xref: /openbmc/linux/kernel/bpf/verifier.c (revision ecc2aeea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_sync_callback_calling_kfunc(u32 btf_id);
546 
547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
548 {
549 	return func_id == BPF_FUNC_for_each_map_elem ||
550 	       func_id == BPF_FUNC_find_vma ||
551 	       func_id == BPF_FUNC_loop ||
552 	       func_id == BPF_FUNC_user_ringbuf_drain;
553 }
554 
555 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
556 {
557 	return func_id == BPF_FUNC_timer_set_callback;
558 }
559 
560 static bool is_callback_calling_function(enum bpf_func_id func_id)
561 {
562 	return is_sync_callback_calling_function(func_id) ||
563 	       is_async_callback_calling_function(func_id);
564 }
565 
566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
567 {
568 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
569 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
570 }
571 
572 static bool is_storage_get_function(enum bpf_func_id func_id)
573 {
574 	return func_id == BPF_FUNC_sk_storage_get ||
575 	       func_id == BPF_FUNC_inode_storage_get ||
576 	       func_id == BPF_FUNC_task_storage_get ||
577 	       func_id == BPF_FUNC_cgrp_storage_get;
578 }
579 
580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
581 					const struct bpf_map *map)
582 {
583 	int ref_obj_uses = 0;
584 
585 	if (is_ptr_cast_function(func_id))
586 		ref_obj_uses++;
587 	if (is_acquire_function(func_id, map))
588 		ref_obj_uses++;
589 	if (is_dynptr_ref_function(func_id))
590 		ref_obj_uses++;
591 
592 	return ref_obj_uses > 1;
593 }
594 
595 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
596 {
597 	return BPF_CLASS(insn->code) == BPF_STX &&
598 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
599 	       insn->imm == BPF_CMPXCHG;
600 }
601 
602 /* string representation of 'enum bpf_reg_type'
603  *
604  * Note that reg_type_str() can not appear more than once in a single verbose()
605  * statement.
606  */
607 static const char *reg_type_str(struct bpf_verifier_env *env,
608 				enum bpf_reg_type type)
609 {
610 	char postfix[16] = {0}, prefix[64] = {0};
611 	static const char * const str[] = {
612 		[NOT_INIT]		= "?",
613 		[SCALAR_VALUE]		= "scalar",
614 		[PTR_TO_CTX]		= "ctx",
615 		[CONST_PTR_TO_MAP]	= "map_ptr",
616 		[PTR_TO_MAP_VALUE]	= "map_value",
617 		[PTR_TO_STACK]		= "fp",
618 		[PTR_TO_PACKET]		= "pkt",
619 		[PTR_TO_PACKET_META]	= "pkt_meta",
620 		[PTR_TO_PACKET_END]	= "pkt_end",
621 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
622 		[PTR_TO_SOCKET]		= "sock",
623 		[PTR_TO_SOCK_COMMON]	= "sock_common",
624 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
625 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
626 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
627 		[PTR_TO_BTF_ID]		= "ptr_",
628 		[PTR_TO_MEM]		= "mem",
629 		[PTR_TO_BUF]		= "buf",
630 		[PTR_TO_FUNC]		= "func",
631 		[PTR_TO_MAP_KEY]	= "map_key",
632 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
633 	};
634 
635 	if (type & PTR_MAYBE_NULL) {
636 		if (base_type(type) == PTR_TO_BTF_ID)
637 			strncpy(postfix, "or_null_", 16);
638 		else
639 			strncpy(postfix, "_or_null", 16);
640 	}
641 
642 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
643 		 type & MEM_RDONLY ? "rdonly_" : "",
644 		 type & MEM_RINGBUF ? "ringbuf_" : "",
645 		 type & MEM_USER ? "user_" : "",
646 		 type & MEM_PERCPU ? "percpu_" : "",
647 		 type & MEM_RCU ? "rcu_" : "",
648 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
649 		 type & PTR_TRUSTED ? "trusted_" : ""
650 	);
651 
652 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
653 		 prefix, str[base_type(type)], postfix);
654 	return env->tmp_str_buf;
655 }
656 
657 static char slot_type_char[] = {
658 	[STACK_INVALID]	= '?',
659 	[STACK_SPILL]	= 'r',
660 	[STACK_MISC]	= 'm',
661 	[STACK_ZERO]	= '0',
662 	[STACK_DYNPTR]	= 'd',
663 	[STACK_ITER]	= 'i',
664 };
665 
666 static void print_liveness(struct bpf_verifier_env *env,
667 			   enum bpf_reg_liveness live)
668 {
669 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
670 	    verbose(env, "_");
671 	if (live & REG_LIVE_READ)
672 		verbose(env, "r");
673 	if (live & REG_LIVE_WRITTEN)
674 		verbose(env, "w");
675 	if (live & REG_LIVE_DONE)
676 		verbose(env, "D");
677 }
678 
679 static int __get_spi(s32 off)
680 {
681 	return (-off - 1) / BPF_REG_SIZE;
682 }
683 
684 static struct bpf_func_state *func(struct bpf_verifier_env *env,
685 				   const struct bpf_reg_state *reg)
686 {
687 	struct bpf_verifier_state *cur = env->cur_state;
688 
689 	return cur->frame[reg->frameno];
690 }
691 
692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
693 {
694        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
695 
696        /* We need to check that slots between [spi - nr_slots + 1, spi] are
697 	* within [0, allocated_stack).
698 	*
699 	* Please note that the spi grows downwards. For example, a dynptr
700 	* takes the size of two stack slots; the first slot will be at
701 	* spi and the second slot will be at spi - 1.
702 	*/
703        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
704 }
705 
706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
707 			          const char *obj_kind, int nr_slots)
708 {
709 	int off, spi;
710 
711 	if (!tnum_is_const(reg->var_off)) {
712 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
713 		return -EINVAL;
714 	}
715 
716 	off = reg->off + reg->var_off.value;
717 	if (off % BPF_REG_SIZE) {
718 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
719 		return -EINVAL;
720 	}
721 
722 	spi = __get_spi(off);
723 	if (spi + 1 < nr_slots) {
724 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
725 		return -EINVAL;
726 	}
727 
728 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
729 		return -ERANGE;
730 	return spi;
731 }
732 
733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
734 {
735 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
736 }
737 
738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
739 {
740 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
741 }
742 
743 static const char *btf_type_name(const struct btf *btf, u32 id)
744 {
745 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
746 }
747 
748 static const char *dynptr_type_str(enum bpf_dynptr_type type)
749 {
750 	switch (type) {
751 	case BPF_DYNPTR_TYPE_LOCAL:
752 		return "local";
753 	case BPF_DYNPTR_TYPE_RINGBUF:
754 		return "ringbuf";
755 	case BPF_DYNPTR_TYPE_SKB:
756 		return "skb";
757 	case BPF_DYNPTR_TYPE_XDP:
758 		return "xdp";
759 	case BPF_DYNPTR_TYPE_INVALID:
760 		return "<invalid>";
761 	default:
762 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
763 		return "<unknown>";
764 	}
765 }
766 
767 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
768 {
769 	if (!btf || btf_id == 0)
770 		return "<invalid>";
771 
772 	/* we already validated that type is valid and has conforming name */
773 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
774 }
775 
776 static const char *iter_state_str(enum bpf_iter_state state)
777 {
778 	switch (state) {
779 	case BPF_ITER_STATE_ACTIVE:
780 		return "active";
781 	case BPF_ITER_STATE_DRAINED:
782 		return "drained";
783 	case BPF_ITER_STATE_INVALID:
784 		return "<invalid>";
785 	default:
786 		WARN_ONCE(1, "unknown iter state %d\n", state);
787 		return "<unknown>";
788 	}
789 }
790 
791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
792 {
793 	env->scratched_regs |= 1U << regno;
794 }
795 
796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
797 {
798 	env->scratched_stack_slots |= 1ULL << spi;
799 }
800 
801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
802 {
803 	return (env->scratched_regs >> regno) & 1;
804 }
805 
806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
807 {
808 	return (env->scratched_stack_slots >> regno) & 1;
809 }
810 
811 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
812 {
813 	return env->scratched_regs || env->scratched_stack_slots;
814 }
815 
816 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
817 {
818 	env->scratched_regs = 0U;
819 	env->scratched_stack_slots = 0ULL;
820 }
821 
822 /* Used for printing the entire verifier state. */
823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
824 {
825 	env->scratched_regs = ~0U;
826 	env->scratched_stack_slots = ~0ULL;
827 }
828 
829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
830 {
831 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
832 	case DYNPTR_TYPE_LOCAL:
833 		return BPF_DYNPTR_TYPE_LOCAL;
834 	case DYNPTR_TYPE_RINGBUF:
835 		return BPF_DYNPTR_TYPE_RINGBUF;
836 	case DYNPTR_TYPE_SKB:
837 		return BPF_DYNPTR_TYPE_SKB;
838 	case DYNPTR_TYPE_XDP:
839 		return BPF_DYNPTR_TYPE_XDP;
840 	default:
841 		return BPF_DYNPTR_TYPE_INVALID;
842 	}
843 }
844 
845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
846 {
847 	switch (type) {
848 	case BPF_DYNPTR_TYPE_LOCAL:
849 		return DYNPTR_TYPE_LOCAL;
850 	case BPF_DYNPTR_TYPE_RINGBUF:
851 		return DYNPTR_TYPE_RINGBUF;
852 	case BPF_DYNPTR_TYPE_SKB:
853 		return DYNPTR_TYPE_SKB;
854 	case BPF_DYNPTR_TYPE_XDP:
855 		return DYNPTR_TYPE_XDP;
856 	default:
857 		return 0;
858 	}
859 }
860 
861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
862 {
863 	return type == BPF_DYNPTR_TYPE_RINGBUF;
864 }
865 
866 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
867 			      enum bpf_dynptr_type type,
868 			      bool first_slot, int dynptr_id);
869 
870 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
871 				struct bpf_reg_state *reg);
872 
873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
874 				   struct bpf_reg_state *sreg1,
875 				   struct bpf_reg_state *sreg2,
876 				   enum bpf_dynptr_type type)
877 {
878 	int id = ++env->id_gen;
879 
880 	__mark_dynptr_reg(sreg1, type, true, id);
881 	__mark_dynptr_reg(sreg2, type, false, id);
882 }
883 
884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
885 			       struct bpf_reg_state *reg,
886 			       enum bpf_dynptr_type type)
887 {
888 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
889 }
890 
891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
892 				        struct bpf_func_state *state, int spi);
893 
894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
895 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
896 {
897 	struct bpf_func_state *state = func(env, reg);
898 	enum bpf_dynptr_type type;
899 	int spi, i, err;
900 
901 	spi = dynptr_get_spi(env, reg);
902 	if (spi < 0)
903 		return spi;
904 
905 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
906 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
907 	 * to ensure that for the following example:
908 	 *	[d1][d1][d2][d2]
909 	 * spi    3   2   1   0
910 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
911 	 * case they do belong to same dynptr, second call won't see slot_type
912 	 * as STACK_DYNPTR and will simply skip destruction.
913 	 */
914 	err = destroy_if_dynptr_stack_slot(env, state, spi);
915 	if (err)
916 		return err;
917 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
918 	if (err)
919 		return err;
920 
921 	for (i = 0; i < BPF_REG_SIZE; i++) {
922 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
923 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
924 	}
925 
926 	type = arg_to_dynptr_type(arg_type);
927 	if (type == BPF_DYNPTR_TYPE_INVALID)
928 		return -EINVAL;
929 
930 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
931 			       &state->stack[spi - 1].spilled_ptr, type);
932 
933 	if (dynptr_type_refcounted(type)) {
934 		/* The id is used to track proper releasing */
935 		int id;
936 
937 		if (clone_ref_obj_id)
938 			id = clone_ref_obj_id;
939 		else
940 			id = acquire_reference_state(env, insn_idx);
941 
942 		if (id < 0)
943 			return id;
944 
945 		state->stack[spi].spilled_ptr.ref_obj_id = id;
946 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
947 	}
948 
949 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
950 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
951 
952 	return 0;
953 }
954 
955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
956 {
957 	int i;
958 
959 	for (i = 0; i < BPF_REG_SIZE; i++) {
960 		state->stack[spi].slot_type[i] = STACK_INVALID;
961 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
962 	}
963 
964 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
965 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
966 
967 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
968 	 *
969 	 * While we don't allow reading STACK_INVALID, it is still possible to
970 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
971 	 * helpers or insns can do partial read of that part without failing,
972 	 * but check_stack_range_initialized, check_stack_read_var_off, and
973 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
974 	 * the slot conservatively. Hence we need to prevent those liveness
975 	 * marking walks.
976 	 *
977 	 * This was not a problem before because STACK_INVALID is only set by
978 	 * default (where the default reg state has its reg->parent as NULL), or
979 	 * in clean_live_states after REG_LIVE_DONE (at which point
980 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
981 	 * verifier state exploration (like we did above). Hence, for our case
982 	 * parentage chain will still be live (i.e. reg->parent may be
983 	 * non-NULL), while earlier reg->parent was NULL, so we need
984 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
985 	 * done later on reads or by mark_dynptr_read as well to unnecessary
986 	 * mark registers in verifier state.
987 	 */
988 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
989 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
990 }
991 
992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
993 {
994 	struct bpf_func_state *state = func(env, reg);
995 	int spi, ref_obj_id, i;
996 
997 	spi = dynptr_get_spi(env, reg);
998 	if (spi < 0)
999 		return spi;
1000 
1001 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1002 		invalidate_dynptr(env, state, spi);
1003 		return 0;
1004 	}
1005 
1006 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
1007 
1008 	/* If the dynptr has a ref_obj_id, then we need to invalidate
1009 	 * two things:
1010 	 *
1011 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1012 	 * 2) Any slices derived from this dynptr.
1013 	 */
1014 
1015 	/* Invalidate any slices associated with this dynptr */
1016 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1017 
1018 	/* Invalidate any dynptr clones */
1019 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1020 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1021 			continue;
1022 
1023 		/* it should always be the case that if the ref obj id
1024 		 * matches then the stack slot also belongs to a
1025 		 * dynptr
1026 		 */
1027 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1028 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1029 			return -EFAULT;
1030 		}
1031 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1032 			invalidate_dynptr(env, state, i);
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1039 			       struct bpf_reg_state *reg);
1040 
1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1042 {
1043 	if (!env->allow_ptr_leaks)
1044 		__mark_reg_not_init(env, reg);
1045 	else
1046 		__mark_reg_unknown(env, reg);
1047 }
1048 
1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1050 				        struct bpf_func_state *state, int spi)
1051 {
1052 	struct bpf_func_state *fstate;
1053 	struct bpf_reg_state *dreg;
1054 	int i, dynptr_id;
1055 
1056 	/* We always ensure that STACK_DYNPTR is never set partially,
1057 	 * hence just checking for slot_type[0] is enough. This is
1058 	 * different for STACK_SPILL, where it may be only set for
1059 	 * 1 byte, so code has to use is_spilled_reg.
1060 	 */
1061 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1062 		return 0;
1063 
1064 	/* Reposition spi to first slot */
1065 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1066 		spi = spi + 1;
1067 
1068 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1069 		verbose(env, "cannot overwrite referenced dynptr\n");
1070 		return -EINVAL;
1071 	}
1072 
1073 	mark_stack_slot_scratched(env, spi);
1074 	mark_stack_slot_scratched(env, spi - 1);
1075 
1076 	/* Writing partially to one dynptr stack slot destroys both. */
1077 	for (i = 0; i < BPF_REG_SIZE; i++) {
1078 		state->stack[spi].slot_type[i] = STACK_INVALID;
1079 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1080 	}
1081 
1082 	dynptr_id = state->stack[spi].spilled_ptr.id;
1083 	/* Invalidate any slices associated with this dynptr */
1084 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1085 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1086 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1087 			continue;
1088 		if (dreg->dynptr_id == dynptr_id)
1089 			mark_reg_invalid(env, dreg);
1090 	}));
1091 
1092 	/* Do not release reference state, we are destroying dynptr on stack,
1093 	 * not using some helper to release it. Just reset register.
1094 	 */
1095 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1096 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1097 
1098 	/* Same reason as unmark_stack_slots_dynptr above */
1099 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1100 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1101 
1102 	return 0;
1103 }
1104 
1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1106 {
1107 	int spi;
1108 
1109 	if (reg->type == CONST_PTR_TO_DYNPTR)
1110 		return false;
1111 
1112 	spi = dynptr_get_spi(env, reg);
1113 
1114 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1115 	 * error because this just means the stack state hasn't been updated yet.
1116 	 * We will do check_mem_access to check and update stack bounds later.
1117 	 */
1118 	if (spi < 0 && spi != -ERANGE)
1119 		return false;
1120 
1121 	/* We don't need to check if the stack slots are marked by previous
1122 	 * dynptr initializations because we allow overwriting existing unreferenced
1123 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1124 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1125 	 * touching are completely destructed before we reinitialize them for a new
1126 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1127 	 * instead of delaying it until the end where the user will get "Unreleased
1128 	 * reference" error.
1129 	 */
1130 	return true;
1131 }
1132 
1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1134 {
1135 	struct bpf_func_state *state = func(env, reg);
1136 	int i, spi;
1137 
1138 	/* This already represents first slot of initialized bpf_dynptr.
1139 	 *
1140 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1141 	 * check_func_arg_reg_off's logic, so we don't need to check its
1142 	 * offset and alignment.
1143 	 */
1144 	if (reg->type == CONST_PTR_TO_DYNPTR)
1145 		return true;
1146 
1147 	spi = dynptr_get_spi(env, reg);
1148 	if (spi < 0)
1149 		return false;
1150 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1151 		return false;
1152 
1153 	for (i = 0; i < BPF_REG_SIZE; i++) {
1154 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1155 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1156 			return false;
1157 	}
1158 
1159 	return true;
1160 }
1161 
1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1163 				    enum bpf_arg_type arg_type)
1164 {
1165 	struct bpf_func_state *state = func(env, reg);
1166 	enum bpf_dynptr_type dynptr_type;
1167 	int spi;
1168 
1169 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1170 	if (arg_type == ARG_PTR_TO_DYNPTR)
1171 		return true;
1172 
1173 	dynptr_type = arg_to_dynptr_type(arg_type);
1174 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1175 		return reg->dynptr.type == dynptr_type;
1176 	} else {
1177 		spi = dynptr_get_spi(env, reg);
1178 		if (spi < 0)
1179 			return false;
1180 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1181 	}
1182 }
1183 
1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1185 
1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1187 				 struct bpf_reg_state *reg, int insn_idx,
1188 				 struct btf *btf, u32 btf_id, int nr_slots)
1189 {
1190 	struct bpf_func_state *state = func(env, reg);
1191 	int spi, i, j, id;
1192 
1193 	spi = iter_get_spi(env, reg, nr_slots);
1194 	if (spi < 0)
1195 		return spi;
1196 
1197 	id = acquire_reference_state(env, insn_idx);
1198 	if (id < 0)
1199 		return id;
1200 
1201 	for (i = 0; i < nr_slots; i++) {
1202 		struct bpf_stack_state *slot = &state->stack[spi - i];
1203 		struct bpf_reg_state *st = &slot->spilled_ptr;
1204 
1205 		__mark_reg_known_zero(st);
1206 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1207 		st->live |= REG_LIVE_WRITTEN;
1208 		st->ref_obj_id = i == 0 ? id : 0;
1209 		st->iter.btf = btf;
1210 		st->iter.btf_id = btf_id;
1211 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1212 		st->iter.depth = 0;
1213 
1214 		for (j = 0; j < BPF_REG_SIZE; j++)
1215 			slot->slot_type[j] = STACK_ITER;
1216 
1217 		mark_stack_slot_scratched(env, spi - i);
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1224 				   struct bpf_reg_state *reg, int nr_slots)
1225 {
1226 	struct bpf_func_state *state = func(env, reg);
1227 	int spi, i, j;
1228 
1229 	spi = iter_get_spi(env, reg, nr_slots);
1230 	if (spi < 0)
1231 		return spi;
1232 
1233 	for (i = 0; i < nr_slots; i++) {
1234 		struct bpf_stack_state *slot = &state->stack[spi - i];
1235 		struct bpf_reg_state *st = &slot->spilled_ptr;
1236 
1237 		if (i == 0)
1238 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1239 
1240 		__mark_reg_not_init(env, st);
1241 
1242 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1243 		st->live |= REG_LIVE_WRITTEN;
1244 
1245 		for (j = 0; j < BPF_REG_SIZE; j++)
1246 			slot->slot_type[j] = STACK_INVALID;
1247 
1248 		mark_stack_slot_scratched(env, spi - i);
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1255 				     struct bpf_reg_state *reg, int nr_slots)
1256 {
1257 	struct bpf_func_state *state = func(env, reg);
1258 	int spi, i, j;
1259 
1260 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1261 	 * will do check_mem_access to check and update stack bounds later, so
1262 	 * return true for that case.
1263 	 */
1264 	spi = iter_get_spi(env, reg, nr_slots);
1265 	if (spi == -ERANGE)
1266 		return true;
1267 	if (spi < 0)
1268 		return false;
1269 
1270 	for (i = 0; i < nr_slots; i++) {
1271 		struct bpf_stack_state *slot = &state->stack[spi - i];
1272 
1273 		for (j = 0; j < BPF_REG_SIZE; j++)
1274 			if (slot->slot_type[j] == STACK_ITER)
1275 				return false;
1276 	}
1277 
1278 	return true;
1279 }
1280 
1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1282 				   struct btf *btf, u32 btf_id, int nr_slots)
1283 {
1284 	struct bpf_func_state *state = func(env, reg);
1285 	int spi, i, j;
1286 
1287 	spi = iter_get_spi(env, reg, nr_slots);
1288 	if (spi < 0)
1289 		return false;
1290 
1291 	for (i = 0; i < nr_slots; i++) {
1292 		struct bpf_stack_state *slot = &state->stack[spi - i];
1293 		struct bpf_reg_state *st = &slot->spilled_ptr;
1294 
1295 		/* only main (first) slot has ref_obj_id set */
1296 		if (i == 0 && !st->ref_obj_id)
1297 			return false;
1298 		if (i != 0 && st->ref_obj_id)
1299 			return false;
1300 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1301 			return false;
1302 
1303 		for (j = 0; j < BPF_REG_SIZE; j++)
1304 			if (slot->slot_type[j] != STACK_ITER)
1305 				return false;
1306 	}
1307 
1308 	return true;
1309 }
1310 
1311 /* Check if given stack slot is "special":
1312  *   - spilled register state (STACK_SPILL);
1313  *   - dynptr state (STACK_DYNPTR);
1314  *   - iter state (STACK_ITER).
1315  */
1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1317 {
1318 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319 
1320 	switch (type) {
1321 	case STACK_SPILL:
1322 	case STACK_DYNPTR:
1323 	case STACK_ITER:
1324 		return true;
1325 	case STACK_INVALID:
1326 	case STACK_MISC:
1327 	case STACK_ZERO:
1328 		return false;
1329 	default:
1330 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1331 		return true;
1332 	}
1333 }
1334 
1335 /* The reg state of a pointer or a bounded scalar was saved when
1336  * it was spilled to the stack.
1337  */
1338 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1339 {
1340 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1341 }
1342 
1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1344 {
1345 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1346 	       stack->spilled_ptr.type == SCALAR_VALUE;
1347 }
1348 
1349 static void scrub_spilled_slot(u8 *stype)
1350 {
1351 	if (*stype != STACK_INVALID)
1352 		*stype = STACK_MISC;
1353 }
1354 
1355 static void print_verifier_state(struct bpf_verifier_env *env,
1356 				 const struct bpf_func_state *state,
1357 				 bool print_all)
1358 {
1359 	const struct bpf_reg_state *reg;
1360 	enum bpf_reg_type t;
1361 	int i;
1362 
1363 	if (state->frameno)
1364 		verbose(env, " frame%d:", state->frameno);
1365 	for (i = 0; i < MAX_BPF_REG; i++) {
1366 		reg = &state->regs[i];
1367 		t = reg->type;
1368 		if (t == NOT_INIT)
1369 			continue;
1370 		if (!print_all && !reg_scratched(env, i))
1371 			continue;
1372 		verbose(env, " R%d", i);
1373 		print_liveness(env, reg->live);
1374 		verbose(env, "=");
1375 		if (t == SCALAR_VALUE && reg->precise)
1376 			verbose(env, "P");
1377 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1378 		    tnum_is_const(reg->var_off)) {
1379 			/* reg->off should be 0 for SCALAR_VALUE */
1380 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1381 			verbose(env, "%lld", reg->var_off.value + reg->off);
1382 		} else {
1383 			const char *sep = "";
1384 
1385 			verbose(env, "%s", reg_type_str(env, t));
1386 			if (base_type(t) == PTR_TO_BTF_ID)
1387 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1388 			verbose(env, "(");
1389 /*
1390  * _a stands for append, was shortened to avoid multiline statements below.
1391  * This macro is used to output a comma separated list of attributes.
1392  */
1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1394 
1395 			if (reg->id)
1396 				verbose_a("id=%d", reg->id);
1397 			if (reg->ref_obj_id)
1398 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1399 			if (type_is_non_owning_ref(reg->type))
1400 				verbose_a("%s", "non_own_ref");
1401 			if (t != SCALAR_VALUE)
1402 				verbose_a("off=%d", reg->off);
1403 			if (type_is_pkt_pointer(t))
1404 				verbose_a("r=%d", reg->range);
1405 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1406 				 base_type(t) == PTR_TO_MAP_KEY ||
1407 				 base_type(t) == PTR_TO_MAP_VALUE)
1408 				verbose_a("ks=%d,vs=%d",
1409 					  reg->map_ptr->key_size,
1410 					  reg->map_ptr->value_size);
1411 			if (tnum_is_const(reg->var_off)) {
1412 				/* Typically an immediate SCALAR_VALUE, but
1413 				 * could be a pointer whose offset is too big
1414 				 * for reg->off
1415 				 */
1416 				verbose_a("imm=%llx", reg->var_off.value);
1417 			} else {
1418 				if (reg->smin_value != reg->umin_value &&
1419 				    reg->smin_value != S64_MIN)
1420 					verbose_a("smin=%lld", (long long)reg->smin_value);
1421 				if (reg->smax_value != reg->umax_value &&
1422 				    reg->smax_value != S64_MAX)
1423 					verbose_a("smax=%lld", (long long)reg->smax_value);
1424 				if (reg->umin_value != 0)
1425 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1426 				if (reg->umax_value != U64_MAX)
1427 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1428 				if (!tnum_is_unknown(reg->var_off)) {
1429 					char tn_buf[48];
1430 
1431 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 					verbose_a("var_off=%s", tn_buf);
1433 				}
1434 				if (reg->s32_min_value != reg->smin_value &&
1435 				    reg->s32_min_value != S32_MIN)
1436 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1437 				if (reg->s32_max_value != reg->smax_value &&
1438 				    reg->s32_max_value != S32_MAX)
1439 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1440 				if (reg->u32_min_value != reg->umin_value &&
1441 				    reg->u32_min_value != U32_MIN)
1442 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1443 				if (reg->u32_max_value != reg->umax_value &&
1444 				    reg->u32_max_value != U32_MAX)
1445 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1446 			}
1447 #undef verbose_a
1448 
1449 			verbose(env, ")");
1450 		}
1451 	}
1452 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1453 		char types_buf[BPF_REG_SIZE + 1];
1454 		bool valid = false;
1455 		int j;
1456 
1457 		for (j = 0; j < BPF_REG_SIZE; j++) {
1458 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1459 				valid = true;
1460 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1461 		}
1462 		types_buf[BPF_REG_SIZE] = 0;
1463 		if (!valid)
1464 			continue;
1465 		if (!print_all && !stack_slot_scratched(env, i))
1466 			continue;
1467 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1468 		case STACK_SPILL:
1469 			reg = &state->stack[i].spilled_ptr;
1470 			t = reg->type;
1471 
1472 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1473 			print_liveness(env, reg->live);
1474 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1475 			if (t == SCALAR_VALUE && reg->precise)
1476 				verbose(env, "P");
1477 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1478 				verbose(env, "%lld", reg->var_off.value + reg->off);
1479 			break;
1480 		case STACK_DYNPTR:
1481 			i += BPF_DYNPTR_NR_SLOTS - 1;
1482 			reg = &state->stack[i].spilled_ptr;
1483 
1484 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1485 			print_liveness(env, reg->live);
1486 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1487 			if (reg->ref_obj_id)
1488 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1489 			break;
1490 		case STACK_ITER:
1491 			/* only main slot has ref_obj_id set; skip others */
1492 			reg = &state->stack[i].spilled_ptr;
1493 			if (!reg->ref_obj_id)
1494 				continue;
1495 
1496 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1497 			print_liveness(env, reg->live);
1498 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1499 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1500 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1501 				reg->iter.depth);
1502 			break;
1503 		case STACK_MISC:
1504 		case STACK_ZERO:
1505 		default:
1506 			reg = &state->stack[i].spilled_ptr;
1507 
1508 			for (j = 0; j < BPF_REG_SIZE; j++)
1509 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1510 			types_buf[BPF_REG_SIZE] = 0;
1511 
1512 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1513 			print_liveness(env, reg->live);
1514 			verbose(env, "=%s", types_buf);
1515 			break;
1516 		}
1517 	}
1518 	if (state->acquired_refs && state->refs[0].id) {
1519 		verbose(env, " refs=%d", state->refs[0].id);
1520 		for (i = 1; i < state->acquired_refs; i++)
1521 			if (state->refs[i].id)
1522 				verbose(env, ",%d", state->refs[i].id);
1523 	}
1524 	if (state->in_callback_fn)
1525 		verbose(env, " cb");
1526 	if (state->in_async_callback_fn)
1527 		verbose(env, " async_cb");
1528 	verbose(env, "\n");
1529 	if (!print_all)
1530 		mark_verifier_state_clean(env);
1531 }
1532 
1533 static inline u32 vlog_alignment(u32 pos)
1534 {
1535 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1536 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1537 }
1538 
1539 static void print_insn_state(struct bpf_verifier_env *env,
1540 			     const struct bpf_func_state *state)
1541 {
1542 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1543 		/* remove new line character */
1544 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1545 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1546 	} else {
1547 		verbose(env, "%d:", env->insn_idx);
1548 	}
1549 	print_verifier_state(env, state, false);
1550 }
1551 
1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1553  * small to hold src. This is different from krealloc since we don't want to preserve
1554  * the contents of dst.
1555  *
1556  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1557  * not be allocated.
1558  */
1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1560 {
1561 	size_t alloc_bytes;
1562 	void *orig = dst;
1563 	size_t bytes;
1564 
1565 	if (ZERO_OR_NULL_PTR(src))
1566 		goto out;
1567 
1568 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1569 		return NULL;
1570 
1571 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1572 	dst = krealloc(orig, alloc_bytes, flags);
1573 	if (!dst) {
1574 		kfree(orig);
1575 		return NULL;
1576 	}
1577 
1578 	memcpy(dst, src, bytes);
1579 out:
1580 	return dst ? dst : ZERO_SIZE_PTR;
1581 }
1582 
1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1584  * small to hold new_n items. new items are zeroed out if the array grows.
1585  *
1586  * Contrary to krealloc_array, does not free arr if new_n is zero.
1587  */
1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1589 {
1590 	size_t alloc_size;
1591 	void *new_arr;
1592 
1593 	if (!new_n || old_n == new_n)
1594 		goto out;
1595 
1596 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1597 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1598 	if (!new_arr) {
1599 		kfree(arr);
1600 		return NULL;
1601 	}
1602 	arr = new_arr;
1603 
1604 	if (new_n > old_n)
1605 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1606 
1607 out:
1608 	return arr ? arr : ZERO_SIZE_PTR;
1609 }
1610 
1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1614 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1615 	if (!dst->refs)
1616 		return -ENOMEM;
1617 
1618 	dst->acquired_refs = src->acquired_refs;
1619 	return 0;
1620 }
1621 
1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1623 {
1624 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1625 
1626 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1627 				GFP_KERNEL);
1628 	if (!dst->stack)
1629 		return -ENOMEM;
1630 
1631 	dst->allocated_stack = src->allocated_stack;
1632 	return 0;
1633 }
1634 
1635 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1636 {
1637 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1638 				    sizeof(struct bpf_reference_state));
1639 	if (!state->refs)
1640 		return -ENOMEM;
1641 
1642 	state->acquired_refs = n;
1643 	return 0;
1644 }
1645 
1646 /* Possibly update state->allocated_stack to be at least size bytes. Also
1647  * possibly update the function's high-water mark in its bpf_subprog_info.
1648  */
1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1650 {
1651 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1652 
1653 	if (old_n >= n)
1654 		return 0;
1655 
1656 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1657 	if (!state->stack)
1658 		return -ENOMEM;
1659 
1660 	state->allocated_stack = size;
1661 
1662 	/* update known max for given subprogram */
1663 	if (env->subprog_info[state->subprogno].stack_depth < size)
1664 		env->subprog_info[state->subprogno].stack_depth = size;
1665 
1666 	return 0;
1667 }
1668 
1669 /* Acquire a pointer id from the env and update the state->refs to include
1670  * this new pointer reference.
1671  * On success, returns a valid pointer id to associate with the register
1672  * On failure, returns a negative errno.
1673  */
1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1675 {
1676 	struct bpf_func_state *state = cur_func(env);
1677 	int new_ofs = state->acquired_refs;
1678 	int id, err;
1679 
1680 	err = resize_reference_state(state, state->acquired_refs + 1);
1681 	if (err)
1682 		return err;
1683 	id = ++env->id_gen;
1684 	state->refs[new_ofs].id = id;
1685 	state->refs[new_ofs].insn_idx = insn_idx;
1686 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1687 
1688 	return id;
1689 }
1690 
1691 /* release function corresponding to acquire_reference_state(). Idempotent. */
1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1693 {
1694 	int i, last_idx;
1695 
1696 	last_idx = state->acquired_refs - 1;
1697 	for (i = 0; i < state->acquired_refs; i++) {
1698 		if (state->refs[i].id == ptr_id) {
1699 			/* Cannot release caller references in callbacks */
1700 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1701 				return -EINVAL;
1702 			if (last_idx && i != last_idx)
1703 				memcpy(&state->refs[i], &state->refs[last_idx],
1704 				       sizeof(*state->refs));
1705 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1706 			state->acquired_refs--;
1707 			return 0;
1708 		}
1709 	}
1710 	return -EINVAL;
1711 }
1712 
1713 static void free_func_state(struct bpf_func_state *state)
1714 {
1715 	if (!state)
1716 		return;
1717 	kfree(state->refs);
1718 	kfree(state->stack);
1719 	kfree(state);
1720 }
1721 
1722 static void clear_jmp_history(struct bpf_verifier_state *state)
1723 {
1724 	kfree(state->jmp_history);
1725 	state->jmp_history = NULL;
1726 	state->jmp_history_cnt = 0;
1727 }
1728 
1729 static void free_verifier_state(struct bpf_verifier_state *state,
1730 				bool free_self)
1731 {
1732 	int i;
1733 
1734 	for (i = 0; i <= state->curframe; i++) {
1735 		free_func_state(state->frame[i]);
1736 		state->frame[i] = NULL;
1737 	}
1738 	clear_jmp_history(state);
1739 	if (free_self)
1740 		kfree(state);
1741 }
1742 
1743 /* copy verifier state from src to dst growing dst stack space
1744  * when necessary to accommodate larger src stack
1745  */
1746 static int copy_func_state(struct bpf_func_state *dst,
1747 			   const struct bpf_func_state *src)
1748 {
1749 	int err;
1750 
1751 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1752 	err = copy_reference_state(dst, src);
1753 	if (err)
1754 		return err;
1755 	return copy_stack_state(dst, src);
1756 }
1757 
1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1759 			       const struct bpf_verifier_state *src)
1760 {
1761 	struct bpf_func_state *dst;
1762 	int i, err;
1763 
1764 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1765 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1766 					  GFP_USER);
1767 	if (!dst_state->jmp_history)
1768 		return -ENOMEM;
1769 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1770 
1771 	/* if dst has more stack frames then src frame, free them */
1772 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1773 		free_func_state(dst_state->frame[i]);
1774 		dst_state->frame[i] = NULL;
1775 	}
1776 	dst_state->speculative = src->speculative;
1777 	dst_state->active_rcu_lock = src->active_rcu_lock;
1778 	dst_state->curframe = src->curframe;
1779 	dst_state->active_lock.ptr = src->active_lock.ptr;
1780 	dst_state->active_lock.id = src->active_lock.id;
1781 	dst_state->branches = src->branches;
1782 	dst_state->parent = src->parent;
1783 	dst_state->first_insn_idx = src->first_insn_idx;
1784 	dst_state->last_insn_idx = src->last_insn_idx;
1785 	dst_state->dfs_depth = src->dfs_depth;
1786 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1787 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1788 	for (i = 0; i <= src->curframe; i++) {
1789 		dst = dst_state->frame[i];
1790 		if (!dst) {
1791 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1792 			if (!dst)
1793 				return -ENOMEM;
1794 			dst_state->frame[i] = dst;
1795 		}
1796 		err = copy_func_state(dst, src->frame[i]);
1797 		if (err)
1798 			return err;
1799 	}
1800 	return 0;
1801 }
1802 
1803 static u32 state_htab_size(struct bpf_verifier_env *env)
1804 {
1805 	return env->prog->len;
1806 }
1807 
1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1809 {
1810 	struct bpf_verifier_state *cur = env->cur_state;
1811 	struct bpf_func_state *state = cur->frame[cur->curframe];
1812 
1813 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1814 }
1815 
1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1817 {
1818 	int fr;
1819 
1820 	if (a->curframe != b->curframe)
1821 		return false;
1822 
1823 	for (fr = a->curframe; fr >= 0; fr--)
1824 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1825 			return false;
1826 
1827 	return true;
1828 }
1829 
1830 /* Open coded iterators allow back-edges in the state graph in order to
1831  * check unbounded loops that iterators.
1832  *
1833  * In is_state_visited() it is necessary to know if explored states are
1834  * part of some loops in order to decide whether non-exact states
1835  * comparison could be used:
1836  * - non-exact states comparison establishes sub-state relation and uses
1837  *   read and precision marks to do so, these marks are propagated from
1838  *   children states and thus are not guaranteed to be final in a loop;
1839  * - exact states comparison just checks if current and explored states
1840  *   are identical (and thus form a back-edge).
1841  *
1842  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1843  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1844  * algorithm for loop structure detection and gives an overview of
1845  * relevant terminology. It also has helpful illustrations.
1846  *
1847  * [1] https://api.semanticscholar.org/CorpusID:15784067
1848  *
1849  * We use a similar algorithm but because loop nested structure is
1850  * irrelevant for verifier ours is significantly simpler and resembles
1851  * strongly connected components algorithm from Sedgewick's textbook.
1852  *
1853  * Define topmost loop entry as a first node of the loop traversed in a
1854  * depth first search starting from initial state. The goal of the loop
1855  * tracking algorithm is to associate topmost loop entries with states
1856  * derived from these entries.
1857  *
1858  * For each step in the DFS states traversal algorithm needs to identify
1859  * the following situations:
1860  *
1861  *          initial                     initial                   initial
1862  *            |                           |                         |
1863  *            V                           V                         V
1864  *           ...                         ...           .---------> hdr
1865  *            |                           |            |            |
1866  *            V                           V            |            V
1867  *           cur                     .-> succ          |    .------...
1868  *            |                      |    |            |    |       |
1869  *            V                      |    V            |    V       V
1870  *           succ                    '-- cur           |   ...     ...
1871  *                                                     |    |       |
1872  *                                                     |    V       V
1873  *                                                     |   succ <- cur
1874  *                                                     |    |
1875  *                                                     |    V
1876  *                                                     |   ...
1877  *                                                     |    |
1878  *                                                     '----'
1879  *
1880  *  (A) successor state of cur   (B) successor state of cur or it's entry
1881  *      not yet traversed            are in current DFS path, thus cur and succ
1882  *                                   are members of the same outermost loop
1883  *
1884  *                      initial                  initial
1885  *                        |                        |
1886  *                        V                        V
1887  *                       ...                      ...
1888  *                        |                        |
1889  *                        V                        V
1890  *                .------...               .------...
1891  *                |       |                |       |
1892  *                V       V                V       V
1893  *           .-> hdr     ...              ...     ...
1894  *           |    |       |                |       |
1895  *           |    V       V                V       V
1896  *           |   succ <- cur              succ <- cur
1897  *           |    |                        |
1898  *           |    V                        V
1899  *           |   ...                      ...
1900  *           |    |                        |
1901  *           '----'                       exit
1902  *
1903  * (C) successor state of cur is a part of some loop but this loop
1904  *     does not include cur or successor state is not in a loop at all.
1905  *
1906  * Algorithm could be described as the following python code:
1907  *
1908  *     traversed = set()   # Set of traversed nodes
1909  *     entries = {}        # Mapping from node to loop entry
1910  *     depths = {}         # Depth level assigned to graph node
1911  *     path = set()        # Current DFS path
1912  *
1913  *     # Find outermost loop entry known for n
1914  *     def get_loop_entry(n):
1915  *         h = entries.get(n, None)
1916  *         while h in entries and entries[h] != h:
1917  *             h = entries[h]
1918  *         return h
1919  *
1920  *     # Update n's loop entry if h's outermost entry comes
1921  *     # before n's outermost entry in current DFS path.
1922  *     def update_loop_entry(n, h):
1923  *         n1 = get_loop_entry(n) or n
1924  *         h1 = get_loop_entry(h) or h
1925  *         if h1 in path and depths[h1] <= depths[n1]:
1926  *             entries[n] = h1
1927  *
1928  *     def dfs(n, depth):
1929  *         traversed.add(n)
1930  *         path.add(n)
1931  *         depths[n] = depth
1932  *         for succ in G.successors(n):
1933  *             if succ not in traversed:
1934  *                 # Case A: explore succ and update cur's loop entry
1935  *                 #         only if succ's entry is in current DFS path.
1936  *                 dfs(succ, depth + 1)
1937  *                 h = get_loop_entry(succ)
1938  *                 update_loop_entry(n, h)
1939  *             else:
1940  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1941  *                 update_loop_entry(n, succ)
1942  *         path.remove(n)
1943  *
1944  * To adapt this algorithm for use with verifier:
1945  * - use st->branch == 0 as a signal that DFS of succ had been finished
1946  *   and cur's loop entry has to be updated (case A), handle this in
1947  *   update_branch_counts();
1948  * - use st->branch > 0 as a signal that st is in the current DFS path;
1949  * - handle cases B and C in is_state_visited();
1950  * - update topmost loop entry for intermediate states in get_loop_entry().
1951  */
1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1953 {
1954 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1955 
1956 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1957 		topmost = topmost->loop_entry;
1958 	/* Update loop entries for intermediate states to avoid this
1959 	 * traversal in future get_loop_entry() calls.
1960 	 */
1961 	while (st && st->loop_entry != topmost) {
1962 		old = st->loop_entry;
1963 		st->loop_entry = topmost;
1964 		st = old;
1965 	}
1966 	return topmost;
1967 }
1968 
1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1970 {
1971 	struct bpf_verifier_state *cur1, *hdr1;
1972 
1973 	cur1 = get_loop_entry(cur) ?: cur;
1974 	hdr1 = get_loop_entry(hdr) ?: hdr;
1975 	/* The head1->branches check decides between cases B and C in
1976 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1977 	 * head's topmost loop entry is not in current DFS path,
1978 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1979 	 * no need to update cur->loop_entry.
1980 	 */
1981 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1982 		cur->loop_entry = hdr;
1983 		hdr->used_as_loop_entry = true;
1984 	}
1985 }
1986 
1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1988 {
1989 	while (st) {
1990 		u32 br = --st->branches;
1991 
1992 		/* br == 0 signals that DFS exploration for 'st' is finished,
1993 		 * thus it is necessary to update parent's loop entry if it
1994 		 * turned out that st is a part of some loop.
1995 		 * This is a part of 'case A' in get_loop_entry() comment.
1996 		 */
1997 		if (br == 0 && st->parent && st->loop_entry)
1998 			update_loop_entry(st->parent, st->loop_entry);
1999 
2000 		/* WARN_ON(br > 1) technically makes sense here,
2001 		 * but see comment in push_stack(), hence:
2002 		 */
2003 		WARN_ONCE((int)br < 0,
2004 			  "BUG update_branch_counts:branches_to_explore=%d\n",
2005 			  br);
2006 		if (br)
2007 			break;
2008 		st = st->parent;
2009 	}
2010 }
2011 
2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2013 		     int *insn_idx, bool pop_log)
2014 {
2015 	struct bpf_verifier_state *cur = env->cur_state;
2016 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2017 	int err;
2018 
2019 	if (env->head == NULL)
2020 		return -ENOENT;
2021 
2022 	if (cur) {
2023 		err = copy_verifier_state(cur, &head->st);
2024 		if (err)
2025 			return err;
2026 	}
2027 	if (pop_log)
2028 		bpf_vlog_reset(&env->log, head->log_pos);
2029 	if (insn_idx)
2030 		*insn_idx = head->insn_idx;
2031 	if (prev_insn_idx)
2032 		*prev_insn_idx = head->prev_insn_idx;
2033 	elem = head->next;
2034 	free_verifier_state(&head->st, false);
2035 	kfree(head);
2036 	env->head = elem;
2037 	env->stack_size--;
2038 	return 0;
2039 }
2040 
2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2042 					     int insn_idx, int prev_insn_idx,
2043 					     bool speculative)
2044 {
2045 	struct bpf_verifier_state *cur = env->cur_state;
2046 	struct bpf_verifier_stack_elem *elem;
2047 	int err;
2048 
2049 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2050 	if (!elem)
2051 		goto err;
2052 
2053 	elem->insn_idx = insn_idx;
2054 	elem->prev_insn_idx = prev_insn_idx;
2055 	elem->next = env->head;
2056 	elem->log_pos = env->log.end_pos;
2057 	env->head = elem;
2058 	env->stack_size++;
2059 	err = copy_verifier_state(&elem->st, cur);
2060 	if (err)
2061 		goto err;
2062 	elem->st.speculative |= speculative;
2063 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2064 		verbose(env, "The sequence of %d jumps is too complex.\n",
2065 			env->stack_size);
2066 		goto err;
2067 	}
2068 	if (elem->st.parent) {
2069 		++elem->st.parent->branches;
2070 		/* WARN_ON(branches > 2) technically makes sense here,
2071 		 * but
2072 		 * 1. speculative states will bump 'branches' for non-branch
2073 		 * instructions
2074 		 * 2. is_state_visited() heuristics may decide not to create
2075 		 * a new state for a sequence of branches and all such current
2076 		 * and cloned states will be pointing to a single parent state
2077 		 * which might have large 'branches' count.
2078 		 */
2079 	}
2080 	return &elem->st;
2081 err:
2082 	free_verifier_state(env->cur_state, true);
2083 	env->cur_state = NULL;
2084 	/* pop all elements and return */
2085 	while (!pop_stack(env, NULL, NULL, false));
2086 	return NULL;
2087 }
2088 
2089 #define CALLER_SAVED_REGS 6
2090 static const int caller_saved[CALLER_SAVED_REGS] = {
2091 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2092 };
2093 
2094 /* This helper doesn't clear reg->id */
2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2096 {
2097 	reg->var_off = tnum_const(imm);
2098 	reg->smin_value = (s64)imm;
2099 	reg->smax_value = (s64)imm;
2100 	reg->umin_value = imm;
2101 	reg->umax_value = imm;
2102 
2103 	reg->s32_min_value = (s32)imm;
2104 	reg->s32_max_value = (s32)imm;
2105 	reg->u32_min_value = (u32)imm;
2106 	reg->u32_max_value = (u32)imm;
2107 }
2108 
2109 /* Mark the unknown part of a register (variable offset or scalar value) as
2110  * known to have the value @imm.
2111  */
2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2113 {
2114 	/* Clear off and union(map_ptr, range) */
2115 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2116 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2117 	reg->id = 0;
2118 	reg->ref_obj_id = 0;
2119 	___mark_reg_known(reg, imm);
2120 }
2121 
2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2123 {
2124 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2125 	reg->s32_min_value = (s32)imm;
2126 	reg->s32_max_value = (s32)imm;
2127 	reg->u32_min_value = (u32)imm;
2128 	reg->u32_max_value = (u32)imm;
2129 }
2130 
2131 /* Mark the 'variable offset' part of a register as zero.  This should be
2132  * used only on registers holding a pointer type.
2133  */
2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2135 {
2136 	__mark_reg_known(reg, 0);
2137 }
2138 
2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2140 {
2141 	__mark_reg_known(reg, 0);
2142 	reg->type = SCALAR_VALUE;
2143 }
2144 
2145 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2146 				struct bpf_reg_state *regs, u32 regno)
2147 {
2148 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2149 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2150 		/* Something bad happened, let's kill all regs */
2151 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2152 			__mark_reg_not_init(env, regs + regno);
2153 		return;
2154 	}
2155 	__mark_reg_known_zero(regs + regno);
2156 }
2157 
2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2159 			      bool first_slot, int dynptr_id)
2160 {
2161 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2162 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2163 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2164 	 */
2165 	__mark_reg_known_zero(reg);
2166 	reg->type = CONST_PTR_TO_DYNPTR;
2167 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2168 	reg->id = dynptr_id;
2169 	reg->dynptr.type = type;
2170 	reg->dynptr.first_slot = first_slot;
2171 }
2172 
2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2174 {
2175 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2176 		const struct bpf_map *map = reg->map_ptr;
2177 
2178 		if (map->inner_map_meta) {
2179 			reg->type = CONST_PTR_TO_MAP;
2180 			reg->map_ptr = map->inner_map_meta;
2181 			/* transfer reg's id which is unique for every map_lookup_elem
2182 			 * as UID of the inner map.
2183 			 */
2184 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2185 				reg->map_uid = reg->id;
2186 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2187 			reg->type = PTR_TO_XDP_SOCK;
2188 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2189 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2190 			reg->type = PTR_TO_SOCKET;
2191 		} else {
2192 			reg->type = PTR_TO_MAP_VALUE;
2193 		}
2194 		return;
2195 	}
2196 
2197 	reg->type &= ~PTR_MAYBE_NULL;
2198 }
2199 
2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2201 				struct btf_field_graph_root *ds_head)
2202 {
2203 	__mark_reg_known_zero(&regs[regno]);
2204 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2205 	regs[regno].btf = ds_head->btf;
2206 	regs[regno].btf_id = ds_head->value_btf_id;
2207 	regs[regno].off = ds_head->node_offset;
2208 }
2209 
2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2211 {
2212 	return type_is_pkt_pointer(reg->type);
2213 }
2214 
2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2216 {
2217 	return reg_is_pkt_pointer(reg) ||
2218 	       reg->type == PTR_TO_PACKET_END;
2219 }
2220 
2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2222 {
2223 	return base_type(reg->type) == PTR_TO_MEM &&
2224 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2225 }
2226 
2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2229 				    enum bpf_reg_type which)
2230 {
2231 	/* The register can already have a range from prior markings.
2232 	 * This is fine as long as it hasn't been advanced from its
2233 	 * origin.
2234 	 */
2235 	return reg->type == which &&
2236 	       reg->id == 0 &&
2237 	       reg->off == 0 &&
2238 	       tnum_equals_const(reg->var_off, 0);
2239 }
2240 
2241 /* Reset the min/max bounds of a register */
2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2243 {
2244 	reg->smin_value = S64_MIN;
2245 	reg->smax_value = S64_MAX;
2246 	reg->umin_value = 0;
2247 	reg->umax_value = U64_MAX;
2248 
2249 	reg->s32_min_value = S32_MIN;
2250 	reg->s32_max_value = S32_MAX;
2251 	reg->u32_min_value = 0;
2252 	reg->u32_max_value = U32_MAX;
2253 }
2254 
2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2256 {
2257 	reg->smin_value = S64_MIN;
2258 	reg->smax_value = S64_MAX;
2259 	reg->umin_value = 0;
2260 	reg->umax_value = U64_MAX;
2261 }
2262 
2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2264 {
2265 	reg->s32_min_value = S32_MIN;
2266 	reg->s32_max_value = S32_MAX;
2267 	reg->u32_min_value = 0;
2268 	reg->u32_max_value = U32_MAX;
2269 }
2270 
2271 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2272 {
2273 	struct tnum var32_off = tnum_subreg(reg->var_off);
2274 
2275 	/* min signed is max(sign bit) | min(other bits) */
2276 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2277 			var32_off.value | (var32_off.mask & S32_MIN));
2278 	/* max signed is min(sign bit) | max(other bits) */
2279 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2280 			var32_off.value | (var32_off.mask & S32_MAX));
2281 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2282 	reg->u32_max_value = min(reg->u32_max_value,
2283 				 (u32)(var32_off.value | var32_off.mask));
2284 }
2285 
2286 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2287 {
2288 	/* min signed is max(sign bit) | min(other bits) */
2289 	reg->smin_value = max_t(s64, reg->smin_value,
2290 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2291 	/* max signed is min(sign bit) | max(other bits) */
2292 	reg->smax_value = min_t(s64, reg->smax_value,
2293 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2294 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2295 	reg->umax_value = min(reg->umax_value,
2296 			      reg->var_off.value | reg->var_off.mask);
2297 }
2298 
2299 static void __update_reg_bounds(struct bpf_reg_state *reg)
2300 {
2301 	__update_reg32_bounds(reg);
2302 	__update_reg64_bounds(reg);
2303 }
2304 
2305 /* Uses signed min/max values to inform unsigned, and vice-versa */
2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2307 {
2308 	/* Learn sign from signed bounds.
2309 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2310 	 * are the same, so combine.  This works even in the negative case, e.g.
2311 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2312 	 */
2313 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2314 		reg->s32_min_value = reg->u32_min_value =
2315 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2316 		reg->s32_max_value = reg->u32_max_value =
2317 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2318 		return;
2319 	}
2320 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2321 	 * boundary, so we must be careful.
2322 	 */
2323 	if ((s32)reg->u32_max_value >= 0) {
2324 		/* Positive.  We can't learn anything from the smin, but smax
2325 		 * is positive, hence safe.
2326 		 */
2327 		reg->s32_min_value = reg->u32_min_value;
2328 		reg->s32_max_value = reg->u32_max_value =
2329 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2330 	} else if ((s32)reg->u32_min_value < 0) {
2331 		/* Negative.  We can't learn anything from the smax, but smin
2332 		 * is negative, hence safe.
2333 		 */
2334 		reg->s32_min_value = reg->u32_min_value =
2335 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2336 		reg->s32_max_value = reg->u32_max_value;
2337 	}
2338 }
2339 
2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2341 {
2342 	/* Learn sign from signed bounds.
2343 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2344 	 * are the same, so combine.  This works even in the negative case, e.g.
2345 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2346 	 */
2347 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2348 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2349 							  reg->umin_value);
2350 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2351 							  reg->umax_value);
2352 		return;
2353 	}
2354 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2355 	 * boundary, so we must be careful.
2356 	 */
2357 	if ((s64)reg->umax_value >= 0) {
2358 		/* Positive.  We can't learn anything from the smin, but smax
2359 		 * is positive, hence safe.
2360 		 */
2361 		reg->smin_value = reg->umin_value;
2362 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2363 							  reg->umax_value);
2364 	} else if ((s64)reg->umin_value < 0) {
2365 		/* Negative.  We can't learn anything from the smax, but smin
2366 		 * is negative, hence safe.
2367 		 */
2368 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2369 							  reg->umin_value);
2370 		reg->smax_value = reg->umax_value;
2371 	}
2372 }
2373 
2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2375 {
2376 	__reg32_deduce_bounds(reg);
2377 	__reg64_deduce_bounds(reg);
2378 }
2379 
2380 /* Attempts to improve var_off based on unsigned min/max information */
2381 static void __reg_bound_offset(struct bpf_reg_state *reg)
2382 {
2383 	struct tnum var64_off = tnum_intersect(reg->var_off,
2384 					       tnum_range(reg->umin_value,
2385 							  reg->umax_value));
2386 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2387 					       tnum_range(reg->u32_min_value,
2388 							  reg->u32_max_value));
2389 
2390 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2391 }
2392 
2393 static void reg_bounds_sync(struct bpf_reg_state *reg)
2394 {
2395 	/* We might have learned new bounds from the var_off. */
2396 	__update_reg_bounds(reg);
2397 	/* We might have learned something about the sign bit. */
2398 	__reg_deduce_bounds(reg);
2399 	/* We might have learned some bits from the bounds. */
2400 	__reg_bound_offset(reg);
2401 	/* Intersecting with the old var_off might have improved our bounds
2402 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2403 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2404 	 */
2405 	__update_reg_bounds(reg);
2406 }
2407 
2408 static bool __reg32_bound_s64(s32 a)
2409 {
2410 	return a >= 0 && a <= S32_MAX;
2411 }
2412 
2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2414 {
2415 	reg->umin_value = reg->u32_min_value;
2416 	reg->umax_value = reg->u32_max_value;
2417 
2418 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2419 	 * be positive otherwise set to worse case bounds and refine later
2420 	 * from tnum.
2421 	 */
2422 	if (__reg32_bound_s64(reg->s32_min_value) &&
2423 	    __reg32_bound_s64(reg->s32_max_value)) {
2424 		reg->smin_value = reg->s32_min_value;
2425 		reg->smax_value = reg->s32_max_value;
2426 	} else {
2427 		reg->smin_value = 0;
2428 		reg->smax_value = U32_MAX;
2429 	}
2430 }
2431 
2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2433 {
2434 	/* special case when 64-bit register has upper 32-bit register
2435 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2436 	 * allowing us to use 32-bit bounds directly,
2437 	 */
2438 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2439 		__reg_assign_32_into_64(reg);
2440 	} else {
2441 		/* Otherwise the best we can do is push lower 32bit known and
2442 		 * unknown bits into register (var_off set from jmp logic)
2443 		 * then learn as much as possible from the 64-bit tnum
2444 		 * known and unknown bits. The previous smin/smax bounds are
2445 		 * invalid here because of jmp32 compare so mark them unknown
2446 		 * so they do not impact tnum bounds calculation.
2447 		 */
2448 		__mark_reg64_unbounded(reg);
2449 	}
2450 	reg_bounds_sync(reg);
2451 }
2452 
2453 static bool __reg64_bound_s32(s64 a)
2454 {
2455 	return a >= S32_MIN && a <= S32_MAX;
2456 }
2457 
2458 static bool __reg64_bound_u32(u64 a)
2459 {
2460 	return a >= U32_MIN && a <= U32_MAX;
2461 }
2462 
2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2464 {
2465 	__mark_reg32_unbounded(reg);
2466 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2467 		reg->s32_min_value = (s32)reg->smin_value;
2468 		reg->s32_max_value = (s32)reg->smax_value;
2469 	}
2470 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2471 		reg->u32_min_value = (u32)reg->umin_value;
2472 		reg->u32_max_value = (u32)reg->umax_value;
2473 	}
2474 	reg_bounds_sync(reg);
2475 }
2476 
2477 /* Mark a register as having a completely unknown (scalar) value. */
2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2479 			       struct bpf_reg_state *reg)
2480 {
2481 	/*
2482 	 * Clear type, off, and union(map_ptr, range) and
2483 	 * padding between 'type' and union
2484 	 */
2485 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2486 	reg->type = SCALAR_VALUE;
2487 	reg->id = 0;
2488 	reg->ref_obj_id = 0;
2489 	reg->var_off = tnum_unknown;
2490 	reg->frameno = 0;
2491 	reg->precise = !env->bpf_capable;
2492 	__mark_reg_unbounded(reg);
2493 }
2494 
2495 static void mark_reg_unknown(struct bpf_verifier_env *env,
2496 			     struct bpf_reg_state *regs, u32 regno)
2497 {
2498 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2499 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2500 		/* Something bad happened, let's kill all regs except FP */
2501 		for (regno = 0; regno < BPF_REG_FP; regno++)
2502 			__mark_reg_not_init(env, regs + regno);
2503 		return;
2504 	}
2505 	__mark_reg_unknown(env, regs + regno);
2506 }
2507 
2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2509 				struct bpf_reg_state *reg)
2510 {
2511 	__mark_reg_unknown(env, reg);
2512 	reg->type = NOT_INIT;
2513 }
2514 
2515 static void mark_reg_not_init(struct bpf_verifier_env *env,
2516 			      struct bpf_reg_state *regs, u32 regno)
2517 {
2518 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2519 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2520 		/* Something bad happened, let's kill all regs except FP */
2521 		for (regno = 0; regno < BPF_REG_FP; regno++)
2522 			__mark_reg_not_init(env, regs + regno);
2523 		return;
2524 	}
2525 	__mark_reg_not_init(env, regs + regno);
2526 }
2527 
2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2529 			    struct bpf_reg_state *regs, u32 regno,
2530 			    enum bpf_reg_type reg_type,
2531 			    struct btf *btf, u32 btf_id,
2532 			    enum bpf_type_flag flag)
2533 {
2534 	if (reg_type == SCALAR_VALUE) {
2535 		mark_reg_unknown(env, regs, regno);
2536 		return;
2537 	}
2538 	mark_reg_known_zero(env, regs, regno);
2539 	regs[regno].type = PTR_TO_BTF_ID | flag;
2540 	regs[regno].btf = btf;
2541 	regs[regno].btf_id = btf_id;
2542 	if (type_may_be_null(flag))
2543 		regs[regno].id = ++env->id_gen;
2544 }
2545 
2546 #define DEF_NOT_SUBREG	(0)
2547 static void init_reg_state(struct bpf_verifier_env *env,
2548 			   struct bpf_func_state *state)
2549 {
2550 	struct bpf_reg_state *regs = state->regs;
2551 	int i;
2552 
2553 	for (i = 0; i < MAX_BPF_REG; i++) {
2554 		mark_reg_not_init(env, regs, i);
2555 		regs[i].live = REG_LIVE_NONE;
2556 		regs[i].parent = NULL;
2557 		regs[i].subreg_def = DEF_NOT_SUBREG;
2558 	}
2559 
2560 	/* frame pointer */
2561 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2562 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2563 	regs[BPF_REG_FP].frameno = state->frameno;
2564 }
2565 
2566 #define BPF_MAIN_FUNC (-1)
2567 static void init_func_state(struct bpf_verifier_env *env,
2568 			    struct bpf_func_state *state,
2569 			    int callsite, int frameno, int subprogno)
2570 {
2571 	state->callsite = callsite;
2572 	state->frameno = frameno;
2573 	state->subprogno = subprogno;
2574 	state->callback_ret_range = tnum_range(0, 0);
2575 	init_reg_state(env, state);
2576 	mark_verifier_state_scratched(env);
2577 }
2578 
2579 /* Similar to push_stack(), but for async callbacks */
2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2581 						int insn_idx, int prev_insn_idx,
2582 						int subprog)
2583 {
2584 	struct bpf_verifier_stack_elem *elem;
2585 	struct bpf_func_state *frame;
2586 
2587 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2588 	if (!elem)
2589 		goto err;
2590 
2591 	elem->insn_idx = insn_idx;
2592 	elem->prev_insn_idx = prev_insn_idx;
2593 	elem->next = env->head;
2594 	elem->log_pos = env->log.end_pos;
2595 	env->head = elem;
2596 	env->stack_size++;
2597 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2598 		verbose(env,
2599 			"The sequence of %d jumps is too complex for async cb.\n",
2600 			env->stack_size);
2601 		goto err;
2602 	}
2603 	/* Unlike push_stack() do not copy_verifier_state().
2604 	 * The caller state doesn't matter.
2605 	 * This is async callback. It starts in a fresh stack.
2606 	 * Initialize it similar to do_check_common().
2607 	 */
2608 	elem->st.branches = 1;
2609 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2610 	if (!frame)
2611 		goto err;
2612 	init_func_state(env, frame,
2613 			BPF_MAIN_FUNC /* callsite */,
2614 			0 /* frameno within this callchain */,
2615 			subprog /* subprog number within this prog */);
2616 	elem->st.frame[0] = frame;
2617 	return &elem->st;
2618 err:
2619 	free_verifier_state(env->cur_state, true);
2620 	env->cur_state = NULL;
2621 	/* pop all elements and return */
2622 	while (!pop_stack(env, NULL, NULL, false));
2623 	return NULL;
2624 }
2625 
2626 
2627 enum reg_arg_type {
2628 	SRC_OP,		/* register is used as source operand */
2629 	DST_OP,		/* register is used as destination operand */
2630 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2631 };
2632 
2633 static int cmp_subprogs(const void *a, const void *b)
2634 {
2635 	return ((struct bpf_subprog_info *)a)->start -
2636 	       ((struct bpf_subprog_info *)b)->start;
2637 }
2638 
2639 static int find_subprog(struct bpf_verifier_env *env, int off)
2640 {
2641 	struct bpf_subprog_info *p;
2642 
2643 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2644 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2645 	if (!p)
2646 		return -ENOENT;
2647 	return p - env->subprog_info;
2648 
2649 }
2650 
2651 static int add_subprog(struct bpf_verifier_env *env, int off)
2652 {
2653 	int insn_cnt = env->prog->len;
2654 	int ret;
2655 
2656 	if (off >= insn_cnt || off < 0) {
2657 		verbose(env, "call to invalid destination\n");
2658 		return -EINVAL;
2659 	}
2660 	ret = find_subprog(env, off);
2661 	if (ret >= 0)
2662 		return ret;
2663 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2664 		verbose(env, "too many subprograms\n");
2665 		return -E2BIG;
2666 	}
2667 	/* determine subprog starts. The end is one before the next starts */
2668 	env->subprog_info[env->subprog_cnt++].start = off;
2669 	sort(env->subprog_info, env->subprog_cnt,
2670 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2671 	return env->subprog_cnt - 1;
2672 }
2673 
2674 #define MAX_KFUNC_DESCS 256
2675 #define MAX_KFUNC_BTFS	256
2676 
2677 struct bpf_kfunc_desc {
2678 	struct btf_func_model func_model;
2679 	u32 func_id;
2680 	s32 imm;
2681 	u16 offset;
2682 	unsigned long addr;
2683 };
2684 
2685 struct bpf_kfunc_btf {
2686 	struct btf *btf;
2687 	struct module *module;
2688 	u16 offset;
2689 };
2690 
2691 struct bpf_kfunc_desc_tab {
2692 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2693 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2694 	 * available, therefore at the end of verification do_misc_fixups()
2695 	 * sorts this by imm and offset.
2696 	 */
2697 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2698 	u32 nr_descs;
2699 };
2700 
2701 struct bpf_kfunc_btf_tab {
2702 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2703 	u32 nr_descs;
2704 };
2705 
2706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2707 {
2708 	const struct bpf_kfunc_desc *d0 = a;
2709 	const struct bpf_kfunc_desc *d1 = b;
2710 
2711 	/* func_id is not greater than BTF_MAX_TYPE */
2712 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2713 }
2714 
2715 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2716 {
2717 	const struct bpf_kfunc_btf *d0 = a;
2718 	const struct bpf_kfunc_btf *d1 = b;
2719 
2720 	return d0->offset - d1->offset;
2721 }
2722 
2723 static const struct bpf_kfunc_desc *
2724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2725 {
2726 	struct bpf_kfunc_desc desc = {
2727 		.func_id = func_id,
2728 		.offset = offset,
2729 	};
2730 	struct bpf_kfunc_desc_tab *tab;
2731 
2732 	tab = prog->aux->kfunc_tab;
2733 	return bsearch(&desc, tab->descs, tab->nr_descs,
2734 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2735 }
2736 
2737 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2738 		       u16 btf_fd_idx, u8 **func_addr)
2739 {
2740 	const struct bpf_kfunc_desc *desc;
2741 
2742 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2743 	if (!desc)
2744 		return -EFAULT;
2745 
2746 	*func_addr = (u8 *)desc->addr;
2747 	return 0;
2748 }
2749 
2750 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2751 					 s16 offset)
2752 {
2753 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2754 	struct bpf_kfunc_btf_tab *tab;
2755 	struct bpf_kfunc_btf *b;
2756 	struct module *mod;
2757 	struct btf *btf;
2758 	int btf_fd;
2759 
2760 	tab = env->prog->aux->kfunc_btf_tab;
2761 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2762 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2763 	if (!b) {
2764 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2765 			verbose(env, "too many different module BTFs\n");
2766 			return ERR_PTR(-E2BIG);
2767 		}
2768 
2769 		if (bpfptr_is_null(env->fd_array)) {
2770 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2771 			return ERR_PTR(-EPROTO);
2772 		}
2773 
2774 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2775 					    offset * sizeof(btf_fd),
2776 					    sizeof(btf_fd)))
2777 			return ERR_PTR(-EFAULT);
2778 
2779 		btf = btf_get_by_fd(btf_fd);
2780 		if (IS_ERR(btf)) {
2781 			verbose(env, "invalid module BTF fd specified\n");
2782 			return btf;
2783 		}
2784 
2785 		if (!btf_is_module(btf)) {
2786 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2787 			btf_put(btf);
2788 			return ERR_PTR(-EINVAL);
2789 		}
2790 
2791 		mod = btf_try_get_module(btf);
2792 		if (!mod) {
2793 			btf_put(btf);
2794 			return ERR_PTR(-ENXIO);
2795 		}
2796 
2797 		b = &tab->descs[tab->nr_descs++];
2798 		b->btf = btf;
2799 		b->module = mod;
2800 		b->offset = offset;
2801 
2802 		/* sort() reorders entries by value, so b may no longer point
2803 		 * to the right entry after this
2804 		 */
2805 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2806 		     kfunc_btf_cmp_by_off, NULL);
2807 	} else {
2808 		btf = b->btf;
2809 	}
2810 
2811 	return btf;
2812 }
2813 
2814 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2815 {
2816 	if (!tab)
2817 		return;
2818 
2819 	while (tab->nr_descs--) {
2820 		module_put(tab->descs[tab->nr_descs].module);
2821 		btf_put(tab->descs[tab->nr_descs].btf);
2822 	}
2823 	kfree(tab);
2824 }
2825 
2826 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2827 {
2828 	if (offset) {
2829 		if (offset < 0) {
2830 			/* In the future, this can be allowed to increase limit
2831 			 * of fd index into fd_array, interpreted as u16.
2832 			 */
2833 			verbose(env, "negative offset disallowed for kernel module function call\n");
2834 			return ERR_PTR(-EINVAL);
2835 		}
2836 
2837 		return __find_kfunc_desc_btf(env, offset);
2838 	}
2839 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2840 }
2841 
2842 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2843 {
2844 	const struct btf_type *func, *func_proto;
2845 	struct bpf_kfunc_btf_tab *btf_tab;
2846 	struct bpf_kfunc_desc_tab *tab;
2847 	struct bpf_prog_aux *prog_aux;
2848 	struct bpf_kfunc_desc *desc;
2849 	const char *func_name;
2850 	struct btf *desc_btf;
2851 	unsigned long call_imm;
2852 	unsigned long addr;
2853 	int err;
2854 
2855 	prog_aux = env->prog->aux;
2856 	tab = prog_aux->kfunc_tab;
2857 	btf_tab = prog_aux->kfunc_btf_tab;
2858 	if (!tab) {
2859 		if (!btf_vmlinux) {
2860 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2861 			return -ENOTSUPP;
2862 		}
2863 
2864 		if (!env->prog->jit_requested) {
2865 			verbose(env, "JIT is required for calling kernel function\n");
2866 			return -ENOTSUPP;
2867 		}
2868 
2869 		if (!bpf_jit_supports_kfunc_call()) {
2870 			verbose(env, "JIT does not support calling kernel function\n");
2871 			return -ENOTSUPP;
2872 		}
2873 
2874 		if (!env->prog->gpl_compatible) {
2875 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2876 			return -EINVAL;
2877 		}
2878 
2879 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2880 		if (!tab)
2881 			return -ENOMEM;
2882 		prog_aux->kfunc_tab = tab;
2883 	}
2884 
2885 	/* func_id == 0 is always invalid, but instead of returning an error, be
2886 	 * conservative and wait until the code elimination pass before returning
2887 	 * error, so that invalid calls that get pruned out can be in BPF programs
2888 	 * loaded from userspace.  It is also required that offset be untouched
2889 	 * for such calls.
2890 	 */
2891 	if (!func_id && !offset)
2892 		return 0;
2893 
2894 	if (!btf_tab && offset) {
2895 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2896 		if (!btf_tab)
2897 			return -ENOMEM;
2898 		prog_aux->kfunc_btf_tab = btf_tab;
2899 	}
2900 
2901 	desc_btf = find_kfunc_desc_btf(env, offset);
2902 	if (IS_ERR(desc_btf)) {
2903 		verbose(env, "failed to find BTF for kernel function\n");
2904 		return PTR_ERR(desc_btf);
2905 	}
2906 
2907 	if (find_kfunc_desc(env->prog, func_id, offset))
2908 		return 0;
2909 
2910 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2911 		verbose(env, "too many different kernel function calls\n");
2912 		return -E2BIG;
2913 	}
2914 
2915 	func = btf_type_by_id(desc_btf, func_id);
2916 	if (!func || !btf_type_is_func(func)) {
2917 		verbose(env, "kernel btf_id %u is not a function\n",
2918 			func_id);
2919 		return -EINVAL;
2920 	}
2921 	func_proto = btf_type_by_id(desc_btf, func->type);
2922 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2923 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2924 			func_id);
2925 		return -EINVAL;
2926 	}
2927 
2928 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2929 	addr = kallsyms_lookup_name(func_name);
2930 	if (!addr) {
2931 		verbose(env, "cannot find address for kernel function %s\n",
2932 			func_name);
2933 		return -EINVAL;
2934 	}
2935 	specialize_kfunc(env, func_id, offset, &addr);
2936 
2937 	if (bpf_jit_supports_far_kfunc_call()) {
2938 		call_imm = func_id;
2939 	} else {
2940 		call_imm = BPF_CALL_IMM(addr);
2941 		/* Check whether the relative offset overflows desc->imm */
2942 		if ((unsigned long)(s32)call_imm != call_imm) {
2943 			verbose(env, "address of kernel function %s is out of range\n",
2944 				func_name);
2945 			return -EINVAL;
2946 		}
2947 	}
2948 
2949 	if (bpf_dev_bound_kfunc_id(func_id)) {
2950 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2951 		if (err)
2952 			return err;
2953 	}
2954 
2955 	desc = &tab->descs[tab->nr_descs++];
2956 	desc->func_id = func_id;
2957 	desc->imm = call_imm;
2958 	desc->offset = offset;
2959 	desc->addr = addr;
2960 	err = btf_distill_func_proto(&env->log, desc_btf,
2961 				     func_proto, func_name,
2962 				     &desc->func_model);
2963 	if (!err)
2964 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2965 		     kfunc_desc_cmp_by_id_off, NULL);
2966 	return err;
2967 }
2968 
2969 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2970 {
2971 	const struct bpf_kfunc_desc *d0 = a;
2972 	const struct bpf_kfunc_desc *d1 = b;
2973 
2974 	if (d0->imm != d1->imm)
2975 		return d0->imm < d1->imm ? -1 : 1;
2976 	if (d0->offset != d1->offset)
2977 		return d0->offset < d1->offset ? -1 : 1;
2978 	return 0;
2979 }
2980 
2981 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2982 {
2983 	struct bpf_kfunc_desc_tab *tab;
2984 
2985 	tab = prog->aux->kfunc_tab;
2986 	if (!tab)
2987 		return;
2988 
2989 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2990 	     kfunc_desc_cmp_by_imm_off, NULL);
2991 }
2992 
2993 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2994 {
2995 	return !!prog->aux->kfunc_tab;
2996 }
2997 
2998 const struct btf_func_model *
2999 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3000 			 const struct bpf_insn *insn)
3001 {
3002 	const struct bpf_kfunc_desc desc = {
3003 		.imm = insn->imm,
3004 		.offset = insn->off,
3005 	};
3006 	const struct bpf_kfunc_desc *res;
3007 	struct bpf_kfunc_desc_tab *tab;
3008 
3009 	tab = prog->aux->kfunc_tab;
3010 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3011 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3012 
3013 	return res ? &res->func_model : NULL;
3014 }
3015 
3016 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3017 {
3018 	struct bpf_subprog_info *subprog = env->subprog_info;
3019 	struct bpf_insn *insn = env->prog->insnsi;
3020 	int i, ret, insn_cnt = env->prog->len;
3021 
3022 	/* Add entry function. */
3023 	ret = add_subprog(env, 0);
3024 	if (ret)
3025 		return ret;
3026 
3027 	for (i = 0; i < insn_cnt; i++, insn++) {
3028 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3029 		    !bpf_pseudo_kfunc_call(insn))
3030 			continue;
3031 
3032 		if (!env->bpf_capable) {
3033 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3034 			return -EPERM;
3035 		}
3036 
3037 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3038 			ret = add_subprog(env, i + insn->imm + 1);
3039 		else
3040 			ret = add_kfunc_call(env, insn->imm, insn->off);
3041 
3042 		if (ret < 0)
3043 			return ret;
3044 	}
3045 
3046 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3047 	 * logic. 'subprog_cnt' should not be increased.
3048 	 */
3049 	subprog[env->subprog_cnt].start = insn_cnt;
3050 
3051 	if (env->log.level & BPF_LOG_LEVEL2)
3052 		for (i = 0; i < env->subprog_cnt; i++)
3053 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3054 
3055 	return 0;
3056 }
3057 
3058 static int check_subprogs(struct bpf_verifier_env *env)
3059 {
3060 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3061 	struct bpf_subprog_info *subprog = env->subprog_info;
3062 	struct bpf_insn *insn = env->prog->insnsi;
3063 	int insn_cnt = env->prog->len;
3064 
3065 	/* now check that all jumps are within the same subprog */
3066 	subprog_start = subprog[cur_subprog].start;
3067 	subprog_end = subprog[cur_subprog + 1].start;
3068 	for (i = 0; i < insn_cnt; i++) {
3069 		u8 code = insn[i].code;
3070 
3071 		if (code == (BPF_JMP | BPF_CALL) &&
3072 		    insn[i].src_reg == 0 &&
3073 		    insn[i].imm == BPF_FUNC_tail_call) {
3074 			subprog[cur_subprog].has_tail_call = true;
3075 			subprog[cur_subprog].tail_call_reachable = true;
3076 		}
3077 		if (BPF_CLASS(code) == BPF_LD &&
3078 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3079 			subprog[cur_subprog].has_ld_abs = true;
3080 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3081 			goto next;
3082 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3083 			goto next;
3084 		if (code == (BPF_JMP32 | BPF_JA))
3085 			off = i + insn[i].imm + 1;
3086 		else
3087 			off = i + insn[i].off + 1;
3088 		if (off < subprog_start || off >= subprog_end) {
3089 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3090 			return -EINVAL;
3091 		}
3092 next:
3093 		if (i == subprog_end - 1) {
3094 			/* to avoid fall-through from one subprog into another
3095 			 * the last insn of the subprog should be either exit
3096 			 * or unconditional jump back
3097 			 */
3098 			if (code != (BPF_JMP | BPF_EXIT) &&
3099 			    code != (BPF_JMP32 | BPF_JA) &&
3100 			    code != (BPF_JMP | BPF_JA)) {
3101 				verbose(env, "last insn is not an exit or jmp\n");
3102 				return -EINVAL;
3103 			}
3104 			subprog_start = subprog_end;
3105 			cur_subprog++;
3106 			if (cur_subprog < env->subprog_cnt)
3107 				subprog_end = subprog[cur_subprog + 1].start;
3108 		}
3109 	}
3110 	return 0;
3111 }
3112 
3113 /* Parentage chain of this register (or stack slot) should take care of all
3114  * issues like callee-saved registers, stack slot allocation time, etc.
3115  */
3116 static int mark_reg_read(struct bpf_verifier_env *env,
3117 			 const struct bpf_reg_state *state,
3118 			 struct bpf_reg_state *parent, u8 flag)
3119 {
3120 	bool writes = parent == state->parent; /* Observe write marks */
3121 	int cnt = 0;
3122 
3123 	while (parent) {
3124 		/* if read wasn't screened by an earlier write ... */
3125 		if (writes && state->live & REG_LIVE_WRITTEN)
3126 			break;
3127 		if (parent->live & REG_LIVE_DONE) {
3128 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3129 				reg_type_str(env, parent->type),
3130 				parent->var_off.value, parent->off);
3131 			return -EFAULT;
3132 		}
3133 		/* The first condition is more likely to be true than the
3134 		 * second, checked it first.
3135 		 */
3136 		if ((parent->live & REG_LIVE_READ) == flag ||
3137 		    parent->live & REG_LIVE_READ64)
3138 			/* The parentage chain never changes and
3139 			 * this parent was already marked as LIVE_READ.
3140 			 * There is no need to keep walking the chain again and
3141 			 * keep re-marking all parents as LIVE_READ.
3142 			 * This case happens when the same register is read
3143 			 * multiple times without writes into it in-between.
3144 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3145 			 * then no need to set the weak REG_LIVE_READ32.
3146 			 */
3147 			break;
3148 		/* ... then we depend on parent's value */
3149 		parent->live |= flag;
3150 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3151 		if (flag == REG_LIVE_READ64)
3152 			parent->live &= ~REG_LIVE_READ32;
3153 		state = parent;
3154 		parent = state->parent;
3155 		writes = true;
3156 		cnt++;
3157 	}
3158 
3159 	if (env->longest_mark_read_walk < cnt)
3160 		env->longest_mark_read_walk = cnt;
3161 	return 0;
3162 }
3163 
3164 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3165 {
3166 	struct bpf_func_state *state = func(env, reg);
3167 	int spi, ret;
3168 
3169 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3170 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3171 	 * check_kfunc_call.
3172 	 */
3173 	if (reg->type == CONST_PTR_TO_DYNPTR)
3174 		return 0;
3175 	spi = dynptr_get_spi(env, reg);
3176 	if (spi < 0)
3177 		return spi;
3178 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3179 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3180 	 * read.
3181 	 */
3182 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3183 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3184 	if (ret)
3185 		return ret;
3186 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3187 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3188 }
3189 
3190 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3191 			  int spi, int nr_slots)
3192 {
3193 	struct bpf_func_state *state = func(env, reg);
3194 	int err, i;
3195 
3196 	for (i = 0; i < nr_slots; i++) {
3197 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3198 
3199 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3200 		if (err)
3201 			return err;
3202 
3203 		mark_stack_slot_scratched(env, spi - i);
3204 	}
3205 
3206 	return 0;
3207 }
3208 
3209 /* This function is supposed to be used by the following 32-bit optimization
3210  * code only. It returns TRUE if the source or destination register operates
3211  * on 64-bit, otherwise return FALSE.
3212  */
3213 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3214 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3215 {
3216 	u8 code, class, op;
3217 
3218 	code = insn->code;
3219 	class = BPF_CLASS(code);
3220 	op = BPF_OP(code);
3221 	if (class == BPF_JMP) {
3222 		/* BPF_EXIT for "main" will reach here. Return TRUE
3223 		 * conservatively.
3224 		 */
3225 		if (op == BPF_EXIT)
3226 			return true;
3227 		if (op == BPF_CALL) {
3228 			/* BPF to BPF call will reach here because of marking
3229 			 * caller saved clobber with DST_OP_NO_MARK for which we
3230 			 * don't care the register def because they are anyway
3231 			 * marked as NOT_INIT already.
3232 			 */
3233 			if (insn->src_reg == BPF_PSEUDO_CALL)
3234 				return false;
3235 			/* Helper call will reach here because of arg type
3236 			 * check, conservatively return TRUE.
3237 			 */
3238 			if (t == SRC_OP)
3239 				return true;
3240 
3241 			return false;
3242 		}
3243 	}
3244 
3245 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3246 		return false;
3247 
3248 	if (class == BPF_ALU64 || class == BPF_JMP ||
3249 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3250 		return true;
3251 
3252 	if (class == BPF_ALU || class == BPF_JMP32)
3253 		return false;
3254 
3255 	if (class == BPF_LDX) {
3256 		if (t != SRC_OP)
3257 			return BPF_SIZE(code) == BPF_DW;
3258 		/* LDX source must be ptr. */
3259 		return true;
3260 	}
3261 
3262 	if (class == BPF_STX) {
3263 		/* BPF_STX (including atomic variants) has multiple source
3264 		 * operands, one of which is a ptr. Check whether the caller is
3265 		 * asking about it.
3266 		 */
3267 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3268 			return true;
3269 		return BPF_SIZE(code) == BPF_DW;
3270 	}
3271 
3272 	if (class == BPF_LD) {
3273 		u8 mode = BPF_MODE(code);
3274 
3275 		/* LD_IMM64 */
3276 		if (mode == BPF_IMM)
3277 			return true;
3278 
3279 		/* Both LD_IND and LD_ABS return 32-bit data. */
3280 		if (t != SRC_OP)
3281 			return  false;
3282 
3283 		/* Implicit ctx ptr. */
3284 		if (regno == BPF_REG_6)
3285 			return true;
3286 
3287 		/* Explicit source could be any width. */
3288 		return true;
3289 	}
3290 
3291 	if (class == BPF_ST)
3292 		/* The only source register for BPF_ST is a ptr. */
3293 		return true;
3294 
3295 	/* Conservatively return true at default. */
3296 	return true;
3297 }
3298 
3299 /* Return the regno defined by the insn, or -1. */
3300 static int insn_def_regno(const struct bpf_insn *insn)
3301 {
3302 	switch (BPF_CLASS(insn->code)) {
3303 	case BPF_JMP:
3304 	case BPF_JMP32:
3305 	case BPF_ST:
3306 		return -1;
3307 	case BPF_STX:
3308 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3309 		    (insn->imm & BPF_FETCH)) {
3310 			if (insn->imm == BPF_CMPXCHG)
3311 				return BPF_REG_0;
3312 			else
3313 				return insn->src_reg;
3314 		} else {
3315 			return -1;
3316 		}
3317 	default:
3318 		return insn->dst_reg;
3319 	}
3320 }
3321 
3322 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3323 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3324 {
3325 	int dst_reg = insn_def_regno(insn);
3326 
3327 	if (dst_reg == -1)
3328 		return false;
3329 
3330 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3331 }
3332 
3333 static void mark_insn_zext(struct bpf_verifier_env *env,
3334 			   struct bpf_reg_state *reg)
3335 {
3336 	s32 def_idx = reg->subreg_def;
3337 
3338 	if (def_idx == DEF_NOT_SUBREG)
3339 		return;
3340 
3341 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3342 	/* The dst will be zero extended, so won't be sub-register anymore. */
3343 	reg->subreg_def = DEF_NOT_SUBREG;
3344 }
3345 
3346 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3347 			   enum reg_arg_type t)
3348 {
3349 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3350 	struct bpf_reg_state *reg;
3351 	bool rw64;
3352 
3353 	if (regno >= MAX_BPF_REG) {
3354 		verbose(env, "R%d is invalid\n", regno);
3355 		return -EINVAL;
3356 	}
3357 
3358 	mark_reg_scratched(env, regno);
3359 
3360 	reg = &regs[regno];
3361 	rw64 = is_reg64(env, insn, regno, reg, t);
3362 	if (t == SRC_OP) {
3363 		/* check whether register used as source operand can be read */
3364 		if (reg->type == NOT_INIT) {
3365 			verbose(env, "R%d !read_ok\n", regno);
3366 			return -EACCES;
3367 		}
3368 		/* We don't need to worry about FP liveness because it's read-only */
3369 		if (regno == BPF_REG_FP)
3370 			return 0;
3371 
3372 		if (rw64)
3373 			mark_insn_zext(env, reg);
3374 
3375 		return mark_reg_read(env, reg, reg->parent,
3376 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3377 	} else {
3378 		/* check whether register used as dest operand can be written to */
3379 		if (regno == BPF_REG_FP) {
3380 			verbose(env, "frame pointer is read only\n");
3381 			return -EACCES;
3382 		}
3383 		reg->live |= REG_LIVE_WRITTEN;
3384 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3385 		if (t == DST_OP)
3386 			mark_reg_unknown(env, regs, regno);
3387 	}
3388 	return 0;
3389 }
3390 
3391 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3392 			 enum reg_arg_type t)
3393 {
3394 	struct bpf_verifier_state *vstate = env->cur_state;
3395 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3396 
3397 	return __check_reg_arg(env, state->regs, regno, t);
3398 }
3399 
3400 static int insn_stack_access_flags(int frameno, int spi)
3401 {
3402 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3403 }
3404 
3405 static int insn_stack_access_spi(int insn_flags)
3406 {
3407 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3408 }
3409 
3410 static int insn_stack_access_frameno(int insn_flags)
3411 {
3412 	return insn_flags & INSN_F_FRAMENO_MASK;
3413 }
3414 
3415 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3416 {
3417 	env->insn_aux_data[idx].jmp_point = true;
3418 }
3419 
3420 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3421 {
3422 	return env->insn_aux_data[insn_idx].jmp_point;
3423 }
3424 
3425 /* for any branch, call, exit record the history of jmps in the given state */
3426 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3427 			    int insn_flags)
3428 {
3429 	u32 cnt = cur->jmp_history_cnt;
3430 	struct bpf_jmp_history_entry *p;
3431 	size_t alloc_size;
3432 
3433 	/* combine instruction flags if we already recorded this instruction */
3434 	if (env->cur_hist_ent) {
3435 		/* atomic instructions push insn_flags twice, for READ and
3436 		 * WRITE sides, but they should agree on stack slot
3437 		 */
3438 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3439 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3440 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3441 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3442 		env->cur_hist_ent->flags |= insn_flags;
3443 		return 0;
3444 	}
3445 
3446 	cnt++;
3447 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3448 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3449 	if (!p)
3450 		return -ENOMEM;
3451 	cur->jmp_history = p;
3452 
3453 	p = &cur->jmp_history[cnt - 1];
3454 	p->idx = env->insn_idx;
3455 	p->prev_idx = env->prev_insn_idx;
3456 	p->flags = insn_flags;
3457 	cur->jmp_history_cnt = cnt;
3458 	env->cur_hist_ent = p;
3459 
3460 	return 0;
3461 }
3462 
3463 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3464 						        u32 hist_end, int insn_idx)
3465 {
3466 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3467 		return &st->jmp_history[hist_end - 1];
3468 	return NULL;
3469 }
3470 
3471 /* Backtrack one insn at a time. If idx is not at the top of recorded
3472  * history then previous instruction came from straight line execution.
3473  * Return -ENOENT if we exhausted all instructions within given state.
3474  *
3475  * It's legal to have a bit of a looping with the same starting and ending
3476  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3477  * instruction index is the same as state's first_idx doesn't mean we are
3478  * done. If there is still some jump history left, we should keep going. We
3479  * need to take into account that we might have a jump history between given
3480  * state's parent and itself, due to checkpointing. In this case, we'll have
3481  * history entry recording a jump from last instruction of parent state and
3482  * first instruction of given state.
3483  */
3484 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3485 			     u32 *history)
3486 {
3487 	u32 cnt = *history;
3488 
3489 	if (i == st->first_insn_idx) {
3490 		if (cnt == 0)
3491 			return -ENOENT;
3492 		if (cnt == 1 && st->jmp_history[0].idx == i)
3493 			return -ENOENT;
3494 	}
3495 
3496 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3497 		i = st->jmp_history[cnt - 1].prev_idx;
3498 		(*history)--;
3499 	} else {
3500 		i--;
3501 	}
3502 	return i;
3503 }
3504 
3505 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3506 {
3507 	const struct btf_type *func;
3508 	struct btf *desc_btf;
3509 
3510 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3511 		return NULL;
3512 
3513 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3514 	if (IS_ERR(desc_btf))
3515 		return "<error>";
3516 
3517 	func = btf_type_by_id(desc_btf, insn->imm);
3518 	return btf_name_by_offset(desc_btf, func->name_off);
3519 }
3520 
3521 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3522 {
3523 	bt->frame = frame;
3524 }
3525 
3526 static inline void bt_reset(struct backtrack_state *bt)
3527 {
3528 	struct bpf_verifier_env *env = bt->env;
3529 
3530 	memset(bt, 0, sizeof(*bt));
3531 	bt->env = env;
3532 }
3533 
3534 static inline u32 bt_empty(struct backtrack_state *bt)
3535 {
3536 	u64 mask = 0;
3537 	int i;
3538 
3539 	for (i = 0; i <= bt->frame; i++)
3540 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3541 
3542 	return mask == 0;
3543 }
3544 
3545 static inline int bt_subprog_enter(struct backtrack_state *bt)
3546 {
3547 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3548 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3549 		WARN_ONCE(1, "verifier backtracking bug");
3550 		return -EFAULT;
3551 	}
3552 	bt->frame++;
3553 	return 0;
3554 }
3555 
3556 static inline int bt_subprog_exit(struct backtrack_state *bt)
3557 {
3558 	if (bt->frame == 0) {
3559 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3560 		WARN_ONCE(1, "verifier backtracking bug");
3561 		return -EFAULT;
3562 	}
3563 	bt->frame--;
3564 	return 0;
3565 }
3566 
3567 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3568 {
3569 	bt->reg_masks[frame] |= 1 << reg;
3570 }
3571 
3572 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3573 {
3574 	bt->reg_masks[frame] &= ~(1 << reg);
3575 }
3576 
3577 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3578 {
3579 	bt_set_frame_reg(bt, bt->frame, reg);
3580 }
3581 
3582 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3583 {
3584 	bt_clear_frame_reg(bt, bt->frame, reg);
3585 }
3586 
3587 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3588 {
3589 	bt->stack_masks[frame] |= 1ull << slot;
3590 }
3591 
3592 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3593 {
3594 	bt->stack_masks[frame] &= ~(1ull << slot);
3595 }
3596 
3597 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3598 {
3599 	bt_set_frame_slot(bt, bt->frame, slot);
3600 }
3601 
3602 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3603 {
3604 	bt_clear_frame_slot(bt, bt->frame, slot);
3605 }
3606 
3607 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3608 {
3609 	return bt->reg_masks[frame];
3610 }
3611 
3612 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3613 {
3614 	return bt->reg_masks[bt->frame];
3615 }
3616 
3617 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3618 {
3619 	return bt->stack_masks[frame];
3620 }
3621 
3622 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3623 {
3624 	return bt->stack_masks[bt->frame];
3625 }
3626 
3627 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3628 {
3629 	return bt->reg_masks[bt->frame] & (1 << reg);
3630 }
3631 
3632 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3633 {
3634 	return bt->stack_masks[frame] & (1ull << slot);
3635 }
3636 
3637 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3638 {
3639 	return bt_is_frame_slot_set(bt, bt->frame, slot);
3640 }
3641 
3642 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3643 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3644 {
3645 	DECLARE_BITMAP(mask, 64);
3646 	bool first = true;
3647 	int i, n;
3648 
3649 	buf[0] = '\0';
3650 
3651 	bitmap_from_u64(mask, reg_mask);
3652 	for_each_set_bit(i, mask, 32) {
3653 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3654 		first = false;
3655 		buf += n;
3656 		buf_sz -= n;
3657 		if (buf_sz < 0)
3658 			break;
3659 	}
3660 }
3661 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3662 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3663 {
3664 	DECLARE_BITMAP(mask, 64);
3665 	bool first = true;
3666 	int i, n;
3667 
3668 	buf[0] = '\0';
3669 
3670 	bitmap_from_u64(mask, stack_mask);
3671 	for_each_set_bit(i, mask, 64) {
3672 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3673 		first = false;
3674 		buf += n;
3675 		buf_sz -= n;
3676 		if (buf_sz < 0)
3677 			break;
3678 	}
3679 }
3680 
3681 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3682 
3683 /* For given verifier state backtrack_insn() is called from the last insn to
3684  * the first insn. Its purpose is to compute a bitmask of registers and
3685  * stack slots that needs precision in the parent verifier state.
3686  *
3687  * @idx is an index of the instruction we are currently processing;
3688  * @subseq_idx is an index of the subsequent instruction that:
3689  *   - *would be* executed next, if jump history is viewed in forward order;
3690  *   - *was* processed previously during backtracking.
3691  */
3692 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3693 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3694 {
3695 	const struct bpf_insn_cbs cbs = {
3696 		.cb_call	= disasm_kfunc_name,
3697 		.cb_print	= verbose,
3698 		.private_data	= env,
3699 	};
3700 	struct bpf_insn *insn = env->prog->insnsi + idx;
3701 	u8 class = BPF_CLASS(insn->code);
3702 	u8 opcode = BPF_OP(insn->code);
3703 	u8 mode = BPF_MODE(insn->code);
3704 	u32 dreg = insn->dst_reg;
3705 	u32 sreg = insn->src_reg;
3706 	u32 spi, i, fr;
3707 
3708 	if (insn->code == 0)
3709 		return 0;
3710 	if (env->log.level & BPF_LOG_LEVEL2) {
3711 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3712 		verbose(env, "mark_precise: frame%d: regs=%s ",
3713 			bt->frame, env->tmp_str_buf);
3714 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3715 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3716 		verbose(env, "%d: ", idx);
3717 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3718 	}
3719 
3720 	if (class == BPF_ALU || class == BPF_ALU64) {
3721 		if (!bt_is_reg_set(bt, dreg))
3722 			return 0;
3723 		if (opcode == BPF_END || opcode == BPF_NEG) {
3724 			/* sreg is reserved and unused
3725 			 * dreg still need precision before this insn
3726 			 */
3727 			return 0;
3728 		} else if (opcode == BPF_MOV) {
3729 			if (BPF_SRC(insn->code) == BPF_X) {
3730 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3731 				 * dreg needs precision after this insn
3732 				 * sreg needs precision before this insn
3733 				 */
3734 				bt_clear_reg(bt, dreg);
3735 				if (sreg != BPF_REG_FP)
3736 					bt_set_reg(bt, sreg);
3737 			} else {
3738 				/* dreg = K
3739 				 * dreg needs precision after this insn.
3740 				 * Corresponding register is already marked
3741 				 * as precise=true in this verifier state.
3742 				 * No further markings in parent are necessary
3743 				 */
3744 				bt_clear_reg(bt, dreg);
3745 			}
3746 		} else {
3747 			if (BPF_SRC(insn->code) == BPF_X) {
3748 				/* dreg += sreg
3749 				 * both dreg and sreg need precision
3750 				 * before this insn
3751 				 */
3752 				if (sreg != BPF_REG_FP)
3753 					bt_set_reg(bt, sreg);
3754 			} /* else dreg += K
3755 			   * dreg still needs precision before this insn
3756 			   */
3757 		}
3758 	} else if (class == BPF_LDX) {
3759 		if (!bt_is_reg_set(bt, dreg))
3760 			return 0;
3761 		bt_clear_reg(bt, dreg);
3762 
3763 		/* scalars can only be spilled into stack w/o losing precision.
3764 		 * Load from any other memory can be zero extended.
3765 		 * The desire to keep that precision is already indicated
3766 		 * by 'precise' mark in corresponding register of this state.
3767 		 * No further tracking necessary.
3768 		 */
3769 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3770 			return 0;
3771 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3772 		 * that [fp - off] slot contains scalar that needs to be
3773 		 * tracked with precision
3774 		 */
3775 		spi = insn_stack_access_spi(hist->flags);
3776 		fr = insn_stack_access_frameno(hist->flags);
3777 		bt_set_frame_slot(bt, fr, spi);
3778 	} else if (class == BPF_STX || class == BPF_ST) {
3779 		if (bt_is_reg_set(bt, dreg))
3780 			/* stx & st shouldn't be using _scalar_ dst_reg
3781 			 * to access memory. It means backtracking
3782 			 * encountered a case of pointer subtraction.
3783 			 */
3784 			return -ENOTSUPP;
3785 		/* scalars can only be spilled into stack */
3786 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3787 			return 0;
3788 		spi = insn_stack_access_spi(hist->flags);
3789 		fr = insn_stack_access_frameno(hist->flags);
3790 		if (!bt_is_frame_slot_set(bt, fr, spi))
3791 			return 0;
3792 		bt_clear_frame_slot(bt, fr, spi);
3793 		if (class == BPF_STX)
3794 			bt_set_reg(bt, sreg);
3795 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3796 		if (bpf_pseudo_call(insn)) {
3797 			int subprog_insn_idx, subprog;
3798 
3799 			subprog_insn_idx = idx + insn->imm + 1;
3800 			subprog = find_subprog(env, subprog_insn_idx);
3801 			if (subprog < 0)
3802 				return -EFAULT;
3803 
3804 			if (subprog_is_global(env, subprog)) {
3805 				/* check that jump history doesn't have any
3806 				 * extra instructions from subprog; the next
3807 				 * instruction after call to global subprog
3808 				 * should be literally next instruction in
3809 				 * caller program
3810 				 */
3811 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3812 				/* r1-r5 are invalidated after subprog call,
3813 				 * so for global func call it shouldn't be set
3814 				 * anymore
3815 				 */
3816 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3817 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3818 					WARN_ONCE(1, "verifier backtracking bug");
3819 					return -EFAULT;
3820 				}
3821 				/* global subprog always sets R0 */
3822 				bt_clear_reg(bt, BPF_REG_0);
3823 				return 0;
3824 			} else {
3825 				/* static subprog call instruction, which
3826 				 * means that we are exiting current subprog,
3827 				 * so only r1-r5 could be still requested as
3828 				 * precise, r0 and r6-r10 or any stack slot in
3829 				 * the current frame should be zero by now
3830 				 */
3831 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3832 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3833 					WARN_ONCE(1, "verifier backtracking bug");
3834 					return -EFAULT;
3835 				}
3836 				/* we are now tracking register spills correctly,
3837 				 * so any instance of leftover slots is a bug
3838 				 */
3839 				if (bt_stack_mask(bt) != 0) {
3840 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3841 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3842 					return -EFAULT;
3843 				}
3844 				/* propagate r1-r5 to the caller */
3845 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3846 					if (bt_is_reg_set(bt, i)) {
3847 						bt_clear_reg(bt, i);
3848 						bt_set_frame_reg(bt, bt->frame - 1, i);
3849 					}
3850 				}
3851 				if (bt_subprog_exit(bt))
3852 					return -EFAULT;
3853 				return 0;
3854 			}
3855 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3856 			/* exit from callback subprog to callback-calling helper or
3857 			 * kfunc call. Use idx/subseq_idx check to discern it from
3858 			 * straight line code backtracking.
3859 			 * Unlike the subprog call handling above, we shouldn't
3860 			 * propagate precision of r1-r5 (if any requested), as they are
3861 			 * not actually arguments passed directly to callback subprogs
3862 			 */
3863 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3864 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3865 				WARN_ONCE(1, "verifier backtracking bug");
3866 				return -EFAULT;
3867 			}
3868 			if (bt_stack_mask(bt) != 0) {
3869 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3870 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3871 				return -EFAULT;
3872 			}
3873 			/* clear r1-r5 in callback subprog's mask */
3874 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3875 				bt_clear_reg(bt, i);
3876 			if (bt_subprog_exit(bt))
3877 				return -EFAULT;
3878 			return 0;
3879 		} else if (opcode == BPF_CALL) {
3880 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3881 			 * catch this error later. Make backtracking conservative
3882 			 * with ENOTSUPP.
3883 			 */
3884 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3885 				return -ENOTSUPP;
3886 			/* regular helper call sets R0 */
3887 			bt_clear_reg(bt, BPF_REG_0);
3888 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3889 				/* if backtracing was looking for registers R1-R5
3890 				 * they should have been found already.
3891 				 */
3892 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3893 				WARN_ONCE(1, "verifier backtracking bug");
3894 				return -EFAULT;
3895 			}
3896 		} else if (opcode == BPF_EXIT) {
3897 			bool r0_precise;
3898 
3899 			/* Backtracking to a nested function call, 'idx' is a part of
3900 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3901 			 * In case of a regular function call, instructions giving
3902 			 * precision to registers R1-R5 should have been found already.
3903 			 * In case of a callback, it is ok to have R1-R5 marked for
3904 			 * backtracking, as these registers are set by the function
3905 			 * invoking callback.
3906 			 */
3907 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3908 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3909 					bt_clear_reg(bt, i);
3910 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3911 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3912 				WARN_ONCE(1, "verifier backtracking bug");
3913 				return -EFAULT;
3914 			}
3915 
3916 			/* BPF_EXIT in subprog or callback always returns
3917 			 * right after the call instruction, so by checking
3918 			 * whether the instruction at subseq_idx-1 is subprog
3919 			 * call or not we can distinguish actual exit from
3920 			 * *subprog* from exit from *callback*. In the former
3921 			 * case, we need to propagate r0 precision, if
3922 			 * necessary. In the former we never do that.
3923 			 */
3924 			r0_precise = subseq_idx - 1 >= 0 &&
3925 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3926 				     bt_is_reg_set(bt, BPF_REG_0);
3927 
3928 			bt_clear_reg(bt, BPF_REG_0);
3929 			if (bt_subprog_enter(bt))
3930 				return -EFAULT;
3931 
3932 			if (r0_precise)
3933 				bt_set_reg(bt, BPF_REG_0);
3934 			/* r6-r9 and stack slots will stay set in caller frame
3935 			 * bitmasks until we return back from callee(s)
3936 			 */
3937 			return 0;
3938 		} else if (BPF_SRC(insn->code) == BPF_X) {
3939 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3940 				return 0;
3941 			/* dreg <cond> sreg
3942 			 * Both dreg and sreg need precision before
3943 			 * this insn. If only sreg was marked precise
3944 			 * before it would be equally necessary to
3945 			 * propagate it to dreg.
3946 			 */
3947 			bt_set_reg(bt, dreg);
3948 			bt_set_reg(bt, sreg);
3949 			 /* else dreg <cond> K
3950 			  * Only dreg still needs precision before
3951 			  * this insn, so for the K-based conditional
3952 			  * there is nothing new to be marked.
3953 			  */
3954 		}
3955 	} else if (class == BPF_LD) {
3956 		if (!bt_is_reg_set(bt, dreg))
3957 			return 0;
3958 		bt_clear_reg(bt, dreg);
3959 		/* It's ld_imm64 or ld_abs or ld_ind.
3960 		 * For ld_imm64 no further tracking of precision
3961 		 * into parent is necessary
3962 		 */
3963 		if (mode == BPF_IND || mode == BPF_ABS)
3964 			/* to be analyzed */
3965 			return -ENOTSUPP;
3966 	}
3967 	return 0;
3968 }
3969 
3970 /* the scalar precision tracking algorithm:
3971  * . at the start all registers have precise=false.
3972  * . scalar ranges are tracked as normal through alu and jmp insns.
3973  * . once precise value of the scalar register is used in:
3974  *   .  ptr + scalar alu
3975  *   . if (scalar cond K|scalar)
3976  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3977  *   backtrack through the verifier states and mark all registers and
3978  *   stack slots with spilled constants that these scalar regisers
3979  *   should be precise.
3980  * . during state pruning two registers (or spilled stack slots)
3981  *   are equivalent if both are not precise.
3982  *
3983  * Note the verifier cannot simply walk register parentage chain,
3984  * since many different registers and stack slots could have been
3985  * used to compute single precise scalar.
3986  *
3987  * The approach of starting with precise=true for all registers and then
3988  * backtrack to mark a register as not precise when the verifier detects
3989  * that program doesn't care about specific value (e.g., when helper
3990  * takes register as ARG_ANYTHING parameter) is not safe.
3991  *
3992  * It's ok to walk single parentage chain of the verifier states.
3993  * It's possible that this backtracking will go all the way till 1st insn.
3994  * All other branches will be explored for needing precision later.
3995  *
3996  * The backtracking needs to deal with cases like:
3997  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3998  * r9 -= r8
3999  * r5 = r9
4000  * if r5 > 0x79f goto pc+7
4001  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4002  * r5 += 1
4003  * ...
4004  * call bpf_perf_event_output#25
4005  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4006  *
4007  * and this case:
4008  * r6 = 1
4009  * call foo // uses callee's r6 inside to compute r0
4010  * r0 += r6
4011  * if r0 == 0 goto
4012  *
4013  * to track above reg_mask/stack_mask needs to be independent for each frame.
4014  *
4015  * Also if parent's curframe > frame where backtracking started,
4016  * the verifier need to mark registers in both frames, otherwise callees
4017  * may incorrectly prune callers. This is similar to
4018  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4019  *
4020  * For now backtracking falls back into conservative marking.
4021  */
4022 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4023 				     struct bpf_verifier_state *st)
4024 {
4025 	struct bpf_func_state *func;
4026 	struct bpf_reg_state *reg;
4027 	int i, j;
4028 
4029 	if (env->log.level & BPF_LOG_LEVEL2) {
4030 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4031 			st->curframe);
4032 	}
4033 
4034 	/* big hammer: mark all scalars precise in this path.
4035 	 * pop_stack may still get !precise scalars.
4036 	 * We also skip current state and go straight to first parent state,
4037 	 * because precision markings in current non-checkpointed state are
4038 	 * not needed. See why in the comment in __mark_chain_precision below.
4039 	 */
4040 	for (st = st->parent; st; st = st->parent) {
4041 		for (i = 0; i <= st->curframe; i++) {
4042 			func = st->frame[i];
4043 			for (j = 0; j < BPF_REG_FP; j++) {
4044 				reg = &func->regs[j];
4045 				if (reg->type != SCALAR_VALUE || reg->precise)
4046 					continue;
4047 				reg->precise = true;
4048 				if (env->log.level & BPF_LOG_LEVEL2) {
4049 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4050 						i, j);
4051 				}
4052 			}
4053 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4054 				if (!is_spilled_reg(&func->stack[j]))
4055 					continue;
4056 				reg = &func->stack[j].spilled_ptr;
4057 				if (reg->type != SCALAR_VALUE || reg->precise)
4058 					continue;
4059 				reg->precise = true;
4060 				if (env->log.level & BPF_LOG_LEVEL2) {
4061 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4062 						i, -(j + 1) * 8);
4063 				}
4064 			}
4065 		}
4066 	}
4067 }
4068 
4069 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4070 {
4071 	struct bpf_func_state *func;
4072 	struct bpf_reg_state *reg;
4073 	int i, j;
4074 
4075 	for (i = 0; i <= st->curframe; i++) {
4076 		func = st->frame[i];
4077 		for (j = 0; j < BPF_REG_FP; j++) {
4078 			reg = &func->regs[j];
4079 			if (reg->type != SCALAR_VALUE)
4080 				continue;
4081 			reg->precise = false;
4082 		}
4083 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4084 			if (!is_spilled_reg(&func->stack[j]))
4085 				continue;
4086 			reg = &func->stack[j].spilled_ptr;
4087 			if (reg->type != SCALAR_VALUE)
4088 				continue;
4089 			reg->precise = false;
4090 		}
4091 	}
4092 }
4093 
4094 static bool idset_contains(struct bpf_idset *s, u32 id)
4095 {
4096 	u32 i;
4097 
4098 	for (i = 0; i < s->count; ++i)
4099 		if (s->ids[i] == id)
4100 			return true;
4101 
4102 	return false;
4103 }
4104 
4105 static int idset_push(struct bpf_idset *s, u32 id)
4106 {
4107 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4108 		return -EFAULT;
4109 	s->ids[s->count++] = id;
4110 	return 0;
4111 }
4112 
4113 static void idset_reset(struct bpf_idset *s)
4114 {
4115 	s->count = 0;
4116 }
4117 
4118 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4119  * Mark all registers with these IDs as precise.
4120  */
4121 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4122 {
4123 	struct bpf_idset *precise_ids = &env->idset_scratch;
4124 	struct backtrack_state *bt = &env->bt;
4125 	struct bpf_func_state *func;
4126 	struct bpf_reg_state *reg;
4127 	DECLARE_BITMAP(mask, 64);
4128 	int i, fr;
4129 
4130 	idset_reset(precise_ids);
4131 
4132 	for (fr = bt->frame; fr >= 0; fr--) {
4133 		func = st->frame[fr];
4134 
4135 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4136 		for_each_set_bit(i, mask, 32) {
4137 			reg = &func->regs[i];
4138 			if (!reg->id || reg->type != SCALAR_VALUE)
4139 				continue;
4140 			if (idset_push(precise_ids, reg->id))
4141 				return -EFAULT;
4142 		}
4143 
4144 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4145 		for_each_set_bit(i, mask, 64) {
4146 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4147 				break;
4148 			if (!is_spilled_scalar_reg(&func->stack[i]))
4149 				continue;
4150 			reg = &func->stack[i].spilled_ptr;
4151 			if (!reg->id)
4152 				continue;
4153 			if (idset_push(precise_ids, reg->id))
4154 				return -EFAULT;
4155 		}
4156 	}
4157 
4158 	for (fr = 0; fr <= st->curframe; ++fr) {
4159 		func = st->frame[fr];
4160 
4161 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4162 			reg = &func->regs[i];
4163 			if (!reg->id)
4164 				continue;
4165 			if (!idset_contains(precise_ids, reg->id))
4166 				continue;
4167 			bt_set_frame_reg(bt, fr, i);
4168 		}
4169 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4170 			if (!is_spilled_scalar_reg(&func->stack[i]))
4171 				continue;
4172 			reg = &func->stack[i].spilled_ptr;
4173 			if (!reg->id)
4174 				continue;
4175 			if (!idset_contains(precise_ids, reg->id))
4176 				continue;
4177 			bt_set_frame_slot(bt, fr, i);
4178 		}
4179 	}
4180 
4181 	return 0;
4182 }
4183 
4184 /*
4185  * __mark_chain_precision() backtracks BPF program instruction sequence and
4186  * chain of verifier states making sure that register *regno* (if regno >= 0)
4187  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4188  * SCALARS, as well as any other registers and slots that contribute to
4189  * a tracked state of given registers/stack slots, depending on specific BPF
4190  * assembly instructions (see backtrack_insns() for exact instruction handling
4191  * logic). This backtracking relies on recorded jmp_history and is able to
4192  * traverse entire chain of parent states. This process ends only when all the
4193  * necessary registers/slots and their transitive dependencies are marked as
4194  * precise.
4195  *
4196  * One important and subtle aspect is that precise marks *do not matter* in
4197  * the currently verified state (current state). It is important to understand
4198  * why this is the case.
4199  *
4200  * First, note that current state is the state that is not yet "checkpointed",
4201  * i.e., it is not yet put into env->explored_states, and it has no children
4202  * states as well. It's ephemeral, and can end up either a) being discarded if
4203  * compatible explored state is found at some point or BPF_EXIT instruction is
4204  * reached or b) checkpointed and put into env->explored_states, branching out
4205  * into one or more children states.
4206  *
4207  * In the former case, precise markings in current state are completely
4208  * ignored by state comparison code (see regsafe() for details). Only
4209  * checkpointed ("old") state precise markings are important, and if old
4210  * state's register/slot is precise, regsafe() assumes current state's
4211  * register/slot as precise and checks value ranges exactly and precisely. If
4212  * states turn out to be compatible, current state's necessary precise
4213  * markings and any required parent states' precise markings are enforced
4214  * after the fact with propagate_precision() logic, after the fact. But it's
4215  * important to realize that in this case, even after marking current state
4216  * registers/slots as precise, we immediately discard current state. So what
4217  * actually matters is any of the precise markings propagated into current
4218  * state's parent states, which are always checkpointed (due to b) case above).
4219  * As such, for scenario a) it doesn't matter if current state has precise
4220  * markings set or not.
4221  *
4222  * Now, for the scenario b), checkpointing and forking into child(ren)
4223  * state(s). Note that before current state gets to checkpointing step, any
4224  * processed instruction always assumes precise SCALAR register/slot
4225  * knowledge: if precise value or range is useful to prune jump branch, BPF
4226  * verifier takes this opportunity enthusiastically. Similarly, when
4227  * register's value is used to calculate offset or memory address, exact
4228  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4229  * what we mentioned above about state comparison ignoring precise markings
4230  * during state comparison, BPF verifier ignores and also assumes precise
4231  * markings *at will* during instruction verification process. But as verifier
4232  * assumes precision, it also propagates any precision dependencies across
4233  * parent states, which are not yet finalized, so can be further restricted
4234  * based on new knowledge gained from restrictions enforced by their children
4235  * states. This is so that once those parent states are finalized, i.e., when
4236  * they have no more active children state, state comparison logic in
4237  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4238  * required for correctness.
4239  *
4240  * To build a bit more intuition, note also that once a state is checkpointed,
4241  * the path we took to get to that state is not important. This is crucial
4242  * property for state pruning. When state is checkpointed and finalized at
4243  * some instruction index, it can be correctly and safely used to "short
4244  * circuit" any *compatible* state that reaches exactly the same instruction
4245  * index. I.e., if we jumped to that instruction from a completely different
4246  * code path than original finalized state was derived from, it doesn't
4247  * matter, current state can be discarded because from that instruction
4248  * forward having a compatible state will ensure we will safely reach the
4249  * exit. States describe preconditions for further exploration, but completely
4250  * forget the history of how we got here.
4251  *
4252  * This also means that even if we needed precise SCALAR range to get to
4253  * finalized state, but from that point forward *that same* SCALAR register is
4254  * never used in a precise context (i.e., it's precise value is not needed for
4255  * correctness), it's correct and safe to mark such register as "imprecise"
4256  * (i.e., precise marking set to false). This is what we rely on when we do
4257  * not set precise marking in current state. If no child state requires
4258  * precision for any given SCALAR register, it's safe to dictate that it can
4259  * be imprecise. If any child state does require this register to be precise,
4260  * we'll mark it precise later retroactively during precise markings
4261  * propagation from child state to parent states.
4262  *
4263  * Skipping precise marking setting in current state is a mild version of
4264  * relying on the above observation. But we can utilize this property even
4265  * more aggressively by proactively forgetting any precise marking in the
4266  * current state (which we inherited from the parent state), right before we
4267  * checkpoint it and branch off into new child state. This is done by
4268  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4269  * finalized states which help in short circuiting more future states.
4270  */
4271 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4272 {
4273 	struct backtrack_state *bt = &env->bt;
4274 	struct bpf_verifier_state *st = env->cur_state;
4275 	int first_idx = st->first_insn_idx;
4276 	int last_idx = env->insn_idx;
4277 	int subseq_idx = -1;
4278 	struct bpf_func_state *func;
4279 	struct bpf_reg_state *reg;
4280 	bool skip_first = true;
4281 	int i, fr, err;
4282 
4283 	if (!env->bpf_capable)
4284 		return 0;
4285 
4286 	/* set frame number from which we are starting to backtrack */
4287 	bt_init(bt, env->cur_state->curframe);
4288 
4289 	/* Do sanity checks against current state of register and/or stack
4290 	 * slot, but don't set precise flag in current state, as precision
4291 	 * tracking in the current state is unnecessary.
4292 	 */
4293 	func = st->frame[bt->frame];
4294 	if (regno >= 0) {
4295 		reg = &func->regs[regno];
4296 		if (reg->type != SCALAR_VALUE) {
4297 			WARN_ONCE(1, "backtracing misuse");
4298 			return -EFAULT;
4299 		}
4300 		bt_set_reg(bt, regno);
4301 	}
4302 
4303 	if (bt_empty(bt))
4304 		return 0;
4305 
4306 	for (;;) {
4307 		DECLARE_BITMAP(mask, 64);
4308 		u32 history = st->jmp_history_cnt;
4309 		struct bpf_jmp_history_entry *hist;
4310 
4311 		if (env->log.level & BPF_LOG_LEVEL2) {
4312 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4313 				bt->frame, last_idx, first_idx, subseq_idx);
4314 		}
4315 
4316 		/* If some register with scalar ID is marked as precise,
4317 		 * make sure that all registers sharing this ID are also precise.
4318 		 * This is needed to estimate effect of find_equal_scalars().
4319 		 * Do this at the last instruction of each state,
4320 		 * bpf_reg_state::id fields are valid for these instructions.
4321 		 *
4322 		 * Allows to track precision in situation like below:
4323 		 *
4324 		 *     r2 = unknown value
4325 		 *     ...
4326 		 *   --- state #0 ---
4327 		 *     ...
4328 		 *     r1 = r2                 // r1 and r2 now share the same ID
4329 		 *     ...
4330 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4331 		 *     ...
4332 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4333 		 *     ...
4334 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4335 		 *     r3 = r10
4336 		 *     r3 += r1                // need to mark both r1 and r2
4337 		 */
4338 		if (mark_precise_scalar_ids(env, st))
4339 			return -EFAULT;
4340 
4341 		if (last_idx < 0) {
4342 			/* we are at the entry into subprog, which
4343 			 * is expected for global funcs, but only if
4344 			 * requested precise registers are R1-R5
4345 			 * (which are global func's input arguments)
4346 			 */
4347 			if (st->curframe == 0 &&
4348 			    st->frame[0]->subprogno > 0 &&
4349 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4350 			    bt_stack_mask(bt) == 0 &&
4351 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4352 				bitmap_from_u64(mask, bt_reg_mask(bt));
4353 				for_each_set_bit(i, mask, 32) {
4354 					reg = &st->frame[0]->regs[i];
4355 					bt_clear_reg(bt, i);
4356 					if (reg->type == SCALAR_VALUE)
4357 						reg->precise = true;
4358 				}
4359 				return 0;
4360 			}
4361 
4362 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4363 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4364 			WARN_ONCE(1, "verifier backtracking bug");
4365 			return -EFAULT;
4366 		}
4367 
4368 		for (i = last_idx;;) {
4369 			if (skip_first) {
4370 				err = 0;
4371 				skip_first = false;
4372 			} else {
4373 				hist = get_jmp_hist_entry(st, history, i);
4374 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4375 			}
4376 			if (err == -ENOTSUPP) {
4377 				mark_all_scalars_precise(env, env->cur_state);
4378 				bt_reset(bt);
4379 				return 0;
4380 			} else if (err) {
4381 				return err;
4382 			}
4383 			if (bt_empty(bt))
4384 				/* Found assignment(s) into tracked register in this state.
4385 				 * Since this state is already marked, just return.
4386 				 * Nothing to be tracked further in the parent state.
4387 				 */
4388 				return 0;
4389 			subseq_idx = i;
4390 			i = get_prev_insn_idx(st, i, &history);
4391 			if (i == -ENOENT)
4392 				break;
4393 			if (i >= env->prog->len) {
4394 				/* This can happen if backtracking reached insn 0
4395 				 * and there are still reg_mask or stack_mask
4396 				 * to backtrack.
4397 				 * It means the backtracking missed the spot where
4398 				 * particular register was initialized with a constant.
4399 				 */
4400 				verbose(env, "BUG backtracking idx %d\n", i);
4401 				WARN_ONCE(1, "verifier backtracking bug");
4402 				return -EFAULT;
4403 			}
4404 		}
4405 		st = st->parent;
4406 		if (!st)
4407 			break;
4408 
4409 		for (fr = bt->frame; fr >= 0; fr--) {
4410 			func = st->frame[fr];
4411 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4412 			for_each_set_bit(i, mask, 32) {
4413 				reg = &func->regs[i];
4414 				if (reg->type != SCALAR_VALUE) {
4415 					bt_clear_frame_reg(bt, fr, i);
4416 					continue;
4417 				}
4418 				if (reg->precise)
4419 					bt_clear_frame_reg(bt, fr, i);
4420 				else
4421 					reg->precise = true;
4422 			}
4423 
4424 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4425 			for_each_set_bit(i, mask, 64) {
4426 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4427 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4428 						i, func->allocated_stack / BPF_REG_SIZE);
4429 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4430 					return -EFAULT;
4431 				}
4432 
4433 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4434 					bt_clear_frame_slot(bt, fr, i);
4435 					continue;
4436 				}
4437 				reg = &func->stack[i].spilled_ptr;
4438 				if (reg->precise)
4439 					bt_clear_frame_slot(bt, fr, i);
4440 				else
4441 					reg->precise = true;
4442 			}
4443 			if (env->log.level & BPF_LOG_LEVEL2) {
4444 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4445 					     bt_frame_reg_mask(bt, fr));
4446 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4447 					fr, env->tmp_str_buf);
4448 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4449 					       bt_frame_stack_mask(bt, fr));
4450 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4451 				print_verifier_state(env, func, true);
4452 			}
4453 		}
4454 
4455 		if (bt_empty(bt))
4456 			return 0;
4457 
4458 		subseq_idx = first_idx;
4459 		last_idx = st->last_insn_idx;
4460 		first_idx = st->first_insn_idx;
4461 	}
4462 
4463 	/* if we still have requested precise regs or slots, we missed
4464 	 * something (e.g., stack access through non-r10 register), so
4465 	 * fallback to marking all precise
4466 	 */
4467 	if (!bt_empty(bt)) {
4468 		mark_all_scalars_precise(env, env->cur_state);
4469 		bt_reset(bt);
4470 	}
4471 
4472 	return 0;
4473 }
4474 
4475 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4476 {
4477 	return __mark_chain_precision(env, regno);
4478 }
4479 
4480 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4481  * desired reg and stack masks across all relevant frames
4482  */
4483 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4484 {
4485 	return __mark_chain_precision(env, -1);
4486 }
4487 
4488 static bool is_spillable_regtype(enum bpf_reg_type type)
4489 {
4490 	switch (base_type(type)) {
4491 	case PTR_TO_MAP_VALUE:
4492 	case PTR_TO_STACK:
4493 	case PTR_TO_CTX:
4494 	case PTR_TO_PACKET:
4495 	case PTR_TO_PACKET_META:
4496 	case PTR_TO_PACKET_END:
4497 	case PTR_TO_FLOW_KEYS:
4498 	case CONST_PTR_TO_MAP:
4499 	case PTR_TO_SOCKET:
4500 	case PTR_TO_SOCK_COMMON:
4501 	case PTR_TO_TCP_SOCK:
4502 	case PTR_TO_XDP_SOCK:
4503 	case PTR_TO_BTF_ID:
4504 	case PTR_TO_BUF:
4505 	case PTR_TO_MEM:
4506 	case PTR_TO_FUNC:
4507 	case PTR_TO_MAP_KEY:
4508 		return true;
4509 	default:
4510 		return false;
4511 	}
4512 }
4513 
4514 /* Does this register contain a constant zero? */
4515 static bool register_is_null(struct bpf_reg_state *reg)
4516 {
4517 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4518 }
4519 
4520 static bool register_is_const(struct bpf_reg_state *reg)
4521 {
4522 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4523 }
4524 
4525 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4526 {
4527 	return tnum_is_unknown(reg->var_off) &&
4528 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4529 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4530 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4531 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4532 }
4533 
4534 static bool register_is_bounded(struct bpf_reg_state *reg)
4535 {
4536 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4537 }
4538 
4539 static bool __is_pointer_value(bool allow_ptr_leaks,
4540 			       const struct bpf_reg_state *reg)
4541 {
4542 	if (allow_ptr_leaks)
4543 		return false;
4544 
4545 	return reg->type != SCALAR_VALUE;
4546 }
4547 
4548 /* Copy src state preserving dst->parent and dst->live fields */
4549 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4550 {
4551 	struct bpf_reg_state *parent = dst->parent;
4552 	enum bpf_reg_liveness live = dst->live;
4553 
4554 	*dst = *src;
4555 	dst->parent = parent;
4556 	dst->live = live;
4557 }
4558 
4559 static void save_register_state(struct bpf_func_state *state,
4560 				int spi, struct bpf_reg_state *reg,
4561 				int size)
4562 {
4563 	int i;
4564 
4565 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4566 	if (size == BPF_REG_SIZE)
4567 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4568 
4569 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4570 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4571 
4572 	/* size < 8 bytes spill */
4573 	for (; i; i--)
4574 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4575 }
4576 
4577 static bool is_bpf_st_mem(struct bpf_insn *insn)
4578 {
4579 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4580 }
4581 
4582 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4583  * stack boundary and alignment are checked in check_mem_access()
4584  */
4585 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4586 				       /* stack frame we're writing to */
4587 				       struct bpf_func_state *state,
4588 				       int off, int size, int value_regno,
4589 				       int insn_idx)
4590 {
4591 	struct bpf_func_state *cur; /* state of the current function */
4592 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4593 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4594 	struct bpf_reg_state *reg = NULL;
4595 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4596 
4597 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4598 	 * so it's aligned access and [off, off + size) are within stack limits
4599 	 */
4600 	if (!env->allow_ptr_leaks &&
4601 	    is_spilled_reg(&state->stack[spi]) &&
4602 	    size != BPF_REG_SIZE) {
4603 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4604 		return -EACCES;
4605 	}
4606 
4607 	cur = env->cur_state->frame[env->cur_state->curframe];
4608 	if (value_regno >= 0)
4609 		reg = &cur->regs[value_regno];
4610 	if (!env->bypass_spec_v4) {
4611 		bool sanitize = reg && is_spillable_regtype(reg->type);
4612 
4613 		for (i = 0; i < size; i++) {
4614 			u8 type = state->stack[spi].slot_type[i];
4615 
4616 			if (type != STACK_MISC && type != STACK_ZERO) {
4617 				sanitize = true;
4618 				break;
4619 			}
4620 		}
4621 
4622 		if (sanitize)
4623 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4624 	}
4625 
4626 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4627 	if (err)
4628 		return err;
4629 
4630 	mark_stack_slot_scratched(env, spi);
4631 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4632 	    !register_is_null(reg) && env->bpf_capable) {
4633 		save_register_state(state, spi, reg, size);
4634 		/* Break the relation on a narrowing spill. */
4635 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4636 			state->stack[spi].spilled_ptr.id = 0;
4637 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4638 		   insn->imm != 0 && env->bpf_capable) {
4639 		struct bpf_reg_state fake_reg = {};
4640 
4641 		__mark_reg_known(&fake_reg, insn->imm);
4642 		fake_reg.type = SCALAR_VALUE;
4643 		save_register_state(state, spi, &fake_reg, size);
4644 		insn_flags = 0; /* not a register spill */
4645 	} else if (reg && is_spillable_regtype(reg->type)) {
4646 		/* register containing pointer is being spilled into stack */
4647 		if (size != BPF_REG_SIZE) {
4648 			verbose_linfo(env, insn_idx, "; ");
4649 			verbose(env, "invalid size of register spill\n");
4650 			return -EACCES;
4651 		}
4652 		if (state != cur && reg->type == PTR_TO_STACK) {
4653 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4654 			return -EINVAL;
4655 		}
4656 		save_register_state(state, spi, reg, size);
4657 	} else {
4658 		u8 type = STACK_MISC;
4659 
4660 		/* regular write of data into stack destroys any spilled ptr */
4661 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4662 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4663 		if (is_stack_slot_special(&state->stack[spi]))
4664 			for (i = 0; i < BPF_REG_SIZE; i++)
4665 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4666 
4667 		/* only mark the slot as written if all 8 bytes were written
4668 		 * otherwise read propagation may incorrectly stop too soon
4669 		 * when stack slots are partially written.
4670 		 * This heuristic means that read propagation will be
4671 		 * conservative, since it will add reg_live_read marks
4672 		 * to stack slots all the way to first state when programs
4673 		 * writes+reads less than 8 bytes
4674 		 */
4675 		if (size == BPF_REG_SIZE)
4676 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4677 
4678 		/* when we zero initialize stack slots mark them as such */
4679 		if ((reg && register_is_null(reg)) ||
4680 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4681 			/* backtracking doesn't work for STACK_ZERO yet. */
4682 			err = mark_chain_precision(env, value_regno);
4683 			if (err)
4684 				return err;
4685 			type = STACK_ZERO;
4686 		}
4687 
4688 		/* Mark slots affected by this stack write. */
4689 		for (i = 0; i < size; i++)
4690 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4691 		insn_flags = 0; /* not a register spill */
4692 	}
4693 
4694 	if (insn_flags)
4695 		return push_jmp_history(env, env->cur_state, insn_flags);
4696 	return 0;
4697 }
4698 
4699 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4700  * known to contain a variable offset.
4701  * This function checks whether the write is permitted and conservatively
4702  * tracks the effects of the write, considering that each stack slot in the
4703  * dynamic range is potentially written to.
4704  *
4705  * 'off' includes 'regno->off'.
4706  * 'value_regno' can be -1, meaning that an unknown value is being written to
4707  * the stack.
4708  *
4709  * Spilled pointers in range are not marked as written because we don't know
4710  * what's going to be actually written. This means that read propagation for
4711  * future reads cannot be terminated by this write.
4712  *
4713  * For privileged programs, uninitialized stack slots are considered
4714  * initialized by this write (even though we don't know exactly what offsets
4715  * are going to be written to). The idea is that we don't want the verifier to
4716  * reject future reads that access slots written to through variable offsets.
4717  */
4718 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4719 				     /* func where register points to */
4720 				     struct bpf_func_state *state,
4721 				     int ptr_regno, int off, int size,
4722 				     int value_regno, int insn_idx)
4723 {
4724 	struct bpf_func_state *cur; /* state of the current function */
4725 	int min_off, max_off;
4726 	int i, err;
4727 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4728 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4729 	bool writing_zero = false;
4730 	/* set if the fact that we're writing a zero is used to let any
4731 	 * stack slots remain STACK_ZERO
4732 	 */
4733 	bool zero_used = false;
4734 
4735 	cur = env->cur_state->frame[env->cur_state->curframe];
4736 	ptr_reg = &cur->regs[ptr_regno];
4737 	min_off = ptr_reg->smin_value + off;
4738 	max_off = ptr_reg->smax_value + off + size;
4739 	if (value_regno >= 0)
4740 		value_reg = &cur->regs[value_regno];
4741 	if ((value_reg && register_is_null(value_reg)) ||
4742 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4743 		writing_zero = true;
4744 
4745 	for (i = min_off; i < max_off; i++) {
4746 		int spi;
4747 
4748 		spi = __get_spi(i);
4749 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4750 		if (err)
4751 			return err;
4752 	}
4753 
4754 	/* Variable offset writes destroy any spilled pointers in range. */
4755 	for (i = min_off; i < max_off; i++) {
4756 		u8 new_type, *stype;
4757 		int slot, spi;
4758 
4759 		slot = -i - 1;
4760 		spi = slot / BPF_REG_SIZE;
4761 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4762 		mark_stack_slot_scratched(env, spi);
4763 
4764 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4765 			/* Reject the write if range we may write to has not
4766 			 * been initialized beforehand. If we didn't reject
4767 			 * here, the ptr status would be erased below (even
4768 			 * though not all slots are actually overwritten),
4769 			 * possibly opening the door to leaks.
4770 			 *
4771 			 * We do however catch STACK_INVALID case below, and
4772 			 * only allow reading possibly uninitialized memory
4773 			 * later for CAP_PERFMON, as the write may not happen to
4774 			 * that slot.
4775 			 */
4776 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4777 				insn_idx, i);
4778 			return -EINVAL;
4779 		}
4780 
4781 		/* Erase all spilled pointers. */
4782 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4783 
4784 		/* Update the slot type. */
4785 		new_type = STACK_MISC;
4786 		if (writing_zero && *stype == STACK_ZERO) {
4787 			new_type = STACK_ZERO;
4788 			zero_used = true;
4789 		}
4790 		/* If the slot is STACK_INVALID, we check whether it's OK to
4791 		 * pretend that it will be initialized by this write. The slot
4792 		 * might not actually be written to, and so if we mark it as
4793 		 * initialized future reads might leak uninitialized memory.
4794 		 * For privileged programs, we will accept such reads to slots
4795 		 * that may or may not be written because, if we're reject
4796 		 * them, the error would be too confusing.
4797 		 */
4798 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4799 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4800 					insn_idx, i);
4801 			return -EINVAL;
4802 		}
4803 		*stype = new_type;
4804 	}
4805 	if (zero_used) {
4806 		/* backtracking doesn't work for STACK_ZERO yet. */
4807 		err = mark_chain_precision(env, value_regno);
4808 		if (err)
4809 			return err;
4810 	}
4811 	return 0;
4812 }
4813 
4814 /* When register 'dst_regno' is assigned some values from stack[min_off,
4815  * max_off), we set the register's type according to the types of the
4816  * respective stack slots. If all the stack values are known to be zeros, then
4817  * so is the destination reg. Otherwise, the register is considered to be
4818  * SCALAR. This function does not deal with register filling; the caller must
4819  * ensure that all spilled registers in the stack range have been marked as
4820  * read.
4821  */
4822 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4823 				/* func where src register points to */
4824 				struct bpf_func_state *ptr_state,
4825 				int min_off, int max_off, int dst_regno)
4826 {
4827 	struct bpf_verifier_state *vstate = env->cur_state;
4828 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4829 	int i, slot, spi;
4830 	u8 *stype;
4831 	int zeros = 0;
4832 
4833 	for (i = min_off; i < max_off; i++) {
4834 		slot = -i - 1;
4835 		spi = slot / BPF_REG_SIZE;
4836 		mark_stack_slot_scratched(env, spi);
4837 		stype = ptr_state->stack[spi].slot_type;
4838 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4839 			break;
4840 		zeros++;
4841 	}
4842 	if (zeros == max_off - min_off) {
4843 		/* any access_size read into register is zero extended,
4844 		 * so the whole register == const_zero
4845 		 */
4846 		__mark_reg_const_zero(&state->regs[dst_regno]);
4847 		/* backtracking doesn't support STACK_ZERO yet,
4848 		 * so mark it precise here, so that later
4849 		 * backtracking can stop here.
4850 		 * Backtracking may not need this if this register
4851 		 * doesn't participate in pointer adjustment.
4852 		 * Forward propagation of precise flag is not
4853 		 * necessary either. This mark is only to stop
4854 		 * backtracking. Any register that contributed
4855 		 * to const 0 was marked precise before spill.
4856 		 */
4857 		state->regs[dst_regno].precise = true;
4858 	} else {
4859 		/* have read misc data from the stack */
4860 		mark_reg_unknown(env, state->regs, dst_regno);
4861 	}
4862 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4863 }
4864 
4865 /* Read the stack at 'off' and put the results into the register indicated by
4866  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4867  * spilled reg.
4868  *
4869  * 'dst_regno' can be -1, meaning that the read value is not going to a
4870  * register.
4871  *
4872  * The access is assumed to be within the current stack bounds.
4873  */
4874 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4875 				      /* func where src register points to */
4876 				      struct bpf_func_state *reg_state,
4877 				      int off, int size, int dst_regno)
4878 {
4879 	struct bpf_verifier_state *vstate = env->cur_state;
4880 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4881 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4882 	struct bpf_reg_state *reg;
4883 	u8 *stype, type;
4884 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4885 
4886 	stype = reg_state->stack[spi].slot_type;
4887 	reg = &reg_state->stack[spi].spilled_ptr;
4888 
4889 	mark_stack_slot_scratched(env, spi);
4890 
4891 	if (is_spilled_reg(&reg_state->stack[spi])) {
4892 		u8 spill_size = 1;
4893 
4894 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4895 			spill_size++;
4896 
4897 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4898 			if (reg->type != SCALAR_VALUE) {
4899 				verbose_linfo(env, env->insn_idx, "; ");
4900 				verbose(env, "invalid size of register fill\n");
4901 				return -EACCES;
4902 			}
4903 
4904 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4905 			if (dst_regno < 0)
4906 				return 0;
4907 
4908 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4909 				/* The earlier check_reg_arg() has decided the
4910 				 * subreg_def for this insn.  Save it first.
4911 				 */
4912 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4913 
4914 				copy_register_state(&state->regs[dst_regno], reg);
4915 				state->regs[dst_regno].subreg_def = subreg_def;
4916 			} else {
4917 				for (i = 0; i < size; i++) {
4918 					type = stype[(slot - i) % BPF_REG_SIZE];
4919 					if (type == STACK_SPILL)
4920 						continue;
4921 					if (type == STACK_MISC)
4922 						continue;
4923 					if (type == STACK_INVALID && env->allow_uninit_stack)
4924 						continue;
4925 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4926 						off, i, size);
4927 					return -EACCES;
4928 				}
4929 				mark_reg_unknown(env, state->regs, dst_regno);
4930 				insn_flags = 0; /* not restoring original register state */
4931 			}
4932 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4933 		} else if (dst_regno >= 0) {
4934 			/* restore register state from stack */
4935 			copy_register_state(&state->regs[dst_regno], reg);
4936 			/* mark reg as written since spilled pointer state likely
4937 			 * has its liveness marks cleared by is_state_visited()
4938 			 * which resets stack/reg liveness for state transitions
4939 			 */
4940 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4941 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4942 			/* If dst_regno==-1, the caller is asking us whether
4943 			 * it is acceptable to use this value as a SCALAR_VALUE
4944 			 * (e.g. for XADD).
4945 			 * We must not allow unprivileged callers to do that
4946 			 * with spilled pointers.
4947 			 */
4948 			verbose(env, "leaking pointer from stack off %d\n",
4949 				off);
4950 			return -EACCES;
4951 		}
4952 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4953 	} else {
4954 		for (i = 0; i < size; i++) {
4955 			type = stype[(slot - i) % BPF_REG_SIZE];
4956 			if (type == STACK_MISC)
4957 				continue;
4958 			if (type == STACK_ZERO)
4959 				continue;
4960 			if (type == STACK_INVALID && env->allow_uninit_stack)
4961 				continue;
4962 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4963 				off, i, size);
4964 			return -EACCES;
4965 		}
4966 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4967 		if (dst_regno >= 0)
4968 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4969 		insn_flags = 0; /* we are not restoring spilled register */
4970 	}
4971 	if (insn_flags)
4972 		return push_jmp_history(env, env->cur_state, insn_flags);
4973 	return 0;
4974 }
4975 
4976 enum bpf_access_src {
4977 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4978 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4979 };
4980 
4981 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4982 					 int regno, int off, int access_size,
4983 					 bool zero_size_allowed,
4984 					 enum bpf_access_src type,
4985 					 struct bpf_call_arg_meta *meta);
4986 
4987 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4988 {
4989 	return cur_regs(env) + regno;
4990 }
4991 
4992 /* Read the stack at 'ptr_regno + off' and put the result into the register
4993  * 'dst_regno'.
4994  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4995  * but not its variable offset.
4996  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4997  *
4998  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4999  * filling registers (i.e. reads of spilled register cannot be detected when
5000  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5001  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5002  * offset; for a fixed offset check_stack_read_fixed_off should be used
5003  * instead.
5004  */
5005 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5006 				    int ptr_regno, int off, int size, int dst_regno)
5007 {
5008 	/* The state of the source register. */
5009 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5010 	struct bpf_func_state *ptr_state = func(env, reg);
5011 	int err;
5012 	int min_off, max_off;
5013 
5014 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5015 	 */
5016 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5017 					    false, ACCESS_DIRECT, NULL);
5018 	if (err)
5019 		return err;
5020 
5021 	min_off = reg->smin_value + off;
5022 	max_off = reg->smax_value + off;
5023 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5024 	return 0;
5025 }
5026 
5027 /* check_stack_read dispatches to check_stack_read_fixed_off or
5028  * check_stack_read_var_off.
5029  *
5030  * The caller must ensure that the offset falls within the allocated stack
5031  * bounds.
5032  *
5033  * 'dst_regno' is a register which will receive the value from the stack. It
5034  * can be -1, meaning that the read value is not going to a register.
5035  */
5036 static int check_stack_read(struct bpf_verifier_env *env,
5037 			    int ptr_regno, int off, int size,
5038 			    int dst_regno)
5039 {
5040 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5041 	struct bpf_func_state *state = func(env, reg);
5042 	int err;
5043 	/* Some accesses are only permitted with a static offset. */
5044 	bool var_off = !tnum_is_const(reg->var_off);
5045 
5046 	/* The offset is required to be static when reads don't go to a
5047 	 * register, in order to not leak pointers (see
5048 	 * check_stack_read_fixed_off).
5049 	 */
5050 	if (dst_regno < 0 && var_off) {
5051 		char tn_buf[48];
5052 
5053 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5054 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5055 			tn_buf, off, size);
5056 		return -EACCES;
5057 	}
5058 	/* Variable offset is prohibited for unprivileged mode for simplicity
5059 	 * since it requires corresponding support in Spectre masking for stack
5060 	 * ALU. See also retrieve_ptr_limit(). The check in
5061 	 * check_stack_access_for_ptr_arithmetic() called by
5062 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5063 	 * with variable offsets, therefore no check is required here. Further,
5064 	 * just checking it here would be insufficient as speculative stack
5065 	 * writes could still lead to unsafe speculative behaviour.
5066 	 */
5067 	if (!var_off) {
5068 		off += reg->var_off.value;
5069 		err = check_stack_read_fixed_off(env, state, off, size,
5070 						 dst_regno);
5071 	} else {
5072 		/* Variable offset stack reads need more conservative handling
5073 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5074 		 * branch.
5075 		 */
5076 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5077 					       dst_regno);
5078 	}
5079 	return err;
5080 }
5081 
5082 
5083 /* check_stack_write dispatches to check_stack_write_fixed_off or
5084  * check_stack_write_var_off.
5085  *
5086  * 'ptr_regno' is the register used as a pointer into the stack.
5087  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5088  * 'value_regno' is the register whose value we're writing to the stack. It can
5089  * be -1, meaning that we're not writing from a register.
5090  *
5091  * The caller must ensure that the offset falls within the maximum stack size.
5092  */
5093 static int check_stack_write(struct bpf_verifier_env *env,
5094 			     int ptr_regno, int off, int size,
5095 			     int value_regno, int insn_idx)
5096 {
5097 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5098 	struct bpf_func_state *state = func(env, reg);
5099 	int err;
5100 
5101 	if (tnum_is_const(reg->var_off)) {
5102 		off += reg->var_off.value;
5103 		err = check_stack_write_fixed_off(env, state, off, size,
5104 						  value_regno, insn_idx);
5105 	} else {
5106 		/* Variable offset stack reads need more conservative handling
5107 		 * than fixed offset ones.
5108 		 */
5109 		err = check_stack_write_var_off(env, state,
5110 						ptr_regno, off, size,
5111 						value_regno, insn_idx);
5112 	}
5113 	return err;
5114 }
5115 
5116 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5117 				 int off, int size, enum bpf_access_type type)
5118 {
5119 	struct bpf_reg_state *regs = cur_regs(env);
5120 	struct bpf_map *map = regs[regno].map_ptr;
5121 	u32 cap = bpf_map_flags_to_cap(map);
5122 
5123 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5124 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5125 			map->value_size, off, size);
5126 		return -EACCES;
5127 	}
5128 
5129 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5130 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5131 			map->value_size, off, size);
5132 		return -EACCES;
5133 	}
5134 
5135 	return 0;
5136 }
5137 
5138 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5139 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5140 			      int off, int size, u32 mem_size,
5141 			      bool zero_size_allowed)
5142 {
5143 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5144 	struct bpf_reg_state *reg;
5145 
5146 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5147 		return 0;
5148 
5149 	reg = &cur_regs(env)[regno];
5150 	switch (reg->type) {
5151 	case PTR_TO_MAP_KEY:
5152 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5153 			mem_size, off, size);
5154 		break;
5155 	case PTR_TO_MAP_VALUE:
5156 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5157 			mem_size, off, size);
5158 		break;
5159 	case PTR_TO_PACKET:
5160 	case PTR_TO_PACKET_META:
5161 	case PTR_TO_PACKET_END:
5162 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5163 			off, size, regno, reg->id, off, mem_size);
5164 		break;
5165 	case PTR_TO_MEM:
5166 	default:
5167 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5168 			mem_size, off, size);
5169 	}
5170 
5171 	return -EACCES;
5172 }
5173 
5174 /* check read/write into a memory region with possible variable offset */
5175 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5176 				   int off, int size, u32 mem_size,
5177 				   bool zero_size_allowed)
5178 {
5179 	struct bpf_verifier_state *vstate = env->cur_state;
5180 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5181 	struct bpf_reg_state *reg = &state->regs[regno];
5182 	int err;
5183 
5184 	/* We may have adjusted the register pointing to memory region, so we
5185 	 * need to try adding each of min_value and max_value to off
5186 	 * to make sure our theoretical access will be safe.
5187 	 *
5188 	 * The minimum value is only important with signed
5189 	 * comparisons where we can't assume the floor of a
5190 	 * value is 0.  If we are using signed variables for our
5191 	 * index'es we need to make sure that whatever we use
5192 	 * will have a set floor within our range.
5193 	 */
5194 	if (reg->smin_value < 0 &&
5195 	    (reg->smin_value == S64_MIN ||
5196 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5197 	      reg->smin_value + off < 0)) {
5198 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5199 			regno);
5200 		return -EACCES;
5201 	}
5202 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5203 				 mem_size, zero_size_allowed);
5204 	if (err) {
5205 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5206 			regno);
5207 		return err;
5208 	}
5209 
5210 	/* If we haven't set a max value then we need to bail since we can't be
5211 	 * sure we won't do bad things.
5212 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5213 	 */
5214 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5215 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5216 			regno);
5217 		return -EACCES;
5218 	}
5219 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5220 				 mem_size, zero_size_allowed);
5221 	if (err) {
5222 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5223 			regno);
5224 		return err;
5225 	}
5226 
5227 	return 0;
5228 }
5229 
5230 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5231 			       const struct bpf_reg_state *reg, int regno,
5232 			       bool fixed_off_ok)
5233 {
5234 	/* Access to this pointer-typed register or passing it to a helper
5235 	 * is only allowed in its original, unmodified form.
5236 	 */
5237 
5238 	if (reg->off < 0) {
5239 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5240 			reg_type_str(env, reg->type), regno, reg->off);
5241 		return -EACCES;
5242 	}
5243 
5244 	if (!fixed_off_ok && reg->off) {
5245 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5246 			reg_type_str(env, reg->type), regno, reg->off);
5247 		return -EACCES;
5248 	}
5249 
5250 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5251 		char tn_buf[48];
5252 
5253 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5254 		verbose(env, "variable %s access var_off=%s disallowed\n",
5255 			reg_type_str(env, reg->type), tn_buf);
5256 		return -EACCES;
5257 	}
5258 
5259 	return 0;
5260 }
5261 
5262 int check_ptr_off_reg(struct bpf_verifier_env *env,
5263 		      const struct bpf_reg_state *reg, int regno)
5264 {
5265 	return __check_ptr_off_reg(env, reg, regno, false);
5266 }
5267 
5268 static int map_kptr_match_type(struct bpf_verifier_env *env,
5269 			       struct btf_field *kptr_field,
5270 			       struct bpf_reg_state *reg, u32 regno)
5271 {
5272 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5273 	int perm_flags;
5274 	const char *reg_name = "";
5275 
5276 	if (btf_is_kernel(reg->btf)) {
5277 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5278 
5279 		/* Only unreferenced case accepts untrusted pointers */
5280 		if (kptr_field->type == BPF_KPTR_UNREF)
5281 			perm_flags |= PTR_UNTRUSTED;
5282 	} else {
5283 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5284 	}
5285 
5286 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5287 		goto bad_type;
5288 
5289 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5290 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5291 
5292 	/* For ref_ptr case, release function check should ensure we get one
5293 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5294 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5295 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5296 	 * reg->off and reg->ref_obj_id are not needed here.
5297 	 */
5298 	if (__check_ptr_off_reg(env, reg, regno, true))
5299 		return -EACCES;
5300 
5301 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5302 	 * we also need to take into account the reg->off.
5303 	 *
5304 	 * We want to support cases like:
5305 	 *
5306 	 * struct foo {
5307 	 *         struct bar br;
5308 	 *         struct baz bz;
5309 	 * };
5310 	 *
5311 	 * struct foo *v;
5312 	 * v = func();	      // PTR_TO_BTF_ID
5313 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5314 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5315 	 *                    // first member type of struct after comparison fails
5316 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5317 	 *                    // to match type
5318 	 *
5319 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5320 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5321 	 * the struct to match type against first member of struct, i.e. reject
5322 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5323 	 * strict mode to true for type match.
5324 	 */
5325 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5326 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5327 				  kptr_field->type == BPF_KPTR_REF))
5328 		goto bad_type;
5329 	return 0;
5330 bad_type:
5331 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5332 		reg_type_str(env, reg->type), reg_name);
5333 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5334 	if (kptr_field->type == BPF_KPTR_UNREF)
5335 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5336 			targ_name);
5337 	else
5338 		verbose(env, "\n");
5339 	return -EINVAL;
5340 }
5341 
5342 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5343  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5344  */
5345 static bool in_rcu_cs(struct bpf_verifier_env *env)
5346 {
5347 	return env->cur_state->active_rcu_lock ||
5348 	       env->cur_state->active_lock.ptr ||
5349 	       !env->prog->aux->sleepable;
5350 }
5351 
5352 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5353 BTF_SET_START(rcu_protected_types)
5354 BTF_ID(struct, prog_test_ref_kfunc)
5355 BTF_ID(struct, cgroup)
5356 BTF_ID(struct, bpf_cpumask)
5357 BTF_ID(struct, task_struct)
5358 BTF_SET_END(rcu_protected_types)
5359 
5360 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5361 {
5362 	if (!btf_is_kernel(btf))
5363 		return false;
5364 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5365 }
5366 
5367 static bool rcu_safe_kptr(const struct btf_field *field)
5368 {
5369 	const struct btf_field_kptr *kptr = &field->kptr;
5370 
5371 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5372 }
5373 
5374 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5375 				 int value_regno, int insn_idx,
5376 				 struct btf_field *kptr_field)
5377 {
5378 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5379 	int class = BPF_CLASS(insn->code);
5380 	struct bpf_reg_state *val_reg;
5381 
5382 	/* Things we already checked for in check_map_access and caller:
5383 	 *  - Reject cases where variable offset may touch kptr
5384 	 *  - size of access (must be BPF_DW)
5385 	 *  - tnum_is_const(reg->var_off)
5386 	 *  - kptr_field->offset == off + reg->var_off.value
5387 	 */
5388 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5389 	if (BPF_MODE(insn->code) != BPF_MEM) {
5390 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5391 		return -EACCES;
5392 	}
5393 
5394 	/* We only allow loading referenced kptr, since it will be marked as
5395 	 * untrusted, similar to unreferenced kptr.
5396 	 */
5397 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5398 		verbose(env, "store to referenced kptr disallowed\n");
5399 		return -EACCES;
5400 	}
5401 
5402 	if (class == BPF_LDX) {
5403 		val_reg = reg_state(env, value_regno);
5404 		/* We can simply mark the value_regno receiving the pointer
5405 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5406 		 */
5407 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5408 				kptr_field->kptr.btf_id,
5409 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5410 				PTR_MAYBE_NULL | MEM_RCU :
5411 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
5412 	} else if (class == BPF_STX) {
5413 		val_reg = reg_state(env, value_regno);
5414 		if (!register_is_null(val_reg) &&
5415 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5416 			return -EACCES;
5417 	} else if (class == BPF_ST) {
5418 		if (insn->imm) {
5419 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5420 				kptr_field->offset);
5421 			return -EACCES;
5422 		}
5423 	} else {
5424 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5425 		return -EACCES;
5426 	}
5427 	return 0;
5428 }
5429 
5430 /* check read/write into a map element with possible variable offset */
5431 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5432 			    int off, int size, bool zero_size_allowed,
5433 			    enum bpf_access_src src)
5434 {
5435 	struct bpf_verifier_state *vstate = env->cur_state;
5436 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5437 	struct bpf_reg_state *reg = &state->regs[regno];
5438 	struct bpf_map *map = reg->map_ptr;
5439 	struct btf_record *rec;
5440 	int err, i;
5441 
5442 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5443 				      zero_size_allowed);
5444 	if (err)
5445 		return err;
5446 
5447 	if (IS_ERR_OR_NULL(map->record))
5448 		return 0;
5449 	rec = map->record;
5450 	for (i = 0; i < rec->cnt; i++) {
5451 		struct btf_field *field = &rec->fields[i];
5452 		u32 p = field->offset;
5453 
5454 		/* If any part of a field  can be touched by load/store, reject
5455 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5456 		 * it is sufficient to check x1 < y2 && y1 < x2.
5457 		 */
5458 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5459 		    p < reg->umax_value + off + size) {
5460 			switch (field->type) {
5461 			case BPF_KPTR_UNREF:
5462 			case BPF_KPTR_REF:
5463 				if (src != ACCESS_DIRECT) {
5464 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5465 					return -EACCES;
5466 				}
5467 				if (!tnum_is_const(reg->var_off)) {
5468 					verbose(env, "kptr access cannot have variable offset\n");
5469 					return -EACCES;
5470 				}
5471 				if (p != off + reg->var_off.value) {
5472 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5473 						p, off + reg->var_off.value);
5474 					return -EACCES;
5475 				}
5476 				if (size != bpf_size_to_bytes(BPF_DW)) {
5477 					verbose(env, "kptr access size must be BPF_DW\n");
5478 					return -EACCES;
5479 				}
5480 				break;
5481 			default:
5482 				verbose(env, "%s cannot be accessed directly by load/store\n",
5483 					btf_field_type_name(field->type));
5484 				return -EACCES;
5485 			}
5486 		}
5487 	}
5488 	return 0;
5489 }
5490 
5491 #define MAX_PACKET_OFF 0xffff
5492 
5493 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5494 				       const struct bpf_call_arg_meta *meta,
5495 				       enum bpf_access_type t)
5496 {
5497 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5498 
5499 	switch (prog_type) {
5500 	/* Program types only with direct read access go here! */
5501 	case BPF_PROG_TYPE_LWT_IN:
5502 	case BPF_PROG_TYPE_LWT_OUT:
5503 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5504 	case BPF_PROG_TYPE_SK_REUSEPORT:
5505 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5506 	case BPF_PROG_TYPE_CGROUP_SKB:
5507 		if (t == BPF_WRITE)
5508 			return false;
5509 		fallthrough;
5510 
5511 	/* Program types with direct read + write access go here! */
5512 	case BPF_PROG_TYPE_SCHED_CLS:
5513 	case BPF_PROG_TYPE_SCHED_ACT:
5514 	case BPF_PROG_TYPE_XDP:
5515 	case BPF_PROG_TYPE_LWT_XMIT:
5516 	case BPF_PROG_TYPE_SK_SKB:
5517 	case BPF_PROG_TYPE_SK_MSG:
5518 		if (meta)
5519 			return meta->pkt_access;
5520 
5521 		env->seen_direct_write = true;
5522 		return true;
5523 
5524 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5525 		if (t == BPF_WRITE)
5526 			env->seen_direct_write = true;
5527 
5528 		return true;
5529 
5530 	default:
5531 		return false;
5532 	}
5533 }
5534 
5535 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5536 			       int size, bool zero_size_allowed)
5537 {
5538 	struct bpf_reg_state *regs = cur_regs(env);
5539 	struct bpf_reg_state *reg = &regs[regno];
5540 	int err;
5541 
5542 	/* We may have added a variable offset to the packet pointer; but any
5543 	 * reg->range we have comes after that.  We are only checking the fixed
5544 	 * offset.
5545 	 */
5546 
5547 	/* We don't allow negative numbers, because we aren't tracking enough
5548 	 * detail to prove they're safe.
5549 	 */
5550 	if (reg->smin_value < 0) {
5551 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5552 			regno);
5553 		return -EACCES;
5554 	}
5555 
5556 	err = reg->range < 0 ? -EINVAL :
5557 	      __check_mem_access(env, regno, off, size, reg->range,
5558 				 zero_size_allowed);
5559 	if (err) {
5560 		verbose(env, "R%d offset is outside of the packet\n", regno);
5561 		return err;
5562 	}
5563 
5564 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5565 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5566 	 * otherwise find_good_pkt_pointers would have refused to set range info
5567 	 * that __check_mem_access would have rejected this pkt access.
5568 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5569 	 */
5570 	env->prog->aux->max_pkt_offset =
5571 		max_t(u32, env->prog->aux->max_pkt_offset,
5572 		      off + reg->umax_value + size - 1);
5573 
5574 	return err;
5575 }
5576 
5577 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5578 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5579 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5580 			    struct btf **btf, u32 *btf_id)
5581 {
5582 	struct bpf_insn_access_aux info = {
5583 		.reg_type = *reg_type,
5584 		.log = &env->log,
5585 	};
5586 
5587 	if (env->ops->is_valid_access &&
5588 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5589 		/* A non zero info.ctx_field_size indicates that this field is a
5590 		 * candidate for later verifier transformation to load the whole
5591 		 * field and then apply a mask when accessed with a narrower
5592 		 * access than actual ctx access size. A zero info.ctx_field_size
5593 		 * will only allow for whole field access and rejects any other
5594 		 * type of narrower access.
5595 		 */
5596 		*reg_type = info.reg_type;
5597 
5598 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5599 			*btf = info.btf;
5600 			*btf_id = info.btf_id;
5601 		} else {
5602 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5603 		}
5604 		/* remember the offset of last byte accessed in ctx */
5605 		if (env->prog->aux->max_ctx_offset < off + size)
5606 			env->prog->aux->max_ctx_offset = off + size;
5607 		return 0;
5608 	}
5609 
5610 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5611 	return -EACCES;
5612 }
5613 
5614 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5615 				  int size)
5616 {
5617 	if (size < 0 || off < 0 ||
5618 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5619 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5620 			off, size);
5621 		return -EACCES;
5622 	}
5623 	return 0;
5624 }
5625 
5626 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5627 			     u32 regno, int off, int size,
5628 			     enum bpf_access_type t)
5629 {
5630 	struct bpf_reg_state *regs = cur_regs(env);
5631 	struct bpf_reg_state *reg = &regs[regno];
5632 	struct bpf_insn_access_aux info = {};
5633 	bool valid;
5634 
5635 	if (reg->smin_value < 0) {
5636 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5637 			regno);
5638 		return -EACCES;
5639 	}
5640 
5641 	switch (reg->type) {
5642 	case PTR_TO_SOCK_COMMON:
5643 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5644 		break;
5645 	case PTR_TO_SOCKET:
5646 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5647 		break;
5648 	case PTR_TO_TCP_SOCK:
5649 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5650 		break;
5651 	case PTR_TO_XDP_SOCK:
5652 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5653 		break;
5654 	default:
5655 		valid = false;
5656 	}
5657 
5658 
5659 	if (valid) {
5660 		env->insn_aux_data[insn_idx].ctx_field_size =
5661 			info.ctx_field_size;
5662 		return 0;
5663 	}
5664 
5665 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5666 		regno, reg_type_str(env, reg->type), off, size);
5667 
5668 	return -EACCES;
5669 }
5670 
5671 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5672 {
5673 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5674 }
5675 
5676 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5677 {
5678 	const struct bpf_reg_state *reg = reg_state(env, regno);
5679 
5680 	return reg->type == PTR_TO_CTX;
5681 }
5682 
5683 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5684 {
5685 	const struct bpf_reg_state *reg = reg_state(env, regno);
5686 
5687 	return type_is_sk_pointer(reg->type);
5688 }
5689 
5690 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5691 {
5692 	const struct bpf_reg_state *reg = reg_state(env, regno);
5693 
5694 	return type_is_pkt_pointer(reg->type);
5695 }
5696 
5697 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5698 {
5699 	const struct bpf_reg_state *reg = reg_state(env, regno);
5700 
5701 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5702 	return reg->type == PTR_TO_FLOW_KEYS;
5703 }
5704 
5705 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5706 #ifdef CONFIG_NET
5707 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5708 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5709 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5710 #endif
5711 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5712 };
5713 
5714 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5715 {
5716 	/* A referenced register is always trusted. */
5717 	if (reg->ref_obj_id)
5718 		return true;
5719 
5720 	/* Types listed in the reg2btf_ids are always trusted */
5721 	if (reg2btf_ids[base_type(reg->type)] &&
5722 	    !bpf_type_has_unsafe_modifiers(reg->type))
5723 		return true;
5724 
5725 	/* If a register is not referenced, it is trusted if it has the
5726 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5727 	 * other type modifiers may be safe, but we elect to take an opt-in
5728 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5729 	 * not.
5730 	 *
5731 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5732 	 * for whether a register is trusted.
5733 	 */
5734 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5735 	       !bpf_type_has_unsafe_modifiers(reg->type);
5736 }
5737 
5738 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5739 {
5740 	return reg->type & MEM_RCU;
5741 }
5742 
5743 static void clear_trusted_flags(enum bpf_type_flag *flag)
5744 {
5745 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5746 }
5747 
5748 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5749 				   const struct bpf_reg_state *reg,
5750 				   int off, int size, bool strict)
5751 {
5752 	struct tnum reg_off;
5753 	int ip_align;
5754 
5755 	/* Byte size accesses are always allowed. */
5756 	if (!strict || size == 1)
5757 		return 0;
5758 
5759 	/* For platforms that do not have a Kconfig enabling
5760 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5761 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5762 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5763 	 * to this code only in strict mode where we want to emulate
5764 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5765 	 * unconditional IP align value of '2'.
5766 	 */
5767 	ip_align = 2;
5768 
5769 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5770 	if (!tnum_is_aligned(reg_off, size)) {
5771 		char tn_buf[48];
5772 
5773 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5774 		verbose(env,
5775 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5776 			ip_align, tn_buf, reg->off, off, size);
5777 		return -EACCES;
5778 	}
5779 
5780 	return 0;
5781 }
5782 
5783 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5784 				       const struct bpf_reg_state *reg,
5785 				       const char *pointer_desc,
5786 				       int off, int size, bool strict)
5787 {
5788 	struct tnum reg_off;
5789 
5790 	/* Byte size accesses are always allowed. */
5791 	if (!strict || size == 1)
5792 		return 0;
5793 
5794 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5795 	if (!tnum_is_aligned(reg_off, size)) {
5796 		char tn_buf[48];
5797 
5798 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5799 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5800 			pointer_desc, tn_buf, reg->off, off, size);
5801 		return -EACCES;
5802 	}
5803 
5804 	return 0;
5805 }
5806 
5807 static int check_ptr_alignment(struct bpf_verifier_env *env,
5808 			       const struct bpf_reg_state *reg, int off,
5809 			       int size, bool strict_alignment_once)
5810 {
5811 	bool strict = env->strict_alignment || strict_alignment_once;
5812 	const char *pointer_desc = "";
5813 
5814 	switch (reg->type) {
5815 	case PTR_TO_PACKET:
5816 	case PTR_TO_PACKET_META:
5817 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5818 		 * right in front, treat it the very same way.
5819 		 */
5820 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5821 	case PTR_TO_FLOW_KEYS:
5822 		pointer_desc = "flow keys ";
5823 		break;
5824 	case PTR_TO_MAP_KEY:
5825 		pointer_desc = "key ";
5826 		break;
5827 	case PTR_TO_MAP_VALUE:
5828 		pointer_desc = "value ";
5829 		break;
5830 	case PTR_TO_CTX:
5831 		pointer_desc = "context ";
5832 		break;
5833 	case PTR_TO_STACK:
5834 		pointer_desc = "stack ";
5835 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5836 		 * and check_stack_read_fixed_off() relies on stack accesses being
5837 		 * aligned.
5838 		 */
5839 		strict = true;
5840 		break;
5841 	case PTR_TO_SOCKET:
5842 		pointer_desc = "sock ";
5843 		break;
5844 	case PTR_TO_SOCK_COMMON:
5845 		pointer_desc = "sock_common ";
5846 		break;
5847 	case PTR_TO_TCP_SOCK:
5848 		pointer_desc = "tcp_sock ";
5849 		break;
5850 	case PTR_TO_XDP_SOCK:
5851 		pointer_desc = "xdp_sock ";
5852 		break;
5853 	default:
5854 		break;
5855 	}
5856 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5857 					   strict);
5858 }
5859 
5860 /* starting from main bpf function walk all instructions of the function
5861  * and recursively walk all callees that given function can call.
5862  * Ignore jump and exit insns.
5863  * Since recursion is prevented by check_cfg() this algorithm
5864  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5865  */
5866 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5867 {
5868 	struct bpf_subprog_info *subprog = env->subprog_info;
5869 	struct bpf_insn *insn = env->prog->insnsi;
5870 	int depth = 0, frame = 0, i, subprog_end;
5871 	bool tail_call_reachable = false;
5872 	int ret_insn[MAX_CALL_FRAMES];
5873 	int ret_prog[MAX_CALL_FRAMES];
5874 	int j;
5875 
5876 	i = subprog[idx].start;
5877 process_func:
5878 	/* protect against potential stack overflow that might happen when
5879 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5880 	 * depth for such case down to 256 so that the worst case scenario
5881 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5882 	 * 8k).
5883 	 *
5884 	 * To get the idea what might happen, see an example:
5885 	 * func1 -> sub rsp, 128
5886 	 *  subfunc1 -> sub rsp, 256
5887 	 *  tailcall1 -> add rsp, 256
5888 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5889 	 *   subfunc2 -> sub rsp, 64
5890 	 *   subfunc22 -> sub rsp, 128
5891 	 *   tailcall2 -> add rsp, 128
5892 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5893 	 *
5894 	 * tailcall will unwind the current stack frame but it will not get rid
5895 	 * of caller's stack as shown on the example above.
5896 	 */
5897 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5898 		verbose(env,
5899 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5900 			depth);
5901 		return -EACCES;
5902 	}
5903 	/* round up to 32-bytes, since this is granularity
5904 	 * of interpreter stack size
5905 	 */
5906 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5907 	if (depth > MAX_BPF_STACK) {
5908 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5909 			frame + 1, depth);
5910 		return -EACCES;
5911 	}
5912 continue_func:
5913 	subprog_end = subprog[idx + 1].start;
5914 	for (; i < subprog_end; i++) {
5915 		int next_insn, sidx;
5916 
5917 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5918 			continue;
5919 		/* remember insn and function to return to */
5920 		ret_insn[frame] = i + 1;
5921 		ret_prog[frame] = idx;
5922 
5923 		/* find the callee */
5924 		next_insn = i + insn[i].imm + 1;
5925 		sidx = find_subprog(env, next_insn);
5926 		if (sidx < 0) {
5927 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5928 				  next_insn);
5929 			return -EFAULT;
5930 		}
5931 		if (subprog[sidx].is_async_cb) {
5932 			if (subprog[sidx].has_tail_call) {
5933 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5934 				return -EFAULT;
5935 			}
5936 			/* async callbacks don't increase bpf prog stack size unless called directly */
5937 			if (!bpf_pseudo_call(insn + i))
5938 				continue;
5939 		}
5940 		i = next_insn;
5941 		idx = sidx;
5942 
5943 		if (subprog[idx].has_tail_call)
5944 			tail_call_reachable = true;
5945 
5946 		frame++;
5947 		if (frame >= MAX_CALL_FRAMES) {
5948 			verbose(env, "the call stack of %d frames is too deep !\n",
5949 				frame);
5950 			return -E2BIG;
5951 		}
5952 		goto process_func;
5953 	}
5954 	/* if tail call got detected across bpf2bpf calls then mark each of the
5955 	 * currently present subprog frames as tail call reachable subprogs;
5956 	 * this info will be utilized by JIT so that we will be preserving the
5957 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5958 	 */
5959 	if (tail_call_reachable)
5960 		for (j = 0; j < frame; j++)
5961 			subprog[ret_prog[j]].tail_call_reachable = true;
5962 	if (subprog[0].tail_call_reachable)
5963 		env->prog->aux->tail_call_reachable = true;
5964 
5965 	/* end of for() loop means the last insn of the 'subprog'
5966 	 * was reached. Doesn't matter whether it was JA or EXIT
5967 	 */
5968 	if (frame == 0)
5969 		return 0;
5970 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5971 	frame--;
5972 	i = ret_insn[frame];
5973 	idx = ret_prog[frame];
5974 	goto continue_func;
5975 }
5976 
5977 static int check_max_stack_depth(struct bpf_verifier_env *env)
5978 {
5979 	struct bpf_subprog_info *si = env->subprog_info;
5980 	int ret;
5981 
5982 	for (int i = 0; i < env->subprog_cnt; i++) {
5983 		if (!i || si[i].is_async_cb) {
5984 			ret = check_max_stack_depth_subprog(env, i);
5985 			if (ret < 0)
5986 				return ret;
5987 		}
5988 		continue;
5989 	}
5990 	return 0;
5991 }
5992 
5993 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5994 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5995 				  const struct bpf_insn *insn, int idx)
5996 {
5997 	int start = idx + insn->imm + 1, subprog;
5998 
5999 	subprog = find_subprog(env, start);
6000 	if (subprog < 0) {
6001 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6002 			  start);
6003 		return -EFAULT;
6004 	}
6005 	return env->subprog_info[subprog].stack_depth;
6006 }
6007 #endif
6008 
6009 static int __check_buffer_access(struct bpf_verifier_env *env,
6010 				 const char *buf_info,
6011 				 const struct bpf_reg_state *reg,
6012 				 int regno, int off, int size)
6013 {
6014 	if (off < 0) {
6015 		verbose(env,
6016 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6017 			regno, buf_info, off, size);
6018 		return -EACCES;
6019 	}
6020 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6021 		char tn_buf[48];
6022 
6023 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6024 		verbose(env,
6025 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6026 			regno, off, tn_buf);
6027 		return -EACCES;
6028 	}
6029 
6030 	return 0;
6031 }
6032 
6033 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6034 				  const struct bpf_reg_state *reg,
6035 				  int regno, int off, int size)
6036 {
6037 	int err;
6038 
6039 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6040 	if (err)
6041 		return err;
6042 
6043 	if (off + size > env->prog->aux->max_tp_access)
6044 		env->prog->aux->max_tp_access = off + size;
6045 
6046 	return 0;
6047 }
6048 
6049 static int check_buffer_access(struct bpf_verifier_env *env,
6050 			       const struct bpf_reg_state *reg,
6051 			       int regno, int off, int size,
6052 			       bool zero_size_allowed,
6053 			       u32 *max_access)
6054 {
6055 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6056 	int err;
6057 
6058 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6059 	if (err)
6060 		return err;
6061 
6062 	if (off + size > *max_access)
6063 		*max_access = off + size;
6064 
6065 	return 0;
6066 }
6067 
6068 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6069 static void zext_32_to_64(struct bpf_reg_state *reg)
6070 {
6071 	reg->var_off = tnum_subreg(reg->var_off);
6072 	__reg_assign_32_into_64(reg);
6073 }
6074 
6075 /* truncate register to smaller size (in bytes)
6076  * must be called with size < BPF_REG_SIZE
6077  */
6078 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6079 {
6080 	u64 mask;
6081 
6082 	/* clear high bits in bit representation */
6083 	reg->var_off = tnum_cast(reg->var_off, size);
6084 
6085 	/* fix arithmetic bounds */
6086 	mask = ((u64)1 << (size * 8)) - 1;
6087 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6088 		reg->umin_value &= mask;
6089 		reg->umax_value &= mask;
6090 	} else {
6091 		reg->umin_value = 0;
6092 		reg->umax_value = mask;
6093 	}
6094 	reg->smin_value = reg->umin_value;
6095 	reg->smax_value = reg->umax_value;
6096 
6097 	/* If size is smaller than 32bit register the 32bit register
6098 	 * values are also truncated so we push 64-bit bounds into
6099 	 * 32-bit bounds. Above were truncated < 32-bits already.
6100 	 */
6101 	if (size >= 4)
6102 		return;
6103 	__reg_combine_64_into_32(reg);
6104 }
6105 
6106 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6107 {
6108 	if (size == 1) {
6109 		reg->smin_value = reg->s32_min_value = S8_MIN;
6110 		reg->smax_value = reg->s32_max_value = S8_MAX;
6111 	} else if (size == 2) {
6112 		reg->smin_value = reg->s32_min_value = S16_MIN;
6113 		reg->smax_value = reg->s32_max_value = S16_MAX;
6114 	} else {
6115 		/* size == 4 */
6116 		reg->smin_value = reg->s32_min_value = S32_MIN;
6117 		reg->smax_value = reg->s32_max_value = S32_MAX;
6118 	}
6119 	reg->umin_value = reg->u32_min_value = 0;
6120 	reg->umax_value = U64_MAX;
6121 	reg->u32_max_value = U32_MAX;
6122 	reg->var_off = tnum_unknown;
6123 }
6124 
6125 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6126 {
6127 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6128 	u64 top_smax_value, top_smin_value;
6129 	u64 num_bits = size * 8;
6130 
6131 	if (tnum_is_const(reg->var_off)) {
6132 		u64_cval = reg->var_off.value;
6133 		if (size == 1)
6134 			reg->var_off = tnum_const((s8)u64_cval);
6135 		else if (size == 2)
6136 			reg->var_off = tnum_const((s16)u64_cval);
6137 		else
6138 			/* size == 4 */
6139 			reg->var_off = tnum_const((s32)u64_cval);
6140 
6141 		u64_cval = reg->var_off.value;
6142 		reg->smax_value = reg->smin_value = u64_cval;
6143 		reg->umax_value = reg->umin_value = u64_cval;
6144 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6145 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6146 		return;
6147 	}
6148 
6149 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6150 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6151 
6152 	if (top_smax_value != top_smin_value)
6153 		goto out;
6154 
6155 	/* find the s64_min and s64_min after sign extension */
6156 	if (size == 1) {
6157 		init_s64_max = (s8)reg->smax_value;
6158 		init_s64_min = (s8)reg->smin_value;
6159 	} else if (size == 2) {
6160 		init_s64_max = (s16)reg->smax_value;
6161 		init_s64_min = (s16)reg->smin_value;
6162 	} else {
6163 		init_s64_max = (s32)reg->smax_value;
6164 		init_s64_min = (s32)reg->smin_value;
6165 	}
6166 
6167 	s64_max = max(init_s64_max, init_s64_min);
6168 	s64_min = min(init_s64_max, init_s64_min);
6169 
6170 	/* both of s64_max/s64_min positive or negative */
6171 	if ((s64_max >= 0) == (s64_min >= 0)) {
6172 		reg->s32_min_value = reg->smin_value = s64_min;
6173 		reg->s32_max_value = reg->smax_value = s64_max;
6174 		reg->u32_min_value = reg->umin_value = s64_min;
6175 		reg->u32_max_value = reg->umax_value = s64_max;
6176 		reg->var_off = tnum_range(s64_min, s64_max);
6177 		return;
6178 	}
6179 
6180 out:
6181 	set_sext64_default_val(reg, size);
6182 }
6183 
6184 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6185 {
6186 	if (size == 1) {
6187 		reg->s32_min_value = S8_MIN;
6188 		reg->s32_max_value = S8_MAX;
6189 	} else {
6190 		/* size == 2 */
6191 		reg->s32_min_value = S16_MIN;
6192 		reg->s32_max_value = S16_MAX;
6193 	}
6194 	reg->u32_min_value = 0;
6195 	reg->u32_max_value = U32_MAX;
6196 	reg->var_off = tnum_subreg(tnum_unknown);
6197 }
6198 
6199 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6200 {
6201 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6202 	u32 top_smax_value, top_smin_value;
6203 	u32 num_bits = size * 8;
6204 
6205 	if (tnum_is_const(reg->var_off)) {
6206 		u32_val = reg->var_off.value;
6207 		if (size == 1)
6208 			reg->var_off = tnum_const((s8)u32_val);
6209 		else
6210 			reg->var_off = tnum_const((s16)u32_val);
6211 
6212 		u32_val = reg->var_off.value;
6213 		reg->s32_min_value = reg->s32_max_value = u32_val;
6214 		reg->u32_min_value = reg->u32_max_value = u32_val;
6215 		return;
6216 	}
6217 
6218 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6219 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6220 
6221 	if (top_smax_value != top_smin_value)
6222 		goto out;
6223 
6224 	/* find the s32_min and s32_min after sign extension */
6225 	if (size == 1) {
6226 		init_s32_max = (s8)reg->s32_max_value;
6227 		init_s32_min = (s8)reg->s32_min_value;
6228 	} else {
6229 		/* size == 2 */
6230 		init_s32_max = (s16)reg->s32_max_value;
6231 		init_s32_min = (s16)reg->s32_min_value;
6232 	}
6233 	s32_max = max(init_s32_max, init_s32_min);
6234 	s32_min = min(init_s32_max, init_s32_min);
6235 
6236 	if ((s32_min >= 0) == (s32_max >= 0)) {
6237 		reg->s32_min_value = s32_min;
6238 		reg->s32_max_value = s32_max;
6239 		reg->u32_min_value = (u32)s32_min;
6240 		reg->u32_max_value = (u32)s32_max;
6241 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6242 		return;
6243 	}
6244 
6245 out:
6246 	set_sext32_default_val(reg, size);
6247 }
6248 
6249 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6250 {
6251 	/* A map is considered read-only if the following condition are true:
6252 	 *
6253 	 * 1) BPF program side cannot change any of the map content. The
6254 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6255 	 *    and was set at map creation time.
6256 	 * 2) The map value(s) have been initialized from user space by a
6257 	 *    loader and then "frozen", such that no new map update/delete
6258 	 *    operations from syscall side are possible for the rest of
6259 	 *    the map's lifetime from that point onwards.
6260 	 * 3) Any parallel/pending map update/delete operations from syscall
6261 	 *    side have been completed. Only after that point, it's safe to
6262 	 *    assume that map value(s) are immutable.
6263 	 */
6264 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6265 	       READ_ONCE(map->frozen) &&
6266 	       !bpf_map_write_active(map);
6267 }
6268 
6269 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6270 			       bool is_ldsx)
6271 {
6272 	void *ptr;
6273 	u64 addr;
6274 	int err;
6275 
6276 	err = map->ops->map_direct_value_addr(map, &addr, off);
6277 	if (err)
6278 		return err;
6279 	ptr = (void *)(long)addr + off;
6280 
6281 	switch (size) {
6282 	case sizeof(u8):
6283 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6284 		break;
6285 	case sizeof(u16):
6286 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6287 		break;
6288 	case sizeof(u32):
6289 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6290 		break;
6291 	case sizeof(u64):
6292 		*val = *(u64 *)ptr;
6293 		break;
6294 	default:
6295 		return -EINVAL;
6296 	}
6297 	return 0;
6298 }
6299 
6300 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6301 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6302 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6303 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6304 
6305 /*
6306  * Allow list few fields as RCU trusted or full trusted.
6307  * This logic doesn't allow mix tagging and will be removed once GCC supports
6308  * btf_type_tag.
6309  */
6310 
6311 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6312 BTF_TYPE_SAFE_RCU(struct task_struct) {
6313 	const cpumask_t *cpus_ptr;
6314 	struct css_set __rcu *cgroups;
6315 	struct task_struct __rcu *real_parent;
6316 	struct task_struct *group_leader;
6317 };
6318 
6319 BTF_TYPE_SAFE_RCU(struct cgroup) {
6320 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6321 	struct kernfs_node *kn;
6322 };
6323 
6324 BTF_TYPE_SAFE_RCU(struct css_set) {
6325 	struct cgroup *dfl_cgrp;
6326 };
6327 
6328 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6329 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6330 	struct file __rcu *exe_file;
6331 };
6332 
6333 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6334  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6335  */
6336 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6337 	struct sock *sk;
6338 };
6339 
6340 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6341 	struct sock *sk;
6342 };
6343 
6344 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6345 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6346 	struct seq_file *seq;
6347 };
6348 
6349 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6350 	struct bpf_iter_meta *meta;
6351 	struct task_struct *task;
6352 };
6353 
6354 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6355 	struct file *file;
6356 };
6357 
6358 BTF_TYPE_SAFE_TRUSTED(struct file) {
6359 	struct inode *f_inode;
6360 };
6361 
6362 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6363 	/* no negative dentry-s in places where bpf can see it */
6364 	struct inode *d_inode;
6365 };
6366 
6367 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6368 	struct sock *sk;
6369 };
6370 
6371 static bool type_is_rcu(struct bpf_verifier_env *env,
6372 			struct bpf_reg_state *reg,
6373 			const char *field_name, u32 btf_id)
6374 {
6375 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6376 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6377 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6378 
6379 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6380 }
6381 
6382 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6383 				struct bpf_reg_state *reg,
6384 				const char *field_name, u32 btf_id)
6385 {
6386 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6387 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6388 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6389 
6390 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6391 }
6392 
6393 static bool type_is_trusted(struct bpf_verifier_env *env,
6394 			    struct bpf_reg_state *reg,
6395 			    const char *field_name, u32 btf_id)
6396 {
6397 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6398 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6399 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6400 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6401 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6402 
6403 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6404 }
6405 
6406 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6407 				    struct bpf_reg_state *reg,
6408 				    const char *field_name, u32 btf_id)
6409 {
6410 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6411 
6412 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6413 					  "__safe_trusted_or_null");
6414 }
6415 
6416 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6417 				   struct bpf_reg_state *regs,
6418 				   int regno, int off, int size,
6419 				   enum bpf_access_type atype,
6420 				   int value_regno)
6421 {
6422 	struct bpf_reg_state *reg = regs + regno;
6423 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6424 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6425 	const char *field_name = NULL;
6426 	enum bpf_type_flag flag = 0;
6427 	u32 btf_id = 0;
6428 	int ret;
6429 
6430 	if (!env->allow_ptr_leaks) {
6431 		verbose(env,
6432 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6433 			tname);
6434 		return -EPERM;
6435 	}
6436 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6437 		verbose(env,
6438 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6439 			tname);
6440 		return -EINVAL;
6441 	}
6442 	if (off < 0) {
6443 		verbose(env,
6444 			"R%d is ptr_%s invalid negative access: off=%d\n",
6445 			regno, tname, off);
6446 		return -EACCES;
6447 	}
6448 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6449 		char tn_buf[48];
6450 
6451 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6452 		verbose(env,
6453 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6454 			regno, tname, off, tn_buf);
6455 		return -EACCES;
6456 	}
6457 
6458 	if (reg->type & MEM_USER) {
6459 		verbose(env,
6460 			"R%d is ptr_%s access user memory: off=%d\n",
6461 			regno, tname, off);
6462 		return -EACCES;
6463 	}
6464 
6465 	if (reg->type & MEM_PERCPU) {
6466 		verbose(env,
6467 			"R%d is ptr_%s access percpu memory: off=%d\n",
6468 			regno, tname, off);
6469 		return -EACCES;
6470 	}
6471 
6472 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6473 		if (!btf_is_kernel(reg->btf)) {
6474 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6475 			return -EFAULT;
6476 		}
6477 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6478 	} else {
6479 		/* Writes are permitted with default btf_struct_access for
6480 		 * program allocated objects (which always have ref_obj_id > 0),
6481 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6482 		 */
6483 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6484 			verbose(env, "only read is supported\n");
6485 			return -EACCES;
6486 		}
6487 
6488 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6489 		    !reg->ref_obj_id) {
6490 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6491 			return -EFAULT;
6492 		}
6493 
6494 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6495 	}
6496 
6497 	if (ret < 0)
6498 		return ret;
6499 
6500 	if (ret != PTR_TO_BTF_ID) {
6501 		/* just mark; */
6502 
6503 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6504 		/* If this is an untrusted pointer, all pointers formed by walking it
6505 		 * also inherit the untrusted flag.
6506 		 */
6507 		flag = PTR_UNTRUSTED;
6508 
6509 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6510 		/* By default any pointer obtained from walking a trusted pointer is no
6511 		 * longer trusted, unless the field being accessed has explicitly been
6512 		 * marked as inheriting its parent's state of trust (either full or RCU).
6513 		 * For example:
6514 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6515 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6516 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6517 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6518 		 *
6519 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6520 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6521 		 */
6522 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6523 			flag |= PTR_TRUSTED;
6524 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6525 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6526 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6527 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6528 				/* ignore __rcu tag and mark it MEM_RCU */
6529 				flag |= MEM_RCU;
6530 			} else if (flag & MEM_RCU ||
6531 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6532 				/* __rcu tagged pointers can be NULL */
6533 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6534 
6535 				/* We always trust them */
6536 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6537 				    flag & PTR_UNTRUSTED)
6538 					flag &= ~PTR_UNTRUSTED;
6539 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6540 				/* keep as-is */
6541 			} else {
6542 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6543 				clear_trusted_flags(&flag);
6544 			}
6545 		} else {
6546 			/*
6547 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6548 			 * aggressively mark as untrusted otherwise such
6549 			 * pointers will be plain PTR_TO_BTF_ID without flags
6550 			 * and will be allowed to be passed into helpers for
6551 			 * compat reasons.
6552 			 */
6553 			flag = PTR_UNTRUSTED;
6554 		}
6555 	} else {
6556 		/* Old compat. Deprecated */
6557 		clear_trusted_flags(&flag);
6558 	}
6559 
6560 	if (atype == BPF_READ && value_regno >= 0)
6561 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6562 
6563 	return 0;
6564 }
6565 
6566 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6567 				   struct bpf_reg_state *regs,
6568 				   int regno, int off, int size,
6569 				   enum bpf_access_type atype,
6570 				   int value_regno)
6571 {
6572 	struct bpf_reg_state *reg = regs + regno;
6573 	struct bpf_map *map = reg->map_ptr;
6574 	struct bpf_reg_state map_reg;
6575 	enum bpf_type_flag flag = 0;
6576 	const struct btf_type *t;
6577 	const char *tname;
6578 	u32 btf_id;
6579 	int ret;
6580 
6581 	if (!btf_vmlinux) {
6582 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6583 		return -ENOTSUPP;
6584 	}
6585 
6586 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6587 		verbose(env, "map_ptr access not supported for map type %d\n",
6588 			map->map_type);
6589 		return -ENOTSUPP;
6590 	}
6591 
6592 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6593 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6594 
6595 	if (!env->allow_ptr_leaks) {
6596 		verbose(env,
6597 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6598 			tname);
6599 		return -EPERM;
6600 	}
6601 
6602 	if (off < 0) {
6603 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6604 			regno, tname, off);
6605 		return -EACCES;
6606 	}
6607 
6608 	if (atype != BPF_READ) {
6609 		verbose(env, "only read from %s is supported\n", tname);
6610 		return -EACCES;
6611 	}
6612 
6613 	/* Simulate access to a PTR_TO_BTF_ID */
6614 	memset(&map_reg, 0, sizeof(map_reg));
6615 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6616 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6617 	if (ret < 0)
6618 		return ret;
6619 
6620 	if (value_regno >= 0)
6621 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6622 
6623 	return 0;
6624 }
6625 
6626 /* Check that the stack access at the given offset is within bounds. The
6627  * maximum valid offset is -1.
6628  *
6629  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6630  * -state->allocated_stack for reads.
6631  */
6632 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6633                                           s64 off,
6634                                           struct bpf_func_state *state,
6635                                           enum bpf_access_type t)
6636 {
6637 	int min_valid_off;
6638 
6639 	if (t == BPF_WRITE || env->allow_uninit_stack)
6640 		min_valid_off = -MAX_BPF_STACK;
6641 	else
6642 		min_valid_off = -state->allocated_stack;
6643 
6644 	if (off < min_valid_off || off > -1)
6645 		return -EACCES;
6646 	return 0;
6647 }
6648 
6649 /* Check that the stack access at 'regno + off' falls within the maximum stack
6650  * bounds.
6651  *
6652  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6653  */
6654 static int check_stack_access_within_bounds(
6655 		struct bpf_verifier_env *env,
6656 		int regno, int off, int access_size,
6657 		enum bpf_access_src src, enum bpf_access_type type)
6658 {
6659 	struct bpf_reg_state *regs = cur_regs(env);
6660 	struct bpf_reg_state *reg = regs + regno;
6661 	struct bpf_func_state *state = func(env, reg);
6662 	s64 min_off, max_off;
6663 	int err;
6664 	char *err_extra;
6665 
6666 	if (src == ACCESS_HELPER)
6667 		/* We don't know if helpers are reading or writing (or both). */
6668 		err_extra = " indirect access to";
6669 	else if (type == BPF_READ)
6670 		err_extra = " read from";
6671 	else
6672 		err_extra = " write to";
6673 
6674 	if (tnum_is_const(reg->var_off)) {
6675 		min_off = (s64)reg->var_off.value + off;
6676 		max_off = min_off + access_size;
6677 	} else {
6678 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6679 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6680 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6681 				err_extra, regno);
6682 			return -EACCES;
6683 		}
6684 		min_off = reg->smin_value + off;
6685 		max_off = reg->smax_value + off + access_size;
6686 	}
6687 
6688 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6689 	if (!err && max_off > 0)
6690 		err = -EINVAL; /* out of stack access into non-negative offsets */
6691 	if (!err && access_size < 0)
6692 		/* access_size should not be negative (or overflow an int); others checks
6693 		 * along the way should have prevented such an access.
6694 		 */
6695 		err = -EFAULT; /* invalid negative access size; integer overflow? */
6696 
6697 	if (err) {
6698 		if (tnum_is_const(reg->var_off)) {
6699 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6700 				err_extra, regno, off, access_size);
6701 		} else {
6702 			char tn_buf[48];
6703 
6704 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6705 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6706 				err_extra, regno, tn_buf, access_size);
6707 		}
6708 		return err;
6709 	}
6710 
6711 	return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE));
6712 }
6713 
6714 /* check whether memory at (regno + off) is accessible for t = (read | write)
6715  * if t==write, value_regno is a register which value is stored into memory
6716  * if t==read, value_regno is a register which will receive the value from memory
6717  * if t==write && value_regno==-1, some unknown value is stored into memory
6718  * if t==read && value_regno==-1, don't care what we read from memory
6719  */
6720 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6721 			    int off, int bpf_size, enum bpf_access_type t,
6722 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6723 {
6724 	struct bpf_reg_state *regs = cur_regs(env);
6725 	struct bpf_reg_state *reg = regs + regno;
6726 	int size, err = 0;
6727 
6728 	size = bpf_size_to_bytes(bpf_size);
6729 	if (size < 0)
6730 		return size;
6731 
6732 	/* alignment checks will add in reg->off themselves */
6733 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6734 	if (err)
6735 		return err;
6736 
6737 	/* for access checks, reg->off is just part of off */
6738 	off += reg->off;
6739 
6740 	if (reg->type == PTR_TO_MAP_KEY) {
6741 		if (t == BPF_WRITE) {
6742 			verbose(env, "write to change key R%d not allowed\n", regno);
6743 			return -EACCES;
6744 		}
6745 
6746 		err = check_mem_region_access(env, regno, off, size,
6747 					      reg->map_ptr->key_size, false);
6748 		if (err)
6749 			return err;
6750 		if (value_regno >= 0)
6751 			mark_reg_unknown(env, regs, value_regno);
6752 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6753 		struct btf_field *kptr_field = NULL;
6754 
6755 		if (t == BPF_WRITE && value_regno >= 0 &&
6756 		    is_pointer_value(env, value_regno)) {
6757 			verbose(env, "R%d leaks addr into map\n", value_regno);
6758 			return -EACCES;
6759 		}
6760 		err = check_map_access_type(env, regno, off, size, t);
6761 		if (err)
6762 			return err;
6763 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6764 		if (err)
6765 			return err;
6766 		if (tnum_is_const(reg->var_off))
6767 			kptr_field = btf_record_find(reg->map_ptr->record,
6768 						     off + reg->var_off.value, BPF_KPTR);
6769 		if (kptr_field) {
6770 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6771 		} else if (t == BPF_READ && value_regno >= 0) {
6772 			struct bpf_map *map = reg->map_ptr;
6773 
6774 			/* if map is read-only, track its contents as scalars */
6775 			if (tnum_is_const(reg->var_off) &&
6776 			    bpf_map_is_rdonly(map) &&
6777 			    map->ops->map_direct_value_addr) {
6778 				int map_off = off + reg->var_off.value;
6779 				u64 val = 0;
6780 
6781 				err = bpf_map_direct_read(map, map_off, size,
6782 							  &val, is_ldsx);
6783 				if (err)
6784 					return err;
6785 
6786 				regs[value_regno].type = SCALAR_VALUE;
6787 				__mark_reg_known(&regs[value_regno], val);
6788 			} else {
6789 				mark_reg_unknown(env, regs, value_regno);
6790 			}
6791 		}
6792 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6793 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6794 
6795 		if (type_may_be_null(reg->type)) {
6796 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6797 				reg_type_str(env, reg->type));
6798 			return -EACCES;
6799 		}
6800 
6801 		if (t == BPF_WRITE && rdonly_mem) {
6802 			verbose(env, "R%d cannot write into %s\n",
6803 				regno, reg_type_str(env, reg->type));
6804 			return -EACCES;
6805 		}
6806 
6807 		if (t == BPF_WRITE && value_regno >= 0 &&
6808 		    is_pointer_value(env, value_regno)) {
6809 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6810 			return -EACCES;
6811 		}
6812 
6813 		err = check_mem_region_access(env, regno, off, size,
6814 					      reg->mem_size, false);
6815 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6816 			mark_reg_unknown(env, regs, value_regno);
6817 	} else if (reg->type == PTR_TO_CTX) {
6818 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6819 		struct btf *btf = NULL;
6820 		u32 btf_id = 0;
6821 
6822 		if (t == BPF_WRITE && value_regno >= 0 &&
6823 		    is_pointer_value(env, value_regno)) {
6824 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6825 			return -EACCES;
6826 		}
6827 
6828 		err = check_ptr_off_reg(env, reg, regno);
6829 		if (err < 0)
6830 			return err;
6831 
6832 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6833 				       &btf_id);
6834 		if (err)
6835 			verbose_linfo(env, insn_idx, "; ");
6836 		if (!err && t == BPF_READ && value_regno >= 0) {
6837 			/* ctx access returns either a scalar, or a
6838 			 * PTR_TO_PACKET[_META,_END]. In the latter
6839 			 * case, we know the offset is zero.
6840 			 */
6841 			if (reg_type == SCALAR_VALUE) {
6842 				mark_reg_unknown(env, regs, value_regno);
6843 			} else {
6844 				mark_reg_known_zero(env, regs,
6845 						    value_regno);
6846 				if (type_may_be_null(reg_type))
6847 					regs[value_regno].id = ++env->id_gen;
6848 				/* A load of ctx field could have different
6849 				 * actual load size with the one encoded in the
6850 				 * insn. When the dst is PTR, it is for sure not
6851 				 * a sub-register.
6852 				 */
6853 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6854 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6855 					regs[value_regno].btf = btf;
6856 					regs[value_regno].btf_id = btf_id;
6857 				}
6858 			}
6859 			regs[value_regno].type = reg_type;
6860 		}
6861 
6862 	} else if (reg->type == PTR_TO_STACK) {
6863 		/* Basic bounds checks. */
6864 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6865 		if (err)
6866 			return err;
6867 
6868 		if (t == BPF_READ)
6869 			err = check_stack_read(env, regno, off, size,
6870 					       value_regno);
6871 		else
6872 			err = check_stack_write(env, regno, off, size,
6873 						value_regno, insn_idx);
6874 	} else if (reg_is_pkt_pointer(reg)) {
6875 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6876 			verbose(env, "cannot write into packet\n");
6877 			return -EACCES;
6878 		}
6879 		if (t == BPF_WRITE && value_regno >= 0 &&
6880 		    is_pointer_value(env, value_regno)) {
6881 			verbose(env, "R%d leaks addr into packet\n",
6882 				value_regno);
6883 			return -EACCES;
6884 		}
6885 		err = check_packet_access(env, regno, off, size, false);
6886 		if (!err && t == BPF_READ && value_regno >= 0)
6887 			mark_reg_unknown(env, regs, value_regno);
6888 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6889 		if (t == BPF_WRITE && value_regno >= 0 &&
6890 		    is_pointer_value(env, value_regno)) {
6891 			verbose(env, "R%d leaks addr into flow keys\n",
6892 				value_regno);
6893 			return -EACCES;
6894 		}
6895 
6896 		err = check_flow_keys_access(env, off, size);
6897 		if (!err && t == BPF_READ && value_regno >= 0)
6898 			mark_reg_unknown(env, regs, value_regno);
6899 	} else if (type_is_sk_pointer(reg->type)) {
6900 		if (t == BPF_WRITE) {
6901 			verbose(env, "R%d cannot write into %s\n",
6902 				regno, reg_type_str(env, reg->type));
6903 			return -EACCES;
6904 		}
6905 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6906 		if (!err && value_regno >= 0)
6907 			mark_reg_unknown(env, regs, value_regno);
6908 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6909 		err = check_tp_buffer_access(env, reg, regno, off, size);
6910 		if (!err && t == BPF_READ && value_regno >= 0)
6911 			mark_reg_unknown(env, regs, value_regno);
6912 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6913 		   !type_may_be_null(reg->type)) {
6914 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6915 					      value_regno);
6916 	} else if (reg->type == CONST_PTR_TO_MAP) {
6917 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6918 					      value_regno);
6919 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6920 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6921 		u32 *max_access;
6922 
6923 		if (rdonly_mem) {
6924 			if (t == BPF_WRITE) {
6925 				verbose(env, "R%d cannot write into %s\n",
6926 					regno, reg_type_str(env, reg->type));
6927 				return -EACCES;
6928 			}
6929 			max_access = &env->prog->aux->max_rdonly_access;
6930 		} else {
6931 			max_access = &env->prog->aux->max_rdwr_access;
6932 		}
6933 
6934 		err = check_buffer_access(env, reg, regno, off, size, false,
6935 					  max_access);
6936 
6937 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6938 			mark_reg_unknown(env, regs, value_regno);
6939 	} else {
6940 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6941 			reg_type_str(env, reg->type));
6942 		return -EACCES;
6943 	}
6944 
6945 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6946 	    regs[value_regno].type == SCALAR_VALUE) {
6947 		if (!is_ldsx)
6948 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6949 			coerce_reg_to_size(&regs[value_regno], size);
6950 		else
6951 			coerce_reg_to_size_sx(&regs[value_regno], size);
6952 	}
6953 	return err;
6954 }
6955 
6956 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6957 {
6958 	int load_reg;
6959 	int err;
6960 
6961 	switch (insn->imm) {
6962 	case BPF_ADD:
6963 	case BPF_ADD | BPF_FETCH:
6964 	case BPF_AND:
6965 	case BPF_AND | BPF_FETCH:
6966 	case BPF_OR:
6967 	case BPF_OR | BPF_FETCH:
6968 	case BPF_XOR:
6969 	case BPF_XOR | BPF_FETCH:
6970 	case BPF_XCHG:
6971 	case BPF_CMPXCHG:
6972 		break;
6973 	default:
6974 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6975 		return -EINVAL;
6976 	}
6977 
6978 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6979 		verbose(env, "invalid atomic operand size\n");
6980 		return -EINVAL;
6981 	}
6982 
6983 	/* check src1 operand */
6984 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6985 	if (err)
6986 		return err;
6987 
6988 	/* check src2 operand */
6989 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6990 	if (err)
6991 		return err;
6992 
6993 	if (insn->imm == BPF_CMPXCHG) {
6994 		/* Check comparison of R0 with memory location */
6995 		const u32 aux_reg = BPF_REG_0;
6996 
6997 		err = check_reg_arg(env, aux_reg, SRC_OP);
6998 		if (err)
6999 			return err;
7000 
7001 		if (is_pointer_value(env, aux_reg)) {
7002 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7003 			return -EACCES;
7004 		}
7005 	}
7006 
7007 	if (is_pointer_value(env, insn->src_reg)) {
7008 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7009 		return -EACCES;
7010 	}
7011 
7012 	if (is_ctx_reg(env, insn->dst_reg) ||
7013 	    is_pkt_reg(env, insn->dst_reg) ||
7014 	    is_flow_key_reg(env, insn->dst_reg) ||
7015 	    is_sk_reg(env, insn->dst_reg)) {
7016 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7017 			insn->dst_reg,
7018 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7019 		return -EACCES;
7020 	}
7021 
7022 	if (insn->imm & BPF_FETCH) {
7023 		if (insn->imm == BPF_CMPXCHG)
7024 			load_reg = BPF_REG_0;
7025 		else
7026 			load_reg = insn->src_reg;
7027 
7028 		/* check and record load of old value */
7029 		err = check_reg_arg(env, load_reg, DST_OP);
7030 		if (err)
7031 			return err;
7032 	} else {
7033 		/* This instruction accesses a memory location but doesn't
7034 		 * actually load it into a register.
7035 		 */
7036 		load_reg = -1;
7037 	}
7038 
7039 	/* Check whether we can read the memory, with second call for fetch
7040 	 * case to simulate the register fill.
7041 	 */
7042 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7043 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7044 	if (!err && load_reg >= 0)
7045 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7046 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7047 				       true, false);
7048 	if (err)
7049 		return err;
7050 
7051 	/* Check whether we can write into the same memory. */
7052 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7053 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7054 	if (err)
7055 		return err;
7056 	return 0;
7057 }
7058 
7059 /* When register 'regno' is used to read the stack (either directly or through
7060  * a helper function) make sure that it's within stack boundary and, depending
7061  * on the access type and privileges, that all elements of the stack are
7062  * initialized.
7063  *
7064  * 'off' includes 'regno->off', but not its dynamic part (if any).
7065  *
7066  * All registers that have been spilled on the stack in the slots within the
7067  * read offsets are marked as read.
7068  */
7069 static int check_stack_range_initialized(
7070 		struct bpf_verifier_env *env, int regno, int off,
7071 		int access_size, bool zero_size_allowed,
7072 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7073 {
7074 	struct bpf_reg_state *reg = reg_state(env, regno);
7075 	struct bpf_func_state *state = func(env, reg);
7076 	int err, min_off, max_off, i, j, slot, spi;
7077 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7078 	enum bpf_access_type bounds_check_type;
7079 	/* Some accesses can write anything into the stack, others are
7080 	 * read-only.
7081 	 */
7082 	bool clobber = false;
7083 
7084 	if (access_size == 0 && !zero_size_allowed) {
7085 		verbose(env, "invalid zero-sized read\n");
7086 		return -EACCES;
7087 	}
7088 
7089 	if (type == ACCESS_HELPER) {
7090 		/* The bounds checks for writes are more permissive than for
7091 		 * reads. However, if raw_mode is not set, we'll do extra
7092 		 * checks below.
7093 		 */
7094 		bounds_check_type = BPF_WRITE;
7095 		clobber = true;
7096 	} else {
7097 		bounds_check_type = BPF_READ;
7098 	}
7099 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7100 					       type, bounds_check_type);
7101 	if (err)
7102 		return err;
7103 
7104 
7105 	if (tnum_is_const(reg->var_off)) {
7106 		min_off = max_off = reg->var_off.value + off;
7107 	} else {
7108 		/* Variable offset is prohibited for unprivileged mode for
7109 		 * simplicity since it requires corresponding support in
7110 		 * Spectre masking for stack ALU.
7111 		 * See also retrieve_ptr_limit().
7112 		 */
7113 		if (!env->bypass_spec_v1) {
7114 			char tn_buf[48];
7115 
7116 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7117 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7118 				regno, err_extra, tn_buf);
7119 			return -EACCES;
7120 		}
7121 		/* Only initialized buffer on stack is allowed to be accessed
7122 		 * with variable offset. With uninitialized buffer it's hard to
7123 		 * guarantee that whole memory is marked as initialized on
7124 		 * helper return since specific bounds are unknown what may
7125 		 * cause uninitialized stack leaking.
7126 		 */
7127 		if (meta && meta->raw_mode)
7128 			meta = NULL;
7129 
7130 		min_off = reg->smin_value + off;
7131 		max_off = reg->smax_value + off;
7132 	}
7133 
7134 	if (meta && meta->raw_mode) {
7135 		/* Ensure we won't be overwriting dynptrs when simulating byte
7136 		 * by byte access in check_helper_call using meta.access_size.
7137 		 * This would be a problem if we have a helper in the future
7138 		 * which takes:
7139 		 *
7140 		 *	helper(uninit_mem, len, dynptr)
7141 		 *
7142 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7143 		 * may end up writing to dynptr itself when touching memory from
7144 		 * arg 1. This can be relaxed on a case by case basis for known
7145 		 * safe cases, but reject due to the possibilitiy of aliasing by
7146 		 * default.
7147 		 */
7148 		for (i = min_off; i < max_off + access_size; i++) {
7149 			int stack_off = -i - 1;
7150 
7151 			spi = __get_spi(i);
7152 			/* raw_mode may write past allocated_stack */
7153 			if (state->allocated_stack <= stack_off)
7154 				continue;
7155 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7156 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7157 				return -EACCES;
7158 			}
7159 		}
7160 		meta->access_size = access_size;
7161 		meta->regno = regno;
7162 		return 0;
7163 	}
7164 
7165 	for (i = min_off; i < max_off + access_size; i++) {
7166 		u8 *stype;
7167 
7168 		slot = -i - 1;
7169 		spi = slot / BPF_REG_SIZE;
7170 		if (state->allocated_stack <= slot) {
7171 			verbose(env, "verifier bug: allocated_stack too small");
7172 			return -EFAULT;
7173 		}
7174 
7175 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7176 		if (*stype == STACK_MISC)
7177 			goto mark;
7178 		if ((*stype == STACK_ZERO) ||
7179 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7180 			if (clobber) {
7181 				/* helper can write anything into the stack */
7182 				*stype = STACK_MISC;
7183 			}
7184 			goto mark;
7185 		}
7186 
7187 		if (is_spilled_reg(&state->stack[spi]) &&
7188 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7189 		     env->allow_ptr_leaks)) {
7190 			if (clobber) {
7191 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7192 				for (j = 0; j < BPF_REG_SIZE; j++)
7193 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7194 			}
7195 			goto mark;
7196 		}
7197 
7198 		if (tnum_is_const(reg->var_off)) {
7199 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7200 				err_extra, regno, min_off, i - min_off, access_size);
7201 		} else {
7202 			char tn_buf[48];
7203 
7204 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7205 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7206 				err_extra, regno, tn_buf, i - min_off, access_size);
7207 		}
7208 		return -EACCES;
7209 mark:
7210 		/* reading any byte out of 8-byte 'spill_slot' will cause
7211 		 * the whole slot to be marked as 'read'
7212 		 */
7213 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7214 			      state->stack[spi].spilled_ptr.parent,
7215 			      REG_LIVE_READ64);
7216 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7217 		 * be sure that whether stack slot is written to or not. Hence,
7218 		 * we must still conservatively propagate reads upwards even if
7219 		 * helper may write to the entire memory range.
7220 		 */
7221 	}
7222 	return 0;
7223 }
7224 
7225 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7226 				   int access_size, enum bpf_access_type access_type,
7227 				   bool zero_size_allowed,
7228 				   struct bpf_call_arg_meta *meta)
7229 {
7230 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7231 	u32 *max_access;
7232 
7233 	switch (base_type(reg->type)) {
7234 	case PTR_TO_PACKET:
7235 	case PTR_TO_PACKET_META:
7236 		return check_packet_access(env, regno, reg->off, access_size,
7237 					   zero_size_allowed);
7238 	case PTR_TO_MAP_KEY:
7239 		if (access_type == BPF_WRITE) {
7240 			verbose(env, "R%d cannot write into %s\n", regno,
7241 				reg_type_str(env, reg->type));
7242 			return -EACCES;
7243 		}
7244 		return check_mem_region_access(env, regno, reg->off, access_size,
7245 					       reg->map_ptr->key_size, false);
7246 	case PTR_TO_MAP_VALUE:
7247 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7248 			return -EACCES;
7249 		return check_map_access(env, regno, reg->off, access_size,
7250 					zero_size_allowed, ACCESS_HELPER);
7251 	case PTR_TO_MEM:
7252 		if (type_is_rdonly_mem(reg->type)) {
7253 			if (access_type == BPF_WRITE) {
7254 				verbose(env, "R%d cannot write into %s\n", regno,
7255 					reg_type_str(env, reg->type));
7256 				return -EACCES;
7257 			}
7258 		}
7259 		return check_mem_region_access(env, regno, reg->off,
7260 					       access_size, reg->mem_size,
7261 					       zero_size_allowed);
7262 	case PTR_TO_BUF:
7263 		if (type_is_rdonly_mem(reg->type)) {
7264 			if (access_type == BPF_WRITE) {
7265 				verbose(env, "R%d cannot write into %s\n", regno,
7266 					reg_type_str(env, reg->type));
7267 				return -EACCES;
7268 			}
7269 
7270 			max_access = &env->prog->aux->max_rdonly_access;
7271 		} else {
7272 			max_access = &env->prog->aux->max_rdwr_access;
7273 		}
7274 		return check_buffer_access(env, reg, regno, reg->off,
7275 					   access_size, zero_size_allowed,
7276 					   max_access);
7277 	case PTR_TO_STACK:
7278 		return check_stack_range_initialized(
7279 				env,
7280 				regno, reg->off, access_size,
7281 				zero_size_allowed, ACCESS_HELPER, meta);
7282 	case PTR_TO_BTF_ID:
7283 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7284 					       access_size, BPF_READ, -1);
7285 	case PTR_TO_CTX:
7286 		/* in case the function doesn't know how to access the context,
7287 		 * (because we are in a program of type SYSCALL for example), we
7288 		 * can not statically check its size.
7289 		 * Dynamically check it now.
7290 		 */
7291 		if (!env->ops->convert_ctx_access) {
7292 			int offset = access_size - 1;
7293 
7294 			/* Allow zero-byte read from PTR_TO_CTX */
7295 			if (access_size == 0)
7296 				return zero_size_allowed ? 0 : -EACCES;
7297 
7298 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7299 						access_type, -1, false, false);
7300 		}
7301 
7302 		fallthrough;
7303 	default: /* scalar_value or invalid ptr */
7304 		/* Allow zero-byte read from NULL, regardless of pointer type */
7305 		if (zero_size_allowed && access_size == 0 &&
7306 		    register_is_null(reg))
7307 			return 0;
7308 
7309 		verbose(env, "R%d type=%s ", regno,
7310 			reg_type_str(env, reg->type));
7311 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7312 		return -EACCES;
7313 	}
7314 }
7315 
7316 static int check_mem_size_reg(struct bpf_verifier_env *env,
7317 			      struct bpf_reg_state *reg, u32 regno,
7318 			      enum bpf_access_type access_type,
7319 			      bool zero_size_allowed,
7320 			      struct bpf_call_arg_meta *meta)
7321 {
7322 	int err;
7323 
7324 	/* This is used to refine r0 return value bounds for helpers
7325 	 * that enforce this value as an upper bound on return values.
7326 	 * See do_refine_retval_range() for helpers that can refine
7327 	 * the return value. C type of helper is u32 so we pull register
7328 	 * bound from umax_value however, if negative verifier errors
7329 	 * out. Only upper bounds can be learned because retval is an
7330 	 * int type and negative retvals are allowed.
7331 	 */
7332 	meta->msize_max_value = reg->umax_value;
7333 
7334 	/* The register is SCALAR_VALUE; the access check happens using
7335 	 * its boundaries. For unprivileged variable accesses, disable
7336 	 * raw mode so that the program is required to initialize all
7337 	 * the memory that the helper could just partially fill up.
7338 	 */
7339 	if (!tnum_is_const(reg->var_off))
7340 		meta = NULL;
7341 
7342 	if (reg->smin_value < 0) {
7343 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7344 			regno);
7345 		return -EACCES;
7346 	}
7347 
7348 	if (reg->umin_value == 0 && !zero_size_allowed) {
7349 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7350 			regno, reg->umin_value, reg->umax_value);
7351 		return -EACCES;
7352 	}
7353 
7354 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7355 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7356 			regno);
7357 		return -EACCES;
7358 	}
7359 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7360 				      access_type, zero_size_allowed, meta);
7361 	if (!err)
7362 		err = mark_chain_precision(env, regno);
7363 	return err;
7364 }
7365 
7366 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7367 		   u32 regno, u32 mem_size)
7368 {
7369 	bool may_be_null = type_may_be_null(reg->type);
7370 	struct bpf_reg_state saved_reg;
7371 	int err;
7372 
7373 	if (register_is_null(reg))
7374 		return 0;
7375 
7376 	/* Assuming that the register contains a value check if the memory
7377 	 * access is safe. Temporarily save and restore the register's state as
7378 	 * the conversion shouldn't be visible to a caller.
7379 	 */
7380 	if (may_be_null) {
7381 		saved_reg = *reg;
7382 		mark_ptr_not_null_reg(reg);
7383 	}
7384 
7385 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7386 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7387 
7388 	if (may_be_null)
7389 		*reg = saved_reg;
7390 
7391 	return err;
7392 }
7393 
7394 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7395 				    u32 regno)
7396 {
7397 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7398 	bool may_be_null = type_may_be_null(mem_reg->type);
7399 	struct bpf_reg_state saved_reg;
7400 	struct bpf_call_arg_meta meta;
7401 	int err;
7402 
7403 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7404 
7405 	memset(&meta, 0, sizeof(meta));
7406 
7407 	if (may_be_null) {
7408 		saved_reg = *mem_reg;
7409 		mark_ptr_not_null_reg(mem_reg);
7410 	}
7411 
7412 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7413 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7414 
7415 	if (may_be_null)
7416 		*mem_reg = saved_reg;
7417 
7418 	return err;
7419 }
7420 
7421 /* Implementation details:
7422  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7423  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7424  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7425  * Two separate bpf_obj_new will also have different reg->id.
7426  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7427  * clears reg->id after value_or_null->value transition, since the verifier only
7428  * cares about the range of access to valid map value pointer and doesn't care
7429  * about actual address of the map element.
7430  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7431  * reg->id > 0 after value_or_null->value transition. By doing so
7432  * two bpf_map_lookups will be considered two different pointers that
7433  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7434  * returned from bpf_obj_new.
7435  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7436  * dead-locks.
7437  * Since only one bpf_spin_lock is allowed the checks are simpler than
7438  * reg_is_refcounted() logic. The verifier needs to remember only
7439  * one spin_lock instead of array of acquired_refs.
7440  * cur_state->active_lock remembers which map value element or allocated
7441  * object got locked and clears it after bpf_spin_unlock.
7442  */
7443 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7444 			     bool is_lock)
7445 {
7446 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7447 	struct bpf_verifier_state *cur = env->cur_state;
7448 	bool is_const = tnum_is_const(reg->var_off);
7449 	u64 val = reg->var_off.value;
7450 	struct bpf_map *map = NULL;
7451 	struct btf *btf = NULL;
7452 	struct btf_record *rec;
7453 
7454 	if (!is_const) {
7455 		verbose(env,
7456 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7457 			regno);
7458 		return -EINVAL;
7459 	}
7460 	if (reg->type == PTR_TO_MAP_VALUE) {
7461 		map = reg->map_ptr;
7462 		if (!map->btf) {
7463 			verbose(env,
7464 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7465 				map->name);
7466 			return -EINVAL;
7467 		}
7468 	} else {
7469 		btf = reg->btf;
7470 	}
7471 
7472 	rec = reg_btf_record(reg);
7473 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7474 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7475 			map ? map->name : "kptr");
7476 		return -EINVAL;
7477 	}
7478 	if (rec->spin_lock_off != val + reg->off) {
7479 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7480 			val + reg->off, rec->spin_lock_off);
7481 		return -EINVAL;
7482 	}
7483 	if (is_lock) {
7484 		if (cur->active_lock.ptr) {
7485 			verbose(env,
7486 				"Locking two bpf_spin_locks are not allowed\n");
7487 			return -EINVAL;
7488 		}
7489 		if (map)
7490 			cur->active_lock.ptr = map;
7491 		else
7492 			cur->active_lock.ptr = btf;
7493 		cur->active_lock.id = reg->id;
7494 	} else {
7495 		void *ptr;
7496 
7497 		if (map)
7498 			ptr = map;
7499 		else
7500 			ptr = btf;
7501 
7502 		if (!cur->active_lock.ptr) {
7503 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7504 			return -EINVAL;
7505 		}
7506 		if (cur->active_lock.ptr != ptr ||
7507 		    cur->active_lock.id != reg->id) {
7508 			verbose(env, "bpf_spin_unlock of different lock\n");
7509 			return -EINVAL;
7510 		}
7511 
7512 		invalidate_non_owning_refs(env);
7513 
7514 		cur->active_lock.ptr = NULL;
7515 		cur->active_lock.id = 0;
7516 	}
7517 	return 0;
7518 }
7519 
7520 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7521 			      struct bpf_call_arg_meta *meta)
7522 {
7523 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7524 	bool is_const = tnum_is_const(reg->var_off);
7525 	struct bpf_map *map = reg->map_ptr;
7526 	u64 val = reg->var_off.value;
7527 
7528 	if (!is_const) {
7529 		verbose(env,
7530 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7531 			regno);
7532 		return -EINVAL;
7533 	}
7534 	if (!map->btf) {
7535 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7536 			map->name);
7537 		return -EINVAL;
7538 	}
7539 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7540 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7541 		return -EINVAL;
7542 	}
7543 	if (map->record->timer_off != val + reg->off) {
7544 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7545 			val + reg->off, map->record->timer_off);
7546 		return -EINVAL;
7547 	}
7548 	if (meta->map_ptr) {
7549 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7550 		return -EFAULT;
7551 	}
7552 	meta->map_uid = reg->map_uid;
7553 	meta->map_ptr = map;
7554 	return 0;
7555 }
7556 
7557 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7558 			     struct bpf_call_arg_meta *meta)
7559 {
7560 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7561 	struct bpf_map *map_ptr = reg->map_ptr;
7562 	struct btf_field *kptr_field;
7563 	u32 kptr_off;
7564 
7565 	if (!tnum_is_const(reg->var_off)) {
7566 		verbose(env,
7567 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7568 			regno);
7569 		return -EINVAL;
7570 	}
7571 	if (!map_ptr->btf) {
7572 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7573 			map_ptr->name);
7574 		return -EINVAL;
7575 	}
7576 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7577 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7578 		return -EINVAL;
7579 	}
7580 
7581 	meta->map_ptr = map_ptr;
7582 	kptr_off = reg->off + reg->var_off.value;
7583 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7584 	if (!kptr_field) {
7585 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7586 		return -EACCES;
7587 	}
7588 	if (kptr_field->type != BPF_KPTR_REF) {
7589 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7590 		return -EACCES;
7591 	}
7592 	meta->kptr_field = kptr_field;
7593 	return 0;
7594 }
7595 
7596 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7597  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7598  *
7599  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7600  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7601  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7602  *
7603  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7604  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7605  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7606  * mutate the view of the dynptr and also possibly destroy it. In the latter
7607  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7608  * memory that dynptr points to.
7609  *
7610  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7611  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7612  * readonly dynptr view yet, hence only the first case is tracked and checked.
7613  *
7614  * This is consistent with how C applies the const modifier to a struct object,
7615  * where the pointer itself inside bpf_dynptr becomes const but not what it
7616  * points to.
7617  *
7618  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7619  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7620  */
7621 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7622 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7623 {
7624 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7625 	int err;
7626 
7627 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7628 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7629 	 */
7630 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7631 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7632 		return -EFAULT;
7633 	}
7634 
7635 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7636 	 *		 constructing a mutable bpf_dynptr object.
7637 	 *
7638 	 *		 Currently, this is only possible with PTR_TO_STACK
7639 	 *		 pointing to a region of at least 16 bytes which doesn't
7640 	 *		 contain an existing bpf_dynptr.
7641 	 *
7642 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7643 	 *		 mutated or destroyed. However, the memory it points to
7644 	 *		 may be mutated.
7645 	 *
7646 	 *  None       - Points to a initialized dynptr that can be mutated and
7647 	 *		 destroyed, including mutation of the memory it points
7648 	 *		 to.
7649 	 */
7650 	if (arg_type & MEM_UNINIT) {
7651 		int i;
7652 
7653 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7654 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7655 			return -EINVAL;
7656 		}
7657 
7658 		/* we write BPF_DW bits (8 bytes) at a time */
7659 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7660 			err = check_mem_access(env, insn_idx, regno,
7661 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7662 			if (err)
7663 				return err;
7664 		}
7665 
7666 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7667 	} else /* MEM_RDONLY and None case from above */ {
7668 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7669 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7670 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7671 			return -EINVAL;
7672 		}
7673 
7674 		if (!is_dynptr_reg_valid_init(env, reg)) {
7675 			verbose(env,
7676 				"Expected an initialized dynptr as arg #%d\n",
7677 				regno);
7678 			return -EINVAL;
7679 		}
7680 
7681 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7682 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7683 			verbose(env,
7684 				"Expected a dynptr of type %s as arg #%d\n",
7685 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7686 			return -EINVAL;
7687 		}
7688 
7689 		err = mark_dynptr_read(env, reg);
7690 	}
7691 	return err;
7692 }
7693 
7694 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7695 {
7696 	struct bpf_func_state *state = func(env, reg);
7697 
7698 	return state->stack[spi].spilled_ptr.ref_obj_id;
7699 }
7700 
7701 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7702 {
7703 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7704 }
7705 
7706 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7707 {
7708 	return meta->kfunc_flags & KF_ITER_NEW;
7709 }
7710 
7711 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7712 {
7713 	return meta->kfunc_flags & KF_ITER_NEXT;
7714 }
7715 
7716 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7717 {
7718 	return meta->kfunc_flags & KF_ITER_DESTROY;
7719 }
7720 
7721 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7722 {
7723 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7724 	 * kfunc is iter state pointer
7725 	 */
7726 	return arg == 0 && is_iter_kfunc(meta);
7727 }
7728 
7729 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7730 			    struct bpf_kfunc_call_arg_meta *meta)
7731 {
7732 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7733 	const struct btf_type *t;
7734 	const struct btf_param *arg;
7735 	int spi, err, i, nr_slots;
7736 	u32 btf_id;
7737 
7738 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7739 	arg = &btf_params(meta->func_proto)[0];
7740 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7741 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7742 	nr_slots = t->size / BPF_REG_SIZE;
7743 
7744 	if (is_iter_new_kfunc(meta)) {
7745 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7746 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7747 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7748 				iter_type_str(meta->btf, btf_id), regno);
7749 			return -EINVAL;
7750 		}
7751 
7752 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7753 			err = check_mem_access(env, insn_idx, regno,
7754 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7755 			if (err)
7756 				return err;
7757 		}
7758 
7759 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7760 		if (err)
7761 			return err;
7762 	} else {
7763 		/* iter_next() or iter_destroy() expect initialized iter state*/
7764 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7765 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7766 				iter_type_str(meta->btf, btf_id), regno);
7767 			return -EINVAL;
7768 		}
7769 
7770 		spi = iter_get_spi(env, reg, nr_slots);
7771 		if (spi < 0)
7772 			return spi;
7773 
7774 		err = mark_iter_read(env, reg, spi, nr_slots);
7775 		if (err)
7776 			return err;
7777 
7778 		/* remember meta->iter info for process_iter_next_call() */
7779 		meta->iter.spi = spi;
7780 		meta->iter.frameno = reg->frameno;
7781 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7782 
7783 		if (is_iter_destroy_kfunc(meta)) {
7784 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7785 			if (err)
7786 				return err;
7787 		}
7788 	}
7789 
7790 	return 0;
7791 }
7792 
7793 /* Look for a previous loop entry at insn_idx: nearest parent state
7794  * stopped at insn_idx with callsites matching those in cur->frame.
7795  */
7796 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7797 						  struct bpf_verifier_state *cur,
7798 						  int insn_idx)
7799 {
7800 	struct bpf_verifier_state_list *sl;
7801 	struct bpf_verifier_state *st;
7802 
7803 	/* Explored states are pushed in stack order, most recent states come first */
7804 	sl = *explored_state(env, insn_idx);
7805 	for (; sl; sl = sl->next) {
7806 		/* If st->branches != 0 state is a part of current DFS verification path,
7807 		 * hence cur & st for a loop.
7808 		 */
7809 		st = &sl->state;
7810 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7811 		    st->dfs_depth < cur->dfs_depth)
7812 			return st;
7813 	}
7814 
7815 	return NULL;
7816 }
7817 
7818 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7819 static bool regs_exact(const struct bpf_reg_state *rold,
7820 		       const struct bpf_reg_state *rcur,
7821 		       struct bpf_idmap *idmap);
7822 
7823 static void maybe_widen_reg(struct bpf_verifier_env *env,
7824 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7825 			    struct bpf_idmap *idmap)
7826 {
7827 	if (rold->type != SCALAR_VALUE)
7828 		return;
7829 	if (rold->type != rcur->type)
7830 		return;
7831 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7832 		return;
7833 	__mark_reg_unknown(env, rcur);
7834 }
7835 
7836 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7837 				   struct bpf_verifier_state *old,
7838 				   struct bpf_verifier_state *cur)
7839 {
7840 	struct bpf_func_state *fold, *fcur;
7841 	int i, fr;
7842 
7843 	reset_idmap_scratch(env);
7844 	for (fr = old->curframe; fr >= 0; fr--) {
7845 		fold = old->frame[fr];
7846 		fcur = cur->frame[fr];
7847 
7848 		for (i = 0; i < MAX_BPF_REG; i++)
7849 			maybe_widen_reg(env,
7850 					&fold->regs[i],
7851 					&fcur->regs[i],
7852 					&env->idmap_scratch);
7853 
7854 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7855 			if (!is_spilled_reg(&fold->stack[i]) ||
7856 			    !is_spilled_reg(&fcur->stack[i]))
7857 				continue;
7858 
7859 			maybe_widen_reg(env,
7860 					&fold->stack[i].spilled_ptr,
7861 					&fcur->stack[i].spilled_ptr,
7862 					&env->idmap_scratch);
7863 		}
7864 	}
7865 	return 0;
7866 }
7867 
7868 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
7869 						 struct bpf_kfunc_call_arg_meta *meta)
7870 {
7871 	int iter_frameno = meta->iter.frameno;
7872 	int iter_spi = meta->iter.spi;
7873 
7874 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7875 }
7876 
7877 /* process_iter_next_call() is called when verifier gets to iterator's next
7878  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7879  * to it as just "iter_next()" in comments below.
7880  *
7881  * BPF verifier relies on a crucial contract for any iter_next()
7882  * implementation: it should *eventually* return NULL, and once that happens
7883  * it should keep returning NULL. That is, once iterator exhausts elements to
7884  * iterate, it should never reset or spuriously return new elements.
7885  *
7886  * With the assumption of such contract, process_iter_next_call() simulates
7887  * a fork in the verifier state to validate loop logic correctness and safety
7888  * without having to simulate infinite amount of iterations.
7889  *
7890  * In current state, we first assume that iter_next() returned NULL and
7891  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7892  * conditions we should not form an infinite loop and should eventually reach
7893  * exit.
7894  *
7895  * Besides that, we also fork current state and enqueue it for later
7896  * verification. In a forked state we keep iterator state as ACTIVE
7897  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7898  * also bump iteration depth to prevent erroneous infinite loop detection
7899  * later on (see iter_active_depths_differ() comment for details). In this
7900  * state we assume that we'll eventually loop back to another iter_next()
7901  * calls (it could be in exactly same location or in some other instruction,
7902  * it doesn't matter, we don't make any unnecessary assumptions about this,
7903  * everything revolves around iterator state in a stack slot, not which
7904  * instruction is calling iter_next()). When that happens, we either will come
7905  * to iter_next() with equivalent state and can conclude that next iteration
7906  * will proceed in exactly the same way as we just verified, so it's safe to
7907  * assume that loop converges. If not, we'll go on another iteration
7908  * simulation with a different input state, until all possible starting states
7909  * are validated or we reach maximum number of instructions limit.
7910  *
7911  * This way, we will either exhaustively discover all possible input states
7912  * that iterator loop can start with and eventually will converge, or we'll
7913  * effectively regress into bounded loop simulation logic and either reach
7914  * maximum number of instructions if loop is not provably convergent, or there
7915  * is some statically known limit on number of iterations (e.g., if there is
7916  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7917  *
7918  * Iteration convergence logic in is_state_visited() relies on exact
7919  * states comparison, which ignores read and precision marks.
7920  * This is necessary because read and precision marks are not finalized
7921  * while in the loop. Exact comparison might preclude convergence for
7922  * simple programs like below:
7923  *
7924  *     i = 0;
7925  *     while(iter_next(&it))
7926  *       i++;
7927  *
7928  * At each iteration step i++ would produce a new distinct state and
7929  * eventually instruction processing limit would be reached.
7930  *
7931  * To avoid such behavior speculatively forget (widen) range for
7932  * imprecise scalar registers, if those registers were not precise at the
7933  * end of the previous iteration and do not match exactly.
7934  *
7935  * This is a conservative heuristic that allows to verify wide range of programs,
7936  * however it precludes verification of programs that conjure an
7937  * imprecise value on the first loop iteration and use it as precise on a second.
7938  * For example, the following safe program would fail to verify:
7939  *
7940  *     struct bpf_num_iter it;
7941  *     int arr[10];
7942  *     int i = 0, a = 0;
7943  *     bpf_iter_num_new(&it, 0, 10);
7944  *     while (bpf_iter_num_next(&it)) {
7945  *       if (a == 0) {
7946  *         a = 1;
7947  *         i = 7; // Because i changed verifier would forget
7948  *                // it's range on second loop entry.
7949  *       } else {
7950  *         arr[i] = 42; // This would fail to verify.
7951  *       }
7952  *     }
7953  *     bpf_iter_num_destroy(&it);
7954  */
7955 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7956 				  struct bpf_kfunc_call_arg_meta *meta)
7957 {
7958 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7959 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7960 	struct bpf_reg_state *cur_iter, *queued_iter;
7961 
7962 	BTF_TYPE_EMIT(struct bpf_iter);
7963 
7964 	cur_iter = get_iter_from_state(cur_st, meta);
7965 
7966 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7967 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7968 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7969 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7970 		return -EFAULT;
7971 	}
7972 
7973 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7974 		/* Because iter_next() call is a checkpoint is_state_visitied()
7975 		 * should guarantee parent state with same call sites and insn_idx.
7976 		 */
7977 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7978 		    !same_callsites(cur_st->parent, cur_st)) {
7979 			verbose(env, "bug: bad parent state for iter next call");
7980 			return -EFAULT;
7981 		}
7982 		/* Note cur_st->parent in the call below, it is necessary to skip
7983 		 * checkpoint created for cur_st by is_state_visited()
7984 		 * right at this instruction.
7985 		 */
7986 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7987 		/* branch out active iter state */
7988 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7989 		if (!queued_st)
7990 			return -ENOMEM;
7991 
7992 		queued_iter = get_iter_from_state(queued_st, meta);
7993 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7994 		queued_iter->iter.depth++;
7995 		if (prev_st)
7996 			widen_imprecise_scalars(env, prev_st, queued_st);
7997 
7998 		queued_fr = queued_st->frame[queued_st->curframe];
7999 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8000 	}
8001 
8002 	/* switch to DRAINED state, but keep the depth unchanged */
8003 	/* mark current iter state as drained and assume returned NULL */
8004 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8005 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
8006 
8007 	return 0;
8008 }
8009 
8010 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8011 {
8012 	return type == ARG_CONST_SIZE ||
8013 	       type == ARG_CONST_SIZE_OR_ZERO;
8014 }
8015 
8016 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8017 {
8018 	return base_type(type) == ARG_PTR_TO_MEM &&
8019 	       type & MEM_UNINIT;
8020 }
8021 
8022 static bool arg_type_is_release(enum bpf_arg_type type)
8023 {
8024 	return type & OBJ_RELEASE;
8025 }
8026 
8027 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8028 {
8029 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8030 }
8031 
8032 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8033 				 const struct bpf_call_arg_meta *meta,
8034 				 enum bpf_arg_type *arg_type)
8035 {
8036 	if (!meta->map_ptr) {
8037 		/* kernel subsystem misconfigured verifier */
8038 		verbose(env, "invalid map_ptr to access map->type\n");
8039 		return -EACCES;
8040 	}
8041 
8042 	switch (meta->map_ptr->map_type) {
8043 	case BPF_MAP_TYPE_SOCKMAP:
8044 	case BPF_MAP_TYPE_SOCKHASH:
8045 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8046 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8047 		} else {
8048 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8049 			return -EINVAL;
8050 		}
8051 		break;
8052 	case BPF_MAP_TYPE_BLOOM_FILTER:
8053 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8054 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8055 		break;
8056 	default:
8057 		break;
8058 	}
8059 	return 0;
8060 }
8061 
8062 struct bpf_reg_types {
8063 	const enum bpf_reg_type types[10];
8064 	u32 *btf_id;
8065 };
8066 
8067 static const struct bpf_reg_types sock_types = {
8068 	.types = {
8069 		PTR_TO_SOCK_COMMON,
8070 		PTR_TO_SOCKET,
8071 		PTR_TO_TCP_SOCK,
8072 		PTR_TO_XDP_SOCK,
8073 	},
8074 };
8075 
8076 #ifdef CONFIG_NET
8077 static const struct bpf_reg_types btf_id_sock_common_types = {
8078 	.types = {
8079 		PTR_TO_SOCK_COMMON,
8080 		PTR_TO_SOCKET,
8081 		PTR_TO_TCP_SOCK,
8082 		PTR_TO_XDP_SOCK,
8083 		PTR_TO_BTF_ID,
8084 		PTR_TO_BTF_ID | PTR_TRUSTED,
8085 	},
8086 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8087 };
8088 #endif
8089 
8090 static const struct bpf_reg_types mem_types = {
8091 	.types = {
8092 		PTR_TO_STACK,
8093 		PTR_TO_PACKET,
8094 		PTR_TO_PACKET_META,
8095 		PTR_TO_MAP_KEY,
8096 		PTR_TO_MAP_VALUE,
8097 		PTR_TO_MEM,
8098 		PTR_TO_MEM | MEM_RINGBUF,
8099 		PTR_TO_BUF,
8100 		PTR_TO_BTF_ID | PTR_TRUSTED,
8101 	},
8102 };
8103 
8104 static const struct bpf_reg_types spin_lock_types = {
8105 	.types = {
8106 		PTR_TO_MAP_VALUE,
8107 		PTR_TO_BTF_ID | MEM_ALLOC,
8108 	}
8109 };
8110 
8111 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8112 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8113 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8114 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8115 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8116 static const struct bpf_reg_types btf_ptr_types = {
8117 	.types = {
8118 		PTR_TO_BTF_ID,
8119 		PTR_TO_BTF_ID | PTR_TRUSTED,
8120 		PTR_TO_BTF_ID | MEM_RCU,
8121 	},
8122 };
8123 static const struct bpf_reg_types percpu_btf_ptr_types = {
8124 	.types = {
8125 		PTR_TO_BTF_ID | MEM_PERCPU,
8126 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8127 	}
8128 };
8129 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8130 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8131 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8132 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8133 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8134 static const struct bpf_reg_types dynptr_types = {
8135 	.types = {
8136 		PTR_TO_STACK,
8137 		CONST_PTR_TO_DYNPTR,
8138 	}
8139 };
8140 
8141 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8142 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8143 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8144 	[ARG_CONST_SIZE]		= &scalar_types,
8145 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8146 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8147 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8148 	[ARG_PTR_TO_CTX]		= &context_types,
8149 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8150 #ifdef CONFIG_NET
8151 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8152 #endif
8153 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8154 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8155 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8156 	[ARG_PTR_TO_MEM]		= &mem_types,
8157 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8158 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8159 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8160 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8161 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8162 	[ARG_PTR_TO_TIMER]		= &timer_types,
8163 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8164 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8165 };
8166 
8167 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8168 			  enum bpf_arg_type arg_type,
8169 			  const u32 *arg_btf_id,
8170 			  struct bpf_call_arg_meta *meta)
8171 {
8172 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8173 	enum bpf_reg_type expected, type = reg->type;
8174 	const struct bpf_reg_types *compatible;
8175 	int i, j;
8176 
8177 	compatible = compatible_reg_types[base_type(arg_type)];
8178 	if (!compatible) {
8179 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8180 		return -EFAULT;
8181 	}
8182 
8183 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8184 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8185 	 *
8186 	 * Same for MAYBE_NULL:
8187 	 *
8188 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8189 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8190 	 *
8191 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8192 	 *
8193 	 * Therefore we fold these flags depending on the arg_type before comparison.
8194 	 */
8195 	if (arg_type & MEM_RDONLY)
8196 		type &= ~MEM_RDONLY;
8197 	if (arg_type & PTR_MAYBE_NULL)
8198 		type &= ~PTR_MAYBE_NULL;
8199 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8200 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8201 
8202 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
8203 		type &= ~MEM_ALLOC;
8204 
8205 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8206 		expected = compatible->types[i];
8207 		if (expected == NOT_INIT)
8208 			break;
8209 
8210 		if (type == expected)
8211 			goto found;
8212 	}
8213 
8214 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8215 	for (j = 0; j + 1 < i; j++)
8216 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8217 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8218 	return -EACCES;
8219 
8220 found:
8221 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8222 		return 0;
8223 
8224 	if (compatible == &mem_types) {
8225 		if (!(arg_type & MEM_RDONLY)) {
8226 			verbose(env,
8227 				"%s() may write into memory pointed by R%d type=%s\n",
8228 				func_id_name(meta->func_id),
8229 				regno, reg_type_str(env, reg->type));
8230 			return -EACCES;
8231 		}
8232 		return 0;
8233 	}
8234 
8235 	switch ((int)reg->type) {
8236 	case PTR_TO_BTF_ID:
8237 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8238 	case PTR_TO_BTF_ID | MEM_RCU:
8239 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8240 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8241 	{
8242 		/* For bpf_sk_release, it needs to match against first member
8243 		 * 'struct sock_common', hence make an exception for it. This
8244 		 * allows bpf_sk_release to work for multiple socket types.
8245 		 */
8246 		bool strict_type_match = arg_type_is_release(arg_type) &&
8247 					 meta->func_id != BPF_FUNC_sk_release;
8248 
8249 		if (type_may_be_null(reg->type) &&
8250 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8251 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8252 			return -EACCES;
8253 		}
8254 
8255 		if (!arg_btf_id) {
8256 			if (!compatible->btf_id) {
8257 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8258 				return -EFAULT;
8259 			}
8260 			arg_btf_id = compatible->btf_id;
8261 		}
8262 
8263 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8264 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8265 				return -EACCES;
8266 		} else {
8267 			if (arg_btf_id == BPF_PTR_POISON) {
8268 				verbose(env, "verifier internal error:");
8269 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8270 					regno);
8271 				return -EACCES;
8272 			}
8273 
8274 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8275 						  btf_vmlinux, *arg_btf_id,
8276 						  strict_type_match)) {
8277 				verbose(env, "R%d is of type %s but %s is expected\n",
8278 					regno, btf_type_name(reg->btf, reg->btf_id),
8279 					btf_type_name(btf_vmlinux, *arg_btf_id));
8280 				return -EACCES;
8281 			}
8282 		}
8283 		break;
8284 	}
8285 	case PTR_TO_BTF_ID | MEM_ALLOC:
8286 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8287 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8288 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8289 			return -EFAULT;
8290 		}
8291 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8292 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8293 				return -EACCES;
8294 		}
8295 		break;
8296 	case PTR_TO_BTF_ID | MEM_PERCPU:
8297 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8298 		/* Handled by helper specific checks */
8299 		break;
8300 	default:
8301 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8302 		return -EFAULT;
8303 	}
8304 	return 0;
8305 }
8306 
8307 static struct btf_field *
8308 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8309 {
8310 	struct btf_field *field;
8311 	struct btf_record *rec;
8312 
8313 	rec = reg_btf_record(reg);
8314 	if (!rec)
8315 		return NULL;
8316 
8317 	field = btf_record_find(rec, off, fields);
8318 	if (!field)
8319 		return NULL;
8320 
8321 	return field;
8322 }
8323 
8324 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8325 			   const struct bpf_reg_state *reg, int regno,
8326 			   enum bpf_arg_type arg_type)
8327 {
8328 	u32 type = reg->type;
8329 
8330 	/* When referenced register is passed to release function, its fixed
8331 	 * offset must be 0.
8332 	 *
8333 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8334 	 * meta->release_regno.
8335 	 */
8336 	if (arg_type_is_release(arg_type)) {
8337 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8338 		 * may not directly point to the object being released, but to
8339 		 * dynptr pointing to such object, which might be at some offset
8340 		 * on the stack. In that case, we simply to fallback to the
8341 		 * default handling.
8342 		 */
8343 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8344 			return 0;
8345 
8346 		/* Doing check_ptr_off_reg check for the offset will catch this
8347 		 * because fixed_off_ok is false, but checking here allows us
8348 		 * to give the user a better error message.
8349 		 */
8350 		if (reg->off) {
8351 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8352 				regno);
8353 			return -EINVAL;
8354 		}
8355 		return __check_ptr_off_reg(env, reg, regno, false);
8356 	}
8357 
8358 	switch (type) {
8359 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8360 	case PTR_TO_STACK:
8361 	case PTR_TO_PACKET:
8362 	case PTR_TO_PACKET_META:
8363 	case PTR_TO_MAP_KEY:
8364 	case PTR_TO_MAP_VALUE:
8365 	case PTR_TO_MEM:
8366 	case PTR_TO_MEM | MEM_RDONLY:
8367 	case PTR_TO_MEM | MEM_RINGBUF:
8368 	case PTR_TO_BUF:
8369 	case PTR_TO_BUF | MEM_RDONLY:
8370 	case SCALAR_VALUE:
8371 		return 0;
8372 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8373 	 * fixed offset.
8374 	 */
8375 	case PTR_TO_BTF_ID:
8376 	case PTR_TO_BTF_ID | MEM_ALLOC:
8377 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8378 	case PTR_TO_BTF_ID | MEM_RCU:
8379 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8380 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8381 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8382 		 * its fixed offset must be 0. In the other cases, fixed offset
8383 		 * can be non-zero. This was already checked above. So pass
8384 		 * fixed_off_ok as true to allow fixed offset for all other
8385 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8386 		 * still need to do checks instead of returning.
8387 		 */
8388 		return __check_ptr_off_reg(env, reg, regno, true);
8389 	default:
8390 		return __check_ptr_off_reg(env, reg, regno, false);
8391 	}
8392 }
8393 
8394 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8395 						const struct bpf_func_proto *fn,
8396 						struct bpf_reg_state *regs)
8397 {
8398 	struct bpf_reg_state *state = NULL;
8399 	int i;
8400 
8401 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8402 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8403 			if (state) {
8404 				verbose(env, "verifier internal error: multiple dynptr args\n");
8405 				return NULL;
8406 			}
8407 			state = &regs[BPF_REG_1 + i];
8408 		}
8409 
8410 	if (!state)
8411 		verbose(env, "verifier internal error: no dynptr arg found\n");
8412 
8413 	return state;
8414 }
8415 
8416 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8417 {
8418 	struct bpf_func_state *state = func(env, reg);
8419 	int spi;
8420 
8421 	if (reg->type == CONST_PTR_TO_DYNPTR)
8422 		return reg->id;
8423 	spi = dynptr_get_spi(env, reg);
8424 	if (spi < 0)
8425 		return spi;
8426 	return state->stack[spi].spilled_ptr.id;
8427 }
8428 
8429 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8430 {
8431 	struct bpf_func_state *state = func(env, reg);
8432 	int spi;
8433 
8434 	if (reg->type == CONST_PTR_TO_DYNPTR)
8435 		return reg->ref_obj_id;
8436 	spi = dynptr_get_spi(env, reg);
8437 	if (spi < 0)
8438 		return spi;
8439 	return state->stack[spi].spilled_ptr.ref_obj_id;
8440 }
8441 
8442 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8443 					    struct bpf_reg_state *reg)
8444 {
8445 	struct bpf_func_state *state = func(env, reg);
8446 	int spi;
8447 
8448 	if (reg->type == CONST_PTR_TO_DYNPTR)
8449 		return reg->dynptr.type;
8450 
8451 	spi = __get_spi(reg->off);
8452 	if (spi < 0) {
8453 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8454 		return BPF_DYNPTR_TYPE_INVALID;
8455 	}
8456 
8457 	return state->stack[spi].spilled_ptr.dynptr.type;
8458 }
8459 
8460 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8461 			  struct bpf_call_arg_meta *meta,
8462 			  const struct bpf_func_proto *fn,
8463 			  int insn_idx)
8464 {
8465 	u32 regno = BPF_REG_1 + arg;
8466 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8467 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8468 	enum bpf_reg_type type = reg->type;
8469 	u32 *arg_btf_id = NULL;
8470 	int err = 0;
8471 
8472 	if (arg_type == ARG_DONTCARE)
8473 		return 0;
8474 
8475 	err = check_reg_arg(env, regno, SRC_OP);
8476 	if (err)
8477 		return err;
8478 
8479 	if (arg_type == ARG_ANYTHING) {
8480 		if (is_pointer_value(env, regno)) {
8481 			verbose(env, "R%d leaks addr into helper function\n",
8482 				regno);
8483 			return -EACCES;
8484 		}
8485 		return 0;
8486 	}
8487 
8488 	if (type_is_pkt_pointer(type) &&
8489 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8490 		verbose(env, "helper access to the packet is not allowed\n");
8491 		return -EACCES;
8492 	}
8493 
8494 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8495 		err = resolve_map_arg_type(env, meta, &arg_type);
8496 		if (err)
8497 			return err;
8498 	}
8499 
8500 	if (register_is_null(reg) && type_may_be_null(arg_type))
8501 		/* A NULL register has a SCALAR_VALUE type, so skip
8502 		 * type checking.
8503 		 */
8504 		goto skip_type_check;
8505 
8506 	/* arg_btf_id and arg_size are in a union. */
8507 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8508 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8509 		arg_btf_id = fn->arg_btf_id[arg];
8510 
8511 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8512 	if (err)
8513 		return err;
8514 
8515 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8516 	if (err)
8517 		return err;
8518 
8519 skip_type_check:
8520 	if (arg_type_is_release(arg_type)) {
8521 		if (arg_type_is_dynptr(arg_type)) {
8522 			struct bpf_func_state *state = func(env, reg);
8523 			int spi;
8524 
8525 			/* Only dynptr created on stack can be released, thus
8526 			 * the get_spi and stack state checks for spilled_ptr
8527 			 * should only be done before process_dynptr_func for
8528 			 * PTR_TO_STACK.
8529 			 */
8530 			if (reg->type == PTR_TO_STACK) {
8531 				spi = dynptr_get_spi(env, reg);
8532 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8533 					verbose(env, "arg %d is an unacquired reference\n", regno);
8534 					return -EINVAL;
8535 				}
8536 			} else {
8537 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8538 				return -EINVAL;
8539 			}
8540 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8541 			verbose(env, "R%d must be referenced when passed to release function\n",
8542 				regno);
8543 			return -EINVAL;
8544 		}
8545 		if (meta->release_regno) {
8546 			verbose(env, "verifier internal error: more than one release argument\n");
8547 			return -EFAULT;
8548 		}
8549 		meta->release_regno = regno;
8550 	}
8551 
8552 	if (reg->ref_obj_id) {
8553 		if (meta->ref_obj_id) {
8554 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8555 				regno, reg->ref_obj_id,
8556 				meta->ref_obj_id);
8557 			return -EFAULT;
8558 		}
8559 		meta->ref_obj_id = reg->ref_obj_id;
8560 	}
8561 
8562 	switch (base_type(arg_type)) {
8563 	case ARG_CONST_MAP_PTR:
8564 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8565 		if (meta->map_ptr) {
8566 			/* Use map_uid (which is unique id of inner map) to reject:
8567 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8568 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8569 			 * if (inner_map1 && inner_map2) {
8570 			 *     timer = bpf_map_lookup_elem(inner_map1);
8571 			 *     if (timer)
8572 			 *         // mismatch would have been allowed
8573 			 *         bpf_timer_init(timer, inner_map2);
8574 			 * }
8575 			 *
8576 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8577 			 */
8578 			if (meta->map_ptr != reg->map_ptr ||
8579 			    meta->map_uid != reg->map_uid) {
8580 				verbose(env,
8581 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8582 					meta->map_uid, reg->map_uid);
8583 				return -EINVAL;
8584 			}
8585 		}
8586 		meta->map_ptr = reg->map_ptr;
8587 		meta->map_uid = reg->map_uid;
8588 		break;
8589 	case ARG_PTR_TO_MAP_KEY:
8590 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8591 		 * check that [key, key + map->key_size) are within
8592 		 * stack limits and initialized
8593 		 */
8594 		if (!meta->map_ptr) {
8595 			/* in function declaration map_ptr must come before
8596 			 * map_key, so that it's verified and known before
8597 			 * we have to check map_key here. Otherwise it means
8598 			 * that kernel subsystem misconfigured verifier
8599 			 */
8600 			verbose(env, "invalid map_ptr to access map->key\n");
8601 			return -EACCES;
8602 		}
8603 		err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
8604 					      BPF_READ, false, NULL);
8605 		break;
8606 	case ARG_PTR_TO_MAP_VALUE:
8607 		if (type_may_be_null(arg_type) && register_is_null(reg))
8608 			return 0;
8609 
8610 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8611 		 * check [value, value + map->value_size) validity
8612 		 */
8613 		if (!meta->map_ptr) {
8614 			/* kernel subsystem misconfigured verifier */
8615 			verbose(env, "invalid map_ptr to access map->value\n");
8616 			return -EACCES;
8617 		}
8618 		meta->raw_mode = arg_type & MEM_UNINIT;
8619 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
8620 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8621 					      false, meta);
8622 		break;
8623 	case ARG_PTR_TO_PERCPU_BTF_ID:
8624 		if (!reg->btf_id) {
8625 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8626 			return -EACCES;
8627 		}
8628 		meta->ret_btf = reg->btf;
8629 		meta->ret_btf_id = reg->btf_id;
8630 		break;
8631 	case ARG_PTR_TO_SPIN_LOCK:
8632 		if (in_rbtree_lock_required_cb(env)) {
8633 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8634 			return -EACCES;
8635 		}
8636 		if (meta->func_id == BPF_FUNC_spin_lock) {
8637 			err = process_spin_lock(env, regno, true);
8638 			if (err)
8639 				return err;
8640 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8641 			err = process_spin_lock(env, regno, false);
8642 			if (err)
8643 				return err;
8644 		} else {
8645 			verbose(env, "verifier internal error\n");
8646 			return -EFAULT;
8647 		}
8648 		break;
8649 	case ARG_PTR_TO_TIMER:
8650 		err = process_timer_func(env, regno, meta);
8651 		if (err)
8652 			return err;
8653 		break;
8654 	case ARG_PTR_TO_FUNC:
8655 		meta->subprogno = reg->subprogno;
8656 		break;
8657 	case ARG_PTR_TO_MEM:
8658 		/* The access to this pointer is only checked when we hit the
8659 		 * next is_mem_size argument below.
8660 		 */
8661 		meta->raw_mode = arg_type & MEM_UNINIT;
8662 		if (arg_type & MEM_FIXED_SIZE) {
8663 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
8664 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8665 						      false, meta);
8666 			if (err)
8667 				return err;
8668 			if (arg_type & MEM_ALIGNED)
8669 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
8670 		}
8671 		break;
8672 	case ARG_CONST_SIZE:
8673 		err = check_mem_size_reg(env, reg, regno,
8674 					 fn->arg_type[arg - 1] & MEM_WRITE ?
8675 					 BPF_WRITE : BPF_READ,
8676 					 false, meta);
8677 		break;
8678 	case ARG_CONST_SIZE_OR_ZERO:
8679 		err = check_mem_size_reg(env, reg, regno,
8680 					 fn->arg_type[arg - 1] & MEM_WRITE ?
8681 					 BPF_WRITE : BPF_READ,
8682 					 true, meta);
8683 		break;
8684 	case ARG_PTR_TO_DYNPTR:
8685 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8686 		if (err)
8687 			return err;
8688 		break;
8689 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8690 		if (!tnum_is_const(reg->var_off)) {
8691 			verbose(env, "R%d is not a known constant'\n",
8692 				regno);
8693 			return -EACCES;
8694 		}
8695 		meta->mem_size = reg->var_off.value;
8696 		err = mark_chain_precision(env, regno);
8697 		if (err)
8698 			return err;
8699 		break;
8700 	case ARG_PTR_TO_CONST_STR:
8701 	{
8702 		struct bpf_map *map = reg->map_ptr;
8703 		int map_off;
8704 		u64 map_addr;
8705 		char *str_ptr;
8706 
8707 		if (!bpf_map_is_rdonly(map)) {
8708 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8709 			return -EACCES;
8710 		}
8711 
8712 		if (!tnum_is_const(reg->var_off)) {
8713 			verbose(env, "R%d is not a constant address'\n", regno);
8714 			return -EACCES;
8715 		}
8716 
8717 		if (!map->ops->map_direct_value_addr) {
8718 			verbose(env, "no direct value access support for this map type\n");
8719 			return -EACCES;
8720 		}
8721 
8722 		err = check_map_access(env, regno, reg->off,
8723 				       map->value_size - reg->off, false,
8724 				       ACCESS_HELPER);
8725 		if (err)
8726 			return err;
8727 
8728 		map_off = reg->off + reg->var_off.value;
8729 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8730 		if (err) {
8731 			verbose(env, "direct value access on string failed\n");
8732 			return err;
8733 		}
8734 
8735 		str_ptr = (char *)(long)(map_addr);
8736 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8737 			verbose(env, "string is not zero-terminated\n");
8738 			return -EINVAL;
8739 		}
8740 		break;
8741 	}
8742 	case ARG_PTR_TO_KPTR:
8743 		err = process_kptr_func(env, regno, meta);
8744 		if (err)
8745 			return err;
8746 		break;
8747 	}
8748 
8749 	return err;
8750 }
8751 
8752 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8753 {
8754 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8755 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8756 
8757 	if (func_id != BPF_FUNC_map_update_elem &&
8758 	    func_id != BPF_FUNC_map_delete_elem)
8759 		return false;
8760 
8761 	/* It's not possible to get access to a locked struct sock in these
8762 	 * contexts, so updating is safe.
8763 	 */
8764 	switch (type) {
8765 	case BPF_PROG_TYPE_TRACING:
8766 		if (eatype == BPF_TRACE_ITER)
8767 			return true;
8768 		break;
8769 	case BPF_PROG_TYPE_SOCK_OPS:
8770 		/* map_update allowed only via dedicated helpers with event type checks */
8771 		if (func_id == BPF_FUNC_map_delete_elem)
8772 			return true;
8773 		break;
8774 	case BPF_PROG_TYPE_SOCKET_FILTER:
8775 	case BPF_PROG_TYPE_SCHED_CLS:
8776 	case BPF_PROG_TYPE_SCHED_ACT:
8777 	case BPF_PROG_TYPE_XDP:
8778 	case BPF_PROG_TYPE_SK_REUSEPORT:
8779 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8780 	case BPF_PROG_TYPE_SK_LOOKUP:
8781 		return true;
8782 	default:
8783 		break;
8784 	}
8785 
8786 	verbose(env, "cannot update sockmap in this context\n");
8787 	return false;
8788 }
8789 
8790 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8791 {
8792 	return env->prog->jit_requested &&
8793 	       bpf_jit_supports_subprog_tailcalls();
8794 }
8795 
8796 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8797 					struct bpf_map *map, int func_id)
8798 {
8799 	if (!map)
8800 		return 0;
8801 
8802 	/* We need a two way check, first is from map perspective ... */
8803 	switch (map->map_type) {
8804 	case BPF_MAP_TYPE_PROG_ARRAY:
8805 		if (func_id != BPF_FUNC_tail_call)
8806 			goto error;
8807 		break;
8808 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8809 		if (func_id != BPF_FUNC_perf_event_read &&
8810 		    func_id != BPF_FUNC_perf_event_output &&
8811 		    func_id != BPF_FUNC_skb_output &&
8812 		    func_id != BPF_FUNC_perf_event_read_value &&
8813 		    func_id != BPF_FUNC_xdp_output)
8814 			goto error;
8815 		break;
8816 	case BPF_MAP_TYPE_RINGBUF:
8817 		if (func_id != BPF_FUNC_ringbuf_output &&
8818 		    func_id != BPF_FUNC_ringbuf_reserve &&
8819 		    func_id != BPF_FUNC_ringbuf_query &&
8820 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8821 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8822 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8823 			goto error;
8824 		break;
8825 	case BPF_MAP_TYPE_USER_RINGBUF:
8826 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8827 			goto error;
8828 		break;
8829 	case BPF_MAP_TYPE_STACK_TRACE:
8830 		if (func_id != BPF_FUNC_get_stackid)
8831 			goto error;
8832 		break;
8833 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8834 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8835 		    func_id != BPF_FUNC_current_task_under_cgroup)
8836 			goto error;
8837 		break;
8838 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8839 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8840 		if (func_id != BPF_FUNC_get_local_storage)
8841 			goto error;
8842 		break;
8843 	case BPF_MAP_TYPE_DEVMAP:
8844 	case BPF_MAP_TYPE_DEVMAP_HASH:
8845 		if (func_id != BPF_FUNC_redirect_map &&
8846 		    func_id != BPF_FUNC_map_lookup_elem)
8847 			goto error;
8848 		break;
8849 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8850 	 * appear.
8851 	 */
8852 	case BPF_MAP_TYPE_CPUMAP:
8853 		if (func_id != BPF_FUNC_redirect_map)
8854 			goto error;
8855 		break;
8856 	case BPF_MAP_TYPE_XSKMAP:
8857 		if (func_id != BPF_FUNC_redirect_map &&
8858 		    func_id != BPF_FUNC_map_lookup_elem)
8859 			goto error;
8860 		break;
8861 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8862 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8863 		if (func_id != BPF_FUNC_map_lookup_elem)
8864 			goto error;
8865 		break;
8866 	case BPF_MAP_TYPE_SOCKMAP:
8867 		if (func_id != BPF_FUNC_sk_redirect_map &&
8868 		    func_id != BPF_FUNC_sock_map_update &&
8869 		    func_id != BPF_FUNC_msg_redirect_map &&
8870 		    func_id != BPF_FUNC_sk_select_reuseport &&
8871 		    func_id != BPF_FUNC_map_lookup_elem &&
8872 		    !may_update_sockmap(env, func_id))
8873 			goto error;
8874 		break;
8875 	case BPF_MAP_TYPE_SOCKHASH:
8876 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8877 		    func_id != BPF_FUNC_sock_hash_update &&
8878 		    func_id != BPF_FUNC_msg_redirect_hash &&
8879 		    func_id != BPF_FUNC_sk_select_reuseport &&
8880 		    func_id != BPF_FUNC_map_lookup_elem &&
8881 		    !may_update_sockmap(env, func_id))
8882 			goto error;
8883 		break;
8884 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8885 		if (func_id != BPF_FUNC_sk_select_reuseport)
8886 			goto error;
8887 		break;
8888 	case BPF_MAP_TYPE_QUEUE:
8889 	case BPF_MAP_TYPE_STACK:
8890 		if (func_id != BPF_FUNC_map_peek_elem &&
8891 		    func_id != BPF_FUNC_map_pop_elem &&
8892 		    func_id != BPF_FUNC_map_push_elem)
8893 			goto error;
8894 		break;
8895 	case BPF_MAP_TYPE_SK_STORAGE:
8896 		if (func_id != BPF_FUNC_sk_storage_get &&
8897 		    func_id != BPF_FUNC_sk_storage_delete &&
8898 		    func_id != BPF_FUNC_kptr_xchg)
8899 			goto error;
8900 		break;
8901 	case BPF_MAP_TYPE_INODE_STORAGE:
8902 		if (func_id != BPF_FUNC_inode_storage_get &&
8903 		    func_id != BPF_FUNC_inode_storage_delete &&
8904 		    func_id != BPF_FUNC_kptr_xchg)
8905 			goto error;
8906 		break;
8907 	case BPF_MAP_TYPE_TASK_STORAGE:
8908 		if (func_id != BPF_FUNC_task_storage_get &&
8909 		    func_id != BPF_FUNC_task_storage_delete &&
8910 		    func_id != BPF_FUNC_kptr_xchg)
8911 			goto error;
8912 		break;
8913 	case BPF_MAP_TYPE_CGRP_STORAGE:
8914 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8915 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8916 		    func_id != BPF_FUNC_kptr_xchg)
8917 			goto error;
8918 		break;
8919 	case BPF_MAP_TYPE_BLOOM_FILTER:
8920 		if (func_id != BPF_FUNC_map_peek_elem &&
8921 		    func_id != BPF_FUNC_map_push_elem)
8922 			goto error;
8923 		break;
8924 	default:
8925 		break;
8926 	}
8927 
8928 	/* ... and second from the function itself. */
8929 	switch (func_id) {
8930 	case BPF_FUNC_tail_call:
8931 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8932 			goto error;
8933 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8934 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8935 			return -EINVAL;
8936 		}
8937 		break;
8938 	case BPF_FUNC_perf_event_read:
8939 	case BPF_FUNC_perf_event_output:
8940 	case BPF_FUNC_perf_event_read_value:
8941 	case BPF_FUNC_skb_output:
8942 	case BPF_FUNC_xdp_output:
8943 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8944 			goto error;
8945 		break;
8946 	case BPF_FUNC_ringbuf_output:
8947 	case BPF_FUNC_ringbuf_reserve:
8948 	case BPF_FUNC_ringbuf_query:
8949 	case BPF_FUNC_ringbuf_reserve_dynptr:
8950 	case BPF_FUNC_ringbuf_submit_dynptr:
8951 	case BPF_FUNC_ringbuf_discard_dynptr:
8952 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8953 			goto error;
8954 		break;
8955 	case BPF_FUNC_user_ringbuf_drain:
8956 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8957 			goto error;
8958 		break;
8959 	case BPF_FUNC_get_stackid:
8960 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8961 			goto error;
8962 		break;
8963 	case BPF_FUNC_current_task_under_cgroup:
8964 	case BPF_FUNC_skb_under_cgroup:
8965 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8966 			goto error;
8967 		break;
8968 	case BPF_FUNC_redirect_map:
8969 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8970 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8971 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8972 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8973 			goto error;
8974 		break;
8975 	case BPF_FUNC_sk_redirect_map:
8976 	case BPF_FUNC_msg_redirect_map:
8977 	case BPF_FUNC_sock_map_update:
8978 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8979 			goto error;
8980 		break;
8981 	case BPF_FUNC_sk_redirect_hash:
8982 	case BPF_FUNC_msg_redirect_hash:
8983 	case BPF_FUNC_sock_hash_update:
8984 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8985 			goto error;
8986 		break;
8987 	case BPF_FUNC_get_local_storage:
8988 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8989 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8990 			goto error;
8991 		break;
8992 	case BPF_FUNC_sk_select_reuseport:
8993 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8994 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8995 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8996 			goto error;
8997 		break;
8998 	case BPF_FUNC_map_pop_elem:
8999 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9000 		    map->map_type != BPF_MAP_TYPE_STACK)
9001 			goto error;
9002 		break;
9003 	case BPF_FUNC_map_peek_elem:
9004 	case BPF_FUNC_map_push_elem:
9005 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9006 		    map->map_type != BPF_MAP_TYPE_STACK &&
9007 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9008 			goto error;
9009 		break;
9010 	case BPF_FUNC_map_lookup_percpu_elem:
9011 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9012 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9013 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9014 			goto error;
9015 		break;
9016 	case BPF_FUNC_sk_storage_get:
9017 	case BPF_FUNC_sk_storage_delete:
9018 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9019 			goto error;
9020 		break;
9021 	case BPF_FUNC_inode_storage_get:
9022 	case BPF_FUNC_inode_storage_delete:
9023 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9024 			goto error;
9025 		break;
9026 	case BPF_FUNC_task_storage_get:
9027 	case BPF_FUNC_task_storage_delete:
9028 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9029 			goto error;
9030 		break;
9031 	case BPF_FUNC_cgrp_storage_get:
9032 	case BPF_FUNC_cgrp_storage_delete:
9033 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9034 			goto error;
9035 		break;
9036 	default:
9037 		break;
9038 	}
9039 
9040 	return 0;
9041 error:
9042 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9043 		map->map_type, func_id_name(func_id), func_id);
9044 	return -EINVAL;
9045 }
9046 
9047 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9048 {
9049 	int count = 0;
9050 
9051 	if (arg_type_is_raw_mem(fn->arg1_type))
9052 		count++;
9053 	if (arg_type_is_raw_mem(fn->arg2_type))
9054 		count++;
9055 	if (arg_type_is_raw_mem(fn->arg3_type))
9056 		count++;
9057 	if (arg_type_is_raw_mem(fn->arg4_type))
9058 		count++;
9059 	if (arg_type_is_raw_mem(fn->arg5_type))
9060 		count++;
9061 
9062 	/* We only support one arg being in raw mode at the moment,
9063 	 * which is sufficient for the helper functions we have
9064 	 * right now.
9065 	 */
9066 	return count <= 1;
9067 }
9068 
9069 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9070 {
9071 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9072 	bool has_size = fn->arg_size[arg] != 0;
9073 	bool is_next_size = false;
9074 
9075 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9076 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9077 
9078 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9079 		return is_next_size;
9080 
9081 	return has_size == is_next_size || is_next_size == is_fixed;
9082 }
9083 
9084 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9085 {
9086 	/* bpf_xxx(..., buf, len) call will access 'len'
9087 	 * bytes from memory 'buf'. Both arg types need
9088 	 * to be paired, so make sure there's no buggy
9089 	 * helper function specification.
9090 	 */
9091 	if (arg_type_is_mem_size(fn->arg1_type) ||
9092 	    check_args_pair_invalid(fn, 0) ||
9093 	    check_args_pair_invalid(fn, 1) ||
9094 	    check_args_pair_invalid(fn, 2) ||
9095 	    check_args_pair_invalid(fn, 3) ||
9096 	    check_args_pair_invalid(fn, 4))
9097 		return false;
9098 
9099 	return true;
9100 }
9101 
9102 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9103 {
9104 	int i;
9105 
9106 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9107 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9108 			return !!fn->arg_btf_id[i];
9109 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9110 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9111 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9112 		    /* arg_btf_id and arg_size are in a union. */
9113 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9114 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9115 			return false;
9116 	}
9117 
9118 	return true;
9119 }
9120 
9121 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9122 {
9123 	return check_raw_mode_ok(fn) &&
9124 	       check_arg_pair_ok(fn) &&
9125 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9126 }
9127 
9128 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9129  * are now invalid, so turn them into unknown SCALAR_VALUE.
9130  *
9131  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9132  * since these slices point to packet data.
9133  */
9134 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9135 {
9136 	struct bpf_func_state *state;
9137 	struct bpf_reg_state *reg;
9138 
9139 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9140 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9141 			mark_reg_invalid(env, reg);
9142 	}));
9143 }
9144 
9145 enum {
9146 	AT_PKT_END = -1,
9147 	BEYOND_PKT_END = -2,
9148 };
9149 
9150 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9151 {
9152 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9153 	struct bpf_reg_state *reg = &state->regs[regn];
9154 
9155 	if (reg->type != PTR_TO_PACKET)
9156 		/* PTR_TO_PACKET_META is not supported yet */
9157 		return;
9158 
9159 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9160 	 * How far beyond pkt_end it goes is unknown.
9161 	 * if (!range_open) it's the case of pkt >= pkt_end
9162 	 * if (range_open) it's the case of pkt > pkt_end
9163 	 * hence this pointer is at least 1 byte bigger than pkt_end
9164 	 */
9165 	if (range_open)
9166 		reg->range = BEYOND_PKT_END;
9167 	else
9168 		reg->range = AT_PKT_END;
9169 }
9170 
9171 /* The pointer with the specified id has released its reference to kernel
9172  * resources. Identify all copies of the same pointer and clear the reference.
9173  */
9174 static int release_reference(struct bpf_verifier_env *env,
9175 			     int ref_obj_id)
9176 {
9177 	struct bpf_func_state *state;
9178 	struct bpf_reg_state *reg;
9179 	int err;
9180 
9181 	err = release_reference_state(cur_func(env), ref_obj_id);
9182 	if (err)
9183 		return err;
9184 
9185 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9186 		if (reg->ref_obj_id == ref_obj_id)
9187 			mark_reg_invalid(env, reg);
9188 	}));
9189 
9190 	return 0;
9191 }
9192 
9193 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9194 {
9195 	struct bpf_func_state *unused;
9196 	struct bpf_reg_state *reg;
9197 
9198 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9199 		if (type_is_non_owning_ref(reg->type))
9200 			mark_reg_invalid(env, reg);
9201 	}));
9202 }
9203 
9204 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9205 				    struct bpf_reg_state *regs)
9206 {
9207 	int i;
9208 
9209 	/* after the call registers r0 - r5 were scratched */
9210 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9211 		mark_reg_not_init(env, regs, caller_saved[i]);
9212 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9213 	}
9214 }
9215 
9216 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9217 				   struct bpf_func_state *caller,
9218 				   struct bpf_func_state *callee,
9219 				   int insn_idx);
9220 
9221 static int set_callee_state(struct bpf_verifier_env *env,
9222 			    struct bpf_func_state *caller,
9223 			    struct bpf_func_state *callee, int insn_idx);
9224 
9225 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9226 			    set_callee_state_fn set_callee_state_cb,
9227 			    struct bpf_verifier_state *state)
9228 {
9229 	struct bpf_func_state *caller, *callee;
9230 	int err;
9231 
9232 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9233 		verbose(env, "the call stack of %d frames is too deep\n",
9234 			state->curframe + 2);
9235 		return -E2BIG;
9236 	}
9237 
9238 	if (state->frame[state->curframe + 1]) {
9239 		verbose(env, "verifier bug. Frame %d already allocated\n",
9240 			state->curframe + 1);
9241 		return -EFAULT;
9242 	}
9243 
9244 	caller = state->frame[state->curframe];
9245 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9246 	if (!callee)
9247 		return -ENOMEM;
9248 	state->frame[state->curframe + 1] = callee;
9249 
9250 	/* callee cannot access r0, r6 - r9 for reading and has to write
9251 	 * into its own stack before reading from it.
9252 	 * callee can read/write into caller's stack
9253 	 */
9254 	init_func_state(env, callee,
9255 			/* remember the callsite, it will be used by bpf_exit */
9256 			callsite,
9257 			state->curframe + 1 /* frameno within this callchain */,
9258 			subprog /* subprog number within this prog */);
9259 	/* Transfer references to the callee */
9260 	err = copy_reference_state(callee, caller);
9261 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9262 	if (err)
9263 		goto err_out;
9264 
9265 	/* only increment it after check_reg_arg() finished */
9266 	state->curframe++;
9267 
9268 	return 0;
9269 
9270 err_out:
9271 	free_func_state(callee);
9272 	state->frame[state->curframe + 1] = NULL;
9273 	return err;
9274 }
9275 
9276 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9277 			      int insn_idx, int subprog,
9278 			      set_callee_state_fn set_callee_state_cb)
9279 {
9280 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9281 	struct bpf_func_state *caller, *callee;
9282 	int err;
9283 
9284 	caller = state->frame[state->curframe];
9285 	err = btf_check_subprog_call(env, subprog, caller->regs);
9286 	if (err == -EFAULT)
9287 		return err;
9288 
9289 	/* set_callee_state is used for direct subprog calls, but we are
9290 	 * interested in validating only BPF helpers that can call subprogs as
9291 	 * callbacks
9292 	 */
9293 	if (bpf_pseudo_kfunc_call(insn) &&
9294 	    !is_sync_callback_calling_kfunc(insn->imm)) {
9295 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9296 			func_id_name(insn->imm), insn->imm);
9297 		return -EFAULT;
9298 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9299 		   !is_callback_calling_function(insn->imm)) { /* helper */
9300 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9301 			func_id_name(insn->imm), insn->imm);
9302 		return -EFAULT;
9303 	}
9304 
9305 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9306 	    insn->src_reg == 0 &&
9307 	    insn->imm == BPF_FUNC_timer_set_callback) {
9308 		struct bpf_verifier_state *async_cb;
9309 
9310 		/* there is no real recursion here. timer callbacks are async */
9311 		env->subprog_info[subprog].is_async_cb = true;
9312 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9313 					 insn_idx, subprog);
9314 		if (!async_cb)
9315 			return -EFAULT;
9316 		callee = async_cb->frame[0];
9317 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9318 
9319 		/* Convert bpf_timer_set_callback() args into timer callback args */
9320 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9321 		if (err)
9322 			return err;
9323 
9324 		return 0;
9325 	}
9326 
9327 	/* for callback functions enqueue entry to callback and
9328 	 * proceed with next instruction within current frame.
9329 	 */
9330 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9331 	if (!callback_state)
9332 		return -ENOMEM;
9333 
9334 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9335 			       callback_state);
9336 	if (err)
9337 		return err;
9338 
9339 	callback_state->callback_unroll_depth++;
9340 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9341 	caller->callback_depth = 0;
9342 	return 0;
9343 }
9344 
9345 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9346 			   int *insn_idx)
9347 {
9348 	struct bpf_verifier_state *state = env->cur_state;
9349 	struct bpf_func_state *caller;
9350 	int err, subprog, target_insn;
9351 
9352 	target_insn = *insn_idx + insn->imm + 1;
9353 	subprog = find_subprog(env, target_insn);
9354 	if (subprog < 0) {
9355 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9356 		return -EFAULT;
9357 	}
9358 
9359 	caller = state->frame[state->curframe];
9360 	err = btf_check_subprog_call(env, subprog, caller->regs);
9361 	if (err == -EFAULT)
9362 		return err;
9363 	if (subprog_is_global(env, subprog)) {
9364 		if (err) {
9365 			verbose(env, "Caller passes invalid args into func#%d\n", subprog);
9366 			return err;
9367 		}
9368 
9369 		if (env->log.level & BPF_LOG_LEVEL)
9370 			verbose(env, "Func#%d is global and valid. Skipping.\n", subprog);
9371 		clear_caller_saved_regs(env, caller->regs);
9372 
9373 		/* All global functions return a 64-bit SCALAR_VALUE */
9374 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9375 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9376 
9377 		/* continue with next insn after call */
9378 		return 0;
9379 	}
9380 
9381 	/* for regular function entry setup new frame and continue
9382 	 * from that frame.
9383 	 */
9384 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9385 	if (err)
9386 		return err;
9387 
9388 	clear_caller_saved_regs(env, caller->regs);
9389 
9390 	/* and go analyze first insn of the callee */
9391 	*insn_idx = env->subprog_info[subprog].start - 1;
9392 
9393 	if (env->log.level & BPF_LOG_LEVEL) {
9394 		verbose(env, "caller:\n");
9395 		print_verifier_state(env, caller, true);
9396 		verbose(env, "callee:\n");
9397 		print_verifier_state(env, state->frame[state->curframe], true);
9398 	}
9399 
9400 	return 0;
9401 }
9402 
9403 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9404 				   struct bpf_func_state *caller,
9405 				   struct bpf_func_state *callee)
9406 {
9407 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9408 	 *      void *callback_ctx, u64 flags);
9409 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9410 	 *      void *callback_ctx);
9411 	 */
9412 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9413 
9414 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9415 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9416 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9417 
9418 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9419 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9420 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9421 
9422 	/* pointer to stack or null */
9423 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9424 
9425 	/* unused */
9426 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9427 	return 0;
9428 }
9429 
9430 static int set_callee_state(struct bpf_verifier_env *env,
9431 			    struct bpf_func_state *caller,
9432 			    struct bpf_func_state *callee, int insn_idx)
9433 {
9434 	int i;
9435 
9436 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9437 	 * pointers, which connects us up to the liveness chain
9438 	 */
9439 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9440 		callee->regs[i] = caller->regs[i];
9441 	return 0;
9442 }
9443 
9444 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9445 				       struct bpf_func_state *caller,
9446 				       struct bpf_func_state *callee,
9447 				       int insn_idx)
9448 {
9449 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9450 	struct bpf_map *map;
9451 	int err;
9452 
9453 	if (bpf_map_ptr_poisoned(insn_aux)) {
9454 		verbose(env, "tail_call abusing map_ptr\n");
9455 		return -EINVAL;
9456 	}
9457 
9458 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9459 	if (!map->ops->map_set_for_each_callback_args ||
9460 	    !map->ops->map_for_each_callback) {
9461 		verbose(env, "callback function not allowed for map\n");
9462 		return -ENOTSUPP;
9463 	}
9464 
9465 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9466 	if (err)
9467 		return err;
9468 
9469 	callee->in_callback_fn = true;
9470 	callee->callback_ret_range = tnum_range(0, 1);
9471 	return 0;
9472 }
9473 
9474 static int set_loop_callback_state(struct bpf_verifier_env *env,
9475 				   struct bpf_func_state *caller,
9476 				   struct bpf_func_state *callee,
9477 				   int insn_idx)
9478 {
9479 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9480 	 *	    u64 flags);
9481 	 * callback_fn(u32 index, void *callback_ctx);
9482 	 */
9483 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9484 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9485 
9486 	/* unused */
9487 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9488 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9489 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9490 
9491 	callee->in_callback_fn = true;
9492 	callee->callback_ret_range = tnum_range(0, 1);
9493 	return 0;
9494 }
9495 
9496 static int set_timer_callback_state(struct bpf_verifier_env *env,
9497 				    struct bpf_func_state *caller,
9498 				    struct bpf_func_state *callee,
9499 				    int insn_idx)
9500 {
9501 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9502 
9503 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9504 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9505 	 */
9506 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9507 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9508 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9509 
9510 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9511 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9512 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9513 
9514 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9515 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9516 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9517 
9518 	/* unused */
9519 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9520 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9521 	callee->in_async_callback_fn = true;
9522 	callee->callback_ret_range = tnum_range(0, 1);
9523 	return 0;
9524 }
9525 
9526 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9527 				       struct bpf_func_state *caller,
9528 				       struct bpf_func_state *callee,
9529 				       int insn_idx)
9530 {
9531 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9532 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9533 	 * (callback_fn)(struct task_struct *task,
9534 	 *               struct vm_area_struct *vma, void *callback_ctx);
9535 	 */
9536 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9537 
9538 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9539 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9540 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9541 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9542 
9543 	/* pointer to stack or null */
9544 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9545 
9546 	/* unused */
9547 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9548 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9549 	callee->in_callback_fn = true;
9550 	callee->callback_ret_range = tnum_range(0, 1);
9551 	return 0;
9552 }
9553 
9554 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9555 					   struct bpf_func_state *caller,
9556 					   struct bpf_func_state *callee,
9557 					   int insn_idx)
9558 {
9559 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9560 	 *			  callback_ctx, u64 flags);
9561 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9562 	 */
9563 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9564 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9565 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9566 
9567 	/* unused */
9568 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9569 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9570 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9571 
9572 	callee->in_callback_fn = true;
9573 	callee->callback_ret_range = tnum_range(0, 1);
9574 	return 0;
9575 }
9576 
9577 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9578 					 struct bpf_func_state *caller,
9579 					 struct bpf_func_state *callee,
9580 					 int insn_idx)
9581 {
9582 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9583 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9584 	 *
9585 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9586 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9587 	 * by this point, so look at 'root'
9588 	 */
9589 	struct btf_field *field;
9590 
9591 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9592 				      BPF_RB_ROOT);
9593 	if (!field || !field->graph_root.value_btf_id)
9594 		return -EFAULT;
9595 
9596 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9597 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9598 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9599 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9600 
9601 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9602 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9603 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9604 	callee->in_callback_fn = true;
9605 	callee->callback_ret_range = tnum_range(0, 1);
9606 	return 0;
9607 }
9608 
9609 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9610 
9611 /* Are we currently verifying the callback for a rbtree helper that must
9612  * be called with lock held? If so, no need to complain about unreleased
9613  * lock
9614  */
9615 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9616 {
9617 	struct bpf_verifier_state *state = env->cur_state;
9618 	struct bpf_insn *insn = env->prog->insnsi;
9619 	struct bpf_func_state *callee;
9620 	int kfunc_btf_id;
9621 
9622 	if (!state->curframe)
9623 		return false;
9624 
9625 	callee = state->frame[state->curframe];
9626 
9627 	if (!callee->in_callback_fn)
9628 		return false;
9629 
9630 	kfunc_btf_id = insn[callee->callsite].imm;
9631 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9632 }
9633 
9634 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9635 {
9636 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9637 	struct bpf_func_state *caller, *callee;
9638 	struct bpf_reg_state *r0;
9639 	bool in_callback_fn;
9640 	int err;
9641 
9642 	callee = state->frame[state->curframe];
9643 	r0 = &callee->regs[BPF_REG_0];
9644 	if (r0->type == PTR_TO_STACK) {
9645 		/* technically it's ok to return caller's stack pointer
9646 		 * (or caller's caller's pointer) back to the caller,
9647 		 * since these pointers are valid. Only current stack
9648 		 * pointer will be invalid as soon as function exits,
9649 		 * but let's be conservative
9650 		 */
9651 		verbose(env, "cannot return stack pointer to the caller\n");
9652 		return -EINVAL;
9653 	}
9654 
9655 	caller = state->frame[state->curframe - 1];
9656 	if (callee->in_callback_fn) {
9657 		/* enforce R0 return value range [0, 1]. */
9658 		struct tnum range = callee->callback_ret_range;
9659 
9660 		if (r0->type != SCALAR_VALUE) {
9661 			verbose(env, "R0 not a scalar value\n");
9662 			return -EACCES;
9663 		}
9664 
9665 		/* we are going to rely on register's precise value */
9666 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9667 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9668 		if (err)
9669 			return err;
9670 
9671 		if (!tnum_in(range, r0->var_off)) {
9672 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9673 			return -EINVAL;
9674 		}
9675 		if (!calls_callback(env, callee->callsite)) {
9676 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9677 				*insn_idx, callee->callsite);
9678 			return -EFAULT;
9679 		}
9680 	} else {
9681 		/* return to the caller whatever r0 had in the callee */
9682 		caller->regs[BPF_REG_0] = *r0;
9683 	}
9684 
9685 	/* callback_fn frame should have released its own additions to parent's
9686 	 * reference state at this point, or check_reference_leak would
9687 	 * complain, hence it must be the same as the caller. There is no need
9688 	 * to copy it back.
9689 	 */
9690 	if (!callee->in_callback_fn) {
9691 		/* Transfer references to the caller */
9692 		err = copy_reference_state(caller, callee);
9693 		if (err)
9694 			return err;
9695 	}
9696 
9697 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9698 	 * there function call logic would reschedule callback visit. If iteration
9699 	 * converges is_state_visited() would prune that visit eventually.
9700 	 */
9701 	in_callback_fn = callee->in_callback_fn;
9702 	if (in_callback_fn)
9703 		*insn_idx = callee->callsite;
9704 	else
9705 		*insn_idx = callee->callsite + 1;
9706 
9707 	if (env->log.level & BPF_LOG_LEVEL) {
9708 		verbose(env, "returning from callee:\n");
9709 		print_verifier_state(env, callee, true);
9710 		verbose(env, "to caller at %d:\n", *insn_idx);
9711 		print_verifier_state(env, caller, true);
9712 	}
9713 	/* clear everything in the callee */
9714 	free_func_state(callee);
9715 	state->frame[state->curframe--] = NULL;
9716 
9717 	/* for callbacks widen imprecise scalars to make programs like below verify:
9718 	 *
9719 	 *   struct ctx { int i; }
9720 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9721 	 *   ...
9722 	 *   struct ctx = { .i = 0; }
9723 	 *   bpf_loop(100, cb, &ctx, 0);
9724 	 *
9725 	 * This is similar to what is done in process_iter_next_call() for open
9726 	 * coded iterators.
9727 	 */
9728 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9729 	if (prev_st) {
9730 		err = widen_imprecise_scalars(env, prev_st, state);
9731 		if (err)
9732 			return err;
9733 	}
9734 	return 0;
9735 }
9736 
9737 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9738 				   int func_id,
9739 				   struct bpf_call_arg_meta *meta)
9740 {
9741 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9742 
9743 	if (ret_type != RET_INTEGER)
9744 		return;
9745 
9746 	switch (func_id) {
9747 	case BPF_FUNC_get_stack:
9748 	case BPF_FUNC_get_task_stack:
9749 	case BPF_FUNC_probe_read_str:
9750 	case BPF_FUNC_probe_read_kernel_str:
9751 	case BPF_FUNC_probe_read_user_str:
9752 		ret_reg->smax_value = meta->msize_max_value;
9753 		ret_reg->s32_max_value = meta->msize_max_value;
9754 		ret_reg->smin_value = -MAX_ERRNO;
9755 		ret_reg->s32_min_value = -MAX_ERRNO;
9756 		reg_bounds_sync(ret_reg);
9757 		break;
9758 	case BPF_FUNC_get_smp_processor_id:
9759 		ret_reg->umax_value = nr_cpu_ids - 1;
9760 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9761 		ret_reg->smax_value = nr_cpu_ids - 1;
9762 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9763 		ret_reg->umin_value = 0;
9764 		ret_reg->u32_min_value = 0;
9765 		ret_reg->smin_value = 0;
9766 		ret_reg->s32_min_value = 0;
9767 		reg_bounds_sync(ret_reg);
9768 		break;
9769 	}
9770 }
9771 
9772 static int
9773 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9774 		int func_id, int insn_idx)
9775 {
9776 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9777 	struct bpf_map *map = meta->map_ptr;
9778 
9779 	if (func_id != BPF_FUNC_tail_call &&
9780 	    func_id != BPF_FUNC_map_lookup_elem &&
9781 	    func_id != BPF_FUNC_map_update_elem &&
9782 	    func_id != BPF_FUNC_map_delete_elem &&
9783 	    func_id != BPF_FUNC_map_push_elem &&
9784 	    func_id != BPF_FUNC_map_pop_elem &&
9785 	    func_id != BPF_FUNC_map_peek_elem &&
9786 	    func_id != BPF_FUNC_for_each_map_elem &&
9787 	    func_id != BPF_FUNC_redirect_map &&
9788 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9789 		return 0;
9790 
9791 	if (map == NULL) {
9792 		verbose(env, "kernel subsystem misconfigured verifier\n");
9793 		return -EINVAL;
9794 	}
9795 
9796 	/* In case of read-only, some additional restrictions
9797 	 * need to be applied in order to prevent altering the
9798 	 * state of the map from program side.
9799 	 */
9800 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9801 	    (func_id == BPF_FUNC_map_delete_elem ||
9802 	     func_id == BPF_FUNC_map_update_elem ||
9803 	     func_id == BPF_FUNC_map_push_elem ||
9804 	     func_id == BPF_FUNC_map_pop_elem)) {
9805 		verbose(env, "write into map forbidden\n");
9806 		return -EACCES;
9807 	}
9808 
9809 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9810 		bpf_map_ptr_store(aux, meta->map_ptr,
9811 				  !meta->map_ptr->bypass_spec_v1);
9812 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9813 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9814 				  !meta->map_ptr->bypass_spec_v1);
9815 	return 0;
9816 }
9817 
9818 static int
9819 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9820 		int func_id, int insn_idx)
9821 {
9822 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9823 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9824 	struct bpf_map *map = meta->map_ptr;
9825 	u64 val, max;
9826 	int err;
9827 
9828 	if (func_id != BPF_FUNC_tail_call)
9829 		return 0;
9830 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9831 		verbose(env, "kernel subsystem misconfigured verifier\n");
9832 		return -EINVAL;
9833 	}
9834 
9835 	reg = &regs[BPF_REG_3];
9836 	val = reg->var_off.value;
9837 	max = map->max_entries;
9838 
9839 	if (!(register_is_const(reg) && val < max)) {
9840 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9841 		return 0;
9842 	}
9843 
9844 	err = mark_chain_precision(env, BPF_REG_3);
9845 	if (err)
9846 		return err;
9847 	if (bpf_map_key_unseen(aux))
9848 		bpf_map_key_store(aux, val);
9849 	else if (!bpf_map_key_poisoned(aux) &&
9850 		  bpf_map_key_immediate(aux) != val)
9851 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9852 	return 0;
9853 }
9854 
9855 static int check_reference_leak(struct bpf_verifier_env *env)
9856 {
9857 	struct bpf_func_state *state = cur_func(env);
9858 	bool refs_lingering = false;
9859 	int i;
9860 
9861 	if (state->frameno && !state->in_callback_fn)
9862 		return 0;
9863 
9864 	for (i = 0; i < state->acquired_refs; i++) {
9865 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9866 			continue;
9867 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9868 			state->refs[i].id, state->refs[i].insn_idx);
9869 		refs_lingering = true;
9870 	}
9871 	return refs_lingering ? -EINVAL : 0;
9872 }
9873 
9874 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9875 				   struct bpf_reg_state *regs)
9876 {
9877 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9878 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9879 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9880 	struct bpf_bprintf_data data = {};
9881 	int err, fmt_map_off, num_args;
9882 	u64 fmt_addr;
9883 	char *fmt;
9884 
9885 	/* data must be an array of u64 */
9886 	if (data_len_reg->var_off.value % 8)
9887 		return -EINVAL;
9888 	num_args = data_len_reg->var_off.value / 8;
9889 
9890 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9891 	 * and map_direct_value_addr is set.
9892 	 */
9893 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9894 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9895 						  fmt_map_off);
9896 	if (err) {
9897 		verbose(env, "verifier bug\n");
9898 		return -EFAULT;
9899 	}
9900 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9901 
9902 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9903 	 * can focus on validating the format specifiers.
9904 	 */
9905 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9906 	if (err < 0)
9907 		verbose(env, "Invalid format string\n");
9908 
9909 	return err;
9910 }
9911 
9912 static int check_get_func_ip(struct bpf_verifier_env *env)
9913 {
9914 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9915 	int func_id = BPF_FUNC_get_func_ip;
9916 
9917 	if (type == BPF_PROG_TYPE_TRACING) {
9918 		if (!bpf_prog_has_trampoline(env->prog)) {
9919 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9920 				func_id_name(func_id), func_id);
9921 			return -ENOTSUPP;
9922 		}
9923 		return 0;
9924 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9925 		return 0;
9926 	}
9927 
9928 	verbose(env, "func %s#%d not supported for program type %d\n",
9929 		func_id_name(func_id), func_id, type);
9930 	return -ENOTSUPP;
9931 }
9932 
9933 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9934 {
9935 	return &env->insn_aux_data[env->insn_idx];
9936 }
9937 
9938 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9939 {
9940 	struct bpf_reg_state *regs = cur_regs(env);
9941 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9942 	bool reg_is_null = register_is_null(reg);
9943 
9944 	if (reg_is_null)
9945 		mark_chain_precision(env, BPF_REG_4);
9946 
9947 	return reg_is_null;
9948 }
9949 
9950 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9951 {
9952 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9953 
9954 	if (!state->initialized) {
9955 		state->initialized = 1;
9956 		state->fit_for_inline = loop_flag_is_zero(env);
9957 		state->callback_subprogno = subprogno;
9958 		return;
9959 	}
9960 
9961 	if (!state->fit_for_inline)
9962 		return;
9963 
9964 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9965 				 state->callback_subprogno == subprogno);
9966 }
9967 
9968 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9969 			     int *insn_idx_p)
9970 {
9971 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9972 	const struct bpf_func_proto *fn = NULL;
9973 	enum bpf_return_type ret_type;
9974 	enum bpf_type_flag ret_flag;
9975 	struct bpf_reg_state *regs;
9976 	struct bpf_call_arg_meta meta;
9977 	int insn_idx = *insn_idx_p;
9978 	bool changes_data;
9979 	int i, err, func_id;
9980 
9981 	/* find function prototype */
9982 	func_id = insn->imm;
9983 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9984 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9985 			func_id);
9986 		return -EINVAL;
9987 	}
9988 
9989 	if (env->ops->get_func_proto)
9990 		fn = env->ops->get_func_proto(func_id, env->prog);
9991 	if (!fn) {
9992 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9993 			func_id);
9994 		return -EINVAL;
9995 	}
9996 
9997 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9998 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9999 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10000 		return -EINVAL;
10001 	}
10002 
10003 	if (fn->allowed && !fn->allowed(env->prog)) {
10004 		verbose(env, "helper call is not allowed in probe\n");
10005 		return -EINVAL;
10006 	}
10007 
10008 	if (!env->prog->aux->sleepable && fn->might_sleep) {
10009 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10010 		return -EINVAL;
10011 	}
10012 
10013 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10014 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10015 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10016 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10017 			func_id_name(func_id), func_id);
10018 		return -EINVAL;
10019 	}
10020 
10021 	memset(&meta, 0, sizeof(meta));
10022 	meta.pkt_access = fn->pkt_access;
10023 
10024 	err = check_func_proto(fn, func_id);
10025 	if (err) {
10026 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10027 			func_id_name(func_id), func_id);
10028 		return err;
10029 	}
10030 
10031 	if (env->cur_state->active_rcu_lock) {
10032 		if (fn->might_sleep) {
10033 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10034 				func_id_name(func_id), func_id);
10035 			return -EINVAL;
10036 		}
10037 
10038 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10039 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10040 	}
10041 
10042 	meta.func_id = func_id;
10043 	/* check args */
10044 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10045 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10046 		if (err)
10047 			return err;
10048 	}
10049 
10050 	err = record_func_map(env, &meta, func_id, insn_idx);
10051 	if (err)
10052 		return err;
10053 
10054 	err = record_func_key(env, &meta, func_id, insn_idx);
10055 	if (err)
10056 		return err;
10057 
10058 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10059 	 * is inferred from register state.
10060 	 */
10061 	for (i = 0; i < meta.access_size; i++) {
10062 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10063 				       BPF_WRITE, -1, false, false);
10064 		if (err)
10065 			return err;
10066 	}
10067 
10068 	regs = cur_regs(env);
10069 
10070 	if (meta.release_regno) {
10071 		err = -EINVAL;
10072 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10073 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10074 		 * is safe to do directly.
10075 		 */
10076 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10077 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10078 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10079 				return -EFAULT;
10080 			}
10081 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10082 		} else if (meta.ref_obj_id) {
10083 			err = release_reference(env, meta.ref_obj_id);
10084 		} else if (register_is_null(&regs[meta.release_regno])) {
10085 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10086 			 * released is NULL, which must be > R0.
10087 			 */
10088 			err = 0;
10089 		}
10090 		if (err) {
10091 			verbose(env, "func %s#%d reference has not been acquired before\n",
10092 				func_id_name(func_id), func_id);
10093 			return err;
10094 		}
10095 	}
10096 
10097 	switch (func_id) {
10098 	case BPF_FUNC_tail_call:
10099 		err = check_reference_leak(env);
10100 		if (err) {
10101 			verbose(env, "tail_call would lead to reference leak\n");
10102 			return err;
10103 		}
10104 		break;
10105 	case BPF_FUNC_get_local_storage:
10106 		/* check that flags argument in get_local_storage(map, flags) is 0,
10107 		 * this is required because get_local_storage() can't return an error.
10108 		 */
10109 		if (!register_is_null(&regs[BPF_REG_2])) {
10110 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10111 			return -EINVAL;
10112 		}
10113 		break;
10114 	case BPF_FUNC_for_each_map_elem:
10115 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10116 					 set_map_elem_callback_state);
10117 		break;
10118 	case BPF_FUNC_timer_set_callback:
10119 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10120 					 set_timer_callback_state);
10121 		break;
10122 	case BPF_FUNC_find_vma:
10123 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10124 					 set_find_vma_callback_state);
10125 		break;
10126 	case BPF_FUNC_snprintf:
10127 		err = check_bpf_snprintf_call(env, regs);
10128 		break;
10129 	case BPF_FUNC_loop:
10130 		update_loop_inline_state(env, meta.subprogno);
10131 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10132 		 * is finished, thus mark it precise.
10133 		 */
10134 		err = mark_chain_precision(env, BPF_REG_1);
10135 		if (err)
10136 			return err;
10137 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10138 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10139 						 set_loop_callback_state);
10140 		} else {
10141 			cur_func(env)->callback_depth = 0;
10142 			if (env->log.level & BPF_LOG_LEVEL2)
10143 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10144 					env->cur_state->curframe);
10145 		}
10146 		break;
10147 	case BPF_FUNC_dynptr_from_mem:
10148 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10149 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10150 				reg_type_str(env, regs[BPF_REG_1].type));
10151 			return -EACCES;
10152 		}
10153 		break;
10154 	case BPF_FUNC_set_retval:
10155 		if (prog_type == BPF_PROG_TYPE_LSM &&
10156 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10157 			if (!env->prog->aux->attach_func_proto->type) {
10158 				/* Make sure programs that attach to void
10159 				 * hooks don't try to modify return value.
10160 				 */
10161 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10162 				return -EINVAL;
10163 			}
10164 		}
10165 		break;
10166 	case BPF_FUNC_dynptr_data:
10167 	{
10168 		struct bpf_reg_state *reg;
10169 		int id, ref_obj_id;
10170 
10171 		reg = get_dynptr_arg_reg(env, fn, regs);
10172 		if (!reg)
10173 			return -EFAULT;
10174 
10175 
10176 		if (meta.dynptr_id) {
10177 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10178 			return -EFAULT;
10179 		}
10180 		if (meta.ref_obj_id) {
10181 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10182 			return -EFAULT;
10183 		}
10184 
10185 		id = dynptr_id(env, reg);
10186 		if (id < 0) {
10187 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10188 			return id;
10189 		}
10190 
10191 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10192 		if (ref_obj_id < 0) {
10193 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10194 			return ref_obj_id;
10195 		}
10196 
10197 		meta.dynptr_id = id;
10198 		meta.ref_obj_id = ref_obj_id;
10199 
10200 		break;
10201 	}
10202 	case BPF_FUNC_dynptr_write:
10203 	{
10204 		enum bpf_dynptr_type dynptr_type;
10205 		struct bpf_reg_state *reg;
10206 
10207 		reg = get_dynptr_arg_reg(env, fn, regs);
10208 		if (!reg)
10209 			return -EFAULT;
10210 
10211 		dynptr_type = dynptr_get_type(env, reg);
10212 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10213 			return -EFAULT;
10214 
10215 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10216 			/* this will trigger clear_all_pkt_pointers(), which will
10217 			 * invalidate all dynptr slices associated with the skb
10218 			 */
10219 			changes_data = true;
10220 
10221 		break;
10222 	}
10223 	case BPF_FUNC_user_ringbuf_drain:
10224 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10225 					 set_user_ringbuf_callback_state);
10226 		break;
10227 	}
10228 
10229 	if (err)
10230 		return err;
10231 
10232 	/* reset caller saved regs */
10233 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10234 		mark_reg_not_init(env, regs, caller_saved[i]);
10235 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10236 	}
10237 
10238 	/* helper call returns 64-bit value. */
10239 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10240 
10241 	/* update return register (already marked as written above) */
10242 	ret_type = fn->ret_type;
10243 	ret_flag = type_flag(ret_type);
10244 
10245 	switch (base_type(ret_type)) {
10246 	case RET_INTEGER:
10247 		/* sets type to SCALAR_VALUE */
10248 		mark_reg_unknown(env, regs, BPF_REG_0);
10249 		break;
10250 	case RET_VOID:
10251 		regs[BPF_REG_0].type = NOT_INIT;
10252 		break;
10253 	case RET_PTR_TO_MAP_VALUE:
10254 		/* There is no offset yet applied, variable or fixed */
10255 		mark_reg_known_zero(env, regs, BPF_REG_0);
10256 		/* remember map_ptr, so that check_map_access()
10257 		 * can check 'value_size' boundary of memory access
10258 		 * to map element returned from bpf_map_lookup_elem()
10259 		 */
10260 		if (meta.map_ptr == NULL) {
10261 			verbose(env,
10262 				"kernel subsystem misconfigured verifier\n");
10263 			return -EINVAL;
10264 		}
10265 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10266 		regs[BPF_REG_0].map_uid = meta.map_uid;
10267 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10268 		if (!type_may_be_null(ret_type) &&
10269 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10270 			regs[BPF_REG_0].id = ++env->id_gen;
10271 		}
10272 		break;
10273 	case RET_PTR_TO_SOCKET:
10274 		mark_reg_known_zero(env, regs, BPF_REG_0);
10275 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10276 		break;
10277 	case RET_PTR_TO_SOCK_COMMON:
10278 		mark_reg_known_zero(env, regs, BPF_REG_0);
10279 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10280 		break;
10281 	case RET_PTR_TO_TCP_SOCK:
10282 		mark_reg_known_zero(env, regs, BPF_REG_0);
10283 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10284 		break;
10285 	case RET_PTR_TO_MEM:
10286 		mark_reg_known_zero(env, regs, BPF_REG_0);
10287 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10288 		regs[BPF_REG_0].mem_size = meta.mem_size;
10289 		break;
10290 	case RET_PTR_TO_MEM_OR_BTF_ID:
10291 	{
10292 		const struct btf_type *t;
10293 
10294 		mark_reg_known_zero(env, regs, BPF_REG_0);
10295 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10296 		if (!btf_type_is_struct(t)) {
10297 			u32 tsize;
10298 			const struct btf_type *ret;
10299 			const char *tname;
10300 
10301 			/* resolve the type size of ksym. */
10302 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10303 			if (IS_ERR(ret)) {
10304 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10305 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10306 					tname, PTR_ERR(ret));
10307 				return -EINVAL;
10308 			}
10309 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10310 			regs[BPF_REG_0].mem_size = tsize;
10311 		} else {
10312 			/* MEM_RDONLY may be carried from ret_flag, but it
10313 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10314 			 * it will confuse the check of PTR_TO_BTF_ID in
10315 			 * check_mem_access().
10316 			 */
10317 			ret_flag &= ~MEM_RDONLY;
10318 
10319 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10320 			regs[BPF_REG_0].btf = meta.ret_btf;
10321 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10322 		}
10323 		break;
10324 	}
10325 	case RET_PTR_TO_BTF_ID:
10326 	{
10327 		struct btf *ret_btf;
10328 		int ret_btf_id;
10329 
10330 		mark_reg_known_zero(env, regs, BPF_REG_0);
10331 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10332 		if (func_id == BPF_FUNC_kptr_xchg) {
10333 			ret_btf = meta.kptr_field->kptr.btf;
10334 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10335 			if (!btf_is_kernel(ret_btf))
10336 				regs[BPF_REG_0].type |= MEM_ALLOC;
10337 		} else {
10338 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10339 				verbose(env, "verifier internal error:");
10340 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10341 					func_id_name(func_id));
10342 				return -EINVAL;
10343 			}
10344 			ret_btf = btf_vmlinux;
10345 			ret_btf_id = *fn->ret_btf_id;
10346 		}
10347 		if (ret_btf_id == 0) {
10348 			verbose(env, "invalid return type %u of func %s#%d\n",
10349 				base_type(ret_type), func_id_name(func_id),
10350 				func_id);
10351 			return -EINVAL;
10352 		}
10353 		regs[BPF_REG_0].btf = ret_btf;
10354 		regs[BPF_REG_0].btf_id = ret_btf_id;
10355 		break;
10356 	}
10357 	default:
10358 		verbose(env, "unknown return type %u of func %s#%d\n",
10359 			base_type(ret_type), func_id_name(func_id), func_id);
10360 		return -EINVAL;
10361 	}
10362 
10363 	if (type_may_be_null(regs[BPF_REG_0].type))
10364 		regs[BPF_REG_0].id = ++env->id_gen;
10365 
10366 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10367 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10368 			func_id_name(func_id), func_id);
10369 		return -EFAULT;
10370 	}
10371 
10372 	if (is_dynptr_ref_function(func_id))
10373 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10374 
10375 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10376 		/* For release_reference() */
10377 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10378 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10379 		int id = acquire_reference_state(env, insn_idx);
10380 
10381 		if (id < 0)
10382 			return id;
10383 		/* For mark_ptr_or_null_reg() */
10384 		regs[BPF_REG_0].id = id;
10385 		/* For release_reference() */
10386 		regs[BPF_REG_0].ref_obj_id = id;
10387 	}
10388 
10389 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10390 
10391 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10392 	if (err)
10393 		return err;
10394 
10395 	if ((func_id == BPF_FUNC_get_stack ||
10396 	     func_id == BPF_FUNC_get_task_stack) &&
10397 	    !env->prog->has_callchain_buf) {
10398 		const char *err_str;
10399 
10400 #ifdef CONFIG_PERF_EVENTS
10401 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10402 		err_str = "cannot get callchain buffer for func %s#%d\n";
10403 #else
10404 		err = -ENOTSUPP;
10405 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10406 #endif
10407 		if (err) {
10408 			verbose(env, err_str, func_id_name(func_id), func_id);
10409 			return err;
10410 		}
10411 
10412 		env->prog->has_callchain_buf = true;
10413 	}
10414 
10415 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10416 		env->prog->call_get_stack = true;
10417 
10418 	if (func_id == BPF_FUNC_get_func_ip) {
10419 		if (check_get_func_ip(env))
10420 			return -ENOTSUPP;
10421 		env->prog->call_get_func_ip = true;
10422 	}
10423 
10424 	if (changes_data)
10425 		clear_all_pkt_pointers(env);
10426 	return 0;
10427 }
10428 
10429 /* mark_btf_func_reg_size() is used when the reg size is determined by
10430  * the BTF func_proto's return value size and argument.
10431  */
10432 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10433 				   size_t reg_size)
10434 {
10435 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10436 
10437 	if (regno == BPF_REG_0) {
10438 		/* Function return value */
10439 		reg->live |= REG_LIVE_WRITTEN;
10440 		reg->subreg_def = reg_size == sizeof(u64) ?
10441 			DEF_NOT_SUBREG : env->insn_idx + 1;
10442 	} else {
10443 		/* Function argument */
10444 		if (reg_size == sizeof(u64)) {
10445 			mark_insn_zext(env, reg);
10446 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10447 		} else {
10448 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10449 		}
10450 	}
10451 }
10452 
10453 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10454 {
10455 	return meta->kfunc_flags & KF_ACQUIRE;
10456 }
10457 
10458 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10459 {
10460 	return meta->kfunc_flags & KF_RELEASE;
10461 }
10462 
10463 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10464 {
10465 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10466 }
10467 
10468 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10469 {
10470 	return meta->kfunc_flags & KF_SLEEPABLE;
10471 }
10472 
10473 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10474 {
10475 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10476 }
10477 
10478 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10479 {
10480 	return meta->kfunc_flags & KF_RCU;
10481 }
10482 
10483 static bool __kfunc_param_match_suffix(const struct btf *btf,
10484 				       const struct btf_param *arg,
10485 				       const char *suffix)
10486 {
10487 	int suffix_len = strlen(suffix), len;
10488 	const char *param_name;
10489 
10490 	/* In the future, this can be ported to use BTF tagging */
10491 	param_name = btf_name_by_offset(btf, arg->name_off);
10492 	if (str_is_empty(param_name))
10493 		return false;
10494 	len = strlen(param_name);
10495 	if (len < suffix_len)
10496 		return false;
10497 	param_name += len - suffix_len;
10498 	return !strncmp(param_name, suffix, suffix_len);
10499 }
10500 
10501 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10502 				  const struct btf_param *arg,
10503 				  const struct bpf_reg_state *reg)
10504 {
10505 	const struct btf_type *t;
10506 
10507 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10508 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10509 		return false;
10510 
10511 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10512 }
10513 
10514 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10515 					const struct btf_param *arg,
10516 					const struct bpf_reg_state *reg)
10517 {
10518 	const struct btf_type *t;
10519 
10520 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10521 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10522 		return false;
10523 
10524 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10525 }
10526 
10527 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10528 {
10529 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10530 }
10531 
10532 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10533 {
10534 	return __kfunc_param_match_suffix(btf, arg, "__k");
10535 }
10536 
10537 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10538 {
10539 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10540 }
10541 
10542 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10543 {
10544 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10545 }
10546 
10547 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10548 {
10549 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10550 }
10551 
10552 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10553 {
10554 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10555 }
10556 
10557 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10558 					  const struct btf_param *arg,
10559 					  const char *name)
10560 {
10561 	int len, target_len = strlen(name);
10562 	const char *param_name;
10563 
10564 	param_name = btf_name_by_offset(btf, arg->name_off);
10565 	if (str_is_empty(param_name))
10566 		return false;
10567 	len = strlen(param_name);
10568 	if (len != target_len)
10569 		return false;
10570 	if (strcmp(param_name, name))
10571 		return false;
10572 
10573 	return true;
10574 }
10575 
10576 enum {
10577 	KF_ARG_DYNPTR_ID,
10578 	KF_ARG_LIST_HEAD_ID,
10579 	KF_ARG_LIST_NODE_ID,
10580 	KF_ARG_RB_ROOT_ID,
10581 	KF_ARG_RB_NODE_ID,
10582 };
10583 
10584 BTF_ID_LIST(kf_arg_btf_ids)
10585 BTF_ID(struct, bpf_dynptr_kern)
10586 BTF_ID(struct, bpf_list_head)
10587 BTF_ID(struct, bpf_list_node)
10588 BTF_ID(struct, bpf_rb_root)
10589 BTF_ID(struct, bpf_rb_node)
10590 
10591 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10592 				    const struct btf_param *arg, int type)
10593 {
10594 	const struct btf_type *t;
10595 	u32 res_id;
10596 
10597 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10598 	if (!t)
10599 		return false;
10600 	if (!btf_type_is_ptr(t))
10601 		return false;
10602 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10603 	if (!t)
10604 		return false;
10605 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10606 }
10607 
10608 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10609 {
10610 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10611 }
10612 
10613 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10614 {
10615 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10616 }
10617 
10618 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10619 {
10620 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10621 }
10622 
10623 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10624 {
10625 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10626 }
10627 
10628 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10629 {
10630 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10631 }
10632 
10633 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10634 				  const struct btf_param *arg)
10635 {
10636 	const struct btf_type *t;
10637 
10638 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10639 	if (!t)
10640 		return false;
10641 
10642 	return true;
10643 }
10644 
10645 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10646 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10647 					const struct btf *btf,
10648 					const struct btf_type *t, int rec)
10649 {
10650 	const struct btf_type *member_type;
10651 	const struct btf_member *member;
10652 	u32 i;
10653 
10654 	if (!btf_type_is_struct(t))
10655 		return false;
10656 
10657 	for_each_member(i, t, member) {
10658 		const struct btf_array *array;
10659 
10660 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10661 		if (btf_type_is_struct(member_type)) {
10662 			if (rec >= 3) {
10663 				verbose(env, "max struct nesting depth exceeded\n");
10664 				return false;
10665 			}
10666 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10667 				return false;
10668 			continue;
10669 		}
10670 		if (btf_type_is_array(member_type)) {
10671 			array = btf_array(member_type);
10672 			if (!array->nelems)
10673 				return false;
10674 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10675 			if (!btf_type_is_scalar(member_type))
10676 				return false;
10677 			continue;
10678 		}
10679 		if (!btf_type_is_scalar(member_type))
10680 			return false;
10681 	}
10682 	return true;
10683 }
10684 
10685 enum kfunc_ptr_arg_type {
10686 	KF_ARG_PTR_TO_CTX,
10687 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10688 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10689 	KF_ARG_PTR_TO_DYNPTR,
10690 	KF_ARG_PTR_TO_ITER,
10691 	KF_ARG_PTR_TO_LIST_HEAD,
10692 	KF_ARG_PTR_TO_LIST_NODE,
10693 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10694 	KF_ARG_PTR_TO_MEM,
10695 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10696 	KF_ARG_PTR_TO_CALLBACK,
10697 	KF_ARG_PTR_TO_RB_ROOT,
10698 	KF_ARG_PTR_TO_RB_NODE,
10699 };
10700 
10701 enum special_kfunc_type {
10702 	KF_bpf_obj_new_impl,
10703 	KF_bpf_obj_drop_impl,
10704 	KF_bpf_refcount_acquire_impl,
10705 	KF_bpf_list_push_front_impl,
10706 	KF_bpf_list_push_back_impl,
10707 	KF_bpf_list_pop_front,
10708 	KF_bpf_list_pop_back,
10709 	KF_bpf_cast_to_kern_ctx,
10710 	KF_bpf_rdonly_cast,
10711 	KF_bpf_rcu_read_lock,
10712 	KF_bpf_rcu_read_unlock,
10713 	KF_bpf_rbtree_remove,
10714 	KF_bpf_rbtree_add_impl,
10715 	KF_bpf_rbtree_first,
10716 	KF_bpf_dynptr_from_skb,
10717 	KF_bpf_dynptr_from_xdp,
10718 	KF_bpf_dynptr_slice,
10719 	KF_bpf_dynptr_slice_rdwr,
10720 	KF_bpf_dynptr_clone,
10721 };
10722 
10723 BTF_SET_START(special_kfunc_set)
10724 BTF_ID(func, bpf_obj_new_impl)
10725 BTF_ID(func, bpf_obj_drop_impl)
10726 BTF_ID(func, bpf_refcount_acquire_impl)
10727 BTF_ID(func, bpf_list_push_front_impl)
10728 BTF_ID(func, bpf_list_push_back_impl)
10729 BTF_ID(func, bpf_list_pop_front)
10730 BTF_ID(func, bpf_list_pop_back)
10731 BTF_ID(func, bpf_cast_to_kern_ctx)
10732 BTF_ID(func, bpf_rdonly_cast)
10733 BTF_ID(func, bpf_rbtree_remove)
10734 BTF_ID(func, bpf_rbtree_add_impl)
10735 BTF_ID(func, bpf_rbtree_first)
10736 BTF_ID(func, bpf_dynptr_from_skb)
10737 BTF_ID(func, bpf_dynptr_from_xdp)
10738 BTF_ID(func, bpf_dynptr_slice)
10739 BTF_ID(func, bpf_dynptr_slice_rdwr)
10740 BTF_ID(func, bpf_dynptr_clone)
10741 BTF_SET_END(special_kfunc_set)
10742 
10743 BTF_ID_LIST(special_kfunc_list)
10744 BTF_ID(func, bpf_obj_new_impl)
10745 BTF_ID(func, bpf_obj_drop_impl)
10746 BTF_ID(func, bpf_refcount_acquire_impl)
10747 BTF_ID(func, bpf_list_push_front_impl)
10748 BTF_ID(func, bpf_list_push_back_impl)
10749 BTF_ID(func, bpf_list_pop_front)
10750 BTF_ID(func, bpf_list_pop_back)
10751 BTF_ID(func, bpf_cast_to_kern_ctx)
10752 BTF_ID(func, bpf_rdonly_cast)
10753 BTF_ID(func, bpf_rcu_read_lock)
10754 BTF_ID(func, bpf_rcu_read_unlock)
10755 BTF_ID(func, bpf_rbtree_remove)
10756 BTF_ID(func, bpf_rbtree_add_impl)
10757 BTF_ID(func, bpf_rbtree_first)
10758 BTF_ID(func, bpf_dynptr_from_skb)
10759 BTF_ID(func, bpf_dynptr_from_xdp)
10760 BTF_ID(func, bpf_dynptr_slice)
10761 BTF_ID(func, bpf_dynptr_slice_rdwr)
10762 BTF_ID(func, bpf_dynptr_clone)
10763 
10764 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10765 {
10766 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10767 	    meta->arg_owning_ref) {
10768 		return false;
10769 	}
10770 
10771 	return meta->kfunc_flags & KF_RET_NULL;
10772 }
10773 
10774 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10775 {
10776 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10777 }
10778 
10779 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10780 {
10781 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10782 }
10783 
10784 static enum kfunc_ptr_arg_type
10785 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10786 		       struct bpf_kfunc_call_arg_meta *meta,
10787 		       const struct btf_type *t, const struct btf_type *ref_t,
10788 		       const char *ref_tname, const struct btf_param *args,
10789 		       int argno, int nargs)
10790 {
10791 	u32 regno = argno + 1;
10792 	struct bpf_reg_state *regs = cur_regs(env);
10793 	struct bpf_reg_state *reg = &regs[regno];
10794 	bool arg_mem_size = false;
10795 
10796 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10797 		return KF_ARG_PTR_TO_CTX;
10798 
10799 	/* In this function, we verify the kfunc's BTF as per the argument type,
10800 	 * leaving the rest of the verification with respect to the register
10801 	 * type to our caller. When a set of conditions hold in the BTF type of
10802 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10803 	 */
10804 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10805 		return KF_ARG_PTR_TO_CTX;
10806 
10807 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10808 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10809 
10810 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10811 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10812 
10813 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10814 		return KF_ARG_PTR_TO_DYNPTR;
10815 
10816 	if (is_kfunc_arg_iter(meta, argno))
10817 		return KF_ARG_PTR_TO_ITER;
10818 
10819 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10820 		return KF_ARG_PTR_TO_LIST_HEAD;
10821 
10822 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10823 		return KF_ARG_PTR_TO_LIST_NODE;
10824 
10825 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10826 		return KF_ARG_PTR_TO_RB_ROOT;
10827 
10828 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10829 		return KF_ARG_PTR_TO_RB_NODE;
10830 
10831 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10832 		if (!btf_type_is_struct(ref_t)) {
10833 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10834 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10835 			return -EINVAL;
10836 		}
10837 		return KF_ARG_PTR_TO_BTF_ID;
10838 	}
10839 
10840 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10841 		return KF_ARG_PTR_TO_CALLBACK;
10842 
10843 
10844 	if (argno + 1 < nargs &&
10845 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10846 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10847 		arg_mem_size = true;
10848 
10849 	/* This is the catch all argument type of register types supported by
10850 	 * check_helper_mem_access. However, we only allow when argument type is
10851 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10852 	 * arg_mem_size is true, the pointer can be void *.
10853 	 */
10854 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10855 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10856 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10857 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10858 		return -EINVAL;
10859 	}
10860 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10861 }
10862 
10863 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10864 					struct bpf_reg_state *reg,
10865 					const struct btf_type *ref_t,
10866 					const char *ref_tname, u32 ref_id,
10867 					struct bpf_kfunc_call_arg_meta *meta,
10868 					int argno)
10869 {
10870 	const struct btf_type *reg_ref_t;
10871 	bool strict_type_match = false;
10872 	const struct btf *reg_btf;
10873 	const char *reg_ref_tname;
10874 	u32 reg_ref_id;
10875 
10876 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10877 		reg_btf = reg->btf;
10878 		reg_ref_id = reg->btf_id;
10879 	} else {
10880 		reg_btf = btf_vmlinux;
10881 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10882 	}
10883 
10884 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10885 	 * or releasing a reference, or are no-cast aliases. We do _not_
10886 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10887 	 * as we want to enable BPF programs to pass types that are bitwise
10888 	 * equivalent without forcing them to explicitly cast with something
10889 	 * like bpf_cast_to_kern_ctx().
10890 	 *
10891 	 * For example, say we had a type like the following:
10892 	 *
10893 	 * struct bpf_cpumask {
10894 	 *	cpumask_t cpumask;
10895 	 *	refcount_t usage;
10896 	 * };
10897 	 *
10898 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10899 	 * to a struct cpumask, so it would be safe to pass a struct
10900 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10901 	 *
10902 	 * The philosophy here is similar to how we allow scalars of different
10903 	 * types to be passed to kfuncs as long as the size is the same. The
10904 	 * only difference here is that we're simply allowing
10905 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10906 	 * resolve types.
10907 	 */
10908 	if (is_kfunc_acquire(meta) ||
10909 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10910 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10911 		strict_type_match = true;
10912 
10913 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10914 
10915 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10916 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10917 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10918 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10919 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10920 			btf_type_str(reg_ref_t), reg_ref_tname);
10921 		return -EINVAL;
10922 	}
10923 	return 0;
10924 }
10925 
10926 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10927 {
10928 	struct bpf_verifier_state *state = env->cur_state;
10929 	struct btf_record *rec = reg_btf_record(reg);
10930 
10931 	if (!state->active_lock.ptr) {
10932 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10933 		return -EFAULT;
10934 	}
10935 
10936 	if (type_flag(reg->type) & NON_OWN_REF) {
10937 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10938 		return -EFAULT;
10939 	}
10940 
10941 	reg->type |= NON_OWN_REF;
10942 	if (rec->refcount_off >= 0)
10943 		reg->type |= MEM_RCU;
10944 
10945 	return 0;
10946 }
10947 
10948 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10949 {
10950 	struct bpf_func_state *state, *unused;
10951 	struct bpf_reg_state *reg;
10952 	int i;
10953 
10954 	state = cur_func(env);
10955 
10956 	if (!ref_obj_id) {
10957 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10958 			     "owning -> non-owning conversion\n");
10959 		return -EFAULT;
10960 	}
10961 
10962 	for (i = 0; i < state->acquired_refs; i++) {
10963 		if (state->refs[i].id != ref_obj_id)
10964 			continue;
10965 
10966 		/* Clear ref_obj_id here so release_reference doesn't clobber
10967 		 * the whole reg
10968 		 */
10969 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10970 			if (reg->ref_obj_id == ref_obj_id) {
10971 				reg->ref_obj_id = 0;
10972 				ref_set_non_owning(env, reg);
10973 			}
10974 		}));
10975 		return 0;
10976 	}
10977 
10978 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10979 	return -EFAULT;
10980 }
10981 
10982 /* Implementation details:
10983  *
10984  * Each register points to some region of memory, which we define as an
10985  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10986  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10987  * allocation. The lock and the data it protects are colocated in the same
10988  * memory region.
10989  *
10990  * Hence, everytime a register holds a pointer value pointing to such
10991  * allocation, the verifier preserves a unique reg->id for it.
10992  *
10993  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10994  * bpf_spin_lock is called.
10995  *
10996  * To enable this, lock state in the verifier captures two values:
10997  *	active_lock.ptr = Register's type specific pointer
10998  *	active_lock.id  = A unique ID for each register pointer value
10999  *
11000  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11001  * supported register types.
11002  *
11003  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11004  * allocated objects is the reg->btf pointer.
11005  *
11006  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11007  * can establish the provenance of the map value statically for each distinct
11008  * lookup into such maps. They always contain a single map value hence unique
11009  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11010  *
11011  * So, in case of global variables, they use array maps with max_entries = 1,
11012  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11013  * into the same map value as max_entries is 1, as described above).
11014  *
11015  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11016  * outer map pointer (in verifier context), but each lookup into an inner map
11017  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11018  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11019  * will get different reg->id assigned to each lookup, hence different
11020  * active_lock.id.
11021  *
11022  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11023  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11024  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11025  */
11026 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11027 {
11028 	void *ptr;
11029 	u32 id;
11030 
11031 	switch ((int)reg->type) {
11032 	case PTR_TO_MAP_VALUE:
11033 		ptr = reg->map_ptr;
11034 		break;
11035 	case PTR_TO_BTF_ID | MEM_ALLOC:
11036 		ptr = reg->btf;
11037 		break;
11038 	default:
11039 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11040 		return -EFAULT;
11041 	}
11042 	id = reg->id;
11043 
11044 	if (!env->cur_state->active_lock.ptr)
11045 		return -EINVAL;
11046 	if (env->cur_state->active_lock.ptr != ptr ||
11047 	    env->cur_state->active_lock.id != id) {
11048 		verbose(env, "held lock and object are not in the same allocation\n");
11049 		return -EINVAL;
11050 	}
11051 	return 0;
11052 }
11053 
11054 static bool is_bpf_list_api_kfunc(u32 btf_id)
11055 {
11056 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11057 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11058 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11059 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11060 }
11061 
11062 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11063 {
11064 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11065 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11066 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11067 }
11068 
11069 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11070 {
11071 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11072 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11073 }
11074 
11075 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11076 {
11077 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11078 }
11079 
11080 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11081 {
11082 	return is_bpf_rbtree_api_kfunc(btf_id);
11083 }
11084 
11085 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11086 					  enum btf_field_type head_field_type,
11087 					  u32 kfunc_btf_id)
11088 {
11089 	bool ret;
11090 
11091 	switch (head_field_type) {
11092 	case BPF_LIST_HEAD:
11093 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11094 		break;
11095 	case BPF_RB_ROOT:
11096 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11097 		break;
11098 	default:
11099 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11100 			btf_field_type_name(head_field_type));
11101 		return false;
11102 	}
11103 
11104 	if (!ret)
11105 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11106 			btf_field_type_name(head_field_type));
11107 	return ret;
11108 }
11109 
11110 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11111 					  enum btf_field_type node_field_type,
11112 					  u32 kfunc_btf_id)
11113 {
11114 	bool ret;
11115 
11116 	switch (node_field_type) {
11117 	case BPF_LIST_NODE:
11118 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11119 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11120 		break;
11121 	case BPF_RB_NODE:
11122 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11123 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11124 		break;
11125 	default:
11126 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11127 			btf_field_type_name(node_field_type));
11128 		return false;
11129 	}
11130 
11131 	if (!ret)
11132 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11133 			btf_field_type_name(node_field_type));
11134 	return ret;
11135 }
11136 
11137 static int
11138 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11139 				   struct bpf_reg_state *reg, u32 regno,
11140 				   struct bpf_kfunc_call_arg_meta *meta,
11141 				   enum btf_field_type head_field_type,
11142 				   struct btf_field **head_field)
11143 {
11144 	const char *head_type_name;
11145 	struct btf_field *field;
11146 	struct btf_record *rec;
11147 	u32 head_off;
11148 
11149 	if (meta->btf != btf_vmlinux) {
11150 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11151 		return -EFAULT;
11152 	}
11153 
11154 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11155 		return -EFAULT;
11156 
11157 	head_type_name = btf_field_type_name(head_field_type);
11158 	if (!tnum_is_const(reg->var_off)) {
11159 		verbose(env,
11160 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11161 			regno, head_type_name);
11162 		return -EINVAL;
11163 	}
11164 
11165 	rec = reg_btf_record(reg);
11166 	head_off = reg->off + reg->var_off.value;
11167 	field = btf_record_find(rec, head_off, head_field_type);
11168 	if (!field) {
11169 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11170 		return -EINVAL;
11171 	}
11172 
11173 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11174 	if (check_reg_allocation_locked(env, reg)) {
11175 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11176 			rec->spin_lock_off, head_type_name);
11177 		return -EINVAL;
11178 	}
11179 
11180 	if (*head_field) {
11181 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11182 		return -EFAULT;
11183 	}
11184 	*head_field = field;
11185 	return 0;
11186 }
11187 
11188 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11189 					   struct bpf_reg_state *reg, u32 regno,
11190 					   struct bpf_kfunc_call_arg_meta *meta)
11191 {
11192 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11193 							  &meta->arg_list_head.field);
11194 }
11195 
11196 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11197 					     struct bpf_reg_state *reg, u32 regno,
11198 					     struct bpf_kfunc_call_arg_meta *meta)
11199 {
11200 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11201 							  &meta->arg_rbtree_root.field);
11202 }
11203 
11204 static int
11205 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11206 				   struct bpf_reg_state *reg, u32 regno,
11207 				   struct bpf_kfunc_call_arg_meta *meta,
11208 				   enum btf_field_type head_field_type,
11209 				   enum btf_field_type node_field_type,
11210 				   struct btf_field **node_field)
11211 {
11212 	const char *node_type_name;
11213 	const struct btf_type *et, *t;
11214 	struct btf_field *field;
11215 	u32 node_off;
11216 
11217 	if (meta->btf != btf_vmlinux) {
11218 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11219 		return -EFAULT;
11220 	}
11221 
11222 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11223 		return -EFAULT;
11224 
11225 	node_type_name = btf_field_type_name(node_field_type);
11226 	if (!tnum_is_const(reg->var_off)) {
11227 		verbose(env,
11228 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11229 			regno, node_type_name);
11230 		return -EINVAL;
11231 	}
11232 
11233 	node_off = reg->off + reg->var_off.value;
11234 	field = reg_find_field_offset(reg, node_off, node_field_type);
11235 	if (!field || field->offset != node_off) {
11236 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11237 		return -EINVAL;
11238 	}
11239 
11240 	field = *node_field;
11241 
11242 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11243 	t = btf_type_by_id(reg->btf, reg->btf_id);
11244 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11245 				  field->graph_root.value_btf_id, true)) {
11246 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11247 			"in struct %s, but arg is at offset=%d in struct %s\n",
11248 			btf_field_type_name(head_field_type),
11249 			btf_field_type_name(node_field_type),
11250 			field->graph_root.node_offset,
11251 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11252 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11253 		return -EINVAL;
11254 	}
11255 	meta->arg_btf = reg->btf;
11256 	meta->arg_btf_id = reg->btf_id;
11257 
11258 	if (node_off != field->graph_root.node_offset) {
11259 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11260 			node_off, btf_field_type_name(node_field_type),
11261 			field->graph_root.node_offset,
11262 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11263 		return -EINVAL;
11264 	}
11265 
11266 	return 0;
11267 }
11268 
11269 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11270 					   struct bpf_reg_state *reg, u32 regno,
11271 					   struct bpf_kfunc_call_arg_meta *meta)
11272 {
11273 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11274 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11275 						  &meta->arg_list_head.field);
11276 }
11277 
11278 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11279 					     struct bpf_reg_state *reg, u32 regno,
11280 					     struct bpf_kfunc_call_arg_meta *meta)
11281 {
11282 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11283 						  BPF_RB_ROOT, BPF_RB_NODE,
11284 						  &meta->arg_rbtree_root.field);
11285 }
11286 
11287 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11288 			    int insn_idx)
11289 {
11290 	const char *func_name = meta->func_name, *ref_tname;
11291 	const struct btf *btf = meta->btf;
11292 	const struct btf_param *args;
11293 	struct btf_record *rec;
11294 	u32 i, nargs;
11295 	int ret;
11296 
11297 	args = (const struct btf_param *)(meta->func_proto + 1);
11298 	nargs = btf_type_vlen(meta->func_proto);
11299 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11300 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11301 			MAX_BPF_FUNC_REG_ARGS);
11302 		return -EINVAL;
11303 	}
11304 
11305 	/* Check that BTF function arguments match actual types that the
11306 	 * verifier sees.
11307 	 */
11308 	for (i = 0; i < nargs; i++) {
11309 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11310 		const struct btf_type *t, *ref_t, *resolve_ret;
11311 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11312 		u32 regno = i + 1, ref_id, type_size;
11313 		bool is_ret_buf_sz = false;
11314 		int kf_arg_type;
11315 
11316 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11317 
11318 		if (is_kfunc_arg_ignore(btf, &args[i]))
11319 			continue;
11320 
11321 		if (btf_type_is_scalar(t)) {
11322 			if (reg->type != SCALAR_VALUE) {
11323 				verbose(env, "R%d is not a scalar\n", regno);
11324 				return -EINVAL;
11325 			}
11326 
11327 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11328 				if (meta->arg_constant.found) {
11329 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11330 					return -EFAULT;
11331 				}
11332 				if (!tnum_is_const(reg->var_off)) {
11333 					verbose(env, "R%d must be a known constant\n", regno);
11334 					return -EINVAL;
11335 				}
11336 				ret = mark_chain_precision(env, regno);
11337 				if (ret < 0)
11338 					return ret;
11339 				meta->arg_constant.found = true;
11340 				meta->arg_constant.value = reg->var_off.value;
11341 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11342 				meta->r0_rdonly = true;
11343 				is_ret_buf_sz = true;
11344 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11345 				is_ret_buf_sz = true;
11346 			}
11347 
11348 			if (is_ret_buf_sz) {
11349 				if (meta->r0_size) {
11350 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11351 					return -EINVAL;
11352 				}
11353 
11354 				if (!tnum_is_const(reg->var_off)) {
11355 					verbose(env, "R%d is not a const\n", regno);
11356 					return -EINVAL;
11357 				}
11358 
11359 				meta->r0_size = reg->var_off.value;
11360 				ret = mark_chain_precision(env, regno);
11361 				if (ret)
11362 					return ret;
11363 			}
11364 			continue;
11365 		}
11366 
11367 		if (!btf_type_is_ptr(t)) {
11368 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11369 			return -EINVAL;
11370 		}
11371 
11372 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11373 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
11374 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11375 			return -EACCES;
11376 		}
11377 
11378 		if (reg->ref_obj_id) {
11379 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11380 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11381 					regno, reg->ref_obj_id,
11382 					meta->ref_obj_id);
11383 				return -EFAULT;
11384 			}
11385 			meta->ref_obj_id = reg->ref_obj_id;
11386 			if (is_kfunc_release(meta))
11387 				meta->release_regno = regno;
11388 		}
11389 
11390 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11391 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11392 
11393 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11394 		if (kf_arg_type < 0)
11395 			return kf_arg_type;
11396 
11397 		switch (kf_arg_type) {
11398 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11399 		case KF_ARG_PTR_TO_BTF_ID:
11400 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11401 				break;
11402 
11403 			if (!is_trusted_reg(reg)) {
11404 				if (!is_kfunc_rcu(meta)) {
11405 					verbose(env, "R%d must be referenced or trusted\n", regno);
11406 					return -EINVAL;
11407 				}
11408 				if (!is_rcu_reg(reg)) {
11409 					verbose(env, "R%d must be a rcu pointer\n", regno);
11410 					return -EINVAL;
11411 				}
11412 			}
11413 
11414 			fallthrough;
11415 		case KF_ARG_PTR_TO_CTX:
11416 			/* Trusted arguments have the same offset checks as release arguments */
11417 			arg_type |= OBJ_RELEASE;
11418 			break;
11419 		case KF_ARG_PTR_TO_DYNPTR:
11420 		case KF_ARG_PTR_TO_ITER:
11421 		case KF_ARG_PTR_TO_LIST_HEAD:
11422 		case KF_ARG_PTR_TO_LIST_NODE:
11423 		case KF_ARG_PTR_TO_RB_ROOT:
11424 		case KF_ARG_PTR_TO_RB_NODE:
11425 		case KF_ARG_PTR_TO_MEM:
11426 		case KF_ARG_PTR_TO_MEM_SIZE:
11427 		case KF_ARG_PTR_TO_CALLBACK:
11428 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11429 			/* Trusted by default */
11430 			break;
11431 		default:
11432 			WARN_ON_ONCE(1);
11433 			return -EFAULT;
11434 		}
11435 
11436 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11437 			arg_type |= OBJ_RELEASE;
11438 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11439 		if (ret < 0)
11440 			return ret;
11441 
11442 		switch (kf_arg_type) {
11443 		case KF_ARG_PTR_TO_CTX:
11444 			if (reg->type != PTR_TO_CTX) {
11445 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11446 				return -EINVAL;
11447 			}
11448 
11449 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11450 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11451 				if (ret < 0)
11452 					return -EINVAL;
11453 				meta->ret_btf_id  = ret;
11454 			}
11455 			break;
11456 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11457 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11458 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11459 				return -EINVAL;
11460 			}
11461 			if (!reg->ref_obj_id) {
11462 				verbose(env, "allocated object must be referenced\n");
11463 				return -EINVAL;
11464 			}
11465 			if (meta->btf == btf_vmlinux &&
11466 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11467 				meta->arg_btf = reg->btf;
11468 				meta->arg_btf_id = reg->btf_id;
11469 			}
11470 			break;
11471 		case KF_ARG_PTR_TO_DYNPTR:
11472 		{
11473 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11474 			int clone_ref_obj_id = 0;
11475 
11476 			if (reg->type != PTR_TO_STACK &&
11477 			    reg->type != CONST_PTR_TO_DYNPTR) {
11478 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11479 				return -EINVAL;
11480 			}
11481 
11482 			if (reg->type == CONST_PTR_TO_DYNPTR)
11483 				dynptr_arg_type |= MEM_RDONLY;
11484 
11485 			if (is_kfunc_arg_uninit(btf, &args[i]))
11486 				dynptr_arg_type |= MEM_UNINIT;
11487 
11488 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11489 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11490 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11491 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11492 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11493 				   (dynptr_arg_type & MEM_UNINIT)) {
11494 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11495 
11496 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11497 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11498 					return -EFAULT;
11499 				}
11500 
11501 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11502 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11503 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11504 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11505 					return -EFAULT;
11506 				}
11507 			}
11508 
11509 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11510 			if (ret < 0)
11511 				return ret;
11512 
11513 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11514 				int id = dynptr_id(env, reg);
11515 
11516 				if (id < 0) {
11517 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11518 					return id;
11519 				}
11520 				meta->initialized_dynptr.id = id;
11521 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11522 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11523 			}
11524 
11525 			break;
11526 		}
11527 		case KF_ARG_PTR_TO_ITER:
11528 			ret = process_iter_arg(env, regno, insn_idx, meta);
11529 			if (ret < 0)
11530 				return ret;
11531 			break;
11532 		case KF_ARG_PTR_TO_LIST_HEAD:
11533 			if (reg->type != PTR_TO_MAP_VALUE &&
11534 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11535 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11536 				return -EINVAL;
11537 			}
11538 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11539 				verbose(env, "allocated object must be referenced\n");
11540 				return -EINVAL;
11541 			}
11542 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11543 			if (ret < 0)
11544 				return ret;
11545 			break;
11546 		case KF_ARG_PTR_TO_RB_ROOT:
11547 			if (reg->type != PTR_TO_MAP_VALUE &&
11548 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11549 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11550 				return -EINVAL;
11551 			}
11552 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11553 				verbose(env, "allocated object must be referenced\n");
11554 				return -EINVAL;
11555 			}
11556 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11557 			if (ret < 0)
11558 				return ret;
11559 			break;
11560 		case KF_ARG_PTR_TO_LIST_NODE:
11561 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11562 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11563 				return -EINVAL;
11564 			}
11565 			if (!reg->ref_obj_id) {
11566 				verbose(env, "allocated object must be referenced\n");
11567 				return -EINVAL;
11568 			}
11569 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11570 			if (ret < 0)
11571 				return ret;
11572 			break;
11573 		case KF_ARG_PTR_TO_RB_NODE:
11574 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11575 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11576 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11577 					return -EINVAL;
11578 				}
11579 				if (in_rbtree_lock_required_cb(env)) {
11580 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11581 					return -EINVAL;
11582 				}
11583 			} else {
11584 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11585 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11586 					return -EINVAL;
11587 				}
11588 				if (!reg->ref_obj_id) {
11589 					verbose(env, "allocated object must be referenced\n");
11590 					return -EINVAL;
11591 				}
11592 			}
11593 
11594 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11595 			if (ret < 0)
11596 				return ret;
11597 			break;
11598 		case KF_ARG_PTR_TO_BTF_ID:
11599 			/* Only base_type is checked, further checks are done here */
11600 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11601 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11602 			    !reg2btf_ids[base_type(reg->type)]) {
11603 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11604 				verbose(env, "expected %s or socket\n",
11605 					reg_type_str(env, base_type(reg->type) |
11606 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11607 				return -EINVAL;
11608 			}
11609 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11610 			if (ret < 0)
11611 				return ret;
11612 			break;
11613 		case KF_ARG_PTR_TO_MEM:
11614 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11615 			if (IS_ERR(resolve_ret)) {
11616 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11617 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11618 				return -EINVAL;
11619 			}
11620 			ret = check_mem_reg(env, reg, regno, type_size);
11621 			if (ret < 0)
11622 				return ret;
11623 			break;
11624 		case KF_ARG_PTR_TO_MEM_SIZE:
11625 		{
11626 			struct bpf_reg_state *buff_reg = &regs[regno];
11627 			const struct btf_param *buff_arg = &args[i];
11628 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11629 			const struct btf_param *size_arg = &args[i + 1];
11630 
11631 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11632 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11633 				if (ret < 0) {
11634 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11635 					return ret;
11636 				}
11637 			}
11638 
11639 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11640 				if (meta->arg_constant.found) {
11641 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11642 					return -EFAULT;
11643 				}
11644 				if (!tnum_is_const(size_reg->var_off)) {
11645 					verbose(env, "R%d must be a known constant\n", regno + 1);
11646 					return -EINVAL;
11647 				}
11648 				meta->arg_constant.found = true;
11649 				meta->arg_constant.value = size_reg->var_off.value;
11650 			}
11651 
11652 			/* Skip next '__sz' or '__szk' argument */
11653 			i++;
11654 			break;
11655 		}
11656 		case KF_ARG_PTR_TO_CALLBACK:
11657 			if (reg->type != PTR_TO_FUNC) {
11658 				verbose(env, "arg%d expected pointer to func\n", i);
11659 				return -EINVAL;
11660 			}
11661 			meta->subprogno = reg->subprogno;
11662 			break;
11663 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11664 			if (!type_is_ptr_alloc_obj(reg->type)) {
11665 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11666 				return -EINVAL;
11667 			}
11668 			if (!type_is_non_owning_ref(reg->type))
11669 				meta->arg_owning_ref = true;
11670 
11671 			rec = reg_btf_record(reg);
11672 			if (!rec) {
11673 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11674 				return -EFAULT;
11675 			}
11676 
11677 			if (rec->refcount_off < 0) {
11678 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11679 				return -EINVAL;
11680 			}
11681 
11682 			meta->arg_btf = reg->btf;
11683 			meta->arg_btf_id = reg->btf_id;
11684 			break;
11685 		}
11686 	}
11687 
11688 	if (is_kfunc_release(meta) && !meta->release_regno) {
11689 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11690 			func_name);
11691 		return -EINVAL;
11692 	}
11693 
11694 	return 0;
11695 }
11696 
11697 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11698 			    struct bpf_insn *insn,
11699 			    struct bpf_kfunc_call_arg_meta *meta,
11700 			    const char **kfunc_name)
11701 {
11702 	const struct btf_type *func, *func_proto;
11703 	u32 func_id, *kfunc_flags;
11704 	const char *func_name;
11705 	struct btf *desc_btf;
11706 
11707 	if (kfunc_name)
11708 		*kfunc_name = NULL;
11709 
11710 	if (!insn->imm)
11711 		return -EINVAL;
11712 
11713 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11714 	if (IS_ERR(desc_btf))
11715 		return PTR_ERR(desc_btf);
11716 
11717 	func_id = insn->imm;
11718 	func = btf_type_by_id(desc_btf, func_id);
11719 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11720 	if (kfunc_name)
11721 		*kfunc_name = func_name;
11722 	func_proto = btf_type_by_id(desc_btf, func->type);
11723 
11724 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11725 	if (!kfunc_flags) {
11726 		return -EACCES;
11727 	}
11728 
11729 	memset(meta, 0, sizeof(*meta));
11730 	meta->btf = desc_btf;
11731 	meta->func_id = func_id;
11732 	meta->kfunc_flags = *kfunc_flags;
11733 	meta->func_proto = func_proto;
11734 	meta->func_name = func_name;
11735 
11736 	return 0;
11737 }
11738 
11739 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11740 			    int *insn_idx_p)
11741 {
11742 	const struct btf_type *t, *ptr_type;
11743 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11744 	struct bpf_reg_state *regs = cur_regs(env);
11745 	const char *func_name, *ptr_type_name;
11746 	bool sleepable, rcu_lock, rcu_unlock;
11747 	struct bpf_kfunc_call_arg_meta meta;
11748 	struct bpf_insn_aux_data *insn_aux;
11749 	int err, insn_idx = *insn_idx_p;
11750 	const struct btf_param *args;
11751 	const struct btf_type *ret_t;
11752 	struct btf *desc_btf;
11753 
11754 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11755 	if (!insn->imm)
11756 		return 0;
11757 
11758 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11759 	if (err == -EACCES && func_name)
11760 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11761 	if (err)
11762 		return err;
11763 	desc_btf = meta.btf;
11764 	insn_aux = &env->insn_aux_data[insn_idx];
11765 
11766 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11767 
11768 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11769 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11770 		return -EACCES;
11771 	}
11772 
11773 	sleepable = is_kfunc_sleepable(&meta);
11774 	if (sleepable && !env->prog->aux->sleepable) {
11775 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11776 		return -EACCES;
11777 	}
11778 
11779 	/* Check the arguments */
11780 	err = check_kfunc_args(env, &meta, insn_idx);
11781 	if (err < 0)
11782 		return err;
11783 
11784 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11785 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11786 					 set_rbtree_add_callback_state);
11787 		if (err) {
11788 			verbose(env, "kfunc %s#%d failed callback verification\n",
11789 				func_name, meta.func_id);
11790 			return err;
11791 		}
11792 	}
11793 
11794 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11795 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11796 
11797 	if (env->cur_state->active_rcu_lock) {
11798 		struct bpf_func_state *state;
11799 		struct bpf_reg_state *reg;
11800 
11801 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11802 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11803 			return -EACCES;
11804 		}
11805 
11806 		if (rcu_lock) {
11807 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11808 			return -EINVAL;
11809 		} else if (rcu_unlock) {
11810 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11811 				if (reg->type & MEM_RCU) {
11812 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11813 					reg->type |= PTR_UNTRUSTED;
11814 				}
11815 			}));
11816 			env->cur_state->active_rcu_lock = false;
11817 		} else if (sleepable) {
11818 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11819 			return -EACCES;
11820 		}
11821 	} else if (rcu_lock) {
11822 		env->cur_state->active_rcu_lock = true;
11823 	} else if (rcu_unlock) {
11824 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11825 		return -EINVAL;
11826 	}
11827 
11828 	/* In case of release function, we get register number of refcounted
11829 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11830 	 */
11831 	if (meta.release_regno) {
11832 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11833 		if (err) {
11834 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11835 				func_name, meta.func_id);
11836 			return err;
11837 		}
11838 	}
11839 
11840 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11841 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11842 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11843 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11844 		insn_aux->insert_off = regs[BPF_REG_2].off;
11845 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11846 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11847 		if (err) {
11848 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11849 				func_name, meta.func_id);
11850 			return err;
11851 		}
11852 
11853 		err = release_reference(env, release_ref_obj_id);
11854 		if (err) {
11855 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11856 				func_name, meta.func_id);
11857 			return err;
11858 		}
11859 	}
11860 
11861 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11862 		mark_reg_not_init(env, regs, caller_saved[i]);
11863 
11864 	/* Check return type */
11865 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11866 
11867 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11868 		/* Only exception is bpf_obj_new_impl */
11869 		if (meta.btf != btf_vmlinux ||
11870 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11871 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11872 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11873 			return -EINVAL;
11874 		}
11875 	}
11876 
11877 	if (btf_type_is_scalar(t)) {
11878 		mark_reg_unknown(env, regs, BPF_REG_0);
11879 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11880 	} else if (btf_type_is_ptr(t)) {
11881 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11882 
11883 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11884 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11885 				struct btf *ret_btf;
11886 				u32 ret_btf_id;
11887 
11888 				if (unlikely(!bpf_global_ma_set))
11889 					return -ENOMEM;
11890 
11891 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11892 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11893 					return -EINVAL;
11894 				}
11895 
11896 				ret_btf = env->prog->aux->btf;
11897 				ret_btf_id = meta.arg_constant.value;
11898 
11899 				/* This may be NULL due to user not supplying a BTF */
11900 				if (!ret_btf) {
11901 					verbose(env, "bpf_obj_new requires prog BTF\n");
11902 					return -EINVAL;
11903 				}
11904 
11905 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11906 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11907 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11908 					return -EINVAL;
11909 				}
11910 
11911 				mark_reg_known_zero(env, regs, BPF_REG_0);
11912 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11913 				regs[BPF_REG_0].btf = ret_btf;
11914 				regs[BPF_REG_0].btf_id = ret_btf_id;
11915 
11916 				insn_aux->obj_new_size = ret_t->size;
11917 				insn_aux->kptr_struct_meta =
11918 					btf_find_struct_meta(ret_btf, ret_btf_id);
11919 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11920 				mark_reg_known_zero(env, regs, BPF_REG_0);
11921 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11922 				regs[BPF_REG_0].btf = meta.arg_btf;
11923 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11924 
11925 				insn_aux->kptr_struct_meta =
11926 					btf_find_struct_meta(meta.arg_btf,
11927 							     meta.arg_btf_id);
11928 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11929 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11930 				struct btf_field *field = meta.arg_list_head.field;
11931 
11932 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11933 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11934 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11935 				struct btf_field *field = meta.arg_rbtree_root.field;
11936 
11937 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11938 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11939 				mark_reg_known_zero(env, regs, BPF_REG_0);
11940 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11941 				regs[BPF_REG_0].btf = desc_btf;
11942 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11943 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11944 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11945 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11946 					verbose(env,
11947 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11948 					return -EINVAL;
11949 				}
11950 
11951 				mark_reg_known_zero(env, regs, BPF_REG_0);
11952 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11953 				regs[BPF_REG_0].btf = desc_btf;
11954 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11955 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11956 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11957 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11958 
11959 				mark_reg_known_zero(env, regs, BPF_REG_0);
11960 
11961 				if (!meta.arg_constant.found) {
11962 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11963 					return -EFAULT;
11964 				}
11965 
11966 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11967 
11968 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11969 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11970 
11971 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11972 					regs[BPF_REG_0].type |= MEM_RDONLY;
11973 				} else {
11974 					/* this will set env->seen_direct_write to true */
11975 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11976 						verbose(env, "the prog does not allow writes to packet data\n");
11977 						return -EINVAL;
11978 					}
11979 				}
11980 
11981 				if (!meta.initialized_dynptr.id) {
11982 					verbose(env, "verifier internal error: no dynptr id\n");
11983 					return -EFAULT;
11984 				}
11985 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11986 
11987 				/* we don't need to set BPF_REG_0's ref obj id
11988 				 * because packet slices are not refcounted (see
11989 				 * dynptr_type_refcounted)
11990 				 */
11991 			} else {
11992 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11993 					meta.func_name);
11994 				return -EFAULT;
11995 			}
11996 		} else if (!__btf_type_is_struct(ptr_type)) {
11997 			if (!meta.r0_size) {
11998 				__u32 sz;
11999 
12000 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12001 					meta.r0_size = sz;
12002 					meta.r0_rdonly = true;
12003 				}
12004 			}
12005 			if (!meta.r0_size) {
12006 				ptr_type_name = btf_name_by_offset(desc_btf,
12007 								   ptr_type->name_off);
12008 				verbose(env,
12009 					"kernel function %s returns pointer type %s %s is not supported\n",
12010 					func_name,
12011 					btf_type_str(ptr_type),
12012 					ptr_type_name);
12013 				return -EINVAL;
12014 			}
12015 
12016 			mark_reg_known_zero(env, regs, BPF_REG_0);
12017 			regs[BPF_REG_0].type = PTR_TO_MEM;
12018 			regs[BPF_REG_0].mem_size = meta.r0_size;
12019 
12020 			if (meta.r0_rdonly)
12021 				regs[BPF_REG_0].type |= MEM_RDONLY;
12022 
12023 			/* Ensures we don't access the memory after a release_reference() */
12024 			if (meta.ref_obj_id)
12025 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12026 		} else {
12027 			mark_reg_known_zero(env, regs, BPF_REG_0);
12028 			regs[BPF_REG_0].btf = desc_btf;
12029 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12030 			regs[BPF_REG_0].btf_id = ptr_type_id;
12031 
12032 			if (is_iter_next_kfunc(&meta)) {
12033 				struct bpf_reg_state *cur_iter;
12034 
12035 				cur_iter = get_iter_from_state(env->cur_state, &meta);
12036 
12037 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
12038 					regs[BPF_REG_0].type |= MEM_RCU;
12039 				else
12040 					regs[BPF_REG_0].type |= PTR_TRUSTED;
12041 			}
12042 		}
12043 
12044 		if (is_kfunc_ret_null(&meta)) {
12045 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12046 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12047 			regs[BPF_REG_0].id = ++env->id_gen;
12048 		}
12049 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12050 		if (is_kfunc_acquire(&meta)) {
12051 			int id = acquire_reference_state(env, insn_idx);
12052 
12053 			if (id < 0)
12054 				return id;
12055 			if (is_kfunc_ret_null(&meta))
12056 				regs[BPF_REG_0].id = id;
12057 			regs[BPF_REG_0].ref_obj_id = id;
12058 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12059 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12060 		}
12061 
12062 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12063 			regs[BPF_REG_0].id = ++env->id_gen;
12064 	} else if (btf_type_is_void(t)) {
12065 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12066 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
12067 				insn_aux->kptr_struct_meta =
12068 					btf_find_struct_meta(meta.arg_btf,
12069 							     meta.arg_btf_id);
12070 			}
12071 		}
12072 	}
12073 
12074 	nargs = btf_type_vlen(meta.func_proto);
12075 	args = (const struct btf_param *)(meta.func_proto + 1);
12076 	for (i = 0; i < nargs; i++) {
12077 		u32 regno = i + 1;
12078 
12079 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12080 		if (btf_type_is_ptr(t))
12081 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12082 		else
12083 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12084 			mark_btf_func_reg_size(env, regno, t->size);
12085 	}
12086 
12087 	if (is_iter_next_kfunc(&meta)) {
12088 		err = process_iter_next_call(env, insn_idx, &meta);
12089 		if (err)
12090 			return err;
12091 	}
12092 
12093 	return 0;
12094 }
12095 
12096 static bool signed_add_overflows(s64 a, s64 b)
12097 {
12098 	/* Do the add in u64, where overflow is well-defined */
12099 	s64 res = (s64)((u64)a + (u64)b);
12100 
12101 	if (b < 0)
12102 		return res > a;
12103 	return res < a;
12104 }
12105 
12106 static bool signed_add32_overflows(s32 a, s32 b)
12107 {
12108 	/* Do the add in u32, where overflow is well-defined */
12109 	s32 res = (s32)((u32)a + (u32)b);
12110 
12111 	if (b < 0)
12112 		return res > a;
12113 	return res < a;
12114 }
12115 
12116 static bool signed_sub_overflows(s64 a, s64 b)
12117 {
12118 	/* Do the sub in u64, where overflow is well-defined */
12119 	s64 res = (s64)((u64)a - (u64)b);
12120 
12121 	if (b < 0)
12122 		return res < a;
12123 	return res > a;
12124 }
12125 
12126 static bool signed_sub32_overflows(s32 a, s32 b)
12127 {
12128 	/* Do the sub in u32, where overflow is well-defined */
12129 	s32 res = (s32)((u32)a - (u32)b);
12130 
12131 	if (b < 0)
12132 		return res < a;
12133 	return res > a;
12134 }
12135 
12136 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12137 				  const struct bpf_reg_state *reg,
12138 				  enum bpf_reg_type type)
12139 {
12140 	bool known = tnum_is_const(reg->var_off);
12141 	s64 val = reg->var_off.value;
12142 	s64 smin = reg->smin_value;
12143 
12144 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12145 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12146 			reg_type_str(env, type), val);
12147 		return false;
12148 	}
12149 
12150 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12151 		verbose(env, "%s pointer offset %d is not allowed\n",
12152 			reg_type_str(env, type), reg->off);
12153 		return false;
12154 	}
12155 
12156 	if (smin == S64_MIN) {
12157 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12158 			reg_type_str(env, type));
12159 		return false;
12160 	}
12161 
12162 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12163 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12164 			smin, reg_type_str(env, type));
12165 		return false;
12166 	}
12167 
12168 	return true;
12169 }
12170 
12171 enum {
12172 	REASON_BOUNDS	= -1,
12173 	REASON_TYPE	= -2,
12174 	REASON_PATHS	= -3,
12175 	REASON_LIMIT	= -4,
12176 	REASON_STACK	= -5,
12177 };
12178 
12179 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12180 			      u32 *alu_limit, bool mask_to_left)
12181 {
12182 	u32 max = 0, ptr_limit = 0;
12183 
12184 	switch (ptr_reg->type) {
12185 	case PTR_TO_STACK:
12186 		/* Offset 0 is out-of-bounds, but acceptable start for the
12187 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12188 		 * offset where we would need to deal with min/max bounds is
12189 		 * currently prohibited for unprivileged.
12190 		 */
12191 		max = MAX_BPF_STACK + mask_to_left;
12192 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12193 		break;
12194 	case PTR_TO_MAP_VALUE:
12195 		max = ptr_reg->map_ptr->value_size;
12196 		ptr_limit = (mask_to_left ?
12197 			     ptr_reg->smin_value :
12198 			     ptr_reg->umax_value) + ptr_reg->off;
12199 		break;
12200 	default:
12201 		return REASON_TYPE;
12202 	}
12203 
12204 	if (ptr_limit >= max)
12205 		return REASON_LIMIT;
12206 	*alu_limit = ptr_limit;
12207 	return 0;
12208 }
12209 
12210 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12211 				    const struct bpf_insn *insn)
12212 {
12213 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12214 }
12215 
12216 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12217 				       u32 alu_state, u32 alu_limit)
12218 {
12219 	/* If we arrived here from different branches with different
12220 	 * state or limits to sanitize, then this won't work.
12221 	 */
12222 	if (aux->alu_state &&
12223 	    (aux->alu_state != alu_state ||
12224 	     aux->alu_limit != alu_limit))
12225 		return REASON_PATHS;
12226 
12227 	/* Corresponding fixup done in do_misc_fixups(). */
12228 	aux->alu_state = alu_state;
12229 	aux->alu_limit = alu_limit;
12230 	return 0;
12231 }
12232 
12233 static int sanitize_val_alu(struct bpf_verifier_env *env,
12234 			    struct bpf_insn *insn)
12235 {
12236 	struct bpf_insn_aux_data *aux = cur_aux(env);
12237 
12238 	if (can_skip_alu_sanitation(env, insn))
12239 		return 0;
12240 
12241 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12242 }
12243 
12244 static bool sanitize_needed(u8 opcode)
12245 {
12246 	return opcode == BPF_ADD || opcode == BPF_SUB;
12247 }
12248 
12249 struct bpf_sanitize_info {
12250 	struct bpf_insn_aux_data aux;
12251 	bool mask_to_left;
12252 };
12253 
12254 static struct bpf_verifier_state *
12255 sanitize_speculative_path(struct bpf_verifier_env *env,
12256 			  const struct bpf_insn *insn,
12257 			  u32 next_idx, u32 curr_idx)
12258 {
12259 	struct bpf_verifier_state *branch;
12260 	struct bpf_reg_state *regs;
12261 
12262 	branch = push_stack(env, next_idx, curr_idx, true);
12263 	if (branch && insn) {
12264 		regs = branch->frame[branch->curframe]->regs;
12265 		if (BPF_SRC(insn->code) == BPF_K) {
12266 			mark_reg_unknown(env, regs, insn->dst_reg);
12267 		} else if (BPF_SRC(insn->code) == BPF_X) {
12268 			mark_reg_unknown(env, regs, insn->dst_reg);
12269 			mark_reg_unknown(env, regs, insn->src_reg);
12270 		}
12271 	}
12272 	return branch;
12273 }
12274 
12275 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12276 			    struct bpf_insn *insn,
12277 			    const struct bpf_reg_state *ptr_reg,
12278 			    const struct bpf_reg_state *off_reg,
12279 			    struct bpf_reg_state *dst_reg,
12280 			    struct bpf_sanitize_info *info,
12281 			    const bool commit_window)
12282 {
12283 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12284 	struct bpf_verifier_state *vstate = env->cur_state;
12285 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12286 	bool off_is_neg = off_reg->smin_value < 0;
12287 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12288 	u8 opcode = BPF_OP(insn->code);
12289 	u32 alu_state, alu_limit;
12290 	struct bpf_reg_state tmp;
12291 	bool ret;
12292 	int err;
12293 
12294 	if (can_skip_alu_sanitation(env, insn))
12295 		return 0;
12296 
12297 	/* We already marked aux for masking from non-speculative
12298 	 * paths, thus we got here in the first place. We only care
12299 	 * to explore bad access from here.
12300 	 */
12301 	if (vstate->speculative)
12302 		goto do_sim;
12303 
12304 	if (!commit_window) {
12305 		if (!tnum_is_const(off_reg->var_off) &&
12306 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12307 			return REASON_BOUNDS;
12308 
12309 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12310 				     (opcode == BPF_SUB && !off_is_neg);
12311 	}
12312 
12313 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12314 	if (err < 0)
12315 		return err;
12316 
12317 	if (commit_window) {
12318 		/* In commit phase we narrow the masking window based on
12319 		 * the observed pointer move after the simulated operation.
12320 		 */
12321 		alu_state = info->aux.alu_state;
12322 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12323 	} else {
12324 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12325 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12326 		alu_state |= ptr_is_dst_reg ?
12327 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12328 
12329 		/* Limit pruning on unknown scalars to enable deep search for
12330 		 * potential masking differences from other program paths.
12331 		 */
12332 		if (!off_is_imm)
12333 			env->explore_alu_limits = true;
12334 	}
12335 
12336 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12337 	if (err < 0)
12338 		return err;
12339 do_sim:
12340 	/* If we're in commit phase, we're done here given we already
12341 	 * pushed the truncated dst_reg into the speculative verification
12342 	 * stack.
12343 	 *
12344 	 * Also, when register is a known constant, we rewrite register-based
12345 	 * operation to immediate-based, and thus do not need masking (and as
12346 	 * a consequence, do not need to simulate the zero-truncation either).
12347 	 */
12348 	if (commit_window || off_is_imm)
12349 		return 0;
12350 
12351 	/* Simulate and find potential out-of-bounds access under
12352 	 * speculative execution from truncation as a result of
12353 	 * masking when off was not within expected range. If off
12354 	 * sits in dst, then we temporarily need to move ptr there
12355 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12356 	 * for cases where we use K-based arithmetic in one direction
12357 	 * and truncated reg-based in the other in order to explore
12358 	 * bad access.
12359 	 */
12360 	if (!ptr_is_dst_reg) {
12361 		tmp = *dst_reg;
12362 		copy_register_state(dst_reg, ptr_reg);
12363 	}
12364 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12365 					env->insn_idx);
12366 	if (!ptr_is_dst_reg && ret)
12367 		*dst_reg = tmp;
12368 	return !ret ? REASON_STACK : 0;
12369 }
12370 
12371 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12372 {
12373 	struct bpf_verifier_state *vstate = env->cur_state;
12374 
12375 	/* If we simulate paths under speculation, we don't update the
12376 	 * insn as 'seen' such that when we verify unreachable paths in
12377 	 * the non-speculative domain, sanitize_dead_code() can still
12378 	 * rewrite/sanitize them.
12379 	 */
12380 	if (!vstate->speculative)
12381 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12382 }
12383 
12384 static int sanitize_err(struct bpf_verifier_env *env,
12385 			const struct bpf_insn *insn, int reason,
12386 			const struct bpf_reg_state *off_reg,
12387 			const struct bpf_reg_state *dst_reg)
12388 {
12389 	static const char *err = "pointer arithmetic with it prohibited for !root";
12390 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12391 	u32 dst = insn->dst_reg, src = insn->src_reg;
12392 
12393 	switch (reason) {
12394 	case REASON_BOUNDS:
12395 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12396 			off_reg == dst_reg ? dst : src, err);
12397 		break;
12398 	case REASON_TYPE:
12399 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12400 			off_reg == dst_reg ? src : dst, err);
12401 		break;
12402 	case REASON_PATHS:
12403 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12404 			dst, op, err);
12405 		break;
12406 	case REASON_LIMIT:
12407 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12408 			dst, op, err);
12409 		break;
12410 	case REASON_STACK:
12411 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12412 			dst, err);
12413 		break;
12414 	default:
12415 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12416 			reason);
12417 		break;
12418 	}
12419 
12420 	return -EACCES;
12421 }
12422 
12423 /* check that stack access falls within stack limits and that 'reg' doesn't
12424  * have a variable offset.
12425  *
12426  * Variable offset is prohibited for unprivileged mode for simplicity since it
12427  * requires corresponding support in Spectre masking for stack ALU.  See also
12428  * retrieve_ptr_limit().
12429  *
12430  *
12431  * 'off' includes 'reg->off'.
12432  */
12433 static int check_stack_access_for_ptr_arithmetic(
12434 				struct bpf_verifier_env *env,
12435 				int regno,
12436 				const struct bpf_reg_state *reg,
12437 				int off)
12438 {
12439 	if (!tnum_is_const(reg->var_off)) {
12440 		char tn_buf[48];
12441 
12442 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12443 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12444 			regno, tn_buf, off);
12445 		return -EACCES;
12446 	}
12447 
12448 	if (off >= 0 || off < -MAX_BPF_STACK) {
12449 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12450 			"prohibited for !root; off=%d\n", regno, off);
12451 		return -EACCES;
12452 	}
12453 
12454 	return 0;
12455 }
12456 
12457 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12458 				 const struct bpf_insn *insn,
12459 				 const struct bpf_reg_state *dst_reg)
12460 {
12461 	u32 dst = insn->dst_reg;
12462 
12463 	/* For unprivileged we require that resulting offset must be in bounds
12464 	 * in order to be able to sanitize access later on.
12465 	 */
12466 	if (env->bypass_spec_v1)
12467 		return 0;
12468 
12469 	switch (dst_reg->type) {
12470 	case PTR_TO_STACK:
12471 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12472 					dst_reg->off + dst_reg->var_off.value))
12473 			return -EACCES;
12474 		break;
12475 	case PTR_TO_MAP_VALUE:
12476 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12477 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12478 				"prohibited for !root\n", dst);
12479 			return -EACCES;
12480 		}
12481 		break;
12482 	default:
12483 		break;
12484 	}
12485 
12486 	return 0;
12487 }
12488 
12489 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12490  * Caller should also handle BPF_MOV case separately.
12491  * If we return -EACCES, caller may want to try again treating pointer as a
12492  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12493  */
12494 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12495 				   struct bpf_insn *insn,
12496 				   const struct bpf_reg_state *ptr_reg,
12497 				   const struct bpf_reg_state *off_reg)
12498 {
12499 	struct bpf_verifier_state *vstate = env->cur_state;
12500 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12501 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12502 	bool known = tnum_is_const(off_reg->var_off);
12503 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12504 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12505 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12506 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12507 	struct bpf_sanitize_info info = {};
12508 	u8 opcode = BPF_OP(insn->code);
12509 	u32 dst = insn->dst_reg;
12510 	int ret;
12511 
12512 	dst_reg = &regs[dst];
12513 
12514 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12515 	    smin_val > smax_val || umin_val > umax_val) {
12516 		/* Taint dst register if offset had invalid bounds derived from
12517 		 * e.g. dead branches.
12518 		 */
12519 		__mark_reg_unknown(env, dst_reg);
12520 		return 0;
12521 	}
12522 
12523 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12524 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12525 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12526 			__mark_reg_unknown(env, dst_reg);
12527 			return 0;
12528 		}
12529 
12530 		verbose(env,
12531 			"R%d 32-bit pointer arithmetic prohibited\n",
12532 			dst);
12533 		return -EACCES;
12534 	}
12535 
12536 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12537 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12538 			dst, reg_type_str(env, ptr_reg->type));
12539 		return -EACCES;
12540 	}
12541 
12542 	switch (base_type(ptr_reg->type)) {
12543 	case PTR_TO_FLOW_KEYS:
12544 		if (known)
12545 			break;
12546 		fallthrough;
12547 	case CONST_PTR_TO_MAP:
12548 		/* smin_val represents the known value */
12549 		if (known && smin_val == 0 && opcode == BPF_ADD)
12550 			break;
12551 		fallthrough;
12552 	case PTR_TO_PACKET_END:
12553 	case PTR_TO_SOCKET:
12554 	case PTR_TO_SOCK_COMMON:
12555 	case PTR_TO_TCP_SOCK:
12556 	case PTR_TO_XDP_SOCK:
12557 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12558 			dst, reg_type_str(env, ptr_reg->type));
12559 		return -EACCES;
12560 	default:
12561 		break;
12562 	}
12563 
12564 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12565 	 * The id may be overwritten later if we create a new variable offset.
12566 	 */
12567 	dst_reg->type = ptr_reg->type;
12568 	dst_reg->id = ptr_reg->id;
12569 
12570 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12571 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12572 		return -EINVAL;
12573 
12574 	/* pointer types do not carry 32-bit bounds at the moment. */
12575 	__mark_reg32_unbounded(dst_reg);
12576 
12577 	if (sanitize_needed(opcode)) {
12578 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12579 				       &info, false);
12580 		if (ret < 0)
12581 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12582 	}
12583 
12584 	switch (opcode) {
12585 	case BPF_ADD:
12586 		/* We can take a fixed offset as long as it doesn't overflow
12587 		 * the s32 'off' field
12588 		 */
12589 		if (known && (ptr_reg->off + smin_val ==
12590 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12591 			/* pointer += K.  Accumulate it into fixed offset */
12592 			dst_reg->smin_value = smin_ptr;
12593 			dst_reg->smax_value = smax_ptr;
12594 			dst_reg->umin_value = umin_ptr;
12595 			dst_reg->umax_value = umax_ptr;
12596 			dst_reg->var_off = ptr_reg->var_off;
12597 			dst_reg->off = ptr_reg->off + smin_val;
12598 			dst_reg->raw = ptr_reg->raw;
12599 			break;
12600 		}
12601 		/* A new variable offset is created.  Note that off_reg->off
12602 		 * == 0, since it's a scalar.
12603 		 * dst_reg gets the pointer type and since some positive
12604 		 * integer value was added to the pointer, give it a new 'id'
12605 		 * if it's a PTR_TO_PACKET.
12606 		 * this creates a new 'base' pointer, off_reg (variable) gets
12607 		 * added into the variable offset, and we copy the fixed offset
12608 		 * from ptr_reg.
12609 		 */
12610 		if (signed_add_overflows(smin_ptr, smin_val) ||
12611 		    signed_add_overflows(smax_ptr, smax_val)) {
12612 			dst_reg->smin_value = S64_MIN;
12613 			dst_reg->smax_value = S64_MAX;
12614 		} else {
12615 			dst_reg->smin_value = smin_ptr + smin_val;
12616 			dst_reg->smax_value = smax_ptr + smax_val;
12617 		}
12618 		if (umin_ptr + umin_val < umin_ptr ||
12619 		    umax_ptr + umax_val < umax_ptr) {
12620 			dst_reg->umin_value = 0;
12621 			dst_reg->umax_value = U64_MAX;
12622 		} else {
12623 			dst_reg->umin_value = umin_ptr + umin_val;
12624 			dst_reg->umax_value = umax_ptr + umax_val;
12625 		}
12626 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12627 		dst_reg->off = ptr_reg->off;
12628 		dst_reg->raw = ptr_reg->raw;
12629 		if (reg_is_pkt_pointer(ptr_reg)) {
12630 			dst_reg->id = ++env->id_gen;
12631 			/* something was added to pkt_ptr, set range to zero */
12632 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12633 		}
12634 		break;
12635 	case BPF_SUB:
12636 		if (dst_reg == off_reg) {
12637 			/* scalar -= pointer.  Creates an unknown scalar */
12638 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12639 				dst);
12640 			return -EACCES;
12641 		}
12642 		/* We don't allow subtraction from FP, because (according to
12643 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12644 		 * be able to deal with it.
12645 		 */
12646 		if (ptr_reg->type == PTR_TO_STACK) {
12647 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12648 				dst);
12649 			return -EACCES;
12650 		}
12651 		if (known && (ptr_reg->off - smin_val ==
12652 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12653 			/* pointer -= K.  Subtract it from fixed offset */
12654 			dst_reg->smin_value = smin_ptr;
12655 			dst_reg->smax_value = smax_ptr;
12656 			dst_reg->umin_value = umin_ptr;
12657 			dst_reg->umax_value = umax_ptr;
12658 			dst_reg->var_off = ptr_reg->var_off;
12659 			dst_reg->id = ptr_reg->id;
12660 			dst_reg->off = ptr_reg->off - smin_val;
12661 			dst_reg->raw = ptr_reg->raw;
12662 			break;
12663 		}
12664 		/* A new variable offset is created.  If the subtrahend is known
12665 		 * nonnegative, then any reg->range we had before is still good.
12666 		 */
12667 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12668 		    signed_sub_overflows(smax_ptr, smin_val)) {
12669 			/* Overflow possible, we know nothing */
12670 			dst_reg->smin_value = S64_MIN;
12671 			dst_reg->smax_value = S64_MAX;
12672 		} else {
12673 			dst_reg->smin_value = smin_ptr - smax_val;
12674 			dst_reg->smax_value = smax_ptr - smin_val;
12675 		}
12676 		if (umin_ptr < umax_val) {
12677 			/* Overflow possible, we know nothing */
12678 			dst_reg->umin_value = 0;
12679 			dst_reg->umax_value = U64_MAX;
12680 		} else {
12681 			/* Cannot overflow (as long as bounds are consistent) */
12682 			dst_reg->umin_value = umin_ptr - umax_val;
12683 			dst_reg->umax_value = umax_ptr - umin_val;
12684 		}
12685 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12686 		dst_reg->off = ptr_reg->off;
12687 		dst_reg->raw = ptr_reg->raw;
12688 		if (reg_is_pkt_pointer(ptr_reg)) {
12689 			dst_reg->id = ++env->id_gen;
12690 			/* something was added to pkt_ptr, set range to zero */
12691 			if (smin_val < 0)
12692 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12693 		}
12694 		break;
12695 	case BPF_AND:
12696 	case BPF_OR:
12697 	case BPF_XOR:
12698 		/* bitwise ops on pointers are troublesome, prohibit. */
12699 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12700 			dst, bpf_alu_string[opcode >> 4]);
12701 		return -EACCES;
12702 	default:
12703 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12704 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12705 			dst, bpf_alu_string[opcode >> 4]);
12706 		return -EACCES;
12707 	}
12708 
12709 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12710 		return -EINVAL;
12711 	reg_bounds_sync(dst_reg);
12712 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12713 		return -EACCES;
12714 	if (sanitize_needed(opcode)) {
12715 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12716 				       &info, true);
12717 		if (ret < 0)
12718 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12719 	}
12720 
12721 	return 0;
12722 }
12723 
12724 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12725 				 struct bpf_reg_state *src_reg)
12726 {
12727 	s32 smin_val = src_reg->s32_min_value;
12728 	s32 smax_val = src_reg->s32_max_value;
12729 	u32 umin_val = src_reg->u32_min_value;
12730 	u32 umax_val = src_reg->u32_max_value;
12731 
12732 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12733 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12734 		dst_reg->s32_min_value = S32_MIN;
12735 		dst_reg->s32_max_value = S32_MAX;
12736 	} else {
12737 		dst_reg->s32_min_value += smin_val;
12738 		dst_reg->s32_max_value += smax_val;
12739 	}
12740 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12741 	    dst_reg->u32_max_value + umax_val < umax_val) {
12742 		dst_reg->u32_min_value = 0;
12743 		dst_reg->u32_max_value = U32_MAX;
12744 	} else {
12745 		dst_reg->u32_min_value += umin_val;
12746 		dst_reg->u32_max_value += umax_val;
12747 	}
12748 }
12749 
12750 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12751 			       struct bpf_reg_state *src_reg)
12752 {
12753 	s64 smin_val = src_reg->smin_value;
12754 	s64 smax_val = src_reg->smax_value;
12755 	u64 umin_val = src_reg->umin_value;
12756 	u64 umax_val = src_reg->umax_value;
12757 
12758 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12759 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12760 		dst_reg->smin_value = S64_MIN;
12761 		dst_reg->smax_value = S64_MAX;
12762 	} else {
12763 		dst_reg->smin_value += smin_val;
12764 		dst_reg->smax_value += smax_val;
12765 	}
12766 	if (dst_reg->umin_value + umin_val < umin_val ||
12767 	    dst_reg->umax_value + umax_val < umax_val) {
12768 		dst_reg->umin_value = 0;
12769 		dst_reg->umax_value = U64_MAX;
12770 	} else {
12771 		dst_reg->umin_value += umin_val;
12772 		dst_reg->umax_value += umax_val;
12773 	}
12774 }
12775 
12776 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12777 				 struct bpf_reg_state *src_reg)
12778 {
12779 	s32 smin_val = src_reg->s32_min_value;
12780 	s32 smax_val = src_reg->s32_max_value;
12781 	u32 umin_val = src_reg->u32_min_value;
12782 	u32 umax_val = src_reg->u32_max_value;
12783 
12784 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12785 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12786 		/* Overflow possible, we know nothing */
12787 		dst_reg->s32_min_value = S32_MIN;
12788 		dst_reg->s32_max_value = S32_MAX;
12789 	} else {
12790 		dst_reg->s32_min_value -= smax_val;
12791 		dst_reg->s32_max_value -= smin_val;
12792 	}
12793 	if (dst_reg->u32_min_value < umax_val) {
12794 		/* Overflow possible, we know nothing */
12795 		dst_reg->u32_min_value = 0;
12796 		dst_reg->u32_max_value = U32_MAX;
12797 	} else {
12798 		/* Cannot overflow (as long as bounds are consistent) */
12799 		dst_reg->u32_min_value -= umax_val;
12800 		dst_reg->u32_max_value -= umin_val;
12801 	}
12802 }
12803 
12804 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12805 			       struct bpf_reg_state *src_reg)
12806 {
12807 	s64 smin_val = src_reg->smin_value;
12808 	s64 smax_val = src_reg->smax_value;
12809 	u64 umin_val = src_reg->umin_value;
12810 	u64 umax_val = src_reg->umax_value;
12811 
12812 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12813 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12814 		/* Overflow possible, we know nothing */
12815 		dst_reg->smin_value = S64_MIN;
12816 		dst_reg->smax_value = S64_MAX;
12817 	} else {
12818 		dst_reg->smin_value -= smax_val;
12819 		dst_reg->smax_value -= smin_val;
12820 	}
12821 	if (dst_reg->umin_value < umax_val) {
12822 		/* Overflow possible, we know nothing */
12823 		dst_reg->umin_value = 0;
12824 		dst_reg->umax_value = U64_MAX;
12825 	} else {
12826 		/* Cannot overflow (as long as bounds are consistent) */
12827 		dst_reg->umin_value -= umax_val;
12828 		dst_reg->umax_value -= umin_val;
12829 	}
12830 }
12831 
12832 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12833 				 struct bpf_reg_state *src_reg)
12834 {
12835 	s32 smin_val = src_reg->s32_min_value;
12836 	u32 umin_val = src_reg->u32_min_value;
12837 	u32 umax_val = src_reg->u32_max_value;
12838 
12839 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12840 		/* Ain't nobody got time to multiply that sign */
12841 		__mark_reg32_unbounded(dst_reg);
12842 		return;
12843 	}
12844 	/* Both values are positive, so we can work with unsigned and
12845 	 * copy the result to signed (unless it exceeds S32_MAX).
12846 	 */
12847 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12848 		/* Potential overflow, we know nothing */
12849 		__mark_reg32_unbounded(dst_reg);
12850 		return;
12851 	}
12852 	dst_reg->u32_min_value *= umin_val;
12853 	dst_reg->u32_max_value *= umax_val;
12854 	if (dst_reg->u32_max_value > S32_MAX) {
12855 		/* Overflow possible, we know nothing */
12856 		dst_reg->s32_min_value = S32_MIN;
12857 		dst_reg->s32_max_value = S32_MAX;
12858 	} else {
12859 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12860 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12861 	}
12862 }
12863 
12864 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12865 			       struct bpf_reg_state *src_reg)
12866 {
12867 	s64 smin_val = src_reg->smin_value;
12868 	u64 umin_val = src_reg->umin_value;
12869 	u64 umax_val = src_reg->umax_value;
12870 
12871 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12872 		/* Ain't nobody got time to multiply that sign */
12873 		__mark_reg64_unbounded(dst_reg);
12874 		return;
12875 	}
12876 	/* Both values are positive, so we can work with unsigned and
12877 	 * copy the result to signed (unless it exceeds S64_MAX).
12878 	 */
12879 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12880 		/* Potential overflow, we know nothing */
12881 		__mark_reg64_unbounded(dst_reg);
12882 		return;
12883 	}
12884 	dst_reg->umin_value *= umin_val;
12885 	dst_reg->umax_value *= umax_val;
12886 	if (dst_reg->umax_value > S64_MAX) {
12887 		/* Overflow possible, we know nothing */
12888 		dst_reg->smin_value = S64_MIN;
12889 		dst_reg->smax_value = S64_MAX;
12890 	} else {
12891 		dst_reg->smin_value = dst_reg->umin_value;
12892 		dst_reg->smax_value = dst_reg->umax_value;
12893 	}
12894 }
12895 
12896 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12897 				 struct bpf_reg_state *src_reg)
12898 {
12899 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12900 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12901 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12902 	s32 smin_val = src_reg->s32_min_value;
12903 	u32 umax_val = src_reg->u32_max_value;
12904 
12905 	if (src_known && dst_known) {
12906 		__mark_reg32_known(dst_reg, var32_off.value);
12907 		return;
12908 	}
12909 
12910 	/* We get our minimum from the var_off, since that's inherently
12911 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12912 	 */
12913 	dst_reg->u32_min_value = var32_off.value;
12914 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12915 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12916 		/* Lose signed bounds when ANDing negative numbers,
12917 		 * ain't nobody got time for that.
12918 		 */
12919 		dst_reg->s32_min_value = S32_MIN;
12920 		dst_reg->s32_max_value = S32_MAX;
12921 	} else {
12922 		/* ANDing two positives gives a positive, so safe to
12923 		 * cast result into s64.
12924 		 */
12925 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12926 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12927 	}
12928 }
12929 
12930 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12931 			       struct bpf_reg_state *src_reg)
12932 {
12933 	bool src_known = tnum_is_const(src_reg->var_off);
12934 	bool dst_known = tnum_is_const(dst_reg->var_off);
12935 	s64 smin_val = src_reg->smin_value;
12936 	u64 umax_val = src_reg->umax_value;
12937 
12938 	if (src_known && dst_known) {
12939 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12940 		return;
12941 	}
12942 
12943 	/* We get our minimum from the var_off, since that's inherently
12944 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12945 	 */
12946 	dst_reg->umin_value = dst_reg->var_off.value;
12947 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12948 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12949 		/* Lose signed bounds when ANDing negative numbers,
12950 		 * ain't nobody got time for that.
12951 		 */
12952 		dst_reg->smin_value = S64_MIN;
12953 		dst_reg->smax_value = S64_MAX;
12954 	} else {
12955 		/* ANDing two positives gives a positive, so safe to
12956 		 * cast result into s64.
12957 		 */
12958 		dst_reg->smin_value = dst_reg->umin_value;
12959 		dst_reg->smax_value = dst_reg->umax_value;
12960 	}
12961 	/* We may learn something more from the var_off */
12962 	__update_reg_bounds(dst_reg);
12963 }
12964 
12965 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12966 				struct bpf_reg_state *src_reg)
12967 {
12968 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12969 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12970 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12971 	s32 smin_val = src_reg->s32_min_value;
12972 	u32 umin_val = src_reg->u32_min_value;
12973 
12974 	if (src_known && dst_known) {
12975 		__mark_reg32_known(dst_reg, var32_off.value);
12976 		return;
12977 	}
12978 
12979 	/* We get our maximum from the var_off, and our minimum is the
12980 	 * maximum of the operands' minima
12981 	 */
12982 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12983 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12984 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12985 		/* Lose signed bounds when ORing negative numbers,
12986 		 * ain't nobody got time for that.
12987 		 */
12988 		dst_reg->s32_min_value = S32_MIN;
12989 		dst_reg->s32_max_value = S32_MAX;
12990 	} else {
12991 		/* ORing two positives gives a positive, so safe to
12992 		 * cast result into s64.
12993 		 */
12994 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12995 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12996 	}
12997 }
12998 
12999 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13000 			      struct bpf_reg_state *src_reg)
13001 {
13002 	bool src_known = tnum_is_const(src_reg->var_off);
13003 	bool dst_known = tnum_is_const(dst_reg->var_off);
13004 	s64 smin_val = src_reg->smin_value;
13005 	u64 umin_val = src_reg->umin_value;
13006 
13007 	if (src_known && dst_known) {
13008 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13009 		return;
13010 	}
13011 
13012 	/* We get our maximum from the var_off, and our minimum is the
13013 	 * maximum of the operands' minima
13014 	 */
13015 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13016 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13017 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13018 		/* Lose signed bounds when ORing negative numbers,
13019 		 * ain't nobody got time for that.
13020 		 */
13021 		dst_reg->smin_value = S64_MIN;
13022 		dst_reg->smax_value = S64_MAX;
13023 	} else {
13024 		/* ORing two positives gives a positive, so safe to
13025 		 * cast result into s64.
13026 		 */
13027 		dst_reg->smin_value = dst_reg->umin_value;
13028 		dst_reg->smax_value = dst_reg->umax_value;
13029 	}
13030 	/* We may learn something more from the var_off */
13031 	__update_reg_bounds(dst_reg);
13032 }
13033 
13034 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13035 				 struct bpf_reg_state *src_reg)
13036 {
13037 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13038 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13039 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13040 	s32 smin_val = src_reg->s32_min_value;
13041 
13042 	if (src_known && dst_known) {
13043 		__mark_reg32_known(dst_reg, var32_off.value);
13044 		return;
13045 	}
13046 
13047 	/* We get both minimum and maximum from the var32_off. */
13048 	dst_reg->u32_min_value = var32_off.value;
13049 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13050 
13051 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13052 		/* XORing two positive sign numbers gives a positive,
13053 		 * so safe to cast u32 result into s32.
13054 		 */
13055 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13056 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13057 	} else {
13058 		dst_reg->s32_min_value = S32_MIN;
13059 		dst_reg->s32_max_value = S32_MAX;
13060 	}
13061 }
13062 
13063 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13064 			       struct bpf_reg_state *src_reg)
13065 {
13066 	bool src_known = tnum_is_const(src_reg->var_off);
13067 	bool dst_known = tnum_is_const(dst_reg->var_off);
13068 	s64 smin_val = src_reg->smin_value;
13069 
13070 	if (src_known && dst_known) {
13071 		/* dst_reg->var_off.value has been updated earlier */
13072 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13073 		return;
13074 	}
13075 
13076 	/* We get both minimum and maximum from the var_off. */
13077 	dst_reg->umin_value = dst_reg->var_off.value;
13078 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13079 
13080 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13081 		/* XORing two positive sign numbers gives a positive,
13082 		 * so safe to cast u64 result into s64.
13083 		 */
13084 		dst_reg->smin_value = dst_reg->umin_value;
13085 		dst_reg->smax_value = dst_reg->umax_value;
13086 	} else {
13087 		dst_reg->smin_value = S64_MIN;
13088 		dst_reg->smax_value = S64_MAX;
13089 	}
13090 
13091 	__update_reg_bounds(dst_reg);
13092 }
13093 
13094 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13095 				   u64 umin_val, u64 umax_val)
13096 {
13097 	/* We lose all sign bit information (except what we can pick
13098 	 * up from var_off)
13099 	 */
13100 	dst_reg->s32_min_value = S32_MIN;
13101 	dst_reg->s32_max_value = S32_MAX;
13102 	/* If we might shift our top bit out, then we know nothing */
13103 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13104 		dst_reg->u32_min_value = 0;
13105 		dst_reg->u32_max_value = U32_MAX;
13106 	} else {
13107 		dst_reg->u32_min_value <<= umin_val;
13108 		dst_reg->u32_max_value <<= umax_val;
13109 	}
13110 }
13111 
13112 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13113 				 struct bpf_reg_state *src_reg)
13114 {
13115 	u32 umax_val = src_reg->u32_max_value;
13116 	u32 umin_val = src_reg->u32_min_value;
13117 	/* u32 alu operation will zext upper bits */
13118 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13119 
13120 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13121 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13122 	/* Not required but being careful mark reg64 bounds as unknown so
13123 	 * that we are forced to pick them up from tnum and zext later and
13124 	 * if some path skips this step we are still safe.
13125 	 */
13126 	__mark_reg64_unbounded(dst_reg);
13127 	__update_reg32_bounds(dst_reg);
13128 }
13129 
13130 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13131 				   u64 umin_val, u64 umax_val)
13132 {
13133 	/* Special case <<32 because it is a common compiler pattern to sign
13134 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13135 	 * positive we know this shift will also be positive so we can track
13136 	 * bounds correctly. Otherwise we lose all sign bit information except
13137 	 * what we can pick up from var_off. Perhaps we can generalize this
13138 	 * later to shifts of any length.
13139 	 */
13140 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13141 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13142 	else
13143 		dst_reg->smax_value = S64_MAX;
13144 
13145 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13146 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13147 	else
13148 		dst_reg->smin_value = S64_MIN;
13149 
13150 	/* If we might shift our top bit out, then we know nothing */
13151 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13152 		dst_reg->umin_value = 0;
13153 		dst_reg->umax_value = U64_MAX;
13154 	} else {
13155 		dst_reg->umin_value <<= umin_val;
13156 		dst_reg->umax_value <<= umax_val;
13157 	}
13158 }
13159 
13160 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13161 			       struct bpf_reg_state *src_reg)
13162 {
13163 	u64 umax_val = src_reg->umax_value;
13164 	u64 umin_val = src_reg->umin_value;
13165 
13166 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13167 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13168 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13169 
13170 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13171 	/* We may learn something more from the var_off */
13172 	__update_reg_bounds(dst_reg);
13173 }
13174 
13175 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13176 				 struct bpf_reg_state *src_reg)
13177 {
13178 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13179 	u32 umax_val = src_reg->u32_max_value;
13180 	u32 umin_val = src_reg->u32_min_value;
13181 
13182 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13183 	 * be negative, then either:
13184 	 * 1) src_reg might be zero, so the sign bit of the result is
13185 	 *    unknown, so we lose our signed bounds
13186 	 * 2) it's known negative, thus the unsigned bounds capture the
13187 	 *    signed bounds
13188 	 * 3) the signed bounds cross zero, so they tell us nothing
13189 	 *    about the result
13190 	 * If the value in dst_reg is known nonnegative, then again the
13191 	 * unsigned bounds capture the signed bounds.
13192 	 * Thus, in all cases it suffices to blow away our signed bounds
13193 	 * and rely on inferring new ones from the unsigned bounds and
13194 	 * var_off of the result.
13195 	 */
13196 	dst_reg->s32_min_value = S32_MIN;
13197 	dst_reg->s32_max_value = S32_MAX;
13198 
13199 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13200 	dst_reg->u32_min_value >>= umax_val;
13201 	dst_reg->u32_max_value >>= umin_val;
13202 
13203 	__mark_reg64_unbounded(dst_reg);
13204 	__update_reg32_bounds(dst_reg);
13205 }
13206 
13207 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13208 			       struct bpf_reg_state *src_reg)
13209 {
13210 	u64 umax_val = src_reg->umax_value;
13211 	u64 umin_val = src_reg->umin_value;
13212 
13213 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13214 	 * be negative, then either:
13215 	 * 1) src_reg might be zero, so the sign bit of the result is
13216 	 *    unknown, so we lose our signed bounds
13217 	 * 2) it's known negative, thus the unsigned bounds capture the
13218 	 *    signed bounds
13219 	 * 3) the signed bounds cross zero, so they tell us nothing
13220 	 *    about the result
13221 	 * If the value in dst_reg is known nonnegative, then again the
13222 	 * unsigned bounds capture the signed bounds.
13223 	 * Thus, in all cases it suffices to blow away our signed bounds
13224 	 * and rely on inferring new ones from the unsigned bounds and
13225 	 * var_off of the result.
13226 	 */
13227 	dst_reg->smin_value = S64_MIN;
13228 	dst_reg->smax_value = S64_MAX;
13229 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13230 	dst_reg->umin_value >>= umax_val;
13231 	dst_reg->umax_value >>= umin_val;
13232 
13233 	/* Its not easy to operate on alu32 bounds here because it depends
13234 	 * on bits being shifted in. Take easy way out and mark unbounded
13235 	 * so we can recalculate later from tnum.
13236 	 */
13237 	__mark_reg32_unbounded(dst_reg);
13238 	__update_reg_bounds(dst_reg);
13239 }
13240 
13241 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13242 				  struct bpf_reg_state *src_reg)
13243 {
13244 	u64 umin_val = src_reg->u32_min_value;
13245 
13246 	/* Upon reaching here, src_known is true and
13247 	 * umax_val is equal to umin_val.
13248 	 */
13249 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13250 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13251 
13252 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13253 
13254 	/* blow away the dst_reg umin_value/umax_value and rely on
13255 	 * dst_reg var_off to refine the result.
13256 	 */
13257 	dst_reg->u32_min_value = 0;
13258 	dst_reg->u32_max_value = U32_MAX;
13259 
13260 	__mark_reg64_unbounded(dst_reg);
13261 	__update_reg32_bounds(dst_reg);
13262 }
13263 
13264 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13265 				struct bpf_reg_state *src_reg)
13266 {
13267 	u64 umin_val = src_reg->umin_value;
13268 
13269 	/* Upon reaching here, src_known is true and umax_val is equal
13270 	 * to umin_val.
13271 	 */
13272 	dst_reg->smin_value >>= umin_val;
13273 	dst_reg->smax_value >>= umin_val;
13274 
13275 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13276 
13277 	/* blow away the dst_reg umin_value/umax_value and rely on
13278 	 * dst_reg var_off to refine the result.
13279 	 */
13280 	dst_reg->umin_value = 0;
13281 	dst_reg->umax_value = U64_MAX;
13282 
13283 	/* Its not easy to operate on alu32 bounds here because it depends
13284 	 * on bits being shifted in from upper 32-bits. Take easy way out
13285 	 * and mark unbounded so we can recalculate later from tnum.
13286 	 */
13287 	__mark_reg32_unbounded(dst_reg);
13288 	__update_reg_bounds(dst_reg);
13289 }
13290 
13291 /* WARNING: This function does calculations on 64-bit values, but the actual
13292  * execution may occur on 32-bit values. Therefore, things like bitshifts
13293  * need extra checks in the 32-bit case.
13294  */
13295 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13296 				      struct bpf_insn *insn,
13297 				      struct bpf_reg_state *dst_reg,
13298 				      struct bpf_reg_state src_reg)
13299 {
13300 	struct bpf_reg_state *regs = cur_regs(env);
13301 	u8 opcode = BPF_OP(insn->code);
13302 	bool src_known;
13303 	s64 smin_val, smax_val;
13304 	u64 umin_val, umax_val;
13305 	s32 s32_min_val, s32_max_val;
13306 	u32 u32_min_val, u32_max_val;
13307 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13308 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13309 	int ret;
13310 
13311 	smin_val = src_reg.smin_value;
13312 	smax_val = src_reg.smax_value;
13313 	umin_val = src_reg.umin_value;
13314 	umax_val = src_reg.umax_value;
13315 
13316 	s32_min_val = src_reg.s32_min_value;
13317 	s32_max_val = src_reg.s32_max_value;
13318 	u32_min_val = src_reg.u32_min_value;
13319 	u32_max_val = src_reg.u32_max_value;
13320 
13321 	if (alu32) {
13322 		src_known = tnum_subreg_is_const(src_reg.var_off);
13323 		if ((src_known &&
13324 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13325 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13326 			/* Taint dst register if offset had invalid bounds
13327 			 * derived from e.g. dead branches.
13328 			 */
13329 			__mark_reg_unknown(env, dst_reg);
13330 			return 0;
13331 		}
13332 	} else {
13333 		src_known = tnum_is_const(src_reg.var_off);
13334 		if ((src_known &&
13335 		     (smin_val != smax_val || umin_val != umax_val)) ||
13336 		    smin_val > smax_val || umin_val > umax_val) {
13337 			/* Taint dst register if offset had invalid bounds
13338 			 * derived from e.g. dead branches.
13339 			 */
13340 			__mark_reg_unknown(env, dst_reg);
13341 			return 0;
13342 		}
13343 	}
13344 
13345 	if (!src_known &&
13346 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13347 		__mark_reg_unknown(env, dst_reg);
13348 		return 0;
13349 	}
13350 
13351 	if (sanitize_needed(opcode)) {
13352 		ret = sanitize_val_alu(env, insn);
13353 		if (ret < 0)
13354 			return sanitize_err(env, insn, ret, NULL, NULL);
13355 	}
13356 
13357 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13358 	 * There are two classes of instructions: The first class we track both
13359 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13360 	 * greatest amount of precision when alu operations are mixed with jmp32
13361 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13362 	 * and BPF_OR. This is possible because these ops have fairly easy to
13363 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13364 	 * See alu32 verifier tests for examples. The second class of
13365 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13366 	 * with regards to tracking sign/unsigned bounds because the bits may
13367 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13368 	 * the reg unbounded in the subreg bound space and use the resulting
13369 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13370 	 */
13371 	switch (opcode) {
13372 	case BPF_ADD:
13373 		scalar32_min_max_add(dst_reg, &src_reg);
13374 		scalar_min_max_add(dst_reg, &src_reg);
13375 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13376 		break;
13377 	case BPF_SUB:
13378 		scalar32_min_max_sub(dst_reg, &src_reg);
13379 		scalar_min_max_sub(dst_reg, &src_reg);
13380 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13381 		break;
13382 	case BPF_MUL:
13383 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13384 		scalar32_min_max_mul(dst_reg, &src_reg);
13385 		scalar_min_max_mul(dst_reg, &src_reg);
13386 		break;
13387 	case BPF_AND:
13388 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13389 		scalar32_min_max_and(dst_reg, &src_reg);
13390 		scalar_min_max_and(dst_reg, &src_reg);
13391 		break;
13392 	case BPF_OR:
13393 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13394 		scalar32_min_max_or(dst_reg, &src_reg);
13395 		scalar_min_max_or(dst_reg, &src_reg);
13396 		break;
13397 	case BPF_XOR:
13398 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13399 		scalar32_min_max_xor(dst_reg, &src_reg);
13400 		scalar_min_max_xor(dst_reg, &src_reg);
13401 		break;
13402 	case BPF_LSH:
13403 		if (umax_val >= insn_bitness) {
13404 			/* Shifts greater than 31 or 63 are undefined.
13405 			 * This includes shifts by a negative number.
13406 			 */
13407 			mark_reg_unknown(env, regs, insn->dst_reg);
13408 			break;
13409 		}
13410 		if (alu32)
13411 			scalar32_min_max_lsh(dst_reg, &src_reg);
13412 		else
13413 			scalar_min_max_lsh(dst_reg, &src_reg);
13414 		break;
13415 	case BPF_RSH:
13416 		if (umax_val >= insn_bitness) {
13417 			/* Shifts greater than 31 or 63 are undefined.
13418 			 * This includes shifts by a negative number.
13419 			 */
13420 			mark_reg_unknown(env, regs, insn->dst_reg);
13421 			break;
13422 		}
13423 		if (alu32)
13424 			scalar32_min_max_rsh(dst_reg, &src_reg);
13425 		else
13426 			scalar_min_max_rsh(dst_reg, &src_reg);
13427 		break;
13428 	case BPF_ARSH:
13429 		if (umax_val >= insn_bitness) {
13430 			/* Shifts greater than 31 or 63 are undefined.
13431 			 * This includes shifts by a negative number.
13432 			 */
13433 			mark_reg_unknown(env, regs, insn->dst_reg);
13434 			break;
13435 		}
13436 		if (alu32)
13437 			scalar32_min_max_arsh(dst_reg, &src_reg);
13438 		else
13439 			scalar_min_max_arsh(dst_reg, &src_reg);
13440 		break;
13441 	default:
13442 		mark_reg_unknown(env, regs, insn->dst_reg);
13443 		break;
13444 	}
13445 
13446 	/* ALU32 ops are zero extended into 64bit register */
13447 	if (alu32)
13448 		zext_32_to_64(dst_reg);
13449 	reg_bounds_sync(dst_reg);
13450 	return 0;
13451 }
13452 
13453 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13454  * and var_off.
13455  */
13456 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13457 				   struct bpf_insn *insn)
13458 {
13459 	struct bpf_verifier_state *vstate = env->cur_state;
13460 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13461 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13462 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13463 	u8 opcode = BPF_OP(insn->code);
13464 	int err;
13465 
13466 	dst_reg = &regs[insn->dst_reg];
13467 	src_reg = NULL;
13468 	if (dst_reg->type != SCALAR_VALUE)
13469 		ptr_reg = dst_reg;
13470 	else
13471 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13472 		 * incorrectly propagated into other registers by find_equal_scalars()
13473 		 */
13474 		dst_reg->id = 0;
13475 	if (BPF_SRC(insn->code) == BPF_X) {
13476 		src_reg = &regs[insn->src_reg];
13477 		if (src_reg->type != SCALAR_VALUE) {
13478 			if (dst_reg->type != SCALAR_VALUE) {
13479 				/* Combining two pointers by any ALU op yields
13480 				 * an arbitrary scalar. Disallow all math except
13481 				 * pointer subtraction
13482 				 */
13483 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13484 					mark_reg_unknown(env, regs, insn->dst_reg);
13485 					return 0;
13486 				}
13487 				verbose(env, "R%d pointer %s pointer prohibited\n",
13488 					insn->dst_reg,
13489 					bpf_alu_string[opcode >> 4]);
13490 				return -EACCES;
13491 			} else {
13492 				/* scalar += pointer
13493 				 * This is legal, but we have to reverse our
13494 				 * src/dest handling in computing the range
13495 				 */
13496 				err = mark_chain_precision(env, insn->dst_reg);
13497 				if (err)
13498 					return err;
13499 				return adjust_ptr_min_max_vals(env, insn,
13500 							       src_reg, dst_reg);
13501 			}
13502 		} else if (ptr_reg) {
13503 			/* pointer += scalar */
13504 			err = mark_chain_precision(env, insn->src_reg);
13505 			if (err)
13506 				return err;
13507 			return adjust_ptr_min_max_vals(env, insn,
13508 						       dst_reg, src_reg);
13509 		} else if (dst_reg->precise) {
13510 			/* if dst_reg is precise, src_reg should be precise as well */
13511 			err = mark_chain_precision(env, insn->src_reg);
13512 			if (err)
13513 				return err;
13514 		}
13515 	} else {
13516 		/* Pretend the src is a reg with a known value, since we only
13517 		 * need to be able to read from this state.
13518 		 */
13519 		off_reg.type = SCALAR_VALUE;
13520 		__mark_reg_known(&off_reg, insn->imm);
13521 		src_reg = &off_reg;
13522 		if (ptr_reg) /* pointer += K */
13523 			return adjust_ptr_min_max_vals(env, insn,
13524 						       ptr_reg, src_reg);
13525 	}
13526 
13527 	/* Got here implies adding two SCALAR_VALUEs */
13528 	if (WARN_ON_ONCE(ptr_reg)) {
13529 		print_verifier_state(env, state, true);
13530 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13531 		return -EINVAL;
13532 	}
13533 	if (WARN_ON(!src_reg)) {
13534 		print_verifier_state(env, state, true);
13535 		verbose(env, "verifier internal error: no src_reg\n");
13536 		return -EINVAL;
13537 	}
13538 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13539 }
13540 
13541 /* check validity of 32-bit and 64-bit arithmetic operations */
13542 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13543 {
13544 	struct bpf_reg_state *regs = cur_regs(env);
13545 	u8 opcode = BPF_OP(insn->code);
13546 	int err;
13547 
13548 	if (opcode == BPF_END || opcode == BPF_NEG) {
13549 		if (opcode == BPF_NEG) {
13550 			if (BPF_SRC(insn->code) != BPF_K ||
13551 			    insn->src_reg != BPF_REG_0 ||
13552 			    insn->off != 0 || insn->imm != 0) {
13553 				verbose(env, "BPF_NEG uses reserved fields\n");
13554 				return -EINVAL;
13555 			}
13556 		} else {
13557 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13558 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13559 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13560 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13561 				verbose(env, "BPF_END uses reserved fields\n");
13562 				return -EINVAL;
13563 			}
13564 		}
13565 
13566 		/* check src operand */
13567 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13568 		if (err)
13569 			return err;
13570 
13571 		if (is_pointer_value(env, insn->dst_reg)) {
13572 			verbose(env, "R%d pointer arithmetic prohibited\n",
13573 				insn->dst_reg);
13574 			return -EACCES;
13575 		}
13576 
13577 		/* check dest operand */
13578 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13579 		if (err)
13580 			return err;
13581 
13582 	} else if (opcode == BPF_MOV) {
13583 
13584 		if (BPF_SRC(insn->code) == BPF_X) {
13585 			if (insn->imm != 0) {
13586 				verbose(env, "BPF_MOV uses reserved fields\n");
13587 				return -EINVAL;
13588 			}
13589 
13590 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13591 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13592 					verbose(env, "BPF_MOV uses reserved fields\n");
13593 					return -EINVAL;
13594 				}
13595 			} else {
13596 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13597 				    insn->off != 32) {
13598 					verbose(env, "BPF_MOV uses reserved fields\n");
13599 					return -EINVAL;
13600 				}
13601 			}
13602 
13603 			/* check src operand */
13604 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13605 			if (err)
13606 				return err;
13607 		} else {
13608 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13609 				verbose(env, "BPF_MOV uses reserved fields\n");
13610 				return -EINVAL;
13611 			}
13612 		}
13613 
13614 		/* check dest operand, mark as required later */
13615 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13616 		if (err)
13617 			return err;
13618 
13619 		if (BPF_SRC(insn->code) == BPF_X) {
13620 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13621 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13622 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13623 				       !tnum_is_const(src_reg->var_off);
13624 
13625 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13626 				if (insn->off == 0) {
13627 					/* case: R1 = R2
13628 					 * copy register state to dest reg
13629 					 */
13630 					if (need_id)
13631 						/* Assign src and dst registers the same ID
13632 						 * that will be used by find_equal_scalars()
13633 						 * to propagate min/max range.
13634 						 */
13635 						src_reg->id = ++env->id_gen;
13636 					copy_register_state(dst_reg, src_reg);
13637 					dst_reg->live |= REG_LIVE_WRITTEN;
13638 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13639 				} else {
13640 					/* case: R1 = (s8, s16 s32)R2 */
13641 					if (is_pointer_value(env, insn->src_reg)) {
13642 						verbose(env,
13643 							"R%d sign-extension part of pointer\n",
13644 							insn->src_reg);
13645 						return -EACCES;
13646 					} else if (src_reg->type == SCALAR_VALUE) {
13647 						bool no_sext;
13648 
13649 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13650 						if (no_sext && need_id)
13651 							src_reg->id = ++env->id_gen;
13652 						copy_register_state(dst_reg, src_reg);
13653 						if (!no_sext)
13654 							dst_reg->id = 0;
13655 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13656 						dst_reg->live |= REG_LIVE_WRITTEN;
13657 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13658 					} else {
13659 						mark_reg_unknown(env, regs, insn->dst_reg);
13660 					}
13661 				}
13662 			} else {
13663 				/* R1 = (u32) R2 */
13664 				if (is_pointer_value(env, insn->src_reg)) {
13665 					verbose(env,
13666 						"R%d partial copy of pointer\n",
13667 						insn->src_reg);
13668 					return -EACCES;
13669 				} else if (src_reg->type == SCALAR_VALUE) {
13670 					if (insn->off == 0) {
13671 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13672 
13673 						if (is_src_reg_u32 && need_id)
13674 							src_reg->id = ++env->id_gen;
13675 						copy_register_state(dst_reg, src_reg);
13676 						/* Make sure ID is cleared if src_reg is not in u32
13677 						 * range otherwise dst_reg min/max could be incorrectly
13678 						 * propagated into src_reg by find_equal_scalars()
13679 						 */
13680 						if (!is_src_reg_u32)
13681 							dst_reg->id = 0;
13682 						dst_reg->live |= REG_LIVE_WRITTEN;
13683 						dst_reg->subreg_def = env->insn_idx + 1;
13684 					} else {
13685 						/* case: W1 = (s8, s16)W2 */
13686 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13687 
13688 						if (no_sext && need_id)
13689 							src_reg->id = ++env->id_gen;
13690 						copy_register_state(dst_reg, src_reg);
13691 						if (!no_sext)
13692 							dst_reg->id = 0;
13693 						dst_reg->live |= REG_LIVE_WRITTEN;
13694 						dst_reg->subreg_def = env->insn_idx + 1;
13695 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13696 					}
13697 				} else {
13698 					mark_reg_unknown(env, regs,
13699 							 insn->dst_reg);
13700 				}
13701 				zext_32_to_64(dst_reg);
13702 				reg_bounds_sync(dst_reg);
13703 			}
13704 		} else {
13705 			/* case: R = imm
13706 			 * remember the value we stored into this reg
13707 			 */
13708 			/* clear any state __mark_reg_known doesn't set */
13709 			mark_reg_unknown(env, regs, insn->dst_reg);
13710 			regs[insn->dst_reg].type = SCALAR_VALUE;
13711 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13712 				__mark_reg_known(regs + insn->dst_reg,
13713 						 insn->imm);
13714 			} else {
13715 				__mark_reg_known(regs + insn->dst_reg,
13716 						 (u32)insn->imm);
13717 			}
13718 		}
13719 
13720 	} else if (opcode > BPF_END) {
13721 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13722 		return -EINVAL;
13723 
13724 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13725 
13726 		if (BPF_SRC(insn->code) == BPF_X) {
13727 			if (insn->imm != 0 || insn->off > 1 ||
13728 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13729 				verbose(env, "BPF_ALU uses reserved fields\n");
13730 				return -EINVAL;
13731 			}
13732 			/* check src1 operand */
13733 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13734 			if (err)
13735 				return err;
13736 		} else {
13737 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13738 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13739 				verbose(env, "BPF_ALU uses reserved fields\n");
13740 				return -EINVAL;
13741 			}
13742 		}
13743 
13744 		/* check src2 operand */
13745 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13746 		if (err)
13747 			return err;
13748 
13749 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13750 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13751 			verbose(env, "div by zero\n");
13752 			return -EINVAL;
13753 		}
13754 
13755 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13756 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13757 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13758 
13759 			if (insn->imm < 0 || insn->imm >= size) {
13760 				verbose(env, "invalid shift %d\n", insn->imm);
13761 				return -EINVAL;
13762 			}
13763 		}
13764 
13765 		/* check dest operand */
13766 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13767 		if (err)
13768 			return err;
13769 
13770 		return adjust_reg_min_max_vals(env, insn);
13771 	}
13772 
13773 	return 0;
13774 }
13775 
13776 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13777 				   struct bpf_reg_state *dst_reg,
13778 				   enum bpf_reg_type type,
13779 				   bool range_right_open)
13780 {
13781 	struct bpf_func_state *state;
13782 	struct bpf_reg_state *reg;
13783 	int new_range;
13784 
13785 	if (dst_reg->off < 0 ||
13786 	    (dst_reg->off == 0 && range_right_open))
13787 		/* This doesn't give us any range */
13788 		return;
13789 
13790 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13791 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13792 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13793 		 * than pkt_end, but that's because it's also less than pkt.
13794 		 */
13795 		return;
13796 
13797 	new_range = dst_reg->off;
13798 	if (range_right_open)
13799 		new_range++;
13800 
13801 	/* Examples for register markings:
13802 	 *
13803 	 * pkt_data in dst register:
13804 	 *
13805 	 *   r2 = r3;
13806 	 *   r2 += 8;
13807 	 *   if (r2 > pkt_end) goto <handle exception>
13808 	 *   <access okay>
13809 	 *
13810 	 *   r2 = r3;
13811 	 *   r2 += 8;
13812 	 *   if (r2 < pkt_end) goto <access okay>
13813 	 *   <handle exception>
13814 	 *
13815 	 *   Where:
13816 	 *     r2 == dst_reg, pkt_end == src_reg
13817 	 *     r2=pkt(id=n,off=8,r=0)
13818 	 *     r3=pkt(id=n,off=0,r=0)
13819 	 *
13820 	 * pkt_data in src register:
13821 	 *
13822 	 *   r2 = r3;
13823 	 *   r2 += 8;
13824 	 *   if (pkt_end >= r2) goto <access okay>
13825 	 *   <handle exception>
13826 	 *
13827 	 *   r2 = r3;
13828 	 *   r2 += 8;
13829 	 *   if (pkt_end <= r2) goto <handle exception>
13830 	 *   <access okay>
13831 	 *
13832 	 *   Where:
13833 	 *     pkt_end == dst_reg, r2 == src_reg
13834 	 *     r2=pkt(id=n,off=8,r=0)
13835 	 *     r3=pkt(id=n,off=0,r=0)
13836 	 *
13837 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13838 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13839 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13840 	 * the check.
13841 	 */
13842 
13843 	/* If our ids match, then we must have the same max_value.  And we
13844 	 * don't care about the other reg's fixed offset, since if it's too big
13845 	 * the range won't allow anything.
13846 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13847 	 */
13848 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13849 		if (reg->type == type && reg->id == dst_reg->id)
13850 			/* keep the maximum range already checked */
13851 			reg->range = max(reg->range, new_range);
13852 	}));
13853 }
13854 
13855 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13856 {
13857 	struct tnum subreg = tnum_subreg(reg->var_off);
13858 	s32 sval = (s32)val;
13859 
13860 	switch (opcode) {
13861 	case BPF_JEQ:
13862 		if (tnum_is_const(subreg))
13863 			return !!tnum_equals_const(subreg, val);
13864 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13865 			return 0;
13866 		break;
13867 	case BPF_JNE:
13868 		if (tnum_is_const(subreg))
13869 			return !tnum_equals_const(subreg, val);
13870 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13871 			return 1;
13872 		break;
13873 	case BPF_JSET:
13874 		if ((~subreg.mask & subreg.value) & val)
13875 			return 1;
13876 		if (!((subreg.mask | subreg.value) & val))
13877 			return 0;
13878 		break;
13879 	case BPF_JGT:
13880 		if (reg->u32_min_value > val)
13881 			return 1;
13882 		else if (reg->u32_max_value <= val)
13883 			return 0;
13884 		break;
13885 	case BPF_JSGT:
13886 		if (reg->s32_min_value > sval)
13887 			return 1;
13888 		else if (reg->s32_max_value <= sval)
13889 			return 0;
13890 		break;
13891 	case BPF_JLT:
13892 		if (reg->u32_max_value < val)
13893 			return 1;
13894 		else if (reg->u32_min_value >= val)
13895 			return 0;
13896 		break;
13897 	case BPF_JSLT:
13898 		if (reg->s32_max_value < sval)
13899 			return 1;
13900 		else if (reg->s32_min_value >= sval)
13901 			return 0;
13902 		break;
13903 	case BPF_JGE:
13904 		if (reg->u32_min_value >= val)
13905 			return 1;
13906 		else if (reg->u32_max_value < val)
13907 			return 0;
13908 		break;
13909 	case BPF_JSGE:
13910 		if (reg->s32_min_value >= sval)
13911 			return 1;
13912 		else if (reg->s32_max_value < sval)
13913 			return 0;
13914 		break;
13915 	case BPF_JLE:
13916 		if (reg->u32_max_value <= val)
13917 			return 1;
13918 		else if (reg->u32_min_value > val)
13919 			return 0;
13920 		break;
13921 	case BPF_JSLE:
13922 		if (reg->s32_max_value <= sval)
13923 			return 1;
13924 		else if (reg->s32_min_value > sval)
13925 			return 0;
13926 		break;
13927 	}
13928 
13929 	return -1;
13930 }
13931 
13932 
13933 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13934 {
13935 	s64 sval = (s64)val;
13936 
13937 	switch (opcode) {
13938 	case BPF_JEQ:
13939 		if (tnum_is_const(reg->var_off))
13940 			return !!tnum_equals_const(reg->var_off, val);
13941 		else if (val < reg->umin_value || val > reg->umax_value)
13942 			return 0;
13943 		break;
13944 	case BPF_JNE:
13945 		if (tnum_is_const(reg->var_off))
13946 			return !tnum_equals_const(reg->var_off, val);
13947 		else if (val < reg->umin_value || val > reg->umax_value)
13948 			return 1;
13949 		break;
13950 	case BPF_JSET:
13951 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13952 			return 1;
13953 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13954 			return 0;
13955 		break;
13956 	case BPF_JGT:
13957 		if (reg->umin_value > val)
13958 			return 1;
13959 		else if (reg->umax_value <= val)
13960 			return 0;
13961 		break;
13962 	case BPF_JSGT:
13963 		if (reg->smin_value > sval)
13964 			return 1;
13965 		else if (reg->smax_value <= sval)
13966 			return 0;
13967 		break;
13968 	case BPF_JLT:
13969 		if (reg->umax_value < val)
13970 			return 1;
13971 		else if (reg->umin_value >= val)
13972 			return 0;
13973 		break;
13974 	case BPF_JSLT:
13975 		if (reg->smax_value < sval)
13976 			return 1;
13977 		else if (reg->smin_value >= sval)
13978 			return 0;
13979 		break;
13980 	case BPF_JGE:
13981 		if (reg->umin_value >= val)
13982 			return 1;
13983 		else if (reg->umax_value < val)
13984 			return 0;
13985 		break;
13986 	case BPF_JSGE:
13987 		if (reg->smin_value >= sval)
13988 			return 1;
13989 		else if (reg->smax_value < sval)
13990 			return 0;
13991 		break;
13992 	case BPF_JLE:
13993 		if (reg->umax_value <= val)
13994 			return 1;
13995 		else if (reg->umin_value > val)
13996 			return 0;
13997 		break;
13998 	case BPF_JSLE:
13999 		if (reg->smax_value <= sval)
14000 			return 1;
14001 		else if (reg->smin_value > sval)
14002 			return 0;
14003 		break;
14004 	}
14005 
14006 	return -1;
14007 }
14008 
14009 /* compute branch direction of the expression "if (reg opcode val) goto target;"
14010  * and return:
14011  *  1 - branch will be taken and "goto target" will be executed
14012  *  0 - branch will not be taken and fall-through to next insn
14013  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
14014  *      range [0,10]
14015  */
14016 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
14017 			   bool is_jmp32)
14018 {
14019 	if (__is_pointer_value(false, reg)) {
14020 		if (!reg_not_null(reg))
14021 			return -1;
14022 
14023 		/* If pointer is valid tests against zero will fail so we can
14024 		 * use this to direct branch taken.
14025 		 */
14026 		if (val != 0)
14027 			return -1;
14028 
14029 		switch (opcode) {
14030 		case BPF_JEQ:
14031 			return 0;
14032 		case BPF_JNE:
14033 			return 1;
14034 		default:
14035 			return -1;
14036 		}
14037 	}
14038 
14039 	if (is_jmp32)
14040 		return is_branch32_taken(reg, val, opcode);
14041 	return is_branch64_taken(reg, val, opcode);
14042 }
14043 
14044 static int flip_opcode(u32 opcode)
14045 {
14046 	/* How can we transform "a <op> b" into "b <op> a"? */
14047 	static const u8 opcode_flip[16] = {
14048 		/* these stay the same */
14049 		[BPF_JEQ  >> 4] = BPF_JEQ,
14050 		[BPF_JNE  >> 4] = BPF_JNE,
14051 		[BPF_JSET >> 4] = BPF_JSET,
14052 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14053 		[BPF_JGE  >> 4] = BPF_JLE,
14054 		[BPF_JGT  >> 4] = BPF_JLT,
14055 		[BPF_JLE  >> 4] = BPF_JGE,
14056 		[BPF_JLT  >> 4] = BPF_JGT,
14057 		[BPF_JSGE >> 4] = BPF_JSLE,
14058 		[BPF_JSGT >> 4] = BPF_JSLT,
14059 		[BPF_JSLE >> 4] = BPF_JSGE,
14060 		[BPF_JSLT >> 4] = BPF_JSGT
14061 	};
14062 	return opcode_flip[opcode >> 4];
14063 }
14064 
14065 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14066 				   struct bpf_reg_state *src_reg,
14067 				   u8 opcode)
14068 {
14069 	struct bpf_reg_state *pkt;
14070 
14071 	if (src_reg->type == PTR_TO_PACKET_END) {
14072 		pkt = dst_reg;
14073 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14074 		pkt = src_reg;
14075 		opcode = flip_opcode(opcode);
14076 	} else {
14077 		return -1;
14078 	}
14079 
14080 	if (pkt->range >= 0)
14081 		return -1;
14082 
14083 	switch (opcode) {
14084 	case BPF_JLE:
14085 		/* pkt <= pkt_end */
14086 		fallthrough;
14087 	case BPF_JGT:
14088 		/* pkt > pkt_end */
14089 		if (pkt->range == BEYOND_PKT_END)
14090 			/* pkt has at last one extra byte beyond pkt_end */
14091 			return opcode == BPF_JGT;
14092 		break;
14093 	case BPF_JLT:
14094 		/* pkt < pkt_end */
14095 		fallthrough;
14096 	case BPF_JGE:
14097 		/* pkt >= pkt_end */
14098 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14099 			return opcode == BPF_JGE;
14100 		break;
14101 	}
14102 	return -1;
14103 }
14104 
14105 /* Adjusts the register min/max values in the case that the dst_reg is the
14106  * variable register that we are working on, and src_reg is a constant or we're
14107  * simply doing a BPF_K check.
14108  * In JEQ/JNE cases we also adjust the var_off values.
14109  */
14110 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14111 			    struct bpf_reg_state *false_reg,
14112 			    u64 val, u32 val32,
14113 			    u8 opcode, bool is_jmp32)
14114 {
14115 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
14116 	struct tnum false_64off = false_reg->var_off;
14117 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
14118 	struct tnum true_64off = true_reg->var_off;
14119 	s64 sval = (s64)val;
14120 	s32 sval32 = (s32)val32;
14121 
14122 	/* If the dst_reg is a pointer, we can't learn anything about its
14123 	 * variable offset from the compare (unless src_reg were a pointer into
14124 	 * the same object, but we don't bother with that.
14125 	 * Since false_reg and true_reg have the same type by construction, we
14126 	 * only need to check one of them for pointerness.
14127 	 */
14128 	if (__is_pointer_value(false, false_reg))
14129 		return;
14130 
14131 	switch (opcode) {
14132 	/* JEQ/JNE comparison doesn't change the register equivalence.
14133 	 *
14134 	 * r1 = r2;
14135 	 * if (r1 == 42) goto label;
14136 	 * ...
14137 	 * label: // here both r1 and r2 are known to be 42.
14138 	 *
14139 	 * Hence when marking register as known preserve it's ID.
14140 	 */
14141 	case BPF_JEQ:
14142 		if (is_jmp32) {
14143 			__mark_reg32_known(true_reg, val32);
14144 			true_32off = tnum_subreg(true_reg->var_off);
14145 		} else {
14146 			___mark_reg_known(true_reg, val);
14147 			true_64off = true_reg->var_off;
14148 		}
14149 		break;
14150 	case BPF_JNE:
14151 		if (is_jmp32) {
14152 			__mark_reg32_known(false_reg, val32);
14153 			false_32off = tnum_subreg(false_reg->var_off);
14154 		} else {
14155 			___mark_reg_known(false_reg, val);
14156 			false_64off = false_reg->var_off;
14157 		}
14158 		break;
14159 	case BPF_JSET:
14160 		if (is_jmp32) {
14161 			false_32off = tnum_and(false_32off, tnum_const(~val32));
14162 			if (is_power_of_2(val32))
14163 				true_32off = tnum_or(true_32off,
14164 						     tnum_const(val32));
14165 		} else {
14166 			false_64off = tnum_and(false_64off, tnum_const(~val));
14167 			if (is_power_of_2(val))
14168 				true_64off = tnum_or(true_64off,
14169 						     tnum_const(val));
14170 		}
14171 		break;
14172 	case BPF_JGE:
14173 	case BPF_JGT:
14174 	{
14175 		if (is_jmp32) {
14176 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
14177 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14178 
14179 			false_reg->u32_max_value = min(false_reg->u32_max_value,
14180 						       false_umax);
14181 			true_reg->u32_min_value = max(true_reg->u32_min_value,
14182 						      true_umin);
14183 		} else {
14184 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
14185 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14186 
14187 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
14188 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
14189 		}
14190 		break;
14191 	}
14192 	case BPF_JSGE:
14193 	case BPF_JSGT:
14194 	{
14195 		if (is_jmp32) {
14196 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
14197 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14198 
14199 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14200 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14201 		} else {
14202 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
14203 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14204 
14205 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
14206 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
14207 		}
14208 		break;
14209 	}
14210 	case BPF_JLE:
14211 	case BPF_JLT:
14212 	{
14213 		if (is_jmp32) {
14214 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
14215 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14216 
14217 			false_reg->u32_min_value = max(false_reg->u32_min_value,
14218 						       false_umin);
14219 			true_reg->u32_max_value = min(true_reg->u32_max_value,
14220 						      true_umax);
14221 		} else {
14222 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14223 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14224 
14225 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
14226 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
14227 		}
14228 		break;
14229 	}
14230 	case BPF_JSLE:
14231 	case BPF_JSLT:
14232 	{
14233 		if (is_jmp32) {
14234 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14235 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14236 
14237 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14238 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14239 		} else {
14240 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14241 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14242 
14243 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
14244 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
14245 		}
14246 		break;
14247 	}
14248 	default:
14249 		return;
14250 	}
14251 
14252 	if (is_jmp32) {
14253 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14254 					     tnum_subreg(false_32off));
14255 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14256 					    tnum_subreg(true_32off));
14257 		__reg_combine_32_into_64(false_reg);
14258 		__reg_combine_32_into_64(true_reg);
14259 	} else {
14260 		false_reg->var_off = false_64off;
14261 		true_reg->var_off = true_64off;
14262 		__reg_combine_64_into_32(false_reg);
14263 		__reg_combine_64_into_32(true_reg);
14264 	}
14265 }
14266 
14267 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14268  * the variable reg.
14269  */
14270 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14271 				struct bpf_reg_state *false_reg,
14272 				u64 val, u32 val32,
14273 				u8 opcode, bool is_jmp32)
14274 {
14275 	opcode = flip_opcode(opcode);
14276 	/* This uses zero as "not present in table"; luckily the zero opcode,
14277 	 * BPF_JA, can't get here.
14278 	 */
14279 	if (opcode)
14280 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14281 }
14282 
14283 /* Regs are known to be equal, so intersect their min/max/var_off */
14284 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14285 				  struct bpf_reg_state *dst_reg)
14286 {
14287 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14288 							dst_reg->umin_value);
14289 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14290 							dst_reg->umax_value);
14291 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14292 							dst_reg->smin_value);
14293 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14294 							dst_reg->smax_value);
14295 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14296 							     dst_reg->var_off);
14297 	reg_bounds_sync(src_reg);
14298 	reg_bounds_sync(dst_reg);
14299 }
14300 
14301 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14302 				struct bpf_reg_state *true_dst,
14303 				struct bpf_reg_state *false_src,
14304 				struct bpf_reg_state *false_dst,
14305 				u8 opcode)
14306 {
14307 	switch (opcode) {
14308 	case BPF_JEQ:
14309 		__reg_combine_min_max(true_src, true_dst);
14310 		break;
14311 	case BPF_JNE:
14312 		__reg_combine_min_max(false_src, false_dst);
14313 		break;
14314 	}
14315 }
14316 
14317 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14318 				 struct bpf_reg_state *reg, u32 id,
14319 				 bool is_null)
14320 {
14321 	if (type_may_be_null(reg->type) && reg->id == id &&
14322 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14323 		/* Old offset (both fixed and variable parts) should have been
14324 		 * known-zero, because we don't allow pointer arithmetic on
14325 		 * pointers that might be NULL. If we see this happening, don't
14326 		 * convert the register.
14327 		 *
14328 		 * But in some cases, some helpers that return local kptrs
14329 		 * advance offset for the returned pointer. In those cases, it
14330 		 * is fine to expect to see reg->off.
14331 		 */
14332 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14333 			return;
14334 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14335 		    WARN_ON_ONCE(reg->off))
14336 			return;
14337 
14338 		if (is_null) {
14339 			reg->type = SCALAR_VALUE;
14340 			/* We don't need id and ref_obj_id from this point
14341 			 * onwards anymore, thus we should better reset it,
14342 			 * so that state pruning has chances to take effect.
14343 			 */
14344 			reg->id = 0;
14345 			reg->ref_obj_id = 0;
14346 
14347 			return;
14348 		}
14349 
14350 		mark_ptr_not_null_reg(reg);
14351 
14352 		if (!reg_may_point_to_spin_lock(reg)) {
14353 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14354 			 * in release_reference().
14355 			 *
14356 			 * reg->id is still used by spin_lock ptr. Other
14357 			 * than spin_lock ptr type, reg->id can be reset.
14358 			 */
14359 			reg->id = 0;
14360 		}
14361 	}
14362 }
14363 
14364 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14365  * be folded together at some point.
14366  */
14367 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14368 				  bool is_null)
14369 {
14370 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14371 	struct bpf_reg_state *regs = state->regs, *reg;
14372 	u32 ref_obj_id = regs[regno].ref_obj_id;
14373 	u32 id = regs[regno].id;
14374 
14375 	if (ref_obj_id && ref_obj_id == id && is_null)
14376 		/* regs[regno] is in the " == NULL" branch.
14377 		 * No one could have freed the reference state before
14378 		 * doing the NULL check.
14379 		 */
14380 		WARN_ON_ONCE(release_reference_state(state, id));
14381 
14382 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14383 		mark_ptr_or_null_reg(state, reg, id, is_null);
14384 	}));
14385 }
14386 
14387 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14388 				   struct bpf_reg_state *dst_reg,
14389 				   struct bpf_reg_state *src_reg,
14390 				   struct bpf_verifier_state *this_branch,
14391 				   struct bpf_verifier_state *other_branch)
14392 {
14393 	if (BPF_SRC(insn->code) != BPF_X)
14394 		return false;
14395 
14396 	/* Pointers are always 64-bit. */
14397 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14398 		return false;
14399 
14400 	switch (BPF_OP(insn->code)) {
14401 	case BPF_JGT:
14402 		if ((dst_reg->type == PTR_TO_PACKET &&
14403 		     src_reg->type == PTR_TO_PACKET_END) ||
14404 		    (dst_reg->type == PTR_TO_PACKET_META &&
14405 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14406 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14407 			find_good_pkt_pointers(this_branch, dst_reg,
14408 					       dst_reg->type, false);
14409 			mark_pkt_end(other_branch, insn->dst_reg, true);
14410 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14411 			    src_reg->type == PTR_TO_PACKET) ||
14412 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14413 			    src_reg->type == PTR_TO_PACKET_META)) {
14414 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14415 			find_good_pkt_pointers(other_branch, src_reg,
14416 					       src_reg->type, true);
14417 			mark_pkt_end(this_branch, insn->src_reg, false);
14418 		} else {
14419 			return false;
14420 		}
14421 		break;
14422 	case BPF_JLT:
14423 		if ((dst_reg->type == PTR_TO_PACKET &&
14424 		     src_reg->type == PTR_TO_PACKET_END) ||
14425 		    (dst_reg->type == PTR_TO_PACKET_META &&
14426 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14427 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14428 			find_good_pkt_pointers(other_branch, dst_reg,
14429 					       dst_reg->type, true);
14430 			mark_pkt_end(this_branch, insn->dst_reg, false);
14431 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14432 			    src_reg->type == PTR_TO_PACKET) ||
14433 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14434 			    src_reg->type == PTR_TO_PACKET_META)) {
14435 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14436 			find_good_pkt_pointers(this_branch, src_reg,
14437 					       src_reg->type, false);
14438 			mark_pkt_end(other_branch, insn->src_reg, true);
14439 		} else {
14440 			return false;
14441 		}
14442 		break;
14443 	case BPF_JGE:
14444 		if ((dst_reg->type == PTR_TO_PACKET &&
14445 		     src_reg->type == PTR_TO_PACKET_END) ||
14446 		    (dst_reg->type == PTR_TO_PACKET_META &&
14447 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14448 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14449 			find_good_pkt_pointers(this_branch, dst_reg,
14450 					       dst_reg->type, true);
14451 			mark_pkt_end(other_branch, insn->dst_reg, false);
14452 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14453 			    src_reg->type == PTR_TO_PACKET) ||
14454 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14455 			    src_reg->type == PTR_TO_PACKET_META)) {
14456 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14457 			find_good_pkt_pointers(other_branch, src_reg,
14458 					       src_reg->type, false);
14459 			mark_pkt_end(this_branch, insn->src_reg, true);
14460 		} else {
14461 			return false;
14462 		}
14463 		break;
14464 	case BPF_JLE:
14465 		if ((dst_reg->type == PTR_TO_PACKET &&
14466 		     src_reg->type == PTR_TO_PACKET_END) ||
14467 		    (dst_reg->type == PTR_TO_PACKET_META &&
14468 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14469 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14470 			find_good_pkt_pointers(other_branch, dst_reg,
14471 					       dst_reg->type, false);
14472 			mark_pkt_end(this_branch, insn->dst_reg, true);
14473 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14474 			    src_reg->type == PTR_TO_PACKET) ||
14475 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14476 			    src_reg->type == PTR_TO_PACKET_META)) {
14477 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14478 			find_good_pkt_pointers(this_branch, src_reg,
14479 					       src_reg->type, true);
14480 			mark_pkt_end(other_branch, insn->src_reg, false);
14481 		} else {
14482 			return false;
14483 		}
14484 		break;
14485 	default:
14486 		return false;
14487 	}
14488 
14489 	return true;
14490 }
14491 
14492 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14493 			       struct bpf_reg_state *known_reg)
14494 {
14495 	struct bpf_func_state *state;
14496 	struct bpf_reg_state *reg;
14497 
14498 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14499 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14500 			copy_register_state(reg, known_reg);
14501 	}));
14502 }
14503 
14504 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14505 			     struct bpf_insn *insn, int *insn_idx)
14506 {
14507 	struct bpf_verifier_state *this_branch = env->cur_state;
14508 	struct bpf_verifier_state *other_branch;
14509 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14510 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14511 	struct bpf_reg_state *eq_branch_regs;
14512 	u8 opcode = BPF_OP(insn->code);
14513 	bool is_jmp32;
14514 	int pred = -1;
14515 	int err;
14516 
14517 	/* Only conditional jumps are expected to reach here. */
14518 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14519 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14520 		return -EINVAL;
14521 	}
14522 
14523 	/* check src2 operand */
14524 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14525 	if (err)
14526 		return err;
14527 
14528 	dst_reg = &regs[insn->dst_reg];
14529 	if (BPF_SRC(insn->code) == BPF_X) {
14530 		if (insn->imm != 0) {
14531 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14532 			return -EINVAL;
14533 		}
14534 
14535 		/* check src1 operand */
14536 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14537 		if (err)
14538 			return err;
14539 
14540 		src_reg = &regs[insn->src_reg];
14541 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14542 		    is_pointer_value(env, insn->src_reg)) {
14543 			verbose(env, "R%d pointer comparison prohibited\n",
14544 				insn->src_reg);
14545 			return -EACCES;
14546 		}
14547 	} else {
14548 		if (insn->src_reg != BPF_REG_0) {
14549 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14550 			return -EINVAL;
14551 		}
14552 	}
14553 
14554 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14555 
14556 	if (BPF_SRC(insn->code) == BPF_K) {
14557 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14558 	} else if (src_reg->type == SCALAR_VALUE &&
14559 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14560 		pred = is_branch_taken(dst_reg,
14561 				       tnum_subreg(src_reg->var_off).value,
14562 				       opcode,
14563 				       is_jmp32);
14564 	} else if (src_reg->type == SCALAR_VALUE &&
14565 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14566 		pred = is_branch_taken(dst_reg,
14567 				       src_reg->var_off.value,
14568 				       opcode,
14569 				       is_jmp32);
14570 	} else if (dst_reg->type == SCALAR_VALUE &&
14571 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14572 		pred = is_branch_taken(src_reg,
14573 				       tnum_subreg(dst_reg->var_off).value,
14574 				       flip_opcode(opcode),
14575 				       is_jmp32);
14576 	} else if (dst_reg->type == SCALAR_VALUE &&
14577 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14578 		pred = is_branch_taken(src_reg,
14579 				       dst_reg->var_off.value,
14580 				       flip_opcode(opcode),
14581 				       is_jmp32);
14582 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14583 		   reg_is_pkt_pointer_any(src_reg) &&
14584 		   !is_jmp32) {
14585 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14586 	}
14587 
14588 	if (pred >= 0) {
14589 		/* If we get here with a dst_reg pointer type it is because
14590 		 * above is_branch_taken() special cased the 0 comparison.
14591 		 */
14592 		if (!__is_pointer_value(false, dst_reg))
14593 			err = mark_chain_precision(env, insn->dst_reg);
14594 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14595 		    !__is_pointer_value(false, src_reg))
14596 			err = mark_chain_precision(env, insn->src_reg);
14597 		if (err)
14598 			return err;
14599 	}
14600 
14601 	if (pred == 1) {
14602 		/* Only follow the goto, ignore fall-through. If needed, push
14603 		 * the fall-through branch for simulation under speculative
14604 		 * execution.
14605 		 */
14606 		if (!env->bypass_spec_v1 &&
14607 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14608 					       *insn_idx))
14609 			return -EFAULT;
14610 		if (env->log.level & BPF_LOG_LEVEL)
14611 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14612 		*insn_idx += insn->off;
14613 		return 0;
14614 	} else if (pred == 0) {
14615 		/* Only follow the fall-through branch, since that's where the
14616 		 * program will go. If needed, push the goto branch for
14617 		 * simulation under speculative execution.
14618 		 */
14619 		if (!env->bypass_spec_v1 &&
14620 		    !sanitize_speculative_path(env, insn,
14621 					       *insn_idx + insn->off + 1,
14622 					       *insn_idx))
14623 			return -EFAULT;
14624 		if (env->log.level & BPF_LOG_LEVEL)
14625 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14626 		return 0;
14627 	}
14628 
14629 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14630 				  false);
14631 	if (!other_branch)
14632 		return -EFAULT;
14633 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14634 
14635 	/* detect if we are comparing against a constant value so we can adjust
14636 	 * our min/max values for our dst register.
14637 	 * this is only legit if both are scalars (or pointers to the same
14638 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14639 	 * because otherwise the different base pointers mean the offsets aren't
14640 	 * comparable.
14641 	 */
14642 	if (BPF_SRC(insn->code) == BPF_X) {
14643 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14644 
14645 		if (dst_reg->type == SCALAR_VALUE &&
14646 		    src_reg->type == SCALAR_VALUE) {
14647 			if (tnum_is_const(src_reg->var_off) ||
14648 			    (is_jmp32 &&
14649 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14650 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14651 						dst_reg,
14652 						src_reg->var_off.value,
14653 						tnum_subreg(src_reg->var_off).value,
14654 						opcode, is_jmp32);
14655 			else if (tnum_is_const(dst_reg->var_off) ||
14656 				 (is_jmp32 &&
14657 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14658 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14659 						    src_reg,
14660 						    dst_reg->var_off.value,
14661 						    tnum_subreg(dst_reg->var_off).value,
14662 						    opcode, is_jmp32);
14663 			else if (!is_jmp32 &&
14664 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14665 				/* Comparing for equality, we can combine knowledge */
14666 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14667 						    &other_branch_regs[insn->dst_reg],
14668 						    src_reg, dst_reg, opcode);
14669 			if (src_reg->id &&
14670 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14671 				find_equal_scalars(this_branch, src_reg);
14672 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14673 			}
14674 
14675 		}
14676 	} else if (dst_reg->type == SCALAR_VALUE) {
14677 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14678 					dst_reg, insn->imm, (u32)insn->imm,
14679 					opcode, is_jmp32);
14680 	}
14681 
14682 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14683 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14684 		find_equal_scalars(this_branch, dst_reg);
14685 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14686 	}
14687 
14688 	/* if one pointer register is compared to another pointer
14689 	 * register check if PTR_MAYBE_NULL could be lifted.
14690 	 * E.g. register A - maybe null
14691 	 *      register B - not null
14692 	 * for JNE A, B, ... - A is not null in the false branch;
14693 	 * for JEQ A, B, ... - A is not null in the true branch.
14694 	 *
14695 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14696 	 * not need to be null checked by the BPF program, i.e.,
14697 	 * could be null even without PTR_MAYBE_NULL marking, so
14698 	 * only propagate nullness when neither reg is that type.
14699 	 */
14700 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14701 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14702 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14703 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14704 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14705 		eq_branch_regs = NULL;
14706 		switch (opcode) {
14707 		case BPF_JEQ:
14708 			eq_branch_regs = other_branch_regs;
14709 			break;
14710 		case BPF_JNE:
14711 			eq_branch_regs = regs;
14712 			break;
14713 		default:
14714 			/* do nothing */
14715 			break;
14716 		}
14717 		if (eq_branch_regs) {
14718 			if (type_may_be_null(src_reg->type))
14719 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14720 			else
14721 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14722 		}
14723 	}
14724 
14725 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14726 	 * NOTE: these optimizations below are related with pointer comparison
14727 	 *       which will never be JMP32.
14728 	 */
14729 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14730 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14731 	    type_may_be_null(dst_reg->type)) {
14732 		/* Mark all identical registers in each branch as either
14733 		 * safe or unknown depending R == 0 or R != 0 conditional.
14734 		 */
14735 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14736 				      opcode == BPF_JNE);
14737 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14738 				      opcode == BPF_JEQ);
14739 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14740 					   this_branch, other_branch) &&
14741 		   is_pointer_value(env, insn->dst_reg)) {
14742 		verbose(env, "R%d pointer comparison prohibited\n",
14743 			insn->dst_reg);
14744 		return -EACCES;
14745 	}
14746 	if (env->log.level & BPF_LOG_LEVEL)
14747 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14748 	return 0;
14749 }
14750 
14751 /* verify BPF_LD_IMM64 instruction */
14752 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14753 {
14754 	struct bpf_insn_aux_data *aux = cur_aux(env);
14755 	struct bpf_reg_state *regs = cur_regs(env);
14756 	struct bpf_reg_state *dst_reg;
14757 	struct bpf_map *map;
14758 	int err;
14759 
14760 	if (BPF_SIZE(insn->code) != BPF_DW) {
14761 		verbose(env, "invalid BPF_LD_IMM insn\n");
14762 		return -EINVAL;
14763 	}
14764 	if (insn->off != 0) {
14765 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14766 		return -EINVAL;
14767 	}
14768 
14769 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14770 	if (err)
14771 		return err;
14772 
14773 	dst_reg = &regs[insn->dst_reg];
14774 	if (insn->src_reg == 0) {
14775 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14776 
14777 		dst_reg->type = SCALAR_VALUE;
14778 		__mark_reg_known(&regs[insn->dst_reg], imm);
14779 		return 0;
14780 	}
14781 
14782 	/* All special src_reg cases are listed below. From this point onwards
14783 	 * we either succeed and assign a corresponding dst_reg->type after
14784 	 * zeroing the offset, or fail and reject the program.
14785 	 */
14786 	mark_reg_known_zero(env, regs, insn->dst_reg);
14787 
14788 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14789 		dst_reg->type = aux->btf_var.reg_type;
14790 		switch (base_type(dst_reg->type)) {
14791 		case PTR_TO_MEM:
14792 			dst_reg->mem_size = aux->btf_var.mem_size;
14793 			break;
14794 		case PTR_TO_BTF_ID:
14795 			dst_reg->btf = aux->btf_var.btf;
14796 			dst_reg->btf_id = aux->btf_var.btf_id;
14797 			break;
14798 		default:
14799 			verbose(env, "bpf verifier is misconfigured\n");
14800 			return -EFAULT;
14801 		}
14802 		return 0;
14803 	}
14804 
14805 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14806 		struct bpf_prog_aux *aux = env->prog->aux;
14807 		u32 subprogno = find_subprog(env,
14808 					     env->insn_idx + insn->imm + 1);
14809 
14810 		if (!aux->func_info) {
14811 			verbose(env, "missing btf func_info\n");
14812 			return -EINVAL;
14813 		}
14814 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14815 			verbose(env, "callback function not static\n");
14816 			return -EINVAL;
14817 		}
14818 
14819 		dst_reg->type = PTR_TO_FUNC;
14820 		dst_reg->subprogno = subprogno;
14821 		return 0;
14822 	}
14823 
14824 	map = env->used_maps[aux->map_index];
14825 	dst_reg->map_ptr = map;
14826 
14827 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14828 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14829 		dst_reg->type = PTR_TO_MAP_VALUE;
14830 		dst_reg->off = aux->map_off;
14831 		WARN_ON_ONCE(map->max_entries != 1);
14832 		/* We want reg->id to be same (0) as map_value is not distinct */
14833 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14834 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14835 		dst_reg->type = CONST_PTR_TO_MAP;
14836 	} else {
14837 		verbose(env, "bpf verifier is misconfigured\n");
14838 		return -EINVAL;
14839 	}
14840 
14841 	return 0;
14842 }
14843 
14844 static bool may_access_skb(enum bpf_prog_type type)
14845 {
14846 	switch (type) {
14847 	case BPF_PROG_TYPE_SOCKET_FILTER:
14848 	case BPF_PROG_TYPE_SCHED_CLS:
14849 	case BPF_PROG_TYPE_SCHED_ACT:
14850 		return true;
14851 	default:
14852 		return false;
14853 	}
14854 }
14855 
14856 /* verify safety of LD_ABS|LD_IND instructions:
14857  * - they can only appear in the programs where ctx == skb
14858  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14859  *   preserve R6-R9, and store return value into R0
14860  *
14861  * Implicit input:
14862  *   ctx == skb == R6 == CTX
14863  *
14864  * Explicit input:
14865  *   SRC == any register
14866  *   IMM == 32-bit immediate
14867  *
14868  * Output:
14869  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14870  */
14871 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14872 {
14873 	struct bpf_reg_state *regs = cur_regs(env);
14874 	static const int ctx_reg = BPF_REG_6;
14875 	u8 mode = BPF_MODE(insn->code);
14876 	int i, err;
14877 
14878 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14879 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14880 		return -EINVAL;
14881 	}
14882 
14883 	if (!env->ops->gen_ld_abs) {
14884 		verbose(env, "bpf verifier is misconfigured\n");
14885 		return -EINVAL;
14886 	}
14887 
14888 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14889 	    BPF_SIZE(insn->code) == BPF_DW ||
14890 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14891 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14892 		return -EINVAL;
14893 	}
14894 
14895 	/* check whether implicit source operand (register R6) is readable */
14896 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14897 	if (err)
14898 		return err;
14899 
14900 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14901 	 * gen_ld_abs() may terminate the program at runtime, leading to
14902 	 * reference leak.
14903 	 */
14904 	err = check_reference_leak(env);
14905 	if (err) {
14906 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14907 		return err;
14908 	}
14909 
14910 	if (env->cur_state->active_lock.ptr) {
14911 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14912 		return -EINVAL;
14913 	}
14914 
14915 	if (env->cur_state->active_rcu_lock) {
14916 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14917 		return -EINVAL;
14918 	}
14919 
14920 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14921 		verbose(env,
14922 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14923 		return -EINVAL;
14924 	}
14925 
14926 	if (mode == BPF_IND) {
14927 		/* check explicit source operand */
14928 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14929 		if (err)
14930 			return err;
14931 	}
14932 
14933 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14934 	if (err < 0)
14935 		return err;
14936 
14937 	/* reset caller saved regs to unreadable */
14938 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14939 		mark_reg_not_init(env, regs, caller_saved[i]);
14940 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14941 	}
14942 
14943 	/* mark destination R0 register as readable, since it contains
14944 	 * the value fetched from the packet.
14945 	 * Already marked as written above.
14946 	 */
14947 	mark_reg_unknown(env, regs, BPF_REG_0);
14948 	/* ld_abs load up to 32-bit skb data. */
14949 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14950 	return 0;
14951 }
14952 
14953 static int check_return_code(struct bpf_verifier_env *env)
14954 {
14955 	struct tnum enforce_attach_type_range = tnum_unknown;
14956 	const struct bpf_prog *prog = env->prog;
14957 	struct bpf_reg_state *reg;
14958 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14959 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14960 	int err;
14961 	struct bpf_func_state *frame = env->cur_state->frame[0];
14962 	const bool is_subprog = frame->subprogno;
14963 
14964 	/* LSM and struct_ops func-ptr's return type could be "void" */
14965 	if (!is_subprog) {
14966 		switch (prog_type) {
14967 		case BPF_PROG_TYPE_LSM:
14968 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14969 				/* See below, can be 0 or 0-1 depending on hook. */
14970 				break;
14971 			fallthrough;
14972 		case BPF_PROG_TYPE_STRUCT_OPS:
14973 			if (!prog->aux->attach_func_proto->type)
14974 				return 0;
14975 			break;
14976 		default:
14977 			break;
14978 		}
14979 	}
14980 
14981 	/* eBPF calling convention is such that R0 is used
14982 	 * to return the value from eBPF program.
14983 	 * Make sure that it's readable at this time
14984 	 * of bpf_exit, which means that program wrote
14985 	 * something into it earlier
14986 	 */
14987 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14988 	if (err)
14989 		return err;
14990 
14991 	if (is_pointer_value(env, BPF_REG_0)) {
14992 		verbose(env, "R0 leaks addr as return value\n");
14993 		return -EACCES;
14994 	}
14995 
14996 	reg = cur_regs(env) + BPF_REG_0;
14997 
14998 	if (frame->in_async_callback_fn) {
14999 		/* enforce return zero from async callbacks like timer */
15000 		if (reg->type != SCALAR_VALUE) {
15001 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
15002 				reg_type_str(env, reg->type));
15003 			return -EINVAL;
15004 		}
15005 
15006 		if (!tnum_in(const_0, reg->var_off)) {
15007 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15008 			return -EINVAL;
15009 		}
15010 		return 0;
15011 	}
15012 
15013 	if (is_subprog) {
15014 		if (reg->type != SCALAR_VALUE) {
15015 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
15016 				reg_type_str(env, reg->type));
15017 			return -EINVAL;
15018 		}
15019 		return 0;
15020 	}
15021 
15022 	switch (prog_type) {
15023 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15024 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15025 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15026 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15027 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15028 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15029 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
15030 			range = tnum_range(1, 1);
15031 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15032 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15033 			range = tnum_range(0, 3);
15034 		break;
15035 	case BPF_PROG_TYPE_CGROUP_SKB:
15036 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15037 			range = tnum_range(0, 3);
15038 			enforce_attach_type_range = tnum_range(2, 3);
15039 		}
15040 		break;
15041 	case BPF_PROG_TYPE_CGROUP_SOCK:
15042 	case BPF_PROG_TYPE_SOCK_OPS:
15043 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15044 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15045 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15046 		break;
15047 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15048 		if (!env->prog->aux->attach_btf_id)
15049 			return 0;
15050 		range = tnum_const(0);
15051 		break;
15052 	case BPF_PROG_TYPE_TRACING:
15053 		switch (env->prog->expected_attach_type) {
15054 		case BPF_TRACE_FENTRY:
15055 		case BPF_TRACE_FEXIT:
15056 			range = tnum_const(0);
15057 			break;
15058 		case BPF_TRACE_RAW_TP:
15059 		case BPF_MODIFY_RETURN:
15060 			return 0;
15061 		case BPF_TRACE_ITER:
15062 			break;
15063 		default:
15064 			return -ENOTSUPP;
15065 		}
15066 		break;
15067 	case BPF_PROG_TYPE_SK_LOOKUP:
15068 		range = tnum_range(SK_DROP, SK_PASS);
15069 		break;
15070 
15071 	case BPF_PROG_TYPE_LSM:
15072 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15073 			/* Regular BPF_PROG_TYPE_LSM programs can return
15074 			 * any value.
15075 			 */
15076 			return 0;
15077 		}
15078 		if (!env->prog->aux->attach_func_proto->type) {
15079 			/* Make sure programs that attach to void
15080 			 * hooks don't try to modify return value.
15081 			 */
15082 			range = tnum_range(1, 1);
15083 		}
15084 		break;
15085 
15086 	case BPF_PROG_TYPE_NETFILTER:
15087 		range = tnum_range(NF_DROP, NF_ACCEPT);
15088 		break;
15089 	case BPF_PROG_TYPE_EXT:
15090 		/* freplace program can return anything as its return value
15091 		 * depends on the to-be-replaced kernel func or bpf program.
15092 		 */
15093 	default:
15094 		return 0;
15095 	}
15096 
15097 	if (reg->type != SCALAR_VALUE) {
15098 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
15099 			reg_type_str(env, reg->type));
15100 		return -EINVAL;
15101 	}
15102 
15103 	if (!tnum_in(range, reg->var_off)) {
15104 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15105 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15106 		    prog_type == BPF_PROG_TYPE_LSM &&
15107 		    !prog->aux->attach_func_proto->type)
15108 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15109 		return -EINVAL;
15110 	}
15111 
15112 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15113 	    tnum_in(enforce_attach_type_range, reg->var_off))
15114 		env->prog->enforce_expected_attach_type = 1;
15115 	return 0;
15116 }
15117 
15118 /* non-recursive DFS pseudo code
15119  * 1  procedure DFS-iterative(G,v):
15120  * 2      label v as discovered
15121  * 3      let S be a stack
15122  * 4      S.push(v)
15123  * 5      while S is not empty
15124  * 6            t <- S.peek()
15125  * 7            if t is what we're looking for:
15126  * 8                return t
15127  * 9            for all edges e in G.adjacentEdges(t) do
15128  * 10               if edge e is already labelled
15129  * 11                   continue with the next edge
15130  * 12               w <- G.adjacentVertex(t,e)
15131  * 13               if vertex w is not discovered and not explored
15132  * 14                   label e as tree-edge
15133  * 15                   label w as discovered
15134  * 16                   S.push(w)
15135  * 17                   continue at 5
15136  * 18               else if vertex w is discovered
15137  * 19                   label e as back-edge
15138  * 20               else
15139  * 21                   // vertex w is explored
15140  * 22                   label e as forward- or cross-edge
15141  * 23           label t as explored
15142  * 24           S.pop()
15143  *
15144  * convention:
15145  * 0x10 - discovered
15146  * 0x11 - discovered and fall-through edge labelled
15147  * 0x12 - discovered and fall-through and branch edges labelled
15148  * 0x20 - explored
15149  */
15150 
15151 enum {
15152 	DISCOVERED = 0x10,
15153 	EXPLORED = 0x20,
15154 	FALLTHROUGH = 1,
15155 	BRANCH = 2,
15156 };
15157 
15158 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15159 {
15160 	env->insn_aux_data[idx].prune_point = true;
15161 }
15162 
15163 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15164 {
15165 	return env->insn_aux_data[insn_idx].prune_point;
15166 }
15167 
15168 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15169 {
15170 	env->insn_aux_data[idx].force_checkpoint = true;
15171 }
15172 
15173 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15174 {
15175 	return env->insn_aux_data[insn_idx].force_checkpoint;
15176 }
15177 
15178 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15179 {
15180 	env->insn_aux_data[idx].calls_callback = true;
15181 }
15182 
15183 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15184 {
15185 	return env->insn_aux_data[insn_idx].calls_callback;
15186 }
15187 
15188 enum {
15189 	DONE_EXPLORING = 0,
15190 	KEEP_EXPLORING = 1,
15191 };
15192 
15193 /* t, w, e - match pseudo-code above:
15194  * t - index of current instruction
15195  * w - next instruction
15196  * e - edge
15197  */
15198 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15199 {
15200 	int *insn_stack = env->cfg.insn_stack;
15201 	int *insn_state = env->cfg.insn_state;
15202 
15203 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15204 		return DONE_EXPLORING;
15205 
15206 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15207 		return DONE_EXPLORING;
15208 
15209 	if (w < 0 || w >= env->prog->len) {
15210 		verbose_linfo(env, t, "%d: ", t);
15211 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15212 		return -EINVAL;
15213 	}
15214 
15215 	if (e == BRANCH) {
15216 		/* mark branch target for state pruning */
15217 		mark_prune_point(env, w);
15218 		mark_jmp_point(env, w);
15219 	}
15220 
15221 	if (insn_state[w] == 0) {
15222 		/* tree-edge */
15223 		insn_state[t] = DISCOVERED | e;
15224 		insn_state[w] = DISCOVERED;
15225 		if (env->cfg.cur_stack >= env->prog->len)
15226 			return -E2BIG;
15227 		insn_stack[env->cfg.cur_stack++] = w;
15228 		return KEEP_EXPLORING;
15229 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15230 		if (env->bpf_capable)
15231 			return DONE_EXPLORING;
15232 		verbose_linfo(env, t, "%d: ", t);
15233 		verbose_linfo(env, w, "%d: ", w);
15234 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15235 		return -EINVAL;
15236 	} else if (insn_state[w] == EXPLORED) {
15237 		/* forward- or cross-edge */
15238 		insn_state[t] = DISCOVERED | e;
15239 	} else {
15240 		verbose(env, "insn state internal bug\n");
15241 		return -EFAULT;
15242 	}
15243 	return DONE_EXPLORING;
15244 }
15245 
15246 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15247 				struct bpf_verifier_env *env,
15248 				bool visit_callee)
15249 {
15250 	int ret, insn_sz;
15251 
15252 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15253 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15254 	if (ret)
15255 		return ret;
15256 
15257 	mark_prune_point(env, t + insn_sz);
15258 	/* when we exit from subprog, we need to record non-linear history */
15259 	mark_jmp_point(env, t + insn_sz);
15260 
15261 	if (visit_callee) {
15262 		mark_prune_point(env, t);
15263 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15264 	}
15265 	return ret;
15266 }
15267 
15268 /* Visits the instruction at index t and returns one of the following:
15269  *  < 0 - an error occurred
15270  *  DONE_EXPLORING - the instruction was fully explored
15271  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15272  */
15273 static int visit_insn(int t, struct bpf_verifier_env *env)
15274 {
15275 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15276 	int ret, off, insn_sz;
15277 
15278 	if (bpf_pseudo_func(insn))
15279 		return visit_func_call_insn(t, insns, env, true);
15280 
15281 	/* All non-branch instructions have a single fall-through edge. */
15282 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15283 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15284 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15285 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15286 	}
15287 
15288 	switch (BPF_OP(insn->code)) {
15289 	case BPF_EXIT:
15290 		return DONE_EXPLORING;
15291 
15292 	case BPF_CALL:
15293 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15294 			/* Mark this call insn as a prune point to trigger
15295 			 * is_state_visited() check before call itself is
15296 			 * processed by __check_func_call(). Otherwise new
15297 			 * async state will be pushed for further exploration.
15298 			 */
15299 			mark_prune_point(env, t);
15300 		/* For functions that invoke callbacks it is not known how many times
15301 		 * callback would be called. Verifier models callback calling functions
15302 		 * by repeatedly visiting callback bodies and returning to origin call
15303 		 * instruction.
15304 		 * In order to stop such iteration verifier needs to identify when a
15305 		 * state identical some state from a previous iteration is reached.
15306 		 * Check below forces creation of checkpoint before callback calling
15307 		 * instruction to allow search for such identical states.
15308 		 */
15309 		if (is_sync_callback_calling_insn(insn)) {
15310 			mark_calls_callback(env, t);
15311 			mark_force_checkpoint(env, t);
15312 			mark_prune_point(env, t);
15313 			mark_jmp_point(env, t);
15314 		}
15315 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15316 			struct bpf_kfunc_call_arg_meta meta;
15317 
15318 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15319 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15320 				mark_prune_point(env, t);
15321 				/* Checking and saving state checkpoints at iter_next() call
15322 				 * is crucial for fast convergence of open-coded iterator loop
15323 				 * logic, so we need to force it. If we don't do that,
15324 				 * is_state_visited() might skip saving a checkpoint, causing
15325 				 * unnecessarily long sequence of not checkpointed
15326 				 * instructions and jumps, leading to exhaustion of jump
15327 				 * history buffer, and potentially other undesired outcomes.
15328 				 * It is expected that with correct open-coded iterators
15329 				 * convergence will happen quickly, so we don't run a risk of
15330 				 * exhausting memory.
15331 				 */
15332 				mark_force_checkpoint(env, t);
15333 			}
15334 		}
15335 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15336 
15337 	case BPF_JA:
15338 		if (BPF_SRC(insn->code) != BPF_K)
15339 			return -EINVAL;
15340 
15341 		if (BPF_CLASS(insn->code) == BPF_JMP)
15342 			off = insn->off;
15343 		else
15344 			off = insn->imm;
15345 
15346 		/* unconditional jump with single edge */
15347 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15348 		if (ret)
15349 			return ret;
15350 
15351 		mark_prune_point(env, t + off + 1);
15352 		mark_jmp_point(env, t + off + 1);
15353 
15354 		return ret;
15355 
15356 	default:
15357 		/* conditional jump with two edges */
15358 		mark_prune_point(env, t);
15359 
15360 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15361 		if (ret)
15362 			return ret;
15363 
15364 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15365 	}
15366 }
15367 
15368 /* non-recursive depth-first-search to detect loops in BPF program
15369  * loop == back-edge in directed graph
15370  */
15371 static int check_cfg(struct bpf_verifier_env *env)
15372 {
15373 	int insn_cnt = env->prog->len;
15374 	int *insn_stack, *insn_state;
15375 	int ret = 0;
15376 	int i;
15377 
15378 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15379 	if (!insn_state)
15380 		return -ENOMEM;
15381 
15382 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15383 	if (!insn_stack) {
15384 		kvfree(insn_state);
15385 		return -ENOMEM;
15386 	}
15387 
15388 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15389 	insn_stack[0] = 0; /* 0 is the first instruction */
15390 	env->cfg.cur_stack = 1;
15391 
15392 	while (env->cfg.cur_stack > 0) {
15393 		int t = insn_stack[env->cfg.cur_stack - 1];
15394 
15395 		ret = visit_insn(t, env);
15396 		switch (ret) {
15397 		case DONE_EXPLORING:
15398 			insn_state[t] = EXPLORED;
15399 			env->cfg.cur_stack--;
15400 			break;
15401 		case KEEP_EXPLORING:
15402 			break;
15403 		default:
15404 			if (ret > 0) {
15405 				verbose(env, "visit_insn internal bug\n");
15406 				ret = -EFAULT;
15407 			}
15408 			goto err_free;
15409 		}
15410 	}
15411 
15412 	if (env->cfg.cur_stack < 0) {
15413 		verbose(env, "pop stack internal bug\n");
15414 		ret = -EFAULT;
15415 		goto err_free;
15416 	}
15417 
15418 	for (i = 0; i < insn_cnt; i++) {
15419 		struct bpf_insn *insn = &env->prog->insnsi[i];
15420 
15421 		if (insn_state[i] != EXPLORED) {
15422 			verbose(env, "unreachable insn %d\n", i);
15423 			ret = -EINVAL;
15424 			goto err_free;
15425 		}
15426 		if (bpf_is_ldimm64(insn)) {
15427 			if (insn_state[i + 1] != 0) {
15428 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15429 				ret = -EINVAL;
15430 				goto err_free;
15431 			}
15432 			i++; /* skip second half of ldimm64 */
15433 		}
15434 	}
15435 	ret = 0; /* cfg looks good */
15436 
15437 err_free:
15438 	kvfree(insn_state);
15439 	kvfree(insn_stack);
15440 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15441 	return ret;
15442 }
15443 
15444 static int check_abnormal_return(struct bpf_verifier_env *env)
15445 {
15446 	int i;
15447 
15448 	for (i = 1; i < env->subprog_cnt; i++) {
15449 		if (env->subprog_info[i].has_ld_abs) {
15450 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15451 			return -EINVAL;
15452 		}
15453 		if (env->subprog_info[i].has_tail_call) {
15454 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15455 			return -EINVAL;
15456 		}
15457 	}
15458 	return 0;
15459 }
15460 
15461 /* The minimum supported BTF func info size */
15462 #define MIN_BPF_FUNCINFO_SIZE	8
15463 #define MAX_FUNCINFO_REC_SIZE	252
15464 
15465 static int check_btf_func(struct bpf_verifier_env *env,
15466 			  const union bpf_attr *attr,
15467 			  bpfptr_t uattr)
15468 {
15469 	const struct btf_type *type, *func_proto, *ret_type;
15470 	u32 i, nfuncs, urec_size, min_size;
15471 	u32 krec_size = sizeof(struct bpf_func_info);
15472 	struct bpf_func_info *krecord;
15473 	struct bpf_func_info_aux *info_aux = NULL;
15474 	struct bpf_prog *prog;
15475 	const struct btf *btf;
15476 	bpfptr_t urecord;
15477 	u32 prev_offset = 0;
15478 	bool scalar_return;
15479 	int ret = -ENOMEM;
15480 
15481 	nfuncs = attr->func_info_cnt;
15482 	if (!nfuncs) {
15483 		if (check_abnormal_return(env))
15484 			return -EINVAL;
15485 		return 0;
15486 	}
15487 
15488 	if (nfuncs != env->subprog_cnt) {
15489 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15490 		return -EINVAL;
15491 	}
15492 
15493 	urec_size = attr->func_info_rec_size;
15494 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15495 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15496 	    urec_size % sizeof(u32)) {
15497 		verbose(env, "invalid func info rec size %u\n", urec_size);
15498 		return -EINVAL;
15499 	}
15500 
15501 	prog = env->prog;
15502 	btf = prog->aux->btf;
15503 
15504 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15505 	min_size = min_t(u32, krec_size, urec_size);
15506 
15507 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15508 	if (!krecord)
15509 		return -ENOMEM;
15510 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15511 	if (!info_aux)
15512 		goto err_free;
15513 
15514 	for (i = 0; i < nfuncs; i++) {
15515 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15516 		if (ret) {
15517 			if (ret == -E2BIG) {
15518 				verbose(env, "nonzero tailing record in func info");
15519 				/* set the size kernel expects so loader can zero
15520 				 * out the rest of the record.
15521 				 */
15522 				if (copy_to_bpfptr_offset(uattr,
15523 							  offsetof(union bpf_attr, func_info_rec_size),
15524 							  &min_size, sizeof(min_size)))
15525 					ret = -EFAULT;
15526 			}
15527 			goto err_free;
15528 		}
15529 
15530 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15531 			ret = -EFAULT;
15532 			goto err_free;
15533 		}
15534 
15535 		/* check insn_off */
15536 		ret = -EINVAL;
15537 		if (i == 0) {
15538 			if (krecord[i].insn_off) {
15539 				verbose(env,
15540 					"nonzero insn_off %u for the first func info record",
15541 					krecord[i].insn_off);
15542 				goto err_free;
15543 			}
15544 		} else if (krecord[i].insn_off <= prev_offset) {
15545 			verbose(env,
15546 				"same or smaller insn offset (%u) than previous func info record (%u)",
15547 				krecord[i].insn_off, prev_offset);
15548 			goto err_free;
15549 		}
15550 
15551 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15552 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15553 			goto err_free;
15554 		}
15555 
15556 		/* check type_id */
15557 		type = btf_type_by_id(btf, krecord[i].type_id);
15558 		if (!type || !btf_type_is_func(type)) {
15559 			verbose(env, "invalid type id %d in func info",
15560 				krecord[i].type_id);
15561 			goto err_free;
15562 		}
15563 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15564 
15565 		func_proto = btf_type_by_id(btf, type->type);
15566 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15567 			/* btf_func_check() already verified it during BTF load */
15568 			goto err_free;
15569 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15570 		scalar_return =
15571 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15572 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15573 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15574 			goto err_free;
15575 		}
15576 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15577 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15578 			goto err_free;
15579 		}
15580 
15581 		prev_offset = krecord[i].insn_off;
15582 		bpfptr_add(&urecord, urec_size);
15583 	}
15584 
15585 	prog->aux->func_info = krecord;
15586 	prog->aux->func_info_cnt = nfuncs;
15587 	prog->aux->func_info_aux = info_aux;
15588 	return 0;
15589 
15590 err_free:
15591 	kvfree(krecord);
15592 	kfree(info_aux);
15593 	return ret;
15594 }
15595 
15596 static void adjust_btf_func(struct bpf_verifier_env *env)
15597 {
15598 	struct bpf_prog_aux *aux = env->prog->aux;
15599 	int i;
15600 
15601 	if (!aux->func_info)
15602 		return;
15603 
15604 	for (i = 0; i < env->subprog_cnt; i++)
15605 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15606 }
15607 
15608 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15609 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15610 
15611 static int check_btf_line(struct bpf_verifier_env *env,
15612 			  const union bpf_attr *attr,
15613 			  bpfptr_t uattr)
15614 {
15615 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15616 	struct bpf_subprog_info *sub;
15617 	struct bpf_line_info *linfo;
15618 	struct bpf_prog *prog;
15619 	const struct btf *btf;
15620 	bpfptr_t ulinfo;
15621 	int err;
15622 
15623 	nr_linfo = attr->line_info_cnt;
15624 	if (!nr_linfo)
15625 		return 0;
15626 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15627 		return -EINVAL;
15628 
15629 	rec_size = attr->line_info_rec_size;
15630 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15631 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15632 	    rec_size & (sizeof(u32) - 1))
15633 		return -EINVAL;
15634 
15635 	/* Need to zero it in case the userspace may
15636 	 * pass in a smaller bpf_line_info object.
15637 	 */
15638 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15639 			 GFP_KERNEL | __GFP_NOWARN);
15640 	if (!linfo)
15641 		return -ENOMEM;
15642 
15643 	prog = env->prog;
15644 	btf = prog->aux->btf;
15645 
15646 	s = 0;
15647 	sub = env->subprog_info;
15648 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15649 	expected_size = sizeof(struct bpf_line_info);
15650 	ncopy = min_t(u32, expected_size, rec_size);
15651 	for (i = 0; i < nr_linfo; i++) {
15652 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15653 		if (err) {
15654 			if (err == -E2BIG) {
15655 				verbose(env, "nonzero tailing record in line_info");
15656 				if (copy_to_bpfptr_offset(uattr,
15657 							  offsetof(union bpf_attr, line_info_rec_size),
15658 							  &expected_size, sizeof(expected_size)))
15659 					err = -EFAULT;
15660 			}
15661 			goto err_free;
15662 		}
15663 
15664 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15665 			err = -EFAULT;
15666 			goto err_free;
15667 		}
15668 
15669 		/*
15670 		 * Check insn_off to ensure
15671 		 * 1) strictly increasing AND
15672 		 * 2) bounded by prog->len
15673 		 *
15674 		 * The linfo[0].insn_off == 0 check logically falls into
15675 		 * the later "missing bpf_line_info for func..." case
15676 		 * because the first linfo[0].insn_off must be the
15677 		 * first sub also and the first sub must have
15678 		 * subprog_info[0].start == 0.
15679 		 */
15680 		if ((i && linfo[i].insn_off <= prev_offset) ||
15681 		    linfo[i].insn_off >= prog->len) {
15682 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15683 				i, linfo[i].insn_off, prev_offset,
15684 				prog->len);
15685 			err = -EINVAL;
15686 			goto err_free;
15687 		}
15688 
15689 		if (!prog->insnsi[linfo[i].insn_off].code) {
15690 			verbose(env,
15691 				"Invalid insn code at line_info[%u].insn_off\n",
15692 				i);
15693 			err = -EINVAL;
15694 			goto err_free;
15695 		}
15696 
15697 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15698 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15699 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15700 			err = -EINVAL;
15701 			goto err_free;
15702 		}
15703 
15704 		if (s != env->subprog_cnt) {
15705 			if (linfo[i].insn_off == sub[s].start) {
15706 				sub[s].linfo_idx = i;
15707 				s++;
15708 			} else if (sub[s].start < linfo[i].insn_off) {
15709 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15710 				err = -EINVAL;
15711 				goto err_free;
15712 			}
15713 		}
15714 
15715 		prev_offset = linfo[i].insn_off;
15716 		bpfptr_add(&ulinfo, rec_size);
15717 	}
15718 
15719 	if (s != env->subprog_cnt) {
15720 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15721 			env->subprog_cnt - s, s);
15722 		err = -EINVAL;
15723 		goto err_free;
15724 	}
15725 
15726 	prog->aux->linfo = linfo;
15727 	prog->aux->nr_linfo = nr_linfo;
15728 
15729 	return 0;
15730 
15731 err_free:
15732 	kvfree(linfo);
15733 	return err;
15734 }
15735 
15736 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15737 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15738 
15739 static int check_core_relo(struct bpf_verifier_env *env,
15740 			   const union bpf_attr *attr,
15741 			   bpfptr_t uattr)
15742 {
15743 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15744 	struct bpf_core_relo core_relo = {};
15745 	struct bpf_prog *prog = env->prog;
15746 	const struct btf *btf = prog->aux->btf;
15747 	struct bpf_core_ctx ctx = {
15748 		.log = &env->log,
15749 		.btf = btf,
15750 	};
15751 	bpfptr_t u_core_relo;
15752 	int err;
15753 
15754 	nr_core_relo = attr->core_relo_cnt;
15755 	if (!nr_core_relo)
15756 		return 0;
15757 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15758 		return -EINVAL;
15759 
15760 	rec_size = attr->core_relo_rec_size;
15761 	if (rec_size < MIN_CORE_RELO_SIZE ||
15762 	    rec_size > MAX_CORE_RELO_SIZE ||
15763 	    rec_size % sizeof(u32))
15764 		return -EINVAL;
15765 
15766 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15767 	expected_size = sizeof(struct bpf_core_relo);
15768 	ncopy = min_t(u32, expected_size, rec_size);
15769 
15770 	/* Unlike func_info and line_info, copy and apply each CO-RE
15771 	 * relocation record one at a time.
15772 	 */
15773 	for (i = 0; i < nr_core_relo; i++) {
15774 		/* future proofing when sizeof(bpf_core_relo) changes */
15775 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15776 		if (err) {
15777 			if (err == -E2BIG) {
15778 				verbose(env, "nonzero tailing record in core_relo");
15779 				if (copy_to_bpfptr_offset(uattr,
15780 							  offsetof(union bpf_attr, core_relo_rec_size),
15781 							  &expected_size, sizeof(expected_size)))
15782 					err = -EFAULT;
15783 			}
15784 			break;
15785 		}
15786 
15787 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15788 			err = -EFAULT;
15789 			break;
15790 		}
15791 
15792 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15793 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15794 				i, core_relo.insn_off, prog->len);
15795 			err = -EINVAL;
15796 			break;
15797 		}
15798 
15799 		err = bpf_core_apply(&ctx, &core_relo, i,
15800 				     &prog->insnsi[core_relo.insn_off / 8]);
15801 		if (err)
15802 			break;
15803 		bpfptr_add(&u_core_relo, rec_size);
15804 	}
15805 	return err;
15806 }
15807 
15808 static int check_btf_info(struct bpf_verifier_env *env,
15809 			  const union bpf_attr *attr,
15810 			  bpfptr_t uattr)
15811 {
15812 	struct btf *btf;
15813 	int err;
15814 
15815 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15816 		if (check_abnormal_return(env))
15817 			return -EINVAL;
15818 		return 0;
15819 	}
15820 
15821 	btf = btf_get_by_fd(attr->prog_btf_fd);
15822 	if (IS_ERR(btf))
15823 		return PTR_ERR(btf);
15824 	if (btf_is_kernel(btf)) {
15825 		btf_put(btf);
15826 		return -EACCES;
15827 	}
15828 	env->prog->aux->btf = btf;
15829 
15830 	err = check_btf_func(env, attr, uattr);
15831 	if (err)
15832 		return err;
15833 
15834 	err = check_btf_line(env, attr, uattr);
15835 	if (err)
15836 		return err;
15837 
15838 	err = check_core_relo(env, attr, uattr);
15839 	if (err)
15840 		return err;
15841 
15842 	return 0;
15843 }
15844 
15845 /* check %cur's range satisfies %old's */
15846 static bool range_within(struct bpf_reg_state *old,
15847 			 struct bpf_reg_state *cur)
15848 {
15849 	return old->umin_value <= cur->umin_value &&
15850 	       old->umax_value >= cur->umax_value &&
15851 	       old->smin_value <= cur->smin_value &&
15852 	       old->smax_value >= cur->smax_value &&
15853 	       old->u32_min_value <= cur->u32_min_value &&
15854 	       old->u32_max_value >= cur->u32_max_value &&
15855 	       old->s32_min_value <= cur->s32_min_value &&
15856 	       old->s32_max_value >= cur->s32_max_value;
15857 }
15858 
15859 /* If in the old state two registers had the same id, then they need to have
15860  * the same id in the new state as well.  But that id could be different from
15861  * the old state, so we need to track the mapping from old to new ids.
15862  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15863  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15864  * regs with a different old id could still have new id 9, we don't care about
15865  * that.
15866  * So we look through our idmap to see if this old id has been seen before.  If
15867  * so, we require the new id to match; otherwise, we add the id pair to the map.
15868  */
15869 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15870 {
15871 	struct bpf_id_pair *map = idmap->map;
15872 	unsigned int i;
15873 
15874 	/* either both IDs should be set or both should be zero */
15875 	if (!!old_id != !!cur_id)
15876 		return false;
15877 
15878 	if (old_id == 0) /* cur_id == 0 as well */
15879 		return true;
15880 
15881 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15882 		if (!map[i].old) {
15883 			/* Reached an empty slot; haven't seen this id before */
15884 			map[i].old = old_id;
15885 			map[i].cur = cur_id;
15886 			return true;
15887 		}
15888 		if (map[i].old == old_id)
15889 			return map[i].cur == cur_id;
15890 		if (map[i].cur == cur_id)
15891 			return false;
15892 	}
15893 	/* We ran out of idmap slots, which should be impossible */
15894 	WARN_ON_ONCE(1);
15895 	return false;
15896 }
15897 
15898 /* Similar to check_ids(), but allocate a unique temporary ID
15899  * for 'old_id' or 'cur_id' of zero.
15900  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15901  */
15902 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15903 {
15904 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15905 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15906 
15907 	return check_ids(old_id, cur_id, idmap);
15908 }
15909 
15910 static void clean_func_state(struct bpf_verifier_env *env,
15911 			     struct bpf_func_state *st)
15912 {
15913 	enum bpf_reg_liveness live;
15914 	int i, j;
15915 
15916 	for (i = 0; i < BPF_REG_FP; i++) {
15917 		live = st->regs[i].live;
15918 		/* liveness must not touch this register anymore */
15919 		st->regs[i].live |= REG_LIVE_DONE;
15920 		if (!(live & REG_LIVE_READ))
15921 			/* since the register is unused, clear its state
15922 			 * to make further comparison simpler
15923 			 */
15924 			__mark_reg_not_init(env, &st->regs[i]);
15925 	}
15926 
15927 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15928 		live = st->stack[i].spilled_ptr.live;
15929 		/* liveness must not touch this stack slot anymore */
15930 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15931 		if (!(live & REG_LIVE_READ)) {
15932 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15933 			for (j = 0; j < BPF_REG_SIZE; j++)
15934 				st->stack[i].slot_type[j] = STACK_INVALID;
15935 		}
15936 	}
15937 }
15938 
15939 static void clean_verifier_state(struct bpf_verifier_env *env,
15940 				 struct bpf_verifier_state *st)
15941 {
15942 	int i;
15943 
15944 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15945 		/* all regs in this state in all frames were already marked */
15946 		return;
15947 
15948 	for (i = 0; i <= st->curframe; i++)
15949 		clean_func_state(env, st->frame[i]);
15950 }
15951 
15952 /* the parentage chains form a tree.
15953  * the verifier states are added to state lists at given insn and
15954  * pushed into state stack for future exploration.
15955  * when the verifier reaches bpf_exit insn some of the verifer states
15956  * stored in the state lists have their final liveness state already,
15957  * but a lot of states will get revised from liveness point of view when
15958  * the verifier explores other branches.
15959  * Example:
15960  * 1: r0 = 1
15961  * 2: if r1 == 100 goto pc+1
15962  * 3: r0 = 2
15963  * 4: exit
15964  * when the verifier reaches exit insn the register r0 in the state list of
15965  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15966  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15967  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15968  *
15969  * Since the verifier pushes the branch states as it sees them while exploring
15970  * the program the condition of walking the branch instruction for the second
15971  * time means that all states below this branch were already explored and
15972  * their final liveness marks are already propagated.
15973  * Hence when the verifier completes the search of state list in is_state_visited()
15974  * we can call this clean_live_states() function to mark all liveness states
15975  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15976  * will not be used.
15977  * This function also clears the registers and stack for states that !READ
15978  * to simplify state merging.
15979  *
15980  * Important note here that walking the same branch instruction in the callee
15981  * doesn't meant that the states are DONE. The verifier has to compare
15982  * the callsites
15983  */
15984 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15985 			      struct bpf_verifier_state *cur)
15986 {
15987 	struct bpf_verifier_state_list *sl;
15988 
15989 	sl = *explored_state(env, insn);
15990 	while (sl) {
15991 		if (sl->state.branches)
15992 			goto next;
15993 		if (sl->state.insn_idx != insn ||
15994 		    !same_callsites(&sl->state, cur))
15995 			goto next;
15996 		clean_verifier_state(env, &sl->state);
15997 next:
15998 		sl = sl->next;
15999 	}
16000 }
16001 
16002 static bool regs_exact(const struct bpf_reg_state *rold,
16003 		       const struct bpf_reg_state *rcur,
16004 		       struct bpf_idmap *idmap)
16005 {
16006 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16007 	       check_ids(rold->id, rcur->id, idmap) &&
16008 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16009 }
16010 
16011 /* Returns true if (rold safe implies rcur safe) */
16012 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16013 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16014 {
16015 	if (exact)
16016 		return regs_exact(rold, rcur, idmap);
16017 
16018 	if (!(rold->live & REG_LIVE_READ))
16019 		/* explored state didn't use this */
16020 		return true;
16021 	if (rold->type == NOT_INIT)
16022 		/* explored state can't have used this */
16023 		return true;
16024 	if (rcur->type == NOT_INIT)
16025 		return false;
16026 
16027 	/* Enforce that register types have to match exactly, including their
16028 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16029 	 * rule.
16030 	 *
16031 	 * One can make a point that using a pointer register as unbounded
16032 	 * SCALAR would be technically acceptable, but this could lead to
16033 	 * pointer leaks because scalars are allowed to leak while pointers
16034 	 * are not. We could make this safe in special cases if root is
16035 	 * calling us, but it's probably not worth the hassle.
16036 	 *
16037 	 * Also, register types that are *not* MAYBE_NULL could technically be
16038 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16039 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16040 	 * to the same map).
16041 	 * However, if the old MAYBE_NULL register then got NULL checked,
16042 	 * doing so could have affected others with the same id, and we can't
16043 	 * check for that because we lost the id when we converted to
16044 	 * a non-MAYBE_NULL variant.
16045 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16046 	 * non-MAYBE_NULL registers as well.
16047 	 */
16048 	if (rold->type != rcur->type)
16049 		return false;
16050 
16051 	switch (base_type(rold->type)) {
16052 	case SCALAR_VALUE:
16053 		if (env->explore_alu_limits) {
16054 			/* explore_alu_limits disables tnum_in() and range_within()
16055 			 * logic and requires everything to be strict
16056 			 */
16057 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16058 			       check_scalar_ids(rold->id, rcur->id, idmap);
16059 		}
16060 		if (!rold->precise)
16061 			return true;
16062 		/* Why check_ids() for scalar registers?
16063 		 *
16064 		 * Consider the following BPF code:
16065 		 *   1: r6 = ... unbound scalar, ID=a ...
16066 		 *   2: r7 = ... unbound scalar, ID=b ...
16067 		 *   3: if (r6 > r7) goto +1
16068 		 *   4: r6 = r7
16069 		 *   5: if (r6 > X) goto ...
16070 		 *   6: ... memory operation using r7 ...
16071 		 *
16072 		 * First verification path is [1-6]:
16073 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16074 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16075 		 *   r7 <= X, because r6 and r7 share same id.
16076 		 * Next verification path is [1-4, 6].
16077 		 *
16078 		 * Instruction (6) would be reached in two states:
16079 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16080 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16081 		 *
16082 		 * Use check_ids() to distinguish these states.
16083 		 * ---
16084 		 * Also verify that new value satisfies old value range knowledge.
16085 		 */
16086 		return range_within(rold, rcur) &&
16087 		       tnum_in(rold->var_off, rcur->var_off) &&
16088 		       check_scalar_ids(rold->id, rcur->id, idmap);
16089 	case PTR_TO_MAP_KEY:
16090 	case PTR_TO_MAP_VALUE:
16091 	case PTR_TO_MEM:
16092 	case PTR_TO_BUF:
16093 	case PTR_TO_TP_BUFFER:
16094 		/* If the new min/max/var_off satisfy the old ones and
16095 		 * everything else matches, we are OK.
16096 		 */
16097 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16098 		       range_within(rold, rcur) &&
16099 		       tnum_in(rold->var_off, rcur->var_off) &&
16100 		       check_ids(rold->id, rcur->id, idmap) &&
16101 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16102 	case PTR_TO_PACKET_META:
16103 	case PTR_TO_PACKET:
16104 		/* We must have at least as much range as the old ptr
16105 		 * did, so that any accesses which were safe before are
16106 		 * still safe.  This is true even if old range < old off,
16107 		 * since someone could have accessed through (ptr - k), or
16108 		 * even done ptr -= k in a register, to get a safe access.
16109 		 */
16110 		if (rold->range > rcur->range)
16111 			return false;
16112 		/* If the offsets don't match, we can't trust our alignment;
16113 		 * nor can we be sure that we won't fall out of range.
16114 		 */
16115 		if (rold->off != rcur->off)
16116 			return false;
16117 		/* id relations must be preserved */
16118 		if (!check_ids(rold->id, rcur->id, idmap))
16119 			return false;
16120 		/* new val must satisfy old val knowledge */
16121 		return range_within(rold, rcur) &&
16122 		       tnum_in(rold->var_off, rcur->var_off);
16123 	case PTR_TO_STACK:
16124 		/* two stack pointers are equal only if they're pointing to
16125 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16126 		 */
16127 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16128 	default:
16129 		return regs_exact(rold, rcur, idmap);
16130 	}
16131 }
16132 
16133 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16134 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16135 {
16136 	int i, spi;
16137 
16138 	/* walk slots of the explored stack and ignore any additional
16139 	 * slots in the current stack, since explored(safe) state
16140 	 * didn't use them
16141 	 */
16142 	for (i = 0; i < old->allocated_stack; i++) {
16143 		struct bpf_reg_state *old_reg, *cur_reg;
16144 
16145 		spi = i / BPF_REG_SIZE;
16146 
16147 		if (exact &&
16148 		    (i >= cur->allocated_stack ||
16149 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16150 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
16151 			return false;
16152 
16153 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16154 			i += BPF_REG_SIZE - 1;
16155 			/* explored state didn't use this */
16156 			continue;
16157 		}
16158 
16159 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16160 			continue;
16161 
16162 		if (env->allow_uninit_stack &&
16163 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16164 			continue;
16165 
16166 		/* explored stack has more populated slots than current stack
16167 		 * and these slots were used
16168 		 */
16169 		if (i >= cur->allocated_stack)
16170 			return false;
16171 
16172 		/* if old state was safe with misc data in the stack
16173 		 * it will be safe with zero-initialized stack.
16174 		 * The opposite is not true
16175 		 */
16176 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16177 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16178 			continue;
16179 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16180 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16181 			/* Ex: old explored (safe) state has STACK_SPILL in
16182 			 * this stack slot, but current has STACK_MISC ->
16183 			 * this verifier states are not equivalent,
16184 			 * return false to continue verification of this path
16185 			 */
16186 			return false;
16187 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16188 			continue;
16189 		/* Both old and cur are having same slot_type */
16190 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16191 		case STACK_SPILL:
16192 			/* when explored and current stack slot are both storing
16193 			 * spilled registers, check that stored pointers types
16194 			 * are the same as well.
16195 			 * Ex: explored safe path could have stored
16196 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16197 			 * but current path has stored:
16198 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16199 			 * such verifier states are not equivalent.
16200 			 * return false to continue verification of this path
16201 			 */
16202 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16203 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16204 				return false;
16205 			break;
16206 		case STACK_DYNPTR:
16207 			old_reg = &old->stack[spi].spilled_ptr;
16208 			cur_reg = &cur->stack[spi].spilled_ptr;
16209 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16210 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16211 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16212 				return false;
16213 			break;
16214 		case STACK_ITER:
16215 			old_reg = &old->stack[spi].spilled_ptr;
16216 			cur_reg = &cur->stack[spi].spilled_ptr;
16217 			/* iter.depth is not compared between states as it
16218 			 * doesn't matter for correctness and would otherwise
16219 			 * prevent convergence; we maintain it only to prevent
16220 			 * infinite loop check triggering, see
16221 			 * iter_active_depths_differ()
16222 			 */
16223 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16224 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16225 			    old_reg->iter.state != cur_reg->iter.state ||
16226 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16227 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16228 				return false;
16229 			break;
16230 		case STACK_MISC:
16231 		case STACK_ZERO:
16232 		case STACK_INVALID:
16233 			continue;
16234 		/* Ensure that new unhandled slot types return false by default */
16235 		default:
16236 			return false;
16237 		}
16238 	}
16239 	return true;
16240 }
16241 
16242 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16243 		    struct bpf_idmap *idmap)
16244 {
16245 	int i;
16246 
16247 	if (old->acquired_refs != cur->acquired_refs)
16248 		return false;
16249 
16250 	for (i = 0; i < old->acquired_refs; i++) {
16251 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16252 			return false;
16253 	}
16254 
16255 	return true;
16256 }
16257 
16258 /* compare two verifier states
16259  *
16260  * all states stored in state_list are known to be valid, since
16261  * verifier reached 'bpf_exit' instruction through them
16262  *
16263  * this function is called when verifier exploring different branches of
16264  * execution popped from the state stack. If it sees an old state that has
16265  * more strict register state and more strict stack state then this execution
16266  * branch doesn't need to be explored further, since verifier already
16267  * concluded that more strict state leads to valid finish.
16268  *
16269  * Therefore two states are equivalent if register state is more conservative
16270  * and explored stack state is more conservative than the current one.
16271  * Example:
16272  *       explored                   current
16273  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16274  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16275  *
16276  * In other words if current stack state (one being explored) has more
16277  * valid slots than old one that already passed validation, it means
16278  * the verifier can stop exploring and conclude that current state is valid too
16279  *
16280  * Similarly with registers. If explored state has register type as invalid
16281  * whereas register type in current state is meaningful, it means that
16282  * the current state will reach 'bpf_exit' instruction safely
16283  */
16284 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16285 			      struct bpf_func_state *cur, bool exact)
16286 {
16287 	int i;
16288 
16289 	if (old->callback_depth > cur->callback_depth)
16290 		return false;
16291 
16292 	for (i = 0; i < MAX_BPF_REG; i++)
16293 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16294 			     &env->idmap_scratch, exact))
16295 			return false;
16296 
16297 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16298 		return false;
16299 
16300 	if (!refsafe(old, cur, &env->idmap_scratch))
16301 		return false;
16302 
16303 	return true;
16304 }
16305 
16306 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16307 {
16308 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16309 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16310 }
16311 
16312 static bool states_equal(struct bpf_verifier_env *env,
16313 			 struct bpf_verifier_state *old,
16314 			 struct bpf_verifier_state *cur,
16315 			 bool exact)
16316 {
16317 	int i;
16318 
16319 	if (old->curframe != cur->curframe)
16320 		return false;
16321 
16322 	reset_idmap_scratch(env);
16323 
16324 	/* Verification state from speculative execution simulation
16325 	 * must never prune a non-speculative execution one.
16326 	 */
16327 	if (old->speculative && !cur->speculative)
16328 		return false;
16329 
16330 	if (old->active_lock.ptr != cur->active_lock.ptr)
16331 		return false;
16332 
16333 	/* Old and cur active_lock's have to be either both present
16334 	 * or both absent.
16335 	 */
16336 	if (!!old->active_lock.id != !!cur->active_lock.id)
16337 		return false;
16338 
16339 	if (old->active_lock.id &&
16340 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16341 		return false;
16342 
16343 	if (old->active_rcu_lock != cur->active_rcu_lock)
16344 		return false;
16345 
16346 	/* for states to be equal callsites have to be the same
16347 	 * and all frame states need to be equivalent
16348 	 */
16349 	for (i = 0; i <= old->curframe; i++) {
16350 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16351 			return false;
16352 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16353 			return false;
16354 	}
16355 	return true;
16356 }
16357 
16358 /* Return 0 if no propagation happened. Return negative error code if error
16359  * happened. Otherwise, return the propagated bit.
16360  */
16361 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16362 				  struct bpf_reg_state *reg,
16363 				  struct bpf_reg_state *parent_reg)
16364 {
16365 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16366 	u8 flag = reg->live & REG_LIVE_READ;
16367 	int err;
16368 
16369 	/* When comes here, read flags of PARENT_REG or REG could be any of
16370 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16371 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16372 	 */
16373 	if (parent_flag == REG_LIVE_READ64 ||
16374 	    /* Or if there is no read flag from REG. */
16375 	    !flag ||
16376 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16377 	    parent_flag == flag)
16378 		return 0;
16379 
16380 	err = mark_reg_read(env, reg, parent_reg, flag);
16381 	if (err)
16382 		return err;
16383 
16384 	return flag;
16385 }
16386 
16387 /* A write screens off any subsequent reads; but write marks come from the
16388  * straight-line code between a state and its parent.  When we arrive at an
16389  * equivalent state (jump target or such) we didn't arrive by the straight-line
16390  * code, so read marks in the state must propagate to the parent regardless
16391  * of the state's write marks. That's what 'parent == state->parent' comparison
16392  * in mark_reg_read() is for.
16393  */
16394 static int propagate_liveness(struct bpf_verifier_env *env,
16395 			      const struct bpf_verifier_state *vstate,
16396 			      struct bpf_verifier_state *vparent)
16397 {
16398 	struct bpf_reg_state *state_reg, *parent_reg;
16399 	struct bpf_func_state *state, *parent;
16400 	int i, frame, err = 0;
16401 
16402 	if (vparent->curframe != vstate->curframe) {
16403 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16404 		     vparent->curframe, vstate->curframe);
16405 		return -EFAULT;
16406 	}
16407 	/* Propagate read liveness of registers... */
16408 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16409 	for (frame = 0; frame <= vstate->curframe; frame++) {
16410 		parent = vparent->frame[frame];
16411 		state = vstate->frame[frame];
16412 		parent_reg = parent->regs;
16413 		state_reg = state->regs;
16414 		/* We don't need to worry about FP liveness, it's read-only */
16415 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16416 			err = propagate_liveness_reg(env, &state_reg[i],
16417 						     &parent_reg[i]);
16418 			if (err < 0)
16419 				return err;
16420 			if (err == REG_LIVE_READ64)
16421 				mark_insn_zext(env, &parent_reg[i]);
16422 		}
16423 
16424 		/* Propagate stack slots. */
16425 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16426 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16427 			parent_reg = &parent->stack[i].spilled_ptr;
16428 			state_reg = &state->stack[i].spilled_ptr;
16429 			err = propagate_liveness_reg(env, state_reg,
16430 						     parent_reg);
16431 			if (err < 0)
16432 				return err;
16433 		}
16434 	}
16435 	return 0;
16436 }
16437 
16438 /* find precise scalars in the previous equivalent state and
16439  * propagate them into the current state
16440  */
16441 static int propagate_precision(struct bpf_verifier_env *env,
16442 			       const struct bpf_verifier_state *old)
16443 {
16444 	struct bpf_reg_state *state_reg;
16445 	struct bpf_func_state *state;
16446 	int i, err = 0, fr;
16447 	bool first;
16448 
16449 	for (fr = old->curframe; fr >= 0; fr--) {
16450 		state = old->frame[fr];
16451 		state_reg = state->regs;
16452 		first = true;
16453 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16454 			if (state_reg->type != SCALAR_VALUE ||
16455 			    !state_reg->precise ||
16456 			    !(state_reg->live & REG_LIVE_READ))
16457 				continue;
16458 			if (env->log.level & BPF_LOG_LEVEL2) {
16459 				if (first)
16460 					verbose(env, "frame %d: propagating r%d", fr, i);
16461 				else
16462 					verbose(env, ",r%d", i);
16463 			}
16464 			bt_set_frame_reg(&env->bt, fr, i);
16465 			first = false;
16466 		}
16467 
16468 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16469 			if (!is_spilled_reg(&state->stack[i]))
16470 				continue;
16471 			state_reg = &state->stack[i].spilled_ptr;
16472 			if (state_reg->type != SCALAR_VALUE ||
16473 			    !state_reg->precise ||
16474 			    !(state_reg->live & REG_LIVE_READ))
16475 				continue;
16476 			if (env->log.level & BPF_LOG_LEVEL2) {
16477 				if (first)
16478 					verbose(env, "frame %d: propagating fp%d",
16479 						fr, (-i - 1) * BPF_REG_SIZE);
16480 				else
16481 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16482 			}
16483 			bt_set_frame_slot(&env->bt, fr, i);
16484 			first = false;
16485 		}
16486 		if (!first)
16487 			verbose(env, "\n");
16488 	}
16489 
16490 	err = mark_chain_precision_batch(env);
16491 	if (err < 0)
16492 		return err;
16493 
16494 	return 0;
16495 }
16496 
16497 static bool states_maybe_looping(struct bpf_verifier_state *old,
16498 				 struct bpf_verifier_state *cur)
16499 {
16500 	struct bpf_func_state *fold, *fcur;
16501 	int i, fr = cur->curframe;
16502 
16503 	if (old->curframe != fr)
16504 		return false;
16505 
16506 	fold = old->frame[fr];
16507 	fcur = cur->frame[fr];
16508 	for (i = 0; i < MAX_BPF_REG; i++)
16509 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16510 			   offsetof(struct bpf_reg_state, parent)))
16511 			return false;
16512 	return true;
16513 }
16514 
16515 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16516 {
16517 	return env->insn_aux_data[insn_idx].is_iter_next;
16518 }
16519 
16520 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16521  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16522  * states to match, which otherwise would look like an infinite loop. So while
16523  * iter_next() calls are taken care of, we still need to be careful and
16524  * prevent erroneous and too eager declaration of "ininite loop", when
16525  * iterators are involved.
16526  *
16527  * Here's a situation in pseudo-BPF assembly form:
16528  *
16529  *   0: again:                          ; set up iter_next() call args
16530  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16531  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16532  *   3:   if r0 == 0 goto done
16533  *   4:   ... something useful here ...
16534  *   5:   goto again                    ; another iteration
16535  *   6: done:
16536  *   7:   r1 = &it
16537  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16538  *   9:   exit
16539  *
16540  * This is a typical loop. Let's assume that we have a prune point at 1:,
16541  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16542  * again`, assuming other heuristics don't get in a way).
16543  *
16544  * When we first time come to 1:, let's say we have some state X. We proceed
16545  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16546  * Now we come back to validate that forked ACTIVE state. We proceed through
16547  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16548  * are converging. But the problem is that we don't know that yet, as this
16549  * convergence has to happen at iter_next() call site only. So if nothing is
16550  * done, at 1: verifier will use bounded loop logic and declare infinite
16551  * looping (and would be *technically* correct, if not for iterator's
16552  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16553  * don't want that. So what we do in process_iter_next_call() when we go on
16554  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16555  * a different iteration. So when we suspect an infinite loop, we additionally
16556  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16557  * pretend we are not looping and wait for next iter_next() call.
16558  *
16559  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16560  * loop, because that would actually mean infinite loop, as DRAINED state is
16561  * "sticky", and so we'll keep returning into the same instruction with the
16562  * same state (at least in one of possible code paths).
16563  *
16564  * This approach allows to keep infinite loop heuristic even in the face of
16565  * active iterator. E.g., C snippet below is and will be detected as
16566  * inifintely looping:
16567  *
16568  *   struct bpf_iter_num it;
16569  *   int *p, x;
16570  *
16571  *   bpf_iter_num_new(&it, 0, 10);
16572  *   while ((p = bpf_iter_num_next(&t))) {
16573  *       x = p;
16574  *       while (x--) {} // <<-- infinite loop here
16575  *   }
16576  *
16577  */
16578 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16579 {
16580 	struct bpf_reg_state *slot, *cur_slot;
16581 	struct bpf_func_state *state;
16582 	int i, fr;
16583 
16584 	for (fr = old->curframe; fr >= 0; fr--) {
16585 		state = old->frame[fr];
16586 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16587 			if (state->stack[i].slot_type[0] != STACK_ITER)
16588 				continue;
16589 
16590 			slot = &state->stack[i].spilled_ptr;
16591 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16592 				continue;
16593 
16594 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16595 			if (cur_slot->iter.depth != slot->iter.depth)
16596 				return true;
16597 		}
16598 	}
16599 	return false;
16600 }
16601 
16602 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16603 {
16604 	struct bpf_verifier_state_list *new_sl;
16605 	struct bpf_verifier_state_list *sl, **pprev;
16606 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16607 	int i, j, n, err, states_cnt = 0;
16608 	bool force_new_state, add_new_state, force_exact;
16609 
16610 	force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
16611 			  /* Avoid accumulating infinitely long jmp history */
16612 			  cur->jmp_history_cnt > 40;
16613 
16614 	/* bpf progs typically have pruning point every 4 instructions
16615 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16616 	 * Do not add new state for future pruning if the verifier hasn't seen
16617 	 * at least 2 jumps and at least 8 instructions.
16618 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16619 	 * In tests that amounts to up to 50% reduction into total verifier
16620 	 * memory consumption and 20% verifier time speedup.
16621 	 */
16622 	add_new_state = force_new_state;
16623 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16624 	    env->insn_processed - env->prev_insn_processed >= 8)
16625 		add_new_state = true;
16626 
16627 	pprev = explored_state(env, insn_idx);
16628 	sl = *pprev;
16629 
16630 	clean_live_states(env, insn_idx, cur);
16631 
16632 	while (sl) {
16633 		states_cnt++;
16634 		if (sl->state.insn_idx != insn_idx)
16635 			goto next;
16636 
16637 		if (sl->state.branches) {
16638 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16639 
16640 			if (frame->in_async_callback_fn &&
16641 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16642 				/* Different async_entry_cnt means that the verifier is
16643 				 * processing another entry into async callback.
16644 				 * Seeing the same state is not an indication of infinite
16645 				 * loop or infinite recursion.
16646 				 * But finding the same state doesn't mean that it's safe
16647 				 * to stop processing the current state. The previous state
16648 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16649 				 * Checking in_async_callback_fn alone is not enough either.
16650 				 * Since the verifier still needs to catch infinite loops
16651 				 * inside async callbacks.
16652 				 */
16653 				goto skip_inf_loop_check;
16654 			}
16655 			/* BPF open-coded iterators loop detection is special.
16656 			 * states_maybe_looping() logic is too simplistic in detecting
16657 			 * states that *might* be equivalent, because it doesn't know
16658 			 * about ID remapping, so don't even perform it.
16659 			 * See process_iter_next_call() and iter_active_depths_differ()
16660 			 * for overview of the logic. When current and one of parent
16661 			 * states are detected as equivalent, it's a good thing: we prove
16662 			 * convergence and can stop simulating further iterations.
16663 			 * It's safe to assume that iterator loop will finish, taking into
16664 			 * account iter_next() contract of eventually returning
16665 			 * sticky NULL result.
16666 			 *
16667 			 * Note, that states have to be compared exactly in this case because
16668 			 * read and precision marks might not be finalized inside the loop.
16669 			 * E.g. as in the program below:
16670 			 *
16671 			 *     1. r7 = -16
16672 			 *     2. r6 = bpf_get_prandom_u32()
16673 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
16674 			 *     4.   if (r6 != 42) {
16675 			 *     5.     r7 = -32
16676 			 *     6.     r6 = bpf_get_prandom_u32()
16677 			 *     7.     continue
16678 			 *     8.   }
16679 			 *     9.   r0 = r10
16680 			 *    10.   r0 += r7
16681 			 *    11.   r8 = *(u64 *)(r0 + 0)
16682 			 *    12.   r6 = bpf_get_prandom_u32()
16683 			 *    13. }
16684 			 *
16685 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
16686 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16687 			 * not have read or precision mark for r7 yet, thus inexact states
16688 			 * comparison would discard current state with r7=-32
16689 			 * => unsafe memory access at 11 would not be caught.
16690 			 */
16691 			if (is_iter_next_insn(env, insn_idx)) {
16692 				if (states_equal(env, &sl->state, cur, true)) {
16693 					struct bpf_func_state *cur_frame;
16694 					struct bpf_reg_state *iter_state, *iter_reg;
16695 					int spi;
16696 
16697 					cur_frame = cur->frame[cur->curframe];
16698 					/* btf_check_iter_kfuncs() enforces that
16699 					 * iter state pointer is always the first arg
16700 					 */
16701 					iter_reg = &cur_frame->regs[BPF_REG_1];
16702 					/* current state is valid due to states_equal(),
16703 					 * so we can assume valid iter and reg state,
16704 					 * no need for extra (re-)validations
16705 					 */
16706 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16707 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16708 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16709 						update_loop_entry(cur, &sl->state);
16710 						goto hit;
16711 					}
16712 				}
16713 				goto skip_inf_loop_check;
16714 			}
16715 			if (calls_callback(env, insn_idx)) {
16716 				if (states_equal(env, &sl->state, cur, true))
16717 					goto hit;
16718 				goto skip_inf_loop_check;
16719 			}
16720 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16721 			if (states_maybe_looping(&sl->state, cur) &&
16722 			    states_equal(env, &sl->state, cur, false) &&
16723 			    !iter_active_depths_differ(&sl->state, cur) &&
16724 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
16725 				verbose_linfo(env, insn_idx, "; ");
16726 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16727 				verbose(env, "cur state:");
16728 				print_verifier_state(env, cur->frame[cur->curframe], true);
16729 				verbose(env, "old state:");
16730 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
16731 				return -EINVAL;
16732 			}
16733 			/* if the verifier is processing a loop, avoid adding new state
16734 			 * too often, since different loop iterations have distinct
16735 			 * states and may not help future pruning.
16736 			 * This threshold shouldn't be too low to make sure that
16737 			 * a loop with large bound will be rejected quickly.
16738 			 * The most abusive loop will be:
16739 			 * r1 += 1
16740 			 * if r1 < 1000000 goto pc-2
16741 			 * 1M insn_procssed limit / 100 == 10k peak states.
16742 			 * This threshold shouldn't be too high either, since states
16743 			 * at the end of the loop are likely to be useful in pruning.
16744 			 */
16745 skip_inf_loop_check:
16746 			if (!force_new_state &&
16747 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16748 			    env->insn_processed - env->prev_insn_processed < 100)
16749 				add_new_state = false;
16750 			goto miss;
16751 		}
16752 		/* If sl->state is a part of a loop and this loop's entry is a part of
16753 		 * current verification path then states have to be compared exactly.
16754 		 * 'force_exact' is needed to catch the following case:
16755 		 *
16756 		 *                initial     Here state 'succ' was processed first,
16757 		 *                  |         it was eventually tracked to produce a
16758 		 *                  V         state identical to 'hdr'.
16759 		 *     .---------> hdr        All branches from 'succ' had been explored
16760 		 *     |            |         and thus 'succ' has its .branches == 0.
16761 		 *     |            V
16762 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
16763 		 *     |    |       |         to the same instruction + callsites.
16764 		 *     |    V       V         In such case it is necessary to check
16765 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
16766 		 *     |    |       |         If 'succ' and 'cur' are a part of the
16767 		 *     |    V       V         same loop exact flag has to be set.
16768 		 *     |   succ <- cur        To check if that is the case, verify
16769 		 *     |    |                 if loop entry of 'succ' is in current
16770 		 *     |    V                 DFS path.
16771 		 *     |   ...
16772 		 *     |    |
16773 		 *     '----'
16774 		 *
16775 		 * Additional details are in the comment before get_loop_entry().
16776 		 */
16777 		loop_entry = get_loop_entry(&sl->state);
16778 		force_exact = loop_entry && loop_entry->branches > 0;
16779 		if (states_equal(env, &sl->state, cur, force_exact)) {
16780 			if (force_exact)
16781 				update_loop_entry(cur, loop_entry);
16782 hit:
16783 			sl->hit_cnt++;
16784 			/* reached equivalent register/stack state,
16785 			 * prune the search.
16786 			 * Registers read by the continuation are read by us.
16787 			 * If we have any write marks in env->cur_state, they
16788 			 * will prevent corresponding reads in the continuation
16789 			 * from reaching our parent (an explored_state).  Our
16790 			 * own state will get the read marks recorded, but
16791 			 * they'll be immediately forgotten as we're pruning
16792 			 * this state and will pop a new one.
16793 			 */
16794 			err = propagate_liveness(env, &sl->state, cur);
16795 
16796 			/* if previous state reached the exit with precision and
16797 			 * current state is equivalent to it (except precsion marks)
16798 			 * the precision needs to be propagated back in
16799 			 * the current state.
16800 			 */
16801 			if (is_jmp_point(env, env->insn_idx))
16802 				err = err ? : push_jmp_history(env, cur, 0);
16803 			err = err ? : propagate_precision(env, &sl->state);
16804 			if (err)
16805 				return err;
16806 			return 1;
16807 		}
16808 miss:
16809 		/* when new state is not going to be added do not increase miss count.
16810 		 * Otherwise several loop iterations will remove the state
16811 		 * recorded earlier. The goal of these heuristics is to have
16812 		 * states from some iterations of the loop (some in the beginning
16813 		 * and some at the end) to help pruning.
16814 		 */
16815 		if (add_new_state)
16816 			sl->miss_cnt++;
16817 		/* heuristic to determine whether this state is beneficial
16818 		 * to keep checking from state equivalence point of view.
16819 		 * Higher numbers increase max_states_per_insn and verification time,
16820 		 * but do not meaningfully decrease insn_processed.
16821 		 * 'n' controls how many times state could miss before eviction.
16822 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
16823 		 * too early would hinder iterator convergence.
16824 		 */
16825 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
16826 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
16827 			/* the state is unlikely to be useful. Remove it to
16828 			 * speed up verification
16829 			 */
16830 			*pprev = sl->next;
16831 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
16832 			    !sl->state.used_as_loop_entry) {
16833 				u32 br = sl->state.branches;
16834 
16835 				WARN_ONCE(br,
16836 					  "BUG live_done but branches_to_explore %d\n",
16837 					  br);
16838 				free_verifier_state(&sl->state, false);
16839 				kfree(sl);
16840 				env->peak_states--;
16841 			} else {
16842 				/* cannot free this state, since parentage chain may
16843 				 * walk it later. Add it for free_list instead to
16844 				 * be freed at the end of verification
16845 				 */
16846 				sl->next = env->free_list;
16847 				env->free_list = sl;
16848 			}
16849 			sl = *pprev;
16850 			continue;
16851 		}
16852 next:
16853 		pprev = &sl->next;
16854 		sl = *pprev;
16855 	}
16856 
16857 	if (env->max_states_per_insn < states_cnt)
16858 		env->max_states_per_insn = states_cnt;
16859 
16860 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16861 		return 0;
16862 
16863 	if (!add_new_state)
16864 		return 0;
16865 
16866 	/* There were no equivalent states, remember the current one.
16867 	 * Technically the current state is not proven to be safe yet,
16868 	 * but it will either reach outer most bpf_exit (which means it's safe)
16869 	 * or it will be rejected. When there are no loops the verifier won't be
16870 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16871 	 * again on the way to bpf_exit.
16872 	 * When looping the sl->state.branches will be > 0 and this state
16873 	 * will not be considered for equivalence until branches == 0.
16874 	 */
16875 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16876 	if (!new_sl)
16877 		return -ENOMEM;
16878 	env->total_states++;
16879 	env->peak_states++;
16880 	env->prev_jmps_processed = env->jmps_processed;
16881 	env->prev_insn_processed = env->insn_processed;
16882 
16883 	/* forget precise markings we inherited, see __mark_chain_precision */
16884 	if (env->bpf_capable)
16885 		mark_all_scalars_imprecise(env, cur);
16886 
16887 	/* add new state to the head of linked list */
16888 	new = &new_sl->state;
16889 	err = copy_verifier_state(new, cur);
16890 	if (err) {
16891 		free_verifier_state(new, false);
16892 		kfree(new_sl);
16893 		return err;
16894 	}
16895 	new->insn_idx = insn_idx;
16896 	WARN_ONCE(new->branches != 1,
16897 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16898 
16899 	cur->parent = new;
16900 	cur->first_insn_idx = insn_idx;
16901 	cur->dfs_depth = new->dfs_depth + 1;
16902 	clear_jmp_history(cur);
16903 	new_sl->next = *explored_state(env, insn_idx);
16904 	*explored_state(env, insn_idx) = new_sl;
16905 	/* connect new state to parentage chain. Current frame needs all
16906 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16907 	 * to the stack implicitly by JITs) so in callers' frames connect just
16908 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16909 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16910 	 * from callee with its full parentage chain, anyway.
16911 	 */
16912 	/* clear write marks in current state: the writes we did are not writes
16913 	 * our child did, so they don't screen off its reads from us.
16914 	 * (There are no read marks in current state, because reads always mark
16915 	 * their parent and current state never has children yet.  Only
16916 	 * explored_states can get read marks.)
16917 	 */
16918 	for (j = 0; j <= cur->curframe; j++) {
16919 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16920 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16921 		for (i = 0; i < BPF_REG_FP; i++)
16922 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16923 	}
16924 
16925 	/* all stack frames are accessible from callee, clear them all */
16926 	for (j = 0; j <= cur->curframe; j++) {
16927 		struct bpf_func_state *frame = cur->frame[j];
16928 		struct bpf_func_state *newframe = new->frame[j];
16929 
16930 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16931 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16932 			frame->stack[i].spilled_ptr.parent =
16933 						&newframe->stack[i].spilled_ptr;
16934 		}
16935 	}
16936 	return 0;
16937 }
16938 
16939 /* Return true if it's OK to have the same insn return a different type. */
16940 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16941 {
16942 	switch (base_type(type)) {
16943 	case PTR_TO_CTX:
16944 	case PTR_TO_SOCKET:
16945 	case PTR_TO_SOCK_COMMON:
16946 	case PTR_TO_TCP_SOCK:
16947 	case PTR_TO_XDP_SOCK:
16948 	case PTR_TO_BTF_ID:
16949 		return false;
16950 	default:
16951 		return true;
16952 	}
16953 }
16954 
16955 /* If an instruction was previously used with particular pointer types, then we
16956  * need to be careful to avoid cases such as the below, where it may be ok
16957  * for one branch accessing the pointer, but not ok for the other branch:
16958  *
16959  * R1 = sock_ptr
16960  * goto X;
16961  * ...
16962  * R1 = some_other_valid_ptr;
16963  * goto X;
16964  * ...
16965  * R2 = *(u32 *)(R1 + 0);
16966  */
16967 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16968 {
16969 	return src != prev && (!reg_type_mismatch_ok(src) ||
16970 			       !reg_type_mismatch_ok(prev));
16971 }
16972 
16973 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16974 			     bool allow_trust_missmatch)
16975 {
16976 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16977 
16978 	if (*prev_type == NOT_INIT) {
16979 		/* Saw a valid insn
16980 		 * dst_reg = *(u32 *)(src_reg + off)
16981 		 * save type to validate intersecting paths
16982 		 */
16983 		*prev_type = type;
16984 	} else if (reg_type_mismatch(type, *prev_type)) {
16985 		/* Abuser program is trying to use the same insn
16986 		 * dst_reg = *(u32*) (src_reg + off)
16987 		 * with different pointer types:
16988 		 * src_reg == ctx in one branch and
16989 		 * src_reg == stack|map in some other branch.
16990 		 * Reject it.
16991 		 */
16992 		if (allow_trust_missmatch &&
16993 		    base_type(type) == PTR_TO_BTF_ID &&
16994 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16995 			/*
16996 			 * Have to support a use case when one path through
16997 			 * the program yields TRUSTED pointer while another
16998 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16999 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17000 			 */
17001 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17002 		} else {
17003 			verbose(env, "same insn cannot be used with different pointers\n");
17004 			return -EINVAL;
17005 		}
17006 	}
17007 
17008 	return 0;
17009 }
17010 
17011 static int do_check(struct bpf_verifier_env *env)
17012 {
17013 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17014 	struct bpf_verifier_state *state = env->cur_state;
17015 	struct bpf_insn *insns = env->prog->insnsi;
17016 	struct bpf_reg_state *regs;
17017 	int insn_cnt = env->prog->len;
17018 	bool do_print_state = false;
17019 	int prev_insn_idx = -1;
17020 
17021 	for (;;) {
17022 		struct bpf_insn *insn;
17023 		u8 class;
17024 		int err;
17025 
17026 		/* reset current history entry on each new instruction */
17027 		env->cur_hist_ent = NULL;
17028 
17029 		env->prev_insn_idx = prev_insn_idx;
17030 		if (env->insn_idx >= insn_cnt) {
17031 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17032 				env->insn_idx, insn_cnt);
17033 			return -EFAULT;
17034 		}
17035 
17036 		insn = &insns[env->insn_idx];
17037 		class = BPF_CLASS(insn->code);
17038 
17039 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17040 			verbose(env,
17041 				"BPF program is too large. Processed %d insn\n",
17042 				env->insn_processed);
17043 			return -E2BIG;
17044 		}
17045 
17046 		state->last_insn_idx = env->prev_insn_idx;
17047 
17048 		if (is_prune_point(env, env->insn_idx)) {
17049 			err = is_state_visited(env, env->insn_idx);
17050 			if (err < 0)
17051 				return err;
17052 			if (err == 1) {
17053 				/* found equivalent state, can prune the search */
17054 				if (env->log.level & BPF_LOG_LEVEL) {
17055 					if (do_print_state)
17056 						verbose(env, "\nfrom %d to %d%s: safe\n",
17057 							env->prev_insn_idx, env->insn_idx,
17058 							env->cur_state->speculative ?
17059 							" (speculative execution)" : "");
17060 					else
17061 						verbose(env, "%d: safe\n", env->insn_idx);
17062 				}
17063 				goto process_bpf_exit;
17064 			}
17065 		}
17066 
17067 		if (is_jmp_point(env, env->insn_idx)) {
17068 			err = push_jmp_history(env, state, 0);
17069 			if (err)
17070 				return err;
17071 		}
17072 
17073 		if (signal_pending(current))
17074 			return -EAGAIN;
17075 
17076 		if (need_resched())
17077 			cond_resched();
17078 
17079 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17080 			verbose(env, "\nfrom %d to %d%s:",
17081 				env->prev_insn_idx, env->insn_idx,
17082 				env->cur_state->speculative ?
17083 				" (speculative execution)" : "");
17084 			print_verifier_state(env, state->frame[state->curframe], true);
17085 			do_print_state = false;
17086 		}
17087 
17088 		if (env->log.level & BPF_LOG_LEVEL) {
17089 			const struct bpf_insn_cbs cbs = {
17090 				.cb_call	= disasm_kfunc_name,
17091 				.cb_print	= verbose,
17092 				.private_data	= env,
17093 			};
17094 
17095 			if (verifier_state_scratched(env))
17096 				print_insn_state(env, state->frame[state->curframe]);
17097 
17098 			verbose_linfo(env, env->insn_idx, "; ");
17099 			env->prev_log_pos = env->log.end_pos;
17100 			verbose(env, "%d: ", env->insn_idx);
17101 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17102 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17103 			env->prev_log_pos = env->log.end_pos;
17104 		}
17105 
17106 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17107 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17108 							   env->prev_insn_idx);
17109 			if (err)
17110 				return err;
17111 		}
17112 
17113 		regs = cur_regs(env);
17114 		sanitize_mark_insn_seen(env);
17115 		prev_insn_idx = env->insn_idx;
17116 
17117 		if (class == BPF_ALU || class == BPF_ALU64) {
17118 			err = check_alu_op(env, insn);
17119 			if (err)
17120 				return err;
17121 
17122 		} else if (class == BPF_LDX) {
17123 			enum bpf_reg_type src_reg_type;
17124 
17125 			/* check for reserved fields is already done */
17126 
17127 			/* check src operand */
17128 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17129 			if (err)
17130 				return err;
17131 
17132 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17133 			if (err)
17134 				return err;
17135 
17136 			src_reg_type = regs[insn->src_reg].type;
17137 
17138 			/* check that memory (src_reg + off) is readable,
17139 			 * the state of dst_reg will be updated by this func
17140 			 */
17141 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17142 					       insn->off, BPF_SIZE(insn->code),
17143 					       BPF_READ, insn->dst_reg, false,
17144 					       BPF_MODE(insn->code) == BPF_MEMSX);
17145 			if (err)
17146 				return err;
17147 
17148 			err = save_aux_ptr_type(env, src_reg_type, true);
17149 			if (err)
17150 				return err;
17151 		} else if (class == BPF_STX) {
17152 			enum bpf_reg_type dst_reg_type;
17153 
17154 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17155 				err = check_atomic(env, env->insn_idx, insn);
17156 				if (err)
17157 					return err;
17158 				env->insn_idx++;
17159 				continue;
17160 			}
17161 
17162 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17163 				verbose(env, "BPF_STX uses reserved fields\n");
17164 				return -EINVAL;
17165 			}
17166 
17167 			/* check src1 operand */
17168 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17169 			if (err)
17170 				return err;
17171 			/* check src2 operand */
17172 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17173 			if (err)
17174 				return err;
17175 
17176 			dst_reg_type = regs[insn->dst_reg].type;
17177 
17178 			/* check that memory (dst_reg + off) is writeable */
17179 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17180 					       insn->off, BPF_SIZE(insn->code),
17181 					       BPF_WRITE, insn->src_reg, false, false);
17182 			if (err)
17183 				return err;
17184 
17185 			err = save_aux_ptr_type(env, dst_reg_type, false);
17186 			if (err)
17187 				return err;
17188 		} else if (class == BPF_ST) {
17189 			enum bpf_reg_type dst_reg_type;
17190 
17191 			if (BPF_MODE(insn->code) != BPF_MEM ||
17192 			    insn->src_reg != BPF_REG_0) {
17193 				verbose(env, "BPF_ST uses reserved fields\n");
17194 				return -EINVAL;
17195 			}
17196 			/* check src operand */
17197 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17198 			if (err)
17199 				return err;
17200 
17201 			dst_reg_type = regs[insn->dst_reg].type;
17202 
17203 			/* check that memory (dst_reg + off) is writeable */
17204 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17205 					       insn->off, BPF_SIZE(insn->code),
17206 					       BPF_WRITE, -1, false, false);
17207 			if (err)
17208 				return err;
17209 
17210 			err = save_aux_ptr_type(env, dst_reg_type, false);
17211 			if (err)
17212 				return err;
17213 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17214 			u8 opcode = BPF_OP(insn->code);
17215 
17216 			env->jmps_processed++;
17217 			if (opcode == BPF_CALL) {
17218 				if (BPF_SRC(insn->code) != BPF_K ||
17219 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17220 				     && insn->off != 0) ||
17221 				    (insn->src_reg != BPF_REG_0 &&
17222 				     insn->src_reg != BPF_PSEUDO_CALL &&
17223 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17224 				    insn->dst_reg != BPF_REG_0 ||
17225 				    class == BPF_JMP32) {
17226 					verbose(env, "BPF_CALL uses reserved fields\n");
17227 					return -EINVAL;
17228 				}
17229 
17230 				if (env->cur_state->active_lock.ptr) {
17231 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17232 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17233 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17234 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17235 						verbose(env, "function calls are not allowed while holding a lock\n");
17236 						return -EINVAL;
17237 					}
17238 				}
17239 				if (insn->src_reg == BPF_PSEUDO_CALL)
17240 					err = check_func_call(env, insn, &env->insn_idx);
17241 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
17242 					err = check_kfunc_call(env, insn, &env->insn_idx);
17243 				else
17244 					err = check_helper_call(env, insn, &env->insn_idx);
17245 				if (err)
17246 					return err;
17247 
17248 				mark_reg_scratched(env, BPF_REG_0);
17249 			} else if (opcode == BPF_JA) {
17250 				if (BPF_SRC(insn->code) != BPF_K ||
17251 				    insn->src_reg != BPF_REG_0 ||
17252 				    insn->dst_reg != BPF_REG_0 ||
17253 				    (class == BPF_JMP && insn->imm != 0) ||
17254 				    (class == BPF_JMP32 && insn->off != 0)) {
17255 					verbose(env, "BPF_JA uses reserved fields\n");
17256 					return -EINVAL;
17257 				}
17258 
17259 				if (class == BPF_JMP)
17260 					env->insn_idx += insn->off + 1;
17261 				else
17262 					env->insn_idx += insn->imm + 1;
17263 				continue;
17264 
17265 			} else if (opcode == BPF_EXIT) {
17266 				if (BPF_SRC(insn->code) != BPF_K ||
17267 				    insn->imm != 0 ||
17268 				    insn->src_reg != BPF_REG_0 ||
17269 				    insn->dst_reg != BPF_REG_0 ||
17270 				    class == BPF_JMP32) {
17271 					verbose(env, "BPF_EXIT uses reserved fields\n");
17272 					return -EINVAL;
17273 				}
17274 
17275 				if (env->cur_state->active_lock.ptr &&
17276 				    !in_rbtree_lock_required_cb(env)) {
17277 					verbose(env, "bpf_spin_unlock is missing\n");
17278 					return -EINVAL;
17279 				}
17280 
17281 				if (env->cur_state->active_rcu_lock &&
17282 				    !in_rbtree_lock_required_cb(env)) {
17283 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17284 					return -EINVAL;
17285 				}
17286 
17287 				/* We must do check_reference_leak here before
17288 				 * prepare_func_exit to handle the case when
17289 				 * state->curframe > 0, it may be a callback
17290 				 * function, for which reference_state must
17291 				 * match caller reference state when it exits.
17292 				 */
17293 				err = check_reference_leak(env);
17294 				if (err)
17295 					return err;
17296 
17297 				if (state->curframe) {
17298 					/* exit from nested function */
17299 					err = prepare_func_exit(env, &env->insn_idx);
17300 					if (err)
17301 						return err;
17302 					do_print_state = true;
17303 					continue;
17304 				}
17305 
17306 				err = check_return_code(env);
17307 				if (err)
17308 					return err;
17309 process_bpf_exit:
17310 				mark_verifier_state_scratched(env);
17311 				update_branch_counts(env, env->cur_state);
17312 				err = pop_stack(env, &prev_insn_idx,
17313 						&env->insn_idx, pop_log);
17314 				if (err < 0) {
17315 					if (err != -ENOENT)
17316 						return err;
17317 					break;
17318 				} else {
17319 					do_print_state = true;
17320 					continue;
17321 				}
17322 			} else {
17323 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17324 				if (err)
17325 					return err;
17326 			}
17327 		} else if (class == BPF_LD) {
17328 			u8 mode = BPF_MODE(insn->code);
17329 
17330 			if (mode == BPF_ABS || mode == BPF_IND) {
17331 				err = check_ld_abs(env, insn);
17332 				if (err)
17333 					return err;
17334 
17335 			} else if (mode == BPF_IMM) {
17336 				err = check_ld_imm(env, insn);
17337 				if (err)
17338 					return err;
17339 
17340 				env->insn_idx++;
17341 				sanitize_mark_insn_seen(env);
17342 			} else {
17343 				verbose(env, "invalid BPF_LD mode\n");
17344 				return -EINVAL;
17345 			}
17346 		} else {
17347 			verbose(env, "unknown insn class %d\n", class);
17348 			return -EINVAL;
17349 		}
17350 
17351 		env->insn_idx++;
17352 	}
17353 
17354 	return 0;
17355 }
17356 
17357 static int find_btf_percpu_datasec(struct btf *btf)
17358 {
17359 	const struct btf_type *t;
17360 	const char *tname;
17361 	int i, n;
17362 
17363 	/*
17364 	 * Both vmlinux and module each have their own ".data..percpu"
17365 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17366 	 * types to look at only module's own BTF types.
17367 	 */
17368 	n = btf_nr_types(btf);
17369 	if (btf_is_module(btf))
17370 		i = btf_nr_types(btf_vmlinux);
17371 	else
17372 		i = 1;
17373 
17374 	for(; i < n; i++) {
17375 		t = btf_type_by_id(btf, i);
17376 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17377 			continue;
17378 
17379 		tname = btf_name_by_offset(btf, t->name_off);
17380 		if (!strcmp(tname, ".data..percpu"))
17381 			return i;
17382 	}
17383 
17384 	return -ENOENT;
17385 }
17386 
17387 /* replace pseudo btf_id with kernel symbol address */
17388 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17389 			       struct bpf_insn *insn,
17390 			       struct bpf_insn_aux_data *aux)
17391 {
17392 	const struct btf_var_secinfo *vsi;
17393 	const struct btf_type *datasec;
17394 	struct btf_mod_pair *btf_mod;
17395 	const struct btf_type *t;
17396 	const char *sym_name;
17397 	bool percpu = false;
17398 	u32 type, id = insn->imm;
17399 	struct btf *btf;
17400 	s32 datasec_id;
17401 	u64 addr;
17402 	int i, btf_fd, err;
17403 
17404 	btf_fd = insn[1].imm;
17405 	if (btf_fd) {
17406 		btf = btf_get_by_fd(btf_fd);
17407 		if (IS_ERR(btf)) {
17408 			verbose(env, "invalid module BTF object FD specified.\n");
17409 			return -EINVAL;
17410 		}
17411 	} else {
17412 		if (!btf_vmlinux) {
17413 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17414 			return -EINVAL;
17415 		}
17416 		btf = btf_vmlinux;
17417 		btf_get(btf);
17418 	}
17419 
17420 	t = btf_type_by_id(btf, id);
17421 	if (!t) {
17422 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17423 		err = -ENOENT;
17424 		goto err_put;
17425 	}
17426 
17427 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17428 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17429 		err = -EINVAL;
17430 		goto err_put;
17431 	}
17432 
17433 	sym_name = btf_name_by_offset(btf, t->name_off);
17434 	addr = kallsyms_lookup_name(sym_name);
17435 	if (!addr) {
17436 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17437 			sym_name);
17438 		err = -ENOENT;
17439 		goto err_put;
17440 	}
17441 	insn[0].imm = (u32)addr;
17442 	insn[1].imm = addr >> 32;
17443 
17444 	if (btf_type_is_func(t)) {
17445 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17446 		aux->btf_var.mem_size = 0;
17447 		goto check_btf;
17448 	}
17449 
17450 	datasec_id = find_btf_percpu_datasec(btf);
17451 	if (datasec_id > 0) {
17452 		datasec = btf_type_by_id(btf, datasec_id);
17453 		for_each_vsi(i, datasec, vsi) {
17454 			if (vsi->type == id) {
17455 				percpu = true;
17456 				break;
17457 			}
17458 		}
17459 	}
17460 
17461 	type = t->type;
17462 	t = btf_type_skip_modifiers(btf, type, NULL);
17463 	if (percpu) {
17464 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17465 		aux->btf_var.btf = btf;
17466 		aux->btf_var.btf_id = type;
17467 	} else if (!btf_type_is_struct(t)) {
17468 		const struct btf_type *ret;
17469 		const char *tname;
17470 		u32 tsize;
17471 
17472 		/* resolve the type size of ksym. */
17473 		ret = btf_resolve_size(btf, t, &tsize);
17474 		if (IS_ERR(ret)) {
17475 			tname = btf_name_by_offset(btf, t->name_off);
17476 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17477 				tname, PTR_ERR(ret));
17478 			err = -EINVAL;
17479 			goto err_put;
17480 		}
17481 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17482 		aux->btf_var.mem_size = tsize;
17483 	} else {
17484 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17485 		aux->btf_var.btf = btf;
17486 		aux->btf_var.btf_id = type;
17487 	}
17488 check_btf:
17489 	/* check whether we recorded this BTF (and maybe module) already */
17490 	for (i = 0; i < env->used_btf_cnt; i++) {
17491 		if (env->used_btfs[i].btf == btf) {
17492 			btf_put(btf);
17493 			return 0;
17494 		}
17495 	}
17496 
17497 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17498 		err = -E2BIG;
17499 		goto err_put;
17500 	}
17501 
17502 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17503 	btf_mod->btf = btf;
17504 	btf_mod->module = NULL;
17505 
17506 	/* if we reference variables from kernel module, bump its refcount */
17507 	if (btf_is_module(btf)) {
17508 		btf_mod->module = btf_try_get_module(btf);
17509 		if (!btf_mod->module) {
17510 			err = -ENXIO;
17511 			goto err_put;
17512 		}
17513 	}
17514 
17515 	env->used_btf_cnt++;
17516 
17517 	return 0;
17518 err_put:
17519 	btf_put(btf);
17520 	return err;
17521 }
17522 
17523 static bool is_tracing_prog_type(enum bpf_prog_type type)
17524 {
17525 	switch (type) {
17526 	case BPF_PROG_TYPE_KPROBE:
17527 	case BPF_PROG_TYPE_TRACEPOINT:
17528 	case BPF_PROG_TYPE_PERF_EVENT:
17529 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17530 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17531 		return true;
17532 	default:
17533 		return false;
17534 	}
17535 }
17536 
17537 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17538 					struct bpf_map *map,
17539 					struct bpf_prog *prog)
17540 
17541 {
17542 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17543 
17544 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17545 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17546 		if (is_tracing_prog_type(prog_type)) {
17547 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17548 			return -EINVAL;
17549 		}
17550 	}
17551 
17552 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17553 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17554 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17555 			return -EINVAL;
17556 		}
17557 
17558 		if (is_tracing_prog_type(prog_type)) {
17559 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17560 			return -EINVAL;
17561 		}
17562 	}
17563 
17564 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17565 		if (is_tracing_prog_type(prog_type)) {
17566 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17567 			return -EINVAL;
17568 		}
17569 	}
17570 
17571 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17572 	    !bpf_offload_prog_map_match(prog, map)) {
17573 		verbose(env, "offload device mismatch between prog and map\n");
17574 		return -EINVAL;
17575 	}
17576 
17577 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17578 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17579 		return -EINVAL;
17580 	}
17581 
17582 	if (prog->aux->sleepable)
17583 		switch (map->map_type) {
17584 		case BPF_MAP_TYPE_HASH:
17585 		case BPF_MAP_TYPE_LRU_HASH:
17586 		case BPF_MAP_TYPE_ARRAY:
17587 		case BPF_MAP_TYPE_PERCPU_HASH:
17588 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17589 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17590 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17591 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17592 		case BPF_MAP_TYPE_RINGBUF:
17593 		case BPF_MAP_TYPE_USER_RINGBUF:
17594 		case BPF_MAP_TYPE_INODE_STORAGE:
17595 		case BPF_MAP_TYPE_SK_STORAGE:
17596 		case BPF_MAP_TYPE_TASK_STORAGE:
17597 		case BPF_MAP_TYPE_CGRP_STORAGE:
17598 			break;
17599 		default:
17600 			verbose(env,
17601 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17602 			return -EINVAL;
17603 		}
17604 
17605 	return 0;
17606 }
17607 
17608 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17609 {
17610 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17611 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17612 }
17613 
17614 /* find and rewrite pseudo imm in ld_imm64 instructions:
17615  *
17616  * 1. if it accesses map FD, replace it with actual map pointer.
17617  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17618  *
17619  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17620  */
17621 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17622 {
17623 	struct bpf_insn *insn = env->prog->insnsi;
17624 	int insn_cnt = env->prog->len;
17625 	int i, j, err;
17626 
17627 	err = bpf_prog_calc_tag(env->prog);
17628 	if (err)
17629 		return err;
17630 
17631 	for (i = 0; i < insn_cnt; i++, insn++) {
17632 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17633 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17634 		    insn->imm != 0)) {
17635 			verbose(env, "BPF_LDX uses reserved fields\n");
17636 			return -EINVAL;
17637 		}
17638 
17639 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17640 			struct bpf_insn_aux_data *aux;
17641 			struct bpf_map *map;
17642 			struct fd f;
17643 			u64 addr;
17644 			u32 fd;
17645 
17646 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17647 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17648 			    insn[1].off != 0) {
17649 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17650 				return -EINVAL;
17651 			}
17652 
17653 			if (insn[0].src_reg == 0)
17654 				/* valid generic load 64-bit imm */
17655 				goto next_insn;
17656 
17657 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17658 				aux = &env->insn_aux_data[i];
17659 				err = check_pseudo_btf_id(env, insn, aux);
17660 				if (err)
17661 					return err;
17662 				goto next_insn;
17663 			}
17664 
17665 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17666 				aux = &env->insn_aux_data[i];
17667 				aux->ptr_type = PTR_TO_FUNC;
17668 				goto next_insn;
17669 			}
17670 
17671 			/* In final convert_pseudo_ld_imm64() step, this is
17672 			 * converted into regular 64-bit imm load insn.
17673 			 */
17674 			switch (insn[0].src_reg) {
17675 			case BPF_PSEUDO_MAP_VALUE:
17676 			case BPF_PSEUDO_MAP_IDX_VALUE:
17677 				break;
17678 			case BPF_PSEUDO_MAP_FD:
17679 			case BPF_PSEUDO_MAP_IDX:
17680 				if (insn[1].imm == 0)
17681 					break;
17682 				fallthrough;
17683 			default:
17684 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17685 				return -EINVAL;
17686 			}
17687 
17688 			switch (insn[0].src_reg) {
17689 			case BPF_PSEUDO_MAP_IDX_VALUE:
17690 			case BPF_PSEUDO_MAP_IDX:
17691 				if (bpfptr_is_null(env->fd_array)) {
17692 					verbose(env, "fd_idx without fd_array is invalid\n");
17693 					return -EPROTO;
17694 				}
17695 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17696 							    insn[0].imm * sizeof(fd),
17697 							    sizeof(fd)))
17698 					return -EFAULT;
17699 				break;
17700 			default:
17701 				fd = insn[0].imm;
17702 				break;
17703 			}
17704 
17705 			f = fdget(fd);
17706 			map = __bpf_map_get(f);
17707 			if (IS_ERR(map)) {
17708 				verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
17709 				return PTR_ERR(map);
17710 			}
17711 
17712 			err = check_map_prog_compatibility(env, map, env->prog);
17713 			if (err) {
17714 				fdput(f);
17715 				return err;
17716 			}
17717 
17718 			aux = &env->insn_aux_data[i];
17719 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17720 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17721 				addr = (unsigned long)map;
17722 			} else {
17723 				u32 off = insn[1].imm;
17724 
17725 				if (off >= BPF_MAX_VAR_OFF) {
17726 					verbose(env, "direct value offset of %u is not allowed\n", off);
17727 					fdput(f);
17728 					return -EINVAL;
17729 				}
17730 
17731 				if (!map->ops->map_direct_value_addr) {
17732 					verbose(env, "no direct value access support for this map type\n");
17733 					fdput(f);
17734 					return -EINVAL;
17735 				}
17736 
17737 				err = map->ops->map_direct_value_addr(map, &addr, off);
17738 				if (err) {
17739 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17740 						map->value_size, off);
17741 					fdput(f);
17742 					return err;
17743 				}
17744 
17745 				aux->map_off = off;
17746 				addr += off;
17747 			}
17748 
17749 			insn[0].imm = (u32)addr;
17750 			insn[1].imm = addr >> 32;
17751 
17752 			/* check whether we recorded this map already */
17753 			for (j = 0; j < env->used_map_cnt; j++) {
17754 				if (env->used_maps[j] == map) {
17755 					aux->map_index = j;
17756 					fdput(f);
17757 					goto next_insn;
17758 				}
17759 			}
17760 
17761 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17762 				fdput(f);
17763 				return -E2BIG;
17764 			}
17765 
17766 			if (env->prog->aux->sleepable)
17767 				atomic64_inc(&map->sleepable_refcnt);
17768 			/* hold the map. If the program is rejected by verifier,
17769 			 * the map will be released by release_maps() or it
17770 			 * will be used by the valid program until it's unloaded
17771 			 * and all maps are released in bpf_free_used_maps()
17772 			 */
17773 			bpf_map_inc(map);
17774 
17775 			aux->map_index = env->used_map_cnt;
17776 			env->used_maps[env->used_map_cnt++] = map;
17777 
17778 			if (bpf_map_is_cgroup_storage(map) &&
17779 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17780 				verbose(env, "only one cgroup storage of each type is allowed\n");
17781 				fdput(f);
17782 				return -EBUSY;
17783 			}
17784 
17785 			fdput(f);
17786 next_insn:
17787 			insn++;
17788 			i++;
17789 			continue;
17790 		}
17791 
17792 		/* Basic sanity check before we invest more work here. */
17793 		if (!bpf_opcode_in_insntable(insn->code)) {
17794 			verbose(env, "unknown opcode %02x\n", insn->code);
17795 			return -EINVAL;
17796 		}
17797 	}
17798 
17799 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17800 	 * 'struct bpf_map *' into a register instead of user map_fd.
17801 	 * These pointers will be used later by verifier to validate map access.
17802 	 */
17803 	return 0;
17804 }
17805 
17806 /* drop refcnt of maps used by the rejected program */
17807 static void release_maps(struct bpf_verifier_env *env)
17808 {
17809 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17810 			     env->used_map_cnt);
17811 }
17812 
17813 /* drop refcnt of maps used by the rejected program */
17814 static void release_btfs(struct bpf_verifier_env *env)
17815 {
17816 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17817 			     env->used_btf_cnt);
17818 }
17819 
17820 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17821 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17822 {
17823 	struct bpf_insn *insn = env->prog->insnsi;
17824 	int insn_cnt = env->prog->len;
17825 	int i;
17826 
17827 	for (i = 0; i < insn_cnt; i++, insn++) {
17828 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17829 			continue;
17830 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17831 			continue;
17832 		insn->src_reg = 0;
17833 	}
17834 }
17835 
17836 /* single env->prog->insni[off] instruction was replaced with the range
17837  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17838  * [0, off) and [off, end) to new locations, so the patched range stays zero
17839  */
17840 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17841 				 struct bpf_insn_aux_data *new_data,
17842 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17843 {
17844 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17845 	struct bpf_insn *insn = new_prog->insnsi;
17846 	u32 old_seen = old_data[off].seen;
17847 	u32 prog_len;
17848 	int i;
17849 
17850 	/* aux info at OFF always needs adjustment, no matter fast path
17851 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17852 	 * original insn at old prog.
17853 	 */
17854 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17855 
17856 	if (cnt == 1)
17857 		return;
17858 	prog_len = new_prog->len;
17859 
17860 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17861 	memcpy(new_data + off + cnt - 1, old_data + off,
17862 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17863 	for (i = off; i < off + cnt - 1; i++) {
17864 		/* Expand insni[off]'s seen count to the patched range. */
17865 		new_data[i].seen = old_seen;
17866 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17867 	}
17868 	env->insn_aux_data = new_data;
17869 	vfree(old_data);
17870 }
17871 
17872 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17873 {
17874 	int i;
17875 
17876 	if (len == 1)
17877 		return;
17878 	/* NOTE: fake 'exit' subprog should be updated as well. */
17879 	for (i = 0; i <= env->subprog_cnt; i++) {
17880 		if (env->subprog_info[i].start <= off)
17881 			continue;
17882 		env->subprog_info[i].start += len - 1;
17883 	}
17884 }
17885 
17886 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17887 {
17888 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17889 	int i, sz = prog->aux->size_poke_tab;
17890 	struct bpf_jit_poke_descriptor *desc;
17891 
17892 	for (i = 0; i < sz; i++) {
17893 		desc = &tab[i];
17894 		if (desc->insn_idx <= off)
17895 			continue;
17896 		desc->insn_idx += len - 1;
17897 	}
17898 }
17899 
17900 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17901 					    const struct bpf_insn *patch, u32 len)
17902 {
17903 	struct bpf_prog *new_prog;
17904 	struct bpf_insn_aux_data *new_data = NULL;
17905 
17906 	if (len > 1) {
17907 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17908 					      sizeof(struct bpf_insn_aux_data)));
17909 		if (!new_data)
17910 			return NULL;
17911 	}
17912 
17913 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17914 	if (IS_ERR(new_prog)) {
17915 		if (PTR_ERR(new_prog) == -ERANGE)
17916 			verbose(env,
17917 				"insn %d cannot be patched due to 16-bit range\n",
17918 				env->insn_aux_data[off].orig_idx);
17919 		vfree(new_data);
17920 		return NULL;
17921 	}
17922 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17923 	adjust_subprog_starts(env, off, len);
17924 	adjust_poke_descs(new_prog, off, len);
17925 	return new_prog;
17926 }
17927 
17928 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17929 					      u32 off, u32 cnt)
17930 {
17931 	int i, j;
17932 
17933 	/* find first prog starting at or after off (first to remove) */
17934 	for (i = 0; i < env->subprog_cnt; i++)
17935 		if (env->subprog_info[i].start >= off)
17936 			break;
17937 	/* find first prog starting at or after off + cnt (first to stay) */
17938 	for (j = i; j < env->subprog_cnt; j++)
17939 		if (env->subprog_info[j].start >= off + cnt)
17940 			break;
17941 	/* if j doesn't start exactly at off + cnt, we are just removing
17942 	 * the front of previous prog
17943 	 */
17944 	if (env->subprog_info[j].start != off + cnt)
17945 		j--;
17946 
17947 	if (j > i) {
17948 		struct bpf_prog_aux *aux = env->prog->aux;
17949 		int move;
17950 
17951 		/* move fake 'exit' subprog as well */
17952 		move = env->subprog_cnt + 1 - j;
17953 
17954 		memmove(env->subprog_info + i,
17955 			env->subprog_info + j,
17956 			sizeof(*env->subprog_info) * move);
17957 		env->subprog_cnt -= j - i;
17958 
17959 		/* remove func_info */
17960 		if (aux->func_info) {
17961 			move = aux->func_info_cnt - j;
17962 
17963 			memmove(aux->func_info + i,
17964 				aux->func_info + j,
17965 				sizeof(*aux->func_info) * move);
17966 			aux->func_info_cnt -= j - i;
17967 			/* func_info->insn_off is set after all code rewrites,
17968 			 * in adjust_btf_func() - no need to adjust
17969 			 */
17970 		}
17971 	} else {
17972 		/* convert i from "first prog to remove" to "first to adjust" */
17973 		if (env->subprog_info[i].start == off)
17974 			i++;
17975 	}
17976 
17977 	/* update fake 'exit' subprog as well */
17978 	for (; i <= env->subprog_cnt; i++)
17979 		env->subprog_info[i].start -= cnt;
17980 
17981 	return 0;
17982 }
17983 
17984 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17985 				      u32 cnt)
17986 {
17987 	struct bpf_prog *prog = env->prog;
17988 	u32 i, l_off, l_cnt, nr_linfo;
17989 	struct bpf_line_info *linfo;
17990 
17991 	nr_linfo = prog->aux->nr_linfo;
17992 	if (!nr_linfo)
17993 		return 0;
17994 
17995 	linfo = prog->aux->linfo;
17996 
17997 	/* find first line info to remove, count lines to be removed */
17998 	for (i = 0; i < nr_linfo; i++)
17999 		if (linfo[i].insn_off >= off)
18000 			break;
18001 
18002 	l_off = i;
18003 	l_cnt = 0;
18004 	for (; i < nr_linfo; i++)
18005 		if (linfo[i].insn_off < off + cnt)
18006 			l_cnt++;
18007 		else
18008 			break;
18009 
18010 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18011 	 * last removed linfo.  prog is already modified, so prog->len == off
18012 	 * means no live instructions after (tail of the program was removed).
18013 	 */
18014 	if (prog->len != off && l_cnt &&
18015 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18016 		l_cnt--;
18017 		linfo[--i].insn_off = off + cnt;
18018 	}
18019 
18020 	/* remove the line info which refer to the removed instructions */
18021 	if (l_cnt) {
18022 		memmove(linfo + l_off, linfo + i,
18023 			sizeof(*linfo) * (nr_linfo - i));
18024 
18025 		prog->aux->nr_linfo -= l_cnt;
18026 		nr_linfo = prog->aux->nr_linfo;
18027 	}
18028 
18029 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18030 	for (i = l_off; i < nr_linfo; i++)
18031 		linfo[i].insn_off -= cnt;
18032 
18033 	/* fix up all subprogs (incl. 'exit') which start >= off */
18034 	for (i = 0; i <= env->subprog_cnt; i++)
18035 		if (env->subprog_info[i].linfo_idx > l_off) {
18036 			/* program may have started in the removed region but
18037 			 * may not be fully removed
18038 			 */
18039 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18040 				env->subprog_info[i].linfo_idx -= l_cnt;
18041 			else
18042 				env->subprog_info[i].linfo_idx = l_off;
18043 		}
18044 
18045 	return 0;
18046 }
18047 
18048 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18049 {
18050 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18051 	unsigned int orig_prog_len = env->prog->len;
18052 	int err;
18053 
18054 	if (bpf_prog_is_offloaded(env->prog->aux))
18055 		bpf_prog_offload_remove_insns(env, off, cnt);
18056 
18057 	err = bpf_remove_insns(env->prog, off, cnt);
18058 	if (err)
18059 		return err;
18060 
18061 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18062 	if (err)
18063 		return err;
18064 
18065 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18066 	if (err)
18067 		return err;
18068 
18069 	memmove(aux_data + off,	aux_data + off + cnt,
18070 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18071 
18072 	return 0;
18073 }
18074 
18075 /* The verifier does more data flow analysis than llvm and will not
18076  * explore branches that are dead at run time. Malicious programs can
18077  * have dead code too. Therefore replace all dead at-run-time code
18078  * with 'ja -1'.
18079  *
18080  * Just nops are not optimal, e.g. if they would sit at the end of the
18081  * program and through another bug we would manage to jump there, then
18082  * we'd execute beyond program memory otherwise. Returning exception
18083  * code also wouldn't work since we can have subprogs where the dead
18084  * code could be located.
18085  */
18086 static void sanitize_dead_code(struct bpf_verifier_env *env)
18087 {
18088 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18089 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18090 	struct bpf_insn *insn = env->prog->insnsi;
18091 	const int insn_cnt = env->prog->len;
18092 	int i;
18093 
18094 	for (i = 0; i < insn_cnt; i++) {
18095 		if (aux_data[i].seen)
18096 			continue;
18097 		memcpy(insn + i, &trap, sizeof(trap));
18098 		aux_data[i].zext_dst = false;
18099 	}
18100 }
18101 
18102 static bool insn_is_cond_jump(u8 code)
18103 {
18104 	u8 op;
18105 
18106 	op = BPF_OP(code);
18107 	if (BPF_CLASS(code) == BPF_JMP32)
18108 		return op != BPF_JA;
18109 
18110 	if (BPF_CLASS(code) != BPF_JMP)
18111 		return false;
18112 
18113 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18114 }
18115 
18116 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18117 {
18118 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18119 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18120 	struct bpf_insn *insn = env->prog->insnsi;
18121 	const int insn_cnt = env->prog->len;
18122 	int i;
18123 
18124 	for (i = 0; i < insn_cnt; i++, insn++) {
18125 		if (!insn_is_cond_jump(insn->code))
18126 			continue;
18127 
18128 		if (!aux_data[i + 1].seen)
18129 			ja.off = insn->off;
18130 		else if (!aux_data[i + 1 + insn->off].seen)
18131 			ja.off = 0;
18132 		else
18133 			continue;
18134 
18135 		if (bpf_prog_is_offloaded(env->prog->aux))
18136 			bpf_prog_offload_replace_insn(env, i, &ja);
18137 
18138 		memcpy(insn, &ja, sizeof(ja));
18139 	}
18140 }
18141 
18142 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18143 {
18144 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18145 	int insn_cnt = env->prog->len;
18146 	int i, err;
18147 
18148 	for (i = 0; i < insn_cnt; i++) {
18149 		int j;
18150 
18151 		j = 0;
18152 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18153 			j++;
18154 		if (!j)
18155 			continue;
18156 
18157 		err = verifier_remove_insns(env, i, j);
18158 		if (err)
18159 			return err;
18160 		insn_cnt = env->prog->len;
18161 	}
18162 
18163 	return 0;
18164 }
18165 
18166 static int opt_remove_nops(struct bpf_verifier_env *env)
18167 {
18168 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18169 	struct bpf_insn *insn = env->prog->insnsi;
18170 	int insn_cnt = env->prog->len;
18171 	int i, err;
18172 
18173 	for (i = 0; i < insn_cnt; i++) {
18174 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18175 			continue;
18176 
18177 		err = verifier_remove_insns(env, i, 1);
18178 		if (err)
18179 			return err;
18180 		insn_cnt--;
18181 		i--;
18182 	}
18183 
18184 	return 0;
18185 }
18186 
18187 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18188 					 const union bpf_attr *attr)
18189 {
18190 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18191 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18192 	int i, patch_len, delta = 0, len = env->prog->len;
18193 	struct bpf_insn *insns = env->prog->insnsi;
18194 	struct bpf_prog *new_prog;
18195 	bool rnd_hi32;
18196 
18197 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18198 	zext_patch[1] = BPF_ZEXT_REG(0);
18199 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18200 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18201 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18202 	for (i = 0; i < len; i++) {
18203 		int adj_idx = i + delta;
18204 		struct bpf_insn insn;
18205 		int load_reg;
18206 
18207 		insn = insns[adj_idx];
18208 		load_reg = insn_def_regno(&insn);
18209 		if (!aux[adj_idx].zext_dst) {
18210 			u8 code, class;
18211 			u32 imm_rnd;
18212 
18213 			if (!rnd_hi32)
18214 				continue;
18215 
18216 			code = insn.code;
18217 			class = BPF_CLASS(code);
18218 			if (load_reg == -1)
18219 				continue;
18220 
18221 			/* NOTE: arg "reg" (the fourth one) is only used for
18222 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18223 			 *       here.
18224 			 */
18225 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18226 				if (class == BPF_LD &&
18227 				    BPF_MODE(code) == BPF_IMM)
18228 					i++;
18229 				continue;
18230 			}
18231 
18232 			/* ctx load could be transformed into wider load. */
18233 			if (class == BPF_LDX &&
18234 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18235 				continue;
18236 
18237 			imm_rnd = get_random_u32();
18238 			rnd_hi32_patch[0] = insn;
18239 			rnd_hi32_patch[1].imm = imm_rnd;
18240 			rnd_hi32_patch[3].dst_reg = load_reg;
18241 			patch = rnd_hi32_patch;
18242 			patch_len = 4;
18243 			goto apply_patch_buffer;
18244 		}
18245 
18246 		/* Add in an zero-extend instruction if a) the JIT has requested
18247 		 * it or b) it's a CMPXCHG.
18248 		 *
18249 		 * The latter is because: BPF_CMPXCHG always loads a value into
18250 		 * R0, therefore always zero-extends. However some archs'
18251 		 * equivalent instruction only does this load when the
18252 		 * comparison is successful. This detail of CMPXCHG is
18253 		 * orthogonal to the general zero-extension behaviour of the
18254 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18255 		 */
18256 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18257 			continue;
18258 
18259 		/* Zero-extension is done by the caller. */
18260 		if (bpf_pseudo_kfunc_call(&insn))
18261 			continue;
18262 
18263 		if (WARN_ON(load_reg == -1)) {
18264 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18265 			return -EFAULT;
18266 		}
18267 
18268 		zext_patch[0] = insn;
18269 		zext_patch[1].dst_reg = load_reg;
18270 		zext_patch[1].src_reg = load_reg;
18271 		patch = zext_patch;
18272 		patch_len = 2;
18273 apply_patch_buffer:
18274 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18275 		if (!new_prog)
18276 			return -ENOMEM;
18277 		env->prog = new_prog;
18278 		insns = new_prog->insnsi;
18279 		aux = env->insn_aux_data;
18280 		delta += patch_len - 1;
18281 	}
18282 
18283 	return 0;
18284 }
18285 
18286 /* convert load instructions that access fields of a context type into a
18287  * sequence of instructions that access fields of the underlying structure:
18288  *     struct __sk_buff    -> struct sk_buff
18289  *     struct bpf_sock_ops -> struct sock
18290  */
18291 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18292 {
18293 	const struct bpf_verifier_ops *ops = env->ops;
18294 	int i, cnt, size, ctx_field_size, delta = 0;
18295 	const int insn_cnt = env->prog->len;
18296 	struct bpf_insn insn_buf[16], *insn;
18297 	u32 target_size, size_default, off;
18298 	struct bpf_prog *new_prog;
18299 	enum bpf_access_type type;
18300 	bool is_narrower_load;
18301 
18302 	if (ops->gen_prologue || env->seen_direct_write) {
18303 		if (!ops->gen_prologue) {
18304 			verbose(env, "bpf verifier is misconfigured\n");
18305 			return -EINVAL;
18306 		}
18307 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18308 					env->prog);
18309 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18310 			verbose(env, "bpf verifier is misconfigured\n");
18311 			return -EINVAL;
18312 		} else if (cnt) {
18313 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18314 			if (!new_prog)
18315 				return -ENOMEM;
18316 
18317 			env->prog = new_prog;
18318 			delta += cnt - 1;
18319 		}
18320 	}
18321 
18322 	if (bpf_prog_is_offloaded(env->prog->aux))
18323 		return 0;
18324 
18325 	insn = env->prog->insnsi + delta;
18326 
18327 	for (i = 0; i < insn_cnt; i++, insn++) {
18328 		bpf_convert_ctx_access_t convert_ctx_access;
18329 		u8 mode;
18330 
18331 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18332 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18333 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18334 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18335 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18336 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18337 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18338 			type = BPF_READ;
18339 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18340 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18341 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18342 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18343 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18344 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18345 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18346 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18347 			type = BPF_WRITE;
18348 		} else {
18349 			continue;
18350 		}
18351 
18352 		if (type == BPF_WRITE &&
18353 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18354 			struct bpf_insn patch[] = {
18355 				*insn,
18356 				BPF_ST_NOSPEC(),
18357 			};
18358 
18359 			cnt = ARRAY_SIZE(patch);
18360 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18361 			if (!new_prog)
18362 				return -ENOMEM;
18363 
18364 			delta    += cnt - 1;
18365 			env->prog = new_prog;
18366 			insn      = new_prog->insnsi + i + delta;
18367 			continue;
18368 		}
18369 
18370 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18371 		case PTR_TO_CTX:
18372 			if (!ops->convert_ctx_access)
18373 				continue;
18374 			convert_ctx_access = ops->convert_ctx_access;
18375 			break;
18376 		case PTR_TO_SOCKET:
18377 		case PTR_TO_SOCK_COMMON:
18378 			convert_ctx_access = bpf_sock_convert_ctx_access;
18379 			break;
18380 		case PTR_TO_TCP_SOCK:
18381 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18382 			break;
18383 		case PTR_TO_XDP_SOCK:
18384 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18385 			break;
18386 		case PTR_TO_BTF_ID:
18387 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18388 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18389 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18390 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18391 		 * any faults for loads into such types. BPF_WRITE is disallowed
18392 		 * for this case.
18393 		 */
18394 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18395 			if (type == BPF_READ) {
18396 				if (BPF_MODE(insn->code) == BPF_MEM)
18397 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18398 						     BPF_SIZE((insn)->code);
18399 				else
18400 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18401 						     BPF_SIZE((insn)->code);
18402 				env->prog->aux->num_exentries++;
18403 			}
18404 			continue;
18405 		default:
18406 			continue;
18407 		}
18408 
18409 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18410 		size = BPF_LDST_BYTES(insn);
18411 		mode = BPF_MODE(insn->code);
18412 
18413 		/* If the read access is a narrower load of the field,
18414 		 * convert to a 4/8-byte load, to minimum program type specific
18415 		 * convert_ctx_access changes. If conversion is successful,
18416 		 * we will apply proper mask to the result.
18417 		 */
18418 		is_narrower_load = size < ctx_field_size;
18419 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18420 		off = insn->off;
18421 		if (is_narrower_load) {
18422 			u8 size_code;
18423 
18424 			if (type == BPF_WRITE) {
18425 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18426 				return -EINVAL;
18427 			}
18428 
18429 			size_code = BPF_H;
18430 			if (ctx_field_size == 4)
18431 				size_code = BPF_W;
18432 			else if (ctx_field_size == 8)
18433 				size_code = BPF_DW;
18434 
18435 			insn->off = off & ~(size_default - 1);
18436 			insn->code = BPF_LDX | BPF_MEM | size_code;
18437 		}
18438 
18439 		target_size = 0;
18440 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18441 					 &target_size);
18442 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18443 		    (ctx_field_size && !target_size)) {
18444 			verbose(env, "bpf verifier is misconfigured\n");
18445 			return -EINVAL;
18446 		}
18447 
18448 		if (is_narrower_load && size < target_size) {
18449 			u8 shift = bpf_ctx_narrow_access_offset(
18450 				off, size, size_default) * 8;
18451 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18452 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18453 				return -EINVAL;
18454 			}
18455 			if (ctx_field_size <= 4) {
18456 				if (shift)
18457 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18458 									insn->dst_reg,
18459 									shift);
18460 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18461 								(1 << size * 8) - 1);
18462 			} else {
18463 				if (shift)
18464 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18465 									insn->dst_reg,
18466 									shift);
18467 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18468 								(1ULL << size * 8) - 1);
18469 			}
18470 		}
18471 		if (mode == BPF_MEMSX)
18472 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18473 						       insn->dst_reg, insn->dst_reg,
18474 						       size * 8, 0);
18475 
18476 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18477 		if (!new_prog)
18478 			return -ENOMEM;
18479 
18480 		delta += cnt - 1;
18481 
18482 		/* keep walking new program and skip insns we just inserted */
18483 		env->prog = new_prog;
18484 		insn      = new_prog->insnsi + i + delta;
18485 	}
18486 
18487 	return 0;
18488 }
18489 
18490 static int jit_subprogs(struct bpf_verifier_env *env)
18491 {
18492 	struct bpf_prog *prog = env->prog, **func, *tmp;
18493 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18494 	struct bpf_map *map_ptr;
18495 	struct bpf_insn *insn;
18496 	void *old_bpf_func;
18497 	int err, num_exentries;
18498 
18499 	if (env->subprog_cnt <= 1)
18500 		return 0;
18501 
18502 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18503 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18504 			continue;
18505 
18506 		/* Upon error here we cannot fall back to interpreter but
18507 		 * need a hard reject of the program. Thus -EFAULT is
18508 		 * propagated in any case.
18509 		 */
18510 		subprog = find_subprog(env, i + insn->imm + 1);
18511 		if (subprog < 0) {
18512 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18513 				  i + insn->imm + 1);
18514 			return -EFAULT;
18515 		}
18516 		/* temporarily remember subprog id inside insn instead of
18517 		 * aux_data, since next loop will split up all insns into funcs
18518 		 */
18519 		insn->off = subprog;
18520 		/* remember original imm in case JIT fails and fallback
18521 		 * to interpreter will be needed
18522 		 */
18523 		env->insn_aux_data[i].call_imm = insn->imm;
18524 		/* point imm to __bpf_call_base+1 from JITs point of view */
18525 		insn->imm = 1;
18526 		if (bpf_pseudo_func(insn))
18527 			/* jit (e.g. x86_64) may emit fewer instructions
18528 			 * if it learns a u32 imm is the same as a u64 imm.
18529 			 * Force a non zero here.
18530 			 */
18531 			insn[1].imm = 1;
18532 	}
18533 
18534 	err = bpf_prog_alloc_jited_linfo(prog);
18535 	if (err)
18536 		goto out_undo_insn;
18537 
18538 	err = -ENOMEM;
18539 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18540 	if (!func)
18541 		goto out_undo_insn;
18542 
18543 	for (i = 0; i < env->subprog_cnt; i++) {
18544 		subprog_start = subprog_end;
18545 		subprog_end = env->subprog_info[i + 1].start;
18546 
18547 		len = subprog_end - subprog_start;
18548 		/* bpf_prog_run() doesn't call subprogs directly,
18549 		 * hence main prog stats include the runtime of subprogs.
18550 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18551 		 * func[i]->stats will never be accessed and stays NULL
18552 		 */
18553 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18554 		if (!func[i])
18555 			goto out_free;
18556 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18557 		       len * sizeof(struct bpf_insn));
18558 		func[i]->type = prog->type;
18559 		func[i]->len = len;
18560 		if (bpf_prog_calc_tag(func[i]))
18561 			goto out_free;
18562 		func[i]->is_func = 1;
18563 		func[i]->aux->func_idx = i;
18564 		/* Below members will be freed only at prog->aux */
18565 		func[i]->aux->btf = prog->aux->btf;
18566 		func[i]->aux->func_info = prog->aux->func_info;
18567 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18568 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18569 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18570 
18571 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18572 			struct bpf_jit_poke_descriptor *poke;
18573 
18574 			poke = &prog->aux->poke_tab[j];
18575 			if (poke->insn_idx < subprog_end &&
18576 			    poke->insn_idx >= subprog_start)
18577 				poke->aux = func[i]->aux;
18578 		}
18579 
18580 		func[i]->aux->name[0] = 'F';
18581 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18582 		func[i]->jit_requested = 1;
18583 		func[i]->blinding_requested = prog->blinding_requested;
18584 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18585 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18586 		func[i]->aux->linfo = prog->aux->linfo;
18587 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18588 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18589 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18590 		num_exentries = 0;
18591 		insn = func[i]->insnsi;
18592 		for (j = 0; j < func[i]->len; j++, insn++) {
18593 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18594 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18595 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18596 				num_exentries++;
18597 		}
18598 		func[i]->aux->num_exentries = num_exentries;
18599 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18600 		func[i] = bpf_int_jit_compile(func[i]);
18601 		if (!func[i]->jited) {
18602 			err = -ENOTSUPP;
18603 			goto out_free;
18604 		}
18605 		cond_resched();
18606 	}
18607 
18608 	/* at this point all bpf functions were successfully JITed
18609 	 * now populate all bpf_calls with correct addresses and
18610 	 * run last pass of JIT
18611 	 */
18612 	for (i = 0; i < env->subprog_cnt; i++) {
18613 		insn = func[i]->insnsi;
18614 		for (j = 0; j < func[i]->len; j++, insn++) {
18615 			if (bpf_pseudo_func(insn)) {
18616 				subprog = insn->off;
18617 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18618 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18619 				continue;
18620 			}
18621 			if (!bpf_pseudo_call(insn))
18622 				continue;
18623 			subprog = insn->off;
18624 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18625 		}
18626 
18627 		/* we use the aux data to keep a list of the start addresses
18628 		 * of the JITed images for each function in the program
18629 		 *
18630 		 * for some architectures, such as powerpc64, the imm field
18631 		 * might not be large enough to hold the offset of the start
18632 		 * address of the callee's JITed image from __bpf_call_base
18633 		 *
18634 		 * in such cases, we can lookup the start address of a callee
18635 		 * by using its subprog id, available from the off field of
18636 		 * the call instruction, as an index for this list
18637 		 */
18638 		func[i]->aux->func = func;
18639 		func[i]->aux->func_cnt = env->subprog_cnt;
18640 	}
18641 	for (i = 0; i < env->subprog_cnt; i++) {
18642 		old_bpf_func = func[i]->bpf_func;
18643 		tmp = bpf_int_jit_compile(func[i]);
18644 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18645 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18646 			err = -ENOTSUPP;
18647 			goto out_free;
18648 		}
18649 		cond_resched();
18650 	}
18651 
18652 	/* finally lock prog and jit images for all functions and
18653 	 * populate kallsysm. Begin at the first subprogram, since
18654 	 * bpf_prog_load will add the kallsyms for the main program.
18655 	 */
18656 	for (i = 1; i < env->subprog_cnt; i++) {
18657 		bpf_prog_lock_ro(func[i]);
18658 		bpf_prog_kallsyms_add(func[i]);
18659 	}
18660 
18661 	/* Last step: make now unused interpreter insns from main
18662 	 * prog consistent for later dump requests, so they can
18663 	 * later look the same as if they were interpreted only.
18664 	 */
18665 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18666 		if (bpf_pseudo_func(insn)) {
18667 			insn[0].imm = env->insn_aux_data[i].call_imm;
18668 			insn[1].imm = insn->off;
18669 			insn->off = 0;
18670 			continue;
18671 		}
18672 		if (!bpf_pseudo_call(insn))
18673 			continue;
18674 		insn->off = env->insn_aux_data[i].call_imm;
18675 		subprog = find_subprog(env, i + insn->off + 1);
18676 		insn->imm = subprog;
18677 	}
18678 
18679 	prog->jited = 1;
18680 	prog->bpf_func = func[0]->bpf_func;
18681 	prog->jited_len = func[0]->jited_len;
18682 	prog->aux->extable = func[0]->aux->extable;
18683 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18684 	prog->aux->func = func;
18685 	prog->aux->func_cnt = env->subprog_cnt;
18686 	bpf_prog_jit_attempt_done(prog);
18687 	return 0;
18688 out_free:
18689 	/* We failed JIT'ing, so at this point we need to unregister poke
18690 	 * descriptors from subprogs, so that kernel is not attempting to
18691 	 * patch it anymore as we're freeing the subprog JIT memory.
18692 	 */
18693 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18694 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18695 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18696 	}
18697 	/* At this point we're guaranteed that poke descriptors are not
18698 	 * live anymore. We can just unlink its descriptor table as it's
18699 	 * released with the main prog.
18700 	 */
18701 	for (i = 0; i < env->subprog_cnt; i++) {
18702 		if (!func[i])
18703 			continue;
18704 		func[i]->aux->poke_tab = NULL;
18705 		bpf_jit_free(func[i]);
18706 	}
18707 	kfree(func);
18708 out_undo_insn:
18709 	/* cleanup main prog to be interpreted */
18710 	prog->jit_requested = 0;
18711 	prog->blinding_requested = 0;
18712 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18713 		if (!bpf_pseudo_call(insn))
18714 			continue;
18715 		insn->off = 0;
18716 		insn->imm = env->insn_aux_data[i].call_imm;
18717 	}
18718 	bpf_prog_jit_attempt_done(prog);
18719 	return err;
18720 }
18721 
18722 static int fixup_call_args(struct bpf_verifier_env *env)
18723 {
18724 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18725 	struct bpf_prog *prog = env->prog;
18726 	struct bpf_insn *insn = prog->insnsi;
18727 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18728 	int i, depth;
18729 #endif
18730 	int err = 0;
18731 
18732 	if (env->prog->jit_requested &&
18733 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18734 		err = jit_subprogs(env);
18735 		if (err == 0)
18736 			return 0;
18737 		if (err == -EFAULT)
18738 			return err;
18739 	}
18740 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18741 	if (has_kfunc_call) {
18742 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18743 		return -EINVAL;
18744 	}
18745 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18746 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18747 		 * have to be rejected, since interpreter doesn't support them yet.
18748 		 */
18749 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18750 		return -EINVAL;
18751 	}
18752 	for (i = 0; i < prog->len; i++, insn++) {
18753 		if (bpf_pseudo_func(insn)) {
18754 			/* When JIT fails the progs with callback calls
18755 			 * have to be rejected, since interpreter doesn't support them yet.
18756 			 */
18757 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18758 			return -EINVAL;
18759 		}
18760 
18761 		if (!bpf_pseudo_call(insn))
18762 			continue;
18763 		depth = get_callee_stack_depth(env, insn, i);
18764 		if (depth < 0)
18765 			return depth;
18766 		bpf_patch_call_args(insn, depth);
18767 	}
18768 	err = 0;
18769 #endif
18770 	return err;
18771 }
18772 
18773 /* replace a generic kfunc with a specialized version if necessary */
18774 static void specialize_kfunc(struct bpf_verifier_env *env,
18775 			     u32 func_id, u16 offset, unsigned long *addr)
18776 {
18777 	struct bpf_prog *prog = env->prog;
18778 	bool seen_direct_write;
18779 	void *xdp_kfunc;
18780 	bool is_rdonly;
18781 
18782 	if (bpf_dev_bound_kfunc_id(func_id)) {
18783 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18784 		if (xdp_kfunc) {
18785 			*addr = (unsigned long)xdp_kfunc;
18786 			return;
18787 		}
18788 		/* fallback to default kfunc when not supported by netdev */
18789 	}
18790 
18791 	if (offset)
18792 		return;
18793 
18794 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18795 		seen_direct_write = env->seen_direct_write;
18796 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18797 
18798 		if (is_rdonly)
18799 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18800 
18801 		/* restore env->seen_direct_write to its original value, since
18802 		 * may_access_direct_pkt_data mutates it
18803 		 */
18804 		env->seen_direct_write = seen_direct_write;
18805 	}
18806 }
18807 
18808 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18809 					    u16 struct_meta_reg,
18810 					    u16 node_offset_reg,
18811 					    struct bpf_insn *insn,
18812 					    struct bpf_insn *insn_buf,
18813 					    int *cnt)
18814 {
18815 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18816 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18817 
18818 	insn_buf[0] = addr[0];
18819 	insn_buf[1] = addr[1];
18820 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18821 	insn_buf[3] = *insn;
18822 	*cnt = 4;
18823 }
18824 
18825 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18826 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18827 {
18828 	const struct bpf_kfunc_desc *desc;
18829 
18830 	if (!insn->imm) {
18831 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18832 		return -EINVAL;
18833 	}
18834 
18835 	*cnt = 0;
18836 
18837 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18838 	 * __bpf_call_base, unless the JIT needs to call functions that are
18839 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18840 	 */
18841 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18842 	if (!desc) {
18843 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18844 			insn->imm);
18845 		return -EFAULT;
18846 	}
18847 
18848 	if (!bpf_jit_supports_far_kfunc_call())
18849 		insn->imm = BPF_CALL_IMM(desc->addr);
18850 	if (insn->off)
18851 		return 0;
18852 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18853 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18854 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18855 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18856 
18857 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18858 		insn_buf[1] = addr[0];
18859 		insn_buf[2] = addr[1];
18860 		insn_buf[3] = *insn;
18861 		*cnt = 4;
18862 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18863 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18864 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18865 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18866 
18867 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18868 		    !kptr_struct_meta) {
18869 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18870 				insn_idx);
18871 			return -EFAULT;
18872 		}
18873 
18874 		insn_buf[0] = addr[0];
18875 		insn_buf[1] = addr[1];
18876 		insn_buf[2] = *insn;
18877 		*cnt = 3;
18878 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18879 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18880 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18881 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18882 		int struct_meta_reg = BPF_REG_3;
18883 		int node_offset_reg = BPF_REG_4;
18884 
18885 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18886 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18887 			struct_meta_reg = BPF_REG_4;
18888 			node_offset_reg = BPF_REG_5;
18889 		}
18890 
18891 		if (!kptr_struct_meta) {
18892 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18893 				insn_idx);
18894 			return -EFAULT;
18895 		}
18896 
18897 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18898 						node_offset_reg, insn, insn_buf, cnt);
18899 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18900 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18901 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18902 		*cnt = 1;
18903 	}
18904 	return 0;
18905 }
18906 
18907 /* Do various post-verification rewrites in a single program pass.
18908  * These rewrites simplify JIT and interpreter implementations.
18909  */
18910 static int do_misc_fixups(struct bpf_verifier_env *env)
18911 {
18912 	struct bpf_prog *prog = env->prog;
18913 	enum bpf_attach_type eatype = prog->expected_attach_type;
18914 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18915 	struct bpf_insn *insn = prog->insnsi;
18916 	const struct bpf_func_proto *fn;
18917 	const int insn_cnt = prog->len;
18918 	const struct bpf_map_ops *ops;
18919 	struct bpf_insn_aux_data *aux;
18920 	struct bpf_insn insn_buf[16];
18921 	struct bpf_prog *new_prog;
18922 	struct bpf_map *map_ptr;
18923 	int i, ret, cnt, delta = 0;
18924 
18925 	for (i = 0; i < insn_cnt; i++, insn++) {
18926 		/* Make divide-by-zero exceptions impossible. */
18927 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18928 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18929 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18930 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18931 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18932 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18933 			struct bpf_insn *patchlet;
18934 			struct bpf_insn chk_and_div[] = {
18935 				/* [R,W]x div 0 -> 0 */
18936 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18937 					     BPF_JNE | BPF_K, insn->src_reg,
18938 					     0, 2, 0),
18939 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18940 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18941 				*insn,
18942 			};
18943 			struct bpf_insn chk_and_mod[] = {
18944 				/* [R,W]x mod 0 -> [R,W]x */
18945 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18946 					     BPF_JEQ | BPF_K, insn->src_reg,
18947 					     0, 1 + (is64 ? 0 : 1), 0),
18948 				*insn,
18949 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18950 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18951 			};
18952 
18953 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18954 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18955 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18956 
18957 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18958 			if (!new_prog)
18959 				return -ENOMEM;
18960 
18961 			delta    += cnt - 1;
18962 			env->prog = prog = new_prog;
18963 			insn      = new_prog->insnsi + i + delta;
18964 			continue;
18965 		}
18966 
18967 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18968 		if (BPF_CLASS(insn->code) == BPF_LD &&
18969 		    (BPF_MODE(insn->code) == BPF_ABS ||
18970 		     BPF_MODE(insn->code) == BPF_IND)) {
18971 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18972 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18973 				verbose(env, "bpf verifier is misconfigured\n");
18974 				return -EINVAL;
18975 			}
18976 
18977 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18978 			if (!new_prog)
18979 				return -ENOMEM;
18980 
18981 			delta    += cnt - 1;
18982 			env->prog = prog = new_prog;
18983 			insn      = new_prog->insnsi + i + delta;
18984 			continue;
18985 		}
18986 
18987 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18988 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18989 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18990 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18991 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18992 			struct bpf_insn *patch = &insn_buf[0];
18993 			bool issrc, isneg, isimm;
18994 			u32 off_reg;
18995 
18996 			aux = &env->insn_aux_data[i + delta];
18997 			if (!aux->alu_state ||
18998 			    aux->alu_state == BPF_ALU_NON_POINTER)
18999 				continue;
19000 
19001 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19002 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19003 				BPF_ALU_SANITIZE_SRC;
19004 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19005 
19006 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19007 			if (isimm) {
19008 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19009 			} else {
19010 				if (isneg)
19011 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19012 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19013 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19014 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19015 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19016 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19017 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19018 			}
19019 			if (!issrc)
19020 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19021 			insn->src_reg = BPF_REG_AX;
19022 			if (isneg)
19023 				insn->code = insn->code == code_add ?
19024 					     code_sub : code_add;
19025 			*patch++ = *insn;
19026 			if (issrc && isneg && !isimm)
19027 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19028 			cnt = patch - insn_buf;
19029 
19030 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19031 			if (!new_prog)
19032 				return -ENOMEM;
19033 
19034 			delta    += cnt - 1;
19035 			env->prog = prog = new_prog;
19036 			insn      = new_prog->insnsi + i + delta;
19037 			continue;
19038 		}
19039 
19040 		if (insn->code != (BPF_JMP | BPF_CALL))
19041 			continue;
19042 		if (insn->src_reg == BPF_PSEUDO_CALL)
19043 			continue;
19044 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19045 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19046 			if (ret)
19047 				return ret;
19048 			if (cnt == 0)
19049 				continue;
19050 
19051 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19052 			if (!new_prog)
19053 				return -ENOMEM;
19054 
19055 			delta	 += cnt - 1;
19056 			env->prog = prog = new_prog;
19057 			insn	  = new_prog->insnsi + i + delta;
19058 			continue;
19059 		}
19060 
19061 		if (insn->imm == BPF_FUNC_get_route_realm)
19062 			prog->dst_needed = 1;
19063 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19064 			bpf_user_rnd_init_once();
19065 		if (insn->imm == BPF_FUNC_override_return)
19066 			prog->kprobe_override = 1;
19067 		if (insn->imm == BPF_FUNC_tail_call) {
19068 			/* If we tail call into other programs, we
19069 			 * cannot make any assumptions since they can
19070 			 * be replaced dynamically during runtime in
19071 			 * the program array.
19072 			 */
19073 			prog->cb_access = 1;
19074 			if (!allow_tail_call_in_subprogs(env))
19075 				prog->aux->stack_depth = MAX_BPF_STACK;
19076 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19077 
19078 			/* mark bpf_tail_call as different opcode to avoid
19079 			 * conditional branch in the interpreter for every normal
19080 			 * call and to prevent accidental JITing by JIT compiler
19081 			 * that doesn't support bpf_tail_call yet
19082 			 */
19083 			insn->imm = 0;
19084 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19085 
19086 			aux = &env->insn_aux_data[i + delta];
19087 			if (env->bpf_capable && !prog->blinding_requested &&
19088 			    prog->jit_requested &&
19089 			    !bpf_map_key_poisoned(aux) &&
19090 			    !bpf_map_ptr_poisoned(aux) &&
19091 			    !bpf_map_ptr_unpriv(aux)) {
19092 				struct bpf_jit_poke_descriptor desc = {
19093 					.reason = BPF_POKE_REASON_TAIL_CALL,
19094 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19095 					.tail_call.key = bpf_map_key_immediate(aux),
19096 					.insn_idx = i + delta,
19097 				};
19098 
19099 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19100 				if (ret < 0) {
19101 					verbose(env, "adding tail call poke descriptor failed\n");
19102 					return ret;
19103 				}
19104 
19105 				insn->imm = ret + 1;
19106 				continue;
19107 			}
19108 
19109 			if (!bpf_map_ptr_unpriv(aux))
19110 				continue;
19111 
19112 			/* instead of changing every JIT dealing with tail_call
19113 			 * emit two extra insns:
19114 			 * if (index >= max_entries) goto out;
19115 			 * index &= array->index_mask;
19116 			 * to avoid out-of-bounds cpu speculation
19117 			 */
19118 			if (bpf_map_ptr_poisoned(aux)) {
19119 				verbose(env, "tail_call abusing map_ptr\n");
19120 				return -EINVAL;
19121 			}
19122 
19123 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19124 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19125 						  map_ptr->max_entries, 2);
19126 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19127 						    container_of(map_ptr,
19128 								 struct bpf_array,
19129 								 map)->index_mask);
19130 			insn_buf[2] = *insn;
19131 			cnt = 3;
19132 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19133 			if (!new_prog)
19134 				return -ENOMEM;
19135 
19136 			delta    += cnt - 1;
19137 			env->prog = prog = new_prog;
19138 			insn      = new_prog->insnsi + i + delta;
19139 			continue;
19140 		}
19141 
19142 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19143 			/* The verifier will process callback_fn as many times as necessary
19144 			 * with different maps and the register states prepared by
19145 			 * set_timer_callback_state will be accurate.
19146 			 *
19147 			 * The following use case is valid:
19148 			 *   map1 is shared by prog1, prog2, prog3.
19149 			 *   prog1 calls bpf_timer_init for some map1 elements
19150 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19151 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19152 			 *   prog3 calls bpf_timer_start for some map1 elements.
19153 			 *     Those that were not both bpf_timer_init-ed and
19154 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19155 			 */
19156 			struct bpf_insn ld_addrs[2] = {
19157 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19158 			};
19159 
19160 			insn_buf[0] = ld_addrs[0];
19161 			insn_buf[1] = ld_addrs[1];
19162 			insn_buf[2] = *insn;
19163 			cnt = 3;
19164 
19165 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19166 			if (!new_prog)
19167 				return -ENOMEM;
19168 
19169 			delta    += cnt - 1;
19170 			env->prog = prog = new_prog;
19171 			insn      = new_prog->insnsi + i + delta;
19172 			goto patch_call_imm;
19173 		}
19174 
19175 		if (is_storage_get_function(insn->imm)) {
19176 			if (!env->prog->aux->sleepable ||
19177 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19178 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19179 			else
19180 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19181 			insn_buf[1] = *insn;
19182 			cnt = 2;
19183 
19184 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19185 			if (!new_prog)
19186 				return -ENOMEM;
19187 
19188 			delta += cnt - 1;
19189 			env->prog = prog = new_prog;
19190 			insn = new_prog->insnsi + i + delta;
19191 			goto patch_call_imm;
19192 		}
19193 
19194 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19195 		 * and other inlining handlers are currently limited to 64 bit
19196 		 * only.
19197 		 */
19198 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19199 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19200 		     insn->imm == BPF_FUNC_map_update_elem ||
19201 		     insn->imm == BPF_FUNC_map_delete_elem ||
19202 		     insn->imm == BPF_FUNC_map_push_elem   ||
19203 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19204 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19205 		     insn->imm == BPF_FUNC_redirect_map    ||
19206 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19207 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19208 			aux = &env->insn_aux_data[i + delta];
19209 			if (bpf_map_ptr_poisoned(aux))
19210 				goto patch_call_imm;
19211 
19212 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19213 			ops = map_ptr->ops;
19214 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19215 			    ops->map_gen_lookup) {
19216 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19217 				if (cnt == -EOPNOTSUPP)
19218 					goto patch_map_ops_generic;
19219 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19220 					verbose(env, "bpf verifier is misconfigured\n");
19221 					return -EINVAL;
19222 				}
19223 
19224 				new_prog = bpf_patch_insn_data(env, i + delta,
19225 							       insn_buf, cnt);
19226 				if (!new_prog)
19227 					return -ENOMEM;
19228 
19229 				delta    += cnt - 1;
19230 				env->prog = prog = new_prog;
19231 				insn      = new_prog->insnsi + i + delta;
19232 				continue;
19233 			}
19234 
19235 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19236 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19237 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19238 				     (long (*)(struct bpf_map *map, void *key))NULL));
19239 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19240 				     (long (*)(struct bpf_map *map, void *key, void *value,
19241 					      u64 flags))NULL));
19242 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19243 				     (long (*)(struct bpf_map *map, void *value,
19244 					      u64 flags))NULL));
19245 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19246 				     (long (*)(struct bpf_map *map, void *value))NULL));
19247 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19248 				     (long (*)(struct bpf_map *map, void *value))NULL));
19249 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19250 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19251 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19252 				     (long (*)(struct bpf_map *map,
19253 					      bpf_callback_t callback_fn,
19254 					      void *callback_ctx,
19255 					      u64 flags))NULL));
19256 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19257 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19258 
19259 patch_map_ops_generic:
19260 			switch (insn->imm) {
19261 			case BPF_FUNC_map_lookup_elem:
19262 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19263 				continue;
19264 			case BPF_FUNC_map_update_elem:
19265 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19266 				continue;
19267 			case BPF_FUNC_map_delete_elem:
19268 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19269 				continue;
19270 			case BPF_FUNC_map_push_elem:
19271 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19272 				continue;
19273 			case BPF_FUNC_map_pop_elem:
19274 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19275 				continue;
19276 			case BPF_FUNC_map_peek_elem:
19277 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19278 				continue;
19279 			case BPF_FUNC_redirect_map:
19280 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19281 				continue;
19282 			case BPF_FUNC_for_each_map_elem:
19283 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19284 				continue;
19285 			case BPF_FUNC_map_lookup_percpu_elem:
19286 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19287 				continue;
19288 			}
19289 
19290 			goto patch_call_imm;
19291 		}
19292 
19293 		/* Implement bpf_jiffies64 inline. */
19294 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19295 		    insn->imm == BPF_FUNC_jiffies64) {
19296 			struct bpf_insn ld_jiffies_addr[2] = {
19297 				BPF_LD_IMM64(BPF_REG_0,
19298 					     (unsigned long)&jiffies),
19299 			};
19300 
19301 			insn_buf[0] = ld_jiffies_addr[0];
19302 			insn_buf[1] = ld_jiffies_addr[1];
19303 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19304 						  BPF_REG_0, 0);
19305 			cnt = 3;
19306 
19307 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19308 						       cnt);
19309 			if (!new_prog)
19310 				return -ENOMEM;
19311 
19312 			delta    += cnt - 1;
19313 			env->prog = prog = new_prog;
19314 			insn      = new_prog->insnsi + i + delta;
19315 			continue;
19316 		}
19317 
19318 		/* Implement bpf_get_func_arg inline. */
19319 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19320 		    insn->imm == BPF_FUNC_get_func_arg) {
19321 			/* Load nr_args from ctx - 8 */
19322 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19323 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19324 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19325 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19326 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19327 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19328 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19329 			insn_buf[7] = BPF_JMP_A(1);
19330 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19331 			cnt = 9;
19332 
19333 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19334 			if (!new_prog)
19335 				return -ENOMEM;
19336 
19337 			delta    += cnt - 1;
19338 			env->prog = prog = new_prog;
19339 			insn      = new_prog->insnsi + i + delta;
19340 			continue;
19341 		}
19342 
19343 		/* Implement bpf_get_func_ret inline. */
19344 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19345 		    insn->imm == BPF_FUNC_get_func_ret) {
19346 			if (eatype == BPF_TRACE_FEXIT ||
19347 			    eatype == BPF_MODIFY_RETURN) {
19348 				/* Load nr_args from ctx - 8 */
19349 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19350 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19351 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19352 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19353 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19354 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19355 				cnt = 6;
19356 			} else {
19357 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19358 				cnt = 1;
19359 			}
19360 
19361 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19362 			if (!new_prog)
19363 				return -ENOMEM;
19364 
19365 			delta    += cnt - 1;
19366 			env->prog = prog = new_prog;
19367 			insn      = new_prog->insnsi + i + delta;
19368 			continue;
19369 		}
19370 
19371 		/* Implement get_func_arg_cnt inline. */
19372 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19373 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19374 			/* Load nr_args from ctx - 8 */
19375 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19376 
19377 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19378 			if (!new_prog)
19379 				return -ENOMEM;
19380 
19381 			env->prog = prog = new_prog;
19382 			insn      = new_prog->insnsi + i + delta;
19383 			continue;
19384 		}
19385 
19386 		/* Implement bpf_get_func_ip inline. */
19387 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19388 		    insn->imm == BPF_FUNC_get_func_ip) {
19389 			/* Load IP address from ctx - 16 */
19390 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19391 
19392 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19393 			if (!new_prog)
19394 				return -ENOMEM;
19395 
19396 			env->prog = prog = new_prog;
19397 			insn      = new_prog->insnsi + i + delta;
19398 			continue;
19399 		}
19400 
19401 patch_call_imm:
19402 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19403 		/* all functions that have prototype and verifier allowed
19404 		 * programs to call them, must be real in-kernel functions
19405 		 */
19406 		if (!fn->func) {
19407 			verbose(env,
19408 				"kernel subsystem misconfigured func %s#%d\n",
19409 				func_id_name(insn->imm), insn->imm);
19410 			return -EFAULT;
19411 		}
19412 		insn->imm = fn->func - __bpf_call_base;
19413 	}
19414 
19415 	/* Since poke tab is now finalized, publish aux to tracker. */
19416 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19417 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19418 		if (!map_ptr->ops->map_poke_track ||
19419 		    !map_ptr->ops->map_poke_untrack ||
19420 		    !map_ptr->ops->map_poke_run) {
19421 			verbose(env, "bpf verifier is misconfigured\n");
19422 			return -EINVAL;
19423 		}
19424 
19425 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19426 		if (ret < 0) {
19427 			verbose(env, "tracking tail call prog failed\n");
19428 			return ret;
19429 		}
19430 	}
19431 
19432 	sort_kfunc_descs_by_imm_off(env->prog);
19433 
19434 	return 0;
19435 }
19436 
19437 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19438 					int position,
19439 					s32 stack_base,
19440 					u32 callback_subprogno,
19441 					u32 *cnt)
19442 {
19443 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19444 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19445 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19446 	int reg_loop_max = BPF_REG_6;
19447 	int reg_loop_cnt = BPF_REG_7;
19448 	int reg_loop_ctx = BPF_REG_8;
19449 
19450 	struct bpf_prog *new_prog;
19451 	u32 callback_start;
19452 	u32 call_insn_offset;
19453 	s32 callback_offset;
19454 
19455 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19456 	 * be careful to modify this code in sync.
19457 	 */
19458 	struct bpf_insn insn_buf[] = {
19459 		/* Return error and jump to the end of the patch if
19460 		 * expected number of iterations is too big.
19461 		 */
19462 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19463 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19464 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19465 		/* spill R6, R7, R8 to use these as loop vars */
19466 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19467 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19468 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19469 		/* initialize loop vars */
19470 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19471 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19472 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19473 		/* loop header,
19474 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19475 		 */
19476 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19477 		/* callback call,
19478 		 * correct callback offset would be set after patching
19479 		 */
19480 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19481 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19482 		BPF_CALL_REL(0),
19483 		/* increment loop counter */
19484 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19485 		/* jump to loop header if callback returned 0 */
19486 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19487 		/* return value of bpf_loop,
19488 		 * set R0 to the number of iterations
19489 		 */
19490 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19491 		/* restore original values of R6, R7, R8 */
19492 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19493 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19494 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19495 	};
19496 
19497 	*cnt = ARRAY_SIZE(insn_buf);
19498 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19499 	if (!new_prog)
19500 		return new_prog;
19501 
19502 	/* callback start is known only after patching */
19503 	callback_start = env->subprog_info[callback_subprogno].start;
19504 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19505 	call_insn_offset = position + 12;
19506 	callback_offset = callback_start - call_insn_offset - 1;
19507 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19508 
19509 	return new_prog;
19510 }
19511 
19512 static bool is_bpf_loop_call(struct bpf_insn *insn)
19513 {
19514 	return insn->code == (BPF_JMP | BPF_CALL) &&
19515 		insn->src_reg == 0 &&
19516 		insn->imm == BPF_FUNC_loop;
19517 }
19518 
19519 /* For all sub-programs in the program (including main) check
19520  * insn_aux_data to see if there are bpf_loop calls that require
19521  * inlining. If such calls are found the calls are replaced with a
19522  * sequence of instructions produced by `inline_bpf_loop` function and
19523  * subprog stack_depth is increased by the size of 3 registers.
19524  * This stack space is used to spill values of the R6, R7, R8.  These
19525  * registers are used to store the loop bound, counter and context
19526  * variables.
19527  */
19528 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19529 {
19530 	struct bpf_subprog_info *subprogs = env->subprog_info;
19531 	int i, cur_subprog = 0, cnt, delta = 0;
19532 	struct bpf_insn *insn = env->prog->insnsi;
19533 	int insn_cnt = env->prog->len;
19534 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19535 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19536 	u16 stack_depth_extra = 0;
19537 
19538 	for (i = 0; i < insn_cnt; i++, insn++) {
19539 		struct bpf_loop_inline_state *inline_state =
19540 			&env->insn_aux_data[i + delta].loop_inline_state;
19541 
19542 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19543 			struct bpf_prog *new_prog;
19544 
19545 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19546 			new_prog = inline_bpf_loop(env,
19547 						   i + delta,
19548 						   -(stack_depth + stack_depth_extra),
19549 						   inline_state->callback_subprogno,
19550 						   &cnt);
19551 			if (!new_prog)
19552 				return -ENOMEM;
19553 
19554 			delta     += cnt - 1;
19555 			env->prog  = new_prog;
19556 			insn       = new_prog->insnsi + i + delta;
19557 		}
19558 
19559 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19560 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19561 			cur_subprog++;
19562 			stack_depth = subprogs[cur_subprog].stack_depth;
19563 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19564 			stack_depth_extra = 0;
19565 		}
19566 	}
19567 
19568 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19569 
19570 	return 0;
19571 }
19572 
19573 static void free_states(struct bpf_verifier_env *env)
19574 {
19575 	struct bpf_verifier_state_list *sl, *sln;
19576 	int i;
19577 
19578 	sl = env->free_list;
19579 	while (sl) {
19580 		sln = sl->next;
19581 		free_verifier_state(&sl->state, false);
19582 		kfree(sl);
19583 		sl = sln;
19584 	}
19585 	env->free_list = NULL;
19586 
19587 	if (!env->explored_states)
19588 		return;
19589 
19590 	for (i = 0; i < state_htab_size(env); i++) {
19591 		sl = env->explored_states[i];
19592 
19593 		while (sl) {
19594 			sln = sl->next;
19595 			free_verifier_state(&sl->state, false);
19596 			kfree(sl);
19597 			sl = sln;
19598 		}
19599 		env->explored_states[i] = NULL;
19600 	}
19601 }
19602 
19603 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19604 {
19605 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19606 	struct bpf_verifier_state *state;
19607 	struct bpf_reg_state *regs;
19608 	int ret, i;
19609 
19610 	env->prev_linfo = NULL;
19611 	env->pass_cnt++;
19612 
19613 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19614 	if (!state)
19615 		return -ENOMEM;
19616 	state->curframe = 0;
19617 	state->speculative = false;
19618 	state->branches = 1;
19619 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19620 	if (!state->frame[0]) {
19621 		kfree(state);
19622 		return -ENOMEM;
19623 	}
19624 	env->cur_state = state;
19625 	init_func_state(env, state->frame[0],
19626 			BPF_MAIN_FUNC /* callsite */,
19627 			0 /* frameno */,
19628 			subprog);
19629 	state->first_insn_idx = env->subprog_info[subprog].start;
19630 	state->last_insn_idx = -1;
19631 
19632 	regs = state->frame[state->curframe]->regs;
19633 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19634 		ret = btf_prepare_func_args(env, subprog, regs);
19635 		if (ret)
19636 			goto out;
19637 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19638 			if (regs[i].type == PTR_TO_CTX)
19639 				mark_reg_known_zero(env, regs, i);
19640 			else if (regs[i].type == SCALAR_VALUE)
19641 				mark_reg_unknown(env, regs, i);
19642 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19643 				const u32 mem_size = regs[i].mem_size;
19644 
19645 				mark_reg_known_zero(env, regs, i);
19646 				regs[i].mem_size = mem_size;
19647 				regs[i].id = ++env->id_gen;
19648 			}
19649 		}
19650 	} else {
19651 		/* 1st arg to a function */
19652 		regs[BPF_REG_1].type = PTR_TO_CTX;
19653 		mark_reg_known_zero(env, regs, BPF_REG_1);
19654 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19655 		if (ret == -EFAULT)
19656 			/* unlikely verifier bug. abort.
19657 			 * ret == 0 and ret < 0 are sadly acceptable for
19658 			 * main() function due to backward compatibility.
19659 			 * Like socket filter program may be written as:
19660 			 * int bpf_prog(struct pt_regs *ctx)
19661 			 * and never dereference that ctx in the program.
19662 			 * 'struct pt_regs' is a type mismatch for socket
19663 			 * filter that should be using 'struct __sk_buff'.
19664 			 */
19665 			goto out;
19666 	}
19667 
19668 	ret = do_check(env);
19669 out:
19670 	/* check for NULL is necessary, since cur_state can be freed inside
19671 	 * do_check() under memory pressure.
19672 	 */
19673 	if (env->cur_state) {
19674 		free_verifier_state(env->cur_state, true);
19675 		env->cur_state = NULL;
19676 	}
19677 	while (!pop_stack(env, NULL, NULL, false));
19678 	if (!ret && pop_log)
19679 		bpf_vlog_reset(&env->log, 0);
19680 	free_states(env);
19681 	return ret;
19682 }
19683 
19684 /* Verify all global functions in a BPF program one by one based on their BTF.
19685  * All global functions must pass verification. Otherwise the whole program is rejected.
19686  * Consider:
19687  * int bar(int);
19688  * int foo(int f)
19689  * {
19690  *    return bar(f);
19691  * }
19692  * int bar(int b)
19693  * {
19694  *    ...
19695  * }
19696  * foo() will be verified first for R1=any_scalar_value. During verification it
19697  * will be assumed that bar() already verified successfully and call to bar()
19698  * from foo() will be checked for type match only. Later bar() will be verified
19699  * independently to check that it's safe for R1=any_scalar_value.
19700  */
19701 static int do_check_subprogs(struct bpf_verifier_env *env)
19702 {
19703 	struct bpf_prog_aux *aux = env->prog->aux;
19704 	int i, ret;
19705 
19706 	if (!aux->func_info)
19707 		return 0;
19708 
19709 	for (i = 1; i < env->subprog_cnt; i++) {
19710 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19711 			continue;
19712 		env->insn_idx = env->subprog_info[i].start;
19713 		WARN_ON_ONCE(env->insn_idx == 0);
19714 		ret = do_check_common(env, i);
19715 		if (ret) {
19716 			return ret;
19717 		} else if (env->log.level & BPF_LOG_LEVEL) {
19718 			verbose(env,
19719 				"Func#%d is safe for any args that match its prototype\n",
19720 				i);
19721 		}
19722 	}
19723 	return 0;
19724 }
19725 
19726 static int do_check_main(struct bpf_verifier_env *env)
19727 {
19728 	int ret;
19729 
19730 	env->insn_idx = 0;
19731 	ret = do_check_common(env, 0);
19732 	if (!ret)
19733 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19734 	return ret;
19735 }
19736 
19737 
19738 static void print_verification_stats(struct bpf_verifier_env *env)
19739 {
19740 	int i;
19741 
19742 	if (env->log.level & BPF_LOG_STATS) {
19743 		verbose(env, "verification time %lld usec\n",
19744 			div_u64(env->verification_time, 1000));
19745 		verbose(env, "stack depth ");
19746 		for (i = 0; i < env->subprog_cnt; i++) {
19747 			u32 depth = env->subprog_info[i].stack_depth;
19748 
19749 			verbose(env, "%d", depth);
19750 			if (i + 1 < env->subprog_cnt)
19751 				verbose(env, "+");
19752 		}
19753 		verbose(env, "\n");
19754 	}
19755 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19756 		"total_states %d peak_states %d mark_read %d\n",
19757 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19758 		env->max_states_per_insn, env->total_states,
19759 		env->peak_states, env->longest_mark_read_walk);
19760 }
19761 
19762 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19763 {
19764 	const struct btf_type *t, *func_proto;
19765 	const struct bpf_struct_ops *st_ops;
19766 	const struct btf_member *member;
19767 	struct bpf_prog *prog = env->prog;
19768 	u32 btf_id, member_idx;
19769 	const char *mname;
19770 
19771 	if (!prog->gpl_compatible) {
19772 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19773 		return -EINVAL;
19774 	}
19775 
19776 	btf_id = prog->aux->attach_btf_id;
19777 	st_ops = bpf_struct_ops_find(btf_id);
19778 	if (!st_ops) {
19779 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19780 			btf_id);
19781 		return -ENOTSUPP;
19782 	}
19783 
19784 	t = st_ops->type;
19785 	member_idx = prog->expected_attach_type;
19786 	if (member_idx >= btf_type_vlen(t)) {
19787 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19788 			member_idx, st_ops->name);
19789 		return -EINVAL;
19790 	}
19791 
19792 	member = &btf_type_member(t)[member_idx];
19793 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19794 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19795 					       NULL);
19796 	if (!func_proto) {
19797 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19798 			mname, member_idx, st_ops->name);
19799 		return -EINVAL;
19800 	}
19801 
19802 	if (st_ops->check_member) {
19803 		int err = st_ops->check_member(t, member, prog);
19804 
19805 		if (err) {
19806 			verbose(env, "attach to unsupported member %s of struct %s\n",
19807 				mname, st_ops->name);
19808 			return err;
19809 		}
19810 	}
19811 
19812 	prog->aux->attach_func_proto = func_proto;
19813 	prog->aux->attach_func_name = mname;
19814 	env->ops = st_ops->verifier_ops;
19815 
19816 	return 0;
19817 }
19818 #define SECURITY_PREFIX "security_"
19819 
19820 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19821 {
19822 	if (within_error_injection_list(addr) ||
19823 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19824 		return 0;
19825 
19826 	return -EINVAL;
19827 }
19828 
19829 /* list of non-sleepable functions that are otherwise on
19830  * ALLOW_ERROR_INJECTION list
19831  */
19832 BTF_SET_START(btf_non_sleepable_error_inject)
19833 /* Three functions below can be called from sleepable and non-sleepable context.
19834  * Assume non-sleepable from bpf safety point of view.
19835  */
19836 BTF_ID(func, __filemap_add_folio)
19837 BTF_ID(func, should_fail_alloc_page)
19838 BTF_ID(func, should_failslab)
19839 BTF_SET_END(btf_non_sleepable_error_inject)
19840 
19841 static int check_non_sleepable_error_inject(u32 btf_id)
19842 {
19843 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19844 }
19845 
19846 int bpf_check_attach_target(struct bpf_verifier_log *log,
19847 			    const struct bpf_prog *prog,
19848 			    const struct bpf_prog *tgt_prog,
19849 			    u32 btf_id,
19850 			    struct bpf_attach_target_info *tgt_info)
19851 {
19852 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19853 	const char prefix[] = "btf_trace_";
19854 	int ret = 0, subprog = -1, i;
19855 	const struct btf_type *t;
19856 	bool conservative = true;
19857 	const char *tname;
19858 	struct btf *btf;
19859 	long addr = 0;
19860 	struct module *mod = NULL;
19861 
19862 	if (!btf_id) {
19863 		bpf_log(log, "Tracing programs must provide btf_id\n");
19864 		return -EINVAL;
19865 	}
19866 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19867 	if (!btf) {
19868 		bpf_log(log,
19869 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19870 		return -EINVAL;
19871 	}
19872 	t = btf_type_by_id(btf, btf_id);
19873 	if (!t) {
19874 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19875 		return -EINVAL;
19876 	}
19877 	tname = btf_name_by_offset(btf, t->name_off);
19878 	if (!tname) {
19879 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19880 		return -EINVAL;
19881 	}
19882 	if (tgt_prog) {
19883 		struct bpf_prog_aux *aux = tgt_prog->aux;
19884 
19885 		if (bpf_prog_is_dev_bound(prog->aux) &&
19886 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19887 			bpf_log(log, "Target program bound device mismatch");
19888 			return -EINVAL;
19889 		}
19890 
19891 		for (i = 0; i < aux->func_info_cnt; i++)
19892 			if (aux->func_info[i].type_id == btf_id) {
19893 				subprog = i;
19894 				break;
19895 			}
19896 		if (subprog == -1) {
19897 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19898 			return -EINVAL;
19899 		}
19900 		conservative = aux->func_info_aux[subprog].unreliable;
19901 		if (prog_extension) {
19902 			if (conservative) {
19903 				bpf_log(log,
19904 					"Cannot replace static functions\n");
19905 				return -EINVAL;
19906 			}
19907 			if (!prog->jit_requested) {
19908 				bpf_log(log,
19909 					"Extension programs should be JITed\n");
19910 				return -EINVAL;
19911 			}
19912 		}
19913 		if (!tgt_prog->jited) {
19914 			bpf_log(log, "Can attach to only JITed progs\n");
19915 			return -EINVAL;
19916 		}
19917 		if (tgt_prog->type == prog->type) {
19918 			/* Cannot fentry/fexit another fentry/fexit program.
19919 			 * Cannot attach program extension to another extension.
19920 			 * It's ok to attach fentry/fexit to extension program.
19921 			 */
19922 			bpf_log(log, "Cannot recursively attach\n");
19923 			return -EINVAL;
19924 		}
19925 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19926 		    prog_extension &&
19927 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19928 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19929 			/* Program extensions can extend all program types
19930 			 * except fentry/fexit. The reason is the following.
19931 			 * The fentry/fexit programs are used for performance
19932 			 * analysis, stats and can be attached to any program
19933 			 * type except themselves. When extension program is
19934 			 * replacing XDP function it is necessary to allow
19935 			 * performance analysis of all functions. Both original
19936 			 * XDP program and its program extension. Hence
19937 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19938 			 * allowed. If extending of fentry/fexit was allowed it
19939 			 * would be possible to create long call chain
19940 			 * fentry->extension->fentry->extension beyond
19941 			 * reasonable stack size. Hence extending fentry is not
19942 			 * allowed.
19943 			 */
19944 			bpf_log(log, "Cannot extend fentry/fexit\n");
19945 			return -EINVAL;
19946 		}
19947 	} else {
19948 		if (prog_extension) {
19949 			bpf_log(log, "Cannot replace kernel functions\n");
19950 			return -EINVAL;
19951 		}
19952 	}
19953 
19954 	switch (prog->expected_attach_type) {
19955 	case BPF_TRACE_RAW_TP:
19956 		if (tgt_prog) {
19957 			bpf_log(log,
19958 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19959 			return -EINVAL;
19960 		}
19961 		if (!btf_type_is_typedef(t)) {
19962 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19963 				btf_id);
19964 			return -EINVAL;
19965 		}
19966 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19967 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19968 				btf_id, tname);
19969 			return -EINVAL;
19970 		}
19971 		tname += sizeof(prefix) - 1;
19972 		t = btf_type_by_id(btf, t->type);
19973 		if (!btf_type_is_ptr(t))
19974 			/* should never happen in valid vmlinux build */
19975 			return -EINVAL;
19976 		t = btf_type_by_id(btf, t->type);
19977 		if (!btf_type_is_func_proto(t))
19978 			/* should never happen in valid vmlinux build */
19979 			return -EINVAL;
19980 
19981 		break;
19982 	case BPF_TRACE_ITER:
19983 		if (!btf_type_is_func(t)) {
19984 			bpf_log(log, "attach_btf_id %u is not a function\n",
19985 				btf_id);
19986 			return -EINVAL;
19987 		}
19988 		t = btf_type_by_id(btf, t->type);
19989 		if (!btf_type_is_func_proto(t))
19990 			return -EINVAL;
19991 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19992 		if (ret)
19993 			return ret;
19994 		break;
19995 	default:
19996 		if (!prog_extension)
19997 			return -EINVAL;
19998 		fallthrough;
19999 	case BPF_MODIFY_RETURN:
20000 	case BPF_LSM_MAC:
20001 	case BPF_LSM_CGROUP:
20002 	case BPF_TRACE_FENTRY:
20003 	case BPF_TRACE_FEXIT:
20004 		if (!btf_type_is_func(t)) {
20005 			bpf_log(log, "attach_btf_id %u is not a function\n",
20006 				btf_id);
20007 			return -EINVAL;
20008 		}
20009 		if (prog_extension &&
20010 		    btf_check_type_match(log, prog, btf, t))
20011 			return -EINVAL;
20012 		t = btf_type_by_id(btf, t->type);
20013 		if (!btf_type_is_func_proto(t))
20014 			return -EINVAL;
20015 
20016 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20017 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20018 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20019 			return -EINVAL;
20020 
20021 		if (tgt_prog && conservative)
20022 			t = NULL;
20023 
20024 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20025 		if (ret < 0)
20026 			return ret;
20027 
20028 		if (tgt_prog) {
20029 			if (subprog == 0)
20030 				addr = (long) tgt_prog->bpf_func;
20031 			else
20032 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20033 		} else {
20034 			if (btf_is_module(btf)) {
20035 				mod = btf_try_get_module(btf);
20036 				if (mod)
20037 					addr = find_kallsyms_symbol_value(mod, tname);
20038 				else
20039 					addr = 0;
20040 			} else {
20041 				addr = kallsyms_lookup_name(tname);
20042 			}
20043 			if (!addr) {
20044 				module_put(mod);
20045 				bpf_log(log,
20046 					"The address of function %s cannot be found\n",
20047 					tname);
20048 				return -ENOENT;
20049 			}
20050 		}
20051 
20052 		if (prog->aux->sleepable) {
20053 			ret = -EINVAL;
20054 			switch (prog->type) {
20055 			case BPF_PROG_TYPE_TRACING:
20056 
20057 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20058 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20059 				 */
20060 				if (!check_non_sleepable_error_inject(btf_id) &&
20061 				    within_error_injection_list(addr))
20062 					ret = 0;
20063 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20064 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20065 				 */
20066 				else {
20067 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20068 										prog);
20069 
20070 					if (flags && (*flags & KF_SLEEPABLE))
20071 						ret = 0;
20072 				}
20073 				break;
20074 			case BPF_PROG_TYPE_LSM:
20075 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20076 				 * Only some of them are sleepable.
20077 				 */
20078 				if (bpf_lsm_is_sleepable_hook(btf_id))
20079 					ret = 0;
20080 				break;
20081 			default:
20082 				break;
20083 			}
20084 			if (ret) {
20085 				module_put(mod);
20086 				bpf_log(log, "%s is not sleepable\n", tname);
20087 				return ret;
20088 			}
20089 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20090 			if (tgt_prog) {
20091 				module_put(mod);
20092 				bpf_log(log, "can't modify return codes of BPF programs\n");
20093 				return -EINVAL;
20094 			}
20095 			ret = -EINVAL;
20096 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20097 			    !check_attach_modify_return(addr, tname))
20098 				ret = 0;
20099 			if (ret) {
20100 				module_put(mod);
20101 				bpf_log(log, "%s() is not modifiable\n", tname);
20102 				return ret;
20103 			}
20104 		}
20105 
20106 		break;
20107 	}
20108 	tgt_info->tgt_addr = addr;
20109 	tgt_info->tgt_name = tname;
20110 	tgt_info->tgt_type = t;
20111 	tgt_info->tgt_mod = mod;
20112 	return 0;
20113 }
20114 
20115 BTF_SET_START(btf_id_deny)
20116 BTF_ID_UNUSED
20117 #ifdef CONFIG_SMP
20118 BTF_ID(func, migrate_disable)
20119 BTF_ID(func, migrate_enable)
20120 #endif
20121 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20122 BTF_ID(func, rcu_read_unlock_strict)
20123 #endif
20124 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20125 BTF_ID(func, preempt_count_add)
20126 BTF_ID(func, preempt_count_sub)
20127 #endif
20128 #ifdef CONFIG_PREEMPT_RCU
20129 BTF_ID(func, __rcu_read_lock)
20130 BTF_ID(func, __rcu_read_unlock)
20131 #endif
20132 BTF_SET_END(btf_id_deny)
20133 
20134 static bool can_be_sleepable(struct bpf_prog *prog)
20135 {
20136 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20137 		switch (prog->expected_attach_type) {
20138 		case BPF_TRACE_FENTRY:
20139 		case BPF_TRACE_FEXIT:
20140 		case BPF_MODIFY_RETURN:
20141 		case BPF_TRACE_ITER:
20142 			return true;
20143 		default:
20144 			return false;
20145 		}
20146 	}
20147 	return prog->type == BPF_PROG_TYPE_LSM ||
20148 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20149 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20150 }
20151 
20152 static int check_attach_btf_id(struct bpf_verifier_env *env)
20153 {
20154 	struct bpf_prog *prog = env->prog;
20155 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20156 	struct bpf_attach_target_info tgt_info = {};
20157 	u32 btf_id = prog->aux->attach_btf_id;
20158 	struct bpf_trampoline *tr;
20159 	int ret;
20160 	u64 key;
20161 
20162 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20163 		if (prog->aux->sleepable)
20164 			/* attach_btf_id checked to be zero already */
20165 			return 0;
20166 		verbose(env, "Syscall programs can only be sleepable\n");
20167 		return -EINVAL;
20168 	}
20169 
20170 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20171 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20172 		return -EINVAL;
20173 	}
20174 
20175 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20176 		return check_struct_ops_btf_id(env);
20177 
20178 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20179 	    prog->type != BPF_PROG_TYPE_LSM &&
20180 	    prog->type != BPF_PROG_TYPE_EXT)
20181 		return 0;
20182 
20183 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20184 	if (ret)
20185 		return ret;
20186 
20187 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20188 		/* to make freplace equivalent to their targets, they need to
20189 		 * inherit env->ops and expected_attach_type for the rest of the
20190 		 * verification
20191 		 */
20192 		env->ops = bpf_verifier_ops[tgt_prog->type];
20193 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20194 	}
20195 
20196 	/* store info about the attachment target that will be used later */
20197 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20198 	prog->aux->attach_func_name = tgt_info.tgt_name;
20199 	prog->aux->mod = tgt_info.tgt_mod;
20200 
20201 	if (tgt_prog) {
20202 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20203 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20204 	}
20205 
20206 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20207 		prog->aux->attach_btf_trace = true;
20208 		return 0;
20209 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20210 		if (!bpf_iter_prog_supported(prog))
20211 			return -EINVAL;
20212 		return 0;
20213 	}
20214 
20215 	if (prog->type == BPF_PROG_TYPE_LSM) {
20216 		ret = bpf_lsm_verify_prog(&env->log, prog);
20217 		if (ret < 0)
20218 			return ret;
20219 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20220 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20221 		return -EINVAL;
20222 	}
20223 
20224 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20225 	tr = bpf_trampoline_get(key, &tgt_info);
20226 	if (!tr)
20227 		return -ENOMEM;
20228 
20229 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20230 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20231 
20232 	prog->aux->dst_trampoline = tr;
20233 	return 0;
20234 }
20235 
20236 struct btf *bpf_get_btf_vmlinux(void)
20237 {
20238 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20239 		mutex_lock(&bpf_verifier_lock);
20240 		if (!btf_vmlinux)
20241 			btf_vmlinux = btf_parse_vmlinux();
20242 		mutex_unlock(&bpf_verifier_lock);
20243 	}
20244 	return btf_vmlinux;
20245 }
20246 
20247 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20248 {
20249 	u64 start_time = ktime_get_ns();
20250 	struct bpf_verifier_env *env;
20251 	int i, len, ret = -EINVAL, err;
20252 	u32 log_true_size;
20253 	bool is_priv;
20254 
20255 	/* no program is valid */
20256 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20257 		return -EINVAL;
20258 
20259 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20260 	 * allocate/free it every time bpf_check() is called
20261 	 */
20262 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20263 	if (!env)
20264 		return -ENOMEM;
20265 
20266 	env->bt.env = env;
20267 
20268 	len = (*prog)->len;
20269 	env->insn_aux_data =
20270 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20271 	ret = -ENOMEM;
20272 	if (!env->insn_aux_data)
20273 		goto err_free_env;
20274 	for (i = 0; i < len; i++)
20275 		env->insn_aux_data[i].orig_idx = i;
20276 	env->prog = *prog;
20277 	env->ops = bpf_verifier_ops[env->prog->type];
20278 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20279 	is_priv = bpf_capable();
20280 
20281 	bpf_get_btf_vmlinux();
20282 
20283 	/* grab the mutex to protect few globals used by verifier */
20284 	if (!is_priv)
20285 		mutex_lock(&bpf_verifier_lock);
20286 
20287 	/* user could have requested verbose verifier output
20288 	 * and supplied buffer to store the verification trace
20289 	 */
20290 	ret = bpf_vlog_init(&env->log, attr->log_level,
20291 			    (char __user *) (unsigned long) attr->log_buf,
20292 			    attr->log_size);
20293 	if (ret)
20294 		goto err_unlock;
20295 
20296 	mark_verifier_state_clean(env);
20297 
20298 	if (IS_ERR(btf_vmlinux)) {
20299 		/* Either gcc or pahole or kernel are broken. */
20300 		verbose(env, "in-kernel BTF is malformed\n");
20301 		ret = PTR_ERR(btf_vmlinux);
20302 		goto skip_full_check;
20303 	}
20304 
20305 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20306 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20307 		env->strict_alignment = true;
20308 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20309 		env->strict_alignment = false;
20310 
20311 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20312 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20313 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20314 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20315 	env->bpf_capable = bpf_capable();
20316 
20317 	if (is_priv)
20318 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20319 
20320 	env->explored_states = kvcalloc(state_htab_size(env),
20321 				       sizeof(struct bpf_verifier_state_list *),
20322 				       GFP_USER);
20323 	ret = -ENOMEM;
20324 	if (!env->explored_states)
20325 		goto skip_full_check;
20326 
20327 	ret = add_subprog_and_kfunc(env);
20328 	if (ret < 0)
20329 		goto skip_full_check;
20330 
20331 	ret = check_subprogs(env);
20332 	if (ret < 0)
20333 		goto skip_full_check;
20334 
20335 	ret = check_btf_info(env, attr, uattr);
20336 	if (ret < 0)
20337 		goto skip_full_check;
20338 
20339 	ret = check_attach_btf_id(env);
20340 	if (ret)
20341 		goto skip_full_check;
20342 
20343 	ret = resolve_pseudo_ldimm64(env);
20344 	if (ret < 0)
20345 		goto skip_full_check;
20346 
20347 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20348 		ret = bpf_prog_offload_verifier_prep(env->prog);
20349 		if (ret)
20350 			goto skip_full_check;
20351 	}
20352 
20353 	ret = check_cfg(env);
20354 	if (ret < 0)
20355 		goto skip_full_check;
20356 
20357 	ret = do_check_subprogs(env);
20358 	ret = ret ?: do_check_main(env);
20359 
20360 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20361 		ret = bpf_prog_offload_finalize(env);
20362 
20363 skip_full_check:
20364 	kvfree(env->explored_states);
20365 
20366 	if (ret == 0)
20367 		ret = check_max_stack_depth(env);
20368 
20369 	/* instruction rewrites happen after this point */
20370 	if (ret == 0)
20371 		ret = optimize_bpf_loop(env);
20372 
20373 	if (is_priv) {
20374 		if (ret == 0)
20375 			opt_hard_wire_dead_code_branches(env);
20376 		if (ret == 0)
20377 			ret = opt_remove_dead_code(env);
20378 		if (ret == 0)
20379 			ret = opt_remove_nops(env);
20380 	} else {
20381 		if (ret == 0)
20382 			sanitize_dead_code(env);
20383 	}
20384 
20385 	if (ret == 0)
20386 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20387 		ret = convert_ctx_accesses(env);
20388 
20389 	if (ret == 0)
20390 		ret = do_misc_fixups(env);
20391 
20392 	/* do 32-bit optimization after insn patching has done so those patched
20393 	 * insns could be handled correctly.
20394 	 */
20395 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20396 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20397 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20398 								     : false;
20399 	}
20400 
20401 	if (ret == 0)
20402 		ret = fixup_call_args(env);
20403 
20404 	env->verification_time = ktime_get_ns() - start_time;
20405 	print_verification_stats(env);
20406 	env->prog->aux->verified_insns = env->insn_processed;
20407 
20408 	/* preserve original error even if log finalization is successful */
20409 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20410 	if (err)
20411 		ret = err;
20412 
20413 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20414 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20415 				  &log_true_size, sizeof(log_true_size))) {
20416 		ret = -EFAULT;
20417 		goto err_release_maps;
20418 	}
20419 
20420 	if (ret)
20421 		goto err_release_maps;
20422 
20423 	if (env->used_map_cnt) {
20424 		/* if program passed verifier, update used_maps in bpf_prog_info */
20425 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20426 							  sizeof(env->used_maps[0]),
20427 							  GFP_KERNEL);
20428 
20429 		if (!env->prog->aux->used_maps) {
20430 			ret = -ENOMEM;
20431 			goto err_release_maps;
20432 		}
20433 
20434 		memcpy(env->prog->aux->used_maps, env->used_maps,
20435 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20436 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20437 	}
20438 	if (env->used_btf_cnt) {
20439 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20440 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20441 							  sizeof(env->used_btfs[0]),
20442 							  GFP_KERNEL);
20443 		if (!env->prog->aux->used_btfs) {
20444 			ret = -ENOMEM;
20445 			goto err_release_maps;
20446 		}
20447 
20448 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20449 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20450 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20451 	}
20452 	if (env->used_map_cnt || env->used_btf_cnt) {
20453 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20454 		 * bpf_ld_imm64 instructions
20455 		 */
20456 		convert_pseudo_ld_imm64(env);
20457 	}
20458 
20459 	adjust_btf_func(env);
20460 
20461 err_release_maps:
20462 	if (!env->prog->aux->used_maps)
20463 		/* if we didn't copy map pointers into bpf_prog_info, release
20464 		 * them now. Otherwise free_used_maps() will release them.
20465 		 */
20466 		release_maps(env);
20467 	if (!env->prog->aux->used_btfs)
20468 		release_btfs(env);
20469 
20470 	/* extension progs temporarily inherit the attach_type of their targets
20471 	   for verification purposes, so set it back to zero before returning
20472 	 */
20473 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20474 		env->prog->expected_attach_type = 0;
20475 
20476 	*prog = env->prog;
20477 err_unlock:
20478 	if (!is_priv)
20479 		mutex_unlock(&bpf_verifier_lock);
20480 	vfree(env->insn_aux_data);
20481 err_free_env:
20482 	kvfree(env);
20483 	return ret;
20484 }
20485