1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_sync_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_find_vma || 551 func_id == BPF_FUNC_loop || 552 func_id == BPF_FUNC_user_ringbuf_drain; 553 } 554 555 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 556 { 557 return func_id == BPF_FUNC_timer_set_callback; 558 } 559 560 static bool is_callback_calling_function(enum bpf_func_id func_id) 561 { 562 return is_sync_callback_calling_function(func_id) || 563 is_async_callback_calling_function(func_id); 564 } 565 566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 567 { 568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 570 } 571 572 static bool is_storage_get_function(enum bpf_func_id func_id) 573 { 574 return func_id == BPF_FUNC_sk_storage_get || 575 func_id == BPF_FUNC_inode_storage_get || 576 func_id == BPF_FUNC_task_storage_get || 577 func_id == BPF_FUNC_cgrp_storage_get; 578 } 579 580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 581 const struct bpf_map *map) 582 { 583 int ref_obj_uses = 0; 584 585 if (is_ptr_cast_function(func_id)) 586 ref_obj_uses++; 587 if (is_acquire_function(func_id, map)) 588 ref_obj_uses++; 589 if (is_dynptr_ref_function(func_id)) 590 ref_obj_uses++; 591 592 return ref_obj_uses > 1; 593 } 594 595 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 596 { 597 return BPF_CLASS(insn->code) == BPF_STX && 598 BPF_MODE(insn->code) == BPF_ATOMIC && 599 insn->imm == BPF_CMPXCHG; 600 } 601 602 /* string representation of 'enum bpf_reg_type' 603 * 604 * Note that reg_type_str() can not appear more than once in a single verbose() 605 * statement. 606 */ 607 static const char *reg_type_str(struct bpf_verifier_env *env, 608 enum bpf_reg_type type) 609 { 610 char postfix[16] = {0}, prefix[64] = {0}; 611 static const char * const str[] = { 612 [NOT_INIT] = "?", 613 [SCALAR_VALUE] = "scalar", 614 [PTR_TO_CTX] = "ctx", 615 [CONST_PTR_TO_MAP] = "map_ptr", 616 [PTR_TO_MAP_VALUE] = "map_value", 617 [PTR_TO_STACK] = "fp", 618 [PTR_TO_PACKET] = "pkt", 619 [PTR_TO_PACKET_META] = "pkt_meta", 620 [PTR_TO_PACKET_END] = "pkt_end", 621 [PTR_TO_FLOW_KEYS] = "flow_keys", 622 [PTR_TO_SOCKET] = "sock", 623 [PTR_TO_SOCK_COMMON] = "sock_common", 624 [PTR_TO_TCP_SOCK] = "tcp_sock", 625 [PTR_TO_TP_BUFFER] = "tp_buffer", 626 [PTR_TO_XDP_SOCK] = "xdp_sock", 627 [PTR_TO_BTF_ID] = "ptr_", 628 [PTR_TO_MEM] = "mem", 629 [PTR_TO_BUF] = "buf", 630 [PTR_TO_FUNC] = "func", 631 [PTR_TO_MAP_KEY] = "map_key", 632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 633 }; 634 635 if (type & PTR_MAYBE_NULL) { 636 if (base_type(type) == PTR_TO_BTF_ID) 637 strncpy(postfix, "or_null_", 16); 638 else 639 strncpy(postfix, "_or_null", 16); 640 } 641 642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 643 type & MEM_RDONLY ? "rdonly_" : "", 644 type & MEM_RINGBUF ? "ringbuf_" : "", 645 type & MEM_USER ? "user_" : "", 646 type & MEM_PERCPU ? "percpu_" : "", 647 type & MEM_RCU ? "rcu_" : "", 648 type & PTR_UNTRUSTED ? "untrusted_" : "", 649 type & PTR_TRUSTED ? "trusted_" : "" 650 ); 651 652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 653 prefix, str[base_type(type)], postfix); 654 return env->tmp_str_buf; 655 } 656 657 static char slot_type_char[] = { 658 [STACK_INVALID] = '?', 659 [STACK_SPILL] = 'r', 660 [STACK_MISC] = 'm', 661 [STACK_ZERO] = '0', 662 [STACK_DYNPTR] = 'd', 663 [STACK_ITER] = 'i', 664 }; 665 666 static void print_liveness(struct bpf_verifier_env *env, 667 enum bpf_reg_liveness live) 668 { 669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 670 verbose(env, "_"); 671 if (live & REG_LIVE_READ) 672 verbose(env, "r"); 673 if (live & REG_LIVE_WRITTEN) 674 verbose(env, "w"); 675 if (live & REG_LIVE_DONE) 676 verbose(env, "D"); 677 } 678 679 static int __get_spi(s32 off) 680 { 681 return (-off - 1) / BPF_REG_SIZE; 682 } 683 684 static struct bpf_func_state *func(struct bpf_verifier_env *env, 685 const struct bpf_reg_state *reg) 686 { 687 struct bpf_verifier_state *cur = env->cur_state; 688 689 return cur->frame[reg->frameno]; 690 } 691 692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 693 { 694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 695 696 /* We need to check that slots between [spi - nr_slots + 1, spi] are 697 * within [0, allocated_stack). 698 * 699 * Please note that the spi grows downwards. For example, a dynptr 700 * takes the size of two stack slots; the first slot will be at 701 * spi and the second slot will be at spi - 1. 702 */ 703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 704 } 705 706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 707 const char *obj_kind, int nr_slots) 708 { 709 int off, spi; 710 711 if (!tnum_is_const(reg->var_off)) { 712 verbose(env, "%s has to be at a constant offset\n", obj_kind); 713 return -EINVAL; 714 } 715 716 off = reg->off + reg->var_off.value; 717 if (off % BPF_REG_SIZE) { 718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 719 return -EINVAL; 720 } 721 722 spi = __get_spi(off); 723 if (spi + 1 < nr_slots) { 724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 725 return -EINVAL; 726 } 727 728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 729 return -ERANGE; 730 return spi; 731 } 732 733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 734 { 735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 736 } 737 738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 739 { 740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 741 } 742 743 static const char *btf_type_name(const struct btf *btf, u32 id) 744 { 745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 746 } 747 748 static const char *dynptr_type_str(enum bpf_dynptr_type type) 749 { 750 switch (type) { 751 case BPF_DYNPTR_TYPE_LOCAL: 752 return "local"; 753 case BPF_DYNPTR_TYPE_RINGBUF: 754 return "ringbuf"; 755 case BPF_DYNPTR_TYPE_SKB: 756 return "skb"; 757 case BPF_DYNPTR_TYPE_XDP: 758 return "xdp"; 759 case BPF_DYNPTR_TYPE_INVALID: 760 return "<invalid>"; 761 default: 762 WARN_ONCE(1, "unknown dynptr type %d\n", type); 763 return "<unknown>"; 764 } 765 } 766 767 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 768 { 769 if (!btf || btf_id == 0) 770 return "<invalid>"; 771 772 /* we already validated that type is valid and has conforming name */ 773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 774 } 775 776 static const char *iter_state_str(enum bpf_iter_state state) 777 { 778 switch (state) { 779 case BPF_ITER_STATE_ACTIVE: 780 return "active"; 781 case BPF_ITER_STATE_DRAINED: 782 return "drained"; 783 case BPF_ITER_STATE_INVALID: 784 return "<invalid>"; 785 default: 786 WARN_ONCE(1, "unknown iter state %d\n", state); 787 return "<unknown>"; 788 } 789 } 790 791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 792 { 793 env->scratched_regs |= 1U << regno; 794 } 795 796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 797 { 798 env->scratched_stack_slots |= 1ULL << spi; 799 } 800 801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 802 { 803 return (env->scratched_regs >> regno) & 1; 804 } 805 806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 807 { 808 return (env->scratched_stack_slots >> regno) & 1; 809 } 810 811 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 812 { 813 return env->scratched_regs || env->scratched_stack_slots; 814 } 815 816 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 817 { 818 env->scratched_regs = 0U; 819 env->scratched_stack_slots = 0ULL; 820 } 821 822 /* Used for printing the entire verifier state. */ 823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 824 { 825 env->scratched_regs = ~0U; 826 env->scratched_stack_slots = ~0ULL; 827 } 828 829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 830 { 831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 832 case DYNPTR_TYPE_LOCAL: 833 return BPF_DYNPTR_TYPE_LOCAL; 834 case DYNPTR_TYPE_RINGBUF: 835 return BPF_DYNPTR_TYPE_RINGBUF; 836 case DYNPTR_TYPE_SKB: 837 return BPF_DYNPTR_TYPE_SKB; 838 case DYNPTR_TYPE_XDP: 839 return BPF_DYNPTR_TYPE_XDP; 840 default: 841 return BPF_DYNPTR_TYPE_INVALID; 842 } 843 } 844 845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 846 { 847 switch (type) { 848 case BPF_DYNPTR_TYPE_LOCAL: 849 return DYNPTR_TYPE_LOCAL; 850 case BPF_DYNPTR_TYPE_RINGBUF: 851 return DYNPTR_TYPE_RINGBUF; 852 case BPF_DYNPTR_TYPE_SKB: 853 return DYNPTR_TYPE_SKB; 854 case BPF_DYNPTR_TYPE_XDP: 855 return DYNPTR_TYPE_XDP; 856 default: 857 return 0; 858 } 859 } 860 861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 862 { 863 return type == BPF_DYNPTR_TYPE_RINGBUF; 864 } 865 866 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 867 enum bpf_dynptr_type type, 868 bool first_slot, int dynptr_id); 869 870 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 871 struct bpf_reg_state *reg); 872 873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 874 struct bpf_reg_state *sreg1, 875 struct bpf_reg_state *sreg2, 876 enum bpf_dynptr_type type) 877 { 878 int id = ++env->id_gen; 879 880 __mark_dynptr_reg(sreg1, type, true, id); 881 __mark_dynptr_reg(sreg2, type, false, id); 882 } 883 884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 885 struct bpf_reg_state *reg, 886 enum bpf_dynptr_type type) 887 { 888 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 889 } 890 891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 892 struct bpf_func_state *state, int spi); 893 894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 896 { 897 struct bpf_func_state *state = func(env, reg); 898 enum bpf_dynptr_type type; 899 int spi, i, err; 900 901 spi = dynptr_get_spi(env, reg); 902 if (spi < 0) 903 return spi; 904 905 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 906 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 907 * to ensure that for the following example: 908 * [d1][d1][d2][d2] 909 * spi 3 2 1 0 910 * So marking spi = 2 should lead to destruction of both d1 and d2. In 911 * case they do belong to same dynptr, second call won't see slot_type 912 * as STACK_DYNPTR and will simply skip destruction. 913 */ 914 err = destroy_if_dynptr_stack_slot(env, state, spi); 915 if (err) 916 return err; 917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 918 if (err) 919 return err; 920 921 for (i = 0; i < BPF_REG_SIZE; i++) { 922 state->stack[spi].slot_type[i] = STACK_DYNPTR; 923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 924 } 925 926 type = arg_to_dynptr_type(arg_type); 927 if (type == BPF_DYNPTR_TYPE_INVALID) 928 return -EINVAL; 929 930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 931 &state->stack[spi - 1].spilled_ptr, type); 932 933 if (dynptr_type_refcounted(type)) { 934 /* The id is used to track proper releasing */ 935 int id; 936 937 if (clone_ref_obj_id) 938 id = clone_ref_obj_id; 939 else 940 id = acquire_reference_state(env, insn_idx); 941 942 if (id < 0) 943 return id; 944 945 state->stack[spi].spilled_ptr.ref_obj_id = id; 946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 947 } 948 949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 951 952 return 0; 953 } 954 955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 956 { 957 int i; 958 959 for (i = 0; i < BPF_REG_SIZE; i++) { 960 state->stack[spi].slot_type[i] = STACK_INVALID; 961 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 962 } 963 964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 966 967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 968 * 969 * While we don't allow reading STACK_INVALID, it is still possible to 970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 971 * helpers or insns can do partial read of that part without failing, 972 * but check_stack_range_initialized, check_stack_read_var_off, and 973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 974 * the slot conservatively. Hence we need to prevent those liveness 975 * marking walks. 976 * 977 * This was not a problem before because STACK_INVALID is only set by 978 * default (where the default reg state has its reg->parent as NULL), or 979 * in clean_live_states after REG_LIVE_DONE (at which point 980 * mark_reg_read won't walk reg->parent chain), but not randomly during 981 * verifier state exploration (like we did above). Hence, for our case 982 * parentage chain will still be live (i.e. reg->parent may be 983 * non-NULL), while earlier reg->parent was NULL, so we need 984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 985 * done later on reads or by mark_dynptr_read as well to unnecessary 986 * mark registers in verifier state. 987 */ 988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 990 } 991 992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 993 { 994 struct bpf_func_state *state = func(env, reg); 995 int spi, ref_obj_id, i; 996 997 spi = dynptr_get_spi(env, reg); 998 if (spi < 0) 999 return spi; 1000 1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1002 invalidate_dynptr(env, state, spi); 1003 return 0; 1004 } 1005 1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 1007 1008 /* If the dynptr has a ref_obj_id, then we need to invalidate 1009 * two things: 1010 * 1011 * 1) Any dynptrs with a matching ref_obj_id (clones) 1012 * 2) Any slices derived from this dynptr. 1013 */ 1014 1015 /* Invalidate any slices associated with this dynptr */ 1016 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1017 1018 /* Invalidate any dynptr clones */ 1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1021 continue; 1022 1023 /* it should always be the case that if the ref obj id 1024 * matches then the stack slot also belongs to a 1025 * dynptr 1026 */ 1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1029 return -EFAULT; 1030 } 1031 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1032 invalidate_dynptr(env, state, i); 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1039 struct bpf_reg_state *reg); 1040 1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1042 { 1043 if (!env->allow_ptr_leaks) 1044 __mark_reg_not_init(env, reg); 1045 else 1046 __mark_reg_unknown(env, reg); 1047 } 1048 1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1050 struct bpf_func_state *state, int spi) 1051 { 1052 struct bpf_func_state *fstate; 1053 struct bpf_reg_state *dreg; 1054 int i, dynptr_id; 1055 1056 /* We always ensure that STACK_DYNPTR is never set partially, 1057 * hence just checking for slot_type[0] is enough. This is 1058 * different for STACK_SPILL, where it may be only set for 1059 * 1 byte, so code has to use is_spilled_reg. 1060 */ 1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1062 return 0; 1063 1064 /* Reposition spi to first slot */ 1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1066 spi = spi + 1; 1067 1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1069 verbose(env, "cannot overwrite referenced dynptr\n"); 1070 return -EINVAL; 1071 } 1072 1073 mark_stack_slot_scratched(env, spi); 1074 mark_stack_slot_scratched(env, spi - 1); 1075 1076 /* Writing partially to one dynptr stack slot destroys both. */ 1077 for (i = 0; i < BPF_REG_SIZE; i++) { 1078 state->stack[spi].slot_type[i] = STACK_INVALID; 1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1080 } 1081 1082 dynptr_id = state->stack[spi].spilled_ptr.id; 1083 /* Invalidate any slices associated with this dynptr */ 1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1087 continue; 1088 if (dreg->dynptr_id == dynptr_id) 1089 mark_reg_invalid(env, dreg); 1090 })); 1091 1092 /* Do not release reference state, we are destroying dynptr on stack, 1093 * not using some helper to release it. Just reset register. 1094 */ 1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1097 1098 /* Same reason as unmark_stack_slots_dynptr above */ 1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1101 1102 return 0; 1103 } 1104 1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1106 { 1107 int spi; 1108 1109 if (reg->type == CONST_PTR_TO_DYNPTR) 1110 return false; 1111 1112 spi = dynptr_get_spi(env, reg); 1113 1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1115 * error because this just means the stack state hasn't been updated yet. 1116 * We will do check_mem_access to check and update stack bounds later. 1117 */ 1118 if (spi < 0 && spi != -ERANGE) 1119 return false; 1120 1121 /* We don't need to check if the stack slots are marked by previous 1122 * dynptr initializations because we allow overwriting existing unreferenced 1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1125 * touching are completely destructed before we reinitialize them for a new 1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1127 * instead of delaying it until the end where the user will get "Unreleased 1128 * reference" error. 1129 */ 1130 return true; 1131 } 1132 1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1134 { 1135 struct bpf_func_state *state = func(env, reg); 1136 int i, spi; 1137 1138 /* This already represents first slot of initialized bpf_dynptr. 1139 * 1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1141 * check_func_arg_reg_off's logic, so we don't need to check its 1142 * offset and alignment. 1143 */ 1144 if (reg->type == CONST_PTR_TO_DYNPTR) 1145 return true; 1146 1147 spi = dynptr_get_spi(env, reg); 1148 if (spi < 0) 1149 return false; 1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1151 return false; 1152 1153 for (i = 0; i < BPF_REG_SIZE; i++) { 1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1163 enum bpf_arg_type arg_type) 1164 { 1165 struct bpf_func_state *state = func(env, reg); 1166 enum bpf_dynptr_type dynptr_type; 1167 int spi; 1168 1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1170 if (arg_type == ARG_PTR_TO_DYNPTR) 1171 return true; 1172 1173 dynptr_type = arg_to_dynptr_type(arg_type); 1174 if (reg->type == CONST_PTR_TO_DYNPTR) { 1175 return reg->dynptr.type == dynptr_type; 1176 } else { 1177 spi = dynptr_get_spi(env, reg); 1178 if (spi < 0) 1179 return false; 1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1181 } 1182 } 1183 1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1185 1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1187 struct bpf_reg_state *reg, int insn_idx, 1188 struct btf *btf, u32 btf_id, int nr_slots) 1189 { 1190 struct bpf_func_state *state = func(env, reg); 1191 int spi, i, j, id; 1192 1193 spi = iter_get_spi(env, reg, nr_slots); 1194 if (spi < 0) 1195 return spi; 1196 1197 id = acquire_reference_state(env, insn_idx); 1198 if (id < 0) 1199 return id; 1200 1201 for (i = 0; i < nr_slots; i++) { 1202 struct bpf_stack_state *slot = &state->stack[spi - i]; 1203 struct bpf_reg_state *st = &slot->spilled_ptr; 1204 1205 __mark_reg_known_zero(st); 1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1207 st->live |= REG_LIVE_WRITTEN; 1208 st->ref_obj_id = i == 0 ? id : 0; 1209 st->iter.btf = btf; 1210 st->iter.btf_id = btf_id; 1211 st->iter.state = BPF_ITER_STATE_ACTIVE; 1212 st->iter.depth = 0; 1213 1214 for (j = 0; j < BPF_REG_SIZE; j++) 1215 slot->slot_type[j] = STACK_ITER; 1216 1217 mark_stack_slot_scratched(env, spi - i); 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1224 struct bpf_reg_state *reg, int nr_slots) 1225 { 1226 struct bpf_func_state *state = func(env, reg); 1227 int spi, i, j; 1228 1229 spi = iter_get_spi(env, reg, nr_slots); 1230 if (spi < 0) 1231 return spi; 1232 1233 for (i = 0; i < nr_slots; i++) { 1234 struct bpf_stack_state *slot = &state->stack[spi - i]; 1235 struct bpf_reg_state *st = &slot->spilled_ptr; 1236 1237 if (i == 0) 1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1239 1240 __mark_reg_not_init(env, st); 1241 1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1243 st->live |= REG_LIVE_WRITTEN; 1244 1245 for (j = 0; j < BPF_REG_SIZE; j++) 1246 slot->slot_type[j] = STACK_INVALID; 1247 1248 mark_stack_slot_scratched(env, spi - i); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1255 struct bpf_reg_state *reg, int nr_slots) 1256 { 1257 struct bpf_func_state *state = func(env, reg); 1258 int spi, i, j; 1259 1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1261 * will do check_mem_access to check and update stack bounds later, so 1262 * return true for that case. 1263 */ 1264 spi = iter_get_spi(env, reg, nr_slots); 1265 if (spi == -ERANGE) 1266 return true; 1267 if (spi < 0) 1268 return false; 1269 1270 for (i = 0; i < nr_slots; i++) { 1271 struct bpf_stack_state *slot = &state->stack[spi - i]; 1272 1273 for (j = 0; j < BPF_REG_SIZE; j++) 1274 if (slot->slot_type[j] == STACK_ITER) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1282 struct btf *btf, u32 btf_id, int nr_slots) 1283 { 1284 struct bpf_func_state *state = func(env, reg); 1285 int spi, i, j; 1286 1287 spi = iter_get_spi(env, reg, nr_slots); 1288 if (spi < 0) 1289 return false; 1290 1291 for (i = 0; i < nr_slots; i++) { 1292 struct bpf_stack_state *slot = &state->stack[spi - i]; 1293 struct bpf_reg_state *st = &slot->spilled_ptr; 1294 1295 /* only main (first) slot has ref_obj_id set */ 1296 if (i == 0 && !st->ref_obj_id) 1297 return false; 1298 if (i != 0 && st->ref_obj_id) 1299 return false; 1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1301 return false; 1302 1303 for (j = 0; j < BPF_REG_SIZE; j++) 1304 if (slot->slot_type[j] != STACK_ITER) 1305 return false; 1306 } 1307 1308 return true; 1309 } 1310 1311 /* Check if given stack slot is "special": 1312 * - spilled register state (STACK_SPILL); 1313 * - dynptr state (STACK_DYNPTR); 1314 * - iter state (STACK_ITER). 1315 */ 1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1317 { 1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1319 1320 switch (type) { 1321 case STACK_SPILL: 1322 case STACK_DYNPTR: 1323 case STACK_ITER: 1324 return true; 1325 case STACK_INVALID: 1326 case STACK_MISC: 1327 case STACK_ZERO: 1328 return false; 1329 default: 1330 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1331 return true; 1332 } 1333 } 1334 1335 /* The reg state of a pointer or a bounded scalar was saved when 1336 * it was spilled to the stack. 1337 */ 1338 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1339 { 1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1341 } 1342 1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1344 { 1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1346 stack->spilled_ptr.type == SCALAR_VALUE; 1347 } 1348 1349 static void scrub_spilled_slot(u8 *stype) 1350 { 1351 if (*stype != STACK_INVALID) 1352 *stype = STACK_MISC; 1353 } 1354 1355 static void print_verifier_state(struct bpf_verifier_env *env, 1356 const struct bpf_func_state *state, 1357 bool print_all) 1358 { 1359 const struct bpf_reg_state *reg; 1360 enum bpf_reg_type t; 1361 int i; 1362 1363 if (state->frameno) 1364 verbose(env, " frame%d:", state->frameno); 1365 for (i = 0; i < MAX_BPF_REG; i++) { 1366 reg = &state->regs[i]; 1367 t = reg->type; 1368 if (t == NOT_INIT) 1369 continue; 1370 if (!print_all && !reg_scratched(env, i)) 1371 continue; 1372 verbose(env, " R%d", i); 1373 print_liveness(env, reg->live); 1374 verbose(env, "="); 1375 if (t == SCALAR_VALUE && reg->precise) 1376 verbose(env, "P"); 1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1378 tnum_is_const(reg->var_off)) { 1379 /* reg->off should be 0 for SCALAR_VALUE */ 1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1381 verbose(env, "%lld", reg->var_off.value + reg->off); 1382 } else { 1383 const char *sep = ""; 1384 1385 verbose(env, "%s", reg_type_str(env, t)); 1386 if (base_type(t) == PTR_TO_BTF_ID) 1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1388 verbose(env, "("); 1389 /* 1390 * _a stands for append, was shortened to avoid multiline statements below. 1391 * This macro is used to output a comma separated list of attributes. 1392 */ 1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1394 1395 if (reg->id) 1396 verbose_a("id=%d", reg->id); 1397 if (reg->ref_obj_id) 1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1399 if (type_is_non_owning_ref(reg->type)) 1400 verbose_a("%s", "non_own_ref"); 1401 if (t != SCALAR_VALUE) 1402 verbose_a("off=%d", reg->off); 1403 if (type_is_pkt_pointer(t)) 1404 verbose_a("r=%d", reg->range); 1405 else if (base_type(t) == CONST_PTR_TO_MAP || 1406 base_type(t) == PTR_TO_MAP_KEY || 1407 base_type(t) == PTR_TO_MAP_VALUE) 1408 verbose_a("ks=%d,vs=%d", 1409 reg->map_ptr->key_size, 1410 reg->map_ptr->value_size); 1411 if (tnum_is_const(reg->var_off)) { 1412 /* Typically an immediate SCALAR_VALUE, but 1413 * could be a pointer whose offset is too big 1414 * for reg->off 1415 */ 1416 verbose_a("imm=%llx", reg->var_off.value); 1417 } else { 1418 if (reg->smin_value != reg->umin_value && 1419 reg->smin_value != S64_MIN) 1420 verbose_a("smin=%lld", (long long)reg->smin_value); 1421 if (reg->smax_value != reg->umax_value && 1422 reg->smax_value != S64_MAX) 1423 verbose_a("smax=%lld", (long long)reg->smax_value); 1424 if (reg->umin_value != 0) 1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1426 if (reg->umax_value != U64_MAX) 1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1428 if (!tnum_is_unknown(reg->var_off)) { 1429 char tn_buf[48]; 1430 1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1432 verbose_a("var_off=%s", tn_buf); 1433 } 1434 if (reg->s32_min_value != reg->smin_value && 1435 reg->s32_min_value != S32_MIN) 1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1437 if (reg->s32_max_value != reg->smax_value && 1438 reg->s32_max_value != S32_MAX) 1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1440 if (reg->u32_min_value != reg->umin_value && 1441 reg->u32_min_value != U32_MIN) 1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1443 if (reg->u32_max_value != reg->umax_value && 1444 reg->u32_max_value != U32_MAX) 1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1446 } 1447 #undef verbose_a 1448 1449 verbose(env, ")"); 1450 } 1451 } 1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1453 char types_buf[BPF_REG_SIZE + 1]; 1454 bool valid = false; 1455 int j; 1456 1457 for (j = 0; j < BPF_REG_SIZE; j++) { 1458 if (state->stack[i].slot_type[j] != STACK_INVALID) 1459 valid = true; 1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1461 } 1462 types_buf[BPF_REG_SIZE] = 0; 1463 if (!valid) 1464 continue; 1465 if (!print_all && !stack_slot_scratched(env, i)) 1466 continue; 1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1468 case STACK_SPILL: 1469 reg = &state->stack[i].spilled_ptr; 1470 t = reg->type; 1471 1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1473 print_liveness(env, reg->live); 1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1475 if (t == SCALAR_VALUE && reg->precise) 1476 verbose(env, "P"); 1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1478 verbose(env, "%lld", reg->var_off.value + reg->off); 1479 break; 1480 case STACK_DYNPTR: 1481 i += BPF_DYNPTR_NR_SLOTS - 1; 1482 reg = &state->stack[i].spilled_ptr; 1483 1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1485 print_liveness(env, reg->live); 1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1487 if (reg->ref_obj_id) 1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1489 break; 1490 case STACK_ITER: 1491 /* only main slot has ref_obj_id set; skip others */ 1492 reg = &state->stack[i].spilled_ptr; 1493 if (!reg->ref_obj_id) 1494 continue; 1495 1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1497 print_liveness(env, reg->live); 1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1499 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1500 reg->ref_obj_id, iter_state_str(reg->iter.state), 1501 reg->iter.depth); 1502 break; 1503 case STACK_MISC: 1504 case STACK_ZERO: 1505 default: 1506 reg = &state->stack[i].spilled_ptr; 1507 1508 for (j = 0; j < BPF_REG_SIZE; j++) 1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1510 types_buf[BPF_REG_SIZE] = 0; 1511 1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1513 print_liveness(env, reg->live); 1514 verbose(env, "=%s", types_buf); 1515 break; 1516 } 1517 } 1518 if (state->acquired_refs && state->refs[0].id) { 1519 verbose(env, " refs=%d", state->refs[0].id); 1520 for (i = 1; i < state->acquired_refs; i++) 1521 if (state->refs[i].id) 1522 verbose(env, ",%d", state->refs[i].id); 1523 } 1524 if (state->in_callback_fn) 1525 verbose(env, " cb"); 1526 if (state->in_async_callback_fn) 1527 verbose(env, " async_cb"); 1528 verbose(env, "\n"); 1529 if (!print_all) 1530 mark_verifier_state_clean(env); 1531 } 1532 1533 static inline u32 vlog_alignment(u32 pos) 1534 { 1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1537 } 1538 1539 static void print_insn_state(struct bpf_verifier_env *env, 1540 const struct bpf_func_state *state) 1541 { 1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1543 /* remove new line character */ 1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1546 } else { 1547 verbose(env, "%d:", env->insn_idx); 1548 } 1549 print_verifier_state(env, state, false); 1550 } 1551 1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1553 * small to hold src. This is different from krealloc since we don't want to preserve 1554 * the contents of dst. 1555 * 1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1557 * not be allocated. 1558 */ 1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1560 { 1561 size_t alloc_bytes; 1562 void *orig = dst; 1563 size_t bytes; 1564 1565 if (ZERO_OR_NULL_PTR(src)) 1566 goto out; 1567 1568 if (unlikely(check_mul_overflow(n, size, &bytes))) 1569 return NULL; 1570 1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1572 dst = krealloc(orig, alloc_bytes, flags); 1573 if (!dst) { 1574 kfree(orig); 1575 return NULL; 1576 } 1577 1578 memcpy(dst, src, bytes); 1579 out: 1580 return dst ? dst : ZERO_SIZE_PTR; 1581 } 1582 1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1584 * small to hold new_n items. new items are zeroed out if the array grows. 1585 * 1586 * Contrary to krealloc_array, does not free arr if new_n is zero. 1587 */ 1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1589 { 1590 size_t alloc_size; 1591 void *new_arr; 1592 1593 if (!new_n || old_n == new_n) 1594 goto out; 1595 1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1598 if (!new_arr) { 1599 kfree(arr); 1600 return NULL; 1601 } 1602 arr = new_arr; 1603 1604 if (new_n > old_n) 1605 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1606 1607 out: 1608 return arr ? arr : ZERO_SIZE_PTR; 1609 } 1610 1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1612 { 1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1614 sizeof(struct bpf_reference_state), GFP_KERNEL); 1615 if (!dst->refs) 1616 return -ENOMEM; 1617 1618 dst->acquired_refs = src->acquired_refs; 1619 return 0; 1620 } 1621 1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1623 { 1624 size_t n = src->allocated_stack / BPF_REG_SIZE; 1625 1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1627 GFP_KERNEL); 1628 if (!dst->stack) 1629 return -ENOMEM; 1630 1631 dst->allocated_stack = src->allocated_stack; 1632 return 0; 1633 } 1634 1635 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1636 { 1637 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1638 sizeof(struct bpf_reference_state)); 1639 if (!state->refs) 1640 return -ENOMEM; 1641 1642 state->acquired_refs = n; 1643 return 0; 1644 } 1645 1646 /* Possibly update state->allocated_stack to be at least size bytes. Also 1647 * possibly update the function's high-water mark in its bpf_subprog_info. 1648 */ 1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1650 { 1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1652 1653 if (old_n >= n) 1654 return 0; 1655 1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1657 if (!state->stack) 1658 return -ENOMEM; 1659 1660 state->allocated_stack = size; 1661 1662 /* update known max for given subprogram */ 1663 if (env->subprog_info[state->subprogno].stack_depth < size) 1664 env->subprog_info[state->subprogno].stack_depth = size; 1665 1666 return 0; 1667 } 1668 1669 /* Acquire a pointer id from the env and update the state->refs to include 1670 * this new pointer reference. 1671 * On success, returns a valid pointer id to associate with the register 1672 * On failure, returns a negative errno. 1673 */ 1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1675 { 1676 struct bpf_func_state *state = cur_func(env); 1677 int new_ofs = state->acquired_refs; 1678 int id, err; 1679 1680 err = resize_reference_state(state, state->acquired_refs + 1); 1681 if (err) 1682 return err; 1683 id = ++env->id_gen; 1684 state->refs[new_ofs].id = id; 1685 state->refs[new_ofs].insn_idx = insn_idx; 1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1687 1688 return id; 1689 } 1690 1691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1693 { 1694 int i, last_idx; 1695 1696 last_idx = state->acquired_refs - 1; 1697 for (i = 0; i < state->acquired_refs; i++) { 1698 if (state->refs[i].id == ptr_id) { 1699 /* Cannot release caller references in callbacks */ 1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1701 return -EINVAL; 1702 if (last_idx && i != last_idx) 1703 memcpy(&state->refs[i], &state->refs[last_idx], 1704 sizeof(*state->refs)); 1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1706 state->acquired_refs--; 1707 return 0; 1708 } 1709 } 1710 return -EINVAL; 1711 } 1712 1713 static void free_func_state(struct bpf_func_state *state) 1714 { 1715 if (!state) 1716 return; 1717 kfree(state->refs); 1718 kfree(state->stack); 1719 kfree(state); 1720 } 1721 1722 static void clear_jmp_history(struct bpf_verifier_state *state) 1723 { 1724 kfree(state->jmp_history); 1725 state->jmp_history = NULL; 1726 state->jmp_history_cnt = 0; 1727 } 1728 1729 static void free_verifier_state(struct bpf_verifier_state *state, 1730 bool free_self) 1731 { 1732 int i; 1733 1734 for (i = 0; i <= state->curframe; i++) { 1735 free_func_state(state->frame[i]); 1736 state->frame[i] = NULL; 1737 } 1738 clear_jmp_history(state); 1739 if (free_self) 1740 kfree(state); 1741 } 1742 1743 /* copy verifier state from src to dst growing dst stack space 1744 * when necessary to accommodate larger src stack 1745 */ 1746 static int copy_func_state(struct bpf_func_state *dst, 1747 const struct bpf_func_state *src) 1748 { 1749 int err; 1750 1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1752 err = copy_reference_state(dst, src); 1753 if (err) 1754 return err; 1755 return copy_stack_state(dst, src); 1756 } 1757 1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1759 const struct bpf_verifier_state *src) 1760 { 1761 struct bpf_func_state *dst; 1762 int i, err; 1763 1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1766 GFP_USER); 1767 if (!dst_state->jmp_history) 1768 return -ENOMEM; 1769 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1770 1771 /* if dst has more stack frames then src frame, free them */ 1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1773 free_func_state(dst_state->frame[i]); 1774 dst_state->frame[i] = NULL; 1775 } 1776 dst_state->speculative = src->speculative; 1777 dst_state->active_rcu_lock = src->active_rcu_lock; 1778 dst_state->curframe = src->curframe; 1779 dst_state->active_lock.ptr = src->active_lock.ptr; 1780 dst_state->active_lock.id = src->active_lock.id; 1781 dst_state->branches = src->branches; 1782 dst_state->parent = src->parent; 1783 dst_state->first_insn_idx = src->first_insn_idx; 1784 dst_state->last_insn_idx = src->last_insn_idx; 1785 dst_state->dfs_depth = src->dfs_depth; 1786 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1787 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1788 for (i = 0; i <= src->curframe; i++) { 1789 dst = dst_state->frame[i]; 1790 if (!dst) { 1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1792 if (!dst) 1793 return -ENOMEM; 1794 dst_state->frame[i] = dst; 1795 } 1796 err = copy_func_state(dst, src->frame[i]); 1797 if (err) 1798 return err; 1799 } 1800 return 0; 1801 } 1802 1803 static u32 state_htab_size(struct bpf_verifier_env *env) 1804 { 1805 return env->prog->len; 1806 } 1807 1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1809 { 1810 struct bpf_verifier_state *cur = env->cur_state; 1811 struct bpf_func_state *state = cur->frame[cur->curframe]; 1812 1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1814 } 1815 1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1817 { 1818 int fr; 1819 1820 if (a->curframe != b->curframe) 1821 return false; 1822 1823 for (fr = a->curframe; fr >= 0; fr--) 1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1825 return false; 1826 1827 return true; 1828 } 1829 1830 /* Open coded iterators allow back-edges in the state graph in order to 1831 * check unbounded loops that iterators. 1832 * 1833 * In is_state_visited() it is necessary to know if explored states are 1834 * part of some loops in order to decide whether non-exact states 1835 * comparison could be used: 1836 * - non-exact states comparison establishes sub-state relation and uses 1837 * read and precision marks to do so, these marks are propagated from 1838 * children states and thus are not guaranteed to be final in a loop; 1839 * - exact states comparison just checks if current and explored states 1840 * are identical (and thus form a back-edge). 1841 * 1842 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1844 * algorithm for loop structure detection and gives an overview of 1845 * relevant terminology. It also has helpful illustrations. 1846 * 1847 * [1] https://api.semanticscholar.org/CorpusID:15784067 1848 * 1849 * We use a similar algorithm but because loop nested structure is 1850 * irrelevant for verifier ours is significantly simpler and resembles 1851 * strongly connected components algorithm from Sedgewick's textbook. 1852 * 1853 * Define topmost loop entry as a first node of the loop traversed in a 1854 * depth first search starting from initial state. The goal of the loop 1855 * tracking algorithm is to associate topmost loop entries with states 1856 * derived from these entries. 1857 * 1858 * For each step in the DFS states traversal algorithm needs to identify 1859 * the following situations: 1860 * 1861 * initial initial initial 1862 * | | | 1863 * V V V 1864 * ... ... .---------> hdr 1865 * | | | | 1866 * V V | V 1867 * cur .-> succ | .------... 1868 * | | | | | | 1869 * V | V | V V 1870 * succ '-- cur | ... ... 1871 * | | | 1872 * | V V 1873 * | succ <- cur 1874 * | | 1875 * | V 1876 * | ... 1877 * | | 1878 * '----' 1879 * 1880 * (A) successor state of cur (B) successor state of cur or it's entry 1881 * not yet traversed are in current DFS path, thus cur and succ 1882 * are members of the same outermost loop 1883 * 1884 * initial initial 1885 * | | 1886 * V V 1887 * ... ... 1888 * | | 1889 * V V 1890 * .------... .------... 1891 * | | | | 1892 * V V V V 1893 * .-> hdr ... ... ... 1894 * | | | | | 1895 * | V V V V 1896 * | succ <- cur succ <- cur 1897 * | | | 1898 * | V V 1899 * | ... ... 1900 * | | | 1901 * '----' exit 1902 * 1903 * (C) successor state of cur is a part of some loop but this loop 1904 * does not include cur or successor state is not in a loop at all. 1905 * 1906 * Algorithm could be described as the following python code: 1907 * 1908 * traversed = set() # Set of traversed nodes 1909 * entries = {} # Mapping from node to loop entry 1910 * depths = {} # Depth level assigned to graph node 1911 * path = set() # Current DFS path 1912 * 1913 * # Find outermost loop entry known for n 1914 * def get_loop_entry(n): 1915 * h = entries.get(n, None) 1916 * while h in entries and entries[h] != h: 1917 * h = entries[h] 1918 * return h 1919 * 1920 * # Update n's loop entry if h's outermost entry comes 1921 * # before n's outermost entry in current DFS path. 1922 * def update_loop_entry(n, h): 1923 * n1 = get_loop_entry(n) or n 1924 * h1 = get_loop_entry(h) or h 1925 * if h1 in path and depths[h1] <= depths[n1]: 1926 * entries[n] = h1 1927 * 1928 * def dfs(n, depth): 1929 * traversed.add(n) 1930 * path.add(n) 1931 * depths[n] = depth 1932 * for succ in G.successors(n): 1933 * if succ not in traversed: 1934 * # Case A: explore succ and update cur's loop entry 1935 * # only if succ's entry is in current DFS path. 1936 * dfs(succ, depth + 1) 1937 * h = get_loop_entry(succ) 1938 * update_loop_entry(n, h) 1939 * else: 1940 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1941 * update_loop_entry(n, succ) 1942 * path.remove(n) 1943 * 1944 * To adapt this algorithm for use with verifier: 1945 * - use st->branch == 0 as a signal that DFS of succ had been finished 1946 * and cur's loop entry has to be updated (case A), handle this in 1947 * update_branch_counts(); 1948 * - use st->branch > 0 as a signal that st is in the current DFS path; 1949 * - handle cases B and C in is_state_visited(); 1950 * - update topmost loop entry for intermediate states in get_loop_entry(). 1951 */ 1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1953 { 1954 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1955 1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1957 topmost = topmost->loop_entry; 1958 /* Update loop entries for intermediate states to avoid this 1959 * traversal in future get_loop_entry() calls. 1960 */ 1961 while (st && st->loop_entry != topmost) { 1962 old = st->loop_entry; 1963 st->loop_entry = topmost; 1964 st = old; 1965 } 1966 return topmost; 1967 } 1968 1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1970 { 1971 struct bpf_verifier_state *cur1, *hdr1; 1972 1973 cur1 = get_loop_entry(cur) ?: cur; 1974 hdr1 = get_loop_entry(hdr) ?: hdr; 1975 /* The head1->branches check decides between cases B and C in 1976 * comment for get_loop_entry(). If hdr1->branches == 0 then 1977 * head's topmost loop entry is not in current DFS path, 1978 * hence 'cur' and 'hdr' are not in the same loop and there is 1979 * no need to update cur->loop_entry. 1980 */ 1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1982 cur->loop_entry = hdr; 1983 hdr->used_as_loop_entry = true; 1984 } 1985 } 1986 1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1988 { 1989 while (st) { 1990 u32 br = --st->branches; 1991 1992 /* br == 0 signals that DFS exploration for 'st' is finished, 1993 * thus it is necessary to update parent's loop entry if it 1994 * turned out that st is a part of some loop. 1995 * This is a part of 'case A' in get_loop_entry() comment. 1996 */ 1997 if (br == 0 && st->parent && st->loop_entry) 1998 update_loop_entry(st->parent, st->loop_entry); 1999 2000 /* WARN_ON(br > 1) technically makes sense here, 2001 * but see comment in push_stack(), hence: 2002 */ 2003 WARN_ONCE((int)br < 0, 2004 "BUG update_branch_counts:branches_to_explore=%d\n", 2005 br); 2006 if (br) 2007 break; 2008 st = st->parent; 2009 } 2010 } 2011 2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2013 int *insn_idx, bool pop_log) 2014 { 2015 struct bpf_verifier_state *cur = env->cur_state; 2016 struct bpf_verifier_stack_elem *elem, *head = env->head; 2017 int err; 2018 2019 if (env->head == NULL) 2020 return -ENOENT; 2021 2022 if (cur) { 2023 err = copy_verifier_state(cur, &head->st); 2024 if (err) 2025 return err; 2026 } 2027 if (pop_log) 2028 bpf_vlog_reset(&env->log, head->log_pos); 2029 if (insn_idx) 2030 *insn_idx = head->insn_idx; 2031 if (prev_insn_idx) 2032 *prev_insn_idx = head->prev_insn_idx; 2033 elem = head->next; 2034 free_verifier_state(&head->st, false); 2035 kfree(head); 2036 env->head = elem; 2037 env->stack_size--; 2038 return 0; 2039 } 2040 2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2042 int insn_idx, int prev_insn_idx, 2043 bool speculative) 2044 { 2045 struct bpf_verifier_state *cur = env->cur_state; 2046 struct bpf_verifier_stack_elem *elem; 2047 int err; 2048 2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2050 if (!elem) 2051 goto err; 2052 2053 elem->insn_idx = insn_idx; 2054 elem->prev_insn_idx = prev_insn_idx; 2055 elem->next = env->head; 2056 elem->log_pos = env->log.end_pos; 2057 env->head = elem; 2058 env->stack_size++; 2059 err = copy_verifier_state(&elem->st, cur); 2060 if (err) 2061 goto err; 2062 elem->st.speculative |= speculative; 2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2064 verbose(env, "The sequence of %d jumps is too complex.\n", 2065 env->stack_size); 2066 goto err; 2067 } 2068 if (elem->st.parent) { 2069 ++elem->st.parent->branches; 2070 /* WARN_ON(branches > 2) technically makes sense here, 2071 * but 2072 * 1. speculative states will bump 'branches' for non-branch 2073 * instructions 2074 * 2. is_state_visited() heuristics may decide not to create 2075 * a new state for a sequence of branches and all such current 2076 * and cloned states will be pointing to a single parent state 2077 * which might have large 'branches' count. 2078 */ 2079 } 2080 return &elem->st; 2081 err: 2082 free_verifier_state(env->cur_state, true); 2083 env->cur_state = NULL; 2084 /* pop all elements and return */ 2085 while (!pop_stack(env, NULL, NULL, false)); 2086 return NULL; 2087 } 2088 2089 #define CALLER_SAVED_REGS 6 2090 static const int caller_saved[CALLER_SAVED_REGS] = { 2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2092 }; 2093 2094 /* This helper doesn't clear reg->id */ 2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2096 { 2097 reg->var_off = tnum_const(imm); 2098 reg->smin_value = (s64)imm; 2099 reg->smax_value = (s64)imm; 2100 reg->umin_value = imm; 2101 reg->umax_value = imm; 2102 2103 reg->s32_min_value = (s32)imm; 2104 reg->s32_max_value = (s32)imm; 2105 reg->u32_min_value = (u32)imm; 2106 reg->u32_max_value = (u32)imm; 2107 } 2108 2109 /* Mark the unknown part of a register (variable offset or scalar value) as 2110 * known to have the value @imm. 2111 */ 2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2113 { 2114 /* Clear off and union(map_ptr, range) */ 2115 memset(((u8 *)reg) + sizeof(reg->type), 0, 2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2117 reg->id = 0; 2118 reg->ref_obj_id = 0; 2119 ___mark_reg_known(reg, imm); 2120 } 2121 2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2123 { 2124 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2125 reg->s32_min_value = (s32)imm; 2126 reg->s32_max_value = (s32)imm; 2127 reg->u32_min_value = (u32)imm; 2128 reg->u32_max_value = (u32)imm; 2129 } 2130 2131 /* Mark the 'variable offset' part of a register as zero. This should be 2132 * used only on registers holding a pointer type. 2133 */ 2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2135 { 2136 __mark_reg_known(reg, 0); 2137 } 2138 2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 2140 { 2141 __mark_reg_known(reg, 0); 2142 reg->type = SCALAR_VALUE; 2143 } 2144 2145 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2146 struct bpf_reg_state *regs, u32 regno) 2147 { 2148 if (WARN_ON(regno >= MAX_BPF_REG)) { 2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2150 /* Something bad happened, let's kill all regs */ 2151 for (regno = 0; regno < MAX_BPF_REG; regno++) 2152 __mark_reg_not_init(env, regs + regno); 2153 return; 2154 } 2155 __mark_reg_known_zero(regs + regno); 2156 } 2157 2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2159 bool first_slot, int dynptr_id) 2160 { 2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2164 */ 2165 __mark_reg_known_zero(reg); 2166 reg->type = CONST_PTR_TO_DYNPTR; 2167 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2168 reg->id = dynptr_id; 2169 reg->dynptr.type = type; 2170 reg->dynptr.first_slot = first_slot; 2171 } 2172 2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2174 { 2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2176 const struct bpf_map *map = reg->map_ptr; 2177 2178 if (map->inner_map_meta) { 2179 reg->type = CONST_PTR_TO_MAP; 2180 reg->map_ptr = map->inner_map_meta; 2181 /* transfer reg's id which is unique for every map_lookup_elem 2182 * as UID of the inner map. 2183 */ 2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2185 reg->map_uid = reg->id; 2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2187 reg->type = PTR_TO_XDP_SOCK; 2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2190 reg->type = PTR_TO_SOCKET; 2191 } else { 2192 reg->type = PTR_TO_MAP_VALUE; 2193 } 2194 return; 2195 } 2196 2197 reg->type &= ~PTR_MAYBE_NULL; 2198 } 2199 2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2201 struct btf_field_graph_root *ds_head) 2202 { 2203 __mark_reg_known_zero(®s[regno]); 2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2205 regs[regno].btf = ds_head->btf; 2206 regs[regno].btf_id = ds_head->value_btf_id; 2207 regs[regno].off = ds_head->node_offset; 2208 } 2209 2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2211 { 2212 return type_is_pkt_pointer(reg->type); 2213 } 2214 2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2216 { 2217 return reg_is_pkt_pointer(reg) || 2218 reg->type == PTR_TO_PACKET_END; 2219 } 2220 2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2222 { 2223 return base_type(reg->type) == PTR_TO_MEM && 2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2225 } 2226 2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2229 enum bpf_reg_type which) 2230 { 2231 /* The register can already have a range from prior markings. 2232 * This is fine as long as it hasn't been advanced from its 2233 * origin. 2234 */ 2235 return reg->type == which && 2236 reg->id == 0 && 2237 reg->off == 0 && 2238 tnum_equals_const(reg->var_off, 0); 2239 } 2240 2241 /* Reset the min/max bounds of a register */ 2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2243 { 2244 reg->smin_value = S64_MIN; 2245 reg->smax_value = S64_MAX; 2246 reg->umin_value = 0; 2247 reg->umax_value = U64_MAX; 2248 2249 reg->s32_min_value = S32_MIN; 2250 reg->s32_max_value = S32_MAX; 2251 reg->u32_min_value = 0; 2252 reg->u32_max_value = U32_MAX; 2253 } 2254 2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2256 { 2257 reg->smin_value = S64_MIN; 2258 reg->smax_value = S64_MAX; 2259 reg->umin_value = 0; 2260 reg->umax_value = U64_MAX; 2261 } 2262 2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2264 { 2265 reg->s32_min_value = S32_MIN; 2266 reg->s32_max_value = S32_MAX; 2267 reg->u32_min_value = 0; 2268 reg->u32_max_value = U32_MAX; 2269 } 2270 2271 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2272 { 2273 struct tnum var32_off = tnum_subreg(reg->var_off); 2274 2275 /* min signed is max(sign bit) | min(other bits) */ 2276 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2277 var32_off.value | (var32_off.mask & S32_MIN)); 2278 /* max signed is min(sign bit) | max(other bits) */ 2279 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2280 var32_off.value | (var32_off.mask & S32_MAX)); 2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2282 reg->u32_max_value = min(reg->u32_max_value, 2283 (u32)(var32_off.value | var32_off.mask)); 2284 } 2285 2286 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2287 { 2288 /* min signed is max(sign bit) | min(other bits) */ 2289 reg->smin_value = max_t(s64, reg->smin_value, 2290 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2291 /* max signed is min(sign bit) | max(other bits) */ 2292 reg->smax_value = min_t(s64, reg->smax_value, 2293 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2294 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2295 reg->umax_value = min(reg->umax_value, 2296 reg->var_off.value | reg->var_off.mask); 2297 } 2298 2299 static void __update_reg_bounds(struct bpf_reg_state *reg) 2300 { 2301 __update_reg32_bounds(reg); 2302 __update_reg64_bounds(reg); 2303 } 2304 2305 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2307 { 2308 /* Learn sign from signed bounds. 2309 * If we cannot cross the sign boundary, then signed and unsigned bounds 2310 * are the same, so combine. This works even in the negative case, e.g. 2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2312 */ 2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2314 reg->s32_min_value = reg->u32_min_value = 2315 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2316 reg->s32_max_value = reg->u32_max_value = 2317 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2318 return; 2319 } 2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2321 * boundary, so we must be careful. 2322 */ 2323 if ((s32)reg->u32_max_value >= 0) { 2324 /* Positive. We can't learn anything from the smin, but smax 2325 * is positive, hence safe. 2326 */ 2327 reg->s32_min_value = reg->u32_min_value; 2328 reg->s32_max_value = reg->u32_max_value = 2329 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2330 } else if ((s32)reg->u32_min_value < 0) { 2331 /* Negative. We can't learn anything from the smax, but smin 2332 * is negative, hence safe. 2333 */ 2334 reg->s32_min_value = reg->u32_min_value = 2335 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2336 reg->s32_max_value = reg->u32_max_value; 2337 } 2338 } 2339 2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2341 { 2342 /* Learn sign from signed bounds. 2343 * If we cannot cross the sign boundary, then signed and unsigned bounds 2344 * are the same, so combine. This works even in the negative case, e.g. 2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2346 */ 2347 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2349 reg->umin_value); 2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2351 reg->umax_value); 2352 return; 2353 } 2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2355 * boundary, so we must be careful. 2356 */ 2357 if ((s64)reg->umax_value >= 0) { 2358 /* Positive. We can't learn anything from the smin, but smax 2359 * is positive, hence safe. 2360 */ 2361 reg->smin_value = reg->umin_value; 2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2363 reg->umax_value); 2364 } else if ((s64)reg->umin_value < 0) { 2365 /* Negative. We can't learn anything from the smax, but smin 2366 * is negative, hence safe. 2367 */ 2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2369 reg->umin_value); 2370 reg->smax_value = reg->umax_value; 2371 } 2372 } 2373 2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2375 { 2376 __reg32_deduce_bounds(reg); 2377 __reg64_deduce_bounds(reg); 2378 } 2379 2380 /* Attempts to improve var_off based on unsigned min/max information */ 2381 static void __reg_bound_offset(struct bpf_reg_state *reg) 2382 { 2383 struct tnum var64_off = tnum_intersect(reg->var_off, 2384 tnum_range(reg->umin_value, 2385 reg->umax_value)); 2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2387 tnum_range(reg->u32_min_value, 2388 reg->u32_max_value)); 2389 2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2391 } 2392 2393 static void reg_bounds_sync(struct bpf_reg_state *reg) 2394 { 2395 /* We might have learned new bounds from the var_off. */ 2396 __update_reg_bounds(reg); 2397 /* We might have learned something about the sign bit. */ 2398 __reg_deduce_bounds(reg); 2399 /* We might have learned some bits from the bounds. */ 2400 __reg_bound_offset(reg); 2401 /* Intersecting with the old var_off might have improved our bounds 2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2403 * then new var_off is (0; 0x7f...fc) which improves our umax. 2404 */ 2405 __update_reg_bounds(reg); 2406 } 2407 2408 static bool __reg32_bound_s64(s32 a) 2409 { 2410 return a >= 0 && a <= S32_MAX; 2411 } 2412 2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2414 { 2415 reg->umin_value = reg->u32_min_value; 2416 reg->umax_value = reg->u32_max_value; 2417 2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2419 * be positive otherwise set to worse case bounds and refine later 2420 * from tnum. 2421 */ 2422 if (__reg32_bound_s64(reg->s32_min_value) && 2423 __reg32_bound_s64(reg->s32_max_value)) { 2424 reg->smin_value = reg->s32_min_value; 2425 reg->smax_value = reg->s32_max_value; 2426 } else { 2427 reg->smin_value = 0; 2428 reg->smax_value = U32_MAX; 2429 } 2430 } 2431 2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2433 { 2434 /* special case when 64-bit register has upper 32-bit register 2435 * zeroed. Typically happens after zext or <<32, >>32 sequence 2436 * allowing us to use 32-bit bounds directly, 2437 */ 2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2439 __reg_assign_32_into_64(reg); 2440 } else { 2441 /* Otherwise the best we can do is push lower 32bit known and 2442 * unknown bits into register (var_off set from jmp logic) 2443 * then learn as much as possible from the 64-bit tnum 2444 * known and unknown bits. The previous smin/smax bounds are 2445 * invalid here because of jmp32 compare so mark them unknown 2446 * so they do not impact tnum bounds calculation. 2447 */ 2448 __mark_reg64_unbounded(reg); 2449 } 2450 reg_bounds_sync(reg); 2451 } 2452 2453 static bool __reg64_bound_s32(s64 a) 2454 { 2455 return a >= S32_MIN && a <= S32_MAX; 2456 } 2457 2458 static bool __reg64_bound_u32(u64 a) 2459 { 2460 return a >= U32_MIN && a <= U32_MAX; 2461 } 2462 2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2464 { 2465 __mark_reg32_unbounded(reg); 2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2467 reg->s32_min_value = (s32)reg->smin_value; 2468 reg->s32_max_value = (s32)reg->smax_value; 2469 } 2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2471 reg->u32_min_value = (u32)reg->umin_value; 2472 reg->u32_max_value = (u32)reg->umax_value; 2473 } 2474 reg_bounds_sync(reg); 2475 } 2476 2477 /* Mark a register as having a completely unknown (scalar) value. */ 2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2479 struct bpf_reg_state *reg) 2480 { 2481 /* 2482 * Clear type, off, and union(map_ptr, range) and 2483 * padding between 'type' and union 2484 */ 2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2486 reg->type = SCALAR_VALUE; 2487 reg->id = 0; 2488 reg->ref_obj_id = 0; 2489 reg->var_off = tnum_unknown; 2490 reg->frameno = 0; 2491 reg->precise = !env->bpf_capable; 2492 __mark_reg_unbounded(reg); 2493 } 2494 2495 static void mark_reg_unknown(struct bpf_verifier_env *env, 2496 struct bpf_reg_state *regs, u32 regno) 2497 { 2498 if (WARN_ON(regno >= MAX_BPF_REG)) { 2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2500 /* Something bad happened, let's kill all regs except FP */ 2501 for (regno = 0; regno < BPF_REG_FP; regno++) 2502 __mark_reg_not_init(env, regs + regno); 2503 return; 2504 } 2505 __mark_reg_unknown(env, regs + regno); 2506 } 2507 2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2509 struct bpf_reg_state *reg) 2510 { 2511 __mark_reg_unknown(env, reg); 2512 reg->type = NOT_INIT; 2513 } 2514 2515 static void mark_reg_not_init(struct bpf_verifier_env *env, 2516 struct bpf_reg_state *regs, u32 regno) 2517 { 2518 if (WARN_ON(regno >= MAX_BPF_REG)) { 2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2520 /* Something bad happened, let's kill all regs except FP */ 2521 for (regno = 0; regno < BPF_REG_FP; regno++) 2522 __mark_reg_not_init(env, regs + regno); 2523 return; 2524 } 2525 __mark_reg_not_init(env, regs + regno); 2526 } 2527 2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2529 struct bpf_reg_state *regs, u32 regno, 2530 enum bpf_reg_type reg_type, 2531 struct btf *btf, u32 btf_id, 2532 enum bpf_type_flag flag) 2533 { 2534 if (reg_type == SCALAR_VALUE) { 2535 mark_reg_unknown(env, regs, regno); 2536 return; 2537 } 2538 mark_reg_known_zero(env, regs, regno); 2539 regs[regno].type = PTR_TO_BTF_ID | flag; 2540 regs[regno].btf = btf; 2541 regs[regno].btf_id = btf_id; 2542 } 2543 2544 #define DEF_NOT_SUBREG (0) 2545 static void init_reg_state(struct bpf_verifier_env *env, 2546 struct bpf_func_state *state) 2547 { 2548 struct bpf_reg_state *regs = state->regs; 2549 int i; 2550 2551 for (i = 0; i < MAX_BPF_REG; i++) { 2552 mark_reg_not_init(env, regs, i); 2553 regs[i].live = REG_LIVE_NONE; 2554 regs[i].parent = NULL; 2555 regs[i].subreg_def = DEF_NOT_SUBREG; 2556 } 2557 2558 /* frame pointer */ 2559 regs[BPF_REG_FP].type = PTR_TO_STACK; 2560 mark_reg_known_zero(env, regs, BPF_REG_FP); 2561 regs[BPF_REG_FP].frameno = state->frameno; 2562 } 2563 2564 #define BPF_MAIN_FUNC (-1) 2565 static void init_func_state(struct bpf_verifier_env *env, 2566 struct bpf_func_state *state, 2567 int callsite, int frameno, int subprogno) 2568 { 2569 state->callsite = callsite; 2570 state->frameno = frameno; 2571 state->subprogno = subprogno; 2572 state->callback_ret_range = tnum_range(0, 0); 2573 init_reg_state(env, state); 2574 mark_verifier_state_scratched(env); 2575 } 2576 2577 /* Similar to push_stack(), but for async callbacks */ 2578 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2579 int insn_idx, int prev_insn_idx, 2580 int subprog) 2581 { 2582 struct bpf_verifier_stack_elem *elem; 2583 struct bpf_func_state *frame; 2584 2585 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2586 if (!elem) 2587 goto err; 2588 2589 elem->insn_idx = insn_idx; 2590 elem->prev_insn_idx = prev_insn_idx; 2591 elem->next = env->head; 2592 elem->log_pos = env->log.end_pos; 2593 env->head = elem; 2594 env->stack_size++; 2595 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2596 verbose(env, 2597 "The sequence of %d jumps is too complex for async cb.\n", 2598 env->stack_size); 2599 goto err; 2600 } 2601 /* Unlike push_stack() do not copy_verifier_state(). 2602 * The caller state doesn't matter. 2603 * This is async callback. It starts in a fresh stack. 2604 * Initialize it similar to do_check_common(). 2605 */ 2606 elem->st.branches = 1; 2607 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2608 if (!frame) 2609 goto err; 2610 init_func_state(env, frame, 2611 BPF_MAIN_FUNC /* callsite */, 2612 0 /* frameno within this callchain */, 2613 subprog /* subprog number within this prog */); 2614 elem->st.frame[0] = frame; 2615 return &elem->st; 2616 err: 2617 free_verifier_state(env->cur_state, true); 2618 env->cur_state = NULL; 2619 /* pop all elements and return */ 2620 while (!pop_stack(env, NULL, NULL, false)); 2621 return NULL; 2622 } 2623 2624 2625 enum reg_arg_type { 2626 SRC_OP, /* register is used as source operand */ 2627 DST_OP, /* register is used as destination operand */ 2628 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2629 }; 2630 2631 static int cmp_subprogs(const void *a, const void *b) 2632 { 2633 return ((struct bpf_subprog_info *)a)->start - 2634 ((struct bpf_subprog_info *)b)->start; 2635 } 2636 2637 static int find_subprog(struct bpf_verifier_env *env, int off) 2638 { 2639 struct bpf_subprog_info *p; 2640 2641 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2642 sizeof(env->subprog_info[0]), cmp_subprogs); 2643 if (!p) 2644 return -ENOENT; 2645 return p - env->subprog_info; 2646 2647 } 2648 2649 static int add_subprog(struct bpf_verifier_env *env, int off) 2650 { 2651 int insn_cnt = env->prog->len; 2652 int ret; 2653 2654 if (off >= insn_cnt || off < 0) { 2655 verbose(env, "call to invalid destination\n"); 2656 return -EINVAL; 2657 } 2658 ret = find_subprog(env, off); 2659 if (ret >= 0) 2660 return ret; 2661 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2662 verbose(env, "too many subprograms\n"); 2663 return -E2BIG; 2664 } 2665 /* determine subprog starts. The end is one before the next starts */ 2666 env->subprog_info[env->subprog_cnt++].start = off; 2667 sort(env->subprog_info, env->subprog_cnt, 2668 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2669 return env->subprog_cnt - 1; 2670 } 2671 2672 #define MAX_KFUNC_DESCS 256 2673 #define MAX_KFUNC_BTFS 256 2674 2675 struct bpf_kfunc_desc { 2676 struct btf_func_model func_model; 2677 u32 func_id; 2678 s32 imm; 2679 u16 offset; 2680 unsigned long addr; 2681 }; 2682 2683 struct bpf_kfunc_btf { 2684 struct btf *btf; 2685 struct module *module; 2686 u16 offset; 2687 }; 2688 2689 struct bpf_kfunc_desc_tab { 2690 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2691 * verification. JITs do lookups by bpf_insn, where func_id may not be 2692 * available, therefore at the end of verification do_misc_fixups() 2693 * sorts this by imm and offset. 2694 */ 2695 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2696 u32 nr_descs; 2697 }; 2698 2699 struct bpf_kfunc_btf_tab { 2700 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2701 u32 nr_descs; 2702 }; 2703 2704 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2705 { 2706 const struct bpf_kfunc_desc *d0 = a; 2707 const struct bpf_kfunc_desc *d1 = b; 2708 2709 /* func_id is not greater than BTF_MAX_TYPE */ 2710 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2711 } 2712 2713 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2714 { 2715 const struct bpf_kfunc_btf *d0 = a; 2716 const struct bpf_kfunc_btf *d1 = b; 2717 2718 return d0->offset - d1->offset; 2719 } 2720 2721 static const struct bpf_kfunc_desc * 2722 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2723 { 2724 struct bpf_kfunc_desc desc = { 2725 .func_id = func_id, 2726 .offset = offset, 2727 }; 2728 struct bpf_kfunc_desc_tab *tab; 2729 2730 tab = prog->aux->kfunc_tab; 2731 return bsearch(&desc, tab->descs, tab->nr_descs, 2732 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2733 } 2734 2735 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2736 u16 btf_fd_idx, u8 **func_addr) 2737 { 2738 const struct bpf_kfunc_desc *desc; 2739 2740 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2741 if (!desc) 2742 return -EFAULT; 2743 2744 *func_addr = (u8 *)desc->addr; 2745 return 0; 2746 } 2747 2748 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2749 s16 offset) 2750 { 2751 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2752 struct bpf_kfunc_btf_tab *tab; 2753 struct bpf_kfunc_btf *b; 2754 struct module *mod; 2755 struct btf *btf; 2756 int btf_fd; 2757 2758 tab = env->prog->aux->kfunc_btf_tab; 2759 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2760 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2761 if (!b) { 2762 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2763 verbose(env, "too many different module BTFs\n"); 2764 return ERR_PTR(-E2BIG); 2765 } 2766 2767 if (bpfptr_is_null(env->fd_array)) { 2768 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2769 return ERR_PTR(-EPROTO); 2770 } 2771 2772 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2773 offset * sizeof(btf_fd), 2774 sizeof(btf_fd))) 2775 return ERR_PTR(-EFAULT); 2776 2777 btf = btf_get_by_fd(btf_fd); 2778 if (IS_ERR(btf)) { 2779 verbose(env, "invalid module BTF fd specified\n"); 2780 return btf; 2781 } 2782 2783 if (!btf_is_module(btf)) { 2784 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2785 btf_put(btf); 2786 return ERR_PTR(-EINVAL); 2787 } 2788 2789 mod = btf_try_get_module(btf); 2790 if (!mod) { 2791 btf_put(btf); 2792 return ERR_PTR(-ENXIO); 2793 } 2794 2795 b = &tab->descs[tab->nr_descs++]; 2796 b->btf = btf; 2797 b->module = mod; 2798 b->offset = offset; 2799 2800 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2801 kfunc_btf_cmp_by_off, NULL); 2802 } 2803 return b->btf; 2804 } 2805 2806 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2807 { 2808 if (!tab) 2809 return; 2810 2811 while (tab->nr_descs--) { 2812 module_put(tab->descs[tab->nr_descs].module); 2813 btf_put(tab->descs[tab->nr_descs].btf); 2814 } 2815 kfree(tab); 2816 } 2817 2818 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2819 { 2820 if (offset) { 2821 if (offset < 0) { 2822 /* In the future, this can be allowed to increase limit 2823 * of fd index into fd_array, interpreted as u16. 2824 */ 2825 verbose(env, "negative offset disallowed for kernel module function call\n"); 2826 return ERR_PTR(-EINVAL); 2827 } 2828 2829 return __find_kfunc_desc_btf(env, offset); 2830 } 2831 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2832 } 2833 2834 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2835 { 2836 const struct btf_type *func, *func_proto; 2837 struct bpf_kfunc_btf_tab *btf_tab; 2838 struct bpf_kfunc_desc_tab *tab; 2839 struct bpf_prog_aux *prog_aux; 2840 struct bpf_kfunc_desc *desc; 2841 const char *func_name; 2842 struct btf *desc_btf; 2843 unsigned long call_imm; 2844 unsigned long addr; 2845 int err; 2846 2847 prog_aux = env->prog->aux; 2848 tab = prog_aux->kfunc_tab; 2849 btf_tab = prog_aux->kfunc_btf_tab; 2850 if (!tab) { 2851 if (!btf_vmlinux) { 2852 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2853 return -ENOTSUPP; 2854 } 2855 2856 if (!env->prog->jit_requested) { 2857 verbose(env, "JIT is required for calling kernel function\n"); 2858 return -ENOTSUPP; 2859 } 2860 2861 if (!bpf_jit_supports_kfunc_call()) { 2862 verbose(env, "JIT does not support calling kernel function\n"); 2863 return -ENOTSUPP; 2864 } 2865 2866 if (!env->prog->gpl_compatible) { 2867 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2868 return -EINVAL; 2869 } 2870 2871 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2872 if (!tab) 2873 return -ENOMEM; 2874 prog_aux->kfunc_tab = tab; 2875 } 2876 2877 /* func_id == 0 is always invalid, but instead of returning an error, be 2878 * conservative and wait until the code elimination pass before returning 2879 * error, so that invalid calls that get pruned out can be in BPF programs 2880 * loaded from userspace. It is also required that offset be untouched 2881 * for such calls. 2882 */ 2883 if (!func_id && !offset) 2884 return 0; 2885 2886 if (!btf_tab && offset) { 2887 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2888 if (!btf_tab) 2889 return -ENOMEM; 2890 prog_aux->kfunc_btf_tab = btf_tab; 2891 } 2892 2893 desc_btf = find_kfunc_desc_btf(env, offset); 2894 if (IS_ERR(desc_btf)) { 2895 verbose(env, "failed to find BTF for kernel function\n"); 2896 return PTR_ERR(desc_btf); 2897 } 2898 2899 if (find_kfunc_desc(env->prog, func_id, offset)) 2900 return 0; 2901 2902 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2903 verbose(env, "too many different kernel function calls\n"); 2904 return -E2BIG; 2905 } 2906 2907 func = btf_type_by_id(desc_btf, func_id); 2908 if (!func || !btf_type_is_func(func)) { 2909 verbose(env, "kernel btf_id %u is not a function\n", 2910 func_id); 2911 return -EINVAL; 2912 } 2913 func_proto = btf_type_by_id(desc_btf, func->type); 2914 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2915 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2916 func_id); 2917 return -EINVAL; 2918 } 2919 2920 func_name = btf_name_by_offset(desc_btf, func->name_off); 2921 addr = kallsyms_lookup_name(func_name); 2922 if (!addr) { 2923 verbose(env, "cannot find address for kernel function %s\n", 2924 func_name); 2925 return -EINVAL; 2926 } 2927 specialize_kfunc(env, func_id, offset, &addr); 2928 2929 if (bpf_jit_supports_far_kfunc_call()) { 2930 call_imm = func_id; 2931 } else { 2932 call_imm = BPF_CALL_IMM(addr); 2933 /* Check whether the relative offset overflows desc->imm */ 2934 if ((unsigned long)(s32)call_imm != call_imm) { 2935 verbose(env, "address of kernel function %s is out of range\n", 2936 func_name); 2937 return -EINVAL; 2938 } 2939 } 2940 2941 if (bpf_dev_bound_kfunc_id(func_id)) { 2942 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2943 if (err) 2944 return err; 2945 } 2946 2947 desc = &tab->descs[tab->nr_descs++]; 2948 desc->func_id = func_id; 2949 desc->imm = call_imm; 2950 desc->offset = offset; 2951 desc->addr = addr; 2952 err = btf_distill_func_proto(&env->log, desc_btf, 2953 func_proto, func_name, 2954 &desc->func_model); 2955 if (!err) 2956 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2957 kfunc_desc_cmp_by_id_off, NULL); 2958 return err; 2959 } 2960 2961 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2962 { 2963 const struct bpf_kfunc_desc *d0 = a; 2964 const struct bpf_kfunc_desc *d1 = b; 2965 2966 if (d0->imm != d1->imm) 2967 return d0->imm < d1->imm ? -1 : 1; 2968 if (d0->offset != d1->offset) 2969 return d0->offset < d1->offset ? -1 : 1; 2970 return 0; 2971 } 2972 2973 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2974 { 2975 struct bpf_kfunc_desc_tab *tab; 2976 2977 tab = prog->aux->kfunc_tab; 2978 if (!tab) 2979 return; 2980 2981 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2982 kfunc_desc_cmp_by_imm_off, NULL); 2983 } 2984 2985 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2986 { 2987 return !!prog->aux->kfunc_tab; 2988 } 2989 2990 const struct btf_func_model * 2991 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2992 const struct bpf_insn *insn) 2993 { 2994 const struct bpf_kfunc_desc desc = { 2995 .imm = insn->imm, 2996 .offset = insn->off, 2997 }; 2998 const struct bpf_kfunc_desc *res; 2999 struct bpf_kfunc_desc_tab *tab; 3000 3001 tab = prog->aux->kfunc_tab; 3002 res = bsearch(&desc, tab->descs, tab->nr_descs, 3003 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3004 3005 return res ? &res->func_model : NULL; 3006 } 3007 3008 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3009 { 3010 struct bpf_subprog_info *subprog = env->subprog_info; 3011 struct bpf_insn *insn = env->prog->insnsi; 3012 int i, ret, insn_cnt = env->prog->len; 3013 3014 /* Add entry function. */ 3015 ret = add_subprog(env, 0); 3016 if (ret) 3017 return ret; 3018 3019 for (i = 0; i < insn_cnt; i++, insn++) { 3020 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3021 !bpf_pseudo_kfunc_call(insn)) 3022 continue; 3023 3024 if (!env->bpf_capable) { 3025 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3026 return -EPERM; 3027 } 3028 3029 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3030 ret = add_subprog(env, i + insn->imm + 1); 3031 else 3032 ret = add_kfunc_call(env, insn->imm, insn->off); 3033 3034 if (ret < 0) 3035 return ret; 3036 } 3037 3038 /* Add a fake 'exit' subprog which could simplify subprog iteration 3039 * logic. 'subprog_cnt' should not be increased. 3040 */ 3041 subprog[env->subprog_cnt].start = insn_cnt; 3042 3043 if (env->log.level & BPF_LOG_LEVEL2) 3044 for (i = 0; i < env->subprog_cnt; i++) 3045 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3046 3047 return 0; 3048 } 3049 3050 static int check_subprogs(struct bpf_verifier_env *env) 3051 { 3052 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3053 struct bpf_subprog_info *subprog = env->subprog_info; 3054 struct bpf_insn *insn = env->prog->insnsi; 3055 int insn_cnt = env->prog->len; 3056 3057 /* now check that all jumps are within the same subprog */ 3058 subprog_start = subprog[cur_subprog].start; 3059 subprog_end = subprog[cur_subprog + 1].start; 3060 for (i = 0; i < insn_cnt; i++) { 3061 u8 code = insn[i].code; 3062 3063 if (code == (BPF_JMP | BPF_CALL) && 3064 insn[i].src_reg == 0 && 3065 insn[i].imm == BPF_FUNC_tail_call) 3066 subprog[cur_subprog].has_tail_call = true; 3067 if (BPF_CLASS(code) == BPF_LD && 3068 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3069 subprog[cur_subprog].has_ld_abs = true; 3070 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3071 goto next; 3072 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3073 goto next; 3074 if (code == (BPF_JMP32 | BPF_JA)) 3075 off = i + insn[i].imm + 1; 3076 else 3077 off = i + insn[i].off + 1; 3078 if (off < subprog_start || off >= subprog_end) { 3079 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3080 return -EINVAL; 3081 } 3082 next: 3083 if (i == subprog_end - 1) { 3084 /* to avoid fall-through from one subprog into another 3085 * the last insn of the subprog should be either exit 3086 * or unconditional jump back 3087 */ 3088 if (code != (BPF_JMP | BPF_EXIT) && 3089 code != (BPF_JMP32 | BPF_JA) && 3090 code != (BPF_JMP | BPF_JA)) { 3091 verbose(env, "last insn is not an exit or jmp\n"); 3092 return -EINVAL; 3093 } 3094 subprog_start = subprog_end; 3095 cur_subprog++; 3096 if (cur_subprog < env->subprog_cnt) 3097 subprog_end = subprog[cur_subprog + 1].start; 3098 } 3099 } 3100 return 0; 3101 } 3102 3103 /* Parentage chain of this register (or stack slot) should take care of all 3104 * issues like callee-saved registers, stack slot allocation time, etc. 3105 */ 3106 static int mark_reg_read(struct bpf_verifier_env *env, 3107 const struct bpf_reg_state *state, 3108 struct bpf_reg_state *parent, u8 flag) 3109 { 3110 bool writes = parent == state->parent; /* Observe write marks */ 3111 int cnt = 0; 3112 3113 while (parent) { 3114 /* if read wasn't screened by an earlier write ... */ 3115 if (writes && state->live & REG_LIVE_WRITTEN) 3116 break; 3117 if (parent->live & REG_LIVE_DONE) { 3118 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3119 reg_type_str(env, parent->type), 3120 parent->var_off.value, parent->off); 3121 return -EFAULT; 3122 } 3123 /* The first condition is more likely to be true than the 3124 * second, checked it first. 3125 */ 3126 if ((parent->live & REG_LIVE_READ) == flag || 3127 parent->live & REG_LIVE_READ64) 3128 /* The parentage chain never changes and 3129 * this parent was already marked as LIVE_READ. 3130 * There is no need to keep walking the chain again and 3131 * keep re-marking all parents as LIVE_READ. 3132 * This case happens when the same register is read 3133 * multiple times without writes into it in-between. 3134 * Also, if parent has the stronger REG_LIVE_READ64 set, 3135 * then no need to set the weak REG_LIVE_READ32. 3136 */ 3137 break; 3138 /* ... then we depend on parent's value */ 3139 parent->live |= flag; 3140 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3141 if (flag == REG_LIVE_READ64) 3142 parent->live &= ~REG_LIVE_READ32; 3143 state = parent; 3144 parent = state->parent; 3145 writes = true; 3146 cnt++; 3147 } 3148 3149 if (env->longest_mark_read_walk < cnt) 3150 env->longest_mark_read_walk = cnt; 3151 return 0; 3152 } 3153 3154 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3155 { 3156 struct bpf_func_state *state = func(env, reg); 3157 int spi, ret; 3158 3159 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3160 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3161 * check_kfunc_call. 3162 */ 3163 if (reg->type == CONST_PTR_TO_DYNPTR) 3164 return 0; 3165 spi = dynptr_get_spi(env, reg); 3166 if (spi < 0) 3167 return spi; 3168 /* Caller ensures dynptr is valid and initialized, which means spi is in 3169 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3170 * read. 3171 */ 3172 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3173 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3174 if (ret) 3175 return ret; 3176 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3177 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3178 } 3179 3180 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3181 int spi, int nr_slots) 3182 { 3183 struct bpf_func_state *state = func(env, reg); 3184 int err, i; 3185 3186 for (i = 0; i < nr_slots; i++) { 3187 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3188 3189 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3190 if (err) 3191 return err; 3192 3193 mark_stack_slot_scratched(env, spi - i); 3194 } 3195 3196 return 0; 3197 } 3198 3199 /* This function is supposed to be used by the following 32-bit optimization 3200 * code only. It returns TRUE if the source or destination register operates 3201 * on 64-bit, otherwise return FALSE. 3202 */ 3203 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3204 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3205 { 3206 u8 code, class, op; 3207 3208 code = insn->code; 3209 class = BPF_CLASS(code); 3210 op = BPF_OP(code); 3211 if (class == BPF_JMP) { 3212 /* BPF_EXIT for "main" will reach here. Return TRUE 3213 * conservatively. 3214 */ 3215 if (op == BPF_EXIT) 3216 return true; 3217 if (op == BPF_CALL) { 3218 /* BPF to BPF call will reach here because of marking 3219 * caller saved clobber with DST_OP_NO_MARK for which we 3220 * don't care the register def because they are anyway 3221 * marked as NOT_INIT already. 3222 */ 3223 if (insn->src_reg == BPF_PSEUDO_CALL) 3224 return false; 3225 /* Helper call will reach here because of arg type 3226 * check, conservatively return TRUE. 3227 */ 3228 if (t == SRC_OP) 3229 return true; 3230 3231 return false; 3232 } 3233 } 3234 3235 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3236 return false; 3237 3238 if (class == BPF_ALU64 || class == BPF_JMP || 3239 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3240 return true; 3241 3242 if (class == BPF_ALU || class == BPF_JMP32) 3243 return false; 3244 3245 if (class == BPF_LDX) { 3246 if (t != SRC_OP) 3247 return BPF_SIZE(code) == BPF_DW; 3248 /* LDX source must be ptr. */ 3249 return true; 3250 } 3251 3252 if (class == BPF_STX) { 3253 /* BPF_STX (including atomic variants) has multiple source 3254 * operands, one of which is a ptr. Check whether the caller is 3255 * asking about it. 3256 */ 3257 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3258 return true; 3259 return BPF_SIZE(code) == BPF_DW; 3260 } 3261 3262 if (class == BPF_LD) { 3263 u8 mode = BPF_MODE(code); 3264 3265 /* LD_IMM64 */ 3266 if (mode == BPF_IMM) 3267 return true; 3268 3269 /* Both LD_IND and LD_ABS return 32-bit data. */ 3270 if (t != SRC_OP) 3271 return false; 3272 3273 /* Implicit ctx ptr. */ 3274 if (regno == BPF_REG_6) 3275 return true; 3276 3277 /* Explicit source could be any width. */ 3278 return true; 3279 } 3280 3281 if (class == BPF_ST) 3282 /* The only source register for BPF_ST is a ptr. */ 3283 return true; 3284 3285 /* Conservatively return true at default. */ 3286 return true; 3287 } 3288 3289 /* Return the regno defined by the insn, or -1. */ 3290 static int insn_def_regno(const struct bpf_insn *insn) 3291 { 3292 switch (BPF_CLASS(insn->code)) { 3293 case BPF_JMP: 3294 case BPF_JMP32: 3295 case BPF_ST: 3296 return -1; 3297 case BPF_STX: 3298 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3299 (insn->imm & BPF_FETCH)) { 3300 if (insn->imm == BPF_CMPXCHG) 3301 return BPF_REG_0; 3302 else 3303 return insn->src_reg; 3304 } else { 3305 return -1; 3306 } 3307 default: 3308 return insn->dst_reg; 3309 } 3310 } 3311 3312 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3313 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3314 { 3315 int dst_reg = insn_def_regno(insn); 3316 3317 if (dst_reg == -1) 3318 return false; 3319 3320 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3321 } 3322 3323 static void mark_insn_zext(struct bpf_verifier_env *env, 3324 struct bpf_reg_state *reg) 3325 { 3326 s32 def_idx = reg->subreg_def; 3327 3328 if (def_idx == DEF_NOT_SUBREG) 3329 return; 3330 3331 env->insn_aux_data[def_idx - 1].zext_dst = true; 3332 /* The dst will be zero extended, so won't be sub-register anymore. */ 3333 reg->subreg_def = DEF_NOT_SUBREG; 3334 } 3335 3336 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3337 enum reg_arg_type t) 3338 { 3339 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3340 struct bpf_reg_state *reg; 3341 bool rw64; 3342 3343 if (regno >= MAX_BPF_REG) { 3344 verbose(env, "R%d is invalid\n", regno); 3345 return -EINVAL; 3346 } 3347 3348 mark_reg_scratched(env, regno); 3349 3350 reg = ®s[regno]; 3351 rw64 = is_reg64(env, insn, regno, reg, t); 3352 if (t == SRC_OP) { 3353 /* check whether register used as source operand can be read */ 3354 if (reg->type == NOT_INIT) { 3355 verbose(env, "R%d !read_ok\n", regno); 3356 return -EACCES; 3357 } 3358 /* We don't need to worry about FP liveness because it's read-only */ 3359 if (regno == BPF_REG_FP) 3360 return 0; 3361 3362 if (rw64) 3363 mark_insn_zext(env, reg); 3364 3365 return mark_reg_read(env, reg, reg->parent, 3366 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3367 } else { 3368 /* check whether register used as dest operand can be written to */ 3369 if (regno == BPF_REG_FP) { 3370 verbose(env, "frame pointer is read only\n"); 3371 return -EACCES; 3372 } 3373 reg->live |= REG_LIVE_WRITTEN; 3374 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3375 if (t == DST_OP) 3376 mark_reg_unknown(env, regs, regno); 3377 } 3378 return 0; 3379 } 3380 3381 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3382 enum reg_arg_type t) 3383 { 3384 struct bpf_verifier_state *vstate = env->cur_state; 3385 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3386 3387 return __check_reg_arg(env, state->regs, regno, t); 3388 } 3389 3390 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3391 { 3392 env->insn_aux_data[idx].jmp_point = true; 3393 } 3394 3395 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3396 { 3397 return env->insn_aux_data[insn_idx].jmp_point; 3398 } 3399 3400 /* for any branch, call, exit record the history of jmps in the given state */ 3401 static int push_jmp_history(struct bpf_verifier_env *env, 3402 struct bpf_verifier_state *cur) 3403 { 3404 u32 cnt = cur->jmp_history_cnt; 3405 struct bpf_idx_pair *p; 3406 size_t alloc_size; 3407 3408 if (!is_jmp_point(env, env->insn_idx)) 3409 return 0; 3410 3411 cnt++; 3412 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3413 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3414 if (!p) 3415 return -ENOMEM; 3416 p[cnt - 1].idx = env->insn_idx; 3417 p[cnt - 1].prev_idx = env->prev_insn_idx; 3418 cur->jmp_history = p; 3419 cur->jmp_history_cnt = cnt; 3420 return 0; 3421 } 3422 3423 /* Backtrack one insn at a time. If idx is not at the top of recorded 3424 * history then previous instruction came from straight line execution. 3425 * Return -ENOENT if we exhausted all instructions within given state. 3426 * 3427 * It's legal to have a bit of a looping with the same starting and ending 3428 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3429 * instruction index is the same as state's first_idx doesn't mean we are 3430 * done. If there is still some jump history left, we should keep going. We 3431 * need to take into account that we might have a jump history between given 3432 * state's parent and itself, due to checkpointing. In this case, we'll have 3433 * history entry recording a jump from last instruction of parent state and 3434 * first instruction of given state. 3435 */ 3436 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3437 u32 *history) 3438 { 3439 u32 cnt = *history; 3440 3441 if (i == st->first_insn_idx) { 3442 if (cnt == 0) 3443 return -ENOENT; 3444 if (cnt == 1 && st->jmp_history[0].idx == i) 3445 return -ENOENT; 3446 } 3447 3448 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3449 i = st->jmp_history[cnt - 1].prev_idx; 3450 (*history)--; 3451 } else { 3452 i--; 3453 } 3454 return i; 3455 } 3456 3457 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3458 { 3459 const struct btf_type *func; 3460 struct btf *desc_btf; 3461 3462 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3463 return NULL; 3464 3465 desc_btf = find_kfunc_desc_btf(data, insn->off); 3466 if (IS_ERR(desc_btf)) 3467 return "<error>"; 3468 3469 func = btf_type_by_id(desc_btf, insn->imm); 3470 return btf_name_by_offset(desc_btf, func->name_off); 3471 } 3472 3473 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3474 { 3475 bt->frame = frame; 3476 } 3477 3478 static inline void bt_reset(struct backtrack_state *bt) 3479 { 3480 struct bpf_verifier_env *env = bt->env; 3481 3482 memset(bt, 0, sizeof(*bt)); 3483 bt->env = env; 3484 } 3485 3486 static inline u32 bt_empty(struct backtrack_state *bt) 3487 { 3488 u64 mask = 0; 3489 int i; 3490 3491 for (i = 0; i <= bt->frame; i++) 3492 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3493 3494 return mask == 0; 3495 } 3496 3497 static inline int bt_subprog_enter(struct backtrack_state *bt) 3498 { 3499 if (bt->frame == MAX_CALL_FRAMES - 1) { 3500 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3501 WARN_ONCE(1, "verifier backtracking bug"); 3502 return -EFAULT; 3503 } 3504 bt->frame++; 3505 return 0; 3506 } 3507 3508 static inline int bt_subprog_exit(struct backtrack_state *bt) 3509 { 3510 if (bt->frame == 0) { 3511 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3512 WARN_ONCE(1, "verifier backtracking bug"); 3513 return -EFAULT; 3514 } 3515 bt->frame--; 3516 return 0; 3517 } 3518 3519 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3520 { 3521 bt->reg_masks[frame] |= 1 << reg; 3522 } 3523 3524 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3525 { 3526 bt->reg_masks[frame] &= ~(1 << reg); 3527 } 3528 3529 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3530 { 3531 bt_set_frame_reg(bt, bt->frame, reg); 3532 } 3533 3534 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3535 { 3536 bt_clear_frame_reg(bt, bt->frame, reg); 3537 } 3538 3539 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3540 { 3541 bt->stack_masks[frame] |= 1ull << slot; 3542 } 3543 3544 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3545 { 3546 bt->stack_masks[frame] &= ~(1ull << slot); 3547 } 3548 3549 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3550 { 3551 bt_set_frame_slot(bt, bt->frame, slot); 3552 } 3553 3554 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3555 { 3556 bt_clear_frame_slot(bt, bt->frame, slot); 3557 } 3558 3559 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3560 { 3561 return bt->reg_masks[frame]; 3562 } 3563 3564 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3565 { 3566 return bt->reg_masks[bt->frame]; 3567 } 3568 3569 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3570 { 3571 return bt->stack_masks[frame]; 3572 } 3573 3574 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3575 { 3576 return bt->stack_masks[bt->frame]; 3577 } 3578 3579 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3580 { 3581 return bt->reg_masks[bt->frame] & (1 << reg); 3582 } 3583 3584 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3585 { 3586 return bt->stack_masks[bt->frame] & (1ull << slot); 3587 } 3588 3589 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3590 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3591 { 3592 DECLARE_BITMAP(mask, 64); 3593 bool first = true; 3594 int i, n; 3595 3596 buf[0] = '\0'; 3597 3598 bitmap_from_u64(mask, reg_mask); 3599 for_each_set_bit(i, mask, 32) { 3600 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3601 first = false; 3602 buf += n; 3603 buf_sz -= n; 3604 if (buf_sz < 0) 3605 break; 3606 } 3607 } 3608 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3609 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3610 { 3611 DECLARE_BITMAP(mask, 64); 3612 bool first = true; 3613 int i, n; 3614 3615 buf[0] = '\0'; 3616 3617 bitmap_from_u64(mask, stack_mask); 3618 for_each_set_bit(i, mask, 64) { 3619 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3620 first = false; 3621 buf += n; 3622 buf_sz -= n; 3623 if (buf_sz < 0) 3624 break; 3625 } 3626 } 3627 3628 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3629 3630 /* For given verifier state backtrack_insn() is called from the last insn to 3631 * the first insn. Its purpose is to compute a bitmask of registers and 3632 * stack slots that needs precision in the parent verifier state. 3633 * 3634 * @idx is an index of the instruction we are currently processing; 3635 * @subseq_idx is an index of the subsequent instruction that: 3636 * - *would be* executed next, if jump history is viewed in forward order; 3637 * - *was* processed previously during backtracking. 3638 */ 3639 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3640 struct backtrack_state *bt) 3641 { 3642 const struct bpf_insn_cbs cbs = { 3643 .cb_call = disasm_kfunc_name, 3644 .cb_print = verbose, 3645 .private_data = env, 3646 }; 3647 struct bpf_insn *insn = env->prog->insnsi + idx; 3648 u8 class = BPF_CLASS(insn->code); 3649 u8 opcode = BPF_OP(insn->code); 3650 u8 mode = BPF_MODE(insn->code); 3651 u32 dreg = insn->dst_reg; 3652 u32 sreg = insn->src_reg; 3653 u32 spi, i; 3654 3655 if (insn->code == 0) 3656 return 0; 3657 if (env->log.level & BPF_LOG_LEVEL2) { 3658 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3659 verbose(env, "mark_precise: frame%d: regs=%s ", 3660 bt->frame, env->tmp_str_buf); 3661 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3662 verbose(env, "stack=%s before ", env->tmp_str_buf); 3663 verbose(env, "%d: ", idx); 3664 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3665 } 3666 3667 if (class == BPF_ALU || class == BPF_ALU64) { 3668 if (!bt_is_reg_set(bt, dreg)) 3669 return 0; 3670 if (opcode == BPF_END || opcode == BPF_NEG) { 3671 /* sreg is reserved and unused 3672 * dreg still need precision before this insn 3673 */ 3674 return 0; 3675 } else if (opcode == BPF_MOV) { 3676 if (BPF_SRC(insn->code) == BPF_X) { 3677 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3678 * dreg needs precision after this insn 3679 * sreg needs precision before this insn 3680 */ 3681 bt_clear_reg(bt, dreg); 3682 bt_set_reg(bt, sreg); 3683 } else { 3684 /* dreg = K 3685 * dreg needs precision after this insn. 3686 * Corresponding register is already marked 3687 * as precise=true in this verifier state. 3688 * No further markings in parent are necessary 3689 */ 3690 bt_clear_reg(bt, dreg); 3691 } 3692 } else { 3693 if (BPF_SRC(insn->code) == BPF_X) { 3694 /* dreg += sreg 3695 * both dreg and sreg need precision 3696 * before this insn 3697 */ 3698 bt_set_reg(bt, sreg); 3699 } /* else dreg += K 3700 * dreg still needs precision before this insn 3701 */ 3702 } 3703 } else if (class == BPF_LDX) { 3704 if (!bt_is_reg_set(bt, dreg)) 3705 return 0; 3706 bt_clear_reg(bt, dreg); 3707 3708 /* scalars can only be spilled into stack w/o losing precision. 3709 * Load from any other memory can be zero extended. 3710 * The desire to keep that precision is already indicated 3711 * by 'precise' mark in corresponding register of this state. 3712 * No further tracking necessary. 3713 */ 3714 if (insn->src_reg != BPF_REG_FP) 3715 return 0; 3716 3717 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3718 * that [fp - off] slot contains scalar that needs to be 3719 * tracked with precision 3720 */ 3721 spi = (-insn->off - 1) / BPF_REG_SIZE; 3722 if (spi >= 64) { 3723 verbose(env, "BUG spi %d\n", spi); 3724 WARN_ONCE(1, "verifier backtracking bug"); 3725 return -EFAULT; 3726 } 3727 bt_set_slot(bt, spi); 3728 } else if (class == BPF_STX || class == BPF_ST) { 3729 if (bt_is_reg_set(bt, dreg)) 3730 /* stx & st shouldn't be using _scalar_ dst_reg 3731 * to access memory. It means backtracking 3732 * encountered a case of pointer subtraction. 3733 */ 3734 return -ENOTSUPP; 3735 /* scalars can only be spilled into stack */ 3736 if (insn->dst_reg != BPF_REG_FP) 3737 return 0; 3738 spi = (-insn->off - 1) / BPF_REG_SIZE; 3739 if (spi >= 64) { 3740 verbose(env, "BUG spi %d\n", spi); 3741 WARN_ONCE(1, "verifier backtracking bug"); 3742 return -EFAULT; 3743 } 3744 if (!bt_is_slot_set(bt, spi)) 3745 return 0; 3746 bt_clear_slot(bt, spi); 3747 if (class == BPF_STX) 3748 bt_set_reg(bt, sreg); 3749 } else if (class == BPF_JMP || class == BPF_JMP32) { 3750 if (bpf_pseudo_call(insn)) { 3751 int subprog_insn_idx, subprog; 3752 3753 subprog_insn_idx = idx + insn->imm + 1; 3754 subprog = find_subprog(env, subprog_insn_idx); 3755 if (subprog < 0) 3756 return -EFAULT; 3757 3758 if (subprog_is_global(env, subprog)) { 3759 /* check that jump history doesn't have any 3760 * extra instructions from subprog; the next 3761 * instruction after call to global subprog 3762 * should be literally next instruction in 3763 * caller program 3764 */ 3765 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3766 /* r1-r5 are invalidated after subprog call, 3767 * so for global func call it shouldn't be set 3768 * anymore 3769 */ 3770 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3771 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3772 WARN_ONCE(1, "verifier backtracking bug"); 3773 return -EFAULT; 3774 } 3775 /* global subprog always sets R0 */ 3776 bt_clear_reg(bt, BPF_REG_0); 3777 return 0; 3778 } else { 3779 /* static subprog call instruction, which 3780 * means that we are exiting current subprog, 3781 * so only r1-r5 could be still requested as 3782 * precise, r0 and r6-r10 or any stack slot in 3783 * the current frame should be zero by now 3784 */ 3785 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3786 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3787 WARN_ONCE(1, "verifier backtracking bug"); 3788 return -EFAULT; 3789 } 3790 /* we don't track register spills perfectly, 3791 * so fallback to force-precise instead of failing */ 3792 if (bt_stack_mask(bt) != 0) 3793 return -ENOTSUPP; 3794 /* propagate r1-r5 to the caller */ 3795 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3796 if (bt_is_reg_set(bt, i)) { 3797 bt_clear_reg(bt, i); 3798 bt_set_frame_reg(bt, bt->frame - 1, i); 3799 } 3800 } 3801 if (bt_subprog_exit(bt)) 3802 return -EFAULT; 3803 return 0; 3804 } 3805 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3806 /* exit from callback subprog to callback-calling helper or 3807 * kfunc call. Use idx/subseq_idx check to discern it from 3808 * straight line code backtracking. 3809 * Unlike the subprog call handling above, we shouldn't 3810 * propagate precision of r1-r5 (if any requested), as they are 3811 * not actually arguments passed directly to callback subprogs 3812 */ 3813 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3814 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3815 WARN_ONCE(1, "verifier backtracking bug"); 3816 return -EFAULT; 3817 } 3818 if (bt_stack_mask(bt) != 0) 3819 return -ENOTSUPP; 3820 /* clear r1-r5 in callback subprog's mask */ 3821 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3822 bt_clear_reg(bt, i); 3823 if (bt_subprog_exit(bt)) 3824 return -EFAULT; 3825 return 0; 3826 } else if (opcode == BPF_CALL) { 3827 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3828 * catch this error later. Make backtracking conservative 3829 * with ENOTSUPP. 3830 */ 3831 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3832 return -ENOTSUPP; 3833 /* regular helper call sets R0 */ 3834 bt_clear_reg(bt, BPF_REG_0); 3835 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3836 /* if backtracing was looking for registers R1-R5 3837 * they should have been found already. 3838 */ 3839 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3840 WARN_ONCE(1, "verifier backtracking bug"); 3841 return -EFAULT; 3842 } 3843 } else if (opcode == BPF_EXIT) { 3844 bool r0_precise; 3845 3846 /* Backtracking to a nested function call, 'idx' is a part of 3847 * the inner frame 'subseq_idx' is a part of the outer frame. 3848 * In case of a regular function call, instructions giving 3849 * precision to registers R1-R5 should have been found already. 3850 * In case of a callback, it is ok to have R1-R5 marked for 3851 * backtracking, as these registers are set by the function 3852 * invoking callback. 3853 */ 3854 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3855 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3856 bt_clear_reg(bt, i); 3857 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3858 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3859 WARN_ONCE(1, "verifier backtracking bug"); 3860 return -EFAULT; 3861 } 3862 3863 /* BPF_EXIT in subprog or callback always returns 3864 * right after the call instruction, so by checking 3865 * whether the instruction at subseq_idx-1 is subprog 3866 * call or not we can distinguish actual exit from 3867 * *subprog* from exit from *callback*. In the former 3868 * case, we need to propagate r0 precision, if 3869 * necessary. In the former we never do that. 3870 */ 3871 r0_precise = subseq_idx - 1 >= 0 && 3872 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3873 bt_is_reg_set(bt, BPF_REG_0); 3874 3875 bt_clear_reg(bt, BPF_REG_0); 3876 if (bt_subprog_enter(bt)) 3877 return -EFAULT; 3878 3879 if (r0_precise) 3880 bt_set_reg(bt, BPF_REG_0); 3881 /* r6-r9 and stack slots will stay set in caller frame 3882 * bitmasks until we return back from callee(s) 3883 */ 3884 return 0; 3885 } else if (BPF_SRC(insn->code) == BPF_X) { 3886 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3887 return 0; 3888 /* dreg <cond> sreg 3889 * Both dreg and sreg need precision before 3890 * this insn. If only sreg was marked precise 3891 * before it would be equally necessary to 3892 * propagate it to dreg. 3893 */ 3894 bt_set_reg(bt, dreg); 3895 bt_set_reg(bt, sreg); 3896 /* else dreg <cond> K 3897 * Only dreg still needs precision before 3898 * this insn, so for the K-based conditional 3899 * there is nothing new to be marked. 3900 */ 3901 } 3902 } else if (class == BPF_LD) { 3903 if (!bt_is_reg_set(bt, dreg)) 3904 return 0; 3905 bt_clear_reg(bt, dreg); 3906 /* It's ld_imm64 or ld_abs or ld_ind. 3907 * For ld_imm64 no further tracking of precision 3908 * into parent is necessary 3909 */ 3910 if (mode == BPF_IND || mode == BPF_ABS) 3911 /* to be analyzed */ 3912 return -ENOTSUPP; 3913 } 3914 return 0; 3915 } 3916 3917 /* the scalar precision tracking algorithm: 3918 * . at the start all registers have precise=false. 3919 * . scalar ranges are tracked as normal through alu and jmp insns. 3920 * . once precise value of the scalar register is used in: 3921 * . ptr + scalar alu 3922 * . if (scalar cond K|scalar) 3923 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3924 * backtrack through the verifier states and mark all registers and 3925 * stack slots with spilled constants that these scalar regisers 3926 * should be precise. 3927 * . during state pruning two registers (or spilled stack slots) 3928 * are equivalent if both are not precise. 3929 * 3930 * Note the verifier cannot simply walk register parentage chain, 3931 * since many different registers and stack slots could have been 3932 * used to compute single precise scalar. 3933 * 3934 * The approach of starting with precise=true for all registers and then 3935 * backtrack to mark a register as not precise when the verifier detects 3936 * that program doesn't care about specific value (e.g., when helper 3937 * takes register as ARG_ANYTHING parameter) is not safe. 3938 * 3939 * It's ok to walk single parentage chain of the verifier states. 3940 * It's possible that this backtracking will go all the way till 1st insn. 3941 * All other branches will be explored for needing precision later. 3942 * 3943 * The backtracking needs to deal with cases like: 3944 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3945 * r9 -= r8 3946 * r5 = r9 3947 * if r5 > 0x79f goto pc+7 3948 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3949 * r5 += 1 3950 * ... 3951 * call bpf_perf_event_output#25 3952 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3953 * 3954 * and this case: 3955 * r6 = 1 3956 * call foo // uses callee's r6 inside to compute r0 3957 * r0 += r6 3958 * if r0 == 0 goto 3959 * 3960 * to track above reg_mask/stack_mask needs to be independent for each frame. 3961 * 3962 * Also if parent's curframe > frame where backtracking started, 3963 * the verifier need to mark registers in both frames, otherwise callees 3964 * may incorrectly prune callers. This is similar to 3965 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3966 * 3967 * For now backtracking falls back into conservative marking. 3968 */ 3969 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3970 struct bpf_verifier_state *st) 3971 { 3972 struct bpf_func_state *func; 3973 struct bpf_reg_state *reg; 3974 int i, j; 3975 3976 if (env->log.level & BPF_LOG_LEVEL2) { 3977 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3978 st->curframe); 3979 } 3980 3981 /* big hammer: mark all scalars precise in this path. 3982 * pop_stack may still get !precise scalars. 3983 * We also skip current state and go straight to first parent state, 3984 * because precision markings in current non-checkpointed state are 3985 * not needed. See why in the comment in __mark_chain_precision below. 3986 */ 3987 for (st = st->parent; st; st = st->parent) { 3988 for (i = 0; i <= st->curframe; i++) { 3989 func = st->frame[i]; 3990 for (j = 0; j < BPF_REG_FP; j++) { 3991 reg = &func->regs[j]; 3992 if (reg->type != SCALAR_VALUE || reg->precise) 3993 continue; 3994 reg->precise = true; 3995 if (env->log.level & BPF_LOG_LEVEL2) { 3996 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3997 i, j); 3998 } 3999 } 4000 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4001 if (!is_spilled_reg(&func->stack[j])) 4002 continue; 4003 reg = &func->stack[j].spilled_ptr; 4004 if (reg->type != SCALAR_VALUE || reg->precise) 4005 continue; 4006 reg->precise = true; 4007 if (env->log.level & BPF_LOG_LEVEL2) { 4008 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4009 i, -(j + 1) * 8); 4010 } 4011 } 4012 } 4013 } 4014 } 4015 4016 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4017 { 4018 struct bpf_func_state *func; 4019 struct bpf_reg_state *reg; 4020 int i, j; 4021 4022 for (i = 0; i <= st->curframe; i++) { 4023 func = st->frame[i]; 4024 for (j = 0; j < BPF_REG_FP; j++) { 4025 reg = &func->regs[j]; 4026 if (reg->type != SCALAR_VALUE) 4027 continue; 4028 reg->precise = false; 4029 } 4030 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4031 if (!is_spilled_reg(&func->stack[j])) 4032 continue; 4033 reg = &func->stack[j].spilled_ptr; 4034 if (reg->type != SCALAR_VALUE) 4035 continue; 4036 reg->precise = false; 4037 } 4038 } 4039 } 4040 4041 static bool idset_contains(struct bpf_idset *s, u32 id) 4042 { 4043 u32 i; 4044 4045 for (i = 0; i < s->count; ++i) 4046 if (s->ids[i] == id) 4047 return true; 4048 4049 return false; 4050 } 4051 4052 static int idset_push(struct bpf_idset *s, u32 id) 4053 { 4054 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4055 return -EFAULT; 4056 s->ids[s->count++] = id; 4057 return 0; 4058 } 4059 4060 static void idset_reset(struct bpf_idset *s) 4061 { 4062 s->count = 0; 4063 } 4064 4065 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4066 * Mark all registers with these IDs as precise. 4067 */ 4068 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4069 { 4070 struct bpf_idset *precise_ids = &env->idset_scratch; 4071 struct backtrack_state *bt = &env->bt; 4072 struct bpf_func_state *func; 4073 struct bpf_reg_state *reg; 4074 DECLARE_BITMAP(mask, 64); 4075 int i, fr; 4076 4077 idset_reset(precise_ids); 4078 4079 for (fr = bt->frame; fr >= 0; fr--) { 4080 func = st->frame[fr]; 4081 4082 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4083 for_each_set_bit(i, mask, 32) { 4084 reg = &func->regs[i]; 4085 if (!reg->id || reg->type != SCALAR_VALUE) 4086 continue; 4087 if (idset_push(precise_ids, reg->id)) 4088 return -EFAULT; 4089 } 4090 4091 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4092 for_each_set_bit(i, mask, 64) { 4093 if (i >= func->allocated_stack / BPF_REG_SIZE) 4094 break; 4095 if (!is_spilled_scalar_reg(&func->stack[i])) 4096 continue; 4097 reg = &func->stack[i].spilled_ptr; 4098 if (!reg->id) 4099 continue; 4100 if (idset_push(precise_ids, reg->id)) 4101 return -EFAULT; 4102 } 4103 } 4104 4105 for (fr = 0; fr <= st->curframe; ++fr) { 4106 func = st->frame[fr]; 4107 4108 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4109 reg = &func->regs[i]; 4110 if (!reg->id) 4111 continue; 4112 if (!idset_contains(precise_ids, reg->id)) 4113 continue; 4114 bt_set_frame_reg(bt, fr, i); 4115 } 4116 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4117 if (!is_spilled_scalar_reg(&func->stack[i])) 4118 continue; 4119 reg = &func->stack[i].spilled_ptr; 4120 if (!reg->id) 4121 continue; 4122 if (!idset_contains(precise_ids, reg->id)) 4123 continue; 4124 bt_set_frame_slot(bt, fr, i); 4125 } 4126 } 4127 4128 return 0; 4129 } 4130 4131 /* 4132 * __mark_chain_precision() backtracks BPF program instruction sequence and 4133 * chain of verifier states making sure that register *regno* (if regno >= 0) 4134 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4135 * SCALARS, as well as any other registers and slots that contribute to 4136 * a tracked state of given registers/stack slots, depending on specific BPF 4137 * assembly instructions (see backtrack_insns() for exact instruction handling 4138 * logic). This backtracking relies on recorded jmp_history and is able to 4139 * traverse entire chain of parent states. This process ends only when all the 4140 * necessary registers/slots and their transitive dependencies are marked as 4141 * precise. 4142 * 4143 * One important and subtle aspect is that precise marks *do not matter* in 4144 * the currently verified state (current state). It is important to understand 4145 * why this is the case. 4146 * 4147 * First, note that current state is the state that is not yet "checkpointed", 4148 * i.e., it is not yet put into env->explored_states, and it has no children 4149 * states as well. It's ephemeral, and can end up either a) being discarded if 4150 * compatible explored state is found at some point or BPF_EXIT instruction is 4151 * reached or b) checkpointed and put into env->explored_states, branching out 4152 * into one or more children states. 4153 * 4154 * In the former case, precise markings in current state are completely 4155 * ignored by state comparison code (see regsafe() for details). Only 4156 * checkpointed ("old") state precise markings are important, and if old 4157 * state's register/slot is precise, regsafe() assumes current state's 4158 * register/slot as precise and checks value ranges exactly and precisely. If 4159 * states turn out to be compatible, current state's necessary precise 4160 * markings and any required parent states' precise markings are enforced 4161 * after the fact with propagate_precision() logic, after the fact. But it's 4162 * important to realize that in this case, even after marking current state 4163 * registers/slots as precise, we immediately discard current state. So what 4164 * actually matters is any of the precise markings propagated into current 4165 * state's parent states, which are always checkpointed (due to b) case above). 4166 * As such, for scenario a) it doesn't matter if current state has precise 4167 * markings set or not. 4168 * 4169 * Now, for the scenario b), checkpointing and forking into child(ren) 4170 * state(s). Note that before current state gets to checkpointing step, any 4171 * processed instruction always assumes precise SCALAR register/slot 4172 * knowledge: if precise value or range is useful to prune jump branch, BPF 4173 * verifier takes this opportunity enthusiastically. Similarly, when 4174 * register's value is used to calculate offset or memory address, exact 4175 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4176 * what we mentioned above about state comparison ignoring precise markings 4177 * during state comparison, BPF verifier ignores and also assumes precise 4178 * markings *at will* during instruction verification process. But as verifier 4179 * assumes precision, it also propagates any precision dependencies across 4180 * parent states, which are not yet finalized, so can be further restricted 4181 * based on new knowledge gained from restrictions enforced by their children 4182 * states. This is so that once those parent states are finalized, i.e., when 4183 * they have no more active children state, state comparison logic in 4184 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4185 * required for correctness. 4186 * 4187 * To build a bit more intuition, note also that once a state is checkpointed, 4188 * the path we took to get to that state is not important. This is crucial 4189 * property for state pruning. When state is checkpointed and finalized at 4190 * some instruction index, it can be correctly and safely used to "short 4191 * circuit" any *compatible* state that reaches exactly the same instruction 4192 * index. I.e., if we jumped to that instruction from a completely different 4193 * code path than original finalized state was derived from, it doesn't 4194 * matter, current state can be discarded because from that instruction 4195 * forward having a compatible state will ensure we will safely reach the 4196 * exit. States describe preconditions for further exploration, but completely 4197 * forget the history of how we got here. 4198 * 4199 * This also means that even if we needed precise SCALAR range to get to 4200 * finalized state, but from that point forward *that same* SCALAR register is 4201 * never used in a precise context (i.e., it's precise value is not needed for 4202 * correctness), it's correct and safe to mark such register as "imprecise" 4203 * (i.e., precise marking set to false). This is what we rely on when we do 4204 * not set precise marking in current state. If no child state requires 4205 * precision for any given SCALAR register, it's safe to dictate that it can 4206 * be imprecise. If any child state does require this register to be precise, 4207 * we'll mark it precise later retroactively during precise markings 4208 * propagation from child state to parent states. 4209 * 4210 * Skipping precise marking setting in current state is a mild version of 4211 * relying on the above observation. But we can utilize this property even 4212 * more aggressively by proactively forgetting any precise marking in the 4213 * current state (which we inherited from the parent state), right before we 4214 * checkpoint it and branch off into new child state. This is done by 4215 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4216 * finalized states which help in short circuiting more future states. 4217 */ 4218 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4219 { 4220 struct backtrack_state *bt = &env->bt; 4221 struct bpf_verifier_state *st = env->cur_state; 4222 int first_idx = st->first_insn_idx; 4223 int last_idx = env->insn_idx; 4224 int subseq_idx = -1; 4225 struct bpf_func_state *func; 4226 struct bpf_reg_state *reg; 4227 bool skip_first = true; 4228 int i, fr, err; 4229 4230 if (!env->bpf_capable) 4231 return 0; 4232 4233 /* set frame number from which we are starting to backtrack */ 4234 bt_init(bt, env->cur_state->curframe); 4235 4236 /* Do sanity checks against current state of register and/or stack 4237 * slot, but don't set precise flag in current state, as precision 4238 * tracking in the current state is unnecessary. 4239 */ 4240 func = st->frame[bt->frame]; 4241 if (regno >= 0) { 4242 reg = &func->regs[regno]; 4243 if (reg->type != SCALAR_VALUE) { 4244 WARN_ONCE(1, "backtracing misuse"); 4245 return -EFAULT; 4246 } 4247 bt_set_reg(bt, regno); 4248 } 4249 4250 if (bt_empty(bt)) 4251 return 0; 4252 4253 for (;;) { 4254 DECLARE_BITMAP(mask, 64); 4255 u32 history = st->jmp_history_cnt; 4256 4257 if (env->log.level & BPF_LOG_LEVEL2) { 4258 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4259 bt->frame, last_idx, first_idx, subseq_idx); 4260 } 4261 4262 /* If some register with scalar ID is marked as precise, 4263 * make sure that all registers sharing this ID are also precise. 4264 * This is needed to estimate effect of find_equal_scalars(). 4265 * Do this at the last instruction of each state, 4266 * bpf_reg_state::id fields are valid for these instructions. 4267 * 4268 * Allows to track precision in situation like below: 4269 * 4270 * r2 = unknown value 4271 * ... 4272 * --- state #0 --- 4273 * ... 4274 * r1 = r2 // r1 and r2 now share the same ID 4275 * ... 4276 * --- state #1 {r1.id = A, r2.id = A} --- 4277 * ... 4278 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4279 * ... 4280 * --- state #2 {r1.id = A, r2.id = A} --- 4281 * r3 = r10 4282 * r3 += r1 // need to mark both r1 and r2 4283 */ 4284 if (mark_precise_scalar_ids(env, st)) 4285 return -EFAULT; 4286 4287 if (last_idx < 0) { 4288 /* we are at the entry into subprog, which 4289 * is expected for global funcs, but only if 4290 * requested precise registers are R1-R5 4291 * (which are global func's input arguments) 4292 */ 4293 if (st->curframe == 0 && 4294 st->frame[0]->subprogno > 0 && 4295 st->frame[0]->callsite == BPF_MAIN_FUNC && 4296 bt_stack_mask(bt) == 0 && 4297 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4298 bitmap_from_u64(mask, bt_reg_mask(bt)); 4299 for_each_set_bit(i, mask, 32) { 4300 reg = &st->frame[0]->regs[i]; 4301 bt_clear_reg(bt, i); 4302 if (reg->type == SCALAR_VALUE) 4303 reg->precise = true; 4304 } 4305 return 0; 4306 } 4307 4308 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4309 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4310 WARN_ONCE(1, "verifier backtracking bug"); 4311 return -EFAULT; 4312 } 4313 4314 for (i = last_idx;;) { 4315 if (skip_first) { 4316 err = 0; 4317 skip_first = false; 4318 } else { 4319 err = backtrack_insn(env, i, subseq_idx, bt); 4320 } 4321 if (err == -ENOTSUPP) { 4322 mark_all_scalars_precise(env, env->cur_state); 4323 bt_reset(bt); 4324 return 0; 4325 } else if (err) { 4326 return err; 4327 } 4328 if (bt_empty(bt)) 4329 /* Found assignment(s) into tracked register in this state. 4330 * Since this state is already marked, just return. 4331 * Nothing to be tracked further in the parent state. 4332 */ 4333 return 0; 4334 subseq_idx = i; 4335 i = get_prev_insn_idx(st, i, &history); 4336 if (i == -ENOENT) 4337 break; 4338 if (i >= env->prog->len) { 4339 /* This can happen if backtracking reached insn 0 4340 * and there are still reg_mask or stack_mask 4341 * to backtrack. 4342 * It means the backtracking missed the spot where 4343 * particular register was initialized with a constant. 4344 */ 4345 verbose(env, "BUG backtracking idx %d\n", i); 4346 WARN_ONCE(1, "verifier backtracking bug"); 4347 return -EFAULT; 4348 } 4349 } 4350 st = st->parent; 4351 if (!st) 4352 break; 4353 4354 for (fr = bt->frame; fr >= 0; fr--) { 4355 func = st->frame[fr]; 4356 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4357 for_each_set_bit(i, mask, 32) { 4358 reg = &func->regs[i]; 4359 if (reg->type != SCALAR_VALUE) { 4360 bt_clear_frame_reg(bt, fr, i); 4361 continue; 4362 } 4363 if (reg->precise) 4364 bt_clear_frame_reg(bt, fr, i); 4365 else 4366 reg->precise = true; 4367 } 4368 4369 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4370 for_each_set_bit(i, mask, 64) { 4371 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4372 /* the sequence of instructions: 4373 * 2: (bf) r3 = r10 4374 * 3: (7b) *(u64 *)(r3 -8) = r0 4375 * 4: (79) r4 = *(u64 *)(r10 -8) 4376 * doesn't contain jmps. It's backtracked 4377 * as a single block. 4378 * During backtracking insn 3 is not recognized as 4379 * stack access, so at the end of backtracking 4380 * stack slot fp-8 is still marked in stack_mask. 4381 * However the parent state may not have accessed 4382 * fp-8 and it's "unallocated" stack space. 4383 * In such case fallback to conservative. 4384 */ 4385 mark_all_scalars_precise(env, env->cur_state); 4386 bt_reset(bt); 4387 return 0; 4388 } 4389 4390 if (!is_spilled_scalar_reg(&func->stack[i])) { 4391 bt_clear_frame_slot(bt, fr, i); 4392 continue; 4393 } 4394 reg = &func->stack[i].spilled_ptr; 4395 if (reg->precise) 4396 bt_clear_frame_slot(bt, fr, i); 4397 else 4398 reg->precise = true; 4399 } 4400 if (env->log.level & BPF_LOG_LEVEL2) { 4401 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4402 bt_frame_reg_mask(bt, fr)); 4403 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4404 fr, env->tmp_str_buf); 4405 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4406 bt_frame_stack_mask(bt, fr)); 4407 verbose(env, "stack=%s: ", env->tmp_str_buf); 4408 print_verifier_state(env, func, true); 4409 } 4410 } 4411 4412 if (bt_empty(bt)) 4413 return 0; 4414 4415 subseq_idx = first_idx; 4416 last_idx = st->last_insn_idx; 4417 first_idx = st->first_insn_idx; 4418 } 4419 4420 /* if we still have requested precise regs or slots, we missed 4421 * something (e.g., stack access through non-r10 register), so 4422 * fallback to marking all precise 4423 */ 4424 if (!bt_empty(bt)) { 4425 mark_all_scalars_precise(env, env->cur_state); 4426 bt_reset(bt); 4427 } 4428 4429 return 0; 4430 } 4431 4432 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4433 { 4434 return __mark_chain_precision(env, regno); 4435 } 4436 4437 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4438 * desired reg and stack masks across all relevant frames 4439 */ 4440 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4441 { 4442 return __mark_chain_precision(env, -1); 4443 } 4444 4445 static bool is_spillable_regtype(enum bpf_reg_type type) 4446 { 4447 switch (base_type(type)) { 4448 case PTR_TO_MAP_VALUE: 4449 case PTR_TO_STACK: 4450 case PTR_TO_CTX: 4451 case PTR_TO_PACKET: 4452 case PTR_TO_PACKET_META: 4453 case PTR_TO_PACKET_END: 4454 case PTR_TO_FLOW_KEYS: 4455 case CONST_PTR_TO_MAP: 4456 case PTR_TO_SOCKET: 4457 case PTR_TO_SOCK_COMMON: 4458 case PTR_TO_TCP_SOCK: 4459 case PTR_TO_XDP_SOCK: 4460 case PTR_TO_BTF_ID: 4461 case PTR_TO_BUF: 4462 case PTR_TO_MEM: 4463 case PTR_TO_FUNC: 4464 case PTR_TO_MAP_KEY: 4465 return true; 4466 default: 4467 return false; 4468 } 4469 } 4470 4471 /* Does this register contain a constant zero? */ 4472 static bool register_is_null(struct bpf_reg_state *reg) 4473 { 4474 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4475 } 4476 4477 static bool register_is_const(struct bpf_reg_state *reg) 4478 { 4479 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4480 } 4481 4482 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4483 { 4484 return tnum_is_unknown(reg->var_off) && 4485 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4486 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4487 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4488 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4489 } 4490 4491 static bool register_is_bounded(struct bpf_reg_state *reg) 4492 { 4493 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4494 } 4495 4496 static bool __is_pointer_value(bool allow_ptr_leaks, 4497 const struct bpf_reg_state *reg) 4498 { 4499 if (allow_ptr_leaks) 4500 return false; 4501 4502 return reg->type != SCALAR_VALUE; 4503 } 4504 4505 /* Copy src state preserving dst->parent and dst->live fields */ 4506 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4507 { 4508 struct bpf_reg_state *parent = dst->parent; 4509 enum bpf_reg_liveness live = dst->live; 4510 4511 *dst = *src; 4512 dst->parent = parent; 4513 dst->live = live; 4514 } 4515 4516 static void save_register_state(struct bpf_func_state *state, 4517 int spi, struct bpf_reg_state *reg, 4518 int size) 4519 { 4520 int i; 4521 4522 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4523 if (size == BPF_REG_SIZE) 4524 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4525 4526 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4527 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4528 4529 /* size < 8 bytes spill */ 4530 for (; i; i--) 4531 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4532 } 4533 4534 static bool is_bpf_st_mem(struct bpf_insn *insn) 4535 { 4536 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4537 } 4538 4539 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4540 * stack boundary and alignment are checked in check_mem_access() 4541 */ 4542 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4543 /* stack frame we're writing to */ 4544 struct bpf_func_state *state, 4545 int off, int size, int value_regno, 4546 int insn_idx) 4547 { 4548 struct bpf_func_state *cur; /* state of the current function */ 4549 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4550 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4551 struct bpf_reg_state *reg = NULL; 4552 u32 dst_reg = insn->dst_reg; 4553 4554 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4555 * so it's aligned access and [off, off + size) are within stack limits 4556 */ 4557 if (!env->allow_ptr_leaks && 4558 is_spilled_reg(&state->stack[spi]) && 4559 size != BPF_REG_SIZE) { 4560 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4561 return -EACCES; 4562 } 4563 4564 cur = env->cur_state->frame[env->cur_state->curframe]; 4565 if (value_regno >= 0) 4566 reg = &cur->regs[value_regno]; 4567 if (!env->bypass_spec_v4) { 4568 bool sanitize = reg && is_spillable_regtype(reg->type); 4569 4570 for (i = 0; i < size; i++) { 4571 u8 type = state->stack[spi].slot_type[i]; 4572 4573 if (type != STACK_MISC && type != STACK_ZERO) { 4574 sanitize = true; 4575 break; 4576 } 4577 } 4578 4579 if (sanitize) 4580 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4581 } 4582 4583 err = destroy_if_dynptr_stack_slot(env, state, spi); 4584 if (err) 4585 return err; 4586 4587 mark_stack_slot_scratched(env, spi); 4588 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4589 !register_is_null(reg) && env->bpf_capable) { 4590 if (dst_reg != BPF_REG_FP) { 4591 /* The backtracking logic can only recognize explicit 4592 * stack slot address like [fp - 8]. Other spill of 4593 * scalar via different register has to be conservative. 4594 * Backtrack from here and mark all registers as precise 4595 * that contributed into 'reg' being a constant. 4596 */ 4597 err = mark_chain_precision(env, value_regno); 4598 if (err) 4599 return err; 4600 } 4601 save_register_state(state, spi, reg, size); 4602 /* Break the relation on a narrowing spill. */ 4603 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4604 state->stack[spi].spilled_ptr.id = 0; 4605 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4606 insn->imm != 0 && env->bpf_capable) { 4607 struct bpf_reg_state fake_reg = {}; 4608 4609 __mark_reg_known(&fake_reg, insn->imm); 4610 fake_reg.type = SCALAR_VALUE; 4611 save_register_state(state, spi, &fake_reg, size); 4612 } else if (reg && is_spillable_regtype(reg->type)) { 4613 /* register containing pointer is being spilled into stack */ 4614 if (size != BPF_REG_SIZE) { 4615 verbose_linfo(env, insn_idx, "; "); 4616 verbose(env, "invalid size of register spill\n"); 4617 return -EACCES; 4618 } 4619 if (state != cur && reg->type == PTR_TO_STACK) { 4620 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4621 return -EINVAL; 4622 } 4623 save_register_state(state, spi, reg, size); 4624 } else { 4625 u8 type = STACK_MISC; 4626 4627 /* regular write of data into stack destroys any spilled ptr */ 4628 state->stack[spi].spilled_ptr.type = NOT_INIT; 4629 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4630 if (is_stack_slot_special(&state->stack[spi])) 4631 for (i = 0; i < BPF_REG_SIZE; i++) 4632 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4633 4634 /* only mark the slot as written if all 8 bytes were written 4635 * otherwise read propagation may incorrectly stop too soon 4636 * when stack slots are partially written. 4637 * This heuristic means that read propagation will be 4638 * conservative, since it will add reg_live_read marks 4639 * to stack slots all the way to first state when programs 4640 * writes+reads less than 8 bytes 4641 */ 4642 if (size == BPF_REG_SIZE) 4643 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4644 4645 /* when we zero initialize stack slots mark them as such */ 4646 if ((reg && register_is_null(reg)) || 4647 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4648 /* backtracking doesn't work for STACK_ZERO yet. */ 4649 err = mark_chain_precision(env, value_regno); 4650 if (err) 4651 return err; 4652 type = STACK_ZERO; 4653 } 4654 4655 /* Mark slots affected by this stack write. */ 4656 for (i = 0; i < size; i++) 4657 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4658 type; 4659 } 4660 return 0; 4661 } 4662 4663 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4664 * known to contain a variable offset. 4665 * This function checks whether the write is permitted and conservatively 4666 * tracks the effects of the write, considering that each stack slot in the 4667 * dynamic range is potentially written to. 4668 * 4669 * 'off' includes 'regno->off'. 4670 * 'value_regno' can be -1, meaning that an unknown value is being written to 4671 * the stack. 4672 * 4673 * Spilled pointers in range are not marked as written because we don't know 4674 * what's going to be actually written. This means that read propagation for 4675 * future reads cannot be terminated by this write. 4676 * 4677 * For privileged programs, uninitialized stack slots are considered 4678 * initialized by this write (even though we don't know exactly what offsets 4679 * are going to be written to). The idea is that we don't want the verifier to 4680 * reject future reads that access slots written to through variable offsets. 4681 */ 4682 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4683 /* func where register points to */ 4684 struct bpf_func_state *state, 4685 int ptr_regno, int off, int size, 4686 int value_regno, int insn_idx) 4687 { 4688 struct bpf_func_state *cur; /* state of the current function */ 4689 int min_off, max_off; 4690 int i, err; 4691 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4692 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4693 bool writing_zero = false; 4694 /* set if the fact that we're writing a zero is used to let any 4695 * stack slots remain STACK_ZERO 4696 */ 4697 bool zero_used = false; 4698 4699 cur = env->cur_state->frame[env->cur_state->curframe]; 4700 ptr_reg = &cur->regs[ptr_regno]; 4701 min_off = ptr_reg->smin_value + off; 4702 max_off = ptr_reg->smax_value + off + size; 4703 if (value_regno >= 0) 4704 value_reg = &cur->regs[value_regno]; 4705 if ((value_reg && register_is_null(value_reg)) || 4706 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4707 writing_zero = true; 4708 4709 for (i = min_off; i < max_off; i++) { 4710 int spi; 4711 4712 spi = __get_spi(i); 4713 err = destroy_if_dynptr_stack_slot(env, state, spi); 4714 if (err) 4715 return err; 4716 } 4717 4718 /* Variable offset writes destroy any spilled pointers in range. */ 4719 for (i = min_off; i < max_off; i++) { 4720 u8 new_type, *stype; 4721 int slot, spi; 4722 4723 slot = -i - 1; 4724 spi = slot / BPF_REG_SIZE; 4725 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4726 mark_stack_slot_scratched(env, spi); 4727 4728 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4729 /* Reject the write if range we may write to has not 4730 * been initialized beforehand. If we didn't reject 4731 * here, the ptr status would be erased below (even 4732 * though not all slots are actually overwritten), 4733 * possibly opening the door to leaks. 4734 * 4735 * We do however catch STACK_INVALID case below, and 4736 * only allow reading possibly uninitialized memory 4737 * later for CAP_PERFMON, as the write may not happen to 4738 * that slot. 4739 */ 4740 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4741 insn_idx, i); 4742 return -EINVAL; 4743 } 4744 4745 /* Erase all spilled pointers. */ 4746 state->stack[spi].spilled_ptr.type = NOT_INIT; 4747 4748 /* Update the slot type. */ 4749 new_type = STACK_MISC; 4750 if (writing_zero && *stype == STACK_ZERO) { 4751 new_type = STACK_ZERO; 4752 zero_used = true; 4753 } 4754 /* If the slot is STACK_INVALID, we check whether it's OK to 4755 * pretend that it will be initialized by this write. The slot 4756 * might not actually be written to, and so if we mark it as 4757 * initialized future reads might leak uninitialized memory. 4758 * For privileged programs, we will accept such reads to slots 4759 * that may or may not be written because, if we're reject 4760 * them, the error would be too confusing. 4761 */ 4762 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4763 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4764 insn_idx, i); 4765 return -EINVAL; 4766 } 4767 *stype = new_type; 4768 } 4769 if (zero_used) { 4770 /* backtracking doesn't work for STACK_ZERO yet. */ 4771 err = mark_chain_precision(env, value_regno); 4772 if (err) 4773 return err; 4774 } 4775 return 0; 4776 } 4777 4778 /* When register 'dst_regno' is assigned some values from stack[min_off, 4779 * max_off), we set the register's type according to the types of the 4780 * respective stack slots. If all the stack values are known to be zeros, then 4781 * so is the destination reg. Otherwise, the register is considered to be 4782 * SCALAR. This function does not deal with register filling; the caller must 4783 * ensure that all spilled registers in the stack range have been marked as 4784 * read. 4785 */ 4786 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4787 /* func where src register points to */ 4788 struct bpf_func_state *ptr_state, 4789 int min_off, int max_off, int dst_regno) 4790 { 4791 struct bpf_verifier_state *vstate = env->cur_state; 4792 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4793 int i, slot, spi; 4794 u8 *stype; 4795 int zeros = 0; 4796 4797 for (i = min_off; i < max_off; i++) { 4798 slot = -i - 1; 4799 spi = slot / BPF_REG_SIZE; 4800 mark_stack_slot_scratched(env, spi); 4801 stype = ptr_state->stack[spi].slot_type; 4802 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4803 break; 4804 zeros++; 4805 } 4806 if (zeros == max_off - min_off) { 4807 /* any access_size read into register is zero extended, 4808 * so the whole register == const_zero 4809 */ 4810 __mark_reg_const_zero(&state->regs[dst_regno]); 4811 /* backtracking doesn't support STACK_ZERO yet, 4812 * so mark it precise here, so that later 4813 * backtracking can stop here. 4814 * Backtracking may not need this if this register 4815 * doesn't participate in pointer adjustment. 4816 * Forward propagation of precise flag is not 4817 * necessary either. This mark is only to stop 4818 * backtracking. Any register that contributed 4819 * to const 0 was marked precise before spill. 4820 */ 4821 state->regs[dst_regno].precise = true; 4822 } else { 4823 /* have read misc data from the stack */ 4824 mark_reg_unknown(env, state->regs, dst_regno); 4825 } 4826 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4827 } 4828 4829 /* Read the stack at 'off' and put the results into the register indicated by 4830 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4831 * spilled reg. 4832 * 4833 * 'dst_regno' can be -1, meaning that the read value is not going to a 4834 * register. 4835 * 4836 * The access is assumed to be within the current stack bounds. 4837 */ 4838 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4839 /* func where src register points to */ 4840 struct bpf_func_state *reg_state, 4841 int off, int size, int dst_regno) 4842 { 4843 struct bpf_verifier_state *vstate = env->cur_state; 4844 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4845 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4846 struct bpf_reg_state *reg; 4847 u8 *stype, type; 4848 4849 stype = reg_state->stack[spi].slot_type; 4850 reg = ®_state->stack[spi].spilled_ptr; 4851 4852 mark_stack_slot_scratched(env, spi); 4853 4854 if (is_spilled_reg(®_state->stack[spi])) { 4855 u8 spill_size = 1; 4856 4857 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4858 spill_size++; 4859 4860 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4861 if (reg->type != SCALAR_VALUE) { 4862 verbose_linfo(env, env->insn_idx, "; "); 4863 verbose(env, "invalid size of register fill\n"); 4864 return -EACCES; 4865 } 4866 4867 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4868 if (dst_regno < 0) 4869 return 0; 4870 4871 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4872 /* The earlier check_reg_arg() has decided the 4873 * subreg_def for this insn. Save it first. 4874 */ 4875 s32 subreg_def = state->regs[dst_regno].subreg_def; 4876 4877 copy_register_state(&state->regs[dst_regno], reg); 4878 state->regs[dst_regno].subreg_def = subreg_def; 4879 } else { 4880 for (i = 0; i < size; i++) { 4881 type = stype[(slot - i) % BPF_REG_SIZE]; 4882 if (type == STACK_SPILL) 4883 continue; 4884 if (type == STACK_MISC) 4885 continue; 4886 if (type == STACK_INVALID && env->allow_uninit_stack) 4887 continue; 4888 verbose(env, "invalid read from stack off %d+%d size %d\n", 4889 off, i, size); 4890 return -EACCES; 4891 } 4892 mark_reg_unknown(env, state->regs, dst_regno); 4893 } 4894 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4895 return 0; 4896 } 4897 4898 if (dst_regno >= 0) { 4899 /* restore register state from stack */ 4900 copy_register_state(&state->regs[dst_regno], reg); 4901 /* mark reg as written since spilled pointer state likely 4902 * has its liveness marks cleared by is_state_visited() 4903 * which resets stack/reg liveness for state transitions 4904 */ 4905 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4906 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4907 /* If dst_regno==-1, the caller is asking us whether 4908 * it is acceptable to use this value as a SCALAR_VALUE 4909 * (e.g. for XADD). 4910 * We must not allow unprivileged callers to do that 4911 * with spilled pointers. 4912 */ 4913 verbose(env, "leaking pointer from stack off %d\n", 4914 off); 4915 return -EACCES; 4916 } 4917 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4918 } else { 4919 for (i = 0; i < size; i++) { 4920 type = stype[(slot - i) % BPF_REG_SIZE]; 4921 if (type == STACK_MISC) 4922 continue; 4923 if (type == STACK_ZERO) 4924 continue; 4925 if (type == STACK_INVALID && env->allow_uninit_stack) 4926 continue; 4927 verbose(env, "invalid read from stack off %d+%d size %d\n", 4928 off, i, size); 4929 return -EACCES; 4930 } 4931 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4932 if (dst_regno >= 0) 4933 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4934 } 4935 return 0; 4936 } 4937 4938 enum bpf_access_src { 4939 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4940 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4941 }; 4942 4943 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4944 int regno, int off, int access_size, 4945 bool zero_size_allowed, 4946 enum bpf_access_src type, 4947 struct bpf_call_arg_meta *meta); 4948 4949 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4950 { 4951 return cur_regs(env) + regno; 4952 } 4953 4954 /* Read the stack at 'ptr_regno + off' and put the result into the register 4955 * 'dst_regno'. 4956 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4957 * but not its variable offset. 4958 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4959 * 4960 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4961 * filling registers (i.e. reads of spilled register cannot be detected when 4962 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4963 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4964 * offset; for a fixed offset check_stack_read_fixed_off should be used 4965 * instead. 4966 */ 4967 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4968 int ptr_regno, int off, int size, int dst_regno) 4969 { 4970 /* The state of the source register. */ 4971 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4972 struct bpf_func_state *ptr_state = func(env, reg); 4973 int err; 4974 int min_off, max_off; 4975 4976 /* Note that we pass a NULL meta, so raw access will not be permitted. 4977 */ 4978 err = check_stack_range_initialized(env, ptr_regno, off, size, 4979 false, ACCESS_DIRECT, NULL); 4980 if (err) 4981 return err; 4982 4983 min_off = reg->smin_value + off; 4984 max_off = reg->smax_value + off; 4985 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4986 return 0; 4987 } 4988 4989 /* check_stack_read dispatches to check_stack_read_fixed_off or 4990 * check_stack_read_var_off. 4991 * 4992 * The caller must ensure that the offset falls within the allocated stack 4993 * bounds. 4994 * 4995 * 'dst_regno' is a register which will receive the value from the stack. It 4996 * can be -1, meaning that the read value is not going to a register. 4997 */ 4998 static int check_stack_read(struct bpf_verifier_env *env, 4999 int ptr_regno, int off, int size, 5000 int dst_regno) 5001 { 5002 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5003 struct bpf_func_state *state = func(env, reg); 5004 int err; 5005 /* Some accesses are only permitted with a static offset. */ 5006 bool var_off = !tnum_is_const(reg->var_off); 5007 5008 /* The offset is required to be static when reads don't go to a 5009 * register, in order to not leak pointers (see 5010 * check_stack_read_fixed_off). 5011 */ 5012 if (dst_regno < 0 && var_off) { 5013 char tn_buf[48]; 5014 5015 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5016 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5017 tn_buf, off, size); 5018 return -EACCES; 5019 } 5020 /* Variable offset is prohibited for unprivileged mode for simplicity 5021 * since it requires corresponding support in Spectre masking for stack 5022 * ALU. See also retrieve_ptr_limit(). The check in 5023 * check_stack_access_for_ptr_arithmetic() called by 5024 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5025 * with variable offsets, therefore no check is required here. Further, 5026 * just checking it here would be insufficient as speculative stack 5027 * writes could still lead to unsafe speculative behaviour. 5028 */ 5029 if (!var_off) { 5030 off += reg->var_off.value; 5031 err = check_stack_read_fixed_off(env, state, off, size, 5032 dst_regno); 5033 } else { 5034 /* Variable offset stack reads need more conservative handling 5035 * than fixed offset ones. Note that dst_regno >= 0 on this 5036 * branch. 5037 */ 5038 err = check_stack_read_var_off(env, ptr_regno, off, size, 5039 dst_regno); 5040 } 5041 return err; 5042 } 5043 5044 5045 /* check_stack_write dispatches to check_stack_write_fixed_off or 5046 * check_stack_write_var_off. 5047 * 5048 * 'ptr_regno' is the register used as a pointer into the stack. 5049 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5050 * 'value_regno' is the register whose value we're writing to the stack. It can 5051 * be -1, meaning that we're not writing from a register. 5052 * 5053 * The caller must ensure that the offset falls within the maximum stack size. 5054 */ 5055 static int check_stack_write(struct bpf_verifier_env *env, 5056 int ptr_regno, int off, int size, 5057 int value_regno, int insn_idx) 5058 { 5059 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5060 struct bpf_func_state *state = func(env, reg); 5061 int err; 5062 5063 if (tnum_is_const(reg->var_off)) { 5064 off += reg->var_off.value; 5065 err = check_stack_write_fixed_off(env, state, off, size, 5066 value_regno, insn_idx); 5067 } else { 5068 /* Variable offset stack reads need more conservative handling 5069 * than fixed offset ones. 5070 */ 5071 err = check_stack_write_var_off(env, state, 5072 ptr_regno, off, size, 5073 value_regno, insn_idx); 5074 } 5075 return err; 5076 } 5077 5078 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5079 int off, int size, enum bpf_access_type type) 5080 { 5081 struct bpf_reg_state *regs = cur_regs(env); 5082 struct bpf_map *map = regs[regno].map_ptr; 5083 u32 cap = bpf_map_flags_to_cap(map); 5084 5085 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5086 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5087 map->value_size, off, size); 5088 return -EACCES; 5089 } 5090 5091 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5092 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5093 map->value_size, off, size); 5094 return -EACCES; 5095 } 5096 5097 return 0; 5098 } 5099 5100 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5101 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5102 int off, int size, u32 mem_size, 5103 bool zero_size_allowed) 5104 { 5105 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5106 struct bpf_reg_state *reg; 5107 5108 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5109 return 0; 5110 5111 reg = &cur_regs(env)[regno]; 5112 switch (reg->type) { 5113 case PTR_TO_MAP_KEY: 5114 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5115 mem_size, off, size); 5116 break; 5117 case PTR_TO_MAP_VALUE: 5118 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5119 mem_size, off, size); 5120 break; 5121 case PTR_TO_PACKET: 5122 case PTR_TO_PACKET_META: 5123 case PTR_TO_PACKET_END: 5124 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5125 off, size, regno, reg->id, off, mem_size); 5126 break; 5127 case PTR_TO_MEM: 5128 default: 5129 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5130 mem_size, off, size); 5131 } 5132 5133 return -EACCES; 5134 } 5135 5136 /* check read/write into a memory region with possible variable offset */ 5137 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5138 int off, int size, u32 mem_size, 5139 bool zero_size_allowed) 5140 { 5141 struct bpf_verifier_state *vstate = env->cur_state; 5142 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5143 struct bpf_reg_state *reg = &state->regs[regno]; 5144 int err; 5145 5146 /* We may have adjusted the register pointing to memory region, so we 5147 * need to try adding each of min_value and max_value to off 5148 * to make sure our theoretical access will be safe. 5149 * 5150 * The minimum value is only important with signed 5151 * comparisons where we can't assume the floor of a 5152 * value is 0. If we are using signed variables for our 5153 * index'es we need to make sure that whatever we use 5154 * will have a set floor within our range. 5155 */ 5156 if (reg->smin_value < 0 && 5157 (reg->smin_value == S64_MIN || 5158 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5159 reg->smin_value + off < 0)) { 5160 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5161 regno); 5162 return -EACCES; 5163 } 5164 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5165 mem_size, zero_size_allowed); 5166 if (err) { 5167 verbose(env, "R%d min value is outside of the allowed memory range\n", 5168 regno); 5169 return err; 5170 } 5171 5172 /* If we haven't set a max value then we need to bail since we can't be 5173 * sure we won't do bad things. 5174 * If reg->umax_value + off could overflow, treat that as unbounded too. 5175 */ 5176 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5177 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5178 regno); 5179 return -EACCES; 5180 } 5181 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5182 mem_size, zero_size_allowed); 5183 if (err) { 5184 verbose(env, "R%d max value is outside of the allowed memory range\n", 5185 regno); 5186 return err; 5187 } 5188 5189 return 0; 5190 } 5191 5192 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5193 const struct bpf_reg_state *reg, int regno, 5194 bool fixed_off_ok) 5195 { 5196 /* Access to this pointer-typed register or passing it to a helper 5197 * is only allowed in its original, unmodified form. 5198 */ 5199 5200 if (reg->off < 0) { 5201 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5202 reg_type_str(env, reg->type), regno, reg->off); 5203 return -EACCES; 5204 } 5205 5206 if (!fixed_off_ok && reg->off) { 5207 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5208 reg_type_str(env, reg->type), regno, reg->off); 5209 return -EACCES; 5210 } 5211 5212 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5213 char tn_buf[48]; 5214 5215 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5216 verbose(env, "variable %s access var_off=%s disallowed\n", 5217 reg_type_str(env, reg->type), tn_buf); 5218 return -EACCES; 5219 } 5220 5221 return 0; 5222 } 5223 5224 int check_ptr_off_reg(struct bpf_verifier_env *env, 5225 const struct bpf_reg_state *reg, int regno) 5226 { 5227 return __check_ptr_off_reg(env, reg, regno, false); 5228 } 5229 5230 static int map_kptr_match_type(struct bpf_verifier_env *env, 5231 struct btf_field *kptr_field, 5232 struct bpf_reg_state *reg, u32 regno) 5233 { 5234 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5235 int perm_flags; 5236 const char *reg_name = ""; 5237 5238 if (btf_is_kernel(reg->btf)) { 5239 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5240 5241 /* Only unreferenced case accepts untrusted pointers */ 5242 if (kptr_field->type == BPF_KPTR_UNREF) 5243 perm_flags |= PTR_UNTRUSTED; 5244 } else { 5245 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5246 } 5247 5248 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5249 goto bad_type; 5250 5251 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5252 reg_name = btf_type_name(reg->btf, reg->btf_id); 5253 5254 /* For ref_ptr case, release function check should ensure we get one 5255 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5256 * normal store of unreferenced kptr, we must ensure var_off is zero. 5257 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5258 * reg->off and reg->ref_obj_id are not needed here. 5259 */ 5260 if (__check_ptr_off_reg(env, reg, regno, true)) 5261 return -EACCES; 5262 5263 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5264 * we also need to take into account the reg->off. 5265 * 5266 * We want to support cases like: 5267 * 5268 * struct foo { 5269 * struct bar br; 5270 * struct baz bz; 5271 * }; 5272 * 5273 * struct foo *v; 5274 * v = func(); // PTR_TO_BTF_ID 5275 * val->foo = v; // reg->off is zero, btf and btf_id match type 5276 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5277 * // first member type of struct after comparison fails 5278 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5279 * // to match type 5280 * 5281 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5282 * is zero. We must also ensure that btf_struct_ids_match does not walk 5283 * the struct to match type against first member of struct, i.e. reject 5284 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5285 * strict mode to true for type match. 5286 */ 5287 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5288 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5289 kptr_field->type == BPF_KPTR_REF)) 5290 goto bad_type; 5291 return 0; 5292 bad_type: 5293 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5294 reg_type_str(env, reg->type), reg_name); 5295 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5296 if (kptr_field->type == BPF_KPTR_UNREF) 5297 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5298 targ_name); 5299 else 5300 verbose(env, "\n"); 5301 return -EINVAL; 5302 } 5303 5304 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5305 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5306 */ 5307 static bool in_rcu_cs(struct bpf_verifier_env *env) 5308 { 5309 return env->cur_state->active_rcu_lock || 5310 env->cur_state->active_lock.ptr || 5311 !env->prog->aux->sleepable; 5312 } 5313 5314 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5315 BTF_SET_START(rcu_protected_types) 5316 BTF_ID(struct, prog_test_ref_kfunc) 5317 BTF_ID(struct, cgroup) 5318 BTF_ID(struct, bpf_cpumask) 5319 BTF_ID(struct, task_struct) 5320 BTF_SET_END(rcu_protected_types) 5321 5322 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5323 { 5324 if (!btf_is_kernel(btf)) 5325 return false; 5326 return btf_id_set_contains(&rcu_protected_types, btf_id); 5327 } 5328 5329 static bool rcu_safe_kptr(const struct btf_field *field) 5330 { 5331 const struct btf_field_kptr *kptr = &field->kptr; 5332 5333 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5334 } 5335 5336 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5337 int value_regno, int insn_idx, 5338 struct btf_field *kptr_field) 5339 { 5340 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5341 int class = BPF_CLASS(insn->code); 5342 struct bpf_reg_state *val_reg; 5343 5344 /* Things we already checked for in check_map_access and caller: 5345 * - Reject cases where variable offset may touch kptr 5346 * - size of access (must be BPF_DW) 5347 * - tnum_is_const(reg->var_off) 5348 * - kptr_field->offset == off + reg->var_off.value 5349 */ 5350 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5351 if (BPF_MODE(insn->code) != BPF_MEM) { 5352 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5353 return -EACCES; 5354 } 5355 5356 /* We only allow loading referenced kptr, since it will be marked as 5357 * untrusted, similar to unreferenced kptr. 5358 */ 5359 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5360 verbose(env, "store to referenced kptr disallowed\n"); 5361 return -EACCES; 5362 } 5363 5364 if (class == BPF_LDX) { 5365 val_reg = reg_state(env, value_regno); 5366 /* We can simply mark the value_regno receiving the pointer 5367 * value from map as PTR_TO_BTF_ID, with the correct type. 5368 */ 5369 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5370 kptr_field->kptr.btf_id, 5371 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5372 PTR_MAYBE_NULL | MEM_RCU : 5373 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5374 /* For mark_ptr_or_null_reg */ 5375 val_reg->id = ++env->id_gen; 5376 } else if (class == BPF_STX) { 5377 val_reg = reg_state(env, value_regno); 5378 if (!register_is_null(val_reg) && 5379 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5380 return -EACCES; 5381 } else if (class == BPF_ST) { 5382 if (insn->imm) { 5383 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5384 kptr_field->offset); 5385 return -EACCES; 5386 } 5387 } else { 5388 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5389 return -EACCES; 5390 } 5391 return 0; 5392 } 5393 5394 /* check read/write into a map element with possible variable offset */ 5395 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5396 int off, int size, bool zero_size_allowed, 5397 enum bpf_access_src src) 5398 { 5399 struct bpf_verifier_state *vstate = env->cur_state; 5400 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5401 struct bpf_reg_state *reg = &state->regs[regno]; 5402 struct bpf_map *map = reg->map_ptr; 5403 struct btf_record *rec; 5404 int err, i; 5405 5406 err = check_mem_region_access(env, regno, off, size, map->value_size, 5407 zero_size_allowed); 5408 if (err) 5409 return err; 5410 5411 if (IS_ERR_OR_NULL(map->record)) 5412 return 0; 5413 rec = map->record; 5414 for (i = 0; i < rec->cnt; i++) { 5415 struct btf_field *field = &rec->fields[i]; 5416 u32 p = field->offset; 5417 5418 /* If any part of a field can be touched by load/store, reject 5419 * this program. To check that [x1, x2) overlaps with [y1, y2), 5420 * it is sufficient to check x1 < y2 && y1 < x2. 5421 */ 5422 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5423 p < reg->umax_value + off + size) { 5424 switch (field->type) { 5425 case BPF_KPTR_UNREF: 5426 case BPF_KPTR_REF: 5427 if (src != ACCESS_DIRECT) { 5428 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5429 return -EACCES; 5430 } 5431 if (!tnum_is_const(reg->var_off)) { 5432 verbose(env, "kptr access cannot have variable offset\n"); 5433 return -EACCES; 5434 } 5435 if (p != off + reg->var_off.value) { 5436 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5437 p, off + reg->var_off.value); 5438 return -EACCES; 5439 } 5440 if (size != bpf_size_to_bytes(BPF_DW)) { 5441 verbose(env, "kptr access size must be BPF_DW\n"); 5442 return -EACCES; 5443 } 5444 break; 5445 default: 5446 verbose(env, "%s cannot be accessed directly by load/store\n", 5447 btf_field_type_name(field->type)); 5448 return -EACCES; 5449 } 5450 } 5451 } 5452 return 0; 5453 } 5454 5455 #define MAX_PACKET_OFF 0xffff 5456 5457 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5458 const struct bpf_call_arg_meta *meta, 5459 enum bpf_access_type t) 5460 { 5461 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5462 5463 switch (prog_type) { 5464 /* Program types only with direct read access go here! */ 5465 case BPF_PROG_TYPE_LWT_IN: 5466 case BPF_PROG_TYPE_LWT_OUT: 5467 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5468 case BPF_PROG_TYPE_SK_REUSEPORT: 5469 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5470 case BPF_PROG_TYPE_CGROUP_SKB: 5471 if (t == BPF_WRITE) 5472 return false; 5473 fallthrough; 5474 5475 /* Program types with direct read + write access go here! */ 5476 case BPF_PROG_TYPE_SCHED_CLS: 5477 case BPF_PROG_TYPE_SCHED_ACT: 5478 case BPF_PROG_TYPE_XDP: 5479 case BPF_PROG_TYPE_LWT_XMIT: 5480 case BPF_PROG_TYPE_SK_SKB: 5481 case BPF_PROG_TYPE_SK_MSG: 5482 if (meta) 5483 return meta->pkt_access; 5484 5485 env->seen_direct_write = true; 5486 return true; 5487 5488 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5489 if (t == BPF_WRITE) 5490 env->seen_direct_write = true; 5491 5492 return true; 5493 5494 default: 5495 return false; 5496 } 5497 } 5498 5499 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5500 int size, bool zero_size_allowed) 5501 { 5502 struct bpf_reg_state *regs = cur_regs(env); 5503 struct bpf_reg_state *reg = ®s[regno]; 5504 int err; 5505 5506 /* We may have added a variable offset to the packet pointer; but any 5507 * reg->range we have comes after that. We are only checking the fixed 5508 * offset. 5509 */ 5510 5511 /* We don't allow negative numbers, because we aren't tracking enough 5512 * detail to prove they're safe. 5513 */ 5514 if (reg->smin_value < 0) { 5515 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5516 regno); 5517 return -EACCES; 5518 } 5519 5520 err = reg->range < 0 ? -EINVAL : 5521 __check_mem_access(env, regno, off, size, reg->range, 5522 zero_size_allowed); 5523 if (err) { 5524 verbose(env, "R%d offset is outside of the packet\n", regno); 5525 return err; 5526 } 5527 5528 /* __check_mem_access has made sure "off + size - 1" is within u16. 5529 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5530 * otherwise find_good_pkt_pointers would have refused to set range info 5531 * that __check_mem_access would have rejected this pkt access. 5532 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5533 */ 5534 env->prog->aux->max_pkt_offset = 5535 max_t(u32, env->prog->aux->max_pkt_offset, 5536 off + reg->umax_value + size - 1); 5537 5538 return err; 5539 } 5540 5541 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5542 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5543 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5544 struct btf **btf, u32 *btf_id) 5545 { 5546 struct bpf_insn_access_aux info = { 5547 .reg_type = *reg_type, 5548 .log = &env->log, 5549 }; 5550 5551 if (env->ops->is_valid_access && 5552 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5553 /* A non zero info.ctx_field_size indicates that this field is a 5554 * candidate for later verifier transformation to load the whole 5555 * field and then apply a mask when accessed with a narrower 5556 * access than actual ctx access size. A zero info.ctx_field_size 5557 * will only allow for whole field access and rejects any other 5558 * type of narrower access. 5559 */ 5560 *reg_type = info.reg_type; 5561 5562 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5563 *btf = info.btf; 5564 *btf_id = info.btf_id; 5565 } else { 5566 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5567 } 5568 /* remember the offset of last byte accessed in ctx */ 5569 if (env->prog->aux->max_ctx_offset < off + size) 5570 env->prog->aux->max_ctx_offset = off + size; 5571 return 0; 5572 } 5573 5574 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5575 return -EACCES; 5576 } 5577 5578 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5579 int size) 5580 { 5581 if (size < 0 || off < 0 || 5582 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5583 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5584 off, size); 5585 return -EACCES; 5586 } 5587 return 0; 5588 } 5589 5590 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5591 u32 regno, int off, int size, 5592 enum bpf_access_type t) 5593 { 5594 struct bpf_reg_state *regs = cur_regs(env); 5595 struct bpf_reg_state *reg = ®s[regno]; 5596 struct bpf_insn_access_aux info = {}; 5597 bool valid; 5598 5599 if (reg->smin_value < 0) { 5600 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5601 regno); 5602 return -EACCES; 5603 } 5604 5605 switch (reg->type) { 5606 case PTR_TO_SOCK_COMMON: 5607 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5608 break; 5609 case PTR_TO_SOCKET: 5610 valid = bpf_sock_is_valid_access(off, size, t, &info); 5611 break; 5612 case PTR_TO_TCP_SOCK: 5613 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5614 break; 5615 case PTR_TO_XDP_SOCK: 5616 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5617 break; 5618 default: 5619 valid = false; 5620 } 5621 5622 5623 if (valid) { 5624 env->insn_aux_data[insn_idx].ctx_field_size = 5625 info.ctx_field_size; 5626 return 0; 5627 } 5628 5629 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5630 regno, reg_type_str(env, reg->type), off, size); 5631 5632 return -EACCES; 5633 } 5634 5635 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5636 { 5637 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5638 } 5639 5640 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5641 { 5642 const struct bpf_reg_state *reg = reg_state(env, regno); 5643 5644 return reg->type == PTR_TO_CTX; 5645 } 5646 5647 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5648 { 5649 const struct bpf_reg_state *reg = reg_state(env, regno); 5650 5651 return type_is_sk_pointer(reg->type); 5652 } 5653 5654 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5655 { 5656 const struct bpf_reg_state *reg = reg_state(env, regno); 5657 5658 return type_is_pkt_pointer(reg->type); 5659 } 5660 5661 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5662 { 5663 const struct bpf_reg_state *reg = reg_state(env, regno); 5664 5665 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5666 return reg->type == PTR_TO_FLOW_KEYS; 5667 } 5668 5669 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5670 #ifdef CONFIG_NET 5671 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5672 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5673 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5674 #endif 5675 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5676 }; 5677 5678 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5679 { 5680 /* A referenced register is always trusted. */ 5681 if (reg->ref_obj_id) 5682 return true; 5683 5684 /* Types listed in the reg2btf_ids are always trusted */ 5685 if (reg2btf_ids[base_type(reg->type)]) 5686 return true; 5687 5688 /* If a register is not referenced, it is trusted if it has the 5689 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5690 * other type modifiers may be safe, but we elect to take an opt-in 5691 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5692 * not. 5693 * 5694 * Eventually, we should make PTR_TRUSTED the single source of truth 5695 * for whether a register is trusted. 5696 */ 5697 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5698 !bpf_type_has_unsafe_modifiers(reg->type); 5699 } 5700 5701 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5702 { 5703 return reg->type & MEM_RCU; 5704 } 5705 5706 static void clear_trusted_flags(enum bpf_type_flag *flag) 5707 { 5708 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5709 } 5710 5711 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5712 const struct bpf_reg_state *reg, 5713 int off, int size, bool strict) 5714 { 5715 struct tnum reg_off; 5716 int ip_align; 5717 5718 /* Byte size accesses are always allowed. */ 5719 if (!strict || size == 1) 5720 return 0; 5721 5722 /* For platforms that do not have a Kconfig enabling 5723 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5724 * NET_IP_ALIGN is universally set to '2'. And on platforms 5725 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5726 * to this code only in strict mode where we want to emulate 5727 * the NET_IP_ALIGN==2 checking. Therefore use an 5728 * unconditional IP align value of '2'. 5729 */ 5730 ip_align = 2; 5731 5732 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5733 if (!tnum_is_aligned(reg_off, size)) { 5734 char tn_buf[48]; 5735 5736 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5737 verbose(env, 5738 "misaligned packet access off %d+%s+%d+%d size %d\n", 5739 ip_align, tn_buf, reg->off, off, size); 5740 return -EACCES; 5741 } 5742 5743 return 0; 5744 } 5745 5746 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5747 const struct bpf_reg_state *reg, 5748 const char *pointer_desc, 5749 int off, int size, bool strict) 5750 { 5751 struct tnum reg_off; 5752 5753 /* Byte size accesses are always allowed. */ 5754 if (!strict || size == 1) 5755 return 0; 5756 5757 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5758 if (!tnum_is_aligned(reg_off, size)) { 5759 char tn_buf[48]; 5760 5761 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5762 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5763 pointer_desc, tn_buf, reg->off, off, size); 5764 return -EACCES; 5765 } 5766 5767 return 0; 5768 } 5769 5770 static int check_ptr_alignment(struct bpf_verifier_env *env, 5771 const struct bpf_reg_state *reg, int off, 5772 int size, bool strict_alignment_once) 5773 { 5774 bool strict = env->strict_alignment || strict_alignment_once; 5775 const char *pointer_desc = ""; 5776 5777 switch (reg->type) { 5778 case PTR_TO_PACKET: 5779 case PTR_TO_PACKET_META: 5780 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5781 * right in front, treat it the very same way. 5782 */ 5783 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5784 case PTR_TO_FLOW_KEYS: 5785 pointer_desc = "flow keys "; 5786 break; 5787 case PTR_TO_MAP_KEY: 5788 pointer_desc = "key "; 5789 break; 5790 case PTR_TO_MAP_VALUE: 5791 pointer_desc = "value "; 5792 break; 5793 case PTR_TO_CTX: 5794 pointer_desc = "context "; 5795 break; 5796 case PTR_TO_STACK: 5797 pointer_desc = "stack "; 5798 /* The stack spill tracking logic in check_stack_write_fixed_off() 5799 * and check_stack_read_fixed_off() relies on stack accesses being 5800 * aligned. 5801 */ 5802 strict = true; 5803 break; 5804 case PTR_TO_SOCKET: 5805 pointer_desc = "sock "; 5806 break; 5807 case PTR_TO_SOCK_COMMON: 5808 pointer_desc = "sock_common "; 5809 break; 5810 case PTR_TO_TCP_SOCK: 5811 pointer_desc = "tcp_sock "; 5812 break; 5813 case PTR_TO_XDP_SOCK: 5814 pointer_desc = "xdp_sock "; 5815 break; 5816 default: 5817 break; 5818 } 5819 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5820 strict); 5821 } 5822 5823 /* starting from main bpf function walk all instructions of the function 5824 * and recursively walk all callees that given function can call. 5825 * Ignore jump and exit insns. 5826 * Since recursion is prevented by check_cfg() this algorithm 5827 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5828 */ 5829 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5830 { 5831 struct bpf_subprog_info *subprog = env->subprog_info; 5832 struct bpf_insn *insn = env->prog->insnsi; 5833 int depth = 0, frame = 0, i, subprog_end; 5834 bool tail_call_reachable = false; 5835 int ret_insn[MAX_CALL_FRAMES]; 5836 int ret_prog[MAX_CALL_FRAMES]; 5837 int j; 5838 5839 i = subprog[idx].start; 5840 process_func: 5841 /* protect against potential stack overflow that might happen when 5842 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5843 * depth for such case down to 256 so that the worst case scenario 5844 * would result in 8k stack size (32 which is tailcall limit * 256 = 5845 * 8k). 5846 * 5847 * To get the idea what might happen, see an example: 5848 * func1 -> sub rsp, 128 5849 * subfunc1 -> sub rsp, 256 5850 * tailcall1 -> add rsp, 256 5851 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5852 * subfunc2 -> sub rsp, 64 5853 * subfunc22 -> sub rsp, 128 5854 * tailcall2 -> add rsp, 128 5855 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5856 * 5857 * tailcall will unwind the current stack frame but it will not get rid 5858 * of caller's stack as shown on the example above. 5859 */ 5860 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5861 verbose(env, 5862 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5863 depth); 5864 return -EACCES; 5865 } 5866 /* round up to 32-bytes, since this is granularity 5867 * of interpreter stack size 5868 */ 5869 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5870 if (depth > MAX_BPF_STACK) { 5871 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5872 frame + 1, depth); 5873 return -EACCES; 5874 } 5875 continue_func: 5876 subprog_end = subprog[idx + 1].start; 5877 for (; i < subprog_end; i++) { 5878 int next_insn, sidx; 5879 5880 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5881 continue; 5882 /* remember insn and function to return to */ 5883 ret_insn[frame] = i + 1; 5884 ret_prog[frame] = idx; 5885 5886 /* find the callee */ 5887 next_insn = i + insn[i].imm + 1; 5888 sidx = find_subprog(env, next_insn); 5889 if (sidx < 0) { 5890 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5891 next_insn); 5892 return -EFAULT; 5893 } 5894 if (subprog[sidx].is_async_cb) { 5895 if (subprog[sidx].has_tail_call) { 5896 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5897 return -EFAULT; 5898 } 5899 /* async callbacks don't increase bpf prog stack size unless called directly */ 5900 if (!bpf_pseudo_call(insn + i)) 5901 continue; 5902 } 5903 i = next_insn; 5904 idx = sidx; 5905 5906 if (subprog[idx].has_tail_call) 5907 tail_call_reachable = true; 5908 5909 frame++; 5910 if (frame >= MAX_CALL_FRAMES) { 5911 verbose(env, "the call stack of %d frames is too deep !\n", 5912 frame); 5913 return -E2BIG; 5914 } 5915 goto process_func; 5916 } 5917 /* if tail call got detected across bpf2bpf calls then mark each of the 5918 * currently present subprog frames as tail call reachable subprogs; 5919 * this info will be utilized by JIT so that we will be preserving the 5920 * tail call counter throughout bpf2bpf calls combined with tailcalls 5921 */ 5922 if (tail_call_reachable) 5923 for (j = 0; j < frame; j++) 5924 subprog[ret_prog[j]].tail_call_reachable = true; 5925 if (subprog[0].tail_call_reachable) 5926 env->prog->aux->tail_call_reachable = true; 5927 5928 /* end of for() loop means the last insn of the 'subprog' 5929 * was reached. Doesn't matter whether it was JA or EXIT 5930 */ 5931 if (frame == 0) 5932 return 0; 5933 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5934 frame--; 5935 i = ret_insn[frame]; 5936 idx = ret_prog[frame]; 5937 goto continue_func; 5938 } 5939 5940 static int check_max_stack_depth(struct bpf_verifier_env *env) 5941 { 5942 struct bpf_subprog_info *si = env->subprog_info; 5943 int ret; 5944 5945 for (int i = 0; i < env->subprog_cnt; i++) { 5946 if (!i || si[i].is_async_cb) { 5947 ret = check_max_stack_depth_subprog(env, i); 5948 if (ret < 0) 5949 return ret; 5950 } 5951 continue; 5952 } 5953 return 0; 5954 } 5955 5956 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5957 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5958 const struct bpf_insn *insn, int idx) 5959 { 5960 int start = idx + insn->imm + 1, subprog; 5961 5962 subprog = find_subprog(env, start); 5963 if (subprog < 0) { 5964 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5965 start); 5966 return -EFAULT; 5967 } 5968 return env->subprog_info[subprog].stack_depth; 5969 } 5970 #endif 5971 5972 static int __check_buffer_access(struct bpf_verifier_env *env, 5973 const char *buf_info, 5974 const struct bpf_reg_state *reg, 5975 int regno, int off, int size) 5976 { 5977 if (off < 0) { 5978 verbose(env, 5979 "R%d invalid %s buffer access: off=%d, size=%d\n", 5980 regno, buf_info, off, size); 5981 return -EACCES; 5982 } 5983 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5984 char tn_buf[48]; 5985 5986 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5987 verbose(env, 5988 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5989 regno, off, tn_buf); 5990 return -EACCES; 5991 } 5992 5993 return 0; 5994 } 5995 5996 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5997 const struct bpf_reg_state *reg, 5998 int regno, int off, int size) 5999 { 6000 int err; 6001 6002 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6003 if (err) 6004 return err; 6005 6006 if (off + size > env->prog->aux->max_tp_access) 6007 env->prog->aux->max_tp_access = off + size; 6008 6009 return 0; 6010 } 6011 6012 static int check_buffer_access(struct bpf_verifier_env *env, 6013 const struct bpf_reg_state *reg, 6014 int regno, int off, int size, 6015 bool zero_size_allowed, 6016 u32 *max_access) 6017 { 6018 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6019 int err; 6020 6021 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6022 if (err) 6023 return err; 6024 6025 if (off + size > *max_access) 6026 *max_access = off + size; 6027 6028 return 0; 6029 } 6030 6031 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6032 static void zext_32_to_64(struct bpf_reg_state *reg) 6033 { 6034 reg->var_off = tnum_subreg(reg->var_off); 6035 __reg_assign_32_into_64(reg); 6036 } 6037 6038 /* truncate register to smaller size (in bytes) 6039 * must be called with size < BPF_REG_SIZE 6040 */ 6041 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6042 { 6043 u64 mask; 6044 6045 /* clear high bits in bit representation */ 6046 reg->var_off = tnum_cast(reg->var_off, size); 6047 6048 /* fix arithmetic bounds */ 6049 mask = ((u64)1 << (size * 8)) - 1; 6050 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6051 reg->umin_value &= mask; 6052 reg->umax_value &= mask; 6053 } else { 6054 reg->umin_value = 0; 6055 reg->umax_value = mask; 6056 } 6057 reg->smin_value = reg->umin_value; 6058 reg->smax_value = reg->umax_value; 6059 6060 /* If size is smaller than 32bit register the 32bit register 6061 * values are also truncated so we push 64-bit bounds into 6062 * 32-bit bounds. Above were truncated < 32-bits already. 6063 */ 6064 if (size >= 4) 6065 return; 6066 __reg_combine_64_into_32(reg); 6067 } 6068 6069 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6070 { 6071 if (size == 1) { 6072 reg->smin_value = reg->s32_min_value = S8_MIN; 6073 reg->smax_value = reg->s32_max_value = S8_MAX; 6074 } else if (size == 2) { 6075 reg->smin_value = reg->s32_min_value = S16_MIN; 6076 reg->smax_value = reg->s32_max_value = S16_MAX; 6077 } else { 6078 /* size == 4 */ 6079 reg->smin_value = reg->s32_min_value = S32_MIN; 6080 reg->smax_value = reg->s32_max_value = S32_MAX; 6081 } 6082 reg->umin_value = reg->u32_min_value = 0; 6083 reg->umax_value = U64_MAX; 6084 reg->u32_max_value = U32_MAX; 6085 reg->var_off = tnum_unknown; 6086 } 6087 6088 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6089 { 6090 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6091 u64 top_smax_value, top_smin_value; 6092 u64 num_bits = size * 8; 6093 6094 if (tnum_is_const(reg->var_off)) { 6095 u64_cval = reg->var_off.value; 6096 if (size == 1) 6097 reg->var_off = tnum_const((s8)u64_cval); 6098 else if (size == 2) 6099 reg->var_off = tnum_const((s16)u64_cval); 6100 else 6101 /* size == 4 */ 6102 reg->var_off = tnum_const((s32)u64_cval); 6103 6104 u64_cval = reg->var_off.value; 6105 reg->smax_value = reg->smin_value = u64_cval; 6106 reg->umax_value = reg->umin_value = u64_cval; 6107 reg->s32_max_value = reg->s32_min_value = u64_cval; 6108 reg->u32_max_value = reg->u32_min_value = u64_cval; 6109 return; 6110 } 6111 6112 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6113 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6114 6115 if (top_smax_value != top_smin_value) 6116 goto out; 6117 6118 /* find the s64_min and s64_min after sign extension */ 6119 if (size == 1) { 6120 init_s64_max = (s8)reg->smax_value; 6121 init_s64_min = (s8)reg->smin_value; 6122 } else if (size == 2) { 6123 init_s64_max = (s16)reg->smax_value; 6124 init_s64_min = (s16)reg->smin_value; 6125 } else { 6126 init_s64_max = (s32)reg->smax_value; 6127 init_s64_min = (s32)reg->smin_value; 6128 } 6129 6130 s64_max = max(init_s64_max, init_s64_min); 6131 s64_min = min(init_s64_max, init_s64_min); 6132 6133 /* both of s64_max/s64_min positive or negative */ 6134 if ((s64_max >= 0) == (s64_min >= 0)) { 6135 reg->smin_value = reg->s32_min_value = s64_min; 6136 reg->smax_value = reg->s32_max_value = s64_max; 6137 reg->umin_value = reg->u32_min_value = s64_min; 6138 reg->umax_value = reg->u32_max_value = s64_max; 6139 reg->var_off = tnum_range(s64_min, s64_max); 6140 return; 6141 } 6142 6143 out: 6144 set_sext64_default_val(reg, size); 6145 } 6146 6147 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6148 { 6149 if (size == 1) { 6150 reg->s32_min_value = S8_MIN; 6151 reg->s32_max_value = S8_MAX; 6152 } else { 6153 /* size == 2 */ 6154 reg->s32_min_value = S16_MIN; 6155 reg->s32_max_value = S16_MAX; 6156 } 6157 reg->u32_min_value = 0; 6158 reg->u32_max_value = U32_MAX; 6159 } 6160 6161 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6162 { 6163 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6164 u32 top_smax_value, top_smin_value; 6165 u32 num_bits = size * 8; 6166 6167 if (tnum_is_const(reg->var_off)) { 6168 u32_val = reg->var_off.value; 6169 if (size == 1) 6170 reg->var_off = tnum_const((s8)u32_val); 6171 else 6172 reg->var_off = tnum_const((s16)u32_val); 6173 6174 u32_val = reg->var_off.value; 6175 reg->s32_min_value = reg->s32_max_value = u32_val; 6176 reg->u32_min_value = reg->u32_max_value = u32_val; 6177 return; 6178 } 6179 6180 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6181 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6182 6183 if (top_smax_value != top_smin_value) 6184 goto out; 6185 6186 /* find the s32_min and s32_min after sign extension */ 6187 if (size == 1) { 6188 init_s32_max = (s8)reg->s32_max_value; 6189 init_s32_min = (s8)reg->s32_min_value; 6190 } else { 6191 /* size == 2 */ 6192 init_s32_max = (s16)reg->s32_max_value; 6193 init_s32_min = (s16)reg->s32_min_value; 6194 } 6195 s32_max = max(init_s32_max, init_s32_min); 6196 s32_min = min(init_s32_max, init_s32_min); 6197 6198 if ((s32_min >= 0) == (s32_max >= 0)) { 6199 reg->s32_min_value = s32_min; 6200 reg->s32_max_value = s32_max; 6201 reg->u32_min_value = (u32)s32_min; 6202 reg->u32_max_value = (u32)s32_max; 6203 return; 6204 } 6205 6206 out: 6207 set_sext32_default_val(reg, size); 6208 } 6209 6210 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6211 { 6212 /* A map is considered read-only if the following condition are true: 6213 * 6214 * 1) BPF program side cannot change any of the map content. The 6215 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6216 * and was set at map creation time. 6217 * 2) The map value(s) have been initialized from user space by a 6218 * loader and then "frozen", such that no new map update/delete 6219 * operations from syscall side are possible for the rest of 6220 * the map's lifetime from that point onwards. 6221 * 3) Any parallel/pending map update/delete operations from syscall 6222 * side have been completed. Only after that point, it's safe to 6223 * assume that map value(s) are immutable. 6224 */ 6225 return (map->map_flags & BPF_F_RDONLY_PROG) && 6226 READ_ONCE(map->frozen) && 6227 !bpf_map_write_active(map); 6228 } 6229 6230 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6231 bool is_ldsx) 6232 { 6233 void *ptr; 6234 u64 addr; 6235 int err; 6236 6237 err = map->ops->map_direct_value_addr(map, &addr, off); 6238 if (err) 6239 return err; 6240 ptr = (void *)(long)addr + off; 6241 6242 switch (size) { 6243 case sizeof(u8): 6244 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6245 break; 6246 case sizeof(u16): 6247 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6248 break; 6249 case sizeof(u32): 6250 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6251 break; 6252 case sizeof(u64): 6253 *val = *(u64 *)ptr; 6254 break; 6255 default: 6256 return -EINVAL; 6257 } 6258 return 0; 6259 } 6260 6261 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6262 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6263 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6264 6265 /* 6266 * Allow list few fields as RCU trusted or full trusted. 6267 * This logic doesn't allow mix tagging and will be removed once GCC supports 6268 * btf_type_tag. 6269 */ 6270 6271 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6272 BTF_TYPE_SAFE_RCU(struct task_struct) { 6273 const cpumask_t *cpus_ptr; 6274 struct css_set __rcu *cgroups; 6275 struct task_struct __rcu *real_parent; 6276 struct task_struct *group_leader; 6277 }; 6278 6279 BTF_TYPE_SAFE_RCU(struct cgroup) { 6280 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6281 struct kernfs_node *kn; 6282 }; 6283 6284 BTF_TYPE_SAFE_RCU(struct css_set) { 6285 struct cgroup *dfl_cgrp; 6286 }; 6287 6288 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6289 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6290 struct file __rcu *exe_file; 6291 }; 6292 6293 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6294 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6295 */ 6296 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6297 struct sock *sk; 6298 }; 6299 6300 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6301 struct sock *sk; 6302 }; 6303 6304 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6305 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6306 struct seq_file *seq; 6307 }; 6308 6309 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6310 struct bpf_iter_meta *meta; 6311 struct task_struct *task; 6312 }; 6313 6314 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6315 struct file *file; 6316 }; 6317 6318 BTF_TYPE_SAFE_TRUSTED(struct file) { 6319 struct inode *f_inode; 6320 }; 6321 6322 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6323 /* no negative dentry-s in places where bpf can see it */ 6324 struct inode *d_inode; 6325 }; 6326 6327 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6328 struct sock *sk; 6329 }; 6330 6331 static bool type_is_rcu(struct bpf_verifier_env *env, 6332 struct bpf_reg_state *reg, 6333 const char *field_name, u32 btf_id) 6334 { 6335 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6336 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6337 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6338 6339 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6340 } 6341 6342 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6343 struct bpf_reg_state *reg, 6344 const char *field_name, u32 btf_id) 6345 { 6346 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6347 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6348 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6349 6350 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6351 } 6352 6353 static bool type_is_trusted(struct bpf_verifier_env *env, 6354 struct bpf_reg_state *reg, 6355 const char *field_name, u32 btf_id) 6356 { 6357 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6358 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6359 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6360 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6361 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6362 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6363 6364 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6365 } 6366 6367 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6368 struct bpf_reg_state *regs, 6369 int regno, int off, int size, 6370 enum bpf_access_type atype, 6371 int value_regno) 6372 { 6373 struct bpf_reg_state *reg = regs + regno; 6374 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6375 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6376 const char *field_name = NULL; 6377 enum bpf_type_flag flag = 0; 6378 u32 btf_id = 0; 6379 int ret; 6380 6381 if (!env->allow_ptr_leaks) { 6382 verbose(env, 6383 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6384 tname); 6385 return -EPERM; 6386 } 6387 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6388 verbose(env, 6389 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6390 tname); 6391 return -EINVAL; 6392 } 6393 if (off < 0) { 6394 verbose(env, 6395 "R%d is ptr_%s invalid negative access: off=%d\n", 6396 regno, tname, off); 6397 return -EACCES; 6398 } 6399 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6400 char tn_buf[48]; 6401 6402 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6403 verbose(env, 6404 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6405 regno, tname, off, tn_buf); 6406 return -EACCES; 6407 } 6408 6409 if (reg->type & MEM_USER) { 6410 verbose(env, 6411 "R%d is ptr_%s access user memory: off=%d\n", 6412 regno, tname, off); 6413 return -EACCES; 6414 } 6415 6416 if (reg->type & MEM_PERCPU) { 6417 verbose(env, 6418 "R%d is ptr_%s access percpu memory: off=%d\n", 6419 regno, tname, off); 6420 return -EACCES; 6421 } 6422 6423 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6424 if (!btf_is_kernel(reg->btf)) { 6425 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6426 return -EFAULT; 6427 } 6428 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6429 } else { 6430 /* Writes are permitted with default btf_struct_access for 6431 * program allocated objects (which always have ref_obj_id > 0), 6432 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6433 */ 6434 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6435 verbose(env, "only read is supported\n"); 6436 return -EACCES; 6437 } 6438 6439 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6440 !reg->ref_obj_id) { 6441 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6442 return -EFAULT; 6443 } 6444 6445 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6446 } 6447 6448 if (ret < 0) 6449 return ret; 6450 6451 if (ret != PTR_TO_BTF_ID) { 6452 /* just mark; */ 6453 6454 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6455 /* If this is an untrusted pointer, all pointers formed by walking it 6456 * also inherit the untrusted flag. 6457 */ 6458 flag = PTR_UNTRUSTED; 6459 6460 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6461 /* By default any pointer obtained from walking a trusted pointer is no 6462 * longer trusted, unless the field being accessed has explicitly been 6463 * marked as inheriting its parent's state of trust (either full or RCU). 6464 * For example: 6465 * 'cgroups' pointer is untrusted if task->cgroups dereference 6466 * happened in a sleepable program outside of bpf_rcu_read_lock() 6467 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6468 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6469 * 6470 * A regular RCU-protected pointer with __rcu tag can also be deemed 6471 * trusted if we are in an RCU CS. Such pointer can be NULL. 6472 */ 6473 if (type_is_trusted(env, reg, field_name, btf_id)) { 6474 flag |= PTR_TRUSTED; 6475 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6476 if (type_is_rcu(env, reg, field_name, btf_id)) { 6477 /* ignore __rcu tag and mark it MEM_RCU */ 6478 flag |= MEM_RCU; 6479 } else if (flag & MEM_RCU || 6480 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6481 /* __rcu tagged pointers can be NULL */ 6482 flag |= MEM_RCU | PTR_MAYBE_NULL; 6483 6484 /* We always trust them */ 6485 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6486 flag & PTR_UNTRUSTED) 6487 flag &= ~PTR_UNTRUSTED; 6488 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6489 /* keep as-is */ 6490 } else { 6491 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6492 clear_trusted_flags(&flag); 6493 } 6494 } else { 6495 /* 6496 * If not in RCU CS or MEM_RCU pointer can be NULL then 6497 * aggressively mark as untrusted otherwise such 6498 * pointers will be plain PTR_TO_BTF_ID without flags 6499 * and will be allowed to be passed into helpers for 6500 * compat reasons. 6501 */ 6502 flag = PTR_UNTRUSTED; 6503 } 6504 } else { 6505 /* Old compat. Deprecated */ 6506 clear_trusted_flags(&flag); 6507 } 6508 6509 if (atype == BPF_READ && value_regno >= 0) 6510 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6511 6512 return 0; 6513 } 6514 6515 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6516 struct bpf_reg_state *regs, 6517 int regno, int off, int size, 6518 enum bpf_access_type atype, 6519 int value_regno) 6520 { 6521 struct bpf_reg_state *reg = regs + regno; 6522 struct bpf_map *map = reg->map_ptr; 6523 struct bpf_reg_state map_reg; 6524 enum bpf_type_flag flag = 0; 6525 const struct btf_type *t; 6526 const char *tname; 6527 u32 btf_id; 6528 int ret; 6529 6530 if (!btf_vmlinux) { 6531 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6532 return -ENOTSUPP; 6533 } 6534 6535 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6536 verbose(env, "map_ptr access not supported for map type %d\n", 6537 map->map_type); 6538 return -ENOTSUPP; 6539 } 6540 6541 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6542 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6543 6544 if (!env->allow_ptr_leaks) { 6545 verbose(env, 6546 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6547 tname); 6548 return -EPERM; 6549 } 6550 6551 if (off < 0) { 6552 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6553 regno, tname, off); 6554 return -EACCES; 6555 } 6556 6557 if (atype != BPF_READ) { 6558 verbose(env, "only read from %s is supported\n", tname); 6559 return -EACCES; 6560 } 6561 6562 /* Simulate access to a PTR_TO_BTF_ID */ 6563 memset(&map_reg, 0, sizeof(map_reg)); 6564 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6565 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6566 if (ret < 0) 6567 return ret; 6568 6569 if (value_regno >= 0) 6570 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6571 6572 return 0; 6573 } 6574 6575 /* Check that the stack access at the given offset is within bounds. The 6576 * maximum valid offset is -1. 6577 * 6578 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6579 * -state->allocated_stack for reads. 6580 */ 6581 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6582 s64 off, 6583 struct bpf_func_state *state, 6584 enum bpf_access_type t) 6585 { 6586 int min_valid_off; 6587 6588 if (t == BPF_WRITE || env->allow_uninit_stack) 6589 min_valid_off = -MAX_BPF_STACK; 6590 else 6591 min_valid_off = -state->allocated_stack; 6592 6593 if (off < min_valid_off || off > -1) 6594 return -EACCES; 6595 return 0; 6596 } 6597 6598 /* Check that the stack access at 'regno + off' falls within the maximum stack 6599 * bounds. 6600 * 6601 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6602 */ 6603 static int check_stack_access_within_bounds( 6604 struct bpf_verifier_env *env, 6605 int regno, int off, int access_size, 6606 enum bpf_access_src src, enum bpf_access_type type) 6607 { 6608 struct bpf_reg_state *regs = cur_regs(env); 6609 struct bpf_reg_state *reg = regs + regno; 6610 struct bpf_func_state *state = func(env, reg); 6611 s64 min_off, max_off; 6612 int err; 6613 char *err_extra; 6614 6615 if (src == ACCESS_HELPER) 6616 /* We don't know if helpers are reading or writing (or both). */ 6617 err_extra = " indirect access to"; 6618 else if (type == BPF_READ) 6619 err_extra = " read from"; 6620 else 6621 err_extra = " write to"; 6622 6623 if (tnum_is_const(reg->var_off)) { 6624 min_off = (s64)reg->var_off.value + off; 6625 max_off = min_off + access_size; 6626 } else { 6627 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6628 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6629 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6630 err_extra, regno); 6631 return -EACCES; 6632 } 6633 min_off = reg->smin_value + off; 6634 max_off = reg->smax_value + off + access_size; 6635 } 6636 6637 err = check_stack_slot_within_bounds(env, min_off, state, type); 6638 if (!err && max_off > 0) 6639 err = -EINVAL; /* out of stack access into non-negative offsets */ 6640 if (!err && access_size < 0) 6641 /* access_size should not be negative (or overflow an int); others checks 6642 * along the way should have prevented such an access. 6643 */ 6644 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6645 6646 if (err) { 6647 if (tnum_is_const(reg->var_off)) { 6648 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6649 err_extra, regno, off, access_size); 6650 } else { 6651 char tn_buf[48]; 6652 6653 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6654 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6655 err_extra, regno, tn_buf, access_size); 6656 } 6657 return err; 6658 } 6659 6660 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE)); 6661 } 6662 6663 /* check whether memory at (regno + off) is accessible for t = (read | write) 6664 * if t==write, value_regno is a register which value is stored into memory 6665 * if t==read, value_regno is a register which will receive the value from memory 6666 * if t==write && value_regno==-1, some unknown value is stored into memory 6667 * if t==read && value_regno==-1, don't care what we read from memory 6668 */ 6669 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6670 int off, int bpf_size, enum bpf_access_type t, 6671 int value_regno, bool strict_alignment_once, bool is_ldsx) 6672 { 6673 struct bpf_reg_state *regs = cur_regs(env); 6674 struct bpf_reg_state *reg = regs + regno; 6675 int size, err = 0; 6676 6677 size = bpf_size_to_bytes(bpf_size); 6678 if (size < 0) 6679 return size; 6680 6681 /* alignment checks will add in reg->off themselves */ 6682 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6683 if (err) 6684 return err; 6685 6686 /* for access checks, reg->off is just part of off */ 6687 off += reg->off; 6688 6689 if (reg->type == PTR_TO_MAP_KEY) { 6690 if (t == BPF_WRITE) { 6691 verbose(env, "write to change key R%d not allowed\n", regno); 6692 return -EACCES; 6693 } 6694 6695 err = check_mem_region_access(env, regno, off, size, 6696 reg->map_ptr->key_size, false); 6697 if (err) 6698 return err; 6699 if (value_regno >= 0) 6700 mark_reg_unknown(env, regs, value_regno); 6701 } else if (reg->type == PTR_TO_MAP_VALUE) { 6702 struct btf_field *kptr_field = NULL; 6703 6704 if (t == BPF_WRITE && value_regno >= 0 && 6705 is_pointer_value(env, value_regno)) { 6706 verbose(env, "R%d leaks addr into map\n", value_regno); 6707 return -EACCES; 6708 } 6709 err = check_map_access_type(env, regno, off, size, t); 6710 if (err) 6711 return err; 6712 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6713 if (err) 6714 return err; 6715 if (tnum_is_const(reg->var_off)) 6716 kptr_field = btf_record_find(reg->map_ptr->record, 6717 off + reg->var_off.value, BPF_KPTR); 6718 if (kptr_field) { 6719 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6720 } else if (t == BPF_READ && value_regno >= 0) { 6721 struct bpf_map *map = reg->map_ptr; 6722 6723 /* if map is read-only, track its contents as scalars */ 6724 if (tnum_is_const(reg->var_off) && 6725 bpf_map_is_rdonly(map) && 6726 map->ops->map_direct_value_addr) { 6727 int map_off = off + reg->var_off.value; 6728 u64 val = 0; 6729 6730 err = bpf_map_direct_read(map, map_off, size, 6731 &val, is_ldsx); 6732 if (err) 6733 return err; 6734 6735 regs[value_regno].type = SCALAR_VALUE; 6736 __mark_reg_known(®s[value_regno], val); 6737 } else { 6738 mark_reg_unknown(env, regs, value_regno); 6739 } 6740 } 6741 } else if (base_type(reg->type) == PTR_TO_MEM) { 6742 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6743 6744 if (type_may_be_null(reg->type)) { 6745 verbose(env, "R%d invalid mem access '%s'\n", regno, 6746 reg_type_str(env, reg->type)); 6747 return -EACCES; 6748 } 6749 6750 if (t == BPF_WRITE && rdonly_mem) { 6751 verbose(env, "R%d cannot write into %s\n", 6752 regno, reg_type_str(env, reg->type)); 6753 return -EACCES; 6754 } 6755 6756 if (t == BPF_WRITE && value_regno >= 0 && 6757 is_pointer_value(env, value_regno)) { 6758 verbose(env, "R%d leaks addr into mem\n", value_regno); 6759 return -EACCES; 6760 } 6761 6762 err = check_mem_region_access(env, regno, off, size, 6763 reg->mem_size, false); 6764 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6765 mark_reg_unknown(env, regs, value_regno); 6766 } else if (reg->type == PTR_TO_CTX) { 6767 enum bpf_reg_type reg_type = SCALAR_VALUE; 6768 struct btf *btf = NULL; 6769 u32 btf_id = 0; 6770 6771 if (t == BPF_WRITE && value_regno >= 0 && 6772 is_pointer_value(env, value_regno)) { 6773 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6774 return -EACCES; 6775 } 6776 6777 err = check_ptr_off_reg(env, reg, regno); 6778 if (err < 0) 6779 return err; 6780 6781 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6782 &btf_id); 6783 if (err) 6784 verbose_linfo(env, insn_idx, "; "); 6785 if (!err && t == BPF_READ && value_regno >= 0) { 6786 /* ctx access returns either a scalar, or a 6787 * PTR_TO_PACKET[_META,_END]. In the latter 6788 * case, we know the offset is zero. 6789 */ 6790 if (reg_type == SCALAR_VALUE) { 6791 mark_reg_unknown(env, regs, value_regno); 6792 } else { 6793 mark_reg_known_zero(env, regs, 6794 value_regno); 6795 if (type_may_be_null(reg_type)) 6796 regs[value_regno].id = ++env->id_gen; 6797 /* A load of ctx field could have different 6798 * actual load size with the one encoded in the 6799 * insn. When the dst is PTR, it is for sure not 6800 * a sub-register. 6801 */ 6802 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6803 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6804 regs[value_regno].btf = btf; 6805 regs[value_regno].btf_id = btf_id; 6806 } 6807 } 6808 regs[value_regno].type = reg_type; 6809 } 6810 6811 } else if (reg->type == PTR_TO_STACK) { 6812 /* Basic bounds checks. */ 6813 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6814 if (err) 6815 return err; 6816 6817 if (t == BPF_READ) 6818 err = check_stack_read(env, regno, off, size, 6819 value_regno); 6820 else 6821 err = check_stack_write(env, regno, off, size, 6822 value_regno, insn_idx); 6823 } else if (reg_is_pkt_pointer(reg)) { 6824 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6825 verbose(env, "cannot write into packet\n"); 6826 return -EACCES; 6827 } 6828 if (t == BPF_WRITE && value_regno >= 0 && 6829 is_pointer_value(env, value_regno)) { 6830 verbose(env, "R%d leaks addr into packet\n", 6831 value_regno); 6832 return -EACCES; 6833 } 6834 err = check_packet_access(env, regno, off, size, false); 6835 if (!err && t == BPF_READ && value_regno >= 0) 6836 mark_reg_unknown(env, regs, value_regno); 6837 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6838 if (t == BPF_WRITE && value_regno >= 0 && 6839 is_pointer_value(env, value_regno)) { 6840 verbose(env, "R%d leaks addr into flow keys\n", 6841 value_regno); 6842 return -EACCES; 6843 } 6844 6845 err = check_flow_keys_access(env, off, size); 6846 if (!err && t == BPF_READ && value_regno >= 0) 6847 mark_reg_unknown(env, regs, value_regno); 6848 } else if (type_is_sk_pointer(reg->type)) { 6849 if (t == BPF_WRITE) { 6850 verbose(env, "R%d cannot write into %s\n", 6851 regno, reg_type_str(env, reg->type)); 6852 return -EACCES; 6853 } 6854 err = check_sock_access(env, insn_idx, regno, off, size, t); 6855 if (!err && value_regno >= 0) 6856 mark_reg_unknown(env, regs, value_regno); 6857 } else if (reg->type == PTR_TO_TP_BUFFER) { 6858 err = check_tp_buffer_access(env, reg, regno, off, size); 6859 if (!err && t == BPF_READ && value_regno >= 0) 6860 mark_reg_unknown(env, regs, value_regno); 6861 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6862 !type_may_be_null(reg->type)) { 6863 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6864 value_regno); 6865 } else if (reg->type == CONST_PTR_TO_MAP) { 6866 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6867 value_regno); 6868 } else if (base_type(reg->type) == PTR_TO_BUF) { 6869 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6870 u32 *max_access; 6871 6872 if (rdonly_mem) { 6873 if (t == BPF_WRITE) { 6874 verbose(env, "R%d cannot write into %s\n", 6875 regno, reg_type_str(env, reg->type)); 6876 return -EACCES; 6877 } 6878 max_access = &env->prog->aux->max_rdonly_access; 6879 } else { 6880 max_access = &env->prog->aux->max_rdwr_access; 6881 } 6882 6883 err = check_buffer_access(env, reg, regno, off, size, false, 6884 max_access); 6885 6886 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6887 mark_reg_unknown(env, regs, value_regno); 6888 } else { 6889 verbose(env, "R%d invalid mem access '%s'\n", regno, 6890 reg_type_str(env, reg->type)); 6891 return -EACCES; 6892 } 6893 6894 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6895 regs[value_regno].type == SCALAR_VALUE) { 6896 if (!is_ldsx) 6897 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6898 coerce_reg_to_size(®s[value_regno], size); 6899 else 6900 coerce_reg_to_size_sx(®s[value_regno], size); 6901 } 6902 return err; 6903 } 6904 6905 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6906 { 6907 int load_reg; 6908 int err; 6909 6910 switch (insn->imm) { 6911 case BPF_ADD: 6912 case BPF_ADD | BPF_FETCH: 6913 case BPF_AND: 6914 case BPF_AND | BPF_FETCH: 6915 case BPF_OR: 6916 case BPF_OR | BPF_FETCH: 6917 case BPF_XOR: 6918 case BPF_XOR | BPF_FETCH: 6919 case BPF_XCHG: 6920 case BPF_CMPXCHG: 6921 break; 6922 default: 6923 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6924 return -EINVAL; 6925 } 6926 6927 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6928 verbose(env, "invalid atomic operand size\n"); 6929 return -EINVAL; 6930 } 6931 6932 /* check src1 operand */ 6933 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6934 if (err) 6935 return err; 6936 6937 /* check src2 operand */ 6938 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6939 if (err) 6940 return err; 6941 6942 if (insn->imm == BPF_CMPXCHG) { 6943 /* Check comparison of R0 with memory location */ 6944 const u32 aux_reg = BPF_REG_0; 6945 6946 err = check_reg_arg(env, aux_reg, SRC_OP); 6947 if (err) 6948 return err; 6949 6950 if (is_pointer_value(env, aux_reg)) { 6951 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6952 return -EACCES; 6953 } 6954 } 6955 6956 if (is_pointer_value(env, insn->src_reg)) { 6957 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6958 return -EACCES; 6959 } 6960 6961 if (is_ctx_reg(env, insn->dst_reg) || 6962 is_pkt_reg(env, insn->dst_reg) || 6963 is_flow_key_reg(env, insn->dst_reg) || 6964 is_sk_reg(env, insn->dst_reg)) { 6965 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6966 insn->dst_reg, 6967 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6968 return -EACCES; 6969 } 6970 6971 if (insn->imm & BPF_FETCH) { 6972 if (insn->imm == BPF_CMPXCHG) 6973 load_reg = BPF_REG_0; 6974 else 6975 load_reg = insn->src_reg; 6976 6977 /* check and record load of old value */ 6978 err = check_reg_arg(env, load_reg, DST_OP); 6979 if (err) 6980 return err; 6981 } else { 6982 /* This instruction accesses a memory location but doesn't 6983 * actually load it into a register. 6984 */ 6985 load_reg = -1; 6986 } 6987 6988 /* Check whether we can read the memory, with second call for fetch 6989 * case to simulate the register fill. 6990 */ 6991 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6992 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6993 if (!err && load_reg >= 0) 6994 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6995 BPF_SIZE(insn->code), BPF_READ, load_reg, 6996 true, false); 6997 if (err) 6998 return err; 6999 7000 /* Check whether we can write into the same memory. */ 7001 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7002 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7003 if (err) 7004 return err; 7005 7006 return 0; 7007 } 7008 7009 /* When register 'regno' is used to read the stack (either directly or through 7010 * a helper function) make sure that it's within stack boundary and, depending 7011 * on the access type and privileges, that all elements of the stack are 7012 * initialized. 7013 * 7014 * 'off' includes 'regno->off', but not its dynamic part (if any). 7015 * 7016 * All registers that have been spilled on the stack in the slots within the 7017 * read offsets are marked as read. 7018 */ 7019 static int check_stack_range_initialized( 7020 struct bpf_verifier_env *env, int regno, int off, 7021 int access_size, bool zero_size_allowed, 7022 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7023 { 7024 struct bpf_reg_state *reg = reg_state(env, regno); 7025 struct bpf_func_state *state = func(env, reg); 7026 int err, min_off, max_off, i, j, slot, spi; 7027 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7028 enum bpf_access_type bounds_check_type; 7029 /* Some accesses can write anything into the stack, others are 7030 * read-only. 7031 */ 7032 bool clobber = false; 7033 7034 if (access_size == 0 && !zero_size_allowed) { 7035 verbose(env, "invalid zero-sized read\n"); 7036 return -EACCES; 7037 } 7038 7039 if (type == ACCESS_HELPER) { 7040 /* The bounds checks for writes are more permissive than for 7041 * reads. However, if raw_mode is not set, we'll do extra 7042 * checks below. 7043 */ 7044 bounds_check_type = BPF_WRITE; 7045 clobber = true; 7046 } else { 7047 bounds_check_type = BPF_READ; 7048 } 7049 err = check_stack_access_within_bounds(env, regno, off, access_size, 7050 type, bounds_check_type); 7051 if (err) 7052 return err; 7053 7054 7055 if (tnum_is_const(reg->var_off)) { 7056 min_off = max_off = reg->var_off.value + off; 7057 } else { 7058 /* Variable offset is prohibited for unprivileged mode for 7059 * simplicity since it requires corresponding support in 7060 * Spectre masking for stack ALU. 7061 * See also retrieve_ptr_limit(). 7062 */ 7063 if (!env->bypass_spec_v1) { 7064 char tn_buf[48]; 7065 7066 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7067 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7068 regno, err_extra, tn_buf); 7069 return -EACCES; 7070 } 7071 /* Only initialized buffer on stack is allowed to be accessed 7072 * with variable offset. With uninitialized buffer it's hard to 7073 * guarantee that whole memory is marked as initialized on 7074 * helper return since specific bounds are unknown what may 7075 * cause uninitialized stack leaking. 7076 */ 7077 if (meta && meta->raw_mode) 7078 meta = NULL; 7079 7080 min_off = reg->smin_value + off; 7081 max_off = reg->smax_value + off; 7082 } 7083 7084 if (meta && meta->raw_mode) { 7085 /* Ensure we won't be overwriting dynptrs when simulating byte 7086 * by byte access in check_helper_call using meta.access_size. 7087 * This would be a problem if we have a helper in the future 7088 * which takes: 7089 * 7090 * helper(uninit_mem, len, dynptr) 7091 * 7092 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7093 * may end up writing to dynptr itself when touching memory from 7094 * arg 1. This can be relaxed on a case by case basis for known 7095 * safe cases, but reject due to the possibilitiy of aliasing by 7096 * default. 7097 */ 7098 for (i = min_off; i < max_off + access_size; i++) { 7099 int stack_off = -i - 1; 7100 7101 spi = __get_spi(i); 7102 /* raw_mode may write past allocated_stack */ 7103 if (state->allocated_stack <= stack_off) 7104 continue; 7105 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7106 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7107 return -EACCES; 7108 } 7109 } 7110 meta->access_size = access_size; 7111 meta->regno = regno; 7112 return 0; 7113 } 7114 7115 for (i = min_off; i < max_off + access_size; i++) { 7116 u8 *stype; 7117 7118 slot = -i - 1; 7119 spi = slot / BPF_REG_SIZE; 7120 if (state->allocated_stack <= slot) { 7121 verbose(env, "verifier bug: allocated_stack too small"); 7122 return -EFAULT; 7123 } 7124 7125 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7126 if (*stype == STACK_MISC) 7127 goto mark; 7128 if ((*stype == STACK_ZERO) || 7129 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7130 if (clobber) { 7131 /* helper can write anything into the stack */ 7132 *stype = STACK_MISC; 7133 } 7134 goto mark; 7135 } 7136 7137 if (is_spilled_reg(&state->stack[spi]) && 7138 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7139 env->allow_ptr_leaks)) { 7140 if (clobber) { 7141 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7142 for (j = 0; j < BPF_REG_SIZE; j++) 7143 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7144 } 7145 goto mark; 7146 } 7147 7148 if (tnum_is_const(reg->var_off)) { 7149 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7150 err_extra, regno, min_off, i - min_off, access_size); 7151 } else { 7152 char tn_buf[48]; 7153 7154 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7155 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7156 err_extra, regno, tn_buf, i - min_off, access_size); 7157 } 7158 return -EACCES; 7159 mark: 7160 /* reading any byte out of 8-byte 'spill_slot' will cause 7161 * the whole slot to be marked as 'read' 7162 */ 7163 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7164 state->stack[spi].spilled_ptr.parent, 7165 REG_LIVE_READ64); 7166 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7167 * be sure that whether stack slot is written to or not. Hence, 7168 * we must still conservatively propagate reads upwards even if 7169 * helper may write to the entire memory range. 7170 */ 7171 } 7172 return 0; 7173 } 7174 7175 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7176 int access_size, bool zero_size_allowed, 7177 struct bpf_call_arg_meta *meta) 7178 { 7179 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7180 u32 *max_access; 7181 7182 switch (base_type(reg->type)) { 7183 case PTR_TO_PACKET: 7184 case PTR_TO_PACKET_META: 7185 return check_packet_access(env, regno, reg->off, access_size, 7186 zero_size_allowed); 7187 case PTR_TO_MAP_KEY: 7188 if (meta && meta->raw_mode) { 7189 verbose(env, "R%d cannot write into %s\n", regno, 7190 reg_type_str(env, reg->type)); 7191 return -EACCES; 7192 } 7193 return check_mem_region_access(env, regno, reg->off, access_size, 7194 reg->map_ptr->key_size, false); 7195 case PTR_TO_MAP_VALUE: 7196 if (check_map_access_type(env, regno, reg->off, access_size, 7197 meta && meta->raw_mode ? BPF_WRITE : 7198 BPF_READ)) 7199 return -EACCES; 7200 return check_map_access(env, regno, reg->off, access_size, 7201 zero_size_allowed, ACCESS_HELPER); 7202 case PTR_TO_MEM: 7203 if (type_is_rdonly_mem(reg->type)) { 7204 if (meta && meta->raw_mode) { 7205 verbose(env, "R%d cannot write into %s\n", regno, 7206 reg_type_str(env, reg->type)); 7207 return -EACCES; 7208 } 7209 } 7210 return check_mem_region_access(env, regno, reg->off, 7211 access_size, reg->mem_size, 7212 zero_size_allowed); 7213 case PTR_TO_BUF: 7214 if (type_is_rdonly_mem(reg->type)) { 7215 if (meta && meta->raw_mode) { 7216 verbose(env, "R%d cannot write into %s\n", regno, 7217 reg_type_str(env, reg->type)); 7218 return -EACCES; 7219 } 7220 7221 max_access = &env->prog->aux->max_rdonly_access; 7222 } else { 7223 max_access = &env->prog->aux->max_rdwr_access; 7224 } 7225 return check_buffer_access(env, reg, regno, reg->off, 7226 access_size, zero_size_allowed, 7227 max_access); 7228 case PTR_TO_STACK: 7229 return check_stack_range_initialized( 7230 env, 7231 regno, reg->off, access_size, 7232 zero_size_allowed, ACCESS_HELPER, meta); 7233 case PTR_TO_BTF_ID: 7234 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7235 access_size, BPF_READ, -1); 7236 case PTR_TO_CTX: 7237 /* in case the function doesn't know how to access the context, 7238 * (because we are in a program of type SYSCALL for example), we 7239 * can not statically check its size. 7240 * Dynamically check it now. 7241 */ 7242 if (!env->ops->convert_ctx_access) { 7243 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7244 int offset = access_size - 1; 7245 7246 /* Allow zero-byte read from PTR_TO_CTX */ 7247 if (access_size == 0) 7248 return zero_size_allowed ? 0 : -EACCES; 7249 7250 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7251 atype, -1, false, false); 7252 } 7253 7254 fallthrough; 7255 default: /* scalar_value or invalid ptr */ 7256 /* Allow zero-byte read from NULL, regardless of pointer type */ 7257 if (zero_size_allowed && access_size == 0 && 7258 register_is_null(reg)) 7259 return 0; 7260 7261 verbose(env, "R%d type=%s ", regno, 7262 reg_type_str(env, reg->type)); 7263 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7264 return -EACCES; 7265 } 7266 } 7267 7268 static int check_mem_size_reg(struct bpf_verifier_env *env, 7269 struct bpf_reg_state *reg, u32 regno, 7270 bool zero_size_allowed, 7271 struct bpf_call_arg_meta *meta) 7272 { 7273 int err; 7274 7275 /* This is used to refine r0 return value bounds for helpers 7276 * that enforce this value as an upper bound on return values. 7277 * See do_refine_retval_range() for helpers that can refine 7278 * the return value. C type of helper is u32 so we pull register 7279 * bound from umax_value however, if negative verifier errors 7280 * out. Only upper bounds can be learned because retval is an 7281 * int type and negative retvals are allowed. 7282 */ 7283 meta->msize_max_value = reg->umax_value; 7284 7285 /* The register is SCALAR_VALUE; the access check 7286 * happens using its boundaries. 7287 */ 7288 if (!tnum_is_const(reg->var_off)) 7289 /* For unprivileged variable accesses, disable raw 7290 * mode so that the program is required to 7291 * initialize all the memory that the helper could 7292 * just partially fill up. 7293 */ 7294 meta = NULL; 7295 7296 if (reg->smin_value < 0) { 7297 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7298 regno); 7299 return -EACCES; 7300 } 7301 7302 if (reg->umin_value == 0) { 7303 err = check_helper_mem_access(env, regno - 1, 0, 7304 zero_size_allowed, 7305 meta); 7306 if (err) 7307 return err; 7308 } 7309 7310 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7311 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7312 regno); 7313 return -EACCES; 7314 } 7315 err = check_helper_mem_access(env, regno - 1, 7316 reg->umax_value, 7317 zero_size_allowed, meta); 7318 if (!err) 7319 err = mark_chain_precision(env, regno); 7320 return err; 7321 } 7322 7323 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7324 u32 regno, u32 mem_size) 7325 { 7326 bool may_be_null = type_may_be_null(reg->type); 7327 struct bpf_reg_state saved_reg; 7328 struct bpf_call_arg_meta meta; 7329 int err; 7330 7331 if (register_is_null(reg)) 7332 return 0; 7333 7334 memset(&meta, 0, sizeof(meta)); 7335 /* Assuming that the register contains a value check if the memory 7336 * access is safe. Temporarily save and restore the register's state as 7337 * the conversion shouldn't be visible to a caller. 7338 */ 7339 if (may_be_null) { 7340 saved_reg = *reg; 7341 mark_ptr_not_null_reg(reg); 7342 } 7343 7344 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7345 /* Check access for BPF_WRITE */ 7346 meta.raw_mode = true; 7347 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7348 7349 if (may_be_null) 7350 *reg = saved_reg; 7351 7352 return err; 7353 } 7354 7355 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7356 u32 regno) 7357 { 7358 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7359 bool may_be_null = type_may_be_null(mem_reg->type); 7360 struct bpf_reg_state saved_reg; 7361 struct bpf_call_arg_meta meta; 7362 int err; 7363 7364 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7365 7366 memset(&meta, 0, sizeof(meta)); 7367 7368 if (may_be_null) { 7369 saved_reg = *mem_reg; 7370 mark_ptr_not_null_reg(mem_reg); 7371 } 7372 7373 err = check_mem_size_reg(env, reg, regno, true, &meta); 7374 /* Check access for BPF_WRITE */ 7375 meta.raw_mode = true; 7376 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7377 7378 if (may_be_null) 7379 *mem_reg = saved_reg; 7380 return err; 7381 } 7382 7383 /* Implementation details: 7384 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7385 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7386 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7387 * Two separate bpf_obj_new will also have different reg->id. 7388 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7389 * clears reg->id after value_or_null->value transition, since the verifier only 7390 * cares about the range of access to valid map value pointer and doesn't care 7391 * about actual address of the map element. 7392 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7393 * reg->id > 0 after value_or_null->value transition. By doing so 7394 * two bpf_map_lookups will be considered two different pointers that 7395 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7396 * returned from bpf_obj_new. 7397 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7398 * dead-locks. 7399 * Since only one bpf_spin_lock is allowed the checks are simpler than 7400 * reg_is_refcounted() logic. The verifier needs to remember only 7401 * one spin_lock instead of array of acquired_refs. 7402 * cur_state->active_lock remembers which map value element or allocated 7403 * object got locked and clears it after bpf_spin_unlock. 7404 */ 7405 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7406 bool is_lock) 7407 { 7408 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7409 struct bpf_verifier_state *cur = env->cur_state; 7410 bool is_const = tnum_is_const(reg->var_off); 7411 u64 val = reg->var_off.value; 7412 struct bpf_map *map = NULL; 7413 struct btf *btf = NULL; 7414 struct btf_record *rec; 7415 7416 if (!is_const) { 7417 verbose(env, 7418 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7419 regno); 7420 return -EINVAL; 7421 } 7422 if (reg->type == PTR_TO_MAP_VALUE) { 7423 map = reg->map_ptr; 7424 if (!map->btf) { 7425 verbose(env, 7426 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7427 map->name); 7428 return -EINVAL; 7429 } 7430 } else { 7431 btf = reg->btf; 7432 } 7433 7434 rec = reg_btf_record(reg); 7435 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7436 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7437 map ? map->name : "kptr"); 7438 return -EINVAL; 7439 } 7440 if (rec->spin_lock_off != val + reg->off) { 7441 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7442 val + reg->off, rec->spin_lock_off); 7443 return -EINVAL; 7444 } 7445 if (is_lock) { 7446 if (cur->active_lock.ptr) { 7447 verbose(env, 7448 "Locking two bpf_spin_locks are not allowed\n"); 7449 return -EINVAL; 7450 } 7451 if (map) 7452 cur->active_lock.ptr = map; 7453 else 7454 cur->active_lock.ptr = btf; 7455 cur->active_lock.id = reg->id; 7456 } else { 7457 void *ptr; 7458 7459 if (map) 7460 ptr = map; 7461 else 7462 ptr = btf; 7463 7464 if (!cur->active_lock.ptr) { 7465 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7466 return -EINVAL; 7467 } 7468 if (cur->active_lock.ptr != ptr || 7469 cur->active_lock.id != reg->id) { 7470 verbose(env, "bpf_spin_unlock of different lock\n"); 7471 return -EINVAL; 7472 } 7473 7474 invalidate_non_owning_refs(env); 7475 7476 cur->active_lock.ptr = NULL; 7477 cur->active_lock.id = 0; 7478 } 7479 return 0; 7480 } 7481 7482 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7483 struct bpf_call_arg_meta *meta) 7484 { 7485 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7486 bool is_const = tnum_is_const(reg->var_off); 7487 struct bpf_map *map = reg->map_ptr; 7488 u64 val = reg->var_off.value; 7489 7490 if (!is_const) { 7491 verbose(env, 7492 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7493 regno); 7494 return -EINVAL; 7495 } 7496 if (!map->btf) { 7497 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7498 map->name); 7499 return -EINVAL; 7500 } 7501 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7502 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7503 return -EINVAL; 7504 } 7505 if (map->record->timer_off != val + reg->off) { 7506 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7507 val + reg->off, map->record->timer_off); 7508 return -EINVAL; 7509 } 7510 if (meta->map_ptr) { 7511 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7512 return -EFAULT; 7513 } 7514 meta->map_uid = reg->map_uid; 7515 meta->map_ptr = map; 7516 return 0; 7517 } 7518 7519 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7520 struct bpf_call_arg_meta *meta) 7521 { 7522 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7523 struct bpf_map *map_ptr = reg->map_ptr; 7524 struct btf_field *kptr_field; 7525 u32 kptr_off; 7526 7527 if (!tnum_is_const(reg->var_off)) { 7528 verbose(env, 7529 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7530 regno); 7531 return -EINVAL; 7532 } 7533 if (!map_ptr->btf) { 7534 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7535 map_ptr->name); 7536 return -EINVAL; 7537 } 7538 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7539 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7540 return -EINVAL; 7541 } 7542 7543 meta->map_ptr = map_ptr; 7544 kptr_off = reg->off + reg->var_off.value; 7545 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7546 if (!kptr_field) { 7547 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7548 return -EACCES; 7549 } 7550 if (kptr_field->type != BPF_KPTR_REF) { 7551 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7552 return -EACCES; 7553 } 7554 meta->kptr_field = kptr_field; 7555 return 0; 7556 } 7557 7558 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7559 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7560 * 7561 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7562 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7563 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7564 * 7565 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7566 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7567 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7568 * mutate the view of the dynptr and also possibly destroy it. In the latter 7569 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7570 * memory that dynptr points to. 7571 * 7572 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7573 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7574 * readonly dynptr view yet, hence only the first case is tracked and checked. 7575 * 7576 * This is consistent with how C applies the const modifier to a struct object, 7577 * where the pointer itself inside bpf_dynptr becomes const but not what it 7578 * points to. 7579 * 7580 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7581 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7582 */ 7583 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7584 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7585 { 7586 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7587 int err; 7588 7589 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7590 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7591 */ 7592 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7593 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7594 return -EFAULT; 7595 } 7596 7597 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7598 * constructing a mutable bpf_dynptr object. 7599 * 7600 * Currently, this is only possible with PTR_TO_STACK 7601 * pointing to a region of at least 16 bytes which doesn't 7602 * contain an existing bpf_dynptr. 7603 * 7604 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7605 * mutated or destroyed. However, the memory it points to 7606 * may be mutated. 7607 * 7608 * None - Points to a initialized dynptr that can be mutated and 7609 * destroyed, including mutation of the memory it points 7610 * to. 7611 */ 7612 if (arg_type & MEM_UNINIT) { 7613 int i; 7614 7615 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7616 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7617 return -EINVAL; 7618 } 7619 7620 /* we write BPF_DW bits (8 bytes) at a time */ 7621 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7622 err = check_mem_access(env, insn_idx, regno, 7623 i, BPF_DW, BPF_WRITE, -1, false, false); 7624 if (err) 7625 return err; 7626 } 7627 7628 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7629 } else /* MEM_RDONLY and None case from above */ { 7630 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7631 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7632 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7633 return -EINVAL; 7634 } 7635 7636 if (!is_dynptr_reg_valid_init(env, reg)) { 7637 verbose(env, 7638 "Expected an initialized dynptr as arg #%d\n", 7639 regno); 7640 return -EINVAL; 7641 } 7642 7643 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7644 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7645 verbose(env, 7646 "Expected a dynptr of type %s as arg #%d\n", 7647 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7648 return -EINVAL; 7649 } 7650 7651 err = mark_dynptr_read(env, reg); 7652 } 7653 return err; 7654 } 7655 7656 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7657 { 7658 struct bpf_func_state *state = func(env, reg); 7659 7660 return state->stack[spi].spilled_ptr.ref_obj_id; 7661 } 7662 7663 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7664 { 7665 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7666 } 7667 7668 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7669 { 7670 return meta->kfunc_flags & KF_ITER_NEW; 7671 } 7672 7673 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7674 { 7675 return meta->kfunc_flags & KF_ITER_NEXT; 7676 } 7677 7678 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7679 { 7680 return meta->kfunc_flags & KF_ITER_DESTROY; 7681 } 7682 7683 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7684 { 7685 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7686 * kfunc is iter state pointer 7687 */ 7688 return arg == 0 && is_iter_kfunc(meta); 7689 } 7690 7691 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7692 struct bpf_kfunc_call_arg_meta *meta) 7693 { 7694 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7695 const struct btf_type *t; 7696 const struct btf_param *arg; 7697 int spi, err, i, nr_slots; 7698 u32 btf_id; 7699 7700 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7701 arg = &btf_params(meta->func_proto)[0]; 7702 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7703 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7704 nr_slots = t->size / BPF_REG_SIZE; 7705 7706 if (is_iter_new_kfunc(meta)) { 7707 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7708 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7709 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7710 iter_type_str(meta->btf, btf_id), regno); 7711 return -EINVAL; 7712 } 7713 7714 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7715 err = check_mem_access(env, insn_idx, regno, 7716 i, BPF_DW, BPF_WRITE, -1, false, false); 7717 if (err) 7718 return err; 7719 } 7720 7721 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7722 if (err) 7723 return err; 7724 } else { 7725 /* iter_next() or iter_destroy() expect initialized iter state*/ 7726 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7727 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7728 iter_type_str(meta->btf, btf_id), regno); 7729 return -EINVAL; 7730 } 7731 7732 spi = iter_get_spi(env, reg, nr_slots); 7733 if (spi < 0) 7734 return spi; 7735 7736 err = mark_iter_read(env, reg, spi, nr_slots); 7737 if (err) 7738 return err; 7739 7740 /* remember meta->iter info for process_iter_next_call() */ 7741 meta->iter.spi = spi; 7742 meta->iter.frameno = reg->frameno; 7743 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7744 7745 if (is_iter_destroy_kfunc(meta)) { 7746 err = unmark_stack_slots_iter(env, reg, nr_slots); 7747 if (err) 7748 return err; 7749 } 7750 } 7751 7752 return 0; 7753 } 7754 7755 /* Look for a previous loop entry at insn_idx: nearest parent state 7756 * stopped at insn_idx with callsites matching those in cur->frame. 7757 */ 7758 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7759 struct bpf_verifier_state *cur, 7760 int insn_idx) 7761 { 7762 struct bpf_verifier_state_list *sl; 7763 struct bpf_verifier_state *st; 7764 7765 /* Explored states are pushed in stack order, most recent states come first */ 7766 sl = *explored_state(env, insn_idx); 7767 for (; sl; sl = sl->next) { 7768 /* If st->branches != 0 state is a part of current DFS verification path, 7769 * hence cur & st for a loop. 7770 */ 7771 st = &sl->state; 7772 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7773 st->dfs_depth < cur->dfs_depth) 7774 return st; 7775 } 7776 7777 return NULL; 7778 } 7779 7780 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7781 static bool regs_exact(const struct bpf_reg_state *rold, 7782 const struct bpf_reg_state *rcur, 7783 struct bpf_idmap *idmap); 7784 7785 static void maybe_widen_reg(struct bpf_verifier_env *env, 7786 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7787 struct bpf_idmap *idmap) 7788 { 7789 if (rold->type != SCALAR_VALUE) 7790 return; 7791 if (rold->type != rcur->type) 7792 return; 7793 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7794 return; 7795 __mark_reg_unknown(env, rcur); 7796 } 7797 7798 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7799 struct bpf_verifier_state *old, 7800 struct bpf_verifier_state *cur) 7801 { 7802 struct bpf_func_state *fold, *fcur; 7803 int i, fr; 7804 7805 reset_idmap_scratch(env); 7806 for (fr = old->curframe; fr >= 0; fr--) { 7807 fold = old->frame[fr]; 7808 fcur = cur->frame[fr]; 7809 7810 for (i = 0; i < MAX_BPF_REG; i++) 7811 maybe_widen_reg(env, 7812 &fold->regs[i], 7813 &fcur->regs[i], 7814 &env->idmap_scratch); 7815 7816 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7817 if (!is_spilled_reg(&fold->stack[i]) || 7818 !is_spilled_reg(&fcur->stack[i])) 7819 continue; 7820 7821 maybe_widen_reg(env, 7822 &fold->stack[i].spilled_ptr, 7823 &fcur->stack[i].spilled_ptr, 7824 &env->idmap_scratch); 7825 } 7826 } 7827 return 0; 7828 } 7829 7830 /* process_iter_next_call() is called when verifier gets to iterator's next 7831 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7832 * to it as just "iter_next()" in comments below. 7833 * 7834 * BPF verifier relies on a crucial contract for any iter_next() 7835 * implementation: it should *eventually* return NULL, and once that happens 7836 * it should keep returning NULL. That is, once iterator exhausts elements to 7837 * iterate, it should never reset or spuriously return new elements. 7838 * 7839 * With the assumption of such contract, process_iter_next_call() simulates 7840 * a fork in the verifier state to validate loop logic correctness and safety 7841 * without having to simulate infinite amount of iterations. 7842 * 7843 * In current state, we first assume that iter_next() returned NULL and 7844 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7845 * conditions we should not form an infinite loop and should eventually reach 7846 * exit. 7847 * 7848 * Besides that, we also fork current state and enqueue it for later 7849 * verification. In a forked state we keep iterator state as ACTIVE 7850 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7851 * also bump iteration depth to prevent erroneous infinite loop detection 7852 * later on (see iter_active_depths_differ() comment for details). In this 7853 * state we assume that we'll eventually loop back to another iter_next() 7854 * calls (it could be in exactly same location or in some other instruction, 7855 * it doesn't matter, we don't make any unnecessary assumptions about this, 7856 * everything revolves around iterator state in a stack slot, not which 7857 * instruction is calling iter_next()). When that happens, we either will come 7858 * to iter_next() with equivalent state and can conclude that next iteration 7859 * will proceed in exactly the same way as we just verified, so it's safe to 7860 * assume that loop converges. If not, we'll go on another iteration 7861 * simulation with a different input state, until all possible starting states 7862 * are validated or we reach maximum number of instructions limit. 7863 * 7864 * This way, we will either exhaustively discover all possible input states 7865 * that iterator loop can start with and eventually will converge, or we'll 7866 * effectively regress into bounded loop simulation logic and either reach 7867 * maximum number of instructions if loop is not provably convergent, or there 7868 * is some statically known limit on number of iterations (e.g., if there is 7869 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7870 * 7871 * Iteration convergence logic in is_state_visited() relies on exact 7872 * states comparison, which ignores read and precision marks. 7873 * This is necessary because read and precision marks are not finalized 7874 * while in the loop. Exact comparison might preclude convergence for 7875 * simple programs like below: 7876 * 7877 * i = 0; 7878 * while(iter_next(&it)) 7879 * i++; 7880 * 7881 * At each iteration step i++ would produce a new distinct state and 7882 * eventually instruction processing limit would be reached. 7883 * 7884 * To avoid such behavior speculatively forget (widen) range for 7885 * imprecise scalar registers, if those registers were not precise at the 7886 * end of the previous iteration and do not match exactly. 7887 * 7888 * This is a conservative heuristic that allows to verify wide range of programs, 7889 * however it precludes verification of programs that conjure an 7890 * imprecise value on the first loop iteration and use it as precise on a second. 7891 * For example, the following safe program would fail to verify: 7892 * 7893 * struct bpf_num_iter it; 7894 * int arr[10]; 7895 * int i = 0, a = 0; 7896 * bpf_iter_num_new(&it, 0, 10); 7897 * while (bpf_iter_num_next(&it)) { 7898 * if (a == 0) { 7899 * a = 1; 7900 * i = 7; // Because i changed verifier would forget 7901 * // it's range on second loop entry. 7902 * } else { 7903 * arr[i] = 42; // This would fail to verify. 7904 * } 7905 * } 7906 * bpf_iter_num_destroy(&it); 7907 */ 7908 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7909 struct bpf_kfunc_call_arg_meta *meta) 7910 { 7911 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7912 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7913 struct bpf_reg_state *cur_iter, *queued_iter; 7914 int iter_frameno = meta->iter.frameno; 7915 int iter_spi = meta->iter.spi; 7916 7917 BTF_TYPE_EMIT(struct bpf_iter); 7918 7919 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7920 7921 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7922 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7923 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7924 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7925 return -EFAULT; 7926 } 7927 7928 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7929 /* Because iter_next() call is a checkpoint is_state_visitied() 7930 * should guarantee parent state with same call sites and insn_idx. 7931 */ 7932 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7933 !same_callsites(cur_st->parent, cur_st)) { 7934 verbose(env, "bug: bad parent state for iter next call"); 7935 return -EFAULT; 7936 } 7937 /* Note cur_st->parent in the call below, it is necessary to skip 7938 * checkpoint created for cur_st by is_state_visited() 7939 * right at this instruction. 7940 */ 7941 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7942 /* branch out active iter state */ 7943 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7944 if (!queued_st) 7945 return -ENOMEM; 7946 7947 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7948 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7949 queued_iter->iter.depth++; 7950 if (prev_st) 7951 widen_imprecise_scalars(env, prev_st, queued_st); 7952 7953 queued_fr = queued_st->frame[queued_st->curframe]; 7954 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7955 } 7956 7957 /* switch to DRAINED state, but keep the depth unchanged */ 7958 /* mark current iter state as drained and assume returned NULL */ 7959 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7960 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7961 7962 return 0; 7963 } 7964 7965 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7966 { 7967 return type == ARG_CONST_SIZE || 7968 type == ARG_CONST_SIZE_OR_ZERO; 7969 } 7970 7971 static bool arg_type_is_release(enum bpf_arg_type type) 7972 { 7973 return type & OBJ_RELEASE; 7974 } 7975 7976 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7977 { 7978 return base_type(type) == ARG_PTR_TO_DYNPTR; 7979 } 7980 7981 static int int_ptr_type_to_size(enum bpf_arg_type type) 7982 { 7983 if (type == ARG_PTR_TO_INT) 7984 return sizeof(u32); 7985 else if (type == ARG_PTR_TO_LONG) 7986 return sizeof(u64); 7987 7988 return -EINVAL; 7989 } 7990 7991 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7992 const struct bpf_call_arg_meta *meta, 7993 enum bpf_arg_type *arg_type) 7994 { 7995 if (!meta->map_ptr) { 7996 /* kernel subsystem misconfigured verifier */ 7997 verbose(env, "invalid map_ptr to access map->type\n"); 7998 return -EACCES; 7999 } 8000 8001 switch (meta->map_ptr->map_type) { 8002 case BPF_MAP_TYPE_SOCKMAP: 8003 case BPF_MAP_TYPE_SOCKHASH: 8004 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8005 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8006 } else { 8007 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8008 return -EINVAL; 8009 } 8010 break; 8011 case BPF_MAP_TYPE_BLOOM_FILTER: 8012 if (meta->func_id == BPF_FUNC_map_peek_elem) 8013 *arg_type = ARG_PTR_TO_MAP_VALUE; 8014 break; 8015 default: 8016 break; 8017 } 8018 return 0; 8019 } 8020 8021 struct bpf_reg_types { 8022 const enum bpf_reg_type types[10]; 8023 u32 *btf_id; 8024 }; 8025 8026 static const struct bpf_reg_types sock_types = { 8027 .types = { 8028 PTR_TO_SOCK_COMMON, 8029 PTR_TO_SOCKET, 8030 PTR_TO_TCP_SOCK, 8031 PTR_TO_XDP_SOCK, 8032 }, 8033 }; 8034 8035 #ifdef CONFIG_NET 8036 static const struct bpf_reg_types btf_id_sock_common_types = { 8037 .types = { 8038 PTR_TO_SOCK_COMMON, 8039 PTR_TO_SOCKET, 8040 PTR_TO_TCP_SOCK, 8041 PTR_TO_XDP_SOCK, 8042 PTR_TO_BTF_ID, 8043 PTR_TO_BTF_ID | PTR_TRUSTED, 8044 }, 8045 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8046 }; 8047 #endif 8048 8049 static const struct bpf_reg_types mem_types = { 8050 .types = { 8051 PTR_TO_STACK, 8052 PTR_TO_PACKET, 8053 PTR_TO_PACKET_META, 8054 PTR_TO_MAP_KEY, 8055 PTR_TO_MAP_VALUE, 8056 PTR_TO_MEM, 8057 PTR_TO_MEM | MEM_RINGBUF, 8058 PTR_TO_BUF, 8059 PTR_TO_BTF_ID | PTR_TRUSTED, 8060 }, 8061 }; 8062 8063 static const struct bpf_reg_types int_ptr_types = { 8064 .types = { 8065 PTR_TO_STACK, 8066 PTR_TO_PACKET, 8067 PTR_TO_PACKET_META, 8068 PTR_TO_MAP_KEY, 8069 PTR_TO_MAP_VALUE, 8070 }, 8071 }; 8072 8073 static const struct bpf_reg_types spin_lock_types = { 8074 .types = { 8075 PTR_TO_MAP_VALUE, 8076 PTR_TO_BTF_ID | MEM_ALLOC, 8077 } 8078 }; 8079 8080 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8081 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8082 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8083 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8084 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8085 static const struct bpf_reg_types btf_ptr_types = { 8086 .types = { 8087 PTR_TO_BTF_ID, 8088 PTR_TO_BTF_ID | PTR_TRUSTED, 8089 PTR_TO_BTF_ID | MEM_RCU, 8090 }, 8091 }; 8092 static const struct bpf_reg_types percpu_btf_ptr_types = { 8093 .types = { 8094 PTR_TO_BTF_ID | MEM_PERCPU, 8095 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8096 } 8097 }; 8098 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8099 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8100 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8101 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8102 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8103 static const struct bpf_reg_types dynptr_types = { 8104 .types = { 8105 PTR_TO_STACK, 8106 CONST_PTR_TO_DYNPTR, 8107 } 8108 }; 8109 8110 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8111 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8112 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8113 [ARG_CONST_SIZE] = &scalar_types, 8114 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8115 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8116 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8117 [ARG_PTR_TO_CTX] = &context_types, 8118 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8119 #ifdef CONFIG_NET 8120 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8121 #endif 8122 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8123 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8124 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8125 [ARG_PTR_TO_MEM] = &mem_types, 8126 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8127 [ARG_PTR_TO_INT] = &int_ptr_types, 8128 [ARG_PTR_TO_LONG] = &int_ptr_types, 8129 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8130 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8131 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8132 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8133 [ARG_PTR_TO_TIMER] = &timer_types, 8134 [ARG_PTR_TO_KPTR] = &kptr_types, 8135 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8136 }; 8137 8138 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8139 enum bpf_arg_type arg_type, 8140 const u32 *arg_btf_id, 8141 struct bpf_call_arg_meta *meta) 8142 { 8143 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8144 enum bpf_reg_type expected, type = reg->type; 8145 const struct bpf_reg_types *compatible; 8146 int i, j; 8147 8148 compatible = compatible_reg_types[base_type(arg_type)]; 8149 if (!compatible) { 8150 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8151 return -EFAULT; 8152 } 8153 8154 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8155 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8156 * 8157 * Same for MAYBE_NULL: 8158 * 8159 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8160 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8161 * 8162 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8163 * 8164 * Therefore we fold these flags depending on the arg_type before comparison. 8165 */ 8166 if (arg_type & MEM_RDONLY) 8167 type &= ~MEM_RDONLY; 8168 if (arg_type & PTR_MAYBE_NULL) 8169 type &= ~PTR_MAYBE_NULL; 8170 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8171 type &= ~DYNPTR_TYPE_FLAG_MASK; 8172 8173 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 8174 type &= ~MEM_ALLOC; 8175 8176 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8177 expected = compatible->types[i]; 8178 if (expected == NOT_INIT) 8179 break; 8180 8181 if (type == expected) 8182 goto found; 8183 } 8184 8185 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8186 for (j = 0; j + 1 < i; j++) 8187 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8188 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8189 return -EACCES; 8190 8191 found: 8192 if (base_type(reg->type) != PTR_TO_BTF_ID) 8193 return 0; 8194 8195 if (compatible == &mem_types) { 8196 if (!(arg_type & MEM_RDONLY)) { 8197 verbose(env, 8198 "%s() may write into memory pointed by R%d type=%s\n", 8199 func_id_name(meta->func_id), 8200 regno, reg_type_str(env, reg->type)); 8201 return -EACCES; 8202 } 8203 return 0; 8204 } 8205 8206 switch ((int)reg->type) { 8207 case PTR_TO_BTF_ID: 8208 case PTR_TO_BTF_ID | PTR_TRUSTED: 8209 case PTR_TO_BTF_ID | MEM_RCU: 8210 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8211 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8212 { 8213 /* For bpf_sk_release, it needs to match against first member 8214 * 'struct sock_common', hence make an exception for it. This 8215 * allows bpf_sk_release to work for multiple socket types. 8216 */ 8217 bool strict_type_match = arg_type_is_release(arg_type) && 8218 meta->func_id != BPF_FUNC_sk_release; 8219 8220 if (type_may_be_null(reg->type) && 8221 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8222 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8223 return -EACCES; 8224 } 8225 8226 if (!arg_btf_id) { 8227 if (!compatible->btf_id) { 8228 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8229 return -EFAULT; 8230 } 8231 arg_btf_id = compatible->btf_id; 8232 } 8233 8234 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8235 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8236 return -EACCES; 8237 } else { 8238 if (arg_btf_id == BPF_PTR_POISON) { 8239 verbose(env, "verifier internal error:"); 8240 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8241 regno); 8242 return -EACCES; 8243 } 8244 8245 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8246 btf_vmlinux, *arg_btf_id, 8247 strict_type_match)) { 8248 verbose(env, "R%d is of type %s but %s is expected\n", 8249 regno, btf_type_name(reg->btf, reg->btf_id), 8250 btf_type_name(btf_vmlinux, *arg_btf_id)); 8251 return -EACCES; 8252 } 8253 } 8254 break; 8255 } 8256 case PTR_TO_BTF_ID | MEM_ALLOC: 8257 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8258 meta->func_id != BPF_FUNC_kptr_xchg) { 8259 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8260 return -EFAULT; 8261 } 8262 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8263 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8264 return -EACCES; 8265 } 8266 break; 8267 case PTR_TO_BTF_ID | MEM_PERCPU: 8268 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8269 /* Handled by helper specific checks */ 8270 break; 8271 default: 8272 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8273 return -EFAULT; 8274 } 8275 return 0; 8276 } 8277 8278 static struct btf_field * 8279 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8280 { 8281 struct btf_field *field; 8282 struct btf_record *rec; 8283 8284 rec = reg_btf_record(reg); 8285 if (!rec) 8286 return NULL; 8287 8288 field = btf_record_find(rec, off, fields); 8289 if (!field) 8290 return NULL; 8291 8292 return field; 8293 } 8294 8295 int check_func_arg_reg_off(struct bpf_verifier_env *env, 8296 const struct bpf_reg_state *reg, int regno, 8297 enum bpf_arg_type arg_type) 8298 { 8299 u32 type = reg->type; 8300 8301 /* When referenced register is passed to release function, its fixed 8302 * offset must be 0. 8303 * 8304 * We will check arg_type_is_release reg has ref_obj_id when storing 8305 * meta->release_regno. 8306 */ 8307 if (arg_type_is_release(arg_type)) { 8308 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8309 * may not directly point to the object being released, but to 8310 * dynptr pointing to such object, which might be at some offset 8311 * on the stack. In that case, we simply to fallback to the 8312 * default handling. 8313 */ 8314 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8315 return 0; 8316 8317 /* Doing check_ptr_off_reg check for the offset will catch this 8318 * because fixed_off_ok is false, but checking here allows us 8319 * to give the user a better error message. 8320 */ 8321 if (reg->off) { 8322 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8323 regno); 8324 return -EINVAL; 8325 } 8326 return __check_ptr_off_reg(env, reg, regno, false); 8327 } 8328 8329 switch (type) { 8330 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8331 case PTR_TO_STACK: 8332 case PTR_TO_PACKET: 8333 case PTR_TO_PACKET_META: 8334 case PTR_TO_MAP_KEY: 8335 case PTR_TO_MAP_VALUE: 8336 case PTR_TO_MEM: 8337 case PTR_TO_MEM | MEM_RDONLY: 8338 case PTR_TO_MEM | MEM_RINGBUF: 8339 case PTR_TO_BUF: 8340 case PTR_TO_BUF | MEM_RDONLY: 8341 case SCALAR_VALUE: 8342 return 0; 8343 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8344 * fixed offset. 8345 */ 8346 case PTR_TO_BTF_ID: 8347 case PTR_TO_BTF_ID | MEM_ALLOC: 8348 case PTR_TO_BTF_ID | PTR_TRUSTED: 8349 case PTR_TO_BTF_ID | MEM_RCU: 8350 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8351 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8352 /* When referenced PTR_TO_BTF_ID is passed to release function, 8353 * its fixed offset must be 0. In the other cases, fixed offset 8354 * can be non-zero. This was already checked above. So pass 8355 * fixed_off_ok as true to allow fixed offset for all other 8356 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8357 * still need to do checks instead of returning. 8358 */ 8359 return __check_ptr_off_reg(env, reg, regno, true); 8360 default: 8361 return __check_ptr_off_reg(env, reg, regno, false); 8362 } 8363 } 8364 8365 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8366 const struct bpf_func_proto *fn, 8367 struct bpf_reg_state *regs) 8368 { 8369 struct bpf_reg_state *state = NULL; 8370 int i; 8371 8372 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8373 if (arg_type_is_dynptr(fn->arg_type[i])) { 8374 if (state) { 8375 verbose(env, "verifier internal error: multiple dynptr args\n"); 8376 return NULL; 8377 } 8378 state = ®s[BPF_REG_1 + i]; 8379 } 8380 8381 if (!state) 8382 verbose(env, "verifier internal error: no dynptr arg found\n"); 8383 8384 return state; 8385 } 8386 8387 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8388 { 8389 struct bpf_func_state *state = func(env, reg); 8390 int spi; 8391 8392 if (reg->type == CONST_PTR_TO_DYNPTR) 8393 return reg->id; 8394 spi = dynptr_get_spi(env, reg); 8395 if (spi < 0) 8396 return spi; 8397 return state->stack[spi].spilled_ptr.id; 8398 } 8399 8400 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8401 { 8402 struct bpf_func_state *state = func(env, reg); 8403 int spi; 8404 8405 if (reg->type == CONST_PTR_TO_DYNPTR) 8406 return reg->ref_obj_id; 8407 spi = dynptr_get_spi(env, reg); 8408 if (spi < 0) 8409 return spi; 8410 return state->stack[spi].spilled_ptr.ref_obj_id; 8411 } 8412 8413 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8414 struct bpf_reg_state *reg) 8415 { 8416 struct bpf_func_state *state = func(env, reg); 8417 int spi; 8418 8419 if (reg->type == CONST_PTR_TO_DYNPTR) 8420 return reg->dynptr.type; 8421 8422 spi = __get_spi(reg->off); 8423 if (spi < 0) { 8424 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8425 return BPF_DYNPTR_TYPE_INVALID; 8426 } 8427 8428 return state->stack[spi].spilled_ptr.dynptr.type; 8429 } 8430 8431 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8432 struct bpf_call_arg_meta *meta, 8433 const struct bpf_func_proto *fn, 8434 int insn_idx) 8435 { 8436 u32 regno = BPF_REG_1 + arg; 8437 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8438 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8439 enum bpf_reg_type type = reg->type; 8440 u32 *arg_btf_id = NULL; 8441 int err = 0; 8442 8443 if (arg_type == ARG_DONTCARE) 8444 return 0; 8445 8446 err = check_reg_arg(env, regno, SRC_OP); 8447 if (err) 8448 return err; 8449 8450 if (arg_type == ARG_ANYTHING) { 8451 if (is_pointer_value(env, regno)) { 8452 verbose(env, "R%d leaks addr into helper function\n", 8453 regno); 8454 return -EACCES; 8455 } 8456 return 0; 8457 } 8458 8459 if (type_is_pkt_pointer(type) && 8460 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8461 verbose(env, "helper access to the packet is not allowed\n"); 8462 return -EACCES; 8463 } 8464 8465 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8466 err = resolve_map_arg_type(env, meta, &arg_type); 8467 if (err) 8468 return err; 8469 } 8470 8471 if (register_is_null(reg) && type_may_be_null(arg_type)) 8472 /* A NULL register has a SCALAR_VALUE type, so skip 8473 * type checking. 8474 */ 8475 goto skip_type_check; 8476 8477 /* arg_btf_id and arg_size are in a union. */ 8478 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8479 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8480 arg_btf_id = fn->arg_btf_id[arg]; 8481 8482 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8483 if (err) 8484 return err; 8485 8486 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8487 if (err) 8488 return err; 8489 8490 skip_type_check: 8491 if (arg_type_is_release(arg_type)) { 8492 if (arg_type_is_dynptr(arg_type)) { 8493 struct bpf_func_state *state = func(env, reg); 8494 int spi; 8495 8496 /* Only dynptr created on stack can be released, thus 8497 * the get_spi and stack state checks for spilled_ptr 8498 * should only be done before process_dynptr_func for 8499 * PTR_TO_STACK. 8500 */ 8501 if (reg->type == PTR_TO_STACK) { 8502 spi = dynptr_get_spi(env, reg); 8503 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8504 verbose(env, "arg %d is an unacquired reference\n", regno); 8505 return -EINVAL; 8506 } 8507 } else { 8508 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8509 return -EINVAL; 8510 } 8511 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8512 verbose(env, "R%d must be referenced when passed to release function\n", 8513 regno); 8514 return -EINVAL; 8515 } 8516 if (meta->release_regno) { 8517 verbose(env, "verifier internal error: more than one release argument\n"); 8518 return -EFAULT; 8519 } 8520 meta->release_regno = regno; 8521 } 8522 8523 if (reg->ref_obj_id) { 8524 if (meta->ref_obj_id) { 8525 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8526 regno, reg->ref_obj_id, 8527 meta->ref_obj_id); 8528 return -EFAULT; 8529 } 8530 meta->ref_obj_id = reg->ref_obj_id; 8531 } 8532 8533 switch (base_type(arg_type)) { 8534 case ARG_CONST_MAP_PTR: 8535 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8536 if (meta->map_ptr) { 8537 /* Use map_uid (which is unique id of inner map) to reject: 8538 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8539 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8540 * if (inner_map1 && inner_map2) { 8541 * timer = bpf_map_lookup_elem(inner_map1); 8542 * if (timer) 8543 * // mismatch would have been allowed 8544 * bpf_timer_init(timer, inner_map2); 8545 * } 8546 * 8547 * Comparing map_ptr is enough to distinguish normal and outer maps. 8548 */ 8549 if (meta->map_ptr != reg->map_ptr || 8550 meta->map_uid != reg->map_uid) { 8551 verbose(env, 8552 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8553 meta->map_uid, reg->map_uid); 8554 return -EINVAL; 8555 } 8556 } 8557 meta->map_ptr = reg->map_ptr; 8558 meta->map_uid = reg->map_uid; 8559 break; 8560 case ARG_PTR_TO_MAP_KEY: 8561 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8562 * check that [key, key + map->key_size) are within 8563 * stack limits and initialized 8564 */ 8565 if (!meta->map_ptr) { 8566 /* in function declaration map_ptr must come before 8567 * map_key, so that it's verified and known before 8568 * we have to check map_key here. Otherwise it means 8569 * that kernel subsystem misconfigured verifier 8570 */ 8571 verbose(env, "invalid map_ptr to access map->key\n"); 8572 return -EACCES; 8573 } 8574 err = check_helper_mem_access(env, regno, 8575 meta->map_ptr->key_size, false, 8576 NULL); 8577 break; 8578 case ARG_PTR_TO_MAP_VALUE: 8579 if (type_may_be_null(arg_type) && register_is_null(reg)) 8580 return 0; 8581 8582 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8583 * check [value, value + map->value_size) validity 8584 */ 8585 if (!meta->map_ptr) { 8586 /* kernel subsystem misconfigured verifier */ 8587 verbose(env, "invalid map_ptr to access map->value\n"); 8588 return -EACCES; 8589 } 8590 meta->raw_mode = arg_type & MEM_UNINIT; 8591 err = check_helper_mem_access(env, regno, 8592 meta->map_ptr->value_size, false, 8593 meta); 8594 break; 8595 case ARG_PTR_TO_PERCPU_BTF_ID: 8596 if (!reg->btf_id) { 8597 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8598 return -EACCES; 8599 } 8600 meta->ret_btf = reg->btf; 8601 meta->ret_btf_id = reg->btf_id; 8602 break; 8603 case ARG_PTR_TO_SPIN_LOCK: 8604 if (in_rbtree_lock_required_cb(env)) { 8605 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8606 return -EACCES; 8607 } 8608 if (meta->func_id == BPF_FUNC_spin_lock) { 8609 err = process_spin_lock(env, regno, true); 8610 if (err) 8611 return err; 8612 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8613 err = process_spin_lock(env, regno, false); 8614 if (err) 8615 return err; 8616 } else { 8617 verbose(env, "verifier internal error\n"); 8618 return -EFAULT; 8619 } 8620 break; 8621 case ARG_PTR_TO_TIMER: 8622 err = process_timer_func(env, regno, meta); 8623 if (err) 8624 return err; 8625 break; 8626 case ARG_PTR_TO_FUNC: 8627 meta->subprogno = reg->subprogno; 8628 break; 8629 case ARG_PTR_TO_MEM: 8630 /* The access to this pointer is only checked when we hit the 8631 * next is_mem_size argument below. 8632 */ 8633 meta->raw_mode = arg_type & MEM_UNINIT; 8634 if (arg_type & MEM_FIXED_SIZE) { 8635 err = check_helper_mem_access(env, regno, 8636 fn->arg_size[arg], false, 8637 meta); 8638 } 8639 break; 8640 case ARG_CONST_SIZE: 8641 err = check_mem_size_reg(env, reg, regno, false, meta); 8642 break; 8643 case ARG_CONST_SIZE_OR_ZERO: 8644 err = check_mem_size_reg(env, reg, regno, true, meta); 8645 break; 8646 case ARG_PTR_TO_DYNPTR: 8647 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8648 if (err) 8649 return err; 8650 break; 8651 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8652 if (!tnum_is_const(reg->var_off)) { 8653 verbose(env, "R%d is not a known constant'\n", 8654 regno); 8655 return -EACCES; 8656 } 8657 meta->mem_size = reg->var_off.value; 8658 err = mark_chain_precision(env, regno); 8659 if (err) 8660 return err; 8661 break; 8662 case ARG_PTR_TO_INT: 8663 case ARG_PTR_TO_LONG: 8664 { 8665 int size = int_ptr_type_to_size(arg_type); 8666 8667 err = check_helper_mem_access(env, regno, size, false, meta); 8668 if (err) 8669 return err; 8670 err = check_ptr_alignment(env, reg, 0, size, true); 8671 break; 8672 } 8673 case ARG_PTR_TO_CONST_STR: 8674 { 8675 struct bpf_map *map = reg->map_ptr; 8676 int map_off; 8677 u64 map_addr; 8678 char *str_ptr; 8679 8680 if (!bpf_map_is_rdonly(map)) { 8681 verbose(env, "R%d does not point to a readonly map'\n", regno); 8682 return -EACCES; 8683 } 8684 8685 if (!tnum_is_const(reg->var_off)) { 8686 verbose(env, "R%d is not a constant address'\n", regno); 8687 return -EACCES; 8688 } 8689 8690 if (!map->ops->map_direct_value_addr) { 8691 verbose(env, "no direct value access support for this map type\n"); 8692 return -EACCES; 8693 } 8694 8695 err = check_map_access(env, regno, reg->off, 8696 map->value_size - reg->off, false, 8697 ACCESS_HELPER); 8698 if (err) 8699 return err; 8700 8701 map_off = reg->off + reg->var_off.value; 8702 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8703 if (err) { 8704 verbose(env, "direct value access on string failed\n"); 8705 return err; 8706 } 8707 8708 str_ptr = (char *)(long)(map_addr); 8709 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8710 verbose(env, "string is not zero-terminated\n"); 8711 return -EINVAL; 8712 } 8713 break; 8714 } 8715 case ARG_PTR_TO_KPTR: 8716 err = process_kptr_func(env, regno, meta); 8717 if (err) 8718 return err; 8719 break; 8720 } 8721 8722 return err; 8723 } 8724 8725 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8726 { 8727 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8728 enum bpf_prog_type type = resolve_prog_type(env->prog); 8729 8730 if (func_id != BPF_FUNC_map_update_elem) 8731 return false; 8732 8733 /* It's not possible to get access to a locked struct sock in these 8734 * contexts, so updating is safe. 8735 */ 8736 switch (type) { 8737 case BPF_PROG_TYPE_TRACING: 8738 if (eatype == BPF_TRACE_ITER) 8739 return true; 8740 break; 8741 case BPF_PROG_TYPE_SOCKET_FILTER: 8742 case BPF_PROG_TYPE_SCHED_CLS: 8743 case BPF_PROG_TYPE_SCHED_ACT: 8744 case BPF_PROG_TYPE_XDP: 8745 case BPF_PROG_TYPE_SK_REUSEPORT: 8746 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8747 case BPF_PROG_TYPE_SK_LOOKUP: 8748 return true; 8749 default: 8750 break; 8751 } 8752 8753 verbose(env, "cannot update sockmap in this context\n"); 8754 return false; 8755 } 8756 8757 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8758 { 8759 return env->prog->jit_requested && 8760 bpf_jit_supports_subprog_tailcalls(); 8761 } 8762 8763 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8764 struct bpf_map *map, int func_id) 8765 { 8766 if (!map) 8767 return 0; 8768 8769 /* We need a two way check, first is from map perspective ... */ 8770 switch (map->map_type) { 8771 case BPF_MAP_TYPE_PROG_ARRAY: 8772 if (func_id != BPF_FUNC_tail_call) 8773 goto error; 8774 break; 8775 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8776 if (func_id != BPF_FUNC_perf_event_read && 8777 func_id != BPF_FUNC_perf_event_output && 8778 func_id != BPF_FUNC_skb_output && 8779 func_id != BPF_FUNC_perf_event_read_value && 8780 func_id != BPF_FUNC_xdp_output) 8781 goto error; 8782 break; 8783 case BPF_MAP_TYPE_RINGBUF: 8784 if (func_id != BPF_FUNC_ringbuf_output && 8785 func_id != BPF_FUNC_ringbuf_reserve && 8786 func_id != BPF_FUNC_ringbuf_query && 8787 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8788 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8789 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8790 goto error; 8791 break; 8792 case BPF_MAP_TYPE_USER_RINGBUF: 8793 if (func_id != BPF_FUNC_user_ringbuf_drain) 8794 goto error; 8795 break; 8796 case BPF_MAP_TYPE_STACK_TRACE: 8797 if (func_id != BPF_FUNC_get_stackid) 8798 goto error; 8799 break; 8800 case BPF_MAP_TYPE_CGROUP_ARRAY: 8801 if (func_id != BPF_FUNC_skb_under_cgroup && 8802 func_id != BPF_FUNC_current_task_under_cgroup) 8803 goto error; 8804 break; 8805 case BPF_MAP_TYPE_CGROUP_STORAGE: 8806 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8807 if (func_id != BPF_FUNC_get_local_storage) 8808 goto error; 8809 break; 8810 case BPF_MAP_TYPE_DEVMAP: 8811 case BPF_MAP_TYPE_DEVMAP_HASH: 8812 if (func_id != BPF_FUNC_redirect_map && 8813 func_id != BPF_FUNC_map_lookup_elem) 8814 goto error; 8815 break; 8816 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8817 * appear. 8818 */ 8819 case BPF_MAP_TYPE_CPUMAP: 8820 if (func_id != BPF_FUNC_redirect_map) 8821 goto error; 8822 break; 8823 case BPF_MAP_TYPE_XSKMAP: 8824 if (func_id != BPF_FUNC_redirect_map && 8825 func_id != BPF_FUNC_map_lookup_elem) 8826 goto error; 8827 break; 8828 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8829 case BPF_MAP_TYPE_HASH_OF_MAPS: 8830 if (func_id != BPF_FUNC_map_lookup_elem) 8831 goto error; 8832 break; 8833 case BPF_MAP_TYPE_SOCKMAP: 8834 if (func_id != BPF_FUNC_sk_redirect_map && 8835 func_id != BPF_FUNC_sock_map_update && 8836 func_id != BPF_FUNC_map_delete_elem && 8837 func_id != BPF_FUNC_msg_redirect_map && 8838 func_id != BPF_FUNC_sk_select_reuseport && 8839 func_id != BPF_FUNC_map_lookup_elem && 8840 !may_update_sockmap(env, func_id)) 8841 goto error; 8842 break; 8843 case BPF_MAP_TYPE_SOCKHASH: 8844 if (func_id != BPF_FUNC_sk_redirect_hash && 8845 func_id != BPF_FUNC_sock_hash_update && 8846 func_id != BPF_FUNC_map_delete_elem && 8847 func_id != BPF_FUNC_msg_redirect_hash && 8848 func_id != BPF_FUNC_sk_select_reuseport && 8849 func_id != BPF_FUNC_map_lookup_elem && 8850 !may_update_sockmap(env, func_id)) 8851 goto error; 8852 break; 8853 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8854 if (func_id != BPF_FUNC_sk_select_reuseport) 8855 goto error; 8856 break; 8857 case BPF_MAP_TYPE_QUEUE: 8858 case BPF_MAP_TYPE_STACK: 8859 if (func_id != BPF_FUNC_map_peek_elem && 8860 func_id != BPF_FUNC_map_pop_elem && 8861 func_id != BPF_FUNC_map_push_elem) 8862 goto error; 8863 break; 8864 case BPF_MAP_TYPE_SK_STORAGE: 8865 if (func_id != BPF_FUNC_sk_storage_get && 8866 func_id != BPF_FUNC_sk_storage_delete && 8867 func_id != BPF_FUNC_kptr_xchg) 8868 goto error; 8869 break; 8870 case BPF_MAP_TYPE_INODE_STORAGE: 8871 if (func_id != BPF_FUNC_inode_storage_get && 8872 func_id != BPF_FUNC_inode_storage_delete && 8873 func_id != BPF_FUNC_kptr_xchg) 8874 goto error; 8875 break; 8876 case BPF_MAP_TYPE_TASK_STORAGE: 8877 if (func_id != BPF_FUNC_task_storage_get && 8878 func_id != BPF_FUNC_task_storage_delete && 8879 func_id != BPF_FUNC_kptr_xchg) 8880 goto error; 8881 break; 8882 case BPF_MAP_TYPE_CGRP_STORAGE: 8883 if (func_id != BPF_FUNC_cgrp_storage_get && 8884 func_id != BPF_FUNC_cgrp_storage_delete && 8885 func_id != BPF_FUNC_kptr_xchg) 8886 goto error; 8887 break; 8888 case BPF_MAP_TYPE_BLOOM_FILTER: 8889 if (func_id != BPF_FUNC_map_peek_elem && 8890 func_id != BPF_FUNC_map_push_elem) 8891 goto error; 8892 break; 8893 default: 8894 break; 8895 } 8896 8897 /* ... and second from the function itself. */ 8898 switch (func_id) { 8899 case BPF_FUNC_tail_call: 8900 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8901 goto error; 8902 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8903 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8904 return -EINVAL; 8905 } 8906 break; 8907 case BPF_FUNC_perf_event_read: 8908 case BPF_FUNC_perf_event_output: 8909 case BPF_FUNC_perf_event_read_value: 8910 case BPF_FUNC_skb_output: 8911 case BPF_FUNC_xdp_output: 8912 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8913 goto error; 8914 break; 8915 case BPF_FUNC_ringbuf_output: 8916 case BPF_FUNC_ringbuf_reserve: 8917 case BPF_FUNC_ringbuf_query: 8918 case BPF_FUNC_ringbuf_reserve_dynptr: 8919 case BPF_FUNC_ringbuf_submit_dynptr: 8920 case BPF_FUNC_ringbuf_discard_dynptr: 8921 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8922 goto error; 8923 break; 8924 case BPF_FUNC_user_ringbuf_drain: 8925 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8926 goto error; 8927 break; 8928 case BPF_FUNC_get_stackid: 8929 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8930 goto error; 8931 break; 8932 case BPF_FUNC_current_task_under_cgroup: 8933 case BPF_FUNC_skb_under_cgroup: 8934 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8935 goto error; 8936 break; 8937 case BPF_FUNC_redirect_map: 8938 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8939 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8940 map->map_type != BPF_MAP_TYPE_CPUMAP && 8941 map->map_type != BPF_MAP_TYPE_XSKMAP) 8942 goto error; 8943 break; 8944 case BPF_FUNC_sk_redirect_map: 8945 case BPF_FUNC_msg_redirect_map: 8946 case BPF_FUNC_sock_map_update: 8947 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8948 goto error; 8949 break; 8950 case BPF_FUNC_sk_redirect_hash: 8951 case BPF_FUNC_msg_redirect_hash: 8952 case BPF_FUNC_sock_hash_update: 8953 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8954 goto error; 8955 break; 8956 case BPF_FUNC_get_local_storage: 8957 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8958 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8959 goto error; 8960 break; 8961 case BPF_FUNC_sk_select_reuseport: 8962 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8963 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8964 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8965 goto error; 8966 break; 8967 case BPF_FUNC_map_pop_elem: 8968 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8969 map->map_type != BPF_MAP_TYPE_STACK) 8970 goto error; 8971 break; 8972 case BPF_FUNC_map_peek_elem: 8973 case BPF_FUNC_map_push_elem: 8974 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8975 map->map_type != BPF_MAP_TYPE_STACK && 8976 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8977 goto error; 8978 break; 8979 case BPF_FUNC_map_lookup_percpu_elem: 8980 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8981 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8982 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8983 goto error; 8984 break; 8985 case BPF_FUNC_sk_storage_get: 8986 case BPF_FUNC_sk_storage_delete: 8987 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8988 goto error; 8989 break; 8990 case BPF_FUNC_inode_storage_get: 8991 case BPF_FUNC_inode_storage_delete: 8992 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8993 goto error; 8994 break; 8995 case BPF_FUNC_task_storage_get: 8996 case BPF_FUNC_task_storage_delete: 8997 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8998 goto error; 8999 break; 9000 case BPF_FUNC_cgrp_storage_get: 9001 case BPF_FUNC_cgrp_storage_delete: 9002 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9003 goto error; 9004 break; 9005 default: 9006 break; 9007 } 9008 9009 return 0; 9010 error: 9011 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9012 map->map_type, func_id_name(func_id), func_id); 9013 return -EINVAL; 9014 } 9015 9016 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9017 { 9018 int count = 0; 9019 9020 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9021 count++; 9022 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9023 count++; 9024 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9025 count++; 9026 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9027 count++; 9028 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9029 count++; 9030 9031 /* We only support one arg being in raw mode at the moment, 9032 * which is sufficient for the helper functions we have 9033 * right now. 9034 */ 9035 return count <= 1; 9036 } 9037 9038 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9039 { 9040 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9041 bool has_size = fn->arg_size[arg] != 0; 9042 bool is_next_size = false; 9043 9044 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9045 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9046 9047 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9048 return is_next_size; 9049 9050 return has_size == is_next_size || is_next_size == is_fixed; 9051 } 9052 9053 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9054 { 9055 /* bpf_xxx(..., buf, len) call will access 'len' 9056 * bytes from memory 'buf'. Both arg types need 9057 * to be paired, so make sure there's no buggy 9058 * helper function specification. 9059 */ 9060 if (arg_type_is_mem_size(fn->arg1_type) || 9061 check_args_pair_invalid(fn, 0) || 9062 check_args_pair_invalid(fn, 1) || 9063 check_args_pair_invalid(fn, 2) || 9064 check_args_pair_invalid(fn, 3) || 9065 check_args_pair_invalid(fn, 4)) 9066 return false; 9067 9068 return true; 9069 } 9070 9071 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9072 { 9073 int i; 9074 9075 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9076 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9077 return !!fn->arg_btf_id[i]; 9078 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9079 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9080 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9081 /* arg_btf_id and arg_size are in a union. */ 9082 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9083 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9084 return false; 9085 } 9086 9087 return true; 9088 } 9089 9090 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9091 { 9092 return check_raw_mode_ok(fn) && 9093 check_arg_pair_ok(fn) && 9094 check_btf_id_ok(fn) ? 0 : -EINVAL; 9095 } 9096 9097 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9098 * are now invalid, so turn them into unknown SCALAR_VALUE. 9099 * 9100 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9101 * since these slices point to packet data. 9102 */ 9103 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9104 { 9105 struct bpf_func_state *state; 9106 struct bpf_reg_state *reg; 9107 9108 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9109 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9110 mark_reg_invalid(env, reg); 9111 })); 9112 } 9113 9114 enum { 9115 AT_PKT_END = -1, 9116 BEYOND_PKT_END = -2, 9117 }; 9118 9119 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9120 { 9121 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9122 struct bpf_reg_state *reg = &state->regs[regn]; 9123 9124 if (reg->type != PTR_TO_PACKET) 9125 /* PTR_TO_PACKET_META is not supported yet */ 9126 return; 9127 9128 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9129 * How far beyond pkt_end it goes is unknown. 9130 * if (!range_open) it's the case of pkt >= pkt_end 9131 * if (range_open) it's the case of pkt > pkt_end 9132 * hence this pointer is at least 1 byte bigger than pkt_end 9133 */ 9134 if (range_open) 9135 reg->range = BEYOND_PKT_END; 9136 else 9137 reg->range = AT_PKT_END; 9138 } 9139 9140 /* The pointer with the specified id has released its reference to kernel 9141 * resources. Identify all copies of the same pointer and clear the reference. 9142 */ 9143 static int release_reference(struct bpf_verifier_env *env, 9144 int ref_obj_id) 9145 { 9146 struct bpf_func_state *state; 9147 struct bpf_reg_state *reg; 9148 int err; 9149 9150 err = release_reference_state(cur_func(env), ref_obj_id); 9151 if (err) 9152 return err; 9153 9154 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9155 if (reg->ref_obj_id == ref_obj_id) 9156 mark_reg_invalid(env, reg); 9157 })); 9158 9159 return 0; 9160 } 9161 9162 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9163 { 9164 struct bpf_func_state *unused; 9165 struct bpf_reg_state *reg; 9166 9167 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9168 if (type_is_non_owning_ref(reg->type)) 9169 mark_reg_invalid(env, reg); 9170 })); 9171 } 9172 9173 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9174 struct bpf_reg_state *regs) 9175 { 9176 int i; 9177 9178 /* after the call registers r0 - r5 were scratched */ 9179 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9180 mark_reg_not_init(env, regs, caller_saved[i]); 9181 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9182 } 9183 } 9184 9185 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9186 struct bpf_func_state *caller, 9187 struct bpf_func_state *callee, 9188 int insn_idx); 9189 9190 static int set_callee_state(struct bpf_verifier_env *env, 9191 struct bpf_func_state *caller, 9192 struct bpf_func_state *callee, int insn_idx); 9193 9194 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9195 set_callee_state_fn set_callee_state_cb, 9196 struct bpf_verifier_state *state) 9197 { 9198 struct bpf_func_state *caller, *callee; 9199 int err; 9200 9201 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9202 verbose(env, "the call stack of %d frames is too deep\n", 9203 state->curframe + 2); 9204 return -E2BIG; 9205 } 9206 9207 if (state->frame[state->curframe + 1]) { 9208 verbose(env, "verifier bug. Frame %d already allocated\n", 9209 state->curframe + 1); 9210 return -EFAULT; 9211 } 9212 9213 caller = state->frame[state->curframe]; 9214 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9215 if (!callee) 9216 return -ENOMEM; 9217 state->frame[state->curframe + 1] = callee; 9218 9219 /* callee cannot access r0, r6 - r9 for reading and has to write 9220 * into its own stack before reading from it. 9221 * callee can read/write into caller's stack 9222 */ 9223 init_func_state(env, callee, 9224 /* remember the callsite, it will be used by bpf_exit */ 9225 callsite, 9226 state->curframe + 1 /* frameno within this callchain */, 9227 subprog /* subprog number within this prog */); 9228 /* Transfer references to the callee */ 9229 err = copy_reference_state(callee, caller); 9230 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9231 if (err) 9232 goto err_out; 9233 9234 /* only increment it after check_reg_arg() finished */ 9235 state->curframe++; 9236 9237 return 0; 9238 9239 err_out: 9240 free_func_state(callee); 9241 state->frame[state->curframe + 1] = NULL; 9242 return err; 9243 } 9244 9245 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9246 int insn_idx, int subprog, 9247 set_callee_state_fn set_callee_state_cb) 9248 { 9249 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9250 struct bpf_func_state *caller, *callee; 9251 int err; 9252 9253 caller = state->frame[state->curframe]; 9254 err = btf_check_subprog_call(env, subprog, caller->regs); 9255 if (err == -EFAULT) 9256 return err; 9257 9258 /* set_callee_state is used for direct subprog calls, but we are 9259 * interested in validating only BPF helpers that can call subprogs as 9260 * callbacks 9261 */ 9262 if (bpf_pseudo_kfunc_call(insn) && 9263 !is_sync_callback_calling_kfunc(insn->imm)) { 9264 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9265 func_id_name(insn->imm), insn->imm); 9266 return -EFAULT; 9267 } else if (!bpf_pseudo_kfunc_call(insn) && 9268 !is_callback_calling_function(insn->imm)) { /* helper */ 9269 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9270 func_id_name(insn->imm), insn->imm); 9271 return -EFAULT; 9272 } 9273 9274 if (insn->code == (BPF_JMP | BPF_CALL) && 9275 insn->src_reg == 0 && 9276 insn->imm == BPF_FUNC_timer_set_callback) { 9277 struct bpf_verifier_state *async_cb; 9278 9279 /* there is no real recursion here. timer callbacks are async */ 9280 env->subprog_info[subprog].is_async_cb = true; 9281 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9282 insn_idx, subprog); 9283 if (!async_cb) 9284 return -EFAULT; 9285 callee = async_cb->frame[0]; 9286 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9287 9288 /* Convert bpf_timer_set_callback() args into timer callback args */ 9289 err = set_callee_state_cb(env, caller, callee, insn_idx); 9290 if (err) 9291 return err; 9292 9293 return 0; 9294 } 9295 9296 /* for callback functions enqueue entry to callback and 9297 * proceed with next instruction within current frame. 9298 */ 9299 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9300 if (!callback_state) 9301 return -ENOMEM; 9302 9303 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9304 callback_state); 9305 if (err) 9306 return err; 9307 9308 callback_state->callback_unroll_depth++; 9309 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9310 caller->callback_depth = 0; 9311 return 0; 9312 } 9313 9314 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9315 int *insn_idx) 9316 { 9317 struct bpf_verifier_state *state = env->cur_state; 9318 struct bpf_func_state *caller; 9319 int err, subprog, target_insn; 9320 9321 target_insn = *insn_idx + insn->imm + 1; 9322 subprog = find_subprog(env, target_insn); 9323 if (subprog < 0) { 9324 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9325 return -EFAULT; 9326 } 9327 9328 caller = state->frame[state->curframe]; 9329 err = btf_check_subprog_call(env, subprog, caller->regs); 9330 if (err == -EFAULT) 9331 return err; 9332 if (subprog_is_global(env, subprog)) { 9333 if (err) { 9334 verbose(env, "Caller passes invalid args into func#%d\n", subprog); 9335 return err; 9336 } 9337 9338 if (env->log.level & BPF_LOG_LEVEL) 9339 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog); 9340 clear_caller_saved_regs(env, caller->regs); 9341 9342 /* All global functions return a 64-bit SCALAR_VALUE */ 9343 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9344 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9345 9346 /* continue with next insn after call */ 9347 return 0; 9348 } 9349 9350 /* for regular function entry setup new frame and continue 9351 * from that frame. 9352 */ 9353 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9354 if (err) 9355 return err; 9356 9357 clear_caller_saved_regs(env, caller->regs); 9358 9359 /* and go analyze first insn of the callee */ 9360 *insn_idx = env->subprog_info[subprog].start - 1; 9361 9362 if (env->log.level & BPF_LOG_LEVEL) { 9363 verbose(env, "caller:\n"); 9364 print_verifier_state(env, caller, true); 9365 verbose(env, "callee:\n"); 9366 print_verifier_state(env, state->frame[state->curframe], true); 9367 } 9368 9369 return 0; 9370 } 9371 9372 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9373 struct bpf_func_state *caller, 9374 struct bpf_func_state *callee) 9375 { 9376 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9377 * void *callback_ctx, u64 flags); 9378 * callback_fn(struct bpf_map *map, void *key, void *value, 9379 * void *callback_ctx); 9380 */ 9381 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9382 9383 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9384 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9385 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9386 9387 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9388 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9389 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9390 9391 /* pointer to stack or null */ 9392 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9393 9394 /* unused */ 9395 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9396 return 0; 9397 } 9398 9399 static int set_callee_state(struct bpf_verifier_env *env, 9400 struct bpf_func_state *caller, 9401 struct bpf_func_state *callee, int insn_idx) 9402 { 9403 int i; 9404 9405 /* copy r1 - r5 args that callee can access. The copy includes parent 9406 * pointers, which connects us up to the liveness chain 9407 */ 9408 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9409 callee->regs[i] = caller->regs[i]; 9410 return 0; 9411 } 9412 9413 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9414 struct bpf_func_state *caller, 9415 struct bpf_func_state *callee, 9416 int insn_idx) 9417 { 9418 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9419 struct bpf_map *map; 9420 int err; 9421 9422 if (bpf_map_ptr_poisoned(insn_aux)) { 9423 verbose(env, "tail_call abusing map_ptr\n"); 9424 return -EINVAL; 9425 } 9426 9427 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9428 if (!map->ops->map_set_for_each_callback_args || 9429 !map->ops->map_for_each_callback) { 9430 verbose(env, "callback function not allowed for map\n"); 9431 return -ENOTSUPP; 9432 } 9433 9434 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9435 if (err) 9436 return err; 9437 9438 callee->in_callback_fn = true; 9439 callee->callback_ret_range = tnum_range(0, 1); 9440 return 0; 9441 } 9442 9443 static int set_loop_callback_state(struct bpf_verifier_env *env, 9444 struct bpf_func_state *caller, 9445 struct bpf_func_state *callee, 9446 int insn_idx) 9447 { 9448 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9449 * u64 flags); 9450 * callback_fn(u32 index, void *callback_ctx); 9451 */ 9452 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9453 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9454 9455 /* unused */ 9456 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9457 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9458 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9459 9460 callee->in_callback_fn = true; 9461 callee->callback_ret_range = tnum_range(0, 1); 9462 return 0; 9463 } 9464 9465 static int set_timer_callback_state(struct bpf_verifier_env *env, 9466 struct bpf_func_state *caller, 9467 struct bpf_func_state *callee, 9468 int insn_idx) 9469 { 9470 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9471 9472 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9473 * callback_fn(struct bpf_map *map, void *key, void *value); 9474 */ 9475 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9476 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9477 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9478 9479 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9480 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9481 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9482 9483 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9484 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9485 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9486 9487 /* unused */ 9488 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9489 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9490 callee->in_async_callback_fn = true; 9491 callee->callback_ret_range = tnum_range(0, 1); 9492 return 0; 9493 } 9494 9495 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9496 struct bpf_func_state *caller, 9497 struct bpf_func_state *callee, 9498 int insn_idx) 9499 { 9500 /* bpf_find_vma(struct task_struct *task, u64 addr, 9501 * void *callback_fn, void *callback_ctx, u64 flags) 9502 * (callback_fn)(struct task_struct *task, 9503 * struct vm_area_struct *vma, void *callback_ctx); 9504 */ 9505 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9506 9507 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9508 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9509 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9510 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9511 9512 /* pointer to stack or null */ 9513 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9514 9515 /* unused */ 9516 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9517 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9518 callee->in_callback_fn = true; 9519 callee->callback_ret_range = tnum_range(0, 1); 9520 return 0; 9521 } 9522 9523 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9524 struct bpf_func_state *caller, 9525 struct bpf_func_state *callee, 9526 int insn_idx) 9527 { 9528 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9529 * callback_ctx, u64 flags); 9530 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9531 */ 9532 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9533 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9534 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9535 9536 /* unused */ 9537 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9538 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9539 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9540 9541 callee->in_callback_fn = true; 9542 callee->callback_ret_range = tnum_range(0, 1); 9543 return 0; 9544 } 9545 9546 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9547 struct bpf_func_state *caller, 9548 struct bpf_func_state *callee, 9549 int insn_idx) 9550 { 9551 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9552 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9553 * 9554 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9555 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9556 * by this point, so look at 'root' 9557 */ 9558 struct btf_field *field; 9559 9560 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9561 BPF_RB_ROOT); 9562 if (!field || !field->graph_root.value_btf_id) 9563 return -EFAULT; 9564 9565 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9566 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9567 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9568 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9569 9570 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9571 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9572 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9573 callee->in_callback_fn = true; 9574 callee->callback_ret_range = tnum_range(0, 1); 9575 return 0; 9576 } 9577 9578 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9579 9580 /* Are we currently verifying the callback for a rbtree helper that must 9581 * be called with lock held? If so, no need to complain about unreleased 9582 * lock 9583 */ 9584 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9585 { 9586 struct bpf_verifier_state *state = env->cur_state; 9587 struct bpf_insn *insn = env->prog->insnsi; 9588 struct bpf_func_state *callee; 9589 int kfunc_btf_id; 9590 9591 if (!state->curframe) 9592 return false; 9593 9594 callee = state->frame[state->curframe]; 9595 9596 if (!callee->in_callback_fn) 9597 return false; 9598 9599 kfunc_btf_id = insn[callee->callsite].imm; 9600 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9601 } 9602 9603 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9604 { 9605 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9606 struct bpf_func_state *caller, *callee; 9607 struct bpf_reg_state *r0; 9608 bool in_callback_fn; 9609 int err; 9610 9611 callee = state->frame[state->curframe]; 9612 r0 = &callee->regs[BPF_REG_0]; 9613 if (r0->type == PTR_TO_STACK) { 9614 /* technically it's ok to return caller's stack pointer 9615 * (or caller's caller's pointer) back to the caller, 9616 * since these pointers are valid. Only current stack 9617 * pointer will be invalid as soon as function exits, 9618 * but let's be conservative 9619 */ 9620 verbose(env, "cannot return stack pointer to the caller\n"); 9621 return -EINVAL; 9622 } 9623 9624 caller = state->frame[state->curframe - 1]; 9625 if (callee->in_callback_fn) { 9626 /* enforce R0 return value range [0, 1]. */ 9627 struct tnum range = callee->callback_ret_range; 9628 9629 if (r0->type != SCALAR_VALUE) { 9630 verbose(env, "R0 not a scalar value\n"); 9631 return -EACCES; 9632 } 9633 9634 /* we are going to rely on register's precise value */ 9635 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9636 err = err ?: mark_chain_precision(env, BPF_REG_0); 9637 if (err) 9638 return err; 9639 9640 if (!tnum_in(range, r0->var_off)) { 9641 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9642 return -EINVAL; 9643 } 9644 if (!calls_callback(env, callee->callsite)) { 9645 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9646 *insn_idx, callee->callsite); 9647 return -EFAULT; 9648 } 9649 } else { 9650 /* return to the caller whatever r0 had in the callee */ 9651 caller->regs[BPF_REG_0] = *r0; 9652 } 9653 9654 /* callback_fn frame should have released its own additions to parent's 9655 * reference state at this point, or check_reference_leak would 9656 * complain, hence it must be the same as the caller. There is no need 9657 * to copy it back. 9658 */ 9659 if (!callee->in_callback_fn) { 9660 /* Transfer references to the caller */ 9661 err = copy_reference_state(caller, callee); 9662 if (err) 9663 return err; 9664 } 9665 9666 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9667 * there function call logic would reschedule callback visit. If iteration 9668 * converges is_state_visited() would prune that visit eventually. 9669 */ 9670 in_callback_fn = callee->in_callback_fn; 9671 if (in_callback_fn) 9672 *insn_idx = callee->callsite; 9673 else 9674 *insn_idx = callee->callsite + 1; 9675 9676 if (env->log.level & BPF_LOG_LEVEL) { 9677 verbose(env, "returning from callee:\n"); 9678 print_verifier_state(env, callee, true); 9679 verbose(env, "to caller at %d:\n", *insn_idx); 9680 print_verifier_state(env, caller, true); 9681 } 9682 /* clear everything in the callee */ 9683 free_func_state(callee); 9684 state->frame[state->curframe--] = NULL; 9685 9686 /* for callbacks widen imprecise scalars to make programs like below verify: 9687 * 9688 * struct ctx { int i; } 9689 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9690 * ... 9691 * struct ctx = { .i = 0; } 9692 * bpf_loop(100, cb, &ctx, 0); 9693 * 9694 * This is similar to what is done in process_iter_next_call() for open 9695 * coded iterators. 9696 */ 9697 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9698 if (prev_st) { 9699 err = widen_imprecise_scalars(env, prev_st, state); 9700 if (err) 9701 return err; 9702 } 9703 return 0; 9704 } 9705 9706 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9707 int func_id, 9708 struct bpf_call_arg_meta *meta) 9709 { 9710 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9711 9712 if (ret_type != RET_INTEGER) 9713 return; 9714 9715 switch (func_id) { 9716 case BPF_FUNC_get_stack: 9717 case BPF_FUNC_get_task_stack: 9718 case BPF_FUNC_probe_read_str: 9719 case BPF_FUNC_probe_read_kernel_str: 9720 case BPF_FUNC_probe_read_user_str: 9721 ret_reg->smax_value = meta->msize_max_value; 9722 ret_reg->s32_max_value = meta->msize_max_value; 9723 ret_reg->smin_value = -MAX_ERRNO; 9724 ret_reg->s32_min_value = -MAX_ERRNO; 9725 reg_bounds_sync(ret_reg); 9726 break; 9727 case BPF_FUNC_get_smp_processor_id: 9728 ret_reg->umax_value = nr_cpu_ids - 1; 9729 ret_reg->u32_max_value = nr_cpu_ids - 1; 9730 ret_reg->smax_value = nr_cpu_ids - 1; 9731 ret_reg->s32_max_value = nr_cpu_ids - 1; 9732 ret_reg->umin_value = 0; 9733 ret_reg->u32_min_value = 0; 9734 ret_reg->smin_value = 0; 9735 ret_reg->s32_min_value = 0; 9736 reg_bounds_sync(ret_reg); 9737 break; 9738 } 9739 } 9740 9741 static int 9742 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9743 int func_id, int insn_idx) 9744 { 9745 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9746 struct bpf_map *map = meta->map_ptr; 9747 9748 if (func_id != BPF_FUNC_tail_call && 9749 func_id != BPF_FUNC_map_lookup_elem && 9750 func_id != BPF_FUNC_map_update_elem && 9751 func_id != BPF_FUNC_map_delete_elem && 9752 func_id != BPF_FUNC_map_push_elem && 9753 func_id != BPF_FUNC_map_pop_elem && 9754 func_id != BPF_FUNC_map_peek_elem && 9755 func_id != BPF_FUNC_for_each_map_elem && 9756 func_id != BPF_FUNC_redirect_map && 9757 func_id != BPF_FUNC_map_lookup_percpu_elem) 9758 return 0; 9759 9760 if (map == NULL) { 9761 verbose(env, "kernel subsystem misconfigured verifier\n"); 9762 return -EINVAL; 9763 } 9764 9765 /* In case of read-only, some additional restrictions 9766 * need to be applied in order to prevent altering the 9767 * state of the map from program side. 9768 */ 9769 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9770 (func_id == BPF_FUNC_map_delete_elem || 9771 func_id == BPF_FUNC_map_update_elem || 9772 func_id == BPF_FUNC_map_push_elem || 9773 func_id == BPF_FUNC_map_pop_elem)) { 9774 verbose(env, "write into map forbidden\n"); 9775 return -EACCES; 9776 } 9777 9778 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9779 bpf_map_ptr_store(aux, meta->map_ptr, 9780 !meta->map_ptr->bypass_spec_v1); 9781 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9782 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9783 !meta->map_ptr->bypass_spec_v1); 9784 return 0; 9785 } 9786 9787 static int 9788 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9789 int func_id, int insn_idx) 9790 { 9791 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9792 struct bpf_reg_state *regs = cur_regs(env), *reg; 9793 struct bpf_map *map = meta->map_ptr; 9794 u64 val, max; 9795 int err; 9796 9797 if (func_id != BPF_FUNC_tail_call) 9798 return 0; 9799 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9800 verbose(env, "kernel subsystem misconfigured verifier\n"); 9801 return -EINVAL; 9802 } 9803 9804 reg = ®s[BPF_REG_3]; 9805 val = reg->var_off.value; 9806 max = map->max_entries; 9807 9808 if (!(register_is_const(reg) && val < max)) { 9809 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9810 return 0; 9811 } 9812 9813 err = mark_chain_precision(env, BPF_REG_3); 9814 if (err) 9815 return err; 9816 if (bpf_map_key_unseen(aux)) 9817 bpf_map_key_store(aux, val); 9818 else if (!bpf_map_key_poisoned(aux) && 9819 bpf_map_key_immediate(aux) != val) 9820 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9821 return 0; 9822 } 9823 9824 static int check_reference_leak(struct bpf_verifier_env *env) 9825 { 9826 struct bpf_func_state *state = cur_func(env); 9827 bool refs_lingering = false; 9828 int i; 9829 9830 if (state->frameno && !state->in_callback_fn) 9831 return 0; 9832 9833 for (i = 0; i < state->acquired_refs; i++) { 9834 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9835 continue; 9836 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9837 state->refs[i].id, state->refs[i].insn_idx); 9838 refs_lingering = true; 9839 } 9840 return refs_lingering ? -EINVAL : 0; 9841 } 9842 9843 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9844 struct bpf_reg_state *regs) 9845 { 9846 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9847 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9848 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9849 struct bpf_bprintf_data data = {}; 9850 int err, fmt_map_off, num_args; 9851 u64 fmt_addr; 9852 char *fmt; 9853 9854 /* data must be an array of u64 */ 9855 if (data_len_reg->var_off.value % 8) 9856 return -EINVAL; 9857 num_args = data_len_reg->var_off.value / 8; 9858 9859 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9860 * and map_direct_value_addr is set. 9861 */ 9862 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9863 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9864 fmt_map_off); 9865 if (err) { 9866 verbose(env, "verifier bug\n"); 9867 return -EFAULT; 9868 } 9869 fmt = (char *)(long)fmt_addr + fmt_map_off; 9870 9871 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9872 * can focus on validating the format specifiers. 9873 */ 9874 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9875 if (err < 0) 9876 verbose(env, "Invalid format string\n"); 9877 9878 return err; 9879 } 9880 9881 static int check_get_func_ip(struct bpf_verifier_env *env) 9882 { 9883 enum bpf_prog_type type = resolve_prog_type(env->prog); 9884 int func_id = BPF_FUNC_get_func_ip; 9885 9886 if (type == BPF_PROG_TYPE_TRACING) { 9887 if (!bpf_prog_has_trampoline(env->prog)) { 9888 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9889 func_id_name(func_id), func_id); 9890 return -ENOTSUPP; 9891 } 9892 return 0; 9893 } else if (type == BPF_PROG_TYPE_KPROBE) { 9894 return 0; 9895 } 9896 9897 verbose(env, "func %s#%d not supported for program type %d\n", 9898 func_id_name(func_id), func_id, type); 9899 return -ENOTSUPP; 9900 } 9901 9902 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9903 { 9904 return &env->insn_aux_data[env->insn_idx]; 9905 } 9906 9907 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9908 { 9909 struct bpf_reg_state *regs = cur_regs(env); 9910 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9911 bool reg_is_null = register_is_null(reg); 9912 9913 if (reg_is_null) 9914 mark_chain_precision(env, BPF_REG_4); 9915 9916 return reg_is_null; 9917 } 9918 9919 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9920 { 9921 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9922 9923 if (!state->initialized) { 9924 state->initialized = 1; 9925 state->fit_for_inline = loop_flag_is_zero(env); 9926 state->callback_subprogno = subprogno; 9927 return; 9928 } 9929 9930 if (!state->fit_for_inline) 9931 return; 9932 9933 state->fit_for_inline = (loop_flag_is_zero(env) && 9934 state->callback_subprogno == subprogno); 9935 } 9936 9937 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9938 int *insn_idx_p) 9939 { 9940 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9941 const struct bpf_func_proto *fn = NULL; 9942 enum bpf_return_type ret_type; 9943 enum bpf_type_flag ret_flag; 9944 struct bpf_reg_state *regs; 9945 struct bpf_call_arg_meta meta; 9946 int insn_idx = *insn_idx_p; 9947 bool changes_data; 9948 int i, err, func_id; 9949 9950 /* find function prototype */ 9951 func_id = insn->imm; 9952 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9953 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9954 func_id); 9955 return -EINVAL; 9956 } 9957 9958 if (env->ops->get_func_proto) 9959 fn = env->ops->get_func_proto(func_id, env->prog); 9960 if (!fn) { 9961 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9962 func_id); 9963 return -EINVAL; 9964 } 9965 9966 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9967 if (!env->prog->gpl_compatible && fn->gpl_only) { 9968 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9969 return -EINVAL; 9970 } 9971 9972 if (fn->allowed && !fn->allowed(env->prog)) { 9973 verbose(env, "helper call is not allowed in probe\n"); 9974 return -EINVAL; 9975 } 9976 9977 if (!env->prog->aux->sleepable && fn->might_sleep) { 9978 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9979 return -EINVAL; 9980 } 9981 9982 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9983 changes_data = bpf_helper_changes_pkt_data(fn->func); 9984 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9985 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9986 func_id_name(func_id), func_id); 9987 return -EINVAL; 9988 } 9989 9990 memset(&meta, 0, sizeof(meta)); 9991 meta.pkt_access = fn->pkt_access; 9992 9993 err = check_func_proto(fn, func_id); 9994 if (err) { 9995 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9996 func_id_name(func_id), func_id); 9997 return err; 9998 } 9999 10000 if (env->cur_state->active_rcu_lock) { 10001 if (fn->might_sleep) { 10002 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10003 func_id_name(func_id), func_id); 10004 return -EINVAL; 10005 } 10006 10007 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10008 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10009 } 10010 10011 meta.func_id = func_id; 10012 /* check args */ 10013 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10014 err = check_func_arg(env, i, &meta, fn, insn_idx); 10015 if (err) 10016 return err; 10017 } 10018 10019 err = record_func_map(env, &meta, func_id, insn_idx); 10020 if (err) 10021 return err; 10022 10023 err = record_func_key(env, &meta, func_id, insn_idx); 10024 if (err) 10025 return err; 10026 10027 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10028 * is inferred from register state. 10029 */ 10030 for (i = 0; i < meta.access_size; i++) { 10031 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10032 BPF_WRITE, -1, false, false); 10033 if (err) 10034 return err; 10035 } 10036 10037 regs = cur_regs(env); 10038 10039 if (meta.release_regno) { 10040 err = -EINVAL; 10041 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10042 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10043 * is safe to do directly. 10044 */ 10045 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10046 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10047 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10048 return -EFAULT; 10049 } 10050 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10051 } else if (meta.ref_obj_id) { 10052 err = release_reference(env, meta.ref_obj_id); 10053 } else if (register_is_null(®s[meta.release_regno])) { 10054 /* meta.ref_obj_id can only be 0 if register that is meant to be 10055 * released is NULL, which must be > R0. 10056 */ 10057 err = 0; 10058 } 10059 if (err) { 10060 verbose(env, "func %s#%d reference has not been acquired before\n", 10061 func_id_name(func_id), func_id); 10062 return err; 10063 } 10064 } 10065 10066 switch (func_id) { 10067 case BPF_FUNC_tail_call: 10068 err = check_reference_leak(env); 10069 if (err) { 10070 verbose(env, "tail_call would lead to reference leak\n"); 10071 return err; 10072 } 10073 break; 10074 case BPF_FUNC_get_local_storage: 10075 /* check that flags argument in get_local_storage(map, flags) is 0, 10076 * this is required because get_local_storage() can't return an error. 10077 */ 10078 if (!register_is_null(®s[BPF_REG_2])) { 10079 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10080 return -EINVAL; 10081 } 10082 break; 10083 case BPF_FUNC_for_each_map_elem: 10084 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10085 set_map_elem_callback_state); 10086 break; 10087 case BPF_FUNC_timer_set_callback: 10088 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10089 set_timer_callback_state); 10090 break; 10091 case BPF_FUNC_find_vma: 10092 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10093 set_find_vma_callback_state); 10094 break; 10095 case BPF_FUNC_snprintf: 10096 err = check_bpf_snprintf_call(env, regs); 10097 break; 10098 case BPF_FUNC_loop: 10099 update_loop_inline_state(env, meta.subprogno); 10100 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10101 * is finished, thus mark it precise. 10102 */ 10103 err = mark_chain_precision(env, BPF_REG_1); 10104 if (err) 10105 return err; 10106 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10107 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10108 set_loop_callback_state); 10109 } else { 10110 cur_func(env)->callback_depth = 0; 10111 if (env->log.level & BPF_LOG_LEVEL2) 10112 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10113 env->cur_state->curframe); 10114 } 10115 break; 10116 case BPF_FUNC_dynptr_from_mem: 10117 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10118 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10119 reg_type_str(env, regs[BPF_REG_1].type)); 10120 return -EACCES; 10121 } 10122 break; 10123 case BPF_FUNC_set_retval: 10124 if (prog_type == BPF_PROG_TYPE_LSM && 10125 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10126 if (!env->prog->aux->attach_func_proto->type) { 10127 /* Make sure programs that attach to void 10128 * hooks don't try to modify return value. 10129 */ 10130 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10131 return -EINVAL; 10132 } 10133 } 10134 break; 10135 case BPF_FUNC_dynptr_data: 10136 { 10137 struct bpf_reg_state *reg; 10138 int id, ref_obj_id; 10139 10140 reg = get_dynptr_arg_reg(env, fn, regs); 10141 if (!reg) 10142 return -EFAULT; 10143 10144 10145 if (meta.dynptr_id) { 10146 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10147 return -EFAULT; 10148 } 10149 if (meta.ref_obj_id) { 10150 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10151 return -EFAULT; 10152 } 10153 10154 id = dynptr_id(env, reg); 10155 if (id < 0) { 10156 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10157 return id; 10158 } 10159 10160 ref_obj_id = dynptr_ref_obj_id(env, reg); 10161 if (ref_obj_id < 0) { 10162 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10163 return ref_obj_id; 10164 } 10165 10166 meta.dynptr_id = id; 10167 meta.ref_obj_id = ref_obj_id; 10168 10169 break; 10170 } 10171 case BPF_FUNC_dynptr_write: 10172 { 10173 enum bpf_dynptr_type dynptr_type; 10174 struct bpf_reg_state *reg; 10175 10176 reg = get_dynptr_arg_reg(env, fn, regs); 10177 if (!reg) 10178 return -EFAULT; 10179 10180 dynptr_type = dynptr_get_type(env, reg); 10181 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10182 return -EFAULT; 10183 10184 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10185 /* this will trigger clear_all_pkt_pointers(), which will 10186 * invalidate all dynptr slices associated with the skb 10187 */ 10188 changes_data = true; 10189 10190 break; 10191 } 10192 case BPF_FUNC_user_ringbuf_drain: 10193 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10194 set_user_ringbuf_callback_state); 10195 break; 10196 } 10197 10198 if (err) 10199 return err; 10200 10201 /* reset caller saved regs */ 10202 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10203 mark_reg_not_init(env, regs, caller_saved[i]); 10204 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10205 } 10206 10207 /* helper call returns 64-bit value. */ 10208 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10209 10210 /* update return register (already marked as written above) */ 10211 ret_type = fn->ret_type; 10212 ret_flag = type_flag(ret_type); 10213 10214 switch (base_type(ret_type)) { 10215 case RET_INTEGER: 10216 /* sets type to SCALAR_VALUE */ 10217 mark_reg_unknown(env, regs, BPF_REG_0); 10218 break; 10219 case RET_VOID: 10220 regs[BPF_REG_0].type = NOT_INIT; 10221 break; 10222 case RET_PTR_TO_MAP_VALUE: 10223 /* There is no offset yet applied, variable or fixed */ 10224 mark_reg_known_zero(env, regs, BPF_REG_0); 10225 /* remember map_ptr, so that check_map_access() 10226 * can check 'value_size' boundary of memory access 10227 * to map element returned from bpf_map_lookup_elem() 10228 */ 10229 if (meta.map_ptr == NULL) { 10230 verbose(env, 10231 "kernel subsystem misconfigured verifier\n"); 10232 return -EINVAL; 10233 } 10234 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10235 regs[BPF_REG_0].map_uid = meta.map_uid; 10236 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10237 if (!type_may_be_null(ret_type) && 10238 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10239 regs[BPF_REG_0].id = ++env->id_gen; 10240 } 10241 break; 10242 case RET_PTR_TO_SOCKET: 10243 mark_reg_known_zero(env, regs, BPF_REG_0); 10244 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10245 break; 10246 case RET_PTR_TO_SOCK_COMMON: 10247 mark_reg_known_zero(env, regs, BPF_REG_0); 10248 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10249 break; 10250 case RET_PTR_TO_TCP_SOCK: 10251 mark_reg_known_zero(env, regs, BPF_REG_0); 10252 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10253 break; 10254 case RET_PTR_TO_MEM: 10255 mark_reg_known_zero(env, regs, BPF_REG_0); 10256 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10257 regs[BPF_REG_0].mem_size = meta.mem_size; 10258 break; 10259 case RET_PTR_TO_MEM_OR_BTF_ID: 10260 { 10261 const struct btf_type *t; 10262 10263 mark_reg_known_zero(env, regs, BPF_REG_0); 10264 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10265 if (!btf_type_is_struct(t)) { 10266 u32 tsize; 10267 const struct btf_type *ret; 10268 const char *tname; 10269 10270 /* resolve the type size of ksym. */ 10271 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10272 if (IS_ERR(ret)) { 10273 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10274 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10275 tname, PTR_ERR(ret)); 10276 return -EINVAL; 10277 } 10278 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10279 regs[BPF_REG_0].mem_size = tsize; 10280 } else { 10281 /* MEM_RDONLY may be carried from ret_flag, but it 10282 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10283 * it will confuse the check of PTR_TO_BTF_ID in 10284 * check_mem_access(). 10285 */ 10286 ret_flag &= ~MEM_RDONLY; 10287 10288 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10289 regs[BPF_REG_0].btf = meta.ret_btf; 10290 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10291 } 10292 break; 10293 } 10294 case RET_PTR_TO_BTF_ID: 10295 { 10296 struct btf *ret_btf; 10297 int ret_btf_id; 10298 10299 mark_reg_known_zero(env, regs, BPF_REG_0); 10300 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10301 if (func_id == BPF_FUNC_kptr_xchg) { 10302 ret_btf = meta.kptr_field->kptr.btf; 10303 ret_btf_id = meta.kptr_field->kptr.btf_id; 10304 if (!btf_is_kernel(ret_btf)) 10305 regs[BPF_REG_0].type |= MEM_ALLOC; 10306 } else { 10307 if (fn->ret_btf_id == BPF_PTR_POISON) { 10308 verbose(env, "verifier internal error:"); 10309 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10310 func_id_name(func_id)); 10311 return -EINVAL; 10312 } 10313 ret_btf = btf_vmlinux; 10314 ret_btf_id = *fn->ret_btf_id; 10315 } 10316 if (ret_btf_id == 0) { 10317 verbose(env, "invalid return type %u of func %s#%d\n", 10318 base_type(ret_type), func_id_name(func_id), 10319 func_id); 10320 return -EINVAL; 10321 } 10322 regs[BPF_REG_0].btf = ret_btf; 10323 regs[BPF_REG_0].btf_id = ret_btf_id; 10324 break; 10325 } 10326 default: 10327 verbose(env, "unknown return type %u of func %s#%d\n", 10328 base_type(ret_type), func_id_name(func_id), func_id); 10329 return -EINVAL; 10330 } 10331 10332 if (type_may_be_null(regs[BPF_REG_0].type)) 10333 regs[BPF_REG_0].id = ++env->id_gen; 10334 10335 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10336 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10337 func_id_name(func_id), func_id); 10338 return -EFAULT; 10339 } 10340 10341 if (is_dynptr_ref_function(func_id)) 10342 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10343 10344 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10345 /* For release_reference() */ 10346 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10347 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10348 int id = acquire_reference_state(env, insn_idx); 10349 10350 if (id < 0) 10351 return id; 10352 /* For mark_ptr_or_null_reg() */ 10353 regs[BPF_REG_0].id = id; 10354 /* For release_reference() */ 10355 regs[BPF_REG_0].ref_obj_id = id; 10356 } 10357 10358 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 10359 10360 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10361 if (err) 10362 return err; 10363 10364 if ((func_id == BPF_FUNC_get_stack || 10365 func_id == BPF_FUNC_get_task_stack) && 10366 !env->prog->has_callchain_buf) { 10367 const char *err_str; 10368 10369 #ifdef CONFIG_PERF_EVENTS 10370 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10371 err_str = "cannot get callchain buffer for func %s#%d\n"; 10372 #else 10373 err = -ENOTSUPP; 10374 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10375 #endif 10376 if (err) { 10377 verbose(env, err_str, func_id_name(func_id), func_id); 10378 return err; 10379 } 10380 10381 env->prog->has_callchain_buf = true; 10382 } 10383 10384 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10385 env->prog->call_get_stack = true; 10386 10387 if (func_id == BPF_FUNC_get_func_ip) { 10388 if (check_get_func_ip(env)) 10389 return -ENOTSUPP; 10390 env->prog->call_get_func_ip = true; 10391 } 10392 10393 if (changes_data) 10394 clear_all_pkt_pointers(env); 10395 return 0; 10396 } 10397 10398 /* mark_btf_func_reg_size() is used when the reg size is determined by 10399 * the BTF func_proto's return value size and argument. 10400 */ 10401 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10402 size_t reg_size) 10403 { 10404 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10405 10406 if (regno == BPF_REG_0) { 10407 /* Function return value */ 10408 reg->live |= REG_LIVE_WRITTEN; 10409 reg->subreg_def = reg_size == sizeof(u64) ? 10410 DEF_NOT_SUBREG : env->insn_idx + 1; 10411 } else { 10412 /* Function argument */ 10413 if (reg_size == sizeof(u64)) { 10414 mark_insn_zext(env, reg); 10415 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10416 } else { 10417 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10418 } 10419 } 10420 } 10421 10422 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10423 { 10424 return meta->kfunc_flags & KF_ACQUIRE; 10425 } 10426 10427 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10428 { 10429 return meta->kfunc_flags & KF_RELEASE; 10430 } 10431 10432 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10433 { 10434 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10435 } 10436 10437 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10438 { 10439 return meta->kfunc_flags & KF_SLEEPABLE; 10440 } 10441 10442 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10443 { 10444 return meta->kfunc_flags & KF_DESTRUCTIVE; 10445 } 10446 10447 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10448 { 10449 return meta->kfunc_flags & KF_RCU; 10450 } 10451 10452 static bool __kfunc_param_match_suffix(const struct btf *btf, 10453 const struct btf_param *arg, 10454 const char *suffix) 10455 { 10456 int suffix_len = strlen(suffix), len; 10457 const char *param_name; 10458 10459 /* In the future, this can be ported to use BTF tagging */ 10460 param_name = btf_name_by_offset(btf, arg->name_off); 10461 if (str_is_empty(param_name)) 10462 return false; 10463 len = strlen(param_name); 10464 if (len < suffix_len) 10465 return false; 10466 param_name += len - suffix_len; 10467 return !strncmp(param_name, suffix, suffix_len); 10468 } 10469 10470 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10471 const struct btf_param *arg, 10472 const struct bpf_reg_state *reg) 10473 { 10474 const struct btf_type *t; 10475 10476 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10477 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10478 return false; 10479 10480 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10481 } 10482 10483 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10484 const struct btf_param *arg, 10485 const struct bpf_reg_state *reg) 10486 { 10487 const struct btf_type *t; 10488 10489 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10490 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10491 return false; 10492 10493 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10494 } 10495 10496 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10497 { 10498 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10499 } 10500 10501 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10502 { 10503 return __kfunc_param_match_suffix(btf, arg, "__k"); 10504 } 10505 10506 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10507 { 10508 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10509 } 10510 10511 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10512 { 10513 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10514 } 10515 10516 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10517 { 10518 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10519 } 10520 10521 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10522 { 10523 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10524 } 10525 10526 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10527 const struct btf_param *arg, 10528 const char *name) 10529 { 10530 int len, target_len = strlen(name); 10531 const char *param_name; 10532 10533 param_name = btf_name_by_offset(btf, arg->name_off); 10534 if (str_is_empty(param_name)) 10535 return false; 10536 len = strlen(param_name); 10537 if (len != target_len) 10538 return false; 10539 if (strcmp(param_name, name)) 10540 return false; 10541 10542 return true; 10543 } 10544 10545 enum { 10546 KF_ARG_DYNPTR_ID, 10547 KF_ARG_LIST_HEAD_ID, 10548 KF_ARG_LIST_NODE_ID, 10549 KF_ARG_RB_ROOT_ID, 10550 KF_ARG_RB_NODE_ID, 10551 }; 10552 10553 BTF_ID_LIST(kf_arg_btf_ids) 10554 BTF_ID(struct, bpf_dynptr_kern) 10555 BTF_ID(struct, bpf_list_head) 10556 BTF_ID(struct, bpf_list_node) 10557 BTF_ID(struct, bpf_rb_root) 10558 BTF_ID(struct, bpf_rb_node) 10559 10560 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10561 const struct btf_param *arg, int type) 10562 { 10563 const struct btf_type *t; 10564 u32 res_id; 10565 10566 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10567 if (!t) 10568 return false; 10569 if (!btf_type_is_ptr(t)) 10570 return false; 10571 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10572 if (!t) 10573 return false; 10574 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10575 } 10576 10577 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10578 { 10579 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10580 } 10581 10582 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10583 { 10584 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10585 } 10586 10587 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10588 { 10589 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10590 } 10591 10592 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10593 { 10594 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10595 } 10596 10597 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10598 { 10599 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10600 } 10601 10602 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10603 const struct btf_param *arg) 10604 { 10605 const struct btf_type *t; 10606 10607 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10608 if (!t) 10609 return false; 10610 10611 return true; 10612 } 10613 10614 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10615 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10616 const struct btf *btf, 10617 const struct btf_type *t, int rec) 10618 { 10619 const struct btf_type *member_type; 10620 const struct btf_member *member; 10621 u32 i; 10622 10623 if (!btf_type_is_struct(t)) 10624 return false; 10625 10626 for_each_member(i, t, member) { 10627 const struct btf_array *array; 10628 10629 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10630 if (btf_type_is_struct(member_type)) { 10631 if (rec >= 3) { 10632 verbose(env, "max struct nesting depth exceeded\n"); 10633 return false; 10634 } 10635 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10636 return false; 10637 continue; 10638 } 10639 if (btf_type_is_array(member_type)) { 10640 array = btf_array(member_type); 10641 if (!array->nelems) 10642 return false; 10643 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10644 if (!btf_type_is_scalar(member_type)) 10645 return false; 10646 continue; 10647 } 10648 if (!btf_type_is_scalar(member_type)) 10649 return false; 10650 } 10651 return true; 10652 } 10653 10654 enum kfunc_ptr_arg_type { 10655 KF_ARG_PTR_TO_CTX, 10656 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10657 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10658 KF_ARG_PTR_TO_DYNPTR, 10659 KF_ARG_PTR_TO_ITER, 10660 KF_ARG_PTR_TO_LIST_HEAD, 10661 KF_ARG_PTR_TO_LIST_NODE, 10662 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10663 KF_ARG_PTR_TO_MEM, 10664 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10665 KF_ARG_PTR_TO_CALLBACK, 10666 KF_ARG_PTR_TO_RB_ROOT, 10667 KF_ARG_PTR_TO_RB_NODE, 10668 }; 10669 10670 enum special_kfunc_type { 10671 KF_bpf_obj_new_impl, 10672 KF_bpf_obj_drop_impl, 10673 KF_bpf_refcount_acquire_impl, 10674 KF_bpf_list_push_front_impl, 10675 KF_bpf_list_push_back_impl, 10676 KF_bpf_list_pop_front, 10677 KF_bpf_list_pop_back, 10678 KF_bpf_cast_to_kern_ctx, 10679 KF_bpf_rdonly_cast, 10680 KF_bpf_rcu_read_lock, 10681 KF_bpf_rcu_read_unlock, 10682 KF_bpf_rbtree_remove, 10683 KF_bpf_rbtree_add_impl, 10684 KF_bpf_rbtree_first, 10685 KF_bpf_dynptr_from_skb, 10686 KF_bpf_dynptr_from_xdp, 10687 KF_bpf_dynptr_slice, 10688 KF_bpf_dynptr_slice_rdwr, 10689 KF_bpf_dynptr_clone, 10690 }; 10691 10692 BTF_SET_START(special_kfunc_set) 10693 BTF_ID(func, bpf_obj_new_impl) 10694 BTF_ID(func, bpf_obj_drop_impl) 10695 BTF_ID(func, bpf_refcount_acquire_impl) 10696 BTF_ID(func, bpf_list_push_front_impl) 10697 BTF_ID(func, bpf_list_push_back_impl) 10698 BTF_ID(func, bpf_list_pop_front) 10699 BTF_ID(func, bpf_list_pop_back) 10700 BTF_ID(func, bpf_cast_to_kern_ctx) 10701 BTF_ID(func, bpf_rdonly_cast) 10702 BTF_ID(func, bpf_rbtree_remove) 10703 BTF_ID(func, bpf_rbtree_add_impl) 10704 BTF_ID(func, bpf_rbtree_first) 10705 BTF_ID(func, bpf_dynptr_from_skb) 10706 BTF_ID(func, bpf_dynptr_from_xdp) 10707 BTF_ID(func, bpf_dynptr_slice) 10708 BTF_ID(func, bpf_dynptr_slice_rdwr) 10709 BTF_ID(func, bpf_dynptr_clone) 10710 BTF_SET_END(special_kfunc_set) 10711 10712 BTF_ID_LIST(special_kfunc_list) 10713 BTF_ID(func, bpf_obj_new_impl) 10714 BTF_ID(func, bpf_obj_drop_impl) 10715 BTF_ID(func, bpf_refcount_acquire_impl) 10716 BTF_ID(func, bpf_list_push_front_impl) 10717 BTF_ID(func, bpf_list_push_back_impl) 10718 BTF_ID(func, bpf_list_pop_front) 10719 BTF_ID(func, bpf_list_pop_back) 10720 BTF_ID(func, bpf_cast_to_kern_ctx) 10721 BTF_ID(func, bpf_rdonly_cast) 10722 BTF_ID(func, bpf_rcu_read_lock) 10723 BTF_ID(func, bpf_rcu_read_unlock) 10724 BTF_ID(func, bpf_rbtree_remove) 10725 BTF_ID(func, bpf_rbtree_add_impl) 10726 BTF_ID(func, bpf_rbtree_first) 10727 BTF_ID(func, bpf_dynptr_from_skb) 10728 BTF_ID(func, bpf_dynptr_from_xdp) 10729 BTF_ID(func, bpf_dynptr_slice) 10730 BTF_ID(func, bpf_dynptr_slice_rdwr) 10731 BTF_ID(func, bpf_dynptr_clone) 10732 10733 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10734 { 10735 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10736 meta->arg_owning_ref) { 10737 return false; 10738 } 10739 10740 return meta->kfunc_flags & KF_RET_NULL; 10741 } 10742 10743 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10744 { 10745 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10746 } 10747 10748 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10749 { 10750 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10751 } 10752 10753 static enum kfunc_ptr_arg_type 10754 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10755 struct bpf_kfunc_call_arg_meta *meta, 10756 const struct btf_type *t, const struct btf_type *ref_t, 10757 const char *ref_tname, const struct btf_param *args, 10758 int argno, int nargs) 10759 { 10760 u32 regno = argno + 1; 10761 struct bpf_reg_state *regs = cur_regs(env); 10762 struct bpf_reg_state *reg = ®s[regno]; 10763 bool arg_mem_size = false; 10764 10765 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10766 return KF_ARG_PTR_TO_CTX; 10767 10768 /* In this function, we verify the kfunc's BTF as per the argument type, 10769 * leaving the rest of the verification with respect to the register 10770 * type to our caller. When a set of conditions hold in the BTF type of 10771 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10772 */ 10773 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10774 return KF_ARG_PTR_TO_CTX; 10775 10776 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10777 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10778 10779 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10780 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10781 10782 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10783 return KF_ARG_PTR_TO_DYNPTR; 10784 10785 if (is_kfunc_arg_iter(meta, argno)) 10786 return KF_ARG_PTR_TO_ITER; 10787 10788 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10789 return KF_ARG_PTR_TO_LIST_HEAD; 10790 10791 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10792 return KF_ARG_PTR_TO_LIST_NODE; 10793 10794 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10795 return KF_ARG_PTR_TO_RB_ROOT; 10796 10797 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10798 return KF_ARG_PTR_TO_RB_NODE; 10799 10800 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10801 if (!btf_type_is_struct(ref_t)) { 10802 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10803 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10804 return -EINVAL; 10805 } 10806 return KF_ARG_PTR_TO_BTF_ID; 10807 } 10808 10809 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10810 return KF_ARG_PTR_TO_CALLBACK; 10811 10812 10813 if (argno + 1 < nargs && 10814 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10815 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10816 arg_mem_size = true; 10817 10818 /* This is the catch all argument type of register types supported by 10819 * check_helper_mem_access. However, we only allow when argument type is 10820 * pointer to scalar, or struct composed (recursively) of scalars. When 10821 * arg_mem_size is true, the pointer can be void *. 10822 */ 10823 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10824 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10825 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10826 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10827 return -EINVAL; 10828 } 10829 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10830 } 10831 10832 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10833 struct bpf_reg_state *reg, 10834 const struct btf_type *ref_t, 10835 const char *ref_tname, u32 ref_id, 10836 struct bpf_kfunc_call_arg_meta *meta, 10837 int argno) 10838 { 10839 const struct btf_type *reg_ref_t; 10840 bool strict_type_match = false; 10841 const struct btf *reg_btf; 10842 const char *reg_ref_tname; 10843 u32 reg_ref_id; 10844 10845 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10846 reg_btf = reg->btf; 10847 reg_ref_id = reg->btf_id; 10848 } else { 10849 reg_btf = btf_vmlinux; 10850 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10851 } 10852 10853 /* Enforce strict type matching for calls to kfuncs that are acquiring 10854 * or releasing a reference, or are no-cast aliases. We do _not_ 10855 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10856 * as we want to enable BPF programs to pass types that are bitwise 10857 * equivalent without forcing them to explicitly cast with something 10858 * like bpf_cast_to_kern_ctx(). 10859 * 10860 * For example, say we had a type like the following: 10861 * 10862 * struct bpf_cpumask { 10863 * cpumask_t cpumask; 10864 * refcount_t usage; 10865 * }; 10866 * 10867 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10868 * to a struct cpumask, so it would be safe to pass a struct 10869 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10870 * 10871 * The philosophy here is similar to how we allow scalars of different 10872 * types to be passed to kfuncs as long as the size is the same. The 10873 * only difference here is that we're simply allowing 10874 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10875 * resolve types. 10876 */ 10877 if (is_kfunc_acquire(meta) || 10878 (is_kfunc_release(meta) && reg->ref_obj_id) || 10879 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10880 strict_type_match = true; 10881 10882 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10883 10884 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10885 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10886 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10887 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10888 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10889 btf_type_str(reg_ref_t), reg_ref_tname); 10890 return -EINVAL; 10891 } 10892 return 0; 10893 } 10894 10895 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10896 { 10897 struct bpf_verifier_state *state = env->cur_state; 10898 struct btf_record *rec = reg_btf_record(reg); 10899 10900 if (!state->active_lock.ptr) { 10901 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10902 return -EFAULT; 10903 } 10904 10905 if (type_flag(reg->type) & NON_OWN_REF) { 10906 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10907 return -EFAULT; 10908 } 10909 10910 reg->type |= NON_OWN_REF; 10911 if (rec->refcount_off >= 0) 10912 reg->type |= MEM_RCU; 10913 10914 return 0; 10915 } 10916 10917 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10918 { 10919 struct bpf_func_state *state, *unused; 10920 struct bpf_reg_state *reg; 10921 int i; 10922 10923 state = cur_func(env); 10924 10925 if (!ref_obj_id) { 10926 verbose(env, "verifier internal error: ref_obj_id is zero for " 10927 "owning -> non-owning conversion\n"); 10928 return -EFAULT; 10929 } 10930 10931 for (i = 0; i < state->acquired_refs; i++) { 10932 if (state->refs[i].id != ref_obj_id) 10933 continue; 10934 10935 /* Clear ref_obj_id here so release_reference doesn't clobber 10936 * the whole reg 10937 */ 10938 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10939 if (reg->ref_obj_id == ref_obj_id) { 10940 reg->ref_obj_id = 0; 10941 ref_set_non_owning(env, reg); 10942 } 10943 })); 10944 return 0; 10945 } 10946 10947 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10948 return -EFAULT; 10949 } 10950 10951 /* Implementation details: 10952 * 10953 * Each register points to some region of memory, which we define as an 10954 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10955 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10956 * allocation. The lock and the data it protects are colocated in the same 10957 * memory region. 10958 * 10959 * Hence, everytime a register holds a pointer value pointing to such 10960 * allocation, the verifier preserves a unique reg->id for it. 10961 * 10962 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10963 * bpf_spin_lock is called. 10964 * 10965 * To enable this, lock state in the verifier captures two values: 10966 * active_lock.ptr = Register's type specific pointer 10967 * active_lock.id = A unique ID for each register pointer value 10968 * 10969 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10970 * supported register types. 10971 * 10972 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10973 * allocated objects is the reg->btf pointer. 10974 * 10975 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10976 * can establish the provenance of the map value statically for each distinct 10977 * lookup into such maps. They always contain a single map value hence unique 10978 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10979 * 10980 * So, in case of global variables, they use array maps with max_entries = 1, 10981 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10982 * into the same map value as max_entries is 1, as described above). 10983 * 10984 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10985 * outer map pointer (in verifier context), but each lookup into an inner map 10986 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10987 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10988 * will get different reg->id assigned to each lookup, hence different 10989 * active_lock.id. 10990 * 10991 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10992 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10993 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10994 */ 10995 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10996 { 10997 void *ptr; 10998 u32 id; 10999 11000 switch ((int)reg->type) { 11001 case PTR_TO_MAP_VALUE: 11002 ptr = reg->map_ptr; 11003 break; 11004 case PTR_TO_BTF_ID | MEM_ALLOC: 11005 ptr = reg->btf; 11006 break; 11007 default: 11008 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11009 return -EFAULT; 11010 } 11011 id = reg->id; 11012 11013 if (!env->cur_state->active_lock.ptr) 11014 return -EINVAL; 11015 if (env->cur_state->active_lock.ptr != ptr || 11016 env->cur_state->active_lock.id != id) { 11017 verbose(env, "held lock and object are not in the same allocation\n"); 11018 return -EINVAL; 11019 } 11020 return 0; 11021 } 11022 11023 static bool is_bpf_list_api_kfunc(u32 btf_id) 11024 { 11025 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11026 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11027 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11028 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11029 } 11030 11031 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11032 { 11033 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11034 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11035 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11036 } 11037 11038 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11039 { 11040 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11041 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11042 } 11043 11044 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11045 { 11046 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11047 } 11048 11049 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11050 { 11051 return is_bpf_rbtree_api_kfunc(btf_id); 11052 } 11053 11054 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11055 enum btf_field_type head_field_type, 11056 u32 kfunc_btf_id) 11057 { 11058 bool ret; 11059 11060 switch (head_field_type) { 11061 case BPF_LIST_HEAD: 11062 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11063 break; 11064 case BPF_RB_ROOT: 11065 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11066 break; 11067 default: 11068 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11069 btf_field_type_name(head_field_type)); 11070 return false; 11071 } 11072 11073 if (!ret) 11074 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11075 btf_field_type_name(head_field_type)); 11076 return ret; 11077 } 11078 11079 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11080 enum btf_field_type node_field_type, 11081 u32 kfunc_btf_id) 11082 { 11083 bool ret; 11084 11085 switch (node_field_type) { 11086 case BPF_LIST_NODE: 11087 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11088 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11089 break; 11090 case BPF_RB_NODE: 11091 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11092 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11093 break; 11094 default: 11095 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11096 btf_field_type_name(node_field_type)); 11097 return false; 11098 } 11099 11100 if (!ret) 11101 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11102 btf_field_type_name(node_field_type)); 11103 return ret; 11104 } 11105 11106 static int 11107 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11108 struct bpf_reg_state *reg, u32 regno, 11109 struct bpf_kfunc_call_arg_meta *meta, 11110 enum btf_field_type head_field_type, 11111 struct btf_field **head_field) 11112 { 11113 const char *head_type_name; 11114 struct btf_field *field; 11115 struct btf_record *rec; 11116 u32 head_off; 11117 11118 if (meta->btf != btf_vmlinux) { 11119 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11120 return -EFAULT; 11121 } 11122 11123 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11124 return -EFAULT; 11125 11126 head_type_name = btf_field_type_name(head_field_type); 11127 if (!tnum_is_const(reg->var_off)) { 11128 verbose(env, 11129 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11130 regno, head_type_name); 11131 return -EINVAL; 11132 } 11133 11134 rec = reg_btf_record(reg); 11135 head_off = reg->off + reg->var_off.value; 11136 field = btf_record_find(rec, head_off, head_field_type); 11137 if (!field) { 11138 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11139 return -EINVAL; 11140 } 11141 11142 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11143 if (check_reg_allocation_locked(env, reg)) { 11144 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11145 rec->spin_lock_off, head_type_name); 11146 return -EINVAL; 11147 } 11148 11149 if (*head_field) { 11150 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11151 return -EFAULT; 11152 } 11153 *head_field = field; 11154 return 0; 11155 } 11156 11157 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11158 struct bpf_reg_state *reg, u32 regno, 11159 struct bpf_kfunc_call_arg_meta *meta) 11160 { 11161 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11162 &meta->arg_list_head.field); 11163 } 11164 11165 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11166 struct bpf_reg_state *reg, u32 regno, 11167 struct bpf_kfunc_call_arg_meta *meta) 11168 { 11169 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11170 &meta->arg_rbtree_root.field); 11171 } 11172 11173 static int 11174 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11175 struct bpf_reg_state *reg, u32 regno, 11176 struct bpf_kfunc_call_arg_meta *meta, 11177 enum btf_field_type head_field_type, 11178 enum btf_field_type node_field_type, 11179 struct btf_field **node_field) 11180 { 11181 const char *node_type_name; 11182 const struct btf_type *et, *t; 11183 struct btf_field *field; 11184 u32 node_off; 11185 11186 if (meta->btf != btf_vmlinux) { 11187 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11188 return -EFAULT; 11189 } 11190 11191 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11192 return -EFAULT; 11193 11194 node_type_name = btf_field_type_name(node_field_type); 11195 if (!tnum_is_const(reg->var_off)) { 11196 verbose(env, 11197 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11198 regno, node_type_name); 11199 return -EINVAL; 11200 } 11201 11202 node_off = reg->off + reg->var_off.value; 11203 field = reg_find_field_offset(reg, node_off, node_field_type); 11204 if (!field || field->offset != node_off) { 11205 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11206 return -EINVAL; 11207 } 11208 11209 field = *node_field; 11210 11211 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11212 t = btf_type_by_id(reg->btf, reg->btf_id); 11213 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11214 field->graph_root.value_btf_id, true)) { 11215 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11216 "in struct %s, but arg is at offset=%d in struct %s\n", 11217 btf_field_type_name(head_field_type), 11218 btf_field_type_name(node_field_type), 11219 field->graph_root.node_offset, 11220 btf_name_by_offset(field->graph_root.btf, et->name_off), 11221 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11222 return -EINVAL; 11223 } 11224 meta->arg_btf = reg->btf; 11225 meta->arg_btf_id = reg->btf_id; 11226 11227 if (node_off != field->graph_root.node_offset) { 11228 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11229 node_off, btf_field_type_name(node_field_type), 11230 field->graph_root.node_offset, 11231 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11232 return -EINVAL; 11233 } 11234 11235 return 0; 11236 } 11237 11238 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11239 struct bpf_reg_state *reg, u32 regno, 11240 struct bpf_kfunc_call_arg_meta *meta) 11241 { 11242 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11243 BPF_LIST_HEAD, BPF_LIST_NODE, 11244 &meta->arg_list_head.field); 11245 } 11246 11247 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11248 struct bpf_reg_state *reg, u32 regno, 11249 struct bpf_kfunc_call_arg_meta *meta) 11250 { 11251 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11252 BPF_RB_ROOT, BPF_RB_NODE, 11253 &meta->arg_rbtree_root.field); 11254 } 11255 11256 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11257 int insn_idx) 11258 { 11259 const char *func_name = meta->func_name, *ref_tname; 11260 const struct btf *btf = meta->btf; 11261 const struct btf_param *args; 11262 struct btf_record *rec; 11263 u32 i, nargs; 11264 int ret; 11265 11266 args = (const struct btf_param *)(meta->func_proto + 1); 11267 nargs = btf_type_vlen(meta->func_proto); 11268 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11269 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11270 MAX_BPF_FUNC_REG_ARGS); 11271 return -EINVAL; 11272 } 11273 11274 /* Check that BTF function arguments match actual types that the 11275 * verifier sees. 11276 */ 11277 for (i = 0; i < nargs; i++) { 11278 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11279 const struct btf_type *t, *ref_t, *resolve_ret; 11280 enum bpf_arg_type arg_type = ARG_DONTCARE; 11281 u32 regno = i + 1, ref_id, type_size; 11282 bool is_ret_buf_sz = false; 11283 int kf_arg_type; 11284 11285 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11286 11287 if (is_kfunc_arg_ignore(btf, &args[i])) 11288 continue; 11289 11290 if (btf_type_is_scalar(t)) { 11291 if (reg->type != SCALAR_VALUE) { 11292 verbose(env, "R%d is not a scalar\n", regno); 11293 return -EINVAL; 11294 } 11295 11296 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11297 if (meta->arg_constant.found) { 11298 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11299 return -EFAULT; 11300 } 11301 if (!tnum_is_const(reg->var_off)) { 11302 verbose(env, "R%d must be a known constant\n", regno); 11303 return -EINVAL; 11304 } 11305 ret = mark_chain_precision(env, regno); 11306 if (ret < 0) 11307 return ret; 11308 meta->arg_constant.found = true; 11309 meta->arg_constant.value = reg->var_off.value; 11310 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11311 meta->r0_rdonly = true; 11312 is_ret_buf_sz = true; 11313 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11314 is_ret_buf_sz = true; 11315 } 11316 11317 if (is_ret_buf_sz) { 11318 if (meta->r0_size) { 11319 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11320 return -EINVAL; 11321 } 11322 11323 if (!tnum_is_const(reg->var_off)) { 11324 verbose(env, "R%d is not a const\n", regno); 11325 return -EINVAL; 11326 } 11327 11328 meta->r0_size = reg->var_off.value; 11329 ret = mark_chain_precision(env, regno); 11330 if (ret) 11331 return ret; 11332 } 11333 continue; 11334 } 11335 11336 if (!btf_type_is_ptr(t)) { 11337 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11338 return -EINVAL; 11339 } 11340 11341 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11342 (register_is_null(reg) || type_may_be_null(reg->type))) { 11343 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11344 return -EACCES; 11345 } 11346 11347 if (reg->ref_obj_id) { 11348 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11349 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11350 regno, reg->ref_obj_id, 11351 meta->ref_obj_id); 11352 return -EFAULT; 11353 } 11354 meta->ref_obj_id = reg->ref_obj_id; 11355 if (is_kfunc_release(meta)) 11356 meta->release_regno = regno; 11357 } 11358 11359 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11360 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11361 11362 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11363 if (kf_arg_type < 0) 11364 return kf_arg_type; 11365 11366 switch (kf_arg_type) { 11367 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11368 case KF_ARG_PTR_TO_BTF_ID: 11369 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11370 break; 11371 11372 if (!is_trusted_reg(reg)) { 11373 if (!is_kfunc_rcu(meta)) { 11374 verbose(env, "R%d must be referenced or trusted\n", regno); 11375 return -EINVAL; 11376 } 11377 if (!is_rcu_reg(reg)) { 11378 verbose(env, "R%d must be a rcu pointer\n", regno); 11379 return -EINVAL; 11380 } 11381 } 11382 11383 fallthrough; 11384 case KF_ARG_PTR_TO_CTX: 11385 /* Trusted arguments have the same offset checks as release arguments */ 11386 arg_type |= OBJ_RELEASE; 11387 break; 11388 case KF_ARG_PTR_TO_DYNPTR: 11389 case KF_ARG_PTR_TO_ITER: 11390 case KF_ARG_PTR_TO_LIST_HEAD: 11391 case KF_ARG_PTR_TO_LIST_NODE: 11392 case KF_ARG_PTR_TO_RB_ROOT: 11393 case KF_ARG_PTR_TO_RB_NODE: 11394 case KF_ARG_PTR_TO_MEM: 11395 case KF_ARG_PTR_TO_MEM_SIZE: 11396 case KF_ARG_PTR_TO_CALLBACK: 11397 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11398 /* Trusted by default */ 11399 break; 11400 default: 11401 WARN_ON_ONCE(1); 11402 return -EFAULT; 11403 } 11404 11405 if (is_kfunc_release(meta) && reg->ref_obj_id) 11406 arg_type |= OBJ_RELEASE; 11407 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11408 if (ret < 0) 11409 return ret; 11410 11411 switch (kf_arg_type) { 11412 case KF_ARG_PTR_TO_CTX: 11413 if (reg->type != PTR_TO_CTX) { 11414 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11415 return -EINVAL; 11416 } 11417 11418 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11419 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11420 if (ret < 0) 11421 return -EINVAL; 11422 meta->ret_btf_id = ret; 11423 } 11424 break; 11425 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11426 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11427 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11428 return -EINVAL; 11429 } 11430 if (!reg->ref_obj_id) { 11431 verbose(env, "allocated object must be referenced\n"); 11432 return -EINVAL; 11433 } 11434 if (meta->btf == btf_vmlinux && 11435 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11436 meta->arg_btf = reg->btf; 11437 meta->arg_btf_id = reg->btf_id; 11438 } 11439 break; 11440 case KF_ARG_PTR_TO_DYNPTR: 11441 { 11442 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11443 int clone_ref_obj_id = 0; 11444 11445 if (reg->type != PTR_TO_STACK && 11446 reg->type != CONST_PTR_TO_DYNPTR) { 11447 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11448 return -EINVAL; 11449 } 11450 11451 if (reg->type == CONST_PTR_TO_DYNPTR) 11452 dynptr_arg_type |= MEM_RDONLY; 11453 11454 if (is_kfunc_arg_uninit(btf, &args[i])) 11455 dynptr_arg_type |= MEM_UNINIT; 11456 11457 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11458 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11459 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11460 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11461 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11462 (dynptr_arg_type & MEM_UNINIT)) { 11463 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11464 11465 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11466 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11467 return -EFAULT; 11468 } 11469 11470 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11471 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11472 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11473 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11474 return -EFAULT; 11475 } 11476 } 11477 11478 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11479 if (ret < 0) 11480 return ret; 11481 11482 if (!(dynptr_arg_type & MEM_UNINIT)) { 11483 int id = dynptr_id(env, reg); 11484 11485 if (id < 0) { 11486 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11487 return id; 11488 } 11489 meta->initialized_dynptr.id = id; 11490 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11491 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11492 } 11493 11494 break; 11495 } 11496 case KF_ARG_PTR_TO_ITER: 11497 ret = process_iter_arg(env, regno, insn_idx, meta); 11498 if (ret < 0) 11499 return ret; 11500 break; 11501 case KF_ARG_PTR_TO_LIST_HEAD: 11502 if (reg->type != PTR_TO_MAP_VALUE && 11503 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11504 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11505 return -EINVAL; 11506 } 11507 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11508 verbose(env, "allocated object must be referenced\n"); 11509 return -EINVAL; 11510 } 11511 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11512 if (ret < 0) 11513 return ret; 11514 break; 11515 case KF_ARG_PTR_TO_RB_ROOT: 11516 if (reg->type != PTR_TO_MAP_VALUE && 11517 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11518 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11519 return -EINVAL; 11520 } 11521 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11522 verbose(env, "allocated object must be referenced\n"); 11523 return -EINVAL; 11524 } 11525 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11526 if (ret < 0) 11527 return ret; 11528 break; 11529 case KF_ARG_PTR_TO_LIST_NODE: 11530 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11531 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11532 return -EINVAL; 11533 } 11534 if (!reg->ref_obj_id) { 11535 verbose(env, "allocated object must be referenced\n"); 11536 return -EINVAL; 11537 } 11538 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11539 if (ret < 0) 11540 return ret; 11541 break; 11542 case KF_ARG_PTR_TO_RB_NODE: 11543 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11544 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11545 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11546 return -EINVAL; 11547 } 11548 if (in_rbtree_lock_required_cb(env)) { 11549 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11550 return -EINVAL; 11551 } 11552 } else { 11553 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11554 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11555 return -EINVAL; 11556 } 11557 if (!reg->ref_obj_id) { 11558 verbose(env, "allocated object must be referenced\n"); 11559 return -EINVAL; 11560 } 11561 } 11562 11563 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11564 if (ret < 0) 11565 return ret; 11566 break; 11567 case KF_ARG_PTR_TO_BTF_ID: 11568 /* Only base_type is checked, further checks are done here */ 11569 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11570 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11571 !reg2btf_ids[base_type(reg->type)]) { 11572 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11573 verbose(env, "expected %s or socket\n", 11574 reg_type_str(env, base_type(reg->type) | 11575 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11576 return -EINVAL; 11577 } 11578 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11579 if (ret < 0) 11580 return ret; 11581 break; 11582 case KF_ARG_PTR_TO_MEM: 11583 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11584 if (IS_ERR(resolve_ret)) { 11585 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11586 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11587 return -EINVAL; 11588 } 11589 ret = check_mem_reg(env, reg, regno, type_size); 11590 if (ret < 0) 11591 return ret; 11592 break; 11593 case KF_ARG_PTR_TO_MEM_SIZE: 11594 { 11595 struct bpf_reg_state *buff_reg = ®s[regno]; 11596 const struct btf_param *buff_arg = &args[i]; 11597 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11598 const struct btf_param *size_arg = &args[i + 1]; 11599 11600 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11601 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11602 if (ret < 0) { 11603 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11604 return ret; 11605 } 11606 } 11607 11608 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11609 if (meta->arg_constant.found) { 11610 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11611 return -EFAULT; 11612 } 11613 if (!tnum_is_const(size_reg->var_off)) { 11614 verbose(env, "R%d must be a known constant\n", regno + 1); 11615 return -EINVAL; 11616 } 11617 meta->arg_constant.found = true; 11618 meta->arg_constant.value = size_reg->var_off.value; 11619 } 11620 11621 /* Skip next '__sz' or '__szk' argument */ 11622 i++; 11623 break; 11624 } 11625 case KF_ARG_PTR_TO_CALLBACK: 11626 if (reg->type != PTR_TO_FUNC) { 11627 verbose(env, "arg%d expected pointer to func\n", i); 11628 return -EINVAL; 11629 } 11630 meta->subprogno = reg->subprogno; 11631 break; 11632 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11633 if (!type_is_ptr_alloc_obj(reg->type)) { 11634 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11635 return -EINVAL; 11636 } 11637 if (!type_is_non_owning_ref(reg->type)) 11638 meta->arg_owning_ref = true; 11639 11640 rec = reg_btf_record(reg); 11641 if (!rec) { 11642 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11643 return -EFAULT; 11644 } 11645 11646 if (rec->refcount_off < 0) { 11647 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11648 return -EINVAL; 11649 } 11650 11651 meta->arg_btf = reg->btf; 11652 meta->arg_btf_id = reg->btf_id; 11653 break; 11654 } 11655 } 11656 11657 if (is_kfunc_release(meta) && !meta->release_regno) { 11658 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11659 func_name); 11660 return -EINVAL; 11661 } 11662 11663 return 0; 11664 } 11665 11666 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11667 struct bpf_insn *insn, 11668 struct bpf_kfunc_call_arg_meta *meta, 11669 const char **kfunc_name) 11670 { 11671 const struct btf_type *func, *func_proto; 11672 u32 func_id, *kfunc_flags; 11673 const char *func_name; 11674 struct btf *desc_btf; 11675 11676 if (kfunc_name) 11677 *kfunc_name = NULL; 11678 11679 if (!insn->imm) 11680 return -EINVAL; 11681 11682 desc_btf = find_kfunc_desc_btf(env, insn->off); 11683 if (IS_ERR(desc_btf)) 11684 return PTR_ERR(desc_btf); 11685 11686 func_id = insn->imm; 11687 func = btf_type_by_id(desc_btf, func_id); 11688 func_name = btf_name_by_offset(desc_btf, func->name_off); 11689 if (kfunc_name) 11690 *kfunc_name = func_name; 11691 func_proto = btf_type_by_id(desc_btf, func->type); 11692 11693 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11694 if (!kfunc_flags) { 11695 return -EACCES; 11696 } 11697 11698 memset(meta, 0, sizeof(*meta)); 11699 meta->btf = desc_btf; 11700 meta->func_id = func_id; 11701 meta->kfunc_flags = *kfunc_flags; 11702 meta->func_proto = func_proto; 11703 meta->func_name = func_name; 11704 11705 return 0; 11706 } 11707 11708 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11709 int *insn_idx_p) 11710 { 11711 const struct btf_type *t, *ptr_type; 11712 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11713 struct bpf_reg_state *regs = cur_regs(env); 11714 const char *func_name, *ptr_type_name; 11715 bool sleepable, rcu_lock, rcu_unlock; 11716 struct bpf_kfunc_call_arg_meta meta; 11717 struct bpf_insn_aux_data *insn_aux; 11718 int err, insn_idx = *insn_idx_p; 11719 const struct btf_param *args; 11720 const struct btf_type *ret_t; 11721 struct btf *desc_btf; 11722 11723 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11724 if (!insn->imm) 11725 return 0; 11726 11727 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11728 if (err == -EACCES && func_name) 11729 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11730 if (err) 11731 return err; 11732 desc_btf = meta.btf; 11733 insn_aux = &env->insn_aux_data[insn_idx]; 11734 11735 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11736 11737 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11738 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11739 return -EACCES; 11740 } 11741 11742 sleepable = is_kfunc_sleepable(&meta); 11743 if (sleepable && !env->prog->aux->sleepable) { 11744 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11745 return -EACCES; 11746 } 11747 11748 /* Check the arguments */ 11749 err = check_kfunc_args(env, &meta, insn_idx); 11750 if (err < 0) 11751 return err; 11752 11753 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11754 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11755 set_rbtree_add_callback_state); 11756 if (err) { 11757 verbose(env, "kfunc %s#%d failed callback verification\n", 11758 func_name, meta.func_id); 11759 return err; 11760 } 11761 } 11762 11763 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11764 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11765 11766 if (env->cur_state->active_rcu_lock) { 11767 struct bpf_func_state *state; 11768 struct bpf_reg_state *reg; 11769 11770 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11771 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11772 return -EACCES; 11773 } 11774 11775 if (rcu_lock) { 11776 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11777 return -EINVAL; 11778 } else if (rcu_unlock) { 11779 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11780 if (reg->type & MEM_RCU) { 11781 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11782 reg->type |= PTR_UNTRUSTED; 11783 } 11784 })); 11785 env->cur_state->active_rcu_lock = false; 11786 } else if (sleepable) { 11787 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11788 return -EACCES; 11789 } 11790 } else if (rcu_lock) { 11791 env->cur_state->active_rcu_lock = true; 11792 } else if (rcu_unlock) { 11793 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11794 return -EINVAL; 11795 } 11796 11797 /* In case of release function, we get register number of refcounted 11798 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11799 */ 11800 if (meta.release_regno) { 11801 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11802 if (err) { 11803 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11804 func_name, meta.func_id); 11805 return err; 11806 } 11807 } 11808 11809 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11810 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11811 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11812 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11813 insn_aux->insert_off = regs[BPF_REG_2].off; 11814 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11815 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11816 if (err) { 11817 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11818 func_name, meta.func_id); 11819 return err; 11820 } 11821 11822 err = release_reference(env, release_ref_obj_id); 11823 if (err) { 11824 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11825 func_name, meta.func_id); 11826 return err; 11827 } 11828 } 11829 11830 for (i = 0; i < CALLER_SAVED_REGS; i++) 11831 mark_reg_not_init(env, regs, caller_saved[i]); 11832 11833 /* Check return type */ 11834 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11835 11836 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11837 /* Only exception is bpf_obj_new_impl */ 11838 if (meta.btf != btf_vmlinux || 11839 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11840 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11841 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11842 return -EINVAL; 11843 } 11844 } 11845 11846 if (btf_type_is_scalar(t)) { 11847 mark_reg_unknown(env, regs, BPF_REG_0); 11848 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11849 } else if (btf_type_is_ptr(t)) { 11850 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11851 11852 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11853 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11854 struct btf *ret_btf; 11855 u32 ret_btf_id; 11856 11857 if (unlikely(!bpf_global_ma_set)) 11858 return -ENOMEM; 11859 11860 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11861 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11862 return -EINVAL; 11863 } 11864 11865 ret_btf = env->prog->aux->btf; 11866 ret_btf_id = meta.arg_constant.value; 11867 11868 /* This may be NULL due to user not supplying a BTF */ 11869 if (!ret_btf) { 11870 verbose(env, "bpf_obj_new requires prog BTF\n"); 11871 return -EINVAL; 11872 } 11873 11874 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11875 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11876 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11877 return -EINVAL; 11878 } 11879 11880 mark_reg_known_zero(env, regs, BPF_REG_0); 11881 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11882 regs[BPF_REG_0].btf = ret_btf; 11883 regs[BPF_REG_0].btf_id = ret_btf_id; 11884 11885 insn_aux->obj_new_size = ret_t->size; 11886 insn_aux->kptr_struct_meta = 11887 btf_find_struct_meta(ret_btf, ret_btf_id); 11888 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11889 mark_reg_known_zero(env, regs, BPF_REG_0); 11890 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11891 regs[BPF_REG_0].btf = meta.arg_btf; 11892 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11893 11894 insn_aux->kptr_struct_meta = 11895 btf_find_struct_meta(meta.arg_btf, 11896 meta.arg_btf_id); 11897 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11898 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11899 struct btf_field *field = meta.arg_list_head.field; 11900 11901 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11902 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11903 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11904 struct btf_field *field = meta.arg_rbtree_root.field; 11905 11906 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11907 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11908 mark_reg_known_zero(env, regs, BPF_REG_0); 11909 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11910 regs[BPF_REG_0].btf = desc_btf; 11911 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11912 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11913 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11914 if (!ret_t || !btf_type_is_struct(ret_t)) { 11915 verbose(env, 11916 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11917 return -EINVAL; 11918 } 11919 11920 mark_reg_known_zero(env, regs, BPF_REG_0); 11921 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11922 regs[BPF_REG_0].btf = desc_btf; 11923 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11924 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11925 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11926 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11927 11928 mark_reg_known_zero(env, regs, BPF_REG_0); 11929 11930 if (!meta.arg_constant.found) { 11931 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11932 return -EFAULT; 11933 } 11934 11935 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11936 11937 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11938 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11939 11940 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11941 regs[BPF_REG_0].type |= MEM_RDONLY; 11942 } else { 11943 /* this will set env->seen_direct_write to true */ 11944 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11945 verbose(env, "the prog does not allow writes to packet data\n"); 11946 return -EINVAL; 11947 } 11948 } 11949 11950 if (!meta.initialized_dynptr.id) { 11951 verbose(env, "verifier internal error: no dynptr id\n"); 11952 return -EFAULT; 11953 } 11954 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11955 11956 /* we don't need to set BPF_REG_0's ref obj id 11957 * because packet slices are not refcounted (see 11958 * dynptr_type_refcounted) 11959 */ 11960 } else { 11961 verbose(env, "kernel function %s unhandled dynamic return type\n", 11962 meta.func_name); 11963 return -EFAULT; 11964 } 11965 } else if (!__btf_type_is_struct(ptr_type)) { 11966 if (!meta.r0_size) { 11967 __u32 sz; 11968 11969 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11970 meta.r0_size = sz; 11971 meta.r0_rdonly = true; 11972 } 11973 } 11974 if (!meta.r0_size) { 11975 ptr_type_name = btf_name_by_offset(desc_btf, 11976 ptr_type->name_off); 11977 verbose(env, 11978 "kernel function %s returns pointer type %s %s is not supported\n", 11979 func_name, 11980 btf_type_str(ptr_type), 11981 ptr_type_name); 11982 return -EINVAL; 11983 } 11984 11985 mark_reg_known_zero(env, regs, BPF_REG_0); 11986 regs[BPF_REG_0].type = PTR_TO_MEM; 11987 regs[BPF_REG_0].mem_size = meta.r0_size; 11988 11989 if (meta.r0_rdonly) 11990 regs[BPF_REG_0].type |= MEM_RDONLY; 11991 11992 /* Ensures we don't access the memory after a release_reference() */ 11993 if (meta.ref_obj_id) 11994 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11995 } else { 11996 mark_reg_known_zero(env, regs, BPF_REG_0); 11997 regs[BPF_REG_0].btf = desc_btf; 11998 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11999 regs[BPF_REG_0].btf_id = ptr_type_id; 12000 } 12001 12002 if (is_kfunc_ret_null(&meta)) { 12003 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12004 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12005 regs[BPF_REG_0].id = ++env->id_gen; 12006 } 12007 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12008 if (is_kfunc_acquire(&meta)) { 12009 int id = acquire_reference_state(env, insn_idx); 12010 12011 if (id < 0) 12012 return id; 12013 if (is_kfunc_ret_null(&meta)) 12014 regs[BPF_REG_0].id = id; 12015 regs[BPF_REG_0].ref_obj_id = id; 12016 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12017 ref_set_non_owning(env, ®s[BPF_REG_0]); 12018 } 12019 12020 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12021 regs[BPF_REG_0].id = ++env->id_gen; 12022 } else if (btf_type_is_void(t)) { 12023 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12024 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 12025 insn_aux->kptr_struct_meta = 12026 btf_find_struct_meta(meta.arg_btf, 12027 meta.arg_btf_id); 12028 } 12029 } 12030 } 12031 12032 nargs = btf_type_vlen(meta.func_proto); 12033 args = (const struct btf_param *)(meta.func_proto + 1); 12034 for (i = 0; i < nargs; i++) { 12035 u32 regno = i + 1; 12036 12037 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12038 if (btf_type_is_ptr(t)) 12039 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12040 else 12041 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12042 mark_btf_func_reg_size(env, regno, t->size); 12043 } 12044 12045 if (is_iter_next_kfunc(&meta)) { 12046 err = process_iter_next_call(env, insn_idx, &meta); 12047 if (err) 12048 return err; 12049 } 12050 12051 return 0; 12052 } 12053 12054 static bool signed_add_overflows(s64 a, s64 b) 12055 { 12056 /* Do the add in u64, where overflow is well-defined */ 12057 s64 res = (s64)((u64)a + (u64)b); 12058 12059 if (b < 0) 12060 return res > a; 12061 return res < a; 12062 } 12063 12064 static bool signed_add32_overflows(s32 a, s32 b) 12065 { 12066 /* Do the add in u32, where overflow is well-defined */ 12067 s32 res = (s32)((u32)a + (u32)b); 12068 12069 if (b < 0) 12070 return res > a; 12071 return res < a; 12072 } 12073 12074 static bool signed_sub_overflows(s64 a, s64 b) 12075 { 12076 /* Do the sub in u64, where overflow is well-defined */ 12077 s64 res = (s64)((u64)a - (u64)b); 12078 12079 if (b < 0) 12080 return res < a; 12081 return res > a; 12082 } 12083 12084 static bool signed_sub32_overflows(s32 a, s32 b) 12085 { 12086 /* Do the sub in u32, where overflow is well-defined */ 12087 s32 res = (s32)((u32)a - (u32)b); 12088 12089 if (b < 0) 12090 return res < a; 12091 return res > a; 12092 } 12093 12094 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12095 const struct bpf_reg_state *reg, 12096 enum bpf_reg_type type) 12097 { 12098 bool known = tnum_is_const(reg->var_off); 12099 s64 val = reg->var_off.value; 12100 s64 smin = reg->smin_value; 12101 12102 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12103 verbose(env, "math between %s pointer and %lld is not allowed\n", 12104 reg_type_str(env, type), val); 12105 return false; 12106 } 12107 12108 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12109 verbose(env, "%s pointer offset %d is not allowed\n", 12110 reg_type_str(env, type), reg->off); 12111 return false; 12112 } 12113 12114 if (smin == S64_MIN) { 12115 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12116 reg_type_str(env, type)); 12117 return false; 12118 } 12119 12120 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12121 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12122 smin, reg_type_str(env, type)); 12123 return false; 12124 } 12125 12126 return true; 12127 } 12128 12129 enum { 12130 REASON_BOUNDS = -1, 12131 REASON_TYPE = -2, 12132 REASON_PATHS = -3, 12133 REASON_LIMIT = -4, 12134 REASON_STACK = -5, 12135 }; 12136 12137 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12138 u32 *alu_limit, bool mask_to_left) 12139 { 12140 u32 max = 0, ptr_limit = 0; 12141 12142 switch (ptr_reg->type) { 12143 case PTR_TO_STACK: 12144 /* Offset 0 is out-of-bounds, but acceptable start for the 12145 * left direction, see BPF_REG_FP. Also, unknown scalar 12146 * offset where we would need to deal with min/max bounds is 12147 * currently prohibited for unprivileged. 12148 */ 12149 max = MAX_BPF_STACK + mask_to_left; 12150 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12151 break; 12152 case PTR_TO_MAP_VALUE: 12153 max = ptr_reg->map_ptr->value_size; 12154 ptr_limit = (mask_to_left ? 12155 ptr_reg->smin_value : 12156 ptr_reg->umax_value) + ptr_reg->off; 12157 break; 12158 default: 12159 return REASON_TYPE; 12160 } 12161 12162 if (ptr_limit >= max) 12163 return REASON_LIMIT; 12164 *alu_limit = ptr_limit; 12165 return 0; 12166 } 12167 12168 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12169 const struct bpf_insn *insn) 12170 { 12171 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12172 } 12173 12174 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12175 u32 alu_state, u32 alu_limit) 12176 { 12177 /* If we arrived here from different branches with different 12178 * state or limits to sanitize, then this won't work. 12179 */ 12180 if (aux->alu_state && 12181 (aux->alu_state != alu_state || 12182 aux->alu_limit != alu_limit)) 12183 return REASON_PATHS; 12184 12185 /* Corresponding fixup done in do_misc_fixups(). */ 12186 aux->alu_state = alu_state; 12187 aux->alu_limit = alu_limit; 12188 return 0; 12189 } 12190 12191 static int sanitize_val_alu(struct bpf_verifier_env *env, 12192 struct bpf_insn *insn) 12193 { 12194 struct bpf_insn_aux_data *aux = cur_aux(env); 12195 12196 if (can_skip_alu_sanitation(env, insn)) 12197 return 0; 12198 12199 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12200 } 12201 12202 static bool sanitize_needed(u8 opcode) 12203 { 12204 return opcode == BPF_ADD || opcode == BPF_SUB; 12205 } 12206 12207 struct bpf_sanitize_info { 12208 struct bpf_insn_aux_data aux; 12209 bool mask_to_left; 12210 }; 12211 12212 static struct bpf_verifier_state * 12213 sanitize_speculative_path(struct bpf_verifier_env *env, 12214 const struct bpf_insn *insn, 12215 u32 next_idx, u32 curr_idx) 12216 { 12217 struct bpf_verifier_state *branch; 12218 struct bpf_reg_state *regs; 12219 12220 branch = push_stack(env, next_idx, curr_idx, true); 12221 if (branch && insn) { 12222 regs = branch->frame[branch->curframe]->regs; 12223 if (BPF_SRC(insn->code) == BPF_K) { 12224 mark_reg_unknown(env, regs, insn->dst_reg); 12225 } else if (BPF_SRC(insn->code) == BPF_X) { 12226 mark_reg_unknown(env, regs, insn->dst_reg); 12227 mark_reg_unknown(env, regs, insn->src_reg); 12228 } 12229 } 12230 return branch; 12231 } 12232 12233 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12234 struct bpf_insn *insn, 12235 const struct bpf_reg_state *ptr_reg, 12236 const struct bpf_reg_state *off_reg, 12237 struct bpf_reg_state *dst_reg, 12238 struct bpf_sanitize_info *info, 12239 const bool commit_window) 12240 { 12241 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12242 struct bpf_verifier_state *vstate = env->cur_state; 12243 bool off_is_imm = tnum_is_const(off_reg->var_off); 12244 bool off_is_neg = off_reg->smin_value < 0; 12245 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12246 u8 opcode = BPF_OP(insn->code); 12247 u32 alu_state, alu_limit; 12248 struct bpf_reg_state tmp; 12249 bool ret; 12250 int err; 12251 12252 if (can_skip_alu_sanitation(env, insn)) 12253 return 0; 12254 12255 /* We already marked aux for masking from non-speculative 12256 * paths, thus we got here in the first place. We only care 12257 * to explore bad access from here. 12258 */ 12259 if (vstate->speculative) 12260 goto do_sim; 12261 12262 if (!commit_window) { 12263 if (!tnum_is_const(off_reg->var_off) && 12264 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12265 return REASON_BOUNDS; 12266 12267 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12268 (opcode == BPF_SUB && !off_is_neg); 12269 } 12270 12271 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12272 if (err < 0) 12273 return err; 12274 12275 if (commit_window) { 12276 /* In commit phase we narrow the masking window based on 12277 * the observed pointer move after the simulated operation. 12278 */ 12279 alu_state = info->aux.alu_state; 12280 alu_limit = abs(info->aux.alu_limit - alu_limit); 12281 } else { 12282 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12283 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12284 alu_state |= ptr_is_dst_reg ? 12285 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12286 12287 /* Limit pruning on unknown scalars to enable deep search for 12288 * potential masking differences from other program paths. 12289 */ 12290 if (!off_is_imm) 12291 env->explore_alu_limits = true; 12292 } 12293 12294 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12295 if (err < 0) 12296 return err; 12297 do_sim: 12298 /* If we're in commit phase, we're done here given we already 12299 * pushed the truncated dst_reg into the speculative verification 12300 * stack. 12301 * 12302 * Also, when register is a known constant, we rewrite register-based 12303 * operation to immediate-based, and thus do not need masking (and as 12304 * a consequence, do not need to simulate the zero-truncation either). 12305 */ 12306 if (commit_window || off_is_imm) 12307 return 0; 12308 12309 /* Simulate and find potential out-of-bounds access under 12310 * speculative execution from truncation as a result of 12311 * masking when off was not within expected range. If off 12312 * sits in dst, then we temporarily need to move ptr there 12313 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12314 * for cases where we use K-based arithmetic in one direction 12315 * and truncated reg-based in the other in order to explore 12316 * bad access. 12317 */ 12318 if (!ptr_is_dst_reg) { 12319 tmp = *dst_reg; 12320 copy_register_state(dst_reg, ptr_reg); 12321 } 12322 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12323 env->insn_idx); 12324 if (!ptr_is_dst_reg && ret) 12325 *dst_reg = tmp; 12326 return !ret ? REASON_STACK : 0; 12327 } 12328 12329 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12330 { 12331 struct bpf_verifier_state *vstate = env->cur_state; 12332 12333 /* If we simulate paths under speculation, we don't update the 12334 * insn as 'seen' such that when we verify unreachable paths in 12335 * the non-speculative domain, sanitize_dead_code() can still 12336 * rewrite/sanitize them. 12337 */ 12338 if (!vstate->speculative) 12339 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12340 } 12341 12342 static int sanitize_err(struct bpf_verifier_env *env, 12343 const struct bpf_insn *insn, int reason, 12344 const struct bpf_reg_state *off_reg, 12345 const struct bpf_reg_state *dst_reg) 12346 { 12347 static const char *err = "pointer arithmetic with it prohibited for !root"; 12348 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12349 u32 dst = insn->dst_reg, src = insn->src_reg; 12350 12351 switch (reason) { 12352 case REASON_BOUNDS: 12353 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12354 off_reg == dst_reg ? dst : src, err); 12355 break; 12356 case REASON_TYPE: 12357 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12358 off_reg == dst_reg ? src : dst, err); 12359 break; 12360 case REASON_PATHS: 12361 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12362 dst, op, err); 12363 break; 12364 case REASON_LIMIT: 12365 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12366 dst, op, err); 12367 break; 12368 case REASON_STACK: 12369 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12370 dst, err); 12371 break; 12372 default: 12373 verbose(env, "verifier internal error: unknown reason (%d)\n", 12374 reason); 12375 break; 12376 } 12377 12378 return -EACCES; 12379 } 12380 12381 /* check that stack access falls within stack limits and that 'reg' doesn't 12382 * have a variable offset. 12383 * 12384 * Variable offset is prohibited for unprivileged mode for simplicity since it 12385 * requires corresponding support in Spectre masking for stack ALU. See also 12386 * retrieve_ptr_limit(). 12387 * 12388 * 12389 * 'off' includes 'reg->off'. 12390 */ 12391 static int check_stack_access_for_ptr_arithmetic( 12392 struct bpf_verifier_env *env, 12393 int regno, 12394 const struct bpf_reg_state *reg, 12395 int off) 12396 { 12397 if (!tnum_is_const(reg->var_off)) { 12398 char tn_buf[48]; 12399 12400 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12401 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12402 regno, tn_buf, off); 12403 return -EACCES; 12404 } 12405 12406 if (off >= 0 || off < -MAX_BPF_STACK) { 12407 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12408 "prohibited for !root; off=%d\n", regno, off); 12409 return -EACCES; 12410 } 12411 12412 return 0; 12413 } 12414 12415 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12416 const struct bpf_insn *insn, 12417 const struct bpf_reg_state *dst_reg) 12418 { 12419 u32 dst = insn->dst_reg; 12420 12421 /* For unprivileged we require that resulting offset must be in bounds 12422 * in order to be able to sanitize access later on. 12423 */ 12424 if (env->bypass_spec_v1) 12425 return 0; 12426 12427 switch (dst_reg->type) { 12428 case PTR_TO_STACK: 12429 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12430 dst_reg->off + dst_reg->var_off.value)) 12431 return -EACCES; 12432 break; 12433 case PTR_TO_MAP_VALUE: 12434 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12435 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12436 "prohibited for !root\n", dst); 12437 return -EACCES; 12438 } 12439 break; 12440 default: 12441 break; 12442 } 12443 12444 return 0; 12445 } 12446 12447 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12448 * Caller should also handle BPF_MOV case separately. 12449 * If we return -EACCES, caller may want to try again treating pointer as a 12450 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12451 */ 12452 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12453 struct bpf_insn *insn, 12454 const struct bpf_reg_state *ptr_reg, 12455 const struct bpf_reg_state *off_reg) 12456 { 12457 struct bpf_verifier_state *vstate = env->cur_state; 12458 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12459 struct bpf_reg_state *regs = state->regs, *dst_reg; 12460 bool known = tnum_is_const(off_reg->var_off); 12461 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12462 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12463 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12464 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12465 struct bpf_sanitize_info info = {}; 12466 u8 opcode = BPF_OP(insn->code); 12467 u32 dst = insn->dst_reg; 12468 int ret; 12469 12470 dst_reg = ®s[dst]; 12471 12472 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12473 smin_val > smax_val || umin_val > umax_val) { 12474 /* Taint dst register if offset had invalid bounds derived from 12475 * e.g. dead branches. 12476 */ 12477 __mark_reg_unknown(env, dst_reg); 12478 return 0; 12479 } 12480 12481 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12482 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12483 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12484 __mark_reg_unknown(env, dst_reg); 12485 return 0; 12486 } 12487 12488 verbose(env, 12489 "R%d 32-bit pointer arithmetic prohibited\n", 12490 dst); 12491 return -EACCES; 12492 } 12493 12494 if (ptr_reg->type & PTR_MAYBE_NULL) { 12495 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12496 dst, reg_type_str(env, ptr_reg->type)); 12497 return -EACCES; 12498 } 12499 12500 switch (base_type(ptr_reg->type)) { 12501 case PTR_TO_FLOW_KEYS: 12502 if (known) 12503 break; 12504 fallthrough; 12505 case CONST_PTR_TO_MAP: 12506 /* smin_val represents the known value */ 12507 if (known && smin_val == 0 && opcode == BPF_ADD) 12508 break; 12509 fallthrough; 12510 case PTR_TO_PACKET_END: 12511 case PTR_TO_SOCKET: 12512 case PTR_TO_SOCK_COMMON: 12513 case PTR_TO_TCP_SOCK: 12514 case PTR_TO_XDP_SOCK: 12515 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12516 dst, reg_type_str(env, ptr_reg->type)); 12517 return -EACCES; 12518 default: 12519 break; 12520 } 12521 12522 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12523 * The id may be overwritten later if we create a new variable offset. 12524 */ 12525 dst_reg->type = ptr_reg->type; 12526 dst_reg->id = ptr_reg->id; 12527 12528 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12529 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12530 return -EINVAL; 12531 12532 /* pointer types do not carry 32-bit bounds at the moment. */ 12533 __mark_reg32_unbounded(dst_reg); 12534 12535 if (sanitize_needed(opcode)) { 12536 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12537 &info, false); 12538 if (ret < 0) 12539 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12540 } 12541 12542 switch (opcode) { 12543 case BPF_ADD: 12544 /* We can take a fixed offset as long as it doesn't overflow 12545 * the s32 'off' field 12546 */ 12547 if (known && (ptr_reg->off + smin_val == 12548 (s64)(s32)(ptr_reg->off + smin_val))) { 12549 /* pointer += K. Accumulate it into fixed offset */ 12550 dst_reg->smin_value = smin_ptr; 12551 dst_reg->smax_value = smax_ptr; 12552 dst_reg->umin_value = umin_ptr; 12553 dst_reg->umax_value = umax_ptr; 12554 dst_reg->var_off = ptr_reg->var_off; 12555 dst_reg->off = ptr_reg->off + smin_val; 12556 dst_reg->raw = ptr_reg->raw; 12557 break; 12558 } 12559 /* A new variable offset is created. Note that off_reg->off 12560 * == 0, since it's a scalar. 12561 * dst_reg gets the pointer type and since some positive 12562 * integer value was added to the pointer, give it a new 'id' 12563 * if it's a PTR_TO_PACKET. 12564 * this creates a new 'base' pointer, off_reg (variable) gets 12565 * added into the variable offset, and we copy the fixed offset 12566 * from ptr_reg. 12567 */ 12568 if (signed_add_overflows(smin_ptr, smin_val) || 12569 signed_add_overflows(smax_ptr, smax_val)) { 12570 dst_reg->smin_value = S64_MIN; 12571 dst_reg->smax_value = S64_MAX; 12572 } else { 12573 dst_reg->smin_value = smin_ptr + smin_val; 12574 dst_reg->smax_value = smax_ptr + smax_val; 12575 } 12576 if (umin_ptr + umin_val < umin_ptr || 12577 umax_ptr + umax_val < umax_ptr) { 12578 dst_reg->umin_value = 0; 12579 dst_reg->umax_value = U64_MAX; 12580 } else { 12581 dst_reg->umin_value = umin_ptr + umin_val; 12582 dst_reg->umax_value = umax_ptr + umax_val; 12583 } 12584 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12585 dst_reg->off = ptr_reg->off; 12586 dst_reg->raw = ptr_reg->raw; 12587 if (reg_is_pkt_pointer(ptr_reg)) { 12588 dst_reg->id = ++env->id_gen; 12589 /* something was added to pkt_ptr, set range to zero */ 12590 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12591 } 12592 break; 12593 case BPF_SUB: 12594 if (dst_reg == off_reg) { 12595 /* scalar -= pointer. Creates an unknown scalar */ 12596 verbose(env, "R%d tried to subtract pointer from scalar\n", 12597 dst); 12598 return -EACCES; 12599 } 12600 /* We don't allow subtraction from FP, because (according to 12601 * test_verifier.c test "invalid fp arithmetic", JITs might not 12602 * be able to deal with it. 12603 */ 12604 if (ptr_reg->type == PTR_TO_STACK) { 12605 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12606 dst); 12607 return -EACCES; 12608 } 12609 if (known && (ptr_reg->off - smin_val == 12610 (s64)(s32)(ptr_reg->off - smin_val))) { 12611 /* pointer -= K. Subtract it from fixed offset */ 12612 dst_reg->smin_value = smin_ptr; 12613 dst_reg->smax_value = smax_ptr; 12614 dst_reg->umin_value = umin_ptr; 12615 dst_reg->umax_value = umax_ptr; 12616 dst_reg->var_off = ptr_reg->var_off; 12617 dst_reg->id = ptr_reg->id; 12618 dst_reg->off = ptr_reg->off - smin_val; 12619 dst_reg->raw = ptr_reg->raw; 12620 break; 12621 } 12622 /* A new variable offset is created. If the subtrahend is known 12623 * nonnegative, then any reg->range we had before is still good. 12624 */ 12625 if (signed_sub_overflows(smin_ptr, smax_val) || 12626 signed_sub_overflows(smax_ptr, smin_val)) { 12627 /* Overflow possible, we know nothing */ 12628 dst_reg->smin_value = S64_MIN; 12629 dst_reg->smax_value = S64_MAX; 12630 } else { 12631 dst_reg->smin_value = smin_ptr - smax_val; 12632 dst_reg->smax_value = smax_ptr - smin_val; 12633 } 12634 if (umin_ptr < umax_val) { 12635 /* Overflow possible, we know nothing */ 12636 dst_reg->umin_value = 0; 12637 dst_reg->umax_value = U64_MAX; 12638 } else { 12639 /* Cannot overflow (as long as bounds are consistent) */ 12640 dst_reg->umin_value = umin_ptr - umax_val; 12641 dst_reg->umax_value = umax_ptr - umin_val; 12642 } 12643 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12644 dst_reg->off = ptr_reg->off; 12645 dst_reg->raw = ptr_reg->raw; 12646 if (reg_is_pkt_pointer(ptr_reg)) { 12647 dst_reg->id = ++env->id_gen; 12648 /* something was added to pkt_ptr, set range to zero */ 12649 if (smin_val < 0) 12650 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12651 } 12652 break; 12653 case BPF_AND: 12654 case BPF_OR: 12655 case BPF_XOR: 12656 /* bitwise ops on pointers are troublesome, prohibit. */ 12657 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12658 dst, bpf_alu_string[opcode >> 4]); 12659 return -EACCES; 12660 default: 12661 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12662 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12663 dst, bpf_alu_string[opcode >> 4]); 12664 return -EACCES; 12665 } 12666 12667 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12668 return -EINVAL; 12669 reg_bounds_sync(dst_reg); 12670 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12671 return -EACCES; 12672 if (sanitize_needed(opcode)) { 12673 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12674 &info, true); 12675 if (ret < 0) 12676 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12677 } 12678 12679 return 0; 12680 } 12681 12682 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12683 struct bpf_reg_state *src_reg) 12684 { 12685 s32 smin_val = src_reg->s32_min_value; 12686 s32 smax_val = src_reg->s32_max_value; 12687 u32 umin_val = src_reg->u32_min_value; 12688 u32 umax_val = src_reg->u32_max_value; 12689 12690 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12691 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12692 dst_reg->s32_min_value = S32_MIN; 12693 dst_reg->s32_max_value = S32_MAX; 12694 } else { 12695 dst_reg->s32_min_value += smin_val; 12696 dst_reg->s32_max_value += smax_val; 12697 } 12698 if (dst_reg->u32_min_value + umin_val < umin_val || 12699 dst_reg->u32_max_value + umax_val < umax_val) { 12700 dst_reg->u32_min_value = 0; 12701 dst_reg->u32_max_value = U32_MAX; 12702 } else { 12703 dst_reg->u32_min_value += umin_val; 12704 dst_reg->u32_max_value += umax_val; 12705 } 12706 } 12707 12708 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12709 struct bpf_reg_state *src_reg) 12710 { 12711 s64 smin_val = src_reg->smin_value; 12712 s64 smax_val = src_reg->smax_value; 12713 u64 umin_val = src_reg->umin_value; 12714 u64 umax_val = src_reg->umax_value; 12715 12716 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12717 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12718 dst_reg->smin_value = S64_MIN; 12719 dst_reg->smax_value = S64_MAX; 12720 } else { 12721 dst_reg->smin_value += smin_val; 12722 dst_reg->smax_value += smax_val; 12723 } 12724 if (dst_reg->umin_value + umin_val < umin_val || 12725 dst_reg->umax_value + umax_val < umax_val) { 12726 dst_reg->umin_value = 0; 12727 dst_reg->umax_value = U64_MAX; 12728 } else { 12729 dst_reg->umin_value += umin_val; 12730 dst_reg->umax_value += umax_val; 12731 } 12732 } 12733 12734 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12735 struct bpf_reg_state *src_reg) 12736 { 12737 s32 smin_val = src_reg->s32_min_value; 12738 s32 smax_val = src_reg->s32_max_value; 12739 u32 umin_val = src_reg->u32_min_value; 12740 u32 umax_val = src_reg->u32_max_value; 12741 12742 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12743 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12744 /* Overflow possible, we know nothing */ 12745 dst_reg->s32_min_value = S32_MIN; 12746 dst_reg->s32_max_value = S32_MAX; 12747 } else { 12748 dst_reg->s32_min_value -= smax_val; 12749 dst_reg->s32_max_value -= smin_val; 12750 } 12751 if (dst_reg->u32_min_value < umax_val) { 12752 /* Overflow possible, we know nothing */ 12753 dst_reg->u32_min_value = 0; 12754 dst_reg->u32_max_value = U32_MAX; 12755 } else { 12756 /* Cannot overflow (as long as bounds are consistent) */ 12757 dst_reg->u32_min_value -= umax_val; 12758 dst_reg->u32_max_value -= umin_val; 12759 } 12760 } 12761 12762 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12763 struct bpf_reg_state *src_reg) 12764 { 12765 s64 smin_val = src_reg->smin_value; 12766 s64 smax_val = src_reg->smax_value; 12767 u64 umin_val = src_reg->umin_value; 12768 u64 umax_val = src_reg->umax_value; 12769 12770 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12771 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12772 /* Overflow possible, we know nothing */ 12773 dst_reg->smin_value = S64_MIN; 12774 dst_reg->smax_value = S64_MAX; 12775 } else { 12776 dst_reg->smin_value -= smax_val; 12777 dst_reg->smax_value -= smin_val; 12778 } 12779 if (dst_reg->umin_value < umax_val) { 12780 /* Overflow possible, we know nothing */ 12781 dst_reg->umin_value = 0; 12782 dst_reg->umax_value = U64_MAX; 12783 } else { 12784 /* Cannot overflow (as long as bounds are consistent) */ 12785 dst_reg->umin_value -= umax_val; 12786 dst_reg->umax_value -= umin_val; 12787 } 12788 } 12789 12790 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12791 struct bpf_reg_state *src_reg) 12792 { 12793 s32 smin_val = src_reg->s32_min_value; 12794 u32 umin_val = src_reg->u32_min_value; 12795 u32 umax_val = src_reg->u32_max_value; 12796 12797 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12798 /* Ain't nobody got time to multiply that sign */ 12799 __mark_reg32_unbounded(dst_reg); 12800 return; 12801 } 12802 /* Both values are positive, so we can work with unsigned and 12803 * copy the result to signed (unless it exceeds S32_MAX). 12804 */ 12805 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12806 /* Potential overflow, we know nothing */ 12807 __mark_reg32_unbounded(dst_reg); 12808 return; 12809 } 12810 dst_reg->u32_min_value *= umin_val; 12811 dst_reg->u32_max_value *= umax_val; 12812 if (dst_reg->u32_max_value > S32_MAX) { 12813 /* Overflow possible, we know nothing */ 12814 dst_reg->s32_min_value = S32_MIN; 12815 dst_reg->s32_max_value = S32_MAX; 12816 } else { 12817 dst_reg->s32_min_value = dst_reg->u32_min_value; 12818 dst_reg->s32_max_value = dst_reg->u32_max_value; 12819 } 12820 } 12821 12822 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12823 struct bpf_reg_state *src_reg) 12824 { 12825 s64 smin_val = src_reg->smin_value; 12826 u64 umin_val = src_reg->umin_value; 12827 u64 umax_val = src_reg->umax_value; 12828 12829 if (smin_val < 0 || dst_reg->smin_value < 0) { 12830 /* Ain't nobody got time to multiply that sign */ 12831 __mark_reg64_unbounded(dst_reg); 12832 return; 12833 } 12834 /* Both values are positive, so we can work with unsigned and 12835 * copy the result to signed (unless it exceeds S64_MAX). 12836 */ 12837 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12838 /* Potential overflow, we know nothing */ 12839 __mark_reg64_unbounded(dst_reg); 12840 return; 12841 } 12842 dst_reg->umin_value *= umin_val; 12843 dst_reg->umax_value *= umax_val; 12844 if (dst_reg->umax_value > S64_MAX) { 12845 /* Overflow possible, we know nothing */ 12846 dst_reg->smin_value = S64_MIN; 12847 dst_reg->smax_value = S64_MAX; 12848 } else { 12849 dst_reg->smin_value = dst_reg->umin_value; 12850 dst_reg->smax_value = dst_reg->umax_value; 12851 } 12852 } 12853 12854 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12855 struct bpf_reg_state *src_reg) 12856 { 12857 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12858 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12859 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12860 s32 smin_val = src_reg->s32_min_value; 12861 u32 umax_val = src_reg->u32_max_value; 12862 12863 if (src_known && dst_known) { 12864 __mark_reg32_known(dst_reg, var32_off.value); 12865 return; 12866 } 12867 12868 /* We get our minimum from the var_off, since that's inherently 12869 * bitwise. Our maximum is the minimum of the operands' maxima. 12870 */ 12871 dst_reg->u32_min_value = var32_off.value; 12872 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12873 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12874 /* Lose signed bounds when ANDing negative numbers, 12875 * ain't nobody got time for that. 12876 */ 12877 dst_reg->s32_min_value = S32_MIN; 12878 dst_reg->s32_max_value = S32_MAX; 12879 } else { 12880 /* ANDing two positives gives a positive, so safe to 12881 * cast result into s64. 12882 */ 12883 dst_reg->s32_min_value = dst_reg->u32_min_value; 12884 dst_reg->s32_max_value = dst_reg->u32_max_value; 12885 } 12886 } 12887 12888 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12889 struct bpf_reg_state *src_reg) 12890 { 12891 bool src_known = tnum_is_const(src_reg->var_off); 12892 bool dst_known = tnum_is_const(dst_reg->var_off); 12893 s64 smin_val = src_reg->smin_value; 12894 u64 umax_val = src_reg->umax_value; 12895 12896 if (src_known && dst_known) { 12897 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12898 return; 12899 } 12900 12901 /* We get our minimum from the var_off, since that's inherently 12902 * bitwise. Our maximum is the minimum of the operands' maxima. 12903 */ 12904 dst_reg->umin_value = dst_reg->var_off.value; 12905 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12906 if (dst_reg->smin_value < 0 || smin_val < 0) { 12907 /* Lose signed bounds when ANDing negative numbers, 12908 * ain't nobody got time for that. 12909 */ 12910 dst_reg->smin_value = S64_MIN; 12911 dst_reg->smax_value = S64_MAX; 12912 } else { 12913 /* ANDing two positives gives a positive, so safe to 12914 * cast result into s64. 12915 */ 12916 dst_reg->smin_value = dst_reg->umin_value; 12917 dst_reg->smax_value = dst_reg->umax_value; 12918 } 12919 /* We may learn something more from the var_off */ 12920 __update_reg_bounds(dst_reg); 12921 } 12922 12923 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12924 struct bpf_reg_state *src_reg) 12925 { 12926 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12927 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12928 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12929 s32 smin_val = src_reg->s32_min_value; 12930 u32 umin_val = src_reg->u32_min_value; 12931 12932 if (src_known && dst_known) { 12933 __mark_reg32_known(dst_reg, var32_off.value); 12934 return; 12935 } 12936 12937 /* We get our maximum from the var_off, and our minimum is the 12938 * maximum of the operands' minima 12939 */ 12940 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12941 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12942 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12943 /* Lose signed bounds when ORing negative numbers, 12944 * ain't nobody got time for that. 12945 */ 12946 dst_reg->s32_min_value = S32_MIN; 12947 dst_reg->s32_max_value = S32_MAX; 12948 } else { 12949 /* ORing two positives gives a positive, so safe to 12950 * cast result into s64. 12951 */ 12952 dst_reg->s32_min_value = dst_reg->u32_min_value; 12953 dst_reg->s32_max_value = dst_reg->u32_max_value; 12954 } 12955 } 12956 12957 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12958 struct bpf_reg_state *src_reg) 12959 { 12960 bool src_known = tnum_is_const(src_reg->var_off); 12961 bool dst_known = tnum_is_const(dst_reg->var_off); 12962 s64 smin_val = src_reg->smin_value; 12963 u64 umin_val = src_reg->umin_value; 12964 12965 if (src_known && dst_known) { 12966 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12967 return; 12968 } 12969 12970 /* We get our maximum from the var_off, and our minimum is the 12971 * maximum of the operands' minima 12972 */ 12973 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12974 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12975 if (dst_reg->smin_value < 0 || smin_val < 0) { 12976 /* Lose signed bounds when ORing negative numbers, 12977 * ain't nobody got time for that. 12978 */ 12979 dst_reg->smin_value = S64_MIN; 12980 dst_reg->smax_value = S64_MAX; 12981 } else { 12982 /* ORing two positives gives a positive, so safe to 12983 * cast result into s64. 12984 */ 12985 dst_reg->smin_value = dst_reg->umin_value; 12986 dst_reg->smax_value = dst_reg->umax_value; 12987 } 12988 /* We may learn something more from the var_off */ 12989 __update_reg_bounds(dst_reg); 12990 } 12991 12992 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12993 struct bpf_reg_state *src_reg) 12994 { 12995 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12996 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12997 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12998 s32 smin_val = src_reg->s32_min_value; 12999 13000 if (src_known && dst_known) { 13001 __mark_reg32_known(dst_reg, var32_off.value); 13002 return; 13003 } 13004 13005 /* We get both minimum and maximum from the var32_off. */ 13006 dst_reg->u32_min_value = var32_off.value; 13007 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13008 13009 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13010 /* XORing two positive sign numbers gives a positive, 13011 * so safe to cast u32 result into s32. 13012 */ 13013 dst_reg->s32_min_value = dst_reg->u32_min_value; 13014 dst_reg->s32_max_value = dst_reg->u32_max_value; 13015 } else { 13016 dst_reg->s32_min_value = S32_MIN; 13017 dst_reg->s32_max_value = S32_MAX; 13018 } 13019 } 13020 13021 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13022 struct bpf_reg_state *src_reg) 13023 { 13024 bool src_known = tnum_is_const(src_reg->var_off); 13025 bool dst_known = tnum_is_const(dst_reg->var_off); 13026 s64 smin_val = src_reg->smin_value; 13027 13028 if (src_known && dst_known) { 13029 /* dst_reg->var_off.value has been updated earlier */ 13030 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13031 return; 13032 } 13033 13034 /* We get both minimum and maximum from the var_off. */ 13035 dst_reg->umin_value = dst_reg->var_off.value; 13036 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13037 13038 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13039 /* XORing two positive sign numbers gives a positive, 13040 * so safe to cast u64 result into s64. 13041 */ 13042 dst_reg->smin_value = dst_reg->umin_value; 13043 dst_reg->smax_value = dst_reg->umax_value; 13044 } else { 13045 dst_reg->smin_value = S64_MIN; 13046 dst_reg->smax_value = S64_MAX; 13047 } 13048 13049 __update_reg_bounds(dst_reg); 13050 } 13051 13052 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13053 u64 umin_val, u64 umax_val) 13054 { 13055 /* We lose all sign bit information (except what we can pick 13056 * up from var_off) 13057 */ 13058 dst_reg->s32_min_value = S32_MIN; 13059 dst_reg->s32_max_value = S32_MAX; 13060 /* If we might shift our top bit out, then we know nothing */ 13061 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13062 dst_reg->u32_min_value = 0; 13063 dst_reg->u32_max_value = U32_MAX; 13064 } else { 13065 dst_reg->u32_min_value <<= umin_val; 13066 dst_reg->u32_max_value <<= umax_val; 13067 } 13068 } 13069 13070 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13071 struct bpf_reg_state *src_reg) 13072 { 13073 u32 umax_val = src_reg->u32_max_value; 13074 u32 umin_val = src_reg->u32_min_value; 13075 /* u32 alu operation will zext upper bits */ 13076 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13077 13078 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13079 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13080 /* Not required but being careful mark reg64 bounds as unknown so 13081 * that we are forced to pick them up from tnum and zext later and 13082 * if some path skips this step we are still safe. 13083 */ 13084 __mark_reg64_unbounded(dst_reg); 13085 __update_reg32_bounds(dst_reg); 13086 } 13087 13088 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13089 u64 umin_val, u64 umax_val) 13090 { 13091 /* Special case <<32 because it is a common compiler pattern to sign 13092 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13093 * positive we know this shift will also be positive so we can track 13094 * bounds correctly. Otherwise we lose all sign bit information except 13095 * what we can pick up from var_off. Perhaps we can generalize this 13096 * later to shifts of any length. 13097 */ 13098 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13099 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13100 else 13101 dst_reg->smax_value = S64_MAX; 13102 13103 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13104 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13105 else 13106 dst_reg->smin_value = S64_MIN; 13107 13108 /* If we might shift our top bit out, then we know nothing */ 13109 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13110 dst_reg->umin_value = 0; 13111 dst_reg->umax_value = U64_MAX; 13112 } else { 13113 dst_reg->umin_value <<= umin_val; 13114 dst_reg->umax_value <<= umax_val; 13115 } 13116 } 13117 13118 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13119 struct bpf_reg_state *src_reg) 13120 { 13121 u64 umax_val = src_reg->umax_value; 13122 u64 umin_val = src_reg->umin_value; 13123 13124 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13125 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13126 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13127 13128 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13129 /* We may learn something more from the var_off */ 13130 __update_reg_bounds(dst_reg); 13131 } 13132 13133 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13134 struct bpf_reg_state *src_reg) 13135 { 13136 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13137 u32 umax_val = src_reg->u32_max_value; 13138 u32 umin_val = src_reg->u32_min_value; 13139 13140 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13141 * be negative, then either: 13142 * 1) src_reg might be zero, so the sign bit of the result is 13143 * unknown, so we lose our signed bounds 13144 * 2) it's known negative, thus the unsigned bounds capture the 13145 * signed bounds 13146 * 3) the signed bounds cross zero, so they tell us nothing 13147 * about the result 13148 * If the value in dst_reg is known nonnegative, then again the 13149 * unsigned bounds capture the signed bounds. 13150 * Thus, in all cases it suffices to blow away our signed bounds 13151 * and rely on inferring new ones from the unsigned bounds and 13152 * var_off of the result. 13153 */ 13154 dst_reg->s32_min_value = S32_MIN; 13155 dst_reg->s32_max_value = S32_MAX; 13156 13157 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13158 dst_reg->u32_min_value >>= umax_val; 13159 dst_reg->u32_max_value >>= umin_val; 13160 13161 __mark_reg64_unbounded(dst_reg); 13162 __update_reg32_bounds(dst_reg); 13163 } 13164 13165 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13166 struct bpf_reg_state *src_reg) 13167 { 13168 u64 umax_val = src_reg->umax_value; 13169 u64 umin_val = src_reg->umin_value; 13170 13171 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13172 * be negative, then either: 13173 * 1) src_reg might be zero, so the sign bit of the result is 13174 * unknown, so we lose our signed bounds 13175 * 2) it's known negative, thus the unsigned bounds capture the 13176 * signed bounds 13177 * 3) the signed bounds cross zero, so they tell us nothing 13178 * about the result 13179 * If the value in dst_reg is known nonnegative, then again the 13180 * unsigned bounds capture the signed bounds. 13181 * Thus, in all cases it suffices to blow away our signed bounds 13182 * and rely on inferring new ones from the unsigned bounds and 13183 * var_off of the result. 13184 */ 13185 dst_reg->smin_value = S64_MIN; 13186 dst_reg->smax_value = S64_MAX; 13187 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13188 dst_reg->umin_value >>= umax_val; 13189 dst_reg->umax_value >>= umin_val; 13190 13191 /* Its not easy to operate on alu32 bounds here because it depends 13192 * on bits being shifted in. Take easy way out and mark unbounded 13193 * so we can recalculate later from tnum. 13194 */ 13195 __mark_reg32_unbounded(dst_reg); 13196 __update_reg_bounds(dst_reg); 13197 } 13198 13199 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13200 struct bpf_reg_state *src_reg) 13201 { 13202 u64 umin_val = src_reg->u32_min_value; 13203 13204 /* Upon reaching here, src_known is true and 13205 * umax_val is equal to umin_val. 13206 */ 13207 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13208 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13209 13210 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13211 13212 /* blow away the dst_reg umin_value/umax_value and rely on 13213 * dst_reg var_off to refine the result. 13214 */ 13215 dst_reg->u32_min_value = 0; 13216 dst_reg->u32_max_value = U32_MAX; 13217 13218 __mark_reg64_unbounded(dst_reg); 13219 __update_reg32_bounds(dst_reg); 13220 } 13221 13222 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13223 struct bpf_reg_state *src_reg) 13224 { 13225 u64 umin_val = src_reg->umin_value; 13226 13227 /* Upon reaching here, src_known is true and umax_val is equal 13228 * to umin_val. 13229 */ 13230 dst_reg->smin_value >>= umin_val; 13231 dst_reg->smax_value >>= umin_val; 13232 13233 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13234 13235 /* blow away the dst_reg umin_value/umax_value and rely on 13236 * dst_reg var_off to refine the result. 13237 */ 13238 dst_reg->umin_value = 0; 13239 dst_reg->umax_value = U64_MAX; 13240 13241 /* Its not easy to operate on alu32 bounds here because it depends 13242 * on bits being shifted in from upper 32-bits. Take easy way out 13243 * and mark unbounded so we can recalculate later from tnum. 13244 */ 13245 __mark_reg32_unbounded(dst_reg); 13246 __update_reg_bounds(dst_reg); 13247 } 13248 13249 /* WARNING: This function does calculations on 64-bit values, but the actual 13250 * execution may occur on 32-bit values. Therefore, things like bitshifts 13251 * need extra checks in the 32-bit case. 13252 */ 13253 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13254 struct bpf_insn *insn, 13255 struct bpf_reg_state *dst_reg, 13256 struct bpf_reg_state src_reg) 13257 { 13258 struct bpf_reg_state *regs = cur_regs(env); 13259 u8 opcode = BPF_OP(insn->code); 13260 bool src_known; 13261 s64 smin_val, smax_val; 13262 u64 umin_val, umax_val; 13263 s32 s32_min_val, s32_max_val; 13264 u32 u32_min_val, u32_max_val; 13265 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13266 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13267 int ret; 13268 13269 smin_val = src_reg.smin_value; 13270 smax_val = src_reg.smax_value; 13271 umin_val = src_reg.umin_value; 13272 umax_val = src_reg.umax_value; 13273 13274 s32_min_val = src_reg.s32_min_value; 13275 s32_max_val = src_reg.s32_max_value; 13276 u32_min_val = src_reg.u32_min_value; 13277 u32_max_val = src_reg.u32_max_value; 13278 13279 if (alu32) { 13280 src_known = tnum_subreg_is_const(src_reg.var_off); 13281 if ((src_known && 13282 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13283 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13284 /* Taint dst register if offset had invalid bounds 13285 * derived from e.g. dead branches. 13286 */ 13287 __mark_reg_unknown(env, dst_reg); 13288 return 0; 13289 } 13290 } else { 13291 src_known = tnum_is_const(src_reg.var_off); 13292 if ((src_known && 13293 (smin_val != smax_val || umin_val != umax_val)) || 13294 smin_val > smax_val || umin_val > umax_val) { 13295 /* Taint dst register if offset had invalid bounds 13296 * derived from e.g. dead branches. 13297 */ 13298 __mark_reg_unknown(env, dst_reg); 13299 return 0; 13300 } 13301 } 13302 13303 if (!src_known && 13304 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13305 __mark_reg_unknown(env, dst_reg); 13306 return 0; 13307 } 13308 13309 if (sanitize_needed(opcode)) { 13310 ret = sanitize_val_alu(env, insn); 13311 if (ret < 0) 13312 return sanitize_err(env, insn, ret, NULL, NULL); 13313 } 13314 13315 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13316 * There are two classes of instructions: The first class we track both 13317 * alu32 and alu64 sign/unsigned bounds independently this provides the 13318 * greatest amount of precision when alu operations are mixed with jmp32 13319 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13320 * and BPF_OR. This is possible because these ops have fairly easy to 13321 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13322 * See alu32 verifier tests for examples. The second class of 13323 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13324 * with regards to tracking sign/unsigned bounds because the bits may 13325 * cross subreg boundaries in the alu64 case. When this happens we mark 13326 * the reg unbounded in the subreg bound space and use the resulting 13327 * tnum to calculate an approximation of the sign/unsigned bounds. 13328 */ 13329 switch (opcode) { 13330 case BPF_ADD: 13331 scalar32_min_max_add(dst_reg, &src_reg); 13332 scalar_min_max_add(dst_reg, &src_reg); 13333 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13334 break; 13335 case BPF_SUB: 13336 scalar32_min_max_sub(dst_reg, &src_reg); 13337 scalar_min_max_sub(dst_reg, &src_reg); 13338 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13339 break; 13340 case BPF_MUL: 13341 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13342 scalar32_min_max_mul(dst_reg, &src_reg); 13343 scalar_min_max_mul(dst_reg, &src_reg); 13344 break; 13345 case BPF_AND: 13346 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13347 scalar32_min_max_and(dst_reg, &src_reg); 13348 scalar_min_max_and(dst_reg, &src_reg); 13349 break; 13350 case BPF_OR: 13351 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13352 scalar32_min_max_or(dst_reg, &src_reg); 13353 scalar_min_max_or(dst_reg, &src_reg); 13354 break; 13355 case BPF_XOR: 13356 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13357 scalar32_min_max_xor(dst_reg, &src_reg); 13358 scalar_min_max_xor(dst_reg, &src_reg); 13359 break; 13360 case BPF_LSH: 13361 if (umax_val >= insn_bitness) { 13362 /* Shifts greater than 31 or 63 are undefined. 13363 * This includes shifts by a negative number. 13364 */ 13365 mark_reg_unknown(env, regs, insn->dst_reg); 13366 break; 13367 } 13368 if (alu32) 13369 scalar32_min_max_lsh(dst_reg, &src_reg); 13370 else 13371 scalar_min_max_lsh(dst_reg, &src_reg); 13372 break; 13373 case BPF_RSH: 13374 if (umax_val >= insn_bitness) { 13375 /* Shifts greater than 31 or 63 are undefined. 13376 * This includes shifts by a negative number. 13377 */ 13378 mark_reg_unknown(env, regs, insn->dst_reg); 13379 break; 13380 } 13381 if (alu32) 13382 scalar32_min_max_rsh(dst_reg, &src_reg); 13383 else 13384 scalar_min_max_rsh(dst_reg, &src_reg); 13385 break; 13386 case BPF_ARSH: 13387 if (umax_val >= insn_bitness) { 13388 /* Shifts greater than 31 or 63 are undefined. 13389 * This includes shifts by a negative number. 13390 */ 13391 mark_reg_unknown(env, regs, insn->dst_reg); 13392 break; 13393 } 13394 if (alu32) 13395 scalar32_min_max_arsh(dst_reg, &src_reg); 13396 else 13397 scalar_min_max_arsh(dst_reg, &src_reg); 13398 break; 13399 default: 13400 mark_reg_unknown(env, regs, insn->dst_reg); 13401 break; 13402 } 13403 13404 /* ALU32 ops are zero extended into 64bit register */ 13405 if (alu32) 13406 zext_32_to_64(dst_reg); 13407 reg_bounds_sync(dst_reg); 13408 return 0; 13409 } 13410 13411 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13412 * and var_off. 13413 */ 13414 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13415 struct bpf_insn *insn) 13416 { 13417 struct bpf_verifier_state *vstate = env->cur_state; 13418 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13419 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13420 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13421 u8 opcode = BPF_OP(insn->code); 13422 int err; 13423 13424 dst_reg = ®s[insn->dst_reg]; 13425 src_reg = NULL; 13426 if (dst_reg->type != SCALAR_VALUE) 13427 ptr_reg = dst_reg; 13428 else 13429 /* Make sure ID is cleared otherwise dst_reg min/max could be 13430 * incorrectly propagated into other registers by find_equal_scalars() 13431 */ 13432 dst_reg->id = 0; 13433 if (BPF_SRC(insn->code) == BPF_X) { 13434 src_reg = ®s[insn->src_reg]; 13435 if (src_reg->type != SCALAR_VALUE) { 13436 if (dst_reg->type != SCALAR_VALUE) { 13437 /* Combining two pointers by any ALU op yields 13438 * an arbitrary scalar. Disallow all math except 13439 * pointer subtraction 13440 */ 13441 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13442 mark_reg_unknown(env, regs, insn->dst_reg); 13443 return 0; 13444 } 13445 verbose(env, "R%d pointer %s pointer prohibited\n", 13446 insn->dst_reg, 13447 bpf_alu_string[opcode >> 4]); 13448 return -EACCES; 13449 } else { 13450 /* scalar += pointer 13451 * This is legal, but we have to reverse our 13452 * src/dest handling in computing the range 13453 */ 13454 err = mark_chain_precision(env, insn->dst_reg); 13455 if (err) 13456 return err; 13457 return adjust_ptr_min_max_vals(env, insn, 13458 src_reg, dst_reg); 13459 } 13460 } else if (ptr_reg) { 13461 /* pointer += scalar */ 13462 err = mark_chain_precision(env, insn->src_reg); 13463 if (err) 13464 return err; 13465 return adjust_ptr_min_max_vals(env, insn, 13466 dst_reg, src_reg); 13467 } else if (dst_reg->precise) { 13468 /* if dst_reg is precise, src_reg should be precise as well */ 13469 err = mark_chain_precision(env, insn->src_reg); 13470 if (err) 13471 return err; 13472 } 13473 } else { 13474 /* Pretend the src is a reg with a known value, since we only 13475 * need to be able to read from this state. 13476 */ 13477 off_reg.type = SCALAR_VALUE; 13478 __mark_reg_known(&off_reg, insn->imm); 13479 src_reg = &off_reg; 13480 if (ptr_reg) /* pointer += K */ 13481 return adjust_ptr_min_max_vals(env, insn, 13482 ptr_reg, src_reg); 13483 } 13484 13485 /* Got here implies adding two SCALAR_VALUEs */ 13486 if (WARN_ON_ONCE(ptr_reg)) { 13487 print_verifier_state(env, state, true); 13488 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13489 return -EINVAL; 13490 } 13491 if (WARN_ON(!src_reg)) { 13492 print_verifier_state(env, state, true); 13493 verbose(env, "verifier internal error: no src_reg\n"); 13494 return -EINVAL; 13495 } 13496 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13497 } 13498 13499 /* check validity of 32-bit and 64-bit arithmetic operations */ 13500 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13501 { 13502 struct bpf_reg_state *regs = cur_regs(env); 13503 u8 opcode = BPF_OP(insn->code); 13504 int err; 13505 13506 if (opcode == BPF_END || opcode == BPF_NEG) { 13507 if (opcode == BPF_NEG) { 13508 if (BPF_SRC(insn->code) != BPF_K || 13509 insn->src_reg != BPF_REG_0 || 13510 insn->off != 0 || insn->imm != 0) { 13511 verbose(env, "BPF_NEG uses reserved fields\n"); 13512 return -EINVAL; 13513 } 13514 } else { 13515 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13516 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13517 (BPF_CLASS(insn->code) == BPF_ALU64 && 13518 BPF_SRC(insn->code) != BPF_TO_LE)) { 13519 verbose(env, "BPF_END uses reserved fields\n"); 13520 return -EINVAL; 13521 } 13522 } 13523 13524 /* check src operand */ 13525 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13526 if (err) 13527 return err; 13528 13529 if (is_pointer_value(env, insn->dst_reg)) { 13530 verbose(env, "R%d pointer arithmetic prohibited\n", 13531 insn->dst_reg); 13532 return -EACCES; 13533 } 13534 13535 /* check dest operand */ 13536 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13537 if (err) 13538 return err; 13539 13540 } else if (opcode == BPF_MOV) { 13541 13542 if (BPF_SRC(insn->code) == BPF_X) { 13543 if (insn->imm != 0) { 13544 verbose(env, "BPF_MOV uses reserved fields\n"); 13545 return -EINVAL; 13546 } 13547 13548 if (BPF_CLASS(insn->code) == BPF_ALU) { 13549 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13550 verbose(env, "BPF_MOV uses reserved fields\n"); 13551 return -EINVAL; 13552 } 13553 } else { 13554 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13555 insn->off != 32) { 13556 verbose(env, "BPF_MOV uses reserved fields\n"); 13557 return -EINVAL; 13558 } 13559 } 13560 13561 /* check src operand */ 13562 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13563 if (err) 13564 return err; 13565 } else { 13566 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13567 verbose(env, "BPF_MOV uses reserved fields\n"); 13568 return -EINVAL; 13569 } 13570 } 13571 13572 /* check dest operand, mark as required later */ 13573 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13574 if (err) 13575 return err; 13576 13577 if (BPF_SRC(insn->code) == BPF_X) { 13578 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13579 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13580 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13581 !tnum_is_const(src_reg->var_off); 13582 13583 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13584 if (insn->off == 0) { 13585 /* case: R1 = R2 13586 * copy register state to dest reg 13587 */ 13588 if (need_id) 13589 /* Assign src and dst registers the same ID 13590 * that will be used by find_equal_scalars() 13591 * to propagate min/max range. 13592 */ 13593 src_reg->id = ++env->id_gen; 13594 copy_register_state(dst_reg, src_reg); 13595 dst_reg->live |= REG_LIVE_WRITTEN; 13596 dst_reg->subreg_def = DEF_NOT_SUBREG; 13597 } else { 13598 /* case: R1 = (s8, s16 s32)R2 */ 13599 if (is_pointer_value(env, insn->src_reg)) { 13600 verbose(env, 13601 "R%d sign-extension part of pointer\n", 13602 insn->src_reg); 13603 return -EACCES; 13604 } else if (src_reg->type == SCALAR_VALUE) { 13605 bool no_sext; 13606 13607 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13608 if (no_sext && need_id) 13609 src_reg->id = ++env->id_gen; 13610 copy_register_state(dst_reg, src_reg); 13611 if (!no_sext) 13612 dst_reg->id = 0; 13613 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13614 dst_reg->live |= REG_LIVE_WRITTEN; 13615 dst_reg->subreg_def = DEF_NOT_SUBREG; 13616 } else { 13617 mark_reg_unknown(env, regs, insn->dst_reg); 13618 } 13619 } 13620 } else { 13621 /* R1 = (u32) R2 */ 13622 if (is_pointer_value(env, insn->src_reg)) { 13623 verbose(env, 13624 "R%d partial copy of pointer\n", 13625 insn->src_reg); 13626 return -EACCES; 13627 } else if (src_reg->type == SCALAR_VALUE) { 13628 if (insn->off == 0) { 13629 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13630 13631 if (is_src_reg_u32 && need_id) 13632 src_reg->id = ++env->id_gen; 13633 copy_register_state(dst_reg, src_reg); 13634 /* Make sure ID is cleared if src_reg is not in u32 13635 * range otherwise dst_reg min/max could be incorrectly 13636 * propagated into src_reg by find_equal_scalars() 13637 */ 13638 if (!is_src_reg_u32) 13639 dst_reg->id = 0; 13640 dst_reg->live |= REG_LIVE_WRITTEN; 13641 dst_reg->subreg_def = env->insn_idx + 1; 13642 } else { 13643 /* case: W1 = (s8, s16)W2 */ 13644 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13645 13646 if (no_sext && need_id) 13647 src_reg->id = ++env->id_gen; 13648 copy_register_state(dst_reg, src_reg); 13649 if (!no_sext) 13650 dst_reg->id = 0; 13651 dst_reg->live |= REG_LIVE_WRITTEN; 13652 dst_reg->subreg_def = env->insn_idx + 1; 13653 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13654 } 13655 } else { 13656 mark_reg_unknown(env, regs, 13657 insn->dst_reg); 13658 } 13659 zext_32_to_64(dst_reg); 13660 reg_bounds_sync(dst_reg); 13661 } 13662 } else { 13663 /* case: R = imm 13664 * remember the value we stored into this reg 13665 */ 13666 /* clear any state __mark_reg_known doesn't set */ 13667 mark_reg_unknown(env, regs, insn->dst_reg); 13668 regs[insn->dst_reg].type = SCALAR_VALUE; 13669 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13670 __mark_reg_known(regs + insn->dst_reg, 13671 insn->imm); 13672 } else { 13673 __mark_reg_known(regs + insn->dst_reg, 13674 (u32)insn->imm); 13675 } 13676 } 13677 13678 } else if (opcode > BPF_END) { 13679 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13680 return -EINVAL; 13681 13682 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13683 13684 if (BPF_SRC(insn->code) == BPF_X) { 13685 if (insn->imm != 0 || insn->off > 1 || 13686 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13687 verbose(env, "BPF_ALU uses reserved fields\n"); 13688 return -EINVAL; 13689 } 13690 /* check src1 operand */ 13691 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13692 if (err) 13693 return err; 13694 } else { 13695 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13696 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13697 verbose(env, "BPF_ALU uses reserved fields\n"); 13698 return -EINVAL; 13699 } 13700 } 13701 13702 /* check src2 operand */ 13703 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13704 if (err) 13705 return err; 13706 13707 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13708 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13709 verbose(env, "div by zero\n"); 13710 return -EINVAL; 13711 } 13712 13713 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13714 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13715 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13716 13717 if (insn->imm < 0 || insn->imm >= size) { 13718 verbose(env, "invalid shift %d\n", insn->imm); 13719 return -EINVAL; 13720 } 13721 } 13722 13723 /* check dest operand */ 13724 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13725 if (err) 13726 return err; 13727 13728 return adjust_reg_min_max_vals(env, insn); 13729 } 13730 13731 return 0; 13732 } 13733 13734 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13735 struct bpf_reg_state *dst_reg, 13736 enum bpf_reg_type type, 13737 bool range_right_open) 13738 { 13739 struct bpf_func_state *state; 13740 struct bpf_reg_state *reg; 13741 int new_range; 13742 13743 if (dst_reg->off < 0 || 13744 (dst_reg->off == 0 && range_right_open)) 13745 /* This doesn't give us any range */ 13746 return; 13747 13748 if (dst_reg->umax_value > MAX_PACKET_OFF || 13749 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13750 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13751 * than pkt_end, but that's because it's also less than pkt. 13752 */ 13753 return; 13754 13755 new_range = dst_reg->off; 13756 if (range_right_open) 13757 new_range++; 13758 13759 /* Examples for register markings: 13760 * 13761 * pkt_data in dst register: 13762 * 13763 * r2 = r3; 13764 * r2 += 8; 13765 * if (r2 > pkt_end) goto <handle exception> 13766 * <access okay> 13767 * 13768 * r2 = r3; 13769 * r2 += 8; 13770 * if (r2 < pkt_end) goto <access okay> 13771 * <handle exception> 13772 * 13773 * Where: 13774 * r2 == dst_reg, pkt_end == src_reg 13775 * r2=pkt(id=n,off=8,r=0) 13776 * r3=pkt(id=n,off=0,r=0) 13777 * 13778 * pkt_data in src register: 13779 * 13780 * r2 = r3; 13781 * r2 += 8; 13782 * if (pkt_end >= r2) goto <access okay> 13783 * <handle exception> 13784 * 13785 * r2 = r3; 13786 * r2 += 8; 13787 * if (pkt_end <= r2) goto <handle exception> 13788 * <access okay> 13789 * 13790 * Where: 13791 * pkt_end == dst_reg, r2 == src_reg 13792 * r2=pkt(id=n,off=8,r=0) 13793 * r3=pkt(id=n,off=0,r=0) 13794 * 13795 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13796 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13797 * and [r3, r3 + 8-1) respectively is safe to access depending on 13798 * the check. 13799 */ 13800 13801 /* If our ids match, then we must have the same max_value. And we 13802 * don't care about the other reg's fixed offset, since if it's too big 13803 * the range won't allow anything. 13804 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13805 */ 13806 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13807 if (reg->type == type && reg->id == dst_reg->id) 13808 /* keep the maximum range already checked */ 13809 reg->range = max(reg->range, new_range); 13810 })); 13811 } 13812 13813 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13814 { 13815 struct tnum subreg = tnum_subreg(reg->var_off); 13816 s32 sval = (s32)val; 13817 13818 switch (opcode) { 13819 case BPF_JEQ: 13820 if (tnum_is_const(subreg)) 13821 return !!tnum_equals_const(subreg, val); 13822 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13823 return 0; 13824 break; 13825 case BPF_JNE: 13826 if (tnum_is_const(subreg)) 13827 return !tnum_equals_const(subreg, val); 13828 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13829 return 1; 13830 break; 13831 case BPF_JSET: 13832 if ((~subreg.mask & subreg.value) & val) 13833 return 1; 13834 if (!((subreg.mask | subreg.value) & val)) 13835 return 0; 13836 break; 13837 case BPF_JGT: 13838 if (reg->u32_min_value > val) 13839 return 1; 13840 else if (reg->u32_max_value <= val) 13841 return 0; 13842 break; 13843 case BPF_JSGT: 13844 if (reg->s32_min_value > sval) 13845 return 1; 13846 else if (reg->s32_max_value <= sval) 13847 return 0; 13848 break; 13849 case BPF_JLT: 13850 if (reg->u32_max_value < val) 13851 return 1; 13852 else if (reg->u32_min_value >= val) 13853 return 0; 13854 break; 13855 case BPF_JSLT: 13856 if (reg->s32_max_value < sval) 13857 return 1; 13858 else if (reg->s32_min_value >= sval) 13859 return 0; 13860 break; 13861 case BPF_JGE: 13862 if (reg->u32_min_value >= val) 13863 return 1; 13864 else if (reg->u32_max_value < val) 13865 return 0; 13866 break; 13867 case BPF_JSGE: 13868 if (reg->s32_min_value >= sval) 13869 return 1; 13870 else if (reg->s32_max_value < sval) 13871 return 0; 13872 break; 13873 case BPF_JLE: 13874 if (reg->u32_max_value <= val) 13875 return 1; 13876 else if (reg->u32_min_value > val) 13877 return 0; 13878 break; 13879 case BPF_JSLE: 13880 if (reg->s32_max_value <= sval) 13881 return 1; 13882 else if (reg->s32_min_value > sval) 13883 return 0; 13884 break; 13885 } 13886 13887 return -1; 13888 } 13889 13890 13891 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13892 { 13893 s64 sval = (s64)val; 13894 13895 switch (opcode) { 13896 case BPF_JEQ: 13897 if (tnum_is_const(reg->var_off)) 13898 return !!tnum_equals_const(reg->var_off, val); 13899 else if (val < reg->umin_value || val > reg->umax_value) 13900 return 0; 13901 break; 13902 case BPF_JNE: 13903 if (tnum_is_const(reg->var_off)) 13904 return !tnum_equals_const(reg->var_off, val); 13905 else if (val < reg->umin_value || val > reg->umax_value) 13906 return 1; 13907 break; 13908 case BPF_JSET: 13909 if ((~reg->var_off.mask & reg->var_off.value) & val) 13910 return 1; 13911 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13912 return 0; 13913 break; 13914 case BPF_JGT: 13915 if (reg->umin_value > val) 13916 return 1; 13917 else if (reg->umax_value <= val) 13918 return 0; 13919 break; 13920 case BPF_JSGT: 13921 if (reg->smin_value > sval) 13922 return 1; 13923 else if (reg->smax_value <= sval) 13924 return 0; 13925 break; 13926 case BPF_JLT: 13927 if (reg->umax_value < val) 13928 return 1; 13929 else if (reg->umin_value >= val) 13930 return 0; 13931 break; 13932 case BPF_JSLT: 13933 if (reg->smax_value < sval) 13934 return 1; 13935 else if (reg->smin_value >= sval) 13936 return 0; 13937 break; 13938 case BPF_JGE: 13939 if (reg->umin_value >= val) 13940 return 1; 13941 else if (reg->umax_value < val) 13942 return 0; 13943 break; 13944 case BPF_JSGE: 13945 if (reg->smin_value >= sval) 13946 return 1; 13947 else if (reg->smax_value < sval) 13948 return 0; 13949 break; 13950 case BPF_JLE: 13951 if (reg->umax_value <= val) 13952 return 1; 13953 else if (reg->umin_value > val) 13954 return 0; 13955 break; 13956 case BPF_JSLE: 13957 if (reg->smax_value <= sval) 13958 return 1; 13959 else if (reg->smin_value > sval) 13960 return 0; 13961 break; 13962 } 13963 13964 return -1; 13965 } 13966 13967 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13968 * and return: 13969 * 1 - branch will be taken and "goto target" will be executed 13970 * 0 - branch will not be taken and fall-through to next insn 13971 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13972 * range [0,10] 13973 */ 13974 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13975 bool is_jmp32) 13976 { 13977 if (__is_pointer_value(false, reg)) { 13978 if (!reg_not_null(reg)) 13979 return -1; 13980 13981 /* If pointer is valid tests against zero will fail so we can 13982 * use this to direct branch taken. 13983 */ 13984 if (val != 0) 13985 return -1; 13986 13987 switch (opcode) { 13988 case BPF_JEQ: 13989 return 0; 13990 case BPF_JNE: 13991 return 1; 13992 default: 13993 return -1; 13994 } 13995 } 13996 13997 if (is_jmp32) 13998 return is_branch32_taken(reg, val, opcode); 13999 return is_branch64_taken(reg, val, opcode); 14000 } 14001 14002 static int flip_opcode(u32 opcode) 14003 { 14004 /* How can we transform "a <op> b" into "b <op> a"? */ 14005 static const u8 opcode_flip[16] = { 14006 /* these stay the same */ 14007 [BPF_JEQ >> 4] = BPF_JEQ, 14008 [BPF_JNE >> 4] = BPF_JNE, 14009 [BPF_JSET >> 4] = BPF_JSET, 14010 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14011 [BPF_JGE >> 4] = BPF_JLE, 14012 [BPF_JGT >> 4] = BPF_JLT, 14013 [BPF_JLE >> 4] = BPF_JGE, 14014 [BPF_JLT >> 4] = BPF_JGT, 14015 [BPF_JSGE >> 4] = BPF_JSLE, 14016 [BPF_JSGT >> 4] = BPF_JSLT, 14017 [BPF_JSLE >> 4] = BPF_JSGE, 14018 [BPF_JSLT >> 4] = BPF_JSGT 14019 }; 14020 return opcode_flip[opcode >> 4]; 14021 } 14022 14023 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14024 struct bpf_reg_state *src_reg, 14025 u8 opcode) 14026 { 14027 struct bpf_reg_state *pkt; 14028 14029 if (src_reg->type == PTR_TO_PACKET_END) { 14030 pkt = dst_reg; 14031 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14032 pkt = src_reg; 14033 opcode = flip_opcode(opcode); 14034 } else { 14035 return -1; 14036 } 14037 14038 if (pkt->range >= 0) 14039 return -1; 14040 14041 switch (opcode) { 14042 case BPF_JLE: 14043 /* pkt <= pkt_end */ 14044 fallthrough; 14045 case BPF_JGT: 14046 /* pkt > pkt_end */ 14047 if (pkt->range == BEYOND_PKT_END) 14048 /* pkt has at last one extra byte beyond pkt_end */ 14049 return opcode == BPF_JGT; 14050 break; 14051 case BPF_JLT: 14052 /* pkt < pkt_end */ 14053 fallthrough; 14054 case BPF_JGE: 14055 /* pkt >= pkt_end */ 14056 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14057 return opcode == BPF_JGE; 14058 break; 14059 } 14060 return -1; 14061 } 14062 14063 /* Adjusts the register min/max values in the case that the dst_reg is the 14064 * variable register that we are working on, and src_reg is a constant or we're 14065 * simply doing a BPF_K check. 14066 * In JEQ/JNE cases we also adjust the var_off values. 14067 */ 14068 static void reg_set_min_max(struct bpf_reg_state *true_reg, 14069 struct bpf_reg_state *false_reg, 14070 u64 val, u32 val32, 14071 u8 opcode, bool is_jmp32) 14072 { 14073 struct tnum false_32off = tnum_subreg(false_reg->var_off); 14074 struct tnum false_64off = false_reg->var_off; 14075 struct tnum true_32off = tnum_subreg(true_reg->var_off); 14076 struct tnum true_64off = true_reg->var_off; 14077 s64 sval = (s64)val; 14078 s32 sval32 = (s32)val32; 14079 14080 /* If the dst_reg is a pointer, we can't learn anything about its 14081 * variable offset from the compare (unless src_reg were a pointer into 14082 * the same object, but we don't bother with that. 14083 * Since false_reg and true_reg have the same type by construction, we 14084 * only need to check one of them for pointerness. 14085 */ 14086 if (__is_pointer_value(false, false_reg)) 14087 return; 14088 14089 switch (opcode) { 14090 /* JEQ/JNE comparison doesn't change the register equivalence. 14091 * 14092 * r1 = r2; 14093 * if (r1 == 42) goto label; 14094 * ... 14095 * label: // here both r1 and r2 are known to be 42. 14096 * 14097 * Hence when marking register as known preserve it's ID. 14098 */ 14099 case BPF_JEQ: 14100 if (is_jmp32) { 14101 __mark_reg32_known(true_reg, val32); 14102 true_32off = tnum_subreg(true_reg->var_off); 14103 } else { 14104 ___mark_reg_known(true_reg, val); 14105 true_64off = true_reg->var_off; 14106 } 14107 break; 14108 case BPF_JNE: 14109 if (is_jmp32) { 14110 __mark_reg32_known(false_reg, val32); 14111 false_32off = tnum_subreg(false_reg->var_off); 14112 } else { 14113 ___mark_reg_known(false_reg, val); 14114 false_64off = false_reg->var_off; 14115 } 14116 break; 14117 case BPF_JSET: 14118 if (is_jmp32) { 14119 false_32off = tnum_and(false_32off, tnum_const(~val32)); 14120 if (is_power_of_2(val32)) 14121 true_32off = tnum_or(true_32off, 14122 tnum_const(val32)); 14123 } else { 14124 false_64off = tnum_and(false_64off, tnum_const(~val)); 14125 if (is_power_of_2(val)) 14126 true_64off = tnum_or(true_64off, 14127 tnum_const(val)); 14128 } 14129 break; 14130 case BPF_JGE: 14131 case BPF_JGT: 14132 { 14133 if (is_jmp32) { 14134 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 14135 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 14136 14137 false_reg->u32_max_value = min(false_reg->u32_max_value, 14138 false_umax); 14139 true_reg->u32_min_value = max(true_reg->u32_min_value, 14140 true_umin); 14141 } else { 14142 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 14143 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 14144 14145 false_reg->umax_value = min(false_reg->umax_value, false_umax); 14146 true_reg->umin_value = max(true_reg->umin_value, true_umin); 14147 } 14148 break; 14149 } 14150 case BPF_JSGE: 14151 case BPF_JSGT: 14152 { 14153 if (is_jmp32) { 14154 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 14155 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 14156 14157 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 14158 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 14159 } else { 14160 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 14161 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 14162 14163 false_reg->smax_value = min(false_reg->smax_value, false_smax); 14164 true_reg->smin_value = max(true_reg->smin_value, true_smin); 14165 } 14166 break; 14167 } 14168 case BPF_JLE: 14169 case BPF_JLT: 14170 { 14171 if (is_jmp32) { 14172 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 14173 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 14174 14175 false_reg->u32_min_value = max(false_reg->u32_min_value, 14176 false_umin); 14177 true_reg->u32_max_value = min(true_reg->u32_max_value, 14178 true_umax); 14179 } else { 14180 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 14181 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 14182 14183 false_reg->umin_value = max(false_reg->umin_value, false_umin); 14184 true_reg->umax_value = min(true_reg->umax_value, true_umax); 14185 } 14186 break; 14187 } 14188 case BPF_JSLE: 14189 case BPF_JSLT: 14190 { 14191 if (is_jmp32) { 14192 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 14193 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 14194 14195 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 14196 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 14197 } else { 14198 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 14199 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 14200 14201 false_reg->smin_value = max(false_reg->smin_value, false_smin); 14202 true_reg->smax_value = min(true_reg->smax_value, true_smax); 14203 } 14204 break; 14205 } 14206 default: 14207 return; 14208 } 14209 14210 if (is_jmp32) { 14211 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 14212 tnum_subreg(false_32off)); 14213 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 14214 tnum_subreg(true_32off)); 14215 __reg_combine_32_into_64(false_reg); 14216 __reg_combine_32_into_64(true_reg); 14217 } else { 14218 false_reg->var_off = false_64off; 14219 true_reg->var_off = true_64off; 14220 __reg_combine_64_into_32(false_reg); 14221 __reg_combine_64_into_32(true_reg); 14222 } 14223 } 14224 14225 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 14226 * the variable reg. 14227 */ 14228 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 14229 struct bpf_reg_state *false_reg, 14230 u64 val, u32 val32, 14231 u8 opcode, bool is_jmp32) 14232 { 14233 opcode = flip_opcode(opcode); 14234 /* This uses zero as "not present in table"; luckily the zero opcode, 14235 * BPF_JA, can't get here. 14236 */ 14237 if (opcode) 14238 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 14239 } 14240 14241 /* Regs are known to be equal, so intersect their min/max/var_off */ 14242 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 14243 struct bpf_reg_state *dst_reg) 14244 { 14245 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 14246 dst_reg->umin_value); 14247 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 14248 dst_reg->umax_value); 14249 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 14250 dst_reg->smin_value); 14251 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 14252 dst_reg->smax_value); 14253 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 14254 dst_reg->var_off); 14255 reg_bounds_sync(src_reg); 14256 reg_bounds_sync(dst_reg); 14257 } 14258 14259 static void reg_combine_min_max(struct bpf_reg_state *true_src, 14260 struct bpf_reg_state *true_dst, 14261 struct bpf_reg_state *false_src, 14262 struct bpf_reg_state *false_dst, 14263 u8 opcode) 14264 { 14265 switch (opcode) { 14266 case BPF_JEQ: 14267 __reg_combine_min_max(true_src, true_dst); 14268 break; 14269 case BPF_JNE: 14270 __reg_combine_min_max(false_src, false_dst); 14271 break; 14272 } 14273 } 14274 14275 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14276 struct bpf_reg_state *reg, u32 id, 14277 bool is_null) 14278 { 14279 if (type_may_be_null(reg->type) && reg->id == id && 14280 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14281 /* Old offset (both fixed and variable parts) should have been 14282 * known-zero, because we don't allow pointer arithmetic on 14283 * pointers that might be NULL. If we see this happening, don't 14284 * convert the register. 14285 * 14286 * But in some cases, some helpers that return local kptrs 14287 * advance offset for the returned pointer. In those cases, it 14288 * is fine to expect to see reg->off. 14289 */ 14290 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14291 return; 14292 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14293 WARN_ON_ONCE(reg->off)) 14294 return; 14295 14296 if (is_null) { 14297 reg->type = SCALAR_VALUE; 14298 /* We don't need id and ref_obj_id from this point 14299 * onwards anymore, thus we should better reset it, 14300 * so that state pruning has chances to take effect. 14301 */ 14302 reg->id = 0; 14303 reg->ref_obj_id = 0; 14304 14305 return; 14306 } 14307 14308 mark_ptr_not_null_reg(reg); 14309 14310 if (!reg_may_point_to_spin_lock(reg)) { 14311 /* For not-NULL ptr, reg->ref_obj_id will be reset 14312 * in release_reference(). 14313 * 14314 * reg->id is still used by spin_lock ptr. Other 14315 * than spin_lock ptr type, reg->id can be reset. 14316 */ 14317 reg->id = 0; 14318 } 14319 } 14320 } 14321 14322 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14323 * be folded together at some point. 14324 */ 14325 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14326 bool is_null) 14327 { 14328 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14329 struct bpf_reg_state *regs = state->regs, *reg; 14330 u32 ref_obj_id = regs[regno].ref_obj_id; 14331 u32 id = regs[regno].id; 14332 14333 if (ref_obj_id && ref_obj_id == id && is_null) 14334 /* regs[regno] is in the " == NULL" branch. 14335 * No one could have freed the reference state before 14336 * doing the NULL check. 14337 */ 14338 WARN_ON_ONCE(release_reference_state(state, id)); 14339 14340 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14341 mark_ptr_or_null_reg(state, reg, id, is_null); 14342 })); 14343 } 14344 14345 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14346 struct bpf_reg_state *dst_reg, 14347 struct bpf_reg_state *src_reg, 14348 struct bpf_verifier_state *this_branch, 14349 struct bpf_verifier_state *other_branch) 14350 { 14351 if (BPF_SRC(insn->code) != BPF_X) 14352 return false; 14353 14354 /* Pointers are always 64-bit. */ 14355 if (BPF_CLASS(insn->code) == BPF_JMP32) 14356 return false; 14357 14358 switch (BPF_OP(insn->code)) { 14359 case BPF_JGT: 14360 if ((dst_reg->type == PTR_TO_PACKET && 14361 src_reg->type == PTR_TO_PACKET_END) || 14362 (dst_reg->type == PTR_TO_PACKET_META && 14363 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14364 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14365 find_good_pkt_pointers(this_branch, dst_reg, 14366 dst_reg->type, false); 14367 mark_pkt_end(other_branch, insn->dst_reg, true); 14368 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14369 src_reg->type == PTR_TO_PACKET) || 14370 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14371 src_reg->type == PTR_TO_PACKET_META)) { 14372 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14373 find_good_pkt_pointers(other_branch, src_reg, 14374 src_reg->type, true); 14375 mark_pkt_end(this_branch, insn->src_reg, false); 14376 } else { 14377 return false; 14378 } 14379 break; 14380 case BPF_JLT: 14381 if ((dst_reg->type == PTR_TO_PACKET && 14382 src_reg->type == PTR_TO_PACKET_END) || 14383 (dst_reg->type == PTR_TO_PACKET_META && 14384 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14385 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14386 find_good_pkt_pointers(other_branch, dst_reg, 14387 dst_reg->type, true); 14388 mark_pkt_end(this_branch, insn->dst_reg, false); 14389 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14390 src_reg->type == PTR_TO_PACKET) || 14391 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14392 src_reg->type == PTR_TO_PACKET_META)) { 14393 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14394 find_good_pkt_pointers(this_branch, src_reg, 14395 src_reg->type, false); 14396 mark_pkt_end(other_branch, insn->src_reg, true); 14397 } else { 14398 return false; 14399 } 14400 break; 14401 case BPF_JGE: 14402 if ((dst_reg->type == PTR_TO_PACKET && 14403 src_reg->type == PTR_TO_PACKET_END) || 14404 (dst_reg->type == PTR_TO_PACKET_META && 14405 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14406 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14407 find_good_pkt_pointers(this_branch, dst_reg, 14408 dst_reg->type, true); 14409 mark_pkt_end(other_branch, insn->dst_reg, false); 14410 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14411 src_reg->type == PTR_TO_PACKET) || 14412 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14413 src_reg->type == PTR_TO_PACKET_META)) { 14414 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14415 find_good_pkt_pointers(other_branch, src_reg, 14416 src_reg->type, false); 14417 mark_pkt_end(this_branch, insn->src_reg, true); 14418 } else { 14419 return false; 14420 } 14421 break; 14422 case BPF_JLE: 14423 if ((dst_reg->type == PTR_TO_PACKET && 14424 src_reg->type == PTR_TO_PACKET_END) || 14425 (dst_reg->type == PTR_TO_PACKET_META && 14426 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14427 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14428 find_good_pkt_pointers(other_branch, dst_reg, 14429 dst_reg->type, false); 14430 mark_pkt_end(this_branch, insn->dst_reg, true); 14431 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14432 src_reg->type == PTR_TO_PACKET) || 14433 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14434 src_reg->type == PTR_TO_PACKET_META)) { 14435 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14436 find_good_pkt_pointers(this_branch, src_reg, 14437 src_reg->type, true); 14438 mark_pkt_end(other_branch, insn->src_reg, false); 14439 } else { 14440 return false; 14441 } 14442 break; 14443 default: 14444 return false; 14445 } 14446 14447 return true; 14448 } 14449 14450 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14451 struct bpf_reg_state *known_reg) 14452 { 14453 struct bpf_func_state *state; 14454 struct bpf_reg_state *reg; 14455 14456 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14457 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14458 copy_register_state(reg, known_reg); 14459 })); 14460 } 14461 14462 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14463 struct bpf_insn *insn, int *insn_idx) 14464 { 14465 struct bpf_verifier_state *this_branch = env->cur_state; 14466 struct bpf_verifier_state *other_branch; 14467 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14468 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14469 struct bpf_reg_state *eq_branch_regs; 14470 u8 opcode = BPF_OP(insn->code); 14471 bool is_jmp32; 14472 int pred = -1; 14473 int err; 14474 14475 /* Only conditional jumps are expected to reach here. */ 14476 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14477 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14478 return -EINVAL; 14479 } 14480 14481 /* check src2 operand */ 14482 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14483 if (err) 14484 return err; 14485 14486 dst_reg = ®s[insn->dst_reg]; 14487 if (BPF_SRC(insn->code) == BPF_X) { 14488 if (insn->imm != 0) { 14489 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14490 return -EINVAL; 14491 } 14492 14493 /* check src1 operand */ 14494 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14495 if (err) 14496 return err; 14497 14498 src_reg = ®s[insn->src_reg]; 14499 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14500 is_pointer_value(env, insn->src_reg)) { 14501 verbose(env, "R%d pointer comparison prohibited\n", 14502 insn->src_reg); 14503 return -EACCES; 14504 } 14505 } else { 14506 if (insn->src_reg != BPF_REG_0) { 14507 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14508 return -EINVAL; 14509 } 14510 } 14511 14512 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14513 14514 if (BPF_SRC(insn->code) == BPF_K) { 14515 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14516 } else if (src_reg->type == SCALAR_VALUE && 14517 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14518 pred = is_branch_taken(dst_reg, 14519 tnum_subreg(src_reg->var_off).value, 14520 opcode, 14521 is_jmp32); 14522 } else if (src_reg->type == SCALAR_VALUE && 14523 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14524 pred = is_branch_taken(dst_reg, 14525 src_reg->var_off.value, 14526 opcode, 14527 is_jmp32); 14528 } else if (dst_reg->type == SCALAR_VALUE && 14529 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14530 pred = is_branch_taken(src_reg, 14531 tnum_subreg(dst_reg->var_off).value, 14532 flip_opcode(opcode), 14533 is_jmp32); 14534 } else if (dst_reg->type == SCALAR_VALUE && 14535 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14536 pred = is_branch_taken(src_reg, 14537 dst_reg->var_off.value, 14538 flip_opcode(opcode), 14539 is_jmp32); 14540 } else if (reg_is_pkt_pointer_any(dst_reg) && 14541 reg_is_pkt_pointer_any(src_reg) && 14542 !is_jmp32) { 14543 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14544 } 14545 14546 if (pred >= 0) { 14547 /* If we get here with a dst_reg pointer type it is because 14548 * above is_branch_taken() special cased the 0 comparison. 14549 */ 14550 if (!__is_pointer_value(false, dst_reg)) 14551 err = mark_chain_precision(env, insn->dst_reg); 14552 if (BPF_SRC(insn->code) == BPF_X && !err && 14553 !__is_pointer_value(false, src_reg)) 14554 err = mark_chain_precision(env, insn->src_reg); 14555 if (err) 14556 return err; 14557 } 14558 14559 if (pred == 1) { 14560 /* Only follow the goto, ignore fall-through. If needed, push 14561 * the fall-through branch for simulation under speculative 14562 * execution. 14563 */ 14564 if (!env->bypass_spec_v1 && 14565 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14566 *insn_idx)) 14567 return -EFAULT; 14568 if (env->log.level & BPF_LOG_LEVEL) 14569 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14570 *insn_idx += insn->off; 14571 return 0; 14572 } else if (pred == 0) { 14573 /* Only follow the fall-through branch, since that's where the 14574 * program will go. If needed, push the goto branch for 14575 * simulation under speculative execution. 14576 */ 14577 if (!env->bypass_spec_v1 && 14578 !sanitize_speculative_path(env, insn, 14579 *insn_idx + insn->off + 1, 14580 *insn_idx)) 14581 return -EFAULT; 14582 if (env->log.level & BPF_LOG_LEVEL) 14583 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14584 return 0; 14585 } 14586 14587 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14588 false); 14589 if (!other_branch) 14590 return -EFAULT; 14591 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14592 14593 /* detect if we are comparing against a constant value so we can adjust 14594 * our min/max values for our dst register. 14595 * this is only legit if both are scalars (or pointers to the same 14596 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14597 * because otherwise the different base pointers mean the offsets aren't 14598 * comparable. 14599 */ 14600 if (BPF_SRC(insn->code) == BPF_X) { 14601 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14602 14603 if (dst_reg->type == SCALAR_VALUE && 14604 src_reg->type == SCALAR_VALUE) { 14605 if (tnum_is_const(src_reg->var_off) || 14606 (is_jmp32 && 14607 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14608 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14609 dst_reg, 14610 src_reg->var_off.value, 14611 tnum_subreg(src_reg->var_off).value, 14612 opcode, is_jmp32); 14613 else if (tnum_is_const(dst_reg->var_off) || 14614 (is_jmp32 && 14615 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14616 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14617 src_reg, 14618 dst_reg->var_off.value, 14619 tnum_subreg(dst_reg->var_off).value, 14620 opcode, is_jmp32); 14621 else if (!is_jmp32 && 14622 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14623 /* Comparing for equality, we can combine knowledge */ 14624 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14625 &other_branch_regs[insn->dst_reg], 14626 src_reg, dst_reg, opcode); 14627 if (src_reg->id && 14628 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14629 find_equal_scalars(this_branch, src_reg); 14630 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14631 } 14632 14633 } 14634 } else if (dst_reg->type == SCALAR_VALUE) { 14635 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14636 dst_reg, insn->imm, (u32)insn->imm, 14637 opcode, is_jmp32); 14638 } 14639 14640 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14641 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14642 find_equal_scalars(this_branch, dst_reg); 14643 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14644 } 14645 14646 /* if one pointer register is compared to another pointer 14647 * register check if PTR_MAYBE_NULL could be lifted. 14648 * E.g. register A - maybe null 14649 * register B - not null 14650 * for JNE A, B, ... - A is not null in the false branch; 14651 * for JEQ A, B, ... - A is not null in the true branch. 14652 * 14653 * Since PTR_TO_BTF_ID points to a kernel struct that does 14654 * not need to be null checked by the BPF program, i.e., 14655 * could be null even without PTR_MAYBE_NULL marking, so 14656 * only propagate nullness when neither reg is that type. 14657 */ 14658 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14659 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14660 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14661 base_type(src_reg->type) != PTR_TO_BTF_ID && 14662 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14663 eq_branch_regs = NULL; 14664 switch (opcode) { 14665 case BPF_JEQ: 14666 eq_branch_regs = other_branch_regs; 14667 break; 14668 case BPF_JNE: 14669 eq_branch_regs = regs; 14670 break; 14671 default: 14672 /* do nothing */ 14673 break; 14674 } 14675 if (eq_branch_regs) { 14676 if (type_may_be_null(src_reg->type)) 14677 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14678 else 14679 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14680 } 14681 } 14682 14683 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14684 * NOTE: these optimizations below are related with pointer comparison 14685 * which will never be JMP32. 14686 */ 14687 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14688 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14689 type_may_be_null(dst_reg->type)) { 14690 /* Mark all identical registers in each branch as either 14691 * safe or unknown depending R == 0 or R != 0 conditional. 14692 */ 14693 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14694 opcode == BPF_JNE); 14695 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14696 opcode == BPF_JEQ); 14697 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14698 this_branch, other_branch) && 14699 is_pointer_value(env, insn->dst_reg)) { 14700 verbose(env, "R%d pointer comparison prohibited\n", 14701 insn->dst_reg); 14702 return -EACCES; 14703 } 14704 if (env->log.level & BPF_LOG_LEVEL) 14705 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14706 return 0; 14707 } 14708 14709 /* verify BPF_LD_IMM64 instruction */ 14710 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14711 { 14712 struct bpf_insn_aux_data *aux = cur_aux(env); 14713 struct bpf_reg_state *regs = cur_regs(env); 14714 struct bpf_reg_state *dst_reg; 14715 struct bpf_map *map; 14716 int err; 14717 14718 if (BPF_SIZE(insn->code) != BPF_DW) { 14719 verbose(env, "invalid BPF_LD_IMM insn\n"); 14720 return -EINVAL; 14721 } 14722 if (insn->off != 0) { 14723 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14724 return -EINVAL; 14725 } 14726 14727 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14728 if (err) 14729 return err; 14730 14731 dst_reg = ®s[insn->dst_reg]; 14732 if (insn->src_reg == 0) { 14733 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14734 14735 dst_reg->type = SCALAR_VALUE; 14736 __mark_reg_known(®s[insn->dst_reg], imm); 14737 return 0; 14738 } 14739 14740 /* All special src_reg cases are listed below. From this point onwards 14741 * we either succeed and assign a corresponding dst_reg->type after 14742 * zeroing the offset, or fail and reject the program. 14743 */ 14744 mark_reg_known_zero(env, regs, insn->dst_reg); 14745 14746 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14747 dst_reg->type = aux->btf_var.reg_type; 14748 switch (base_type(dst_reg->type)) { 14749 case PTR_TO_MEM: 14750 dst_reg->mem_size = aux->btf_var.mem_size; 14751 break; 14752 case PTR_TO_BTF_ID: 14753 dst_reg->btf = aux->btf_var.btf; 14754 dst_reg->btf_id = aux->btf_var.btf_id; 14755 break; 14756 default: 14757 verbose(env, "bpf verifier is misconfigured\n"); 14758 return -EFAULT; 14759 } 14760 return 0; 14761 } 14762 14763 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14764 struct bpf_prog_aux *aux = env->prog->aux; 14765 u32 subprogno = find_subprog(env, 14766 env->insn_idx + insn->imm + 1); 14767 14768 if (!aux->func_info) { 14769 verbose(env, "missing btf func_info\n"); 14770 return -EINVAL; 14771 } 14772 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14773 verbose(env, "callback function not static\n"); 14774 return -EINVAL; 14775 } 14776 14777 dst_reg->type = PTR_TO_FUNC; 14778 dst_reg->subprogno = subprogno; 14779 return 0; 14780 } 14781 14782 map = env->used_maps[aux->map_index]; 14783 dst_reg->map_ptr = map; 14784 14785 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14786 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14787 dst_reg->type = PTR_TO_MAP_VALUE; 14788 dst_reg->off = aux->map_off; 14789 WARN_ON_ONCE(map->max_entries != 1); 14790 /* We want reg->id to be same (0) as map_value is not distinct */ 14791 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14792 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14793 dst_reg->type = CONST_PTR_TO_MAP; 14794 } else { 14795 verbose(env, "bpf verifier is misconfigured\n"); 14796 return -EINVAL; 14797 } 14798 14799 return 0; 14800 } 14801 14802 static bool may_access_skb(enum bpf_prog_type type) 14803 { 14804 switch (type) { 14805 case BPF_PROG_TYPE_SOCKET_FILTER: 14806 case BPF_PROG_TYPE_SCHED_CLS: 14807 case BPF_PROG_TYPE_SCHED_ACT: 14808 return true; 14809 default: 14810 return false; 14811 } 14812 } 14813 14814 /* verify safety of LD_ABS|LD_IND instructions: 14815 * - they can only appear in the programs where ctx == skb 14816 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14817 * preserve R6-R9, and store return value into R0 14818 * 14819 * Implicit input: 14820 * ctx == skb == R6 == CTX 14821 * 14822 * Explicit input: 14823 * SRC == any register 14824 * IMM == 32-bit immediate 14825 * 14826 * Output: 14827 * R0 - 8/16/32-bit skb data converted to cpu endianness 14828 */ 14829 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14830 { 14831 struct bpf_reg_state *regs = cur_regs(env); 14832 static const int ctx_reg = BPF_REG_6; 14833 u8 mode = BPF_MODE(insn->code); 14834 int i, err; 14835 14836 if (!may_access_skb(resolve_prog_type(env->prog))) { 14837 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14838 return -EINVAL; 14839 } 14840 14841 if (!env->ops->gen_ld_abs) { 14842 verbose(env, "bpf verifier is misconfigured\n"); 14843 return -EINVAL; 14844 } 14845 14846 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14847 BPF_SIZE(insn->code) == BPF_DW || 14848 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14849 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14850 return -EINVAL; 14851 } 14852 14853 /* check whether implicit source operand (register R6) is readable */ 14854 err = check_reg_arg(env, ctx_reg, SRC_OP); 14855 if (err) 14856 return err; 14857 14858 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14859 * gen_ld_abs() may terminate the program at runtime, leading to 14860 * reference leak. 14861 */ 14862 err = check_reference_leak(env); 14863 if (err) { 14864 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14865 return err; 14866 } 14867 14868 if (env->cur_state->active_lock.ptr) { 14869 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14870 return -EINVAL; 14871 } 14872 14873 if (env->cur_state->active_rcu_lock) { 14874 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14875 return -EINVAL; 14876 } 14877 14878 if (regs[ctx_reg].type != PTR_TO_CTX) { 14879 verbose(env, 14880 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14881 return -EINVAL; 14882 } 14883 14884 if (mode == BPF_IND) { 14885 /* check explicit source operand */ 14886 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14887 if (err) 14888 return err; 14889 } 14890 14891 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14892 if (err < 0) 14893 return err; 14894 14895 /* reset caller saved regs to unreadable */ 14896 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14897 mark_reg_not_init(env, regs, caller_saved[i]); 14898 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14899 } 14900 14901 /* mark destination R0 register as readable, since it contains 14902 * the value fetched from the packet. 14903 * Already marked as written above. 14904 */ 14905 mark_reg_unknown(env, regs, BPF_REG_0); 14906 /* ld_abs load up to 32-bit skb data. */ 14907 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14908 return 0; 14909 } 14910 14911 static int check_return_code(struct bpf_verifier_env *env) 14912 { 14913 struct tnum enforce_attach_type_range = tnum_unknown; 14914 const struct bpf_prog *prog = env->prog; 14915 struct bpf_reg_state *reg; 14916 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14917 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14918 int err; 14919 struct bpf_func_state *frame = env->cur_state->frame[0]; 14920 const bool is_subprog = frame->subprogno; 14921 14922 /* LSM and struct_ops func-ptr's return type could be "void" */ 14923 if (!is_subprog) { 14924 switch (prog_type) { 14925 case BPF_PROG_TYPE_LSM: 14926 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14927 /* See below, can be 0 or 0-1 depending on hook. */ 14928 break; 14929 fallthrough; 14930 case BPF_PROG_TYPE_STRUCT_OPS: 14931 if (!prog->aux->attach_func_proto->type) 14932 return 0; 14933 break; 14934 default: 14935 break; 14936 } 14937 } 14938 14939 /* eBPF calling convention is such that R0 is used 14940 * to return the value from eBPF program. 14941 * Make sure that it's readable at this time 14942 * of bpf_exit, which means that program wrote 14943 * something into it earlier 14944 */ 14945 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14946 if (err) 14947 return err; 14948 14949 if (is_pointer_value(env, BPF_REG_0)) { 14950 verbose(env, "R0 leaks addr as return value\n"); 14951 return -EACCES; 14952 } 14953 14954 reg = cur_regs(env) + BPF_REG_0; 14955 14956 if (frame->in_async_callback_fn) { 14957 /* enforce return zero from async callbacks like timer */ 14958 if (reg->type != SCALAR_VALUE) { 14959 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14960 reg_type_str(env, reg->type)); 14961 return -EINVAL; 14962 } 14963 14964 if (!tnum_in(const_0, reg->var_off)) { 14965 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14966 return -EINVAL; 14967 } 14968 return 0; 14969 } 14970 14971 if (is_subprog) { 14972 if (reg->type != SCALAR_VALUE) { 14973 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14974 reg_type_str(env, reg->type)); 14975 return -EINVAL; 14976 } 14977 return 0; 14978 } 14979 14980 switch (prog_type) { 14981 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14982 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14983 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14984 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14985 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14986 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14987 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14988 range = tnum_range(1, 1); 14989 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14990 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14991 range = tnum_range(0, 3); 14992 break; 14993 case BPF_PROG_TYPE_CGROUP_SKB: 14994 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14995 range = tnum_range(0, 3); 14996 enforce_attach_type_range = tnum_range(2, 3); 14997 } 14998 break; 14999 case BPF_PROG_TYPE_CGROUP_SOCK: 15000 case BPF_PROG_TYPE_SOCK_OPS: 15001 case BPF_PROG_TYPE_CGROUP_DEVICE: 15002 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15003 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15004 break; 15005 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15006 if (!env->prog->aux->attach_btf_id) 15007 return 0; 15008 range = tnum_const(0); 15009 break; 15010 case BPF_PROG_TYPE_TRACING: 15011 switch (env->prog->expected_attach_type) { 15012 case BPF_TRACE_FENTRY: 15013 case BPF_TRACE_FEXIT: 15014 range = tnum_const(0); 15015 break; 15016 case BPF_TRACE_RAW_TP: 15017 case BPF_MODIFY_RETURN: 15018 return 0; 15019 case BPF_TRACE_ITER: 15020 break; 15021 default: 15022 return -ENOTSUPP; 15023 } 15024 break; 15025 case BPF_PROG_TYPE_SK_LOOKUP: 15026 range = tnum_range(SK_DROP, SK_PASS); 15027 break; 15028 15029 case BPF_PROG_TYPE_LSM: 15030 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15031 /* Regular BPF_PROG_TYPE_LSM programs can return 15032 * any value. 15033 */ 15034 return 0; 15035 } 15036 if (!env->prog->aux->attach_func_proto->type) { 15037 /* Make sure programs that attach to void 15038 * hooks don't try to modify return value. 15039 */ 15040 range = tnum_range(1, 1); 15041 } 15042 break; 15043 15044 case BPF_PROG_TYPE_NETFILTER: 15045 range = tnum_range(NF_DROP, NF_ACCEPT); 15046 break; 15047 case BPF_PROG_TYPE_EXT: 15048 /* freplace program can return anything as its return value 15049 * depends on the to-be-replaced kernel func or bpf program. 15050 */ 15051 default: 15052 return 0; 15053 } 15054 15055 if (reg->type != SCALAR_VALUE) { 15056 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 15057 reg_type_str(env, reg->type)); 15058 return -EINVAL; 15059 } 15060 15061 if (!tnum_in(range, reg->var_off)) { 15062 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 15063 if (prog->expected_attach_type == BPF_LSM_CGROUP && 15064 prog_type == BPF_PROG_TYPE_LSM && 15065 !prog->aux->attach_func_proto->type) 15066 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15067 return -EINVAL; 15068 } 15069 15070 if (!tnum_is_unknown(enforce_attach_type_range) && 15071 tnum_in(enforce_attach_type_range, reg->var_off)) 15072 env->prog->enforce_expected_attach_type = 1; 15073 return 0; 15074 } 15075 15076 /* non-recursive DFS pseudo code 15077 * 1 procedure DFS-iterative(G,v): 15078 * 2 label v as discovered 15079 * 3 let S be a stack 15080 * 4 S.push(v) 15081 * 5 while S is not empty 15082 * 6 t <- S.peek() 15083 * 7 if t is what we're looking for: 15084 * 8 return t 15085 * 9 for all edges e in G.adjacentEdges(t) do 15086 * 10 if edge e is already labelled 15087 * 11 continue with the next edge 15088 * 12 w <- G.adjacentVertex(t,e) 15089 * 13 if vertex w is not discovered and not explored 15090 * 14 label e as tree-edge 15091 * 15 label w as discovered 15092 * 16 S.push(w) 15093 * 17 continue at 5 15094 * 18 else if vertex w is discovered 15095 * 19 label e as back-edge 15096 * 20 else 15097 * 21 // vertex w is explored 15098 * 22 label e as forward- or cross-edge 15099 * 23 label t as explored 15100 * 24 S.pop() 15101 * 15102 * convention: 15103 * 0x10 - discovered 15104 * 0x11 - discovered and fall-through edge labelled 15105 * 0x12 - discovered and fall-through and branch edges labelled 15106 * 0x20 - explored 15107 */ 15108 15109 enum { 15110 DISCOVERED = 0x10, 15111 EXPLORED = 0x20, 15112 FALLTHROUGH = 1, 15113 BRANCH = 2, 15114 }; 15115 15116 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15117 { 15118 env->insn_aux_data[idx].prune_point = true; 15119 } 15120 15121 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15122 { 15123 return env->insn_aux_data[insn_idx].prune_point; 15124 } 15125 15126 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15127 { 15128 env->insn_aux_data[idx].force_checkpoint = true; 15129 } 15130 15131 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15132 { 15133 return env->insn_aux_data[insn_idx].force_checkpoint; 15134 } 15135 15136 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15137 { 15138 env->insn_aux_data[idx].calls_callback = true; 15139 } 15140 15141 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15142 { 15143 return env->insn_aux_data[insn_idx].calls_callback; 15144 } 15145 15146 enum { 15147 DONE_EXPLORING = 0, 15148 KEEP_EXPLORING = 1, 15149 }; 15150 15151 /* t, w, e - match pseudo-code above: 15152 * t - index of current instruction 15153 * w - next instruction 15154 * e - edge 15155 */ 15156 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15157 { 15158 int *insn_stack = env->cfg.insn_stack; 15159 int *insn_state = env->cfg.insn_state; 15160 15161 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15162 return DONE_EXPLORING; 15163 15164 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15165 return DONE_EXPLORING; 15166 15167 if (w < 0 || w >= env->prog->len) { 15168 verbose_linfo(env, t, "%d: ", t); 15169 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15170 return -EINVAL; 15171 } 15172 15173 if (e == BRANCH) { 15174 /* mark branch target for state pruning */ 15175 mark_prune_point(env, w); 15176 mark_jmp_point(env, w); 15177 } 15178 15179 if (insn_state[w] == 0) { 15180 /* tree-edge */ 15181 insn_state[t] = DISCOVERED | e; 15182 insn_state[w] = DISCOVERED; 15183 if (env->cfg.cur_stack >= env->prog->len) 15184 return -E2BIG; 15185 insn_stack[env->cfg.cur_stack++] = w; 15186 return KEEP_EXPLORING; 15187 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15188 if (env->bpf_capable) 15189 return DONE_EXPLORING; 15190 verbose_linfo(env, t, "%d: ", t); 15191 verbose_linfo(env, w, "%d: ", w); 15192 verbose(env, "back-edge from insn %d to %d\n", t, w); 15193 return -EINVAL; 15194 } else if (insn_state[w] == EXPLORED) { 15195 /* forward- or cross-edge */ 15196 insn_state[t] = DISCOVERED | e; 15197 } else { 15198 verbose(env, "insn state internal bug\n"); 15199 return -EFAULT; 15200 } 15201 return DONE_EXPLORING; 15202 } 15203 15204 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15205 struct bpf_verifier_env *env, 15206 bool visit_callee) 15207 { 15208 int ret, insn_sz; 15209 15210 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15211 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15212 if (ret) 15213 return ret; 15214 15215 mark_prune_point(env, t + insn_sz); 15216 /* when we exit from subprog, we need to record non-linear history */ 15217 mark_jmp_point(env, t + insn_sz); 15218 15219 if (visit_callee) { 15220 mark_prune_point(env, t); 15221 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15222 } 15223 return ret; 15224 } 15225 15226 /* Visits the instruction at index t and returns one of the following: 15227 * < 0 - an error occurred 15228 * DONE_EXPLORING - the instruction was fully explored 15229 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15230 */ 15231 static int visit_insn(int t, struct bpf_verifier_env *env) 15232 { 15233 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15234 int ret, off, insn_sz; 15235 15236 if (bpf_pseudo_func(insn)) 15237 return visit_func_call_insn(t, insns, env, true); 15238 15239 /* All non-branch instructions have a single fall-through edge. */ 15240 if (BPF_CLASS(insn->code) != BPF_JMP && 15241 BPF_CLASS(insn->code) != BPF_JMP32) { 15242 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15243 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15244 } 15245 15246 switch (BPF_OP(insn->code)) { 15247 case BPF_EXIT: 15248 return DONE_EXPLORING; 15249 15250 case BPF_CALL: 15251 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15252 /* Mark this call insn as a prune point to trigger 15253 * is_state_visited() check before call itself is 15254 * processed by __check_func_call(). Otherwise new 15255 * async state will be pushed for further exploration. 15256 */ 15257 mark_prune_point(env, t); 15258 /* For functions that invoke callbacks it is not known how many times 15259 * callback would be called. Verifier models callback calling functions 15260 * by repeatedly visiting callback bodies and returning to origin call 15261 * instruction. 15262 * In order to stop such iteration verifier needs to identify when a 15263 * state identical some state from a previous iteration is reached. 15264 * Check below forces creation of checkpoint before callback calling 15265 * instruction to allow search for such identical states. 15266 */ 15267 if (is_sync_callback_calling_insn(insn)) { 15268 mark_calls_callback(env, t); 15269 mark_force_checkpoint(env, t); 15270 mark_prune_point(env, t); 15271 mark_jmp_point(env, t); 15272 } 15273 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15274 struct bpf_kfunc_call_arg_meta meta; 15275 15276 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15277 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15278 mark_prune_point(env, t); 15279 /* Checking and saving state checkpoints at iter_next() call 15280 * is crucial for fast convergence of open-coded iterator loop 15281 * logic, so we need to force it. If we don't do that, 15282 * is_state_visited() might skip saving a checkpoint, causing 15283 * unnecessarily long sequence of not checkpointed 15284 * instructions and jumps, leading to exhaustion of jump 15285 * history buffer, and potentially other undesired outcomes. 15286 * It is expected that with correct open-coded iterators 15287 * convergence will happen quickly, so we don't run a risk of 15288 * exhausting memory. 15289 */ 15290 mark_force_checkpoint(env, t); 15291 } 15292 } 15293 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15294 15295 case BPF_JA: 15296 if (BPF_SRC(insn->code) != BPF_K) 15297 return -EINVAL; 15298 15299 if (BPF_CLASS(insn->code) == BPF_JMP) 15300 off = insn->off; 15301 else 15302 off = insn->imm; 15303 15304 /* unconditional jump with single edge */ 15305 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15306 if (ret) 15307 return ret; 15308 15309 mark_prune_point(env, t + off + 1); 15310 mark_jmp_point(env, t + off + 1); 15311 15312 return ret; 15313 15314 default: 15315 /* conditional jump with two edges */ 15316 mark_prune_point(env, t); 15317 15318 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15319 if (ret) 15320 return ret; 15321 15322 return push_insn(t, t + insn->off + 1, BRANCH, env); 15323 } 15324 } 15325 15326 /* non-recursive depth-first-search to detect loops in BPF program 15327 * loop == back-edge in directed graph 15328 */ 15329 static int check_cfg(struct bpf_verifier_env *env) 15330 { 15331 int insn_cnt = env->prog->len; 15332 int *insn_stack, *insn_state; 15333 int ret = 0; 15334 int i; 15335 15336 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15337 if (!insn_state) 15338 return -ENOMEM; 15339 15340 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15341 if (!insn_stack) { 15342 kvfree(insn_state); 15343 return -ENOMEM; 15344 } 15345 15346 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15347 insn_stack[0] = 0; /* 0 is the first instruction */ 15348 env->cfg.cur_stack = 1; 15349 15350 while (env->cfg.cur_stack > 0) { 15351 int t = insn_stack[env->cfg.cur_stack - 1]; 15352 15353 ret = visit_insn(t, env); 15354 switch (ret) { 15355 case DONE_EXPLORING: 15356 insn_state[t] = EXPLORED; 15357 env->cfg.cur_stack--; 15358 break; 15359 case KEEP_EXPLORING: 15360 break; 15361 default: 15362 if (ret > 0) { 15363 verbose(env, "visit_insn internal bug\n"); 15364 ret = -EFAULT; 15365 } 15366 goto err_free; 15367 } 15368 } 15369 15370 if (env->cfg.cur_stack < 0) { 15371 verbose(env, "pop stack internal bug\n"); 15372 ret = -EFAULT; 15373 goto err_free; 15374 } 15375 15376 for (i = 0; i < insn_cnt; i++) { 15377 struct bpf_insn *insn = &env->prog->insnsi[i]; 15378 15379 if (insn_state[i] != EXPLORED) { 15380 verbose(env, "unreachable insn %d\n", i); 15381 ret = -EINVAL; 15382 goto err_free; 15383 } 15384 if (bpf_is_ldimm64(insn)) { 15385 if (insn_state[i + 1] != 0) { 15386 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15387 ret = -EINVAL; 15388 goto err_free; 15389 } 15390 i++; /* skip second half of ldimm64 */ 15391 } 15392 } 15393 ret = 0; /* cfg looks good */ 15394 15395 err_free: 15396 kvfree(insn_state); 15397 kvfree(insn_stack); 15398 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15399 return ret; 15400 } 15401 15402 static int check_abnormal_return(struct bpf_verifier_env *env) 15403 { 15404 int i; 15405 15406 for (i = 1; i < env->subprog_cnt; i++) { 15407 if (env->subprog_info[i].has_ld_abs) { 15408 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15409 return -EINVAL; 15410 } 15411 if (env->subprog_info[i].has_tail_call) { 15412 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15413 return -EINVAL; 15414 } 15415 } 15416 return 0; 15417 } 15418 15419 /* The minimum supported BTF func info size */ 15420 #define MIN_BPF_FUNCINFO_SIZE 8 15421 #define MAX_FUNCINFO_REC_SIZE 252 15422 15423 static int check_btf_func(struct bpf_verifier_env *env, 15424 const union bpf_attr *attr, 15425 bpfptr_t uattr) 15426 { 15427 const struct btf_type *type, *func_proto, *ret_type; 15428 u32 i, nfuncs, urec_size, min_size; 15429 u32 krec_size = sizeof(struct bpf_func_info); 15430 struct bpf_func_info *krecord; 15431 struct bpf_func_info_aux *info_aux = NULL; 15432 struct bpf_prog *prog; 15433 const struct btf *btf; 15434 bpfptr_t urecord; 15435 u32 prev_offset = 0; 15436 bool scalar_return; 15437 int ret = -ENOMEM; 15438 15439 nfuncs = attr->func_info_cnt; 15440 if (!nfuncs) { 15441 if (check_abnormal_return(env)) 15442 return -EINVAL; 15443 return 0; 15444 } 15445 15446 if (nfuncs != env->subprog_cnt) { 15447 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15448 return -EINVAL; 15449 } 15450 15451 urec_size = attr->func_info_rec_size; 15452 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15453 urec_size > MAX_FUNCINFO_REC_SIZE || 15454 urec_size % sizeof(u32)) { 15455 verbose(env, "invalid func info rec size %u\n", urec_size); 15456 return -EINVAL; 15457 } 15458 15459 prog = env->prog; 15460 btf = prog->aux->btf; 15461 15462 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15463 min_size = min_t(u32, krec_size, urec_size); 15464 15465 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15466 if (!krecord) 15467 return -ENOMEM; 15468 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15469 if (!info_aux) 15470 goto err_free; 15471 15472 for (i = 0; i < nfuncs; i++) { 15473 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15474 if (ret) { 15475 if (ret == -E2BIG) { 15476 verbose(env, "nonzero tailing record in func info"); 15477 /* set the size kernel expects so loader can zero 15478 * out the rest of the record. 15479 */ 15480 if (copy_to_bpfptr_offset(uattr, 15481 offsetof(union bpf_attr, func_info_rec_size), 15482 &min_size, sizeof(min_size))) 15483 ret = -EFAULT; 15484 } 15485 goto err_free; 15486 } 15487 15488 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15489 ret = -EFAULT; 15490 goto err_free; 15491 } 15492 15493 /* check insn_off */ 15494 ret = -EINVAL; 15495 if (i == 0) { 15496 if (krecord[i].insn_off) { 15497 verbose(env, 15498 "nonzero insn_off %u for the first func info record", 15499 krecord[i].insn_off); 15500 goto err_free; 15501 } 15502 } else if (krecord[i].insn_off <= prev_offset) { 15503 verbose(env, 15504 "same or smaller insn offset (%u) than previous func info record (%u)", 15505 krecord[i].insn_off, prev_offset); 15506 goto err_free; 15507 } 15508 15509 if (env->subprog_info[i].start != krecord[i].insn_off) { 15510 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15511 goto err_free; 15512 } 15513 15514 /* check type_id */ 15515 type = btf_type_by_id(btf, krecord[i].type_id); 15516 if (!type || !btf_type_is_func(type)) { 15517 verbose(env, "invalid type id %d in func info", 15518 krecord[i].type_id); 15519 goto err_free; 15520 } 15521 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15522 15523 func_proto = btf_type_by_id(btf, type->type); 15524 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15525 /* btf_func_check() already verified it during BTF load */ 15526 goto err_free; 15527 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15528 scalar_return = 15529 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15530 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15531 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15532 goto err_free; 15533 } 15534 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15535 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15536 goto err_free; 15537 } 15538 15539 prev_offset = krecord[i].insn_off; 15540 bpfptr_add(&urecord, urec_size); 15541 } 15542 15543 prog->aux->func_info = krecord; 15544 prog->aux->func_info_cnt = nfuncs; 15545 prog->aux->func_info_aux = info_aux; 15546 return 0; 15547 15548 err_free: 15549 kvfree(krecord); 15550 kfree(info_aux); 15551 return ret; 15552 } 15553 15554 static void adjust_btf_func(struct bpf_verifier_env *env) 15555 { 15556 struct bpf_prog_aux *aux = env->prog->aux; 15557 int i; 15558 15559 if (!aux->func_info) 15560 return; 15561 15562 for (i = 0; i < env->subprog_cnt; i++) 15563 aux->func_info[i].insn_off = env->subprog_info[i].start; 15564 } 15565 15566 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15567 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15568 15569 static int check_btf_line(struct bpf_verifier_env *env, 15570 const union bpf_attr *attr, 15571 bpfptr_t uattr) 15572 { 15573 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15574 struct bpf_subprog_info *sub; 15575 struct bpf_line_info *linfo; 15576 struct bpf_prog *prog; 15577 const struct btf *btf; 15578 bpfptr_t ulinfo; 15579 int err; 15580 15581 nr_linfo = attr->line_info_cnt; 15582 if (!nr_linfo) 15583 return 0; 15584 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15585 return -EINVAL; 15586 15587 rec_size = attr->line_info_rec_size; 15588 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15589 rec_size > MAX_LINEINFO_REC_SIZE || 15590 rec_size & (sizeof(u32) - 1)) 15591 return -EINVAL; 15592 15593 /* Need to zero it in case the userspace may 15594 * pass in a smaller bpf_line_info object. 15595 */ 15596 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15597 GFP_KERNEL | __GFP_NOWARN); 15598 if (!linfo) 15599 return -ENOMEM; 15600 15601 prog = env->prog; 15602 btf = prog->aux->btf; 15603 15604 s = 0; 15605 sub = env->subprog_info; 15606 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15607 expected_size = sizeof(struct bpf_line_info); 15608 ncopy = min_t(u32, expected_size, rec_size); 15609 for (i = 0; i < nr_linfo; i++) { 15610 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15611 if (err) { 15612 if (err == -E2BIG) { 15613 verbose(env, "nonzero tailing record in line_info"); 15614 if (copy_to_bpfptr_offset(uattr, 15615 offsetof(union bpf_attr, line_info_rec_size), 15616 &expected_size, sizeof(expected_size))) 15617 err = -EFAULT; 15618 } 15619 goto err_free; 15620 } 15621 15622 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15623 err = -EFAULT; 15624 goto err_free; 15625 } 15626 15627 /* 15628 * Check insn_off to ensure 15629 * 1) strictly increasing AND 15630 * 2) bounded by prog->len 15631 * 15632 * The linfo[0].insn_off == 0 check logically falls into 15633 * the later "missing bpf_line_info for func..." case 15634 * because the first linfo[0].insn_off must be the 15635 * first sub also and the first sub must have 15636 * subprog_info[0].start == 0. 15637 */ 15638 if ((i && linfo[i].insn_off <= prev_offset) || 15639 linfo[i].insn_off >= prog->len) { 15640 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15641 i, linfo[i].insn_off, prev_offset, 15642 prog->len); 15643 err = -EINVAL; 15644 goto err_free; 15645 } 15646 15647 if (!prog->insnsi[linfo[i].insn_off].code) { 15648 verbose(env, 15649 "Invalid insn code at line_info[%u].insn_off\n", 15650 i); 15651 err = -EINVAL; 15652 goto err_free; 15653 } 15654 15655 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15656 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15657 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15658 err = -EINVAL; 15659 goto err_free; 15660 } 15661 15662 if (s != env->subprog_cnt) { 15663 if (linfo[i].insn_off == sub[s].start) { 15664 sub[s].linfo_idx = i; 15665 s++; 15666 } else if (sub[s].start < linfo[i].insn_off) { 15667 verbose(env, "missing bpf_line_info for func#%u\n", s); 15668 err = -EINVAL; 15669 goto err_free; 15670 } 15671 } 15672 15673 prev_offset = linfo[i].insn_off; 15674 bpfptr_add(&ulinfo, rec_size); 15675 } 15676 15677 if (s != env->subprog_cnt) { 15678 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15679 env->subprog_cnt - s, s); 15680 err = -EINVAL; 15681 goto err_free; 15682 } 15683 15684 prog->aux->linfo = linfo; 15685 prog->aux->nr_linfo = nr_linfo; 15686 15687 return 0; 15688 15689 err_free: 15690 kvfree(linfo); 15691 return err; 15692 } 15693 15694 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15695 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15696 15697 static int check_core_relo(struct bpf_verifier_env *env, 15698 const union bpf_attr *attr, 15699 bpfptr_t uattr) 15700 { 15701 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15702 struct bpf_core_relo core_relo = {}; 15703 struct bpf_prog *prog = env->prog; 15704 const struct btf *btf = prog->aux->btf; 15705 struct bpf_core_ctx ctx = { 15706 .log = &env->log, 15707 .btf = btf, 15708 }; 15709 bpfptr_t u_core_relo; 15710 int err; 15711 15712 nr_core_relo = attr->core_relo_cnt; 15713 if (!nr_core_relo) 15714 return 0; 15715 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15716 return -EINVAL; 15717 15718 rec_size = attr->core_relo_rec_size; 15719 if (rec_size < MIN_CORE_RELO_SIZE || 15720 rec_size > MAX_CORE_RELO_SIZE || 15721 rec_size % sizeof(u32)) 15722 return -EINVAL; 15723 15724 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15725 expected_size = sizeof(struct bpf_core_relo); 15726 ncopy = min_t(u32, expected_size, rec_size); 15727 15728 /* Unlike func_info and line_info, copy and apply each CO-RE 15729 * relocation record one at a time. 15730 */ 15731 for (i = 0; i < nr_core_relo; i++) { 15732 /* future proofing when sizeof(bpf_core_relo) changes */ 15733 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15734 if (err) { 15735 if (err == -E2BIG) { 15736 verbose(env, "nonzero tailing record in core_relo"); 15737 if (copy_to_bpfptr_offset(uattr, 15738 offsetof(union bpf_attr, core_relo_rec_size), 15739 &expected_size, sizeof(expected_size))) 15740 err = -EFAULT; 15741 } 15742 break; 15743 } 15744 15745 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15746 err = -EFAULT; 15747 break; 15748 } 15749 15750 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15751 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15752 i, core_relo.insn_off, prog->len); 15753 err = -EINVAL; 15754 break; 15755 } 15756 15757 err = bpf_core_apply(&ctx, &core_relo, i, 15758 &prog->insnsi[core_relo.insn_off / 8]); 15759 if (err) 15760 break; 15761 bpfptr_add(&u_core_relo, rec_size); 15762 } 15763 return err; 15764 } 15765 15766 static int check_btf_info(struct bpf_verifier_env *env, 15767 const union bpf_attr *attr, 15768 bpfptr_t uattr) 15769 { 15770 struct btf *btf; 15771 int err; 15772 15773 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15774 if (check_abnormal_return(env)) 15775 return -EINVAL; 15776 return 0; 15777 } 15778 15779 btf = btf_get_by_fd(attr->prog_btf_fd); 15780 if (IS_ERR(btf)) 15781 return PTR_ERR(btf); 15782 if (btf_is_kernel(btf)) { 15783 btf_put(btf); 15784 return -EACCES; 15785 } 15786 env->prog->aux->btf = btf; 15787 15788 err = check_btf_func(env, attr, uattr); 15789 if (err) 15790 return err; 15791 15792 err = check_btf_line(env, attr, uattr); 15793 if (err) 15794 return err; 15795 15796 err = check_core_relo(env, attr, uattr); 15797 if (err) 15798 return err; 15799 15800 return 0; 15801 } 15802 15803 /* check %cur's range satisfies %old's */ 15804 static bool range_within(struct bpf_reg_state *old, 15805 struct bpf_reg_state *cur) 15806 { 15807 return old->umin_value <= cur->umin_value && 15808 old->umax_value >= cur->umax_value && 15809 old->smin_value <= cur->smin_value && 15810 old->smax_value >= cur->smax_value && 15811 old->u32_min_value <= cur->u32_min_value && 15812 old->u32_max_value >= cur->u32_max_value && 15813 old->s32_min_value <= cur->s32_min_value && 15814 old->s32_max_value >= cur->s32_max_value; 15815 } 15816 15817 /* If in the old state two registers had the same id, then they need to have 15818 * the same id in the new state as well. But that id could be different from 15819 * the old state, so we need to track the mapping from old to new ids. 15820 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15821 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15822 * regs with a different old id could still have new id 9, we don't care about 15823 * that. 15824 * So we look through our idmap to see if this old id has been seen before. If 15825 * so, we require the new id to match; otherwise, we add the id pair to the map. 15826 */ 15827 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15828 { 15829 struct bpf_id_pair *map = idmap->map; 15830 unsigned int i; 15831 15832 /* either both IDs should be set or both should be zero */ 15833 if (!!old_id != !!cur_id) 15834 return false; 15835 15836 if (old_id == 0) /* cur_id == 0 as well */ 15837 return true; 15838 15839 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15840 if (!map[i].old) { 15841 /* Reached an empty slot; haven't seen this id before */ 15842 map[i].old = old_id; 15843 map[i].cur = cur_id; 15844 return true; 15845 } 15846 if (map[i].old == old_id) 15847 return map[i].cur == cur_id; 15848 if (map[i].cur == cur_id) 15849 return false; 15850 } 15851 /* We ran out of idmap slots, which should be impossible */ 15852 WARN_ON_ONCE(1); 15853 return false; 15854 } 15855 15856 /* Similar to check_ids(), but allocate a unique temporary ID 15857 * for 'old_id' or 'cur_id' of zero. 15858 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15859 */ 15860 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15861 { 15862 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15863 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15864 15865 return check_ids(old_id, cur_id, idmap); 15866 } 15867 15868 static void clean_func_state(struct bpf_verifier_env *env, 15869 struct bpf_func_state *st) 15870 { 15871 enum bpf_reg_liveness live; 15872 int i, j; 15873 15874 for (i = 0; i < BPF_REG_FP; i++) { 15875 live = st->regs[i].live; 15876 /* liveness must not touch this register anymore */ 15877 st->regs[i].live |= REG_LIVE_DONE; 15878 if (!(live & REG_LIVE_READ)) 15879 /* since the register is unused, clear its state 15880 * to make further comparison simpler 15881 */ 15882 __mark_reg_not_init(env, &st->regs[i]); 15883 } 15884 15885 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15886 live = st->stack[i].spilled_ptr.live; 15887 /* liveness must not touch this stack slot anymore */ 15888 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15889 if (!(live & REG_LIVE_READ)) { 15890 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15891 for (j = 0; j < BPF_REG_SIZE; j++) 15892 st->stack[i].slot_type[j] = STACK_INVALID; 15893 } 15894 } 15895 } 15896 15897 static void clean_verifier_state(struct bpf_verifier_env *env, 15898 struct bpf_verifier_state *st) 15899 { 15900 int i; 15901 15902 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15903 /* all regs in this state in all frames were already marked */ 15904 return; 15905 15906 for (i = 0; i <= st->curframe; i++) 15907 clean_func_state(env, st->frame[i]); 15908 } 15909 15910 /* the parentage chains form a tree. 15911 * the verifier states are added to state lists at given insn and 15912 * pushed into state stack for future exploration. 15913 * when the verifier reaches bpf_exit insn some of the verifer states 15914 * stored in the state lists have their final liveness state already, 15915 * but a lot of states will get revised from liveness point of view when 15916 * the verifier explores other branches. 15917 * Example: 15918 * 1: r0 = 1 15919 * 2: if r1 == 100 goto pc+1 15920 * 3: r0 = 2 15921 * 4: exit 15922 * when the verifier reaches exit insn the register r0 in the state list of 15923 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15924 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15925 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15926 * 15927 * Since the verifier pushes the branch states as it sees them while exploring 15928 * the program the condition of walking the branch instruction for the second 15929 * time means that all states below this branch were already explored and 15930 * their final liveness marks are already propagated. 15931 * Hence when the verifier completes the search of state list in is_state_visited() 15932 * we can call this clean_live_states() function to mark all liveness states 15933 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15934 * will not be used. 15935 * This function also clears the registers and stack for states that !READ 15936 * to simplify state merging. 15937 * 15938 * Important note here that walking the same branch instruction in the callee 15939 * doesn't meant that the states are DONE. The verifier has to compare 15940 * the callsites 15941 */ 15942 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15943 struct bpf_verifier_state *cur) 15944 { 15945 struct bpf_verifier_state_list *sl; 15946 15947 sl = *explored_state(env, insn); 15948 while (sl) { 15949 if (sl->state.branches) 15950 goto next; 15951 if (sl->state.insn_idx != insn || 15952 !same_callsites(&sl->state, cur)) 15953 goto next; 15954 clean_verifier_state(env, &sl->state); 15955 next: 15956 sl = sl->next; 15957 } 15958 } 15959 15960 static bool regs_exact(const struct bpf_reg_state *rold, 15961 const struct bpf_reg_state *rcur, 15962 struct bpf_idmap *idmap) 15963 { 15964 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15965 check_ids(rold->id, rcur->id, idmap) && 15966 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15967 } 15968 15969 /* Returns true if (rold safe implies rcur safe) */ 15970 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15971 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 15972 { 15973 if (exact) 15974 return regs_exact(rold, rcur, idmap); 15975 15976 if (!(rold->live & REG_LIVE_READ)) 15977 /* explored state didn't use this */ 15978 return true; 15979 if (rold->type == NOT_INIT) 15980 /* explored state can't have used this */ 15981 return true; 15982 if (rcur->type == NOT_INIT) 15983 return false; 15984 15985 /* Enforce that register types have to match exactly, including their 15986 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15987 * rule. 15988 * 15989 * One can make a point that using a pointer register as unbounded 15990 * SCALAR would be technically acceptable, but this could lead to 15991 * pointer leaks because scalars are allowed to leak while pointers 15992 * are not. We could make this safe in special cases if root is 15993 * calling us, but it's probably not worth the hassle. 15994 * 15995 * Also, register types that are *not* MAYBE_NULL could technically be 15996 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15997 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15998 * to the same map). 15999 * However, if the old MAYBE_NULL register then got NULL checked, 16000 * doing so could have affected others with the same id, and we can't 16001 * check for that because we lost the id when we converted to 16002 * a non-MAYBE_NULL variant. 16003 * So, as a general rule we don't allow mixing MAYBE_NULL and 16004 * non-MAYBE_NULL registers as well. 16005 */ 16006 if (rold->type != rcur->type) 16007 return false; 16008 16009 switch (base_type(rold->type)) { 16010 case SCALAR_VALUE: 16011 if (env->explore_alu_limits) { 16012 /* explore_alu_limits disables tnum_in() and range_within() 16013 * logic and requires everything to be strict 16014 */ 16015 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16016 check_scalar_ids(rold->id, rcur->id, idmap); 16017 } 16018 if (!rold->precise) 16019 return true; 16020 /* Why check_ids() for scalar registers? 16021 * 16022 * Consider the following BPF code: 16023 * 1: r6 = ... unbound scalar, ID=a ... 16024 * 2: r7 = ... unbound scalar, ID=b ... 16025 * 3: if (r6 > r7) goto +1 16026 * 4: r6 = r7 16027 * 5: if (r6 > X) goto ... 16028 * 6: ... memory operation using r7 ... 16029 * 16030 * First verification path is [1-6]: 16031 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16032 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16033 * r7 <= X, because r6 and r7 share same id. 16034 * Next verification path is [1-4, 6]. 16035 * 16036 * Instruction (6) would be reached in two states: 16037 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16038 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16039 * 16040 * Use check_ids() to distinguish these states. 16041 * --- 16042 * Also verify that new value satisfies old value range knowledge. 16043 */ 16044 return range_within(rold, rcur) && 16045 tnum_in(rold->var_off, rcur->var_off) && 16046 check_scalar_ids(rold->id, rcur->id, idmap); 16047 case PTR_TO_MAP_KEY: 16048 case PTR_TO_MAP_VALUE: 16049 case PTR_TO_MEM: 16050 case PTR_TO_BUF: 16051 case PTR_TO_TP_BUFFER: 16052 /* If the new min/max/var_off satisfy the old ones and 16053 * everything else matches, we are OK. 16054 */ 16055 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16056 range_within(rold, rcur) && 16057 tnum_in(rold->var_off, rcur->var_off) && 16058 check_ids(rold->id, rcur->id, idmap) && 16059 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16060 case PTR_TO_PACKET_META: 16061 case PTR_TO_PACKET: 16062 /* We must have at least as much range as the old ptr 16063 * did, so that any accesses which were safe before are 16064 * still safe. This is true even if old range < old off, 16065 * since someone could have accessed through (ptr - k), or 16066 * even done ptr -= k in a register, to get a safe access. 16067 */ 16068 if (rold->range > rcur->range) 16069 return false; 16070 /* If the offsets don't match, we can't trust our alignment; 16071 * nor can we be sure that we won't fall out of range. 16072 */ 16073 if (rold->off != rcur->off) 16074 return false; 16075 /* id relations must be preserved */ 16076 if (!check_ids(rold->id, rcur->id, idmap)) 16077 return false; 16078 /* new val must satisfy old val knowledge */ 16079 return range_within(rold, rcur) && 16080 tnum_in(rold->var_off, rcur->var_off); 16081 case PTR_TO_STACK: 16082 /* two stack pointers are equal only if they're pointing to 16083 * the same stack frame, since fp-8 in foo != fp-8 in bar 16084 */ 16085 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16086 default: 16087 return regs_exact(rold, rcur, idmap); 16088 } 16089 } 16090 16091 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16092 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16093 { 16094 int i, spi; 16095 16096 /* walk slots of the explored stack and ignore any additional 16097 * slots in the current stack, since explored(safe) state 16098 * didn't use them 16099 */ 16100 for (i = 0; i < old->allocated_stack; i++) { 16101 struct bpf_reg_state *old_reg, *cur_reg; 16102 16103 spi = i / BPF_REG_SIZE; 16104 16105 if (exact && 16106 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16107 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16108 return false; 16109 16110 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16111 i += BPF_REG_SIZE - 1; 16112 /* explored state didn't use this */ 16113 continue; 16114 } 16115 16116 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16117 continue; 16118 16119 if (env->allow_uninit_stack && 16120 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16121 continue; 16122 16123 /* explored stack has more populated slots than current stack 16124 * and these slots were used 16125 */ 16126 if (i >= cur->allocated_stack) 16127 return false; 16128 16129 /* if old state was safe with misc data in the stack 16130 * it will be safe with zero-initialized stack. 16131 * The opposite is not true 16132 */ 16133 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16134 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16135 continue; 16136 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16137 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16138 /* Ex: old explored (safe) state has STACK_SPILL in 16139 * this stack slot, but current has STACK_MISC -> 16140 * this verifier states are not equivalent, 16141 * return false to continue verification of this path 16142 */ 16143 return false; 16144 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16145 continue; 16146 /* Both old and cur are having same slot_type */ 16147 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16148 case STACK_SPILL: 16149 /* when explored and current stack slot are both storing 16150 * spilled registers, check that stored pointers types 16151 * are the same as well. 16152 * Ex: explored safe path could have stored 16153 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16154 * but current path has stored: 16155 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16156 * such verifier states are not equivalent. 16157 * return false to continue verification of this path 16158 */ 16159 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16160 &cur->stack[spi].spilled_ptr, idmap, exact)) 16161 return false; 16162 break; 16163 case STACK_DYNPTR: 16164 old_reg = &old->stack[spi].spilled_ptr; 16165 cur_reg = &cur->stack[spi].spilled_ptr; 16166 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16167 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16168 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16169 return false; 16170 break; 16171 case STACK_ITER: 16172 old_reg = &old->stack[spi].spilled_ptr; 16173 cur_reg = &cur->stack[spi].spilled_ptr; 16174 /* iter.depth is not compared between states as it 16175 * doesn't matter for correctness and would otherwise 16176 * prevent convergence; we maintain it only to prevent 16177 * infinite loop check triggering, see 16178 * iter_active_depths_differ() 16179 */ 16180 if (old_reg->iter.btf != cur_reg->iter.btf || 16181 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16182 old_reg->iter.state != cur_reg->iter.state || 16183 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16184 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16185 return false; 16186 break; 16187 case STACK_MISC: 16188 case STACK_ZERO: 16189 case STACK_INVALID: 16190 continue; 16191 /* Ensure that new unhandled slot types return false by default */ 16192 default: 16193 return false; 16194 } 16195 } 16196 return true; 16197 } 16198 16199 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16200 struct bpf_idmap *idmap) 16201 { 16202 int i; 16203 16204 if (old->acquired_refs != cur->acquired_refs) 16205 return false; 16206 16207 for (i = 0; i < old->acquired_refs; i++) { 16208 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16209 return false; 16210 } 16211 16212 return true; 16213 } 16214 16215 /* compare two verifier states 16216 * 16217 * all states stored in state_list are known to be valid, since 16218 * verifier reached 'bpf_exit' instruction through them 16219 * 16220 * this function is called when verifier exploring different branches of 16221 * execution popped from the state stack. If it sees an old state that has 16222 * more strict register state and more strict stack state then this execution 16223 * branch doesn't need to be explored further, since verifier already 16224 * concluded that more strict state leads to valid finish. 16225 * 16226 * Therefore two states are equivalent if register state is more conservative 16227 * and explored stack state is more conservative than the current one. 16228 * Example: 16229 * explored current 16230 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16231 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16232 * 16233 * In other words if current stack state (one being explored) has more 16234 * valid slots than old one that already passed validation, it means 16235 * the verifier can stop exploring and conclude that current state is valid too 16236 * 16237 * Similarly with registers. If explored state has register type as invalid 16238 * whereas register type in current state is meaningful, it means that 16239 * the current state will reach 'bpf_exit' instruction safely 16240 */ 16241 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16242 struct bpf_func_state *cur, bool exact) 16243 { 16244 int i; 16245 16246 if (old->callback_depth > cur->callback_depth) 16247 return false; 16248 16249 for (i = 0; i < MAX_BPF_REG; i++) 16250 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16251 &env->idmap_scratch, exact)) 16252 return false; 16253 16254 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16255 return false; 16256 16257 if (!refsafe(old, cur, &env->idmap_scratch)) 16258 return false; 16259 16260 return true; 16261 } 16262 16263 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16264 { 16265 env->idmap_scratch.tmp_id_gen = env->id_gen; 16266 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16267 } 16268 16269 static bool states_equal(struct bpf_verifier_env *env, 16270 struct bpf_verifier_state *old, 16271 struct bpf_verifier_state *cur, 16272 bool exact) 16273 { 16274 int i; 16275 16276 if (old->curframe != cur->curframe) 16277 return false; 16278 16279 reset_idmap_scratch(env); 16280 16281 /* Verification state from speculative execution simulation 16282 * must never prune a non-speculative execution one. 16283 */ 16284 if (old->speculative && !cur->speculative) 16285 return false; 16286 16287 if (old->active_lock.ptr != cur->active_lock.ptr) 16288 return false; 16289 16290 /* Old and cur active_lock's have to be either both present 16291 * or both absent. 16292 */ 16293 if (!!old->active_lock.id != !!cur->active_lock.id) 16294 return false; 16295 16296 if (old->active_lock.id && 16297 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16298 return false; 16299 16300 if (old->active_rcu_lock != cur->active_rcu_lock) 16301 return false; 16302 16303 /* for states to be equal callsites have to be the same 16304 * and all frame states need to be equivalent 16305 */ 16306 for (i = 0; i <= old->curframe; i++) { 16307 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16308 return false; 16309 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16310 return false; 16311 } 16312 return true; 16313 } 16314 16315 /* Return 0 if no propagation happened. Return negative error code if error 16316 * happened. Otherwise, return the propagated bit. 16317 */ 16318 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16319 struct bpf_reg_state *reg, 16320 struct bpf_reg_state *parent_reg) 16321 { 16322 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16323 u8 flag = reg->live & REG_LIVE_READ; 16324 int err; 16325 16326 /* When comes here, read flags of PARENT_REG or REG could be any of 16327 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16328 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16329 */ 16330 if (parent_flag == REG_LIVE_READ64 || 16331 /* Or if there is no read flag from REG. */ 16332 !flag || 16333 /* Or if the read flag from REG is the same as PARENT_REG. */ 16334 parent_flag == flag) 16335 return 0; 16336 16337 err = mark_reg_read(env, reg, parent_reg, flag); 16338 if (err) 16339 return err; 16340 16341 return flag; 16342 } 16343 16344 /* A write screens off any subsequent reads; but write marks come from the 16345 * straight-line code between a state and its parent. When we arrive at an 16346 * equivalent state (jump target or such) we didn't arrive by the straight-line 16347 * code, so read marks in the state must propagate to the parent regardless 16348 * of the state's write marks. That's what 'parent == state->parent' comparison 16349 * in mark_reg_read() is for. 16350 */ 16351 static int propagate_liveness(struct bpf_verifier_env *env, 16352 const struct bpf_verifier_state *vstate, 16353 struct bpf_verifier_state *vparent) 16354 { 16355 struct bpf_reg_state *state_reg, *parent_reg; 16356 struct bpf_func_state *state, *parent; 16357 int i, frame, err = 0; 16358 16359 if (vparent->curframe != vstate->curframe) { 16360 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16361 vparent->curframe, vstate->curframe); 16362 return -EFAULT; 16363 } 16364 /* Propagate read liveness of registers... */ 16365 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16366 for (frame = 0; frame <= vstate->curframe; frame++) { 16367 parent = vparent->frame[frame]; 16368 state = vstate->frame[frame]; 16369 parent_reg = parent->regs; 16370 state_reg = state->regs; 16371 /* We don't need to worry about FP liveness, it's read-only */ 16372 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16373 err = propagate_liveness_reg(env, &state_reg[i], 16374 &parent_reg[i]); 16375 if (err < 0) 16376 return err; 16377 if (err == REG_LIVE_READ64) 16378 mark_insn_zext(env, &parent_reg[i]); 16379 } 16380 16381 /* Propagate stack slots. */ 16382 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16383 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16384 parent_reg = &parent->stack[i].spilled_ptr; 16385 state_reg = &state->stack[i].spilled_ptr; 16386 err = propagate_liveness_reg(env, state_reg, 16387 parent_reg); 16388 if (err < 0) 16389 return err; 16390 } 16391 } 16392 return 0; 16393 } 16394 16395 /* find precise scalars in the previous equivalent state and 16396 * propagate them into the current state 16397 */ 16398 static int propagate_precision(struct bpf_verifier_env *env, 16399 const struct bpf_verifier_state *old) 16400 { 16401 struct bpf_reg_state *state_reg; 16402 struct bpf_func_state *state; 16403 int i, err = 0, fr; 16404 bool first; 16405 16406 for (fr = old->curframe; fr >= 0; fr--) { 16407 state = old->frame[fr]; 16408 state_reg = state->regs; 16409 first = true; 16410 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16411 if (state_reg->type != SCALAR_VALUE || 16412 !state_reg->precise || 16413 !(state_reg->live & REG_LIVE_READ)) 16414 continue; 16415 if (env->log.level & BPF_LOG_LEVEL2) { 16416 if (first) 16417 verbose(env, "frame %d: propagating r%d", fr, i); 16418 else 16419 verbose(env, ",r%d", i); 16420 } 16421 bt_set_frame_reg(&env->bt, fr, i); 16422 first = false; 16423 } 16424 16425 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16426 if (!is_spilled_reg(&state->stack[i])) 16427 continue; 16428 state_reg = &state->stack[i].spilled_ptr; 16429 if (state_reg->type != SCALAR_VALUE || 16430 !state_reg->precise || 16431 !(state_reg->live & REG_LIVE_READ)) 16432 continue; 16433 if (env->log.level & BPF_LOG_LEVEL2) { 16434 if (first) 16435 verbose(env, "frame %d: propagating fp%d", 16436 fr, (-i - 1) * BPF_REG_SIZE); 16437 else 16438 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16439 } 16440 bt_set_frame_slot(&env->bt, fr, i); 16441 first = false; 16442 } 16443 if (!first) 16444 verbose(env, "\n"); 16445 } 16446 16447 err = mark_chain_precision_batch(env); 16448 if (err < 0) 16449 return err; 16450 16451 return 0; 16452 } 16453 16454 static bool states_maybe_looping(struct bpf_verifier_state *old, 16455 struct bpf_verifier_state *cur) 16456 { 16457 struct bpf_func_state *fold, *fcur; 16458 int i, fr = cur->curframe; 16459 16460 if (old->curframe != fr) 16461 return false; 16462 16463 fold = old->frame[fr]; 16464 fcur = cur->frame[fr]; 16465 for (i = 0; i < MAX_BPF_REG; i++) 16466 if (memcmp(&fold->regs[i], &fcur->regs[i], 16467 offsetof(struct bpf_reg_state, parent))) 16468 return false; 16469 return true; 16470 } 16471 16472 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16473 { 16474 return env->insn_aux_data[insn_idx].is_iter_next; 16475 } 16476 16477 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16478 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16479 * states to match, which otherwise would look like an infinite loop. So while 16480 * iter_next() calls are taken care of, we still need to be careful and 16481 * prevent erroneous and too eager declaration of "ininite loop", when 16482 * iterators are involved. 16483 * 16484 * Here's a situation in pseudo-BPF assembly form: 16485 * 16486 * 0: again: ; set up iter_next() call args 16487 * 1: r1 = &it ; <CHECKPOINT HERE> 16488 * 2: call bpf_iter_num_next ; this is iter_next() call 16489 * 3: if r0 == 0 goto done 16490 * 4: ... something useful here ... 16491 * 5: goto again ; another iteration 16492 * 6: done: 16493 * 7: r1 = &it 16494 * 8: call bpf_iter_num_destroy ; clean up iter state 16495 * 9: exit 16496 * 16497 * This is a typical loop. Let's assume that we have a prune point at 1:, 16498 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16499 * again`, assuming other heuristics don't get in a way). 16500 * 16501 * When we first time come to 1:, let's say we have some state X. We proceed 16502 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16503 * Now we come back to validate that forked ACTIVE state. We proceed through 16504 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16505 * are converging. But the problem is that we don't know that yet, as this 16506 * convergence has to happen at iter_next() call site only. So if nothing is 16507 * done, at 1: verifier will use bounded loop logic and declare infinite 16508 * looping (and would be *technically* correct, if not for iterator's 16509 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16510 * don't want that. So what we do in process_iter_next_call() when we go on 16511 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16512 * a different iteration. So when we suspect an infinite loop, we additionally 16513 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16514 * pretend we are not looping and wait for next iter_next() call. 16515 * 16516 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16517 * loop, because that would actually mean infinite loop, as DRAINED state is 16518 * "sticky", and so we'll keep returning into the same instruction with the 16519 * same state (at least in one of possible code paths). 16520 * 16521 * This approach allows to keep infinite loop heuristic even in the face of 16522 * active iterator. E.g., C snippet below is and will be detected as 16523 * inifintely looping: 16524 * 16525 * struct bpf_iter_num it; 16526 * int *p, x; 16527 * 16528 * bpf_iter_num_new(&it, 0, 10); 16529 * while ((p = bpf_iter_num_next(&t))) { 16530 * x = p; 16531 * while (x--) {} // <<-- infinite loop here 16532 * } 16533 * 16534 */ 16535 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16536 { 16537 struct bpf_reg_state *slot, *cur_slot; 16538 struct bpf_func_state *state; 16539 int i, fr; 16540 16541 for (fr = old->curframe; fr >= 0; fr--) { 16542 state = old->frame[fr]; 16543 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16544 if (state->stack[i].slot_type[0] != STACK_ITER) 16545 continue; 16546 16547 slot = &state->stack[i].spilled_ptr; 16548 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16549 continue; 16550 16551 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16552 if (cur_slot->iter.depth != slot->iter.depth) 16553 return true; 16554 } 16555 } 16556 return false; 16557 } 16558 16559 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16560 { 16561 struct bpf_verifier_state_list *new_sl; 16562 struct bpf_verifier_state_list *sl, **pprev; 16563 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16564 int i, j, n, err, states_cnt = 0; 16565 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16566 bool add_new_state = force_new_state; 16567 bool force_exact; 16568 16569 /* bpf progs typically have pruning point every 4 instructions 16570 * http://vger.kernel.org/bpfconf2019.html#session-1 16571 * Do not add new state for future pruning if the verifier hasn't seen 16572 * at least 2 jumps and at least 8 instructions. 16573 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16574 * In tests that amounts to up to 50% reduction into total verifier 16575 * memory consumption and 20% verifier time speedup. 16576 */ 16577 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16578 env->insn_processed - env->prev_insn_processed >= 8) 16579 add_new_state = true; 16580 16581 pprev = explored_state(env, insn_idx); 16582 sl = *pprev; 16583 16584 clean_live_states(env, insn_idx, cur); 16585 16586 while (sl) { 16587 states_cnt++; 16588 if (sl->state.insn_idx != insn_idx) 16589 goto next; 16590 16591 if (sl->state.branches) { 16592 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16593 16594 if (frame->in_async_callback_fn && 16595 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16596 /* Different async_entry_cnt means that the verifier is 16597 * processing another entry into async callback. 16598 * Seeing the same state is not an indication of infinite 16599 * loop or infinite recursion. 16600 * But finding the same state doesn't mean that it's safe 16601 * to stop processing the current state. The previous state 16602 * hasn't yet reached bpf_exit, since state.branches > 0. 16603 * Checking in_async_callback_fn alone is not enough either. 16604 * Since the verifier still needs to catch infinite loops 16605 * inside async callbacks. 16606 */ 16607 goto skip_inf_loop_check; 16608 } 16609 /* BPF open-coded iterators loop detection is special. 16610 * states_maybe_looping() logic is too simplistic in detecting 16611 * states that *might* be equivalent, because it doesn't know 16612 * about ID remapping, so don't even perform it. 16613 * See process_iter_next_call() and iter_active_depths_differ() 16614 * for overview of the logic. When current and one of parent 16615 * states are detected as equivalent, it's a good thing: we prove 16616 * convergence and can stop simulating further iterations. 16617 * It's safe to assume that iterator loop will finish, taking into 16618 * account iter_next() contract of eventually returning 16619 * sticky NULL result. 16620 * 16621 * Note, that states have to be compared exactly in this case because 16622 * read and precision marks might not be finalized inside the loop. 16623 * E.g. as in the program below: 16624 * 16625 * 1. r7 = -16 16626 * 2. r6 = bpf_get_prandom_u32() 16627 * 3. while (bpf_iter_num_next(&fp[-8])) { 16628 * 4. if (r6 != 42) { 16629 * 5. r7 = -32 16630 * 6. r6 = bpf_get_prandom_u32() 16631 * 7. continue 16632 * 8. } 16633 * 9. r0 = r10 16634 * 10. r0 += r7 16635 * 11. r8 = *(u64 *)(r0 + 0) 16636 * 12. r6 = bpf_get_prandom_u32() 16637 * 13. } 16638 * 16639 * Here verifier would first visit path 1-3, create a checkpoint at 3 16640 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 16641 * not have read or precision mark for r7 yet, thus inexact states 16642 * comparison would discard current state with r7=-32 16643 * => unsafe memory access at 11 would not be caught. 16644 */ 16645 if (is_iter_next_insn(env, insn_idx)) { 16646 if (states_equal(env, &sl->state, cur, true)) { 16647 struct bpf_func_state *cur_frame; 16648 struct bpf_reg_state *iter_state, *iter_reg; 16649 int spi; 16650 16651 cur_frame = cur->frame[cur->curframe]; 16652 /* btf_check_iter_kfuncs() enforces that 16653 * iter state pointer is always the first arg 16654 */ 16655 iter_reg = &cur_frame->regs[BPF_REG_1]; 16656 /* current state is valid due to states_equal(), 16657 * so we can assume valid iter and reg state, 16658 * no need for extra (re-)validations 16659 */ 16660 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16661 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16662 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 16663 update_loop_entry(cur, &sl->state); 16664 goto hit; 16665 } 16666 } 16667 goto skip_inf_loop_check; 16668 } 16669 if (calls_callback(env, insn_idx)) { 16670 if (states_equal(env, &sl->state, cur, true)) 16671 goto hit; 16672 goto skip_inf_loop_check; 16673 } 16674 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16675 if (states_maybe_looping(&sl->state, cur) && 16676 states_equal(env, &sl->state, cur, false) && 16677 !iter_active_depths_differ(&sl->state, cur) && 16678 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 16679 verbose_linfo(env, insn_idx, "; "); 16680 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16681 verbose(env, "cur state:"); 16682 print_verifier_state(env, cur->frame[cur->curframe], true); 16683 verbose(env, "old state:"); 16684 print_verifier_state(env, sl->state.frame[cur->curframe], true); 16685 return -EINVAL; 16686 } 16687 /* if the verifier is processing a loop, avoid adding new state 16688 * too often, since different loop iterations have distinct 16689 * states and may not help future pruning. 16690 * This threshold shouldn't be too low to make sure that 16691 * a loop with large bound will be rejected quickly. 16692 * The most abusive loop will be: 16693 * r1 += 1 16694 * if r1 < 1000000 goto pc-2 16695 * 1M insn_procssed limit / 100 == 10k peak states. 16696 * This threshold shouldn't be too high either, since states 16697 * at the end of the loop are likely to be useful in pruning. 16698 */ 16699 skip_inf_loop_check: 16700 if (!force_new_state && 16701 env->jmps_processed - env->prev_jmps_processed < 20 && 16702 env->insn_processed - env->prev_insn_processed < 100) 16703 add_new_state = false; 16704 goto miss; 16705 } 16706 /* If sl->state is a part of a loop and this loop's entry is a part of 16707 * current verification path then states have to be compared exactly. 16708 * 'force_exact' is needed to catch the following case: 16709 * 16710 * initial Here state 'succ' was processed first, 16711 * | it was eventually tracked to produce a 16712 * V state identical to 'hdr'. 16713 * .---------> hdr All branches from 'succ' had been explored 16714 * | | and thus 'succ' has its .branches == 0. 16715 * | V 16716 * | .------... Suppose states 'cur' and 'succ' correspond 16717 * | | | to the same instruction + callsites. 16718 * | V V In such case it is necessary to check 16719 * | ... ... if 'succ' and 'cur' are states_equal(). 16720 * | | | If 'succ' and 'cur' are a part of the 16721 * | V V same loop exact flag has to be set. 16722 * | succ <- cur To check if that is the case, verify 16723 * | | if loop entry of 'succ' is in current 16724 * | V DFS path. 16725 * | ... 16726 * | | 16727 * '----' 16728 * 16729 * Additional details are in the comment before get_loop_entry(). 16730 */ 16731 loop_entry = get_loop_entry(&sl->state); 16732 force_exact = loop_entry && loop_entry->branches > 0; 16733 if (states_equal(env, &sl->state, cur, force_exact)) { 16734 if (force_exact) 16735 update_loop_entry(cur, loop_entry); 16736 hit: 16737 sl->hit_cnt++; 16738 /* reached equivalent register/stack state, 16739 * prune the search. 16740 * Registers read by the continuation are read by us. 16741 * If we have any write marks in env->cur_state, they 16742 * will prevent corresponding reads in the continuation 16743 * from reaching our parent (an explored_state). Our 16744 * own state will get the read marks recorded, but 16745 * they'll be immediately forgotten as we're pruning 16746 * this state and will pop a new one. 16747 */ 16748 err = propagate_liveness(env, &sl->state, cur); 16749 16750 /* if previous state reached the exit with precision and 16751 * current state is equivalent to it (except precsion marks) 16752 * the precision needs to be propagated back in 16753 * the current state. 16754 */ 16755 err = err ? : push_jmp_history(env, cur); 16756 err = err ? : propagate_precision(env, &sl->state); 16757 if (err) 16758 return err; 16759 return 1; 16760 } 16761 miss: 16762 /* when new state is not going to be added do not increase miss count. 16763 * Otherwise several loop iterations will remove the state 16764 * recorded earlier. The goal of these heuristics is to have 16765 * states from some iterations of the loop (some in the beginning 16766 * and some at the end) to help pruning. 16767 */ 16768 if (add_new_state) 16769 sl->miss_cnt++; 16770 /* heuristic to determine whether this state is beneficial 16771 * to keep checking from state equivalence point of view. 16772 * Higher numbers increase max_states_per_insn and verification time, 16773 * but do not meaningfully decrease insn_processed. 16774 * 'n' controls how many times state could miss before eviction. 16775 * Use bigger 'n' for checkpoints because evicting checkpoint states 16776 * too early would hinder iterator convergence. 16777 */ 16778 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 16779 if (sl->miss_cnt > sl->hit_cnt * n + n) { 16780 /* the state is unlikely to be useful. Remove it to 16781 * speed up verification 16782 */ 16783 *pprev = sl->next; 16784 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 16785 !sl->state.used_as_loop_entry) { 16786 u32 br = sl->state.branches; 16787 16788 WARN_ONCE(br, 16789 "BUG live_done but branches_to_explore %d\n", 16790 br); 16791 free_verifier_state(&sl->state, false); 16792 kfree(sl); 16793 env->peak_states--; 16794 } else { 16795 /* cannot free this state, since parentage chain may 16796 * walk it later. Add it for free_list instead to 16797 * be freed at the end of verification 16798 */ 16799 sl->next = env->free_list; 16800 env->free_list = sl; 16801 } 16802 sl = *pprev; 16803 continue; 16804 } 16805 next: 16806 pprev = &sl->next; 16807 sl = *pprev; 16808 } 16809 16810 if (env->max_states_per_insn < states_cnt) 16811 env->max_states_per_insn = states_cnt; 16812 16813 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16814 return 0; 16815 16816 if (!add_new_state) 16817 return 0; 16818 16819 /* There were no equivalent states, remember the current one. 16820 * Technically the current state is not proven to be safe yet, 16821 * but it will either reach outer most bpf_exit (which means it's safe) 16822 * or it will be rejected. When there are no loops the verifier won't be 16823 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16824 * again on the way to bpf_exit. 16825 * When looping the sl->state.branches will be > 0 and this state 16826 * will not be considered for equivalence until branches == 0. 16827 */ 16828 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16829 if (!new_sl) 16830 return -ENOMEM; 16831 env->total_states++; 16832 env->peak_states++; 16833 env->prev_jmps_processed = env->jmps_processed; 16834 env->prev_insn_processed = env->insn_processed; 16835 16836 /* forget precise markings we inherited, see __mark_chain_precision */ 16837 if (env->bpf_capable) 16838 mark_all_scalars_imprecise(env, cur); 16839 16840 /* add new state to the head of linked list */ 16841 new = &new_sl->state; 16842 err = copy_verifier_state(new, cur); 16843 if (err) { 16844 free_verifier_state(new, false); 16845 kfree(new_sl); 16846 return err; 16847 } 16848 new->insn_idx = insn_idx; 16849 WARN_ONCE(new->branches != 1, 16850 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16851 16852 cur->parent = new; 16853 cur->first_insn_idx = insn_idx; 16854 cur->dfs_depth = new->dfs_depth + 1; 16855 clear_jmp_history(cur); 16856 new_sl->next = *explored_state(env, insn_idx); 16857 *explored_state(env, insn_idx) = new_sl; 16858 /* connect new state to parentage chain. Current frame needs all 16859 * registers connected. Only r6 - r9 of the callers are alive (pushed 16860 * to the stack implicitly by JITs) so in callers' frames connect just 16861 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16862 * the state of the call instruction (with WRITTEN set), and r0 comes 16863 * from callee with its full parentage chain, anyway. 16864 */ 16865 /* clear write marks in current state: the writes we did are not writes 16866 * our child did, so they don't screen off its reads from us. 16867 * (There are no read marks in current state, because reads always mark 16868 * their parent and current state never has children yet. Only 16869 * explored_states can get read marks.) 16870 */ 16871 for (j = 0; j <= cur->curframe; j++) { 16872 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16873 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16874 for (i = 0; i < BPF_REG_FP; i++) 16875 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16876 } 16877 16878 /* all stack frames are accessible from callee, clear them all */ 16879 for (j = 0; j <= cur->curframe; j++) { 16880 struct bpf_func_state *frame = cur->frame[j]; 16881 struct bpf_func_state *newframe = new->frame[j]; 16882 16883 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16884 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16885 frame->stack[i].spilled_ptr.parent = 16886 &newframe->stack[i].spilled_ptr; 16887 } 16888 } 16889 return 0; 16890 } 16891 16892 /* Return true if it's OK to have the same insn return a different type. */ 16893 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16894 { 16895 switch (base_type(type)) { 16896 case PTR_TO_CTX: 16897 case PTR_TO_SOCKET: 16898 case PTR_TO_SOCK_COMMON: 16899 case PTR_TO_TCP_SOCK: 16900 case PTR_TO_XDP_SOCK: 16901 case PTR_TO_BTF_ID: 16902 return false; 16903 default: 16904 return true; 16905 } 16906 } 16907 16908 /* If an instruction was previously used with particular pointer types, then we 16909 * need to be careful to avoid cases such as the below, where it may be ok 16910 * for one branch accessing the pointer, but not ok for the other branch: 16911 * 16912 * R1 = sock_ptr 16913 * goto X; 16914 * ... 16915 * R1 = some_other_valid_ptr; 16916 * goto X; 16917 * ... 16918 * R2 = *(u32 *)(R1 + 0); 16919 */ 16920 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16921 { 16922 return src != prev && (!reg_type_mismatch_ok(src) || 16923 !reg_type_mismatch_ok(prev)); 16924 } 16925 16926 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16927 bool allow_trust_missmatch) 16928 { 16929 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16930 16931 if (*prev_type == NOT_INIT) { 16932 /* Saw a valid insn 16933 * dst_reg = *(u32 *)(src_reg + off) 16934 * save type to validate intersecting paths 16935 */ 16936 *prev_type = type; 16937 } else if (reg_type_mismatch(type, *prev_type)) { 16938 /* Abuser program is trying to use the same insn 16939 * dst_reg = *(u32*) (src_reg + off) 16940 * with different pointer types: 16941 * src_reg == ctx in one branch and 16942 * src_reg == stack|map in some other branch. 16943 * Reject it. 16944 */ 16945 if (allow_trust_missmatch && 16946 base_type(type) == PTR_TO_BTF_ID && 16947 base_type(*prev_type) == PTR_TO_BTF_ID) { 16948 /* 16949 * Have to support a use case when one path through 16950 * the program yields TRUSTED pointer while another 16951 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16952 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16953 */ 16954 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16955 } else { 16956 verbose(env, "same insn cannot be used with different pointers\n"); 16957 return -EINVAL; 16958 } 16959 } 16960 16961 return 0; 16962 } 16963 16964 static int do_check(struct bpf_verifier_env *env) 16965 { 16966 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16967 struct bpf_verifier_state *state = env->cur_state; 16968 struct bpf_insn *insns = env->prog->insnsi; 16969 struct bpf_reg_state *regs; 16970 int insn_cnt = env->prog->len; 16971 bool do_print_state = false; 16972 int prev_insn_idx = -1; 16973 16974 for (;;) { 16975 struct bpf_insn *insn; 16976 u8 class; 16977 int err; 16978 16979 env->prev_insn_idx = prev_insn_idx; 16980 if (env->insn_idx >= insn_cnt) { 16981 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16982 env->insn_idx, insn_cnt); 16983 return -EFAULT; 16984 } 16985 16986 insn = &insns[env->insn_idx]; 16987 class = BPF_CLASS(insn->code); 16988 16989 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16990 verbose(env, 16991 "BPF program is too large. Processed %d insn\n", 16992 env->insn_processed); 16993 return -E2BIG; 16994 } 16995 16996 state->last_insn_idx = env->prev_insn_idx; 16997 16998 if (is_prune_point(env, env->insn_idx)) { 16999 err = is_state_visited(env, env->insn_idx); 17000 if (err < 0) 17001 return err; 17002 if (err == 1) { 17003 /* found equivalent state, can prune the search */ 17004 if (env->log.level & BPF_LOG_LEVEL) { 17005 if (do_print_state) 17006 verbose(env, "\nfrom %d to %d%s: safe\n", 17007 env->prev_insn_idx, env->insn_idx, 17008 env->cur_state->speculative ? 17009 " (speculative execution)" : ""); 17010 else 17011 verbose(env, "%d: safe\n", env->insn_idx); 17012 } 17013 goto process_bpf_exit; 17014 } 17015 } 17016 17017 if (is_jmp_point(env, env->insn_idx)) { 17018 err = push_jmp_history(env, state); 17019 if (err) 17020 return err; 17021 } 17022 17023 if (signal_pending(current)) 17024 return -EAGAIN; 17025 17026 if (need_resched()) 17027 cond_resched(); 17028 17029 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17030 verbose(env, "\nfrom %d to %d%s:", 17031 env->prev_insn_idx, env->insn_idx, 17032 env->cur_state->speculative ? 17033 " (speculative execution)" : ""); 17034 print_verifier_state(env, state->frame[state->curframe], true); 17035 do_print_state = false; 17036 } 17037 17038 if (env->log.level & BPF_LOG_LEVEL) { 17039 const struct bpf_insn_cbs cbs = { 17040 .cb_call = disasm_kfunc_name, 17041 .cb_print = verbose, 17042 .private_data = env, 17043 }; 17044 17045 if (verifier_state_scratched(env)) 17046 print_insn_state(env, state->frame[state->curframe]); 17047 17048 verbose_linfo(env, env->insn_idx, "; "); 17049 env->prev_log_pos = env->log.end_pos; 17050 verbose(env, "%d: ", env->insn_idx); 17051 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17052 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17053 env->prev_log_pos = env->log.end_pos; 17054 } 17055 17056 if (bpf_prog_is_offloaded(env->prog->aux)) { 17057 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17058 env->prev_insn_idx); 17059 if (err) 17060 return err; 17061 } 17062 17063 regs = cur_regs(env); 17064 sanitize_mark_insn_seen(env); 17065 prev_insn_idx = env->insn_idx; 17066 17067 if (class == BPF_ALU || class == BPF_ALU64) { 17068 err = check_alu_op(env, insn); 17069 if (err) 17070 return err; 17071 17072 } else if (class == BPF_LDX) { 17073 enum bpf_reg_type src_reg_type; 17074 17075 /* check for reserved fields is already done */ 17076 17077 /* check src operand */ 17078 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17079 if (err) 17080 return err; 17081 17082 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17083 if (err) 17084 return err; 17085 17086 src_reg_type = regs[insn->src_reg].type; 17087 17088 /* check that memory (src_reg + off) is readable, 17089 * the state of dst_reg will be updated by this func 17090 */ 17091 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17092 insn->off, BPF_SIZE(insn->code), 17093 BPF_READ, insn->dst_reg, false, 17094 BPF_MODE(insn->code) == BPF_MEMSX); 17095 if (err) 17096 return err; 17097 17098 err = save_aux_ptr_type(env, src_reg_type, true); 17099 if (err) 17100 return err; 17101 } else if (class == BPF_STX) { 17102 enum bpf_reg_type dst_reg_type; 17103 17104 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17105 err = check_atomic(env, env->insn_idx, insn); 17106 if (err) 17107 return err; 17108 env->insn_idx++; 17109 continue; 17110 } 17111 17112 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17113 verbose(env, "BPF_STX uses reserved fields\n"); 17114 return -EINVAL; 17115 } 17116 17117 /* check src1 operand */ 17118 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17119 if (err) 17120 return err; 17121 /* check src2 operand */ 17122 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17123 if (err) 17124 return err; 17125 17126 dst_reg_type = regs[insn->dst_reg].type; 17127 17128 /* check that memory (dst_reg + off) is writeable */ 17129 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17130 insn->off, BPF_SIZE(insn->code), 17131 BPF_WRITE, insn->src_reg, false, false); 17132 if (err) 17133 return err; 17134 17135 err = save_aux_ptr_type(env, dst_reg_type, false); 17136 if (err) 17137 return err; 17138 } else if (class == BPF_ST) { 17139 enum bpf_reg_type dst_reg_type; 17140 17141 if (BPF_MODE(insn->code) != BPF_MEM || 17142 insn->src_reg != BPF_REG_0) { 17143 verbose(env, "BPF_ST uses reserved fields\n"); 17144 return -EINVAL; 17145 } 17146 /* check src operand */ 17147 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17148 if (err) 17149 return err; 17150 17151 dst_reg_type = regs[insn->dst_reg].type; 17152 17153 /* check that memory (dst_reg + off) is writeable */ 17154 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17155 insn->off, BPF_SIZE(insn->code), 17156 BPF_WRITE, -1, false, false); 17157 if (err) 17158 return err; 17159 17160 err = save_aux_ptr_type(env, dst_reg_type, false); 17161 if (err) 17162 return err; 17163 } else if (class == BPF_JMP || class == BPF_JMP32) { 17164 u8 opcode = BPF_OP(insn->code); 17165 17166 env->jmps_processed++; 17167 if (opcode == BPF_CALL) { 17168 if (BPF_SRC(insn->code) != BPF_K || 17169 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17170 && insn->off != 0) || 17171 (insn->src_reg != BPF_REG_0 && 17172 insn->src_reg != BPF_PSEUDO_CALL && 17173 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17174 insn->dst_reg != BPF_REG_0 || 17175 class == BPF_JMP32) { 17176 verbose(env, "BPF_CALL uses reserved fields\n"); 17177 return -EINVAL; 17178 } 17179 17180 if (env->cur_state->active_lock.ptr) { 17181 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17182 (insn->src_reg == BPF_PSEUDO_CALL) || 17183 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17184 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17185 verbose(env, "function calls are not allowed while holding a lock\n"); 17186 return -EINVAL; 17187 } 17188 } 17189 if (insn->src_reg == BPF_PSEUDO_CALL) 17190 err = check_func_call(env, insn, &env->insn_idx); 17191 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 17192 err = check_kfunc_call(env, insn, &env->insn_idx); 17193 else 17194 err = check_helper_call(env, insn, &env->insn_idx); 17195 if (err) 17196 return err; 17197 17198 mark_reg_scratched(env, BPF_REG_0); 17199 } else if (opcode == BPF_JA) { 17200 if (BPF_SRC(insn->code) != BPF_K || 17201 insn->src_reg != BPF_REG_0 || 17202 insn->dst_reg != BPF_REG_0 || 17203 (class == BPF_JMP && insn->imm != 0) || 17204 (class == BPF_JMP32 && insn->off != 0)) { 17205 verbose(env, "BPF_JA uses reserved fields\n"); 17206 return -EINVAL; 17207 } 17208 17209 if (class == BPF_JMP) 17210 env->insn_idx += insn->off + 1; 17211 else 17212 env->insn_idx += insn->imm + 1; 17213 continue; 17214 17215 } else if (opcode == BPF_EXIT) { 17216 if (BPF_SRC(insn->code) != BPF_K || 17217 insn->imm != 0 || 17218 insn->src_reg != BPF_REG_0 || 17219 insn->dst_reg != BPF_REG_0 || 17220 class == BPF_JMP32) { 17221 verbose(env, "BPF_EXIT uses reserved fields\n"); 17222 return -EINVAL; 17223 } 17224 17225 if (env->cur_state->active_lock.ptr && 17226 !in_rbtree_lock_required_cb(env)) { 17227 verbose(env, "bpf_spin_unlock is missing\n"); 17228 return -EINVAL; 17229 } 17230 17231 if (env->cur_state->active_rcu_lock && 17232 !in_rbtree_lock_required_cb(env)) { 17233 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17234 return -EINVAL; 17235 } 17236 17237 /* We must do check_reference_leak here before 17238 * prepare_func_exit to handle the case when 17239 * state->curframe > 0, it may be a callback 17240 * function, for which reference_state must 17241 * match caller reference state when it exits. 17242 */ 17243 err = check_reference_leak(env); 17244 if (err) 17245 return err; 17246 17247 if (state->curframe) { 17248 /* exit from nested function */ 17249 err = prepare_func_exit(env, &env->insn_idx); 17250 if (err) 17251 return err; 17252 do_print_state = true; 17253 continue; 17254 } 17255 17256 err = check_return_code(env); 17257 if (err) 17258 return err; 17259 process_bpf_exit: 17260 mark_verifier_state_scratched(env); 17261 update_branch_counts(env, env->cur_state); 17262 err = pop_stack(env, &prev_insn_idx, 17263 &env->insn_idx, pop_log); 17264 if (err < 0) { 17265 if (err != -ENOENT) 17266 return err; 17267 break; 17268 } else { 17269 do_print_state = true; 17270 continue; 17271 } 17272 } else { 17273 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17274 if (err) 17275 return err; 17276 } 17277 } else if (class == BPF_LD) { 17278 u8 mode = BPF_MODE(insn->code); 17279 17280 if (mode == BPF_ABS || mode == BPF_IND) { 17281 err = check_ld_abs(env, insn); 17282 if (err) 17283 return err; 17284 17285 } else if (mode == BPF_IMM) { 17286 err = check_ld_imm(env, insn); 17287 if (err) 17288 return err; 17289 17290 env->insn_idx++; 17291 sanitize_mark_insn_seen(env); 17292 } else { 17293 verbose(env, "invalid BPF_LD mode\n"); 17294 return -EINVAL; 17295 } 17296 } else { 17297 verbose(env, "unknown insn class %d\n", class); 17298 return -EINVAL; 17299 } 17300 17301 env->insn_idx++; 17302 } 17303 17304 return 0; 17305 } 17306 17307 static int find_btf_percpu_datasec(struct btf *btf) 17308 { 17309 const struct btf_type *t; 17310 const char *tname; 17311 int i, n; 17312 17313 /* 17314 * Both vmlinux and module each have their own ".data..percpu" 17315 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17316 * types to look at only module's own BTF types. 17317 */ 17318 n = btf_nr_types(btf); 17319 if (btf_is_module(btf)) 17320 i = btf_nr_types(btf_vmlinux); 17321 else 17322 i = 1; 17323 17324 for(; i < n; i++) { 17325 t = btf_type_by_id(btf, i); 17326 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17327 continue; 17328 17329 tname = btf_name_by_offset(btf, t->name_off); 17330 if (!strcmp(tname, ".data..percpu")) 17331 return i; 17332 } 17333 17334 return -ENOENT; 17335 } 17336 17337 /* replace pseudo btf_id with kernel symbol address */ 17338 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17339 struct bpf_insn *insn, 17340 struct bpf_insn_aux_data *aux) 17341 { 17342 const struct btf_var_secinfo *vsi; 17343 const struct btf_type *datasec; 17344 struct btf_mod_pair *btf_mod; 17345 const struct btf_type *t; 17346 const char *sym_name; 17347 bool percpu = false; 17348 u32 type, id = insn->imm; 17349 struct btf *btf; 17350 s32 datasec_id; 17351 u64 addr; 17352 int i, btf_fd, err; 17353 17354 btf_fd = insn[1].imm; 17355 if (btf_fd) { 17356 btf = btf_get_by_fd(btf_fd); 17357 if (IS_ERR(btf)) { 17358 verbose(env, "invalid module BTF object FD specified.\n"); 17359 return -EINVAL; 17360 } 17361 } else { 17362 if (!btf_vmlinux) { 17363 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17364 return -EINVAL; 17365 } 17366 btf = btf_vmlinux; 17367 btf_get(btf); 17368 } 17369 17370 t = btf_type_by_id(btf, id); 17371 if (!t) { 17372 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17373 err = -ENOENT; 17374 goto err_put; 17375 } 17376 17377 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17378 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17379 err = -EINVAL; 17380 goto err_put; 17381 } 17382 17383 sym_name = btf_name_by_offset(btf, t->name_off); 17384 addr = kallsyms_lookup_name(sym_name); 17385 if (!addr) { 17386 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17387 sym_name); 17388 err = -ENOENT; 17389 goto err_put; 17390 } 17391 insn[0].imm = (u32)addr; 17392 insn[1].imm = addr >> 32; 17393 17394 if (btf_type_is_func(t)) { 17395 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17396 aux->btf_var.mem_size = 0; 17397 goto check_btf; 17398 } 17399 17400 datasec_id = find_btf_percpu_datasec(btf); 17401 if (datasec_id > 0) { 17402 datasec = btf_type_by_id(btf, datasec_id); 17403 for_each_vsi(i, datasec, vsi) { 17404 if (vsi->type == id) { 17405 percpu = true; 17406 break; 17407 } 17408 } 17409 } 17410 17411 type = t->type; 17412 t = btf_type_skip_modifiers(btf, type, NULL); 17413 if (percpu) { 17414 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17415 aux->btf_var.btf = btf; 17416 aux->btf_var.btf_id = type; 17417 } else if (!btf_type_is_struct(t)) { 17418 const struct btf_type *ret; 17419 const char *tname; 17420 u32 tsize; 17421 17422 /* resolve the type size of ksym. */ 17423 ret = btf_resolve_size(btf, t, &tsize); 17424 if (IS_ERR(ret)) { 17425 tname = btf_name_by_offset(btf, t->name_off); 17426 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17427 tname, PTR_ERR(ret)); 17428 err = -EINVAL; 17429 goto err_put; 17430 } 17431 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17432 aux->btf_var.mem_size = tsize; 17433 } else { 17434 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17435 aux->btf_var.btf = btf; 17436 aux->btf_var.btf_id = type; 17437 } 17438 check_btf: 17439 /* check whether we recorded this BTF (and maybe module) already */ 17440 for (i = 0; i < env->used_btf_cnt; i++) { 17441 if (env->used_btfs[i].btf == btf) { 17442 btf_put(btf); 17443 return 0; 17444 } 17445 } 17446 17447 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17448 err = -E2BIG; 17449 goto err_put; 17450 } 17451 17452 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17453 btf_mod->btf = btf; 17454 btf_mod->module = NULL; 17455 17456 /* if we reference variables from kernel module, bump its refcount */ 17457 if (btf_is_module(btf)) { 17458 btf_mod->module = btf_try_get_module(btf); 17459 if (!btf_mod->module) { 17460 err = -ENXIO; 17461 goto err_put; 17462 } 17463 } 17464 17465 env->used_btf_cnt++; 17466 17467 return 0; 17468 err_put: 17469 btf_put(btf); 17470 return err; 17471 } 17472 17473 static bool is_tracing_prog_type(enum bpf_prog_type type) 17474 { 17475 switch (type) { 17476 case BPF_PROG_TYPE_KPROBE: 17477 case BPF_PROG_TYPE_TRACEPOINT: 17478 case BPF_PROG_TYPE_PERF_EVENT: 17479 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17480 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17481 return true; 17482 default: 17483 return false; 17484 } 17485 } 17486 17487 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17488 struct bpf_map *map, 17489 struct bpf_prog *prog) 17490 17491 { 17492 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17493 17494 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17495 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17496 if (is_tracing_prog_type(prog_type)) { 17497 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17498 return -EINVAL; 17499 } 17500 } 17501 17502 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17503 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17504 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17505 return -EINVAL; 17506 } 17507 17508 if (is_tracing_prog_type(prog_type)) { 17509 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17510 return -EINVAL; 17511 } 17512 } 17513 17514 if (btf_record_has_field(map->record, BPF_TIMER)) { 17515 if (is_tracing_prog_type(prog_type)) { 17516 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17517 return -EINVAL; 17518 } 17519 } 17520 17521 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17522 !bpf_offload_prog_map_match(prog, map)) { 17523 verbose(env, "offload device mismatch between prog and map\n"); 17524 return -EINVAL; 17525 } 17526 17527 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17528 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17529 return -EINVAL; 17530 } 17531 17532 if (prog->aux->sleepable) 17533 switch (map->map_type) { 17534 case BPF_MAP_TYPE_HASH: 17535 case BPF_MAP_TYPE_LRU_HASH: 17536 case BPF_MAP_TYPE_ARRAY: 17537 case BPF_MAP_TYPE_PERCPU_HASH: 17538 case BPF_MAP_TYPE_PERCPU_ARRAY: 17539 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17540 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17541 case BPF_MAP_TYPE_HASH_OF_MAPS: 17542 case BPF_MAP_TYPE_RINGBUF: 17543 case BPF_MAP_TYPE_USER_RINGBUF: 17544 case BPF_MAP_TYPE_INODE_STORAGE: 17545 case BPF_MAP_TYPE_SK_STORAGE: 17546 case BPF_MAP_TYPE_TASK_STORAGE: 17547 case BPF_MAP_TYPE_CGRP_STORAGE: 17548 break; 17549 default: 17550 verbose(env, 17551 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17552 return -EINVAL; 17553 } 17554 17555 return 0; 17556 } 17557 17558 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17559 { 17560 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17561 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17562 } 17563 17564 /* find and rewrite pseudo imm in ld_imm64 instructions: 17565 * 17566 * 1. if it accesses map FD, replace it with actual map pointer. 17567 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17568 * 17569 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17570 */ 17571 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17572 { 17573 struct bpf_insn *insn = env->prog->insnsi; 17574 int insn_cnt = env->prog->len; 17575 int i, j, err; 17576 17577 err = bpf_prog_calc_tag(env->prog); 17578 if (err) 17579 return err; 17580 17581 for (i = 0; i < insn_cnt; i++, insn++) { 17582 if (BPF_CLASS(insn->code) == BPF_LDX && 17583 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17584 insn->imm != 0)) { 17585 verbose(env, "BPF_LDX uses reserved fields\n"); 17586 return -EINVAL; 17587 } 17588 17589 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17590 struct bpf_insn_aux_data *aux; 17591 struct bpf_map *map; 17592 struct fd f; 17593 u64 addr; 17594 u32 fd; 17595 17596 if (i == insn_cnt - 1 || insn[1].code != 0 || 17597 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17598 insn[1].off != 0) { 17599 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17600 return -EINVAL; 17601 } 17602 17603 if (insn[0].src_reg == 0) 17604 /* valid generic load 64-bit imm */ 17605 goto next_insn; 17606 17607 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17608 aux = &env->insn_aux_data[i]; 17609 err = check_pseudo_btf_id(env, insn, aux); 17610 if (err) 17611 return err; 17612 goto next_insn; 17613 } 17614 17615 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17616 aux = &env->insn_aux_data[i]; 17617 aux->ptr_type = PTR_TO_FUNC; 17618 goto next_insn; 17619 } 17620 17621 /* In final convert_pseudo_ld_imm64() step, this is 17622 * converted into regular 64-bit imm load insn. 17623 */ 17624 switch (insn[0].src_reg) { 17625 case BPF_PSEUDO_MAP_VALUE: 17626 case BPF_PSEUDO_MAP_IDX_VALUE: 17627 break; 17628 case BPF_PSEUDO_MAP_FD: 17629 case BPF_PSEUDO_MAP_IDX: 17630 if (insn[1].imm == 0) 17631 break; 17632 fallthrough; 17633 default: 17634 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17635 return -EINVAL; 17636 } 17637 17638 switch (insn[0].src_reg) { 17639 case BPF_PSEUDO_MAP_IDX_VALUE: 17640 case BPF_PSEUDO_MAP_IDX: 17641 if (bpfptr_is_null(env->fd_array)) { 17642 verbose(env, "fd_idx without fd_array is invalid\n"); 17643 return -EPROTO; 17644 } 17645 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17646 insn[0].imm * sizeof(fd), 17647 sizeof(fd))) 17648 return -EFAULT; 17649 break; 17650 default: 17651 fd = insn[0].imm; 17652 break; 17653 } 17654 17655 f = fdget(fd); 17656 map = __bpf_map_get(f); 17657 if (IS_ERR(map)) { 17658 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 17659 return PTR_ERR(map); 17660 } 17661 17662 err = check_map_prog_compatibility(env, map, env->prog); 17663 if (err) { 17664 fdput(f); 17665 return err; 17666 } 17667 17668 aux = &env->insn_aux_data[i]; 17669 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17670 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17671 addr = (unsigned long)map; 17672 } else { 17673 u32 off = insn[1].imm; 17674 17675 if (off >= BPF_MAX_VAR_OFF) { 17676 verbose(env, "direct value offset of %u is not allowed\n", off); 17677 fdput(f); 17678 return -EINVAL; 17679 } 17680 17681 if (!map->ops->map_direct_value_addr) { 17682 verbose(env, "no direct value access support for this map type\n"); 17683 fdput(f); 17684 return -EINVAL; 17685 } 17686 17687 err = map->ops->map_direct_value_addr(map, &addr, off); 17688 if (err) { 17689 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17690 map->value_size, off); 17691 fdput(f); 17692 return err; 17693 } 17694 17695 aux->map_off = off; 17696 addr += off; 17697 } 17698 17699 insn[0].imm = (u32)addr; 17700 insn[1].imm = addr >> 32; 17701 17702 /* check whether we recorded this map already */ 17703 for (j = 0; j < env->used_map_cnt; j++) { 17704 if (env->used_maps[j] == map) { 17705 aux->map_index = j; 17706 fdput(f); 17707 goto next_insn; 17708 } 17709 } 17710 17711 if (env->used_map_cnt >= MAX_USED_MAPS) { 17712 fdput(f); 17713 return -E2BIG; 17714 } 17715 17716 /* hold the map. If the program is rejected by verifier, 17717 * the map will be released by release_maps() or it 17718 * will be used by the valid program until it's unloaded 17719 * and all maps are released in free_used_maps() 17720 */ 17721 bpf_map_inc(map); 17722 17723 aux->map_index = env->used_map_cnt; 17724 env->used_maps[env->used_map_cnt++] = map; 17725 17726 if (bpf_map_is_cgroup_storage(map) && 17727 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17728 verbose(env, "only one cgroup storage of each type is allowed\n"); 17729 fdput(f); 17730 return -EBUSY; 17731 } 17732 17733 fdput(f); 17734 next_insn: 17735 insn++; 17736 i++; 17737 continue; 17738 } 17739 17740 /* Basic sanity check before we invest more work here. */ 17741 if (!bpf_opcode_in_insntable(insn->code)) { 17742 verbose(env, "unknown opcode %02x\n", insn->code); 17743 return -EINVAL; 17744 } 17745 } 17746 17747 /* now all pseudo BPF_LD_IMM64 instructions load valid 17748 * 'struct bpf_map *' into a register instead of user map_fd. 17749 * These pointers will be used later by verifier to validate map access. 17750 */ 17751 return 0; 17752 } 17753 17754 /* drop refcnt of maps used by the rejected program */ 17755 static void release_maps(struct bpf_verifier_env *env) 17756 { 17757 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17758 env->used_map_cnt); 17759 } 17760 17761 /* drop refcnt of maps used by the rejected program */ 17762 static void release_btfs(struct bpf_verifier_env *env) 17763 { 17764 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17765 env->used_btf_cnt); 17766 } 17767 17768 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17769 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17770 { 17771 struct bpf_insn *insn = env->prog->insnsi; 17772 int insn_cnt = env->prog->len; 17773 int i; 17774 17775 for (i = 0; i < insn_cnt; i++, insn++) { 17776 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17777 continue; 17778 if (insn->src_reg == BPF_PSEUDO_FUNC) 17779 continue; 17780 insn->src_reg = 0; 17781 } 17782 } 17783 17784 /* single env->prog->insni[off] instruction was replaced with the range 17785 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17786 * [0, off) and [off, end) to new locations, so the patched range stays zero 17787 */ 17788 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17789 struct bpf_insn_aux_data *new_data, 17790 struct bpf_prog *new_prog, u32 off, u32 cnt) 17791 { 17792 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17793 struct bpf_insn *insn = new_prog->insnsi; 17794 u32 old_seen = old_data[off].seen; 17795 u32 prog_len; 17796 int i; 17797 17798 /* aux info at OFF always needs adjustment, no matter fast path 17799 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17800 * original insn at old prog. 17801 */ 17802 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17803 17804 if (cnt == 1) 17805 return; 17806 prog_len = new_prog->len; 17807 17808 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17809 memcpy(new_data + off + cnt - 1, old_data + off, 17810 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17811 for (i = off; i < off + cnt - 1; i++) { 17812 /* Expand insni[off]'s seen count to the patched range. */ 17813 new_data[i].seen = old_seen; 17814 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17815 } 17816 env->insn_aux_data = new_data; 17817 vfree(old_data); 17818 } 17819 17820 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17821 { 17822 int i; 17823 17824 if (len == 1) 17825 return; 17826 /* NOTE: fake 'exit' subprog should be updated as well. */ 17827 for (i = 0; i <= env->subprog_cnt; i++) { 17828 if (env->subprog_info[i].start <= off) 17829 continue; 17830 env->subprog_info[i].start += len - 1; 17831 } 17832 } 17833 17834 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17835 { 17836 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17837 int i, sz = prog->aux->size_poke_tab; 17838 struct bpf_jit_poke_descriptor *desc; 17839 17840 for (i = 0; i < sz; i++) { 17841 desc = &tab[i]; 17842 if (desc->insn_idx <= off) 17843 continue; 17844 desc->insn_idx += len - 1; 17845 } 17846 } 17847 17848 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17849 const struct bpf_insn *patch, u32 len) 17850 { 17851 struct bpf_prog *new_prog; 17852 struct bpf_insn_aux_data *new_data = NULL; 17853 17854 if (len > 1) { 17855 new_data = vzalloc(array_size(env->prog->len + len - 1, 17856 sizeof(struct bpf_insn_aux_data))); 17857 if (!new_data) 17858 return NULL; 17859 } 17860 17861 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17862 if (IS_ERR(new_prog)) { 17863 if (PTR_ERR(new_prog) == -ERANGE) 17864 verbose(env, 17865 "insn %d cannot be patched due to 16-bit range\n", 17866 env->insn_aux_data[off].orig_idx); 17867 vfree(new_data); 17868 return NULL; 17869 } 17870 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17871 adjust_subprog_starts(env, off, len); 17872 adjust_poke_descs(new_prog, off, len); 17873 return new_prog; 17874 } 17875 17876 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17877 u32 off, u32 cnt) 17878 { 17879 int i, j; 17880 17881 /* find first prog starting at or after off (first to remove) */ 17882 for (i = 0; i < env->subprog_cnt; i++) 17883 if (env->subprog_info[i].start >= off) 17884 break; 17885 /* find first prog starting at or after off + cnt (first to stay) */ 17886 for (j = i; j < env->subprog_cnt; j++) 17887 if (env->subprog_info[j].start >= off + cnt) 17888 break; 17889 /* if j doesn't start exactly at off + cnt, we are just removing 17890 * the front of previous prog 17891 */ 17892 if (env->subprog_info[j].start != off + cnt) 17893 j--; 17894 17895 if (j > i) { 17896 struct bpf_prog_aux *aux = env->prog->aux; 17897 int move; 17898 17899 /* move fake 'exit' subprog as well */ 17900 move = env->subprog_cnt + 1 - j; 17901 17902 memmove(env->subprog_info + i, 17903 env->subprog_info + j, 17904 sizeof(*env->subprog_info) * move); 17905 env->subprog_cnt -= j - i; 17906 17907 /* remove func_info */ 17908 if (aux->func_info) { 17909 move = aux->func_info_cnt - j; 17910 17911 memmove(aux->func_info + i, 17912 aux->func_info + j, 17913 sizeof(*aux->func_info) * move); 17914 aux->func_info_cnt -= j - i; 17915 /* func_info->insn_off is set after all code rewrites, 17916 * in adjust_btf_func() - no need to adjust 17917 */ 17918 } 17919 } else { 17920 /* convert i from "first prog to remove" to "first to adjust" */ 17921 if (env->subprog_info[i].start == off) 17922 i++; 17923 } 17924 17925 /* update fake 'exit' subprog as well */ 17926 for (; i <= env->subprog_cnt; i++) 17927 env->subprog_info[i].start -= cnt; 17928 17929 return 0; 17930 } 17931 17932 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17933 u32 cnt) 17934 { 17935 struct bpf_prog *prog = env->prog; 17936 u32 i, l_off, l_cnt, nr_linfo; 17937 struct bpf_line_info *linfo; 17938 17939 nr_linfo = prog->aux->nr_linfo; 17940 if (!nr_linfo) 17941 return 0; 17942 17943 linfo = prog->aux->linfo; 17944 17945 /* find first line info to remove, count lines to be removed */ 17946 for (i = 0; i < nr_linfo; i++) 17947 if (linfo[i].insn_off >= off) 17948 break; 17949 17950 l_off = i; 17951 l_cnt = 0; 17952 for (; i < nr_linfo; i++) 17953 if (linfo[i].insn_off < off + cnt) 17954 l_cnt++; 17955 else 17956 break; 17957 17958 /* First live insn doesn't match first live linfo, it needs to "inherit" 17959 * last removed linfo. prog is already modified, so prog->len == off 17960 * means no live instructions after (tail of the program was removed). 17961 */ 17962 if (prog->len != off && l_cnt && 17963 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17964 l_cnt--; 17965 linfo[--i].insn_off = off + cnt; 17966 } 17967 17968 /* remove the line info which refer to the removed instructions */ 17969 if (l_cnt) { 17970 memmove(linfo + l_off, linfo + i, 17971 sizeof(*linfo) * (nr_linfo - i)); 17972 17973 prog->aux->nr_linfo -= l_cnt; 17974 nr_linfo = prog->aux->nr_linfo; 17975 } 17976 17977 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17978 for (i = l_off; i < nr_linfo; i++) 17979 linfo[i].insn_off -= cnt; 17980 17981 /* fix up all subprogs (incl. 'exit') which start >= off */ 17982 for (i = 0; i <= env->subprog_cnt; i++) 17983 if (env->subprog_info[i].linfo_idx > l_off) { 17984 /* program may have started in the removed region but 17985 * may not be fully removed 17986 */ 17987 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17988 env->subprog_info[i].linfo_idx -= l_cnt; 17989 else 17990 env->subprog_info[i].linfo_idx = l_off; 17991 } 17992 17993 return 0; 17994 } 17995 17996 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17997 { 17998 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17999 unsigned int orig_prog_len = env->prog->len; 18000 int err; 18001 18002 if (bpf_prog_is_offloaded(env->prog->aux)) 18003 bpf_prog_offload_remove_insns(env, off, cnt); 18004 18005 err = bpf_remove_insns(env->prog, off, cnt); 18006 if (err) 18007 return err; 18008 18009 err = adjust_subprog_starts_after_remove(env, off, cnt); 18010 if (err) 18011 return err; 18012 18013 err = bpf_adj_linfo_after_remove(env, off, cnt); 18014 if (err) 18015 return err; 18016 18017 memmove(aux_data + off, aux_data + off + cnt, 18018 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18019 18020 return 0; 18021 } 18022 18023 /* The verifier does more data flow analysis than llvm and will not 18024 * explore branches that are dead at run time. Malicious programs can 18025 * have dead code too. Therefore replace all dead at-run-time code 18026 * with 'ja -1'. 18027 * 18028 * Just nops are not optimal, e.g. if they would sit at the end of the 18029 * program and through another bug we would manage to jump there, then 18030 * we'd execute beyond program memory otherwise. Returning exception 18031 * code also wouldn't work since we can have subprogs where the dead 18032 * code could be located. 18033 */ 18034 static void sanitize_dead_code(struct bpf_verifier_env *env) 18035 { 18036 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18037 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18038 struct bpf_insn *insn = env->prog->insnsi; 18039 const int insn_cnt = env->prog->len; 18040 int i; 18041 18042 for (i = 0; i < insn_cnt; i++) { 18043 if (aux_data[i].seen) 18044 continue; 18045 memcpy(insn + i, &trap, sizeof(trap)); 18046 aux_data[i].zext_dst = false; 18047 } 18048 } 18049 18050 static bool insn_is_cond_jump(u8 code) 18051 { 18052 u8 op; 18053 18054 op = BPF_OP(code); 18055 if (BPF_CLASS(code) == BPF_JMP32) 18056 return op != BPF_JA; 18057 18058 if (BPF_CLASS(code) != BPF_JMP) 18059 return false; 18060 18061 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18062 } 18063 18064 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18065 { 18066 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18067 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18068 struct bpf_insn *insn = env->prog->insnsi; 18069 const int insn_cnt = env->prog->len; 18070 int i; 18071 18072 for (i = 0; i < insn_cnt; i++, insn++) { 18073 if (!insn_is_cond_jump(insn->code)) 18074 continue; 18075 18076 if (!aux_data[i + 1].seen) 18077 ja.off = insn->off; 18078 else if (!aux_data[i + 1 + insn->off].seen) 18079 ja.off = 0; 18080 else 18081 continue; 18082 18083 if (bpf_prog_is_offloaded(env->prog->aux)) 18084 bpf_prog_offload_replace_insn(env, i, &ja); 18085 18086 memcpy(insn, &ja, sizeof(ja)); 18087 } 18088 } 18089 18090 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18091 { 18092 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18093 int insn_cnt = env->prog->len; 18094 int i, err; 18095 18096 for (i = 0; i < insn_cnt; i++) { 18097 int j; 18098 18099 j = 0; 18100 while (i + j < insn_cnt && !aux_data[i + j].seen) 18101 j++; 18102 if (!j) 18103 continue; 18104 18105 err = verifier_remove_insns(env, i, j); 18106 if (err) 18107 return err; 18108 insn_cnt = env->prog->len; 18109 } 18110 18111 return 0; 18112 } 18113 18114 static int opt_remove_nops(struct bpf_verifier_env *env) 18115 { 18116 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18117 struct bpf_insn *insn = env->prog->insnsi; 18118 int insn_cnt = env->prog->len; 18119 int i, err; 18120 18121 for (i = 0; i < insn_cnt; i++) { 18122 if (memcmp(&insn[i], &ja, sizeof(ja))) 18123 continue; 18124 18125 err = verifier_remove_insns(env, i, 1); 18126 if (err) 18127 return err; 18128 insn_cnt--; 18129 i--; 18130 } 18131 18132 return 0; 18133 } 18134 18135 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18136 const union bpf_attr *attr) 18137 { 18138 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18139 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18140 int i, patch_len, delta = 0, len = env->prog->len; 18141 struct bpf_insn *insns = env->prog->insnsi; 18142 struct bpf_prog *new_prog; 18143 bool rnd_hi32; 18144 18145 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18146 zext_patch[1] = BPF_ZEXT_REG(0); 18147 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18148 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18149 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18150 for (i = 0; i < len; i++) { 18151 int adj_idx = i + delta; 18152 struct bpf_insn insn; 18153 int load_reg; 18154 18155 insn = insns[adj_idx]; 18156 load_reg = insn_def_regno(&insn); 18157 if (!aux[adj_idx].zext_dst) { 18158 u8 code, class; 18159 u32 imm_rnd; 18160 18161 if (!rnd_hi32) 18162 continue; 18163 18164 code = insn.code; 18165 class = BPF_CLASS(code); 18166 if (load_reg == -1) 18167 continue; 18168 18169 /* NOTE: arg "reg" (the fourth one) is only used for 18170 * BPF_STX + SRC_OP, so it is safe to pass NULL 18171 * here. 18172 */ 18173 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18174 if (class == BPF_LD && 18175 BPF_MODE(code) == BPF_IMM) 18176 i++; 18177 continue; 18178 } 18179 18180 /* ctx load could be transformed into wider load. */ 18181 if (class == BPF_LDX && 18182 aux[adj_idx].ptr_type == PTR_TO_CTX) 18183 continue; 18184 18185 imm_rnd = get_random_u32(); 18186 rnd_hi32_patch[0] = insn; 18187 rnd_hi32_patch[1].imm = imm_rnd; 18188 rnd_hi32_patch[3].dst_reg = load_reg; 18189 patch = rnd_hi32_patch; 18190 patch_len = 4; 18191 goto apply_patch_buffer; 18192 } 18193 18194 /* Add in an zero-extend instruction if a) the JIT has requested 18195 * it or b) it's a CMPXCHG. 18196 * 18197 * The latter is because: BPF_CMPXCHG always loads a value into 18198 * R0, therefore always zero-extends. However some archs' 18199 * equivalent instruction only does this load when the 18200 * comparison is successful. This detail of CMPXCHG is 18201 * orthogonal to the general zero-extension behaviour of the 18202 * CPU, so it's treated independently of bpf_jit_needs_zext. 18203 */ 18204 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18205 continue; 18206 18207 /* Zero-extension is done by the caller. */ 18208 if (bpf_pseudo_kfunc_call(&insn)) 18209 continue; 18210 18211 if (WARN_ON(load_reg == -1)) { 18212 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18213 return -EFAULT; 18214 } 18215 18216 zext_patch[0] = insn; 18217 zext_patch[1].dst_reg = load_reg; 18218 zext_patch[1].src_reg = load_reg; 18219 patch = zext_patch; 18220 patch_len = 2; 18221 apply_patch_buffer: 18222 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18223 if (!new_prog) 18224 return -ENOMEM; 18225 env->prog = new_prog; 18226 insns = new_prog->insnsi; 18227 aux = env->insn_aux_data; 18228 delta += patch_len - 1; 18229 } 18230 18231 return 0; 18232 } 18233 18234 /* convert load instructions that access fields of a context type into a 18235 * sequence of instructions that access fields of the underlying structure: 18236 * struct __sk_buff -> struct sk_buff 18237 * struct bpf_sock_ops -> struct sock 18238 */ 18239 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18240 { 18241 const struct bpf_verifier_ops *ops = env->ops; 18242 int i, cnt, size, ctx_field_size, delta = 0; 18243 const int insn_cnt = env->prog->len; 18244 struct bpf_insn insn_buf[16], *insn; 18245 u32 target_size, size_default, off; 18246 struct bpf_prog *new_prog; 18247 enum bpf_access_type type; 18248 bool is_narrower_load; 18249 18250 if (ops->gen_prologue || env->seen_direct_write) { 18251 if (!ops->gen_prologue) { 18252 verbose(env, "bpf verifier is misconfigured\n"); 18253 return -EINVAL; 18254 } 18255 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18256 env->prog); 18257 if (cnt >= ARRAY_SIZE(insn_buf)) { 18258 verbose(env, "bpf verifier is misconfigured\n"); 18259 return -EINVAL; 18260 } else if (cnt) { 18261 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18262 if (!new_prog) 18263 return -ENOMEM; 18264 18265 env->prog = new_prog; 18266 delta += cnt - 1; 18267 } 18268 } 18269 18270 if (bpf_prog_is_offloaded(env->prog->aux)) 18271 return 0; 18272 18273 insn = env->prog->insnsi + delta; 18274 18275 for (i = 0; i < insn_cnt; i++, insn++) { 18276 bpf_convert_ctx_access_t convert_ctx_access; 18277 u8 mode; 18278 18279 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18280 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18281 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18282 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18283 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18284 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18285 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18286 type = BPF_READ; 18287 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18288 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18289 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18290 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18291 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18292 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18293 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18294 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18295 type = BPF_WRITE; 18296 } else { 18297 continue; 18298 } 18299 18300 if (type == BPF_WRITE && 18301 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18302 struct bpf_insn patch[] = { 18303 *insn, 18304 BPF_ST_NOSPEC(), 18305 }; 18306 18307 cnt = ARRAY_SIZE(patch); 18308 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18309 if (!new_prog) 18310 return -ENOMEM; 18311 18312 delta += cnt - 1; 18313 env->prog = new_prog; 18314 insn = new_prog->insnsi + i + delta; 18315 continue; 18316 } 18317 18318 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18319 case PTR_TO_CTX: 18320 if (!ops->convert_ctx_access) 18321 continue; 18322 convert_ctx_access = ops->convert_ctx_access; 18323 break; 18324 case PTR_TO_SOCKET: 18325 case PTR_TO_SOCK_COMMON: 18326 convert_ctx_access = bpf_sock_convert_ctx_access; 18327 break; 18328 case PTR_TO_TCP_SOCK: 18329 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18330 break; 18331 case PTR_TO_XDP_SOCK: 18332 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18333 break; 18334 case PTR_TO_BTF_ID: 18335 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18336 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18337 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18338 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18339 * any faults for loads into such types. BPF_WRITE is disallowed 18340 * for this case. 18341 */ 18342 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18343 if (type == BPF_READ) { 18344 if (BPF_MODE(insn->code) == BPF_MEM) 18345 insn->code = BPF_LDX | BPF_PROBE_MEM | 18346 BPF_SIZE((insn)->code); 18347 else 18348 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18349 BPF_SIZE((insn)->code); 18350 env->prog->aux->num_exentries++; 18351 } 18352 continue; 18353 default: 18354 continue; 18355 } 18356 18357 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18358 size = BPF_LDST_BYTES(insn); 18359 mode = BPF_MODE(insn->code); 18360 18361 /* If the read access is a narrower load of the field, 18362 * convert to a 4/8-byte load, to minimum program type specific 18363 * convert_ctx_access changes. If conversion is successful, 18364 * we will apply proper mask to the result. 18365 */ 18366 is_narrower_load = size < ctx_field_size; 18367 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18368 off = insn->off; 18369 if (is_narrower_load) { 18370 u8 size_code; 18371 18372 if (type == BPF_WRITE) { 18373 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18374 return -EINVAL; 18375 } 18376 18377 size_code = BPF_H; 18378 if (ctx_field_size == 4) 18379 size_code = BPF_W; 18380 else if (ctx_field_size == 8) 18381 size_code = BPF_DW; 18382 18383 insn->off = off & ~(size_default - 1); 18384 insn->code = BPF_LDX | BPF_MEM | size_code; 18385 } 18386 18387 target_size = 0; 18388 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18389 &target_size); 18390 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18391 (ctx_field_size && !target_size)) { 18392 verbose(env, "bpf verifier is misconfigured\n"); 18393 return -EINVAL; 18394 } 18395 18396 if (is_narrower_load && size < target_size) { 18397 u8 shift = bpf_ctx_narrow_access_offset( 18398 off, size, size_default) * 8; 18399 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18400 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18401 return -EINVAL; 18402 } 18403 if (ctx_field_size <= 4) { 18404 if (shift) 18405 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18406 insn->dst_reg, 18407 shift); 18408 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18409 (1 << size * 8) - 1); 18410 } else { 18411 if (shift) 18412 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18413 insn->dst_reg, 18414 shift); 18415 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18416 (1ULL << size * 8) - 1); 18417 } 18418 } 18419 if (mode == BPF_MEMSX) 18420 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18421 insn->dst_reg, insn->dst_reg, 18422 size * 8, 0); 18423 18424 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18425 if (!new_prog) 18426 return -ENOMEM; 18427 18428 delta += cnt - 1; 18429 18430 /* keep walking new program and skip insns we just inserted */ 18431 env->prog = new_prog; 18432 insn = new_prog->insnsi + i + delta; 18433 } 18434 18435 return 0; 18436 } 18437 18438 static int jit_subprogs(struct bpf_verifier_env *env) 18439 { 18440 struct bpf_prog *prog = env->prog, **func, *tmp; 18441 int i, j, subprog_start, subprog_end = 0, len, subprog; 18442 struct bpf_map *map_ptr; 18443 struct bpf_insn *insn; 18444 void *old_bpf_func; 18445 int err, num_exentries; 18446 18447 if (env->subprog_cnt <= 1) 18448 return 0; 18449 18450 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18451 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18452 continue; 18453 18454 /* Upon error here we cannot fall back to interpreter but 18455 * need a hard reject of the program. Thus -EFAULT is 18456 * propagated in any case. 18457 */ 18458 subprog = find_subprog(env, i + insn->imm + 1); 18459 if (subprog < 0) { 18460 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18461 i + insn->imm + 1); 18462 return -EFAULT; 18463 } 18464 /* temporarily remember subprog id inside insn instead of 18465 * aux_data, since next loop will split up all insns into funcs 18466 */ 18467 insn->off = subprog; 18468 /* remember original imm in case JIT fails and fallback 18469 * to interpreter will be needed 18470 */ 18471 env->insn_aux_data[i].call_imm = insn->imm; 18472 /* point imm to __bpf_call_base+1 from JITs point of view */ 18473 insn->imm = 1; 18474 if (bpf_pseudo_func(insn)) 18475 /* jit (e.g. x86_64) may emit fewer instructions 18476 * if it learns a u32 imm is the same as a u64 imm. 18477 * Force a non zero here. 18478 */ 18479 insn[1].imm = 1; 18480 } 18481 18482 err = bpf_prog_alloc_jited_linfo(prog); 18483 if (err) 18484 goto out_undo_insn; 18485 18486 err = -ENOMEM; 18487 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18488 if (!func) 18489 goto out_undo_insn; 18490 18491 for (i = 0; i < env->subprog_cnt; i++) { 18492 subprog_start = subprog_end; 18493 subprog_end = env->subprog_info[i + 1].start; 18494 18495 len = subprog_end - subprog_start; 18496 /* bpf_prog_run() doesn't call subprogs directly, 18497 * hence main prog stats include the runtime of subprogs. 18498 * subprogs don't have IDs and not reachable via prog_get_next_id 18499 * func[i]->stats will never be accessed and stays NULL 18500 */ 18501 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18502 if (!func[i]) 18503 goto out_free; 18504 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18505 len * sizeof(struct bpf_insn)); 18506 func[i]->type = prog->type; 18507 func[i]->len = len; 18508 if (bpf_prog_calc_tag(func[i])) 18509 goto out_free; 18510 func[i]->is_func = 1; 18511 func[i]->aux->func_idx = i; 18512 /* Below members will be freed only at prog->aux */ 18513 func[i]->aux->btf = prog->aux->btf; 18514 func[i]->aux->func_info = prog->aux->func_info; 18515 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18516 func[i]->aux->poke_tab = prog->aux->poke_tab; 18517 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18518 18519 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18520 struct bpf_jit_poke_descriptor *poke; 18521 18522 poke = &prog->aux->poke_tab[j]; 18523 if (poke->insn_idx < subprog_end && 18524 poke->insn_idx >= subprog_start) 18525 poke->aux = func[i]->aux; 18526 } 18527 18528 func[i]->aux->name[0] = 'F'; 18529 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18530 func[i]->jit_requested = 1; 18531 func[i]->blinding_requested = prog->blinding_requested; 18532 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18533 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18534 func[i]->aux->linfo = prog->aux->linfo; 18535 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18536 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18537 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18538 num_exentries = 0; 18539 insn = func[i]->insnsi; 18540 for (j = 0; j < func[i]->len; j++, insn++) { 18541 if (BPF_CLASS(insn->code) == BPF_LDX && 18542 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18543 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18544 num_exentries++; 18545 } 18546 func[i]->aux->num_exentries = num_exentries; 18547 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18548 func[i] = bpf_int_jit_compile(func[i]); 18549 if (!func[i]->jited) { 18550 err = -ENOTSUPP; 18551 goto out_free; 18552 } 18553 cond_resched(); 18554 } 18555 18556 /* at this point all bpf functions were successfully JITed 18557 * now populate all bpf_calls with correct addresses and 18558 * run last pass of JIT 18559 */ 18560 for (i = 0; i < env->subprog_cnt; i++) { 18561 insn = func[i]->insnsi; 18562 for (j = 0; j < func[i]->len; j++, insn++) { 18563 if (bpf_pseudo_func(insn)) { 18564 subprog = insn->off; 18565 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18566 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18567 continue; 18568 } 18569 if (!bpf_pseudo_call(insn)) 18570 continue; 18571 subprog = insn->off; 18572 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18573 } 18574 18575 /* we use the aux data to keep a list of the start addresses 18576 * of the JITed images for each function in the program 18577 * 18578 * for some architectures, such as powerpc64, the imm field 18579 * might not be large enough to hold the offset of the start 18580 * address of the callee's JITed image from __bpf_call_base 18581 * 18582 * in such cases, we can lookup the start address of a callee 18583 * by using its subprog id, available from the off field of 18584 * the call instruction, as an index for this list 18585 */ 18586 func[i]->aux->func = func; 18587 func[i]->aux->func_cnt = env->subprog_cnt; 18588 } 18589 for (i = 0; i < env->subprog_cnt; i++) { 18590 old_bpf_func = func[i]->bpf_func; 18591 tmp = bpf_int_jit_compile(func[i]); 18592 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18593 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18594 err = -ENOTSUPP; 18595 goto out_free; 18596 } 18597 cond_resched(); 18598 } 18599 18600 /* finally lock prog and jit images for all functions and 18601 * populate kallsysm. Begin at the first subprogram, since 18602 * bpf_prog_load will add the kallsyms for the main program. 18603 */ 18604 for (i = 1; i < env->subprog_cnt; i++) { 18605 bpf_prog_lock_ro(func[i]); 18606 bpf_prog_kallsyms_add(func[i]); 18607 } 18608 18609 /* Last step: make now unused interpreter insns from main 18610 * prog consistent for later dump requests, so they can 18611 * later look the same as if they were interpreted only. 18612 */ 18613 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18614 if (bpf_pseudo_func(insn)) { 18615 insn[0].imm = env->insn_aux_data[i].call_imm; 18616 insn[1].imm = insn->off; 18617 insn->off = 0; 18618 continue; 18619 } 18620 if (!bpf_pseudo_call(insn)) 18621 continue; 18622 insn->off = env->insn_aux_data[i].call_imm; 18623 subprog = find_subprog(env, i + insn->off + 1); 18624 insn->imm = subprog; 18625 } 18626 18627 prog->jited = 1; 18628 prog->bpf_func = func[0]->bpf_func; 18629 prog->jited_len = func[0]->jited_len; 18630 prog->aux->extable = func[0]->aux->extable; 18631 prog->aux->num_exentries = func[0]->aux->num_exentries; 18632 prog->aux->func = func; 18633 prog->aux->func_cnt = env->subprog_cnt; 18634 bpf_prog_jit_attempt_done(prog); 18635 return 0; 18636 out_free: 18637 /* We failed JIT'ing, so at this point we need to unregister poke 18638 * descriptors from subprogs, so that kernel is not attempting to 18639 * patch it anymore as we're freeing the subprog JIT memory. 18640 */ 18641 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18642 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18643 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18644 } 18645 /* At this point we're guaranteed that poke descriptors are not 18646 * live anymore. We can just unlink its descriptor table as it's 18647 * released with the main prog. 18648 */ 18649 for (i = 0; i < env->subprog_cnt; i++) { 18650 if (!func[i]) 18651 continue; 18652 func[i]->aux->poke_tab = NULL; 18653 bpf_jit_free(func[i]); 18654 } 18655 kfree(func); 18656 out_undo_insn: 18657 /* cleanup main prog to be interpreted */ 18658 prog->jit_requested = 0; 18659 prog->blinding_requested = 0; 18660 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18661 if (!bpf_pseudo_call(insn)) 18662 continue; 18663 insn->off = 0; 18664 insn->imm = env->insn_aux_data[i].call_imm; 18665 } 18666 bpf_prog_jit_attempt_done(prog); 18667 return err; 18668 } 18669 18670 static int fixup_call_args(struct bpf_verifier_env *env) 18671 { 18672 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18673 struct bpf_prog *prog = env->prog; 18674 struct bpf_insn *insn = prog->insnsi; 18675 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18676 int i, depth; 18677 #endif 18678 int err = 0; 18679 18680 if (env->prog->jit_requested && 18681 !bpf_prog_is_offloaded(env->prog->aux)) { 18682 err = jit_subprogs(env); 18683 if (err == 0) 18684 return 0; 18685 if (err == -EFAULT) 18686 return err; 18687 } 18688 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18689 if (has_kfunc_call) { 18690 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18691 return -EINVAL; 18692 } 18693 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18694 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18695 * have to be rejected, since interpreter doesn't support them yet. 18696 */ 18697 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18698 return -EINVAL; 18699 } 18700 for (i = 0; i < prog->len; i++, insn++) { 18701 if (bpf_pseudo_func(insn)) { 18702 /* When JIT fails the progs with callback calls 18703 * have to be rejected, since interpreter doesn't support them yet. 18704 */ 18705 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18706 return -EINVAL; 18707 } 18708 18709 if (!bpf_pseudo_call(insn)) 18710 continue; 18711 depth = get_callee_stack_depth(env, insn, i); 18712 if (depth < 0) 18713 return depth; 18714 bpf_patch_call_args(insn, depth); 18715 } 18716 err = 0; 18717 #endif 18718 return err; 18719 } 18720 18721 /* replace a generic kfunc with a specialized version if necessary */ 18722 static void specialize_kfunc(struct bpf_verifier_env *env, 18723 u32 func_id, u16 offset, unsigned long *addr) 18724 { 18725 struct bpf_prog *prog = env->prog; 18726 bool seen_direct_write; 18727 void *xdp_kfunc; 18728 bool is_rdonly; 18729 18730 if (bpf_dev_bound_kfunc_id(func_id)) { 18731 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18732 if (xdp_kfunc) { 18733 *addr = (unsigned long)xdp_kfunc; 18734 return; 18735 } 18736 /* fallback to default kfunc when not supported by netdev */ 18737 } 18738 18739 if (offset) 18740 return; 18741 18742 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18743 seen_direct_write = env->seen_direct_write; 18744 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18745 18746 if (is_rdonly) 18747 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18748 18749 /* restore env->seen_direct_write to its original value, since 18750 * may_access_direct_pkt_data mutates it 18751 */ 18752 env->seen_direct_write = seen_direct_write; 18753 } 18754 } 18755 18756 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18757 u16 struct_meta_reg, 18758 u16 node_offset_reg, 18759 struct bpf_insn *insn, 18760 struct bpf_insn *insn_buf, 18761 int *cnt) 18762 { 18763 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18764 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18765 18766 insn_buf[0] = addr[0]; 18767 insn_buf[1] = addr[1]; 18768 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18769 insn_buf[3] = *insn; 18770 *cnt = 4; 18771 } 18772 18773 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18774 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18775 { 18776 const struct bpf_kfunc_desc *desc; 18777 18778 if (!insn->imm) { 18779 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18780 return -EINVAL; 18781 } 18782 18783 *cnt = 0; 18784 18785 /* insn->imm has the btf func_id. Replace it with an offset relative to 18786 * __bpf_call_base, unless the JIT needs to call functions that are 18787 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18788 */ 18789 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18790 if (!desc) { 18791 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18792 insn->imm); 18793 return -EFAULT; 18794 } 18795 18796 if (!bpf_jit_supports_far_kfunc_call()) 18797 insn->imm = BPF_CALL_IMM(desc->addr); 18798 if (insn->off) 18799 return 0; 18800 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18801 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18802 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18803 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18804 18805 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18806 insn_buf[1] = addr[0]; 18807 insn_buf[2] = addr[1]; 18808 insn_buf[3] = *insn; 18809 *cnt = 4; 18810 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18811 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18812 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18813 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18814 18815 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18816 !kptr_struct_meta) { 18817 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18818 insn_idx); 18819 return -EFAULT; 18820 } 18821 18822 insn_buf[0] = addr[0]; 18823 insn_buf[1] = addr[1]; 18824 insn_buf[2] = *insn; 18825 *cnt = 3; 18826 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18827 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18828 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18829 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18830 int struct_meta_reg = BPF_REG_3; 18831 int node_offset_reg = BPF_REG_4; 18832 18833 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18834 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18835 struct_meta_reg = BPF_REG_4; 18836 node_offset_reg = BPF_REG_5; 18837 } 18838 18839 if (!kptr_struct_meta) { 18840 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18841 insn_idx); 18842 return -EFAULT; 18843 } 18844 18845 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18846 node_offset_reg, insn, insn_buf, cnt); 18847 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18848 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18849 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18850 *cnt = 1; 18851 } 18852 return 0; 18853 } 18854 18855 /* Do various post-verification rewrites in a single program pass. 18856 * These rewrites simplify JIT and interpreter implementations. 18857 */ 18858 static int do_misc_fixups(struct bpf_verifier_env *env) 18859 { 18860 struct bpf_prog *prog = env->prog; 18861 enum bpf_attach_type eatype = prog->expected_attach_type; 18862 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18863 struct bpf_insn *insn = prog->insnsi; 18864 const struct bpf_func_proto *fn; 18865 const int insn_cnt = prog->len; 18866 const struct bpf_map_ops *ops; 18867 struct bpf_insn_aux_data *aux; 18868 struct bpf_insn insn_buf[16]; 18869 struct bpf_prog *new_prog; 18870 struct bpf_map *map_ptr; 18871 int i, ret, cnt, delta = 0; 18872 18873 for (i = 0; i < insn_cnt; i++, insn++) { 18874 /* Make divide-by-zero exceptions impossible. */ 18875 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18876 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18877 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18878 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18879 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18880 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18881 struct bpf_insn *patchlet; 18882 struct bpf_insn chk_and_div[] = { 18883 /* [R,W]x div 0 -> 0 */ 18884 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18885 BPF_JNE | BPF_K, insn->src_reg, 18886 0, 2, 0), 18887 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18888 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18889 *insn, 18890 }; 18891 struct bpf_insn chk_and_mod[] = { 18892 /* [R,W]x mod 0 -> [R,W]x */ 18893 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18894 BPF_JEQ | BPF_K, insn->src_reg, 18895 0, 1 + (is64 ? 0 : 1), 0), 18896 *insn, 18897 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18898 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18899 }; 18900 18901 patchlet = isdiv ? chk_and_div : chk_and_mod; 18902 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18903 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18904 18905 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18906 if (!new_prog) 18907 return -ENOMEM; 18908 18909 delta += cnt - 1; 18910 env->prog = prog = new_prog; 18911 insn = new_prog->insnsi + i + delta; 18912 continue; 18913 } 18914 18915 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18916 if (BPF_CLASS(insn->code) == BPF_LD && 18917 (BPF_MODE(insn->code) == BPF_ABS || 18918 BPF_MODE(insn->code) == BPF_IND)) { 18919 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18920 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18921 verbose(env, "bpf verifier is misconfigured\n"); 18922 return -EINVAL; 18923 } 18924 18925 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18926 if (!new_prog) 18927 return -ENOMEM; 18928 18929 delta += cnt - 1; 18930 env->prog = prog = new_prog; 18931 insn = new_prog->insnsi + i + delta; 18932 continue; 18933 } 18934 18935 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18936 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18937 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18938 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18939 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18940 struct bpf_insn *patch = &insn_buf[0]; 18941 bool issrc, isneg, isimm; 18942 u32 off_reg; 18943 18944 aux = &env->insn_aux_data[i + delta]; 18945 if (!aux->alu_state || 18946 aux->alu_state == BPF_ALU_NON_POINTER) 18947 continue; 18948 18949 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18950 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18951 BPF_ALU_SANITIZE_SRC; 18952 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18953 18954 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18955 if (isimm) { 18956 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18957 } else { 18958 if (isneg) 18959 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18960 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18961 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18962 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18963 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18964 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18965 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18966 } 18967 if (!issrc) 18968 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18969 insn->src_reg = BPF_REG_AX; 18970 if (isneg) 18971 insn->code = insn->code == code_add ? 18972 code_sub : code_add; 18973 *patch++ = *insn; 18974 if (issrc && isneg && !isimm) 18975 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18976 cnt = patch - insn_buf; 18977 18978 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18979 if (!new_prog) 18980 return -ENOMEM; 18981 18982 delta += cnt - 1; 18983 env->prog = prog = new_prog; 18984 insn = new_prog->insnsi + i + delta; 18985 continue; 18986 } 18987 18988 if (insn->code != (BPF_JMP | BPF_CALL)) 18989 continue; 18990 if (insn->src_reg == BPF_PSEUDO_CALL) 18991 continue; 18992 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18993 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18994 if (ret) 18995 return ret; 18996 if (cnt == 0) 18997 continue; 18998 18999 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19000 if (!new_prog) 19001 return -ENOMEM; 19002 19003 delta += cnt - 1; 19004 env->prog = prog = new_prog; 19005 insn = new_prog->insnsi + i + delta; 19006 continue; 19007 } 19008 19009 if (insn->imm == BPF_FUNC_get_route_realm) 19010 prog->dst_needed = 1; 19011 if (insn->imm == BPF_FUNC_get_prandom_u32) 19012 bpf_user_rnd_init_once(); 19013 if (insn->imm == BPF_FUNC_override_return) 19014 prog->kprobe_override = 1; 19015 if (insn->imm == BPF_FUNC_tail_call) { 19016 /* If we tail call into other programs, we 19017 * cannot make any assumptions since they can 19018 * be replaced dynamically during runtime in 19019 * the program array. 19020 */ 19021 prog->cb_access = 1; 19022 if (!allow_tail_call_in_subprogs(env)) 19023 prog->aux->stack_depth = MAX_BPF_STACK; 19024 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19025 19026 /* mark bpf_tail_call as different opcode to avoid 19027 * conditional branch in the interpreter for every normal 19028 * call and to prevent accidental JITing by JIT compiler 19029 * that doesn't support bpf_tail_call yet 19030 */ 19031 insn->imm = 0; 19032 insn->code = BPF_JMP | BPF_TAIL_CALL; 19033 19034 aux = &env->insn_aux_data[i + delta]; 19035 if (env->bpf_capable && !prog->blinding_requested && 19036 prog->jit_requested && 19037 !bpf_map_key_poisoned(aux) && 19038 !bpf_map_ptr_poisoned(aux) && 19039 !bpf_map_ptr_unpriv(aux)) { 19040 struct bpf_jit_poke_descriptor desc = { 19041 .reason = BPF_POKE_REASON_TAIL_CALL, 19042 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19043 .tail_call.key = bpf_map_key_immediate(aux), 19044 .insn_idx = i + delta, 19045 }; 19046 19047 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19048 if (ret < 0) { 19049 verbose(env, "adding tail call poke descriptor failed\n"); 19050 return ret; 19051 } 19052 19053 insn->imm = ret + 1; 19054 continue; 19055 } 19056 19057 if (!bpf_map_ptr_unpriv(aux)) 19058 continue; 19059 19060 /* instead of changing every JIT dealing with tail_call 19061 * emit two extra insns: 19062 * if (index >= max_entries) goto out; 19063 * index &= array->index_mask; 19064 * to avoid out-of-bounds cpu speculation 19065 */ 19066 if (bpf_map_ptr_poisoned(aux)) { 19067 verbose(env, "tail_call abusing map_ptr\n"); 19068 return -EINVAL; 19069 } 19070 19071 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19072 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19073 map_ptr->max_entries, 2); 19074 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19075 container_of(map_ptr, 19076 struct bpf_array, 19077 map)->index_mask); 19078 insn_buf[2] = *insn; 19079 cnt = 3; 19080 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19081 if (!new_prog) 19082 return -ENOMEM; 19083 19084 delta += cnt - 1; 19085 env->prog = prog = new_prog; 19086 insn = new_prog->insnsi + i + delta; 19087 continue; 19088 } 19089 19090 if (insn->imm == BPF_FUNC_timer_set_callback) { 19091 /* The verifier will process callback_fn as many times as necessary 19092 * with different maps and the register states prepared by 19093 * set_timer_callback_state will be accurate. 19094 * 19095 * The following use case is valid: 19096 * map1 is shared by prog1, prog2, prog3. 19097 * prog1 calls bpf_timer_init for some map1 elements 19098 * prog2 calls bpf_timer_set_callback for some map1 elements. 19099 * Those that were not bpf_timer_init-ed will return -EINVAL. 19100 * prog3 calls bpf_timer_start for some map1 elements. 19101 * Those that were not both bpf_timer_init-ed and 19102 * bpf_timer_set_callback-ed will return -EINVAL. 19103 */ 19104 struct bpf_insn ld_addrs[2] = { 19105 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19106 }; 19107 19108 insn_buf[0] = ld_addrs[0]; 19109 insn_buf[1] = ld_addrs[1]; 19110 insn_buf[2] = *insn; 19111 cnt = 3; 19112 19113 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19114 if (!new_prog) 19115 return -ENOMEM; 19116 19117 delta += cnt - 1; 19118 env->prog = prog = new_prog; 19119 insn = new_prog->insnsi + i + delta; 19120 goto patch_call_imm; 19121 } 19122 19123 if (is_storage_get_function(insn->imm)) { 19124 if (!env->prog->aux->sleepable || 19125 env->insn_aux_data[i + delta].storage_get_func_atomic) 19126 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19127 else 19128 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19129 insn_buf[1] = *insn; 19130 cnt = 2; 19131 19132 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19133 if (!new_prog) 19134 return -ENOMEM; 19135 19136 delta += cnt - 1; 19137 env->prog = prog = new_prog; 19138 insn = new_prog->insnsi + i + delta; 19139 goto patch_call_imm; 19140 } 19141 19142 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19143 * and other inlining handlers are currently limited to 64 bit 19144 * only. 19145 */ 19146 if (prog->jit_requested && BITS_PER_LONG == 64 && 19147 (insn->imm == BPF_FUNC_map_lookup_elem || 19148 insn->imm == BPF_FUNC_map_update_elem || 19149 insn->imm == BPF_FUNC_map_delete_elem || 19150 insn->imm == BPF_FUNC_map_push_elem || 19151 insn->imm == BPF_FUNC_map_pop_elem || 19152 insn->imm == BPF_FUNC_map_peek_elem || 19153 insn->imm == BPF_FUNC_redirect_map || 19154 insn->imm == BPF_FUNC_for_each_map_elem || 19155 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19156 aux = &env->insn_aux_data[i + delta]; 19157 if (bpf_map_ptr_poisoned(aux)) 19158 goto patch_call_imm; 19159 19160 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19161 ops = map_ptr->ops; 19162 if (insn->imm == BPF_FUNC_map_lookup_elem && 19163 ops->map_gen_lookup) { 19164 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19165 if (cnt == -EOPNOTSUPP) 19166 goto patch_map_ops_generic; 19167 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19168 verbose(env, "bpf verifier is misconfigured\n"); 19169 return -EINVAL; 19170 } 19171 19172 new_prog = bpf_patch_insn_data(env, i + delta, 19173 insn_buf, cnt); 19174 if (!new_prog) 19175 return -ENOMEM; 19176 19177 delta += cnt - 1; 19178 env->prog = prog = new_prog; 19179 insn = new_prog->insnsi + i + delta; 19180 continue; 19181 } 19182 19183 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19184 (void *(*)(struct bpf_map *map, void *key))NULL)); 19185 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19186 (long (*)(struct bpf_map *map, void *key))NULL)); 19187 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19188 (long (*)(struct bpf_map *map, void *key, void *value, 19189 u64 flags))NULL)); 19190 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19191 (long (*)(struct bpf_map *map, void *value, 19192 u64 flags))NULL)); 19193 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19194 (long (*)(struct bpf_map *map, void *value))NULL)); 19195 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19196 (long (*)(struct bpf_map *map, void *value))NULL)); 19197 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19198 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19199 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19200 (long (*)(struct bpf_map *map, 19201 bpf_callback_t callback_fn, 19202 void *callback_ctx, 19203 u64 flags))NULL)); 19204 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19205 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19206 19207 patch_map_ops_generic: 19208 switch (insn->imm) { 19209 case BPF_FUNC_map_lookup_elem: 19210 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19211 continue; 19212 case BPF_FUNC_map_update_elem: 19213 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19214 continue; 19215 case BPF_FUNC_map_delete_elem: 19216 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19217 continue; 19218 case BPF_FUNC_map_push_elem: 19219 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19220 continue; 19221 case BPF_FUNC_map_pop_elem: 19222 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19223 continue; 19224 case BPF_FUNC_map_peek_elem: 19225 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19226 continue; 19227 case BPF_FUNC_redirect_map: 19228 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19229 continue; 19230 case BPF_FUNC_for_each_map_elem: 19231 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19232 continue; 19233 case BPF_FUNC_map_lookup_percpu_elem: 19234 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19235 continue; 19236 } 19237 19238 goto patch_call_imm; 19239 } 19240 19241 /* Implement bpf_jiffies64 inline. */ 19242 if (prog->jit_requested && BITS_PER_LONG == 64 && 19243 insn->imm == BPF_FUNC_jiffies64) { 19244 struct bpf_insn ld_jiffies_addr[2] = { 19245 BPF_LD_IMM64(BPF_REG_0, 19246 (unsigned long)&jiffies), 19247 }; 19248 19249 insn_buf[0] = ld_jiffies_addr[0]; 19250 insn_buf[1] = ld_jiffies_addr[1]; 19251 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19252 BPF_REG_0, 0); 19253 cnt = 3; 19254 19255 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19256 cnt); 19257 if (!new_prog) 19258 return -ENOMEM; 19259 19260 delta += cnt - 1; 19261 env->prog = prog = new_prog; 19262 insn = new_prog->insnsi + i + delta; 19263 continue; 19264 } 19265 19266 /* Implement bpf_get_func_arg inline. */ 19267 if (prog_type == BPF_PROG_TYPE_TRACING && 19268 insn->imm == BPF_FUNC_get_func_arg) { 19269 /* Load nr_args from ctx - 8 */ 19270 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19271 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19272 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19273 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19274 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19275 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19276 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19277 insn_buf[7] = BPF_JMP_A(1); 19278 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19279 cnt = 9; 19280 19281 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19282 if (!new_prog) 19283 return -ENOMEM; 19284 19285 delta += cnt - 1; 19286 env->prog = prog = new_prog; 19287 insn = new_prog->insnsi + i + delta; 19288 continue; 19289 } 19290 19291 /* Implement bpf_get_func_ret inline. */ 19292 if (prog_type == BPF_PROG_TYPE_TRACING && 19293 insn->imm == BPF_FUNC_get_func_ret) { 19294 if (eatype == BPF_TRACE_FEXIT || 19295 eatype == BPF_MODIFY_RETURN) { 19296 /* Load nr_args from ctx - 8 */ 19297 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19298 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19299 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19300 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19301 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19302 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19303 cnt = 6; 19304 } else { 19305 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19306 cnt = 1; 19307 } 19308 19309 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19310 if (!new_prog) 19311 return -ENOMEM; 19312 19313 delta += cnt - 1; 19314 env->prog = prog = new_prog; 19315 insn = new_prog->insnsi + i + delta; 19316 continue; 19317 } 19318 19319 /* Implement get_func_arg_cnt inline. */ 19320 if (prog_type == BPF_PROG_TYPE_TRACING && 19321 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19322 /* Load nr_args from ctx - 8 */ 19323 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19324 19325 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19326 if (!new_prog) 19327 return -ENOMEM; 19328 19329 env->prog = prog = new_prog; 19330 insn = new_prog->insnsi + i + delta; 19331 continue; 19332 } 19333 19334 /* Implement bpf_get_func_ip inline. */ 19335 if (prog_type == BPF_PROG_TYPE_TRACING && 19336 insn->imm == BPF_FUNC_get_func_ip) { 19337 /* Load IP address from ctx - 16 */ 19338 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19339 19340 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19341 if (!new_prog) 19342 return -ENOMEM; 19343 19344 env->prog = prog = new_prog; 19345 insn = new_prog->insnsi + i + delta; 19346 continue; 19347 } 19348 19349 patch_call_imm: 19350 fn = env->ops->get_func_proto(insn->imm, env->prog); 19351 /* all functions that have prototype and verifier allowed 19352 * programs to call them, must be real in-kernel functions 19353 */ 19354 if (!fn->func) { 19355 verbose(env, 19356 "kernel subsystem misconfigured func %s#%d\n", 19357 func_id_name(insn->imm), insn->imm); 19358 return -EFAULT; 19359 } 19360 insn->imm = fn->func - __bpf_call_base; 19361 } 19362 19363 /* Since poke tab is now finalized, publish aux to tracker. */ 19364 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19365 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19366 if (!map_ptr->ops->map_poke_track || 19367 !map_ptr->ops->map_poke_untrack || 19368 !map_ptr->ops->map_poke_run) { 19369 verbose(env, "bpf verifier is misconfigured\n"); 19370 return -EINVAL; 19371 } 19372 19373 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19374 if (ret < 0) { 19375 verbose(env, "tracking tail call prog failed\n"); 19376 return ret; 19377 } 19378 } 19379 19380 sort_kfunc_descs_by_imm_off(env->prog); 19381 19382 return 0; 19383 } 19384 19385 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19386 int position, 19387 s32 stack_base, 19388 u32 callback_subprogno, 19389 u32 *cnt) 19390 { 19391 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19392 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19393 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19394 int reg_loop_max = BPF_REG_6; 19395 int reg_loop_cnt = BPF_REG_7; 19396 int reg_loop_ctx = BPF_REG_8; 19397 19398 struct bpf_prog *new_prog; 19399 u32 callback_start; 19400 u32 call_insn_offset; 19401 s32 callback_offset; 19402 19403 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19404 * be careful to modify this code in sync. 19405 */ 19406 struct bpf_insn insn_buf[] = { 19407 /* Return error and jump to the end of the patch if 19408 * expected number of iterations is too big. 19409 */ 19410 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19411 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19412 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19413 /* spill R6, R7, R8 to use these as loop vars */ 19414 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19415 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19416 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19417 /* initialize loop vars */ 19418 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19419 BPF_MOV32_IMM(reg_loop_cnt, 0), 19420 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19421 /* loop header, 19422 * if reg_loop_cnt >= reg_loop_max skip the loop body 19423 */ 19424 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19425 /* callback call, 19426 * correct callback offset would be set after patching 19427 */ 19428 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19429 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19430 BPF_CALL_REL(0), 19431 /* increment loop counter */ 19432 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19433 /* jump to loop header if callback returned 0 */ 19434 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19435 /* return value of bpf_loop, 19436 * set R0 to the number of iterations 19437 */ 19438 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19439 /* restore original values of R6, R7, R8 */ 19440 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19441 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19442 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19443 }; 19444 19445 *cnt = ARRAY_SIZE(insn_buf); 19446 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19447 if (!new_prog) 19448 return new_prog; 19449 19450 /* callback start is known only after patching */ 19451 callback_start = env->subprog_info[callback_subprogno].start; 19452 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19453 call_insn_offset = position + 12; 19454 callback_offset = callback_start - call_insn_offset - 1; 19455 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19456 19457 return new_prog; 19458 } 19459 19460 static bool is_bpf_loop_call(struct bpf_insn *insn) 19461 { 19462 return insn->code == (BPF_JMP | BPF_CALL) && 19463 insn->src_reg == 0 && 19464 insn->imm == BPF_FUNC_loop; 19465 } 19466 19467 /* For all sub-programs in the program (including main) check 19468 * insn_aux_data to see if there are bpf_loop calls that require 19469 * inlining. If such calls are found the calls are replaced with a 19470 * sequence of instructions produced by `inline_bpf_loop` function and 19471 * subprog stack_depth is increased by the size of 3 registers. 19472 * This stack space is used to spill values of the R6, R7, R8. These 19473 * registers are used to store the loop bound, counter and context 19474 * variables. 19475 */ 19476 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19477 { 19478 struct bpf_subprog_info *subprogs = env->subprog_info; 19479 int i, cur_subprog = 0, cnt, delta = 0; 19480 struct bpf_insn *insn = env->prog->insnsi; 19481 int insn_cnt = env->prog->len; 19482 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19483 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19484 u16 stack_depth_extra = 0; 19485 19486 for (i = 0; i < insn_cnt; i++, insn++) { 19487 struct bpf_loop_inline_state *inline_state = 19488 &env->insn_aux_data[i + delta].loop_inline_state; 19489 19490 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 19491 struct bpf_prog *new_prog; 19492 19493 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 19494 new_prog = inline_bpf_loop(env, 19495 i + delta, 19496 -(stack_depth + stack_depth_extra), 19497 inline_state->callback_subprogno, 19498 &cnt); 19499 if (!new_prog) 19500 return -ENOMEM; 19501 19502 delta += cnt - 1; 19503 env->prog = new_prog; 19504 insn = new_prog->insnsi + i + delta; 19505 } 19506 19507 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19508 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19509 cur_subprog++; 19510 stack_depth = subprogs[cur_subprog].stack_depth; 19511 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19512 stack_depth_extra = 0; 19513 } 19514 } 19515 19516 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19517 19518 return 0; 19519 } 19520 19521 static void free_states(struct bpf_verifier_env *env) 19522 { 19523 struct bpf_verifier_state_list *sl, *sln; 19524 int i; 19525 19526 sl = env->free_list; 19527 while (sl) { 19528 sln = sl->next; 19529 free_verifier_state(&sl->state, false); 19530 kfree(sl); 19531 sl = sln; 19532 } 19533 env->free_list = NULL; 19534 19535 if (!env->explored_states) 19536 return; 19537 19538 for (i = 0; i < state_htab_size(env); i++) { 19539 sl = env->explored_states[i]; 19540 19541 while (sl) { 19542 sln = sl->next; 19543 free_verifier_state(&sl->state, false); 19544 kfree(sl); 19545 sl = sln; 19546 } 19547 env->explored_states[i] = NULL; 19548 } 19549 } 19550 19551 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19552 { 19553 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19554 struct bpf_verifier_state *state; 19555 struct bpf_reg_state *regs; 19556 int ret, i; 19557 19558 env->prev_linfo = NULL; 19559 env->pass_cnt++; 19560 19561 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19562 if (!state) 19563 return -ENOMEM; 19564 state->curframe = 0; 19565 state->speculative = false; 19566 state->branches = 1; 19567 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19568 if (!state->frame[0]) { 19569 kfree(state); 19570 return -ENOMEM; 19571 } 19572 env->cur_state = state; 19573 init_func_state(env, state->frame[0], 19574 BPF_MAIN_FUNC /* callsite */, 19575 0 /* frameno */, 19576 subprog); 19577 state->first_insn_idx = env->subprog_info[subprog].start; 19578 state->last_insn_idx = -1; 19579 19580 regs = state->frame[state->curframe]->regs; 19581 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19582 ret = btf_prepare_func_args(env, subprog, regs); 19583 if (ret) 19584 goto out; 19585 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19586 if (regs[i].type == PTR_TO_CTX) 19587 mark_reg_known_zero(env, regs, i); 19588 else if (regs[i].type == SCALAR_VALUE) 19589 mark_reg_unknown(env, regs, i); 19590 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19591 const u32 mem_size = regs[i].mem_size; 19592 19593 mark_reg_known_zero(env, regs, i); 19594 regs[i].mem_size = mem_size; 19595 regs[i].id = ++env->id_gen; 19596 } 19597 } 19598 } else { 19599 /* 1st arg to a function */ 19600 regs[BPF_REG_1].type = PTR_TO_CTX; 19601 mark_reg_known_zero(env, regs, BPF_REG_1); 19602 ret = btf_check_subprog_arg_match(env, subprog, regs); 19603 if (ret == -EFAULT) 19604 /* unlikely verifier bug. abort. 19605 * ret == 0 and ret < 0 are sadly acceptable for 19606 * main() function due to backward compatibility. 19607 * Like socket filter program may be written as: 19608 * int bpf_prog(struct pt_regs *ctx) 19609 * and never dereference that ctx in the program. 19610 * 'struct pt_regs' is a type mismatch for socket 19611 * filter that should be using 'struct __sk_buff'. 19612 */ 19613 goto out; 19614 } 19615 19616 ret = do_check(env); 19617 out: 19618 /* check for NULL is necessary, since cur_state can be freed inside 19619 * do_check() under memory pressure. 19620 */ 19621 if (env->cur_state) { 19622 free_verifier_state(env->cur_state, true); 19623 env->cur_state = NULL; 19624 } 19625 while (!pop_stack(env, NULL, NULL, false)); 19626 if (!ret && pop_log) 19627 bpf_vlog_reset(&env->log, 0); 19628 free_states(env); 19629 return ret; 19630 } 19631 19632 /* Verify all global functions in a BPF program one by one based on their BTF. 19633 * All global functions must pass verification. Otherwise the whole program is rejected. 19634 * Consider: 19635 * int bar(int); 19636 * int foo(int f) 19637 * { 19638 * return bar(f); 19639 * } 19640 * int bar(int b) 19641 * { 19642 * ... 19643 * } 19644 * foo() will be verified first for R1=any_scalar_value. During verification it 19645 * will be assumed that bar() already verified successfully and call to bar() 19646 * from foo() will be checked for type match only. Later bar() will be verified 19647 * independently to check that it's safe for R1=any_scalar_value. 19648 */ 19649 static int do_check_subprogs(struct bpf_verifier_env *env) 19650 { 19651 struct bpf_prog_aux *aux = env->prog->aux; 19652 int i, ret; 19653 19654 if (!aux->func_info) 19655 return 0; 19656 19657 for (i = 1; i < env->subprog_cnt; i++) { 19658 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19659 continue; 19660 env->insn_idx = env->subprog_info[i].start; 19661 WARN_ON_ONCE(env->insn_idx == 0); 19662 ret = do_check_common(env, i); 19663 if (ret) { 19664 return ret; 19665 } else if (env->log.level & BPF_LOG_LEVEL) { 19666 verbose(env, 19667 "Func#%d is safe for any args that match its prototype\n", 19668 i); 19669 } 19670 } 19671 return 0; 19672 } 19673 19674 static int do_check_main(struct bpf_verifier_env *env) 19675 { 19676 int ret; 19677 19678 env->insn_idx = 0; 19679 ret = do_check_common(env, 0); 19680 if (!ret) 19681 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19682 return ret; 19683 } 19684 19685 19686 static void print_verification_stats(struct bpf_verifier_env *env) 19687 { 19688 int i; 19689 19690 if (env->log.level & BPF_LOG_STATS) { 19691 verbose(env, "verification time %lld usec\n", 19692 div_u64(env->verification_time, 1000)); 19693 verbose(env, "stack depth "); 19694 for (i = 0; i < env->subprog_cnt; i++) { 19695 u32 depth = env->subprog_info[i].stack_depth; 19696 19697 verbose(env, "%d", depth); 19698 if (i + 1 < env->subprog_cnt) 19699 verbose(env, "+"); 19700 } 19701 verbose(env, "\n"); 19702 } 19703 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19704 "total_states %d peak_states %d mark_read %d\n", 19705 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19706 env->max_states_per_insn, env->total_states, 19707 env->peak_states, env->longest_mark_read_walk); 19708 } 19709 19710 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19711 { 19712 const struct btf_type *t, *func_proto; 19713 const struct bpf_struct_ops *st_ops; 19714 const struct btf_member *member; 19715 struct bpf_prog *prog = env->prog; 19716 u32 btf_id, member_idx; 19717 const char *mname; 19718 19719 if (!prog->gpl_compatible) { 19720 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19721 return -EINVAL; 19722 } 19723 19724 btf_id = prog->aux->attach_btf_id; 19725 st_ops = bpf_struct_ops_find(btf_id); 19726 if (!st_ops) { 19727 verbose(env, "attach_btf_id %u is not a supported struct\n", 19728 btf_id); 19729 return -ENOTSUPP; 19730 } 19731 19732 t = st_ops->type; 19733 member_idx = prog->expected_attach_type; 19734 if (member_idx >= btf_type_vlen(t)) { 19735 verbose(env, "attach to invalid member idx %u of struct %s\n", 19736 member_idx, st_ops->name); 19737 return -EINVAL; 19738 } 19739 19740 member = &btf_type_member(t)[member_idx]; 19741 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19742 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19743 NULL); 19744 if (!func_proto) { 19745 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19746 mname, member_idx, st_ops->name); 19747 return -EINVAL; 19748 } 19749 19750 if (st_ops->check_member) { 19751 int err = st_ops->check_member(t, member, prog); 19752 19753 if (err) { 19754 verbose(env, "attach to unsupported member %s of struct %s\n", 19755 mname, st_ops->name); 19756 return err; 19757 } 19758 } 19759 19760 prog->aux->attach_func_proto = func_proto; 19761 prog->aux->attach_func_name = mname; 19762 env->ops = st_ops->verifier_ops; 19763 19764 return 0; 19765 } 19766 #define SECURITY_PREFIX "security_" 19767 19768 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19769 { 19770 if (within_error_injection_list(addr) || 19771 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19772 return 0; 19773 19774 return -EINVAL; 19775 } 19776 19777 /* list of non-sleepable functions that are otherwise on 19778 * ALLOW_ERROR_INJECTION list 19779 */ 19780 BTF_SET_START(btf_non_sleepable_error_inject) 19781 /* Three functions below can be called from sleepable and non-sleepable context. 19782 * Assume non-sleepable from bpf safety point of view. 19783 */ 19784 BTF_ID(func, __filemap_add_folio) 19785 BTF_ID(func, should_fail_alloc_page) 19786 BTF_ID(func, should_failslab) 19787 BTF_SET_END(btf_non_sleepable_error_inject) 19788 19789 static int check_non_sleepable_error_inject(u32 btf_id) 19790 { 19791 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19792 } 19793 19794 int bpf_check_attach_target(struct bpf_verifier_log *log, 19795 const struct bpf_prog *prog, 19796 const struct bpf_prog *tgt_prog, 19797 u32 btf_id, 19798 struct bpf_attach_target_info *tgt_info) 19799 { 19800 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19801 const char prefix[] = "btf_trace_"; 19802 int ret = 0, subprog = -1, i; 19803 const struct btf_type *t; 19804 bool conservative = true; 19805 const char *tname; 19806 struct btf *btf; 19807 long addr = 0; 19808 struct module *mod = NULL; 19809 19810 if (!btf_id) { 19811 bpf_log(log, "Tracing programs must provide btf_id\n"); 19812 return -EINVAL; 19813 } 19814 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19815 if (!btf) { 19816 bpf_log(log, 19817 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19818 return -EINVAL; 19819 } 19820 t = btf_type_by_id(btf, btf_id); 19821 if (!t) { 19822 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19823 return -EINVAL; 19824 } 19825 tname = btf_name_by_offset(btf, t->name_off); 19826 if (!tname) { 19827 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19828 return -EINVAL; 19829 } 19830 if (tgt_prog) { 19831 struct bpf_prog_aux *aux = tgt_prog->aux; 19832 19833 if (bpf_prog_is_dev_bound(prog->aux) && 19834 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19835 bpf_log(log, "Target program bound device mismatch"); 19836 return -EINVAL; 19837 } 19838 19839 for (i = 0; i < aux->func_info_cnt; i++) 19840 if (aux->func_info[i].type_id == btf_id) { 19841 subprog = i; 19842 break; 19843 } 19844 if (subprog == -1) { 19845 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19846 return -EINVAL; 19847 } 19848 conservative = aux->func_info_aux[subprog].unreliable; 19849 if (prog_extension) { 19850 if (conservative) { 19851 bpf_log(log, 19852 "Cannot replace static functions\n"); 19853 return -EINVAL; 19854 } 19855 if (!prog->jit_requested) { 19856 bpf_log(log, 19857 "Extension programs should be JITed\n"); 19858 return -EINVAL; 19859 } 19860 } 19861 if (!tgt_prog->jited) { 19862 bpf_log(log, "Can attach to only JITed progs\n"); 19863 return -EINVAL; 19864 } 19865 if (tgt_prog->type == prog->type) { 19866 /* Cannot fentry/fexit another fentry/fexit program. 19867 * Cannot attach program extension to another extension. 19868 * It's ok to attach fentry/fexit to extension program. 19869 */ 19870 bpf_log(log, "Cannot recursively attach\n"); 19871 return -EINVAL; 19872 } 19873 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19874 prog_extension && 19875 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19876 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19877 /* Program extensions can extend all program types 19878 * except fentry/fexit. The reason is the following. 19879 * The fentry/fexit programs are used for performance 19880 * analysis, stats and can be attached to any program 19881 * type except themselves. When extension program is 19882 * replacing XDP function it is necessary to allow 19883 * performance analysis of all functions. Both original 19884 * XDP program and its program extension. Hence 19885 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19886 * allowed. If extending of fentry/fexit was allowed it 19887 * would be possible to create long call chain 19888 * fentry->extension->fentry->extension beyond 19889 * reasonable stack size. Hence extending fentry is not 19890 * allowed. 19891 */ 19892 bpf_log(log, "Cannot extend fentry/fexit\n"); 19893 return -EINVAL; 19894 } 19895 } else { 19896 if (prog_extension) { 19897 bpf_log(log, "Cannot replace kernel functions\n"); 19898 return -EINVAL; 19899 } 19900 } 19901 19902 switch (prog->expected_attach_type) { 19903 case BPF_TRACE_RAW_TP: 19904 if (tgt_prog) { 19905 bpf_log(log, 19906 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19907 return -EINVAL; 19908 } 19909 if (!btf_type_is_typedef(t)) { 19910 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19911 btf_id); 19912 return -EINVAL; 19913 } 19914 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19915 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19916 btf_id, tname); 19917 return -EINVAL; 19918 } 19919 tname += sizeof(prefix) - 1; 19920 t = btf_type_by_id(btf, t->type); 19921 if (!btf_type_is_ptr(t)) 19922 /* should never happen in valid vmlinux build */ 19923 return -EINVAL; 19924 t = btf_type_by_id(btf, t->type); 19925 if (!btf_type_is_func_proto(t)) 19926 /* should never happen in valid vmlinux build */ 19927 return -EINVAL; 19928 19929 break; 19930 case BPF_TRACE_ITER: 19931 if (!btf_type_is_func(t)) { 19932 bpf_log(log, "attach_btf_id %u is not a function\n", 19933 btf_id); 19934 return -EINVAL; 19935 } 19936 t = btf_type_by_id(btf, t->type); 19937 if (!btf_type_is_func_proto(t)) 19938 return -EINVAL; 19939 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19940 if (ret) 19941 return ret; 19942 break; 19943 default: 19944 if (!prog_extension) 19945 return -EINVAL; 19946 fallthrough; 19947 case BPF_MODIFY_RETURN: 19948 case BPF_LSM_MAC: 19949 case BPF_LSM_CGROUP: 19950 case BPF_TRACE_FENTRY: 19951 case BPF_TRACE_FEXIT: 19952 if (!btf_type_is_func(t)) { 19953 bpf_log(log, "attach_btf_id %u is not a function\n", 19954 btf_id); 19955 return -EINVAL; 19956 } 19957 if (prog_extension && 19958 btf_check_type_match(log, prog, btf, t)) 19959 return -EINVAL; 19960 t = btf_type_by_id(btf, t->type); 19961 if (!btf_type_is_func_proto(t)) 19962 return -EINVAL; 19963 19964 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19965 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19966 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19967 return -EINVAL; 19968 19969 if (tgt_prog && conservative) 19970 t = NULL; 19971 19972 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19973 if (ret < 0) 19974 return ret; 19975 19976 if (tgt_prog) { 19977 if (subprog == 0) 19978 addr = (long) tgt_prog->bpf_func; 19979 else 19980 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19981 } else { 19982 if (btf_is_module(btf)) { 19983 mod = btf_try_get_module(btf); 19984 if (mod) 19985 addr = find_kallsyms_symbol_value(mod, tname); 19986 else 19987 addr = 0; 19988 } else { 19989 addr = kallsyms_lookup_name(tname); 19990 } 19991 if (!addr) { 19992 module_put(mod); 19993 bpf_log(log, 19994 "The address of function %s cannot be found\n", 19995 tname); 19996 return -ENOENT; 19997 } 19998 } 19999 20000 if (prog->aux->sleepable) { 20001 ret = -EINVAL; 20002 switch (prog->type) { 20003 case BPF_PROG_TYPE_TRACING: 20004 20005 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20006 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20007 */ 20008 if (!check_non_sleepable_error_inject(btf_id) && 20009 within_error_injection_list(addr)) 20010 ret = 0; 20011 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20012 * in the fmodret id set with the KF_SLEEPABLE flag. 20013 */ 20014 else { 20015 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20016 prog); 20017 20018 if (flags && (*flags & KF_SLEEPABLE)) 20019 ret = 0; 20020 } 20021 break; 20022 case BPF_PROG_TYPE_LSM: 20023 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20024 * Only some of them are sleepable. 20025 */ 20026 if (bpf_lsm_is_sleepable_hook(btf_id)) 20027 ret = 0; 20028 break; 20029 default: 20030 break; 20031 } 20032 if (ret) { 20033 module_put(mod); 20034 bpf_log(log, "%s is not sleepable\n", tname); 20035 return ret; 20036 } 20037 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20038 if (tgt_prog) { 20039 module_put(mod); 20040 bpf_log(log, "can't modify return codes of BPF programs\n"); 20041 return -EINVAL; 20042 } 20043 ret = -EINVAL; 20044 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20045 !check_attach_modify_return(addr, tname)) 20046 ret = 0; 20047 if (ret) { 20048 module_put(mod); 20049 bpf_log(log, "%s() is not modifiable\n", tname); 20050 return ret; 20051 } 20052 } 20053 20054 break; 20055 } 20056 tgt_info->tgt_addr = addr; 20057 tgt_info->tgt_name = tname; 20058 tgt_info->tgt_type = t; 20059 tgt_info->tgt_mod = mod; 20060 return 0; 20061 } 20062 20063 BTF_SET_START(btf_id_deny) 20064 BTF_ID_UNUSED 20065 #ifdef CONFIG_SMP 20066 BTF_ID(func, migrate_disable) 20067 BTF_ID(func, migrate_enable) 20068 #endif 20069 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20070 BTF_ID(func, rcu_read_unlock_strict) 20071 #endif 20072 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20073 BTF_ID(func, preempt_count_add) 20074 BTF_ID(func, preempt_count_sub) 20075 #endif 20076 #ifdef CONFIG_PREEMPT_RCU 20077 BTF_ID(func, __rcu_read_lock) 20078 BTF_ID(func, __rcu_read_unlock) 20079 #endif 20080 BTF_SET_END(btf_id_deny) 20081 20082 static bool can_be_sleepable(struct bpf_prog *prog) 20083 { 20084 if (prog->type == BPF_PROG_TYPE_TRACING) { 20085 switch (prog->expected_attach_type) { 20086 case BPF_TRACE_FENTRY: 20087 case BPF_TRACE_FEXIT: 20088 case BPF_MODIFY_RETURN: 20089 case BPF_TRACE_ITER: 20090 return true; 20091 default: 20092 return false; 20093 } 20094 } 20095 return prog->type == BPF_PROG_TYPE_LSM || 20096 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20097 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20098 } 20099 20100 static int check_attach_btf_id(struct bpf_verifier_env *env) 20101 { 20102 struct bpf_prog *prog = env->prog; 20103 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20104 struct bpf_attach_target_info tgt_info = {}; 20105 u32 btf_id = prog->aux->attach_btf_id; 20106 struct bpf_trampoline *tr; 20107 int ret; 20108 u64 key; 20109 20110 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20111 if (prog->aux->sleepable) 20112 /* attach_btf_id checked to be zero already */ 20113 return 0; 20114 verbose(env, "Syscall programs can only be sleepable\n"); 20115 return -EINVAL; 20116 } 20117 20118 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20119 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20120 return -EINVAL; 20121 } 20122 20123 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20124 return check_struct_ops_btf_id(env); 20125 20126 if (prog->type != BPF_PROG_TYPE_TRACING && 20127 prog->type != BPF_PROG_TYPE_LSM && 20128 prog->type != BPF_PROG_TYPE_EXT) 20129 return 0; 20130 20131 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20132 if (ret) 20133 return ret; 20134 20135 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20136 /* to make freplace equivalent to their targets, they need to 20137 * inherit env->ops and expected_attach_type for the rest of the 20138 * verification 20139 */ 20140 env->ops = bpf_verifier_ops[tgt_prog->type]; 20141 prog->expected_attach_type = tgt_prog->expected_attach_type; 20142 } 20143 20144 /* store info about the attachment target that will be used later */ 20145 prog->aux->attach_func_proto = tgt_info.tgt_type; 20146 prog->aux->attach_func_name = tgt_info.tgt_name; 20147 prog->aux->mod = tgt_info.tgt_mod; 20148 20149 if (tgt_prog) { 20150 prog->aux->saved_dst_prog_type = tgt_prog->type; 20151 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20152 } 20153 20154 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20155 prog->aux->attach_btf_trace = true; 20156 return 0; 20157 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20158 if (!bpf_iter_prog_supported(prog)) 20159 return -EINVAL; 20160 return 0; 20161 } 20162 20163 if (prog->type == BPF_PROG_TYPE_LSM) { 20164 ret = bpf_lsm_verify_prog(&env->log, prog); 20165 if (ret < 0) 20166 return ret; 20167 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20168 btf_id_set_contains(&btf_id_deny, btf_id)) { 20169 return -EINVAL; 20170 } 20171 20172 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20173 tr = bpf_trampoline_get(key, &tgt_info); 20174 if (!tr) 20175 return -ENOMEM; 20176 20177 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20178 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20179 20180 prog->aux->dst_trampoline = tr; 20181 return 0; 20182 } 20183 20184 struct btf *bpf_get_btf_vmlinux(void) 20185 { 20186 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20187 mutex_lock(&bpf_verifier_lock); 20188 if (!btf_vmlinux) 20189 btf_vmlinux = btf_parse_vmlinux(); 20190 mutex_unlock(&bpf_verifier_lock); 20191 } 20192 return btf_vmlinux; 20193 } 20194 20195 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20196 { 20197 u64 start_time = ktime_get_ns(); 20198 struct bpf_verifier_env *env; 20199 int i, len, ret = -EINVAL, err; 20200 u32 log_true_size; 20201 bool is_priv; 20202 20203 /* no program is valid */ 20204 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20205 return -EINVAL; 20206 20207 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20208 * allocate/free it every time bpf_check() is called 20209 */ 20210 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20211 if (!env) 20212 return -ENOMEM; 20213 20214 env->bt.env = env; 20215 20216 len = (*prog)->len; 20217 env->insn_aux_data = 20218 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20219 ret = -ENOMEM; 20220 if (!env->insn_aux_data) 20221 goto err_free_env; 20222 for (i = 0; i < len; i++) 20223 env->insn_aux_data[i].orig_idx = i; 20224 env->prog = *prog; 20225 env->ops = bpf_verifier_ops[env->prog->type]; 20226 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20227 is_priv = bpf_capable(); 20228 20229 bpf_get_btf_vmlinux(); 20230 20231 /* grab the mutex to protect few globals used by verifier */ 20232 if (!is_priv) 20233 mutex_lock(&bpf_verifier_lock); 20234 20235 /* user could have requested verbose verifier output 20236 * and supplied buffer to store the verification trace 20237 */ 20238 ret = bpf_vlog_init(&env->log, attr->log_level, 20239 (char __user *) (unsigned long) attr->log_buf, 20240 attr->log_size); 20241 if (ret) 20242 goto err_unlock; 20243 20244 mark_verifier_state_clean(env); 20245 20246 if (IS_ERR(btf_vmlinux)) { 20247 /* Either gcc or pahole or kernel are broken. */ 20248 verbose(env, "in-kernel BTF is malformed\n"); 20249 ret = PTR_ERR(btf_vmlinux); 20250 goto skip_full_check; 20251 } 20252 20253 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20254 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20255 env->strict_alignment = true; 20256 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20257 env->strict_alignment = false; 20258 20259 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20260 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20261 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20262 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20263 env->bpf_capable = bpf_capable(); 20264 20265 if (is_priv) 20266 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20267 20268 env->explored_states = kvcalloc(state_htab_size(env), 20269 sizeof(struct bpf_verifier_state_list *), 20270 GFP_USER); 20271 ret = -ENOMEM; 20272 if (!env->explored_states) 20273 goto skip_full_check; 20274 20275 ret = add_subprog_and_kfunc(env); 20276 if (ret < 0) 20277 goto skip_full_check; 20278 20279 ret = check_subprogs(env); 20280 if (ret < 0) 20281 goto skip_full_check; 20282 20283 ret = check_btf_info(env, attr, uattr); 20284 if (ret < 0) 20285 goto skip_full_check; 20286 20287 ret = check_attach_btf_id(env); 20288 if (ret) 20289 goto skip_full_check; 20290 20291 ret = resolve_pseudo_ldimm64(env); 20292 if (ret < 0) 20293 goto skip_full_check; 20294 20295 if (bpf_prog_is_offloaded(env->prog->aux)) { 20296 ret = bpf_prog_offload_verifier_prep(env->prog); 20297 if (ret) 20298 goto skip_full_check; 20299 } 20300 20301 ret = check_cfg(env); 20302 if (ret < 0) 20303 goto skip_full_check; 20304 20305 ret = do_check_subprogs(env); 20306 ret = ret ?: do_check_main(env); 20307 20308 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20309 ret = bpf_prog_offload_finalize(env); 20310 20311 skip_full_check: 20312 kvfree(env->explored_states); 20313 20314 if (ret == 0) 20315 ret = check_max_stack_depth(env); 20316 20317 /* instruction rewrites happen after this point */ 20318 if (ret == 0) 20319 ret = optimize_bpf_loop(env); 20320 20321 if (is_priv) { 20322 if (ret == 0) 20323 opt_hard_wire_dead_code_branches(env); 20324 if (ret == 0) 20325 ret = opt_remove_dead_code(env); 20326 if (ret == 0) 20327 ret = opt_remove_nops(env); 20328 } else { 20329 if (ret == 0) 20330 sanitize_dead_code(env); 20331 } 20332 20333 if (ret == 0) 20334 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20335 ret = convert_ctx_accesses(env); 20336 20337 if (ret == 0) 20338 ret = do_misc_fixups(env); 20339 20340 /* do 32-bit optimization after insn patching has done so those patched 20341 * insns could be handled correctly. 20342 */ 20343 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20344 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20345 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20346 : false; 20347 } 20348 20349 if (ret == 0) 20350 ret = fixup_call_args(env); 20351 20352 env->verification_time = ktime_get_ns() - start_time; 20353 print_verification_stats(env); 20354 env->prog->aux->verified_insns = env->insn_processed; 20355 20356 /* preserve original error even if log finalization is successful */ 20357 err = bpf_vlog_finalize(&env->log, &log_true_size); 20358 if (err) 20359 ret = err; 20360 20361 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20362 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20363 &log_true_size, sizeof(log_true_size))) { 20364 ret = -EFAULT; 20365 goto err_release_maps; 20366 } 20367 20368 if (ret) 20369 goto err_release_maps; 20370 20371 if (env->used_map_cnt) { 20372 /* if program passed verifier, update used_maps in bpf_prog_info */ 20373 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20374 sizeof(env->used_maps[0]), 20375 GFP_KERNEL); 20376 20377 if (!env->prog->aux->used_maps) { 20378 ret = -ENOMEM; 20379 goto err_release_maps; 20380 } 20381 20382 memcpy(env->prog->aux->used_maps, env->used_maps, 20383 sizeof(env->used_maps[0]) * env->used_map_cnt); 20384 env->prog->aux->used_map_cnt = env->used_map_cnt; 20385 } 20386 if (env->used_btf_cnt) { 20387 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20388 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20389 sizeof(env->used_btfs[0]), 20390 GFP_KERNEL); 20391 if (!env->prog->aux->used_btfs) { 20392 ret = -ENOMEM; 20393 goto err_release_maps; 20394 } 20395 20396 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20397 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20398 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20399 } 20400 if (env->used_map_cnt || env->used_btf_cnt) { 20401 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20402 * bpf_ld_imm64 instructions 20403 */ 20404 convert_pseudo_ld_imm64(env); 20405 } 20406 20407 adjust_btf_func(env); 20408 20409 err_release_maps: 20410 if (!env->prog->aux->used_maps) 20411 /* if we didn't copy map pointers into bpf_prog_info, release 20412 * them now. Otherwise free_used_maps() will release them. 20413 */ 20414 release_maps(env); 20415 if (!env->prog->aux->used_btfs) 20416 release_btfs(env); 20417 20418 /* extension progs temporarily inherit the attach_type of their targets 20419 for verification purposes, so set it back to zero before returning 20420 */ 20421 if (env->prog->type == BPF_PROG_TYPE_EXT) 20422 env->prog->expected_attach_type = 0; 20423 20424 *prog = env->prog; 20425 err_unlock: 20426 if (!is_priv) 20427 mutex_unlock(&bpf_verifier_lock); 20428 vfree(env->insn_aux_data); 20429 err_free_env: 20430 kfree(env); 20431 return ret; 20432 } 20433