At this point we're guaranteed that poke descriptors are not 12586 * live anymore. We can just unlink its descriptor table as it's 12587 * released with the main prog. 12588 */ 12589 for (i = 0; i < env->subprog_cnt; i++) { 12590 if (!func[i]) 12591 continue; 12592 func[i]->aux->poke_tab = NULL; 12593 bpf_jit_free(func[i]); 12594 } 12595 kfree(func); 12596 out_undo_insn: 12597 /* cleanup main prog to be interpreted */ 12598 prog->jit_requested = 0; 12599 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12600 if (!bpf_pseudo_call(insn)) 12601 continue; 12602 insn->off = 0; 12603 insn->imm = env->insn_aux_data[i].call_imm; 12604 } 12605 bpf_prog_jit_attempt_done(prog); 12606 return err; 12607 } 12608 12609 static int fixup_call_args(struct bpf_verifier_env *env) 12610 { 12611 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12612 struct bpf_prog *prog = env->prog; 12613 struct bpf_insn *insn = prog->insnsi; 12614 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12615 int i, depth; 12616 #endif 12617 int err = 0; 12618 12619 if (env->prog->jit_requested && 12620 !bpf_prog_is_dev_bound(env->prog->aux)) { 12621 err = jit_subprogs(env); 12622 if (err == 0) 12623 return 0; 12624 if (err == -EFAULT) 12625 return err; 12626 } 12627 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12628 if (has_kfunc_call) { 12629 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12630 return -EINVAL; 12631 } 12632 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12633 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12634 * have to be rejected, since interpreter doesn't support them yet. 12635 */ 12636 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12637 return -EINVAL; 12638 } 12639 for (i = 0; i < prog->len; i++, insn++) { 12640 if (bpf_pseudo_func(insn)) { 12641 /* When JIT fails the progs with callback calls 12642 * have to be rejected, since interpreter doesn't support them yet. 12643 */ 12644 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12645 return -EINVAL; 12646 } 12647 12648 if (!bpf_pseudo_call(insn)) 12649 continue; 12650 depth = get_callee_stack_depth(env, insn, i); 12651 if (depth < 0) 12652 return depth; 12653 bpf_patch_call_args(insn, depth); 12654 } 12655 err = 0; 12656 #endif 12657 return err; 12658 } 12659 12660 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12661 struct bpf_insn *insn) 12662 { 12663 const struct bpf_kfunc_desc *desc; 12664 12665 /* insn->imm has the btf func_id. Replace it with 12666 * an address (relative to __bpf_base_call). 12667 */ 12668 desc = find_kfunc_desc(env->prog, insn->imm); 12669 if (!desc) { 12670 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12671 insn->imm); 12672 return -EFAULT; 12673 } 12674 12675 insn->imm = desc->imm; 12676 12677 return 0; 12678 } 12679 12680 /* Do various post-verification rewrites in a single program pass. 12681 * These rewrites simplify JIT and interpreter implementations. 12682 */ 12683 static int do_misc_fixups(struct bpf_verifier_env *env) 12684 { 12685 struct bpf_prog *prog = env->prog; 12686 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12687 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12688 struct bpf_insn *insn = prog->insnsi; 12689 const struct bpf_func_proto *fn; 12690 const int insn_cnt = prog->len; 12691 const struct bpf_map_ops *ops; 12692 struct bpf_insn_aux_data *aux; 12693 struct bpf_insn insn_buf[16]; 12694 struct bpf_prog *new_prog; 12695 struct bpf_map *map_ptr; 12696 int i, ret, cnt, delta = 0; 12697 12698 for (i = 0; i < insn_cnt; i++, insn++) { 12699 /* Make divide-by-zero exceptions impossible. */ 12700 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12701 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12702 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12703 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12704 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12705 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12706 struct bpf_insn *patchlet; 12707 struct bpf_insn chk_and_div[] = { 12708 /* [R,W]x div 0 -> 0 */ 12709 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12710 BPF_JNE | BPF_K, insn->src_reg, 12711 0, 2, 0), 12712 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12713 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12714 *insn, 12715 }; 12716 struct bpf_insn chk_and_mod[] = { 12717 /* [R,W]x mod 0 -> [R,W]x */ 12718 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12719 BPF_JEQ | BPF_K, insn->src_reg, 12720 0, 1 + (is64 ? 0 : 1), 0), 12721 *insn, 12722 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12723 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12724 }; 12725 12726 patchlet = isdiv ? chk_and_div : chk_and_mod; 12727 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12728 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12729 12730 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12731 if (!new_prog) 12732 return -ENOMEM; 12733 12734 delta += cnt - 1; 12735 env->prog = prog = new_prog; 12736 insn = new_prog->insnsi + i + delta; 12737 continue; 12738 } 12739 12740 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12741 if (BPF_CLASS(insn->code) == BPF_LD && 12742 (BPF_MODE(insn->code) == BPF_ABS || 12743 BPF_MODE(insn->code) == BPF_IND)) { 12744 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12745 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12746 verbose(env, "bpf verifier is misconfigured\n"); 12747 return -EINVAL; 12748 } 12749 12750 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12751 if (!new_prog) 12752 return -ENOMEM; 12753 12754 delta += cnt - 1; 12755 env->prog = prog = new_prog; 12756 insn = new_prog->insnsi + i + delta; 12757 continue; 12758 } 12759 12760 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12761 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12762 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12763 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12764 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12765 struct bpf_insn *patch = &insn_buf[0]; 12766 bool issrc, isneg, isimm; 12767 u32 off_reg; 12768 12769 aux = &env->insn_aux_data[i + delta]; 12770 if (!aux->alu_state || 12771 aux->alu_state == BPF_ALU_NON_POINTER) 12772 continue; 12773 12774 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12775 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12776 BPF_ALU_SANITIZE_SRC; 12777 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 12778 12779 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12780 if (isimm) { 12781 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12782 } else { 12783 if (isneg) 12784 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12785 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12786 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12787 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12788 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12789 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12790 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 12791 } 12792 if (!issrc) 12793 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 12794 insn->src_reg = BPF_REG_AX; 12795 if (isneg) 12796 insn->code = insn->code == code_add ? 12797 code_sub : code_add; 12798 *patch++ = *insn; 12799 if (issrc && isneg && !isimm) 12800 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12801 cnt = patch - insn_buf; 12802 12803 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12804 if (!new_prog) 12805 return -ENOMEM; 12806 12807 delta += cnt - 1; 12808 env->prog = prog = new_prog; 12809 insn = new_prog->insnsi + i + delta; 12810 continue; 12811 } 12812 12813 if (insn->code != (BPF_JMP | BPF_CALL)) 12814 continue; 12815 if (insn->src_reg == BPF_PSEUDO_CALL) 12816 continue; 12817 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 12818 ret = fixup_kfunc_call(env, insn); 12819 if (ret) 12820 return ret; 12821 continue; 12822 } 12823 12824 if (insn->imm == BPF_FUNC_get_route_realm) 12825 prog->dst_needed = 1; 12826 if (insn->imm == BPF_FUNC_get_prandom_u32) 12827 bpf_user_rnd_init_once(); 12828 if (insn->imm == BPF_FUNC_override_return) 12829 prog->kprobe_override = 1; 12830 if (insn->imm == BPF_FUNC_tail_call) { 12831 /* If we tail call into other programs, we 12832 * cannot make any assumptions since they can 12833 * be replaced dynamically during runtime in 12834 * the program array. 12835 */ 12836 prog->cb_access = 1; 12837 if (!allow_tail_call_in_subprogs(env)) 12838 prog->aux->stack_depth = MAX_BPF_STACK; 12839 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 12840 12841 /* mark bpf_tail_call as different opcode to avoid 12842 * conditional branch in the interpreter for every normal 12843 * call and to prevent accidental JITing by JIT compiler 12844 * that doesn't support bpf_tail_call yet 12845 */ 12846 insn->imm = 0; 12847 insn->code = BPF_JMP | BPF_TAIL_CALL; 12848 12849 aux = &env->insn_aux_data[i + delta]; 12850 if (env->bpf_capable && !expect_blinding && 12851 prog->jit_requested && 12852 !bpf_map_key_poisoned(aux) && 12853 !bpf_map_ptr_poisoned(aux) && 12854 !bpf_map_ptr_unpriv(aux)) { 12855 struct bpf_jit_poke_descriptor desc = { 12856 .reason = BPF_POKE_REASON_TAIL_CALL, 12857 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 12858 .tail_call.key = bpf_map_key_immediate(aux), 12859 .insn_idx = i + delta, 12860 }; 12861 12862 ret = bpf_jit_add_poke_descriptor(prog, &desc); 12863 if (ret < 0) { 12864 verbose(env, "adding tail call poke descriptor failed\n"); 12865 return ret; 12866 } 12867 12868 insn->imm = ret + 1; 12869 continue; 12870 } 12871 12872 if (!bpf_map_ptr_unpriv(aux)) 12873 continue; 12874 12875 /* instead of changing every JIT dealing with tail_call 12876 * emit two extra insns: 12877 * if (index >= max_entries) goto out; 12878 * index &= array->index_mask; 12879 * to avoid out-of-bounds cpu speculation 12880 */ 12881 if (bpf_map_ptr_poisoned(aux)) { 12882 verbose(env, "tail_call abusing map_ptr\n"); 12883 return -EINVAL; 12884 } 12885 12886 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12887 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 12888 map_ptr->max_entries, 2); 12889 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 12890 container_of(map_ptr, 12891 struct bpf_array, 12892 map)->index_mask); 12893 insn_buf[2] = *insn; 12894 cnt = 3; 12895 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12896 if (!new_prog) 12897 return -ENOMEM; 12898 12899 delta += cnt - 1; 12900 env->prog = prog = new_prog; 12901 insn = new_prog->insnsi + i + delta; 12902 continue; 12903 } 12904 12905 if (insn->imm == BPF_FUNC_timer_set_callback) { 12906 /* The verifier will process callback_fn as many times as necessary 12907 * with different maps and the register states prepared by 12908 * set_timer_callback_state will be accurate. 12909 * 12910 * The following use case is valid: 12911 * map1 is shared by prog1, prog2, prog3. 12912 * prog1 calls bpf_timer_init for some map1 elements 12913 * prog2 calls bpf_timer_set_callback for some map1 elements. 12914 * Those that were not bpf_timer_init-ed will return -EINVAL. 12915 * prog3 calls bpf_timer_start for some map1 elements. 12916 * Those that were not both bpf_timer_init-ed and 12917 * bpf_timer_set_callback-ed will return -EINVAL. 12918 */ 12919 struct bpf_insn ld_addrs[2] = { 12920 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 12921 }; 12922 12923 insn_buf[0] = ld_addrs[0]; 12924 insn_buf[1] = ld_addrs[1]; 12925 insn_buf[2] = *insn; 12926 cnt = 3; 12927 12928 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12929 if (!new_prog) 12930 return -ENOMEM; 12931 12932 delta += cnt - 1; 12933 env->prog = prog = new_prog; 12934 insn = new_prog->insnsi + i + delta; 12935 goto patch_call_imm; 12936 } 12937 12938 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 12939 * and other inlining handlers are currently limited to 64 bit 12940 * only. 12941 */ 12942 if (prog->jit_requested && BITS_PER_LONG == 64 && 12943 (insn->imm == BPF_FUNC_map_lookup_elem || 12944 insn->imm == BPF_FUNC_map_update_elem || 12945 insn->imm == BPF_FUNC_map_delete_elem || 12946 insn->imm == BPF_FUNC_map_push_elem || 12947 insn->imm == BPF_FUNC_map_pop_elem || 12948 insn->imm == BPF_FUNC_map_peek_elem || 12949 insn->imm == BPF_FUNC_redirect_map)) { 12950 aux = &env->insn_aux_data[i + delta]; 12951 if (bpf_map_ptr_poisoned(aux)) 12952 goto patch_call_imm; 12953 12954 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12955 ops = map_ptr->ops; 12956 if (insn->imm == BPF_FUNC_map_lookup_elem && 12957 ops->map_gen_lookup) { 12958 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 12959 if (cnt == -EOPNOTSUPP) 12960 goto patch_map_ops_generic; 12961 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12962 verbose(env, "bpf verifier is misconfigured\n"); 12963 return -EINVAL; 12964 } 12965 12966 new_prog = bpf_patch_insn_data(env, i + delta, 12967 insn_buf, cnt); 12968 if (!new_prog) 12969 return -ENOMEM; 12970 12971 delta += cnt - 1; 12972 env->prog = prog = new_prog; 12973 insn = new_prog->insnsi + i + delta; 12974 continue; 12975 } 12976 12977 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 12978 (void *(*)(struct bpf_map *map, void *key))NULL)); 12979 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 12980 (int (*)(struct bpf_map *map, void *key))NULL)); 12981 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 12982 (int (*)(struct bpf_map *map, void *key, void *value, 12983 u64 flags))NULL)); 12984 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 12985 (int (*)(struct bpf_map *map, void *value, 12986 u64 flags))NULL)); 12987 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 12988 (int (*)(struct bpf_map *map, void *value))NULL)); 12989 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 12990 (int (*)(struct bpf_map *map, void *value))NULL)); 12991 BUILD_BUG_ON(!__same_type(ops->map_redirect, 12992 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 12993 12994 patch_map_ops_generic: 12995 switch (insn->imm) { 12996 case BPF_FUNC_map_lookup_elem: 12997 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 12998 continue; 12999 case BPF_FUNC_map_update_elem: 13000 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13001 continue; 13002 case BPF_FUNC_map_delete_elem: 13003 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13004 continue; 13005 case BPF_FUNC_map_push_elem: 13006 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13007 continue; 13008 case BPF_FUNC_map_pop_elem: 13009 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13010 continue; 13011 case BPF_FUNC_map_peek_elem: 13012 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13013 continue; 13014 case BPF_FUNC_redirect_map: 13015 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13016 continue; 13017 } 13018 13019 goto patch_call_imm; 13020 } 13021 13022 /* Implement bpf_jiffies64 inline. */ 13023 if (prog->jit_requested && BITS_PER_LONG == 64 && 13024 insn->imm == BPF_FUNC_jiffies64) { 13025 struct bpf_insn ld_jiffies_addr[2] = { 13026 BPF_LD_IMM64(BPF_REG_0, 13027 (unsigned long)&jiffies), 13028 }; 13029 13030 insn_buf[0] = ld_jiffies_addr[0]; 13031 insn_buf[1] = ld_jiffies_addr[1]; 13032 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13033 BPF_REG_0, 0); 13034 cnt = 3; 13035 13036 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13037 cnt); 13038 if (!new_prog) 13039 return -ENOMEM; 13040 13041 delta += cnt - 1; 13042 env->prog = prog = new_prog; 13043 insn = new_prog->insnsi + i + delta; 13044 continue; 13045 } 13046 13047 /* Implement bpf_get_func_ip inline. */ 13048 if (prog_type == BPF_PROG_TYPE_TRACING && 13049 insn->imm == BPF_FUNC_get_func_ip) { 13050 /* Load IP address from ctx - 8 */ 13051 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13052 13053 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13054 if (!new_prog) 13055 return -ENOMEM; 13056 13057 env->prog = prog = new_prog; 13058 insn = new_prog->insnsi + i + delta; 13059 continue; 13060 } 13061 13062 patch_call_imm: 13063 fn = env->ops->get_func_proto(insn->imm, env->prog); 13064 /* all functions that have prototype and verifier allowed 13065 * programs to call them, must be real in-kernel functions 13066 */ 13067 if (!fn->func) { 13068 verbose(env, 13069 "kernel subsystem misconfigured func %s#%d\n", 13070 func_id_name(insn->imm), insn->imm); 13071 return -EFAULT; 13072 } 13073 insn->imm = fn->func - __bpf_call_base; 13074 } 13075 13076 /* Since poke tab is now finalized, publish aux to tracker. */ 13077 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13078 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13079 if (!map_ptr->ops->map_poke_track || 13080 !map_ptr->ops->map_poke_untrack || 13081 !map_ptr->ops->map_poke_run) { 13082 verbose(env, "bpf verifier is misconfigured\n"); 13083 return -EINVAL; 13084 } 13085 13086 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13087 if (ret < 0) { 13088 verbose(env, "tracking tail call prog failed\n"); 13089 return ret; 13090 } 13091 } 13092 13093 sort_kfunc_descs_by_imm(env->prog); 13094 13095 return 0; 13096 } 13097 13098 static void free_states(struct bpf_verifier_env *env) 13099 { 13100 struct bpf_verifier_state_list *sl, *sln; 13101 int i; 13102 13103 sl = env->free_list; 13104 while (sl) { 13105 sln = sl->next; 13106 free_verifier_state(&sl->state, false); 13107 kfree(sl); 13108 sl = sln; 13109 } 13110 env->free_list = NULL; 13111 13112 if (!env->explored_states) 13113 return; 13114 13115 for (i = 0; i < state_htab_size(env); i++) { 13116 sl = env->explored_states[i]; 13117 13118 while (sl) { 13119 sln = sl->next; 13120 free_verifier_state(&sl->state, false); 13121 kfree(sl); 13122 sl = sln; 13123 } 13124 env->explored_states[i] = NULL; 13125 } 13126 } 13127 13128 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13129 { 13130 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13131 struct bpf_verifier_state *state; 13132 struct bpf_reg_state *regs; 13133 int ret, i; 13134 13135 env->prev_linfo = NULL; 13136 env->pass_cnt++; 13137 13138 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13139 if (!state) 13140 return -ENOMEM; 13141 state->curframe = 0; 13142 state->speculative = false; 13143 state->branches = 1; 13144 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13145 if (!state->frame[0]) { 13146 kfree(state); 13147 return -ENOMEM; 13148 } 13149 env->cur_state = state; 13150 init_func_state(env, state->frame[0], 13151 BPF_MAIN_FUNC /* callsite */, 13152 0 /* frameno */, 13153 subprog); 13154 13155 regs = state->frame[state->curframe]->regs; 13156 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13157 ret = btf_prepare_func_args(env, subprog, regs); 13158 if (ret) 13159 goto out; 13160 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13161 if (regs[i].type == PTR_TO_CTX) 13162 mark_reg_known_zero(env, regs, i); 13163 else if (regs[i].type == SCALAR_VALUE) 13164 mark_reg_unknown(env, regs, i); 13165 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 13166 const u32 mem_size = regs[i].mem_size; 13167 13168 mark_reg_known_zero(env, regs, i); 13169 regs[i].mem_size = mem_size; 13170 regs[i].id = ++env->id_gen; 13171 } 13172 } 13173 } else { 13174 /* 1st arg to a function */ 13175 regs[BPF_REG_1].type = PTR_TO_CTX; 13176 mark_reg_known_zero(env, regs, BPF_REG_1); 13177 ret = btf_check_subprog_arg_match(env, subprog, regs); 13178 if (ret == -EFAULT) 13179 /* unlikely verifier bug. abort. 13180 * ret == 0 and ret < 0 are sadly acceptable for 13181 * main() function due to backward compatibility. 13182 * Like socket filter program may be written as: 13183 * int bpf_prog(struct pt_regs *ctx) 13184 * and never dereference that ctx in the program. 13185 * 'struct pt_regs' is a type mismatch for socket 13186 * filter that should be using 'struct __sk_buff'. 13187 */ 13188 goto out; 13189 } 13190 13191 ret = do_check(env); 13192 out: 13193 /* check for NULL is necessary, since cur_state can be freed inside 13194 * do_check() under memory pressure. 13195 */ 13196 if (env->cur_state) { 13197 free_verifier_state(env->cur_state, true); 13198 env->cur_state = NULL; 13199 } 13200 while (!pop_stack(env, NULL, NULL, false)); 13201 if (!ret && pop_log) 13202 bpf_vlog_reset(&env->log, 0); 13203 free_states(env); 13204 return ret; 13205 } 13206 13207 /* Verify all global functions in a BPF program one by one based on their BTF. 13208 * All global functions must pass verification. Otherwise the whole program is rejected. 13209 * Consider: 13210 * int bar(int); 13211 * int foo(int f) 13212 * { 13213 * return bar(f); 13214 * } 13215 * int bar(int b) 13216 * { 13217 * ... 13218 * } 13219 * foo() will be verified first for R1=any_scalar_value. During verification it 13220 * will be assumed that bar() already verified successfully and call to bar() 13221 * from foo() will be checked for type match only. Later bar() will be verified 13222 * independently to check that it's safe for R1=any_scalar_value. 13223 */ 13224 static int do_check_subprogs(struct bpf_verifier_env *env) 13225 { 13226 struct bpf_prog_aux *aux = env->prog->aux; 13227 int i, ret; 13228 13229 if (!aux->func_info) 13230 return 0; 13231 13232 for (i = 1; i < env->subprog_cnt; i++) { 13233 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13234 continue; 13235 env->insn_idx = env->subprog_info[i].start; 13236 WARN_ON_ONCE(env->insn_idx == 0); 13237 ret = do_check_common(env, i); 13238 if (ret) { 13239 return ret; 13240 } else if (env->log.level & BPF_LOG_LEVEL) { 13241 verbose(env, 13242 "Func#%d is safe for any args that match its prototype\n", 13243 i); 13244 } 13245 } 13246 return 0; 13247 } 13248 13249 static int do_check_main(struct bpf_verifier_env *env) 13250 { 13251 int ret; 13252 13253 env->insn_idx = 0; 13254 ret = do_check_common(env, 0); 13255 if (!ret) 13256 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13257 return ret; 13258 } 13259 13260 13261 static void print_verification_stats(struct bpf_verifier_env *env) 13262 { 13263 int i; 13264 13265 if (env->log.level & BPF_LOG_STATS) { 13266 verbose(env, "verification time %lld usec\n", 13267 div_u64(env->verification_time, 1000)); 13268 verbose(env, "stack depth "); 13269 for (i = 0; i < env->subprog_cnt; i++) { 13270 u32 depth = env->subprog_info[i].stack_depth; 13271 13272 verbose(env, "%d", depth); 13273 if (i + 1 < env->subprog_cnt) 13274 verbose(env, "+"); 13275 } 13276 verbose(env, "\n"); 13277 } 13278 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13279 "total_states %d peak_states %d mark_read %d\n", 13280 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13281 env->max_states_per_insn, env->total_states, 13282 env->peak_states, env->longest_mark_read_walk); 13283 } 13284 13285 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13286 { 13287 const struct btf_type *t, *func_proto; 13288 const struct bpf_struct_ops *st_ops; 13289 const struct btf_member *member; 13290 struct bpf_prog *prog = env->prog; 13291 u32 btf_id, member_idx; 13292 const char *mname; 13293 13294 if (!prog->gpl_compatible) { 13295 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13296 return -EINVAL; 13297 } 13298 13299 btf_id = prog->aux->attach_btf_id; 13300 st_ops = bpf_struct_ops_find(btf_id); 13301 if (!st_ops) { 13302 verbose(env, "attach_btf_id %u is not a supported struct\n", 13303 btf_id); 13304 return -ENOTSUPP; 13305 } 13306 13307 t = st_ops->type; 13308 member_idx = prog->expected_attach_type; 13309 if (member_idx >= btf_type_vlen(t)) { 13310 verbose(env, "attach to invalid member idx %u of struct %s\n", 13311 member_idx, st_ops->name); 13312 return -EINVAL; 13313 } 13314 13315 member = &btf_type_member(t)[member_idx]; 13316 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13317 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13318 NULL); 13319 if (!func_proto) { 13320 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13321 mname, member_idx, st_ops->name); 13322 return -EINVAL; 13323 } 13324 13325 if (st_ops->check_member) { 13326 int err = st_ops->check_member(t, member); 13327 13328 if (err) { 13329 verbose(env, "attach to unsupported member %s of struct %s\n", 13330 mname, st_ops->name); 13331 return err; 13332 } 13333 } 13334 13335 prog->aux->attach_func_proto = func_proto; 13336 prog->aux->attach_func_name = mname; 13337 env->ops = st_ops->verifier_ops; 13338 13339 return 0; 13340 } 13341 #define SECURITY_PREFIX "security_" 13342 13343 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13344 { 13345 if (within_error_injection_list(addr) || 13346 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13347 return 0; 13348 13349 return -EINVAL; 13350 } 13351 13352 /* list of non-sleepable functions that are otherwise on 13353 * ALLOW_ERROR_INJECTION list 13354 */ 13355 BTF_SET_START(btf_non_sleepable_error_inject) 13356 /* Three functions below can be called from sleepable and non-sleepable context. 13357 * Assume non-sleepable from bpf safety point of view. 13358 */ 13359 BTF_ID(func, __add_to_page_cache_locked) 13360 BTF_ID(func, should_fail_alloc_page) 13361 BTF_ID(func, should_failslab) 13362 BTF_SET_END(btf_non_sleepable_error_inject) 13363 13364 static int check_non_sleepable_error_inject(u32 btf_id) 13365 { 13366 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13367 } 13368 13369 int bpf_check_attach_target(struct bpf_verifier_log *log, 13370 const struct bpf_prog *prog, 13371 const struct bpf_prog *tgt_prog, 13372 u32 btf_id, 13373 struct bpf_attach_target_info *tgt_info) 13374 { 13375 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13376 const char prefix[] = "btf_trace_"; 13377 int ret = 0, subprog = -1, i; 13378 const struct btf_type *t; 13379 bool conservative = true; 13380 const char *tname; 13381 struct btf *btf; 13382 long addr = 0; 13383 13384 if (!btf_id) { 13385 bpf_log(log, "Tracing programs must provide btf_id\n"); 13386 return -EINVAL; 13387 } 13388 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13389 if (!btf) { 13390 bpf_log(log, 13391 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13392 return -EINVAL; 13393 } 13394 t = btf_type_by_id(btf, btf_id); 13395 if (!t) { 13396 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13397 return -EINVAL; 13398 } 13399 tname = btf_name_by_offset(btf, t->name_off); 13400 if (!tname) { 13401 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13402 return -EINVAL; 13403 } 13404 if (tgt_prog) { 13405 struct bpf_prog_aux *aux = tgt_prog->aux; 13406 13407 for (i = 0; i < aux->func_info_cnt; i++) 13408 if (aux->func_info[i].type_id == btf_id) { 13409 subprog = i; 13410 break; 13411 } 13412 if (subprog == -1) { 13413 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13414 return -EINVAL; 13415 } 13416 conservative = aux->func_info_aux[subprog].unreliable; 13417 if (prog_extension) { 13418 if (conservative) { 13419 bpf_log(log, 13420 "Cannot replace static functions\n"); 13421 return -EINVAL; 13422 } 13423 if (!prog->jit_requested) { 13424 bpf_log(log, 13425 "Extension programs should be JITed\n"); 13426 return -EINVAL; 13427 } 13428 } 13429 if (!tgt_prog->jited) { 13430 bpf_log(log, "Can attach to only JITed progs\n"); 13431 return -EINVAL; 13432 } 13433 if (tgt_prog->type == prog->type) { 13434 /* Cannot fentry/fexit another fentry/fexit program. 13435 * Cannot attach program extension to another extension. 13436 * It's ok to attach fentry/fexit to extension program. 13437 */ 13438 bpf_log(log, "Cannot recursively attach\n"); 13439 return -EINVAL; 13440 } 13441 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13442 prog_extension && 13443 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13444 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13445 /* Program extensions can extend all program types 13446 * except fentry/fexit. The reason is the following. 13447 * The fentry/fexit programs are used for performance 13448 * analysis, stats and can be attached to any program 13449 * type except themselves. When extension program is 13450 * replacing XDP function it is necessary to allow 13451 * performance analysis of all functions. Both original 13452 * XDP program and its program extension. Hence 13453 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13454 * allowed. If extending of fentry/fexit was allowed it 13455 * would be possible to create long call chain 13456 * fentry->extension->fentry->extension beyond 13457 * reasonable stack size. Hence extending fentry is not 13458 * allowed. 13459 */ 13460 bpf_log(log, "Cannot extend fentry/fexit\n"); 13461 return -EINVAL; 13462 } 13463 } else { 13464 if (prog_extension) { 13465 bpf_log(log, "Cannot replace kernel functions\n"); 13466 return -EINVAL; 13467 } 13468 } 13469 13470 switch (prog->expected_attach_type) { 13471 case BPF_TRACE_RAW_TP: 13472 if (tgt_prog) { 13473 bpf_log(log, 13474 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13475 return -EINVAL; 13476 } 13477 if (!btf_type_is_typedef(t)) { 13478 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13479 btf_id); 13480 return -EINVAL; 13481 } 13482 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13483 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13484 btf_id, tname); 13485 return -EINVAL; 13486 } 13487 tname += sizeof(prefix) - 1; 13488 t = btf_type_by_id(btf, t->type); 13489 if (!btf_type_is_ptr(t)) 13490 /* should never happen in valid vmlinux build */ 13491 return -EINVAL; 13492 t = btf_type_by_id(btf, t->type); 13493 if (!btf_type_is_func_proto(t)) 13494 /* should never happen in valid vmlinux build */ 13495 return -EINVAL; 13496 13497 break; 13498 case BPF_TRACE_ITER: 13499 if (!btf_type_is_func(t)) { 13500 bpf_log(log, "attach_btf_id %u is not a function\n", 13501 btf_id); 13502 return -EINVAL; 13503 } 13504 t = btf_type_by_id(btf, t->type); 13505 if (!btf_type_is_func_proto(t)) 13506 return -EINVAL; 13507 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13508 if (ret) 13509 return ret; 13510 break; 13511 default: 13512 if (!prog_extension) 13513 return -EINVAL; 13514 fallthrough; 13515 case BPF_MODIFY_RETURN: 13516 case BPF_LSM_MAC: 13517 case BPF_TRACE_FENTRY: 13518 case BPF_TRACE_FEXIT: 13519 if (!btf_type_is_func(t)) { 13520 bpf_log(log, "attach_btf_id %u is not a function\n", 13521 btf_id); 13522 return -EINVAL; 13523 } 13524 if (prog_extension && 13525 btf_check_type_match(log, prog, btf, t)) 13526 return -EINVAL; 13527 t = btf_type_by_id(btf, t->type); 13528 if (!btf_type_is_func_proto(t)) 13529 return -EINVAL; 13530 13531 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13532 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13533 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13534 return -EINVAL; 13535 13536 if (tgt_prog && conservative) 13537 t = NULL; 13538 13539 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13540 if (ret < 0) 13541 return ret; 13542 13543 if (tgt_prog) { 13544 if (subprog == 0) 13545 addr = (long) tgt_prog->bpf_func; 13546 else 13547 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13548 } else { 13549 addr = kallsyms_lookup_name(tname); 13550 if (!addr) { 13551 bpf_log(log, 13552 "The address of function %s cannot be found\n", 13553 tname); 13554 return -ENOENT; 13555 } 13556 } 13557 13558 if (prog->aux->sleepable) { 13559 ret = -EINVAL; 13560 switch (prog->type) { 13561 case BPF_PROG_TYPE_TRACING: 13562 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13563 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13564 */ 13565 if (!check_non_sleepable_error_inject(btf_id) && 13566 within_error_injection_list(addr)) 13567 ret = 0; 13568 break; 13569 case BPF_PROG_TYPE_LSM: 13570 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13571 * Only some of them are sleepable. 13572 */ 13573 if (bpf_lsm_is_sleepable_hook(btf_id)) 13574 ret = 0; 13575 break; 13576 default: 13577 break; 13578 } 13579 if (ret) { 13580 bpf_log(log, "%s is not sleepable\n", tname); 13581 return ret; 13582 } 13583 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13584 if (tgt_prog) { 13585 bpf_log(log, "can't modify return codes of BPF programs\n"); 13586 return -EINVAL; 13587 } 13588 ret = check_attach_modify_return(addr, tname); 13589 if (ret) { 13590 bpf_log(log, "%s() is not modifiable\n", tname); 13591 return ret; 13592 } 13593 } 13594 13595 break; 13596 } 13597 tgt_info->tgt_addr = addr; 13598 tgt_info->tgt_name = tname; 13599 tgt_info->tgt_type = t; 13600 return 0; 13601 } 13602 13603 BTF_SET_START(btf_id_deny) 13604 BTF_ID_UNUSED 13605 #ifdef CONFIG_SMP 13606 BTF_ID(func, migrate_disable) 13607 BTF_ID(func, migrate_enable) 13608 #endif 13609 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 13610 BTF_ID(func, rcu_read_unlock_strict) 13611 #endif 13612 BTF_SET_END(btf_id_deny) 13613 13614 static int check_attach_btf_id(struct bpf_verifier_env *env) 13615 { 13616 struct bpf_prog *prog = env->prog; 13617 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13618 struct bpf_attach_target_info tgt_info = {}; 13619 u32 btf_id = prog->aux->attach_btf_id; 13620 struct bpf_trampoline *tr; 13621 int ret; 13622 u64 key; 13623 13624 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 13625 if (prog->aux->sleepable) 13626 /* attach_btf_id checked to be zero already */ 13627 return 0; 13628 verbose(env, "Syscall programs can only be sleepable\n"); 13629 return -EINVAL; 13630 } 13631 13632 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13633 prog->type != BPF_PROG_TYPE_LSM) { 13634 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13635 return -EINVAL; 13636 } 13637 13638 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13639 return check_struct_ops_btf_id(env); 13640 13641 if (prog->type != BPF_PROG_TYPE_TRACING && 13642 prog->type != BPF_PROG_TYPE_LSM && 13643 prog->type != BPF_PROG_TYPE_EXT) 13644 return 0; 13645 13646 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13647 if (ret) 13648 return ret; 13649 13650 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13651 /* to make freplace equivalent to their targets, they need to 13652 * inherit env->ops and expected_attach_type for the rest of the 13653 * verification 13654 */ 13655 env->ops = bpf_verifier_ops[tgt_prog->type]; 13656 prog->expected_attach_type = tgt_prog->expected_attach_type; 13657 } 13658 13659 /* store info about the attachment target that will be used later */ 13660 prog->aux->attach_func_proto = tgt_info.tgt_type; 13661 prog->aux->attach_func_name = tgt_info.tgt_name; 13662 13663 if (tgt_prog) { 13664 prog->aux->saved_dst_prog_type = tgt_prog->type; 13665 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13666 } 13667 13668 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13669 prog->aux->attach_btf_trace = true; 13670 return 0; 13671 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13672 if (!bpf_iter_prog_supported(prog)) 13673 return -EINVAL; 13674 return 0; 13675 } 13676 13677 if (prog->type == BPF_PROG_TYPE_LSM) { 13678 ret = bpf_lsm_verify_prog(&env->log, prog); 13679 if (ret < 0) 13680 return ret; 13681 } else if (prog->type == BPF_PROG_TYPE_TRACING && 13682 btf_id_set_contains(&btf_id_deny, btf_id)) { 13683 return -EINVAL; 13684 } 13685 13686 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13687 tr = bpf_trampoline_get(key, &tgt_info); 13688 if (!tr) 13689 return -ENOMEM; 13690 13691 prog->aux->dst_trampoline = tr; 13692 return 0; 13693 } 13694 13695 struct btf *bpf_get_btf_vmlinux(void) 13696 { 13697 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13698 mutex_lock(&bpf_verifier_lock); 13699 if (!btf_vmlinux) 13700 btf_vmlinux = btf_parse_vmlinux(); 13701 mutex_unlock(&bpf_verifier_lock); 13702 } 13703 return btf_vmlinux; 13704 } 13705 13706 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 13707 { 13708 u64 start_time = ktime_get_ns(); 13709 struct bpf_verifier_env *env; 13710 struct bpf_verifier_log *log; 13711 int i, len, ret = -EINVAL; 13712 bool is_priv; 13713 13714 /* no program is valid */ 13715 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13716 return -EINVAL; 13717 13718 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13719 * allocate/free it every time bpf_check() is called 13720 */ 13721 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13722 if (!env) 13723 return -ENOMEM; 13724 log = &env->log; 13725 13726 len = (*prog)->len; 13727 env->insn_aux_data = 13728 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13729 ret = -ENOMEM; 13730 if (!env->insn_aux_data) 13731 goto err_free_env; 13732 for (i = 0; i < len; i++) 13733 env->insn_aux_data[i].orig_idx = i; 13734 env->prog = *prog; 13735 env->ops = bpf_verifier_ops[env->prog->type]; 13736 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 13737 is_priv = bpf_capable(); 13738 13739 bpf_get_btf_vmlinux(); 13740 13741 /* grab the mutex to protect few globals used by verifier */ 13742 if (!is_priv) 13743 mutex_lock(&bpf_verifier_lock); 13744 13745 if (attr->log_level || attr->log_buf || attr->log_size) { 13746 /* user requested verbose verifier output 13747 * and supplied buffer to store the verification trace 13748 */ 13749 log->level = attr->log_level; 13750 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13751 log->len_total = attr->log_size; 13752 13753 ret = -EINVAL; 13754 /* log attributes have to be sane */ 13755 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13756 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13757 goto err_unlock; 13758 } 13759 13760 if (IS_ERR(btf_vmlinux)) { 13761 /* Either gcc or pahole or kernel are broken. */ 13762 verbose(env, "in-kernel BTF is malformed\n"); 13763 ret = PTR_ERR(btf_vmlinux); 13764 goto skip_full_check; 13765 } 13766 13767 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13768 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13769 env->strict_alignment = true; 13770 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13771 env->strict_alignment = false; 13772 13773 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13774 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13775 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13776 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13777 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13778 env->bpf_capable = bpf_capable(); 13779 13780 if (is_priv) 13781 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13782 13783 env->explored_states = kvcalloc(state_htab_size(env), 13784 sizeof(struct bpf_verifier_state_list *), 13785 GFP_USER); 13786 ret = -ENOMEM; 13787 if (!env->explored_states) 13788 goto skip_full_check; 13789 13790 ret = add_subprog_and_kfunc(env); 13791 if (ret < 0) 13792 goto skip_full_check; 13793 13794 ret = check_subprogs(env); 13795 if (ret < 0) 13796 goto skip_full_check; 13797 13798 ret = check_btf_info(env, attr, uattr); 13799 if (ret < 0) 13800 goto skip_full_check; 13801 13802 ret = check_attach_btf_id(env); 13803 if (ret) 13804 goto skip_full_check; 13805 13806 ret = resolve_pseudo_ldimm64(env); 13807 if (ret < 0) 13808 goto skip_full_check; 13809 13810 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13811 ret = bpf_prog_offload_verifier_prep(env->prog); 13812 if (ret) 13813 goto skip_full_check; 13814 } 13815 13816 ret = check_cfg(env); 13817 if (ret < 0) 13818 goto skip_full_check; 13819 13820 ret = do_check_subprogs(env); 13821 ret = ret ?: do_check_main(env); 13822 13823 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 13824 ret = bpf_prog_offload_finalize(env); 13825 13826 skip_full_check: 13827 kvfree(env->explored_states); 13828 13829 if (ret == 0) 13830 ret = check_max_stack_depth(env); 13831 13832 /* instruction rewrites happen after this point */ 13833 if (is_priv) { 13834 if (ret == 0) 13835 opt_hard_wire_dead_code_branches(env); 13836 if (ret == 0) 13837 ret = opt_remove_dead_code(env); 13838 if (ret == 0) 13839 ret = opt_remove_nops(env); 13840 } else { 13841 if (ret == 0) 13842 sanitize_dead_code(env); 13843 } 13844 13845 if (ret == 0) 13846 /* program is valid, convert *(u32*)(ctx + off) accesses */ 13847 ret = convert_ctx_accesses(env); 13848 13849 if (ret == 0) 13850 ret = do_misc_fixups(env); 13851 13852 /* do 32-bit optimization after insn patching has done so those patched 13853 * insns could be handled correctly. 13854 */ 13855 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 13856 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 13857 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 13858 : false; 13859 } 13860 13861 if (ret == 0) 13862 ret = fixup_call_args(env); 13863 13864 env->verification_time = ktime_get_ns() - start_time; 13865 print_verification_stats(env); 13866 13867 if (log->level && bpf_verifier_log_full(log)) 13868 ret = -ENOSPC; 13869 if (log->level && !log->ubuf) { 13870 ret = -EFAULT; 13871 goto err_release_maps; 13872 } 13873 13874 if (ret) 13875 goto err_release_maps; 13876 13877 if (env->used_map_cnt) { 13878 /* if program passed verifier, update used_maps in bpf_prog_info */ 13879 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 13880 sizeof(env->used_maps[0]), 13881 GFP_KERNEL); 13882 13883 if (!env->prog->aux->used_maps) { 13884 ret = -ENOMEM; 13885 goto err_release_maps; 13886 } 13887 13888 memcpy(env->prog->aux->used_maps, env->used_maps, 13889 sizeof(env->used_maps[0]) * env->used_map_cnt); 13890 env->prog->aux->used_map_cnt = env->used_map_cnt; 13891 } 13892 if (env->used_btf_cnt) { 13893 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 13894 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 13895 sizeof(env->used_btfs[0]), 13896 GFP_KERNEL); 13897 if (!env->prog->aux->used_btfs) { 13898 ret = -ENOMEM; 13899 goto err_release_maps; 13900 } 13901 13902 memcpy(env->prog->aux->used_btfs, env->used_btfs, 13903 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 13904 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 13905 } 13906 if (env->used_map_cnt || env->used_btf_cnt) { 13907 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 13908 * bpf_ld_imm64 instructions 13909 */ 13910 convert_pseudo_ld_imm64(env); 13911 } 13912 13913 adjust_btf_func(env); 13914 13915 err_release_maps: 13916 if (!env->prog->aux->used_maps) 13917 /* if we didn't copy map pointers into bpf_prog_info, release 13918 * them now. Otherwise free_used_maps() will release them. 13919 */ 13920 release_maps(env); 13921 if (!env->prog->aux->used_btfs) 13922 release_btfs(env); 13923 13924 /* extension progs temporarily inherit the attach_type of their targets 13925 for verification purposes, so set it back to zero before returning 13926 */ 13927 if (env->prog->type == BPF_PROG_TYPE_EXT) 13928 env->prog->expected_attach_type = 0; 13929 13930 *prog = env->prog; 13931 err_unlock: 13932 if (!is_priv) 13933 mutex_unlock(&bpf_verifier_lock); 13934 vfree(env->insn_aux_data); 13935 err_free_env: 13936 kfree(env); 13937 return ret; 13938 } 13939