xref: /openbmc/linux/kernel/bpf/verifier.c (revision dcabb06bf127b3e0d3fbc94a2b65dd56c2725851)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 struct bpf_call_arg_meta {
238 	struct bpf_map *map_ptr;
239 	bool raw_mode;
240 	bool pkt_access;
241 	int regno;
242 	int access_size;
243 	int mem_size;
244 	u64 msize_max_value;
245 	int ref_obj_id;
246 	int func_id;
247 	struct btf *btf;
248 	u32 btf_id;
249 	struct btf *ret_btf;
250 	u32 ret_btf_id;
251 };
252 
253 struct btf *btf_vmlinux;
254 
255 static DEFINE_MUTEX(bpf_verifier_lock);
256 
257 static const struct bpf_line_info *
258 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
259 {
260 	const struct bpf_line_info *linfo;
261 	const struct bpf_prog *prog;
262 	u32 i, nr_linfo;
263 
264 	prog = env->prog;
265 	nr_linfo = prog->aux->nr_linfo;
266 
267 	if (!nr_linfo || insn_off >= prog->len)
268 		return NULL;
269 
270 	linfo = prog->aux->linfo;
271 	for (i = 1; i < nr_linfo; i++)
272 		if (insn_off < linfo[i].insn_off)
273 			break;
274 
275 	return &linfo[i - 1];
276 }
277 
278 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
279 		       va_list args)
280 {
281 	unsigned int n;
282 
283 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
284 
285 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
286 		  "verifier log line truncated - local buffer too short\n");
287 
288 	n = min(log->len_total - log->len_used - 1, n);
289 	log->kbuf[n] = '\0';
290 
291 	if (log->level == BPF_LOG_KERNEL) {
292 		pr_err("BPF:%s\n", log->kbuf);
293 		return;
294 	}
295 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
296 		log->len_used += n;
297 	else
298 		log->ubuf = NULL;
299 }
300 
301 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
302 {
303 	char zero = 0;
304 
305 	if (!bpf_verifier_log_needed(log))
306 		return;
307 
308 	log->len_used = new_pos;
309 	if (put_user(zero, log->ubuf + new_pos))
310 		log->ubuf = NULL;
311 }
312 
313 /* log_level controls verbosity level of eBPF verifier.
314  * bpf_verifier_log_write() is used to dump the verification trace to the log,
315  * so the user can figure out what's wrong with the program
316  */
317 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
318 					   const char *fmt, ...)
319 {
320 	va_list args;
321 
322 	if (!bpf_verifier_log_needed(&env->log))
323 		return;
324 
325 	va_start(args, fmt);
326 	bpf_verifier_vlog(&env->log, fmt, args);
327 	va_end(args);
328 }
329 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
330 
331 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
332 {
333 	struct bpf_verifier_env *env = private_data;
334 	va_list args;
335 
336 	if (!bpf_verifier_log_needed(&env->log))
337 		return;
338 
339 	va_start(args, fmt);
340 	bpf_verifier_vlog(&env->log, fmt, args);
341 	va_end(args);
342 }
343 
344 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
345 			    const char *fmt, ...)
346 {
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(log, fmt, args);
354 	va_end(args);
355 }
356 
357 static const char *ltrim(const char *s)
358 {
359 	while (isspace(*s))
360 		s++;
361 
362 	return s;
363 }
364 
365 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
366 					 u32 insn_off,
367 					 const char *prefix_fmt, ...)
368 {
369 	const struct bpf_line_info *linfo;
370 
371 	if (!bpf_verifier_log_needed(&env->log))
372 		return;
373 
374 	linfo = find_linfo(env, insn_off);
375 	if (!linfo || linfo == env->prev_linfo)
376 		return;
377 
378 	if (prefix_fmt) {
379 		va_list args;
380 
381 		va_start(args, prefix_fmt);
382 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
383 		va_end(args);
384 	}
385 
386 	verbose(env, "%s\n",
387 		ltrim(btf_name_by_offset(env->prog->aux->btf,
388 					 linfo->line_off)));
389 
390 	env->prev_linfo = linfo;
391 }
392 
393 static bool type_is_pkt_pointer(enum bpf_reg_type type)
394 {
395 	return type == PTR_TO_PACKET ||
396 	       type == PTR_TO_PACKET_META;
397 }
398 
399 static bool type_is_sk_pointer(enum bpf_reg_type type)
400 {
401 	return type == PTR_TO_SOCKET ||
402 		type == PTR_TO_SOCK_COMMON ||
403 		type == PTR_TO_TCP_SOCK ||
404 		type == PTR_TO_XDP_SOCK;
405 }
406 
407 static bool reg_type_not_null(enum bpf_reg_type type)
408 {
409 	return type == PTR_TO_SOCKET ||
410 		type == PTR_TO_TCP_SOCK ||
411 		type == PTR_TO_MAP_VALUE ||
412 		type == PTR_TO_SOCK_COMMON;
413 }
414 
415 static bool reg_type_may_be_null(enum bpf_reg_type type)
416 {
417 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
418 	       type == PTR_TO_SOCKET_OR_NULL ||
419 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
420 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
421 	       type == PTR_TO_BTF_ID_OR_NULL ||
422 	       type == PTR_TO_MEM_OR_NULL ||
423 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
424 	       type == PTR_TO_RDWR_BUF_OR_NULL;
425 }
426 
427 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
428 {
429 	return reg->type == PTR_TO_MAP_VALUE &&
430 		map_value_has_spin_lock(reg->map_ptr);
431 }
432 
433 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
434 {
435 	return type == PTR_TO_SOCKET ||
436 		type == PTR_TO_SOCKET_OR_NULL ||
437 		type == PTR_TO_TCP_SOCK ||
438 		type == PTR_TO_TCP_SOCK_OR_NULL ||
439 		type == PTR_TO_MEM ||
440 		type == PTR_TO_MEM_OR_NULL;
441 }
442 
443 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
444 {
445 	return type == ARG_PTR_TO_SOCK_COMMON;
446 }
447 
448 static bool arg_type_may_be_null(enum bpf_arg_type type)
449 {
450 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
451 	       type == ARG_PTR_TO_MEM_OR_NULL ||
452 	       type == ARG_PTR_TO_CTX_OR_NULL ||
453 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
454 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
455 }
456 
457 /* Determine whether the function releases some resources allocated by another
458  * function call. The first reference type argument will be assumed to be
459  * released by release_reference().
460  */
461 static bool is_release_function(enum bpf_func_id func_id)
462 {
463 	return func_id == BPF_FUNC_sk_release ||
464 	       func_id == BPF_FUNC_ringbuf_submit ||
465 	       func_id == BPF_FUNC_ringbuf_discard;
466 }
467 
468 static bool may_be_acquire_function(enum bpf_func_id func_id)
469 {
470 	return func_id == BPF_FUNC_sk_lookup_tcp ||
471 		func_id == BPF_FUNC_sk_lookup_udp ||
472 		func_id == BPF_FUNC_skc_lookup_tcp ||
473 		func_id == BPF_FUNC_map_lookup_elem ||
474 	        func_id == BPF_FUNC_ringbuf_reserve;
475 }
476 
477 static bool is_acquire_function(enum bpf_func_id func_id,
478 				const struct bpf_map *map)
479 {
480 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
481 
482 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
483 	    func_id == BPF_FUNC_sk_lookup_udp ||
484 	    func_id == BPF_FUNC_skc_lookup_tcp ||
485 	    func_id == BPF_FUNC_ringbuf_reserve)
486 		return true;
487 
488 	if (func_id == BPF_FUNC_map_lookup_elem &&
489 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
490 	     map_type == BPF_MAP_TYPE_SOCKHASH))
491 		return true;
492 
493 	return false;
494 }
495 
496 static bool is_ptr_cast_function(enum bpf_func_id func_id)
497 {
498 	return func_id == BPF_FUNC_tcp_sock ||
499 		func_id == BPF_FUNC_sk_fullsock ||
500 		func_id == BPF_FUNC_skc_to_tcp_sock ||
501 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
502 		func_id == BPF_FUNC_skc_to_udp6_sock ||
503 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
504 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
505 }
506 
507 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
508 {
509 	return BPF_CLASS(insn->code) == BPF_STX &&
510 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
511 	       insn->imm == BPF_CMPXCHG;
512 }
513 
514 /* string representation of 'enum bpf_reg_type' */
515 static const char * const reg_type_str[] = {
516 	[NOT_INIT]		= "?",
517 	[SCALAR_VALUE]		= "inv",
518 	[PTR_TO_CTX]		= "ctx",
519 	[CONST_PTR_TO_MAP]	= "map_ptr",
520 	[PTR_TO_MAP_VALUE]	= "map_value",
521 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
522 	[PTR_TO_STACK]		= "fp",
523 	[PTR_TO_PACKET]		= "pkt",
524 	[PTR_TO_PACKET_META]	= "pkt_meta",
525 	[PTR_TO_PACKET_END]	= "pkt_end",
526 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
527 	[PTR_TO_SOCKET]		= "sock",
528 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
529 	[PTR_TO_SOCK_COMMON]	= "sock_common",
530 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
531 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
532 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
533 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
534 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
535 	[PTR_TO_BTF_ID]		= "ptr_",
536 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
537 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
538 	[PTR_TO_MEM]		= "mem",
539 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
540 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
541 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
542 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
543 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
544 };
545 
546 static char slot_type_char[] = {
547 	[STACK_INVALID]	= '?',
548 	[STACK_SPILL]	= 'r',
549 	[STACK_MISC]	= 'm',
550 	[STACK_ZERO]	= '0',
551 };
552 
553 static void print_liveness(struct bpf_verifier_env *env,
554 			   enum bpf_reg_liveness live)
555 {
556 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
557 	    verbose(env, "_");
558 	if (live & REG_LIVE_READ)
559 		verbose(env, "r");
560 	if (live & REG_LIVE_WRITTEN)
561 		verbose(env, "w");
562 	if (live & REG_LIVE_DONE)
563 		verbose(env, "D");
564 }
565 
566 static struct bpf_func_state *func(struct bpf_verifier_env *env,
567 				   const struct bpf_reg_state *reg)
568 {
569 	struct bpf_verifier_state *cur = env->cur_state;
570 
571 	return cur->frame[reg->frameno];
572 }
573 
574 static const char *kernel_type_name(const struct btf* btf, u32 id)
575 {
576 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
577 }
578 
579 static void print_verifier_state(struct bpf_verifier_env *env,
580 				 const struct bpf_func_state *state)
581 {
582 	const struct bpf_reg_state *reg;
583 	enum bpf_reg_type t;
584 	int i;
585 
586 	if (state->frameno)
587 		verbose(env, " frame%d:", state->frameno);
588 	for (i = 0; i < MAX_BPF_REG; i++) {
589 		reg = &state->regs[i];
590 		t = reg->type;
591 		if (t == NOT_INIT)
592 			continue;
593 		verbose(env, " R%d", i);
594 		print_liveness(env, reg->live);
595 		verbose(env, "=%s", reg_type_str[t]);
596 		if (t == SCALAR_VALUE && reg->precise)
597 			verbose(env, "P");
598 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
599 		    tnum_is_const(reg->var_off)) {
600 			/* reg->off should be 0 for SCALAR_VALUE */
601 			verbose(env, "%lld", reg->var_off.value + reg->off);
602 		} else {
603 			if (t == PTR_TO_BTF_ID ||
604 			    t == PTR_TO_BTF_ID_OR_NULL ||
605 			    t == PTR_TO_PERCPU_BTF_ID)
606 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
607 			verbose(env, "(id=%d", reg->id);
608 			if (reg_type_may_be_refcounted_or_null(t))
609 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
610 			if (t != SCALAR_VALUE)
611 				verbose(env, ",off=%d", reg->off);
612 			if (type_is_pkt_pointer(t))
613 				verbose(env, ",r=%d", reg->range);
614 			else if (t == CONST_PTR_TO_MAP ||
615 				 t == PTR_TO_MAP_VALUE ||
616 				 t == PTR_TO_MAP_VALUE_OR_NULL)
617 				verbose(env, ",ks=%d,vs=%d",
618 					reg->map_ptr->key_size,
619 					reg->map_ptr->value_size);
620 			if (tnum_is_const(reg->var_off)) {
621 				/* Typically an immediate SCALAR_VALUE, but
622 				 * could be a pointer whose offset is too big
623 				 * for reg->off
624 				 */
625 				verbose(env, ",imm=%llx", reg->var_off.value);
626 			} else {
627 				if (reg->smin_value != reg->umin_value &&
628 				    reg->smin_value != S64_MIN)
629 					verbose(env, ",smin_value=%lld",
630 						(long long)reg->smin_value);
631 				if (reg->smax_value != reg->umax_value &&
632 				    reg->smax_value != S64_MAX)
633 					verbose(env, ",smax_value=%lld",
634 						(long long)reg->smax_value);
635 				if (reg->umin_value != 0)
636 					verbose(env, ",umin_value=%llu",
637 						(unsigned long long)reg->umin_value);
638 				if (reg->umax_value != U64_MAX)
639 					verbose(env, ",umax_value=%llu",
640 						(unsigned long long)reg->umax_value);
641 				if (!tnum_is_unknown(reg->var_off)) {
642 					char tn_buf[48];
643 
644 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
645 					verbose(env, ",var_off=%s", tn_buf);
646 				}
647 				if (reg->s32_min_value != reg->smin_value &&
648 				    reg->s32_min_value != S32_MIN)
649 					verbose(env, ",s32_min_value=%d",
650 						(int)(reg->s32_min_value));
651 				if (reg->s32_max_value != reg->smax_value &&
652 				    reg->s32_max_value != S32_MAX)
653 					verbose(env, ",s32_max_value=%d",
654 						(int)(reg->s32_max_value));
655 				if (reg->u32_min_value != reg->umin_value &&
656 				    reg->u32_min_value != U32_MIN)
657 					verbose(env, ",u32_min_value=%d",
658 						(int)(reg->u32_min_value));
659 				if (reg->u32_max_value != reg->umax_value &&
660 				    reg->u32_max_value != U32_MAX)
661 					verbose(env, ",u32_max_value=%d",
662 						(int)(reg->u32_max_value));
663 			}
664 			verbose(env, ")");
665 		}
666 	}
667 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
668 		char types_buf[BPF_REG_SIZE + 1];
669 		bool valid = false;
670 		int j;
671 
672 		for (j = 0; j < BPF_REG_SIZE; j++) {
673 			if (state->stack[i].slot_type[j] != STACK_INVALID)
674 				valid = true;
675 			types_buf[j] = slot_type_char[
676 					state->stack[i].slot_type[j]];
677 		}
678 		types_buf[BPF_REG_SIZE] = 0;
679 		if (!valid)
680 			continue;
681 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
682 		print_liveness(env, state->stack[i].spilled_ptr.live);
683 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
684 			reg = &state->stack[i].spilled_ptr;
685 			t = reg->type;
686 			verbose(env, "=%s", reg_type_str[t]);
687 			if (t == SCALAR_VALUE && reg->precise)
688 				verbose(env, "P");
689 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
690 				verbose(env, "%lld", reg->var_off.value + reg->off);
691 		} else {
692 			verbose(env, "=%s", types_buf);
693 		}
694 	}
695 	if (state->acquired_refs && state->refs[0].id) {
696 		verbose(env, " refs=%d", state->refs[0].id);
697 		for (i = 1; i < state->acquired_refs; i++)
698 			if (state->refs[i].id)
699 				verbose(env, ",%d", state->refs[i].id);
700 	}
701 	verbose(env, "\n");
702 }
703 
704 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
705 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
706 			       const struct bpf_func_state *src)	\
707 {									\
708 	if (!src->FIELD)						\
709 		return 0;						\
710 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
711 		/* internal bug, make state invalid to reject the program */ \
712 		memset(dst, 0, sizeof(*dst));				\
713 		return -EFAULT;						\
714 	}								\
715 	memcpy(dst->FIELD, src->FIELD,					\
716 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
717 	return 0;							\
718 }
719 /* copy_reference_state() */
720 COPY_STATE_FN(reference, acquired_refs, refs, 1)
721 /* copy_stack_state() */
722 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
723 #undef COPY_STATE_FN
724 
725 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
726 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
727 				  bool copy_old)			\
728 {									\
729 	u32 old_size = state->COUNT;					\
730 	struct bpf_##NAME##_state *new_##FIELD;				\
731 	int slot = size / SIZE;						\
732 									\
733 	if (size <= old_size || !size) {				\
734 		if (copy_old)						\
735 			return 0;					\
736 		state->COUNT = slot * SIZE;				\
737 		if (!size && old_size) {				\
738 			kfree(state->FIELD);				\
739 			state->FIELD = NULL;				\
740 		}							\
741 		return 0;						\
742 	}								\
743 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
744 				    GFP_KERNEL);			\
745 	if (!new_##FIELD)						\
746 		return -ENOMEM;						\
747 	if (copy_old) {							\
748 		if (state->FIELD)					\
749 			memcpy(new_##FIELD, state->FIELD,		\
750 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
751 		memset(new_##FIELD + old_size / SIZE, 0,		\
752 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
753 	}								\
754 	state->COUNT = slot * SIZE;					\
755 	kfree(state->FIELD);						\
756 	state->FIELD = new_##FIELD;					\
757 	return 0;							\
758 }
759 /* realloc_reference_state() */
760 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
761 /* realloc_stack_state() */
762 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
763 #undef REALLOC_STATE_FN
764 
765 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
766  * make it consume minimal amount of memory. check_stack_write() access from
767  * the program calls into realloc_func_state() to grow the stack size.
768  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
769  * which realloc_stack_state() copies over. It points to previous
770  * bpf_verifier_state which is never reallocated.
771  */
772 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
773 			      int refs_size, bool copy_old)
774 {
775 	int err = realloc_reference_state(state, refs_size, copy_old);
776 	if (err)
777 		return err;
778 	return realloc_stack_state(state, stack_size, copy_old);
779 }
780 
781 /* Acquire a pointer id from the env and update the state->refs to include
782  * this new pointer reference.
783  * On success, returns a valid pointer id to associate with the register
784  * On failure, returns a negative errno.
785  */
786 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
787 {
788 	struct bpf_func_state *state = cur_func(env);
789 	int new_ofs = state->acquired_refs;
790 	int id, err;
791 
792 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
793 	if (err)
794 		return err;
795 	id = ++env->id_gen;
796 	state->refs[new_ofs].id = id;
797 	state->refs[new_ofs].insn_idx = insn_idx;
798 
799 	return id;
800 }
801 
802 /* release function corresponding to acquire_reference_state(). Idempotent. */
803 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
804 {
805 	int i, last_idx;
806 
807 	last_idx = state->acquired_refs - 1;
808 	for (i = 0; i < state->acquired_refs; i++) {
809 		if (state->refs[i].id == ptr_id) {
810 			if (last_idx && i != last_idx)
811 				memcpy(&state->refs[i], &state->refs[last_idx],
812 				       sizeof(*state->refs));
813 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
814 			state->acquired_refs--;
815 			return 0;
816 		}
817 	}
818 	return -EINVAL;
819 }
820 
821 static int transfer_reference_state(struct bpf_func_state *dst,
822 				    struct bpf_func_state *src)
823 {
824 	int err = realloc_reference_state(dst, src->acquired_refs, false);
825 	if (err)
826 		return err;
827 	err = copy_reference_state(dst, src);
828 	if (err)
829 		return err;
830 	return 0;
831 }
832 
833 static void free_func_state(struct bpf_func_state *state)
834 {
835 	if (!state)
836 		return;
837 	kfree(state->refs);
838 	kfree(state->stack);
839 	kfree(state);
840 }
841 
842 static void clear_jmp_history(struct bpf_verifier_state *state)
843 {
844 	kfree(state->jmp_history);
845 	state->jmp_history = NULL;
846 	state->jmp_history_cnt = 0;
847 }
848 
849 static void free_verifier_state(struct bpf_verifier_state *state,
850 				bool free_self)
851 {
852 	int i;
853 
854 	for (i = 0; i <= state->curframe; i++) {
855 		free_func_state(state->frame[i]);
856 		state->frame[i] = NULL;
857 	}
858 	clear_jmp_history(state);
859 	if (free_self)
860 		kfree(state);
861 }
862 
863 /* copy verifier state from src to dst growing dst stack space
864  * when necessary to accommodate larger src stack
865  */
866 static int copy_func_state(struct bpf_func_state *dst,
867 			   const struct bpf_func_state *src)
868 {
869 	int err;
870 
871 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
872 				 false);
873 	if (err)
874 		return err;
875 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
876 	err = copy_reference_state(dst, src);
877 	if (err)
878 		return err;
879 	return copy_stack_state(dst, src);
880 }
881 
882 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
883 			       const struct bpf_verifier_state *src)
884 {
885 	struct bpf_func_state *dst;
886 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
887 	int i, err;
888 
889 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
890 		kfree(dst_state->jmp_history);
891 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
892 		if (!dst_state->jmp_history)
893 			return -ENOMEM;
894 	}
895 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
896 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
897 
898 	/* if dst has more stack frames then src frame, free them */
899 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
900 		free_func_state(dst_state->frame[i]);
901 		dst_state->frame[i] = NULL;
902 	}
903 	dst_state->speculative = src->speculative;
904 	dst_state->curframe = src->curframe;
905 	dst_state->active_spin_lock = src->active_spin_lock;
906 	dst_state->branches = src->branches;
907 	dst_state->parent = src->parent;
908 	dst_state->first_insn_idx = src->first_insn_idx;
909 	dst_state->last_insn_idx = src->last_insn_idx;
910 	for (i = 0; i <= src->curframe; i++) {
911 		dst = dst_state->frame[i];
912 		if (!dst) {
913 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
914 			if (!dst)
915 				return -ENOMEM;
916 			dst_state->frame[i] = dst;
917 		}
918 		err = copy_func_state(dst, src->frame[i]);
919 		if (err)
920 			return err;
921 	}
922 	return 0;
923 }
924 
925 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
926 {
927 	while (st) {
928 		u32 br = --st->branches;
929 
930 		/* WARN_ON(br > 1) technically makes sense here,
931 		 * but see comment in push_stack(), hence:
932 		 */
933 		WARN_ONCE((int)br < 0,
934 			  "BUG update_branch_counts:branches_to_explore=%d\n",
935 			  br);
936 		if (br)
937 			break;
938 		st = st->parent;
939 	}
940 }
941 
942 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
943 		     int *insn_idx, bool pop_log)
944 {
945 	struct bpf_verifier_state *cur = env->cur_state;
946 	struct bpf_verifier_stack_elem *elem, *head = env->head;
947 	int err;
948 
949 	if (env->head == NULL)
950 		return -ENOENT;
951 
952 	if (cur) {
953 		err = copy_verifier_state(cur, &head->st);
954 		if (err)
955 			return err;
956 	}
957 	if (pop_log)
958 		bpf_vlog_reset(&env->log, head->log_pos);
959 	if (insn_idx)
960 		*insn_idx = head->insn_idx;
961 	if (prev_insn_idx)
962 		*prev_insn_idx = head->prev_insn_idx;
963 	elem = head->next;
964 	free_verifier_state(&head->st, false);
965 	kfree(head);
966 	env->head = elem;
967 	env->stack_size--;
968 	return 0;
969 }
970 
971 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
972 					     int insn_idx, int prev_insn_idx,
973 					     bool speculative)
974 {
975 	struct bpf_verifier_state *cur = env->cur_state;
976 	struct bpf_verifier_stack_elem *elem;
977 	int err;
978 
979 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
980 	if (!elem)
981 		goto err;
982 
983 	elem->insn_idx = insn_idx;
984 	elem->prev_insn_idx = prev_insn_idx;
985 	elem->next = env->head;
986 	elem->log_pos = env->log.len_used;
987 	env->head = elem;
988 	env->stack_size++;
989 	err = copy_verifier_state(&elem->st, cur);
990 	if (err)
991 		goto err;
992 	elem->st.speculative |= speculative;
993 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
994 		verbose(env, "The sequence of %d jumps is too complex.\n",
995 			env->stack_size);
996 		goto err;
997 	}
998 	if (elem->st.parent) {
999 		++elem->st.parent->branches;
1000 		/* WARN_ON(branches > 2) technically makes sense here,
1001 		 * but
1002 		 * 1. speculative states will bump 'branches' for non-branch
1003 		 * instructions
1004 		 * 2. is_state_visited() heuristics may decide not to create
1005 		 * a new state for a sequence of branches and all such current
1006 		 * and cloned states will be pointing to a single parent state
1007 		 * which might have large 'branches' count.
1008 		 */
1009 	}
1010 	return &elem->st;
1011 err:
1012 	free_verifier_state(env->cur_state, true);
1013 	env->cur_state = NULL;
1014 	/* pop all elements and return */
1015 	while (!pop_stack(env, NULL, NULL, false));
1016 	return NULL;
1017 }
1018 
1019 #define CALLER_SAVED_REGS 6
1020 static const int caller_saved[CALLER_SAVED_REGS] = {
1021 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1022 };
1023 
1024 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1025 				struct bpf_reg_state *reg);
1026 
1027 /* This helper doesn't clear reg->id */
1028 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1029 {
1030 	reg->var_off = tnum_const(imm);
1031 	reg->smin_value = (s64)imm;
1032 	reg->smax_value = (s64)imm;
1033 	reg->umin_value = imm;
1034 	reg->umax_value = imm;
1035 
1036 	reg->s32_min_value = (s32)imm;
1037 	reg->s32_max_value = (s32)imm;
1038 	reg->u32_min_value = (u32)imm;
1039 	reg->u32_max_value = (u32)imm;
1040 }
1041 
1042 /* Mark the unknown part of a register (variable offset or scalar value) as
1043  * known to have the value @imm.
1044  */
1045 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1046 {
1047 	/* Clear id, off, and union(map_ptr, range) */
1048 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1049 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1050 	___mark_reg_known(reg, imm);
1051 }
1052 
1053 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1054 {
1055 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1056 	reg->s32_min_value = (s32)imm;
1057 	reg->s32_max_value = (s32)imm;
1058 	reg->u32_min_value = (u32)imm;
1059 	reg->u32_max_value = (u32)imm;
1060 }
1061 
1062 /* Mark the 'variable offset' part of a register as zero.  This should be
1063  * used only on registers holding a pointer type.
1064  */
1065 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1066 {
1067 	__mark_reg_known(reg, 0);
1068 }
1069 
1070 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1071 {
1072 	__mark_reg_known(reg, 0);
1073 	reg->type = SCALAR_VALUE;
1074 }
1075 
1076 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1077 				struct bpf_reg_state *regs, u32 regno)
1078 {
1079 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1080 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1081 		/* Something bad happened, let's kill all regs */
1082 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1083 			__mark_reg_not_init(env, regs + regno);
1084 		return;
1085 	}
1086 	__mark_reg_known_zero(regs + regno);
1087 }
1088 
1089 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1090 {
1091 	switch (reg->type) {
1092 	case PTR_TO_MAP_VALUE_OR_NULL: {
1093 		const struct bpf_map *map = reg->map_ptr;
1094 
1095 		if (map->inner_map_meta) {
1096 			reg->type = CONST_PTR_TO_MAP;
1097 			reg->map_ptr = map->inner_map_meta;
1098 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1099 			reg->type = PTR_TO_XDP_SOCK;
1100 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1101 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1102 			reg->type = PTR_TO_SOCKET;
1103 		} else {
1104 			reg->type = PTR_TO_MAP_VALUE;
1105 		}
1106 		break;
1107 	}
1108 	case PTR_TO_SOCKET_OR_NULL:
1109 		reg->type = PTR_TO_SOCKET;
1110 		break;
1111 	case PTR_TO_SOCK_COMMON_OR_NULL:
1112 		reg->type = PTR_TO_SOCK_COMMON;
1113 		break;
1114 	case PTR_TO_TCP_SOCK_OR_NULL:
1115 		reg->type = PTR_TO_TCP_SOCK;
1116 		break;
1117 	case PTR_TO_BTF_ID_OR_NULL:
1118 		reg->type = PTR_TO_BTF_ID;
1119 		break;
1120 	case PTR_TO_MEM_OR_NULL:
1121 		reg->type = PTR_TO_MEM;
1122 		break;
1123 	case PTR_TO_RDONLY_BUF_OR_NULL:
1124 		reg->type = PTR_TO_RDONLY_BUF;
1125 		break;
1126 	case PTR_TO_RDWR_BUF_OR_NULL:
1127 		reg->type = PTR_TO_RDWR_BUF;
1128 		break;
1129 	default:
1130 		WARN_ONCE(1, "unknown nullable register type");
1131 	}
1132 }
1133 
1134 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1135 {
1136 	return type_is_pkt_pointer(reg->type);
1137 }
1138 
1139 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1140 {
1141 	return reg_is_pkt_pointer(reg) ||
1142 	       reg->type == PTR_TO_PACKET_END;
1143 }
1144 
1145 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1146 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1147 				    enum bpf_reg_type which)
1148 {
1149 	/* The register can already have a range from prior markings.
1150 	 * This is fine as long as it hasn't been advanced from its
1151 	 * origin.
1152 	 */
1153 	return reg->type == which &&
1154 	       reg->id == 0 &&
1155 	       reg->off == 0 &&
1156 	       tnum_equals_const(reg->var_off, 0);
1157 }
1158 
1159 /* Reset the min/max bounds of a register */
1160 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1161 {
1162 	reg->smin_value = S64_MIN;
1163 	reg->smax_value = S64_MAX;
1164 	reg->umin_value = 0;
1165 	reg->umax_value = U64_MAX;
1166 
1167 	reg->s32_min_value = S32_MIN;
1168 	reg->s32_max_value = S32_MAX;
1169 	reg->u32_min_value = 0;
1170 	reg->u32_max_value = U32_MAX;
1171 }
1172 
1173 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1174 {
1175 	reg->smin_value = S64_MIN;
1176 	reg->smax_value = S64_MAX;
1177 	reg->umin_value = 0;
1178 	reg->umax_value = U64_MAX;
1179 }
1180 
1181 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1182 {
1183 	reg->s32_min_value = S32_MIN;
1184 	reg->s32_max_value = S32_MAX;
1185 	reg->u32_min_value = 0;
1186 	reg->u32_max_value = U32_MAX;
1187 }
1188 
1189 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1190 {
1191 	struct tnum var32_off = tnum_subreg(reg->var_off);
1192 
1193 	/* min signed is max(sign bit) | min(other bits) */
1194 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1195 			var32_off.value | (var32_off.mask & S32_MIN));
1196 	/* max signed is min(sign bit) | max(other bits) */
1197 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1198 			var32_off.value | (var32_off.mask & S32_MAX));
1199 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1200 	reg->u32_max_value = min(reg->u32_max_value,
1201 				 (u32)(var32_off.value | var32_off.mask));
1202 }
1203 
1204 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1205 {
1206 	/* min signed is max(sign bit) | min(other bits) */
1207 	reg->smin_value = max_t(s64, reg->smin_value,
1208 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1209 	/* max signed is min(sign bit) | max(other bits) */
1210 	reg->smax_value = min_t(s64, reg->smax_value,
1211 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1212 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1213 	reg->umax_value = min(reg->umax_value,
1214 			      reg->var_off.value | reg->var_off.mask);
1215 }
1216 
1217 static void __update_reg_bounds(struct bpf_reg_state *reg)
1218 {
1219 	__update_reg32_bounds(reg);
1220 	__update_reg64_bounds(reg);
1221 }
1222 
1223 /* Uses signed min/max values to inform unsigned, and vice-versa */
1224 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1225 {
1226 	/* Learn sign from signed bounds.
1227 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1228 	 * are the same, so combine.  This works even in the negative case, e.g.
1229 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1230 	 */
1231 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1232 		reg->s32_min_value = reg->u32_min_value =
1233 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1234 		reg->s32_max_value = reg->u32_max_value =
1235 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1236 		return;
1237 	}
1238 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1239 	 * boundary, so we must be careful.
1240 	 */
1241 	if ((s32)reg->u32_max_value >= 0) {
1242 		/* Positive.  We can't learn anything from the smin, but smax
1243 		 * is positive, hence safe.
1244 		 */
1245 		reg->s32_min_value = reg->u32_min_value;
1246 		reg->s32_max_value = reg->u32_max_value =
1247 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1248 	} else if ((s32)reg->u32_min_value < 0) {
1249 		/* Negative.  We can't learn anything from the smax, but smin
1250 		 * is negative, hence safe.
1251 		 */
1252 		reg->s32_min_value = reg->u32_min_value =
1253 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1254 		reg->s32_max_value = reg->u32_max_value;
1255 	}
1256 }
1257 
1258 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1259 {
1260 	/* Learn sign from signed bounds.
1261 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1262 	 * are the same, so combine.  This works even in the negative case, e.g.
1263 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1264 	 */
1265 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1266 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1267 							  reg->umin_value);
1268 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1269 							  reg->umax_value);
1270 		return;
1271 	}
1272 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1273 	 * boundary, so we must be careful.
1274 	 */
1275 	if ((s64)reg->umax_value >= 0) {
1276 		/* Positive.  We can't learn anything from the smin, but smax
1277 		 * is positive, hence safe.
1278 		 */
1279 		reg->smin_value = reg->umin_value;
1280 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1281 							  reg->umax_value);
1282 	} else if ((s64)reg->umin_value < 0) {
1283 		/* Negative.  We can't learn anything from the smax, but smin
1284 		 * is negative, hence safe.
1285 		 */
1286 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1287 							  reg->umin_value);
1288 		reg->smax_value = reg->umax_value;
1289 	}
1290 }
1291 
1292 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1293 {
1294 	__reg32_deduce_bounds(reg);
1295 	__reg64_deduce_bounds(reg);
1296 }
1297 
1298 /* Attempts to improve var_off based on unsigned min/max information */
1299 static void __reg_bound_offset(struct bpf_reg_state *reg)
1300 {
1301 	struct tnum var64_off = tnum_intersect(reg->var_off,
1302 					       tnum_range(reg->umin_value,
1303 							  reg->umax_value));
1304 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1305 						tnum_range(reg->u32_min_value,
1306 							   reg->u32_max_value));
1307 
1308 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1309 }
1310 
1311 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1312 {
1313 	reg->umin_value = reg->u32_min_value;
1314 	reg->umax_value = reg->u32_max_value;
1315 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1316 	 * but must be positive otherwise set to worse case bounds
1317 	 * and refine later from tnum.
1318 	 */
1319 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1320 		reg->smax_value = reg->s32_max_value;
1321 	else
1322 		reg->smax_value = U32_MAX;
1323 	if (reg->s32_min_value >= 0)
1324 		reg->smin_value = reg->s32_min_value;
1325 	else
1326 		reg->smin_value = 0;
1327 }
1328 
1329 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1330 {
1331 	/* special case when 64-bit register has upper 32-bit register
1332 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1333 	 * allowing us to use 32-bit bounds directly,
1334 	 */
1335 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1336 		__reg_assign_32_into_64(reg);
1337 	} else {
1338 		/* Otherwise the best we can do is push lower 32bit known and
1339 		 * unknown bits into register (var_off set from jmp logic)
1340 		 * then learn as much as possible from the 64-bit tnum
1341 		 * known and unknown bits. The previous smin/smax bounds are
1342 		 * invalid here because of jmp32 compare so mark them unknown
1343 		 * so they do not impact tnum bounds calculation.
1344 		 */
1345 		__mark_reg64_unbounded(reg);
1346 		__update_reg_bounds(reg);
1347 	}
1348 
1349 	/* Intersecting with the old var_off might have improved our bounds
1350 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1351 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1352 	 */
1353 	__reg_deduce_bounds(reg);
1354 	__reg_bound_offset(reg);
1355 	__update_reg_bounds(reg);
1356 }
1357 
1358 static bool __reg64_bound_s32(s64 a)
1359 {
1360 	return a > S32_MIN && a < S32_MAX;
1361 }
1362 
1363 static bool __reg64_bound_u32(u64 a)
1364 {
1365 	if (a > U32_MIN && a < U32_MAX)
1366 		return true;
1367 	return false;
1368 }
1369 
1370 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1371 {
1372 	__mark_reg32_unbounded(reg);
1373 
1374 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1375 		reg->s32_min_value = (s32)reg->smin_value;
1376 		reg->s32_max_value = (s32)reg->smax_value;
1377 	}
1378 	if (__reg64_bound_u32(reg->umin_value))
1379 		reg->u32_min_value = (u32)reg->umin_value;
1380 	if (__reg64_bound_u32(reg->umax_value))
1381 		reg->u32_max_value = (u32)reg->umax_value;
1382 
1383 	/* Intersecting with the old var_off might have improved our bounds
1384 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1385 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1386 	 */
1387 	__reg_deduce_bounds(reg);
1388 	__reg_bound_offset(reg);
1389 	__update_reg_bounds(reg);
1390 }
1391 
1392 /* Mark a register as having a completely unknown (scalar) value. */
1393 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1394 			       struct bpf_reg_state *reg)
1395 {
1396 	/*
1397 	 * Clear type, id, off, and union(map_ptr, range) and
1398 	 * padding between 'type' and union
1399 	 */
1400 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1401 	reg->type = SCALAR_VALUE;
1402 	reg->var_off = tnum_unknown;
1403 	reg->frameno = 0;
1404 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1405 	__mark_reg_unbounded(reg);
1406 }
1407 
1408 static void mark_reg_unknown(struct bpf_verifier_env *env,
1409 			     struct bpf_reg_state *regs, u32 regno)
1410 {
1411 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1412 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1413 		/* Something bad happened, let's kill all regs except FP */
1414 		for (regno = 0; regno < BPF_REG_FP; regno++)
1415 			__mark_reg_not_init(env, regs + regno);
1416 		return;
1417 	}
1418 	__mark_reg_unknown(env, regs + regno);
1419 }
1420 
1421 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1422 				struct bpf_reg_state *reg)
1423 {
1424 	__mark_reg_unknown(env, reg);
1425 	reg->type = NOT_INIT;
1426 }
1427 
1428 static void mark_reg_not_init(struct bpf_verifier_env *env,
1429 			      struct bpf_reg_state *regs, u32 regno)
1430 {
1431 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1432 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1433 		/* Something bad happened, let's kill all regs except FP */
1434 		for (regno = 0; regno < BPF_REG_FP; regno++)
1435 			__mark_reg_not_init(env, regs + regno);
1436 		return;
1437 	}
1438 	__mark_reg_not_init(env, regs + regno);
1439 }
1440 
1441 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1442 			    struct bpf_reg_state *regs, u32 regno,
1443 			    enum bpf_reg_type reg_type,
1444 			    struct btf *btf, u32 btf_id)
1445 {
1446 	if (reg_type == SCALAR_VALUE) {
1447 		mark_reg_unknown(env, regs, regno);
1448 		return;
1449 	}
1450 	mark_reg_known_zero(env, regs, regno);
1451 	regs[regno].type = PTR_TO_BTF_ID;
1452 	regs[regno].btf = btf;
1453 	regs[regno].btf_id = btf_id;
1454 }
1455 
1456 #define DEF_NOT_SUBREG	(0)
1457 static void init_reg_state(struct bpf_verifier_env *env,
1458 			   struct bpf_func_state *state)
1459 {
1460 	struct bpf_reg_state *regs = state->regs;
1461 	int i;
1462 
1463 	for (i = 0; i < MAX_BPF_REG; i++) {
1464 		mark_reg_not_init(env, regs, i);
1465 		regs[i].live = REG_LIVE_NONE;
1466 		regs[i].parent = NULL;
1467 		regs[i].subreg_def = DEF_NOT_SUBREG;
1468 	}
1469 
1470 	/* frame pointer */
1471 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1472 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1473 	regs[BPF_REG_FP].frameno = state->frameno;
1474 }
1475 
1476 #define BPF_MAIN_FUNC (-1)
1477 static void init_func_state(struct bpf_verifier_env *env,
1478 			    struct bpf_func_state *state,
1479 			    int callsite, int frameno, int subprogno)
1480 {
1481 	state->callsite = callsite;
1482 	state->frameno = frameno;
1483 	state->subprogno = subprogno;
1484 	init_reg_state(env, state);
1485 }
1486 
1487 enum reg_arg_type {
1488 	SRC_OP,		/* register is used as source operand */
1489 	DST_OP,		/* register is used as destination operand */
1490 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1491 };
1492 
1493 static int cmp_subprogs(const void *a, const void *b)
1494 {
1495 	return ((struct bpf_subprog_info *)a)->start -
1496 	       ((struct bpf_subprog_info *)b)->start;
1497 }
1498 
1499 static int find_subprog(struct bpf_verifier_env *env, int off)
1500 {
1501 	struct bpf_subprog_info *p;
1502 
1503 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1504 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1505 	if (!p)
1506 		return -ENOENT;
1507 	return p - env->subprog_info;
1508 
1509 }
1510 
1511 static int add_subprog(struct bpf_verifier_env *env, int off)
1512 {
1513 	int insn_cnt = env->prog->len;
1514 	int ret;
1515 
1516 	if (off >= insn_cnt || off < 0) {
1517 		verbose(env, "call to invalid destination\n");
1518 		return -EINVAL;
1519 	}
1520 	ret = find_subprog(env, off);
1521 	if (ret >= 0)
1522 		return 0;
1523 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1524 		verbose(env, "too many subprograms\n");
1525 		return -E2BIG;
1526 	}
1527 	env->subprog_info[env->subprog_cnt++].start = off;
1528 	sort(env->subprog_info, env->subprog_cnt,
1529 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1530 	return 0;
1531 }
1532 
1533 static int check_subprogs(struct bpf_verifier_env *env)
1534 {
1535 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1536 	struct bpf_subprog_info *subprog = env->subprog_info;
1537 	struct bpf_insn *insn = env->prog->insnsi;
1538 	int insn_cnt = env->prog->len;
1539 
1540 	/* Add entry function. */
1541 	ret = add_subprog(env, 0);
1542 	if (ret < 0)
1543 		return ret;
1544 
1545 	/* determine subprog starts. The end is one before the next starts */
1546 	for (i = 0; i < insn_cnt; i++) {
1547 		if (!bpf_pseudo_call(insn + i))
1548 			continue;
1549 		if (!env->bpf_capable) {
1550 			verbose(env,
1551 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1552 			return -EPERM;
1553 		}
1554 		ret = add_subprog(env, i + insn[i].imm + 1);
1555 		if (ret < 0)
1556 			return ret;
1557 	}
1558 
1559 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1560 	 * logic. 'subprog_cnt' should not be increased.
1561 	 */
1562 	subprog[env->subprog_cnt].start = insn_cnt;
1563 
1564 	if (env->log.level & BPF_LOG_LEVEL2)
1565 		for (i = 0; i < env->subprog_cnt; i++)
1566 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1567 
1568 	/* now check that all jumps are within the same subprog */
1569 	subprog_start = subprog[cur_subprog].start;
1570 	subprog_end = subprog[cur_subprog + 1].start;
1571 	for (i = 0; i < insn_cnt; i++) {
1572 		u8 code = insn[i].code;
1573 
1574 		if (code == (BPF_JMP | BPF_CALL) &&
1575 		    insn[i].imm == BPF_FUNC_tail_call &&
1576 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1577 			subprog[cur_subprog].has_tail_call = true;
1578 		if (BPF_CLASS(code) == BPF_LD &&
1579 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1580 			subprog[cur_subprog].has_ld_abs = true;
1581 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1582 			goto next;
1583 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1584 			goto next;
1585 		off = i + insn[i].off + 1;
1586 		if (off < subprog_start || off >= subprog_end) {
1587 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1588 			return -EINVAL;
1589 		}
1590 next:
1591 		if (i == subprog_end - 1) {
1592 			/* to avoid fall-through from one subprog into another
1593 			 * the last insn of the subprog should be either exit
1594 			 * or unconditional jump back
1595 			 */
1596 			if (code != (BPF_JMP | BPF_EXIT) &&
1597 			    code != (BPF_JMP | BPF_JA)) {
1598 				verbose(env, "last insn is not an exit or jmp\n");
1599 				return -EINVAL;
1600 			}
1601 			subprog_start = subprog_end;
1602 			cur_subprog++;
1603 			if (cur_subprog < env->subprog_cnt)
1604 				subprog_end = subprog[cur_subprog + 1].start;
1605 		}
1606 	}
1607 	return 0;
1608 }
1609 
1610 /* Parentage chain of this register (or stack slot) should take care of all
1611  * issues like callee-saved registers, stack slot allocation time, etc.
1612  */
1613 static int mark_reg_read(struct bpf_verifier_env *env,
1614 			 const struct bpf_reg_state *state,
1615 			 struct bpf_reg_state *parent, u8 flag)
1616 {
1617 	bool writes = parent == state->parent; /* Observe write marks */
1618 	int cnt = 0;
1619 
1620 	while (parent) {
1621 		/* if read wasn't screened by an earlier write ... */
1622 		if (writes && state->live & REG_LIVE_WRITTEN)
1623 			break;
1624 		if (parent->live & REG_LIVE_DONE) {
1625 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1626 				reg_type_str[parent->type],
1627 				parent->var_off.value, parent->off);
1628 			return -EFAULT;
1629 		}
1630 		/* The first condition is more likely to be true than the
1631 		 * second, checked it first.
1632 		 */
1633 		if ((parent->live & REG_LIVE_READ) == flag ||
1634 		    parent->live & REG_LIVE_READ64)
1635 			/* The parentage chain never changes and
1636 			 * this parent was already marked as LIVE_READ.
1637 			 * There is no need to keep walking the chain again and
1638 			 * keep re-marking all parents as LIVE_READ.
1639 			 * This case happens when the same register is read
1640 			 * multiple times without writes into it in-between.
1641 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1642 			 * then no need to set the weak REG_LIVE_READ32.
1643 			 */
1644 			break;
1645 		/* ... then we depend on parent's value */
1646 		parent->live |= flag;
1647 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1648 		if (flag == REG_LIVE_READ64)
1649 			parent->live &= ~REG_LIVE_READ32;
1650 		state = parent;
1651 		parent = state->parent;
1652 		writes = true;
1653 		cnt++;
1654 	}
1655 
1656 	if (env->longest_mark_read_walk < cnt)
1657 		env->longest_mark_read_walk = cnt;
1658 	return 0;
1659 }
1660 
1661 /* This function is supposed to be used by the following 32-bit optimization
1662  * code only. It returns TRUE if the source or destination register operates
1663  * on 64-bit, otherwise return FALSE.
1664  */
1665 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1666 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1667 {
1668 	u8 code, class, op;
1669 
1670 	code = insn->code;
1671 	class = BPF_CLASS(code);
1672 	op = BPF_OP(code);
1673 	if (class == BPF_JMP) {
1674 		/* BPF_EXIT for "main" will reach here. Return TRUE
1675 		 * conservatively.
1676 		 */
1677 		if (op == BPF_EXIT)
1678 			return true;
1679 		if (op == BPF_CALL) {
1680 			/* BPF to BPF call will reach here because of marking
1681 			 * caller saved clobber with DST_OP_NO_MARK for which we
1682 			 * don't care the register def because they are anyway
1683 			 * marked as NOT_INIT already.
1684 			 */
1685 			if (insn->src_reg == BPF_PSEUDO_CALL)
1686 				return false;
1687 			/* Helper call will reach here because of arg type
1688 			 * check, conservatively return TRUE.
1689 			 */
1690 			if (t == SRC_OP)
1691 				return true;
1692 
1693 			return false;
1694 		}
1695 	}
1696 
1697 	if (class == BPF_ALU64 || class == BPF_JMP ||
1698 	    /* BPF_END always use BPF_ALU class. */
1699 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1700 		return true;
1701 
1702 	if (class == BPF_ALU || class == BPF_JMP32)
1703 		return false;
1704 
1705 	if (class == BPF_LDX) {
1706 		if (t != SRC_OP)
1707 			return BPF_SIZE(code) == BPF_DW;
1708 		/* LDX source must be ptr. */
1709 		return true;
1710 	}
1711 
1712 	if (class == BPF_STX) {
1713 		/* BPF_STX (including atomic variants) has multiple source
1714 		 * operands, one of which is a ptr. Check whether the caller is
1715 		 * asking about it.
1716 		 */
1717 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1718 			return true;
1719 		return BPF_SIZE(code) == BPF_DW;
1720 	}
1721 
1722 	if (class == BPF_LD) {
1723 		u8 mode = BPF_MODE(code);
1724 
1725 		/* LD_IMM64 */
1726 		if (mode == BPF_IMM)
1727 			return true;
1728 
1729 		/* Both LD_IND and LD_ABS return 32-bit data. */
1730 		if (t != SRC_OP)
1731 			return  false;
1732 
1733 		/* Implicit ctx ptr. */
1734 		if (regno == BPF_REG_6)
1735 			return true;
1736 
1737 		/* Explicit source could be any width. */
1738 		return true;
1739 	}
1740 
1741 	if (class == BPF_ST)
1742 		/* The only source register for BPF_ST is a ptr. */
1743 		return true;
1744 
1745 	/* Conservatively return true at default. */
1746 	return true;
1747 }
1748 
1749 /* Return the regno defined by the insn, or -1. */
1750 static int insn_def_regno(const struct bpf_insn *insn)
1751 {
1752 	switch (BPF_CLASS(insn->code)) {
1753 	case BPF_JMP:
1754 	case BPF_JMP32:
1755 	case BPF_ST:
1756 		return -1;
1757 	case BPF_STX:
1758 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1759 		    (insn->imm & BPF_FETCH)) {
1760 			if (insn->imm == BPF_CMPXCHG)
1761 				return BPF_REG_0;
1762 			else
1763 				return insn->src_reg;
1764 		} else {
1765 			return -1;
1766 		}
1767 	default:
1768 		return insn->dst_reg;
1769 	}
1770 }
1771 
1772 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1773 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1774 {
1775 	int dst_reg = insn_def_regno(insn);
1776 
1777 	if (dst_reg == -1)
1778 		return false;
1779 
1780 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
1781 }
1782 
1783 static void mark_insn_zext(struct bpf_verifier_env *env,
1784 			   struct bpf_reg_state *reg)
1785 {
1786 	s32 def_idx = reg->subreg_def;
1787 
1788 	if (def_idx == DEF_NOT_SUBREG)
1789 		return;
1790 
1791 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1792 	/* The dst will be zero extended, so won't be sub-register anymore. */
1793 	reg->subreg_def = DEF_NOT_SUBREG;
1794 }
1795 
1796 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1797 			 enum reg_arg_type t)
1798 {
1799 	struct bpf_verifier_state *vstate = env->cur_state;
1800 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1801 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1802 	struct bpf_reg_state *reg, *regs = state->regs;
1803 	bool rw64;
1804 
1805 	if (regno >= MAX_BPF_REG) {
1806 		verbose(env, "R%d is invalid\n", regno);
1807 		return -EINVAL;
1808 	}
1809 
1810 	reg = &regs[regno];
1811 	rw64 = is_reg64(env, insn, regno, reg, t);
1812 	if (t == SRC_OP) {
1813 		/* check whether register used as source operand can be read */
1814 		if (reg->type == NOT_INIT) {
1815 			verbose(env, "R%d !read_ok\n", regno);
1816 			return -EACCES;
1817 		}
1818 		/* We don't need to worry about FP liveness because it's read-only */
1819 		if (regno == BPF_REG_FP)
1820 			return 0;
1821 
1822 		if (rw64)
1823 			mark_insn_zext(env, reg);
1824 
1825 		return mark_reg_read(env, reg, reg->parent,
1826 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1827 	} else {
1828 		/* check whether register used as dest operand can be written to */
1829 		if (regno == BPF_REG_FP) {
1830 			verbose(env, "frame pointer is read only\n");
1831 			return -EACCES;
1832 		}
1833 		reg->live |= REG_LIVE_WRITTEN;
1834 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1835 		if (t == DST_OP)
1836 			mark_reg_unknown(env, regs, regno);
1837 	}
1838 	return 0;
1839 }
1840 
1841 /* for any branch, call, exit record the history of jmps in the given state */
1842 static int push_jmp_history(struct bpf_verifier_env *env,
1843 			    struct bpf_verifier_state *cur)
1844 {
1845 	u32 cnt = cur->jmp_history_cnt;
1846 	struct bpf_idx_pair *p;
1847 
1848 	cnt++;
1849 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1850 	if (!p)
1851 		return -ENOMEM;
1852 	p[cnt - 1].idx = env->insn_idx;
1853 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1854 	cur->jmp_history = p;
1855 	cur->jmp_history_cnt = cnt;
1856 	return 0;
1857 }
1858 
1859 /* Backtrack one insn at a time. If idx is not at the top of recorded
1860  * history then previous instruction came from straight line execution.
1861  */
1862 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1863 			     u32 *history)
1864 {
1865 	u32 cnt = *history;
1866 
1867 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1868 		i = st->jmp_history[cnt - 1].prev_idx;
1869 		(*history)--;
1870 	} else {
1871 		i--;
1872 	}
1873 	return i;
1874 }
1875 
1876 /* For given verifier state backtrack_insn() is called from the last insn to
1877  * the first insn. Its purpose is to compute a bitmask of registers and
1878  * stack slots that needs precision in the parent verifier state.
1879  */
1880 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1881 			  u32 *reg_mask, u64 *stack_mask)
1882 {
1883 	const struct bpf_insn_cbs cbs = {
1884 		.cb_print	= verbose,
1885 		.private_data	= env,
1886 	};
1887 	struct bpf_insn *insn = env->prog->insnsi + idx;
1888 	u8 class = BPF_CLASS(insn->code);
1889 	u8 opcode = BPF_OP(insn->code);
1890 	u8 mode = BPF_MODE(insn->code);
1891 	u32 dreg = 1u << insn->dst_reg;
1892 	u32 sreg = 1u << insn->src_reg;
1893 	u32 spi;
1894 
1895 	if (insn->code == 0)
1896 		return 0;
1897 	if (env->log.level & BPF_LOG_LEVEL) {
1898 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1899 		verbose(env, "%d: ", idx);
1900 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1901 	}
1902 
1903 	if (class == BPF_ALU || class == BPF_ALU64) {
1904 		if (!(*reg_mask & dreg))
1905 			return 0;
1906 		if (opcode == BPF_MOV) {
1907 			if (BPF_SRC(insn->code) == BPF_X) {
1908 				/* dreg = sreg
1909 				 * dreg needs precision after this insn
1910 				 * sreg needs precision before this insn
1911 				 */
1912 				*reg_mask &= ~dreg;
1913 				*reg_mask |= sreg;
1914 			} else {
1915 				/* dreg = K
1916 				 * dreg needs precision after this insn.
1917 				 * Corresponding register is already marked
1918 				 * as precise=true in this verifier state.
1919 				 * No further markings in parent are necessary
1920 				 */
1921 				*reg_mask &= ~dreg;
1922 			}
1923 		} else {
1924 			if (BPF_SRC(insn->code) == BPF_X) {
1925 				/* dreg += sreg
1926 				 * both dreg and sreg need precision
1927 				 * before this insn
1928 				 */
1929 				*reg_mask |= sreg;
1930 			} /* else dreg += K
1931 			   * dreg still needs precision before this insn
1932 			   */
1933 		}
1934 	} else if (class == BPF_LDX) {
1935 		if (!(*reg_mask & dreg))
1936 			return 0;
1937 		*reg_mask &= ~dreg;
1938 
1939 		/* scalars can only be spilled into stack w/o losing precision.
1940 		 * Load from any other memory can be zero extended.
1941 		 * The desire to keep that precision is already indicated
1942 		 * by 'precise' mark in corresponding register of this state.
1943 		 * No further tracking necessary.
1944 		 */
1945 		if (insn->src_reg != BPF_REG_FP)
1946 			return 0;
1947 		if (BPF_SIZE(insn->code) != BPF_DW)
1948 			return 0;
1949 
1950 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1951 		 * that [fp - off] slot contains scalar that needs to be
1952 		 * tracked with precision
1953 		 */
1954 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1955 		if (spi >= 64) {
1956 			verbose(env, "BUG spi %d\n", spi);
1957 			WARN_ONCE(1, "verifier backtracking bug");
1958 			return -EFAULT;
1959 		}
1960 		*stack_mask |= 1ull << spi;
1961 	} else if (class == BPF_STX || class == BPF_ST) {
1962 		if (*reg_mask & dreg)
1963 			/* stx & st shouldn't be using _scalar_ dst_reg
1964 			 * to access memory. It means backtracking
1965 			 * encountered a case of pointer subtraction.
1966 			 */
1967 			return -ENOTSUPP;
1968 		/* scalars can only be spilled into stack */
1969 		if (insn->dst_reg != BPF_REG_FP)
1970 			return 0;
1971 		if (BPF_SIZE(insn->code) != BPF_DW)
1972 			return 0;
1973 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1974 		if (spi >= 64) {
1975 			verbose(env, "BUG spi %d\n", spi);
1976 			WARN_ONCE(1, "verifier backtracking bug");
1977 			return -EFAULT;
1978 		}
1979 		if (!(*stack_mask & (1ull << spi)))
1980 			return 0;
1981 		*stack_mask &= ~(1ull << spi);
1982 		if (class == BPF_STX)
1983 			*reg_mask |= sreg;
1984 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1985 		if (opcode == BPF_CALL) {
1986 			if (insn->src_reg == BPF_PSEUDO_CALL)
1987 				return -ENOTSUPP;
1988 			/* regular helper call sets R0 */
1989 			*reg_mask &= ~1;
1990 			if (*reg_mask & 0x3f) {
1991 				/* if backtracing was looking for registers R1-R5
1992 				 * they should have been found already.
1993 				 */
1994 				verbose(env, "BUG regs %x\n", *reg_mask);
1995 				WARN_ONCE(1, "verifier backtracking bug");
1996 				return -EFAULT;
1997 			}
1998 		} else if (opcode == BPF_EXIT) {
1999 			return -ENOTSUPP;
2000 		}
2001 	} else if (class == BPF_LD) {
2002 		if (!(*reg_mask & dreg))
2003 			return 0;
2004 		*reg_mask &= ~dreg;
2005 		/* It's ld_imm64 or ld_abs or ld_ind.
2006 		 * For ld_imm64 no further tracking of precision
2007 		 * into parent is necessary
2008 		 */
2009 		if (mode == BPF_IND || mode == BPF_ABS)
2010 			/* to be analyzed */
2011 			return -ENOTSUPP;
2012 	}
2013 	return 0;
2014 }
2015 
2016 /* the scalar precision tracking algorithm:
2017  * . at the start all registers have precise=false.
2018  * . scalar ranges are tracked as normal through alu and jmp insns.
2019  * . once precise value of the scalar register is used in:
2020  *   .  ptr + scalar alu
2021  *   . if (scalar cond K|scalar)
2022  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2023  *   backtrack through the verifier states and mark all registers and
2024  *   stack slots with spilled constants that these scalar regisers
2025  *   should be precise.
2026  * . during state pruning two registers (or spilled stack slots)
2027  *   are equivalent if both are not precise.
2028  *
2029  * Note the verifier cannot simply walk register parentage chain,
2030  * since many different registers and stack slots could have been
2031  * used to compute single precise scalar.
2032  *
2033  * The approach of starting with precise=true for all registers and then
2034  * backtrack to mark a register as not precise when the verifier detects
2035  * that program doesn't care about specific value (e.g., when helper
2036  * takes register as ARG_ANYTHING parameter) is not safe.
2037  *
2038  * It's ok to walk single parentage chain of the verifier states.
2039  * It's possible that this backtracking will go all the way till 1st insn.
2040  * All other branches will be explored for needing precision later.
2041  *
2042  * The backtracking needs to deal with cases like:
2043  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2044  * r9 -= r8
2045  * r5 = r9
2046  * if r5 > 0x79f goto pc+7
2047  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2048  * r5 += 1
2049  * ...
2050  * call bpf_perf_event_output#25
2051  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2052  *
2053  * and this case:
2054  * r6 = 1
2055  * call foo // uses callee's r6 inside to compute r0
2056  * r0 += r6
2057  * if r0 == 0 goto
2058  *
2059  * to track above reg_mask/stack_mask needs to be independent for each frame.
2060  *
2061  * Also if parent's curframe > frame where backtracking started,
2062  * the verifier need to mark registers in both frames, otherwise callees
2063  * may incorrectly prune callers. This is similar to
2064  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2065  *
2066  * For now backtracking falls back into conservative marking.
2067  */
2068 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2069 				     struct bpf_verifier_state *st)
2070 {
2071 	struct bpf_func_state *func;
2072 	struct bpf_reg_state *reg;
2073 	int i, j;
2074 
2075 	/* big hammer: mark all scalars precise in this path.
2076 	 * pop_stack may still get !precise scalars.
2077 	 */
2078 	for (; st; st = st->parent)
2079 		for (i = 0; i <= st->curframe; i++) {
2080 			func = st->frame[i];
2081 			for (j = 0; j < BPF_REG_FP; j++) {
2082 				reg = &func->regs[j];
2083 				if (reg->type != SCALAR_VALUE)
2084 					continue;
2085 				reg->precise = true;
2086 			}
2087 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2088 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2089 					continue;
2090 				reg = &func->stack[j].spilled_ptr;
2091 				if (reg->type != SCALAR_VALUE)
2092 					continue;
2093 				reg->precise = true;
2094 			}
2095 		}
2096 }
2097 
2098 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2099 				  int spi)
2100 {
2101 	struct bpf_verifier_state *st = env->cur_state;
2102 	int first_idx = st->first_insn_idx;
2103 	int last_idx = env->insn_idx;
2104 	struct bpf_func_state *func;
2105 	struct bpf_reg_state *reg;
2106 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2107 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2108 	bool skip_first = true;
2109 	bool new_marks = false;
2110 	int i, err;
2111 
2112 	if (!env->bpf_capable)
2113 		return 0;
2114 
2115 	func = st->frame[st->curframe];
2116 	if (regno >= 0) {
2117 		reg = &func->regs[regno];
2118 		if (reg->type != SCALAR_VALUE) {
2119 			WARN_ONCE(1, "backtracing misuse");
2120 			return -EFAULT;
2121 		}
2122 		if (!reg->precise)
2123 			new_marks = true;
2124 		else
2125 			reg_mask = 0;
2126 		reg->precise = true;
2127 	}
2128 
2129 	while (spi >= 0) {
2130 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2131 			stack_mask = 0;
2132 			break;
2133 		}
2134 		reg = &func->stack[spi].spilled_ptr;
2135 		if (reg->type != SCALAR_VALUE) {
2136 			stack_mask = 0;
2137 			break;
2138 		}
2139 		if (!reg->precise)
2140 			new_marks = true;
2141 		else
2142 			stack_mask = 0;
2143 		reg->precise = true;
2144 		break;
2145 	}
2146 
2147 	if (!new_marks)
2148 		return 0;
2149 	if (!reg_mask && !stack_mask)
2150 		return 0;
2151 	for (;;) {
2152 		DECLARE_BITMAP(mask, 64);
2153 		u32 history = st->jmp_history_cnt;
2154 
2155 		if (env->log.level & BPF_LOG_LEVEL)
2156 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2157 		for (i = last_idx;;) {
2158 			if (skip_first) {
2159 				err = 0;
2160 				skip_first = false;
2161 			} else {
2162 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2163 			}
2164 			if (err == -ENOTSUPP) {
2165 				mark_all_scalars_precise(env, st);
2166 				return 0;
2167 			} else if (err) {
2168 				return err;
2169 			}
2170 			if (!reg_mask && !stack_mask)
2171 				/* Found assignment(s) into tracked register in this state.
2172 				 * Since this state is already marked, just return.
2173 				 * Nothing to be tracked further in the parent state.
2174 				 */
2175 				return 0;
2176 			if (i == first_idx)
2177 				break;
2178 			i = get_prev_insn_idx(st, i, &history);
2179 			if (i >= env->prog->len) {
2180 				/* This can happen if backtracking reached insn 0
2181 				 * and there are still reg_mask or stack_mask
2182 				 * to backtrack.
2183 				 * It means the backtracking missed the spot where
2184 				 * particular register was initialized with a constant.
2185 				 */
2186 				verbose(env, "BUG backtracking idx %d\n", i);
2187 				WARN_ONCE(1, "verifier backtracking bug");
2188 				return -EFAULT;
2189 			}
2190 		}
2191 		st = st->parent;
2192 		if (!st)
2193 			break;
2194 
2195 		new_marks = false;
2196 		func = st->frame[st->curframe];
2197 		bitmap_from_u64(mask, reg_mask);
2198 		for_each_set_bit(i, mask, 32) {
2199 			reg = &func->regs[i];
2200 			if (reg->type != SCALAR_VALUE) {
2201 				reg_mask &= ~(1u << i);
2202 				continue;
2203 			}
2204 			if (!reg->precise)
2205 				new_marks = true;
2206 			reg->precise = true;
2207 		}
2208 
2209 		bitmap_from_u64(mask, stack_mask);
2210 		for_each_set_bit(i, mask, 64) {
2211 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2212 				/* the sequence of instructions:
2213 				 * 2: (bf) r3 = r10
2214 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2215 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2216 				 * doesn't contain jmps. It's backtracked
2217 				 * as a single block.
2218 				 * During backtracking insn 3 is not recognized as
2219 				 * stack access, so at the end of backtracking
2220 				 * stack slot fp-8 is still marked in stack_mask.
2221 				 * However the parent state may not have accessed
2222 				 * fp-8 and it's "unallocated" stack space.
2223 				 * In such case fallback to conservative.
2224 				 */
2225 				mark_all_scalars_precise(env, st);
2226 				return 0;
2227 			}
2228 
2229 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2230 				stack_mask &= ~(1ull << i);
2231 				continue;
2232 			}
2233 			reg = &func->stack[i].spilled_ptr;
2234 			if (reg->type != SCALAR_VALUE) {
2235 				stack_mask &= ~(1ull << i);
2236 				continue;
2237 			}
2238 			if (!reg->precise)
2239 				new_marks = true;
2240 			reg->precise = true;
2241 		}
2242 		if (env->log.level & BPF_LOG_LEVEL) {
2243 			print_verifier_state(env, func);
2244 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2245 				new_marks ? "didn't have" : "already had",
2246 				reg_mask, stack_mask);
2247 		}
2248 
2249 		if (!reg_mask && !stack_mask)
2250 			break;
2251 		if (!new_marks)
2252 			break;
2253 
2254 		last_idx = st->last_insn_idx;
2255 		first_idx = st->first_insn_idx;
2256 	}
2257 	return 0;
2258 }
2259 
2260 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2261 {
2262 	return __mark_chain_precision(env, regno, -1);
2263 }
2264 
2265 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2266 {
2267 	return __mark_chain_precision(env, -1, spi);
2268 }
2269 
2270 static bool is_spillable_regtype(enum bpf_reg_type type)
2271 {
2272 	switch (type) {
2273 	case PTR_TO_MAP_VALUE:
2274 	case PTR_TO_MAP_VALUE_OR_NULL:
2275 	case PTR_TO_STACK:
2276 	case PTR_TO_CTX:
2277 	case PTR_TO_PACKET:
2278 	case PTR_TO_PACKET_META:
2279 	case PTR_TO_PACKET_END:
2280 	case PTR_TO_FLOW_KEYS:
2281 	case CONST_PTR_TO_MAP:
2282 	case PTR_TO_SOCKET:
2283 	case PTR_TO_SOCKET_OR_NULL:
2284 	case PTR_TO_SOCK_COMMON:
2285 	case PTR_TO_SOCK_COMMON_OR_NULL:
2286 	case PTR_TO_TCP_SOCK:
2287 	case PTR_TO_TCP_SOCK_OR_NULL:
2288 	case PTR_TO_XDP_SOCK:
2289 	case PTR_TO_BTF_ID:
2290 	case PTR_TO_BTF_ID_OR_NULL:
2291 	case PTR_TO_RDONLY_BUF:
2292 	case PTR_TO_RDONLY_BUF_OR_NULL:
2293 	case PTR_TO_RDWR_BUF:
2294 	case PTR_TO_RDWR_BUF_OR_NULL:
2295 	case PTR_TO_PERCPU_BTF_ID:
2296 	case PTR_TO_MEM:
2297 	case PTR_TO_MEM_OR_NULL:
2298 		return true;
2299 	default:
2300 		return false;
2301 	}
2302 }
2303 
2304 /* Does this register contain a constant zero? */
2305 static bool register_is_null(struct bpf_reg_state *reg)
2306 {
2307 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2308 }
2309 
2310 static bool register_is_const(struct bpf_reg_state *reg)
2311 {
2312 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2313 }
2314 
2315 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2316 {
2317 	return tnum_is_unknown(reg->var_off) &&
2318 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2319 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2320 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2321 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2322 }
2323 
2324 static bool register_is_bounded(struct bpf_reg_state *reg)
2325 {
2326 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2327 }
2328 
2329 static bool __is_pointer_value(bool allow_ptr_leaks,
2330 			       const struct bpf_reg_state *reg)
2331 {
2332 	if (allow_ptr_leaks)
2333 		return false;
2334 
2335 	return reg->type != SCALAR_VALUE;
2336 }
2337 
2338 static void save_register_state(struct bpf_func_state *state,
2339 				int spi, struct bpf_reg_state *reg)
2340 {
2341 	int i;
2342 
2343 	state->stack[spi].spilled_ptr = *reg;
2344 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2345 
2346 	for (i = 0; i < BPF_REG_SIZE; i++)
2347 		state->stack[spi].slot_type[i] = STACK_SPILL;
2348 }
2349 
2350 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2351  * stack boundary and alignment are checked in check_mem_access()
2352  */
2353 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2354 				       /* stack frame we're writing to */
2355 				       struct bpf_func_state *state,
2356 				       int off, int size, int value_regno,
2357 				       int insn_idx)
2358 {
2359 	struct bpf_func_state *cur; /* state of the current function */
2360 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2361 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2362 	struct bpf_reg_state *reg = NULL;
2363 
2364 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2365 				 state->acquired_refs, true);
2366 	if (err)
2367 		return err;
2368 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2369 	 * so it's aligned access and [off, off + size) are within stack limits
2370 	 */
2371 	if (!env->allow_ptr_leaks &&
2372 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2373 	    size != BPF_REG_SIZE) {
2374 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2375 		return -EACCES;
2376 	}
2377 
2378 	cur = env->cur_state->frame[env->cur_state->curframe];
2379 	if (value_regno >= 0)
2380 		reg = &cur->regs[value_regno];
2381 
2382 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2383 	    !register_is_null(reg) && env->bpf_capable) {
2384 		if (dst_reg != BPF_REG_FP) {
2385 			/* The backtracking logic can only recognize explicit
2386 			 * stack slot address like [fp - 8]. Other spill of
2387 			 * scalar via different register has to be conervative.
2388 			 * Backtrack from here and mark all registers as precise
2389 			 * that contributed into 'reg' being a constant.
2390 			 */
2391 			err = mark_chain_precision(env, value_regno);
2392 			if (err)
2393 				return err;
2394 		}
2395 		save_register_state(state, spi, reg);
2396 	} else if (reg && is_spillable_regtype(reg->type)) {
2397 		/* register containing pointer is being spilled into stack */
2398 		if (size != BPF_REG_SIZE) {
2399 			verbose_linfo(env, insn_idx, "; ");
2400 			verbose(env, "invalid size of register spill\n");
2401 			return -EACCES;
2402 		}
2403 
2404 		if (state != cur && reg->type == PTR_TO_STACK) {
2405 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2406 			return -EINVAL;
2407 		}
2408 
2409 		if (!env->bypass_spec_v4) {
2410 			bool sanitize = false;
2411 
2412 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2413 			    register_is_const(&state->stack[spi].spilled_ptr))
2414 				sanitize = true;
2415 			for (i = 0; i < BPF_REG_SIZE; i++)
2416 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2417 					sanitize = true;
2418 					break;
2419 				}
2420 			if (sanitize) {
2421 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2422 				int soff = (-spi - 1) * BPF_REG_SIZE;
2423 
2424 				/* detected reuse of integer stack slot with a pointer
2425 				 * which means either llvm is reusing stack slot or
2426 				 * an attacker is trying to exploit CVE-2018-3639
2427 				 * (speculative store bypass)
2428 				 * Have to sanitize that slot with preemptive
2429 				 * store of zero.
2430 				 */
2431 				if (*poff && *poff != soff) {
2432 					/* disallow programs where single insn stores
2433 					 * into two different stack slots, since verifier
2434 					 * cannot sanitize them
2435 					 */
2436 					verbose(env,
2437 						"insn %d cannot access two stack slots fp%d and fp%d",
2438 						insn_idx, *poff, soff);
2439 					return -EINVAL;
2440 				}
2441 				*poff = soff;
2442 			}
2443 		}
2444 		save_register_state(state, spi, reg);
2445 	} else {
2446 		u8 type = STACK_MISC;
2447 
2448 		/* regular write of data into stack destroys any spilled ptr */
2449 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2450 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2451 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2452 			for (i = 0; i < BPF_REG_SIZE; i++)
2453 				state->stack[spi].slot_type[i] = STACK_MISC;
2454 
2455 		/* only mark the slot as written if all 8 bytes were written
2456 		 * otherwise read propagation may incorrectly stop too soon
2457 		 * when stack slots are partially written.
2458 		 * This heuristic means that read propagation will be
2459 		 * conservative, since it will add reg_live_read marks
2460 		 * to stack slots all the way to first state when programs
2461 		 * writes+reads less than 8 bytes
2462 		 */
2463 		if (size == BPF_REG_SIZE)
2464 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2465 
2466 		/* when we zero initialize stack slots mark them as such */
2467 		if (reg && register_is_null(reg)) {
2468 			/* backtracking doesn't work for STACK_ZERO yet. */
2469 			err = mark_chain_precision(env, value_regno);
2470 			if (err)
2471 				return err;
2472 			type = STACK_ZERO;
2473 		}
2474 
2475 		/* Mark slots affected by this stack write. */
2476 		for (i = 0; i < size; i++)
2477 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2478 				type;
2479 	}
2480 	return 0;
2481 }
2482 
2483 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2484  * known to contain a variable offset.
2485  * This function checks whether the write is permitted and conservatively
2486  * tracks the effects of the write, considering that each stack slot in the
2487  * dynamic range is potentially written to.
2488  *
2489  * 'off' includes 'regno->off'.
2490  * 'value_regno' can be -1, meaning that an unknown value is being written to
2491  * the stack.
2492  *
2493  * Spilled pointers in range are not marked as written because we don't know
2494  * what's going to be actually written. This means that read propagation for
2495  * future reads cannot be terminated by this write.
2496  *
2497  * For privileged programs, uninitialized stack slots are considered
2498  * initialized by this write (even though we don't know exactly what offsets
2499  * are going to be written to). The idea is that we don't want the verifier to
2500  * reject future reads that access slots written to through variable offsets.
2501  */
2502 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2503 				     /* func where register points to */
2504 				     struct bpf_func_state *state,
2505 				     int ptr_regno, int off, int size,
2506 				     int value_regno, int insn_idx)
2507 {
2508 	struct bpf_func_state *cur; /* state of the current function */
2509 	int min_off, max_off;
2510 	int i, err;
2511 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2512 	bool writing_zero = false;
2513 	/* set if the fact that we're writing a zero is used to let any
2514 	 * stack slots remain STACK_ZERO
2515 	 */
2516 	bool zero_used = false;
2517 
2518 	cur = env->cur_state->frame[env->cur_state->curframe];
2519 	ptr_reg = &cur->regs[ptr_regno];
2520 	min_off = ptr_reg->smin_value + off;
2521 	max_off = ptr_reg->smax_value + off + size;
2522 	if (value_regno >= 0)
2523 		value_reg = &cur->regs[value_regno];
2524 	if (value_reg && register_is_null(value_reg))
2525 		writing_zero = true;
2526 
2527 	err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2528 				 state->acquired_refs, true);
2529 	if (err)
2530 		return err;
2531 
2532 
2533 	/* Variable offset writes destroy any spilled pointers in range. */
2534 	for (i = min_off; i < max_off; i++) {
2535 		u8 new_type, *stype;
2536 		int slot, spi;
2537 
2538 		slot = -i - 1;
2539 		spi = slot / BPF_REG_SIZE;
2540 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2541 
2542 		if (!env->allow_ptr_leaks
2543 				&& *stype != NOT_INIT
2544 				&& *stype != SCALAR_VALUE) {
2545 			/* Reject the write if there's are spilled pointers in
2546 			 * range. If we didn't reject here, the ptr status
2547 			 * would be erased below (even though not all slots are
2548 			 * actually overwritten), possibly opening the door to
2549 			 * leaks.
2550 			 */
2551 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2552 				insn_idx, i);
2553 			return -EINVAL;
2554 		}
2555 
2556 		/* Erase all spilled pointers. */
2557 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2558 
2559 		/* Update the slot type. */
2560 		new_type = STACK_MISC;
2561 		if (writing_zero && *stype == STACK_ZERO) {
2562 			new_type = STACK_ZERO;
2563 			zero_used = true;
2564 		}
2565 		/* If the slot is STACK_INVALID, we check whether it's OK to
2566 		 * pretend that it will be initialized by this write. The slot
2567 		 * might not actually be written to, and so if we mark it as
2568 		 * initialized future reads might leak uninitialized memory.
2569 		 * For privileged programs, we will accept such reads to slots
2570 		 * that may or may not be written because, if we're reject
2571 		 * them, the error would be too confusing.
2572 		 */
2573 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2574 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2575 					insn_idx, i);
2576 			return -EINVAL;
2577 		}
2578 		*stype = new_type;
2579 	}
2580 	if (zero_used) {
2581 		/* backtracking doesn't work for STACK_ZERO yet. */
2582 		err = mark_chain_precision(env, value_regno);
2583 		if (err)
2584 			return err;
2585 	}
2586 	return 0;
2587 }
2588 
2589 /* When register 'dst_regno' is assigned some values from stack[min_off,
2590  * max_off), we set the register's type according to the types of the
2591  * respective stack slots. If all the stack values are known to be zeros, then
2592  * so is the destination reg. Otherwise, the register is considered to be
2593  * SCALAR. This function does not deal with register filling; the caller must
2594  * ensure that all spilled registers in the stack range have been marked as
2595  * read.
2596  */
2597 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2598 				/* func where src register points to */
2599 				struct bpf_func_state *ptr_state,
2600 				int min_off, int max_off, int dst_regno)
2601 {
2602 	struct bpf_verifier_state *vstate = env->cur_state;
2603 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2604 	int i, slot, spi;
2605 	u8 *stype;
2606 	int zeros = 0;
2607 
2608 	for (i = min_off; i < max_off; i++) {
2609 		slot = -i - 1;
2610 		spi = slot / BPF_REG_SIZE;
2611 		stype = ptr_state->stack[spi].slot_type;
2612 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2613 			break;
2614 		zeros++;
2615 	}
2616 	if (zeros == max_off - min_off) {
2617 		/* any access_size read into register is zero extended,
2618 		 * so the whole register == const_zero
2619 		 */
2620 		__mark_reg_const_zero(&state->regs[dst_regno]);
2621 		/* backtracking doesn't support STACK_ZERO yet,
2622 		 * so mark it precise here, so that later
2623 		 * backtracking can stop here.
2624 		 * Backtracking may not need this if this register
2625 		 * doesn't participate in pointer adjustment.
2626 		 * Forward propagation of precise flag is not
2627 		 * necessary either. This mark is only to stop
2628 		 * backtracking. Any register that contributed
2629 		 * to const 0 was marked precise before spill.
2630 		 */
2631 		state->regs[dst_regno].precise = true;
2632 	} else {
2633 		/* have read misc data from the stack */
2634 		mark_reg_unknown(env, state->regs, dst_regno);
2635 	}
2636 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2637 }
2638 
2639 /* Read the stack at 'off' and put the results into the register indicated by
2640  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2641  * spilled reg.
2642  *
2643  * 'dst_regno' can be -1, meaning that the read value is not going to a
2644  * register.
2645  *
2646  * The access is assumed to be within the current stack bounds.
2647  */
2648 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2649 				      /* func where src register points to */
2650 				      struct bpf_func_state *reg_state,
2651 				      int off, int size, int dst_regno)
2652 {
2653 	struct bpf_verifier_state *vstate = env->cur_state;
2654 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2655 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2656 	struct bpf_reg_state *reg;
2657 	u8 *stype;
2658 
2659 	stype = reg_state->stack[spi].slot_type;
2660 	reg = &reg_state->stack[spi].spilled_ptr;
2661 
2662 	if (stype[0] == STACK_SPILL) {
2663 		if (size != BPF_REG_SIZE) {
2664 			if (reg->type != SCALAR_VALUE) {
2665 				verbose_linfo(env, env->insn_idx, "; ");
2666 				verbose(env, "invalid size of register fill\n");
2667 				return -EACCES;
2668 			}
2669 			if (dst_regno >= 0) {
2670 				mark_reg_unknown(env, state->regs, dst_regno);
2671 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2672 			}
2673 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2674 			return 0;
2675 		}
2676 		for (i = 1; i < BPF_REG_SIZE; i++) {
2677 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2678 				verbose(env, "corrupted spill memory\n");
2679 				return -EACCES;
2680 			}
2681 		}
2682 
2683 		if (dst_regno >= 0) {
2684 			/* restore register state from stack */
2685 			state->regs[dst_regno] = *reg;
2686 			/* mark reg as written since spilled pointer state likely
2687 			 * has its liveness marks cleared by is_state_visited()
2688 			 * which resets stack/reg liveness for state transitions
2689 			 */
2690 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2691 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2692 			/* If dst_regno==-1, the caller is asking us whether
2693 			 * it is acceptable to use this value as a SCALAR_VALUE
2694 			 * (e.g. for XADD).
2695 			 * We must not allow unprivileged callers to do that
2696 			 * with spilled pointers.
2697 			 */
2698 			verbose(env, "leaking pointer from stack off %d\n",
2699 				off);
2700 			return -EACCES;
2701 		}
2702 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2703 	} else {
2704 		u8 type;
2705 
2706 		for (i = 0; i < size; i++) {
2707 			type = stype[(slot - i) % BPF_REG_SIZE];
2708 			if (type == STACK_MISC)
2709 				continue;
2710 			if (type == STACK_ZERO)
2711 				continue;
2712 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2713 				off, i, size);
2714 			return -EACCES;
2715 		}
2716 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2717 		if (dst_regno >= 0)
2718 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2719 	}
2720 	return 0;
2721 }
2722 
2723 enum stack_access_src {
2724 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2725 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2726 };
2727 
2728 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2729 					 int regno, int off, int access_size,
2730 					 bool zero_size_allowed,
2731 					 enum stack_access_src type,
2732 					 struct bpf_call_arg_meta *meta);
2733 
2734 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2735 {
2736 	return cur_regs(env) + regno;
2737 }
2738 
2739 /* Read the stack at 'ptr_regno + off' and put the result into the register
2740  * 'dst_regno'.
2741  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2742  * but not its variable offset.
2743  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2744  *
2745  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2746  * filling registers (i.e. reads of spilled register cannot be detected when
2747  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2748  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2749  * offset; for a fixed offset check_stack_read_fixed_off should be used
2750  * instead.
2751  */
2752 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2753 				    int ptr_regno, int off, int size, int dst_regno)
2754 {
2755 	/* The state of the source register. */
2756 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2757 	struct bpf_func_state *ptr_state = func(env, reg);
2758 	int err;
2759 	int min_off, max_off;
2760 
2761 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2762 	 */
2763 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2764 					    false, ACCESS_DIRECT, NULL);
2765 	if (err)
2766 		return err;
2767 
2768 	min_off = reg->smin_value + off;
2769 	max_off = reg->smax_value + off;
2770 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2771 	return 0;
2772 }
2773 
2774 /* check_stack_read dispatches to check_stack_read_fixed_off or
2775  * check_stack_read_var_off.
2776  *
2777  * The caller must ensure that the offset falls within the allocated stack
2778  * bounds.
2779  *
2780  * 'dst_regno' is a register which will receive the value from the stack. It
2781  * can be -1, meaning that the read value is not going to a register.
2782  */
2783 static int check_stack_read(struct bpf_verifier_env *env,
2784 			    int ptr_regno, int off, int size,
2785 			    int dst_regno)
2786 {
2787 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2788 	struct bpf_func_state *state = func(env, reg);
2789 	int err;
2790 	/* Some accesses are only permitted with a static offset. */
2791 	bool var_off = !tnum_is_const(reg->var_off);
2792 
2793 	/* The offset is required to be static when reads don't go to a
2794 	 * register, in order to not leak pointers (see
2795 	 * check_stack_read_fixed_off).
2796 	 */
2797 	if (dst_regno < 0 && var_off) {
2798 		char tn_buf[48];
2799 
2800 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2801 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2802 			tn_buf, off, size);
2803 		return -EACCES;
2804 	}
2805 	/* Variable offset is prohibited for unprivileged mode for simplicity
2806 	 * since it requires corresponding support in Spectre masking for stack
2807 	 * ALU. See also retrieve_ptr_limit().
2808 	 */
2809 	if (!env->bypass_spec_v1 && var_off) {
2810 		char tn_buf[48];
2811 
2812 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2813 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2814 				ptr_regno, tn_buf);
2815 		return -EACCES;
2816 	}
2817 
2818 	if (!var_off) {
2819 		off += reg->var_off.value;
2820 		err = check_stack_read_fixed_off(env, state, off, size,
2821 						 dst_regno);
2822 	} else {
2823 		/* Variable offset stack reads need more conservative handling
2824 		 * than fixed offset ones. Note that dst_regno >= 0 on this
2825 		 * branch.
2826 		 */
2827 		err = check_stack_read_var_off(env, ptr_regno, off, size,
2828 					       dst_regno);
2829 	}
2830 	return err;
2831 }
2832 
2833 
2834 /* check_stack_write dispatches to check_stack_write_fixed_off or
2835  * check_stack_write_var_off.
2836  *
2837  * 'ptr_regno' is the register used as a pointer into the stack.
2838  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2839  * 'value_regno' is the register whose value we're writing to the stack. It can
2840  * be -1, meaning that we're not writing from a register.
2841  *
2842  * The caller must ensure that the offset falls within the maximum stack size.
2843  */
2844 static int check_stack_write(struct bpf_verifier_env *env,
2845 			     int ptr_regno, int off, int size,
2846 			     int value_regno, int insn_idx)
2847 {
2848 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2849 	struct bpf_func_state *state = func(env, reg);
2850 	int err;
2851 
2852 	if (tnum_is_const(reg->var_off)) {
2853 		off += reg->var_off.value;
2854 		err = check_stack_write_fixed_off(env, state, off, size,
2855 						  value_regno, insn_idx);
2856 	} else {
2857 		/* Variable offset stack reads need more conservative handling
2858 		 * than fixed offset ones.
2859 		 */
2860 		err = check_stack_write_var_off(env, state,
2861 						ptr_regno, off, size,
2862 						value_regno, insn_idx);
2863 	}
2864 	return err;
2865 }
2866 
2867 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2868 				 int off, int size, enum bpf_access_type type)
2869 {
2870 	struct bpf_reg_state *regs = cur_regs(env);
2871 	struct bpf_map *map = regs[regno].map_ptr;
2872 	u32 cap = bpf_map_flags_to_cap(map);
2873 
2874 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2875 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2876 			map->value_size, off, size);
2877 		return -EACCES;
2878 	}
2879 
2880 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2881 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2882 			map->value_size, off, size);
2883 		return -EACCES;
2884 	}
2885 
2886 	return 0;
2887 }
2888 
2889 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2890 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2891 			      int off, int size, u32 mem_size,
2892 			      bool zero_size_allowed)
2893 {
2894 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2895 	struct bpf_reg_state *reg;
2896 
2897 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2898 		return 0;
2899 
2900 	reg = &cur_regs(env)[regno];
2901 	switch (reg->type) {
2902 	case PTR_TO_MAP_VALUE:
2903 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2904 			mem_size, off, size);
2905 		break;
2906 	case PTR_TO_PACKET:
2907 	case PTR_TO_PACKET_META:
2908 	case PTR_TO_PACKET_END:
2909 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2910 			off, size, regno, reg->id, off, mem_size);
2911 		break;
2912 	case PTR_TO_MEM:
2913 	default:
2914 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2915 			mem_size, off, size);
2916 	}
2917 
2918 	return -EACCES;
2919 }
2920 
2921 /* check read/write into a memory region with possible variable offset */
2922 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2923 				   int off, int size, u32 mem_size,
2924 				   bool zero_size_allowed)
2925 {
2926 	struct bpf_verifier_state *vstate = env->cur_state;
2927 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2928 	struct bpf_reg_state *reg = &state->regs[regno];
2929 	int err;
2930 
2931 	/* We may have adjusted the register pointing to memory region, so we
2932 	 * need to try adding each of min_value and max_value to off
2933 	 * to make sure our theoretical access will be safe.
2934 	 */
2935 	if (env->log.level & BPF_LOG_LEVEL)
2936 		print_verifier_state(env, state);
2937 
2938 	/* The minimum value is only important with signed
2939 	 * comparisons where we can't assume the floor of a
2940 	 * value is 0.  If we are using signed variables for our
2941 	 * index'es we need to make sure that whatever we use
2942 	 * will have a set floor within our range.
2943 	 */
2944 	if (reg->smin_value < 0 &&
2945 	    (reg->smin_value == S64_MIN ||
2946 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2947 	      reg->smin_value + off < 0)) {
2948 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2949 			regno);
2950 		return -EACCES;
2951 	}
2952 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2953 				 mem_size, zero_size_allowed);
2954 	if (err) {
2955 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2956 			regno);
2957 		return err;
2958 	}
2959 
2960 	/* If we haven't set a max value then we need to bail since we can't be
2961 	 * sure we won't do bad things.
2962 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2963 	 */
2964 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2965 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2966 			regno);
2967 		return -EACCES;
2968 	}
2969 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2970 				 mem_size, zero_size_allowed);
2971 	if (err) {
2972 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2973 			regno);
2974 		return err;
2975 	}
2976 
2977 	return 0;
2978 }
2979 
2980 /* check read/write into a map element with possible variable offset */
2981 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2982 			    int off, int size, bool zero_size_allowed)
2983 {
2984 	struct bpf_verifier_state *vstate = env->cur_state;
2985 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2986 	struct bpf_reg_state *reg = &state->regs[regno];
2987 	struct bpf_map *map = reg->map_ptr;
2988 	int err;
2989 
2990 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2991 				      zero_size_allowed);
2992 	if (err)
2993 		return err;
2994 
2995 	if (map_value_has_spin_lock(map)) {
2996 		u32 lock = map->spin_lock_off;
2997 
2998 		/* if any part of struct bpf_spin_lock can be touched by
2999 		 * load/store reject this program.
3000 		 * To check that [x1, x2) overlaps with [y1, y2)
3001 		 * it is sufficient to check x1 < y2 && y1 < x2.
3002 		 */
3003 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3004 		     lock < reg->umax_value + off + size) {
3005 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3006 			return -EACCES;
3007 		}
3008 	}
3009 	return err;
3010 }
3011 
3012 #define MAX_PACKET_OFF 0xffff
3013 
3014 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3015 {
3016 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3017 }
3018 
3019 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3020 				       const struct bpf_call_arg_meta *meta,
3021 				       enum bpf_access_type t)
3022 {
3023 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3024 
3025 	switch (prog_type) {
3026 	/* Program types only with direct read access go here! */
3027 	case BPF_PROG_TYPE_LWT_IN:
3028 	case BPF_PROG_TYPE_LWT_OUT:
3029 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3030 	case BPF_PROG_TYPE_SK_REUSEPORT:
3031 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3032 	case BPF_PROG_TYPE_CGROUP_SKB:
3033 		if (t == BPF_WRITE)
3034 			return false;
3035 		fallthrough;
3036 
3037 	/* Program types with direct read + write access go here! */
3038 	case BPF_PROG_TYPE_SCHED_CLS:
3039 	case BPF_PROG_TYPE_SCHED_ACT:
3040 	case BPF_PROG_TYPE_XDP:
3041 	case BPF_PROG_TYPE_LWT_XMIT:
3042 	case BPF_PROG_TYPE_SK_SKB:
3043 	case BPF_PROG_TYPE_SK_MSG:
3044 		if (meta)
3045 			return meta->pkt_access;
3046 
3047 		env->seen_direct_write = true;
3048 		return true;
3049 
3050 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3051 		if (t == BPF_WRITE)
3052 			env->seen_direct_write = true;
3053 
3054 		return true;
3055 
3056 	default:
3057 		return false;
3058 	}
3059 }
3060 
3061 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3062 			       int size, bool zero_size_allowed)
3063 {
3064 	struct bpf_reg_state *regs = cur_regs(env);
3065 	struct bpf_reg_state *reg = &regs[regno];
3066 	int err;
3067 
3068 	/* We may have added a variable offset to the packet pointer; but any
3069 	 * reg->range we have comes after that.  We are only checking the fixed
3070 	 * offset.
3071 	 */
3072 
3073 	/* We don't allow negative numbers, because we aren't tracking enough
3074 	 * detail to prove they're safe.
3075 	 */
3076 	if (reg->smin_value < 0) {
3077 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3078 			regno);
3079 		return -EACCES;
3080 	}
3081 
3082 	err = reg->range < 0 ? -EINVAL :
3083 	      __check_mem_access(env, regno, off, size, reg->range,
3084 				 zero_size_allowed);
3085 	if (err) {
3086 		verbose(env, "R%d offset is outside of the packet\n", regno);
3087 		return err;
3088 	}
3089 
3090 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3091 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3092 	 * otherwise find_good_pkt_pointers would have refused to set range info
3093 	 * that __check_mem_access would have rejected this pkt access.
3094 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3095 	 */
3096 	env->prog->aux->max_pkt_offset =
3097 		max_t(u32, env->prog->aux->max_pkt_offset,
3098 		      off + reg->umax_value + size - 1);
3099 
3100 	return err;
3101 }
3102 
3103 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3104 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3105 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3106 			    struct btf **btf, u32 *btf_id)
3107 {
3108 	struct bpf_insn_access_aux info = {
3109 		.reg_type = *reg_type,
3110 		.log = &env->log,
3111 	};
3112 
3113 	if (env->ops->is_valid_access &&
3114 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3115 		/* A non zero info.ctx_field_size indicates that this field is a
3116 		 * candidate for later verifier transformation to load the whole
3117 		 * field and then apply a mask when accessed with a narrower
3118 		 * access than actual ctx access size. A zero info.ctx_field_size
3119 		 * will only allow for whole field access and rejects any other
3120 		 * type of narrower access.
3121 		 */
3122 		*reg_type = info.reg_type;
3123 
3124 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3125 			*btf = info.btf;
3126 			*btf_id = info.btf_id;
3127 		} else {
3128 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3129 		}
3130 		/* remember the offset of last byte accessed in ctx */
3131 		if (env->prog->aux->max_ctx_offset < off + size)
3132 			env->prog->aux->max_ctx_offset = off + size;
3133 		return 0;
3134 	}
3135 
3136 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3137 	return -EACCES;
3138 }
3139 
3140 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3141 				  int size)
3142 {
3143 	if (size < 0 || off < 0 ||
3144 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3145 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3146 			off, size);
3147 		return -EACCES;
3148 	}
3149 	return 0;
3150 }
3151 
3152 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3153 			     u32 regno, int off, int size,
3154 			     enum bpf_access_type t)
3155 {
3156 	struct bpf_reg_state *regs = cur_regs(env);
3157 	struct bpf_reg_state *reg = &regs[regno];
3158 	struct bpf_insn_access_aux info = {};
3159 	bool valid;
3160 
3161 	if (reg->smin_value < 0) {
3162 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3163 			regno);
3164 		return -EACCES;
3165 	}
3166 
3167 	switch (reg->type) {
3168 	case PTR_TO_SOCK_COMMON:
3169 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3170 		break;
3171 	case PTR_TO_SOCKET:
3172 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3173 		break;
3174 	case PTR_TO_TCP_SOCK:
3175 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3176 		break;
3177 	case PTR_TO_XDP_SOCK:
3178 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3179 		break;
3180 	default:
3181 		valid = false;
3182 	}
3183 
3184 
3185 	if (valid) {
3186 		env->insn_aux_data[insn_idx].ctx_field_size =
3187 			info.ctx_field_size;
3188 		return 0;
3189 	}
3190 
3191 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3192 		regno, reg_type_str[reg->type], off, size);
3193 
3194 	return -EACCES;
3195 }
3196 
3197 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3198 {
3199 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3200 }
3201 
3202 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3203 {
3204 	const struct bpf_reg_state *reg = reg_state(env, regno);
3205 
3206 	return reg->type == PTR_TO_CTX;
3207 }
3208 
3209 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3210 {
3211 	const struct bpf_reg_state *reg = reg_state(env, regno);
3212 
3213 	return type_is_sk_pointer(reg->type);
3214 }
3215 
3216 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3217 {
3218 	const struct bpf_reg_state *reg = reg_state(env, regno);
3219 
3220 	return type_is_pkt_pointer(reg->type);
3221 }
3222 
3223 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3224 {
3225 	const struct bpf_reg_state *reg = reg_state(env, regno);
3226 
3227 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3228 	return reg->type == PTR_TO_FLOW_KEYS;
3229 }
3230 
3231 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3232 				   const struct bpf_reg_state *reg,
3233 				   int off, int size, bool strict)
3234 {
3235 	struct tnum reg_off;
3236 	int ip_align;
3237 
3238 	/* Byte size accesses are always allowed. */
3239 	if (!strict || size == 1)
3240 		return 0;
3241 
3242 	/* For platforms that do not have a Kconfig enabling
3243 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3244 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3245 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3246 	 * to this code only in strict mode where we want to emulate
3247 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3248 	 * unconditional IP align value of '2'.
3249 	 */
3250 	ip_align = 2;
3251 
3252 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3253 	if (!tnum_is_aligned(reg_off, size)) {
3254 		char tn_buf[48];
3255 
3256 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3257 		verbose(env,
3258 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3259 			ip_align, tn_buf, reg->off, off, size);
3260 		return -EACCES;
3261 	}
3262 
3263 	return 0;
3264 }
3265 
3266 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3267 				       const struct bpf_reg_state *reg,
3268 				       const char *pointer_desc,
3269 				       int off, int size, bool strict)
3270 {
3271 	struct tnum reg_off;
3272 
3273 	/* Byte size accesses are always allowed. */
3274 	if (!strict || size == 1)
3275 		return 0;
3276 
3277 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3278 	if (!tnum_is_aligned(reg_off, size)) {
3279 		char tn_buf[48];
3280 
3281 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3282 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3283 			pointer_desc, tn_buf, reg->off, off, size);
3284 		return -EACCES;
3285 	}
3286 
3287 	return 0;
3288 }
3289 
3290 static int check_ptr_alignment(struct bpf_verifier_env *env,
3291 			       const struct bpf_reg_state *reg, int off,
3292 			       int size, bool strict_alignment_once)
3293 {
3294 	bool strict = env->strict_alignment || strict_alignment_once;
3295 	const char *pointer_desc = "";
3296 
3297 	switch (reg->type) {
3298 	case PTR_TO_PACKET:
3299 	case PTR_TO_PACKET_META:
3300 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3301 		 * right in front, treat it the very same way.
3302 		 */
3303 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3304 	case PTR_TO_FLOW_KEYS:
3305 		pointer_desc = "flow keys ";
3306 		break;
3307 	case PTR_TO_MAP_VALUE:
3308 		pointer_desc = "value ";
3309 		break;
3310 	case PTR_TO_CTX:
3311 		pointer_desc = "context ";
3312 		break;
3313 	case PTR_TO_STACK:
3314 		pointer_desc = "stack ";
3315 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3316 		 * and check_stack_read_fixed_off() relies on stack accesses being
3317 		 * aligned.
3318 		 */
3319 		strict = true;
3320 		break;
3321 	case PTR_TO_SOCKET:
3322 		pointer_desc = "sock ";
3323 		break;
3324 	case PTR_TO_SOCK_COMMON:
3325 		pointer_desc = "sock_common ";
3326 		break;
3327 	case PTR_TO_TCP_SOCK:
3328 		pointer_desc = "tcp_sock ";
3329 		break;
3330 	case PTR_TO_XDP_SOCK:
3331 		pointer_desc = "xdp_sock ";
3332 		break;
3333 	default:
3334 		break;
3335 	}
3336 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3337 					   strict);
3338 }
3339 
3340 static int update_stack_depth(struct bpf_verifier_env *env,
3341 			      const struct bpf_func_state *func,
3342 			      int off)
3343 {
3344 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3345 
3346 	if (stack >= -off)
3347 		return 0;
3348 
3349 	/* update known max for given subprogram */
3350 	env->subprog_info[func->subprogno].stack_depth = -off;
3351 	return 0;
3352 }
3353 
3354 /* starting from main bpf function walk all instructions of the function
3355  * and recursively walk all callees that given function can call.
3356  * Ignore jump and exit insns.
3357  * Since recursion is prevented by check_cfg() this algorithm
3358  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3359  */
3360 static int check_max_stack_depth(struct bpf_verifier_env *env)
3361 {
3362 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3363 	struct bpf_subprog_info *subprog = env->subprog_info;
3364 	struct bpf_insn *insn = env->prog->insnsi;
3365 	bool tail_call_reachable = false;
3366 	int ret_insn[MAX_CALL_FRAMES];
3367 	int ret_prog[MAX_CALL_FRAMES];
3368 	int j;
3369 
3370 process_func:
3371 	/* protect against potential stack overflow that might happen when
3372 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3373 	 * depth for such case down to 256 so that the worst case scenario
3374 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3375 	 * 8k).
3376 	 *
3377 	 * To get the idea what might happen, see an example:
3378 	 * func1 -> sub rsp, 128
3379 	 *  subfunc1 -> sub rsp, 256
3380 	 *  tailcall1 -> add rsp, 256
3381 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3382 	 *   subfunc2 -> sub rsp, 64
3383 	 *   subfunc22 -> sub rsp, 128
3384 	 *   tailcall2 -> add rsp, 128
3385 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3386 	 *
3387 	 * tailcall will unwind the current stack frame but it will not get rid
3388 	 * of caller's stack as shown on the example above.
3389 	 */
3390 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3391 		verbose(env,
3392 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3393 			depth);
3394 		return -EACCES;
3395 	}
3396 	/* round up to 32-bytes, since this is granularity
3397 	 * of interpreter stack size
3398 	 */
3399 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3400 	if (depth > MAX_BPF_STACK) {
3401 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3402 			frame + 1, depth);
3403 		return -EACCES;
3404 	}
3405 continue_func:
3406 	subprog_end = subprog[idx + 1].start;
3407 	for (; i < subprog_end; i++) {
3408 		if (!bpf_pseudo_call(insn + i))
3409 			continue;
3410 		/* remember insn and function to return to */
3411 		ret_insn[frame] = i + 1;
3412 		ret_prog[frame] = idx;
3413 
3414 		/* find the callee */
3415 		i = i + insn[i].imm + 1;
3416 		idx = find_subprog(env, i);
3417 		if (idx < 0) {
3418 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3419 				  i);
3420 			return -EFAULT;
3421 		}
3422 
3423 		if (subprog[idx].has_tail_call)
3424 			tail_call_reachable = true;
3425 
3426 		frame++;
3427 		if (frame >= MAX_CALL_FRAMES) {
3428 			verbose(env, "the call stack of %d frames is too deep !\n",
3429 				frame);
3430 			return -E2BIG;
3431 		}
3432 		goto process_func;
3433 	}
3434 	/* if tail call got detected across bpf2bpf calls then mark each of the
3435 	 * currently present subprog frames as tail call reachable subprogs;
3436 	 * this info will be utilized by JIT so that we will be preserving the
3437 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3438 	 */
3439 	if (tail_call_reachable)
3440 		for (j = 0; j < frame; j++)
3441 			subprog[ret_prog[j]].tail_call_reachable = true;
3442 
3443 	/* end of for() loop means the last insn of the 'subprog'
3444 	 * was reached. Doesn't matter whether it was JA or EXIT
3445 	 */
3446 	if (frame == 0)
3447 		return 0;
3448 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3449 	frame--;
3450 	i = ret_insn[frame];
3451 	idx = ret_prog[frame];
3452 	goto continue_func;
3453 }
3454 
3455 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3456 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3457 				  const struct bpf_insn *insn, int idx)
3458 {
3459 	int start = idx + insn->imm + 1, subprog;
3460 
3461 	subprog = find_subprog(env, start);
3462 	if (subprog < 0) {
3463 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3464 			  start);
3465 		return -EFAULT;
3466 	}
3467 	return env->subprog_info[subprog].stack_depth;
3468 }
3469 #endif
3470 
3471 int check_ctx_reg(struct bpf_verifier_env *env,
3472 		  const struct bpf_reg_state *reg, int regno)
3473 {
3474 	/* Access to ctx or passing it to a helper is only allowed in
3475 	 * its original, unmodified form.
3476 	 */
3477 
3478 	if (reg->off) {
3479 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3480 			regno, reg->off);
3481 		return -EACCES;
3482 	}
3483 
3484 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3485 		char tn_buf[48];
3486 
3487 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3488 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3489 		return -EACCES;
3490 	}
3491 
3492 	return 0;
3493 }
3494 
3495 static int __check_buffer_access(struct bpf_verifier_env *env,
3496 				 const char *buf_info,
3497 				 const struct bpf_reg_state *reg,
3498 				 int regno, int off, int size)
3499 {
3500 	if (off < 0) {
3501 		verbose(env,
3502 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3503 			regno, buf_info, off, size);
3504 		return -EACCES;
3505 	}
3506 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3507 		char tn_buf[48];
3508 
3509 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3510 		verbose(env,
3511 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3512 			regno, off, tn_buf);
3513 		return -EACCES;
3514 	}
3515 
3516 	return 0;
3517 }
3518 
3519 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3520 				  const struct bpf_reg_state *reg,
3521 				  int regno, int off, int size)
3522 {
3523 	int err;
3524 
3525 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3526 	if (err)
3527 		return err;
3528 
3529 	if (off + size > env->prog->aux->max_tp_access)
3530 		env->prog->aux->max_tp_access = off + size;
3531 
3532 	return 0;
3533 }
3534 
3535 static int check_buffer_access(struct bpf_verifier_env *env,
3536 			       const struct bpf_reg_state *reg,
3537 			       int regno, int off, int size,
3538 			       bool zero_size_allowed,
3539 			       const char *buf_info,
3540 			       u32 *max_access)
3541 {
3542 	int err;
3543 
3544 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3545 	if (err)
3546 		return err;
3547 
3548 	if (off + size > *max_access)
3549 		*max_access = off + size;
3550 
3551 	return 0;
3552 }
3553 
3554 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3555 static void zext_32_to_64(struct bpf_reg_state *reg)
3556 {
3557 	reg->var_off = tnum_subreg(reg->var_off);
3558 	__reg_assign_32_into_64(reg);
3559 }
3560 
3561 /* truncate register to smaller size (in bytes)
3562  * must be called with size < BPF_REG_SIZE
3563  */
3564 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3565 {
3566 	u64 mask;
3567 
3568 	/* clear high bits in bit representation */
3569 	reg->var_off = tnum_cast(reg->var_off, size);
3570 
3571 	/* fix arithmetic bounds */
3572 	mask = ((u64)1 << (size * 8)) - 1;
3573 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3574 		reg->umin_value &= mask;
3575 		reg->umax_value &= mask;
3576 	} else {
3577 		reg->umin_value = 0;
3578 		reg->umax_value = mask;
3579 	}
3580 	reg->smin_value = reg->umin_value;
3581 	reg->smax_value = reg->umax_value;
3582 
3583 	/* If size is smaller than 32bit register the 32bit register
3584 	 * values are also truncated so we push 64-bit bounds into
3585 	 * 32-bit bounds. Above were truncated < 32-bits already.
3586 	 */
3587 	if (size >= 4)
3588 		return;
3589 	__reg_combine_64_into_32(reg);
3590 }
3591 
3592 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3593 {
3594 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3595 }
3596 
3597 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3598 {
3599 	void *ptr;
3600 	u64 addr;
3601 	int err;
3602 
3603 	err = map->ops->map_direct_value_addr(map, &addr, off);
3604 	if (err)
3605 		return err;
3606 	ptr = (void *)(long)addr + off;
3607 
3608 	switch (size) {
3609 	case sizeof(u8):
3610 		*val = (u64)*(u8 *)ptr;
3611 		break;
3612 	case sizeof(u16):
3613 		*val = (u64)*(u16 *)ptr;
3614 		break;
3615 	case sizeof(u32):
3616 		*val = (u64)*(u32 *)ptr;
3617 		break;
3618 	case sizeof(u64):
3619 		*val = *(u64 *)ptr;
3620 		break;
3621 	default:
3622 		return -EINVAL;
3623 	}
3624 	return 0;
3625 }
3626 
3627 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3628 				   struct bpf_reg_state *regs,
3629 				   int regno, int off, int size,
3630 				   enum bpf_access_type atype,
3631 				   int value_regno)
3632 {
3633 	struct bpf_reg_state *reg = regs + regno;
3634 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3635 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3636 	u32 btf_id;
3637 	int ret;
3638 
3639 	if (off < 0) {
3640 		verbose(env,
3641 			"R%d is ptr_%s invalid negative access: off=%d\n",
3642 			regno, tname, off);
3643 		return -EACCES;
3644 	}
3645 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3646 		char tn_buf[48];
3647 
3648 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3649 		verbose(env,
3650 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3651 			regno, tname, off, tn_buf);
3652 		return -EACCES;
3653 	}
3654 
3655 	if (env->ops->btf_struct_access) {
3656 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3657 						  off, size, atype, &btf_id);
3658 	} else {
3659 		if (atype != BPF_READ) {
3660 			verbose(env, "only read is supported\n");
3661 			return -EACCES;
3662 		}
3663 
3664 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3665 					atype, &btf_id);
3666 	}
3667 
3668 	if (ret < 0)
3669 		return ret;
3670 
3671 	if (atype == BPF_READ && value_regno >= 0)
3672 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3673 
3674 	return 0;
3675 }
3676 
3677 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3678 				   struct bpf_reg_state *regs,
3679 				   int regno, int off, int size,
3680 				   enum bpf_access_type atype,
3681 				   int value_regno)
3682 {
3683 	struct bpf_reg_state *reg = regs + regno;
3684 	struct bpf_map *map = reg->map_ptr;
3685 	const struct btf_type *t;
3686 	const char *tname;
3687 	u32 btf_id;
3688 	int ret;
3689 
3690 	if (!btf_vmlinux) {
3691 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3692 		return -ENOTSUPP;
3693 	}
3694 
3695 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3696 		verbose(env, "map_ptr access not supported for map type %d\n",
3697 			map->map_type);
3698 		return -ENOTSUPP;
3699 	}
3700 
3701 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3702 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3703 
3704 	if (!env->allow_ptr_to_map_access) {
3705 		verbose(env,
3706 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3707 			tname);
3708 		return -EPERM;
3709 	}
3710 
3711 	if (off < 0) {
3712 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3713 			regno, tname, off);
3714 		return -EACCES;
3715 	}
3716 
3717 	if (atype != BPF_READ) {
3718 		verbose(env, "only read from %s is supported\n", tname);
3719 		return -EACCES;
3720 	}
3721 
3722 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3723 	if (ret < 0)
3724 		return ret;
3725 
3726 	if (value_regno >= 0)
3727 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3728 
3729 	return 0;
3730 }
3731 
3732 /* Check that the stack access at the given offset is within bounds. The
3733  * maximum valid offset is -1.
3734  *
3735  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3736  * -state->allocated_stack for reads.
3737  */
3738 static int check_stack_slot_within_bounds(int off,
3739 					  struct bpf_func_state *state,
3740 					  enum bpf_access_type t)
3741 {
3742 	int min_valid_off;
3743 
3744 	if (t == BPF_WRITE)
3745 		min_valid_off = -MAX_BPF_STACK;
3746 	else
3747 		min_valid_off = -state->allocated_stack;
3748 
3749 	if (off < min_valid_off || off > -1)
3750 		return -EACCES;
3751 	return 0;
3752 }
3753 
3754 /* Check that the stack access at 'regno + off' falls within the maximum stack
3755  * bounds.
3756  *
3757  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3758  */
3759 static int check_stack_access_within_bounds(
3760 		struct bpf_verifier_env *env,
3761 		int regno, int off, int access_size,
3762 		enum stack_access_src src, enum bpf_access_type type)
3763 {
3764 	struct bpf_reg_state *regs = cur_regs(env);
3765 	struct bpf_reg_state *reg = regs + regno;
3766 	struct bpf_func_state *state = func(env, reg);
3767 	int min_off, max_off;
3768 	int err;
3769 	char *err_extra;
3770 
3771 	if (src == ACCESS_HELPER)
3772 		/* We don't know if helpers are reading or writing (or both). */
3773 		err_extra = " indirect access to";
3774 	else if (type == BPF_READ)
3775 		err_extra = " read from";
3776 	else
3777 		err_extra = " write to";
3778 
3779 	if (tnum_is_const(reg->var_off)) {
3780 		min_off = reg->var_off.value + off;
3781 		if (access_size > 0)
3782 			max_off = min_off + access_size - 1;
3783 		else
3784 			max_off = min_off;
3785 	} else {
3786 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3787 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
3788 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3789 				err_extra, regno);
3790 			return -EACCES;
3791 		}
3792 		min_off = reg->smin_value + off;
3793 		if (access_size > 0)
3794 			max_off = reg->smax_value + off + access_size - 1;
3795 		else
3796 			max_off = min_off;
3797 	}
3798 
3799 	err = check_stack_slot_within_bounds(min_off, state, type);
3800 	if (!err)
3801 		err = check_stack_slot_within_bounds(max_off, state, type);
3802 
3803 	if (err) {
3804 		if (tnum_is_const(reg->var_off)) {
3805 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3806 				err_extra, regno, off, access_size);
3807 		} else {
3808 			char tn_buf[48];
3809 
3810 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3811 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3812 				err_extra, regno, tn_buf, access_size);
3813 		}
3814 	}
3815 	return err;
3816 }
3817 
3818 /* check whether memory at (regno + off) is accessible for t = (read | write)
3819  * if t==write, value_regno is a register which value is stored into memory
3820  * if t==read, value_regno is a register which will receive the value from memory
3821  * if t==write && value_regno==-1, some unknown value is stored into memory
3822  * if t==read && value_regno==-1, don't care what we read from memory
3823  */
3824 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3825 			    int off, int bpf_size, enum bpf_access_type t,
3826 			    int value_regno, bool strict_alignment_once)
3827 {
3828 	struct bpf_reg_state *regs = cur_regs(env);
3829 	struct bpf_reg_state *reg = regs + regno;
3830 	struct bpf_func_state *state;
3831 	int size, err = 0;
3832 
3833 	size = bpf_size_to_bytes(bpf_size);
3834 	if (size < 0)
3835 		return size;
3836 
3837 	/* alignment checks will add in reg->off themselves */
3838 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3839 	if (err)
3840 		return err;
3841 
3842 	/* for access checks, reg->off is just part of off */
3843 	off += reg->off;
3844 
3845 	if (reg->type == PTR_TO_MAP_VALUE) {
3846 		if (t == BPF_WRITE && value_regno >= 0 &&
3847 		    is_pointer_value(env, value_regno)) {
3848 			verbose(env, "R%d leaks addr into map\n", value_regno);
3849 			return -EACCES;
3850 		}
3851 		err = check_map_access_type(env, regno, off, size, t);
3852 		if (err)
3853 			return err;
3854 		err = check_map_access(env, regno, off, size, false);
3855 		if (!err && t == BPF_READ && value_regno >= 0) {
3856 			struct bpf_map *map = reg->map_ptr;
3857 
3858 			/* if map is read-only, track its contents as scalars */
3859 			if (tnum_is_const(reg->var_off) &&
3860 			    bpf_map_is_rdonly(map) &&
3861 			    map->ops->map_direct_value_addr) {
3862 				int map_off = off + reg->var_off.value;
3863 				u64 val = 0;
3864 
3865 				err = bpf_map_direct_read(map, map_off, size,
3866 							  &val);
3867 				if (err)
3868 					return err;
3869 
3870 				regs[value_regno].type = SCALAR_VALUE;
3871 				__mark_reg_known(&regs[value_regno], val);
3872 			} else {
3873 				mark_reg_unknown(env, regs, value_regno);
3874 			}
3875 		}
3876 	} else if (reg->type == PTR_TO_MEM) {
3877 		if (t == BPF_WRITE && value_regno >= 0 &&
3878 		    is_pointer_value(env, value_regno)) {
3879 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3880 			return -EACCES;
3881 		}
3882 		err = check_mem_region_access(env, regno, off, size,
3883 					      reg->mem_size, false);
3884 		if (!err && t == BPF_READ && value_regno >= 0)
3885 			mark_reg_unknown(env, regs, value_regno);
3886 	} else if (reg->type == PTR_TO_CTX) {
3887 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3888 		struct btf *btf = NULL;
3889 		u32 btf_id = 0;
3890 
3891 		if (t == BPF_WRITE && value_regno >= 0 &&
3892 		    is_pointer_value(env, value_regno)) {
3893 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3894 			return -EACCES;
3895 		}
3896 
3897 		err = check_ctx_reg(env, reg, regno);
3898 		if (err < 0)
3899 			return err;
3900 
3901 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3902 		if (err)
3903 			verbose_linfo(env, insn_idx, "; ");
3904 		if (!err && t == BPF_READ && value_regno >= 0) {
3905 			/* ctx access returns either a scalar, or a
3906 			 * PTR_TO_PACKET[_META,_END]. In the latter
3907 			 * case, we know the offset is zero.
3908 			 */
3909 			if (reg_type == SCALAR_VALUE) {
3910 				mark_reg_unknown(env, regs, value_regno);
3911 			} else {
3912 				mark_reg_known_zero(env, regs,
3913 						    value_regno);
3914 				if (reg_type_may_be_null(reg_type))
3915 					regs[value_regno].id = ++env->id_gen;
3916 				/* A load of ctx field could have different
3917 				 * actual load size with the one encoded in the
3918 				 * insn. When the dst is PTR, it is for sure not
3919 				 * a sub-register.
3920 				 */
3921 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3922 				if (reg_type == PTR_TO_BTF_ID ||
3923 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
3924 					regs[value_regno].btf = btf;
3925 					regs[value_regno].btf_id = btf_id;
3926 				}
3927 			}
3928 			regs[value_regno].type = reg_type;
3929 		}
3930 
3931 	} else if (reg->type == PTR_TO_STACK) {
3932 		/* Basic bounds checks. */
3933 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3934 		if (err)
3935 			return err;
3936 
3937 		state = func(env, reg);
3938 		err = update_stack_depth(env, state, off);
3939 		if (err)
3940 			return err;
3941 
3942 		if (t == BPF_READ)
3943 			err = check_stack_read(env, regno, off, size,
3944 					       value_regno);
3945 		else
3946 			err = check_stack_write(env, regno, off, size,
3947 						value_regno, insn_idx);
3948 	} else if (reg_is_pkt_pointer(reg)) {
3949 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3950 			verbose(env, "cannot write into packet\n");
3951 			return -EACCES;
3952 		}
3953 		if (t == BPF_WRITE && value_regno >= 0 &&
3954 		    is_pointer_value(env, value_regno)) {
3955 			verbose(env, "R%d leaks addr into packet\n",
3956 				value_regno);
3957 			return -EACCES;
3958 		}
3959 		err = check_packet_access(env, regno, off, size, false);
3960 		if (!err && t == BPF_READ && value_regno >= 0)
3961 			mark_reg_unknown(env, regs, value_regno);
3962 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3963 		if (t == BPF_WRITE && value_regno >= 0 &&
3964 		    is_pointer_value(env, value_regno)) {
3965 			verbose(env, "R%d leaks addr into flow keys\n",
3966 				value_regno);
3967 			return -EACCES;
3968 		}
3969 
3970 		err = check_flow_keys_access(env, off, size);
3971 		if (!err && t == BPF_READ && value_regno >= 0)
3972 			mark_reg_unknown(env, regs, value_regno);
3973 	} else if (type_is_sk_pointer(reg->type)) {
3974 		if (t == BPF_WRITE) {
3975 			verbose(env, "R%d cannot write into %s\n",
3976 				regno, reg_type_str[reg->type]);
3977 			return -EACCES;
3978 		}
3979 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3980 		if (!err && value_regno >= 0)
3981 			mark_reg_unknown(env, regs, value_regno);
3982 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3983 		err = check_tp_buffer_access(env, reg, regno, off, size);
3984 		if (!err && t == BPF_READ && value_regno >= 0)
3985 			mark_reg_unknown(env, regs, value_regno);
3986 	} else if (reg->type == PTR_TO_BTF_ID) {
3987 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3988 					      value_regno);
3989 	} else if (reg->type == CONST_PTR_TO_MAP) {
3990 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3991 					      value_regno);
3992 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
3993 		if (t == BPF_WRITE) {
3994 			verbose(env, "R%d cannot write into %s\n",
3995 				regno, reg_type_str[reg->type]);
3996 			return -EACCES;
3997 		}
3998 		err = check_buffer_access(env, reg, regno, off, size, false,
3999 					  "rdonly",
4000 					  &env->prog->aux->max_rdonly_access);
4001 		if (!err && value_regno >= 0)
4002 			mark_reg_unknown(env, regs, value_regno);
4003 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4004 		err = check_buffer_access(env, reg, regno, off, size, false,
4005 					  "rdwr",
4006 					  &env->prog->aux->max_rdwr_access);
4007 		if (!err && t == BPF_READ && value_regno >= 0)
4008 			mark_reg_unknown(env, regs, value_regno);
4009 	} else {
4010 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4011 			reg_type_str[reg->type]);
4012 		return -EACCES;
4013 	}
4014 
4015 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4016 	    regs[value_regno].type == SCALAR_VALUE) {
4017 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4018 		coerce_reg_to_size(&regs[value_regno], size);
4019 	}
4020 	return err;
4021 }
4022 
4023 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4024 {
4025 	int load_reg;
4026 	int err;
4027 
4028 	switch (insn->imm) {
4029 	case BPF_ADD:
4030 	case BPF_ADD | BPF_FETCH:
4031 	case BPF_AND:
4032 	case BPF_AND | BPF_FETCH:
4033 	case BPF_OR:
4034 	case BPF_OR | BPF_FETCH:
4035 	case BPF_XOR:
4036 	case BPF_XOR | BPF_FETCH:
4037 	case BPF_XCHG:
4038 	case BPF_CMPXCHG:
4039 		break;
4040 	default:
4041 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4042 		return -EINVAL;
4043 	}
4044 
4045 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4046 		verbose(env, "invalid atomic operand size\n");
4047 		return -EINVAL;
4048 	}
4049 
4050 	/* check src1 operand */
4051 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4052 	if (err)
4053 		return err;
4054 
4055 	/* check src2 operand */
4056 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4057 	if (err)
4058 		return err;
4059 
4060 	if (insn->imm == BPF_CMPXCHG) {
4061 		/* Check comparison of R0 with memory location */
4062 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4063 		if (err)
4064 			return err;
4065 	}
4066 
4067 	if (is_pointer_value(env, insn->src_reg)) {
4068 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4069 		return -EACCES;
4070 	}
4071 
4072 	if (is_ctx_reg(env, insn->dst_reg) ||
4073 	    is_pkt_reg(env, insn->dst_reg) ||
4074 	    is_flow_key_reg(env, insn->dst_reg) ||
4075 	    is_sk_reg(env, insn->dst_reg)) {
4076 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4077 			insn->dst_reg,
4078 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4079 		return -EACCES;
4080 	}
4081 
4082 	if (insn->imm & BPF_FETCH) {
4083 		if (insn->imm == BPF_CMPXCHG)
4084 			load_reg = BPF_REG_0;
4085 		else
4086 			load_reg = insn->src_reg;
4087 
4088 		/* check and record load of old value */
4089 		err = check_reg_arg(env, load_reg, DST_OP);
4090 		if (err)
4091 			return err;
4092 	} else {
4093 		/* This instruction accesses a memory location but doesn't
4094 		 * actually load it into a register.
4095 		 */
4096 		load_reg = -1;
4097 	}
4098 
4099 	/* check whether we can read the memory */
4100 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4101 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4102 	if (err)
4103 		return err;
4104 
4105 	/* check whether we can write into the same memory */
4106 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4107 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4108 	if (err)
4109 		return err;
4110 
4111 	return 0;
4112 }
4113 
4114 /* When register 'regno' is used to read the stack (either directly or through
4115  * a helper function) make sure that it's within stack boundary and, depending
4116  * on the access type, that all elements of the stack are initialized.
4117  *
4118  * 'off' includes 'regno->off', but not its dynamic part (if any).
4119  *
4120  * All registers that have been spilled on the stack in the slots within the
4121  * read offsets are marked as read.
4122  */
4123 static int check_stack_range_initialized(
4124 		struct bpf_verifier_env *env, int regno, int off,
4125 		int access_size, bool zero_size_allowed,
4126 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4127 {
4128 	struct bpf_reg_state *reg = reg_state(env, regno);
4129 	struct bpf_func_state *state = func(env, reg);
4130 	int err, min_off, max_off, i, j, slot, spi;
4131 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4132 	enum bpf_access_type bounds_check_type;
4133 	/* Some accesses can write anything into the stack, others are
4134 	 * read-only.
4135 	 */
4136 	bool clobber = false;
4137 
4138 	if (access_size == 0 && !zero_size_allowed) {
4139 		verbose(env, "invalid zero-sized read\n");
4140 		return -EACCES;
4141 	}
4142 
4143 	if (type == ACCESS_HELPER) {
4144 		/* The bounds checks for writes are more permissive than for
4145 		 * reads. However, if raw_mode is not set, we'll do extra
4146 		 * checks below.
4147 		 */
4148 		bounds_check_type = BPF_WRITE;
4149 		clobber = true;
4150 	} else {
4151 		bounds_check_type = BPF_READ;
4152 	}
4153 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4154 					       type, bounds_check_type);
4155 	if (err)
4156 		return err;
4157 
4158 
4159 	if (tnum_is_const(reg->var_off)) {
4160 		min_off = max_off = reg->var_off.value + off;
4161 	} else {
4162 		/* Variable offset is prohibited for unprivileged mode for
4163 		 * simplicity since it requires corresponding support in
4164 		 * Spectre masking for stack ALU.
4165 		 * See also retrieve_ptr_limit().
4166 		 */
4167 		if (!env->bypass_spec_v1) {
4168 			char tn_buf[48];
4169 
4170 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4171 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4172 				regno, err_extra, tn_buf);
4173 			return -EACCES;
4174 		}
4175 		/* Only initialized buffer on stack is allowed to be accessed
4176 		 * with variable offset. With uninitialized buffer it's hard to
4177 		 * guarantee that whole memory is marked as initialized on
4178 		 * helper return since specific bounds are unknown what may
4179 		 * cause uninitialized stack leaking.
4180 		 */
4181 		if (meta && meta->raw_mode)
4182 			meta = NULL;
4183 
4184 		min_off = reg->smin_value + off;
4185 		max_off = reg->smax_value + off;
4186 	}
4187 
4188 	if (meta && meta->raw_mode) {
4189 		meta->access_size = access_size;
4190 		meta->regno = regno;
4191 		return 0;
4192 	}
4193 
4194 	for (i = min_off; i < max_off + access_size; i++) {
4195 		u8 *stype;
4196 
4197 		slot = -i - 1;
4198 		spi = slot / BPF_REG_SIZE;
4199 		if (state->allocated_stack <= slot)
4200 			goto err;
4201 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4202 		if (*stype == STACK_MISC)
4203 			goto mark;
4204 		if (*stype == STACK_ZERO) {
4205 			if (clobber) {
4206 				/* helper can write anything into the stack */
4207 				*stype = STACK_MISC;
4208 			}
4209 			goto mark;
4210 		}
4211 
4212 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4213 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4214 			goto mark;
4215 
4216 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4217 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4218 		     env->allow_ptr_leaks)) {
4219 			if (clobber) {
4220 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4221 				for (j = 0; j < BPF_REG_SIZE; j++)
4222 					state->stack[spi].slot_type[j] = STACK_MISC;
4223 			}
4224 			goto mark;
4225 		}
4226 
4227 err:
4228 		if (tnum_is_const(reg->var_off)) {
4229 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4230 				err_extra, regno, min_off, i - min_off, access_size);
4231 		} else {
4232 			char tn_buf[48];
4233 
4234 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4235 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4236 				err_extra, regno, tn_buf, i - min_off, access_size);
4237 		}
4238 		return -EACCES;
4239 mark:
4240 		/* reading any byte out of 8-byte 'spill_slot' will cause
4241 		 * the whole slot to be marked as 'read'
4242 		 */
4243 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4244 			      state->stack[spi].spilled_ptr.parent,
4245 			      REG_LIVE_READ64);
4246 	}
4247 	return update_stack_depth(env, state, min_off);
4248 }
4249 
4250 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4251 				   int access_size, bool zero_size_allowed,
4252 				   struct bpf_call_arg_meta *meta)
4253 {
4254 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4255 
4256 	switch (reg->type) {
4257 	case PTR_TO_PACKET:
4258 	case PTR_TO_PACKET_META:
4259 		return check_packet_access(env, regno, reg->off, access_size,
4260 					   zero_size_allowed);
4261 	case PTR_TO_MAP_VALUE:
4262 		if (check_map_access_type(env, regno, reg->off, access_size,
4263 					  meta && meta->raw_mode ? BPF_WRITE :
4264 					  BPF_READ))
4265 			return -EACCES;
4266 		return check_map_access(env, regno, reg->off, access_size,
4267 					zero_size_allowed);
4268 	case PTR_TO_MEM:
4269 		return check_mem_region_access(env, regno, reg->off,
4270 					       access_size, reg->mem_size,
4271 					       zero_size_allowed);
4272 	case PTR_TO_RDONLY_BUF:
4273 		if (meta && meta->raw_mode)
4274 			return -EACCES;
4275 		return check_buffer_access(env, reg, regno, reg->off,
4276 					   access_size, zero_size_allowed,
4277 					   "rdonly",
4278 					   &env->prog->aux->max_rdonly_access);
4279 	case PTR_TO_RDWR_BUF:
4280 		return check_buffer_access(env, reg, regno, reg->off,
4281 					   access_size, zero_size_allowed,
4282 					   "rdwr",
4283 					   &env->prog->aux->max_rdwr_access);
4284 	case PTR_TO_STACK:
4285 		return check_stack_range_initialized(
4286 				env,
4287 				regno, reg->off, access_size,
4288 				zero_size_allowed, ACCESS_HELPER, meta);
4289 	default: /* scalar_value or invalid ptr */
4290 		/* Allow zero-byte read from NULL, regardless of pointer type */
4291 		if (zero_size_allowed && access_size == 0 &&
4292 		    register_is_null(reg))
4293 			return 0;
4294 
4295 		verbose(env, "R%d type=%s expected=%s\n", regno,
4296 			reg_type_str[reg->type],
4297 			reg_type_str[PTR_TO_STACK]);
4298 		return -EACCES;
4299 	}
4300 }
4301 
4302 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4303 		   u32 regno, u32 mem_size)
4304 {
4305 	if (register_is_null(reg))
4306 		return 0;
4307 
4308 	if (reg_type_may_be_null(reg->type)) {
4309 		/* Assuming that the register contains a value check if the memory
4310 		 * access is safe. Temporarily save and restore the register's state as
4311 		 * the conversion shouldn't be visible to a caller.
4312 		 */
4313 		const struct bpf_reg_state saved_reg = *reg;
4314 		int rv;
4315 
4316 		mark_ptr_not_null_reg(reg);
4317 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4318 		*reg = saved_reg;
4319 		return rv;
4320 	}
4321 
4322 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4323 }
4324 
4325 /* Implementation details:
4326  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4327  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4328  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4329  * value_or_null->value transition, since the verifier only cares about
4330  * the range of access to valid map value pointer and doesn't care about actual
4331  * address of the map element.
4332  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4333  * reg->id > 0 after value_or_null->value transition. By doing so
4334  * two bpf_map_lookups will be considered two different pointers that
4335  * point to different bpf_spin_locks.
4336  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4337  * dead-locks.
4338  * Since only one bpf_spin_lock is allowed the checks are simpler than
4339  * reg_is_refcounted() logic. The verifier needs to remember only
4340  * one spin_lock instead of array of acquired_refs.
4341  * cur_state->active_spin_lock remembers which map value element got locked
4342  * and clears it after bpf_spin_unlock.
4343  */
4344 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4345 			     bool is_lock)
4346 {
4347 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4348 	struct bpf_verifier_state *cur = env->cur_state;
4349 	bool is_const = tnum_is_const(reg->var_off);
4350 	struct bpf_map *map = reg->map_ptr;
4351 	u64 val = reg->var_off.value;
4352 
4353 	if (!is_const) {
4354 		verbose(env,
4355 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4356 			regno);
4357 		return -EINVAL;
4358 	}
4359 	if (!map->btf) {
4360 		verbose(env,
4361 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4362 			map->name);
4363 		return -EINVAL;
4364 	}
4365 	if (!map_value_has_spin_lock(map)) {
4366 		if (map->spin_lock_off == -E2BIG)
4367 			verbose(env,
4368 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4369 				map->name);
4370 		else if (map->spin_lock_off == -ENOENT)
4371 			verbose(env,
4372 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4373 				map->name);
4374 		else
4375 			verbose(env,
4376 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4377 				map->name);
4378 		return -EINVAL;
4379 	}
4380 	if (map->spin_lock_off != val + reg->off) {
4381 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4382 			val + reg->off);
4383 		return -EINVAL;
4384 	}
4385 	if (is_lock) {
4386 		if (cur->active_spin_lock) {
4387 			verbose(env,
4388 				"Locking two bpf_spin_locks are not allowed\n");
4389 			return -EINVAL;
4390 		}
4391 		cur->active_spin_lock = reg->id;
4392 	} else {
4393 		if (!cur->active_spin_lock) {
4394 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4395 			return -EINVAL;
4396 		}
4397 		if (cur->active_spin_lock != reg->id) {
4398 			verbose(env, "bpf_spin_unlock of different lock\n");
4399 			return -EINVAL;
4400 		}
4401 		cur->active_spin_lock = 0;
4402 	}
4403 	return 0;
4404 }
4405 
4406 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4407 {
4408 	return type == ARG_PTR_TO_MEM ||
4409 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4410 	       type == ARG_PTR_TO_UNINIT_MEM;
4411 }
4412 
4413 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4414 {
4415 	return type == ARG_CONST_SIZE ||
4416 	       type == ARG_CONST_SIZE_OR_ZERO;
4417 }
4418 
4419 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4420 {
4421 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4422 }
4423 
4424 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4425 {
4426 	return type == ARG_PTR_TO_INT ||
4427 	       type == ARG_PTR_TO_LONG;
4428 }
4429 
4430 static int int_ptr_type_to_size(enum bpf_arg_type type)
4431 {
4432 	if (type == ARG_PTR_TO_INT)
4433 		return sizeof(u32);
4434 	else if (type == ARG_PTR_TO_LONG)
4435 		return sizeof(u64);
4436 
4437 	return -EINVAL;
4438 }
4439 
4440 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4441 				 const struct bpf_call_arg_meta *meta,
4442 				 enum bpf_arg_type *arg_type)
4443 {
4444 	if (!meta->map_ptr) {
4445 		/* kernel subsystem misconfigured verifier */
4446 		verbose(env, "invalid map_ptr to access map->type\n");
4447 		return -EACCES;
4448 	}
4449 
4450 	switch (meta->map_ptr->map_type) {
4451 	case BPF_MAP_TYPE_SOCKMAP:
4452 	case BPF_MAP_TYPE_SOCKHASH:
4453 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4454 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4455 		} else {
4456 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4457 			return -EINVAL;
4458 		}
4459 		break;
4460 
4461 	default:
4462 		break;
4463 	}
4464 	return 0;
4465 }
4466 
4467 struct bpf_reg_types {
4468 	const enum bpf_reg_type types[10];
4469 	u32 *btf_id;
4470 };
4471 
4472 static const struct bpf_reg_types map_key_value_types = {
4473 	.types = {
4474 		PTR_TO_STACK,
4475 		PTR_TO_PACKET,
4476 		PTR_TO_PACKET_META,
4477 		PTR_TO_MAP_VALUE,
4478 	},
4479 };
4480 
4481 static const struct bpf_reg_types sock_types = {
4482 	.types = {
4483 		PTR_TO_SOCK_COMMON,
4484 		PTR_TO_SOCKET,
4485 		PTR_TO_TCP_SOCK,
4486 		PTR_TO_XDP_SOCK,
4487 	},
4488 };
4489 
4490 #ifdef CONFIG_NET
4491 static const struct bpf_reg_types btf_id_sock_common_types = {
4492 	.types = {
4493 		PTR_TO_SOCK_COMMON,
4494 		PTR_TO_SOCKET,
4495 		PTR_TO_TCP_SOCK,
4496 		PTR_TO_XDP_SOCK,
4497 		PTR_TO_BTF_ID,
4498 	},
4499 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4500 };
4501 #endif
4502 
4503 static const struct bpf_reg_types mem_types = {
4504 	.types = {
4505 		PTR_TO_STACK,
4506 		PTR_TO_PACKET,
4507 		PTR_TO_PACKET_META,
4508 		PTR_TO_MAP_VALUE,
4509 		PTR_TO_MEM,
4510 		PTR_TO_RDONLY_BUF,
4511 		PTR_TO_RDWR_BUF,
4512 	},
4513 };
4514 
4515 static const struct bpf_reg_types int_ptr_types = {
4516 	.types = {
4517 		PTR_TO_STACK,
4518 		PTR_TO_PACKET,
4519 		PTR_TO_PACKET_META,
4520 		PTR_TO_MAP_VALUE,
4521 	},
4522 };
4523 
4524 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4525 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4526 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4527 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4528 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4529 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4530 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4531 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4532 
4533 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4534 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4535 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4536 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4537 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4538 	[ARG_CONST_SIZE]		= &scalar_types,
4539 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4540 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4541 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4542 	[ARG_PTR_TO_CTX]		= &context_types,
4543 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4544 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4545 #ifdef CONFIG_NET
4546 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4547 #endif
4548 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4549 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4550 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4551 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4552 	[ARG_PTR_TO_MEM]		= &mem_types,
4553 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4554 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4555 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4556 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4557 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4558 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4559 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4560 };
4561 
4562 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4563 			  enum bpf_arg_type arg_type,
4564 			  const u32 *arg_btf_id)
4565 {
4566 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4567 	enum bpf_reg_type expected, type = reg->type;
4568 	const struct bpf_reg_types *compatible;
4569 	int i, j;
4570 
4571 	compatible = compatible_reg_types[arg_type];
4572 	if (!compatible) {
4573 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4574 		return -EFAULT;
4575 	}
4576 
4577 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4578 		expected = compatible->types[i];
4579 		if (expected == NOT_INIT)
4580 			break;
4581 
4582 		if (type == expected)
4583 			goto found;
4584 	}
4585 
4586 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4587 	for (j = 0; j + 1 < i; j++)
4588 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4589 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4590 	return -EACCES;
4591 
4592 found:
4593 	if (type == PTR_TO_BTF_ID) {
4594 		if (!arg_btf_id) {
4595 			if (!compatible->btf_id) {
4596 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4597 				return -EFAULT;
4598 			}
4599 			arg_btf_id = compatible->btf_id;
4600 		}
4601 
4602 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4603 					  btf_vmlinux, *arg_btf_id)) {
4604 			verbose(env, "R%d is of type %s but %s is expected\n",
4605 				regno, kernel_type_name(reg->btf, reg->btf_id),
4606 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4607 			return -EACCES;
4608 		}
4609 
4610 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4611 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4612 				regno);
4613 			return -EACCES;
4614 		}
4615 	}
4616 
4617 	return 0;
4618 }
4619 
4620 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4621 			  struct bpf_call_arg_meta *meta,
4622 			  const struct bpf_func_proto *fn)
4623 {
4624 	u32 regno = BPF_REG_1 + arg;
4625 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4626 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4627 	enum bpf_reg_type type = reg->type;
4628 	int err = 0;
4629 
4630 	if (arg_type == ARG_DONTCARE)
4631 		return 0;
4632 
4633 	err = check_reg_arg(env, regno, SRC_OP);
4634 	if (err)
4635 		return err;
4636 
4637 	if (arg_type == ARG_ANYTHING) {
4638 		if (is_pointer_value(env, regno)) {
4639 			verbose(env, "R%d leaks addr into helper function\n",
4640 				regno);
4641 			return -EACCES;
4642 		}
4643 		return 0;
4644 	}
4645 
4646 	if (type_is_pkt_pointer(type) &&
4647 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4648 		verbose(env, "helper access to the packet is not allowed\n");
4649 		return -EACCES;
4650 	}
4651 
4652 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4653 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4654 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4655 		err = resolve_map_arg_type(env, meta, &arg_type);
4656 		if (err)
4657 			return err;
4658 	}
4659 
4660 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4661 		/* A NULL register has a SCALAR_VALUE type, so skip
4662 		 * type checking.
4663 		 */
4664 		goto skip_type_check;
4665 
4666 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4667 	if (err)
4668 		return err;
4669 
4670 	if (type == PTR_TO_CTX) {
4671 		err = check_ctx_reg(env, reg, regno);
4672 		if (err < 0)
4673 			return err;
4674 	}
4675 
4676 skip_type_check:
4677 	if (reg->ref_obj_id) {
4678 		if (meta->ref_obj_id) {
4679 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4680 				regno, reg->ref_obj_id,
4681 				meta->ref_obj_id);
4682 			return -EFAULT;
4683 		}
4684 		meta->ref_obj_id = reg->ref_obj_id;
4685 	}
4686 
4687 	if (arg_type == ARG_CONST_MAP_PTR) {
4688 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4689 		meta->map_ptr = reg->map_ptr;
4690 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4691 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4692 		 * check that [key, key + map->key_size) are within
4693 		 * stack limits and initialized
4694 		 */
4695 		if (!meta->map_ptr) {
4696 			/* in function declaration map_ptr must come before
4697 			 * map_key, so that it's verified and known before
4698 			 * we have to check map_key here. Otherwise it means
4699 			 * that kernel subsystem misconfigured verifier
4700 			 */
4701 			verbose(env, "invalid map_ptr to access map->key\n");
4702 			return -EACCES;
4703 		}
4704 		err = check_helper_mem_access(env, regno,
4705 					      meta->map_ptr->key_size, false,
4706 					      NULL);
4707 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4708 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4709 		    !register_is_null(reg)) ||
4710 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4711 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4712 		 * check [value, value + map->value_size) validity
4713 		 */
4714 		if (!meta->map_ptr) {
4715 			/* kernel subsystem misconfigured verifier */
4716 			verbose(env, "invalid map_ptr to access map->value\n");
4717 			return -EACCES;
4718 		}
4719 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4720 		err = check_helper_mem_access(env, regno,
4721 					      meta->map_ptr->value_size, false,
4722 					      meta);
4723 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4724 		if (!reg->btf_id) {
4725 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4726 			return -EACCES;
4727 		}
4728 		meta->ret_btf = reg->btf;
4729 		meta->ret_btf_id = reg->btf_id;
4730 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4731 		if (meta->func_id == BPF_FUNC_spin_lock) {
4732 			if (process_spin_lock(env, regno, true))
4733 				return -EACCES;
4734 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4735 			if (process_spin_lock(env, regno, false))
4736 				return -EACCES;
4737 		} else {
4738 			verbose(env, "verifier internal error\n");
4739 			return -EFAULT;
4740 		}
4741 	} else if (arg_type_is_mem_ptr(arg_type)) {
4742 		/* The access to this pointer is only checked when we hit the
4743 		 * next is_mem_size argument below.
4744 		 */
4745 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4746 	} else if (arg_type_is_mem_size(arg_type)) {
4747 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4748 
4749 		/* This is used to refine r0 return value bounds for helpers
4750 		 * that enforce this value as an upper bound on return values.
4751 		 * See do_refine_retval_range() for helpers that can refine
4752 		 * the return value. C type of helper is u32 so we pull register
4753 		 * bound from umax_value however, if negative verifier errors
4754 		 * out. Only upper bounds can be learned because retval is an
4755 		 * int type and negative retvals are allowed.
4756 		 */
4757 		meta->msize_max_value = reg->umax_value;
4758 
4759 		/* The register is SCALAR_VALUE; the access check
4760 		 * happens using its boundaries.
4761 		 */
4762 		if (!tnum_is_const(reg->var_off))
4763 			/* For unprivileged variable accesses, disable raw
4764 			 * mode so that the program is required to
4765 			 * initialize all the memory that the helper could
4766 			 * just partially fill up.
4767 			 */
4768 			meta = NULL;
4769 
4770 		if (reg->smin_value < 0) {
4771 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4772 				regno);
4773 			return -EACCES;
4774 		}
4775 
4776 		if (reg->umin_value == 0) {
4777 			err = check_helper_mem_access(env, regno - 1, 0,
4778 						      zero_size_allowed,
4779 						      meta);
4780 			if (err)
4781 				return err;
4782 		}
4783 
4784 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4785 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4786 				regno);
4787 			return -EACCES;
4788 		}
4789 		err = check_helper_mem_access(env, regno - 1,
4790 					      reg->umax_value,
4791 					      zero_size_allowed, meta);
4792 		if (!err)
4793 			err = mark_chain_precision(env, regno);
4794 	} else if (arg_type_is_alloc_size(arg_type)) {
4795 		if (!tnum_is_const(reg->var_off)) {
4796 			verbose(env, "R%d is not a known constant'\n",
4797 				regno);
4798 			return -EACCES;
4799 		}
4800 		meta->mem_size = reg->var_off.value;
4801 	} else if (arg_type_is_int_ptr(arg_type)) {
4802 		int size = int_ptr_type_to_size(arg_type);
4803 
4804 		err = check_helper_mem_access(env, regno, size, false, meta);
4805 		if (err)
4806 			return err;
4807 		err = check_ptr_alignment(env, reg, 0, size, true);
4808 	}
4809 
4810 	return err;
4811 }
4812 
4813 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4814 {
4815 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4816 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4817 
4818 	if (func_id != BPF_FUNC_map_update_elem)
4819 		return false;
4820 
4821 	/* It's not possible to get access to a locked struct sock in these
4822 	 * contexts, so updating is safe.
4823 	 */
4824 	switch (type) {
4825 	case BPF_PROG_TYPE_TRACING:
4826 		if (eatype == BPF_TRACE_ITER)
4827 			return true;
4828 		break;
4829 	case BPF_PROG_TYPE_SOCKET_FILTER:
4830 	case BPF_PROG_TYPE_SCHED_CLS:
4831 	case BPF_PROG_TYPE_SCHED_ACT:
4832 	case BPF_PROG_TYPE_XDP:
4833 	case BPF_PROG_TYPE_SK_REUSEPORT:
4834 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4835 	case BPF_PROG_TYPE_SK_LOOKUP:
4836 		return true;
4837 	default:
4838 		break;
4839 	}
4840 
4841 	verbose(env, "cannot update sockmap in this context\n");
4842 	return false;
4843 }
4844 
4845 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4846 {
4847 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4848 }
4849 
4850 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4851 					struct bpf_map *map, int func_id)
4852 {
4853 	if (!map)
4854 		return 0;
4855 
4856 	/* We need a two way check, first is from map perspective ... */
4857 	switch (map->map_type) {
4858 	case BPF_MAP_TYPE_PROG_ARRAY:
4859 		if (func_id != BPF_FUNC_tail_call)
4860 			goto error;
4861 		break;
4862 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4863 		if (func_id != BPF_FUNC_perf_event_read &&
4864 		    func_id != BPF_FUNC_perf_event_output &&
4865 		    func_id != BPF_FUNC_skb_output &&
4866 		    func_id != BPF_FUNC_perf_event_read_value &&
4867 		    func_id != BPF_FUNC_xdp_output)
4868 			goto error;
4869 		break;
4870 	case BPF_MAP_TYPE_RINGBUF:
4871 		if (func_id != BPF_FUNC_ringbuf_output &&
4872 		    func_id != BPF_FUNC_ringbuf_reserve &&
4873 		    func_id != BPF_FUNC_ringbuf_submit &&
4874 		    func_id != BPF_FUNC_ringbuf_discard &&
4875 		    func_id != BPF_FUNC_ringbuf_query)
4876 			goto error;
4877 		break;
4878 	case BPF_MAP_TYPE_STACK_TRACE:
4879 		if (func_id != BPF_FUNC_get_stackid)
4880 			goto error;
4881 		break;
4882 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4883 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4884 		    func_id != BPF_FUNC_current_task_under_cgroup)
4885 			goto error;
4886 		break;
4887 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4888 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4889 		if (func_id != BPF_FUNC_get_local_storage)
4890 			goto error;
4891 		break;
4892 	case BPF_MAP_TYPE_DEVMAP:
4893 	case BPF_MAP_TYPE_DEVMAP_HASH:
4894 		if (func_id != BPF_FUNC_redirect_map &&
4895 		    func_id != BPF_FUNC_map_lookup_elem)
4896 			goto error;
4897 		break;
4898 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4899 	 * appear.
4900 	 */
4901 	case BPF_MAP_TYPE_CPUMAP:
4902 		if (func_id != BPF_FUNC_redirect_map)
4903 			goto error;
4904 		break;
4905 	case BPF_MAP_TYPE_XSKMAP:
4906 		if (func_id != BPF_FUNC_redirect_map &&
4907 		    func_id != BPF_FUNC_map_lookup_elem)
4908 			goto error;
4909 		break;
4910 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4911 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4912 		if (func_id != BPF_FUNC_map_lookup_elem)
4913 			goto error;
4914 		break;
4915 	case BPF_MAP_TYPE_SOCKMAP:
4916 		if (func_id != BPF_FUNC_sk_redirect_map &&
4917 		    func_id != BPF_FUNC_sock_map_update &&
4918 		    func_id != BPF_FUNC_map_delete_elem &&
4919 		    func_id != BPF_FUNC_msg_redirect_map &&
4920 		    func_id != BPF_FUNC_sk_select_reuseport &&
4921 		    func_id != BPF_FUNC_map_lookup_elem &&
4922 		    !may_update_sockmap(env, func_id))
4923 			goto error;
4924 		break;
4925 	case BPF_MAP_TYPE_SOCKHASH:
4926 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4927 		    func_id != BPF_FUNC_sock_hash_update &&
4928 		    func_id != BPF_FUNC_map_delete_elem &&
4929 		    func_id != BPF_FUNC_msg_redirect_hash &&
4930 		    func_id != BPF_FUNC_sk_select_reuseport &&
4931 		    func_id != BPF_FUNC_map_lookup_elem &&
4932 		    !may_update_sockmap(env, func_id))
4933 			goto error;
4934 		break;
4935 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4936 		if (func_id != BPF_FUNC_sk_select_reuseport)
4937 			goto error;
4938 		break;
4939 	case BPF_MAP_TYPE_QUEUE:
4940 	case BPF_MAP_TYPE_STACK:
4941 		if (func_id != BPF_FUNC_map_peek_elem &&
4942 		    func_id != BPF_FUNC_map_pop_elem &&
4943 		    func_id != BPF_FUNC_map_push_elem)
4944 			goto error;
4945 		break;
4946 	case BPF_MAP_TYPE_SK_STORAGE:
4947 		if (func_id != BPF_FUNC_sk_storage_get &&
4948 		    func_id != BPF_FUNC_sk_storage_delete)
4949 			goto error;
4950 		break;
4951 	case BPF_MAP_TYPE_INODE_STORAGE:
4952 		if (func_id != BPF_FUNC_inode_storage_get &&
4953 		    func_id != BPF_FUNC_inode_storage_delete)
4954 			goto error;
4955 		break;
4956 	case BPF_MAP_TYPE_TASK_STORAGE:
4957 		if (func_id != BPF_FUNC_task_storage_get &&
4958 		    func_id != BPF_FUNC_task_storage_delete)
4959 			goto error;
4960 		break;
4961 	default:
4962 		break;
4963 	}
4964 
4965 	/* ... and second from the function itself. */
4966 	switch (func_id) {
4967 	case BPF_FUNC_tail_call:
4968 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4969 			goto error;
4970 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4971 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4972 			return -EINVAL;
4973 		}
4974 		break;
4975 	case BPF_FUNC_perf_event_read:
4976 	case BPF_FUNC_perf_event_output:
4977 	case BPF_FUNC_perf_event_read_value:
4978 	case BPF_FUNC_skb_output:
4979 	case BPF_FUNC_xdp_output:
4980 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4981 			goto error;
4982 		break;
4983 	case BPF_FUNC_get_stackid:
4984 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4985 			goto error;
4986 		break;
4987 	case BPF_FUNC_current_task_under_cgroup:
4988 	case BPF_FUNC_skb_under_cgroup:
4989 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4990 			goto error;
4991 		break;
4992 	case BPF_FUNC_redirect_map:
4993 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4994 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4995 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4996 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4997 			goto error;
4998 		break;
4999 	case BPF_FUNC_sk_redirect_map:
5000 	case BPF_FUNC_msg_redirect_map:
5001 	case BPF_FUNC_sock_map_update:
5002 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5003 			goto error;
5004 		break;
5005 	case BPF_FUNC_sk_redirect_hash:
5006 	case BPF_FUNC_msg_redirect_hash:
5007 	case BPF_FUNC_sock_hash_update:
5008 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5009 			goto error;
5010 		break;
5011 	case BPF_FUNC_get_local_storage:
5012 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5013 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5014 			goto error;
5015 		break;
5016 	case BPF_FUNC_sk_select_reuseport:
5017 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5018 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5019 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5020 			goto error;
5021 		break;
5022 	case BPF_FUNC_map_peek_elem:
5023 	case BPF_FUNC_map_pop_elem:
5024 	case BPF_FUNC_map_push_elem:
5025 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5026 		    map->map_type != BPF_MAP_TYPE_STACK)
5027 			goto error;
5028 		break;
5029 	case BPF_FUNC_sk_storage_get:
5030 	case BPF_FUNC_sk_storage_delete:
5031 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5032 			goto error;
5033 		break;
5034 	case BPF_FUNC_inode_storage_get:
5035 	case BPF_FUNC_inode_storage_delete:
5036 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5037 			goto error;
5038 		break;
5039 	case BPF_FUNC_task_storage_get:
5040 	case BPF_FUNC_task_storage_delete:
5041 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5042 			goto error;
5043 		break;
5044 	default:
5045 		break;
5046 	}
5047 
5048 	return 0;
5049 error:
5050 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5051 		map->map_type, func_id_name(func_id), func_id);
5052 	return -EINVAL;
5053 }
5054 
5055 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5056 {
5057 	int count = 0;
5058 
5059 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5060 		count++;
5061 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5062 		count++;
5063 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5064 		count++;
5065 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5066 		count++;
5067 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5068 		count++;
5069 
5070 	/* We only support one arg being in raw mode at the moment,
5071 	 * which is sufficient for the helper functions we have
5072 	 * right now.
5073 	 */
5074 	return count <= 1;
5075 }
5076 
5077 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5078 				    enum bpf_arg_type arg_next)
5079 {
5080 	return (arg_type_is_mem_ptr(arg_curr) &&
5081 	        !arg_type_is_mem_size(arg_next)) ||
5082 	       (!arg_type_is_mem_ptr(arg_curr) &&
5083 		arg_type_is_mem_size(arg_next));
5084 }
5085 
5086 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5087 {
5088 	/* bpf_xxx(..., buf, len) call will access 'len'
5089 	 * bytes from memory 'buf'. Both arg types need
5090 	 * to be paired, so make sure there's no buggy
5091 	 * helper function specification.
5092 	 */
5093 	if (arg_type_is_mem_size(fn->arg1_type) ||
5094 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5095 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5096 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5097 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5098 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5099 		return false;
5100 
5101 	return true;
5102 }
5103 
5104 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5105 {
5106 	int count = 0;
5107 
5108 	if (arg_type_may_be_refcounted(fn->arg1_type))
5109 		count++;
5110 	if (arg_type_may_be_refcounted(fn->arg2_type))
5111 		count++;
5112 	if (arg_type_may_be_refcounted(fn->arg3_type))
5113 		count++;
5114 	if (arg_type_may_be_refcounted(fn->arg4_type))
5115 		count++;
5116 	if (arg_type_may_be_refcounted(fn->arg5_type))
5117 		count++;
5118 
5119 	/* A reference acquiring function cannot acquire
5120 	 * another refcounted ptr.
5121 	 */
5122 	if (may_be_acquire_function(func_id) && count)
5123 		return false;
5124 
5125 	/* We only support one arg being unreferenced at the moment,
5126 	 * which is sufficient for the helper functions we have right now.
5127 	 */
5128 	return count <= 1;
5129 }
5130 
5131 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5132 {
5133 	int i;
5134 
5135 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5136 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5137 			return false;
5138 
5139 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5140 			return false;
5141 	}
5142 
5143 	return true;
5144 }
5145 
5146 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5147 {
5148 	return check_raw_mode_ok(fn) &&
5149 	       check_arg_pair_ok(fn) &&
5150 	       check_btf_id_ok(fn) &&
5151 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5152 }
5153 
5154 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5155  * are now invalid, so turn them into unknown SCALAR_VALUE.
5156  */
5157 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5158 				     struct bpf_func_state *state)
5159 {
5160 	struct bpf_reg_state *regs = state->regs, *reg;
5161 	int i;
5162 
5163 	for (i = 0; i < MAX_BPF_REG; i++)
5164 		if (reg_is_pkt_pointer_any(&regs[i]))
5165 			mark_reg_unknown(env, regs, i);
5166 
5167 	bpf_for_each_spilled_reg(i, state, reg) {
5168 		if (!reg)
5169 			continue;
5170 		if (reg_is_pkt_pointer_any(reg))
5171 			__mark_reg_unknown(env, reg);
5172 	}
5173 }
5174 
5175 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5176 {
5177 	struct bpf_verifier_state *vstate = env->cur_state;
5178 	int i;
5179 
5180 	for (i = 0; i <= vstate->curframe; i++)
5181 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5182 }
5183 
5184 enum {
5185 	AT_PKT_END = -1,
5186 	BEYOND_PKT_END = -2,
5187 };
5188 
5189 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5190 {
5191 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5192 	struct bpf_reg_state *reg = &state->regs[regn];
5193 
5194 	if (reg->type != PTR_TO_PACKET)
5195 		/* PTR_TO_PACKET_META is not supported yet */
5196 		return;
5197 
5198 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5199 	 * How far beyond pkt_end it goes is unknown.
5200 	 * if (!range_open) it's the case of pkt >= pkt_end
5201 	 * if (range_open) it's the case of pkt > pkt_end
5202 	 * hence this pointer is at least 1 byte bigger than pkt_end
5203 	 */
5204 	if (range_open)
5205 		reg->range = BEYOND_PKT_END;
5206 	else
5207 		reg->range = AT_PKT_END;
5208 }
5209 
5210 static void release_reg_references(struct bpf_verifier_env *env,
5211 				   struct bpf_func_state *state,
5212 				   int ref_obj_id)
5213 {
5214 	struct bpf_reg_state *regs = state->regs, *reg;
5215 	int i;
5216 
5217 	for (i = 0; i < MAX_BPF_REG; i++)
5218 		if (regs[i].ref_obj_id == ref_obj_id)
5219 			mark_reg_unknown(env, regs, i);
5220 
5221 	bpf_for_each_spilled_reg(i, state, reg) {
5222 		if (!reg)
5223 			continue;
5224 		if (reg->ref_obj_id == ref_obj_id)
5225 			__mark_reg_unknown(env, reg);
5226 	}
5227 }
5228 
5229 /* The pointer with the specified id has released its reference to kernel
5230  * resources. Identify all copies of the same pointer and clear the reference.
5231  */
5232 static int release_reference(struct bpf_verifier_env *env,
5233 			     int ref_obj_id)
5234 {
5235 	struct bpf_verifier_state *vstate = env->cur_state;
5236 	int err;
5237 	int i;
5238 
5239 	err = release_reference_state(cur_func(env), ref_obj_id);
5240 	if (err)
5241 		return err;
5242 
5243 	for (i = 0; i <= vstate->curframe; i++)
5244 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5245 
5246 	return 0;
5247 }
5248 
5249 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5250 				    struct bpf_reg_state *regs)
5251 {
5252 	int i;
5253 
5254 	/* after the call registers r0 - r5 were scratched */
5255 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5256 		mark_reg_not_init(env, regs, caller_saved[i]);
5257 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5258 	}
5259 }
5260 
5261 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5262 			   int *insn_idx)
5263 {
5264 	struct bpf_verifier_state *state = env->cur_state;
5265 	struct bpf_func_info_aux *func_info_aux;
5266 	struct bpf_func_state *caller, *callee;
5267 	int i, err, subprog, target_insn;
5268 	bool is_global = false;
5269 
5270 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5271 		verbose(env, "the call stack of %d frames is too deep\n",
5272 			state->curframe + 2);
5273 		return -E2BIG;
5274 	}
5275 
5276 	target_insn = *insn_idx + insn->imm;
5277 	subprog = find_subprog(env, target_insn + 1);
5278 	if (subprog < 0) {
5279 		verbose(env, "verifier bug. No program starts at insn %d\n",
5280 			target_insn + 1);
5281 		return -EFAULT;
5282 	}
5283 
5284 	caller = state->frame[state->curframe];
5285 	if (state->frame[state->curframe + 1]) {
5286 		verbose(env, "verifier bug. Frame %d already allocated\n",
5287 			state->curframe + 1);
5288 		return -EFAULT;
5289 	}
5290 
5291 	func_info_aux = env->prog->aux->func_info_aux;
5292 	if (func_info_aux)
5293 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5294 	err = btf_check_func_arg_match(env, subprog, caller->regs);
5295 	if (err == -EFAULT)
5296 		return err;
5297 	if (is_global) {
5298 		if (err) {
5299 			verbose(env, "Caller passes invalid args into func#%d\n",
5300 				subprog);
5301 			return err;
5302 		} else {
5303 			if (env->log.level & BPF_LOG_LEVEL)
5304 				verbose(env,
5305 					"Func#%d is global and valid. Skipping.\n",
5306 					subprog);
5307 			clear_caller_saved_regs(env, caller->regs);
5308 
5309 			/* All global functions return a 64-bit SCALAR_VALUE */
5310 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5311 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5312 
5313 			/* continue with next insn after call */
5314 			return 0;
5315 		}
5316 	}
5317 
5318 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5319 	if (!callee)
5320 		return -ENOMEM;
5321 	state->frame[state->curframe + 1] = callee;
5322 
5323 	/* callee cannot access r0, r6 - r9 for reading and has to write
5324 	 * into its own stack before reading from it.
5325 	 * callee can read/write into caller's stack
5326 	 */
5327 	init_func_state(env, callee,
5328 			/* remember the callsite, it will be used by bpf_exit */
5329 			*insn_idx /* callsite */,
5330 			state->curframe + 1 /* frameno within this callchain */,
5331 			subprog /* subprog number within this prog */);
5332 
5333 	/* Transfer references to the callee */
5334 	err = transfer_reference_state(callee, caller);
5335 	if (err)
5336 		return err;
5337 
5338 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5339 	 * pointers, which connects us up to the liveness chain
5340 	 */
5341 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5342 		callee->regs[i] = caller->regs[i];
5343 
5344 	clear_caller_saved_regs(env, caller->regs);
5345 
5346 	/* only increment it after check_reg_arg() finished */
5347 	state->curframe++;
5348 
5349 	/* and go analyze first insn of the callee */
5350 	*insn_idx = target_insn;
5351 
5352 	if (env->log.level & BPF_LOG_LEVEL) {
5353 		verbose(env, "caller:\n");
5354 		print_verifier_state(env, caller);
5355 		verbose(env, "callee:\n");
5356 		print_verifier_state(env, callee);
5357 	}
5358 	return 0;
5359 }
5360 
5361 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5362 {
5363 	struct bpf_verifier_state *state = env->cur_state;
5364 	struct bpf_func_state *caller, *callee;
5365 	struct bpf_reg_state *r0;
5366 	int err;
5367 
5368 	callee = state->frame[state->curframe];
5369 	r0 = &callee->regs[BPF_REG_0];
5370 	if (r0->type == PTR_TO_STACK) {
5371 		/* technically it's ok to return caller's stack pointer
5372 		 * (or caller's caller's pointer) back to the caller,
5373 		 * since these pointers are valid. Only current stack
5374 		 * pointer will be invalid as soon as function exits,
5375 		 * but let's be conservative
5376 		 */
5377 		verbose(env, "cannot return stack pointer to the caller\n");
5378 		return -EINVAL;
5379 	}
5380 
5381 	state->curframe--;
5382 	caller = state->frame[state->curframe];
5383 	/* return to the caller whatever r0 had in the callee */
5384 	caller->regs[BPF_REG_0] = *r0;
5385 
5386 	/* Transfer references to the caller */
5387 	err = transfer_reference_state(caller, callee);
5388 	if (err)
5389 		return err;
5390 
5391 	*insn_idx = callee->callsite + 1;
5392 	if (env->log.level & BPF_LOG_LEVEL) {
5393 		verbose(env, "returning from callee:\n");
5394 		print_verifier_state(env, callee);
5395 		verbose(env, "to caller at %d:\n", *insn_idx);
5396 		print_verifier_state(env, caller);
5397 	}
5398 	/* clear everything in the callee */
5399 	free_func_state(callee);
5400 	state->frame[state->curframe + 1] = NULL;
5401 	return 0;
5402 }
5403 
5404 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5405 				   int func_id,
5406 				   struct bpf_call_arg_meta *meta)
5407 {
5408 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5409 
5410 	if (ret_type != RET_INTEGER ||
5411 	    (func_id != BPF_FUNC_get_stack &&
5412 	     func_id != BPF_FUNC_probe_read_str &&
5413 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5414 	     func_id != BPF_FUNC_probe_read_user_str))
5415 		return;
5416 
5417 	ret_reg->smax_value = meta->msize_max_value;
5418 	ret_reg->s32_max_value = meta->msize_max_value;
5419 	ret_reg->smin_value = -MAX_ERRNO;
5420 	ret_reg->s32_min_value = -MAX_ERRNO;
5421 	__reg_deduce_bounds(ret_reg);
5422 	__reg_bound_offset(ret_reg);
5423 	__update_reg_bounds(ret_reg);
5424 }
5425 
5426 static int
5427 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5428 		int func_id, int insn_idx)
5429 {
5430 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5431 	struct bpf_map *map = meta->map_ptr;
5432 
5433 	if (func_id != BPF_FUNC_tail_call &&
5434 	    func_id != BPF_FUNC_map_lookup_elem &&
5435 	    func_id != BPF_FUNC_map_update_elem &&
5436 	    func_id != BPF_FUNC_map_delete_elem &&
5437 	    func_id != BPF_FUNC_map_push_elem &&
5438 	    func_id != BPF_FUNC_map_pop_elem &&
5439 	    func_id != BPF_FUNC_map_peek_elem)
5440 		return 0;
5441 
5442 	if (map == NULL) {
5443 		verbose(env, "kernel subsystem misconfigured verifier\n");
5444 		return -EINVAL;
5445 	}
5446 
5447 	/* In case of read-only, some additional restrictions
5448 	 * need to be applied in order to prevent altering the
5449 	 * state of the map from program side.
5450 	 */
5451 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5452 	    (func_id == BPF_FUNC_map_delete_elem ||
5453 	     func_id == BPF_FUNC_map_update_elem ||
5454 	     func_id == BPF_FUNC_map_push_elem ||
5455 	     func_id == BPF_FUNC_map_pop_elem)) {
5456 		verbose(env, "write into map forbidden\n");
5457 		return -EACCES;
5458 	}
5459 
5460 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5461 		bpf_map_ptr_store(aux, meta->map_ptr,
5462 				  !meta->map_ptr->bypass_spec_v1);
5463 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5464 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5465 				  !meta->map_ptr->bypass_spec_v1);
5466 	return 0;
5467 }
5468 
5469 static int
5470 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5471 		int func_id, int insn_idx)
5472 {
5473 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5474 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5475 	struct bpf_map *map = meta->map_ptr;
5476 	struct tnum range;
5477 	u64 val;
5478 	int err;
5479 
5480 	if (func_id != BPF_FUNC_tail_call)
5481 		return 0;
5482 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5483 		verbose(env, "kernel subsystem misconfigured verifier\n");
5484 		return -EINVAL;
5485 	}
5486 
5487 	range = tnum_range(0, map->max_entries - 1);
5488 	reg = &regs[BPF_REG_3];
5489 
5490 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5491 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5492 		return 0;
5493 	}
5494 
5495 	err = mark_chain_precision(env, BPF_REG_3);
5496 	if (err)
5497 		return err;
5498 
5499 	val = reg->var_off.value;
5500 	if (bpf_map_key_unseen(aux))
5501 		bpf_map_key_store(aux, val);
5502 	else if (!bpf_map_key_poisoned(aux) &&
5503 		  bpf_map_key_immediate(aux) != val)
5504 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5505 	return 0;
5506 }
5507 
5508 static int check_reference_leak(struct bpf_verifier_env *env)
5509 {
5510 	struct bpf_func_state *state = cur_func(env);
5511 	int i;
5512 
5513 	for (i = 0; i < state->acquired_refs; i++) {
5514 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5515 			state->refs[i].id, state->refs[i].insn_idx);
5516 	}
5517 	return state->acquired_refs ? -EINVAL : 0;
5518 }
5519 
5520 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5521 {
5522 	const struct bpf_func_proto *fn = NULL;
5523 	struct bpf_reg_state *regs;
5524 	struct bpf_call_arg_meta meta;
5525 	bool changes_data;
5526 	int i, err;
5527 
5528 	/* find function prototype */
5529 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5530 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5531 			func_id);
5532 		return -EINVAL;
5533 	}
5534 
5535 	if (env->ops->get_func_proto)
5536 		fn = env->ops->get_func_proto(func_id, env->prog);
5537 	if (!fn) {
5538 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5539 			func_id);
5540 		return -EINVAL;
5541 	}
5542 
5543 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5544 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5545 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5546 		return -EINVAL;
5547 	}
5548 
5549 	if (fn->allowed && !fn->allowed(env->prog)) {
5550 		verbose(env, "helper call is not allowed in probe\n");
5551 		return -EINVAL;
5552 	}
5553 
5554 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5555 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5556 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5557 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5558 			func_id_name(func_id), func_id);
5559 		return -EINVAL;
5560 	}
5561 
5562 	memset(&meta, 0, sizeof(meta));
5563 	meta.pkt_access = fn->pkt_access;
5564 
5565 	err = check_func_proto(fn, func_id);
5566 	if (err) {
5567 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5568 			func_id_name(func_id), func_id);
5569 		return err;
5570 	}
5571 
5572 	meta.func_id = func_id;
5573 	/* check args */
5574 	for (i = 0; i < 5; i++) {
5575 		err = check_func_arg(env, i, &meta, fn);
5576 		if (err)
5577 			return err;
5578 	}
5579 
5580 	err = record_func_map(env, &meta, func_id, insn_idx);
5581 	if (err)
5582 		return err;
5583 
5584 	err = record_func_key(env, &meta, func_id, insn_idx);
5585 	if (err)
5586 		return err;
5587 
5588 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5589 	 * is inferred from register state.
5590 	 */
5591 	for (i = 0; i < meta.access_size; i++) {
5592 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5593 				       BPF_WRITE, -1, false);
5594 		if (err)
5595 			return err;
5596 	}
5597 
5598 	if (func_id == BPF_FUNC_tail_call) {
5599 		err = check_reference_leak(env);
5600 		if (err) {
5601 			verbose(env, "tail_call would lead to reference leak\n");
5602 			return err;
5603 		}
5604 	} else if (is_release_function(func_id)) {
5605 		err = release_reference(env, meta.ref_obj_id);
5606 		if (err) {
5607 			verbose(env, "func %s#%d reference has not been acquired before\n",
5608 				func_id_name(func_id), func_id);
5609 			return err;
5610 		}
5611 	}
5612 
5613 	regs = cur_regs(env);
5614 
5615 	/* check that flags argument in get_local_storage(map, flags) is 0,
5616 	 * this is required because get_local_storage() can't return an error.
5617 	 */
5618 	if (func_id == BPF_FUNC_get_local_storage &&
5619 	    !register_is_null(&regs[BPF_REG_2])) {
5620 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5621 		return -EINVAL;
5622 	}
5623 
5624 	/* reset caller saved regs */
5625 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5626 		mark_reg_not_init(env, regs, caller_saved[i]);
5627 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5628 	}
5629 
5630 	/* helper call returns 64-bit value. */
5631 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5632 
5633 	/* update return register (already marked as written above) */
5634 	if (fn->ret_type == RET_INTEGER) {
5635 		/* sets type to SCALAR_VALUE */
5636 		mark_reg_unknown(env, regs, BPF_REG_0);
5637 	} else if (fn->ret_type == RET_VOID) {
5638 		regs[BPF_REG_0].type = NOT_INIT;
5639 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5640 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5641 		/* There is no offset yet applied, variable or fixed */
5642 		mark_reg_known_zero(env, regs, BPF_REG_0);
5643 		/* remember map_ptr, so that check_map_access()
5644 		 * can check 'value_size' boundary of memory access
5645 		 * to map element returned from bpf_map_lookup_elem()
5646 		 */
5647 		if (meta.map_ptr == NULL) {
5648 			verbose(env,
5649 				"kernel subsystem misconfigured verifier\n");
5650 			return -EINVAL;
5651 		}
5652 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5653 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5654 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5655 			if (map_value_has_spin_lock(meta.map_ptr))
5656 				regs[BPF_REG_0].id = ++env->id_gen;
5657 		} else {
5658 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5659 		}
5660 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5661 		mark_reg_known_zero(env, regs, BPF_REG_0);
5662 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5663 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5664 		mark_reg_known_zero(env, regs, BPF_REG_0);
5665 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5666 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5667 		mark_reg_known_zero(env, regs, BPF_REG_0);
5668 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5669 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5670 		mark_reg_known_zero(env, regs, BPF_REG_0);
5671 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5672 		regs[BPF_REG_0].mem_size = meta.mem_size;
5673 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5674 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5675 		const struct btf_type *t;
5676 
5677 		mark_reg_known_zero(env, regs, BPF_REG_0);
5678 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5679 		if (!btf_type_is_struct(t)) {
5680 			u32 tsize;
5681 			const struct btf_type *ret;
5682 			const char *tname;
5683 
5684 			/* resolve the type size of ksym. */
5685 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5686 			if (IS_ERR(ret)) {
5687 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5688 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5689 					tname, PTR_ERR(ret));
5690 				return -EINVAL;
5691 			}
5692 			regs[BPF_REG_0].type =
5693 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5694 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5695 			regs[BPF_REG_0].mem_size = tsize;
5696 		} else {
5697 			regs[BPF_REG_0].type =
5698 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5699 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5700 			regs[BPF_REG_0].btf = meta.ret_btf;
5701 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5702 		}
5703 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5704 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
5705 		int ret_btf_id;
5706 
5707 		mark_reg_known_zero(env, regs, BPF_REG_0);
5708 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5709 						     PTR_TO_BTF_ID :
5710 						     PTR_TO_BTF_ID_OR_NULL;
5711 		ret_btf_id = *fn->ret_btf_id;
5712 		if (ret_btf_id == 0) {
5713 			verbose(env, "invalid return type %d of func %s#%d\n",
5714 				fn->ret_type, func_id_name(func_id), func_id);
5715 			return -EINVAL;
5716 		}
5717 		/* current BPF helper definitions are only coming from
5718 		 * built-in code with type IDs from  vmlinux BTF
5719 		 */
5720 		regs[BPF_REG_0].btf = btf_vmlinux;
5721 		regs[BPF_REG_0].btf_id = ret_btf_id;
5722 	} else {
5723 		verbose(env, "unknown return type %d of func %s#%d\n",
5724 			fn->ret_type, func_id_name(func_id), func_id);
5725 		return -EINVAL;
5726 	}
5727 
5728 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5729 		regs[BPF_REG_0].id = ++env->id_gen;
5730 
5731 	if (is_ptr_cast_function(func_id)) {
5732 		/* For release_reference() */
5733 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5734 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5735 		int id = acquire_reference_state(env, insn_idx);
5736 
5737 		if (id < 0)
5738 			return id;
5739 		/* For mark_ptr_or_null_reg() */
5740 		regs[BPF_REG_0].id = id;
5741 		/* For release_reference() */
5742 		regs[BPF_REG_0].ref_obj_id = id;
5743 	}
5744 
5745 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5746 
5747 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5748 	if (err)
5749 		return err;
5750 
5751 	if ((func_id == BPF_FUNC_get_stack ||
5752 	     func_id == BPF_FUNC_get_task_stack) &&
5753 	    !env->prog->has_callchain_buf) {
5754 		const char *err_str;
5755 
5756 #ifdef CONFIG_PERF_EVENTS
5757 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5758 		err_str = "cannot get callchain buffer for func %s#%d\n";
5759 #else
5760 		err = -ENOTSUPP;
5761 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5762 #endif
5763 		if (err) {
5764 			verbose(env, err_str, func_id_name(func_id), func_id);
5765 			return err;
5766 		}
5767 
5768 		env->prog->has_callchain_buf = true;
5769 	}
5770 
5771 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5772 		env->prog->call_get_stack = true;
5773 
5774 	if (changes_data)
5775 		clear_all_pkt_pointers(env);
5776 	return 0;
5777 }
5778 
5779 static bool signed_add_overflows(s64 a, s64 b)
5780 {
5781 	/* Do the add in u64, where overflow is well-defined */
5782 	s64 res = (s64)((u64)a + (u64)b);
5783 
5784 	if (b < 0)
5785 		return res > a;
5786 	return res < a;
5787 }
5788 
5789 static bool signed_add32_overflows(s32 a, s32 b)
5790 {
5791 	/* Do the add in u32, where overflow is well-defined */
5792 	s32 res = (s32)((u32)a + (u32)b);
5793 
5794 	if (b < 0)
5795 		return res > a;
5796 	return res < a;
5797 }
5798 
5799 static bool signed_sub_overflows(s64 a, s64 b)
5800 {
5801 	/* Do the sub in u64, where overflow is well-defined */
5802 	s64 res = (s64)((u64)a - (u64)b);
5803 
5804 	if (b < 0)
5805 		return res < a;
5806 	return res > a;
5807 }
5808 
5809 static bool signed_sub32_overflows(s32 a, s32 b)
5810 {
5811 	/* Do the sub in u32, where overflow is well-defined */
5812 	s32 res = (s32)((u32)a - (u32)b);
5813 
5814 	if (b < 0)
5815 		return res < a;
5816 	return res > a;
5817 }
5818 
5819 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5820 				  const struct bpf_reg_state *reg,
5821 				  enum bpf_reg_type type)
5822 {
5823 	bool known = tnum_is_const(reg->var_off);
5824 	s64 val = reg->var_off.value;
5825 	s64 smin = reg->smin_value;
5826 
5827 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5828 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5829 			reg_type_str[type], val);
5830 		return false;
5831 	}
5832 
5833 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5834 		verbose(env, "%s pointer offset %d is not allowed\n",
5835 			reg_type_str[type], reg->off);
5836 		return false;
5837 	}
5838 
5839 	if (smin == S64_MIN) {
5840 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5841 			reg_type_str[type]);
5842 		return false;
5843 	}
5844 
5845 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5846 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5847 			smin, reg_type_str[type]);
5848 		return false;
5849 	}
5850 
5851 	return true;
5852 }
5853 
5854 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5855 {
5856 	return &env->insn_aux_data[env->insn_idx];
5857 }
5858 
5859 enum {
5860 	REASON_BOUNDS	= -1,
5861 	REASON_TYPE	= -2,
5862 	REASON_PATHS	= -3,
5863 	REASON_LIMIT	= -4,
5864 	REASON_STACK	= -5,
5865 };
5866 
5867 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5868 			      const struct bpf_reg_state *off_reg,
5869 			      u32 *alu_limit, u8 opcode)
5870 {
5871 	bool off_is_neg = off_reg->smin_value < 0;
5872 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5873 			    (opcode == BPF_SUB && !off_is_neg);
5874 	u32 max = 0, ptr_limit = 0;
5875 
5876 	if (!tnum_is_const(off_reg->var_off) &&
5877 	    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
5878 		return REASON_BOUNDS;
5879 
5880 	switch (ptr_reg->type) {
5881 	case PTR_TO_STACK:
5882 		/* Offset 0 is out-of-bounds, but acceptable start for the
5883 		 * left direction, see BPF_REG_FP. Also, unknown scalar
5884 		 * offset where we would need to deal with min/max bounds is
5885 		 * currently prohibited for unprivileged.
5886 		 */
5887 		max = MAX_BPF_STACK + mask_to_left;
5888 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
5889 		break;
5890 	case PTR_TO_MAP_VALUE:
5891 		max = ptr_reg->map_ptr->value_size;
5892 		ptr_limit = (mask_to_left ?
5893 			     ptr_reg->smin_value :
5894 			     ptr_reg->umax_value) + ptr_reg->off;
5895 		break;
5896 	default:
5897 		return REASON_TYPE;
5898 	}
5899 
5900 	if (ptr_limit >= max)
5901 		return REASON_LIMIT;
5902 	*alu_limit = ptr_limit;
5903 	return 0;
5904 }
5905 
5906 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5907 				    const struct bpf_insn *insn)
5908 {
5909 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5910 }
5911 
5912 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5913 				       u32 alu_state, u32 alu_limit)
5914 {
5915 	/* If we arrived here from different branches with different
5916 	 * state or limits to sanitize, then this won't work.
5917 	 */
5918 	if (aux->alu_state &&
5919 	    (aux->alu_state != alu_state ||
5920 	     aux->alu_limit != alu_limit))
5921 		return REASON_PATHS;
5922 
5923 	/* Corresponding fixup done in fixup_bpf_calls(). */
5924 	aux->alu_state = alu_state;
5925 	aux->alu_limit = alu_limit;
5926 	return 0;
5927 }
5928 
5929 static int sanitize_val_alu(struct bpf_verifier_env *env,
5930 			    struct bpf_insn *insn)
5931 {
5932 	struct bpf_insn_aux_data *aux = cur_aux(env);
5933 
5934 	if (can_skip_alu_sanitation(env, insn))
5935 		return 0;
5936 
5937 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5938 }
5939 
5940 static bool sanitize_needed(u8 opcode)
5941 {
5942 	return opcode == BPF_ADD || opcode == BPF_SUB;
5943 }
5944 
5945 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5946 			    struct bpf_insn *insn,
5947 			    const struct bpf_reg_state *ptr_reg,
5948 			    const struct bpf_reg_state *off_reg,
5949 			    struct bpf_reg_state *dst_reg,
5950 			    struct bpf_insn_aux_data *tmp_aux,
5951 			    const bool commit_window)
5952 {
5953 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : tmp_aux;
5954 	struct bpf_verifier_state *vstate = env->cur_state;
5955 	bool off_is_neg = off_reg->smin_value < 0;
5956 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5957 	u8 opcode = BPF_OP(insn->code);
5958 	u32 alu_state, alu_limit;
5959 	struct bpf_reg_state tmp;
5960 	bool ret;
5961 	int err;
5962 
5963 	if (can_skip_alu_sanitation(env, insn))
5964 		return 0;
5965 
5966 	/* We already marked aux for masking from non-speculative
5967 	 * paths, thus we got here in the first place. We only care
5968 	 * to explore bad access from here.
5969 	 */
5970 	if (vstate->speculative)
5971 		goto do_sim;
5972 
5973 	err = retrieve_ptr_limit(ptr_reg, off_reg, &alu_limit, opcode);
5974 	if (err < 0)
5975 		return err;
5976 
5977 	if (commit_window) {
5978 		/* In commit phase we narrow the masking window based on
5979 		 * the observed pointer move after the simulated operation.
5980 		 */
5981 		alu_state = tmp_aux->alu_state;
5982 		alu_limit = abs(tmp_aux->alu_limit - alu_limit);
5983 	} else {
5984 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5985 		alu_state |= ptr_is_dst_reg ?
5986 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5987 	}
5988 
5989 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
5990 	if (err < 0)
5991 		return err;
5992 do_sim:
5993 	/* If we're in commit phase, we're done here given we already
5994 	 * pushed the truncated dst_reg into the speculative verification
5995 	 * stack.
5996 	 */
5997 	if (commit_window)
5998 		return 0;
5999 
6000 	/* Simulate and find potential out-of-bounds access under
6001 	 * speculative execution from truncation as a result of
6002 	 * masking when off was not within expected range. If off
6003 	 * sits in dst, then we temporarily need to move ptr there
6004 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6005 	 * for cases where we use K-based arithmetic in one direction
6006 	 * and truncated reg-based in the other in order to explore
6007 	 * bad access.
6008 	 */
6009 	if (!ptr_is_dst_reg) {
6010 		tmp = *dst_reg;
6011 		*dst_reg = *ptr_reg;
6012 	}
6013 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
6014 	if (!ptr_is_dst_reg && ret)
6015 		*dst_reg = tmp;
6016 	return !ret ? REASON_STACK : 0;
6017 }
6018 
6019 static int sanitize_err(struct bpf_verifier_env *env,
6020 			const struct bpf_insn *insn, int reason,
6021 			const struct bpf_reg_state *off_reg,
6022 			const struct bpf_reg_state *dst_reg)
6023 {
6024 	static const char *err = "pointer arithmetic with it prohibited for !root";
6025 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6026 	u32 dst = insn->dst_reg, src = insn->src_reg;
6027 
6028 	switch (reason) {
6029 	case REASON_BOUNDS:
6030 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6031 			off_reg == dst_reg ? dst : src, err);
6032 		break;
6033 	case REASON_TYPE:
6034 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6035 			off_reg == dst_reg ? src : dst, err);
6036 		break;
6037 	case REASON_PATHS:
6038 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6039 			dst, op, err);
6040 		break;
6041 	case REASON_LIMIT:
6042 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6043 			dst, op, err);
6044 		break;
6045 	case REASON_STACK:
6046 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6047 			dst, err);
6048 		break;
6049 	default:
6050 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6051 			reason);
6052 		break;
6053 	}
6054 
6055 	return -EACCES;
6056 }
6057 
6058 /* check that stack access falls within stack limits and that 'reg' doesn't
6059  * have a variable offset.
6060  *
6061  * Variable offset is prohibited for unprivileged mode for simplicity since it
6062  * requires corresponding support in Spectre masking for stack ALU.  See also
6063  * retrieve_ptr_limit().
6064  *
6065  *
6066  * 'off' includes 'reg->off'.
6067  */
6068 static int check_stack_access_for_ptr_arithmetic(
6069 				struct bpf_verifier_env *env,
6070 				int regno,
6071 				const struct bpf_reg_state *reg,
6072 				int off)
6073 {
6074 	if (!tnum_is_const(reg->var_off)) {
6075 		char tn_buf[48];
6076 
6077 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6078 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6079 			regno, tn_buf, off);
6080 		return -EACCES;
6081 	}
6082 
6083 	if (off >= 0 || off < -MAX_BPF_STACK) {
6084 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6085 			"prohibited for !root; off=%d\n", regno, off);
6086 		return -EACCES;
6087 	}
6088 
6089 	return 0;
6090 }
6091 
6092 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6093 				 const struct bpf_insn *insn,
6094 				 const struct bpf_reg_state *dst_reg)
6095 {
6096 	u32 dst = insn->dst_reg;
6097 
6098 	/* For unprivileged we require that resulting offset must be in bounds
6099 	 * in order to be able to sanitize access later on.
6100 	 */
6101 	if (env->bypass_spec_v1)
6102 		return 0;
6103 
6104 	switch (dst_reg->type) {
6105 	case PTR_TO_STACK:
6106 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6107 					dst_reg->off + dst_reg->var_off.value))
6108 			return -EACCES;
6109 		break;
6110 	case PTR_TO_MAP_VALUE:
6111 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6112 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6113 				"prohibited for !root\n", dst);
6114 			return -EACCES;
6115 		}
6116 		break;
6117 	default:
6118 		break;
6119 	}
6120 
6121 	return 0;
6122 }
6123 
6124 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6125  * Caller should also handle BPF_MOV case separately.
6126  * If we return -EACCES, caller may want to try again treating pointer as a
6127  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6128  */
6129 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6130 				   struct bpf_insn *insn,
6131 				   const struct bpf_reg_state *ptr_reg,
6132 				   const struct bpf_reg_state *off_reg)
6133 {
6134 	struct bpf_verifier_state *vstate = env->cur_state;
6135 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6136 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6137 	bool known = tnum_is_const(off_reg->var_off);
6138 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6139 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6140 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6141 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6142 	struct bpf_insn_aux_data tmp_aux = {};
6143 	u8 opcode = BPF_OP(insn->code);
6144 	u32 dst = insn->dst_reg;
6145 	int ret;
6146 
6147 	dst_reg = &regs[dst];
6148 
6149 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6150 	    smin_val > smax_val || umin_val > umax_val) {
6151 		/* Taint dst register if offset had invalid bounds derived from
6152 		 * e.g. dead branches.
6153 		 */
6154 		__mark_reg_unknown(env, dst_reg);
6155 		return 0;
6156 	}
6157 
6158 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6159 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6160 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6161 			__mark_reg_unknown(env, dst_reg);
6162 			return 0;
6163 		}
6164 
6165 		verbose(env,
6166 			"R%d 32-bit pointer arithmetic prohibited\n",
6167 			dst);
6168 		return -EACCES;
6169 	}
6170 
6171 	switch (ptr_reg->type) {
6172 	case PTR_TO_MAP_VALUE_OR_NULL:
6173 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6174 			dst, reg_type_str[ptr_reg->type]);
6175 		return -EACCES;
6176 	case CONST_PTR_TO_MAP:
6177 		/* smin_val represents the known value */
6178 		if (known && smin_val == 0 && opcode == BPF_ADD)
6179 			break;
6180 		fallthrough;
6181 	case PTR_TO_PACKET_END:
6182 	case PTR_TO_SOCKET:
6183 	case PTR_TO_SOCKET_OR_NULL:
6184 	case PTR_TO_SOCK_COMMON:
6185 	case PTR_TO_SOCK_COMMON_OR_NULL:
6186 	case PTR_TO_TCP_SOCK:
6187 	case PTR_TO_TCP_SOCK_OR_NULL:
6188 	case PTR_TO_XDP_SOCK:
6189 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6190 			dst, reg_type_str[ptr_reg->type]);
6191 		return -EACCES;
6192 	default:
6193 		break;
6194 	}
6195 
6196 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6197 	 * The id may be overwritten later if we create a new variable offset.
6198 	 */
6199 	dst_reg->type = ptr_reg->type;
6200 	dst_reg->id = ptr_reg->id;
6201 
6202 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6203 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6204 		return -EINVAL;
6205 
6206 	/* pointer types do not carry 32-bit bounds at the moment. */
6207 	__mark_reg32_unbounded(dst_reg);
6208 
6209 	if (sanitize_needed(opcode)) {
6210 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6211 				       &tmp_aux, false);
6212 		if (ret < 0)
6213 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6214 	}
6215 
6216 	switch (opcode) {
6217 	case BPF_ADD:
6218 		/* We can take a fixed offset as long as it doesn't overflow
6219 		 * the s32 'off' field
6220 		 */
6221 		if (known && (ptr_reg->off + smin_val ==
6222 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6223 			/* pointer += K.  Accumulate it into fixed offset */
6224 			dst_reg->smin_value = smin_ptr;
6225 			dst_reg->smax_value = smax_ptr;
6226 			dst_reg->umin_value = umin_ptr;
6227 			dst_reg->umax_value = umax_ptr;
6228 			dst_reg->var_off = ptr_reg->var_off;
6229 			dst_reg->off = ptr_reg->off + smin_val;
6230 			dst_reg->raw = ptr_reg->raw;
6231 			break;
6232 		}
6233 		/* A new variable offset is created.  Note that off_reg->off
6234 		 * == 0, since it's a scalar.
6235 		 * dst_reg gets the pointer type and since some positive
6236 		 * integer value was added to the pointer, give it a new 'id'
6237 		 * if it's a PTR_TO_PACKET.
6238 		 * this creates a new 'base' pointer, off_reg (variable) gets
6239 		 * added into the variable offset, and we copy the fixed offset
6240 		 * from ptr_reg.
6241 		 */
6242 		if (signed_add_overflows(smin_ptr, smin_val) ||
6243 		    signed_add_overflows(smax_ptr, smax_val)) {
6244 			dst_reg->smin_value = S64_MIN;
6245 			dst_reg->smax_value = S64_MAX;
6246 		} else {
6247 			dst_reg->smin_value = smin_ptr + smin_val;
6248 			dst_reg->smax_value = smax_ptr + smax_val;
6249 		}
6250 		if (umin_ptr + umin_val < umin_ptr ||
6251 		    umax_ptr + umax_val < umax_ptr) {
6252 			dst_reg->umin_value = 0;
6253 			dst_reg->umax_value = U64_MAX;
6254 		} else {
6255 			dst_reg->umin_value = umin_ptr + umin_val;
6256 			dst_reg->umax_value = umax_ptr + umax_val;
6257 		}
6258 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6259 		dst_reg->off = ptr_reg->off;
6260 		dst_reg->raw = ptr_reg->raw;
6261 		if (reg_is_pkt_pointer(ptr_reg)) {
6262 			dst_reg->id = ++env->id_gen;
6263 			/* something was added to pkt_ptr, set range to zero */
6264 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6265 		}
6266 		break;
6267 	case BPF_SUB:
6268 		if (dst_reg == off_reg) {
6269 			/* scalar -= pointer.  Creates an unknown scalar */
6270 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6271 				dst);
6272 			return -EACCES;
6273 		}
6274 		/* We don't allow subtraction from FP, because (according to
6275 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6276 		 * be able to deal with it.
6277 		 */
6278 		if (ptr_reg->type == PTR_TO_STACK) {
6279 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6280 				dst);
6281 			return -EACCES;
6282 		}
6283 		if (known && (ptr_reg->off - smin_val ==
6284 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6285 			/* pointer -= K.  Subtract it from fixed offset */
6286 			dst_reg->smin_value = smin_ptr;
6287 			dst_reg->smax_value = smax_ptr;
6288 			dst_reg->umin_value = umin_ptr;
6289 			dst_reg->umax_value = umax_ptr;
6290 			dst_reg->var_off = ptr_reg->var_off;
6291 			dst_reg->id = ptr_reg->id;
6292 			dst_reg->off = ptr_reg->off - smin_val;
6293 			dst_reg->raw = ptr_reg->raw;
6294 			break;
6295 		}
6296 		/* A new variable offset is created.  If the subtrahend is known
6297 		 * nonnegative, then any reg->range we had before is still good.
6298 		 */
6299 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6300 		    signed_sub_overflows(smax_ptr, smin_val)) {
6301 			/* Overflow possible, we know nothing */
6302 			dst_reg->smin_value = S64_MIN;
6303 			dst_reg->smax_value = S64_MAX;
6304 		} else {
6305 			dst_reg->smin_value = smin_ptr - smax_val;
6306 			dst_reg->smax_value = smax_ptr - smin_val;
6307 		}
6308 		if (umin_ptr < umax_val) {
6309 			/* Overflow possible, we know nothing */
6310 			dst_reg->umin_value = 0;
6311 			dst_reg->umax_value = U64_MAX;
6312 		} else {
6313 			/* Cannot overflow (as long as bounds are consistent) */
6314 			dst_reg->umin_value = umin_ptr - umax_val;
6315 			dst_reg->umax_value = umax_ptr - umin_val;
6316 		}
6317 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6318 		dst_reg->off = ptr_reg->off;
6319 		dst_reg->raw = ptr_reg->raw;
6320 		if (reg_is_pkt_pointer(ptr_reg)) {
6321 			dst_reg->id = ++env->id_gen;
6322 			/* something was added to pkt_ptr, set range to zero */
6323 			if (smin_val < 0)
6324 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6325 		}
6326 		break;
6327 	case BPF_AND:
6328 	case BPF_OR:
6329 	case BPF_XOR:
6330 		/* bitwise ops on pointers are troublesome, prohibit. */
6331 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6332 			dst, bpf_alu_string[opcode >> 4]);
6333 		return -EACCES;
6334 	default:
6335 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6336 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6337 			dst, bpf_alu_string[opcode >> 4]);
6338 		return -EACCES;
6339 	}
6340 
6341 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6342 		return -EINVAL;
6343 
6344 	__update_reg_bounds(dst_reg);
6345 	__reg_deduce_bounds(dst_reg);
6346 	__reg_bound_offset(dst_reg);
6347 
6348 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6349 		return -EACCES;
6350 	if (sanitize_needed(opcode)) {
6351 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6352 				       &tmp_aux, true);
6353 		if (ret < 0)
6354 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6355 	}
6356 
6357 	return 0;
6358 }
6359 
6360 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6361 				 struct bpf_reg_state *src_reg)
6362 {
6363 	s32 smin_val = src_reg->s32_min_value;
6364 	s32 smax_val = src_reg->s32_max_value;
6365 	u32 umin_val = src_reg->u32_min_value;
6366 	u32 umax_val = src_reg->u32_max_value;
6367 
6368 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6369 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6370 		dst_reg->s32_min_value = S32_MIN;
6371 		dst_reg->s32_max_value = S32_MAX;
6372 	} else {
6373 		dst_reg->s32_min_value += smin_val;
6374 		dst_reg->s32_max_value += smax_val;
6375 	}
6376 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6377 	    dst_reg->u32_max_value + umax_val < umax_val) {
6378 		dst_reg->u32_min_value = 0;
6379 		dst_reg->u32_max_value = U32_MAX;
6380 	} else {
6381 		dst_reg->u32_min_value += umin_val;
6382 		dst_reg->u32_max_value += umax_val;
6383 	}
6384 }
6385 
6386 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6387 			       struct bpf_reg_state *src_reg)
6388 {
6389 	s64 smin_val = src_reg->smin_value;
6390 	s64 smax_val = src_reg->smax_value;
6391 	u64 umin_val = src_reg->umin_value;
6392 	u64 umax_val = src_reg->umax_value;
6393 
6394 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6395 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6396 		dst_reg->smin_value = S64_MIN;
6397 		dst_reg->smax_value = S64_MAX;
6398 	} else {
6399 		dst_reg->smin_value += smin_val;
6400 		dst_reg->smax_value += smax_val;
6401 	}
6402 	if (dst_reg->umin_value + umin_val < umin_val ||
6403 	    dst_reg->umax_value + umax_val < umax_val) {
6404 		dst_reg->umin_value = 0;
6405 		dst_reg->umax_value = U64_MAX;
6406 	} else {
6407 		dst_reg->umin_value += umin_val;
6408 		dst_reg->umax_value += umax_val;
6409 	}
6410 }
6411 
6412 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6413 				 struct bpf_reg_state *src_reg)
6414 {
6415 	s32 smin_val = src_reg->s32_min_value;
6416 	s32 smax_val = src_reg->s32_max_value;
6417 	u32 umin_val = src_reg->u32_min_value;
6418 	u32 umax_val = src_reg->u32_max_value;
6419 
6420 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6421 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6422 		/* Overflow possible, we know nothing */
6423 		dst_reg->s32_min_value = S32_MIN;
6424 		dst_reg->s32_max_value = S32_MAX;
6425 	} else {
6426 		dst_reg->s32_min_value -= smax_val;
6427 		dst_reg->s32_max_value -= smin_val;
6428 	}
6429 	if (dst_reg->u32_min_value < umax_val) {
6430 		/* Overflow possible, we know nothing */
6431 		dst_reg->u32_min_value = 0;
6432 		dst_reg->u32_max_value = U32_MAX;
6433 	} else {
6434 		/* Cannot overflow (as long as bounds are consistent) */
6435 		dst_reg->u32_min_value -= umax_val;
6436 		dst_reg->u32_max_value -= umin_val;
6437 	}
6438 }
6439 
6440 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6441 			       struct bpf_reg_state *src_reg)
6442 {
6443 	s64 smin_val = src_reg->smin_value;
6444 	s64 smax_val = src_reg->smax_value;
6445 	u64 umin_val = src_reg->umin_value;
6446 	u64 umax_val = src_reg->umax_value;
6447 
6448 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6449 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6450 		/* Overflow possible, we know nothing */
6451 		dst_reg->smin_value = S64_MIN;
6452 		dst_reg->smax_value = S64_MAX;
6453 	} else {
6454 		dst_reg->smin_value -= smax_val;
6455 		dst_reg->smax_value -= smin_val;
6456 	}
6457 	if (dst_reg->umin_value < umax_val) {
6458 		/* Overflow possible, we know nothing */
6459 		dst_reg->umin_value = 0;
6460 		dst_reg->umax_value = U64_MAX;
6461 	} else {
6462 		/* Cannot overflow (as long as bounds are consistent) */
6463 		dst_reg->umin_value -= umax_val;
6464 		dst_reg->umax_value -= umin_val;
6465 	}
6466 }
6467 
6468 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6469 				 struct bpf_reg_state *src_reg)
6470 {
6471 	s32 smin_val = src_reg->s32_min_value;
6472 	u32 umin_val = src_reg->u32_min_value;
6473 	u32 umax_val = src_reg->u32_max_value;
6474 
6475 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6476 		/* Ain't nobody got time to multiply that sign */
6477 		__mark_reg32_unbounded(dst_reg);
6478 		return;
6479 	}
6480 	/* Both values are positive, so we can work with unsigned and
6481 	 * copy the result to signed (unless it exceeds S32_MAX).
6482 	 */
6483 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6484 		/* Potential overflow, we know nothing */
6485 		__mark_reg32_unbounded(dst_reg);
6486 		return;
6487 	}
6488 	dst_reg->u32_min_value *= umin_val;
6489 	dst_reg->u32_max_value *= umax_val;
6490 	if (dst_reg->u32_max_value > S32_MAX) {
6491 		/* Overflow possible, we know nothing */
6492 		dst_reg->s32_min_value = S32_MIN;
6493 		dst_reg->s32_max_value = S32_MAX;
6494 	} else {
6495 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6496 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6497 	}
6498 }
6499 
6500 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6501 			       struct bpf_reg_state *src_reg)
6502 {
6503 	s64 smin_val = src_reg->smin_value;
6504 	u64 umin_val = src_reg->umin_value;
6505 	u64 umax_val = src_reg->umax_value;
6506 
6507 	if (smin_val < 0 || dst_reg->smin_value < 0) {
6508 		/* Ain't nobody got time to multiply that sign */
6509 		__mark_reg64_unbounded(dst_reg);
6510 		return;
6511 	}
6512 	/* Both values are positive, so we can work with unsigned and
6513 	 * copy the result to signed (unless it exceeds S64_MAX).
6514 	 */
6515 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6516 		/* Potential overflow, we know nothing */
6517 		__mark_reg64_unbounded(dst_reg);
6518 		return;
6519 	}
6520 	dst_reg->umin_value *= umin_val;
6521 	dst_reg->umax_value *= umax_val;
6522 	if (dst_reg->umax_value > S64_MAX) {
6523 		/* Overflow possible, we know nothing */
6524 		dst_reg->smin_value = S64_MIN;
6525 		dst_reg->smax_value = S64_MAX;
6526 	} else {
6527 		dst_reg->smin_value = dst_reg->umin_value;
6528 		dst_reg->smax_value = dst_reg->umax_value;
6529 	}
6530 }
6531 
6532 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6533 				 struct bpf_reg_state *src_reg)
6534 {
6535 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6536 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6537 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6538 	s32 smin_val = src_reg->s32_min_value;
6539 	u32 umax_val = src_reg->u32_max_value;
6540 
6541 	/* Assuming scalar64_min_max_and will be called so its safe
6542 	 * to skip updating register for known 32-bit case.
6543 	 */
6544 	if (src_known && dst_known)
6545 		return;
6546 
6547 	/* We get our minimum from the var_off, since that's inherently
6548 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6549 	 */
6550 	dst_reg->u32_min_value = var32_off.value;
6551 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6552 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6553 		/* Lose signed bounds when ANDing negative numbers,
6554 		 * ain't nobody got time for that.
6555 		 */
6556 		dst_reg->s32_min_value = S32_MIN;
6557 		dst_reg->s32_max_value = S32_MAX;
6558 	} else {
6559 		/* ANDing two positives gives a positive, so safe to
6560 		 * cast result into s64.
6561 		 */
6562 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6563 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6564 	}
6565 
6566 }
6567 
6568 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6569 			       struct bpf_reg_state *src_reg)
6570 {
6571 	bool src_known = tnum_is_const(src_reg->var_off);
6572 	bool dst_known = tnum_is_const(dst_reg->var_off);
6573 	s64 smin_val = src_reg->smin_value;
6574 	u64 umax_val = src_reg->umax_value;
6575 
6576 	if (src_known && dst_known) {
6577 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6578 		return;
6579 	}
6580 
6581 	/* We get our minimum from the var_off, since that's inherently
6582 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6583 	 */
6584 	dst_reg->umin_value = dst_reg->var_off.value;
6585 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6586 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6587 		/* Lose signed bounds when ANDing negative numbers,
6588 		 * ain't nobody got time for that.
6589 		 */
6590 		dst_reg->smin_value = S64_MIN;
6591 		dst_reg->smax_value = S64_MAX;
6592 	} else {
6593 		/* ANDing two positives gives a positive, so safe to
6594 		 * cast result into s64.
6595 		 */
6596 		dst_reg->smin_value = dst_reg->umin_value;
6597 		dst_reg->smax_value = dst_reg->umax_value;
6598 	}
6599 	/* We may learn something more from the var_off */
6600 	__update_reg_bounds(dst_reg);
6601 }
6602 
6603 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6604 				struct bpf_reg_state *src_reg)
6605 {
6606 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6607 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6608 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6609 	s32 smin_val = src_reg->s32_min_value;
6610 	u32 umin_val = src_reg->u32_min_value;
6611 
6612 	/* Assuming scalar64_min_max_or will be called so it is safe
6613 	 * to skip updating register for known case.
6614 	 */
6615 	if (src_known && dst_known)
6616 		return;
6617 
6618 	/* We get our maximum from the var_off, and our minimum is the
6619 	 * maximum of the operands' minima
6620 	 */
6621 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6622 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6623 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6624 		/* Lose signed bounds when ORing negative numbers,
6625 		 * ain't nobody got time for that.
6626 		 */
6627 		dst_reg->s32_min_value = S32_MIN;
6628 		dst_reg->s32_max_value = S32_MAX;
6629 	} else {
6630 		/* ORing two positives gives a positive, so safe to
6631 		 * cast result into s64.
6632 		 */
6633 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6634 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6635 	}
6636 }
6637 
6638 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6639 			      struct bpf_reg_state *src_reg)
6640 {
6641 	bool src_known = tnum_is_const(src_reg->var_off);
6642 	bool dst_known = tnum_is_const(dst_reg->var_off);
6643 	s64 smin_val = src_reg->smin_value;
6644 	u64 umin_val = src_reg->umin_value;
6645 
6646 	if (src_known && dst_known) {
6647 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6648 		return;
6649 	}
6650 
6651 	/* We get our maximum from the var_off, and our minimum is the
6652 	 * maximum of the operands' minima
6653 	 */
6654 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6655 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6656 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6657 		/* Lose signed bounds when ORing negative numbers,
6658 		 * ain't nobody got time for that.
6659 		 */
6660 		dst_reg->smin_value = S64_MIN;
6661 		dst_reg->smax_value = S64_MAX;
6662 	} else {
6663 		/* ORing two positives gives a positive, so safe to
6664 		 * cast result into s64.
6665 		 */
6666 		dst_reg->smin_value = dst_reg->umin_value;
6667 		dst_reg->smax_value = dst_reg->umax_value;
6668 	}
6669 	/* We may learn something more from the var_off */
6670 	__update_reg_bounds(dst_reg);
6671 }
6672 
6673 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6674 				 struct bpf_reg_state *src_reg)
6675 {
6676 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6677 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6678 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6679 	s32 smin_val = src_reg->s32_min_value;
6680 
6681 	/* Assuming scalar64_min_max_xor will be called so it is safe
6682 	 * to skip updating register for known case.
6683 	 */
6684 	if (src_known && dst_known)
6685 		return;
6686 
6687 	/* We get both minimum and maximum from the var32_off. */
6688 	dst_reg->u32_min_value = var32_off.value;
6689 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6690 
6691 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6692 		/* XORing two positive sign numbers gives a positive,
6693 		 * so safe to cast u32 result into s32.
6694 		 */
6695 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6696 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6697 	} else {
6698 		dst_reg->s32_min_value = S32_MIN;
6699 		dst_reg->s32_max_value = S32_MAX;
6700 	}
6701 }
6702 
6703 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6704 			       struct bpf_reg_state *src_reg)
6705 {
6706 	bool src_known = tnum_is_const(src_reg->var_off);
6707 	bool dst_known = tnum_is_const(dst_reg->var_off);
6708 	s64 smin_val = src_reg->smin_value;
6709 
6710 	if (src_known && dst_known) {
6711 		/* dst_reg->var_off.value has been updated earlier */
6712 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6713 		return;
6714 	}
6715 
6716 	/* We get both minimum and maximum from the var_off. */
6717 	dst_reg->umin_value = dst_reg->var_off.value;
6718 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6719 
6720 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6721 		/* XORing two positive sign numbers gives a positive,
6722 		 * so safe to cast u64 result into s64.
6723 		 */
6724 		dst_reg->smin_value = dst_reg->umin_value;
6725 		dst_reg->smax_value = dst_reg->umax_value;
6726 	} else {
6727 		dst_reg->smin_value = S64_MIN;
6728 		dst_reg->smax_value = S64_MAX;
6729 	}
6730 
6731 	__update_reg_bounds(dst_reg);
6732 }
6733 
6734 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6735 				   u64 umin_val, u64 umax_val)
6736 {
6737 	/* We lose all sign bit information (except what we can pick
6738 	 * up from var_off)
6739 	 */
6740 	dst_reg->s32_min_value = S32_MIN;
6741 	dst_reg->s32_max_value = S32_MAX;
6742 	/* If we might shift our top bit out, then we know nothing */
6743 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6744 		dst_reg->u32_min_value = 0;
6745 		dst_reg->u32_max_value = U32_MAX;
6746 	} else {
6747 		dst_reg->u32_min_value <<= umin_val;
6748 		dst_reg->u32_max_value <<= umax_val;
6749 	}
6750 }
6751 
6752 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6753 				 struct bpf_reg_state *src_reg)
6754 {
6755 	u32 umax_val = src_reg->u32_max_value;
6756 	u32 umin_val = src_reg->u32_min_value;
6757 	/* u32 alu operation will zext upper bits */
6758 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6759 
6760 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6761 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6762 	/* Not required but being careful mark reg64 bounds as unknown so
6763 	 * that we are forced to pick them up from tnum and zext later and
6764 	 * if some path skips this step we are still safe.
6765 	 */
6766 	__mark_reg64_unbounded(dst_reg);
6767 	__update_reg32_bounds(dst_reg);
6768 }
6769 
6770 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6771 				   u64 umin_val, u64 umax_val)
6772 {
6773 	/* Special case <<32 because it is a common compiler pattern to sign
6774 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6775 	 * positive we know this shift will also be positive so we can track
6776 	 * bounds correctly. Otherwise we lose all sign bit information except
6777 	 * what we can pick up from var_off. Perhaps we can generalize this
6778 	 * later to shifts of any length.
6779 	 */
6780 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6781 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6782 	else
6783 		dst_reg->smax_value = S64_MAX;
6784 
6785 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6786 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6787 	else
6788 		dst_reg->smin_value = S64_MIN;
6789 
6790 	/* If we might shift our top bit out, then we know nothing */
6791 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6792 		dst_reg->umin_value = 0;
6793 		dst_reg->umax_value = U64_MAX;
6794 	} else {
6795 		dst_reg->umin_value <<= umin_val;
6796 		dst_reg->umax_value <<= umax_val;
6797 	}
6798 }
6799 
6800 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6801 			       struct bpf_reg_state *src_reg)
6802 {
6803 	u64 umax_val = src_reg->umax_value;
6804 	u64 umin_val = src_reg->umin_value;
6805 
6806 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6807 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6808 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6809 
6810 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6811 	/* We may learn something more from the var_off */
6812 	__update_reg_bounds(dst_reg);
6813 }
6814 
6815 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6816 				 struct bpf_reg_state *src_reg)
6817 {
6818 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6819 	u32 umax_val = src_reg->u32_max_value;
6820 	u32 umin_val = src_reg->u32_min_value;
6821 
6822 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6823 	 * be negative, then either:
6824 	 * 1) src_reg might be zero, so the sign bit of the result is
6825 	 *    unknown, so we lose our signed bounds
6826 	 * 2) it's known negative, thus the unsigned bounds capture the
6827 	 *    signed bounds
6828 	 * 3) the signed bounds cross zero, so they tell us nothing
6829 	 *    about the result
6830 	 * If the value in dst_reg is known nonnegative, then again the
6831 	 * unsigned bounds capture the signed bounds.
6832 	 * Thus, in all cases it suffices to blow away our signed bounds
6833 	 * and rely on inferring new ones from the unsigned bounds and
6834 	 * var_off of the result.
6835 	 */
6836 	dst_reg->s32_min_value = S32_MIN;
6837 	dst_reg->s32_max_value = S32_MAX;
6838 
6839 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6840 	dst_reg->u32_min_value >>= umax_val;
6841 	dst_reg->u32_max_value >>= umin_val;
6842 
6843 	__mark_reg64_unbounded(dst_reg);
6844 	__update_reg32_bounds(dst_reg);
6845 }
6846 
6847 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6848 			       struct bpf_reg_state *src_reg)
6849 {
6850 	u64 umax_val = src_reg->umax_value;
6851 	u64 umin_val = src_reg->umin_value;
6852 
6853 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6854 	 * be negative, then either:
6855 	 * 1) src_reg might be zero, so the sign bit of the result is
6856 	 *    unknown, so we lose our signed bounds
6857 	 * 2) it's known negative, thus the unsigned bounds capture the
6858 	 *    signed bounds
6859 	 * 3) the signed bounds cross zero, so they tell us nothing
6860 	 *    about the result
6861 	 * If the value in dst_reg is known nonnegative, then again the
6862 	 * unsigned bounds capture the signed bounds.
6863 	 * Thus, in all cases it suffices to blow away our signed bounds
6864 	 * and rely on inferring new ones from the unsigned bounds and
6865 	 * var_off of the result.
6866 	 */
6867 	dst_reg->smin_value = S64_MIN;
6868 	dst_reg->smax_value = S64_MAX;
6869 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6870 	dst_reg->umin_value >>= umax_val;
6871 	dst_reg->umax_value >>= umin_val;
6872 
6873 	/* Its not easy to operate on alu32 bounds here because it depends
6874 	 * on bits being shifted in. Take easy way out and mark unbounded
6875 	 * so we can recalculate later from tnum.
6876 	 */
6877 	__mark_reg32_unbounded(dst_reg);
6878 	__update_reg_bounds(dst_reg);
6879 }
6880 
6881 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6882 				  struct bpf_reg_state *src_reg)
6883 {
6884 	u64 umin_val = src_reg->u32_min_value;
6885 
6886 	/* Upon reaching here, src_known is true and
6887 	 * umax_val is equal to umin_val.
6888 	 */
6889 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6890 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6891 
6892 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6893 
6894 	/* blow away the dst_reg umin_value/umax_value and rely on
6895 	 * dst_reg var_off to refine the result.
6896 	 */
6897 	dst_reg->u32_min_value = 0;
6898 	dst_reg->u32_max_value = U32_MAX;
6899 
6900 	__mark_reg64_unbounded(dst_reg);
6901 	__update_reg32_bounds(dst_reg);
6902 }
6903 
6904 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6905 				struct bpf_reg_state *src_reg)
6906 {
6907 	u64 umin_val = src_reg->umin_value;
6908 
6909 	/* Upon reaching here, src_known is true and umax_val is equal
6910 	 * to umin_val.
6911 	 */
6912 	dst_reg->smin_value >>= umin_val;
6913 	dst_reg->smax_value >>= umin_val;
6914 
6915 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6916 
6917 	/* blow away the dst_reg umin_value/umax_value and rely on
6918 	 * dst_reg var_off to refine the result.
6919 	 */
6920 	dst_reg->umin_value = 0;
6921 	dst_reg->umax_value = U64_MAX;
6922 
6923 	/* Its not easy to operate on alu32 bounds here because it depends
6924 	 * on bits being shifted in from upper 32-bits. Take easy way out
6925 	 * and mark unbounded so we can recalculate later from tnum.
6926 	 */
6927 	__mark_reg32_unbounded(dst_reg);
6928 	__update_reg_bounds(dst_reg);
6929 }
6930 
6931 /* WARNING: This function does calculations on 64-bit values, but the actual
6932  * execution may occur on 32-bit values. Therefore, things like bitshifts
6933  * need extra checks in the 32-bit case.
6934  */
6935 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6936 				      struct bpf_insn *insn,
6937 				      struct bpf_reg_state *dst_reg,
6938 				      struct bpf_reg_state src_reg)
6939 {
6940 	struct bpf_reg_state *regs = cur_regs(env);
6941 	u8 opcode = BPF_OP(insn->code);
6942 	bool src_known;
6943 	s64 smin_val, smax_val;
6944 	u64 umin_val, umax_val;
6945 	s32 s32_min_val, s32_max_val;
6946 	u32 u32_min_val, u32_max_val;
6947 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6948 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6949 	int ret;
6950 
6951 	smin_val = src_reg.smin_value;
6952 	smax_val = src_reg.smax_value;
6953 	umin_val = src_reg.umin_value;
6954 	umax_val = src_reg.umax_value;
6955 
6956 	s32_min_val = src_reg.s32_min_value;
6957 	s32_max_val = src_reg.s32_max_value;
6958 	u32_min_val = src_reg.u32_min_value;
6959 	u32_max_val = src_reg.u32_max_value;
6960 
6961 	if (alu32) {
6962 		src_known = tnum_subreg_is_const(src_reg.var_off);
6963 		if ((src_known &&
6964 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6965 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6966 			/* Taint dst register if offset had invalid bounds
6967 			 * derived from e.g. dead branches.
6968 			 */
6969 			__mark_reg_unknown(env, dst_reg);
6970 			return 0;
6971 		}
6972 	} else {
6973 		src_known = tnum_is_const(src_reg.var_off);
6974 		if ((src_known &&
6975 		     (smin_val != smax_val || umin_val != umax_val)) ||
6976 		    smin_val > smax_val || umin_val > umax_val) {
6977 			/* Taint dst register if offset had invalid bounds
6978 			 * derived from e.g. dead branches.
6979 			 */
6980 			__mark_reg_unknown(env, dst_reg);
6981 			return 0;
6982 		}
6983 	}
6984 
6985 	if (!src_known &&
6986 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6987 		__mark_reg_unknown(env, dst_reg);
6988 		return 0;
6989 	}
6990 
6991 	if (sanitize_needed(opcode)) {
6992 		ret = sanitize_val_alu(env, insn);
6993 		if (ret < 0)
6994 			return sanitize_err(env, insn, ret, NULL, NULL);
6995 	}
6996 
6997 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6998 	 * There are two classes of instructions: The first class we track both
6999 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7000 	 * greatest amount of precision when alu operations are mixed with jmp32
7001 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7002 	 * and BPF_OR. This is possible because these ops have fairly easy to
7003 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7004 	 * See alu32 verifier tests for examples. The second class of
7005 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7006 	 * with regards to tracking sign/unsigned bounds because the bits may
7007 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7008 	 * the reg unbounded in the subreg bound space and use the resulting
7009 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7010 	 */
7011 	switch (opcode) {
7012 	case BPF_ADD:
7013 		scalar32_min_max_add(dst_reg, &src_reg);
7014 		scalar_min_max_add(dst_reg, &src_reg);
7015 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7016 		break;
7017 	case BPF_SUB:
7018 		scalar32_min_max_sub(dst_reg, &src_reg);
7019 		scalar_min_max_sub(dst_reg, &src_reg);
7020 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7021 		break;
7022 	case BPF_MUL:
7023 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7024 		scalar32_min_max_mul(dst_reg, &src_reg);
7025 		scalar_min_max_mul(dst_reg, &src_reg);
7026 		break;
7027 	case BPF_AND:
7028 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7029 		scalar32_min_max_and(dst_reg, &src_reg);
7030 		scalar_min_max_and(dst_reg, &src_reg);
7031 		break;
7032 	case BPF_OR:
7033 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7034 		scalar32_min_max_or(dst_reg, &src_reg);
7035 		scalar_min_max_or(dst_reg, &src_reg);
7036 		break;
7037 	case BPF_XOR:
7038 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7039 		scalar32_min_max_xor(dst_reg, &src_reg);
7040 		scalar_min_max_xor(dst_reg, &src_reg);
7041 		break;
7042 	case BPF_LSH:
7043 		if (umax_val >= insn_bitness) {
7044 			/* Shifts greater than 31 or 63 are undefined.
7045 			 * This includes shifts by a negative number.
7046 			 */
7047 			mark_reg_unknown(env, regs, insn->dst_reg);
7048 			break;
7049 		}
7050 		if (alu32)
7051 			scalar32_min_max_lsh(dst_reg, &src_reg);
7052 		else
7053 			scalar_min_max_lsh(dst_reg, &src_reg);
7054 		break;
7055 	case BPF_RSH:
7056 		if (umax_val >= insn_bitness) {
7057 			/* Shifts greater than 31 or 63 are undefined.
7058 			 * This includes shifts by a negative number.
7059 			 */
7060 			mark_reg_unknown(env, regs, insn->dst_reg);
7061 			break;
7062 		}
7063 		if (alu32)
7064 			scalar32_min_max_rsh(dst_reg, &src_reg);
7065 		else
7066 			scalar_min_max_rsh(dst_reg, &src_reg);
7067 		break;
7068 	case BPF_ARSH:
7069 		if (umax_val >= insn_bitness) {
7070 			/* Shifts greater than 31 or 63 are undefined.
7071 			 * This includes shifts by a negative number.
7072 			 */
7073 			mark_reg_unknown(env, regs, insn->dst_reg);
7074 			break;
7075 		}
7076 		if (alu32)
7077 			scalar32_min_max_arsh(dst_reg, &src_reg);
7078 		else
7079 			scalar_min_max_arsh(dst_reg, &src_reg);
7080 		break;
7081 	default:
7082 		mark_reg_unknown(env, regs, insn->dst_reg);
7083 		break;
7084 	}
7085 
7086 	/* ALU32 ops are zero extended into 64bit register */
7087 	if (alu32)
7088 		zext_32_to_64(dst_reg);
7089 
7090 	__update_reg_bounds(dst_reg);
7091 	__reg_deduce_bounds(dst_reg);
7092 	__reg_bound_offset(dst_reg);
7093 	return 0;
7094 }
7095 
7096 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7097  * and var_off.
7098  */
7099 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7100 				   struct bpf_insn *insn)
7101 {
7102 	struct bpf_verifier_state *vstate = env->cur_state;
7103 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7104 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7105 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7106 	u8 opcode = BPF_OP(insn->code);
7107 	int err;
7108 
7109 	dst_reg = &regs[insn->dst_reg];
7110 	src_reg = NULL;
7111 	if (dst_reg->type != SCALAR_VALUE)
7112 		ptr_reg = dst_reg;
7113 	else
7114 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7115 		 * incorrectly propagated into other registers by find_equal_scalars()
7116 		 */
7117 		dst_reg->id = 0;
7118 	if (BPF_SRC(insn->code) == BPF_X) {
7119 		src_reg = &regs[insn->src_reg];
7120 		if (src_reg->type != SCALAR_VALUE) {
7121 			if (dst_reg->type != SCALAR_VALUE) {
7122 				/* Combining two pointers by any ALU op yields
7123 				 * an arbitrary scalar. Disallow all math except
7124 				 * pointer subtraction
7125 				 */
7126 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7127 					mark_reg_unknown(env, regs, insn->dst_reg);
7128 					return 0;
7129 				}
7130 				verbose(env, "R%d pointer %s pointer prohibited\n",
7131 					insn->dst_reg,
7132 					bpf_alu_string[opcode >> 4]);
7133 				return -EACCES;
7134 			} else {
7135 				/* scalar += pointer
7136 				 * This is legal, but we have to reverse our
7137 				 * src/dest handling in computing the range
7138 				 */
7139 				err = mark_chain_precision(env, insn->dst_reg);
7140 				if (err)
7141 					return err;
7142 				return adjust_ptr_min_max_vals(env, insn,
7143 							       src_reg, dst_reg);
7144 			}
7145 		} else if (ptr_reg) {
7146 			/* pointer += scalar */
7147 			err = mark_chain_precision(env, insn->src_reg);
7148 			if (err)
7149 				return err;
7150 			return adjust_ptr_min_max_vals(env, insn,
7151 						       dst_reg, src_reg);
7152 		}
7153 	} else {
7154 		/* Pretend the src is a reg with a known value, since we only
7155 		 * need to be able to read from this state.
7156 		 */
7157 		off_reg.type = SCALAR_VALUE;
7158 		__mark_reg_known(&off_reg, insn->imm);
7159 		src_reg = &off_reg;
7160 		if (ptr_reg) /* pointer += K */
7161 			return adjust_ptr_min_max_vals(env, insn,
7162 						       ptr_reg, src_reg);
7163 	}
7164 
7165 	/* Got here implies adding two SCALAR_VALUEs */
7166 	if (WARN_ON_ONCE(ptr_reg)) {
7167 		print_verifier_state(env, state);
7168 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7169 		return -EINVAL;
7170 	}
7171 	if (WARN_ON(!src_reg)) {
7172 		print_verifier_state(env, state);
7173 		verbose(env, "verifier internal error: no src_reg\n");
7174 		return -EINVAL;
7175 	}
7176 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7177 }
7178 
7179 /* check validity of 32-bit and 64-bit arithmetic operations */
7180 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7181 {
7182 	struct bpf_reg_state *regs = cur_regs(env);
7183 	u8 opcode = BPF_OP(insn->code);
7184 	int err;
7185 
7186 	if (opcode == BPF_END || opcode == BPF_NEG) {
7187 		if (opcode == BPF_NEG) {
7188 			if (BPF_SRC(insn->code) != 0 ||
7189 			    insn->src_reg != BPF_REG_0 ||
7190 			    insn->off != 0 || insn->imm != 0) {
7191 				verbose(env, "BPF_NEG uses reserved fields\n");
7192 				return -EINVAL;
7193 			}
7194 		} else {
7195 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7196 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7197 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7198 				verbose(env, "BPF_END uses reserved fields\n");
7199 				return -EINVAL;
7200 			}
7201 		}
7202 
7203 		/* check src operand */
7204 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7205 		if (err)
7206 			return err;
7207 
7208 		if (is_pointer_value(env, insn->dst_reg)) {
7209 			verbose(env, "R%d pointer arithmetic prohibited\n",
7210 				insn->dst_reg);
7211 			return -EACCES;
7212 		}
7213 
7214 		/* check dest operand */
7215 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7216 		if (err)
7217 			return err;
7218 
7219 	} else if (opcode == BPF_MOV) {
7220 
7221 		if (BPF_SRC(insn->code) == BPF_X) {
7222 			if (insn->imm != 0 || insn->off != 0) {
7223 				verbose(env, "BPF_MOV uses reserved fields\n");
7224 				return -EINVAL;
7225 			}
7226 
7227 			/* check src operand */
7228 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7229 			if (err)
7230 				return err;
7231 		} else {
7232 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7233 				verbose(env, "BPF_MOV uses reserved fields\n");
7234 				return -EINVAL;
7235 			}
7236 		}
7237 
7238 		/* check dest operand, mark as required later */
7239 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7240 		if (err)
7241 			return err;
7242 
7243 		if (BPF_SRC(insn->code) == BPF_X) {
7244 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7245 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7246 
7247 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7248 				/* case: R1 = R2
7249 				 * copy register state to dest reg
7250 				 */
7251 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7252 					/* Assign src and dst registers the same ID
7253 					 * that will be used by find_equal_scalars()
7254 					 * to propagate min/max range.
7255 					 */
7256 					src_reg->id = ++env->id_gen;
7257 				*dst_reg = *src_reg;
7258 				dst_reg->live |= REG_LIVE_WRITTEN;
7259 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7260 			} else {
7261 				/* R1 = (u32) R2 */
7262 				if (is_pointer_value(env, insn->src_reg)) {
7263 					verbose(env,
7264 						"R%d partial copy of pointer\n",
7265 						insn->src_reg);
7266 					return -EACCES;
7267 				} else if (src_reg->type == SCALAR_VALUE) {
7268 					*dst_reg = *src_reg;
7269 					/* Make sure ID is cleared otherwise
7270 					 * dst_reg min/max could be incorrectly
7271 					 * propagated into src_reg by find_equal_scalars()
7272 					 */
7273 					dst_reg->id = 0;
7274 					dst_reg->live |= REG_LIVE_WRITTEN;
7275 					dst_reg->subreg_def = env->insn_idx + 1;
7276 				} else {
7277 					mark_reg_unknown(env, regs,
7278 							 insn->dst_reg);
7279 				}
7280 				zext_32_to_64(dst_reg);
7281 			}
7282 		} else {
7283 			/* case: R = imm
7284 			 * remember the value we stored into this reg
7285 			 */
7286 			/* clear any state __mark_reg_known doesn't set */
7287 			mark_reg_unknown(env, regs, insn->dst_reg);
7288 			regs[insn->dst_reg].type = SCALAR_VALUE;
7289 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7290 				__mark_reg_known(regs + insn->dst_reg,
7291 						 insn->imm);
7292 			} else {
7293 				__mark_reg_known(regs + insn->dst_reg,
7294 						 (u32)insn->imm);
7295 			}
7296 		}
7297 
7298 	} else if (opcode > BPF_END) {
7299 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7300 		return -EINVAL;
7301 
7302 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7303 
7304 		if (BPF_SRC(insn->code) == BPF_X) {
7305 			if (insn->imm != 0 || insn->off != 0) {
7306 				verbose(env, "BPF_ALU uses reserved fields\n");
7307 				return -EINVAL;
7308 			}
7309 			/* check src1 operand */
7310 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7311 			if (err)
7312 				return err;
7313 		} else {
7314 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7315 				verbose(env, "BPF_ALU uses reserved fields\n");
7316 				return -EINVAL;
7317 			}
7318 		}
7319 
7320 		/* check src2 operand */
7321 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7322 		if (err)
7323 			return err;
7324 
7325 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7326 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7327 			verbose(env, "div by zero\n");
7328 			return -EINVAL;
7329 		}
7330 
7331 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7332 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7333 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7334 
7335 			if (insn->imm < 0 || insn->imm >= size) {
7336 				verbose(env, "invalid shift %d\n", insn->imm);
7337 				return -EINVAL;
7338 			}
7339 		}
7340 
7341 		/* check dest operand */
7342 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7343 		if (err)
7344 			return err;
7345 
7346 		return adjust_reg_min_max_vals(env, insn);
7347 	}
7348 
7349 	return 0;
7350 }
7351 
7352 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7353 				     struct bpf_reg_state *dst_reg,
7354 				     enum bpf_reg_type type, int new_range)
7355 {
7356 	struct bpf_reg_state *reg;
7357 	int i;
7358 
7359 	for (i = 0; i < MAX_BPF_REG; i++) {
7360 		reg = &state->regs[i];
7361 		if (reg->type == type && reg->id == dst_reg->id)
7362 			/* keep the maximum range already checked */
7363 			reg->range = max(reg->range, new_range);
7364 	}
7365 
7366 	bpf_for_each_spilled_reg(i, state, reg) {
7367 		if (!reg)
7368 			continue;
7369 		if (reg->type == type && reg->id == dst_reg->id)
7370 			reg->range = max(reg->range, new_range);
7371 	}
7372 }
7373 
7374 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7375 				   struct bpf_reg_state *dst_reg,
7376 				   enum bpf_reg_type type,
7377 				   bool range_right_open)
7378 {
7379 	int new_range, i;
7380 
7381 	if (dst_reg->off < 0 ||
7382 	    (dst_reg->off == 0 && range_right_open))
7383 		/* This doesn't give us any range */
7384 		return;
7385 
7386 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7387 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7388 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7389 		 * than pkt_end, but that's because it's also less than pkt.
7390 		 */
7391 		return;
7392 
7393 	new_range = dst_reg->off;
7394 	if (range_right_open)
7395 		new_range--;
7396 
7397 	/* Examples for register markings:
7398 	 *
7399 	 * pkt_data in dst register:
7400 	 *
7401 	 *   r2 = r3;
7402 	 *   r2 += 8;
7403 	 *   if (r2 > pkt_end) goto <handle exception>
7404 	 *   <access okay>
7405 	 *
7406 	 *   r2 = r3;
7407 	 *   r2 += 8;
7408 	 *   if (r2 < pkt_end) goto <access okay>
7409 	 *   <handle exception>
7410 	 *
7411 	 *   Where:
7412 	 *     r2 == dst_reg, pkt_end == src_reg
7413 	 *     r2=pkt(id=n,off=8,r=0)
7414 	 *     r3=pkt(id=n,off=0,r=0)
7415 	 *
7416 	 * pkt_data in src register:
7417 	 *
7418 	 *   r2 = r3;
7419 	 *   r2 += 8;
7420 	 *   if (pkt_end >= r2) goto <access okay>
7421 	 *   <handle exception>
7422 	 *
7423 	 *   r2 = r3;
7424 	 *   r2 += 8;
7425 	 *   if (pkt_end <= r2) goto <handle exception>
7426 	 *   <access okay>
7427 	 *
7428 	 *   Where:
7429 	 *     pkt_end == dst_reg, r2 == src_reg
7430 	 *     r2=pkt(id=n,off=8,r=0)
7431 	 *     r3=pkt(id=n,off=0,r=0)
7432 	 *
7433 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7434 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7435 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
7436 	 * the check.
7437 	 */
7438 
7439 	/* If our ids match, then we must have the same max_value.  And we
7440 	 * don't care about the other reg's fixed offset, since if it's too big
7441 	 * the range won't allow anything.
7442 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7443 	 */
7444 	for (i = 0; i <= vstate->curframe; i++)
7445 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7446 					 new_range);
7447 }
7448 
7449 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7450 {
7451 	struct tnum subreg = tnum_subreg(reg->var_off);
7452 	s32 sval = (s32)val;
7453 
7454 	switch (opcode) {
7455 	case BPF_JEQ:
7456 		if (tnum_is_const(subreg))
7457 			return !!tnum_equals_const(subreg, val);
7458 		break;
7459 	case BPF_JNE:
7460 		if (tnum_is_const(subreg))
7461 			return !tnum_equals_const(subreg, val);
7462 		break;
7463 	case BPF_JSET:
7464 		if ((~subreg.mask & subreg.value) & val)
7465 			return 1;
7466 		if (!((subreg.mask | subreg.value) & val))
7467 			return 0;
7468 		break;
7469 	case BPF_JGT:
7470 		if (reg->u32_min_value > val)
7471 			return 1;
7472 		else if (reg->u32_max_value <= val)
7473 			return 0;
7474 		break;
7475 	case BPF_JSGT:
7476 		if (reg->s32_min_value > sval)
7477 			return 1;
7478 		else if (reg->s32_max_value <= sval)
7479 			return 0;
7480 		break;
7481 	case BPF_JLT:
7482 		if (reg->u32_max_value < val)
7483 			return 1;
7484 		else if (reg->u32_min_value >= val)
7485 			return 0;
7486 		break;
7487 	case BPF_JSLT:
7488 		if (reg->s32_max_value < sval)
7489 			return 1;
7490 		else if (reg->s32_min_value >= sval)
7491 			return 0;
7492 		break;
7493 	case BPF_JGE:
7494 		if (reg->u32_min_value >= val)
7495 			return 1;
7496 		else if (reg->u32_max_value < val)
7497 			return 0;
7498 		break;
7499 	case BPF_JSGE:
7500 		if (reg->s32_min_value >= sval)
7501 			return 1;
7502 		else if (reg->s32_max_value < sval)
7503 			return 0;
7504 		break;
7505 	case BPF_JLE:
7506 		if (reg->u32_max_value <= val)
7507 			return 1;
7508 		else if (reg->u32_min_value > val)
7509 			return 0;
7510 		break;
7511 	case BPF_JSLE:
7512 		if (reg->s32_max_value <= sval)
7513 			return 1;
7514 		else if (reg->s32_min_value > sval)
7515 			return 0;
7516 		break;
7517 	}
7518 
7519 	return -1;
7520 }
7521 
7522 
7523 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7524 {
7525 	s64 sval = (s64)val;
7526 
7527 	switch (opcode) {
7528 	case BPF_JEQ:
7529 		if (tnum_is_const(reg->var_off))
7530 			return !!tnum_equals_const(reg->var_off, val);
7531 		break;
7532 	case BPF_JNE:
7533 		if (tnum_is_const(reg->var_off))
7534 			return !tnum_equals_const(reg->var_off, val);
7535 		break;
7536 	case BPF_JSET:
7537 		if ((~reg->var_off.mask & reg->var_off.value) & val)
7538 			return 1;
7539 		if (!((reg->var_off.mask | reg->var_off.value) & val))
7540 			return 0;
7541 		break;
7542 	case BPF_JGT:
7543 		if (reg->umin_value > val)
7544 			return 1;
7545 		else if (reg->umax_value <= val)
7546 			return 0;
7547 		break;
7548 	case BPF_JSGT:
7549 		if (reg->smin_value > sval)
7550 			return 1;
7551 		else if (reg->smax_value <= sval)
7552 			return 0;
7553 		break;
7554 	case BPF_JLT:
7555 		if (reg->umax_value < val)
7556 			return 1;
7557 		else if (reg->umin_value >= val)
7558 			return 0;
7559 		break;
7560 	case BPF_JSLT:
7561 		if (reg->smax_value < sval)
7562 			return 1;
7563 		else if (reg->smin_value >= sval)
7564 			return 0;
7565 		break;
7566 	case BPF_JGE:
7567 		if (reg->umin_value >= val)
7568 			return 1;
7569 		else if (reg->umax_value < val)
7570 			return 0;
7571 		break;
7572 	case BPF_JSGE:
7573 		if (reg->smin_value >= sval)
7574 			return 1;
7575 		else if (reg->smax_value < sval)
7576 			return 0;
7577 		break;
7578 	case BPF_JLE:
7579 		if (reg->umax_value <= val)
7580 			return 1;
7581 		else if (reg->umin_value > val)
7582 			return 0;
7583 		break;
7584 	case BPF_JSLE:
7585 		if (reg->smax_value <= sval)
7586 			return 1;
7587 		else if (reg->smin_value > sval)
7588 			return 0;
7589 		break;
7590 	}
7591 
7592 	return -1;
7593 }
7594 
7595 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7596  * and return:
7597  *  1 - branch will be taken and "goto target" will be executed
7598  *  0 - branch will not be taken and fall-through to next insn
7599  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7600  *      range [0,10]
7601  */
7602 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7603 			   bool is_jmp32)
7604 {
7605 	if (__is_pointer_value(false, reg)) {
7606 		if (!reg_type_not_null(reg->type))
7607 			return -1;
7608 
7609 		/* If pointer is valid tests against zero will fail so we can
7610 		 * use this to direct branch taken.
7611 		 */
7612 		if (val != 0)
7613 			return -1;
7614 
7615 		switch (opcode) {
7616 		case BPF_JEQ:
7617 			return 0;
7618 		case BPF_JNE:
7619 			return 1;
7620 		default:
7621 			return -1;
7622 		}
7623 	}
7624 
7625 	if (is_jmp32)
7626 		return is_branch32_taken(reg, val, opcode);
7627 	return is_branch64_taken(reg, val, opcode);
7628 }
7629 
7630 static int flip_opcode(u32 opcode)
7631 {
7632 	/* How can we transform "a <op> b" into "b <op> a"? */
7633 	static const u8 opcode_flip[16] = {
7634 		/* these stay the same */
7635 		[BPF_JEQ  >> 4] = BPF_JEQ,
7636 		[BPF_JNE  >> 4] = BPF_JNE,
7637 		[BPF_JSET >> 4] = BPF_JSET,
7638 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7639 		[BPF_JGE  >> 4] = BPF_JLE,
7640 		[BPF_JGT  >> 4] = BPF_JLT,
7641 		[BPF_JLE  >> 4] = BPF_JGE,
7642 		[BPF_JLT  >> 4] = BPF_JGT,
7643 		[BPF_JSGE >> 4] = BPF_JSLE,
7644 		[BPF_JSGT >> 4] = BPF_JSLT,
7645 		[BPF_JSLE >> 4] = BPF_JSGE,
7646 		[BPF_JSLT >> 4] = BPF_JSGT
7647 	};
7648 	return opcode_flip[opcode >> 4];
7649 }
7650 
7651 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7652 				   struct bpf_reg_state *src_reg,
7653 				   u8 opcode)
7654 {
7655 	struct bpf_reg_state *pkt;
7656 
7657 	if (src_reg->type == PTR_TO_PACKET_END) {
7658 		pkt = dst_reg;
7659 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7660 		pkt = src_reg;
7661 		opcode = flip_opcode(opcode);
7662 	} else {
7663 		return -1;
7664 	}
7665 
7666 	if (pkt->range >= 0)
7667 		return -1;
7668 
7669 	switch (opcode) {
7670 	case BPF_JLE:
7671 		/* pkt <= pkt_end */
7672 		fallthrough;
7673 	case BPF_JGT:
7674 		/* pkt > pkt_end */
7675 		if (pkt->range == BEYOND_PKT_END)
7676 			/* pkt has at last one extra byte beyond pkt_end */
7677 			return opcode == BPF_JGT;
7678 		break;
7679 	case BPF_JLT:
7680 		/* pkt < pkt_end */
7681 		fallthrough;
7682 	case BPF_JGE:
7683 		/* pkt >= pkt_end */
7684 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7685 			return opcode == BPF_JGE;
7686 		break;
7687 	}
7688 	return -1;
7689 }
7690 
7691 /* Adjusts the register min/max values in the case that the dst_reg is the
7692  * variable register that we are working on, and src_reg is a constant or we're
7693  * simply doing a BPF_K check.
7694  * In JEQ/JNE cases we also adjust the var_off values.
7695  */
7696 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7697 			    struct bpf_reg_state *false_reg,
7698 			    u64 val, u32 val32,
7699 			    u8 opcode, bool is_jmp32)
7700 {
7701 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7702 	struct tnum false_64off = false_reg->var_off;
7703 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7704 	struct tnum true_64off = true_reg->var_off;
7705 	s64 sval = (s64)val;
7706 	s32 sval32 = (s32)val32;
7707 
7708 	/* If the dst_reg is a pointer, we can't learn anything about its
7709 	 * variable offset from the compare (unless src_reg were a pointer into
7710 	 * the same object, but we don't bother with that.
7711 	 * Since false_reg and true_reg have the same type by construction, we
7712 	 * only need to check one of them for pointerness.
7713 	 */
7714 	if (__is_pointer_value(false, false_reg))
7715 		return;
7716 
7717 	switch (opcode) {
7718 	case BPF_JEQ:
7719 	case BPF_JNE:
7720 	{
7721 		struct bpf_reg_state *reg =
7722 			opcode == BPF_JEQ ? true_reg : false_reg;
7723 
7724 		/* JEQ/JNE comparison doesn't change the register equivalence.
7725 		 * r1 = r2;
7726 		 * if (r1 == 42) goto label;
7727 		 * ...
7728 		 * label: // here both r1 and r2 are known to be 42.
7729 		 *
7730 		 * Hence when marking register as known preserve it's ID.
7731 		 */
7732 		if (is_jmp32)
7733 			__mark_reg32_known(reg, val32);
7734 		else
7735 			___mark_reg_known(reg, val);
7736 		break;
7737 	}
7738 	case BPF_JSET:
7739 		if (is_jmp32) {
7740 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7741 			if (is_power_of_2(val32))
7742 				true_32off = tnum_or(true_32off,
7743 						     tnum_const(val32));
7744 		} else {
7745 			false_64off = tnum_and(false_64off, tnum_const(~val));
7746 			if (is_power_of_2(val))
7747 				true_64off = tnum_or(true_64off,
7748 						     tnum_const(val));
7749 		}
7750 		break;
7751 	case BPF_JGE:
7752 	case BPF_JGT:
7753 	{
7754 		if (is_jmp32) {
7755 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7756 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7757 
7758 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7759 						       false_umax);
7760 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7761 						      true_umin);
7762 		} else {
7763 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7764 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7765 
7766 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7767 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7768 		}
7769 		break;
7770 	}
7771 	case BPF_JSGE:
7772 	case BPF_JSGT:
7773 	{
7774 		if (is_jmp32) {
7775 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7776 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7777 
7778 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7779 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7780 		} else {
7781 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7782 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7783 
7784 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7785 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7786 		}
7787 		break;
7788 	}
7789 	case BPF_JLE:
7790 	case BPF_JLT:
7791 	{
7792 		if (is_jmp32) {
7793 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7794 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7795 
7796 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7797 						       false_umin);
7798 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7799 						      true_umax);
7800 		} else {
7801 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7802 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7803 
7804 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7805 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7806 		}
7807 		break;
7808 	}
7809 	case BPF_JSLE:
7810 	case BPF_JSLT:
7811 	{
7812 		if (is_jmp32) {
7813 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7814 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7815 
7816 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7817 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7818 		} else {
7819 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7820 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7821 
7822 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7823 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7824 		}
7825 		break;
7826 	}
7827 	default:
7828 		return;
7829 	}
7830 
7831 	if (is_jmp32) {
7832 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7833 					     tnum_subreg(false_32off));
7834 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7835 					    tnum_subreg(true_32off));
7836 		__reg_combine_32_into_64(false_reg);
7837 		__reg_combine_32_into_64(true_reg);
7838 	} else {
7839 		false_reg->var_off = false_64off;
7840 		true_reg->var_off = true_64off;
7841 		__reg_combine_64_into_32(false_reg);
7842 		__reg_combine_64_into_32(true_reg);
7843 	}
7844 }
7845 
7846 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7847  * the variable reg.
7848  */
7849 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7850 				struct bpf_reg_state *false_reg,
7851 				u64 val, u32 val32,
7852 				u8 opcode, bool is_jmp32)
7853 {
7854 	opcode = flip_opcode(opcode);
7855 	/* This uses zero as "not present in table"; luckily the zero opcode,
7856 	 * BPF_JA, can't get here.
7857 	 */
7858 	if (opcode)
7859 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7860 }
7861 
7862 /* Regs are known to be equal, so intersect their min/max/var_off */
7863 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7864 				  struct bpf_reg_state *dst_reg)
7865 {
7866 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7867 							dst_reg->umin_value);
7868 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7869 							dst_reg->umax_value);
7870 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7871 							dst_reg->smin_value);
7872 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7873 							dst_reg->smax_value);
7874 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7875 							     dst_reg->var_off);
7876 	/* We might have learned new bounds from the var_off. */
7877 	__update_reg_bounds(src_reg);
7878 	__update_reg_bounds(dst_reg);
7879 	/* We might have learned something about the sign bit. */
7880 	__reg_deduce_bounds(src_reg);
7881 	__reg_deduce_bounds(dst_reg);
7882 	/* We might have learned some bits from the bounds. */
7883 	__reg_bound_offset(src_reg);
7884 	__reg_bound_offset(dst_reg);
7885 	/* Intersecting with the old var_off might have improved our bounds
7886 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7887 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7888 	 */
7889 	__update_reg_bounds(src_reg);
7890 	__update_reg_bounds(dst_reg);
7891 }
7892 
7893 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7894 				struct bpf_reg_state *true_dst,
7895 				struct bpf_reg_state *false_src,
7896 				struct bpf_reg_state *false_dst,
7897 				u8 opcode)
7898 {
7899 	switch (opcode) {
7900 	case BPF_JEQ:
7901 		__reg_combine_min_max(true_src, true_dst);
7902 		break;
7903 	case BPF_JNE:
7904 		__reg_combine_min_max(false_src, false_dst);
7905 		break;
7906 	}
7907 }
7908 
7909 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7910 				 struct bpf_reg_state *reg, u32 id,
7911 				 bool is_null)
7912 {
7913 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
7914 	    !WARN_ON_ONCE(!reg->id)) {
7915 		/* Old offset (both fixed and variable parts) should
7916 		 * have been known-zero, because we don't allow pointer
7917 		 * arithmetic on pointers that might be NULL.
7918 		 */
7919 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7920 				 !tnum_equals_const(reg->var_off, 0) ||
7921 				 reg->off)) {
7922 			__mark_reg_known_zero(reg);
7923 			reg->off = 0;
7924 		}
7925 		if (is_null) {
7926 			reg->type = SCALAR_VALUE;
7927 			/* We don't need id and ref_obj_id from this point
7928 			 * onwards anymore, thus we should better reset it,
7929 			 * so that state pruning has chances to take effect.
7930 			 */
7931 			reg->id = 0;
7932 			reg->ref_obj_id = 0;
7933 
7934 			return;
7935 		}
7936 
7937 		mark_ptr_not_null_reg(reg);
7938 
7939 		if (!reg_may_point_to_spin_lock(reg)) {
7940 			/* For not-NULL ptr, reg->ref_obj_id will be reset
7941 			 * in release_reg_references().
7942 			 *
7943 			 * reg->id is still used by spin_lock ptr. Other
7944 			 * than spin_lock ptr type, reg->id can be reset.
7945 			 */
7946 			reg->id = 0;
7947 		}
7948 	}
7949 }
7950 
7951 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7952 				    bool is_null)
7953 {
7954 	struct bpf_reg_state *reg;
7955 	int i;
7956 
7957 	for (i = 0; i < MAX_BPF_REG; i++)
7958 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7959 
7960 	bpf_for_each_spilled_reg(i, state, reg) {
7961 		if (!reg)
7962 			continue;
7963 		mark_ptr_or_null_reg(state, reg, id, is_null);
7964 	}
7965 }
7966 
7967 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7968  * be folded together at some point.
7969  */
7970 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7971 				  bool is_null)
7972 {
7973 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7974 	struct bpf_reg_state *regs = state->regs;
7975 	u32 ref_obj_id = regs[regno].ref_obj_id;
7976 	u32 id = regs[regno].id;
7977 	int i;
7978 
7979 	if (ref_obj_id && ref_obj_id == id && is_null)
7980 		/* regs[regno] is in the " == NULL" branch.
7981 		 * No one could have freed the reference state before
7982 		 * doing the NULL check.
7983 		 */
7984 		WARN_ON_ONCE(release_reference_state(state, id));
7985 
7986 	for (i = 0; i <= vstate->curframe; i++)
7987 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7988 }
7989 
7990 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7991 				   struct bpf_reg_state *dst_reg,
7992 				   struct bpf_reg_state *src_reg,
7993 				   struct bpf_verifier_state *this_branch,
7994 				   struct bpf_verifier_state *other_branch)
7995 {
7996 	if (BPF_SRC(insn->code) != BPF_X)
7997 		return false;
7998 
7999 	/* Pointers are always 64-bit. */
8000 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8001 		return false;
8002 
8003 	switch (BPF_OP(insn->code)) {
8004 	case BPF_JGT:
8005 		if ((dst_reg->type == PTR_TO_PACKET &&
8006 		     src_reg->type == PTR_TO_PACKET_END) ||
8007 		    (dst_reg->type == PTR_TO_PACKET_META &&
8008 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8009 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8010 			find_good_pkt_pointers(this_branch, dst_reg,
8011 					       dst_reg->type, false);
8012 			mark_pkt_end(other_branch, insn->dst_reg, true);
8013 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8014 			    src_reg->type == PTR_TO_PACKET) ||
8015 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8016 			    src_reg->type == PTR_TO_PACKET_META)) {
8017 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8018 			find_good_pkt_pointers(other_branch, src_reg,
8019 					       src_reg->type, true);
8020 			mark_pkt_end(this_branch, insn->src_reg, false);
8021 		} else {
8022 			return false;
8023 		}
8024 		break;
8025 	case BPF_JLT:
8026 		if ((dst_reg->type == PTR_TO_PACKET &&
8027 		     src_reg->type == PTR_TO_PACKET_END) ||
8028 		    (dst_reg->type == PTR_TO_PACKET_META &&
8029 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8030 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8031 			find_good_pkt_pointers(other_branch, dst_reg,
8032 					       dst_reg->type, true);
8033 			mark_pkt_end(this_branch, insn->dst_reg, false);
8034 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8035 			    src_reg->type == PTR_TO_PACKET) ||
8036 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8037 			    src_reg->type == PTR_TO_PACKET_META)) {
8038 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8039 			find_good_pkt_pointers(this_branch, src_reg,
8040 					       src_reg->type, false);
8041 			mark_pkt_end(other_branch, insn->src_reg, true);
8042 		} else {
8043 			return false;
8044 		}
8045 		break;
8046 	case BPF_JGE:
8047 		if ((dst_reg->type == PTR_TO_PACKET &&
8048 		     src_reg->type == PTR_TO_PACKET_END) ||
8049 		    (dst_reg->type == PTR_TO_PACKET_META &&
8050 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8051 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8052 			find_good_pkt_pointers(this_branch, dst_reg,
8053 					       dst_reg->type, true);
8054 			mark_pkt_end(other_branch, insn->dst_reg, false);
8055 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8056 			    src_reg->type == PTR_TO_PACKET) ||
8057 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8058 			    src_reg->type == PTR_TO_PACKET_META)) {
8059 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8060 			find_good_pkt_pointers(other_branch, src_reg,
8061 					       src_reg->type, false);
8062 			mark_pkt_end(this_branch, insn->src_reg, true);
8063 		} else {
8064 			return false;
8065 		}
8066 		break;
8067 	case BPF_JLE:
8068 		if ((dst_reg->type == PTR_TO_PACKET &&
8069 		     src_reg->type == PTR_TO_PACKET_END) ||
8070 		    (dst_reg->type == PTR_TO_PACKET_META &&
8071 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8072 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8073 			find_good_pkt_pointers(other_branch, dst_reg,
8074 					       dst_reg->type, false);
8075 			mark_pkt_end(this_branch, insn->dst_reg, true);
8076 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8077 			    src_reg->type == PTR_TO_PACKET) ||
8078 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8079 			    src_reg->type == PTR_TO_PACKET_META)) {
8080 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8081 			find_good_pkt_pointers(this_branch, src_reg,
8082 					       src_reg->type, true);
8083 			mark_pkt_end(other_branch, insn->src_reg, false);
8084 		} else {
8085 			return false;
8086 		}
8087 		break;
8088 	default:
8089 		return false;
8090 	}
8091 
8092 	return true;
8093 }
8094 
8095 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8096 			       struct bpf_reg_state *known_reg)
8097 {
8098 	struct bpf_func_state *state;
8099 	struct bpf_reg_state *reg;
8100 	int i, j;
8101 
8102 	for (i = 0; i <= vstate->curframe; i++) {
8103 		state = vstate->frame[i];
8104 		for (j = 0; j < MAX_BPF_REG; j++) {
8105 			reg = &state->regs[j];
8106 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8107 				*reg = *known_reg;
8108 		}
8109 
8110 		bpf_for_each_spilled_reg(j, state, reg) {
8111 			if (!reg)
8112 				continue;
8113 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8114 				*reg = *known_reg;
8115 		}
8116 	}
8117 }
8118 
8119 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8120 			     struct bpf_insn *insn, int *insn_idx)
8121 {
8122 	struct bpf_verifier_state *this_branch = env->cur_state;
8123 	struct bpf_verifier_state *other_branch;
8124 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8125 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8126 	u8 opcode = BPF_OP(insn->code);
8127 	bool is_jmp32;
8128 	int pred = -1;
8129 	int err;
8130 
8131 	/* Only conditional jumps are expected to reach here. */
8132 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8133 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8134 		return -EINVAL;
8135 	}
8136 
8137 	if (BPF_SRC(insn->code) == BPF_X) {
8138 		if (insn->imm != 0) {
8139 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8140 			return -EINVAL;
8141 		}
8142 
8143 		/* check src1 operand */
8144 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8145 		if (err)
8146 			return err;
8147 
8148 		if (is_pointer_value(env, insn->src_reg)) {
8149 			verbose(env, "R%d pointer comparison prohibited\n",
8150 				insn->src_reg);
8151 			return -EACCES;
8152 		}
8153 		src_reg = &regs[insn->src_reg];
8154 	} else {
8155 		if (insn->src_reg != BPF_REG_0) {
8156 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8157 			return -EINVAL;
8158 		}
8159 	}
8160 
8161 	/* check src2 operand */
8162 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8163 	if (err)
8164 		return err;
8165 
8166 	dst_reg = &regs[insn->dst_reg];
8167 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8168 
8169 	if (BPF_SRC(insn->code) == BPF_K) {
8170 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8171 	} else if (src_reg->type == SCALAR_VALUE &&
8172 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8173 		pred = is_branch_taken(dst_reg,
8174 				       tnum_subreg(src_reg->var_off).value,
8175 				       opcode,
8176 				       is_jmp32);
8177 	} else if (src_reg->type == SCALAR_VALUE &&
8178 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8179 		pred = is_branch_taken(dst_reg,
8180 				       src_reg->var_off.value,
8181 				       opcode,
8182 				       is_jmp32);
8183 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8184 		   reg_is_pkt_pointer_any(src_reg) &&
8185 		   !is_jmp32) {
8186 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8187 	}
8188 
8189 	if (pred >= 0) {
8190 		/* If we get here with a dst_reg pointer type it is because
8191 		 * above is_branch_taken() special cased the 0 comparison.
8192 		 */
8193 		if (!__is_pointer_value(false, dst_reg))
8194 			err = mark_chain_precision(env, insn->dst_reg);
8195 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8196 		    !__is_pointer_value(false, src_reg))
8197 			err = mark_chain_precision(env, insn->src_reg);
8198 		if (err)
8199 			return err;
8200 	}
8201 	if (pred == 1) {
8202 		/* only follow the goto, ignore fall-through */
8203 		*insn_idx += insn->off;
8204 		return 0;
8205 	} else if (pred == 0) {
8206 		/* only follow fall-through branch, since
8207 		 * that's where the program will go
8208 		 */
8209 		return 0;
8210 	}
8211 
8212 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8213 				  false);
8214 	if (!other_branch)
8215 		return -EFAULT;
8216 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8217 
8218 	/* detect if we are comparing against a constant value so we can adjust
8219 	 * our min/max values for our dst register.
8220 	 * this is only legit if both are scalars (or pointers to the same
8221 	 * object, I suppose, but we don't support that right now), because
8222 	 * otherwise the different base pointers mean the offsets aren't
8223 	 * comparable.
8224 	 */
8225 	if (BPF_SRC(insn->code) == BPF_X) {
8226 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8227 
8228 		if (dst_reg->type == SCALAR_VALUE &&
8229 		    src_reg->type == SCALAR_VALUE) {
8230 			if (tnum_is_const(src_reg->var_off) ||
8231 			    (is_jmp32 &&
8232 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8233 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8234 						dst_reg,
8235 						src_reg->var_off.value,
8236 						tnum_subreg(src_reg->var_off).value,
8237 						opcode, is_jmp32);
8238 			else if (tnum_is_const(dst_reg->var_off) ||
8239 				 (is_jmp32 &&
8240 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8241 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8242 						    src_reg,
8243 						    dst_reg->var_off.value,
8244 						    tnum_subreg(dst_reg->var_off).value,
8245 						    opcode, is_jmp32);
8246 			else if (!is_jmp32 &&
8247 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8248 				/* Comparing for equality, we can combine knowledge */
8249 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8250 						    &other_branch_regs[insn->dst_reg],
8251 						    src_reg, dst_reg, opcode);
8252 			if (src_reg->id &&
8253 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8254 				find_equal_scalars(this_branch, src_reg);
8255 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8256 			}
8257 
8258 		}
8259 	} else if (dst_reg->type == SCALAR_VALUE) {
8260 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8261 					dst_reg, insn->imm, (u32)insn->imm,
8262 					opcode, is_jmp32);
8263 	}
8264 
8265 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8266 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8267 		find_equal_scalars(this_branch, dst_reg);
8268 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8269 	}
8270 
8271 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8272 	 * NOTE: these optimizations below are related with pointer comparison
8273 	 *       which will never be JMP32.
8274 	 */
8275 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8276 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8277 	    reg_type_may_be_null(dst_reg->type)) {
8278 		/* Mark all identical registers in each branch as either
8279 		 * safe or unknown depending R == 0 or R != 0 conditional.
8280 		 */
8281 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8282 				      opcode == BPF_JNE);
8283 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8284 				      opcode == BPF_JEQ);
8285 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8286 					   this_branch, other_branch) &&
8287 		   is_pointer_value(env, insn->dst_reg)) {
8288 		verbose(env, "R%d pointer comparison prohibited\n",
8289 			insn->dst_reg);
8290 		return -EACCES;
8291 	}
8292 	if (env->log.level & BPF_LOG_LEVEL)
8293 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8294 	return 0;
8295 }
8296 
8297 /* verify BPF_LD_IMM64 instruction */
8298 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8299 {
8300 	struct bpf_insn_aux_data *aux = cur_aux(env);
8301 	struct bpf_reg_state *regs = cur_regs(env);
8302 	struct bpf_reg_state *dst_reg;
8303 	struct bpf_map *map;
8304 	int err;
8305 
8306 	if (BPF_SIZE(insn->code) != BPF_DW) {
8307 		verbose(env, "invalid BPF_LD_IMM insn\n");
8308 		return -EINVAL;
8309 	}
8310 	if (insn->off != 0) {
8311 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8312 		return -EINVAL;
8313 	}
8314 
8315 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8316 	if (err)
8317 		return err;
8318 
8319 	dst_reg = &regs[insn->dst_reg];
8320 	if (insn->src_reg == 0) {
8321 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8322 
8323 		dst_reg->type = SCALAR_VALUE;
8324 		__mark_reg_known(&regs[insn->dst_reg], imm);
8325 		return 0;
8326 	}
8327 
8328 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8329 		mark_reg_known_zero(env, regs, insn->dst_reg);
8330 
8331 		dst_reg->type = aux->btf_var.reg_type;
8332 		switch (dst_reg->type) {
8333 		case PTR_TO_MEM:
8334 			dst_reg->mem_size = aux->btf_var.mem_size;
8335 			break;
8336 		case PTR_TO_BTF_ID:
8337 		case PTR_TO_PERCPU_BTF_ID:
8338 			dst_reg->btf = aux->btf_var.btf;
8339 			dst_reg->btf_id = aux->btf_var.btf_id;
8340 			break;
8341 		default:
8342 			verbose(env, "bpf verifier is misconfigured\n");
8343 			return -EFAULT;
8344 		}
8345 		return 0;
8346 	}
8347 
8348 	map = env->used_maps[aux->map_index];
8349 	mark_reg_known_zero(env, regs, insn->dst_reg);
8350 	dst_reg->map_ptr = map;
8351 
8352 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8353 		dst_reg->type = PTR_TO_MAP_VALUE;
8354 		dst_reg->off = aux->map_off;
8355 		if (map_value_has_spin_lock(map))
8356 			dst_reg->id = ++env->id_gen;
8357 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8358 		dst_reg->type = CONST_PTR_TO_MAP;
8359 	} else {
8360 		verbose(env, "bpf verifier is misconfigured\n");
8361 		return -EINVAL;
8362 	}
8363 
8364 	return 0;
8365 }
8366 
8367 static bool may_access_skb(enum bpf_prog_type type)
8368 {
8369 	switch (type) {
8370 	case BPF_PROG_TYPE_SOCKET_FILTER:
8371 	case BPF_PROG_TYPE_SCHED_CLS:
8372 	case BPF_PROG_TYPE_SCHED_ACT:
8373 		return true;
8374 	default:
8375 		return false;
8376 	}
8377 }
8378 
8379 /* verify safety of LD_ABS|LD_IND instructions:
8380  * - they can only appear in the programs where ctx == skb
8381  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8382  *   preserve R6-R9, and store return value into R0
8383  *
8384  * Implicit input:
8385  *   ctx == skb == R6 == CTX
8386  *
8387  * Explicit input:
8388  *   SRC == any register
8389  *   IMM == 32-bit immediate
8390  *
8391  * Output:
8392  *   R0 - 8/16/32-bit skb data converted to cpu endianness
8393  */
8394 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8395 {
8396 	struct bpf_reg_state *regs = cur_regs(env);
8397 	static const int ctx_reg = BPF_REG_6;
8398 	u8 mode = BPF_MODE(insn->code);
8399 	int i, err;
8400 
8401 	if (!may_access_skb(resolve_prog_type(env->prog))) {
8402 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8403 		return -EINVAL;
8404 	}
8405 
8406 	if (!env->ops->gen_ld_abs) {
8407 		verbose(env, "bpf verifier is misconfigured\n");
8408 		return -EINVAL;
8409 	}
8410 
8411 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8412 	    BPF_SIZE(insn->code) == BPF_DW ||
8413 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8414 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8415 		return -EINVAL;
8416 	}
8417 
8418 	/* check whether implicit source operand (register R6) is readable */
8419 	err = check_reg_arg(env, ctx_reg, SRC_OP);
8420 	if (err)
8421 		return err;
8422 
8423 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8424 	 * gen_ld_abs() may terminate the program at runtime, leading to
8425 	 * reference leak.
8426 	 */
8427 	err = check_reference_leak(env);
8428 	if (err) {
8429 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8430 		return err;
8431 	}
8432 
8433 	if (env->cur_state->active_spin_lock) {
8434 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8435 		return -EINVAL;
8436 	}
8437 
8438 	if (regs[ctx_reg].type != PTR_TO_CTX) {
8439 		verbose(env,
8440 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8441 		return -EINVAL;
8442 	}
8443 
8444 	if (mode == BPF_IND) {
8445 		/* check explicit source operand */
8446 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8447 		if (err)
8448 			return err;
8449 	}
8450 
8451 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8452 	if (err < 0)
8453 		return err;
8454 
8455 	/* reset caller saved regs to unreadable */
8456 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8457 		mark_reg_not_init(env, regs, caller_saved[i]);
8458 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8459 	}
8460 
8461 	/* mark destination R0 register as readable, since it contains
8462 	 * the value fetched from the packet.
8463 	 * Already marked as written above.
8464 	 */
8465 	mark_reg_unknown(env, regs, BPF_REG_0);
8466 	/* ld_abs load up to 32-bit skb data. */
8467 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8468 	return 0;
8469 }
8470 
8471 static int check_return_code(struct bpf_verifier_env *env)
8472 {
8473 	struct tnum enforce_attach_type_range = tnum_unknown;
8474 	const struct bpf_prog *prog = env->prog;
8475 	struct bpf_reg_state *reg;
8476 	struct tnum range = tnum_range(0, 1);
8477 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8478 	int err;
8479 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
8480 
8481 	/* LSM and struct_ops func-ptr's return type could be "void" */
8482 	if (!is_subprog &&
8483 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8484 	     prog_type == BPF_PROG_TYPE_LSM) &&
8485 	    !prog->aux->attach_func_proto->type)
8486 		return 0;
8487 
8488 	/* eBPF calling convetion is such that R0 is used
8489 	 * to return the value from eBPF program.
8490 	 * Make sure that it's readable at this time
8491 	 * of bpf_exit, which means that program wrote
8492 	 * something into it earlier
8493 	 */
8494 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8495 	if (err)
8496 		return err;
8497 
8498 	if (is_pointer_value(env, BPF_REG_0)) {
8499 		verbose(env, "R0 leaks addr as return value\n");
8500 		return -EACCES;
8501 	}
8502 
8503 	reg = cur_regs(env) + BPF_REG_0;
8504 	if (is_subprog) {
8505 		if (reg->type != SCALAR_VALUE) {
8506 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8507 				reg_type_str[reg->type]);
8508 			return -EINVAL;
8509 		}
8510 		return 0;
8511 	}
8512 
8513 	switch (prog_type) {
8514 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8515 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8516 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8517 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8518 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8519 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8520 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8521 			range = tnum_range(1, 1);
8522 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
8523 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
8524 			range = tnum_range(0, 3);
8525 		break;
8526 	case BPF_PROG_TYPE_CGROUP_SKB:
8527 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8528 			range = tnum_range(0, 3);
8529 			enforce_attach_type_range = tnum_range(2, 3);
8530 		}
8531 		break;
8532 	case BPF_PROG_TYPE_CGROUP_SOCK:
8533 	case BPF_PROG_TYPE_SOCK_OPS:
8534 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8535 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8536 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8537 		break;
8538 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8539 		if (!env->prog->aux->attach_btf_id)
8540 			return 0;
8541 		range = tnum_const(0);
8542 		break;
8543 	case BPF_PROG_TYPE_TRACING:
8544 		switch (env->prog->expected_attach_type) {
8545 		case BPF_TRACE_FENTRY:
8546 		case BPF_TRACE_FEXIT:
8547 			range = tnum_const(0);
8548 			break;
8549 		case BPF_TRACE_RAW_TP:
8550 		case BPF_MODIFY_RETURN:
8551 			return 0;
8552 		case BPF_TRACE_ITER:
8553 			break;
8554 		default:
8555 			return -ENOTSUPP;
8556 		}
8557 		break;
8558 	case BPF_PROG_TYPE_SK_LOOKUP:
8559 		range = tnum_range(SK_DROP, SK_PASS);
8560 		break;
8561 	case BPF_PROG_TYPE_EXT:
8562 		/* freplace program can return anything as its return value
8563 		 * depends on the to-be-replaced kernel func or bpf program.
8564 		 */
8565 	default:
8566 		return 0;
8567 	}
8568 
8569 	if (reg->type != SCALAR_VALUE) {
8570 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8571 			reg_type_str[reg->type]);
8572 		return -EINVAL;
8573 	}
8574 
8575 	if (!tnum_in(range, reg->var_off)) {
8576 		char tn_buf[48];
8577 
8578 		verbose(env, "At program exit the register R0 ");
8579 		if (!tnum_is_unknown(reg->var_off)) {
8580 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8581 			verbose(env, "has value %s", tn_buf);
8582 		} else {
8583 			verbose(env, "has unknown scalar value");
8584 		}
8585 		tnum_strn(tn_buf, sizeof(tn_buf), range);
8586 		verbose(env, " should have been in %s\n", tn_buf);
8587 		return -EINVAL;
8588 	}
8589 
8590 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8591 	    tnum_in(enforce_attach_type_range, reg->var_off))
8592 		env->prog->enforce_expected_attach_type = 1;
8593 	return 0;
8594 }
8595 
8596 /* non-recursive DFS pseudo code
8597  * 1  procedure DFS-iterative(G,v):
8598  * 2      label v as discovered
8599  * 3      let S be a stack
8600  * 4      S.push(v)
8601  * 5      while S is not empty
8602  * 6            t <- S.pop()
8603  * 7            if t is what we're looking for:
8604  * 8                return t
8605  * 9            for all edges e in G.adjacentEdges(t) do
8606  * 10               if edge e is already labelled
8607  * 11                   continue with the next edge
8608  * 12               w <- G.adjacentVertex(t,e)
8609  * 13               if vertex w is not discovered and not explored
8610  * 14                   label e as tree-edge
8611  * 15                   label w as discovered
8612  * 16                   S.push(w)
8613  * 17                   continue at 5
8614  * 18               else if vertex w is discovered
8615  * 19                   label e as back-edge
8616  * 20               else
8617  * 21                   // vertex w is explored
8618  * 22                   label e as forward- or cross-edge
8619  * 23           label t as explored
8620  * 24           S.pop()
8621  *
8622  * convention:
8623  * 0x10 - discovered
8624  * 0x11 - discovered and fall-through edge labelled
8625  * 0x12 - discovered and fall-through and branch edges labelled
8626  * 0x20 - explored
8627  */
8628 
8629 enum {
8630 	DISCOVERED = 0x10,
8631 	EXPLORED = 0x20,
8632 	FALLTHROUGH = 1,
8633 	BRANCH = 2,
8634 };
8635 
8636 static u32 state_htab_size(struct bpf_verifier_env *env)
8637 {
8638 	return env->prog->len;
8639 }
8640 
8641 static struct bpf_verifier_state_list **explored_state(
8642 					struct bpf_verifier_env *env,
8643 					int idx)
8644 {
8645 	struct bpf_verifier_state *cur = env->cur_state;
8646 	struct bpf_func_state *state = cur->frame[cur->curframe];
8647 
8648 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8649 }
8650 
8651 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8652 {
8653 	env->insn_aux_data[idx].prune_point = true;
8654 }
8655 
8656 enum {
8657 	DONE_EXPLORING = 0,
8658 	KEEP_EXPLORING = 1,
8659 };
8660 
8661 /* t, w, e - match pseudo-code above:
8662  * t - index of current instruction
8663  * w - next instruction
8664  * e - edge
8665  */
8666 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8667 		     bool loop_ok)
8668 {
8669 	int *insn_stack = env->cfg.insn_stack;
8670 	int *insn_state = env->cfg.insn_state;
8671 
8672 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8673 		return DONE_EXPLORING;
8674 
8675 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8676 		return DONE_EXPLORING;
8677 
8678 	if (w < 0 || w >= env->prog->len) {
8679 		verbose_linfo(env, t, "%d: ", t);
8680 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8681 		return -EINVAL;
8682 	}
8683 
8684 	if (e == BRANCH)
8685 		/* mark branch target for state pruning */
8686 		init_explored_state(env, w);
8687 
8688 	if (insn_state[w] == 0) {
8689 		/* tree-edge */
8690 		insn_state[t] = DISCOVERED | e;
8691 		insn_state[w] = DISCOVERED;
8692 		if (env->cfg.cur_stack >= env->prog->len)
8693 			return -E2BIG;
8694 		insn_stack[env->cfg.cur_stack++] = w;
8695 		return KEEP_EXPLORING;
8696 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8697 		if (loop_ok && env->bpf_capable)
8698 			return DONE_EXPLORING;
8699 		verbose_linfo(env, t, "%d: ", t);
8700 		verbose_linfo(env, w, "%d: ", w);
8701 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8702 		return -EINVAL;
8703 	} else if (insn_state[w] == EXPLORED) {
8704 		/* forward- or cross-edge */
8705 		insn_state[t] = DISCOVERED | e;
8706 	} else {
8707 		verbose(env, "insn state internal bug\n");
8708 		return -EFAULT;
8709 	}
8710 	return DONE_EXPLORING;
8711 }
8712 
8713 /* Visits the instruction at index t and returns one of the following:
8714  *  < 0 - an error occurred
8715  *  DONE_EXPLORING - the instruction was fully explored
8716  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
8717  */
8718 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8719 {
8720 	struct bpf_insn *insns = env->prog->insnsi;
8721 	int ret;
8722 
8723 	/* All non-branch instructions have a single fall-through edge. */
8724 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8725 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
8726 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
8727 
8728 	switch (BPF_OP(insns[t].code)) {
8729 	case BPF_EXIT:
8730 		return DONE_EXPLORING;
8731 
8732 	case BPF_CALL:
8733 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8734 		if (ret)
8735 			return ret;
8736 
8737 		if (t + 1 < insn_cnt)
8738 			init_explored_state(env, t + 1);
8739 		if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8740 			init_explored_state(env, t);
8741 			ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8742 					env, false);
8743 		}
8744 		return ret;
8745 
8746 	case BPF_JA:
8747 		if (BPF_SRC(insns[t].code) != BPF_K)
8748 			return -EINVAL;
8749 
8750 		/* unconditional jump with single edge */
8751 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8752 				true);
8753 		if (ret)
8754 			return ret;
8755 
8756 		/* unconditional jmp is not a good pruning point,
8757 		 * but it's marked, since backtracking needs
8758 		 * to record jmp history in is_state_visited().
8759 		 */
8760 		init_explored_state(env, t + insns[t].off + 1);
8761 		/* tell verifier to check for equivalent states
8762 		 * after every call and jump
8763 		 */
8764 		if (t + 1 < insn_cnt)
8765 			init_explored_state(env, t + 1);
8766 
8767 		return ret;
8768 
8769 	default:
8770 		/* conditional jump with two edges */
8771 		init_explored_state(env, t);
8772 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8773 		if (ret)
8774 			return ret;
8775 
8776 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8777 	}
8778 }
8779 
8780 /* non-recursive depth-first-search to detect loops in BPF program
8781  * loop == back-edge in directed graph
8782  */
8783 static int check_cfg(struct bpf_verifier_env *env)
8784 {
8785 	int insn_cnt = env->prog->len;
8786 	int *insn_stack, *insn_state;
8787 	int ret = 0;
8788 	int i;
8789 
8790 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8791 	if (!insn_state)
8792 		return -ENOMEM;
8793 
8794 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8795 	if (!insn_stack) {
8796 		kvfree(insn_state);
8797 		return -ENOMEM;
8798 	}
8799 
8800 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8801 	insn_stack[0] = 0; /* 0 is the first instruction */
8802 	env->cfg.cur_stack = 1;
8803 
8804 	while (env->cfg.cur_stack > 0) {
8805 		int t = insn_stack[env->cfg.cur_stack - 1];
8806 
8807 		ret = visit_insn(t, insn_cnt, env);
8808 		switch (ret) {
8809 		case DONE_EXPLORING:
8810 			insn_state[t] = EXPLORED;
8811 			env->cfg.cur_stack--;
8812 			break;
8813 		case KEEP_EXPLORING:
8814 			break;
8815 		default:
8816 			if (ret > 0) {
8817 				verbose(env, "visit_insn internal bug\n");
8818 				ret = -EFAULT;
8819 			}
8820 			goto err_free;
8821 		}
8822 	}
8823 
8824 	if (env->cfg.cur_stack < 0) {
8825 		verbose(env, "pop stack internal bug\n");
8826 		ret = -EFAULT;
8827 		goto err_free;
8828 	}
8829 
8830 	for (i = 0; i < insn_cnt; i++) {
8831 		if (insn_state[i] != EXPLORED) {
8832 			verbose(env, "unreachable insn %d\n", i);
8833 			ret = -EINVAL;
8834 			goto err_free;
8835 		}
8836 	}
8837 	ret = 0; /* cfg looks good */
8838 
8839 err_free:
8840 	kvfree(insn_state);
8841 	kvfree(insn_stack);
8842 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8843 	return ret;
8844 }
8845 
8846 static int check_abnormal_return(struct bpf_verifier_env *env)
8847 {
8848 	int i;
8849 
8850 	for (i = 1; i < env->subprog_cnt; i++) {
8851 		if (env->subprog_info[i].has_ld_abs) {
8852 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8853 			return -EINVAL;
8854 		}
8855 		if (env->subprog_info[i].has_tail_call) {
8856 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8857 			return -EINVAL;
8858 		}
8859 	}
8860 	return 0;
8861 }
8862 
8863 /* The minimum supported BTF func info size */
8864 #define MIN_BPF_FUNCINFO_SIZE	8
8865 #define MAX_FUNCINFO_REC_SIZE	252
8866 
8867 static int check_btf_func(struct bpf_verifier_env *env,
8868 			  const union bpf_attr *attr,
8869 			  union bpf_attr __user *uattr)
8870 {
8871 	const struct btf_type *type, *func_proto, *ret_type;
8872 	u32 i, nfuncs, urec_size, min_size;
8873 	u32 krec_size = sizeof(struct bpf_func_info);
8874 	struct bpf_func_info *krecord;
8875 	struct bpf_func_info_aux *info_aux = NULL;
8876 	struct bpf_prog *prog;
8877 	const struct btf *btf;
8878 	void __user *urecord;
8879 	u32 prev_offset = 0;
8880 	bool scalar_return;
8881 	int ret = -ENOMEM;
8882 
8883 	nfuncs = attr->func_info_cnt;
8884 	if (!nfuncs) {
8885 		if (check_abnormal_return(env))
8886 			return -EINVAL;
8887 		return 0;
8888 	}
8889 
8890 	if (nfuncs != env->subprog_cnt) {
8891 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8892 		return -EINVAL;
8893 	}
8894 
8895 	urec_size = attr->func_info_rec_size;
8896 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8897 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8898 	    urec_size % sizeof(u32)) {
8899 		verbose(env, "invalid func info rec size %u\n", urec_size);
8900 		return -EINVAL;
8901 	}
8902 
8903 	prog = env->prog;
8904 	btf = prog->aux->btf;
8905 
8906 	urecord = u64_to_user_ptr(attr->func_info);
8907 	min_size = min_t(u32, krec_size, urec_size);
8908 
8909 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8910 	if (!krecord)
8911 		return -ENOMEM;
8912 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8913 	if (!info_aux)
8914 		goto err_free;
8915 
8916 	for (i = 0; i < nfuncs; i++) {
8917 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8918 		if (ret) {
8919 			if (ret == -E2BIG) {
8920 				verbose(env, "nonzero tailing record in func info");
8921 				/* set the size kernel expects so loader can zero
8922 				 * out the rest of the record.
8923 				 */
8924 				if (put_user(min_size, &uattr->func_info_rec_size))
8925 					ret = -EFAULT;
8926 			}
8927 			goto err_free;
8928 		}
8929 
8930 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8931 			ret = -EFAULT;
8932 			goto err_free;
8933 		}
8934 
8935 		/* check insn_off */
8936 		ret = -EINVAL;
8937 		if (i == 0) {
8938 			if (krecord[i].insn_off) {
8939 				verbose(env,
8940 					"nonzero insn_off %u for the first func info record",
8941 					krecord[i].insn_off);
8942 				goto err_free;
8943 			}
8944 		} else if (krecord[i].insn_off <= prev_offset) {
8945 			verbose(env,
8946 				"same or smaller insn offset (%u) than previous func info record (%u)",
8947 				krecord[i].insn_off, prev_offset);
8948 			goto err_free;
8949 		}
8950 
8951 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8952 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8953 			goto err_free;
8954 		}
8955 
8956 		/* check type_id */
8957 		type = btf_type_by_id(btf, krecord[i].type_id);
8958 		if (!type || !btf_type_is_func(type)) {
8959 			verbose(env, "invalid type id %d in func info",
8960 				krecord[i].type_id);
8961 			goto err_free;
8962 		}
8963 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8964 
8965 		func_proto = btf_type_by_id(btf, type->type);
8966 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8967 			/* btf_func_check() already verified it during BTF load */
8968 			goto err_free;
8969 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8970 		scalar_return =
8971 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8972 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8973 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8974 			goto err_free;
8975 		}
8976 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8977 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8978 			goto err_free;
8979 		}
8980 
8981 		prev_offset = krecord[i].insn_off;
8982 		urecord += urec_size;
8983 	}
8984 
8985 	prog->aux->func_info = krecord;
8986 	prog->aux->func_info_cnt = nfuncs;
8987 	prog->aux->func_info_aux = info_aux;
8988 	return 0;
8989 
8990 err_free:
8991 	kvfree(krecord);
8992 	kfree(info_aux);
8993 	return ret;
8994 }
8995 
8996 static void adjust_btf_func(struct bpf_verifier_env *env)
8997 {
8998 	struct bpf_prog_aux *aux = env->prog->aux;
8999 	int i;
9000 
9001 	if (!aux->func_info)
9002 		return;
9003 
9004 	for (i = 0; i < env->subprog_cnt; i++)
9005 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9006 }
9007 
9008 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9009 		sizeof(((struct bpf_line_info *)(0))->line_col))
9010 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9011 
9012 static int check_btf_line(struct bpf_verifier_env *env,
9013 			  const union bpf_attr *attr,
9014 			  union bpf_attr __user *uattr)
9015 {
9016 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9017 	struct bpf_subprog_info *sub;
9018 	struct bpf_line_info *linfo;
9019 	struct bpf_prog *prog;
9020 	const struct btf *btf;
9021 	void __user *ulinfo;
9022 	int err;
9023 
9024 	nr_linfo = attr->line_info_cnt;
9025 	if (!nr_linfo)
9026 		return 0;
9027 
9028 	rec_size = attr->line_info_rec_size;
9029 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9030 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9031 	    rec_size & (sizeof(u32) - 1))
9032 		return -EINVAL;
9033 
9034 	/* Need to zero it in case the userspace may
9035 	 * pass in a smaller bpf_line_info object.
9036 	 */
9037 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9038 			 GFP_KERNEL | __GFP_NOWARN);
9039 	if (!linfo)
9040 		return -ENOMEM;
9041 
9042 	prog = env->prog;
9043 	btf = prog->aux->btf;
9044 
9045 	s = 0;
9046 	sub = env->subprog_info;
9047 	ulinfo = u64_to_user_ptr(attr->line_info);
9048 	expected_size = sizeof(struct bpf_line_info);
9049 	ncopy = min_t(u32, expected_size, rec_size);
9050 	for (i = 0; i < nr_linfo; i++) {
9051 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9052 		if (err) {
9053 			if (err == -E2BIG) {
9054 				verbose(env, "nonzero tailing record in line_info");
9055 				if (put_user(expected_size,
9056 					     &uattr->line_info_rec_size))
9057 					err = -EFAULT;
9058 			}
9059 			goto err_free;
9060 		}
9061 
9062 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9063 			err = -EFAULT;
9064 			goto err_free;
9065 		}
9066 
9067 		/*
9068 		 * Check insn_off to ensure
9069 		 * 1) strictly increasing AND
9070 		 * 2) bounded by prog->len
9071 		 *
9072 		 * The linfo[0].insn_off == 0 check logically falls into
9073 		 * the later "missing bpf_line_info for func..." case
9074 		 * because the first linfo[0].insn_off must be the
9075 		 * first sub also and the first sub must have
9076 		 * subprog_info[0].start == 0.
9077 		 */
9078 		if ((i && linfo[i].insn_off <= prev_offset) ||
9079 		    linfo[i].insn_off >= prog->len) {
9080 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9081 				i, linfo[i].insn_off, prev_offset,
9082 				prog->len);
9083 			err = -EINVAL;
9084 			goto err_free;
9085 		}
9086 
9087 		if (!prog->insnsi[linfo[i].insn_off].code) {
9088 			verbose(env,
9089 				"Invalid insn code at line_info[%u].insn_off\n",
9090 				i);
9091 			err = -EINVAL;
9092 			goto err_free;
9093 		}
9094 
9095 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9096 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9097 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9098 			err = -EINVAL;
9099 			goto err_free;
9100 		}
9101 
9102 		if (s != env->subprog_cnt) {
9103 			if (linfo[i].insn_off == sub[s].start) {
9104 				sub[s].linfo_idx = i;
9105 				s++;
9106 			} else if (sub[s].start < linfo[i].insn_off) {
9107 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9108 				err = -EINVAL;
9109 				goto err_free;
9110 			}
9111 		}
9112 
9113 		prev_offset = linfo[i].insn_off;
9114 		ulinfo += rec_size;
9115 	}
9116 
9117 	if (s != env->subprog_cnt) {
9118 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9119 			env->subprog_cnt - s, s);
9120 		err = -EINVAL;
9121 		goto err_free;
9122 	}
9123 
9124 	prog->aux->linfo = linfo;
9125 	prog->aux->nr_linfo = nr_linfo;
9126 
9127 	return 0;
9128 
9129 err_free:
9130 	kvfree(linfo);
9131 	return err;
9132 }
9133 
9134 static int check_btf_info(struct bpf_verifier_env *env,
9135 			  const union bpf_attr *attr,
9136 			  union bpf_attr __user *uattr)
9137 {
9138 	struct btf *btf;
9139 	int err;
9140 
9141 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9142 		if (check_abnormal_return(env))
9143 			return -EINVAL;
9144 		return 0;
9145 	}
9146 
9147 	btf = btf_get_by_fd(attr->prog_btf_fd);
9148 	if (IS_ERR(btf))
9149 		return PTR_ERR(btf);
9150 	if (btf_is_kernel(btf)) {
9151 		btf_put(btf);
9152 		return -EACCES;
9153 	}
9154 	env->prog->aux->btf = btf;
9155 
9156 	err = check_btf_func(env, attr, uattr);
9157 	if (err)
9158 		return err;
9159 
9160 	err = check_btf_line(env, attr, uattr);
9161 	if (err)
9162 		return err;
9163 
9164 	return 0;
9165 }
9166 
9167 /* check %cur's range satisfies %old's */
9168 static bool range_within(struct bpf_reg_state *old,
9169 			 struct bpf_reg_state *cur)
9170 {
9171 	return old->umin_value <= cur->umin_value &&
9172 	       old->umax_value >= cur->umax_value &&
9173 	       old->smin_value <= cur->smin_value &&
9174 	       old->smax_value >= cur->smax_value &&
9175 	       old->u32_min_value <= cur->u32_min_value &&
9176 	       old->u32_max_value >= cur->u32_max_value &&
9177 	       old->s32_min_value <= cur->s32_min_value &&
9178 	       old->s32_max_value >= cur->s32_max_value;
9179 }
9180 
9181 /* Maximum number of register states that can exist at once */
9182 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9183 struct idpair {
9184 	u32 old;
9185 	u32 cur;
9186 };
9187 
9188 /* If in the old state two registers had the same id, then they need to have
9189  * the same id in the new state as well.  But that id could be different from
9190  * the old state, so we need to track the mapping from old to new ids.
9191  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9192  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9193  * regs with a different old id could still have new id 9, we don't care about
9194  * that.
9195  * So we look through our idmap to see if this old id has been seen before.  If
9196  * so, we require the new id to match; otherwise, we add the id pair to the map.
9197  */
9198 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9199 {
9200 	unsigned int i;
9201 
9202 	for (i = 0; i < ID_MAP_SIZE; i++) {
9203 		if (!idmap[i].old) {
9204 			/* Reached an empty slot; haven't seen this id before */
9205 			idmap[i].old = old_id;
9206 			idmap[i].cur = cur_id;
9207 			return true;
9208 		}
9209 		if (idmap[i].old == old_id)
9210 			return idmap[i].cur == cur_id;
9211 	}
9212 	/* We ran out of idmap slots, which should be impossible */
9213 	WARN_ON_ONCE(1);
9214 	return false;
9215 }
9216 
9217 static void clean_func_state(struct bpf_verifier_env *env,
9218 			     struct bpf_func_state *st)
9219 {
9220 	enum bpf_reg_liveness live;
9221 	int i, j;
9222 
9223 	for (i = 0; i < BPF_REG_FP; i++) {
9224 		live = st->regs[i].live;
9225 		/* liveness must not touch this register anymore */
9226 		st->regs[i].live |= REG_LIVE_DONE;
9227 		if (!(live & REG_LIVE_READ))
9228 			/* since the register is unused, clear its state
9229 			 * to make further comparison simpler
9230 			 */
9231 			__mark_reg_not_init(env, &st->regs[i]);
9232 	}
9233 
9234 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9235 		live = st->stack[i].spilled_ptr.live;
9236 		/* liveness must not touch this stack slot anymore */
9237 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9238 		if (!(live & REG_LIVE_READ)) {
9239 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9240 			for (j = 0; j < BPF_REG_SIZE; j++)
9241 				st->stack[i].slot_type[j] = STACK_INVALID;
9242 		}
9243 	}
9244 }
9245 
9246 static void clean_verifier_state(struct bpf_verifier_env *env,
9247 				 struct bpf_verifier_state *st)
9248 {
9249 	int i;
9250 
9251 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9252 		/* all regs in this state in all frames were already marked */
9253 		return;
9254 
9255 	for (i = 0; i <= st->curframe; i++)
9256 		clean_func_state(env, st->frame[i]);
9257 }
9258 
9259 /* the parentage chains form a tree.
9260  * the verifier states are added to state lists at given insn and
9261  * pushed into state stack for future exploration.
9262  * when the verifier reaches bpf_exit insn some of the verifer states
9263  * stored in the state lists have their final liveness state already,
9264  * but a lot of states will get revised from liveness point of view when
9265  * the verifier explores other branches.
9266  * Example:
9267  * 1: r0 = 1
9268  * 2: if r1 == 100 goto pc+1
9269  * 3: r0 = 2
9270  * 4: exit
9271  * when the verifier reaches exit insn the register r0 in the state list of
9272  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9273  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9274  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9275  *
9276  * Since the verifier pushes the branch states as it sees them while exploring
9277  * the program the condition of walking the branch instruction for the second
9278  * time means that all states below this branch were already explored and
9279  * their final liveness markes are already propagated.
9280  * Hence when the verifier completes the search of state list in is_state_visited()
9281  * we can call this clean_live_states() function to mark all liveness states
9282  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9283  * will not be used.
9284  * This function also clears the registers and stack for states that !READ
9285  * to simplify state merging.
9286  *
9287  * Important note here that walking the same branch instruction in the callee
9288  * doesn't meant that the states are DONE. The verifier has to compare
9289  * the callsites
9290  */
9291 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9292 			      struct bpf_verifier_state *cur)
9293 {
9294 	struct bpf_verifier_state_list *sl;
9295 	int i;
9296 
9297 	sl = *explored_state(env, insn);
9298 	while (sl) {
9299 		if (sl->state.branches)
9300 			goto next;
9301 		if (sl->state.insn_idx != insn ||
9302 		    sl->state.curframe != cur->curframe)
9303 			goto next;
9304 		for (i = 0; i <= cur->curframe; i++)
9305 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9306 				goto next;
9307 		clean_verifier_state(env, &sl->state);
9308 next:
9309 		sl = sl->next;
9310 	}
9311 }
9312 
9313 /* Returns true if (rold safe implies rcur safe) */
9314 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9315 		    struct idpair *idmap)
9316 {
9317 	bool equal;
9318 
9319 	if (!(rold->live & REG_LIVE_READ))
9320 		/* explored state didn't use this */
9321 		return true;
9322 
9323 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9324 
9325 	if (rold->type == PTR_TO_STACK)
9326 		/* two stack pointers are equal only if they're pointing to
9327 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9328 		 */
9329 		return equal && rold->frameno == rcur->frameno;
9330 
9331 	if (equal)
9332 		return true;
9333 
9334 	if (rold->type == NOT_INIT)
9335 		/* explored state can't have used this */
9336 		return true;
9337 	if (rcur->type == NOT_INIT)
9338 		return false;
9339 	switch (rold->type) {
9340 	case SCALAR_VALUE:
9341 		if (rcur->type == SCALAR_VALUE) {
9342 			if (!rold->precise && !rcur->precise)
9343 				return true;
9344 			/* new val must satisfy old val knowledge */
9345 			return range_within(rold, rcur) &&
9346 			       tnum_in(rold->var_off, rcur->var_off);
9347 		} else {
9348 			/* We're trying to use a pointer in place of a scalar.
9349 			 * Even if the scalar was unbounded, this could lead to
9350 			 * pointer leaks because scalars are allowed to leak
9351 			 * while pointers are not. We could make this safe in
9352 			 * special cases if root is calling us, but it's
9353 			 * probably not worth the hassle.
9354 			 */
9355 			return false;
9356 		}
9357 	case PTR_TO_MAP_VALUE:
9358 		/* If the new min/max/var_off satisfy the old ones and
9359 		 * everything else matches, we are OK.
9360 		 * 'id' is not compared, since it's only used for maps with
9361 		 * bpf_spin_lock inside map element and in such cases if
9362 		 * the rest of the prog is valid for one map element then
9363 		 * it's valid for all map elements regardless of the key
9364 		 * used in bpf_map_lookup()
9365 		 */
9366 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9367 		       range_within(rold, rcur) &&
9368 		       tnum_in(rold->var_off, rcur->var_off);
9369 	case PTR_TO_MAP_VALUE_OR_NULL:
9370 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9371 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9372 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9373 		 * checked, doing so could have affected others with the same
9374 		 * id, and we can't check for that because we lost the id when
9375 		 * we converted to a PTR_TO_MAP_VALUE.
9376 		 */
9377 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9378 			return false;
9379 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9380 			return false;
9381 		/* Check our ids match any regs they're supposed to */
9382 		return check_ids(rold->id, rcur->id, idmap);
9383 	case PTR_TO_PACKET_META:
9384 	case PTR_TO_PACKET:
9385 		if (rcur->type != rold->type)
9386 			return false;
9387 		/* We must have at least as much range as the old ptr
9388 		 * did, so that any accesses which were safe before are
9389 		 * still safe.  This is true even if old range < old off,
9390 		 * since someone could have accessed through (ptr - k), or
9391 		 * even done ptr -= k in a register, to get a safe access.
9392 		 */
9393 		if (rold->range > rcur->range)
9394 			return false;
9395 		/* If the offsets don't match, we can't trust our alignment;
9396 		 * nor can we be sure that we won't fall out of range.
9397 		 */
9398 		if (rold->off != rcur->off)
9399 			return false;
9400 		/* id relations must be preserved */
9401 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9402 			return false;
9403 		/* new val must satisfy old val knowledge */
9404 		return range_within(rold, rcur) &&
9405 		       tnum_in(rold->var_off, rcur->var_off);
9406 	case PTR_TO_CTX:
9407 	case CONST_PTR_TO_MAP:
9408 	case PTR_TO_PACKET_END:
9409 	case PTR_TO_FLOW_KEYS:
9410 	case PTR_TO_SOCKET:
9411 	case PTR_TO_SOCKET_OR_NULL:
9412 	case PTR_TO_SOCK_COMMON:
9413 	case PTR_TO_SOCK_COMMON_OR_NULL:
9414 	case PTR_TO_TCP_SOCK:
9415 	case PTR_TO_TCP_SOCK_OR_NULL:
9416 	case PTR_TO_XDP_SOCK:
9417 		/* Only valid matches are exact, which memcmp() above
9418 		 * would have accepted
9419 		 */
9420 	default:
9421 		/* Don't know what's going on, just say it's not safe */
9422 		return false;
9423 	}
9424 
9425 	/* Shouldn't get here; if we do, say it's not safe */
9426 	WARN_ON_ONCE(1);
9427 	return false;
9428 }
9429 
9430 static bool stacksafe(struct bpf_func_state *old,
9431 		      struct bpf_func_state *cur,
9432 		      struct idpair *idmap)
9433 {
9434 	int i, spi;
9435 
9436 	/* walk slots of the explored stack and ignore any additional
9437 	 * slots in the current stack, since explored(safe) state
9438 	 * didn't use them
9439 	 */
9440 	for (i = 0; i < old->allocated_stack; i++) {
9441 		spi = i / BPF_REG_SIZE;
9442 
9443 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9444 			i += BPF_REG_SIZE - 1;
9445 			/* explored state didn't use this */
9446 			continue;
9447 		}
9448 
9449 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9450 			continue;
9451 
9452 		/* explored stack has more populated slots than current stack
9453 		 * and these slots were used
9454 		 */
9455 		if (i >= cur->allocated_stack)
9456 			return false;
9457 
9458 		/* if old state was safe with misc data in the stack
9459 		 * it will be safe with zero-initialized stack.
9460 		 * The opposite is not true
9461 		 */
9462 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9463 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9464 			continue;
9465 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9466 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9467 			/* Ex: old explored (safe) state has STACK_SPILL in
9468 			 * this stack slot, but current has STACK_MISC ->
9469 			 * this verifier states are not equivalent,
9470 			 * return false to continue verification of this path
9471 			 */
9472 			return false;
9473 		if (i % BPF_REG_SIZE)
9474 			continue;
9475 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
9476 			continue;
9477 		if (!regsafe(&old->stack[spi].spilled_ptr,
9478 			     &cur->stack[spi].spilled_ptr,
9479 			     idmap))
9480 			/* when explored and current stack slot are both storing
9481 			 * spilled registers, check that stored pointers types
9482 			 * are the same as well.
9483 			 * Ex: explored safe path could have stored
9484 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9485 			 * but current path has stored:
9486 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9487 			 * such verifier states are not equivalent.
9488 			 * return false to continue verification of this path
9489 			 */
9490 			return false;
9491 	}
9492 	return true;
9493 }
9494 
9495 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9496 {
9497 	if (old->acquired_refs != cur->acquired_refs)
9498 		return false;
9499 	return !memcmp(old->refs, cur->refs,
9500 		       sizeof(*old->refs) * old->acquired_refs);
9501 }
9502 
9503 /* compare two verifier states
9504  *
9505  * all states stored in state_list are known to be valid, since
9506  * verifier reached 'bpf_exit' instruction through them
9507  *
9508  * this function is called when verifier exploring different branches of
9509  * execution popped from the state stack. If it sees an old state that has
9510  * more strict register state and more strict stack state then this execution
9511  * branch doesn't need to be explored further, since verifier already
9512  * concluded that more strict state leads to valid finish.
9513  *
9514  * Therefore two states are equivalent if register state is more conservative
9515  * and explored stack state is more conservative than the current one.
9516  * Example:
9517  *       explored                   current
9518  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9519  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9520  *
9521  * In other words if current stack state (one being explored) has more
9522  * valid slots than old one that already passed validation, it means
9523  * the verifier can stop exploring and conclude that current state is valid too
9524  *
9525  * Similarly with registers. If explored state has register type as invalid
9526  * whereas register type in current state is meaningful, it means that
9527  * the current state will reach 'bpf_exit' instruction safely
9528  */
9529 static bool func_states_equal(struct bpf_func_state *old,
9530 			      struct bpf_func_state *cur)
9531 {
9532 	struct idpair *idmap;
9533 	bool ret = false;
9534 	int i;
9535 
9536 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
9537 	/* If we failed to allocate the idmap, just say it's not safe */
9538 	if (!idmap)
9539 		return false;
9540 
9541 	for (i = 0; i < MAX_BPF_REG; i++) {
9542 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
9543 			goto out_free;
9544 	}
9545 
9546 	if (!stacksafe(old, cur, idmap))
9547 		goto out_free;
9548 
9549 	if (!refsafe(old, cur))
9550 		goto out_free;
9551 	ret = true;
9552 out_free:
9553 	kfree(idmap);
9554 	return ret;
9555 }
9556 
9557 static bool states_equal(struct bpf_verifier_env *env,
9558 			 struct bpf_verifier_state *old,
9559 			 struct bpf_verifier_state *cur)
9560 {
9561 	int i;
9562 
9563 	if (old->curframe != cur->curframe)
9564 		return false;
9565 
9566 	/* Verification state from speculative execution simulation
9567 	 * must never prune a non-speculative execution one.
9568 	 */
9569 	if (old->speculative && !cur->speculative)
9570 		return false;
9571 
9572 	if (old->active_spin_lock != cur->active_spin_lock)
9573 		return false;
9574 
9575 	/* for states to be equal callsites have to be the same
9576 	 * and all frame states need to be equivalent
9577 	 */
9578 	for (i = 0; i <= old->curframe; i++) {
9579 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
9580 			return false;
9581 		if (!func_states_equal(old->frame[i], cur->frame[i]))
9582 			return false;
9583 	}
9584 	return true;
9585 }
9586 
9587 /* Return 0 if no propagation happened. Return negative error code if error
9588  * happened. Otherwise, return the propagated bit.
9589  */
9590 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9591 				  struct bpf_reg_state *reg,
9592 				  struct bpf_reg_state *parent_reg)
9593 {
9594 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9595 	u8 flag = reg->live & REG_LIVE_READ;
9596 	int err;
9597 
9598 	/* When comes here, read flags of PARENT_REG or REG could be any of
9599 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9600 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9601 	 */
9602 	if (parent_flag == REG_LIVE_READ64 ||
9603 	    /* Or if there is no read flag from REG. */
9604 	    !flag ||
9605 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9606 	    parent_flag == flag)
9607 		return 0;
9608 
9609 	err = mark_reg_read(env, reg, parent_reg, flag);
9610 	if (err)
9611 		return err;
9612 
9613 	return flag;
9614 }
9615 
9616 /* A write screens off any subsequent reads; but write marks come from the
9617  * straight-line code between a state and its parent.  When we arrive at an
9618  * equivalent state (jump target or such) we didn't arrive by the straight-line
9619  * code, so read marks in the state must propagate to the parent regardless
9620  * of the state's write marks. That's what 'parent == state->parent' comparison
9621  * in mark_reg_read() is for.
9622  */
9623 static int propagate_liveness(struct bpf_verifier_env *env,
9624 			      const struct bpf_verifier_state *vstate,
9625 			      struct bpf_verifier_state *vparent)
9626 {
9627 	struct bpf_reg_state *state_reg, *parent_reg;
9628 	struct bpf_func_state *state, *parent;
9629 	int i, frame, err = 0;
9630 
9631 	if (vparent->curframe != vstate->curframe) {
9632 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9633 		     vparent->curframe, vstate->curframe);
9634 		return -EFAULT;
9635 	}
9636 	/* Propagate read liveness of registers... */
9637 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9638 	for (frame = 0; frame <= vstate->curframe; frame++) {
9639 		parent = vparent->frame[frame];
9640 		state = vstate->frame[frame];
9641 		parent_reg = parent->regs;
9642 		state_reg = state->regs;
9643 		/* We don't need to worry about FP liveness, it's read-only */
9644 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9645 			err = propagate_liveness_reg(env, &state_reg[i],
9646 						     &parent_reg[i]);
9647 			if (err < 0)
9648 				return err;
9649 			if (err == REG_LIVE_READ64)
9650 				mark_insn_zext(env, &parent_reg[i]);
9651 		}
9652 
9653 		/* Propagate stack slots. */
9654 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9655 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9656 			parent_reg = &parent->stack[i].spilled_ptr;
9657 			state_reg = &state->stack[i].spilled_ptr;
9658 			err = propagate_liveness_reg(env, state_reg,
9659 						     parent_reg);
9660 			if (err < 0)
9661 				return err;
9662 		}
9663 	}
9664 	return 0;
9665 }
9666 
9667 /* find precise scalars in the previous equivalent state and
9668  * propagate them into the current state
9669  */
9670 static int propagate_precision(struct bpf_verifier_env *env,
9671 			       const struct bpf_verifier_state *old)
9672 {
9673 	struct bpf_reg_state *state_reg;
9674 	struct bpf_func_state *state;
9675 	int i, err = 0;
9676 
9677 	state = old->frame[old->curframe];
9678 	state_reg = state->regs;
9679 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9680 		if (state_reg->type != SCALAR_VALUE ||
9681 		    !state_reg->precise)
9682 			continue;
9683 		if (env->log.level & BPF_LOG_LEVEL2)
9684 			verbose(env, "propagating r%d\n", i);
9685 		err = mark_chain_precision(env, i);
9686 		if (err < 0)
9687 			return err;
9688 	}
9689 
9690 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9691 		if (state->stack[i].slot_type[0] != STACK_SPILL)
9692 			continue;
9693 		state_reg = &state->stack[i].spilled_ptr;
9694 		if (state_reg->type != SCALAR_VALUE ||
9695 		    !state_reg->precise)
9696 			continue;
9697 		if (env->log.level & BPF_LOG_LEVEL2)
9698 			verbose(env, "propagating fp%d\n",
9699 				(-i - 1) * BPF_REG_SIZE);
9700 		err = mark_chain_precision_stack(env, i);
9701 		if (err < 0)
9702 			return err;
9703 	}
9704 	return 0;
9705 }
9706 
9707 static bool states_maybe_looping(struct bpf_verifier_state *old,
9708 				 struct bpf_verifier_state *cur)
9709 {
9710 	struct bpf_func_state *fold, *fcur;
9711 	int i, fr = cur->curframe;
9712 
9713 	if (old->curframe != fr)
9714 		return false;
9715 
9716 	fold = old->frame[fr];
9717 	fcur = cur->frame[fr];
9718 	for (i = 0; i < MAX_BPF_REG; i++)
9719 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9720 			   offsetof(struct bpf_reg_state, parent)))
9721 			return false;
9722 	return true;
9723 }
9724 
9725 
9726 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9727 {
9728 	struct bpf_verifier_state_list *new_sl;
9729 	struct bpf_verifier_state_list *sl, **pprev;
9730 	struct bpf_verifier_state *cur = env->cur_state, *new;
9731 	int i, j, err, states_cnt = 0;
9732 	bool add_new_state = env->test_state_freq ? true : false;
9733 
9734 	cur->last_insn_idx = env->prev_insn_idx;
9735 	if (!env->insn_aux_data[insn_idx].prune_point)
9736 		/* this 'insn_idx' instruction wasn't marked, so we will not
9737 		 * be doing state search here
9738 		 */
9739 		return 0;
9740 
9741 	/* bpf progs typically have pruning point every 4 instructions
9742 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9743 	 * Do not add new state for future pruning if the verifier hasn't seen
9744 	 * at least 2 jumps and at least 8 instructions.
9745 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9746 	 * In tests that amounts to up to 50% reduction into total verifier
9747 	 * memory consumption and 20% verifier time speedup.
9748 	 */
9749 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9750 	    env->insn_processed - env->prev_insn_processed >= 8)
9751 		add_new_state = true;
9752 
9753 	pprev = explored_state(env, insn_idx);
9754 	sl = *pprev;
9755 
9756 	clean_live_states(env, insn_idx, cur);
9757 
9758 	while (sl) {
9759 		states_cnt++;
9760 		if (sl->state.insn_idx != insn_idx)
9761 			goto next;
9762 		if (sl->state.branches) {
9763 			if (states_maybe_looping(&sl->state, cur) &&
9764 			    states_equal(env, &sl->state, cur)) {
9765 				verbose_linfo(env, insn_idx, "; ");
9766 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9767 				return -EINVAL;
9768 			}
9769 			/* if the verifier is processing a loop, avoid adding new state
9770 			 * too often, since different loop iterations have distinct
9771 			 * states and may not help future pruning.
9772 			 * This threshold shouldn't be too low to make sure that
9773 			 * a loop with large bound will be rejected quickly.
9774 			 * The most abusive loop will be:
9775 			 * r1 += 1
9776 			 * if r1 < 1000000 goto pc-2
9777 			 * 1M insn_procssed limit / 100 == 10k peak states.
9778 			 * This threshold shouldn't be too high either, since states
9779 			 * at the end of the loop are likely to be useful in pruning.
9780 			 */
9781 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9782 			    env->insn_processed - env->prev_insn_processed < 100)
9783 				add_new_state = false;
9784 			goto miss;
9785 		}
9786 		if (states_equal(env, &sl->state, cur)) {
9787 			sl->hit_cnt++;
9788 			/* reached equivalent register/stack state,
9789 			 * prune the search.
9790 			 * Registers read by the continuation are read by us.
9791 			 * If we have any write marks in env->cur_state, they
9792 			 * will prevent corresponding reads in the continuation
9793 			 * from reaching our parent (an explored_state).  Our
9794 			 * own state will get the read marks recorded, but
9795 			 * they'll be immediately forgotten as we're pruning
9796 			 * this state and will pop a new one.
9797 			 */
9798 			err = propagate_liveness(env, &sl->state, cur);
9799 
9800 			/* if previous state reached the exit with precision and
9801 			 * current state is equivalent to it (except precsion marks)
9802 			 * the precision needs to be propagated back in
9803 			 * the current state.
9804 			 */
9805 			err = err ? : push_jmp_history(env, cur);
9806 			err = err ? : propagate_precision(env, &sl->state);
9807 			if (err)
9808 				return err;
9809 			return 1;
9810 		}
9811 miss:
9812 		/* when new state is not going to be added do not increase miss count.
9813 		 * Otherwise several loop iterations will remove the state
9814 		 * recorded earlier. The goal of these heuristics is to have
9815 		 * states from some iterations of the loop (some in the beginning
9816 		 * and some at the end) to help pruning.
9817 		 */
9818 		if (add_new_state)
9819 			sl->miss_cnt++;
9820 		/* heuristic to determine whether this state is beneficial
9821 		 * to keep checking from state equivalence point of view.
9822 		 * Higher numbers increase max_states_per_insn and verification time,
9823 		 * but do not meaningfully decrease insn_processed.
9824 		 */
9825 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9826 			/* the state is unlikely to be useful. Remove it to
9827 			 * speed up verification
9828 			 */
9829 			*pprev = sl->next;
9830 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9831 				u32 br = sl->state.branches;
9832 
9833 				WARN_ONCE(br,
9834 					  "BUG live_done but branches_to_explore %d\n",
9835 					  br);
9836 				free_verifier_state(&sl->state, false);
9837 				kfree(sl);
9838 				env->peak_states--;
9839 			} else {
9840 				/* cannot free this state, since parentage chain may
9841 				 * walk it later. Add it for free_list instead to
9842 				 * be freed at the end of verification
9843 				 */
9844 				sl->next = env->free_list;
9845 				env->free_list = sl;
9846 			}
9847 			sl = *pprev;
9848 			continue;
9849 		}
9850 next:
9851 		pprev = &sl->next;
9852 		sl = *pprev;
9853 	}
9854 
9855 	if (env->max_states_per_insn < states_cnt)
9856 		env->max_states_per_insn = states_cnt;
9857 
9858 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9859 		return push_jmp_history(env, cur);
9860 
9861 	if (!add_new_state)
9862 		return push_jmp_history(env, cur);
9863 
9864 	/* There were no equivalent states, remember the current one.
9865 	 * Technically the current state is not proven to be safe yet,
9866 	 * but it will either reach outer most bpf_exit (which means it's safe)
9867 	 * or it will be rejected. When there are no loops the verifier won't be
9868 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9869 	 * again on the way to bpf_exit.
9870 	 * When looping the sl->state.branches will be > 0 and this state
9871 	 * will not be considered for equivalence until branches == 0.
9872 	 */
9873 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9874 	if (!new_sl)
9875 		return -ENOMEM;
9876 	env->total_states++;
9877 	env->peak_states++;
9878 	env->prev_jmps_processed = env->jmps_processed;
9879 	env->prev_insn_processed = env->insn_processed;
9880 
9881 	/* add new state to the head of linked list */
9882 	new = &new_sl->state;
9883 	err = copy_verifier_state(new, cur);
9884 	if (err) {
9885 		free_verifier_state(new, false);
9886 		kfree(new_sl);
9887 		return err;
9888 	}
9889 	new->insn_idx = insn_idx;
9890 	WARN_ONCE(new->branches != 1,
9891 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9892 
9893 	cur->parent = new;
9894 	cur->first_insn_idx = insn_idx;
9895 	clear_jmp_history(cur);
9896 	new_sl->next = *explored_state(env, insn_idx);
9897 	*explored_state(env, insn_idx) = new_sl;
9898 	/* connect new state to parentage chain. Current frame needs all
9899 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9900 	 * to the stack implicitly by JITs) so in callers' frames connect just
9901 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9902 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9903 	 * from callee with its full parentage chain, anyway.
9904 	 */
9905 	/* clear write marks in current state: the writes we did are not writes
9906 	 * our child did, so they don't screen off its reads from us.
9907 	 * (There are no read marks in current state, because reads always mark
9908 	 * their parent and current state never has children yet.  Only
9909 	 * explored_states can get read marks.)
9910 	 */
9911 	for (j = 0; j <= cur->curframe; j++) {
9912 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9913 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9914 		for (i = 0; i < BPF_REG_FP; i++)
9915 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9916 	}
9917 
9918 	/* all stack frames are accessible from callee, clear them all */
9919 	for (j = 0; j <= cur->curframe; j++) {
9920 		struct bpf_func_state *frame = cur->frame[j];
9921 		struct bpf_func_state *newframe = new->frame[j];
9922 
9923 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9924 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9925 			frame->stack[i].spilled_ptr.parent =
9926 						&newframe->stack[i].spilled_ptr;
9927 		}
9928 	}
9929 	return 0;
9930 }
9931 
9932 /* Return true if it's OK to have the same insn return a different type. */
9933 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9934 {
9935 	switch (type) {
9936 	case PTR_TO_CTX:
9937 	case PTR_TO_SOCKET:
9938 	case PTR_TO_SOCKET_OR_NULL:
9939 	case PTR_TO_SOCK_COMMON:
9940 	case PTR_TO_SOCK_COMMON_OR_NULL:
9941 	case PTR_TO_TCP_SOCK:
9942 	case PTR_TO_TCP_SOCK_OR_NULL:
9943 	case PTR_TO_XDP_SOCK:
9944 	case PTR_TO_BTF_ID:
9945 	case PTR_TO_BTF_ID_OR_NULL:
9946 		return false;
9947 	default:
9948 		return true;
9949 	}
9950 }
9951 
9952 /* If an instruction was previously used with particular pointer types, then we
9953  * need to be careful to avoid cases such as the below, where it may be ok
9954  * for one branch accessing the pointer, but not ok for the other branch:
9955  *
9956  * R1 = sock_ptr
9957  * goto X;
9958  * ...
9959  * R1 = some_other_valid_ptr;
9960  * goto X;
9961  * ...
9962  * R2 = *(u32 *)(R1 + 0);
9963  */
9964 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9965 {
9966 	return src != prev && (!reg_type_mismatch_ok(src) ||
9967 			       !reg_type_mismatch_ok(prev));
9968 }
9969 
9970 static int do_check(struct bpf_verifier_env *env)
9971 {
9972 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9973 	struct bpf_verifier_state *state = env->cur_state;
9974 	struct bpf_insn *insns = env->prog->insnsi;
9975 	struct bpf_reg_state *regs;
9976 	int insn_cnt = env->prog->len;
9977 	bool do_print_state = false;
9978 	int prev_insn_idx = -1;
9979 
9980 	for (;;) {
9981 		struct bpf_insn *insn;
9982 		u8 class;
9983 		int err;
9984 
9985 		env->prev_insn_idx = prev_insn_idx;
9986 		if (env->insn_idx >= insn_cnt) {
9987 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
9988 				env->insn_idx, insn_cnt);
9989 			return -EFAULT;
9990 		}
9991 
9992 		insn = &insns[env->insn_idx];
9993 		class = BPF_CLASS(insn->code);
9994 
9995 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9996 			verbose(env,
9997 				"BPF program is too large. Processed %d insn\n",
9998 				env->insn_processed);
9999 			return -E2BIG;
10000 		}
10001 
10002 		err = is_state_visited(env, env->insn_idx);
10003 		if (err < 0)
10004 			return err;
10005 		if (err == 1) {
10006 			/* found equivalent state, can prune the search */
10007 			if (env->log.level & BPF_LOG_LEVEL) {
10008 				if (do_print_state)
10009 					verbose(env, "\nfrom %d to %d%s: safe\n",
10010 						env->prev_insn_idx, env->insn_idx,
10011 						env->cur_state->speculative ?
10012 						" (speculative execution)" : "");
10013 				else
10014 					verbose(env, "%d: safe\n", env->insn_idx);
10015 			}
10016 			goto process_bpf_exit;
10017 		}
10018 
10019 		if (signal_pending(current))
10020 			return -EAGAIN;
10021 
10022 		if (need_resched())
10023 			cond_resched();
10024 
10025 		if (env->log.level & BPF_LOG_LEVEL2 ||
10026 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10027 			if (env->log.level & BPF_LOG_LEVEL2)
10028 				verbose(env, "%d:", env->insn_idx);
10029 			else
10030 				verbose(env, "\nfrom %d to %d%s:",
10031 					env->prev_insn_idx, env->insn_idx,
10032 					env->cur_state->speculative ?
10033 					" (speculative execution)" : "");
10034 			print_verifier_state(env, state->frame[state->curframe]);
10035 			do_print_state = false;
10036 		}
10037 
10038 		if (env->log.level & BPF_LOG_LEVEL) {
10039 			const struct bpf_insn_cbs cbs = {
10040 				.cb_print	= verbose,
10041 				.private_data	= env,
10042 			};
10043 
10044 			verbose_linfo(env, env->insn_idx, "; ");
10045 			verbose(env, "%d: ", env->insn_idx);
10046 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10047 		}
10048 
10049 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10050 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10051 							   env->prev_insn_idx);
10052 			if (err)
10053 				return err;
10054 		}
10055 
10056 		regs = cur_regs(env);
10057 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10058 		prev_insn_idx = env->insn_idx;
10059 
10060 		if (class == BPF_ALU || class == BPF_ALU64) {
10061 			err = check_alu_op(env, insn);
10062 			if (err)
10063 				return err;
10064 
10065 		} else if (class == BPF_LDX) {
10066 			enum bpf_reg_type *prev_src_type, src_reg_type;
10067 
10068 			/* check for reserved fields is already done */
10069 
10070 			/* check src operand */
10071 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10072 			if (err)
10073 				return err;
10074 
10075 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10076 			if (err)
10077 				return err;
10078 
10079 			src_reg_type = regs[insn->src_reg].type;
10080 
10081 			/* check that memory (src_reg + off) is readable,
10082 			 * the state of dst_reg will be updated by this func
10083 			 */
10084 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10085 					       insn->off, BPF_SIZE(insn->code),
10086 					       BPF_READ, insn->dst_reg, false);
10087 			if (err)
10088 				return err;
10089 
10090 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10091 
10092 			if (*prev_src_type == NOT_INIT) {
10093 				/* saw a valid insn
10094 				 * dst_reg = *(u32 *)(src_reg + off)
10095 				 * save type to validate intersecting paths
10096 				 */
10097 				*prev_src_type = src_reg_type;
10098 
10099 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10100 				/* ABuser program is trying to use the same insn
10101 				 * dst_reg = *(u32*) (src_reg + off)
10102 				 * with different pointer types:
10103 				 * src_reg == ctx in one branch and
10104 				 * src_reg == stack|map in some other branch.
10105 				 * Reject it.
10106 				 */
10107 				verbose(env, "same insn cannot be used with different pointers\n");
10108 				return -EINVAL;
10109 			}
10110 
10111 		} else if (class == BPF_STX) {
10112 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10113 
10114 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10115 				err = check_atomic(env, env->insn_idx, insn);
10116 				if (err)
10117 					return err;
10118 				env->insn_idx++;
10119 				continue;
10120 			}
10121 
10122 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10123 				verbose(env, "BPF_STX uses reserved fields\n");
10124 				return -EINVAL;
10125 			}
10126 
10127 			/* check src1 operand */
10128 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10129 			if (err)
10130 				return err;
10131 			/* check src2 operand */
10132 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10133 			if (err)
10134 				return err;
10135 
10136 			dst_reg_type = regs[insn->dst_reg].type;
10137 
10138 			/* check that memory (dst_reg + off) is writeable */
10139 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10140 					       insn->off, BPF_SIZE(insn->code),
10141 					       BPF_WRITE, insn->src_reg, false);
10142 			if (err)
10143 				return err;
10144 
10145 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10146 
10147 			if (*prev_dst_type == NOT_INIT) {
10148 				*prev_dst_type = dst_reg_type;
10149 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10150 				verbose(env, "same insn cannot be used with different pointers\n");
10151 				return -EINVAL;
10152 			}
10153 
10154 		} else if (class == BPF_ST) {
10155 			if (BPF_MODE(insn->code) != BPF_MEM ||
10156 			    insn->src_reg != BPF_REG_0) {
10157 				verbose(env, "BPF_ST uses reserved fields\n");
10158 				return -EINVAL;
10159 			}
10160 			/* check src operand */
10161 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10162 			if (err)
10163 				return err;
10164 
10165 			if (is_ctx_reg(env, insn->dst_reg)) {
10166 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10167 					insn->dst_reg,
10168 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10169 				return -EACCES;
10170 			}
10171 
10172 			/* check that memory (dst_reg + off) is writeable */
10173 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10174 					       insn->off, BPF_SIZE(insn->code),
10175 					       BPF_WRITE, -1, false);
10176 			if (err)
10177 				return err;
10178 
10179 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10180 			u8 opcode = BPF_OP(insn->code);
10181 
10182 			env->jmps_processed++;
10183 			if (opcode == BPF_CALL) {
10184 				if (BPF_SRC(insn->code) != BPF_K ||
10185 				    insn->off != 0 ||
10186 				    (insn->src_reg != BPF_REG_0 &&
10187 				     insn->src_reg != BPF_PSEUDO_CALL) ||
10188 				    insn->dst_reg != BPF_REG_0 ||
10189 				    class == BPF_JMP32) {
10190 					verbose(env, "BPF_CALL uses reserved fields\n");
10191 					return -EINVAL;
10192 				}
10193 
10194 				if (env->cur_state->active_spin_lock &&
10195 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10196 				     insn->imm != BPF_FUNC_spin_unlock)) {
10197 					verbose(env, "function calls are not allowed while holding a lock\n");
10198 					return -EINVAL;
10199 				}
10200 				if (insn->src_reg == BPF_PSEUDO_CALL)
10201 					err = check_func_call(env, insn, &env->insn_idx);
10202 				else
10203 					err = check_helper_call(env, insn->imm, env->insn_idx);
10204 				if (err)
10205 					return err;
10206 
10207 			} else if (opcode == BPF_JA) {
10208 				if (BPF_SRC(insn->code) != BPF_K ||
10209 				    insn->imm != 0 ||
10210 				    insn->src_reg != BPF_REG_0 ||
10211 				    insn->dst_reg != BPF_REG_0 ||
10212 				    class == BPF_JMP32) {
10213 					verbose(env, "BPF_JA uses reserved fields\n");
10214 					return -EINVAL;
10215 				}
10216 
10217 				env->insn_idx += insn->off + 1;
10218 				continue;
10219 
10220 			} else if (opcode == BPF_EXIT) {
10221 				if (BPF_SRC(insn->code) != BPF_K ||
10222 				    insn->imm != 0 ||
10223 				    insn->src_reg != BPF_REG_0 ||
10224 				    insn->dst_reg != BPF_REG_0 ||
10225 				    class == BPF_JMP32) {
10226 					verbose(env, "BPF_EXIT uses reserved fields\n");
10227 					return -EINVAL;
10228 				}
10229 
10230 				if (env->cur_state->active_spin_lock) {
10231 					verbose(env, "bpf_spin_unlock is missing\n");
10232 					return -EINVAL;
10233 				}
10234 
10235 				if (state->curframe) {
10236 					/* exit from nested function */
10237 					err = prepare_func_exit(env, &env->insn_idx);
10238 					if (err)
10239 						return err;
10240 					do_print_state = true;
10241 					continue;
10242 				}
10243 
10244 				err = check_reference_leak(env);
10245 				if (err)
10246 					return err;
10247 
10248 				err = check_return_code(env);
10249 				if (err)
10250 					return err;
10251 process_bpf_exit:
10252 				update_branch_counts(env, env->cur_state);
10253 				err = pop_stack(env, &prev_insn_idx,
10254 						&env->insn_idx, pop_log);
10255 				if (err < 0) {
10256 					if (err != -ENOENT)
10257 						return err;
10258 					break;
10259 				} else {
10260 					do_print_state = true;
10261 					continue;
10262 				}
10263 			} else {
10264 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10265 				if (err)
10266 					return err;
10267 			}
10268 		} else if (class == BPF_LD) {
10269 			u8 mode = BPF_MODE(insn->code);
10270 
10271 			if (mode == BPF_ABS || mode == BPF_IND) {
10272 				err = check_ld_abs(env, insn);
10273 				if (err)
10274 					return err;
10275 
10276 			} else if (mode == BPF_IMM) {
10277 				err = check_ld_imm(env, insn);
10278 				if (err)
10279 					return err;
10280 
10281 				env->insn_idx++;
10282 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10283 			} else {
10284 				verbose(env, "invalid BPF_LD mode\n");
10285 				return -EINVAL;
10286 			}
10287 		} else {
10288 			verbose(env, "unknown insn class %d\n", class);
10289 			return -EINVAL;
10290 		}
10291 
10292 		env->insn_idx++;
10293 	}
10294 
10295 	return 0;
10296 }
10297 
10298 static int find_btf_percpu_datasec(struct btf *btf)
10299 {
10300 	const struct btf_type *t;
10301 	const char *tname;
10302 	int i, n;
10303 
10304 	/*
10305 	 * Both vmlinux and module each have their own ".data..percpu"
10306 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10307 	 * types to look at only module's own BTF types.
10308 	 */
10309 	n = btf_nr_types(btf);
10310 	if (btf_is_module(btf))
10311 		i = btf_nr_types(btf_vmlinux);
10312 	else
10313 		i = 1;
10314 
10315 	for(; i < n; i++) {
10316 		t = btf_type_by_id(btf, i);
10317 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10318 			continue;
10319 
10320 		tname = btf_name_by_offset(btf, t->name_off);
10321 		if (!strcmp(tname, ".data..percpu"))
10322 			return i;
10323 	}
10324 
10325 	return -ENOENT;
10326 }
10327 
10328 /* replace pseudo btf_id with kernel symbol address */
10329 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10330 			       struct bpf_insn *insn,
10331 			       struct bpf_insn_aux_data *aux)
10332 {
10333 	const struct btf_var_secinfo *vsi;
10334 	const struct btf_type *datasec;
10335 	struct btf_mod_pair *btf_mod;
10336 	const struct btf_type *t;
10337 	const char *sym_name;
10338 	bool percpu = false;
10339 	u32 type, id = insn->imm;
10340 	struct btf *btf;
10341 	s32 datasec_id;
10342 	u64 addr;
10343 	int i, btf_fd, err;
10344 
10345 	btf_fd = insn[1].imm;
10346 	if (btf_fd) {
10347 		btf = btf_get_by_fd(btf_fd);
10348 		if (IS_ERR(btf)) {
10349 			verbose(env, "invalid module BTF object FD specified.\n");
10350 			return -EINVAL;
10351 		}
10352 	} else {
10353 		if (!btf_vmlinux) {
10354 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10355 			return -EINVAL;
10356 		}
10357 		btf = btf_vmlinux;
10358 		btf_get(btf);
10359 	}
10360 
10361 	t = btf_type_by_id(btf, id);
10362 	if (!t) {
10363 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10364 		err = -ENOENT;
10365 		goto err_put;
10366 	}
10367 
10368 	if (!btf_type_is_var(t)) {
10369 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10370 		err = -EINVAL;
10371 		goto err_put;
10372 	}
10373 
10374 	sym_name = btf_name_by_offset(btf, t->name_off);
10375 	addr = kallsyms_lookup_name(sym_name);
10376 	if (!addr) {
10377 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10378 			sym_name);
10379 		err = -ENOENT;
10380 		goto err_put;
10381 	}
10382 
10383 	datasec_id = find_btf_percpu_datasec(btf);
10384 	if (datasec_id > 0) {
10385 		datasec = btf_type_by_id(btf, datasec_id);
10386 		for_each_vsi(i, datasec, vsi) {
10387 			if (vsi->type == id) {
10388 				percpu = true;
10389 				break;
10390 			}
10391 		}
10392 	}
10393 
10394 	insn[0].imm = (u32)addr;
10395 	insn[1].imm = addr >> 32;
10396 
10397 	type = t->type;
10398 	t = btf_type_skip_modifiers(btf, type, NULL);
10399 	if (percpu) {
10400 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10401 		aux->btf_var.btf = btf;
10402 		aux->btf_var.btf_id = type;
10403 	} else if (!btf_type_is_struct(t)) {
10404 		const struct btf_type *ret;
10405 		const char *tname;
10406 		u32 tsize;
10407 
10408 		/* resolve the type size of ksym. */
10409 		ret = btf_resolve_size(btf, t, &tsize);
10410 		if (IS_ERR(ret)) {
10411 			tname = btf_name_by_offset(btf, t->name_off);
10412 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10413 				tname, PTR_ERR(ret));
10414 			err = -EINVAL;
10415 			goto err_put;
10416 		}
10417 		aux->btf_var.reg_type = PTR_TO_MEM;
10418 		aux->btf_var.mem_size = tsize;
10419 	} else {
10420 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
10421 		aux->btf_var.btf = btf;
10422 		aux->btf_var.btf_id = type;
10423 	}
10424 
10425 	/* check whether we recorded this BTF (and maybe module) already */
10426 	for (i = 0; i < env->used_btf_cnt; i++) {
10427 		if (env->used_btfs[i].btf == btf) {
10428 			btf_put(btf);
10429 			return 0;
10430 		}
10431 	}
10432 
10433 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
10434 		err = -E2BIG;
10435 		goto err_put;
10436 	}
10437 
10438 	btf_mod = &env->used_btfs[env->used_btf_cnt];
10439 	btf_mod->btf = btf;
10440 	btf_mod->module = NULL;
10441 
10442 	/* if we reference variables from kernel module, bump its refcount */
10443 	if (btf_is_module(btf)) {
10444 		btf_mod->module = btf_try_get_module(btf);
10445 		if (!btf_mod->module) {
10446 			err = -ENXIO;
10447 			goto err_put;
10448 		}
10449 	}
10450 
10451 	env->used_btf_cnt++;
10452 
10453 	return 0;
10454 err_put:
10455 	btf_put(btf);
10456 	return err;
10457 }
10458 
10459 static int check_map_prealloc(struct bpf_map *map)
10460 {
10461 	return (map->map_type != BPF_MAP_TYPE_HASH &&
10462 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10463 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10464 		!(map->map_flags & BPF_F_NO_PREALLOC);
10465 }
10466 
10467 static bool is_tracing_prog_type(enum bpf_prog_type type)
10468 {
10469 	switch (type) {
10470 	case BPF_PROG_TYPE_KPROBE:
10471 	case BPF_PROG_TYPE_TRACEPOINT:
10472 	case BPF_PROG_TYPE_PERF_EVENT:
10473 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10474 		return true;
10475 	default:
10476 		return false;
10477 	}
10478 }
10479 
10480 static bool is_preallocated_map(struct bpf_map *map)
10481 {
10482 	if (!check_map_prealloc(map))
10483 		return false;
10484 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10485 		return false;
10486 	return true;
10487 }
10488 
10489 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10490 					struct bpf_map *map,
10491 					struct bpf_prog *prog)
10492 
10493 {
10494 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
10495 	/*
10496 	 * Validate that trace type programs use preallocated hash maps.
10497 	 *
10498 	 * For programs attached to PERF events this is mandatory as the
10499 	 * perf NMI can hit any arbitrary code sequence.
10500 	 *
10501 	 * All other trace types using preallocated hash maps are unsafe as
10502 	 * well because tracepoint or kprobes can be inside locked regions
10503 	 * of the memory allocator or at a place where a recursion into the
10504 	 * memory allocator would see inconsistent state.
10505 	 *
10506 	 * On RT enabled kernels run-time allocation of all trace type
10507 	 * programs is strictly prohibited due to lock type constraints. On
10508 	 * !RT kernels it is allowed for backwards compatibility reasons for
10509 	 * now, but warnings are emitted so developers are made aware of
10510 	 * the unsafety and can fix their programs before this is enforced.
10511 	 */
10512 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10513 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10514 			verbose(env, "perf_event programs can only use preallocated hash map\n");
10515 			return -EINVAL;
10516 		}
10517 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10518 			verbose(env, "trace type programs can only use preallocated hash map\n");
10519 			return -EINVAL;
10520 		}
10521 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10522 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10523 	}
10524 
10525 	if (map_value_has_spin_lock(map)) {
10526 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
10527 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
10528 			return -EINVAL;
10529 		}
10530 
10531 		if (is_tracing_prog_type(prog_type)) {
10532 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10533 			return -EINVAL;
10534 		}
10535 
10536 		if (prog->aux->sleepable) {
10537 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
10538 			return -EINVAL;
10539 		}
10540 	}
10541 
10542 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10543 	    !bpf_offload_prog_map_match(prog, map)) {
10544 		verbose(env, "offload device mismatch between prog and map\n");
10545 		return -EINVAL;
10546 	}
10547 
10548 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10549 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10550 		return -EINVAL;
10551 	}
10552 
10553 	if (prog->aux->sleepable)
10554 		switch (map->map_type) {
10555 		case BPF_MAP_TYPE_HASH:
10556 		case BPF_MAP_TYPE_LRU_HASH:
10557 		case BPF_MAP_TYPE_ARRAY:
10558 		case BPF_MAP_TYPE_PERCPU_HASH:
10559 		case BPF_MAP_TYPE_PERCPU_ARRAY:
10560 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10561 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10562 		case BPF_MAP_TYPE_HASH_OF_MAPS:
10563 			if (!is_preallocated_map(map)) {
10564 				verbose(env,
10565 					"Sleepable programs can only use preallocated maps\n");
10566 				return -EINVAL;
10567 			}
10568 			break;
10569 		case BPF_MAP_TYPE_RINGBUF:
10570 			break;
10571 		default:
10572 			verbose(env,
10573 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
10574 			return -EINVAL;
10575 		}
10576 
10577 	return 0;
10578 }
10579 
10580 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10581 {
10582 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10583 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10584 }
10585 
10586 /* find and rewrite pseudo imm in ld_imm64 instructions:
10587  *
10588  * 1. if it accesses map FD, replace it with actual map pointer.
10589  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10590  *
10591  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10592  */
10593 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10594 {
10595 	struct bpf_insn *insn = env->prog->insnsi;
10596 	int insn_cnt = env->prog->len;
10597 	int i, j, err;
10598 
10599 	err = bpf_prog_calc_tag(env->prog);
10600 	if (err)
10601 		return err;
10602 
10603 	for (i = 0; i < insn_cnt; i++, insn++) {
10604 		if (BPF_CLASS(insn->code) == BPF_LDX &&
10605 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10606 			verbose(env, "BPF_LDX uses reserved fields\n");
10607 			return -EINVAL;
10608 		}
10609 
10610 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10611 			struct bpf_insn_aux_data *aux;
10612 			struct bpf_map *map;
10613 			struct fd f;
10614 			u64 addr;
10615 
10616 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
10617 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10618 			    insn[1].off != 0) {
10619 				verbose(env, "invalid bpf_ld_imm64 insn\n");
10620 				return -EINVAL;
10621 			}
10622 
10623 			if (insn[0].src_reg == 0)
10624 				/* valid generic load 64-bit imm */
10625 				goto next_insn;
10626 
10627 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10628 				aux = &env->insn_aux_data[i];
10629 				err = check_pseudo_btf_id(env, insn, aux);
10630 				if (err)
10631 					return err;
10632 				goto next_insn;
10633 			}
10634 
10635 			/* In final convert_pseudo_ld_imm64() step, this is
10636 			 * converted into regular 64-bit imm load insn.
10637 			 */
10638 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10639 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10640 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10641 			     insn[1].imm != 0)) {
10642 				verbose(env,
10643 					"unrecognized bpf_ld_imm64 insn\n");
10644 				return -EINVAL;
10645 			}
10646 
10647 			f = fdget(insn[0].imm);
10648 			map = __bpf_map_get(f);
10649 			if (IS_ERR(map)) {
10650 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
10651 					insn[0].imm);
10652 				return PTR_ERR(map);
10653 			}
10654 
10655 			err = check_map_prog_compatibility(env, map, env->prog);
10656 			if (err) {
10657 				fdput(f);
10658 				return err;
10659 			}
10660 
10661 			aux = &env->insn_aux_data[i];
10662 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10663 				addr = (unsigned long)map;
10664 			} else {
10665 				u32 off = insn[1].imm;
10666 
10667 				if (off >= BPF_MAX_VAR_OFF) {
10668 					verbose(env, "direct value offset of %u is not allowed\n", off);
10669 					fdput(f);
10670 					return -EINVAL;
10671 				}
10672 
10673 				if (!map->ops->map_direct_value_addr) {
10674 					verbose(env, "no direct value access support for this map type\n");
10675 					fdput(f);
10676 					return -EINVAL;
10677 				}
10678 
10679 				err = map->ops->map_direct_value_addr(map, &addr, off);
10680 				if (err) {
10681 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10682 						map->value_size, off);
10683 					fdput(f);
10684 					return err;
10685 				}
10686 
10687 				aux->map_off = off;
10688 				addr += off;
10689 			}
10690 
10691 			insn[0].imm = (u32)addr;
10692 			insn[1].imm = addr >> 32;
10693 
10694 			/* check whether we recorded this map already */
10695 			for (j = 0; j < env->used_map_cnt; j++) {
10696 				if (env->used_maps[j] == map) {
10697 					aux->map_index = j;
10698 					fdput(f);
10699 					goto next_insn;
10700 				}
10701 			}
10702 
10703 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10704 				fdput(f);
10705 				return -E2BIG;
10706 			}
10707 
10708 			/* hold the map. If the program is rejected by verifier,
10709 			 * the map will be released by release_maps() or it
10710 			 * will be used by the valid program until it's unloaded
10711 			 * and all maps are released in free_used_maps()
10712 			 */
10713 			bpf_map_inc(map);
10714 
10715 			aux->map_index = env->used_map_cnt;
10716 			env->used_maps[env->used_map_cnt++] = map;
10717 
10718 			if (bpf_map_is_cgroup_storage(map) &&
10719 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10720 				verbose(env, "only one cgroup storage of each type is allowed\n");
10721 				fdput(f);
10722 				return -EBUSY;
10723 			}
10724 
10725 			fdput(f);
10726 next_insn:
10727 			insn++;
10728 			i++;
10729 			continue;
10730 		}
10731 
10732 		/* Basic sanity check before we invest more work here. */
10733 		if (!bpf_opcode_in_insntable(insn->code)) {
10734 			verbose(env, "unknown opcode %02x\n", insn->code);
10735 			return -EINVAL;
10736 		}
10737 	}
10738 
10739 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10740 	 * 'struct bpf_map *' into a register instead of user map_fd.
10741 	 * These pointers will be used later by verifier to validate map access.
10742 	 */
10743 	return 0;
10744 }
10745 
10746 /* drop refcnt of maps used by the rejected program */
10747 static void release_maps(struct bpf_verifier_env *env)
10748 {
10749 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10750 			     env->used_map_cnt);
10751 }
10752 
10753 /* drop refcnt of maps used by the rejected program */
10754 static void release_btfs(struct bpf_verifier_env *env)
10755 {
10756 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
10757 			     env->used_btf_cnt);
10758 }
10759 
10760 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10761 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10762 {
10763 	struct bpf_insn *insn = env->prog->insnsi;
10764 	int insn_cnt = env->prog->len;
10765 	int i;
10766 
10767 	for (i = 0; i < insn_cnt; i++, insn++)
10768 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10769 			insn->src_reg = 0;
10770 }
10771 
10772 /* single env->prog->insni[off] instruction was replaced with the range
10773  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10774  * [0, off) and [off, end) to new locations, so the patched range stays zero
10775  */
10776 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10777 				struct bpf_prog *new_prog, u32 off, u32 cnt)
10778 {
10779 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10780 	struct bpf_insn *insn = new_prog->insnsi;
10781 	u32 prog_len;
10782 	int i;
10783 
10784 	/* aux info at OFF always needs adjustment, no matter fast path
10785 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10786 	 * original insn at old prog.
10787 	 */
10788 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10789 
10790 	if (cnt == 1)
10791 		return 0;
10792 	prog_len = new_prog->len;
10793 	new_data = vzalloc(array_size(prog_len,
10794 				      sizeof(struct bpf_insn_aux_data)));
10795 	if (!new_data)
10796 		return -ENOMEM;
10797 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10798 	memcpy(new_data + off + cnt - 1, old_data + off,
10799 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10800 	for (i = off; i < off + cnt - 1; i++) {
10801 		new_data[i].seen = env->pass_cnt;
10802 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10803 	}
10804 	env->insn_aux_data = new_data;
10805 	vfree(old_data);
10806 	return 0;
10807 }
10808 
10809 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10810 {
10811 	int i;
10812 
10813 	if (len == 1)
10814 		return;
10815 	/* NOTE: fake 'exit' subprog should be updated as well. */
10816 	for (i = 0; i <= env->subprog_cnt; i++) {
10817 		if (env->subprog_info[i].start <= off)
10818 			continue;
10819 		env->subprog_info[i].start += len - 1;
10820 	}
10821 }
10822 
10823 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10824 {
10825 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10826 	int i, sz = prog->aux->size_poke_tab;
10827 	struct bpf_jit_poke_descriptor *desc;
10828 
10829 	for (i = 0; i < sz; i++) {
10830 		desc = &tab[i];
10831 		desc->insn_idx += len - 1;
10832 	}
10833 }
10834 
10835 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10836 					    const struct bpf_insn *patch, u32 len)
10837 {
10838 	struct bpf_prog *new_prog;
10839 
10840 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10841 	if (IS_ERR(new_prog)) {
10842 		if (PTR_ERR(new_prog) == -ERANGE)
10843 			verbose(env,
10844 				"insn %d cannot be patched due to 16-bit range\n",
10845 				env->insn_aux_data[off].orig_idx);
10846 		return NULL;
10847 	}
10848 	if (adjust_insn_aux_data(env, new_prog, off, len))
10849 		return NULL;
10850 	adjust_subprog_starts(env, off, len);
10851 	adjust_poke_descs(new_prog, len);
10852 	return new_prog;
10853 }
10854 
10855 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10856 					      u32 off, u32 cnt)
10857 {
10858 	int i, j;
10859 
10860 	/* find first prog starting at or after off (first to remove) */
10861 	for (i = 0; i < env->subprog_cnt; i++)
10862 		if (env->subprog_info[i].start >= off)
10863 			break;
10864 	/* find first prog starting at or after off + cnt (first to stay) */
10865 	for (j = i; j < env->subprog_cnt; j++)
10866 		if (env->subprog_info[j].start >= off + cnt)
10867 			break;
10868 	/* if j doesn't start exactly at off + cnt, we are just removing
10869 	 * the front of previous prog
10870 	 */
10871 	if (env->subprog_info[j].start != off + cnt)
10872 		j--;
10873 
10874 	if (j > i) {
10875 		struct bpf_prog_aux *aux = env->prog->aux;
10876 		int move;
10877 
10878 		/* move fake 'exit' subprog as well */
10879 		move = env->subprog_cnt + 1 - j;
10880 
10881 		memmove(env->subprog_info + i,
10882 			env->subprog_info + j,
10883 			sizeof(*env->subprog_info) * move);
10884 		env->subprog_cnt -= j - i;
10885 
10886 		/* remove func_info */
10887 		if (aux->func_info) {
10888 			move = aux->func_info_cnt - j;
10889 
10890 			memmove(aux->func_info + i,
10891 				aux->func_info + j,
10892 				sizeof(*aux->func_info) * move);
10893 			aux->func_info_cnt -= j - i;
10894 			/* func_info->insn_off is set after all code rewrites,
10895 			 * in adjust_btf_func() - no need to adjust
10896 			 */
10897 		}
10898 	} else {
10899 		/* convert i from "first prog to remove" to "first to adjust" */
10900 		if (env->subprog_info[i].start == off)
10901 			i++;
10902 	}
10903 
10904 	/* update fake 'exit' subprog as well */
10905 	for (; i <= env->subprog_cnt; i++)
10906 		env->subprog_info[i].start -= cnt;
10907 
10908 	return 0;
10909 }
10910 
10911 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10912 				      u32 cnt)
10913 {
10914 	struct bpf_prog *prog = env->prog;
10915 	u32 i, l_off, l_cnt, nr_linfo;
10916 	struct bpf_line_info *linfo;
10917 
10918 	nr_linfo = prog->aux->nr_linfo;
10919 	if (!nr_linfo)
10920 		return 0;
10921 
10922 	linfo = prog->aux->linfo;
10923 
10924 	/* find first line info to remove, count lines to be removed */
10925 	for (i = 0; i < nr_linfo; i++)
10926 		if (linfo[i].insn_off >= off)
10927 			break;
10928 
10929 	l_off = i;
10930 	l_cnt = 0;
10931 	for (; i < nr_linfo; i++)
10932 		if (linfo[i].insn_off < off + cnt)
10933 			l_cnt++;
10934 		else
10935 			break;
10936 
10937 	/* First live insn doesn't match first live linfo, it needs to "inherit"
10938 	 * last removed linfo.  prog is already modified, so prog->len == off
10939 	 * means no live instructions after (tail of the program was removed).
10940 	 */
10941 	if (prog->len != off && l_cnt &&
10942 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10943 		l_cnt--;
10944 		linfo[--i].insn_off = off + cnt;
10945 	}
10946 
10947 	/* remove the line info which refer to the removed instructions */
10948 	if (l_cnt) {
10949 		memmove(linfo + l_off, linfo + i,
10950 			sizeof(*linfo) * (nr_linfo - i));
10951 
10952 		prog->aux->nr_linfo -= l_cnt;
10953 		nr_linfo = prog->aux->nr_linfo;
10954 	}
10955 
10956 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
10957 	for (i = l_off; i < nr_linfo; i++)
10958 		linfo[i].insn_off -= cnt;
10959 
10960 	/* fix up all subprogs (incl. 'exit') which start >= off */
10961 	for (i = 0; i <= env->subprog_cnt; i++)
10962 		if (env->subprog_info[i].linfo_idx > l_off) {
10963 			/* program may have started in the removed region but
10964 			 * may not be fully removed
10965 			 */
10966 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10967 				env->subprog_info[i].linfo_idx -= l_cnt;
10968 			else
10969 				env->subprog_info[i].linfo_idx = l_off;
10970 		}
10971 
10972 	return 0;
10973 }
10974 
10975 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10976 {
10977 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10978 	unsigned int orig_prog_len = env->prog->len;
10979 	int err;
10980 
10981 	if (bpf_prog_is_dev_bound(env->prog->aux))
10982 		bpf_prog_offload_remove_insns(env, off, cnt);
10983 
10984 	err = bpf_remove_insns(env->prog, off, cnt);
10985 	if (err)
10986 		return err;
10987 
10988 	err = adjust_subprog_starts_after_remove(env, off, cnt);
10989 	if (err)
10990 		return err;
10991 
10992 	err = bpf_adj_linfo_after_remove(env, off, cnt);
10993 	if (err)
10994 		return err;
10995 
10996 	memmove(aux_data + off,	aux_data + off + cnt,
10997 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
10998 
10999 	return 0;
11000 }
11001 
11002 /* The verifier does more data flow analysis than llvm and will not
11003  * explore branches that are dead at run time. Malicious programs can
11004  * have dead code too. Therefore replace all dead at-run-time code
11005  * with 'ja -1'.
11006  *
11007  * Just nops are not optimal, e.g. if they would sit at the end of the
11008  * program and through another bug we would manage to jump there, then
11009  * we'd execute beyond program memory otherwise. Returning exception
11010  * code also wouldn't work since we can have subprogs where the dead
11011  * code could be located.
11012  */
11013 static void sanitize_dead_code(struct bpf_verifier_env *env)
11014 {
11015 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11016 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11017 	struct bpf_insn *insn = env->prog->insnsi;
11018 	const int insn_cnt = env->prog->len;
11019 	int i;
11020 
11021 	for (i = 0; i < insn_cnt; i++) {
11022 		if (aux_data[i].seen)
11023 			continue;
11024 		memcpy(insn + i, &trap, sizeof(trap));
11025 	}
11026 }
11027 
11028 static bool insn_is_cond_jump(u8 code)
11029 {
11030 	u8 op;
11031 
11032 	if (BPF_CLASS(code) == BPF_JMP32)
11033 		return true;
11034 
11035 	if (BPF_CLASS(code) != BPF_JMP)
11036 		return false;
11037 
11038 	op = BPF_OP(code);
11039 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11040 }
11041 
11042 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11043 {
11044 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11045 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11046 	struct bpf_insn *insn = env->prog->insnsi;
11047 	const int insn_cnt = env->prog->len;
11048 	int i;
11049 
11050 	for (i = 0; i < insn_cnt; i++, insn++) {
11051 		if (!insn_is_cond_jump(insn->code))
11052 			continue;
11053 
11054 		if (!aux_data[i + 1].seen)
11055 			ja.off = insn->off;
11056 		else if (!aux_data[i + 1 + insn->off].seen)
11057 			ja.off = 0;
11058 		else
11059 			continue;
11060 
11061 		if (bpf_prog_is_dev_bound(env->prog->aux))
11062 			bpf_prog_offload_replace_insn(env, i, &ja);
11063 
11064 		memcpy(insn, &ja, sizeof(ja));
11065 	}
11066 }
11067 
11068 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11069 {
11070 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11071 	int insn_cnt = env->prog->len;
11072 	int i, err;
11073 
11074 	for (i = 0; i < insn_cnt; i++) {
11075 		int j;
11076 
11077 		j = 0;
11078 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11079 			j++;
11080 		if (!j)
11081 			continue;
11082 
11083 		err = verifier_remove_insns(env, i, j);
11084 		if (err)
11085 			return err;
11086 		insn_cnt = env->prog->len;
11087 	}
11088 
11089 	return 0;
11090 }
11091 
11092 static int opt_remove_nops(struct bpf_verifier_env *env)
11093 {
11094 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11095 	struct bpf_insn *insn = env->prog->insnsi;
11096 	int insn_cnt = env->prog->len;
11097 	int i, err;
11098 
11099 	for (i = 0; i < insn_cnt; i++) {
11100 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11101 			continue;
11102 
11103 		err = verifier_remove_insns(env, i, 1);
11104 		if (err)
11105 			return err;
11106 		insn_cnt--;
11107 		i--;
11108 	}
11109 
11110 	return 0;
11111 }
11112 
11113 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11114 					 const union bpf_attr *attr)
11115 {
11116 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11117 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11118 	int i, patch_len, delta = 0, len = env->prog->len;
11119 	struct bpf_insn *insns = env->prog->insnsi;
11120 	struct bpf_prog *new_prog;
11121 	bool rnd_hi32;
11122 
11123 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11124 	zext_patch[1] = BPF_ZEXT_REG(0);
11125 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11126 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11127 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11128 	for (i = 0; i < len; i++) {
11129 		int adj_idx = i + delta;
11130 		struct bpf_insn insn;
11131 		int load_reg;
11132 
11133 		insn = insns[adj_idx];
11134 		load_reg = insn_def_regno(&insn);
11135 		if (!aux[adj_idx].zext_dst) {
11136 			u8 code, class;
11137 			u32 imm_rnd;
11138 
11139 			if (!rnd_hi32)
11140 				continue;
11141 
11142 			code = insn.code;
11143 			class = BPF_CLASS(code);
11144 			if (load_reg == -1)
11145 				continue;
11146 
11147 			/* NOTE: arg "reg" (the fourth one) is only used for
11148 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11149 			 *       here.
11150 			 */
11151 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11152 				if (class == BPF_LD &&
11153 				    BPF_MODE(code) == BPF_IMM)
11154 					i++;
11155 				continue;
11156 			}
11157 
11158 			/* ctx load could be transformed into wider load. */
11159 			if (class == BPF_LDX &&
11160 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11161 				continue;
11162 
11163 			imm_rnd = get_random_int();
11164 			rnd_hi32_patch[0] = insn;
11165 			rnd_hi32_patch[1].imm = imm_rnd;
11166 			rnd_hi32_patch[3].dst_reg = load_reg;
11167 			patch = rnd_hi32_patch;
11168 			patch_len = 4;
11169 			goto apply_patch_buffer;
11170 		}
11171 
11172 		/* Add in an zero-extend instruction if a) the JIT has requested
11173 		 * it or b) it's a CMPXCHG.
11174 		 *
11175 		 * The latter is because: BPF_CMPXCHG always loads a value into
11176 		 * R0, therefore always zero-extends. However some archs'
11177 		 * equivalent instruction only does this load when the
11178 		 * comparison is successful. This detail of CMPXCHG is
11179 		 * orthogonal to the general zero-extension behaviour of the
11180 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11181 		 */
11182 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11183 			continue;
11184 
11185 		if (WARN_ON(load_reg == -1)) {
11186 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11187 			return -EFAULT;
11188 		}
11189 
11190 		zext_patch[0] = insn;
11191 		zext_patch[1].dst_reg = load_reg;
11192 		zext_patch[1].src_reg = load_reg;
11193 		patch = zext_patch;
11194 		patch_len = 2;
11195 apply_patch_buffer:
11196 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11197 		if (!new_prog)
11198 			return -ENOMEM;
11199 		env->prog = new_prog;
11200 		insns = new_prog->insnsi;
11201 		aux = env->insn_aux_data;
11202 		delta += patch_len - 1;
11203 	}
11204 
11205 	return 0;
11206 }
11207 
11208 /* convert load instructions that access fields of a context type into a
11209  * sequence of instructions that access fields of the underlying structure:
11210  *     struct __sk_buff    -> struct sk_buff
11211  *     struct bpf_sock_ops -> struct sock
11212  */
11213 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11214 {
11215 	const struct bpf_verifier_ops *ops = env->ops;
11216 	int i, cnt, size, ctx_field_size, delta = 0;
11217 	const int insn_cnt = env->prog->len;
11218 	struct bpf_insn insn_buf[16], *insn;
11219 	u32 target_size, size_default, off;
11220 	struct bpf_prog *new_prog;
11221 	enum bpf_access_type type;
11222 	bool is_narrower_load;
11223 
11224 	if (ops->gen_prologue || env->seen_direct_write) {
11225 		if (!ops->gen_prologue) {
11226 			verbose(env, "bpf verifier is misconfigured\n");
11227 			return -EINVAL;
11228 		}
11229 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11230 					env->prog);
11231 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11232 			verbose(env, "bpf verifier is misconfigured\n");
11233 			return -EINVAL;
11234 		} else if (cnt) {
11235 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11236 			if (!new_prog)
11237 				return -ENOMEM;
11238 
11239 			env->prog = new_prog;
11240 			delta += cnt - 1;
11241 		}
11242 	}
11243 
11244 	if (bpf_prog_is_dev_bound(env->prog->aux))
11245 		return 0;
11246 
11247 	insn = env->prog->insnsi + delta;
11248 
11249 	for (i = 0; i < insn_cnt; i++, insn++) {
11250 		bpf_convert_ctx_access_t convert_ctx_access;
11251 
11252 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11253 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11254 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11255 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11256 			type = BPF_READ;
11257 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11258 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11259 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11260 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11261 			type = BPF_WRITE;
11262 		else
11263 			continue;
11264 
11265 		if (type == BPF_WRITE &&
11266 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11267 			struct bpf_insn patch[] = {
11268 				/* Sanitize suspicious stack slot with zero.
11269 				 * There are no memory dependencies for this store,
11270 				 * since it's only using frame pointer and immediate
11271 				 * constant of zero
11272 				 */
11273 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11274 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11275 					   0),
11276 				/* the original STX instruction will immediately
11277 				 * overwrite the same stack slot with appropriate value
11278 				 */
11279 				*insn,
11280 			};
11281 
11282 			cnt = ARRAY_SIZE(patch);
11283 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11284 			if (!new_prog)
11285 				return -ENOMEM;
11286 
11287 			delta    += cnt - 1;
11288 			env->prog = new_prog;
11289 			insn      = new_prog->insnsi + i + delta;
11290 			continue;
11291 		}
11292 
11293 		switch (env->insn_aux_data[i + delta].ptr_type) {
11294 		case PTR_TO_CTX:
11295 			if (!ops->convert_ctx_access)
11296 				continue;
11297 			convert_ctx_access = ops->convert_ctx_access;
11298 			break;
11299 		case PTR_TO_SOCKET:
11300 		case PTR_TO_SOCK_COMMON:
11301 			convert_ctx_access = bpf_sock_convert_ctx_access;
11302 			break;
11303 		case PTR_TO_TCP_SOCK:
11304 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11305 			break;
11306 		case PTR_TO_XDP_SOCK:
11307 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11308 			break;
11309 		case PTR_TO_BTF_ID:
11310 			if (type == BPF_READ) {
11311 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11312 					BPF_SIZE((insn)->code);
11313 				env->prog->aux->num_exentries++;
11314 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11315 				verbose(env, "Writes through BTF pointers are not allowed\n");
11316 				return -EINVAL;
11317 			}
11318 			continue;
11319 		default:
11320 			continue;
11321 		}
11322 
11323 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11324 		size = BPF_LDST_BYTES(insn);
11325 
11326 		/* If the read access is a narrower load of the field,
11327 		 * convert to a 4/8-byte load, to minimum program type specific
11328 		 * convert_ctx_access changes. If conversion is successful,
11329 		 * we will apply proper mask to the result.
11330 		 */
11331 		is_narrower_load = size < ctx_field_size;
11332 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11333 		off = insn->off;
11334 		if (is_narrower_load) {
11335 			u8 size_code;
11336 
11337 			if (type == BPF_WRITE) {
11338 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11339 				return -EINVAL;
11340 			}
11341 
11342 			size_code = BPF_H;
11343 			if (ctx_field_size == 4)
11344 				size_code = BPF_W;
11345 			else if (ctx_field_size == 8)
11346 				size_code = BPF_DW;
11347 
11348 			insn->off = off & ~(size_default - 1);
11349 			insn->code = BPF_LDX | BPF_MEM | size_code;
11350 		}
11351 
11352 		target_size = 0;
11353 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11354 					 &target_size);
11355 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11356 		    (ctx_field_size && !target_size)) {
11357 			verbose(env, "bpf verifier is misconfigured\n");
11358 			return -EINVAL;
11359 		}
11360 
11361 		if (is_narrower_load && size < target_size) {
11362 			u8 shift = bpf_ctx_narrow_access_offset(
11363 				off, size, size_default) * 8;
11364 			if (ctx_field_size <= 4) {
11365 				if (shift)
11366 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11367 									insn->dst_reg,
11368 									shift);
11369 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11370 								(1 << size * 8) - 1);
11371 			} else {
11372 				if (shift)
11373 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11374 									insn->dst_reg,
11375 									shift);
11376 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11377 								(1ULL << size * 8) - 1);
11378 			}
11379 		}
11380 
11381 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11382 		if (!new_prog)
11383 			return -ENOMEM;
11384 
11385 		delta += cnt - 1;
11386 
11387 		/* keep walking new program and skip insns we just inserted */
11388 		env->prog = new_prog;
11389 		insn      = new_prog->insnsi + i + delta;
11390 	}
11391 
11392 	return 0;
11393 }
11394 
11395 static int jit_subprogs(struct bpf_verifier_env *env)
11396 {
11397 	struct bpf_prog *prog = env->prog, **func, *tmp;
11398 	int i, j, subprog_start, subprog_end = 0, len, subprog;
11399 	struct bpf_map *map_ptr;
11400 	struct bpf_insn *insn;
11401 	void *old_bpf_func;
11402 	int err, num_exentries;
11403 
11404 	if (env->subprog_cnt <= 1)
11405 		return 0;
11406 
11407 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11408 		if (!bpf_pseudo_call(insn))
11409 			continue;
11410 		/* Upon error here we cannot fall back to interpreter but
11411 		 * need a hard reject of the program. Thus -EFAULT is
11412 		 * propagated in any case.
11413 		 */
11414 		subprog = find_subprog(env, i + insn->imm + 1);
11415 		if (subprog < 0) {
11416 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11417 				  i + insn->imm + 1);
11418 			return -EFAULT;
11419 		}
11420 		/* temporarily remember subprog id inside insn instead of
11421 		 * aux_data, since next loop will split up all insns into funcs
11422 		 */
11423 		insn->off = subprog;
11424 		/* remember original imm in case JIT fails and fallback
11425 		 * to interpreter will be needed
11426 		 */
11427 		env->insn_aux_data[i].call_imm = insn->imm;
11428 		/* point imm to __bpf_call_base+1 from JITs point of view */
11429 		insn->imm = 1;
11430 	}
11431 
11432 	err = bpf_prog_alloc_jited_linfo(prog);
11433 	if (err)
11434 		goto out_undo_insn;
11435 
11436 	err = -ENOMEM;
11437 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11438 	if (!func)
11439 		goto out_undo_insn;
11440 
11441 	for (i = 0; i < env->subprog_cnt; i++) {
11442 		subprog_start = subprog_end;
11443 		subprog_end = env->subprog_info[i + 1].start;
11444 
11445 		len = subprog_end - subprog_start;
11446 		/* BPF_PROG_RUN doesn't call subprogs directly,
11447 		 * hence main prog stats include the runtime of subprogs.
11448 		 * subprogs don't have IDs and not reachable via prog_get_next_id
11449 		 * func[i]->stats will never be accessed and stays NULL
11450 		 */
11451 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11452 		if (!func[i])
11453 			goto out_free;
11454 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11455 		       len * sizeof(struct bpf_insn));
11456 		func[i]->type = prog->type;
11457 		func[i]->len = len;
11458 		if (bpf_prog_calc_tag(func[i]))
11459 			goto out_free;
11460 		func[i]->is_func = 1;
11461 		func[i]->aux->func_idx = i;
11462 		/* the btf and func_info will be freed only at prog->aux */
11463 		func[i]->aux->btf = prog->aux->btf;
11464 		func[i]->aux->func_info = prog->aux->func_info;
11465 
11466 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
11467 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11468 			int ret;
11469 
11470 			if (!(insn_idx >= subprog_start &&
11471 			      insn_idx <= subprog_end))
11472 				continue;
11473 
11474 			ret = bpf_jit_add_poke_descriptor(func[i],
11475 							  &prog->aux->poke_tab[j]);
11476 			if (ret < 0) {
11477 				verbose(env, "adding tail call poke descriptor failed\n");
11478 				goto out_free;
11479 			}
11480 
11481 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11482 
11483 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11484 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11485 			if (ret < 0) {
11486 				verbose(env, "tracking tail call prog failed\n");
11487 				goto out_free;
11488 			}
11489 		}
11490 
11491 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
11492 		 * Long term would need debug info to populate names
11493 		 */
11494 		func[i]->aux->name[0] = 'F';
11495 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11496 		func[i]->jit_requested = 1;
11497 		func[i]->aux->linfo = prog->aux->linfo;
11498 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11499 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11500 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11501 		num_exentries = 0;
11502 		insn = func[i]->insnsi;
11503 		for (j = 0; j < func[i]->len; j++, insn++) {
11504 			if (BPF_CLASS(insn->code) == BPF_LDX &&
11505 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
11506 				num_exentries++;
11507 		}
11508 		func[i]->aux->num_exentries = num_exentries;
11509 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11510 		func[i] = bpf_int_jit_compile(func[i]);
11511 		if (!func[i]->jited) {
11512 			err = -ENOTSUPP;
11513 			goto out_free;
11514 		}
11515 		cond_resched();
11516 	}
11517 
11518 	/* Untrack main program's aux structs so that during map_poke_run()
11519 	 * we will not stumble upon the unfilled poke descriptors; each
11520 	 * of the main program's poke descs got distributed across subprogs
11521 	 * and got tracked onto map, so we are sure that none of them will
11522 	 * be missed after the operation below
11523 	 */
11524 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11525 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11526 
11527 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11528 	}
11529 
11530 	/* at this point all bpf functions were successfully JITed
11531 	 * now populate all bpf_calls with correct addresses and
11532 	 * run last pass of JIT
11533 	 */
11534 	for (i = 0; i < env->subprog_cnt; i++) {
11535 		insn = func[i]->insnsi;
11536 		for (j = 0; j < func[i]->len; j++, insn++) {
11537 			if (!bpf_pseudo_call(insn))
11538 				continue;
11539 			subprog = insn->off;
11540 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11541 				    __bpf_call_base;
11542 		}
11543 
11544 		/* we use the aux data to keep a list of the start addresses
11545 		 * of the JITed images for each function in the program
11546 		 *
11547 		 * for some architectures, such as powerpc64, the imm field
11548 		 * might not be large enough to hold the offset of the start
11549 		 * address of the callee's JITed image from __bpf_call_base
11550 		 *
11551 		 * in such cases, we can lookup the start address of a callee
11552 		 * by using its subprog id, available from the off field of
11553 		 * the call instruction, as an index for this list
11554 		 */
11555 		func[i]->aux->func = func;
11556 		func[i]->aux->func_cnt = env->subprog_cnt;
11557 	}
11558 	for (i = 0; i < env->subprog_cnt; i++) {
11559 		old_bpf_func = func[i]->bpf_func;
11560 		tmp = bpf_int_jit_compile(func[i]);
11561 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11562 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11563 			err = -ENOTSUPP;
11564 			goto out_free;
11565 		}
11566 		cond_resched();
11567 	}
11568 
11569 	/* finally lock prog and jit images for all functions and
11570 	 * populate kallsysm
11571 	 */
11572 	for (i = 0; i < env->subprog_cnt; i++) {
11573 		bpf_prog_lock_ro(func[i]);
11574 		bpf_prog_kallsyms_add(func[i]);
11575 	}
11576 
11577 	/* Last step: make now unused interpreter insns from main
11578 	 * prog consistent for later dump requests, so they can
11579 	 * later look the same as if they were interpreted only.
11580 	 */
11581 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11582 		if (!bpf_pseudo_call(insn))
11583 			continue;
11584 		insn->off = env->insn_aux_data[i].call_imm;
11585 		subprog = find_subprog(env, i + insn->off + 1);
11586 		insn->imm = subprog;
11587 	}
11588 
11589 	prog->jited = 1;
11590 	prog->bpf_func = func[0]->bpf_func;
11591 	prog->aux->func = func;
11592 	prog->aux->func_cnt = env->subprog_cnt;
11593 	bpf_prog_free_unused_jited_linfo(prog);
11594 	return 0;
11595 out_free:
11596 	for (i = 0; i < env->subprog_cnt; i++) {
11597 		if (!func[i])
11598 			continue;
11599 
11600 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11601 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11602 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11603 		}
11604 		bpf_jit_free(func[i]);
11605 	}
11606 	kfree(func);
11607 out_undo_insn:
11608 	/* cleanup main prog to be interpreted */
11609 	prog->jit_requested = 0;
11610 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11611 		if (!bpf_pseudo_call(insn))
11612 			continue;
11613 		insn->off = 0;
11614 		insn->imm = env->insn_aux_data[i].call_imm;
11615 	}
11616 	bpf_prog_free_jited_linfo(prog);
11617 	return err;
11618 }
11619 
11620 static int fixup_call_args(struct bpf_verifier_env *env)
11621 {
11622 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11623 	struct bpf_prog *prog = env->prog;
11624 	struct bpf_insn *insn = prog->insnsi;
11625 	int i, depth;
11626 #endif
11627 	int err = 0;
11628 
11629 	if (env->prog->jit_requested &&
11630 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
11631 		err = jit_subprogs(env);
11632 		if (err == 0)
11633 			return 0;
11634 		if (err == -EFAULT)
11635 			return err;
11636 	}
11637 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11638 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11639 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
11640 		 * have to be rejected, since interpreter doesn't support them yet.
11641 		 */
11642 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11643 		return -EINVAL;
11644 	}
11645 	for (i = 0; i < prog->len; i++, insn++) {
11646 		if (!bpf_pseudo_call(insn))
11647 			continue;
11648 		depth = get_callee_stack_depth(env, insn, i);
11649 		if (depth < 0)
11650 			return depth;
11651 		bpf_patch_call_args(insn, depth);
11652 	}
11653 	err = 0;
11654 #endif
11655 	return err;
11656 }
11657 
11658 /* fixup insn->imm field of bpf_call instructions
11659  * and inline eligible helpers as explicit sequence of BPF instructions
11660  *
11661  * this function is called after eBPF program passed verification
11662  */
11663 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11664 {
11665 	struct bpf_prog *prog = env->prog;
11666 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
11667 	struct bpf_insn *insn = prog->insnsi;
11668 	const struct bpf_func_proto *fn;
11669 	const int insn_cnt = prog->len;
11670 	const struct bpf_map_ops *ops;
11671 	struct bpf_insn_aux_data *aux;
11672 	struct bpf_insn insn_buf[16];
11673 	struct bpf_prog *new_prog;
11674 	struct bpf_map *map_ptr;
11675 	int i, ret, cnt, delta = 0;
11676 
11677 	for (i = 0; i < insn_cnt; i++, insn++) {
11678 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11679 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11680 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11681 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11682 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11683 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11684 			struct bpf_insn *patchlet;
11685 			struct bpf_insn chk_and_div[] = {
11686 				/* [R,W]x div 0 -> 0 */
11687 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11688 					     BPF_JNE | BPF_K, insn->src_reg,
11689 					     0, 2, 0),
11690 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11691 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11692 				*insn,
11693 			};
11694 			struct bpf_insn chk_and_mod[] = {
11695 				/* [R,W]x mod 0 -> [R,W]x */
11696 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11697 					     BPF_JEQ | BPF_K, insn->src_reg,
11698 					     0, 1 + (is64 ? 0 : 1), 0),
11699 				*insn,
11700 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11701 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11702 			};
11703 
11704 			patchlet = isdiv ? chk_and_div : chk_and_mod;
11705 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11706 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11707 
11708 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11709 			if (!new_prog)
11710 				return -ENOMEM;
11711 
11712 			delta    += cnt - 1;
11713 			env->prog = prog = new_prog;
11714 			insn      = new_prog->insnsi + i + delta;
11715 			continue;
11716 		}
11717 
11718 		if (BPF_CLASS(insn->code) == BPF_LD &&
11719 		    (BPF_MODE(insn->code) == BPF_ABS ||
11720 		     BPF_MODE(insn->code) == BPF_IND)) {
11721 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11722 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11723 				verbose(env, "bpf verifier is misconfigured\n");
11724 				return -EINVAL;
11725 			}
11726 
11727 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11728 			if (!new_prog)
11729 				return -ENOMEM;
11730 
11731 			delta    += cnt - 1;
11732 			env->prog = prog = new_prog;
11733 			insn      = new_prog->insnsi + i + delta;
11734 			continue;
11735 		}
11736 
11737 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11738 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11739 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11740 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11741 			struct bpf_insn insn_buf[16];
11742 			struct bpf_insn *patch = &insn_buf[0];
11743 			bool issrc, isneg;
11744 			u32 off_reg;
11745 
11746 			aux = &env->insn_aux_data[i + delta];
11747 			if (!aux->alu_state ||
11748 			    aux->alu_state == BPF_ALU_NON_POINTER)
11749 				continue;
11750 
11751 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11752 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11753 				BPF_ALU_SANITIZE_SRC;
11754 
11755 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11756 			if (isneg)
11757 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11758 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11759 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11760 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11761 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11762 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11763 			if (issrc) {
11764 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11765 							 off_reg);
11766 				insn->src_reg = BPF_REG_AX;
11767 			} else {
11768 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11769 							 BPF_REG_AX);
11770 			}
11771 			if (isneg)
11772 				insn->code = insn->code == code_add ?
11773 					     code_sub : code_add;
11774 			*patch++ = *insn;
11775 			if (issrc && isneg)
11776 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11777 			cnt = patch - insn_buf;
11778 
11779 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11780 			if (!new_prog)
11781 				return -ENOMEM;
11782 
11783 			delta    += cnt - 1;
11784 			env->prog = prog = new_prog;
11785 			insn      = new_prog->insnsi + i + delta;
11786 			continue;
11787 		}
11788 
11789 		if (insn->code != (BPF_JMP | BPF_CALL))
11790 			continue;
11791 		if (insn->src_reg == BPF_PSEUDO_CALL)
11792 			continue;
11793 
11794 		if (insn->imm == BPF_FUNC_get_route_realm)
11795 			prog->dst_needed = 1;
11796 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11797 			bpf_user_rnd_init_once();
11798 		if (insn->imm == BPF_FUNC_override_return)
11799 			prog->kprobe_override = 1;
11800 		if (insn->imm == BPF_FUNC_tail_call) {
11801 			/* If we tail call into other programs, we
11802 			 * cannot make any assumptions since they can
11803 			 * be replaced dynamically during runtime in
11804 			 * the program array.
11805 			 */
11806 			prog->cb_access = 1;
11807 			if (!allow_tail_call_in_subprogs(env))
11808 				prog->aux->stack_depth = MAX_BPF_STACK;
11809 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11810 
11811 			/* mark bpf_tail_call as different opcode to avoid
11812 			 * conditional branch in the interpeter for every normal
11813 			 * call and to prevent accidental JITing by JIT compiler
11814 			 * that doesn't support bpf_tail_call yet
11815 			 */
11816 			insn->imm = 0;
11817 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11818 
11819 			aux = &env->insn_aux_data[i + delta];
11820 			if (env->bpf_capable && !expect_blinding &&
11821 			    prog->jit_requested &&
11822 			    !bpf_map_key_poisoned(aux) &&
11823 			    !bpf_map_ptr_poisoned(aux) &&
11824 			    !bpf_map_ptr_unpriv(aux)) {
11825 				struct bpf_jit_poke_descriptor desc = {
11826 					.reason = BPF_POKE_REASON_TAIL_CALL,
11827 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11828 					.tail_call.key = bpf_map_key_immediate(aux),
11829 					.insn_idx = i + delta,
11830 				};
11831 
11832 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11833 				if (ret < 0) {
11834 					verbose(env, "adding tail call poke descriptor failed\n");
11835 					return ret;
11836 				}
11837 
11838 				insn->imm = ret + 1;
11839 				continue;
11840 			}
11841 
11842 			if (!bpf_map_ptr_unpriv(aux))
11843 				continue;
11844 
11845 			/* instead of changing every JIT dealing with tail_call
11846 			 * emit two extra insns:
11847 			 * if (index >= max_entries) goto out;
11848 			 * index &= array->index_mask;
11849 			 * to avoid out-of-bounds cpu speculation
11850 			 */
11851 			if (bpf_map_ptr_poisoned(aux)) {
11852 				verbose(env, "tail_call abusing map_ptr\n");
11853 				return -EINVAL;
11854 			}
11855 
11856 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11857 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11858 						  map_ptr->max_entries, 2);
11859 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11860 						    container_of(map_ptr,
11861 								 struct bpf_array,
11862 								 map)->index_mask);
11863 			insn_buf[2] = *insn;
11864 			cnt = 3;
11865 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11866 			if (!new_prog)
11867 				return -ENOMEM;
11868 
11869 			delta    += cnt - 1;
11870 			env->prog = prog = new_prog;
11871 			insn      = new_prog->insnsi + i + delta;
11872 			continue;
11873 		}
11874 
11875 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11876 		 * and other inlining handlers are currently limited to 64 bit
11877 		 * only.
11878 		 */
11879 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11880 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
11881 		     insn->imm == BPF_FUNC_map_update_elem ||
11882 		     insn->imm == BPF_FUNC_map_delete_elem ||
11883 		     insn->imm == BPF_FUNC_map_push_elem   ||
11884 		     insn->imm == BPF_FUNC_map_pop_elem    ||
11885 		     insn->imm == BPF_FUNC_map_peek_elem)) {
11886 			aux = &env->insn_aux_data[i + delta];
11887 			if (bpf_map_ptr_poisoned(aux))
11888 				goto patch_call_imm;
11889 
11890 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11891 			ops = map_ptr->ops;
11892 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
11893 			    ops->map_gen_lookup) {
11894 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11895 				if (cnt == -EOPNOTSUPP)
11896 					goto patch_map_ops_generic;
11897 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11898 					verbose(env, "bpf verifier is misconfigured\n");
11899 					return -EINVAL;
11900 				}
11901 
11902 				new_prog = bpf_patch_insn_data(env, i + delta,
11903 							       insn_buf, cnt);
11904 				if (!new_prog)
11905 					return -ENOMEM;
11906 
11907 				delta    += cnt - 1;
11908 				env->prog = prog = new_prog;
11909 				insn      = new_prog->insnsi + i + delta;
11910 				continue;
11911 			}
11912 
11913 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11914 				     (void *(*)(struct bpf_map *map, void *key))NULL));
11915 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11916 				     (int (*)(struct bpf_map *map, void *key))NULL));
11917 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11918 				     (int (*)(struct bpf_map *map, void *key, void *value,
11919 					      u64 flags))NULL));
11920 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11921 				     (int (*)(struct bpf_map *map, void *value,
11922 					      u64 flags))NULL));
11923 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11924 				     (int (*)(struct bpf_map *map, void *value))NULL));
11925 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11926 				     (int (*)(struct bpf_map *map, void *value))NULL));
11927 patch_map_ops_generic:
11928 			switch (insn->imm) {
11929 			case BPF_FUNC_map_lookup_elem:
11930 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11931 					    __bpf_call_base;
11932 				continue;
11933 			case BPF_FUNC_map_update_elem:
11934 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11935 					    __bpf_call_base;
11936 				continue;
11937 			case BPF_FUNC_map_delete_elem:
11938 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11939 					    __bpf_call_base;
11940 				continue;
11941 			case BPF_FUNC_map_push_elem:
11942 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11943 					    __bpf_call_base;
11944 				continue;
11945 			case BPF_FUNC_map_pop_elem:
11946 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11947 					    __bpf_call_base;
11948 				continue;
11949 			case BPF_FUNC_map_peek_elem:
11950 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11951 					    __bpf_call_base;
11952 				continue;
11953 			}
11954 
11955 			goto patch_call_imm;
11956 		}
11957 
11958 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11959 		    insn->imm == BPF_FUNC_jiffies64) {
11960 			struct bpf_insn ld_jiffies_addr[2] = {
11961 				BPF_LD_IMM64(BPF_REG_0,
11962 					     (unsigned long)&jiffies),
11963 			};
11964 
11965 			insn_buf[0] = ld_jiffies_addr[0];
11966 			insn_buf[1] = ld_jiffies_addr[1];
11967 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11968 						  BPF_REG_0, 0);
11969 			cnt = 3;
11970 
11971 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11972 						       cnt);
11973 			if (!new_prog)
11974 				return -ENOMEM;
11975 
11976 			delta    += cnt - 1;
11977 			env->prog = prog = new_prog;
11978 			insn      = new_prog->insnsi + i + delta;
11979 			continue;
11980 		}
11981 
11982 patch_call_imm:
11983 		fn = env->ops->get_func_proto(insn->imm, env->prog);
11984 		/* all functions that have prototype and verifier allowed
11985 		 * programs to call them, must be real in-kernel functions
11986 		 */
11987 		if (!fn->func) {
11988 			verbose(env,
11989 				"kernel subsystem misconfigured func %s#%d\n",
11990 				func_id_name(insn->imm), insn->imm);
11991 			return -EFAULT;
11992 		}
11993 		insn->imm = fn->func - __bpf_call_base;
11994 	}
11995 
11996 	/* Since poke tab is now finalized, publish aux to tracker. */
11997 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11998 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11999 		if (!map_ptr->ops->map_poke_track ||
12000 		    !map_ptr->ops->map_poke_untrack ||
12001 		    !map_ptr->ops->map_poke_run) {
12002 			verbose(env, "bpf verifier is misconfigured\n");
12003 			return -EINVAL;
12004 		}
12005 
12006 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12007 		if (ret < 0) {
12008 			verbose(env, "tracking tail call prog failed\n");
12009 			return ret;
12010 		}
12011 	}
12012 
12013 	return 0;
12014 }
12015 
12016 static void free_states(struct bpf_verifier_env *env)
12017 {
12018 	struct bpf_verifier_state_list *sl, *sln;
12019 	int i;
12020 
12021 	sl = env->free_list;
12022 	while (sl) {
12023 		sln = sl->next;
12024 		free_verifier_state(&sl->state, false);
12025 		kfree(sl);
12026 		sl = sln;
12027 	}
12028 	env->free_list = NULL;
12029 
12030 	if (!env->explored_states)
12031 		return;
12032 
12033 	for (i = 0; i < state_htab_size(env); i++) {
12034 		sl = env->explored_states[i];
12035 
12036 		while (sl) {
12037 			sln = sl->next;
12038 			free_verifier_state(&sl->state, false);
12039 			kfree(sl);
12040 			sl = sln;
12041 		}
12042 		env->explored_states[i] = NULL;
12043 	}
12044 }
12045 
12046 /* The verifier is using insn_aux_data[] to store temporary data during
12047  * verification and to store information for passes that run after the
12048  * verification like dead code sanitization. do_check_common() for subprogram N
12049  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12050  * temporary data after do_check_common() finds that subprogram N cannot be
12051  * verified independently. pass_cnt counts the number of times
12052  * do_check_common() was run and insn->aux->seen tells the pass number
12053  * insn_aux_data was touched. These variables are compared to clear temporary
12054  * data from failed pass. For testing and experiments do_check_common() can be
12055  * run multiple times even when prior attempt to verify is unsuccessful.
12056  */
12057 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12058 {
12059 	struct bpf_insn *insn = env->prog->insnsi;
12060 	struct bpf_insn_aux_data *aux;
12061 	int i, class;
12062 
12063 	for (i = 0; i < env->prog->len; i++) {
12064 		class = BPF_CLASS(insn[i].code);
12065 		if (class != BPF_LDX && class != BPF_STX)
12066 			continue;
12067 		aux = &env->insn_aux_data[i];
12068 		if (aux->seen != env->pass_cnt)
12069 			continue;
12070 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12071 	}
12072 }
12073 
12074 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12075 {
12076 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12077 	struct bpf_verifier_state *state;
12078 	struct bpf_reg_state *regs;
12079 	int ret, i;
12080 
12081 	env->prev_linfo = NULL;
12082 	env->pass_cnt++;
12083 
12084 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12085 	if (!state)
12086 		return -ENOMEM;
12087 	state->curframe = 0;
12088 	state->speculative = false;
12089 	state->branches = 1;
12090 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12091 	if (!state->frame[0]) {
12092 		kfree(state);
12093 		return -ENOMEM;
12094 	}
12095 	env->cur_state = state;
12096 	init_func_state(env, state->frame[0],
12097 			BPF_MAIN_FUNC /* callsite */,
12098 			0 /* frameno */,
12099 			subprog);
12100 
12101 	regs = state->frame[state->curframe]->regs;
12102 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12103 		ret = btf_prepare_func_args(env, subprog, regs);
12104 		if (ret)
12105 			goto out;
12106 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12107 			if (regs[i].type == PTR_TO_CTX)
12108 				mark_reg_known_zero(env, regs, i);
12109 			else if (regs[i].type == SCALAR_VALUE)
12110 				mark_reg_unknown(env, regs, i);
12111 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12112 				const u32 mem_size = regs[i].mem_size;
12113 
12114 				mark_reg_known_zero(env, regs, i);
12115 				regs[i].mem_size = mem_size;
12116 				regs[i].id = ++env->id_gen;
12117 			}
12118 		}
12119 	} else {
12120 		/* 1st arg to a function */
12121 		regs[BPF_REG_1].type = PTR_TO_CTX;
12122 		mark_reg_known_zero(env, regs, BPF_REG_1);
12123 		ret = btf_check_func_arg_match(env, subprog, regs);
12124 		if (ret == -EFAULT)
12125 			/* unlikely verifier bug. abort.
12126 			 * ret == 0 and ret < 0 are sadly acceptable for
12127 			 * main() function due to backward compatibility.
12128 			 * Like socket filter program may be written as:
12129 			 * int bpf_prog(struct pt_regs *ctx)
12130 			 * and never dereference that ctx in the program.
12131 			 * 'struct pt_regs' is a type mismatch for socket
12132 			 * filter that should be using 'struct __sk_buff'.
12133 			 */
12134 			goto out;
12135 	}
12136 
12137 	ret = do_check(env);
12138 out:
12139 	/* check for NULL is necessary, since cur_state can be freed inside
12140 	 * do_check() under memory pressure.
12141 	 */
12142 	if (env->cur_state) {
12143 		free_verifier_state(env->cur_state, true);
12144 		env->cur_state = NULL;
12145 	}
12146 	while (!pop_stack(env, NULL, NULL, false));
12147 	if (!ret && pop_log)
12148 		bpf_vlog_reset(&env->log, 0);
12149 	free_states(env);
12150 	if (ret)
12151 		/* clean aux data in case subprog was rejected */
12152 		sanitize_insn_aux_data(env);
12153 	return ret;
12154 }
12155 
12156 /* Verify all global functions in a BPF program one by one based on their BTF.
12157  * All global functions must pass verification. Otherwise the whole program is rejected.
12158  * Consider:
12159  * int bar(int);
12160  * int foo(int f)
12161  * {
12162  *    return bar(f);
12163  * }
12164  * int bar(int b)
12165  * {
12166  *    ...
12167  * }
12168  * foo() will be verified first for R1=any_scalar_value. During verification it
12169  * will be assumed that bar() already verified successfully and call to bar()
12170  * from foo() will be checked for type match only. Later bar() will be verified
12171  * independently to check that it's safe for R1=any_scalar_value.
12172  */
12173 static int do_check_subprogs(struct bpf_verifier_env *env)
12174 {
12175 	struct bpf_prog_aux *aux = env->prog->aux;
12176 	int i, ret;
12177 
12178 	if (!aux->func_info)
12179 		return 0;
12180 
12181 	for (i = 1; i < env->subprog_cnt; i++) {
12182 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12183 			continue;
12184 		env->insn_idx = env->subprog_info[i].start;
12185 		WARN_ON_ONCE(env->insn_idx == 0);
12186 		ret = do_check_common(env, i);
12187 		if (ret) {
12188 			return ret;
12189 		} else if (env->log.level & BPF_LOG_LEVEL) {
12190 			verbose(env,
12191 				"Func#%d is safe for any args that match its prototype\n",
12192 				i);
12193 		}
12194 	}
12195 	return 0;
12196 }
12197 
12198 static int do_check_main(struct bpf_verifier_env *env)
12199 {
12200 	int ret;
12201 
12202 	env->insn_idx = 0;
12203 	ret = do_check_common(env, 0);
12204 	if (!ret)
12205 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12206 	return ret;
12207 }
12208 
12209 
12210 static void print_verification_stats(struct bpf_verifier_env *env)
12211 {
12212 	int i;
12213 
12214 	if (env->log.level & BPF_LOG_STATS) {
12215 		verbose(env, "verification time %lld usec\n",
12216 			div_u64(env->verification_time, 1000));
12217 		verbose(env, "stack depth ");
12218 		for (i = 0; i < env->subprog_cnt; i++) {
12219 			u32 depth = env->subprog_info[i].stack_depth;
12220 
12221 			verbose(env, "%d", depth);
12222 			if (i + 1 < env->subprog_cnt)
12223 				verbose(env, "+");
12224 		}
12225 		verbose(env, "\n");
12226 	}
12227 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12228 		"total_states %d peak_states %d mark_read %d\n",
12229 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12230 		env->max_states_per_insn, env->total_states,
12231 		env->peak_states, env->longest_mark_read_walk);
12232 }
12233 
12234 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12235 {
12236 	const struct btf_type *t, *func_proto;
12237 	const struct bpf_struct_ops *st_ops;
12238 	const struct btf_member *member;
12239 	struct bpf_prog *prog = env->prog;
12240 	u32 btf_id, member_idx;
12241 	const char *mname;
12242 
12243 	if (!prog->gpl_compatible) {
12244 		verbose(env, "struct ops programs must have a GPL compatible license\n");
12245 		return -EINVAL;
12246 	}
12247 
12248 	btf_id = prog->aux->attach_btf_id;
12249 	st_ops = bpf_struct_ops_find(btf_id);
12250 	if (!st_ops) {
12251 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12252 			btf_id);
12253 		return -ENOTSUPP;
12254 	}
12255 
12256 	t = st_ops->type;
12257 	member_idx = prog->expected_attach_type;
12258 	if (member_idx >= btf_type_vlen(t)) {
12259 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12260 			member_idx, st_ops->name);
12261 		return -EINVAL;
12262 	}
12263 
12264 	member = &btf_type_member(t)[member_idx];
12265 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12266 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12267 					       NULL);
12268 	if (!func_proto) {
12269 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12270 			mname, member_idx, st_ops->name);
12271 		return -EINVAL;
12272 	}
12273 
12274 	if (st_ops->check_member) {
12275 		int err = st_ops->check_member(t, member);
12276 
12277 		if (err) {
12278 			verbose(env, "attach to unsupported member %s of struct %s\n",
12279 				mname, st_ops->name);
12280 			return err;
12281 		}
12282 	}
12283 
12284 	prog->aux->attach_func_proto = func_proto;
12285 	prog->aux->attach_func_name = mname;
12286 	env->ops = st_ops->verifier_ops;
12287 
12288 	return 0;
12289 }
12290 #define SECURITY_PREFIX "security_"
12291 
12292 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12293 {
12294 	if (within_error_injection_list(addr) ||
12295 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12296 		return 0;
12297 
12298 	return -EINVAL;
12299 }
12300 
12301 /* list of non-sleepable functions that are otherwise on
12302  * ALLOW_ERROR_INJECTION list
12303  */
12304 BTF_SET_START(btf_non_sleepable_error_inject)
12305 /* Three functions below can be called from sleepable and non-sleepable context.
12306  * Assume non-sleepable from bpf safety point of view.
12307  */
12308 BTF_ID(func, __add_to_page_cache_locked)
12309 BTF_ID(func, should_fail_alloc_page)
12310 BTF_ID(func, should_failslab)
12311 BTF_SET_END(btf_non_sleepable_error_inject)
12312 
12313 static int check_non_sleepable_error_inject(u32 btf_id)
12314 {
12315 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12316 }
12317 
12318 int bpf_check_attach_target(struct bpf_verifier_log *log,
12319 			    const struct bpf_prog *prog,
12320 			    const struct bpf_prog *tgt_prog,
12321 			    u32 btf_id,
12322 			    struct bpf_attach_target_info *tgt_info)
12323 {
12324 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12325 	const char prefix[] = "btf_trace_";
12326 	int ret = 0, subprog = -1, i;
12327 	const struct btf_type *t;
12328 	bool conservative = true;
12329 	const char *tname;
12330 	struct btf *btf;
12331 	long addr = 0;
12332 
12333 	if (!btf_id) {
12334 		bpf_log(log, "Tracing programs must provide btf_id\n");
12335 		return -EINVAL;
12336 	}
12337 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
12338 	if (!btf) {
12339 		bpf_log(log,
12340 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12341 		return -EINVAL;
12342 	}
12343 	t = btf_type_by_id(btf, btf_id);
12344 	if (!t) {
12345 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12346 		return -EINVAL;
12347 	}
12348 	tname = btf_name_by_offset(btf, t->name_off);
12349 	if (!tname) {
12350 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12351 		return -EINVAL;
12352 	}
12353 	if (tgt_prog) {
12354 		struct bpf_prog_aux *aux = tgt_prog->aux;
12355 
12356 		for (i = 0; i < aux->func_info_cnt; i++)
12357 			if (aux->func_info[i].type_id == btf_id) {
12358 				subprog = i;
12359 				break;
12360 			}
12361 		if (subprog == -1) {
12362 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
12363 			return -EINVAL;
12364 		}
12365 		conservative = aux->func_info_aux[subprog].unreliable;
12366 		if (prog_extension) {
12367 			if (conservative) {
12368 				bpf_log(log,
12369 					"Cannot replace static functions\n");
12370 				return -EINVAL;
12371 			}
12372 			if (!prog->jit_requested) {
12373 				bpf_log(log,
12374 					"Extension programs should be JITed\n");
12375 				return -EINVAL;
12376 			}
12377 		}
12378 		if (!tgt_prog->jited) {
12379 			bpf_log(log, "Can attach to only JITed progs\n");
12380 			return -EINVAL;
12381 		}
12382 		if (tgt_prog->type == prog->type) {
12383 			/* Cannot fentry/fexit another fentry/fexit program.
12384 			 * Cannot attach program extension to another extension.
12385 			 * It's ok to attach fentry/fexit to extension program.
12386 			 */
12387 			bpf_log(log, "Cannot recursively attach\n");
12388 			return -EINVAL;
12389 		}
12390 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12391 		    prog_extension &&
12392 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12393 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12394 			/* Program extensions can extend all program types
12395 			 * except fentry/fexit. The reason is the following.
12396 			 * The fentry/fexit programs are used for performance
12397 			 * analysis, stats and can be attached to any program
12398 			 * type except themselves. When extension program is
12399 			 * replacing XDP function it is necessary to allow
12400 			 * performance analysis of all functions. Both original
12401 			 * XDP program and its program extension. Hence
12402 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12403 			 * allowed. If extending of fentry/fexit was allowed it
12404 			 * would be possible to create long call chain
12405 			 * fentry->extension->fentry->extension beyond
12406 			 * reasonable stack size. Hence extending fentry is not
12407 			 * allowed.
12408 			 */
12409 			bpf_log(log, "Cannot extend fentry/fexit\n");
12410 			return -EINVAL;
12411 		}
12412 	} else {
12413 		if (prog_extension) {
12414 			bpf_log(log, "Cannot replace kernel functions\n");
12415 			return -EINVAL;
12416 		}
12417 	}
12418 
12419 	switch (prog->expected_attach_type) {
12420 	case BPF_TRACE_RAW_TP:
12421 		if (tgt_prog) {
12422 			bpf_log(log,
12423 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12424 			return -EINVAL;
12425 		}
12426 		if (!btf_type_is_typedef(t)) {
12427 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
12428 				btf_id);
12429 			return -EINVAL;
12430 		}
12431 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12432 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12433 				btf_id, tname);
12434 			return -EINVAL;
12435 		}
12436 		tname += sizeof(prefix) - 1;
12437 		t = btf_type_by_id(btf, t->type);
12438 		if (!btf_type_is_ptr(t))
12439 			/* should never happen in valid vmlinux build */
12440 			return -EINVAL;
12441 		t = btf_type_by_id(btf, t->type);
12442 		if (!btf_type_is_func_proto(t))
12443 			/* should never happen in valid vmlinux build */
12444 			return -EINVAL;
12445 
12446 		break;
12447 	case BPF_TRACE_ITER:
12448 		if (!btf_type_is_func(t)) {
12449 			bpf_log(log, "attach_btf_id %u is not a function\n",
12450 				btf_id);
12451 			return -EINVAL;
12452 		}
12453 		t = btf_type_by_id(btf, t->type);
12454 		if (!btf_type_is_func_proto(t))
12455 			return -EINVAL;
12456 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12457 		if (ret)
12458 			return ret;
12459 		break;
12460 	default:
12461 		if (!prog_extension)
12462 			return -EINVAL;
12463 		fallthrough;
12464 	case BPF_MODIFY_RETURN:
12465 	case BPF_LSM_MAC:
12466 	case BPF_TRACE_FENTRY:
12467 	case BPF_TRACE_FEXIT:
12468 		if (!btf_type_is_func(t)) {
12469 			bpf_log(log, "attach_btf_id %u is not a function\n",
12470 				btf_id);
12471 			return -EINVAL;
12472 		}
12473 		if (prog_extension &&
12474 		    btf_check_type_match(log, prog, btf, t))
12475 			return -EINVAL;
12476 		t = btf_type_by_id(btf, t->type);
12477 		if (!btf_type_is_func_proto(t))
12478 			return -EINVAL;
12479 
12480 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12481 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12482 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12483 			return -EINVAL;
12484 
12485 		if (tgt_prog && conservative)
12486 			t = NULL;
12487 
12488 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12489 		if (ret < 0)
12490 			return ret;
12491 
12492 		if (tgt_prog) {
12493 			if (subprog == 0)
12494 				addr = (long) tgt_prog->bpf_func;
12495 			else
12496 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12497 		} else {
12498 			addr = kallsyms_lookup_name(tname);
12499 			if (!addr) {
12500 				bpf_log(log,
12501 					"The address of function %s cannot be found\n",
12502 					tname);
12503 				return -ENOENT;
12504 			}
12505 		}
12506 
12507 		if (prog->aux->sleepable) {
12508 			ret = -EINVAL;
12509 			switch (prog->type) {
12510 			case BPF_PROG_TYPE_TRACING:
12511 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
12512 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12513 				 */
12514 				if (!check_non_sleepable_error_inject(btf_id) &&
12515 				    within_error_injection_list(addr))
12516 					ret = 0;
12517 				break;
12518 			case BPF_PROG_TYPE_LSM:
12519 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
12520 				 * Only some of them are sleepable.
12521 				 */
12522 				if (bpf_lsm_is_sleepable_hook(btf_id))
12523 					ret = 0;
12524 				break;
12525 			default:
12526 				break;
12527 			}
12528 			if (ret) {
12529 				bpf_log(log, "%s is not sleepable\n", tname);
12530 				return ret;
12531 			}
12532 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12533 			if (tgt_prog) {
12534 				bpf_log(log, "can't modify return codes of BPF programs\n");
12535 				return -EINVAL;
12536 			}
12537 			ret = check_attach_modify_return(addr, tname);
12538 			if (ret) {
12539 				bpf_log(log, "%s() is not modifiable\n", tname);
12540 				return ret;
12541 			}
12542 		}
12543 
12544 		break;
12545 	}
12546 	tgt_info->tgt_addr = addr;
12547 	tgt_info->tgt_name = tname;
12548 	tgt_info->tgt_type = t;
12549 	return 0;
12550 }
12551 
12552 static int check_attach_btf_id(struct bpf_verifier_env *env)
12553 {
12554 	struct bpf_prog *prog = env->prog;
12555 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12556 	struct bpf_attach_target_info tgt_info = {};
12557 	u32 btf_id = prog->aux->attach_btf_id;
12558 	struct bpf_trampoline *tr;
12559 	int ret;
12560 	u64 key;
12561 
12562 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12563 	    prog->type != BPF_PROG_TYPE_LSM) {
12564 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12565 		return -EINVAL;
12566 	}
12567 
12568 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12569 		return check_struct_ops_btf_id(env);
12570 
12571 	if (prog->type != BPF_PROG_TYPE_TRACING &&
12572 	    prog->type != BPF_PROG_TYPE_LSM &&
12573 	    prog->type != BPF_PROG_TYPE_EXT)
12574 		return 0;
12575 
12576 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12577 	if (ret)
12578 		return ret;
12579 
12580 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12581 		/* to make freplace equivalent to their targets, they need to
12582 		 * inherit env->ops and expected_attach_type for the rest of the
12583 		 * verification
12584 		 */
12585 		env->ops = bpf_verifier_ops[tgt_prog->type];
12586 		prog->expected_attach_type = tgt_prog->expected_attach_type;
12587 	}
12588 
12589 	/* store info about the attachment target that will be used later */
12590 	prog->aux->attach_func_proto = tgt_info.tgt_type;
12591 	prog->aux->attach_func_name = tgt_info.tgt_name;
12592 
12593 	if (tgt_prog) {
12594 		prog->aux->saved_dst_prog_type = tgt_prog->type;
12595 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12596 	}
12597 
12598 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12599 		prog->aux->attach_btf_trace = true;
12600 		return 0;
12601 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12602 		if (!bpf_iter_prog_supported(prog))
12603 			return -EINVAL;
12604 		return 0;
12605 	}
12606 
12607 	if (prog->type == BPF_PROG_TYPE_LSM) {
12608 		ret = bpf_lsm_verify_prog(&env->log, prog);
12609 		if (ret < 0)
12610 			return ret;
12611 	}
12612 
12613 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
12614 	tr = bpf_trampoline_get(key, &tgt_info);
12615 	if (!tr)
12616 		return -ENOMEM;
12617 
12618 	prog->aux->dst_trampoline = tr;
12619 	return 0;
12620 }
12621 
12622 struct btf *bpf_get_btf_vmlinux(void)
12623 {
12624 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12625 		mutex_lock(&bpf_verifier_lock);
12626 		if (!btf_vmlinux)
12627 			btf_vmlinux = btf_parse_vmlinux();
12628 		mutex_unlock(&bpf_verifier_lock);
12629 	}
12630 	return btf_vmlinux;
12631 }
12632 
12633 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12634 	      union bpf_attr __user *uattr)
12635 {
12636 	u64 start_time = ktime_get_ns();
12637 	struct bpf_verifier_env *env;
12638 	struct bpf_verifier_log *log;
12639 	int i, len, ret = -EINVAL;
12640 	bool is_priv;
12641 
12642 	/* no program is valid */
12643 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12644 		return -EINVAL;
12645 
12646 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
12647 	 * allocate/free it every time bpf_check() is called
12648 	 */
12649 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12650 	if (!env)
12651 		return -ENOMEM;
12652 	log = &env->log;
12653 
12654 	len = (*prog)->len;
12655 	env->insn_aux_data =
12656 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12657 	ret = -ENOMEM;
12658 	if (!env->insn_aux_data)
12659 		goto err_free_env;
12660 	for (i = 0; i < len; i++)
12661 		env->insn_aux_data[i].orig_idx = i;
12662 	env->prog = *prog;
12663 	env->ops = bpf_verifier_ops[env->prog->type];
12664 	is_priv = bpf_capable();
12665 
12666 	bpf_get_btf_vmlinux();
12667 
12668 	/* grab the mutex to protect few globals used by verifier */
12669 	if (!is_priv)
12670 		mutex_lock(&bpf_verifier_lock);
12671 
12672 	if (attr->log_level || attr->log_buf || attr->log_size) {
12673 		/* user requested verbose verifier output
12674 		 * and supplied buffer to store the verification trace
12675 		 */
12676 		log->level = attr->log_level;
12677 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12678 		log->len_total = attr->log_size;
12679 
12680 		ret = -EINVAL;
12681 		/* log attributes have to be sane */
12682 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
12683 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
12684 			goto err_unlock;
12685 	}
12686 
12687 	if (IS_ERR(btf_vmlinux)) {
12688 		/* Either gcc or pahole or kernel are broken. */
12689 		verbose(env, "in-kernel BTF is malformed\n");
12690 		ret = PTR_ERR(btf_vmlinux);
12691 		goto skip_full_check;
12692 	}
12693 
12694 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12695 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12696 		env->strict_alignment = true;
12697 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12698 		env->strict_alignment = false;
12699 
12700 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12701 	env->allow_uninit_stack = bpf_allow_uninit_stack();
12702 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12703 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12704 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12705 	env->bpf_capable = bpf_capable();
12706 
12707 	if (is_priv)
12708 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12709 
12710 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12711 		ret = bpf_prog_offload_verifier_prep(env->prog);
12712 		if (ret)
12713 			goto skip_full_check;
12714 	}
12715 
12716 	env->explored_states = kvcalloc(state_htab_size(env),
12717 				       sizeof(struct bpf_verifier_state_list *),
12718 				       GFP_USER);
12719 	ret = -ENOMEM;
12720 	if (!env->explored_states)
12721 		goto skip_full_check;
12722 
12723 	ret = check_subprogs(env);
12724 	if (ret < 0)
12725 		goto skip_full_check;
12726 
12727 	ret = check_btf_info(env, attr, uattr);
12728 	if (ret < 0)
12729 		goto skip_full_check;
12730 
12731 	ret = check_attach_btf_id(env);
12732 	if (ret)
12733 		goto skip_full_check;
12734 
12735 	ret = resolve_pseudo_ldimm64(env);
12736 	if (ret < 0)
12737 		goto skip_full_check;
12738 
12739 	ret = check_cfg(env);
12740 	if (ret < 0)
12741 		goto skip_full_check;
12742 
12743 	ret = do_check_subprogs(env);
12744 	ret = ret ?: do_check_main(env);
12745 
12746 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12747 		ret = bpf_prog_offload_finalize(env);
12748 
12749 skip_full_check:
12750 	kvfree(env->explored_states);
12751 
12752 	if (ret == 0)
12753 		ret = check_max_stack_depth(env);
12754 
12755 	/* instruction rewrites happen after this point */
12756 	if (is_priv) {
12757 		if (ret == 0)
12758 			opt_hard_wire_dead_code_branches(env);
12759 		if (ret == 0)
12760 			ret = opt_remove_dead_code(env);
12761 		if (ret == 0)
12762 			ret = opt_remove_nops(env);
12763 	} else {
12764 		if (ret == 0)
12765 			sanitize_dead_code(env);
12766 	}
12767 
12768 	if (ret == 0)
12769 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12770 		ret = convert_ctx_accesses(env);
12771 
12772 	if (ret == 0)
12773 		ret = fixup_bpf_calls(env);
12774 
12775 	/* do 32-bit optimization after insn patching has done so those patched
12776 	 * insns could be handled correctly.
12777 	 */
12778 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12779 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12780 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12781 								     : false;
12782 	}
12783 
12784 	if (ret == 0)
12785 		ret = fixup_call_args(env);
12786 
12787 	env->verification_time = ktime_get_ns() - start_time;
12788 	print_verification_stats(env);
12789 
12790 	if (log->level && bpf_verifier_log_full(log))
12791 		ret = -ENOSPC;
12792 	if (log->level && !log->ubuf) {
12793 		ret = -EFAULT;
12794 		goto err_release_maps;
12795 	}
12796 
12797 	if (ret)
12798 		goto err_release_maps;
12799 
12800 	if (env->used_map_cnt) {
12801 		/* if program passed verifier, update used_maps in bpf_prog_info */
12802 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12803 							  sizeof(env->used_maps[0]),
12804 							  GFP_KERNEL);
12805 
12806 		if (!env->prog->aux->used_maps) {
12807 			ret = -ENOMEM;
12808 			goto err_release_maps;
12809 		}
12810 
12811 		memcpy(env->prog->aux->used_maps, env->used_maps,
12812 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12813 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12814 	}
12815 	if (env->used_btf_cnt) {
12816 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
12817 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
12818 							  sizeof(env->used_btfs[0]),
12819 							  GFP_KERNEL);
12820 		if (!env->prog->aux->used_btfs) {
12821 			ret = -ENOMEM;
12822 			goto err_release_maps;
12823 		}
12824 
12825 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
12826 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
12827 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
12828 	}
12829 	if (env->used_map_cnt || env->used_btf_cnt) {
12830 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12831 		 * bpf_ld_imm64 instructions
12832 		 */
12833 		convert_pseudo_ld_imm64(env);
12834 	}
12835 
12836 	adjust_btf_func(env);
12837 
12838 err_release_maps:
12839 	if (!env->prog->aux->used_maps)
12840 		/* if we didn't copy map pointers into bpf_prog_info, release
12841 		 * them now. Otherwise free_used_maps() will release them.
12842 		 */
12843 		release_maps(env);
12844 	if (!env->prog->aux->used_btfs)
12845 		release_btfs(env);
12846 
12847 	/* extension progs temporarily inherit the attach_type of their targets
12848 	   for verification purposes, so set it back to zero before returning
12849 	 */
12850 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12851 		env->prog->expected_attach_type = 0;
12852 
12853 	*prog = env->prog;
12854 err_unlock:
12855 	if (!is_priv)
12856 		mutex_unlock(&bpf_verifier_lock);
12857 	vfree(env->insn_aux_data);
12858 err_free_env:
12859 	kfree(env);
12860 	return ret;
12861 }
12862