xref: /openbmc/linux/kernel/bpf/verifier.c (revision e91c2518)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 #include "disasm.h"
25 
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 	[_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34 
35 /* bpf_check() is a static code analyzer that walks eBPF program
36  * instruction by instruction and updates register/stack state.
37  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38  *
39  * The first pass is depth-first-search to check that the program is a DAG.
40  * It rejects the following programs:
41  * - larger than BPF_MAXINSNS insns
42  * - if loop is present (detected via back-edge)
43  * - unreachable insns exist (shouldn't be a forest. program = one function)
44  * - out of bounds or malformed jumps
45  * The second pass is all possible path descent from the 1st insn.
46  * Since it's analyzing all pathes through the program, the length of the
47  * analysis is limited to 64k insn, which may be hit even if total number of
48  * insn is less then 4K, but there are too many branches that change stack/regs.
49  * Number of 'branches to be analyzed' is limited to 1k
50  *
51  * On entry to each instruction, each register has a type, and the instruction
52  * changes the types of the registers depending on instruction semantics.
53  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54  * copied to R1.
55  *
56  * All registers are 64-bit.
57  * R0 - return register
58  * R1-R5 argument passing registers
59  * R6-R9 callee saved registers
60  * R10 - frame pointer read-only
61  *
62  * At the start of BPF program the register R1 contains a pointer to bpf_context
63  * and has type PTR_TO_CTX.
64  *
65  * Verifier tracks arithmetic operations on pointers in case:
66  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68  * 1st insn copies R10 (which has FRAME_PTR) type into R1
69  * and 2nd arithmetic instruction is pattern matched to recognize
70  * that it wants to construct a pointer to some element within stack.
71  * So after 2nd insn, the register R1 has type PTR_TO_STACK
72  * (and -20 constant is saved for further stack bounds checking).
73  * Meaning that this reg is a pointer to stack plus known immediate constant.
74  *
75  * Most of the time the registers have SCALAR_VALUE type, which
76  * means the register has some value, but it's not a valid pointer.
77  * (like pointer plus pointer becomes SCALAR_VALUE type)
78  *
79  * When verifier sees load or store instructions the type of base register
80  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81  * types recognized by check_mem_access() function.
82  *
83  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84  * and the range of [ptr, ptr + map's value_size) is accessible.
85  *
86  * registers used to pass values to function calls are checked against
87  * function argument constraints.
88  *
89  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90  * It means that the register type passed to this function must be
91  * PTR_TO_STACK and it will be used inside the function as
92  * 'pointer to map element key'
93  *
94  * For example the argument constraints for bpf_map_lookup_elem():
95  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96  *   .arg1_type = ARG_CONST_MAP_PTR,
97  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
98  *
99  * ret_type says that this function returns 'pointer to map elem value or null'
100  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101  * 2nd argument should be a pointer to stack, which will be used inside
102  * the helper function as a pointer to map element key.
103  *
104  * On the kernel side the helper function looks like:
105  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106  * {
107  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108  *    void *key = (void *) (unsigned long) r2;
109  *    void *value;
110  *
111  *    here kernel can access 'key' and 'map' pointers safely, knowing that
112  *    [key, key + map->key_size) bytes are valid and were initialized on
113  *    the stack of eBPF program.
114  * }
115  *
116  * Corresponding eBPF program may look like:
117  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
118  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
120  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121  * here verifier looks at prototype of map_lookup_elem() and sees:
122  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124  *
125  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127  * and were initialized prior to this call.
128  * If it's ok, then verifier allows this BPF_CALL insn and looks at
129  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131  * returns ether pointer to map value or NULL.
132  *
133  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134  * insn, the register holding that pointer in the true branch changes state to
135  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136  * branch. See check_cond_jmp_op().
137  *
138  * After the call R0 is set to return type of the function and registers R1-R5
139  * are set to NOT_INIT to indicate that they are no longer readable.
140  */
141 
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 	/* verifer state is 'st'
145 	 * before processing instruction 'insn_idx'
146 	 * and after processing instruction 'prev_insn_idx'
147 	 */
148 	struct bpf_verifier_state st;
149 	int insn_idx;
150 	int prev_insn_idx;
151 	struct bpf_verifier_stack_elem *next;
152 };
153 
154 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 #define BPF_COMPLEXITY_LIMIT_STACK	1024
156 
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158 
159 struct bpf_call_arg_meta {
160 	struct bpf_map *map_ptr;
161 	bool raw_mode;
162 	bool pkt_access;
163 	int regno;
164 	int access_size;
165 };
166 
167 static DEFINE_MUTEX(bpf_verifier_lock);
168 
169 /* log_level controls verbosity level of eBPF verifier.
170  * verbose() is used to dump the verification trace to the log, so the user
171  * can figure out what's wrong with the program
172  */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 				   const char *fmt, ...)
175 {
176 	struct bpf_verifer_log *log = &env->log;
177 	unsigned int n;
178 	va_list args;
179 
180 	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 		return;
182 
183 	va_start(args, fmt);
184 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 	va_end(args);
186 
187 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 		  "verifier log line truncated - local buffer too short\n");
189 
190 	n = min(log->len_total - log->len_used - 1, n);
191 	log->kbuf[n] = '\0';
192 
193 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 		log->len_used += n;
195 	else
196 		log->ubuf = NULL;
197 }
198 
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 	return type == PTR_TO_PACKET ||
202 	       type == PTR_TO_PACKET_META;
203 }
204 
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 	[NOT_INIT]		= "?",
208 	[SCALAR_VALUE]		= "inv",
209 	[PTR_TO_CTX]		= "ctx",
210 	[CONST_PTR_TO_MAP]	= "map_ptr",
211 	[PTR_TO_MAP_VALUE]	= "map_value",
212 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 	[PTR_TO_STACK]		= "fp",
214 	[PTR_TO_PACKET]		= "pkt",
215 	[PTR_TO_PACKET_META]	= "pkt_meta",
216 	[PTR_TO_PACKET_END]	= "pkt_end",
217 };
218 
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 				 struct bpf_verifier_state *state)
221 {
222 	struct bpf_reg_state *reg;
223 	enum bpf_reg_type t;
224 	int i;
225 
226 	for (i = 0; i < MAX_BPF_REG; i++) {
227 		reg = &state->regs[i];
228 		t = reg->type;
229 		if (t == NOT_INIT)
230 			continue;
231 		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 		    tnum_is_const(reg->var_off)) {
234 			/* reg->off should be 0 for SCALAR_VALUE */
235 			verbose(env, "%lld", reg->var_off.value + reg->off);
236 		} else {
237 			verbose(env, "(id=%d", reg->id);
238 			if (t != SCALAR_VALUE)
239 				verbose(env, ",off=%d", reg->off);
240 			if (type_is_pkt_pointer(t))
241 				verbose(env, ",r=%d", reg->range);
242 			else if (t == CONST_PTR_TO_MAP ||
243 				 t == PTR_TO_MAP_VALUE ||
244 				 t == PTR_TO_MAP_VALUE_OR_NULL)
245 				verbose(env, ",ks=%d,vs=%d",
246 					reg->map_ptr->key_size,
247 					reg->map_ptr->value_size);
248 			if (tnum_is_const(reg->var_off)) {
249 				/* Typically an immediate SCALAR_VALUE, but
250 				 * could be a pointer whose offset is too big
251 				 * for reg->off
252 				 */
253 				verbose(env, ",imm=%llx", reg->var_off.value);
254 			} else {
255 				if (reg->smin_value != reg->umin_value &&
256 				    reg->smin_value != S64_MIN)
257 					verbose(env, ",smin_value=%lld",
258 						(long long)reg->smin_value);
259 				if (reg->smax_value != reg->umax_value &&
260 				    reg->smax_value != S64_MAX)
261 					verbose(env, ",smax_value=%lld",
262 						(long long)reg->smax_value);
263 				if (reg->umin_value != 0)
264 					verbose(env, ",umin_value=%llu",
265 						(unsigned long long)reg->umin_value);
266 				if (reg->umax_value != U64_MAX)
267 					verbose(env, ",umax_value=%llu",
268 						(unsigned long long)reg->umax_value);
269 				if (!tnum_is_unknown(reg->var_off)) {
270 					char tn_buf[48];
271 
272 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 					verbose(env, ",var_off=%s", tn_buf);
274 				}
275 			}
276 			verbose(env, ")");
277 		}
278 	}
279 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 		if (state->stack[i].slot_type[0] == STACK_SPILL)
281 			verbose(env, " fp%d=%s",
282 				-MAX_BPF_STACK + i * BPF_REG_SIZE,
283 				reg_type_str[state->stack[i].spilled_ptr.type]);
284 	}
285 	verbose(env, "\n");
286 }
287 
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 			    const struct bpf_verifier_state *src)
290 {
291 	if (!src->stack)
292 		return 0;
293 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 		/* internal bug, make state invalid to reject the program */
295 		memset(dst, 0, sizeof(*dst));
296 		return -EFAULT;
297 	}
298 	memcpy(dst->stack, src->stack,
299 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 	return 0;
301 }
302 
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304  * make it consume minimal amount of memory. check_stack_write() access from
305  * the program calls into realloc_verifier_state() to grow the stack size.
306  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307  * which this function copies over. It points to previous bpf_verifier_state
308  * which is never reallocated
309  */
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 				  bool copy_old)
312 {
313 	u32 old_size = state->allocated_stack;
314 	struct bpf_stack_state *new_stack;
315 	int slot = size / BPF_REG_SIZE;
316 
317 	if (size <= old_size || !size) {
318 		if (copy_old)
319 			return 0;
320 		state->allocated_stack = slot * BPF_REG_SIZE;
321 		if (!size && old_size) {
322 			kfree(state->stack);
323 			state->stack = NULL;
324 		}
325 		return 0;
326 	}
327 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 				  GFP_KERNEL);
329 	if (!new_stack)
330 		return -ENOMEM;
331 	if (copy_old) {
332 		if (state->stack)
333 			memcpy(new_stack, state->stack,
334 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 	}
338 	state->allocated_stack = slot * BPF_REG_SIZE;
339 	kfree(state->stack);
340 	state->stack = new_stack;
341 	return 0;
342 }
343 
344 static void free_verifier_state(struct bpf_verifier_state *state,
345 				bool free_self)
346 {
347 	kfree(state->stack);
348 	if (free_self)
349 		kfree(state);
350 }
351 
352 /* copy verifier state from src to dst growing dst stack space
353  * when necessary to accommodate larger src stack
354  */
355 static int copy_verifier_state(struct bpf_verifier_state *dst,
356 			       const struct bpf_verifier_state *src)
357 {
358 	int err;
359 
360 	err = realloc_verifier_state(dst, src->allocated_stack, false);
361 	if (err)
362 		return err;
363 	memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 	return copy_stack_state(dst, src);
365 }
366 
367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 		     int *insn_idx)
369 {
370 	struct bpf_verifier_state *cur = env->cur_state;
371 	struct bpf_verifier_stack_elem *elem, *head = env->head;
372 	int err;
373 
374 	if (env->head == NULL)
375 		return -ENOENT;
376 
377 	if (cur) {
378 		err = copy_verifier_state(cur, &head->st);
379 		if (err)
380 			return err;
381 	}
382 	if (insn_idx)
383 		*insn_idx = head->insn_idx;
384 	if (prev_insn_idx)
385 		*prev_insn_idx = head->prev_insn_idx;
386 	elem = head->next;
387 	free_verifier_state(&head->st, false);
388 	kfree(head);
389 	env->head = elem;
390 	env->stack_size--;
391 	return 0;
392 }
393 
394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 					     int insn_idx, int prev_insn_idx)
396 {
397 	struct bpf_verifier_state *cur = env->cur_state;
398 	struct bpf_verifier_stack_elem *elem;
399 	int err;
400 
401 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 	if (!elem)
403 		goto err;
404 
405 	elem->insn_idx = insn_idx;
406 	elem->prev_insn_idx = prev_insn_idx;
407 	elem->next = env->head;
408 	env->head = elem;
409 	env->stack_size++;
410 	err = copy_verifier_state(&elem->st, cur);
411 	if (err)
412 		goto err;
413 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414 		verbose(env, "BPF program is too complex\n");
415 		goto err;
416 	}
417 	return &elem->st;
418 err:
419 	/* pop all elements and return */
420 	while (!pop_stack(env, NULL, NULL));
421 	return NULL;
422 }
423 
424 #define CALLER_SAVED_REGS 6
425 static const int caller_saved[CALLER_SAVED_REGS] = {
426 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427 };
428 
429 static void __mark_reg_not_init(struct bpf_reg_state *reg);
430 
431 /* Mark the unknown part of a register (variable offset or scalar value) as
432  * known to have the value @imm.
433  */
434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435 {
436 	reg->id = 0;
437 	reg->var_off = tnum_const(imm);
438 	reg->smin_value = (s64)imm;
439 	reg->smax_value = (s64)imm;
440 	reg->umin_value = imm;
441 	reg->umax_value = imm;
442 }
443 
444 /* Mark the 'variable offset' part of a register as zero.  This should be
445  * used only on registers holding a pointer type.
446  */
447 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448 {
449 	__mark_reg_known(reg, 0);
450 }
451 
452 static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 				struct bpf_reg_state *regs, u32 regno)
454 {
455 	if (WARN_ON(regno >= MAX_BPF_REG)) {
456 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 		/* Something bad happened, let's kill all regs */
458 		for (regno = 0; regno < MAX_BPF_REG; regno++)
459 			__mark_reg_not_init(regs + regno);
460 		return;
461 	}
462 	__mark_reg_known_zero(regs + regno);
463 }
464 
465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466 {
467 	return type_is_pkt_pointer(reg->type);
468 }
469 
470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471 {
472 	return reg_is_pkt_pointer(reg) ||
473 	       reg->type == PTR_TO_PACKET_END;
474 }
475 
476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 				    enum bpf_reg_type which)
479 {
480 	/* The register can already have a range from prior markings.
481 	 * This is fine as long as it hasn't been advanced from its
482 	 * origin.
483 	 */
484 	return reg->type == which &&
485 	       reg->id == 0 &&
486 	       reg->off == 0 &&
487 	       tnum_equals_const(reg->var_off, 0);
488 }
489 
490 /* Attempts to improve min/max values based on var_off information */
491 static void __update_reg_bounds(struct bpf_reg_state *reg)
492 {
493 	/* min signed is max(sign bit) | min(other bits) */
494 	reg->smin_value = max_t(s64, reg->smin_value,
495 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 	/* max signed is min(sign bit) | max(other bits) */
497 	reg->smax_value = min_t(s64, reg->smax_value,
498 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 	reg->umax_value = min(reg->umax_value,
501 			      reg->var_off.value | reg->var_off.mask);
502 }
503 
504 /* Uses signed min/max values to inform unsigned, and vice-versa */
505 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506 {
507 	/* Learn sign from signed bounds.
508 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 	 * are the same, so combine.  This works even in the negative case, e.g.
510 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 	 */
512 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 							  reg->umin_value);
515 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 							  reg->umax_value);
517 		return;
518 	}
519 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
520 	 * boundary, so we must be careful.
521 	 */
522 	if ((s64)reg->umax_value >= 0) {
523 		/* Positive.  We can't learn anything from the smin, but smax
524 		 * is positive, hence safe.
525 		 */
526 		reg->smin_value = reg->umin_value;
527 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 							  reg->umax_value);
529 	} else if ((s64)reg->umin_value < 0) {
530 		/* Negative.  We can't learn anything from the smax, but smin
531 		 * is negative, hence safe.
532 		 */
533 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 							  reg->umin_value);
535 		reg->smax_value = reg->umax_value;
536 	}
537 }
538 
539 /* Attempts to improve var_off based on unsigned min/max information */
540 static void __reg_bound_offset(struct bpf_reg_state *reg)
541 {
542 	reg->var_off = tnum_intersect(reg->var_off,
543 				      tnum_range(reg->umin_value,
544 						 reg->umax_value));
545 }
546 
547 /* Reset the min/max bounds of a register */
548 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549 {
550 	reg->smin_value = S64_MIN;
551 	reg->smax_value = S64_MAX;
552 	reg->umin_value = 0;
553 	reg->umax_value = U64_MAX;
554 }
555 
556 /* Mark a register as having a completely unknown (scalar) value. */
557 static void __mark_reg_unknown(struct bpf_reg_state *reg)
558 {
559 	reg->type = SCALAR_VALUE;
560 	reg->id = 0;
561 	reg->off = 0;
562 	reg->var_off = tnum_unknown;
563 	__mark_reg_unbounded(reg);
564 }
565 
566 static void mark_reg_unknown(struct bpf_verifier_env *env,
567 			     struct bpf_reg_state *regs, u32 regno)
568 {
569 	if (WARN_ON(regno >= MAX_BPF_REG)) {
570 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 		/* Something bad happened, let's kill all regs */
572 		for (regno = 0; regno < MAX_BPF_REG; regno++)
573 			__mark_reg_not_init(regs + regno);
574 		return;
575 	}
576 	__mark_reg_unknown(regs + regno);
577 }
578 
579 static void __mark_reg_not_init(struct bpf_reg_state *reg)
580 {
581 	__mark_reg_unknown(reg);
582 	reg->type = NOT_INIT;
583 }
584 
585 static void mark_reg_not_init(struct bpf_verifier_env *env,
586 			      struct bpf_reg_state *regs, u32 regno)
587 {
588 	if (WARN_ON(regno >= MAX_BPF_REG)) {
589 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 		/* Something bad happened, let's kill all regs */
591 		for (regno = 0; regno < MAX_BPF_REG; regno++)
592 			__mark_reg_not_init(regs + regno);
593 		return;
594 	}
595 	__mark_reg_not_init(regs + regno);
596 }
597 
598 static void init_reg_state(struct bpf_verifier_env *env,
599 			   struct bpf_reg_state *regs)
600 {
601 	int i;
602 
603 	for (i = 0; i < MAX_BPF_REG; i++) {
604 		mark_reg_not_init(env, regs, i);
605 		regs[i].live = REG_LIVE_NONE;
606 	}
607 
608 	/* frame pointer */
609 	regs[BPF_REG_FP].type = PTR_TO_STACK;
610 	mark_reg_known_zero(env, regs, BPF_REG_FP);
611 
612 	/* 1st arg to a function */
613 	regs[BPF_REG_1].type = PTR_TO_CTX;
614 	mark_reg_known_zero(env, regs, BPF_REG_1);
615 }
616 
617 enum reg_arg_type {
618 	SRC_OP,		/* register is used as source operand */
619 	DST_OP,		/* register is used as destination operand */
620 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
621 };
622 
623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624 {
625 	struct bpf_verifier_state *parent = state->parent;
626 
627 	if (regno == BPF_REG_FP)
628 		/* We don't need to worry about FP liveness because it's read-only */
629 		return;
630 
631 	while (parent) {
632 		/* if read wasn't screened by an earlier write ... */
633 		if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 			break;
635 		/* ... then we depend on parent's value */
636 		parent->regs[regno].live |= REG_LIVE_READ;
637 		state = parent;
638 		parent = state->parent;
639 	}
640 }
641 
642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 			 enum reg_arg_type t)
644 {
645 	struct bpf_reg_state *regs = env->cur_state->regs;
646 
647 	if (regno >= MAX_BPF_REG) {
648 		verbose(env, "R%d is invalid\n", regno);
649 		return -EINVAL;
650 	}
651 
652 	if (t == SRC_OP) {
653 		/* check whether register used as source operand can be read */
654 		if (regs[regno].type == NOT_INIT) {
655 			verbose(env, "R%d !read_ok\n", regno);
656 			return -EACCES;
657 		}
658 		mark_reg_read(env->cur_state, regno);
659 	} else {
660 		/* check whether register used as dest operand can be written to */
661 		if (regno == BPF_REG_FP) {
662 			verbose(env, "frame pointer is read only\n");
663 			return -EACCES;
664 		}
665 		regs[regno].live |= REG_LIVE_WRITTEN;
666 		if (t == DST_OP)
667 			mark_reg_unknown(env, regs, regno);
668 	}
669 	return 0;
670 }
671 
672 static bool is_spillable_regtype(enum bpf_reg_type type)
673 {
674 	switch (type) {
675 	case PTR_TO_MAP_VALUE:
676 	case PTR_TO_MAP_VALUE_OR_NULL:
677 	case PTR_TO_STACK:
678 	case PTR_TO_CTX:
679 	case PTR_TO_PACKET:
680 	case PTR_TO_PACKET_META:
681 	case PTR_TO_PACKET_END:
682 	case CONST_PTR_TO_MAP:
683 		return true;
684 	default:
685 		return false;
686 	}
687 }
688 
689 /* check_stack_read/write functions track spill/fill of registers,
690  * stack boundary and alignment are checked in check_mem_access()
691  */
692 static int check_stack_write(struct bpf_verifier_env *env,
693 			     struct bpf_verifier_state *state, int off,
694 			     int size, int value_regno)
695 {
696 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697 
698 	err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 				     true);
700 	if (err)
701 		return err;
702 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 	 * so it's aligned access and [off, off + size) are within stack limits
704 	 */
705 	if (!env->allow_ptr_leaks &&
706 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
707 	    size != BPF_REG_SIZE) {
708 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 		return -EACCES;
710 	}
711 
712 	if (value_regno >= 0 &&
713 	    is_spillable_regtype(state->regs[value_regno].type)) {
714 
715 		/* register containing pointer is being spilled into stack */
716 		if (size != BPF_REG_SIZE) {
717 			verbose(env, "invalid size of register spill\n");
718 			return -EACCES;
719 		}
720 
721 		/* save register state */
722 		state->stack[spi].spilled_ptr = state->regs[value_regno];
723 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724 
725 		for (i = 0; i < BPF_REG_SIZE; i++)
726 			state->stack[spi].slot_type[i] = STACK_SPILL;
727 	} else {
728 		/* regular write of data into stack */
729 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730 
731 		for (i = 0; i < size; i++)
732 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 				STACK_MISC;
734 	}
735 	return 0;
736 }
737 
738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739 {
740 	struct bpf_verifier_state *parent = state->parent;
741 
742 	while (parent) {
743 		/* if read wasn't screened by an earlier write ... */
744 		if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 			break;
746 		/* ... then we depend on parent's value */
747 		parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 		state = parent;
749 		parent = state->parent;
750 	}
751 }
752 
753 static int check_stack_read(struct bpf_verifier_env *env,
754 			    struct bpf_verifier_state *state, int off, int size,
755 			    int value_regno)
756 {
757 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 	u8 *stype;
759 
760 	if (state->allocated_stack <= slot) {
761 		verbose(env, "invalid read from stack off %d+0 size %d\n",
762 			off, size);
763 		return -EACCES;
764 	}
765 	stype = state->stack[spi].slot_type;
766 
767 	if (stype[0] == STACK_SPILL) {
768 		if (size != BPF_REG_SIZE) {
769 			verbose(env, "invalid size of register spill\n");
770 			return -EACCES;
771 		}
772 		for (i = 1; i < BPF_REG_SIZE; i++) {
773 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774 				verbose(env, "corrupted spill memory\n");
775 				return -EACCES;
776 			}
777 		}
778 
779 		if (value_regno >= 0) {
780 			/* restore register state from stack */
781 			state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 			mark_stack_slot_read(state, spi);
783 		}
784 		return 0;
785 	} else {
786 		for (i = 0; i < size; i++) {
787 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788 				verbose(env, "invalid read from stack off %d+%d size %d\n",
789 					off, i, size);
790 				return -EACCES;
791 			}
792 		}
793 		if (value_regno >= 0)
794 			/* have read misc data from the stack */
795 			mark_reg_unknown(env, state->regs, value_regno);
796 		return 0;
797 	}
798 }
799 
800 /* check read/write into map element returned by bpf_map_lookup_elem() */
801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802 			      int size, bool zero_size_allowed)
803 {
804 	struct bpf_reg_state *regs = cur_regs(env);
805 	struct bpf_map *map = regs[regno].map_ptr;
806 
807 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 	    off + size > map->value_size) {
809 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 			map->value_size, off, size);
811 		return -EACCES;
812 	}
813 	return 0;
814 }
815 
816 /* check read/write into a map element with possible variable offset */
817 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818 			    int off, int size, bool zero_size_allowed)
819 {
820 	struct bpf_verifier_state *state = env->cur_state;
821 	struct bpf_reg_state *reg = &state->regs[regno];
822 	int err;
823 
824 	/* We may have adjusted the register to this map value, so we
825 	 * need to try adding each of min_value and max_value to off
826 	 * to make sure our theoretical access will be safe.
827 	 */
828 	if (env->log.level)
829 		print_verifier_state(env, state);
830 	/* The minimum value is only important with signed
831 	 * comparisons where we can't assume the floor of a
832 	 * value is 0.  If we are using signed variables for our
833 	 * index'es we need to make sure that whatever we use
834 	 * will have a set floor within our range.
835 	 */
836 	if (reg->smin_value < 0) {
837 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
838 			regno);
839 		return -EACCES;
840 	}
841 	err = __check_map_access(env, regno, reg->smin_value + off, size,
842 				 zero_size_allowed);
843 	if (err) {
844 		verbose(env, "R%d min value is outside of the array range\n",
845 			regno);
846 		return err;
847 	}
848 
849 	/* If we haven't set a max value then we need to bail since we can't be
850 	 * sure we won't do bad things.
851 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
852 	 */
853 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
855 			regno);
856 		return -EACCES;
857 	}
858 	err = __check_map_access(env, regno, reg->umax_value + off, size,
859 				 zero_size_allowed);
860 	if (err)
861 		verbose(env, "R%d max value is outside of the array range\n",
862 			regno);
863 	return err;
864 }
865 
866 #define MAX_PACKET_OFF 0xffff
867 
868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 				       const struct bpf_call_arg_meta *meta,
870 				       enum bpf_access_type t)
871 {
872 	switch (env->prog->type) {
873 	case BPF_PROG_TYPE_LWT_IN:
874 	case BPF_PROG_TYPE_LWT_OUT:
875 		/* dst_input() and dst_output() can't write for now */
876 		if (t == BPF_WRITE)
877 			return false;
878 		/* fallthrough */
879 	case BPF_PROG_TYPE_SCHED_CLS:
880 	case BPF_PROG_TYPE_SCHED_ACT:
881 	case BPF_PROG_TYPE_XDP:
882 	case BPF_PROG_TYPE_LWT_XMIT:
883 	case BPF_PROG_TYPE_SK_SKB:
884 		if (meta)
885 			return meta->pkt_access;
886 
887 		env->seen_direct_write = true;
888 		return true;
889 	default:
890 		return false;
891 	}
892 }
893 
894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895 				 int off, int size, bool zero_size_allowed)
896 {
897 	struct bpf_reg_state *regs = cur_regs(env);
898 	struct bpf_reg_state *reg = &regs[regno];
899 
900 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 	    (u64)off + size > reg->range) {
902 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903 			off, size, regno, reg->id, reg->off, reg->range);
904 		return -EACCES;
905 	}
906 	return 0;
907 }
908 
909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910 			       int size, bool zero_size_allowed)
911 {
912 	struct bpf_reg_state *regs = cur_regs(env);
913 	struct bpf_reg_state *reg = &regs[regno];
914 	int err;
915 
916 	/* We may have added a variable offset to the packet pointer; but any
917 	 * reg->range we have comes after that.  We are only checking the fixed
918 	 * offset.
919 	 */
920 
921 	/* We don't allow negative numbers, because we aren't tracking enough
922 	 * detail to prove they're safe.
923 	 */
924 	if (reg->smin_value < 0) {
925 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 			regno);
927 		return -EACCES;
928 	}
929 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
930 	if (err) {
931 		verbose(env, "R%d offset is outside of the packet\n", regno);
932 		return err;
933 	}
934 	return err;
935 }
936 
937 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
940 {
941 	struct bpf_insn_access_aux info = {
942 		.reg_type = *reg_type,
943 	};
944 
945 	if (env->ops->is_valid_access &&
946 	    env->ops->is_valid_access(off, size, t, &info)) {
947 		/* A non zero info.ctx_field_size indicates that this field is a
948 		 * candidate for later verifier transformation to load the whole
949 		 * field and then apply a mask when accessed with a narrower
950 		 * access than actual ctx access size. A zero info.ctx_field_size
951 		 * will only allow for whole field access and rejects any other
952 		 * type of narrower access.
953 		 */
954 		*reg_type = info.reg_type;
955 
956 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 		/* remember the offset of last byte accessed in ctx */
958 		if (env->prog->aux->max_ctx_offset < off + size)
959 			env->prog->aux->max_ctx_offset = off + size;
960 		return 0;
961 	}
962 
963 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
964 	return -EACCES;
965 }
966 
967 static bool __is_pointer_value(bool allow_ptr_leaks,
968 			       const struct bpf_reg_state *reg)
969 {
970 	if (allow_ptr_leaks)
971 		return false;
972 
973 	return reg->type != SCALAR_VALUE;
974 }
975 
976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977 {
978 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
979 }
980 
981 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
982 {
983 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
984 
985 	return reg->type == PTR_TO_CTX;
986 }
987 
988 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
989 				   const struct bpf_reg_state *reg,
990 				   int off, int size, bool strict)
991 {
992 	struct tnum reg_off;
993 	int ip_align;
994 
995 	/* Byte size accesses are always allowed. */
996 	if (!strict || size == 1)
997 		return 0;
998 
999 	/* For platforms that do not have a Kconfig enabling
1000 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1001 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1002 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1003 	 * to this code only in strict mode where we want to emulate
1004 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1005 	 * unconditional IP align value of '2'.
1006 	 */
1007 	ip_align = 2;
1008 
1009 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1010 	if (!tnum_is_aligned(reg_off, size)) {
1011 		char tn_buf[48];
1012 
1013 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1014 		verbose(env,
1015 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1016 			ip_align, tn_buf, reg->off, off, size);
1017 		return -EACCES;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1024 				       const struct bpf_reg_state *reg,
1025 				       const char *pointer_desc,
1026 				       int off, int size, bool strict)
1027 {
1028 	struct tnum reg_off;
1029 
1030 	/* Byte size accesses are always allowed. */
1031 	if (!strict || size == 1)
1032 		return 0;
1033 
1034 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1035 	if (!tnum_is_aligned(reg_off, size)) {
1036 		char tn_buf[48];
1037 
1038 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1039 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1040 			pointer_desc, tn_buf, reg->off, off, size);
1041 		return -EACCES;
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static int check_ptr_alignment(struct bpf_verifier_env *env,
1048 			       const struct bpf_reg_state *reg,
1049 			       int off, int size)
1050 {
1051 	bool strict = env->strict_alignment;
1052 	const char *pointer_desc = "";
1053 
1054 	switch (reg->type) {
1055 	case PTR_TO_PACKET:
1056 	case PTR_TO_PACKET_META:
1057 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1058 		 * right in front, treat it the very same way.
1059 		 */
1060 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1061 	case PTR_TO_MAP_VALUE:
1062 		pointer_desc = "value ";
1063 		break;
1064 	case PTR_TO_CTX:
1065 		pointer_desc = "context ";
1066 		break;
1067 	case PTR_TO_STACK:
1068 		pointer_desc = "stack ";
1069 		/* The stack spill tracking logic in check_stack_write()
1070 		 * and check_stack_read() relies on stack accesses being
1071 		 * aligned.
1072 		 */
1073 		strict = true;
1074 		break;
1075 	default:
1076 		break;
1077 	}
1078 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1079 					   strict);
1080 }
1081 
1082 /* truncate register to smaller size (in bytes)
1083  * must be called with size < BPF_REG_SIZE
1084  */
1085 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1086 {
1087 	u64 mask;
1088 
1089 	/* clear high bits in bit representation */
1090 	reg->var_off = tnum_cast(reg->var_off, size);
1091 
1092 	/* fix arithmetic bounds */
1093 	mask = ((u64)1 << (size * 8)) - 1;
1094 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1095 		reg->umin_value &= mask;
1096 		reg->umax_value &= mask;
1097 	} else {
1098 		reg->umin_value = 0;
1099 		reg->umax_value = mask;
1100 	}
1101 	reg->smin_value = reg->umin_value;
1102 	reg->smax_value = reg->umax_value;
1103 }
1104 
1105 /* check whether memory at (regno + off) is accessible for t = (read | write)
1106  * if t==write, value_regno is a register which value is stored into memory
1107  * if t==read, value_regno is a register which will receive the value from memory
1108  * if t==write && value_regno==-1, some unknown value is stored into memory
1109  * if t==read && value_regno==-1, don't care what we read from memory
1110  */
1111 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1112 			    int bpf_size, enum bpf_access_type t,
1113 			    int value_regno)
1114 {
1115 	struct bpf_verifier_state *state = env->cur_state;
1116 	struct bpf_reg_state *regs = cur_regs(env);
1117 	struct bpf_reg_state *reg = regs + regno;
1118 	int size, err = 0;
1119 
1120 	size = bpf_size_to_bytes(bpf_size);
1121 	if (size < 0)
1122 		return size;
1123 
1124 	/* alignment checks will add in reg->off themselves */
1125 	err = check_ptr_alignment(env, reg, off, size);
1126 	if (err)
1127 		return err;
1128 
1129 	/* for access checks, reg->off is just part of off */
1130 	off += reg->off;
1131 
1132 	if (reg->type == PTR_TO_MAP_VALUE) {
1133 		if (t == BPF_WRITE && value_regno >= 0 &&
1134 		    is_pointer_value(env, value_regno)) {
1135 			verbose(env, "R%d leaks addr into map\n", value_regno);
1136 			return -EACCES;
1137 		}
1138 
1139 		err = check_map_access(env, regno, off, size, false);
1140 		if (!err && t == BPF_READ && value_regno >= 0)
1141 			mark_reg_unknown(env, regs, value_regno);
1142 
1143 	} else if (reg->type == PTR_TO_CTX) {
1144 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1145 
1146 		if (t == BPF_WRITE && value_regno >= 0 &&
1147 		    is_pointer_value(env, value_regno)) {
1148 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1149 			return -EACCES;
1150 		}
1151 		/* ctx accesses must be at a fixed offset, so that we can
1152 		 * determine what type of data were returned.
1153 		 */
1154 		if (reg->off) {
1155 			verbose(env,
1156 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1157 				regno, reg->off, off - reg->off);
1158 			return -EACCES;
1159 		}
1160 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1161 			char tn_buf[48];
1162 
1163 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1164 			verbose(env,
1165 				"variable ctx access var_off=%s off=%d size=%d",
1166 				tn_buf, off, size);
1167 			return -EACCES;
1168 		}
1169 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1170 		if (!err && t == BPF_READ && value_regno >= 0) {
1171 			/* ctx access returns either a scalar, or a
1172 			 * PTR_TO_PACKET[_META,_END]. In the latter
1173 			 * case, we know the offset is zero.
1174 			 */
1175 			if (reg_type == SCALAR_VALUE)
1176 				mark_reg_unknown(env, regs, value_regno);
1177 			else
1178 				mark_reg_known_zero(env, regs,
1179 						    value_regno);
1180 			regs[value_regno].id = 0;
1181 			regs[value_regno].off = 0;
1182 			regs[value_regno].range = 0;
1183 			regs[value_regno].type = reg_type;
1184 		}
1185 
1186 	} else if (reg->type == PTR_TO_STACK) {
1187 		/* stack accesses must be at a fixed offset, so that we can
1188 		 * determine what type of data were returned.
1189 		 * See check_stack_read().
1190 		 */
1191 		if (!tnum_is_const(reg->var_off)) {
1192 			char tn_buf[48];
1193 
1194 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1195 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1196 				tn_buf, off, size);
1197 			return -EACCES;
1198 		}
1199 		off += reg->var_off.value;
1200 		if (off >= 0 || off < -MAX_BPF_STACK) {
1201 			verbose(env, "invalid stack off=%d size=%d\n", off,
1202 				size);
1203 			return -EACCES;
1204 		}
1205 
1206 		if (env->prog->aux->stack_depth < -off)
1207 			env->prog->aux->stack_depth = -off;
1208 
1209 		if (t == BPF_WRITE)
1210 			err = check_stack_write(env, state, off, size,
1211 						value_regno);
1212 		else
1213 			err = check_stack_read(env, state, off, size,
1214 					       value_regno);
1215 	} else if (reg_is_pkt_pointer(reg)) {
1216 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1217 			verbose(env, "cannot write into packet\n");
1218 			return -EACCES;
1219 		}
1220 		if (t == BPF_WRITE && value_regno >= 0 &&
1221 		    is_pointer_value(env, value_regno)) {
1222 			verbose(env, "R%d leaks addr into packet\n",
1223 				value_regno);
1224 			return -EACCES;
1225 		}
1226 		err = check_packet_access(env, regno, off, size, false);
1227 		if (!err && t == BPF_READ && value_regno >= 0)
1228 			mark_reg_unknown(env, regs, value_regno);
1229 	} else {
1230 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1231 			reg_type_str[reg->type]);
1232 		return -EACCES;
1233 	}
1234 
1235 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1236 	    regs[value_regno].type == SCALAR_VALUE) {
1237 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1238 		coerce_reg_to_size(&regs[value_regno], size);
1239 	}
1240 	return err;
1241 }
1242 
1243 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1244 {
1245 	int err;
1246 
1247 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1248 	    insn->imm != 0) {
1249 		verbose(env, "BPF_XADD uses reserved fields\n");
1250 		return -EINVAL;
1251 	}
1252 
1253 	/* check src1 operand */
1254 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1255 	if (err)
1256 		return err;
1257 
1258 	/* check src2 operand */
1259 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1260 	if (err)
1261 		return err;
1262 
1263 	if (is_pointer_value(env, insn->src_reg)) {
1264 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1265 		return -EACCES;
1266 	}
1267 
1268 	if (is_ctx_reg(env, insn->dst_reg)) {
1269 		verbose(env, "BPF_XADD stores into R%d context is not allowed\n",
1270 			insn->dst_reg);
1271 		return -EACCES;
1272 	}
1273 
1274 	/* check whether atomic_add can read the memory */
1275 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1276 			       BPF_SIZE(insn->code), BPF_READ, -1);
1277 	if (err)
1278 		return err;
1279 
1280 	/* check whether atomic_add can write into the same memory */
1281 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1282 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1283 }
1284 
1285 /* Does this register contain a constant zero? */
1286 static bool register_is_null(struct bpf_reg_state reg)
1287 {
1288 	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1289 }
1290 
1291 /* when register 'regno' is passed into function that will read 'access_size'
1292  * bytes from that pointer, make sure that it's within stack boundary
1293  * and all elements of stack are initialized.
1294  * Unlike most pointer bounds-checking functions, this one doesn't take an
1295  * 'off' argument, so it has to add in reg->off itself.
1296  */
1297 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1298 				int access_size, bool zero_size_allowed,
1299 				struct bpf_call_arg_meta *meta)
1300 {
1301 	struct bpf_verifier_state *state = env->cur_state;
1302 	struct bpf_reg_state *regs = state->regs;
1303 	int off, i, slot, spi;
1304 
1305 	if (regs[regno].type != PTR_TO_STACK) {
1306 		/* Allow zero-byte read from NULL, regardless of pointer type */
1307 		if (zero_size_allowed && access_size == 0 &&
1308 		    register_is_null(regs[regno]))
1309 			return 0;
1310 
1311 		verbose(env, "R%d type=%s expected=%s\n", regno,
1312 			reg_type_str[regs[regno].type],
1313 			reg_type_str[PTR_TO_STACK]);
1314 		return -EACCES;
1315 	}
1316 
1317 	/* Only allow fixed-offset stack reads */
1318 	if (!tnum_is_const(regs[regno].var_off)) {
1319 		char tn_buf[48];
1320 
1321 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1322 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1323 			regno, tn_buf);
1324 		return -EACCES;
1325 	}
1326 	off = regs[regno].off + regs[regno].var_off.value;
1327 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1328 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1329 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1330 			regno, off, access_size);
1331 		return -EACCES;
1332 	}
1333 
1334 	if (env->prog->aux->stack_depth < -off)
1335 		env->prog->aux->stack_depth = -off;
1336 
1337 	if (meta && meta->raw_mode) {
1338 		meta->access_size = access_size;
1339 		meta->regno = regno;
1340 		return 0;
1341 	}
1342 
1343 	for (i = 0; i < access_size; i++) {
1344 		slot = -(off + i) - 1;
1345 		spi = slot / BPF_REG_SIZE;
1346 		if (state->allocated_stack <= slot ||
1347 		    state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1348 			STACK_MISC) {
1349 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1350 				off, i, access_size);
1351 			return -EACCES;
1352 		}
1353 	}
1354 	return 0;
1355 }
1356 
1357 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1358 				   int access_size, bool zero_size_allowed,
1359 				   struct bpf_call_arg_meta *meta)
1360 {
1361 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1362 
1363 	switch (reg->type) {
1364 	case PTR_TO_PACKET:
1365 	case PTR_TO_PACKET_META:
1366 		return check_packet_access(env, regno, reg->off, access_size,
1367 					   zero_size_allowed);
1368 	case PTR_TO_MAP_VALUE:
1369 		return check_map_access(env, regno, reg->off, access_size,
1370 					zero_size_allowed);
1371 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1372 		return check_stack_boundary(env, regno, access_size,
1373 					    zero_size_allowed, meta);
1374 	}
1375 }
1376 
1377 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1378 			  enum bpf_arg_type arg_type,
1379 			  struct bpf_call_arg_meta *meta)
1380 {
1381 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1382 	enum bpf_reg_type expected_type, type = reg->type;
1383 	int err = 0;
1384 
1385 	if (arg_type == ARG_DONTCARE)
1386 		return 0;
1387 
1388 	err = check_reg_arg(env, regno, SRC_OP);
1389 	if (err)
1390 		return err;
1391 
1392 	if (arg_type == ARG_ANYTHING) {
1393 		if (is_pointer_value(env, regno)) {
1394 			verbose(env, "R%d leaks addr into helper function\n",
1395 				regno);
1396 			return -EACCES;
1397 		}
1398 		return 0;
1399 	}
1400 
1401 	if (type_is_pkt_pointer(type) &&
1402 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1403 		verbose(env, "helper access to the packet is not allowed\n");
1404 		return -EACCES;
1405 	}
1406 
1407 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1408 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1409 		expected_type = PTR_TO_STACK;
1410 		if (!type_is_pkt_pointer(type) &&
1411 		    type != expected_type)
1412 			goto err_type;
1413 	} else if (arg_type == ARG_CONST_SIZE ||
1414 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1415 		expected_type = SCALAR_VALUE;
1416 		if (type != expected_type)
1417 			goto err_type;
1418 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1419 		expected_type = CONST_PTR_TO_MAP;
1420 		if (type != expected_type)
1421 			goto err_type;
1422 	} else if (arg_type == ARG_PTR_TO_CTX) {
1423 		expected_type = PTR_TO_CTX;
1424 		if (type != expected_type)
1425 			goto err_type;
1426 	} else if (arg_type == ARG_PTR_TO_MEM ||
1427 		   arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1428 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1429 		expected_type = PTR_TO_STACK;
1430 		/* One exception here. In case function allows for NULL to be
1431 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1432 		 * happens during stack boundary checking.
1433 		 */
1434 		if (register_is_null(*reg) &&
1435 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1436 			/* final test in check_stack_boundary() */;
1437 		else if (!type_is_pkt_pointer(type) &&
1438 			 type != PTR_TO_MAP_VALUE &&
1439 			 type != expected_type)
1440 			goto err_type;
1441 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1442 	} else {
1443 		verbose(env, "unsupported arg_type %d\n", arg_type);
1444 		return -EFAULT;
1445 	}
1446 
1447 	if (arg_type == ARG_CONST_MAP_PTR) {
1448 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1449 		meta->map_ptr = reg->map_ptr;
1450 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1451 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1452 		 * check that [key, key + map->key_size) are within
1453 		 * stack limits and initialized
1454 		 */
1455 		if (!meta->map_ptr) {
1456 			/* in function declaration map_ptr must come before
1457 			 * map_key, so that it's verified and known before
1458 			 * we have to check map_key here. Otherwise it means
1459 			 * that kernel subsystem misconfigured verifier
1460 			 */
1461 			verbose(env, "invalid map_ptr to access map->key\n");
1462 			return -EACCES;
1463 		}
1464 		if (type_is_pkt_pointer(type))
1465 			err = check_packet_access(env, regno, reg->off,
1466 						  meta->map_ptr->key_size,
1467 						  false);
1468 		else
1469 			err = check_stack_boundary(env, regno,
1470 						   meta->map_ptr->key_size,
1471 						   false, NULL);
1472 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1473 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1474 		 * check [value, value + map->value_size) validity
1475 		 */
1476 		if (!meta->map_ptr) {
1477 			/* kernel subsystem misconfigured verifier */
1478 			verbose(env, "invalid map_ptr to access map->value\n");
1479 			return -EACCES;
1480 		}
1481 		if (type_is_pkt_pointer(type))
1482 			err = check_packet_access(env, regno, reg->off,
1483 						  meta->map_ptr->value_size,
1484 						  false);
1485 		else
1486 			err = check_stack_boundary(env, regno,
1487 						   meta->map_ptr->value_size,
1488 						   false, NULL);
1489 	} else if (arg_type == ARG_CONST_SIZE ||
1490 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1491 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1492 
1493 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1494 		 * from stack pointer 'buf'. Check it
1495 		 * note: regno == len, regno - 1 == buf
1496 		 */
1497 		if (regno == 0) {
1498 			/* kernel subsystem misconfigured verifier */
1499 			verbose(env,
1500 				"ARG_CONST_SIZE cannot be first argument\n");
1501 			return -EACCES;
1502 		}
1503 
1504 		/* The register is SCALAR_VALUE; the access check
1505 		 * happens using its boundaries.
1506 		 */
1507 
1508 		if (!tnum_is_const(reg->var_off))
1509 			/* For unprivileged variable accesses, disable raw
1510 			 * mode so that the program is required to
1511 			 * initialize all the memory that the helper could
1512 			 * just partially fill up.
1513 			 */
1514 			meta = NULL;
1515 
1516 		if (reg->smin_value < 0) {
1517 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1518 				regno);
1519 			return -EACCES;
1520 		}
1521 
1522 		if (reg->umin_value == 0) {
1523 			err = check_helper_mem_access(env, regno - 1, 0,
1524 						      zero_size_allowed,
1525 						      meta);
1526 			if (err)
1527 				return err;
1528 		}
1529 
1530 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1531 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1532 				regno);
1533 			return -EACCES;
1534 		}
1535 		err = check_helper_mem_access(env, regno - 1,
1536 					      reg->umax_value,
1537 					      zero_size_allowed, meta);
1538 	}
1539 
1540 	return err;
1541 err_type:
1542 	verbose(env, "R%d type=%s expected=%s\n", regno,
1543 		reg_type_str[type], reg_type_str[expected_type]);
1544 	return -EACCES;
1545 }
1546 
1547 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1548 					struct bpf_map *map, int func_id)
1549 {
1550 	if (!map)
1551 		return 0;
1552 
1553 	/* We need a two way check, first is from map perspective ... */
1554 	switch (map->map_type) {
1555 	case BPF_MAP_TYPE_PROG_ARRAY:
1556 		if (func_id != BPF_FUNC_tail_call)
1557 			goto error;
1558 		break;
1559 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1560 		if (func_id != BPF_FUNC_perf_event_read &&
1561 		    func_id != BPF_FUNC_perf_event_output &&
1562 		    func_id != BPF_FUNC_perf_event_read_value)
1563 			goto error;
1564 		break;
1565 	case BPF_MAP_TYPE_STACK_TRACE:
1566 		if (func_id != BPF_FUNC_get_stackid)
1567 			goto error;
1568 		break;
1569 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1570 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1571 		    func_id != BPF_FUNC_current_task_under_cgroup)
1572 			goto error;
1573 		break;
1574 	/* devmap returns a pointer to a live net_device ifindex that we cannot
1575 	 * allow to be modified from bpf side. So do not allow lookup elements
1576 	 * for now.
1577 	 */
1578 	case BPF_MAP_TYPE_DEVMAP:
1579 		if (func_id != BPF_FUNC_redirect_map)
1580 			goto error;
1581 		break;
1582 	/* Restrict bpf side of cpumap, open when use-cases appear */
1583 	case BPF_MAP_TYPE_CPUMAP:
1584 		if (func_id != BPF_FUNC_redirect_map)
1585 			goto error;
1586 		break;
1587 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1588 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1589 		if (func_id != BPF_FUNC_map_lookup_elem)
1590 			goto error;
1591 		break;
1592 	case BPF_MAP_TYPE_SOCKMAP:
1593 		if (func_id != BPF_FUNC_sk_redirect_map &&
1594 		    func_id != BPF_FUNC_sock_map_update &&
1595 		    func_id != BPF_FUNC_map_delete_elem)
1596 			goto error;
1597 		break;
1598 	default:
1599 		break;
1600 	}
1601 
1602 	/* ... and second from the function itself. */
1603 	switch (func_id) {
1604 	case BPF_FUNC_tail_call:
1605 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1606 			goto error;
1607 		break;
1608 	case BPF_FUNC_perf_event_read:
1609 	case BPF_FUNC_perf_event_output:
1610 	case BPF_FUNC_perf_event_read_value:
1611 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1612 			goto error;
1613 		break;
1614 	case BPF_FUNC_get_stackid:
1615 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1616 			goto error;
1617 		break;
1618 	case BPF_FUNC_current_task_under_cgroup:
1619 	case BPF_FUNC_skb_under_cgroup:
1620 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1621 			goto error;
1622 		break;
1623 	case BPF_FUNC_redirect_map:
1624 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1625 		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1626 			goto error;
1627 		break;
1628 	case BPF_FUNC_sk_redirect_map:
1629 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1630 			goto error;
1631 		break;
1632 	case BPF_FUNC_sock_map_update:
1633 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1634 			goto error;
1635 		break;
1636 	default:
1637 		break;
1638 	}
1639 
1640 	return 0;
1641 error:
1642 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1643 		map->map_type, func_id_name(func_id), func_id);
1644 	return -EINVAL;
1645 }
1646 
1647 static int check_raw_mode(const struct bpf_func_proto *fn)
1648 {
1649 	int count = 0;
1650 
1651 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1652 		count++;
1653 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1654 		count++;
1655 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1656 		count++;
1657 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1658 		count++;
1659 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1660 		count++;
1661 
1662 	return count > 1 ? -EINVAL : 0;
1663 }
1664 
1665 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1666  * are now invalid, so turn them into unknown SCALAR_VALUE.
1667  */
1668 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1669 {
1670 	struct bpf_verifier_state *state = env->cur_state;
1671 	struct bpf_reg_state *regs = state->regs, *reg;
1672 	int i;
1673 
1674 	for (i = 0; i < MAX_BPF_REG; i++)
1675 		if (reg_is_pkt_pointer_any(&regs[i]))
1676 			mark_reg_unknown(env, regs, i);
1677 
1678 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1679 		if (state->stack[i].slot_type[0] != STACK_SPILL)
1680 			continue;
1681 		reg = &state->stack[i].spilled_ptr;
1682 		if (reg_is_pkt_pointer_any(reg))
1683 			__mark_reg_unknown(reg);
1684 	}
1685 }
1686 
1687 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1688 {
1689 	const struct bpf_func_proto *fn = NULL;
1690 	struct bpf_reg_state *regs;
1691 	struct bpf_call_arg_meta meta;
1692 	bool changes_data;
1693 	int i, err;
1694 
1695 	/* find function prototype */
1696 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1697 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1698 			func_id);
1699 		return -EINVAL;
1700 	}
1701 
1702 	if (env->ops->get_func_proto)
1703 		fn = env->ops->get_func_proto(func_id);
1704 
1705 	if (!fn) {
1706 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1707 			func_id);
1708 		return -EINVAL;
1709 	}
1710 
1711 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1712 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1713 		verbose(env, "cannot call GPL only function from proprietary program\n");
1714 		return -EINVAL;
1715 	}
1716 
1717 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
1718 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1719 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1720 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1721 			func_id_name(func_id), func_id);
1722 		return -EINVAL;
1723 	}
1724 
1725 	memset(&meta, 0, sizeof(meta));
1726 	meta.pkt_access = fn->pkt_access;
1727 
1728 	/* We only support one arg being in raw mode at the moment, which
1729 	 * is sufficient for the helper functions we have right now.
1730 	 */
1731 	err = check_raw_mode(fn);
1732 	if (err) {
1733 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1734 			func_id_name(func_id), func_id);
1735 		return err;
1736 	}
1737 
1738 	/* check args */
1739 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1740 	if (err)
1741 		return err;
1742 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1743 	if (err)
1744 		return err;
1745 	if (func_id == BPF_FUNC_tail_call) {
1746 		if (meta.map_ptr == NULL) {
1747 			verbose(env, "verifier bug\n");
1748 			return -EINVAL;
1749 		}
1750 		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1751 	}
1752 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1753 	if (err)
1754 		return err;
1755 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1756 	if (err)
1757 		return err;
1758 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1759 	if (err)
1760 		return err;
1761 
1762 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1763 	 * is inferred from register state.
1764 	 */
1765 	for (i = 0; i < meta.access_size; i++) {
1766 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1767 		if (err)
1768 			return err;
1769 	}
1770 
1771 	regs = cur_regs(env);
1772 	/* reset caller saved regs */
1773 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1774 		mark_reg_not_init(env, regs, caller_saved[i]);
1775 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1776 	}
1777 
1778 	/* update return register (already marked as written above) */
1779 	if (fn->ret_type == RET_INTEGER) {
1780 		/* sets type to SCALAR_VALUE */
1781 		mark_reg_unknown(env, regs, BPF_REG_0);
1782 	} else if (fn->ret_type == RET_VOID) {
1783 		regs[BPF_REG_0].type = NOT_INIT;
1784 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1785 		struct bpf_insn_aux_data *insn_aux;
1786 
1787 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1788 		/* There is no offset yet applied, variable or fixed */
1789 		mark_reg_known_zero(env, regs, BPF_REG_0);
1790 		regs[BPF_REG_0].off = 0;
1791 		/* remember map_ptr, so that check_map_access()
1792 		 * can check 'value_size' boundary of memory access
1793 		 * to map element returned from bpf_map_lookup_elem()
1794 		 */
1795 		if (meta.map_ptr == NULL) {
1796 			verbose(env,
1797 				"kernel subsystem misconfigured verifier\n");
1798 			return -EINVAL;
1799 		}
1800 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1801 		regs[BPF_REG_0].id = ++env->id_gen;
1802 		insn_aux = &env->insn_aux_data[insn_idx];
1803 		if (!insn_aux->map_ptr)
1804 			insn_aux->map_ptr = meta.map_ptr;
1805 		else if (insn_aux->map_ptr != meta.map_ptr)
1806 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1807 	} else {
1808 		verbose(env, "unknown return type %d of func %s#%d\n",
1809 			fn->ret_type, func_id_name(func_id), func_id);
1810 		return -EINVAL;
1811 	}
1812 
1813 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1814 	if (err)
1815 		return err;
1816 
1817 	if (changes_data)
1818 		clear_all_pkt_pointers(env);
1819 	return 0;
1820 }
1821 
1822 static bool signed_add_overflows(s64 a, s64 b)
1823 {
1824 	/* Do the add in u64, where overflow is well-defined */
1825 	s64 res = (s64)((u64)a + (u64)b);
1826 
1827 	if (b < 0)
1828 		return res > a;
1829 	return res < a;
1830 }
1831 
1832 static bool signed_sub_overflows(s64 a, s64 b)
1833 {
1834 	/* Do the sub in u64, where overflow is well-defined */
1835 	s64 res = (s64)((u64)a - (u64)b);
1836 
1837 	if (b < 0)
1838 		return res < a;
1839 	return res > a;
1840 }
1841 
1842 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1843 				  const struct bpf_reg_state *reg,
1844 				  enum bpf_reg_type type)
1845 {
1846 	bool known = tnum_is_const(reg->var_off);
1847 	s64 val = reg->var_off.value;
1848 	s64 smin = reg->smin_value;
1849 
1850 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1851 		verbose(env, "math between %s pointer and %lld is not allowed\n",
1852 			reg_type_str[type], val);
1853 		return false;
1854 	}
1855 
1856 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
1857 		verbose(env, "%s pointer offset %d is not allowed\n",
1858 			reg_type_str[type], reg->off);
1859 		return false;
1860 	}
1861 
1862 	if (smin == S64_MIN) {
1863 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
1864 			reg_type_str[type]);
1865 		return false;
1866 	}
1867 
1868 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
1869 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
1870 			smin, reg_type_str[type]);
1871 		return false;
1872 	}
1873 
1874 	return true;
1875 }
1876 
1877 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1878  * Caller should also handle BPF_MOV case separately.
1879  * If we return -EACCES, caller may want to try again treating pointer as a
1880  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
1881  */
1882 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1883 				   struct bpf_insn *insn,
1884 				   const struct bpf_reg_state *ptr_reg,
1885 				   const struct bpf_reg_state *off_reg)
1886 {
1887 	struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1888 	bool known = tnum_is_const(off_reg->var_off);
1889 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1890 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1891 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1892 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1893 	u8 opcode = BPF_OP(insn->code);
1894 	u32 dst = insn->dst_reg;
1895 
1896 	dst_reg = &regs[dst];
1897 
1898 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
1899 	    smin_val > smax_val || umin_val > umax_val) {
1900 		/* Taint dst register if offset had invalid bounds derived from
1901 		 * e.g. dead branches.
1902 		 */
1903 		__mark_reg_unknown(dst_reg);
1904 		return 0;
1905 	}
1906 
1907 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1908 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
1909 		verbose(env,
1910 			"R%d 32-bit pointer arithmetic prohibited\n",
1911 			dst);
1912 		return -EACCES;
1913 	}
1914 
1915 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1916 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1917 			dst);
1918 		return -EACCES;
1919 	}
1920 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
1921 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1922 			dst);
1923 		return -EACCES;
1924 	}
1925 	if (ptr_reg->type == PTR_TO_PACKET_END) {
1926 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1927 			dst);
1928 		return -EACCES;
1929 	}
1930 
1931 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1932 	 * The id may be overwritten later if we create a new variable offset.
1933 	 */
1934 	dst_reg->type = ptr_reg->type;
1935 	dst_reg->id = ptr_reg->id;
1936 
1937 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
1938 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
1939 		return -EINVAL;
1940 
1941 	switch (opcode) {
1942 	case BPF_ADD:
1943 		/* We can take a fixed offset as long as it doesn't overflow
1944 		 * the s32 'off' field
1945 		 */
1946 		if (known && (ptr_reg->off + smin_val ==
1947 			      (s64)(s32)(ptr_reg->off + smin_val))) {
1948 			/* pointer += K.  Accumulate it into fixed offset */
1949 			dst_reg->smin_value = smin_ptr;
1950 			dst_reg->smax_value = smax_ptr;
1951 			dst_reg->umin_value = umin_ptr;
1952 			dst_reg->umax_value = umax_ptr;
1953 			dst_reg->var_off = ptr_reg->var_off;
1954 			dst_reg->off = ptr_reg->off + smin_val;
1955 			dst_reg->range = ptr_reg->range;
1956 			break;
1957 		}
1958 		/* A new variable offset is created.  Note that off_reg->off
1959 		 * == 0, since it's a scalar.
1960 		 * dst_reg gets the pointer type and since some positive
1961 		 * integer value was added to the pointer, give it a new 'id'
1962 		 * if it's a PTR_TO_PACKET.
1963 		 * this creates a new 'base' pointer, off_reg (variable) gets
1964 		 * added into the variable offset, and we copy the fixed offset
1965 		 * from ptr_reg.
1966 		 */
1967 		if (signed_add_overflows(smin_ptr, smin_val) ||
1968 		    signed_add_overflows(smax_ptr, smax_val)) {
1969 			dst_reg->smin_value = S64_MIN;
1970 			dst_reg->smax_value = S64_MAX;
1971 		} else {
1972 			dst_reg->smin_value = smin_ptr + smin_val;
1973 			dst_reg->smax_value = smax_ptr + smax_val;
1974 		}
1975 		if (umin_ptr + umin_val < umin_ptr ||
1976 		    umax_ptr + umax_val < umax_ptr) {
1977 			dst_reg->umin_value = 0;
1978 			dst_reg->umax_value = U64_MAX;
1979 		} else {
1980 			dst_reg->umin_value = umin_ptr + umin_val;
1981 			dst_reg->umax_value = umax_ptr + umax_val;
1982 		}
1983 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1984 		dst_reg->off = ptr_reg->off;
1985 		if (reg_is_pkt_pointer(ptr_reg)) {
1986 			dst_reg->id = ++env->id_gen;
1987 			/* something was added to pkt_ptr, set range to zero */
1988 			dst_reg->range = 0;
1989 		}
1990 		break;
1991 	case BPF_SUB:
1992 		if (dst_reg == off_reg) {
1993 			/* scalar -= pointer.  Creates an unknown scalar */
1994 			verbose(env, "R%d tried to subtract pointer from scalar\n",
1995 				dst);
1996 			return -EACCES;
1997 		}
1998 		/* We don't allow subtraction from FP, because (according to
1999 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
2000 		 * be able to deal with it.
2001 		 */
2002 		if (ptr_reg->type == PTR_TO_STACK) {
2003 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
2004 				dst);
2005 			return -EACCES;
2006 		}
2007 		if (known && (ptr_reg->off - smin_val ==
2008 			      (s64)(s32)(ptr_reg->off - smin_val))) {
2009 			/* pointer -= K.  Subtract it from fixed offset */
2010 			dst_reg->smin_value = smin_ptr;
2011 			dst_reg->smax_value = smax_ptr;
2012 			dst_reg->umin_value = umin_ptr;
2013 			dst_reg->umax_value = umax_ptr;
2014 			dst_reg->var_off = ptr_reg->var_off;
2015 			dst_reg->id = ptr_reg->id;
2016 			dst_reg->off = ptr_reg->off - smin_val;
2017 			dst_reg->range = ptr_reg->range;
2018 			break;
2019 		}
2020 		/* A new variable offset is created.  If the subtrahend is known
2021 		 * nonnegative, then any reg->range we had before is still good.
2022 		 */
2023 		if (signed_sub_overflows(smin_ptr, smax_val) ||
2024 		    signed_sub_overflows(smax_ptr, smin_val)) {
2025 			/* Overflow possible, we know nothing */
2026 			dst_reg->smin_value = S64_MIN;
2027 			dst_reg->smax_value = S64_MAX;
2028 		} else {
2029 			dst_reg->smin_value = smin_ptr - smax_val;
2030 			dst_reg->smax_value = smax_ptr - smin_val;
2031 		}
2032 		if (umin_ptr < umax_val) {
2033 			/* Overflow possible, we know nothing */
2034 			dst_reg->umin_value = 0;
2035 			dst_reg->umax_value = U64_MAX;
2036 		} else {
2037 			/* Cannot overflow (as long as bounds are consistent) */
2038 			dst_reg->umin_value = umin_ptr - umax_val;
2039 			dst_reg->umax_value = umax_ptr - umin_val;
2040 		}
2041 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2042 		dst_reg->off = ptr_reg->off;
2043 		if (reg_is_pkt_pointer(ptr_reg)) {
2044 			dst_reg->id = ++env->id_gen;
2045 			/* something was added to pkt_ptr, set range to zero */
2046 			if (smin_val < 0)
2047 				dst_reg->range = 0;
2048 		}
2049 		break;
2050 	case BPF_AND:
2051 	case BPF_OR:
2052 	case BPF_XOR:
2053 		/* bitwise ops on pointers are troublesome, prohibit. */
2054 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2055 			dst, bpf_alu_string[opcode >> 4]);
2056 		return -EACCES;
2057 	default:
2058 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2059 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2060 			dst, bpf_alu_string[opcode >> 4]);
2061 		return -EACCES;
2062 	}
2063 
2064 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2065 		return -EINVAL;
2066 
2067 	__update_reg_bounds(dst_reg);
2068 	__reg_deduce_bounds(dst_reg);
2069 	__reg_bound_offset(dst_reg);
2070 	return 0;
2071 }
2072 
2073 /* WARNING: This function does calculations on 64-bit values, but the actual
2074  * execution may occur on 32-bit values. Therefore, things like bitshifts
2075  * need extra checks in the 32-bit case.
2076  */
2077 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2078 				      struct bpf_insn *insn,
2079 				      struct bpf_reg_state *dst_reg,
2080 				      struct bpf_reg_state src_reg)
2081 {
2082 	struct bpf_reg_state *regs = cur_regs(env);
2083 	u8 opcode = BPF_OP(insn->code);
2084 	bool src_known, dst_known;
2085 	s64 smin_val, smax_val;
2086 	u64 umin_val, umax_val;
2087 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2088 
2089 	smin_val = src_reg.smin_value;
2090 	smax_val = src_reg.smax_value;
2091 	umin_val = src_reg.umin_value;
2092 	umax_val = src_reg.umax_value;
2093 	src_known = tnum_is_const(src_reg.var_off);
2094 	dst_known = tnum_is_const(dst_reg->var_off);
2095 
2096 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2097 	    smin_val > smax_val || umin_val > umax_val) {
2098 		/* Taint dst register if offset had invalid bounds derived from
2099 		 * e.g. dead branches.
2100 		 */
2101 		__mark_reg_unknown(dst_reg);
2102 		return 0;
2103 	}
2104 
2105 	if (!src_known &&
2106 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2107 		__mark_reg_unknown(dst_reg);
2108 		return 0;
2109 	}
2110 
2111 	switch (opcode) {
2112 	case BPF_ADD:
2113 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2114 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2115 			dst_reg->smin_value = S64_MIN;
2116 			dst_reg->smax_value = S64_MAX;
2117 		} else {
2118 			dst_reg->smin_value += smin_val;
2119 			dst_reg->smax_value += smax_val;
2120 		}
2121 		if (dst_reg->umin_value + umin_val < umin_val ||
2122 		    dst_reg->umax_value + umax_val < umax_val) {
2123 			dst_reg->umin_value = 0;
2124 			dst_reg->umax_value = U64_MAX;
2125 		} else {
2126 			dst_reg->umin_value += umin_val;
2127 			dst_reg->umax_value += umax_val;
2128 		}
2129 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2130 		break;
2131 	case BPF_SUB:
2132 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2133 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2134 			/* Overflow possible, we know nothing */
2135 			dst_reg->smin_value = S64_MIN;
2136 			dst_reg->smax_value = S64_MAX;
2137 		} else {
2138 			dst_reg->smin_value -= smax_val;
2139 			dst_reg->smax_value -= smin_val;
2140 		}
2141 		if (dst_reg->umin_value < umax_val) {
2142 			/* Overflow possible, we know nothing */
2143 			dst_reg->umin_value = 0;
2144 			dst_reg->umax_value = U64_MAX;
2145 		} else {
2146 			/* Cannot overflow (as long as bounds are consistent) */
2147 			dst_reg->umin_value -= umax_val;
2148 			dst_reg->umax_value -= umin_val;
2149 		}
2150 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2151 		break;
2152 	case BPF_MUL:
2153 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2154 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2155 			/* Ain't nobody got time to multiply that sign */
2156 			__mark_reg_unbounded(dst_reg);
2157 			__update_reg_bounds(dst_reg);
2158 			break;
2159 		}
2160 		/* Both values are positive, so we can work with unsigned and
2161 		 * copy the result to signed (unless it exceeds S64_MAX).
2162 		 */
2163 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2164 			/* Potential overflow, we know nothing */
2165 			__mark_reg_unbounded(dst_reg);
2166 			/* (except what we can learn from the var_off) */
2167 			__update_reg_bounds(dst_reg);
2168 			break;
2169 		}
2170 		dst_reg->umin_value *= umin_val;
2171 		dst_reg->umax_value *= umax_val;
2172 		if (dst_reg->umax_value > S64_MAX) {
2173 			/* Overflow possible, we know nothing */
2174 			dst_reg->smin_value = S64_MIN;
2175 			dst_reg->smax_value = S64_MAX;
2176 		} else {
2177 			dst_reg->smin_value = dst_reg->umin_value;
2178 			dst_reg->smax_value = dst_reg->umax_value;
2179 		}
2180 		break;
2181 	case BPF_AND:
2182 		if (src_known && dst_known) {
2183 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2184 						  src_reg.var_off.value);
2185 			break;
2186 		}
2187 		/* We get our minimum from the var_off, since that's inherently
2188 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2189 		 */
2190 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2191 		dst_reg->umin_value = dst_reg->var_off.value;
2192 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2193 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2194 			/* Lose signed bounds when ANDing negative numbers,
2195 			 * ain't nobody got time for that.
2196 			 */
2197 			dst_reg->smin_value = S64_MIN;
2198 			dst_reg->smax_value = S64_MAX;
2199 		} else {
2200 			/* ANDing two positives gives a positive, so safe to
2201 			 * cast result into s64.
2202 			 */
2203 			dst_reg->smin_value = dst_reg->umin_value;
2204 			dst_reg->smax_value = dst_reg->umax_value;
2205 		}
2206 		/* We may learn something more from the var_off */
2207 		__update_reg_bounds(dst_reg);
2208 		break;
2209 	case BPF_OR:
2210 		if (src_known && dst_known) {
2211 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2212 						  src_reg.var_off.value);
2213 			break;
2214 		}
2215 		/* We get our maximum from the var_off, and our minimum is the
2216 		 * maximum of the operands' minima
2217 		 */
2218 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2219 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2220 		dst_reg->umax_value = dst_reg->var_off.value |
2221 				      dst_reg->var_off.mask;
2222 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2223 			/* Lose signed bounds when ORing negative numbers,
2224 			 * ain't nobody got time for that.
2225 			 */
2226 			dst_reg->smin_value = S64_MIN;
2227 			dst_reg->smax_value = S64_MAX;
2228 		} else {
2229 			/* ORing two positives gives a positive, so safe to
2230 			 * cast result into s64.
2231 			 */
2232 			dst_reg->smin_value = dst_reg->umin_value;
2233 			dst_reg->smax_value = dst_reg->umax_value;
2234 		}
2235 		/* We may learn something more from the var_off */
2236 		__update_reg_bounds(dst_reg);
2237 		break;
2238 	case BPF_LSH:
2239 		if (umax_val >= insn_bitness) {
2240 			/* Shifts greater than 31 or 63 are undefined.
2241 			 * This includes shifts by a negative number.
2242 			 */
2243 			mark_reg_unknown(env, regs, insn->dst_reg);
2244 			break;
2245 		}
2246 		/* We lose all sign bit information (except what we can pick
2247 		 * up from var_off)
2248 		 */
2249 		dst_reg->smin_value = S64_MIN;
2250 		dst_reg->smax_value = S64_MAX;
2251 		/* If we might shift our top bit out, then we know nothing */
2252 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2253 			dst_reg->umin_value = 0;
2254 			dst_reg->umax_value = U64_MAX;
2255 		} else {
2256 			dst_reg->umin_value <<= umin_val;
2257 			dst_reg->umax_value <<= umax_val;
2258 		}
2259 		if (src_known)
2260 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2261 		else
2262 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2263 		/* We may learn something more from the var_off */
2264 		__update_reg_bounds(dst_reg);
2265 		break;
2266 	case BPF_RSH:
2267 		if (umax_val >= insn_bitness) {
2268 			/* Shifts greater than 31 or 63 are undefined.
2269 			 * This includes shifts by a negative number.
2270 			 */
2271 			mark_reg_unknown(env, regs, insn->dst_reg);
2272 			break;
2273 		}
2274 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
2275 		 * be negative, then either:
2276 		 * 1) src_reg might be zero, so the sign bit of the result is
2277 		 *    unknown, so we lose our signed bounds
2278 		 * 2) it's known negative, thus the unsigned bounds capture the
2279 		 *    signed bounds
2280 		 * 3) the signed bounds cross zero, so they tell us nothing
2281 		 *    about the result
2282 		 * If the value in dst_reg is known nonnegative, then again the
2283 		 * unsigned bounts capture the signed bounds.
2284 		 * Thus, in all cases it suffices to blow away our signed bounds
2285 		 * and rely on inferring new ones from the unsigned bounds and
2286 		 * var_off of the result.
2287 		 */
2288 		dst_reg->smin_value = S64_MIN;
2289 		dst_reg->smax_value = S64_MAX;
2290 		if (src_known)
2291 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2292 						       umin_val);
2293 		else
2294 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2295 		dst_reg->umin_value >>= umax_val;
2296 		dst_reg->umax_value >>= umin_val;
2297 		/* We may learn something more from the var_off */
2298 		__update_reg_bounds(dst_reg);
2299 		break;
2300 	default:
2301 		mark_reg_unknown(env, regs, insn->dst_reg);
2302 		break;
2303 	}
2304 
2305 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2306 		/* 32-bit ALU ops are (32,32)->32 */
2307 		coerce_reg_to_size(dst_reg, 4);
2308 		coerce_reg_to_size(&src_reg, 4);
2309 	}
2310 
2311 	__reg_deduce_bounds(dst_reg);
2312 	__reg_bound_offset(dst_reg);
2313 	return 0;
2314 }
2315 
2316 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2317  * and var_off.
2318  */
2319 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2320 				   struct bpf_insn *insn)
2321 {
2322 	struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2323 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2324 	u8 opcode = BPF_OP(insn->code);
2325 
2326 	dst_reg = &regs[insn->dst_reg];
2327 	src_reg = NULL;
2328 	if (dst_reg->type != SCALAR_VALUE)
2329 		ptr_reg = dst_reg;
2330 	if (BPF_SRC(insn->code) == BPF_X) {
2331 		src_reg = &regs[insn->src_reg];
2332 		if (src_reg->type != SCALAR_VALUE) {
2333 			if (dst_reg->type != SCALAR_VALUE) {
2334 				/* Combining two pointers by any ALU op yields
2335 				 * an arbitrary scalar. Disallow all math except
2336 				 * pointer subtraction
2337 				 */
2338 				if (opcode == BPF_SUB){
2339 					mark_reg_unknown(env, regs, insn->dst_reg);
2340 					return 0;
2341 				}
2342 				verbose(env, "R%d pointer %s pointer prohibited\n",
2343 					insn->dst_reg,
2344 					bpf_alu_string[opcode >> 4]);
2345 				return -EACCES;
2346 			} else {
2347 				/* scalar += pointer
2348 				 * This is legal, but we have to reverse our
2349 				 * src/dest handling in computing the range
2350 				 */
2351 				return adjust_ptr_min_max_vals(env, insn,
2352 							       src_reg, dst_reg);
2353 			}
2354 		} else if (ptr_reg) {
2355 			/* pointer += scalar */
2356 			return adjust_ptr_min_max_vals(env, insn,
2357 						       dst_reg, src_reg);
2358 		}
2359 	} else {
2360 		/* Pretend the src is a reg with a known value, since we only
2361 		 * need to be able to read from this state.
2362 		 */
2363 		off_reg.type = SCALAR_VALUE;
2364 		__mark_reg_known(&off_reg, insn->imm);
2365 		src_reg = &off_reg;
2366 		if (ptr_reg) /* pointer += K */
2367 			return adjust_ptr_min_max_vals(env, insn,
2368 						       ptr_reg, src_reg);
2369 	}
2370 
2371 	/* Got here implies adding two SCALAR_VALUEs */
2372 	if (WARN_ON_ONCE(ptr_reg)) {
2373 		print_verifier_state(env, env->cur_state);
2374 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2375 		return -EINVAL;
2376 	}
2377 	if (WARN_ON(!src_reg)) {
2378 		print_verifier_state(env, env->cur_state);
2379 		verbose(env, "verifier internal error: no src_reg\n");
2380 		return -EINVAL;
2381 	}
2382 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2383 }
2384 
2385 /* check validity of 32-bit and 64-bit arithmetic operations */
2386 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2387 {
2388 	struct bpf_reg_state *regs = cur_regs(env);
2389 	u8 opcode = BPF_OP(insn->code);
2390 	int err;
2391 
2392 	if (opcode == BPF_END || opcode == BPF_NEG) {
2393 		if (opcode == BPF_NEG) {
2394 			if (BPF_SRC(insn->code) != 0 ||
2395 			    insn->src_reg != BPF_REG_0 ||
2396 			    insn->off != 0 || insn->imm != 0) {
2397 				verbose(env, "BPF_NEG uses reserved fields\n");
2398 				return -EINVAL;
2399 			}
2400 		} else {
2401 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2402 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2403 			    BPF_CLASS(insn->code) == BPF_ALU64) {
2404 				verbose(env, "BPF_END uses reserved fields\n");
2405 				return -EINVAL;
2406 			}
2407 		}
2408 
2409 		/* check src operand */
2410 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2411 		if (err)
2412 			return err;
2413 
2414 		if (is_pointer_value(env, insn->dst_reg)) {
2415 			verbose(env, "R%d pointer arithmetic prohibited\n",
2416 				insn->dst_reg);
2417 			return -EACCES;
2418 		}
2419 
2420 		/* check dest operand */
2421 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2422 		if (err)
2423 			return err;
2424 
2425 	} else if (opcode == BPF_MOV) {
2426 
2427 		if (BPF_SRC(insn->code) == BPF_X) {
2428 			if (insn->imm != 0 || insn->off != 0) {
2429 				verbose(env, "BPF_MOV uses reserved fields\n");
2430 				return -EINVAL;
2431 			}
2432 
2433 			/* check src operand */
2434 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2435 			if (err)
2436 				return err;
2437 		} else {
2438 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2439 				verbose(env, "BPF_MOV uses reserved fields\n");
2440 				return -EINVAL;
2441 			}
2442 		}
2443 
2444 		/* check dest operand */
2445 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2446 		if (err)
2447 			return err;
2448 
2449 		if (BPF_SRC(insn->code) == BPF_X) {
2450 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2451 				/* case: R1 = R2
2452 				 * copy register state to dest reg
2453 				 */
2454 				regs[insn->dst_reg] = regs[insn->src_reg];
2455 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2456 			} else {
2457 				/* R1 = (u32) R2 */
2458 				if (is_pointer_value(env, insn->src_reg)) {
2459 					verbose(env,
2460 						"R%d partial copy of pointer\n",
2461 						insn->src_reg);
2462 					return -EACCES;
2463 				}
2464 				mark_reg_unknown(env, regs, insn->dst_reg);
2465 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
2466 			}
2467 		} else {
2468 			/* case: R = imm
2469 			 * remember the value we stored into this reg
2470 			 */
2471 			regs[insn->dst_reg].type = SCALAR_VALUE;
2472 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2473 				__mark_reg_known(regs + insn->dst_reg,
2474 						 insn->imm);
2475 			} else {
2476 				__mark_reg_known(regs + insn->dst_reg,
2477 						 (u32)insn->imm);
2478 			}
2479 		}
2480 
2481 	} else if (opcode > BPF_END) {
2482 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2483 		return -EINVAL;
2484 
2485 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
2486 
2487 		if (BPF_SRC(insn->code) == BPF_X) {
2488 			if (insn->imm != 0 || insn->off != 0) {
2489 				verbose(env, "BPF_ALU uses reserved fields\n");
2490 				return -EINVAL;
2491 			}
2492 			/* check src1 operand */
2493 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2494 			if (err)
2495 				return err;
2496 		} else {
2497 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2498 				verbose(env, "BPF_ALU uses reserved fields\n");
2499 				return -EINVAL;
2500 			}
2501 		}
2502 
2503 		/* check src2 operand */
2504 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2505 		if (err)
2506 			return err;
2507 
2508 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2509 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2510 			verbose(env, "div by zero\n");
2511 			return -EINVAL;
2512 		}
2513 
2514 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
2515 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
2516 			return -EINVAL;
2517 		}
2518 
2519 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2520 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2521 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2522 
2523 			if (insn->imm < 0 || insn->imm >= size) {
2524 				verbose(env, "invalid shift %d\n", insn->imm);
2525 				return -EINVAL;
2526 			}
2527 		}
2528 
2529 		/* check dest operand */
2530 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2531 		if (err)
2532 			return err;
2533 
2534 		return adjust_reg_min_max_vals(env, insn);
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2541 				   struct bpf_reg_state *dst_reg,
2542 				   enum bpf_reg_type type,
2543 				   bool range_right_open)
2544 {
2545 	struct bpf_reg_state *regs = state->regs, *reg;
2546 	u16 new_range;
2547 	int i;
2548 
2549 	if (dst_reg->off < 0 ||
2550 	    (dst_reg->off == 0 && range_right_open))
2551 		/* This doesn't give us any range */
2552 		return;
2553 
2554 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
2555 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2556 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
2557 		 * than pkt_end, but that's because it's also less than pkt.
2558 		 */
2559 		return;
2560 
2561 	new_range = dst_reg->off;
2562 	if (range_right_open)
2563 		new_range--;
2564 
2565 	/* Examples for register markings:
2566 	 *
2567 	 * pkt_data in dst register:
2568 	 *
2569 	 *   r2 = r3;
2570 	 *   r2 += 8;
2571 	 *   if (r2 > pkt_end) goto <handle exception>
2572 	 *   <access okay>
2573 	 *
2574 	 *   r2 = r3;
2575 	 *   r2 += 8;
2576 	 *   if (r2 < pkt_end) goto <access okay>
2577 	 *   <handle exception>
2578 	 *
2579 	 *   Where:
2580 	 *     r2 == dst_reg, pkt_end == src_reg
2581 	 *     r2=pkt(id=n,off=8,r=0)
2582 	 *     r3=pkt(id=n,off=0,r=0)
2583 	 *
2584 	 * pkt_data in src register:
2585 	 *
2586 	 *   r2 = r3;
2587 	 *   r2 += 8;
2588 	 *   if (pkt_end >= r2) goto <access okay>
2589 	 *   <handle exception>
2590 	 *
2591 	 *   r2 = r3;
2592 	 *   r2 += 8;
2593 	 *   if (pkt_end <= r2) goto <handle exception>
2594 	 *   <access okay>
2595 	 *
2596 	 *   Where:
2597 	 *     pkt_end == dst_reg, r2 == src_reg
2598 	 *     r2=pkt(id=n,off=8,r=0)
2599 	 *     r3=pkt(id=n,off=0,r=0)
2600 	 *
2601 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2602 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2603 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
2604 	 * the check.
2605 	 */
2606 
2607 	/* If our ids match, then we must have the same max_value.  And we
2608 	 * don't care about the other reg's fixed offset, since if it's too big
2609 	 * the range won't allow anything.
2610 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2611 	 */
2612 	for (i = 0; i < MAX_BPF_REG; i++)
2613 		if (regs[i].type == type && regs[i].id == dst_reg->id)
2614 			/* keep the maximum range already checked */
2615 			regs[i].range = max(regs[i].range, new_range);
2616 
2617 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2618 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2619 			continue;
2620 		reg = &state->stack[i].spilled_ptr;
2621 		if (reg->type == type && reg->id == dst_reg->id)
2622 			reg->range = max(reg->range, new_range);
2623 	}
2624 }
2625 
2626 /* Adjusts the register min/max values in the case that the dst_reg is the
2627  * variable register that we are working on, and src_reg is a constant or we're
2628  * simply doing a BPF_K check.
2629  * In JEQ/JNE cases we also adjust the var_off values.
2630  */
2631 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2632 			    struct bpf_reg_state *false_reg, u64 val,
2633 			    u8 opcode)
2634 {
2635 	/* If the dst_reg is a pointer, we can't learn anything about its
2636 	 * variable offset from the compare (unless src_reg were a pointer into
2637 	 * the same object, but we don't bother with that.
2638 	 * Since false_reg and true_reg have the same type by construction, we
2639 	 * only need to check one of them for pointerness.
2640 	 */
2641 	if (__is_pointer_value(false, false_reg))
2642 		return;
2643 
2644 	switch (opcode) {
2645 	case BPF_JEQ:
2646 		/* If this is false then we know nothing Jon Snow, but if it is
2647 		 * true then we know for sure.
2648 		 */
2649 		__mark_reg_known(true_reg, val);
2650 		break;
2651 	case BPF_JNE:
2652 		/* If this is true we know nothing Jon Snow, but if it is false
2653 		 * we know the value for sure;
2654 		 */
2655 		__mark_reg_known(false_reg, val);
2656 		break;
2657 	case BPF_JGT:
2658 		false_reg->umax_value = min(false_reg->umax_value, val);
2659 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2660 		break;
2661 	case BPF_JSGT:
2662 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2663 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2664 		break;
2665 	case BPF_JLT:
2666 		false_reg->umin_value = max(false_reg->umin_value, val);
2667 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2668 		break;
2669 	case BPF_JSLT:
2670 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2671 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2672 		break;
2673 	case BPF_JGE:
2674 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2675 		true_reg->umin_value = max(true_reg->umin_value, val);
2676 		break;
2677 	case BPF_JSGE:
2678 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2679 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2680 		break;
2681 	case BPF_JLE:
2682 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2683 		true_reg->umax_value = min(true_reg->umax_value, val);
2684 		break;
2685 	case BPF_JSLE:
2686 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2687 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2688 		break;
2689 	default:
2690 		break;
2691 	}
2692 
2693 	__reg_deduce_bounds(false_reg);
2694 	__reg_deduce_bounds(true_reg);
2695 	/* We might have learned some bits from the bounds. */
2696 	__reg_bound_offset(false_reg);
2697 	__reg_bound_offset(true_reg);
2698 	/* Intersecting with the old var_off might have improved our bounds
2699 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2700 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2701 	 */
2702 	__update_reg_bounds(false_reg);
2703 	__update_reg_bounds(true_reg);
2704 }
2705 
2706 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2707  * the variable reg.
2708  */
2709 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2710 				struct bpf_reg_state *false_reg, u64 val,
2711 				u8 opcode)
2712 {
2713 	if (__is_pointer_value(false, false_reg))
2714 		return;
2715 
2716 	switch (opcode) {
2717 	case BPF_JEQ:
2718 		/* If this is false then we know nothing Jon Snow, but if it is
2719 		 * true then we know for sure.
2720 		 */
2721 		__mark_reg_known(true_reg, val);
2722 		break;
2723 	case BPF_JNE:
2724 		/* If this is true we know nothing Jon Snow, but if it is false
2725 		 * we know the value for sure;
2726 		 */
2727 		__mark_reg_known(false_reg, val);
2728 		break;
2729 	case BPF_JGT:
2730 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2731 		false_reg->umin_value = max(false_reg->umin_value, val);
2732 		break;
2733 	case BPF_JSGT:
2734 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2735 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2736 		break;
2737 	case BPF_JLT:
2738 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2739 		false_reg->umax_value = min(false_reg->umax_value, val);
2740 		break;
2741 	case BPF_JSLT:
2742 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2743 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2744 		break;
2745 	case BPF_JGE:
2746 		true_reg->umax_value = min(true_reg->umax_value, val);
2747 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2748 		break;
2749 	case BPF_JSGE:
2750 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2751 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2752 		break;
2753 	case BPF_JLE:
2754 		true_reg->umin_value = max(true_reg->umin_value, val);
2755 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2756 		break;
2757 	case BPF_JSLE:
2758 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2759 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2760 		break;
2761 	default:
2762 		break;
2763 	}
2764 
2765 	__reg_deduce_bounds(false_reg);
2766 	__reg_deduce_bounds(true_reg);
2767 	/* We might have learned some bits from the bounds. */
2768 	__reg_bound_offset(false_reg);
2769 	__reg_bound_offset(true_reg);
2770 	/* Intersecting with the old var_off might have improved our bounds
2771 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2772 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2773 	 */
2774 	__update_reg_bounds(false_reg);
2775 	__update_reg_bounds(true_reg);
2776 }
2777 
2778 /* Regs are known to be equal, so intersect their min/max/var_off */
2779 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2780 				  struct bpf_reg_state *dst_reg)
2781 {
2782 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2783 							dst_reg->umin_value);
2784 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2785 							dst_reg->umax_value);
2786 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2787 							dst_reg->smin_value);
2788 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2789 							dst_reg->smax_value);
2790 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2791 							     dst_reg->var_off);
2792 	/* We might have learned new bounds from the var_off. */
2793 	__update_reg_bounds(src_reg);
2794 	__update_reg_bounds(dst_reg);
2795 	/* We might have learned something about the sign bit. */
2796 	__reg_deduce_bounds(src_reg);
2797 	__reg_deduce_bounds(dst_reg);
2798 	/* We might have learned some bits from the bounds. */
2799 	__reg_bound_offset(src_reg);
2800 	__reg_bound_offset(dst_reg);
2801 	/* Intersecting with the old var_off might have improved our bounds
2802 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2803 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2804 	 */
2805 	__update_reg_bounds(src_reg);
2806 	__update_reg_bounds(dst_reg);
2807 }
2808 
2809 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2810 				struct bpf_reg_state *true_dst,
2811 				struct bpf_reg_state *false_src,
2812 				struct bpf_reg_state *false_dst,
2813 				u8 opcode)
2814 {
2815 	switch (opcode) {
2816 	case BPF_JEQ:
2817 		__reg_combine_min_max(true_src, true_dst);
2818 		break;
2819 	case BPF_JNE:
2820 		__reg_combine_min_max(false_src, false_dst);
2821 		break;
2822 	}
2823 }
2824 
2825 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2826 			 bool is_null)
2827 {
2828 	struct bpf_reg_state *reg = &regs[regno];
2829 
2830 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2831 		/* Old offset (both fixed and variable parts) should
2832 		 * have been known-zero, because we don't allow pointer
2833 		 * arithmetic on pointers that might be NULL.
2834 		 */
2835 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2836 				 !tnum_equals_const(reg->var_off, 0) ||
2837 				 reg->off)) {
2838 			__mark_reg_known_zero(reg);
2839 			reg->off = 0;
2840 		}
2841 		if (is_null) {
2842 			reg->type = SCALAR_VALUE;
2843 		} else if (reg->map_ptr->inner_map_meta) {
2844 			reg->type = CONST_PTR_TO_MAP;
2845 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2846 		} else {
2847 			reg->type = PTR_TO_MAP_VALUE;
2848 		}
2849 		/* We don't need id from this point onwards anymore, thus we
2850 		 * should better reset it, so that state pruning has chances
2851 		 * to take effect.
2852 		 */
2853 		reg->id = 0;
2854 	}
2855 }
2856 
2857 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2858  * be folded together at some point.
2859  */
2860 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2861 			  bool is_null)
2862 {
2863 	struct bpf_reg_state *regs = state->regs;
2864 	u32 id = regs[regno].id;
2865 	int i;
2866 
2867 	for (i = 0; i < MAX_BPF_REG; i++)
2868 		mark_map_reg(regs, i, id, is_null);
2869 
2870 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2871 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2872 			continue;
2873 		mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2874 	}
2875 }
2876 
2877 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2878 				   struct bpf_reg_state *dst_reg,
2879 				   struct bpf_reg_state *src_reg,
2880 				   struct bpf_verifier_state *this_branch,
2881 				   struct bpf_verifier_state *other_branch)
2882 {
2883 	if (BPF_SRC(insn->code) != BPF_X)
2884 		return false;
2885 
2886 	switch (BPF_OP(insn->code)) {
2887 	case BPF_JGT:
2888 		if ((dst_reg->type == PTR_TO_PACKET &&
2889 		     src_reg->type == PTR_TO_PACKET_END) ||
2890 		    (dst_reg->type == PTR_TO_PACKET_META &&
2891 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2892 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2893 			find_good_pkt_pointers(this_branch, dst_reg,
2894 					       dst_reg->type, false);
2895 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2896 			    src_reg->type == PTR_TO_PACKET) ||
2897 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2898 			    src_reg->type == PTR_TO_PACKET_META)) {
2899 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
2900 			find_good_pkt_pointers(other_branch, src_reg,
2901 					       src_reg->type, true);
2902 		} else {
2903 			return false;
2904 		}
2905 		break;
2906 	case BPF_JLT:
2907 		if ((dst_reg->type == PTR_TO_PACKET &&
2908 		     src_reg->type == PTR_TO_PACKET_END) ||
2909 		    (dst_reg->type == PTR_TO_PACKET_META &&
2910 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2911 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2912 			find_good_pkt_pointers(other_branch, dst_reg,
2913 					       dst_reg->type, true);
2914 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2915 			    src_reg->type == PTR_TO_PACKET) ||
2916 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2917 			    src_reg->type == PTR_TO_PACKET_META)) {
2918 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
2919 			find_good_pkt_pointers(this_branch, src_reg,
2920 					       src_reg->type, false);
2921 		} else {
2922 			return false;
2923 		}
2924 		break;
2925 	case BPF_JGE:
2926 		if ((dst_reg->type == PTR_TO_PACKET &&
2927 		     src_reg->type == PTR_TO_PACKET_END) ||
2928 		    (dst_reg->type == PTR_TO_PACKET_META &&
2929 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2930 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2931 			find_good_pkt_pointers(this_branch, dst_reg,
2932 					       dst_reg->type, true);
2933 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2934 			    src_reg->type == PTR_TO_PACKET) ||
2935 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2936 			    src_reg->type == PTR_TO_PACKET_META)) {
2937 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2938 			find_good_pkt_pointers(other_branch, src_reg,
2939 					       src_reg->type, false);
2940 		} else {
2941 			return false;
2942 		}
2943 		break;
2944 	case BPF_JLE:
2945 		if ((dst_reg->type == PTR_TO_PACKET &&
2946 		     src_reg->type == PTR_TO_PACKET_END) ||
2947 		    (dst_reg->type == PTR_TO_PACKET_META &&
2948 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2949 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2950 			find_good_pkt_pointers(other_branch, dst_reg,
2951 					       dst_reg->type, false);
2952 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2953 			    src_reg->type == PTR_TO_PACKET) ||
2954 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2955 			    src_reg->type == PTR_TO_PACKET_META)) {
2956 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2957 			find_good_pkt_pointers(this_branch, src_reg,
2958 					       src_reg->type, true);
2959 		} else {
2960 			return false;
2961 		}
2962 		break;
2963 	default:
2964 		return false;
2965 	}
2966 
2967 	return true;
2968 }
2969 
2970 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2971 			     struct bpf_insn *insn, int *insn_idx)
2972 {
2973 	struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2974 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2975 	u8 opcode = BPF_OP(insn->code);
2976 	int err;
2977 
2978 	if (opcode > BPF_JSLE) {
2979 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2980 		return -EINVAL;
2981 	}
2982 
2983 	if (BPF_SRC(insn->code) == BPF_X) {
2984 		if (insn->imm != 0) {
2985 			verbose(env, "BPF_JMP uses reserved fields\n");
2986 			return -EINVAL;
2987 		}
2988 
2989 		/* check src1 operand */
2990 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2991 		if (err)
2992 			return err;
2993 
2994 		if (is_pointer_value(env, insn->src_reg)) {
2995 			verbose(env, "R%d pointer comparison prohibited\n",
2996 				insn->src_reg);
2997 			return -EACCES;
2998 		}
2999 	} else {
3000 		if (insn->src_reg != BPF_REG_0) {
3001 			verbose(env, "BPF_JMP uses reserved fields\n");
3002 			return -EINVAL;
3003 		}
3004 	}
3005 
3006 	/* check src2 operand */
3007 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3008 	if (err)
3009 		return err;
3010 
3011 	dst_reg = &regs[insn->dst_reg];
3012 
3013 	/* detect if R == 0 where R was initialized to zero earlier */
3014 	if (BPF_SRC(insn->code) == BPF_K &&
3015 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3016 	    dst_reg->type == SCALAR_VALUE &&
3017 	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
3018 		if (opcode == BPF_JEQ) {
3019 			/* if (imm == imm) goto pc+off;
3020 			 * only follow the goto, ignore fall-through
3021 			 */
3022 			*insn_idx += insn->off;
3023 			return 0;
3024 		} else {
3025 			/* if (imm != imm) goto pc+off;
3026 			 * only follow fall-through branch, since
3027 			 * that's where the program will go
3028 			 */
3029 			return 0;
3030 		}
3031 	}
3032 
3033 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3034 	if (!other_branch)
3035 		return -EFAULT;
3036 
3037 	/* detect if we are comparing against a constant value so we can adjust
3038 	 * our min/max values for our dst register.
3039 	 * this is only legit if both are scalars (or pointers to the same
3040 	 * object, I suppose, but we don't support that right now), because
3041 	 * otherwise the different base pointers mean the offsets aren't
3042 	 * comparable.
3043 	 */
3044 	if (BPF_SRC(insn->code) == BPF_X) {
3045 		if (dst_reg->type == SCALAR_VALUE &&
3046 		    regs[insn->src_reg].type == SCALAR_VALUE) {
3047 			if (tnum_is_const(regs[insn->src_reg].var_off))
3048 				reg_set_min_max(&other_branch->regs[insn->dst_reg],
3049 						dst_reg, regs[insn->src_reg].var_off.value,
3050 						opcode);
3051 			else if (tnum_is_const(dst_reg->var_off))
3052 				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3053 						    &regs[insn->src_reg],
3054 						    dst_reg->var_off.value, opcode);
3055 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3056 				/* Comparing for equality, we can combine knowledge */
3057 				reg_combine_min_max(&other_branch->regs[insn->src_reg],
3058 						    &other_branch->regs[insn->dst_reg],
3059 						    &regs[insn->src_reg],
3060 						    &regs[insn->dst_reg], opcode);
3061 		}
3062 	} else if (dst_reg->type == SCALAR_VALUE) {
3063 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
3064 					dst_reg, insn->imm, opcode);
3065 	}
3066 
3067 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3068 	if (BPF_SRC(insn->code) == BPF_K &&
3069 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3070 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3071 		/* Mark all identical map registers in each branch as either
3072 		 * safe or unknown depending R == 0 or R != 0 conditional.
3073 		 */
3074 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3075 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3076 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3077 					   this_branch, other_branch) &&
3078 		   is_pointer_value(env, insn->dst_reg)) {
3079 		verbose(env, "R%d pointer comparison prohibited\n",
3080 			insn->dst_reg);
3081 		return -EACCES;
3082 	}
3083 	if (env->log.level)
3084 		print_verifier_state(env, this_branch);
3085 	return 0;
3086 }
3087 
3088 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3089 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3090 {
3091 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3092 
3093 	return (struct bpf_map *) (unsigned long) imm64;
3094 }
3095 
3096 /* verify BPF_LD_IMM64 instruction */
3097 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3098 {
3099 	struct bpf_reg_state *regs = cur_regs(env);
3100 	int err;
3101 
3102 	if (BPF_SIZE(insn->code) != BPF_DW) {
3103 		verbose(env, "invalid BPF_LD_IMM insn\n");
3104 		return -EINVAL;
3105 	}
3106 	if (insn->off != 0) {
3107 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3108 		return -EINVAL;
3109 	}
3110 
3111 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3112 	if (err)
3113 		return err;
3114 
3115 	if (insn->src_reg == 0) {
3116 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3117 
3118 		regs[insn->dst_reg].type = SCALAR_VALUE;
3119 		__mark_reg_known(&regs[insn->dst_reg], imm);
3120 		return 0;
3121 	}
3122 
3123 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3124 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3125 
3126 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3127 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3128 	return 0;
3129 }
3130 
3131 static bool may_access_skb(enum bpf_prog_type type)
3132 {
3133 	switch (type) {
3134 	case BPF_PROG_TYPE_SOCKET_FILTER:
3135 	case BPF_PROG_TYPE_SCHED_CLS:
3136 	case BPF_PROG_TYPE_SCHED_ACT:
3137 		return true;
3138 	default:
3139 		return false;
3140 	}
3141 }
3142 
3143 /* verify safety of LD_ABS|LD_IND instructions:
3144  * - they can only appear in the programs where ctx == skb
3145  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3146  *   preserve R6-R9, and store return value into R0
3147  *
3148  * Implicit input:
3149  *   ctx == skb == R6 == CTX
3150  *
3151  * Explicit input:
3152  *   SRC == any register
3153  *   IMM == 32-bit immediate
3154  *
3155  * Output:
3156  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3157  */
3158 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3159 {
3160 	struct bpf_reg_state *regs = cur_regs(env);
3161 	u8 mode = BPF_MODE(insn->code);
3162 	int i, err;
3163 
3164 	if (!may_access_skb(env->prog->type)) {
3165 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3166 		return -EINVAL;
3167 	}
3168 
3169 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3170 	    BPF_SIZE(insn->code) == BPF_DW ||
3171 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3172 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3173 		return -EINVAL;
3174 	}
3175 
3176 	/* check whether implicit source operand (register R6) is readable */
3177 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3178 	if (err)
3179 		return err;
3180 
3181 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3182 		verbose(env,
3183 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3184 		return -EINVAL;
3185 	}
3186 
3187 	if (mode == BPF_IND) {
3188 		/* check explicit source operand */
3189 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3190 		if (err)
3191 			return err;
3192 	}
3193 
3194 	/* reset caller saved regs to unreadable */
3195 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3196 		mark_reg_not_init(env, regs, caller_saved[i]);
3197 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3198 	}
3199 
3200 	/* mark destination R0 register as readable, since it contains
3201 	 * the value fetched from the packet.
3202 	 * Already marked as written above.
3203 	 */
3204 	mark_reg_unknown(env, regs, BPF_REG_0);
3205 	return 0;
3206 }
3207 
3208 static int check_return_code(struct bpf_verifier_env *env)
3209 {
3210 	struct bpf_reg_state *reg;
3211 	struct tnum range = tnum_range(0, 1);
3212 
3213 	switch (env->prog->type) {
3214 	case BPF_PROG_TYPE_CGROUP_SKB:
3215 	case BPF_PROG_TYPE_CGROUP_SOCK:
3216 	case BPF_PROG_TYPE_SOCK_OPS:
3217 	case BPF_PROG_TYPE_CGROUP_DEVICE:
3218 		break;
3219 	default:
3220 		return 0;
3221 	}
3222 
3223 	reg = cur_regs(env) + BPF_REG_0;
3224 	if (reg->type != SCALAR_VALUE) {
3225 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3226 			reg_type_str[reg->type]);
3227 		return -EINVAL;
3228 	}
3229 
3230 	if (!tnum_in(range, reg->var_off)) {
3231 		verbose(env, "At program exit the register R0 ");
3232 		if (!tnum_is_unknown(reg->var_off)) {
3233 			char tn_buf[48];
3234 
3235 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3236 			verbose(env, "has value %s", tn_buf);
3237 		} else {
3238 			verbose(env, "has unknown scalar value");
3239 		}
3240 		verbose(env, " should have been 0 or 1\n");
3241 		return -EINVAL;
3242 	}
3243 	return 0;
3244 }
3245 
3246 /* non-recursive DFS pseudo code
3247  * 1  procedure DFS-iterative(G,v):
3248  * 2      label v as discovered
3249  * 3      let S be a stack
3250  * 4      S.push(v)
3251  * 5      while S is not empty
3252  * 6            t <- S.pop()
3253  * 7            if t is what we're looking for:
3254  * 8                return t
3255  * 9            for all edges e in G.adjacentEdges(t) do
3256  * 10               if edge e is already labelled
3257  * 11                   continue with the next edge
3258  * 12               w <- G.adjacentVertex(t,e)
3259  * 13               if vertex w is not discovered and not explored
3260  * 14                   label e as tree-edge
3261  * 15                   label w as discovered
3262  * 16                   S.push(w)
3263  * 17                   continue at 5
3264  * 18               else if vertex w is discovered
3265  * 19                   label e as back-edge
3266  * 20               else
3267  * 21                   // vertex w is explored
3268  * 22                   label e as forward- or cross-edge
3269  * 23           label t as explored
3270  * 24           S.pop()
3271  *
3272  * convention:
3273  * 0x10 - discovered
3274  * 0x11 - discovered and fall-through edge labelled
3275  * 0x12 - discovered and fall-through and branch edges labelled
3276  * 0x20 - explored
3277  */
3278 
3279 enum {
3280 	DISCOVERED = 0x10,
3281 	EXPLORED = 0x20,
3282 	FALLTHROUGH = 1,
3283 	BRANCH = 2,
3284 };
3285 
3286 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3287 
3288 static int *insn_stack;	/* stack of insns to process */
3289 static int cur_stack;	/* current stack index */
3290 static int *insn_state;
3291 
3292 /* t, w, e - match pseudo-code above:
3293  * t - index of current instruction
3294  * w - next instruction
3295  * e - edge
3296  */
3297 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3298 {
3299 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3300 		return 0;
3301 
3302 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3303 		return 0;
3304 
3305 	if (w < 0 || w >= env->prog->len) {
3306 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3307 		return -EINVAL;
3308 	}
3309 
3310 	if (e == BRANCH)
3311 		/* mark branch target for state pruning */
3312 		env->explored_states[w] = STATE_LIST_MARK;
3313 
3314 	if (insn_state[w] == 0) {
3315 		/* tree-edge */
3316 		insn_state[t] = DISCOVERED | e;
3317 		insn_state[w] = DISCOVERED;
3318 		if (cur_stack >= env->prog->len)
3319 			return -E2BIG;
3320 		insn_stack[cur_stack++] = w;
3321 		return 1;
3322 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3323 		verbose(env, "back-edge from insn %d to %d\n", t, w);
3324 		return -EINVAL;
3325 	} else if (insn_state[w] == EXPLORED) {
3326 		/* forward- or cross-edge */
3327 		insn_state[t] = DISCOVERED | e;
3328 	} else {
3329 		verbose(env, "insn state internal bug\n");
3330 		return -EFAULT;
3331 	}
3332 	return 0;
3333 }
3334 
3335 /* non-recursive depth-first-search to detect loops in BPF program
3336  * loop == back-edge in directed graph
3337  */
3338 static int check_cfg(struct bpf_verifier_env *env)
3339 {
3340 	struct bpf_insn *insns = env->prog->insnsi;
3341 	int insn_cnt = env->prog->len;
3342 	int ret = 0;
3343 	int i, t;
3344 
3345 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3346 	if (!insn_state)
3347 		return -ENOMEM;
3348 
3349 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3350 	if (!insn_stack) {
3351 		kfree(insn_state);
3352 		return -ENOMEM;
3353 	}
3354 
3355 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3356 	insn_stack[0] = 0; /* 0 is the first instruction */
3357 	cur_stack = 1;
3358 
3359 peek_stack:
3360 	if (cur_stack == 0)
3361 		goto check_state;
3362 	t = insn_stack[cur_stack - 1];
3363 
3364 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3365 		u8 opcode = BPF_OP(insns[t].code);
3366 
3367 		if (opcode == BPF_EXIT) {
3368 			goto mark_explored;
3369 		} else if (opcode == BPF_CALL) {
3370 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3371 			if (ret == 1)
3372 				goto peek_stack;
3373 			else if (ret < 0)
3374 				goto err_free;
3375 			if (t + 1 < insn_cnt)
3376 				env->explored_states[t + 1] = STATE_LIST_MARK;
3377 		} else if (opcode == BPF_JA) {
3378 			if (BPF_SRC(insns[t].code) != BPF_K) {
3379 				ret = -EINVAL;
3380 				goto err_free;
3381 			}
3382 			/* unconditional jump with single edge */
3383 			ret = push_insn(t, t + insns[t].off + 1,
3384 					FALLTHROUGH, env);
3385 			if (ret == 1)
3386 				goto peek_stack;
3387 			else if (ret < 0)
3388 				goto err_free;
3389 			/* tell verifier to check for equivalent states
3390 			 * after every call and jump
3391 			 */
3392 			if (t + 1 < insn_cnt)
3393 				env->explored_states[t + 1] = STATE_LIST_MARK;
3394 		} else {
3395 			/* conditional jump with two edges */
3396 			env->explored_states[t] = STATE_LIST_MARK;
3397 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3398 			if (ret == 1)
3399 				goto peek_stack;
3400 			else if (ret < 0)
3401 				goto err_free;
3402 
3403 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3404 			if (ret == 1)
3405 				goto peek_stack;
3406 			else if (ret < 0)
3407 				goto err_free;
3408 		}
3409 	} else {
3410 		/* all other non-branch instructions with single
3411 		 * fall-through edge
3412 		 */
3413 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
3414 		if (ret == 1)
3415 			goto peek_stack;
3416 		else if (ret < 0)
3417 			goto err_free;
3418 	}
3419 
3420 mark_explored:
3421 	insn_state[t] = EXPLORED;
3422 	if (cur_stack-- <= 0) {
3423 		verbose(env, "pop stack internal bug\n");
3424 		ret = -EFAULT;
3425 		goto err_free;
3426 	}
3427 	goto peek_stack;
3428 
3429 check_state:
3430 	for (i = 0; i < insn_cnt; i++) {
3431 		if (insn_state[i] != EXPLORED) {
3432 			verbose(env, "unreachable insn %d\n", i);
3433 			ret = -EINVAL;
3434 			goto err_free;
3435 		}
3436 	}
3437 	ret = 0; /* cfg looks good */
3438 
3439 err_free:
3440 	kfree(insn_state);
3441 	kfree(insn_stack);
3442 	return ret;
3443 }
3444 
3445 /* check %cur's range satisfies %old's */
3446 static bool range_within(struct bpf_reg_state *old,
3447 			 struct bpf_reg_state *cur)
3448 {
3449 	return old->umin_value <= cur->umin_value &&
3450 	       old->umax_value >= cur->umax_value &&
3451 	       old->smin_value <= cur->smin_value &&
3452 	       old->smax_value >= cur->smax_value;
3453 }
3454 
3455 /* Maximum number of register states that can exist at once */
3456 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3457 struct idpair {
3458 	u32 old;
3459 	u32 cur;
3460 };
3461 
3462 /* If in the old state two registers had the same id, then they need to have
3463  * the same id in the new state as well.  But that id could be different from
3464  * the old state, so we need to track the mapping from old to new ids.
3465  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3466  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
3467  * regs with a different old id could still have new id 9, we don't care about
3468  * that.
3469  * So we look through our idmap to see if this old id has been seen before.  If
3470  * so, we require the new id to match; otherwise, we add the id pair to the map.
3471  */
3472 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3473 {
3474 	unsigned int i;
3475 
3476 	for (i = 0; i < ID_MAP_SIZE; i++) {
3477 		if (!idmap[i].old) {
3478 			/* Reached an empty slot; haven't seen this id before */
3479 			idmap[i].old = old_id;
3480 			idmap[i].cur = cur_id;
3481 			return true;
3482 		}
3483 		if (idmap[i].old == old_id)
3484 			return idmap[i].cur == cur_id;
3485 	}
3486 	/* We ran out of idmap slots, which should be impossible */
3487 	WARN_ON_ONCE(1);
3488 	return false;
3489 }
3490 
3491 /* Returns true if (rold safe implies rcur safe) */
3492 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3493 		    struct idpair *idmap)
3494 {
3495 	if (!(rold->live & REG_LIVE_READ))
3496 		/* explored state didn't use this */
3497 		return true;
3498 
3499 	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3500 		return true;
3501 
3502 	if (rold->type == NOT_INIT)
3503 		/* explored state can't have used this */
3504 		return true;
3505 	if (rcur->type == NOT_INIT)
3506 		return false;
3507 	switch (rold->type) {
3508 	case SCALAR_VALUE:
3509 		if (rcur->type == SCALAR_VALUE) {
3510 			/* new val must satisfy old val knowledge */
3511 			return range_within(rold, rcur) &&
3512 			       tnum_in(rold->var_off, rcur->var_off);
3513 		} else {
3514 			/* We're trying to use a pointer in place of a scalar.
3515 			 * Even if the scalar was unbounded, this could lead to
3516 			 * pointer leaks because scalars are allowed to leak
3517 			 * while pointers are not. We could make this safe in
3518 			 * special cases if root is calling us, but it's
3519 			 * probably not worth the hassle.
3520 			 */
3521 			return false;
3522 		}
3523 	case PTR_TO_MAP_VALUE:
3524 		/* If the new min/max/var_off satisfy the old ones and
3525 		 * everything else matches, we are OK.
3526 		 * We don't care about the 'id' value, because nothing
3527 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3528 		 */
3529 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3530 		       range_within(rold, rcur) &&
3531 		       tnum_in(rold->var_off, rcur->var_off);
3532 	case PTR_TO_MAP_VALUE_OR_NULL:
3533 		/* a PTR_TO_MAP_VALUE could be safe to use as a
3534 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3535 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3536 		 * checked, doing so could have affected others with the same
3537 		 * id, and we can't check for that because we lost the id when
3538 		 * we converted to a PTR_TO_MAP_VALUE.
3539 		 */
3540 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3541 			return false;
3542 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3543 			return false;
3544 		/* Check our ids match any regs they're supposed to */
3545 		return check_ids(rold->id, rcur->id, idmap);
3546 	case PTR_TO_PACKET_META:
3547 	case PTR_TO_PACKET:
3548 		if (rcur->type != rold->type)
3549 			return false;
3550 		/* We must have at least as much range as the old ptr
3551 		 * did, so that any accesses which were safe before are
3552 		 * still safe.  This is true even if old range < old off,
3553 		 * since someone could have accessed through (ptr - k), or
3554 		 * even done ptr -= k in a register, to get a safe access.
3555 		 */
3556 		if (rold->range > rcur->range)
3557 			return false;
3558 		/* If the offsets don't match, we can't trust our alignment;
3559 		 * nor can we be sure that we won't fall out of range.
3560 		 */
3561 		if (rold->off != rcur->off)
3562 			return false;
3563 		/* id relations must be preserved */
3564 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3565 			return false;
3566 		/* new val must satisfy old val knowledge */
3567 		return range_within(rold, rcur) &&
3568 		       tnum_in(rold->var_off, rcur->var_off);
3569 	case PTR_TO_CTX:
3570 	case CONST_PTR_TO_MAP:
3571 	case PTR_TO_STACK:
3572 	case PTR_TO_PACKET_END:
3573 		/* Only valid matches are exact, which memcmp() above
3574 		 * would have accepted
3575 		 */
3576 	default:
3577 		/* Don't know what's going on, just say it's not safe */
3578 		return false;
3579 	}
3580 
3581 	/* Shouldn't get here; if we do, say it's not safe */
3582 	WARN_ON_ONCE(1);
3583 	return false;
3584 }
3585 
3586 static bool stacksafe(struct bpf_verifier_state *old,
3587 		      struct bpf_verifier_state *cur,
3588 		      struct idpair *idmap)
3589 {
3590 	int i, spi;
3591 
3592 	/* if explored stack has more populated slots than current stack
3593 	 * such stacks are not equivalent
3594 	 */
3595 	if (old->allocated_stack > cur->allocated_stack)
3596 		return false;
3597 
3598 	/* walk slots of the explored stack and ignore any additional
3599 	 * slots in the current stack, since explored(safe) state
3600 	 * didn't use them
3601 	 */
3602 	for (i = 0; i < old->allocated_stack; i++) {
3603 		spi = i / BPF_REG_SIZE;
3604 
3605 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3606 			continue;
3607 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3608 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3609 			/* Ex: old explored (safe) state has STACK_SPILL in
3610 			 * this stack slot, but current has has STACK_MISC ->
3611 			 * this verifier states are not equivalent,
3612 			 * return false to continue verification of this path
3613 			 */
3614 			return false;
3615 		if (i % BPF_REG_SIZE)
3616 			continue;
3617 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
3618 			continue;
3619 		if (!regsafe(&old->stack[spi].spilled_ptr,
3620 			     &cur->stack[spi].spilled_ptr,
3621 			     idmap))
3622 			/* when explored and current stack slot are both storing
3623 			 * spilled registers, check that stored pointers types
3624 			 * are the same as well.
3625 			 * Ex: explored safe path could have stored
3626 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3627 			 * but current path has stored:
3628 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3629 			 * such verifier states are not equivalent.
3630 			 * return false to continue verification of this path
3631 			 */
3632 			return false;
3633 	}
3634 	return true;
3635 }
3636 
3637 /* compare two verifier states
3638  *
3639  * all states stored in state_list are known to be valid, since
3640  * verifier reached 'bpf_exit' instruction through them
3641  *
3642  * this function is called when verifier exploring different branches of
3643  * execution popped from the state stack. If it sees an old state that has
3644  * more strict register state and more strict stack state then this execution
3645  * branch doesn't need to be explored further, since verifier already
3646  * concluded that more strict state leads to valid finish.
3647  *
3648  * Therefore two states are equivalent if register state is more conservative
3649  * and explored stack state is more conservative than the current one.
3650  * Example:
3651  *       explored                   current
3652  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3653  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3654  *
3655  * In other words if current stack state (one being explored) has more
3656  * valid slots than old one that already passed validation, it means
3657  * the verifier can stop exploring and conclude that current state is valid too
3658  *
3659  * Similarly with registers. If explored state has register type as invalid
3660  * whereas register type in current state is meaningful, it means that
3661  * the current state will reach 'bpf_exit' instruction safely
3662  */
3663 static bool states_equal(struct bpf_verifier_env *env,
3664 			 struct bpf_verifier_state *old,
3665 			 struct bpf_verifier_state *cur)
3666 {
3667 	struct idpair *idmap;
3668 	bool ret = false;
3669 	int i;
3670 
3671 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3672 	/* If we failed to allocate the idmap, just say it's not safe */
3673 	if (!idmap)
3674 		return false;
3675 
3676 	for (i = 0; i < MAX_BPF_REG; i++) {
3677 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3678 			goto out_free;
3679 	}
3680 
3681 	if (!stacksafe(old, cur, idmap))
3682 		goto out_free;
3683 	ret = true;
3684 out_free:
3685 	kfree(idmap);
3686 	return ret;
3687 }
3688 
3689 /* A write screens off any subsequent reads; but write marks come from the
3690  * straight-line code between a state and its parent.  When we arrive at a
3691  * jump target (in the first iteration of the propagate_liveness() loop),
3692  * we didn't arrive by the straight-line code, so read marks in state must
3693  * propagate to parent regardless of state's write marks.
3694  */
3695 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3696 				  struct bpf_verifier_state *parent)
3697 {
3698 	bool writes = parent == state->parent; /* Observe write marks */
3699 	bool touched = false; /* any changes made? */
3700 	int i;
3701 
3702 	if (!parent)
3703 		return touched;
3704 	/* Propagate read liveness of registers... */
3705 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3706 	/* We don't need to worry about FP liveness because it's read-only */
3707 	for (i = 0; i < BPF_REG_FP; i++) {
3708 		if (parent->regs[i].live & REG_LIVE_READ)
3709 			continue;
3710 		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3711 			continue;
3712 		if (state->regs[i].live & REG_LIVE_READ) {
3713 			parent->regs[i].live |= REG_LIVE_READ;
3714 			touched = true;
3715 		}
3716 	}
3717 	/* ... and stack slots */
3718 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3719 		    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3720 		if (parent->stack[i].slot_type[0] != STACK_SPILL)
3721 			continue;
3722 		if (state->stack[i].slot_type[0] != STACK_SPILL)
3723 			continue;
3724 		if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3725 			continue;
3726 		if (writes &&
3727 		    (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3728 			continue;
3729 		if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3730 			parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3731 			touched = true;
3732 		}
3733 	}
3734 	return touched;
3735 }
3736 
3737 /* "parent" is "a state from which we reach the current state", but initially
3738  * it is not the state->parent (i.e. "the state whose straight-line code leads
3739  * to the current state"), instead it is the state that happened to arrive at
3740  * a (prunable) equivalent of the current state.  See comment above
3741  * do_propagate_liveness() for consequences of this.
3742  * This function is just a more efficient way of calling mark_reg_read() or
3743  * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3744  * though it requires that parent != state->parent in the call arguments.
3745  */
3746 static void propagate_liveness(const struct bpf_verifier_state *state,
3747 			       struct bpf_verifier_state *parent)
3748 {
3749 	while (do_propagate_liveness(state, parent)) {
3750 		/* Something changed, so we need to feed those changes onward */
3751 		state = parent;
3752 		parent = state->parent;
3753 	}
3754 }
3755 
3756 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3757 {
3758 	struct bpf_verifier_state_list *new_sl;
3759 	struct bpf_verifier_state_list *sl;
3760 	struct bpf_verifier_state *cur = env->cur_state;
3761 	int i, err;
3762 
3763 	sl = env->explored_states[insn_idx];
3764 	if (!sl)
3765 		/* this 'insn_idx' instruction wasn't marked, so we will not
3766 		 * be doing state search here
3767 		 */
3768 		return 0;
3769 
3770 	while (sl != STATE_LIST_MARK) {
3771 		if (states_equal(env, &sl->state, cur)) {
3772 			/* reached equivalent register/stack state,
3773 			 * prune the search.
3774 			 * Registers read by the continuation are read by us.
3775 			 * If we have any write marks in env->cur_state, they
3776 			 * will prevent corresponding reads in the continuation
3777 			 * from reaching our parent (an explored_state).  Our
3778 			 * own state will get the read marks recorded, but
3779 			 * they'll be immediately forgotten as we're pruning
3780 			 * this state and will pop a new one.
3781 			 */
3782 			propagate_liveness(&sl->state, cur);
3783 			return 1;
3784 		}
3785 		sl = sl->next;
3786 	}
3787 
3788 	/* there were no equivalent states, remember current one.
3789 	 * technically the current state is not proven to be safe yet,
3790 	 * but it will either reach bpf_exit (which means it's safe) or
3791 	 * it will be rejected. Since there are no loops, we won't be
3792 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3793 	 */
3794 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3795 	if (!new_sl)
3796 		return -ENOMEM;
3797 
3798 	/* add new state to the head of linked list */
3799 	err = copy_verifier_state(&new_sl->state, cur);
3800 	if (err) {
3801 		free_verifier_state(&new_sl->state, false);
3802 		kfree(new_sl);
3803 		return err;
3804 	}
3805 	new_sl->next = env->explored_states[insn_idx];
3806 	env->explored_states[insn_idx] = new_sl;
3807 	/* connect new state to parentage chain */
3808 	cur->parent = &new_sl->state;
3809 	/* clear write marks in current state: the writes we did are not writes
3810 	 * our child did, so they don't screen off its reads from us.
3811 	 * (There are no read marks in current state, because reads always mark
3812 	 * their parent and current state never has children yet.  Only
3813 	 * explored_states can get read marks.)
3814 	 */
3815 	for (i = 0; i < BPF_REG_FP; i++)
3816 		cur->regs[i].live = REG_LIVE_NONE;
3817 	for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3818 		if (cur->stack[i].slot_type[0] == STACK_SPILL)
3819 			cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3820 	return 0;
3821 }
3822 
3823 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3824 				  int insn_idx, int prev_insn_idx)
3825 {
3826 	if (env->dev_ops && env->dev_ops->insn_hook)
3827 		return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3828 
3829 	return 0;
3830 }
3831 
3832 static int do_check(struct bpf_verifier_env *env)
3833 {
3834 	struct bpf_verifier_state *state;
3835 	struct bpf_insn *insns = env->prog->insnsi;
3836 	struct bpf_reg_state *regs;
3837 	int insn_cnt = env->prog->len;
3838 	int insn_idx, prev_insn_idx = 0;
3839 	int insn_processed = 0;
3840 	bool do_print_state = false;
3841 
3842 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3843 	if (!state)
3844 		return -ENOMEM;
3845 	env->cur_state = state;
3846 	init_reg_state(env, state->regs);
3847 	state->parent = NULL;
3848 	insn_idx = 0;
3849 	for (;;) {
3850 		struct bpf_insn *insn;
3851 		u8 class;
3852 		int err;
3853 
3854 		if (insn_idx >= insn_cnt) {
3855 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3856 				insn_idx, insn_cnt);
3857 			return -EFAULT;
3858 		}
3859 
3860 		insn = &insns[insn_idx];
3861 		class = BPF_CLASS(insn->code);
3862 
3863 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3864 			verbose(env,
3865 				"BPF program is too large. Processed %d insn\n",
3866 				insn_processed);
3867 			return -E2BIG;
3868 		}
3869 
3870 		err = is_state_visited(env, insn_idx);
3871 		if (err < 0)
3872 			return err;
3873 		if (err == 1) {
3874 			/* found equivalent state, can prune the search */
3875 			if (env->log.level) {
3876 				if (do_print_state)
3877 					verbose(env, "\nfrom %d to %d: safe\n",
3878 						prev_insn_idx, insn_idx);
3879 				else
3880 					verbose(env, "%d: safe\n", insn_idx);
3881 			}
3882 			goto process_bpf_exit;
3883 		}
3884 
3885 		if (need_resched())
3886 			cond_resched();
3887 
3888 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
3889 			if (env->log.level > 1)
3890 				verbose(env, "%d:", insn_idx);
3891 			else
3892 				verbose(env, "\nfrom %d to %d:",
3893 					prev_insn_idx, insn_idx);
3894 			print_verifier_state(env, state);
3895 			do_print_state = false;
3896 		}
3897 
3898 		if (env->log.level) {
3899 			verbose(env, "%d: ", insn_idx);
3900 			print_bpf_insn(verbose, env, insn,
3901 				       env->allow_ptr_leaks);
3902 		}
3903 
3904 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3905 		if (err)
3906 			return err;
3907 
3908 		regs = cur_regs(env);
3909 		env->insn_aux_data[insn_idx].seen = true;
3910 		if (class == BPF_ALU || class == BPF_ALU64) {
3911 			err = check_alu_op(env, insn);
3912 			if (err)
3913 				return err;
3914 
3915 		} else if (class == BPF_LDX) {
3916 			enum bpf_reg_type *prev_src_type, src_reg_type;
3917 
3918 			/* check for reserved fields is already done */
3919 
3920 			/* check src operand */
3921 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3922 			if (err)
3923 				return err;
3924 
3925 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3926 			if (err)
3927 				return err;
3928 
3929 			src_reg_type = regs[insn->src_reg].type;
3930 
3931 			/* check that memory (src_reg + off) is readable,
3932 			 * the state of dst_reg will be updated by this func
3933 			 */
3934 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3935 					       BPF_SIZE(insn->code), BPF_READ,
3936 					       insn->dst_reg);
3937 			if (err)
3938 				return err;
3939 
3940 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3941 
3942 			if (*prev_src_type == NOT_INIT) {
3943 				/* saw a valid insn
3944 				 * dst_reg = *(u32 *)(src_reg + off)
3945 				 * save type to validate intersecting paths
3946 				 */
3947 				*prev_src_type = src_reg_type;
3948 
3949 			} else if (src_reg_type != *prev_src_type &&
3950 				   (src_reg_type == PTR_TO_CTX ||
3951 				    *prev_src_type == PTR_TO_CTX)) {
3952 				/* ABuser program is trying to use the same insn
3953 				 * dst_reg = *(u32*) (src_reg + off)
3954 				 * with different pointer types:
3955 				 * src_reg == ctx in one branch and
3956 				 * src_reg == stack|map in some other branch.
3957 				 * Reject it.
3958 				 */
3959 				verbose(env, "same insn cannot be used with different pointers\n");
3960 				return -EINVAL;
3961 			}
3962 
3963 		} else if (class == BPF_STX) {
3964 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3965 
3966 			if (BPF_MODE(insn->code) == BPF_XADD) {
3967 				err = check_xadd(env, insn_idx, insn);
3968 				if (err)
3969 					return err;
3970 				insn_idx++;
3971 				continue;
3972 			}
3973 
3974 			/* check src1 operand */
3975 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3976 			if (err)
3977 				return err;
3978 			/* check src2 operand */
3979 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3980 			if (err)
3981 				return err;
3982 
3983 			dst_reg_type = regs[insn->dst_reg].type;
3984 
3985 			/* check that memory (dst_reg + off) is writeable */
3986 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3987 					       BPF_SIZE(insn->code), BPF_WRITE,
3988 					       insn->src_reg);
3989 			if (err)
3990 				return err;
3991 
3992 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3993 
3994 			if (*prev_dst_type == NOT_INIT) {
3995 				*prev_dst_type = dst_reg_type;
3996 			} else if (dst_reg_type != *prev_dst_type &&
3997 				   (dst_reg_type == PTR_TO_CTX ||
3998 				    *prev_dst_type == PTR_TO_CTX)) {
3999 				verbose(env, "same insn cannot be used with different pointers\n");
4000 				return -EINVAL;
4001 			}
4002 
4003 		} else if (class == BPF_ST) {
4004 			if (BPF_MODE(insn->code) != BPF_MEM ||
4005 			    insn->src_reg != BPF_REG_0) {
4006 				verbose(env, "BPF_ST uses reserved fields\n");
4007 				return -EINVAL;
4008 			}
4009 			/* check src operand */
4010 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4011 			if (err)
4012 				return err;
4013 
4014 			if (is_ctx_reg(env, insn->dst_reg)) {
4015 				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4016 					insn->dst_reg);
4017 				return -EACCES;
4018 			}
4019 
4020 			/* check that memory (dst_reg + off) is writeable */
4021 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4022 					       BPF_SIZE(insn->code), BPF_WRITE,
4023 					       -1);
4024 			if (err)
4025 				return err;
4026 
4027 		} else if (class == BPF_JMP) {
4028 			u8 opcode = BPF_OP(insn->code);
4029 
4030 			if (opcode == BPF_CALL) {
4031 				if (BPF_SRC(insn->code) != BPF_K ||
4032 				    insn->off != 0 ||
4033 				    insn->src_reg != BPF_REG_0 ||
4034 				    insn->dst_reg != BPF_REG_0) {
4035 					verbose(env, "BPF_CALL uses reserved fields\n");
4036 					return -EINVAL;
4037 				}
4038 
4039 				err = check_call(env, insn->imm, insn_idx);
4040 				if (err)
4041 					return err;
4042 
4043 			} else if (opcode == BPF_JA) {
4044 				if (BPF_SRC(insn->code) != BPF_K ||
4045 				    insn->imm != 0 ||
4046 				    insn->src_reg != BPF_REG_0 ||
4047 				    insn->dst_reg != BPF_REG_0) {
4048 					verbose(env, "BPF_JA uses reserved fields\n");
4049 					return -EINVAL;
4050 				}
4051 
4052 				insn_idx += insn->off + 1;
4053 				continue;
4054 
4055 			} else if (opcode == BPF_EXIT) {
4056 				if (BPF_SRC(insn->code) != BPF_K ||
4057 				    insn->imm != 0 ||
4058 				    insn->src_reg != BPF_REG_0 ||
4059 				    insn->dst_reg != BPF_REG_0) {
4060 					verbose(env, "BPF_EXIT uses reserved fields\n");
4061 					return -EINVAL;
4062 				}
4063 
4064 				/* eBPF calling convetion is such that R0 is used
4065 				 * to return the value from eBPF program.
4066 				 * Make sure that it's readable at this time
4067 				 * of bpf_exit, which means that program wrote
4068 				 * something into it earlier
4069 				 */
4070 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4071 				if (err)
4072 					return err;
4073 
4074 				if (is_pointer_value(env, BPF_REG_0)) {
4075 					verbose(env, "R0 leaks addr as return value\n");
4076 					return -EACCES;
4077 				}
4078 
4079 				err = check_return_code(env);
4080 				if (err)
4081 					return err;
4082 process_bpf_exit:
4083 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
4084 				if (err < 0) {
4085 					if (err != -ENOENT)
4086 						return err;
4087 					break;
4088 				} else {
4089 					do_print_state = true;
4090 					continue;
4091 				}
4092 			} else {
4093 				err = check_cond_jmp_op(env, insn, &insn_idx);
4094 				if (err)
4095 					return err;
4096 			}
4097 		} else if (class == BPF_LD) {
4098 			u8 mode = BPF_MODE(insn->code);
4099 
4100 			if (mode == BPF_ABS || mode == BPF_IND) {
4101 				err = check_ld_abs(env, insn);
4102 				if (err)
4103 					return err;
4104 
4105 			} else if (mode == BPF_IMM) {
4106 				err = check_ld_imm(env, insn);
4107 				if (err)
4108 					return err;
4109 
4110 				insn_idx++;
4111 				env->insn_aux_data[insn_idx].seen = true;
4112 			} else {
4113 				verbose(env, "invalid BPF_LD mode\n");
4114 				return -EINVAL;
4115 			}
4116 		} else {
4117 			verbose(env, "unknown insn class %d\n", class);
4118 			return -EINVAL;
4119 		}
4120 
4121 		insn_idx++;
4122 	}
4123 
4124 	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4125 		env->prog->aux->stack_depth);
4126 	return 0;
4127 }
4128 
4129 static int check_map_prealloc(struct bpf_map *map)
4130 {
4131 	return (map->map_type != BPF_MAP_TYPE_HASH &&
4132 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4133 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4134 		!(map->map_flags & BPF_F_NO_PREALLOC);
4135 }
4136 
4137 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4138 					struct bpf_map *map,
4139 					struct bpf_prog *prog)
4140 
4141 {
4142 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4143 	 * preallocated hash maps, since doing memory allocation
4144 	 * in overflow_handler can crash depending on where nmi got
4145 	 * triggered.
4146 	 */
4147 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4148 		if (!check_map_prealloc(map)) {
4149 			verbose(env, "perf_event programs can only use preallocated hash map\n");
4150 			return -EINVAL;
4151 		}
4152 		if (map->inner_map_meta &&
4153 		    !check_map_prealloc(map->inner_map_meta)) {
4154 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4155 			return -EINVAL;
4156 		}
4157 	}
4158 	return 0;
4159 }
4160 
4161 /* look for pseudo eBPF instructions that access map FDs and
4162  * replace them with actual map pointers
4163  */
4164 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4165 {
4166 	struct bpf_insn *insn = env->prog->insnsi;
4167 	int insn_cnt = env->prog->len;
4168 	int i, j, err;
4169 
4170 	err = bpf_prog_calc_tag(env->prog);
4171 	if (err)
4172 		return err;
4173 
4174 	for (i = 0; i < insn_cnt; i++, insn++) {
4175 		if (BPF_CLASS(insn->code) == BPF_LDX &&
4176 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4177 			verbose(env, "BPF_LDX uses reserved fields\n");
4178 			return -EINVAL;
4179 		}
4180 
4181 		if (BPF_CLASS(insn->code) == BPF_STX &&
4182 		    ((BPF_MODE(insn->code) != BPF_MEM &&
4183 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4184 			verbose(env, "BPF_STX uses reserved fields\n");
4185 			return -EINVAL;
4186 		}
4187 
4188 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4189 			struct bpf_map *map;
4190 			struct fd f;
4191 
4192 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
4193 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4194 			    insn[1].off != 0) {
4195 				verbose(env, "invalid bpf_ld_imm64 insn\n");
4196 				return -EINVAL;
4197 			}
4198 
4199 			if (insn->src_reg == 0)
4200 				/* valid generic load 64-bit imm */
4201 				goto next_insn;
4202 
4203 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4204 				verbose(env,
4205 					"unrecognized bpf_ld_imm64 insn\n");
4206 				return -EINVAL;
4207 			}
4208 
4209 			f = fdget(insn->imm);
4210 			map = __bpf_map_get(f);
4211 			if (IS_ERR(map)) {
4212 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4213 					insn->imm);
4214 				return PTR_ERR(map);
4215 			}
4216 
4217 			err = check_map_prog_compatibility(env, map, env->prog);
4218 			if (err) {
4219 				fdput(f);
4220 				return err;
4221 			}
4222 
4223 			/* store map pointer inside BPF_LD_IMM64 instruction */
4224 			insn[0].imm = (u32) (unsigned long) map;
4225 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
4226 
4227 			/* check whether we recorded this map already */
4228 			for (j = 0; j < env->used_map_cnt; j++)
4229 				if (env->used_maps[j] == map) {
4230 					fdput(f);
4231 					goto next_insn;
4232 				}
4233 
4234 			if (env->used_map_cnt >= MAX_USED_MAPS) {
4235 				fdput(f);
4236 				return -E2BIG;
4237 			}
4238 
4239 			/* hold the map. If the program is rejected by verifier,
4240 			 * the map will be released by release_maps() or it
4241 			 * will be used by the valid program until it's unloaded
4242 			 * and all maps are released in free_bpf_prog_info()
4243 			 */
4244 			map = bpf_map_inc(map, false);
4245 			if (IS_ERR(map)) {
4246 				fdput(f);
4247 				return PTR_ERR(map);
4248 			}
4249 			env->used_maps[env->used_map_cnt++] = map;
4250 
4251 			fdput(f);
4252 next_insn:
4253 			insn++;
4254 			i++;
4255 		}
4256 	}
4257 
4258 	/* now all pseudo BPF_LD_IMM64 instructions load valid
4259 	 * 'struct bpf_map *' into a register instead of user map_fd.
4260 	 * These pointers will be used later by verifier to validate map access.
4261 	 */
4262 	return 0;
4263 }
4264 
4265 /* drop refcnt of maps used by the rejected program */
4266 static void release_maps(struct bpf_verifier_env *env)
4267 {
4268 	int i;
4269 
4270 	for (i = 0; i < env->used_map_cnt; i++)
4271 		bpf_map_put(env->used_maps[i]);
4272 }
4273 
4274 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4275 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4276 {
4277 	struct bpf_insn *insn = env->prog->insnsi;
4278 	int insn_cnt = env->prog->len;
4279 	int i;
4280 
4281 	for (i = 0; i < insn_cnt; i++, insn++)
4282 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4283 			insn->src_reg = 0;
4284 }
4285 
4286 /* single env->prog->insni[off] instruction was replaced with the range
4287  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
4288  * [0, off) and [off, end) to new locations, so the patched range stays zero
4289  */
4290 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4291 				u32 off, u32 cnt)
4292 {
4293 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4294 	int i;
4295 
4296 	if (cnt == 1)
4297 		return 0;
4298 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4299 	if (!new_data)
4300 		return -ENOMEM;
4301 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4302 	memcpy(new_data + off + cnt - 1, old_data + off,
4303 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4304 	for (i = off; i < off + cnt - 1; i++)
4305 		new_data[i].seen = true;
4306 	env->insn_aux_data = new_data;
4307 	vfree(old_data);
4308 	return 0;
4309 }
4310 
4311 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4312 					    const struct bpf_insn *patch, u32 len)
4313 {
4314 	struct bpf_prog *new_prog;
4315 
4316 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4317 	if (!new_prog)
4318 		return NULL;
4319 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
4320 		return NULL;
4321 	return new_prog;
4322 }
4323 
4324 /* The verifier does more data flow analysis than llvm and will not explore
4325  * branches that are dead at run time. Malicious programs can have dead code
4326  * too. Therefore replace all dead at-run-time code with nops.
4327  */
4328 static void sanitize_dead_code(struct bpf_verifier_env *env)
4329 {
4330 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4331 	struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4332 	struct bpf_insn *insn = env->prog->insnsi;
4333 	const int insn_cnt = env->prog->len;
4334 	int i;
4335 
4336 	for (i = 0; i < insn_cnt; i++) {
4337 		if (aux_data[i].seen)
4338 			continue;
4339 		memcpy(insn + i, &nop, sizeof(nop));
4340 	}
4341 }
4342 
4343 /* convert load instructions that access fields of 'struct __sk_buff'
4344  * into sequence of instructions that access fields of 'struct sk_buff'
4345  */
4346 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4347 {
4348 	const struct bpf_verifier_ops *ops = env->ops;
4349 	int i, cnt, size, ctx_field_size, delta = 0;
4350 	const int insn_cnt = env->prog->len;
4351 	struct bpf_insn insn_buf[16], *insn;
4352 	struct bpf_prog *new_prog;
4353 	enum bpf_access_type type;
4354 	bool is_narrower_load;
4355 	u32 target_size;
4356 
4357 	if (ops->gen_prologue) {
4358 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4359 					env->prog);
4360 		if (cnt >= ARRAY_SIZE(insn_buf)) {
4361 			verbose(env, "bpf verifier is misconfigured\n");
4362 			return -EINVAL;
4363 		} else if (cnt) {
4364 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4365 			if (!new_prog)
4366 				return -ENOMEM;
4367 
4368 			env->prog = new_prog;
4369 			delta += cnt - 1;
4370 		}
4371 	}
4372 
4373 	if (!ops->convert_ctx_access)
4374 		return 0;
4375 
4376 	insn = env->prog->insnsi + delta;
4377 
4378 	for (i = 0; i < insn_cnt; i++, insn++) {
4379 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4380 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4381 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4382 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4383 			type = BPF_READ;
4384 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4385 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4386 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4387 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4388 			type = BPF_WRITE;
4389 		else
4390 			continue;
4391 
4392 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4393 			continue;
4394 
4395 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4396 		size = BPF_LDST_BYTES(insn);
4397 
4398 		/* If the read access is a narrower load of the field,
4399 		 * convert to a 4/8-byte load, to minimum program type specific
4400 		 * convert_ctx_access changes. If conversion is successful,
4401 		 * we will apply proper mask to the result.
4402 		 */
4403 		is_narrower_load = size < ctx_field_size;
4404 		if (is_narrower_load) {
4405 			u32 off = insn->off;
4406 			u8 size_code;
4407 
4408 			if (type == BPF_WRITE) {
4409 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4410 				return -EINVAL;
4411 			}
4412 
4413 			size_code = BPF_H;
4414 			if (ctx_field_size == 4)
4415 				size_code = BPF_W;
4416 			else if (ctx_field_size == 8)
4417 				size_code = BPF_DW;
4418 
4419 			insn->off = off & ~(ctx_field_size - 1);
4420 			insn->code = BPF_LDX | BPF_MEM | size_code;
4421 		}
4422 
4423 		target_size = 0;
4424 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4425 					      &target_size);
4426 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4427 		    (ctx_field_size && !target_size)) {
4428 			verbose(env, "bpf verifier is misconfigured\n");
4429 			return -EINVAL;
4430 		}
4431 
4432 		if (is_narrower_load && size < target_size) {
4433 			if (ctx_field_size <= 4)
4434 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4435 								(1 << size * 8) - 1);
4436 			else
4437 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4438 								(1 << size * 8) - 1);
4439 		}
4440 
4441 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4442 		if (!new_prog)
4443 			return -ENOMEM;
4444 
4445 		delta += cnt - 1;
4446 
4447 		/* keep walking new program and skip insns we just inserted */
4448 		env->prog = new_prog;
4449 		insn      = new_prog->insnsi + i + delta;
4450 	}
4451 
4452 	return 0;
4453 }
4454 
4455 /* fixup insn->imm field of bpf_call instructions
4456  * and inline eligible helpers as explicit sequence of BPF instructions
4457  *
4458  * this function is called after eBPF program passed verification
4459  */
4460 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4461 {
4462 	struct bpf_prog *prog = env->prog;
4463 	struct bpf_insn *insn = prog->insnsi;
4464 	const struct bpf_func_proto *fn;
4465 	const int insn_cnt = prog->len;
4466 	struct bpf_insn insn_buf[16];
4467 	struct bpf_prog *new_prog;
4468 	struct bpf_map *map_ptr;
4469 	int i, cnt, delta = 0;
4470 
4471 	for (i = 0; i < insn_cnt; i++, insn++) {
4472 		if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
4473 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
4474 			/* due to JIT bugs clear upper 32-bits of src register
4475 			 * before div/mod operation
4476 			 */
4477 			insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
4478 			insn_buf[1] = *insn;
4479 			cnt = 2;
4480 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4481 			if (!new_prog)
4482 				return -ENOMEM;
4483 
4484 			delta    += cnt - 1;
4485 			env->prog = prog = new_prog;
4486 			insn      = new_prog->insnsi + i + delta;
4487 			continue;
4488 		}
4489 
4490 		if (insn->code != (BPF_JMP | BPF_CALL))
4491 			continue;
4492 
4493 		if (insn->imm == BPF_FUNC_get_route_realm)
4494 			prog->dst_needed = 1;
4495 		if (insn->imm == BPF_FUNC_get_prandom_u32)
4496 			bpf_user_rnd_init_once();
4497 		if (insn->imm == BPF_FUNC_tail_call) {
4498 			/* If we tail call into other programs, we
4499 			 * cannot make any assumptions since they can
4500 			 * be replaced dynamically during runtime in
4501 			 * the program array.
4502 			 */
4503 			prog->cb_access = 1;
4504 			env->prog->aux->stack_depth = MAX_BPF_STACK;
4505 
4506 			/* mark bpf_tail_call as different opcode to avoid
4507 			 * conditional branch in the interpeter for every normal
4508 			 * call and to prevent accidental JITing by JIT compiler
4509 			 * that doesn't support bpf_tail_call yet
4510 			 */
4511 			insn->imm = 0;
4512 			insn->code = BPF_JMP | BPF_TAIL_CALL;
4513 
4514 			/* instead of changing every JIT dealing with tail_call
4515 			 * emit two extra insns:
4516 			 * if (index >= max_entries) goto out;
4517 			 * index &= array->index_mask;
4518 			 * to avoid out-of-bounds cpu speculation
4519 			 */
4520 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4521 			if (map_ptr == BPF_MAP_PTR_POISON) {
4522 				verbose(env, "tail_call abusing map_ptr\n");
4523 				return -EINVAL;
4524 			}
4525 			if (!map_ptr->unpriv_array)
4526 				continue;
4527 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
4528 						  map_ptr->max_entries, 2);
4529 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
4530 						    container_of(map_ptr,
4531 								 struct bpf_array,
4532 								 map)->index_mask);
4533 			insn_buf[2] = *insn;
4534 			cnt = 3;
4535 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4536 			if (!new_prog)
4537 				return -ENOMEM;
4538 
4539 			delta    += cnt - 1;
4540 			env->prog = prog = new_prog;
4541 			insn      = new_prog->insnsi + i + delta;
4542 			continue;
4543 		}
4544 
4545 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4546 		 * handlers are currently limited to 64 bit only.
4547 		 */
4548 		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4549 		    insn->imm == BPF_FUNC_map_lookup_elem) {
4550 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4551 			if (map_ptr == BPF_MAP_PTR_POISON ||
4552 			    !map_ptr->ops->map_gen_lookup)
4553 				goto patch_call_imm;
4554 
4555 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4556 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4557 				verbose(env, "bpf verifier is misconfigured\n");
4558 				return -EINVAL;
4559 			}
4560 
4561 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4562 						       cnt);
4563 			if (!new_prog)
4564 				return -ENOMEM;
4565 
4566 			delta += cnt - 1;
4567 
4568 			/* keep walking new program and skip insns we just inserted */
4569 			env->prog = prog = new_prog;
4570 			insn      = new_prog->insnsi + i + delta;
4571 			continue;
4572 		}
4573 
4574 		if (insn->imm == BPF_FUNC_redirect_map) {
4575 			/* Note, we cannot use prog directly as imm as subsequent
4576 			 * rewrites would still change the prog pointer. The only
4577 			 * stable address we can use is aux, which also works with
4578 			 * prog clones during blinding.
4579 			 */
4580 			u64 addr = (unsigned long)prog->aux;
4581 			struct bpf_insn r4_ld[] = {
4582 				BPF_LD_IMM64(BPF_REG_4, addr),
4583 				*insn,
4584 			};
4585 			cnt = ARRAY_SIZE(r4_ld);
4586 
4587 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4588 			if (!new_prog)
4589 				return -ENOMEM;
4590 
4591 			delta    += cnt - 1;
4592 			env->prog = prog = new_prog;
4593 			insn      = new_prog->insnsi + i + delta;
4594 		}
4595 patch_call_imm:
4596 		fn = env->ops->get_func_proto(insn->imm);
4597 		/* all functions that have prototype and verifier allowed
4598 		 * programs to call them, must be real in-kernel functions
4599 		 */
4600 		if (!fn->func) {
4601 			verbose(env,
4602 				"kernel subsystem misconfigured func %s#%d\n",
4603 				func_id_name(insn->imm), insn->imm);
4604 			return -EFAULT;
4605 		}
4606 		insn->imm = fn->func - __bpf_call_base;
4607 	}
4608 
4609 	return 0;
4610 }
4611 
4612 static void free_states(struct bpf_verifier_env *env)
4613 {
4614 	struct bpf_verifier_state_list *sl, *sln;
4615 	int i;
4616 
4617 	if (!env->explored_states)
4618 		return;
4619 
4620 	for (i = 0; i < env->prog->len; i++) {
4621 		sl = env->explored_states[i];
4622 
4623 		if (sl)
4624 			while (sl != STATE_LIST_MARK) {
4625 				sln = sl->next;
4626 				free_verifier_state(&sl->state, false);
4627 				kfree(sl);
4628 				sl = sln;
4629 			}
4630 	}
4631 
4632 	kfree(env->explored_states);
4633 }
4634 
4635 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4636 {
4637 	struct bpf_verifier_env *env;
4638 	struct bpf_verifer_log *log;
4639 	int ret = -EINVAL;
4640 
4641 	/* no program is valid */
4642 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4643 		return -EINVAL;
4644 
4645 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4646 	 * allocate/free it every time bpf_check() is called
4647 	 */
4648 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4649 	if (!env)
4650 		return -ENOMEM;
4651 	log = &env->log;
4652 
4653 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4654 				     (*prog)->len);
4655 	ret = -ENOMEM;
4656 	if (!env->insn_aux_data)
4657 		goto err_free_env;
4658 	env->prog = *prog;
4659 	env->ops = bpf_verifier_ops[env->prog->type];
4660 
4661 	/* grab the mutex to protect few globals used by verifier */
4662 	mutex_lock(&bpf_verifier_lock);
4663 
4664 	if (attr->log_level || attr->log_buf || attr->log_size) {
4665 		/* user requested verbose verifier output
4666 		 * and supplied buffer to store the verification trace
4667 		 */
4668 		log->level = attr->log_level;
4669 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4670 		log->len_total = attr->log_size;
4671 
4672 		ret = -EINVAL;
4673 		/* log attributes have to be sane */
4674 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4675 		    !log->level || !log->ubuf)
4676 			goto err_unlock;
4677 	}
4678 
4679 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4680 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4681 		env->strict_alignment = true;
4682 
4683 	if (env->prog->aux->offload) {
4684 		ret = bpf_prog_offload_verifier_prep(env);
4685 		if (ret)
4686 			goto err_unlock;
4687 	}
4688 
4689 	ret = replace_map_fd_with_map_ptr(env);
4690 	if (ret < 0)
4691 		goto skip_full_check;
4692 
4693 	env->explored_states = kcalloc(env->prog->len,
4694 				       sizeof(struct bpf_verifier_state_list *),
4695 				       GFP_USER);
4696 	ret = -ENOMEM;
4697 	if (!env->explored_states)
4698 		goto skip_full_check;
4699 
4700 	ret = check_cfg(env);
4701 	if (ret < 0)
4702 		goto skip_full_check;
4703 
4704 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4705 
4706 	ret = do_check(env);
4707 	if (env->cur_state) {
4708 		free_verifier_state(env->cur_state, true);
4709 		env->cur_state = NULL;
4710 	}
4711 
4712 skip_full_check:
4713 	while (!pop_stack(env, NULL, NULL));
4714 	free_states(env);
4715 
4716 	if (ret == 0)
4717 		sanitize_dead_code(env);
4718 
4719 	if (ret == 0)
4720 		/* program is valid, convert *(u32*)(ctx + off) accesses */
4721 		ret = convert_ctx_accesses(env);
4722 
4723 	if (ret == 0)
4724 		ret = fixup_bpf_calls(env);
4725 
4726 	if (log->level && bpf_verifier_log_full(log))
4727 		ret = -ENOSPC;
4728 	if (log->level && !log->ubuf) {
4729 		ret = -EFAULT;
4730 		goto err_release_maps;
4731 	}
4732 
4733 	if (ret == 0 && env->used_map_cnt) {
4734 		/* if program passed verifier, update used_maps in bpf_prog_info */
4735 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4736 							  sizeof(env->used_maps[0]),
4737 							  GFP_KERNEL);
4738 
4739 		if (!env->prog->aux->used_maps) {
4740 			ret = -ENOMEM;
4741 			goto err_release_maps;
4742 		}
4743 
4744 		memcpy(env->prog->aux->used_maps, env->used_maps,
4745 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4746 		env->prog->aux->used_map_cnt = env->used_map_cnt;
4747 
4748 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
4749 		 * bpf_ld_imm64 instructions
4750 		 */
4751 		convert_pseudo_ld_imm64(env);
4752 	}
4753 
4754 err_release_maps:
4755 	if (!env->prog->aux->used_maps)
4756 		/* if we didn't copy map pointers into bpf_prog_info, release
4757 		 * them now. Otherwise free_bpf_prog_info() will release them.
4758 		 */
4759 		release_maps(env);
4760 	*prog = env->prog;
4761 err_unlock:
4762 	mutex_unlock(&bpf_verifier_lock);
4763 	vfree(env->insn_aux_data);
4764 err_free_env:
4765 	kfree(env);
4766 	return ret;
4767 }
4768