1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 static bool bpf_pseudo_func(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 246 insn->src_reg == BPF_PSEUDO_FUNC; 247 } 248 249 struct bpf_call_arg_meta { 250 struct bpf_map *map_ptr; 251 bool raw_mode; 252 bool pkt_access; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 }; 265 266 struct btf *btf_vmlinux; 267 268 static DEFINE_MUTEX(bpf_verifier_lock); 269 270 static const struct bpf_line_info * 271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 272 { 273 const struct bpf_line_info *linfo; 274 const struct bpf_prog *prog; 275 u32 i, nr_linfo; 276 277 prog = env->prog; 278 nr_linfo = prog->aux->nr_linfo; 279 280 if (!nr_linfo || insn_off >= prog->len) 281 return NULL; 282 283 linfo = prog->aux->linfo; 284 for (i = 1; i < nr_linfo; i++) 285 if (insn_off < linfo[i].insn_off) 286 break; 287 288 return &linfo[i - 1]; 289 } 290 291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 292 va_list args) 293 { 294 unsigned int n; 295 296 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 297 298 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 299 "verifier log line truncated - local buffer too short\n"); 300 301 n = min(log->len_total - log->len_used - 1, n); 302 log->kbuf[n] = '\0'; 303 304 if (log->level == BPF_LOG_KERNEL) { 305 pr_err("BPF:%s\n", log->kbuf); 306 return; 307 } 308 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 309 log->len_used += n; 310 else 311 log->ubuf = NULL; 312 } 313 314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 315 { 316 char zero = 0; 317 318 if (!bpf_verifier_log_needed(log)) 319 return; 320 321 log->len_used = new_pos; 322 if (put_user(zero, log->ubuf + new_pos)) 323 log->ubuf = NULL; 324 } 325 326 /* log_level controls verbosity level of eBPF verifier. 327 * bpf_verifier_log_write() is used to dump the verification trace to the log, 328 * so the user can figure out what's wrong with the program 329 */ 330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 331 const char *fmt, ...) 332 { 333 va_list args; 334 335 if (!bpf_verifier_log_needed(&env->log)) 336 return; 337 338 va_start(args, fmt); 339 bpf_verifier_vlog(&env->log, fmt, args); 340 va_end(args); 341 } 342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 343 344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 345 { 346 struct bpf_verifier_env *env = private_data; 347 va_list args; 348 349 if (!bpf_verifier_log_needed(&env->log)) 350 return; 351 352 va_start(args, fmt); 353 bpf_verifier_vlog(&env->log, fmt, args); 354 va_end(args); 355 } 356 357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 358 const char *fmt, ...) 359 { 360 va_list args; 361 362 if (!bpf_verifier_log_needed(log)) 363 return; 364 365 va_start(args, fmt); 366 bpf_verifier_vlog(log, fmt, args); 367 va_end(args); 368 } 369 370 static const char *ltrim(const char *s) 371 { 372 while (isspace(*s)) 373 s++; 374 375 return s; 376 } 377 378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 379 u32 insn_off, 380 const char *prefix_fmt, ...) 381 { 382 const struct bpf_line_info *linfo; 383 384 if (!bpf_verifier_log_needed(&env->log)) 385 return; 386 387 linfo = find_linfo(env, insn_off); 388 if (!linfo || linfo == env->prev_linfo) 389 return; 390 391 if (prefix_fmt) { 392 va_list args; 393 394 va_start(args, prefix_fmt); 395 bpf_verifier_vlog(&env->log, prefix_fmt, args); 396 va_end(args); 397 } 398 399 verbose(env, "%s\n", 400 ltrim(btf_name_by_offset(env->prog->aux->btf, 401 linfo->line_off))); 402 403 env->prev_linfo = linfo; 404 } 405 406 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 407 struct bpf_reg_state *reg, 408 struct tnum *range, const char *ctx, 409 const char *reg_name) 410 { 411 char tn_buf[48]; 412 413 verbose(env, "At %s the register %s ", ctx, reg_name); 414 if (!tnum_is_unknown(reg->var_off)) { 415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 416 verbose(env, "has value %s", tn_buf); 417 } else { 418 verbose(env, "has unknown scalar value"); 419 } 420 tnum_strn(tn_buf, sizeof(tn_buf), *range); 421 verbose(env, " should have been in %s\n", tn_buf); 422 } 423 424 static bool type_is_pkt_pointer(enum bpf_reg_type type) 425 { 426 return type == PTR_TO_PACKET || 427 type == PTR_TO_PACKET_META; 428 } 429 430 static bool type_is_sk_pointer(enum bpf_reg_type type) 431 { 432 return type == PTR_TO_SOCKET || 433 type == PTR_TO_SOCK_COMMON || 434 type == PTR_TO_TCP_SOCK || 435 type == PTR_TO_XDP_SOCK; 436 } 437 438 static bool reg_type_not_null(enum bpf_reg_type type) 439 { 440 return type == PTR_TO_SOCKET || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_MAP_VALUE || 443 type == PTR_TO_MAP_KEY || 444 type == PTR_TO_SOCK_COMMON; 445 } 446 447 static bool reg_type_may_be_null(enum bpf_reg_type type) 448 { 449 return type == PTR_TO_MAP_VALUE_OR_NULL || 450 type == PTR_TO_SOCKET_OR_NULL || 451 type == PTR_TO_SOCK_COMMON_OR_NULL || 452 type == PTR_TO_TCP_SOCK_OR_NULL || 453 type == PTR_TO_BTF_ID_OR_NULL || 454 type == PTR_TO_MEM_OR_NULL || 455 type == PTR_TO_RDONLY_BUF_OR_NULL || 456 type == PTR_TO_RDWR_BUF_OR_NULL; 457 } 458 459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 460 { 461 return reg->type == PTR_TO_MAP_VALUE && 462 map_value_has_spin_lock(reg->map_ptr); 463 } 464 465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 466 { 467 return type == PTR_TO_SOCKET || 468 type == PTR_TO_SOCKET_OR_NULL || 469 type == PTR_TO_TCP_SOCK || 470 type == PTR_TO_TCP_SOCK_OR_NULL || 471 type == PTR_TO_MEM || 472 type == PTR_TO_MEM_OR_NULL; 473 } 474 475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 476 { 477 return type == ARG_PTR_TO_SOCK_COMMON; 478 } 479 480 static bool arg_type_may_be_null(enum bpf_arg_type type) 481 { 482 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 483 type == ARG_PTR_TO_MEM_OR_NULL || 484 type == ARG_PTR_TO_CTX_OR_NULL || 485 type == ARG_PTR_TO_SOCKET_OR_NULL || 486 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 487 type == ARG_PTR_TO_STACK_OR_NULL; 488 } 489 490 /* Determine whether the function releases some resources allocated by another 491 * function call. The first reference type argument will be assumed to be 492 * released by release_reference(). 493 */ 494 static bool is_release_function(enum bpf_func_id func_id) 495 { 496 return func_id == BPF_FUNC_sk_release || 497 func_id == BPF_FUNC_ringbuf_submit || 498 func_id == BPF_FUNC_ringbuf_discard; 499 } 500 501 static bool may_be_acquire_function(enum bpf_func_id func_id) 502 { 503 return func_id == BPF_FUNC_sk_lookup_tcp || 504 func_id == BPF_FUNC_sk_lookup_udp || 505 func_id == BPF_FUNC_skc_lookup_tcp || 506 func_id == BPF_FUNC_map_lookup_elem || 507 func_id == BPF_FUNC_ringbuf_reserve; 508 } 509 510 static bool is_acquire_function(enum bpf_func_id func_id, 511 const struct bpf_map *map) 512 { 513 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 514 515 if (func_id == BPF_FUNC_sk_lookup_tcp || 516 func_id == BPF_FUNC_sk_lookup_udp || 517 func_id == BPF_FUNC_skc_lookup_tcp || 518 func_id == BPF_FUNC_ringbuf_reserve) 519 return true; 520 521 if (func_id == BPF_FUNC_map_lookup_elem && 522 (map_type == BPF_MAP_TYPE_SOCKMAP || 523 map_type == BPF_MAP_TYPE_SOCKHASH)) 524 return true; 525 526 return false; 527 } 528 529 static bool is_ptr_cast_function(enum bpf_func_id func_id) 530 { 531 return func_id == BPF_FUNC_tcp_sock || 532 func_id == BPF_FUNC_sk_fullsock || 533 func_id == BPF_FUNC_skc_to_tcp_sock || 534 func_id == BPF_FUNC_skc_to_tcp6_sock || 535 func_id == BPF_FUNC_skc_to_udp6_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 541 { 542 return BPF_CLASS(insn->code) == BPF_STX && 543 BPF_MODE(insn->code) == BPF_ATOMIC && 544 insn->imm == BPF_CMPXCHG; 545 } 546 547 /* string representation of 'enum bpf_reg_type' */ 548 static const char * const reg_type_str[] = { 549 [NOT_INIT] = "?", 550 [SCALAR_VALUE] = "inv", 551 [PTR_TO_CTX] = "ctx", 552 [CONST_PTR_TO_MAP] = "map_ptr", 553 [PTR_TO_MAP_VALUE] = "map_value", 554 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 555 [PTR_TO_STACK] = "fp", 556 [PTR_TO_PACKET] = "pkt", 557 [PTR_TO_PACKET_META] = "pkt_meta", 558 [PTR_TO_PACKET_END] = "pkt_end", 559 [PTR_TO_FLOW_KEYS] = "flow_keys", 560 [PTR_TO_SOCKET] = "sock", 561 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 562 [PTR_TO_SOCK_COMMON] = "sock_common", 563 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 564 [PTR_TO_TCP_SOCK] = "tcp_sock", 565 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 566 [PTR_TO_TP_BUFFER] = "tp_buffer", 567 [PTR_TO_XDP_SOCK] = "xdp_sock", 568 [PTR_TO_BTF_ID] = "ptr_", 569 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 570 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 571 [PTR_TO_MEM] = "mem", 572 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 573 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 574 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 575 [PTR_TO_RDWR_BUF] = "rdwr_buf", 576 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 577 [PTR_TO_FUNC] = "func", 578 [PTR_TO_MAP_KEY] = "map_key", 579 }; 580 581 static char slot_type_char[] = { 582 [STACK_INVALID] = '?', 583 [STACK_SPILL] = 'r', 584 [STACK_MISC] = 'm', 585 [STACK_ZERO] = '0', 586 }; 587 588 static void print_liveness(struct bpf_verifier_env *env, 589 enum bpf_reg_liveness live) 590 { 591 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 592 verbose(env, "_"); 593 if (live & REG_LIVE_READ) 594 verbose(env, "r"); 595 if (live & REG_LIVE_WRITTEN) 596 verbose(env, "w"); 597 if (live & REG_LIVE_DONE) 598 verbose(env, "D"); 599 } 600 601 static struct bpf_func_state *func(struct bpf_verifier_env *env, 602 const struct bpf_reg_state *reg) 603 { 604 struct bpf_verifier_state *cur = env->cur_state; 605 606 return cur->frame[reg->frameno]; 607 } 608 609 static const char *kernel_type_name(const struct btf* btf, u32 id) 610 { 611 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 612 } 613 614 static void print_verifier_state(struct bpf_verifier_env *env, 615 const struct bpf_func_state *state) 616 { 617 const struct bpf_reg_state *reg; 618 enum bpf_reg_type t; 619 int i; 620 621 if (state->frameno) 622 verbose(env, " frame%d:", state->frameno); 623 for (i = 0; i < MAX_BPF_REG; i++) { 624 reg = &state->regs[i]; 625 t = reg->type; 626 if (t == NOT_INIT) 627 continue; 628 verbose(env, " R%d", i); 629 print_liveness(env, reg->live); 630 verbose(env, "=%s", reg_type_str[t]); 631 if (t == SCALAR_VALUE && reg->precise) 632 verbose(env, "P"); 633 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 634 tnum_is_const(reg->var_off)) { 635 /* reg->off should be 0 for SCALAR_VALUE */ 636 verbose(env, "%lld", reg->var_off.value + reg->off); 637 } else { 638 if (t == PTR_TO_BTF_ID || 639 t == PTR_TO_BTF_ID_OR_NULL || 640 t == PTR_TO_PERCPU_BTF_ID) 641 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 642 verbose(env, "(id=%d", reg->id); 643 if (reg_type_may_be_refcounted_or_null(t)) 644 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 645 if (t != SCALAR_VALUE) 646 verbose(env, ",off=%d", reg->off); 647 if (type_is_pkt_pointer(t)) 648 verbose(env, ",r=%d", reg->range); 649 else if (t == CONST_PTR_TO_MAP || 650 t == PTR_TO_MAP_KEY || 651 t == PTR_TO_MAP_VALUE || 652 t == PTR_TO_MAP_VALUE_OR_NULL) 653 verbose(env, ",ks=%d,vs=%d", 654 reg->map_ptr->key_size, 655 reg->map_ptr->value_size); 656 if (tnum_is_const(reg->var_off)) { 657 /* Typically an immediate SCALAR_VALUE, but 658 * could be a pointer whose offset is too big 659 * for reg->off 660 */ 661 verbose(env, ",imm=%llx", reg->var_off.value); 662 } else { 663 if (reg->smin_value != reg->umin_value && 664 reg->smin_value != S64_MIN) 665 verbose(env, ",smin_value=%lld", 666 (long long)reg->smin_value); 667 if (reg->smax_value != reg->umax_value && 668 reg->smax_value != S64_MAX) 669 verbose(env, ",smax_value=%lld", 670 (long long)reg->smax_value); 671 if (reg->umin_value != 0) 672 verbose(env, ",umin_value=%llu", 673 (unsigned long long)reg->umin_value); 674 if (reg->umax_value != U64_MAX) 675 verbose(env, ",umax_value=%llu", 676 (unsigned long long)reg->umax_value); 677 if (!tnum_is_unknown(reg->var_off)) { 678 char tn_buf[48]; 679 680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 681 verbose(env, ",var_off=%s", tn_buf); 682 } 683 if (reg->s32_min_value != reg->smin_value && 684 reg->s32_min_value != S32_MIN) 685 verbose(env, ",s32_min_value=%d", 686 (int)(reg->s32_min_value)); 687 if (reg->s32_max_value != reg->smax_value && 688 reg->s32_max_value != S32_MAX) 689 verbose(env, ",s32_max_value=%d", 690 (int)(reg->s32_max_value)); 691 if (reg->u32_min_value != reg->umin_value && 692 reg->u32_min_value != U32_MIN) 693 verbose(env, ",u32_min_value=%d", 694 (int)(reg->u32_min_value)); 695 if (reg->u32_max_value != reg->umax_value && 696 reg->u32_max_value != U32_MAX) 697 verbose(env, ",u32_max_value=%d", 698 (int)(reg->u32_max_value)); 699 } 700 verbose(env, ")"); 701 } 702 } 703 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 704 char types_buf[BPF_REG_SIZE + 1]; 705 bool valid = false; 706 int j; 707 708 for (j = 0; j < BPF_REG_SIZE; j++) { 709 if (state->stack[i].slot_type[j] != STACK_INVALID) 710 valid = true; 711 types_buf[j] = slot_type_char[ 712 state->stack[i].slot_type[j]]; 713 } 714 types_buf[BPF_REG_SIZE] = 0; 715 if (!valid) 716 continue; 717 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 718 print_liveness(env, state->stack[i].spilled_ptr.live); 719 if (state->stack[i].slot_type[0] == STACK_SPILL) { 720 reg = &state->stack[i].spilled_ptr; 721 t = reg->type; 722 verbose(env, "=%s", reg_type_str[t]); 723 if (t == SCALAR_VALUE && reg->precise) 724 verbose(env, "P"); 725 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 726 verbose(env, "%lld", reg->var_off.value + reg->off); 727 } else { 728 verbose(env, "=%s", types_buf); 729 } 730 } 731 if (state->acquired_refs && state->refs[0].id) { 732 verbose(env, " refs=%d", state->refs[0].id); 733 for (i = 1; i < state->acquired_refs; i++) 734 if (state->refs[i].id) 735 verbose(env, ",%d", state->refs[i].id); 736 } 737 verbose(env, "\n"); 738 } 739 740 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 741 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 742 const struct bpf_func_state *src) \ 743 { \ 744 if (!src->FIELD) \ 745 return 0; \ 746 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 747 /* internal bug, make state invalid to reject the program */ \ 748 memset(dst, 0, sizeof(*dst)); \ 749 return -EFAULT; \ 750 } \ 751 memcpy(dst->FIELD, src->FIELD, \ 752 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 753 return 0; \ 754 } 755 /* copy_reference_state() */ 756 COPY_STATE_FN(reference, acquired_refs, refs, 1) 757 /* copy_stack_state() */ 758 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 759 #undef COPY_STATE_FN 760 761 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 762 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 763 bool copy_old) \ 764 { \ 765 u32 old_size = state->COUNT; \ 766 struct bpf_##NAME##_state *new_##FIELD; \ 767 int slot = size / SIZE; \ 768 \ 769 if (size <= old_size || !size) { \ 770 if (copy_old) \ 771 return 0; \ 772 state->COUNT = slot * SIZE; \ 773 if (!size && old_size) { \ 774 kfree(state->FIELD); \ 775 state->FIELD = NULL; \ 776 } \ 777 return 0; \ 778 } \ 779 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 780 GFP_KERNEL); \ 781 if (!new_##FIELD) \ 782 return -ENOMEM; \ 783 if (copy_old) { \ 784 if (state->FIELD) \ 785 memcpy(new_##FIELD, state->FIELD, \ 786 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 787 memset(new_##FIELD + old_size / SIZE, 0, \ 788 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 789 } \ 790 state->COUNT = slot * SIZE; \ 791 kfree(state->FIELD); \ 792 state->FIELD = new_##FIELD; \ 793 return 0; \ 794 } 795 /* realloc_reference_state() */ 796 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 797 /* realloc_stack_state() */ 798 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 799 #undef REALLOC_STATE_FN 800 801 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 802 * make it consume minimal amount of memory. check_stack_write() access from 803 * the program calls into realloc_func_state() to grow the stack size. 804 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 805 * which realloc_stack_state() copies over. It points to previous 806 * bpf_verifier_state which is never reallocated. 807 */ 808 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 809 int refs_size, bool copy_old) 810 { 811 int err = realloc_reference_state(state, refs_size, copy_old); 812 if (err) 813 return err; 814 return realloc_stack_state(state, stack_size, copy_old); 815 } 816 817 /* Acquire a pointer id from the env and update the state->refs to include 818 * this new pointer reference. 819 * On success, returns a valid pointer id to associate with the register 820 * On failure, returns a negative errno. 821 */ 822 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 823 { 824 struct bpf_func_state *state = cur_func(env); 825 int new_ofs = state->acquired_refs; 826 int id, err; 827 828 err = realloc_reference_state(state, state->acquired_refs + 1, true); 829 if (err) 830 return err; 831 id = ++env->id_gen; 832 state->refs[new_ofs].id = id; 833 state->refs[new_ofs].insn_idx = insn_idx; 834 835 return id; 836 } 837 838 /* release function corresponding to acquire_reference_state(). Idempotent. */ 839 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 840 { 841 int i, last_idx; 842 843 last_idx = state->acquired_refs - 1; 844 for (i = 0; i < state->acquired_refs; i++) { 845 if (state->refs[i].id == ptr_id) { 846 if (last_idx && i != last_idx) 847 memcpy(&state->refs[i], &state->refs[last_idx], 848 sizeof(*state->refs)); 849 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 850 state->acquired_refs--; 851 return 0; 852 } 853 } 854 return -EINVAL; 855 } 856 857 static int transfer_reference_state(struct bpf_func_state *dst, 858 struct bpf_func_state *src) 859 { 860 int err = realloc_reference_state(dst, src->acquired_refs, false); 861 if (err) 862 return err; 863 err = copy_reference_state(dst, src); 864 if (err) 865 return err; 866 return 0; 867 } 868 869 static void free_func_state(struct bpf_func_state *state) 870 { 871 if (!state) 872 return; 873 kfree(state->refs); 874 kfree(state->stack); 875 kfree(state); 876 } 877 878 static void clear_jmp_history(struct bpf_verifier_state *state) 879 { 880 kfree(state->jmp_history); 881 state->jmp_history = NULL; 882 state->jmp_history_cnt = 0; 883 } 884 885 static void free_verifier_state(struct bpf_verifier_state *state, 886 bool free_self) 887 { 888 int i; 889 890 for (i = 0; i <= state->curframe; i++) { 891 free_func_state(state->frame[i]); 892 state->frame[i] = NULL; 893 } 894 clear_jmp_history(state); 895 if (free_self) 896 kfree(state); 897 } 898 899 /* copy verifier state from src to dst growing dst stack space 900 * when necessary to accommodate larger src stack 901 */ 902 static int copy_func_state(struct bpf_func_state *dst, 903 const struct bpf_func_state *src) 904 { 905 int err; 906 907 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 908 false); 909 if (err) 910 return err; 911 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 912 err = copy_reference_state(dst, src); 913 if (err) 914 return err; 915 return copy_stack_state(dst, src); 916 } 917 918 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 919 const struct bpf_verifier_state *src) 920 { 921 struct bpf_func_state *dst; 922 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 923 int i, err; 924 925 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 926 kfree(dst_state->jmp_history); 927 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 928 if (!dst_state->jmp_history) 929 return -ENOMEM; 930 } 931 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 932 dst_state->jmp_history_cnt = src->jmp_history_cnt; 933 934 /* if dst has more stack frames then src frame, free them */ 935 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 936 free_func_state(dst_state->frame[i]); 937 dst_state->frame[i] = NULL; 938 } 939 dst_state->speculative = src->speculative; 940 dst_state->curframe = src->curframe; 941 dst_state->active_spin_lock = src->active_spin_lock; 942 dst_state->branches = src->branches; 943 dst_state->parent = src->parent; 944 dst_state->first_insn_idx = src->first_insn_idx; 945 dst_state->last_insn_idx = src->last_insn_idx; 946 for (i = 0; i <= src->curframe; i++) { 947 dst = dst_state->frame[i]; 948 if (!dst) { 949 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 950 if (!dst) 951 return -ENOMEM; 952 dst_state->frame[i] = dst; 953 } 954 err = copy_func_state(dst, src->frame[i]); 955 if (err) 956 return err; 957 } 958 return 0; 959 } 960 961 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 962 { 963 while (st) { 964 u32 br = --st->branches; 965 966 /* WARN_ON(br > 1) technically makes sense here, 967 * but see comment in push_stack(), hence: 968 */ 969 WARN_ONCE((int)br < 0, 970 "BUG update_branch_counts:branches_to_explore=%d\n", 971 br); 972 if (br) 973 break; 974 st = st->parent; 975 } 976 } 977 978 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 979 int *insn_idx, bool pop_log) 980 { 981 struct bpf_verifier_state *cur = env->cur_state; 982 struct bpf_verifier_stack_elem *elem, *head = env->head; 983 int err; 984 985 if (env->head == NULL) 986 return -ENOENT; 987 988 if (cur) { 989 err = copy_verifier_state(cur, &head->st); 990 if (err) 991 return err; 992 } 993 if (pop_log) 994 bpf_vlog_reset(&env->log, head->log_pos); 995 if (insn_idx) 996 *insn_idx = head->insn_idx; 997 if (prev_insn_idx) 998 *prev_insn_idx = head->prev_insn_idx; 999 elem = head->next; 1000 free_verifier_state(&head->st, false); 1001 kfree(head); 1002 env->head = elem; 1003 env->stack_size--; 1004 return 0; 1005 } 1006 1007 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1008 int insn_idx, int prev_insn_idx, 1009 bool speculative) 1010 { 1011 struct bpf_verifier_state *cur = env->cur_state; 1012 struct bpf_verifier_stack_elem *elem; 1013 int err; 1014 1015 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1016 if (!elem) 1017 goto err; 1018 1019 elem->insn_idx = insn_idx; 1020 elem->prev_insn_idx = prev_insn_idx; 1021 elem->next = env->head; 1022 elem->log_pos = env->log.len_used; 1023 env->head = elem; 1024 env->stack_size++; 1025 err = copy_verifier_state(&elem->st, cur); 1026 if (err) 1027 goto err; 1028 elem->st.speculative |= speculative; 1029 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1030 verbose(env, "The sequence of %d jumps is too complex.\n", 1031 env->stack_size); 1032 goto err; 1033 } 1034 if (elem->st.parent) { 1035 ++elem->st.parent->branches; 1036 /* WARN_ON(branches > 2) technically makes sense here, 1037 * but 1038 * 1. speculative states will bump 'branches' for non-branch 1039 * instructions 1040 * 2. is_state_visited() heuristics may decide not to create 1041 * a new state for a sequence of branches and all such current 1042 * and cloned states will be pointing to a single parent state 1043 * which might have large 'branches' count. 1044 */ 1045 } 1046 return &elem->st; 1047 err: 1048 free_verifier_state(env->cur_state, true); 1049 env->cur_state = NULL; 1050 /* pop all elements and return */ 1051 while (!pop_stack(env, NULL, NULL, false)); 1052 return NULL; 1053 } 1054 1055 #define CALLER_SAVED_REGS 6 1056 static const int caller_saved[CALLER_SAVED_REGS] = { 1057 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1058 }; 1059 1060 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1061 struct bpf_reg_state *reg); 1062 1063 /* This helper doesn't clear reg->id */ 1064 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1065 { 1066 reg->var_off = tnum_const(imm); 1067 reg->smin_value = (s64)imm; 1068 reg->smax_value = (s64)imm; 1069 reg->umin_value = imm; 1070 reg->umax_value = imm; 1071 1072 reg->s32_min_value = (s32)imm; 1073 reg->s32_max_value = (s32)imm; 1074 reg->u32_min_value = (u32)imm; 1075 reg->u32_max_value = (u32)imm; 1076 } 1077 1078 /* Mark the unknown part of a register (variable offset or scalar value) as 1079 * known to have the value @imm. 1080 */ 1081 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1082 { 1083 /* Clear id, off, and union(map_ptr, range) */ 1084 memset(((u8 *)reg) + sizeof(reg->type), 0, 1085 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1086 ___mark_reg_known(reg, imm); 1087 } 1088 1089 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1090 { 1091 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1092 reg->s32_min_value = (s32)imm; 1093 reg->s32_max_value = (s32)imm; 1094 reg->u32_min_value = (u32)imm; 1095 reg->u32_max_value = (u32)imm; 1096 } 1097 1098 /* Mark the 'variable offset' part of a register as zero. This should be 1099 * used only on registers holding a pointer type. 1100 */ 1101 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1102 { 1103 __mark_reg_known(reg, 0); 1104 } 1105 1106 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1107 { 1108 __mark_reg_known(reg, 0); 1109 reg->type = SCALAR_VALUE; 1110 } 1111 1112 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1113 struct bpf_reg_state *regs, u32 regno) 1114 { 1115 if (WARN_ON(regno >= MAX_BPF_REG)) { 1116 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1117 /* Something bad happened, let's kill all regs */ 1118 for (regno = 0; regno < MAX_BPF_REG; regno++) 1119 __mark_reg_not_init(env, regs + regno); 1120 return; 1121 } 1122 __mark_reg_known_zero(regs + regno); 1123 } 1124 1125 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1126 { 1127 switch (reg->type) { 1128 case PTR_TO_MAP_VALUE_OR_NULL: { 1129 const struct bpf_map *map = reg->map_ptr; 1130 1131 if (map->inner_map_meta) { 1132 reg->type = CONST_PTR_TO_MAP; 1133 reg->map_ptr = map->inner_map_meta; 1134 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1135 reg->type = PTR_TO_XDP_SOCK; 1136 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1137 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1138 reg->type = PTR_TO_SOCKET; 1139 } else { 1140 reg->type = PTR_TO_MAP_VALUE; 1141 } 1142 break; 1143 } 1144 case PTR_TO_SOCKET_OR_NULL: 1145 reg->type = PTR_TO_SOCKET; 1146 break; 1147 case PTR_TO_SOCK_COMMON_OR_NULL: 1148 reg->type = PTR_TO_SOCK_COMMON; 1149 break; 1150 case PTR_TO_TCP_SOCK_OR_NULL: 1151 reg->type = PTR_TO_TCP_SOCK; 1152 break; 1153 case PTR_TO_BTF_ID_OR_NULL: 1154 reg->type = PTR_TO_BTF_ID; 1155 break; 1156 case PTR_TO_MEM_OR_NULL: 1157 reg->type = PTR_TO_MEM; 1158 break; 1159 case PTR_TO_RDONLY_BUF_OR_NULL: 1160 reg->type = PTR_TO_RDONLY_BUF; 1161 break; 1162 case PTR_TO_RDWR_BUF_OR_NULL: 1163 reg->type = PTR_TO_RDWR_BUF; 1164 break; 1165 default: 1166 WARN_ONCE(1, "unknown nullable register type"); 1167 } 1168 } 1169 1170 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1171 { 1172 return type_is_pkt_pointer(reg->type); 1173 } 1174 1175 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1176 { 1177 return reg_is_pkt_pointer(reg) || 1178 reg->type == PTR_TO_PACKET_END; 1179 } 1180 1181 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1182 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1183 enum bpf_reg_type which) 1184 { 1185 /* The register can already have a range from prior markings. 1186 * This is fine as long as it hasn't been advanced from its 1187 * origin. 1188 */ 1189 return reg->type == which && 1190 reg->id == 0 && 1191 reg->off == 0 && 1192 tnum_equals_const(reg->var_off, 0); 1193 } 1194 1195 /* Reset the min/max bounds of a register */ 1196 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1197 { 1198 reg->smin_value = S64_MIN; 1199 reg->smax_value = S64_MAX; 1200 reg->umin_value = 0; 1201 reg->umax_value = U64_MAX; 1202 1203 reg->s32_min_value = S32_MIN; 1204 reg->s32_max_value = S32_MAX; 1205 reg->u32_min_value = 0; 1206 reg->u32_max_value = U32_MAX; 1207 } 1208 1209 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1210 { 1211 reg->smin_value = S64_MIN; 1212 reg->smax_value = S64_MAX; 1213 reg->umin_value = 0; 1214 reg->umax_value = U64_MAX; 1215 } 1216 1217 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1218 { 1219 reg->s32_min_value = S32_MIN; 1220 reg->s32_max_value = S32_MAX; 1221 reg->u32_min_value = 0; 1222 reg->u32_max_value = U32_MAX; 1223 } 1224 1225 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1226 { 1227 struct tnum var32_off = tnum_subreg(reg->var_off); 1228 1229 /* min signed is max(sign bit) | min(other bits) */ 1230 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1231 var32_off.value | (var32_off.mask & S32_MIN)); 1232 /* max signed is min(sign bit) | max(other bits) */ 1233 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1234 var32_off.value | (var32_off.mask & S32_MAX)); 1235 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1236 reg->u32_max_value = min(reg->u32_max_value, 1237 (u32)(var32_off.value | var32_off.mask)); 1238 } 1239 1240 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1241 { 1242 /* min signed is max(sign bit) | min(other bits) */ 1243 reg->smin_value = max_t(s64, reg->smin_value, 1244 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1245 /* max signed is min(sign bit) | max(other bits) */ 1246 reg->smax_value = min_t(s64, reg->smax_value, 1247 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1248 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1249 reg->umax_value = min(reg->umax_value, 1250 reg->var_off.value | reg->var_off.mask); 1251 } 1252 1253 static void __update_reg_bounds(struct bpf_reg_state *reg) 1254 { 1255 __update_reg32_bounds(reg); 1256 __update_reg64_bounds(reg); 1257 } 1258 1259 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1260 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1261 { 1262 /* Learn sign from signed bounds. 1263 * If we cannot cross the sign boundary, then signed and unsigned bounds 1264 * are the same, so combine. This works even in the negative case, e.g. 1265 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1266 */ 1267 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1268 reg->s32_min_value = reg->u32_min_value = 1269 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1270 reg->s32_max_value = reg->u32_max_value = 1271 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1272 return; 1273 } 1274 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1275 * boundary, so we must be careful. 1276 */ 1277 if ((s32)reg->u32_max_value >= 0) { 1278 /* Positive. We can't learn anything from the smin, but smax 1279 * is positive, hence safe. 1280 */ 1281 reg->s32_min_value = reg->u32_min_value; 1282 reg->s32_max_value = reg->u32_max_value = 1283 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1284 } else if ((s32)reg->u32_min_value < 0) { 1285 /* Negative. We can't learn anything from the smax, but smin 1286 * is negative, hence safe. 1287 */ 1288 reg->s32_min_value = reg->u32_min_value = 1289 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1290 reg->s32_max_value = reg->u32_max_value; 1291 } 1292 } 1293 1294 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1295 { 1296 /* Learn sign from signed bounds. 1297 * If we cannot cross the sign boundary, then signed and unsigned bounds 1298 * are the same, so combine. This works even in the negative case, e.g. 1299 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1300 */ 1301 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1302 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1303 reg->umin_value); 1304 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1305 reg->umax_value); 1306 return; 1307 } 1308 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1309 * boundary, so we must be careful. 1310 */ 1311 if ((s64)reg->umax_value >= 0) { 1312 /* Positive. We can't learn anything from the smin, but smax 1313 * is positive, hence safe. 1314 */ 1315 reg->smin_value = reg->umin_value; 1316 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1317 reg->umax_value); 1318 } else if ((s64)reg->umin_value < 0) { 1319 /* Negative. We can't learn anything from the smax, but smin 1320 * is negative, hence safe. 1321 */ 1322 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1323 reg->umin_value); 1324 reg->smax_value = reg->umax_value; 1325 } 1326 } 1327 1328 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1329 { 1330 __reg32_deduce_bounds(reg); 1331 __reg64_deduce_bounds(reg); 1332 } 1333 1334 /* Attempts to improve var_off based on unsigned min/max information */ 1335 static void __reg_bound_offset(struct bpf_reg_state *reg) 1336 { 1337 struct tnum var64_off = tnum_intersect(reg->var_off, 1338 tnum_range(reg->umin_value, 1339 reg->umax_value)); 1340 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1341 tnum_range(reg->u32_min_value, 1342 reg->u32_max_value)); 1343 1344 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1345 } 1346 1347 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1348 { 1349 reg->umin_value = reg->u32_min_value; 1350 reg->umax_value = reg->u32_max_value; 1351 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1352 * but must be positive otherwise set to worse case bounds 1353 * and refine later from tnum. 1354 */ 1355 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1356 reg->smax_value = reg->s32_max_value; 1357 else 1358 reg->smax_value = U32_MAX; 1359 if (reg->s32_min_value >= 0) 1360 reg->smin_value = reg->s32_min_value; 1361 else 1362 reg->smin_value = 0; 1363 } 1364 1365 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1366 { 1367 /* special case when 64-bit register has upper 32-bit register 1368 * zeroed. Typically happens after zext or <<32, >>32 sequence 1369 * allowing us to use 32-bit bounds directly, 1370 */ 1371 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1372 __reg_assign_32_into_64(reg); 1373 } else { 1374 /* Otherwise the best we can do is push lower 32bit known and 1375 * unknown bits into register (var_off set from jmp logic) 1376 * then learn as much as possible from the 64-bit tnum 1377 * known and unknown bits. The previous smin/smax bounds are 1378 * invalid here because of jmp32 compare so mark them unknown 1379 * so they do not impact tnum bounds calculation. 1380 */ 1381 __mark_reg64_unbounded(reg); 1382 __update_reg_bounds(reg); 1383 } 1384 1385 /* Intersecting with the old var_off might have improved our bounds 1386 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1387 * then new var_off is (0; 0x7f...fc) which improves our umax. 1388 */ 1389 __reg_deduce_bounds(reg); 1390 __reg_bound_offset(reg); 1391 __update_reg_bounds(reg); 1392 } 1393 1394 static bool __reg64_bound_s32(s64 a) 1395 { 1396 return a > S32_MIN && a < S32_MAX; 1397 } 1398 1399 static bool __reg64_bound_u32(u64 a) 1400 { 1401 return a > U32_MIN && a < U32_MAX; 1402 } 1403 1404 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1405 { 1406 __mark_reg32_unbounded(reg); 1407 1408 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1409 reg->s32_min_value = (s32)reg->smin_value; 1410 reg->s32_max_value = (s32)reg->smax_value; 1411 } 1412 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1413 reg->u32_min_value = (u32)reg->umin_value; 1414 reg->u32_max_value = (u32)reg->umax_value; 1415 } 1416 1417 /* Intersecting with the old var_off might have improved our bounds 1418 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1419 * then new var_off is (0; 0x7f...fc) which improves our umax. 1420 */ 1421 __reg_deduce_bounds(reg); 1422 __reg_bound_offset(reg); 1423 __update_reg_bounds(reg); 1424 } 1425 1426 /* Mark a register as having a completely unknown (scalar) value. */ 1427 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1428 struct bpf_reg_state *reg) 1429 { 1430 /* 1431 * Clear type, id, off, and union(map_ptr, range) and 1432 * padding between 'type' and union 1433 */ 1434 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1435 reg->type = SCALAR_VALUE; 1436 reg->var_off = tnum_unknown; 1437 reg->frameno = 0; 1438 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1439 __mark_reg_unbounded(reg); 1440 } 1441 1442 static void mark_reg_unknown(struct bpf_verifier_env *env, 1443 struct bpf_reg_state *regs, u32 regno) 1444 { 1445 if (WARN_ON(regno >= MAX_BPF_REG)) { 1446 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1447 /* Something bad happened, let's kill all regs except FP */ 1448 for (regno = 0; regno < BPF_REG_FP; regno++) 1449 __mark_reg_not_init(env, regs + regno); 1450 return; 1451 } 1452 __mark_reg_unknown(env, regs + regno); 1453 } 1454 1455 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1456 struct bpf_reg_state *reg) 1457 { 1458 __mark_reg_unknown(env, reg); 1459 reg->type = NOT_INIT; 1460 } 1461 1462 static void mark_reg_not_init(struct bpf_verifier_env *env, 1463 struct bpf_reg_state *regs, u32 regno) 1464 { 1465 if (WARN_ON(regno >= MAX_BPF_REG)) { 1466 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1467 /* Something bad happened, let's kill all regs except FP */ 1468 for (regno = 0; regno < BPF_REG_FP; regno++) 1469 __mark_reg_not_init(env, regs + regno); 1470 return; 1471 } 1472 __mark_reg_not_init(env, regs + regno); 1473 } 1474 1475 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1476 struct bpf_reg_state *regs, u32 regno, 1477 enum bpf_reg_type reg_type, 1478 struct btf *btf, u32 btf_id) 1479 { 1480 if (reg_type == SCALAR_VALUE) { 1481 mark_reg_unknown(env, regs, regno); 1482 return; 1483 } 1484 mark_reg_known_zero(env, regs, regno); 1485 regs[regno].type = PTR_TO_BTF_ID; 1486 regs[regno].btf = btf; 1487 regs[regno].btf_id = btf_id; 1488 } 1489 1490 #define DEF_NOT_SUBREG (0) 1491 static void init_reg_state(struct bpf_verifier_env *env, 1492 struct bpf_func_state *state) 1493 { 1494 struct bpf_reg_state *regs = state->regs; 1495 int i; 1496 1497 for (i = 0; i < MAX_BPF_REG; i++) { 1498 mark_reg_not_init(env, regs, i); 1499 regs[i].live = REG_LIVE_NONE; 1500 regs[i].parent = NULL; 1501 regs[i].subreg_def = DEF_NOT_SUBREG; 1502 } 1503 1504 /* frame pointer */ 1505 regs[BPF_REG_FP].type = PTR_TO_STACK; 1506 mark_reg_known_zero(env, regs, BPF_REG_FP); 1507 regs[BPF_REG_FP].frameno = state->frameno; 1508 } 1509 1510 #define BPF_MAIN_FUNC (-1) 1511 static void init_func_state(struct bpf_verifier_env *env, 1512 struct bpf_func_state *state, 1513 int callsite, int frameno, int subprogno) 1514 { 1515 state->callsite = callsite; 1516 state->frameno = frameno; 1517 state->subprogno = subprogno; 1518 init_reg_state(env, state); 1519 } 1520 1521 enum reg_arg_type { 1522 SRC_OP, /* register is used as source operand */ 1523 DST_OP, /* register is used as destination operand */ 1524 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1525 }; 1526 1527 static int cmp_subprogs(const void *a, const void *b) 1528 { 1529 return ((struct bpf_subprog_info *)a)->start - 1530 ((struct bpf_subprog_info *)b)->start; 1531 } 1532 1533 static int find_subprog(struct bpf_verifier_env *env, int off) 1534 { 1535 struct bpf_subprog_info *p; 1536 1537 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1538 sizeof(env->subprog_info[0]), cmp_subprogs); 1539 if (!p) 1540 return -ENOENT; 1541 return p - env->subprog_info; 1542 1543 } 1544 1545 static int add_subprog(struct bpf_verifier_env *env, int off) 1546 { 1547 int insn_cnt = env->prog->len; 1548 int ret; 1549 1550 if (off >= insn_cnt || off < 0) { 1551 verbose(env, "call to invalid destination\n"); 1552 return -EINVAL; 1553 } 1554 ret = find_subprog(env, off); 1555 if (ret >= 0) 1556 return ret; 1557 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1558 verbose(env, "too many subprograms\n"); 1559 return -E2BIG; 1560 } 1561 /* determine subprog starts. The end is one before the next starts */ 1562 env->subprog_info[env->subprog_cnt++].start = off; 1563 sort(env->subprog_info, env->subprog_cnt, 1564 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1565 return env->subprog_cnt - 1; 1566 } 1567 1568 struct bpf_kfunc_desc { 1569 struct btf_func_model func_model; 1570 u32 func_id; 1571 s32 imm; 1572 }; 1573 1574 #define MAX_KFUNC_DESCS 256 1575 struct bpf_kfunc_desc_tab { 1576 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1577 u32 nr_descs; 1578 }; 1579 1580 static int kfunc_desc_cmp_by_id(const void *a, const void *b) 1581 { 1582 const struct bpf_kfunc_desc *d0 = a; 1583 const struct bpf_kfunc_desc *d1 = b; 1584 1585 /* func_id is not greater than BTF_MAX_TYPE */ 1586 return d0->func_id - d1->func_id; 1587 } 1588 1589 static const struct bpf_kfunc_desc * 1590 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id) 1591 { 1592 struct bpf_kfunc_desc desc = { 1593 .func_id = func_id, 1594 }; 1595 struct bpf_kfunc_desc_tab *tab; 1596 1597 tab = prog->aux->kfunc_tab; 1598 return bsearch(&desc, tab->descs, tab->nr_descs, 1599 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id); 1600 } 1601 1602 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id) 1603 { 1604 const struct btf_type *func, *func_proto; 1605 struct bpf_kfunc_desc_tab *tab; 1606 struct bpf_prog_aux *prog_aux; 1607 struct bpf_kfunc_desc *desc; 1608 const char *func_name; 1609 unsigned long addr; 1610 int err; 1611 1612 prog_aux = env->prog->aux; 1613 tab = prog_aux->kfunc_tab; 1614 if (!tab) { 1615 if (!btf_vmlinux) { 1616 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1617 return -ENOTSUPP; 1618 } 1619 1620 if (!env->prog->jit_requested) { 1621 verbose(env, "JIT is required for calling kernel function\n"); 1622 return -ENOTSUPP; 1623 } 1624 1625 if (!bpf_jit_supports_kfunc_call()) { 1626 verbose(env, "JIT does not support calling kernel function\n"); 1627 return -ENOTSUPP; 1628 } 1629 1630 if (!env->prog->gpl_compatible) { 1631 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1632 return -EINVAL; 1633 } 1634 1635 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1636 if (!tab) 1637 return -ENOMEM; 1638 prog_aux->kfunc_tab = tab; 1639 } 1640 1641 if (find_kfunc_desc(env->prog, func_id)) 1642 return 0; 1643 1644 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1645 verbose(env, "too many different kernel function calls\n"); 1646 return -E2BIG; 1647 } 1648 1649 func = btf_type_by_id(btf_vmlinux, func_id); 1650 if (!func || !btf_type_is_func(func)) { 1651 verbose(env, "kernel btf_id %u is not a function\n", 1652 func_id); 1653 return -EINVAL; 1654 } 1655 func_proto = btf_type_by_id(btf_vmlinux, func->type); 1656 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1657 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1658 func_id); 1659 return -EINVAL; 1660 } 1661 1662 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 1663 addr = kallsyms_lookup_name(func_name); 1664 if (!addr) { 1665 verbose(env, "cannot find address for kernel function %s\n", 1666 func_name); 1667 return -EINVAL; 1668 } 1669 1670 desc = &tab->descs[tab->nr_descs++]; 1671 desc->func_id = func_id; 1672 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base; 1673 err = btf_distill_func_proto(&env->log, btf_vmlinux, 1674 func_proto, func_name, 1675 &desc->func_model); 1676 if (!err) 1677 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1678 kfunc_desc_cmp_by_id, NULL); 1679 return err; 1680 } 1681 1682 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1683 { 1684 const struct bpf_kfunc_desc *d0 = a; 1685 const struct bpf_kfunc_desc *d1 = b; 1686 1687 if (d0->imm > d1->imm) 1688 return 1; 1689 else if (d0->imm < d1->imm) 1690 return -1; 1691 return 0; 1692 } 1693 1694 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1695 { 1696 struct bpf_kfunc_desc_tab *tab; 1697 1698 tab = prog->aux->kfunc_tab; 1699 if (!tab) 1700 return; 1701 1702 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1703 kfunc_desc_cmp_by_imm, NULL); 1704 } 1705 1706 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1707 { 1708 return !!prog->aux->kfunc_tab; 1709 } 1710 1711 const struct btf_func_model * 1712 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1713 const struct bpf_insn *insn) 1714 { 1715 const struct bpf_kfunc_desc desc = { 1716 .imm = insn->imm, 1717 }; 1718 const struct bpf_kfunc_desc *res; 1719 struct bpf_kfunc_desc_tab *tab; 1720 1721 tab = prog->aux->kfunc_tab; 1722 res = bsearch(&desc, tab->descs, tab->nr_descs, 1723 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1724 1725 return res ? &res->func_model : NULL; 1726 } 1727 1728 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1729 { 1730 struct bpf_subprog_info *subprog = env->subprog_info; 1731 struct bpf_insn *insn = env->prog->insnsi; 1732 int i, ret, insn_cnt = env->prog->len; 1733 1734 /* Add entry function. */ 1735 ret = add_subprog(env, 0); 1736 if (ret) 1737 return ret; 1738 1739 for (i = 0; i < insn_cnt; i++, insn++) { 1740 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1741 !bpf_pseudo_kfunc_call(insn)) 1742 continue; 1743 1744 if (!env->bpf_capable) { 1745 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1746 return -EPERM; 1747 } 1748 1749 if (bpf_pseudo_func(insn)) { 1750 ret = add_subprog(env, i + insn->imm + 1); 1751 if (ret >= 0) 1752 /* remember subprog */ 1753 insn[1].imm = ret; 1754 } else if (bpf_pseudo_call(insn)) { 1755 ret = add_subprog(env, i + insn->imm + 1); 1756 } else { 1757 ret = add_kfunc_call(env, insn->imm); 1758 } 1759 1760 if (ret < 0) 1761 return ret; 1762 } 1763 1764 /* Add a fake 'exit' subprog which could simplify subprog iteration 1765 * logic. 'subprog_cnt' should not be increased. 1766 */ 1767 subprog[env->subprog_cnt].start = insn_cnt; 1768 1769 if (env->log.level & BPF_LOG_LEVEL2) 1770 for (i = 0; i < env->subprog_cnt; i++) 1771 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1772 1773 return 0; 1774 } 1775 1776 static int check_subprogs(struct bpf_verifier_env *env) 1777 { 1778 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1779 struct bpf_subprog_info *subprog = env->subprog_info; 1780 struct bpf_insn *insn = env->prog->insnsi; 1781 int insn_cnt = env->prog->len; 1782 1783 /* now check that all jumps are within the same subprog */ 1784 subprog_start = subprog[cur_subprog].start; 1785 subprog_end = subprog[cur_subprog + 1].start; 1786 for (i = 0; i < insn_cnt; i++) { 1787 u8 code = insn[i].code; 1788 1789 if (code == (BPF_JMP | BPF_CALL) && 1790 insn[i].imm == BPF_FUNC_tail_call && 1791 insn[i].src_reg != BPF_PSEUDO_CALL) 1792 subprog[cur_subprog].has_tail_call = true; 1793 if (BPF_CLASS(code) == BPF_LD && 1794 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1795 subprog[cur_subprog].has_ld_abs = true; 1796 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1797 goto next; 1798 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1799 goto next; 1800 off = i + insn[i].off + 1; 1801 if (off < subprog_start || off >= subprog_end) { 1802 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1803 return -EINVAL; 1804 } 1805 next: 1806 if (i == subprog_end - 1) { 1807 /* to avoid fall-through from one subprog into another 1808 * the last insn of the subprog should be either exit 1809 * or unconditional jump back 1810 */ 1811 if (code != (BPF_JMP | BPF_EXIT) && 1812 code != (BPF_JMP | BPF_JA)) { 1813 verbose(env, "last insn is not an exit or jmp\n"); 1814 return -EINVAL; 1815 } 1816 subprog_start = subprog_end; 1817 cur_subprog++; 1818 if (cur_subprog < env->subprog_cnt) 1819 subprog_end = subprog[cur_subprog + 1].start; 1820 } 1821 } 1822 return 0; 1823 } 1824 1825 /* Parentage chain of this register (or stack slot) should take care of all 1826 * issues like callee-saved registers, stack slot allocation time, etc. 1827 */ 1828 static int mark_reg_read(struct bpf_verifier_env *env, 1829 const struct bpf_reg_state *state, 1830 struct bpf_reg_state *parent, u8 flag) 1831 { 1832 bool writes = parent == state->parent; /* Observe write marks */ 1833 int cnt = 0; 1834 1835 while (parent) { 1836 /* if read wasn't screened by an earlier write ... */ 1837 if (writes && state->live & REG_LIVE_WRITTEN) 1838 break; 1839 if (parent->live & REG_LIVE_DONE) { 1840 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1841 reg_type_str[parent->type], 1842 parent->var_off.value, parent->off); 1843 return -EFAULT; 1844 } 1845 /* The first condition is more likely to be true than the 1846 * second, checked it first. 1847 */ 1848 if ((parent->live & REG_LIVE_READ) == flag || 1849 parent->live & REG_LIVE_READ64) 1850 /* The parentage chain never changes and 1851 * this parent was already marked as LIVE_READ. 1852 * There is no need to keep walking the chain again and 1853 * keep re-marking all parents as LIVE_READ. 1854 * This case happens when the same register is read 1855 * multiple times without writes into it in-between. 1856 * Also, if parent has the stronger REG_LIVE_READ64 set, 1857 * then no need to set the weak REG_LIVE_READ32. 1858 */ 1859 break; 1860 /* ... then we depend on parent's value */ 1861 parent->live |= flag; 1862 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1863 if (flag == REG_LIVE_READ64) 1864 parent->live &= ~REG_LIVE_READ32; 1865 state = parent; 1866 parent = state->parent; 1867 writes = true; 1868 cnt++; 1869 } 1870 1871 if (env->longest_mark_read_walk < cnt) 1872 env->longest_mark_read_walk = cnt; 1873 return 0; 1874 } 1875 1876 /* This function is supposed to be used by the following 32-bit optimization 1877 * code only. It returns TRUE if the source or destination register operates 1878 * on 64-bit, otherwise return FALSE. 1879 */ 1880 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1881 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1882 { 1883 u8 code, class, op; 1884 1885 code = insn->code; 1886 class = BPF_CLASS(code); 1887 op = BPF_OP(code); 1888 if (class == BPF_JMP) { 1889 /* BPF_EXIT for "main" will reach here. Return TRUE 1890 * conservatively. 1891 */ 1892 if (op == BPF_EXIT) 1893 return true; 1894 if (op == BPF_CALL) { 1895 /* BPF to BPF call will reach here because of marking 1896 * caller saved clobber with DST_OP_NO_MARK for which we 1897 * don't care the register def because they are anyway 1898 * marked as NOT_INIT already. 1899 */ 1900 if (insn->src_reg == BPF_PSEUDO_CALL) 1901 return false; 1902 /* Helper call will reach here because of arg type 1903 * check, conservatively return TRUE. 1904 */ 1905 if (t == SRC_OP) 1906 return true; 1907 1908 return false; 1909 } 1910 } 1911 1912 if (class == BPF_ALU64 || class == BPF_JMP || 1913 /* BPF_END always use BPF_ALU class. */ 1914 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1915 return true; 1916 1917 if (class == BPF_ALU || class == BPF_JMP32) 1918 return false; 1919 1920 if (class == BPF_LDX) { 1921 if (t != SRC_OP) 1922 return BPF_SIZE(code) == BPF_DW; 1923 /* LDX source must be ptr. */ 1924 return true; 1925 } 1926 1927 if (class == BPF_STX) { 1928 /* BPF_STX (including atomic variants) has multiple source 1929 * operands, one of which is a ptr. Check whether the caller is 1930 * asking about it. 1931 */ 1932 if (t == SRC_OP && reg->type != SCALAR_VALUE) 1933 return true; 1934 return BPF_SIZE(code) == BPF_DW; 1935 } 1936 1937 if (class == BPF_LD) { 1938 u8 mode = BPF_MODE(code); 1939 1940 /* LD_IMM64 */ 1941 if (mode == BPF_IMM) 1942 return true; 1943 1944 /* Both LD_IND and LD_ABS return 32-bit data. */ 1945 if (t != SRC_OP) 1946 return false; 1947 1948 /* Implicit ctx ptr. */ 1949 if (regno == BPF_REG_6) 1950 return true; 1951 1952 /* Explicit source could be any width. */ 1953 return true; 1954 } 1955 1956 if (class == BPF_ST) 1957 /* The only source register for BPF_ST is a ptr. */ 1958 return true; 1959 1960 /* Conservatively return true at default. */ 1961 return true; 1962 } 1963 1964 /* Return the regno defined by the insn, or -1. */ 1965 static int insn_def_regno(const struct bpf_insn *insn) 1966 { 1967 switch (BPF_CLASS(insn->code)) { 1968 case BPF_JMP: 1969 case BPF_JMP32: 1970 case BPF_ST: 1971 return -1; 1972 case BPF_STX: 1973 if (BPF_MODE(insn->code) == BPF_ATOMIC && 1974 (insn->imm & BPF_FETCH)) { 1975 if (insn->imm == BPF_CMPXCHG) 1976 return BPF_REG_0; 1977 else 1978 return insn->src_reg; 1979 } else { 1980 return -1; 1981 } 1982 default: 1983 return insn->dst_reg; 1984 } 1985 } 1986 1987 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1988 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1989 { 1990 int dst_reg = insn_def_regno(insn); 1991 1992 if (dst_reg == -1) 1993 return false; 1994 1995 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 1996 } 1997 1998 static void mark_insn_zext(struct bpf_verifier_env *env, 1999 struct bpf_reg_state *reg) 2000 { 2001 s32 def_idx = reg->subreg_def; 2002 2003 if (def_idx == DEF_NOT_SUBREG) 2004 return; 2005 2006 env->insn_aux_data[def_idx - 1].zext_dst = true; 2007 /* The dst will be zero extended, so won't be sub-register anymore. */ 2008 reg->subreg_def = DEF_NOT_SUBREG; 2009 } 2010 2011 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2012 enum reg_arg_type t) 2013 { 2014 struct bpf_verifier_state *vstate = env->cur_state; 2015 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2016 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2017 struct bpf_reg_state *reg, *regs = state->regs; 2018 bool rw64; 2019 2020 if (regno >= MAX_BPF_REG) { 2021 verbose(env, "R%d is invalid\n", regno); 2022 return -EINVAL; 2023 } 2024 2025 reg = ®s[regno]; 2026 rw64 = is_reg64(env, insn, regno, reg, t); 2027 if (t == SRC_OP) { 2028 /* check whether register used as source operand can be read */ 2029 if (reg->type == NOT_INIT) { 2030 verbose(env, "R%d !read_ok\n", regno); 2031 return -EACCES; 2032 } 2033 /* We don't need to worry about FP liveness because it's read-only */ 2034 if (regno == BPF_REG_FP) 2035 return 0; 2036 2037 if (rw64) 2038 mark_insn_zext(env, reg); 2039 2040 return mark_reg_read(env, reg, reg->parent, 2041 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2042 } else { 2043 /* check whether register used as dest operand can be written to */ 2044 if (regno == BPF_REG_FP) { 2045 verbose(env, "frame pointer is read only\n"); 2046 return -EACCES; 2047 } 2048 reg->live |= REG_LIVE_WRITTEN; 2049 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2050 if (t == DST_OP) 2051 mark_reg_unknown(env, regs, regno); 2052 } 2053 return 0; 2054 } 2055 2056 /* for any branch, call, exit record the history of jmps in the given state */ 2057 static int push_jmp_history(struct bpf_verifier_env *env, 2058 struct bpf_verifier_state *cur) 2059 { 2060 u32 cnt = cur->jmp_history_cnt; 2061 struct bpf_idx_pair *p; 2062 2063 cnt++; 2064 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2065 if (!p) 2066 return -ENOMEM; 2067 p[cnt - 1].idx = env->insn_idx; 2068 p[cnt - 1].prev_idx = env->prev_insn_idx; 2069 cur->jmp_history = p; 2070 cur->jmp_history_cnt = cnt; 2071 return 0; 2072 } 2073 2074 /* Backtrack one insn at a time. If idx is not at the top of recorded 2075 * history then previous instruction came from straight line execution. 2076 */ 2077 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2078 u32 *history) 2079 { 2080 u32 cnt = *history; 2081 2082 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2083 i = st->jmp_history[cnt - 1].prev_idx; 2084 (*history)--; 2085 } else { 2086 i--; 2087 } 2088 return i; 2089 } 2090 2091 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2092 { 2093 const struct btf_type *func; 2094 2095 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2096 return NULL; 2097 2098 func = btf_type_by_id(btf_vmlinux, insn->imm); 2099 return btf_name_by_offset(btf_vmlinux, func->name_off); 2100 } 2101 2102 /* For given verifier state backtrack_insn() is called from the last insn to 2103 * the first insn. Its purpose is to compute a bitmask of registers and 2104 * stack slots that needs precision in the parent verifier state. 2105 */ 2106 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2107 u32 *reg_mask, u64 *stack_mask) 2108 { 2109 const struct bpf_insn_cbs cbs = { 2110 .cb_call = disasm_kfunc_name, 2111 .cb_print = verbose, 2112 .private_data = env, 2113 }; 2114 struct bpf_insn *insn = env->prog->insnsi + idx; 2115 u8 class = BPF_CLASS(insn->code); 2116 u8 opcode = BPF_OP(insn->code); 2117 u8 mode = BPF_MODE(insn->code); 2118 u32 dreg = 1u << insn->dst_reg; 2119 u32 sreg = 1u << insn->src_reg; 2120 u32 spi; 2121 2122 if (insn->code == 0) 2123 return 0; 2124 if (env->log.level & BPF_LOG_LEVEL) { 2125 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2126 verbose(env, "%d: ", idx); 2127 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2128 } 2129 2130 if (class == BPF_ALU || class == BPF_ALU64) { 2131 if (!(*reg_mask & dreg)) 2132 return 0; 2133 if (opcode == BPF_MOV) { 2134 if (BPF_SRC(insn->code) == BPF_X) { 2135 /* dreg = sreg 2136 * dreg needs precision after this insn 2137 * sreg needs precision before this insn 2138 */ 2139 *reg_mask &= ~dreg; 2140 *reg_mask |= sreg; 2141 } else { 2142 /* dreg = K 2143 * dreg needs precision after this insn. 2144 * Corresponding register is already marked 2145 * as precise=true in this verifier state. 2146 * No further markings in parent are necessary 2147 */ 2148 *reg_mask &= ~dreg; 2149 } 2150 } else { 2151 if (BPF_SRC(insn->code) == BPF_X) { 2152 /* dreg += sreg 2153 * both dreg and sreg need precision 2154 * before this insn 2155 */ 2156 *reg_mask |= sreg; 2157 } /* else dreg += K 2158 * dreg still needs precision before this insn 2159 */ 2160 } 2161 } else if (class == BPF_LDX) { 2162 if (!(*reg_mask & dreg)) 2163 return 0; 2164 *reg_mask &= ~dreg; 2165 2166 /* scalars can only be spilled into stack w/o losing precision. 2167 * Load from any other memory can be zero extended. 2168 * The desire to keep that precision is already indicated 2169 * by 'precise' mark in corresponding register of this state. 2170 * No further tracking necessary. 2171 */ 2172 if (insn->src_reg != BPF_REG_FP) 2173 return 0; 2174 if (BPF_SIZE(insn->code) != BPF_DW) 2175 return 0; 2176 2177 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2178 * that [fp - off] slot contains scalar that needs to be 2179 * tracked with precision 2180 */ 2181 spi = (-insn->off - 1) / BPF_REG_SIZE; 2182 if (spi >= 64) { 2183 verbose(env, "BUG spi %d\n", spi); 2184 WARN_ONCE(1, "verifier backtracking bug"); 2185 return -EFAULT; 2186 } 2187 *stack_mask |= 1ull << spi; 2188 } else if (class == BPF_STX || class == BPF_ST) { 2189 if (*reg_mask & dreg) 2190 /* stx & st shouldn't be using _scalar_ dst_reg 2191 * to access memory. It means backtracking 2192 * encountered a case of pointer subtraction. 2193 */ 2194 return -ENOTSUPP; 2195 /* scalars can only be spilled into stack */ 2196 if (insn->dst_reg != BPF_REG_FP) 2197 return 0; 2198 if (BPF_SIZE(insn->code) != BPF_DW) 2199 return 0; 2200 spi = (-insn->off - 1) / BPF_REG_SIZE; 2201 if (spi >= 64) { 2202 verbose(env, "BUG spi %d\n", spi); 2203 WARN_ONCE(1, "verifier backtracking bug"); 2204 return -EFAULT; 2205 } 2206 if (!(*stack_mask & (1ull << spi))) 2207 return 0; 2208 *stack_mask &= ~(1ull << spi); 2209 if (class == BPF_STX) 2210 *reg_mask |= sreg; 2211 } else if (class == BPF_JMP || class == BPF_JMP32) { 2212 if (opcode == BPF_CALL) { 2213 if (insn->src_reg == BPF_PSEUDO_CALL) 2214 return -ENOTSUPP; 2215 /* regular helper call sets R0 */ 2216 *reg_mask &= ~1; 2217 if (*reg_mask & 0x3f) { 2218 /* if backtracing was looking for registers R1-R5 2219 * they should have been found already. 2220 */ 2221 verbose(env, "BUG regs %x\n", *reg_mask); 2222 WARN_ONCE(1, "verifier backtracking bug"); 2223 return -EFAULT; 2224 } 2225 } else if (opcode == BPF_EXIT) { 2226 return -ENOTSUPP; 2227 } 2228 } else if (class == BPF_LD) { 2229 if (!(*reg_mask & dreg)) 2230 return 0; 2231 *reg_mask &= ~dreg; 2232 /* It's ld_imm64 or ld_abs or ld_ind. 2233 * For ld_imm64 no further tracking of precision 2234 * into parent is necessary 2235 */ 2236 if (mode == BPF_IND || mode == BPF_ABS) 2237 /* to be analyzed */ 2238 return -ENOTSUPP; 2239 } 2240 return 0; 2241 } 2242 2243 /* the scalar precision tracking algorithm: 2244 * . at the start all registers have precise=false. 2245 * . scalar ranges are tracked as normal through alu and jmp insns. 2246 * . once precise value of the scalar register is used in: 2247 * . ptr + scalar alu 2248 * . if (scalar cond K|scalar) 2249 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2250 * backtrack through the verifier states and mark all registers and 2251 * stack slots with spilled constants that these scalar regisers 2252 * should be precise. 2253 * . during state pruning two registers (or spilled stack slots) 2254 * are equivalent if both are not precise. 2255 * 2256 * Note the verifier cannot simply walk register parentage chain, 2257 * since many different registers and stack slots could have been 2258 * used to compute single precise scalar. 2259 * 2260 * The approach of starting with precise=true for all registers and then 2261 * backtrack to mark a register as not precise when the verifier detects 2262 * that program doesn't care about specific value (e.g., when helper 2263 * takes register as ARG_ANYTHING parameter) is not safe. 2264 * 2265 * It's ok to walk single parentage chain of the verifier states. 2266 * It's possible that this backtracking will go all the way till 1st insn. 2267 * All other branches will be explored for needing precision later. 2268 * 2269 * The backtracking needs to deal with cases like: 2270 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2271 * r9 -= r8 2272 * r5 = r9 2273 * if r5 > 0x79f goto pc+7 2274 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2275 * r5 += 1 2276 * ... 2277 * call bpf_perf_event_output#25 2278 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2279 * 2280 * and this case: 2281 * r6 = 1 2282 * call foo // uses callee's r6 inside to compute r0 2283 * r0 += r6 2284 * if r0 == 0 goto 2285 * 2286 * to track above reg_mask/stack_mask needs to be independent for each frame. 2287 * 2288 * Also if parent's curframe > frame where backtracking started, 2289 * the verifier need to mark registers in both frames, otherwise callees 2290 * may incorrectly prune callers. This is similar to 2291 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2292 * 2293 * For now backtracking falls back into conservative marking. 2294 */ 2295 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2296 struct bpf_verifier_state *st) 2297 { 2298 struct bpf_func_state *func; 2299 struct bpf_reg_state *reg; 2300 int i, j; 2301 2302 /* big hammer: mark all scalars precise in this path. 2303 * pop_stack may still get !precise scalars. 2304 */ 2305 for (; st; st = st->parent) 2306 for (i = 0; i <= st->curframe; i++) { 2307 func = st->frame[i]; 2308 for (j = 0; j < BPF_REG_FP; j++) { 2309 reg = &func->regs[j]; 2310 if (reg->type != SCALAR_VALUE) 2311 continue; 2312 reg->precise = true; 2313 } 2314 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2315 if (func->stack[j].slot_type[0] != STACK_SPILL) 2316 continue; 2317 reg = &func->stack[j].spilled_ptr; 2318 if (reg->type != SCALAR_VALUE) 2319 continue; 2320 reg->precise = true; 2321 } 2322 } 2323 } 2324 2325 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2326 int spi) 2327 { 2328 struct bpf_verifier_state *st = env->cur_state; 2329 int first_idx = st->first_insn_idx; 2330 int last_idx = env->insn_idx; 2331 struct bpf_func_state *func; 2332 struct bpf_reg_state *reg; 2333 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2334 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2335 bool skip_first = true; 2336 bool new_marks = false; 2337 int i, err; 2338 2339 if (!env->bpf_capable) 2340 return 0; 2341 2342 func = st->frame[st->curframe]; 2343 if (regno >= 0) { 2344 reg = &func->regs[regno]; 2345 if (reg->type != SCALAR_VALUE) { 2346 WARN_ONCE(1, "backtracing misuse"); 2347 return -EFAULT; 2348 } 2349 if (!reg->precise) 2350 new_marks = true; 2351 else 2352 reg_mask = 0; 2353 reg->precise = true; 2354 } 2355 2356 while (spi >= 0) { 2357 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2358 stack_mask = 0; 2359 break; 2360 } 2361 reg = &func->stack[spi].spilled_ptr; 2362 if (reg->type != SCALAR_VALUE) { 2363 stack_mask = 0; 2364 break; 2365 } 2366 if (!reg->precise) 2367 new_marks = true; 2368 else 2369 stack_mask = 0; 2370 reg->precise = true; 2371 break; 2372 } 2373 2374 if (!new_marks) 2375 return 0; 2376 if (!reg_mask && !stack_mask) 2377 return 0; 2378 for (;;) { 2379 DECLARE_BITMAP(mask, 64); 2380 u32 history = st->jmp_history_cnt; 2381 2382 if (env->log.level & BPF_LOG_LEVEL) 2383 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2384 for (i = last_idx;;) { 2385 if (skip_first) { 2386 err = 0; 2387 skip_first = false; 2388 } else { 2389 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2390 } 2391 if (err == -ENOTSUPP) { 2392 mark_all_scalars_precise(env, st); 2393 return 0; 2394 } else if (err) { 2395 return err; 2396 } 2397 if (!reg_mask && !stack_mask) 2398 /* Found assignment(s) into tracked register in this state. 2399 * Since this state is already marked, just return. 2400 * Nothing to be tracked further in the parent state. 2401 */ 2402 return 0; 2403 if (i == first_idx) 2404 break; 2405 i = get_prev_insn_idx(st, i, &history); 2406 if (i >= env->prog->len) { 2407 /* This can happen if backtracking reached insn 0 2408 * and there are still reg_mask or stack_mask 2409 * to backtrack. 2410 * It means the backtracking missed the spot where 2411 * particular register was initialized with a constant. 2412 */ 2413 verbose(env, "BUG backtracking idx %d\n", i); 2414 WARN_ONCE(1, "verifier backtracking bug"); 2415 return -EFAULT; 2416 } 2417 } 2418 st = st->parent; 2419 if (!st) 2420 break; 2421 2422 new_marks = false; 2423 func = st->frame[st->curframe]; 2424 bitmap_from_u64(mask, reg_mask); 2425 for_each_set_bit(i, mask, 32) { 2426 reg = &func->regs[i]; 2427 if (reg->type != SCALAR_VALUE) { 2428 reg_mask &= ~(1u << i); 2429 continue; 2430 } 2431 if (!reg->precise) 2432 new_marks = true; 2433 reg->precise = true; 2434 } 2435 2436 bitmap_from_u64(mask, stack_mask); 2437 for_each_set_bit(i, mask, 64) { 2438 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2439 /* the sequence of instructions: 2440 * 2: (bf) r3 = r10 2441 * 3: (7b) *(u64 *)(r3 -8) = r0 2442 * 4: (79) r4 = *(u64 *)(r10 -8) 2443 * doesn't contain jmps. It's backtracked 2444 * as a single block. 2445 * During backtracking insn 3 is not recognized as 2446 * stack access, so at the end of backtracking 2447 * stack slot fp-8 is still marked in stack_mask. 2448 * However the parent state may not have accessed 2449 * fp-8 and it's "unallocated" stack space. 2450 * In such case fallback to conservative. 2451 */ 2452 mark_all_scalars_precise(env, st); 2453 return 0; 2454 } 2455 2456 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2457 stack_mask &= ~(1ull << i); 2458 continue; 2459 } 2460 reg = &func->stack[i].spilled_ptr; 2461 if (reg->type != SCALAR_VALUE) { 2462 stack_mask &= ~(1ull << i); 2463 continue; 2464 } 2465 if (!reg->precise) 2466 new_marks = true; 2467 reg->precise = true; 2468 } 2469 if (env->log.level & BPF_LOG_LEVEL) { 2470 print_verifier_state(env, func); 2471 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2472 new_marks ? "didn't have" : "already had", 2473 reg_mask, stack_mask); 2474 } 2475 2476 if (!reg_mask && !stack_mask) 2477 break; 2478 if (!new_marks) 2479 break; 2480 2481 last_idx = st->last_insn_idx; 2482 first_idx = st->first_insn_idx; 2483 } 2484 return 0; 2485 } 2486 2487 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2488 { 2489 return __mark_chain_precision(env, regno, -1); 2490 } 2491 2492 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2493 { 2494 return __mark_chain_precision(env, -1, spi); 2495 } 2496 2497 static bool is_spillable_regtype(enum bpf_reg_type type) 2498 { 2499 switch (type) { 2500 case PTR_TO_MAP_VALUE: 2501 case PTR_TO_MAP_VALUE_OR_NULL: 2502 case PTR_TO_STACK: 2503 case PTR_TO_CTX: 2504 case PTR_TO_PACKET: 2505 case PTR_TO_PACKET_META: 2506 case PTR_TO_PACKET_END: 2507 case PTR_TO_FLOW_KEYS: 2508 case CONST_PTR_TO_MAP: 2509 case PTR_TO_SOCKET: 2510 case PTR_TO_SOCKET_OR_NULL: 2511 case PTR_TO_SOCK_COMMON: 2512 case PTR_TO_SOCK_COMMON_OR_NULL: 2513 case PTR_TO_TCP_SOCK: 2514 case PTR_TO_TCP_SOCK_OR_NULL: 2515 case PTR_TO_XDP_SOCK: 2516 case PTR_TO_BTF_ID: 2517 case PTR_TO_BTF_ID_OR_NULL: 2518 case PTR_TO_RDONLY_BUF: 2519 case PTR_TO_RDONLY_BUF_OR_NULL: 2520 case PTR_TO_RDWR_BUF: 2521 case PTR_TO_RDWR_BUF_OR_NULL: 2522 case PTR_TO_PERCPU_BTF_ID: 2523 case PTR_TO_MEM: 2524 case PTR_TO_MEM_OR_NULL: 2525 case PTR_TO_FUNC: 2526 case PTR_TO_MAP_KEY: 2527 return true; 2528 default: 2529 return false; 2530 } 2531 } 2532 2533 /* Does this register contain a constant zero? */ 2534 static bool register_is_null(struct bpf_reg_state *reg) 2535 { 2536 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2537 } 2538 2539 static bool register_is_const(struct bpf_reg_state *reg) 2540 { 2541 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2542 } 2543 2544 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2545 { 2546 return tnum_is_unknown(reg->var_off) && 2547 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2548 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2549 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2550 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2551 } 2552 2553 static bool register_is_bounded(struct bpf_reg_state *reg) 2554 { 2555 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2556 } 2557 2558 static bool __is_pointer_value(bool allow_ptr_leaks, 2559 const struct bpf_reg_state *reg) 2560 { 2561 if (allow_ptr_leaks) 2562 return false; 2563 2564 return reg->type != SCALAR_VALUE; 2565 } 2566 2567 static void save_register_state(struct bpf_func_state *state, 2568 int spi, struct bpf_reg_state *reg) 2569 { 2570 int i; 2571 2572 state->stack[spi].spilled_ptr = *reg; 2573 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2574 2575 for (i = 0; i < BPF_REG_SIZE; i++) 2576 state->stack[spi].slot_type[i] = STACK_SPILL; 2577 } 2578 2579 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2580 * stack boundary and alignment are checked in check_mem_access() 2581 */ 2582 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2583 /* stack frame we're writing to */ 2584 struct bpf_func_state *state, 2585 int off, int size, int value_regno, 2586 int insn_idx) 2587 { 2588 struct bpf_func_state *cur; /* state of the current function */ 2589 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2590 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2591 struct bpf_reg_state *reg = NULL; 2592 2593 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2594 state->acquired_refs, true); 2595 if (err) 2596 return err; 2597 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2598 * so it's aligned access and [off, off + size) are within stack limits 2599 */ 2600 if (!env->allow_ptr_leaks && 2601 state->stack[spi].slot_type[0] == STACK_SPILL && 2602 size != BPF_REG_SIZE) { 2603 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2604 return -EACCES; 2605 } 2606 2607 cur = env->cur_state->frame[env->cur_state->curframe]; 2608 if (value_regno >= 0) 2609 reg = &cur->regs[value_regno]; 2610 2611 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2612 !register_is_null(reg) && env->bpf_capable) { 2613 if (dst_reg != BPF_REG_FP) { 2614 /* The backtracking logic can only recognize explicit 2615 * stack slot address like [fp - 8]. Other spill of 2616 * scalar via different register has to be conervative. 2617 * Backtrack from here and mark all registers as precise 2618 * that contributed into 'reg' being a constant. 2619 */ 2620 err = mark_chain_precision(env, value_regno); 2621 if (err) 2622 return err; 2623 } 2624 save_register_state(state, spi, reg); 2625 } else if (reg && is_spillable_regtype(reg->type)) { 2626 /* register containing pointer is being spilled into stack */ 2627 if (size != BPF_REG_SIZE) { 2628 verbose_linfo(env, insn_idx, "; "); 2629 verbose(env, "invalid size of register spill\n"); 2630 return -EACCES; 2631 } 2632 2633 if (state != cur && reg->type == PTR_TO_STACK) { 2634 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2635 return -EINVAL; 2636 } 2637 2638 if (!env->bypass_spec_v4) { 2639 bool sanitize = false; 2640 2641 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2642 register_is_const(&state->stack[spi].spilled_ptr)) 2643 sanitize = true; 2644 for (i = 0; i < BPF_REG_SIZE; i++) 2645 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2646 sanitize = true; 2647 break; 2648 } 2649 if (sanitize) { 2650 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2651 int soff = (-spi - 1) * BPF_REG_SIZE; 2652 2653 /* detected reuse of integer stack slot with a pointer 2654 * which means either llvm is reusing stack slot or 2655 * an attacker is trying to exploit CVE-2018-3639 2656 * (speculative store bypass) 2657 * Have to sanitize that slot with preemptive 2658 * store of zero. 2659 */ 2660 if (*poff && *poff != soff) { 2661 /* disallow programs where single insn stores 2662 * into two different stack slots, since verifier 2663 * cannot sanitize them 2664 */ 2665 verbose(env, 2666 "insn %d cannot access two stack slots fp%d and fp%d", 2667 insn_idx, *poff, soff); 2668 return -EINVAL; 2669 } 2670 *poff = soff; 2671 } 2672 } 2673 save_register_state(state, spi, reg); 2674 } else { 2675 u8 type = STACK_MISC; 2676 2677 /* regular write of data into stack destroys any spilled ptr */ 2678 state->stack[spi].spilled_ptr.type = NOT_INIT; 2679 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2680 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2681 for (i = 0; i < BPF_REG_SIZE; i++) 2682 state->stack[spi].slot_type[i] = STACK_MISC; 2683 2684 /* only mark the slot as written if all 8 bytes were written 2685 * otherwise read propagation may incorrectly stop too soon 2686 * when stack slots are partially written. 2687 * This heuristic means that read propagation will be 2688 * conservative, since it will add reg_live_read marks 2689 * to stack slots all the way to first state when programs 2690 * writes+reads less than 8 bytes 2691 */ 2692 if (size == BPF_REG_SIZE) 2693 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2694 2695 /* when we zero initialize stack slots mark them as such */ 2696 if (reg && register_is_null(reg)) { 2697 /* backtracking doesn't work for STACK_ZERO yet. */ 2698 err = mark_chain_precision(env, value_regno); 2699 if (err) 2700 return err; 2701 type = STACK_ZERO; 2702 } 2703 2704 /* Mark slots affected by this stack write. */ 2705 for (i = 0; i < size; i++) 2706 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2707 type; 2708 } 2709 return 0; 2710 } 2711 2712 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2713 * known to contain a variable offset. 2714 * This function checks whether the write is permitted and conservatively 2715 * tracks the effects of the write, considering that each stack slot in the 2716 * dynamic range is potentially written to. 2717 * 2718 * 'off' includes 'regno->off'. 2719 * 'value_regno' can be -1, meaning that an unknown value is being written to 2720 * the stack. 2721 * 2722 * Spilled pointers in range are not marked as written because we don't know 2723 * what's going to be actually written. This means that read propagation for 2724 * future reads cannot be terminated by this write. 2725 * 2726 * For privileged programs, uninitialized stack slots are considered 2727 * initialized by this write (even though we don't know exactly what offsets 2728 * are going to be written to). The idea is that we don't want the verifier to 2729 * reject future reads that access slots written to through variable offsets. 2730 */ 2731 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2732 /* func where register points to */ 2733 struct bpf_func_state *state, 2734 int ptr_regno, int off, int size, 2735 int value_regno, int insn_idx) 2736 { 2737 struct bpf_func_state *cur; /* state of the current function */ 2738 int min_off, max_off; 2739 int i, err; 2740 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2741 bool writing_zero = false; 2742 /* set if the fact that we're writing a zero is used to let any 2743 * stack slots remain STACK_ZERO 2744 */ 2745 bool zero_used = false; 2746 2747 cur = env->cur_state->frame[env->cur_state->curframe]; 2748 ptr_reg = &cur->regs[ptr_regno]; 2749 min_off = ptr_reg->smin_value + off; 2750 max_off = ptr_reg->smax_value + off + size; 2751 if (value_regno >= 0) 2752 value_reg = &cur->regs[value_regno]; 2753 if (value_reg && register_is_null(value_reg)) 2754 writing_zero = true; 2755 2756 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE), 2757 state->acquired_refs, true); 2758 if (err) 2759 return err; 2760 2761 2762 /* Variable offset writes destroy any spilled pointers in range. */ 2763 for (i = min_off; i < max_off; i++) { 2764 u8 new_type, *stype; 2765 int slot, spi; 2766 2767 slot = -i - 1; 2768 spi = slot / BPF_REG_SIZE; 2769 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2770 2771 if (!env->allow_ptr_leaks 2772 && *stype != NOT_INIT 2773 && *stype != SCALAR_VALUE) { 2774 /* Reject the write if there's are spilled pointers in 2775 * range. If we didn't reject here, the ptr status 2776 * would be erased below (even though not all slots are 2777 * actually overwritten), possibly opening the door to 2778 * leaks. 2779 */ 2780 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2781 insn_idx, i); 2782 return -EINVAL; 2783 } 2784 2785 /* Erase all spilled pointers. */ 2786 state->stack[spi].spilled_ptr.type = NOT_INIT; 2787 2788 /* Update the slot type. */ 2789 new_type = STACK_MISC; 2790 if (writing_zero && *stype == STACK_ZERO) { 2791 new_type = STACK_ZERO; 2792 zero_used = true; 2793 } 2794 /* If the slot is STACK_INVALID, we check whether it's OK to 2795 * pretend that it will be initialized by this write. The slot 2796 * might not actually be written to, and so if we mark it as 2797 * initialized future reads might leak uninitialized memory. 2798 * For privileged programs, we will accept such reads to slots 2799 * that may or may not be written because, if we're reject 2800 * them, the error would be too confusing. 2801 */ 2802 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2803 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2804 insn_idx, i); 2805 return -EINVAL; 2806 } 2807 *stype = new_type; 2808 } 2809 if (zero_used) { 2810 /* backtracking doesn't work for STACK_ZERO yet. */ 2811 err = mark_chain_precision(env, value_regno); 2812 if (err) 2813 return err; 2814 } 2815 return 0; 2816 } 2817 2818 /* When register 'dst_regno' is assigned some values from stack[min_off, 2819 * max_off), we set the register's type according to the types of the 2820 * respective stack slots. If all the stack values are known to be zeros, then 2821 * so is the destination reg. Otherwise, the register is considered to be 2822 * SCALAR. This function does not deal with register filling; the caller must 2823 * ensure that all spilled registers in the stack range have been marked as 2824 * read. 2825 */ 2826 static void mark_reg_stack_read(struct bpf_verifier_env *env, 2827 /* func where src register points to */ 2828 struct bpf_func_state *ptr_state, 2829 int min_off, int max_off, int dst_regno) 2830 { 2831 struct bpf_verifier_state *vstate = env->cur_state; 2832 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2833 int i, slot, spi; 2834 u8 *stype; 2835 int zeros = 0; 2836 2837 for (i = min_off; i < max_off; i++) { 2838 slot = -i - 1; 2839 spi = slot / BPF_REG_SIZE; 2840 stype = ptr_state->stack[spi].slot_type; 2841 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 2842 break; 2843 zeros++; 2844 } 2845 if (zeros == max_off - min_off) { 2846 /* any access_size read into register is zero extended, 2847 * so the whole register == const_zero 2848 */ 2849 __mark_reg_const_zero(&state->regs[dst_regno]); 2850 /* backtracking doesn't support STACK_ZERO yet, 2851 * so mark it precise here, so that later 2852 * backtracking can stop here. 2853 * Backtracking may not need this if this register 2854 * doesn't participate in pointer adjustment. 2855 * Forward propagation of precise flag is not 2856 * necessary either. This mark is only to stop 2857 * backtracking. Any register that contributed 2858 * to const 0 was marked precise before spill. 2859 */ 2860 state->regs[dst_regno].precise = true; 2861 } else { 2862 /* have read misc data from the stack */ 2863 mark_reg_unknown(env, state->regs, dst_regno); 2864 } 2865 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2866 } 2867 2868 /* Read the stack at 'off' and put the results into the register indicated by 2869 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 2870 * spilled reg. 2871 * 2872 * 'dst_regno' can be -1, meaning that the read value is not going to a 2873 * register. 2874 * 2875 * The access is assumed to be within the current stack bounds. 2876 */ 2877 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 2878 /* func where src register points to */ 2879 struct bpf_func_state *reg_state, 2880 int off, int size, int dst_regno) 2881 { 2882 struct bpf_verifier_state *vstate = env->cur_state; 2883 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2884 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2885 struct bpf_reg_state *reg; 2886 u8 *stype; 2887 2888 stype = reg_state->stack[spi].slot_type; 2889 reg = ®_state->stack[spi].spilled_ptr; 2890 2891 if (stype[0] == STACK_SPILL) { 2892 if (size != BPF_REG_SIZE) { 2893 if (reg->type != SCALAR_VALUE) { 2894 verbose_linfo(env, env->insn_idx, "; "); 2895 verbose(env, "invalid size of register fill\n"); 2896 return -EACCES; 2897 } 2898 if (dst_regno >= 0) { 2899 mark_reg_unknown(env, state->regs, dst_regno); 2900 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2901 } 2902 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2903 return 0; 2904 } 2905 for (i = 1; i < BPF_REG_SIZE; i++) { 2906 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2907 verbose(env, "corrupted spill memory\n"); 2908 return -EACCES; 2909 } 2910 } 2911 2912 if (dst_regno >= 0) { 2913 /* restore register state from stack */ 2914 state->regs[dst_regno] = *reg; 2915 /* mark reg as written since spilled pointer state likely 2916 * has its liveness marks cleared by is_state_visited() 2917 * which resets stack/reg liveness for state transitions 2918 */ 2919 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2920 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2921 /* If dst_regno==-1, the caller is asking us whether 2922 * it is acceptable to use this value as a SCALAR_VALUE 2923 * (e.g. for XADD). 2924 * We must not allow unprivileged callers to do that 2925 * with spilled pointers. 2926 */ 2927 verbose(env, "leaking pointer from stack off %d\n", 2928 off); 2929 return -EACCES; 2930 } 2931 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2932 } else { 2933 u8 type; 2934 2935 for (i = 0; i < size; i++) { 2936 type = stype[(slot - i) % BPF_REG_SIZE]; 2937 if (type == STACK_MISC) 2938 continue; 2939 if (type == STACK_ZERO) 2940 continue; 2941 verbose(env, "invalid read from stack off %d+%d size %d\n", 2942 off, i, size); 2943 return -EACCES; 2944 } 2945 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2946 if (dst_regno >= 0) 2947 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 2948 } 2949 return 0; 2950 } 2951 2952 enum stack_access_src { 2953 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 2954 ACCESS_HELPER = 2, /* the access is performed by a helper */ 2955 }; 2956 2957 static int check_stack_range_initialized(struct bpf_verifier_env *env, 2958 int regno, int off, int access_size, 2959 bool zero_size_allowed, 2960 enum stack_access_src type, 2961 struct bpf_call_arg_meta *meta); 2962 2963 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2964 { 2965 return cur_regs(env) + regno; 2966 } 2967 2968 /* Read the stack at 'ptr_regno + off' and put the result into the register 2969 * 'dst_regno'. 2970 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 2971 * but not its variable offset. 2972 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 2973 * 2974 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 2975 * filling registers (i.e. reads of spilled register cannot be detected when 2976 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 2977 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 2978 * offset; for a fixed offset check_stack_read_fixed_off should be used 2979 * instead. 2980 */ 2981 static int check_stack_read_var_off(struct bpf_verifier_env *env, 2982 int ptr_regno, int off, int size, int dst_regno) 2983 { 2984 /* The state of the source register. */ 2985 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2986 struct bpf_func_state *ptr_state = func(env, reg); 2987 int err; 2988 int min_off, max_off; 2989 2990 /* Note that we pass a NULL meta, so raw access will not be permitted. 2991 */ 2992 err = check_stack_range_initialized(env, ptr_regno, off, size, 2993 false, ACCESS_DIRECT, NULL); 2994 if (err) 2995 return err; 2996 2997 min_off = reg->smin_value + off; 2998 max_off = reg->smax_value + off; 2999 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3000 return 0; 3001 } 3002 3003 /* check_stack_read dispatches to check_stack_read_fixed_off or 3004 * check_stack_read_var_off. 3005 * 3006 * The caller must ensure that the offset falls within the allocated stack 3007 * bounds. 3008 * 3009 * 'dst_regno' is a register which will receive the value from the stack. It 3010 * can be -1, meaning that the read value is not going to a register. 3011 */ 3012 static int check_stack_read(struct bpf_verifier_env *env, 3013 int ptr_regno, int off, int size, 3014 int dst_regno) 3015 { 3016 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3017 struct bpf_func_state *state = func(env, reg); 3018 int err; 3019 /* Some accesses are only permitted with a static offset. */ 3020 bool var_off = !tnum_is_const(reg->var_off); 3021 3022 /* The offset is required to be static when reads don't go to a 3023 * register, in order to not leak pointers (see 3024 * check_stack_read_fixed_off). 3025 */ 3026 if (dst_regno < 0 && var_off) { 3027 char tn_buf[48]; 3028 3029 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3030 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3031 tn_buf, off, size); 3032 return -EACCES; 3033 } 3034 /* Variable offset is prohibited for unprivileged mode for simplicity 3035 * since it requires corresponding support in Spectre masking for stack 3036 * ALU. See also retrieve_ptr_limit(). 3037 */ 3038 if (!env->bypass_spec_v1 && var_off) { 3039 char tn_buf[48]; 3040 3041 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3042 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3043 ptr_regno, tn_buf); 3044 return -EACCES; 3045 } 3046 3047 if (!var_off) { 3048 off += reg->var_off.value; 3049 err = check_stack_read_fixed_off(env, state, off, size, 3050 dst_regno); 3051 } else { 3052 /* Variable offset stack reads need more conservative handling 3053 * than fixed offset ones. Note that dst_regno >= 0 on this 3054 * branch. 3055 */ 3056 err = check_stack_read_var_off(env, ptr_regno, off, size, 3057 dst_regno); 3058 } 3059 return err; 3060 } 3061 3062 3063 /* check_stack_write dispatches to check_stack_write_fixed_off or 3064 * check_stack_write_var_off. 3065 * 3066 * 'ptr_regno' is the register used as a pointer into the stack. 3067 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3068 * 'value_regno' is the register whose value we're writing to the stack. It can 3069 * be -1, meaning that we're not writing from a register. 3070 * 3071 * The caller must ensure that the offset falls within the maximum stack size. 3072 */ 3073 static int check_stack_write(struct bpf_verifier_env *env, 3074 int ptr_regno, int off, int size, 3075 int value_regno, int insn_idx) 3076 { 3077 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3078 struct bpf_func_state *state = func(env, reg); 3079 int err; 3080 3081 if (tnum_is_const(reg->var_off)) { 3082 off += reg->var_off.value; 3083 err = check_stack_write_fixed_off(env, state, off, size, 3084 value_regno, insn_idx); 3085 } else { 3086 /* Variable offset stack reads need more conservative handling 3087 * than fixed offset ones. 3088 */ 3089 err = check_stack_write_var_off(env, state, 3090 ptr_regno, off, size, 3091 value_regno, insn_idx); 3092 } 3093 return err; 3094 } 3095 3096 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3097 int off, int size, enum bpf_access_type type) 3098 { 3099 struct bpf_reg_state *regs = cur_regs(env); 3100 struct bpf_map *map = regs[regno].map_ptr; 3101 u32 cap = bpf_map_flags_to_cap(map); 3102 3103 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3104 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3105 map->value_size, off, size); 3106 return -EACCES; 3107 } 3108 3109 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3110 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3111 map->value_size, off, size); 3112 return -EACCES; 3113 } 3114 3115 return 0; 3116 } 3117 3118 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3119 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3120 int off, int size, u32 mem_size, 3121 bool zero_size_allowed) 3122 { 3123 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3124 struct bpf_reg_state *reg; 3125 3126 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3127 return 0; 3128 3129 reg = &cur_regs(env)[regno]; 3130 switch (reg->type) { 3131 case PTR_TO_MAP_KEY: 3132 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3133 mem_size, off, size); 3134 break; 3135 case PTR_TO_MAP_VALUE: 3136 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3137 mem_size, off, size); 3138 break; 3139 case PTR_TO_PACKET: 3140 case PTR_TO_PACKET_META: 3141 case PTR_TO_PACKET_END: 3142 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3143 off, size, regno, reg->id, off, mem_size); 3144 break; 3145 case PTR_TO_MEM: 3146 default: 3147 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3148 mem_size, off, size); 3149 } 3150 3151 return -EACCES; 3152 } 3153 3154 /* check read/write into a memory region with possible variable offset */ 3155 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3156 int off, int size, u32 mem_size, 3157 bool zero_size_allowed) 3158 { 3159 struct bpf_verifier_state *vstate = env->cur_state; 3160 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3161 struct bpf_reg_state *reg = &state->regs[regno]; 3162 int err; 3163 3164 /* We may have adjusted the register pointing to memory region, so we 3165 * need to try adding each of min_value and max_value to off 3166 * to make sure our theoretical access will be safe. 3167 */ 3168 if (env->log.level & BPF_LOG_LEVEL) 3169 print_verifier_state(env, state); 3170 3171 /* The minimum value is only important with signed 3172 * comparisons where we can't assume the floor of a 3173 * value is 0. If we are using signed variables for our 3174 * index'es we need to make sure that whatever we use 3175 * will have a set floor within our range. 3176 */ 3177 if (reg->smin_value < 0 && 3178 (reg->smin_value == S64_MIN || 3179 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3180 reg->smin_value + off < 0)) { 3181 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3182 regno); 3183 return -EACCES; 3184 } 3185 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3186 mem_size, zero_size_allowed); 3187 if (err) { 3188 verbose(env, "R%d min value is outside of the allowed memory range\n", 3189 regno); 3190 return err; 3191 } 3192 3193 /* If we haven't set a max value then we need to bail since we can't be 3194 * sure we won't do bad things. 3195 * If reg->umax_value + off could overflow, treat that as unbounded too. 3196 */ 3197 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3198 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3199 regno); 3200 return -EACCES; 3201 } 3202 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3203 mem_size, zero_size_allowed); 3204 if (err) { 3205 verbose(env, "R%d max value is outside of the allowed memory range\n", 3206 regno); 3207 return err; 3208 } 3209 3210 return 0; 3211 } 3212 3213 /* check read/write into a map element with possible variable offset */ 3214 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3215 int off, int size, bool zero_size_allowed) 3216 { 3217 struct bpf_verifier_state *vstate = env->cur_state; 3218 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3219 struct bpf_reg_state *reg = &state->regs[regno]; 3220 struct bpf_map *map = reg->map_ptr; 3221 int err; 3222 3223 err = check_mem_region_access(env, regno, off, size, map->value_size, 3224 zero_size_allowed); 3225 if (err) 3226 return err; 3227 3228 if (map_value_has_spin_lock(map)) { 3229 u32 lock = map->spin_lock_off; 3230 3231 /* if any part of struct bpf_spin_lock can be touched by 3232 * load/store reject this program. 3233 * To check that [x1, x2) overlaps with [y1, y2) 3234 * it is sufficient to check x1 < y2 && y1 < x2. 3235 */ 3236 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3237 lock < reg->umax_value + off + size) { 3238 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3239 return -EACCES; 3240 } 3241 } 3242 return err; 3243 } 3244 3245 #define MAX_PACKET_OFF 0xffff 3246 3247 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3248 { 3249 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3250 } 3251 3252 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3253 const struct bpf_call_arg_meta *meta, 3254 enum bpf_access_type t) 3255 { 3256 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3257 3258 switch (prog_type) { 3259 /* Program types only with direct read access go here! */ 3260 case BPF_PROG_TYPE_LWT_IN: 3261 case BPF_PROG_TYPE_LWT_OUT: 3262 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3263 case BPF_PROG_TYPE_SK_REUSEPORT: 3264 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3265 case BPF_PROG_TYPE_CGROUP_SKB: 3266 if (t == BPF_WRITE) 3267 return false; 3268 fallthrough; 3269 3270 /* Program types with direct read + write access go here! */ 3271 case BPF_PROG_TYPE_SCHED_CLS: 3272 case BPF_PROG_TYPE_SCHED_ACT: 3273 case BPF_PROG_TYPE_XDP: 3274 case BPF_PROG_TYPE_LWT_XMIT: 3275 case BPF_PROG_TYPE_SK_SKB: 3276 case BPF_PROG_TYPE_SK_MSG: 3277 if (meta) 3278 return meta->pkt_access; 3279 3280 env->seen_direct_write = true; 3281 return true; 3282 3283 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3284 if (t == BPF_WRITE) 3285 env->seen_direct_write = true; 3286 3287 return true; 3288 3289 default: 3290 return false; 3291 } 3292 } 3293 3294 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3295 int size, bool zero_size_allowed) 3296 { 3297 struct bpf_reg_state *regs = cur_regs(env); 3298 struct bpf_reg_state *reg = ®s[regno]; 3299 int err; 3300 3301 /* We may have added a variable offset to the packet pointer; but any 3302 * reg->range we have comes after that. We are only checking the fixed 3303 * offset. 3304 */ 3305 3306 /* We don't allow negative numbers, because we aren't tracking enough 3307 * detail to prove they're safe. 3308 */ 3309 if (reg->smin_value < 0) { 3310 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3311 regno); 3312 return -EACCES; 3313 } 3314 3315 err = reg->range < 0 ? -EINVAL : 3316 __check_mem_access(env, regno, off, size, reg->range, 3317 zero_size_allowed); 3318 if (err) { 3319 verbose(env, "R%d offset is outside of the packet\n", regno); 3320 return err; 3321 } 3322 3323 /* __check_mem_access has made sure "off + size - 1" is within u16. 3324 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3325 * otherwise find_good_pkt_pointers would have refused to set range info 3326 * that __check_mem_access would have rejected this pkt access. 3327 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3328 */ 3329 env->prog->aux->max_pkt_offset = 3330 max_t(u32, env->prog->aux->max_pkt_offset, 3331 off + reg->umax_value + size - 1); 3332 3333 return err; 3334 } 3335 3336 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3337 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3338 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3339 struct btf **btf, u32 *btf_id) 3340 { 3341 struct bpf_insn_access_aux info = { 3342 .reg_type = *reg_type, 3343 .log = &env->log, 3344 }; 3345 3346 if (env->ops->is_valid_access && 3347 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3348 /* A non zero info.ctx_field_size indicates that this field is a 3349 * candidate for later verifier transformation to load the whole 3350 * field and then apply a mask when accessed with a narrower 3351 * access than actual ctx access size. A zero info.ctx_field_size 3352 * will only allow for whole field access and rejects any other 3353 * type of narrower access. 3354 */ 3355 *reg_type = info.reg_type; 3356 3357 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3358 *btf = info.btf; 3359 *btf_id = info.btf_id; 3360 } else { 3361 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3362 } 3363 /* remember the offset of last byte accessed in ctx */ 3364 if (env->prog->aux->max_ctx_offset < off + size) 3365 env->prog->aux->max_ctx_offset = off + size; 3366 return 0; 3367 } 3368 3369 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3370 return -EACCES; 3371 } 3372 3373 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3374 int size) 3375 { 3376 if (size < 0 || off < 0 || 3377 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3378 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3379 off, size); 3380 return -EACCES; 3381 } 3382 return 0; 3383 } 3384 3385 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3386 u32 regno, int off, int size, 3387 enum bpf_access_type t) 3388 { 3389 struct bpf_reg_state *regs = cur_regs(env); 3390 struct bpf_reg_state *reg = ®s[regno]; 3391 struct bpf_insn_access_aux info = {}; 3392 bool valid; 3393 3394 if (reg->smin_value < 0) { 3395 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3396 regno); 3397 return -EACCES; 3398 } 3399 3400 switch (reg->type) { 3401 case PTR_TO_SOCK_COMMON: 3402 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3403 break; 3404 case PTR_TO_SOCKET: 3405 valid = bpf_sock_is_valid_access(off, size, t, &info); 3406 break; 3407 case PTR_TO_TCP_SOCK: 3408 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3409 break; 3410 case PTR_TO_XDP_SOCK: 3411 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3412 break; 3413 default: 3414 valid = false; 3415 } 3416 3417 3418 if (valid) { 3419 env->insn_aux_data[insn_idx].ctx_field_size = 3420 info.ctx_field_size; 3421 return 0; 3422 } 3423 3424 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3425 regno, reg_type_str[reg->type], off, size); 3426 3427 return -EACCES; 3428 } 3429 3430 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3431 { 3432 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3433 } 3434 3435 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3436 { 3437 const struct bpf_reg_state *reg = reg_state(env, regno); 3438 3439 return reg->type == PTR_TO_CTX; 3440 } 3441 3442 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3443 { 3444 const struct bpf_reg_state *reg = reg_state(env, regno); 3445 3446 return type_is_sk_pointer(reg->type); 3447 } 3448 3449 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3450 { 3451 const struct bpf_reg_state *reg = reg_state(env, regno); 3452 3453 return type_is_pkt_pointer(reg->type); 3454 } 3455 3456 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3457 { 3458 const struct bpf_reg_state *reg = reg_state(env, regno); 3459 3460 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3461 return reg->type == PTR_TO_FLOW_KEYS; 3462 } 3463 3464 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3465 const struct bpf_reg_state *reg, 3466 int off, int size, bool strict) 3467 { 3468 struct tnum reg_off; 3469 int ip_align; 3470 3471 /* Byte size accesses are always allowed. */ 3472 if (!strict || size == 1) 3473 return 0; 3474 3475 /* For platforms that do not have a Kconfig enabling 3476 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3477 * NET_IP_ALIGN is universally set to '2'. And on platforms 3478 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3479 * to this code only in strict mode where we want to emulate 3480 * the NET_IP_ALIGN==2 checking. Therefore use an 3481 * unconditional IP align value of '2'. 3482 */ 3483 ip_align = 2; 3484 3485 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3486 if (!tnum_is_aligned(reg_off, size)) { 3487 char tn_buf[48]; 3488 3489 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3490 verbose(env, 3491 "misaligned packet access off %d+%s+%d+%d size %d\n", 3492 ip_align, tn_buf, reg->off, off, size); 3493 return -EACCES; 3494 } 3495 3496 return 0; 3497 } 3498 3499 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3500 const struct bpf_reg_state *reg, 3501 const char *pointer_desc, 3502 int off, int size, bool strict) 3503 { 3504 struct tnum reg_off; 3505 3506 /* Byte size accesses are always allowed. */ 3507 if (!strict || size == 1) 3508 return 0; 3509 3510 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3511 if (!tnum_is_aligned(reg_off, size)) { 3512 char tn_buf[48]; 3513 3514 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3515 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3516 pointer_desc, tn_buf, reg->off, off, size); 3517 return -EACCES; 3518 } 3519 3520 return 0; 3521 } 3522 3523 static int check_ptr_alignment(struct bpf_verifier_env *env, 3524 const struct bpf_reg_state *reg, int off, 3525 int size, bool strict_alignment_once) 3526 { 3527 bool strict = env->strict_alignment || strict_alignment_once; 3528 const char *pointer_desc = ""; 3529 3530 switch (reg->type) { 3531 case PTR_TO_PACKET: 3532 case PTR_TO_PACKET_META: 3533 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3534 * right in front, treat it the very same way. 3535 */ 3536 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3537 case PTR_TO_FLOW_KEYS: 3538 pointer_desc = "flow keys "; 3539 break; 3540 case PTR_TO_MAP_KEY: 3541 pointer_desc = "key "; 3542 break; 3543 case PTR_TO_MAP_VALUE: 3544 pointer_desc = "value "; 3545 break; 3546 case PTR_TO_CTX: 3547 pointer_desc = "context "; 3548 break; 3549 case PTR_TO_STACK: 3550 pointer_desc = "stack "; 3551 /* The stack spill tracking logic in check_stack_write_fixed_off() 3552 * and check_stack_read_fixed_off() relies on stack accesses being 3553 * aligned. 3554 */ 3555 strict = true; 3556 break; 3557 case PTR_TO_SOCKET: 3558 pointer_desc = "sock "; 3559 break; 3560 case PTR_TO_SOCK_COMMON: 3561 pointer_desc = "sock_common "; 3562 break; 3563 case PTR_TO_TCP_SOCK: 3564 pointer_desc = "tcp_sock "; 3565 break; 3566 case PTR_TO_XDP_SOCK: 3567 pointer_desc = "xdp_sock "; 3568 break; 3569 default: 3570 break; 3571 } 3572 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3573 strict); 3574 } 3575 3576 static int update_stack_depth(struct bpf_verifier_env *env, 3577 const struct bpf_func_state *func, 3578 int off) 3579 { 3580 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3581 3582 if (stack >= -off) 3583 return 0; 3584 3585 /* update known max for given subprogram */ 3586 env->subprog_info[func->subprogno].stack_depth = -off; 3587 return 0; 3588 } 3589 3590 /* starting from main bpf function walk all instructions of the function 3591 * and recursively walk all callees that given function can call. 3592 * Ignore jump and exit insns. 3593 * Since recursion is prevented by check_cfg() this algorithm 3594 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3595 */ 3596 static int check_max_stack_depth(struct bpf_verifier_env *env) 3597 { 3598 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3599 struct bpf_subprog_info *subprog = env->subprog_info; 3600 struct bpf_insn *insn = env->prog->insnsi; 3601 bool tail_call_reachable = false; 3602 int ret_insn[MAX_CALL_FRAMES]; 3603 int ret_prog[MAX_CALL_FRAMES]; 3604 int j; 3605 3606 process_func: 3607 /* protect against potential stack overflow that might happen when 3608 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3609 * depth for such case down to 256 so that the worst case scenario 3610 * would result in 8k stack size (32 which is tailcall limit * 256 = 3611 * 8k). 3612 * 3613 * To get the idea what might happen, see an example: 3614 * func1 -> sub rsp, 128 3615 * subfunc1 -> sub rsp, 256 3616 * tailcall1 -> add rsp, 256 3617 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3618 * subfunc2 -> sub rsp, 64 3619 * subfunc22 -> sub rsp, 128 3620 * tailcall2 -> add rsp, 128 3621 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3622 * 3623 * tailcall will unwind the current stack frame but it will not get rid 3624 * of caller's stack as shown on the example above. 3625 */ 3626 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3627 verbose(env, 3628 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3629 depth); 3630 return -EACCES; 3631 } 3632 /* round up to 32-bytes, since this is granularity 3633 * of interpreter stack size 3634 */ 3635 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3636 if (depth > MAX_BPF_STACK) { 3637 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3638 frame + 1, depth); 3639 return -EACCES; 3640 } 3641 continue_func: 3642 subprog_end = subprog[idx + 1].start; 3643 for (; i < subprog_end; i++) { 3644 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3645 continue; 3646 /* remember insn and function to return to */ 3647 ret_insn[frame] = i + 1; 3648 ret_prog[frame] = idx; 3649 3650 /* find the callee */ 3651 i = i + insn[i].imm + 1; 3652 idx = find_subprog(env, i); 3653 if (idx < 0) { 3654 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3655 i); 3656 return -EFAULT; 3657 } 3658 3659 if (subprog[idx].has_tail_call) 3660 tail_call_reachable = true; 3661 3662 frame++; 3663 if (frame >= MAX_CALL_FRAMES) { 3664 verbose(env, "the call stack of %d frames is too deep !\n", 3665 frame); 3666 return -E2BIG; 3667 } 3668 goto process_func; 3669 } 3670 /* if tail call got detected across bpf2bpf calls then mark each of the 3671 * currently present subprog frames as tail call reachable subprogs; 3672 * this info will be utilized by JIT so that we will be preserving the 3673 * tail call counter throughout bpf2bpf calls combined with tailcalls 3674 */ 3675 if (tail_call_reachable) 3676 for (j = 0; j < frame; j++) 3677 subprog[ret_prog[j]].tail_call_reachable = true; 3678 3679 /* end of for() loop means the last insn of the 'subprog' 3680 * was reached. Doesn't matter whether it was JA or EXIT 3681 */ 3682 if (frame == 0) 3683 return 0; 3684 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3685 frame--; 3686 i = ret_insn[frame]; 3687 idx = ret_prog[frame]; 3688 goto continue_func; 3689 } 3690 3691 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3692 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3693 const struct bpf_insn *insn, int idx) 3694 { 3695 int start = idx + insn->imm + 1, subprog; 3696 3697 subprog = find_subprog(env, start); 3698 if (subprog < 0) { 3699 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3700 start); 3701 return -EFAULT; 3702 } 3703 return env->subprog_info[subprog].stack_depth; 3704 } 3705 #endif 3706 3707 int check_ctx_reg(struct bpf_verifier_env *env, 3708 const struct bpf_reg_state *reg, int regno) 3709 { 3710 /* Access to ctx or passing it to a helper is only allowed in 3711 * its original, unmodified form. 3712 */ 3713 3714 if (reg->off) { 3715 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3716 regno, reg->off); 3717 return -EACCES; 3718 } 3719 3720 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3721 char tn_buf[48]; 3722 3723 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3724 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3725 return -EACCES; 3726 } 3727 3728 return 0; 3729 } 3730 3731 static int __check_buffer_access(struct bpf_verifier_env *env, 3732 const char *buf_info, 3733 const struct bpf_reg_state *reg, 3734 int regno, int off, int size) 3735 { 3736 if (off < 0) { 3737 verbose(env, 3738 "R%d invalid %s buffer access: off=%d, size=%d\n", 3739 regno, buf_info, off, size); 3740 return -EACCES; 3741 } 3742 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3743 char tn_buf[48]; 3744 3745 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3746 verbose(env, 3747 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3748 regno, off, tn_buf); 3749 return -EACCES; 3750 } 3751 3752 return 0; 3753 } 3754 3755 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3756 const struct bpf_reg_state *reg, 3757 int regno, int off, int size) 3758 { 3759 int err; 3760 3761 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3762 if (err) 3763 return err; 3764 3765 if (off + size > env->prog->aux->max_tp_access) 3766 env->prog->aux->max_tp_access = off + size; 3767 3768 return 0; 3769 } 3770 3771 static int check_buffer_access(struct bpf_verifier_env *env, 3772 const struct bpf_reg_state *reg, 3773 int regno, int off, int size, 3774 bool zero_size_allowed, 3775 const char *buf_info, 3776 u32 *max_access) 3777 { 3778 int err; 3779 3780 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3781 if (err) 3782 return err; 3783 3784 if (off + size > *max_access) 3785 *max_access = off + size; 3786 3787 return 0; 3788 } 3789 3790 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3791 static void zext_32_to_64(struct bpf_reg_state *reg) 3792 { 3793 reg->var_off = tnum_subreg(reg->var_off); 3794 __reg_assign_32_into_64(reg); 3795 } 3796 3797 /* truncate register to smaller size (in bytes) 3798 * must be called with size < BPF_REG_SIZE 3799 */ 3800 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3801 { 3802 u64 mask; 3803 3804 /* clear high bits in bit representation */ 3805 reg->var_off = tnum_cast(reg->var_off, size); 3806 3807 /* fix arithmetic bounds */ 3808 mask = ((u64)1 << (size * 8)) - 1; 3809 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3810 reg->umin_value &= mask; 3811 reg->umax_value &= mask; 3812 } else { 3813 reg->umin_value = 0; 3814 reg->umax_value = mask; 3815 } 3816 reg->smin_value = reg->umin_value; 3817 reg->smax_value = reg->umax_value; 3818 3819 /* If size is smaller than 32bit register the 32bit register 3820 * values are also truncated so we push 64-bit bounds into 3821 * 32-bit bounds. Above were truncated < 32-bits already. 3822 */ 3823 if (size >= 4) 3824 return; 3825 __reg_combine_64_into_32(reg); 3826 } 3827 3828 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3829 { 3830 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3831 } 3832 3833 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3834 { 3835 void *ptr; 3836 u64 addr; 3837 int err; 3838 3839 err = map->ops->map_direct_value_addr(map, &addr, off); 3840 if (err) 3841 return err; 3842 ptr = (void *)(long)addr + off; 3843 3844 switch (size) { 3845 case sizeof(u8): 3846 *val = (u64)*(u8 *)ptr; 3847 break; 3848 case sizeof(u16): 3849 *val = (u64)*(u16 *)ptr; 3850 break; 3851 case sizeof(u32): 3852 *val = (u64)*(u32 *)ptr; 3853 break; 3854 case sizeof(u64): 3855 *val = *(u64 *)ptr; 3856 break; 3857 default: 3858 return -EINVAL; 3859 } 3860 return 0; 3861 } 3862 3863 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3864 struct bpf_reg_state *regs, 3865 int regno, int off, int size, 3866 enum bpf_access_type atype, 3867 int value_regno) 3868 { 3869 struct bpf_reg_state *reg = regs + regno; 3870 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 3871 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 3872 u32 btf_id; 3873 int ret; 3874 3875 if (off < 0) { 3876 verbose(env, 3877 "R%d is ptr_%s invalid negative access: off=%d\n", 3878 regno, tname, off); 3879 return -EACCES; 3880 } 3881 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3882 char tn_buf[48]; 3883 3884 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3885 verbose(env, 3886 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3887 regno, tname, off, tn_buf); 3888 return -EACCES; 3889 } 3890 3891 if (env->ops->btf_struct_access) { 3892 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 3893 off, size, atype, &btf_id); 3894 } else { 3895 if (atype != BPF_READ) { 3896 verbose(env, "only read is supported\n"); 3897 return -EACCES; 3898 } 3899 3900 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 3901 atype, &btf_id); 3902 } 3903 3904 if (ret < 0) 3905 return ret; 3906 3907 if (atype == BPF_READ && value_regno >= 0) 3908 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 3909 3910 return 0; 3911 } 3912 3913 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3914 struct bpf_reg_state *regs, 3915 int regno, int off, int size, 3916 enum bpf_access_type atype, 3917 int value_regno) 3918 { 3919 struct bpf_reg_state *reg = regs + regno; 3920 struct bpf_map *map = reg->map_ptr; 3921 const struct btf_type *t; 3922 const char *tname; 3923 u32 btf_id; 3924 int ret; 3925 3926 if (!btf_vmlinux) { 3927 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3928 return -ENOTSUPP; 3929 } 3930 3931 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3932 verbose(env, "map_ptr access not supported for map type %d\n", 3933 map->map_type); 3934 return -ENOTSUPP; 3935 } 3936 3937 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3938 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3939 3940 if (!env->allow_ptr_to_map_access) { 3941 verbose(env, 3942 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3943 tname); 3944 return -EPERM; 3945 } 3946 3947 if (off < 0) { 3948 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3949 regno, tname, off); 3950 return -EACCES; 3951 } 3952 3953 if (atype != BPF_READ) { 3954 verbose(env, "only read from %s is supported\n", tname); 3955 return -EACCES; 3956 } 3957 3958 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 3959 if (ret < 0) 3960 return ret; 3961 3962 if (value_regno >= 0) 3963 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 3964 3965 return 0; 3966 } 3967 3968 /* Check that the stack access at the given offset is within bounds. The 3969 * maximum valid offset is -1. 3970 * 3971 * The minimum valid offset is -MAX_BPF_STACK for writes, and 3972 * -state->allocated_stack for reads. 3973 */ 3974 static int check_stack_slot_within_bounds(int off, 3975 struct bpf_func_state *state, 3976 enum bpf_access_type t) 3977 { 3978 int min_valid_off; 3979 3980 if (t == BPF_WRITE) 3981 min_valid_off = -MAX_BPF_STACK; 3982 else 3983 min_valid_off = -state->allocated_stack; 3984 3985 if (off < min_valid_off || off > -1) 3986 return -EACCES; 3987 return 0; 3988 } 3989 3990 /* Check that the stack access at 'regno + off' falls within the maximum stack 3991 * bounds. 3992 * 3993 * 'off' includes `regno->offset`, but not its dynamic part (if any). 3994 */ 3995 static int check_stack_access_within_bounds( 3996 struct bpf_verifier_env *env, 3997 int regno, int off, int access_size, 3998 enum stack_access_src src, enum bpf_access_type type) 3999 { 4000 struct bpf_reg_state *regs = cur_regs(env); 4001 struct bpf_reg_state *reg = regs + regno; 4002 struct bpf_func_state *state = func(env, reg); 4003 int min_off, max_off; 4004 int err; 4005 char *err_extra; 4006 4007 if (src == ACCESS_HELPER) 4008 /* We don't know if helpers are reading or writing (or both). */ 4009 err_extra = " indirect access to"; 4010 else if (type == BPF_READ) 4011 err_extra = " read from"; 4012 else 4013 err_extra = " write to"; 4014 4015 if (tnum_is_const(reg->var_off)) { 4016 min_off = reg->var_off.value + off; 4017 if (access_size > 0) 4018 max_off = min_off + access_size - 1; 4019 else 4020 max_off = min_off; 4021 } else { 4022 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4023 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4024 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4025 err_extra, regno); 4026 return -EACCES; 4027 } 4028 min_off = reg->smin_value + off; 4029 if (access_size > 0) 4030 max_off = reg->smax_value + off + access_size - 1; 4031 else 4032 max_off = min_off; 4033 } 4034 4035 err = check_stack_slot_within_bounds(min_off, state, type); 4036 if (!err) 4037 err = check_stack_slot_within_bounds(max_off, state, type); 4038 4039 if (err) { 4040 if (tnum_is_const(reg->var_off)) { 4041 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4042 err_extra, regno, off, access_size); 4043 } else { 4044 char tn_buf[48]; 4045 4046 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4047 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4048 err_extra, regno, tn_buf, access_size); 4049 } 4050 } 4051 return err; 4052 } 4053 4054 /* check whether memory at (regno + off) is accessible for t = (read | write) 4055 * if t==write, value_regno is a register which value is stored into memory 4056 * if t==read, value_regno is a register which will receive the value from memory 4057 * if t==write && value_regno==-1, some unknown value is stored into memory 4058 * if t==read && value_regno==-1, don't care what we read from memory 4059 */ 4060 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4061 int off, int bpf_size, enum bpf_access_type t, 4062 int value_regno, bool strict_alignment_once) 4063 { 4064 struct bpf_reg_state *regs = cur_regs(env); 4065 struct bpf_reg_state *reg = regs + regno; 4066 struct bpf_func_state *state; 4067 int size, err = 0; 4068 4069 size = bpf_size_to_bytes(bpf_size); 4070 if (size < 0) 4071 return size; 4072 4073 /* alignment checks will add in reg->off themselves */ 4074 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4075 if (err) 4076 return err; 4077 4078 /* for access checks, reg->off is just part of off */ 4079 off += reg->off; 4080 4081 if (reg->type == PTR_TO_MAP_KEY) { 4082 if (t == BPF_WRITE) { 4083 verbose(env, "write to change key R%d not allowed\n", regno); 4084 return -EACCES; 4085 } 4086 4087 err = check_mem_region_access(env, regno, off, size, 4088 reg->map_ptr->key_size, false); 4089 if (err) 4090 return err; 4091 if (value_regno >= 0) 4092 mark_reg_unknown(env, regs, value_regno); 4093 } else if (reg->type == PTR_TO_MAP_VALUE) { 4094 if (t == BPF_WRITE && value_regno >= 0 && 4095 is_pointer_value(env, value_regno)) { 4096 verbose(env, "R%d leaks addr into map\n", value_regno); 4097 return -EACCES; 4098 } 4099 err = check_map_access_type(env, regno, off, size, t); 4100 if (err) 4101 return err; 4102 err = check_map_access(env, regno, off, size, false); 4103 if (!err && t == BPF_READ && value_regno >= 0) { 4104 struct bpf_map *map = reg->map_ptr; 4105 4106 /* if map is read-only, track its contents as scalars */ 4107 if (tnum_is_const(reg->var_off) && 4108 bpf_map_is_rdonly(map) && 4109 map->ops->map_direct_value_addr) { 4110 int map_off = off + reg->var_off.value; 4111 u64 val = 0; 4112 4113 err = bpf_map_direct_read(map, map_off, size, 4114 &val); 4115 if (err) 4116 return err; 4117 4118 regs[value_regno].type = SCALAR_VALUE; 4119 __mark_reg_known(®s[value_regno], val); 4120 } else { 4121 mark_reg_unknown(env, regs, value_regno); 4122 } 4123 } 4124 } else if (reg->type == PTR_TO_MEM) { 4125 if (t == BPF_WRITE && value_regno >= 0 && 4126 is_pointer_value(env, value_regno)) { 4127 verbose(env, "R%d leaks addr into mem\n", value_regno); 4128 return -EACCES; 4129 } 4130 err = check_mem_region_access(env, regno, off, size, 4131 reg->mem_size, false); 4132 if (!err && t == BPF_READ && value_regno >= 0) 4133 mark_reg_unknown(env, regs, value_regno); 4134 } else if (reg->type == PTR_TO_CTX) { 4135 enum bpf_reg_type reg_type = SCALAR_VALUE; 4136 struct btf *btf = NULL; 4137 u32 btf_id = 0; 4138 4139 if (t == BPF_WRITE && value_regno >= 0 && 4140 is_pointer_value(env, value_regno)) { 4141 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4142 return -EACCES; 4143 } 4144 4145 err = check_ctx_reg(env, reg, regno); 4146 if (err < 0) 4147 return err; 4148 4149 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4150 if (err) 4151 verbose_linfo(env, insn_idx, "; "); 4152 if (!err && t == BPF_READ && value_regno >= 0) { 4153 /* ctx access returns either a scalar, or a 4154 * PTR_TO_PACKET[_META,_END]. In the latter 4155 * case, we know the offset is zero. 4156 */ 4157 if (reg_type == SCALAR_VALUE) { 4158 mark_reg_unknown(env, regs, value_regno); 4159 } else { 4160 mark_reg_known_zero(env, regs, 4161 value_regno); 4162 if (reg_type_may_be_null(reg_type)) 4163 regs[value_regno].id = ++env->id_gen; 4164 /* A load of ctx field could have different 4165 * actual load size with the one encoded in the 4166 * insn. When the dst is PTR, it is for sure not 4167 * a sub-register. 4168 */ 4169 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4170 if (reg_type == PTR_TO_BTF_ID || 4171 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4172 regs[value_regno].btf = btf; 4173 regs[value_regno].btf_id = btf_id; 4174 } 4175 } 4176 regs[value_regno].type = reg_type; 4177 } 4178 4179 } else if (reg->type == PTR_TO_STACK) { 4180 /* Basic bounds checks. */ 4181 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4182 if (err) 4183 return err; 4184 4185 state = func(env, reg); 4186 err = update_stack_depth(env, state, off); 4187 if (err) 4188 return err; 4189 4190 if (t == BPF_READ) 4191 err = check_stack_read(env, regno, off, size, 4192 value_regno); 4193 else 4194 err = check_stack_write(env, regno, off, size, 4195 value_regno, insn_idx); 4196 } else if (reg_is_pkt_pointer(reg)) { 4197 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4198 verbose(env, "cannot write into packet\n"); 4199 return -EACCES; 4200 } 4201 if (t == BPF_WRITE && value_regno >= 0 && 4202 is_pointer_value(env, value_regno)) { 4203 verbose(env, "R%d leaks addr into packet\n", 4204 value_regno); 4205 return -EACCES; 4206 } 4207 err = check_packet_access(env, regno, off, size, false); 4208 if (!err && t == BPF_READ && value_regno >= 0) 4209 mark_reg_unknown(env, regs, value_regno); 4210 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4211 if (t == BPF_WRITE && value_regno >= 0 && 4212 is_pointer_value(env, value_regno)) { 4213 verbose(env, "R%d leaks addr into flow keys\n", 4214 value_regno); 4215 return -EACCES; 4216 } 4217 4218 err = check_flow_keys_access(env, off, size); 4219 if (!err && t == BPF_READ && value_regno >= 0) 4220 mark_reg_unknown(env, regs, value_regno); 4221 } else if (type_is_sk_pointer(reg->type)) { 4222 if (t == BPF_WRITE) { 4223 verbose(env, "R%d cannot write into %s\n", 4224 regno, reg_type_str[reg->type]); 4225 return -EACCES; 4226 } 4227 err = check_sock_access(env, insn_idx, regno, off, size, t); 4228 if (!err && value_regno >= 0) 4229 mark_reg_unknown(env, regs, value_regno); 4230 } else if (reg->type == PTR_TO_TP_BUFFER) { 4231 err = check_tp_buffer_access(env, reg, regno, off, size); 4232 if (!err && t == BPF_READ && value_regno >= 0) 4233 mark_reg_unknown(env, regs, value_regno); 4234 } else if (reg->type == PTR_TO_BTF_ID) { 4235 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4236 value_regno); 4237 } else if (reg->type == CONST_PTR_TO_MAP) { 4238 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4239 value_regno); 4240 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4241 if (t == BPF_WRITE) { 4242 verbose(env, "R%d cannot write into %s\n", 4243 regno, reg_type_str[reg->type]); 4244 return -EACCES; 4245 } 4246 err = check_buffer_access(env, reg, regno, off, size, false, 4247 "rdonly", 4248 &env->prog->aux->max_rdonly_access); 4249 if (!err && value_regno >= 0) 4250 mark_reg_unknown(env, regs, value_regno); 4251 } else if (reg->type == PTR_TO_RDWR_BUF) { 4252 err = check_buffer_access(env, reg, regno, off, size, false, 4253 "rdwr", 4254 &env->prog->aux->max_rdwr_access); 4255 if (!err && t == BPF_READ && value_regno >= 0) 4256 mark_reg_unknown(env, regs, value_regno); 4257 } else { 4258 verbose(env, "R%d invalid mem access '%s'\n", regno, 4259 reg_type_str[reg->type]); 4260 return -EACCES; 4261 } 4262 4263 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4264 regs[value_regno].type == SCALAR_VALUE) { 4265 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4266 coerce_reg_to_size(®s[value_regno], size); 4267 } 4268 return err; 4269 } 4270 4271 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4272 { 4273 int load_reg; 4274 int err; 4275 4276 switch (insn->imm) { 4277 case BPF_ADD: 4278 case BPF_ADD | BPF_FETCH: 4279 case BPF_AND: 4280 case BPF_AND | BPF_FETCH: 4281 case BPF_OR: 4282 case BPF_OR | BPF_FETCH: 4283 case BPF_XOR: 4284 case BPF_XOR | BPF_FETCH: 4285 case BPF_XCHG: 4286 case BPF_CMPXCHG: 4287 break; 4288 default: 4289 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4290 return -EINVAL; 4291 } 4292 4293 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4294 verbose(env, "invalid atomic operand size\n"); 4295 return -EINVAL; 4296 } 4297 4298 /* check src1 operand */ 4299 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4300 if (err) 4301 return err; 4302 4303 /* check src2 operand */ 4304 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4305 if (err) 4306 return err; 4307 4308 if (insn->imm == BPF_CMPXCHG) { 4309 /* Check comparison of R0 with memory location */ 4310 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4311 if (err) 4312 return err; 4313 } 4314 4315 if (is_pointer_value(env, insn->src_reg)) { 4316 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4317 return -EACCES; 4318 } 4319 4320 if (is_ctx_reg(env, insn->dst_reg) || 4321 is_pkt_reg(env, insn->dst_reg) || 4322 is_flow_key_reg(env, insn->dst_reg) || 4323 is_sk_reg(env, insn->dst_reg)) { 4324 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4325 insn->dst_reg, 4326 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4327 return -EACCES; 4328 } 4329 4330 if (insn->imm & BPF_FETCH) { 4331 if (insn->imm == BPF_CMPXCHG) 4332 load_reg = BPF_REG_0; 4333 else 4334 load_reg = insn->src_reg; 4335 4336 /* check and record load of old value */ 4337 err = check_reg_arg(env, load_reg, DST_OP); 4338 if (err) 4339 return err; 4340 } else { 4341 /* This instruction accesses a memory location but doesn't 4342 * actually load it into a register. 4343 */ 4344 load_reg = -1; 4345 } 4346 4347 /* check whether we can read the memory */ 4348 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4349 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4350 if (err) 4351 return err; 4352 4353 /* check whether we can write into the same memory */ 4354 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4355 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4356 if (err) 4357 return err; 4358 4359 return 0; 4360 } 4361 4362 /* When register 'regno' is used to read the stack (either directly or through 4363 * a helper function) make sure that it's within stack boundary and, depending 4364 * on the access type, that all elements of the stack are initialized. 4365 * 4366 * 'off' includes 'regno->off', but not its dynamic part (if any). 4367 * 4368 * All registers that have been spilled on the stack in the slots within the 4369 * read offsets are marked as read. 4370 */ 4371 static int check_stack_range_initialized( 4372 struct bpf_verifier_env *env, int regno, int off, 4373 int access_size, bool zero_size_allowed, 4374 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4375 { 4376 struct bpf_reg_state *reg = reg_state(env, regno); 4377 struct bpf_func_state *state = func(env, reg); 4378 int err, min_off, max_off, i, j, slot, spi; 4379 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4380 enum bpf_access_type bounds_check_type; 4381 /* Some accesses can write anything into the stack, others are 4382 * read-only. 4383 */ 4384 bool clobber = false; 4385 4386 if (access_size == 0 && !zero_size_allowed) { 4387 verbose(env, "invalid zero-sized read\n"); 4388 return -EACCES; 4389 } 4390 4391 if (type == ACCESS_HELPER) { 4392 /* The bounds checks for writes are more permissive than for 4393 * reads. However, if raw_mode is not set, we'll do extra 4394 * checks below. 4395 */ 4396 bounds_check_type = BPF_WRITE; 4397 clobber = true; 4398 } else { 4399 bounds_check_type = BPF_READ; 4400 } 4401 err = check_stack_access_within_bounds(env, regno, off, access_size, 4402 type, bounds_check_type); 4403 if (err) 4404 return err; 4405 4406 4407 if (tnum_is_const(reg->var_off)) { 4408 min_off = max_off = reg->var_off.value + off; 4409 } else { 4410 /* Variable offset is prohibited for unprivileged mode for 4411 * simplicity since it requires corresponding support in 4412 * Spectre masking for stack ALU. 4413 * See also retrieve_ptr_limit(). 4414 */ 4415 if (!env->bypass_spec_v1) { 4416 char tn_buf[48]; 4417 4418 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4419 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4420 regno, err_extra, tn_buf); 4421 return -EACCES; 4422 } 4423 /* Only initialized buffer on stack is allowed to be accessed 4424 * with variable offset. With uninitialized buffer it's hard to 4425 * guarantee that whole memory is marked as initialized on 4426 * helper return since specific bounds are unknown what may 4427 * cause uninitialized stack leaking. 4428 */ 4429 if (meta && meta->raw_mode) 4430 meta = NULL; 4431 4432 min_off = reg->smin_value + off; 4433 max_off = reg->smax_value + off; 4434 } 4435 4436 if (meta && meta->raw_mode) { 4437 meta->access_size = access_size; 4438 meta->regno = regno; 4439 return 0; 4440 } 4441 4442 for (i = min_off; i < max_off + access_size; i++) { 4443 u8 *stype; 4444 4445 slot = -i - 1; 4446 spi = slot / BPF_REG_SIZE; 4447 if (state->allocated_stack <= slot) 4448 goto err; 4449 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4450 if (*stype == STACK_MISC) 4451 goto mark; 4452 if (*stype == STACK_ZERO) { 4453 if (clobber) { 4454 /* helper can write anything into the stack */ 4455 *stype = STACK_MISC; 4456 } 4457 goto mark; 4458 } 4459 4460 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4461 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4462 goto mark; 4463 4464 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4465 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4466 env->allow_ptr_leaks)) { 4467 if (clobber) { 4468 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4469 for (j = 0; j < BPF_REG_SIZE; j++) 4470 state->stack[spi].slot_type[j] = STACK_MISC; 4471 } 4472 goto mark; 4473 } 4474 4475 err: 4476 if (tnum_is_const(reg->var_off)) { 4477 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4478 err_extra, regno, min_off, i - min_off, access_size); 4479 } else { 4480 char tn_buf[48]; 4481 4482 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4483 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4484 err_extra, regno, tn_buf, i - min_off, access_size); 4485 } 4486 return -EACCES; 4487 mark: 4488 /* reading any byte out of 8-byte 'spill_slot' will cause 4489 * the whole slot to be marked as 'read' 4490 */ 4491 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4492 state->stack[spi].spilled_ptr.parent, 4493 REG_LIVE_READ64); 4494 } 4495 return update_stack_depth(env, state, min_off); 4496 } 4497 4498 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4499 int access_size, bool zero_size_allowed, 4500 struct bpf_call_arg_meta *meta) 4501 { 4502 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4503 4504 switch (reg->type) { 4505 case PTR_TO_PACKET: 4506 case PTR_TO_PACKET_META: 4507 return check_packet_access(env, regno, reg->off, access_size, 4508 zero_size_allowed); 4509 case PTR_TO_MAP_KEY: 4510 return check_mem_region_access(env, regno, reg->off, access_size, 4511 reg->map_ptr->key_size, false); 4512 case PTR_TO_MAP_VALUE: 4513 if (check_map_access_type(env, regno, reg->off, access_size, 4514 meta && meta->raw_mode ? BPF_WRITE : 4515 BPF_READ)) 4516 return -EACCES; 4517 return check_map_access(env, regno, reg->off, access_size, 4518 zero_size_allowed); 4519 case PTR_TO_MEM: 4520 return check_mem_region_access(env, regno, reg->off, 4521 access_size, reg->mem_size, 4522 zero_size_allowed); 4523 case PTR_TO_RDONLY_BUF: 4524 if (meta && meta->raw_mode) 4525 return -EACCES; 4526 return check_buffer_access(env, reg, regno, reg->off, 4527 access_size, zero_size_allowed, 4528 "rdonly", 4529 &env->prog->aux->max_rdonly_access); 4530 case PTR_TO_RDWR_BUF: 4531 return check_buffer_access(env, reg, regno, reg->off, 4532 access_size, zero_size_allowed, 4533 "rdwr", 4534 &env->prog->aux->max_rdwr_access); 4535 case PTR_TO_STACK: 4536 return check_stack_range_initialized( 4537 env, 4538 regno, reg->off, access_size, 4539 zero_size_allowed, ACCESS_HELPER, meta); 4540 default: /* scalar_value or invalid ptr */ 4541 /* Allow zero-byte read from NULL, regardless of pointer type */ 4542 if (zero_size_allowed && access_size == 0 && 4543 register_is_null(reg)) 4544 return 0; 4545 4546 verbose(env, "R%d type=%s expected=%s\n", regno, 4547 reg_type_str[reg->type], 4548 reg_type_str[PTR_TO_STACK]); 4549 return -EACCES; 4550 } 4551 } 4552 4553 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4554 u32 regno, u32 mem_size) 4555 { 4556 if (register_is_null(reg)) 4557 return 0; 4558 4559 if (reg_type_may_be_null(reg->type)) { 4560 /* Assuming that the register contains a value check if the memory 4561 * access is safe. Temporarily save and restore the register's state as 4562 * the conversion shouldn't be visible to a caller. 4563 */ 4564 const struct bpf_reg_state saved_reg = *reg; 4565 int rv; 4566 4567 mark_ptr_not_null_reg(reg); 4568 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4569 *reg = saved_reg; 4570 return rv; 4571 } 4572 4573 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4574 } 4575 4576 /* Implementation details: 4577 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4578 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4579 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4580 * value_or_null->value transition, since the verifier only cares about 4581 * the range of access to valid map value pointer and doesn't care about actual 4582 * address of the map element. 4583 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4584 * reg->id > 0 after value_or_null->value transition. By doing so 4585 * two bpf_map_lookups will be considered two different pointers that 4586 * point to different bpf_spin_locks. 4587 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4588 * dead-locks. 4589 * Since only one bpf_spin_lock is allowed the checks are simpler than 4590 * reg_is_refcounted() logic. The verifier needs to remember only 4591 * one spin_lock instead of array of acquired_refs. 4592 * cur_state->active_spin_lock remembers which map value element got locked 4593 * and clears it after bpf_spin_unlock. 4594 */ 4595 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4596 bool is_lock) 4597 { 4598 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4599 struct bpf_verifier_state *cur = env->cur_state; 4600 bool is_const = tnum_is_const(reg->var_off); 4601 struct bpf_map *map = reg->map_ptr; 4602 u64 val = reg->var_off.value; 4603 4604 if (!is_const) { 4605 verbose(env, 4606 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4607 regno); 4608 return -EINVAL; 4609 } 4610 if (!map->btf) { 4611 verbose(env, 4612 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4613 map->name); 4614 return -EINVAL; 4615 } 4616 if (!map_value_has_spin_lock(map)) { 4617 if (map->spin_lock_off == -E2BIG) 4618 verbose(env, 4619 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4620 map->name); 4621 else if (map->spin_lock_off == -ENOENT) 4622 verbose(env, 4623 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4624 map->name); 4625 else 4626 verbose(env, 4627 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4628 map->name); 4629 return -EINVAL; 4630 } 4631 if (map->spin_lock_off != val + reg->off) { 4632 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4633 val + reg->off); 4634 return -EINVAL; 4635 } 4636 if (is_lock) { 4637 if (cur->active_spin_lock) { 4638 verbose(env, 4639 "Locking two bpf_spin_locks are not allowed\n"); 4640 return -EINVAL; 4641 } 4642 cur->active_spin_lock = reg->id; 4643 } else { 4644 if (!cur->active_spin_lock) { 4645 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4646 return -EINVAL; 4647 } 4648 if (cur->active_spin_lock != reg->id) { 4649 verbose(env, "bpf_spin_unlock of different lock\n"); 4650 return -EINVAL; 4651 } 4652 cur->active_spin_lock = 0; 4653 } 4654 return 0; 4655 } 4656 4657 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4658 { 4659 return type == ARG_PTR_TO_MEM || 4660 type == ARG_PTR_TO_MEM_OR_NULL || 4661 type == ARG_PTR_TO_UNINIT_MEM; 4662 } 4663 4664 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4665 { 4666 return type == ARG_CONST_SIZE || 4667 type == ARG_CONST_SIZE_OR_ZERO; 4668 } 4669 4670 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4671 { 4672 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4673 } 4674 4675 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4676 { 4677 return type == ARG_PTR_TO_INT || 4678 type == ARG_PTR_TO_LONG; 4679 } 4680 4681 static int int_ptr_type_to_size(enum bpf_arg_type type) 4682 { 4683 if (type == ARG_PTR_TO_INT) 4684 return sizeof(u32); 4685 else if (type == ARG_PTR_TO_LONG) 4686 return sizeof(u64); 4687 4688 return -EINVAL; 4689 } 4690 4691 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4692 const struct bpf_call_arg_meta *meta, 4693 enum bpf_arg_type *arg_type) 4694 { 4695 if (!meta->map_ptr) { 4696 /* kernel subsystem misconfigured verifier */ 4697 verbose(env, "invalid map_ptr to access map->type\n"); 4698 return -EACCES; 4699 } 4700 4701 switch (meta->map_ptr->map_type) { 4702 case BPF_MAP_TYPE_SOCKMAP: 4703 case BPF_MAP_TYPE_SOCKHASH: 4704 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4705 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4706 } else { 4707 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 4708 return -EINVAL; 4709 } 4710 break; 4711 4712 default: 4713 break; 4714 } 4715 return 0; 4716 } 4717 4718 struct bpf_reg_types { 4719 const enum bpf_reg_type types[10]; 4720 u32 *btf_id; 4721 }; 4722 4723 static const struct bpf_reg_types map_key_value_types = { 4724 .types = { 4725 PTR_TO_STACK, 4726 PTR_TO_PACKET, 4727 PTR_TO_PACKET_META, 4728 PTR_TO_MAP_KEY, 4729 PTR_TO_MAP_VALUE, 4730 }, 4731 }; 4732 4733 static const struct bpf_reg_types sock_types = { 4734 .types = { 4735 PTR_TO_SOCK_COMMON, 4736 PTR_TO_SOCKET, 4737 PTR_TO_TCP_SOCK, 4738 PTR_TO_XDP_SOCK, 4739 }, 4740 }; 4741 4742 #ifdef CONFIG_NET 4743 static const struct bpf_reg_types btf_id_sock_common_types = { 4744 .types = { 4745 PTR_TO_SOCK_COMMON, 4746 PTR_TO_SOCKET, 4747 PTR_TO_TCP_SOCK, 4748 PTR_TO_XDP_SOCK, 4749 PTR_TO_BTF_ID, 4750 }, 4751 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4752 }; 4753 #endif 4754 4755 static const struct bpf_reg_types mem_types = { 4756 .types = { 4757 PTR_TO_STACK, 4758 PTR_TO_PACKET, 4759 PTR_TO_PACKET_META, 4760 PTR_TO_MAP_KEY, 4761 PTR_TO_MAP_VALUE, 4762 PTR_TO_MEM, 4763 PTR_TO_RDONLY_BUF, 4764 PTR_TO_RDWR_BUF, 4765 }, 4766 }; 4767 4768 static const struct bpf_reg_types int_ptr_types = { 4769 .types = { 4770 PTR_TO_STACK, 4771 PTR_TO_PACKET, 4772 PTR_TO_PACKET_META, 4773 PTR_TO_MAP_KEY, 4774 PTR_TO_MAP_VALUE, 4775 }, 4776 }; 4777 4778 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4779 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4780 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4781 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4782 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4783 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4784 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4785 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4786 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 4787 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 4788 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 4789 4790 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4791 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4792 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4793 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4794 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4795 [ARG_CONST_SIZE] = &scalar_types, 4796 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4797 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4798 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4799 [ARG_PTR_TO_CTX] = &context_types, 4800 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4801 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4802 #ifdef CONFIG_NET 4803 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4804 #endif 4805 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4806 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4807 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4808 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4809 [ARG_PTR_TO_MEM] = &mem_types, 4810 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4811 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4812 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4813 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4814 [ARG_PTR_TO_INT] = &int_ptr_types, 4815 [ARG_PTR_TO_LONG] = &int_ptr_types, 4816 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4817 [ARG_PTR_TO_FUNC] = &func_ptr_types, 4818 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 4819 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 4820 }; 4821 4822 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4823 enum bpf_arg_type arg_type, 4824 const u32 *arg_btf_id) 4825 { 4826 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4827 enum bpf_reg_type expected, type = reg->type; 4828 const struct bpf_reg_types *compatible; 4829 int i, j; 4830 4831 compatible = compatible_reg_types[arg_type]; 4832 if (!compatible) { 4833 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4834 return -EFAULT; 4835 } 4836 4837 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4838 expected = compatible->types[i]; 4839 if (expected == NOT_INIT) 4840 break; 4841 4842 if (type == expected) 4843 goto found; 4844 } 4845 4846 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4847 for (j = 0; j + 1 < i; j++) 4848 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4849 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4850 return -EACCES; 4851 4852 found: 4853 if (type == PTR_TO_BTF_ID) { 4854 if (!arg_btf_id) { 4855 if (!compatible->btf_id) { 4856 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4857 return -EFAULT; 4858 } 4859 arg_btf_id = compatible->btf_id; 4860 } 4861 4862 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4863 btf_vmlinux, *arg_btf_id)) { 4864 verbose(env, "R%d is of type %s but %s is expected\n", 4865 regno, kernel_type_name(reg->btf, reg->btf_id), 4866 kernel_type_name(btf_vmlinux, *arg_btf_id)); 4867 return -EACCES; 4868 } 4869 4870 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4871 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4872 regno); 4873 return -EACCES; 4874 } 4875 } 4876 4877 return 0; 4878 } 4879 4880 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4881 struct bpf_call_arg_meta *meta, 4882 const struct bpf_func_proto *fn) 4883 { 4884 u32 regno = BPF_REG_1 + arg; 4885 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4886 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4887 enum bpf_reg_type type = reg->type; 4888 int err = 0; 4889 4890 if (arg_type == ARG_DONTCARE) 4891 return 0; 4892 4893 err = check_reg_arg(env, regno, SRC_OP); 4894 if (err) 4895 return err; 4896 4897 if (arg_type == ARG_ANYTHING) { 4898 if (is_pointer_value(env, regno)) { 4899 verbose(env, "R%d leaks addr into helper function\n", 4900 regno); 4901 return -EACCES; 4902 } 4903 return 0; 4904 } 4905 4906 if (type_is_pkt_pointer(type) && 4907 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4908 verbose(env, "helper access to the packet is not allowed\n"); 4909 return -EACCES; 4910 } 4911 4912 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4913 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4914 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4915 err = resolve_map_arg_type(env, meta, &arg_type); 4916 if (err) 4917 return err; 4918 } 4919 4920 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4921 /* A NULL register has a SCALAR_VALUE type, so skip 4922 * type checking. 4923 */ 4924 goto skip_type_check; 4925 4926 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4927 if (err) 4928 return err; 4929 4930 if (type == PTR_TO_CTX) { 4931 err = check_ctx_reg(env, reg, regno); 4932 if (err < 0) 4933 return err; 4934 } 4935 4936 skip_type_check: 4937 if (reg->ref_obj_id) { 4938 if (meta->ref_obj_id) { 4939 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4940 regno, reg->ref_obj_id, 4941 meta->ref_obj_id); 4942 return -EFAULT; 4943 } 4944 meta->ref_obj_id = reg->ref_obj_id; 4945 } 4946 4947 if (arg_type == ARG_CONST_MAP_PTR) { 4948 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4949 meta->map_ptr = reg->map_ptr; 4950 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4951 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4952 * check that [key, key + map->key_size) are within 4953 * stack limits and initialized 4954 */ 4955 if (!meta->map_ptr) { 4956 /* in function declaration map_ptr must come before 4957 * map_key, so that it's verified and known before 4958 * we have to check map_key here. Otherwise it means 4959 * that kernel subsystem misconfigured verifier 4960 */ 4961 verbose(env, "invalid map_ptr to access map->key\n"); 4962 return -EACCES; 4963 } 4964 err = check_helper_mem_access(env, regno, 4965 meta->map_ptr->key_size, false, 4966 NULL); 4967 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4968 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4969 !register_is_null(reg)) || 4970 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4971 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4972 * check [value, value + map->value_size) validity 4973 */ 4974 if (!meta->map_ptr) { 4975 /* kernel subsystem misconfigured verifier */ 4976 verbose(env, "invalid map_ptr to access map->value\n"); 4977 return -EACCES; 4978 } 4979 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4980 err = check_helper_mem_access(env, regno, 4981 meta->map_ptr->value_size, false, 4982 meta); 4983 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4984 if (!reg->btf_id) { 4985 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4986 return -EACCES; 4987 } 4988 meta->ret_btf = reg->btf; 4989 meta->ret_btf_id = reg->btf_id; 4990 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4991 if (meta->func_id == BPF_FUNC_spin_lock) { 4992 if (process_spin_lock(env, regno, true)) 4993 return -EACCES; 4994 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4995 if (process_spin_lock(env, regno, false)) 4996 return -EACCES; 4997 } else { 4998 verbose(env, "verifier internal error\n"); 4999 return -EFAULT; 5000 } 5001 } else if (arg_type == ARG_PTR_TO_FUNC) { 5002 meta->subprogno = reg->subprogno; 5003 } else if (arg_type_is_mem_ptr(arg_type)) { 5004 /* The access to this pointer is only checked when we hit the 5005 * next is_mem_size argument below. 5006 */ 5007 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5008 } else if (arg_type_is_mem_size(arg_type)) { 5009 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5010 5011 /* This is used to refine r0 return value bounds for helpers 5012 * that enforce this value as an upper bound on return values. 5013 * See do_refine_retval_range() for helpers that can refine 5014 * the return value. C type of helper is u32 so we pull register 5015 * bound from umax_value however, if negative verifier errors 5016 * out. Only upper bounds can be learned because retval is an 5017 * int type and negative retvals are allowed. 5018 */ 5019 meta->msize_max_value = reg->umax_value; 5020 5021 /* The register is SCALAR_VALUE; the access check 5022 * happens using its boundaries. 5023 */ 5024 if (!tnum_is_const(reg->var_off)) 5025 /* For unprivileged variable accesses, disable raw 5026 * mode so that the program is required to 5027 * initialize all the memory that the helper could 5028 * just partially fill up. 5029 */ 5030 meta = NULL; 5031 5032 if (reg->smin_value < 0) { 5033 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5034 regno); 5035 return -EACCES; 5036 } 5037 5038 if (reg->umin_value == 0) { 5039 err = check_helper_mem_access(env, regno - 1, 0, 5040 zero_size_allowed, 5041 meta); 5042 if (err) 5043 return err; 5044 } 5045 5046 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5047 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5048 regno); 5049 return -EACCES; 5050 } 5051 err = check_helper_mem_access(env, regno - 1, 5052 reg->umax_value, 5053 zero_size_allowed, meta); 5054 if (!err) 5055 err = mark_chain_precision(env, regno); 5056 } else if (arg_type_is_alloc_size(arg_type)) { 5057 if (!tnum_is_const(reg->var_off)) { 5058 verbose(env, "R%d is not a known constant'\n", 5059 regno); 5060 return -EACCES; 5061 } 5062 meta->mem_size = reg->var_off.value; 5063 } else if (arg_type_is_int_ptr(arg_type)) { 5064 int size = int_ptr_type_to_size(arg_type); 5065 5066 err = check_helper_mem_access(env, regno, size, false, meta); 5067 if (err) 5068 return err; 5069 err = check_ptr_alignment(env, reg, 0, size, true); 5070 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5071 struct bpf_map *map = reg->map_ptr; 5072 int map_off; 5073 u64 map_addr; 5074 char *str_ptr; 5075 5076 if (!bpf_map_is_rdonly(map)) { 5077 verbose(env, "R%d does not point to a readonly map'\n", regno); 5078 return -EACCES; 5079 } 5080 5081 if (!tnum_is_const(reg->var_off)) { 5082 verbose(env, "R%d is not a constant address'\n", regno); 5083 return -EACCES; 5084 } 5085 5086 if (!map->ops->map_direct_value_addr) { 5087 verbose(env, "no direct value access support for this map type\n"); 5088 return -EACCES; 5089 } 5090 5091 err = check_map_access(env, regno, reg->off, 5092 map->value_size - reg->off, false); 5093 if (err) 5094 return err; 5095 5096 map_off = reg->off + reg->var_off.value; 5097 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5098 if (err) { 5099 verbose(env, "direct value access on string failed\n"); 5100 return err; 5101 } 5102 5103 str_ptr = (char *)(long)(map_addr); 5104 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5105 verbose(env, "string is not zero-terminated\n"); 5106 return -EINVAL; 5107 } 5108 } 5109 5110 return err; 5111 } 5112 5113 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5114 { 5115 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5116 enum bpf_prog_type type = resolve_prog_type(env->prog); 5117 5118 if (func_id != BPF_FUNC_map_update_elem) 5119 return false; 5120 5121 /* It's not possible to get access to a locked struct sock in these 5122 * contexts, so updating is safe. 5123 */ 5124 switch (type) { 5125 case BPF_PROG_TYPE_TRACING: 5126 if (eatype == BPF_TRACE_ITER) 5127 return true; 5128 break; 5129 case BPF_PROG_TYPE_SOCKET_FILTER: 5130 case BPF_PROG_TYPE_SCHED_CLS: 5131 case BPF_PROG_TYPE_SCHED_ACT: 5132 case BPF_PROG_TYPE_XDP: 5133 case BPF_PROG_TYPE_SK_REUSEPORT: 5134 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5135 case BPF_PROG_TYPE_SK_LOOKUP: 5136 return true; 5137 default: 5138 break; 5139 } 5140 5141 verbose(env, "cannot update sockmap in this context\n"); 5142 return false; 5143 } 5144 5145 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5146 { 5147 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5148 } 5149 5150 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5151 struct bpf_map *map, int func_id) 5152 { 5153 if (!map) 5154 return 0; 5155 5156 /* We need a two way check, first is from map perspective ... */ 5157 switch (map->map_type) { 5158 case BPF_MAP_TYPE_PROG_ARRAY: 5159 if (func_id != BPF_FUNC_tail_call) 5160 goto error; 5161 break; 5162 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5163 if (func_id != BPF_FUNC_perf_event_read && 5164 func_id != BPF_FUNC_perf_event_output && 5165 func_id != BPF_FUNC_skb_output && 5166 func_id != BPF_FUNC_perf_event_read_value && 5167 func_id != BPF_FUNC_xdp_output) 5168 goto error; 5169 break; 5170 case BPF_MAP_TYPE_RINGBUF: 5171 if (func_id != BPF_FUNC_ringbuf_output && 5172 func_id != BPF_FUNC_ringbuf_reserve && 5173 func_id != BPF_FUNC_ringbuf_submit && 5174 func_id != BPF_FUNC_ringbuf_discard && 5175 func_id != BPF_FUNC_ringbuf_query) 5176 goto error; 5177 break; 5178 case BPF_MAP_TYPE_STACK_TRACE: 5179 if (func_id != BPF_FUNC_get_stackid) 5180 goto error; 5181 break; 5182 case BPF_MAP_TYPE_CGROUP_ARRAY: 5183 if (func_id != BPF_FUNC_skb_under_cgroup && 5184 func_id != BPF_FUNC_current_task_under_cgroup) 5185 goto error; 5186 break; 5187 case BPF_MAP_TYPE_CGROUP_STORAGE: 5188 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5189 if (func_id != BPF_FUNC_get_local_storage) 5190 goto error; 5191 break; 5192 case BPF_MAP_TYPE_DEVMAP: 5193 case BPF_MAP_TYPE_DEVMAP_HASH: 5194 if (func_id != BPF_FUNC_redirect_map && 5195 func_id != BPF_FUNC_map_lookup_elem) 5196 goto error; 5197 break; 5198 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5199 * appear. 5200 */ 5201 case BPF_MAP_TYPE_CPUMAP: 5202 if (func_id != BPF_FUNC_redirect_map) 5203 goto error; 5204 break; 5205 case BPF_MAP_TYPE_XSKMAP: 5206 if (func_id != BPF_FUNC_redirect_map && 5207 func_id != BPF_FUNC_map_lookup_elem) 5208 goto error; 5209 break; 5210 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5211 case BPF_MAP_TYPE_HASH_OF_MAPS: 5212 if (func_id != BPF_FUNC_map_lookup_elem) 5213 goto error; 5214 break; 5215 case BPF_MAP_TYPE_SOCKMAP: 5216 if (func_id != BPF_FUNC_sk_redirect_map && 5217 func_id != BPF_FUNC_sock_map_update && 5218 func_id != BPF_FUNC_map_delete_elem && 5219 func_id != BPF_FUNC_msg_redirect_map && 5220 func_id != BPF_FUNC_sk_select_reuseport && 5221 func_id != BPF_FUNC_map_lookup_elem && 5222 !may_update_sockmap(env, func_id)) 5223 goto error; 5224 break; 5225 case BPF_MAP_TYPE_SOCKHASH: 5226 if (func_id != BPF_FUNC_sk_redirect_hash && 5227 func_id != BPF_FUNC_sock_hash_update && 5228 func_id != BPF_FUNC_map_delete_elem && 5229 func_id != BPF_FUNC_msg_redirect_hash && 5230 func_id != BPF_FUNC_sk_select_reuseport && 5231 func_id != BPF_FUNC_map_lookup_elem && 5232 !may_update_sockmap(env, func_id)) 5233 goto error; 5234 break; 5235 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5236 if (func_id != BPF_FUNC_sk_select_reuseport) 5237 goto error; 5238 break; 5239 case BPF_MAP_TYPE_QUEUE: 5240 case BPF_MAP_TYPE_STACK: 5241 if (func_id != BPF_FUNC_map_peek_elem && 5242 func_id != BPF_FUNC_map_pop_elem && 5243 func_id != BPF_FUNC_map_push_elem) 5244 goto error; 5245 break; 5246 case BPF_MAP_TYPE_SK_STORAGE: 5247 if (func_id != BPF_FUNC_sk_storage_get && 5248 func_id != BPF_FUNC_sk_storage_delete) 5249 goto error; 5250 break; 5251 case BPF_MAP_TYPE_INODE_STORAGE: 5252 if (func_id != BPF_FUNC_inode_storage_get && 5253 func_id != BPF_FUNC_inode_storage_delete) 5254 goto error; 5255 break; 5256 case BPF_MAP_TYPE_TASK_STORAGE: 5257 if (func_id != BPF_FUNC_task_storage_get && 5258 func_id != BPF_FUNC_task_storage_delete) 5259 goto error; 5260 break; 5261 default: 5262 break; 5263 } 5264 5265 /* ... and second from the function itself. */ 5266 switch (func_id) { 5267 case BPF_FUNC_tail_call: 5268 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5269 goto error; 5270 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5271 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5272 return -EINVAL; 5273 } 5274 break; 5275 case BPF_FUNC_perf_event_read: 5276 case BPF_FUNC_perf_event_output: 5277 case BPF_FUNC_perf_event_read_value: 5278 case BPF_FUNC_skb_output: 5279 case BPF_FUNC_xdp_output: 5280 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5281 goto error; 5282 break; 5283 case BPF_FUNC_get_stackid: 5284 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5285 goto error; 5286 break; 5287 case BPF_FUNC_current_task_under_cgroup: 5288 case BPF_FUNC_skb_under_cgroup: 5289 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5290 goto error; 5291 break; 5292 case BPF_FUNC_redirect_map: 5293 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5294 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5295 map->map_type != BPF_MAP_TYPE_CPUMAP && 5296 map->map_type != BPF_MAP_TYPE_XSKMAP) 5297 goto error; 5298 break; 5299 case BPF_FUNC_sk_redirect_map: 5300 case BPF_FUNC_msg_redirect_map: 5301 case BPF_FUNC_sock_map_update: 5302 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5303 goto error; 5304 break; 5305 case BPF_FUNC_sk_redirect_hash: 5306 case BPF_FUNC_msg_redirect_hash: 5307 case BPF_FUNC_sock_hash_update: 5308 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5309 goto error; 5310 break; 5311 case BPF_FUNC_get_local_storage: 5312 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5313 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5314 goto error; 5315 break; 5316 case BPF_FUNC_sk_select_reuseport: 5317 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5318 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5319 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5320 goto error; 5321 break; 5322 case BPF_FUNC_map_peek_elem: 5323 case BPF_FUNC_map_pop_elem: 5324 case BPF_FUNC_map_push_elem: 5325 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5326 map->map_type != BPF_MAP_TYPE_STACK) 5327 goto error; 5328 break; 5329 case BPF_FUNC_sk_storage_get: 5330 case BPF_FUNC_sk_storage_delete: 5331 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5332 goto error; 5333 break; 5334 case BPF_FUNC_inode_storage_get: 5335 case BPF_FUNC_inode_storage_delete: 5336 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5337 goto error; 5338 break; 5339 case BPF_FUNC_task_storage_get: 5340 case BPF_FUNC_task_storage_delete: 5341 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5342 goto error; 5343 break; 5344 default: 5345 break; 5346 } 5347 5348 return 0; 5349 error: 5350 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5351 map->map_type, func_id_name(func_id), func_id); 5352 return -EINVAL; 5353 } 5354 5355 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5356 { 5357 int count = 0; 5358 5359 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5360 count++; 5361 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5362 count++; 5363 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5364 count++; 5365 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5366 count++; 5367 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5368 count++; 5369 5370 /* We only support one arg being in raw mode at the moment, 5371 * which is sufficient for the helper functions we have 5372 * right now. 5373 */ 5374 return count <= 1; 5375 } 5376 5377 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5378 enum bpf_arg_type arg_next) 5379 { 5380 return (arg_type_is_mem_ptr(arg_curr) && 5381 !arg_type_is_mem_size(arg_next)) || 5382 (!arg_type_is_mem_ptr(arg_curr) && 5383 arg_type_is_mem_size(arg_next)); 5384 } 5385 5386 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5387 { 5388 /* bpf_xxx(..., buf, len) call will access 'len' 5389 * bytes from memory 'buf'. Both arg types need 5390 * to be paired, so make sure there's no buggy 5391 * helper function specification. 5392 */ 5393 if (arg_type_is_mem_size(fn->arg1_type) || 5394 arg_type_is_mem_ptr(fn->arg5_type) || 5395 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5396 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5397 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5398 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5399 return false; 5400 5401 return true; 5402 } 5403 5404 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5405 { 5406 int count = 0; 5407 5408 if (arg_type_may_be_refcounted(fn->arg1_type)) 5409 count++; 5410 if (arg_type_may_be_refcounted(fn->arg2_type)) 5411 count++; 5412 if (arg_type_may_be_refcounted(fn->arg3_type)) 5413 count++; 5414 if (arg_type_may_be_refcounted(fn->arg4_type)) 5415 count++; 5416 if (arg_type_may_be_refcounted(fn->arg5_type)) 5417 count++; 5418 5419 /* A reference acquiring function cannot acquire 5420 * another refcounted ptr. 5421 */ 5422 if (may_be_acquire_function(func_id) && count) 5423 return false; 5424 5425 /* We only support one arg being unreferenced at the moment, 5426 * which is sufficient for the helper functions we have right now. 5427 */ 5428 return count <= 1; 5429 } 5430 5431 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5432 { 5433 int i; 5434 5435 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5436 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5437 return false; 5438 5439 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5440 return false; 5441 } 5442 5443 return true; 5444 } 5445 5446 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5447 { 5448 return check_raw_mode_ok(fn) && 5449 check_arg_pair_ok(fn) && 5450 check_btf_id_ok(fn) && 5451 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5452 } 5453 5454 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5455 * are now invalid, so turn them into unknown SCALAR_VALUE. 5456 */ 5457 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5458 struct bpf_func_state *state) 5459 { 5460 struct bpf_reg_state *regs = state->regs, *reg; 5461 int i; 5462 5463 for (i = 0; i < MAX_BPF_REG; i++) 5464 if (reg_is_pkt_pointer_any(®s[i])) 5465 mark_reg_unknown(env, regs, i); 5466 5467 bpf_for_each_spilled_reg(i, state, reg) { 5468 if (!reg) 5469 continue; 5470 if (reg_is_pkt_pointer_any(reg)) 5471 __mark_reg_unknown(env, reg); 5472 } 5473 } 5474 5475 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5476 { 5477 struct bpf_verifier_state *vstate = env->cur_state; 5478 int i; 5479 5480 for (i = 0; i <= vstate->curframe; i++) 5481 __clear_all_pkt_pointers(env, vstate->frame[i]); 5482 } 5483 5484 enum { 5485 AT_PKT_END = -1, 5486 BEYOND_PKT_END = -2, 5487 }; 5488 5489 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5490 { 5491 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5492 struct bpf_reg_state *reg = &state->regs[regn]; 5493 5494 if (reg->type != PTR_TO_PACKET) 5495 /* PTR_TO_PACKET_META is not supported yet */ 5496 return; 5497 5498 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5499 * How far beyond pkt_end it goes is unknown. 5500 * if (!range_open) it's the case of pkt >= pkt_end 5501 * if (range_open) it's the case of pkt > pkt_end 5502 * hence this pointer is at least 1 byte bigger than pkt_end 5503 */ 5504 if (range_open) 5505 reg->range = BEYOND_PKT_END; 5506 else 5507 reg->range = AT_PKT_END; 5508 } 5509 5510 static void release_reg_references(struct bpf_verifier_env *env, 5511 struct bpf_func_state *state, 5512 int ref_obj_id) 5513 { 5514 struct bpf_reg_state *regs = state->regs, *reg; 5515 int i; 5516 5517 for (i = 0; i < MAX_BPF_REG; i++) 5518 if (regs[i].ref_obj_id == ref_obj_id) 5519 mark_reg_unknown(env, regs, i); 5520 5521 bpf_for_each_spilled_reg(i, state, reg) { 5522 if (!reg) 5523 continue; 5524 if (reg->ref_obj_id == ref_obj_id) 5525 __mark_reg_unknown(env, reg); 5526 } 5527 } 5528 5529 /* The pointer with the specified id has released its reference to kernel 5530 * resources. Identify all copies of the same pointer and clear the reference. 5531 */ 5532 static int release_reference(struct bpf_verifier_env *env, 5533 int ref_obj_id) 5534 { 5535 struct bpf_verifier_state *vstate = env->cur_state; 5536 int err; 5537 int i; 5538 5539 err = release_reference_state(cur_func(env), ref_obj_id); 5540 if (err) 5541 return err; 5542 5543 for (i = 0; i <= vstate->curframe; i++) 5544 release_reg_references(env, vstate->frame[i], ref_obj_id); 5545 5546 return 0; 5547 } 5548 5549 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5550 struct bpf_reg_state *regs) 5551 { 5552 int i; 5553 5554 /* after the call registers r0 - r5 were scratched */ 5555 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5556 mark_reg_not_init(env, regs, caller_saved[i]); 5557 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5558 } 5559 } 5560 5561 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5562 struct bpf_func_state *caller, 5563 struct bpf_func_state *callee, 5564 int insn_idx); 5565 5566 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5567 int *insn_idx, int subprog, 5568 set_callee_state_fn set_callee_state_cb) 5569 { 5570 struct bpf_verifier_state *state = env->cur_state; 5571 struct bpf_func_info_aux *func_info_aux; 5572 struct bpf_func_state *caller, *callee; 5573 int err; 5574 bool is_global = false; 5575 5576 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5577 verbose(env, "the call stack of %d frames is too deep\n", 5578 state->curframe + 2); 5579 return -E2BIG; 5580 } 5581 5582 caller = state->frame[state->curframe]; 5583 if (state->frame[state->curframe + 1]) { 5584 verbose(env, "verifier bug. Frame %d already allocated\n", 5585 state->curframe + 1); 5586 return -EFAULT; 5587 } 5588 5589 func_info_aux = env->prog->aux->func_info_aux; 5590 if (func_info_aux) 5591 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5592 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5593 if (err == -EFAULT) 5594 return err; 5595 if (is_global) { 5596 if (err) { 5597 verbose(env, "Caller passes invalid args into func#%d\n", 5598 subprog); 5599 return err; 5600 } else { 5601 if (env->log.level & BPF_LOG_LEVEL) 5602 verbose(env, 5603 "Func#%d is global and valid. Skipping.\n", 5604 subprog); 5605 clear_caller_saved_regs(env, caller->regs); 5606 5607 /* All global functions return a 64-bit SCALAR_VALUE */ 5608 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5609 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5610 5611 /* continue with next insn after call */ 5612 return 0; 5613 } 5614 } 5615 5616 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5617 if (!callee) 5618 return -ENOMEM; 5619 state->frame[state->curframe + 1] = callee; 5620 5621 /* callee cannot access r0, r6 - r9 for reading and has to write 5622 * into its own stack before reading from it. 5623 * callee can read/write into caller's stack 5624 */ 5625 init_func_state(env, callee, 5626 /* remember the callsite, it will be used by bpf_exit */ 5627 *insn_idx /* callsite */, 5628 state->curframe + 1 /* frameno within this callchain */, 5629 subprog /* subprog number within this prog */); 5630 5631 /* Transfer references to the callee */ 5632 err = transfer_reference_state(callee, caller); 5633 if (err) 5634 return err; 5635 5636 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5637 if (err) 5638 return err; 5639 5640 clear_caller_saved_regs(env, caller->regs); 5641 5642 /* only increment it after check_reg_arg() finished */ 5643 state->curframe++; 5644 5645 /* and go analyze first insn of the callee */ 5646 *insn_idx = env->subprog_info[subprog].start - 1; 5647 5648 if (env->log.level & BPF_LOG_LEVEL) { 5649 verbose(env, "caller:\n"); 5650 print_verifier_state(env, caller); 5651 verbose(env, "callee:\n"); 5652 print_verifier_state(env, callee); 5653 } 5654 return 0; 5655 } 5656 5657 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 5658 struct bpf_func_state *caller, 5659 struct bpf_func_state *callee) 5660 { 5661 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 5662 * void *callback_ctx, u64 flags); 5663 * callback_fn(struct bpf_map *map, void *key, void *value, 5664 * void *callback_ctx); 5665 */ 5666 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 5667 5668 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 5669 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 5670 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5671 5672 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 5673 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 5674 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5675 5676 /* pointer to stack or null */ 5677 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 5678 5679 /* unused */ 5680 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 5681 return 0; 5682 } 5683 5684 static int set_callee_state(struct bpf_verifier_env *env, 5685 struct bpf_func_state *caller, 5686 struct bpf_func_state *callee, int insn_idx) 5687 { 5688 int i; 5689 5690 /* copy r1 - r5 args that callee can access. The copy includes parent 5691 * pointers, which connects us up to the liveness chain 5692 */ 5693 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 5694 callee->regs[i] = caller->regs[i]; 5695 return 0; 5696 } 5697 5698 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5699 int *insn_idx) 5700 { 5701 int subprog, target_insn; 5702 5703 target_insn = *insn_idx + insn->imm + 1; 5704 subprog = find_subprog(env, target_insn); 5705 if (subprog < 0) { 5706 verbose(env, "verifier bug. No program starts at insn %d\n", 5707 target_insn); 5708 return -EFAULT; 5709 } 5710 5711 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 5712 } 5713 5714 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 5715 struct bpf_func_state *caller, 5716 struct bpf_func_state *callee, 5717 int insn_idx) 5718 { 5719 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 5720 struct bpf_map *map; 5721 int err; 5722 5723 if (bpf_map_ptr_poisoned(insn_aux)) { 5724 verbose(env, "tail_call abusing map_ptr\n"); 5725 return -EINVAL; 5726 } 5727 5728 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 5729 if (!map->ops->map_set_for_each_callback_args || 5730 !map->ops->map_for_each_callback) { 5731 verbose(env, "callback function not allowed for map\n"); 5732 return -ENOTSUPP; 5733 } 5734 5735 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 5736 if (err) 5737 return err; 5738 5739 callee->in_callback_fn = true; 5740 return 0; 5741 } 5742 5743 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 5744 { 5745 struct bpf_verifier_state *state = env->cur_state; 5746 struct bpf_func_state *caller, *callee; 5747 struct bpf_reg_state *r0; 5748 int err; 5749 5750 callee = state->frame[state->curframe]; 5751 r0 = &callee->regs[BPF_REG_0]; 5752 if (r0->type == PTR_TO_STACK) { 5753 /* technically it's ok to return caller's stack pointer 5754 * (or caller's caller's pointer) back to the caller, 5755 * since these pointers are valid. Only current stack 5756 * pointer will be invalid as soon as function exits, 5757 * but let's be conservative 5758 */ 5759 verbose(env, "cannot return stack pointer to the caller\n"); 5760 return -EINVAL; 5761 } 5762 5763 state->curframe--; 5764 caller = state->frame[state->curframe]; 5765 if (callee->in_callback_fn) { 5766 /* enforce R0 return value range [0, 1]. */ 5767 struct tnum range = tnum_range(0, 1); 5768 5769 if (r0->type != SCALAR_VALUE) { 5770 verbose(env, "R0 not a scalar value\n"); 5771 return -EACCES; 5772 } 5773 if (!tnum_in(range, r0->var_off)) { 5774 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 5775 return -EINVAL; 5776 } 5777 } else { 5778 /* return to the caller whatever r0 had in the callee */ 5779 caller->regs[BPF_REG_0] = *r0; 5780 } 5781 5782 /* Transfer references to the caller */ 5783 err = transfer_reference_state(caller, callee); 5784 if (err) 5785 return err; 5786 5787 *insn_idx = callee->callsite + 1; 5788 if (env->log.level & BPF_LOG_LEVEL) { 5789 verbose(env, "returning from callee:\n"); 5790 print_verifier_state(env, callee); 5791 verbose(env, "to caller at %d:\n", *insn_idx); 5792 print_verifier_state(env, caller); 5793 } 5794 /* clear everything in the callee */ 5795 free_func_state(callee); 5796 state->frame[state->curframe + 1] = NULL; 5797 return 0; 5798 } 5799 5800 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 5801 int func_id, 5802 struct bpf_call_arg_meta *meta) 5803 { 5804 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 5805 5806 if (ret_type != RET_INTEGER || 5807 (func_id != BPF_FUNC_get_stack && 5808 func_id != BPF_FUNC_get_task_stack && 5809 func_id != BPF_FUNC_probe_read_str && 5810 func_id != BPF_FUNC_probe_read_kernel_str && 5811 func_id != BPF_FUNC_probe_read_user_str)) 5812 return; 5813 5814 ret_reg->smax_value = meta->msize_max_value; 5815 ret_reg->s32_max_value = meta->msize_max_value; 5816 ret_reg->smin_value = -MAX_ERRNO; 5817 ret_reg->s32_min_value = -MAX_ERRNO; 5818 __reg_deduce_bounds(ret_reg); 5819 __reg_bound_offset(ret_reg); 5820 __update_reg_bounds(ret_reg); 5821 } 5822 5823 static int 5824 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5825 int func_id, int insn_idx) 5826 { 5827 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5828 struct bpf_map *map = meta->map_ptr; 5829 5830 if (func_id != BPF_FUNC_tail_call && 5831 func_id != BPF_FUNC_map_lookup_elem && 5832 func_id != BPF_FUNC_map_update_elem && 5833 func_id != BPF_FUNC_map_delete_elem && 5834 func_id != BPF_FUNC_map_push_elem && 5835 func_id != BPF_FUNC_map_pop_elem && 5836 func_id != BPF_FUNC_map_peek_elem && 5837 func_id != BPF_FUNC_for_each_map_elem && 5838 func_id != BPF_FUNC_redirect_map) 5839 return 0; 5840 5841 if (map == NULL) { 5842 verbose(env, "kernel subsystem misconfigured verifier\n"); 5843 return -EINVAL; 5844 } 5845 5846 /* In case of read-only, some additional restrictions 5847 * need to be applied in order to prevent altering the 5848 * state of the map from program side. 5849 */ 5850 if ((map->map_flags & BPF_F_RDONLY_PROG) && 5851 (func_id == BPF_FUNC_map_delete_elem || 5852 func_id == BPF_FUNC_map_update_elem || 5853 func_id == BPF_FUNC_map_push_elem || 5854 func_id == BPF_FUNC_map_pop_elem)) { 5855 verbose(env, "write into map forbidden\n"); 5856 return -EACCES; 5857 } 5858 5859 if (!BPF_MAP_PTR(aux->map_ptr_state)) 5860 bpf_map_ptr_store(aux, meta->map_ptr, 5861 !meta->map_ptr->bypass_spec_v1); 5862 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 5863 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 5864 !meta->map_ptr->bypass_spec_v1); 5865 return 0; 5866 } 5867 5868 static int 5869 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5870 int func_id, int insn_idx) 5871 { 5872 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5873 struct bpf_reg_state *regs = cur_regs(env), *reg; 5874 struct bpf_map *map = meta->map_ptr; 5875 struct tnum range; 5876 u64 val; 5877 int err; 5878 5879 if (func_id != BPF_FUNC_tail_call) 5880 return 0; 5881 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 5882 verbose(env, "kernel subsystem misconfigured verifier\n"); 5883 return -EINVAL; 5884 } 5885 5886 range = tnum_range(0, map->max_entries - 1); 5887 reg = ®s[BPF_REG_3]; 5888 5889 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 5890 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5891 return 0; 5892 } 5893 5894 err = mark_chain_precision(env, BPF_REG_3); 5895 if (err) 5896 return err; 5897 5898 val = reg->var_off.value; 5899 if (bpf_map_key_unseen(aux)) 5900 bpf_map_key_store(aux, val); 5901 else if (!bpf_map_key_poisoned(aux) && 5902 bpf_map_key_immediate(aux) != val) 5903 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5904 return 0; 5905 } 5906 5907 static int check_reference_leak(struct bpf_verifier_env *env) 5908 { 5909 struct bpf_func_state *state = cur_func(env); 5910 int i; 5911 5912 for (i = 0; i < state->acquired_refs; i++) { 5913 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 5914 state->refs[i].id, state->refs[i].insn_idx); 5915 } 5916 return state->acquired_refs ? -EINVAL : 0; 5917 } 5918 5919 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 5920 struct bpf_reg_state *regs) 5921 { 5922 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 5923 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 5924 struct bpf_map *fmt_map = fmt_reg->map_ptr; 5925 int err, fmt_map_off, num_args; 5926 u64 fmt_addr; 5927 char *fmt; 5928 5929 /* data must be an array of u64 */ 5930 if (data_len_reg->var_off.value % 8) 5931 return -EINVAL; 5932 num_args = data_len_reg->var_off.value / 8; 5933 5934 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 5935 * and map_direct_value_addr is set. 5936 */ 5937 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 5938 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 5939 fmt_map_off); 5940 if (err) { 5941 verbose(env, "verifier bug\n"); 5942 return -EFAULT; 5943 } 5944 fmt = (char *)(long)fmt_addr + fmt_map_off; 5945 5946 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 5947 * can focus on validating the format specifiers. 5948 */ 5949 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 5950 if (err < 0) 5951 verbose(env, "Invalid format string\n"); 5952 5953 return err; 5954 } 5955 5956 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5957 int *insn_idx_p) 5958 { 5959 const struct bpf_func_proto *fn = NULL; 5960 struct bpf_reg_state *regs; 5961 struct bpf_call_arg_meta meta; 5962 int insn_idx = *insn_idx_p; 5963 bool changes_data; 5964 int i, err, func_id; 5965 5966 /* find function prototype */ 5967 func_id = insn->imm; 5968 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5969 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5970 func_id); 5971 return -EINVAL; 5972 } 5973 5974 if (env->ops->get_func_proto) 5975 fn = env->ops->get_func_proto(func_id, env->prog); 5976 if (!fn) { 5977 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5978 func_id); 5979 return -EINVAL; 5980 } 5981 5982 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5983 if (!env->prog->gpl_compatible && fn->gpl_only) { 5984 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5985 return -EINVAL; 5986 } 5987 5988 if (fn->allowed && !fn->allowed(env->prog)) { 5989 verbose(env, "helper call is not allowed in probe\n"); 5990 return -EINVAL; 5991 } 5992 5993 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5994 changes_data = bpf_helper_changes_pkt_data(fn->func); 5995 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5996 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5997 func_id_name(func_id), func_id); 5998 return -EINVAL; 5999 } 6000 6001 memset(&meta, 0, sizeof(meta)); 6002 meta.pkt_access = fn->pkt_access; 6003 6004 err = check_func_proto(fn, func_id); 6005 if (err) { 6006 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6007 func_id_name(func_id), func_id); 6008 return err; 6009 } 6010 6011 meta.func_id = func_id; 6012 /* check args */ 6013 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6014 err = check_func_arg(env, i, &meta, fn); 6015 if (err) 6016 return err; 6017 } 6018 6019 err = record_func_map(env, &meta, func_id, insn_idx); 6020 if (err) 6021 return err; 6022 6023 err = record_func_key(env, &meta, func_id, insn_idx); 6024 if (err) 6025 return err; 6026 6027 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6028 * is inferred from register state. 6029 */ 6030 for (i = 0; i < meta.access_size; i++) { 6031 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6032 BPF_WRITE, -1, false); 6033 if (err) 6034 return err; 6035 } 6036 6037 if (func_id == BPF_FUNC_tail_call) { 6038 err = check_reference_leak(env); 6039 if (err) { 6040 verbose(env, "tail_call would lead to reference leak\n"); 6041 return err; 6042 } 6043 } else if (is_release_function(func_id)) { 6044 err = release_reference(env, meta.ref_obj_id); 6045 if (err) { 6046 verbose(env, "func %s#%d reference has not been acquired before\n", 6047 func_id_name(func_id), func_id); 6048 return err; 6049 } 6050 } 6051 6052 regs = cur_regs(env); 6053 6054 /* check that flags argument in get_local_storage(map, flags) is 0, 6055 * this is required because get_local_storage() can't return an error. 6056 */ 6057 if (func_id == BPF_FUNC_get_local_storage && 6058 !register_is_null(®s[BPF_REG_2])) { 6059 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6060 return -EINVAL; 6061 } 6062 6063 if (func_id == BPF_FUNC_for_each_map_elem) { 6064 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6065 set_map_elem_callback_state); 6066 if (err < 0) 6067 return -EINVAL; 6068 } 6069 6070 if (func_id == BPF_FUNC_snprintf) { 6071 err = check_bpf_snprintf_call(env, regs); 6072 if (err < 0) 6073 return err; 6074 } 6075 6076 /* reset caller saved regs */ 6077 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6078 mark_reg_not_init(env, regs, caller_saved[i]); 6079 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6080 } 6081 6082 /* helper call returns 64-bit value. */ 6083 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6084 6085 /* update return register (already marked as written above) */ 6086 if (fn->ret_type == RET_INTEGER) { 6087 /* sets type to SCALAR_VALUE */ 6088 mark_reg_unknown(env, regs, BPF_REG_0); 6089 } else if (fn->ret_type == RET_VOID) { 6090 regs[BPF_REG_0].type = NOT_INIT; 6091 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6092 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6093 /* There is no offset yet applied, variable or fixed */ 6094 mark_reg_known_zero(env, regs, BPF_REG_0); 6095 /* remember map_ptr, so that check_map_access() 6096 * can check 'value_size' boundary of memory access 6097 * to map element returned from bpf_map_lookup_elem() 6098 */ 6099 if (meta.map_ptr == NULL) { 6100 verbose(env, 6101 "kernel subsystem misconfigured verifier\n"); 6102 return -EINVAL; 6103 } 6104 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6105 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6106 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6107 if (map_value_has_spin_lock(meta.map_ptr)) 6108 regs[BPF_REG_0].id = ++env->id_gen; 6109 } else { 6110 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6111 } 6112 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6113 mark_reg_known_zero(env, regs, BPF_REG_0); 6114 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6115 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6116 mark_reg_known_zero(env, regs, BPF_REG_0); 6117 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6118 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6119 mark_reg_known_zero(env, regs, BPF_REG_0); 6120 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6121 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6122 mark_reg_known_zero(env, regs, BPF_REG_0); 6123 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6124 regs[BPF_REG_0].mem_size = meta.mem_size; 6125 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6126 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6127 const struct btf_type *t; 6128 6129 mark_reg_known_zero(env, regs, BPF_REG_0); 6130 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6131 if (!btf_type_is_struct(t)) { 6132 u32 tsize; 6133 const struct btf_type *ret; 6134 const char *tname; 6135 6136 /* resolve the type size of ksym. */ 6137 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6138 if (IS_ERR(ret)) { 6139 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6140 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6141 tname, PTR_ERR(ret)); 6142 return -EINVAL; 6143 } 6144 regs[BPF_REG_0].type = 6145 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6146 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6147 regs[BPF_REG_0].mem_size = tsize; 6148 } else { 6149 regs[BPF_REG_0].type = 6150 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6151 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6152 regs[BPF_REG_0].btf = meta.ret_btf; 6153 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6154 } 6155 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6156 fn->ret_type == RET_PTR_TO_BTF_ID) { 6157 int ret_btf_id; 6158 6159 mark_reg_known_zero(env, regs, BPF_REG_0); 6160 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6161 PTR_TO_BTF_ID : 6162 PTR_TO_BTF_ID_OR_NULL; 6163 ret_btf_id = *fn->ret_btf_id; 6164 if (ret_btf_id == 0) { 6165 verbose(env, "invalid return type %d of func %s#%d\n", 6166 fn->ret_type, func_id_name(func_id), func_id); 6167 return -EINVAL; 6168 } 6169 /* current BPF helper definitions are only coming from 6170 * built-in code with type IDs from vmlinux BTF 6171 */ 6172 regs[BPF_REG_0].btf = btf_vmlinux; 6173 regs[BPF_REG_0].btf_id = ret_btf_id; 6174 } else { 6175 verbose(env, "unknown return type %d of func %s#%d\n", 6176 fn->ret_type, func_id_name(func_id), func_id); 6177 return -EINVAL; 6178 } 6179 6180 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6181 regs[BPF_REG_0].id = ++env->id_gen; 6182 6183 if (is_ptr_cast_function(func_id)) { 6184 /* For release_reference() */ 6185 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6186 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6187 int id = acquire_reference_state(env, insn_idx); 6188 6189 if (id < 0) 6190 return id; 6191 /* For mark_ptr_or_null_reg() */ 6192 regs[BPF_REG_0].id = id; 6193 /* For release_reference() */ 6194 regs[BPF_REG_0].ref_obj_id = id; 6195 } 6196 6197 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6198 6199 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6200 if (err) 6201 return err; 6202 6203 if ((func_id == BPF_FUNC_get_stack || 6204 func_id == BPF_FUNC_get_task_stack) && 6205 !env->prog->has_callchain_buf) { 6206 const char *err_str; 6207 6208 #ifdef CONFIG_PERF_EVENTS 6209 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6210 err_str = "cannot get callchain buffer for func %s#%d\n"; 6211 #else 6212 err = -ENOTSUPP; 6213 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6214 #endif 6215 if (err) { 6216 verbose(env, err_str, func_id_name(func_id), func_id); 6217 return err; 6218 } 6219 6220 env->prog->has_callchain_buf = true; 6221 } 6222 6223 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6224 env->prog->call_get_stack = true; 6225 6226 if (changes_data) 6227 clear_all_pkt_pointers(env); 6228 return 0; 6229 } 6230 6231 /* mark_btf_func_reg_size() is used when the reg size is determined by 6232 * the BTF func_proto's return value size and argument. 6233 */ 6234 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6235 size_t reg_size) 6236 { 6237 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6238 6239 if (regno == BPF_REG_0) { 6240 /* Function return value */ 6241 reg->live |= REG_LIVE_WRITTEN; 6242 reg->subreg_def = reg_size == sizeof(u64) ? 6243 DEF_NOT_SUBREG : env->insn_idx + 1; 6244 } else { 6245 /* Function argument */ 6246 if (reg_size == sizeof(u64)) { 6247 mark_insn_zext(env, reg); 6248 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6249 } else { 6250 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6251 } 6252 } 6253 } 6254 6255 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6256 { 6257 const struct btf_type *t, *func, *func_proto, *ptr_type; 6258 struct bpf_reg_state *regs = cur_regs(env); 6259 const char *func_name, *ptr_type_name; 6260 u32 i, nargs, func_id, ptr_type_id; 6261 const struct btf_param *args; 6262 int err; 6263 6264 func_id = insn->imm; 6265 func = btf_type_by_id(btf_vmlinux, func_id); 6266 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 6267 func_proto = btf_type_by_id(btf_vmlinux, func->type); 6268 6269 if (!env->ops->check_kfunc_call || 6270 !env->ops->check_kfunc_call(func_id)) { 6271 verbose(env, "calling kernel function %s is not allowed\n", 6272 func_name); 6273 return -EACCES; 6274 } 6275 6276 /* Check the arguments */ 6277 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs); 6278 if (err) 6279 return err; 6280 6281 for (i = 0; i < CALLER_SAVED_REGS; i++) 6282 mark_reg_not_init(env, regs, caller_saved[i]); 6283 6284 /* Check return type */ 6285 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL); 6286 if (btf_type_is_scalar(t)) { 6287 mark_reg_unknown(env, regs, BPF_REG_0); 6288 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6289 } else if (btf_type_is_ptr(t)) { 6290 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type, 6291 &ptr_type_id); 6292 if (!btf_type_is_struct(ptr_type)) { 6293 ptr_type_name = btf_name_by_offset(btf_vmlinux, 6294 ptr_type->name_off); 6295 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6296 func_name, btf_type_str(ptr_type), 6297 ptr_type_name); 6298 return -EINVAL; 6299 } 6300 mark_reg_known_zero(env, regs, BPF_REG_0); 6301 regs[BPF_REG_0].btf = btf_vmlinux; 6302 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6303 regs[BPF_REG_0].btf_id = ptr_type_id; 6304 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6305 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6306 6307 nargs = btf_type_vlen(func_proto); 6308 args = (const struct btf_param *)(func_proto + 1); 6309 for (i = 0; i < nargs; i++) { 6310 u32 regno = i + 1; 6311 6312 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL); 6313 if (btf_type_is_ptr(t)) 6314 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6315 else 6316 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6317 mark_btf_func_reg_size(env, regno, t->size); 6318 } 6319 6320 return 0; 6321 } 6322 6323 static bool signed_add_overflows(s64 a, s64 b) 6324 { 6325 /* Do the add in u64, where overflow is well-defined */ 6326 s64 res = (s64)((u64)a + (u64)b); 6327 6328 if (b < 0) 6329 return res > a; 6330 return res < a; 6331 } 6332 6333 static bool signed_add32_overflows(s32 a, s32 b) 6334 { 6335 /* Do the add in u32, where overflow is well-defined */ 6336 s32 res = (s32)((u32)a + (u32)b); 6337 6338 if (b < 0) 6339 return res > a; 6340 return res < a; 6341 } 6342 6343 static bool signed_sub_overflows(s64 a, s64 b) 6344 { 6345 /* Do the sub in u64, where overflow is well-defined */ 6346 s64 res = (s64)((u64)a - (u64)b); 6347 6348 if (b < 0) 6349 return res < a; 6350 return res > a; 6351 } 6352 6353 static bool signed_sub32_overflows(s32 a, s32 b) 6354 { 6355 /* Do the sub in u32, where overflow is well-defined */ 6356 s32 res = (s32)((u32)a - (u32)b); 6357 6358 if (b < 0) 6359 return res < a; 6360 return res > a; 6361 } 6362 6363 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6364 const struct bpf_reg_state *reg, 6365 enum bpf_reg_type type) 6366 { 6367 bool known = tnum_is_const(reg->var_off); 6368 s64 val = reg->var_off.value; 6369 s64 smin = reg->smin_value; 6370 6371 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6372 verbose(env, "math between %s pointer and %lld is not allowed\n", 6373 reg_type_str[type], val); 6374 return false; 6375 } 6376 6377 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6378 verbose(env, "%s pointer offset %d is not allowed\n", 6379 reg_type_str[type], reg->off); 6380 return false; 6381 } 6382 6383 if (smin == S64_MIN) { 6384 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6385 reg_type_str[type]); 6386 return false; 6387 } 6388 6389 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6390 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6391 smin, reg_type_str[type]); 6392 return false; 6393 } 6394 6395 return true; 6396 } 6397 6398 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6399 { 6400 return &env->insn_aux_data[env->insn_idx]; 6401 } 6402 6403 enum { 6404 REASON_BOUNDS = -1, 6405 REASON_TYPE = -2, 6406 REASON_PATHS = -3, 6407 REASON_LIMIT = -4, 6408 REASON_STACK = -5, 6409 }; 6410 6411 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6412 const struct bpf_reg_state *off_reg, 6413 u32 *alu_limit, u8 opcode) 6414 { 6415 bool off_is_neg = off_reg->smin_value < 0; 6416 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 6417 (opcode == BPF_SUB && !off_is_neg); 6418 u32 max = 0, ptr_limit = 0; 6419 6420 if (!tnum_is_const(off_reg->var_off) && 6421 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 6422 return REASON_BOUNDS; 6423 6424 switch (ptr_reg->type) { 6425 case PTR_TO_STACK: 6426 /* Offset 0 is out-of-bounds, but acceptable start for the 6427 * left direction, see BPF_REG_FP. Also, unknown scalar 6428 * offset where we would need to deal with min/max bounds is 6429 * currently prohibited for unprivileged. 6430 */ 6431 max = MAX_BPF_STACK + mask_to_left; 6432 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6433 break; 6434 case PTR_TO_MAP_VALUE: 6435 max = ptr_reg->map_ptr->value_size; 6436 ptr_limit = (mask_to_left ? 6437 ptr_reg->smin_value : 6438 ptr_reg->umax_value) + ptr_reg->off; 6439 break; 6440 default: 6441 return REASON_TYPE; 6442 } 6443 6444 if (ptr_limit >= max) 6445 return REASON_LIMIT; 6446 *alu_limit = ptr_limit; 6447 return 0; 6448 } 6449 6450 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6451 const struct bpf_insn *insn) 6452 { 6453 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6454 } 6455 6456 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6457 u32 alu_state, u32 alu_limit) 6458 { 6459 /* If we arrived here from different branches with different 6460 * state or limits to sanitize, then this won't work. 6461 */ 6462 if (aux->alu_state && 6463 (aux->alu_state != alu_state || 6464 aux->alu_limit != alu_limit)) 6465 return REASON_PATHS; 6466 6467 /* Corresponding fixup done in do_misc_fixups(). */ 6468 aux->alu_state = alu_state; 6469 aux->alu_limit = alu_limit; 6470 return 0; 6471 } 6472 6473 static int sanitize_val_alu(struct bpf_verifier_env *env, 6474 struct bpf_insn *insn) 6475 { 6476 struct bpf_insn_aux_data *aux = cur_aux(env); 6477 6478 if (can_skip_alu_sanitation(env, insn)) 6479 return 0; 6480 6481 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6482 } 6483 6484 static bool sanitize_needed(u8 opcode) 6485 { 6486 return opcode == BPF_ADD || opcode == BPF_SUB; 6487 } 6488 6489 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6490 struct bpf_insn *insn, 6491 const struct bpf_reg_state *ptr_reg, 6492 const struct bpf_reg_state *off_reg, 6493 struct bpf_reg_state *dst_reg, 6494 struct bpf_insn_aux_data *tmp_aux, 6495 const bool commit_window) 6496 { 6497 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : tmp_aux; 6498 struct bpf_verifier_state *vstate = env->cur_state; 6499 bool off_is_imm = tnum_is_const(off_reg->var_off); 6500 bool off_is_neg = off_reg->smin_value < 0; 6501 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6502 u8 opcode = BPF_OP(insn->code); 6503 u32 alu_state, alu_limit; 6504 struct bpf_reg_state tmp; 6505 bool ret; 6506 int err; 6507 6508 if (can_skip_alu_sanitation(env, insn)) 6509 return 0; 6510 6511 /* We already marked aux for masking from non-speculative 6512 * paths, thus we got here in the first place. We only care 6513 * to explore bad access from here. 6514 */ 6515 if (vstate->speculative) 6516 goto do_sim; 6517 6518 err = retrieve_ptr_limit(ptr_reg, off_reg, &alu_limit, opcode); 6519 if (err < 0) 6520 return err; 6521 6522 if (commit_window) { 6523 /* In commit phase we narrow the masking window based on 6524 * the observed pointer move after the simulated operation. 6525 */ 6526 alu_state = tmp_aux->alu_state; 6527 alu_limit = abs(tmp_aux->alu_limit - alu_limit); 6528 } else { 6529 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 6530 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 6531 alu_state |= ptr_is_dst_reg ? 6532 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 6533 } 6534 6535 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 6536 if (err < 0) 6537 return err; 6538 do_sim: 6539 /* If we're in commit phase, we're done here given we already 6540 * pushed the truncated dst_reg into the speculative verification 6541 * stack. 6542 */ 6543 if (commit_window) 6544 return 0; 6545 6546 /* Simulate and find potential out-of-bounds access under 6547 * speculative execution from truncation as a result of 6548 * masking when off was not within expected range. If off 6549 * sits in dst, then we temporarily need to move ptr there 6550 * to simulate dst (== 0) +/-= ptr. Needed, for example, 6551 * for cases where we use K-based arithmetic in one direction 6552 * and truncated reg-based in the other in order to explore 6553 * bad access. 6554 */ 6555 if (!ptr_is_dst_reg) { 6556 tmp = *dst_reg; 6557 *dst_reg = *ptr_reg; 6558 } 6559 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 6560 if (!ptr_is_dst_reg && ret) 6561 *dst_reg = tmp; 6562 return !ret ? REASON_STACK : 0; 6563 } 6564 6565 static int sanitize_err(struct bpf_verifier_env *env, 6566 const struct bpf_insn *insn, int reason, 6567 const struct bpf_reg_state *off_reg, 6568 const struct bpf_reg_state *dst_reg) 6569 { 6570 static const char *err = "pointer arithmetic with it prohibited for !root"; 6571 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 6572 u32 dst = insn->dst_reg, src = insn->src_reg; 6573 6574 switch (reason) { 6575 case REASON_BOUNDS: 6576 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 6577 off_reg == dst_reg ? dst : src, err); 6578 break; 6579 case REASON_TYPE: 6580 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 6581 off_reg == dst_reg ? src : dst, err); 6582 break; 6583 case REASON_PATHS: 6584 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 6585 dst, op, err); 6586 break; 6587 case REASON_LIMIT: 6588 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 6589 dst, op, err); 6590 break; 6591 case REASON_STACK: 6592 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 6593 dst, err); 6594 break; 6595 default: 6596 verbose(env, "verifier internal error: unknown reason (%d)\n", 6597 reason); 6598 break; 6599 } 6600 6601 return -EACCES; 6602 } 6603 6604 /* check that stack access falls within stack limits and that 'reg' doesn't 6605 * have a variable offset. 6606 * 6607 * Variable offset is prohibited for unprivileged mode for simplicity since it 6608 * requires corresponding support in Spectre masking for stack ALU. See also 6609 * retrieve_ptr_limit(). 6610 * 6611 * 6612 * 'off' includes 'reg->off'. 6613 */ 6614 static int check_stack_access_for_ptr_arithmetic( 6615 struct bpf_verifier_env *env, 6616 int regno, 6617 const struct bpf_reg_state *reg, 6618 int off) 6619 { 6620 if (!tnum_is_const(reg->var_off)) { 6621 char tn_buf[48]; 6622 6623 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6624 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 6625 regno, tn_buf, off); 6626 return -EACCES; 6627 } 6628 6629 if (off >= 0 || off < -MAX_BPF_STACK) { 6630 verbose(env, "R%d stack pointer arithmetic goes out of range, " 6631 "prohibited for !root; off=%d\n", regno, off); 6632 return -EACCES; 6633 } 6634 6635 return 0; 6636 } 6637 6638 static int sanitize_check_bounds(struct bpf_verifier_env *env, 6639 const struct bpf_insn *insn, 6640 const struct bpf_reg_state *dst_reg) 6641 { 6642 u32 dst = insn->dst_reg; 6643 6644 /* For unprivileged we require that resulting offset must be in bounds 6645 * in order to be able to sanitize access later on. 6646 */ 6647 if (env->bypass_spec_v1) 6648 return 0; 6649 6650 switch (dst_reg->type) { 6651 case PTR_TO_STACK: 6652 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 6653 dst_reg->off + dst_reg->var_off.value)) 6654 return -EACCES; 6655 break; 6656 case PTR_TO_MAP_VALUE: 6657 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 6658 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 6659 "prohibited for !root\n", dst); 6660 return -EACCES; 6661 } 6662 break; 6663 default: 6664 break; 6665 } 6666 6667 return 0; 6668 } 6669 6670 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 6671 * Caller should also handle BPF_MOV case separately. 6672 * If we return -EACCES, caller may want to try again treating pointer as a 6673 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 6674 */ 6675 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 6676 struct bpf_insn *insn, 6677 const struct bpf_reg_state *ptr_reg, 6678 const struct bpf_reg_state *off_reg) 6679 { 6680 struct bpf_verifier_state *vstate = env->cur_state; 6681 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6682 struct bpf_reg_state *regs = state->regs, *dst_reg; 6683 bool known = tnum_is_const(off_reg->var_off); 6684 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 6685 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 6686 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 6687 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 6688 struct bpf_insn_aux_data tmp_aux = {}; 6689 u8 opcode = BPF_OP(insn->code); 6690 u32 dst = insn->dst_reg; 6691 int ret; 6692 6693 dst_reg = ®s[dst]; 6694 6695 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 6696 smin_val > smax_val || umin_val > umax_val) { 6697 /* Taint dst register if offset had invalid bounds derived from 6698 * e.g. dead branches. 6699 */ 6700 __mark_reg_unknown(env, dst_reg); 6701 return 0; 6702 } 6703 6704 if (BPF_CLASS(insn->code) != BPF_ALU64) { 6705 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 6706 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6707 __mark_reg_unknown(env, dst_reg); 6708 return 0; 6709 } 6710 6711 verbose(env, 6712 "R%d 32-bit pointer arithmetic prohibited\n", 6713 dst); 6714 return -EACCES; 6715 } 6716 6717 switch (ptr_reg->type) { 6718 case PTR_TO_MAP_VALUE_OR_NULL: 6719 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 6720 dst, reg_type_str[ptr_reg->type]); 6721 return -EACCES; 6722 case CONST_PTR_TO_MAP: 6723 /* smin_val represents the known value */ 6724 if (known && smin_val == 0 && opcode == BPF_ADD) 6725 break; 6726 fallthrough; 6727 case PTR_TO_PACKET_END: 6728 case PTR_TO_SOCKET: 6729 case PTR_TO_SOCKET_OR_NULL: 6730 case PTR_TO_SOCK_COMMON: 6731 case PTR_TO_SOCK_COMMON_OR_NULL: 6732 case PTR_TO_TCP_SOCK: 6733 case PTR_TO_TCP_SOCK_OR_NULL: 6734 case PTR_TO_XDP_SOCK: 6735 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 6736 dst, reg_type_str[ptr_reg->type]); 6737 return -EACCES; 6738 default: 6739 break; 6740 } 6741 6742 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 6743 * The id may be overwritten later if we create a new variable offset. 6744 */ 6745 dst_reg->type = ptr_reg->type; 6746 dst_reg->id = ptr_reg->id; 6747 6748 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 6749 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 6750 return -EINVAL; 6751 6752 /* pointer types do not carry 32-bit bounds at the moment. */ 6753 __mark_reg32_unbounded(dst_reg); 6754 6755 if (sanitize_needed(opcode)) { 6756 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 6757 &tmp_aux, false); 6758 if (ret < 0) 6759 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6760 } 6761 6762 switch (opcode) { 6763 case BPF_ADD: 6764 /* We can take a fixed offset as long as it doesn't overflow 6765 * the s32 'off' field 6766 */ 6767 if (known && (ptr_reg->off + smin_val == 6768 (s64)(s32)(ptr_reg->off + smin_val))) { 6769 /* pointer += K. Accumulate it into fixed offset */ 6770 dst_reg->smin_value = smin_ptr; 6771 dst_reg->smax_value = smax_ptr; 6772 dst_reg->umin_value = umin_ptr; 6773 dst_reg->umax_value = umax_ptr; 6774 dst_reg->var_off = ptr_reg->var_off; 6775 dst_reg->off = ptr_reg->off + smin_val; 6776 dst_reg->raw = ptr_reg->raw; 6777 break; 6778 } 6779 /* A new variable offset is created. Note that off_reg->off 6780 * == 0, since it's a scalar. 6781 * dst_reg gets the pointer type and since some positive 6782 * integer value was added to the pointer, give it a new 'id' 6783 * if it's a PTR_TO_PACKET. 6784 * this creates a new 'base' pointer, off_reg (variable) gets 6785 * added into the variable offset, and we copy the fixed offset 6786 * from ptr_reg. 6787 */ 6788 if (signed_add_overflows(smin_ptr, smin_val) || 6789 signed_add_overflows(smax_ptr, smax_val)) { 6790 dst_reg->smin_value = S64_MIN; 6791 dst_reg->smax_value = S64_MAX; 6792 } else { 6793 dst_reg->smin_value = smin_ptr + smin_val; 6794 dst_reg->smax_value = smax_ptr + smax_val; 6795 } 6796 if (umin_ptr + umin_val < umin_ptr || 6797 umax_ptr + umax_val < umax_ptr) { 6798 dst_reg->umin_value = 0; 6799 dst_reg->umax_value = U64_MAX; 6800 } else { 6801 dst_reg->umin_value = umin_ptr + umin_val; 6802 dst_reg->umax_value = umax_ptr + umax_val; 6803 } 6804 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 6805 dst_reg->off = ptr_reg->off; 6806 dst_reg->raw = ptr_reg->raw; 6807 if (reg_is_pkt_pointer(ptr_reg)) { 6808 dst_reg->id = ++env->id_gen; 6809 /* something was added to pkt_ptr, set range to zero */ 6810 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6811 } 6812 break; 6813 case BPF_SUB: 6814 if (dst_reg == off_reg) { 6815 /* scalar -= pointer. Creates an unknown scalar */ 6816 verbose(env, "R%d tried to subtract pointer from scalar\n", 6817 dst); 6818 return -EACCES; 6819 } 6820 /* We don't allow subtraction from FP, because (according to 6821 * test_verifier.c test "invalid fp arithmetic", JITs might not 6822 * be able to deal with it. 6823 */ 6824 if (ptr_reg->type == PTR_TO_STACK) { 6825 verbose(env, "R%d subtraction from stack pointer prohibited\n", 6826 dst); 6827 return -EACCES; 6828 } 6829 if (known && (ptr_reg->off - smin_val == 6830 (s64)(s32)(ptr_reg->off - smin_val))) { 6831 /* pointer -= K. Subtract it from fixed offset */ 6832 dst_reg->smin_value = smin_ptr; 6833 dst_reg->smax_value = smax_ptr; 6834 dst_reg->umin_value = umin_ptr; 6835 dst_reg->umax_value = umax_ptr; 6836 dst_reg->var_off = ptr_reg->var_off; 6837 dst_reg->id = ptr_reg->id; 6838 dst_reg->off = ptr_reg->off - smin_val; 6839 dst_reg->raw = ptr_reg->raw; 6840 break; 6841 } 6842 /* A new variable offset is created. If the subtrahend is known 6843 * nonnegative, then any reg->range we had before is still good. 6844 */ 6845 if (signed_sub_overflows(smin_ptr, smax_val) || 6846 signed_sub_overflows(smax_ptr, smin_val)) { 6847 /* Overflow possible, we know nothing */ 6848 dst_reg->smin_value = S64_MIN; 6849 dst_reg->smax_value = S64_MAX; 6850 } else { 6851 dst_reg->smin_value = smin_ptr - smax_val; 6852 dst_reg->smax_value = smax_ptr - smin_val; 6853 } 6854 if (umin_ptr < umax_val) { 6855 /* Overflow possible, we know nothing */ 6856 dst_reg->umin_value = 0; 6857 dst_reg->umax_value = U64_MAX; 6858 } else { 6859 /* Cannot overflow (as long as bounds are consistent) */ 6860 dst_reg->umin_value = umin_ptr - umax_val; 6861 dst_reg->umax_value = umax_ptr - umin_val; 6862 } 6863 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 6864 dst_reg->off = ptr_reg->off; 6865 dst_reg->raw = ptr_reg->raw; 6866 if (reg_is_pkt_pointer(ptr_reg)) { 6867 dst_reg->id = ++env->id_gen; 6868 /* something was added to pkt_ptr, set range to zero */ 6869 if (smin_val < 0) 6870 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6871 } 6872 break; 6873 case BPF_AND: 6874 case BPF_OR: 6875 case BPF_XOR: 6876 /* bitwise ops on pointers are troublesome, prohibit. */ 6877 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 6878 dst, bpf_alu_string[opcode >> 4]); 6879 return -EACCES; 6880 default: 6881 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 6882 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 6883 dst, bpf_alu_string[opcode >> 4]); 6884 return -EACCES; 6885 } 6886 6887 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 6888 return -EINVAL; 6889 6890 __update_reg_bounds(dst_reg); 6891 __reg_deduce_bounds(dst_reg); 6892 __reg_bound_offset(dst_reg); 6893 6894 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 6895 return -EACCES; 6896 if (sanitize_needed(opcode)) { 6897 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 6898 &tmp_aux, true); 6899 if (ret < 0) 6900 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6901 } 6902 6903 return 0; 6904 } 6905 6906 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 6907 struct bpf_reg_state *src_reg) 6908 { 6909 s32 smin_val = src_reg->s32_min_value; 6910 s32 smax_val = src_reg->s32_max_value; 6911 u32 umin_val = src_reg->u32_min_value; 6912 u32 umax_val = src_reg->u32_max_value; 6913 6914 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 6915 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 6916 dst_reg->s32_min_value = S32_MIN; 6917 dst_reg->s32_max_value = S32_MAX; 6918 } else { 6919 dst_reg->s32_min_value += smin_val; 6920 dst_reg->s32_max_value += smax_val; 6921 } 6922 if (dst_reg->u32_min_value + umin_val < umin_val || 6923 dst_reg->u32_max_value + umax_val < umax_val) { 6924 dst_reg->u32_min_value = 0; 6925 dst_reg->u32_max_value = U32_MAX; 6926 } else { 6927 dst_reg->u32_min_value += umin_val; 6928 dst_reg->u32_max_value += umax_val; 6929 } 6930 } 6931 6932 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 6933 struct bpf_reg_state *src_reg) 6934 { 6935 s64 smin_val = src_reg->smin_value; 6936 s64 smax_val = src_reg->smax_value; 6937 u64 umin_val = src_reg->umin_value; 6938 u64 umax_val = src_reg->umax_value; 6939 6940 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 6941 signed_add_overflows(dst_reg->smax_value, smax_val)) { 6942 dst_reg->smin_value = S64_MIN; 6943 dst_reg->smax_value = S64_MAX; 6944 } else { 6945 dst_reg->smin_value += smin_val; 6946 dst_reg->smax_value += smax_val; 6947 } 6948 if (dst_reg->umin_value + umin_val < umin_val || 6949 dst_reg->umax_value + umax_val < umax_val) { 6950 dst_reg->umin_value = 0; 6951 dst_reg->umax_value = U64_MAX; 6952 } else { 6953 dst_reg->umin_value += umin_val; 6954 dst_reg->umax_value += umax_val; 6955 } 6956 } 6957 6958 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 6959 struct bpf_reg_state *src_reg) 6960 { 6961 s32 smin_val = src_reg->s32_min_value; 6962 s32 smax_val = src_reg->s32_max_value; 6963 u32 umin_val = src_reg->u32_min_value; 6964 u32 umax_val = src_reg->u32_max_value; 6965 6966 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 6967 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 6968 /* Overflow possible, we know nothing */ 6969 dst_reg->s32_min_value = S32_MIN; 6970 dst_reg->s32_max_value = S32_MAX; 6971 } else { 6972 dst_reg->s32_min_value -= smax_val; 6973 dst_reg->s32_max_value -= smin_val; 6974 } 6975 if (dst_reg->u32_min_value < umax_val) { 6976 /* Overflow possible, we know nothing */ 6977 dst_reg->u32_min_value = 0; 6978 dst_reg->u32_max_value = U32_MAX; 6979 } else { 6980 /* Cannot overflow (as long as bounds are consistent) */ 6981 dst_reg->u32_min_value -= umax_val; 6982 dst_reg->u32_max_value -= umin_val; 6983 } 6984 } 6985 6986 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 6987 struct bpf_reg_state *src_reg) 6988 { 6989 s64 smin_val = src_reg->smin_value; 6990 s64 smax_val = src_reg->smax_value; 6991 u64 umin_val = src_reg->umin_value; 6992 u64 umax_val = src_reg->umax_value; 6993 6994 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 6995 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 6996 /* Overflow possible, we know nothing */ 6997 dst_reg->smin_value = S64_MIN; 6998 dst_reg->smax_value = S64_MAX; 6999 } else { 7000 dst_reg->smin_value -= smax_val; 7001 dst_reg->smax_value -= smin_val; 7002 } 7003 if (dst_reg->umin_value < umax_val) { 7004 /* Overflow possible, we know nothing */ 7005 dst_reg->umin_value = 0; 7006 dst_reg->umax_value = U64_MAX; 7007 } else { 7008 /* Cannot overflow (as long as bounds are consistent) */ 7009 dst_reg->umin_value -= umax_val; 7010 dst_reg->umax_value -= umin_val; 7011 } 7012 } 7013 7014 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7015 struct bpf_reg_state *src_reg) 7016 { 7017 s32 smin_val = src_reg->s32_min_value; 7018 u32 umin_val = src_reg->u32_min_value; 7019 u32 umax_val = src_reg->u32_max_value; 7020 7021 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7022 /* Ain't nobody got time to multiply that sign */ 7023 __mark_reg32_unbounded(dst_reg); 7024 return; 7025 } 7026 /* Both values are positive, so we can work with unsigned and 7027 * copy the result to signed (unless it exceeds S32_MAX). 7028 */ 7029 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7030 /* Potential overflow, we know nothing */ 7031 __mark_reg32_unbounded(dst_reg); 7032 return; 7033 } 7034 dst_reg->u32_min_value *= umin_val; 7035 dst_reg->u32_max_value *= umax_val; 7036 if (dst_reg->u32_max_value > S32_MAX) { 7037 /* Overflow possible, we know nothing */ 7038 dst_reg->s32_min_value = S32_MIN; 7039 dst_reg->s32_max_value = S32_MAX; 7040 } else { 7041 dst_reg->s32_min_value = dst_reg->u32_min_value; 7042 dst_reg->s32_max_value = dst_reg->u32_max_value; 7043 } 7044 } 7045 7046 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7047 struct bpf_reg_state *src_reg) 7048 { 7049 s64 smin_val = src_reg->smin_value; 7050 u64 umin_val = src_reg->umin_value; 7051 u64 umax_val = src_reg->umax_value; 7052 7053 if (smin_val < 0 || dst_reg->smin_value < 0) { 7054 /* Ain't nobody got time to multiply that sign */ 7055 __mark_reg64_unbounded(dst_reg); 7056 return; 7057 } 7058 /* Both values are positive, so we can work with unsigned and 7059 * copy the result to signed (unless it exceeds S64_MAX). 7060 */ 7061 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7062 /* Potential overflow, we know nothing */ 7063 __mark_reg64_unbounded(dst_reg); 7064 return; 7065 } 7066 dst_reg->umin_value *= umin_val; 7067 dst_reg->umax_value *= umax_val; 7068 if (dst_reg->umax_value > S64_MAX) { 7069 /* Overflow possible, we know nothing */ 7070 dst_reg->smin_value = S64_MIN; 7071 dst_reg->smax_value = S64_MAX; 7072 } else { 7073 dst_reg->smin_value = dst_reg->umin_value; 7074 dst_reg->smax_value = dst_reg->umax_value; 7075 } 7076 } 7077 7078 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7079 struct bpf_reg_state *src_reg) 7080 { 7081 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7082 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7083 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7084 s32 smin_val = src_reg->s32_min_value; 7085 u32 umax_val = src_reg->u32_max_value; 7086 7087 /* Assuming scalar64_min_max_and will be called so its safe 7088 * to skip updating register for known 32-bit case. 7089 */ 7090 if (src_known && dst_known) 7091 return; 7092 7093 /* We get our minimum from the var_off, since that's inherently 7094 * bitwise. Our maximum is the minimum of the operands' maxima. 7095 */ 7096 dst_reg->u32_min_value = var32_off.value; 7097 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7098 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7099 /* Lose signed bounds when ANDing negative numbers, 7100 * ain't nobody got time for that. 7101 */ 7102 dst_reg->s32_min_value = S32_MIN; 7103 dst_reg->s32_max_value = S32_MAX; 7104 } else { 7105 /* ANDing two positives gives a positive, so safe to 7106 * cast result into s64. 7107 */ 7108 dst_reg->s32_min_value = dst_reg->u32_min_value; 7109 dst_reg->s32_max_value = dst_reg->u32_max_value; 7110 } 7111 7112 } 7113 7114 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7115 struct bpf_reg_state *src_reg) 7116 { 7117 bool src_known = tnum_is_const(src_reg->var_off); 7118 bool dst_known = tnum_is_const(dst_reg->var_off); 7119 s64 smin_val = src_reg->smin_value; 7120 u64 umax_val = src_reg->umax_value; 7121 7122 if (src_known && dst_known) { 7123 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7124 return; 7125 } 7126 7127 /* We get our minimum from the var_off, since that's inherently 7128 * bitwise. Our maximum is the minimum of the operands' maxima. 7129 */ 7130 dst_reg->umin_value = dst_reg->var_off.value; 7131 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7132 if (dst_reg->smin_value < 0 || smin_val < 0) { 7133 /* Lose signed bounds when ANDing negative numbers, 7134 * ain't nobody got time for that. 7135 */ 7136 dst_reg->smin_value = S64_MIN; 7137 dst_reg->smax_value = S64_MAX; 7138 } else { 7139 /* ANDing two positives gives a positive, so safe to 7140 * cast result into s64. 7141 */ 7142 dst_reg->smin_value = dst_reg->umin_value; 7143 dst_reg->smax_value = dst_reg->umax_value; 7144 } 7145 /* We may learn something more from the var_off */ 7146 __update_reg_bounds(dst_reg); 7147 } 7148 7149 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7150 struct bpf_reg_state *src_reg) 7151 { 7152 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7153 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7154 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7155 s32 smin_val = src_reg->s32_min_value; 7156 u32 umin_val = src_reg->u32_min_value; 7157 7158 /* Assuming scalar64_min_max_or will be called so it is safe 7159 * to skip updating register for known case. 7160 */ 7161 if (src_known && dst_known) 7162 return; 7163 7164 /* We get our maximum from the var_off, and our minimum is the 7165 * maximum of the operands' minima 7166 */ 7167 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7168 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7169 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7170 /* Lose signed bounds when ORing negative numbers, 7171 * ain't nobody got time for that. 7172 */ 7173 dst_reg->s32_min_value = S32_MIN; 7174 dst_reg->s32_max_value = S32_MAX; 7175 } else { 7176 /* ORing two positives gives a positive, so safe to 7177 * cast result into s64. 7178 */ 7179 dst_reg->s32_min_value = dst_reg->u32_min_value; 7180 dst_reg->s32_max_value = dst_reg->u32_max_value; 7181 } 7182 } 7183 7184 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7185 struct bpf_reg_state *src_reg) 7186 { 7187 bool src_known = tnum_is_const(src_reg->var_off); 7188 bool dst_known = tnum_is_const(dst_reg->var_off); 7189 s64 smin_val = src_reg->smin_value; 7190 u64 umin_val = src_reg->umin_value; 7191 7192 if (src_known && dst_known) { 7193 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7194 return; 7195 } 7196 7197 /* We get our maximum from the var_off, and our minimum is the 7198 * maximum of the operands' minima 7199 */ 7200 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7201 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7202 if (dst_reg->smin_value < 0 || smin_val < 0) { 7203 /* Lose signed bounds when ORing negative numbers, 7204 * ain't nobody got time for that. 7205 */ 7206 dst_reg->smin_value = S64_MIN; 7207 dst_reg->smax_value = S64_MAX; 7208 } else { 7209 /* ORing two positives gives a positive, so safe to 7210 * cast result into s64. 7211 */ 7212 dst_reg->smin_value = dst_reg->umin_value; 7213 dst_reg->smax_value = dst_reg->umax_value; 7214 } 7215 /* We may learn something more from the var_off */ 7216 __update_reg_bounds(dst_reg); 7217 } 7218 7219 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7220 struct bpf_reg_state *src_reg) 7221 { 7222 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7223 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7224 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7225 s32 smin_val = src_reg->s32_min_value; 7226 7227 /* Assuming scalar64_min_max_xor will be called so it is safe 7228 * to skip updating register for known case. 7229 */ 7230 if (src_known && dst_known) 7231 return; 7232 7233 /* We get both minimum and maximum from the var32_off. */ 7234 dst_reg->u32_min_value = var32_off.value; 7235 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7236 7237 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7238 /* XORing two positive sign numbers gives a positive, 7239 * so safe to cast u32 result into s32. 7240 */ 7241 dst_reg->s32_min_value = dst_reg->u32_min_value; 7242 dst_reg->s32_max_value = dst_reg->u32_max_value; 7243 } else { 7244 dst_reg->s32_min_value = S32_MIN; 7245 dst_reg->s32_max_value = S32_MAX; 7246 } 7247 } 7248 7249 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7250 struct bpf_reg_state *src_reg) 7251 { 7252 bool src_known = tnum_is_const(src_reg->var_off); 7253 bool dst_known = tnum_is_const(dst_reg->var_off); 7254 s64 smin_val = src_reg->smin_value; 7255 7256 if (src_known && dst_known) { 7257 /* dst_reg->var_off.value has been updated earlier */ 7258 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7259 return; 7260 } 7261 7262 /* We get both minimum and maximum from the var_off. */ 7263 dst_reg->umin_value = dst_reg->var_off.value; 7264 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7265 7266 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7267 /* XORing two positive sign numbers gives a positive, 7268 * so safe to cast u64 result into s64. 7269 */ 7270 dst_reg->smin_value = dst_reg->umin_value; 7271 dst_reg->smax_value = dst_reg->umax_value; 7272 } else { 7273 dst_reg->smin_value = S64_MIN; 7274 dst_reg->smax_value = S64_MAX; 7275 } 7276 7277 __update_reg_bounds(dst_reg); 7278 } 7279 7280 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7281 u64 umin_val, u64 umax_val) 7282 { 7283 /* We lose all sign bit information (except what we can pick 7284 * up from var_off) 7285 */ 7286 dst_reg->s32_min_value = S32_MIN; 7287 dst_reg->s32_max_value = S32_MAX; 7288 /* If we might shift our top bit out, then we know nothing */ 7289 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7290 dst_reg->u32_min_value = 0; 7291 dst_reg->u32_max_value = U32_MAX; 7292 } else { 7293 dst_reg->u32_min_value <<= umin_val; 7294 dst_reg->u32_max_value <<= umax_val; 7295 } 7296 } 7297 7298 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7299 struct bpf_reg_state *src_reg) 7300 { 7301 u32 umax_val = src_reg->u32_max_value; 7302 u32 umin_val = src_reg->u32_min_value; 7303 /* u32 alu operation will zext upper bits */ 7304 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7305 7306 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7307 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7308 /* Not required but being careful mark reg64 bounds as unknown so 7309 * that we are forced to pick them up from tnum and zext later and 7310 * if some path skips this step we are still safe. 7311 */ 7312 __mark_reg64_unbounded(dst_reg); 7313 __update_reg32_bounds(dst_reg); 7314 } 7315 7316 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7317 u64 umin_val, u64 umax_val) 7318 { 7319 /* Special case <<32 because it is a common compiler pattern to sign 7320 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7321 * positive we know this shift will also be positive so we can track 7322 * bounds correctly. Otherwise we lose all sign bit information except 7323 * what we can pick up from var_off. Perhaps we can generalize this 7324 * later to shifts of any length. 7325 */ 7326 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7327 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7328 else 7329 dst_reg->smax_value = S64_MAX; 7330 7331 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7332 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7333 else 7334 dst_reg->smin_value = S64_MIN; 7335 7336 /* If we might shift our top bit out, then we know nothing */ 7337 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7338 dst_reg->umin_value = 0; 7339 dst_reg->umax_value = U64_MAX; 7340 } else { 7341 dst_reg->umin_value <<= umin_val; 7342 dst_reg->umax_value <<= umax_val; 7343 } 7344 } 7345 7346 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7347 struct bpf_reg_state *src_reg) 7348 { 7349 u64 umax_val = src_reg->umax_value; 7350 u64 umin_val = src_reg->umin_value; 7351 7352 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7353 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7354 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7355 7356 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7357 /* We may learn something more from the var_off */ 7358 __update_reg_bounds(dst_reg); 7359 } 7360 7361 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7362 struct bpf_reg_state *src_reg) 7363 { 7364 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7365 u32 umax_val = src_reg->u32_max_value; 7366 u32 umin_val = src_reg->u32_min_value; 7367 7368 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7369 * be negative, then either: 7370 * 1) src_reg might be zero, so the sign bit of the result is 7371 * unknown, so we lose our signed bounds 7372 * 2) it's known negative, thus the unsigned bounds capture the 7373 * signed bounds 7374 * 3) the signed bounds cross zero, so they tell us nothing 7375 * about the result 7376 * If the value in dst_reg is known nonnegative, then again the 7377 * unsigned bounds capture the signed bounds. 7378 * Thus, in all cases it suffices to blow away our signed bounds 7379 * and rely on inferring new ones from the unsigned bounds and 7380 * var_off of the result. 7381 */ 7382 dst_reg->s32_min_value = S32_MIN; 7383 dst_reg->s32_max_value = S32_MAX; 7384 7385 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7386 dst_reg->u32_min_value >>= umax_val; 7387 dst_reg->u32_max_value >>= umin_val; 7388 7389 __mark_reg64_unbounded(dst_reg); 7390 __update_reg32_bounds(dst_reg); 7391 } 7392 7393 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7394 struct bpf_reg_state *src_reg) 7395 { 7396 u64 umax_val = src_reg->umax_value; 7397 u64 umin_val = src_reg->umin_value; 7398 7399 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7400 * be negative, then either: 7401 * 1) src_reg might be zero, so the sign bit of the result is 7402 * unknown, so we lose our signed bounds 7403 * 2) it's known negative, thus the unsigned bounds capture the 7404 * signed bounds 7405 * 3) the signed bounds cross zero, so they tell us nothing 7406 * about the result 7407 * If the value in dst_reg is known nonnegative, then again the 7408 * unsigned bounds capture the signed bounds. 7409 * Thus, in all cases it suffices to blow away our signed bounds 7410 * and rely on inferring new ones from the unsigned bounds and 7411 * var_off of the result. 7412 */ 7413 dst_reg->smin_value = S64_MIN; 7414 dst_reg->smax_value = S64_MAX; 7415 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7416 dst_reg->umin_value >>= umax_val; 7417 dst_reg->umax_value >>= umin_val; 7418 7419 /* Its not easy to operate on alu32 bounds here because it depends 7420 * on bits being shifted in. Take easy way out and mark unbounded 7421 * so we can recalculate later from tnum. 7422 */ 7423 __mark_reg32_unbounded(dst_reg); 7424 __update_reg_bounds(dst_reg); 7425 } 7426 7427 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7428 struct bpf_reg_state *src_reg) 7429 { 7430 u64 umin_val = src_reg->u32_min_value; 7431 7432 /* Upon reaching here, src_known is true and 7433 * umax_val is equal to umin_val. 7434 */ 7435 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7436 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7437 7438 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7439 7440 /* blow away the dst_reg umin_value/umax_value and rely on 7441 * dst_reg var_off to refine the result. 7442 */ 7443 dst_reg->u32_min_value = 0; 7444 dst_reg->u32_max_value = U32_MAX; 7445 7446 __mark_reg64_unbounded(dst_reg); 7447 __update_reg32_bounds(dst_reg); 7448 } 7449 7450 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7451 struct bpf_reg_state *src_reg) 7452 { 7453 u64 umin_val = src_reg->umin_value; 7454 7455 /* Upon reaching here, src_known is true and umax_val is equal 7456 * to umin_val. 7457 */ 7458 dst_reg->smin_value >>= umin_val; 7459 dst_reg->smax_value >>= umin_val; 7460 7461 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7462 7463 /* blow away the dst_reg umin_value/umax_value and rely on 7464 * dst_reg var_off to refine the result. 7465 */ 7466 dst_reg->umin_value = 0; 7467 dst_reg->umax_value = U64_MAX; 7468 7469 /* Its not easy to operate on alu32 bounds here because it depends 7470 * on bits being shifted in from upper 32-bits. Take easy way out 7471 * and mark unbounded so we can recalculate later from tnum. 7472 */ 7473 __mark_reg32_unbounded(dst_reg); 7474 __update_reg_bounds(dst_reg); 7475 } 7476 7477 /* WARNING: This function does calculations on 64-bit values, but the actual 7478 * execution may occur on 32-bit values. Therefore, things like bitshifts 7479 * need extra checks in the 32-bit case. 7480 */ 7481 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 7482 struct bpf_insn *insn, 7483 struct bpf_reg_state *dst_reg, 7484 struct bpf_reg_state src_reg) 7485 { 7486 struct bpf_reg_state *regs = cur_regs(env); 7487 u8 opcode = BPF_OP(insn->code); 7488 bool src_known; 7489 s64 smin_val, smax_val; 7490 u64 umin_val, umax_val; 7491 s32 s32_min_val, s32_max_val; 7492 u32 u32_min_val, u32_max_val; 7493 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 7494 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 7495 int ret; 7496 7497 smin_val = src_reg.smin_value; 7498 smax_val = src_reg.smax_value; 7499 umin_val = src_reg.umin_value; 7500 umax_val = src_reg.umax_value; 7501 7502 s32_min_val = src_reg.s32_min_value; 7503 s32_max_val = src_reg.s32_max_value; 7504 u32_min_val = src_reg.u32_min_value; 7505 u32_max_val = src_reg.u32_max_value; 7506 7507 if (alu32) { 7508 src_known = tnum_subreg_is_const(src_reg.var_off); 7509 if ((src_known && 7510 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 7511 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 7512 /* Taint dst register if offset had invalid bounds 7513 * derived from e.g. dead branches. 7514 */ 7515 __mark_reg_unknown(env, dst_reg); 7516 return 0; 7517 } 7518 } else { 7519 src_known = tnum_is_const(src_reg.var_off); 7520 if ((src_known && 7521 (smin_val != smax_val || umin_val != umax_val)) || 7522 smin_val > smax_val || umin_val > umax_val) { 7523 /* Taint dst register if offset had invalid bounds 7524 * derived from e.g. dead branches. 7525 */ 7526 __mark_reg_unknown(env, dst_reg); 7527 return 0; 7528 } 7529 } 7530 7531 if (!src_known && 7532 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 7533 __mark_reg_unknown(env, dst_reg); 7534 return 0; 7535 } 7536 7537 if (sanitize_needed(opcode)) { 7538 ret = sanitize_val_alu(env, insn); 7539 if (ret < 0) 7540 return sanitize_err(env, insn, ret, NULL, NULL); 7541 } 7542 7543 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 7544 * There are two classes of instructions: The first class we track both 7545 * alu32 and alu64 sign/unsigned bounds independently this provides the 7546 * greatest amount of precision when alu operations are mixed with jmp32 7547 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 7548 * and BPF_OR. This is possible because these ops have fairly easy to 7549 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 7550 * See alu32 verifier tests for examples. The second class of 7551 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 7552 * with regards to tracking sign/unsigned bounds because the bits may 7553 * cross subreg boundaries in the alu64 case. When this happens we mark 7554 * the reg unbounded in the subreg bound space and use the resulting 7555 * tnum to calculate an approximation of the sign/unsigned bounds. 7556 */ 7557 switch (opcode) { 7558 case BPF_ADD: 7559 scalar32_min_max_add(dst_reg, &src_reg); 7560 scalar_min_max_add(dst_reg, &src_reg); 7561 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 7562 break; 7563 case BPF_SUB: 7564 scalar32_min_max_sub(dst_reg, &src_reg); 7565 scalar_min_max_sub(dst_reg, &src_reg); 7566 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 7567 break; 7568 case BPF_MUL: 7569 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 7570 scalar32_min_max_mul(dst_reg, &src_reg); 7571 scalar_min_max_mul(dst_reg, &src_reg); 7572 break; 7573 case BPF_AND: 7574 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 7575 scalar32_min_max_and(dst_reg, &src_reg); 7576 scalar_min_max_and(dst_reg, &src_reg); 7577 break; 7578 case BPF_OR: 7579 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 7580 scalar32_min_max_or(dst_reg, &src_reg); 7581 scalar_min_max_or(dst_reg, &src_reg); 7582 break; 7583 case BPF_XOR: 7584 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 7585 scalar32_min_max_xor(dst_reg, &src_reg); 7586 scalar_min_max_xor(dst_reg, &src_reg); 7587 break; 7588 case BPF_LSH: 7589 if (umax_val >= insn_bitness) { 7590 /* Shifts greater than 31 or 63 are undefined. 7591 * This includes shifts by a negative number. 7592 */ 7593 mark_reg_unknown(env, regs, insn->dst_reg); 7594 break; 7595 } 7596 if (alu32) 7597 scalar32_min_max_lsh(dst_reg, &src_reg); 7598 else 7599 scalar_min_max_lsh(dst_reg, &src_reg); 7600 break; 7601 case BPF_RSH: 7602 if (umax_val >= insn_bitness) { 7603 /* Shifts greater than 31 or 63 are undefined. 7604 * This includes shifts by a negative number. 7605 */ 7606 mark_reg_unknown(env, regs, insn->dst_reg); 7607 break; 7608 } 7609 if (alu32) 7610 scalar32_min_max_rsh(dst_reg, &src_reg); 7611 else 7612 scalar_min_max_rsh(dst_reg, &src_reg); 7613 break; 7614 case BPF_ARSH: 7615 if (umax_val >= insn_bitness) { 7616 /* Shifts greater than 31 or 63 are undefined. 7617 * This includes shifts by a negative number. 7618 */ 7619 mark_reg_unknown(env, regs, insn->dst_reg); 7620 break; 7621 } 7622 if (alu32) 7623 scalar32_min_max_arsh(dst_reg, &src_reg); 7624 else 7625 scalar_min_max_arsh(dst_reg, &src_reg); 7626 break; 7627 default: 7628 mark_reg_unknown(env, regs, insn->dst_reg); 7629 break; 7630 } 7631 7632 /* ALU32 ops are zero extended into 64bit register */ 7633 if (alu32) 7634 zext_32_to_64(dst_reg); 7635 7636 __update_reg_bounds(dst_reg); 7637 __reg_deduce_bounds(dst_reg); 7638 __reg_bound_offset(dst_reg); 7639 return 0; 7640 } 7641 7642 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 7643 * and var_off. 7644 */ 7645 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 7646 struct bpf_insn *insn) 7647 { 7648 struct bpf_verifier_state *vstate = env->cur_state; 7649 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7650 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 7651 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 7652 u8 opcode = BPF_OP(insn->code); 7653 int err; 7654 7655 dst_reg = ®s[insn->dst_reg]; 7656 src_reg = NULL; 7657 if (dst_reg->type != SCALAR_VALUE) 7658 ptr_reg = dst_reg; 7659 else 7660 /* Make sure ID is cleared otherwise dst_reg min/max could be 7661 * incorrectly propagated into other registers by find_equal_scalars() 7662 */ 7663 dst_reg->id = 0; 7664 if (BPF_SRC(insn->code) == BPF_X) { 7665 src_reg = ®s[insn->src_reg]; 7666 if (src_reg->type != SCALAR_VALUE) { 7667 if (dst_reg->type != SCALAR_VALUE) { 7668 /* Combining two pointers by any ALU op yields 7669 * an arbitrary scalar. Disallow all math except 7670 * pointer subtraction 7671 */ 7672 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7673 mark_reg_unknown(env, regs, insn->dst_reg); 7674 return 0; 7675 } 7676 verbose(env, "R%d pointer %s pointer prohibited\n", 7677 insn->dst_reg, 7678 bpf_alu_string[opcode >> 4]); 7679 return -EACCES; 7680 } else { 7681 /* scalar += pointer 7682 * This is legal, but we have to reverse our 7683 * src/dest handling in computing the range 7684 */ 7685 err = mark_chain_precision(env, insn->dst_reg); 7686 if (err) 7687 return err; 7688 return adjust_ptr_min_max_vals(env, insn, 7689 src_reg, dst_reg); 7690 } 7691 } else if (ptr_reg) { 7692 /* pointer += scalar */ 7693 err = mark_chain_precision(env, insn->src_reg); 7694 if (err) 7695 return err; 7696 return adjust_ptr_min_max_vals(env, insn, 7697 dst_reg, src_reg); 7698 } 7699 } else { 7700 /* Pretend the src is a reg with a known value, since we only 7701 * need to be able to read from this state. 7702 */ 7703 off_reg.type = SCALAR_VALUE; 7704 __mark_reg_known(&off_reg, insn->imm); 7705 src_reg = &off_reg; 7706 if (ptr_reg) /* pointer += K */ 7707 return adjust_ptr_min_max_vals(env, insn, 7708 ptr_reg, src_reg); 7709 } 7710 7711 /* Got here implies adding two SCALAR_VALUEs */ 7712 if (WARN_ON_ONCE(ptr_reg)) { 7713 print_verifier_state(env, state); 7714 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 7715 return -EINVAL; 7716 } 7717 if (WARN_ON(!src_reg)) { 7718 print_verifier_state(env, state); 7719 verbose(env, "verifier internal error: no src_reg\n"); 7720 return -EINVAL; 7721 } 7722 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 7723 } 7724 7725 /* check validity of 32-bit and 64-bit arithmetic operations */ 7726 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 7727 { 7728 struct bpf_reg_state *regs = cur_regs(env); 7729 u8 opcode = BPF_OP(insn->code); 7730 int err; 7731 7732 if (opcode == BPF_END || opcode == BPF_NEG) { 7733 if (opcode == BPF_NEG) { 7734 if (BPF_SRC(insn->code) != 0 || 7735 insn->src_reg != BPF_REG_0 || 7736 insn->off != 0 || insn->imm != 0) { 7737 verbose(env, "BPF_NEG uses reserved fields\n"); 7738 return -EINVAL; 7739 } 7740 } else { 7741 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 7742 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 7743 BPF_CLASS(insn->code) == BPF_ALU64) { 7744 verbose(env, "BPF_END uses reserved fields\n"); 7745 return -EINVAL; 7746 } 7747 } 7748 7749 /* check src operand */ 7750 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7751 if (err) 7752 return err; 7753 7754 if (is_pointer_value(env, insn->dst_reg)) { 7755 verbose(env, "R%d pointer arithmetic prohibited\n", 7756 insn->dst_reg); 7757 return -EACCES; 7758 } 7759 7760 /* check dest operand */ 7761 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7762 if (err) 7763 return err; 7764 7765 } else if (opcode == BPF_MOV) { 7766 7767 if (BPF_SRC(insn->code) == BPF_X) { 7768 if (insn->imm != 0 || insn->off != 0) { 7769 verbose(env, "BPF_MOV uses reserved fields\n"); 7770 return -EINVAL; 7771 } 7772 7773 /* check src operand */ 7774 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7775 if (err) 7776 return err; 7777 } else { 7778 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7779 verbose(env, "BPF_MOV uses reserved fields\n"); 7780 return -EINVAL; 7781 } 7782 } 7783 7784 /* check dest operand, mark as required later */ 7785 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7786 if (err) 7787 return err; 7788 7789 if (BPF_SRC(insn->code) == BPF_X) { 7790 struct bpf_reg_state *src_reg = regs + insn->src_reg; 7791 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 7792 7793 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7794 /* case: R1 = R2 7795 * copy register state to dest reg 7796 */ 7797 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 7798 /* Assign src and dst registers the same ID 7799 * that will be used by find_equal_scalars() 7800 * to propagate min/max range. 7801 */ 7802 src_reg->id = ++env->id_gen; 7803 *dst_reg = *src_reg; 7804 dst_reg->live |= REG_LIVE_WRITTEN; 7805 dst_reg->subreg_def = DEF_NOT_SUBREG; 7806 } else { 7807 /* R1 = (u32) R2 */ 7808 if (is_pointer_value(env, insn->src_reg)) { 7809 verbose(env, 7810 "R%d partial copy of pointer\n", 7811 insn->src_reg); 7812 return -EACCES; 7813 } else if (src_reg->type == SCALAR_VALUE) { 7814 *dst_reg = *src_reg; 7815 /* Make sure ID is cleared otherwise 7816 * dst_reg min/max could be incorrectly 7817 * propagated into src_reg by find_equal_scalars() 7818 */ 7819 dst_reg->id = 0; 7820 dst_reg->live |= REG_LIVE_WRITTEN; 7821 dst_reg->subreg_def = env->insn_idx + 1; 7822 } else { 7823 mark_reg_unknown(env, regs, 7824 insn->dst_reg); 7825 } 7826 zext_32_to_64(dst_reg); 7827 } 7828 } else { 7829 /* case: R = imm 7830 * remember the value we stored into this reg 7831 */ 7832 /* clear any state __mark_reg_known doesn't set */ 7833 mark_reg_unknown(env, regs, insn->dst_reg); 7834 regs[insn->dst_reg].type = SCALAR_VALUE; 7835 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7836 __mark_reg_known(regs + insn->dst_reg, 7837 insn->imm); 7838 } else { 7839 __mark_reg_known(regs + insn->dst_reg, 7840 (u32)insn->imm); 7841 } 7842 } 7843 7844 } else if (opcode > BPF_END) { 7845 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 7846 return -EINVAL; 7847 7848 } else { /* all other ALU ops: and, sub, xor, add, ... */ 7849 7850 if (BPF_SRC(insn->code) == BPF_X) { 7851 if (insn->imm != 0 || insn->off != 0) { 7852 verbose(env, "BPF_ALU uses reserved fields\n"); 7853 return -EINVAL; 7854 } 7855 /* check src1 operand */ 7856 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7857 if (err) 7858 return err; 7859 } else { 7860 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7861 verbose(env, "BPF_ALU uses reserved fields\n"); 7862 return -EINVAL; 7863 } 7864 } 7865 7866 /* check src2 operand */ 7867 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7868 if (err) 7869 return err; 7870 7871 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 7872 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 7873 verbose(env, "div by zero\n"); 7874 return -EINVAL; 7875 } 7876 7877 if ((opcode == BPF_LSH || opcode == BPF_RSH || 7878 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 7879 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 7880 7881 if (insn->imm < 0 || insn->imm >= size) { 7882 verbose(env, "invalid shift %d\n", insn->imm); 7883 return -EINVAL; 7884 } 7885 } 7886 7887 /* check dest operand */ 7888 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7889 if (err) 7890 return err; 7891 7892 return adjust_reg_min_max_vals(env, insn); 7893 } 7894 7895 return 0; 7896 } 7897 7898 static void __find_good_pkt_pointers(struct bpf_func_state *state, 7899 struct bpf_reg_state *dst_reg, 7900 enum bpf_reg_type type, int new_range) 7901 { 7902 struct bpf_reg_state *reg; 7903 int i; 7904 7905 for (i = 0; i < MAX_BPF_REG; i++) { 7906 reg = &state->regs[i]; 7907 if (reg->type == type && reg->id == dst_reg->id) 7908 /* keep the maximum range already checked */ 7909 reg->range = max(reg->range, new_range); 7910 } 7911 7912 bpf_for_each_spilled_reg(i, state, reg) { 7913 if (!reg) 7914 continue; 7915 if (reg->type == type && reg->id == dst_reg->id) 7916 reg->range = max(reg->range, new_range); 7917 } 7918 } 7919 7920 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 7921 struct bpf_reg_state *dst_reg, 7922 enum bpf_reg_type type, 7923 bool range_right_open) 7924 { 7925 int new_range, i; 7926 7927 if (dst_reg->off < 0 || 7928 (dst_reg->off == 0 && range_right_open)) 7929 /* This doesn't give us any range */ 7930 return; 7931 7932 if (dst_reg->umax_value > MAX_PACKET_OFF || 7933 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 7934 /* Risk of overflow. For instance, ptr + (1<<63) may be less 7935 * than pkt_end, but that's because it's also less than pkt. 7936 */ 7937 return; 7938 7939 new_range = dst_reg->off; 7940 if (range_right_open) 7941 new_range--; 7942 7943 /* Examples for register markings: 7944 * 7945 * pkt_data in dst register: 7946 * 7947 * r2 = r3; 7948 * r2 += 8; 7949 * if (r2 > pkt_end) goto <handle exception> 7950 * <access okay> 7951 * 7952 * r2 = r3; 7953 * r2 += 8; 7954 * if (r2 < pkt_end) goto <access okay> 7955 * <handle exception> 7956 * 7957 * Where: 7958 * r2 == dst_reg, pkt_end == src_reg 7959 * r2=pkt(id=n,off=8,r=0) 7960 * r3=pkt(id=n,off=0,r=0) 7961 * 7962 * pkt_data in src register: 7963 * 7964 * r2 = r3; 7965 * r2 += 8; 7966 * if (pkt_end >= r2) goto <access okay> 7967 * <handle exception> 7968 * 7969 * r2 = r3; 7970 * r2 += 8; 7971 * if (pkt_end <= r2) goto <handle exception> 7972 * <access okay> 7973 * 7974 * Where: 7975 * pkt_end == dst_reg, r2 == src_reg 7976 * r2=pkt(id=n,off=8,r=0) 7977 * r3=pkt(id=n,off=0,r=0) 7978 * 7979 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 7980 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 7981 * and [r3, r3 + 8-1) respectively is safe to access depending on 7982 * the check. 7983 */ 7984 7985 /* If our ids match, then we must have the same max_value. And we 7986 * don't care about the other reg's fixed offset, since if it's too big 7987 * the range won't allow anything. 7988 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 7989 */ 7990 for (i = 0; i <= vstate->curframe; i++) 7991 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 7992 new_range); 7993 } 7994 7995 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 7996 { 7997 struct tnum subreg = tnum_subreg(reg->var_off); 7998 s32 sval = (s32)val; 7999 8000 switch (opcode) { 8001 case BPF_JEQ: 8002 if (tnum_is_const(subreg)) 8003 return !!tnum_equals_const(subreg, val); 8004 break; 8005 case BPF_JNE: 8006 if (tnum_is_const(subreg)) 8007 return !tnum_equals_const(subreg, val); 8008 break; 8009 case BPF_JSET: 8010 if ((~subreg.mask & subreg.value) & val) 8011 return 1; 8012 if (!((subreg.mask | subreg.value) & val)) 8013 return 0; 8014 break; 8015 case BPF_JGT: 8016 if (reg->u32_min_value > val) 8017 return 1; 8018 else if (reg->u32_max_value <= val) 8019 return 0; 8020 break; 8021 case BPF_JSGT: 8022 if (reg->s32_min_value > sval) 8023 return 1; 8024 else if (reg->s32_max_value <= sval) 8025 return 0; 8026 break; 8027 case BPF_JLT: 8028 if (reg->u32_max_value < val) 8029 return 1; 8030 else if (reg->u32_min_value >= val) 8031 return 0; 8032 break; 8033 case BPF_JSLT: 8034 if (reg->s32_max_value < sval) 8035 return 1; 8036 else if (reg->s32_min_value >= sval) 8037 return 0; 8038 break; 8039 case BPF_JGE: 8040 if (reg->u32_min_value >= val) 8041 return 1; 8042 else if (reg->u32_max_value < val) 8043 return 0; 8044 break; 8045 case BPF_JSGE: 8046 if (reg->s32_min_value >= sval) 8047 return 1; 8048 else if (reg->s32_max_value < sval) 8049 return 0; 8050 break; 8051 case BPF_JLE: 8052 if (reg->u32_max_value <= val) 8053 return 1; 8054 else if (reg->u32_min_value > val) 8055 return 0; 8056 break; 8057 case BPF_JSLE: 8058 if (reg->s32_max_value <= sval) 8059 return 1; 8060 else if (reg->s32_min_value > sval) 8061 return 0; 8062 break; 8063 } 8064 8065 return -1; 8066 } 8067 8068 8069 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8070 { 8071 s64 sval = (s64)val; 8072 8073 switch (opcode) { 8074 case BPF_JEQ: 8075 if (tnum_is_const(reg->var_off)) 8076 return !!tnum_equals_const(reg->var_off, val); 8077 break; 8078 case BPF_JNE: 8079 if (tnum_is_const(reg->var_off)) 8080 return !tnum_equals_const(reg->var_off, val); 8081 break; 8082 case BPF_JSET: 8083 if ((~reg->var_off.mask & reg->var_off.value) & val) 8084 return 1; 8085 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8086 return 0; 8087 break; 8088 case BPF_JGT: 8089 if (reg->umin_value > val) 8090 return 1; 8091 else if (reg->umax_value <= val) 8092 return 0; 8093 break; 8094 case BPF_JSGT: 8095 if (reg->smin_value > sval) 8096 return 1; 8097 else if (reg->smax_value <= sval) 8098 return 0; 8099 break; 8100 case BPF_JLT: 8101 if (reg->umax_value < val) 8102 return 1; 8103 else if (reg->umin_value >= val) 8104 return 0; 8105 break; 8106 case BPF_JSLT: 8107 if (reg->smax_value < sval) 8108 return 1; 8109 else if (reg->smin_value >= sval) 8110 return 0; 8111 break; 8112 case BPF_JGE: 8113 if (reg->umin_value >= val) 8114 return 1; 8115 else if (reg->umax_value < val) 8116 return 0; 8117 break; 8118 case BPF_JSGE: 8119 if (reg->smin_value >= sval) 8120 return 1; 8121 else if (reg->smax_value < sval) 8122 return 0; 8123 break; 8124 case BPF_JLE: 8125 if (reg->umax_value <= val) 8126 return 1; 8127 else if (reg->umin_value > val) 8128 return 0; 8129 break; 8130 case BPF_JSLE: 8131 if (reg->smax_value <= sval) 8132 return 1; 8133 else if (reg->smin_value > sval) 8134 return 0; 8135 break; 8136 } 8137 8138 return -1; 8139 } 8140 8141 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8142 * and return: 8143 * 1 - branch will be taken and "goto target" will be executed 8144 * 0 - branch will not be taken and fall-through to next insn 8145 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8146 * range [0,10] 8147 */ 8148 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8149 bool is_jmp32) 8150 { 8151 if (__is_pointer_value(false, reg)) { 8152 if (!reg_type_not_null(reg->type)) 8153 return -1; 8154 8155 /* If pointer is valid tests against zero will fail so we can 8156 * use this to direct branch taken. 8157 */ 8158 if (val != 0) 8159 return -1; 8160 8161 switch (opcode) { 8162 case BPF_JEQ: 8163 return 0; 8164 case BPF_JNE: 8165 return 1; 8166 default: 8167 return -1; 8168 } 8169 } 8170 8171 if (is_jmp32) 8172 return is_branch32_taken(reg, val, opcode); 8173 return is_branch64_taken(reg, val, opcode); 8174 } 8175 8176 static int flip_opcode(u32 opcode) 8177 { 8178 /* How can we transform "a <op> b" into "b <op> a"? */ 8179 static const u8 opcode_flip[16] = { 8180 /* these stay the same */ 8181 [BPF_JEQ >> 4] = BPF_JEQ, 8182 [BPF_JNE >> 4] = BPF_JNE, 8183 [BPF_JSET >> 4] = BPF_JSET, 8184 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8185 [BPF_JGE >> 4] = BPF_JLE, 8186 [BPF_JGT >> 4] = BPF_JLT, 8187 [BPF_JLE >> 4] = BPF_JGE, 8188 [BPF_JLT >> 4] = BPF_JGT, 8189 [BPF_JSGE >> 4] = BPF_JSLE, 8190 [BPF_JSGT >> 4] = BPF_JSLT, 8191 [BPF_JSLE >> 4] = BPF_JSGE, 8192 [BPF_JSLT >> 4] = BPF_JSGT 8193 }; 8194 return opcode_flip[opcode >> 4]; 8195 } 8196 8197 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8198 struct bpf_reg_state *src_reg, 8199 u8 opcode) 8200 { 8201 struct bpf_reg_state *pkt; 8202 8203 if (src_reg->type == PTR_TO_PACKET_END) { 8204 pkt = dst_reg; 8205 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8206 pkt = src_reg; 8207 opcode = flip_opcode(opcode); 8208 } else { 8209 return -1; 8210 } 8211 8212 if (pkt->range >= 0) 8213 return -1; 8214 8215 switch (opcode) { 8216 case BPF_JLE: 8217 /* pkt <= pkt_end */ 8218 fallthrough; 8219 case BPF_JGT: 8220 /* pkt > pkt_end */ 8221 if (pkt->range == BEYOND_PKT_END) 8222 /* pkt has at last one extra byte beyond pkt_end */ 8223 return opcode == BPF_JGT; 8224 break; 8225 case BPF_JLT: 8226 /* pkt < pkt_end */ 8227 fallthrough; 8228 case BPF_JGE: 8229 /* pkt >= pkt_end */ 8230 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8231 return opcode == BPF_JGE; 8232 break; 8233 } 8234 return -1; 8235 } 8236 8237 /* Adjusts the register min/max values in the case that the dst_reg is the 8238 * variable register that we are working on, and src_reg is a constant or we're 8239 * simply doing a BPF_K check. 8240 * In JEQ/JNE cases we also adjust the var_off values. 8241 */ 8242 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8243 struct bpf_reg_state *false_reg, 8244 u64 val, u32 val32, 8245 u8 opcode, bool is_jmp32) 8246 { 8247 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8248 struct tnum false_64off = false_reg->var_off; 8249 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8250 struct tnum true_64off = true_reg->var_off; 8251 s64 sval = (s64)val; 8252 s32 sval32 = (s32)val32; 8253 8254 /* If the dst_reg is a pointer, we can't learn anything about its 8255 * variable offset from the compare (unless src_reg were a pointer into 8256 * the same object, but we don't bother with that. 8257 * Since false_reg and true_reg have the same type by construction, we 8258 * only need to check one of them for pointerness. 8259 */ 8260 if (__is_pointer_value(false, false_reg)) 8261 return; 8262 8263 switch (opcode) { 8264 case BPF_JEQ: 8265 case BPF_JNE: 8266 { 8267 struct bpf_reg_state *reg = 8268 opcode == BPF_JEQ ? true_reg : false_reg; 8269 8270 /* JEQ/JNE comparison doesn't change the register equivalence. 8271 * r1 = r2; 8272 * if (r1 == 42) goto label; 8273 * ... 8274 * label: // here both r1 and r2 are known to be 42. 8275 * 8276 * Hence when marking register as known preserve it's ID. 8277 */ 8278 if (is_jmp32) 8279 __mark_reg32_known(reg, val32); 8280 else 8281 ___mark_reg_known(reg, val); 8282 break; 8283 } 8284 case BPF_JSET: 8285 if (is_jmp32) { 8286 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8287 if (is_power_of_2(val32)) 8288 true_32off = tnum_or(true_32off, 8289 tnum_const(val32)); 8290 } else { 8291 false_64off = tnum_and(false_64off, tnum_const(~val)); 8292 if (is_power_of_2(val)) 8293 true_64off = tnum_or(true_64off, 8294 tnum_const(val)); 8295 } 8296 break; 8297 case BPF_JGE: 8298 case BPF_JGT: 8299 { 8300 if (is_jmp32) { 8301 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8302 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8303 8304 false_reg->u32_max_value = min(false_reg->u32_max_value, 8305 false_umax); 8306 true_reg->u32_min_value = max(true_reg->u32_min_value, 8307 true_umin); 8308 } else { 8309 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8310 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8311 8312 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8313 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8314 } 8315 break; 8316 } 8317 case BPF_JSGE: 8318 case BPF_JSGT: 8319 { 8320 if (is_jmp32) { 8321 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8322 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8323 8324 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8325 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8326 } else { 8327 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8328 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8329 8330 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8331 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8332 } 8333 break; 8334 } 8335 case BPF_JLE: 8336 case BPF_JLT: 8337 { 8338 if (is_jmp32) { 8339 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8340 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8341 8342 false_reg->u32_min_value = max(false_reg->u32_min_value, 8343 false_umin); 8344 true_reg->u32_max_value = min(true_reg->u32_max_value, 8345 true_umax); 8346 } else { 8347 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8348 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8349 8350 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8351 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8352 } 8353 break; 8354 } 8355 case BPF_JSLE: 8356 case BPF_JSLT: 8357 { 8358 if (is_jmp32) { 8359 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8360 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8361 8362 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8363 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8364 } else { 8365 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8366 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8367 8368 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8369 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8370 } 8371 break; 8372 } 8373 default: 8374 return; 8375 } 8376 8377 if (is_jmp32) { 8378 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8379 tnum_subreg(false_32off)); 8380 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8381 tnum_subreg(true_32off)); 8382 __reg_combine_32_into_64(false_reg); 8383 __reg_combine_32_into_64(true_reg); 8384 } else { 8385 false_reg->var_off = false_64off; 8386 true_reg->var_off = true_64off; 8387 __reg_combine_64_into_32(false_reg); 8388 __reg_combine_64_into_32(true_reg); 8389 } 8390 } 8391 8392 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8393 * the variable reg. 8394 */ 8395 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8396 struct bpf_reg_state *false_reg, 8397 u64 val, u32 val32, 8398 u8 opcode, bool is_jmp32) 8399 { 8400 opcode = flip_opcode(opcode); 8401 /* This uses zero as "not present in table"; luckily the zero opcode, 8402 * BPF_JA, can't get here. 8403 */ 8404 if (opcode) 8405 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8406 } 8407 8408 /* Regs are known to be equal, so intersect their min/max/var_off */ 8409 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8410 struct bpf_reg_state *dst_reg) 8411 { 8412 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8413 dst_reg->umin_value); 8414 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8415 dst_reg->umax_value); 8416 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8417 dst_reg->smin_value); 8418 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8419 dst_reg->smax_value); 8420 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8421 dst_reg->var_off); 8422 /* We might have learned new bounds from the var_off. */ 8423 __update_reg_bounds(src_reg); 8424 __update_reg_bounds(dst_reg); 8425 /* We might have learned something about the sign bit. */ 8426 __reg_deduce_bounds(src_reg); 8427 __reg_deduce_bounds(dst_reg); 8428 /* We might have learned some bits from the bounds. */ 8429 __reg_bound_offset(src_reg); 8430 __reg_bound_offset(dst_reg); 8431 /* Intersecting with the old var_off might have improved our bounds 8432 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8433 * then new var_off is (0; 0x7f...fc) which improves our umax. 8434 */ 8435 __update_reg_bounds(src_reg); 8436 __update_reg_bounds(dst_reg); 8437 } 8438 8439 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8440 struct bpf_reg_state *true_dst, 8441 struct bpf_reg_state *false_src, 8442 struct bpf_reg_state *false_dst, 8443 u8 opcode) 8444 { 8445 switch (opcode) { 8446 case BPF_JEQ: 8447 __reg_combine_min_max(true_src, true_dst); 8448 break; 8449 case BPF_JNE: 8450 __reg_combine_min_max(false_src, false_dst); 8451 break; 8452 } 8453 } 8454 8455 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8456 struct bpf_reg_state *reg, u32 id, 8457 bool is_null) 8458 { 8459 if (reg_type_may_be_null(reg->type) && reg->id == id && 8460 !WARN_ON_ONCE(!reg->id)) { 8461 /* Old offset (both fixed and variable parts) should 8462 * have been known-zero, because we don't allow pointer 8463 * arithmetic on pointers that might be NULL. 8464 */ 8465 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8466 !tnum_equals_const(reg->var_off, 0) || 8467 reg->off)) { 8468 __mark_reg_known_zero(reg); 8469 reg->off = 0; 8470 } 8471 if (is_null) { 8472 reg->type = SCALAR_VALUE; 8473 /* We don't need id and ref_obj_id from this point 8474 * onwards anymore, thus we should better reset it, 8475 * so that state pruning has chances to take effect. 8476 */ 8477 reg->id = 0; 8478 reg->ref_obj_id = 0; 8479 8480 return; 8481 } 8482 8483 mark_ptr_not_null_reg(reg); 8484 8485 if (!reg_may_point_to_spin_lock(reg)) { 8486 /* For not-NULL ptr, reg->ref_obj_id will be reset 8487 * in release_reg_references(). 8488 * 8489 * reg->id is still used by spin_lock ptr. Other 8490 * than spin_lock ptr type, reg->id can be reset. 8491 */ 8492 reg->id = 0; 8493 } 8494 } 8495 } 8496 8497 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 8498 bool is_null) 8499 { 8500 struct bpf_reg_state *reg; 8501 int i; 8502 8503 for (i = 0; i < MAX_BPF_REG; i++) 8504 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 8505 8506 bpf_for_each_spilled_reg(i, state, reg) { 8507 if (!reg) 8508 continue; 8509 mark_ptr_or_null_reg(state, reg, id, is_null); 8510 } 8511 } 8512 8513 /* The logic is similar to find_good_pkt_pointers(), both could eventually 8514 * be folded together at some point. 8515 */ 8516 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 8517 bool is_null) 8518 { 8519 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8520 struct bpf_reg_state *regs = state->regs; 8521 u32 ref_obj_id = regs[regno].ref_obj_id; 8522 u32 id = regs[regno].id; 8523 int i; 8524 8525 if (ref_obj_id && ref_obj_id == id && is_null) 8526 /* regs[regno] is in the " == NULL" branch. 8527 * No one could have freed the reference state before 8528 * doing the NULL check. 8529 */ 8530 WARN_ON_ONCE(release_reference_state(state, id)); 8531 8532 for (i = 0; i <= vstate->curframe; i++) 8533 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 8534 } 8535 8536 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 8537 struct bpf_reg_state *dst_reg, 8538 struct bpf_reg_state *src_reg, 8539 struct bpf_verifier_state *this_branch, 8540 struct bpf_verifier_state *other_branch) 8541 { 8542 if (BPF_SRC(insn->code) != BPF_X) 8543 return false; 8544 8545 /* Pointers are always 64-bit. */ 8546 if (BPF_CLASS(insn->code) == BPF_JMP32) 8547 return false; 8548 8549 switch (BPF_OP(insn->code)) { 8550 case BPF_JGT: 8551 if ((dst_reg->type == PTR_TO_PACKET && 8552 src_reg->type == PTR_TO_PACKET_END) || 8553 (dst_reg->type == PTR_TO_PACKET_META && 8554 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8555 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 8556 find_good_pkt_pointers(this_branch, dst_reg, 8557 dst_reg->type, false); 8558 mark_pkt_end(other_branch, insn->dst_reg, true); 8559 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8560 src_reg->type == PTR_TO_PACKET) || 8561 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8562 src_reg->type == PTR_TO_PACKET_META)) { 8563 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 8564 find_good_pkt_pointers(other_branch, src_reg, 8565 src_reg->type, true); 8566 mark_pkt_end(this_branch, insn->src_reg, false); 8567 } else { 8568 return false; 8569 } 8570 break; 8571 case BPF_JLT: 8572 if ((dst_reg->type == PTR_TO_PACKET && 8573 src_reg->type == PTR_TO_PACKET_END) || 8574 (dst_reg->type == PTR_TO_PACKET_META && 8575 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8576 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 8577 find_good_pkt_pointers(other_branch, dst_reg, 8578 dst_reg->type, true); 8579 mark_pkt_end(this_branch, insn->dst_reg, false); 8580 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8581 src_reg->type == PTR_TO_PACKET) || 8582 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8583 src_reg->type == PTR_TO_PACKET_META)) { 8584 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 8585 find_good_pkt_pointers(this_branch, src_reg, 8586 src_reg->type, false); 8587 mark_pkt_end(other_branch, insn->src_reg, true); 8588 } else { 8589 return false; 8590 } 8591 break; 8592 case BPF_JGE: 8593 if ((dst_reg->type == PTR_TO_PACKET && 8594 src_reg->type == PTR_TO_PACKET_END) || 8595 (dst_reg->type == PTR_TO_PACKET_META && 8596 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8597 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 8598 find_good_pkt_pointers(this_branch, dst_reg, 8599 dst_reg->type, true); 8600 mark_pkt_end(other_branch, insn->dst_reg, false); 8601 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8602 src_reg->type == PTR_TO_PACKET) || 8603 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8604 src_reg->type == PTR_TO_PACKET_META)) { 8605 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 8606 find_good_pkt_pointers(other_branch, src_reg, 8607 src_reg->type, false); 8608 mark_pkt_end(this_branch, insn->src_reg, true); 8609 } else { 8610 return false; 8611 } 8612 break; 8613 case BPF_JLE: 8614 if ((dst_reg->type == PTR_TO_PACKET && 8615 src_reg->type == PTR_TO_PACKET_END) || 8616 (dst_reg->type == PTR_TO_PACKET_META && 8617 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8618 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 8619 find_good_pkt_pointers(other_branch, dst_reg, 8620 dst_reg->type, false); 8621 mark_pkt_end(this_branch, insn->dst_reg, true); 8622 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8623 src_reg->type == PTR_TO_PACKET) || 8624 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8625 src_reg->type == PTR_TO_PACKET_META)) { 8626 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 8627 find_good_pkt_pointers(this_branch, src_reg, 8628 src_reg->type, true); 8629 mark_pkt_end(other_branch, insn->src_reg, false); 8630 } else { 8631 return false; 8632 } 8633 break; 8634 default: 8635 return false; 8636 } 8637 8638 return true; 8639 } 8640 8641 static void find_equal_scalars(struct bpf_verifier_state *vstate, 8642 struct bpf_reg_state *known_reg) 8643 { 8644 struct bpf_func_state *state; 8645 struct bpf_reg_state *reg; 8646 int i, j; 8647 8648 for (i = 0; i <= vstate->curframe; i++) { 8649 state = vstate->frame[i]; 8650 for (j = 0; j < MAX_BPF_REG; j++) { 8651 reg = &state->regs[j]; 8652 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8653 *reg = *known_reg; 8654 } 8655 8656 bpf_for_each_spilled_reg(j, state, reg) { 8657 if (!reg) 8658 continue; 8659 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8660 *reg = *known_reg; 8661 } 8662 } 8663 } 8664 8665 static int check_cond_jmp_op(struct bpf_verifier_env *env, 8666 struct bpf_insn *insn, int *insn_idx) 8667 { 8668 struct bpf_verifier_state *this_branch = env->cur_state; 8669 struct bpf_verifier_state *other_branch; 8670 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 8671 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 8672 u8 opcode = BPF_OP(insn->code); 8673 bool is_jmp32; 8674 int pred = -1; 8675 int err; 8676 8677 /* Only conditional jumps are expected to reach here. */ 8678 if (opcode == BPF_JA || opcode > BPF_JSLE) { 8679 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 8680 return -EINVAL; 8681 } 8682 8683 if (BPF_SRC(insn->code) == BPF_X) { 8684 if (insn->imm != 0) { 8685 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8686 return -EINVAL; 8687 } 8688 8689 /* check src1 operand */ 8690 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8691 if (err) 8692 return err; 8693 8694 if (is_pointer_value(env, insn->src_reg)) { 8695 verbose(env, "R%d pointer comparison prohibited\n", 8696 insn->src_reg); 8697 return -EACCES; 8698 } 8699 src_reg = ®s[insn->src_reg]; 8700 } else { 8701 if (insn->src_reg != BPF_REG_0) { 8702 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8703 return -EINVAL; 8704 } 8705 } 8706 8707 /* check src2 operand */ 8708 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8709 if (err) 8710 return err; 8711 8712 dst_reg = ®s[insn->dst_reg]; 8713 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 8714 8715 if (BPF_SRC(insn->code) == BPF_K) { 8716 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 8717 } else if (src_reg->type == SCALAR_VALUE && 8718 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 8719 pred = is_branch_taken(dst_reg, 8720 tnum_subreg(src_reg->var_off).value, 8721 opcode, 8722 is_jmp32); 8723 } else if (src_reg->type == SCALAR_VALUE && 8724 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 8725 pred = is_branch_taken(dst_reg, 8726 src_reg->var_off.value, 8727 opcode, 8728 is_jmp32); 8729 } else if (reg_is_pkt_pointer_any(dst_reg) && 8730 reg_is_pkt_pointer_any(src_reg) && 8731 !is_jmp32) { 8732 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 8733 } 8734 8735 if (pred >= 0) { 8736 /* If we get here with a dst_reg pointer type it is because 8737 * above is_branch_taken() special cased the 0 comparison. 8738 */ 8739 if (!__is_pointer_value(false, dst_reg)) 8740 err = mark_chain_precision(env, insn->dst_reg); 8741 if (BPF_SRC(insn->code) == BPF_X && !err && 8742 !__is_pointer_value(false, src_reg)) 8743 err = mark_chain_precision(env, insn->src_reg); 8744 if (err) 8745 return err; 8746 } 8747 if (pred == 1) { 8748 /* only follow the goto, ignore fall-through */ 8749 *insn_idx += insn->off; 8750 return 0; 8751 } else if (pred == 0) { 8752 /* only follow fall-through branch, since 8753 * that's where the program will go 8754 */ 8755 return 0; 8756 } 8757 8758 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 8759 false); 8760 if (!other_branch) 8761 return -EFAULT; 8762 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 8763 8764 /* detect if we are comparing against a constant value so we can adjust 8765 * our min/max values for our dst register. 8766 * this is only legit if both are scalars (or pointers to the same 8767 * object, I suppose, but we don't support that right now), because 8768 * otherwise the different base pointers mean the offsets aren't 8769 * comparable. 8770 */ 8771 if (BPF_SRC(insn->code) == BPF_X) { 8772 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 8773 8774 if (dst_reg->type == SCALAR_VALUE && 8775 src_reg->type == SCALAR_VALUE) { 8776 if (tnum_is_const(src_reg->var_off) || 8777 (is_jmp32 && 8778 tnum_is_const(tnum_subreg(src_reg->var_off)))) 8779 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8780 dst_reg, 8781 src_reg->var_off.value, 8782 tnum_subreg(src_reg->var_off).value, 8783 opcode, is_jmp32); 8784 else if (tnum_is_const(dst_reg->var_off) || 8785 (is_jmp32 && 8786 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 8787 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 8788 src_reg, 8789 dst_reg->var_off.value, 8790 tnum_subreg(dst_reg->var_off).value, 8791 opcode, is_jmp32); 8792 else if (!is_jmp32 && 8793 (opcode == BPF_JEQ || opcode == BPF_JNE)) 8794 /* Comparing for equality, we can combine knowledge */ 8795 reg_combine_min_max(&other_branch_regs[insn->src_reg], 8796 &other_branch_regs[insn->dst_reg], 8797 src_reg, dst_reg, opcode); 8798 if (src_reg->id && 8799 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 8800 find_equal_scalars(this_branch, src_reg); 8801 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 8802 } 8803 8804 } 8805 } else if (dst_reg->type == SCALAR_VALUE) { 8806 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8807 dst_reg, insn->imm, (u32)insn->imm, 8808 opcode, is_jmp32); 8809 } 8810 8811 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 8812 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 8813 find_equal_scalars(this_branch, dst_reg); 8814 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 8815 } 8816 8817 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 8818 * NOTE: these optimizations below are related with pointer comparison 8819 * which will never be JMP32. 8820 */ 8821 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 8822 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 8823 reg_type_may_be_null(dst_reg->type)) { 8824 /* Mark all identical registers in each branch as either 8825 * safe or unknown depending R == 0 or R != 0 conditional. 8826 */ 8827 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 8828 opcode == BPF_JNE); 8829 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 8830 opcode == BPF_JEQ); 8831 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 8832 this_branch, other_branch) && 8833 is_pointer_value(env, insn->dst_reg)) { 8834 verbose(env, "R%d pointer comparison prohibited\n", 8835 insn->dst_reg); 8836 return -EACCES; 8837 } 8838 if (env->log.level & BPF_LOG_LEVEL) 8839 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 8840 return 0; 8841 } 8842 8843 /* verify BPF_LD_IMM64 instruction */ 8844 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 8845 { 8846 struct bpf_insn_aux_data *aux = cur_aux(env); 8847 struct bpf_reg_state *regs = cur_regs(env); 8848 struct bpf_reg_state *dst_reg; 8849 struct bpf_map *map; 8850 int err; 8851 8852 if (BPF_SIZE(insn->code) != BPF_DW) { 8853 verbose(env, "invalid BPF_LD_IMM insn\n"); 8854 return -EINVAL; 8855 } 8856 if (insn->off != 0) { 8857 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 8858 return -EINVAL; 8859 } 8860 8861 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8862 if (err) 8863 return err; 8864 8865 dst_reg = ®s[insn->dst_reg]; 8866 if (insn->src_reg == 0) { 8867 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 8868 8869 dst_reg->type = SCALAR_VALUE; 8870 __mark_reg_known(®s[insn->dst_reg], imm); 8871 return 0; 8872 } 8873 8874 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 8875 mark_reg_known_zero(env, regs, insn->dst_reg); 8876 8877 dst_reg->type = aux->btf_var.reg_type; 8878 switch (dst_reg->type) { 8879 case PTR_TO_MEM: 8880 dst_reg->mem_size = aux->btf_var.mem_size; 8881 break; 8882 case PTR_TO_BTF_ID: 8883 case PTR_TO_PERCPU_BTF_ID: 8884 dst_reg->btf = aux->btf_var.btf; 8885 dst_reg->btf_id = aux->btf_var.btf_id; 8886 break; 8887 default: 8888 verbose(env, "bpf verifier is misconfigured\n"); 8889 return -EFAULT; 8890 } 8891 return 0; 8892 } 8893 8894 if (insn->src_reg == BPF_PSEUDO_FUNC) { 8895 struct bpf_prog_aux *aux = env->prog->aux; 8896 u32 subprogno = insn[1].imm; 8897 8898 if (!aux->func_info) { 8899 verbose(env, "missing btf func_info\n"); 8900 return -EINVAL; 8901 } 8902 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 8903 verbose(env, "callback function not static\n"); 8904 return -EINVAL; 8905 } 8906 8907 dst_reg->type = PTR_TO_FUNC; 8908 dst_reg->subprogno = subprogno; 8909 return 0; 8910 } 8911 8912 map = env->used_maps[aux->map_index]; 8913 mark_reg_known_zero(env, regs, insn->dst_reg); 8914 dst_reg->map_ptr = map; 8915 8916 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 8917 dst_reg->type = PTR_TO_MAP_VALUE; 8918 dst_reg->off = aux->map_off; 8919 if (map_value_has_spin_lock(map)) 8920 dst_reg->id = ++env->id_gen; 8921 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8922 dst_reg->type = CONST_PTR_TO_MAP; 8923 } else { 8924 verbose(env, "bpf verifier is misconfigured\n"); 8925 return -EINVAL; 8926 } 8927 8928 return 0; 8929 } 8930 8931 static bool may_access_skb(enum bpf_prog_type type) 8932 { 8933 switch (type) { 8934 case BPF_PROG_TYPE_SOCKET_FILTER: 8935 case BPF_PROG_TYPE_SCHED_CLS: 8936 case BPF_PROG_TYPE_SCHED_ACT: 8937 return true; 8938 default: 8939 return false; 8940 } 8941 } 8942 8943 /* verify safety of LD_ABS|LD_IND instructions: 8944 * - they can only appear in the programs where ctx == skb 8945 * - since they are wrappers of function calls, they scratch R1-R5 registers, 8946 * preserve R6-R9, and store return value into R0 8947 * 8948 * Implicit input: 8949 * ctx == skb == R6 == CTX 8950 * 8951 * Explicit input: 8952 * SRC == any register 8953 * IMM == 32-bit immediate 8954 * 8955 * Output: 8956 * R0 - 8/16/32-bit skb data converted to cpu endianness 8957 */ 8958 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 8959 { 8960 struct bpf_reg_state *regs = cur_regs(env); 8961 static const int ctx_reg = BPF_REG_6; 8962 u8 mode = BPF_MODE(insn->code); 8963 int i, err; 8964 8965 if (!may_access_skb(resolve_prog_type(env->prog))) { 8966 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 8967 return -EINVAL; 8968 } 8969 8970 if (!env->ops->gen_ld_abs) { 8971 verbose(env, "bpf verifier is misconfigured\n"); 8972 return -EINVAL; 8973 } 8974 8975 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 8976 BPF_SIZE(insn->code) == BPF_DW || 8977 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 8978 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 8979 return -EINVAL; 8980 } 8981 8982 /* check whether implicit source operand (register R6) is readable */ 8983 err = check_reg_arg(env, ctx_reg, SRC_OP); 8984 if (err) 8985 return err; 8986 8987 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 8988 * gen_ld_abs() may terminate the program at runtime, leading to 8989 * reference leak. 8990 */ 8991 err = check_reference_leak(env); 8992 if (err) { 8993 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 8994 return err; 8995 } 8996 8997 if (env->cur_state->active_spin_lock) { 8998 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 8999 return -EINVAL; 9000 } 9001 9002 if (regs[ctx_reg].type != PTR_TO_CTX) { 9003 verbose(env, 9004 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9005 return -EINVAL; 9006 } 9007 9008 if (mode == BPF_IND) { 9009 /* check explicit source operand */ 9010 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9011 if (err) 9012 return err; 9013 } 9014 9015 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9016 if (err < 0) 9017 return err; 9018 9019 /* reset caller saved regs to unreadable */ 9020 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9021 mark_reg_not_init(env, regs, caller_saved[i]); 9022 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9023 } 9024 9025 /* mark destination R0 register as readable, since it contains 9026 * the value fetched from the packet. 9027 * Already marked as written above. 9028 */ 9029 mark_reg_unknown(env, regs, BPF_REG_0); 9030 /* ld_abs load up to 32-bit skb data. */ 9031 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9032 return 0; 9033 } 9034 9035 static int check_return_code(struct bpf_verifier_env *env) 9036 { 9037 struct tnum enforce_attach_type_range = tnum_unknown; 9038 const struct bpf_prog *prog = env->prog; 9039 struct bpf_reg_state *reg; 9040 struct tnum range = tnum_range(0, 1); 9041 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9042 int err; 9043 const bool is_subprog = env->cur_state->frame[0]->subprogno; 9044 9045 /* LSM and struct_ops func-ptr's return type could be "void" */ 9046 if (!is_subprog && 9047 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9048 prog_type == BPF_PROG_TYPE_LSM) && 9049 !prog->aux->attach_func_proto->type) 9050 return 0; 9051 9052 /* eBPF calling convetion is such that R0 is used 9053 * to return the value from eBPF program. 9054 * Make sure that it's readable at this time 9055 * of bpf_exit, which means that program wrote 9056 * something into it earlier 9057 */ 9058 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9059 if (err) 9060 return err; 9061 9062 if (is_pointer_value(env, BPF_REG_0)) { 9063 verbose(env, "R0 leaks addr as return value\n"); 9064 return -EACCES; 9065 } 9066 9067 reg = cur_regs(env) + BPF_REG_0; 9068 if (is_subprog) { 9069 if (reg->type != SCALAR_VALUE) { 9070 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9071 reg_type_str[reg->type]); 9072 return -EINVAL; 9073 } 9074 return 0; 9075 } 9076 9077 switch (prog_type) { 9078 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9079 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9080 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9081 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9082 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9083 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9084 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9085 range = tnum_range(1, 1); 9086 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9087 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9088 range = tnum_range(0, 3); 9089 break; 9090 case BPF_PROG_TYPE_CGROUP_SKB: 9091 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9092 range = tnum_range(0, 3); 9093 enforce_attach_type_range = tnum_range(2, 3); 9094 } 9095 break; 9096 case BPF_PROG_TYPE_CGROUP_SOCK: 9097 case BPF_PROG_TYPE_SOCK_OPS: 9098 case BPF_PROG_TYPE_CGROUP_DEVICE: 9099 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9100 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9101 break; 9102 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9103 if (!env->prog->aux->attach_btf_id) 9104 return 0; 9105 range = tnum_const(0); 9106 break; 9107 case BPF_PROG_TYPE_TRACING: 9108 switch (env->prog->expected_attach_type) { 9109 case BPF_TRACE_FENTRY: 9110 case BPF_TRACE_FEXIT: 9111 range = tnum_const(0); 9112 break; 9113 case BPF_TRACE_RAW_TP: 9114 case BPF_MODIFY_RETURN: 9115 return 0; 9116 case BPF_TRACE_ITER: 9117 break; 9118 default: 9119 return -ENOTSUPP; 9120 } 9121 break; 9122 case BPF_PROG_TYPE_SK_LOOKUP: 9123 range = tnum_range(SK_DROP, SK_PASS); 9124 break; 9125 case BPF_PROG_TYPE_EXT: 9126 /* freplace program can return anything as its return value 9127 * depends on the to-be-replaced kernel func or bpf program. 9128 */ 9129 default: 9130 return 0; 9131 } 9132 9133 if (reg->type != SCALAR_VALUE) { 9134 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9135 reg_type_str[reg->type]); 9136 return -EINVAL; 9137 } 9138 9139 if (!tnum_in(range, reg->var_off)) { 9140 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9141 return -EINVAL; 9142 } 9143 9144 if (!tnum_is_unknown(enforce_attach_type_range) && 9145 tnum_in(enforce_attach_type_range, reg->var_off)) 9146 env->prog->enforce_expected_attach_type = 1; 9147 return 0; 9148 } 9149 9150 /* non-recursive DFS pseudo code 9151 * 1 procedure DFS-iterative(G,v): 9152 * 2 label v as discovered 9153 * 3 let S be a stack 9154 * 4 S.push(v) 9155 * 5 while S is not empty 9156 * 6 t <- S.pop() 9157 * 7 if t is what we're looking for: 9158 * 8 return t 9159 * 9 for all edges e in G.adjacentEdges(t) do 9160 * 10 if edge e is already labelled 9161 * 11 continue with the next edge 9162 * 12 w <- G.adjacentVertex(t,e) 9163 * 13 if vertex w is not discovered and not explored 9164 * 14 label e as tree-edge 9165 * 15 label w as discovered 9166 * 16 S.push(w) 9167 * 17 continue at 5 9168 * 18 else if vertex w is discovered 9169 * 19 label e as back-edge 9170 * 20 else 9171 * 21 // vertex w is explored 9172 * 22 label e as forward- or cross-edge 9173 * 23 label t as explored 9174 * 24 S.pop() 9175 * 9176 * convention: 9177 * 0x10 - discovered 9178 * 0x11 - discovered and fall-through edge labelled 9179 * 0x12 - discovered and fall-through and branch edges labelled 9180 * 0x20 - explored 9181 */ 9182 9183 enum { 9184 DISCOVERED = 0x10, 9185 EXPLORED = 0x20, 9186 FALLTHROUGH = 1, 9187 BRANCH = 2, 9188 }; 9189 9190 static u32 state_htab_size(struct bpf_verifier_env *env) 9191 { 9192 return env->prog->len; 9193 } 9194 9195 static struct bpf_verifier_state_list **explored_state( 9196 struct bpf_verifier_env *env, 9197 int idx) 9198 { 9199 struct bpf_verifier_state *cur = env->cur_state; 9200 struct bpf_func_state *state = cur->frame[cur->curframe]; 9201 9202 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9203 } 9204 9205 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9206 { 9207 env->insn_aux_data[idx].prune_point = true; 9208 } 9209 9210 enum { 9211 DONE_EXPLORING = 0, 9212 KEEP_EXPLORING = 1, 9213 }; 9214 9215 /* t, w, e - match pseudo-code above: 9216 * t - index of current instruction 9217 * w - next instruction 9218 * e - edge 9219 */ 9220 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9221 bool loop_ok) 9222 { 9223 int *insn_stack = env->cfg.insn_stack; 9224 int *insn_state = env->cfg.insn_state; 9225 9226 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9227 return DONE_EXPLORING; 9228 9229 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9230 return DONE_EXPLORING; 9231 9232 if (w < 0 || w >= env->prog->len) { 9233 verbose_linfo(env, t, "%d: ", t); 9234 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9235 return -EINVAL; 9236 } 9237 9238 if (e == BRANCH) 9239 /* mark branch target for state pruning */ 9240 init_explored_state(env, w); 9241 9242 if (insn_state[w] == 0) { 9243 /* tree-edge */ 9244 insn_state[t] = DISCOVERED | e; 9245 insn_state[w] = DISCOVERED; 9246 if (env->cfg.cur_stack >= env->prog->len) 9247 return -E2BIG; 9248 insn_stack[env->cfg.cur_stack++] = w; 9249 return KEEP_EXPLORING; 9250 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9251 if (loop_ok && env->bpf_capable) 9252 return DONE_EXPLORING; 9253 verbose_linfo(env, t, "%d: ", t); 9254 verbose_linfo(env, w, "%d: ", w); 9255 verbose(env, "back-edge from insn %d to %d\n", t, w); 9256 return -EINVAL; 9257 } else if (insn_state[w] == EXPLORED) { 9258 /* forward- or cross-edge */ 9259 insn_state[t] = DISCOVERED | e; 9260 } else { 9261 verbose(env, "insn state internal bug\n"); 9262 return -EFAULT; 9263 } 9264 return DONE_EXPLORING; 9265 } 9266 9267 static int visit_func_call_insn(int t, int insn_cnt, 9268 struct bpf_insn *insns, 9269 struct bpf_verifier_env *env, 9270 bool visit_callee) 9271 { 9272 int ret; 9273 9274 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9275 if (ret) 9276 return ret; 9277 9278 if (t + 1 < insn_cnt) 9279 init_explored_state(env, t + 1); 9280 if (visit_callee) { 9281 init_explored_state(env, t); 9282 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 9283 env, false); 9284 } 9285 return ret; 9286 } 9287 9288 /* Visits the instruction at index t and returns one of the following: 9289 * < 0 - an error occurred 9290 * DONE_EXPLORING - the instruction was fully explored 9291 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9292 */ 9293 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9294 { 9295 struct bpf_insn *insns = env->prog->insnsi; 9296 int ret; 9297 9298 if (bpf_pseudo_func(insns + t)) 9299 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9300 9301 /* All non-branch instructions have a single fall-through edge. */ 9302 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9303 BPF_CLASS(insns[t].code) != BPF_JMP32) 9304 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9305 9306 switch (BPF_OP(insns[t].code)) { 9307 case BPF_EXIT: 9308 return DONE_EXPLORING; 9309 9310 case BPF_CALL: 9311 return visit_func_call_insn(t, insn_cnt, insns, env, 9312 insns[t].src_reg == BPF_PSEUDO_CALL); 9313 9314 case BPF_JA: 9315 if (BPF_SRC(insns[t].code) != BPF_K) 9316 return -EINVAL; 9317 9318 /* unconditional jump with single edge */ 9319 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9320 true); 9321 if (ret) 9322 return ret; 9323 9324 /* unconditional jmp is not a good pruning point, 9325 * but it's marked, since backtracking needs 9326 * to record jmp history in is_state_visited(). 9327 */ 9328 init_explored_state(env, t + insns[t].off + 1); 9329 /* tell verifier to check for equivalent states 9330 * after every call and jump 9331 */ 9332 if (t + 1 < insn_cnt) 9333 init_explored_state(env, t + 1); 9334 9335 return ret; 9336 9337 default: 9338 /* conditional jump with two edges */ 9339 init_explored_state(env, t); 9340 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9341 if (ret) 9342 return ret; 9343 9344 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9345 } 9346 } 9347 9348 /* non-recursive depth-first-search to detect loops in BPF program 9349 * loop == back-edge in directed graph 9350 */ 9351 static int check_cfg(struct bpf_verifier_env *env) 9352 { 9353 int insn_cnt = env->prog->len; 9354 int *insn_stack, *insn_state; 9355 int ret = 0; 9356 int i; 9357 9358 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9359 if (!insn_state) 9360 return -ENOMEM; 9361 9362 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9363 if (!insn_stack) { 9364 kvfree(insn_state); 9365 return -ENOMEM; 9366 } 9367 9368 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9369 insn_stack[0] = 0; /* 0 is the first instruction */ 9370 env->cfg.cur_stack = 1; 9371 9372 while (env->cfg.cur_stack > 0) { 9373 int t = insn_stack[env->cfg.cur_stack - 1]; 9374 9375 ret = visit_insn(t, insn_cnt, env); 9376 switch (ret) { 9377 case DONE_EXPLORING: 9378 insn_state[t] = EXPLORED; 9379 env->cfg.cur_stack--; 9380 break; 9381 case KEEP_EXPLORING: 9382 break; 9383 default: 9384 if (ret > 0) { 9385 verbose(env, "visit_insn internal bug\n"); 9386 ret = -EFAULT; 9387 } 9388 goto err_free; 9389 } 9390 } 9391 9392 if (env->cfg.cur_stack < 0) { 9393 verbose(env, "pop stack internal bug\n"); 9394 ret = -EFAULT; 9395 goto err_free; 9396 } 9397 9398 for (i = 0; i < insn_cnt; i++) { 9399 if (insn_state[i] != EXPLORED) { 9400 verbose(env, "unreachable insn %d\n", i); 9401 ret = -EINVAL; 9402 goto err_free; 9403 } 9404 } 9405 ret = 0; /* cfg looks good */ 9406 9407 err_free: 9408 kvfree(insn_state); 9409 kvfree(insn_stack); 9410 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9411 return ret; 9412 } 9413 9414 static int check_abnormal_return(struct bpf_verifier_env *env) 9415 { 9416 int i; 9417 9418 for (i = 1; i < env->subprog_cnt; i++) { 9419 if (env->subprog_info[i].has_ld_abs) { 9420 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9421 return -EINVAL; 9422 } 9423 if (env->subprog_info[i].has_tail_call) { 9424 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9425 return -EINVAL; 9426 } 9427 } 9428 return 0; 9429 } 9430 9431 /* The minimum supported BTF func info size */ 9432 #define MIN_BPF_FUNCINFO_SIZE 8 9433 #define MAX_FUNCINFO_REC_SIZE 252 9434 9435 static int check_btf_func(struct bpf_verifier_env *env, 9436 const union bpf_attr *attr, 9437 union bpf_attr __user *uattr) 9438 { 9439 const struct btf_type *type, *func_proto, *ret_type; 9440 u32 i, nfuncs, urec_size, min_size; 9441 u32 krec_size = sizeof(struct bpf_func_info); 9442 struct bpf_func_info *krecord; 9443 struct bpf_func_info_aux *info_aux = NULL; 9444 struct bpf_prog *prog; 9445 const struct btf *btf; 9446 void __user *urecord; 9447 u32 prev_offset = 0; 9448 bool scalar_return; 9449 int ret = -ENOMEM; 9450 9451 nfuncs = attr->func_info_cnt; 9452 if (!nfuncs) { 9453 if (check_abnormal_return(env)) 9454 return -EINVAL; 9455 return 0; 9456 } 9457 9458 if (nfuncs != env->subprog_cnt) { 9459 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 9460 return -EINVAL; 9461 } 9462 9463 urec_size = attr->func_info_rec_size; 9464 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 9465 urec_size > MAX_FUNCINFO_REC_SIZE || 9466 urec_size % sizeof(u32)) { 9467 verbose(env, "invalid func info rec size %u\n", urec_size); 9468 return -EINVAL; 9469 } 9470 9471 prog = env->prog; 9472 btf = prog->aux->btf; 9473 9474 urecord = u64_to_user_ptr(attr->func_info); 9475 min_size = min_t(u32, krec_size, urec_size); 9476 9477 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 9478 if (!krecord) 9479 return -ENOMEM; 9480 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 9481 if (!info_aux) 9482 goto err_free; 9483 9484 for (i = 0; i < nfuncs; i++) { 9485 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 9486 if (ret) { 9487 if (ret == -E2BIG) { 9488 verbose(env, "nonzero tailing record in func info"); 9489 /* set the size kernel expects so loader can zero 9490 * out the rest of the record. 9491 */ 9492 if (put_user(min_size, &uattr->func_info_rec_size)) 9493 ret = -EFAULT; 9494 } 9495 goto err_free; 9496 } 9497 9498 if (copy_from_user(&krecord[i], urecord, min_size)) { 9499 ret = -EFAULT; 9500 goto err_free; 9501 } 9502 9503 /* check insn_off */ 9504 ret = -EINVAL; 9505 if (i == 0) { 9506 if (krecord[i].insn_off) { 9507 verbose(env, 9508 "nonzero insn_off %u for the first func info record", 9509 krecord[i].insn_off); 9510 goto err_free; 9511 } 9512 } else if (krecord[i].insn_off <= prev_offset) { 9513 verbose(env, 9514 "same or smaller insn offset (%u) than previous func info record (%u)", 9515 krecord[i].insn_off, prev_offset); 9516 goto err_free; 9517 } 9518 9519 if (env->subprog_info[i].start != krecord[i].insn_off) { 9520 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 9521 goto err_free; 9522 } 9523 9524 /* check type_id */ 9525 type = btf_type_by_id(btf, krecord[i].type_id); 9526 if (!type || !btf_type_is_func(type)) { 9527 verbose(env, "invalid type id %d in func info", 9528 krecord[i].type_id); 9529 goto err_free; 9530 } 9531 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 9532 9533 func_proto = btf_type_by_id(btf, type->type); 9534 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 9535 /* btf_func_check() already verified it during BTF load */ 9536 goto err_free; 9537 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 9538 scalar_return = 9539 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 9540 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 9541 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 9542 goto err_free; 9543 } 9544 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 9545 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 9546 goto err_free; 9547 } 9548 9549 prev_offset = krecord[i].insn_off; 9550 urecord += urec_size; 9551 } 9552 9553 prog->aux->func_info = krecord; 9554 prog->aux->func_info_cnt = nfuncs; 9555 prog->aux->func_info_aux = info_aux; 9556 return 0; 9557 9558 err_free: 9559 kvfree(krecord); 9560 kfree(info_aux); 9561 return ret; 9562 } 9563 9564 static void adjust_btf_func(struct bpf_verifier_env *env) 9565 { 9566 struct bpf_prog_aux *aux = env->prog->aux; 9567 int i; 9568 9569 if (!aux->func_info) 9570 return; 9571 9572 for (i = 0; i < env->subprog_cnt; i++) 9573 aux->func_info[i].insn_off = env->subprog_info[i].start; 9574 } 9575 9576 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 9577 sizeof(((struct bpf_line_info *)(0))->line_col)) 9578 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 9579 9580 static int check_btf_line(struct bpf_verifier_env *env, 9581 const union bpf_attr *attr, 9582 union bpf_attr __user *uattr) 9583 { 9584 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 9585 struct bpf_subprog_info *sub; 9586 struct bpf_line_info *linfo; 9587 struct bpf_prog *prog; 9588 const struct btf *btf; 9589 void __user *ulinfo; 9590 int err; 9591 9592 nr_linfo = attr->line_info_cnt; 9593 if (!nr_linfo) 9594 return 0; 9595 9596 rec_size = attr->line_info_rec_size; 9597 if (rec_size < MIN_BPF_LINEINFO_SIZE || 9598 rec_size > MAX_LINEINFO_REC_SIZE || 9599 rec_size & (sizeof(u32) - 1)) 9600 return -EINVAL; 9601 9602 /* Need to zero it in case the userspace may 9603 * pass in a smaller bpf_line_info object. 9604 */ 9605 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 9606 GFP_KERNEL | __GFP_NOWARN); 9607 if (!linfo) 9608 return -ENOMEM; 9609 9610 prog = env->prog; 9611 btf = prog->aux->btf; 9612 9613 s = 0; 9614 sub = env->subprog_info; 9615 ulinfo = u64_to_user_ptr(attr->line_info); 9616 expected_size = sizeof(struct bpf_line_info); 9617 ncopy = min_t(u32, expected_size, rec_size); 9618 for (i = 0; i < nr_linfo; i++) { 9619 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 9620 if (err) { 9621 if (err == -E2BIG) { 9622 verbose(env, "nonzero tailing record in line_info"); 9623 if (put_user(expected_size, 9624 &uattr->line_info_rec_size)) 9625 err = -EFAULT; 9626 } 9627 goto err_free; 9628 } 9629 9630 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 9631 err = -EFAULT; 9632 goto err_free; 9633 } 9634 9635 /* 9636 * Check insn_off to ensure 9637 * 1) strictly increasing AND 9638 * 2) bounded by prog->len 9639 * 9640 * The linfo[0].insn_off == 0 check logically falls into 9641 * the later "missing bpf_line_info for func..." case 9642 * because the first linfo[0].insn_off must be the 9643 * first sub also and the first sub must have 9644 * subprog_info[0].start == 0. 9645 */ 9646 if ((i && linfo[i].insn_off <= prev_offset) || 9647 linfo[i].insn_off >= prog->len) { 9648 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 9649 i, linfo[i].insn_off, prev_offset, 9650 prog->len); 9651 err = -EINVAL; 9652 goto err_free; 9653 } 9654 9655 if (!prog->insnsi[linfo[i].insn_off].code) { 9656 verbose(env, 9657 "Invalid insn code at line_info[%u].insn_off\n", 9658 i); 9659 err = -EINVAL; 9660 goto err_free; 9661 } 9662 9663 if (!btf_name_by_offset(btf, linfo[i].line_off) || 9664 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 9665 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 9666 err = -EINVAL; 9667 goto err_free; 9668 } 9669 9670 if (s != env->subprog_cnt) { 9671 if (linfo[i].insn_off == sub[s].start) { 9672 sub[s].linfo_idx = i; 9673 s++; 9674 } else if (sub[s].start < linfo[i].insn_off) { 9675 verbose(env, "missing bpf_line_info for func#%u\n", s); 9676 err = -EINVAL; 9677 goto err_free; 9678 } 9679 } 9680 9681 prev_offset = linfo[i].insn_off; 9682 ulinfo += rec_size; 9683 } 9684 9685 if (s != env->subprog_cnt) { 9686 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 9687 env->subprog_cnt - s, s); 9688 err = -EINVAL; 9689 goto err_free; 9690 } 9691 9692 prog->aux->linfo = linfo; 9693 prog->aux->nr_linfo = nr_linfo; 9694 9695 return 0; 9696 9697 err_free: 9698 kvfree(linfo); 9699 return err; 9700 } 9701 9702 static int check_btf_info(struct bpf_verifier_env *env, 9703 const union bpf_attr *attr, 9704 union bpf_attr __user *uattr) 9705 { 9706 struct btf *btf; 9707 int err; 9708 9709 if (!attr->func_info_cnt && !attr->line_info_cnt) { 9710 if (check_abnormal_return(env)) 9711 return -EINVAL; 9712 return 0; 9713 } 9714 9715 btf = btf_get_by_fd(attr->prog_btf_fd); 9716 if (IS_ERR(btf)) 9717 return PTR_ERR(btf); 9718 if (btf_is_kernel(btf)) { 9719 btf_put(btf); 9720 return -EACCES; 9721 } 9722 env->prog->aux->btf = btf; 9723 9724 err = check_btf_func(env, attr, uattr); 9725 if (err) 9726 return err; 9727 9728 err = check_btf_line(env, attr, uattr); 9729 if (err) 9730 return err; 9731 9732 return 0; 9733 } 9734 9735 /* check %cur's range satisfies %old's */ 9736 static bool range_within(struct bpf_reg_state *old, 9737 struct bpf_reg_state *cur) 9738 { 9739 return old->umin_value <= cur->umin_value && 9740 old->umax_value >= cur->umax_value && 9741 old->smin_value <= cur->smin_value && 9742 old->smax_value >= cur->smax_value && 9743 old->u32_min_value <= cur->u32_min_value && 9744 old->u32_max_value >= cur->u32_max_value && 9745 old->s32_min_value <= cur->s32_min_value && 9746 old->s32_max_value >= cur->s32_max_value; 9747 } 9748 9749 /* Maximum number of register states that can exist at once */ 9750 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 9751 struct idpair { 9752 u32 old; 9753 u32 cur; 9754 }; 9755 9756 /* If in the old state two registers had the same id, then they need to have 9757 * the same id in the new state as well. But that id could be different from 9758 * the old state, so we need to track the mapping from old to new ids. 9759 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 9760 * regs with old id 5 must also have new id 9 for the new state to be safe. But 9761 * regs with a different old id could still have new id 9, we don't care about 9762 * that. 9763 * So we look through our idmap to see if this old id has been seen before. If 9764 * so, we require the new id to match; otherwise, we add the id pair to the map. 9765 */ 9766 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 9767 { 9768 unsigned int i; 9769 9770 for (i = 0; i < ID_MAP_SIZE; i++) { 9771 if (!idmap[i].old) { 9772 /* Reached an empty slot; haven't seen this id before */ 9773 idmap[i].old = old_id; 9774 idmap[i].cur = cur_id; 9775 return true; 9776 } 9777 if (idmap[i].old == old_id) 9778 return idmap[i].cur == cur_id; 9779 } 9780 /* We ran out of idmap slots, which should be impossible */ 9781 WARN_ON_ONCE(1); 9782 return false; 9783 } 9784 9785 static void clean_func_state(struct bpf_verifier_env *env, 9786 struct bpf_func_state *st) 9787 { 9788 enum bpf_reg_liveness live; 9789 int i, j; 9790 9791 for (i = 0; i < BPF_REG_FP; i++) { 9792 live = st->regs[i].live; 9793 /* liveness must not touch this register anymore */ 9794 st->regs[i].live |= REG_LIVE_DONE; 9795 if (!(live & REG_LIVE_READ)) 9796 /* since the register is unused, clear its state 9797 * to make further comparison simpler 9798 */ 9799 __mark_reg_not_init(env, &st->regs[i]); 9800 } 9801 9802 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 9803 live = st->stack[i].spilled_ptr.live; 9804 /* liveness must not touch this stack slot anymore */ 9805 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 9806 if (!(live & REG_LIVE_READ)) { 9807 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 9808 for (j = 0; j < BPF_REG_SIZE; j++) 9809 st->stack[i].slot_type[j] = STACK_INVALID; 9810 } 9811 } 9812 } 9813 9814 static void clean_verifier_state(struct bpf_verifier_env *env, 9815 struct bpf_verifier_state *st) 9816 { 9817 int i; 9818 9819 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 9820 /* all regs in this state in all frames were already marked */ 9821 return; 9822 9823 for (i = 0; i <= st->curframe; i++) 9824 clean_func_state(env, st->frame[i]); 9825 } 9826 9827 /* the parentage chains form a tree. 9828 * the verifier states are added to state lists at given insn and 9829 * pushed into state stack for future exploration. 9830 * when the verifier reaches bpf_exit insn some of the verifer states 9831 * stored in the state lists have their final liveness state already, 9832 * but a lot of states will get revised from liveness point of view when 9833 * the verifier explores other branches. 9834 * Example: 9835 * 1: r0 = 1 9836 * 2: if r1 == 100 goto pc+1 9837 * 3: r0 = 2 9838 * 4: exit 9839 * when the verifier reaches exit insn the register r0 in the state list of 9840 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 9841 * of insn 2 and goes exploring further. At the insn 4 it will walk the 9842 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 9843 * 9844 * Since the verifier pushes the branch states as it sees them while exploring 9845 * the program the condition of walking the branch instruction for the second 9846 * time means that all states below this branch were already explored and 9847 * their final liveness markes are already propagated. 9848 * Hence when the verifier completes the search of state list in is_state_visited() 9849 * we can call this clean_live_states() function to mark all liveness states 9850 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 9851 * will not be used. 9852 * This function also clears the registers and stack for states that !READ 9853 * to simplify state merging. 9854 * 9855 * Important note here that walking the same branch instruction in the callee 9856 * doesn't meant that the states are DONE. The verifier has to compare 9857 * the callsites 9858 */ 9859 static void clean_live_states(struct bpf_verifier_env *env, int insn, 9860 struct bpf_verifier_state *cur) 9861 { 9862 struct bpf_verifier_state_list *sl; 9863 int i; 9864 9865 sl = *explored_state(env, insn); 9866 while (sl) { 9867 if (sl->state.branches) 9868 goto next; 9869 if (sl->state.insn_idx != insn || 9870 sl->state.curframe != cur->curframe) 9871 goto next; 9872 for (i = 0; i <= cur->curframe; i++) 9873 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 9874 goto next; 9875 clean_verifier_state(env, &sl->state); 9876 next: 9877 sl = sl->next; 9878 } 9879 } 9880 9881 /* Returns true if (rold safe implies rcur safe) */ 9882 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 9883 struct idpair *idmap) 9884 { 9885 bool equal; 9886 9887 if (!(rold->live & REG_LIVE_READ)) 9888 /* explored state didn't use this */ 9889 return true; 9890 9891 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 9892 9893 if (rold->type == PTR_TO_STACK) 9894 /* two stack pointers are equal only if they're pointing to 9895 * the same stack frame, since fp-8 in foo != fp-8 in bar 9896 */ 9897 return equal && rold->frameno == rcur->frameno; 9898 9899 if (equal) 9900 return true; 9901 9902 if (rold->type == NOT_INIT) 9903 /* explored state can't have used this */ 9904 return true; 9905 if (rcur->type == NOT_INIT) 9906 return false; 9907 switch (rold->type) { 9908 case SCALAR_VALUE: 9909 if (rcur->type == SCALAR_VALUE) { 9910 if (!rold->precise && !rcur->precise) 9911 return true; 9912 /* new val must satisfy old val knowledge */ 9913 return range_within(rold, rcur) && 9914 tnum_in(rold->var_off, rcur->var_off); 9915 } else { 9916 /* We're trying to use a pointer in place of a scalar. 9917 * Even if the scalar was unbounded, this could lead to 9918 * pointer leaks because scalars are allowed to leak 9919 * while pointers are not. We could make this safe in 9920 * special cases if root is calling us, but it's 9921 * probably not worth the hassle. 9922 */ 9923 return false; 9924 } 9925 case PTR_TO_MAP_KEY: 9926 case PTR_TO_MAP_VALUE: 9927 /* If the new min/max/var_off satisfy the old ones and 9928 * everything else matches, we are OK. 9929 * 'id' is not compared, since it's only used for maps with 9930 * bpf_spin_lock inside map element and in such cases if 9931 * the rest of the prog is valid for one map element then 9932 * it's valid for all map elements regardless of the key 9933 * used in bpf_map_lookup() 9934 */ 9935 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 9936 range_within(rold, rcur) && 9937 tnum_in(rold->var_off, rcur->var_off); 9938 case PTR_TO_MAP_VALUE_OR_NULL: 9939 /* a PTR_TO_MAP_VALUE could be safe to use as a 9940 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 9941 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 9942 * checked, doing so could have affected others with the same 9943 * id, and we can't check for that because we lost the id when 9944 * we converted to a PTR_TO_MAP_VALUE. 9945 */ 9946 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 9947 return false; 9948 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 9949 return false; 9950 /* Check our ids match any regs they're supposed to */ 9951 return check_ids(rold->id, rcur->id, idmap); 9952 case PTR_TO_PACKET_META: 9953 case PTR_TO_PACKET: 9954 if (rcur->type != rold->type) 9955 return false; 9956 /* We must have at least as much range as the old ptr 9957 * did, so that any accesses which were safe before are 9958 * still safe. This is true even if old range < old off, 9959 * since someone could have accessed through (ptr - k), or 9960 * even done ptr -= k in a register, to get a safe access. 9961 */ 9962 if (rold->range > rcur->range) 9963 return false; 9964 /* If the offsets don't match, we can't trust our alignment; 9965 * nor can we be sure that we won't fall out of range. 9966 */ 9967 if (rold->off != rcur->off) 9968 return false; 9969 /* id relations must be preserved */ 9970 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 9971 return false; 9972 /* new val must satisfy old val knowledge */ 9973 return range_within(rold, rcur) && 9974 tnum_in(rold->var_off, rcur->var_off); 9975 case PTR_TO_CTX: 9976 case CONST_PTR_TO_MAP: 9977 case PTR_TO_PACKET_END: 9978 case PTR_TO_FLOW_KEYS: 9979 case PTR_TO_SOCKET: 9980 case PTR_TO_SOCKET_OR_NULL: 9981 case PTR_TO_SOCK_COMMON: 9982 case PTR_TO_SOCK_COMMON_OR_NULL: 9983 case PTR_TO_TCP_SOCK: 9984 case PTR_TO_TCP_SOCK_OR_NULL: 9985 case PTR_TO_XDP_SOCK: 9986 /* Only valid matches are exact, which memcmp() above 9987 * would have accepted 9988 */ 9989 default: 9990 /* Don't know what's going on, just say it's not safe */ 9991 return false; 9992 } 9993 9994 /* Shouldn't get here; if we do, say it's not safe */ 9995 WARN_ON_ONCE(1); 9996 return false; 9997 } 9998 9999 static bool stacksafe(struct bpf_func_state *old, 10000 struct bpf_func_state *cur, 10001 struct idpair *idmap) 10002 { 10003 int i, spi; 10004 10005 /* walk slots of the explored stack and ignore any additional 10006 * slots in the current stack, since explored(safe) state 10007 * didn't use them 10008 */ 10009 for (i = 0; i < old->allocated_stack; i++) { 10010 spi = i / BPF_REG_SIZE; 10011 10012 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10013 i += BPF_REG_SIZE - 1; 10014 /* explored state didn't use this */ 10015 continue; 10016 } 10017 10018 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10019 continue; 10020 10021 /* explored stack has more populated slots than current stack 10022 * and these slots were used 10023 */ 10024 if (i >= cur->allocated_stack) 10025 return false; 10026 10027 /* if old state was safe with misc data in the stack 10028 * it will be safe with zero-initialized stack. 10029 * The opposite is not true 10030 */ 10031 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10032 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10033 continue; 10034 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10035 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10036 /* Ex: old explored (safe) state has STACK_SPILL in 10037 * this stack slot, but current has STACK_MISC -> 10038 * this verifier states are not equivalent, 10039 * return false to continue verification of this path 10040 */ 10041 return false; 10042 if (i % BPF_REG_SIZE) 10043 continue; 10044 if (old->stack[spi].slot_type[0] != STACK_SPILL) 10045 continue; 10046 if (!regsafe(&old->stack[spi].spilled_ptr, 10047 &cur->stack[spi].spilled_ptr, 10048 idmap)) 10049 /* when explored and current stack slot are both storing 10050 * spilled registers, check that stored pointers types 10051 * are the same as well. 10052 * Ex: explored safe path could have stored 10053 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10054 * but current path has stored: 10055 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10056 * such verifier states are not equivalent. 10057 * return false to continue verification of this path 10058 */ 10059 return false; 10060 } 10061 return true; 10062 } 10063 10064 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10065 { 10066 if (old->acquired_refs != cur->acquired_refs) 10067 return false; 10068 return !memcmp(old->refs, cur->refs, 10069 sizeof(*old->refs) * old->acquired_refs); 10070 } 10071 10072 /* compare two verifier states 10073 * 10074 * all states stored in state_list are known to be valid, since 10075 * verifier reached 'bpf_exit' instruction through them 10076 * 10077 * this function is called when verifier exploring different branches of 10078 * execution popped from the state stack. If it sees an old state that has 10079 * more strict register state and more strict stack state then this execution 10080 * branch doesn't need to be explored further, since verifier already 10081 * concluded that more strict state leads to valid finish. 10082 * 10083 * Therefore two states are equivalent if register state is more conservative 10084 * and explored stack state is more conservative than the current one. 10085 * Example: 10086 * explored current 10087 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10088 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10089 * 10090 * In other words if current stack state (one being explored) has more 10091 * valid slots than old one that already passed validation, it means 10092 * the verifier can stop exploring and conclude that current state is valid too 10093 * 10094 * Similarly with registers. If explored state has register type as invalid 10095 * whereas register type in current state is meaningful, it means that 10096 * the current state will reach 'bpf_exit' instruction safely 10097 */ 10098 static bool func_states_equal(struct bpf_func_state *old, 10099 struct bpf_func_state *cur) 10100 { 10101 struct idpair *idmap; 10102 bool ret = false; 10103 int i; 10104 10105 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 10106 /* If we failed to allocate the idmap, just say it's not safe */ 10107 if (!idmap) 10108 return false; 10109 10110 for (i = 0; i < MAX_BPF_REG; i++) { 10111 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 10112 goto out_free; 10113 } 10114 10115 if (!stacksafe(old, cur, idmap)) 10116 goto out_free; 10117 10118 if (!refsafe(old, cur)) 10119 goto out_free; 10120 ret = true; 10121 out_free: 10122 kfree(idmap); 10123 return ret; 10124 } 10125 10126 static bool states_equal(struct bpf_verifier_env *env, 10127 struct bpf_verifier_state *old, 10128 struct bpf_verifier_state *cur) 10129 { 10130 int i; 10131 10132 if (old->curframe != cur->curframe) 10133 return false; 10134 10135 /* Verification state from speculative execution simulation 10136 * must never prune a non-speculative execution one. 10137 */ 10138 if (old->speculative && !cur->speculative) 10139 return false; 10140 10141 if (old->active_spin_lock != cur->active_spin_lock) 10142 return false; 10143 10144 /* for states to be equal callsites have to be the same 10145 * and all frame states need to be equivalent 10146 */ 10147 for (i = 0; i <= old->curframe; i++) { 10148 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10149 return false; 10150 if (!func_states_equal(old->frame[i], cur->frame[i])) 10151 return false; 10152 } 10153 return true; 10154 } 10155 10156 /* Return 0 if no propagation happened. Return negative error code if error 10157 * happened. Otherwise, return the propagated bit. 10158 */ 10159 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10160 struct bpf_reg_state *reg, 10161 struct bpf_reg_state *parent_reg) 10162 { 10163 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10164 u8 flag = reg->live & REG_LIVE_READ; 10165 int err; 10166 10167 /* When comes here, read flags of PARENT_REG or REG could be any of 10168 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10169 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10170 */ 10171 if (parent_flag == REG_LIVE_READ64 || 10172 /* Or if there is no read flag from REG. */ 10173 !flag || 10174 /* Or if the read flag from REG is the same as PARENT_REG. */ 10175 parent_flag == flag) 10176 return 0; 10177 10178 err = mark_reg_read(env, reg, parent_reg, flag); 10179 if (err) 10180 return err; 10181 10182 return flag; 10183 } 10184 10185 /* A write screens off any subsequent reads; but write marks come from the 10186 * straight-line code between a state and its parent. When we arrive at an 10187 * equivalent state (jump target or such) we didn't arrive by the straight-line 10188 * code, so read marks in the state must propagate to the parent regardless 10189 * of the state's write marks. That's what 'parent == state->parent' comparison 10190 * in mark_reg_read() is for. 10191 */ 10192 static int propagate_liveness(struct bpf_verifier_env *env, 10193 const struct bpf_verifier_state *vstate, 10194 struct bpf_verifier_state *vparent) 10195 { 10196 struct bpf_reg_state *state_reg, *parent_reg; 10197 struct bpf_func_state *state, *parent; 10198 int i, frame, err = 0; 10199 10200 if (vparent->curframe != vstate->curframe) { 10201 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10202 vparent->curframe, vstate->curframe); 10203 return -EFAULT; 10204 } 10205 /* Propagate read liveness of registers... */ 10206 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10207 for (frame = 0; frame <= vstate->curframe; frame++) { 10208 parent = vparent->frame[frame]; 10209 state = vstate->frame[frame]; 10210 parent_reg = parent->regs; 10211 state_reg = state->regs; 10212 /* We don't need to worry about FP liveness, it's read-only */ 10213 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10214 err = propagate_liveness_reg(env, &state_reg[i], 10215 &parent_reg[i]); 10216 if (err < 0) 10217 return err; 10218 if (err == REG_LIVE_READ64) 10219 mark_insn_zext(env, &parent_reg[i]); 10220 } 10221 10222 /* Propagate stack slots. */ 10223 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10224 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10225 parent_reg = &parent->stack[i].spilled_ptr; 10226 state_reg = &state->stack[i].spilled_ptr; 10227 err = propagate_liveness_reg(env, state_reg, 10228 parent_reg); 10229 if (err < 0) 10230 return err; 10231 } 10232 } 10233 return 0; 10234 } 10235 10236 /* find precise scalars in the previous equivalent state and 10237 * propagate them into the current state 10238 */ 10239 static int propagate_precision(struct bpf_verifier_env *env, 10240 const struct bpf_verifier_state *old) 10241 { 10242 struct bpf_reg_state *state_reg; 10243 struct bpf_func_state *state; 10244 int i, err = 0; 10245 10246 state = old->frame[old->curframe]; 10247 state_reg = state->regs; 10248 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10249 if (state_reg->type != SCALAR_VALUE || 10250 !state_reg->precise) 10251 continue; 10252 if (env->log.level & BPF_LOG_LEVEL2) 10253 verbose(env, "propagating r%d\n", i); 10254 err = mark_chain_precision(env, i); 10255 if (err < 0) 10256 return err; 10257 } 10258 10259 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10260 if (state->stack[i].slot_type[0] != STACK_SPILL) 10261 continue; 10262 state_reg = &state->stack[i].spilled_ptr; 10263 if (state_reg->type != SCALAR_VALUE || 10264 !state_reg->precise) 10265 continue; 10266 if (env->log.level & BPF_LOG_LEVEL2) 10267 verbose(env, "propagating fp%d\n", 10268 (-i - 1) * BPF_REG_SIZE); 10269 err = mark_chain_precision_stack(env, i); 10270 if (err < 0) 10271 return err; 10272 } 10273 return 0; 10274 } 10275 10276 static bool states_maybe_looping(struct bpf_verifier_state *old, 10277 struct bpf_verifier_state *cur) 10278 { 10279 struct bpf_func_state *fold, *fcur; 10280 int i, fr = cur->curframe; 10281 10282 if (old->curframe != fr) 10283 return false; 10284 10285 fold = old->frame[fr]; 10286 fcur = cur->frame[fr]; 10287 for (i = 0; i < MAX_BPF_REG; i++) 10288 if (memcmp(&fold->regs[i], &fcur->regs[i], 10289 offsetof(struct bpf_reg_state, parent))) 10290 return false; 10291 return true; 10292 } 10293 10294 10295 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10296 { 10297 struct bpf_verifier_state_list *new_sl; 10298 struct bpf_verifier_state_list *sl, **pprev; 10299 struct bpf_verifier_state *cur = env->cur_state, *new; 10300 int i, j, err, states_cnt = 0; 10301 bool add_new_state = env->test_state_freq ? true : false; 10302 10303 cur->last_insn_idx = env->prev_insn_idx; 10304 if (!env->insn_aux_data[insn_idx].prune_point) 10305 /* this 'insn_idx' instruction wasn't marked, so we will not 10306 * be doing state search here 10307 */ 10308 return 0; 10309 10310 /* bpf progs typically have pruning point every 4 instructions 10311 * http://vger.kernel.org/bpfconf2019.html#session-1 10312 * Do not add new state for future pruning if the verifier hasn't seen 10313 * at least 2 jumps and at least 8 instructions. 10314 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10315 * In tests that amounts to up to 50% reduction into total verifier 10316 * memory consumption and 20% verifier time speedup. 10317 */ 10318 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10319 env->insn_processed - env->prev_insn_processed >= 8) 10320 add_new_state = true; 10321 10322 pprev = explored_state(env, insn_idx); 10323 sl = *pprev; 10324 10325 clean_live_states(env, insn_idx, cur); 10326 10327 while (sl) { 10328 states_cnt++; 10329 if (sl->state.insn_idx != insn_idx) 10330 goto next; 10331 if (sl->state.branches) { 10332 if (states_maybe_looping(&sl->state, cur) && 10333 states_equal(env, &sl->state, cur)) { 10334 verbose_linfo(env, insn_idx, "; "); 10335 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10336 return -EINVAL; 10337 } 10338 /* if the verifier is processing a loop, avoid adding new state 10339 * too often, since different loop iterations have distinct 10340 * states and may not help future pruning. 10341 * This threshold shouldn't be too low to make sure that 10342 * a loop with large bound will be rejected quickly. 10343 * The most abusive loop will be: 10344 * r1 += 1 10345 * if r1 < 1000000 goto pc-2 10346 * 1M insn_procssed limit / 100 == 10k peak states. 10347 * This threshold shouldn't be too high either, since states 10348 * at the end of the loop are likely to be useful in pruning. 10349 */ 10350 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10351 env->insn_processed - env->prev_insn_processed < 100) 10352 add_new_state = false; 10353 goto miss; 10354 } 10355 if (states_equal(env, &sl->state, cur)) { 10356 sl->hit_cnt++; 10357 /* reached equivalent register/stack state, 10358 * prune the search. 10359 * Registers read by the continuation are read by us. 10360 * If we have any write marks in env->cur_state, they 10361 * will prevent corresponding reads in the continuation 10362 * from reaching our parent (an explored_state). Our 10363 * own state will get the read marks recorded, but 10364 * they'll be immediately forgotten as we're pruning 10365 * this state and will pop a new one. 10366 */ 10367 err = propagate_liveness(env, &sl->state, cur); 10368 10369 /* if previous state reached the exit with precision and 10370 * current state is equivalent to it (except precsion marks) 10371 * the precision needs to be propagated back in 10372 * the current state. 10373 */ 10374 err = err ? : push_jmp_history(env, cur); 10375 err = err ? : propagate_precision(env, &sl->state); 10376 if (err) 10377 return err; 10378 return 1; 10379 } 10380 miss: 10381 /* when new state is not going to be added do not increase miss count. 10382 * Otherwise several loop iterations will remove the state 10383 * recorded earlier. The goal of these heuristics is to have 10384 * states from some iterations of the loop (some in the beginning 10385 * and some at the end) to help pruning. 10386 */ 10387 if (add_new_state) 10388 sl->miss_cnt++; 10389 /* heuristic to determine whether this state is beneficial 10390 * to keep checking from state equivalence point of view. 10391 * Higher numbers increase max_states_per_insn and verification time, 10392 * but do not meaningfully decrease insn_processed. 10393 */ 10394 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10395 /* the state is unlikely to be useful. Remove it to 10396 * speed up verification 10397 */ 10398 *pprev = sl->next; 10399 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10400 u32 br = sl->state.branches; 10401 10402 WARN_ONCE(br, 10403 "BUG live_done but branches_to_explore %d\n", 10404 br); 10405 free_verifier_state(&sl->state, false); 10406 kfree(sl); 10407 env->peak_states--; 10408 } else { 10409 /* cannot free this state, since parentage chain may 10410 * walk it later. Add it for free_list instead to 10411 * be freed at the end of verification 10412 */ 10413 sl->next = env->free_list; 10414 env->free_list = sl; 10415 } 10416 sl = *pprev; 10417 continue; 10418 } 10419 next: 10420 pprev = &sl->next; 10421 sl = *pprev; 10422 } 10423 10424 if (env->max_states_per_insn < states_cnt) 10425 env->max_states_per_insn = states_cnt; 10426 10427 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10428 return push_jmp_history(env, cur); 10429 10430 if (!add_new_state) 10431 return push_jmp_history(env, cur); 10432 10433 /* There were no equivalent states, remember the current one. 10434 * Technically the current state is not proven to be safe yet, 10435 * but it will either reach outer most bpf_exit (which means it's safe) 10436 * or it will be rejected. When there are no loops the verifier won't be 10437 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 10438 * again on the way to bpf_exit. 10439 * When looping the sl->state.branches will be > 0 and this state 10440 * will not be considered for equivalence until branches == 0. 10441 */ 10442 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 10443 if (!new_sl) 10444 return -ENOMEM; 10445 env->total_states++; 10446 env->peak_states++; 10447 env->prev_jmps_processed = env->jmps_processed; 10448 env->prev_insn_processed = env->insn_processed; 10449 10450 /* add new state to the head of linked list */ 10451 new = &new_sl->state; 10452 err = copy_verifier_state(new, cur); 10453 if (err) { 10454 free_verifier_state(new, false); 10455 kfree(new_sl); 10456 return err; 10457 } 10458 new->insn_idx = insn_idx; 10459 WARN_ONCE(new->branches != 1, 10460 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 10461 10462 cur->parent = new; 10463 cur->first_insn_idx = insn_idx; 10464 clear_jmp_history(cur); 10465 new_sl->next = *explored_state(env, insn_idx); 10466 *explored_state(env, insn_idx) = new_sl; 10467 /* connect new state to parentage chain. Current frame needs all 10468 * registers connected. Only r6 - r9 of the callers are alive (pushed 10469 * to the stack implicitly by JITs) so in callers' frames connect just 10470 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 10471 * the state of the call instruction (with WRITTEN set), and r0 comes 10472 * from callee with its full parentage chain, anyway. 10473 */ 10474 /* clear write marks in current state: the writes we did are not writes 10475 * our child did, so they don't screen off its reads from us. 10476 * (There are no read marks in current state, because reads always mark 10477 * their parent and current state never has children yet. Only 10478 * explored_states can get read marks.) 10479 */ 10480 for (j = 0; j <= cur->curframe; j++) { 10481 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 10482 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 10483 for (i = 0; i < BPF_REG_FP; i++) 10484 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 10485 } 10486 10487 /* all stack frames are accessible from callee, clear them all */ 10488 for (j = 0; j <= cur->curframe; j++) { 10489 struct bpf_func_state *frame = cur->frame[j]; 10490 struct bpf_func_state *newframe = new->frame[j]; 10491 10492 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 10493 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 10494 frame->stack[i].spilled_ptr.parent = 10495 &newframe->stack[i].spilled_ptr; 10496 } 10497 } 10498 return 0; 10499 } 10500 10501 /* Return true if it's OK to have the same insn return a different type. */ 10502 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 10503 { 10504 switch (type) { 10505 case PTR_TO_CTX: 10506 case PTR_TO_SOCKET: 10507 case PTR_TO_SOCKET_OR_NULL: 10508 case PTR_TO_SOCK_COMMON: 10509 case PTR_TO_SOCK_COMMON_OR_NULL: 10510 case PTR_TO_TCP_SOCK: 10511 case PTR_TO_TCP_SOCK_OR_NULL: 10512 case PTR_TO_XDP_SOCK: 10513 case PTR_TO_BTF_ID: 10514 case PTR_TO_BTF_ID_OR_NULL: 10515 return false; 10516 default: 10517 return true; 10518 } 10519 } 10520 10521 /* If an instruction was previously used with particular pointer types, then we 10522 * need to be careful to avoid cases such as the below, where it may be ok 10523 * for one branch accessing the pointer, but not ok for the other branch: 10524 * 10525 * R1 = sock_ptr 10526 * goto X; 10527 * ... 10528 * R1 = some_other_valid_ptr; 10529 * goto X; 10530 * ... 10531 * R2 = *(u32 *)(R1 + 0); 10532 */ 10533 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 10534 { 10535 return src != prev && (!reg_type_mismatch_ok(src) || 10536 !reg_type_mismatch_ok(prev)); 10537 } 10538 10539 static int do_check(struct bpf_verifier_env *env) 10540 { 10541 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10542 struct bpf_verifier_state *state = env->cur_state; 10543 struct bpf_insn *insns = env->prog->insnsi; 10544 struct bpf_reg_state *regs; 10545 int insn_cnt = env->prog->len; 10546 bool do_print_state = false; 10547 int prev_insn_idx = -1; 10548 10549 for (;;) { 10550 struct bpf_insn *insn; 10551 u8 class; 10552 int err; 10553 10554 env->prev_insn_idx = prev_insn_idx; 10555 if (env->insn_idx >= insn_cnt) { 10556 verbose(env, "invalid insn idx %d insn_cnt %d\n", 10557 env->insn_idx, insn_cnt); 10558 return -EFAULT; 10559 } 10560 10561 insn = &insns[env->insn_idx]; 10562 class = BPF_CLASS(insn->code); 10563 10564 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 10565 verbose(env, 10566 "BPF program is too large. Processed %d insn\n", 10567 env->insn_processed); 10568 return -E2BIG; 10569 } 10570 10571 err = is_state_visited(env, env->insn_idx); 10572 if (err < 0) 10573 return err; 10574 if (err == 1) { 10575 /* found equivalent state, can prune the search */ 10576 if (env->log.level & BPF_LOG_LEVEL) { 10577 if (do_print_state) 10578 verbose(env, "\nfrom %d to %d%s: safe\n", 10579 env->prev_insn_idx, env->insn_idx, 10580 env->cur_state->speculative ? 10581 " (speculative execution)" : ""); 10582 else 10583 verbose(env, "%d: safe\n", env->insn_idx); 10584 } 10585 goto process_bpf_exit; 10586 } 10587 10588 if (signal_pending(current)) 10589 return -EAGAIN; 10590 10591 if (need_resched()) 10592 cond_resched(); 10593 10594 if (env->log.level & BPF_LOG_LEVEL2 || 10595 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 10596 if (env->log.level & BPF_LOG_LEVEL2) 10597 verbose(env, "%d:", env->insn_idx); 10598 else 10599 verbose(env, "\nfrom %d to %d%s:", 10600 env->prev_insn_idx, env->insn_idx, 10601 env->cur_state->speculative ? 10602 " (speculative execution)" : ""); 10603 print_verifier_state(env, state->frame[state->curframe]); 10604 do_print_state = false; 10605 } 10606 10607 if (env->log.level & BPF_LOG_LEVEL) { 10608 const struct bpf_insn_cbs cbs = { 10609 .cb_call = disasm_kfunc_name, 10610 .cb_print = verbose, 10611 .private_data = env, 10612 }; 10613 10614 verbose_linfo(env, env->insn_idx, "; "); 10615 verbose(env, "%d: ", env->insn_idx); 10616 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 10617 } 10618 10619 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10620 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 10621 env->prev_insn_idx); 10622 if (err) 10623 return err; 10624 } 10625 10626 regs = cur_regs(env); 10627 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10628 prev_insn_idx = env->insn_idx; 10629 10630 if (class == BPF_ALU || class == BPF_ALU64) { 10631 err = check_alu_op(env, insn); 10632 if (err) 10633 return err; 10634 10635 } else if (class == BPF_LDX) { 10636 enum bpf_reg_type *prev_src_type, src_reg_type; 10637 10638 /* check for reserved fields is already done */ 10639 10640 /* check src operand */ 10641 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10642 if (err) 10643 return err; 10644 10645 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10646 if (err) 10647 return err; 10648 10649 src_reg_type = regs[insn->src_reg].type; 10650 10651 /* check that memory (src_reg + off) is readable, 10652 * the state of dst_reg will be updated by this func 10653 */ 10654 err = check_mem_access(env, env->insn_idx, insn->src_reg, 10655 insn->off, BPF_SIZE(insn->code), 10656 BPF_READ, insn->dst_reg, false); 10657 if (err) 10658 return err; 10659 10660 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10661 10662 if (*prev_src_type == NOT_INIT) { 10663 /* saw a valid insn 10664 * dst_reg = *(u32 *)(src_reg + off) 10665 * save type to validate intersecting paths 10666 */ 10667 *prev_src_type = src_reg_type; 10668 10669 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 10670 /* ABuser program is trying to use the same insn 10671 * dst_reg = *(u32*) (src_reg + off) 10672 * with different pointer types: 10673 * src_reg == ctx in one branch and 10674 * src_reg == stack|map in some other branch. 10675 * Reject it. 10676 */ 10677 verbose(env, "same insn cannot be used with different pointers\n"); 10678 return -EINVAL; 10679 } 10680 10681 } else if (class == BPF_STX) { 10682 enum bpf_reg_type *prev_dst_type, dst_reg_type; 10683 10684 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 10685 err = check_atomic(env, env->insn_idx, insn); 10686 if (err) 10687 return err; 10688 env->insn_idx++; 10689 continue; 10690 } 10691 10692 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 10693 verbose(env, "BPF_STX uses reserved fields\n"); 10694 return -EINVAL; 10695 } 10696 10697 /* check src1 operand */ 10698 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10699 if (err) 10700 return err; 10701 /* check src2 operand */ 10702 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10703 if (err) 10704 return err; 10705 10706 dst_reg_type = regs[insn->dst_reg].type; 10707 10708 /* check that memory (dst_reg + off) is writeable */ 10709 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10710 insn->off, BPF_SIZE(insn->code), 10711 BPF_WRITE, insn->src_reg, false); 10712 if (err) 10713 return err; 10714 10715 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10716 10717 if (*prev_dst_type == NOT_INIT) { 10718 *prev_dst_type = dst_reg_type; 10719 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 10720 verbose(env, "same insn cannot be used with different pointers\n"); 10721 return -EINVAL; 10722 } 10723 10724 } else if (class == BPF_ST) { 10725 if (BPF_MODE(insn->code) != BPF_MEM || 10726 insn->src_reg != BPF_REG_0) { 10727 verbose(env, "BPF_ST uses reserved fields\n"); 10728 return -EINVAL; 10729 } 10730 /* check src operand */ 10731 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10732 if (err) 10733 return err; 10734 10735 if (is_ctx_reg(env, insn->dst_reg)) { 10736 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 10737 insn->dst_reg, 10738 reg_type_str[reg_state(env, insn->dst_reg)->type]); 10739 return -EACCES; 10740 } 10741 10742 /* check that memory (dst_reg + off) is writeable */ 10743 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10744 insn->off, BPF_SIZE(insn->code), 10745 BPF_WRITE, -1, false); 10746 if (err) 10747 return err; 10748 10749 } else if (class == BPF_JMP || class == BPF_JMP32) { 10750 u8 opcode = BPF_OP(insn->code); 10751 10752 env->jmps_processed++; 10753 if (opcode == BPF_CALL) { 10754 if (BPF_SRC(insn->code) != BPF_K || 10755 insn->off != 0 || 10756 (insn->src_reg != BPF_REG_0 && 10757 insn->src_reg != BPF_PSEUDO_CALL && 10758 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 10759 insn->dst_reg != BPF_REG_0 || 10760 class == BPF_JMP32) { 10761 verbose(env, "BPF_CALL uses reserved fields\n"); 10762 return -EINVAL; 10763 } 10764 10765 if (env->cur_state->active_spin_lock && 10766 (insn->src_reg == BPF_PSEUDO_CALL || 10767 insn->imm != BPF_FUNC_spin_unlock)) { 10768 verbose(env, "function calls are not allowed while holding a lock\n"); 10769 return -EINVAL; 10770 } 10771 if (insn->src_reg == BPF_PSEUDO_CALL) 10772 err = check_func_call(env, insn, &env->insn_idx); 10773 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 10774 err = check_kfunc_call(env, insn); 10775 else 10776 err = check_helper_call(env, insn, &env->insn_idx); 10777 if (err) 10778 return err; 10779 } else if (opcode == BPF_JA) { 10780 if (BPF_SRC(insn->code) != BPF_K || 10781 insn->imm != 0 || 10782 insn->src_reg != BPF_REG_0 || 10783 insn->dst_reg != BPF_REG_0 || 10784 class == BPF_JMP32) { 10785 verbose(env, "BPF_JA uses reserved fields\n"); 10786 return -EINVAL; 10787 } 10788 10789 env->insn_idx += insn->off + 1; 10790 continue; 10791 10792 } else if (opcode == BPF_EXIT) { 10793 if (BPF_SRC(insn->code) != BPF_K || 10794 insn->imm != 0 || 10795 insn->src_reg != BPF_REG_0 || 10796 insn->dst_reg != BPF_REG_0 || 10797 class == BPF_JMP32) { 10798 verbose(env, "BPF_EXIT uses reserved fields\n"); 10799 return -EINVAL; 10800 } 10801 10802 if (env->cur_state->active_spin_lock) { 10803 verbose(env, "bpf_spin_unlock is missing\n"); 10804 return -EINVAL; 10805 } 10806 10807 if (state->curframe) { 10808 /* exit from nested function */ 10809 err = prepare_func_exit(env, &env->insn_idx); 10810 if (err) 10811 return err; 10812 do_print_state = true; 10813 continue; 10814 } 10815 10816 err = check_reference_leak(env); 10817 if (err) 10818 return err; 10819 10820 err = check_return_code(env); 10821 if (err) 10822 return err; 10823 process_bpf_exit: 10824 update_branch_counts(env, env->cur_state); 10825 err = pop_stack(env, &prev_insn_idx, 10826 &env->insn_idx, pop_log); 10827 if (err < 0) { 10828 if (err != -ENOENT) 10829 return err; 10830 break; 10831 } else { 10832 do_print_state = true; 10833 continue; 10834 } 10835 } else { 10836 err = check_cond_jmp_op(env, insn, &env->insn_idx); 10837 if (err) 10838 return err; 10839 } 10840 } else if (class == BPF_LD) { 10841 u8 mode = BPF_MODE(insn->code); 10842 10843 if (mode == BPF_ABS || mode == BPF_IND) { 10844 err = check_ld_abs(env, insn); 10845 if (err) 10846 return err; 10847 10848 } else if (mode == BPF_IMM) { 10849 err = check_ld_imm(env, insn); 10850 if (err) 10851 return err; 10852 10853 env->insn_idx++; 10854 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10855 } else { 10856 verbose(env, "invalid BPF_LD mode\n"); 10857 return -EINVAL; 10858 } 10859 } else { 10860 verbose(env, "unknown insn class %d\n", class); 10861 return -EINVAL; 10862 } 10863 10864 env->insn_idx++; 10865 } 10866 10867 return 0; 10868 } 10869 10870 static int find_btf_percpu_datasec(struct btf *btf) 10871 { 10872 const struct btf_type *t; 10873 const char *tname; 10874 int i, n; 10875 10876 /* 10877 * Both vmlinux and module each have their own ".data..percpu" 10878 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 10879 * types to look at only module's own BTF types. 10880 */ 10881 n = btf_nr_types(btf); 10882 if (btf_is_module(btf)) 10883 i = btf_nr_types(btf_vmlinux); 10884 else 10885 i = 1; 10886 10887 for(; i < n; i++) { 10888 t = btf_type_by_id(btf, i); 10889 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 10890 continue; 10891 10892 tname = btf_name_by_offset(btf, t->name_off); 10893 if (!strcmp(tname, ".data..percpu")) 10894 return i; 10895 } 10896 10897 return -ENOENT; 10898 } 10899 10900 /* replace pseudo btf_id with kernel symbol address */ 10901 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 10902 struct bpf_insn *insn, 10903 struct bpf_insn_aux_data *aux) 10904 { 10905 const struct btf_var_secinfo *vsi; 10906 const struct btf_type *datasec; 10907 struct btf_mod_pair *btf_mod; 10908 const struct btf_type *t; 10909 const char *sym_name; 10910 bool percpu = false; 10911 u32 type, id = insn->imm; 10912 struct btf *btf; 10913 s32 datasec_id; 10914 u64 addr; 10915 int i, btf_fd, err; 10916 10917 btf_fd = insn[1].imm; 10918 if (btf_fd) { 10919 btf = btf_get_by_fd(btf_fd); 10920 if (IS_ERR(btf)) { 10921 verbose(env, "invalid module BTF object FD specified.\n"); 10922 return -EINVAL; 10923 } 10924 } else { 10925 if (!btf_vmlinux) { 10926 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 10927 return -EINVAL; 10928 } 10929 btf = btf_vmlinux; 10930 btf_get(btf); 10931 } 10932 10933 t = btf_type_by_id(btf, id); 10934 if (!t) { 10935 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 10936 err = -ENOENT; 10937 goto err_put; 10938 } 10939 10940 if (!btf_type_is_var(t)) { 10941 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 10942 err = -EINVAL; 10943 goto err_put; 10944 } 10945 10946 sym_name = btf_name_by_offset(btf, t->name_off); 10947 addr = kallsyms_lookup_name(sym_name); 10948 if (!addr) { 10949 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 10950 sym_name); 10951 err = -ENOENT; 10952 goto err_put; 10953 } 10954 10955 datasec_id = find_btf_percpu_datasec(btf); 10956 if (datasec_id > 0) { 10957 datasec = btf_type_by_id(btf, datasec_id); 10958 for_each_vsi(i, datasec, vsi) { 10959 if (vsi->type == id) { 10960 percpu = true; 10961 break; 10962 } 10963 } 10964 } 10965 10966 insn[0].imm = (u32)addr; 10967 insn[1].imm = addr >> 32; 10968 10969 type = t->type; 10970 t = btf_type_skip_modifiers(btf, type, NULL); 10971 if (percpu) { 10972 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 10973 aux->btf_var.btf = btf; 10974 aux->btf_var.btf_id = type; 10975 } else if (!btf_type_is_struct(t)) { 10976 const struct btf_type *ret; 10977 const char *tname; 10978 u32 tsize; 10979 10980 /* resolve the type size of ksym. */ 10981 ret = btf_resolve_size(btf, t, &tsize); 10982 if (IS_ERR(ret)) { 10983 tname = btf_name_by_offset(btf, t->name_off); 10984 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 10985 tname, PTR_ERR(ret)); 10986 err = -EINVAL; 10987 goto err_put; 10988 } 10989 aux->btf_var.reg_type = PTR_TO_MEM; 10990 aux->btf_var.mem_size = tsize; 10991 } else { 10992 aux->btf_var.reg_type = PTR_TO_BTF_ID; 10993 aux->btf_var.btf = btf; 10994 aux->btf_var.btf_id = type; 10995 } 10996 10997 /* check whether we recorded this BTF (and maybe module) already */ 10998 for (i = 0; i < env->used_btf_cnt; i++) { 10999 if (env->used_btfs[i].btf == btf) { 11000 btf_put(btf); 11001 return 0; 11002 } 11003 } 11004 11005 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11006 err = -E2BIG; 11007 goto err_put; 11008 } 11009 11010 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11011 btf_mod->btf = btf; 11012 btf_mod->module = NULL; 11013 11014 /* if we reference variables from kernel module, bump its refcount */ 11015 if (btf_is_module(btf)) { 11016 btf_mod->module = btf_try_get_module(btf); 11017 if (!btf_mod->module) { 11018 err = -ENXIO; 11019 goto err_put; 11020 } 11021 } 11022 11023 env->used_btf_cnt++; 11024 11025 return 0; 11026 err_put: 11027 btf_put(btf); 11028 return err; 11029 } 11030 11031 static int check_map_prealloc(struct bpf_map *map) 11032 { 11033 return (map->map_type != BPF_MAP_TYPE_HASH && 11034 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11035 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11036 !(map->map_flags & BPF_F_NO_PREALLOC); 11037 } 11038 11039 static bool is_tracing_prog_type(enum bpf_prog_type type) 11040 { 11041 switch (type) { 11042 case BPF_PROG_TYPE_KPROBE: 11043 case BPF_PROG_TYPE_TRACEPOINT: 11044 case BPF_PROG_TYPE_PERF_EVENT: 11045 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11046 return true; 11047 default: 11048 return false; 11049 } 11050 } 11051 11052 static bool is_preallocated_map(struct bpf_map *map) 11053 { 11054 if (!check_map_prealloc(map)) 11055 return false; 11056 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11057 return false; 11058 return true; 11059 } 11060 11061 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11062 struct bpf_map *map, 11063 struct bpf_prog *prog) 11064 11065 { 11066 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11067 /* 11068 * Validate that trace type programs use preallocated hash maps. 11069 * 11070 * For programs attached to PERF events this is mandatory as the 11071 * perf NMI can hit any arbitrary code sequence. 11072 * 11073 * All other trace types using preallocated hash maps are unsafe as 11074 * well because tracepoint or kprobes can be inside locked regions 11075 * of the memory allocator or at a place where a recursion into the 11076 * memory allocator would see inconsistent state. 11077 * 11078 * On RT enabled kernels run-time allocation of all trace type 11079 * programs is strictly prohibited due to lock type constraints. On 11080 * !RT kernels it is allowed for backwards compatibility reasons for 11081 * now, but warnings are emitted so developers are made aware of 11082 * the unsafety and can fix their programs before this is enforced. 11083 */ 11084 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11085 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11086 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11087 return -EINVAL; 11088 } 11089 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11090 verbose(env, "trace type programs can only use preallocated hash map\n"); 11091 return -EINVAL; 11092 } 11093 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11094 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11095 } 11096 11097 if (map_value_has_spin_lock(map)) { 11098 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11099 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11100 return -EINVAL; 11101 } 11102 11103 if (is_tracing_prog_type(prog_type)) { 11104 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11105 return -EINVAL; 11106 } 11107 11108 if (prog->aux->sleepable) { 11109 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11110 return -EINVAL; 11111 } 11112 } 11113 11114 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11115 !bpf_offload_prog_map_match(prog, map)) { 11116 verbose(env, "offload device mismatch between prog and map\n"); 11117 return -EINVAL; 11118 } 11119 11120 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11121 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11122 return -EINVAL; 11123 } 11124 11125 if (prog->aux->sleepable) 11126 switch (map->map_type) { 11127 case BPF_MAP_TYPE_HASH: 11128 case BPF_MAP_TYPE_LRU_HASH: 11129 case BPF_MAP_TYPE_ARRAY: 11130 case BPF_MAP_TYPE_PERCPU_HASH: 11131 case BPF_MAP_TYPE_PERCPU_ARRAY: 11132 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11133 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11134 case BPF_MAP_TYPE_HASH_OF_MAPS: 11135 if (!is_preallocated_map(map)) { 11136 verbose(env, 11137 "Sleepable programs can only use preallocated maps\n"); 11138 return -EINVAL; 11139 } 11140 break; 11141 case BPF_MAP_TYPE_RINGBUF: 11142 break; 11143 default: 11144 verbose(env, 11145 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11146 return -EINVAL; 11147 } 11148 11149 return 0; 11150 } 11151 11152 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11153 { 11154 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11155 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11156 } 11157 11158 /* find and rewrite pseudo imm in ld_imm64 instructions: 11159 * 11160 * 1. if it accesses map FD, replace it with actual map pointer. 11161 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11162 * 11163 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11164 */ 11165 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11166 { 11167 struct bpf_insn *insn = env->prog->insnsi; 11168 int insn_cnt = env->prog->len; 11169 int i, j, err; 11170 11171 err = bpf_prog_calc_tag(env->prog); 11172 if (err) 11173 return err; 11174 11175 for (i = 0; i < insn_cnt; i++, insn++) { 11176 if (BPF_CLASS(insn->code) == BPF_LDX && 11177 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11178 verbose(env, "BPF_LDX uses reserved fields\n"); 11179 return -EINVAL; 11180 } 11181 11182 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11183 struct bpf_insn_aux_data *aux; 11184 struct bpf_map *map; 11185 struct fd f; 11186 u64 addr; 11187 11188 if (i == insn_cnt - 1 || insn[1].code != 0 || 11189 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11190 insn[1].off != 0) { 11191 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11192 return -EINVAL; 11193 } 11194 11195 if (insn[0].src_reg == 0) 11196 /* valid generic load 64-bit imm */ 11197 goto next_insn; 11198 11199 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11200 aux = &env->insn_aux_data[i]; 11201 err = check_pseudo_btf_id(env, insn, aux); 11202 if (err) 11203 return err; 11204 goto next_insn; 11205 } 11206 11207 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11208 aux = &env->insn_aux_data[i]; 11209 aux->ptr_type = PTR_TO_FUNC; 11210 goto next_insn; 11211 } 11212 11213 /* In final convert_pseudo_ld_imm64() step, this is 11214 * converted into regular 64-bit imm load insn. 11215 */ 11216 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 11217 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 11218 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 11219 insn[1].imm != 0)) { 11220 verbose(env, 11221 "unrecognized bpf_ld_imm64 insn\n"); 11222 return -EINVAL; 11223 } 11224 11225 f = fdget(insn[0].imm); 11226 map = __bpf_map_get(f); 11227 if (IS_ERR(map)) { 11228 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11229 insn[0].imm); 11230 return PTR_ERR(map); 11231 } 11232 11233 err = check_map_prog_compatibility(env, map, env->prog); 11234 if (err) { 11235 fdput(f); 11236 return err; 11237 } 11238 11239 aux = &env->insn_aux_data[i]; 11240 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 11241 addr = (unsigned long)map; 11242 } else { 11243 u32 off = insn[1].imm; 11244 11245 if (off >= BPF_MAX_VAR_OFF) { 11246 verbose(env, "direct value offset of %u is not allowed\n", off); 11247 fdput(f); 11248 return -EINVAL; 11249 } 11250 11251 if (!map->ops->map_direct_value_addr) { 11252 verbose(env, "no direct value access support for this map type\n"); 11253 fdput(f); 11254 return -EINVAL; 11255 } 11256 11257 err = map->ops->map_direct_value_addr(map, &addr, off); 11258 if (err) { 11259 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11260 map->value_size, off); 11261 fdput(f); 11262 return err; 11263 } 11264 11265 aux->map_off = off; 11266 addr += off; 11267 } 11268 11269 insn[0].imm = (u32)addr; 11270 insn[1].imm = addr >> 32; 11271 11272 /* check whether we recorded this map already */ 11273 for (j = 0; j < env->used_map_cnt; j++) { 11274 if (env->used_maps[j] == map) { 11275 aux->map_index = j; 11276 fdput(f); 11277 goto next_insn; 11278 } 11279 } 11280 11281 if (env->used_map_cnt >= MAX_USED_MAPS) { 11282 fdput(f); 11283 return -E2BIG; 11284 } 11285 11286 /* hold the map. If the program is rejected by verifier, 11287 * the map will be released by release_maps() or it 11288 * will be used by the valid program until it's unloaded 11289 * and all maps are released in free_used_maps() 11290 */ 11291 bpf_map_inc(map); 11292 11293 aux->map_index = env->used_map_cnt; 11294 env->used_maps[env->used_map_cnt++] = map; 11295 11296 if (bpf_map_is_cgroup_storage(map) && 11297 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11298 verbose(env, "only one cgroup storage of each type is allowed\n"); 11299 fdput(f); 11300 return -EBUSY; 11301 } 11302 11303 fdput(f); 11304 next_insn: 11305 insn++; 11306 i++; 11307 continue; 11308 } 11309 11310 /* Basic sanity check before we invest more work here. */ 11311 if (!bpf_opcode_in_insntable(insn->code)) { 11312 verbose(env, "unknown opcode %02x\n", insn->code); 11313 return -EINVAL; 11314 } 11315 } 11316 11317 /* now all pseudo BPF_LD_IMM64 instructions load valid 11318 * 'struct bpf_map *' into a register instead of user map_fd. 11319 * These pointers will be used later by verifier to validate map access. 11320 */ 11321 return 0; 11322 } 11323 11324 /* drop refcnt of maps used by the rejected program */ 11325 static void release_maps(struct bpf_verifier_env *env) 11326 { 11327 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11328 env->used_map_cnt); 11329 } 11330 11331 /* drop refcnt of maps used by the rejected program */ 11332 static void release_btfs(struct bpf_verifier_env *env) 11333 { 11334 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11335 env->used_btf_cnt); 11336 } 11337 11338 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11339 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11340 { 11341 struct bpf_insn *insn = env->prog->insnsi; 11342 int insn_cnt = env->prog->len; 11343 int i; 11344 11345 for (i = 0; i < insn_cnt; i++, insn++) { 11346 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11347 continue; 11348 if (insn->src_reg == BPF_PSEUDO_FUNC) 11349 continue; 11350 insn->src_reg = 0; 11351 } 11352 } 11353 11354 /* single env->prog->insni[off] instruction was replaced with the range 11355 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11356 * [0, off) and [off, end) to new locations, so the patched range stays zero 11357 */ 11358 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 11359 struct bpf_prog *new_prog, u32 off, u32 cnt) 11360 { 11361 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 11362 struct bpf_insn *insn = new_prog->insnsi; 11363 u32 prog_len; 11364 int i; 11365 11366 /* aux info at OFF always needs adjustment, no matter fast path 11367 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11368 * original insn at old prog. 11369 */ 11370 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11371 11372 if (cnt == 1) 11373 return 0; 11374 prog_len = new_prog->len; 11375 new_data = vzalloc(array_size(prog_len, 11376 sizeof(struct bpf_insn_aux_data))); 11377 if (!new_data) 11378 return -ENOMEM; 11379 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11380 memcpy(new_data + off + cnt - 1, old_data + off, 11381 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11382 for (i = off; i < off + cnt - 1; i++) { 11383 new_data[i].seen = env->pass_cnt; 11384 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11385 } 11386 env->insn_aux_data = new_data; 11387 vfree(old_data); 11388 return 0; 11389 } 11390 11391 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11392 { 11393 int i; 11394 11395 if (len == 1) 11396 return; 11397 /* NOTE: fake 'exit' subprog should be updated as well. */ 11398 for (i = 0; i <= env->subprog_cnt; i++) { 11399 if (env->subprog_info[i].start <= off) 11400 continue; 11401 env->subprog_info[i].start += len - 1; 11402 } 11403 } 11404 11405 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 11406 { 11407 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 11408 int i, sz = prog->aux->size_poke_tab; 11409 struct bpf_jit_poke_descriptor *desc; 11410 11411 for (i = 0; i < sz; i++) { 11412 desc = &tab[i]; 11413 desc->insn_idx += len - 1; 11414 } 11415 } 11416 11417 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 11418 const struct bpf_insn *patch, u32 len) 11419 { 11420 struct bpf_prog *new_prog; 11421 11422 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 11423 if (IS_ERR(new_prog)) { 11424 if (PTR_ERR(new_prog) == -ERANGE) 11425 verbose(env, 11426 "insn %d cannot be patched due to 16-bit range\n", 11427 env->insn_aux_data[off].orig_idx); 11428 return NULL; 11429 } 11430 if (adjust_insn_aux_data(env, new_prog, off, len)) 11431 return NULL; 11432 adjust_subprog_starts(env, off, len); 11433 adjust_poke_descs(new_prog, len); 11434 return new_prog; 11435 } 11436 11437 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 11438 u32 off, u32 cnt) 11439 { 11440 int i, j; 11441 11442 /* find first prog starting at or after off (first to remove) */ 11443 for (i = 0; i < env->subprog_cnt; i++) 11444 if (env->subprog_info[i].start >= off) 11445 break; 11446 /* find first prog starting at or after off + cnt (first to stay) */ 11447 for (j = i; j < env->subprog_cnt; j++) 11448 if (env->subprog_info[j].start >= off + cnt) 11449 break; 11450 /* if j doesn't start exactly at off + cnt, we are just removing 11451 * the front of previous prog 11452 */ 11453 if (env->subprog_info[j].start != off + cnt) 11454 j--; 11455 11456 if (j > i) { 11457 struct bpf_prog_aux *aux = env->prog->aux; 11458 int move; 11459 11460 /* move fake 'exit' subprog as well */ 11461 move = env->subprog_cnt + 1 - j; 11462 11463 memmove(env->subprog_info + i, 11464 env->subprog_info + j, 11465 sizeof(*env->subprog_info) * move); 11466 env->subprog_cnt -= j - i; 11467 11468 /* remove func_info */ 11469 if (aux->func_info) { 11470 move = aux->func_info_cnt - j; 11471 11472 memmove(aux->func_info + i, 11473 aux->func_info + j, 11474 sizeof(*aux->func_info) * move); 11475 aux->func_info_cnt -= j - i; 11476 /* func_info->insn_off is set after all code rewrites, 11477 * in adjust_btf_func() - no need to adjust 11478 */ 11479 } 11480 } else { 11481 /* convert i from "first prog to remove" to "first to adjust" */ 11482 if (env->subprog_info[i].start == off) 11483 i++; 11484 } 11485 11486 /* update fake 'exit' subprog as well */ 11487 for (; i <= env->subprog_cnt; i++) 11488 env->subprog_info[i].start -= cnt; 11489 11490 return 0; 11491 } 11492 11493 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 11494 u32 cnt) 11495 { 11496 struct bpf_prog *prog = env->prog; 11497 u32 i, l_off, l_cnt, nr_linfo; 11498 struct bpf_line_info *linfo; 11499 11500 nr_linfo = prog->aux->nr_linfo; 11501 if (!nr_linfo) 11502 return 0; 11503 11504 linfo = prog->aux->linfo; 11505 11506 /* find first line info to remove, count lines to be removed */ 11507 for (i = 0; i < nr_linfo; i++) 11508 if (linfo[i].insn_off >= off) 11509 break; 11510 11511 l_off = i; 11512 l_cnt = 0; 11513 for (; i < nr_linfo; i++) 11514 if (linfo[i].insn_off < off + cnt) 11515 l_cnt++; 11516 else 11517 break; 11518 11519 /* First live insn doesn't match first live linfo, it needs to "inherit" 11520 * last removed linfo. prog is already modified, so prog->len == off 11521 * means no live instructions after (tail of the program was removed). 11522 */ 11523 if (prog->len != off && l_cnt && 11524 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 11525 l_cnt--; 11526 linfo[--i].insn_off = off + cnt; 11527 } 11528 11529 /* remove the line info which refer to the removed instructions */ 11530 if (l_cnt) { 11531 memmove(linfo + l_off, linfo + i, 11532 sizeof(*linfo) * (nr_linfo - i)); 11533 11534 prog->aux->nr_linfo -= l_cnt; 11535 nr_linfo = prog->aux->nr_linfo; 11536 } 11537 11538 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 11539 for (i = l_off; i < nr_linfo; i++) 11540 linfo[i].insn_off -= cnt; 11541 11542 /* fix up all subprogs (incl. 'exit') which start >= off */ 11543 for (i = 0; i <= env->subprog_cnt; i++) 11544 if (env->subprog_info[i].linfo_idx > l_off) { 11545 /* program may have started in the removed region but 11546 * may not be fully removed 11547 */ 11548 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 11549 env->subprog_info[i].linfo_idx -= l_cnt; 11550 else 11551 env->subprog_info[i].linfo_idx = l_off; 11552 } 11553 11554 return 0; 11555 } 11556 11557 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 11558 { 11559 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11560 unsigned int orig_prog_len = env->prog->len; 11561 int err; 11562 11563 if (bpf_prog_is_dev_bound(env->prog->aux)) 11564 bpf_prog_offload_remove_insns(env, off, cnt); 11565 11566 err = bpf_remove_insns(env->prog, off, cnt); 11567 if (err) 11568 return err; 11569 11570 err = adjust_subprog_starts_after_remove(env, off, cnt); 11571 if (err) 11572 return err; 11573 11574 err = bpf_adj_linfo_after_remove(env, off, cnt); 11575 if (err) 11576 return err; 11577 11578 memmove(aux_data + off, aux_data + off + cnt, 11579 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 11580 11581 return 0; 11582 } 11583 11584 /* The verifier does more data flow analysis than llvm and will not 11585 * explore branches that are dead at run time. Malicious programs can 11586 * have dead code too. Therefore replace all dead at-run-time code 11587 * with 'ja -1'. 11588 * 11589 * Just nops are not optimal, e.g. if they would sit at the end of the 11590 * program and through another bug we would manage to jump there, then 11591 * we'd execute beyond program memory otherwise. Returning exception 11592 * code also wouldn't work since we can have subprogs where the dead 11593 * code could be located. 11594 */ 11595 static void sanitize_dead_code(struct bpf_verifier_env *env) 11596 { 11597 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11598 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 11599 struct bpf_insn *insn = env->prog->insnsi; 11600 const int insn_cnt = env->prog->len; 11601 int i; 11602 11603 for (i = 0; i < insn_cnt; i++) { 11604 if (aux_data[i].seen) 11605 continue; 11606 memcpy(insn + i, &trap, sizeof(trap)); 11607 } 11608 } 11609 11610 static bool insn_is_cond_jump(u8 code) 11611 { 11612 u8 op; 11613 11614 if (BPF_CLASS(code) == BPF_JMP32) 11615 return true; 11616 11617 if (BPF_CLASS(code) != BPF_JMP) 11618 return false; 11619 11620 op = BPF_OP(code); 11621 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 11622 } 11623 11624 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 11625 { 11626 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11627 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11628 struct bpf_insn *insn = env->prog->insnsi; 11629 const int insn_cnt = env->prog->len; 11630 int i; 11631 11632 for (i = 0; i < insn_cnt; i++, insn++) { 11633 if (!insn_is_cond_jump(insn->code)) 11634 continue; 11635 11636 if (!aux_data[i + 1].seen) 11637 ja.off = insn->off; 11638 else if (!aux_data[i + 1 + insn->off].seen) 11639 ja.off = 0; 11640 else 11641 continue; 11642 11643 if (bpf_prog_is_dev_bound(env->prog->aux)) 11644 bpf_prog_offload_replace_insn(env, i, &ja); 11645 11646 memcpy(insn, &ja, sizeof(ja)); 11647 } 11648 } 11649 11650 static int opt_remove_dead_code(struct bpf_verifier_env *env) 11651 { 11652 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11653 int insn_cnt = env->prog->len; 11654 int i, err; 11655 11656 for (i = 0; i < insn_cnt; i++) { 11657 int j; 11658 11659 j = 0; 11660 while (i + j < insn_cnt && !aux_data[i + j].seen) 11661 j++; 11662 if (!j) 11663 continue; 11664 11665 err = verifier_remove_insns(env, i, j); 11666 if (err) 11667 return err; 11668 insn_cnt = env->prog->len; 11669 } 11670 11671 return 0; 11672 } 11673 11674 static int opt_remove_nops(struct bpf_verifier_env *env) 11675 { 11676 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11677 struct bpf_insn *insn = env->prog->insnsi; 11678 int insn_cnt = env->prog->len; 11679 int i, err; 11680 11681 for (i = 0; i < insn_cnt; i++) { 11682 if (memcmp(&insn[i], &ja, sizeof(ja))) 11683 continue; 11684 11685 err = verifier_remove_insns(env, i, 1); 11686 if (err) 11687 return err; 11688 insn_cnt--; 11689 i--; 11690 } 11691 11692 return 0; 11693 } 11694 11695 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 11696 const union bpf_attr *attr) 11697 { 11698 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 11699 struct bpf_insn_aux_data *aux = env->insn_aux_data; 11700 int i, patch_len, delta = 0, len = env->prog->len; 11701 struct bpf_insn *insns = env->prog->insnsi; 11702 struct bpf_prog *new_prog; 11703 bool rnd_hi32; 11704 11705 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 11706 zext_patch[1] = BPF_ZEXT_REG(0); 11707 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 11708 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 11709 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 11710 for (i = 0; i < len; i++) { 11711 int adj_idx = i + delta; 11712 struct bpf_insn insn; 11713 int load_reg; 11714 11715 insn = insns[adj_idx]; 11716 load_reg = insn_def_regno(&insn); 11717 if (!aux[adj_idx].zext_dst) { 11718 u8 code, class; 11719 u32 imm_rnd; 11720 11721 if (!rnd_hi32) 11722 continue; 11723 11724 code = insn.code; 11725 class = BPF_CLASS(code); 11726 if (load_reg == -1) 11727 continue; 11728 11729 /* NOTE: arg "reg" (the fourth one) is only used for 11730 * BPF_STX + SRC_OP, so it is safe to pass NULL 11731 * here. 11732 */ 11733 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 11734 if (class == BPF_LD && 11735 BPF_MODE(code) == BPF_IMM) 11736 i++; 11737 continue; 11738 } 11739 11740 /* ctx load could be transformed into wider load. */ 11741 if (class == BPF_LDX && 11742 aux[adj_idx].ptr_type == PTR_TO_CTX) 11743 continue; 11744 11745 imm_rnd = get_random_int(); 11746 rnd_hi32_patch[0] = insn; 11747 rnd_hi32_patch[1].imm = imm_rnd; 11748 rnd_hi32_patch[3].dst_reg = load_reg; 11749 patch = rnd_hi32_patch; 11750 patch_len = 4; 11751 goto apply_patch_buffer; 11752 } 11753 11754 /* Add in an zero-extend instruction if a) the JIT has requested 11755 * it or b) it's a CMPXCHG. 11756 * 11757 * The latter is because: BPF_CMPXCHG always loads a value into 11758 * R0, therefore always zero-extends. However some archs' 11759 * equivalent instruction only does this load when the 11760 * comparison is successful. This detail of CMPXCHG is 11761 * orthogonal to the general zero-extension behaviour of the 11762 * CPU, so it's treated independently of bpf_jit_needs_zext. 11763 */ 11764 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 11765 continue; 11766 11767 if (WARN_ON(load_reg == -1)) { 11768 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 11769 return -EFAULT; 11770 } 11771 11772 zext_patch[0] = insn; 11773 zext_patch[1].dst_reg = load_reg; 11774 zext_patch[1].src_reg = load_reg; 11775 patch = zext_patch; 11776 patch_len = 2; 11777 apply_patch_buffer: 11778 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 11779 if (!new_prog) 11780 return -ENOMEM; 11781 env->prog = new_prog; 11782 insns = new_prog->insnsi; 11783 aux = env->insn_aux_data; 11784 delta += patch_len - 1; 11785 } 11786 11787 return 0; 11788 } 11789 11790 /* convert load instructions that access fields of a context type into a 11791 * sequence of instructions that access fields of the underlying structure: 11792 * struct __sk_buff -> struct sk_buff 11793 * struct bpf_sock_ops -> struct sock 11794 */ 11795 static int convert_ctx_accesses(struct bpf_verifier_env *env) 11796 { 11797 const struct bpf_verifier_ops *ops = env->ops; 11798 int i, cnt, size, ctx_field_size, delta = 0; 11799 const int insn_cnt = env->prog->len; 11800 struct bpf_insn insn_buf[16], *insn; 11801 u32 target_size, size_default, off; 11802 struct bpf_prog *new_prog; 11803 enum bpf_access_type type; 11804 bool is_narrower_load; 11805 11806 if (ops->gen_prologue || env->seen_direct_write) { 11807 if (!ops->gen_prologue) { 11808 verbose(env, "bpf verifier is misconfigured\n"); 11809 return -EINVAL; 11810 } 11811 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 11812 env->prog); 11813 if (cnt >= ARRAY_SIZE(insn_buf)) { 11814 verbose(env, "bpf verifier is misconfigured\n"); 11815 return -EINVAL; 11816 } else if (cnt) { 11817 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 11818 if (!new_prog) 11819 return -ENOMEM; 11820 11821 env->prog = new_prog; 11822 delta += cnt - 1; 11823 } 11824 } 11825 11826 if (bpf_prog_is_dev_bound(env->prog->aux)) 11827 return 0; 11828 11829 insn = env->prog->insnsi + delta; 11830 11831 for (i = 0; i < insn_cnt; i++, insn++) { 11832 bpf_convert_ctx_access_t convert_ctx_access; 11833 11834 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 11835 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 11836 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 11837 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 11838 type = BPF_READ; 11839 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 11840 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 11841 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 11842 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 11843 type = BPF_WRITE; 11844 else 11845 continue; 11846 11847 if (type == BPF_WRITE && 11848 env->insn_aux_data[i + delta].sanitize_stack_off) { 11849 struct bpf_insn patch[] = { 11850 /* Sanitize suspicious stack slot with zero. 11851 * There are no memory dependencies for this store, 11852 * since it's only using frame pointer and immediate 11853 * constant of zero 11854 */ 11855 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 11856 env->insn_aux_data[i + delta].sanitize_stack_off, 11857 0), 11858 /* the original STX instruction will immediately 11859 * overwrite the same stack slot with appropriate value 11860 */ 11861 *insn, 11862 }; 11863 11864 cnt = ARRAY_SIZE(patch); 11865 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 11866 if (!new_prog) 11867 return -ENOMEM; 11868 11869 delta += cnt - 1; 11870 env->prog = new_prog; 11871 insn = new_prog->insnsi + i + delta; 11872 continue; 11873 } 11874 11875 switch (env->insn_aux_data[i + delta].ptr_type) { 11876 case PTR_TO_CTX: 11877 if (!ops->convert_ctx_access) 11878 continue; 11879 convert_ctx_access = ops->convert_ctx_access; 11880 break; 11881 case PTR_TO_SOCKET: 11882 case PTR_TO_SOCK_COMMON: 11883 convert_ctx_access = bpf_sock_convert_ctx_access; 11884 break; 11885 case PTR_TO_TCP_SOCK: 11886 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 11887 break; 11888 case PTR_TO_XDP_SOCK: 11889 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 11890 break; 11891 case PTR_TO_BTF_ID: 11892 if (type == BPF_READ) { 11893 insn->code = BPF_LDX | BPF_PROBE_MEM | 11894 BPF_SIZE((insn)->code); 11895 env->prog->aux->num_exentries++; 11896 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 11897 verbose(env, "Writes through BTF pointers are not allowed\n"); 11898 return -EINVAL; 11899 } 11900 continue; 11901 default: 11902 continue; 11903 } 11904 11905 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 11906 size = BPF_LDST_BYTES(insn); 11907 11908 /* If the read access is a narrower load of the field, 11909 * convert to a 4/8-byte load, to minimum program type specific 11910 * convert_ctx_access changes. If conversion is successful, 11911 * we will apply proper mask to the result. 11912 */ 11913 is_narrower_load = size < ctx_field_size; 11914 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 11915 off = insn->off; 11916 if (is_narrower_load) { 11917 u8 size_code; 11918 11919 if (type == BPF_WRITE) { 11920 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 11921 return -EINVAL; 11922 } 11923 11924 size_code = BPF_H; 11925 if (ctx_field_size == 4) 11926 size_code = BPF_W; 11927 else if (ctx_field_size == 8) 11928 size_code = BPF_DW; 11929 11930 insn->off = off & ~(size_default - 1); 11931 insn->code = BPF_LDX | BPF_MEM | size_code; 11932 } 11933 11934 target_size = 0; 11935 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 11936 &target_size); 11937 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 11938 (ctx_field_size && !target_size)) { 11939 verbose(env, "bpf verifier is misconfigured\n"); 11940 return -EINVAL; 11941 } 11942 11943 if (is_narrower_load && size < target_size) { 11944 u8 shift = bpf_ctx_narrow_access_offset( 11945 off, size, size_default) * 8; 11946 if (ctx_field_size <= 4) { 11947 if (shift) 11948 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 11949 insn->dst_reg, 11950 shift); 11951 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 11952 (1 << size * 8) - 1); 11953 } else { 11954 if (shift) 11955 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 11956 insn->dst_reg, 11957 shift); 11958 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 11959 (1ULL << size * 8) - 1); 11960 } 11961 } 11962 11963 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11964 if (!new_prog) 11965 return -ENOMEM; 11966 11967 delta += cnt - 1; 11968 11969 /* keep walking new program and skip insns we just inserted */ 11970 env->prog = new_prog; 11971 insn = new_prog->insnsi + i + delta; 11972 } 11973 11974 return 0; 11975 } 11976 11977 static int jit_subprogs(struct bpf_verifier_env *env) 11978 { 11979 struct bpf_prog *prog = env->prog, **func, *tmp; 11980 int i, j, subprog_start, subprog_end = 0, len, subprog; 11981 struct bpf_map *map_ptr; 11982 struct bpf_insn *insn; 11983 void *old_bpf_func; 11984 int err, num_exentries; 11985 11986 if (env->subprog_cnt <= 1) 11987 return 0; 11988 11989 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11990 if (bpf_pseudo_func(insn)) { 11991 env->insn_aux_data[i].call_imm = insn->imm; 11992 /* subprog is encoded in insn[1].imm */ 11993 continue; 11994 } 11995 11996 if (!bpf_pseudo_call(insn)) 11997 continue; 11998 /* Upon error here we cannot fall back to interpreter but 11999 * need a hard reject of the program. Thus -EFAULT is 12000 * propagated in any case. 12001 */ 12002 subprog = find_subprog(env, i + insn->imm + 1); 12003 if (subprog < 0) { 12004 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12005 i + insn->imm + 1); 12006 return -EFAULT; 12007 } 12008 /* temporarily remember subprog id inside insn instead of 12009 * aux_data, since next loop will split up all insns into funcs 12010 */ 12011 insn->off = subprog; 12012 /* remember original imm in case JIT fails and fallback 12013 * to interpreter will be needed 12014 */ 12015 env->insn_aux_data[i].call_imm = insn->imm; 12016 /* point imm to __bpf_call_base+1 from JITs point of view */ 12017 insn->imm = 1; 12018 } 12019 12020 err = bpf_prog_alloc_jited_linfo(prog); 12021 if (err) 12022 goto out_undo_insn; 12023 12024 err = -ENOMEM; 12025 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12026 if (!func) 12027 goto out_undo_insn; 12028 12029 for (i = 0; i < env->subprog_cnt; i++) { 12030 subprog_start = subprog_end; 12031 subprog_end = env->subprog_info[i + 1].start; 12032 12033 len = subprog_end - subprog_start; 12034 /* BPF_PROG_RUN doesn't call subprogs directly, 12035 * hence main prog stats include the runtime of subprogs. 12036 * subprogs don't have IDs and not reachable via prog_get_next_id 12037 * func[i]->stats will never be accessed and stays NULL 12038 */ 12039 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12040 if (!func[i]) 12041 goto out_free; 12042 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12043 len * sizeof(struct bpf_insn)); 12044 func[i]->type = prog->type; 12045 func[i]->len = len; 12046 if (bpf_prog_calc_tag(func[i])) 12047 goto out_free; 12048 func[i]->is_func = 1; 12049 func[i]->aux->func_idx = i; 12050 /* the btf and func_info will be freed only at prog->aux */ 12051 func[i]->aux->btf = prog->aux->btf; 12052 func[i]->aux->func_info = prog->aux->func_info; 12053 12054 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12055 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 12056 int ret; 12057 12058 if (!(insn_idx >= subprog_start && 12059 insn_idx <= subprog_end)) 12060 continue; 12061 12062 ret = bpf_jit_add_poke_descriptor(func[i], 12063 &prog->aux->poke_tab[j]); 12064 if (ret < 0) { 12065 verbose(env, "adding tail call poke descriptor failed\n"); 12066 goto out_free; 12067 } 12068 12069 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 12070 12071 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 12072 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 12073 if (ret < 0) { 12074 verbose(env, "tracking tail call prog failed\n"); 12075 goto out_free; 12076 } 12077 } 12078 12079 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12080 * Long term would need debug info to populate names 12081 */ 12082 func[i]->aux->name[0] = 'F'; 12083 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12084 func[i]->jit_requested = 1; 12085 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12086 func[i]->aux->linfo = prog->aux->linfo; 12087 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12088 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12089 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12090 num_exentries = 0; 12091 insn = func[i]->insnsi; 12092 for (j = 0; j < func[i]->len; j++, insn++) { 12093 if (BPF_CLASS(insn->code) == BPF_LDX && 12094 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12095 num_exentries++; 12096 } 12097 func[i]->aux->num_exentries = num_exentries; 12098 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12099 func[i] = bpf_int_jit_compile(func[i]); 12100 if (!func[i]->jited) { 12101 err = -ENOTSUPP; 12102 goto out_free; 12103 } 12104 cond_resched(); 12105 } 12106 12107 /* Untrack main program's aux structs so that during map_poke_run() 12108 * we will not stumble upon the unfilled poke descriptors; each 12109 * of the main program's poke descs got distributed across subprogs 12110 * and got tracked onto map, so we are sure that none of them will 12111 * be missed after the operation below 12112 */ 12113 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12114 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12115 12116 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12117 } 12118 12119 /* at this point all bpf functions were successfully JITed 12120 * now populate all bpf_calls with correct addresses and 12121 * run last pass of JIT 12122 */ 12123 for (i = 0; i < env->subprog_cnt; i++) { 12124 insn = func[i]->insnsi; 12125 for (j = 0; j < func[i]->len; j++, insn++) { 12126 if (bpf_pseudo_func(insn)) { 12127 subprog = insn[1].imm; 12128 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12129 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12130 continue; 12131 } 12132 if (!bpf_pseudo_call(insn)) 12133 continue; 12134 subprog = insn->off; 12135 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 12136 __bpf_call_base; 12137 } 12138 12139 /* we use the aux data to keep a list of the start addresses 12140 * of the JITed images for each function in the program 12141 * 12142 * for some architectures, such as powerpc64, the imm field 12143 * might not be large enough to hold the offset of the start 12144 * address of the callee's JITed image from __bpf_call_base 12145 * 12146 * in such cases, we can lookup the start address of a callee 12147 * by using its subprog id, available from the off field of 12148 * the call instruction, as an index for this list 12149 */ 12150 func[i]->aux->func = func; 12151 func[i]->aux->func_cnt = env->subprog_cnt; 12152 } 12153 for (i = 0; i < env->subprog_cnt; i++) { 12154 old_bpf_func = func[i]->bpf_func; 12155 tmp = bpf_int_jit_compile(func[i]); 12156 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12157 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12158 err = -ENOTSUPP; 12159 goto out_free; 12160 } 12161 cond_resched(); 12162 } 12163 12164 /* finally lock prog and jit images for all functions and 12165 * populate kallsysm 12166 */ 12167 for (i = 0; i < env->subprog_cnt; i++) { 12168 bpf_prog_lock_ro(func[i]); 12169 bpf_prog_kallsyms_add(func[i]); 12170 } 12171 12172 /* Last step: make now unused interpreter insns from main 12173 * prog consistent for later dump requests, so they can 12174 * later look the same as if they were interpreted only. 12175 */ 12176 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12177 if (bpf_pseudo_func(insn)) { 12178 insn[0].imm = env->insn_aux_data[i].call_imm; 12179 insn[1].imm = find_subprog(env, i + insn[0].imm + 1); 12180 continue; 12181 } 12182 if (!bpf_pseudo_call(insn)) 12183 continue; 12184 insn->off = env->insn_aux_data[i].call_imm; 12185 subprog = find_subprog(env, i + insn->off + 1); 12186 insn->imm = subprog; 12187 } 12188 12189 prog->jited = 1; 12190 prog->bpf_func = func[0]->bpf_func; 12191 prog->aux->func = func; 12192 prog->aux->func_cnt = env->subprog_cnt; 12193 bpf_prog_jit_attempt_done(prog); 12194 return 0; 12195 out_free: 12196 for (i = 0; i < env->subprog_cnt; i++) { 12197 if (!func[i]) 12198 continue; 12199 12200 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 12201 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 12202 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 12203 } 12204 bpf_jit_free(func[i]); 12205 } 12206 kfree(func); 12207 out_undo_insn: 12208 /* cleanup main prog to be interpreted */ 12209 prog->jit_requested = 0; 12210 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12211 if (!bpf_pseudo_call(insn)) 12212 continue; 12213 insn->off = 0; 12214 insn->imm = env->insn_aux_data[i].call_imm; 12215 } 12216 bpf_prog_jit_attempt_done(prog); 12217 return err; 12218 } 12219 12220 static int fixup_call_args(struct bpf_verifier_env *env) 12221 { 12222 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12223 struct bpf_prog *prog = env->prog; 12224 struct bpf_insn *insn = prog->insnsi; 12225 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12226 int i, depth; 12227 #endif 12228 int err = 0; 12229 12230 if (env->prog->jit_requested && 12231 !bpf_prog_is_dev_bound(env->prog->aux)) { 12232 err = jit_subprogs(env); 12233 if (err == 0) 12234 return 0; 12235 if (err == -EFAULT) 12236 return err; 12237 } 12238 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12239 if (has_kfunc_call) { 12240 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12241 return -EINVAL; 12242 } 12243 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12244 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12245 * have to be rejected, since interpreter doesn't support them yet. 12246 */ 12247 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12248 return -EINVAL; 12249 } 12250 for (i = 0; i < prog->len; i++, insn++) { 12251 if (bpf_pseudo_func(insn)) { 12252 /* When JIT fails the progs with callback calls 12253 * have to be rejected, since interpreter doesn't support them yet. 12254 */ 12255 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12256 return -EINVAL; 12257 } 12258 12259 if (!bpf_pseudo_call(insn)) 12260 continue; 12261 depth = get_callee_stack_depth(env, insn, i); 12262 if (depth < 0) 12263 return depth; 12264 bpf_patch_call_args(insn, depth); 12265 } 12266 err = 0; 12267 #endif 12268 return err; 12269 } 12270 12271 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12272 struct bpf_insn *insn) 12273 { 12274 const struct bpf_kfunc_desc *desc; 12275 12276 /* insn->imm has the btf func_id. Replace it with 12277 * an address (relative to __bpf_base_call). 12278 */ 12279 desc = find_kfunc_desc(env->prog, insn->imm); 12280 if (!desc) { 12281 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12282 insn->imm); 12283 return -EFAULT; 12284 } 12285 12286 insn->imm = desc->imm; 12287 12288 return 0; 12289 } 12290 12291 /* Do various post-verification rewrites in a single program pass. 12292 * These rewrites simplify JIT and interpreter implementations. 12293 */ 12294 static int do_misc_fixups(struct bpf_verifier_env *env) 12295 { 12296 struct bpf_prog *prog = env->prog; 12297 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12298 struct bpf_insn *insn = prog->insnsi; 12299 const struct bpf_func_proto *fn; 12300 const int insn_cnt = prog->len; 12301 const struct bpf_map_ops *ops; 12302 struct bpf_insn_aux_data *aux; 12303 struct bpf_insn insn_buf[16]; 12304 struct bpf_prog *new_prog; 12305 struct bpf_map *map_ptr; 12306 int i, ret, cnt, delta = 0; 12307 12308 for (i = 0; i < insn_cnt; i++, insn++) { 12309 /* Make divide-by-zero exceptions impossible. */ 12310 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12311 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12312 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12313 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12314 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12315 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12316 struct bpf_insn *patchlet; 12317 struct bpf_insn chk_and_div[] = { 12318 /* [R,W]x div 0 -> 0 */ 12319 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12320 BPF_JNE | BPF_K, insn->src_reg, 12321 0, 2, 0), 12322 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12323 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12324 *insn, 12325 }; 12326 struct bpf_insn chk_and_mod[] = { 12327 /* [R,W]x mod 0 -> [R,W]x */ 12328 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12329 BPF_JEQ | BPF_K, insn->src_reg, 12330 0, 1 + (is64 ? 0 : 1), 0), 12331 *insn, 12332 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12333 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12334 }; 12335 12336 patchlet = isdiv ? chk_and_div : chk_and_mod; 12337 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12338 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12339 12340 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12341 if (!new_prog) 12342 return -ENOMEM; 12343 12344 delta += cnt - 1; 12345 env->prog = prog = new_prog; 12346 insn = new_prog->insnsi + i + delta; 12347 continue; 12348 } 12349 12350 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12351 if (BPF_CLASS(insn->code) == BPF_LD && 12352 (BPF_MODE(insn->code) == BPF_ABS || 12353 BPF_MODE(insn->code) == BPF_IND)) { 12354 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12355 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12356 verbose(env, "bpf verifier is misconfigured\n"); 12357 return -EINVAL; 12358 } 12359 12360 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12361 if (!new_prog) 12362 return -ENOMEM; 12363 12364 delta += cnt - 1; 12365 env->prog = prog = new_prog; 12366 insn = new_prog->insnsi + i + delta; 12367 continue; 12368 } 12369 12370 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12371 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12372 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12373 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12374 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12375 struct bpf_insn *patch = &insn_buf[0]; 12376 bool issrc, isneg, isimm; 12377 u32 off_reg; 12378 12379 aux = &env->insn_aux_data[i + delta]; 12380 if (!aux->alu_state || 12381 aux->alu_state == BPF_ALU_NON_POINTER) 12382 continue; 12383 12384 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12385 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12386 BPF_ALU_SANITIZE_SRC; 12387 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 12388 12389 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12390 if (isimm) { 12391 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12392 } else { 12393 if (isneg) 12394 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12395 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12396 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12397 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12398 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12399 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12400 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 12401 } 12402 if (!issrc) 12403 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 12404 insn->src_reg = BPF_REG_AX; 12405 if (isneg) 12406 insn->code = insn->code == code_add ? 12407 code_sub : code_add; 12408 *patch++ = *insn; 12409 if (issrc && isneg && !isimm) 12410 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12411 cnt = patch - insn_buf; 12412 12413 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12414 if (!new_prog) 12415 return -ENOMEM; 12416 12417 delta += cnt - 1; 12418 env->prog = prog = new_prog; 12419 insn = new_prog->insnsi + i + delta; 12420 continue; 12421 } 12422 12423 if (insn->code != (BPF_JMP | BPF_CALL)) 12424 continue; 12425 if (insn->src_reg == BPF_PSEUDO_CALL) 12426 continue; 12427 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 12428 ret = fixup_kfunc_call(env, insn); 12429 if (ret) 12430 return ret; 12431 continue; 12432 } 12433 12434 if (insn->imm == BPF_FUNC_get_route_realm) 12435 prog->dst_needed = 1; 12436 if (insn->imm == BPF_FUNC_get_prandom_u32) 12437 bpf_user_rnd_init_once(); 12438 if (insn->imm == BPF_FUNC_override_return) 12439 prog->kprobe_override = 1; 12440 if (insn->imm == BPF_FUNC_tail_call) { 12441 /* If we tail call into other programs, we 12442 * cannot make any assumptions since they can 12443 * be replaced dynamically during runtime in 12444 * the program array. 12445 */ 12446 prog->cb_access = 1; 12447 if (!allow_tail_call_in_subprogs(env)) 12448 prog->aux->stack_depth = MAX_BPF_STACK; 12449 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 12450 12451 /* mark bpf_tail_call as different opcode to avoid 12452 * conditional branch in the interpeter for every normal 12453 * call and to prevent accidental JITing by JIT compiler 12454 * that doesn't support bpf_tail_call yet 12455 */ 12456 insn->imm = 0; 12457 insn->code = BPF_JMP | BPF_TAIL_CALL; 12458 12459 aux = &env->insn_aux_data[i + delta]; 12460 if (env->bpf_capable && !expect_blinding && 12461 prog->jit_requested && 12462 !bpf_map_key_poisoned(aux) && 12463 !bpf_map_ptr_poisoned(aux) && 12464 !bpf_map_ptr_unpriv(aux)) { 12465 struct bpf_jit_poke_descriptor desc = { 12466 .reason = BPF_POKE_REASON_TAIL_CALL, 12467 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 12468 .tail_call.key = bpf_map_key_immediate(aux), 12469 .insn_idx = i + delta, 12470 }; 12471 12472 ret = bpf_jit_add_poke_descriptor(prog, &desc); 12473 if (ret < 0) { 12474 verbose(env, "adding tail call poke descriptor failed\n"); 12475 return ret; 12476 } 12477 12478 insn->imm = ret + 1; 12479 continue; 12480 } 12481 12482 if (!bpf_map_ptr_unpriv(aux)) 12483 continue; 12484 12485 /* instead of changing every JIT dealing with tail_call 12486 * emit two extra insns: 12487 * if (index >= max_entries) goto out; 12488 * index &= array->index_mask; 12489 * to avoid out-of-bounds cpu speculation 12490 */ 12491 if (bpf_map_ptr_poisoned(aux)) { 12492 verbose(env, "tail_call abusing map_ptr\n"); 12493 return -EINVAL; 12494 } 12495 12496 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12497 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 12498 map_ptr->max_entries, 2); 12499 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 12500 container_of(map_ptr, 12501 struct bpf_array, 12502 map)->index_mask); 12503 insn_buf[2] = *insn; 12504 cnt = 3; 12505 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12506 if (!new_prog) 12507 return -ENOMEM; 12508 12509 delta += cnt - 1; 12510 env->prog = prog = new_prog; 12511 insn = new_prog->insnsi + i + delta; 12512 continue; 12513 } 12514 12515 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 12516 * and other inlining handlers are currently limited to 64 bit 12517 * only. 12518 */ 12519 if (prog->jit_requested && BITS_PER_LONG == 64 && 12520 (insn->imm == BPF_FUNC_map_lookup_elem || 12521 insn->imm == BPF_FUNC_map_update_elem || 12522 insn->imm == BPF_FUNC_map_delete_elem || 12523 insn->imm == BPF_FUNC_map_push_elem || 12524 insn->imm == BPF_FUNC_map_pop_elem || 12525 insn->imm == BPF_FUNC_map_peek_elem || 12526 insn->imm == BPF_FUNC_redirect_map)) { 12527 aux = &env->insn_aux_data[i + delta]; 12528 if (bpf_map_ptr_poisoned(aux)) 12529 goto patch_call_imm; 12530 12531 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12532 ops = map_ptr->ops; 12533 if (insn->imm == BPF_FUNC_map_lookup_elem && 12534 ops->map_gen_lookup) { 12535 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 12536 if (cnt == -EOPNOTSUPP) 12537 goto patch_map_ops_generic; 12538 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12539 verbose(env, "bpf verifier is misconfigured\n"); 12540 return -EINVAL; 12541 } 12542 12543 new_prog = bpf_patch_insn_data(env, i + delta, 12544 insn_buf, cnt); 12545 if (!new_prog) 12546 return -ENOMEM; 12547 12548 delta += cnt - 1; 12549 env->prog = prog = new_prog; 12550 insn = new_prog->insnsi + i + delta; 12551 continue; 12552 } 12553 12554 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 12555 (void *(*)(struct bpf_map *map, void *key))NULL)); 12556 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 12557 (int (*)(struct bpf_map *map, void *key))NULL)); 12558 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 12559 (int (*)(struct bpf_map *map, void *key, void *value, 12560 u64 flags))NULL)); 12561 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 12562 (int (*)(struct bpf_map *map, void *value, 12563 u64 flags))NULL)); 12564 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 12565 (int (*)(struct bpf_map *map, void *value))NULL)); 12566 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 12567 (int (*)(struct bpf_map *map, void *value))NULL)); 12568 BUILD_BUG_ON(!__same_type(ops->map_redirect, 12569 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 12570 12571 patch_map_ops_generic: 12572 switch (insn->imm) { 12573 case BPF_FUNC_map_lookup_elem: 12574 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 12575 __bpf_call_base; 12576 continue; 12577 case BPF_FUNC_map_update_elem: 12578 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 12579 __bpf_call_base; 12580 continue; 12581 case BPF_FUNC_map_delete_elem: 12582 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 12583 __bpf_call_base; 12584 continue; 12585 case BPF_FUNC_map_push_elem: 12586 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 12587 __bpf_call_base; 12588 continue; 12589 case BPF_FUNC_map_pop_elem: 12590 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 12591 __bpf_call_base; 12592 continue; 12593 case BPF_FUNC_map_peek_elem: 12594 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 12595 __bpf_call_base; 12596 continue; 12597 case BPF_FUNC_redirect_map: 12598 insn->imm = BPF_CAST_CALL(ops->map_redirect) - 12599 __bpf_call_base; 12600 continue; 12601 } 12602 12603 goto patch_call_imm; 12604 } 12605 12606 /* Implement bpf_jiffies64 inline. */ 12607 if (prog->jit_requested && BITS_PER_LONG == 64 && 12608 insn->imm == BPF_FUNC_jiffies64) { 12609 struct bpf_insn ld_jiffies_addr[2] = { 12610 BPF_LD_IMM64(BPF_REG_0, 12611 (unsigned long)&jiffies), 12612 }; 12613 12614 insn_buf[0] = ld_jiffies_addr[0]; 12615 insn_buf[1] = ld_jiffies_addr[1]; 12616 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 12617 BPF_REG_0, 0); 12618 cnt = 3; 12619 12620 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 12621 cnt); 12622 if (!new_prog) 12623 return -ENOMEM; 12624 12625 delta += cnt - 1; 12626 env->prog = prog = new_prog; 12627 insn = new_prog->insnsi + i + delta; 12628 continue; 12629 } 12630 12631 patch_call_imm: 12632 fn = env->ops->get_func_proto(insn->imm, env->prog); 12633 /* all functions that have prototype and verifier allowed 12634 * programs to call them, must be real in-kernel functions 12635 */ 12636 if (!fn->func) { 12637 verbose(env, 12638 "kernel subsystem misconfigured func %s#%d\n", 12639 func_id_name(insn->imm), insn->imm); 12640 return -EFAULT; 12641 } 12642 insn->imm = fn->func - __bpf_call_base; 12643 } 12644 12645 /* Since poke tab is now finalized, publish aux to tracker. */ 12646 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12647 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12648 if (!map_ptr->ops->map_poke_track || 12649 !map_ptr->ops->map_poke_untrack || 12650 !map_ptr->ops->map_poke_run) { 12651 verbose(env, "bpf verifier is misconfigured\n"); 12652 return -EINVAL; 12653 } 12654 12655 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 12656 if (ret < 0) { 12657 verbose(env, "tracking tail call prog failed\n"); 12658 return ret; 12659 } 12660 } 12661 12662 sort_kfunc_descs_by_imm(env->prog); 12663 12664 return 0; 12665 } 12666 12667 static void free_states(struct bpf_verifier_env *env) 12668 { 12669 struct bpf_verifier_state_list *sl, *sln; 12670 int i; 12671 12672 sl = env->free_list; 12673 while (sl) { 12674 sln = sl->next; 12675 free_verifier_state(&sl->state, false); 12676 kfree(sl); 12677 sl = sln; 12678 } 12679 env->free_list = NULL; 12680 12681 if (!env->explored_states) 12682 return; 12683 12684 for (i = 0; i < state_htab_size(env); i++) { 12685 sl = env->explored_states[i]; 12686 12687 while (sl) { 12688 sln = sl->next; 12689 free_verifier_state(&sl->state, false); 12690 kfree(sl); 12691 sl = sln; 12692 } 12693 env->explored_states[i] = NULL; 12694 } 12695 } 12696 12697 /* The verifier is using insn_aux_data[] to store temporary data during 12698 * verification and to store information for passes that run after the 12699 * verification like dead code sanitization. do_check_common() for subprogram N 12700 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 12701 * temporary data after do_check_common() finds that subprogram N cannot be 12702 * verified independently. pass_cnt counts the number of times 12703 * do_check_common() was run and insn->aux->seen tells the pass number 12704 * insn_aux_data was touched. These variables are compared to clear temporary 12705 * data from failed pass. For testing and experiments do_check_common() can be 12706 * run multiple times even when prior attempt to verify is unsuccessful. 12707 */ 12708 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 12709 { 12710 struct bpf_insn *insn = env->prog->insnsi; 12711 struct bpf_insn_aux_data *aux; 12712 int i, class; 12713 12714 for (i = 0; i < env->prog->len; i++) { 12715 class = BPF_CLASS(insn[i].code); 12716 if (class != BPF_LDX && class != BPF_STX) 12717 continue; 12718 aux = &env->insn_aux_data[i]; 12719 if (aux->seen != env->pass_cnt) 12720 continue; 12721 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 12722 } 12723 } 12724 12725 static int do_check_common(struct bpf_verifier_env *env, int subprog) 12726 { 12727 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12728 struct bpf_verifier_state *state; 12729 struct bpf_reg_state *regs; 12730 int ret, i; 12731 12732 env->prev_linfo = NULL; 12733 env->pass_cnt++; 12734 12735 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 12736 if (!state) 12737 return -ENOMEM; 12738 state->curframe = 0; 12739 state->speculative = false; 12740 state->branches = 1; 12741 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 12742 if (!state->frame[0]) { 12743 kfree(state); 12744 return -ENOMEM; 12745 } 12746 env->cur_state = state; 12747 init_func_state(env, state->frame[0], 12748 BPF_MAIN_FUNC /* callsite */, 12749 0 /* frameno */, 12750 subprog); 12751 12752 regs = state->frame[state->curframe]->regs; 12753 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 12754 ret = btf_prepare_func_args(env, subprog, regs); 12755 if (ret) 12756 goto out; 12757 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 12758 if (regs[i].type == PTR_TO_CTX) 12759 mark_reg_known_zero(env, regs, i); 12760 else if (regs[i].type == SCALAR_VALUE) 12761 mark_reg_unknown(env, regs, i); 12762 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 12763 const u32 mem_size = regs[i].mem_size; 12764 12765 mark_reg_known_zero(env, regs, i); 12766 regs[i].mem_size = mem_size; 12767 regs[i].id = ++env->id_gen; 12768 } 12769 } 12770 } else { 12771 /* 1st arg to a function */ 12772 regs[BPF_REG_1].type = PTR_TO_CTX; 12773 mark_reg_known_zero(env, regs, BPF_REG_1); 12774 ret = btf_check_subprog_arg_match(env, subprog, regs); 12775 if (ret == -EFAULT) 12776 /* unlikely verifier bug. abort. 12777 * ret == 0 and ret < 0 are sadly acceptable for 12778 * main() function due to backward compatibility. 12779 * Like socket filter program may be written as: 12780 * int bpf_prog(struct pt_regs *ctx) 12781 * and never dereference that ctx in the program. 12782 * 'struct pt_regs' is a type mismatch for socket 12783 * filter that should be using 'struct __sk_buff'. 12784 */ 12785 goto out; 12786 } 12787 12788 ret = do_check(env); 12789 out: 12790 /* check for NULL is necessary, since cur_state can be freed inside 12791 * do_check() under memory pressure. 12792 */ 12793 if (env->cur_state) { 12794 free_verifier_state(env->cur_state, true); 12795 env->cur_state = NULL; 12796 } 12797 while (!pop_stack(env, NULL, NULL, false)); 12798 if (!ret && pop_log) 12799 bpf_vlog_reset(&env->log, 0); 12800 free_states(env); 12801 if (ret) 12802 /* clean aux data in case subprog was rejected */ 12803 sanitize_insn_aux_data(env); 12804 return ret; 12805 } 12806 12807 /* Verify all global functions in a BPF program one by one based on their BTF. 12808 * All global functions must pass verification. Otherwise the whole program is rejected. 12809 * Consider: 12810 * int bar(int); 12811 * int foo(int f) 12812 * { 12813 * return bar(f); 12814 * } 12815 * int bar(int b) 12816 * { 12817 * ... 12818 * } 12819 * foo() will be verified first for R1=any_scalar_value. During verification it 12820 * will be assumed that bar() already verified successfully and call to bar() 12821 * from foo() will be checked for type match only. Later bar() will be verified 12822 * independently to check that it's safe for R1=any_scalar_value. 12823 */ 12824 static int do_check_subprogs(struct bpf_verifier_env *env) 12825 { 12826 struct bpf_prog_aux *aux = env->prog->aux; 12827 int i, ret; 12828 12829 if (!aux->func_info) 12830 return 0; 12831 12832 for (i = 1; i < env->subprog_cnt; i++) { 12833 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 12834 continue; 12835 env->insn_idx = env->subprog_info[i].start; 12836 WARN_ON_ONCE(env->insn_idx == 0); 12837 ret = do_check_common(env, i); 12838 if (ret) { 12839 return ret; 12840 } else if (env->log.level & BPF_LOG_LEVEL) { 12841 verbose(env, 12842 "Func#%d is safe for any args that match its prototype\n", 12843 i); 12844 } 12845 } 12846 return 0; 12847 } 12848 12849 static int do_check_main(struct bpf_verifier_env *env) 12850 { 12851 int ret; 12852 12853 env->insn_idx = 0; 12854 ret = do_check_common(env, 0); 12855 if (!ret) 12856 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 12857 return ret; 12858 } 12859 12860 12861 static void print_verification_stats(struct bpf_verifier_env *env) 12862 { 12863 int i; 12864 12865 if (env->log.level & BPF_LOG_STATS) { 12866 verbose(env, "verification time %lld usec\n", 12867 div_u64(env->verification_time, 1000)); 12868 verbose(env, "stack depth "); 12869 for (i = 0; i < env->subprog_cnt; i++) { 12870 u32 depth = env->subprog_info[i].stack_depth; 12871 12872 verbose(env, "%d", depth); 12873 if (i + 1 < env->subprog_cnt) 12874 verbose(env, "+"); 12875 } 12876 verbose(env, "\n"); 12877 } 12878 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 12879 "total_states %d peak_states %d mark_read %d\n", 12880 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 12881 env->max_states_per_insn, env->total_states, 12882 env->peak_states, env->longest_mark_read_walk); 12883 } 12884 12885 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 12886 { 12887 const struct btf_type *t, *func_proto; 12888 const struct bpf_struct_ops *st_ops; 12889 const struct btf_member *member; 12890 struct bpf_prog *prog = env->prog; 12891 u32 btf_id, member_idx; 12892 const char *mname; 12893 12894 if (!prog->gpl_compatible) { 12895 verbose(env, "struct ops programs must have a GPL compatible license\n"); 12896 return -EINVAL; 12897 } 12898 12899 btf_id = prog->aux->attach_btf_id; 12900 st_ops = bpf_struct_ops_find(btf_id); 12901 if (!st_ops) { 12902 verbose(env, "attach_btf_id %u is not a supported struct\n", 12903 btf_id); 12904 return -ENOTSUPP; 12905 } 12906 12907 t = st_ops->type; 12908 member_idx = prog->expected_attach_type; 12909 if (member_idx >= btf_type_vlen(t)) { 12910 verbose(env, "attach to invalid member idx %u of struct %s\n", 12911 member_idx, st_ops->name); 12912 return -EINVAL; 12913 } 12914 12915 member = &btf_type_member(t)[member_idx]; 12916 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 12917 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 12918 NULL); 12919 if (!func_proto) { 12920 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 12921 mname, member_idx, st_ops->name); 12922 return -EINVAL; 12923 } 12924 12925 if (st_ops->check_member) { 12926 int err = st_ops->check_member(t, member); 12927 12928 if (err) { 12929 verbose(env, "attach to unsupported member %s of struct %s\n", 12930 mname, st_ops->name); 12931 return err; 12932 } 12933 } 12934 12935 prog->aux->attach_func_proto = func_proto; 12936 prog->aux->attach_func_name = mname; 12937 env->ops = st_ops->verifier_ops; 12938 12939 return 0; 12940 } 12941 #define SECURITY_PREFIX "security_" 12942 12943 static int check_attach_modify_return(unsigned long addr, const char *func_name) 12944 { 12945 if (within_error_injection_list(addr) || 12946 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 12947 return 0; 12948 12949 return -EINVAL; 12950 } 12951 12952 /* list of non-sleepable functions that are otherwise on 12953 * ALLOW_ERROR_INJECTION list 12954 */ 12955 BTF_SET_START(btf_non_sleepable_error_inject) 12956 /* Three functions below can be called from sleepable and non-sleepable context. 12957 * Assume non-sleepable from bpf safety point of view. 12958 */ 12959 BTF_ID(func, __add_to_page_cache_locked) 12960 BTF_ID(func, should_fail_alloc_page) 12961 BTF_ID(func, should_failslab) 12962 BTF_SET_END(btf_non_sleepable_error_inject) 12963 12964 static int check_non_sleepable_error_inject(u32 btf_id) 12965 { 12966 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 12967 } 12968 12969 int bpf_check_attach_target(struct bpf_verifier_log *log, 12970 const struct bpf_prog *prog, 12971 const struct bpf_prog *tgt_prog, 12972 u32 btf_id, 12973 struct bpf_attach_target_info *tgt_info) 12974 { 12975 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 12976 const char prefix[] = "btf_trace_"; 12977 int ret = 0, subprog = -1, i; 12978 const struct btf_type *t; 12979 bool conservative = true; 12980 const char *tname; 12981 struct btf *btf; 12982 long addr = 0; 12983 12984 if (!btf_id) { 12985 bpf_log(log, "Tracing programs must provide btf_id\n"); 12986 return -EINVAL; 12987 } 12988 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 12989 if (!btf) { 12990 bpf_log(log, 12991 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 12992 return -EINVAL; 12993 } 12994 t = btf_type_by_id(btf, btf_id); 12995 if (!t) { 12996 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 12997 return -EINVAL; 12998 } 12999 tname = btf_name_by_offset(btf, t->name_off); 13000 if (!tname) { 13001 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13002 return -EINVAL; 13003 } 13004 if (tgt_prog) { 13005 struct bpf_prog_aux *aux = tgt_prog->aux; 13006 13007 for (i = 0; i < aux->func_info_cnt; i++) 13008 if (aux->func_info[i].type_id == btf_id) { 13009 subprog = i; 13010 break; 13011 } 13012 if (subprog == -1) { 13013 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13014 return -EINVAL; 13015 } 13016 conservative = aux->func_info_aux[subprog].unreliable; 13017 if (prog_extension) { 13018 if (conservative) { 13019 bpf_log(log, 13020 "Cannot replace static functions\n"); 13021 return -EINVAL; 13022 } 13023 if (!prog->jit_requested) { 13024 bpf_log(log, 13025 "Extension programs should be JITed\n"); 13026 return -EINVAL; 13027 } 13028 } 13029 if (!tgt_prog->jited) { 13030 bpf_log(log, "Can attach to only JITed progs\n"); 13031 return -EINVAL; 13032 } 13033 if (tgt_prog->type == prog->type) { 13034 /* Cannot fentry/fexit another fentry/fexit program. 13035 * Cannot attach program extension to another extension. 13036 * It's ok to attach fentry/fexit to extension program. 13037 */ 13038 bpf_log(log, "Cannot recursively attach\n"); 13039 return -EINVAL; 13040 } 13041 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13042 prog_extension && 13043 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13044 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13045 /* Program extensions can extend all program types 13046 * except fentry/fexit. The reason is the following. 13047 * The fentry/fexit programs are used for performance 13048 * analysis, stats and can be attached to any program 13049 * type except themselves. When extension program is 13050 * replacing XDP function it is necessary to allow 13051 * performance analysis of all functions. Both original 13052 * XDP program and its program extension. Hence 13053 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13054 * allowed. If extending of fentry/fexit was allowed it 13055 * would be possible to create long call chain 13056 * fentry->extension->fentry->extension beyond 13057 * reasonable stack size. Hence extending fentry is not 13058 * allowed. 13059 */ 13060 bpf_log(log, "Cannot extend fentry/fexit\n"); 13061 return -EINVAL; 13062 } 13063 } else { 13064 if (prog_extension) { 13065 bpf_log(log, "Cannot replace kernel functions\n"); 13066 return -EINVAL; 13067 } 13068 } 13069 13070 switch (prog->expected_attach_type) { 13071 case BPF_TRACE_RAW_TP: 13072 if (tgt_prog) { 13073 bpf_log(log, 13074 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13075 return -EINVAL; 13076 } 13077 if (!btf_type_is_typedef(t)) { 13078 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13079 btf_id); 13080 return -EINVAL; 13081 } 13082 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13083 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13084 btf_id, tname); 13085 return -EINVAL; 13086 } 13087 tname += sizeof(prefix) - 1; 13088 t = btf_type_by_id(btf, t->type); 13089 if (!btf_type_is_ptr(t)) 13090 /* should never happen in valid vmlinux build */ 13091 return -EINVAL; 13092 t = btf_type_by_id(btf, t->type); 13093 if (!btf_type_is_func_proto(t)) 13094 /* should never happen in valid vmlinux build */ 13095 return -EINVAL; 13096 13097 break; 13098 case BPF_TRACE_ITER: 13099 if (!btf_type_is_func(t)) { 13100 bpf_log(log, "attach_btf_id %u is not a function\n", 13101 btf_id); 13102 return -EINVAL; 13103 } 13104 t = btf_type_by_id(btf, t->type); 13105 if (!btf_type_is_func_proto(t)) 13106 return -EINVAL; 13107 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13108 if (ret) 13109 return ret; 13110 break; 13111 default: 13112 if (!prog_extension) 13113 return -EINVAL; 13114 fallthrough; 13115 case BPF_MODIFY_RETURN: 13116 case BPF_LSM_MAC: 13117 case BPF_TRACE_FENTRY: 13118 case BPF_TRACE_FEXIT: 13119 if (!btf_type_is_func(t)) { 13120 bpf_log(log, "attach_btf_id %u is not a function\n", 13121 btf_id); 13122 return -EINVAL; 13123 } 13124 if (prog_extension && 13125 btf_check_type_match(log, prog, btf, t)) 13126 return -EINVAL; 13127 t = btf_type_by_id(btf, t->type); 13128 if (!btf_type_is_func_proto(t)) 13129 return -EINVAL; 13130 13131 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13132 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13133 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13134 return -EINVAL; 13135 13136 if (tgt_prog && conservative) 13137 t = NULL; 13138 13139 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13140 if (ret < 0) 13141 return ret; 13142 13143 if (tgt_prog) { 13144 if (subprog == 0) 13145 addr = (long) tgt_prog->bpf_func; 13146 else 13147 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13148 } else { 13149 addr = kallsyms_lookup_name(tname); 13150 if (!addr) { 13151 bpf_log(log, 13152 "The address of function %s cannot be found\n", 13153 tname); 13154 return -ENOENT; 13155 } 13156 } 13157 13158 if (prog->aux->sleepable) { 13159 ret = -EINVAL; 13160 switch (prog->type) { 13161 case BPF_PROG_TYPE_TRACING: 13162 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13163 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13164 */ 13165 if (!check_non_sleepable_error_inject(btf_id) && 13166 within_error_injection_list(addr)) 13167 ret = 0; 13168 break; 13169 case BPF_PROG_TYPE_LSM: 13170 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13171 * Only some of them are sleepable. 13172 */ 13173 if (bpf_lsm_is_sleepable_hook(btf_id)) 13174 ret = 0; 13175 break; 13176 default: 13177 break; 13178 } 13179 if (ret) { 13180 bpf_log(log, "%s is not sleepable\n", tname); 13181 return ret; 13182 } 13183 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13184 if (tgt_prog) { 13185 bpf_log(log, "can't modify return codes of BPF programs\n"); 13186 return -EINVAL; 13187 } 13188 ret = check_attach_modify_return(addr, tname); 13189 if (ret) { 13190 bpf_log(log, "%s() is not modifiable\n", tname); 13191 return ret; 13192 } 13193 } 13194 13195 break; 13196 } 13197 tgt_info->tgt_addr = addr; 13198 tgt_info->tgt_name = tname; 13199 tgt_info->tgt_type = t; 13200 return 0; 13201 } 13202 13203 static int check_attach_btf_id(struct bpf_verifier_env *env) 13204 { 13205 struct bpf_prog *prog = env->prog; 13206 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13207 struct bpf_attach_target_info tgt_info = {}; 13208 u32 btf_id = prog->aux->attach_btf_id; 13209 struct bpf_trampoline *tr; 13210 int ret; 13211 u64 key; 13212 13213 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13214 prog->type != BPF_PROG_TYPE_LSM) { 13215 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13216 return -EINVAL; 13217 } 13218 13219 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13220 return check_struct_ops_btf_id(env); 13221 13222 if (prog->type != BPF_PROG_TYPE_TRACING && 13223 prog->type != BPF_PROG_TYPE_LSM && 13224 prog->type != BPF_PROG_TYPE_EXT) 13225 return 0; 13226 13227 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13228 if (ret) 13229 return ret; 13230 13231 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13232 /* to make freplace equivalent to their targets, they need to 13233 * inherit env->ops and expected_attach_type for the rest of the 13234 * verification 13235 */ 13236 env->ops = bpf_verifier_ops[tgt_prog->type]; 13237 prog->expected_attach_type = tgt_prog->expected_attach_type; 13238 } 13239 13240 /* store info about the attachment target that will be used later */ 13241 prog->aux->attach_func_proto = tgt_info.tgt_type; 13242 prog->aux->attach_func_name = tgt_info.tgt_name; 13243 13244 if (tgt_prog) { 13245 prog->aux->saved_dst_prog_type = tgt_prog->type; 13246 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13247 } 13248 13249 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13250 prog->aux->attach_btf_trace = true; 13251 return 0; 13252 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13253 if (!bpf_iter_prog_supported(prog)) 13254 return -EINVAL; 13255 return 0; 13256 } 13257 13258 if (prog->type == BPF_PROG_TYPE_LSM) { 13259 ret = bpf_lsm_verify_prog(&env->log, prog); 13260 if (ret < 0) 13261 return ret; 13262 } 13263 13264 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13265 tr = bpf_trampoline_get(key, &tgt_info); 13266 if (!tr) 13267 return -ENOMEM; 13268 13269 prog->aux->dst_trampoline = tr; 13270 return 0; 13271 } 13272 13273 struct btf *bpf_get_btf_vmlinux(void) 13274 { 13275 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13276 mutex_lock(&bpf_verifier_lock); 13277 if (!btf_vmlinux) 13278 btf_vmlinux = btf_parse_vmlinux(); 13279 mutex_unlock(&bpf_verifier_lock); 13280 } 13281 return btf_vmlinux; 13282 } 13283 13284 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 13285 union bpf_attr __user *uattr) 13286 { 13287 u64 start_time = ktime_get_ns(); 13288 struct bpf_verifier_env *env; 13289 struct bpf_verifier_log *log; 13290 int i, len, ret = -EINVAL; 13291 bool is_priv; 13292 13293 /* no program is valid */ 13294 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13295 return -EINVAL; 13296 13297 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13298 * allocate/free it every time bpf_check() is called 13299 */ 13300 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13301 if (!env) 13302 return -ENOMEM; 13303 log = &env->log; 13304 13305 len = (*prog)->len; 13306 env->insn_aux_data = 13307 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13308 ret = -ENOMEM; 13309 if (!env->insn_aux_data) 13310 goto err_free_env; 13311 for (i = 0; i < len; i++) 13312 env->insn_aux_data[i].orig_idx = i; 13313 env->prog = *prog; 13314 env->ops = bpf_verifier_ops[env->prog->type]; 13315 is_priv = bpf_capable(); 13316 13317 bpf_get_btf_vmlinux(); 13318 13319 /* grab the mutex to protect few globals used by verifier */ 13320 if (!is_priv) 13321 mutex_lock(&bpf_verifier_lock); 13322 13323 if (attr->log_level || attr->log_buf || attr->log_size) { 13324 /* user requested verbose verifier output 13325 * and supplied buffer to store the verification trace 13326 */ 13327 log->level = attr->log_level; 13328 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13329 log->len_total = attr->log_size; 13330 13331 ret = -EINVAL; 13332 /* log attributes have to be sane */ 13333 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13334 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13335 goto err_unlock; 13336 } 13337 13338 if (IS_ERR(btf_vmlinux)) { 13339 /* Either gcc or pahole or kernel are broken. */ 13340 verbose(env, "in-kernel BTF is malformed\n"); 13341 ret = PTR_ERR(btf_vmlinux); 13342 goto skip_full_check; 13343 } 13344 13345 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13346 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13347 env->strict_alignment = true; 13348 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13349 env->strict_alignment = false; 13350 13351 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13352 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13353 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13354 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13355 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13356 env->bpf_capable = bpf_capable(); 13357 13358 if (is_priv) 13359 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13360 13361 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13362 ret = bpf_prog_offload_verifier_prep(env->prog); 13363 if (ret) 13364 goto skip_full_check; 13365 } 13366 13367 env->explored_states = kvcalloc(state_htab_size(env), 13368 sizeof(struct bpf_verifier_state_list *), 13369 GFP_USER); 13370 ret = -ENOMEM; 13371 if (!env->explored_states) 13372 goto skip_full_check; 13373 13374 ret = add_subprog_and_kfunc(env); 13375 if (ret < 0) 13376 goto skip_full_check; 13377 13378 ret = check_subprogs(env); 13379 if (ret < 0) 13380 goto skip_full_check; 13381 13382 ret = check_btf_info(env, attr, uattr); 13383 if (ret < 0) 13384 goto skip_full_check; 13385 13386 ret = check_attach_btf_id(env); 13387 if (ret) 13388 goto skip_full_check; 13389 13390 ret = resolve_pseudo_ldimm64(env); 13391 if (ret < 0) 13392 goto skip_full_check; 13393 13394 ret = check_cfg(env); 13395 if (ret < 0) 13396 goto skip_full_check; 13397 13398 ret = do_check_subprogs(env); 13399 ret = ret ?: do_check_main(env); 13400 13401 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 13402 ret = bpf_prog_offload_finalize(env); 13403 13404 skip_full_check: 13405 kvfree(env->explored_states); 13406 13407 if (ret == 0) 13408 ret = check_max_stack_depth(env); 13409 13410 /* instruction rewrites happen after this point */ 13411 if (is_priv) { 13412 if (ret == 0) 13413 opt_hard_wire_dead_code_branches(env); 13414 if (ret == 0) 13415 ret = opt_remove_dead_code(env); 13416 if (ret == 0) 13417 ret = opt_remove_nops(env); 13418 } else { 13419 if (ret == 0) 13420 sanitize_dead_code(env); 13421 } 13422 13423 if (ret == 0) 13424 /* program is valid, convert *(u32*)(ctx + off) accesses */ 13425 ret = convert_ctx_accesses(env); 13426 13427 if (ret == 0) 13428 ret = do_misc_fixups(env); 13429 13430 /* do 32-bit optimization after insn patching has done so those patched 13431 * insns could be handled correctly. 13432 */ 13433 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 13434 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 13435 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 13436 : false; 13437 } 13438 13439 if (ret == 0) 13440 ret = fixup_call_args(env); 13441 13442 env->verification_time = ktime_get_ns() - start_time; 13443 print_verification_stats(env); 13444 13445 if (log->level && bpf_verifier_log_full(log)) 13446 ret = -ENOSPC; 13447 if (log->level && !log->ubuf) { 13448 ret = -EFAULT; 13449 goto err_release_maps; 13450 } 13451 13452 if (ret) 13453 goto err_release_maps; 13454 13455 if (env->used_map_cnt) { 13456 /* if program passed verifier, update used_maps in bpf_prog_info */ 13457 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 13458 sizeof(env->used_maps[0]), 13459 GFP_KERNEL); 13460 13461 if (!env->prog->aux->used_maps) { 13462 ret = -ENOMEM; 13463 goto err_release_maps; 13464 } 13465 13466 memcpy(env->prog->aux->used_maps, env->used_maps, 13467 sizeof(env->used_maps[0]) * env->used_map_cnt); 13468 env->prog->aux->used_map_cnt = env->used_map_cnt; 13469 } 13470 if (env->used_btf_cnt) { 13471 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 13472 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 13473 sizeof(env->used_btfs[0]), 13474 GFP_KERNEL); 13475 if (!env->prog->aux->used_btfs) { 13476 ret = -ENOMEM; 13477 goto err_release_maps; 13478 } 13479 13480 memcpy(env->prog->aux->used_btfs, env->used_btfs, 13481 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 13482 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 13483 } 13484 if (env->used_map_cnt || env->used_btf_cnt) { 13485 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 13486 * bpf_ld_imm64 instructions 13487 */ 13488 convert_pseudo_ld_imm64(env); 13489 } 13490 13491 adjust_btf_func(env); 13492 13493 err_release_maps: 13494 if (!env->prog->aux->used_maps) 13495 /* if we didn't copy map pointers into bpf_prog_info, release 13496 * them now. Otherwise free_used_maps() will release them. 13497 */ 13498 release_maps(env); 13499 if (!env->prog->aux->used_btfs) 13500 release_btfs(env); 13501 13502 /* extension progs temporarily inherit the attach_type of their targets 13503 for verification purposes, so set it back to zero before returning 13504 */ 13505 if (env->prog->type == BPF_PROG_TYPE_EXT) 13506 env->prog->expected_attach_type = 0; 13507 13508 *prog = env->prog; 13509 err_unlock: 13510 if (!is_priv) 13511 mutex_unlock(&bpf_verifier_lock); 13512 vfree(env->insn_aux_data); 13513 err_free_env: 13514 kfree(env); 13515 return ret; 13516 } 13517