1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 struct bpf_call_arg_meta { 238 struct bpf_map *map_ptr; 239 bool raw_mode; 240 bool pkt_access; 241 int regno; 242 int access_size; 243 int mem_size; 244 u64 msize_max_value; 245 int ref_obj_id; 246 int func_id; 247 struct btf *btf; 248 u32 btf_id; 249 struct btf *ret_btf; 250 u32 ret_btf_id; 251 }; 252 253 struct btf *btf_vmlinux; 254 255 static DEFINE_MUTEX(bpf_verifier_lock); 256 257 static const struct bpf_line_info * 258 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 259 { 260 const struct bpf_line_info *linfo; 261 const struct bpf_prog *prog; 262 u32 i, nr_linfo; 263 264 prog = env->prog; 265 nr_linfo = prog->aux->nr_linfo; 266 267 if (!nr_linfo || insn_off >= prog->len) 268 return NULL; 269 270 linfo = prog->aux->linfo; 271 for (i = 1; i < nr_linfo; i++) 272 if (insn_off < linfo[i].insn_off) 273 break; 274 275 return &linfo[i - 1]; 276 } 277 278 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 279 va_list args) 280 { 281 unsigned int n; 282 283 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 284 285 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 286 "verifier log line truncated - local buffer too short\n"); 287 288 n = min(log->len_total - log->len_used - 1, n); 289 log->kbuf[n] = '\0'; 290 291 if (log->level == BPF_LOG_KERNEL) { 292 pr_err("BPF:%s\n", log->kbuf); 293 return; 294 } 295 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 296 log->len_used += n; 297 else 298 log->ubuf = NULL; 299 } 300 301 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 302 { 303 char zero = 0; 304 305 if (!bpf_verifier_log_needed(log)) 306 return; 307 308 log->len_used = new_pos; 309 if (put_user(zero, log->ubuf + new_pos)) 310 log->ubuf = NULL; 311 } 312 313 /* log_level controls verbosity level of eBPF verifier. 314 * bpf_verifier_log_write() is used to dump the verification trace to the log, 315 * so the user can figure out what's wrong with the program 316 */ 317 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 318 const char *fmt, ...) 319 { 320 va_list args; 321 322 if (!bpf_verifier_log_needed(&env->log)) 323 return; 324 325 va_start(args, fmt); 326 bpf_verifier_vlog(&env->log, fmt, args); 327 va_end(args); 328 } 329 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 330 331 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 332 { 333 struct bpf_verifier_env *env = private_data; 334 va_list args; 335 336 if (!bpf_verifier_log_needed(&env->log)) 337 return; 338 339 va_start(args, fmt); 340 bpf_verifier_vlog(&env->log, fmt, args); 341 va_end(args); 342 } 343 344 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 345 const char *fmt, ...) 346 { 347 va_list args; 348 349 if (!bpf_verifier_log_needed(log)) 350 return; 351 352 va_start(args, fmt); 353 bpf_verifier_vlog(log, fmt, args); 354 va_end(args); 355 } 356 357 static const char *ltrim(const char *s) 358 { 359 while (isspace(*s)) 360 s++; 361 362 return s; 363 } 364 365 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 366 u32 insn_off, 367 const char *prefix_fmt, ...) 368 { 369 const struct bpf_line_info *linfo; 370 371 if (!bpf_verifier_log_needed(&env->log)) 372 return; 373 374 linfo = find_linfo(env, insn_off); 375 if (!linfo || linfo == env->prev_linfo) 376 return; 377 378 if (prefix_fmt) { 379 va_list args; 380 381 va_start(args, prefix_fmt); 382 bpf_verifier_vlog(&env->log, prefix_fmt, args); 383 va_end(args); 384 } 385 386 verbose(env, "%s\n", 387 ltrim(btf_name_by_offset(env->prog->aux->btf, 388 linfo->line_off))); 389 390 env->prev_linfo = linfo; 391 } 392 393 static bool type_is_pkt_pointer(enum bpf_reg_type type) 394 { 395 return type == PTR_TO_PACKET || 396 type == PTR_TO_PACKET_META; 397 } 398 399 static bool type_is_sk_pointer(enum bpf_reg_type type) 400 { 401 return type == PTR_TO_SOCKET || 402 type == PTR_TO_SOCK_COMMON || 403 type == PTR_TO_TCP_SOCK || 404 type == PTR_TO_XDP_SOCK; 405 } 406 407 static bool reg_type_not_null(enum bpf_reg_type type) 408 { 409 return type == PTR_TO_SOCKET || 410 type == PTR_TO_TCP_SOCK || 411 type == PTR_TO_MAP_VALUE || 412 type == PTR_TO_SOCK_COMMON; 413 } 414 415 static bool reg_type_may_be_null(enum bpf_reg_type type) 416 { 417 return type == PTR_TO_MAP_VALUE_OR_NULL || 418 type == PTR_TO_SOCKET_OR_NULL || 419 type == PTR_TO_SOCK_COMMON_OR_NULL || 420 type == PTR_TO_TCP_SOCK_OR_NULL || 421 type == PTR_TO_BTF_ID_OR_NULL || 422 type == PTR_TO_MEM_OR_NULL || 423 type == PTR_TO_RDONLY_BUF_OR_NULL || 424 type == PTR_TO_RDWR_BUF_OR_NULL; 425 } 426 427 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 428 { 429 return reg->type == PTR_TO_MAP_VALUE && 430 map_value_has_spin_lock(reg->map_ptr); 431 } 432 433 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 434 { 435 return type == PTR_TO_SOCKET || 436 type == PTR_TO_SOCKET_OR_NULL || 437 type == PTR_TO_TCP_SOCK || 438 type == PTR_TO_TCP_SOCK_OR_NULL || 439 type == PTR_TO_MEM || 440 type == PTR_TO_MEM_OR_NULL; 441 } 442 443 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 444 { 445 return type == ARG_PTR_TO_SOCK_COMMON; 446 } 447 448 static bool arg_type_may_be_null(enum bpf_arg_type type) 449 { 450 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 451 type == ARG_PTR_TO_MEM_OR_NULL || 452 type == ARG_PTR_TO_CTX_OR_NULL || 453 type == ARG_PTR_TO_SOCKET_OR_NULL || 454 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 455 } 456 457 /* Determine whether the function releases some resources allocated by another 458 * function call. The first reference type argument will be assumed to be 459 * released by release_reference(). 460 */ 461 static bool is_release_function(enum bpf_func_id func_id) 462 { 463 return func_id == BPF_FUNC_sk_release || 464 func_id == BPF_FUNC_ringbuf_submit || 465 func_id == BPF_FUNC_ringbuf_discard; 466 } 467 468 static bool may_be_acquire_function(enum bpf_func_id func_id) 469 { 470 return func_id == BPF_FUNC_sk_lookup_tcp || 471 func_id == BPF_FUNC_sk_lookup_udp || 472 func_id == BPF_FUNC_skc_lookup_tcp || 473 func_id == BPF_FUNC_map_lookup_elem || 474 func_id == BPF_FUNC_ringbuf_reserve; 475 } 476 477 static bool is_acquire_function(enum bpf_func_id func_id, 478 const struct bpf_map *map) 479 { 480 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 481 482 if (func_id == BPF_FUNC_sk_lookup_tcp || 483 func_id == BPF_FUNC_sk_lookup_udp || 484 func_id == BPF_FUNC_skc_lookup_tcp || 485 func_id == BPF_FUNC_ringbuf_reserve) 486 return true; 487 488 if (func_id == BPF_FUNC_map_lookup_elem && 489 (map_type == BPF_MAP_TYPE_SOCKMAP || 490 map_type == BPF_MAP_TYPE_SOCKHASH)) 491 return true; 492 493 return false; 494 } 495 496 static bool is_ptr_cast_function(enum bpf_func_id func_id) 497 { 498 return func_id == BPF_FUNC_tcp_sock || 499 func_id == BPF_FUNC_sk_fullsock || 500 func_id == BPF_FUNC_skc_to_tcp_sock || 501 func_id == BPF_FUNC_skc_to_tcp6_sock || 502 func_id == BPF_FUNC_skc_to_udp6_sock || 503 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 504 func_id == BPF_FUNC_skc_to_tcp_request_sock; 505 } 506 507 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 508 { 509 return BPF_CLASS(insn->code) == BPF_STX && 510 BPF_MODE(insn->code) == BPF_ATOMIC && 511 insn->imm == BPF_CMPXCHG; 512 } 513 514 /* string representation of 'enum bpf_reg_type' */ 515 static const char * const reg_type_str[] = { 516 [NOT_INIT] = "?", 517 [SCALAR_VALUE] = "inv", 518 [PTR_TO_CTX] = "ctx", 519 [CONST_PTR_TO_MAP] = "map_ptr", 520 [PTR_TO_MAP_VALUE] = "map_value", 521 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 522 [PTR_TO_STACK] = "fp", 523 [PTR_TO_PACKET] = "pkt", 524 [PTR_TO_PACKET_META] = "pkt_meta", 525 [PTR_TO_PACKET_END] = "pkt_end", 526 [PTR_TO_FLOW_KEYS] = "flow_keys", 527 [PTR_TO_SOCKET] = "sock", 528 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 529 [PTR_TO_SOCK_COMMON] = "sock_common", 530 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 531 [PTR_TO_TCP_SOCK] = "tcp_sock", 532 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 533 [PTR_TO_TP_BUFFER] = "tp_buffer", 534 [PTR_TO_XDP_SOCK] = "xdp_sock", 535 [PTR_TO_BTF_ID] = "ptr_", 536 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 537 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 538 [PTR_TO_MEM] = "mem", 539 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 540 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 541 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 542 [PTR_TO_RDWR_BUF] = "rdwr_buf", 543 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 544 }; 545 546 static char slot_type_char[] = { 547 [STACK_INVALID] = '?', 548 [STACK_SPILL] = 'r', 549 [STACK_MISC] = 'm', 550 [STACK_ZERO] = '0', 551 }; 552 553 static void print_liveness(struct bpf_verifier_env *env, 554 enum bpf_reg_liveness live) 555 { 556 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 557 verbose(env, "_"); 558 if (live & REG_LIVE_READ) 559 verbose(env, "r"); 560 if (live & REG_LIVE_WRITTEN) 561 verbose(env, "w"); 562 if (live & REG_LIVE_DONE) 563 verbose(env, "D"); 564 } 565 566 static struct bpf_func_state *func(struct bpf_verifier_env *env, 567 const struct bpf_reg_state *reg) 568 { 569 struct bpf_verifier_state *cur = env->cur_state; 570 571 return cur->frame[reg->frameno]; 572 } 573 574 static const char *kernel_type_name(const struct btf* btf, u32 id) 575 { 576 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 577 } 578 579 static void print_verifier_state(struct bpf_verifier_env *env, 580 const struct bpf_func_state *state) 581 { 582 const struct bpf_reg_state *reg; 583 enum bpf_reg_type t; 584 int i; 585 586 if (state->frameno) 587 verbose(env, " frame%d:", state->frameno); 588 for (i = 0; i < MAX_BPF_REG; i++) { 589 reg = &state->regs[i]; 590 t = reg->type; 591 if (t == NOT_INIT) 592 continue; 593 verbose(env, " R%d", i); 594 print_liveness(env, reg->live); 595 verbose(env, "=%s", reg_type_str[t]); 596 if (t == SCALAR_VALUE && reg->precise) 597 verbose(env, "P"); 598 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 599 tnum_is_const(reg->var_off)) { 600 /* reg->off should be 0 for SCALAR_VALUE */ 601 verbose(env, "%lld", reg->var_off.value + reg->off); 602 } else { 603 if (t == PTR_TO_BTF_ID || 604 t == PTR_TO_BTF_ID_OR_NULL || 605 t == PTR_TO_PERCPU_BTF_ID) 606 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 607 verbose(env, "(id=%d", reg->id); 608 if (reg_type_may_be_refcounted_or_null(t)) 609 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 610 if (t != SCALAR_VALUE) 611 verbose(env, ",off=%d", reg->off); 612 if (type_is_pkt_pointer(t)) 613 verbose(env, ",r=%d", reg->range); 614 else if (t == CONST_PTR_TO_MAP || 615 t == PTR_TO_MAP_VALUE || 616 t == PTR_TO_MAP_VALUE_OR_NULL) 617 verbose(env, ",ks=%d,vs=%d", 618 reg->map_ptr->key_size, 619 reg->map_ptr->value_size); 620 if (tnum_is_const(reg->var_off)) { 621 /* Typically an immediate SCALAR_VALUE, but 622 * could be a pointer whose offset is too big 623 * for reg->off 624 */ 625 verbose(env, ",imm=%llx", reg->var_off.value); 626 } else { 627 if (reg->smin_value != reg->umin_value && 628 reg->smin_value != S64_MIN) 629 verbose(env, ",smin_value=%lld", 630 (long long)reg->smin_value); 631 if (reg->smax_value != reg->umax_value && 632 reg->smax_value != S64_MAX) 633 verbose(env, ",smax_value=%lld", 634 (long long)reg->smax_value); 635 if (reg->umin_value != 0) 636 verbose(env, ",umin_value=%llu", 637 (unsigned long long)reg->umin_value); 638 if (reg->umax_value != U64_MAX) 639 verbose(env, ",umax_value=%llu", 640 (unsigned long long)reg->umax_value); 641 if (!tnum_is_unknown(reg->var_off)) { 642 char tn_buf[48]; 643 644 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 645 verbose(env, ",var_off=%s", tn_buf); 646 } 647 if (reg->s32_min_value != reg->smin_value && 648 reg->s32_min_value != S32_MIN) 649 verbose(env, ",s32_min_value=%d", 650 (int)(reg->s32_min_value)); 651 if (reg->s32_max_value != reg->smax_value && 652 reg->s32_max_value != S32_MAX) 653 verbose(env, ",s32_max_value=%d", 654 (int)(reg->s32_max_value)); 655 if (reg->u32_min_value != reg->umin_value && 656 reg->u32_min_value != U32_MIN) 657 verbose(env, ",u32_min_value=%d", 658 (int)(reg->u32_min_value)); 659 if (reg->u32_max_value != reg->umax_value && 660 reg->u32_max_value != U32_MAX) 661 verbose(env, ",u32_max_value=%d", 662 (int)(reg->u32_max_value)); 663 } 664 verbose(env, ")"); 665 } 666 } 667 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 668 char types_buf[BPF_REG_SIZE + 1]; 669 bool valid = false; 670 int j; 671 672 for (j = 0; j < BPF_REG_SIZE; j++) { 673 if (state->stack[i].slot_type[j] != STACK_INVALID) 674 valid = true; 675 types_buf[j] = slot_type_char[ 676 state->stack[i].slot_type[j]]; 677 } 678 types_buf[BPF_REG_SIZE] = 0; 679 if (!valid) 680 continue; 681 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 682 print_liveness(env, state->stack[i].spilled_ptr.live); 683 if (state->stack[i].slot_type[0] == STACK_SPILL) { 684 reg = &state->stack[i].spilled_ptr; 685 t = reg->type; 686 verbose(env, "=%s", reg_type_str[t]); 687 if (t == SCALAR_VALUE && reg->precise) 688 verbose(env, "P"); 689 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 690 verbose(env, "%lld", reg->var_off.value + reg->off); 691 } else { 692 verbose(env, "=%s", types_buf); 693 } 694 } 695 if (state->acquired_refs && state->refs[0].id) { 696 verbose(env, " refs=%d", state->refs[0].id); 697 for (i = 1; i < state->acquired_refs; i++) 698 if (state->refs[i].id) 699 verbose(env, ",%d", state->refs[i].id); 700 } 701 verbose(env, "\n"); 702 } 703 704 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 705 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 706 const struct bpf_func_state *src) \ 707 { \ 708 if (!src->FIELD) \ 709 return 0; \ 710 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 711 /* internal bug, make state invalid to reject the program */ \ 712 memset(dst, 0, sizeof(*dst)); \ 713 return -EFAULT; \ 714 } \ 715 memcpy(dst->FIELD, src->FIELD, \ 716 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 717 return 0; \ 718 } 719 /* copy_reference_state() */ 720 COPY_STATE_FN(reference, acquired_refs, refs, 1) 721 /* copy_stack_state() */ 722 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 723 #undef COPY_STATE_FN 724 725 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 726 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 727 bool copy_old) \ 728 { \ 729 u32 old_size = state->COUNT; \ 730 struct bpf_##NAME##_state *new_##FIELD; \ 731 int slot = size / SIZE; \ 732 \ 733 if (size <= old_size || !size) { \ 734 if (copy_old) \ 735 return 0; \ 736 state->COUNT = slot * SIZE; \ 737 if (!size && old_size) { \ 738 kfree(state->FIELD); \ 739 state->FIELD = NULL; \ 740 } \ 741 return 0; \ 742 } \ 743 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 744 GFP_KERNEL); \ 745 if (!new_##FIELD) \ 746 return -ENOMEM; \ 747 if (copy_old) { \ 748 if (state->FIELD) \ 749 memcpy(new_##FIELD, state->FIELD, \ 750 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 751 memset(new_##FIELD + old_size / SIZE, 0, \ 752 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 753 } \ 754 state->COUNT = slot * SIZE; \ 755 kfree(state->FIELD); \ 756 state->FIELD = new_##FIELD; \ 757 return 0; \ 758 } 759 /* realloc_reference_state() */ 760 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 761 /* realloc_stack_state() */ 762 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 763 #undef REALLOC_STATE_FN 764 765 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 766 * make it consume minimal amount of memory. check_stack_write() access from 767 * the program calls into realloc_func_state() to grow the stack size. 768 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 769 * which realloc_stack_state() copies over. It points to previous 770 * bpf_verifier_state which is never reallocated. 771 */ 772 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 773 int refs_size, bool copy_old) 774 { 775 int err = realloc_reference_state(state, refs_size, copy_old); 776 if (err) 777 return err; 778 return realloc_stack_state(state, stack_size, copy_old); 779 } 780 781 /* Acquire a pointer id from the env and update the state->refs to include 782 * this new pointer reference. 783 * On success, returns a valid pointer id to associate with the register 784 * On failure, returns a negative errno. 785 */ 786 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 787 { 788 struct bpf_func_state *state = cur_func(env); 789 int new_ofs = state->acquired_refs; 790 int id, err; 791 792 err = realloc_reference_state(state, state->acquired_refs + 1, true); 793 if (err) 794 return err; 795 id = ++env->id_gen; 796 state->refs[new_ofs].id = id; 797 state->refs[new_ofs].insn_idx = insn_idx; 798 799 return id; 800 } 801 802 /* release function corresponding to acquire_reference_state(). Idempotent. */ 803 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 804 { 805 int i, last_idx; 806 807 last_idx = state->acquired_refs - 1; 808 for (i = 0; i < state->acquired_refs; i++) { 809 if (state->refs[i].id == ptr_id) { 810 if (last_idx && i != last_idx) 811 memcpy(&state->refs[i], &state->refs[last_idx], 812 sizeof(*state->refs)); 813 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 814 state->acquired_refs--; 815 return 0; 816 } 817 } 818 return -EINVAL; 819 } 820 821 static int transfer_reference_state(struct bpf_func_state *dst, 822 struct bpf_func_state *src) 823 { 824 int err = realloc_reference_state(dst, src->acquired_refs, false); 825 if (err) 826 return err; 827 err = copy_reference_state(dst, src); 828 if (err) 829 return err; 830 return 0; 831 } 832 833 static void free_func_state(struct bpf_func_state *state) 834 { 835 if (!state) 836 return; 837 kfree(state->refs); 838 kfree(state->stack); 839 kfree(state); 840 } 841 842 static void clear_jmp_history(struct bpf_verifier_state *state) 843 { 844 kfree(state->jmp_history); 845 state->jmp_history = NULL; 846 state->jmp_history_cnt = 0; 847 } 848 849 static void free_verifier_state(struct bpf_verifier_state *state, 850 bool free_self) 851 { 852 int i; 853 854 for (i = 0; i <= state->curframe; i++) { 855 free_func_state(state->frame[i]); 856 state->frame[i] = NULL; 857 } 858 clear_jmp_history(state); 859 if (free_self) 860 kfree(state); 861 } 862 863 /* copy verifier state from src to dst growing dst stack space 864 * when necessary to accommodate larger src stack 865 */ 866 static int copy_func_state(struct bpf_func_state *dst, 867 const struct bpf_func_state *src) 868 { 869 int err; 870 871 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 872 false); 873 if (err) 874 return err; 875 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 876 err = copy_reference_state(dst, src); 877 if (err) 878 return err; 879 return copy_stack_state(dst, src); 880 } 881 882 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 883 const struct bpf_verifier_state *src) 884 { 885 struct bpf_func_state *dst; 886 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 887 int i, err; 888 889 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 890 kfree(dst_state->jmp_history); 891 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 892 if (!dst_state->jmp_history) 893 return -ENOMEM; 894 } 895 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 896 dst_state->jmp_history_cnt = src->jmp_history_cnt; 897 898 /* if dst has more stack frames then src frame, free them */ 899 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 900 free_func_state(dst_state->frame[i]); 901 dst_state->frame[i] = NULL; 902 } 903 dst_state->speculative = src->speculative; 904 dst_state->curframe = src->curframe; 905 dst_state->active_spin_lock = src->active_spin_lock; 906 dst_state->branches = src->branches; 907 dst_state->parent = src->parent; 908 dst_state->first_insn_idx = src->first_insn_idx; 909 dst_state->last_insn_idx = src->last_insn_idx; 910 for (i = 0; i <= src->curframe; i++) { 911 dst = dst_state->frame[i]; 912 if (!dst) { 913 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 914 if (!dst) 915 return -ENOMEM; 916 dst_state->frame[i] = dst; 917 } 918 err = copy_func_state(dst, src->frame[i]); 919 if (err) 920 return err; 921 } 922 return 0; 923 } 924 925 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 926 { 927 while (st) { 928 u32 br = --st->branches; 929 930 /* WARN_ON(br > 1) technically makes sense here, 931 * but see comment in push_stack(), hence: 932 */ 933 WARN_ONCE((int)br < 0, 934 "BUG update_branch_counts:branches_to_explore=%d\n", 935 br); 936 if (br) 937 break; 938 st = st->parent; 939 } 940 } 941 942 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 943 int *insn_idx, bool pop_log) 944 { 945 struct bpf_verifier_state *cur = env->cur_state; 946 struct bpf_verifier_stack_elem *elem, *head = env->head; 947 int err; 948 949 if (env->head == NULL) 950 return -ENOENT; 951 952 if (cur) { 953 err = copy_verifier_state(cur, &head->st); 954 if (err) 955 return err; 956 } 957 if (pop_log) 958 bpf_vlog_reset(&env->log, head->log_pos); 959 if (insn_idx) 960 *insn_idx = head->insn_idx; 961 if (prev_insn_idx) 962 *prev_insn_idx = head->prev_insn_idx; 963 elem = head->next; 964 free_verifier_state(&head->st, false); 965 kfree(head); 966 env->head = elem; 967 env->stack_size--; 968 return 0; 969 } 970 971 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 972 int insn_idx, int prev_insn_idx, 973 bool speculative) 974 { 975 struct bpf_verifier_state *cur = env->cur_state; 976 struct bpf_verifier_stack_elem *elem; 977 int err; 978 979 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 980 if (!elem) 981 goto err; 982 983 elem->insn_idx = insn_idx; 984 elem->prev_insn_idx = prev_insn_idx; 985 elem->next = env->head; 986 elem->log_pos = env->log.len_used; 987 env->head = elem; 988 env->stack_size++; 989 err = copy_verifier_state(&elem->st, cur); 990 if (err) 991 goto err; 992 elem->st.speculative |= speculative; 993 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 994 verbose(env, "The sequence of %d jumps is too complex.\n", 995 env->stack_size); 996 goto err; 997 } 998 if (elem->st.parent) { 999 ++elem->st.parent->branches; 1000 /* WARN_ON(branches > 2) technically makes sense here, 1001 * but 1002 * 1. speculative states will bump 'branches' for non-branch 1003 * instructions 1004 * 2. is_state_visited() heuristics may decide not to create 1005 * a new state for a sequence of branches and all such current 1006 * and cloned states will be pointing to a single parent state 1007 * which might have large 'branches' count. 1008 */ 1009 } 1010 return &elem->st; 1011 err: 1012 free_verifier_state(env->cur_state, true); 1013 env->cur_state = NULL; 1014 /* pop all elements and return */ 1015 while (!pop_stack(env, NULL, NULL, false)); 1016 return NULL; 1017 } 1018 1019 #define CALLER_SAVED_REGS 6 1020 static const int caller_saved[CALLER_SAVED_REGS] = { 1021 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1022 }; 1023 1024 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1025 struct bpf_reg_state *reg); 1026 1027 /* This helper doesn't clear reg->id */ 1028 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1029 { 1030 reg->var_off = tnum_const(imm); 1031 reg->smin_value = (s64)imm; 1032 reg->smax_value = (s64)imm; 1033 reg->umin_value = imm; 1034 reg->umax_value = imm; 1035 1036 reg->s32_min_value = (s32)imm; 1037 reg->s32_max_value = (s32)imm; 1038 reg->u32_min_value = (u32)imm; 1039 reg->u32_max_value = (u32)imm; 1040 } 1041 1042 /* Mark the unknown part of a register (variable offset or scalar value) as 1043 * known to have the value @imm. 1044 */ 1045 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1046 { 1047 /* Clear id, off, and union(map_ptr, range) */ 1048 memset(((u8 *)reg) + sizeof(reg->type), 0, 1049 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1050 ___mark_reg_known(reg, imm); 1051 } 1052 1053 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1054 { 1055 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1056 reg->s32_min_value = (s32)imm; 1057 reg->s32_max_value = (s32)imm; 1058 reg->u32_min_value = (u32)imm; 1059 reg->u32_max_value = (u32)imm; 1060 } 1061 1062 /* Mark the 'variable offset' part of a register as zero. This should be 1063 * used only on registers holding a pointer type. 1064 */ 1065 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1066 { 1067 __mark_reg_known(reg, 0); 1068 } 1069 1070 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1071 { 1072 __mark_reg_known(reg, 0); 1073 reg->type = SCALAR_VALUE; 1074 } 1075 1076 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1077 struct bpf_reg_state *regs, u32 regno) 1078 { 1079 if (WARN_ON(regno >= MAX_BPF_REG)) { 1080 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1081 /* Something bad happened, let's kill all regs */ 1082 for (regno = 0; regno < MAX_BPF_REG; regno++) 1083 __mark_reg_not_init(env, regs + regno); 1084 return; 1085 } 1086 __mark_reg_known_zero(regs + regno); 1087 } 1088 1089 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1090 { 1091 switch (reg->type) { 1092 case PTR_TO_MAP_VALUE_OR_NULL: { 1093 const struct bpf_map *map = reg->map_ptr; 1094 1095 if (map->inner_map_meta) { 1096 reg->type = CONST_PTR_TO_MAP; 1097 reg->map_ptr = map->inner_map_meta; 1098 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1099 reg->type = PTR_TO_XDP_SOCK; 1100 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1101 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1102 reg->type = PTR_TO_SOCKET; 1103 } else { 1104 reg->type = PTR_TO_MAP_VALUE; 1105 } 1106 break; 1107 } 1108 case PTR_TO_SOCKET_OR_NULL: 1109 reg->type = PTR_TO_SOCKET; 1110 break; 1111 case PTR_TO_SOCK_COMMON_OR_NULL: 1112 reg->type = PTR_TO_SOCK_COMMON; 1113 break; 1114 case PTR_TO_TCP_SOCK_OR_NULL: 1115 reg->type = PTR_TO_TCP_SOCK; 1116 break; 1117 case PTR_TO_BTF_ID_OR_NULL: 1118 reg->type = PTR_TO_BTF_ID; 1119 break; 1120 case PTR_TO_MEM_OR_NULL: 1121 reg->type = PTR_TO_MEM; 1122 break; 1123 case PTR_TO_RDONLY_BUF_OR_NULL: 1124 reg->type = PTR_TO_RDONLY_BUF; 1125 break; 1126 case PTR_TO_RDWR_BUF_OR_NULL: 1127 reg->type = PTR_TO_RDWR_BUF; 1128 break; 1129 default: 1130 WARN_ONCE(1, "unknown nullable register type"); 1131 } 1132 } 1133 1134 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1135 { 1136 return type_is_pkt_pointer(reg->type); 1137 } 1138 1139 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1140 { 1141 return reg_is_pkt_pointer(reg) || 1142 reg->type == PTR_TO_PACKET_END; 1143 } 1144 1145 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1146 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1147 enum bpf_reg_type which) 1148 { 1149 /* The register can already have a range from prior markings. 1150 * This is fine as long as it hasn't been advanced from its 1151 * origin. 1152 */ 1153 return reg->type == which && 1154 reg->id == 0 && 1155 reg->off == 0 && 1156 tnum_equals_const(reg->var_off, 0); 1157 } 1158 1159 /* Reset the min/max bounds of a register */ 1160 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1161 { 1162 reg->smin_value = S64_MIN; 1163 reg->smax_value = S64_MAX; 1164 reg->umin_value = 0; 1165 reg->umax_value = U64_MAX; 1166 1167 reg->s32_min_value = S32_MIN; 1168 reg->s32_max_value = S32_MAX; 1169 reg->u32_min_value = 0; 1170 reg->u32_max_value = U32_MAX; 1171 } 1172 1173 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1174 { 1175 reg->smin_value = S64_MIN; 1176 reg->smax_value = S64_MAX; 1177 reg->umin_value = 0; 1178 reg->umax_value = U64_MAX; 1179 } 1180 1181 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1182 { 1183 reg->s32_min_value = S32_MIN; 1184 reg->s32_max_value = S32_MAX; 1185 reg->u32_min_value = 0; 1186 reg->u32_max_value = U32_MAX; 1187 } 1188 1189 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1190 { 1191 struct tnum var32_off = tnum_subreg(reg->var_off); 1192 1193 /* min signed is max(sign bit) | min(other bits) */ 1194 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1195 var32_off.value | (var32_off.mask & S32_MIN)); 1196 /* max signed is min(sign bit) | max(other bits) */ 1197 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1198 var32_off.value | (var32_off.mask & S32_MAX)); 1199 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1200 reg->u32_max_value = min(reg->u32_max_value, 1201 (u32)(var32_off.value | var32_off.mask)); 1202 } 1203 1204 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1205 { 1206 /* min signed is max(sign bit) | min(other bits) */ 1207 reg->smin_value = max_t(s64, reg->smin_value, 1208 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1209 /* max signed is min(sign bit) | max(other bits) */ 1210 reg->smax_value = min_t(s64, reg->smax_value, 1211 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1212 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1213 reg->umax_value = min(reg->umax_value, 1214 reg->var_off.value | reg->var_off.mask); 1215 } 1216 1217 static void __update_reg_bounds(struct bpf_reg_state *reg) 1218 { 1219 __update_reg32_bounds(reg); 1220 __update_reg64_bounds(reg); 1221 } 1222 1223 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1224 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1225 { 1226 /* Learn sign from signed bounds. 1227 * If we cannot cross the sign boundary, then signed and unsigned bounds 1228 * are the same, so combine. This works even in the negative case, e.g. 1229 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1230 */ 1231 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1232 reg->s32_min_value = reg->u32_min_value = 1233 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1234 reg->s32_max_value = reg->u32_max_value = 1235 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1236 return; 1237 } 1238 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1239 * boundary, so we must be careful. 1240 */ 1241 if ((s32)reg->u32_max_value >= 0) { 1242 /* Positive. We can't learn anything from the smin, but smax 1243 * is positive, hence safe. 1244 */ 1245 reg->s32_min_value = reg->u32_min_value; 1246 reg->s32_max_value = reg->u32_max_value = 1247 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1248 } else if ((s32)reg->u32_min_value < 0) { 1249 /* Negative. We can't learn anything from the smax, but smin 1250 * is negative, hence safe. 1251 */ 1252 reg->s32_min_value = reg->u32_min_value = 1253 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1254 reg->s32_max_value = reg->u32_max_value; 1255 } 1256 } 1257 1258 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1259 { 1260 /* Learn sign from signed bounds. 1261 * If we cannot cross the sign boundary, then signed and unsigned bounds 1262 * are the same, so combine. This works even in the negative case, e.g. 1263 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1264 */ 1265 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1266 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1267 reg->umin_value); 1268 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1269 reg->umax_value); 1270 return; 1271 } 1272 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1273 * boundary, so we must be careful. 1274 */ 1275 if ((s64)reg->umax_value >= 0) { 1276 /* Positive. We can't learn anything from the smin, but smax 1277 * is positive, hence safe. 1278 */ 1279 reg->smin_value = reg->umin_value; 1280 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1281 reg->umax_value); 1282 } else if ((s64)reg->umin_value < 0) { 1283 /* Negative. We can't learn anything from the smax, but smin 1284 * is negative, hence safe. 1285 */ 1286 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1287 reg->umin_value); 1288 reg->smax_value = reg->umax_value; 1289 } 1290 } 1291 1292 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1293 { 1294 __reg32_deduce_bounds(reg); 1295 __reg64_deduce_bounds(reg); 1296 } 1297 1298 /* Attempts to improve var_off based on unsigned min/max information */ 1299 static void __reg_bound_offset(struct bpf_reg_state *reg) 1300 { 1301 struct tnum var64_off = tnum_intersect(reg->var_off, 1302 tnum_range(reg->umin_value, 1303 reg->umax_value)); 1304 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1305 tnum_range(reg->u32_min_value, 1306 reg->u32_max_value)); 1307 1308 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1309 } 1310 1311 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1312 { 1313 reg->umin_value = reg->u32_min_value; 1314 reg->umax_value = reg->u32_max_value; 1315 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1316 * but must be positive otherwise set to worse case bounds 1317 * and refine later from tnum. 1318 */ 1319 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1320 reg->smax_value = reg->s32_max_value; 1321 else 1322 reg->smax_value = U32_MAX; 1323 if (reg->s32_min_value >= 0) 1324 reg->smin_value = reg->s32_min_value; 1325 else 1326 reg->smin_value = 0; 1327 } 1328 1329 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1330 { 1331 /* special case when 64-bit register has upper 32-bit register 1332 * zeroed. Typically happens after zext or <<32, >>32 sequence 1333 * allowing us to use 32-bit bounds directly, 1334 */ 1335 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1336 __reg_assign_32_into_64(reg); 1337 } else { 1338 /* Otherwise the best we can do is push lower 32bit known and 1339 * unknown bits into register (var_off set from jmp logic) 1340 * then learn as much as possible from the 64-bit tnum 1341 * known and unknown bits. The previous smin/smax bounds are 1342 * invalid here because of jmp32 compare so mark them unknown 1343 * so they do not impact tnum bounds calculation. 1344 */ 1345 __mark_reg64_unbounded(reg); 1346 __update_reg_bounds(reg); 1347 } 1348 1349 /* Intersecting with the old var_off might have improved our bounds 1350 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1351 * then new var_off is (0; 0x7f...fc) which improves our umax. 1352 */ 1353 __reg_deduce_bounds(reg); 1354 __reg_bound_offset(reg); 1355 __update_reg_bounds(reg); 1356 } 1357 1358 static bool __reg64_bound_s32(s64 a) 1359 { 1360 return a > S32_MIN && a < S32_MAX; 1361 } 1362 1363 static bool __reg64_bound_u32(u64 a) 1364 { 1365 if (a > U32_MIN && a < U32_MAX) 1366 return true; 1367 return false; 1368 } 1369 1370 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1371 { 1372 __mark_reg32_unbounded(reg); 1373 1374 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1375 reg->s32_min_value = (s32)reg->smin_value; 1376 reg->s32_max_value = (s32)reg->smax_value; 1377 } 1378 if (__reg64_bound_u32(reg->umin_value)) 1379 reg->u32_min_value = (u32)reg->umin_value; 1380 if (__reg64_bound_u32(reg->umax_value)) 1381 reg->u32_max_value = (u32)reg->umax_value; 1382 1383 /* Intersecting with the old var_off might have improved our bounds 1384 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1385 * then new var_off is (0; 0x7f...fc) which improves our umax. 1386 */ 1387 __reg_deduce_bounds(reg); 1388 __reg_bound_offset(reg); 1389 __update_reg_bounds(reg); 1390 } 1391 1392 /* Mark a register as having a completely unknown (scalar) value. */ 1393 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1394 struct bpf_reg_state *reg) 1395 { 1396 /* 1397 * Clear type, id, off, and union(map_ptr, range) and 1398 * padding between 'type' and union 1399 */ 1400 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1401 reg->type = SCALAR_VALUE; 1402 reg->var_off = tnum_unknown; 1403 reg->frameno = 0; 1404 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1405 __mark_reg_unbounded(reg); 1406 } 1407 1408 static void mark_reg_unknown(struct bpf_verifier_env *env, 1409 struct bpf_reg_state *regs, u32 regno) 1410 { 1411 if (WARN_ON(regno >= MAX_BPF_REG)) { 1412 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1413 /* Something bad happened, let's kill all regs except FP */ 1414 for (regno = 0; regno < BPF_REG_FP; regno++) 1415 __mark_reg_not_init(env, regs + regno); 1416 return; 1417 } 1418 __mark_reg_unknown(env, regs + regno); 1419 } 1420 1421 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1422 struct bpf_reg_state *reg) 1423 { 1424 __mark_reg_unknown(env, reg); 1425 reg->type = NOT_INIT; 1426 } 1427 1428 static void mark_reg_not_init(struct bpf_verifier_env *env, 1429 struct bpf_reg_state *regs, u32 regno) 1430 { 1431 if (WARN_ON(regno >= MAX_BPF_REG)) { 1432 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1433 /* Something bad happened, let's kill all regs except FP */ 1434 for (regno = 0; regno < BPF_REG_FP; regno++) 1435 __mark_reg_not_init(env, regs + regno); 1436 return; 1437 } 1438 __mark_reg_not_init(env, regs + regno); 1439 } 1440 1441 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1442 struct bpf_reg_state *regs, u32 regno, 1443 enum bpf_reg_type reg_type, 1444 struct btf *btf, u32 btf_id) 1445 { 1446 if (reg_type == SCALAR_VALUE) { 1447 mark_reg_unknown(env, regs, regno); 1448 return; 1449 } 1450 mark_reg_known_zero(env, regs, regno); 1451 regs[regno].type = PTR_TO_BTF_ID; 1452 regs[regno].btf = btf; 1453 regs[regno].btf_id = btf_id; 1454 } 1455 1456 #define DEF_NOT_SUBREG (0) 1457 static void init_reg_state(struct bpf_verifier_env *env, 1458 struct bpf_func_state *state) 1459 { 1460 struct bpf_reg_state *regs = state->regs; 1461 int i; 1462 1463 for (i = 0; i < MAX_BPF_REG; i++) { 1464 mark_reg_not_init(env, regs, i); 1465 regs[i].live = REG_LIVE_NONE; 1466 regs[i].parent = NULL; 1467 regs[i].subreg_def = DEF_NOT_SUBREG; 1468 } 1469 1470 /* frame pointer */ 1471 regs[BPF_REG_FP].type = PTR_TO_STACK; 1472 mark_reg_known_zero(env, regs, BPF_REG_FP); 1473 regs[BPF_REG_FP].frameno = state->frameno; 1474 } 1475 1476 #define BPF_MAIN_FUNC (-1) 1477 static void init_func_state(struct bpf_verifier_env *env, 1478 struct bpf_func_state *state, 1479 int callsite, int frameno, int subprogno) 1480 { 1481 state->callsite = callsite; 1482 state->frameno = frameno; 1483 state->subprogno = subprogno; 1484 init_reg_state(env, state); 1485 } 1486 1487 enum reg_arg_type { 1488 SRC_OP, /* register is used as source operand */ 1489 DST_OP, /* register is used as destination operand */ 1490 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1491 }; 1492 1493 static int cmp_subprogs(const void *a, const void *b) 1494 { 1495 return ((struct bpf_subprog_info *)a)->start - 1496 ((struct bpf_subprog_info *)b)->start; 1497 } 1498 1499 static int find_subprog(struct bpf_verifier_env *env, int off) 1500 { 1501 struct bpf_subprog_info *p; 1502 1503 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1504 sizeof(env->subprog_info[0]), cmp_subprogs); 1505 if (!p) 1506 return -ENOENT; 1507 return p - env->subprog_info; 1508 1509 } 1510 1511 static int add_subprog(struct bpf_verifier_env *env, int off) 1512 { 1513 int insn_cnt = env->prog->len; 1514 int ret; 1515 1516 if (off >= insn_cnt || off < 0) { 1517 verbose(env, "call to invalid destination\n"); 1518 return -EINVAL; 1519 } 1520 ret = find_subprog(env, off); 1521 if (ret >= 0) 1522 return 0; 1523 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1524 verbose(env, "too many subprograms\n"); 1525 return -E2BIG; 1526 } 1527 env->subprog_info[env->subprog_cnt++].start = off; 1528 sort(env->subprog_info, env->subprog_cnt, 1529 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1530 return 0; 1531 } 1532 1533 static int check_subprogs(struct bpf_verifier_env *env) 1534 { 1535 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1536 struct bpf_subprog_info *subprog = env->subprog_info; 1537 struct bpf_insn *insn = env->prog->insnsi; 1538 int insn_cnt = env->prog->len; 1539 1540 /* Add entry function. */ 1541 ret = add_subprog(env, 0); 1542 if (ret < 0) 1543 return ret; 1544 1545 /* determine subprog starts. The end is one before the next starts */ 1546 for (i = 0; i < insn_cnt; i++) { 1547 if (!bpf_pseudo_call(insn + i)) 1548 continue; 1549 if (!env->bpf_capable) { 1550 verbose(env, 1551 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1552 return -EPERM; 1553 } 1554 ret = add_subprog(env, i + insn[i].imm + 1); 1555 if (ret < 0) 1556 return ret; 1557 } 1558 1559 /* Add a fake 'exit' subprog which could simplify subprog iteration 1560 * logic. 'subprog_cnt' should not be increased. 1561 */ 1562 subprog[env->subprog_cnt].start = insn_cnt; 1563 1564 if (env->log.level & BPF_LOG_LEVEL2) 1565 for (i = 0; i < env->subprog_cnt; i++) 1566 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1567 1568 /* now check that all jumps are within the same subprog */ 1569 subprog_start = subprog[cur_subprog].start; 1570 subprog_end = subprog[cur_subprog + 1].start; 1571 for (i = 0; i < insn_cnt; i++) { 1572 u8 code = insn[i].code; 1573 1574 if (code == (BPF_JMP | BPF_CALL) && 1575 insn[i].imm == BPF_FUNC_tail_call && 1576 insn[i].src_reg != BPF_PSEUDO_CALL) 1577 subprog[cur_subprog].has_tail_call = true; 1578 if (BPF_CLASS(code) == BPF_LD && 1579 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1580 subprog[cur_subprog].has_ld_abs = true; 1581 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1582 goto next; 1583 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1584 goto next; 1585 off = i + insn[i].off + 1; 1586 if (off < subprog_start || off >= subprog_end) { 1587 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1588 return -EINVAL; 1589 } 1590 next: 1591 if (i == subprog_end - 1) { 1592 /* to avoid fall-through from one subprog into another 1593 * the last insn of the subprog should be either exit 1594 * or unconditional jump back 1595 */ 1596 if (code != (BPF_JMP | BPF_EXIT) && 1597 code != (BPF_JMP | BPF_JA)) { 1598 verbose(env, "last insn is not an exit or jmp\n"); 1599 return -EINVAL; 1600 } 1601 subprog_start = subprog_end; 1602 cur_subprog++; 1603 if (cur_subprog < env->subprog_cnt) 1604 subprog_end = subprog[cur_subprog + 1].start; 1605 } 1606 } 1607 return 0; 1608 } 1609 1610 /* Parentage chain of this register (or stack slot) should take care of all 1611 * issues like callee-saved registers, stack slot allocation time, etc. 1612 */ 1613 static int mark_reg_read(struct bpf_verifier_env *env, 1614 const struct bpf_reg_state *state, 1615 struct bpf_reg_state *parent, u8 flag) 1616 { 1617 bool writes = parent == state->parent; /* Observe write marks */ 1618 int cnt = 0; 1619 1620 while (parent) { 1621 /* if read wasn't screened by an earlier write ... */ 1622 if (writes && state->live & REG_LIVE_WRITTEN) 1623 break; 1624 if (parent->live & REG_LIVE_DONE) { 1625 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1626 reg_type_str[parent->type], 1627 parent->var_off.value, parent->off); 1628 return -EFAULT; 1629 } 1630 /* The first condition is more likely to be true than the 1631 * second, checked it first. 1632 */ 1633 if ((parent->live & REG_LIVE_READ) == flag || 1634 parent->live & REG_LIVE_READ64) 1635 /* The parentage chain never changes and 1636 * this parent was already marked as LIVE_READ. 1637 * There is no need to keep walking the chain again and 1638 * keep re-marking all parents as LIVE_READ. 1639 * This case happens when the same register is read 1640 * multiple times without writes into it in-between. 1641 * Also, if parent has the stronger REG_LIVE_READ64 set, 1642 * then no need to set the weak REG_LIVE_READ32. 1643 */ 1644 break; 1645 /* ... then we depend on parent's value */ 1646 parent->live |= flag; 1647 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1648 if (flag == REG_LIVE_READ64) 1649 parent->live &= ~REG_LIVE_READ32; 1650 state = parent; 1651 parent = state->parent; 1652 writes = true; 1653 cnt++; 1654 } 1655 1656 if (env->longest_mark_read_walk < cnt) 1657 env->longest_mark_read_walk = cnt; 1658 return 0; 1659 } 1660 1661 /* This function is supposed to be used by the following 32-bit optimization 1662 * code only. It returns TRUE if the source or destination register operates 1663 * on 64-bit, otherwise return FALSE. 1664 */ 1665 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1666 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1667 { 1668 u8 code, class, op; 1669 1670 code = insn->code; 1671 class = BPF_CLASS(code); 1672 op = BPF_OP(code); 1673 if (class == BPF_JMP) { 1674 /* BPF_EXIT for "main" will reach here. Return TRUE 1675 * conservatively. 1676 */ 1677 if (op == BPF_EXIT) 1678 return true; 1679 if (op == BPF_CALL) { 1680 /* BPF to BPF call will reach here because of marking 1681 * caller saved clobber with DST_OP_NO_MARK for which we 1682 * don't care the register def because they are anyway 1683 * marked as NOT_INIT already. 1684 */ 1685 if (insn->src_reg == BPF_PSEUDO_CALL) 1686 return false; 1687 /* Helper call will reach here because of arg type 1688 * check, conservatively return TRUE. 1689 */ 1690 if (t == SRC_OP) 1691 return true; 1692 1693 return false; 1694 } 1695 } 1696 1697 if (class == BPF_ALU64 || class == BPF_JMP || 1698 /* BPF_END always use BPF_ALU class. */ 1699 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1700 return true; 1701 1702 if (class == BPF_ALU || class == BPF_JMP32) 1703 return false; 1704 1705 if (class == BPF_LDX) { 1706 if (t != SRC_OP) 1707 return BPF_SIZE(code) == BPF_DW; 1708 /* LDX source must be ptr. */ 1709 return true; 1710 } 1711 1712 if (class == BPF_STX) { 1713 /* BPF_STX (including atomic variants) has multiple source 1714 * operands, one of which is a ptr. Check whether the caller is 1715 * asking about it. 1716 */ 1717 if (t == SRC_OP && reg->type != SCALAR_VALUE) 1718 return true; 1719 return BPF_SIZE(code) == BPF_DW; 1720 } 1721 1722 if (class == BPF_LD) { 1723 u8 mode = BPF_MODE(code); 1724 1725 /* LD_IMM64 */ 1726 if (mode == BPF_IMM) 1727 return true; 1728 1729 /* Both LD_IND and LD_ABS return 32-bit data. */ 1730 if (t != SRC_OP) 1731 return false; 1732 1733 /* Implicit ctx ptr. */ 1734 if (regno == BPF_REG_6) 1735 return true; 1736 1737 /* Explicit source could be any width. */ 1738 return true; 1739 } 1740 1741 if (class == BPF_ST) 1742 /* The only source register for BPF_ST is a ptr. */ 1743 return true; 1744 1745 /* Conservatively return true at default. */ 1746 return true; 1747 } 1748 1749 /* Return the regno defined by the insn, or -1. */ 1750 static int insn_def_regno(const struct bpf_insn *insn) 1751 { 1752 switch (BPF_CLASS(insn->code)) { 1753 case BPF_JMP: 1754 case BPF_JMP32: 1755 case BPF_ST: 1756 return -1; 1757 case BPF_STX: 1758 if (BPF_MODE(insn->code) == BPF_ATOMIC && 1759 (insn->imm & BPF_FETCH)) { 1760 if (insn->imm == BPF_CMPXCHG) 1761 return BPF_REG_0; 1762 else 1763 return insn->src_reg; 1764 } else { 1765 return -1; 1766 } 1767 default: 1768 return insn->dst_reg; 1769 } 1770 } 1771 1772 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1773 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1774 { 1775 int dst_reg = insn_def_regno(insn); 1776 1777 if (dst_reg == -1) 1778 return false; 1779 1780 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 1781 } 1782 1783 static void mark_insn_zext(struct bpf_verifier_env *env, 1784 struct bpf_reg_state *reg) 1785 { 1786 s32 def_idx = reg->subreg_def; 1787 1788 if (def_idx == DEF_NOT_SUBREG) 1789 return; 1790 1791 env->insn_aux_data[def_idx - 1].zext_dst = true; 1792 /* The dst will be zero extended, so won't be sub-register anymore. */ 1793 reg->subreg_def = DEF_NOT_SUBREG; 1794 } 1795 1796 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1797 enum reg_arg_type t) 1798 { 1799 struct bpf_verifier_state *vstate = env->cur_state; 1800 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1801 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1802 struct bpf_reg_state *reg, *regs = state->regs; 1803 bool rw64; 1804 1805 if (regno >= MAX_BPF_REG) { 1806 verbose(env, "R%d is invalid\n", regno); 1807 return -EINVAL; 1808 } 1809 1810 reg = ®s[regno]; 1811 rw64 = is_reg64(env, insn, regno, reg, t); 1812 if (t == SRC_OP) { 1813 /* check whether register used as source operand can be read */ 1814 if (reg->type == NOT_INIT) { 1815 verbose(env, "R%d !read_ok\n", regno); 1816 return -EACCES; 1817 } 1818 /* We don't need to worry about FP liveness because it's read-only */ 1819 if (regno == BPF_REG_FP) 1820 return 0; 1821 1822 if (rw64) 1823 mark_insn_zext(env, reg); 1824 1825 return mark_reg_read(env, reg, reg->parent, 1826 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1827 } else { 1828 /* check whether register used as dest operand can be written to */ 1829 if (regno == BPF_REG_FP) { 1830 verbose(env, "frame pointer is read only\n"); 1831 return -EACCES; 1832 } 1833 reg->live |= REG_LIVE_WRITTEN; 1834 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1835 if (t == DST_OP) 1836 mark_reg_unknown(env, regs, regno); 1837 } 1838 return 0; 1839 } 1840 1841 /* for any branch, call, exit record the history of jmps in the given state */ 1842 static int push_jmp_history(struct bpf_verifier_env *env, 1843 struct bpf_verifier_state *cur) 1844 { 1845 u32 cnt = cur->jmp_history_cnt; 1846 struct bpf_idx_pair *p; 1847 1848 cnt++; 1849 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1850 if (!p) 1851 return -ENOMEM; 1852 p[cnt - 1].idx = env->insn_idx; 1853 p[cnt - 1].prev_idx = env->prev_insn_idx; 1854 cur->jmp_history = p; 1855 cur->jmp_history_cnt = cnt; 1856 return 0; 1857 } 1858 1859 /* Backtrack one insn at a time. If idx is not at the top of recorded 1860 * history then previous instruction came from straight line execution. 1861 */ 1862 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1863 u32 *history) 1864 { 1865 u32 cnt = *history; 1866 1867 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1868 i = st->jmp_history[cnt - 1].prev_idx; 1869 (*history)--; 1870 } else { 1871 i--; 1872 } 1873 return i; 1874 } 1875 1876 /* For given verifier state backtrack_insn() is called from the last insn to 1877 * the first insn. Its purpose is to compute a bitmask of registers and 1878 * stack slots that needs precision in the parent verifier state. 1879 */ 1880 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1881 u32 *reg_mask, u64 *stack_mask) 1882 { 1883 const struct bpf_insn_cbs cbs = { 1884 .cb_print = verbose, 1885 .private_data = env, 1886 }; 1887 struct bpf_insn *insn = env->prog->insnsi + idx; 1888 u8 class = BPF_CLASS(insn->code); 1889 u8 opcode = BPF_OP(insn->code); 1890 u8 mode = BPF_MODE(insn->code); 1891 u32 dreg = 1u << insn->dst_reg; 1892 u32 sreg = 1u << insn->src_reg; 1893 u32 spi; 1894 1895 if (insn->code == 0) 1896 return 0; 1897 if (env->log.level & BPF_LOG_LEVEL) { 1898 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1899 verbose(env, "%d: ", idx); 1900 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1901 } 1902 1903 if (class == BPF_ALU || class == BPF_ALU64) { 1904 if (!(*reg_mask & dreg)) 1905 return 0; 1906 if (opcode == BPF_MOV) { 1907 if (BPF_SRC(insn->code) == BPF_X) { 1908 /* dreg = sreg 1909 * dreg needs precision after this insn 1910 * sreg needs precision before this insn 1911 */ 1912 *reg_mask &= ~dreg; 1913 *reg_mask |= sreg; 1914 } else { 1915 /* dreg = K 1916 * dreg needs precision after this insn. 1917 * Corresponding register is already marked 1918 * as precise=true in this verifier state. 1919 * No further markings in parent are necessary 1920 */ 1921 *reg_mask &= ~dreg; 1922 } 1923 } else { 1924 if (BPF_SRC(insn->code) == BPF_X) { 1925 /* dreg += sreg 1926 * both dreg and sreg need precision 1927 * before this insn 1928 */ 1929 *reg_mask |= sreg; 1930 } /* else dreg += K 1931 * dreg still needs precision before this insn 1932 */ 1933 } 1934 } else if (class == BPF_LDX) { 1935 if (!(*reg_mask & dreg)) 1936 return 0; 1937 *reg_mask &= ~dreg; 1938 1939 /* scalars can only be spilled into stack w/o losing precision. 1940 * Load from any other memory can be zero extended. 1941 * The desire to keep that precision is already indicated 1942 * by 'precise' mark in corresponding register of this state. 1943 * No further tracking necessary. 1944 */ 1945 if (insn->src_reg != BPF_REG_FP) 1946 return 0; 1947 if (BPF_SIZE(insn->code) != BPF_DW) 1948 return 0; 1949 1950 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1951 * that [fp - off] slot contains scalar that needs to be 1952 * tracked with precision 1953 */ 1954 spi = (-insn->off - 1) / BPF_REG_SIZE; 1955 if (spi >= 64) { 1956 verbose(env, "BUG spi %d\n", spi); 1957 WARN_ONCE(1, "verifier backtracking bug"); 1958 return -EFAULT; 1959 } 1960 *stack_mask |= 1ull << spi; 1961 } else if (class == BPF_STX || class == BPF_ST) { 1962 if (*reg_mask & dreg) 1963 /* stx & st shouldn't be using _scalar_ dst_reg 1964 * to access memory. It means backtracking 1965 * encountered a case of pointer subtraction. 1966 */ 1967 return -ENOTSUPP; 1968 /* scalars can only be spilled into stack */ 1969 if (insn->dst_reg != BPF_REG_FP) 1970 return 0; 1971 if (BPF_SIZE(insn->code) != BPF_DW) 1972 return 0; 1973 spi = (-insn->off - 1) / BPF_REG_SIZE; 1974 if (spi >= 64) { 1975 verbose(env, "BUG spi %d\n", spi); 1976 WARN_ONCE(1, "verifier backtracking bug"); 1977 return -EFAULT; 1978 } 1979 if (!(*stack_mask & (1ull << spi))) 1980 return 0; 1981 *stack_mask &= ~(1ull << spi); 1982 if (class == BPF_STX) 1983 *reg_mask |= sreg; 1984 } else if (class == BPF_JMP || class == BPF_JMP32) { 1985 if (opcode == BPF_CALL) { 1986 if (insn->src_reg == BPF_PSEUDO_CALL) 1987 return -ENOTSUPP; 1988 /* regular helper call sets R0 */ 1989 *reg_mask &= ~1; 1990 if (*reg_mask & 0x3f) { 1991 /* if backtracing was looking for registers R1-R5 1992 * they should have been found already. 1993 */ 1994 verbose(env, "BUG regs %x\n", *reg_mask); 1995 WARN_ONCE(1, "verifier backtracking bug"); 1996 return -EFAULT; 1997 } 1998 } else if (opcode == BPF_EXIT) { 1999 return -ENOTSUPP; 2000 } 2001 } else if (class == BPF_LD) { 2002 if (!(*reg_mask & dreg)) 2003 return 0; 2004 *reg_mask &= ~dreg; 2005 /* It's ld_imm64 or ld_abs or ld_ind. 2006 * For ld_imm64 no further tracking of precision 2007 * into parent is necessary 2008 */ 2009 if (mode == BPF_IND || mode == BPF_ABS) 2010 /* to be analyzed */ 2011 return -ENOTSUPP; 2012 } 2013 return 0; 2014 } 2015 2016 /* the scalar precision tracking algorithm: 2017 * . at the start all registers have precise=false. 2018 * . scalar ranges are tracked as normal through alu and jmp insns. 2019 * . once precise value of the scalar register is used in: 2020 * . ptr + scalar alu 2021 * . if (scalar cond K|scalar) 2022 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2023 * backtrack through the verifier states and mark all registers and 2024 * stack slots with spilled constants that these scalar regisers 2025 * should be precise. 2026 * . during state pruning two registers (or spilled stack slots) 2027 * are equivalent if both are not precise. 2028 * 2029 * Note the verifier cannot simply walk register parentage chain, 2030 * since many different registers and stack slots could have been 2031 * used to compute single precise scalar. 2032 * 2033 * The approach of starting with precise=true for all registers and then 2034 * backtrack to mark a register as not precise when the verifier detects 2035 * that program doesn't care about specific value (e.g., when helper 2036 * takes register as ARG_ANYTHING parameter) is not safe. 2037 * 2038 * It's ok to walk single parentage chain of the verifier states. 2039 * It's possible that this backtracking will go all the way till 1st insn. 2040 * All other branches will be explored for needing precision later. 2041 * 2042 * The backtracking needs to deal with cases like: 2043 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2044 * r9 -= r8 2045 * r5 = r9 2046 * if r5 > 0x79f goto pc+7 2047 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2048 * r5 += 1 2049 * ... 2050 * call bpf_perf_event_output#25 2051 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2052 * 2053 * and this case: 2054 * r6 = 1 2055 * call foo // uses callee's r6 inside to compute r0 2056 * r0 += r6 2057 * if r0 == 0 goto 2058 * 2059 * to track above reg_mask/stack_mask needs to be independent for each frame. 2060 * 2061 * Also if parent's curframe > frame where backtracking started, 2062 * the verifier need to mark registers in both frames, otherwise callees 2063 * may incorrectly prune callers. This is similar to 2064 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2065 * 2066 * For now backtracking falls back into conservative marking. 2067 */ 2068 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2069 struct bpf_verifier_state *st) 2070 { 2071 struct bpf_func_state *func; 2072 struct bpf_reg_state *reg; 2073 int i, j; 2074 2075 /* big hammer: mark all scalars precise in this path. 2076 * pop_stack may still get !precise scalars. 2077 */ 2078 for (; st; st = st->parent) 2079 for (i = 0; i <= st->curframe; i++) { 2080 func = st->frame[i]; 2081 for (j = 0; j < BPF_REG_FP; j++) { 2082 reg = &func->regs[j]; 2083 if (reg->type != SCALAR_VALUE) 2084 continue; 2085 reg->precise = true; 2086 } 2087 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2088 if (func->stack[j].slot_type[0] != STACK_SPILL) 2089 continue; 2090 reg = &func->stack[j].spilled_ptr; 2091 if (reg->type != SCALAR_VALUE) 2092 continue; 2093 reg->precise = true; 2094 } 2095 } 2096 } 2097 2098 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2099 int spi) 2100 { 2101 struct bpf_verifier_state *st = env->cur_state; 2102 int first_idx = st->first_insn_idx; 2103 int last_idx = env->insn_idx; 2104 struct bpf_func_state *func; 2105 struct bpf_reg_state *reg; 2106 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2107 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2108 bool skip_first = true; 2109 bool new_marks = false; 2110 int i, err; 2111 2112 if (!env->bpf_capable) 2113 return 0; 2114 2115 func = st->frame[st->curframe]; 2116 if (regno >= 0) { 2117 reg = &func->regs[regno]; 2118 if (reg->type != SCALAR_VALUE) { 2119 WARN_ONCE(1, "backtracing misuse"); 2120 return -EFAULT; 2121 } 2122 if (!reg->precise) 2123 new_marks = true; 2124 else 2125 reg_mask = 0; 2126 reg->precise = true; 2127 } 2128 2129 while (spi >= 0) { 2130 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2131 stack_mask = 0; 2132 break; 2133 } 2134 reg = &func->stack[spi].spilled_ptr; 2135 if (reg->type != SCALAR_VALUE) { 2136 stack_mask = 0; 2137 break; 2138 } 2139 if (!reg->precise) 2140 new_marks = true; 2141 else 2142 stack_mask = 0; 2143 reg->precise = true; 2144 break; 2145 } 2146 2147 if (!new_marks) 2148 return 0; 2149 if (!reg_mask && !stack_mask) 2150 return 0; 2151 for (;;) { 2152 DECLARE_BITMAP(mask, 64); 2153 u32 history = st->jmp_history_cnt; 2154 2155 if (env->log.level & BPF_LOG_LEVEL) 2156 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2157 for (i = last_idx;;) { 2158 if (skip_first) { 2159 err = 0; 2160 skip_first = false; 2161 } else { 2162 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2163 } 2164 if (err == -ENOTSUPP) { 2165 mark_all_scalars_precise(env, st); 2166 return 0; 2167 } else if (err) { 2168 return err; 2169 } 2170 if (!reg_mask && !stack_mask) 2171 /* Found assignment(s) into tracked register in this state. 2172 * Since this state is already marked, just return. 2173 * Nothing to be tracked further in the parent state. 2174 */ 2175 return 0; 2176 if (i == first_idx) 2177 break; 2178 i = get_prev_insn_idx(st, i, &history); 2179 if (i >= env->prog->len) { 2180 /* This can happen if backtracking reached insn 0 2181 * and there are still reg_mask or stack_mask 2182 * to backtrack. 2183 * It means the backtracking missed the spot where 2184 * particular register was initialized with a constant. 2185 */ 2186 verbose(env, "BUG backtracking idx %d\n", i); 2187 WARN_ONCE(1, "verifier backtracking bug"); 2188 return -EFAULT; 2189 } 2190 } 2191 st = st->parent; 2192 if (!st) 2193 break; 2194 2195 new_marks = false; 2196 func = st->frame[st->curframe]; 2197 bitmap_from_u64(mask, reg_mask); 2198 for_each_set_bit(i, mask, 32) { 2199 reg = &func->regs[i]; 2200 if (reg->type != SCALAR_VALUE) { 2201 reg_mask &= ~(1u << i); 2202 continue; 2203 } 2204 if (!reg->precise) 2205 new_marks = true; 2206 reg->precise = true; 2207 } 2208 2209 bitmap_from_u64(mask, stack_mask); 2210 for_each_set_bit(i, mask, 64) { 2211 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2212 /* the sequence of instructions: 2213 * 2: (bf) r3 = r10 2214 * 3: (7b) *(u64 *)(r3 -8) = r0 2215 * 4: (79) r4 = *(u64 *)(r10 -8) 2216 * doesn't contain jmps. It's backtracked 2217 * as a single block. 2218 * During backtracking insn 3 is not recognized as 2219 * stack access, so at the end of backtracking 2220 * stack slot fp-8 is still marked in stack_mask. 2221 * However the parent state may not have accessed 2222 * fp-8 and it's "unallocated" stack space. 2223 * In such case fallback to conservative. 2224 */ 2225 mark_all_scalars_precise(env, st); 2226 return 0; 2227 } 2228 2229 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2230 stack_mask &= ~(1ull << i); 2231 continue; 2232 } 2233 reg = &func->stack[i].spilled_ptr; 2234 if (reg->type != SCALAR_VALUE) { 2235 stack_mask &= ~(1ull << i); 2236 continue; 2237 } 2238 if (!reg->precise) 2239 new_marks = true; 2240 reg->precise = true; 2241 } 2242 if (env->log.level & BPF_LOG_LEVEL) { 2243 print_verifier_state(env, func); 2244 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2245 new_marks ? "didn't have" : "already had", 2246 reg_mask, stack_mask); 2247 } 2248 2249 if (!reg_mask && !stack_mask) 2250 break; 2251 if (!new_marks) 2252 break; 2253 2254 last_idx = st->last_insn_idx; 2255 first_idx = st->first_insn_idx; 2256 } 2257 return 0; 2258 } 2259 2260 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2261 { 2262 return __mark_chain_precision(env, regno, -1); 2263 } 2264 2265 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2266 { 2267 return __mark_chain_precision(env, -1, spi); 2268 } 2269 2270 static bool is_spillable_regtype(enum bpf_reg_type type) 2271 { 2272 switch (type) { 2273 case PTR_TO_MAP_VALUE: 2274 case PTR_TO_MAP_VALUE_OR_NULL: 2275 case PTR_TO_STACK: 2276 case PTR_TO_CTX: 2277 case PTR_TO_PACKET: 2278 case PTR_TO_PACKET_META: 2279 case PTR_TO_PACKET_END: 2280 case PTR_TO_FLOW_KEYS: 2281 case CONST_PTR_TO_MAP: 2282 case PTR_TO_SOCKET: 2283 case PTR_TO_SOCKET_OR_NULL: 2284 case PTR_TO_SOCK_COMMON: 2285 case PTR_TO_SOCK_COMMON_OR_NULL: 2286 case PTR_TO_TCP_SOCK: 2287 case PTR_TO_TCP_SOCK_OR_NULL: 2288 case PTR_TO_XDP_SOCK: 2289 case PTR_TO_BTF_ID: 2290 case PTR_TO_BTF_ID_OR_NULL: 2291 case PTR_TO_RDONLY_BUF: 2292 case PTR_TO_RDONLY_BUF_OR_NULL: 2293 case PTR_TO_RDWR_BUF: 2294 case PTR_TO_RDWR_BUF_OR_NULL: 2295 case PTR_TO_PERCPU_BTF_ID: 2296 case PTR_TO_MEM: 2297 case PTR_TO_MEM_OR_NULL: 2298 return true; 2299 default: 2300 return false; 2301 } 2302 } 2303 2304 /* Does this register contain a constant zero? */ 2305 static bool register_is_null(struct bpf_reg_state *reg) 2306 { 2307 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2308 } 2309 2310 static bool register_is_const(struct bpf_reg_state *reg) 2311 { 2312 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2313 } 2314 2315 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2316 { 2317 return tnum_is_unknown(reg->var_off) && 2318 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2319 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2320 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2321 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2322 } 2323 2324 static bool register_is_bounded(struct bpf_reg_state *reg) 2325 { 2326 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2327 } 2328 2329 static bool __is_pointer_value(bool allow_ptr_leaks, 2330 const struct bpf_reg_state *reg) 2331 { 2332 if (allow_ptr_leaks) 2333 return false; 2334 2335 return reg->type != SCALAR_VALUE; 2336 } 2337 2338 static void save_register_state(struct bpf_func_state *state, 2339 int spi, struct bpf_reg_state *reg) 2340 { 2341 int i; 2342 2343 state->stack[spi].spilled_ptr = *reg; 2344 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2345 2346 for (i = 0; i < BPF_REG_SIZE; i++) 2347 state->stack[spi].slot_type[i] = STACK_SPILL; 2348 } 2349 2350 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2351 * stack boundary and alignment are checked in check_mem_access() 2352 */ 2353 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2354 /* stack frame we're writing to */ 2355 struct bpf_func_state *state, 2356 int off, int size, int value_regno, 2357 int insn_idx) 2358 { 2359 struct bpf_func_state *cur; /* state of the current function */ 2360 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2361 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2362 struct bpf_reg_state *reg = NULL; 2363 2364 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2365 state->acquired_refs, true); 2366 if (err) 2367 return err; 2368 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2369 * so it's aligned access and [off, off + size) are within stack limits 2370 */ 2371 if (!env->allow_ptr_leaks && 2372 state->stack[spi].slot_type[0] == STACK_SPILL && 2373 size != BPF_REG_SIZE) { 2374 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2375 return -EACCES; 2376 } 2377 2378 cur = env->cur_state->frame[env->cur_state->curframe]; 2379 if (value_regno >= 0) 2380 reg = &cur->regs[value_regno]; 2381 2382 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2383 !register_is_null(reg) && env->bpf_capable) { 2384 if (dst_reg != BPF_REG_FP) { 2385 /* The backtracking logic can only recognize explicit 2386 * stack slot address like [fp - 8]. Other spill of 2387 * scalar via different register has to be conervative. 2388 * Backtrack from here and mark all registers as precise 2389 * that contributed into 'reg' being a constant. 2390 */ 2391 err = mark_chain_precision(env, value_regno); 2392 if (err) 2393 return err; 2394 } 2395 save_register_state(state, spi, reg); 2396 } else if (reg && is_spillable_regtype(reg->type)) { 2397 /* register containing pointer is being spilled into stack */ 2398 if (size != BPF_REG_SIZE) { 2399 verbose_linfo(env, insn_idx, "; "); 2400 verbose(env, "invalid size of register spill\n"); 2401 return -EACCES; 2402 } 2403 2404 if (state != cur && reg->type == PTR_TO_STACK) { 2405 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2406 return -EINVAL; 2407 } 2408 2409 if (!env->bypass_spec_v4) { 2410 bool sanitize = false; 2411 2412 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2413 register_is_const(&state->stack[spi].spilled_ptr)) 2414 sanitize = true; 2415 for (i = 0; i < BPF_REG_SIZE; i++) 2416 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2417 sanitize = true; 2418 break; 2419 } 2420 if (sanitize) { 2421 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2422 int soff = (-spi - 1) * BPF_REG_SIZE; 2423 2424 /* detected reuse of integer stack slot with a pointer 2425 * which means either llvm is reusing stack slot or 2426 * an attacker is trying to exploit CVE-2018-3639 2427 * (speculative store bypass) 2428 * Have to sanitize that slot with preemptive 2429 * store of zero. 2430 */ 2431 if (*poff && *poff != soff) { 2432 /* disallow programs where single insn stores 2433 * into two different stack slots, since verifier 2434 * cannot sanitize them 2435 */ 2436 verbose(env, 2437 "insn %d cannot access two stack slots fp%d and fp%d", 2438 insn_idx, *poff, soff); 2439 return -EINVAL; 2440 } 2441 *poff = soff; 2442 } 2443 } 2444 save_register_state(state, spi, reg); 2445 } else { 2446 u8 type = STACK_MISC; 2447 2448 /* regular write of data into stack destroys any spilled ptr */ 2449 state->stack[spi].spilled_ptr.type = NOT_INIT; 2450 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2451 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2452 for (i = 0; i < BPF_REG_SIZE; i++) 2453 state->stack[spi].slot_type[i] = STACK_MISC; 2454 2455 /* only mark the slot as written if all 8 bytes were written 2456 * otherwise read propagation may incorrectly stop too soon 2457 * when stack slots are partially written. 2458 * This heuristic means that read propagation will be 2459 * conservative, since it will add reg_live_read marks 2460 * to stack slots all the way to first state when programs 2461 * writes+reads less than 8 bytes 2462 */ 2463 if (size == BPF_REG_SIZE) 2464 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2465 2466 /* when we zero initialize stack slots mark them as such */ 2467 if (reg && register_is_null(reg)) { 2468 /* backtracking doesn't work for STACK_ZERO yet. */ 2469 err = mark_chain_precision(env, value_regno); 2470 if (err) 2471 return err; 2472 type = STACK_ZERO; 2473 } 2474 2475 /* Mark slots affected by this stack write. */ 2476 for (i = 0; i < size; i++) 2477 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2478 type; 2479 } 2480 return 0; 2481 } 2482 2483 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2484 * known to contain a variable offset. 2485 * This function checks whether the write is permitted and conservatively 2486 * tracks the effects of the write, considering that each stack slot in the 2487 * dynamic range is potentially written to. 2488 * 2489 * 'off' includes 'regno->off'. 2490 * 'value_regno' can be -1, meaning that an unknown value is being written to 2491 * the stack. 2492 * 2493 * Spilled pointers in range are not marked as written because we don't know 2494 * what's going to be actually written. This means that read propagation for 2495 * future reads cannot be terminated by this write. 2496 * 2497 * For privileged programs, uninitialized stack slots are considered 2498 * initialized by this write (even though we don't know exactly what offsets 2499 * are going to be written to). The idea is that we don't want the verifier to 2500 * reject future reads that access slots written to through variable offsets. 2501 */ 2502 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2503 /* func where register points to */ 2504 struct bpf_func_state *state, 2505 int ptr_regno, int off, int size, 2506 int value_regno, int insn_idx) 2507 { 2508 struct bpf_func_state *cur; /* state of the current function */ 2509 int min_off, max_off; 2510 int i, err; 2511 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2512 bool writing_zero = false; 2513 /* set if the fact that we're writing a zero is used to let any 2514 * stack slots remain STACK_ZERO 2515 */ 2516 bool zero_used = false; 2517 2518 cur = env->cur_state->frame[env->cur_state->curframe]; 2519 ptr_reg = &cur->regs[ptr_regno]; 2520 min_off = ptr_reg->smin_value + off; 2521 max_off = ptr_reg->smax_value + off + size; 2522 if (value_regno >= 0) 2523 value_reg = &cur->regs[value_regno]; 2524 if (value_reg && register_is_null(value_reg)) 2525 writing_zero = true; 2526 2527 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE), 2528 state->acquired_refs, true); 2529 if (err) 2530 return err; 2531 2532 2533 /* Variable offset writes destroy any spilled pointers in range. */ 2534 for (i = min_off; i < max_off; i++) { 2535 u8 new_type, *stype; 2536 int slot, spi; 2537 2538 slot = -i - 1; 2539 spi = slot / BPF_REG_SIZE; 2540 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2541 2542 if (!env->allow_ptr_leaks 2543 && *stype != NOT_INIT 2544 && *stype != SCALAR_VALUE) { 2545 /* Reject the write if there's are spilled pointers in 2546 * range. If we didn't reject here, the ptr status 2547 * would be erased below (even though not all slots are 2548 * actually overwritten), possibly opening the door to 2549 * leaks. 2550 */ 2551 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2552 insn_idx, i); 2553 return -EINVAL; 2554 } 2555 2556 /* Erase all spilled pointers. */ 2557 state->stack[spi].spilled_ptr.type = NOT_INIT; 2558 2559 /* Update the slot type. */ 2560 new_type = STACK_MISC; 2561 if (writing_zero && *stype == STACK_ZERO) { 2562 new_type = STACK_ZERO; 2563 zero_used = true; 2564 } 2565 /* If the slot is STACK_INVALID, we check whether it's OK to 2566 * pretend that it will be initialized by this write. The slot 2567 * might not actually be written to, and so if we mark it as 2568 * initialized future reads might leak uninitialized memory. 2569 * For privileged programs, we will accept such reads to slots 2570 * that may or may not be written because, if we're reject 2571 * them, the error would be too confusing. 2572 */ 2573 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2574 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2575 insn_idx, i); 2576 return -EINVAL; 2577 } 2578 *stype = new_type; 2579 } 2580 if (zero_used) { 2581 /* backtracking doesn't work for STACK_ZERO yet. */ 2582 err = mark_chain_precision(env, value_regno); 2583 if (err) 2584 return err; 2585 } 2586 return 0; 2587 } 2588 2589 /* When register 'dst_regno' is assigned some values from stack[min_off, 2590 * max_off), we set the register's type according to the types of the 2591 * respective stack slots. If all the stack values are known to be zeros, then 2592 * so is the destination reg. Otherwise, the register is considered to be 2593 * SCALAR. This function does not deal with register filling; the caller must 2594 * ensure that all spilled registers in the stack range have been marked as 2595 * read. 2596 */ 2597 static void mark_reg_stack_read(struct bpf_verifier_env *env, 2598 /* func where src register points to */ 2599 struct bpf_func_state *ptr_state, 2600 int min_off, int max_off, int dst_regno) 2601 { 2602 struct bpf_verifier_state *vstate = env->cur_state; 2603 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2604 int i, slot, spi; 2605 u8 *stype; 2606 int zeros = 0; 2607 2608 for (i = min_off; i < max_off; i++) { 2609 slot = -i - 1; 2610 spi = slot / BPF_REG_SIZE; 2611 stype = ptr_state->stack[spi].slot_type; 2612 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 2613 break; 2614 zeros++; 2615 } 2616 if (zeros == max_off - min_off) { 2617 /* any access_size read into register is zero extended, 2618 * so the whole register == const_zero 2619 */ 2620 __mark_reg_const_zero(&state->regs[dst_regno]); 2621 /* backtracking doesn't support STACK_ZERO yet, 2622 * so mark it precise here, so that later 2623 * backtracking can stop here. 2624 * Backtracking may not need this if this register 2625 * doesn't participate in pointer adjustment. 2626 * Forward propagation of precise flag is not 2627 * necessary either. This mark is only to stop 2628 * backtracking. Any register that contributed 2629 * to const 0 was marked precise before spill. 2630 */ 2631 state->regs[dst_regno].precise = true; 2632 } else { 2633 /* have read misc data from the stack */ 2634 mark_reg_unknown(env, state->regs, dst_regno); 2635 } 2636 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2637 } 2638 2639 /* Read the stack at 'off' and put the results into the register indicated by 2640 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 2641 * spilled reg. 2642 * 2643 * 'dst_regno' can be -1, meaning that the read value is not going to a 2644 * register. 2645 * 2646 * The access is assumed to be within the current stack bounds. 2647 */ 2648 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 2649 /* func where src register points to */ 2650 struct bpf_func_state *reg_state, 2651 int off, int size, int dst_regno) 2652 { 2653 struct bpf_verifier_state *vstate = env->cur_state; 2654 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2655 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2656 struct bpf_reg_state *reg; 2657 u8 *stype; 2658 2659 stype = reg_state->stack[spi].slot_type; 2660 reg = ®_state->stack[spi].spilled_ptr; 2661 2662 if (stype[0] == STACK_SPILL) { 2663 if (size != BPF_REG_SIZE) { 2664 if (reg->type != SCALAR_VALUE) { 2665 verbose_linfo(env, env->insn_idx, "; "); 2666 verbose(env, "invalid size of register fill\n"); 2667 return -EACCES; 2668 } 2669 if (dst_regno >= 0) { 2670 mark_reg_unknown(env, state->regs, dst_regno); 2671 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2672 } 2673 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2674 return 0; 2675 } 2676 for (i = 1; i < BPF_REG_SIZE; i++) { 2677 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2678 verbose(env, "corrupted spill memory\n"); 2679 return -EACCES; 2680 } 2681 } 2682 2683 if (dst_regno >= 0) { 2684 /* restore register state from stack */ 2685 state->regs[dst_regno] = *reg; 2686 /* mark reg as written since spilled pointer state likely 2687 * has its liveness marks cleared by is_state_visited() 2688 * which resets stack/reg liveness for state transitions 2689 */ 2690 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2691 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2692 /* If dst_regno==-1, the caller is asking us whether 2693 * it is acceptable to use this value as a SCALAR_VALUE 2694 * (e.g. for XADD). 2695 * We must not allow unprivileged callers to do that 2696 * with spilled pointers. 2697 */ 2698 verbose(env, "leaking pointer from stack off %d\n", 2699 off); 2700 return -EACCES; 2701 } 2702 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2703 } else { 2704 u8 type; 2705 2706 for (i = 0; i < size; i++) { 2707 type = stype[(slot - i) % BPF_REG_SIZE]; 2708 if (type == STACK_MISC) 2709 continue; 2710 if (type == STACK_ZERO) 2711 continue; 2712 verbose(env, "invalid read from stack off %d+%d size %d\n", 2713 off, i, size); 2714 return -EACCES; 2715 } 2716 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2717 if (dst_regno >= 0) 2718 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 2719 } 2720 return 0; 2721 } 2722 2723 enum stack_access_src { 2724 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 2725 ACCESS_HELPER = 2, /* the access is performed by a helper */ 2726 }; 2727 2728 static int check_stack_range_initialized(struct bpf_verifier_env *env, 2729 int regno, int off, int access_size, 2730 bool zero_size_allowed, 2731 enum stack_access_src type, 2732 struct bpf_call_arg_meta *meta); 2733 2734 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2735 { 2736 return cur_regs(env) + regno; 2737 } 2738 2739 /* Read the stack at 'ptr_regno + off' and put the result into the register 2740 * 'dst_regno'. 2741 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 2742 * but not its variable offset. 2743 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 2744 * 2745 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 2746 * filling registers (i.e. reads of spilled register cannot be detected when 2747 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 2748 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 2749 * offset; for a fixed offset check_stack_read_fixed_off should be used 2750 * instead. 2751 */ 2752 static int check_stack_read_var_off(struct bpf_verifier_env *env, 2753 int ptr_regno, int off, int size, int dst_regno) 2754 { 2755 /* The state of the source register. */ 2756 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2757 struct bpf_func_state *ptr_state = func(env, reg); 2758 int err; 2759 int min_off, max_off; 2760 2761 /* Note that we pass a NULL meta, so raw access will not be permitted. 2762 */ 2763 err = check_stack_range_initialized(env, ptr_regno, off, size, 2764 false, ACCESS_DIRECT, NULL); 2765 if (err) 2766 return err; 2767 2768 min_off = reg->smin_value + off; 2769 max_off = reg->smax_value + off; 2770 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 2771 return 0; 2772 } 2773 2774 /* check_stack_read dispatches to check_stack_read_fixed_off or 2775 * check_stack_read_var_off. 2776 * 2777 * The caller must ensure that the offset falls within the allocated stack 2778 * bounds. 2779 * 2780 * 'dst_regno' is a register which will receive the value from the stack. It 2781 * can be -1, meaning that the read value is not going to a register. 2782 */ 2783 static int check_stack_read(struct bpf_verifier_env *env, 2784 int ptr_regno, int off, int size, 2785 int dst_regno) 2786 { 2787 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2788 struct bpf_func_state *state = func(env, reg); 2789 int err; 2790 /* Some accesses are only permitted with a static offset. */ 2791 bool var_off = !tnum_is_const(reg->var_off); 2792 2793 /* The offset is required to be static when reads don't go to a 2794 * register, in order to not leak pointers (see 2795 * check_stack_read_fixed_off). 2796 */ 2797 if (dst_regno < 0 && var_off) { 2798 char tn_buf[48]; 2799 2800 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2801 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 2802 tn_buf, off, size); 2803 return -EACCES; 2804 } 2805 /* Variable offset is prohibited for unprivileged mode for simplicity 2806 * since it requires corresponding support in Spectre masking for stack 2807 * ALU. See also retrieve_ptr_limit(). 2808 */ 2809 if (!env->bypass_spec_v1 && var_off) { 2810 char tn_buf[48]; 2811 2812 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2813 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 2814 ptr_regno, tn_buf); 2815 return -EACCES; 2816 } 2817 2818 if (!var_off) { 2819 off += reg->var_off.value; 2820 err = check_stack_read_fixed_off(env, state, off, size, 2821 dst_regno); 2822 } else { 2823 /* Variable offset stack reads need more conservative handling 2824 * than fixed offset ones. Note that dst_regno >= 0 on this 2825 * branch. 2826 */ 2827 err = check_stack_read_var_off(env, ptr_regno, off, size, 2828 dst_regno); 2829 } 2830 return err; 2831 } 2832 2833 2834 /* check_stack_write dispatches to check_stack_write_fixed_off or 2835 * check_stack_write_var_off. 2836 * 2837 * 'ptr_regno' is the register used as a pointer into the stack. 2838 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 2839 * 'value_regno' is the register whose value we're writing to the stack. It can 2840 * be -1, meaning that we're not writing from a register. 2841 * 2842 * The caller must ensure that the offset falls within the maximum stack size. 2843 */ 2844 static int check_stack_write(struct bpf_verifier_env *env, 2845 int ptr_regno, int off, int size, 2846 int value_regno, int insn_idx) 2847 { 2848 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2849 struct bpf_func_state *state = func(env, reg); 2850 int err; 2851 2852 if (tnum_is_const(reg->var_off)) { 2853 off += reg->var_off.value; 2854 err = check_stack_write_fixed_off(env, state, off, size, 2855 value_regno, insn_idx); 2856 } else { 2857 /* Variable offset stack reads need more conservative handling 2858 * than fixed offset ones. 2859 */ 2860 err = check_stack_write_var_off(env, state, 2861 ptr_regno, off, size, 2862 value_regno, insn_idx); 2863 } 2864 return err; 2865 } 2866 2867 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2868 int off, int size, enum bpf_access_type type) 2869 { 2870 struct bpf_reg_state *regs = cur_regs(env); 2871 struct bpf_map *map = regs[regno].map_ptr; 2872 u32 cap = bpf_map_flags_to_cap(map); 2873 2874 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2875 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2876 map->value_size, off, size); 2877 return -EACCES; 2878 } 2879 2880 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2881 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2882 map->value_size, off, size); 2883 return -EACCES; 2884 } 2885 2886 return 0; 2887 } 2888 2889 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2890 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2891 int off, int size, u32 mem_size, 2892 bool zero_size_allowed) 2893 { 2894 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2895 struct bpf_reg_state *reg; 2896 2897 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2898 return 0; 2899 2900 reg = &cur_regs(env)[regno]; 2901 switch (reg->type) { 2902 case PTR_TO_MAP_VALUE: 2903 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2904 mem_size, off, size); 2905 break; 2906 case PTR_TO_PACKET: 2907 case PTR_TO_PACKET_META: 2908 case PTR_TO_PACKET_END: 2909 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2910 off, size, regno, reg->id, off, mem_size); 2911 break; 2912 case PTR_TO_MEM: 2913 default: 2914 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2915 mem_size, off, size); 2916 } 2917 2918 return -EACCES; 2919 } 2920 2921 /* check read/write into a memory region with possible variable offset */ 2922 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2923 int off, int size, u32 mem_size, 2924 bool zero_size_allowed) 2925 { 2926 struct bpf_verifier_state *vstate = env->cur_state; 2927 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2928 struct bpf_reg_state *reg = &state->regs[regno]; 2929 int err; 2930 2931 /* We may have adjusted the register pointing to memory region, so we 2932 * need to try adding each of min_value and max_value to off 2933 * to make sure our theoretical access will be safe. 2934 */ 2935 if (env->log.level & BPF_LOG_LEVEL) 2936 print_verifier_state(env, state); 2937 2938 /* The minimum value is only important with signed 2939 * comparisons where we can't assume the floor of a 2940 * value is 0. If we are using signed variables for our 2941 * index'es we need to make sure that whatever we use 2942 * will have a set floor within our range. 2943 */ 2944 if (reg->smin_value < 0 && 2945 (reg->smin_value == S64_MIN || 2946 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2947 reg->smin_value + off < 0)) { 2948 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2949 regno); 2950 return -EACCES; 2951 } 2952 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2953 mem_size, zero_size_allowed); 2954 if (err) { 2955 verbose(env, "R%d min value is outside of the allowed memory range\n", 2956 regno); 2957 return err; 2958 } 2959 2960 /* If we haven't set a max value then we need to bail since we can't be 2961 * sure we won't do bad things. 2962 * If reg->umax_value + off could overflow, treat that as unbounded too. 2963 */ 2964 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2965 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2966 regno); 2967 return -EACCES; 2968 } 2969 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2970 mem_size, zero_size_allowed); 2971 if (err) { 2972 verbose(env, "R%d max value is outside of the allowed memory range\n", 2973 regno); 2974 return err; 2975 } 2976 2977 return 0; 2978 } 2979 2980 /* check read/write into a map element with possible variable offset */ 2981 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2982 int off, int size, bool zero_size_allowed) 2983 { 2984 struct bpf_verifier_state *vstate = env->cur_state; 2985 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2986 struct bpf_reg_state *reg = &state->regs[regno]; 2987 struct bpf_map *map = reg->map_ptr; 2988 int err; 2989 2990 err = check_mem_region_access(env, regno, off, size, map->value_size, 2991 zero_size_allowed); 2992 if (err) 2993 return err; 2994 2995 if (map_value_has_spin_lock(map)) { 2996 u32 lock = map->spin_lock_off; 2997 2998 /* if any part of struct bpf_spin_lock can be touched by 2999 * load/store reject this program. 3000 * To check that [x1, x2) overlaps with [y1, y2) 3001 * it is sufficient to check x1 < y2 && y1 < x2. 3002 */ 3003 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3004 lock < reg->umax_value + off + size) { 3005 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3006 return -EACCES; 3007 } 3008 } 3009 return err; 3010 } 3011 3012 #define MAX_PACKET_OFF 0xffff 3013 3014 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3015 { 3016 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3017 } 3018 3019 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3020 const struct bpf_call_arg_meta *meta, 3021 enum bpf_access_type t) 3022 { 3023 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3024 3025 switch (prog_type) { 3026 /* Program types only with direct read access go here! */ 3027 case BPF_PROG_TYPE_LWT_IN: 3028 case BPF_PROG_TYPE_LWT_OUT: 3029 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3030 case BPF_PROG_TYPE_SK_REUSEPORT: 3031 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3032 case BPF_PROG_TYPE_CGROUP_SKB: 3033 if (t == BPF_WRITE) 3034 return false; 3035 fallthrough; 3036 3037 /* Program types with direct read + write access go here! */ 3038 case BPF_PROG_TYPE_SCHED_CLS: 3039 case BPF_PROG_TYPE_SCHED_ACT: 3040 case BPF_PROG_TYPE_XDP: 3041 case BPF_PROG_TYPE_LWT_XMIT: 3042 case BPF_PROG_TYPE_SK_SKB: 3043 case BPF_PROG_TYPE_SK_MSG: 3044 if (meta) 3045 return meta->pkt_access; 3046 3047 env->seen_direct_write = true; 3048 return true; 3049 3050 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3051 if (t == BPF_WRITE) 3052 env->seen_direct_write = true; 3053 3054 return true; 3055 3056 default: 3057 return false; 3058 } 3059 } 3060 3061 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3062 int size, bool zero_size_allowed) 3063 { 3064 struct bpf_reg_state *regs = cur_regs(env); 3065 struct bpf_reg_state *reg = ®s[regno]; 3066 int err; 3067 3068 /* We may have added a variable offset to the packet pointer; but any 3069 * reg->range we have comes after that. We are only checking the fixed 3070 * offset. 3071 */ 3072 3073 /* We don't allow negative numbers, because we aren't tracking enough 3074 * detail to prove they're safe. 3075 */ 3076 if (reg->smin_value < 0) { 3077 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3078 regno); 3079 return -EACCES; 3080 } 3081 3082 err = reg->range < 0 ? -EINVAL : 3083 __check_mem_access(env, regno, off, size, reg->range, 3084 zero_size_allowed); 3085 if (err) { 3086 verbose(env, "R%d offset is outside of the packet\n", regno); 3087 return err; 3088 } 3089 3090 /* __check_mem_access has made sure "off + size - 1" is within u16. 3091 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3092 * otherwise find_good_pkt_pointers would have refused to set range info 3093 * that __check_mem_access would have rejected this pkt access. 3094 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3095 */ 3096 env->prog->aux->max_pkt_offset = 3097 max_t(u32, env->prog->aux->max_pkt_offset, 3098 off + reg->umax_value + size - 1); 3099 3100 return err; 3101 } 3102 3103 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3104 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3105 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3106 struct btf **btf, u32 *btf_id) 3107 { 3108 struct bpf_insn_access_aux info = { 3109 .reg_type = *reg_type, 3110 .log = &env->log, 3111 }; 3112 3113 if (env->ops->is_valid_access && 3114 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3115 /* A non zero info.ctx_field_size indicates that this field is a 3116 * candidate for later verifier transformation to load the whole 3117 * field and then apply a mask when accessed with a narrower 3118 * access than actual ctx access size. A zero info.ctx_field_size 3119 * will only allow for whole field access and rejects any other 3120 * type of narrower access. 3121 */ 3122 *reg_type = info.reg_type; 3123 3124 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3125 *btf = info.btf; 3126 *btf_id = info.btf_id; 3127 } else { 3128 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3129 } 3130 /* remember the offset of last byte accessed in ctx */ 3131 if (env->prog->aux->max_ctx_offset < off + size) 3132 env->prog->aux->max_ctx_offset = off + size; 3133 return 0; 3134 } 3135 3136 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3137 return -EACCES; 3138 } 3139 3140 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3141 int size) 3142 { 3143 if (size < 0 || off < 0 || 3144 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3145 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3146 off, size); 3147 return -EACCES; 3148 } 3149 return 0; 3150 } 3151 3152 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3153 u32 regno, int off, int size, 3154 enum bpf_access_type t) 3155 { 3156 struct bpf_reg_state *regs = cur_regs(env); 3157 struct bpf_reg_state *reg = ®s[regno]; 3158 struct bpf_insn_access_aux info = {}; 3159 bool valid; 3160 3161 if (reg->smin_value < 0) { 3162 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3163 regno); 3164 return -EACCES; 3165 } 3166 3167 switch (reg->type) { 3168 case PTR_TO_SOCK_COMMON: 3169 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3170 break; 3171 case PTR_TO_SOCKET: 3172 valid = bpf_sock_is_valid_access(off, size, t, &info); 3173 break; 3174 case PTR_TO_TCP_SOCK: 3175 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3176 break; 3177 case PTR_TO_XDP_SOCK: 3178 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3179 break; 3180 default: 3181 valid = false; 3182 } 3183 3184 3185 if (valid) { 3186 env->insn_aux_data[insn_idx].ctx_field_size = 3187 info.ctx_field_size; 3188 return 0; 3189 } 3190 3191 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3192 regno, reg_type_str[reg->type], off, size); 3193 3194 return -EACCES; 3195 } 3196 3197 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3198 { 3199 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3200 } 3201 3202 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3203 { 3204 const struct bpf_reg_state *reg = reg_state(env, regno); 3205 3206 return reg->type == PTR_TO_CTX; 3207 } 3208 3209 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3210 { 3211 const struct bpf_reg_state *reg = reg_state(env, regno); 3212 3213 return type_is_sk_pointer(reg->type); 3214 } 3215 3216 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3217 { 3218 const struct bpf_reg_state *reg = reg_state(env, regno); 3219 3220 return type_is_pkt_pointer(reg->type); 3221 } 3222 3223 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3224 { 3225 const struct bpf_reg_state *reg = reg_state(env, regno); 3226 3227 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3228 return reg->type == PTR_TO_FLOW_KEYS; 3229 } 3230 3231 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3232 const struct bpf_reg_state *reg, 3233 int off, int size, bool strict) 3234 { 3235 struct tnum reg_off; 3236 int ip_align; 3237 3238 /* Byte size accesses are always allowed. */ 3239 if (!strict || size == 1) 3240 return 0; 3241 3242 /* For platforms that do not have a Kconfig enabling 3243 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3244 * NET_IP_ALIGN is universally set to '2'. And on platforms 3245 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3246 * to this code only in strict mode where we want to emulate 3247 * the NET_IP_ALIGN==2 checking. Therefore use an 3248 * unconditional IP align value of '2'. 3249 */ 3250 ip_align = 2; 3251 3252 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3253 if (!tnum_is_aligned(reg_off, size)) { 3254 char tn_buf[48]; 3255 3256 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3257 verbose(env, 3258 "misaligned packet access off %d+%s+%d+%d size %d\n", 3259 ip_align, tn_buf, reg->off, off, size); 3260 return -EACCES; 3261 } 3262 3263 return 0; 3264 } 3265 3266 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3267 const struct bpf_reg_state *reg, 3268 const char *pointer_desc, 3269 int off, int size, bool strict) 3270 { 3271 struct tnum reg_off; 3272 3273 /* Byte size accesses are always allowed. */ 3274 if (!strict || size == 1) 3275 return 0; 3276 3277 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3278 if (!tnum_is_aligned(reg_off, size)) { 3279 char tn_buf[48]; 3280 3281 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3282 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3283 pointer_desc, tn_buf, reg->off, off, size); 3284 return -EACCES; 3285 } 3286 3287 return 0; 3288 } 3289 3290 static int check_ptr_alignment(struct bpf_verifier_env *env, 3291 const struct bpf_reg_state *reg, int off, 3292 int size, bool strict_alignment_once) 3293 { 3294 bool strict = env->strict_alignment || strict_alignment_once; 3295 const char *pointer_desc = ""; 3296 3297 switch (reg->type) { 3298 case PTR_TO_PACKET: 3299 case PTR_TO_PACKET_META: 3300 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3301 * right in front, treat it the very same way. 3302 */ 3303 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3304 case PTR_TO_FLOW_KEYS: 3305 pointer_desc = "flow keys "; 3306 break; 3307 case PTR_TO_MAP_VALUE: 3308 pointer_desc = "value "; 3309 break; 3310 case PTR_TO_CTX: 3311 pointer_desc = "context "; 3312 break; 3313 case PTR_TO_STACK: 3314 pointer_desc = "stack "; 3315 /* The stack spill tracking logic in check_stack_write_fixed_off() 3316 * and check_stack_read_fixed_off() relies on stack accesses being 3317 * aligned. 3318 */ 3319 strict = true; 3320 break; 3321 case PTR_TO_SOCKET: 3322 pointer_desc = "sock "; 3323 break; 3324 case PTR_TO_SOCK_COMMON: 3325 pointer_desc = "sock_common "; 3326 break; 3327 case PTR_TO_TCP_SOCK: 3328 pointer_desc = "tcp_sock "; 3329 break; 3330 case PTR_TO_XDP_SOCK: 3331 pointer_desc = "xdp_sock "; 3332 break; 3333 default: 3334 break; 3335 } 3336 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3337 strict); 3338 } 3339 3340 static int update_stack_depth(struct bpf_verifier_env *env, 3341 const struct bpf_func_state *func, 3342 int off) 3343 { 3344 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3345 3346 if (stack >= -off) 3347 return 0; 3348 3349 /* update known max for given subprogram */ 3350 env->subprog_info[func->subprogno].stack_depth = -off; 3351 return 0; 3352 } 3353 3354 /* starting from main bpf function walk all instructions of the function 3355 * and recursively walk all callees that given function can call. 3356 * Ignore jump and exit insns. 3357 * Since recursion is prevented by check_cfg() this algorithm 3358 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3359 */ 3360 static int check_max_stack_depth(struct bpf_verifier_env *env) 3361 { 3362 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3363 struct bpf_subprog_info *subprog = env->subprog_info; 3364 struct bpf_insn *insn = env->prog->insnsi; 3365 bool tail_call_reachable = false; 3366 int ret_insn[MAX_CALL_FRAMES]; 3367 int ret_prog[MAX_CALL_FRAMES]; 3368 int j; 3369 3370 process_func: 3371 /* protect against potential stack overflow that might happen when 3372 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3373 * depth for such case down to 256 so that the worst case scenario 3374 * would result in 8k stack size (32 which is tailcall limit * 256 = 3375 * 8k). 3376 * 3377 * To get the idea what might happen, see an example: 3378 * func1 -> sub rsp, 128 3379 * subfunc1 -> sub rsp, 256 3380 * tailcall1 -> add rsp, 256 3381 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3382 * subfunc2 -> sub rsp, 64 3383 * subfunc22 -> sub rsp, 128 3384 * tailcall2 -> add rsp, 128 3385 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3386 * 3387 * tailcall will unwind the current stack frame but it will not get rid 3388 * of caller's stack as shown on the example above. 3389 */ 3390 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3391 verbose(env, 3392 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3393 depth); 3394 return -EACCES; 3395 } 3396 /* round up to 32-bytes, since this is granularity 3397 * of interpreter stack size 3398 */ 3399 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3400 if (depth > MAX_BPF_STACK) { 3401 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3402 frame + 1, depth); 3403 return -EACCES; 3404 } 3405 continue_func: 3406 subprog_end = subprog[idx + 1].start; 3407 for (; i < subprog_end; i++) { 3408 if (!bpf_pseudo_call(insn + i)) 3409 continue; 3410 /* remember insn and function to return to */ 3411 ret_insn[frame] = i + 1; 3412 ret_prog[frame] = idx; 3413 3414 /* find the callee */ 3415 i = i + insn[i].imm + 1; 3416 idx = find_subprog(env, i); 3417 if (idx < 0) { 3418 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3419 i); 3420 return -EFAULT; 3421 } 3422 3423 if (subprog[idx].has_tail_call) 3424 tail_call_reachable = true; 3425 3426 frame++; 3427 if (frame >= MAX_CALL_FRAMES) { 3428 verbose(env, "the call stack of %d frames is too deep !\n", 3429 frame); 3430 return -E2BIG; 3431 } 3432 goto process_func; 3433 } 3434 /* if tail call got detected across bpf2bpf calls then mark each of the 3435 * currently present subprog frames as tail call reachable subprogs; 3436 * this info will be utilized by JIT so that we will be preserving the 3437 * tail call counter throughout bpf2bpf calls combined with tailcalls 3438 */ 3439 if (tail_call_reachable) 3440 for (j = 0; j < frame; j++) 3441 subprog[ret_prog[j]].tail_call_reachable = true; 3442 3443 /* end of for() loop means the last insn of the 'subprog' 3444 * was reached. Doesn't matter whether it was JA or EXIT 3445 */ 3446 if (frame == 0) 3447 return 0; 3448 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3449 frame--; 3450 i = ret_insn[frame]; 3451 idx = ret_prog[frame]; 3452 goto continue_func; 3453 } 3454 3455 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3456 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3457 const struct bpf_insn *insn, int idx) 3458 { 3459 int start = idx + insn->imm + 1, subprog; 3460 3461 subprog = find_subprog(env, start); 3462 if (subprog < 0) { 3463 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3464 start); 3465 return -EFAULT; 3466 } 3467 return env->subprog_info[subprog].stack_depth; 3468 } 3469 #endif 3470 3471 int check_ctx_reg(struct bpf_verifier_env *env, 3472 const struct bpf_reg_state *reg, int regno) 3473 { 3474 /* Access to ctx or passing it to a helper is only allowed in 3475 * its original, unmodified form. 3476 */ 3477 3478 if (reg->off) { 3479 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3480 regno, reg->off); 3481 return -EACCES; 3482 } 3483 3484 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3485 char tn_buf[48]; 3486 3487 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3488 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3489 return -EACCES; 3490 } 3491 3492 return 0; 3493 } 3494 3495 static int __check_buffer_access(struct bpf_verifier_env *env, 3496 const char *buf_info, 3497 const struct bpf_reg_state *reg, 3498 int regno, int off, int size) 3499 { 3500 if (off < 0) { 3501 verbose(env, 3502 "R%d invalid %s buffer access: off=%d, size=%d\n", 3503 regno, buf_info, off, size); 3504 return -EACCES; 3505 } 3506 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3507 char tn_buf[48]; 3508 3509 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3510 verbose(env, 3511 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3512 regno, off, tn_buf); 3513 return -EACCES; 3514 } 3515 3516 return 0; 3517 } 3518 3519 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3520 const struct bpf_reg_state *reg, 3521 int regno, int off, int size) 3522 { 3523 int err; 3524 3525 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3526 if (err) 3527 return err; 3528 3529 if (off + size > env->prog->aux->max_tp_access) 3530 env->prog->aux->max_tp_access = off + size; 3531 3532 return 0; 3533 } 3534 3535 static int check_buffer_access(struct bpf_verifier_env *env, 3536 const struct bpf_reg_state *reg, 3537 int regno, int off, int size, 3538 bool zero_size_allowed, 3539 const char *buf_info, 3540 u32 *max_access) 3541 { 3542 int err; 3543 3544 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3545 if (err) 3546 return err; 3547 3548 if (off + size > *max_access) 3549 *max_access = off + size; 3550 3551 return 0; 3552 } 3553 3554 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3555 static void zext_32_to_64(struct bpf_reg_state *reg) 3556 { 3557 reg->var_off = tnum_subreg(reg->var_off); 3558 __reg_assign_32_into_64(reg); 3559 } 3560 3561 /* truncate register to smaller size (in bytes) 3562 * must be called with size < BPF_REG_SIZE 3563 */ 3564 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3565 { 3566 u64 mask; 3567 3568 /* clear high bits in bit representation */ 3569 reg->var_off = tnum_cast(reg->var_off, size); 3570 3571 /* fix arithmetic bounds */ 3572 mask = ((u64)1 << (size * 8)) - 1; 3573 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3574 reg->umin_value &= mask; 3575 reg->umax_value &= mask; 3576 } else { 3577 reg->umin_value = 0; 3578 reg->umax_value = mask; 3579 } 3580 reg->smin_value = reg->umin_value; 3581 reg->smax_value = reg->umax_value; 3582 3583 /* If size is smaller than 32bit register the 32bit register 3584 * values are also truncated so we push 64-bit bounds into 3585 * 32-bit bounds. Above were truncated < 32-bits already. 3586 */ 3587 if (size >= 4) 3588 return; 3589 __reg_combine_64_into_32(reg); 3590 } 3591 3592 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3593 { 3594 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3595 } 3596 3597 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3598 { 3599 void *ptr; 3600 u64 addr; 3601 int err; 3602 3603 err = map->ops->map_direct_value_addr(map, &addr, off); 3604 if (err) 3605 return err; 3606 ptr = (void *)(long)addr + off; 3607 3608 switch (size) { 3609 case sizeof(u8): 3610 *val = (u64)*(u8 *)ptr; 3611 break; 3612 case sizeof(u16): 3613 *val = (u64)*(u16 *)ptr; 3614 break; 3615 case sizeof(u32): 3616 *val = (u64)*(u32 *)ptr; 3617 break; 3618 case sizeof(u64): 3619 *val = *(u64 *)ptr; 3620 break; 3621 default: 3622 return -EINVAL; 3623 } 3624 return 0; 3625 } 3626 3627 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3628 struct bpf_reg_state *regs, 3629 int regno, int off, int size, 3630 enum bpf_access_type atype, 3631 int value_regno) 3632 { 3633 struct bpf_reg_state *reg = regs + regno; 3634 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 3635 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 3636 u32 btf_id; 3637 int ret; 3638 3639 if (off < 0) { 3640 verbose(env, 3641 "R%d is ptr_%s invalid negative access: off=%d\n", 3642 regno, tname, off); 3643 return -EACCES; 3644 } 3645 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3646 char tn_buf[48]; 3647 3648 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3649 verbose(env, 3650 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3651 regno, tname, off, tn_buf); 3652 return -EACCES; 3653 } 3654 3655 if (env->ops->btf_struct_access) { 3656 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 3657 off, size, atype, &btf_id); 3658 } else { 3659 if (atype != BPF_READ) { 3660 verbose(env, "only read is supported\n"); 3661 return -EACCES; 3662 } 3663 3664 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 3665 atype, &btf_id); 3666 } 3667 3668 if (ret < 0) 3669 return ret; 3670 3671 if (atype == BPF_READ && value_regno >= 0) 3672 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 3673 3674 return 0; 3675 } 3676 3677 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3678 struct bpf_reg_state *regs, 3679 int regno, int off, int size, 3680 enum bpf_access_type atype, 3681 int value_regno) 3682 { 3683 struct bpf_reg_state *reg = regs + regno; 3684 struct bpf_map *map = reg->map_ptr; 3685 const struct btf_type *t; 3686 const char *tname; 3687 u32 btf_id; 3688 int ret; 3689 3690 if (!btf_vmlinux) { 3691 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3692 return -ENOTSUPP; 3693 } 3694 3695 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3696 verbose(env, "map_ptr access not supported for map type %d\n", 3697 map->map_type); 3698 return -ENOTSUPP; 3699 } 3700 3701 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3702 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3703 3704 if (!env->allow_ptr_to_map_access) { 3705 verbose(env, 3706 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3707 tname); 3708 return -EPERM; 3709 } 3710 3711 if (off < 0) { 3712 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3713 regno, tname, off); 3714 return -EACCES; 3715 } 3716 3717 if (atype != BPF_READ) { 3718 verbose(env, "only read from %s is supported\n", tname); 3719 return -EACCES; 3720 } 3721 3722 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 3723 if (ret < 0) 3724 return ret; 3725 3726 if (value_regno >= 0) 3727 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 3728 3729 return 0; 3730 } 3731 3732 /* Check that the stack access at the given offset is within bounds. The 3733 * maximum valid offset is -1. 3734 * 3735 * The minimum valid offset is -MAX_BPF_STACK for writes, and 3736 * -state->allocated_stack for reads. 3737 */ 3738 static int check_stack_slot_within_bounds(int off, 3739 struct bpf_func_state *state, 3740 enum bpf_access_type t) 3741 { 3742 int min_valid_off; 3743 3744 if (t == BPF_WRITE) 3745 min_valid_off = -MAX_BPF_STACK; 3746 else 3747 min_valid_off = -state->allocated_stack; 3748 3749 if (off < min_valid_off || off > -1) 3750 return -EACCES; 3751 return 0; 3752 } 3753 3754 /* Check that the stack access at 'regno + off' falls within the maximum stack 3755 * bounds. 3756 * 3757 * 'off' includes `regno->offset`, but not its dynamic part (if any). 3758 */ 3759 static int check_stack_access_within_bounds( 3760 struct bpf_verifier_env *env, 3761 int regno, int off, int access_size, 3762 enum stack_access_src src, enum bpf_access_type type) 3763 { 3764 struct bpf_reg_state *regs = cur_regs(env); 3765 struct bpf_reg_state *reg = regs + regno; 3766 struct bpf_func_state *state = func(env, reg); 3767 int min_off, max_off; 3768 int err; 3769 char *err_extra; 3770 3771 if (src == ACCESS_HELPER) 3772 /* We don't know if helpers are reading or writing (or both). */ 3773 err_extra = " indirect access to"; 3774 else if (type == BPF_READ) 3775 err_extra = " read from"; 3776 else 3777 err_extra = " write to"; 3778 3779 if (tnum_is_const(reg->var_off)) { 3780 min_off = reg->var_off.value + off; 3781 if (access_size > 0) 3782 max_off = min_off + access_size - 1; 3783 else 3784 max_off = min_off; 3785 } else { 3786 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3787 reg->smin_value <= -BPF_MAX_VAR_OFF) { 3788 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 3789 err_extra, regno); 3790 return -EACCES; 3791 } 3792 min_off = reg->smin_value + off; 3793 if (access_size > 0) 3794 max_off = reg->smax_value + off + access_size - 1; 3795 else 3796 max_off = min_off; 3797 } 3798 3799 err = check_stack_slot_within_bounds(min_off, state, type); 3800 if (!err) 3801 err = check_stack_slot_within_bounds(max_off, state, type); 3802 3803 if (err) { 3804 if (tnum_is_const(reg->var_off)) { 3805 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 3806 err_extra, regno, off, access_size); 3807 } else { 3808 char tn_buf[48]; 3809 3810 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3811 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 3812 err_extra, regno, tn_buf, access_size); 3813 } 3814 } 3815 return err; 3816 } 3817 3818 /* check whether memory at (regno + off) is accessible for t = (read | write) 3819 * if t==write, value_regno is a register which value is stored into memory 3820 * if t==read, value_regno is a register which will receive the value from memory 3821 * if t==write && value_regno==-1, some unknown value is stored into memory 3822 * if t==read && value_regno==-1, don't care what we read from memory 3823 */ 3824 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3825 int off, int bpf_size, enum bpf_access_type t, 3826 int value_regno, bool strict_alignment_once) 3827 { 3828 struct bpf_reg_state *regs = cur_regs(env); 3829 struct bpf_reg_state *reg = regs + regno; 3830 struct bpf_func_state *state; 3831 int size, err = 0; 3832 3833 size = bpf_size_to_bytes(bpf_size); 3834 if (size < 0) 3835 return size; 3836 3837 /* alignment checks will add in reg->off themselves */ 3838 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3839 if (err) 3840 return err; 3841 3842 /* for access checks, reg->off is just part of off */ 3843 off += reg->off; 3844 3845 if (reg->type == PTR_TO_MAP_VALUE) { 3846 if (t == BPF_WRITE && value_regno >= 0 && 3847 is_pointer_value(env, value_regno)) { 3848 verbose(env, "R%d leaks addr into map\n", value_regno); 3849 return -EACCES; 3850 } 3851 err = check_map_access_type(env, regno, off, size, t); 3852 if (err) 3853 return err; 3854 err = check_map_access(env, regno, off, size, false); 3855 if (!err && t == BPF_READ && value_regno >= 0) { 3856 struct bpf_map *map = reg->map_ptr; 3857 3858 /* if map is read-only, track its contents as scalars */ 3859 if (tnum_is_const(reg->var_off) && 3860 bpf_map_is_rdonly(map) && 3861 map->ops->map_direct_value_addr) { 3862 int map_off = off + reg->var_off.value; 3863 u64 val = 0; 3864 3865 err = bpf_map_direct_read(map, map_off, size, 3866 &val); 3867 if (err) 3868 return err; 3869 3870 regs[value_regno].type = SCALAR_VALUE; 3871 __mark_reg_known(®s[value_regno], val); 3872 } else { 3873 mark_reg_unknown(env, regs, value_regno); 3874 } 3875 } 3876 } else if (reg->type == PTR_TO_MEM) { 3877 if (t == BPF_WRITE && value_regno >= 0 && 3878 is_pointer_value(env, value_regno)) { 3879 verbose(env, "R%d leaks addr into mem\n", value_regno); 3880 return -EACCES; 3881 } 3882 err = check_mem_region_access(env, regno, off, size, 3883 reg->mem_size, false); 3884 if (!err && t == BPF_READ && value_regno >= 0) 3885 mark_reg_unknown(env, regs, value_regno); 3886 } else if (reg->type == PTR_TO_CTX) { 3887 enum bpf_reg_type reg_type = SCALAR_VALUE; 3888 struct btf *btf = NULL; 3889 u32 btf_id = 0; 3890 3891 if (t == BPF_WRITE && value_regno >= 0 && 3892 is_pointer_value(env, value_regno)) { 3893 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3894 return -EACCES; 3895 } 3896 3897 err = check_ctx_reg(env, reg, regno); 3898 if (err < 0) 3899 return err; 3900 3901 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 3902 if (err) 3903 verbose_linfo(env, insn_idx, "; "); 3904 if (!err && t == BPF_READ && value_regno >= 0) { 3905 /* ctx access returns either a scalar, or a 3906 * PTR_TO_PACKET[_META,_END]. In the latter 3907 * case, we know the offset is zero. 3908 */ 3909 if (reg_type == SCALAR_VALUE) { 3910 mark_reg_unknown(env, regs, value_regno); 3911 } else { 3912 mark_reg_known_zero(env, regs, 3913 value_regno); 3914 if (reg_type_may_be_null(reg_type)) 3915 regs[value_regno].id = ++env->id_gen; 3916 /* A load of ctx field could have different 3917 * actual load size with the one encoded in the 3918 * insn. When the dst is PTR, it is for sure not 3919 * a sub-register. 3920 */ 3921 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3922 if (reg_type == PTR_TO_BTF_ID || 3923 reg_type == PTR_TO_BTF_ID_OR_NULL) { 3924 regs[value_regno].btf = btf; 3925 regs[value_regno].btf_id = btf_id; 3926 } 3927 } 3928 regs[value_regno].type = reg_type; 3929 } 3930 3931 } else if (reg->type == PTR_TO_STACK) { 3932 /* Basic bounds checks. */ 3933 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 3934 if (err) 3935 return err; 3936 3937 state = func(env, reg); 3938 err = update_stack_depth(env, state, off); 3939 if (err) 3940 return err; 3941 3942 if (t == BPF_READ) 3943 err = check_stack_read(env, regno, off, size, 3944 value_regno); 3945 else 3946 err = check_stack_write(env, regno, off, size, 3947 value_regno, insn_idx); 3948 } else if (reg_is_pkt_pointer(reg)) { 3949 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3950 verbose(env, "cannot write into packet\n"); 3951 return -EACCES; 3952 } 3953 if (t == BPF_WRITE && value_regno >= 0 && 3954 is_pointer_value(env, value_regno)) { 3955 verbose(env, "R%d leaks addr into packet\n", 3956 value_regno); 3957 return -EACCES; 3958 } 3959 err = check_packet_access(env, regno, off, size, false); 3960 if (!err && t == BPF_READ && value_regno >= 0) 3961 mark_reg_unknown(env, regs, value_regno); 3962 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3963 if (t == BPF_WRITE && value_regno >= 0 && 3964 is_pointer_value(env, value_regno)) { 3965 verbose(env, "R%d leaks addr into flow keys\n", 3966 value_regno); 3967 return -EACCES; 3968 } 3969 3970 err = check_flow_keys_access(env, off, size); 3971 if (!err && t == BPF_READ && value_regno >= 0) 3972 mark_reg_unknown(env, regs, value_regno); 3973 } else if (type_is_sk_pointer(reg->type)) { 3974 if (t == BPF_WRITE) { 3975 verbose(env, "R%d cannot write into %s\n", 3976 regno, reg_type_str[reg->type]); 3977 return -EACCES; 3978 } 3979 err = check_sock_access(env, insn_idx, regno, off, size, t); 3980 if (!err && value_regno >= 0) 3981 mark_reg_unknown(env, regs, value_regno); 3982 } else if (reg->type == PTR_TO_TP_BUFFER) { 3983 err = check_tp_buffer_access(env, reg, regno, off, size); 3984 if (!err && t == BPF_READ && value_regno >= 0) 3985 mark_reg_unknown(env, regs, value_regno); 3986 } else if (reg->type == PTR_TO_BTF_ID) { 3987 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3988 value_regno); 3989 } else if (reg->type == CONST_PTR_TO_MAP) { 3990 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 3991 value_regno); 3992 } else if (reg->type == PTR_TO_RDONLY_BUF) { 3993 if (t == BPF_WRITE) { 3994 verbose(env, "R%d cannot write into %s\n", 3995 regno, reg_type_str[reg->type]); 3996 return -EACCES; 3997 } 3998 err = check_buffer_access(env, reg, regno, off, size, false, 3999 "rdonly", 4000 &env->prog->aux->max_rdonly_access); 4001 if (!err && value_regno >= 0) 4002 mark_reg_unknown(env, regs, value_regno); 4003 } else if (reg->type == PTR_TO_RDWR_BUF) { 4004 err = check_buffer_access(env, reg, regno, off, size, false, 4005 "rdwr", 4006 &env->prog->aux->max_rdwr_access); 4007 if (!err && t == BPF_READ && value_regno >= 0) 4008 mark_reg_unknown(env, regs, value_regno); 4009 } else { 4010 verbose(env, "R%d invalid mem access '%s'\n", regno, 4011 reg_type_str[reg->type]); 4012 return -EACCES; 4013 } 4014 4015 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4016 regs[value_regno].type == SCALAR_VALUE) { 4017 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4018 coerce_reg_to_size(®s[value_regno], size); 4019 } 4020 return err; 4021 } 4022 4023 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4024 { 4025 int load_reg; 4026 int err; 4027 4028 switch (insn->imm) { 4029 case BPF_ADD: 4030 case BPF_ADD | BPF_FETCH: 4031 case BPF_AND: 4032 case BPF_AND | BPF_FETCH: 4033 case BPF_OR: 4034 case BPF_OR | BPF_FETCH: 4035 case BPF_XOR: 4036 case BPF_XOR | BPF_FETCH: 4037 case BPF_XCHG: 4038 case BPF_CMPXCHG: 4039 break; 4040 default: 4041 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4042 return -EINVAL; 4043 } 4044 4045 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4046 verbose(env, "invalid atomic operand size\n"); 4047 return -EINVAL; 4048 } 4049 4050 /* check src1 operand */ 4051 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4052 if (err) 4053 return err; 4054 4055 /* check src2 operand */ 4056 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4057 if (err) 4058 return err; 4059 4060 if (insn->imm == BPF_CMPXCHG) { 4061 /* Check comparison of R0 with memory location */ 4062 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4063 if (err) 4064 return err; 4065 } 4066 4067 if (is_pointer_value(env, insn->src_reg)) { 4068 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4069 return -EACCES; 4070 } 4071 4072 if (is_ctx_reg(env, insn->dst_reg) || 4073 is_pkt_reg(env, insn->dst_reg) || 4074 is_flow_key_reg(env, insn->dst_reg) || 4075 is_sk_reg(env, insn->dst_reg)) { 4076 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4077 insn->dst_reg, 4078 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4079 return -EACCES; 4080 } 4081 4082 if (insn->imm & BPF_FETCH) { 4083 if (insn->imm == BPF_CMPXCHG) 4084 load_reg = BPF_REG_0; 4085 else 4086 load_reg = insn->src_reg; 4087 4088 /* check and record load of old value */ 4089 err = check_reg_arg(env, load_reg, DST_OP); 4090 if (err) 4091 return err; 4092 } else { 4093 /* This instruction accesses a memory location but doesn't 4094 * actually load it into a register. 4095 */ 4096 load_reg = -1; 4097 } 4098 4099 /* check whether we can read the memory */ 4100 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4101 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4102 if (err) 4103 return err; 4104 4105 /* check whether we can write into the same memory */ 4106 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4107 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4108 if (err) 4109 return err; 4110 4111 return 0; 4112 } 4113 4114 /* When register 'regno' is used to read the stack (either directly or through 4115 * a helper function) make sure that it's within stack boundary and, depending 4116 * on the access type, that all elements of the stack are initialized. 4117 * 4118 * 'off' includes 'regno->off', but not its dynamic part (if any). 4119 * 4120 * All registers that have been spilled on the stack in the slots within the 4121 * read offsets are marked as read. 4122 */ 4123 static int check_stack_range_initialized( 4124 struct bpf_verifier_env *env, int regno, int off, 4125 int access_size, bool zero_size_allowed, 4126 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4127 { 4128 struct bpf_reg_state *reg = reg_state(env, regno); 4129 struct bpf_func_state *state = func(env, reg); 4130 int err, min_off, max_off, i, j, slot, spi; 4131 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4132 enum bpf_access_type bounds_check_type; 4133 /* Some accesses can write anything into the stack, others are 4134 * read-only. 4135 */ 4136 bool clobber = false; 4137 4138 if (access_size == 0 && !zero_size_allowed) { 4139 verbose(env, "invalid zero-sized read\n"); 4140 return -EACCES; 4141 } 4142 4143 if (type == ACCESS_HELPER) { 4144 /* The bounds checks for writes are more permissive than for 4145 * reads. However, if raw_mode is not set, we'll do extra 4146 * checks below. 4147 */ 4148 bounds_check_type = BPF_WRITE; 4149 clobber = true; 4150 } else { 4151 bounds_check_type = BPF_READ; 4152 } 4153 err = check_stack_access_within_bounds(env, regno, off, access_size, 4154 type, bounds_check_type); 4155 if (err) 4156 return err; 4157 4158 4159 if (tnum_is_const(reg->var_off)) { 4160 min_off = max_off = reg->var_off.value + off; 4161 } else { 4162 /* Variable offset is prohibited for unprivileged mode for 4163 * simplicity since it requires corresponding support in 4164 * Spectre masking for stack ALU. 4165 * See also retrieve_ptr_limit(). 4166 */ 4167 if (!env->bypass_spec_v1) { 4168 char tn_buf[48]; 4169 4170 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4171 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4172 regno, err_extra, tn_buf); 4173 return -EACCES; 4174 } 4175 /* Only initialized buffer on stack is allowed to be accessed 4176 * with variable offset. With uninitialized buffer it's hard to 4177 * guarantee that whole memory is marked as initialized on 4178 * helper return since specific bounds are unknown what may 4179 * cause uninitialized stack leaking. 4180 */ 4181 if (meta && meta->raw_mode) 4182 meta = NULL; 4183 4184 min_off = reg->smin_value + off; 4185 max_off = reg->smax_value + off; 4186 } 4187 4188 if (meta && meta->raw_mode) { 4189 meta->access_size = access_size; 4190 meta->regno = regno; 4191 return 0; 4192 } 4193 4194 for (i = min_off; i < max_off + access_size; i++) { 4195 u8 *stype; 4196 4197 slot = -i - 1; 4198 spi = slot / BPF_REG_SIZE; 4199 if (state->allocated_stack <= slot) 4200 goto err; 4201 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4202 if (*stype == STACK_MISC) 4203 goto mark; 4204 if (*stype == STACK_ZERO) { 4205 if (clobber) { 4206 /* helper can write anything into the stack */ 4207 *stype = STACK_MISC; 4208 } 4209 goto mark; 4210 } 4211 4212 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4213 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4214 goto mark; 4215 4216 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4217 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4218 env->allow_ptr_leaks)) { 4219 if (clobber) { 4220 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4221 for (j = 0; j < BPF_REG_SIZE; j++) 4222 state->stack[spi].slot_type[j] = STACK_MISC; 4223 } 4224 goto mark; 4225 } 4226 4227 err: 4228 if (tnum_is_const(reg->var_off)) { 4229 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4230 err_extra, regno, min_off, i - min_off, access_size); 4231 } else { 4232 char tn_buf[48]; 4233 4234 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4235 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4236 err_extra, regno, tn_buf, i - min_off, access_size); 4237 } 4238 return -EACCES; 4239 mark: 4240 /* reading any byte out of 8-byte 'spill_slot' will cause 4241 * the whole slot to be marked as 'read' 4242 */ 4243 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4244 state->stack[spi].spilled_ptr.parent, 4245 REG_LIVE_READ64); 4246 } 4247 return update_stack_depth(env, state, min_off); 4248 } 4249 4250 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4251 int access_size, bool zero_size_allowed, 4252 struct bpf_call_arg_meta *meta) 4253 { 4254 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4255 4256 switch (reg->type) { 4257 case PTR_TO_PACKET: 4258 case PTR_TO_PACKET_META: 4259 return check_packet_access(env, regno, reg->off, access_size, 4260 zero_size_allowed); 4261 case PTR_TO_MAP_VALUE: 4262 if (check_map_access_type(env, regno, reg->off, access_size, 4263 meta && meta->raw_mode ? BPF_WRITE : 4264 BPF_READ)) 4265 return -EACCES; 4266 return check_map_access(env, regno, reg->off, access_size, 4267 zero_size_allowed); 4268 case PTR_TO_MEM: 4269 return check_mem_region_access(env, regno, reg->off, 4270 access_size, reg->mem_size, 4271 zero_size_allowed); 4272 case PTR_TO_RDONLY_BUF: 4273 if (meta && meta->raw_mode) 4274 return -EACCES; 4275 return check_buffer_access(env, reg, regno, reg->off, 4276 access_size, zero_size_allowed, 4277 "rdonly", 4278 &env->prog->aux->max_rdonly_access); 4279 case PTR_TO_RDWR_BUF: 4280 return check_buffer_access(env, reg, regno, reg->off, 4281 access_size, zero_size_allowed, 4282 "rdwr", 4283 &env->prog->aux->max_rdwr_access); 4284 case PTR_TO_STACK: 4285 return check_stack_range_initialized( 4286 env, 4287 regno, reg->off, access_size, 4288 zero_size_allowed, ACCESS_HELPER, meta); 4289 default: /* scalar_value or invalid ptr */ 4290 /* Allow zero-byte read from NULL, regardless of pointer type */ 4291 if (zero_size_allowed && access_size == 0 && 4292 register_is_null(reg)) 4293 return 0; 4294 4295 verbose(env, "R%d type=%s expected=%s\n", regno, 4296 reg_type_str[reg->type], 4297 reg_type_str[PTR_TO_STACK]); 4298 return -EACCES; 4299 } 4300 } 4301 4302 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4303 u32 regno, u32 mem_size) 4304 { 4305 if (register_is_null(reg)) 4306 return 0; 4307 4308 if (reg_type_may_be_null(reg->type)) { 4309 /* Assuming that the register contains a value check if the memory 4310 * access is safe. Temporarily save and restore the register's state as 4311 * the conversion shouldn't be visible to a caller. 4312 */ 4313 const struct bpf_reg_state saved_reg = *reg; 4314 int rv; 4315 4316 mark_ptr_not_null_reg(reg); 4317 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4318 *reg = saved_reg; 4319 return rv; 4320 } 4321 4322 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4323 } 4324 4325 /* Implementation details: 4326 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4327 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4328 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4329 * value_or_null->value transition, since the verifier only cares about 4330 * the range of access to valid map value pointer and doesn't care about actual 4331 * address of the map element. 4332 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4333 * reg->id > 0 after value_or_null->value transition. By doing so 4334 * two bpf_map_lookups will be considered two different pointers that 4335 * point to different bpf_spin_locks. 4336 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4337 * dead-locks. 4338 * Since only one bpf_spin_lock is allowed the checks are simpler than 4339 * reg_is_refcounted() logic. The verifier needs to remember only 4340 * one spin_lock instead of array of acquired_refs. 4341 * cur_state->active_spin_lock remembers which map value element got locked 4342 * and clears it after bpf_spin_unlock. 4343 */ 4344 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4345 bool is_lock) 4346 { 4347 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4348 struct bpf_verifier_state *cur = env->cur_state; 4349 bool is_const = tnum_is_const(reg->var_off); 4350 struct bpf_map *map = reg->map_ptr; 4351 u64 val = reg->var_off.value; 4352 4353 if (!is_const) { 4354 verbose(env, 4355 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4356 regno); 4357 return -EINVAL; 4358 } 4359 if (!map->btf) { 4360 verbose(env, 4361 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4362 map->name); 4363 return -EINVAL; 4364 } 4365 if (!map_value_has_spin_lock(map)) { 4366 if (map->spin_lock_off == -E2BIG) 4367 verbose(env, 4368 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4369 map->name); 4370 else if (map->spin_lock_off == -ENOENT) 4371 verbose(env, 4372 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4373 map->name); 4374 else 4375 verbose(env, 4376 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4377 map->name); 4378 return -EINVAL; 4379 } 4380 if (map->spin_lock_off != val + reg->off) { 4381 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4382 val + reg->off); 4383 return -EINVAL; 4384 } 4385 if (is_lock) { 4386 if (cur->active_spin_lock) { 4387 verbose(env, 4388 "Locking two bpf_spin_locks are not allowed\n"); 4389 return -EINVAL; 4390 } 4391 cur->active_spin_lock = reg->id; 4392 } else { 4393 if (!cur->active_spin_lock) { 4394 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4395 return -EINVAL; 4396 } 4397 if (cur->active_spin_lock != reg->id) { 4398 verbose(env, "bpf_spin_unlock of different lock\n"); 4399 return -EINVAL; 4400 } 4401 cur->active_spin_lock = 0; 4402 } 4403 return 0; 4404 } 4405 4406 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4407 { 4408 return type == ARG_PTR_TO_MEM || 4409 type == ARG_PTR_TO_MEM_OR_NULL || 4410 type == ARG_PTR_TO_UNINIT_MEM; 4411 } 4412 4413 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4414 { 4415 return type == ARG_CONST_SIZE || 4416 type == ARG_CONST_SIZE_OR_ZERO; 4417 } 4418 4419 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4420 { 4421 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4422 } 4423 4424 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4425 { 4426 return type == ARG_PTR_TO_INT || 4427 type == ARG_PTR_TO_LONG; 4428 } 4429 4430 static int int_ptr_type_to_size(enum bpf_arg_type type) 4431 { 4432 if (type == ARG_PTR_TO_INT) 4433 return sizeof(u32); 4434 else if (type == ARG_PTR_TO_LONG) 4435 return sizeof(u64); 4436 4437 return -EINVAL; 4438 } 4439 4440 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4441 const struct bpf_call_arg_meta *meta, 4442 enum bpf_arg_type *arg_type) 4443 { 4444 if (!meta->map_ptr) { 4445 /* kernel subsystem misconfigured verifier */ 4446 verbose(env, "invalid map_ptr to access map->type\n"); 4447 return -EACCES; 4448 } 4449 4450 switch (meta->map_ptr->map_type) { 4451 case BPF_MAP_TYPE_SOCKMAP: 4452 case BPF_MAP_TYPE_SOCKHASH: 4453 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4454 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4455 } else { 4456 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 4457 return -EINVAL; 4458 } 4459 break; 4460 4461 default: 4462 break; 4463 } 4464 return 0; 4465 } 4466 4467 struct bpf_reg_types { 4468 const enum bpf_reg_type types[10]; 4469 u32 *btf_id; 4470 }; 4471 4472 static const struct bpf_reg_types map_key_value_types = { 4473 .types = { 4474 PTR_TO_STACK, 4475 PTR_TO_PACKET, 4476 PTR_TO_PACKET_META, 4477 PTR_TO_MAP_VALUE, 4478 }, 4479 }; 4480 4481 static const struct bpf_reg_types sock_types = { 4482 .types = { 4483 PTR_TO_SOCK_COMMON, 4484 PTR_TO_SOCKET, 4485 PTR_TO_TCP_SOCK, 4486 PTR_TO_XDP_SOCK, 4487 }, 4488 }; 4489 4490 #ifdef CONFIG_NET 4491 static const struct bpf_reg_types btf_id_sock_common_types = { 4492 .types = { 4493 PTR_TO_SOCK_COMMON, 4494 PTR_TO_SOCKET, 4495 PTR_TO_TCP_SOCK, 4496 PTR_TO_XDP_SOCK, 4497 PTR_TO_BTF_ID, 4498 }, 4499 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4500 }; 4501 #endif 4502 4503 static const struct bpf_reg_types mem_types = { 4504 .types = { 4505 PTR_TO_STACK, 4506 PTR_TO_PACKET, 4507 PTR_TO_PACKET_META, 4508 PTR_TO_MAP_VALUE, 4509 PTR_TO_MEM, 4510 PTR_TO_RDONLY_BUF, 4511 PTR_TO_RDWR_BUF, 4512 }, 4513 }; 4514 4515 static const struct bpf_reg_types int_ptr_types = { 4516 .types = { 4517 PTR_TO_STACK, 4518 PTR_TO_PACKET, 4519 PTR_TO_PACKET_META, 4520 PTR_TO_MAP_VALUE, 4521 }, 4522 }; 4523 4524 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4525 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4526 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4527 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4528 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4529 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4530 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4531 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4532 4533 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4534 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4535 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4536 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4537 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4538 [ARG_CONST_SIZE] = &scalar_types, 4539 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4540 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4541 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4542 [ARG_PTR_TO_CTX] = &context_types, 4543 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4544 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4545 #ifdef CONFIG_NET 4546 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4547 #endif 4548 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4549 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4550 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4551 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4552 [ARG_PTR_TO_MEM] = &mem_types, 4553 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4554 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4555 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4556 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4557 [ARG_PTR_TO_INT] = &int_ptr_types, 4558 [ARG_PTR_TO_LONG] = &int_ptr_types, 4559 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4560 }; 4561 4562 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4563 enum bpf_arg_type arg_type, 4564 const u32 *arg_btf_id) 4565 { 4566 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4567 enum bpf_reg_type expected, type = reg->type; 4568 const struct bpf_reg_types *compatible; 4569 int i, j; 4570 4571 compatible = compatible_reg_types[arg_type]; 4572 if (!compatible) { 4573 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4574 return -EFAULT; 4575 } 4576 4577 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4578 expected = compatible->types[i]; 4579 if (expected == NOT_INIT) 4580 break; 4581 4582 if (type == expected) 4583 goto found; 4584 } 4585 4586 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4587 for (j = 0; j + 1 < i; j++) 4588 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4589 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4590 return -EACCES; 4591 4592 found: 4593 if (type == PTR_TO_BTF_ID) { 4594 if (!arg_btf_id) { 4595 if (!compatible->btf_id) { 4596 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4597 return -EFAULT; 4598 } 4599 arg_btf_id = compatible->btf_id; 4600 } 4601 4602 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4603 btf_vmlinux, *arg_btf_id)) { 4604 verbose(env, "R%d is of type %s but %s is expected\n", 4605 regno, kernel_type_name(reg->btf, reg->btf_id), 4606 kernel_type_name(btf_vmlinux, *arg_btf_id)); 4607 return -EACCES; 4608 } 4609 4610 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4611 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4612 regno); 4613 return -EACCES; 4614 } 4615 } 4616 4617 return 0; 4618 } 4619 4620 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4621 struct bpf_call_arg_meta *meta, 4622 const struct bpf_func_proto *fn) 4623 { 4624 u32 regno = BPF_REG_1 + arg; 4625 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4626 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4627 enum bpf_reg_type type = reg->type; 4628 int err = 0; 4629 4630 if (arg_type == ARG_DONTCARE) 4631 return 0; 4632 4633 err = check_reg_arg(env, regno, SRC_OP); 4634 if (err) 4635 return err; 4636 4637 if (arg_type == ARG_ANYTHING) { 4638 if (is_pointer_value(env, regno)) { 4639 verbose(env, "R%d leaks addr into helper function\n", 4640 regno); 4641 return -EACCES; 4642 } 4643 return 0; 4644 } 4645 4646 if (type_is_pkt_pointer(type) && 4647 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4648 verbose(env, "helper access to the packet is not allowed\n"); 4649 return -EACCES; 4650 } 4651 4652 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4653 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4654 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4655 err = resolve_map_arg_type(env, meta, &arg_type); 4656 if (err) 4657 return err; 4658 } 4659 4660 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4661 /* A NULL register has a SCALAR_VALUE type, so skip 4662 * type checking. 4663 */ 4664 goto skip_type_check; 4665 4666 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4667 if (err) 4668 return err; 4669 4670 if (type == PTR_TO_CTX) { 4671 err = check_ctx_reg(env, reg, regno); 4672 if (err < 0) 4673 return err; 4674 } 4675 4676 skip_type_check: 4677 if (reg->ref_obj_id) { 4678 if (meta->ref_obj_id) { 4679 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4680 regno, reg->ref_obj_id, 4681 meta->ref_obj_id); 4682 return -EFAULT; 4683 } 4684 meta->ref_obj_id = reg->ref_obj_id; 4685 } 4686 4687 if (arg_type == ARG_CONST_MAP_PTR) { 4688 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4689 meta->map_ptr = reg->map_ptr; 4690 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4691 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4692 * check that [key, key + map->key_size) are within 4693 * stack limits and initialized 4694 */ 4695 if (!meta->map_ptr) { 4696 /* in function declaration map_ptr must come before 4697 * map_key, so that it's verified and known before 4698 * we have to check map_key here. Otherwise it means 4699 * that kernel subsystem misconfigured verifier 4700 */ 4701 verbose(env, "invalid map_ptr to access map->key\n"); 4702 return -EACCES; 4703 } 4704 err = check_helper_mem_access(env, regno, 4705 meta->map_ptr->key_size, false, 4706 NULL); 4707 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4708 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4709 !register_is_null(reg)) || 4710 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4711 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4712 * check [value, value + map->value_size) validity 4713 */ 4714 if (!meta->map_ptr) { 4715 /* kernel subsystem misconfigured verifier */ 4716 verbose(env, "invalid map_ptr to access map->value\n"); 4717 return -EACCES; 4718 } 4719 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4720 err = check_helper_mem_access(env, regno, 4721 meta->map_ptr->value_size, false, 4722 meta); 4723 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4724 if (!reg->btf_id) { 4725 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4726 return -EACCES; 4727 } 4728 meta->ret_btf = reg->btf; 4729 meta->ret_btf_id = reg->btf_id; 4730 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4731 if (meta->func_id == BPF_FUNC_spin_lock) { 4732 if (process_spin_lock(env, regno, true)) 4733 return -EACCES; 4734 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4735 if (process_spin_lock(env, regno, false)) 4736 return -EACCES; 4737 } else { 4738 verbose(env, "verifier internal error\n"); 4739 return -EFAULT; 4740 } 4741 } else if (arg_type_is_mem_ptr(arg_type)) { 4742 /* The access to this pointer is only checked when we hit the 4743 * next is_mem_size argument below. 4744 */ 4745 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4746 } else if (arg_type_is_mem_size(arg_type)) { 4747 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4748 4749 /* This is used to refine r0 return value bounds for helpers 4750 * that enforce this value as an upper bound on return values. 4751 * See do_refine_retval_range() for helpers that can refine 4752 * the return value. C type of helper is u32 so we pull register 4753 * bound from umax_value however, if negative verifier errors 4754 * out. Only upper bounds can be learned because retval is an 4755 * int type and negative retvals are allowed. 4756 */ 4757 meta->msize_max_value = reg->umax_value; 4758 4759 /* The register is SCALAR_VALUE; the access check 4760 * happens using its boundaries. 4761 */ 4762 if (!tnum_is_const(reg->var_off)) 4763 /* For unprivileged variable accesses, disable raw 4764 * mode so that the program is required to 4765 * initialize all the memory that the helper could 4766 * just partially fill up. 4767 */ 4768 meta = NULL; 4769 4770 if (reg->smin_value < 0) { 4771 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4772 regno); 4773 return -EACCES; 4774 } 4775 4776 if (reg->umin_value == 0) { 4777 err = check_helper_mem_access(env, regno - 1, 0, 4778 zero_size_allowed, 4779 meta); 4780 if (err) 4781 return err; 4782 } 4783 4784 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4785 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4786 regno); 4787 return -EACCES; 4788 } 4789 err = check_helper_mem_access(env, regno - 1, 4790 reg->umax_value, 4791 zero_size_allowed, meta); 4792 if (!err) 4793 err = mark_chain_precision(env, regno); 4794 } else if (arg_type_is_alloc_size(arg_type)) { 4795 if (!tnum_is_const(reg->var_off)) { 4796 verbose(env, "R%d is not a known constant'\n", 4797 regno); 4798 return -EACCES; 4799 } 4800 meta->mem_size = reg->var_off.value; 4801 } else if (arg_type_is_int_ptr(arg_type)) { 4802 int size = int_ptr_type_to_size(arg_type); 4803 4804 err = check_helper_mem_access(env, regno, size, false, meta); 4805 if (err) 4806 return err; 4807 err = check_ptr_alignment(env, reg, 0, size, true); 4808 } 4809 4810 return err; 4811 } 4812 4813 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 4814 { 4815 enum bpf_attach_type eatype = env->prog->expected_attach_type; 4816 enum bpf_prog_type type = resolve_prog_type(env->prog); 4817 4818 if (func_id != BPF_FUNC_map_update_elem) 4819 return false; 4820 4821 /* It's not possible to get access to a locked struct sock in these 4822 * contexts, so updating is safe. 4823 */ 4824 switch (type) { 4825 case BPF_PROG_TYPE_TRACING: 4826 if (eatype == BPF_TRACE_ITER) 4827 return true; 4828 break; 4829 case BPF_PROG_TYPE_SOCKET_FILTER: 4830 case BPF_PROG_TYPE_SCHED_CLS: 4831 case BPF_PROG_TYPE_SCHED_ACT: 4832 case BPF_PROG_TYPE_XDP: 4833 case BPF_PROG_TYPE_SK_REUSEPORT: 4834 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4835 case BPF_PROG_TYPE_SK_LOOKUP: 4836 return true; 4837 default: 4838 break; 4839 } 4840 4841 verbose(env, "cannot update sockmap in this context\n"); 4842 return false; 4843 } 4844 4845 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 4846 { 4847 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 4848 } 4849 4850 static int check_map_func_compatibility(struct bpf_verifier_env *env, 4851 struct bpf_map *map, int func_id) 4852 { 4853 if (!map) 4854 return 0; 4855 4856 /* We need a two way check, first is from map perspective ... */ 4857 switch (map->map_type) { 4858 case BPF_MAP_TYPE_PROG_ARRAY: 4859 if (func_id != BPF_FUNC_tail_call) 4860 goto error; 4861 break; 4862 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4863 if (func_id != BPF_FUNC_perf_event_read && 4864 func_id != BPF_FUNC_perf_event_output && 4865 func_id != BPF_FUNC_skb_output && 4866 func_id != BPF_FUNC_perf_event_read_value && 4867 func_id != BPF_FUNC_xdp_output) 4868 goto error; 4869 break; 4870 case BPF_MAP_TYPE_RINGBUF: 4871 if (func_id != BPF_FUNC_ringbuf_output && 4872 func_id != BPF_FUNC_ringbuf_reserve && 4873 func_id != BPF_FUNC_ringbuf_submit && 4874 func_id != BPF_FUNC_ringbuf_discard && 4875 func_id != BPF_FUNC_ringbuf_query) 4876 goto error; 4877 break; 4878 case BPF_MAP_TYPE_STACK_TRACE: 4879 if (func_id != BPF_FUNC_get_stackid) 4880 goto error; 4881 break; 4882 case BPF_MAP_TYPE_CGROUP_ARRAY: 4883 if (func_id != BPF_FUNC_skb_under_cgroup && 4884 func_id != BPF_FUNC_current_task_under_cgroup) 4885 goto error; 4886 break; 4887 case BPF_MAP_TYPE_CGROUP_STORAGE: 4888 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4889 if (func_id != BPF_FUNC_get_local_storage) 4890 goto error; 4891 break; 4892 case BPF_MAP_TYPE_DEVMAP: 4893 case BPF_MAP_TYPE_DEVMAP_HASH: 4894 if (func_id != BPF_FUNC_redirect_map && 4895 func_id != BPF_FUNC_map_lookup_elem) 4896 goto error; 4897 break; 4898 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4899 * appear. 4900 */ 4901 case BPF_MAP_TYPE_CPUMAP: 4902 if (func_id != BPF_FUNC_redirect_map) 4903 goto error; 4904 break; 4905 case BPF_MAP_TYPE_XSKMAP: 4906 if (func_id != BPF_FUNC_redirect_map && 4907 func_id != BPF_FUNC_map_lookup_elem) 4908 goto error; 4909 break; 4910 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4911 case BPF_MAP_TYPE_HASH_OF_MAPS: 4912 if (func_id != BPF_FUNC_map_lookup_elem) 4913 goto error; 4914 break; 4915 case BPF_MAP_TYPE_SOCKMAP: 4916 if (func_id != BPF_FUNC_sk_redirect_map && 4917 func_id != BPF_FUNC_sock_map_update && 4918 func_id != BPF_FUNC_map_delete_elem && 4919 func_id != BPF_FUNC_msg_redirect_map && 4920 func_id != BPF_FUNC_sk_select_reuseport && 4921 func_id != BPF_FUNC_map_lookup_elem && 4922 !may_update_sockmap(env, func_id)) 4923 goto error; 4924 break; 4925 case BPF_MAP_TYPE_SOCKHASH: 4926 if (func_id != BPF_FUNC_sk_redirect_hash && 4927 func_id != BPF_FUNC_sock_hash_update && 4928 func_id != BPF_FUNC_map_delete_elem && 4929 func_id != BPF_FUNC_msg_redirect_hash && 4930 func_id != BPF_FUNC_sk_select_reuseport && 4931 func_id != BPF_FUNC_map_lookup_elem && 4932 !may_update_sockmap(env, func_id)) 4933 goto error; 4934 break; 4935 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4936 if (func_id != BPF_FUNC_sk_select_reuseport) 4937 goto error; 4938 break; 4939 case BPF_MAP_TYPE_QUEUE: 4940 case BPF_MAP_TYPE_STACK: 4941 if (func_id != BPF_FUNC_map_peek_elem && 4942 func_id != BPF_FUNC_map_pop_elem && 4943 func_id != BPF_FUNC_map_push_elem) 4944 goto error; 4945 break; 4946 case BPF_MAP_TYPE_SK_STORAGE: 4947 if (func_id != BPF_FUNC_sk_storage_get && 4948 func_id != BPF_FUNC_sk_storage_delete) 4949 goto error; 4950 break; 4951 case BPF_MAP_TYPE_INODE_STORAGE: 4952 if (func_id != BPF_FUNC_inode_storage_get && 4953 func_id != BPF_FUNC_inode_storage_delete) 4954 goto error; 4955 break; 4956 case BPF_MAP_TYPE_TASK_STORAGE: 4957 if (func_id != BPF_FUNC_task_storage_get && 4958 func_id != BPF_FUNC_task_storage_delete) 4959 goto error; 4960 break; 4961 default: 4962 break; 4963 } 4964 4965 /* ... and second from the function itself. */ 4966 switch (func_id) { 4967 case BPF_FUNC_tail_call: 4968 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4969 goto error; 4970 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 4971 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 4972 return -EINVAL; 4973 } 4974 break; 4975 case BPF_FUNC_perf_event_read: 4976 case BPF_FUNC_perf_event_output: 4977 case BPF_FUNC_perf_event_read_value: 4978 case BPF_FUNC_skb_output: 4979 case BPF_FUNC_xdp_output: 4980 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4981 goto error; 4982 break; 4983 case BPF_FUNC_get_stackid: 4984 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4985 goto error; 4986 break; 4987 case BPF_FUNC_current_task_under_cgroup: 4988 case BPF_FUNC_skb_under_cgroup: 4989 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4990 goto error; 4991 break; 4992 case BPF_FUNC_redirect_map: 4993 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4994 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4995 map->map_type != BPF_MAP_TYPE_CPUMAP && 4996 map->map_type != BPF_MAP_TYPE_XSKMAP) 4997 goto error; 4998 break; 4999 case BPF_FUNC_sk_redirect_map: 5000 case BPF_FUNC_msg_redirect_map: 5001 case BPF_FUNC_sock_map_update: 5002 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5003 goto error; 5004 break; 5005 case BPF_FUNC_sk_redirect_hash: 5006 case BPF_FUNC_msg_redirect_hash: 5007 case BPF_FUNC_sock_hash_update: 5008 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5009 goto error; 5010 break; 5011 case BPF_FUNC_get_local_storage: 5012 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5013 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5014 goto error; 5015 break; 5016 case BPF_FUNC_sk_select_reuseport: 5017 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5018 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5019 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5020 goto error; 5021 break; 5022 case BPF_FUNC_map_peek_elem: 5023 case BPF_FUNC_map_pop_elem: 5024 case BPF_FUNC_map_push_elem: 5025 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5026 map->map_type != BPF_MAP_TYPE_STACK) 5027 goto error; 5028 break; 5029 case BPF_FUNC_sk_storage_get: 5030 case BPF_FUNC_sk_storage_delete: 5031 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5032 goto error; 5033 break; 5034 case BPF_FUNC_inode_storage_get: 5035 case BPF_FUNC_inode_storage_delete: 5036 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5037 goto error; 5038 break; 5039 case BPF_FUNC_task_storage_get: 5040 case BPF_FUNC_task_storage_delete: 5041 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5042 goto error; 5043 break; 5044 default: 5045 break; 5046 } 5047 5048 return 0; 5049 error: 5050 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5051 map->map_type, func_id_name(func_id), func_id); 5052 return -EINVAL; 5053 } 5054 5055 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5056 { 5057 int count = 0; 5058 5059 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5060 count++; 5061 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5062 count++; 5063 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5064 count++; 5065 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5066 count++; 5067 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5068 count++; 5069 5070 /* We only support one arg being in raw mode at the moment, 5071 * which is sufficient for the helper functions we have 5072 * right now. 5073 */ 5074 return count <= 1; 5075 } 5076 5077 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5078 enum bpf_arg_type arg_next) 5079 { 5080 return (arg_type_is_mem_ptr(arg_curr) && 5081 !arg_type_is_mem_size(arg_next)) || 5082 (!arg_type_is_mem_ptr(arg_curr) && 5083 arg_type_is_mem_size(arg_next)); 5084 } 5085 5086 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5087 { 5088 /* bpf_xxx(..., buf, len) call will access 'len' 5089 * bytes from memory 'buf'. Both arg types need 5090 * to be paired, so make sure there's no buggy 5091 * helper function specification. 5092 */ 5093 if (arg_type_is_mem_size(fn->arg1_type) || 5094 arg_type_is_mem_ptr(fn->arg5_type) || 5095 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5096 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5097 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5098 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5099 return false; 5100 5101 return true; 5102 } 5103 5104 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5105 { 5106 int count = 0; 5107 5108 if (arg_type_may_be_refcounted(fn->arg1_type)) 5109 count++; 5110 if (arg_type_may_be_refcounted(fn->arg2_type)) 5111 count++; 5112 if (arg_type_may_be_refcounted(fn->arg3_type)) 5113 count++; 5114 if (arg_type_may_be_refcounted(fn->arg4_type)) 5115 count++; 5116 if (arg_type_may_be_refcounted(fn->arg5_type)) 5117 count++; 5118 5119 /* A reference acquiring function cannot acquire 5120 * another refcounted ptr. 5121 */ 5122 if (may_be_acquire_function(func_id) && count) 5123 return false; 5124 5125 /* We only support one arg being unreferenced at the moment, 5126 * which is sufficient for the helper functions we have right now. 5127 */ 5128 return count <= 1; 5129 } 5130 5131 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5132 { 5133 int i; 5134 5135 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5136 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5137 return false; 5138 5139 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5140 return false; 5141 } 5142 5143 return true; 5144 } 5145 5146 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5147 { 5148 return check_raw_mode_ok(fn) && 5149 check_arg_pair_ok(fn) && 5150 check_btf_id_ok(fn) && 5151 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5152 } 5153 5154 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5155 * are now invalid, so turn them into unknown SCALAR_VALUE. 5156 */ 5157 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5158 struct bpf_func_state *state) 5159 { 5160 struct bpf_reg_state *regs = state->regs, *reg; 5161 int i; 5162 5163 for (i = 0; i < MAX_BPF_REG; i++) 5164 if (reg_is_pkt_pointer_any(®s[i])) 5165 mark_reg_unknown(env, regs, i); 5166 5167 bpf_for_each_spilled_reg(i, state, reg) { 5168 if (!reg) 5169 continue; 5170 if (reg_is_pkt_pointer_any(reg)) 5171 __mark_reg_unknown(env, reg); 5172 } 5173 } 5174 5175 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5176 { 5177 struct bpf_verifier_state *vstate = env->cur_state; 5178 int i; 5179 5180 for (i = 0; i <= vstate->curframe; i++) 5181 __clear_all_pkt_pointers(env, vstate->frame[i]); 5182 } 5183 5184 enum { 5185 AT_PKT_END = -1, 5186 BEYOND_PKT_END = -2, 5187 }; 5188 5189 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5190 { 5191 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5192 struct bpf_reg_state *reg = &state->regs[regn]; 5193 5194 if (reg->type != PTR_TO_PACKET) 5195 /* PTR_TO_PACKET_META is not supported yet */ 5196 return; 5197 5198 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5199 * How far beyond pkt_end it goes is unknown. 5200 * if (!range_open) it's the case of pkt >= pkt_end 5201 * if (range_open) it's the case of pkt > pkt_end 5202 * hence this pointer is at least 1 byte bigger than pkt_end 5203 */ 5204 if (range_open) 5205 reg->range = BEYOND_PKT_END; 5206 else 5207 reg->range = AT_PKT_END; 5208 } 5209 5210 static void release_reg_references(struct bpf_verifier_env *env, 5211 struct bpf_func_state *state, 5212 int ref_obj_id) 5213 { 5214 struct bpf_reg_state *regs = state->regs, *reg; 5215 int i; 5216 5217 for (i = 0; i < MAX_BPF_REG; i++) 5218 if (regs[i].ref_obj_id == ref_obj_id) 5219 mark_reg_unknown(env, regs, i); 5220 5221 bpf_for_each_spilled_reg(i, state, reg) { 5222 if (!reg) 5223 continue; 5224 if (reg->ref_obj_id == ref_obj_id) 5225 __mark_reg_unknown(env, reg); 5226 } 5227 } 5228 5229 /* The pointer with the specified id has released its reference to kernel 5230 * resources. Identify all copies of the same pointer and clear the reference. 5231 */ 5232 static int release_reference(struct bpf_verifier_env *env, 5233 int ref_obj_id) 5234 { 5235 struct bpf_verifier_state *vstate = env->cur_state; 5236 int err; 5237 int i; 5238 5239 err = release_reference_state(cur_func(env), ref_obj_id); 5240 if (err) 5241 return err; 5242 5243 for (i = 0; i <= vstate->curframe; i++) 5244 release_reg_references(env, vstate->frame[i], ref_obj_id); 5245 5246 return 0; 5247 } 5248 5249 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5250 struct bpf_reg_state *regs) 5251 { 5252 int i; 5253 5254 /* after the call registers r0 - r5 were scratched */ 5255 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5256 mark_reg_not_init(env, regs, caller_saved[i]); 5257 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5258 } 5259 } 5260 5261 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5262 int *insn_idx) 5263 { 5264 struct bpf_verifier_state *state = env->cur_state; 5265 struct bpf_func_info_aux *func_info_aux; 5266 struct bpf_func_state *caller, *callee; 5267 int i, err, subprog, target_insn; 5268 bool is_global = false; 5269 5270 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5271 verbose(env, "the call stack of %d frames is too deep\n", 5272 state->curframe + 2); 5273 return -E2BIG; 5274 } 5275 5276 target_insn = *insn_idx + insn->imm; 5277 subprog = find_subprog(env, target_insn + 1); 5278 if (subprog < 0) { 5279 verbose(env, "verifier bug. No program starts at insn %d\n", 5280 target_insn + 1); 5281 return -EFAULT; 5282 } 5283 5284 caller = state->frame[state->curframe]; 5285 if (state->frame[state->curframe + 1]) { 5286 verbose(env, "verifier bug. Frame %d already allocated\n", 5287 state->curframe + 1); 5288 return -EFAULT; 5289 } 5290 5291 func_info_aux = env->prog->aux->func_info_aux; 5292 if (func_info_aux) 5293 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5294 err = btf_check_func_arg_match(env, subprog, caller->regs); 5295 if (err == -EFAULT) 5296 return err; 5297 if (is_global) { 5298 if (err) { 5299 verbose(env, "Caller passes invalid args into func#%d\n", 5300 subprog); 5301 return err; 5302 } else { 5303 if (env->log.level & BPF_LOG_LEVEL) 5304 verbose(env, 5305 "Func#%d is global and valid. Skipping.\n", 5306 subprog); 5307 clear_caller_saved_regs(env, caller->regs); 5308 5309 /* All global functions return a 64-bit SCALAR_VALUE */ 5310 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5311 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5312 5313 /* continue with next insn after call */ 5314 return 0; 5315 } 5316 } 5317 5318 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5319 if (!callee) 5320 return -ENOMEM; 5321 state->frame[state->curframe + 1] = callee; 5322 5323 /* callee cannot access r0, r6 - r9 for reading and has to write 5324 * into its own stack before reading from it. 5325 * callee can read/write into caller's stack 5326 */ 5327 init_func_state(env, callee, 5328 /* remember the callsite, it will be used by bpf_exit */ 5329 *insn_idx /* callsite */, 5330 state->curframe + 1 /* frameno within this callchain */, 5331 subprog /* subprog number within this prog */); 5332 5333 /* Transfer references to the callee */ 5334 err = transfer_reference_state(callee, caller); 5335 if (err) 5336 return err; 5337 5338 /* copy r1 - r5 args that callee can access. The copy includes parent 5339 * pointers, which connects us up to the liveness chain 5340 */ 5341 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 5342 callee->regs[i] = caller->regs[i]; 5343 5344 clear_caller_saved_regs(env, caller->regs); 5345 5346 /* only increment it after check_reg_arg() finished */ 5347 state->curframe++; 5348 5349 /* and go analyze first insn of the callee */ 5350 *insn_idx = target_insn; 5351 5352 if (env->log.level & BPF_LOG_LEVEL) { 5353 verbose(env, "caller:\n"); 5354 print_verifier_state(env, caller); 5355 verbose(env, "callee:\n"); 5356 print_verifier_state(env, callee); 5357 } 5358 return 0; 5359 } 5360 5361 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 5362 { 5363 struct bpf_verifier_state *state = env->cur_state; 5364 struct bpf_func_state *caller, *callee; 5365 struct bpf_reg_state *r0; 5366 int err; 5367 5368 callee = state->frame[state->curframe]; 5369 r0 = &callee->regs[BPF_REG_0]; 5370 if (r0->type == PTR_TO_STACK) { 5371 /* technically it's ok to return caller's stack pointer 5372 * (or caller's caller's pointer) back to the caller, 5373 * since these pointers are valid. Only current stack 5374 * pointer will be invalid as soon as function exits, 5375 * but let's be conservative 5376 */ 5377 verbose(env, "cannot return stack pointer to the caller\n"); 5378 return -EINVAL; 5379 } 5380 5381 state->curframe--; 5382 caller = state->frame[state->curframe]; 5383 /* return to the caller whatever r0 had in the callee */ 5384 caller->regs[BPF_REG_0] = *r0; 5385 5386 /* Transfer references to the caller */ 5387 err = transfer_reference_state(caller, callee); 5388 if (err) 5389 return err; 5390 5391 *insn_idx = callee->callsite + 1; 5392 if (env->log.level & BPF_LOG_LEVEL) { 5393 verbose(env, "returning from callee:\n"); 5394 print_verifier_state(env, callee); 5395 verbose(env, "to caller at %d:\n", *insn_idx); 5396 print_verifier_state(env, caller); 5397 } 5398 /* clear everything in the callee */ 5399 free_func_state(callee); 5400 state->frame[state->curframe + 1] = NULL; 5401 return 0; 5402 } 5403 5404 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 5405 int func_id, 5406 struct bpf_call_arg_meta *meta) 5407 { 5408 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 5409 5410 if (ret_type != RET_INTEGER || 5411 (func_id != BPF_FUNC_get_stack && 5412 func_id != BPF_FUNC_probe_read_str && 5413 func_id != BPF_FUNC_probe_read_kernel_str && 5414 func_id != BPF_FUNC_probe_read_user_str)) 5415 return; 5416 5417 ret_reg->smax_value = meta->msize_max_value; 5418 ret_reg->s32_max_value = meta->msize_max_value; 5419 ret_reg->smin_value = -MAX_ERRNO; 5420 ret_reg->s32_min_value = -MAX_ERRNO; 5421 __reg_deduce_bounds(ret_reg); 5422 __reg_bound_offset(ret_reg); 5423 __update_reg_bounds(ret_reg); 5424 } 5425 5426 static int 5427 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5428 int func_id, int insn_idx) 5429 { 5430 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5431 struct bpf_map *map = meta->map_ptr; 5432 5433 if (func_id != BPF_FUNC_tail_call && 5434 func_id != BPF_FUNC_map_lookup_elem && 5435 func_id != BPF_FUNC_map_update_elem && 5436 func_id != BPF_FUNC_map_delete_elem && 5437 func_id != BPF_FUNC_map_push_elem && 5438 func_id != BPF_FUNC_map_pop_elem && 5439 func_id != BPF_FUNC_map_peek_elem) 5440 return 0; 5441 5442 if (map == NULL) { 5443 verbose(env, "kernel subsystem misconfigured verifier\n"); 5444 return -EINVAL; 5445 } 5446 5447 /* In case of read-only, some additional restrictions 5448 * need to be applied in order to prevent altering the 5449 * state of the map from program side. 5450 */ 5451 if ((map->map_flags & BPF_F_RDONLY_PROG) && 5452 (func_id == BPF_FUNC_map_delete_elem || 5453 func_id == BPF_FUNC_map_update_elem || 5454 func_id == BPF_FUNC_map_push_elem || 5455 func_id == BPF_FUNC_map_pop_elem)) { 5456 verbose(env, "write into map forbidden\n"); 5457 return -EACCES; 5458 } 5459 5460 if (!BPF_MAP_PTR(aux->map_ptr_state)) 5461 bpf_map_ptr_store(aux, meta->map_ptr, 5462 !meta->map_ptr->bypass_spec_v1); 5463 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 5464 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 5465 !meta->map_ptr->bypass_spec_v1); 5466 return 0; 5467 } 5468 5469 static int 5470 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5471 int func_id, int insn_idx) 5472 { 5473 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5474 struct bpf_reg_state *regs = cur_regs(env), *reg; 5475 struct bpf_map *map = meta->map_ptr; 5476 struct tnum range; 5477 u64 val; 5478 int err; 5479 5480 if (func_id != BPF_FUNC_tail_call) 5481 return 0; 5482 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 5483 verbose(env, "kernel subsystem misconfigured verifier\n"); 5484 return -EINVAL; 5485 } 5486 5487 range = tnum_range(0, map->max_entries - 1); 5488 reg = ®s[BPF_REG_3]; 5489 5490 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 5491 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5492 return 0; 5493 } 5494 5495 err = mark_chain_precision(env, BPF_REG_3); 5496 if (err) 5497 return err; 5498 5499 val = reg->var_off.value; 5500 if (bpf_map_key_unseen(aux)) 5501 bpf_map_key_store(aux, val); 5502 else if (!bpf_map_key_poisoned(aux) && 5503 bpf_map_key_immediate(aux) != val) 5504 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5505 return 0; 5506 } 5507 5508 static int check_reference_leak(struct bpf_verifier_env *env) 5509 { 5510 struct bpf_func_state *state = cur_func(env); 5511 int i; 5512 5513 for (i = 0; i < state->acquired_refs; i++) { 5514 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 5515 state->refs[i].id, state->refs[i].insn_idx); 5516 } 5517 return state->acquired_refs ? -EINVAL : 0; 5518 } 5519 5520 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 5521 { 5522 const struct bpf_func_proto *fn = NULL; 5523 struct bpf_reg_state *regs; 5524 struct bpf_call_arg_meta meta; 5525 bool changes_data; 5526 int i, err; 5527 5528 /* find function prototype */ 5529 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5530 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5531 func_id); 5532 return -EINVAL; 5533 } 5534 5535 if (env->ops->get_func_proto) 5536 fn = env->ops->get_func_proto(func_id, env->prog); 5537 if (!fn) { 5538 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5539 func_id); 5540 return -EINVAL; 5541 } 5542 5543 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5544 if (!env->prog->gpl_compatible && fn->gpl_only) { 5545 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5546 return -EINVAL; 5547 } 5548 5549 if (fn->allowed && !fn->allowed(env->prog)) { 5550 verbose(env, "helper call is not allowed in probe\n"); 5551 return -EINVAL; 5552 } 5553 5554 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5555 changes_data = bpf_helper_changes_pkt_data(fn->func); 5556 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5557 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5558 func_id_name(func_id), func_id); 5559 return -EINVAL; 5560 } 5561 5562 memset(&meta, 0, sizeof(meta)); 5563 meta.pkt_access = fn->pkt_access; 5564 5565 err = check_func_proto(fn, func_id); 5566 if (err) { 5567 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5568 func_id_name(func_id), func_id); 5569 return err; 5570 } 5571 5572 meta.func_id = func_id; 5573 /* check args */ 5574 for (i = 0; i < 5; i++) { 5575 err = check_func_arg(env, i, &meta, fn); 5576 if (err) 5577 return err; 5578 } 5579 5580 err = record_func_map(env, &meta, func_id, insn_idx); 5581 if (err) 5582 return err; 5583 5584 err = record_func_key(env, &meta, func_id, insn_idx); 5585 if (err) 5586 return err; 5587 5588 /* Mark slots with STACK_MISC in case of raw mode, stack offset 5589 * is inferred from register state. 5590 */ 5591 for (i = 0; i < meta.access_size; i++) { 5592 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 5593 BPF_WRITE, -1, false); 5594 if (err) 5595 return err; 5596 } 5597 5598 if (func_id == BPF_FUNC_tail_call) { 5599 err = check_reference_leak(env); 5600 if (err) { 5601 verbose(env, "tail_call would lead to reference leak\n"); 5602 return err; 5603 } 5604 } else if (is_release_function(func_id)) { 5605 err = release_reference(env, meta.ref_obj_id); 5606 if (err) { 5607 verbose(env, "func %s#%d reference has not been acquired before\n", 5608 func_id_name(func_id), func_id); 5609 return err; 5610 } 5611 } 5612 5613 regs = cur_regs(env); 5614 5615 /* check that flags argument in get_local_storage(map, flags) is 0, 5616 * this is required because get_local_storage() can't return an error. 5617 */ 5618 if (func_id == BPF_FUNC_get_local_storage && 5619 !register_is_null(®s[BPF_REG_2])) { 5620 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5621 return -EINVAL; 5622 } 5623 5624 /* reset caller saved regs */ 5625 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5626 mark_reg_not_init(env, regs, caller_saved[i]); 5627 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5628 } 5629 5630 /* helper call returns 64-bit value. */ 5631 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5632 5633 /* update return register (already marked as written above) */ 5634 if (fn->ret_type == RET_INTEGER) { 5635 /* sets type to SCALAR_VALUE */ 5636 mark_reg_unknown(env, regs, BPF_REG_0); 5637 } else if (fn->ret_type == RET_VOID) { 5638 regs[BPF_REG_0].type = NOT_INIT; 5639 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 5640 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5641 /* There is no offset yet applied, variable or fixed */ 5642 mark_reg_known_zero(env, regs, BPF_REG_0); 5643 /* remember map_ptr, so that check_map_access() 5644 * can check 'value_size' boundary of memory access 5645 * to map element returned from bpf_map_lookup_elem() 5646 */ 5647 if (meta.map_ptr == NULL) { 5648 verbose(env, 5649 "kernel subsystem misconfigured verifier\n"); 5650 return -EINVAL; 5651 } 5652 regs[BPF_REG_0].map_ptr = meta.map_ptr; 5653 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5654 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 5655 if (map_value_has_spin_lock(meta.map_ptr)) 5656 regs[BPF_REG_0].id = ++env->id_gen; 5657 } else { 5658 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 5659 } 5660 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 5661 mark_reg_known_zero(env, regs, BPF_REG_0); 5662 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 5663 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 5664 mark_reg_known_zero(env, regs, BPF_REG_0); 5665 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 5666 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 5667 mark_reg_known_zero(env, regs, BPF_REG_0); 5668 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 5669 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 5670 mark_reg_known_zero(env, regs, BPF_REG_0); 5671 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 5672 regs[BPF_REG_0].mem_size = meta.mem_size; 5673 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 5674 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 5675 const struct btf_type *t; 5676 5677 mark_reg_known_zero(env, regs, BPF_REG_0); 5678 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 5679 if (!btf_type_is_struct(t)) { 5680 u32 tsize; 5681 const struct btf_type *ret; 5682 const char *tname; 5683 5684 /* resolve the type size of ksym. */ 5685 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 5686 if (IS_ERR(ret)) { 5687 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 5688 verbose(env, "unable to resolve the size of type '%s': %ld\n", 5689 tname, PTR_ERR(ret)); 5690 return -EINVAL; 5691 } 5692 regs[BPF_REG_0].type = 5693 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5694 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 5695 regs[BPF_REG_0].mem_size = tsize; 5696 } else { 5697 regs[BPF_REG_0].type = 5698 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5699 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 5700 regs[BPF_REG_0].btf = meta.ret_btf; 5701 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 5702 } 5703 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 5704 fn->ret_type == RET_PTR_TO_BTF_ID) { 5705 int ret_btf_id; 5706 5707 mark_reg_known_zero(env, regs, BPF_REG_0); 5708 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 5709 PTR_TO_BTF_ID : 5710 PTR_TO_BTF_ID_OR_NULL; 5711 ret_btf_id = *fn->ret_btf_id; 5712 if (ret_btf_id == 0) { 5713 verbose(env, "invalid return type %d of func %s#%d\n", 5714 fn->ret_type, func_id_name(func_id), func_id); 5715 return -EINVAL; 5716 } 5717 /* current BPF helper definitions are only coming from 5718 * built-in code with type IDs from vmlinux BTF 5719 */ 5720 regs[BPF_REG_0].btf = btf_vmlinux; 5721 regs[BPF_REG_0].btf_id = ret_btf_id; 5722 } else { 5723 verbose(env, "unknown return type %d of func %s#%d\n", 5724 fn->ret_type, func_id_name(func_id), func_id); 5725 return -EINVAL; 5726 } 5727 5728 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 5729 regs[BPF_REG_0].id = ++env->id_gen; 5730 5731 if (is_ptr_cast_function(func_id)) { 5732 /* For release_reference() */ 5733 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 5734 } else if (is_acquire_function(func_id, meta.map_ptr)) { 5735 int id = acquire_reference_state(env, insn_idx); 5736 5737 if (id < 0) 5738 return id; 5739 /* For mark_ptr_or_null_reg() */ 5740 regs[BPF_REG_0].id = id; 5741 /* For release_reference() */ 5742 regs[BPF_REG_0].ref_obj_id = id; 5743 } 5744 5745 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 5746 5747 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 5748 if (err) 5749 return err; 5750 5751 if ((func_id == BPF_FUNC_get_stack || 5752 func_id == BPF_FUNC_get_task_stack) && 5753 !env->prog->has_callchain_buf) { 5754 const char *err_str; 5755 5756 #ifdef CONFIG_PERF_EVENTS 5757 err = get_callchain_buffers(sysctl_perf_event_max_stack); 5758 err_str = "cannot get callchain buffer for func %s#%d\n"; 5759 #else 5760 err = -ENOTSUPP; 5761 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 5762 #endif 5763 if (err) { 5764 verbose(env, err_str, func_id_name(func_id), func_id); 5765 return err; 5766 } 5767 5768 env->prog->has_callchain_buf = true; 5769 } 5770 5771 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 5772 env->prog->call_get_stack = true; 5773 5774 if (changes_data) 5775 clear_all_pkt_pointers(env); 5776 return 0; 5777 } 5778 5779 static bool signed_add_overflows(s64 a, s64 b) 5780 { 5781 /* Do the add in u64, where overflow is well-defined */ 5782 s64 res = (s64)((u64)a + (u64)b); 5783 5784 if (b < 0) 5785 return res > a; 5786 return res < a; 5787 } 5788 5789 static bool signed_add32_overflows(s32 a, s32 b) 5790 { 5791 /* Do the add in u32, where overflow is well-defined */ 5792 s32 res = (s32)((u32)a + (u32)b); 5793 5794 if (b < 0) 5795 return res > a; 5796 return res < a; 5797 } 5798 5799 static bool signed_sub_overflows(s64 a, s64 b) 5800 { 5801 /* Do the sub in u64, where overflow is well-defined */ 5802 s64 res = (s64)((u64)a - (u64)b); 5803 5804 if (b < 0) 5805 return res < a; 5806 return res > a; 5807 } 5808 5809 static bool signed_sub32_overflows(s32 a, s32 b) 5810 { 5811 /* Do the sub in u32, where overflow is well-defined */ 5812 s32 res = (s32)((u32)a - (u32)b); 5813 5814 if (b < 0) 5815 return res < a; 5816 return res > a; 5817 } 5818 5819 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 5820 const struct bpf_reg_state *reg, 5821 enum bpf_reg_type type) 5822 { 5823 bool known = tnum_is_const(reg->var_off); 5824 s64 val = reg->var_off.value; 5825 s64 smin = reg->smin_value; 5826 5827 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5828 verbose(env, "math between %s pointer and %lld is not allowed\n", 5829 reg_type_str[type], val); 5830 return false; 5831 } 5832 5833 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5834 verbose(env, "%s pointer offset %d is not allowed\n", 5835 reg_type_str[type], reg->off); 5836 return false; 5837 } 5838 5839 if (smin == S64_MIN) { 5840 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5841 reg_type_str[type]); 5842 return false; 5843 } 5844 5845 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5846 verbose(env, "value %lld makes %s pointer be out of bounds\n", 5847 smin, reg_type_str[type]); 5848 return false; 5849 } 5850 5851 return true; 5852 } 5853 5854 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5855 { 5856 return &env->insn_aux_data[env->insn_idx]; 5857 } 5858 5859 enum { 5860 REASON_BOUNDS = -1, 5861 REASON_TYPE = -2, 5862 REASON_PATHS = -3, 5863 REASON_LIMIT = -4, 5864 REASON_STACK = -5, 5865 }; 5866 5867 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 5868 const struct bpf_reg_state *off_reg, 5869 u32 *alu_limit, u8 opcode) 5870 { 5871 bool off_is_neg = off_reg->smin_value < 0; 5872 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 5873 (opcode == BPF_SUB && !off_is_neg); 5874 u32 max = 0, ptr_limit = 0; 5875 5876 if (!tnum_is_const(off_reg->var_off) && 5877 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 5878 return REASON_BOUNDS; 5879 5880 switch (ptr_reg->type) { 5881 case PTR_TO_STACK: 5882 /* Offset 0 is out-of-bounds, but acceptable start for the 5883 * left direction, see BPF_REG_FP. Also, unknown scalar 5884 * offset where we would need to deal with min/max bounds is 5885 * currently prohibited for unprivileged. 5886 */ 5887 max = MAX_BPF_STACK + mask_to_left; 5888 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 5889 break; 5890 case PTR_TO_MAP_VALUE: 5891 max = ptr_reg->map_ptr->value_size; 5892 ptr_limit = (mask_to_left ? 5893 ptr_reg->smin_value : 5894 ptr_reg->umax_value) + ptr_reg->off; 5895 break; 5896 default: 5897 return REASON_TYPE; 5898 } 5899 5900 if (ptr_limit >= max) 5901 return REASON_LIMIT; 5902 *alu_limit = ptr_limit; 5903 return 0; 5904 } 5905 5906 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 5907 const struct bpf_insn *insn) 5908 { 5909 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5910 } 5911 5912 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 5913 u32 alu_state, u32 alu_limit) 5914 { 5915 /* If we arrived here from different branches with different 5916 * state or limits to sanitize, then this won't work. 5917 */ 5918 if (aux->alu_state && 5919 (aux->alu_state != alu_state || 5920 aux->alu_limit != alu_limit)) 5921 return REASON_PATHS; 5922 5923 /* Corresponding fixup done in fixup_bpf_calls(). */ 5924 aux->alu_state = alu_state; 5925 aux->alu_limit = alu_limit; 5926 return 0; 5927 } 5928 5929 static int sanitize_val_alu(struct bpf_verifier_env *env, 5930 struct bpf_insn *insn) 5931 { 5932 struct bpf_insn_aux_data *aux = cur_aux(env); 5933 5934 if (can_skip_alu_sanitation(env, insn)) 5935 return 0; 5936 5937 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5938 } 5939 5940 static bool sanitize_needed(u8 opcode) 5941 { 5942 return opcode == BPF_ADD || opcode == BPF_SUB; 5943 } 5944 5945 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 5946 struct bpf_insn *insn, 5947 const struct bpf_reg_state *ptr_reg, 5948 const struct bpf_reg_state *off_reg, 5949 struct bpf_reg_state *dst_reg, 5950 struct bpf_insn_aux_data *tmp_aux, 5951 const bool commit_window) 5952 { 5953 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : tmp_aux; 5954 struct bpf_verifier_state *vstate = env->cur_state; 5955 bool off_is_neg = off_reg->smin_value < 0; 5956 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5957 u8 opcode = BPF_OP(insn->code); 5958 u32 alu_state, alu_limit; 5959 struct bpf_reg_state tmp; 5960 bool ret; 5961 int err; 5962 5963 if (can_skip_alu_sanitation(env, insn)) 5964 return 0; 5965 5966 /* We already marked aux for masking from non-speculative 5967 * paths, thus we got here in the first place. We only care 5968 * to explore bad access from here. 5969 */ 5970 if (vstate->speculative) 5971 goto do_sim; 5972 5973 err = retrieve_ptr_limit(ptr_reg, off_reg, &alu_limit, opcode); 5974 if (err < 0) 5975 return err; 5976 5977 if (commit_window) { 5978 /* In commit phase we narrow the masking window based on 5979 * the observed pointer move after the simulated operation. 5980 */ 5981 alu_state = tmp_aux->alu_state; 5982 alu_limit = abs(tmp_aux->alu_limit - alu_limit); 5983 } else { 5984 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5985 alu_state |= ptr_is_dst_reg ? 5986 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5987 } 5988 5989 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 5990 if (err < 0) 5991 return err; 5992 do_sim: 5993 /* If we're in commit phase, we're done here given we already 5994 * pushed the truncated dst_reg into the speculative verification 5995 * stack. 5996 */ 5997 if (commit_window) 5998 return 0; 5999 6000 /* Simulate and find potential out-of-bounds access under 6001 * speculative execution from truncation as a result of 6002 * masking when off was not within expected range. If off 6003 * sits in dst, then we temporarily need to move ptr there 6004 * to simulate dst (== 0) +/-= ptr. Needed, for example, 6005 * for cases where we use K-based arithmetic in one direction 6006 * and truncated reg-based in the other in order to explore 6007 * bad access. 6008 */ 6009 if (!ptr_is_dst_reg) { 6010 tmp = *dst_reg; 6011 *dst_reg = *ptr_reg; 6012 } 6013 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 6014 if (!ptr_is_dst_reg && ret) 6015 *dst_reg = tmp; 6016 return !ret ? REASON_STACK : 0; 6017 } 6018 6019 static int sanitize_err(struct bpf_verifier_env *env, 6020 const struct bpf_insn *insn, int reason, 6021 const struct bpf_reg_state *off_reg, 6022 const struct bpf_reg_state *dst_reg) 6023 { 6024 static const char *err = "pointer arithmetic with it prohibited for !root"; 6025 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 6026 u32 dst = insn->dst_reg, src = insn->src_reg; 6027 6028 switch (reason) { 6029 case REASON_BOUNDS: 6030 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 6031 off_reg == dst_reg ? dst : src, err); 6032 break; 6033 case REASON_TYPE: 6034 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 6035 off_reg == dst_reg ? src : dst, err); 6036 break; 6037 case REASON_PATHS: 6038 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 6039 dst, op, err); 6040 break; 6041 case REASON_LIMIT: 6042 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 6043 dst, op, err); 6044 break; 6045 case REASON_STACK: 6046 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 6047 dst, err); 6048 break; 6049 default: 6050 verbose(env, "verifier internal error: unknown reason (%d)\n", 6051 reason); 6052 break; 6053 } 6054 6055 return -EACCES; 6056 } 6057 6058 /* check that stack access falls within stack limits and that 'reg' doesn't 6059 * have a variable offset. 6060 * 6061 * Variable offset is prohibited for unprivileged mode for simplicity since it 6062 * requires corresponding support in Spectre masking for stack ALU. See also 6063 * retrieve_ptr_limit(). 6064 * 6065 * 6066 * 'off' includes 'reg->off'. 6067 */ 6068 static int check_stack_access_for_ptr_arithmetic( 6069 struct bpf_verifier_env *env, 6070 int regno, 6071 const struct bpf_reg_state *reg, 6072 int off) 6073 { 6074 if (!tnum_is_const(reg->var_off)) { 6075 char tn_buf[48]; 6076 6077 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6078 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 6079 regno, tn_buf, off); 6080 return -EACCES; 6081 } 6082 6083 if (off >= 0 || off < -MAX_BPF_STACK) { 6084 verbose(env, "R%d stack pointer arithmetic goes out of range, " 6085 "prohibited for !root; off=%d\n", regno, off); 6086 return -EACCES; 6087 } 6088 6089 return 0; 6090 } 6091 6092 static int sanitize_check_bounds(struct bpf_verifier_env *env, 6093 const struct bpf_insn *insn, 6094 const struct bpf_reg_state *dst_reg) 6095 { 6096 u32 dst = insn->dst_reg; 6097 6098 /* For unprivileged we require that resulting offset must be in bounds 6099 * in order to be able to sanitize access later on. 6100 */ 6101 if (env->bypass_spec_v1) 6102 return 0; 6103 6104 switch (dst_reg->type) { 6105 case PTR_TO_STACK: 6106 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 6107 dst_reg->off + dst_reg->var_off.value)) 6108 return -EACCES; 6109 break; 6110 case PTR_TO_MAP_VALUE: 6111 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 6112 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 6113 "prohibited for !root\n", dst); 6114 return -EACCES; 6115 } 6116 break; 6117 default: 6118 break; 6119 } 6120 6121 return 0; 6122 } 6123 6124 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 6125 * Caller should also handle BPF_MOV case separately. 6126 * If we return -EACCES, caller may want to try again treating pointer as a 6127 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 6128 */ 6129 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 6130 struct bpf_insn *insn, 6131 const struct bpf_reg_state *ptr_reg, 6132 const struct bpf_reg_state *off_reg) 6133 { 6134 struct bpf_verifier_state *vstate = env->cur_state; 6135 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6136 struct bpf_reg_state *regs = state->regs, *dst_reg; 6137 bool known = tnum_is_const(off_reg->var_off); 6138 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 6139 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 6140 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 6141 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 6142 struct bpf_insn_aux_data tmp_aux = {}; 6143 u8 opcode = BPF_OP(insn->code); 6144 u32 dst = insn->dst_reg; 6145 int ret; 6146 6147 dst_reg = ®s[dst]; 6148 6149 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 6150 smin_val > smax_val || umin_val > umax_val) { 6151 /* Taint dst register if offset had invalid bounds derived from 6152 * e.g. dead branches. 6153 */ 6154 __mark_reg_unknown(env, dst_reg); 6155 return 0; 6156 } 6157 6158 if (BPF_CLASS(insn->code) != BPF_ALU64) { 6159 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 6160 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6161 __mark_reg_unknown(env, dst_reg); 6162 return 0; 6163 } 6164 6165 verbose(env, 6166 "R%d 32-bit pointer arithmetic prohibited\n", 6167 dst); 6168 return -EACCES; 6169 } 6170 6171 switch (ptr_reg->type) { 6172 case PTR_TO_MAP_VALUE_OR_NULL: 6173 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 6174 dst, reg_type_str[ptr_reg->type]); 6175 return -EACCES; 6176 case CONST_PTR_TO_MAP: 6177 /* smin_val represents the known value */ 6178 if (known && smin_val == 0 && opcode == BPF_ADD) 6179 break; 6180 fallthrough; 6181 case PTR_TO_PACKET_END: 6182 case PTR_TO_SOCKET: 6183 case PTR_TO_SOCKET_OR_NULL: 6184 case PTR_TO_SOCK_COMMON: 6185 case PTR_TO_SOCK_COMMON_OR_NULL: 6186 case PTR_TO_TCP_SOCK: 6187 case PTR_TO_TCP_SOCK_OR_NULL: 6188 case PTR_TO_XDP_SOCK: 6189 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 6190 dst, reg_type_str[ptr_reg->type]); 6191 return -EACCES; 6192 default: 6193 break; 6194 } 6195 6196 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 6197 * The id may be overwritten later if we create a new variable offset. 6198 */ 6199 dst_reg->type = ptr_reg->type; 6200 dst_reg->id = ptr_reg->id; 6201 6202 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 6203 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 6204 return -EINVAL; 6205 6206 /* pointer types do not carry 32-bit bounds at the moment. */ 6207 __mark_reg32_unbounded(dst_reg); 6208 6209 if (sanitize_needed(opcode)) { 6210 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 6211 &tmp_aux, false); 6212 if (ret < 0) 6213 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6214 } 6215 6216 switch (opcode) { 6217 case BPF_ADD: 6218 /* We can take a fixed offset as long as it doesn't overflow 6219 * the s32 'off' field 6220 */ 6221 if (known && (ptr_reg->off + smin_val == 6222 (s64)(s32)(ptr_reg->off + smin_val))) { 6223 /* pointer += K. Accumulate it into fixed offset */ 6224 dst_reg->smin_value = smin_ptr; 6225 dst_reg->smax_value = smax_ptr; 6226 dst_reg->umin_value = umin_ptr; 6227 dst_reg->umax_value = umax_ptr; 6228 dst_reg->var_off = ptr_reg->var_off; 6229 dst_reg->off = ptr_reg->off + smin_val; 6230 dst_reg->raw = ptr_reg->raw; 6231 break; 6232 } 6233 /* A new variable offset is created. Note that off_reg->off 6234 * == 0, since it's a scalar. 6235 * dst_reg gets the pointer type and since some positive 6236 * integer value was added to the pointer, give it a new 'id' 6237 * if it's a PTR_TO_PACKET. 6238 * this creates a new 'base' pointer, off_reg (variable) gets 6239 * added into the variable offset, and we copy the fixed offset 6240 * from ptr_reg. 6241 */ 6242 if (signed_add_overflows(smin_ptr, smin_val) || 6243 signed_add_overflows(smax_ptr, smax_val)) { 6244 dst_reg->smin_value = S64_MIN; 6245 dst_reg->smax_value = S64_MAX; 6246 } else { 6247 dst_reg->smin_value = smin_ptr + smin_val; 6248 dst_reg->smax_value = smax_ptr + smax_val; 6249 } 6250 if (umin_ptr + umin_val < umin_ptr || 6251 umax_ptr + umax_val < umax_ptr) { 6252 dst_reg->umin_value = 0; 6253 dst_reg->umax_value = U64_MAX; 6254 } else { 6255 dst_reg->umin_value = umin_ptr + umin_val; 6256 dst_reg->umax_value = umax_ptr + umax_val; 6257 } 6258 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 6259 dst_reg->off = ptr_reg->off; 6260 dst_reg->raw = ptr_reg->raw; 6261 if (reg_is_pkt_pointer(ptr_reg)) { 6262 dst_reg->id = ++env->id_gen; 6263 /* something was added to pkt_ptr, set range to zero */ 6264 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6265 } 6266 break; 6267 case BPF_SUB: 6268 if (dst_reg == off_reg) { 6269 /* scalar -= pointer. Creates an unknown scalar */ 6270 verbose(env, "R%d tried to subtract pointer from scalar\n", 6271 dst); 6272 return -EACCES; 6273 } 6274 /* We don't allow subtraction from FP, because (according to 6275 * test_verifier.c test "invalid fp arithmetic", JITs might not 6276 * be able to deal with it. 6277 */ 6278 if (ptr_reg->type == PTR_TO_STACK) { 6279 verbose(env, "R%d subtraction from stack pointer prohibited\n", 6280 dst); 6281 return -EACCES; 6282 } 6283 if (known && (ptr_reg->off - smin_val == 6284 (s64)(s32)(ptr_reg->off - smin_val))) { 6285 /* pointer -= K. Subtract it from fixed offset */ 6286 dst_reg->smin_value = smin_ptr; 6287 dst_reg->smax_value = smax_ptr; 6288 dst_reg->umin_value = umin_ptr; 6289 dst_reg->umax_value = umax_ptr; 6290 dst_reg->var_off = ptr_reg->var_off; 6291 dst_reg->id = ptr_reg->id; 6292 dst_reg->off = ptr_reg->off - smin_val; 6293 dst_reg->raw = ptr_reg->raw; 6294 break; 6295 } 6296 /* A new variable offset is created. If the subtrahend is known 6297 * nonnegative, then any reg->range we had before is still good. 6298 */ 6299 if (signed_sub_overflows(smin_ptr, smax_val) || 6300 signed_sub_overflows(smax_ptr, smin_val)) { 6301 /* Overflow possible, we know nothing */ 6302 dst_reg->smin_value = S64_MIN; 6303 dst_reg->smax_value = S64_MAX; 6304 } else { 6305 dst_reg->smin_value = smin_ptr - smax_val; 6306 dst_reg->smax_value = smax_ptr - smin_val; 6307 } 6308 if (umin_ptr < umax_val) { 6309 /* Overflow possible, we know nothing */ 6310 dst_reg->umin_value = 0; 6311 dst_reg->umax_value = U64_MAX; 6312 } else { 6313 /* Cannot overflow (as long as bounds are consistent) */ 6314 dst_reg->umin_value = umin_ptr - umax_val; 6315 dst_reg->umax_value = umax_ptr - umin_val; 6316 } 6317 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 6318 dst_reg->off = ptr_reg->off; 6319 dst_reg->raw = ptr_reg->raw; 6320 if (reg_is_pkt_pointer(ptr_reg)) { 6321 dst_reg->id = ++env->id_gen; 6322 /* something was added to pkt_ptr, set range to zero */ 6323 if (smin_val < 0) 6324 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6325 } 6326 break; 6327 case BPF_AND: 6328 case BPF_OR: 6329 case BPF_XOR: 6330 /* bitwise ops on pointers are troublesome, prohibit. */ 6331 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 6332 dst, bpf_alu_string[opcode >> 4]); 6333 return -EACCES; 6334 default: 6335 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 6336 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 6337 dst, bpf_alu_string[opcode >> 4]); 6338 return -EACCES; 6339 } 6340 6341 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 6342 return -EINVAL; 6343 6344 __update_reg_bounds(dst_reg); 6345 __reg_deduce_bounds(dst_reg); 6346 __reg_bound_offset(dst_reg); 6347 6348 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 6349 return -EACCES; 6350 if (sanitize_needed(opcode)) { 6351 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 6352 &tmp_aux, true); 6353 if (ret < 0) 6354 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6355 } 6356 6357 return 0; 6358 } 6359 6360 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 6361 struct bpf_reg_state *src_reg) 6362 { 6363 s32 smin_val = src_reg->s32_min_value; 6364 s32 smax_val = src_reg->s32_max_value; 6365 u32 umin_val = src_reg->u32_min_value; 6366 u32 umax_val = src_reg->u32_max_value; 6367 6368 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 6369 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 6370 dst_reg->s32_min_value = S32_MIN; 6371 dst_reg->s32_max_value = S32_MAX; 6372 } else { 6373 dst_reg->s32_min_value += smin_val; 6374 dst_reg->s32_max_value += smax_val; 6375 } 6376 if (dst_reg->u32_min_value + umin_val < umin_val || 6377 dst_reg->u32_max_value + umax_val < umax_val) { 6378 dst_reg->u32_min_value = 0; 6379 dst_reg->u32_max_value = U32_MAX; 6380 } else { 6381 dst_reg->u32_min_value += umin_val; 6382 dst_reg->u32_max_value += umax_val; 6383 } 6384 } 6385 6386 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 6387 struct bpf_reg_state *src_reg) 6388 { 6389 s64 smin_val = src_reg->smin_value; 6390 s64 smax_val = src_reg->smax_value; 6391 u64 umin_val = src_reg->umin_value; 6392 u64 umax_val = src_reg->umax_value; 6393 6394 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 6395 signed_add_overflows(dst_reg->smax_value, smax_val)) { 6396 dst_reg->smin_value = S64_MIN; 6397 dst_reg->smax_value = S64_MAX; 6398 } else { 6399 dst_reg->smin_value += smin_val; 6400 dst_reg->smax_value += smax_val; 6401 } 6402 if (dst_reg->umin_value + umin_val < umin_val || 6403 dst_reg->umax_value + umax_val < umax_val) { 6404 dst_reg->umin_value = 0; 6405 dst_reg->umax_value = U64_MAX; 6406 } else { 6407 dst_reg->umin_value += umin_val; 6408 dst_reg->umax_value += umax_val; 6409 } 6410 } 6411 6412 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 6413 struct bpf_reg_state *src_reg) 6414 { 6415 s32 smin_val = src_reg->s32_min_value; 6416 s32 smax_val = src_reg->s32_max_value; 6417 u32 umin_val = src_reg->u32_min_value; 6418 u32 umax_val = src_reg->u32_max_value; 6419 6420 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 6421 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 6422 /* Overflow possible, we know nothing */ 6423 dst_reg->s32_min_value = S32_MIN; 6424 dst_reg->s32_max_value = S32_MAX; 6425 } else { 6426 dst_reg->s32_min_value -= smax_val; 6427 dst_reg->s32_max_value -= smin_val; 6428 } 6429 if (dst_reg->u32_min_value < umax_val) { 6430 /* Overflow possible, we know nothing */ 6431 dst_reg->u32_min_value = 0; 6432 dst_reg->u32_max_value = U32_MAX; 6433 } else { 6434 /* Cannot overflow (as long as bounds are consistent) */ 6435 dst_reg->u32_min_value -= umax_val; 6436 dst_reg->u32_max_value -= umin_val; 6437 } 6438 } 6439 6440 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 6441 struct bpf_reg_state *src_reg) 6442 { 6443 s64 smin_val = src_reg->smin_value; 6444 s64 smax_val = src_reg->smax_value; 6445 u64 umin_val = src_reg->umin_value; 6446 u64 umax_val = src_reg->umax_value; 6447 6448 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 6449 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 6450 /* Overflow possible, we know nothing */ 6451 dst_reg->smin_value = S64_MIN; 6452 dst_reg->smax_value = S64_MAX; 6453 } else { 6454 dst_reg->smin_value -= smax_val; 6455 dst_reg->smax_value -= smin_val; 6456 } 6457 if (dst_reg->umin_value < umax_val) { 6458 /* Overflow possible, we know nothing */ 6459 dst_reg->umin_value = 0; 6460 dst_reg->umax_value = U64_MAX; 6461 } else { 6462 /* Cannot overflow (as long as bounds are consistent) */ 6463 dst_reg->umin_value -= umax_val; 6464 dst_reg->umax_value -= umin_val; 6465 } 6466 } 6467 6468 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 6469 struct bpf_reg_state *src_reg) 6470 { 6471 s32 smin_val = src_reg->s32_min_value; 6472 u32 umin_val = src_reg->u32_min_value; 6473 u32 umax_val = src_reg->u32_max_value; 6474 6475 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 6476 /* Ain't nobody got time to multiply that sign */ 6477 __mark_reg32_unbounded(dst_reg); 6478 return; 6479 } 6480 /* Both values are positive, so we can work with unsigned and 6481 * copy the result to signed (unless it exceeds S32_MAX). 6482 */ 6483 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 6484 /* Potential overflow, we know nothing */ 6485 __mark_reg32_unbounded(dst_reg); 6486 return; 6487 } 6488 dst_reg->u32_min_value *= umin_val; 6489 dst_reg->u32_max_value *= umax_val; 6490 if (dst_reg->u32_max_value > S32_MAX) { 6491 /* Overflow possible, we know nothing */ 6492 dst_reg->s32_min_value = S32_MIN; 6493 dst_reg->s32_max_value = S32_MAX; 6494 } else { 6495 dst_reg->s32_min_value = dst_reg->u32_min_value; 6496 dst_reg->s32_max_value = dst_reg->u32_max_value; 6497 } 6498 } 6499 6500 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 6501 struct bpf_reg_state *src_reg) 6502 { 6503 s64 smin_val = src_reg->smin_value; 6504 u64 umin_val = src_reg->umin_value; 6505 u64 umax_val = src_reg->umax_value; 6506 6507 if (smin_val < 0 || dst_reg->smin_value < 0) { 6508 /* Ain't nobody got time to multiply that sign */ 6509 __mark_reg64_unbounded(dst_reg); 6510 return; 6511 } 6512 /* Both values are positive, so we can work with unsigned and 6513 * copy the result to signed (unless it exceeds S64_MAX). 6514 */ 6515 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 6516 /* Potential overflow, we know nothing */ 6517 __mark_reg64_unbounded(dst_reg); 6518 return; 6519 } 6520 dst_reg->umin_value *= umin_val; 6521 dst_reg->umax_value *= umax_val; 6522 if (dst_reg->umax_value > S64_MAX) { 6523 /* Overflow possible, we know nothing */ 6524 dst_reg->smin_value = S64_MIN; 6525 dst_reg->smax_value = S64_MAX; 6526 } else { 6527 dst_reg->smin_value = dst_reg->umin_value; 6528 dst_reg->smax_value = dst_reg->umax_value; 6529 } 6530 } 6531 6532 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 6533 struct bpf_reg_state *src_reg) 6534 { 6535 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6536 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6537 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6538 s32 smin_val = src_reg->s32_min_value; 6539 u32 umax_val = src_reg->u32_max_value; 6540 6541 /* Assuming scalar64_min_max_and will be called so its safe 6542 * to skip updating register for known 32-bit case. 6543 */ 6544 if (src_known && dst_known) 6545 return; 6546 6547 /* We get our minimum from the var_off, since that's inherently 6548 * bitwise. Our maximum is the minimum of the operands' maxima. 6549 */ 6550 dst_reg->u32_min_value = var32_off.value; 6551 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 6552 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 6553 /* Lose signed bounds when ANDing negative numbers, 6554 * ain't nobody got time for that. 6555 */ 6556 dst_reg->s32_min_value = S32_MIN; 6557 dst_reg->s32_max_value = S32_MAX; 6558 } else { 6559 /* ANDing two positives gives a positive, so safe to 6560 * cast result into s64. 6561 */ 6562 dst_reg->s32_min_value = dst_reg->u32_min_value; 6563 dst_reg->s32_max_value = dst_reg->u32_max_value; 6564 } 6565 6566 } 6567 6568 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 6569 struct bpf_reg_state *src_reg) 6570 { 6571 bool src_known = tnum_is_const(src_reg->var_off); 6572 bool dst_known = tnum_is_const(dst_reg->var_off); 6573 s64 smin_val = src_reg->smin_value; 6574 u64 umax_val = src_reg->umax_value; 6575 6576 if (src_known && dst_known) { 6577 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6578 return; 6579 } 6580 6581 /* We get our minimum from the var_off, since that's inherently 6582 * bitwise. Our maximum is the minimum of the operands' maxima. 6583 */ 6584 dst_reg->umin_value = dst_reg->var_off.value; 6585 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 6586 if (dst_reg->smin_value < 0 || smin_val < 0) { 6587 /* Lose signed bounds when ANDing negative numbers, 6588 * ain't nobody got time for that. 6589 */ 6590 dst_reg->smin_value = S64_MIN; 6591 dst_reg->smax_value = S64_MAX; 6592 } else { 6593 /* ANDing two positives gives a positive, so safe to 6594 * cast result into s64. 6595 */ 6596 dst_reg->smin_value = dst_reg->umin_value; 6597 dst_reg->smax_value = dst_reg->umax_value; 6598 } 6599 /* We may learn something more from the var_off */ 6600 __update_reg_bounds(dst_reg); 6601 } 6602 6603 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 6604 struct bpf_reg_state *src_reg) 6605 { 6606 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6607 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6608 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6609 s32 smin_val = src_reg->s32_min_value; 6610 u32 umin_val = src_reg->u32_min_value; 6611 6612 /* Assuming scalar64_min_max_or will be called so it is safe 6613 * to skip updating register for known case. 6614 */ 6615 if (src_known && dst_known) 6616 return; 6617 6618 /* We get our maximum from the var_off, and our minimum is the 6619 * maximum of the operands' minima 6620 */ 6621 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 6622 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6623 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 6624 /* Lose signed bounds when ORing negative numbers, 6625 * ain't nobody got time for that. 6626 */ 6627 dst_reg->s32_min_value = S32_MIN; 6628 dst_reg->s32_max_value = S32_MAX; 6629 } else { 6630 /* ORing two positives gives a positive, so safe to 6631 * cast result into s64. 6632 */ 6633 dst_reg->s32_min_value = dst_reg->u32_min_value; 6634 dst_reg->s32_max_value = dst_reg->u32_max_value; 6635 } 6636 } 6637 6638 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 6639 struct bpf_reg_state *src_reg) 6640 { 6641 bool src_known = tnum_is_const(src_reg->var_off); 6642 bool dst_known = tnum_is_const(dst_reg->var_off); 6643 s64 smin_val = src_reg->smin_value; 6644 u64 umin_val = src_reg->umin_value; 6645 6646 if (src_known && dst_known) { 6647 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6648 return; 6649 } 6650 6651 /* We get our maximum from the var_off, and our minimum is the 6652 * maximum of the operands' minima 6653 */ 6654 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 6655 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6656 if (dst_reg->smin_value < 0 || smin_val < 0) { 6657 /* Lose signed bounds when ORing negative numbers, 6658 * ain't nobody got time for that. 6659 */ 6660 dst_reg->smin_value = S64_MIN; 6661 dst_reg->smax_value = S64_MAX; 6662 } else { 6663 /* ORing two positives gives a positive, so safe to 6664 * cast result into s64. 6665 */ 6666 dst_reg->smin_value = dst_reg->umin_value; 6667 dst_reg->smax_value = dst_reg->umax_value; 6668 } 6669 /* We may learn something more from the var_off */ 6670 __update_reg_bounds(dst_reg); 6671 } 6672 6673 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 6674 struct bpf_reg_state *src_reg) 6675 { 6676 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6677 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6678 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6679 s32 smin_val = src_reg->s32_min_value; 6680 6681 /* Assuming scalar64_min_max_xor will be called so it is safe 6682 * to skip updating register for known case. 6683 */ 6684 if (src_known && dst_known) 6685 return; 6686 6687 /* We get both minimum and maximum from the var32_off. */ 6688 dst_reg->u32_min_value = var32_off.value; 6689 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6690 6691 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 6692 /* XORing two positive sign numbers gives a positive, 6693 * so safe to cast u32 result into s32. 6694 */ 6695 dst_reg->s32_min_value = dst_reg->u32_min_value; 6696 dst_reg->s32_max_value = dst_reg->u32_max_value; 6697 } else { 6698 dst_reg->s32_min_value = S32_MIN; 6699 dst_reg->s32_max_value = S32_MAX; 6700 } 6701 } 6702 6703 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 6704 struct bpf_reg_state *src_reg) 6705 { 6706 bool src_known = tnum_is_const(src_reg->var_off); 6707 bool dst_known = tnum_is_const(dst_reg->var_off); 6708 s64 smin_val = src_reg->smin_value; 6709 6710 if (src_known && dst_known) { 6711 /* dst_reg->var_off.value has been updated earlier */ 6712 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6713 return; 6714 } 6715 6716 /* We get both minimum and maximum from the var_off. */ 6717 dst_reg->umin_value = dst_reg->var_off.value; 6718 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6719 6720 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 6721 /* XORing two positive sign numbers gives a positive, 6722 * so safe to cast u64 result into s64. 6723 */ 6724 dst_reg->smin_value = dst_reg->umin_value; 6725 dst_reg->smax_value = dst_reg->umax_value; 6726 } else { 6727 dst_reg->smin_value = S64_MIN; 6728 dst_reg->smax_value = S64_MAX; 6729 } 6730 6731 __update_reg_bounds(dst_reg); 6732 } 6733 6734 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6735 u64 umin_val, u64 umax_val) 6736 { 6737 /* We lose all sign bit information (except what we can pick 6738 * up from var_off) 6739 */ 6740 dst_reg->s32_min_value = S32_MIN; 6741 dst_reg->s32_max_value = S32_MAX; 6742 /* If we might shift our top bit out, then we know nothing */ 6743 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 6744 dst_reg->u32_min_value = 0; 6745 dst_reg->u32_max_value = U32_MAX; 6746 } else { 6747 dst_reg->u32_min_value <<= umin_val; 6748 dst_reg->u32_max_value <<= umax_val; 6749 } 6750 } 6751 6752 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6753 struct bpf_reg_state *src_reg) 6754 { 6755 u32 umax_val = src_reg->u32_max_value; 6756 u32 umin_val = src_reg->u32_min_value; 6757 /* u32 alu operation will zext upper bits */ 6758 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6759 6760 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6761 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 6762 /* Not required but being careful mark reg64 bounds as unknown so 6763 * that we are forced to pick them up from tnum and zext later and 6764 * if some path skips this step we are still safe. 6765 */ 6766 __mark_reg64_unbounded(dst_reg); 6767 __update_reg32_bounds(dst_reg); 6768 } 6769 6770 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 6771 u64 umin_val, u64 umax_val) 6772 { 6773 /* Special case <<32 because it is a common compiler pattern to sign 6774 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 6775 * positive we know this shift will also be positive so we can track 6776 * bounds correctly. Otherwise we lose all sign bit information except 6777 * what we can pick up from var_off. Perhaps we can generalize this 6778 * later to shifts of any length. 6779 */ 6780 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 6781 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 6782 else 6783 dst_reg->smax_value = S64_MAX; 6784 6785 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 6786 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 6787 else 6788 dst_reg->smin_value = S64_MIN; 6789 6790 /* If we might shift our top bit out, then we know nothing */ 6791 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 6792 dst_reg->umin_value = 0; 6793 dst_reg->umax_value = U64_MAX; 6794 } else { 6795 dst_reg->umin_value <<= umin_val; 6796 dst_reg->umax_value <<= umax_val; 6797 } 6798 } 6799 6800 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 6801 struct bpf_reg_state *src_reg) 6802 { 6803 u64 umax_val = src_reg->umax_value; 6804 u64 umin_val = src_reg->umin_value; 6805 6806 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 6807 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 6808 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6809 6810 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 6811 /* We may learn something more from the var_off */ 6812 __update_reg_bounds(dst_reg); 6813 } 6814 6815 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 6816 struct bpf_reg_state *src_reg) 6817 { 6818 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6819 u32 umax_val = src_reg->u32_max_value; 6820 u32 umin_val = src_reg->u32_min_value; 6821 6822 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6823 * be negative, then either: 6824 * 1) src_reg might be zero, so the sign bit of the result is 6825 * unknown, so we lose our signed bounds 6826 * 2) it's known negative, thus the unsigned bounds capture the 6827 * signed bounds 6828 * 3) the signed bounds cross zero, so they tell us nothing 6829 * about the result 6830 * If the value in dst_reg is known nonnegative, then again the 6831 * unsigned bounds capture the signed bounds. 6832 * Thus, in all cases it suffices to blow away our signed bounds 6833 * and rely on inferring new ones from the unsigned bounds and 6834 * var_off of the result. 6835 */ 6836 dst_reg->s32_min_value = S32_MIN; 6837 dst_reg->s32_max_value = S32_MAX; 6838 6839 dst_reg->var_off = tnum_rshift(subreg, umin_val); 6840 dst_reg->u32_min_value >>= umax_val; 6841 dst_reg->u32_max_value >>= umin_val; 6842 6843 __mark_reg64_unbounded(dst_reg); 6844 __update_reg32_bounds(dst_reg); 6845 } 6846 6847 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 6848 struct bpf_reg_state *src_reg) 6849 { 6850 u64 umax_val = src_reg->umax_value; 6851 u64 umin_val = src_reg->umin_value; 6852 6853 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6854 * be negative, then either: 6855 * 1) src_reg might be zero, so the sign bit of the result is 6856 * unknown, so we lose our signed bounds 6857 * 2) it's known negative, thus the unsigned bounds capture the 6858 * signed bounds 6859 * 3) the signed bounds cross zero, so they tell us nothing 6860 * about the result 6861 * If the value in dst_reg is known nonnegative, then again the 6862 * unsigned bounds capture the signed bounds. 6863 * Thus, in all cases it suffices to blow away our signed bounds 6864 * and rely on inferring new ones from the unsigned bounds and 6865 * var_off of the result. 6866 */ 6867 dst_reg->smin_value = S64_MIN; 6868 dst_reg->smax_value = S64_MAX; 6869 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 6870 dst_reg->umin_value >>= umax_val; 6871 dst_reg->umax_value >>= umin_val; 6872 6873 /* Its not easy to operate on alu32 bounds here because it depends 6874 * on bits being shifted in. Take easy way out and mark unbounded 6875 * so we can recalculate later from tnum. 6876 */ 6877 __mark_reg32_unbounded(dst_reg); 6878 __update_reg_bounds(dst_reg); 6879 } 6880 6881 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 6882 struct bpf_reg_state *src_reg) 6883 { 6884 u64 umin_val = src_reg->u32_min_value; 6885 6886 /* Upon reaching here, src_known is true and 6887 * umax_val is equal to umin_val. 6888 */ 6889 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 6890 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 6891 6892 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 6893 6894 /* blow away the dst_reg umin_value/umax_value and rely on 6895 * dst_reg var_off to refine the result. 6896 */ 6897 dst_reg->u32_min_value = 0; 6898 dst_reg->u32_max_value = U32_MAX; 6899 6900 __mark_reg64_unbounded(dst_reg); 6901 __update_reg32_bounds(dst_reg); 6902 } 6903 6904 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 6905 struct bpf_reg_state *src_reg) 6906 { 6907 u64 umin_val = src_reg->umin_value; 6908 6909 /* Upon reaching here, src_known is true and umax_val is equal 6910 * to umin_val. 6911 */ 6912 dst_reg->smin_value >>= umin_val; 6913 dst_reg->smax_value >>= umin_val; 6914 6915 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 6916 6917 /* blow away the dst_reg umin_value/umax_value and rely on 6918 * dst_reg var_off to refine the result. 6919 */ 6920 dst_reg->umin_value = 0; 6921 dst_reg->umax_value = U64_MAX; 6922 6923 /* Its not easy to operate on alu32 bounds here because it depends 6924 * on bits being shifted in from upper 32-bits. Take easy way out 6925 * and mark unbounded so we can recalculate later from tnum. 6926 */ 6927 __mark_reg32_unbounded(dst_reg); 6928 __update_reg_bounds(dst_reg); 6929 } 6930 6931 /* WARNING: This function does calculations on 64-bit values, but the actual 6932 * execution may occur on 32-bit values. Therefore, things like bitshifts 6933 * need extra checks in the 32-bit case. 6934 */ 6935 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 6936 struct bpf_insn *insn, 6937 struct bpf_reg_state *dst_reg, 6938 struct bpf_reg_state src_reg) 6939 { 6940 struct bpf_reg_state *regs = cur_regs(env); 6941 u8 opcode = BPF_OP(insn->code); 6942 bool src_known; 6943 s64 smin_val, smax_val; 6944 u64 umin_val, umax_val; 6945 s32 s32_min_val, s32_max_val; 6946 u32 u32_min_val, u32_max_val; 6947 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 6948 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 6949 int ret; 6950 6951 smin_val = src_reg.smin_value; 6952 smax_val = src_reg.smax_value; 6953 umin_val = src_reg.umin_value; 6954 umax_val = src_reg.umax_value; 6955 6956 s32_min_val = src_reg.s32_min_value; 6957 s32_max_val = src_reg.s32_max_value; 6958 u32_min_val = src_reg.u32_min_value; 6959 u32_max_val = src_reg.u32_max_value; 6960 6961 if (alu32) { 6962 src_known = tnum_subreg_is_const(src_reg.var_off); 6963 if ((src_known && 6964 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 6965 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 6966 /* Taint dst register if offset had invalid bounds 6967 * derived from e.g. dead branches. 6968 */ 6969 __mark_reg_unknown(env, dst_reg); 6970 return 0; 6971 } 6972 } else { 6973 src_known = tnum_is_const(src_reg.var_off); 6974 if ((src_known && 6975 (smin_val != smax_val || umin_val != umax_val)) || 6976 smin_val > smax_val || umin_val > umax_val) { 6977 /* Taint dst register if offset had invalid bounds 6978 * derived from e.g. dead branches. 6979 */ 6980 __mark_reg_unknown(env, dst_reg); 6981 return 0; 6982 } 6983 } 6984 6985 if (!src_known && 6986 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 6987 __mark_reg_unknown(env, dst_reg); 6988 return 0; 6989 } 6990 6991 if (sanitize_needed(opcode)) { 6992 ret = sanitize_val_alu(env, insn); 6993 if (ret < 0) 6994 return sanitize_err(env, insn, ret, NULL, NULL); 6995 } 6996 6997 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 6998 * There are two classes of instructions: The first class we track both 6999 * alu32 and alu64 sign/unsigned bounds independently this provides the 7000 * greatest amount of precision when alu operations are mixed with jmp32 7001 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 7002 * and BPF_OR. This is possible because these ops have fairly easy to 7003 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 7004 * See alu32 verifier tests for examples. The second class of 7005 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 7006 * with regards to tracking sign/unsigned bounds because the bits may 7007 * cross subreg boundaries in the alu64 case. When this happens we mark 7008 * the reg unbounded in the subreg bound space and use the resulting 7009 * tnum to calculate an approximation of the sign/unsigned bounds. 7010 */ 7011 switch (opcode) { 7012 case BPF_ADD: 7013 scalar32_min_max_add(dst_reg, &src_reg); 7014 scalar_min_max_add(dst_reg, &src_reg); 7015 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 7016 break; 7017 case BPF_SUB: 7018 scalar32_min_max_sub(dst_reg, &src_reg); 7019 scalar_min_max_sub(dst_reg, &src_reg); 7020 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 7021 break; 7022 case BPF_MUL: 7023 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 7024 scalar32_min_max_mul(dst_reg, &src_reg); 7025 scalar_min_max_mul(dst_reg, &src_reg); 7026 break; 7027 case BPF_AND: 7028 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 7029 scalar32_min_max_and(dst_reg, &src_reg); 7030 scalar_min_max_and(dst_reg, &src_reg); 7031 break; 7032 case BPF_OR: 7033 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 7034 scalar32_min_max_or(dst_reg, &src_reg); 7035 scalar_min_max_or(dst_reg, &src_reg); 7036 break; 7037 case BPF_XOR: 7038 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 7039 scalar32_min_max_xor(dst_reg, &src_reg); 7040 scalar_min_max_xor(dst_reg, &src_reg); 7041 break; 7042 case BPF_LSH: 7043 if (umax_val >= insn_bitness) { 7044 /* Shifts greater than 31 or 63 are undefined. 7045 * This includes shifts by a negative number. 7046 */ 7047 mark_reg_unknown(env, regs, insn->dst_reg); 7048 break; 7049 } 7050 if (alu32) 7051 scalar32_min_max_lsh(dst_reg, &src_reg); 7052 else 7053 scalar_min_max_lsh(dst_reg, &src_reg); 7054 break; 7055 case BPF_RSH: 7056 if (umax_val >= insn_bitness) { 7057 /* Shifts greater than 31 or 63 are undefined. 7058 * This includes shifts by a negative number. 7059 */ 7060 mark_reg_unknown(env, regs, insn->dst_reg); 7061 break; 7062 } 7063 if (alu32) 7064 scalar32_min_max_rsh(dst_reg, &src_reg); 7065 else 7066 scalar_min_max_rsh(dst_reg, &src_reg); 7067 break; 7068 case BPF_ARSH: 7069 if (umax_val >= insn_bitness) { 7070 /* Shifts greater than 31 or 63 are undefined. 7071 * This includes shifts by a negative number. 7072 */ 7073 mark_reg_unknown(env, regs, insn->dst_reg); 7074 break; 7075 } 7076 if (alu32) 7077 scalar32_min_max_arsh(dst_reg, &src_reg); 7078 else 7079 scalar_min_max_arsh(dst_reg, &src_reg); 7080 break; 7081 default: 7082 mark_reg_unknown(env, regs, insn->dst_reg); 7083 break; 7084 } 7085 7086 /* ALU32 ops are zero extended into 64bit register */ 7087 if (alu32) 7088 zext_32_to_64(dst_reg); 7089 7090 __update_reg_bounds(dst_reg); 7091 __reg_deduce_bounds(dst_reg); 7092 __reg_bound_offset(dst_reg); 7093 return 0; 7094 } 7095 7096 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 7097 * and var_off. 7098 */ 7099 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 7100 struct bpf_insn *insn) 7101 { 7102 struct bpf_verifier_state *vstate = env->cur_state; 7103 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7104 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 7105 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 7106 u8 opcode = BPF_OP(insn->code); 7107 int err; 7108 7109 dst_reg = ®s[insn->dst_reg]; 7110 src_reg = NULL; 7111 if (dst_reg->type != SCALAR_VALUE) 7112 ptr_reg = dst_reg; 7113 else 7114 /* Make sure ID is cleared otherwise dst_reg min/max could be 7115 * incorrectly propagated into other registers by find_equal_scalars() 7116 */ 7117 dst_reg->id = 0; 7118 if (BPF_SRC(insn->code) == BPF_X) { 7119 src_reg = ®s[insn->src_reg]; 7120 if (src_reg->type != SCALAR_VALUE) { 7121 if (dst_reg->type != SCALAR_VALUE) { 7122 /* Combining two pointers by any ALU op yields 7123 * an arbitrary scalar. Disallow all math except 7124 * pointer subtraction 7125 */ 7126 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7127 mark_reg_unknown(env, regs, insn->dst_reg); 7128 return 0; 7129 } 7130 verbose(env, "R%d pointer %s pointer prohibited\n", 7131 insn->dst_reg, 7132 bpf_alu_string[opcode >> 4]); 7133 return -EACCES; 7134 } else { 7135 /* scalar += pointer 7136 * This is legal, but we have to reverse our 7137 * src/dest handling in computing the range 7138 */ 7139 err = mark_chain_precision(env, insn->dst_reg); 7140 if (err) 7141 return err; 7142 return adjust_ptr_min_max_vals(env, insn, 7143 src_reg, dst_reg); 7144 } 7145 } else if (ptr_reg) { 7146 /* pointer += scalar */ 7147 err = mark_chain_precision(env, insn->src_reg); 7148 if (err) 7149 return err; 7150 return adjust_ptr_min_max_vals(env, insn, 7151 dst_reg, src_reg); 7152 } 7153 } else { 7154 /* Pretend the src is a reg with a known value, since we only 7155 * need to be able to read from this state. 7156 */ 7157 off_reg.type = SCALAR_VALUE; 7158 __mark_reg_known(&off_reg, insn->imm); 7159 src_reg = &off_reg; 7160 if (ptr_reg) /* pointer += K */ 7161 return adjust_ptr_min_max_vals(env, insn, 7162 ptr_reg, src_reg); 7163 } 7164 7165 /* Got here implies adding two SCALAR_VALUEs */ 7166 if (WARN_ON_ONCE(ptr_reg)) { 7167 print_verifier_state(env, state); 7168 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 7169 return -EINVAL; 7170 } 7171 if (WARN_ON(!src_reg)) { 7172 print_verifier_state(env, state); 7173 verbose(env, "verifier internal error: no src_reg\n"); 7174 return -EINVAL; 7175 } 7176 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 7177 } 7178 7179 /* check validity of 32-bit and 64-bit arithmetic operations */ 7180 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 7181 { 7182 struct bpf_reg_state *regs = cur_regs(env); 7183 u8 opcode = BPF_OP(insn->code); 7184 int err; 7185 7186 if (opcode == BPF_END || opcode == BPF_NEG) { 7187 if (opcode == BPF_NEG) { 7188 if (BPF_SRC(insn->code) != 0 || 7189 insn->src_reg != BPF_REG_0 || 7190 insn->off != 0 || insn->imm != 0) { 7191 verbose(env, "BPF_NEG uses reserved fields\n"); 7192 return -EINVAL; 7193 } 7194 } else { 7195 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 7196 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 7197 BPF_CLASS(insn->code) == BPF_ALU64) { 7198 verbose(env, "BPF_END uses reserved fields\n"); 7199 return -EINVAL; 7200 } 7201 } 7202 7203 /* check src operand */ 7204 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7205 if (err) 7206 return err; 7207 7208 if (is_pointer_value(env, insn->dst_reg)) { 7209 verbose(env, "R%d pointer arithmetic prohibited\n", 7210 insn->dst_reg); 7211 return -EACCES; 7212 } 7213 7214 /* check dest operand */ 7215 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7216 if (err) 7217 return err; 7218 7219 } else if (opcode == BPF_MOV) { 7220 7221 if (BPF_SRC(insn->code) == BPF_X) { 7222 if (insn->imm != 0 || insn->off != 0) { 7223 verbose(env, "BPF_MOV uses reserved fields\n"); 7224 return -EINVAL; 7225 } 7226 7227 /* check src operand */ 7228 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7229 if (err) 7230 return err; 7231 } else { 7232 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7233 verbose(env, "BPF_MOV uses reserved fields\n"); 7234 return -EINVAL; 7235 } 7236 } 7237 7238 /* check dest operand, mark as required later */ 7239 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7240 if (err) 7241 return err; 7242 7243 if (BPF_SRC(insn->code) == BPF_X) { 7244 struct bpf_reg_state *src_reg = regs + insn->src_reg; 7245 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 7246 7247 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7248 /* case: R1 = R2 7249 * copy register state to dest reg 7250 */ 7251 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 7252 /* Assign src and dst registers the same ID 7253 * that will be used by find_equal_scalars() 7254 * to propagate min/max range. 7255 */ 7256 src_reg->id = ++env->id_gen; 7257 *dst_reg = *src_reg; 7258 dst_reg->live |= REG_LIVE_WRITTEN; 7259 dst_reg->subreg_def = DEF_NOT_SUBREG; 7260 } else { 7261 /* R1 = (u32) R2 */ 7262 if (is_pointer_value(env, insn->src_reg)) { 7263 verbose(env, 7264 "R%d partial copy of pointer\n", 7265 insn->src_reg); 7266 return -EACCES; 7267 } else if (src_reg->type == SCALAR_VALUE) { 7268 *dst_reg = *src_reg; 7269 /* Make sure ID is cleared otherwise 7270 * dst_reg min/max could be incorrectly 7271 * propagated into src_reg by find_equal_scalars() 7272 */ 7273 dst_reg->id = 0; 7274 dst_reg->live |= REG_LIVE_WRITTEN; 7275 dst_reg->subreg_def = env->insn_idx + 1; 7276 } else { 7277 mark_reg_unknown(env, regs, 7278 insn->dst_reg); 7279 } 7280 zext_32_to_64(dst_reg); 7281 } 7282 } else { 7283 /* case: R = imm 7284 * remember the value we stored into this reg 7285 */ 7286 /* clear any state __mark_reg_known doesn't set */ 7287 mark_reg_unknown(env, regs, insn->dst_reg); 7288 regs[insn->dst_reg].type = SCALAR_VALUE; 7289 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7290 __mark_reg_known(regs + insn->dst_reg, 7291 insn->imm); 7292 } else { 7293 __mark_reg_known(regs + insn->dst_reg, 7294 (u32)insn->imm); 7295 } 7296 } 7297 7298 } else if (opcode > BPF_END) { 7299 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 7300 return -EINVAL; 7301 7302 } else { /* all other ALU ops: and, sub, xor, add, ... */ 7303 7304 if (BPF_SRC(insn->code) == BPF_X) { 7305 if (insn->imm != 0 || insn->off != 0) { 7306 verbose(env, "BPF_ALU uses reserved fields\n"); 7307 return -EINVAL; 7308 } 7309 /* check src1 operand */ 7310 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7311 if (err) 7312 return err; 7313 } else { 7314 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7315 verbose(env, "BPF_ALU uses reserved fields\n"); 7316 return -EINVAL; 7317 } 7318 } 7319 7320 /* check src2 operand */ 7321 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7322 if (err) 7323 return err; 7324 7325 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 7326 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 7327 verbose(env, "div by zero\n"); 7328 return -EINVAL; 7329 } 7330 7331 if ((opcode == BPF_LSH || opcode == BPF_RSH || 7332 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 7333 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 7334 7335 if (insn->imm < 0 || insn->imm >= size) { 7336 verbose(env, "invalid shift %d\n", insn->imm); 7337 return -EINVAL; 7338 } 7339 } 7340 7341 /* check dest operand */ 7342 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7343 if (err) 7344 return err; 7345 7346 return adjust_reg_min_max_vals(env, insn); 7347 } 7348 7349 return 0; 7350 } 7351 7352 static void __find_good_pkt_pointers(struct bpf_func_state *state, 7353 struct bpf_reg_state *dst_reg, 7354 enum bpf_reg_type type, int new_range) 7355 { 7356 struct bpf_reg_state *reg; 7357 int i; 7358 7359 for (i = 0; i < MAX_BPF_REG; i++) { 7360 reg = &state->regs[i]; 7361 if (reg->type == type && reg->id == dst_reg->id) 7362 /* keep the maximum range already checked */ 7363 reg->range = max(reg->range, new_range); 7364 } 7365 7366 bpf_for_each_spilled_reg(i, state, reg) { 7367 if (!reg) 7368 continue; 7369 if (reg->type == type && reg->id == dst_reg->id) 7370 reg->range = max(reg->range, new_range); 7371 } 7372 } 7373 7374 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 7375 struct bpf_reg_state *dst_reg, 7376 enum bpf_reg_type type, 7377 bool range_right_open) 7378 { 7379 int new_range, i; 7380 7381 if (dst_reg->off < 0 || 7382 (dst_reg->off == 0 && range_right_open)) 7383 /* This doesn't give us any range */ 7384 return; 7385 7386 if (dst_reg->umax_value > MAX_PACKET_OFF || 7387 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 7388 /* Risk of overflow. For instance, ptr + (1<<63) may be less 7389 * than pkt_end, but that's because it's also less than pkt. 7390 */ 7391 return; 7392 7393 new_range = dst_reg->off; 7394 if (range_right_open) 7395 new_range--; 7396 7397 /* Examples for register markings: 7398 * 7399 * pkt_data in dst register: 7400 * 7401 * r2 = r3; 7402 * r2 += 8; 7403 * if (r2 > pkt_end) goto <handle exception> 7404 * <access okay> 7405 * 7406 * r2 = r3; 7407 * r2 += 8; 7408 * if (r2 < pkt_end) goto <access okay> 7409 * <handle exception> 7410 * 7411 * Where: 7412 * r2 == dst_reg, pkt_end == src_reg 7413 * r2=pkt(id=n,off=8,r=0) 7414 * r3=pkt(id=n,off=0,r=0) 7415 * 7416 * pkt_data in src register: 7417 * 7418 * r2 = r3; 7419 * r2 += 8; 7420 * if (pkt_end >= r2) goto <access okay> 7421 * <handle exception> 7422 * 7423 * r2 = r3; 7424 * r2 += 8; 7425 * if (pkt_end <= r2) goto <handle exception> 7426 * <access okay> 7427 * 7428 * Where: 7429 * pkt_end == dst_reg, r2 == src_reg 7430 * r2=pkt(id=n,off=8,r=0) 7431 * r3=pkt(id=n,off=0,r=0) 7432 * 7433 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 7434 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 7435 * and [r3, r3 + 8-1) respectively is safe to access depending on 7436 * the check. 7437 */ 7438 7439 /* If our ids match, then we must have the same max_value. And we 7440 * don't care about the other reg's fixed offset, since if it's too big 7441 * the range won't allow anything. 7442 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 7443 */ 7444 for (i = 0; i <= vstate->curframe; i++) 7445 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 7446 new_range); 7447 } 7448 7449 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 7450 { 7451 struct tnum subreg = tnum_subreg(reg->var_off); 7452 s32 sval = (s32)val; 7453 7454 switch (opcode) { 7455 case BPF_JEQ: 7456 if (tnum_is_const(subreg)) 7457 return !!tnum_equals_const(subreg, val); 7458 break; 7459 case BPF_JNE: 7460 if (tnum_is_const(subreg)) 7461 return !tnum_equals_const(subreg, val); 7462 break; 7463 case BPF_JSET: 7464 if ((~subreg.mask & subreg.value) & val) 7465 return 1; 7466 if (!((subreg.mask | subreg.value) & val)) 7467 return 0; 7468 break; 7469 case BPF_JGT: 7470 if (reg->u32_min_value > val) 7471 return 1; 7472 else if (reg->u32_max_value <= val) 7473 return 0; 7474 break; 7475 case BPF_JSGT: 7476 if (reg->s32_min_value > sval) 7477 return 1; 7478 else if (reg->s32_max_value <= sval) 7479 return 0; 7480 break; 7481 case BPF_JLT: 7482 if (reg->u32_max_value < val) 7483 return 1; 7484 else if (reg->u32_min_value >= val) 7485 return 0; 7486 break; 7487 case BPF_JSLT: 7488 if (reg->s32_max_value < sval) 7489 return 1; 7490 else if (reg->s32_min_value >= sval) 7491 return 0; 7492 break; 7493 case BPF_JGE: 7494 if (reg->u32_min_value >= val) 7495 return 1; 7496 else if (reg->u32_max_value < val) 7497 return 0; 7498 break; 7499 case BPF_JSGE: 7500 if (reg->s32_min_value >= sval) 7501 return 1; 7502 else if (reg->s32_max_value < sval) 7503 return 0; 7504 break; 7505 case BPF_JLE: 7506 if (reg->u32_max_value <= val) 7507 return 1; 7508 else if (reg->u32_min_value > val) 7509 return 0; 7510 break; 7511 case BPF_JSLE: 7512 if (reg->s32_max_value <= sval) 7513 return 1; 7514 else if (reg->s32_min_value > sval) 7515 return 0; 7516 break; 7517 } 7518 7519 return -1; 7520 } 7521 7522 7523 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 7524 { 7525 s64 sval = (s64)val; 7526 7527 switch (opcode) { 7528 case BPF_JEQ: 7529 if (tnum_is_const(reg->var_off)) 7530 return !!tnum_equals_const(reg->var_off, val); 7531 break; 7532 case BPF_JNE: 7533 if (tnum_is_const(reg->var_off)) 7534 return !tnum_equals_const(reg->var_off, val); 7535 break; 7536 case BPF_JSET: 7537 if ((~reg->var_off.mask & reg->var_off.value) & val) 7538 return 1; 7539 if (!((reg->var_off.mask | reg->var_off.value) & val)) 7540 return 0; 7541 break; 7542 case BPF_JGT: 7543 if (reg->umin_value > val) 7544 return 1; 7545 else if (reg->umax_value <= val) 7546 return 0; 7547 break; 7548 case BPF_JSGT: 7549 if (reg->smin_value > sval) 7550 return 1; 7551 else if (reg->smax_value <= sval) 7552 return 0; 7553 break; 7554 case BPF_JLT: 7555 if (reg->umax_value < val) 7556 return 1; 7557 else if (reg->umin_value >= val) 7558 return 0; 7559 break; 7560 case BPF_JSLT: 7561 if (reg->smax_value < sval) 7562 return 1; 7563 else if (reg->smin_value >= sval) 7564 return 0; 7565 break; 7566 case BPF_JGE: 7567 if (reg->umin_value >= val) 7568 return 1; 7569 else if (reg->umax_value < val) 7570 return 0; 7571 break; 7572 case BPF_JSGE: 7573 if (reg->smin_value >= sval) 7574 return 1; 7575 else if (reg->smax_value < sval) 7576 return 0; 7577 break; 7578 case BPF_JLE: 7579 if (reg->umax_value <= val) 7580 return 1; 7581 else if (reg->umin_value > val) 7582 return 0; 7583 break; 7584 case BPF_JSLE: 7585 if (reg->smax_value <= sval) 7586 return 1; 7587 else if (reg->smin_value > sval) 7588 return 0; 7589 break; 7590 } 7591 7592 return -1; 7593 } 7594 7595 /* compute branch direction of the expression "if (reg opcode val) goto target;" 7596 * and return: 7597 * 1 - branch will be taken and "goto target" will be executed 7598 * 0 - branch will not be taken and fall-through to next insn 7599 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 7600 * range [0,10] 7601 */ 7602 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 7603 bool is_jmp32) 7604 { 7605 if (__is_pointer_value(false, reg)) { 7606 if (!reg_type_not_null(reg->type)) 7607 return -1; 7608 7609 /* If pointer is valid tests against zero will fail so we can 7610 * use this to direct branch taken. 7611 */ 7612 if (val != 0) 7613 return -1; 7614 7615 switch (opcode) { 7616 case BPF_JEQ: 7617 return 0; 7618 case BPF_JNE: 7619 return 1; 7620 default: 7621 return -1; 7622 } 7623 } 7624 7625 if (is_jmp32) 7626 return is_branch32_taken(reg, val, opcode); 7627 return is_branch64_taken(reg, val, opcode); 7628 } 7629 7630 static int flip_opcode(u32 opcode) 7631 { 7632 /* How can we transform "a <op> b" into "b <op> a"? */ 7633 static const u8 opcode_flip[16] = { 7634 /* these stay the same */ 7635 [BPF_JEQ >> 4] = BPF_JEQ, 7636 [BPF_JNE >> 4] = BPF_JNE, 7637 [BPF_JSET >> 4] = BPF_JSET, 7638 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 7639 [BPF_JGE >> 4] = BPF_JLE, 7640 [BPF_JGT >> 4] = BPF_JLT, 7641 [BPF_JLE >> 4] = BPF_JGE, 7642 [BPF_JLT >> 4] = BPF_JGT, 7643 [BPF_JSGE >> 4] = BPF_JSLE, 7644 [BPF_JSGT >> 4] = BPF_JSLT, 7645 [BPF_JSLE >> 4] = BPF_JSGE, 7646 [BPF_JSLT >> 4] = BPF_JSGT 7647 }; 7648 return opcode_flip[opcode >> 4]; 7649 } 7650 7651 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 7652 struct bpf_reg_state *src_reg, 7653 u8 opcode) 7654 { 7655 struct bpf_reg_state *pkt; 7656 7657 if (src_reg->type == PTR_TO_PACKET_END) { 7658 pkt = dst_reg; 7659 } else if (dst_reg->type == PTR_TO_PACKET_END) { 7660 pkt = src_reg; 7661 opcode = flip_opcode(opcode); 7662 } else { 7663 return -1; 7664 } 7665 7666 if (pkt->range >= 0) 7667 return -1; 7668 7669 switch (opcode) { 7670 case BPF_JLE: 7671 /* pkt <= pkt_end */ 7672 fallthrough; 7673 case BPF_JGT: 7674 /* pkt > pkt_end */ 7675 if (pkt->range == BEYOND_PKT_END) 7676 /* pkt has at last one extra byte beyond pkt_end */ 7677 return opcode == BPF_JGT; 7678 break; 7679 case BPF_JLT: 7680 /* pkt < pkt_end */ 7681 fallthrough; 7682 case BPF_JGE: 7683 /* pkt >= pkt_end */ 7684 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 7685 return opcode == BPF_JGE; 7686 break; 7687 } 7688 return -1; 7689 } 7690 7691 /* Adjusts the register min/max values in the case that the dst_reg is the 7692 * variable register that we are working on, and src_reg is a constant or we're 7693 * simply doing a BPF_K check. 7694 * In JEQ/JNE cases we also adjust the var_off values. 7695 */ 7696 static void reg_set_min_max(struct bpf_reg_state *true_reg, 7697 struct bpf_reg_state *false_reg, 7698 u64 val, u32 val32, 7699 u8 opcode, bool is_jmp32) 7700 { 7701 struct tnum false_32off = tnum_subreg(false_reg->var_off); 7702 struct tnum false_64off = false_reg->var_off; 7703 struct tnum true_32off = tnum_subreg(true_reg->var_off); 7704 struct tnum true_64off = true_reg->var_off; 7705 s64 sval = (s64)val; 7706 s32 sval32 = (s32)val32; 7707 7708 /* If the dst_reg is a pointer, we can't learn anything about its 7709 * variable offset from the compare (unless src_reg were a pointer into 7710 * the same object, but we don't bother with that. 7711 * Since false_reg and true_reg have the same type by construction, we 7712 * only need to check one of them for pointerness. 7713 */ 7714 if (__is_pointer_value(false, false_reg)) 7715 return; 7716 7717 switch (opcode) { 7718 case BPF_JEQ: 7719 case BPF_JNE: 7720 { 7721 struct bpf_reg_state *reg = 7722 opcode == BPF_JEQ ? true_reg : false_reg; 7723 7724 /* JEQ/JNE comparison doesn't change the register equivalence. 7725 * r1 = r2; 7726 * if (r1 == 42) goto label; 7727 * ... 7728 * label: // here both r1 and r2 are known to be 42. 7729 * 7730 * Hence when marking register as known preserve it's ID. 7731 */ 7732 if (is_jmp32) 7733 __mark_reg32_known(reg, val32); 7734 else 7735 ___mark_reg_known(reg, val); 7736 break; 7737 } 7738 case BPF_JSET: 7739 if (is_jmp32) { 7740 false_32off = tnum_and(false_32off, tnum_const(~val32)); 7741 if (is_power_of_2(val32)) 7742 true_32off = tnum_or(true_32off, 7743 tnum_const(val32)); 7744 } else { 7745 false_64off = tnum_and(false_64off, tnum_const(~val)); 7746 if (is_power_of_2(val)) 7747 true_64off = tnum_or(true_64off, 7748 tnum_const(val)); 7749 } 7750 break; 7751 case BPF_JGE: 7752 case BPF_JGT: 7753 { 7754 if (is_jmp32) { 7755 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 7756 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 7757 7758 false_reg->u32_max_value = min(false_reg->u32_max_value, 7759 false_umax); 7760 true_reg->u32_min_value = max(true_reg->u32_min_value, 7761 true_umin); 7762 } else { 7763 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 7764 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 7765 7766 false_reg->umax_value = min(false_reg->umax_value, false_umax); 7767 true_reg->umin_value = max(true_reg->umin_value, true_umin); 7768 } 7769 break; 7770 } 7771 case BPF_JSGE: 7772 case BPF_JSGT: 7773 { 7774 if (is_jmp32) { 7775 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 7776 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 7777 7778 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 7779 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 7780 } else { 7781 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 7782 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 7783 7784 false_reg->smax_value = min(false_reg->smax_value, false_smax); 7785 true_reg->smin_value = max(true_reg->smin_value, true_smin); 7786 } 7787 break; 7788 } 7789 case BPF_JLE: 7790 case BPF_JLT: 7791 { 7792 if (is_jmp32) { 7793 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 7794 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 7795 7796 false_reg->u32_min_value = max(false_reg->u32_min_value, 7797 false_umin); 7798 true_reg->u32_max_value = min(true_reg->u32_max_value, 7799 true_umax); 7800 } else { 7801 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 7802 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 7803 7804 false_reg->umin_value = max(false_reg->umin_value, false_umin); 7805 true_reg->umax_value = min(true_reg->umax_value, true_umax); 7806 } 7807 break; 7808 } 7809 case BPF_JSLE: 7810 case BPF_JSLT: 7811 { 7812 if (is_jmp32) { 7813 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 7814 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 7815 7816 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 7817 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 7818 } else { 7819 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 7820 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 7821 7822 false_reg->smin_value = max(false_reg->smin_value, false_smin); 7823 true_reg->smax_value = min(true_reg->smax_value, true_smax); 7824 } 7825 break; 7826 } 7827 default: 7828 return; 7829 } 7830 7831 if (is_jmp32) { 7832 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 7833 tnum_subreg(false_32off)); 7834 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 7835 tnum_subreg(true_32off)); 7836 __reg_combine_32_into_64(false_reg); 7837 __reg_combine_32_into_64(true_reg); 7838 } else { 7839 false_reg->var_off = false_64off; 7840 true_reg->var_off = true_64off; 7841 __reg_combine_64_into_32(false_reg); 7842 __reg_combine_64_into_32(true_reg); 7843 } 7844 } 7845 7846 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 7847 * the variable reg. 7848 */ 7849 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 7850 struct bpf_reg_state *false_reg, 7851 u64 val, u32 val32, 7852 u8 opcode, bool is_jmp32) 7853 { 7854 opcode = flip_opcode(opcode); 7855 /* This uses zero as "not present in table"; luckily the zero opcode, 7856 * BPF_JA, can't get here. 7857 */ 7858 if (opcode) 7859 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 7860 } 7861 7862 /* Regs are known to be equal, so intersect their min/max/var_off */ 7863 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 7864 struct bpf_reg_state *dst_reg) 7865 { 7866 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 7867 dst_reg->umin_value); 7868 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 7869 dst_reg->umax_value); 7870 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 7871 dst_reg->smin_value); 7872 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 7873 dst_reg->smax_value); 7874 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 7875 dst_reg->var_off); 7876 /* We might have learned new bounds from the var_off. */ 7877 __update_reg_bounds(src_reg); 7878 __update_reg_bounds(dst_reg); 7879 /* We might have learned something about the sign bit. */ 7880 __reg_deduce_bounds(src_reg); 7881 __reg_deduce_bounds(dst_reg); 7882 /* We might have learned some bits from the bounds. */ 7883 __reg_bound_offset(src_reg); 7884 __reg_bound_offset(dst_reg); 7885 /* Intersecting with the old var_off might have improved our bounds 7886 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 7887 * then new var_off is (0; 0x7f...fc) which improves our umax. 7888 */ 7889 __update_reg_bounds(src_reg); 7890 __update_reg_bounds(dst_reg); 7891 } 7892 7893 static void reg_combine_min_max(struct bpf_reg_state *true_src, 7894 struct bpf_reg_state *true_dst, 7895 struct bpf_reg_state *false_src, 7896 struct bpf_reg_state *false_dst, 7897 u8 opcode) 7898 { 7899 switch (opcode) { 7900 case BPF_JEQ: 7901 __reg_combine_min_max(true_src, true_dst); 7902 break; 7903 case BPF_JNE: 7904 __reg_combine_min_max(false_src, false_dst); 7905 break; 7906 } 7907 } 7908 7909 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 7910 struct bpf_reg_state *reg, u32 id, 7911 bool is_null) 7912 { 7913 if (reg_type_may_be_null(reg->type) && reg->id == id && 7914 !WARN_ON_ONCE(!reg->id)) { 7915 /* Old offset (both fixed and variable parts) should 7916 * have been known-zero, because we don't allow pointer 7917 * arithmetic on pointers that might be NULL. 7918 */ 7919 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 7920 !tnum_equals_const(reg->var_off, 0) || 7921 reg->off)) { 7922 __mark_reg_known_zero(reg); 7923 reg->off = 0; 7924 } 7925 if (is_null) { 7926 reg->type = SCALAR_VALUE; 7927 /* We don't need id and ref_obj_id from this point 7928 * onwards anymore, thus we should better reset it, 7929 * so that state pruning has chances to take effect. 7930 */ 7931 reg->id = 0; 7932 reg->ref_obj_id = 0; 7933 7934 return; 7935 } 7936 7937 mark_ptr_not_null_reg(reg); 7938 7939 if (!reg_may_point_to_spin_lock(reg)) { 7940 /* For not-NULL ptr, reg->ref_obj_id will be reset 7941 * in release_reg_references(). 7942 * 7943 * reg->id is still used by spin_lock ptr. Other 7944 * than spin_lock ptr type, reg->id can be reset. 7945 */ 7946 reg->id = 0; 7947 } 7948 } 7949 } 7950 7951 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 7952 bool is_null) 7953 { 7954 struct bpf_reg_state *reg; 7955 int i; 7956 7957 for (i = 0; i < MAX_BPF_REG; i++) 7958 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 7959 7960 bpf_for_each_spilled_reg(i, state, reg) { 7961 if (!reg) 7962 continue; 7963 mark_ptr_or_null_reg(state, reg, id, is_null); 7964 } 7965 } 7966 7967 /* The logic is similar to find_good_pkt_pointers(), both could eventually 7968 * be folded together at some point. 7969 */ 7970 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 7971 bool is_null) 7972 { 7973 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7974 struct bpf_reg_state *regs = state->regs; 7975 u32 ref_obj_id = regs[regno].ref_obj_id; 7976 u32 id = regs[regno].id; 7977 int i; 7978 7979 if (ref_obj_id && ref_obj_id == id && is_null) 7980 /* regs[regno] is in the " == NULL" branch. 7981 * No one could have freed the reference state before 7982 * doing the NULL check. 7983 */ 7984 WARN_ON_ONCE(release_reference_state(state, id)); 7985 7986 for (i = 0; i <= vstate->curframe; i++) 7987 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 7988 } 7989 7990 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 7991 struct bpf_reg_state *dst_reg, 7992 struct bpf_reg_state *src_reg, 7993 struct bpf_verifier_state *this_branch, 7994 struct bpf_verifier_state *other_branch) 7995 { 7996 if (BPF_SRC(insn->code) != BPF_X) 7997 return false; 7998 7999 /* Pointers are always 64-bit. */ 8000 if (BPF_CLASS(insn->code) == BPF_JMP32) 8001 return false; 8002 8003 switch (BPF_OP(insn->code)) { 8004 case BPF_JGT: 8005 if ((dst_reg->type == PTR_TO_PACKET && 8006 src_reg->type == PTR_TO_PACKET_END) || 8007 (dst_reg->type == PTR_TO_PACKET_META && 8008 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8009 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 8010 find_good_pkt_pointers(this_branch, dst_reg, 8011 dst_reg->type, false); 8012 mark_pkt_end(other_branch, insn->dst_reg, true); 8013 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8014 src_reg->type == PTR_TO_PACKET) || 8015 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8016 src_reg->type == PTR_TO_PACKET_META)) { 8017 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 8018 find_good_pkt_pointers(other_branch, src_reg, 8019 src_reg->type, true); 8020 mark_pkt_end(this_branch, insn->src_reg, false); 8021 } else { 8022 return false; 8023 } 8024 break; 8025 case BPF_JLT: 8026 if ((dst_reg->type == PTR_TO_PACKET && 8027 src_reg->type == PTR_TO_PACKET_END) || 8028 (dst_reg->type == PTR_TO_PACKET_META && 8029 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8030 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 8031 find_good_pkt_pointers(other_branch, dst_reg, 8032 dst_reg->type, true); 8033 mark_pkt_end(this_branch, insn->dst_reg, false); 8034 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8035 src_reg->type == PTR_TO_PACKET) || 8036 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8037 src_reg->type == PTR_TO_PACKET_META)) { 8038 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 8039 find_good_pkt_pointers(this_branch, src_reg, 8040 src_reg->type, false); 8041 mark_pkt_end(other_branch, insn->src_reg, true); 8042 } else { 8043 return false; 8044 } 8045 break; 8046 case BPF_JGE: 8047 if ((dst_reg->type == PTR_TO_PACKET && 8048 src_reg->type == PTR_TO_PACKET_END) || 8049 (dst_reg->type == PTR_TO_PACKET_META && 8050 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8051 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 8052 find_good_pkt_pointers(this_branch, dst_reg, 8053 dst_reg->type, true); 8054 mark_pkt_end(other_branch, insn->dst_reg, false); 8055 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8056 src_reg->type == PTR_TO_PACKET) || 8057 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8058 src_reg->type == PTR_TO_PACKET_META)) { 8059 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 8060 find_good_pkt_pointers(other_branch, src_reg, 8061 src_reg->type, false); 8062 mark_pkt_end(this_branch, insn->src_reg, true); 8063 } else { 8064 return false; 8065 } 8066 break; 8067 case BPF_JLE: 8068 if ((dst_reg->type == PTR_TO_PACKET && 8069 src_reg->type == PTR_TO_PACKET_END) || 8070 (dst_reg->type == PTR_TO_PACKET_META && 8071 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8072 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 8073 find_good_pkt_pointers(other_branch, dst_reg, 8074 dst_reg->type, false); 8075 mark_pkt_end(this_branch, insn->dst_reg, true); 8076 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8077 src_reg->type == PTR_TO_PACKET) || 8078 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8079 src_reg->type == PTR_TO_PACKET_META)) { 8080 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 8081 find_good_pkt_pointers(this_branch, src_reg, 8082 src_reg->type, true); 8083 mark_pkt_end(other_branch, insn->src_reg, false); 8084 } else { 8085 return false; 8086 } 8087 break; 8088 default: 8089 return false; 8090 } 8091 8092 return true; 8093 } 8094 8095 static void find_equal_scalars(struct bpf_verifier_state *vstate, 8096 struct bpf_reg_state *known_reg) 8097 { 8098 struct bpf_func_state *state; 8099 struct bpf_reg_state *reg; 8100 int i, j; 8101 8102 for (i = 0; i <= vstate->curframe; i++) { 8103 state = vstate->frame[i]; 8104 for (j = 0; j < MAX_BPF_REG; j++) { 8105 reg = &state->regs[j]; 8106 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8107 *reg = *known_reg; 8108 } 8109 8110 bpf_for_each_spilled_reg(j, state, reg) { 8111 if (!reg) 8112 continue; 8113 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8114 *reg = *known_reg; 8115 } 8116 } 8117 } 8118 8119 static int check_cond_jmp_op(struct bpf_verifier_env *env, 8120 struct bpf_insn *insn, int *insn_idx) 8121 { 8122 struct bpf_verifier_state *this_branch = env->cur_state; 8123 struct bpf_verifier_state *other_branch; 8124 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 8125 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 8126 u8 opcode = BPF_OP(insn->code); 8127 bool is_jmp32; 8128 int pred = -1; 8129 int err; 8130 8131 /* Only conditional jumps are expected to reach here. */ 8132 if (opcode == BPF_JA || opcode > BPF_JSLE) { 8133 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 8134 return -EINVAL; 8135 } 8136 8137 if (BPF_SRC(insn->code) == BPF_X) { 8138 if (insn->imm != 0) { 8139 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8140 return -EINVAL; 8141 } 8142 8143 /* check src1 operand */ 8144 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8145 if (err) 8146 return err; 8147 8148 if (is_pointer_value(env, insn->src_reg)) { 8149 verbose(env, "R%d pointer comparison prohibited\n", 8150 insn->src_reg); 8151 return -EACCES; 8152 } 8153 src_reg = ®s[insn->src_reg]; 8154 } else { 8155 if (insn->src_reg != BPF_REG_0) { 8156 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8157 return -EINVAL; 8158 } 8159 } 8160 8161 /* check src2 operand */ 8162 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8163 if (err) 8164 return err; 8165 8166 dst_reg = ®s[insn->dst_reg]; 8167 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 8168 8169 if (BPF_SRC(insn->code) == BPF_K) { 8170 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 8171 } else if (src_reg->type == SCALAR_VALUE && 8172 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 8173 pred = is_branch_taken(dst_reg, 8174 tnum_subreg(src_reg->var_off).value, 8175 opcode, 8176 is_jmp32); 8177 } else if (src_reg->type == SCALAR_VALUE && 8178 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 8179 pred = is_branch_taken(dst_reg, 8180 src_reg->var_off.value, 8181 opcode, 8182 is_jmp32); 8183 } else if (reg_is_pkt_pointer_any(dst_reg) && 8184 reg_is_pkt_pointer_any(src_reg) && 8185 !is_jmp32) { 8186 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 8187 } 8188 8189 if (pred >= 0) { 8190 /* If we get here with a dst_reg pointer type it is because 8191 * above is_branch_taken() special cased the 0 comparison. 8192 */ 8193 if (!__is_pointer_value(false, dst_reg)) 8194 err = mark_chain_precision(env, insn->dst_reg); 8195 if (BPF_SRC(insn->code) == BPF_X && !err && 8196 !__is_pointer_value(false, src_reg)) 8197 err = mark_chain_precision(env, insn->src_reg); 8198 if (err) 8199 return err; 8200 } 8201 if (pred == 1) { 8202 /* only follow the goto, ignore fall-through */ 8203 *insn_idx += insn->off; 8204 return 0; 8205 } else if (pred == 0) { 8206 /* only follow fall-through branch, since 8207 * that's where the program will go 8208 */ 8209 return 0; 8210 } 8211 8212 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 8213 false); 8214 if (!other_branch) 8215 return -EFAULT; 8216 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 8217 8218 /* detect if we are comparing against a constant value so we can adjust 8219 * our min/max values for our dst register. 8220 * this is only legit if both are scalars (or pointers to the same 8221 * object, I suppose, but we don't support that right now), because 8222 * otherwise the different base pointers mean the offsets aren't 8223 * comparable. 8224 */ 8225 if (BPF_SRC(insn->code) == BPF_X) { 8226 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 8227 8228 if (dst_reg->type == SCALAR_VALUE && 8229 src_reg->type == SCALAR_VALUE) { 8230 if (tnum_is_const(src_reg->var_off) || 8231 (is_jmp32 && 8232 tnum_is_const(tnum_subreg(src_reg->var_off)))) 8233 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8234 dst_reg, 8235 src_reg->var_off.value, 8236 tnum_subreg(src_reg->var_off).value, 8237 opcode, is_jmp32); 8238 else if (tnum_is_const(dst_reg->var_off) || 8239 (is_jmp32 && 8240 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 8241 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 8242 src_reg, 8243 dst_reg->var_off.value, 8244 tnum_subreg(dst_reg->var_off).value, 8245 opcode, is_jmp32); 8246 else if (!is_jmp32 && 8247 (opcode == BPF_JEQ || opcode == BPF_JNE)) 8248 /* Comparing for equality, we can combine knowledge */ 8249 reg_combine_min_max(&other_branch_regs[insn->src_reg], 8250 &other_branch_regs[insn->dst_reg], 8251 src_reg, dst_reg, opcode); 8252 if (src_reg->id && 8253 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 8254 find_equal_scalars(this_branch, src_reg); 8255 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 8256 } 8257 8258 } 8259 } else if (dst_reg->type == SCALAR_VALUE) { 8260 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8261 dst_reg, insn->imm, (u32)insn->imm, 8262 opcode, is_jmp32); 8263 } 8264 8265 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 8266 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 8267 find_equal_scalars(this_branch, dst_reg); 8268 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 8269 } 8270 8271 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 8272 * NOTE: these optimizations below are related with pointer comparison 8273 * which will never be JMP32. 8274 */ 8275 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 8276 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 8277 reg_type_may_be_null(dst_reg->type)) { 8278 /* Mark all identical registers in each branch as either 8279 * safe or unknown depending R == 0 or R != 0 conditional. 8280 */ 8281 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 8282 opcode == BPF_JNE); 8283 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 8284 opcode == BPF_JEQ); 8285 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 8286 this_branch, other_branch) && 8287 is_pointer_value(env, insn->dst_reg)) { 8288 verbose(env, "R%d pointer comparison prohibited\n", 8289 insn->dst_reg); 8290 return -EACCES; 8291 } 8292 if (env->log.level & BPF_LOG_LEVEL) 8293 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 8294 return 0; 8295 } 8296 8297 /* verify BPF_LD_IMM64 instruction */ 8298 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 8299 { 8300 struct bpf_insn_aux_data *aux = cur_aux(env); 8301 struct bpf_reg_state *regs = cur_regs(env); 8302 struct bpf_reg_state *dst_reg; 8303 struct bpf_map *map; 8304 int err; 8305 8306 if (BPF_SIZE(insn->code) != BPF_DW) { 8307 verbose(env, "invalid BPF_LD_IMM insn\n"); 8308 return -EINVAL; 8309 } 8310 if (insn->off != 0) { 8311 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 8312 return -EINVAL; 8313 } 8314 8315 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8316 if (err) 8317 return err; 8318 8319 dst_reg = ®s[insn->dst_reg]; 8320 if (insn->src_reg == 0) { 8321 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 8322 8323 dst_reg->type = SCALAR_VALUE; 8324 __mark_reg_known(®s[insn->dst_reg], imm); 8325 return 0; 8326 } 8327 8328 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 8329 mark_reg_known_zero(env, regs, insn->dst_reg); 8330 8331 dst_reg->type = aux->btf_var.reg_type; 8332 switch (dst_reg->type) { 8333 case PTR_TO_MEM: 8334 dst_reg->mem_size = aux->btf_var.mem_size; 8335 break; 8336 case PTR_TO_BTF_ID: 8337 case PTR_TO_PERCPU_BTF_ID: 8338 dst_reg->btf = aux->btf_var.btf; 8339 dst_reg->btf_id = aux->btf_var.btf_id; 8340 break; 8341 default: 8342 verbose(env, "bpf verifier is misconfigured\n"); 8343 return -EFAULT; 8344 } 8345 return 0; 8346 } 8347 8348 map = env->used_maps[aux->map_index]; 8349 mark_reg_known_zero(env, regs, insn->dst_reg); 8350 dst_reg->map_ptr = map; 8351 8352 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 8353 dst_reg->type = PTR_TO_MAP_VALUE; 8354 dst_reg->off = aux->map_off; 8355 if (map_value_has_spin_lock(map)) 8356 dst_reg->id = ++env->id_gen; 8357 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8358 dst_reg->type = CONST_PTR_TO_MAP; 8359 } else { 8360 verbose(env, "bpf verifier is misconfigured\n"); 8361 return -EINVAL; 8362 } 8363 8364 return 0; 8365 } 8366 8367 static bool may_access_skb(enum bpf_prog_type type) 8368 { 8369 switch (type) { 8370 case BPF_PROG_TYPE_SOCKET_FILTER: 8371 case BPF_PROG_TYPE_SCHED_CLS: 8372 case BPF_PROG_TYPE_SCHED_ACT: 8373 return true; 8374 default: 8375 return false; 8376 } 8377 } 8378 8379 /* verify safety of LD_ABS|LD_IND instructions: 8380 * - they can only appear in the programs where ctx == skb 8381 * - since they are wrappers of function calls, they scratch R1-R5 registers, 8382 * preserve R6-R9, and store return value into R0 8383 * 8384 * Implicit input: 8385 * ctx == skb == R6 == CTX 8386 * 8387 * Explicit input: 8388 * SRC == any register 8389 * IMM == 32-bit immediate 8390 * 8391 * Output: 8392 * R0 - 8/16/32-bit skb data converted to cpu endianness 8393 */ 8394 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 8395 { 8396 struct bpf_reg_state *regs = cur_regs(env); 8397 static const int ctx_reg = BPF_REG_6; 8398 u8 mode = BPF_MODE(insn->code); 8399 int i, err; 8400 8401 if (!may_access_skb(resolve_prog_type(env->prog))) { 8402 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 8403 return -EINVAL; 8404 } 8405 8406 if (!env->ops->gen_ld_abs) { 8407 verbose(env, "bpf verifier is misconfigured\n"); 8408 return -EINVAL; 8409 } 8410 8411 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 8412 BPF_SIZE(insn->code) == BPF_DW || 8413 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 8414 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 8415 return -EINVAL; 8416 } 8417 8418 /* check whether implicit source operand (register R6) is readable */ 8419 err = check_reg_arg(env, ctx_reg, SRC_OP); 8420 if (err) 8421 return err; 8422 8423 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 8424 * gen_ld_abs() may terminate the program at runtime, leading to 8425 * reference leak. 8426 */ 8427 err = check_reference_leak(env); 8428 if (err) { 8429 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 8430 return err; 8431 } 8432 8433 if (env->cur_state->active_spin_lock) { 8434 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 8435 return -EINVAL; 8436 } 8437 8438 if (regs[ctx_reg].type != PTR_TO_CTX) { 8439 verbose(env, 8440 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 8441 return -EINVAL; 8442 } 8443 8444 if (mode == BPF_IND) { 8445 /* check explicit source operand */ 8446 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8447 if (err) 8448 return err; 8449 } 8450 8451 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 8452 if (err < 0) 8453 return err; 8454 8455 /* reset caller saved regs to unreadable */ 8456 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8457 mark_reg_not_init(env, regs, caller_saved[i]); 8458 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8459 } 8460 8461 /* mark destination R0 register as readable, since it contains 8462 * the value fetched from the packet. 8463 * Already marked as written above. 8464 */ 8465 mark_reg_unknown(env, regs, BPF_REG_0); 8466 /* ld_abs load up to 32-bit skb data. */ 8467 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 8468 return 0; 8469 } 8470 8471 static int check_return_code(struct bpf_verifier_env *env) 8472 { 8473 struct tnum enforce_attach_type_range = tnum_unknown; 8474 const struct bpf_prog *prog = env->prog; 8475 struct bpf_reg_state *reg; 8476 struct tnum range = tnum_range(0, 1); 8477 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 8478 int err; 8479 const bool is_subprog = env->cur_state->frame[0]->subprogno; 8480 8481 /* LSM and struct_ops func-ptr's return type could be "void" */ 8482 if (!is_subprog && 8483 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 8484 prog_type == BPF_PROG_TYPE_LSM) && 8485 !prog->aux->attach_func_proto->type) 8486 return 0; 8487 8488 /* eBPF calling convetion is such that R0 is used 8489 * to return the value from eBPF program. 8490 * Make sure that it's readable at this time 8491 * of bpf_exit, which means that program wrote 8492 * something into it earlier 8493 */ 8494 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 8495 if (err) 8496 return err; 8497 8498 if (is_pointer_value(env, BPF_REG_0)) { 8499 verbose(env, "R0 leaks addr as return value\n"); 8500 return -EACCES; 8501 } 8502 8503 reg = cur_regs(env) + BPF_REG_0; 8504 if (is_subprog) { 8505 if (reg->type != SCALAR_VALUE) { 8506 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 8507 reg_type_str[reg->type]); 8508 return -EINVAL; 8509 } 8510 return 0; 8511 } 8512 8513 switch (prog_type) { 8514 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8515 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 8516 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 8517 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 8518 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 8519 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 8520 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 8521 range = tnum_range(1, 1); 8522 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 8523 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 8524 range = tnum_range(0, 3); 8525 break; 8526 case BPF_PROG_TYPE_CGROUP_SKB: 8527 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 8528 range = tnum_range(0, 3); 8529 enforce_attach_type_range = tnum_range(2, 3); 8530 } 8531 break; 8532 case BPF_PROG_TYPE_CGROUP_SOCK: 8533 case BPF_PROG_TYPE_SOCK_OPS: 8534 case BPF_PROG_TYPE_CGROUP_DEVICE: 8535 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8536 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8537 break; 8538 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8539 if (!env->prog->aux->attach_btf_id) 8540 return 0; 8541 range = tnum_const(0); 8542 break; 8543 case BPF_PROG_TYPE_TRACING: 8544 switch (env->prog->expected_attach_type) { 8545 case BPF_TRACE_FENTRY: 8546 case BPF_TRACE_FEXIT: 8547 range = tnum_const(0); 8548 break; 8549 case BPF_TRACE_RAW_TP: 8550 case BPF_MODIFY_RETURN: 8551 return 0; 8552 case BPF_TRACE_ITER: 8553 break; 8554 default: 8555 return -ENOTSUPP; 8556 } 8557 break; 8558 case BPF_PROG_TYPE_SK_LOOKUP: 8559 range = tnum_range(SK_DROP, SK_PASS); 8560 break; 8561 case BPF_PROG_TYPE_EXT: 8562 /* freplace program can return anything as its return value 8563 * depends on the to-be-replaced kernel func or bpf program. 8564 */ 8565 default: 8566 return 0; 8567 } 8568 8569 if (reg->type != SCALAR_VALUE) { 8570 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 8571 reg_type_str[reg->type]); 8572 return -EINVAL; 8573 } 8574 8575 if (!tnum_in(range, reg->var_off)) { 8576 char tn_buf[48]; 8577 8578 verbose(env, "At program exit the register R0 "); 8579 if (!tnum_is_unknown(reg->var_off)) { 8580 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8581 verbose(env, "has value %s", tn_buf); 8582 } else { 8583 verbose(env, "has unknown scalar value"); 8584 } 8585 tnum_strn(tn_buf, sizeof(tn_buf), range); 8586 verbose(env, " should have been in %s\n", tn_buf); 8587 return -EINVAL; 8588 } 8589 8590 if (!tnum_is_unknown(enforce_attach_type_range) && 8591 tnum_in(enforce_attach_type_range, reg->var_off)) 8592 env->prog->enforce_expected_attach_type = 1; 8593 return 0; 8594 } 8595 8596 /* non-recursive DFS pseudo code 8597 * 1 procedure DFS-iterative(G,v): 8598 * 2 label v as discovered 8599 * 3 let S be a stack 8600 * 4 S.push(v) 8601 * 5 while S is not empty 8602 * 6 t <- S.pop() 8603 * 7 if t is what we're looking for: 8604 * 8 return t 8605 * 9 for all edges e in G.adjacentEdges(t) do 8606 * 10 if edge e is already labelled 8607 * 11 continue with the next edge 8608 * 12 w <- G.adjacentVertex(t,e) 8609 * 13 if vertex w is not discovered and not explored 8610 * 14 label e as tree-edge 8611 * 15 label w as discovered 8612 * 16 S.push(w) 8613 * 17 continue at 5 8614 * 18 else if vertex w is discovered 8615 * 19 label e as back-edge 8616 * 20 else 8617 * 21 // vertex w is explored 8618 * 22 label e as forward- or cross-edge 8619 * 23 label t as explored 8620 * 24 S.pop() 8621 * 8622 * convention: 8623 * 0x10 - discovered 8624 * 0x11 - discovered and fall-through edge labelled 8625 * 0x12 - discovered and fall-through and branch edges labelled 8626 * 0x20 - explored 8627 */ 8628 8629 enum { 8630 DISCOVERED = 0x10, 8631 EXPLORED = 0x20, 8632 FALLTHROUGH = 1, 8633 BRANCH = 2, 8634 }; 8635 8636 static u32 state_htab_size(struct bpf_verifier_env *env) 8637 { 8638 return env->prog->len; 8639 } 8640 8641 static struct bpf_verifier_state_list **explored_state( 8642 struct bpf_verifier_env *env, 8643 int idx) 8644 { 8645 struct bpf_verifier_state *cur = env->cur_state; 8646 struct bpf_func_state *state = cur->frame[cur->curframe]; 8647 8648 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 8649 } 8650 8651 static void init_explored_state(struct bpf_verifier_env *env, int idx) 8652 { 8653 env->insn_aux_data[idx].prune_point = true; 8654 } 8655 8656 enum { 8657 DONE_EXPLORING = 0, 8658 KEEP_EXPLORING = 1, 8659 }; 8660 8661 /* t, w, e - match pseudo-code above: 8662 * t - index of current instruction 8663 * w - next instruction 8664 * e - edge 8665 */ 8666 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 8667 bool loop_ok) 8668 { 8669 int *insn_stack = env->cfg.insn_stack; 8670 int *insn_state = env->cfg.insn_state; 8671 8672 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 8673 return DONE_EXPLORING; 8674 8675 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 8676 return DONE_EXPLORING; 8677 8678 if (w < 0 || w >= env->prog->len) { 8679 verbose_linfo(env, t, "%d: ", t); 8680 verbose(env, "jump out of range from insn %d to %d\n", t, w); 8681 return -EINVAL; 8682 } 8683 8684 if (e == BRANCH) 8685 /* mark branch target for state pruning */ 8686 init_explored_state(env, w); 8687 8688 if (insn_state[w] == 0) { 8689 /* tree-edge */ 8690 insn_state[t] = DISCOVERED | e; 8691 insn_state[w] = DISCOVERED; 8692 if (env->cfg.cur_stack >= env->prog->len) 8693 return -E2BIG; 8694 insn_stack[env->cfg.cur_stack++] = w; 8695 return KEEP_EXPLORING; 8696 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 8697 if (loop_ok && env->bpf_capable) 8698 return DONE_EXPLORING; 8699 verbose_linfo(env, t, "%d: ", t); 8700 verbose_linfo(env, w, "%d: ", w); 8701 verbose(env, "back-edge from insn %d to %d\n", t, w); 8702 return -EINVAL; 8703 } else if (insn_state[w] == EXPLORED) { 8704 /* forward- or cross-edge */ 8705 insn_state[t] = DISCOVERED | e; 8706 } else { 8707 verbose(env, "insn state internal bug\n"); 8708 return -EFAULT; 8709 } 8710 return DONE_EXPLORING; 8711 } 8712 8713 /* Visits the instruction at index t and returns one of the following: 8714 * < 0 - an error occurred 8715 * DONE_EXPLORING - the instruction was fully explored 8716 * KEEP_EXPLORING - there is still work to be done before it is fully explored 8717 */ 8718 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 8719 { 8720 struct bpf_insn *insns = env->prog->insnsi; 8721 int ret; 8722 8723 /* All non-branch instructions have a single fall-through edge. */ 8724 if (BPF_CLASS(insns[t].code) != BPF_JMP && 8725 BPF_CLASS(insns[t].code) != BPF_JMP32) 8726 return push_insn(t, t + 1, FALLTHROUGH, env, false); 8727 8728 switch (BPF_OP(insns[t].code)) { 8729 case BPF_EXIT: 8730 return DONE_EXPLORING; 8731 8732 case BPF_CALL: 8733 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8734 if (ret) 8735 return ret; 8736 8737 if (t + 1 < insn_cnt) 8738 init_explored_state(env, t + 1); 8739 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 8740 init_explored_state(env, t); 8741 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 8742 env, false); 8743 } 8744 return ret; 8745 8746 case BPF_JA: 8747 if (BPF_SRC(insns[t].code) != BPF_K) 8748 return -EINVAL; 8749 8750 /* unconditional jump with single edge */ 8751 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 8752 true); 8753 if (ret) 8754 return ret; 8755 8756 /* unconditional jmp is not a good pruning point, 8757 * but it's marked, since backtracking needs 8758 * to record jmp history in is_state_visited(). 8759 */ 8760 init_explored_state(env, t + insns[t].off + 1); 8761 /* tell verifier to check for equivalent states 8762 * after every call and jump 8763 */ 8764 if (t + 1 < insn_cnt) 8765 init_explored_state(env, t + 1); 8766 8767 return ret; 8768 8769 default: 8770 /* conditional jump with two edges */ 8771 init_explored_state(env, t); 8772 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 8773 if (ret) 8774 return ret; 8775 8776 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 8777 } 8778 } 8779 8780 /* non-recursive depth-first-search to detect loops in BPF program 8781 * loop == back-edge in directed graph 8782 */ 8783 static int check_cfg(struct bpf_verifier_env *env) 8784 { 8785 int insn_cnt = env->prog->len; 8786 int *insn_stack, *insn_state; 8787 int ret = 0; 8788 int i; 8789 8790 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8791 if (!insn_state) 8792 return -ENOMEM; 8793 8794 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8795 if (!insn_stack) { 8796 kvfree(insn_state); 8797 return -ENOMEM; 8798 } 8799 8800 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 8801 insn_stack[0] = 0; /* 0 is the first instruction */ 8802 env->cfg.cur_stack = 1; 8803 8804 while (env->cfg.cur_stack > 0) { 8805 int t = insn_stack[env->cfg.cur_stack - 1]; 8806 8807 ret = visit_insn(t, insn_cnt, env); 8808 switch (ret) { 8809 case DONE_EXPLORING: 8810 insn_state[t] = EXPLORED; 8811 env->cfg.cur_stack--; 8812 break; 8813 case KEEP_EXPLORING: 8814 break; 8815 default: 8816 if (ret > 0) { 8817 verbose(env, "visit_insn internal bug\n"); 8818 ret = -EFAULT; 8819 } 8820 goto err_free; 8821 } 8822 } 8823 8824 if (env->cfg.cur_stack < 0) { 8825 verbose(env, "pop stack internal bug\n"); 8826 ret = -EFAULT; 8827 goto err_free; 8828 } 8829 8830 for (i = 0; i < insn_cnt; i++) { 8831 if (insn_state[i] != EXPLORED) { 8832 verbose(env, "unreachable insn %d\n", i); 8833 ret = -EINVAL; 8834 goto err_free; 8835 } 8836 } 8837 ret = 0; /* cfg looks good */ 8838 8839 err_free: 8840 kvfree(insn_state); 8841 kvfree(insn_stack); 8842 env->cfg.insn_state = env->cfg.insn_stack = NULL; 8843 return ret; 8844 } 8845 8846 static int check_abnormal_return(struct bpf_verifier_env *env) 8847 { 8848 int i; 8849 8850 for (i = 1; i < env->subprog_cnt; i++) { 8851 if (env->subprog_info[i].has_ld_abs) { 8852 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 8853 return -EINVAL; 8854 } 8855 if (env->subprog_info[i].has_tail_call) { 8856 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 8857 return -EINVAL; 8858 } 8859 } 8860 return 0; 8861 } 8862 8863 /* The minimum supported BTF func info size */ 8864 #define MIN_BPF_FUNCINFO_SIZE 8 8865 #define MAX_FUNCINFO_REC_SIZE 252 8866 8867 static int check_btf_func(struct bpf_verifier_env *env, 8868 const union bpf_attr *attr, 8869 union bpf_attr __user *uattr) 8870 { 8871 const struct btf_type *type, *func_proto, *ret_type; 8872 u32 i, nfuncs, urec_size, min_size; 8873 u32 krec_size = sizeof(struct bpf_func_info); 8874 struct bpf_func_info *krecord; 8875 struct bpf_func_info_aux *info_aux = NULL; 8876 struct bpf_prog *prog; 8877 const struct btf *btf; 8878 void __user *urecord; 8879 u32 prev_offset = 0; 8880 bool scalar_return; 8881 int ret = -ENOMEM; 8882 8883 nfuncs = attr->func_info_cnt; 8884 if (!nfuncs) { 8885 if (check_abnormal_return(env)) 8886 return -EINVAL; 8887 return 0; 8888 } 8889 8890 if (nfuncs != env->subprog_cnt) { 8891 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 8892 return -EINVAL; 8893 } 8894 8895 urec_size = attr->func_info_rec_size; 8896 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 8897 urec_size > MAX_FUNCINFO_REC_SIZE || 8898 urec_size % sizeof(u32)) { 8899 verbose(env, "invalid func info rec size %u\n", urec_size); 8900 return -EINVAL; 8901 } 8902 8903 prog = env->prog; 8904 btf = prog->aux->btf; 8905 8906 urecord = u64_to_user_ptr(attr->func_info); 8907 min_size = min_t(u32, krec_size, urec_size); 8908 8909 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 8910 if (!krecord) 8911 return -ENOMEM; 8912 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 8913 if (!info_aux) 8914 goto err_free; 8915 8916 for (i = 0; i < nfuncs; i++) { 8917 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 8918 if (ret) { 8919 if (ret == -E2BIG) { 8920 verbose(env, "nonzero tailing record in func info"); 8921 /* set the size kernel expects so loader can zero 8922 * out the rest of the record. 8923 */ 8924 if (put_user(min_size, &uattr->func_info_rec_size)) 8925 ret = -EFAULT; 8926 } 8927 goto err_free; 8928 } 8929 8930 if (copy_from_user(&krecord[i], urecord, min_size)) { 8931 ret = -EFAULT; 8932 goto err_free; 8933 } 8934 8935 /* check insn_off */ 8936 ret = -EINVAL; 8937 if (i == 0) { 8938 if (krecord[i].insn_off) { 8939 verbose(env, 8940 "nonzero insn_off %u for the first func info record", 8941 krecord[i].insn_off); 8942 goto err_free; 8943 } 8944 } else if (krecord[i].insn_off <= prev_offset) { 8945 verbose(env, 8946 "same or smaller insn offset (%u) than previous func info record (%u)", 8947 krecord[i].insn_off, prev_offset); 8948 goto err_free; 8949 } 8950 8951 if (env->subprog_info[i].start != krecord[i].insn_off) { 8952 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 8953 goto err_free; 8954 } 8955 8956 /* check type_id */ 8957 type = btf_type_by_id(btf, krecord[i].type_id); 8958 if (!type || !btf_type_is_func(type)) { 8959 verbose(env, "invalid type id %d in func info", 8960 krecord[i].type_id); 8961 goto err_free; 8962 } 8963 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 8964 8965 func_proto = btf_type_by_id(btf, type->type); 8966 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 8967 /* btf_func_check() already verified it during BTF load */ 8968 goto err_free; 8969 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 8970 scalar_return = 8971 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 8972 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 8973 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 8974 goto err_free; 8975 } 8976 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 8977 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 8978 goto err_free; 8979 } 8980 8981 prev_offset = krecord[i].insn_off; 8982 urecord += urec_size; 8983 } 8984 8985 prog->aux->func_info = krecord; 8986 prog->aux->func_info_cnt = nfuncs; 8987 prog->aux->func_info_aux = info_aux; 8988 return 0; 8989 8990 err_free: 8991 kvfree(krecord); 8992 kfree(info_aux); 8993 return ret; 8994 } 8995 8996 static void adjust_btf_func(struct bpf_verifier_env *env) 8997 { 8998 struct bpf_prog_aux *aux = env->prog->aux; 8999 int i; 9000 9001 if (!aux->func_info) 9002 return; 9003 9004 for (i = 0; i < env->subprog_cnt; i++) 9005 aux->func_info[i].insn_off = env->subprog_info[i].start; 9006 } 9007 9008 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 9009 sizeof(((struct bpf_line_info *)(0))->line_col)) 9010 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 9011 9012 static int check_btf_line(struct bpf_verifier_env *env, 9013 const union bpf_attr *attr, 9014 union bpf_attr __user *uattr) 9015 { 9016 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 9017 struct bpf_subprog_info *sub; 9018 struct bpf_line_info *linfo; 9019 struct bpf_prog *prog; 9020 const struct btf *btf; 9021 void __user *ulinfo; 9022 int err; 9023 9024 nr_linfo = attr->line_info_cnt; 9025 if (!nr_linfo) 9026 return 0; 9027 9028 rec_size = attr->line_info_rec_size; 9029 if (rec_size < MIN_BPF_LINEINFO_SIZE || 9030 rec_size > MAX_LINEINFO_REC_SIZE || 9031 rec_size & (sizeof(u32) - 1)) 9032 return -EINVAL; 9033 9034 /* Need to zero it in case the userspace may 9035 * pass in a smaller bpf_line_info object. 9036 */ 9037 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 9038 GFP_KERNEL | __GFP_NOWARN); 9039 if (!linfo) 9040 return -ENOMEM; 9041 9042 prog = env->prog; 9043 btf = prog->aux->btf; 9044 9045 s = 0; 9046 sub = env->subprog_info; 9047 ulinfo = u64_to_user_ptr(attr->line_info); 9048 expected_size = sizeof(struct bpf_line_info); 9049 ncopy = min_t(u32, expected_size, rec_size); 9050 for (i = 0; i < nr_linfo; i++) { 9051 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 9052 if (err) { 9053 if (err == -E2BIG) { 9054 verbose(env, "nonzero tailing record in line_info"); 9055 if (put_user(expected_size, 9056 &uattr->line_info_rec_size)) 9057 err = -EFAULT; 9058 } 9059 goto err_free; 9060 } 9061 9062 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 9063 err = -EFAULT; 9064 goto err_free; 9065 } 9066 9067 /* 9068 * Check insn_off to ensure 9069 * 1) strictly increasing AND 9070 * 2) bounded by prog->len 9071 * 9072 * The linfo[0].insn_off == 0 check logically falls into 9073 * the later "missing bpf_line_info for func..." case 9074 * because the first linfo[0].insn_off must be the 9075 * first sub also and the first sub must have 9076 * subprog_info[0].start == 0. 9077 */ 9078 if ((i && linfo[i].insn_off <= prev_offset) || 9079 linfo[i].insn_off >= prog->len) { 9080 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 9081 i, linfo[i].insn_off, prev_offset, 9082 prog->len); 9083 err = -EINVAL; 9084 goto err_free; 9085 } 9086 9087 if (!prog->insnsi[linfo[i].insn_off].code) { 9088 verbose(env, 9089 "Invalid insn code at line_info[%u].insn_off\n", 9090 i); 9091 err = -EINVAL; 9092 goto err_free; 9093 } 9094 9095 if (!btf_name_by_offset(btf, linfo[i].line_off) || 9096 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 9097 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 9098 err = -EINVAL; 9099 goto err_free; 9100 } 9101 9102 if (s != env->subprog_cnt) { 9103 if (linfo[i].insn_off == sub[s].start) { 9104 sub[s].linfo_idx = i; 9105 s++; 9106 } else if (sub[s].start < linfo[i].insn_off) { 9107 verbose(env, "missing bpf_line_info for func#%u\n", s); 9108 err = -EINVAL; 9109 goto err_free; 9110 } 9111 } 9112 9113 prev_offset = linfo[i].insn_off; 9114 ulinfo += rec_size; 9115 } 9116 9117 if (s != env->subprog_cnt) { 9118 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 9119 env->subprog_cnt - s, s); 9120 err = -EINVAL; 9121 goto err_free; 9122 } 9123 9124 prog->aux->linfo = linfo; 9125 prog->aux->nr_linfo = nr_linfo; 9126 9127 return 0; 9128 9129 err_free: 9130 kvfree(linfo); 9131 return err; 9132 } 9133 9134 static int check_btf_info(struct bpf_verifier_env *env, 9135 const union bpf_attr *attr, 9136 union bpf_attr __user *uattr) 9137 { 9138 struct btf *btf; 9139 int err; 9140 9141 if (!attr->func_info_cnt && !attr->line_info_cnt) { 9142 if (check_abnormal_return(env)) 9143 return -EINVAL; 9144 return 0; 9145 } 9146 9147 btf = btf_get_by_fd(attr->prog_btf_fd); 9148 if (IS_ERR(btf)) 9149 return PTR_ERR(btf); 9150 if (btf_is_kernel(btf)) { 9151 btf_put(btf); 9152 return -EACCES; 9153 } 9154 env->prog->aux->btf = btf; 9155 9156 err = check_btf_func(env, attr, uattr); 9157 if (err) 9158 return err; 9159 9160 err = check_btf_line(env, attr, uattr); 9161 if (err) 9162 return err; 9163 9164 return 0; 9165 } 9166 9167 /* check %cur's range satisfies %old's */ 9168 static bool range_within(struct bpf_reg_state *old, 9169 struct bpf_reg_state *cur) 9170 { 9171 return old->umin_value <= cur->umin_value && 9172 old->umax_value >= cur->umax_value && 9173 old->smin_value <= cur->smin_value && 9174 old->smax_value >= cur->smax_value && 9175 old->u32_min_value <= cur->u32_min_value && 9176 old->u32_max_value >= cur->u32_max_value && 9177 old->s32_min_value <= cur->s32_min_value && 9178 old->s32_max_value >= cur->s32_max_value; 9179 } 9180 9181 /* Maximum number of register states that can exist at once */ 9182 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 9183 struct idpair { 9184 u32 old; 9185 u32 cur; 9186 }; 9187 9188 /* If in the old state two registers had the same id, then they need to have 9189 * the same id in the new state as well. But that id could be different from 9190 * the old state, so we need to track the mapping from old to new ids. 9191 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 9192 * regs with old id 5 must also have new id 9 for the new state to be safe. But 9193 * regs with a different old id could still have new id 9, we don't care about 9194 * that. 9195 * So we look through our idmap to see if this old id has been seen before. If 9196 * so, we require the new id to match; otherwise, we add the id pair to the map. 9197 */ 9198 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 9199 { 9200 unsigned int i; 9201 9202 for (i = 0; i < ID_MAP_SIZE; i++) { 9203 if (!idmap[i].old) { 9204 /* Reached an empty slot; haven't seen this id before */ 9205 idmap[i].old = old_id; 9206 idmap[i].cur = cur_id; 9207 return true; 9208 } 9209 if (idmap[i].old == old_id) 9210 return idmap[i].cur == cur_id; 9211 } 9212 /* We ran out of idmap slots, which should be impossible */ 9213 WARN_ON_ONCE(1); 9214 return false; 9215 } 9216 9217 static void clean_func_state(struct bpf_verifier_env *env, 9218 struct bpf_func_state *st) 9219 { 9220 enum bpf_reg_liveness live; 9221 int i, j; 9222 9223 for (i = 0; i < BPF_REG_FP; i++) { 9224 live = st->regs[i].live; 9225 /* liveness must not touch this register anymore */ 9226 st->regs[i].live |= REG_LIVE_DONE; 9227 if (!(live & REG_LIVE_READ)) 9228 /* since the register is unused, clear its state 9229 * to make further comparison simpler 9230 */ 9231 __mark_reg_not_init(env, &st->regs[i]); 9232 } 9233 9234 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 9235 live = st->stack[i].spilled_ptr.live; 9236 /* liveness must not touch this stack slot anymore */ 9237 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 9238 if (!(live & REG_LIVE_READ)) { 9239 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 9240 for (j = 0; j < BPF_REG_SIZE; j++) 9241 st->stack[i].slot_type[j] = STACK_INVALID; 9242 } 9243 } 9244 } 9245 9246 static void clean_verifier_state(struct bpf_verifier_env *env, 9247 struct bpf_verifier_state *st) 9248 { 9249 int i; 9250 9251 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 9252 /* all regs in this state in all frames were already marked */ 9253 return; 9254 9255 for (i = 0; i <= st->curframe; i++) 9256 clean_func_state(env, st->frame[i]); 9257 } 9258 9259 /* the parentage chains form a tree. 9260 * the verifier states are added to state lists at given insn and 9261 * pushed into state stack for future exploration. 9262 * when the verifier reaches bpf_exit insn some of the verifer states 9263 * stored in the state lists have their final liveness state already, 9264 * but a lot of states will get revised from liveness point of view when 9265 * the verifier explores other branches. 9266 * Example: 9267 * 1: r0 = 1 9268 * 2: if r1 == 100 goto pc+1 9269 * 3: r0 = 2 9270 * 4: exit 9271 * when the verifier reaches exit insn the register r0 in the state list of 9272 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 9273 * of insn 2 and goes exploring further. At the insn 4 it will walk the 9274 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 9275 * 9276 * Since the verifier pushes the branch states as it sees them while exploring 9277 * the program the condition of walking the branch instruction for the second 9278 * time means that all states below this branch were already explored and 9279 * their final liveness markes are already propagated. 9280 * Hence when the verifier completes the search of state list in is_state_visited() 9281 * we can call this clean_live_states() function to mark all liveness states 9282 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 9283 * will not be used. 9284 * This function also clears the registers and stack for states that !READ 9285 * to simplify state merging. 9286 * 9287 * Important note here that walking the same branch instruction in the callee 9288 * doesn't meant that the states are DONE. The verifier has to compare 9289 * the callsites 9290 */ 9291 static void clean_live_states(struct bpf_verifier_env *env, int insn, 9292 struct bpf_verifier_state *cur) 9293 { 9294 struct bpf_verifier_state_list *sl; 9295 int i; 9296 9297 sl = *explored_state(env, insn); 9298 while (sl) { 9299 if (sl->state.branches) 9300 goto next; 9301 if (sl->state.insn_idx != insn || 9302 sl->state.curframe != cur->curframe) 9303 goto next; 9304 for (i = 0; i <= cur->curframe; i++) 9305 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 9306 goto next; 9307 clean_verifier_state(env, &sl->state); 9308 next: 9309 sl = sl->next; 9310 } 9311 } 9312 9313 /* Returns true if (rold safe implies rcur safe) */ 9314 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 9315 struct idpair *idmap) 9316 { 9317 bool equal; 9318 9319 if (!(rold->live & REG_LIVE_READ)) 9320 /* explored state didn't use this */ 9321 return true; 9322 9323 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 9324 9325 if (rold->type == PTR_TO_STACK) 9326 /* two stack pointers are equal only if they're pointing to 9327 * the same stack frame, since fp-8 in foo != fp-8 in bar 9328 */ 9329 return equal && rold->frameno == rcur->frameno; 9330 9331 if (equal) 9332 return true; 9333 9334 if (rold->type == NOT_INIT) 9335 /* explored state can't have used this */ 9336 return true; 9337 if (rcur->type == NOT_INIT) 9338 return false; 9339 switch (rold->type) { 9340 case SCALAR_VALUE: 9341 if (rcur->type == SCALAR_VALUE) { 9342 if (!rold->precise && !rcur->precise) 9343 return true; 9344 /* new val must satisfy old val knowledge */ 9345 return range_within(rold, rcur) && 9346 tnum_in(rold->var_off, rcur->var_off); 9347 } else { 9348 /* We're trying to use a pointer in place of a scalar. 9349 * Even if the scalar was unbounded, this could lead to 9350 * pointer leaks because scalars are allowed to leak 9351 * while pointers are not. We could make this safe in 9352 * special cases if root is calling us, but it's 9353 * probably not worth the hassle. 9354 */ 9355 return false; 9356 } 9357 case PTR_TO_MAP_VALUE: 9358 /* If the new min/max/var_off satisfy the old ones and 9359 * everything else matches, we are OK. 9360 * 'id' is not compared, since it's only used for maps with 9361 * bpf_spin_lock inside map element and in such cases if 9362 * the rest of the prog is valid for one map element then 9363 * it's valid for all map elements regardless of the key 9364 * used in bpf_map_lookup() 9365 */ 9366 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 9367 range_within(rold, rcur) && 9368 tnum_in(rold->var_off, rcur->var_off); 9369 case PTR_TO_MAP_VALUE_OR_NULL: 9370 /* a PTR_TO_MAP_VALUE could be safe to use as a 9371 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 9372 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 9373 * checked, doing so could have affected others with the same 9374 * id, and we can't check for that because we lost the id when 9375 * we converted to a PTR_TO_MAP_VALUE. 9376 */ 9377 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 9378 return false; 9379 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 9380 return false; 9381 /* Check our ids match any regs they're supposed to */ 9382 return check_ids(rold->id, rcur->id, idmap); 9383 case PTR_TO_PACKET_META: 9384 case PTR_TO_PACKET: 9385 if (rcur->type != rold->type) 9386 return false; 9387 /* We must have at least as much range as the old ptr 9388 * did, so that any accesses which were safe before are 9389 * still safe. This is true even if old range < old off, 9390 * since someone could have accessed through (ptr - k), or 9391 * even done ptr -= k in a register, to get a safe access. 9392 */ 9393 if (rold->range > rcur->range) 9394 return false; 9395 /* If the offsets don't match, we can't trust our alignment; 9396 * nor can we be sure that we won't fall out of range. 9397 */ 9398 if (rold->off != rcur->off) 9399 return false; 9400 /* id relations must be preserved */ 9401 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 9402 return false; 9403 /* new val must satisfy old val knowledge */ 9404 return range_within(rold, rcur) && 9405 tnum_in(rold->var_off, rcur->var_off); 9406 case PTR_TO_CTX: 9407 case CONST_PTR_TO_MAP: 9408 case PTR_TO_PACKET_END: 9409 case PTR_TO_FLOW_KEYS: 9410 case PTR_TO_SOCKET: 9411 case PTR_TO_SOCKET_OR_NULL: 9412 case PTR_TO_SOCK_COMMON: 9413 case PTR_TO_SOCK_COMMON_OR_NULL: 9414 case PTR_TO_TCP_SOCK: 9415 case PTR_TO_TCP_SOCK_OR_NULL: 9416 case PTR_TO_XDP_SOCK: 9417 /* Only valid matches are exact, which memcmp() above 9418 * would have accepted 9419 */ 9420 default: 9421 /* Don't know what's going on, just say it's not safe */ 9422 return false; 9423 } 9424 9425 /* Shouldn't get here; if we do, say it's not safe */ 9426 WARN_ON_ONCE(1); 9427 return false; 9428 } 9429 9430 static bool stacksafe(struct bpf_func_state *old, 9431 struct bpf_func_state *cur, 9432 struct idpair *idmap) 9433 { 9434 int i, spi; 9435 9436 /* walk slots of the explored stack and ignore any additional 9437 * slots in the current stack, since explored(safe) state 9438 * didn't use them 9439 */ 9440 for (i = 0; i < old->allocated_stack; i++) { 9441 spi = i / BPF_REG_SIZE; 9442 9443 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 9444 i += BPF_REG_SIZE - 1; 9445 /* explored state didn't use this */ 9446 continue; 9447 } 9448 9449 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 9450 continue; 9451 9452 /* explored stack has more populated slots than current stack 9453 * and these slots were used 9454 */ 9455 if (i >= cur->allocated_stack) 9456 return false; 9457 9458 /* if old state was safe with misc data in the stack 9459 * it will be safe with zero-initialized stack. 9460 * The opposite is not true 9461 */ 9462 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 9463 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 9464 continue; 9465 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 9466 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 9467 /* Ex: old explored (safe) state has STACK_SPILL in 9468 * this stack slot, but current has STACK_MISC -> 9469 * this verifier states are not equivalent, 9470 * return false to continue verification of this path 9471 */ 9472 return false; 9473 if (i % BPF_REG_SIZE) 9474 continue; 9475 if (old->stack[spi].slot_type[0] != STACK_SPILL) 9476 continue; 9477 if (!regsafe(&old->stack[spi].spilled_ptr, 9478 &cur->stack[spi].spilled_ptr, 9479 idmap)) 9480 /* when explored and current stack slot are both storing 9481 * spilled registers, check that stored pointers types 9482 * are the same as well. 9483 * Ex: explored safe path could have stored 9484 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 9485 * but current path has stored: 9486 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 9487 * such verifier states are not equivalent. 9488 * return false to continue verification of this path 9489 */ 9490 return false; 9491 } 9492 return true; 9493 } 9494 9495 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 9496 { 9497 if (old->acquired_refs != cur->acquired_refs) 9498 return false; 9499 return !memcmp(old->refs, cur->refs, 9500 sizeof(*old->refs) * old->acquired_refs); 9501 } 9502 9503 /* compare two verifier states 9504 * 9505 * all states stored in state_list are known to be valid, since 9506 * verifier reached 'bpf_exit' instruction through them 9507 * 9508 * this function is called when verifier exploring different branches of 9509 * execution popped from the state stack. If it sees an old state that has 9510 * more strict register state and more strict stack state then this execution 9511 * branch doesn't need to be explored further, since verifier already 9512 * concluded that more strict state leads to valid finish. 9513 * 9514 * Therefore two states are equivalent if register state is more conservative 9515 * and explored stack state is more conservative than the current one. 9516 * Example: 9517 * explored current 9518 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 9519 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 9520 * 9521 * In other words if current stack state (one being explored) has more 9522 * valid slots than old one that already passed validation, it means 9523 * the verifier can stop exploring and conclude that current state is valid too 9524 * 9525 * Similarly with registers. If explored state has register type as invalid 9526 * whereas register type in current state is meaningful, it means that 9527 * the current state will reach 'bpf_exit' instruction safely 9528 */ 9529 static bool func_states_equal(struct bpf_func_state *old, 9530 struct bpf_func_state *cur) 9531 { 9532 struct idpair *idmap; 9533 bool ret = false; 9534 int i; 9535 9536 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 9537 /* If we failed to allocate the idmap, just say it's not safe */ 9538 if (!idmap) 9539 return false; 9540 9541 for (i = 0; i < MAX_BPF_REG; i++) { 9542 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 9543 goto out_free; 9544 } 9545 9546 if (!stacksafe(old, cur, idmap)) 9547 goto out_free; 9548 9549 if (!refsafe(old, cur)) 9550 goto out_free; 9551 ret = true; 9552 out_free: 9553 kfree(idmap); 9554 return ret; 9555 } 9556 9557 static bool states_equal(struct bpf_verifier_env *env, 9558 struct bpf_verifier_state *old, 9559 struct bpf_verifier_state *cur) 9560 { 9561 int i; 9562 9563 if (old->curframe != cur->curframe) 9564 return false; 9565 9566 /* Verification state from speculative execution simulation 9567 * must never prune a non-speculative execution one. 9568 */ 9569 if (old->speculative && !cur->speculative) 9570 return false; 9571 9572 if (old->active_spin_lock != cur->active_spin_lock) 9573 return false; 9574 9575 /* for states to be equal callsites have to be the same 9576 * and all frame states need to be equivalent 9577 */ 9578 for (i = 0; i <= old->curframe; i++) { 9579 if (old->frame[i]->callsite != cur->frame[i]->callsite) 9580 return false; 9581 if (!func_states_equal(old->frame[i], cur->frame[i])) 9582 return false; 9583 } 9584 return true; 9585 } 9586 9587 /* Return 0 if no propagation happened. Return negative error code if error 9588 * happened. Otherwise, return the propagated bit. 9589 */ 9590 static int propagate_liveness_reg(struct bpf_verifier_env *env, 9591 struct bpf_reg_state *reg, 9592 struct bpf_reg_state *parent_reg) 9593 { 9594 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 9595 u8 flag = reg->live & REG_LIVE_READ; 9596 int err; 9597 9598 /* When comes here, read flags of PARENT_REG or REG could be any of 9599 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 9600 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 9601 */ 9602 if (parent_flag == REG_LIVE_READ64 || 9603 /* Or if there is no read flag from REG. */ 9604 !flag || 9605 /* Or if the read flag from REG is the same as PARENT_REG. */ 9606 parent_flag == flag) 9607 return 0; 9608 9609 err = mark_reg_read(env, reg, parent_reg, flag); 9610 if (err) 9611 return err; 9612 9613 return flag; 9614 } 9615 9616 /* A write screens off any subsequent reads; but write marks come from the 9617 * straight-line code between a state and its parent. When we arrive at an 9618 * equivalent state (jump target or such) we didn't arrive by the straight-line 9619 * code, so read marks in the state must propagate to the parent regardless 9620 * of the state's write marks. That's what 'parent == state->parent' comparison 9621 * in mark_reg_read() is for. 9622 */ 9623 static int propagate_liveness(struct bpf_verifier_env *env, 9624 const struct bpf_verifier_state *vstate, 9625 struct bpf_verifier_state *vparent) 9626 { 9627 struct bpf_reg_state *state_reg, *parent_reg; 9628 struct bpf_func_state *state, *parent; 9629 int i, frame, err = 0; 9630 9631 if (vparent->curframe != vstate->curframe) { 9632 WARN(1, "propagate_live: parent frame %d current frame %d\n", 9633 vparent->curframe, vstate->curframe); 9634 return -EFAULT; 9635 } 9636 /* Propagate read liveness of registers... */ 9637 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 9638 for (frame = 0; frame <= vstate->curframe; frame++) { 9639 parent = vparent->frame[frame]; 9640 state = vstate->frame[frame]; 9641 parent_reg = parent->regs; 9642 state_reg = state->regs; 9643 /* We don't need to worry about FP liveness, it's read-only */ 9644 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 9645 err = propagate_liveness_reg(env, &state_reg[i], 9646 &parent_reg[i]); 9647 if (err < 0) 9648 return err; 9649 if (err == REG_LIVE_READ64) 9650 mark_insn_zext(env, &parent_reg[i]); 9651 } 9652 9653 /* Propagate stack slots. */ 9654 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 9655 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 9656 parent_reg = &parent->stack[i].spilled_ptr; 9657 state_reg = &state->stack[i].spilled_ptr; 9658 err = propagate_liveness_reg(env, state_reg, 9659 parent_reg); 9660 if (err < 0) 9661 return err; 9662 } 9663 } 9664 return 0; 9665 } 9666 9667 /* find precise scalars in the previous equivalent state and 9668 * propagate them into the current state 9669 */ 9670 static int propagate_precision(struct bpf_verifier_env *env, 9671 const struct bpf_verifier_state *old) 9672 { 9673 struct bpf_reg_state *state_reg; 9674 struct bpf_func_state *state; 9675 int i, err = 0; 9676 9677 state = old->frame[old->curframe]; 9678 state_reg = state->regs; 9679 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 9680 if (state_reg->type != SCALAR_VALUE || 9681 !state_reg->precise) 9682 continue; 9683 if (env->log.level & BPF_LOG_LEVEL2) 9684 verbose(env, "propagating r%d\n", i); 9685 err = mark_chain_precision(env, i); 9686 if (err < 0) 9687 return err; 9688 } 9689 9690 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 9691 if (state->stack[i].slot_type[0] != STACK_SPILL) 9692 continue; 9693 state_reg = &state->stack[i].spilled_ptr; 9694 if (state_reg->type != SCALAR_VALUE || 9695 !state_reg->precise) 9696 continue; 9697 if (env->log.level & BPF_LOG_LEVEL2) 9698 verbose(env, "propagating fp%d\n", 9699 (-i - 1) * BPF_REG_SIZE); 9700 err = mark_chain_precision_stack(env, i); 9701 if (err < 0) 9702 return err; 9703 } 9704 return 0; 9705 } 9706 9707 static bool states_maybe_looping(struct bpf_verifier_state *old, 9708 struct bpf_verifier_state *cur) 9709 { 9710 struct bpf_func_state *fold, *fcur; 9711 int i, fr = cur->curframe; 9712 9713 if (old->curframe != fr) 9714 return false; 9715 9716 fold = old->frame[fr]; 9717 fcur = cur->frame[fr]; 9718 for (i = 0; i < MAX_BPF_REG; i++) 9719 if (memcmp(&fold->regs[i], &fcur->regs[i], 9720 offsetof(struct bpf_reg_state, parent))) 9721 return false; 9722 return true; 9723 } 9724 9725 9726 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 9727 { 9728 struct bpf_verifier_state_list *new_sl; 9729 struct bpf_verifier_state_list *sl, **pprev; 9730 struct bpf_verifier_state *cur = env->cur_state, *new; 9731 int i, j, err, states_cnt = 0; 9732 bool add_new_state = env->test_state_freq ? true : false; 9733 9734 cur->last_insn_idx = env->prev_insn_idx; 9735 if (!env->insn_aux_data[insn_idx].prune_point) 9736 /* this 'insn_idx' instruction wasn't marked, so we will not 9737 * be doing state search here 9738 */ 9739 return 0; 9740 9741 /* bpf progs typically have pruning point every 4 instructions 9742 * http://vger.kernel.org/bpfconf2019.html#session-1 9743 * Do not add new state for future pruning if the verifier hasn't seen 9744 * at least 2 jumps and at least 8 instructions. 9745 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 9746 * In tests that amounts to up to 50% reduction into total verifier 9747 * memory consumption and 20% verifier time speedup. 9748 */ 9749 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 9750 env->insn_processed - env->prev_insn_processed >= 8) 9751 add_new_state = true; 9752 9753 pprev = explored_state(env, insn_idx); 9754 sl = *pprev; 9755 9756 clean_live_states(env, insn_idx, cur); 9757 9758 while (sl) { 9759 states_cnt++; 9760 if (sl->state.insn_idx != insn_idx) 9761 goto next; 9762 if (sl->state.branches) { 9763 if (states_maybe_looping(&sl->state, cur) && 9764 states_equal(env, &sl->state, cur)) { 9765 verbose_linfo(env, insn_idx, "; "); 9766 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 9767 return -EINVAL; 9768 } 9769 /* if the verifier is processing a loop, avoid adding new state 9770 * too often, since different loop iterations have distinct 9771 * states and may not help future pruning. 9772 * This threshold shouldn't be too low to make sure that 9773 * a loop with large bound will be rejected quickly. 9774 * The most abusive loop will be: 9775 * r1 += 1 9776 * if r1 < 1000000 goto pc-2 9777 * 1M insn_procssed limit / 100 == 10k peak states. 9778 * This threshold shouldn't be too high either, since states 9779 * at the end of the loop are likely to be useful in pruning. 9780 */ 9781 if (env->jmps_processed - env->prev_jmps_processed < 20 && 9782 env->insn_processed - env->prev_insn_processed < 100) 9783 add_new_state = false; 9784 goto miss; 9785 } 9786 if (states_equal(env, &sl->state, cur)) { 9787 sl->hit_cnt++; 9788 /* reached equivalent register/stack state, 9789 * prune the search. 9790 * Registers read by the continuation are read by us. 9791 * If we have any write marks in env->cur_state, they 9792 * will prevent corresponding reads in the continuation 9793 * from reaching our parent (an explored_state). Our 9794 * own state will get the read marks recorded, but 9795 * they'll be immediately forgotten as we're pruning 9796 * this state and will pop a new one. 9797 */ 9798 err = propagate_liveness(env, &sl->state, cur); 9799 9800 /* if previous state reached the exit with precision and 9801 * current state is equivalent to it (except precsion marks) 9802 * the precision needs to be propagated back in 9803 * the current state. 9804 */ 9805 err = err ? : push_jmp_history(env, cur); 9806 err = err ? : propagate_precision(env, &sl->state); 9807 if (err) 9808 return err; 9809 return 1; 9810 } 9811 miss: 9812 /* when new state is not going to be added do not increase miss count. 9813 * Otherwise several loop iterations will remove the state 9814 * recorded earlier. The goal of these heuristics is to have 9815 * states from some iterations of the loop (some in the beginning 9816 * and some at the end) to help pruning. 9817 */ 9818 if (add_new_state) 9819 sl->miss_cnt++; 9820 /* heuristic to determine whether this state is beneficial 9821 * to keep checking from state equivalence point of view. 9822 * Higher numbers increase max_states_per_insn and verification time, 9823 * but do not meaningfully decrease insn_processed. 9824 */ 9825 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 9826 /* the state is unlikely to be useful. Remove it to 9827 * speed up verification 9828 */ 9829 *pprev = sl->next; 9830 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 9831 u32 br = sl->state.branches; 9832 9833 WARN_ONCE(br, 9834 "BUG live_done but branches_to_explore %d\n", 9835 br); 9836 free_verifier_state(&sl->state, false); 9837 kfree(sl); 9838 env->peak_states--; 9839 } else { 9840 /* cannot free this state, since parentage chain may 9841 * walk it later. Add it for free_list instead to 9842 * be freed at the end of verification 9843 */ 9844 sl->next = env->free_list; 9845 env->free_list = sl; 9846 } 9847 sl = *pprev; 9848 continue; 9849 } 9850 next: 9851 pprev = &sl->next; 9852 sl = *pprev; 9853 } 9854 9855 if (env->max_states_per_insn < states_cnt) 9856 env->max_states_per_insn = states_cnt; 9857 9858 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 9859 return push_jmp_history(env, cur); 9860 9861 if (!add_new_state) 9862 return push_jmp_history(env, cur); 9863 9864 /* There were no equivalent states, remember the current one. 9865 * Technically the current state is not proven to be safe yet, 9866 * but it will either reach outer most bpf_exit (which means it's safe) 9867 * or it will be rejected. When there are no loops the verifier won't be 9868 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 9869 * again on the way to bpf_exit. 9870 * When looping the sl->state.branches will be > 0 and this state 9871 * will not be considered for equivalence until branches == 0. 9872 */ 9873 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 9874 if (!new_sl) 9875 return -ENOMEM; 9876 env->total_states++; 9877 env->peak_states++; 9878 env->prev_jmps_processed = env->jmps_processed; 9879 env->prev_insn_processed = env->insn_processed; 9880 9881 /* add new state to the head of linked list */ 9882 new = &new_sl->state; 9883 err = copy_verifier_state(new, cur); 9884 if (err) { 9885 free_verifier_state(new, false); 9886 kfree(new_sl); 9887 return err; 9888 } 9889 new->insn_idx = insn_idx; 9890 WARN_ONCE(new->branches != 1, 9891 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 9892 9893 cur->parent = new; 9894 cur->first_insn_idx = insn_idx; 9895 clear_jmp_history(cur); 9896 new_sl->next = *explored_state(env, insn_idx); 9897 *explored_state(env, insn_idx) = new_sl; 9898 /* connect new state to parentage chain. Current frame needs all 9899 * registers connected. Only r6 - r9 of the callers are alive (pushed 9900 * to the stack implicitly by JITs) so in callers' frames connect just 9901 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 9902 * the state of the call instruction (with WRITTEN set), and r0 comes 9903 * from callee with its full parentage chain, anyway. 9904 */ 9905 /* clear write marks in current state: the writes we did are not writes 9906 * our child did, so they don't screen off its reads from us. 9907 * (There are no read marks in current state, because reads always mark 9908 * their parent and current state never has children yet. Only 9909 * explored_states can get read marks.) 9910 */ 9911 for (j = 0; j <= cur->curframe; j++) { 9912 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 9913 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 9914 for (i = 0; i < BPF_REG_FP; i++) 9915 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 9916 } 9917 9918 /* all stack frames are accessible from callee, clear them all */ 9919 for (j = 0; j <= cur->curframe; j++) { 9920 struct bpf_func_state *frame = cur->frame[j]; 9921 struct bpf_func_state *newframe = new->frame[j]; 9922 9923 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 9924 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 9925 frame->stack[i].spilled_ptr.parent = 9926 &newframe->stack[i].spilled_ptr; 9927 } 9928 } 9929 return 0; 9930 } 9931 9932 /* Return true if it's OK to have the same insn return a different type. */ 9933 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 9934 { 9935 switch (type) { 9936 case PTR_TO_CTX: 9937 case PTR_TO_SOCKET: 9938 case PTR_TO_SOCKET_OR_NULL: 9939 case PTR_TO_SOCK_COMMON: 9940 case PTR_TO_SOCK_COMMON_OR_NULL: 9941 case PTR_TO_TCP_SOCK: 9942 case PTR_TO_TCP_SOCK_OR_NULL: 9943 case PTR_TO_XDP_SOCK: 9944 case PTR_TO_BTF_ID: 9945 case PTR_TO_BTF_ID_OR_NULL: 9946 return false; 9947 default: 9948 return true; 9949 } 9950 } 9951 9952 /* If an instruction was previously used with particular pointer types, then we 9953 * need to be careful to avoid cases such as the below, where it may be ok 9954 * for one branch accessing the pointer, but not ok for the other branch: 9955 * 9956 * R1 = sock_ptr 9957 * goto X; 9958 * ... 9959 * R1 = some_other_valid_ptr; 9960 * goto X; 9961 * ... 9962 * R2 = *(u32 *)(R1 + 0); 9963 */ 9964 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 9965 { 9966 return src != prev && (!reg_type_mismatch_ok(src) || 9967 !reg_type_mismatch_ok(prev)); 9968 } 9969 9970 static int do_check(struct bpf_verifier_env *env) 9971 { 9972 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 9973 struct bpf_verifier_state *state = env->cur_state; 9974 struct bpf_insn *insns = env->prog->insnsi; 9975 struct bpf_reg_state *regs; 9976 int insn_cnt = env->prog->len; 9977 bool do_print_state = false; 9978 int prev_insn_idx = -1; 9979 9980 for (;;) { 9981 struct bpf_insn *insn; 9982 u8 class; 9983 int err; 9984 9985 env->prev_insn_idx = prev_insn_idx; 9986 if (env->insn_idx >= insn_cnt) { 9987 verbose(env, "invalid insn idx %d insn_cnt %d\n", 9988 env->insn_idx, insn_cnt); 9989 return -EFAULT; 9990 } 9991 9992 insn = &insns[env->insn_idx]; 9993 class = BPF_CLASS(insn->code); 9994 9995 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 9996 verbose(env, 9997 "BPF program is too large. Processed %d insn\n", 9998 env->insn_processed); 9999 return -E2BIG; 10000 } 10001 10002 err = is_state_visited(env, env->insn_idx); 10003 if (err < 0) 10004 return err; 10005 if (err == 1) { 10006 /* found equivalent state, can prune the search */ 10007 if (env->log.level & BPF_LOG_LEVEL) { 10008 if (do_print_state) 10009 verbose(env, "\nfrom %d to %d%s: safe\n", 10010 env->prev_insn_idx, env->insn_idx, 10011 env->cur_state->speculative ? 10012 " (speculative execution)" : ""); 10013 else 10014 verbose(env, "%d: safe\n", env->insn_idx); 10015 } 10016 goto process_bpf_exit; 10017 } 10018 10019 if (signal_pending(current)) 10020 return -EAGAIN; 10021 10022 if (need_resched()) 10023 cond_resched(); 10024 10025 if (env->log.level & BPF_LOG_LEVEL2 || 10026 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 10027 if (env->log.level & BPF_LOG_LEVEL2) 10028 verbose(env, "%d:", env->insn_idx); 10029 else 10030 verbose(env, "\nfrom %d to %d%s:", 10031 env->prev_insn_idx, env->insn_idx, 10032 env->cur_state->speculative ? 10033 " (speculative execution)" : ""); 10034 print_verifier_state(env, state->frame[state->curframe]); 10035 do_print_state = false; 10036 } 10037 10038 if (env->log.level & BPF_LOG_LEVEL) { 10039 const struct bpf_insn_cbs cbs = { 10040 .cb_print = verbose, 10041 .private_data = env, 10042 }; 10043 10044 verbose_linfo(env, env->insn_idx, "; "); 10045 verbose(env, "%d: ", env->insn_idx); 10046 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 10047 } 10048 10049 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10050 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 10051 env->prev_insn_idx); 10052 if (err) 10053 return err; 10054 } 10055 10056 regs = cur_regs(env); 10057 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10058 prev_insn_idx = env->insn_idx; 10059 10060 if (class == BPF_ALU || class == BPF_ALU64) { 10061 err = check_alu_op(env, insn); 10062 if (err) 10063 return err; 10064 10065 } else if (class == BPF_LDX) { 10066 enum bpf_reg_type *prev_src_type, src_reg_type; 10067 10068 /* check for reserved fields is already done */ 10069 10070 /* check src operand */ 10071 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10072 if (err) 10073 return err; 10074 10075 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10076 if (err) 10077 return err; 10078 10079 src_reg_type = regs[insn->src_reg].type; 10080 10081 /* check that memory (src_reg + off) is readable, 10082 * the state of dst_reg will be updated by this func 10083 */ 10084 err = check_mem_access(env, env->insn_idx, insn->src_reg, 10085 insn->off, BPF_SIZE(insn->code), 10086 BPF_READ, insn->dst_reg, false); 10087 if (err) 10088 return err; 10089 10090 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10091 10092 if (*prev_src_type == NOT_INIT) { 10093 /* saw a valid insn 10094 * dst_reg = *(u32 *)(src_reg + off) 10095 * save type to validate intersecting paths 10096 */ 10097 *prev_src_type = src_reg_type; 10098 10099 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 10100 /* ABuser program is trying to use the same insn 10101 * dst_reg = *(u32*) (src_reg + off) 10102 * with different pointer types: 10103 * src_reg == ctx in one branch and 10104 * src_reg == stack|map in some other branch. 10105 * Reject it. 10106 */ 10107 verbose(env, "same insn cannot be used with different pointers\n"); 10108 return -EINVAL; 10109 } 10110 10111 } else if (class == BPF_STX) { 10112 enum bpf_reg_type *prev_dst_type, dst_reg_type; 10113 10114 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 10115 err = check_atomic(env, env->insn_idx, insn); 10116 if (err) 10117 return err; 10118 env->insn_idx++; 10119 continue; 10120 } 10121 10122 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 10123 verbose(env, "BPF_STX uses reserved fields\n"); 10124 return -EINVAL; 10125 } 10126 10127 /* check src1 operand */ 10128 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10129 if (err) 10130 return err; 10131 /* check src2 operand */ 10132 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10133 if (err) 10134 return err; 10135 10136 dst_reg_type = regs[insn->dst_reg].type; 10137 10138 /* check that memory (dst_reg + off) is writeable */ 10139 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10140 insn->off, BPF_SIZE(insn->code), 10141 BPF_WRITE, insn->src_reg, false); 10142 if (err) 10143 return err; 10144 10145 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10146 10147 if (*prev_dst_type == NOT_INIT) { 10148 *prev_dst_type = dst_reg_type; 10149 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 10150 verbose(env, "same insn cannot be used with different pointers\n"); 10151 return -EINVAL; 10152 } 10153 10154 } else if (class == BPF_ST) { 10155 if (BPF_MODE(insn->code) != BPF_MEM || 10156 insn->src_reg != BPF_REG_0) { 10157 verbose(env, "BPF_ST uses reserved fields\n"); 10158 return -EINVAL; 10159 } 10160 /* check src operand */ 10161 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10162 if (err) 10163 return err; 10164 10165 if (is_ctx_reg(env, insn->dst_reg)) { 10166 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 10167 insn->dst_reg, 10168 reg_type_str[reg_state(env, insn->dst_reg)->type]); 10169 return -EACCES; 10170 } 10171 10172 /* check that memory (dst_reg + off) is writeable */ 10173 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10174 insn->off, BPF_SIZE(insn->code), 10175 BPF_WRITE, -1, false); 10176 if (err) 10177 return err; 10178 10179 } else if (class == BPF_JMP || class == BPF_JMP32) { 10180 u8 opcode = BPF_OP(insn->code); 10181 10182 env->jmps_processed++; 10183 if (opcode == BPF_CALL) { 10184 if (BPF_SRC(insn->code) != BPF_K || 10185 insn->off != 0 || 10186 (insn->src_reg != BPF_REG_0 && 10187 insn->src_reg != BPF_PSEUDO_CALL) || 10188 insn->dst_reg != BPF_REG_0 || 10189 class == BPF_JMP32) { 10190 verbose(env, "BPF_CALL uses reserved fields\n"); 10191 return -EINVAL; 10192 } 10193 10194 if (env->cur_state->active_spin_lock && 10195 (insn->src_reg == BPF_PSEUDO_CALL || 10196 insn->imm != BPF_FUNC_spin_unlock)) { 10197 verbose(env, "function calls are not allowed while holding a lock\n"); 10198 return -EINVAL; 10199 } 10200 if (insn->src_reg == BPF_PSEUDO_CALL) 10201 err = check_func_call(env, insn, &env->insn_idx); 10202 else 10203 err = check_helper_call(env, insn->imm, env->insn_idx); 10204 if (err) 10205 return err; 10206 10207 } else if (opcode == BPF_JA) { 10208 if (BPF_SRC(insn->code) != BPF_K || 10209 insn->imm != 0 || 10210 insn->src_reg != BPF_REG_0 || 10211 insn->dst_reg != BPF_REG_0 || 10212 class == BPF_JMP32) { 10213 verbose(env, "BPF_JA uses reserved fields\n"); 10214 return -EINVAL; 10215 } 10216 10217 env->insn_idx += insn->off + 1; 10218 continue; 10219 10220 } else if (opcode == BPF_EXIT) { 10221 if (BPF_SRC(insn->code) != BPF_K || 10222 insn->imm != 0 || 10223 insn->src_reg != BPF_REG_0 || 10224 insn->dst_reg != BPF_REG_0 || 10225 class == BPF_JMP32) { 10226 verbose(env, "BPF_EXIT uses reserved fields\n"); 10227 return -EINVAL; 10228 } 10229 10230 if (env->cur_state->active_spin_lock) { 10231 verbose(env, "bpf_spin_unlock is missing\n"); 10232 return -EINVAL; 10233 } 10234 10235 if (state->curframe) { 10236 /* exit from nested function */ 10237 err = prepare_func_exit(env, &env->insn_idx); 10238 if (err) 10239 return err; 10240 do_print_state = true; 10241 continue; 10242 } 10243 10244 err = check_reference_leak(env); 10245 if (err) 10246 return err; 10247 10248 err = check_return_code(env); 10249 if (err) 10250 return err; 10251 process_bpf_exit: 10252 update_branch_counts(env, env->cur_state); 10253 err = pop_stack(env, &prev_insn_idx, 10254 &env->insn_idx, pop_log); 10255 if (err < 0) { 10256 if (err != -ENOENT) 10257 return err; 10258 break; 10259 } else { 10260 do_print_state = true; 10261 continue; 10262 } 10263 } else { 10264 err = check_cond_jmp_op(env, insn, &env->insn_idx); 10265 if (err) 10266 return err; 10267 } 10268 } else if (class == BPF_LD) { 10269 u8 mode = BPF_MODE(insn->code); 10270 10271 if (mode == BPF_ABS || mode == BPF_IND) { 10272 err = check_ld_abs(env, insn); 10273 if (err) 10274 return err; 10275 10276 } else if (mode == BPF_IMM) { 10277 err = check_ld_imm(env, insn); 10278 if (err) 10279 return err; 10280 10281 env->insn_idx++; 10282 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10283 } else { 10284 verbose(env, "invalid BPF_LD mode\n"); 10285 return -EINVAL; 10286 } 10287 } else { 10288 verbose(env, "unknown insn class %d\n", class); 10289 return -EINVAL; 10290 } 10291 10292 env->insn_idx++; 10293 } 10294 10295 return 0; 10296 } 10297 10298 static int find_btf_percpu_datasec(struct btf *btf) 10299 { 10300 const struct btf_type *t; 10301 const char *tname; 10302 int i, n; 10303 10304 /* 10305 * Both vmlinux and module each have their own ".data..percpu" 10306 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 10307 * types to look at only module's own BTF types. 10308 */ 10309 n = btf_nr_types(btf); 10310 if (btf_is_module(btf)) 10311 i = btf_nr_types(btf_vmlinux); 10312 else 10313 i = 1; 10314 10315 for(; i < n; i++) { 10316 t = btf_type_by_id(btf, i); 10317 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 10318 continue; 10319 10320 tname = btf_name_by_offset(btf, t->name_off); 10321 if (!strcmp(tname, ".data..percpu")) 10322 return i; 10323 } 10324 10325 return -ENOENT; 10326 } 10327 10328 /* replace pseudo btf_id with kernel symbol address */ 10329 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 10330 struct bpf_insn *insn, 10331 struct bpf_insn_aux_data *aux) 10332 { 10333 const struct btf_var_secinfo *vsi; 10334 const struct btf_type *datasec; 10335 struct btf_mod_pair *btf_mod; 10336 const struct btf_type *t; 10337 const char *sym_name; 10338 bool percpu = false; 10339 u32 type, id = insn->imm; 10340 struct btf *btf; 10341 s32 datasec_id; 10342 u64 addr; 10343 int i, btf_fd, err; 10344 10345 btf_fd = insn[1].imm; 10346 if (btf_fd) { 10347 btf = btf_get_by_fd(btf_fd); 10348 if (IS_ERR(btf)) { 10349 verbose(env, "invalid module BTF object FD specified.\n"); 10350 return -EINVAL; 10351 } 10352 } else { 10353 if (!btf_vmlinux) { 10354 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 10355 return -EINVAL; 10356 } 10357 btf = btf_vmlinux; 10358 btf_get(btf); 10359 } 10360 10361 t = btf_type_by_id(btf, id); 10362 if (!t) { 10363 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 10364 err = -ENOENT; 10365 goto err_put; 10366 } 10367 10368 if (!btf_type_is_var(t)) { 10369 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 10370 err = -EINVAL; 10371 goto err_put; 10372 } 10373 10374 sym_name = btf_name_by_offset(btf, t->name_off); 10375 addr = kallsyms_lookup_name(sym_name); 10376 if (!addr) { 10377 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 10378 sym_name); 10379 err = -ENOENT; 10380 goto err_put; 10381 } 10382 10383 datasec_id = find_btf_percpu_datasec(btf); 10384 if (datasec_id > 0) { 10385 datasec = btf_type_by_id(btf, datasec_id); 10386 for_each_vsi(i, datasec, vsi) { 10387 if (vsi->type == id) { 10388 percpu = true; 10389 break; 10390 } 10391 } 10392 } 10393 10394 insn[0].imm = (u32)addr; 10395 insn[1].imm = addr >> 32; 10396 10397 type = t->type; 10398 t = btf_type_skip_modifiers(btf, type, NULL); 10399 if (percpu) { 10400 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 10401 aux->btf_var.btf = btf; 10402 aux->btf_var.btf_id = type; 10403 } else if (!btf_type_is_struct(t)) { 10404 const struct btf_type *ret; 10405 const char *tname; 10406 u32 tsize; 10407 10408 /* resolve the type size of ksym. */ 10409 ret = btf_resolve_size(btf, t, &tsize); 10410 if (IS_ERR(ret)) { 10411 tname = btf_name_by_offset(btf, t->name_off); 10412 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 10413 tname, PTR_ERR(ret)); 10414 err = -EINVAL; 10415 goto err_put; 10416 } 10417 aux->btf_var.reg_type = PTR_TO_MEM; 10418 aux->btf_var.mem_size = tsize; 10419 } else { 10420 aux->btf_var.reg_type = PTR_TO_BTF_ID; 10421 aux->btf_var.btf = btf; 10422 aux->btf_var.btf_id = type; 10423 } 10424 10425 /* check whether we recorded this BTF (and maybe module) already */ 10426 for (i = 0; i < env->used_btf_cnt; i++) { 10427 if (env->used_btfs[i].btf == btf) { 10428 btf_put(btf); 10429 return 0; 10430 } 10431 } 10432 10433 if (env->used_btf_cnt >= MAX_USED_BTFS) { 10434 err = -E2BIG; 10435 goto err_put; 10436 } 10437 10438 btf_mod = &env->used_btfs[env->used_btf_cnt]; 10439 btf_mod->btf = btf; 10440 btf_mod->module = NULL; 10441 10442 /* if we reference variables from kernel module, bump its refcount */ 10443 if (btf_is_module(btf)) { 10444 btf_mod->module = btf_try_get_module(btf); 10445 if (!btf_mod->module) { 10446 err = -ENXIO; 10447 goto err_put; 10448 } 10449 } 10450 10451 env->used_btf_cnt++; 10452 10453 return 0; 10454 err_put: 10455 btf_put(btf); 10456 return err; 10457 } 10458 10459 static int check_map_prealloc(struct bpf_map *map) 10460 { 10461 return (map->map_type != BPF_MAP_TYPE_HASH && 10462 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10463 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 10464 !(map->map_flags & BPF_F_NO_PREALLOC); 10465 } 10466 10467 static bool is_tracing_prog_type(enum bpf_prog_type type) 10468 { 10469 switch (type) { 10470 case BPF_PROG_TYPE_KPROBE: 10471 case BPF_PROG_TYPE_TRACEPOINT: 10472 case BPF_PROG_TYPE_PERF_EVENT: 10473 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10474 return true; 10475 default: 10476 return false; 10477 } 10478 } 10479 10480 static bool is_preallocated_map(struct bpf_map *map) 10481 { 10482 if (!check_map_prealloc(map)) 10483 return false; 10484 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 10485 return false; 10486 return true; 10487 } 10488 10489 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 10490 struct bpf_map *map, 10491 struct bpf_prog *prog) 10492 10493 { 10494 enum bpf_prog_type prog_type = resolve_prog_type(prog); 10495 /* 10496 * Validate that trace type programs use preallocated hash maps. 10497 * 10498 * For programs attached to PERF events this is mandatory as the 10499 * perf NMI can hit any arbitrary code sequence. 10500 * 10501 * All other trace types using preallocated hash maps are unsafe as 10502 * well because tracepoint or kprobes can be inside locked regions 10503 * of the memory allocator or at a place where a recursion into the 10504 * memory allocator would see inconsistent state. 10505 * 10506 * On RT enabled kernels run-time allocation of all trace type 10507 * programs is strictly prohibited due to lock type constraints. On 10508 * !RT kernels it is allowed for backwards compatibility reasons for 10509 * now, but warnings are emitted so developers are made aware of 10510 * the unsafety and can fix their programs before this is enforced. 10511 */ 10512 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 10513 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 10514 verbose(env, "perf_event programs can only use preallocated hash map\n"); 10515 return -EINVAL; 10516 } 10517 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 10518 verbose(env, "trace type programs can only use preallocated hash map\n"); 10519 return -EINVAL; 10520 } 10521 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 10522 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 10523 } 10524 10525 if (map_value_has_spin_lock(map)) { 10526 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 10527 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 10528 return -EINVAL; 10529 } 10530 10531 if (is_tracing_prog_type(prog_type)) { 10532 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 10533 return -EINVAL; 10534 } 10535 10536 if (prog->aux->sleepable) { 10537 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 10538 return -EINVAL; 10539 } 10540 } 10541 10542 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 10543 !bpf_offload_prog_map_match(prog, map)) { 10544 verbose(env, "offload device mismatch between prog and map\n"); 10545 return -EINVAL; 10546 } 10547 10548 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 10549 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 10550 return -EINVAL; 10551 } 10552 10553 if (prog->aux->sleepable) 10554 switch (map->map_type) { 10555 case BPF_MAP_TYPE_HASH: 10556 case BPF_MAP_TYPE_LRU_HASH: 10557 case BPF_MAP_TYPE_ARRAY: 10558 case BPF_MAP_TYPE_PERCPU_HASH: 10559 case BPF_MAP_TYPE_PERCPU_ARRAY: 10560 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10561 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 10562 case BPF_MAP_TYPE_HASH_OF_MAPS: 10563 if (!is_preallocated_map(map)) { 10564 verbose(env, 10565 "Sleepable programs can only use preallocated maps\n"); 10566 return -EINVAL; 10567 } 10568 break; 10569 case BPF_MAP_TYPE_RINGBUF: 10570 break; 10571 default: 10572 verbose(env, 10573 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 10574 return -EINVAL; 10575 } 10576 10577 return 0; 10578 } 10579 10580 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 10581 { 10582 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 10583 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 10584 } 10585 10586 /* find and rewrite pseudo imm in ld_imm64 instructions: 10587 * 10588 * 1. if it accesses map FD, replace it with actual map pointer. 10589 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 10590 * 10591 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 10592 */ 10593 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 10594 { 10595 struct bpf_insn *insn = env->prog->insnsi; 10596 int insn_cnt = env->prog->len; 10597 int i, j, err; 10598 10599 err = bpf_prog_calc_tag(env->prog); 10600 if (err) 10601 return err; 10602 10603 for (i = 0; i < insn_cnt; i++, insn++) { 10604 if (BPF_CLASS(insn->code) == BPF_LDX && 10605 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 10606 verbose(env, "BPF_LDX uses reserved fields\n"); 10607 return -EINVAL; 10608 } 10609 10610 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 10611 struct bpf_insn_aux_data *aux; 10612 struct bpf_map *map; 10613 struct fd f; 10614 u64 addr; 10615 10616 if (i == insn_cnt - 1 || insn[1].code != 0 || 10617 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 10618 insn[1].off != 0) { 10619 verbose(env, "invalid bpf_ld_imm64 insn\n"); 10620 return -EINVAL; 10621 } 10622 10623 if (insn[0].src_reg == 0) 10624 /* valid generic load 64-bit imm */ 10625 goto next_insn; 10626 10627 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 10628 aux = &env->insn_aux_data[i]; 10629 err = check_pseudo_btf_id(env, insn, aux); 10630 if (err) 10631 return err; 10632 goto next_insn; 10633 } 10634 10635 /* In final convert_pseudo_ld_imm64() step, this is 10636 * converted into regular 64-bit imm load insn. 10637 */ 10638 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 10639 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 10640 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 10641 insn[1].imm != 0)) { 10642 verbose(env, 10643 "unrecognized bpf_ld_imm64 insn\n"); 10644 return -EINVAL; 10645 } 10646 10647 f = fdget(insn[0].imm); 10648 map = __bpf_map_get(f); 10649 if (IS_ERR(map)) { 10650 verbose(env, "fd %d is not pointing to valid bpf_map\n", 10651 insn[0].imm); 10652 return PTR_ERR(map); 10653 } 10654 10655 err = check_map_prog_compatibility(env, map, env->prog); 10656 if (err) { 10657 fdput(f); 10658 return err; 10659 } 10660 10661 aux = &env->insn_aux_data[i]; 10662 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 10663 addr = (unsigned long)map; 10664 } else { 10665 u32 off = insn[1].imm; 10666 10667 if (off >= BPF_MAX_VAR_OFF) { 10668 verbose(env, "direct value offset of %u is not allowed\n", off); 10669 fdput(f); 10670 return -EINVAL; 10671 } 10672 10673 if (!map->ops->map_direct_value_addr) { 10674 verbose(env, "no direct value access support for this map type\n"); 10675 fdput(f); 10676 return -EINVAL; 10677 } 10678 10679 err = map->ops->map_direct_value_addr(map, &addr, off); 10680 if (err) { 10681 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 10682 map->value_size, off); 10683 fdput(f); 10684 return err; 10685 } 10686 10687 aux->map_off = off; 10688 addr += off; 10689 } 10690 10691 insn[0].imm = (u32)addr; 10692 insn[1].imm = addr >> 32; 10693 10694 /* check whether we recorded this map already */ 10695 for (j = 0; j < env->used_map_cnt; j++) { 10696 if (env->used_maps[j] == map) { 10697 aux->map_index = j; 10698 fdput(f); 10699 goto next_insn; 10700 } 10701 } 10702 10703 if (env->used_map_cnt >= MAX_USED_MAPS) { 10704 fdput(f); 10705 return -E2BIG; 10706 } 10707 10708 /* hold the map. If the program is rejected by verifier, 10709 * the map will be released by release_maps() or it 10710 * will be used by the valid program until it's unloaded 10711 * and all maps are released in free_used_maps() 10712 */ 10713 bpf_map_inc(map); 10714 10715 aux->map_index = env->used_map_cnt; 10716 env->used_maps[env->used_map_cnt++] = map; 10717 10718 if (bpf_map_is_cgroup_storage(map) && 10719 bpf_cgroup_storage_assign(env->prog->aux, map)) { 10720 verbose(env, "only one cgroup storage of each type is allowed\n"); 10721 fdput(f); 10722 return -EBUSY; 10723 } 10724 10725 fdput(f); 10726 next_insn: 10727 insn++; 10728 i++; 10729 continue; 10730 } 10731 10732 /* Basic sanity check before we invest more work here. */ 10733 if (!bpf_opcode_in_insntable(insn->code)) { 10734 verbose(env, "unknown opcode %02x\n", insn->code); 10735 return -EINVAL; 10736 } 10737 } 10738 10739 /* now all pseudo BPF_LD_IMM64 instructions load valid 10740 * 'struct bpf_map *' into a register instead of user map_fd. 10741 * These pointers will be used later by verifier to validate map access. 10742 */ 10743 return 0; 10744 } 10745 10746 /* drop refcnt of maps used by the rejected program */ 10747 static void release_maps(struct bpf_verifier_env *env) 10748 { 10749 __bpf_free_used_maps(env->prog->aux, env->used_maps, 10750 env->used_map_cnt); 10751 } 10752 10753 /* drop refcnt of maps used by the rejected program */ 10754 static void release_btfs(struct bpf_verifier_env *env) 10755 { 10756 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 10757 env->used_btf_cnt); 10758 } 10759 10760 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 10761 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 10762 { 10763 struct bpf_insn *insn = env->prog->insnsi; 10764 int insn_cnt = env->prog->len; 10765 int i; 10766 10767 for (i = 0; i < insn_cnt; i++, insn++) 10768 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 10769 insn->src_reg = 0; 10770 } 10771 10772 /* single env->prog->insni[off] instruction was replaced with the range 10773 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 10774 * [0, off) and [off, end) to new locations, so the patched range stays zero 10775 */ 10776 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 10777 struct bpf_prog *new_prog, u32 off, u32 cnt) 10778 { 10779 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 10780 struct bpf_insn *insn = new_prog->insnsi; 10781 u32 prog_len; 10782 int i; 10783 10784 /* aux info at OFF always needs adjustment, no matter fast path 10785 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 10786 * original insn at old prog. 10787 */ 10788 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 10789 10790 if (cnt == 1) 10791 return 0; 10792 prog_len = new_prog->len; 10793 new_data = vzalloc(array_size(prog_len, 10794 sizeof(struct bpf_insn_aux_data))); 10795 if (!new_data) 10796 return -ENOMEM; 10797 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 10798 memcpy(new_data + off + cnt - 1, old_data + off, 10799 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 10800 for (i = off; i < off + cnt - 1; i++) { 10801 new_data[i].seen = env->pass_cnt; 10802 new_data[i].zext_dst = insn_has_def32(env, insn + i); 10803 } 10804 env->insn_aux_data = new_data; 10805 vfree(old_data); 10806 return 0; 10807 } 10808 10809 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 10810 { 10811 int i; 10812 10813 if (len == 1) 10814 return; 10815 /* NOTE: fake 'exit' subprog should be updated as well. */ 10816 for (i = 0; i <= env->subprog_cnt; i++) { 10817 if (env->subprog_info[i].start <= off) 10818 continue; 10819 env->subprog_info[i].start += len - 1; 10820 } 10821 } 10822 10823 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 10824 { 10825 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 10826 int i, sz = prog->aux->size_poke_tab; 10827 struct bpf_jit_poke_descriptor *desc; 10828 10829 for (i = 0; i < sz; i++) { 10830 desc = &tab[i]; 10831 desc->insn_idx += len - 1; 10832 } 10833 } 10834 10835 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 10836 const struct bpf_insn *patch, u32 len) 10837 { 10838 struct bpf_prog *new_prog; 10839 10840 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 10841 if (IS_ERR(new_prog)) { 10842 if (PTR_ERR(new_prog) == -ERANGE) 10843 verbose(env, 10844 "insn %d cannot be patched due to 16-bit range\n", 10845 env->insn_aux_data[off].orig_idx); 10846 return NULL; 10847 } 10848 if (adjust_insn_aux_data(env, new_prog, off, len)) 10849 return NULL; 10850 adjust_subprog_starts(env, off, len); 10851 adjust_poke_descs(new_prog, len); 10852 return new_prog; 10853 } 10854 10855 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 10856 u32 off, u32 cnt) 10857 { 10858 int i, j; 10859 10860 /* find first prog starting at or after off (first to remove) */ 10861 for (i = 0; i < env->subprog_cnt; i++) 10862 if (env->subprog_info[i].start >= off) 10863 break; 10864 /* find first prog starting at or after off + cnt (first to stay) */ 10865 for (j = i; j < env->subprog_cnt; j++) 10866 if (env->subprog_info[j].start >= off + cnt) 10867 break; 10868 /* if j doesn't start exactly at off + cnt, we are just removing 10869 * the front of previous prog 10870 */ 10871 if (env->subprog_info[j].start != off + cnt) 10872 j--; 10873 10874 if (j > i) { 10875 struct bpf_prog_aux *aux = env->prog->aux; 10876 int move; 10877 10878 /* move fake 'exit' subprog as well */ 10879 move = env->subprog_cnt + 1 - j; 10880 10881 memmove(env->subprog_info + i, 10882 env->subprog_info + j, 10883 sizeof(*env->subprog_info) * move); 10884 env->subprog_cnt -= j - i; 10885 10886 /* remove func_info */ 10887 if (aux->func_info) { 10888 move = aux->func_info_cnt - j; 10889 10890 memmove(aux->func_info + i, 10891 aux->func_info + j, 10892 sizeof(*aux->func_info) * move); 10893 aux->func_info_cnt -= j - i; 10894 /* func_info->insn_off is set after all code rewrites, 10895 * in adjust_btf_func() - no need to adjust 10896 */ 10897 } 10898 } else { 10899 /* convert i from "first prog to remove" to "first to adjust" */ 10900 if (env->subprog_info[i].start == off) 10901 i++; 10902 } 10903 10904 /* update fake 'exit' subprog as well */ 10905 for (; i <= env->subprog_cnt; i++) 10906 env->subprog_info[i].start -= cnt; 10907 10908 return 0; 10909 } 10910 10911 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 10912 u32 cnt) 10913 { 10914 struct bpf_prog *prog = env->prog; 10915 u32 i, l_off, l_cnt, nr_linfo; 10916 struct bpf_line_info *linfo; 10917 10918 nr_linfo = prog->aux->nr_linfo; 10919 if (!nr_linfo) 10920 return 0; 10921 10922 linfo = prog->aux->linfo; 10923 10924 /* find first line info to remove, count lines to be removed */ 10925 for (i = 0; i < nr_linfo; i++) 10926 if (linfo[i].insn_off >= off) 10927 break; 10928 10929 l_off = i; 10930 l_cnt = 0; 10931 for (; i < nr_linfo; i++) 10932 if (linfo[i].insn_off < off + cnt) 10933 l_cnt++; 10934 else 10935 break; 10936 10937 /* First live insn doesn't match first live linfo, it needs to "inherit" 10938 * last removed linfo. prog is already modified, so prog->len == off 10939 * means no live instructions after (tail of the program was removed). 10940 */ 10941 if (prog->len != off && l_cnt && 10942 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 10943 l_cnt--; 10944 linfo[--i].insn_off = off + cnt; 10945 } 10946 10947 /* remove the line info which refer to the removed instructions */ 10948 if (l_cnt) { 10949 memmove(linfo + l_off, linfo + i, 10950 sizeof(*linfo) * (nr_linfo - i)); 10951 10952 prog->aux->nr_linfo -= l_cnt; 10953 nr_linfo = prog->aux->nr_linfo; 10954 } 10955 10956 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 10957 for (i = l_off; i < nr_linfo; i++) 10958 linfo[i].insn_off -= cnt; 10959 10960 /* fix up all subprogs (incl. 'exit') which start >= off */ 10961 for (i = 0; i <= env->subprog_cnt; i++) 10962 if (env->subprog_info[i].linfo_idx > l_off) { 10963 /* program may have started in the removed region but 10964 * may not be fully removed 10965 */ 10966 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 10967 env->subprog_info[i].linfo_idx -= l_cnt; 10968 else 10969 env->subprog_info[i].linfo_idx = l_off; 10970 } 10971 10972 return 0; 10973 } 10974 10975 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 10976 { 10977 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10978 unsigned int orig_prog_len = env->prog->len; 10979 int err; 10980 10981 if (bpf_prog_is_dev_bound(env->prog->aux)) 10982 bpf_prog_offload_remove_insns(env, off, cnt); 10983 10984 err = bpf_remove_insns(env->prog, off, cnt); 10985 if (err) 10986 return err; 10987 10988 err = adjust_subprog_starts_after_remove(env, off, cnt); 10989 if (err) 10990 return err; 10991 10992 err = bpf_adj_linfo_after_remove(env, off, cnt); 10993 if (err) 10994 return err; 10995 10996 memmove(aux_data + off, aux_data + off + cnt, 10997 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 10998 10999 return 0; 11000 } 11001 11002 /* The verifier does more data flow analysis than llvm and will not 11003 * explore branches that are dead at run time. Malicious programs can 11004 * have dead code too. Therefore replace all dead at-run-time code 11005 * with 'ja -1'. 11006 * 11007 * Just nops are not optimal, e.g. if they would sit at the end of the 11008 * program and through another bug we would manage to jump there, then 11009 * we'd execute beyond program memory otherwise. Returning exception 11010 * code also wouldn't work since we can have subprogs where the dead 11011 * code could be located. 11012 */ 11013 static void sanitize_dead_code(struct bpf_verifier_env *env) 11014 { 11015 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11016 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 11017 struct bpf_insn *insn = env->prog->insnsi; 11018 const int insn_cnt = env->prog->len; 11019 int i; 11020 11021 for (i = 0; i < insn_cnt; i++) { 11022 if (aux_data[i].seen) 11023 continue; 11024 memcpy(insn + i, &trap, sizeof(trap)); 11025 } 11026 } 11027 11028 static bool insn_is_cond_jump(u8 code) 11029 { 11030 u8 op; 11031 11032 if (BPF_CLASS(code) == BPF_JMP32) 11033 return true; 11034 11035 if (BPF_CLASS(code) != BPF_JMP) 11036 return false; 11037 11038 op = BPF_OP(code); 11039 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 11040 } 11041 11042 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 11043 { 11044 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11045 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11046 struct bpf_insn *insn = env->prog->insnsi; 11047 const int insn_cnt = env->prog->len; 11048 int i; 11049 11050 for (i = 0; i < insn_cnt; i++, insn++) { 11051 if (!insn_is_cond_jump(insn->code)) 11052 continue; 11053 11054 if (!aux_data[i + 1].seen) 11055 ja.off = insn->off; 11056 else if (!aux_data[i + 1 + insn->off].seen) 11057 ja.off = 0; 11058 else 11059 continue; 11060 11061 if (bpf_prog_is_dev_bound(env->prog->aux)) 11062 bpf_prog_offload_replace_insn(env, i, &ja); 11063 11064 memcpy(insn, &ja, sizeof(ja)); 11065 } 11066 } 11067 11068 static int opt_remove_dead_code(struct bpf_verifier_env *env) 11069 { 11070 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11071 int insn_cnt = env->prog->len; 11072 int i, err; 11073 11074 for (i = 0; i < insn_cnt; i++) { 11075 int j; 11076 11077 j = 0; 11078 while (i + j < insn_cnt && !aux_data[i + j].seen) 11079 j++; 11080 if (!j) 11081 continue; 11082 11083 err = verifier_remove_insns(env, i, j); 11084 if (err) 11085 return err; 11086 insn_cnt = env->prog->len; 11087 } 11088 11089 return 0; 11090 } 11091 11092 static int opt_remove_nops(struct bpf_verifier_env *env) 11093 { 11094 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11095 struct bpf_insn *insn = env->prog->insnsi; 11096 int insn_cnt = env->prog->len; 11097 int i, err; 11098 11099 for (i = 0; i < insn_cnt; i++) { 11100 if (memcmp(&insn[i], &ja, sizeof(ja))) 11101 continue; 11102 11103 err = verifier_remove_insns(env, i, 1); 11104 if (err) 11105 return err; 11106 insn_cnt--; 11107 i--; 11108 } 11109 11110 return 0; 11111 } 11112 11113 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 11114 const union bpf_attr *attr) 11115 { 11116 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 11117 struct bpf_insn_aux_data *aux = env->insn_aux_data; 11118 int i, patch_len, delta = 0, len = env->prog->len; 11119 struct bpf_insn *insns = env->prog->insnsi; 11120 struct bpf_prog *new_prog; 11121 bool rnd_hi32; 11122 11123 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 11124 zext_patch[1] = BPF_ZEXT_REG(0); 11125 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 11126 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 11127 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 11128 for (i = 0; i < len; i++) { 11129 int adj_idx = i + delta; 11130 struct bpf_insn insn; 11131 int load_reg; 11132 11133 insn = insns[adj_idx]; 11134 load_reg = insn_def_regno(&insn); 11135 if (!aux[adj_idx].zext_dst) { 11136 u8 code, class; 11137 u32 imm_rnd; 11138 11139 if (!rnd_hi32) 11140 continue; 11141 11142 code = insn.code; 11143 class = BPF_CLASS(code); 11144 if (load_reg == -1) 11145 continue; 11146 11147 /* NOTE: arg "reg" (the fourth one) is only used for 11148 * BPF_STX + SRC_OP, so it is safe to pass NULL 11149 * here. 11150 */ 11151 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 11152 if (class == BPF_LD && 11153 BPF_MODE(code) == BPF_IMM) 11154 i++; 11155 continue; 11156 } 11157 11158 /* ctx load could be transformed into wider load. */ 11159 if (class == BPF_LDX && 11160 aux[adj_idx].ptr_type == PTR_TO_CTX) 11161 continue; 11162 11163 imm_rnd = get_random_int(); 11164 rnd_hi32_patch[0] = insn; 11165 rnd_hi32_patch[1].imm = imm_rnd; 11166 rnd_hi32_patch[3].dst_reg = load_reg; 11167 patch = rnd_hi32_patch; 11168 patch_len = 4; 11169 goto apply_patch_buffer; 11170 } 11171 11172 /* Add in an zero-extend instruction if a) the JIT has requested 11173 * it or b) it's a CMPXCHG. 11174 * 11175 * The latter is because: BPF_CMPXCHG always loads a value into 11176 * R0, therefore always zero-extends. However some archs' 11177 * equivalent instruction only does this load when the 11178 * comparison is successful. This detail of CMPXCHG is 11179 * orthogonal to the general zero-extension behaviour of the 11180 * CPU, so it's treated independently of bpf_jit_needs_zext. 11181 */ 11182 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 11183 continue; 11184 11185 if (WARN_ON(load_reg == -1)) { 11186 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 11187 return -EFAULT; 11188 } 11189 11190 zext_patch[0] = insn; 11191 zext_patch[1].dst_reg = load_reg; 11192 zext_patch[1].src_reg = load_reg; 11193 patch = zext_patch; 11194 patch_len = 2; 11195 apply_patch_buffer: 11196 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 11197 if (!new_prog) 11198 return -ENOMEM; 11199 env->prog = new_prog; 11200 insns = new_prog->insnsi; 11201 aux = env->insn_aux_data; 11202 delta += patch_len - 1; 11203 } 11204 11205 return 0; 11206 } 11207 11208 /* convert load instructions that access fields of a context type into a 11209 * sequence of instructions that access fields of the underlying structure: 11210 * struct __sk_buff -> struct sk_buff 11211 * struct bpf_sock_ops -> struct sock 11212 */ 11213 static int convert_ctx_accesses(struct bpf_verifier_env *env) 11214 { 11215 const struct bpf_verifier_ops *ops = env->ops; 11216 int i, cnt, size, ctx_field_size, delta = 0; 11217 const int insn_cnt = env->prog->len; 11218 struct bpf_insn insn_buf[16], *insn; 11219 u32 target_size, size_default, off; 11220 struct bpf_prog *new_prog; 11221 enum bpf_access_type type; 11222 bool is_narrower_load; 11223 11224 if (ops->gen_prologue || env->seen_direct_write) { 11225 if (!ops->gen_prologue) { 11226 verbose(env, "bpf verifier is misconfigured\n"); 11227 return -EINVAL; 11228 } 11229 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 11230 env->prog); 11231 if (cnt >= ARRAY_SIZE(insn_buf)) { 11232 verbose(env, "bpf verifier is misconfigured\n"); 11233 return -EINVAL; 11234 } else if (cnt) { 11235 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 11236 if (!new_prog) 11237 return -ENOMEM; 11238 11239 env->prog = new_prog; 11240 delta += cnt - 1; 11241 } 11242 } 11243 11244 if (bpf_prog_is_dev_bound(env->prog->aux)) 11245 return 0; 11246 11247 insn = env->prog->insnsi + delta; 11248 11249 for (i = 0; i < insn_cnt; i++, insn++) { 11250 bpf_convert_ctx_access_t convert_ctx_access; 11251 11252 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 11253 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 11254 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 11255 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 11256 type = BPF_READ; 11257 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 11258 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 11259 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 11260 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 11261 type = BPF_WRITE; 11262 else 11263 continue; 11264 11265 if (type == BPF_WRITE && 11266 env->insn_aux_data[i + delta].sanitize_stack_off) { 11267 struct bpf_insn patch[] = { 11268 /* Sanitize suspicious stack slot with zero. 11269 * There are no memory dependencies for this store, 11270 * since it's only using frame pointer and immediate 11271 * constant of zero 11272 */ 11273 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 11274 env->insn_aux_data[i + delta].sanitize_stack_off, 11275 0), 11276 /* the original STX instruction will immediately 11277 * overwrite the same stack slot with appropriate value 11278 */ 11279 *insn, 11280 }; 11281 11282 cnt = ARRAY_SIZE(patch); 11283 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 11284 if (!new_prog) 11285 return -ENOMEM; 11286 11287 delta += cnt - 1; 11288 env->prog = new_prog; 11289 insn = new_prog->insnsi + i + delta; 11290 continue; 11291 } 11292 11293 switch (env->insn_aux_data[i + delta].ptr_type) { 11294 case PTR_TO_CTX: 11295 if (!ops->convert_ctx_access) 11296 continue; 11297 convert_ctx_access = ops->convert_ctx_access; 11298 break; 11299 case PTR_TO_SOCKET: 11300 case PTR_TO_SOCK_COMMON: 11301 convert_ctx_access = bpf_sock_convert_ctx_access; 11302 break; 11303 case PTR_TO_TCP_SOCK: 11304 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 11305 break; 11306 case PTR_TO_XDP_SOCK: 11307 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 11308 break; 11309 case PTR_TO_BTF_ID: 11310 if (type == BPF_READ) { 11311 insn->code = BPF_LDX | BPF_PROBE_MEM | 11312 BPF_SIZE((insn)->code); 11313 env->prog->aux->num_exentries++; 11314 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 11315 verbose(env, "Writes through BTF pointers are not allowed\n"); 11316 return -EINVAL; 11317 } 11318 continue; 11319 default: 11320 continue; 11321 } 11322 11323 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 11324 size = BPF_LDST_BYTES(insn); 11325 11326 /* If the read access is a narrower load of the field, 11327 * convert to a 4/8-byte load, to minimum program type specific 11328 * convert_ctx_access changes. If conversion is successful, 11329 * we will apply proper mask to the result. 11330 */ 11331 is_narrower_load = size < ctx_field_size; 11332 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 11333 off = insn->off; 11334 if (is_narrower_load) { 11335 u8 size_code; 11336 11337 if (type == BPF_WRITE) { 11338 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 11339 return -EINVAL; 11340 } 11341 11342 size_code = BPF_H; 11343 if (ctx_field_size == 4) 11344 size_code = BPF_W; 11345 else if (ctx_field_size == 8) 11346 size_code = BPF_DW; 11347 11348 insn->off = off & ~(size_default - 1); 11349 insn->code = BPF_LDX | BPF_MEM | size_code; 11350 } 11351 11352 target_size = 0; 11353 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 11354 &target_size); 11355 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 11356 (ctx_field_size && !target_size)) { 11357 verbose(env, "bpf verifier is misconfigured\n"); 11358 return -EINVAL; 11359 } 11360 11361 if (is_narrower_load && size < target_size) { 11362 u8 shift = bpf_ctx_narrow_access_offset( 11363 off, size, size_default) * 8; 11364 if (ctx_field_size <= 4) { 11365 if (shift) 11366 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 11367 insn->dst_reg, 11368 shift); 11369 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 11370 (1 << size * 8) - 1); 11371 } else { 11372 if (shift) 11373 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 11374 insn->dst_reg, 11375 shift); 11376 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 11377 (1ULL << size * 8) - 1); 11378 } 11379 } 11380 11381 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11382 if (!new_prog) 11383 return -ENOMEM; 11384 11385 delta += cnt - 1; 11386 11387 /* keep walking new program and skip insns we just inserted */ 11388 env->prog = new_prog; 11389 insn = new_prog->insnsi + i + delta; 11390 } 11391 11392 return 0; 11393 } 11394 11395 static int jit_subprogs(struct bpf_verifier_env *env) 11396 { 11397 struct bpf_prog *prog = env->prog, **func, *tmp; 11398 int i, j, subprog_start, subprog_end = 0, len, subprog; 11399 struct bpf_map *map_ptr; 11400 struct bpf_insn *insn; 11401 void *old_bpf_func; 11402 int err, num_exentries; 11403 11404 if (env->subprog_cnt <= 1) 11405 return 0; 11406 11407 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11408 if (!bpf_pseudo_call(insn)) 11409 continue; 11410 /* Upon error here we cannot fall back to interpreter but 11411 * need a hard reject of the program. Thus -EFAULT is 11412 * propagated in any case. 11413 */ 11414 subprog = find_subprog(env, i + insn->imm + 1); 11415 if (subprog < 0) { 11416 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 11417 i + insn->imm + 1); 11418 return -EFAULT; 11419 } 11420 /* temporarily remember subprog id inside insn instead of 11421 * aux_data, since next loop will split up all insns into funcs 11422 */ 11423 insn->off = subprog; 11424 /* remember original imm in case JIT fails and fallback 11425 * to interpreter will be needed 11426 */ 11427 env->insn_aux_data[i].call_imm = insn->imm; 11428 /* point imm to __bpf_call_base+1 from JITs point of view */ 11429 insn->imm = 1; 11430 } 11431 11432 err = bpf_prog_alloc_jited_linfo(prog); 11433 if (err) 11434 goto out_undo_insn; 11435 11436 err = -ENOMEM; 11437 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 11438 if (!func) 11439 goto out_undo_insn; 11440 11441 for (i = 0; i < env->subprog_cnt; i++) { 11442 subprog_start = subprog_end; 11443 subprog_end = env->subprog_info[i + 1].start; 11444 11445 len = subprog_end - subprog_start; 11446 /* BPF_PROG_RUN doesn't call subprogs directly, 11447 * hence main prog stats include the runtime of subprogs. 11448 * subprogs don't have IDs and not reachable via prog_get_next_id 11449 * func[i]->stats will never be accessed and stays NULL 11450 */ 11451 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 11452 if (!func[i]) 11453 goto out_free; 11454 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 11455 len * sizeof(struct bpf_insn)); 11456 func[i]->type = prog->type; 11457 func[i]->len = len; 11458 if (bpf_prog_calc_tag(func[i])) 11459 goto out_free; 11460 func[i]->is_func = 1; 11461 func[i]->aux->func_idx = i; 11462 /* the btf and func_info will be freed only at prog->aux */ 11463 func[i]->aux->btf = prog->aux->btf; 11464 func[i]->aux->func_info = prog->aux->func_info; 11465 11466 for (j = 0; j < prog->aux->size_poke_tab; j++) { 11467 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 11468 int ret; 11469 11470 if (!(insn_idx >= subprog_start && 11471 insn_idx <= subprog_end)) 11472 continue; 11473 11474 ret = bpf_jit_add_poke_descriptor(func[i], 11475 &prog->aux->poke_tab[j]); 11476 if (ret < 0) { 11477 verbose(env, "adding tail call poke descriptor failed\n"); 11478 goto out_free; 11479 } 11480 11481 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 11482 11483 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 11484 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 11485 if (ret < 0) { 11486 verbose(env, "tracking tail call prog failed\n"); 11487 goto out_free; 11488 } 11489 } 11490 11491 /* Use bpf_prog_F_tag to indicate functions in stack traces. 11492 * Long term would need debug info to populate names 11493 */ 11494 func[i]->aux->name[0] = 'F'; 11495 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 11496 func[i]->jit_requested = 1; 11497 func[i]->aux->linfo = prog->aux->linfo; 11498 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 11499 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 11500 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 11501 num_exentries = 0; 11502 insn = func[i]->insnsi; 11503 for (j = 0; j < func[i]->len; j++, insn++) { 11504 if (BPF_CLASS(insn->code) == BPF_LDX && 11505 BPF_MODE(insn->code) == BPF_PROBE_MEM) 11506 num_exentries++; 11507 } 11508 func[i]->aux->num_exentries = num_exentries; 11509 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 11510 func[i] = bpf_int_jit_compile(func[i]); 11511 if (!func[i]->jited) { 11512 err = -ENOTSUPP; 11513 goto out_free; 11514 } 11515 cond_resched(); 11516 } 11517 11518 /* Untrack main program's aux structs so that during map_poke_run() 11519 * we will not stumble upon the unfilled poke descriptors; each 11520 * of the main program's poke descs got distributed across subprogs 11521 * and got tracked onto map, so we are sure that none of them will 11522 * be missed after the operation below 11523 */ 11524 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11525 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11526 11527 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 11528 } 11529 11530 /* at this point all bpf functions were successfully JITed 11531 * now populate all bpf_calls with correct addresses and 11532 * run last pass of JIT 11533 */ 11534 for (i = 0; i < env->subprog_cnt; i++) { 11535 insn = func[i]->insnsi; 11536 for (j = 0; j < func[i]->len; j++, insn++) { 11537 if (!bpf_pseudo_call(insn)) 11538 continue; 11539 subprog = insn->off; 11540 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 11541 __bpf_call_base; 11542 } 11543 11544 /* we use the aux data to keep a list of the start addresses 11545 * of the JITed images for each function in the program 11546 * 11547 * for some architectures, such as powerpc64, the imm field 11548 * might not be large enough to hold the offset of the start 11549 * address of the callee's JITed image from __bpf_call_base 11550 * 11551 * in such cases, we can lookup the start address of a callee 11552 * by using its subprog id, available from the off field of 11553 * the call instruction, as an index for this list 11554 */ 11555 func[i]->aux->func = func; 11556 func[i]->aux->func_cnt = env->subprog_cnt; 11557 } 11558 for (i = 0; i < env->subprog_cnt; i++) { 11559 old_bpf_func = func[i]->bpf_func; 11560 tmp = bpf_int_jit_compile(func[i]); 11561 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 11562 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 11563 err = -ENOTSUPP; 11564 goto out_free; 11565 } 11566 cond_resched(); 11567 } 11568 11569 /* finally lock prog and jit images for all functions and 11570 * populate kallsysm 11571 */ 11572 for (i = 0; i < env->subprog_cnt; i++) { 11573 bpf_prog_lock_ro(func[i]); 11574 bpf_prog_kallsyms_add(func[i]); 11575 } 11576 11577 /* Last step: make now unused interpreter insns from main 11578 * prog consistent for later dump requests, so they can 11579 * later look the same as if they were interpreted only. 11580 */ 11581 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11582 if (!bpf_pseudo_call(insn)) 11583 continue; 11584 insn->off = env->insn_aux_data[i].call_imm; 11585 subprog = find_subprog(env, i + insn->off + 1); 11586 insn->imm = subprog; 11587 } 11588 11589 prog->jited = 1; 11590 prog->bpf_func = func[0]->bpf_func; 11591 prog->aux->func = func; 11592 prog->aux->func_cnt = env->subprog_cnt; 11593 bpf_prog_free_unused_jited_linfo(prog); 11594 return 0; 11595 out_free: 11596 for (i = 0; i < env->subprog_cnt; i++) { 11597 if (!func[i]) 11598 continue; 11599 11600 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 11601 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 11602 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 11603 } 11604 bpf_jit_free(func[i]); 11605 } 11606 kfree(func); 11607 out_undo_insn: 11608 /* cleanup main prog to be interpreted */ 11609 prog->jit_requested = 0; 11610 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11611 if (!bpf_pseudo_call(insn)) 11612 continue; 11613 insn->off = 0; 11614 insn->imm = env->insn_aux_data[i].call_imm; 11615 } 11616 bpf_prog_free_jited_linfo(prog); 11617 return err; 11618 } 11619 11620 static int fixup_call_args(struct bpf_verifier_env *env) 11621 { 11622 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 11623 struct bpf_prog *prog = env->prog; 11624 struct bpf_insn *insn = prog->insnsi; 11625 int i, depth; 11626 #endif 11627 int err = 0; 11628 11629 if (env->prog->jit_requested && 11630 !bpf_prog_is_dev_bound(env->prog->aux)) { 11631 err = jit_subprogs(env); 11632 if (err == 0) 11633 return 0; 11634 if (err == -EFAULT) 11635 return err; 11636 } 11637 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 11638 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 11639 /* When JIT fails the progs with bpf2bpf calls and tail_calls 11640 * have to be rejected, since interpreter doesn't support them yet. 11641 */ 11642 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 11643 return -EINVAL; 11644 } 11645 for (i = 0; i < prog->len; i++, insn++) { 11646 if (!bpf_pseudo_call(insn)) 11647 continue; 11648 depth = get_callee_stack_depth(env, insn, i); 11649 if (depth < 0) 11650 return depth; 11651 bpf_patch_call_args(insn, depth); 11652 } 11653 err = 0; 11654 #endif 11655 return err; 11656 } 11657 11658 /* fixup insn->imm field of bpf_call instructions 11659 * and inline eligible helpers as explicit sequence of BPF instructions 11660 * 11661 * this function is called after eBPF program passed verification 11662 */ 11663 static int fixup_bpf_calls(struct bpf_verifier_env *env) 11664 { 11665 struct bpf_prog *prog = env->prog; 11666 bool expect_blinding = bpf_jit_blinding_enabled(prog); 11667 struct bpf_insn *insn = prog->insnsi; 11668 const struct bpf_func_proto *fn; 11669 const int insn_cnt = prog->len; 11670 const struct bpf_map_ops *ops; 11671 struct bpf_insn_aux_data *aux; 11672 struct bpf_insn insn_buf[16]; 11673 struct bpf_prog *new_prog; 11674 struct bpf_map *map_ptr; 11675 int i, ret, cnt, delta = 0; 11676 11677 for (i = 0; i < insn_cnt; i++, insn++) { 11678 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 11679 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 11680 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 11681 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 11682 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 11683 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 11684 struct bpf_insn *patchlet; 11685 struct bpf_insn chk_and_div[] = { 11686 /* [R,W]x div 0 -> 0 */ 11687 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 11688 BPF_JNE | BPF_K, insn->src_reg, 11689 0, 2, 0), 11690 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 11691 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 11692 *insn, 11693 }; 11694 struct bpf_insn chk_and_mod[] = { 11695 /* [R,W]x mod 0 -> [R,W]x */ 11696 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 11697 BPF_JEQ | BPF_K, insn->src_reg, 11698 0, 1 + (is64 ? 0 : 1), 0), 11699 *insn, 11700 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 11701 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 11702 }; 11703 11704 patchlet = isdiv ? chk_and_div : chk_and_mod; 11705 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 11706 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 11707 11708 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 11709 if (!new_prog) 11710 return -ENOMEM; 11711 11712 delta += cnt - 1; 11713 env->prog = prog = new_prog; 11714 insn = new_prog->insnsi + i + delta; 11715 continue; 11716 } 11717 11718 if (BPF_CLASS(insn->code) == BPF_LD && 11719 (BPF_MODE(insn->code) == BPF_ABS || 11720 BPF_MODE(insn->code) == BPF_IND)) { 11721 cnt = env->ops->gen_ld_abs(insn, insn_buf); 11722 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11723 verbose(env, "bpf verifier is misconfigured\n"); 11724 return -EINVAL; 11725 } 11726 11727 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11728 if (!new_prog) 11729 return -ENOMEM; 11730 11731 delta += cnt - 1; 11732 env->prog = prog = new_prog; 11733 insn = new_prog->insnsi + i + delta; 11734 continue; 11735 } 11736 11737 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 11738 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 11739 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 11740 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 11741 struct bpf_insn insn_buf[16]; 11742 struct bpf_insn *patch = &insn_buf[0]; 11743 bool issrc, isneg; 11744 u32 off_reg; 11745 11746 aux = &env->insn_aux_data[i + delta]; 11747 if (!aux->alu_state || 11748 aux->alu_state == BPF_ALU_NON_POINTER) 11749 continue; 11750 11751 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 11752 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 11753 BPF_ALU_SANITIZE_SRC; 11754 11755 off_reg = issrc ? insn->src_reg : insn->dst_reg; 11756 if (isneg) 11757 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11758 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 11759 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 11760 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 11761 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 11762 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 11763 if (issrc) { 11764 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 11765 off_reg); 11766 insn->src_reg = BPF_REG_AX; 11767 } else { 11768 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 11769 BPF_REG_AX); 11770 } 11771 if (isneg) 11772 insn->code = insn->code == code_add ? 11773 code_sub : code_add; 11774 *patch++ = *insn; 11775 if (issrc && isneg) 11776 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11777 cnt = patch - insn_buf; 11778 11779 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11780 if (!new_prog) 11781 return -ENOMEM; 11782 11783 delta += cnt - 1; 11784 env->prog = prog = new_prog; 11785 insn = new_prog->insnsi + i + delta; 11786 continue; 11787 } 11788 11789 if (insn->code != (BPF_JMP | BPF_CALL)) 11790 continue; 11791 if (insn->src_reg == BPF_PSEUDO_CALL) 11792 continue; 11793 11794 if (insn->imm == BPF_FUNC_get_route_realm) 11795 prog->dst_needed = 1; 11796 if (insn->imm == BPF_FUNC_get_prandom_u32) 11797 bpf_user_rnd_init_once(); 11798 if (insn->imm == BPF_FUNC_override_return) 11799 prog->kprobe_override = 1; 11800 if (insn->imm == BPF_FUNC_tail_call) { 11801 /* If we tail call into other programs, we 11802 * cannot make any assumptions since they can 11803 * be replaced dynamically during runtime in 11804 * the program array. 11805 */ 11806 prog->cb_access = 1; 11807 if (!allow_tail_call_in_subprogs(env)) 11808 prog->aux->stack_depth = MAX_BPF_STACK; 11809 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 11810 11811 /* mark bpf_tail_call as different opcode to avoid 11812 * conditional branch in the interpeter for every normal 11813 * call and to prevent accidental JITing by JIT compiler 11814 * that doesn't support bpf_tail_call yet 11815 */ 11816 insn->imm = 0; 11817 insn->code = BPF_JMP | BPF_TAIL_CALL; 11818 11819 aux = &env->insn_aux_data[i + delta]; 11820 if (env->bpf_capable && !expect_blinding && 11821 prog->jit_requested && 11822 !bpf_map_key_poisoned(aux) && 11823 !bpf_map_ptr_poisoned(aux) && 11824 !bpf_map_ptr_unpriv(aux)) { 11825 struct bpf_jit_poke_descriptor desc = { 11826 .reason = BPF_POKE_REASON_TAIL_CALL, 11827 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 11828 .tail_call.key = bpf_map_key_immediate(aux), 11829 .insn_idx = i + delta, 11830 }; 11831 11832 ret = bpf_jit_add_poke_descriptor(prog, &desc); 11833 if (ret < 0) { 11834 verbose(env, "adding tail call poke descriptor failed\n"); 11835 return ret; 11836 } 11837 11838 insn->imm = ret + 1; 11839 continue; 11840 } 11841 11842 if (!bpf_map_ptr_unpriv(aux)) 11843 continue; 11844 11845 /* instead of changing every JIT dealing with tail_call 11846 * emit two extra insns: 11847 * if (index >= max_entries) goto out; 11848 * index &= array->index_mask; 11849 * to avoid out-of-bounds cpu speculation 11850 */ 11851 if (bpf_map_ptr_poisoned(aux)) { 11852 verbose(env, "tail_call abusing map_ptr\n"); 11853 return -EINVAL; 11854 } 11855 11856 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11857 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 11858 map_ptr->max_entries, 2); 11859 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 11860 container_of(map_ptr, 11861 struct bpf_array, 11862 map)->index_mask); 11863 insn_buf[2] = *insn; 11864 cnt = 3; 11865 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11866 if (!new_prog) 11867 return -ENOMEM; 11868 11869 delta += cnt - 1; 11870 env->prog = prog = new_prog; 11871 insn = new_prog->insnsi + i + delta; 11872 continue; 11873 } 11874 11875 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 11876 * and other inlining handlers are currently limited to 64 bit 11877 * only. 11878 */ 11879 if (prog->jit_requested && BITS_PER_LONG == 64 && 11880 (insn->imm == BPF_FUNC_map_lookup_elem || 11881 insn->imm == BPF_FUNC_map_update_elem || 11882 insn->imm == BPF_FUNC_map_delete_elem || 11883 insn->imm == BPF_FUNC_map_push_elem || 11884 insn->imm == BPF_FUNC_map_pop_elem || 11885 insn->imm == BPF_FUNC_map_peek_elem)) { 11886 aux = &env->insn_aux_data[i + delta]; 11887 if (bpf_map_ptr_poisoned(aux)) 11888 goto patch_call_imm; 11889 11890 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11891 ops = map_ptr->ops; 11892 if (insn->imm == BPF_FUNC_map_lookup_elem && 11893 ops->map_gen_lookup) { 11894 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 11895 if (cnt == -EOPNOTSUPP) 11896 goto patch_map_ops_generic; 11897 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11898 verbose(env, "bpf verifier is misconfigured\n"); 11899 return -EINVAL; 11900 } 11901 11902 new_prog = bpf_patch_insn_data(env, i + delta, 11903 insn_buf, cnt); 11904 if (!new_prog) 11905 return -ENOMEM; 11906 11907 delta += cnt - 1; 11908 env->prog = prog = new_prog; 11909 insn = new_prog->insnsi + i + delta; 11910 continue; 11911 } 11912 11913 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 11914 (void *(*)(struct bpf_map *map, void *key))NULL)); 11915 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 11916 (int (*)(struct bpf_map *map, void *key))NULL)); 11917 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 11918 (int (*)(struct bpf_map *map, void *key, void *value, 11919 u64 flags))NULL)); 11920 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 11921 (int (*)(struct bpf_map *map, void *value, 11922 u64 flags))NULL)); 11923 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 11924 (int (*)(struct bpf_map *map, void *value))NULL)); 11925 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 11926 (int (*)(struct bpf_map *map, void *value))NULL)); 11927 patch_map_ops_generic: 11928 switch (insn->imm) { 11929 case BPF_FUNC_map_lookup_elem: 11930 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 11931 __bpf_call_base; 11932 continue; 11933 case BPF_FUNC_map_update_elem: 11934 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 11935 __bpf_call_base; 11936 continue; 11937 case BPF_FUNC_map_delete_elem: 11938 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 11939 __bpf_call_base; 11940 continue; 11941 case BPF_FUNC_map_push_elem: 11942 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 11943 __bpf_call_base; 11944 continue; 11945 case BPF_FUNC_map_pop_elem: 11946 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 11947 __bpf_call_base; 11948 continue; 11949 case BPF_FUNC_map_peek_elem: 11950 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 11951 __bpf_call_base; 11952 continue; 11953 } 11954 11955 goto patch_call_imm; 11956 } 11957 11958 if (prog->jit_requested && BITS_PER_LONG == 64 && 11959 insn->imm == BPF_FUNC_jiffies64) { 11960 struct bpf_insn ld_jiffies_addr[2] = { 11961 BPF_LD_IMM64(BPF_REG_0, 11962 (unsigned long)&jiffies), 11963 }; 11964 11965 insn_buf[0] = ld_jiffies_addr[0]; 11966 insn_buf[1] = ld_jiffies_addr[1]; 11967 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 11968 BPF_REG_0, 0); 11969 cnt = 3; 11970 11971 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 11972 cnt); 11973 if (!new_prog) 11974 return -ENOMEM; 11975 11976 delta += cnt - 1; 11977 env->prog = prog = new_prog; 11978 insn = new_prog->insnsi + i + delta; 11979 continue; 11980 } 11981 11982 patch_call_imm: 11983 fn = env->ops->get_func_proto(insn->imm, env->prog); 11984 /* all functions that have prototype and verifier allowed 11985 * programs to call them, must be real in-kernel functions 11986 */ 11987 if (!fn->func) { 11988 verbose(env, 11989 "kernel subsystem misconfigured func %s#%d\n", 11990 func_id_name(insn->imm), insn->imm); 11991 return -EFAULT; 11992 } 11993 insn->imm = fn->func - __bpf_call_base; 11994 } 11995 11996 /* Since poke tab is now finalized, publish aux to tracker. */ 11997 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11998 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11999 if (!map_ptr->ops->map_poke_track || 12000 !map_ptr->ops->map_poke_untrack || 12001 !map_ptr->ops->map_poke_run) { 12002 verbose(env, "bpf verifier is misconfigured\n"); 12003 return -EINVAL; 12004 } 12005 12006 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 12007 if (ret < 0) { 12008 verbose(env, "tracking tail call prog failed\n"); 12009 return ret; 12010 } 12011 } 12012 12013 return 0; 12014 } 12015 12016 static void free_states(struct bpf_verifier_env *env) 12017 { 12018 struct bpf_verifier_state_list *sl, *sln; 12019 int i; 12020 12021 sl = env->free_list; 12022 while (sl) { 12023 sln = sl->next; 12024 free_verifier_state(&sl->state, false); 12025 kfree(sl); 12026 sl = sln; 12027 } 12028 env->free_list = NULL; 12029 12030 if (!env->explored_states) 12031 return; 12032 12033 for (i = 0; i < state_htab_size(env); i++) { 12034 sl = env->explored_states[i]; 12035 12036 while (sl) { 12037 sln = sl->next; 12038 free_verifier_state(&sl->state, false); 12039 kfree(sl); 12040 sl = sln; 12041 } 12042 env->explored_states[i] = NULL; 12043 } 12044 } 12045 12046 /* The verifier is using insn_aux_data[] to store temporary data during 12047 * verification and to store information for passes that run after the 12048 * verification like dead code sanitization. do_check_common() for subprogram N 12049 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 12050 * temporary data after do_check_common() finds that subprogram N cannot be 12051 * verified independently. pass_cnt counts the number of times 12052 * do_check_common() was run and insn->aux->seen tells the pass number 12053 * insn_aux_data was touched. These variables are compared to clear temporary 12054 * data from failed pass. For testing and experiments do_check_common() can be 12055 * run multiple times even when prior attempt to verify is unsuccessful. 12056 */ 12057 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 12058 { 12059 struct bpf_insn *insn = env->prog->insnsi; 12060 struct bpf_insn_aux_data *aux; 12061 int i, class; 12062 12063 for (i = 0; i < env->prog->len; i++) { 12064 class = BPF_CLASS(insn[i].code); 12065 if (class != BPF_LDX && class != BPF_STX) 12066 continue; 12067 aux = &env->insn_aux_data[i]; 12068 if (aux->seen != env->pass_cnt) 12069 continue; 12070 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 12071 } 12072 } 12073 12074 static int do_check_common(struct bpf_verifier_env *env, int subprog) 12075 { 12076 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12077 struct bpf_verifier_state *state; 12078 struct bpf_reg_state *regs; 12079 int ret, i; 12080 12081 env->prev_linfo = NULL; 12082 env->pass_cnt++; 12083 12084 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 12085 if (!state) 12086 return -ENOMEM; 12087 state->curframe = 0; 12088 state->speculative = false; 12089 state->branches = 1; 12090 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 12091 if (!state->frame[0]) { 12092 kfree(state); 12093 return -ENOMEM; 12094 } 12095 env->cur_state = state; 12096 init_func_state(env, state->frame[0], 12097 BPF_MAIN_FUNC /* callsite */, 12098 0 /* frameno */, 12099 subprog); 12100 12101 regs = state->frame[state->curframe]->regs; 12102 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 12103 ret = btf_prepare_func_args(env, subprog, regs); 12104 if (ret) 12105 goto out; 12106 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 12107 if (regs[i].type == PTR_TO_CTX) 12108 mark_reg_known_zero(env, regs, i); 12109 else if (regs[i].type == SCALAR_VALUE) 12110 mark_reg_unknown(env, regs, i); 12111 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 12112 const u32 mem_size = regs[i].mem_size; 12113 12114 mark_reg_known_zero(env, regs, i); 12115 regs[i].mem_size = mem_size; 12116 regs[i].id = ++env->id_gen; 12117 } 12118 } 12119 } else { 12120 /* 1st arg to a function */ 12121 regs[BPF_REG_1].type = PTR_TO_CTX; 12122 mark_reg_known_zero(env, regs, BPF_REG_1); 12123 ret = btf_check_func_arg_match(env, subprog, regs); 12124 if (ret == -EFAULT) 12125 /* unlikely verifier bug. abort. 12126 * ret == 0 and ret < 0 are sadly acceptable for 12127 * main() function due to backward compatibility. 12128 * Like socket filter program may be written as: 12129 * int bpf_prog(struct pt_regs *ctx) 12130 * and never dereference that ctx in the program. 12131 * 'struct pt_regs' is a type mismatch for socket 12132 * filter that should be using 'struct __sk_buff'. 12133 */ 12134 goto out; 12135 } 12136 12137 ret = do_check(env); 12138 out: 12139 /* check for NULL is necessary, since cur_state can be freed inside 12140 * do_check() under memory pressure. 12141 */ 12142 if (env->cur_state) { 12143 free_verifier_state(env->cur_state, true); 12144 env->cur_state = NULL; 12145 } 12146 while (!pop_stack(env, NULL, NULL, false)); 12147 if (!ret && pop_log) 12148 bpf_vlog_reset(&env->log, 0); 12149 free_states(env); 12150 if (ret) 12151 /* clean aux data in case subprog was rejected */ 12152 sanitize_insn_aux_data(env); 12153 return ret; 12154 } 12155 12156 /* Verify all global functions in a BPF program one by one based on their BTF. 12157 * All global functions must pass verification. Otherwise the whole program is rejected. 12158 * Consider: 12159 * int bar(int); 12160 * int foo(int f) 12161 * { 12162 * return bar(f); 12163 * } 12164 * int bar(int b) 12165 * { 12166 * ... 12167 * } 12168 * foo() will be verified first for R1=any_scalar_value. During verification it 12169 * will be assumed that bar() already verified successfully and call to bar() 12170 * from foo() will be checked for type match only. Later bar() will be verified 12171 * independently to check that it's safe for R1=any_scalar_value. 12172 */ 12173 static int do_check_subprogs(struct bpf_verifier_env *env) 12174 { 12175 struct bpf_prog_aux *aux = env->prog->aux; 12176 int i, ret; 12177 12178 if (!aux->func_info) 12179 return 0; 12180 12181 for (i = 1; i < env->subprog_cnt; i++) { 12182 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 12183 continue; 12184 env->insn_idx = env->subprog_info[i].start; 12185 WARN_ON_ONCE(env->insn_idx == 0); 12186 ret = do_check_common(env, i); 12187 if (ret) { 12188 return ret; 12189 } else if (env->log.level & BPF_LOG_LEVEL) { 12190 verbose(env, 12191 "Func#%d is safe for any args that match its prototype\n", 12192 i); 12193 } 12194 } 12195 return 0; 12196 } 12197 12198 static int do_check_main(struct bpf_verifier_env *env) 12199 { 12200 int ret; 12201 12202 env->insn_idx = 0; 12203 ret = do_check_common(env, 0); 12204 if (!ret) 12205 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 12206 return ret; 12207 } 12208 12209 12210 static void print_verification_stats(struct bpf_verifier_env *env) 12211 { 12212 int i; 12213 12214 if (env->log.level & BPF_LOG_STATS) { 12215 verbose(env, "verification time %lld usec\n", 12216 div_u64(env->verification_time, 1000)); 12217 verbose(env, "stack depth "); 12218 for (i = 0; i < env->subprog_cnt; i++) { 12219 u32 depth = env->subprog_info[i].stack_depth; 12220 12221 verbose(env, "%d", depth); 12222 if (i + 1 < env->subprog_cnt) 12223 verbose(env, "+"); 12224 } 12225 verbose(env, "\n"); 12226 } 12227 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 12228 "total_states %d peak_states %d mark_read %d\n", 12229 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 12230 env->max_states_per_insn, env->total_states, 12231 env->peak_states, env->longest_mark_read_walk); 12232 } 12233 12234 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 12235 { 12236 const struct btf_type *t, *func_proto; 12237 const struct bpf_struct_ops *st_ops; 12238 const struct btf_member *member; 12239 struct bpf_prog *prog = env->prog; 12240 u32 btf_id, member_idx; 12241 const char *mname; 12242 12243 if (!prog->gpl_compatible) { 12244 verbose(env, "struct ops programs must have a GPL compatible license\n"); 12245 return -EINVAL; 12246 } 12247 12248 btf_id = prog->aux->attach_btf_id; 12249 st_ops = bpf_struct_ops_find(btf_id); 12250 if (!st_ops) { 12251 verbose(env, "attach_btf_id %u is not a supported struct\n", 12252 btf_id); 12253 return -ENOTSUPP; 12254 } 12255 12256 t = st_ops->type; 12257 member_idx = prog->expected_attach_type; 12258 if (member_idx >= btf_type_vlen(t)) { 12259 verbose(env, "attach to invalid member idx %u of struct %s\n", 12260 member_idx, st_ops->name); 12261 return -EINVAL; 12262 } 12263 12264 member = &btf_type_member(t)[member_idx]; 12265 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 12266 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 12267 NULL); 12268 if (!func_proto) { 12269 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 12270 mname, member_idx, st_ops->name); 12271 return -EINVAL; 12272 } 12273 12274 if (st_ops->check_member) { 12275 int err = st_ops->check_member(t, member); 12276 12277 if (err) { 12278 verbose(env, "attach to unsupported member %s of struct %s\n", 12279 mname, st_ops->name); 12280 return err; 12281 } 12282 } 12283 12284 prog->aux->attach_func_proto = func_proto; 12285 prog->aux->attach_func_name = mname; 12286 env->ops = st_ops->verifier_ops; 12287 12288 return 0; 12289 } 12290 #define SECURITY_PREFIX "security_" 12291 12292 static int check_attach_modify_return(unsigned long addr, const char *func_name) 12293 { 12294 if (within_error_injection_list(addr) || 12295 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 12296 return 0; 12297 12298 return -EINVAL; 12299 } 12300 12301 /* list of non-sleepable functions that are otherwise on 12302 * ALLOW_ERROR_INJECTION list 12303 */ 12304 BTF_SET_START(btf_non_sleepable_error_inject) 12305 /* Three functions below can be called from sleepable and non-sleepable context. 12306 * Assume non-sleepable from bpf safety point of view. 12307 */ 12308 BTF_ID(func, __add_to_page_cache_locked) 12309 BTF_ID(func, should_fail_alloc_page) 12310 BTF_ID(func, should_failslab) 12311 BTF_SET_END(btf_non_sleepable_error_inject) 12312 12313 static int check_non_sleepable_error_inject(u32 btf_id) 12314 { 12315 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 12316 } 12317 12318 int bpf_check_attach_target(struct bpf_verifier_log *log, 12319 const struct bpf_prog *prog, 12320 const struct bpf_prog *tgt_prog, 12321 u32 btf_id, 12322 struct bpf_attach_target_info *tgt_info) 12323 { 12324 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 12325 const char prefix[] = "btf_trace_"; 12326 int ret = 0, subprog = -1, i; 12327 const struct btf_type *t; 12328 bool conservative = true; 12329 const char *tname; 12330 struct btf *btf; 12331 long addr = 0; 12332 12333 if (!btf_id) { 12334 bpf_log(log, "Tracing programs must provide btf_id\n"); 12335 return -EINVAL; 12336 } 12337 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 12338 if (!btf) { 12339 bpf_log(log, 12340 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 12341 return -EINVAL; 12342 } 12343 t = btf_type_by_id(btf, btf_id); 12344 if (!t) { 12345 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 12346 return -EINVAL; 12347 } 12348 tname = btf_name_by_offset(btf, t->name_off); 12349 if (!tname) { 12350 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 12351 return -EINVAL; 12352 } 12353 if (tgt_prog) { 12354 struct bpf_prog_aux *aux = tgt_prog->aux; 12355 12356 for (i = 0; i < aux->func_info_cnt; i++) 12357 if (aux->func_info[i].type_id == btf_id) { 12358 subprog = i; 12359 break; 12360 } 12361 if (subprog == -1) { 12362 bpf_log(log, "Subprog %s doesn't exist\n", tname); 12363 return -EINVAL; 12364 } 12365 conservative = aux->func_info_aux[subprog].unreliable; 12366 if (prog_extension) { 12367 if (conservative) { 12368 bpf_log(log, 12369 "Cannot replace static functions\n"); 12370 return -EINVAL; 12371 } 12372 if (!prog->jit_requested) { 12373 bpf_log(log, 12374 "Extension programs should be JITed\n"); 12375 return -EINVAL; 12376 } 12377 } 12378 if (!tgt_prog->jited) { 12379 bpf_log(log, "Can attach to only JITed progs\n"); 12380 return -EINVAL; 12381 } 12382 if (tgt_prog->type == prog->type) { 12383 /* Cannot fentry/fexit another fentry/fexit program. 12384 * Cannot attach program extension to another extension. 12385 * It's ok to attach fentry/fexit to extension program. 12386 */ 12387 bpf_log(log, "Cannot recursively attach\n"); 12388 return -EINVAL; 12389 } 12390 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 12391 prog_extension && 12392 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 12393 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 12394 /* Program extensions can extend all program types 12395 * except fentry/fexit. The reason is the following. 12396 * The fentry/fexit programs are used for performance 12397 * analysis, stats and can be attached to any program 12398 * type except themselves. When extension program is 12399 * replacing XDP function it is necessary to allow 12400 * performance analysis of all functions. Both original 12401 * XDP program and its program extension. Hence 12402 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 12403 * allowed. If extending of fentry/fexit was allowed it 12404 * would be possible to create long call chain 12405 * fentry->extension->fentry->extension beyond 12406 * reasonable stack size. Hence extending fentry is not 12407 * allowed. 12408 */ 12409 bpf_log(log, "Cannot extend fentry/fexit\n"); 12410 return -EINVAL; 12411 } 12412 } else { 12413 if (prog_extension) { 12414 bpf_log(log, "Cannot replace kernel functions\n"); 12415 return -EINVAL; 12416 } 12417 } 12418 12419 switch (prog->expected_attach_type) { 12420 case BPF_TRACE_RAW_TP: 12421 if (tgt_prog) { 12422 bpf_log(log, 12423 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 12424 return -EINVAL; 12425 } 12426 if (!btf_type_is_typedef(t)) { 12427 bpf_log(log, "attach_btf_id %u is not a typedef\n", 12428 btf_id); 12429 return -EINVAL; 12430 } 12431 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 12432 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 12433 btf_id, tname); 12434 return -EINVAL; 12435 } 12436 tname += sizeof(prefix) - 1; 12437 t = btf_type_by_id(btf, t->type); 12438 if (!btf_type_is_ptr(t)) 12439 /* should never happen in valid vmlinux build */ 12440 return -EINVAL; 12441 t = btf_type_by_id(btf, t->type); 12442 if (!btf_type_is_func_proto(t)) 12443 /* should never happen in valid vmlinux build */ 12444 return -EINVAL; 12445 12446 break; 12447 case BPF_TRACE_ITER: 12448 if (!btf_type_is_func(t)) { 12449 bpf_log(log, "attach_btf_id %u is not a function\n", 12450 btf_id); 12451 return -EINVAL; 12452 } 12453 t = btf_type_by_id(btf, t->type); 12454 if (!btf_type_is_func_proto(t)) 12455 return -EINVAL; 12456 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 12457 if (ret) 12458 return ret; 12459 break; 12460 default: 12461 if (!prog_extension) 12462 return -EINVAL; 12463 fallthrough; 12464 case BPF_MODIFY_RETURN: 12465 case BPF_LSM_MAC: 12466 case BPF_TRACE_FENTRY: 12467 case BPF_TRACE_FEXIT: 12468 if (!btf_type_is_func(t)) { 12469 bpf_log(log, "attach_btf_id %u is not a function\n", 12470 btf_id); 12471 return -EINVAL; 12472 } 12473 if (prog_extension && 12474 btf_check_type_match(log, prog, btf, t)) 12475 return -EINVAL; 12476 t = btf_type_by_id(btf, t->type); 12477 if (!btf_type_is_func_proto(t)) 12478 return -EINVAL; 12479 12480 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 12481 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 12482 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 12483 return -EINVAL; 12484 12485 if (tgt_prog && conservative) 12486 t = NULL; 12487 12488 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 12489 if (ret < 0) 12490 return ret; 12491 12492 if (tgt_prog) { 12493 if (subprog == 0) 12494 addr = (long) tgt_prog->bpf_func; 12495 else 12496 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 12497 } else { 12498 addr = kallsyms_lookup_name(tname); 12499 if (!addr) { 12500 bpf_log(log, 12501 "The address of function %s cannot be found\n", 12502 tname); 12503 return -ENOENT; 12504 } 12505 } 12506 12507 if (prog->aux->sleepable) { 12508 ret = -EINVAL; 12509 switch (prog->type) { 12510 case BPF_PROG_TYPE_TRACING: 12511 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 12512 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 12513 */ 12514 if (!check_non_sleepable_error_inject(btf_id) && 12515 within_error_injection_list(addr)) 12516 ret = 0; 12517 break; 12518 case BPF_PROG_TYPE_LSM: 12519 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 12520 * Only some of them are sleepable. 12521 */ 12522 if (bpf_lsm_is_sleepable_hook(btf_id)) 12523 ret = 0; 12524 break; 12525 default: 12526 break; 12527 } 12528 if (ret) { 12529 bpf_log(log, "%s is not sleepable\n", tname); 12530 return ret; 12531 } 12532 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 12533 if (tgt_prog) { 12534 bpf_log(log, "can't modify return codes of BPF programs\n"); 12535 return -EINVAL; 12536 } 12537 ret = check_attach_modify_return(addr, tname); 12538 if (ret) { 12539 bpf_log(log, "%s() is not modifiable\n", tname); 12540 return ret; 12541 } 12542 } 12543 12544 break; 12545 } 12546 tgt_info->tgt_addr = addr; 12547 tgt_info->tgt_name = tname; 12548 tgt_info->tgt_type = t; 12549 return 0; 12550 } 12551 12552 static int check_attach_btf_id(struct bpf_verifier_env *env) 12553 { 12554 struct bpf_prog *prog = env->prog; 12555 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 12556 struct bpf_attach_target_info tgt_info = {}; 12557 u32 btf_id = prog->aux->attach_btf_id; 12558 struct bpf_trampoline *tr; 12559 int ret; 12560 u64 key; 12561 12562 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 12563 prog->type != BPF_PROG_TYPE_LSM) { 12564 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 12565 return -EINVAL; 12566 } 12567 12568 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 12569 return check_struct_ops_btf_id(env); 12570 12571 if (prog->type != BPF_PROG_TYPE_TRACING && 12572 prog->type != BPF_PROG_TYPE_LSM && 12573 prog->type != BPF_PROG_TYPE_EXT) 12574 return 0; 12575 12576 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 12577 if (ret) 12578 return ret; 12579 12580 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 12581 /* to make freplace equivalent to their targets, they need to 12582 * inherit env->ops and expected_attach_type for the rest of the 12583 * verification 12584 */ 12585 env->ops = bpf_verifier_ops[tgt_prog->type]; 12586 prog->expected_attach_type = tgt_prog->expected_attach_type; 12587 } 12588 12589 /* store info about the attachment target that will be used later */ 12590 prog->aux->attach_func_proto = tgt_info.tgt_type; 12591 prog->aux->attach_func_name = tgt_info.tgt_name; 12592 12593 if (tgt_prog) { 12594 prog->aux->saved_dst_prog_type = tgt_prog->type; 12595 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 12596 } 12597 12598 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 12599 prog->aux->attach_btf_trace = true; 12600 return 0; 12601 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 12602 if (!bpf_iter_prog_supported(prog)) 12603 return -EINVAL; 12604 return 0; 12605 } 12606 12607 if (prog->type == BPF_PROG_TYPE_LSM) { 12608 ret = bpf_lsm_verify_prog(&env->log, prog); 12609 if (ret < 0) 12610 return ret; 12611 } 12612 12613 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 12614 tr = bpf_trampoline_get(key, &tgt_info); 12615 if (!tr) 12616 return -ENOMEM; 12617 12618 prog->aux->dst_trampoline = tr; 12619 return 0; 12620 } 12621 12622 struct btf *bpf_get_btf_vmlinux(void) 12623 { 12624 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 12625 mutex_lock(&bpf_verifier_lock); 12626 if (!btf_vmlinux) 12627 btf_vmlinux = btf_parse_vmlinux(); 12628 mutex_unlock(&bpf_verifier_lock); 12629 } 12630 return btf_vmlinux; 12631 } 12632 12633 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 12634 union bpf_attr __user *uattr) 12635 { 12636 u64 start_time = ktime_get_ns(); 12637 struct bpf_verifier_env *env; 12638 struct bpf_verifier_log *log; 12639 int i, len, ret = -EINVAL; 12640 bool is_priv; 12641 12642 /* no program is valid */ 12643 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 12644 return -EINVAL; 12645 12646 /* 'struct bpf_verifier_env' can be global, but since it's not small, 12647 * allocate/free it every time bpf_check() is called 12648 */ 12649 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 12650 if (!env) 12651 return -ENOMEM; 12652 log = &env->log; 12653 12654 len = (*prog)->len; 12655 env->insn_aux_data = 12656 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 12657 ret = -ENOMEM; 12658 if (!env->insn_aux_data) 12659 goto err_free_env; 12660 for (i = 0; i < len; i++) 12661 env->insn_aux_data[i].orig_idx = i; 12662 env->prog = *prog; 12663 env->ops = bpf_verifier_ops[env->prog->type]; 12664 is_priv = bpf_capable(); 12665 12666 bpf_get_btf_vmlinux(); 12667 12668 /* grab the mutex to protect few globals used by verifier */ 12669 if (!is_priv) 12670 mutex_lock(&bpf_verifier_lock); 12671 12672 if (attr->log_level || attr->log_buf || attr->log_size) { 12673 /* user requested verbose verifier output 12674 * and supplied buffer to store the verification trace 12675 */ 12676 log->level = attr->log_level; 12677 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 12678 log->len_total = attr->log_size; 12679 12680 ret = -EINVAL; 12681 /* log attributes have to be sane */ 12682 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 12683 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 12684 goto err_unlock; 12685 } 12686 12687 if (IS_ERR(btf_vmlinux)) { 12688 /* Either gcc or pahole or kernel are broken. */ 12689 verbose(env, "in-kernel BTF is malformed\n"); 12690 ret = PTR_ERR(btf_vmlinux); 12691 goto skip_full_check; 12692 } 12693 12694 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 12695 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 12696 env->strict_alignment = true; 12697 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 12698 env->strict_alignment = false; 12699 12700 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 12701 env->allow_uninit_stack = bpf_allow_uninit_stack(); 12702 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 12703 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 12704 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 12705 env->bpf_capable = bpf_capable(); 12706 12707 if (is_priv) 12708 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 12709 12710 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12711 ret = bpf_prog_offload_verifier_prep(env->prog); 12712 if (ret) 12713 goto skip_full_check; 12714 } 12715 12716 env->explored_states = kvcalloc(state_htab_size(env), 12717 sizeof(struct bpf_verifier_state_list *), 12718 GFP_USER); 12719 ret = -ENOMEM; 12720 if (!env->explored_states) 12721 goto skip_full_check; 12722 12723 ret = check_subprogs(env); 12724 if (ret < 0) 12725 goto skip_full_check; 12726 12727 ret = check_btf_info(env, attr, uattr); 12728 if (ret < 0) 12729 goto skip_full_check; 12730 12731 ret = check_attach_btf_id(env); 12732 if (ret) 12733 goto skip_full_check; 12734 12735 ret = resolve_pseudo_ldimm64(env); 12736 if (ret < 0) 12737 goto skip_full_check; 12738 12739 ret = check_cfg(env); 12740 if (ret < 0) 12741 goto skip_full_check; 12742 12743 ret = do_check_subprogs(env); 12744 ret = ret ?: do_check_main(env); 12745 12746 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 12747 ret = bpf_prog_offload_finalize(env); 12748 12749 skip_full_check: 12750 kvfree(env->explored_states); 12751 12752 if (ret == 0) 12753 ret = check_max_stack_depth(env); 12754 12755 /* instruction rewrites happen after this point */ 12756 if (is_priv) { 12757 if (ret == 0) 12758 opt_hard_wire_dead_code_branches(env); 12759 if (ret == 0) 12760 ret = opt_remove_dead_code(env); 12761 if (ret == 0) 12762 ret = opt_remove_nops(env); 12763 } else { 12764 if (ret == 0) 12765 sanitize_dead_code(env); 12766 } 12767 12768 if (ret == 0) 12769 /* program is valid, convert *(u32*)(ctx + off) accesses */ 12770 ret = convert_ctx_accesses(env); 12771 12772 if (ret == 0) 12773 ret = fixup_bpf_calls(env); 12774 12775 /* do 32-bit optimization after insn patching has done so those patched 12776 * insns could be handled correctly. 12777 */ 12778 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 12779 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 12780 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 12781 : false; 12782 } 12783 12784 if (ret == 0) 12785 ret = fixup_call_args(env); 12786 12787 env->verification_time = ktime_get_ns() - start_time; 12788 print_verification_stats(env); 12789 12790 if (log->level && bpf_verifier_log_full(log)) 12791 ret = -ENOSPC; 12792 if (log->level && !log->ubuf) { 12793 ret = -EFAULT; 12794 goto err_release_maps; 12795 } 12796 12797 if (ret) 12798 goto err_release_maps; 12799 12800 if (env->used_map_cnt) { 12801 /* if program passed verifier, update used_maps in bpf_prog_info */ 12802 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 12803 sizeof(env->used_maps[0]), 12804 GFP_KERNEL); 12805 12806 if (!env->prog->aux->used_maps) { 12807 ret = -ENOMEM; 12808 goto err_release_maps; 12809 } 12810 12811 memcpy(env->prog->aux->used_maps, env->used_maps, 12812 sizeof(env->used_maps[0]) * env->used_map_cnt); 12813 env->prog->aux->used_map_cnt = env->used_map_cnt; 12814 } 12815 if (env->used_btf_cnt) { 12816 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 12817 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 12818 sizeof(env->used_btfs[0]), 12819 GFP_KERNEL); 12820 if (!env->prog->aux->used_btfs) { 12821 ret = -ENOMEM; 12822 goto err_release_maps; 12823 } 12824 12825 memcpy(env->prog->aux->used_btfs, env->used_btfs, 12826 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 12827 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 12828 } 12829 if (env->used_map_cnt || env->used_btf_cnt) { 12830 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 12831 * bpf_ld_imm64 instructions 12832 */ 12833 convert_pseudo_ld_imm64(env); 12834 } 12835 12836 adjust_btf_func(env); 12837 12838 err_release_maps: 12839 if (!env->prog->aux->used_maps) 12840 /* if we didn't copy map pointers into bpf_prog_info, release 12841 * them now. Otherwise free_used_maps() will release them. 12842 */ 12843 release_maps(env); 12844 if (!env->prog->aux->used_btfs) 12845 release_btfs(env); 12846 12847 /* extension progs temporarily inherit the attach_type of their targets 12848 for verification purposes, so set it back to zero before returning 12849 */ 12850 if (env->prog->type == BPF_PROG_TYPE_EXT) 12851 env->prog->expected_attach_type = 0; 12852 12853 *prog = env->prog; 12854 err_unlock: 12855 if (!is_priv) 12856 mutex_unlock(&bpf_verifier_lock); 12857 vfree(env->insn_aux_data); 12858 err_free_env: 12859 kfree(env); 12860 return ret; 12861 } 12862