1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 #include <linux/perf_event.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 84 * types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 */ 144 145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 146 struct bpf_verifier_stack_elem { 147 /* verifer state is 'st' 148 * before processing instruction 'insn_idx' 149 * and after processing instruction 'prev_insn_idx' 150 */ 151 struct bpf_verifier_state st; 152 int insn_idx; 153 int prev_insn_idx; 154 struct bpf_verifier_stack_elem *next; 155 }; 156 157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 158 #define BPF_COMPLEXITY_LIMIT_STACK 1024 159 160 #define BPF_MAP_PTR_UNPRIV 1UL 161 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 162 POISON_POINTER_DELTA)) 163 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 164 165 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 166 { 167 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 168 } 169 170 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 171 { 172 return aux->map_state & BPF_MAP_PTR_UNPRIV; 173 } 174 175 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 176 const struct bpf_map *map, bool unpriv) 177 { 178 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 179 unpriv |= bpf_map_ptr_unpriv(aux); 180 aux->map_state = (unsigned long)map | 181 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 182 } 183 184 struct bpf_call_arg_meta { 185 struct bpf_map *map_ptr; 186 bool raw_mode; 187 bool pkt_access; 188 int regno; 189 int access_size; 190 s64 msize_smax_value; 191 u64 msize_umax_value; 192 }; 193 194 static DEFINE_MUTEX(bpf_verifier_lock); 195 196 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 197 va_list args) 198 { 199 unsigned int n; 200 201 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 202 203 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 204 "verifier log line truncated - local buffer too short\n"); 205 206 n = min(log->len_total - log->len_used - 1, n); 207 log->kbuf[n] = '\0'; 208 209 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 210 log->len_used += n; 211 else 212 log->ubuf = NULL; 213 } 214 215 /* log_level controls verbosity level of eBPF verifier. 216 * bpf_verifier_log_write() is used to dump the verification trace to the log, 217 * so the user can figure out what's wrong with the program 218 */ 219 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 220 const char *fmt, ...) 221 { 222 va_list args; 223 224 if (!bpf_verifier_log_needed(&env->log)) 225 return; 226 227 va_start(args, fmt); 228 bpf_verifier_vlog(&env->log, fmt, args); 229 va_end(args); 230 } 231 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 232 233 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 234 { 235 struct bpf_verifier_env *env = private_data; 236 va_list args; 237 238 if (!bpf_verifier_log_needed(&env->log)) 239 return; 240 241 va_start(args, fmt); 242 bpf_verifier_vlog(&env->log, fmt, args); 243 va_end(args); 244 } 245 246 static bool type_is_pkt_pointer(enum bpf_reg_type type) 247 { 248 return type == PTR_TO_PACKET || 249 type == PTR_TO_PACKET_META; 250 } 251 252 /* string representation of 'enum bpf_reg_type' */ 253 static const char * const reg_type_str[] = { 254 [NOT_INIT] = "?", 255 [SCALAR_VALUE] = "inv", 256 [PTR_TO_CTX] = "ctx", 257 [CONST_PTR_TO_MAP] = "map_ptr", 258 [PTR_TO_MAP_VALUE] = "map_value", 259 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 260 [PTR_TO_STACK] = "fp", 261 [PTR_TO_PACKET] = "pkt", 262 [PTR_TO_PACKET_META] = "pkt_meta", 263 [PTR_TO_PACKET_END] = "pkt_end", 264 }; 265 266 static void print_liveness(struct bpf_verifier_env *env, 267 enum bpf_reg_liveness live) 268 { 269 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 270 verbose(env, "_"); 271 if (live & REG_LIVE_READ) 272 verbose(env, "r"); 273 if (live & REG_LIVE_WRITTEN) 274 verbose(env, "w"); 275 } 276 277 static struct bpf_func_state *func(struct bpf_verifier_env *env, 278 const struct bpf_reg_state *reg) 279 { 280 struct bpf_verifier_state *cur = env->cur_state; 281 282 return cur->frame[reg->frameno]; 283 } 284 285 static void print_verifier_state(struct bpf_verifier_env *env, 286 const struct bpf_func_state *state) 287 { 288 const struct bpf_reg_state *reg; 289 enum bpf_reg_type t; 290 int i; 291 292 if (state->frameno) 293 verbose(env, " frame%d:", state->frameno); 294 for (i = 0; i < MAX_BPF_REG; i++) { 295 reg = &state->regs[i]; 296 t = reg->type; 297 if (t == NOT_INIT) 298 continue; 299 verbose(env, " R%d", i); 300 print_liveness(env, reg->live); 301 verbose(env, "=%s", reg_type_str[t]); 302 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 303 tnum_is_const(reg->var_off)) { 304 /* reg->off should be 0 for SCALAR_VALUE */ 305 verbose(env, "%lld", reg->var_off.value + reg->off); 306 if (t == PTR_TO_STACK) 307 verbose(env, ",call_%d", func(env, reg)->callsite); 308 } else { 309 verbose(env, "(id=%d", reg->id); 310 if (t != SCALAR_VALUE) 311 verbose(env, ",off=%d", reg->off); 312 if (type_is_pkt_pointer(t)) 313 verbose(env, ",r=%d", reg->range); 314 else if (t == CONST_PTR_TO_MAP || 315 t == PTR_TO_MAP_VALUE || 316 t == PTR_TO_MAP_VALUE_OR_NULL) 317 verbose(env, ",ks=%d,vs=%d", 318 reg->map_ptr->key_size, 319 reg->map_ptr->value_size); 320 if (tnum_is_const(reg->var_off)) { 321 /* Typically an immediate SCALAR_VALUE, but 322 * could be a pointer whose offset is too big 323 * for reg->off 324 */ 325 verbose(env, ",imm=%llx", reg->var_off.value); 326 } else { 327 if (reg->smin_value != reg->umin_value && 328 reg->smin_value != S64_MIN) 329 verbose(env, ",smin_value=%lld", 330 (long long)reg->smin_value); 331 if (reg->smax_value != reg->umax_value && 332 reg->smax_value != S64_MAX) 333 verbose(env, ",smax_value=%lld", 334 (long long)reg->smax_value); 335 if (reg->umin_value != 0) 336 verbose(env, ",umin_value=%llu", 337 (unsigned long long)reg->umin_value); 338 if (reg->umax_value != U64_MAX) 339 verbose(env, ",umax_value=%llu", 340 (unsigned long long)reg->umax_value); 341 if (!tnum_is_unknown(reg->var_off)) { 342 char tn_buf[48]; 343 344 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 345 verbose(env, ",var_off=%s", tn_buf); 346 } 347 } 348 verbose(env, ")"); 349 } 350 } 351 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 352 if (state->stack[i].slot_type[0] == STACK_SPILL) { 353 verbose(env, " fp%d", 354 (-i - 1) * BPF_REG_SIZE); 355 print_liveness(env, state->stack[i].spilled_ptr.live); 356 verbose(env, "=%s", 357 reg_type_str[state->stack[i].spilled_ptr.type]); 358 } 359 if (state->stack[i].slot_type[0] == STACK_ZERO) 360 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE); 361 } 362 verbose(env, "\n"); 363 } 364 365 static int copy_stack_state(struct bpf_func_state *dst, 366 const struct bpf_func_state *src) 367 { 368 if (!src->stack) 369 return 0; 370 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 371 /* internal bug, make state invalid to reject the program */ 372 memset(dst, 0, sizeof(*dst)); 373 return -EFAULT; 374 } 375 memcpy(dst->stack, src->stack, 376 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 377 return 0; 378 } 379 380 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 381 * make it consume minimal amount of memory. check_stack_write() access from 382 * the program calls into realloc_func_state() to grow the stack size. 383 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 384 * which this function copies over. It points to previous bpf_verifier_state 385 * which is never reallocated 386 */ 387 static int realloc_func_state(struct bpf_func_state *state, int size, 388 bool copy_old) 389 { 390 u32 old_size = state->allocated_stack; 391 struct bpf_stack_state *new_stack; 392 int slot = size / BPF_REG_SIZE; 393 394 if (size <= old_size || !size) { 395 if (copy_old) 396 return 0; 397 state->allocated_stack = slot * BPF_REG_SIZE; 398 if (!size && old_size) { 399 kfree(state->stack); 400 state->stack = NULL; 401 } 402 return 0; 403 } 404 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 405 GFP_KERNEL); 406 if (!new_stack) 407 return -ENOMEM; 408 if (copy_old) { 409 if (state->stack) 410 memcpy(new_stack, state->stack, 411 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 412 memset(new_stack + old_size / BPF_REG_SIZE, 0, 413 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 414 } 415 state->allocated_stack = slot * BPF_REG_SIZE; 416 kfree(state->stack); 417 state->stack = new_stack; 418 return 0; 419 } 420 421 static void free_func_state(struct bpf_func_state *state) 422 { 423 if (!state) 424 return; 425 kfree(state->stack); 426 kfree(state); 427 } 428 429 static void free_verifier_state(struct bpf_verifier_state *state, 430 bool free_self) 431 { 432 int i; 433 434 for (i = 0; i <= state->curframe; i++) { 435 free_func_state(state->frame[i]); 436 state->frame[i] = NULL; 437 } 438 if (free_self) 439 kfree(state); 440 } 441 442 /* copy verifier state from src to dst growing dst stack space 443 * when necessary to accommodate larger src stack 444 */ 445 static int copy_func_state(struct bpf_func_state *dst, 446 const struct bpf_func_state *src) 447 { 448 int err; 449 450 err = realloc_func_state(dst, src->allocated_stack, false); 451 if (err) 452 return err; 453 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 454 return copy_stack_state(dst, src); 455 } 456 457 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 458 const struct bpf_verifier_state *src) 459 { 460 struct bpf_func_state *dst; 461 int i, err; 462 463 /* if dst has more stack frames then src frame, free them */ 464 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 465 free_func_state(dst_state->frame[i]); 466 dst_state->frame[i] = NULL; 467 } 468 dst_state->curframe = src->curframe; 469 dst_state->parent = src->parent; 470 for (i = 0; i <= src->curframe; i++) { 471 dst = dst_state->frame[i]; 472 if (!dst) { 473 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 474 if (!dst) 475 return -ENOMEM; 476 dst_state->frame[i] = dst; 477 } 478 err = copy_func_state(dst, src->frame[i]); 479 if (err) 480 return err; 481 } 482 return 0; 483 } 484 485 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 486 int *insn_idx) 487 { 488 struct bpf_verifier_state *cur = env->cur_state; 489 struct bpf_verifier_stack_elem *elem, *head = env->head; 490 int err; 491 492 if (env->head == NULL) 493 return -ENOENT; 494 495 if (cur) { 496 err = copy_verifier_state(cur, &head->st); 497 if (err) 498 return err; 499 } 500 if (insn_idx) 501 *insn_idx = head->insn_idx; 502 if (prev_insn_idx) 503 *prev_insn_idx = head->prev_insn_idx; 504 elem = head->next; 505 free_verifier_state(&head->st, false); 506 kfree(head); 507 env->head = elem; 508 env->stack_size--; 509 return 0; 510 } 511 512 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 513 int insn_idx, int prev_insn_idx) 514 { 515 struct bpf_verifier_state *cur = env->cur_state; 516 struct bpf_verifier_stack_elem *elem; 517 int err; 518 519 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 520 if (!elem) 521 goto err; 522 523 elem->insn_idx = insn_idx; 524 elem->prev_insn_idx = prev_insn_idx; 525 elem->next = env->head; 526 env->head = elem; 527 env->stack_size++; 528 err = copy_verifier_state(&elem->st, cur); 529 if (err) 530 goto err; 531 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 532 verbose(env, "BPF program is too complex\n"); 533 goto err; 534 } 535 return &elem->st; 536 err: 537 free_verifier_state(env->cur_state, true); 538 env->cur_state = NULL; 539 /* pop all elements and return */ 540 while (!pop_stack(env, NULL, NULL)); 541 return NULL; 542 } 543 544 #define CALLER_SAVED_REGS 6 545 static const int caller_saved[CALLER_SAVED_REGS] = { 546 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 547 }; 548 549 static void __mark_reg_not_init(struct bpf_reg_state *reg); 550 551 /* Mark the unknown part of a register (variable offset or scalar value) as 552 * known to have the value @imm. 553 */ 554 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 555 { 556 reg->id = 0; 557 reg->var_off = tnum_const(imm); 558 reg->smin_value = (s64)imm; 559 reg->smax_value = (s64)imm; 560 reg->umin_value = imm; 561 reg->umax_value = imm; 562 } 563 564 /* Mark the 'variable offset' part of a register as zero. This should be 565 * used only on registers holding a pointer type. 566 */ 567 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 568 { 569 __mark_reg_known(reg, 0); 570 } 571 572 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 573 { 574 __mark_reg_known(reg, 0); 575 reg->off = 0; 576 reg->type = SCALAR_VALUE; 577 } 578 579 static void mark_reg_known_zero(struct bpf_verifier_env *env, 580 struct bpf_reg_state *regs, u32 regno) 581 { 582 if (WARN_ON(regno >= MAX_BPF_REG)) { 583 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 584 /* Something bad happened, let's kill all regs */ 585 for (regno = 0; regno < MAX_BPF_REG; regno++) 586 __mark_reg_not_init(regs + regno); 587 return; 588 } 589 __mark_reg_known_zero(regs + regno); 590 } 591 592 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 593 { 594 return type_is_pkt_pointer(reg->type); 595 } 596 597 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 598 { 599 return reg_is_pkt_pointer(reg) || 600 reg->type == PTR_TO_PACKET_END; 601 } 602 603 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 604 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 605 enum bpf_reg_type which) 606 { 607 /* The register can already have a range from prior markings. 608 * This is fine as long as it hasn't been advanced from its 609 * origin. 610 */ 611 return reg->type == which && 612 reg->id == 0 && 613 reg->off == 0 && 614 tnum_equals_const(reg->var_off, 0); 615 } 616 617 /* Attempts to improve min/max values based on var_off information */ 618 static void __update_reg_bounds(struct bpf_reg_state *reg) 619 { 620 /* min signed is max(sign bit) | min(other bits) */ 621 reg->smin_value = max_t(s64, reg->smin_value, 622 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 623 /* max signed is min(sign bit) | max(other bits) */ 624 reg->smax_value = min_t(s64, reg->smax_value, 625 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 626 reg->umin_value = max(reg->umin_value, reg->var_off.value); 627 reg->umax_value = min(reg->umax_value, 628 reg->var_off.value | reg->var_off.mask); 629 } 630 631 /* Uses signed min/max values to inform unsigned, and vice-versa */ 632 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 633 { 634 /* Learn sign from signed bounds. 635 * If we cannot cross the sign boundary, then signed and unsigned bounds 636 * are the same, so combine. This works even in the negative case, e.g. 637 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 638 */ 639 if (reg->smin_value >= 0 || reg->smax_value < 0) { 640 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 641 reg->umin_value); 642 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 643 reg->umax_value); 644 return; 645 } 646 /* Learn sign from unsigned bounds. Signed bounds cross the sign 647 * boundary, so we must be careful. 648 */ 649 if ((s64)reg->umax_value >= 0) { 650 /* Positive. We can't learn anything from the smin, but smax 651 * is positive, hence safe. 652 */ 653 reg->smin_value = reg->umin_value; 654 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 655 reg->umax_value); 656 } else if ((s64)reg->umin_value < 0) { 657 /* Negative. We can't learn anything from the smax, but smin 658 * is negative, hence safe. 659 */ 660 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 661 reg->umin_value); 662 reg->smax_value = reg->umax_value; 663 } 664 } 665 666 /* Attempts to improve var_off based on unsigned min/max information */ 667 static void __reg_bound_offset(struct bpf_reg_state *reg) 668 { 669 reg->var_off = tnum_intersect(reg->var_off, 670 tnum_range(reg->umin_value, 671 reg->umax_value)); 672 } 673 674 /* Reset the min/max bounds of a register */ 675 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 676 { 677 reg->smin_value = S64_MIN; 678 reg->smax_value = S64_MAX; 679 reg->umin_value = 0; 680 reg->umax_value = U64_MAX; 681 } 682 683 /* Mark a register as having a completely unknown (scalar) value. */ 684 static void __mark_reg_unknown(struct bpf_reg_state *reg) 685 { 686 reg->type = SCALAR_VALUE; 687 reg->id = 0; 688 reg->off = 0; 689 reg->var_off = tnum_unknown; 690 reg->frameno = 0; 691 __mark_reg_unbounded(reg); 692 } 693 694 static void mark_reg_unknown(struct bpf_verifier_env *env, 695 struct bpf_reg_state *regs, u32 regno) 696 { 697 if (WARN_ON(regno >= MAX_BPF_REG)) { 698 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 699 /* Something bad happened, let's kill all regs except FP */ 700 for (regno = 0; regno < BPF_REG_FP; regno++) 701 __mark_reg_not_init(regs + regno); 702 return; 703 } 704 __mark_reg_unknown(regs + regno); 705 } 706 707 static void __mark_reg_not_init(struct bpf_reg_state *reg) 708 { 709 __mark_reg_unknown(reg); 710 reg->type = NOT_INIT; 711 } 712 713 static void mark_reg_not_init(struct bpf_verifier_env *env, 714 struct bpf_reg_state *regs, u32 regno) 715 { 716 if (WARN_ON(regno >= MAX_BPF_REG)) { 717 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 718 /* Something bad happened, let's kill all regs except FP */ 719 for (regno = 0; regno < BPF_REG_FP; regno++) 720 __mark_reg_not_init(regs + regno); 721 return; 722 } 723 __mark_reg_not_init(regs + regno); 724 } 725 726 static void init_reg_state(struct bpf_verifier_env *env, 727 struct bpf_func_state *state) 728 { 729 struct bpf_reg_state *regs = state->regs; 730 int i; 731 732 for (i = 0; i < MAX_BPF_REG; i++) { 733 mark_reg_not_init(env, regs, i); 734 regs[i].live = REG_LIVE_NONE; 735 } 736 737 /* frame pointer */ 738 regs[BPF_REG_FP].type = PTR_TO_STACK; 739 mark_reg_known_zero(env, regs, BPF_REG_FP); 740 regs[BPF_REG_FP].frameno = state->frameno; 741 742 /* 1st arg to a function */ 743 regs[BPF_REG_1].type = PTR_TO_CTX; 744 mark_reg_known_zero(env, regs, BPF_REG_1); 745 } 746 747 #define BPF_MAIN_FUNC (-1) 748 static void init_func_state(struct bpf_verifier_env *env, 749 struct bpf_func_state *state, 750 int callsite, int frameno, int subprogno) 751 { 752 state->callsite = callsite; 753 state->frameno = frameno; 754 state->subprogno = subprogno; 755 init_reg_state(env, state); 756 } 757 758 enum reg_arg_type { 759 SRC_OP, /* register is used as source operand */ 760 DST_OP, /* register is used as destination operand */ 761 DST_OP_NO_MARK /* same as above, check only, don't mark */ 762 }; 763 764 static int cmp_subprogs(const void *a, const void *b) 765 { 766 return ((struct bpf_subprog_info *)a)->start - 767 ((struct bpf_subprog_info *)b)->start; 768 } 769 770 static int find_subprog(struct bpf_verifier_env *env, int off) 771 { 772 struct bpf_subprog_info *p; 773 774 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 775 sizeof(env->subprog_info[0]), cmp_subprogs); 776 if (!p) 777 return -ENOENT; 778 return p - env->subprog_info; 779 780 } 781 782 static int add_subprog(struct bpf_verifier_env *env, int off) 783 { 784 int insn_cnt = env->prog->len; 785 int ret; 786 787 if (off >= insn_cnt || off < 0) { 788 verbose(env, "call to invalid destination\n"); 789 return -EINVAL; 790 } 791 ret = find_subprog(env, off); 792 if (ret >= 0) 793 return 0; 794 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 795 verbose(env, "too many subprograms\n"); 796 return -E2BIG; 797 } 798 env->subprog_info[env->subprog_cnt++].start = off; 799 sort(env->subprog_info, env->subprog_cnt, 800 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 801 return 0; 802 } 803 804 static int check_subprogs(struct bpf_verifier_env *env) 805 { 806 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 807 struct bpf_subprog_info *subprog = env->subprog_info; 808 struct bpf_insn *insn = env->prog->insnsi; 809 int insn_cnt = env->prog->len; 810 811 /* Add entry function. */ 812 ret = add_subprog(env, 0); 813 if (ret < 0) 814 return ret; 815 816 /* determine subprog starts. The end is one before the next starts */ 817 for (i = 0; i < insn_cnt; i++) { 818 if (insn[i].code != (BPF_JMP | BPF_CALL)) 819 continue; 820 if (insn[i].src_reg != BPF_PSEUDO_CALL) 821 continue; 822 if (!env->allow_ptr_leaks) { 823 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 824 return -EPERM; 825 } 826 if (bpf_prog_is_dev_bound(env->prog->aux)) { 827 verbose(env, "function calls in offloaded programs are not supported yet\n"); 828 return -EINVAL; 829 } 830 ret = add_subprog(env, i + insn[i].imm + 1); 831 if (ret < 0) 832 return ret; 833 } 834 835 /* Add a fake 'exit' subprog which could simplify subprog iteration 836 * logic. 'subprog_cnt' should not be increased. 837 */ 838 subprog[env->subprog_cnt].start = insn_cnt; 839 840 if (env->log.level > 1) 841 for (i = 0; i < env->subprog_cnt; i++) 842 verbose(env, "func#%d @%d\n", i, subprog[i].start); 843 844 /* now check that all jumps are within the same subprog */ 845 subprog_start = subprog[cur_subprog].start; 846 subprog_end = subprog[cur_subprog + 1].start; 847 for (i = 0; i < insn_cnt; i++) { 848 u8 code = insn[i].code; 849 850 if (BPF_CLASS(code) != BPF_JMP) 851 goto next; 852 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 853 goto next; 854 off = i + insn[i].off + 1; 855 if (off < subprog_start || off >= subprog_end) { 856 verbose(env, "jump out of range from insn %d to %d\n", i, off); 857 return -EINVAL; 858 } 859 next: 860 if (i == subprog_end - 1) { 861 /* to avoid fall-through from one subprog into another 862 * the last insn of the subprog should be either exit 863 * or unconditional jump back 864 */ 865 if (code != (BPF_JMP | BPF_EXIT) && 866 code != (BPF_JMP | BPF_JA)) { 867 verbose(env, "last insn is not an exit or jmp\n"); 868 return -EINVAL; 869 } 870 subprog_start = subprog_end; 871 cur_subprog++; 872 if (cur_subprog < env->subprog_cnt) 873 subprog_end = subprog[cur_subprog + 1].start; 874 } 875 } 876 return 0; 877 } 878 879 static 880 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, 881 const struct bpf_verifier_state *state, 882 struct bpf_verifier_state *parent, 883 u32 regno) 884 { 885 struct bpf_verifier_state *tmp = NULL; 886 887 /* 'parent' could be a state of caller and 888 * 'state' could be a state of callee. In such case 889 * parent->curframe < state->curframe 890 * and it's ok for r1 - r5 registers 891 * 892 * 'parent' could be a callee's state after it bpf_exit-ed. 893 * In such case parent->curframe > state->curframe 894 * and it's ok for r0 only 895 */ 896 if (parent->curframe == state->curframe || 897 (parent->curframe < state->curframe && 898 regno >= BPF_REG_1 && regno <= BPF_REG_5) || 899 (parent->curframe > state->curframe && 900 regno == BPF_REG_0)) 901 return parent; 902 903 if (parent->curframe > state->curframe && 904 regno >= BPF_REG_6) { 905 /* for callee saved regs we have to skip the whole chain 906 * of states that belong to callee and mark as LIVE_READ 907 * the registers before the call 908 */ 909 tmp = parent; 910 while (tmp && tmp->curframe != state->curframe) { 911 tmp = tmp->parent; 912 } 913 if (!tmp) 914 goto bug; 915 parent = tmp; 916 } else { 917 goto bug; 918 } 919 return parent; 920 bug: 921 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); 922 verbose(env, "regno %d parent frame %d current frame %d\n", 923 regno, parent->curframe, state->curframe); 924 return NULL; 925 } 926 927 static int mark_reg_read(struct bpf_verifier_env *env, 928 const struct bpf_verifier_state *state, 929 struct bpf_verifier_state *parent, 930 u32 regno) 931 { 932 bool writes = parent == state->parent; /* Observe write marks */ 933 934 if (regno == BPF_REG_FP) 935 /* We don't need to worry about FP liveness because it's read-only */ 936 return 0; 937 938 while (parent) { 939 /* if read wasn't screened by an earlier write ... */ 940 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) 941 break; 942 parent = skip_callee(env, state, parent, regno); 943 if (!parent) 944 return -EFAULT; 945 /* ... then we depend on parent's value */ 946 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; 947 state = parent; 948 parent = state->parent; 949 writes = true; 950 } 951 return 0; 952 } 953 954 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 955 enum reg_arg_type t) 956 { 957 struct bpf_verifier_state *vstate = env->cur_state; 958 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 959 struct bpf_reg_state *regs = state->regs; 960 961 if (regno >= MAX_BPF_REG) { 962 verbose(env, "R%d is invalid\n", regno); 963 return -EINVAL; 964 } 965 966 if (t == SRC_OP) { 967 /* check whether register used as source operand can be read */ 968 if (regs[regno].type == NOT_INIT) { 969 verbose(env, "R%d !read_ok\n", regno); 970 return -EACCES; 971 } 972 return mark_reg_read(env, vstate, vstate->parent, regno); 973 } else { 974 /* check whether register used as dest operand can be written to */ 975 if (regno == BPF_REG_FP) { 976 verbose(env, "frame pointer is read only\n"); 977 return -EACCES; 978 } 979 regs[regno].live |= REG_LIVE_WRITTEN; 980 if (t == DST_OP) 981 mark_reg_unknown(env, regs, regno); 982 } 983 return 0; 984 } 985 986 static bool is_spillable_regtype(enum bpf_reg_type type) 987 { 988 switch (type) { 989 case PTR_TO_MAP_VALUE: 990 case PTR_TO_MAP_VALUE_OR_NULL: 991 case PTR_TO_STACK: 992 case PTR_TO_CTX: 993 case PTR_TO_PACKET: 994 case PTR_TO_PACKET_META: 995 case PTR_TO_PACKET_END: 996 case CONST_PTR_TO_MAP: 997 return true; 998 default: 999 return false; 1000 } 1001 } 1002 1003 /* Does this register contain a constant zero? */ 1004 static bool register_is_null(struct bpf_reg_state *reg) 1005 { 1006 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1007 } 1008 1009 /* check_stack_read/write functions track spill/fill of registers, 1010 * stack boundary and alignment are checked in check_mem_access() 1011 */ 1012 static int check_stack_write(struct bpf_verifier_env *env, 1013 struct bpf_func_state *state, /* func where register points to */ 1014 int off, int size, int value_regno, int insn_idx) 1015 { 1016 struct bpf_func_state *cur; /* state of the current function */ 1017 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1018 enum bpf_reg_type type; 1019 1020 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1021 true); 1022 if (err) 1023 return err; 1024 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1025 * so it's aligned access and [off, off + size) are within stack limits 1026 */ 1027 if (!env->allow_ptr_leaks && 1028 state->stack[spi].slot_type[0] == STACK_SPILL && 1029 size != BPF_REG_SIZE) { 1030 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1031 return -EACCES; 1032 } 1033 1034 cur = env->cur_state->frame[env->cur_state->curframe]; 1035 if (value_regno >= 0 && 1036 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1037 1038 /* register containing pointer is being spilled into stack */ 1039 if (size != BPF_REG_SIZE) { 1040 verbose(env, "invalid size of register spill\n"); 1041 return -EACCES; 1042 } 1043 1044 if (state != cur && type == PTR_TO_STACK) { 1045 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1046 return -EINVAL; 1047 } 1048 1049 /* save register state */ 1050 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1051 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1052 1053 for (i = 0; i < BPF_REG_SIZE; i++) { 1054 if (state->stack[spi].slot_type[i] == STACK_MISC && 1055 !env->allow_ptr_leaks) { 1056 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1057 int soff = (-spi - 1) * BPF_REG_SIZE; 1058 1059 /* detected reuse of integer stack slot with a pointer 1060 * which means either llvm is reusing stack slot or 1061 * an attacker is trying to exploit CVE-2018-3639 1062 * (speculative store bypass) 1063 * Have to sanitize that slot with preemptive 1064 * store of zero. 1065 */ 1066 if (*poff && *poff != soff) { 1067 /* disallow programs where single insn stores 1068 * into two different stack slots, since verifier 1069 * cannot sanitize them 1070 */ 1071 verbose(env, 1072 "insn %d cannot access two stack slots fp%d and fp%d", 1073 insn_idx, *poff, soff); 1074 return -EINVAL; 1075 } 1076 *poff = soff; 1077 } 1078 state->stack[spi].slot_type[i] = STACK_SPILL; 1079 } 1080 } else { 1081 u8 type = STACK_MISC; 1082 1083 /* regular write of data into stack */ 1084 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 1085 1086 /* only mark the slot as written if all 8 bytes were written 1087 * otherwise read propagation may incorrectly stop too soon 1088 * when stack slots are partially written. 1089 * This heuristic means that read propagation will be 1090 * conservative, since it will add reg_live_read marks 1091 * to stack slots all the way to first state when programs 1092 * writes+reads less than 8 bytes 1093 */ 1094 if (size == BPF_REG_SIZE) 1095 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1096 1097 /* when we zero initialize stack slots mark them as such */ 1098 if (value_regno >= 0 && 1099 register_is_null(&cur->regs[value_regno])) 1100 type = STACK_ZERO; 1101 1102 for (i = 0; i < size; i++) 1103 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1104 type; 1105 } 1106 return 0; 1107 } 1108 1109 /* registers of every function are unique and mark_reg_read() propagates 1110 * the liveness in the following cases: 1111 * - from callee into caller for R1 - R5 that were used as arguments 1112 * - from caller into callee for R0 that used as result of the call 1113 * - from caller to the same caller skipping states of the callee for R6 - R9, 1114 * since R6 - R9 are callee saved by implicit function prologue and 1115 * caller's R6 != callee's R6, so when we propagate liveness up to 1116 * parent states we need to skip callee states for R6 - R9. 1117 * 1118 * stack slot marking is different, since stacks of caller and callee are 1119 * accessible in both (since caller can pass a pointer to caller's stack to 1120 * callee which can pass it to another function), hence mark_stack_slot_read() 1121 * has to propagate the stack liveness to all parent states at given frame number. 1122 * Consider code: 1123 * f1() { 1124 * ptr = fp - 8; 1125 * *ptr = ctx; 1126 * call f2 { 1127 * .. = *ptr; 1128 * } 1129 * .. = *ptr; 1130 * } 1131 * First *ptr is reading from f1's stack and mark_stack_slot_read() has 1132 * to mark liveness at the f1's frame and not f2's frame. 1133 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has 1134 * to propagate liveness to f2 states at f1's frame level and further into 1135 * f1 states at f1's frame level until write into that stack slot 1136 */ 1137 static void mark_stack_slot_read(struct bpf_verifier_env *env, 1138 const struct bpf_verifier_state *state, 1139 struct bpf_verifier_state *parent, 1140 int slot, int frameno) 1141 { 1142 bool writes = parent == state->parent; /* Observe write marks */ 1143 1144 while (parent) { 1145 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) 1146 /* since LIVE_WRITTEN mark is only done for full 8-byte 1147 * write the read marks are conservative and parent 1148 * state may not even have the stack allocated. In such case 1149 * end the propagation, since the loop reached beginning 1150 * of the function 1151 */ 1152 break; 1153 /* if read wasn't screened by an earlier write ... */ 1154 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 1155 break; 1156 /* ... then we depend on parent's value */ 1157 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 1158 state = parent; 1159 parent = state->parent; 1160 writes = true; 1161 } 1162 } 1163 1164 static int check_stack_read(struct bpf_verifier_env *env, 1165 struct bpf_func_state *reg_state /* func where register points to */, 1166 int off, int size, int value_regno) 1167 { 1168 struct bpf_verifier_state *vstate = env->cur_state; 1169 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1170 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1171 u8 *stype; 1172 1173 if (reg_state->allocated_stack <= slot) { 1174 verbose(env, "invalid read from stack off %d+0 size %d\n", 1175 off, size); 1176 return -EACCES; 1177 } 1178 stype = reg_state->stack[spi].slot_type; 1179 1180 if (stype[0] == STACK_SPILL) { 1181 if (size != BPF_REG_SIZE) { 1182 verbose(env, "invalid size of register spill\n"); 1183 return -EACCES; 1184 } 1185 for (i = 1; i < BPF_REG_SIZE; i++) { 1186 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1187 verbose(env, "corrupted spill memory\n"); 1188 return -EACCES; 1189 } 1190 } 1191 1192 if (value_regno >= 0) { 1193 /* restore register state from stack */ 1194 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1195 /* mark reg as written since spilled pointer state likely 1196 * has its liveness marks cleared by is_state_visited() 1197 * which resets stack/reg liveness for state transitions 1198 */ 1199 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1200 } 1201 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1202 reg_state->frameno); 1203 return 0; 1204 } else { 1205 int zeros = 0; 1206 1207 for (i = 0; i < size; i++) { 1208 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1209 continue; 1210 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1211 zeros++; 1212 continue; 1213 } 1214 verbose(env, "invalid read from stack off %d+%d size %d\n", 1215 off, i, size); 1216 return -EACCES; 1217 } 1218 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1219 reg_state->frameno); 1220 if (value_regno >= 0) { 1221 if (zeros == size) { 1222 /* any size read into register is zero extended, 1223 * so the whole register == const_zero 1224 */ 1225 __mark_reg_const_zero(&state->regs[value_regno]); 1226 } else { 1227 /* have read misc data from the stack */ 1228 mark_reg_unknown(env, state->regs, value_regno); 1229 } 1230 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1231 } 1232 return 0; 1233 } 1234 } 1235 1236 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1237 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1238 int size, bool zero_size_allowed) 1239 { 1240 struct bpf_reg_state *regs = cur_regs(env); 1241 struct bpf_map *map = regs[regno].map_ptr; 1242 1243 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1244 off + size > map->value_size) { 1245 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1246 map->value_size, off, size); 1247 return -EACCES; 1248 } 1249 return 0; 1250 } 1251 1252 /* check read/write into a map element with possible variable offset */ 1253 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1254 int off, int size, bool zero_size_allowed) 1255 { 1256 struct bpf_verifier_state *vstate = env->cur_state; 1257 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1258 struct bpf_reg_state *reg = &state->regs[regno]; 1259 int err; 1260 1261 /* We may have adjusted the register to this map value, so we 1262 * need to try adding each of min_value and max_value to off 1263 * to make sure our theoretical access will be safe. 1264 */ 1265 if (env->log.level) 1266 print_verifier_state(env, state); 1267 /* The minimum value is only important with signed 1268 * comparisons where we can't assume the floor of a 1269 * value is 0. If we are using signed variables for our 1270 * index'es we need to make sure that whatever we use 1271 * will have a set floor within our range. 1272 */ 1273 if (reg->smin_value < 0) { 1274 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1275 regno); 1276 return -EACCES; 1277 } 1278 err = __check_map_access(env, regno, reg->smin_value + off, size, 1279 zero_size_allowed); 1280 if (err) { 1281 verbose(env, "R%d min value is outside of the array range\n", 1282 regno); 1283 return err; 1284 } 1285 1286 /* If we haven't set a max value then we need to bail since we can't be 1287 * sure we won't do bad things. 1288 * If reg->umax_value + off could overflow, treat that as unbounded too. 1289 */ 1290 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1291 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1292 regno); 1293 return -EACCES; 1294 } 1295 err = __check_map_access(env, regno, reg->umax_value + off, size, 1296 zero_size_allowed); 1297 if (err) 1298 verbose(env, "R%d max value is outside of the array range\n", 1299 regno); 1300 return err; 1301 } 1302 1303 #define MAX_PACKET_OFF 0xffff 1304 1305 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1306 const struct bpf_call_arg_meta *meta, 1307 enum bpf_access_type t) 1308 { 1309 switch (env->prog->type) { 1310 case BPF_PROG_TYPE_LWT_IN: 1311 case BPF_PROG_TYPE_LWT_OUT: 1312 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1313 case BPF_PROG_TYPE_SK_REUSEPORT: 1314 /* dst_input() and dst_output() can't write for now */ 1315 if (t == BPF_WRITE) 1316 return false; 1317 /* fallthrough */ 1318 case BPF_PROG_TYPE_SCHED_CLS: 1319 case BPF_PROG_TYPE_SCHED_ACT: 1320 case BPF_PROG_TYPE_XDP: 1321 case BPF_PROG_TYPE_LWT_XMIT: 1322 case BPF_PROG_TYPE_SK_SKB: 1323 case BPF_PROG_TYPE_SK_MSG: 1324 if (meta) 1325 return meta->pkt_access; 1326 1327 env->seen_direct_write = true; 1328 return true; 1329 default: 1330 return false; 1331 } 1332 } 1333 1334 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1335 int off, int size, bool zero_size_allowed) 1336 { 1337 struct bpf_reg_state *regs = cur_regs(env); 1338 struct bpf_reg_state *reg = ®s[regno]; 1339 1340 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1341 (u64)off + size > reg->range) { 1342 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1343 off, size, regno, reg->id, reg->off, reg->range); 1344 return -EACCES; 1345 } 1346 return 0; 1347 } 1348 1349 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1350 int size, bool zero_size_allowed) 1351 { 1352 struct bpf_reg_state *regs = cur_regs(env); 1353 struct bpf_reg_state *reg = ®s[regno]; 1354 int err; 1355 1356 /* We may have added a variable offset to the packet pointer; but any 1357 * reg->range we have comes after that. We are only checking the fixed 1358 * offset. 1359 */ 1360 1361 /* We don't allow negative numbers, because we aren't tracking enough 1362 * detail to prove they're safe. 1363 */ 1364 if (reg->smin_value < 0) { 1365 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1366 regno); 1367 return -EACCES; 1368 } 1369 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1370 if (err) { 1371 verbose(env, "R%d offset is outside of the packet\n", regno); 1372 return err; 1373 } 1374 return err; 1375 } 1376 1377 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1378 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1379 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1380 { 1381 struct bpf_insn_access_aux info = { 1382 .reg_type = *reg_type, 1383 }; 1384 1385 if (env->ops->is_valid_access && 1386 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1387 /* A non zero info.ctx_field_size indicates that this field is a 1388 * candidate for later verifier transformation to load the whole 1389 * field and then apply a mask when accessed with a narrower 1390 * access than actual ctx access size. A zero info.ctx_field_size 1391 * will only allow for whole field access and rejects any other 1392 * type of narrower access. 1393 */ 1394 *reg_type = info.reg_type; 1395 1396 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1397 /* remember the offset of last byte accessed in ctx */ 1398 if (env->prog->aux->max_ctx_offset < off + size) 1399 env->prog->aux->max_ctx_offset = off + size; 1400 return 0; 1401 } 1402 1403 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1404 return -EACCES; 1405 } 1406 1407 static bool __is_pointer_value(bool allow_ptr_leaks, 1408 const struct bpf_reg_state *reg) 1409 { 1410 if (allow_ptr_leaks) 1411 return false; 1412 1413 return reg->type != SCALAR_VALUE; 1414 } 1415 1416 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1417 { 1418 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1419 } 1420 1421 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1422 { 1423 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1424 1425 return reg->type == PTR_TO_CTX; 1426 } 1427 1428 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1429 { 1430 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1431 1432 return type_is_pkt_pointer(reg->type); 1433 } 1434 1435 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1436 const struct bpf_reg_state *reg, 1437 int off, int size, bool strict) 1438 { 1439 struct tnum reg_off; 1440 int ip_align; 1441 1442 /* Byte size accesses are always allowed. */ 1443 if (!strict || size == 1) 1444 return 0; 1445 1446 /* For platforms that do not have a Kconfig enabling 1447 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1448 * NET_IP_ALIGN is universally set to '2'. And on platforms 1449 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1450 * to this code only in strict mode where we want to emulate 1451 * the NET_IP_ALIGN==2 checking. Therefore use an 1452 * unconditional IP align value of '2'. 1453 */ 1454 ip_align = 2; 1455 1456 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1457 if (!tnum_is_aligned(reg_off, size)) { 1458 char tn_buf[48]; 1459 1460 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1461 verbose(env, 1462 "misaligned packet access off %d+%s+%d+%d size %d\n", 1463 ip_align, tn_buf, reg->off, off, size); 1464 return -EACCES; 1465 } 1466 1467 return 0; 1468 } 1469 1470 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1471 const struct bpf_reg_state *reg, 1472 const char *pointer_desc, 1473 int off, int size, bool strict) 1474 { 1475 struct tnum reg_off; 1476 1477 /* Byte size accesses are always allowed. */ 1478 if (!strict || size == 1) 1479 return 0; 1480 1481 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1482 if (!tnum_is_aligned(reg_off, size)) { 1483 char tn_buf[48]; 1484 1485 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1486 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1487 pointer_desc, tn_buf, reg->off, off, size); 1488 return -EACCES; 1489 } 1490 1491 return 0; 1492 } 1493 1494 static int check_ptr_alignment(struct bpf_verifier_env *env, 1495 const struct bpf_reg_state *reg, int off, 1496 int size, bool strict_alignment_once) 1497 { 1498 bool strict = env->strict_alignment || strict_alignment_once; 1499 const char *pointer_desc = ""; 1500 1501 switch (reg->type) { 1502 case PTR_TO_PACKET: 1503 case PTR_TO_PACKET_META: 1504 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1505 * right in front, treat it the very same way. 1506 */ 1507 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1508 case PTR_TO_MAP_VALUE: 1509 pointer_desc = "value "; 1510 break; 1511 case PTR_TO_CTX: 1512 pointer_desc = "context "; 1513 break; 1514 case PTR_TO_STACK: 1515 pointer_desc = "stack "; 1516 /* The stack spill tracking logic in check_stack_write() 1517 * and check_stack_read() relies on stack accesses being 1518 * aligned. 1519 */ 1520 strict = true; 1521 break; 1522 default: 1523 break; 1524 } 1525 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1526 strict); 1527 } 1528 1529 static int update_stack_depth(struct bpf_verifier_env *env, 1530 const struct bpf_func_state *func, 1531 int off) 1532 { 1533 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1534 1535 if (stack >= -off) 1536 return 0; 1537 1538 /* update known max for given subprogram */ 1539 env->subprog_info[func->subprogno].stack_depth = -off; 1540 return 0; 1541 } 1542 1543 /* starting from main bpf function walk all instructions of the function 1544 * and recursively walk all callees that given function can call. 1545 * Ignore jump and exit insns. 1546 * Since recursion is prevented by check_cfg() this algorithm 1547 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1548 */ 1549 static int check_max_stack_depth(struct bpf_verifier_env *env) 1550 { 1551 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1552 struct bpf_subprog_info *subprog = env->subprog_info; 1553 struct bpf_insn *insn = env->prog->insnsi; 1554 int ret_insn[MAX_CALL_FRAMES]; 1555 int ret_prog[MAX_CALL_FRAMES]; 1556 1557 process_func: 1558 /* round up to 32-bytes, since this is granularity 1559 * of interpreter stack size 1560 */ 1561 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1562 if (depth > MAX_BPF_STACK) { 1563 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1564 frame + 1, depth); 1565 return -EACCES; 1566 } 1567 continue_func: 1568 subprog_end = subprog[idx + 1].start; 1569 for (; i < subprog_end; i++) { 1570 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1571 continue; 1572 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1573 continue; 1574 /* remember insn and function to return to */ 1575 ret_insn[frame] = i + 1; 1576 ret_prog[frame] = idx; 1577 1578 /* find the callee */ 1579 i = i + insn[i].imm + 1; 1580 idx = find_subprog(env, i); 1581 if (idx < 0) { 1582 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1583 i); 1584 return -EFAULT; 1585 } 1586 frame++; 1587 if (frame >= MAX_CALL_FRAMES) { 1588 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1589 return -EFAULT; 1590 } 1591 goto process_func; 1592 } 1593 /* end of for() loop means the last insn of the 'subprog' 1594 * was reached. Doesn't matter whether it was JA or EXIT 1595 */ 1596 if (frame == 0) 1597 return 0; 1598 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1599 frame--; 1600 i = ret_insn[frame]; 1601 idx = ret_prog[frame]; 1602 goto continue_func; 1603 } 1604 1605 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1606 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1607 const struct bpf_insn *insn, int idx) 1608 { 1609 int start = idx + insn->imm + 1, subprog; 1610 1611 subprog = find_subprog(env, start); 1612 if (subprog < 0) { 1613 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1614 start); 1615 return -EFAULT; 1616 } 1617 return env->subprog_info[subprog].stack_depth; 1618 } 1619 #endif 1620 1621 static int check_ctx_reg(struct bpf_verifier_env *env, 1622 const struct bpf_reg_state *reg, int regno) 1623 { 1624 /* Access to ctx or passing it to a helper is only allowed in 1625 * its original, unmodified form. 1626 */ 1627 1628 if (reg->off) { 1629 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1630 regno, reg->off); 1631 return -EACCES; 1632 } 1633 1634 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1635 char tn_buf[48]; 1636 1637 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1638 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1639 return -EACCES; 1640 } 1641 1642 return 0; 1643 } 1644 1645 /* truncate register to smaller size (in bytes) 1646 * must be called with size < BPF_REG_SIZE 1647 */ 1648 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1649 { 1650 u64 mask; 1651 1652 /* clear high bits in bit representation */ 1653 reg->var_off = tnum_cast(reg->var_off, size); 1654 1655 /* fix arithmetic bounds */ 1656 mask = ((u64)1 << (size * 8)) - 1; 1657 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1658 reg->umin_value &= mask; 1659 reg->umax_value &= mask; 1660 } else { 1661 reg->umin_value = 0; 1662 reg->umax_value = mask; 1663 } 1664 reg->smin_value = reg->umin_value; 1665 reg->smax_value = reg->umax_value; 1666 } 1667 1668 /* check whether memory at (regno + off) is accessible for t = (read | write) 1669 * if t==write, value_regno is a register which value is stored into memory 1670 * if t==read, value_regno is a register which will receive the value from memory 1671 * if t==write && value_regno==-1, some unknown value is stored into memory 1672 * if t==read && value_regno==-1, don't care what we read from memory 1673 */ 1674 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1675 int off, int bpf_size, enum bpf_access_type t, 1676 int value_regno, bool strict_alignment_once) 1677 { 1678 struct bpf_reg_state *regs = cur_regs(env); 1679 struct bpf_reg_state *reg = regs + regno; 1680 struct bpf_func_state *state; 1681 int size, err = 0; 1682 1683 size = bpf_size_to_bytes(bpf_size); 1684 if (size < 0) 1685 return size; 1686 1687 /* alignment checks will add in reg->off themselves */ 1688 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1689 if (err) 1690 return err; 1691 1692 /* for access checks, reg->off is just part of off */ 1693 off += reg->off; 1694 1695 if (reg->type == PTR_TO_MAP_VALUE) { 1696 if (t == BPF_WRITE && value_regno >= 0 && 1697 is_pointer_value(env, value_regno)) { 1698 verbose(env, "R%d leaks addr into map\n", value_regno); 1699 return -EACCES; 1700 } 1701 1702 err = check_map_access(env, regno, off, size, false); 1703 if (!err && t == BPF_READ && value_regno >= 0) 1704 mark_reg_unknown(env, regs, value_regno); 1705 1706 } else if (reg->type == PTR_TO_CTX) { 1707 enum bpf_reg_type reg_type = SCALAR_VALUE; 1708 1709 if (t == BPF_WRITE && value_regno >= 0 && 1710 is_pointer_value(env, value_regno)) { 1711 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1712 return -EACCES; 1713 } 1714 1715 err = check_ctx_reg(env, reg, regno); 1716 if (err < 0) 1717 return err; 1718 1719 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1720 if (!err && t == BPF_READ && value_regno >= 0) { 1721 /* ctx access returns either a scalar, or a 1722 * PTR_TO_PACKET[_META,_END]. In the latter 1723 * case, we know the offset is zero. 1724 */ 1725 if (reg_type == SCALAR_VALUE) 1726 mark_reg_unknown(env, regs, value_regno); 1727 else 1728 mark_reg_known_zero(env, regs, 1729 value_regno); 1730 regs[value_regno].id = 0; 1731 regs[value_regno].off = 0; 1732 regs[value_regno].range = 0; 1733 regs[value_regno].type = reg_type; 1734 } 1735 1736 } else if (reg->type == PTR_TO_STACK) { 1737 /* stack accesses must be at a fixed offset, so that we can 1738 * determine what type of data were returned. 1739 * See check_stack_read(). 1740 */ 1741 if (!tnum_is_const(reg->var_off)) { 1742 char tn_buf[48]; 1743 1744 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1745 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1746 tn_buf, off, size); 1747 return -EACCES; 1748 } 1749 off += reg->var_off.value; 1750 if (off >= 0 || off < -MAX_BPF_STACK) { 1751 verbose(env, "invalid stack off=%d size=%d\n", off, 1752 size); 1753 return -EACCES; 1754 } 1755 1756 state = func(env, reg); 1757 err = update_stack_depth(env, state, off); 1758 if (err) 1759 return err; 1760 1761 if (t == BPF_WRITE) 1762 err = check_stack_write(env, state, off, size, 1763 value_regno, insn_idx); 1764 else 1765 err = check_stack_read(env, state, off, size, 1766 value_regno); 1767 } else if (reg_is_pkt_pointer(reg)) { 1768 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1769 verbose(env, "cannot write into packet\n"); 1770 return -EACCES; 1771 } 1772 if (t == BPF_WRITE && value_regno >= 0 && 1773 is_pointer_value(env, value_regno)) { 1774 verbose(env, "R%d leaks addr into packet\n", 1775 value_regno); 1776 return -EACCES; 1777 } 1778 err = check_packet_access(env, regno, off, size, false); 1779 if (!err && t == BPF_READ && value_regno >= 0) 1780 mark_reg_unknown(env, regs, value_regno); 1781 } else { 1782 verbose(env, "R%d invalid mem access '%s'\n", regno, 1783 reg_type_str[reg->type]); 1784 return -EACCES; 1785 } 1786 1787 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1788 regs[value_regno].type == SCALAR_VALUE) { 1789 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1790 coerce_reg_to_size(®s[value_regno], size); 1791 } 1792 return err; 1793 } 1794 1795 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1796 { 1797 int err; 1798 1799 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1800 insn->imm != 0) { 1801 verbose(env, "BPF_XADD uses reserved fields\n"); 1802 return -EINVAL; 1803 } 1804 1805 /* check src1 operand */ 1806 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1807 if (err) 1808 return err; 1809 1810 /* check src2 operand */ 1811 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1812 if (err) 1813 return err; 1814 1815 if (is_pointer_value(env, insn->src_reg)) { 1816 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1817 return -EACCES; 1818 } 1819 1820 if (is_ctx_reg(env, insn->dst_reg) || 1821 is_pkt_reg(env, insn->dst_reg)) { 1822 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1823 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? 1824 "context" : "packet"); 1825 return -EACCES; 1826 } 1827 1828 /* check whether atomic_add can read the memory */ 1829 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1830 BPF_SIZE(insn->code), BPF_READ, -1, true); 1831 if (err) 1832 return err; 1833 1834 /* check whether atomic_add can write into the same memory */ 1835 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1836 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1837 } 1838 1839 /* when register 'regno' is passed into function that will read 'access_size' 1840 * bytes from that pointer, make sure that it's within stack boundary 1841 * and all elements of stack are initialized. 1842 * Unlike most pointer bounds-checking functions, this one doesn't take an 1843 * 'off' argument, so it has to add in reg->off itself. 1844 */ 1845 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1846 int access_size, bool zero_size_allowed, 1847 struct bpf_call_arg_meta *meta) 1848 { 1849 struct bpf_reg_state *reg = cur_regs(env) + regno; 1850 struct bpf_func_state *state = func(env, reg); 1851 int off, i, slot, spi; 1852 1853 if (reg->type != PTR_TO_STACK) { 1854 /* Allow zero-byte read from NULL, regardless of pointer type */ 1855 if (zero_size_allowed && access_size == 0 && 1856 register_is_null(reg)) 1857 return 0; 1858 1859 verbose(env, "R%d type=%s expected=%s\n", regno, 1860 reg_type_str[reg->type], 1861 reg_type_str[PTR_TO_STACK]); 1862 return -EACCES; 1863 } 1864 1865 /* Only allow fixed-offset stack reads */ 1866 if (!tnum_is_const(reg->var_off)) { 1867 char tn_buf[48]; 1868 1869 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1870 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1871 regno, tn_buf); 1872 return -EACCES; 1873 } 1874 off = reg->off + reg->var_off.value; 1875 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1876 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1877 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1878 regno, off, access_size); 1879 return -EACCES; 1880 } 1881 1882 if (meta && meta->raw_mode) { 1883 meta->access_size = access_size; 1884 meta->regno = regno; 1885 return 0; 1886 } 1887 1888 for (i = 0; i < access_size; i++) { 1889 u8 *stype; 1890 1891 slot = -(off + i) - 1; 1892 spi = slot / BPF_REG_SIZE; 1893 if (state->allocated_stack <= slot) 1894 goto err; 1895 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1896 if (*stype == STACK_MISC) 1897 goto mark; 1898 if (*stype == STACK_ZERO) { 1899 /* helper can write anything into the stack */ 1900 *stype = STACK_MISC; 1901 goto mark; 1902 } 1903 err: 1904 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1905 off, i, access_size); 1906 return -EACCES; 1907 mark: 1908 /* reading any byte out of 8-byte 'spill_slot' will cause 1909 * the whole slot to be marked as 'read' 1910 */ 1911 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, 1912 spi, state->frameno); 1913 } 1914 return update_stack_depth(env, state, off); 1915 } 1916 1917 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1918 int access_size, bool zero_size_allowed, 1919 struct bpf_call_arg_meta *meta) 1920 { 1921 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1922 1923 switch (reg->type) { 1924 case PTR_TO_PACKET: 1925 case PTR_TO_PACKET_META: 1926 return check_packet_access(env, regno, reg->off, access_size, 1927 zero_size_allowed); 1928 case PTR_TO_MAP_VALUE: 1929 return check_map_access(env, regno, reg->off, access_size, 1930 zero_size_allowed); 1931 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1932 return check_stack_boundary(env, regno, access_size, 1933 zero_size_allowed, meta); 1934 } 1935 } 1936 1937 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1938 { 1939 return type == ARG_PTR_TO_MEM || 1940 type == ARG_PTR_TO_MEM_OR_NULL || 1941 type == ARG_PTR_TO_UNINIT_MEM; 1942 } 1943 1944 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1945 { 1946 return type == ARG_CONST_SIZE || 1947 type == ARG_CONST_SIZE_OR_ZERO; 1948 } 1949 1950 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1951 enum bpf_arg_type arg_type, 1952 struct bpf_call_arg_meta *meta) 1953 { 1954 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1955 enum bpf_reg_type expected_type, type = reg->type; 1956 int err = 0; 1957 1958 if (arg_type == ARG_DONTCARE) 1959 return 0; 1960 1961 err = check_reg_arg(env, regno, SRC_OP); 1962 if (err) 1963 return err; 1964 1965 if (arg_type == ARG_ANYTHING) { 1966 if (is_pointer_value(env, regno)) { 1967 verbose(env, "R%d leaks addr into helper function\n", 1968 regno); 1969 return -EACCES; 1970 } 1971 return 0; 1972 } 1973 1974 if (type_is_pkt_pointer(type) && 1975 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1976 verbose(env, "helper access to the packet is not allowed\n"); 1977 return -EACCES; 1978 } 1979 1980 if (arg_type == ARG_PTR_TO_MAP_KEY || 1981 arg_type == ARG_PTR_TO_MAP_VALUE) { 1982 expected_type = PTR_TO_STACK; 1983 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 1984 type != expected_type) 1985 goto err_type; 1986 } else if (arg_type == ARG_CONST_SIZE || 1987 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1988 expected_type = SCALAR_VALUE; 1989 if (type != expected_type) 1990 goto err_type; 1991 } else if (arg_type == ARG_CONST_MAP_PTR) { 1992 expected_type = CONST_PTR_TO_MAP; 1993 if (type != expected_type) 1994 goto err_type; 1995 } else if (arg_type == ARG_PTR_TO_CTX) { 1996 expected_type = PTR_TO_CTX; 1997 if (type != expected_type) 1998 goto err_type; 1999 err = check_ctx_reg(env, reg, regno); 2000 if (err < 0) 2001 return err; 2002 } else if (arg_type_is_mem_ptr(arg_type)) { 2003 expected_type = PTR_TO_STACK; 2004 /* One exception here. In case function allows for NULL to be 2005 * passed in as argument, it's a SCALAR_VALUE type. Final test 2006 * happens during stack boundary checking. 2007 */ 2008 if (register_is_null(reg) && 2009 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2010 /* final test in check_stack_boundary() */; 2011 else if (!type_is_pkt_pointer(type) && 2012 type != PTR_TO_MAP_VALUE && 2013 type != expected_type) 2014 goto err_type; 2015 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2016 } else { 2017 verbose(env, "unsupported arg_type %d\n", arg_type); 2018 return -EFAULT; 2019 } 2020 2021 if (arg_type == ARG_CONST_MAP_PTR) { 2022 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2023 meta->map_ptr = reg->map_ptr; 2024 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2025 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2026 * check that [key, key + map->key_size) are within 2027 * stack limits and initialized 2028 */ 2029 if (!meta->map_ptr) { 2030 /* in function declaration map_ptr must come before 2031 * map_key, so that it's verified and known before 2032 * we have to check map_key here. Otherwise it means 2033 * that kernel subsystem misconfigured verifier 2034 */ 2035 verbose(env, "invalid map_ptr to access map->key\n"); 2036 return -EACCES; 2037 } 2038 err = check_helper_mem_access(env, regno, 2039 meta->map_ptr->key_size, false, 2040 NULL); 2041 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 2042 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2043 * check [value, value + map->value_size) validity 2044 */ 2045 if (!meta->map_ptr) { 2046 /* kernel subsystem misconfigured verifier */ 2047 verbose(env, "invalid map_ptr to access map->value\n"); 2048 return -EACCES; 2049 } 2050 err = check_helper_mem_access(env, regno, 2051 meta->map_ptr->value_size, false, 2052 NULL); 2053 } else if (arg_type_is_mem_size(arg_type)) { 2054 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2055 2056 /* remember the mem_size which may be used later 2057 * to refine return values. 2058 */ 2059 meta->msize_smax_value = reg->smax_value; 2060 meta->msize_umax_value = reg->umax_value; 2061 2062 /* The register is SCALAR_VALUE; the access check 2063 * happens using its boundaries. 2064 */ 2065 if (!tnum_is_const(reg->var_off)) 2066 /* For unprivileged variable accesses, disable raw 2067 * mode so that the program is required to 2068 * initialize all the memory that the helper could 2069 * just partially fill up. 2070 */ 2071 meta = NULL; 2072 2073 if (reg->smin_value < 0) { 2074 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2075 regno); 2076 return -EACCES; 2077 } 2078 2079 if (reg->umin_value == 0) { 2080 err = check_helper_mem_access(env, regno - 1, 0, 2081 zero_size_allowed, 2082 meta); 2083 if (err) 2084 return err; 2085 } 2086 2087 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2088 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2089 regno); 2090 return -EACCES; 2091 } 2092 err = check_helper_mem_access(env, regno - 1, 2093 reg->umax_value, 2094 zero_size_allowed, meta); 2095 } 2096 2097 return err; 2098 err_type: 2099 verbose(env, "R%d type=%s expected=%s\n", regno, 2100 reg_type_str[type], reg_type_str[expected_type]); 2101 return -EACCES; 2102 } 2103 2104 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2105 struct bpf_map *map, int func_id) 2106 { 2107 if (!map) 2108 return 0; 2109 2110 /* We need a two way check, first is from map perspective ... */ 2111 switch (map->map_type) { 2112 case BPF_MAP_TYPE_PROG_ARRAY: 2113 if (func_id != BPF_FUNC_tail_call) 2114 goto error; 2115 break; 2116 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2117 if (func_id != BPF_FUNC_perf_event_read && 2118 func_id != BPF_FUNC_perf_event_output && 2119 func_id != BPF_FUNC_perf_event_read_value) 2120 goto error; 2121 break; 2122 case BPF_MAP_TYPE_STACK_TRACE: 2123 if (func_id != BPF_FUNC_get_stackid) 2124 goto error; 2125 break; 2126 case BPF_MAP_TYPE_CGROUP_ARRAY: 2127 if (func_id != BPF_FUNC_skb_under_cgroup && 2128 func_id != BPF_FUNC_current_task_under_cgroup) 2129 goto error; 2130 break; 2131 case BPF_MAP_TYPE_CGROUP_STORAGE: 2132 if (func_id != BPF_FUNC_get_local_storage) 2133 goto error; 2134 break; 2135 /* devmap returns a pointer to a live net_device ifindex that we cannot 2136 * allow to be modified from bpf side. So do not allow lookup elements 2137 * for now. 2138 */ 2139 case BPF_MAP_TYPE_DEVMAP: 2140 if (func_id != BPF_FUNC_redirect_map) 2141 goto error; 2142 break; 2143 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2144 * appear. 2145 */ 2146 case BPF_MAP_TYPE_CPUMAP: 2147 case BPF_MAP_TYPE_XSKMAP: 2148 if (func_id != BPF_FUNC_redirect_map) 2149 goto error; 2150 break; 2151 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2152 case BPF_MAP_TYPE_HASH_OF_MAPS: 2153 if (func_id != BPF_FUNC_map_lookup_elem) 2154 goto error; 2155 break; 2156 case BPF_MAP_TYPE_SOCKMAP: 2157 if (func_id != BPF_FUNC_sk_redirect_map && 2158 func_id != BPF_FUNC_sock_map_update && 2159 func_id != BPF_FUNC_map_delete_elem && 2160 func_id != BPF_FUNC_msg_redirect_map) 2161 goto error; 2162 break; 2163 case BPF_MAP_TYPE_SOCKHASH: 2164 if (func_id != BPF_FUNC_sk_redirect_hash && 2165 func_id != BPF_FUNC_sock_hash_update && 2166 func_id != BPF_FUNC_map_delete_elem && 2167 func_id != BPF_FUNC_msg_redirect_hash) 2168 goto error; 2169 break; 2170 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2171 if (func_id != BPF_FUNC_sk_select_reuseport) 2172 goto error; 2173 break; 2174 default: 2175 break; 2176 } 2177 2178 /* ... and second from the function itself. */ 2179 switch (func_id) { 2180 case BPF_FUNC_tail_call: 2181 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2182 goto error; 2183 if (env->subprog_cnt > 1) { 2184 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2185 return -EINVAL; 2186 } 2187 break; 2188 case BPF_FUNC_perf_event_read: 2189 case BPF_FUNC_perf_event_output: 2190 case BPF_FUNC_perf_event_read_value: 2191 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2192 goto error; 2193 break; 2194 case BPF_FUNC_get_stackid: 2195 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2196 goto error; 2197 break; 2198 case BPF_FUNC_current_task_under_cgroup: 2199 case BPF_FUNC_skb_under_cgroup: 2200 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2201 goto error; 2202 break; 2203 case BPF_FUNC_redirect_map: 2204 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2205 map->map_type != BPF_MAP_TYPE_CPUMAP && 2206 map->map_type != BPF_MAP_TYPE_XSKMAP) 2207 goto error; 2208 break; 2209 case BPF_FUNC_sk_redirect_map: 2210 case BPF_FUNC_msg_redirect_map: 2211 case BPF_FUNC_sock_map_update: 2212 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2213 goto error; 2214 break; 2215 case BPF_FUNC_sk_redirect_hash: 2216 case BPF_FUNC_msg_redirect_hash: 2217 case BPF_FUNC_sock_hash_update: 2218 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2219 goto error; 2220 break; 2221 case BPF_FUNC_get_local_storage: 2222 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE) 2223 goto error; 2224 break; 2225 case BPF_FUNC_sk_select_reuseport: 2226 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2227 goto error; 2228 break; 2229 default: 2230 break; 2231 } 2232 2233 return 0; 2234 error: 2235 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2236 map->map_type, func_id_name(func_id), func_id); 2237 return -EINVAL; 2238 } 2239 2240 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2241 { 2242 int count = 0; 2243 2244 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2245 count++; 2246 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2247 count++; 2248 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2249 count++; 2250 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2251 count++; 2252 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2253 count++; 2254 2255 /* We only support one arg being in raw mode at the moment, 2256 * which is sufficient for the helper functions we have 2257 * right now. 2258 */ 2259 return count <= 1; 2260 } 2261 2262 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2263 enum bpf_arg_type arg_next) 2264 { 2265 return (arg_type_is_mem_ptr(arg_curr) && 2266 !arg_type_is_mem_size(arg_next)) || 2267 (!arg_type_is_mem_ptr(arg_curr) && 2268 arg_type_is_mem_size(arg_next)); 2269 } 2270 2271 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2272 { 2273 /* bpf_xxx(..., buf, len) call will access 'len' 2274 * bytes from memory 'buf'. Both arg types need 2275 * to be paired, so make sure there's no buggy 2276 * helper function specification. 2277 */ 2278 if (arg_type_is_mem_size(fn->arg1_type) || 2279 arg_type_is_mem_ptr(fn->arg5_type) || 2280 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2281 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2282 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2283 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2284 return false; 2285 2286 return true; 2287 } 2288 2289 static int check_func_proto(const struct bpf_func_proto *fn) 2290 { 2291 return check_raw_mode_ok(fn) && 2292 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2293 } 2294 2295 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2296 * are now invalid, so turn them into unknown SCALAR_VALUE. 2297 */ 2298 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2299 struct bpf_func_state *state) 2300 { 2301 struct bpf_reg_state *regs = state->regs, *reg; 2302 int i; 2303 2304 for (i = 0; i < MAX_BPF_REG; i++) 2305 if (reg_is_pkt_pointer_any(®s[i])) 2306 mark_reg_unknown(env, regs, i); 2307 2308 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2309 if (state->stack[i].slot_type[0] != STACK_SPILL) 2310 continue; 2311 reg = &state->stack[i].spilled_ptr; 2312 if (reg_is_pkt_pointer_any(reg)) 2313 __mark_reg_unknown(reg); 2314 } 2315 } 2316 2317 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2318 { 2319 struct bpf_verifier_state *vstate = env->cur_state; 2320 int i; 2321 2322 for (i = 0; i <= vstate->curframe; i++) 2323 __clear_all_pkt_pointers(env, vstate->frame[i]); 2324 } 2325 2326 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2327 int *insn_idx) 2328 { 2329 struct bpf_verifier_state *state = env->cur_state; 2330 struct bpf_func_state *caller, *callee; 2331 int i, subprog, target_insn; 2332 2333 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2334 verbose(env, "the call stack of %d frames is too deep\n", 2335 state->curframe + 2); 2336 return -E2BIG; 2337 } 2338 2339 target_insn = *insn_idx + insn->imm; 2340 subprog = find_subprog(env, target_insn + 1); 2341 if (subprog < 0) { 2342 verbose(env, "verifier bug. No program starts at insn %d\n", 2343 target_insn + 1); 2344 return -EFAULT; 2345 } 2346 2347 caller = state->frame[state->curframe]; 2348 if (state->frame[state->curframe + 1]) { 2349 verbose(env, "verifier bug. Frame %d already allocated\n", 2350 state->curframe + 1); 2351 return -EFAULT; 2352 } 2353 2354 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2355 if (!callee) 2356 return -ENOMEM; 2357 state->frame[state->curframe + 1] = callee; 2358 2359 /* callee cannot access r0, r6 - r9 for reading and has to write 2360 * into its own stack before reading from it. 2361 * callee can read/write into caller's stack 2362 */ 2363 init_func_state(env, callee, 2364 /* remember the callsite, it will be used by bpf_exit */ 2365 *insn_idx /* callsite */, 2366 state->curframe + 1 /* frameno within this callchain */, 2367 subprog /* subprog number within this prog */); 2368 2369 /* copy r1 - r5 args that callee can access */ 2370 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2371 callee->regs[i] = caller->regs[i]; 2372 2373 /* after the call regsiters r0 - r5 were scratched */ 2374 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2375 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2376 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2377 } 2378 2379 /* only increment it after check_reg_arg() finished */ 2380 state->curframe++; 2381 2382 /* and go analyze first insn of the callee */ 2383 *insn_idx = target_insn; 2384 2385 if (env->log.level) { 2386 verbose(env, "caller:\n"); 2387 print_verifier_state(env, caller); 2388 verbose(env, "callee:\n"); 2389 print_verifier_state(env, callee); 2390 } 2391 return 0; 2392 } 2393 2394 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2395 { 2396 struct bpf_verifier_state *state = env->cur_state; 2397 struct bpf_func_state *caller, *callee; 2398 struct bpf_reg_state *r0; 2399 2400 callee = state->frame[state->curframe]; 2401 r0 = &callee->regs[BPF_REG_0]; 2402 if (r0->type == PTR_TO_STACK) { 2403 /* technically it's ok to return caller's stack pointer 2404 * (or caller's caller's pointer) back to the caller, 2405 * since these pointers are valid. Only current stack 2406 * pointer will be invalid as soon as function exits, 2407 * but let's be conservative 2408 */ 2409 verbose(env, "cannot return stack pointer to the caller\n"); 2410 return -EINVAL; 2411 } 2412 2413 state->curframe--; 2414 caller = state->frame[state->curframe]; 2415 /* return to the caller whatever r0 had in the callee */ 2416 caller->regs[BPF_REG_0] = *r0; 2417 2418 *insn_idx = callee->callsite + 1; 2419 if (env->log.level) { 2420 verbose(env, "returning from callee:\n"); 2421 print_verifier_state(env, callee); 2422 verbose(env, "to caller at %d:\n", *insn_idx); 2423 print_verifier_state(env, caller); 2424 } 2425 /* clear everything in the callee */ 2426 free_func_state(callee); 2427 state->frame[state->curframe + 1] = NULL; 2428 return 0; 2429 } 2430 2431 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2432 int func_id, 2433 struct bpf_call_arg_meta *meta) 2434 { 2435 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2436 2437 if (ret_type != RET_INTEGER || 2438 (func_id != BPF_FUNC_get_stack && 2439 func_id != BPF_FUNC_probe_read_str)) 2440 return; 2441 2442 ret_reg->smax_value = meta->msize_smax_value; 2443 ret_reg->umax_value = meta->msize_umax_value; 2444 __reg_deduce_bounds(ret_reg); 2445 __reg_bound_offset(ret_reg); 2446 } 2447 2448 static int 2449 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2450 int func_id, int insn_idx) 2451 { 2452 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2453 2454 if (func_id != BPF_FUNC_tail_call && 2455 func_id != BPF_FUNC_map_lookup_elem && 2456 func_id != BPF_FUNC_map_update_elem && 2457 func_id != BPF_FUNC_map_delete_elem) 2458 return 0; 2459 2460 if (meta->map_ptr == NULL) { 2461 verbose(env, "kernel subsystem misconfigured verifier\n"); 2462 return -EINVAL; 2463 } 2464 2465 if (!BPF_MAP_PTR(aux->map_state)) 2466 bpf_map_ptr_store(aux, meta->map_ptr, 2467 meta->map_ptr->unpriv_array); 2468 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2469 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2470 meta->map_ptr->unpriv_array); 2471 return 0; 2472 } 2473 2474 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2475 { 2476 const struct bpf_func_proto *fn = NULL; 2477 struct bpf_reg_state *regs; 2478 struct bpf_call_arg_meta meta; 2479 bool changes_data; 2480 int i, err; 2481 2482 /* find function prototype */ 2483 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2484 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2485 func_id); 2486 return -EINVAL; 2487 } 2488 2489 if (env->ops->get_func_proto) 2490 fn = env->ops->get_func_proto(func_id, env->prog); 2491 if (!fn) { 2492 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2493 func_id); 2494 return -EINVAL; 2495 } 2496 2497 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2498 if (!env->prog->gpl_compatible && fn->gpl_only) { 2499 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2500 return -EINVAL; 2501 } 2502 2503 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2504 changes_data = bpf_helper_changes_pkt_data(fn->func); 2505 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2506 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2507 func_id_name(func_id), func_id); 2508 return -EINVAL; 2509 } 2510 2511 memset(&meta, 0, sizeof(meta)); 2512 meta.pkt_access = fn->pkt_access; 2513 2514 err = check_func_proto(fn); 2515 if (err) { 2516 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2517 func_id_name(func_id), func_id); 2518 return err; 2519 } 2520 2521 /* check args */ 2522 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2523 if (err) 2524 return err; 2525 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2526 if (err) 2527 return err; 2528 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2529 if (err) 2530 return err; 2531 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2532 if (err) 2533 return err; 2534 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2535 if (err) 2536 return err; 2537 2538 err = record_func_map(env, &meta, func_id, insn_idx); 2539 if (err) 2540 return err; 2541 2542 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2543 * is inferred from register state. 2544 */ 2545 for (i = 0; i < meta.access_size; i++) { 2546 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2547 BPF_WRITE, -1, false); 2548 if (err) 2549 return err; 2550 } 2551 2552 regs = cur_regs(env); 2553 2554 /* check that flags argument in get_local_storage(map, flags) is 0, 2555 * this is required because get_local_storage() can't return an error. 2556 */ 2557 if (func_id == BPF_FUNC_get_local_storage && 2558 !register_is_null(®s[BPF_REG_2])) { 2559 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2560 return -EINVAL; 2561 } 2562 2563 /* reset caller saved regs */ 2564 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2565 mark_reg_not_init(env, regs, caller_saved[i]); 2566 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2567 } 2568 2569 /* update return register (already marked as written above) */ 2570 if (fn->ret_type == RET_INTEGER) { 2571 /* sets type to SCALAR_VALUE */ 2572 mark_reg_unknown(env, regs, BPF_REG_0); 2573 } else if (fn->ret_type == RET_VOID) { 2574 regs[BPF_REG_0].type = NOT_INIT; 2575 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2576 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2577 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) 2578 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2579 else 2580 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2581 /* There is no offset yet applied, variable or fixed */ 2582 mark_reg_known_zero(env, regs, BPF_REG_0); 2583 regs[BPF_REG_0].off = 0; 2584 /* remember map_ptr, so that check_map_access() 2585 * can check 'value_size' boundary of memory access 2586 * to map element returned from bpf_map_lookup_elem() 2587 */ 2588 if (meta.map_ptr == NULL) { 2589 verbose(env, 2590 "kernel subsystem misconfigured verifier\n"); 2591 return -EINVAL; 2592 } 2593 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2594 regs[BPF_REG_0].id = ++env->id_gen; 2595 } else { 2596 verbose(env, "unknown return type %d of func %s#%d\n", 2597 fn->ret_type, func_id_name(func_id), func_id); 2598 return -EINVAL; 2599 } 2600 2601 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2602 2603 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2604 if (err) 2605 return err; 2606 2607 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2608 const char *err_str; 2609 2610 #ifdef CONFIG_PERF_EVENTS 2611 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2612 err_str = "cannot get callchain buffer for func %s#%d\n"; 2613 #else 2614 err = -ENOTSUPP; 2615 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2616 #endif 2617 if (err) { 2618 verbose(env, err_str, func_id_name(func_id), func_id); 2619 return err; 2620 } 2621 2622 env->prog->has_callchain_buf = true; 2623 } 2624 2625 if (changes_data) 2626 clear_all_pkt_pointers(env); 2627 return 0; 2628 } 2629 2630 static bool signed_add_overflows(s64 a, s64 b) 2631 { 2632 /* Do the add in u64, where overflow is well-defined */ 2633 s64 res = (s64)((u64)a + (u64)b); 2634 2635 if (b < 0) 2636 return res > a; 2637 return res < a; 2638 } 2639 2640 static bool signed_sub_overflows(s64 a, s64 b) 2641 { 2642 /* Do the sub in u64, where overflow is well-defined */ 2643 s64 res = (s64)((u64)a - (u64)b); 2644 2645 if (b < 0) 2646 return res < a; 2647 return res > a; 2648 } 2649 2650 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2651 const struct bpf_reg_state *reg, 2652 enum bpf_reg_type type) 2653 { 2654 bool known = tnum_is_const(reg->var_off); 2655 s64 val = reg->var_off.value; 2656 s64 smin = reg->smin_value; 2657 2658 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2659 verbose(env, "math between %s pointer and %lld is not allowed\n", 2660 reg_type_str[type], val); 2661 return false; 2662 } 2663 2664 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2665 verbose(env, "%s pointer offset %d is not allowed\n", 2666 reg_type_str[type], reg->off); 2667 return false; 2668 } 2669 2670 if (smin == S64_MIN) { 2671 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2672 reg_type_str[type]); 2673 return false; 2674 } 2675 2676 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2677 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2678 smin, reg_type_str[type]); 2679 return false; 2680 } 2681 2682 return true; 2683 } 2684 2685 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2686 * Caller should also handle BPF_MOV case separately. 2687 * If we return -EACCES, caller may want to try again treating pointer as a 2688 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2689 */ 2690 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2691 struct bpf_insn *insn, 2692 const struct bpf_reg_state *ptr_reg, 2693 const struct bpf_reg_state *off_reg) 2694 { 2695 struct bpf_verifier_state *vstate = env->cur_state; 2696 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2697 struct bpf_reg_state *regs = state->regs, *dst_reg; 2698 bool known = tnum_is_const(off_reg->var_off); 2699 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2700 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2701 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2702 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2703 u8 opcode = BPF_OP(insn->code); 2704 u32 dst = insn->dst_reg; 2705 2706 dst_reg = ®s[dst]; 2707 2708 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2709 smin_val > smax_val || umin_val > umax_val) { 2710 /* Taint dst register if offset had invalid bounds derived from 2711 * e.g. dead branches. 2712 */ 2713 __mark_reg_unknown(dst_reg); 2714 return 0; 2715 } 2716 2717 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2718 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2719 verbose(env, 2720 "R%d 32-bit pointer arithmetic prohibited\n", 2721 dst); 2722 return -EACCES; 2723 } 2724 2725 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2726 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2727 dst); 2728 return -EACCES; 2729 } 2730 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2731 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2732 dst); 2733 return -EACCES; 2734 } 2735 if (ptr_reg->type == PTR_TO_PACKET_END) { 2736 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2737 dst); 2738 return -EACCES; 2739 } 2740 2741 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2742 * The id may be overwritten later if we create a new variable offset. 2743 */ 2744 dst_reg->type = ptr_reg->type; 2745 dst_reg->id = ptr_reg->id; 2746 2747 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2748 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2749 return -EINVAL; 2750 2751 switch (opcode) { 2752 case BPF_ADD: 2753 /* We can take a fixed offset as long as it doesn't overflow 2754 * the s32 'off' field 2755 */ 2756 if (known && (ptr_reg->off + smin_val == 2757 (s64)(s32)(ptr_reg->off + smin_val))) { 2758 /* pointer += K. Accumulate it into fixed offset */ 2759 dst_reg->smin_value = smin_ptr; 2760 dst_reg->smax_value = smax_ptr; 2761 dst_reg->umin_value = umin_ptr; 2762 dst_reg->umax_value = umax_ptr; 2763 dst_reg->var_off = ptr_reg->var_off; 2764 dst_reg->off = ptr_reg->off + smin_val; 2765 dst_reg->range = ptr_reg->range; 2766 break; 2767 } 2768 /* A new variable offset is created. Note that off_reg->off 2769 * == 0, since it's a scalar. 2770 * dst_reg gets the pointer type and since some positive 2771 * integer value was added to the pointer, give it a new 'id' 2772 * if it's a PTR_TO_PACKET. 2773 * this creates a new 'base' pointer, off_reg (variable) gets 2774 * added into the variable offset, and we copy the fixed offset 2775 * from ptr_reg. 2776 */ 2777 if (signed_add_overflows(smin_ptr, smin_val) || 2778 signed_add_overflows(smax_ptr, smax_val)) { 2779 dst_reg->smin_value = S64_MIN; 2780 dst_reg->smax_value = S64_MAX; 2781 } else { 2782 dst_reg->smin_value = smin_ptr + smin_val; 2783 dst_reg->smax_value = smax_ptr + smax_val; 2784 } 2785 if (umin_ptr + umin_val < umin_ptr || 2786 umax_ptr + umax_val < umax_ptr) { 2787 dst_reg->umin_value = 0; 2788 dst_reg->umax_value = U64_MAX; 2789 } else { 2790 dst_reg->umin_value = umin_ptr + umin_val; 2791 dst_reg->umax_value = umax_ptr + umax_val; 2792 } 2793 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2794 dst_reg->off = ptr_reg->off; 2795 if (reg_is_pkt_pointer(ptr_reg)) { 2796 dst_reg->id = ++env->id_gen; 2797 /* something was added to pkt_ptr, set range to zero */ 2798 dst_reg->range = 0; 2799 } 2800 break; 2801 case BPF_SUB: 2802 if (dst_reg == off_reg) { 2803 /* scalar -= pointer. Creates an unknown scalar */ 2804 verbose(env, "R%d tried to subtract pointer from scalar\n", 2805 dst); 2806 return -EACCES; 2807 } 2808 /* We don't allow subtraction from FP, because (according to 2809 * test_verifier.c test "invalid fp arithmetic", JITs might not 2810 * be able to deal with it. 2811 */ 2812 if (ptr_reg->type == PTR_TO_STACK) { 2813 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2814 dst); 2815 return -EACCES; 2816 } 2817 if (known && (ptr_reg->off - smin_val == 2818 (s64)(s32)(ptr_reg->off - smin_val))) { 2819 /* pointer -= K. Subtract it from fixed offset */ 2820 dst_reg->smin_value = smin_ptr; 2821 dst_reg->smax_value = smax_ptr; 2822 dst_reg->umin_value = umin_ptr; 2823 dst_reg->umax_value = umax_ptr; 2824 dst_reg->var_off = ptr_reg->var_off; 2825 dst_reg->id = ptr_reg->id; 2826 dst_reg->off = ptr_reg->off - smin_val; 2827 dst_reg->range = ptr_reg->range; 2828 break; 2829 } 2830 /* A new variable offset is created. If the subtrahend is known 2831 * nonnegative, then any reg->range we had before is still good. 2832 */ 2833 if (signed_sub_overflows(smin_ptr, smax_val) || 2834 signed_sub_overflows(smax_ptr, smin_val)) { 2835 /* Overflow possible, we know nothing */ 2836 dst_reg->smin_value = S64_MIN; 2837 dst_reg->smax_value = S64_MAX; 2838 } else { 2839 dst_reg->smin_value = smin_ptr - smax_val; 2840 dst_reg->smax_value = smax_ptr - smin_val; 2841 } 2842 if (umin_ptr < umax_val) { 2843 /* Overflow possible, we know nothing */ 2844 dst_reg->umin_value = 0; 2845 dst_reg->umax_value = U64_MAX; 2846 } else { 2847 /* Cannot overflow (as long as bounds are consistent) */ 2848 dst_reg->umin_value = umin_ptr - umax_val; 2849 dst_reg->umax_value = umax_ptr - umin_val; 2850 } 2851 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2852 dst_reg->off = ptr_reg->off; 2853 if (reg_is_pkt_pointer(ptr_reg)) { 2854 dst_reg->id = ++env->id_gen; 2855 /* something was added to pkt_ptr, set range to zero */ 2856 if (smin_val < 0) 2857 dst_reg->range = 0; 2858 } 2859 break; 2860 case BPF_AND: 2861 case BPF_OR: 2862 case BPF_XOR: 2863 /* bitwise ops on pointers are troublesome, prohibit. */ 2864 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2865 dst, bpf_alu_string[opcode >> 4]); 2866 return -EACCES; 2867 default: 2868 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2869 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2870 dst, bpf_alu_string[opcode >> 4]); 2871 return -EACCES; 2872 } 2873 2874 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2875 return -EINVAL; 2876 2877 __update_reg_bounds(dst_reg); 2878 __reg_deduce_bounds(dst_reg); 2879 __reg_bound_offset(dst_reg); 2880 return 0; 2881 } 2882 2883 /* WARNING: This function does calculations on 64-bit values, but the actual 2884 * execution may occur on 32-bit values. Therefore, things like bitshifts 2885 * need extra checks in the 32-bit case. 2886 */ 2887 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2888 struct bpf_insn *insn, 2889 struct bpf_reg_state *dst_reg, 2890 struct bpf_reg_state src_reg) 2891 { 2892 struct bpf_reg_state *regs = cur_regs(env); 2893 u8 opcode = BPF_OP(insn->code); 2894 bool src_known, dst_known; 2895 s64 smin_val, smax_val; 2896 u64 umin_val, umax_val; 2897 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2898 2899 smin_val = src_reg.smin_value; 2900 smax_val = src_reg.smax_value; 2901 umin_val = src_reg.umin_value; 2902 umax_val = src_reg.umax_value; 2903 src_known = tnum_is_const(src_reg.var_off); 2904 dst_known = tnum_is_const(dst_reg->var_off); 2905 2906 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2907 smin_val > smax_val || umin_val > umax_val) { 2908 /* Taint dst register if offset had invalid bounds derived from 2909 * e.g. dead branches. 2910 */ 2911 __mark_reg_unknown(dst_reg); 2912 return 0; 2913 } 2914 2915 if (!src_known && 2916 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2917 __mark_reg_unknown(dst_reg); 2918 return 0; 2919 } 2920 2921 switch (opcode) { 2922 case BPF_ADD: 2923 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2924 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2925 dst_reg->smin_value = S64_MIN; 2926 dst_reg->smax_value = S64_MAX; 2927 } else { 2928 dst_reg->smin_value += smin_val; 2929 dst_reg->smax_value += smax_val; 2930 } 2931 if (dst_reg->umin_value + umin_val < umin_val || 2932 dst_reg->umax_value + umax_val < umax_val) { 2933 dst_reg->umin_value = 0; 2934 dst_reg->umax_value = U64_MAX; 2935 } else { 2936 dst_reg->umin_value += umin_val; 2937 dst_reg->umax_value += umax_val; 2938 } 2939 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2940 break; 2941 case BPF_SUB: 2942 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2943 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2944 /* Overflow possible, we know nothing */ 2945 dst_reg->smin_value = S64_MIN; 2946 dst_reg->smax_value = S64_MAX; 2947 } else { 2948 dst_reg->smin_value -= smax_val; 2949 dst_reg->smax_value -= smin_val; 2950 } 2951 if (dst_reg->umin_value < umax_val) { 2952 /* Overflow possible, we know nothing */ 2953 dst_reg->umin_value = 0; 2954 dst_reg->umax_value = U64_MAX; 2955 } else { 2956 /* Cannot overflow (as long as bounds are consistent) */ 2957 dst_reg->umin_value -= umax_val; 2958 dst_reg->umax_value -= umin_val; 2959 } 2960 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2961 break; 2962 case BPF_MUL: 2963 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2964 if (smin_val < 0 || dst_reg->smin_value < 0) { 2965 /* Ain't nobody got time to multiply that sign */ 2966 __mark_reg_unbounded(dst_reg); 2967 __update_reg_bounds(dst_reg); 2968 break; 2969 } 2970 /* Both values are positive, so we can work with unsigned and 2971 * copy the result to signed (unless it exceeds S64_MAX). 2972 */ 2973 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2974 /* Potential overflow, we know nothing */ 2975 __mark_reg_unbounded(dst_reg); 2976 /* (except what we can learn from the var_off) */ 2977 __update_reg_bounds(dst_reg); 2978 break; 2979 } 2980 dst_reg->umin_value *= umin_val; 2981 dst_reg->umax_value *= umax_val; 2982 if (dst_reg->umax_value > S64_MAX) { 2983 /* Overflow possible, we know nothing */ 2984 dst_reg->smin_value = S64_MIN; 2985 dst_reg->smax_value = S64_MAX; 2986 } else { 2987 dst_reg->smin_value = dst_reg->umin_value; 2988 dst_reg->smax_value = dst_reg->umax_value; 2989 } 2990 break; 2991 case BPF_AND: 2992 if (src_known && dst_known) { 2993 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2994 src_reg.var_off.value); 2995 break; 2996 } 2997 /* We get our minimum from the var_off, since that's inherently 2998 * bitwise. Our maximum is the minimum of the operands' maxima. 2999 */ 3000 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3001 dst_reg->umin_value = dst_reg->var_off.value; 3002 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3003 if (dst_reg->smin_value < 0 || smin_val < 0) { 3004 /* Lose signed bounds when ANDing negative numbers, 3005 * ain't nobody got time for that. 3006 */ 3007 dst_reg->smin_value = S64_MIN; 3008 dst_reg->smax_value = S64_MAX; 3009 } else { 3010 /* ANDing two positives gives a positive, so safe to 3011 * cast result into s64. 3012 */ 3013 dst_reg->smin_value = dst_reg->umin_value; 3014 dst_reg->smax_value = dst_reg->umax_value; 3015 } 3016 /* We may learn something more from the var_off */ 3017 __update_reg_bounds(dst_reg); 3018 break; 3019 case BPF_OR: 3020 if (src_known && dst_known) { 3021 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3022 src_reg.var_off.value); 3023 break; 3024 } 3025 /* We get our maximum from the var_off, and our minimum is the 3026 * maximum of the operands' minima 3027 */ 3028 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3029 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3030 dst_reg->umax_value = dst_reg->var_off.value | 3031 dst_reg->var_off.mask; 3032 if (dst_reg->smin_value < 0 || smin_val < 0) { 3033 /* Lose signed bounds when ORing negative numbers, 3034 * ain't nobody got time for that. 3035 */ 3036 dst_reg->smin_value = S64_MIN; 3037 dst_reg->smax_value = S64_MAX; 3038 } else { 3039 /* ORing two positives gives a positive, so safe to 3040 * cast result into s64. 3041 */ 3042 dst_reg->smin_value = dst_reg->umin_value; 3043 dst_reg->smax_value = dst_reg->umax_value; 3044 } 3045 /* We may learn something more from the var_off */ 3046 __update_reg_bounds(dst_reg); 3047 break; 3048 case BPF_LSH: 3049 if (umax_val >= insn_bitness) { 3050 /* Shifts greater than 31 or 63 are undefined. 3051 * This includes shifts by a negative number. 3052 */ 3053 mark_reg_unknown(env, regs, insn->dst_reg); 3054 break; 3055 } 3056 /* We lose all sign bit information (except what we can pick 3057 * up from var_off) 3058 */ 3059 dst_reg->smin_value = S64_MIN; 3060 dst_reg->smax_value = S64_MAX; 3061 /* If we might shift our top bit out, then we know nothing */ 3062 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3063 dst_reg->umin_value = 0; 3064 dst_reg->umax_value = U64_MAX; 3065 } else { 3066 dst_reg->umin_value <<= umin_val; 3067 dst_reg->umax_value <<= umax_val; 3068 } 3069 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3070 /* We may learn something more from the var_off */ 3071 __update_reg_bounds(dst_reg); 3072 break; 3073 case BPF_RSH: 3074 if (umax_val >= insn_bitness) { 3075 /* Shifts greater than 31 or 63 are undefined. 3076 * This includes shifts by a negative number. 3077 */ 3078 mark_reg_unknown(env, regs, insn->dst_reg); 3079 break; 3080 } 3081 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3082 * be negative, then either: 3083 * 1) src_reg might be zero, so the sign bit of the result is 3084 * unknown, so we lose our signed bounds 3085 * 2) it's known negative, thus the unsigned bounds capture the 3086 * signed bounds 3087 * 3) the signed bounds cross zero, so they tell us nothing 3088 * about the result 3089 * If the value in dst_reg is known nonnegative, then again the 3090 * unsigned bounts capture the signed bounds. 3091 * Thus, in all cases it suffices to blow away our signed bounds 3092 * and rely on inferring new ones from the unsigned bounds and 3093 * var_off of the result. 3094 */ 3095 dst_reg->smin_value = S64_MIN; 3096 dst_reg->smax_value = S64_MAX; 3097 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3098 dst_reg->umin_value >>= umax_val; 3099 dst_reg->umax_value >>= umin_val; 3100 /* We may learn something more from the var_off */ 3101 __update_reg_bounds(dst_reg); 3102 break; 3103 case BPF_ARSH: 3104 if (umax_val >= insn_bitness) { 3105 /* Shifts greater than 31 or 63 are undefined. 3106 * This includes shifts by a negative number. 3107 */ 3108 mark_reg_unknown(env, regs, insn->dst_reg); 3109 break; 3110 } 3111 3112 /* Upon reaching here, src_known is true and 3113 * umax_val is equal to umin_val. 3114 */ 3115 dst_reg->smin_value >>= umin_val; 3116 dst_reg->smax_value >>= umin_val; 3117 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3118 3119 /* blow away the dst_reg umin_value/umax_value and rely on 3120 * dst_reg var_off to refine the result. 3121 */ 3122 dst_reg->umin_value = 0; 3123 dst_reg->umax_value = U64_MAX; 3124 __update_reg_bounds(dst_reg); 3125 break; 3126 default: 3127 mark_reg_unknown(env, regs, insn->dst_reg); 3128 break; 3129 } 3130 3131 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3132 /* 32-bit ALU ops are (32,32)->32 */ 3133 coerce_reg_to_size(dst_reg, 4); 3134 coerce_reg_to_size(&src_reg, 4); 3135 } 3136 3137 __reg_deduce_bounds(dst_reg); 3138 __reg_bound_offset(dst_reg); 3139 return 0; 3140 } 3141 3142 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3143 * and var_off. 3144 */ 3145 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3146 struct bpf_insn *insn) 3147 { 3148 struct bpf_verifier_state *vstate = env->cur_state; 3149 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3150 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3151 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3152 u8 opcode = BPF_OP(insn->code); 3153 3154 dst_reg = ®s[insn->dst_reg]; 3155 src_reg = NULL; 3156 if (dst_reg->type != SCALAR_VALUE) 3157 ptr_reg = dst_reg; 3158 if (BPF_SRC(insn->code) == BPF_X) { 3159 src_reg = ®s[insn->src_reg]; 3160 if (src_reg->type != SCALAR_VALUE) { 3161 if (dst_reg->type != SCALAR_VALUE) { 3162 /* Combining two pointers by any ALU op yields 3163 * an arbitrary scalar. Disallow all math except 3164 * pointer subtraction 3165 */ 3166 if (opcode == BPF_SUB){ 3167 mark_reg_unknown(env, regs, insn->dst_reg); 3168 return 0; 3169 } 3170 verbose(env, "R%d pointer %s pointer prohibited\n", 3171 insn->dst_reg, 3172 bpf_alu_string[opcode >> 4]); 3173 return -EACCES; 3174 } else { 3175 /* scalar += pointer 3176 * This is legal, but we have to reverse our 3177 * src/dest handling in computing the range 3178 */ 3179 return adjust_ptr_min_max_vals(env, insn, 3180 src_reg, dst_reg); 3181 } 3182 } else if (ptr_reg) { 3183 /* pointer += scalar */ 3184 return adjust_ptr_min_max_vals(env, insn, 3185 dst_reg, src_reg); 3186 } 3187 } else { 3188 /* Pretend the src is a reg with a known value, since we only 3189 * need to be able to read from this state. 3190 */ 3191 off_reg.type = SCALAR_VALUE; 3192 __mark_reg_known(&off_reg, insn->imm); 3193 src_reg = &off_reg; 3194 if (ptr_reg) /* pointer += K */ 3195 return adjust_ptr_min_max_vals(env, insn, 3196 ptr_reg, src_reg); 3197 } 3198 3199 /* Got here implies adding two SCALAR_VALUEs */ 3200 if (WARN_ON_ONCE(ptr_reg)) { 3201 print_verifier_state(env, state); 3202 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3203 return -EINVAL; 3204 } 3205 if (WARN_ON(!src_reg)) { 3206 print_verifier_state(env, state); 3207 verbose(env, "verifier internal error: no src_reg\n"); 3208 return -EINVAL; 3209 } 3210 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3211 } 3212 3213 /* check validity of 32-bit and 64-bit arithmetic operations */ 3214 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3215 { 3216 struct bpf_reg_state *regs = cur_regs(env); 3217 u8 opcode = BPF_OP(insn->code); 3218 int err; 3219 3220 if (opcode == BPF_END || opcode == BPF_NEG) { 3221 if (opcode == BPF_NEG) { 3222 if (BPF_SRC(insn->code) != 0 || 3223 insn->src_reg != BPF_REG_0 || 3224 insn->off != 0 || insn->imm != 0) { 3225 verbose(env, "BPF_NEG uses reserved fields\n"); 3226 return -EINVAL; 3227 } 3228 } else { 3229 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3230 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3231 BPF_CLASS(insn->code) == BPF_ALU64) { 3232 verbose(env, "BPF_END uses reserved fields\n"); 3233 return -EINVAL; 3234 } 3235 } 3236 3237 /* check src operand */ 3238 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3239 if (err) 3240 return err; 3241 3242 if (is_pointer_value(env, insn->dst_reg)) { 3243 verbose(env, "R%d pointer arithmetic prohibited\n", 3244 insn->dst_reg); 3245 return -EACCES; 3246 } 3247 3248 /* check dest operand */ 3249 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3250 if (err) 3251 return err; 3252 3253 } else if (opcode == BPF_MOV) { 3254 3255 if (BPF_SRC(insn->code) == BPF_X) { 3256 if (insn->imm != 0 || insn->off != 0) { 3257 verbose(env, "BPF_MOV uses reserved fields\n"); 3258 return -EINVAL; 3259 } 3260 3261 /* check src operand */ 3262 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3263 if (err) 3264 return err; 3265 } else { 3266 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3267 verbose(env, "BPF_MOV uses reserved fields\n"); 3268 return -EINVAL; 3269 } 3270 } 3271 3272 /* check dest operand, mark as required later */ 3273 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3274 if (err) 3275 return err; 3276 3277 if (BPF_SRC(insn->code) == BPF_X) { 3278 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3279 /* case: R1 = R2 3280 * copy register state to dest reg 3281 */ 3282 regs[insn->dst_reg] = regs[insn->src_reg]; 3283 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3284 } else { 3285 /* R1 = (u32) R2 */ 3286 if (is_pointer_value(env, insn->src_reg)) { 3287 verbose(env, 3288 "R%d partial copy of pointer\n", 3289 insn->src_reg); 3290 return -EACCES; 3291 } 3292 mark_reg_unknown(env, regs, insn->dst_reg); 3293 coerce_reg_to_size(®s[insn->dst_reg], 4); 3294 } 3295 } else { 3296 /* case: R = imm 3297 * remember the value we stored into this reg 3298 */ 3299 /* clear any state __mark_reg_known doesn't set */ 3300 mark_reg_unknown(env, regs, insn->dst_reg); 3301 regs[insn->dst_reg].type = SCALAR_VALUE; 3302 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3303 __mark_reg_known(regs + insn->dst_reg, 3304 insn->imm); 3305 } else { 3306 __mark_reg_known(regs + insn->dst_reg, 3307 (u32)insn->imm); 3308 } 3309 } 3310 3311 } else if (opcode > BPF_END) { 3312 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3313 return -EINVAL; 3314 3315 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3316 3317 if (BPF_SRC(insn->code) == BPF_X) { 3318 if (insn->imm != 0 || insn->off != 0) { 3319 verbose(env, "BPF_ALU uses reserved fields\n"); 3320 return -EINVAL; 3321 } 3322 /* check src1 operand */ 3323 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3324 if (err) 3325 return err; 3326 } else { 3327 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3328 verbose(env, "BPF_ALU uses reserved fields\n"); 3329 return -EINVAL; 3330 } 3331 } 3332 3333 /* check src2 operand */ 3334 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3335 if (err) 3336 return err; 3337 3338 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3339 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3340 verbose(env, "div by zero\n"); 3341 return -EINVAL; 3342 } 3343 3344 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3345 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3346 return -EINVAL; 3347 } 3348 3349 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3350 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3351 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3352 3353 if (insn->imm < 0 || insn->imm >= size) { 3354 verbose(env, "invalid shift %d\n", insn->imm); 3355 return -EINVAL; 3356 } 3357 } 3358 3359 /* check dest operand */ 3360 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3361 if (err) 3362 return err; 3363 3364 return adjust_reg_min_max_vals(env, insn); 3365 } 3366 3367 return 0; 3368 } 3369 3370 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3371 struct bpf_reg_state *dst_reg, 3372 enum bpf_reg_type type, 3373 bool range_right_open) 3374 { 3375 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3376 struct bpf_reg_state *regs = state->regs, *reg; 3377 u16 new_range; 3378 int i, j; 3379 3380 if (dst_reg->off < 0 || 3381 (dst_reg->off == 0 && range_right_open)) 3382 /* This doesn't give us any range */ 3383 return; 3384 3385 if (dst_reg->umax_value > MAX_PACKET_OFF || 3386 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3387 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3388 * than pkt_end, but that's because it's also less than pkt. 3389 */ 3390 return; 3391 3392 new_range = dst_reg->off; 3393 if (range_right_open) 3394 new_range--; 3395 3396 /* Examples for register markings: 3397 * 3398 * pkt_data in dst register: 3399 * 3400 * r2 = r3; 3401 * r2 += 8; 3402 * if (r2 > pkt_end) goto <handle exception> 3403 * <access okay> 3404 * 3405 * r2 = r3; 3406 * r2 += 8; 3407 * if (r2 < pkt_end) goto <access okay> 3408 * <handle exception> 3409 * 3410 * Where: 3411 * r2 == dst_reg, pkt_end == src_reg 3412 * r2=pkt(id=n,off=8,r=0) 3413 * r3=pkt(id=n,off=0,r=0) 3414 * 3415 * pkt_data in src register: 3416 * 3417 * r2 = r3; 3418 * r2 += 8; 3419 * if (pkt_end >= r2) goto <access okay> 3420 * <handle exception> 3421 * 3422 * r2 = r3; 3423 * r2 += 8; 3424 * if (pkt_end <= r2) goto <handle exception> 3425 * <access okay> 3426 * 3427 * Where: 3428 * pkt_end == dst_reg, r2 == src_reg 3429 * r2=pkt(id=n,off=8,r=0) 3430 * r3=pkt(id=n,off=0,r=0) 3431 * 3432 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3433 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3434 * and [r3, r3 + 8-1) respectively is safe to access depending on 3435 * the check. 3436 */ 3437 3438 /* If our ids match, then we must have the same max_value. And we 3439 * don't care about the other reg's fixed offset, since if it's too big 3440 * the range won't allow anything. 3441 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3442 */ 3443 for (i = 0; i < MAX_BPF_REG; i++) 3444 if (regs[i].type == type && regs[i].id == dst_reg->id) 3445 /* keep the maximum range already checked */ 3446 regs[i].range = max(regs[i].range, new_range); 3447 3448 for (j = 0; j <= vstate->curframe; j++) { 3449 state = vstate->frame[j]; 3450 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3451 if (state->stack[i].slot_type[0] != STACK_SPILL) 3452 continue; 3453 reg = &state->stack[i].spilled_ptr; 3454 if (reg->type == type && reg->id == dst_reg->id) 3455 reg->range = max(reg->range, new_range); 3456 } 3457 } 3458 } 3459 3460 /* Adjusts the register min/max values in the case that the dst_reg is the 3461 * variable register that we are working on, and src_reg is a constant or we're 3462 * simply doing a BPF_K check. 3463 * In JEQ/JNE cases we also adjust the var_off values. 3464 */ 3465 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3466 struct bpf_reg_state *false_reg, u64 val, 3467 u8 opcode) 3468 { 3469 /* If the dst_reg is a pointer, we can't learn anything about its 3470 * variable offset from the compare (unless src_reg were a pointer into 3471 * the same object, but we don't bother with that. 3472 * Since false_reg and true_reg have the same type by construction, we 3473 * only need to check one of them for pointerness. 3474 */ 3475 if (__is_pointer_value(false, false_reg)) 3476 return; 3477 3478 switch (opcode) { 3479 case BPF_JEQ: 3480 /* If this is false then we know nothing Jon Snow, but if it is 3481 * true then we know for sure. 3482 */ 3483 __mark_reg_known(true_reg, val); 3484 break; 3485 case BPF_JNE: 3486 /* If this is true we know nothing Jon Snow, but if it is false 3487 * we know the value for sure; 3488 */ 3489 __mark_reg_known(false_reg, val); 3490 break; 3491 case BPF_JGT: 3492 false_reg->umax_value = min(false_reg->umax_value, val); 3493 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3494 break; 3495 case BPF_JSGT: 3496 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3497 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3498 break; 3499 case BPF_JLT: 3500 false_reg->umin_value = max(false_reg->umin_value, val); 3501 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3502 break; 3503 case BPF_JSLT: 3504 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3505 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3506 break; 3507 case BPF_JGE: 3508 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3509 true_reg->umin_value = max(true_reg->umin_value, val); 3510 break; 3511 case BPF_JSGE: 3512 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3513 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3514 break; 3515 case BPF_JLE: 3516 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3517 true_reg->umax_value = min(true_reg->umax_value, val); 3518 break; 3519 case BPF_JSLE: 3520 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3521 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3522 break; 3523 default: 3524 break; 3525 } 3526 3527 __reg_deduce_bounds(false_reg); 3528 __reg_deduce_bounds(true_reg); 3529 /* We might have learned some bits from the bounds. */ 3530 __reg_bound_offset(false_reg); 3531 __reg_bound_offset(true_reg); 3532 /* Intersecting with the old var_off might have improved our bounds 3533 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3534 * then new var_off is (0; 0x7f...fc) which improves our umax. 3535 */ 3536 __update_reg_bounds(false_reg); 3537 __update_reg_bounds(true_reg); 3538 } 3539 3540 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3541 * the variable reg. 3542 */ 3543 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3544 struct bpf_reg_state *false_reg, u64 val, 3545 u8 opcode) 3546 { 3547 if (__is_pointer_value(false, false_reg)) 3548 return; 3549 3550 switch (opcode) { 3551 case BPF_JEQ: 3552 /* If this is false then we know nothing Jon Snow, but if it is 3553 * true then we know for sure. 3554 */ 3555 __mark_reg_known(true_reg, val); 3556 break; 3557 case BPF_JNE: 3558 /* If this is true we know nothing Jon Snow, but if it is false 3559 * we know the value for sure; 3560 */ 3561 __mark_reg_known(false_reg, val); 3562 break; 3563 case BPF_JGT: 3564 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3565 false_reg->umin_value = max(false_reg->umin_value, val); 3566 break; 3567 case BPF_JSGT: 3568 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3569 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3570 break; 3571 case BPF_JLT: 3572 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3573 false_reg->umax_value = min(false_reg->umax_value, val); 3574 break; 3575 case BPF_JSLT: 3576 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3577 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3578 break; 3579 case BPF_JGE: 3580 true_reg->umax_value = min(true_reg->umax_value, val); 3581 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3582 break; 3583 case BPF_JSGE: 3584 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3585 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3586 break; 3587 case BPF_JLE: 3588 true_reg->umin_value = max(true_reg->umin_value, val); 3589 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3590 break; 3591 case BPF_JSLE: 3592 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3593 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3594 break; 3595 default: 3596 break; 3597 } 3598 3599 __reg_deduce_bounds(false_reg); 3600 __reg_deduce_bounds(true_reg); 3601 /* We might have learned some bits from the bounds. */ 3602 __reg_bound_offset(false_reg); 3603 __reg_bound_offset(true_reg); 3604 /* Intersecting with the old var_off might have improved our bounds 3605 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3606 * then new var_off is (0; 0x7f...fc) which improves our umax. 3607 */ 3608 __update_reg_bounds(false_reg); 3609 __update_reg_bounds(true_reg); 3610 } 3611 3612 /* Regs are known to be equal, so intersect their min/max/var_off */ 3613 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3614 struct bpf_reg_state *dst_reg) 3615 { 3616 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3617 dst_reg->umin_value); 3618 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3619 dst_reg->umax_value); 3620 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3621 dst_reg->smin_value); 3622 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3623 dst_reg->smax_value); 3624 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3625 dst_reg->var_off); 3626 /* We might have learned new bounds from the var_off. */ 3627 __update_reg_bounds(src_reg); 3628 __update_reg_bounds(dst_reg); 3629 /* We might have learned something about the sign bit. */ 3630 __reg_deduce_bounds(src_reg); 3631 __reg_deduce_bounds(dst_reg); 3632 /* We might have learned some bits from the bounds. */ 3633 __reg_bound_offset(src_reg); 3634 __reg_bound_offset(dst_reg); 3635 /* Intersecting with the old var_off might have improved our bounds 3636 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3637 * then new var_off is (0; 0x7f...fc) which improves our umax. 3638 */ 3639 __update_reg_bounds(src_reg); 3640 __update_reg_bounds(dst_reg); 3641 } 3642 3643 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3644 struct bpf_reg_state *true_dst, 3645 struct bpf_reg_state *false_src, 3646 struct bpf_reg_state *false_dst, 3647 u8 opcode) 3648 { 3649 switch (opcode) { 3650 case BPF_JEQ: 3651 __reg_combine_min_max(true_src, true_dst); 3652 break; 3653 case BPF_JNE: 3654 __reg_combine_min_max(false_src, false_dst); 3655 break; 3656 } 3657 } 3658 3659 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3660 bool is_null) 3661 { 3662 struct bpf_reg_state *reg = ®s[regno]; 3663 3664 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3665 /* Old offset (both fixed and variable parts) should 3666 * have been known-zero, because we don't allow pointer 3667 * arithmetic on pointers that might be NULL. 3668 */ 3669 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3670 !tnum_equals_const(reg->var_off, 0) || 3671 reg->off)) { 3672 __mark_reg_known_zero(reg); 3673 reg->off = 0; 3674 } 3675 if (is_null) { 3676 reg->type = SCALAR_VALUE; 3677 } else if (reg->map_ptr->inner_map_meta) { 3678 reg->type = CONST_PTR_TO_MAP; 3679 reg->map_ptr = reg->map_ptr->inner_map_meta; 3680 } else { 3681 reg->type = PTR_TO_MAP_VALUE; 3682 } 3683 /* We don't need id from this point onwards anymore, thus we 3684 * should better reset it, so that state pruning has chances 3685 * to take effect. 3686 */ 3687 reg->id = 0; 3688 } 3689 } 3690 3691 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3692 * be folded together at some point. 3693 */ 3694 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3695 bool is_null) 3696 { 3697 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3698 struct bpf_reg_state *regs = state->regs; 3699 u32 id = regs[regno].id; 3700 int i, j; 3701 3702 for (i = 0; i < MAX_BPF_REG; i++) 3703 mark_map_reg(regs, i, id, is_null); 3704 3705 for (j = 0; j <= vstate->curframe; j++) { 3706 state = vstate->frame[j]; 3707 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3708 if (state->stack[i].slot_type[0] != STACK_SPILL) 3709 continue; 3710 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3711 } 3712 } 3713 } 3714 3715 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3716 struct bpf_reg_state *dst_reg, 3717 struct bpf_reg_state *src_reg, 3718 struct bpf_verifier_state *this_branch, 3719 struct bpf_verifier_state *other_branch) 3720 { 3721 if (BPF_SRC(insn->code) != BPF_X) 3722 return false; 3723 3724 switch (BPF_OP(insn->code)) { 3725 case BPF_JGT: 3726 if ((dst_reg->type == PTR_TO_PACKET && 3727 src_reg->type == PTR_TO_PACKET_END) || 3728 (dst_reg->type == PTR_TO_PACKET_META && 3729 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3730 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3731 find_good_pkt_pointers(this_branch, dst_reg, 3732 dst_reg->type, false); 3733 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3734 src_reg->type == PTR_TO_PACKET) || 3735 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3736 src_reg->type == PTR_TO_PACKET_META)) { 3737 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3738 find_good_pkt_pointers(other_branch, src_reg, 3739 src_reg->type, true); 3740 } else { 3741 return false; 3742 } 3743 break; 3744 case BPF_JLT: 3745 if ((dst_reg->type == PTR_TO_PACKET && 3746 src_reg->type == PTR_TO_PACKET_END) || 3747 (dst_reg->type == PTR_TO_PACKET_META && 3748 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3749 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3750 find_good_pkt_pointers(other_branch, dst_reg, 3751 dst_reg->type, true); 3752 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3753 src_reg->type == PTR_TO_PACKET) || 3754 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3755 src_reg->type == PTR_TO_PACKET_META)) { 3756 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3757 find_good_pkt_pointers(this_branch, src_reg, 3758 src_reg->type, false); 3759 } else { 3760 return false; 3761 } 3762 break; 3763 case BPF_JGE: 3764 if ((dst_reg->type == PTR_TO_PACKET && 3765 src_reg->type == PTR_TO_PACKET_END) || 3766 (dst_reg->type == PTR_TO_PACKET_META && 3767 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3768 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3769 find_good_pkt_pointers(this_branch, dst_reg, 3770 dst_reg->type, true); 3771 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3772 src_reg->type == PTR_TO_PACKET) || 3773 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3774 src_reg->type == PTR_TO_PACKET_META)) { 3775 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3776 find_good_pkt_pointers(other_branch, src_reg, 3777 src_reg->type, false); 3778 } else { 3779 return false; 3780 } 3781 break; 3782 case BPF_JLE: 3783 if ((dst_reg->type == PTR_TO_PACKET && 3784 src_reg->type == PTR_TO_PACKET_END) || 3785 (dst_reg->type == PTR_TO_PACKET_META && 3786 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3787 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3788 find_good_pkt_pointers(other_branch, dst_reg, 3789 dst_reg->type, false); 3790 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3791 src_reg->type == PTR_TO_PACKET) || 3792 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3793 src_reg->type == PTR_TO_PACKET_META)) { 3794 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3795 find_good_pkt_pointers(this_branch, src_reg, 3796 src_reg->type, true); 3797 } else { 3798 return false; 3799 } 3800 break; 3801 default: 3802 return false; 3803 } 3804 3805 return true; 3806 } 3807 3808 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3809 struct bpf_insn *insn, int *insn_idx) 3810 { 3811 struct bpf_verifier_state *this_branch = env->cur_state; 3812 struct bpf_verifier_state *other_branch; 3813 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3814 struct bpf_reg_state *dst_reg, *other_branch_regs; 3815 u8 opcode = BPF_OP(insn->code); 3816 int err; 3817 3818 if (opcode > BPF_JSLE) { 3819 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3820 return -EINVAL; 3821 } 3822 3823 if (BPF_SRC(insn->code) == BPF_X) { 3824 if (insn->imm != 0) { 3825 verbose(env, "BPF_JMP uses reserved fields\n"); 3826 return -EINVAL; 3827 } 3828 3829 /* check src1 operand */ 3830 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3831 if (err) 3832 return err; 3833 3834 if (is_pointer_value(env, insn->src_reg)) { 3835 verbose(env, "R%d pointer comparison prohibited\n", 3836 insn->src_reg); 3837 return -EACCES; 3838 } 3839 } else { 3840 if (insn->src_reg != BPF_REG_0) { 3841 verbose(env, "BPF_JMP uses reserved fields\n"); 3842 return -EINVAL; 3843 } 3844 } 3845 3846 /* check src2 operand */ 3847 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3848 if (err) 3849 return err; 3850 3851 dst_reg = ®s[insn->dst_reg]; 3852 3853 /* detect if R == 0 where R was initialized to zero earlier */ 3854 if (BPF_SRC(insn->code) == BPF_K && 3855 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3856 dst_reg->type == SCALAR_VALUE && 3857 tnum_is_const(dst_reg->var_off)) { 3858 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3859 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3860 /* if (imm == imm) goto pc+off; 3861 * only follow the goto, ignore fall-through 3862 */ 3863 *insn_idx += insn->off; 3864 return 0; 3865 } else { 3866 /* if (imm != imm) goto pc+off; 3867 * only follow fall-through branch, since 3868 * that's where the program will go 3869 */ 3870 return 0; 3871 } 3872 } 3873 3874 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3875 if (!other_branch) 3876 return -EFAULT; 3877 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3878 3879 /* detect if we are comparing against a constant value so we can adjust 3880 * our min/max values for our dst register. 3881 * this is only legit if both are scalars (or pointers to the same 3882 * object, I suppose, but we don't support that right now), because 3883 * otherwise the different base pointers mean the offsets aren't 3884 * comparable. 3885 */ 3886 if (BPF_SRC(insn->code) == BPF_X) { 3887 if (dst_reg->type == SCALAR_VALUE && 3888 regs[insn->src_reg].type == SCALAR_VALUE) { 3889 if (tnum_is_const(regs[insn->src_reg].var_off)) 3890 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3891 dst_reg, regs[insn->src_reg].var_off.value, 3892 opcode); 3893 else if (tnum_is_const(dst_reg->var_off)) 3894 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3895 ®s[insn->src_reg], 3896 dst_reg->var_off.value, opcode); 3897 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3898 /* Comparing for equality, we can combine knowledge */ 3899 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3900 &other_branch_regs[insn->dst_reg], 3901 ®s[insn->src_reg], 3902 ®s[insn->dst_reg], opcode); 3903 } 3904 } else if (dst_reg->type == SCALAR_VALUE) { 3905 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3906 dst_reg, insn->imm, opcode); 3907 } 3908 3909 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3910 if (BPF_SRC(insn->code) == BPF_K && 3911 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3912 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3913 /* Mark all identical map registers in each branch as either 3914 * safe or unknown depending R == 0 or R != 0 conditional. 3915 */ 3916 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3917 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3918 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3919 this_branch, other_branch) && 3920 is_pointer_value(env, insn->dst_reg)) { 3921 verbose(env, "R%d pointer comparison prohibited\n", 3922 insn->dst_reg); 3923 return -EACCES; 3924 } 3925 if (env->log.level) 3926 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3927 return 0; 3928 } 3929 3930 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3931 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3932 { 3933 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3934 3935 return (struct bpf_map *) (unsigned long) imm64; 3936 } 3937 3938 /* verify BPF_LD_IMM64 instruction */ 3939 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3940 { 3941 struct bpf_reg_state *regs = cur_regs(env); 3942 int err; 3943 3944 if (BPF_SIZE(insn->code) != BPF_DW) { 3945 verbose(env, "invalid BPF_LD_IMM insn\n"); 3946 return -EINVAL; 3947 } 3948 if (insn->off != 0) { 3949 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3950 return -EINVAL; 3951 } 3952 3953 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3954 if (err) 3955 return err; 3956 3957 if (insn->src_reg == 0) { 3958 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3959 3960 regs[insn->dst_reg].type = SCALAR_VALUE; 3961 __mark_reg_known(®s[insn->dst_reg], imm); 3962 return 0; 3963 } 3964 3965 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3966 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3967 3968 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3969 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3970 return 0; 3971 } 3972 3973 static bool may_access_skb(enum bpf_prog_type type) 3974 { 3975 switch (type) { 3976 case BPF_PROG_TYPE_SOCKET_FILTER: 3977 case BPF_PROG_TYPE_SCHED_CLS: 3978 case BPF_PROG_TYPE_SCHED_ACT: 3979 return true; 3980 default: 3981 return false; 3982 } 3983 } 3984 3985 /* verify safety of LD_ABS|LD_IND instructions: 3986 * - they can only appear in the programs where ctx == skb 3987 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3988 * preserve R6-R9, and store return value into R0 3989 * 3990 * Implicit input: 3991 * ctx == skb == R6 == CTX 3992 * 3993 * Explicit input: 3994 * SRC == any register 3995 * IMM == 32-bit immediate 3996 * 3997 * Output: 3998 * R0 - 8/16/32-bit skb data converted to cpu endianness 3999 */ 4000 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4001 { 4002 struct bpf_reg_state *regs = cur_regs(env); 4003 u8 mode = BPF_MODE(insn->code); 4004 int i, err; 4005 4006 if (!may_access_skb(env->prog->type)) { 4007 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4008 return -EINVAL; 4009 } 4010 4011 if (!env->ops->gen_ld_abs) { 4012 verbose(env, "bpf verifier is misconfigured\n"); 4013 return -EINVAL; 4014 } 4015 4016 if (env->subprog_cnt > 1) { 4017 /* when program has LD_ABS insn JITs and interpreter assume 4018 * that r1 == ctx == skb which is not the case for callees 4019 * that can have arbitrary arguments. It's problematic 4020 * for main prog as well since JITs would need to analyze 4021 * all functions in order to make proper register save/restore 4022 * decisions in the main prog. Hence disallow LD_ABS with calls 4023 */ 4024 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4025 return -EINVAL; 4026 } 4027 4028 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4029 BPF_SIZE(insn->code) == BPF_DW || 4030 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4031 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4032 return -EINVAL; 4033 } 4034 4035 /* check whether implicit source operand (register R6) is readable */ 4036 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4037 if (err) 4038 return err; 4039 4040 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4041 verbose(env, 4042 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4043 return -EINVAL; 4044 } 4045 4046 if (mode == BPF_IND) { 4047 /* check explicit source operand */ 4048 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4049 if (err) 4050 return err; 4051 } 4052 4053 /* reset caller saved regs to unreadable */ 4054 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4055 mark_reg_not_init(env, regs, caller_saved[i]); 4056 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4057 } 4058 4059 /* mark destination R0 register as readable, since it contains 4060 * the value fetched from the packet. 4061 * Already marked as written above. 4062 */ 4063 mark_reg_unknown(env, regs, BPF_REG_0); 4064 return 0; 4065 } 4066 4067 static int check_return_code(struct bpf_verifier_env *env) 4068 { 4069 struct bpf_reg_state *reg; 4070 struct tnum range = tnum_range(0, 1); 4071 4072 switch (env->prog->type) { 4073 case BPF_PROG_TYPE_CGROUP_SKB: 4074 case BPF_PROG_TYPE_CGROUP_SOCK: 4075 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4076 case BPF_PROG_TYPE_SOCK_OPS: 4077 case BPF_PROG_TYPE_CGROUP_DEVICE: 4078 break; 4079 default: 4080 return 0; 4081 } 4082 4083 reg = cur_regs(env) + BPF_REG_0; 4084 if (reg->type != SCALAR_VALUE) { 4085 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4086 reg_type_str[reg->type]); 4087 return -EINVAL; 4088 } 4089 4090 if (!tnum_in(range, reg->var_off)) { 4091 verbose(env, "At program exit the register R0 "); 4092 if (!tnum_is_unknown(reg->var_off)) { 4093 char tn_buf[48]; 4094 4095 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4096 verbose(env, "has value %s", tn_buf); 4097 } else { 4098 verbose(env, "has unknown scalar value"); 4099 } 4100 verbose(env, " should have been 0 or 1\n"); 4101 return -EINVAL; 4102 } 4103 return 0; 4104 } 4105 4106 /* non-recursive DFS pseudo code 4107 * 1 procedure DFS-iterative(G,v): 4108 * 2 label v as discovered 4109 * 3 let S be a stack 4110 * 4 S.push(v) 4111 * 5 while S is not empty 4112 * 6 t <- S.pop() 4113 * 7 if t is what we're looking for: 4114 * 8 return t 4115 * 9 for all edges e in G.adjacentEdges(t) do 4116 * 10 if edge e is already labelled 4117 * 11 continue with the next edge 4118 * 12 w <- G.adjacentVertex(t,e) 4119 * 13 if vertex w is not discovered and not explored 4120 * 14 label e as tree-edge 4121 * 15 label w as discovered 4122 * 16 S.push(w) 4123 * 17 continue at 5 4124 * 18 else if vertex w is discovered 4125 * 19 label e as back-edge 4126 * 20 else 4127 * 21 // vertex w is explored 4128 * 22 label e as forward- or cross-edge 4129 * 23 label t as explored 4130 * 24 S.pop() 4131 * 4132 * convention: 4133 * 0x10 - discovered 4134 * 0x11 - discovered and fall-through edge labelled 4135 * 0x12 - discovered and fall-through and branch edges labelled 4136 * 0x20 - explored 4137 */ 4138 4139 enum { 4140 DISCOVERED = 0x10, 4141 EXPLORED = 0x20, 4142 FALLTHROUGH = 1, 4143 BRANCH = 2, 4144 }; 4145 4146 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4147 4148 static int *insn_stack; /* stack of insns to process */ 4149 static int cur_stack; /* current stack index */ 4150 static int *insn_state; 4151 4152 /* t, w, e - match pseudo-code above: 4153 * t - index of current instruction 4154 * w - next instruction 4155 * e - edge 4156 */ 4157 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4158 { 4159 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4160 return 0; 4161 4162 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4163 return 0; 4164 4165 if (w < 0 || w >= env->prog->len) { 4166 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4167 return -EINVAL; 4168 } 4169 4170 if (e == BRANCH) 4171 /* mark branch target for state pruning */ 4172 env->explored_states[w] = STATE_LIST_MARK; 4173 4174 if (insn_state[w] == 0) { 4175 /* tree-edge */ 4176 insn_state[t] = DISCOVERED | e; 4177 insn_state[w] = DISCOVERED; 4178 if (cur_stack >= env->prog->len) 4179 return -E2BIG; 4180 insn_stack[cur_stack++] = w; 4181 return 1; 4182 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4183 verbose(env, "back-edge from insn %d to %d\n", t, w); 4184 return -EINVAL; 4185 } else if (insn_state[w] == EXPLORED) { 4186 /* forward- or cross-edge */ 4187 insn_state[t] = DISCOVERED | e; 4188 } else { 4189 verbose(env, "insn state internal bug\n"); 4190 return -EFAULT; 4191 } 4192 return 0; 4193 } 4194 4195 /* non-recursive depth-first-search to detect loops in BPF program 4196 * loop == back-edge in directed graph 4197 */ 4198 static int check_cfg(struct bpf_verifier_env *env) 4199 { 4200 struct bpf_insn *insns = env->prog->insnsi; 4201 int insn_cnt = env->prog->len; 4202 int ret = 0; 4203 int i, t; 4204 4205 ret = check_subprogs(env); 4206 if (ret < 0) 4207 return ret; 4208 4209 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4210 if (!insn_state) 4211 return -ENOMEM; 4212 4213 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4214 if (!insn_stack) { 4215 kfree(insn_state); 4216 return -ENOMEM; 4217 } 4218 4219 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4220 insn_stack[0] = 0; /* 0 is the first instruction */ 4221 cur_stack = 1; 4222 4223 peek_stack: 4224 if (cur_stack == 0) 4225 goto check_state; 4226 t = insn_stack[cur_stack - 1]; 4227 4228 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4229 u8 opcode = BPF_OP(insns[t].code); 4230 4231 if (opcode == BPF_EXIT) { 4232 goto mark_explored; 4233 } else if (opcode == BPF_CALL) { 4234 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4235 if (ret == 1) 4236 goto peek_stack; 4237 else if (ret < 0) 4238 goto err_free; 4239 if (t + 1 < insn_cnt) 4240 env->explored_states[t + 1] = STATE_LIST_MARK; 4241 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4242 env->explored_states[t] = STATE_LIST_MARK; 4243 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4244 if (ret == 1) 4245 goto peek_stack; 4246 else if (ret < 0) 4247 goto err_free; 4248 } 4249 } else if (opcode == BPF_JA) { 4250 if (BPF_SRC(insns[t].code) != BPF_K) { 4251 ret = -EINVAL; 4252 goto err_free; 4253 } 4254 /* unconditional jump with single edge */ 4255 ret = push_insn(t, t + insns[t].off + 1, 4256 FALLTHROUGH, env); 4257 if (ret == 1) 4258 goto peek_stack; 4259 else if (ret < 0) 4260 goto err_free; 4261 /* tell verifier to check for equivalent states 4262 * after every call and jump 4263 */ 4264 if (t + 1 < insn_cnt) 4265 env->explored_states[t + 1] = STATE_LIST_MARK; 4266 } else { 4267 /* conditional jump with two edges */ 4268 env->explored_states[t] = STATE_LIST_MARK; 4269 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4270 if (ret == 1) 4271 goto peek_stack; 4272 else if (ret < 0) 4273 goto err_free; 4274 4275 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4276 if (ret == 1) 4277 goto peek_stack; 4278 else if (ret < 0) 4279 goto err_free; 4280 } 4281 } else { 4282 /* all other non-branch instructions with single 4283 * fall-through edge 4284 */ 4285 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4286 if (ret == 1) 4287 goto peek_stack; 4288 else if (ret < 0) 4289 goto err_free; 4290 } 4291 4292 mark_explored: 4293 insn_state[t] = EXPLORED; 4294 if (cur_stack-- <= 0) { 4295 verbose(env, "pop stack internal bug\n"); 4296 ret = -EFAULT; 4297 goto err_free; 4298 } 4299 goto peek_stack; 4300 4301 check_state: 4302 for (i = 0; i < insn_cnt; i++) { 4303 if (insn_state[i] != EXPLORED) { 4304 verbose(env, "unreachable insn %d\n", i); 4305 ret = -EINVAL; 4306 goto err_free; 4307 } 4308 } 4309 ret = 0; /* cfg looks good */ 4310 4311 err_free: 4312 kfree(insn_state); 4313 kfree(insn_stack); 4314 return ret; 4315 } 4316 4317 /* check %cur's range satisfies %old's */ 4318 static bool range_within(struct bpf_reg_state *old, 4319 struct bpf_reg_state *cur) 4320 { 4321 return old->umin_value <= cur->umin_value && 4322 old->umax_value >= cur->umax_value && 4323 old->smin_value <= cur->smin_value && 4324 old->smax_value >= cur->smax_value; 4325 } 4326 4327 /* Maximum number of register states that can exist at once */ 4328 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4329 struct idpair { 4330 u32 old; 4331 u32 cur; 4332 }; 4333 4334 /* If in the old state two registers had the same id, then they need to have 4335 * the same id in the new state as well. But that id could be different from 4336 * the old state, so we need to track the mapping from old to new ids. 4337 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4338 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4339 * regs with a different old id could still have new id 9, we don't care about 4340 * that. 4341 * So we look through our idmap to see if this old id has been seen before. If 4342 * so, we require the new id to match; otherwise, we add the id pair to the map. 4343 */ 4344 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4345 { 4346 unsigned int i; 4347 4348 for (i = 0; i < ID_MAP_SIZE; i++) { 4349 if (!idmap[i].old) { 4350 /* Reached an empty slot; haven't seen this id before */ 4351 idmap[i].old = old_id; 4352 idmap[i].cur = cur_id; 4353 return true; 4354 } 4355 if (idmap[i].old == old_id) 4356 return idmap[i].cur == cur_id; 4357 } 4358 /* We ran out of idmap slots, which should be impossible */ 4359 WARN_ON_ONCE(1); 4360 return false; 4361 } 4362 4363 /* Returns true if (rold safe implies rcur safe) */ 4364 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4365 struct idpair *idmap) 4366 { 4367 bool equal; 4368 4369 if (!(rold->live & REG_LIVE_READ)) 4370 /* explored state didn't use this */ 4371 return true; 4372 4373 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; 4374 4375 if (rold->type == PTR_TO_STACK) 4376 /* two stack pointers are equal only if they're pointing to 4377 * the same stack frame, since fp-8 in foo != fp-8 in bar 4378 */ 4379 return equal && rold->frameno == rcur->frameno; 4380 4381 if (equal) 4382 return true; 4383 4384 if (rold->type == NOT_INIT) 4385 /* explored state can't have used this */ 4386 return true; 4387 if (rcur->type == NOT_INIT) 4388 return false; 4389 switch (rold->type) { 4390 case SCALAR_VALUE: 4391 if (rcur->type == SCALAR_VALUE) { 4392 /* new val must satisfy old val knowledge */ 4393 return range_within(rold, rcur) && 4394 tnum_in(rold->var_off, rcur->var_off); 4395 } else { 4396 /* We're trying to use a pointer in place of a scalar. 4397 * Even if the scalar was unbounded, this could lead to 4398 * pointer leaks because scalars are allowed to leak 4399 * while pointers are not. We could make this safe in 4400 * special cases if root is calling us, but it's 4401 * probably not worth the hassle. 4402 */ 4403 return false; 4404 } 4405 case PTR_TO_MAP_VALUE: 4406 /* If the new min/max/var_off satisfy the old ones and 4407 * everything else matches, we are OK. 4408 * We don't care about the 'id' value, because nothing 4409 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4410 */ 4411 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4412 range_within(rold, rcur) && 4413 tnum_in(rold->var_off, rcur->var_off); 4414 case PTR_TO_MAP_VALUE_OR_NULL: 4415 /* a PTR_TO_MAP_VALUE could be safe to use as a 4416 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4417 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4418 * checked, doing so could have affected others with the same 4419 * id, and we can't check for that because we lost the id when 4420 * we converted to a PTR_TO_MAP_VALUE. 4421 */ 4422 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4423 return false; 4424 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4425 return false; 4426 /* Check our ids match any regs they're supposed to */ 4427 return check_ids(rold->id, rcur->id, idmap); 4428 case PTR_TO_PACKET_META: 4429 case PTR_TO_PACKET: 4430 if (rcur->type != rold->type) 4431 return false; 4432 /* We must have at least as much range as the old ptr 4433 * did, so that any accesses which were safe before are 4434 * still safe. This is true even if old range < old off, 4435 * since someone could have accessed through (ptr - k), or 4436 * even done ptr -= k in a register, to get a safe access. 4437 */ 4438 if (rold->range > rcur->range) 4439 return false; 4440 /* If the offsets don't match, we can't trust our alignment; 4441 * nor can we be sure that we won't fall out of range. 4442 */ 4443 if (rold->off != rcur->off) 4444 return false; 4445 /* id relations must be preserved */ 4446 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4447 return false; 4448 /* new val must satisfy old val knowledge */ 4449 return range_within(rold, rcur) && 4450 tnum_in(rold->var_off, rcur->var_off); 4451 case PTR_TO_CTX: 4452 case CONST_PTR_TO_MAP: 4453 case PTR_TO_PACKET_END: 4454 /* Only valid matches are exact, which memcmp() above 4455 * would have accepted 4456 */ 4457 default: 4458 /* Don't know what's going on, just say it's not safe */ 4459 return false; 4460 } 4461 4462 /* Shouldn't get here; if we do, say it's not safe */ 4463 WARN_ON_ONCE(1); 4464 return false; 4465 } 4466 4467 static bool stacksafe(struct bpf_func_state *old, 4468 struct bpf_func_state *cur, 4469 struct idpair *idmap) 4470 { 4471 int i, spi; 4472 4473 /* if explored stack has more populated slots than current stack 4474 * such stacks are not equivalent 4475 */ 4476 if (old->allocated_stack > cur->allocated_stack) 4477 return false; 4478 4479 /* walk slots of the explored stack and ignore any additional 4480 * slots in the current stack, since explored(safe) state 4481 * didn't use them 4482 */ 4483 for (i = 0; i < old->allocated_stack; i++) { 4484 spi = i / BPF_REG_SIZE; 4485 4486 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4487 /* explored state didn't use this */ 4488 continue; 4489 4490 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4491 continue; 4492 /* if old state was safe with misc data in the stack 4493 * it will be safe with zero-initialized stack. 4494 * The opposite is not true 4495 */ 4496 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4497 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4498 continue; 4499 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4500 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4501 /* Ex: old explored (safe) state has STACK_SPILL in 4502 * this stack slot, but current has has STACK_MISC -> 4503 * this verifier states are not equivalent, 4504 * return false to continue verification of this path 4505 */ 4506 return false; 4507 if (i % BPF_REG_SIZE) 4508 continue; 4509 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4510 continue; 4511 if (!regsafe(&old->stack[spi].spilled_ptr, 4512 &cur->stack[spi].spilled_ptr, 4513 idmap)) 4514 /* when explored and current stack slot are both storing 4515 * spilled registers, check that stored pointers types 4516 * are the same as well. 4517 * Ex: explored safe path could have stored 4518 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4519 * but current path has stored: 4520 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4521 * such verifier states are not equivalent. 4522 * return false to continue verification of this path 4523 */ 4524 return false; 4525 } 4526 return true; 4527 } 4528 4529 /* compare two verifier states 4530 * 4531 * all states stored in state_list are known to be valid, since 4532 * verifier reached 'bpf_exit' instruction through them 4533 * 4534 * this function is called when verifier exploring different branches of 4535 * execution popped from the state stack. If it sees an old state that has 4536 * more strict register state and more strict stack state then this execution 4537 * branch doesn't need to be explored further, since verifier already 4538 * concluded that more strict state leads to valid finish. 4539 * 4540 * Therefore two states are equivalent if register state is more conservative 4541 * and explored stack state is more conservative than the current one. 4542 * Example: 4543 * explored current 4544 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4545 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4546 * 4547 * In other words if current stack state (one being explored) has more 4548 * valid slots than old one that already passed validation, it means 4549 * the verifier can stop exploring and conclude that current state is valid too 4550 * 4551 * Similarly with registers. If explored state has register type as invalid 4552 * whereas register type in current state is meaningful, it means that 4553 * the current state will reach 'bpf_exit' instruction safely 4554 */ 4555 static bool func_states_equal(struct bpf_func_state *old, 4556 struct bpf_func_state *cur) 4557 { 4558 struct idpair *idmap; 4559 bool ret = false; 4560 int i; 4561 4562 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4563 /* If we failed to allocate the idmap, just say it's not safe */ 4564 if (!idmap) 4565 return false; 4566 4567 for (i = 0; i < MAX_BPF_REG; i++) { 4568 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4569 goto out_free; 4570 } 4571 4572 if (!stacksafe(old, cur, idmap)) 4573 goto out_free; 4574 ret = true; 4575 out_free: 4576 kfree(idmap); 4577 return ret; 4578 } 4579 4580 static bool states_equal(struct bpf_verifier_env *env, 4581 struct bpf_verifier_state *old, 4582 struct bpf_verifier_state *cur) 4583 { 4584 int i; 4585 4586 if (old->curframe != cur->curframe) 4587 return false; 4588 4589 /* for states to be equal callsites have to be the same 4590 * and all frame states need to be equivalent 4591 */ 4592 for (i = 0; i <= old->curframe; i++) { 4593 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4594 return false; 4595 if (!func_states_equal(old->frame[i], cur->frame[i])) 4596 return false; 4597 } 4598 return true; 4599 } 4600 4601 /* A write screens off any subsequent reads; but write marks come from the 4602 * straight-line code between a state and its parent. When we arrive at an 4603 * equivalent state (jump target or such) we didn't arrive by the straight-line 4604 * code, so read marks in the state must propagate to the parent regardless 4605 * of the state's write marks. That's what 'parent == state->parent' comparison 4606 * in mark_reg_read() and mark_stack_slot_read() is for. 4607 */ 4608 static int propagate_liveness(struct bpf_verifier_env *env, 4609 const struct bpf_verifier_state *vstate, 4610 struct bpf_verifier_state *vparent) 4611 { 4612 int i, frame, err = 0; 4613 struct bpf_func_state *state, *parent; 4614 4615 if (vparent->curframe != vstate->curframe) { 4616 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4617 vparent->curframe, vstate->curframe); 4618 return -EFAULT; 4619 } 4620 /* Propagate read liveness of registers... */ 4621 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4622 /* We don't need to worry about FP liveness because it's read-only */ 4623 for (i = 0; i < BPF_REG_FP; i++) { 4624 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4625 continue; 4626 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4627 err = mark_reg_read(env, vstate, vparent, i); 4628 if (err) 4629 return err; 4630 } 4631 } 4632 4633 /* ... and stack slots */ 4634 for (frame = 0; frame <= vstate->curframe; frame++) { 4635 state = vstate->frame[frame]; 4636 parent = vparent->frame[frame]; 4637 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4638 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4639 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4640 continue; 4641 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4642 mark_stack_slot_read(env, vstate, vparent, i, frame); 4643 } 4644 } 4645 return err; 4646 } 4647 4648 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4649 { 4650 struct bpf_verifier_state_list *new_sl; 4651 struct bpf_verifier_state_list *sl; 4652 struct bpf_verifier_state *cur = env->cur_state; 4653 int i, j, err; 4654 4655 sl = env->explored_states[insn_idx]; 4656 if (!sl) 4657 /* this 'insn_idx' instruction wasn't marked, so we will not 4658 * be doing state search here 4659 */ 4660 return 0; 4661 4662 while (sl != STATE_LIST_MARK) { 4663 if (states_equal(env, &sl->state, cur)) { 4664 /* reached equivalent register/stack state, 4665 * prune the search. 4666 * Registers read by the continuation are read by us. 4667 * If we have any write marks in env->cur_state, they 4668 * will prevent corresponding reads in the continuation 4669 * from reaching our parent (an explored_state). Our 4670 * own state will get the read marks recorded, but 4671 * they'll be immediately forgotten as we're pruning 4672 * this state and will pop a new one. 4673 */ 4674 err = propagate_liveness(env, &sl->state, cur); 4675 if (err) 4676 return err; 4677 return 1; 4678 } 4679 sl = sl->next; 4680 } 4681 4682 /* there were no equivalent states, remember current one. 4683 * technically the current state is not proven to be safe yet, 4684 * but it will either reach outer most bpf_exit (which means it's safe) 4685 * or it will be rejected. Since there are no loops, we won't be 4686 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4687 * again on the way to bpf_exit 4688 */ 4689 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4690 if (!new_sl) 4691 return -ENOMEM; 4692 4693 /* add new state to the head of linked list */ 4694 err = copy_verifier_state(&new_sl->state, cur); 4695 if (err) { 4696 free_verifier_state(&new_sl->state, false); 4697 kfree(new_sl); 4698 return err; 4699 } 4700 new_sl->next = env->explored_states[insn_idx]; 4701 env->explored_states[insn_idx] = new_sl; 4702 /* connect new state to parentage chain */ 4703 cur->parent = &new_sl->state; 4704 /* clear write marks in current state: the writes we did are not writes 4705 * our child did, so they don't screen off its reads from us. 4706 * (There are no read marks in current state, because reads always mark 4707 * their parent and current state never has children yet. Only 4708 * explored_states can get read marks.) 4709 */ 4710 for (i = 0; i < BPF_REG_FP; i++) 4711 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4712 4713 /* all stack frames are accessible from callee, clear them all */ 4714 for (j = 0; j <= cur->curframe; j++) { 4715 struct bpf_func_state *frame = cur->frame[j]; 4716 4717 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) 4718 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4719 } 4720 return 0; 4721 } 4722 4723 static int do_check(struct bpf_verifier_env *env) 4724 { 4725 struct bpf_verifier_state *state; 4726 struct bpf_insn *insns = env->prog->insnsi; 4727 struct bpf_reg_state *regs; 4728 int insn_cnt = env->prog->len, i; 4729 int insn_idx, prev_insn_idx = 0; 4730 int insn_processed = 0; 4731 bool do_print_state = false; 4732 4733 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4734 if (!state) 4735 return -ENOMEM; 4736 state->curframe = 0; 4737 state->parent = NULL; 4738 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4739 if (!state->frame[0]) { 4740 kfree(state); 4741 return -ENOMEM; 4742 } 4743 env->cur_state = state; 4744 init_func_state(env, state->frame[0], 4745 BPF_MAIN_FUNC /* callsite */, 4746 0 /* frameno */, 4747 0 /* subprogno, zero == main subprog */); 4748 insn_idx = 0; 4749 for (;;) { 4750 struct bpf_insn *insn; 4751 u8 class; 4752 int err; 4753 4754 if (insn_idx >= insn_cnt) { 4755 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4756 insn_idx, insn_cnt); 4757 return -EFAULT; 4758 } 4759 4760 insn = &insns[insn_idx]; 4761 class = BPF_CLASS(insn->code); 4762 4763 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4764 verbose(env, 4765 "BPF program is too large. Processed %d insn\n", 4766 insn_processed); 4767 return -E2BIG; 4768 } 4769 4770 err = is_state_visited(env, insn_idx); 4771 if (err < 0) 4772 return err; 4773 if (err == 1) { 4774 /* found equivalent state, can prune the search */ 4775 if (env->log.level) { 4776 if (do_print_state) 4777 verbose(env, "\nfrom %d to %d: safe\n", 4778 prev_insn_idx, insn_idx); 4779 else 4780 verbose(env, "%d: safe\n", insn_idx); 4781 } 4782 goto process_bpf_exit; 4783 } 4784 4785 if (need_resched()) 4786 cond_resched(); 4787 4788 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4789 if (env->log.level > 1) 4790 verbose(env, "%d:", insn_idx); 4791 else 4792 verbose(env, "\nfrom %d to %d:", 4793 prev_insn_idx, insn_idx); 4794 print_verifier_state(env, state->frame[state->curframe]); 4795 do_print_state = false; 4796 } 4797 4798 if (env->log.level) { 4799 const struct bpf_insn_cbs cbs = { 4800 .cb_print = verbose, 4801 .private_data = env, 4802 }; 4803 4804 verbose(env, "%d: ", insn_idx); 4805 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4806 } 4807 4808 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4809 err = bpf_prog_offload_verify_insn(env, insn_idx, 4810 prev_insn_idx); 4811 if (err) 4812 return err; 4813 } 4814 4815 regs = cur_regs(env); 4816 env->insn_aux_data[insn_idx].seen = true; 4817 if (class == BPF_ALU || class == BPF_ALU64) { 4818 err = check_alu_op(env, insn); 4819 if (err) 4820 return err; 4821 4822 } else if (class == BPF_LDX) { 4823 enum bpf_reg_type *prev_src_type, src_reg_type; 4824 4825 /* check for reserved fields is already done */ 4826 4827 /* check src operand */ 4828 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4829 if (err) 4830 return err; 4831 4832 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4833 if (err) 4834 return err; 4835 4836 src_reg_type = regs[insn->src_reg].type; 4837 4838 /* check that memory (src_reg + off) is readable, 4839 * the state of dst_reg will be updated by this func 4840 */ 4841 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4842 BPF_SIZE(insn->code), BPF_READ, 4843 insn->dst_reg, false); 4844 if (err) 4845 return err; 4846 4847 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4848 4849 if (*prev_src_type == NOT_INIT) { 4850 /* saw a valid insn 4851 * dst_reg = *(u32 *)(src_reg + off) 4852 * save type to validate intersecting paths 4853 */ 4854 *prev_src_type = src_reg_type; 4855 4856 } else if (src_reg_type != *prev_src_type && 4857 (src_reg_type == PTR_TO_CTX || 4858 *prev_src_type == PTR_TO_CTX)) { 4859 /* ABuser program is trying to use the same insn 4860 * dst_reg = *(u32*) (src_reg + off) 4861 * with different pointer types: 4862 * src_reg == ctx in one branch and 4863 * src_reg == stack|map in some other branch. 4864 * Reject it. 4865 */ 4866 verbose(env, "same insn cannot be used with different pointers\n"); 4867 return -EINVAL; 4868 } 4869 4870 } else if (class == BPF_STX) { 4871 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4872 4873 if (BPF_MODE(insn->code) == BPF_XADD) { 4874 err = check_xadd(env, insn_idx, insn); 4875 if (err) 4876 return err; 4877 insn_idx++; 4878 continue; 4879 } 4880 4881 /* check src1 operand */ 4882 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4883 if (err) 4884 return err; 4885 /* check src2 operand */ 4886 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4887 if (err) 4888 return err; 4889 4890 dst_reg_type = regs[insn->dst_reg].type; 4891 4892 /* check that memory (dst_reg + off) is writeable */ 4893 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4894 BPF_SIZE(insn->code), BPF_WRITE, 4895 insn->src_reg, false); 4896 if (err) 4897 return err; 4898 4899 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4900 4901 if (*prev_dst_type == NOT_INIT) { 4902 *prev_dst_type = dst_reg_type; 4903 } else if (dst_reg_type != *prev_dst_type && 4904 (dst_reg_type == PTR_TO_CTX || 4905 *prev_dst_type == PTR_TO_CTX)) { 4906 verbose(env, "same insn cannot be used with different pointers\n"); 4907 return -EINVAL; 4908 } 4909 4910 } else if (class == BPF_ST) { 4911 if (BPF_MODE(insn->code) != BPF_MEM || 4912 insn->src_reg != BPF_REG_0) { 4913 verbose(env, "BPF_ST uses reserved fields\n"); 4914 return -EINVAL; 4915 } 4916 /* check src operand */ 4917 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4918 if (err) 4919 return err; 4920 4921 if (is_ctx_reg(env, insn->dst_reg)) { 4922 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4923 insn->dst_reg); 4924 return -EACCES; 4925 } 4926 4927 /* check that memory (dst_reg + off) is writeable */ 4928 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4929 BPF_SIZE(insn->code), BPF_WRITE, 4930 -1, false); 4931 if (err) 4932 return err; 4933 4934 } else if (class == BPF_JMP) { 4935 u8 opcode = BPF_OP(insn->code); 4936 4937 if (opcode == BPF_CALL) { 4938 if (BPF_SRC(insn->code) != BPF_K || 4939 insn->off != 0 || 4940 (insn->src_reg != BPF_REG_0 && 4941 insn->src_reg != BPF_PSEUDO_CALL) || 4942 insn->dst_reg != BPF_REG_0) { 4943 verbose(env, "BPF_CALL uses reserved fields\n"); 4944 return -EINVAL; 4945 } 4946 4947 if (insn->src_reg == BPF_PSEUDO_CALL) 4948 err = check_func_call(env, insn, &insn_idx); 4949 else 4950 err = check_helper_call(env, insn->imm, insn_idx); 4951 if (err) 4952 return err; 4953 4954 } else if (opcode == BPF_JA) { 4955 if (BPF_SRC(insn->code) != BPF_K || 4956 insn->imm != 0 || 4957 insn->src_reg != BPF_REG_0 || 4958 insn->dst_reg != BPF_REG_0) { 4959 verbose(env, "BPF_JA uses reserved fields\n"); 4960 return -EINVAL; 4961 } 4962 4963 insn_idx += insn->off + 1; 4964 continue; 4965 4966 } else if (opcode == BPF_EXIT) { 4967 if (BPF_SRC(insn->code) != BPF_K || 4968 insn->imm != 0 || 4969 insn->src_reg != BPF_REG_0 || 4970 insn->dst_reg != BPF_REG_0) { 4971 verbose(env, "BPF_EXIT uses reserved fields\n"); 4972 return -EINVAL; 4973 } 4974 4975 if (state->curframe) { 4976 /* exit from nested function */ 4977 prev_insn_idx = insn_idx; 4978 err = prepare_func_exit(env, &insn_idx); 4979 if (err) 4980 return err; 4981 do_print_state = true; 4982 continue; 4983 } 4984 4985 /* eBPF calling convetion is such that R0 is used 4986 * to return the value from eBPF program. 4987 * Make sure that it's readable at this time 4988 * of bpf_exit, which means that program wrote 4989 * something into it earlier 4990 */ 4991 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4992 if (err) 4993 return err; 4994 4995 if (is_pointer_value(env, BPF_REG_0)) { 4996 verbose(env, "R0 leaks addr as return value\n"); 4997 return -EACCES; 4998 } 4999 5000 err = check_return_code(env); 5001 if (err) 5002 return err; 5003 process_bpf_exit: 5004 err = pop_stack(env, &prev_insn_idx, &insn_idx); 5005 if (err < 0) { 5006 if (err != -ENOENT) 5007 return err; 5008 break; 5009 } else { 5010 do_print_state = true; 5011 continue; 5012 } 5013 } else { 5014 err = check_cond_jmp_op(env, insn, &insn_idx); 5015 if (err) 5016 return err; 5017 } 5018 } else if (class == BPF_LD) { 5019 u8 mode = BPF_MODE(insn->code); 5020 5021 if (mode == BPF_ABS || mode == BPF_IND) { 5022 err = check_ld_abs(env, insn); 5023 if (err) 5024 return err; 5025 5026 } else if (mode == BPF_IMM) { 5027 err = check_ld_imm(env, insn); 5028 if (err) 5029 return err; 5030 5031 insn_idx++; 5032 env->insn_aux_data[insn_idx].seen = true; 5033 } else { 5034 verbose(env, "invalid BPF_LD mode\n"); 5035 return -EINVAL; 5036 } 5037 } else { 5038 verbose(env, "unknown insn class %d\n", class); 5039 return -EINVAL; 5040 } 5041 5042 insn_idx++; 5043 } 5044 5045 verbose(env, "processed %d insns (limit %d), stack depth ", 5046 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5047 for (i = 0; i < env->subprog_cnt; i++) { 5048 u32 depth = env->subprog_info[i].stack_depth; 5049 5050 verbose(env, "%d", depth); 5051 if (i + 1 < env->subprog_cnt) 5052 verbose(env, "+"); 5053 } 5054 verbose(env, "\n"); 5055 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5056 return 0; 5057 } 5058 5059 static int check_map_prealloc(struct bpf_map *map) 5060 { 5061 return (map->map_type != BPF_MAP_TYPE_HASH && 5062 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5063 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5064 !(map->map_flags & BPF_F_NO_PREALLOC); 5065 } 5066 5067 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5068 struct bpf_map *map, 5069 struct bpf_prog *prog) 5070 5071 { 5072 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 5073 * preallocated hash maps, since doing memory allocation 5074 * in overflow_handler can crash depending on where nmi got 5075 * triggered. 5076 */ 5077 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5078 if (!check_map_prealloc(map)) { 5079 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5080 return -EINVAL; 5081 } 5082 if (map->inner_map_meta && 5083 !check_map_prealloc(map->inner_map_meta)) { 5084 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5085 return -EINVAL; 5086 } 5087 } 5088 5089 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5090 !bpf_offload_prog_map_match(prog, map)) { 5091 verbose(env, "offload device mismatch between prog and map\n"); 5092 return -EINVAL; 5093 } 5094 5095 return 0; 5096 } 5097 5098 /* look for pseudo eBPF instructions that access map FDs and 5099 * replace them with actual map pointers 5100 */ 5101 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5102 { 5103 struct bpf_insn *insn = env->prog->insnsi; 5104 int insn_cnt = env->prog->len; 5105 int i, j, err; 5106 5107 err = bpf_prog_calc_tag(env->prog); 5108 if (err) 5109 return err; 5110 5111 for (i = 0; i < insn_cnt; i++, insn++) { 5112 if (BPF_CLASS(insn->code) == BPF_LDX && 5113 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5114 verbose(env, "BPF_LDX uses reserved fields\n"); 5115 return -EINVAL; 5116 } 5117 5118 if (BPF_CLASS(insn->code) == BPF_STX && 5119 ((BPF_MODE(insn->code) != BPF_MEM && 5120 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5121 verbose(env, "BPF_STX uses reserved fields\n"); 5122 return -EINVAL; 5123 } 5124 5125 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5126 struct bpf_map *map; 5127 struct fd f; 5128 5129 if (i == insn_cnt - 1 || insn[1].code != 0 || 5130 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5131 insn[1].off != 0) { 5132 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5133 return -EINVAL; 5134 } 5135 5136 if (insn->src_reg == 0) 5137 /* valid generic load 64-bit imm */ 5138 goto next_insn; 5139 5140 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5141 verbose(env, 5142 "unrecognized bpf_ld_imm64 insn\n"); 5143 return -EINVAL; 5144 } 5145 5146 f = fdget(insn->imm); 5147 map = __bpf_map_get(f); 5148 if (IS_ERR(map)) { 5149 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5150 insn->imm); 5151 return PTR_ERR(map); 5152 } 5153 5154 err = check_map_prog_compatibility(env, map, env->prog); 5155 if (err) { 5156 fdput(f); 5157 return err; 5158 } 5159 5160 /* store map pointer inside BPF_LD_IMM64 instruction */ 5161 insn[0].imm = (u32) (unsigned long) map; 5162 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5163 5164 /* check whether we recorded this map already */ 5165 for (j = 0; j < env->used_map_cnt; j++) 5166 if (env->used_maps[j] == map) { 5167 fdput(f); 5168 goto next_insn; 5169 } 5170 5171 if (env->used_map_cnt >= MAX_USED_MAPS) { 5172 fdput(f); 5173 return -E2BIG; 5174 } 5175 5176 /* hold the map. If the program is rejected by verifier, 5177 * the map will be released by release_maps() or it 5178 * will be used by the valid program until it's unloaded 5179 * and all maps are released in free_used_maps() 5180 */ 5181 map = bpf_map_inc(map, false); 5182 if (IS_ERR(map)) { 5183 fdput(f); 5184 return PTR_ERR(map); 5185 } 5186 env->used_maps[env->used_map_cnt++] = map; 5187 5188 if (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE && 5189 bpf_cgroup_storage_assign(env->prog, map)) { 5190 verbose(env, 5191 "only one cgroup storage is allowed\n"); 5192 fdput(f); 5193 return -EBUSY; 5194 } 5195 5196 fdput(f); 5197 next_insn: 5198 insn++; 5199 i++; 5200 continue; 5201 } 5202 5203 /* Basic sanity check before we invest more work here. */ 5204 if (!bpf_opcode_in_insntable(insn->code)) { 5205 verbose(env, "unknown opcode %02x\n", insn->code); 5206 return -EINVAL; 5207 } 5208 } 5209 5210 /* now all pseudo BPF_LD_IMM64 instructions load valid 5211 * 'struct bpf_map *' into a register instead of user map_fd. 5212 * These pointers will be used later by verifier to validate map access. 5213 */ 5214 return 0; 5215 } 5216 5217 /* drop refcnt of maps used by the rejected program */ 5218 static void release_maps(struct bpf_verifier_env *env) 5219 { 5220 int i; 5221 5222 if (env->prog->aux->cgroup_storage) 5223 bpf_cgroup_storage_release(env->prog, 5224 env->prog->aux->cgroup_storage); 5225 5226 for (i = 0; i < env->used_map_cnt; i++) 5227 bpf_map_put(env->used_maps[i]); 5228 } 5229 5230 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5231 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5232 { 5233 struct bpf_insn *insn = env->prog->insnsi; 5234 int insn_cnt = env->prog->len; 5235 int i; 5236 5237 for (i = 0; i < insn_cnt; i++, insn++) 5238 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5239 insn->src_reg = 0; 5240 } 5241 5242 /* single env->prog->insni[off] instruction was replaced with the range 5243 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5244 * [0, off) and [off, end) to new locations, so the patched range stays zero 5245 */ 5246 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5247 u32 off, u32 cnt) 5248 { 5249 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5250 int i; 5251 5252 if (cnt == 1) 5253 return 0; 5254 new_data = vzalloc(array_size(prog_len, 5255 sizeof(struct bpf_insn_aux_data))); 5256 if (!new_data) 5257 return -ENOMEM; 5258 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5259 memcpy(new_data + off + cnt - 1, old_data + off, 5260 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5261 for (i = off; i < off + cnt - 1; i++) 5262 new_data[i].seen = true; 5263 env->insn_aux_data = new_data; 5264 vfree(old_data); 5265 return 0; 5266 } 5267 5268 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5269 { 5270 int i; 5271 5272 if (len == 1) 5273 return; 5274 /* NOTE: fake 'exit' subprog should be updated as well. */ 5275 for (i = 0; i <= env->subprog_cnt; i++) { 5276 if (env->subprog_info[i].start < off) 5277 continue; 5278 env->subprog_info[i].start += len - 1; 5279 } 5280 } 5281 5282 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5283 const struct bpf_insn *patch, u32 len) 5284 { 5285 struct bpf_prog *new_prog; 5286 5287 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5288 if (!new_prog) 5289 return NULL; 5290 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5291 return NULL; 5292 adjust_subprog_starts(env, off, len); 5293 return new_prog; 5294 } 5295 5296 /* The verifier does more data flow analysis than llvm and will not 5297 * explore branches that are dead at run time. Malicious programs can 5298 * have dead code too. Therefore replace all dead at-run-time code 5299 * with 'ja -1'. 5300 * 5301 * Just nops are not optimal, e.g. if they would sit at the end of the 5302 * program and through another bug we would manage to jump there, then 5303 * we'd execute beyond program memory otherwise. Returning exception 5304 * code also wouldn't work since we can have subprogs where the dead 5305 * code could be located. 5306 */ 5307 static void sanitize_dead_code(struct bpf_verifier_env *env) 5308 { 5309 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5310 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5311 struct bpf_insn *insn = env->prog->insnsi; 5312 const int insn_cnt = env->prog->len; 5313 int i; 5314 5315 for (i = 0; i < insn_cnt; i++) { 5316 if (aux_data[i].seen) 5317 continue; 5318 memcpy(insn + i, &trap, sizeof(trap)); 5319 } 5320 } 5321 5322 /* convert load instructions that access fields of 'struct __sk_buff' 5323 * into sequence of instructions that access fields of 'struct sk_buff' 5324 */ 5325 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5326 { 5327 const struct bpf_verifier_ops *ops = env->ops; 5328 int i, cnt, size, ctx_field_size, delta = 0; 5329 const int insn_cnt = env->prog->len; 5330 struct bpf_insn insn_buf[16], *insn; 5331 struct bpf_prog *new_prog; 5332 enum bpf_access_type type; 5333 bool is_narrower_load; 5334 u32 target_size; 5335 5336 if (ops->gen_prologue) { 5337 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5338 env->prog); 5339 if (cnt >= ARRAY_SIZE(insn_buf)) { 5340 verbose(env, "bpf verifier is misconfigured\n"); 5341 return -EINVAL; 5342 } else if (cnt) { 5343 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5344 if (!new_prog) 5345 return -ENOMEM; 5346 5347 env->prog = new_prog; 5348 delta += cnt - 1; 5349 } 5350 } 5351 5352 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux)) 5353 return 0; 5354 5355 insn = env->prog->insnsi + delta; 5356 5357 for (i = 0; i < insn_cnt; i++, insn++) { 5358 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5359 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5360 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5361 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5362 type = BPF_READ; 5363 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5364 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5365 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5366 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5367 type = BPF_WRITE; 5368 else 5369 continue; 5370 5371 if (type == BPF_WRITE && 5372 env->insn_aux_data[i + delta].sanitize_stack_off) { 5373 struct bpf_insn patch[] = { 5374 /* Sanitize suspicious stack slot with zero. 5375 * There are no memory dependencies for this store, 5376 * since it's only using frame pointer and immediate 5377 * constant of zero 5378 */ 5379 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5380 env->insn_aux_data[i + delta].sanitize_stack_off, 5381 0), 5382 /* the original STX instruction will immediately 5383 * overwrite the same stack slot with appropriate value 5384 */ 5385 *insn, 5386 }; 5387 5388 cnt = ARRAY_SIZE(patch); 5389 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5390 if (!new_prog) 5391 return -ENOMEM; 5392 5393 delta += cnt - 1; 5394 env->prog = new_prog; 5395 insn = new_prog->insnsi + i + delta; 5396 continue; 5397 } 5398 5399 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5400 continue; 5401 5402 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5403 size = BPF_LDST_BYTES(insn); 5404 5405 /* If the read access is a narrower load of the field, 5406 * convert to a 4/8-byte load, to minimum program type specific 5407 * convert_ctx_access changes. If conversion is successful, 5408 * we will apply proper mask to the result. 5409 */ 5410 is_narrower_load = size < ctx_field_size; 5411 if (is_narrower_load) { 5412 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 5413 u32 off = insn->off; 5414 u8 size_code; 5415 5416 if (type == BPF_WRITE) { 5417 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5418 return -EINVAL; 5419 } 5420 5421 size_code = BPF_H; 5422 if (ctx_field_size == 4) 5423 size_code = BPF_W; 5424 else if (ctx_field_size == 8) 5425 size_code = BPF_DW; 5426 5427 insn->off = off & ~(size_default - 1); 5428 insn->code = BPF_LDX | BPF_MEM | size_code; 5429 } 5430 5431 target_size = 0; 5432 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5433 &target_size); 5434 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5435 (ctx_field_size && !target_size)) { 5436 verbose(env, "bpf verifier is misconfigured\n"); 5437 return -EINVAL; 5438 } 5439 5440 if (is_narrower_load && size < target_size) { 5441 if (ctx_field_size <= 4) 5442 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5443 (1 << size * 8) - 1); 5444 else 5445 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5446 (1 << size * 8) - 1); 5447 } 5448 5449 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5450 if (!new_prog) 5451 return -ENOMEM; 5452 5453 delta += cnt - 1; 5454 5455 /* keep walking new program and skip insns we just inserted */ 5456 env->prog = new_prog; 5457 insn = new_prog->insnsi + i + delta; 5458 } 5459 5460 return 0; 5461 } 5462 5463 static int jit_subprogs(struct bpf_verifier_env *env) 5464 { 5465 struct bpf_prog *prog = env->prog, **func, *tmp; 5466 int i, j, subprog_start, subprog_end = 0, len, subprog; 5467 struct bpf_insn *insn; 5468 void *old_bpf_func; 5469 int err = -ENOMEM; 5470 5471 if (env->subprog_cnt <= 1) 5472 return 0; 5473 5474 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5475 if (insn->code != (BPF_JMP | BPF_CALL) || 5476 insn->src_reg != BPF_PSEUDO_CALL) 5477 continue; 5478 /* Upon error here we cannot fall back to interpreter but 5479 * need a hard reject of the program. Thus -EFAULT is 5480 * propagated in any case. 5481 */ 5482 subprog = find_subprog(env, i + insn->imm + 1); 5483 if (subprog < 0) { 5484 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5485 i + insn->imm + 1); 5486 return -EFAULT; 5487 } 5488 /* temporarily remember subprog id inside insn instead of 5489 * aux_data, since next loop will split up all insns into funcs 5490 */ 5491 insn->off = subprog; 5492 /* remember original imm in case JIT fails and fallback 5493 * to interpreter will be needed 5494 */ 5495 env->insn_aux_data[i].call_imm = insn->imm; 5496 /* point imm to __bpf_call_base+1 from JITs point of view */ 5497 insn->imm = 1; 5498 } 5499 5500 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 5501 if (!func) 5502 goto out_undo_insn; 5503 5504 for (i = 0; i < env->subprog_cnt; i++) { 5505 subprog_start = subprog_end; 5506 subprog_end = env->subprog_info[i + 1].start; 5507 5508 len = subprog_end - subprog_start; 5509 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5510 if (!func[i]) 5511 goto out_free; 5512 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5513 len * sizeof(struct bpf_insn)); 5514 func[i]->type = prog->type; 5515 func[i]->len = len; 5516 if (bpf_prog_calc_tag(func[i])) 5517 goto out_free; 5518 func[i]->is_func = 1; 5519 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5520 * Long term would need debug info to populate names 5521 */ 5522 func[i]->aux->name[0] = 'F'; 5523 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5524 func[i]->jit_requested = 1; 5525 func[i] = bpf_int_jit_compile(func[i]); 5526 if (!func[i]->jited) { 5527 err = -ENOTSUPP; 5528 goto out_free; 5529 } 5530 cond_resched(); 5531 } 5532 /* at this point all bpf functions were successfully JITed 5533 * now populate all bpf_calls with correct addresses and 5534 * run last pass of JIT 5535 */ 5536 for (i = 0; i < env->subprog_cnt; i++) { 5537 insn = func[i]->insnsi; 5538 for (j = 0; j < func[i]->len; j++, insn++) { 5539 if (insn->code != (BPF_JMP | BPF_CALL) || 5540 insn->src_reg != BPF_PSEUDO_CALL) 5541 continue; 5542 subprog = insn->off; 5543 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5544 func[subprog]->bpf_func - 5545 __bpf_call_base; 5546 } 5547 5548 /* we use the aux data to keep a list of the start addresses 5549 * of the JITed images for each function in the program 5550 * 5551 * for some architectures, such as powerpc64, the imm field 5552 * might not be large enough to hold the offset of the start 5553 * address of the callee's JITed image from __bpf_call_base 5554 * 5555 * in such cases, we can lookup the start address of a callee 5556 * by using its subprog id, available from the off field of 5557 * the call instruction, as an index for this list 5558 */ 5559 func[i]->aux->func = func; 5560 func[i]->aux->func_cnt = env->subprog_cnt; 5561 } 5562 for (i = 0; i < env->subprog_cnt; i++) { 5563 old_bpf_func = func[i]->bpf_func; 5564 tmp = bpf_int_jit_compile(func[i]); 5565 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5566 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5567 err = -ENOTSUPP; 5568 goto out_free; 5569 } 5570 cond_resched(); 5571 } 5572 5573 /* finally lock prog and jit images for all functions and 5574 * populate kallsysm 5575 */ 5576 for (i = 0; i < env->subprog_cnt; i++) { 5577 bpf_prog_lock_ro(func[i]); 5578 bpf_prog_kallsyms_add(func[i]); 5579 } 5580 5581 /* Last step: make now unused interpreter insns from main 5582 * prog consistent for later dump requests, so they can 5583 * later look the same as if they were interpreted only. 5584 */ 5585 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5586 if (insn->code != (BPF_JMP | BPF_CALL) || 5587 insn->src_reg != BPF_PSEUDO_CALL) 5588 continue; 5589 insn->off = env->insn_aux_data[i].call_imm; 5590 subprog = find_subprog(env, i + insn->off + 1); 5591 insn->imm = subprog; 5592 } 5593 5594 prog->jited = 1; 5595 prog->bpf_func = func[0]->bpf_func; 5596 prog->aux->func = func; 5597 prog->aux->func_cnt = env->subprog_cnt; 5598 return 0; 5599 out_free: 5600 for (i = 0; i < env->subprog_cnt; i++) 5601 if (func[i]) 5602 bpf_jit_free(func[i]); 5603 kfree(func); 5604 out_undo_insn: 5605 /* cleanup main prog to be interpreted */ 5606 prog->jit_requested = 0; 5607 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5608 if (insn->code != (BPF_JMP | BPF_CALL) || 5609 insn->src_reg != BPF_PSEUDO_CALL) 5610 continue; 5611 insn->off = 0; 5612 insn->imm = env->insn_aux_data[i].call_imm; 5613 } 5614 return err; 5615 } 5616 5617 static int fixup_call_args(struct bpf_verifier_env *env) 5618 { 5619 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5620 struct bpf_prog *prog = env->prog; 5621 struct bpf_insn *insn = prog->insnsi; 5622 int i, depth; 5623 #endif 5624 int err; 5625 5626 err = 0; 5627 if (env->prog->jit_requested) { 5628 err = jit_subprogs(env); 5629 if (err == 0) 5630 return 0; 5631 if (err == -EFAULT) 5632 return err; 5633 } 5634 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5635 for (i = 0; i < prog->len; i++, insn++) { 5636 if (insn->code != (BPF_JMP | BPF_CALL) || 5637 insn->src_reg != BPF_PSEUDO_CALL) 5638 continue; 5639 depth = get_callee_stack_depth(env, insn, i); 5640 if (depth < 0) 5641 return depth; 5642 bpf_patch_call_args(insn, depth); 5643 } 5644 err = 0; 5645 #endif 5646 return err; 5647 } 5648 5649 /* fixup insn->imm field of bpf_call instructions 5650 * and inline eligible helpers as explicit sequence of BPF instructions 5651 * 5652 * this function is called after eBPF program passed verification 5653 */ 5654 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5655 { 5656 struct bpf_prog *prog = env->prog; 5657 struct bpf_insn *insn = prog->insnsi; 5658 const struct bpf_func_proto *fn; 5659 const int insn_cnt = prog->len; 5660 const struct bpf_map_ops *ops; 5661 struct bpf_insn_aux_data *aux; 5662 struct bpf_insn insn_buf[16]; 5663 struct bpf_prog *new_prog; 5664 struct bpf_map *map_ptr; 5665 int i, cnt, delta = 0; 5666 5667 for (i = 0; i < insn_cnt; i++, insn++) { 5668 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5669 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5670 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5671 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5672 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5673 struct bpf_insn mask_and_div[] = { 5674 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5675 /* Rx div 0 -> 0 */ 5676 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5677 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5678 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5679 *insn, 5680 }; 5681 struct bpf_insn mask_and_mod[] = { 5682 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5683 /* Rx mod 0 -> Rx */ 5684 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5685 *insn, 5686 }; 5687 struct bpf_insn *patchlet; 5688 5689 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5690 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5691 patchlet = mask_and_div + (is64 ? 1 : 0); 5692 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5693 } else { 5694 patchlet = mask_and_mod + (is64 ? 1 : 0); 5695 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5696 } 5697 5698 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5699 if (!new_prog) 5700 return -ENOMEM; 5701 5702 delta += cnt - 1; 5703 env->prog = prog = new_prog; 5704 insn = new_prog->insnsi + i + delta; 5705 continue; 5706 } 5707 5708 if (BPF_CLASS(insn->code) == BPF_LD && 5709 (BPF_MODE(insn->code) == BPF_ABS || 5710 BPF_MODE(insn->code) == BPF_IND)) { 5711 cnt = env->ops->gen_ld_abs(insn, insn_buf); 5712 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5713 verbose(env, "bpf verifier is misconfigured\n"); 5714 return -EINVAL; 5715 } 5716 5717 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5718 if (!new_prog) 5719 return -ENOMEM; 5720 5721 delta += cnt - 1; 5722 env->prog = prog = new_prog; 5723 insn = new_prog->insnsi + i + delta; 5724 continue; 5725 } 5726 5727 if (insn->code != (BPF_JMP | BPF_CALL)) 5728 continue; 5729 if (insn->src_reg == BPF_PSEUDO_CALL) 5730 continue; 5731 5732 if (insn->imm == BPF_FUNC_get_route_realm) 5733 prog->dst_needed = 1; 5734 if (insn->imm == BPF_FUNC_get_prandom_u32) 5735 bpf_user_rnd_init_once(); 5736 if (insn->imm == BPF_FUNC_override_return) 5737 prog->kprobe_override = 1; 5738 if (insn->imm == BPF_FUNC_tail_call) { 5739 /* If we tail call into other programs, we 5740 * cannot make any assumptions since they can 5741 * be replaced dynamically during runtime in 5742 * the program array. 5743 */ 5744 prog->cb_access = 1; 5745 env->prog->aux->stack_depth = MAX_BPF_STACK; 5746 5747 /* mark bpf_tail_call as different opcode to avoid 5748 * conditional branch in the interpeter for every normal 5749 * call and to prevent accidental JITing by JIT compiler 5750 * that doesn't support bpf_tail_call yet 5751 */ 5752 insn->imm = 0; 5753 insn->code = BPF_JMP | BPF_TAIL_CALL; 5754 5755 aux = &env->insn_aux_data[i + delta]; 5756 if (!bpf_map_ptr_unpriv(aux)) 5757 continue; 5758 5759 /* instead of changing every JIT dealing with tail_call 5760 * emit two extra insns: 5761 * if (index >= max_entries) goto out; 5762 * index &= array->index_mask; 5763 * to avoid out-of-bounds cpu speculation 5764 */ 5765 if (bpf_map_ptr_poisoned(aux)) { 5766 verbose(env, "tail_call abusing map_ptr\n"); 5767 return -EINVAL; 5768 } 5769 5770 map_ptr = BPF_MAP_PTR(aux->map_state); 5771 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5772 map_ptr->max_entries, 2); 5773 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5774 container_of(map_ptr, 5775 struct bpf_array, 5776 map)->index_mask); 5777 insn_buf[2] = *insn; 5778 cnt = 3; 5779 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5780 if (!new_prog) 5781 return -ENOMEM; 5782 5783 delta += cnt - 1; 5784 env->prog = prog = new_prog; 5785 insn = new_prog->insnsi + i + delta; 5786 continue; 5787 } 5788 5789 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5790 * and other inlining handlers are currently limited to 64 bit 5791 * only. 5792 */ 5793 if (prog->jit_requested && BITS_PER_LONG == 64 && 5794 (insn->imm == BPF_FUNC_map_lookup_elem || 5795 insn->imm == BPF_FUNC_map_update_elem || 5796 insn->imm == BPF_FUNC_map_delete_elem)) { 5797 aux = &env->insn_aux_data[i + delta]; 5798 if (bpf_map_ptr_poisoned(aux)) 5799 goto patch_call_imm; 5800 5801 map_ptr = BPF_MAP_PTR(aux->map_state); 5802 ops = map_ptr->ops; 5803 if (insn->imm == BPF_FUNC_map_lookup_elem && 5804 ops->map_gen_lookup) { 5805 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 5806 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5807 verbose(env, "bpf verifier is misconfigured\n"); 5808 return -EINVAL; 5809 } 5810 5811 new_prog = bpf_patch_insn_data(env, i + delta, 5812 insn_buf, cnt); 5813 if (!new_prog) 5814 return -ENOMEM; 5815 5816 delta += cnt - 1; 5817 env->prog = prog = new_prog; 5818 insn = new_prog->insnsi + i + delta; 5819 continue; 5820 } 5821 5822 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 5823 (void *(*)(struct bpf_map *map, void *key))NULL)); 5824 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 5825 (int (*)(struct bpf_map *map, void *key))NULL)); 5826 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 5827 (int (*)(struct bpf_map *map, void *key, void *value, 5828 u64 flags))NULL)); 5829 switch (insn->imm) { 5830 case BPF_FUNC_map_lookup_elem: 5831 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 5832 __bpf_call_base; 5833 continue; 5834 case BPF_FUNC_map_update_elem: 5835 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 5836 __bpf_call_base; 5837 continue; 5838 case BPF_FUNC_map_delete_elem: 5839 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 5840 __bpf_call_base; 5841 continue; 5842 } 5843 5844 goto patch_call_imm; 5845 } 5846 5847 patch_call_imm: 5848 fn = env->ops->get_func_proto(insn->imm, env->prog); 5849 /* all functions that have prototype and verifier allowed 5850 * programs to call them, must be real in-kernel functions 5851 */ 5852 if (!fn->func) { 5853 verbose(env, 5854 "kernel subsystem misconfigured func %s#%d\n", 5855 func_id_name(insn->imm), insn->imm); 5856 return -EFAULT; 5857 } 5858 insn->imm = fn->func - __bpf_call_base; 5859 } 5860 5861 return 0; 5862 } 5863 5864 static void free_states(struct bpf_verifier_env *env) 5865 { 5866 struct bpf_verifier_state_list *sl, *sln; 5867 int i; 5868 5869 if (!env->explored_states) 5870 return; 5871 5872 for (i = 0; i < env->prog->len; i++) { 5873 sl = env->explored_states[i]; 5874 5875 if (sl) 5876 while (sl != STATE_LIST_MARK) { 5877 sln = sl->next; 5878 free_verifier_state(&sl->state, false); 5879 kfree(sl); 5880 sl = sln; 5881 } 5882 } 5883 5884 kfree(env->explored_states); 5885 } 5886 5887 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5888 { 5889 struct bpf_verifier_env *env; 5890 struct bpf_verifier_log *log; 5891 int ret = -EINVAL; 5892 5893 /* no program is valid */ 5894 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5895 return -EINVAL; 5896 5897 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5898 * allocate/free it every time bpf_check() is called 5899 */ 5900 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5901 if (!env) 5902 return -ENOMEM; 5903 log = &env->log; 5904 5905 env->insn_aux_data = 5906 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 5907 (*prog)->len)); 5908 ret = -ENOMEM; 5909 if (!env->insn_aux_data) 5910 goto err_free_env; 5911 env->prog = *prog; 5912 env->ops = bpf_verifier_ops[env->prog->type]; 5913 5914 /* grab the mutex to protect few globals used by verifier */ 5915 mutex_lock(&bpf_verifier_lock); 5916 5917 if (attr->log_level || attr->log_buf || attr->log_size) { 5918 /* user requested verbose verifier output 5919 * and supplied buffer to store the verification trace 5920 */ 5921 log->level = attr->log_level; 5922 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5923 log->len_total = attr->log_size; 5924 5925 ret = -EINVAL; 5926 /* log attributes have to be sane */ 5927 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5928 !log->level || !log->ubuf) 5929 goto err_unlock; 5930 } 5931 5932 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5933 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5934 env->strict_alignment = true; 5935 5936 ret = replace_map_fd_with_map_ptr(env); 5937 if (ret < 0) 5938 goto skip_full_check; 5939 5940 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5941 ret = bpf_prog_offload_verifier_prep(env); 5942 if (ret) 5943 goto skip_full_check; 5944 } 5945 5946 env->explored_states = kcalloc(env->prog->len, 5947 sizeof(struct bpf_verifier_state_list *), 5948 GFP_USER); 5949 ret = -ENOMEM; 5950 if (!env->explored_states) 5951 goto skip_full_check; 5952 5953 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5954 5955 ret = check_cfg(env); 5956 if (ret < 0) 5957 goto skip_full_check; 5958 5959 ret = do_check(env); 5960 if (env->cur_state) { 5961 free_verifier_state(env->cur_state, true); 5962 env->cur_state = NULL; 5963 } 5964 5965 skip_full_check: 5966 while (!pop_stack(env, NULL, NULL)); 5967 free_states(env); 5968 5969 if (ret == 0) 5970 sanitize_dead_code(env); 5971 5972 if (ret == 0) 5973 ret = check_max_stack_depth(env); 5974 5975 if (ret == 0) 5976 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5977 ret = convert_ctx_accesses(env); 5978 5979 if (ret == 0) 5980 ret = fixup_bpf_calls(env); 5981 5982 if (ret == 0) 5983 ret = fixup_call_args(env); 5984 5985 if (log->level && bpf_verifier_log_full(log)) 5986 ret = -ENOSPC; 5987 if (log->level && !log->ubuf) { 5988 ret = -EFAULT; 5989 goto err_release_maps; 5990 } 5991 5992 if (ret == 0 && env->used_map_cnt) { 5993 /* if program passed verifier, update used_maps in bpf_prog_info */ 5994 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 5995 sizeof(env->used_maps[0]), 5996 GFP_KERNEL); 5997 5998 if (!env->prog->aux->used_maps) { 5999 ret = -ENOMEM; 6000 goto err_release_maps; 6001 } 6002 6003 memcpy(env->prog->aux->used_maps, env->used_maps, 6004 sizeof(env->used_maps[0]) * env->used_map_cnt); 6005 env->prog->aux->used_map_cnt = env->used_map_cnt; 6006 6007 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 6008 * bpf_ld_imm64 instructions 6009 */ 6010 convert_pseudo_ld_imm64(env); 6011 } 6012 6013 err_release_maps: 6014 if (!env->prog->aux->used_maps) 6015 /* if we didn't copy map pointers into bpf_prog_info, release 6016 * them now. Otherwise free_used_maps() will release them. 6017 */ 6018 release_maps(env); 6019 *prog = env->prog; 6020 err_unlock: 6021 mutex_unlock(&bpf_verifier_lock); 6022 vfree(env->insn_aux_data); 6023 err_free_env: 6024 kfree(env); 6025 return ret; 6026 } 6027