xref: /openbmc/linux/kernel/bpf/verifier.c (revision d8939cb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40 
41 /* bpf_check() is a static code analyzer that walks eBPF program
42  * instruction by instruction and updates register/stack state.
43  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44  *
45  * The first pass is depth-first-search to check that the program is a DAG.
46  * It rejects the following programs:
47  * - larger than BPF_MAXINSNS insns
48  * - if loop is present (detected via back-edge)
49  * - unreachable insns exist (shouldn't be a forest. program = one function)
50  * - out of bounds or malformed jumps
51  * The second pass is all possible path descent from the 1st insn.
52  * Since it's analyzing all paths through the program, the length of the
53  * analysis is limited to 64k insn, which may be hit even if total number of
54  * insn is less then 4K, but there are too many branches that change stack/regs.
55  * Number of 'branches to be analyzed' is limited to 1k
56  *
57  * On entry to each instruction, each register has a type, and the instruction
58  * changes the types of the registers depending on instruction semantics.
59  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60  * copied to R1.
61  *
62  * All registers are 64-bit.
63  * R0 - return register
64  * R1-R5 argument passing registers
65  * R6-R9 callee saved registers
66  * R10 - frame pointer read-only
67  *
68  * At the start of BPF program the register R1 contains a pointer to bpf_context
69  * and has type PTR_TO_CTX.
70  *
71  * Verifier tracks arithmetic operations on pointers in case:
72  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74  * 1st insn copies R10 (which has FRAME_PTR) type into R1
75  * and 2nd arithmetic instruction is pattern matched to recognize
76  * that it wants to construct a pointer to some element within stack.
77  * So after 2nd insn, the register R1 has type PTR_TO_STACK
78  * (and -20 constant is saved for further stack bounds checking).
79  * Meaning that this reg is a pointer to stack plus known immediate constant.
80  *
81  * Most of the time the registers have SCALAR_VALUE type, which
82  * means the register has some value, but it's not a valid pointer.
83  * (like pointer plus pointer becomes SCALAR_VALUE type)
84  *
85  * When verifier sees load or store instructions the type of base register
86  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87  * four pointer types recognized by check_mem_access() function.
88  *
89  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90  * and the range of [ptr, ptr + map's value_size) is accessible.
91  *
92  * registers used to pass values to function calls are checked against
93  * function argument constraints.
94  *
95  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96  * It means that the register type passed to this function must be
97  * PTR_TO_STACK and it will be used inside the function as
98  * 'pointer to map element key'
99  *
100  * For example the argument constraints for bpf_map_lookup_elem():
101  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102  *   .arg1_type = ARG_CONST_MAP_PTR,
103  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
104  *
105  * ret_type says that this function returns 'pointer to map elem value or null'
106  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107  * 2nd argument should be a pointer to stack, which will be used inside
108  * the helper function as a pointer to map element key.
109  *
110  * On the kernel side the helper function looks like:
111  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112  * {
113  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114  *    void *key = (void *) (unsigned long) r2;
115  *    void *value;
116  *
117  *    here kernel can access 'key' and 'map' pointers safely, knowing that
118  *    [key, key + map->key_size) bytes are valid and were initialized on
119  *    the stack of eBPF program.
120  * }
121  *
122  * Corresponding eBPF program may look like:
123  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
124  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
126  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127  * here verifier looks at prototype of map_lookup_elem() and sees:
128  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130  *
131  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133  * and were initialized prior to this call.
134  * If it's ok, then verifier allows this BPF_CALL insn and looks at
135  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137  * returns either pointer to map value or NULL.
138  *
139  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140  * insn, the register holding that pointer in the true branch changes state to
141  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142  * branch. See check_cond_jmp_op().
143  *
144  * After the call R0 is set to return type of the function and registers R1-R5
145  * are set to NOT_INIT to indicate that they are no longer readable.
146  *
147  * The following reference types represent a potential reference to a kernel
148  * resource which, after first being allocated, must be checked and freed by
149  * the BPF program:
150  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151  *
152  * When the verifier sees a helper call return a reference type, it allocates a
153  * pointer id for the reference and stores it in the current function state.
154  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156  * passes through a NULL-check conditional. For the branch wherein the state is
157  * changed to CONST_IMM, the verifier releases the reference.
158  *
159  * For each helper function that allocates a reference, such as
160  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161  * bpf_sk_release(). When a reference type passes into the release function,
162  * the verifier also releases the reference. If any unchecked or unreleased
163  * reference remains at the end of the program, the verifier rejects it.
164  */
165 
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 	/* verifer state is 'st'
169 	 * before processing instruction 'insn_idx'
170 	 * and after processing instruction 'prev_insn_idx'
171 	 */
172 	struct bpf_verifier_state st;
173 	int insn_idx;
174 	int prev_insn_idx;
175 	struct bpf_verifier_stack_elem *next;
176 	/* length of verifier log at the time this state was pushed on stack */
177 	u32 log_pos;
178 };
179 
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_KEY_POISON	(1ULL << 63)
184 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
185 
186 #define BPF_MAP_PTR_UNPRIV	1UL
187 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
188 					  POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190 
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193 
194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198 
199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203 
204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 			      const struct bpf_map *map, bool unpriv)
206 {
207 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 	unpriv |= bpf_map_ptr_unpriv(aux);
209 	aux->map_ptr_state = (unsigned long)map |
210 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212 
213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217 
218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222 
223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227 
228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 	bool poisoned = bpf_map_key_poisoned(aux);
231 
232 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235 
236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 	return insn->code == (BPF_JMP | BPF_CALL) &&
239 	       insn->src_reg == BPF_PSEUDO_CALL;
240 }
241 
242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 	return insn->code == (BPF_JMP | BPF_CALL) &&
245 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247 
248 struct bpf_call_arg_meta {
249 	struct bpf_map *map_ptr;
250 	bool raw_mode;
251 	bool pkt_access;
252 	u8 release_regno;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int map_uid;
259 	int func_id;
260 	struct btf *btf;
261 	u32 btf_id;
262 	struct btf *ret_btf;
263 	u32 ret_btf_id;
264 	u32 subprogno;
265 	struct btf_field *kptr_field;
266 	u8 uninit_dynptr_regno;
267 };
268 
269 struct btf *btf_vmlinux;
270 
271 static DEFINE_MUTEX(bpf_verifier_lock);
272 
273 static const struct bpf_line_info *
274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275 {
276 	const struct bpf_line_info *linfo;
277 	const struct bpf_prog *prog;
278 	u32 i, nr_linfo;
279 
280 	prog = env->prog;
281 	nr_linfo = prog->aux->nr_linfo;
282 
283 	if (!nr_linfo || insn_off >= prog->len)
284 		return NULL;
285 
286 	linfo = prog->aux->linfo;
287 	for (i = 1; i < nr_linfo; i++)
288 		if (insn_off < linfo[i].insn_off)
289 			break;
290 
291 	return &linfo[i - 1];
292 }
293 
294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 		       va_list args)
296 {
297 	unsigned int n;
298 
299 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
300 
301 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 		  "verifier log line truncated - local buffer too short\n");
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306 
307 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
308 		return;
309 	}
310 
311 	n = min(log->len_total - log->len_used - 1, n);
312 	log->kbuf[n] = '\0';
313 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 		log->len_used += n;
315 	else
316 		log->ubuf = NULL;
317 }
318 
319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320 {
321 	char zero = 0;
322 
323 	if (!bpf_verifier_log_needed(log))
324 		return;
325 
326 	log->len_used = new_pos;
327 	if (put_user(zero, log->ubuf + new_pos))
328 		log->ubuf = NULL;
329 }
330 
331 /* log_level controls verbosity level of eBPF verifier.
332  * bpf_verifier_log_write() is used to dump the verification trace to the log,
333  * so the user can figure out what's wrong with the program
334  */
335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 					   const char *fmt, ...)
337 {
338 	va_list args;
339 
340 	if (!bpf_verifier_log_needed(&env->log))
341 		return;
342 
343 	va_start(args, fmt);
344 	bpf_verifier_vlog(&env->log, fmt, args);
345 	va_end(args);
346 }
347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348 
349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350 {
351 	struct bpf_verifier_env *env = private_data;
352 	va_list args;
353 
354 	if (!bpf_verifier_log_needed(&env->log))
355 		return;
356 
357 	va_start(args, fmt);
358 	bpf_verifier_vlog(&env->log, fmt, args);
359 	va_end(args);
360 }
361 
362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 			    const char *fmt, ...)
364 {
365 	va_list args;
366 
367 	if (!bpf_verifier_log_needed(log))
368 		return;
369 
370 	va_start(args, fmt);
371 	bpf_verifier_vlog(log, fmt, args);
372 	va_end(args);
373 }
374 EXPORT_SYMBOL_GPL(bpf_log);
375 
376 static const char *ltrim(const char *s)
377 {
378 	while (isspace(*s))
379 		s++;
380 
381 	return s;
382 }
383 
384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 					 u32 insn_off,
386 					 const char *prefix_fmt, ...)
387 {
388 	const struct bpf_line_info *linfo;
389 
390 	if (!bpf_verifier_log_needed(&env->log))
391 		return;
392 
393 	linfo = find_linfo(env, insn_off);
394 	if (!linfo || linfo == env->prev_linfo)
395 		return;
396 
397 	if (prefix_fmt) {
398 		va_list args;
399 
400 		va_start(args, prefix_fmt);
401 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 		va_end(args);
403 	}
404 
405 	verbose(env, "%s\n",
406 		ltrim(btf_name_by_offset(env->prog->aux->btf,
407 					 linfo->line_off)));
408 
409 	env->prev_linfo = linfo;
410 }
411 
412 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 				   struct bpf_reg_state *reg,
414 				   struct tnum *range, const char *ctx,
415 				   const char *reg_name)
416 {
417 	char tn_buf[48];
418 
419 	verbose(env, "At %s the register %s ", ctx, reg_name);
420 	if (!tnum_is_unknown(reg->var_off)) {
421 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 		verbose(env, "has value %s", tn_buf);
423 	} else {
424 		verbose(env, "has unknown scalar value");
425 	}
426 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 	verbose(env, " should have been in %s\n", tn_buf);
428 }
429 
430 static bool type_is_pkt_pointer(enum bpf_reg_type type)
431 {
432 	type = base_type(type);
433 	return type == PTR_TO_PACKET ||
434 	       type == PTR_TO_PACKET_META;
435 }
436 
437 static bool type_is_sk_pointer(enum bpf_reg_type type)
438 {
439 	return type == PTR_TO_SOCKET ||
440 		type == PTR_TO_SOCK_COMMON ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_XDP_SOCK;
443 }
444 
445 static bool reg_type_not_null(enum bpf_reg_type type)
446 {
447 	return type == PTR_TO_SOCKET ||
448 		type == PTR_TO_TCP_SOCK ||
449 		type == PTR_TO_MAP_VALUE ||
450 		type == PTR_TO_MAP_KEY ||
451 		type == PTR_TO_SOCK_COMMON;
452 }
453 
454 static bool type_is_ptr_alloc_obj(u32 type)
455 {
456 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
457 }
458 
459 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
460 {
461 	struct btf_record *rec = NULL;
462 	struct btf_struct_meta *meta;
463 
464 	if (reg->type == PTR_TO_MAP_VALUE) {
465 		rec = reg->map_ptr->record;
466 	} else if (type_is_ptr_alloc_obj(reg->type)) {
467 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
468 		if (meta)
469 			rec = meta->record;
470 	}
471 	return rec;
472 }
473 
474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
475 {
476 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
477 }
478 
479 static bool type_is_rdonly_mem(u32 type)
480 {
481 	return type & MEM_RDONLY;
482 }
483 
484 static bool type_may_be_null(u32 type)
485 {
486 	return type & PTR_MAYBE_NULL;
487 }
488 
489 static bool is_acquire_function(enum bpf_func_id func_id,
490 				const struct bpf_map *map)
491 {
492 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
493 
494 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
495 	    func_id == BPF_FUNC_sk_lookup_udp ||
496 	    func_id == BPF_FUNC_skc_lookup_tcp ||
497 	    func_id == BPF_FUNC_ringbuf_reserve ||
498 	    func_id == BPF_FUNC_kptr_xchg)
499 		return true;
500 
501 	if (func_id == BPF_FUNC_map_lookup_elem &&
502 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
503 	     map_type == BPF_MAP_TYPE_SOCKHASH))
504 		return true;
505 
506 	return false;
507 }
508 
509 static bool is_ptr_cast_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_tcp_sock ||
512 		func_id == BPF_FUNC_sk_fullsock ||
513 		func_id == BPF_FUNC_skc_to_tcp_sock ||
514 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
515 		func_id == BPF_FUNC_skc_to_udp6_sock ||
516 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
517 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
518 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
519 }
520 
521 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
522 {
523 	return func_id == BPF_FUNC_dynptr_data;
524 }
525 
526 static bool is_callback_calling_function(enum bpf_func_id func_id)
527 {
528 	return func_id == BPF_FUNC_for_each_map_elem ||
529 	       func_id == BPF_FUNC_timer_set_callback ||
530 	       func_id == BPF_FUNC_find_vma ||
531 	       func_id == BPF_FUNC_loop ||
532 	       func_id == BPF_FUNC_user_ringbuf_drain;
533 }
534 
535 static bool is_storage_get_function(enum bpf_func_id func_id)
536 {
537 	return func_id == BPF_FUNC_sk_storage_get ||
538 	       func_id == BPF_FUNC_inode_storage_get ||
539 	       func_id == BPF_FUNC_task_storage_get ||
540 	       func_id == BPF_FUNC_cgrp_storage_get;
541 }
542 
543 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
544 					const struct bpf_map *map)
545 {
546 	int ref_obj_uses = 0;
547 
548 	if (is_ptr_cast_function(func_id))
549 		ref_obj_uses++;
550 	if (is_acquire_function(func_id, map))
551 		ref_obj_uses++;
552 	if (is_dynptr_ref_function(func_id))
553 		ref_obj_uses++;
554 
555 	return ref_obj_uses > 1;
556 }
557 
558 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
559 {
560 	return BPF_CLASS(insn->code) == BPF_STX &&
561 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
562 	       insn->imm == BPF_CMPXCHG;
563 }
564 
565 /* string representation of 'enum bpf_reg_type'
566  *
567  * Note that reg_type_str() can not appear more than once in a single verbose()
568  * statement.
569  */
570 static const char *reg_type_str(struct bpf_verifier_env *env,
571 				enum bpf_reg_type type)
572 {
573 	char postfix[16] = {0}, prefix[64] = {0};
574 	static const char * const str[] = {
575 		[NOT_INIT]		= "?",
576 		[SCALAR_VALUE]		= "scalar",
577 		[PTR_TO_CTX]		= "ctx",
578 		[CONST_PTR_TO_MAP]	= "map_ptr",
579 		[PTR_TO_MAP_VALUE]	= "map_value",
580 		[PTR_TO_STACK]		= "fp",
581 		[PTR_TO_PACKET]		= "pkt",
582 		[PTR_TO_PACKET_META]	= "pkt_meta",
583 		[PTR_TO_PACKET_END]	= "pkt_end",
584 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
585 		[PTR_TO_SOCKET]		= "sock",
586 		[PTR_TO_SOCK_COMMON]	= "sock_common",
587 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
588 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
589 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
590 		[PTR_TO_BTF_ID]		= "ptr_",
591 		[PTR_TO_MEM]		= "mem",
592 		[PTR_TO_BUF]		= "buf",
593 		[PTR_TO_FUNC]		= "func",
594 		[PTR_TO_MAP_KEY]	= "map_key",
595 		[PTR_TO_DYNPTR]		= "dynptr_ptr",
596 	};
597 
598 	if (type & PTR_MAYBE_NULL) {
599 		if (base_type(type) == PTR_TO_BTF_ID)
600 			strncpy(postfix, "or_null_", 16);
601 		else
602 			strncpy(postfix, "_or_null", 16);
603 	}
604 
605 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
606 		 type & MEM_RDONLY ? "rdonly_" : "",
607 		 type & MEM_RINGBUF ? "ringbuf_" : "",
608 		 type & MEM_USER ? "user_" : "",
609 		 type & MEM_PERCPU ? "percpu_" : "",
610 		 type & MEM_RCU ? "rcu_" : "",
611 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
612 		 type & PTR_TRUSTED ? "trusted_" : ""
613 	);
614 
615 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
616 		 prefix, str[base_type(type)], postfix);
617 	return env->type_str_buf;
618 }
619 
620 static char slot_type_char[] = {
621 	[STACK_INVALID]	= '?',
622 	[STACK_SPILL]	= 'r',
623 	[STACK_MISC]	= 'm',
624 	[STACK_ZERO]	= '0',
625 	[STACK_DYNPTR]	= 'd',
626 };
627 
628 static void print_liveness(struct bpf_verifier_env *env,
629 			   enum bpf_reg_liveness live)
630 {
631 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
632 	    verbose(env, "_");
633 	if (live & REG_LIVE_READ)
634 		verbose(env, "r");
635 	if (live & REG_LIVE_WRITTEN)
636 		verbose(env, "w");
637 	if (live & REG_LIVE_DONE)
638 		verbose(env, "D");
639 }
640 
641 static int get_spi(s32 off)
642 {
643 	return (-off - 1) / BPF_REG_SIZE;
644 }
645 
646 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
647 {
648 	int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
649 
650 	/* We need to check that slots between [spi - nr_slots + 1, spi] are
651 	 * within [0, allocated_stack).
652 	 *
653 	 * Please note that the spi grows downwards. For example, a dynptr
654 	 * takes the size of two stack slots; the first slot will be at
655 	 * spi and the second slot will be at spi - 1.
656 	 */
657 	return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
658 }
659 
660 static struct bpf_func_state *func(struct bpf_verifier_env *env,
661 				   const struct bpf_reg_state *reg)
662 {
663 	struct bpf_verifier_state *cur = env->cur_state;
664 
665 	return cur->frame[reg->frameno];
666 }
667 
668 static const char *kernel_type_name(const struct btf* btf, u32 id)
669 {
670 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
671 }
672 
673 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
674 {
675 	env->scratched_regs |= 1U << regno;
676 }
677 
678 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
679 {
680 	env->scratched_stack_slots |= 1ULL << spi;
681 }
682 
683 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
684 {
685 	return (env->scratched_regs >> regno) & 1;
686 }
687 
688 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
689 {
690 	return (env->scratched_stack_slots >> regno) & 1;
691 }
692 
693 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
694 {
695 	return env->scratched_regs || env->scratched_stack_slots;
696 }
697 
698 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
699 {
700 	env->scratched_regs = 0U;
701 	env->scratched_stack_slots = 0ULL;
702 }
703 
704 /* Used for printing the entire verifier state. */
705 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
706 {
707 	env->scratched_regs = ~0U;
708 	env->scratched_stack_slots = ~0ULL;
709 }
710 
711 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
712 {
713 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
714 	case DYNPTR_TYPE_LOCAL:
715 		return BPF_DYNPTR_TYPE_LOCAL;
716 	case DYNPTR_TYPE_RINGBUF:
717 		return BPF_DYNPTR_TYPE_RINGBUF;
718 	default:
719 		return BPF_DYNPTR_TYPE_INVALID;
720 	}
721 }
722 
723 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
724 {
725 	return type == BPF_DYNPTR_TYPE_RINGBUF;
726 }
727 
728 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
729 				   enum bpf_arg_type arg_type, int insn_idx)
730 {
731 	struct bpf_func_state *state = func(env, reg);
732 	enum bpf_dynptr_type type;
733 	int spi, i, id;
734 
735 	spi = get_spi(reg->off);
736 
737 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
738 		return -EINVAL;
739 
740 	for (i = 0; i < BPF_REG_SIZE; i++) {
741 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
742 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
743 	}
744 
745 	type = arg_to_dynptr_type(arg_type);
746 	if (type == BPF_DYNPTR_TYPE_INVALID)
747 		return -EINVAL;
748 
749 	state->stack[spi].spilled_ptr.dynptr.first_slot = true;
750 	state->stack[spi].spilled_ptr.dynptr.type = type;
751 	state->stack[spi - 1].spilled_ptr.dynptr.type = type;
752 
753 	if (dynptr_type_refcounted(type)) {
754 		/* The id is used to track proper releasing */
755 		id = acquire_reference_state(env, insn_idx);
756 		if (id < 0)
757 			return id;
758 
759 		state->stack[spi].spilled_ptr.id = id;
760 		state->stack[spi - 1].spilled_ptr.id = id;
761 	}
762 
763 	return 0;
764 }
765 
766 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
767 {
768 	struct bpf_func_state *state = func(env, reg);
769 	int spi, i;
770 
771 	spi = get_spi(reg->off);
772 
773 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
774 		return -EINVAL;
775 
776 	for (i = 0; i < BPF_REG_SIZE; i++) {
777 		state->stack[spi].slot_type[i] = STACK_INVALID;
778 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
779 	}
780 
781 	/* Invalidate any slices associated with this dynptr */
782 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
783 		release_reference(env, state->stack[spi].spilled_ptr.id);
784 		state->stack[spi].spilled_ptr.id = 0;
785 		state->stack[spi - 1].spilled_ptr.id = 0;
786 	}
787 
788 	state->stack[spi].spilled_ptr.dynptr.first_slot = false;
789 	state->stack[spi].spilled_ptr.dynptr.type = 0;
790 	state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
791 
792 	return 0;
793 }
794 
795 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
796 {
797 	struct bpf_func_state *state = func(env, reg);
798 	int spi = get_spi(reg->off);
799 	int i;
800 
801 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
802 		return true;
803 
804 	for (i = 0; i < BPF_REG_SIZE; i++) {
805 		if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
806 		    state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
807 			return false;
808 	}
809 
810 	return true;
811 }
812 
813 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
814 			      struct bpf_reg_state *reg)
815 {
816 	struct bpf_func_state *state = func(env, reg);
817 	int spi = get_spi(reg->off);
818 	int i;
819 
820 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
821 	    !state->stack[spi].spilled_ptr.dynptr.first_slot)
822 		return false;
823 
824 	for (i = 0; i < BPF_REG_SIZE; i++) {
825 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
826 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
827 			return false;
828 	}
829 
830 	return true;
831 }
832 
833 bool is_dynptr_type_expected(struct bpf_verifier_env *env,
834 			     struct bpf_reg_state *reg,
835 			     enum bpf_arg_type arg_type)
836 {
837 	struct bpf_func_state *state = func(env, reg);
838 	enum bpf_dynptr_type dynptr_type;
839 	int spi = get_spi(reg->off);
840 
841 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
842 	if (arg_type == ARG_PTR_TO_DYNPTR)
843 		return true;
844 
845 	dynptr_type = arg_to_dynptr_type(arg_type);
846 
847 	return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
848 }
849 
850 /* The reg state of a pointer or a bounded scalar was saved when
851  * it was spilled to the stack.
852  */
853 static bool is_spilled_reg(const struct bpf_stack_state *stack)
854 {
855 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
856 }
857 
858 static void scrub_spilled_slot(u8 *stype)
859 {
860 	if (*stype != STACK_INVALID)
861 		*stype = STACK_MISC;
862 }
863 
864 static void print_verifier_state(struct bpf_verifier_env *env,
865 				 const struct bpf_func_state *state,
866 				 bool print_all)
867 {
868 	const struct bpf_reg_state *reg;
869 	enum bpf_reg_type t;
870 	int i;
871 
872 	if (state->frameno)
873 		verbose(env, " frame%d:", state->frameno);
874 	for (i = 0; i < MAX_BPF_REG; i++) {
875 		reg = &state->regs[i];
876 		t = reg->type;
877 		if (t == NOT_INIT)
878 			continue;
879 		if (!print_all && !reg_scratched(env, i))
880 			continue;
881 		verbose(env, " R%d", i);
882 		print_liveness(env, reg->live);
883 		verbose(env, "=");
884 		if (t == SCALAR_VALUE && reg->precise)
885 			verbose(env, "P");
886 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
887 		    tnum_is_const(reg->var_off)) {
888 			/* reg->off should be 0 for SCALAR_VALUE */
889 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
890 			verbose(env, "%lld", reg->var_off.value + reg->off);
891 		} else {
892 			const char *sep = "";
893 
894 			verbose(env, "%s", reg_type_str(env, t));
895 			if (base_type(t) == PTR_TO_BTF_ID)
896 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
897 			verbose(env, "(");
898 /*
899  * _a stands for append, was shortened to avoid multiline statements below.
900  * This macro is used to output a comma separated list of attributes.
901  */
902 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
903 
904 			if (reg->id)
905 				verbose_a("id=%d", reg->id);
906 			if (reg->ref_obj_id)
907 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
908 			if (t != SCALAR_VALUE)
909 				verbose_a("off=%d", reg->off);
910 			if (type_is_pkt_pointer(t))
911 				verbose_a("r=%d", reg->range);
912 			else if (base_type(t) == CONST_PTR_TO_MAP ||
913 				 base_type(t) == PTR_TO_MAP_KEY ||
914 				 base_type(t) == PTR_TO_MAP_VALUE)
915 				verbose_a("ks=%d,vs=%d",
916 					  reg->map_ptr->key_size,
917 					  reg->map_ptr->value_size);
918 			if (tnum_is_const(reg->var_off)) {
919 				/* Typically an immediate SCALAR_VALUE, but
920 				 * could be a pointer whose offset is too big
921 				 * for reg->off
922 				 */
923 				verbose_a("imm=%llx", reg->var_off.value);
924 			} else {
925 				if (reg->smin_value != reg->umin_value &&
926 				    reg->smin_value != S64_MIN)
927 					verbose_a("smin=%lld", (long long)reg->smin_value);
928 				if (reg->smax_value != reg->umax_value &&
929 				    reg->smax_value != S64_MAX)
930 					verbose_a("smax=%lld", (long long)reg->smax_value);
931 				if (reg->umin_value != 0)
932 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
933 				if (reg->umax_value != U64_MAX)
934 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
935 				if (!tnum_is_unknown(reg->var_off)) {
936 					char tn_buf[48];
937 
938 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
939 					verbose_a("var_off=%s", tn_buf);
940 				}
941 				if (reg->s32_min_value != reg->smin_value &&
942 				    reg->s32_min_value != S32_MIN)
943 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
944 				if (reg->s32_max_value != reg->smax_value &&
945 				    reg->s32_max_value != S32_MAX)
946 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
947 				if (reg->u32_min_value != reg->umin_value &&
948 				    reg->u32_min_value != U32_MIN)
949 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
950 				if (reg->u32_max_value != reg->umax_value &&
951 				    reg->u32_max_value != U32_MAX)
952 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
953 			}
954 #undef verbose_a
955 
956 			verbose(env, ")");
957 		}
958 	}
959 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
960 		char types_buf[BPF_REG_SIZE + 1];
961 		bool valid = false;
962 		int j;
963 
964 		for (j = 0; j < BPF_REG_SIZE; j++) {
965 			if (state->stack[i].slot_type[j] != STACK_INVALID)
966 				valid = true;
967 			types_buf[j] = slot_type_char[
968 					state->stack[i].slot_type[j]];
969 		}
970 		types_buf[BPF_REG_SIZE] = 0;
971 		if (!valid)
972 			continue;
973 		if (!print_all && !stack_slot_scratched(env, i))
974 			continue;
975 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
976 		print_liveness(env, state->stack[i].spilled_ptr.live);
977 		if (is_spilled_reg(&state->stack[i])) {
978 			reg = &state->stack[i].spilled_ptr;
979 			t = reg->type;
980 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
981 			if (t == SCALAR_VALUE && reg->precise)
982 				verbose(env, "P");
983 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
984 				verbose(env, "%lld", reg->var_off.value + reg->off);
985 		} else {
986 			verbose(env, "=%s", types_buf);
987 		}
988 	}
989 	if (state->acquired_refs && state->refs[0].id) {
990 		verbose(env, " refs=%d", state->refs[0].id);
991 		for (i = 1; i < state->acquired_refs; i++)
992 			if (state->refs[i].id)
993 				verbose(env, ",%d", state->refs[i].id);
994 	}
995 	if (state->in_callback_fn)
996 		verbose(env, " cb");
997 	if (state->in_async_callback_fn)
998 		verbose(env, " async_cb");
999 	verbose(env, "\n");
1000 	mark_verifier_state_clean(env);
1001 }
1002 
1003 static inline u32 vlog_alignment(u32 pos)
1004 {
1005 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1006 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1007 }
1008 
1009 static void print_insn_state(struct bpf_verifier_env *env,
1010 			     const struct bpf_func_state *state)
1011 {
1012 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1013 		/* remove new line character */
1014 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1015 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1016 	} else {
1017 		verbose(env, "%d:", env->insn_idx);
1018 	}
1019 	print_verifier_state(env, state, false);
1020 }
1021 
1022 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1023  * small to hold src. This is different from krealloc since we don't want to preserve
1024  * the contents of dst.
1025  *
1026  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1027  * not be allocated.
1028  */
1029 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1030 {
1031 	size_t bytes;
1032 
1033 	if (ZERO_OR_NULL_PTR(src))
1034 		goto out;
1035 
1036 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1037 		return NULL;
1038 
1039 	if (ksize(dst) < ksize(src)) {
1040 		kfree(dst);
1041 		dst = kmalloc_track_caller(kmalloc_size_roundup(bytes), flags);
1042 		if (!dst)
1043 			return NULL;
1044 	}
1045 
1046 	memcpy(dst, src, bytes);
1047 out:
1048 	return dst ? dst : ZERO_SIZE_PTR;
1049 }
1050 
1051 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1052  * small to hold new_n items. new items are zeroed out if the array grows.
1053  *
1054  * Contrary to krealloc_array, does not free arr if new_n is zero.
1055  */
1056 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1057 {
1058 	size_t alloc_size;
1059 	void *new_arr;
1060 
1061 	if (!new_n || old_n == new_n)
1062 		goto out;
1063 
1064 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1065 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1066 	if (!new_arr) {
1067 		kfree(arr);
1068 		return NULL;
1069 	}
1070 	arr = new_arr;
1071 
1072 	if (new_n > old_n)
1073 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1074 
1075 out:
1076 	return arr ? arr : ZERO_SIZE_PTR;
1077 }
1078 
1079 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1080 {
1081 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1082 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1083 	if (!dst->refs)
1084 		return -ENOMEM;
1085 
1086 	dst->acquired_refs = src->acquired_refs;
1087 	return 0;
1088 }
1089 
1090 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1091 {
1092 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1093 
1094 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1095 				GFP_KERNEL);
1096 	if (!dst->stack)
1097 		return -ENOMEM;
1098 
1099 	dst->allocated_stack = src->allocated_stack;
1100 	return 0;
1101 }
1102 
1103 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1104 {
1105 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1106 				    sizeof(struct bpf_reference_state));
1107 	if (!state->refs)
1108 		return -ENOMEM;
1109 
1110 	state->acquired_refs = n;
1111 	return 0;
1112 }
1113 
1114 static int grow_stack_state(struct bpf_func_state *state, int size)
1115 {
1116 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1117 
1118 	if (old_n >= n)
1119 		return 0;
1120 
1121 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1122 	if (!state->stack)
1123 		return -ENOMEM;
1124 
1125 	state->allocated_stack = size;
1126 	return 0;
1127 }
1128 
1129 /* Acquire a pointer id from the env and update the state->refs to include
1130  * this new pointer reference.
1131  * On success, returns a valid pointer id to associate with the register
1132  * On failure, returns a negative errno.
1133  */
1134 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1135 {
1136 	struct bpf_func_state *state = cur_func(env);
1137 	int new_ofs = state->acquired_refs;
1138 	int id, err;
1139 
1140 	err = resize_reference_state(state, state->acquired_refs + 1);
1141 	if (err)
1142 		return err;
1143 	id = ++env->id_gen;
1144 	state->refs[new_ofs].id = id;
1145 	state->refs[new_ofs].insn_idx = insn_idx;
1146 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1147 
1148 	return id;
1149 }
1150 
1151 /* release function corresponding to acquire_reference_state(). Idempotent. */
1152 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1153 {
1154 	int i, last_idx;
1155 
1156 	last_idx = state->acquired_refs - 1;
1157 	for (i = 0; i < state->acquired_refs; i++) {
1158 		if (state->refs[i].id == ptr_id) {
1159 			/* Cannot release caller references in callbacks */
1160 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1161 				return -EINVAL;
1162 			if (last_idx && i != last_idx)
1163 				memcpy(&state->refs[i], &state->refs[last_idx],
1164 				       sizeof(*state->refs));
1165 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1166 			state->acquired_refs--;
1167 			return 0;
1168 		}
1169 	}
1170 	return -EINVAL;
1171 }
1172 
1173 static void free_func_state(struct bpf_func_state *state)
1174 {
1175 	if (!state)
1176 		return;
1177 	kfree(state->refs);
1178 	kfree(state->stack);
1179 	kfree(state);
1180 }
1181 
1182 static void clear_jmp_history(struct bpf_verifier_state *state)
1183 {
1184 	kfree(state->jmp_history);
1185 	state->jmp_history = NULL;
1186 	state->jmp_history_cnt = 0;
1187 }
1188 
1189 static void free_verifier_state(struct bpf_verifier_state *state,
1190 				bool free_self)
1191 {
1192 	int i;
1193 
1194 	for (i = 0; i <= state->curframe; i++) {
1195 		free_func_state(state->frame[i]);
1196 		state->frame[i] = NULL;
1197 	}
1198 	clear_jmp_history(state);
1199 	if (free_self)
1200 		kfree(state);
1201 }
1202 
1203 /* copy verifier state from src to dst growing dst stack space
1204  * when necessary to accommodate larger src stack
1205  */
1206 static int copy_func_state(struct bpf_func_state *dst,
1207 			   const struct bpf_func_state *src)
1208 {
1209 	int err;
1210 
1211 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1212 	err = copy_reference_state(dst, src);
1213 	if (err)
1214 		return err;
1215 	return copy_stack_state(dst, src);
1216 }
1217 
1218 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1219 			       const struct bpf_verifier_state *src)
1220 {
1221 	struct bpf_func_state *dst;
1222 	int i, err;
1223 
1224 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1225 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1226 					    GFP_USER);
1227 	if (!dst_state->jmp_history)
1228 		return -ENOMEM;
1229 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1230 
1231 	/* if dst has more stack frames then src frame, free them */
1232 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1233 		free_func_state(dst_state->frame[i]);
1234 		dst_state->frame[i] = NULL;
1235 	}
1236 	dst_state->speculative = src->speculative;
1237 	dst_state->active_rcu_lock = src->active_rcu_lock;
1238 	dst_state->curframe = src->curframe;
1239 	dst_state->active_lock.ptr = src->active_lock.ptr;
1240 	dst_state->active_lock.id = src->active_lock.id;
1241 	dst_state->branches = src->branches;
1242 	dst_state->parent = src->parent;
1243 	dst_state->first_insn_idx = src->first_insn_idx;
1244 	dst_state->last_insn_idx = src->last_insn_idx;
1245 	for (i = 0; i <= src->curframe; i++) {
1246 		dst = dst_state->frame[i];
1247 		if (!dst) {
1248 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1249 			if (!dst)
1250 				return -ENOMEM;
1251 			dst_state->frame[i] = dst;
1252 		}
1253 		err = copy_func_state(dst, src->frame[i]);
1254 		if (err)
1255 			return err;
1256 	}
1257 	return 0;
1258 }
1259 
1260 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1261 {
1262 	while (st) {
1263 		u32 br = --st->branches;
1264 
1265 		/* WARN_ON(br > 1) technically makes sense here,
1266 		 * but see comment in push_stack(), hence:
1267 		 */
1268 		WARN_ONCE((int)br < 0,
1269 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1270 			  br);
1271 		if (br)
1272 			break;
1273 		st = st->parent;
1274 	}
1275 }
1276 
1277 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1278 		     int *insn_idx, bool pop_log)
1279 {
1280 	struct bpf_verifier_state *cur = env->cur_state;
1281 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1282 	int err;
1283 
1284 	if (env->head == NULL)
1285 		return -ENOENT;
1286 
1287 	if (cur) {
1288 		err = copy_verifier_state(cur, &head->st);
1289 		if (err)
1290 			return err;
1291 	}
1292 	if (pop_log)
1293 		bpf_vlog_reset(&env->log, head->log_pos);
1294 	if (insn_idx)
1295 		*insn_idx = head->insn_idx;
1296 	if (prev_insn_idx)
1297 		*prev_insn_idx = head->prev_insn_idx;
1298 	elem = head->next;
1299 	free_verifier_state(&head->st, false);
1300 	kfree(head);
1301 	env->head = elem;
1302 	env->stack_size--;
1303 	return 0;
1304 }
1305 
1306 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1307 					     int insn_idx, int prev_insn_idx,
1308 					     bool speculative)
1309 {
1310 	struct bpf_verifier_state *cur = env->cur_state;
1311 	struct bpf_verifier_stack_elem *elem;
1312 	int err;
1313 
1314 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1315 	if (!elem)
1316 		goto err;
1317 
1318 	elem->insn_idx = insn_idx;
1319 	elem->prev_insn_idx = prev_insn_idx;
1320 	elem->next = env->head;
1321 	elem->log_pos = env->log.len_used;
1322 	env->head = elem;
1323 	env->stack_size++;
1324 	err = copy_verifier_state(&elem->st, cur);
1325 	if (err)
1326 		goto err;
1327 	elem->st.speculative |= speculative;
1328 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1329 		verbose(env, "The sequence of %d jumps is too complex.\n",
1330 			env->stack_size);
1331 		goto err;
1332 	}
1333 	if (elem->st.parent) {
1334 		++elem->st.parent->branches;
1335 		/* WARN_ON(branches > 2) technically makes sense here,
1336 		 * but
1337 		 * 1. speculative states will bump 'branches' for non-branch
1338 		 * instructions
1339 		 * 2. is_state_visited() heuristics may decide not to create
1340 		 * a new state for a sequence of branches and all such current
1341 		 * and cloned states will be pointing to a single parent state
1342 		 * which might have large 'branches' count.
1343 		 */
1344 	}
1345 	return &elem->st;
1346 err:
1347 	free_verifier_state(env->cur_state, true);
1348 	env->cur_state = NULL;
1349 	/* pop all elements and return */
1350 	while (!pop_stack(env, NULL, NULL, false));
1351 	return NULL;
1352 }
1353 
1354 #define CALLER_SAVED_REGS 6
1355 static const int caller_saved[CALLER_SAVED_REGS] = {
1356 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1357 };
1358 
1359 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1360 				struct bpf_reg_state *reg);
1361 
1362 /* This helper doesn't clear reg->id */
1363 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1364 {
1365 	reg->var_off = tnum_const(imm);
1366 	reg->smin_value = (s64)imm;
1367 	reg->smax_value = (s64)imm;
1368 	reg->umin_value = imm;
1369 	reg->umax_value = imm;
1370 
1371 	reg->s32_min_value = (s32)imm;
1372 	reg->s32_max_value = (s32)imm;
1373 	reg->u32_min_value = (u32)imm;
1374 	reg->u32_max_value = (u32)imm;
1375 }
1376 
1377 /* Mark the unknown part of a register (variable offset or scalar value) as
1378  * known to have the value @imm.
1379  */
1380 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1381 {
1382 	/* Clear id, off, and union(map_ptr, range) */
1383 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1384 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1385 	___mark_reg_known(reg, imm);
1386 }
1387 
1388 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1389 {
1390 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1391 	reg->s32_min_value = (s32)imm;
1392 	reg->s32_max_value = (s32)imm;
1393 	reg->u32_min_value = (u32)imm;
1394 	reg->u32_max_value = (u32)imm;
1395 }
1396 
1397 /* Mark the 'variable offset' part of a register as zero.  This should be
1398  * used only on registers holding a pointer type.
1399  */
1400 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1401 {
1402 	__mark_reg_known(reg, 0);
1403 }
1404 
1405 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1406 {
1407 	__mark_reg_known(reg, 0);
1408 	reg->type = SCALAR_VALUE;
1409 }
1410 
1411 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1412 				struct bpf_reg_state *regs, u32 regno)
1413 {
1414 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1415 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1416 		/* Something bad happened, let's kill all regs */
1417 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1418 			__mark_reg_not_init(env, regs + regno);
1419 		return;
1420 	}
1421 	__mark_reg_known_zero(regs + regno);
1422 }
1423 
1424 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1425 {
1426 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1427 		const struct bpf_map *map = reg->map_ptr;
1428 
1429 		if (map->inner_map_meta) {
1430 			reg->type = CONST_PTR_TO_MAP;
1431 			reg->map_ptr = map->inner_map_meta;
1432 			/* transfer reg's id which is unique for every map_lookup_elem
1433 			 * as UID of the inner map.
1434 			 */
1435 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1436 				reg->map_uid = reg->id;
1437 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1438 			reg->type = PTR_TO_XDP_SOCK;
1439 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1440 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1441 			reg->type = PTR_TO_SOCKET;
1442 		} else {
1443 			reg->type = PTR_TO_MAP_VALUE;
1444 		}
1445 		return;
1446 	}
1447 
1448 	reg->type &= ~PTR_MAYBE_NULL;
1449 }
1450 
1451 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1452 {
1453 	return type_is_pkt_pointer(reg->type);
1454 }
1455 
1456 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1457 {
1458 	return reg_is_pkt_pointer(reg) ||
1459 	       reg->type == PTR_TO_PACKET_END;
1460 }
1461 
1462 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1463 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1464 				    enum bpf_reg_type which)
1465 {
1466 	/* The register can already have a range from prior markings.
1467 	 * This is fine as long as it hasn't been advanced from its
1468 	 * origin.
1469 	 */
1470 	return reg->type == which &&
1471 	       reg->id == 0 &&
1472 	       reg->off == 0 &&
1473 	       tnum_equals_const(reg->var_off, 0);
1474 }
1475 
1476 /* Reset the min/max bounds of a register */
1477 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1478 {
1479 	reg->smin_value = S64_MIN;
1480 	reg->smax_value = S64_MAX;
1481 	reg->umin_value = 0;
1482 	reg->umax_value = U64_MAX;
1483 
1484 	reg->s32_min_value = S32_MIN;
1485 	reg->s32_max_value = S32_MAX;
1486 	reg->u32_min_value = 0;
1487 	reg->u32_max_value = U32_MAX;
1488 }
1489 
1490 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1491 {
1492 	reg->smin_value = S64_MIN;
1493 	reg->smax_value = S64_MAX;
1494 	reg->umin_value = 0;
1495 	reg->umax_value = U64_MAX;
1496 }
1497 
1498 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1499 {
1500 	reg->s32_min_value = S32_MIN;
1501 	reg->s32_max_value = S32_MAX;
1502 	reg->u32_min_value = 0;
1503 	reg->u32_max_value = U32_MAX;
1504 }
1505 
1506 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1507 {
1508 	struct tnum var32_off = tnum_subreg(reg->var_off);
1509 
1510 	/* min signed is max(sign bit) | min(other bits) */
1511 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1512 			var32_off.value | (var32_off.mask & S32_MIN));
1513 	/* max signed is min(sign bit) | max(other bits) */
1514 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1515 			var32_off.value | (var32_off.mask & S32_MAX));
1516 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1517 	reg->u32_max_value = min(reg->u32_max_value,
1518 				 (u32)(var32_off.value | var32_off.mask));
1519 }
1520 
1521 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1522 {
1523 	/* min signed is max(sign bit) | min(other bits) */
1524 	reg->smin_value = max_t(s64, reg->smin_value,
1525 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1526 	/* max signed is min(sign bit) | max(other bits) */
1527 	reg->smax_value = min_t(s64, reg->smax_value,
1528 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1529 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1530 	reg->umax_value = min(reg->umax_value,
1531 			      reg->var_off.value | reg->var_off.mask);
1532 }
1533 
1534 static void __update_reg_bounds(struct bpf_reg_state *reg)
1535 {
1536 	__update_reg32_bounds(reg);
1537 	__update_reg64_bounds(reg);
1538 }
1539 
1540 /* Uses signed min/max values to inform unsigned, and vice-versa */
1541 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1542 {
1543 	/* Learn sign from signed bounds.
1544 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1545 	 * are the same, so combine.  This works even in the negative case, e.g.
1546 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1547 	 */
1548 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1549 		reg->s32_min_value = reg->u32_min_value =
1550 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1551 		reg->s32_max_value = reg->u32_max_value =
1552 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1553 		return;
1554 	}
1555 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1556 	 * boundary, so we must be careful.
1557 	 */
1558 	if ((s32)reg->u32_max_value >= 0) {
1559 		/* Positive.  We can't learn anything from the smin, but smax
1560 		 * is positive, hence safe.
1561 		 */
1562 		reg->s32_min_value = reg->u32_min_value;
1563 		reg->s32_max_value = reg->u32_max_value =
1564 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1565 	} else if ((s32)reg->u32_min_value < 0) {
1566 		/* Negative.  We can't learn anything from the smax, but smin
1567 		 * is negative, hence safe.
1568 		 */
1569 		reg->s32_min_value = reg->u32_min_value =
1570 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1571 		reg->s32_max_value = reg->u32_max_value;
1572 	}
1573 }
1574 
1575 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1576 {
1577 	/* Learn sign from signed bounds.
1578 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1579 	 * are the same, so combine.  This works even in the negative case, e.g.
1580 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1581 	 */
1582 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1583 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1584 							  reg->umin_value);
1585 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1586 							  reg->umax_value);
1587 		return;
1588 	}
1589 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1590 	 * boundary, so we must be careful.
1591 	 */
1592 	if ((s64)reg->umax_value >= 0) {
1593 		/* Positive.  We can't learn anything from the smin, but smax
1594 		 * is positive, hence safe.
1595 		 */
1596 		reg->smin_value = reg->umin_value;
1597 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1598 							  reg->umax_value);
1599 	} else if ((s64)reg->umin_value < 0) {
1600 		/* Negative.  We can't learn anything from the smax, but smin
1601 		 * is negative, hence safe.
1602 		 */
1603 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1604 							  reg->umin_value);
1605 		reg->smax_value = reg->umax_value;
1606 	}
1607 }
1608 
1609 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1610 {
1611 	__reg32_deduce_bounds(reg);
1612 	__reg64_deduce_bounds(reg);
1613 }
1614 
1615 /* Attempts to improve var_off based on unsigned min/max information */
1616 static void __reg_bound_offset(struct bpf_reg_state *reg)
1617 {
1618 	struct tnum var64_off = tnum_intersect(reg->var_off,
1619 					       tnum_range(reg->umin_value,
1620 							  reg->umax_value));
1621 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1622 						tnum_range(reg->u32_min_value,
1623 							   reg->u32_max_value));
1624 
1625 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1626 }
1627 
1628 static void reg_bounds_sync(struct bpf_reg_state *reg)
1629 {
1630 	/* We might have learned new bounds from the var_off. */
1631 	__update_reg_bounds(reg);
1632 	/* We might have learned something about the sign bit. */
1633 	__reg_deduce_bounds(reg);
1634 	/* We might have learned some bits from the bounds. */
1635 	__reg_bound_offset(reg);
1636 	/* Intersecting with the old var_off might have improved our bounds
1637 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1638 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1639 	 */
1640 	__update_reg_bounds(reg);
1641 }
1642 
1643 static bool __reg32_bound_s64(s32 a)
1644 {
1645 	return a >= 0 && a <= S32_MAX;
1646 }
1647 
1648 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1649 {
1650 	reg->umin_value = reg->u32_min_value;
1651 	reg->umax_value = reg->u32_max_value;
1652 
1653 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1654 	 * be positive otherwise set to worse case bounds and refine later
1655 	 * from tnum.
1656 	 */
1657 	if (__reg32_bound_s64(reg->s32_min_value) &&
1658 	    __reg32_bound_s64(reg->s32_max_value)) {
1659 		reg->smin_value = reg->s32_min_value;
1660 		reg->smax_value = reg->s32_max_value;
1661 	} else {
1662 		reg->smin_value = 0;
1663 		reg->smax_value = U32_MAX;
1664 	}
1665 }
1666 
1667 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1668 {
1669 	/* special case when 64-bit register has upper 32-bit register
1670 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1671 	 * allowing us to use 32-bit bounds directly,
1672 	 */
1673 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1674 		__reg_assign_32_into_64(reg);
1675 	} else {
1676 		/* Otherwise the best we can do is push lower 32bit known and
1677 		 * unknown bits into register (var_off set from jmp logic)
1678 		 * then learn as much as possible from the 64-bit tnum
1679 		 * known and unknown bits. The previous smin/smax bounds are
1680 		 * invalid here because of jmp32 compare so mark them unknown
1681 		 * so they do not impact tnum bounds calculation.
1682 		 */
1683 		__mark_reg64_unbounded(reg);
1684 	}
1685 	reg_bounds_sync(reg);
1686 }
1687 
1688 static bool __reg64_bound_s32(s64 a)
1689 {
1690 	return a >= S32_MIN && a <= S32_MAX;
1691 }
1692 
1693 static bool __reg64_bound_u32(u64 a)
1694 {
1695 	return a >= U32_MIN && a <= U32_MAX;
1696 }
1697 
1698 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1699 {
1700 	__mark_reg32_unbounded(reg);
1701 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1702 		reg->s32_min_value = (s32)reg->smin_value;
1703 		reg->s32_max_value = (s32)reg->smax_value;
1704 	}
1705 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1706 		reg->u32_min_value = (u32)reg->umin_value;
1707 		reg->u32_max_value = (u32)reg->umax_value;
1708 	}
1709 	reg_bounds_sync(reg);
1710 }
1711 
1712 /* Mark a register as having a completely unknown (scalar) value. */
1713 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1714 			       struct bpf_reg_state *reg)
1715 {
1716 	/*
1717 	 * Clear type, id, off, and union(map_ptr, range) and
1718 	 * padding between 'type' and union
1719 	 */
1720 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1721 	reg->type = SCALAR_VALUE;
1722 	reg->var_off = tnum_unknown;
1723 	reg->frameno = 0;
1724 	reg->precise = !env->bpf_capable;
1725 	__mark_reg_unbounded(reg);
1726 }
1727 
1728 static void mark_reg_unknown(struct bpf_verifier_env *env,
1729 			     struct bpf_reg_state *regs, u32 regno)
1730 {
1731 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1732 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1733 		/* Something bad happened, let's kill all regs except FP */
1734 		for (regno = 0; regno < BPF_REG_FP; regno++)
1735 			__mark_reg_not_init(env, regs + regno);
1736 		return;
1737 	}
1738 	__mark_reg_unknown(env, regs + regno);
1739 }
1740 
1741 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1742 				struct bpf_reg_state *reg)
1743 {
1744 	__mark_reg_unknown(env, reg);
1745 	reg->type = NOT_INIT;
1746 }
1747 
1748 static void mark_reg_not_init(struct bpf_verifier_env *env,
1749 			      struct bpf_reg_state *regs, u32 regno)
1750 {
1751 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1752 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1753 		/* Something bad happened, let's kill all regs except FP */
1754 		for (regno = 0; regno < BPF_REG_FP; regno++)
1755 			__mark_reg_not_init(env, regs + regno);
1756 		return;
1757 	}
1758 	__mark_reg_not_init(env, regs + regno);
1759 }
1760 
1761 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1762 			    struct bpf_reg_state *regs, u32 regno,
1763 			    enum bpf_reg_type reg_type,
1764 			    struct btf *btf, u32 btf_id,
1765 			    enum bpf_type_flag flag)
1766 {
1767 	if (reg_type == SCALAR_VALUE) {
1768 		mark_reg_unknown(env, regs, regno);
1769 		return;
1770 	}
1771 	mark_reg_known_zero(env, regs, regno);
1772 	regs[regno].type = PTR_TO_BTF_ID | flag;
1773 	regs[regno].btf = btf;
1774 	regs[regno].btf_id = btf_id;
1775 }
1776 
1777 #define DEF_NOT_SUBREG	(0)
1778 static void init_reg_state(struct bpf_verifier_env *env,
1779 			   struct bpf_func_state *state)
1780 {
1781 	struct bpf_reg_state *regs = state->regs;
1782 	int i;
1783 
1784 	for (i = 0; i < MAX_BPF_REG; i++) {
1785 		mark_reg_not_init(env, regs, i);
1786 		regs[i].live = REG_LIVE_NONE;
1787 		regs[i].parent = NULL;
1788 		regs[i].subreg_def = DEF_NOT_SUBREG;
1789 	}
1790 
1791 	/* frame pointer */
1792 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1793 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1794 	regs[BPF_REG_FP].frameno = state->frameno;
1795 }
1796 
1797 #define BPF_MAIN_FUNC (-1)
1798 static void init_func_state(struct bpf_verifier_env *env,
1799 			    struct bpf_func_state *state,
1800 			    int callsite, int frameno, int subprogno)
1801 {
1802 	state->callsite = callsite;
1803 	state->frameno = frameno;
1804 	state->subprogno = subprogno;
1805 	state->callback_ret_range = tnum_range(0, 0);
1806 	init_reg_state(env, state);
1807 	mark_verifier_state_scratched(env);
1808 }
1809 
1810 /* Similar to push_stack(), but for async callbacks */
1811 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1812 						int insn_idx, int prev_insn_idx,
1813 						int subprog)
1814 {
1815 	struct bpf_verifier_stack_elem *elem;
1816 	struct bpf_func_state *frame;
1817 
1818 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1819 	if (!elem)
1820 		goto err;
1821 
1822 	elem->insn_idx = insn_idx;
1823 	elem->prev_insn_idx = prev_insn_idx;
1824 	elem->next = env->head;
1825 	elem->log_pos = env->log.len_used;
1826 	env->head = elem;
1827 	env->stack_size++;
1828 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1829 		verbose(env,
1830 			"The sequence of %d jumps is too complex for async cb.\n",
1831 			env->stack_size);
1832 		goto err;
1833 	}
1834 	/* Unlike push_stack() do not copy_verifier_state().
1835 	 * The caller state doesn't matter.
1836 	 * This is async callback. It starts in a fresh stack.
1837 	 * Initialize it similar to do_check_common().
1838 	 */
1839 	elem->st.branches = 1;
1840 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1841 	if (!frame)
1842 		goto err;
1843 	init_func_state(env, frame,
1844 			BPF_MAIN_FUNC /* callsite */,
1845 			0 /* frameno within this callchain */,
1846 			subprog /* subprog number within this prog */);
1847 	elem->st.frame[0] = frame;
1848 	return &elem->st;
1849 err:
1850 	free_verifier_state(env->cur_state, true);
1851 	env->cur_state = NULL;
1852 	/* pop all elements and return */
1853 	while (!pop_stack(env, NULL, NULL, false));
1854 	return NULL;
1855 }
1856 
1857 
1858 enum reg_arg_type {
1859 	SRC_OP,		/* register is used as source operand */
1860 	DST_OP,		/* register is used as destination operand */
1861 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1862 };
1863 
1864 static int cmp_subprogs(const void *a, const void *b)
1865 {
1866 	return ((struct bpf_subprog_info *)a)->start -
1867 	       ((struct bpf_subprog_info *)b)->start;
1868 }
1869 
1870 static int find_subprog(struct bpf_verifier_env *env, int off)
1871 {
1872 	struct bpf_subprog_info *p;
1873 
1874 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1875 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1876 	if (!p)
1877 		return -ENOENT;
1878 	return p - env->subprog_info;
1879 
1880 }
1881 
1882 static int add_subprog(struct bpf_verifier_env *env, int off)
1883 {
1884 	int insn_cnt = env->prog->len;
1885 	int ret;
1886 
1887 	if (off >= insn_cnt || off < 0) {
1888 		verbose(env, "call to invalid destination\n");
1889 		return -EINVAL;
1890 	}
1891 	ret = find_subprog(env, off);
1892 	if (ret >= 0)
1893 		return ret;
1894 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1895 		verbose(env, "too many subprograms\n");
1896 		return -E2BIG;
1897 	}
1898 	/* determine subprog starts. The end is one before the next starts */
1899 	env->subprog_info[env->subprog_cnt++].start = off;
1900 	sort(env->subprog_info, env->subprog_cnt,
1901 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1902 	return env->subprog_cnt - 1;
1903 }
1904 
1905 #define MAX_KFUNC_DESCS 256
1906 #define MAX_KFUNC_BTFS	256
1907 
1908 struct bpf_kfunc_desc {
1909 	struct btf_func_model func_model;
1910 	u32 func_id;
1911 	s32 imm;
1912 	u16 offset;
1913 };
1914 
1915 struct bpf_kfunc_btf {
1916 	struct btf *btf;
1917 	struct module *module;
1918 	u16 offset;
1919 };
1920 
1921 struct bpf_kfunc_desc_tab {
1922 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1923 	u32 nr_descs;
1924 };
1925 
1926 struct bpf_kfunc_btf_tab {
1927 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1928 	u32 nr_descs;
1929 };
1930 
1931 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1932 {
1933 	const struct bpf_kfunc_desc *d0 = a;
1934 	const struct bpf_kfunc_desc *d1 = b;
1935 
1936 	/* func_id is not greater than BTF_MAX_TYPE */
1937 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1938 }
1939 
1940 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1941 {
1942 	const struct bpf_kfunc_btf *d0 = a;
1943 	const struct bpf_kfunc_btf *d1 = b;
1944 
1945 	return d0->offset - d1->offset;
1946 }
1947 
1948 static const struct bpf_kfunc_desc *
1949 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1950 {
1951 	struct bpf_kfunc_desc desc = {
1952 		.func_id = func_id,
1953 		.offset = offset,
1954 	};
1955 	struct bpf_kfunc_desc_tab *tab;
1956 
1957 	tab = prog->aux->kfunc_tab;
1958 	return bsearch(&desc, tab->descs, tab->nr_descs,
1959 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1960 }
1961 
1962 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1963 					 s16 offset)
1964 {
1965 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1966 	struct bpf_kfunc_btf_tab *tab;
1967 	struct bpf_kfunc_btf *b;
1968 	struct module *mod;
1969 	struct btf *btf;
1970 	int btf_fd;
1971 
1972 	tab = env->prog->aux->kfunc_btf_tab;
1973 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1974 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1975 	if (!b) {
1976 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1977 			verbose(env, "too many different module BTFs\n");
1978 			return ERR_PTR(-E2BIG);
1979 		}
1980 
1981 		if (bpfptr_is_null(env->fd_array)) {
1982 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1983 			return ERR_PTR(-EPROTO);
1984 		}
1985 
1986 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1987 					    offset * sizeof(btf_fd),
1988 					    sizeof(btf_fd)))
1989 			return ERR_PTR(-EFAULT);
1990 
1991 		btf = btf_get_by_fd(btf_fd);
1992 		if (IS_ERR(btf)) {
1993 			verbose(env, "invalid module BTF fd specified\n");
1994 			return btf;
1995 		}
1996 
1997 		if (!btf_is_module(btf)) {
1998 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1999 			btf_put(btf);
2000 			return ERR_PTR(-EINVAL);
2001 		}
2002 
2003 		mod = btf_try_get_module(btf);
2004 		if (!mod) {
2005 			btf_put(btf);
2006 			return ERR_PTR(-ENXIO);
2007 		}
2008 
2009 		b = &tab->descs[tab->nr_descs++];
2010 		b->btf = btf;
2011 		b->module = mod;
2012 		b->offset = offset;
2013 
2014 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2015 		     kfunc_btf_cmp_by_off, NULL);
2016 	}
2017 	return b->btf;
2018 }
2019 
2020 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2021 {
2022 	if (!tab)
2023 		return;
2024 
2025 	while (tab->nr_descs--) {
2026 		module_put(tab->descs[tab->nr_descs].module);
2027 		btf_put(tab->descs[tab->nr_descs].btf);
2028 	}
2029 	kfree(tab);
2030 }
2031 
2032 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2033 {
2034 	if (offset) {
2035 		if (offset < 0) {
2036 			/* In the future, this can be allowed to increase limit
2037 			 * of fd index into fd_array, interpreted as u16.
2038 			 */
2039 			verbose(env, "negative offset disallowed for kernel module function call\n");
2040 			return ERR_PTR(-EINVAL);
2041 		}
2042 
2043 		return __find_kfunc_desc_btf(env, offset);
2044 	}
2045 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2046 }
2047 
2048 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2049 {
2050 	const struct btf_type *func, *func_proto;
2051 	struct bpf_kfunc_btf_tab *btf_tab;
2052 	struct bpf_kfunc_desc_tab *tab;
2053 	struct bpf_prog_aux *prog_aux;
2054 	struct bpf_kfunc_desc *desc;
2055 	const char *func_name;
2056 	struct btf *desc_btf;
2057 	unsigned long call_imm;
2058 	unsigned long addr;
2059 	int err;
2060 
2061 	prog_aux = env->prog->aux;
2062 	tab = prog_aux->kfunc_tab;
2063 	btf_tab = prog_aux->kfunc_btf_tab;
2064 	if (!tab) {
2065 		if (!btf_vmlinux) {
2066 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2067 			return -ENOTSUPP;
2068 		}
2069 
2070 		if (!env->prog->jit_requested) {
2071 			verbose(env, "JIT is required for calling kernel function\n");
2072 			return -ENOTSUPP;
2073 		}
2074 
2075 		if (!bpf_jit_supports_kfunc_call()) {
2076 			verbose(env, "JIT does not support calling kernel function\n");
2077 			return -ENOTSUPP;
2078 		}
2079 
2080 		if (!env->prog->gpl_compatible) {
2081 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2082 			return -EINVAL;
2083 		}
2084 
2085 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2086 		if (!tab)
2087 			return -ENOMEM;
2088 		prog_aux->kfunc_tab = tab;
2089 	}
2090 
2091 	/* func_id == 0 is always invalid, but instead of returning an error, be
2092 	 * conservative and wait until the code elimination pass before returning
2093 	 * error, so that invalid calls that get pruned out can be in BPF programs
2094 	 * loaded from userspace.  It is also required that offset be untouched
2095 	 * for such calls.
2096 	 */
2097 	if (!func_id && !offset)
2098 		return 0;
2099 
2100 	if (!btf_tab && offset) {
2101 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2102 		if (!btf_tab)
2103 			return -ENOMEM;
2104 		prog_aux->kfunc_btf_tab = btf_tab;
2105 	}
2106 
2107 	desc_btf = find_kfunc_desc_btf(env, offset);
2108 	if (IS_ERR(desc_btf)) {
2109 		verbose(env, "failed to find BTF for kernel function\n");
2110 		return PTR_ERR(desc_btf);
2111 	}
2112 
2113 	if (find_kfunc_desc(env->prog, func_id, offset))
2114 		return 0;
2115 
2116 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2117 		verbose(env, "too many different kernel function calls\n");
2118 		return -E2BIG;
2119 	}
2120 
2121 	func = btf_type_by_id(desc_btf, func_id);
2122 	if (!func || !btf_type_is_func(func)) {
2123 		verbose(env, "kernel btf_id %u is not a function\n",
2124 			func_id);
2125 		return -EINVAL;
2126 	}
2127 	func_proto = btf_type_by_id(desc_btf, func->type);
2128 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2129 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2130 			func_id);
2131 		return -EINVAL;
2132 	}
2133 
2134 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2135 	addr = kallsyms_lookup_name(func_name);
2136 	if (!addr) {
2137 		verbose(env, "cannot find address for kernel function %s\n",
2138 			func_name);
2139 		return -EINVAL;
2140 	}
2141 
2142 	call_imm = BPF_CALL_IMM(addr);
2143 	/* Check whether or not the relative offset overflows desc->imm */
2144 	if ((unsigned long)(s32)call_imm != call_imm) {
2145 		verbose(env, "address of kernel function %s is out of range\n",
2146 			func_name);
2147 		return -EINVAL;
2148 	}
2149 
2150 	desc = &tab->descs[tab->nr_descs++];
2151 	desc->func_id = func_id;
2152 	desc->imm = call_imm;
2153 	desc->offset = offset;
2154 	err = btf_distill_func_proto(&env->log, desc_btf,
2155 				     func_proto, func_name,
2156 				     &desc->func_model);
2157 	if (!err)
2158 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2159 		     kfunc_desc_cmp_by_id_off, NULL);
2160 	return err;
2161 }
2162 
2163 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2164 {
2165 	const struct bpf_kfunc_desc *d0 = a;
2166 	const struct bpf_kfunc_desc *d1 = b;
2167 
2168 	if (d0->imm > d1->imm)
2169 		return 1;
2170 	else if (d0->imm < d1->imm)
2171 		return -1;
2172 	return 0;
2173 }
2174 
2175 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2176 {
2177 	struct bpf_kfunc_desc_tab *tab;
2178 
2179 	tab = prog->aux->kfunc_tab;
2180 	if (!tab)
2181 		return;
2182 
2183 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2184 	     kfunc_desc_cmp_by_imm, NULL);
2185 }
2186 
2187 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2188 {
2189 	return !!prog->aux->kfunc_tab;
2190 }
2191 
2192 const struct btf_func_model *
2193 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2194 			 const struct bpf_insn *insn)
2195 {
2196 	const struct bpf_kfunc_desc desc = {
2197 		.imm = insn->imm,
2198 	};
2199 	const struct bpf_kfunc_desc *res;
2200 	struct bpf_kfunc_desc_tab *tab;
2201 
2202 	tab = prog->aux->kfunc_tab;
2203 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2204 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2205 
2206 	return res ? &res->func_model : NULL;
2207 }
2208 
2209 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2210 {
2211 	struct bpf_subprog_info *subprog = env->subprog_info;
2212 	struct bpf_insn *insn = env->prog->insnsi;
2213 	int i, ret, insn_cnt = env->prog->len;
2214 
2215 	/* Add entry function. */
2216 	ret = add_subprog(env, 0);
2217 	if (ret)
2218 		return ret;
2219 
2220 	for (i = 0; i < insn_cnt; i++, insn++) {
2221 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2222 		    !bpf_pseudo_kfunc_call(insn))
2223 			continue;
2224 
2225 		if (!env->bpf_capable) {
2226 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2227 			return -EPERM;
2228 		}
2229 
2230 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2231 			ret = add_subprog(env, i + insn->imm + 1);
2232 		else
2233 			ret = add_kfunc_call(env, insn->imm, insn->off);
2234 
2235 		if (ret < 0)
2236 			return ret;
2237 	}
2238 
2239 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2240 	 * logic. 'subprog_cnt' should not be increased.
2241 	 */
2242 	subprog[env->subprog_cnt].start = insn_cnt;
2243 
2244 	if (env->log.level & BPF_LOG_LEVEL2)
2245 		for (i = 0; i < env->subprog_cnt; i++)
2246 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2247 
2248 	return 0;
2249 }
2250 
2251 static int check_subprogs(struct bpf_verifier_env *env)
2252 {
2253 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2254 	struct bpf_subprog_info *subprog = env->subprog_info;
2255 	struct bpf_insn *insn = env->prog->insnsi;
2256 	int insn_cnt = env->prog->len;
2257 
2258 	/* now check that all jumps are within the same subprog */
2259 	subprog_start = subprog[cur_subprog].start;
2260 	subprog_end = subprog[cur_subprog + 1].start;
2261 	for (i = 0; i < insn_cnt; i++) {
2262 		u8 code = insn[i].code;
2263 
2264 		if (code == (BPF_JMP | BPF_CALL) &&
2265 		    insn[i].imm == BPF_FUNC_tail_call &&
2266 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2267 			subprog[cur_subprog].has_tail_call = true;
2268 		if (BPF_CLASS(code) == BPF_LD &&
2269 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2270 			subprog[cur_subprog].has_ld_abs = true;
2271 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2272 			goto next;
2273 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2274 			goto next;
2275 		off = i + insn[i].off + 1;
2276 		if (off < subprog_start || off >= subprog_end) {
2277 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2278 			return -EINVAL;
2279 		}
2280 next:
2281 		if (i == subprog_end - 1) {
2282 			/* to avoid fall-through from one subprog into another
2283 			 * the last insn of the subprog should be either exit
2284 			 * or unconditional jump back
2285 			 */
2286 			if (code != (BPF_JMP | BPF_EXIT) &&
2287 			    code != (BPF_JMP | BPF_JA)) {
2288 				verbose(env, "last insn is not an exit or jmp\n");
2289 				return -EINVAL;
2290 			}
2291 			subprog_start = subprog_end;
2292 			cur_subprog++;
2293 			if (cur_subprog < env->subprog_cnt)
2294 				subprog_end = subprog[cur_subprog + 1].start;
2295 		}
2296 	}
2297 	return 0;
2298 }
2299 
2300 /* Parentage chain of this register (or stack slot) should take care of all
2301  * issues like callee-saved registers, stack slot allocation time, etc.
2302  */
2303 static int mark_reg_read(struct bpf_verifier_env *env,
2304 			 const struct bpf_reg_state *state,
2305 			 struct bpf_reg_state *parent, u8 flag)
2306 {
2307 	bool writes = parent == state->parent; /* Observe write marks */
2308 	int cnt = 0;
2309 
2310 	while (parent) {
2311 		/* if read wasn't screened by an earlier write ... */
2312 		if (writes && state->live & REG_LIVE_WRITTEN)
2313 			break;
2314 		if (parent->live & REG_LIVE_DONE) {
2315 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2316 				reg_type_str(env, parent->type),
2317 				parent->var_off.value, parent->off);
2318 			return -EFAULT;
2319 		}
2320 		/* The first condition is more likely to be true than the
2321 		 * second, checked it first.
2322 		 */
2323 		if ((parent->live & REG_LIVE_READ) == flag ||
2324 		    parent->live & REG_LIVE_READ64)
2325 			/* The parentage chain never changes and
2326 			 * this parent was already marked as LIVE_READ.
2327 			 * There is no need to keep walking the chain again and
2328 			 * keep re-marking all parents as LIVE_READ.
2329 			 * This case happens when the same register is read
2330 			 * multiple times without writes into it in-between.
2331 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2332 			 * then no need to set the weak REG_LIVE_READ32.
2333 			 */
2334 			break;
2335 		/* ... then we depend on parent's value */
2336 		parent->live |= flag;
2337 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2338 		if (flag == REG_LIVE_READ64)
2339 			parent->live &= ~REG_LIVE_READ32;
2340 		state = parent;
2341 		parent = state->parent;
2342 		writes = true;
2343 		cnt++;
2344 	}
2345 
2346 	if (env->longest_mark_read_walk < cnt)
2347 		env->longest_mark_read_walk = cnt;
2348 	return 0;
2349 }
2350 
2351 /* This function is supposed to be used by the following 32-bit optimization
2352  * code only. It returns TRUE if the source or destination register operates
2353  * on 64-bit, otherwise return FALSE.
2354  */
2355 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2356 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2357 {
2358 	u8 code, class, op;
2359 
2360 	code = insn->code;
2361 	class = BPF_CLASS(code);
2362 	op = BPF_OP(code);
2363 	if (class == BPF_JMP) {
2364 		/* BPF_EXIT for "main" will reach here. Return TRUE
2365 		 * conservatively.
2366 		 */
2367 		if (op == BPF_EXIT)
2368 			return true;
2369 		if (op == BPF_CALL) {
2370 			/* BPF to BPF call will reach here because of marking
2371 			 * caller saved clobber with DST_OP_NO_MARK for which we
2372 			 * don't care the register def because they are anyway
2373 			 * marked as NOT_INIT already.
2374 			 */
2375 			if (insn->src_reg == BPF_PSEUDO_CALL)
2376 				return false;
2377 			/* Helper call will reach here because of arg type
2378 			 * check, conservatively return TRUE.
2379 			 */
2380 			if (t == SRC_OP)
2381 				return true;
2382 
2383 			return false;
2384 		}
2385 	}
2386 
2387 	if (class == BPF_ALU64 || class == BPF_JMP ||
2388 	    /* BPF_END always use BPF_ALU class. */
2389 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2390 		return true;
2391 
2392 	if (class == BPF_ALU || class == BPF_JMP32)
2393 		return false;
2394 
2395 	if (class == BPF_LDX) {
2396 		if (t != SRC_OP)
2397 			return BPF_SIZE(code) == BPF_DW;
2398 		/* LDX source must be ptr. */
2399 		return true;
2400 	}
2401 
2402 	if (class == BPF_STX) {
2403 		/* BPF_STX (including atomic variants) has multiple source
2404 		 * operands, one of which is a ptr. Check whether the caller is
2405 		 * asking about it.
2406 		 */
2407 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2408 			return true;
2409 		return BPF_SIZE(code) == BPF_DW;
2410 	}
2411 
2412 	if (class == BPF_LD) {
2413 		u8 mode = BPF_MODE(code);
2414 
2415 		/* LD_IMM64 */
2416 		if (mode == BPF_IMM)
2417 			return true;
2418 
2419 		/* Both LD_IND and LD_ABS return 32-bit data. */
2420 		if (t != SRC_OP)
2421 			return  false;
2422 
2423 		/* Implicit ctx ptr. */
2424 		if (regno == BPF_REG_6)
2425 			return true;
2426 
2427 		/* Explicit source could be any width. */
2428 		return true;
2429 	}
2430 
2431 	if (class == BPF_ST)
2432 		/* The only source register for BPF_ST is a ptr. */
2433 		return true;
2434 
2435 	/* Conservatively return true at default. */
2436 	return true;
2437 }
2438 
2439 /* Return the regno defined by the insn, or -1. */
2440 static int insn_def_regno(const struct bpf_insn *insn)
2441 {
2442 	switch (BPF_CLASS(insn->code)) {
2443 	case BPF_JMP:
2444 	case BPF_JMP32:
2445 	case BPF_ST:
2446 		return -1;
2447 	case BPF_STX:
2448 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2449 		    (insn->imm & BPF_FETCH)) {
2450 			if (insn->imm == BPF_CMPXCHG)
2451 				return BPF_REG_0;
2452 			else
2453 				return insn->src_reg;
2454 		} else {
2455 			return -1;
2456 		}
2457 	default:
2458 		return insn->dst_reg;
2459 	}
2460 }
2461 
2462 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2463 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2464 {
2465 	int dst_reg = insn_def_regno(insn);
2466 
2467 	if (dst_reg == -1)
2468 		return false;
2469 
2470 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2471 }
2472 
2473 static void mark_insn_zext(struct bpf_verifier_env *env,
2474 			   struct bpf_reg_state *reg)
2475 {
2476 	s32 def_idx = reg->subreg_def;
2477 
2478 	if (def_idx == DEF_NOT_SUBREG)
2479 		return;
2480 
2481 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2482 	/* The dst will be zero extended, so won't be sub-register anymore. */
2483 	reg->subreg_def = DEF_NOT_SUBREG;
2484 }
2485 
2486 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2487 			 enum reg_arg_type t)
2488 {
2489 	struct bpf_verifier_state *vstate = env->cur_state;
2490 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2491 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2492 	struct bpf_reg_state *reg, *regs = state->regs;
2493 	bool rw64;
2494 
2495 	if (regno >= MAX_BPF_REG) {
2496 		verbose(env, "R%d is invalid\n", regno);
2497 		return -EINVAL;
2498 	}
2499 
2500 	mark_reg_scratched(env, regno);
2501 
2502 	reg = &regs[regno];
2503 	rw64 = is_reg64(env, insn, regno, reg, t);
2504 	if (t == SRC_OP) {
2505 		/* check whether register used as source operand can be read */
2506 		if (reg->type == NOT_INIT) {
2507 			verbose(env, "R%d !read_ok\n", regno);
2508 			return -EACCES;
2509 		}
2510 		/* We don't need to worry about FP liveness because it's read-only */
2511 		if (regno == BPF_REG_FP)
2512 			return 0;
2513 
2514 		if (rw64)
2515 			mark_insn_zext(env, reg);
2516 
2517 		return mark_reg_read(env, reg, reg->parent,
2518 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2519 	} else {
2520 		/* check whether register used as dest operand can be written to */
2521 		if (regno == BPF_REG_FP) {
2522 			verbose(env, "frame pointer is read only\n");
2523 			return -EACCES;
2524 		}
2525 		reg->live |= REG_LIVE_WRITTEN;
2526 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2527 		if (t == DST_OP)
2528 			mark_reg_unknown(env, regs, regno);
2529 	}
2530 	return 0;
2531 }
2532 
2533 /* for any branch, call, exit record the history of jmps in the given state */
2534 static int push_jmp_history(struct bpf_verifier_env *env,
2535 			    struct bpf_verifier_state *cur)
2536 {
2537 	u32 cnt = cur->jmp_history_cnt;
2538 	struct bpf_idx_pair *p;
2539 	size_t alloc_size;
2540 
2541 	cnt++;
2542 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
2543 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
2544 	if (!p)
2545 		return -ENOMEM;
2546 	p[cnt - 1].idx = env->insn_idx;
2547 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2548 	cur->jmp_history = p;
2549 	cur->jmp_history_cnt = cnt;
2550 	return 0;
2551 }
2552 
2553 /* Backtrack one insn at a time. If idx is not at the top of recorded
2554  * history then previous instruction came from straight line execution.
2555  */
2556 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2557 			     u32 *history)
2558 {
2559 	u32 cnt = *history;
2560 
2561 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2562 		i = st->jmp_history[cnt - 1].prev_idx;
2563 		(*history)--;
2564 	} else {
2565 		i--;
2566 	}
2567 	return i;
2568 }
2569 
2570 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2571 {
2572 	const struct btf_type *func;
2573 	struct btf *desc_btf;
2574 
2575 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2576 		return NULL;
2577 
2578 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2579 	if (IS_ERR(desc_btf))
2580 		return "<error>";
2581 
2582 	func = btf_type_by_id(desc_btf, insn->imm);
2583 	return btf_name_by_offset(desc_btf, func->name_off);
2584 }
2585 
2586 /* For given verifier state backtrack_insn() is called from the last insn to
2587  * the first insn. Its purpose is to compute a bitmask of registers and
2588  * stack slots that needs precision in the parent verifier state.
2589  */
2590 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2591 			  u32 *reg_mask, u64 *stack_mask)
2592 {
2593 	const struct bpf_insn_cbs cbs = {
2594 		.cb_call	= disasm_kfunc_name,
2595 		.cb_print	= verbose,
2596 		.private_data	= env,
2597 	};
2598 	struct bpf_insn *insn = env->prog->insnsi + idx;
2599 	u8 class = BPF_CLASS(insn->code);
2600 	u8 opcode = BPF_OP(insn->code);
2601 	u8 mode = BPF_MODE(insn->code);
2602 	u32 dreg = 1u << insn->dst_reg;
2603 	u32 sreg = 1u << insn->src_reg;
2604 	u32 spi;
2605 
2606 	if (insn->code == 0)
2607 		return 0;
2608 	if (env->log.level & BPF_LOG_LEVEL2) {
2609 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2610 		verbose(env, "%d: ", idx);
2611 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2612 	}
2613 
2614 	if (class == BPF_ALU || class == BPF_ALU64) {
2615 		if (!(*reg_mask & dreg))
2616 			return 0;
2617 		if (opcode == BPF_MOV) {
2618 			if (BPF_SRC(insn->code) == BPF_X) {
2619 				/* dreg = sreg
2620 				 * dreg needs precision after this insn
2621 				 * sreg needs precision before this insn
2622 				 */
2623 				*reg_mask &= ~dreg;
2624 				*reg_mask |= sreg;
2625 			} else {
2626 				/* dreg = K
2627 				 * dreg needs precision after this insn.
2628 				 * Corresponding register is already marked
2629 				 * as precise=true in this verifier state.
2630 				 * No further markings in parent are necessary
2631 				 */
2632 				*reg_mask &= ~dreg;
2633 			}
2634 		} else {
2635 			if (BPF_SRC(insn->code) == BPF_X) {
2636 				/* dreg += sreg
2637 				 * both dreg and sreg need precision
2638 				 * before this insn
2639 				 */
2640 				*reg_mask |= sreg;
2641 			} /* else dreg += K
2642 			   * dreg still needs precision before this insn
2643 			   */
2644 		}
2645 	} else if (class == BPF_LDX) {
2646 		if (!(*reg_mask & dreg))
2647 			return 0;
2648 		*reg_mask &= ~dreg;
2649 
2650 		/* scalars can only be spilled into stack w/o losing precision.
2651 		 * Load from any other memory can be zero extended.
2652 		 * The desire to keep that precision is already indicated
2653 		 * by 'precise' mark in corresponding register of this state.
2654 		 * No further tracking necessary.
2655 		 */
2656 		if (insn->src_reg != BPF_REG_FP)
2657 			return 0;
2658 
2659 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2660 		 * that [fp - off] slot contains scalar that needs to be
2661 		 * tracked with precision
2662 		 */
2663 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2664 		if (spi >= 64) {
2665 			verbose(env, "BUG spi %d\n", spi);
2666 			WARN_ONCE(1, "verifier backtracking bug");
2667 			return -EFAULT;
2668 		}
2669 		*stack_mask |= 1ull << spi;
2670 	} else if (class == BPF_STX || class == BPF_ST) {
2671 		if (*reg_mask & dreg)
2672 			/* stx & st shouldn't be using _scalar_ dst_reg
2673 			 * to access memory. It means backtracking
2674 			 * encountered a case of pointer subtraction.
2675 			 */
2676 			return -ENOTSUPP;
2677 		/* scalars can only be spilled into stack */
2678 		if (insn->dst_reg != BPF_REG_FP)
2679 			return 0;
2680 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2681 		if (spi >= 64) {
2682 			verbose(env, "BUG spi %d\n", spi);
2683 			WARN_ONCE(1, "verifier backtracking bug");
2684 			return -EFAULT;
2685 		}
2686 		if (!(*stack_mask & (1ull << spi)))
2687 			return 0;
2688 		*stack_mask &= ~(1ull << spi);
2689 		if (class == BPF_STX)
2690 			*reg_mask |= sreg;
2691 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2692 		if (opcode == BPF_CALL) {
2693 			if (insn->src_reg == BPF_PSEUDO_CALL)
2694 				return -ENOTSUPP;
2695 			/* BPF helpers that invoke callback subprogs are
2696 			 * equivalent to BPF_PSEUDO_CALL above
2697 			 */
2698 			if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2699 				return -ENOTSUPP;
2700 			/* regular helper call sets R0 */
2701 			*reg_mask &= ~1;
2702 			if (*reg_mask & 0x3f) {
2703 				/* if backtracing was looking for registers R1-R5
2704 				 * they should have been found already.
2705 				 */
2706 				verbose(env, "BUG regs %x\n", *reg_mask);
2707 				WARN_ONCE(1, "verifier backtracking bug");
2708 				return -EFAULT;
2709 			}
2710 		} else if (opcode == BPF_EXIT) {
2711 			return -ENOTSUPP;
2712 		}
2713 	} else if (class == BPF_LD) {
2714 		if (!(*reg_mask & dreg))
2715 			return 0;
2716 		*reg_mask &= ~dreg;
2717 		/* It's ld_imm64 or ld_abs or ld_ind.
2718 		 * For ld_imm64 no further tracking of precision
2719 		 * into parent is necessary
2720 		 */
2721 		if (mode == BPF_IND || mode == BPF_ABS)
2722 			/* to be analyzed */
2723 			return -ENOTSUPP;
2724 	}
2725 	return 0;
2726 }
2727 
2728 /* the scalar precision tracking algorithm:
2729  * . at the start all registers have precise=false.
2730  * . scalar ranges are tracked as normal through alu and jmp insns.
2731  * . once precise value of the scalar register is used in:
2732  *   .  ptr + scalar alu
2733  *   . if (scalar cond K|scalar)
2734  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2735  *   backtrack through the verifier states and mark all registers and
2736  *   stack slots with spilled constants that these scalar regisers
2737  *   should be precise.
2738  * . during state pruning two registers (or spilled stack slots)
2739  *   are equivalent if both are not precise.
2740  *
2741  * Note the verifier cannot simply walk register parentage chain,
2742  * since many different registers and stack slots could have been
2743  * used to compute single precise scalar.
2744  *
2745  * The approach of starting with precise=true for all registers and then
2746  * backtrack to mark a register as not precise when the verifier detects
2747  * that program doesn't care about specific value (e.g., when helper
2748  * takes register as ARG_ANYTHING parameter) is not safe.
2749  *
2750  * It's ok to walk single parentage chain of the verifier states.
2751  * It's possible that this backtracking will go all the way till 1st insn.
2752  * All other branches will be explored for needing precision later.
2753  *
2754  * The backtracking needs to deal with cases like:
2755  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2756  * r9 -= r8
2757  * r5 = r9
2758  * if r5 > 0x79f goto pc+7
2759  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2760  * r5 += 1
2761  * ...
2762  * call bpf_perf_event_output#25
2763  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2764  *
2765  * and this case:
2766  * r6 = 1
2767  * call foo // uses callee's r6 inside to compute r0
2768  * r0 += r6
2769  * if r0 == 0 goto
2770  *
2771  * to track above reg_mask/stack_mask needs to be independent for each frame.
2772  *
2773  * Also if parent's curframe > frame where backtracking started,
2774  * the verifier need to mark registers in both frames, otherwise callees
2775  * may incorrectly prune callers. This is similar to
2776  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2777  *
2778  * For now backtracking falls back into conservative marking.
2779  */
2780 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2781 				     struct bpf_verifier_state *st)
2782 {
2783 	struct bpf_func_state *func;
2784 	struct bpf_reg_state *reg;
2785 	int i, j;
2786 
2787 	/* big hammer: mark all scalars precise in this path.
2788 	 * pop_stack may still get !precise scalars.
2789 	 * We also skip current state and go straight to first parent state,
2790 	 * because precision markings in current non-checkpointed state are
2791 	 * not needed. See why in the comment in __mark_chain_precision below.
2792 	 */
2793 	for (st = st->parent; st; st = st->parent) {
2794 		for (i = 0; i <= st->curframe; i++) {
2795 			func = st->frame[i];
2796 			for (j = 0; j < BPF_REG_FP; j++) {
2797 				reg = &func->regs[j];
2798 				if (reg->type != SCALAR_VALUE)
2799 					continue;
2800 				reg->precise = true;
2801 			}
2802 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2803 				if (!is_spilled_reg(&func->stack[j]))
2804 					continue;
2805 				reg = &func->stack[j].spilled_ptr;
2806 				if (reg->type != SCALAR_VALUE)
2807 					continue;
2808 				reg->precise = true;
2809 			}
2810 		}
2811 	}
2812 }
2813 
2814 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2815 {
2816 	struct bpf_func_state *func;
2817 	struct bpf_reg_state *reg;
2818 	int i, j;
2819 
2820 	for (i = 0; i <= st->curframe; i++) {
2821 		func = st->frame[i];
2822 		for (j = 0; j < BPF_REG_FP; j++) {
2823 			reg = &func->regs[j];
2824 			if (reg->type != SCALAR_VALUE)
2825 				continue;
2826 			reg->precise = false;
2827 		}
2828 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2829 			if (!is_spilled_reg(&func->stack[j]))
2830 				continue;
2831 			reg = &func->stack[j].spilled_ptr;
2832 			if (reg->type != SCALAR_VALUE)
2833 				continue;
2834 			reg->precise = false;
2835 		}
2836 	}
2837 }
2838 
2839 /*
2840  * __mark_chain_precision() backtracks BPF program instruction sequence and
2841  * chain of verifier states making sure that register *regno* (if regno >= 0)
2842  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2843  * SCALARS, as well as any other registers and slots that contribute to
2844  * a tracked state of given registers/stack slots, depending on specific BPF
2845  * assembly instructions (see backtrack_insns() for exact instruction handling
2846  * logic). This backtracking relies on recorded jmp_history and is able to
2847  * traverse entire chain of parent states. This process ends only when all the
2848  * necessary registers/slots and their transitive dependencies are marked as
2849  * precise.
2850  *
2851  * One important and subtle aspect is that precise marks *do not matter* in
2852  * the currently verified state (current state). It is important to understand
2853  * why this is the case.
2854  *
2855  * First, note that current state is the state that is not yet "checkpointed",
2856  * i.e., it is not yet put into env->explored_states, and it has no children
2857  * states as well. It's ephemeral, and can end up either a) being discarded if
2858  * compatible explored state is found at some point or BPF_EXIT instruction is
2859  * reached or b) checkpointed and put into env->explored_states, branching out
2860  * into one or more children states.
2861  *
2862  * In the former case, precise markings in current state are completely
2863  * ignored by state comparison code (see regsafe() for details). Only
2864  * checkpointed ("old") state precise markings are important, and if old
2865  * state's register/slot is precise, regsafe() assumes current state's
2866  * register/slot as precise and checks value ranges exactly and precisely. If
2867  * states turn out to be compatible, current state's necessary precise
2868  * markings and any required parent states' precise markings are enforced
2869  * after the fact with propagate_precision() logic, after the fact. But it's
2870  * important to realize that in this case, even after marking current state
2871  * registers/slots as precise, we immediately discard current state. So what
2872  * actually matters is any of the precise markings propagated into current
2873  * state's parent states, which are always checkpointed (due to b) case above).
2874  * As such, for scenario a) it doesn't matter if current state has precise
2875  * markings set or not.
2876  *
2877  * Now, for the scenario b), checkpointing and forking into child(ren)
2878  * state(s). Note that before current state gets to checkpointing step, any
2879  * processed instruction always assumes precise SCALAR register/slot
2880  * knowledge: if precise value or range is useful to prune jump branch, BPF
2881  * verifier takes this opportunity enthusiastically. Similarly, when
2882  * register's value is used to calculate offset or memory address, exact
2883  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2884  * what we mentioned above about state comparison ignoring precise markings
2885  * during state comparison, BPF verifier ignores and also assumes precise
2886  * markings *at will* during instruction verification process. But as verifier
2887  * assumes precision, it also propagates any precision dependencies across
2888  * parent states, which are not yet finalized, so can be further restricted
2889  * based on new knowledge gained from restrictions enforced by their children
2890  * states. This is so that once those parent states are finalized, i.e., when
2891  * they have no more active children state, state comparison logic in
2892  * is_state_visited() would enforce strict and precise SCALAR ranges, if
2893  * required for correctness.
2894  *
2895  * To build a bit more intuition, note also that once a state is checkpointed,
2896  * the path we took to get to that state is not important. This is crucial
2897  * property for state pruning. When state is checkpointed and finalized at
2898  * some instruction index, it can be correctly and safely used to "short
2899  * circuit" any *compatible* state that reaches exactly the same instruction
2900  * index. I.e., if we jumped to that instruction from a completely different
2901  * code path than original finalized state was derived from, it doesn't
2902  * matter, current state can be discarded because from that instruction
2903  * forward having a compatible state will ensure we will safely reach the
2904  * exit. States describe preconditions for further exploration, but completely
2905  * forget the history of how we got here.
2906  *
2907  * This also means that even if we needed precise SCALAR range to get to
2908  * finalized state, but from that point forward *that same* SCALAR register is
2909  * never used in a precise context (i.e., it's precise value is not needed for
2910  * correctness), it's correct and safe to mark such register as "imprecise"
2911  * (i.e., precise marking set to false). This is what we rely on when we do
2912  * not set precise marking in current state. If no child state requires
2913  * precision for any given SCALAR register, it's safe to dictate that it can
2914  * be imprecise. If any child state does require this register to be precise,
2915  * we'll mark it precise later retroactively during precise markings
2916  * propagation from child state to parent states.
2917  *
2918  * Skipping precise marking setting in current state is a mild version of
2919  * relying on the above observation. But we can utilize this property even
2920  * more aggressively by proactively forgetting any precise marking in the
2921  * current state (which we inherited from the parent state), right before we
2922  * checkpoint it and branch off into new child state. This is done by
2923  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2924  * finalized states which help in short circuiting more future states.
2925  */
2926 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2927 				  int spi)
2928 {
2929 	struct bpf_verifier_state *st = env->cur_state;
2930 	int first_idx = st->first_insn_idx;
2931 	int last_idx = env->insn_idx;
2932 	struct bpf_func_state *func;
2933 	struct bpf_reg_state *reg;
2934 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2935 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2936 	bool skip_first = true;
2937 	bool new_marks = false;
2938 	int i, err;
2939 
2940 	if (!env->bpf_capable)
2941 		return 0;
2942 
2943 	/* Do sanity checks against current state of register and/or stack
2944 	 * slot, but don't set precise flag in current state, as precision
2945 	 * tracking in the current state is unnecessary.
2946 	 */
2947 	func = st->frame[frame];
2948 	if (regno >= 0) {
2949 		reg = &func->regs[regno];
2950 		if (reg->type != SCALAR_VALUE) {
2951 			WARN_ONCE(1, "backtracing misuse");
2952 			return -EFAULT;
2953 		}
2954 		new_marks = true;
2955 	}
2956 
2957 	while (spi >= 0) {
2958 		if (!is_spilled_reg(&func->stack[spi])) {
2959 			stack_mask = 0;
2960 			break;
2961 		}
2962 		reg = &func->stack[spi].spilled_ptr;
2963 		if (reg->type != SCALAR_VALUE) {
2964 			stack_mask = 0;
2965 			break;
2966 		}
2967 		new_marks = true;
2968 		break;
2969 	}
2970 
2971 	if (!new_marks)
2972 		return 0;
2973 	if (!reg_mask && !stack_mask)
2974 		return 0;
2975 
2976 	for (;;) {
2977 		DECLARE_BITMAP(mask, 64);
2978 		u32 history = st->jmp_history_cnt;
2979 
2980 		if (env->log.level & BPF_LOG_LEVEL2)
2981 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2982 
2983 		if (last_idx < 0) {
2984 			/* we are at the entry into subprog, which
2985 			 * is expected for global funcs, but only if
2986 			 * requested precise registers are R1-R5
2987 			 * (which are global func's input arguments)
2988 			 */
2989 			if (st->curframe == 0 &&
2990 			    st->frame[0]->subprogno > 0 &&
2991 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
2992 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
2993 				bitmap_from_u64(mask, reg_mask);
2994 				for_each_set_bit(i, mask, 32) {
2995 					reg = &st->frame[0]->regs[i];
2996 					if (reg->type != SCALAR_VALUE) {
2997 						reg_mask &= ~(1u << i);
2998 						continue;
2999 					}
3000 					reg->precise = true;
3001 				}
3002 				return 0;
3003 			}
3004 
3005 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3006 				st->frame[0]->subprogno, reg_mask, stack_mask);
3007 			WARN_ONCE(1, "verifier backtracking bug");
3008 			return -EFAULT;
3009 		}
3010 
3011 		for (i = last_idx;;) {
3012 			if (skip_first) {
3013 				err = 0;
3014 				skip_first = false;
3015 			} else {
3016 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3017 			}
3018 			if (err == -ENOTSUPP) {
3019 				mark_all_scalars_precise(env, st);
3020 				return 0;
3021 			} else if (err) {
3022 				return err;
3023 			}
3024 			if (!reg_mask && !stack_mask)
3025 				/* Found assignment(s) into tracked register in this state.
3026 				 * Since this state is already marked, just return.
3027 				 * Nothing to be tracked further in the parent state.
3028 				 */
3029 				return 0;
3030 			if (i == first_idx)
3031 				break;
3032 			i = get_prev_insn_idx(st, i, &history);
3033 			if (i >= env->prog->len) {
3034 				/* This can happen if backtracking reached insn 0
3035 				 * and there are still reg_mask or stack_mask
3036 				 * to backtrack.
3037 				 * It means the backtracking missed the spot where
3038 				 * particular register was initialized with a constant.
3039 				 */
3040 				verbose(env, "BUG backtracking idx %d\n", i);
3041 				WARN_ONCE(1, "verifier backtracking bug");
3042 				return -EFAULT;
3043 			}
3044 		}
3045 		st = st->parent;
3046 		if (!st)
3047 			break;
3048 
3049 		new_marks = false;
3050 		func = st->frame[frame];
3051 		bitmap_from_u64(mask, reg_mask);
3052 		for_each_set_bit(i, mask, 32) {
3053 			reg = &func->regs[i];
3054 			if (reg->type != SCALAR_VALUE) {
3055 				reg_mask &= ~(1u << i);
3056 				continue;
3057 			}
3058 			if (!reg->precise)
3059 				new_marks = true;
3060 			reg->precise = true;
3061 		}
3062 
3063 		bitmap_from_u64(mask, stack_mask);
3064 		for_each_set_bit(i, mask, 64) {
3065 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
3066 				/* the sequence of instructions:
3067 				 * 2: (bf) r3 = r10
3068 				 * 3: (7b) *(u64 *)(r3 -8) = r0
3069 				 * 4: (79) r4 = *(u64 *)(r10 -8)
3070 				 * doesn't contain jmps. It's backtracked
3071 				 * as a single block.
3072 				 * During backtracking insn 3 is not recognized as
3073 				 * stack access, so at the end of backtracking
3074 				 * stack slot fp-8 is still marked in stack_mask.
3075 				 * However the parent state may not have accessed
3076 				 * fp-8 and it's "unallocated" stack space.
3077 				 * In such case fallback to conservative.
3078 				 */
3079 				mark_all_scalars_precise(env, st);
3080 				return 0;
3081 			}
3082 
3083 			if (!is_spilled_reg(&func->stack[i])) {
3084 				stack_mask &= ~(1ull << i);
3085 				continue;
3086 			}
3087 			reg = &func->stack[i].spilled_ptr;
3088 			if (reg->type != SCALAR_VALUE) {
3089 				stack_mask &= ~(1ull << i);
3090 				continue;
3091 			}
3092 			if (!reg->precise)
3093 				new_marks = true;
3094 			reg->precise = true;
3095 		}
3096 		if (env->log.level & BPF_LOG_LEVEL2) {
3097 			verbose(env, "parent %s regs=%x stack=%llx marks:",
3098 				new_marks ? "didn't have" : "already had",
3099 				reg_mask, stack_mask);
3100 			print_verifier_state(env, func, true);
3101 		}
3102 
3103 		if (!reg_mask && !stack_mask)
3104 			break;
3105 		if (!new_marks)
3106 			break;
3107 
3108 		last_idx = st->last_insn_idx;
3109 		first_idx = st->first_insn_idx;
3110 	}
3111 	return 0;
3112 }
3113 
3114 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
3115 {
3116 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
3117 }
3118 
3119 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
3120 {
3121 	return __mark_chain_precision(env, frame, regno, -1);
3122 }
3123 
3124 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
3125 {
3126 	return __mark_chain_precision(env, frame, -1, spi);
3127 }
3128 
3129 static bool is_spillable_regtype(enum bpf_reg_type type)
3130 {
3131 	switch (base_type(type)) {
3132 	case PTR_TO_MAP_VALUE:
3133 	case PTR_TO_STACK:
3134 	case PTR_TO_CTX:
3135 	case PTR_TO_PACKET:
3136 	case PTR_TO_PACKET_META:
3137 	case PTR_TO_PACKET_END:
3138 	case PTR_TO_FLOW_KEYS:
3139 	case CONST_PTR_TO_MAP:
3140 	case PTR_TO_SOCKET:
3141 	case PTR_TO_SOCK_COMMON:
3142 	case PTR_TO_TCP_SOCK:
3143 	case PTR_TO_XDP_SOCK:
3144 	case PTR_TO_BTF_ID:
3145 	case PTR_TO_BUF:
3146 	case PTR_TO_MEM:
3147 	case PTR_TO_FUNC:
3148 	case PTR_TO_MAP_KEY:
3149 		return true;
3150 	default:
3151 		return false;
3152 	}
3153 }
3154 
3155 /* Does this register contain a constant zero? */
3156 static bool register_is_null(struct bpf_reg_state *reg)
3157 {
3158 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3159 }
3160 
3161 static bool register_is_const(struct bpf_reg_state *reg)
3162 {
3163 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3164 }
3165 
3166 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3167 {
3168 	return tnum_is_unknown(reg->var_off) &&
3169 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3170 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3171 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3172 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3173 }
3174 
3175 static bool register_is_bounded(struct bpf_reg_state *reg)
3176 {
3177 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3178 }
3179 
3180 static bool __is_pointer_value(bool allow_ptr_leaks,
3181 			       const struct bpf_reg_state *reg)
3182 {
3183 	if (allow_ptr_leaks)
3184 		return false;
3185 
3186 	return reg->type != SCALAR_VALUE;
3187 }
3188 
3189 static void save_register_state(struct bpf_func_state *state,
3190 				int spi, struct bpf_reg_state *reg,
3191 				int size)
3192 {
3193 	int i;
3194 
3195 	state->stack[spi].spilled_ptr = *reg;
3196 	if (size == BPF_REG_SIZE)
3197 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3198 
3199 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3200 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3201 
3202 	/* size < 8 bytes spill */
3203 	for (; i; i--)
3204 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3205 }
3206 
3207 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3208  * stack boundary and alignment are checked in check_mem_access()
3209  */
3210 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3211 				       /* stack frame we're writing to */
3212 				       struct bpf_func_state *state,
3213 				       int off, int size, int value_regno,
3214 				       int insn_idx)
3215 {
3216 	struct bpf_func_state *cur; /* state of the current function */
3217 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3218 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3219 	struct bpf_reg_state *reg = NULL;
3220 
3221 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3222 	if (err)
3223 		return err;
3224 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3225 	 * so it's aligned access and [off, off + size) are within stack limits
3226 	 */
3227 	if (!env->allow_ptr_leaks &&
3228 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3229 	    size != BPF_REG_SIZE) {
3230 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3231 		return -EACCES;
3232 	}
3233 
3234 	cur = env->cur_state->frame[env->cur_state->curframe];
3235 	if (value_regno >= 0)
3236 		reg = &cur->regs[value_regno];
3237 	if (!env->bypass_spec_v4) {
3238 		bool sanitize = reg && is_spillable_regtype(reg->type);
3239 
3240 		for (i = 0; i < size; i++) {
3241 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3242 				sanitize = true;
3243 				break;
3244 			}
3245 		}
3246 
3247 		if (sanitize)
3248 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3249 	}
3250 
3251 	mark_stack_slot_scratched(env, spi);
3252 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3253 	    !register_is_null(reg) && env->bpf_capable) {
3254 		if (dst_reg != BPF_REG_FP) {
3255 			/* The backtracking logic can only recognize explicit
3256 			 * stack slot address like [fp - 8]. Other spill of
3257 			 * scalar via different register has to be conservative.
3258 			 * Backtrack from here and mark all registers as precise
3259 			 * that contributed into 'reg' being a constant.
3260 			 */
3261 			err = mark_chain_precision(env, value_regno);
3262 			if (err)
3263 				return err;
3264 		}
3265 		save_register_state(state, spi, reg, size);
3266 	} else if (reg && is_spillable_regtype(reg->type)) {
3267 		/* register containing pointer is being spilled into stack */
3268 		if (size != BPF_REG_SIZE) {
3269 			verbose_linfo(env, insn_idx, "; ");
3270 			verbose(env, "invalid size of register spill\n");
3271 			return -EACCES;
3272 		}
3273 		if (state != cur && reg->type == PTR_TO_STACK) {
3274 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3275 			return -EINVAL;
3276 		}
3277 		save_register_state(state, spi, reg, size);
3278 	} else {
3279 		u8 type = STACK_MISC;
3280 
3281 		/* regular write of data into stack destroys any spilled ptr */
3282 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3283 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3284 		if (is_spilled_reg(&state->stack[spi]))
3285 			for (i = 0; i < BPF_REG_SIZE; i++)
3286 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3287 
3288 		/* only mark the slot as written if all 8 bytes were written
3289 		 * otherwise read propagation may incorrectly stop too soon
3290 		 * when stack slots are partially written.
3291 		 * This heuristic means that read propagation will be
3292 		 * conservative, since it will add reg_live_read marks
3293 		 * to stack slots all the way to first state when programs
3294 		 * writes+reads less than 8 bytes
3295 		 */
3296 		if (size == BPF_REG_SIZE)
3297 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3298 
3299 		/* when we zero initialize stack slots mark them as such */
3300 		if (reg && register_is_null(reg)) {
3301 			/* backtracking doesn't work for STACK_ZERO yet. */
3302 			err = mark_chain_precision(env, value_regno);
3303 			if (err)
3304 				return err;
3305 			type = STACK_ZERO;
3306 		}
3307 
3308 		/* Mark slots affected by this stack write. */
3309 		for (i = 0; i < size; i++)
3310 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3311 				type;
3312 	}
3313 	return 0;
3314 }
3315 
3316 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3317  * known to contain a variable offset.
3318  * This function checks whether the write is permitted and conservatively
3319  * tracks the effects of the write, considering that each stack slot in the
3320  * dynamic range is potentially written to.
3321  *
3322  * 'off' includes 'regno->off'.
3323  * 'value_regno' can be -1, meaning that an unknown value is being written to
3324  * the stack.
3325  *
3326  * Spilled pointers in range are not marked as written because we don't know
3327  * what's going to be actually written. This means that read propagation for
3328  * future reads cannot be terminated by this write.
3329  *
3330  * For privileged programs, uninitialized stack slots are considered
3331  * initialized by this write (even though we don't know exactly what offsets
3332  * are going to be written to). The idea is that we don't want the verifier to
3333  * reject future reads that access slots written to through variable offsets.
3334  */
3335 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3336 				     /* func where register points to */
3337 				     struct bpf_func_state *state,
3338 				     int ptr_regno, int off, int size,
3339 				     int value_regno, int insn_idx)
3340 {
3341 	struct bpf_func_state *cur; /* state of the current function */
3342 	int min_off, max_off;
3343 	int i, err;
3344 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3345 	bool writing_zero = false;
3346 	/* set if the fact that we're writing a zero is used to let any
3347 	 * stack slots remain STACK_ZERO
3348 	 */
3349 	bool zero_used = false;
3350 
3351 	cur = env->cur_state->frame[env->cur_state->curframe];
3352 	ptr_reg = &cur->regs[ptr_regno];
3353 	min_off = ptr_reg->smin_value + off;
3354 	max_off = ptr_reg->smax_value + off + size;
3355 	if (value_regno >= 0)
3356 		value_reg = &cur->regs[value_regno];
3357 	if (value_reg && register_is_null(value_reg))
3358 		writing_zero = true;
3359 
3360 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3361 	if (err)
3362 		return err;
3363 
3364 
3365 	/* Variable offset writes destroy any spilled pointers in range. */
3366 	for (i = min_off; i < max_off; i++) {
3367 		u8 new_type, *stype;
3368 		int slot, spi;
3369 
3370 		slot = -i - 1;
3371 		spi = slot / BPF_REG_SIZE;
3372 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3373 		mark_stack_slot_scratched(env, spi);
3374 
3375 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3376 			/* Reject the write if range we may write to has not
3377 			 * been initialized beforehand. If we didn't reject
3378 			 * here, the ptr status would be erased below (even
3379 			 * though not all slots are actually overwritten),
3380 			 * possibly opening the door to leaks.
3381 			 *
3382 			 * We do however catch STACK_INVALID case below, and
3383 			 * only allow reading possibly uninitialized memory
3384 			 * later for CAP_PERFMON, as the write may not happen to
3385 			 * that slot.
3386 			 */
3387 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3388 				insn_idx, i);
3389 			return -EINVAL;
3390 		}
3391 
3392 		/* Erase all spilled pointers. */
3393 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3394 
3395 		/* Update the slot type. */
3396 		new_type = STACK_MISC;
3397 		if (writing_zero && *stype == STACK_ZERO) {
3398 			new_type = STACK_ZERO;
3399 			zero_used = true;
3400 		}
3401 		/* If the slot is STACK_INVALID, we check whether it's OK to
3402 		 * pretend that it will be initialized by this write. The slot
3403 		 * might not actually be written to, and so if we mark it as
3404 		 * initialized future reads might leak uninitialized memory.
3405 		 * For privileged programs, we will accept such reads to slots
3406 		 * that may or may not be written because, if we're reject
3407 		 * them, the error would be too confusing.
3408 		 */
3409 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3410 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3411 					insn_idx, i);
3412 			return -EINVAL;
3413 		}
3414 		*stype = new_type;
3415 	}
3416 	if (zero_used) {
3417 		/* backtracking doesn't work for STACK_ZERO yet. */
3418 		err = mark_chain_precision(env, value_regno);
3419 		if (err)
3420 			return err;
3421 	}
3422 	return 0;
3423 }
3424 
3425 /* When register 'dst_regno' is assigned some values from stack[min_off,
3426  * max_off), we set the register's type according to the types of the
3427  * respective stack slots. If all the stack values are known to be zeros, then
3428  * so is the destination reg. Otherwise, the register is considered to be
3429  * SCALAR. This function does not deal with register filling; the caller must
3430  * ensure that all spilled registers in the stack range have been marked as
3431  * read.
3432  */
3433 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3434 				/* func where src register points to */
3435 				struct bpf_func_state *ptr_state,
3436 				int min_off, int max_off, int dst_regno)
3437 {
3438 	struct bpf_verifier_state *vstate = env->cur_state;
3439 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3440 	int i, slot, spi;
3441 	u8 *stype;
3442 	int zeros = 0;
3443 
3444 	for (i = min_off; i < max_off; i++) {
3445 		slot = -i - 1;
3446 		spi = slot / BPF_REG_SIZE;
3447 		stype = ptr_state->stack[spi].slot_type;
3448 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3449 			break;
3450 		zeros++;
3451 	}
3452 	if (zeros == max_off - min_off) {
3453 		/* any access_size read into register is zero extended,
3454 		 * so the whole register == const_zero
3455 		 */
3456 		__mark_reg_const_zero(&state->regs[dst_regno]);
3457 		/* backtracking doesn't support STACK_ZERO yet,
3458 		 * so mark it precise here, so that later
3459 		 * backtracking can stop here.
3460 		 * Backtracking may not need this if this register
3461 		 * doesn't participate in pointer adjustment.
3462 		 * Forward propagation of precise flag is not
3463 		 * necessary either. This mark is only to stop
3464 		 * backtracking. Any register that contributed
3465 		 * to const 0 was marked precise before spill.
3466 		 */
3467 		state->regs[dst_regno].precise = true;
3468 	} else {
3469 		/* have read misc data from the stack */
3470 		mark_reg_unknown(env, state->regs, dst_regno);
3471 	}
3472 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3473 }
3474 
3475 /* Read the stack at 'off' and put the results into the register indicated by
3476  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3477  * spilled reg.
3478  *
3479  * 'dst_regno' can be -1, meaning that the read value is not going to a
3480  * register.
3481  *
3482  * The access is assumed to be within the current stack bounds.
3483  */
3484 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3485 				      /* func where src register points to */
3486 				      struct bpf_func_state *reg_state,
3487 				      int off, int size, int dst_regno)
3488 {
3489 	struct bpf_verifier_state *vstate = env->cur_state;
3490 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3491 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3492 	struct bpf_reg_state *reg;
3493 	u8 *stype, type;
3494 
3495 	stype = reg_state->stack[spi].slot_type;
3496 	reg = &reg_state->stack[spi].spilled_ptr;
3497 
3498 	if (is_spilled_reg(&reg_state->stack[spi])) {
3499 		u8 spill_size = 1;
3500 
3501 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3502 			spill_size++;
3503 
3504 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3505 			if (reg->type != SCALAR_VALUE) {
3506 				verbose_linfo(env, env->insn_idx, "; ");
3507 				verbose(env, "invalid size of register fill\n");
3508 				return -EACCES;
3509 			}
3510 
3511 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3512 			if (dst_regno < 0)
3513 				return 0;
3514 
3515 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3516 				/* The earlier check_reg_arg() has decided the
3517 				 * subreg_def for this insn.  Save it first.
3518 				 */
3519 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3520 
3521 				state->regs[dst_regno] = *reg;
3522 				state->regs[dst_regno].subreg_def = subreg_def;
3523 			} else {
3524 				for (i = 0; i < size; i++) {
3525 					type = stype[(slot - i) % BPF_REG_SIZE];
3526 					if (type == STACK_SPILL)
3527 						continue;
3528 					if (type == STACK_MISC)
3529 						continue;
3530 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3531 						off, i, size);
3532 					return -EACCES;
3533 				}
3534 				mark_reg_unknown(env, state->regs, dst_regno);
3535 			}
3536 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3537 			return 0;
3538 		}
3539 
3540 		if (dst_regno >= 0) {
3541 			/* restore register state from stack */
3542 			state->regs[dst_regno] = *reg;
3543 			/* mark reg as written since spilled pointer state likely
3544 			 * has its liveness marks cleared by is_state_visited()
3545 			 * which resets stack/reg liveness for state transitions
3546 			 */
3547 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3548 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3549 			/* If dst_regno==-1, the caller is asking us whether
3550 			 * it is acceptable to use this value as a SCALAR_VALUE
3551 			 * (e.g. for XADD).
3552 			 * We must not allow unprivileged callers to do that
3553 			 * with spilled pointers.
3554 			 */
3555 			verbose(env, "leaking pointer from stack off %d\n",
3556 				off);
3557 			return -EACCES;
3558 		}
3559 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3560 	} else {
3561 		for (i = 0; i < size; i++) {
3562 			type = stype[(slot - i) % BPF_REG_SIZE];
3563 			if (type == STACK_MISC)
3564 				continue;
3565 			if (type == STACK_ZERO)
3566 				continue;
3567 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3568 				off, i, size);
3569 			return -EACCES;
3570 		}
3571 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3572 		if (dst_regno >= 0)
3573 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3574 	}
3575 	return 0;
3576 }
3577 
3578 enum bpf_access_src {
3579 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3580 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3581 };
3582 
3583 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3584 					 int regno, int off, int access_size,
3585 					 bool zero_size_allowed,
3586 					 enum bpf_access_src type,
3587 					 struct bpf_call_arg_meta *meta);
3588 
3589 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3590 {
3591 	return cur_regs(env) + regno;
3592 }
3593 
3594 /* Read the stack at 'ptr_regno + off' and put the result into the register
3595  * 'dst_regno'.
3596  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3597  * but not its variable offset.
3598  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3599  *
3600  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3601  * filling registers (i.e. reads of spilled register cannot be detected when
3602  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3603  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3604  * offset; for a fixed offset check_stack_read_fixed_off should be used
3605  * instead.
3606  */
3607 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3608 				    int ptr_regno, int off, int size, int dst_regno)
3609 {
3610 	/* The state of the source register. */
3611 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3612 	struct bpf_func_state *ptr_state = func(env, reg);
3613 	int err;
3614 	int min_off, max_off;
3615 
3616 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3617 	 */
3618 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3619 					    false, ACCESS_DIRECT, NULL);
3620 	if (err)
3621 		return err;
3622 
3623 	min_off = reg->smin_value + off;
3624 	max_off = reg->smax_value + off;
3625 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3626 	return 0;
3627 }
3628 
3629 /* check_stack_read dispatches to check_stack_read_fixed_off or
3630  * check_stack_read_var_off.
3631  *
3632  * The caller must ensure that the offset falls within the allocated stack
3633  * bounds.
3634  *
3635  * 'dst_regno' is a register which will receive the value from the stack. It
3636  * can be -1, meaning that the read value is not going to a register.
3637  */
3638 static int check_stack_read(struct bpf_verifier_env *env,
3639 			    int ptr_regno, int off, int size,
3640 			    int dst_regno)
3641 {
3642 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3643 	struct bpf_func_state *state = func(env, reg);
3644 	int err;
3645 	/* Some accesses are only permitted with a static offset. */
3646 	bool var_off = !tnum_is_const(reg->var_off);
3647 
3648 	/* The offset is required to be static when reads don't go to a
3649 	 * register, in order to not leak pointers (see
3650 	 * check_stack_read_fixed_off).
3651 	 */
3652 	if (dst_regno < 0 && var_off) {
3653 		char tn_buf[48];
3654 
3655 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3656 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3657 			tn_buf, off, size);
3658 		return -EACCES;
3659 	}
3660 	/* Variable offset is prohibited for unprivileged mode for simplicity
3661 	 * since it requires corresponding support in Spectre masking for stack
3662 	 * ALU. See also retrieve_ptr_limit().
3663 	 */
3664 	if (!env->bypass_spec_v1 && var_off) {
3665 		char tn_buf[48];
3666 
3667 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3668 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3669 				ptr_regno, tn_buf);
3670 		return -EACCES;
3671 	}
3672 
3673 	if (!var_off) {
3674 		off += reg->var_off.value;
3675 		err = check_stack_read_fixed_off(env, state, off, size,
3676 						 dst_regno);
3677 	} else {
3678 		/* Variable offset stack reads need more conservative handling
3679 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3680 		 * branch.
3681 		 */
3682 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3683 					       dst_regno);
3684 	}
3685 	return err;
3686 }
3687 
3688 
3689 /* check_stack_write dispatches to check_stack_write_fixed_off or
3690  * check_stack_write_var_off.
3691  *
3692  * 'ptr_regno' is the register used as a pointer into the stack.
3693  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3694  * 'value_regno' is the register whose value we're writing to the stack. It can
3695  * be -1, meaning that we're not writing from a register.
3696  *
3697  * The caller must ensure that the offset falls within the maximum stack size.
3698  */
3699 static int check_stack_write(struct bpf_verifier_env *env,
3700 			     int ptr_regno, int off, int size,
3701 			     int value_regno, int insn_idx)
3702 {
3703 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3704 	struct bpf_func_state *state = func(env, reg);
3705 	int err;
3706 
3707 	if (tnum_is_const(reg->var_off)) {
3708 		off += reg->var_off.value;
3709 		err = check_stack_write_fixed_off(env, state, off, size,
3710 						  value_regno, insn_idx);
3711 	} else {
3712 		/* Variable offset stack reads need more conservative handling
3713 		 * than fixed offset ones.
3714 		 */
3715 		err = check_stack_write_var_off(env, state,
3716 						ptr_regno, off, size,
3717 						value_regno, insn_idx);
3718 	}
3719 	return err;
3720 }
3721 
3722 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3723 				 int off, int size, enum bpf_access_type type)
3724 {
3725 	struct bpf_reg_state *regs = cur_regs(env);
3726 	struct bpf_map *map = regs[regno].map_ptr;
3727 	u32 cap = bpf_map_flags_to_cap(map);
3728 
3729 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3730 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3731 			map->value_size, off, size);
3732 		return -EACCES;
3733 	}
3734 
3735 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3736 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3737 			map->value_size, off, size);
3738 		return -EACCES;
3739 	}
3740 
3741 	return 0;
3742 }
3743 
3744 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3745 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3746 			      int off, int size, u32 mem_size,
3747 			      bool zero_size_allowed)
3748 {
3749 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3750 	struct bpf_reg_state *reg;
3751 
3752 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3753 		return 0;
3754 
3755 	reg = &cur_regs(env)[regno];
3756 	switch (reg->type) {
3757 	case PTR_TO_MAP_KEY:
3758 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3759 			mem_size, off, size);
3760 		break;
3761 	case PTR_TO_MAP_VALUE:
3762 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3763 			mem_size, off, size);
3764 		break;
3765 	case PTR_TO_PACKET:
3766 	case PTR_TO_PACKET_META:
3767 	case PTR_TO_PACKET_END:
3768 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3769 			off, size, regno, reg->id, off, mem_size);
3770 		break;
3771 	case PTR_TO_MEM:
3772 	default:
3773 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3774 			mem_size, off, size);
3775 	}
3776 
3777 	return -EACCES;
3778 }
3779 
3780 /* check read/write into a memory region with possible variable offset */
3781 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3782 				   int off, int size, u32 mem_size,
3783 				   bool zero_size_allowed)
3784 {
3785 	struct bpf_verifier_state *vstate = env->cur_state;
3786 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3787 	struct bpf_reg_state *reg = &state->regs[regno];
3788 	int err;
3789 
3790 	/* We may have adjusted the register pointing to memory region, so we
3791 	 * need to try adding each of min_value and max_value to off
3792 	 * to make sure our theoretical access will be safe.
3793 	 *
3794 	 * The minimum value is only important with signed
3795 	 * comparisons where we can't assume the floor of a
3796 	 * value is 0.  If we are using signed variables for our
3797 	 * index'es we need to make sure that whatever we use
3798 	 * will have a set floor within our range.
3799 	 */
3800 	if (reg->smin_value < 0 &&
3801 	    (reg->smin_value == S64_MIN ||
3802 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3803 	      reg->smin_value + off < 0)) {
3804 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3805 			regno);
3806 		return -EACCES;
3807 	}
3808 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3809 				 mem_size, zero_size_allowed);
3810 	if (err) {
3811 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3812 			regno);
3813 		return err;
3814 	}
3815 
3816 	/* If we haven't set a max value then we need to bail since we can't be
3817 	 * sure we won't do bad things.
3818 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3819 	 */
3820 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3821 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3822 			regno);
3823 		return -EACCES;
3824 	}
3825 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3826 				 mem_size, zero_size_allowed);
3827 	if (err) {
3828 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3829 			regno);
3830 		return err;
3831 	}
3832 
3833 	return 0;
3834 }
3835 
3836 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3837 			       const struct bpf_reg_state *reg, int regno,
3838 			       bool fixed_off_ok)
3839 {
3840 	/* Access to this pointer-typed register or passing it to a helper
3841 	 * is only allowed in its original, unmodified form.
3842 	 */
3843 
3844 	if (reg->off < 0) {
3845 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3846 			reg_type_str(env, reg->type), regno, reg->off);
3847 		return -EACCES;
3848 	}
3849 
3850 	if (!fixed_off_ok && reg->off) {
3851 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3852 			reg_type_str(env, reg->type), regno, reg->off);
3853 		return -EACCES;
3854 	}
3855 
3856 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3857 		char tn_buf[48];
3858 
3859 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3860 		verbose(env, "variable %s access var_off=%s disallowed\n",
3861 			reg_type_str(env, reg->type), tn_buf);
3862 		return -EACCES;
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 int check_ptr_off_reg(struct bpf_verifier_env *env,
3869 		      const struct bpf_reg_state *reg, int regno)
3870 {
3871 	return __check_ptr_off_reg(env, reg, regno, false);
3872 }
3873 
3874 static int map_kptr_match_type(struct bpf_verifier_env *env,
3875 			       struct btf_field *kptr_field,
3876 			       struct bpf_reg_state *reg, u32 regno)
3877 {
3878 	const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
3879 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED;
3880 	const char *reg_name = "";
3881 
3882 	/* Only unreferenced case accepts untrusted pointers */
3883 	if (kptr_field->type == BPF_KPTR_UNREF)
3884 		perm_flags |= PTR_UNTRUSTED;
3885 
3886 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3887 		goto bad_type;
3888 
3889 	if (!btf_is_kernel(reg->btf)) {
3890 		verbose(env, "R%d must point to kernel BTF\n", regno);
3891 		return -EINVAL;
3892 	}
3893 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3894 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3895 
3896 	/* For ref_ptr case, release function check should ensure we get one
3897 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3898 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3899 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3900 	 * reg->off and reg->ref_obj_id are not needed here.
3901 	 */
3902 	if (__check_ptr_off_reg(env, reg, regno, true))
3903 		return -EACCES;
3904 
3905 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3906 	 * we also need to take into account the reg->off.
3907 	 *
3908 	 * We want to support cases like:
3909 	 *
3910 	 * struct foo {
3911 	 *         struct bar br;
3912 	 *         struct baz bz;
3913 	 * };
3914 	 *
3915 	 * struct foo *v;
3916 	 * v = func();	      // PTR_TO_BTF_ID
3917 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3918 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3919 	 *                    // first member type of struct after comparison fails
3920 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3921 	 *                    // to match type
3922 	 *
3923 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3924 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3925 	 * the struct to match type against first member of struct, i.e. reject
3926 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3927 	 * strict mode to true for type match.
3928 	 */
3929 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3930 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
3931 				  kptr_field->type == BPF_KPTR_REF))
3932 		goto bad_type;
3933 	return 0;
3934 bad_type:
3935 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3936 		reg_type_str(env, reg->type), reg_name);
3937 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3938 	if (kptr_field->type == BPF_KPTR_UNREF)
3939 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3940 			targ_name);
3941 	else
3942 		verbose(env, "\n");
3943 	return -EINVAL;
3944 }
3945 
3946 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3947 				 int value_regno, int insn_idx,
3948 				 struct btf_field *kptr_field)
3949 {
3950 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3951 	int class = BPF_CLASS(insn->code);
3952 	struct bpf_reg_state *val_reg;
3953 
3954 	/* Things we already checked for in check_map_access and caller:
3955 	 *  - Reject cases where variable offset may touch kptr
3956 	 *  - size of access (must be BPF_DW)
3957 	 *  - tnum_is_const(reg->var_off)
3958 	 *  - kptr_field->offset == off + reg->var_off.value
3959 	 */
3960 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3961 	if (BPF_MODE(insn->code) != BPF_MEM) {
3962 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3963 		return -EACCES;
3964 	}
3965 
3966 	/* We only allow loading referenced kptr, since it will be marked as
3967 	 * untrusted, similar to unreferenced kptr.
3968 	 */
3969 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
3970 		verbose(env, "store to referenced kptr disallowed\n");
3971 		return -EACCES;
3972 	}
3973 
3974 	if (class == BPF_LDX) {
3975 		val_reg = reg_state(env, value_regno);
3976 		/* We can simply mark the value_regno receiving the pointer
3977 		 * value from map as PTR_TO_BTF_ID, with the correct type.
3978 		 */
3979 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
3980 				kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
3981 		/* For mark_ptr_or_null_reg */
3982 		val_reg->id = ++env->id_gen;
3983 	} else if (class == BPF_STX) {
3984 		val_reg = reg_state(env, value_regno);
3985 		if (!register_is_null(val_reg) &&
3986 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
3987 			return -EACCES;
3988 	} else if (class == BPF_ST) {
3989 		if (insn->imm) {
3990 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
3991 				kptr_field->offset);
3992 			return -EACCES;
3993 		}
3994 	} else {
3995 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3996 		return -EACCES;
3997 	}
3998 	return 0;
3999 }
4000 
4001 /* check read/write into a map element with possible variable offset */
4002 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
4003 			    int off, int size, bool zero_size_allowed,
4004 			    enum bpf_access_src src)
4005 {
4006 	struct bpf_verifier_state *vstate = env->cur_state;
4007 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4008 	struct bpf_reg_state *reg = &state->regs[regno];
4009 	struct bpf_map *map = reg->map_ptr;
4010 	struct btf_record *rec;
4011 	int err, i;
4012 
4013 	err = check_mem_region_access(env, regno, off, size, map->value_size,
4014 				      zero_size_allowed);
4015 	if (err)
4016 		return err;
4017 
4018 	if (IS_ERR_OR_NULL(map->record))
4019 		return 0;
4020 	rec = map->record;
4021 	for (i = 0; i < rec->cnt; i++) {
4022 		struct btf_field *field = &rec->fields[i];
4023 		u32 p = field->offset;
4024 
4025 		/* If any part of a field  can be touched by load/store, reject
4026 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
4027 		 * it is sufficient to check x1 < y2 && y1 < x2.
4028 		 */
4029 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4030 		    p < reg->umax_value + off + size) {
4031 			switch (field->type) {
4032 			case BPF_KPTR_UNREF:
4033 			case BPF_KPTR_REF:
4034 				if (src != ACCESS_DIRECT) {
4035 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
4036 					return -EACCES;
4037 				}
4038 				if (!tnum_is_const(reg->var_off)) {
4039 					verbose(env, "kptr access cannot have variable offset\n");
4040 					return -EACCES;
4041 				}
4042 				if (p != off + reg->var_off.value) {
4043 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4044 						p, off + reg->var_off.value);
4045 					return -EACCES;
4046 				}
4047 				if (size != bpf_size_to_bytes(BPF_DW)) {
4048 					verbose(env, "kptr access size must be BPF_DW\n");
4049 					return -EACCES;
4050 				}
4051 				break;
4052 			default:
4053 				verbose(env, "%s cannot be accessed directly by load/store\n",
4054 					btf_field_type_name(field->type));
4055 				return -EACCES;
4056 			}
4057 		}
4058 	}
4059 	return 0;
4060 }
4061 
4062 #define MAX_PACKET_OFF 0xffff
4063 
4064 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
4065 				       const struct bpf_call_arg_meta *meta,
4066 				       enum bpf_access_type t)
4067 {
4068 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4069 
4070 	switch (prog_type) {
4071 	/* Program types only with direct read access go here! */
4072 	case BPF_PROG_TYPE_LWT_IN:
4073 	case BPF_PROG_TYPE_LWT_OUT:
4074 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
4075 	case BPF_PROG_TYPE_SK_REUSEPORT:
4076 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4077 	case BPF_PROG_TYPE_CGROUP_SKB:
4078 		if (t == BPF_WRITE)
4079 			return false;
4080 		fallthrough;
4081 
4082 	/* Program types with direct read + write access go here! */
4083 	case BPF_PROG_TYPE_SCHED_CLS:
4084 	case BPF_PROG_TYPE_SCHED_ACT:
4085 	case BPF_PROG_TYPE_XDP:
4086 	case BPF_PROG_TYPE_LWT_XMIT:
4087 	case BPF_PROG_TYPE_SK_SKB:
4088 	case BPF_PROG_TYPE_SK_MSG:
4089 		if (meta)
4090 			return meta->pkt_access;
4091 
4092 		env->seen_direct_write = true;
4093 		return true;
4094 
4095 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4096 		if (t == BPF_WRITE)
4097 			env->seen_direct_write = true;
4098 
4099 		return true;
4100 
4101 	default:
4102 		return false;
4103 	}
4104 }
4105 
4106 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
4107 			       int size, bool zero_size_allowed)
4108 {
4109 	struct bpf_reg_state *regs = cur_regs(env);
4110 	struct bpf_reg_state *reg = &regs[regno];
4111 	int err;
4112 
4113 	/* We may have added a variable offset to the packet pointer; but any
4114 	 * reg->range we have comes after that.  We are only checking the fixed
4115 	 * offset.
4116 	 */
4117 
4118 	/* We don't allow negative numbers, because we aren't tracking enough
4119 	 * detail to prove they're safe.
4120 	 */
4121 	if (reg->smin_value < 0) {
4122 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4123 			regno);
4124 		return -EACCES;
4125 	}
4126 
4127 	err = reg->range < 0 ? -EINVAL :
4128 	      __check_mem_access(env, regno, off, size, reg->range,
4129 				 zero_size_allowed);
4130 	if (err) {
4131 		verbose(env, "R%d offset is outside of the packet\n", regno);
4132 		return err;
4133 	}
4134 
4135 	/* __check_mem_access has made sure "off + size - 1" is within u16.
4136 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4137 	 * otherwise find_good_pkt_pointers would have refused to set range info
4138 	 * that __check_mem_access would have rejected this pkt access.
4139 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4140 	 */
4141 	env->prog->aux->max_pkt_offset =
4142 		max_t(u32, env->prog->aux->max_pkt_offset,
4143 		      off + reg->umax_value + size - 1);
4144 
4145 	return err;
4146 }
4147 
4148 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
4149 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
4150 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
4151 			    struct btf **btf, u32 *btf_id)
4152 {
4153 	struct bpf_insn_access_aux info = {
4154 		.reg_type = *reg_type,
4155 		.log = &env->log,
4156 	};
4157 
4158 	if (env->ops->is_valid_access &&
4159 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
4160 		/* A non zero info.ctx_field_size indicates that this field is a
4161 		 * candidate for later verifier transformation to load the whole
4162 		 * field and then apply a mask when accessed with a narrower
4163 		 * access than actual ctx access size. A zero info.ctx_field_size
4164 		 * will only allow for whole field access and rejects any other
4165 		 * type of narrower access.
4166 		 */
4167 		*reg_type = info.reg_type;
4168 
4169 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4170 			*btf = info.btf;
4171 			*btf_id = info.btf_id;
4172 		} else {
4173 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4174 		}
4175 		/* remember the offset of last byte accessed in ctx */
4176 		if (env->prog->aux->max_ctx_offset < off + size)
4177 			env->prog->aux->max_ctx_offset = off + size;
4178 		return 0;
4179 	}
4180 
4181 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4182 	return -EACCES;
4183 }
4184 
4185 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4186 				  int size)
4187 {
4188 	if (size < 0 || off < 0 ||
4189 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4190 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4191 			off, size);
4192 		return -EACCES;
4193 	}
4194 	return 0;
4195 }
4196 
4197 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4198 			     u32 regno, int off, int size,
4199 			     enum bpf_access_type t)
4200 {
4201 	struct bpf_reg_state *regs = cur_regs(env);
4202 	struct bpf_reg_state *reg = &regs[regno];
4203 	struct bpf_insn_access_aux info = {};
4204 	bool valid;
4205 
4206 	if (reg->smin_value < 0) {
4207 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4208 			regno);
4209 		return -EACCES;
4210 	}
4211 
4212 	switch (reg->type) {
4213 	case PTR_TO_SOCK_COMMON:
4214 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4215 		break;
4216 	case PTR_TO_SOCKET:
4217 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4218 		break;
4219 	case PTR_TO_TCP_SOCK:
4220 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4221 		break;
4222 	case PTR_TO_XDP_SOCK:
4223 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4224 		break;
4225 	default:
4226 		valid = false;
4227 	}
4228 
4229 
4230 	if (valid) {
4231 		env->insn_aux_data[insn_idx].ctx_field_size =
4232 			info.ctx_field_size;
4233 		return 0;
4234 	}
4235 
4236 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4237 		regno, reg_type_str(env, reg->type), off, size);
4238 
4239 	return -EACCES;
4240 }
4241 
4242 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4243 {
4244 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4245 }
4246 
4247 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4248 {
4249 	const struct bpf_reg_state *reg = reg_state(env, regno);
4250 
4251 	return reg->type == PTR_TO_CTX;
4252 }
4253 
4254 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4255 {
4256 	const struct bpf_reg_state *reg = reg_state(env, regno);
4257 
4258 	return type_is_sk_pointer(reg->type);
4259 }
4260 
4261 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4262 {
4263 	const struct bpf_reg_state *reg = reg_state(env, regno);
4264 
4265 	return type_is_pkt_pointer(reg->type);
4266 }
4267 
4268 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4269 {
4270 	const struct bpf_reg_state *reg = reg_state(env, regno);
4271 
4272 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4273 	return reg->type == PTR_TO_FLOW_KEYS;
4274 }
4275 
4276 static bool is_trusted_reg(const struct bpf_reg_state *reg)
4277 {
4278 	/* A referenced register is always trusted. */
4279 	if (reg->ref_obj_id)
4280 		return true;
4281 
4282 	/* If a register is not referenced, it is trusted if it has the
4283 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
4284 	 * other type modifiers may be safe, but we elect to take an opt-in
4285 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4286 	 * not.
4287 	 *
4288 	 * Eventually, we should make PTR_TRUSTED the single source of truth
4289 	 * for whether a register is trusted.
4290 	 */
4291 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4292 	       !bpf_type_has_unsafe_modifiers(reg->type);
4293 }
4294 
4295 static bool is_rcu_reg(const struct bpf_reg_state *reg)
4296 {
4297 	return reg->type & MEM_RCU;
4298 }
4299 
4300 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4301 				   const struct bpf_reg_state *reg,
4302 				   int off, int size, bool strict)
4303 {
4304 	struct tnum reg_off;
4305 	int ip_align;
4306 
4307 	/* Byte size accesses are always allowed. */
4308 	if (!strict || size == 1)
4309 		return 0;
4310 
4311 	/* For platforms that do not have a Kconfig enabling
4312 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4313 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4314 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4315 	 * to this code only in strict mode where we want to emulate
4316 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4317 	 * unconditional IP align value of '2'.
4318 	 */
4319 	ip_align = 2;
4320 
4321 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4322 	if (!tnum_is_aligned(reg_off, size)) {
4323 		char tn_buf[48];
4324 
4325 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4326 		verbose(env,
4327 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4328 			ip_align, tn_buf, reg->off, off, size);
4329 		return -EACCES;
4330 	}
4331 
4332 	return 0;
4333 }
4334 
4335 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4336 				       const struct bpf_reg_state *reg,
4337 				       const char *pointer_desc,
4338 				       int off, int size, bool strict)
4339 {
4340 	struct tnum reg_off;
4341 
4342 	/* Byte size accesses are always allowed. */
4343 	if (!strict || size == 1)
4344 		return 0;
4345 
4346 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4347 	if (!tnum_is_aligned(reg_off, size)) {
4348 		char tn_buf[48];
4349 
4350 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4351 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4352 			pointer_desc, tn_buf, reg->off, off, size);
4353 		return -EACCES;
4354 	}
4355 
4356 	return 0;
4357 }
4358 
4359 static int check_ptr_alignment(struct bpf_verifier_env *env,
4360 			       const struct bpf_reg_state *reg, int off,
4361 			       int size, bool strict_alignment_once)
4362 {
4363 	bool strict = env->strict_alignment || strict_alignment_once;
4364 	const char *pointer_desc = "";
4365 
4366 	switch (reg->type) {
4367 	case PTR_TO_PACKET:
4368 	case PTR_TO_PACKET_META:
4369 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4370 		 * right in front, treat it the very same way.
4371 		 */
4372 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4373 	case PTR_TO_FLOW_KEYS:
4374 		pointer_desc = "flow keys ";
4375 		break;
4376 	case PTR_TO_MAP_KEY:
4377 		pointer_desc = "key ";
4378 		break;
4379 	case PTR_TO_MAP_VALUE:
4380 		pointer_desc = "value ";
4381 		break;
4382 	case PTR_TO_CTX:
4383 		pointer_desc = "context ";
4384 		break;
4385 	case PTR_TO_STACK:
4386 		pointer_desc = "stack ";
4387 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4388 		 * and check_stack_read_fixed_off() relies on stack accesses being
4389 		 * aligned.
4390 		 */
4391 		strict = true;
4392 		break;
4393 	case PTR_TO_SOCKET:
4394 		pointer_desc = "sock ";
4395 		break;
4396 	case PTR_TO_SOCK_COMMON:
4397 		pointer_desc = "sock_common ";
4398 		break;
4399 	case PTR_TO_TCP_SOCK:
4400 		pointer_desc = "tcp_sock ";
4401 		break;
4402 	case PTR_TO_XDP_SOCK:
4403 		pointer_desc = "xdp_sock ";
4404 		break;
4405 	default:
4406 		break;
4407 	}
4408 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4409 					   strict);
4410 }
4411 
4412 static int update_stack_depth(struct bpf_verifier_env *env,
4413 			      const struct bpf_func_state *func,
4414 			      int off)
4415 {
4416 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4417 
4418 	if (stack >= -off)
4419 		return 0;
4420 
4421 	/* update known max for given subprogram */
4422 	env->subprog_info[func->subprogno].stack_depth = -off;
4423 	return 0;
4424 }
4425 
4426 /* starting from main bpf function walk all instructions of the function
4427  * and recursively walk all callees that given function can call.
4428  * Ignore jump and exit insns.
4429  * Since recursion is prevented by check_cfg() this algorithm
4430  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4431  */
4432 static int check_max_stack_depth(struct bpf_verifier_env *env)
4433 {
4434 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4435 	struct bpf_subprog_info *subprog = env->subprog_info;
4436 	struct bpf_insn *insn = env->prog->insnsi;
4437 	bool tail_call_reachable = false;
4438 	int ret_insn[MAX_CALL_FRAMES];
4439 	int ret_prog[MAX_CALL_FRAMES];
4440 	int j;
4441 
4442 process_func:
4443 	/* protect against potential stack overflow that might happen when
4444 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4445 	 * depth for such case down to 256 so that the worst case scenario
4446 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4447 	 * 8k).
4448 	 *
4449 	 * To get the idea what might happen, see an example:
4450 	 * func1 -> sub rsp, 128
4451 	 *  subfunc1 -> sub rsp, 256
4452 	 *  tailcall1 -> add rsp, 256
4453 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4454 	 *   subfunc2 -> sub rsp, 64
4455 	 *   subfunc22 -> sub rsp, 128
4456 	 *   tailcall2 -> add rsp, 128
4457 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4458 	 *
4459 	 * tailcall will unwind the current stack frame but it will not get rid
4460 	 * of caller's stack as shown on the example above.
4461 	 */
4462 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4463 		verbose(env,
4464 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4465 			depth);
4466 		return -EACCES;
4467 	}
4468 	/* round up to 32-bytes, since this is granularity
4469 	 * of interpreter stack size
4470 	 */
4471 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4472 	if (depth > MAX_BPF_STACK) {
4473 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4474 			frame + 1, depth);
4475 		return -EACCES;
4476 	}
4477 continue_func:
4478 	subprog_end = subprog[idx + 1].start;
4479 	for (; i < subprog_end; i++) {
4480 		int next_insn;
4481 
4482 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4483 			continue;
4484 		/* remember insn and function to return to */
4485 		ret_insn[frame] = i + 1;
4486 		ret_prog[frame] = idx;
4487 
4488 		/* find the callee */
4489 		next_insn = i + insn[i].imm + 1;
4490 		idx = find_subprog(env, next_insn);
4491 		if (idx < 0) {
4492 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4493 				  next_insn);
4494 			return -EFAULT;
4495 		}
4496 		if (subprog[idx].is_async_cb) {
4497 			if (subprog[idx].has_tail_call) {
4498 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4499 				return -EFAULT;
4500 			}
4501 			 /* async callbacks don't increase bpf prog stack size */
4502 			continue;
4503 		}
4504 		i = next_insn;
4505 
4506 		if (subprog[idx].has_tail_call)
4507 			tail_call_reachable = true;
4508 
4509 		frame++;
4510 		if (frame >= MAX_CALL_FRAMES) {
4511 			verbose(env, "the call stack of %d frames is too deep !\n",
4512 				frame);
4513 			return -E2BIG;
4514 		}
4515 		goto process_func;
4516 	}
4517 	/* if tail call got detected across bpf2bpf calls then mark each of the
4518 	 * currently present subprog frames as tail call reachable subprogs;
4519 	 * this info will be utilized by JIT so that we will be preserving the
4520 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4521 	 */
4522 	if (tail_call_reachable)
4523 		for (j = 0; j < frame; j++)
4524 			subprog[ret_prog[j]].tail_call_reachable = true;
4525 	if (subprog[0].tail_call_reachable)
4526 		env->prog->aux->tail_call_reachable = true;
4527 
4528 	/* end of for() loop means the last insn of the 'subprog'
4529 	 * was reached. Doesn't matter whether it was JA or EXIT
4530 	 */
4531 	if (frame == 0)
4532 		return 0;
4533 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4534 	frame--;
4535 	i = ret_insn[frame];
4536 	idx = ret_prog[frame];
4537 	goto continue_func;
4538 }
4539 
4540 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4541 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4542 				  const struct bpf_insn *insn, int idx)
4543 {
4544 	int start = idx + insn->imm + 1, subprog;
4545 
4546 	subprog = find_subprog(env, start);
4547 	if (subprog < 0) {
4548 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4549 			  start);
4550 		return -EFAULT;
4551 	}
4552 	return env->subprog_info[subprog].stack_depth;
4553 }
4554 #endif
4555 
4556 static int __check_buffer_access(struct bpf_verifier_env *env,
4557 				 const char *buf_info,
4558 				 const struct bpf_reg_state *reg,
4559 				 int regno, int off, int size)
4560 {
4561 	if (off < 0) {
4562 		verbose(env,
4563 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4564 			regno, buf_info, off, size);
4565 		return -EACCES;
4566 	}
4567 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4568 		char tn_buf[48];
4569 
4570 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4571 		verbose(env,
4572 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4573 			regno, off, tn_buf);
4574 		return -EACCES;
4575 	}
4576 
4577 	return 0;
4578 }
4579 
4580 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4581 				  const struct bpf_reg_state *reg,
4582 				  int regno, int off, int size)
4583 {
4584 	int err;
4585 
4586 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4587 	if (err)
4588 		return err;
4589 
4590 	if (off + size > env->prog->aux->max_tp_access)
4591 		env->prog->aux->max_tp_access = off + size;
4592 
4593 	return 0;
4594 }
4595 
4596 static int check_buffer_access(struct bpf_verifier_env *env,
4597 			       const struct bpf_reg_state *reg,
4598 			       int regno, int off, int size,
4599 			       bool zero_size_allowed,
4600 			       u32 *max_access)
4601 {
4602 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4603 	int err;
4604 
4605 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4606 	if (err)
4607 		return err;
4608 
4609 	if (off + size > *max_access)
4610 		*max_access = off + size;
4611 
4612 	return 0;
4613 }
4614 
4615 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4616 static void zext_32_to_64(struct bpf_reg_state *reg)
4617 {
4618 	reg->var_off = tnum_subreg(reg->var_off);
4619 	__reg_assign_32_into_64(reg);
4620 }
4621 
4622 /* truncate register to smaller size (in bytes)
4623  * must be called with size < BPF_REG_SIZE
4624  */
4625 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4626 {
4627 	u64 mask;
4628 
4629 	/* clear high bits in bit representation */
4630 	reg->var_off = tnum_cast(reg->var_off, size);
4631 
4632 	/* fix arithmetic bounds */
4633 	mask = ((u64)1 << (size * 8)) - 1;
4634 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4635 		reg->umin_value &= mask;
4636 		reg->umax_value &= mask;
4637 	} else {
4638 		reg->umin_value = 0;
4639 		reg->umax_value = mask;
4640 	}
4641 	reg->smin_value = reg->umin_value;
4642 	reg->smax_value = reg->umax_value;
4643 
4644 	/* If size is smaller than 32bit register the 32bit register
4645 	 * values are also truncated so we push 64-bit bounds into
4646 	 * 32-bit bounds. Above were truncated < 32-bits already.
4647 	 */
4648 	if (size >= 4)
4649 		return;
4650 	__reg_combine_64_into_32(reg);
4651 }
4652 
4653 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4654 {
4655 	/* A map is considered read-only if the following condition are true:
4656 	 *
4657 	 * 1) BPF program side cannot change any of the map content. The
4658 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4659 	 *    and was set at map creation time.
4660 	 * 2) The map value(s) have been initialized from user space by a
4661 	 *    loader and then "frozen", such that no new map update/delete
4662 	 *    operations from syscall side are possible for the rest of
4663 	 *    the map's lifetime from that point onwards.
4664 	 * 3) Any parallel/pending map update/delete operations from syscall
4665 	 *    side have been completed. Only after that point, it's safe to
4666 	 *    assume that map value(s) are immutable.
4667 	 */
4668 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4669 	       READ_ONCE(map->frozen) &&
4670 	       !bpf_map_write_active(map);
4671 }
4672 
4673 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4674 {
4675 	void *ptr;
4676 	u64 addr;
4677 	int err;
4678 
4679 	err = map->ops->map_direct_value_addr(map, &addr, off);
4680 	if (err)
4681 		return err;
4682 	ptr = (void *)(long)addr + off;
4683 
4684 	switch (size) {
4685 	case sizeof(u8):
4686 		*val = (u64)*(u8 *)ptr;
4687 		break;
4688 	case sizeof(u16):
4689 		*val = (u64)*(u16 *)ptr;
4690 		break;
4691 	case sizeof(u32):
4692 		*val = (u64)*(u32 *)ptr;
4693 		break;
4694 	case sizeof(u64):
4695 		*val = *(u64 *)ptr;
4696 		break;
4697 	default:
4698 		return -EINVAL;
4699 	}
4700 	return 0;
4701 }
4702 
4703 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4704 				   struct bpf_reg_state *regs,
4705 				   int regno, int off, int size,
4706 				   enum bpf_access_type atype,
4707 				   int value_regno)
4708 {
4709 	struct bpf_reg_state *reg = regs + regno;
4710 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4711 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4712 	enum bpf_type_flag flag = 0;
4713 	u32 btf_id;
4714 	int ret;
4715 
4716 	if (!env->allow_ptr_leaks) {
4717 		verbose(env,
4718 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4719 			tname);
4720 		return -EPERM;
4721 	}
4722 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
4723 		verbose(env,
4724 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
4725 			tname);
4726 		return -EINVAL;
4727 	}
4728 	if (off < 0) {
4729 		verbose(env,
4730 			"R%d is ptr_%s invalid negative access: off=%d\n",
4731 			regno, tname, off);
4732 		return -EACCES;
4733 	}
4734 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4735 		char tn_buf[48];
4736 
4737 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4738 		verbose(env,
4739 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4740 			regno, tname, off, tn_buf);
4741 		return -EACCES;
4742 	}
4743 
4744 	if (reg->type & MEM_USER) {
4745 		verbose(env,
4746 			"R%d is ptr_%s access user memory: off=%d\n",
4747 			regno, tname, off);
4748 		return -EACCES;
4749 	}
4750 
4751 	if (reg->type & MEM_PERCPU) {
4752 		verbose(env,
4753 			"R%d is ptr_%s access percpu memory: off=%d\n",
4754 			regno, tname, off);
4755 		return -EACCES;
4756 	}
4757 
4758 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
4759 		if (!btf_is_kernel(reg->btf)) {
4760 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
4761 			return -EFAULT;
4762 		}
4763 		ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
4764 	} else {
4765 		/* Writes are permitted with default btf_struct_access for
4766 		 * program allocated objects (which always have ref_obj_id > 0),
4767 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
4768 		 */
4769 		if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
4770 			verbose(env, "only read is supported\n");
4771 			return -EACCES;
4772 		}
4773 
4774 		if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
4775 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
4776 			return -EFAULT;
4777 		}
4778 
4779 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
4780 	}
4781 
4782 	if (ret < 0)
4783 		return ret;
4784 
4785 	/* If this is an untrusted pointer, all pointers formed by walking it
4786 	 * also inherit the untrusted flag.
4787 	 */
4788 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4789 		flag |= PTR_UNTRUSTED;
4790 
4791 	/* By default any pointer obtained from walking a trusted pointer is
4792 	 * no longer trusted except the rcu case below.
4793 	 */
4794 	flag &= ~PTR_TRUSTED;
4795 
4796 	if (flag & MEM_RCU) {
4797 		/* Mark value register as MEM_RCU only if it is protected by
4798 		 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU
4799 		 * itself can already indicate trustedness inside the rcu
4800 		 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since
4801 		 * it could be null in some cases.
4802 		 */
4803 		if (!env->cur_state->active_rcu_lock ||
4804 		    !(is_trusted_reg(reg) || is_rcu_reg(reg)))
4805 			flag &= ~MEM_RCU;
4806 		else
4807 			flag |= PTR_MAYBE_NULL;
4808 	} else if (reg->type & MEM_RCU) {
4809 		/* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged
4810 		 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively.
4811 		 */
4812 		flag |= PTR_UNTRUSTED;
4813 	}
4814 
4815 	if (atype == BPF_READ && value_regno >= 0)
4816 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4817 
4818 	return 0;
4819 }
4820 
4821 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4822 				   struct bpf_reg_state *regs,
4823 				   int regno, int off, int size,
4824 				   enum bpf_access_type atype,
4825 				   int value_regno)
4826 {
4827 	struct bpf_reg_state *reg = regs + regno;
4828 	struct bpf_map *map = reg->map_ptr;
4829 	struct bpf_reg_state map_reg;
4830 	enum bpf_type_flag flag = 0;
4831 	const struct btf_type *t;
4832 	const char *tname;
4833 	u32 btf_id;
4834 	int ret;
4835 
4836 	if (!btf_vmlinux) {
4837 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4838 		return -ENOTSUPP;
4839 	}
4840 
4841 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4842 		verbose(env, "map_ptr access not supported for map type %d\n",
4843 			map->map_type);
4844 		return -ENOTSUPP;
4845 	}
4846 
4847 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4848 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4849 
4850 	if (!env->allow_ptr_leaks) {
4851 		verbose(env,
4852 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4853 			tname);
4854 		return -EPERM;
4855 	}
4856 
4857 	if (off < 0) {
4858 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4859 			regno, tname, off);
4860 		return -EACCES;
4861 	}
4862 
4863 	if (atype != BPF_READ) {
4864 		verbose(env, "only read from %s is supported\n", tname);
4865 		return -EACCES;
4866 	}
4867 
4868 	/* Simulate access to a PTR_TO_BTF_ID */
4869 	memset(&map_reg, 0, sizeof(map_reg));
4870 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
4871 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
4872 	if (ret < 0)
4873 		return ret;
4874 
4875 	if (value_regno >= 0)
4876 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4877 
4878 	return 0;
4879 }
4880 
4881 /* Check that the stack access at the given offset is within bounds. The
4882  * maximum valid offset is -1.
4883  *
4884  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4885  * -state->allocated_stack for reads.
4886  */
4887 static int check_stack_slot_within_bounds(int off,
4888 					  struct bpf_func_state *state,
4889 					  enum bpf_access_type t)
4890 {
4891 	int min_valid_off;
4892 
4893 	if (t == BPF_WRITE)
4894 		min_valid_off = -MAX_BPF_STACK;
4895 	else
4896 		min_valid_off = -state->allocated_stack;
4897 
4898 	if (off < min_valid_off || off > -1)
4899 		return -EACCES;
4900 	return 0;
4901 }
4902 
4903 /* Check that the stack access at 'regno + off' falls within the maximum stack
4904  * bounds.
4905  *
4906  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4907  */
4908 static int check_stack_access_within_bounds(
4909 		struct bpf_verifier_env *env,
4910 		int regno, int off, int access_size,
4911 		enum bpf_access_src src, enum bpf_access_type type)
4912 {
4913 	struct bpf_reg_state *regs = cur_regs(env);
4914 	struct bpf_reg_state *reg = regs + regno;
4915 	struct bpf_func_state *state = func(env, reg);
4916 	int min_off, max_off;
4917 	int err;
4918 	char *err_extra;
4919 
4920 	if (src == ACCESS_HELPER)
4921 		/* We don't know if helpers are reading or writing (or both). */
4922 		err_extra = " indirect access to";
4923 	else if (type == BPF_READ)
4924 		err_extra = " read from";
4925 	else
4926 		err_extra = " write to";
4927 
4928 	if (tnum_is_const(reg->var_off)) {
4929 		min_off = reg->var_off.value + off;
4930 		if (access_size > 0)
4931 			max_off = min_off + access_size - 1;
4932 		else
4933 			max_off = min_off;
4934 	} else {
4935 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4936 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4937 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4938 				err_extra, regno);
4939 			return -EACCES;
4940 		}
4941 		min_off = reg->smin_value + off;
4942 		if (access_size > 0)
4943 			max_off = reg->smax_value + off + access_size - 1;
4944 		else
4945 			max_off = min_off;
4946 	}
4947 
4948 	err = check_stack_slot_within_bounds(min_off, state, type);
4949 	if (!err)
4950 		err = check_stack_slot_within_bounds(max_off, state, type);
4951 
4952 	if (err) {
4953 		if (tnum_is_const(reg->var_off)) {
4954 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4955 				err_extra, regno, off, access_size);
4956 		} else {
4957 			char tn_buf[48];
4958 
4959 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4960 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4961 				err_extra, regno, tn_buf, access_size);
4962 		}
4963 	}
4964 	return err;
4965 }
4966 
4967 /* check whether memory at (regno + off) is accessible for t = (read | write)
4968  * if t==write, value_regno is a register which value is stored into memory
4969  * if t==read, value_regno is a register which will receive the value from memory
4970  * if t==write && value_regno==-1, some unknown value is stored into memory
4971  * if t==read && value_regno==-1, don't care what we read from memory
4972  */
4973 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4974 			    int off, int bpf_size, enum bpf_access_type t,
4975 			    int value_regno, bool strict_alignment_once)
4976 {
4977 	struct bpf_reg_state *regs = cur_regs(env);
4978 	struct bpf_reg_state *reg = regs + regno;
4979 	struct bpf_func_state *state;
4980 	int size, err = 0;
4981 
4982 	size = bpf_size_to_bytes(bpf_size);
4983 	if (size < 0)
4984 		return size;
4985 
4986 	/* alignment checks will add in reg->off themselves */
4987 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4988 	if (err)
4989 		return err;
4990 
4991 	/* for access checks, reg->off is just part of off */
4992 	off += reg->off;
4993 
4994 	if (reg->type == PTR_TO_MAP_KEY) {
4995 		if (t == BPF_WRITE) {
4996 			verbose(env, "write to change key R%d not allowed\n", regno);
4997 			return -EACCES;
4998 		}
4999 
5000 		err = check_mem_region_access(env, regno, off, size,
5001 					      reg->map_ptr->key_size, false);
5002 		if (err)
5003 			return err;
5004 		if (value_regno >= 0)
5005 			mark_reg_unknown(env, regs, value_regno);
5006 	} else if (reg->type == PTR_TO_MAP_VALUE) {
5007 		struct btf_field *kptr_field = NULL;
5008 
5009 		if (t == BPF_WRITE && value_regno >= 0 &&
5010 		    is_pointer_value(env, value_regno)) {
5011 			verbose(env, "R%d leaks addr into map\n", value_regno);
5012 			return -EACCES;
5013 		}
5014 		err = check_map_access_type(env, regno, off, size, t);
5015 		if (err)
5016 			return err;
5017 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5018 		if (err)
5019 			return err;
5020 		if (tnum_is_const(reg->var_off))
5021 			kptr_field = btf_record_find(reg->map_ptr->record,
5022 						     off + reg->var_off.value, BPF_KPTR);
5023 		if (kptr_field) {
5024 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
5025 		} else if (t == BPF_READ && value_regno >= 0) {
5026 			struct bpf_map *map = reg->map_ptr;
5027 
5028 			/* if map is read-only, track its contents as scalars */
5029 			if (tnum_is_const(reg->var_off) &&
5030 			    bpf_map_is_rdonly(map) &&
5031 			    map->ops->map_direct_value_addr) {
5032 				int map_off = off + reg->var_off.value;
5033 				u64 val = 0;
5034 
5035 				err = bpf_map_direct_read(map, map_off, size,
5036 							  &val);
5037 				if (err)
5038 					return err;
5039 
5040 				regs[value_regno].type = SCALAR_VALUE;
5041 				__mark_reg_known(&regs[value_regno], val);
5042 			} else {
5043 				mark_reg_unknown(env, regs, value_regno);
5044 			}
5045 		}
5046 	} else if (base_type(reg->type) == PTR_TO_MEM) {
5047 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5048 
5049 		if (type_may_be_null(reg->type)) {
5050 			verbose(env, "R%d invalid mem access '%s'\n", regno,
5051 				reg_type_str(env, reg->type));
5052 			return -EACCES;
5053 		}
5054 
5055 		if (t == BPF_WRITE && rdonly_mem) {
5056 			verbose(env, "R%d cannot write into %s\n",
5057 				regno, reg_type_str(env, reg->type));
5058 			return -EACCES;
5059 		}
5060 
5061 		if (t == BPF_WRITE && value_regno >= 0 &&
5062 		    is_pointer_value(env, value_regno)) {
5063 			verbose(env, "R%d leaks addr into mem\n", value_regno);
5064 			return -EACCES;
5065 		}
5066 
5067 		err = check_mem_region_access(env, regno, off, size,
5068 					      reg->mem_size, false);
5069 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
5070 			mark_reg_unknown(env, regs, value_regno);
5071 	} else if (reg->type == PTR_TO_CTX) {
5072 		enum bpf_reg_type reg_type = SCALAR_VALUE;
5073 		struct btf *btf = NULL;
5074 		u32 btf_id = 0;
5075 
5076 		if (t == BPF_WRITE && value_regno >= 0 &&
5077 		    is_pointer_value(env, value_regno)) {
5078 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
5079 			return -EACCES;
5080 		}
5081 
5082 		err = check_ptr_off_reg(env, reg, regno);
5083 		if (err < 0)
5084 			return err;
5085 
5086 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5087 				       &btf_id);
5088 		if (err)
5089 			verbose_linfo(env, insn_idx, "; ");
5090 		if (!err && t == BPF_READ && value_regno >= 0) {
5091 			/* ctx access returns either a scalar, or a
5092 			 * PTR_TO_PACKET[_META,_END]. In the latter
5093 			 * case, we know the offset is zero.
5094 			 */
5095 			if (reg_type == SCALAR_VALUE) {
5096 				mark_reg_unknown(env, regs, value_regno);
5097 			} else {
5098 				mark_reg_known_zero(env, regs,
5099 						    value_regno);
5100 				if (type_may_be_null(reg_type))
5101 					regs[value_regno].id = ++env->id_gen;
5102 				/* A load of ctx field could have different
5103 				 * actual load size with the one encoded in the
5104 				 * insn. When the dst is PTR, it is for sure not
5105 				 * a sub-register.
5106 				 */
5107 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
5108 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
5109 					regs[value_regno].btf = btf;
5110 					regs[value_regno].btf_id = btf_id;
5111 				}
5112 			}
5113 			regs[value_regno].type = reg_type;
5114 		}
5115 
5116 	} else if (reg->type == PTR_TO_STACK) {
5117 		/* Basic bounds checks. */
5118 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
5119 		if (err)
5120 			return err;
5121 
5122 		state = func(env, reg);
5123 		err = update_stack_depth(env, state, off);
5124 		if (err)
5125 			return err;
5126 
5127 		if (t == BPF_READ)
5128 			err = check_stack_read(env, regno, off, size,
5129 					       value_regno);
5130 		else
5131 			err = check_stack_write(env, regno, off, size,
5132 						value_regno, insn_idx);
5133 	} else if (reg_is_pkt_pointer(reg)) {
5134 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
5135 			verbose(env, "cannot write into packet\n");
5136 			return -EACCES;
5137 		}
5138 		if (t == BPF_WRITE && value_regno >= 0 &&
5139 		    is_pointer_value(env, value_regno)) {
5140 			verbose(env, "R%d leaks addr into packet\n",
5141 				value_regno);
5142 			return -EACCES;
5143 		}
5144 		err = check_packet_access(env, regno, off, size, false);
5145 		if (!err && t == BPF_READ && value_regno >= 0)
5146 			mark_reg_unknown(env, regs, value_regno);
5147 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
5148 		if (t == BPF_WRITE && value_regno >= 0 &&
5149 		    is_pointer_value(env, value_regno)) {
5150 			verbose(env, "R%d leaks addr into flow keys\n",
5151 				value_regno);
5152 			return -EACCES;
5153 		}
5154 
5155 		err = check_flow_keys_access(env, off, size);
5156 		if (!err && t == BPF_READ && value_regno >= 0)
5157 			mark_reg_unknown(env, regs, value_regno);
5158 	} else if (type_is_sk_pointer(reg->type)) {
5159 		if (t == BPF_WRITE) {
5160 			verbose(env, "R%d cannot write into %s\n",
5161 				regno, reg_type_str(env, reg->type));
5162 			return -EACCES;
5163 		}
5164 		err = check_sock_access(env, insn_idx, regno, off, size, t);
5165 		if (!err && value_regno >= 0)
5166 			mark_reg_unknown(env, regs, value_regno);
5167 	} else if (reg->type == PTR_TO_TP_BUFFER) {
5168 		err = check_tp_buffer_access(env, reg, regno, off, size);
5169 		if (!err && t == BPF_READ && value_regno >= 0)
5170 			mark_reg_unknown(env, regs, value_regno);
5171 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5172 		   !type_may_be_null(reg->type)) {
5173 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5174 					      value_regno);
5175 	} else if (reg->type == CONST_PTR_TO_MAP) {
5176 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5177 					      value_regno);
5178 	} else if (base_type(reg->type) == PTR_TO_BUF) {
5179 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5180 		u32 *max_access;
5181 
5182 		if (rdonly_mem) {
5183 			if (t == BPF_WRITE) {
5184 				verbose(env, "R%d cannot write into %s\n",
5185 					regno, reg_type_str(env, reg->type));
5186 				return -EACCES;
5187 			}
5188 			max_access = &env->prog->aux->max_rdonly_access;
5189 		} else {
5190 			max_access = &env->prog->aux->max_rdwr_access;
5191 		}
5192 
5193 		err = check_buffer_access(env, reg, regno, off, size, false,
5194 					  max_access);
5195 
5196 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
5197 			mark_reg_unknown(env, regs, value_regno);
5198 	} else {
5199 		verbose(env, "R%d invalid mem access '%s'\n", regno,
5200 			reg_type_str(env, reg->type));
5201 		return -EACCES;
5202 	}
5203 
5204 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
5205 	    regs[value_regno].type == SCALAR_VALUE) {
5206 		/* b/h/w load zero-extends, mark upper bits as known 0 */
5207 		coerce_reg_to_size(&regs[value_regno], size);
5208 	}
5209 	return err;
5210 }
5211 
5212 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
5213 {
5214 	int load_reg;
5215 	int err;
5216 
5217 	switch (insn->imm) {
5218 	case BPF_ADD:
5219 	case BPF_ADD | BPF_FETCH:
5220 	case BPF_AND:
5221 	case BPF_AND | BPF_FETCH:
5222 	case BPF_OR:
5223 	case BPF_OR | BPF_FETCH:
5224 	case BPF_XOR:
5225 	case BPF_XOR | BPF_FETCH:
5226 	case BPF_XCHG:
5227 	case BPF_CMPXCHG:
5228 		break;
5229 	default:
5230 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5231 		return -EINVAL;
5232 	}
5233 
5234 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5235 		verbose(env, "invalid atomic operand size\n");
5236 		return -EINVAL;
5237 	}
5238 
5239 	/* check src1 operand */
5240 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
5241 	if (err)
5242 		return err;
5243 
5244 	/* check src2 operand */
5245 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5246 	if (err)
5247 		return err;
5248 
5249 	if (insn->imm == BPF_CMPXCHG) {
5250 		/* Check comparison of R0 with memory location */
5251 		const u32 aux_reg = BPF_REG_0;
5252 
5253 		err = check_reg_arg(env, aux_reg, SRC_OP);
5254 		if (err)
5255 			return err;
5256 
5257 		if (is_pointer_value(env, aux_reg)) {
5258 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
5259 			return -EACCES;
5260 		}
5261 	}
5262 
5263 	if (is_pointer_value(env, insn->src_reg)) {
5264 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5265 		return -EACCES;
5266 	}
5267 
5268 	if (is_ctx_reg(env, insn->dst_reg) ||
5269 	    is_pkt_reg(env, insn->dst_reg) ||
5270 	    is_flow_key_reg(env, insn->dst_reg) ||
5271 	    is_sk_reg(env, insn->dst_reg)) {
5272 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5273 			insn->dst_reg,
5274 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5275 		return -EACCES;
5276 	}
5277 
5278 	if (insn->imm & BPF_FETCH) {
5279 		if (insn->imm == BPF_CMPXCHG)
5280 			load_reg = BPF_REG_0;
5281 		else
5282 			load_reg = insn->src_reg;
5283 
5284 		/* check and record load of old value */
5285 		err = check_reg_arg(env, load_reg, DST_OP);
5286 		if (err)
5287 			return err;
5288 	} else {
5289 		/* This instruction accesses a memory location but doesn't
5290 		 * actually load it into a register.
5291 		 */
5292 		load_reg = -1;
5293 	}
5294 
5295 	/* Check whether we can read the memory, with second call for fetch
5296 	 * case to simulate the register fill.
5297 	 */
5298 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5299 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5300 	if (!err && load_reg >= 0)
5301 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5302 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5303 				       true);
5304 	if (err)
5305 		return err;
5306 
5307 	/* Check whether we can write into the same memory. */
5308 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5309 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5310 	if (err)
5311 		return err;
5312 
5313 	return 0;
5314 }
5315 
5316 /* When register 'regno' is used to read the stack (either directly or through
5317  * a helper function) make sure that it's within stack boundary and, depending
5318  * on the access type, that all elements of the stack are initialized.
5319  *
5320  * 'off' includes 'regno->off', but not its dynamic part (if any).
5321  *
5322  * All registers that have been spilled on the stack in the slots within the
5323  * read offsets are marked as read.
5324  */
5325 static int check_stack_range_initialized(
5326 		struct bpf_verifier_env *env, int regno, int off,
5327 		int access_size, bool zero_size_allowed,
5328 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5329 {
5330 	struct bpf_reg_state *reg = reg_state(env, regno);
5331 	struct bpf_func_state *state = func(env, reg);
5332 	int err, min_off, max_off, i, j, slot, spi;
5333 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5334 	enum bpf_access_type bounds_check_type;
5335 	/* Some accesses can write anything into the stack, others are
5336 	 * read-only.
5337 	 */
5338 	bool clobber = false;
5339 
5340 	if (access_size == 0 && !zero_size_allowed) {
5341 		verbose(env, "invalid zero-sized read\n");
5342 		return -EACCES;
5343 	}
5344 
5345 	if (type == ACCESS_HELPER) {
5346 		/* The bounds checks for writes are more permissive than for
5347 		 * reads. However, if raw_mode is not set, we'll do extra
5348 		 * checks below.
5349 		 */
5350 		bounds_check_type = BPF_WRITE;
5351 		clobber = true;
5352 	} else {
5353 		bounds_check_type = BPF_READ;
5354 	}
5355 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5356 					       type, bounds_check_type);
5357 	if (err)
5358 		return err;
5359 
5360 
5361 	if (tnum_is_const(reg->var_off)) {
5362 		min_off = max_off = reg->var_off.value + off;
5363 	} else {
5364 		/* Variable offset is prohibited for unprivileged mode for
5365 		 * simplicity since it requires corresponding support in
5366 		 * Spectre masking for stack ALU.
5367 		 * See also retrieve_ptr_limit().
5368 		 */
5369 		if (!env->bypass_spec_v1) {
5370 			char tn_buf[48];
5371 
5372 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5373 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5374 				regno, err_extra, tn_buf);
5375 			return -EACCES;
5376 		}
5377 		/* Only initialized buffer on stack is allowed to be accessed
5378 		 * with variable offset. With uninitialized buffer it's hard to
5379 		 * guarantee that whole memory is marked as initialized on
5380 		 * helper return since specific bounds are unknown what may
5381 		 * cause uninitialized stack leaking.
5382 		 */
5383 		if (meta && meta->raw_mode)
5384 			meta = NULL;
5385 
5386 		min_off = reg->smin_value + off;
5387 		max_off = reg->smax_value + off;
5388 	}
5389 
5390 	if (meta && meta->raw_mode) {
5391 		meta->access_size = access_size;
5392 		meta->regno = regno;
5393 		return 0;
5394 	}
5395 
5396 	for (i = min_off; i < max_off + access_size; i++) {
5397 		u8 *stype;
5398 
5399 		slot = -i - 1;
5400 		spi = slot / BPF_REG_SIZE;
5401 		if (state->allocated_stack <= slot)
5402 			goto err;
5403 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5404 		if (*stype == STACK_MISC)
5405 			goto mark;
5406 		if (*stype == STACK_ZERO) {
5407 			if (clobber) {
5408 				/* helper can write anything into the stack */
5409 				*stype = STACK_MISC;
5410 			}
5411 			goto mark;
5412 		}
5413 
5414 		if (is_spilled_reg(&state->stack[spi]) &&
5415 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5416 		     env->allow_ptr_leaks)) {
5417 			if (clobber) {
5418 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5419 				for (j = 0; j < BPF_REG_SIZE; j++)
5420 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5421 			}
5422 			goto mark;
5423 		}
5424 
5425 err:
5426 		if (tnum_is_const(reg->var_off)) {
5427 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5428 				err_extra, regno, min_off, i - min_off, access_size);
5429 		} else {
5430 			char tn_buf[48];
5431 
5432 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5433 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5434 				err_extra, regno, tn_buf, i - min_off, access_size);
5435 		}
5436 		return -EACCES;
5437 mark:
5438 		/* reading any byte out of 8-byte 'spill_slot' will cause
5439 		 * the whole slot to be marked as 'read'
5440 		 */
5441 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5442 			      state->stack[spi].spilled_ptr.parent,
5443 			      REG_LIVE_READ64);
5444 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5445 		 * be sure that whether stack slot is written to or not. Hence,
5446 		 * we must still conservatively propagate reads upwards even if
5447 		 * helper may write to the entire memory range.
5448 		 */
5449 	}
5450 	return update_stack_depth(env, state, min_off);
5451 }
5452 
5453 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5454 				   int access_size, bool zero_size_allowed,
5455 				   struct bpf_call_arg_meta *meta)
5456 {
5457 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5458 	u32 *max_access;
5459 
5460 	switch (base_type(reg->type)) {
5461 	case PTR_TO_PACKET:
5462 	case PTR_TO_PACKET_META:
5463 		return check_packet_access(env, regno, reg->off, access_size,
5464 					   zero_size_allowed);
5465 	case PTR_TO_MAP_KEY:
5466 		if (meta && meta->raw_mode) {
5467 			verbose(env, "R%d cannot write into %s\n", regno,
5468 				reg_type_str(env, reg->type));
5469 			return -EACCES;
5470 		}
5471 		return check_mem_region_access(env, regno, reg->off, access_size,
5472 					       reg->map_ptr->key_size, false);
5473 	case PTR_TO_MAP_VALUE:
5474 		if (check_map_access_type(env, regno, reg->off, access_size,
5475 					  meta && meta->raw_mode ? BPF_WRITE :
5476 					  BPF_READ))
5477 			return -EACCES;
5478 		return check_map_access(env, regno, reg->off, access_size,
5479 					zero_size_allowed, ACCESS_HELPER);
5480 	case PTR_TO_MEM:
5481 		if (type_is_rdonly_mem(reg->type)) {
5482 			if (meta && meta->raw_mode) {
5483 				verbose(env, "R%d cannot write into %s\n", regno,
5484 					reg_type_str(env, reg->type));
5485 				return -EACCES;
5486 			}
5487 		}
5488 		return check_mem_region_access(env, regno, reg->off,
5489 					       access_size, reg->mem_size,
5490 					       zero_size_allowed);
5491 	case PTR_TO_BUF:
5492 		if (type_is_rdonly_mem(reg->type)) {
5493 			if (meta && meta->raw_mode) {
5494 				verbose(env, "R%d cannot write into %s\n", regno,
5495 					reg_type_str(env, reg->type));
5496 				return -EACCES;
5497 			}
5498 
5499 			max_access = &env->prog->aux->max_rdonly_access;
5500 		} else {
5501 			max_access = &env->prog->aux->max_rdwr_access;
5502 		}
5503 		return check_buffer_access(env, reg, regno, reg->off,
5504 					   access_size, zero_size_allowed,
5505 					   max_access);
5506 	case PTR_TO_STACK:
5507 		return check_stack_range_initialized(
5508 				env,
5509 				regno, reg->off, access_size,
5510 				zero_size_allowed, ACCESS_HELPER, meta);
5511 	case PTR_TO_CTX:
5512 		/* in case the function doesn't know how to access the context,
5513 		 * (because we are in a program of type SYSCALL for example), we
5514 		 * can not statically check its size.
5515 		 * Dynamically check it now.
5516 		 */
5517 		if (!env->ops->convert_ctx_access) {
5518 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5519 			int offset = access_size - 1;
5520 
5521 			/* Allow zero-byte read from PTR_TO_CTX */
5522 			if (access_size == 0)
5523 				return zero_size_allowed ? 0 : -EACCES;
5524 
5525 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5526 						atype, -1, false);
5527 		}
5528 
5529 		fallthrough;
5530 	default: /* scalar_value or invalid ptr */
5531 		/* Allow zero-byte read from NULL, regardless of pointer type */
5532 		if (zero_size_allowed && access_size == 0 &&
5533 		    register_is_null(reg))
5534 			return 0;
5535 
5536 		verbose(env, "R%d type=%s ", regno,
5537 			reg_type_str(env, reg->type));
5538 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5539 		return -EACCES;
5540 	}
5541 }
5542 
5543 static int check_mem_size_reg(struct bpf_verifier_env *env,
5544 			      struct bpf_reg_state *reg, u32 regno,
5545 			      bool zero_size_allowed,
5546 			      struct bpf_call_arg_meta *meta)
5547 {
5548 	int err;
5549 
5550 	/* This is used to refine r0 return value bounds for helpers
5551 	 * that enforce this value as an upper bound on return values.
5552 	 * See do_refine_retval_range() for helpers that can refine
5553 	 * the return value. C type of helper is u32 so we pull register
5554 	 * bound from umax_value however, if negative verifier errors
5555 	 * out. Only upper bounds can be learned because retval is an
5556 	 * int type and negative retvals are allowed.
5557 	 */
5558 	meta->msize_max_value = reg->umax_value;
5559 
5560 	/* The register is SCALAR_VALUE; the access check
5561 	 * happens using its boundaries.
5562 	 */
5563 	if (!tnum_is_const(reg->var_off))
5564 		/* For unprivileged variable accesses, disable raw
5565 		 * mode so that the program is required to
5566 		 * initialize all the memory that the helper could
5567 		 * just partially fill up.
5568 		 */
5569 		meta = NULL;
5570 
5571 	if (reg->smin_value < 0) {
5572 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5573 			regno);
5574 		return -EACCES;
5575 	}
5576 
5577 	if (reg->umin_value == 0) {
5578 		err = check_helper_mem_access(env, regno - 1, 0,
5579 					      zero_size_allowed,
5580 					      meta);
5581 		if (err)
5582 			return err;
5583 	}
5584 
5585 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5586 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5587 			regno);
5588 		return -EACCES;
5589 	}
5590 	err = check_helper_mem_access(env, regno - 1,
5591 				      reg->umax_value,
5592 				      zero_size_allowed, meta);
5593 	if (!err)
5594 		err = mark_chain_precision(env, regno);
5595 	return err;
5596 }
5597 
5598 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5599 		   u32 regno, u32 mem_size)
5600 {
5601 	bool may_be_null = type_may_be_null(reg->type);
5602 	struct bpf_reg_state saved_reg;
5603 	struct bpf_call_arg_meta meta;
5604 	int err;
5605 
5606 	if (register_is_null(reg))
5607 		return 0;
5608 
5609 	memset(&meta, 0, sizeof(meta));
5610 	/* Assuming that the register contains a value check if the memory
5611 	 * access is safe. Temporarily save and restore the register's state as
5612 	 * the conversion shouldn't be visible to a caller.
5613 	 */
5614 	if (may_be_null) {
5615 		saved_reg = *reg;
5616 		mark_ptr_not_null_reg(reg);
5617 	}
5618 
5619 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5620 	/* Check access for BPF_WRITE */
5621 	meta.raw_mode = true;
5622 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5623 
5624 	if (may_be_null)
5625 		*reg = saved_reg;
5626 
5627 	return err;
5628 }
5629 
5630 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5631 				    u32 regno)
5632 {
5633 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5634 	bool may_be_null = type_may_be_null(mem_reg->type);
5635 	struct bpf_reg_state saved_reg;
5636 	struct bpf_call_arg_meta meta;
5637 	int err;
5638 
5639 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5640 
5641 	memset(&meta, 0, sizeof(meta));
5642 
5643 	if (may_be_null) {
5644 		saved_reg = *mem_reg;
5645 		mark_ptr_not_null_reg(mem_reg);
5646 	}
5647 
5648 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5649 	/* Check access for BPF_WRITE */
5650 	meta.raw_mode = true;
5651 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5652 
5653 	if (may_be_null)
5654 		*mem_reg = saved_reg;
5655 	return err;
5656 }
5657 
5658 /* Implementation details:
5659  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
5660  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
5661  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5662  * Two separate bpf_obj_new will also have different reg->id.
5663  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
5664  * clears reg->id after value_or_null->value transition, since the verifier only
5665  * cares about the range of access to valid map value pointer and doesn't care
5666  * about actual address of the map element.
5667  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5668  * reg->id > 0 after value_or_null->value transition. By doing so
5669  * two bpf_map_lookups will be considered two different pointers that
5670  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
5671  * returned from bpf_obj_new.
5672  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5673  * dead-locks.
5674  * Since only one bpf_spin_lock is allowed the checks are simpler than
5675  * reg_is_refcounted() logic. The verifier needs to remember only
5676  * one spin_lock instead of array of acquired_refs.
5677  * cur_state->active_lock remembers which map value element or allocated
5678  * object got locked and clears it after bpf_spin_unlock.
5679  */
5680 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5681 			     bool is_lock)
5682 {
5683 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5684 	struct bpf_verifier_state *cur = env->cur_state;
5685 	bool is_const = tnum_is_const(reg->var_off);
5686 	u64 val = reg->var_off.value;
5687 	struct bpf_map *map = NULL;
5688 	struct btf *btf = NULL;
5689 	struct btf_record *rec;
5690 
5691 	if (!is_const) {
5692 		verbose(env,
5693 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5694 			regno);
5695 		return -EINVAL;
5696 	}
5697 	if (reg->type == PTR_TO_MAP_VALUE) {
5698 		map = reg->map_ptr;
5699 		if (!map->btf) {
5700 			verbose(env,
5701 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5702 				map->name);
5703 			return -EINVAL;
5704 		}
5705 	} else {
5706 		btf = reg->btf;
5707 	}
5708 
5709 	rec = reg_btf_record(reg);
5710 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
5711 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
5712 			map ? map->name : "kptr");
5713 		return -EINVAL;
5714 	}
5715 	if (rec->spin_lock_off != val + reg->off) {
5716 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
5717 			val + reg->off, rec->spin_lock_off);
5718 		return -EINVAL;
5719 	}
5720 	if (is_lock) {
5721 		if (cur->active_lock.ptr) {
5722 			verbose(env,
5723 				"Locking two bpf_spin_locks are not allowed\n");
5724 			return -EINVAL;
5725 		}
5726 		if (map)
5727 			cur->active_lock.ptr = map;
5728 		else
5729 			cur->active_lock.ptr = btf;
5730 		cur->active_lock.id = reg->id;
5731 	} else {
5732 		struct bpf_func_state *fstate = cur_func(env);
5733 		void *ptr;
5734 		int i;
5735 
5736 		if (map)
5737 			ptr = map;
5738 		else
5739 			ptr = btf;
5740 
5741 		if (!cur->active_lock.ptr) {
5742 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5743 			return -EINVAL;
5744 		}
5745 		if (cur->active_lock.ptr != ptr ||
5746 		    cur->active_lock.id != reg->id) {
5747 			verbose(env, "bpf_spin_unlock of different lock\n");
5748 			return -EINVAL;
5749 		}
5750 		cur->active_lock.ptr = NULL;
5751 		cur->active_lock.id = 0;
5752 
5753 		for (i = fstate->acquired_refs - 1; i >= 0; i--) {
5754 			int err;
5755 
5756 			/* Complain on error because this reference state cannot
5757 			 * be freed before this point, as bpf_spin_lock critical
5758 			 * section does not allow functions that release the
5759 			 * allocated object immediately.
5760 			 */
5761 			if (!fstate->refs[i].release_on_unlock)
5762 				continue;
5763 			err = release_reference(env, fstate->refs[i].id);
5764 			if (err) {
5765 				verbose(env, "failed to release release_on_unlock reference");
5766 				return err;
5767 			}
5768 		}
5769 	}
5770 	return 0;
5771 }
5772 
5773 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5774 			      struct bpf_call_arg_meta *meta)
5775 {
5776 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5777 	bool is_const = tnum_is_const(reg->var_off);
5778 	struct bpf_map *map = reg->map_ptr;
5779 	u64 val = reg->var_off.value;
5780 
5781 	if (!is_const) {
5782 		verbose(env,
5783 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5784 			regno);
5785 		return -EINVAL;
5786 	}
5787 	if (!map->btf) {
5788 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5789 			map->name);
5790 		return -EINVAL;
5791 	}
5792 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
5793 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
5794 		return -EINVAL;
5795 	}
5796 	if (map->record->timer_off != val + reg->off) {
5797 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5798 			val + reg->off, map->record->timer_off);
5799 		return -EINVAL;
5800 	}
5801 	if (meta->map_ptr) {
5802 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5803 		return -EFAULT;
5804 	}
5805 	meta->map_uid = reg->map_uid;
5806 	meta->map_ptr = map;
5807 	return 0;
5808 }
5809 
5810 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5811 			     struct bpf_call_arg_meta *meta)
5812 {
5813 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5814 	struct bpf_map *map_ptr = reg->map_ptr;
5815 	struct btf_field *kptr_field;
5816 	u32 kptr_off;
5817 
5818 	if (!tnum_is_const(reg->var_off)) {
5819 		verbose(env,
5820 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5821 			regno);
5822 		return -EINVAL;
5823 	}
5824 	if (!map_ptr->btf) {
5825 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5826 			map_ptr->name);
5827 		return -EINVAL;
5828 	}
5829 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
5830 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5831 		return -EINVAL;
5832 	}
5833 
5834 	meta->map_ptr = map_ptr;
5835 	kptr_off = reg->off + reg->var_off.value;
5836 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
5837 	if (!kptr_field) {
5838 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5839 		return -EACCES;
5840 	}
5841 	if (kptr_field->type != BPF_KPTR_REF) {
5842 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5843 		return -EACCES;
5844 	}
5845 	meta->kptr_field = kptr_field;
5846 	return 0;
5847 }
5848 
5849 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5850 {
5851 	return type == ARG_CONST_SIZE ||
5852 	       type == ARG_CONST_SIZE_OR_ZERO;
5853 }
5854 
5855 static bool arg_type_is_release(enum bpf_arg_type type)
5856 {
5857 	return type & OBJ_RELEASE;
5858 }
5859 
5860 static bool arg_type_is_dynptr(enum bpf_arg_type type)
5861 {
5862 	return base_type(type) == ARG_PTR_TO_DYNPTR;
5863 }
5864 
5865 static int int_ptr_type_to_size(enum bpf_arg_type type)
5866 {
5867 	if (type == ARG_PTR_TO_INT)
5868 		return sizeof(u32);
5869 	else if (type == ARG_PTR_TO_LONG)
5870 		return sizeof(u64);
5871 
5872 	return -EINVAL;
5873 }
5874 
5875 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5876 				 const struct bpf_call_arg_meta *meta,
5877 				 enum bpf_arg_type *arg_type)
5878 {
5879 	if (!meta->map_ptr) {
5880 		/* kernel subsystem misconfigured verifier */
5881 		verbose(env, "invalid map_ptr to access map->type\n");
5882 		return -EACCES;
5883 	}
5884 
5885 	switch (meta->map_ptr->map_type) {
5886 	case BPF_MAP_TYPE_SOCKMAP:
5887 	case BPF_MAP_TYPE_SOCKHASH:
5888 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5889 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5890 		} else {
5891 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5892 			return -EINVAL;
5893 		}
5894 		break;
5895 	case BPF_MAP_TYPE_BLOOM_FILTER:
5896 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5897 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5898 		break;
5899 	default:
5900 		break;
5901 	}
5902 	return 0;
5903 }
5904 
5905 struct bpf_reg_types {
5906 	const enum bpf_reg_type types[10];
5907 	u32 *btf_id;
5908 };
5909 
5910 static const struct bpf_reg_types sock_types = {
5911 	.types = {
5912 		PTR_TO_SOCK_COMMON,
5913 		PTR_TO_SOCKET,
5914 		PTR_TO_TCP_SOCK,
5915 		PTR_TO_XDP_SOCK,
5916 	},
5917 };
5918 
5919 #ifdef CONFIG_NET
5920 static const struct bpf_reg_types btf_id_sock_common_types = {
5921 	.types = {
5922 		PTR_TO_SOCK_COMMON,
5923 		PTR_TO_SOCKET,
5924 		PTR_TO_TCP_SOCK,
5925 		PTR_TO_XDP_SOCK,
5926 		PTR_TO_BTF_ID,
5927 		PTR_TO_BTF_ID | PTR_TRUSTED,
5928 	},
5929 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5930 };
5931 #endif
5932 
5933 static const struct bpf_reg_types mem_types = {
5934 	.types = {
5935 		PTR_TO_STACK,
5936 		PTR_TO_PACKET,
5937 		PTR_TO_PACKET_META,
5938 		PTR_TO_MAP_KEY,
5939 		PTR_TO_MAP_VALUE,
5940 		PTR_TO_MEM,
5941 		PTR_TO_MEM | MEM_RINGBUF,
5942 		PTR_TO_BUF,
5943 	},
5944 };
5945 
5946 static const struct bpf_reg_types int_ptr_types = {
5947 	.types = {
5948 		PTR_TO_STACK,
5949 		PTR_TO_PACKET,
5950 		PTR_TO_PACKET_META,
5951 		PTR_TO_MAP_KEY,
5952 		PTR_TO_MAP_VALUE,
5953 	},
5954 };
5955 
5956 static const struct bpf_reg_types spin_lock_types = {
5957 	.types = {
5958 		PTR_TO_MAP_VALUE,
5959 		PTR_TO_BTF_ID | MEM_ALLOC,
5960 	}
5961 };
5962 
5963 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5964 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5965 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5966 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
5967 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5968 static const struct bpf_reg_types btf_ptr_types = {
5969 	.types = {
5970 		PTR_TO_BTF_ID,
5971 		PTR_TO_BTF_ID | PTR_TRUSTED,
5972 		PTR_TO_BTF_ID | MEM_RCU,
5973 	},
5974 };
5975 static const struct bpf_reg_types percpu_btf_ptr_types = {
5976 	.types = {
5977 		PTR_TO_BTF_ID | MEM_PERCPU,
5978 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
5979 	}
5980 };
5981 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5982 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5983 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5984 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5985 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5986 static const struct bpf_reg_types dynptr_types = {
5987 	.types = {
5988 		PTR_TO_STACK,
5989 		PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
5990 	}
5991 };
5992 
5993 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5994 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
5995 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
5996 	[ARG_CONST_SIZE]		= &scalar_types,
5997 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5998 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5999 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
6000 	[ARG_PTR_TO_CTX]		= &context_types,
6001 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
6002 #ifdef CONFIG_NET
6003 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
6004 #endif
6005 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
6006 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
6007 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
6008 	[ARG_PTR_TO_MEM]		= &mem_types,
6009 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
6010 	[ARG_PTR_TO_INT]		= &int_ptr_types,
6011 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
6012 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
6013 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
6014 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
6015 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
6016 	[ARG_PTR_TO_TIMER]		= &timer_types,
6017 	[ARG_PTR_TO_KPTR]		= &kptr_types,
6018 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
6019 };
6020 
6021 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
6022 			  enum bpf_arg_type arg_type,
6023 			  const u32 *arg_btf_id,
6024 			  struct bpf_call_arg_meta *meta)
6025 {
6026 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6027 	enum bpf_reg_type expected, type = reg->type;
6028 	const struct bpf_reg_types *compatible;
6029 	int i, j;
6030 
6031 	compatible = compatible_reg_types[base_type(arg_type)];
6032 	if (!compatible) {
6033 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
6034 		return -EFAULT;
6035 	}
6036 
6037 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
6038 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
6039 	 *
6040 	 * Same for MAYBE_NULL:
6041 	 *
6042 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
6043 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
6044 	 *
6045 	 * Therefore we fold these flags depending on the arg_type before comparison.
6046 	 */
6047 	if (arg_type & MEM_RDONLY)
6048 		type &= ~MEM_RDONLY;
6049 	if (arg_type & PTR_MAYBE_NULL)
6050 		type &= ~PTR_MAYBE_NULL;
6051 
6052 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
6053 		expected = compatible->types[i];
6054 		if (expected == NOT_INIT)
6055 			break;
6056 
6057 		if (type == expected)
6058 			goto found;
6059 	}
6060 
6061 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
6062 	for (j = 0; j + 1 < i; j++)
6063 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
6064 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
6065 	return -EACCES;
6066 
6067 found:
6068 	if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) {
6069 		/* For bpf_sk_release, it needs to match against first member
6070 		 * 'struct sock_common', hence make an exception for it. This
6071 		 * allows bpf_sk_release to work for multiple socket types.
6072 		 */
6073 		bool strict_type_match = arg_type_is_release(arg_type) &&
6074 					 meta->func_id != BPF_FUNC_sk_release;
6075 
6076 		if (!arg_btf_id) {
6077 			if (!compatible->btf_id) {
6078 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
6079 				return -EFAULT;
6080 			}
6081 			arg_btf_id = compatible->btf_id;
6082 		}
6083 
6084 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
6085 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
6086 				return -EACCES;
6087 		} else {
6088 			if (arg_btf_id == BPF_PTR_POISON) {
6089 				verbose(env, "verifier internal error:");
6090 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
6091 					regno);
6092 				return -EACCES;
6093 			}
6094 
6095 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
6096 						  btf_vmlinux, *arg_btf_id,
6097 						  strict_type_match)) {
6098 				verbose(env, "R%d is of type %s but %s is expected\n",
6099 					regno, kernel_type_name(reg->btf, reg->btf_id),
6100 					kernel_type_name(btf_vmlinux, *arg_btf_id));
6101 				return -EACCES;
6102 			}
6103 		}
6104 	} else if (type_is_alloc(reg->type)) {
6105 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
6106 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
6107 			return -EFAULT;
6108 		}
6109 	}
6110 
6111 	return 0;
6112 }
6113 
6114 int check_func_arg_reg_off(struct bpf_verifier_env *env,
6115 			   const struct bpf_reg_state *reg, int regno,
6116 			   enum bpf_arg_type arg_type)
6117 {
6118 	enum bpf_reg_type type = reg->type;
6119 	bool fixed_off_ok = false;
6120 
6121 	switch ((u32)type) {
6122 	/* Pointer types where reg offset is explicitly allowed: */
6123 	case PTR_TO_STACK:
6124 		if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
6125 			verbose(env, "cannot pass in dynptr at an offset\n");
6126 			return -EINVAL;
6127 		}
6128 		fallthrough;
6129 	case PTR_TO_PACKET:
6130 	case PTR_TO_PACKET_META:
6131 	case PTR_TO_MAP_KEY:
6132 	case PTR_TO_MAP_VALUE:
6133 	case PTR_TO_MEM:
6134 	case PTR_TO_MEM | MEM_RDONLY:
6135 	case PTR_TO_MEM | MEM_RINGBUF:
6136 	case PTR_TO_BUF:
6137 	case PTR_TO_BUF | MEM_RDONLY:
6138 	case SCALAR_VALUE:
6139 		/* Some of the argument types nevertheless require a
6140 		 * zero register offset.
6141 		 */
6142 		if (base_type(arg_type) != ARG_PTR_TO_RINGBUF_MEM)
6143 			return 0;
6144 		break;
6145 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6146 	 * fixed offset.
6147 	 */
6148 	case PTR_TO_BTF_ID:
6149 	case PTR_TO_BTF_ID | MEM_ALLOC:
6150 	case PTR_TO_BTF_ID | PTR_TRUSTED:
6151 	case PTR_TO_BTF_ID | MEM_RCU:
6152 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
6153 		/* When referenced PTR_TO_BTF_ID is passed to release function,
6154 		 * it's fixed offset must be 0.	In the other cases, fixed offset
6155 		 * can be non-zero.
6156 		 */
6157 		if (arg_type_is_release(arg_type) && reg->off) {
6158 			verbose(env, "R%d must have zero offset when passed to release func\n",
6159 				regno);
6160 			return -EINVAL;
6161 		}
6162 		/* For arg is release pointer, fixed_off_ok must be false, but
6163 		 * we already checked and rejected reg->off != 0 above, so set
6164 		 * to true to allow fixed offset for all other cases.
6165 		 */
6166 		fixed_off_ok = true;
6167 		break;
6168 	default:
6169 		break;
6170 	}
6171 	return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
6172 }
6173 
6174 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6175 {
6176 	struct bpf_func_state *state = func(env, reg);
6177 	int spi = get_spi(reg->off);
6178 
6179 	return state->stack[spi].spilled_ptr.id;
6180 }
6181 
6182 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6183 			  struct bpf_call_arg_meta *meta,
6184 			  const struct bpf_func_proto *fn)
6185 {
6186 	u32 regno = BPF_REG_1 + arg;
6187 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6188 	enum bpf_arg_type arg_type = fn->arg_type[arg];
6189 	enum bpf_reg_type type = reg->type;
6190 	u32 *arg_btf_id = NULL;
6191 	int err = 0;
6192 
6193 	if (arg_type == ARG_DONTCARE)
6194 		return 0;
6195 
6196 	err = check_reg_arg(env, regno, SRC_OP);
6197 	if (err)
6198 		return err;
6199 
6200 	if (arg_type == ARG_ANYTHING) {
6201 		if (is_pointer_value(env, regno)) {
6202 			verbose(env, "R%d leaks addr into helper function\n",
6203 				regno);
6204 			return -EACCES;
6205 		}
6206 		return 0;
6207 	}
6208 
6209 	if (type_is_pkt_pointer(type) &&
6210 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
6211 		verbose(env, "helper access to the packet is not allowed\n");
6212 		return -EACCES;
6213 	}
6214 
6215 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
6216 		err = resolve_map_arg_type(env, meta, &arg_type);
6217 		if (err)
6218 			return err;
6219 	}
6220 
6221 	if (register_is_null(reg) && type_may_be_null(arg_type))
6222 		/* A NULL register has a SCALAR_VALUE type, so skip
6223 		 * type checking.
6224 		 */
6225 		goto skip_type_check;
6226 
6227 	/* arg_btf_id and arg_size are in a union. */
6228 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
6229 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
6230 		arg_btf_id = fn->arg_btf_id[arg];
6231 
6232 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
6233 	if (err)
6234 		return err;
6235 
6236 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
6237 	if (err)
6238 		return err;
6239 
6240 skip_type_check:
6241 	if (arg_type_is_release(arg_type)) {
6242 		if (arg_type_is_dynptr(arg_type)) {
6243 			struct bpf_func_state *state = func(env, reg);
6244 			int spi = get_spi(reg->off);
6245 
6246 			if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
6247 			    !state->stack[spi].spilled_ptr.id) {
6248 				verbose(env, "arg %d is an unacquired reference\n", regno);
6249 				return -EINVAL;
6250 			}
6251 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
6252 			verbose(env, "R%d must be referenced when passed to release function\n",
6253 				regno);
6254 			return -EINVAL;
6255 		}
6256 		if (meta->release_regno) {
6257 			verbose(env, "verifier internal error: more than one release argument\n");
6258 			return -EFAULT;
6259 		}
6260 		meta->release_regno = regno;
6261 	}
6262 
6263 	if (reg->ref_obj_id) {
6264 		if (meta->ref_obj_id) {
6265 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6266 				regno, reg->ref_obj_id,
6267 				meta->ref_obj_id);
6268 			return -EFAULT;
6269 		}
6270 		meta->ref_obj_id = reg->ref_obj_id;
6271 	}
6272 
6273 	switch (base_type(arg_type)) {
6274 	case ARG_CONST_MAP_PTR:
6275 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
6276 		if (meta->map_ptr) {
6277 			/* Use map_uid (which is unique id of inner map) to reject:
6278 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6279 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6280 			 * if (inner_map1 && inner_map2) {
6281 			 *     timer = bpf_map_lookup_elem(inner_map1);
6282 			 *     if (timer)
6283 			 *         // mismatch would have been allowed
6284 			 *         bpf_timer_init(timer, inner_map2);
6285 			 * }
6286 			 *
6287 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
6288 			 */
6289 			if (meta->map_ptr != reg->map_ptr ||
6290 			    meta->map_uid != reg->map_uid) {
6291 				verbose(env,
6292 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6293 					meta->map_uid, reg->map_uid);
6294 				return -EINVAL;
6295 			}
6296 		}
6297 		meta->map_ptr = reg->map_ptr;
6298 		meta->map_uid = reg->map_uid;
6299 		break;
6300 	case ARG_PTR_TO_MAP_KEY:
6301 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
6302 		 * check that [key, key + map->key_size) are within
6303 		 * stack limits and initialized
6304 		 */
6305 		if (!meta->map_ptr) {
6306 			/* in function declaration map_ptr must come before
6307 			 * map_key, so that it's verified and known before
6308 			 * we have to check map_key here. Otherwise it means
6309 			 * that kernel subsystem misconfigured verifier
6310 			 */
6311 			verbose(env, "invalid map_ptr to access map->key\n");
6312 			return -EACCES;
6313 		}
6314 		err = check_helper_mem_access(env, regno,
6315 					      meta->map_ptr->key_size, false,
6316 					      NULL);
6317 		break;
6318 	case ARG_PTR_TO_MAP_VALUE:
6319 		if (type_may_be_null(arg_type) && register_is_null(reg))
6320 			return 0;
6321 
6322 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
6323 		 * check [value, value + map->value_size) validity
6324 		 */
6325 		if (!meta->map_ptr) {
6326 			/* kernel subsystem misconfigured verifier */
6327 			verbose(env, "invalid map_ptr to access map->value\n");
6328 			return -EACCES;
6329 		}
6330 		meta->raw_mode = arg_type & MEM_UNINIT;
6331 		err = check_helper_mem_access(env, regno,
6332 					      meta->map_ptr->value_size, false,
6333 					      meta);
6334 		break;
6335 	case ARG_PTR_TO_PERCPU_BTF_ID:
6336 		if (!reg->btf_id) {
6337 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6338 			return -EACCES;
6339 		}
6340 		meta->ret_btf = reg->btf;
6341 		meta->ret_btf_id = reg->btf_id;
6342 		break;
6343 	case ARG_PTR_TO_SPIN_LOCK:
6344 		if (meta->func_id == BPF_FUNC_spin_lock) {
6345 			if (process_spin_lock(env, regno, true))
6346 				return -EACCES;
6347 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
6348 			if (process_spin_lock(env, regno, false))
6349 				return -EACCES;
6350 		} else {
6351 			verbose(env, "verifier internal error\n");
6352 			return -EFAULT;
6353 		}
6354 		break;
6355 	case ARG_PTR_TO_TIMER:
6356 		if (process_timer_func(env, regno, meta))
6357 			return -EACCES;
6358 		break;
6359 	case ARG_PTR_TO_FUNC:
6360 		meta->subprogno = reg->subprogno;
6361 		break;
6362 	case ARG_PTR_TO_MEM:
6363 		/* The access to this pointer is only checked when we hit the
6364 		 * next is_mem_size argument below.
6365 		 */
6366 		meta->raw_mode = arg_type & MEM_UNINIT;
6367 		if (arg_type & MEM_FIXED_SIZE) {
6368 			err = check_helper_mem_access(env, regno,
6369 						      fn->arg_size[arg], false,
6370 						      meta);
6371 		}
6372 		break;
6373 	case ARG_CONST_SIZE:
6374 		err = check_mem_size_reg(env, reg, regno, false, meta);
6375 		break;
6376 	case ARG_CONST_SIZE_OR_ZERO:
6377 		err = check_mem_size_reg(env, reg, regno, true, meta);
6378 		break;
6379 	case ARG_PTR_TO_DYNPTR:
6380 		/* We only need to check for initialized / uninitialized helper
6381 		 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6382 		 * assumption is that if it is, that a helper function
6383 		 * initialized the dynptr on behalf of the BPF program.
6384 		 */
6385 		if (base_type(reg->type) == PTR_TO_DYNPTR)
6386 			break;
6387 		if (arg_type & MEM_UNINIT) {
6388 			if (!is_dynptr_reg_valid_uninit(env, reg)) {
6389 				verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6390 				return -EINVAL;
6391 			}
6392 
6393 			/* We only support one dynptr being uninitialized at the moment,
6394 			 * which is sufficient for the helper functions we have right now.
6395 			 */
6396 			if (meta->uninit_dynptr_regno) {
6397 				verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6398 				return -EFAULT;
6399 			}
6400 
6401 			meta->uninit_dynptr_regno = regno;
6402 		} else if (!is_dynptr_reg_valid_init(env, reg)) {
6403 			verbose(env,
6404 				"Expected an initialized dynptr as arg #%d\n",
6405 				arg + 1);
6406 			return -EINVAL;
6407 		} else if (!is_dynptr_type_expected(env, reg, arg_type)) {
6408 			const char *err_extra = "";
6409 
6410 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6411 			case DYNPTR_TYPE_LOCAL:
6412 				err_extra = "local";
6413 				break;
6414 			case DYNPTR_TYPE_RINGBUF:
6415 				err_extra = "ringbuf";
6416 				break;
6417 			default:
6418 				err_extra = "<unknown>";
6419 				break;
6420 			}
6421 			verbose(env,
6422 				"Expected a dynptr of type %s as arg #%d\n",
6423 				err_extra, arg + 1);
6424 			return -EINVAL;
6425 		}
6426 		break;
6427 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6428 		if (!tnum_is_const(reg->var_off)) {
6429 			verbose(env, "R%d is not a known constant'\n",
6430 				regno);
6431 			return -EACCES;
6432 		}
6433 		meta->mem_size = reg->var_off.value;
6434 		err = mark_chain_precision(env, regno);
6435 		if (err)
6436 			return err;
6437 		break;
6438 	case ARG_PTR_TO_INT:
6439 	case ARG_PTR_TO_LONG:
6440 	{
6441 		int size = int_ptr_type_to_size(arg_type);
6442 
6443 		err = check_helper_mem_access(env, regno, size, false, meta);
6444 		if (err)
6445 			return err;
6446 		err = check_ptr_alignment(env, reg, 0, size, true);
6447 		break;
6448 	}
6449 	case ARG_PTR_TO_CONST_STR:
6450 	{
6451 		struct bpf_map *map = reg->map_ptr;
6452 		int map_off;
6453 		u64 map_addr;
6454 		char *str_ptr;
6455 
6456 		if (!bpf_map_is_rdonly(map)) {
6457 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6458 			return -EACCES;
6459 		}
6460 
6461 		if (!tnum_is_const(reg->var_off)) {
6462 			verbose(env, "R%d is not a constant address'\n", regno);
6463 			return -EACCES;
6464 		}
6465 
6466 		if (!map->ops->map_direct_value_addr) {
6467 			verbose(env, "no direct value access support for this map type\n");
6468 			return -EACCES;
6469 		}
6470 
6471 		err = check_map_access(env, regno, reg->off,
6472 				       map->value_size - reg->off, false,
6473 				       ACCESS_HELPER);
6474 		if (err)
6475 			return err;
6476 
6477 		map_off = reg->off + reg->var_off.value;
6478 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6479 		if (err) {
6480 			verbose(env, "direct value access on string failed\n");
6481 			return err;
6482 		}
6483 
6484 		str_ptr = (char *)(long)(map_addr);
6485 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6486 			verbose(env, "string is not zero-terminated\n");
6487 			return -EINVAL;
6488 		}
6489 		break;
6490 	}
6491 	case ARG_PTR_TO_KPTR:
6492 		if (process_kptr_func(env, regno, meta))
6493 			return -EACCES;
6494 		break;
6495 	}
6496 
6497 	return err;
6498 }
6499 
6500 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6501 {
6502 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6503 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6504 
6505 	if (func_id != BPF_FUNC_map_update_elem)
6506 		return false;
6507 
6508 	/* It's not possible to get access to a locked struct sock in these
6509 	 * contexts, so updating is safe.
6510 	 */
6511 	switch (type) {
6512 	case BPF_PROG_TYPE_TRACING:
6513 		if (eatype == BPF_TRACE_ITER)
6514 			return true;
6515 		break;
6516 	case BPF_PROG_TYPE_SOCKET_FILTER:
6517 	case BPF_PROG_TYPE_SCHED_CLS:
6518 	case BPF_PROG_TYPE_SCHED_ACT:
6519 	case BPF_PROG_TYPE_XDP:
6520 	case BPF_PROG_TYPE_SK_REUSEPORT:
6521 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6522 	case BPF_PROG_TYPE_SK_LOOKUP:
6523 		return true;
6524 	default:
6525 		break;
6526 	}
6527 
6528 	verbose(env, "cannot update sockmap in this context\n");
6529 	return false;
6530 }
6531 
6532 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6533 {
6534 	return env->prog->jit_requested &&
6535 	       bpf_jit_supports_subprog_tailcalls();
6536 }
6537 
6538 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6539 					struct bpf_map *map, int func_id)
6540 {
6541 	if (!map)
6542 		return 0;
6543 
6544 	/* We need a two way check, first is from map perspective ... */
6545 	switch (map->map_type) {
6546 	case BPF_MAP_TYPE_PROG_ARRAY:
6547 		if (func_id != BPF_FUNC_tail_call)
6548 			goto error;
6549 		break;
6550 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6551 		if (func_id != BPF_FUNC_perf_event_read &&
6552 		    func_id != BPF_FUNC_perf_event_output &&
6553 		    func_id != BPF_FUNC_skb_output &&
6554 		    func_id != BPF_FUNC_perf_event_read_value &&
6555 		    func_id != BPF_FUNC_xdp_output)
6556 			goto error;
6557 		break;
6558 	case BPF_MAP_TYPE_RINGBUF:
6559 		if (func_id != BPF_FUNC_ringbuf_output &&
6560 		    func_id != BPF_FUNC_ringbuf_reserve &&
6561 		    func_id != BPF_FUNC_ringbuf_query &&
6562 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6563 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6564 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6565 			goto error;
6566 		break;
6567 	case BPF_MAP_TYPE_USER_RINGBUF:
6568 		if (func_id != BPF_FUNC_user_ringbuf_drain)
6569 			goto error;
6570 		break;
6571 	case BPF_MAP_TYPE_STACK_TRACE:
6572 		if (func_id != BPF_FUNC_get_stackid)
6573 			goto error;
6574 		break;
6575 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6576 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6577 		    func_id != BPF_FUNC_current_task_under_cgroup)
6578 			goto error;
6579 		break;
6580 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6581 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6582 		if (func_id != BPF_FUNC_get_local_storage)
6583 			goto error;
6584 		break;
6585 	case BPF_MAP_TYPE_DEVMAP:
6586 	case BPF_MAP_TYPE_DEVMAP_HASH:
6587 		if (func_id != BPF_FUNC_redirect_map &&
6588 		    func_id != BPF_FUNC_map_lookup_elem)
6589 			goto error;
6590 		break;
6591 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6592 	 * appear.
6593 	 */
6594 	case BPF_MAP_TYPE_CPUMAP:
6595 		if (func_id != BPF_FUNC_redirect_map)
6596 			goto error;
6597 		break;
6598 	case BPF_MAP_TYPE_XSKMAP:
6599 		if (func_id != BPF_FUNC_redirect_map &&
6600 		    func_id != BPF_FUNC_map_lookup_elem)
6601 			goto error;
6602 		break;
6603 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6604 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6605 		if (func_id != BPF_FUNC_map_lookup_elem)
6606 			goto error;
6607 		break;
6608 	case BPF_MAP_TYPE_SOCKMAP:
6609 		if (func_id != BPF_FUNC_sk_redirect_map &&
6610 		    func_id != BPF_FUNC_sock_map_update &&
6611 		    func_id != BPF_FUNC_map_delete_elem &&
6612 		    func_id != BPF_FUNC_msg_redirect_map &&
6613 		    func_id != BPF_FUNC_sk_select_reuseport &&
6614 		    func_id != BPF_FUNC_map_lookup_elem &&
6615 		    !may_update_sockmap(env, func_id))
6616 			goto error;
6617 		break;
6618 	case BPF_MAP_TYPE_SOCKHASH:
6619 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6620 		    func_id != BPF_FUNC_sock_hash_update &&
6621 		    func_id != BPF_FUNC_map_delete_elem &&
6622 		    func_id != BPF_FUNC_msg_redirect_hash &&
6623 		    func_id != BPF_FUNC_sk_select_reuseport &&
6624 		    func_id != BPF_FUNC_map_lookup_elem &&
6625 		    !may_update_sockmap(env, func_id))
6626 			goto error;
6627 		break;
6628 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6629 		if (func_id != BPF_FUNC_sk_select_reuseport)
6630 			goto error;
6631 		break;
6632 	case BPF_MAP_TYPE_QUEUE:
6633 	case BPF_MAP_TYPE_STACK:
6634 		if (func_id != BPF_FUNC_map_peek_elem &&
6635 		    func_id != BPF_FUNC_map_pop_elem &&
6636 		    func_id != BPF_FUNC_map_push_elem)
6637 			goto error;
6638 		break;
6639 	case BPF_MAP_TYPE_SK_STORAGE:
6640 		if (func_id != BPF_FUNC_sk_storage_get &&
6641 		    func_id != BPF_FUNC_sk_storage_delete)
6642 			goto error;
6643 		break;
6644 	case BPF_MAP_TYPE_INODE_STORAGE:
6645 		if (func_id != BPF_FUNC_inode_storage_get &&
6646 		    func_id != BPF_FUNC_inode_storage_delete)
6647 			goto error;
6648 		break;
6649 	case BPF_MAP_TYPE_TASK_STORAGE:
6650 		if (func_id != BPF_FUNC_task_storage_get &&
6651 		    func_id != BPF_FUNC_task_storage_delete)
6652 			goto error;
6653 		break;
6654 	case BPF_MAP_TYPE_CGRP_STORAGE:
6655 		if (func_id != BPF_FUNC_cgrp_storage_get &&
6656 		    func_id != BPF_FUNC_cgrp_storage_delete)
6657 			goto error;
6658 		break;
6659 	case BPF_MAP_TYPE_BLOOM_FILTER:
6660 		if (func_id != BPF_FUNC_map_peek_elem &&
6661 		    func_id != BPF_FUNC_map_push_elem)
6662 			goto error;
6663 		break;
6664 	default:
6665 		break;
6666 	}
6667 
6668 	/* ... and second from the function itself. */
6669 	switch (func_id) {
6670 	case BPF_FUNC_tail_call:
6671 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6672 			goto error;
6673 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6674 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6675 			return -EINVAL;
6676 		}
6677 		break;
6678 	case BPF_FUNC_perf_event_read:
6679 	case BPF_FUNC_perf_event_output:
6680 	case BPF_FUNC_perf_event_read_value:
6681 	case BPF_FUNC_skb_output:
6682 	case BPF_FUNC_xdp_output:
6683 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6684 			goto error;
6685 		break;
6686 	case BPF_FUNC_ringbuf_output:
6687 	case BPF_FUNC_ringbuf_reserve:
6688 	case BPF_FUNC_ringbuf_query:
6689 	case BPF_FUNC_ringbuf_reserve_dynptr:
6690 	case BPF_FUNC_ringbuf_submit_dynptr:
6691 	case BPF_FUNC_ringbuf_discard_dynptr:
6692 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6693 			goto error;
6694 		break;
6695 	case BPF_FUNC_user_ringbuf_drain:
6696 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6697 			goto error;
6698 		break;
6699 	case BPF_FUNC_get_stackid:
6700 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6701 			goto error;
6702 		break;
6703 	case BPF_FUNC_current_task_under_cgroup:
6704 	case BPF_FUNC_skb_under_cgroup:
6705 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6706 			goto error;
6707 		break;
6708 	case BPF_FUNC_redirect_map:
6709 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6710 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6711 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6712 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6713 			goto error;
6714 		break;
6715 	case BPF_FUNC_sk_redirect_map:
6716 	case BPF_FUNC_msg_redirect_map:
6717 	case BPF_FUNC_sock_map_update:
6718 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6719 			goto error;
6720 		break;
6721 	case BPF_FUNC_sk_redirect_hash:
6722 	case BPF_FUNC_msg_redirect_hash:
6723 	case BPF_FUNC_sock_hash_update:
6724 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6725 			goto error;
6726 		break;
6727 	case BPF_FUNC_get_local_storage:
6728 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6729 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6730 			goto error;
6731 		break;
6732 	case BPF_FUNC_sk_select_reuseport:
6733 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6734 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6735 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6736 			goto error;
6737 		break;
6738 	case BPF_FUNC_map_pop_elem:
6739 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6740 		    map->map_type != BPF_MAP_TYPE_STACK)
6741 			goto error;
6742 		break;
6743 	case BPF_FUNC_map_peek_elem:
6744 	case BPF_FUNC_map_push_elem:
6745 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6746 		    map->map_type != BPF_MAP_TYPE_STACK &&
6747 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6748 			goto error;
6749 		break;
6750 	case BPF_FUNC_map_lookup_percpu_elem:
6751 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6752 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6753 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6754 			goto error;
6755 		break;
6756 	case BPF_FUNC_sk_storage_get:
6757 	case BPF_FUNC_sk_storage_delete:
6758 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6759 			goto error;
6760 		break;
6761 	case BPF_FUNC_inode_storage_get:
6762 	case BPF_FUNC_inode_storage_delete:
6763 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6764 			goto error;
6765 		break;
6766 	case BPF_FUNC_task_storage_get:
6767 	case BPF_FUNC_task_storage_delete:
6768 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6769 			goto error;
6770 		break;
6771 	case BPF_FUNC_cgrp_storage_get:
6772 	case BPF_FUNC_cgrp_storage_delete:
6773 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
6774 			goto error;
6775 		break;
6776 	default:
6777 		break;
6778 	}
6779 
6780 	return 0;
6781 error:
6782 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6783 		map->map_type, func_id_name(func_id), func_id);
6784 	return -EINVAL;
6785 }
6786 
6787 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6788 {
6789 	int count = 0;
6790 
6791 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6792 		count++;
6793 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6794 		count++;
6795 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6796 		count++;
6797 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6798 		count++;
6799 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6800 		count++;
6801 
6802 	/* We only support one arg being in raw mode at the moment,
6803 	 * which is sufficient for the helper functions we have
6804 	 * right now.
6805 	 */
6806 	return count <= 1;
6807 }
6808 
6809 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6810 {
6811 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6812 	bool has_size = fn->arg_size[arg] != 0;
6813 	bool is_next_size = false;
6814 
6815 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6816 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6817 
6818 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6819 		return is_next_size;
6820 
6821 	return has_size == is_next_size || is_next_size == is_fixed;
6822 }
6823 
6824 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6825 {
6826 	/* bpf_xxx(..., buf, len) call will access 'len'
6827 	 * bytes from memory 'buf'. Both arg types need
6828 	 * to be paired, so make sure there's no buggy
6829 	 * helper function specification.
6830 	 */
6831 	if (arg_type_is_mem_size(fn->arg1_type) ||
6832 	    check_args_pair_invalid(fn, 0) ||
6833 	    check_args_pair_invalid(fn, 1) ||
6834 	    check_args_pair_invalid(fn, 2) ||
6835 	    check_args_pair_invalid(fn, 3) ||
6836 	    check_args_pair_invalid(fn, 4))
6837 		return false;
6838 
6839 	return true;
6840 }
6841 
6842 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6843 {
6844 	int i;
6845 
6846 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6847 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
6848 			return !!fn->arg_btf_id[i];
6849 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
6850 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
6851 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6852 		    /* arg_btf_id and arg_size are in a union. */
6853 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6854 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
6855 			return false;
6856 	}
6857 
6858 	return true;
6859 }
6860 
6861 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
6862 {
6863 	return check_raw_mode_ok(fn) &&
6864 	       check_arg_pair_ok(fn) &&
6865 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
6866 }
6867 
6868 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6869  * are now invalid, so turn them into unknown SCALAR_VALUE.
6870  */
6871 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6872 {
6873 	struct bpf_func_state *state;
6874 	struct bpf_reg_state *reg;
6875 
6876 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6877 		if (reg_is_pkt_pointer_any(reg))
6878 			__mark_reg_unknown(env, reg);
6879 	}));
6880 }
6881 
6882 enum {
6883 	AT_PKT_END = -1,
6884 	BEYOND_PKT_END = -2,
6885 };
6886 
6887 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6888 {
6889 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6890 	struct bpf_reg_state *reg = &state->regs[regn];
6891 
6892 	if (reg->type != PTR_TO_PACKET)
6893 		/* PTR_TO_PACKET_META is not supported yet */
6894 		return;
6895 
6896 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6897 	 * How far beyond pkt_end it goes is unknown.
6898 	 * if (!range_open) it's the case of pkt >= pkt_end
6899 	 * if (range_open) it's the case of pkt > pkt_end
6900 	 * hence this pointer is at least 1 byte bigger than pkt_end
6901 	 */
6902 	if (range_open)
6903 		reg->range = BEYOND_PKT_END;
6904 	else
6905 		reg->range = AT_PKT_END;
6906 }
6907 
6908 /* The pointer with the specified id has released its reference to kernel
6909  * resources. Identify all copies of the same pointer and clear the reference.
6910  */
6911 static int release_reference(struct bpf_verifier_env *env,
6912 			     int ref_obj_id)
6913 {
6914 	struct bpf_func_state *state;
6915 	struct bpf_reg_state *reg;
6916 	int err;
6917 
6918 	err = release_reference_state(cur_func(env), ref_obj_id);
6919 	if (err)
6920 		return err;
6921 
6922 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6923 		if (reg->ref_obj_id == ref_obj_id) {
6924 			if (!env->allow_ptr_leaks)
6925 				__mark_reg_not_init(env, reg);
6926 			else
6927 				__mark_reg_unknown(env, reg);
6928 		}
6929 	}));
6930 
6931 	return 0;
6932 }
6933 
6934 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6935 				    struct bpf_reg_state *regs)
6936 {
6937 	int i;
6938 
6939 	/* after the call registers r0 - r5 were scratched */
6940 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6941 		mark_reg_not_init(env, regs, caller_saved[i]);
6942 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6943 	}
6944 }
6945 
6946 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6947 				   struct bpf_func_state *caller,
6948 				   struct bpf_func_state *callee,
6949 				   int insn_idx);
6950 
6951 static int set_callee_state(struct bpf_verifier_env *env,
6952 			    struct bpf_func_state *caller,
6953 			    struct bpf_func_state *callee, int insn_idx);
6954 
6955 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6956 			     int *insn_idx, int subprog,
6957 			     set_callee_state_fn set_callee_state_cb)
6958 {
6959 	struct bpf_verifier_state *state = env->cur_state;
6960 	struct bpf_func_info_aux *func_info_aux;
6961 	struct bpf_func_state *caller, *callee;
6962 	int err;
6963 	bool is_global = false;
6964 
6965 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6966 		verbose(env, "the call stack of %d frames is too deep\n",
6967 			state->curframe + 2);
6968 		return -E2BIG;
6969 	}
6970 
6971 	caller = state->frame[state->curframe];
6972 	if (state->frame[state->curframe + 1]) {
6973 		verbose(env, "verifier bug. Frame %d already allocated\n",
6974 			state->curframe + 1);
6975 		return -EFAULT;
6976 	}
6977 
6978 	func_info_aux = env->prog->aux->func_info_aux;
6979 	if (func_info_aux)
6980 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6981 	err = btf_check_subprog_call(env, subprog, caller->regs);
6982 	if (err == -EFAULT)
6983 		return err;
6984 	if (is_global) {
6985 		if (err) {
6986 			verbose(env, "Caller passes invalid args into func#%d\n",
6987 				subprog);
6988 			return err;
6989 		} else {
6990 			if (env->log.level & BPF_LOG_LEVEL)
6991 				verbose(env,
6992 					"Func#%d is global and valid. Skipping.\n",
6993 					subprog);
6994 			clear_caller_saved_regs(env, caller->regs);
6995 
6996 			/* All global functions return a 64-bit SCALAR_VALUE */
6997 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
6998 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6999 
7000 			/* continue with next insn after call */
7001 			return 0;
7002 		}
7003 	}
7004 
7005 	/* set_callee_state is used for direct subprog calls, but we are
7006 	 * interested in validating only BPF helpers that can call subprogs as
7007 	 * callbacks
7008 	 */
7009 	if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
7010 		verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
7011 			func_id_name(insn->imm), insn->imm);
7012 		return -EFAULT;
7013 	}
7014 
7015 	if (insn->code == (BPF_JMP | BPF_CALL) &&
7016 	    insn->src_reg == 0 &&
7017 	    insn->imm == BPF_FUNC_timer_set_callback) {
7018 		struct bpf_verifier_state *async_cb;
7019 
7020 		/* there is no real recursion here. timer callbacks are async */
7021 		env->subprog_info[subprog].is_async_cb = true;
7022 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
7023 					 *insn_idx, subprog);
7024 		if (!async_cb)
7025 			return -EFAULT;
7026 		callee = async_cb->frame[0];
7027 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
7028 
7029 		/* Convert bpf_timer_set_callback() args into timer callback args */
7030 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
7031 		if (err)
7032 			return err;
7033 
7034 		clear_caller_saved_regs(env, caller->regs);
7035 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
7036 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7037 		/* continue with next insn after call */
7038 		return 0;
7039 	}
7040 
7041 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
7042 	if (!callee)
7043 		return -ENOMEM;
7044 	state->frame[state->curframe + 1] = callee;
7045 
7046 	/* callee cannot access r0, r6 - r9 for reading and has to write
7047 	 * into its own stack before reading from it.
7048 	 * callee can read/write into caller's stack
7049 	 */
7050 	init_func_state(env, callee,
7051 			/* remember the callsite, it will be used by bpf_exit */
7052 			*insn_idx /* callsite */,
7053 			state->curframe + 1 /* frameno within this callchain */,
7054 			subprog /* subprog number within this prog */);
7055 
7056 	/* Transfer references to the callee */
7057 	err = copy_reference_state(callee, caller);
7058 	if (err)
7059 		goto err_out;
7060 
7061 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
7062 	if (err)
7063 		goto err_out;
7064 
7065 	clear_caller_saved_regs(env, caller->regs);
7066 
7067 	/* only increment it after check_reg_arg() finished */
7068 	state->curframe++;
7069 
7070 	/* and go analyze first insn of the callee */
7071 	*insn_idx = env->subprog_info[subprog].start - 1;
7072 
7073 	if (env->log.level & BPF_LOG_LEVEL) {
7074 		verbose(env, "caller:\n");
7075 		print_verifier_state(env, caller, true);
7076 		verbose(env, "callee:\n");
7077 		print_verifier_state(env, callee, true);
7078 	}
7079 	return 0;
7080 
7081 err_out:
7082 	free_func_state(callee);
7083 	state->frame[state->curframe + 1] = NULL;
7084 	return err;
7085 }
7086 
7087 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
7088 				   struct bpf_func_state *caller,
7089 				   struct bpf_func_state *callee)
7090 {
7091 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
7092 	 *      void *callback_ctx, u64 flags);
7093 	 * callback_fn(struct bpf_map *map, void *key, void *value,
7094 	 *      void *callback_ctx);
7095 	 */
7096 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7097 
7098 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7099 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7100 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7101 
7102 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7103 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7104 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7105 
7106 	/* pointer to stack or null */
7107 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
7108 
7109 	/* unused */
7110 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7111 	return 0;
7112 }
7113 
7114 static int set_callee_state(struct bpf_verifier_env *env,
7115 			    struct bpf_func_state *caller,
7116 			    struct bpf_func_state *callee, int insn_idx)
7117 {
7118 	int i;
7119 
7120 	/* copy r1 - r5 args that callee can access.  The copy includes parent
7121 	 * pointers, which connects us up to the liveness chain
7122 	 */
7123 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7124 		callee->regs[i] = caller->regs[i];
7125 	return 0;
7126 }
7127 
7128 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7129 			   int *insn_idx)
7130 {
7131 	int subprog, target_insn;
7132 
7133 	target_insn = *insn_idx + insn->imm + 1;
7134 	subprog = find_subprog(env, target_insn);
7135 	if (subprog < 0) {
7136 		verbose(env, "verifier bug. No program starts at insn %d\n",
7137 			target_insn);
7138 		return -EFAULT;
7139 	}
7140 
7141 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7142 }
7143 
7144 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7145 				       struct bpf_func_state *caller,
7146 				       struct bpf_func_state *callee,
7147 				       int insn_idx)
7148 {
7149 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7150 	struct bpf_map *map;
7151 	int err;
7152 
7153 	if (bpf_map_ptr_poisoned(insn_aux)) {
7154 		verbose(env, "tail_call abusing map_ptr\n");
7155 		return -EINVAL;
7156 	}
7157 
7158 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7159 	if (!map->ops->map_set_for_each_callback_args ||
7160 	    !map->ops->map_for_each_callback) {
7161 		verbose(env, "callback function not allowed for map\n");
7162 		return -ENOTSUPP;
7163 	}
7164 
7165 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7166 	if (err)
7167 		return err;
7168 
7169 	callee->in_callback_fn = true;
7170 	callee->callback_ret_range = tnum_range(0, 1);
7171 	return 0;
7172 }
7173 
7174 static int set_loop_callback_state(struct bpf_verifier_env *env,
7175 				   struct bpf_func_state *caller,
7176 				   struct bpf_func_state *callee,
7177 				   int insn_idx)
7178 {
7179 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7180 	 *	    u64 flags);
7181 	 * callback_fn(u32 index, void *callback_ctx);
7182 	 */
7183 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7184 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7185 
7186 	/* unused */
7187 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7188 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7189 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7190 
7191 	callee->in_callback_fn = true;
7192 	callee->callback_ret_range = tnum_range(0, 1);
7193 	return 0;
7194 }
7195 
7196 static int set_timer_callback_state(struct bpf_verifier_env *env,
7197 				    struct bpf_func_state *caller,
7198 				    struct bpf_func_state *callee,
7199 				    int insn_idx)
7200 {
7201 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7202 
7203 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7204 	 * callback_fn(struct bpf_map *map, void *key, void *value);
7205 	 */
7206 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7207 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7208 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
7209 
7210 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7211 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7212 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
7213 
7214 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7215 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7216 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
7217 
7218 	/* unused */
7219 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7220 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7221 	callee->in_async_callback_fn = true;
7222 	callee->callback_ret_range = tnum_range(0, 1);
7223 	return 0;
7224 }
7225 
7226 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7227 				       struct bpf_func_state *caller,
7228 				       struct bpf_func_state *callee,
7229 				       int insn_idx)
7230 {
7231 	/* bpf_find_vma(struct task_struct *task, u64 addr,
7232 	 *               void *callback_fn, void *callback_ctx, u64 flags)
7233 	 * (callback_fn)(struct task_struct *task,
7234 	 *               struct vm_area_struct *vma, void *callback_ctx);
7235 	 */
7236 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7237 
7238 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7239 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7240 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
7241 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7242 
7243 	/* pointer to stack or null */
7244 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7245 
7246 	/* unused */
7247 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7248 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7249 	callee->in_callback_fn = true;
7250 	callee->callback_ret_range = tnum_range(0, 1);
7251 	return 0;
7252 }
7253 
7254 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7255 					   struct bpf_func_state *caller,
7256 					   struct bpf_func_state *callee,
7257 					   int insn_idx)
7258 {
7259 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7260 	 *			  callback_ctx, u64 flags);
7261 	 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
7262 	 */
7263 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7264 	callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
7265 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7266 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7267 
7268 	/* unused */
7269 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7270 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7271 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7272 
7273 	callee->in_callback_fn = true;
7274 	callee->callback_ret_range = tnum_range(0, 1);
7275 	return 0;
7276 }
7277 
7278 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7279 {
7280 	struct bpf_verifier_state *state = env->cur_state;
7281 	struct bpf_func_state *caller, *callee;
7282 	struct bpf_reg_state *r0;
7283 	int err;
7284 
7285 	callee = state->frame[state->curframe];
7286 	r0 = &callee->regs[BPF_REG_0];
7287 	if (r0->type == PTR_TO_STACK) {
7288 		/* technically it's ok to return caller's stack pointer
7289 		 * (or caller's caller's pointer) back to the caller,
7290 		 * since these pointers are valid. Only current stack
7291 		 * pointer will be invalid as soon as function exits,
7292 		 * but let's be conservative
7293 		 */
7294 		verbose(env, "cannot return stack pointer to the caller\n");
7295 		return -EINVAL;
7296 	}
7297 
7298 	caller = state->frame[state->curframe - 1];
7299 	if (callee->in_callback_fn) {
7300 		/* enforce R0 return value range [0, 1]. */
7301 		struct tnum range = callee->callback_ret_range;
7302 
7303 		if (r0->type != SCALAR_VALUE) {
7304 			verbose(env, "R0 not a scalar value\n");
7305 			return -EACCES;
7306 		}
7307 		if (!tnum_in(range, r0->var_off)) {
7308 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7309 			return -EINVAL;
7310 		}
7311 	} else {
7312 		/* return to the caller whatever r0 had in the callee */
7313 		caller->regs[BPF_REG_0] = *r0;
7314 	}
7315 
7316 	/* callback_fn frame should have released its own additions to parent's
7317 	 * reference state at this point, or check_reference_leak would
7318 	 * complain, hence it must be the same as the caller. There is no need
7319 	 * to copy it back.
7320 	 */
7321 	if (!callee->in_callback_fn) {
7322 		/* Transfer references to the caller */
7323 		err = copy_reference_state(caller, callee);
7324 		if (err)
7325 			return err;
7326 	}
7327 
7328 	*insn_idx = callee->callsite + 1;
7329 	if (env->log.level & BPF_LOG_LEVEL) {
7330 		verbose(env, "returning from callee:\n");
7331 		print_verifier_state(env, callee, true);
7332 		verbose(env, "to caller at %d:\n", *insn_idx);
7333 		print_verifier_state(env, caller, true);
7334 	}
7335 	/* clear everything in the callee */
7336 	free_func_state(callee);
7337 	state->frame[state->curframe--] = NULL;
7338 	return 0;
7339 }
7340 
7341 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7342 				   int func_id,
7343 				   struct bpf_call_arg_meta *meta)
7344 {
7345 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7346 
7347 	if (ret_type != RET_INTEGER ||
7348 	    (func_id != BPF_FUNC_get_stack &&
7349 	     func_id != BPF_FUNC_get_task_stack &&
7350 	     func_id != BPF_FUNC_probe_read_str &&
7351 	     func_id != BPF_FUNC_probe_read_kernel_str &&
7352 	     func_id != BPF_FUNC_probe_read_user_str))
7353 		return;
7354 
7355 	ret_reg->smax_value = meta->msize_max_value;
7356 	ret_reg->s32_max_value = meta->msize_max_value;
7357 	ret_reg->smin_value = -MAX_ERRNO;
7358 	ret_reg->s32_min_value = -MAX_ERRNO;
7359 	reg_bounds_sync(ret_reg);
7360 }
7361 
7362 static int
7363 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7364 		int func_id, int insn_idx)
7365 {
7366 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7367 	struct bpf_map *map = meta->map_ptr;
7368 
7369 	if (func_id != BPF_FUNC_tail_call &&
7370 	    func_id != BPF_FUNC_map_lookup_elem &&
7371 	    func_id != BPF_FUNC_map_update_elem &&
7372 	    func_id != BPF_FUNC_map_delete_elem &&
7373 	    func_id != BPF_FUNC_map_push_elem &&
7374 	    func_id != BPF_FUNC_map_pop_elem &&
7375 	    func_id != BPF_FUNC_map_peek_elem &&
7376 	    func_id != BPF_FUNC_for_each_map_elem &&
7377 	    func_id != BPF_FUNC_redirect_map &&
7378 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
7379 		return 0;
7380 
7381 	if (map == NULL) {
7382 		verbose(env, "kernel subsystem misconfigured verifier\n");
7383 		return -EINVAL;
7384 	}
7385 
7386 	/* In case of read-only, some additional restrictions
7387 	 * need to be applied in order to prevent altering the
7388 	 * state of the map from program side.
7389 	 */
7390 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7391 	    (func_id == BPF_FUNC_map_delete_elem ||
7392 	     func_id == BPF_FUNC_map_update_elem ||
7393 	     func_id == BPF_FUNC_map_push_elem ||
7394 	     func_id == BPF_FUNC_map_pop_elem)) {
7395 		verbose(env, "write into map forbidden\n");
7396 		return -EACCES;
7397 	}
7398 
7399 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7400 		bpf_map_ptr_store(aux, meta->map_ptr,
7401 				  !meta->map_ptr->bypass_spec_v1);
7402 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7403 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7404 				  !meta->map_ptr->bypass_spec_v1);
7405 	return 0;
7406 }
7407 
7408 static int
7409 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7410 		int func_id, int insn_idx)
7411 {
7412 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7413 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7414 	struct bpf_map *map = meta->map_ptr;
7415 	u64 val, max;
7416 	int err;
7417 
7418 	if (func_id != BPF_FUNC_tail_call)
7419 		return 0;
7420 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7421 		verbose(env, "kernel subsystem misconfigured verifier\n");
7422 		return -EINVAL;
7423 	}
7424 
7425 	reg = &regs[BPF_REG_3];
7426 	val = reg->var_off.value;
7427 	max = map->max_entries;
7428 
7429 	if (!(register_is_const(reg) && val < max)) {
7430 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7431 		return 0;
7432 	}
7433 
7434 	err = mark_chain_precision(env, BPF_REG_3);
7435 	if (err)
7436 		return err;
7437 	if (bpf_map_key_unseen(aux))
7438 		bpf_map_key_store(aux, val);
7439 	else if (!bpf_map_key_poisoned(aux) &&
7440 		  bpf_map_key_immediate(aux) != val)
7441 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7442 	return 0;
7443 }
7444 
7445 static int check_reference_leak(struct bpf_verifier_env *env)
7446 {
7447 	struct bpf_func_state *state = cur_func(env);
7448 	bool refs_lingering = false;
7449 	int i;
7450 
7451 	if (state->frameno && !state->in_callback_fn)
7452 		return 0;
7453 
7454 	for (i = 0; i < state->acquired_refs; i++) {
7455 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7456 			continue;
7457 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7458 			state->refs[i].id, state->refs[i].insn_idx);
7459 		refs_lingering = true;
7460 	}
7461 	return refs_lingering ? -EINVAL : 0;
7462 }
7463 
7464 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7465 				   struct bpf_reg_state *regs)
7466 {
7467 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7468 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7469 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7470 	int err, fmt_map_off, num_args;
7471 	u64 fmt_addr;
7472 	char *fmt;
7473 
7474 	/* data must be an array of u64 */
7475 	if (data_len_reg->var_off.value % 8)
7476 		return -EINVAL;
7477 	num_args = data_len_reg->var_off.value / 8;
7478 
7479 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7480 	 * and map_direct_value_addr is set.
7481 	 */
7482 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7483 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7484 						  fmt_map_off);
7485 	if (err) {
7486 		verbose(env, "verifier bug\n");
7487 		return -EFAULT;
7488 	}
7489 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7490 
7491 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7492 	 * can focus on validating the format specifiers.
7493 	 */
7494 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7495 	if (err < 0)
7496 		verbose(env, "Invalid format string\n");
7497 
7498 	return err;
7499 }
7500 
7501 static int check_get_func_ip(struct bpf_verifier_env *env)
7502 {
7503 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7504 	int func_id = BPF_FUNC_get_func_ip;
7505 
7506 	if (type == BPF_PROG_TYPE_TRACING) {
7507 		if (!bpf_prog_has_trampoline(env->prog)) {
7508 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7509 				func_id_name(func_id), func_id);
7510 			return -ENOTSUPP;
7511 		}
7512 		return 0;
7513 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7514 		return 0;
7515 	}
7516 
7517 	verbose(env, "func %s#%d not supported for program type %d\n",
7518 		func_id_name(func_id), func_id, type);
7519 	return -ENOTSUPP;
7520 }
7521 
7522 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7523 {
7524 	return &env->insn_aux_data[env->insn_idx];
7525 }
7526 
7527 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7528 {
7529 	struct bpf_reg_state *regs = cur_regs(env);
7530 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7531 	bool reg_is_null = register_is_null(reg);
7532 
7533 	if (reg_is_null)
7534 		mark_chain_precision(env, BPF_REG_4);
7535 
7536 	return reg_is_null;
7537 }
7538 
7539 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7540 {
7541 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7542 
7543 	if (!state->initialized) {
7544 		state->initialized = 1;
7545 		state->fit_for_inline = loop_flag_is_zero(env);
7546 		state->callback_subprogno = subprogno;
7547 		return;
7548 	}
7549 
7550 	if (!state->fit_for_inline)
7551 		return;
7552 
7553 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7554 				 state->callback_subprogno == subprogno);
7555 }
7556 
7557 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7558 			     int *insn_idx_p)
7559 {
7560 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7561 	const struct bpf_func_proto *fn = NULL;
7562 	enum bpf_return_type ret_type;
7563 	enum bpf_type_flag ret_flag;
7564 	struct bpf_reg_state *regs;
7565 	struct bpf_call_arg_meta meta;
7566 	int insn_idx = *insn_idx_p;
7567 	bool changes_data;
7568 	int i, err, func_id;
7569 
7570 	/* find function prototype */
7571 	func_id = insn->imm;
7572 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7573 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7574 			func_id);
7575 		return -EINVAL;
7576 	}
7577 
7578 	if (env->ops->get_func_proto)
7579 		fn = env->ops->get_func_proto(func_id, env->prog);
7580 	if (!fn) {
7581 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7582 			func_id);
7583 		return -EINVAL;
7584 	}
7585 
7586 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7587 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7588 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7589 		return -EINVAL;
7590 	}
7591 
7592 	if (fn->allowed && !fn->allowed(env->prog)) {
7593 		verbose(env, "helper call is not allowed in probe\n");
7594 		return -EINVAL;
7595 	}
7596 
7597 	if (!env->prog->aux->sleepable && fn->might_sleep) {
7598 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
7599 		return -EINVAL;
7600 	}
7601 
7602 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7603 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7604 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7605 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7606 			func_id_name(func_id), func_id);
7607 		return -EINVAL;
7608 	}
7609 
7610 	memset(&meta, 0, sizeof(meta));
7611 	meta.pkt_access = fn->pkt_access;
7612 
7613 	err = check_func_proto(fn, func_id);
7614 	if (err) {
7615 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7616 			func_id_name(func_id), func_id);
7617 		return err;
7618 	}
7619 
7620 	if (env->cur_state->active_rcu_lock) {
7621 		if (fn->might_sleep) {
7622 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
7623 				func_id_name(func_id), func_id);
7624 			return -EINVAL;
7625 		}
7626 
7627 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
7628 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
7629 	}
7630 
7631 	meta.func_id = func_id;
7632 	/* check args */
7633 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7634 		err = check_func_arg(env, i, &meta, fn);
7635 		if (err)
7636 			return err;
7637 	}
7638 
7639 	err = record_func_map(env, &meta, func_id, insn_idx);
7640 	if (err)
7641 		return err;
7642 
7643 	err = record_func_key(env, &meta, func_id, insn_idx);
7644 	if (err)
7645 		return err;
7646 
7647 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
7648 	 * is inferred from register state.
7649 	 */
7650 	for (i = 0; i < meta.access_size; i++) {
7651 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7652 				       BPF_WRITE, -1, false);
7653 		if (err)
7654 			return err;
7655 	}
7656 
7657 	regs = cur_regs(env);
7658 
7659 	if (meta.uninit_dynptr_regno) {
7660 		/* we write BPF_DW bits (8 bytes) at a time */
7661 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7662 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7663 					       i, BPF_DW, BPF_WRITE, -1, false);
7664 			if (err)
7665 				return err;
7666 		}
7667 
7668 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7669 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7670 					      insn_idx);
7671 		if (err)
7672 			return err;
7673 	}
7674 
7675 	if (meta.release_regno) {
7676 		err = -EINVAL;
7677 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7678 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7679 		else if (meta.ref_obj_id)
7680 			err = release_reference(env, meta.ref_obj_id);
7681 		/* meta.ref_obj_id can only be 0 if register that is meant to be
7682 		 * released is NULL, which must be > R0.
7683 		 */
7684 		else if (register_is_null(&regs[meta.release_regno]))
7685 			err = 0;
7686 		if (err) {
7687 			verbose(env, "func %s#%d reference has not been acquired before\n",
7688 				func_id_name(func_id), func_id);
7689 			return err;
7690 		}
7691 	}
7692 
7693 	switch (func_id) {
7694 	case BPF_FUNC_tail_call:
7695 		err = check_reference_leak(env);
7696 		if (err) {
7697 			verbose(env, "tail_call would lead to reference leak\n");
7698 			return err;
7699 		}
7700 		break;
7701 	case BPF_FUNC_get_local_storage:
7702 		/* check that flags argument in get_local_storage(map, flags) is 0,
7703 		 * this is required because get_local_storage() can't return an error.
7704 		 */
7705 		if (!register_is_null(&regs[BPF_REG_2])) {
7706 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7707 			return -EINVAL;
7708 		}
7709 		break;
7710 	case BPF_FUNC_for_each_map_elem:
7711 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7712 					set_map_elem_callback_state);
7713 		break;
7714 	case BPF_FUNC_timer_set_callback:
7715 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7716 					set_timer_callback_state);
7717 		break;
7718 	case BPF_FUNC_find_vma:
7719 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7720 					set_find_vma_callback_state);
7721 		break;
7722 	case BPF_FUNC_snprintf:
7723 		err = check_bpf_snprintf_call(env, regs);
7724 		break;
7725 	case BPF_FUNC_loop:
7726 		update_loop_inline_state(env, meta.subprogno);
7727 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7728 					set_loop_callback_state);
7729 		break;
7730 	case BPF_FUNC_dynptr_from_mem:
7731 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7732 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7733 				reg_type_str(env, regs[BPF_REG_1].type));
7734 			return -EACCES;
7735 		}
7736 		break;
7737 	case BPF_FUNC_set_retval:
7738 		if (prog_type == BPF_PROG_TYPE_LSM &&
7739 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7740 			if (!env->prog->aux->attach_func_proto->type) {
7741 				/* Make sure programs that attach to void
7742 				 * hooks don't try to modify return value.
7743 				 */
7744 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7745 				return -EINVAL;
7746 			}
7747 		}
7748 		break;
7749 	case BPF_FUNC_dynptr_data:
7750 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7751 			if (arg_type_is_dynptr(fn->arg_type[i])) {
7752 				struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7753 
7754 				if (meta.ref_obj_id) {
7755 					verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7756 					return -EFAULT;
7757 				}
7758 
7759 				if (base_type(reg->type) != PTR_TO_DYNPTR)
7760 					/* Find the id of the dynptr we're
7761 					 * tracking the reference of
7762 					 */
7763 					meta.ref_obj_id = stack_slot_get_id(env, reg);
7764 				break;
7765 			}
7766 		}
7767 		if (i == MAX_BPF_FUNC_REG_ARGS) {
7768 			verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7769 			return -EFAULT;
7770 		}
7771 		break;
7772 	case BPF_FUNC_user_ringbuf_drain:
7773 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7774 					set_user_ringbuf_callback_state);
7775 		break;
7776 	}
7777 
7778 	if (err)
7779 		return err;
7780 
7781 	/* reset caller saved regs */
7782 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7783 		mark_reg_not_init(env, regs, caller_saved[i]);
7784 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7785 	}
7786 
7787 	/* helper call returns 64-bit value. */
7788 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7789 
7790 	/* update return register (already marked as written above) */
7791 	ret_type = fn->ret_type;
7792 	ret_flag = type_flag(ret_type);
7793 
7794 	switch (base_type(ret_type)) {
7795 	case RET_INTEGER:
7796 		/* sets type to SCALAR_VALUE */
7797 		mark_reg_unknown(env, regs, BPF_REG_0);
7798 		break;
7799 	case RET_VOID:
7800 		regs[BPF_REG_0].type = NOT_INIT;
7801 		break;
7802 	case RET_PTR_TO_MAP_VALUE:
7803 		/* There is no offset yet applied, variable or fixed */
7804 		mark_reg_known_zero(env, regs, BPF_REG_0);
7805 		/* remember map_ptr, so that check_map_access()
7806 		 * can check 'value_size' boundary of memory access
7807 		 * to map element returned from bpf_map_lookup_elem()
7808 		 */
7809 		if (meta.map_ptr == NULL) {
7810 			verbose(env,
7811 				"kernel subsystem misconfigured verifier\n");
7812 			return -EINVAL;
7813 		}
7814 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7815 		regs[BPF_REG_0].map_uid = meta.map_uid;
7816 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7817 		if (!type_may_be_null(ret_type) &&
7818 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
7819 			regs[BPF_REG_0].id = ++env->id_gen;
7820 		}
7821 		break;
7822 	case RET_PTR_TO_SOCKET:
7823 		mark_reg_known_zero(env, regs, BPF_REG_0);
7824 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7825 		break;
7826 	case RET_PTR_TO_SOCK_COMMON:
7827 		mark_reg_known_zero(env, regs, BPF_REG_0);
7828 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7829 		break;
7830 	case RET_PTR_TO_TCP_SOCK:
7831 		mark_reg_known_zero(env, regs, BPF_REG_0);
7832 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7833 		break;
7834 	case RET_PTR_TO_MEM:
7835 		mark_reg_known_zero(env, regs, BPF_REG_0);
7836 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7837 		regs[BPF_REG_0].mem_size = meta.mem_size;
7838 		break;
7839 	case RET_PTR_TO_MEM_OR_BTF_ID:
7840 	{
7841 		const struct btf_type *t;
7842 
7843 		mark_reg_known_zero(env, regs, BPF_REG_0);
7844 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7845 		if (!btf_type_is_struct(t)) {
7846 			u32 tsize;
7847 			const struct btf_type *ret;
7848 			const char *tname;
7849 
7850 			/* resolve the type size of ksym. */
7851 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7852 			if (IS_ERR(ret)) {
7853 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7854 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
7855 					tname, PTR_ERR(ret));
7856 				return -EINVAL;
7857 			}
7858 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7859 			regs[BPF_REG_0].mem_size = tsize;
7860 		} else {
7861 			/* MEM_RDONLY may be carried from ret_flag, but it
7862 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7863 			 * it will confuse the check of PTR_TO_BTF_ID in
7864 			 * check_mem_access().
7865 			 */
7866 			ret_flag &= ~MEM_RDONLY;
7867 
7868 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7869 			regs[BPF_REG_0].btf = meta.ret_btf;
7870 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7871 		}
7872 		break;
7873 	}
7874 	case RET_PTR_TO_BTF_ID:
7875 	{
7876 		struct btf *ret_btf;
7877 		int ret_btf_id;
7878 
7879 		mark_reg_known_zero(env, regs, BPF_REG_0);
7880 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7881 		if (func_id == BPF_FUNC_kptr_xchg) {
7882 			ret_btf = meta.kptr_field->kptr.btf;
7883 			ret_btf_id = meta.kptr_field->kptr.btf_id;
7884 		} else {
7885 			if (fn->ret_btf_id == BPF_PTR_POISON) {
7886 				verbose(env, "verifier internal error:");
7887 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7888 					func_id_name(func_id));
7889 				return -EINVAL;
7890 			}
7891 			ret_btf = btf_vmlinux;
7892 			ret_btf_id = *fn->ret_btf_id;
7893 		}
7894 		if (ret_btf_id == 0) {
7895 			verbose(env, "invalid return type %u of func %s#%d\n",
7896 				base_type(ret_type), func_id_name(func_id),
7897 				func_id);
7898 			return -EINVAL;
7899 		}
7900 		regs[BPF_REG_0].btf = ret_btf;
7901 		regs[BPF_REG_0].btf_id = ret_btf_id;
7902 		break;
7903 	}
7904 	default:
7905 		verbose(env, "unknown return type %u of func %s#%d\n",
7906 			base_type(ret_type), func_id_name(func_id), func_id);
7907 		return -EINVAL;
7908 	}
7909 
7910 	if (type_may_be_null(regs[BPF_REG_0].type))
7911 		regs[BPF_REG_0].id = ++env->id_gen;
7912 
7913 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7914 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7915 			func_id_name(func_id), func_id);
7916 		return -EFAULT;
7917 	}
7918 
7919 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
7920 		/* For release_reference() */
7921 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7922 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
7923 		int id = acquire_reference_state(env, insn_idx);
7924 
7925 		if (id < 0)
7926 			return id;
7927 		/* For mark_ptr_or_null_reg() */
7928 		regs[BPF_REG_0].id = id;
7929 		/* For release_reference() */
7930 		regs[BPF_REG_0].ref_obj_id = id;
7931 	}
7932 
7933 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7934 
7935 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7936 	if (err)
7937 		return err;
7938 
7939 	if ((func_id == BPF_FUNC_get_stack ||
7940 	     func_id == BPF_FUNC_get_task_stack) &&
7941 	    !env->prog->has_callchain_buf) {
7942 		const char *err_str;
7943 
7944 #ifdef CONFIG_PERF_EVENTS
7945 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
7946 		err_str = "cannot get callchain buffer for func %s#%d\n";
7947 #else
7948 		err = -ENOTSUPP;
7949 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7950 #endif
7951 		if (err) {
7952 			verbose(env, err_str, func_id_name(func_id), func_id);
7953 			return err;
7954 		}
7955 
7956 		env->prog->has_callchain_buf = true;
7957 	}
7958 
7959 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7960 		env->prog->call_get_stack = true;
7961 
7962 	if (func_id == BPF_FUNC_get_func_ip) {
7963 		if (check_get_func_ip(env))
7964 			return -ENOTSUPP;
7965 		env->prog->call_get_func_ip = true;
7966 	}
7967 
7968 	if (changes_data)
7969 		clear_all_pkt_pointers(env);
7970 	return 0;
7971 }
7972 
7973 /* mark_btf_func_reg_size() is used when the reg size is determined by
7974  * the BTF func_proto's return value size and argument.
7975  */
7976 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7977 				   size_t reg_size)
7978 {
7979 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
7980 
7981 	if (regno == BPF_REG_0) {
7982 		/* Function return value */
7983 		reg->live |= REG_LIVE_WRITTEN;
7984 		reg->subreg_def = reg_size == sizeof(u64) ?
7985 			DEF_NOT_SUBREG : env->insn_idx + 1;
7986 	} else {
7987 		/* Function argument */
7988 		if (reg_size == sizeof(u64)) {
7989 			mark_insn_zext(env, reg);
7990 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7991 		} else {
7992 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7993 		}
7994 	}
7995 }
7996 
7997 struct bpf_kfunc_call_arg_meta {
7998 	/* In parameters */
7999 	struct btf *btf;
8000 	u32 func_id;
8001 	u32 kfunc_flags;
8002 	const struct btf_type *func_proto;
8003 	const char *func_name;
8004 	/* Out parameters */
8005 	u32 ref_obj_id;
8006 	u8 release_regno;
8007 	bool r0_rdonly;
8008 	u32 ret_btf_id;
8009 	u64 r0_size;
8010 	struct {
8011 		u64 value;
8012 		bool found;
8013 	} arg_constant;
8014 	struct {
8015 		struct btf *btf;
8016 		u32 btf_id;
8017 	} arg_obj_drop;
8018 	struct {
8019 		struct btf_field *field;
8020 	} arg_list_head;
8021 };
8022 
8023 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
8024 {
8025 	return meta->kfunc_flags & KF_ACQUIRE;
8026 }
8027 
8028 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
8029 {
8030 	return meta->kfunc_flags & KF_RET_NULL;
8031 }
8032 
8033 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
8034 {
8035 	return meta->kfunc_flags & KF_RELEASE;
8036 }
8037 
8038 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
8039 {
8040 	return meta->kfunc_flags & KF_TRUSTED_ARGS;
8041 }
8042 
8043 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
8044 {
8045 	return meta->kfunc_flags & KF_SLEEPABLE;
8046 }
8047 
8048 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
8049 {
8050 	return meta->kfunc_flags & KF_DESTRUCTIVE;
8051 }
8052 
8053 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
8054 {
8055 	return meta->kfunc_flags & KF_RCU;
8056 }
8057 
8058 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
8059 {
8060 	return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
8061 }
8062 
8063 static bool __kfunc_param_match_suffix(const struct btf *btf,
8064 				       const struct btf_param *arg,
8065 				       const char *suffix)
8066 {
8067 	int suffix_len = strlen(suffix), len;
8068 	const char *param_name;
8069 
8070 	/* In the future, this can be ported to use BTF tagging */
8071 	param_name = btf_name_by_offset(btf, arg->name_off);
8072 	if (str_is_empty(param_name))
8073 		return false;
8074 	len = strlen(param_name);
8075 	if (len < suffix_len)
8076 		return false;
8077 	param_name += len - suffix_len;
8078 	return !strncmp(param_name, suffix, suffix_len);
8079 }
8080 
8081 static bool is_kfunc_arg_mem_size(const struct btf *btf,
8082 				  const struct btf_param *arg,
8083 				  const struct bpf_reg_state *reg)
8084 {
8085 	const struct btf_type *t;
8086 
8087 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8088 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
8089 		return false;
8090 
8091 	return __kfunc_param_match_suffix(btf, arg, "__sz");
8092 }
8093 
8094 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
8095 {
8096 	return __kfunc_param_match_suffix(btf, arg, "__k");
8097 }
8098 
8099 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
8100 {
8101 	return __kfunc_param_match_suffix(btf, arg, "__ign");
8102 }
8103 
8104 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
8105 {
8106 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
8107 }
8108 
8109 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
8110 					  const struct btf_param *arg,
8111 					  const char *name)
8112 {
8113 	int len, target_len = strlen(name);
8114 	const char *param_name;
8115 
8116 	param_name = btf_name_by_offset(btf, arg->name_off);
8117 	if (str_is_empty(param_name))
8118 		return false;
8119 	len = strlen(param_name);
8120 	if (len != target_len)
8121 		return false;
8122 	if (strcmp(param_name, name))
8123 		return false;
8124 
8125 	return true;
8126 }
8127 
8128 enum {
8129 	KF_ARG_DYNPTR_ID,
8130 	KF_ARG_LIST_HEAD_ID,
8131 	KF_ARG_LIST_NODE_ID,
8132 };
8133 
8134 BTF_ID_LIST(kf_arg_btf_ids)
8135 BTF_ID(struct, bpf_dynptr_kern)
8136 BTF_ID(struct, bpf_list_head)
8137 BTF_ID(struct, bpf_list_node)
8138 
8139 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
8140 				    const struct btf_param *arg, int type)
8141 {
8142 	const struct btf_type *t;
8143 	u32 res_id;
8144 
8145 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8146 	if (!t)
8147 		return false;
8148 	if (!btf_type_is_ptr(t))
8149 		return false;
8150 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
8151 	if (!t)
8152 		return false;
8153 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
8154 }
8155 
8156 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
8157 {
8158 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
8159 }
8160 
8161 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
8162 {
8163 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
8164 }
8165 
8166 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
8167 {
8168 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
8169 }
8170 
8171 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
8172 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
8173 					const struct btf *btf,
8174 					const struct btf_type *t, int rec)
8175 {
8176 	const struct btf_type *member_type;
8177 	const struct btf_member *member;
8178 	u32 i;
8179 
8180 	if (!btf_type_is_struct(t))
8181 		return false;
8182 
8183 	for_each_member(i, t, member) {
8184 		const struct btf_array *array;
8185 
8186 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
8187 		if (btf_type_is_struct(member_type)) {
8188 			if (rec >= 3) {
8189 				verbose(env, "max struct nesting depth exceeded\n");
8190 				return false;
8191 			}
8192 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
8193 				return false;
8194 			continue;
8195 		}
8196 		if (btf_type_is_array(member_type)) {
8197 			array = btf_array(member_type);
8198 			if (!array->nelems)
8199 				return false;
8200 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
8201 			if (!btf_type_is_scalar(member_type))
8202 				return false;
8203 			continue;
8204 		}
8205 		if (!btf_type_is_scalar(member_type))
8206 			return false;
8207 	}
8208 	return true;
8209 }
8210 
8211 
8212 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
8213 #ifdef CONFIG_NET
8214 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
8215 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8216 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
8217 #endif
8218 };
8219 
8220 enum kfunc_ptr_arg_type {
8221 	KF_ARG_PTR_TO_CTX,
8222 	KF_ARG_PTR_TO_ALLOC_BTF_ID,  /* Allocated object */
8223 	KF_ARG_PTR_TO_KPTR,	     /* PTR_TO_KPTR but type specific */
8224 	KF_ARG_PTR_TO_DYNPTR,
8225 	KF_ARG_PTR_TO_LIST_HEAD,
8226 	KF_ARG_PTR_TO_LIST_NODE,
8227 	KF_ARG_PTR_TO_BTF_ID,	     /* Also covers reg2btf_ids conversions */
8228 	KF_ARG_PTR_TO_MEM,
8229 	KF_ARG_PTR_TO_MEM_SIZE,	     /* Size derived from next argument, skip it */
8230 };
8231 
8232 enum special_kfunc_type {
8233 	KF_bpf_obj_new_impl,
8234 	KF_bpf_obj_drop_impl,
8235 	KF_bpf_list_push_front,
8236 	KF_bpf_list_push_back,
8237 	KF_bpf_list_pop_front,
8238 	KF_bpf_list_pop_back,
8239 	KF_bpf_cast_to_kern_ctx,
8240 	KF_bpf_rdonly_cast,
8241 	KF_bpf_rcu_read_lock,
8242 	KF_bpf_rcu_read_unlock,
8243 };
8244 
8245 BTF_SET_START(special_kfunc_set)
8246 BTF_ID(func, bpf_obj_new_impl)
8247 BTF_ID(func, bpf_obj_drop_impl)
8248 BTF_ID(func, bpf_list_push_front)
8249 BTF_ID(func, bpf_list_push_back)
8250 BTF_ID(func, bpf_list_pop_front)
8251 BTF_ID(func, bpf_list_pop_back)
8252 BTF_ID(func, bpf_cast_to_kern_ctx)
8253 BTF_ID(func, bpf_rdonly_cast)
8254 BTF_SET_END(special_kfunc_set)
8255 
8256 BTF_ID_LIST(special_kfunc_list)
8257 BTF_ID(func, bpf_obj_new_impl)
8258 BTF_ID(func, bpf_obj_drop_impl)
8259 BTF_ID(func, bpf_list_push_front)
8260 BTF_ID(func, bpf_list_push_back)
8261 BTF_ID(func, bpf_list_pop_front)
8262 BTF_ID(func, bpf_list_pop_back)
8263 BTF_ID(func, bpf_cast_to_kern_ctx)
8264 BTF_ID(func, bpf_rdonly_cast)
8265 BTF_ID(func, bpf_rcu_read_lock)
8266 BTF_ID(func, bpf_rcu_read_unlock)
8267 
8268 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
8269 {
8270 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
8271 }
8272 
8273 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
8274 {
8275 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
8276 }
8277 
8278 static enum kfunc_ptr_arg_type
8279 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
8280 		       struct bpf_kfunc_call_arg_meta *meta,
8281 		       const struct btf_type *t, const struct btf_type *ref_t,
8282 		       const char *ref_tname, const struct btf_param *args,
8283 		       int argno, int nargs)
8284 {
8285 	u32 regno = argno + 1;
8286 	struct bpf_reg_state *regs = cur_regs(env);
8287 	struct bpf_reg_state *reg = &regs[regno];
8288 	bool arg_mem_size = false;
8289 
8290 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
8291 		return KF_ARG_PTR_TO_CTX;
8292 
8293 	/* In this function, we verify the kfunc's BTF as per the argument type,
8294 	 * leaving the rest of the verification with respect to the register
8295 	 * type to our caller. When a set of conditions hold in the BTF type of
8296 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
8297 	 */
8298 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
8299 		return KF_ARG_PTR_TO_CTX;
8300 
8301 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
8302 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
8303 
8304 	if (is_kfunc_arg_kptr_get(meta, argno)) {
8305 		if (!btf_type_is_ptr(ref_t)) {
8306 			verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
8307 			return -EINVAL;
8308 		}
8309 		ref_t = btf_type_by_id(meta->btf, ref_t->type);
8310 		ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
8311 		if (!btf_type_is_struct(ref_t)) {
8312 			verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
8313 				meta->func_name, btf_type_str(ref_t), ref_tname);
8314 			return -EINVAL;
8315 		}
8316 		return KF_ARG_PTR_TO_KPTR;
8317 	}
8318 
8319 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
8320 		return KF_ARG_PTR_TO_DYNPTR;
8321 
8322 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
8323 		return KF_ARG_PTR_TO_LIST_HEAD;
8324 
8325 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
8326 		return KF_ARG_PTR_TO_LIST_NODE;
8327 
8328 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
8329 		if (!btf_type_is_struct(ref_t)) {
8330 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
8331 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8332 			return -EINVAL;
8333 		}
8334 		return KF_ARG_PTR_TO_BTF_ID;
8335 	}
8336 
8337 	if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
8338 		arg_mem_size = true;
8339 
8340 	/* This is the catch all argument type of register types supported by
8341 	 * check_helper_mem_access. However, we only allow when argument type is
8342 	 * pointer to scalar, or struct composed (recursively) of scalars. When
8343 	 * arg_mem_size is true, the pointer can be void *.
8344 	 */
8345 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
8346 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
8347 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
8348 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
8349 		return -EINVAL;
8350 	}
8351 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
8352 }
8353 
8354 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
8355 					struct bpf_reg_state *reg,
8356 					const struct btf_type *ref_t,
8357 					const char *ref_tname, u32 ref_id,
8358 					struct bpf_kfunc_call_arg_meta *meta,
8359 					int argno)
8360 {
8361 	const struct btf_type *reg_ref_t;
8362 	bool strict_type_match = false;
8363 	const struct btf *reg_btf;
8364 	const char *reg_ref_tname;
8365 	u32 reg_ref_id;
8366 
8367 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
8368 		reg_btf = reg->btf;
8369 		reg_ref_id = reg->btf_id;
8370 	} else {
8371 		reg_btf = btf_vmlinux;
8372 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
8373 	}
8374 
8375 	if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id))
8376 		strict_type_match = true;
8377 
8378 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
8379 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
8380 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
8381 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
8382 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
8383 			btf_type_str(reg_ref_t), reg_ref_tname);
8384 		return -EINVAL;
8385 	}
8386 	return 0;
8387 }
8388 
8389 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
8390 				      struct bpf_reg_state *reg,
8391 				      const struct btf_type *ref_t,
8392 				      const char *ref_tname,
8393 				      struct bpf_kfunc_call_arg_meta *meta,
8394 				      int argno)
8395 {
8396 	struct btf_field *kptr_field;
8397 
8398 	/* check_func_arg_reg_off allows var_off for
8399 	 * PTR_TO_MAP_VALUE, but we need fixed offset to find
8400 	 * off_desc.
8401 	 */
8402 	if (!tnum_is_const(reg->var_off)) {
8403 		verbose(env, "arg#0 must have constant offset\n");
8404 		return -EINVAL;
8405 	}
8406 
8407 	kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
8408 	if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
8409 		verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
8410 			reg->off + reg->var_off.value);
8411 		return -EINVAL;
8412 	}
8413 
8414 	if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
8415 				  kptr_field->kptr.btf_id, true)) {
8416 		verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
8417 			meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8418 		return -EINVAL;
8419 	}
8420 	return 0;
8421 }
8422 
8423 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id)
8424 {
8425 	struct bpf_func_state *state = cur_func(env);
8426 	struct bpf_reg_state *reg;
8427 	int i;
8428 
8429 	/* bpf_spin_lock only allows calling list_push and list_pop, no BPF
8430 	 * subprogs, no global functions. This means that the references would
8431 	 * not be released inside the critical section but they may be added to
8432 	 * the reference state, and the acquired_refs are never copied out for a
8433 	 * different frame as BPF to BPF calls don't work in bpf_spin_lock
8434 	 * critical sections.
8435 	 */
8436 	if (!ref_obj_id) {
8437 		verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n");
8438 		return -EFAULT;
8439 	}
8440 	for (i = 0; i < state->acquired_refs; i++) {
8441 		if (state->refs[i].id == ref_obj_id) {
8442 			if (state->refs[i].release_on_unlock) {
8443 				verbose(env, "verifier internal error: expected false release_on_unlock");
8444 				return -EFAULT;
8445 			}
8446 			state->refs[i].release_on_unlock = true;
8447 			/* Now mark everyone sharing same ref_obj_id as untrusted */
8448 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8449 				if (reg->ref_obj_id == ref_obj_id)
8450 					reg->type |= PTR_UNTRUSTED;
8451 			}));
8452 			return 0;
8453 		}
8454 	}
8455 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
8456 	return -EFAULT;
8457 }
8458 
8459 /* Implementation details:
8460  *
8461  * Each register points to some region of memory, which we define as an
8462  * allocation. Each allocation may embed a bpf_spin_lock which protects any
8463  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
8464  * allocation. The lock and the data it protects are colocated in the same
8465  * memory region.
8466  *
8467  * Hence, everytime a register holds a pointer value pointing to such
8468  * allocation, the verifier preserves a unique reg->id for it.
8469  *
8470  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
8471  * bpf_spin_lock is called.
8472  *
8473  * To enable this, lock state in the verifier captures two values:
8474  *	active_lock.ptr = Register's type specific pointer
8475  *	active_lock.id  = A unique ID for each register pointer value
8476  *
8477  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
8478  * supported register types.
8479  *
8480  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
8481  * allocated objects is the reg->btf pointer.
8482  *
8483  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
8484  * can establish the provenance of the map value statically for each distinct
8485  * lookup into such maps. They always contain a single map value hence unique
8486  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
8487  *
8488  * So, in case of global variables, they use array maps with max_entries = 1,
8489  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
8490  * into the same map value as max_entries is 1, as described above).
8491  *
8492  * In case of inner map lookups, the inner map pointer has same map_ptr as the
8493  * outer map pointer (in verifier context), but each lookup into an inner map
8494  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
8495  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
8496  * will get different reg->id assigned to each lookup, hence different
8497  * active_lock.id.
8498  *
8499  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
8500  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
8501  * returned from bpf_obj_new. Each allocation receives a new reg->id.
8502  */
8503 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8504 {
8505 	void *ptr;
8506 	u32 id;
8507 
8508 	switch ((int)reg->type) {
8509 	case PTR_TO_MAP_VALUE:
8510 		ptr = reg->map_ptr;
8511 		break;
8512 	case PTR_TO_BTF_ID | MEM_ALLOC:
8513 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
8514 		ptr = reg->btf;
8515 		break;
8516 	default:
8517 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
8518 		return -EFAULT;
8519 	}
8520 	id = reg->id;
8521 
8522 	if (!env->cur_state->active_lock.ptr)
8523 		return -EINVAL;
8524 	if (env->cur_state->active_lock.ptr != ptr ||
8525 	    env->cur_state->active_lock.id != id) {
8526 		verbose(env, "held lock and object are not in the same allocation\n");
8527 		return -EINVAL;
8528 	}
8529 	return 0;
8530 }
8531 
8532 static bool is_bpf_list_api_kfunc(u32 btf_id)
8533 {
8534 	return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
8535 	       btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
8536 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
8537 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
8538 }
8539 
8540 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8541 					   struct bpf_reg_state *reg, u32 regno,
8542 					   struct bpf_kfunc_call_arg_meta *meta)
8543 {
8544 	struct btf_field *field;
8545 	struct btf_record *rec;
8546 	u32 list_head_off;
8547 
8548 	if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) {
8549 		verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n");
8550 		return -EFAULT;
8551 	}
8552 
8553 	if (!tnum_is_const(reg->var_off)) {
8554 		verbose(env,
8555 			"R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n",
8556 			regno);
8557 		return -EINVAL;
8558 	}
8559 
8560 	rec = reg_btf_record(reg);
8561 	list_head_off = reg->off + reg->var_off.value;
8562 	field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD);
8563 	if (!field) {
8564 		verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off);
8565 		return -EINVAL;
8566 	}
8567 
8568 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
8569 	if (check_reg_allocation_locked(env, reg)) {
8570 		verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n",
8571 			rec->spin_lock_off);
8572 		return -EINVAL;
8573 	}
8574 
8575 	if (meta->arg_list_head.field) {
8576 		verbose(env, "verifier internal error: repeating bpf_list_head arg\n");
8577 		return -EFAULT;
8578 	}
8579 	meta->arg_list_head.field = field;
8580 	return 0;
8581 }
8582 
8583 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
8584 					   struct bpf_reg_state *reg, u32 regno,
8585 					   struct bpf_kfunc_call_arg_meta *meta)
8586 {
8587 	const struct btf_type *et, *t;
8588 	struct btf_field *field;
8589 	struct btf_record *rec;
8590 	u32 list_node_off;
8591 
8592 	if (meta->btf != btf_vmlinux ||
8593 	    (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] &&
8594 	     meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) {
8595 		verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n");
8596 		return -EFAULT;
8597 	}
8598 
8599 	if (!tnum_is_const(reg->var_off)) {
8600 		verbose(env,
8601 			"R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n",
8602 			regno);
8603 		return -EINVAL;
8604 	}
8605 
8606 	rec = reg_btf_record(reg);
8607 	list_node_off = reg->off + reg->var_off.value;
8608 	field = btf_record_find(rec, list_node_off, BPF_LIST_NODE);
8609 	if (!field || field->offset != list_node_off) {
8610 		verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off);
8611 		return -EINVAL;
8612 	}
8613 
8614 	field = meta->arg_list_head.field;
8615 
8616 	et = btf_type_by_id(field->list_head.btf, field->list_head.value_btf_id);
8617 	t = btf_type_by_id(reg->btf, reg->btf_id);
8618 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->list_head.btf,
8619 				  field->list_head.value_btf_id, true)) {
8620 		verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d "
8621 			"in struct %s, but arg is at offset=%d in struct %s\n",
8622 			field->list_head.node_offset, btf_name_by_offset(field->list_head.btf, et->name_off),
8623 			list_node_off, btf_name_by_offset(reg->btf, t->name_off));
8624 		return -EINVAL;
8625 	}
8626 
8627 	if (list_node_off != field->list_head.node_offset) {
8628 		verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n",
8629 			list_node_off, field->list_head.node_offset,
8630 			btf_name_by_offset(field->list_head.btf, et->name_off));
8631 		return -EINVAL;
8632 	}
8633 	/* Set arg#1 for expiration after unlock */
8634 	return ref_set_release_on_unlock(env, reg->ref_obj_id);
8635 }
8636 
8637 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
8638 {
8639 	const char *func_name = meta->func_name, *ref_tname;
8640 	const struct btf *btf = meta->btf;
8641 	const struct btf_param *args;
8642 	u32 i, nargs;
8643 	int ret;
8644 
8645 	args = (const struct btf_param *)(meta->func_proto + 1);
8646 	nargs = btf_type_vlen(meta->func_proto);
8647 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
8648 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
8649 			MAX_BPF_FUNC_REG_ARGS);
8650 		return -EINVAL;
8651 	}
8652 
8653 	/* Check that BTF function arguments match actual types that the
8654 	 * verifier sees.
8655 	 */
8656 	for (i = 0; i < nargs; i++) {
8657 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
8658 		const struct btf_type *t, *ref_t, *resolve_ret;
8659 		enum bpf_arg_type arg_type = ARG_DONTCARE;
8660 		u32 regno = i + 1, ref_id, type_size;
8661 		bool is_ret_buf_sz = false;
8662 		int kf_arg_type;
8663 
8664 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
8665 
8666 		if (is_kfunc_arg_ignore(btf, &args[i]))
8667 			continue;
8668 
8669 		if (btf_type_is_scalar(t)) {
8670 			if (reg->type != SCALAR_VALUE) {
8671 				verbose(env, "R%d is not a scalar\n", regno);
8672 				return -EINVAL;
8673 			}
8674 
8675 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
8676 				if (meta->arg_constant.found) {
8677 					verbose(env, "verifier internal error: only one constant argument permitted\n");
8678 					return -EFAULT;
8679 				}
8680 				if (!tnum_is_const(reg->var_off)) {
8681 					verbose(env, "R%d must be a known constant\n", regno);
8682 					return -EINVAL;
8683 				}
8684 				ret = mark_chain_precision(env, regno);
8685 				if (ret < 0)
8686 					return ret;
8687 				meta->arg_constant.found = true;
8688 				meta->arg_constant.value = reg->var_off.value;
8689 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
8690 				meta->r0_rdonly = true;
8691 				is_ret_buf_sz = true;
8692 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
8693 				is_ret_buf_sz = true;
8694 			}
8695 
8696 			if (is_ret_buf_sz) {
8697 				if (meta->r0_size) {
8698 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
8699 					return -EINVAL;
8700 				}
8701 
8702 				if (!tnum_is_const(reg->var_off)) {
8703 					verbose(env, "R%d is not a const\n", regno);
8704 					return -EINVAL;
8705 				}
8706 
8707 				meta->r0_size = reg->var_off.value;
8708 				ret = mark_chain_precision(env, regno);
8709 				if (ret)
8710 					return ret;
8711 			}
8712 			continue;
8713 		}
8714 
8715 		if (!btf_type_is_ptr(t)) {
8716 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
8717 			return -EINVAL;
8718 		}
8719 
8720 		if (reg->ref_obj_id) {
8721 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
8722 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8723 					regno, reg->ref_obj_id,
8724 					meta->ref_obj_id);
8725 				return -EFAULT;
8726 			}
8727 			meta->ref_obj_id = reg->ref_obj_id;
8728 			if (is_kfunc_release(meta))
8729 				meta->release_regno = regno;
8730 		}
8731 
8732 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
8733 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
8734 
8735 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
8736 		if (kf_arg_type < 0)
8737 			return kf_arg_type;
8738 
8739 		switch (kf_arg_type) {
8740 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8741 		case KF_ARG_PTR_TO_BTF_ID:
8742 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
8743 				break;
8744 
8745 			if (!is_trusted_reg(reg)) {
8746 				if (!is_kfunc_rcu(meta)) {
8747 					verbose(env, "R%d must be referenced or trusted\n", regno);
8748 					return -EINVAL;
8749 				}
8750 				if (!is_rcu_reg(reg)) {
8751 					verbose(env, "R%d must be a rcu pointer\n", regno);
8752 					return -EINVAL;
8753 				}
8754 			}
8755 
8756 			fallthrough;
8757 		case KF_ARG_PTR_TO_CTX:
8758 			/* Trusted arguments have the same offset checks as release arguments */
8759 			arg_type |= OBJ_RELEASE;
8760 			break;
8761 		case KF_ARG_PTR_TO_KPTR:
8762 		case KF_ARG_PTR_TO_DYNPTR:
8763 		case KF_ARG_PTR_TO_LIST_HEAD:
8764 		case KF_ARG_PTR_TO_LIST_NODE:
8765 		case KF_ARG_PTR_TO_MEM:
8766 		case KF_ARG_PTR_TO_MEM_SIZE:
8767 			/* Trusted by default */
8768 			break;
8769 		default:
8770 			WARN_ON_ONCE(1);
8771 			return -EFAULT;
8772 		}
8773 
8774 		if (is_kfunc_release(meta) && reg->ref_obj_id)
8775 			arg_type |= OBJ_RELEASE;
8776 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
8777 		if (ret < 0)
8778 			return ret;
8779 
8780 		switch (kf_arg_type) {
8781 		case KF_ARG_PTR_TO_CTX:
8782 			if (reg->type != PTR_TO_CTX) {
8783 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
8784 				return -EINVAL;
8785 			}
8786 
8787 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
8788 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
8789 				if (ret < 0)
8790 					return -EINVAL;
8791 				meta->ret_btf_id  = ret;
8792 			}
8793 			break;
8794 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8795 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8796 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
8797 				return -EINVAL;
8798 			}
8799 			if (!reg->ref_obj_id) {
8800 				verbose(env, "allocated object must be referenced\n");
8801 				return -EINVAL;
8802 			}
8803 			if (meta->btf == btf_vmlinux &&
8804 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
8805 				meta->arg_obj_drop.btf = reg->btf;
8806 				meta->arg_obj_drop.btf_id = reg->btf_id;
8807 			}
8808 			break;
8809 		case KF_ARG_PTR_TO_KPTR:
8810 			if (reg->type != PTR_TO_MAP_VALUE) {
8811 				verbose(env, "arg#0 expected pointer to map value\n");
8812 				return -EINVAL;
8813 			}
8814 			ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
8815 			if (ret < 0)
8816 				return ret;
8817 			break;
8818 		case KF_ARG_PTR_TO_DYNPTR:
8819 			if (reg->type != PTR_TO_STACK) {
8820 				verbose(env, "arg#%d expected pointer to stack\n", i);
8821 				return -EINVAL;
8822 			}
8823 
8824 			if (!is_dynptr_reg_valid_init(env, reg)) {
8825 				verbose(env, "arg#%d pointer type %s %s must be valid and initialized\n",
8826 					i, btf_type_str(ref_t), ref_tname);
8827 				return -EINVAL;
8828 			}
8829 
8830 			if (!is_dynptr_type_expected(env, reg, ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
8831 				verbose(env, "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
8832 					i, btf_type_str(ref_t), ref_tname);
8833 				return -EINVAL;
8834 			}
8835 			break;
8836 		case KF_ARG_PTR_TO_LIST_HEAD:
8837 			if (reg->type != PTR_TO_MAP_VALUE &&
8838 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8839 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
8840 				return -EINVAL;
8841 			}
8842 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
8843 				verbose(env, "allocated object must be referenced\n");
8844 				return -EINVAL;
8845 			}
8846 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
8847 			if (ret < 0)
8848 				return ret;
8849 			break;
8850 		case KF_ARG_PTR_TO_LIST_NODE:
8851 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8852 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
8853 				return -EINVAL;
8854 			}
8855 			if (!reg->ref_obj_id) {
8856 				verbose(env, "allocated object must be referenced\n");
8857 				return -EINVAL;
8858 			}
8859 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
8860 			if (ret < 0)
8861 				return ret;
8862 			break;
8863 		case KF_ARG_PTR_TO_BTF_ID:
8864 			/* Only base_type is checked, further checks are done here */
8865 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
8866 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
8867 			    !reg2btf_ids[base_type(reg->type)]) {
8868 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
8869 				verbose(env, "expected %s or socket\n",
8870 					reg_type_str(env, base_type(reg->type) |
8871 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
8872 				return -EINVAL;
8873 			}
8874 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
8875 			if (ret < 0)
8876 				return ret;
8877 			break;
8878 		case KF_ARG_PTR_TO_MEM:
8879 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
8880 			if (IS_ERR(resolve_ret)) {
8881 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
8882 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
8883 				return -EINVAL;
8884 			}
8885 			ret = check_mem_reg(env, reg, regno, type_size);
8886 			if (ret < 0)
8887 				return ret;
8888 			break;
8889 		case KF_ARG_PTR_TO_MEM_SIZE:
8890 			ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
8891 			if (ret < 0) {
8892 				verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
8893 				return ret;
8894 			}
8895 			/* Skip next '__sz' argument */
8896 			i++;
8897 			break;
8898 		}
8899 	}
8900 
8901 	if (is_kfunc_release(meta) && !meta->release_regno) {
8902 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
8903 			func_name);
8904 		return -EINVAL;
8905 	}
8906 
8907 	return 0;
8908 }
8909 
8910 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8911 			    int *insn_idx_p)
8912 {
8913 	const struct btf_type *t, *func, *func_proto, *ptr_type;
8914 	struct bpf_reg_state *regs = cur_regs(env);
8915 	const char *func_name, *ptr_type_name;
8916 	bool sleepable, rcu_lock, rcu_unlock;
8917 	struct bpf_kfunc_call_arg_meta meta;
8918 	u32 i, nargs, func_id, ptr_type_id;
8919 	int err, insn_idx = *insn_idx_p;
8920 	const struct btf_param *args;
8921 	const struct btf_type *ret_t;
8922 	struct btf *desc_btf;
8923 	u32 *kfunc_flags;
8924 
8925 	/* skip for now, but return error when we find this in fixup_kfunc_call */
8926 	if (!insn->imm)
8927 		return 0;
8928 
8929 	desc_btf = find_kfunc_desc_btf(env, insn->off);
8930 	if (IS_ERR(desc_btf))
8931 		return PTR_ERR(desc_btf);
8932 
8933 	func_id = insn->imm;
8934 	func = btf_type_by_id(desc_btf, func_id);
8935 	func_name = btf_name_by_offset(desc_btf, func->name_off);
8936 	func_proto = btf_type_by_id(desc_btf, func->type);
8937 
8938 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
8939 	if (!kfunc_flags) {
8940 		verbose(env, "calling kernel function %s is not allowed\n",
8941 			func_name);
8942 		return -EACCES;
8943 	}
8944 
8945 	/* Prepare kfunc call metadata */
8946 	memset(&meta, 0, sizeof(meta));
8947 	meta.btf = desc_btf;
8948 	meta.func_id = func_id;
8949 	meta.kfunc_flags = *kfunc_flags;
8950 	meta.func_proto = func_proto;
8951 	meta.func_name = func_name;
8952 
8953 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
8954 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
8955 		return -EACCES;
8956 	}
8957 
8958 	sleepable = is_kfunc_sleepable(&meta);
8959 	if (sleepable && !env->prog->aux->sleepable) {
8960 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
8961 		return -EACCES;
8962 	}
8963 
8964 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
8965 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
8966 	if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) {
8967 		verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name);
8968 		return -EACCES;
8969 	}
8970 
8971 	if (env->cur_state->active_rcu_lock) {
8972 		struct bpf_func_state *state;
8973 		struct bpf_reg_state *reg;
8974 
8975 		if (rcu_lock) {
8976 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
8977 			return -EINVAL;
8978 		} else if (rcu_unlock) {
8979 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8980 				if (reg->type & MEM_RCU) {
8981 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
8982 					reg->type |= PTR_UNTRUSTED;
8983 				}
8984 			}));
8985 			env->cur_state->active_rcu_lock = false;
8986 		} else if (sleepable) {
8987 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
8988 			return -EACCES;
8989 		}
8990 	} else if (rcu_lock) {
8991 		env->cur_state->active_rcu_lock = true;
8992 	} else if (rcu_unlock) {
8993 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
8994 		return -EINVAL;
8995 	}
8996 
8997 	/* Check the arguments */
8998 	err = check_kfunc_args(env, &meta);
8999 	if (err < 0)
9000 		return err;
9001 	/* In case of release function, we get register number of refcounted
9002 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
9003 	 */
9004 	if (meta.release_regno) {
9005 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
9006 		if (err) {
9007 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
9008 				func_name, func_id);
9009 			return err;
9010 		}
9011 	}
9012 
9013 	for (i = 0; i < CALLER_SAVED_REGS; i++)
9014 		mark_reg_not_init(env, regs, caller_saved[i]);
9015 
9016 	/* Check return type */
9017 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
9018 
9019 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
9020 		/* Only exception is bpf_obj_new_impl */
9021 		if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
9022 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
9023 			return -EINVAL;
9024 		}
9025 	}
9026 
9027 	if (btf_type_is_scalar(t)) {
9028 		mark_reg_unknown(env, regs, BPF_REG_0);
9029 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
9030 	} else if (btf_type_is_ptr(t)) {
9031 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
9032 
9033 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
9034 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
9035 				struct btf *ret_btf;
9036 				u32 ret_btf_id;
9037 
9038 				if (unlikely(!bpf_global_ma_set))
9039 					return -ENOMEM;
9040 
9041 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
9042 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
9043 					return -EINVAL;
9044 				}
9045 
9046 				ret_btf = env->prog->aux->btf;
9047 				ret_btf_id = meta.arg_constant.value;
9048 
9049 				/* This may be NULL due to user not supplying a BTF */
9050 				if (!ret_btf) {
9051 					verbose(env, "bpf_obj_new requires prog BTF\n");
9052 					return -EINVAL;
9053 				}
9054 
9055 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
9056 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
9057 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
9058 					return -EINVAL;
9059 				}
9060 
9061 				mark_reg_known_zero(env, regs, BPF_REG_0);
9062 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9063 				regs[BPF_REG_0].btf = ret_btf;
9064 				regs[BPF_REG_0].btf_id = ret_btf_id;
9065 
9066 				env->insn_aux_data[insn_idx].obj_new_size = ret_t->size;
9067 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9068 					btf_find_struct_meta(ret_btf, ret_btf_id);
9069 			} else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
9070 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9071 					btf_find_struct_meta(meta.arg_obj_drop.btf,
9072 							     meta.arg_obj_drop.btf_id);
9073 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9074 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
9075 				struct btf_field *field = meta.arg_list_head.field;
9076 
9077 				mark_reg_known_zero(env, regs, BPF_REG_0);
9078 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9079 				regs[BPF_REG_0].btf = field->list_head.btf;
9080 				regs[BPF_REG_0].btf_id = field->list_head.value_btf_id;
9081 				regs[BPF_REG_0].off = field->list_head.node_offset;
9082 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
9083 				mark_reg_known_zero(env, regs, BPF_REG_0);
9084 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
9085 				regs[BPF_REG_0].btf = desc_btf;
9086 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9087 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
9088 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
9089 				if (!ret_t || !btf_type_is_struct(ret_t)) {
9090 					verbose(env,
9091 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
9092 					return -EINVAL;
9093 				}
9094 
9095 				mark_reg_known_zero(env, regs, BPF_REG_0);
9096 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
9097 				regs[BPF_REG_0].btf = desc_btf;
9098 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
9099 			} else {
9100 				verbose(env, "kernel function %s unhandled dynamic return type\n",
9101 					meta.func_name);
9102 				return -EFAULT;
9103 			}
9104 		} else if (!__btf_type_is_struct(ptr_type)) {
9105 			if (!meta.r0_size) {
9106 				ptr_type_name = btf_name_by_offset(desc_btf,
9107 								   ptr_type->name_off);
9108 				verbose(env,
9109 					"kernel function %s returns pointer type %s %s is not supported\n",
9110 					func_name,
9111 					btf_type_str(ptr_type),
9112 					ptr_type_name);
9113 				return -EINVAL;
9114 			}
9115 
9116 			mark_reg_known_zero(env, regs, BPF_REG_0);
9117 			regs[BPF_REG_0].type = PTR_TO_MEM;
9118 			regs[BPF_REG_0].mem_size = meta.r0_size;
9119 
9120 			if (meta.r0_rdonly)
9121 				regs[BPF_REG_0].type |= MEM_RDONLY;
9122 
9123 			/* Ensures we don't access the memory after a release_reference() */
9124 			if (meta.ref_obj_id)
9125 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9126 		} else {
9127 			mark_reg_known_zero(env, regs, BPF_REG_0);
9128 			regs[BPF_REG_0].btf = desc_btf;
9129 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
9130 			regs[BPF_REG_0].btf_id = ptr_type_id;
9131 		}
9132 
9133 		if (is_kfunc_ret_null(&meta)) {
9134 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
9135 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
9136 			regs[BPF_REG_0].id = ++env->id_gen;
9137 		}
9138 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
9139 		if (is_kfunc_acquire(&meta)) {
9140 			int id = acquire_reference_state(env, insn_idx);
9141 
9142 			if (id < 0)
9143 				return id;
9144 			if (is_kfunc_ret_null(&meta))
9145 				regs[BPF_REG_0].id = id;
9146 			regs[BPF_REG_0].ref_obj_id = id;
9147 		}
9148 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
9149 			regs[BPF_REG_0].id = ++env->id_gen;
9150 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
9151 
9152 	nargs = btf_type_vlen(func_proto);
9153 	args = (const struct btf_param *)(func_proto + 1);
9154 	for (i = 0; i < nargs; i++) {
9155 		u32 regno = i + 1;
9156 
9157 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
9158 		if (btf_type_is_ptr(t))
9159 			mark_btf_func_reg_size(env, regno, sizeof(void *));
9160 		else
9161 			/* scalar. ensured by btf_check_kfunc_arg_match() */
9162 			mark_btf_func_reg_size(env, regno, t->size);
9163 	}
9164 
9165 	return 0;
9166 }
9167 
9168 static bool signed_add_overflows(s64 a, s64 b)
9169 {
9170 	/* Do the add in u64, where overflow is well-defined */
9171 	s64 res = (s64)((u64)a + (u64)b);
9172 
9173 	if (b < 0)
9174 		return res > a;
9175 	return res < a;
9176 }
9177 
9178 static bool signed_add32_overflows(s32 a, s32 b)
9179 {
9180 	/* Do the add in u32, where overflow is well-defined */
9181 	s32 res = (s32)((u32)a + (u32)b);
9182 
9183 	if (b < 0)
9184 		return res > a;
9185 	return res < a;
9186 }
9187 
9188 static bool signed_sub_overflows(s64 a, s64 b)
9189 {
9190 	/* Do the sub in u64, where overflow is well-defined */
9191 	s64 res = (s64)((u64)a - (u64)b);
9192 
9193 	if (b < 0)
9194 		return res < a;
9195 	return res > a;
9196 }
9197 
9198 static bool signed_sub32_overflows(s32 a, s32 b)
9199 {
9200 	/* Do the sub in u32, where overflow is well-defined */
9201 	s32 res = (s32)((u32)a - (u32)b);
9202 
9203 	if (b < 0)
9204 		return res < a;
9205 	return res > a;
9206 }
9207 
9208 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
9209 				  const struct bpf_reg_state *reg,
9210 				  enum bpf_reg_type type)
9211 {
9212 	bool known = tnum_is_const(reg->var_off);
9213 	s64 val = reg->var_off.value;
9214 	s64 smin = reg->smin_value;
9215 
9216 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
9217 		verbose(env, "math between %s pointer and %lld is not allowed\n",
9218 			reg_type_str(env, type), val);
9219 		return false;
9220 	}
9221 
9222 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
9223 		verbose(env, "%s pointer offset %d is not allowed\n",
9224 			reg_type_str(env, type), reg->off);
9225 		return false;
9226 	}
9227 
9228 	if (smin == S64_MIN) {
9229 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
9230 			reg_type_str(env, type));
9231 		return false;
9232 	}
9233 
9234 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
9235 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
9236 			smin, reg_type_str(env, type));
9237 		return false;
9238 	}
9239 
9240 	return true;
9241 }
9242 
9243 enum {
9244 	REASON_BOUNDS	= -1,
9245 	REASON_TYPE	= -2,
9246 	REASON_PATHS	= -3,
9247 	REASON_LIMIT	= -4,
9248 	REASON_STACK	= -5,
9249 };
9250 
9251 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
9252 			      u32 *alu_limit, bool mask_to_left)
9253 {
9254 	u32 max = 0, ptr_limit = 0;
9255 
9256 	switch (ptr_reg->type) {
9257 	case PTR_TO_STACK:
9258 		/* Offset 0 is out-of-bounds, but acceptable start for the
9259 		 * left direction, see BPF_REG_FP. Also, unknown scalar
9260 		 * offset where we would need to deal with min/max bounds is
9261 		 * currently prohibited for unprivileged.
9262 		 */
9263 		max = MAX_BPF_STACK + mask_to_left;
9264 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
9265 		break;
9266 	case PTR_TO_MAP_VALUE:
9267 		max = ptr_reg->map_ptr->value_size;
9268 		ptr_limit = (mask_to_left ?
9269 			     ptr_reg->smin_value :
9270 			     ptr_reg->umax_value) + ptr_reg->off;
9271 		break;
9272 	default:
9273 		return REASON_TYPE;
9274 	}
9275 
9276 	if (ptr_limit >= max)
9277 		return REASON_LIMIT;
9278 	*alu_limit = ptr_limit;
9279 	return 0;
9280 }
9281 
9282 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
9283 				    const struct bpf_insn *insn)
9284 {
9285 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
9286 }
9287 
9288 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
9289 				       u32 alu_state, u32 alu_limit)
9290 {
9291 	/* If we arrived here from different branches with different
9292 	 * state or limits to sanitize, then this won't work.
9293 	 */
9294 	if (aux->alu_state &&
9295 	    (aux->alu_state != alu_state ||
9296 	     aux->alu_limit != alu_limit))
9297 		return REASON_PATHS;
9298 
9299 	/* Corresponding fixup done in do_misc_fixups(). */
9300 	aux->alu_state = alu_state;
9301 	aux->alu_limit = alu_limit;
9302 	return 0;
9303 }
9304 
9305 static int sanitize_val_alu(struct bpf_verifier_env *env,
9306 			    struct bpf_insn *insn)
9307 {
9308 	struct bpf_insn_aux_data *aux = cur_aux(env);
9309 
9310 	if (can_skip_alu_sanitation(env, insn))
9311 		return 0;
9312 
9313 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
9314 }
9315 
9316 static bool sanitize_needed(u8 opcode)
9317 {
9318 	return opcode == BPF_ADD || opcode == BPF_SUB;
9319 }
9320 
9321 struct bpf_sanitize_info {
9322 	struct bpf_insn_aux_data aux;
9323 	bool mask_to_left;
9324 };
9325 
9326 static struct bpf_verifier_state *
9327 sanitize_speculative_path(struct bpf_verifier_env *env,
9328 			  const struct bpf_insn *insn,
9329 			  u32 next_idx, u32 curr_idx)
9330 {
9331 	struct bpf_verifier_state *branch;
9332 	struct bpf_reg_state *regs;
9333 
9334 	branch = push_stack(env, next_idx, curr_idx, true);
9335 	if (branch && insn) {
9336 		regs = branch->frame[branch->curframe]->regs;
9337 		if (BPF_SRC(insn->code) == BPF_K) {
9338 			mark_reg_unknown(env, regs, insn->dst_reg);
9339 		} else if (BPF_SRC(insn->code) == BPF_X) {
9340 			mark_reg_unknown(env, regs, insn->dst_reg);
9341 			mark_reg_unknown(env, regs, insn->src_reg);
9342 		}
9343 	}
9344 	return branch;
9345 }
9346 
9347 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
9348 			    struct bpf_insn *insn,
9349 			    const struct bpf_reg_state *ptr_reg,
9350 			    const struct bpf_reg_state *off_reg,
9351 			    struct bpf_reg_state *dst_reg,
9352 			    struct bpf_sanitize_info *info,
9353 			    const bool commit_window)
9354 {
9355 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
9356 	struct bpf_verifier_state *vstate = env->cur_state;
9357 	bool off_is_imm = tnum_is_const(off_reg->var_off);
9358 	bool off_is_neg = off_reg->smin_value < 0;
9359 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
9360 	u8 opcode = BPF_OP(insn->code);
9361 	u32 alu_state, alu_limit;
9362 	struct bpf_reg_state tmp;
9363 	bool ret;
9364 	int err;
9365 
9366 	if (can_skip_alu_sanitation(env, insn))
9367 		return 0;
9368 
9369 	/* We already marked aux for masking from non-speculative
9370 	 * paths, thus we got here in the first place. We only care
9371 	 * to explore bad access from here.
9372 	 */
9373 	if (vstate->speculative)
9374 		goto do_sim;
9375 
9376 	if (!commit_window) {
9377 		if (!tnum_is_const(off_reg->var_off) &&
9378 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
9379 			return REASON_BOUNDS;
9380 
9381 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
9382 				     (opcode == BPF_SUB && !off_is_neg);
9383 	}
9384 
9385 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
9386 	if (err < 0)
9387 		return err;
9388 
9389 	if (commit_window) {
9390 		/* In commit phase we narrow the masking window based on
9391 		 * the observed pointer move after the simulated operation.
9392 		 */
9393 		alu_state = info->aux.alu_state;
9394 		alu_limit = abs(info->aux.alu_limit - alu_limit);
9395 	} else {
9396 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
9397 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
9398 		alu_state |= ptr_is_dst_reg ?
9399 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
9400 
9401 		/* Limit pruning on unknown scalars to enable deep search for
9402 		 * potential masking differences from other program paths.
9403 		 */
9404 		if (!off_is_imm)
9405 			env->explore_alu_limits = true;
9406 	}
9407 
9408 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
9409 	if (err < 0)
9410 		return err;
9411 do_sim:
9412 	/* If we're in commit phase, we're done here given we already
9413 	 * pushed the truncated dst_reg into the speculative verification
9414 	 * stack.
9415 	 *
9416 	 * Also, when register is a known constant, we rewrite register-based
9417 	 * operation to immediate-based, and thus do not need masking (and as
9418 	 * a consequence, do not need to simulate the zero-truncation either).
9419 	 */
9420 	if (commit_window || off_is_imm)
9421 		return 0;
9422 
9423 	/* Simulate and find potential out-of-bounds access under
9424 	 * speculative execution from truncation as a result of
9425 	 * masking when off was not within expected range. If off
9426 	 * sits in dst, then we temporarily need to move ptr there
9427 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
9428 	 * for cases where we use K-based arithmetic in one direction
9429 	 * and truncated reg-based in the other in order to explore
9430 	 * bad access.
9431 	 */
9432 	if (!ptr_is_dst_reg) {
9433 		tmp = *dst_reg;
9434 		*dst_reg = *ptr_reg;
9435 	}
9436 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
9437 					env->insn_idx);
9438 	if (!ptr_is_dst_reg && ret)
9439 		*dst_reg = tmp;
9440 	return !ret ? REASON_STACK : 0;
9441 }
9442 
9443 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
9444 {
9445 	struct bpf_verifier_state *vstate = env->cur_state;
9446 
9447 	/* If we simulate paths under speculation, we don't update the
9448 	 * insn as 'seen' such that when we verify unreachable paths in
9449 	 * the non-speculative domain, sanitize_dead_code() can still
9450 	 * rewrite/sanitize them.
9451 	 */
9452 	if (!vstate->speculative)
9453 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9454 }
9455 
9456 static int sanitize_err(struct bpf_verifier_env *env,
9457 			const struct bpf_insn *insn, int reason,
9458 			const struct bpf_reg_state *off_reg,
9459 			const struct bpf_reg_state *dst_reg)
9460 {
9461 	static const char *err = "pointer arithmetic with it prohibited for !root";
9462 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
9463 	u32 dst = insn->dst_reg, src = insn->src_reg;
9464 
9465 	switch (reason) {
9466 	case REASON_BOUNDS:
9467 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
9468 			off_reg == dst_reg ? dst : src, err);
9469 		break;
9470 	case REASON_TYPE:
9471 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
9472 			off_reg == dst_reg ? src : dst, err);
9473 		break;
9474 	case REASON_PATHS:
9475 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
9476 			dst, op, err);
9477 		break;
9478 	case REASON_LIMIT:
9479 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
9480 			dst, op, err);
9481 		break;
9482 	case REASON_STACK:
9483 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
9484 			dst, err);
9485 		break;
9486 	default:
9487 		verbose(env, "verifier internal error: unknown reason (%d)\n",
9488 			reason);
9489 		break;
9490 	}
9491 
9492 	return -EACCES;
9493 }
9494 
9495 /* check that stack access falls within stack limits and that 'reg' doesn't
9496  * have a variable offset.
9497  *
9498  * Variable offset is prohibited for unprivileged mode for simplicity since it
9499  * requires corresponding support in Spectre masking for stack ALU.  See also
9500  * retrieve_ptr_limit().
9501  *
9502  *
9503  * 'off' includes 'reg->off'.
9504  */
9505 static int check_stack_access_for_ptr_arithmetic(
9506 				struct bpf_verifier_env *env,
9507 				int regno,
9508 				const struct bpf_reg_state *reg,
9509 				int off)
9510 {
9511 	if (!tnum_is_const(reg->var_off)) {
9512 		char tn_buf[48];
9513 
9514 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
9515 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
9516 			regno, tn_buf, off);
9517 		return -EACCES;
9518 	}
9519 
9520 	if (off >= 0 || off < -MAX_BPF_STACK) {
9521 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
9522 			"prohibited for !root; off=%d\n", regno, off);
9523 		return -EACCES;
9524 	}
9525 
9526 	return 0;
9527 }
9528 
9529 static int sanitize_check_bounds(struct bpf_verifier_env *env,
9530 				 const struct bpf_insn *insn,
9531 				 const struct bpf_reg_state *dst_reg)
9532 {
9533 	u32 dst = insn->dst_reg;
9534 
9535 	/* For unprivileged we require that resulting offset must be in bounds
9536 	 * in order to be able to sanitize access later on.
9537 	 */
9538 	if (env->bypass_spec_v1)
9539 		return 0;
9540 
9541 	switch (dst_reg->type) {
9542 	case PTR_TO_STACK:
9543 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
9544 					dst_reg->off + dst_reg->var_off.value))
9545 			return -EACCES;
9546 		break;
9547 	case PTR_TO_MAP_VALUE:
9548 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
9549 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
9550 				"prohibited for !root\n", dst);
9551 			return -EACCES;
9552 		}
9553 		break;
9554 	default:
9555 		break;
9556 	}
9557 
9558 	return 0;
9559 }
9560 
9561 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
9562  * Caller should also handle BPF_MOV case separately.
9563  * If we return -EACCES, caller may want to try again treating pointer as a
9564  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
9565  */
9566 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
9567 				   struct bpf_insn *insn,
9568 				   const struct bpf_reg_state *ptr_reg,
9569 				   const struct bpf_reg_state *off_reg)
9570 {
9571 	struct bpf_verifier_state *vstate = env->cur_state;
9572 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9573 	struct bpf_reg_state *regs = state->regs, *dst_reg;
9574 	bool known = tnum_is_const(off_reg->var_off);
9575 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
9576 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
9577 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
9578 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9579 	struct bpf_sanitize_info info = {};
9580 	u8 opcode = BPF_OP(insn->code);
9581 	u32 dst = insn->dst_reg;
9582 	int ret;
9583 
9584 	dst_reg = &regs[dst];
9585 
9586 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
9587 	    smin_val > smax_val || umin_val > umax_val) {
9588 		/* Taint dst register if offset had invalid bounds derived from
9589 		 * e.g. dead branches.
9590 		 */
9591 		__mark_reg_unknown(env, dst_reg);
9592 		return 0;
9593 	}
9594 
9595 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
9596 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
9597 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9598 			__mark_reg_unknown(env, dst_reg);
9599 			return 0;
9600 		}
9601 
9602 		verbose(env,
9603 			"R%d 32-bit pointer arithmetic prohibited\n",
9604 			dst);
9605 		return -EACCES;
9606 	}
9607 
9608 	if (ptr_reg->type & PTR_MAYBE_NULL) {
9609 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
9610 			dst, reg_type_str(env, ptr_reg->type));
9611 		return -EACCES;
9612 	}
9613 
9614 	switch (base_type(ptr_reg->type)) {
9615 	case CONST_PTR_TO_MAP:
9616 		/* smin_val represents the known value */
9617 		if (known && smin_val == 0 && opcode == BPF_ADD)
9618 			break;
9619 		fallthrough;
9620 	case PTR_TO_PACKET_END:
9621 	case PTR_TO_SOCKET:
9622 	case PTR_TO_SOCK_COMMON:
9623 	case PTR_TO_TCP_SOCK:
9624 	case PTR_TO_XDP_SOCK:
9625 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
9626 			dst, reg_type_str(env, ptr_reg->type));
9627 		return -EACCES;
9628 	default:
9629 		break;
9630 	}
9631 
9632 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
9633 	 * The id may be overwritten later if we create a new variable offset.
9634 	 */
9635 	dst_reg->type = ptr_reg->type;
9636 	dst_reg->id = ptr_reg->id;
9637 
9638 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
9639 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
9640 		return -EINVAL;
9641 
9642 	/* pointer types do not carry 32-bit bounds at the moment. */
9643 	__mark_reg32_unbounded(dst_reg);
9644 
9645 	if (sanitize_needed(opcode)) {
9646 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
9647 				       &info, false);
9648 		if (ret < 0)
9649 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
9650 	}
9651 
9652 	switch (opcode) {
9653 	case BPF_ADD:
9654 		/* We can take a fixed offset as long as it doesn't overflow
9655 		 * the s32 'off' field
9656 		 */
9657 		if (known && (ptr_reg->off + smin_val ==
9658 			      (s64)(s32)(ptr_reg->off + smin_val))) {
9659 			/* pointer += K.  Accumulate it into fixed offset */
9660 			dst_reg->smin_value = smin_ptr;
9661 			dst_reg->smax_value = smax_ptr;
9662 			dst_reg->umin_value = umin_ptr;
9663 			dst_reg->umax_value = umax_ptr;
9664 			dst_reg->var_off = ptr_reg->var_off;
9665 			dst_reg->off = ptr_reg->off + smin_val;
9666 			dst_reg->raw = ptr_reg->raw;
9667 			break;
9668 		}
9669 		/* A new variable offset is created.  Note that off_reg->off
9670 		 * == 0, since it's a scalar.
9671 		 * dst_reg gets the pointer type and since some positive
9672 		 * integer value was added to the pointer, give it a new 'id'
9673 		 * if it's a PTR_TO_PACKET.
9674 		 * this creates a new 'base' pointer, off_reg (variable) gets
9675 		 * added into the variable offset, and we copy the fixed offset
9676 		 * from ptr_reg.
9677 		 */
9678 		if (signed_add_overflows(smin_ptr, smin_val) ||
9679 		    signed_add_overflows(smax_ptr, smax_val)) {
9680 			dst_reg->smin_value = S64_MIN;
9681 			dst_reg->smax_value = S64_MAX;
9682 		} else {
9683 			dst_reg->smin_value = smin_ptr + smin_val;
9684 			dst_reg->smax_value = smax_ptr + smax_val;
9685 		}
9686 		if (umin_ptr + umin_val < umin_ptr ||
9687 		    umax_ptr + umax_val < umax_ptr) {
9688 			dst_reg->umin_value = 0;
9689 			dst_reg->umax_value = U64_MAX;
9690 		} else {
9691 			dst_reg->umin_value = umin_ptr + umin_val;
9692 			dst_reg->umax_value = umax_ptr + umax_val;
9693 		}
9694 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
9695 		dst_reg->off = ptr_reg->off;
9696 		dst_reg->raw = ptr_reg->raw;
9697 		if (reg_is_pkt_pointer(ptr_reg)) {
9698 			dst_reg->id = ++env->id_gen;
9699 			/* something was added to pkt_ptr, set range to zero */
9700 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
9701 		}
9702 		break;
9703 	case BPF_SUB:
9704 		if (dst_reg == off_reg) {
9705 			/* scalar -= pointer.  Creates an unknown scalar */
9706 			verbose(env, "R%d tried to subtract pointer from scalar\n",
9707 				dst);
9708 			return -EACCES;
9709 		}
9710 		/* We don't allow subtraction from FP, because (according to
9711 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
9712 		 * be able to deal with it.
9713 		 */
9714 		if (ptr_reg->type == PTR_TO_STACK) {
9715 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
9716 				dst);
9717 			return -EACCES;
9718 		}
9719 		if (known && (ptr_reg->off - smin_val ==
9720 			      (s64)(s32)(ptr_reg->off - smin_val))) {
9721 			/* pointer -= K.  Subtract it from fixed offset */
9722 			dst_reg->smin_value = smin_ptr;
9723 			dst_reg->smax_value = smax_ptr;
9724 			dst_reg->umin_value = umin_ptr;
9725 			dst_reg->umax_value = umax_ptr;
9726 			dst_reg->var_off = ptr_reg->var_off;
9727 			dst_reg->id = ptr_reg->id;
9728 			dst_reg->off = ptr_reg->off - smin_val;
9729 			dst_reg->raw = ptr_reg->raw;
9730 			break;
9731 		}
9732 		/* A new variable offset is created.  If the subtrahend is known
9733 		 * nonnegative, then any reg->range we had before is still good.
9734 		 */
9735 		if (signed_sub_overflows(smin_ptr, smax_val) ||
9736 		    signed_sub_overflows(smax_ptr, smin_val)) {
9737 			/* Overflow possible, we know nothing */
9738 			dst_reg->smin_value = S64_MIN;
9739 			dst_reg->smax_value = S64_MAX;
9740 		} else {
9741 			dst_reg->smin_value = smin_ptr - smax_val;
9742 			dst_reg->smax_value = smax_ptr - smin_val;
9743 		}
9744 		if (umin_ptr < umax_val) {
9745 			/* Overflow possible, we know nothing */
9746 			dst_reg->umin_value = 0;
9747 			dst_reg->umax_value = U64_MAX;
9748 		} else {
9749 			/* Cannot overflow (as long as bounds are consistent) */
9750 			dst_reg->umin_value = umin_ptr - umax_val;
9751 			dst_reg->umax_value = umax_ptr - umin_val;
9752 		}
9753 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
9754 		dst_reg->off = ptr_reg->off;
9755 		dst_reg->raw = ptr_reg->raw;
9756 		if (reg_is_pkt_pointer(ptr_reg)) {
9757 			dst_reg->id = ++env->id_gen;
9758 			/* something was added to pkt_ptr, set range to zero */
9759 			if (smin_val < 0)
9760 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
9761 		}
9762 		break;
9763 	case BPF_AND:
9764 	case BPF_OR:
9765 	case BPF_XOR:
9766 		/* bitwise ops on pointers are troublesome, prohibit. */
9767 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
9768 			dst, bpf_alu_string[opcode >> 4]);
9769 		return -EACCES;
9770 	default:
9771 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
9772 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
9773 			dst, bpf_alu_string[opcode >> 4]);
9774 		return -EACCES;
9775 	}
9776 
9777 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
9778 		return -EINVAL;
9779 	reg_bounds_sync(dst_reg);
9780 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
9781 		return -EACCES;
9782 	if (sanitize_needed(opcode)) {
9783 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
9784 				       &info, true);
9785 		if (ret < 0)
9786 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
9787 	}
9788 
9789 	return 0;
9790 }
9791 
9792 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
9793 				 struct bpf_reg_state *src_reg)
9794 {
9795 	s32 smin_val = src_reg->s32_min_value;
9796 	s32 smax_val = src_reg->s32_max_value;
9797 	u32 umin_val = src_reg->u32_min_value;
9798 	u32 umax_val = src_reg->u32_max_value;
9799 
9800 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
9801 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
9802 		dst_reg->s32_min_value = S32_MIN;
9803 		dst_reg->s32_max_value = S32_MAX;
9804 	} else {
9805 		dst_reg->s32_min_value += smin_val;
9806 		dst_reg->s32_max_value += smax_val;
9807 	}
9808 	if (dst_reg->u32_min_value + umin_val < umin_val ||
9809 	    dst_reg->u32_max_value + umax_val < umax_val) {
9810 		dst_reg->u32_min_value = 0;
9811 		dst_reg->u32_max_value = U32_MAX;
9812 	} else {
9813 		dst_reg->u32_min_value += umin_val;
9814 		dst_reg->u32_max_value += umax_val;
9815 	}
9816 }
9817 
9818 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
9819 			       struct bpf_reg_state *src_reg)
9820 {
9821 	s64 smin_val = src_reg->smin_value;
9822 	s64 smax_val = src_reg->smax_value;
9823 	u64 umin_val = src_reg->umin_value;
9824 	u64 umax_val = src_reg->umax_value;
9825 
9826 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
9827 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
9828 		dst_reg->smin_value = S64_MIN;
9829 		dst_reg->smax_value = S64_MAX;
9830 	} else {
9831 		dst_reg->smin_value += smin_val;
9832 		dst_reg->smax_value += smax_val;
9833 	}
9834 	if (dst_reg->umin_value + umin_val < umin_val ||
9835 	    dst_reg->umax_value + umax_val < umax_val) {
9836 		dst_reg->umin_value = 0;
9837 		dst_reg->umax_value = U64_MAX;
9838 	} else {
9839 		dst_reg->umin_value += umin_val;
9840 		dst_reg->umax_value += umax_val;
9841 	}
9842 }
9843 
9844 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
9845 				 struct bpf_reg_state *src_reg)
9846 {
9847 	s32 smin_val = src_reg->s32_min_value;
9848 	s32 smax_val = src_reg->s32_max_value;
9849 	u32 umin_val = src_reg->u32_min_value;
9850 	u32 umax_val = src_reg->u32_max_value;
9851 
9852 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
9853 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
9854 		/* Overflow possible, we know nothing */
9855 		dst_reg->s32_min_value = S32_MIN;
9856 		dst_reg->s32_max_value = S32_MAX;
9857 	} else {
9858 		dst_reg->s32_min_value -= smax_val;
9859 		dst_reg->s32_max_value -= smin_val;
9860 	}
9861 	if (dst_reg->u32_min_value < umax_val) {
9862 		/* Overflow possible, we know nothing */
9863 		dst_reg->u32_min_value = 0;
9864 		dst_reg->u32_max_value = U32_MAX;
9865 	} else {
9866 		/* Cannot overflow (as long as bounds are consistent) */
9867 		dst_reg->u32_min_value -= umax_val;
9868 		dst_reg->u32_max_value -= umin_val;
9869 	}
9870 }
9871 
9872 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
9873 			       struct bpf_reg_state *src_reg)
9874 {
9875 	s64 smin_val = src_reg->smin_value;
9876 	s64 smax_val = src_reg->smax_value;
9877 	u64 umin_val = src_reg->umin_value;
9878 	u64 umax_val = src_reg->umax_value;
9879 
9880 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
9881 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
9882 		/* Overflow possible, we know nothing */
9883 		dst_reg->smin_value = S64_MIN;
9884 		dst_reg->smax_value = S64_MAX;
9885 	} else {
9886 		dst_reg->smin_value -= smax_val;
9887 		dst_reg->smax_value -= smin_val;
9888 	}
9889 	if (dst_reg->umin_value < umax_val) {
9890 		/* Overflow possible, we know nothing */
9891 		dst_reg->umin_value = 0;
9892 		dst_reg->umax_value = U64_MAX;
9893 	} else {
9894 		/* Cannot overflow (as long as bounds are consistent) */
9895 		dst_reg->umin_value -= umax_val;
9896 		dst_reg->umax_value -= umin_val;
9897 	}
9898 }
9899 
9900 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
9901 				 struct bpf_reg_state *src_reg)
9902 {
9903 	s32 smin_val = src_reg->s32_min_value;
9904 	u32 umin_val = src_reg->u32_min_value;
9905 	u32 umax_val = src_reg->u32_max_value;
9906 
9907 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
9908 		/* Ain't nobody got time to multiply that sign */
9909 		__mark_reg32_unbounded(dst_reg);
9910 		return;
9911 	}
9912 	/* Both values are positive, so we can work with unsigned and
9913 	 * copy the result to signed (unless it exceeds S32_MAX).
9914 	 */
9915 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
9916 		/* Potential overflow, we know nothing */
9917 		__mark_reg32_unbounded(dst_reg);
9918 		return;
9919 	}
9920 	dst_reg->u32_min_value *= umin_val;
9921 	dst_reg->u32_max_value *= umax_val;
9922 	if (dst_reg->u32_max_value > S32_MAX) {
9923 		/* Overflow possible, we know nothing */
9924 		dst_reg->s32_min_value = S32_MIN;
9925 		dst_reg->s32_max_value = S32_MAX;
9926 	} else {
9927 		dst_reg->s32_min_value = dst_reg->u32_min_value;
9928 		dst_reg->s32_max_value = dst_reg->u32_max_value;
9929 	}
9930 }
9931 
9932 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
9933 			       struct bpf_reg_state *src_reg)
9934 {
9935 	s64 smin_val = src_reg->smin_value;
9936 	u64 umin_val = src_reg->umin_value;
9937 	u64 umax_val = src_reg->umax_value;
9938 
9939 	if (smin_val < 0 || dst_reg->smin_value < 0) {
9940 		/* Ain't nobody got time to multiply that sign */
9941 		__mark_reg64_unbounded(dst_reg);
9942 		return;
9943 	}
9944 	/* Both values are positive, so we can work with unsigned and
9945 	 * copy the result to signed (unless it exceeds S64_MAX).
9946 	 */
9947 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
9948 		/* Potential overflow, we know nothing */
9949 		__mark_reg64_unbounded(dst_reg);
9950 		return;
9951 	}
9952 	dst_reg->umin_value *= umin_val;
9953 	dst_reg->umax_value *= umax_val;
9954 	if (dst_reg->umax_value > S64_MAX) {
9955 		/* Overflow possible, we know nothing */
9956 		dst_reg->smin_value = S64_MIN;
9957 		dst_reg->smax_value = S64_MAX;
9958 	} else {
9959 		dst_reg->smin_value = dst_reg->umin_value;
9960 		dst_reg->smax_value = dst_reg->umax_value;
9961 	}
9962 }
9963 
9964 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
9965 				 struct bpf_reg_state *src_reg)
9966 {
9967 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
9968 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9969 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
9970 	s32 smin_val = src_reg->s32_min_value;
9971 	u32 umax_val = src_reg->u32_max_value;
9972 
9973 	if (src_known && dst_known) {
9974 		__mark_reg32_known(dst_reg, var32_off.value);
9975 		return;
9976 	}
9977 
9978 	/* We get our minimum from the var_off, since that's inherently
9979 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
9980 	 */
9981 	dst_reg->u32_min_value = var32_off.value;
9982 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
9983 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
9984 		/* Lose signed bounds when ANDing negative numbers,
9985 		 * ain't nobody got time for that.
9986 		 */
9987 		dst_reg->s32_min_value = S32_MIN;
9988 		dst_reg->s32_max_value = S32_MAX;
9989 	} else {
9990 		/* ANDing two positives gives a positive, so safe to
9991 		 * cast result into s64.
9992 		 */
9993 		dst_reg->s32_min_value = dst_reg->u32_min_value;
9994 		dst_reg->s32_max_value = dst_reg->u32_max_value;
9995 	}
9996 }
9997 
9998 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
9999 			       struct bpf_reg_state *src_reg)
10000 {
10001 	bool src_known = tnum_is_const(src_reg->var_off);
10002 	bool dst_known = tnum_is_const(dst_reg->var_off);
10003 	s64 smin_val = src_reg->smin_value;
10004 	u64 umax_val = src_reg->umax_value;
10005 
10006 	if (src_known && dst_known) {
10007 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10008 		return;
10009 	}
10010 
10011 	/* We get our minimum from the var_off, since that's inherently
10012 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10013 	 */
10014 	dst_reg->umin_value = dst_reg->var_off.value;
10015 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
10016 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10017 		/* Lose signed bounds when ANDing negative numbers,
10018 		 * ain't nobody got time for that.
10019 		 */
10020 		dst_reg->smin_value = S64_MIN;
10021 		dst_reg->smax_value = S64_MAX;
10022 	} else {
10023 		/* ANDing two positives gives a positive, so safe to
10024 		 * cast result into s64.
10025 		 */
10026 		dst_reg->smin_value = dst_reg->umin_value;
10027 		dst_reg->smax_value = dst_reg->umax_value;
10028 	}
10029 	/* We may learn something more from the var_off */
10030 	__update_reg_bounds(dst_reg);
10031 }
10032 
10033 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
10034 				struct bpf_reg_state *src_reg)
10035 {
10036 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10037 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10038 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10039 	s32 smin_val = src_reg->s32_min_value;
10040 	u32 umin_val = src_reg->u32_min_value;
10041 
10042 	if (src_known && dst_known) {
10043 		__mark_reg32_known(dst_reg, var32_off.value);
10044 		return;
10045 	}
10046 
10047 	/* We get our maximum from the var_off, and our minimum is the
10048 	 * maximum of the operands' minima
10049 	 */
10050 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
10051 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10052 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10053 		/* Lose signed bounds when ORing negative numbers,
10054 		 * ain't nobody got time for that.
10055 		 */
10056 		dst_reg->s32_min_value = S32_MIN;
10057 		dst_reg->s32_max_value = S32_MAX;
10058 	} else {
10059 		/* ORing two positives gives a positive, so safe to
10060 		 * cast result into s64.
10061 		 */
10062 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10063 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10064 	}
10065 }
10066 
10067 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
10068 			      struct bpf_reg_state *src_reg)
10069 {
10070 	bool src_known = tnum_is_const(src_reg->var_off);
10071 	bool dst_known = tnum_is_const(dst_reg->var_off);
10072 	s64 smin_val = src_reg->smin_value;
10073 	u64 umin_val = src_reg->umin_value;
10074 
10075 	if (src_known && dst_known) {
10076 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10077 		return;
10078 	}
10079 
10080 	/* We get our maximum from the var_off, and our minimum is the
10081 	 * maximum of the operands' minima
10082 	 */
10083 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
10084 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10085 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10086 		/* Lose signed bounds when ORing negative numbers,
10087 		 * ain't nobody got time for that.
10088 		 */
10089 		dst_reg->smin_value = S64_MIN;
10090 		dst_reg->smax_value = S64_MAX;
10091 	} else {
10092 		/* ORing two positives gives a positive, so safe to
10093 		 * cast result into s64.
10094 		 */
10095 		dst_reg->smin_value = dst_reg->umin_value;
10096 		dst_reg->smax_value = dst_reg->umax_value;
10097 	}
10098 	/* We may learn something more from the var_off */
10099 	__update_reg_bounds(dst_reg);
10100 }
10101 
10102 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
10103 				 struct bpf_reg_state *src_reg)
10104 {
10105 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10106 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10107 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10108 	s32 smin_val = src_reg->s32_min_value;
10109 
10110 	if (src_known && dst_known) {
10111 		__mark_reg32_known(dst_reg, var32_off.value);
10112 		return;
10113 	}
10114 
10115 	/* We get both minimum and maximum from the var32_off. */
10116 	dst_reg->u32_min_value = var32_off.value;
10117 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10118 
10119 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
10120 		/* XORing two positive sign numbers gives a positive,
10121 		 * so safe to cast u32 result into s32.
10122 		 */
10123 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10124 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10125 	} else {
10126 		dst_reg->s32_min_value = S32_MIN;
10127 		dst_reg->s32_max_value = S32_MAX;
10128 	}
10129 }
10130 
10131 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
10132 			       struct bpf_reg_state *src_reg)
10133 {
10134 	bool src_known = tnum_is_const(src_reg->var_off);
10135 	bool dst_known = tnum_is_const(dst_reg->var_off);
10136 	s64 smin_val = src_reg->smin_value;
10137 
10138 	if (src_known && dst_known) {
10139 		/* dst_reg->var_off.value has been updated earlier */
10140 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10141 		return;
10142 	}
10143 
10144 	/* We get both minimum and maximum from the var_off. */
10145 	dst_reg->umin_value = dst_reg->var_off.value;
10146 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10147 
10148 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
10149 		/* XORing two positive sign numbers gives a positive,
10150 		 * so safe to cast u64 result into s64.
10151 		 */
10152 		dst_reg->smin_value = dst_reg->umin_value;
10153 		dst_reg->smax_value = dst_reg->umax_value;
10154 	} else {
10155 		dst_reg->smin_value = S64_MIN;
10156 		dst_reg->smax_value = S64_MAX;
10157 	}
10158 
10159 	__update_reg_bounds(dst_reg);
10160 }
10161 
10162 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10163 				   u64 umin_val, u64 umax_val)
10164 {
10165 	/* We lose all sign bit information (except what we can pick
10166 	 * up from var_off)
10167 	 */
10168 	dst_reg->s32_min_value = S32_MIN;
10169 	dst_reg->s32_max_value = S32_MAX;
10170 	/* If we might shift our top bit out, then we know nothing */
10171 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
10172 		dst_reg->u32_min_value = 0;
10173 		dst_reg->u32_max_value = U32_MAX;
10174 	} else {
10175 		dst_reg->u32_min_value <<= umin_val;
10176 		dst_reg->u32_max_value <<= umax_val;
10177 	}
10178 }
10179 
10180 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10181 				 struct bpf_reg_state *src_reg)
10182 {
10183 	u32 umax_val = src_reg->u32_max_value;
10184 	u32 umin_val = src_reg->u32_min_value;
10185 	/* u32 alu operation will zext upper bits */
10186 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10187 
10188 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10189 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
10190 	/* Not required but being careful mark reg64 bounds as unknown so
10191 	 * that we are forced to pick them up from tnum and zext later and
10192 	 * if some path skips this step we are still safe.
10193 	 */
10194 	__mark_reg64_unbounded(dst_reg);
10195 	__update_reg32_bounds(dst_reg);
10196 }
10197 
10198 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
10199 				   u64 umin_val, u64 umax_val)
10200 {
10201 	/* Special case <<32 because it is a common compiler pattern to sign
10202 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
10203 	 * positive we know this shift will also be positive so we can track
10204 	 * bounds correctly. Otherwise we lose all sign bit information except
10205 	 * what we can pick up from var_off. Perhaps we can generalize this
10206 	 * later to shifts of any length.
10207 	 */
10208 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
10209 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
10210 	else
10211 		dst_reg->smax_value = S64_MAX;
10212 
10213 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
10214 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
10215 	else
10216 		dst_reg->smin_value = S64_MIN;
10217 
10218 	/* If we might shift our top bit out, then we know nothing */
10219 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
10220 		dst_reg->umin_value = 0;
10221 		dst_reg->umax_value = U64_MAX;
10222 	} else {
10223 		dst_reg->umin_value <<= umin_val;
10224 		dst_reg->umax_value <<= umax_val;
10225 	}
10226 }
10227 
10228 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
10229 			       struct bpf_reg_state *src_reg)
10230 {
10231 	u64 umax_val = src_reg->umax_value;
10232 	u64 umin_val = src_reg->umin_value;
10233 
10234 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
10235 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
10236 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10237 
10238 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
10239 	/* We may learn something more from the var_off */
10240 	__update_reg_bounds(dst_reg);
10241 }
10242 
10243 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
10244 				 struct bpf_reg_state *src_reg)
10245 {
10246 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10247 	u32 umax_val = src_reg->u32_max_value;
10248 	u32 umin_val = src_reg->u32_min_value;
10249 
10250 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10251 	 * be negative, then either:
10252 	 * 1) src_reg might be zero, so the sign bit of the result is
10253 	 *    unknown, so we lose our signed bounds
10254 	 * 2) it's known negative, thus the unsigned bounds capture the
10255 	 *    signed bounds
10256 	 * 3) the signed bounds cross zero, so they tell us nothing
10257 	 *    about the result
10258 	 * If the value in dst_reg is known nonnegative, then again the
10259 	 * unsigned bounds capture the signed bounds.
10260 	 * Thus, in all cases it suffices to blow away our signed bounds
10261 	 * and rely on inferring new ones from the unsigned bounds and
10262 	 * var_off of the result.
10263 	 */
10264 	dst_reg->s32_min_value = S32_MIN;
10265 	dst_reg->s32_max_value = S32_MAX;
10266 
10267 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
10268 	dst_reg->u32_min_value >>= umax_val;
10269 	dst_reg->u32_max_value >>= umin_val;
10270 
10271 	__mark_reg64_unbounded(dst_reg);
10272 	__update_reg32_bounds(dst_reg);
10273 }
10274 
10275 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
10276 			       struct bpf_reg_state *src_reg)
10277 {
10278 	u64 umax_val = src_reg->umax_value;
10279 	u64 umin_val = src_reg->umin_value;
10280 
10281 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10282 	 * be negative, then either:
10283 	 * 1) src_reg might be zero, so the sign bit of the result is
10284 	 *    unknown, so we lose our signed bounds
10285 	 * 2) it's known negative, thus the unsigned bounds capture the
10286 	 *    signed bounds
10287 	 * 3) the signed bounds cross zero, so they tell us nothing
10288 	 *    about the result
10289 	 * If the value in dst_reg is known nonnegative, then again the
10290 	 * unsigned bounds capture the signed bounds.
10291 	 * Thus, in all cases it suffices to blow away our signed bounds
10292 	 * and rely on inferring new ones from the unsigned bounds and
10293 	 * var_off of the result.
10294 	 */
10295 	dst_reg->smin_value = S64_MIN;
10296 	dst_reg->smax_value = S64_MAX;
10297 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
10298 	dst_reg->umin_value >>= umax_val;
10299 	dst_reg->umax_value >>= umin_val;
10300 
10301 	/* Its not easy to operate on alu32 bounds here because it depends
10302 	 * on bits being shifted in. Take easy way out and mark unbounded
10303 	 * so we can recalculate later from tnum.
10304 	 */
10305 	__mark_reg32_unbounded(dst_reg);
10306 	__update_reg_bounds(dst_reg);
10307 }
10308 
10309 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
10310 				  struct bpf_reg_state *src_reg)
10311 {
10312 	u64 umin_val = src_reg->u32_min_value;
10313 
10314 	/* Upon reaching here, src_known is true and
10315 	 * umax_val is equal to umin_val.
10316 	 */
10317 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
10318 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
10319 
10320 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
10321 
10322 	/* blow away the dst_reg umin_value/umax_value and rely on
10323 	 * dst_reg var_off to refine the result.
10324 	 */
10325 	dst_reg->u32_min_value = 0;
10326 	dst_reg->u32_max_value = U32_MAX;
10327 
10328 	__mark_reg64_unbounded(dst_reg);
10329 	__update_reg32_bounds(dst_reg);
10330 }
10331 
10332 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
10333 				struct bpf_reg_state *src_reg)
10334 {
10335 	u64 umin_val = src_reg->umin_value;
10336 
10337 	/* Upon reaching here, src_known is true and umax_val is equal
10338 	 * to umin_val.
10339 	 */
10340 	dst_reg->smin_value >>= umin_val;
10341 	dst_reg->smax_value >>= umin_val;
10342 
10343 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
10344 
10345 	/* blow away the dst_reg umin_value/umax_value and rely on
10346 	 * dst_reg var_off to refine the result.
10347 	 */
10348 	dst_reg->umin_value = 0;
10349 	dst_reg->umax_value = U64_MAX;
10350 
10351 	/* Its not easy to operate on alu32 bounds here because it depends
10352 	 * on bits being shifted in from upper 32-bits. Take easy way out
10353 	 * and mark unbounded so we can recalculate later from tnum.
10354 	 */
10355 	__mark_reg32_unbounded(dst_reg);
10356 	__update_reg_bounds(dst_reg);
10357 }
10358 
10359 /* WARNING: This function does calculations on 64-bit values, but the actual
10360  * execution may occur on 32-bit values. Therefore, things like bitshifts
10361  * need extra checks in the 32-bit case.
10362  */
10363 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
10364 				      struct bpf_insn *insn,
10365 				      struct bpf_reg_state *dst_reg,
10366 				      struct bpf_reg_state src_reg)
10367 {
10368 	struct bpf_reg_state *regs = cur_regs(env);
10369 	u8 opcode = BPF_OP(insn->code);
10370 	bool src_known;
10371 	s64 smin_val, smax_val;
10372 	u64 umin_val, umax_val;
10373 	s32 s32_min_val, s32_max_val;
10374 	u32 u32_min_val, u32_max_val;
10375 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
10376 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
10377 	int ret;
10378 
10379 	smin_val = src_reg.smin_value;
10380 	smax_val = src_reg.smax_value;
10381 	umin_val = src_reg.umin_value;
10382 	umax_val = src_reg.umax_value;
10383 
10384 	s32_min_val = src_reg.s32_min_value;
10385 	s32_max_val = src_reg.s32_max_value;
10386 	u32_min_val = src_reg.u32_min_value;
10387 	u32_max_val = src_reg.u32_max_value;
10388 
10389 	if (alu32) {
10390 		src_known = tnum_subreg_is_const(src_reg.var_off);
10391 		if ((src_known &&
10392 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
10393 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
10394 			/* Taint dst register if offset had invalid bounds
10395 			 * derived from e.g. dead branches.
10396 			 */
10397 			__mark_reg_unknown(env, dst_reg);
10398 			return 0;
10399 		}
10400 	} else {
10401 		src_known = tnum_is_const(src_reg.var_off);
10402 		if ((src_known &&
10403 		     (smin_val != smax_val || umin_val != umax_val)) ||
10404 		    smin_val > smax_val || umin_val > umax_val) {
10405 			/* Taint dst register if offset had invalid bounds
10406 			 * derived from e.g. dead branches.
10407 			 */
10408 			__mark_reg_unknown(env, dst_reg);
10409 			return 0;
10410 		}
10411 	}
10412 
10413 	if (!src_known &&
10414 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
10415 		__mark_reg_unknown(env, dst_reg);
10416 		return 0;
10417 	}
10418 
10419 	if (sanitize_needed(opcode)) {
10420 		ret = sanitize_val_alu(env, insn);
10421 		if (ret < 0)
10422 			return sanitize_err(env, insn, ret, NULL, NULL);
10423 	}
10424 
10425 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
10426 	 * There are two classes of instructions: The first class we track both
10427 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
10428 	 * greatest amount of precision when alu operations are mixed with jmp32
10429 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
10430 	 * and BPF_OR. This is possible because these ops have fairly easy to
10431 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
10432 	 * See alu32 verifier tests for examples. The second class of
10433 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
10434 	 * with regards to tracking sign/unsigned bounds because the bits may
10435 	 * cross subreg boundaries in the alu64 case. When this happens we mark
10436 	 * the reg unbounded in the subreg bound space and use the resulting
10437 	 * tnum to calculate an approximation of the sign/unsigned bounds.
10438 	 */
10439 	switch (opcode) {
10440 	case BPF_ADD:
10441 		scalar32_min_max_add(dst_reg, &src_reg);
10442 		scalar_min_max_add(dst_reg, &src_reg);
10443 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
10444 		break;
10445 	case BPF_SUB:
10446 		scalar32_min_max_sub(dst_reg, &src_reg);
10447 		scalar_min_max_sub(dst_reg, &src_reg);
10448 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
10449 		break;
10450 	case BPF_MUL:
10451 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
10452 		scalar32_min_max_mul(dst_reg, &src_reg);
10453 		scalar_min_max_mul(dst_reg, &src_reg);
10454 		break;
10455 	case BPF_AND:
10456 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
10457 		scalar32_min_max_and(dst_reg, &src_reg);
10458 		scalar_min_max_and(dst_reg, &src_reg);
10459 		break;
10460 	case BPF_OR:
10461 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
10462 		scalar32_min_max_or(dst_reg, &src_reg);
10463 		scalar_min_max_or(dst_reg, &src_reg);
10464 		break;
10465 	case BPF_XOR:
10466 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
10467 		scalar32_min_max_xor(dst_reg, &src_reg);
10468 		scalar_min_max_xor(dst_reg, &src_reg);
10469 		break;
10470 	case BPF_LSH:
10471 		if (umax_val >= insn_bitness) {
10472 			/* Shifts greater than 31 or 63 are undefined.
10473 			 * This includes shifts by a negative number.
10474 			 */
10475 			mark_reg_unknown(env, regs, insn->dst_reg);
10476 			break;
10477 		}
10478 		if (alu32)
10479 			scalar32_min_max_lsh(dst_reg, &src_reg);
10480 		else
10481 			scalar_min_max_lsh(dst_reg, &src_reg);
10482 		break;
10483 	case BPF_RSH:
10484 		if (umax_val >= insn_bitness) {
10485 			/* Shifts greater than 31 or 63 are undefined.
10486 			 * This includes shifts by a negative number.
10487 			 */
10488 			mark_reg_unknown(env, regs, insn->dst_reg);
10489 			break;
10490 		}
10491 		if (alu32)
10492 			scalar32_min_max_rsh(dst_reg, &src_reg);
10493 		else
10494 			scalar_min_max_rsh(dst_reg, &src_reg);
10495 		break;
10496 	case BPF_ARSH:
10497 		if (umax_val >= insn_bitness) {
10498 			/* Shifts greater than 31 or 63 are undefined.
10499 			 * This includes shifts by a negative number.
10500 			 */
10501 			mark_reg_unknown(env, regs, insn->dst_reg);
10502 			break;
10503 		}
10504 		if (alu32)
10505 			scalar32_min_max_arsh(dst_reg, &src_reg);
10506 		else
10507 			scalar_min_max_arsh(dst_reg, &src_reg);
10508 		break;
10509 	default:
10510 		mark_reg_unknown(env, regs, insn->dst_reg);
10511 		break;
10512 	}
10513 
10514 	/* ALU32 ops are zero extended into 64bit register */
10515 	if (alu32)
10516 		zext_32_to_64(dst_reg);
10517 	reg_bounds_sync(dst_reg);
10518 	return 0;
10519 }
10520 
10521 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
10522  * and var_off.
10523  */
10524 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
10525 				   struct bpf_insn *insn)
10526 {
10527 	struct bpf_verifier_state *vstate = env->cur_state;
10528 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10529 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
10530 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
10531 	u8 opcode = BPF_OP(insn->code);
10532 	int err;
10533 
10534 	dst_reg = &regs[insn->dst_reg];
10535 	src_reg = NULL;
10536 	if (dst_reg->type != SCALAR_VALUE)
10537 		ptr_reg = dst_reg;
10538 	else
10539 		/* Make sure ID is cleared otherwise dst_reg min/max could be
10540 		 * incorrectly propagated into other registers by find_equal_scalars()
10541 		 */
10542 		dst_reg->id = 0;
10543 	if (BPF_SRC(insn->code) == BPF_X) {
10544 		src_reg = &regs[insn->src_reg];
10545 		if (src_reg->type != SCALAR_VALUE) {
10546 			if (dst_reg->type != SCALAR_VALUE) {
10547 				/* Combining two pointers by any ALU op yields
10548 				 * an arbitrary scalar. Disallow all math except
10549 				 * pointer subtraction
10550 				 */
10551 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
10552 					mark_reg_unknown(env, regs, insn->dst_reg);
10553 					return 0;
10554 				}
10555 				verbose(env, "R%d pointer %s pointer prohibited\n",
10556 					insn->dst_reg,
10557 					bpf_alu_string[opcode >> 4]);
10558 				return -EACCES;
10559 			} else {
10560 				/* scalar += pointer
10561 				 * This is legal, but we have to reverse our
10562 				 * src/dest handling in computing the range
10563 				 */
10564 				err = mark_chain_precision(env, insn->dst_reg);
10565 				if (err)
10566 					return err;
10567 				return adjust_ptr_min_max_vals(env, insn,
10568 							       src_reg, dst_reg);
10569 			}
10570 		} else if (ptr_reg) {
10571 			/* pointer += scalar */
10572 			err = mark_chain_precision(env, insn->src_reg);
10573 			if (err)
10574 				return err;
10575 			return adjust_ptr_min_max_vals(env, insn,
10576 						       dst_reg, src_reg);
10577 		} else if (dst_reg->precise) {
10578 			/* if dst_reg is precise, src_reg should be precise as well */
10579 			err = mark_chain_precision(env, insn->src_reg);
10580 			if (err)
10581 				return err;
10582 		}
10583 	} else {
10584 		/* Pretend the src is a reg with a known value, since we only
10585 		 * need to be able to read from this state.
10586 		 */
10587 		off_reg.type = SCALAR_VALUE;
10588 		__mark_reg_known(&off_reg, insn->imm);
10589 		src_reg = &off_reg;
10590 		if (ptr_reg) /* pointer += K */
10591 			return adjust_ptr_min_max_vals(env, insn,
10592 						       ptr_reg, src_reg);
10593 	}
10594 
10595 	/* Got here implies adding two SCALAR_VALUEs */
10596 	if (WARN_ON_ONCE(ptr_reg)) {
10597 		print_verifier_state(env, state, true);
10598 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
10599 		return -EINVAL;
10600 	}
10601 	if (WARN_ON(!src_reg)) {
10602 		print_verifier_state(env, state, true);
10603 		verbose(env, "verifier internal error: no src_reg\n");
10604 		return -EINVAL;
10605 	}
10606 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
10607 }
10608 
10609 /* check validity of 32-bit and 64-bit arithmetic operations */
10610 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
10611 {
10612 	struct bpf_reg_state *regs = cur_regs(env);
10613 	u8 opcode = BPF_OP(insn->code);
10614 	int err;
10615 
10616 	if (opcode == BPF_END || opcode == BPF_NEG) {
10617 		if (opcode == BPF_NEG) {
10618 			if (BPF_SRC(insn->code) != BPF_K ||
10619 			    insn->src_reg != BPF_REG_0 ||
10620 			    insn->off != 0 || insn->imm != 0) {
10621 				verbose(env, "BPF_NEG uses reserved fields\n");
10622 				return -EINVAL;
10623 			}
10624 		} else {
10625 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
10626 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
10627 			    BPF_CLASS(insn->code) == BPF_ALU64) {
10628 				verbose(env, "BPF_END uses reserved fields\n");
10629 				return -EINVAL;
10630 			}
10631 		}
10632 
10633 		/* check src operand */
10634 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10635 		if (err)
10636 			return err;
10637 
10638 		if (is_pointer_value(env, insn->dst_reg)) {
10639 			verbose(env, "R%d pointer arithmetic prohibited\n",
10640 				insn->dst_reg);
10641 			return -EACCES;
10642 		}
10643 
10644 		/* check dest operand */
10645 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
10646 		if (err)
10647 			return err;
10648 
10649 	} else if (opcode == BPF_MOV) {
10650 
10651 		if (BPF_SRC(insn->code) == BPF_X) {
10652 			if (insn->imm != 0 || insn->off != 0) {
10653 				verbose(env, "BPF_MOV uses reserved fields\n");
10654 				return -EINVAL;
10655 			}
10656 
10657 			/* check src operand */
10658 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10659 			if (err)
10660 				return err;
10661 		} else {
10662 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
10663 				verbose(env, "BPF_MOV uses reserved fields\n");
10664 				return -EINVAL;
10665 			}
10666 		}
10667 
10668 		/* check dest operand, mark as required later */
10669 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10670 		if (err)
10671 			return err;
10672 
10673 		if (BPF_SRC(insn->code) == BPF_X) {
10674 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
10675 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
10676 
10677 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
10678 				/* case: R1 = R2
10679 				 * copy register state to dest reg
10680 				 */
10681 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
10682 					/* Assign src and dst registers the same ID
10683 					 * that will be used by find_equal_scalars()
10684 					 * to propagate min/max range.
10685 					 */
10686 					src_reg->id = ++env->id_gen;
10687 				*dst_reg = *src_reg;
10688 				dst_reg->live |= REG_LIVE_WRITTEN;
10689 				dst_reg->subreg_def = DEF_NOT_SUBREG;
10690 			} else {
10691 				/* R1 = (u32) R2 */
10692 				if (is_pointer_value(env, insn->src_reg)) {
10693 					verbose(env,
10694 						"R%d partial copy of pointer\n",
10695 						insn->src_reg);
10696 					return -EACCES;
10697 				} else if (src_reg->type == SCALAR_VALUE) {
10698 					*dst_reg = *src_reg;
10699 					/* Make sure ID is cleared otherwise
10700 					 * dst_reg min/max could be incorrectly
10701 					 * propagated into src_reg by find_equal_scalars()
10702 					 */
10703 					dst_reg->id = 0;
10704 					dst_reg->live |= REG_LIVE_WRITTEN;
10705 					dst_reg->subreg_def = env->insn_idx + 1;
10706 				} else {
10707 					mark_reg_unknown(env, regs,
10708 							 insn->dst_reg);
10709 				}
10710 				zext_32_to_64(dst_reg);
10711 				reg_bounds_sync(dst_reg);
10712 			}
10713 		} else {
10714 			/* case: R = imm
10715 			 * remember the value we stored into this reg
10716 			 */
10717 			/* clear any state __mark_reg_known doesn't set */
10718 			mark_reg_unknown(env, regs, insn->dst_reg);
10719 			regs[insn->dst_reg].type = SCALAR_VALUE;
10720 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
10721 				__mark_reg_known(regs + insn->dst_reg,
10722 						 insn->imm);
10723 			} else {
10724 				__mark_reg_known(regs + insn->dst_reg,
10725 						 (u32)insn->imm);
10726 			}
10727 		}
10728 
10729 	} else if (opcode > BPF_END) {
10730 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
10731 		return -EINVAL;
10732 
10733 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
10734 
10735 		if (BPF_SRC(insn->code) == BPF_X) {
10736 			if (insn->imm != 0 || insn->off != 0) {
10737 				verbose(env, "BPF_ALU uses reserved fields\n");
10738 				return -EINVAL;
10739 			}
10740 			/* check src1 operand */
10741 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10742 			if (err)
10743 				return err;
10744 		} else {
10745 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
10746 				verbose(env, "BPF_ALU uses reserved fields\n");
10747 				return -EINVAL;
10748 			}
10749 		}
10750 
10751 		/* check src2 operand */
10752 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10753 		if (err)
10754 			return err;
10755 
10756 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
10757 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
10758 			verbose(env, "div by zero\n");
10759 			return -EINVAL;
10760 		}
10761 
10762 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
10763 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
10764 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
10765 
10766 			if (insn->imm < 0 || insn->imm >= size) {
10767 				verbose(env, "invalid shift %d\n", insn->imm);
10768 				return -EINVAL;
10769 			}
10770 		}
10771 
10772 		/* check dest operand */
10773 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10774 		if (err)
10775 			return err;
10776 
10777 		return adjust_reg_min_max_vals(env, insn);
10778 	}
10779 
10780 	return 0;
10781 }
10782 
10783 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
10784 				   struct bpf_reg_state *dst_reg,
10785 				   enum bpf_reg_type type,
10786 				   bool range_right_open)
10787 {
10788 	struct bpf_func_state *state;
10789 	struct bpf_reg_state *reg;
10790 	int new_range;
10791 
10792 	if (dst_reg->off < 0 ||
10793 	    (dst_reg->off == 0 && range_right_open))
10794 		/* This doesn't give us any range */
10795 		return;
10796 
10797 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
10798 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
10799 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
10800 		 * than pkt_end, but that's because it's also less than pkt.
10801 		 */
10802 		return;
10803 
10804 	new_range = dst_reg->off;
10805 	if (range_right_open)
10806 		new_range++;
10807 
10808 	/* Examples for register markings:
10809 	 *
10810 	 * pkt_data in dst register:
10811 	 *
10812 	 *   r2 = r3;
10813 	 *   r2 += 8;
10814 	 *   if (r2 > pkt_end) goto <handle exception>
10815 	 *   <access okay>
10816 	 *
10817 	 *   r2 = r3;
10818 	 *   r2 += 8;
10819 	 *   if (r2 < pkt_end) goto <access okay>
10820 	 *   <handle exception>
10821 	 *
10822 	 *   Where:
10823 	 *     r2 == dst_reg, pkt_end == src_reg
10824 	 *     r2=pkt(id=n,off=8,r=0)
10825 	 *     r3=pkt(id=n,off=0,r=0)
10826 	 *
10827 	 * pkt_data in src register:
10828 	 *
10829 	 *   r2 = r3;
10830 	 *   r2 += 8;
10831 	 *   if (pkt_end >= r2) goto <access okay>
10832 	 *   <handle exception>
10833 	 *
10834 	 *   r2 = r3;
10835 	 *   r2 += 8;
10836 	 *   if (pkt_end <= r2) goto <handle exception>
10837 	 *   <access okay>
10838 	 *
10839 	 *   Where:
10840 	 *     pkt_end == dst_reg, r2 == src_reg
10841 	 *     r2=pkt(id=n,off=8,r=0)
10842 	 *     r3=pkt(id=n,off=0,r=0)
10843 	 *
10844 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
10845 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
10846 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
10847 	 * the check.
10848 	 */
10849 
10850 	/* If our ids match, then we must have the same max_value.  And we
10851 	 * don't care about the other reg's fixed offset, since if it's too big
10852 	 * the range won't allow anything.
10853 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
10854 	 */
10855 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10856 		if (reg->type == type && reg->id == dst_reg->id)
10857 			/* keep the maximum range already checked */
10858 			reg->range = max(reg->range, new_range);
10859 	}));
10860 }
10861 
10862 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
10863 {
10864 	struct tnum subreg = tnum_subreg(reg->var_off);
10865 	s32 sval = (s32)val;
10866 
10867 	switch (opcode) {
10868 	case BPF_JEQ:
10869 		if (tnum_is_const(subreg))
10870 			return !!tnum_equals_const(subreg, val);
10871 		break;
10872 	case BPF_JNE:
10873 		if (tnum_is_const(subreg))
10874 			return !tnum_equals_const(subreg, val);
10875 		break;
10876 	case BPF_JSET:
10877 		if ((~subreg.mask & subreg.value) & val)
10878 			return 1;
10879 		if (!((subreg.mask | subreg.value) & val))
10880 			return 0;
10881 		break;
10882 	case BPF_JGT:
10883 		if (reg->u32_min_value > val)
10884 			return 1;
10885 		else if (reg->u32_max_value <= val)
10886 			return 0;
10887 		break;
10888 	case BPF_JSGT:
10889 		if (reg->s32_min_value > sval)
10890 			return 1;
10891 		else if (reg->s32_max_value <= sval)
10892 			return 0;
10893 		break;
10894 	case BPF_JLT:
10895 		if (reg->u32_max_value < val)
10896 			return 1;
10897 		else if (reg->u32_min_value >= val)
10898 			return 0;
10899 		break;
10900 	case BPF_JSLT:
10901 		if (reg->s32_max_value < sval)
10902 			return 1;
10903 		else if (reg->s32_min_value >= sval)
10904 			return 0;
10905 		break;
10906 	case BPF_JGE:
10907 		if (reg->u32_min_value >= val)
10908 			return 1;
10909 		else if (reg->u32_max_value < val)
10910 			return 0;
10911 		break;
10912 	case BPF_JSGE:
10913 		if (reg->s32_min_value >= sval)
10914 			return 1;
10915 		else if (reg->s32_max_value < sval)
10916 			return 0;
10917 		break;
10918 	case BPF_JLE:
10919 		if (reg->u32_max_value <= val)
10920 			return 1;
10921 		else if (reg->u32_min_value > val)
10922 			return 0;
10923 		break;
10924 	case BPF_JSLE:
10925 		if (reg->s32_max_value <= sval)
10926 			return 1;
10927 		else if (reg->s32_min_value > sval)
10928 			return 0;
10929 		break;
10930 	}
10931 
10932 	return -1;
10933 }
10934 
10935 
10936 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
10937 {
10938 	s64 sval = (s64)val;
10939 
10940 	switch (opcode) {
10941 	case BPF_JEQ:
10942 		if (tnum_is_const(reg->var_off))
10943 			return !!tnum_equals_const(reg->var_off, val);
10944 		break;
10945 	case BPF_JNE:
10946 		if (tnum_is_const(reg->var_off))
10947 			return !tnum_equals_const(reg->var_off, val);
10948 		break;
10949 	case BPF_JSET:
10950 		if ((~reg->var_off.mask & reg->var_off.value) & val)
10951 			return 1;
10952 		if (!((reg->var_off.mask | reg->var_off.value) & val))
10953 			return 0;
10954 		break;
10955 	case BPF_JGT:
10956 		if (reg->umin_value > val)
10957 			return 1;
10958 		else if (reg->umax_value <= val)
10959 			return 0;
10960 		break;
10961 	case BPF_JSGT:
10962 		if (reg->smin_value > sval)
10963 			return 1;
10964 		else if (reg->smax_value <= sval)
10965 			return 0;
10966 		break;
10967 	case BPF_JLT:
10968 		if (reg->umax_value < val)
10969 			return 1;
10970 		else if (reg->umin_value >= val)
10971 			return 0;
10972 		break;
10973 	case BPF_JSLT:
10974 		if (reg->smax_value < sval)
10975 			return 1;
10976 		else if (reg->smin_value >= sval)
10977 			return 0;
10978 		break;
10979 	case BPF_JGE:
10980 		if (reg->umin_value >= val)
10981 			return 1;
10982 		else if (reg->umax_value < val)
10983 			return 0;
10984 		break;
10985 	case BPF_JSGE:
10986 		if (reg->smin_value >= sval)
10987 			return 1;
10988 		else if (reg->smax_value < sval)
10989 			return 0;
10990 		break;
10991 	case BPF_JLE:
10992 		if (reg->umax_value <= val)
10993 			return 1;
10994 		else if (reg->umin_value > val)
10995 			return 0;
10996 		break;
10997 	case BPF_JSLE:
10998 		if (reg->smax_value <= sval)
10999 			return 1;
11000 		else if (reg->smin_value > sval)
11001 			return 0;
11002 		break;
11003 	}
11004 
11005 	return -1;
11006 }
11007 
11008 /* compute branch direction of the expression "if (reg opcode val) goto target;"
11009  * and return:
11010  *  1 - branch will be taken and "goto target" will be executed
11011  *  0 - branch will not be taken and fall-through to next insn
11012  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
11013  *      range [0,10]
11014  */
11015 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
11016 			   bool is_jmp32)
11017 {
11018 	if (__is_pointer_value(false, reg)) {
11019 		if (!reg_type_not_null(reg->type))
11020 			return -1;
11021 
11022 		/* If pointer is valid tests against zero will fail so we can
11023 		 * use this to direct branch taken.
11024 		 */
11025 		if (val != 0)
11026 			return -1;
11027 
11028 		switch (opcode) {
11029 		case BPF_JEQ:
11030 			return 0;
11031 		case BPF_JNE:
11032 			return 1;
11033 		default:
11034 			return -1;
11035 		}
11036 	}
11037 
11038 	if (is_jmp32)
11039 		return is_branch32_taken(reg, val, opcode);
11040 	return is_branch64_taken(reg, val, opcode);
11041 }
11042 
11043 static int flip_opcode(u32 opcode)
11044 {
11045 	/* How can we transform "a <op> b" into "b <op> a"? */
11046 	static const u8 opcode_flip[16] = {
11047 		/* these stay the same */
11048 		[BPF_JEQ  >> 4] = BPF_JEQ,
11049 		[BPF_JNE  >> 4] = BPF_JNE,
11050 		[BPF_JSET >> 4] = BPF_JSET,
11051 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
11052 		[BPF_JGE  >> 4] = BPF_JLE,
11053 		[BPF_JGT  >> 4] = BPF_JLT,
11054 		[BPF_JLE  >> 4] = BPF_JGE,
11055 		[BPF_JLT  >> 4] = BPF_JGT,
11056 		[BPF_JSGE >> 4] = BPF_JSLE,
11057 		[BPF_JSGT >> 4] = BPF_JSLT,
11058 		[BPF_JSLE >> 4] = BPF_JSGE,
11059 		[BPF_JSLT >> 4] = BPF_JSGT
11060 	};
11061 	return opcode_flip[opcode >> 4];
11062 }
11063 
11064 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
11065 				   struct bpf_reg_state *src_reg,
11066 				   u8 opcode)
11067 {
11068 	struct bpf_reg_state *pkt;
11069 
11070 	if (src_reg->type == PTR_TO_PACKET_END) {
11071 		pkt = dst_reg;
11072 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
11073 		pkt = src_reg;
11074 		opcode = flip_opcode(opcode);
11075 	} else {
11076 		return -1;
11077 	}
11078 
11079 	if (pkt->range >= 0)
11080 		return -1;
11081 
11082 	switch (opcode) {
11083 	case BPF_JLE:
11084 		/* pkt <= pkt_end */
11085 		fallthrough;
11086 	case BPF_JGT:
11087 		/* pkt > pkt_end */
11088 		if (pkt->range == BEYOND_PKT_END)
11089 			/* pkt has at last one extra byte beyond pkt_end */
11090 			return opcode == BPF_JGT;
11091 		break;
11092 	case BPF_JLT:
11093 		/* pkt < pkt_end */
11094 		fallthrough;
11095 	case BPF_JGE:
11096 		/* pkt >= pkt_end */
11097 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
11098 			return opcode == BPF_JGE;
11099 		break;
11100 	}
11101 	return -1;
11102 }
11103 
11104 /* Adjusts the register min/max values in the case that the dst_reg is the
11105  * variable register that we are working on, and src_reg is a constant or we're
11106  * simply doing a BPF_K check.
11107  * In JEQ/JNE cases we also adjust the var_off values.
11108  */
11109 static void reg_set_min_max(struct bpf_reg_state *true_reg,
11110 			    struct bpf_reg_state *false_reg,
11111 			    u64 val, u32 val32,
11112 			    u8 opcode, bool is_jmp32)
11113 {
11114 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
11115 	struct tnum false_64off = false_reg->var_off;
11116 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
11117 	struct tnum true_64off = true_reg->var_off;
11118 	s64 sval = (s64)val;
11119 	s32 sval32 = (s32)val32;
11120 
11121 	/* If the dst_reg is a pointer, we can't learn anything about its
11122 	 * variable offset from the compare (unless src_reg were a pointer into
11123 	 * the same object, but we don't bother with that.
11124 	 * Since false_reg and true_reg have the same type by construction, we
11125 	 * only need to check one of them for pointerness.
11126 	 */
11127 	if (__is_pointer_value(false, false_reg))
11128 		return;
11129 
11130 	switch (opcode) {
11131 	/* JEQ/JNE comparison doesn't change the register equivalence.
11132 	 *
11133 	 * r1 = r2;
11134 	 * if (r1 == 42) goto label;
11135 	 * ...
11136 	 * label: // here both r1 and r2 are known to be 42.
11137 	 *
11138 	 * Hence when marking register as known preserve it's ID.
11139 	 */
11140 	case BPF_JEQ:
11141 		if (is_jmp32) {
11142 			__mark_reg32_known(true_reg, val32);
11143 			true_32off = tnum_subreg(true_reg->var_off);
11144 		} else {
11145 			___mark_reg_known(true_reg, val);
11146 			true_64off = true_reg->var_off;
11147 		}
11148 		break;
11149 	case BPF_JNE:
11150 		if (is_jmp32) {
11151 			__mark_reg32_known(false_reg, val32);
11152 			false_32off = tnum_subreg(false_reg->var_off);
11153 		} else {
11154 			___mark_reg_known(false_reg, val);
11155 			false_64off = false_reg->var_off;
11156 		}
11157 		break;
11158 	case BPF_JSET:
11159 		if (is_jmp32) {
11160 			false_32off = tnum_and(false_32off, tnum_const(~val32));
11161 			if (is_power_of_2(val32))
11162 				true_32off = tnum_or(true_32off,
11163 						     tnum_const(val32));
11164 		} else {
11165 			false_64off = tnum_and(false_64off, tnum_const(~val));
11166 			if (is_power_of_2(val))
11167 				true_64off = tnum_or(true_64off,
11168 						     tnum_const(val));
11169 		}
11170 		break;
11171 	case BPF_JGE:
11172 	case BPF_JGT:
11173 	{
11174 		if (is_jmp32) {
11175 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
11176 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
11177 
11178 			false_reg->u32_max_value = min(false_reg->u32_max_value,
11179 						       false_umax);
11180 			true_reg->u32_min_value = max(true_reg->u32_min_value,
11181 						      true_umin);
11182 		} else {
11183 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
11184 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
11185 
11186 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
11187 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
11188 		}
11189 		break;
11190 	}
11191 	case BPF_JSGE:
11192 	case BPF_JSGT:
11193 	{
11194 		if (is_jmp32) {
11195 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
11196 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
11197 
11198 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
11199 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
11200 		} else {
11201 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
11202 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
11203 
11204 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
11205 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
11206 		}
11207 		break;
11208 	}
11209 	case BPF_JLE:
11210 	case BPF_JLT:
11211 	{
11212 		if (is_jmp32) {
11213 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
11214 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
11215 
11216 			false_reg->u32_min_value = max(false_reg->u32_min_value,
11217 						       false_umin);
11218 			true_reg->u32_max_value = min(true_reg->u32_max_value,
11219 						      true_umax);
11220 		} else {
11221 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
11222 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
11223 
11224 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
11225 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
11226 		}
11227 		break;
11228 	}
11229 	case BPF_JSLE:
11230 	case BPF_JSLT:
11231 	{
11232 		if (is_jmp32) {
11233 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
11234 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
11235 
11236 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
11237 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
11238 		} else {
11239 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
11240 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
11241 
11242 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
11243 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
11244 		}
11245 		break;
11246 	}
11247 	default:
11248 		return;
11249 	}
11250 
11251 	if (is_jmp32) {
11252 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
11253 					     tnum_subreg(false_32off));
11254 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
11255 					    tnum_subreg(true_32off));
11256 		__reg_combine_32_into_64(false_reg);
11257 		__reg_combine_32_into_64(true_reg);
11258 	} else {
11259 		false_reg->var_off = false_64off;
11260 		true_reg->var_off = true_64off;
11261 		__reg_combine_64_into_32(false_reg);
11262 		__reg_combine_64_into_32(true_reg);
11263 	}
11264 }
11265 
11266 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
11267  * the variable reg.
11268  */
11269 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
11270 				struct bpf_reg_state *false_reg,
11271 				u64 val, u32 val32,
11272 				u8 opcode, bool is_jmp32)
11273 {
11274 	opcode = flip_opcode(opcode);
11275 	/* This uses zero as "not present in table"; luckily the zero opcode,
11276 	 * BPF_JA, can't get here.
11277 	 */
11278 	if (opcode)
11279 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
11280 }
11281 
11282 /* Regs are known to be equal, so intersect their min/max/var_off */
11283 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
11284 				  struct bpf_reg_state *dst_reg)
11285 {
11286 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
11287 							dst_reg->umin_value);
11288 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
11289 							dst_reg->umax_value);
11290 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
11291 							dst_reg->smin_value);
11292 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
11293 							dst_reg->smax_value);
11294 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
11295 							     dst_reg->var_off);
11296 	reg_bounds_sync(src_reg);
11297 	reg_bounds_sync(dst_reg);
11298 }
11299 
11300 static void reg_combine_min_max(struct bpf_reg_state *true_src,
11301 				struct bpf_reg_state *true_dst,
11302 				struct bpf_reg_state *false_src,
11303 				struct bpf_reg_state *false_dst,
11304 				u8 opcode)
11305 {
11306 	switch (opcode) {
11307 	case BPF_JEQ:
11308 		__reg_combine_min_max(true_src, true_dst);
11309 		break;
11310 	case BPF_JNE:
11311 		__reg_combine_min_max(false_src, false_dst);
11312 		break;
11313 	}
11314 }
11315 
11316 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
11317 				 struct bpf_reg_state *reg, u32 id,
11318 				 bool is_null)
11319 {
11320 	if (type_may_be_null(reg->type) && reg->id == id &&
11321 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
11322 		/* Old offset (both fixed and variable parts) should have been
11323 		 * known-zero, because we don't allow pointer arithmetic on
11324 		 * pointers that might be NULL. If we see this happening, don't
11325 		 * convert the register.
11326 		 *
11327 		 * But in some cases, some helpers that return local kptrs
11328 		 * advance offset for the returned pointer. In those cases, it
11329 		 * is fine to expect to see reg->off.
11330 		 */
11331 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
11332 			return;
11333 		if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off))
11334 			return;
11335 		if (is_null) {
11336 			reg->type = SCALAR_VALUE;
11337 			/* We don't need id and ref_obj_id from this point
11338 			 * onwards anymore, thus we should better reset it,
11339 			 * so that state pruning has chances to take effect.
11340 			 */
11341 			reg->id = 0;
11342 			reg->ref_obj_id = 0;
11343 
11344 			return;
11345 		}
11346 
11347 		mark_ptr_not_null_reg(reg);
11348 
11349 		if (!reg_may_point_to_spin_lock(reg)) {
11350 			/* For not-NULL ptr, reg->ref_obj_id will be reset
11351 			 * in release_reference().
11352 			 *
11353 			 * reg->id is still used by spin_lock ptr. Other
11354 			 * than spin_lock ptr type, reg->id can be reset.
11355 			 */
11356 			reg->id = 0;
11357 		}
11358 	}
11359 }
11360 
11361 /* The logic is similar to find_good_pkt_pointers(), both could eventually
11362  * be folded together at some point.
11363  */
11364 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
11365 				  bool is_null)
11366 {
11367 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11368 	struct bpf_reg_state *regs = state->regs, *reg;
11369 	u32 ref_obj_id = regs[regno].ref_obj_id;
11370 	u32 id = regs[regno].id;
11371 
11372 	if (ref_obj_id && ref_obj_id == id && is_null)
11373 		/* regs[regno] is in the " == NULL" branch.
11374 		 * No one could have freed the reference state before
11375 		 * doing the NULL check.
11376 		 */
11377 		WARN_ON_ONCE(release_reference_state(state, id));
11378 
11379 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11380 		mark_ptr_or_null_reg(state, reg, id, is_null);
11381 	}));
11382 }
11383 
11384 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
11385 				   struct bpf_reg_state *dst_reg,
11386 				   struct bpf_reg_state *src_reg,
11387 				   struct bpf_verifier_state *this_branch,
11388 				   struct bpf_verifier_state *other_branch)
11389 {
11390 	if (BPF_SRC(insn->code) != BPF_X)
11391 		return false;
11392 
11393 	/* Pointers are always 64-bit. */
11394 	if (BPF_CLASS(insn->code) == BPF_JMP32)
11395 		return false;
11396 
11397 	switch (BPF_OP(insn->code)) {
11398 	case BPF_JGT:
11399 		if ((dst_reg->type == PTR_TO_PACKET &&
11400 		     src_reg->type == PTR_TO_PACKET_END) ||
11401 		    (dst_reg->type == PTR_TO_PACKET_META &&
11402 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11403 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
11404 			find_good_pkt_pointers(this_branch, dst_reg,
11405 					       dst_reg->type, false);
11406 			mark_pkt_end(other_branch, insn->dst_reg, true);
11407 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11408 			    src_reg->type == PTR_TO_PACKET) ||
11409 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11410 			    src_reg->type == PTR_TO_PACKET_META)) {
11411 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
11412 			find_good_pkt_pointers(other_branch, src_reg,
11413 					       src_reg->type, true);
11414 			mark_pkt_end(this_branch, insn->src_reg, false);
11415 		} else {
11416 			return false;
11417 		}
11418 		break;
11419 	case BPF_JLT:
11420 		if ((dst_reg->type == PTR_TO_PACKET &&
11421 		     src_reg->type == PTR_TO_PACKET_END) ||
11422 		    (dst_reg->type == PTR_TO_PACKET_META &&
11423 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11424 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
11425 			find_good_pkt_pointers(other_branch, dst_reg,
11426 					       dst_reg->type, true);
11427 			mark_pkt_end(this_branch, insn->dst_reg, false);
11428 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11429 			    src_reg->type == PTR_TO_PACKET) ||
11430 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11431 			    src_reg->type == PTR_TO_PACKET_META)) {
11432 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
11433 			find_good_pkt_pointers(this_branch, src_reg,
11434 					       src_reg->type, false);
11435 			mark_pkt_end(other_branch, insn->src_reg, true);
11436 		} else {
11437 			return false;
11438 		}
11439 		break;
11440 	case BPF_JGE:
11441 		if ((dst_reg->type == PTR_TO_PACKET &&
11442 		     src_reg->type == PTR_TO_PACKET_END) ||
11443 		    (dst_reg->type == PTR_TO_PACKET_META &&
11444 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11445 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
11446 			find_good_pkt_pointers(this_branch, dst_reg,
11447 					       dst_reg->type, true);
11448 			mark_pkt_end(other_branch, insn->dst_reg, false);
11449 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11450 			    src_reg->type == PTR_TO_PACKET) ||
11451 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11452 			    src_reg->type == PTR_TO_PACKET_META)) {
11453 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
11454 			find_good_pkt_pointers(other_branch, src_reg,
11455 					       src_reg->type, false);
11456 			mark_pkt_end(this_branch, insn->src_reg, true);
11457 		} else {
11458 			return false;
11459 		}
11460 		break;
11461 	case BPF_JLE:
11462 		if ((dst_reg->type == PTR_TO_PACKET &&
11463 		     src_reg->type == PTR_TO_PACKET_END) ||
11464 		    (dst_reg->type == PTR_TO_PACKET_META &&
11465 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11466 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
11467 			find_good_pkt_pointers(other_branch, dst_reg,
11468 					       dst_reg->type, false);
11469 			mark_pkt_end(this_branch, insn->dst_reg, true);
11470 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11471 			    src_reg->type == PTR_TO_PACKET) ||
11472 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11473 			    src_reg->type == PTR_TO_PACKET_META)) {
11474 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
11475 			find_good_pkt_pointers(this_branch, src_reg,
11476 					       src_reg->type, true);
11477 			mark_pkt_end(other_branch, insn->src_reg, false);
11478 		} else {
11479 			return false;
11480 		}
11481 		break;
11482 	default:
11483 		return false;
11484 	}
11485 
11486 	return true;
11487 }
11488 
11489 static void find_equal_scalars(struct bpf_verifier_state *vstate,
11490 			       struct bpf_reg_state *known_reg)
11491 {
11492 	struct bpf_func_state *state;
11493 	struct bpf_reg_state *reg;
11494 
11495 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11496 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
11497 			*reg = *known_reg;
11498 	}));
11499 }
11500 
11501 static int check_cond_jmp_op(struct bpf_verifier_env *env,
11502 			     struct bpf_insn *insn, int *insn_idx)
11503 {
11504 	struct bpf_verifier_state *this_branch = env->cur_state;
11505 	struct bpf_verifier_state *other_branch;
11506 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
11507 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
11508 	struct bpf_reg_state *eq_branch_regs;
11509 	u8 opcode = BPF_OP(insn->code);
11510 	bool is_jmp32;
11511 	int pred = -1;
11512 	int err;
11513 
11514 	/* Only conditional jumps are expected to reach here. */
11515 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
11516 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
11517 		return -EINVAL;
11518 	}
11519 
11520 	if (BPF_SRC(insn->code) == BPF_X) {
11521 		if (insn->imm != 0) {
11522 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11523 			return -EINVAL;
11524 		}
11525 
11526 		/* check src1 operand */
11527 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
11528 		if (err)
11529 			return err;
11530 
11531 		if (is_pointer_value(env, insn->src_reg)) {
11532 			verbose(env, "R%d pointer comparison prohibited\n",
11533 				insn->src_reg);
11534 			return -EACCES;
11535 		}
11536 		src_reg = &regs[insn->src_reg];
11537 	} else {
11538 		if (insn->src_reg != BPF_REG_0) {
11539 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11540 			return -EINVAL;
11541 		}
11542 	}
11543 
11544 	/* check src2 operand */
11545 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11546 	if (err)
11547 		return err;
11548 
11549 	dst_reg = &regs[insn->dst_reg];
11550 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
11551 
11552 	if (BPF_SRC(insn->code) == BPF_K) {
11553 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
11554 	} else if (src_reg->type == SCALAR_VALUE &&
11555 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
11556 		pred = is_branch_taken(dst_reg,
11557 				       tnum_subreg(src_reg->var_off).value,
11558 				       opcode,
11559 				       is_jmp32);
11560 	} else if (src_reg->type == SCALAR_VALUE &&
11561 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
11562 		pred = is_branch_taken(dst_reg,
11563 				       src_reg->var_off.value,
11564 				       opcode,
11565 				       is_jmp32);
11566 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
11567 		   reg_is_pkt_pointer_any(src_reg) &&
11568 		   !is_jmp32) {
11569 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
11570 	}
11571 
11572 	if (pred >= 0) {
11573 		/* If we get here with a dst_reg pointer type it is because
11574 		 * above is_branch_taken() special cased the 0 comparison.
11575 		 */
11576 		if (!__is_pointer_value(false, dst_reg))
11577 			err = mark_chain_precision(env, insn->dst_reg);
11578 		if (BPF_SRC(insn->code) == BPF_X && !err &&
11579 		    !__is_pointer_value(false, src_reg))
11580 			err = mark_chain_precision(env, insn->src_reg);
11581 		if (err)
11582 			return err;
11583 	}
11584 
11585 	if (pred == 1) {
11586 		/* Only follow the goto, ignore fall-through. If needed, push
11587 		 * the fall-through branch for simulation under speculative
11588 		 * execution.
11589 		 */
11590 		if (!env->bypass_spec_v1 &&
11591 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
11592 					       *insn_idx))
11593 			return -EFAULT;
11594 		*insn_idx += insn->off;
11595 		return 0;
11596 	} else if (pred == 0) {
11597 		/* Only follow the fall-through branch, since that's where the
11598 		 * program will go. If needed, push the goto branch for
11599 		 * simulation under speculative execution.
11600 		 */
11601 		if (!env->bypass_spec_v1 &&
11602 		    !sanitize_speculative_path(env, insn,
11603 					       *insn_idx + insn->off + 1,
11604 					       *insn_idx))
11605 			return -EFAULT;
11606 		return 0;
11607 	}
11608 
11609 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
11610 				  false);
11611 	if (!other_branch)
11612 		return -EFAULT;
11613 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
11614 
11615 	/* detect if we are comparing against a constant value so we can adjust
11616 	 * our min/max values for our dst register.
11617 	 * this is only legit if both are scalars (or pointers to the same
11618 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
11619 	 * because otherwise the different base pointers mean the offsets aren't
11620 	 * comparable.
11621 	 */
11622 	if (BPF_SRC(insn->code) == BPF_X) {
11623 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
11624 
11625 		if (dst_reg->type == SCALAR_VALUE &&
11626 		    src_reg->type == SCALAR_VALUE) {
11627 			if (tnum_is_const(src_reg->var_off) ||
11628 			    (is_jmp32 &&
11629 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
11630 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
11631 						dst_reg,
11632 						src_reg->var_off.value,
11633 						tnum_subreg(src_reg->var_off).value,
11634 						opcode, is_jmp32);
11635 			else if (tnum_is_const(dst_reg->var_off) ||
11636 				 (is_jmp32 &&
11637 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
11638 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
11639 						    src_reg,
11640 						    dst_reg->var_off.value,
11641 						    tnum_subreg(dst_reg->var_off).value,
11642 						    opcode, is_jmp32);
11643 			else if (!is_jmp32 &&
11644 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
11645 				/* Comparing for equality, we can combine knowledge */
11646 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
11647 						    &other_branch_regs[insn->dst_reg],
11648 						    src_reg, dst_reg, opcode);
11649 			if (src_reg->id &&
11650 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
11651 				find_equal_scalars(this_branch, src_reg);
11652 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
11653 			}
11654 
11655 		}
11656 	} else if (dst_reg->type == SCALAR_VALUE) {
11657 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
11658 					dst_reg, insn->imm, (u32)insn->imm,
11659 					opcode, is_jmp32);
11660 	}
11661 
11662 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
11663 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
11664 		find_equal_scalars(this_branch, dst_reg);
11665 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
11666 	}
11667 
11668 	/* if one pointer register is compared to another pointer
11669 	 * register check if PTR_MAYBE_NULL could be lifted.
11670 	 * E.g. register A - maybe null
11671 	 *      register B - not null
11672 	 * for JNE A, B, ... - A is not null in the false branch;
11673 	 * for JEQ A, B, ... - A is not null in the true branch.
11674 	 */
11675 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
11676 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
11677 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) {
11678 		eq_branch_regs = NULL;
11679 		switch (opcode) {
11680 		case BPF_JEQ:
11681 			eq_branch_regs = other_branch_regs;
11682 			break;
11683 		case BPF_JNE:
11684 			eq_branch_regs = regs;
11685 			break;
11686 		default:
11687 			/* do nothing */
11688 			break;
11689 		}
11690 		if (eq_branch_regs) {
11691 			if (type_may_be_null(src_reg->type))
11692 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
11693 			else
11694 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
11695 		}
11696 	}
11697 
11698 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
11699 	 * NOTE: these optimizations below are related with pointer comparison
11700 	 *       which will never be JMP32.
11701 	 */
11702 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
11703 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
11704 	    type_may_be_null(dst_reg->type)) {
11705 		/* Mark all identical registers in each branch as either
11706 		 * safe or unknown depending R == 0 or R != 0 conditional.
11707 		 */
11708 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
11709 				      opcode == BPF_JNE);
11710 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
11711 				      opcode == BPF_JEQ);
11712 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
11713 					   this_branch, other_branch) &&
11714 		   is_pointer_value(env, insn->dst_reg)) {
11715 		verbose(env, "R%d pointer comparison prohibited\n",
11716 			insn->dst_reg);
11717 		return -EACCES;
11718 	}
11719 	if (env->log.level & BPF_LOG_LEVEL)
11720 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
11721 	return 0;
11722 }
11723 
11724 /* verify BPF_LD_IMM64 instruction */
11725 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
11726 {
11727 	struct bpf_insn_aux_data *aux = cur_aux(env);
11728 	struct bpf_reg_state *regs = cur_regs(env);
11729 	struct bpf_reg_state *dst_reg;
11730 	struct bpf_map *map;
11731 	int err;
11732 
11733 	if (BPF_SIZE(insn->code) != BPF_DW) {
11734 		verbose(env, "invalid BPF_LD_IMM insn\n");
11735 		return -EINVAL;
11736 	}
11737 	if (insn->off != 0) {
11738 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
11739 		return -EINVAL;
11740 	}
11741 
11742 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
11743 	if (err)
11744 		return err;
11745 
11746 	dst_reg = &regs[insn->dst_reg];
11747 	if (insn->src_reg == 0) {
11748 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
11749 
11750 		dst_reg->type = SCALAR_VALUE;
11751 		__mark_reg_known(&regs[insn->dst_reg], imm);
11752 		return 0;
11753 	}
11754 
11755 	/* All special src_reg cases are listed below. From this point onwards
11756 	 * we either succeed and assign a corresponding dst_reg->type after
11757 	 * zeroing the offset, or fail and reject the program.
11758 	 */
11759 	mark_reg_known_zero(env, regs, insn->dst_reg);
11760 
11761 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
11762 		dst_reg->type = aux->btf_var.reg_type;
11763 		switch (base_type(dst_reg->type)) {
11764 		case PTR_TO_MEM:
11765 			dst_reg->mem_size = aux->btf_var.mem_size;
11766 			break;
11767 		case PTR_TO_BTF_ID:
11768 			dst_reg->btf = aux->btf_var.btf;
11769 			dst_reg->btf_id = aux->btf_var.btf_id;
11770 			break;
11771 		default:
11772 			verbose(env, "bpf verifier is misconfigured\n");
11773 			return -EFAULT;
11774 		}
11775 		return 0;
11776 	}
11777 
11778 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
11779 		struct bpf_prog_aux *aux = env->prog->aux;
11780 		u32 subprogno = find_subprog(env,
11781 					     env->insn_idx + insn->imm + 1);
11782 
11783 		if (!aux->func_info) {
11784 			verbose(env, "missing btf func_info\n");
11785 			return -EINVAL;
11786 		}
11787 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
11788 			verbose(env, "callback function not static\n");
11789 			return -EINVAL;
11790 		}
11791 
11792 		dst_reg->type = PTR_TO_FUNC;
11793 		dst_reg->subprogno = subprogno;
11794 		return 0;
11795 	}
11796 
11797 	map = env->used_maps[aux->map_index];
11798 	dst_reg->map_ptr = map;
11799 
11800 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
11801 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
11802 		dst_reg->type = PTR_TO_MAP_VALUE;
11803 		dst_reg->off = aux->map_off;
11804 		WARN_ON_ONCE(map->max_entries != 1);
11805 		/* We want reg->id to be same (0) as map_value is not distinct */
11806 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
11807 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
11808 		dst_reg->type = CONST_PTR_TO_MAP;
11809 	} else {
11810 		verbose(env, "bpf verifier is misconfigured\n");
11811 		return -EINVAL;
11812 	}
11813 
11814 	return 0;
11815 }
11816 
11817 static bool may_access_skb(enum bpf_prog_type type)
11818 {
11819 	switch (type) {
11820 	case BPF_PROG_TYPE_SOCKET_FILTER:
11821 	case BPF_PROG_TYPE_SCHED_CLS:
11822 	case BPF_PROG_TYPE_SCHED_ACT:
11823 		return true;
11824 	default:
11825 		return false;
11826 	}
11827 }
11828 
11829 /* verify safety of LD_ABS|LD_IND instructions:
11830  * - they can only appear in the programs where ctx == skb
11831  * - since they are wrappers of function calls, they scratch R1-R5 registers,
11832  *   preserve R6-R9, and store return value into R0
11833  *
11834  * Implicit input:
11835  *   ctx == skb == R6 == CTX
11836  *
11837  * Explicit input:
11838  *   SRC == any register
11839  *   IMM == 32-bit immediate
11840  *
11841  * Output:
11842  *   R0 - 8/16/32-bit skb data converted to cpu endianness
11843  */
11844 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
11845 {
11846 	struct bpf_reg_state *regs = cur_regs(env);
11847 	static const int ctx_reg = BPF_REG_6;
11848 	u8 mode = BPF_MODE(insn->code);
11849 	int i, err;
11850 
11851 	if (!may_access_skb(resolve_prog_type(env->prog))) {
11852 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
11853 		return -EINVAL;
11854 	}
11855 
11856 	if (!env->ops->gen_ld_abs) {
11857 		verbose(env, "bpf verifier is misconfigured\n");
11858 		return -EINVAL;
11859 	}
11860 
11861 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
11862 	    BPF_SIZE(insn->code) == BPF_DW ||
11863 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
11864 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
11865 		return -EINVAL;
11866 	}
11867 
11868 	/* check whether implicit source operand (register R6) is readable */
11869 	err = check_reg_arg(env, ctx_reg, SRC_OP);
11870 	if (err)
11871 		return err;
11872 
11873 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
11874 	 * gen_ld_abs() may terminate the program at runtime, leading to
11875 	 * reference leak.
11876 	 */
11877 	err = check_reference_leak(env);
11878 	if (err) {
11879 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
11880 		return err;
11881 	}
11882 
11883 	if (env->cur_state->active_lock.ptr) {
11884 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
11885 		return -EINVAL;
11886 	}
11887 
11888 	if (env->cur_state->active_rcu_lock) {
11889 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
11890 		return -EINVAL;
11891 	}
11892 
11893 	if (regs[ctx_reg].type != PTR_TO_CTX) {
11894 		verbose(env,
11895 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
11896 		return -EINVAL;
11897 	}
11898 
11899 	if (mode == BPF_IND) {
11900 		/* check explicit source operand */
11901 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
11902 		if (err)
11903 			return err;
11904 	}
11905 
11906 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
11907 	if (err < 0)
11908 		return err;
11909 
11910 	/* reset caller saved regs to unreadable */
11911 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
11912 		mark_reg_not_init(env, regs, caller_saved[i]);
11913 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11914 	}
11915 
11916 	/* mark destination R0 register as readable, since it contains
11917 	 * the value fetched from the packet.
11918 	 * Already marked as written above.
11919 	 */
11920 	mark_reg_unknown(env, regs, BPF_REG_0);
11921 	/* ld_abs load up to 32-bit skb data. */
11922 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
11923 	return 0;
11924 }
11925 
11926 static int check_return_code(struct bpf_verifier_env *env)
11927 {
11928 	struct tnum enforce_attach_type_range = tnum_unknown;
11929 	const struct bpf_prog *prog = env->prog;
11930 	struct bpf_reg_state *reg;
11931 	struct tnum range = tnum_range(0, 1);
11932 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11933 	int err;
11934 	struct bpf_func_state *frame = env->cur_state->frame[0];
11935 	const bool is_subprog = frame->subprogno;
11936 
11937 	/* LSM and struct_ops func-ptr's return type could be "void" */
11938 	if (!is_subprog) {
11939 		switch (prog_type) {
11940 		case BPF_PROG_TYPE_LSM:
11941 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
11942 				/* See below, can be 0 or 0-1 depending on hook. */
11943 				break;
11944 			fallthrough;
11945 		case BPF_PROG_TYPE_STRUCT_OPS:
11946 			if (!prog->aux->attach_func_proto->type)
11947 				return 0;
11948 			break;
11949 		default:
11950 			break;
11951 		}
11952 	}
11953 
11954 	/* eBPF calling convention is such that R0 is used
11955 	 * to return the value from eBPF program.
11956 	 * Make sure that it's readable at this time
11957 	 * of bpf_exit, which means that program wrote
11958 	 * something into it earlier
11959 	 */
11960 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
11961 	if (err)
11962 		return err;
11963 
11964 	if (is_pointer_value(env, BPF_REG_0)) {
11965 		verbose(env, "R0 leaks addr as return value\n");
11966 		return -EACCES;
11967 	}
11968 
11969 	reg = cur_regs(env) + BPF_REG_0;
11970 
11971 	if (frame->in_async_callback_fn) {
11972 		/* enforce return zero from async callbacks like timer */
11973 		if (reg->type != SCALAR_VALUE) {
11974 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
11975 				reg_type_str(env, reg->type));
11976 			return -EINVAL;
11977 		}
11978 
11979 		if (!tnum_in(tnum_const(0), reg->var_off)) {
11980 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
11981 			return -EINVAL;
11982 		}
11983 		return 0;
11984 	}
11985 
11986 	if (is_subprog) {
11987 		if (reg->type != SCALAR_VALUE) {
11988 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
11989 				reg_type_str(env, reg->type));
11990 			return -EINVAL;
11991 		}
11992 		return 0;
11993 	}
11994 
11995 	switch (prog_type) {
11996 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
11997 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
11998 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
11999 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
12000 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
12001 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
12002 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
12003 			range = tnum_range(1, 1);
12004 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
12005 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
12006 			range = tnum_range(0, 3);
12007 		break;
12008 	case BPF_PROG_TYPE_CGROUP_SKB:
12009 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
12010 			range = tnum_range(0, 3);
12011 			enforce_attach_type_range = tnum_range(2, 3);
12012 		}
12013 		break;
12014 	case BPF_PROG_TYPE_CGROUP_SOCK:
12015 	case BPF_PROG_TYPE_SOCK_OPS:
12016 	case BPF_PROG_TYPE_CGROUP_DEVICE:
12017 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
12018 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
12019 		break;
12020 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12021 		if (!env->prog->aux->attach_btf_id)
12022 			return 0;
12023 		range = tnum_const(0);
12024 		break;
12025 	case BPF_PROG_TYPE_TRACING:
12026 		switch (env->prog->expected_attach_type) {
12027 		case BPF_TRACE_FENTRY:
12028 		case BPF_TRACE_FEXIT:
12029 			range = tnum_const(0);
12030 			break;
12031 		case BPF_TRACE_RAW_TP:
12032 		case BPF_MODIFY_RETURN:
12033 			return 0;
12034 		case BPF_TRACE_ITER:
12035 			break;
12036 		default:
12037 			return -ENOTSUPP;
12038 		}
12039 		break;
12040 	case BPF_PROG_TYPE_SK_LOOKUP:
12041 		range = tnum_range(SK_DROP, SK_PASS);
12042 		break;
12043 
12044 	case BPF_PROG_TYPE_LSM:
12045 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
12046 			/* Regular BPF_PROG_TYPE_LSM programs can return
12047 			 * any value.
12048 			 */
12049 			return 0;
12050 		}
12051 		if (!env->prog->aux->attach_func_proto->type) {
12052 			/* Make sure programs that attach to void
12053 			 * hooks don't try to modify return value.
12054 			 */
12055 			range = tnum_range(1, 1);
12056 		}
12057 		break;
12058 
12059 	case BPF_PROG_TYPE_EXT:
12060 		/* freplace program can return anything as its return value
12061 		 * depends on the to-be-replaced kernel func or bpf program.
12062 		 */
12063 	default:
12064 		return 0;
12065 	}
12066 
12067 	if (reg->type != SCALAR_VALUE) {
12068 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
12069 			reg_type_str(env, reg->type));
12070 		return -EINVAL;
12071 	}
12072 
12073 	if (!tnum_in(range, reg->var_off)) {
12074 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
12075 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
12076 		    prog_type == BPF_PROG_TYPE_LSM &&
12077 		    !prog->aux->attach_func_proto->type)
12078 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
12079 		return -EINVAL;
12080 	}
12081 
12082 	if (!tnum_is_unknown(enforce_attach_type_range) &&
12083 	    tnum_in(enforce_attach_type_range, reg->var_off))
12084 		env->prog->enforce_expected_attach_type = 1;
12085 	return 0;
12086 }
12087 
12088 /* non-recursive DFS pseudo code
12089  * 1  procedure DFS-iterative(G,v):
12090  * 2      label v as discovered
12091  * 3      let S be a stack
12092  * 4      S.push(v)
12093  * 5      while S is not empty
12094  * 6            t <- S.peek()
12095  * 7            if t is what we're looking for:
12096  * 8                return t
12097  * 9            for all edges e in G.adjacentEdges(t) do
12098  * 10               if edge e is already labelled
12099  * 11                   continue with the next edge
12100  * 12               w <- G.adjacentVertex(t,e)
12101  * 13               if vertex w is not discovered and not explored
12102  * 14                   label e as tree-edge
12103  * 15                   label w as discovered
12104  * 16                   S.push(w)
12105  * 17                   continue at 5
12106  * 18               else if vertex w is discovered
12107  * 19                   label e as back-edge
12108  * 20               else
12109  * 21                   // vertex w is explored
12110  * 22                   label e as forward- or cross-edge
12111  * 23           label t as explored
12112  * 24           S.pop()
12113  *
12114  * convention:
12115  * 0x10 - discovered
12116  * 0x11 - discovered and fall-through edge labelled
12117  * 0x12 - discovered and fall-through and branch edges labelled
12118  * 0x20 - explored
12119  */
12120 
12121 enum {
12122 	DISCOVERED = 0x10,
12123 	EXPLORED = 0x20,
12124 	FALLTHROUGH = 1,
12125 	BRANCH = 2,
12126 };
12127 
12128 static u32 state_htab_size(struct bpf_verifier_env *env)
12129 {
12130 	return env->prog->len;
12131 }
12132 
12133 static struct bpf_verifier_state_list **explored_state(
12134 					struct bpf_verifier_env *env,
12135 					int idx)
12136 {
12137 	struct bpf_verifier_state *cur = env->cur_state;
12138 	struct bpf_func_state *state = cur->frame[cur->curframe];
12139 
12140 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
12141 }
12142 
12143 static void init_explored_state(struct bpf_verifier_env *env, int idx)
12144 {
12145 	env->insn_aux_data[idx].prune_point = true;
12146 }
12147 
12148 enum {
12149 	DONE_EXPLORING = 0,
12150 	KEEP_EXPLORING = 1,
12151 };
12152 
12153 /* t, w, e - match pseudo-code above:
12154  * t - index of current instruction
12155  * w - next instruction
12156  * e - edge
12157  */
12158 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
12159 		     bool loop_ok)
12160 {
12161 	int *insn_stack = env->cfg.insn_stack;
12162 	int *insn_state = env->cfg.insn_state;
12163 
12164 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
12165 		return DONE_EXPLORING;
12166 
12167 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
12168 		return DONE_EXPLORING;
12169 
12170 	if (w < 0 || w >= env->prog->len) {
12171 		verbose_linfo(env, t, "%d: ", t);
12172 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
12173 		return -EINVAL;
12174 	}
12175 
12176 	if (e == BRANCH)
12177 		/* mark branch target for state pruning */
12178 		init_explored_state(env, w);
12179 
12180 	if (insn_state[w] == 0) {
12181 		/* tree-edge */
12182 		insn_state[t] = DISCOVERED | e;
12183 		insn_state[w] = DISCOVERED;
12184 		if (env->cfg.cur_stack >= env->prog->len)
12185 			return -E2BIG;
12186 		insn_stack[env->cfg.cur_stack++] = w;
12187 		return KEEP_EXPLORING;
12188 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
12189 		if (loop_ok && env->bpf_capable)
12190 			return DONE_EXPLORING;
12191 		verbose_linfo(env, t, "%d: ", t);
12192 		verbose_linfo(env, w, "%d: ", w);
12193 		verbose(env, "back-edge from insn %d to %d\n", t, w);
12194 		return -EINVAL;
12195 	} else if (insn_state[w] == EXPLORED) {
12196 		/* forward- or cross-edge */
12197 		insn_state[t] = DISCOVERED | e;
12198 	} else {
12199 		verbose(env, "insn state internal bug\n");
12200 		return -EFAULT;
12201 	}
12202 	return DONE_EXPLORING;
12203 }
12204 
12205 static int visit_func_call_insn(int t, int insn_cnt,
12206 				struct bpf_insn *insns,
12207 				struct bpf_verifier_env *env,
12208 				bool visit_callee)
12209 {
12210 	int ret;
12211 
12212 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
12213 	if (ret)
12214 		return ret;
12215 
12216 	if (t + 1 < insn_cnt)
12217 		init_explored_state(env, t + 1);
12218 	if (visit_callee) {
12219 		init_explored_state(env, t);
12220 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
12221 				/* It's ok to allow recursion from CFG point of
12222 				 * view. __check_func_call() will do the actual
12223 				 * check.
12224 				 */
12225 				bpf_pseudo_func(insns + t));
12226 	}
12227 	return ret;
12228 }
12229 
12230 /* Visits the instruction at index t and returns one of the following:
12231  *  < 0 - an error occurred
12232  *  DONE_EXPLORING - the instruction was fully explored
12233  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
12234  */
12235 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
12236 {
12237 	struct bpf_insn *insns = env->prog->insnsi;
12238 	int ret;
12239 
12240 	if (bpf_pseudo_func(insns + t))
12241 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
12242 
12243 	/* All non-branch instructions have a single fall-through edge. */
12244 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
12245 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
12246 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
12247 
12248 	switch (BPF_OP(insns[t].code)) {
12249 	case BPF_EXIT:
12250 		return DONE_EXPLORING;
12251 
12252 	case BPF_CALL:
12253 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
12254 			/* Mark this call insn to trigger is_state_visited() check
12255 			 * before call itself is processed by __check_func_call().
12256 			 * Otherwise new async state will be pushed for further
12257 			 * exploration.
12258 			 */
12259 			init_explored_state(env, t);
12260 		return visit_func_call_insn(t, insn_cnt, insns, env,
12261 					    insns[t].src_reg == BPF_PSEUDO_CALL);
12262 
12263 	case BPF_JA:
12264 		if (BPF_SRC(insns[t].code) != BPF_K)
12265 			return -EINVAL;
12266 
12267 		/* unconditional jump with single edge */
12268 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
12269 				true);
12270 		if (ret)
12271 			return ret;
12272 
12273 		/* unconditional jmp is not a good pruning point,
12274 		 * but it's marked, since backtracking needs
12275 		 * to record jmp history in is_state_visited().
12276 		 */
12277 		init_explored_state(env, t + insns[t].off + 1);
12278 		/* tell verifier to check for equivalent states
12279 		 * after every call and jump
12280 		 */
12281 		if (t + 1 < insn_cnt)
12282 			init_explored_state(env, t + 1);
12283 
12284 		return ret;
12285 
12286 	default:
12287 		/* conditional jump with two edges */
12288 		init_explored_state(env, t);
12289 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
12290 		if (ret)
12291 			return ret;
12292 
12293 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
12294 	}
12295 }
12296 
12297 /* non-recursive depth-first-search to detect loops in BPF program
12298  * loop == back-edge in directed graph
12299  */
12300 static int check_cfg(struct bpf_verifier_env *env)
12301 {
12302 	int insn_cnt = env->prog->len;
12303 	int *insn_stack, *insn_state;
12304 	int ret = 0;
12305 	int i;
12306 
12307 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12308 	if (!insn_state)
12309 		return -ENOMEM;
12310 
12311 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12312 	if (!insn_stack) {
12313 		kvfree(insn_state);
12314 		return -ENOMEM;
12315 	}
12316 
12317 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
12318 	insn_stack[0] = 0; /* 0 is the first instruction */
12319 	env->cfg.cur_stack = 1;
12320 
12321 	while (env->cfg.cur_stack > 0) {
12322 		int t = insn_stack[env->cfg.cur_stack - 1];
12323 
12324 		ret = visit_insn(t, insn_cnt, env);
12325 		switch (ret) {
12326 		case DONE_EXPLORING:
12327 			insn_state[t] = EXPLORED;
12328 			env->cfg.cur_stack--;
12329 			break;
12330 		case KEEP_EXPLORING:
12331 			break;
12332 		default:
12333 			if (ret > 0) {
12334 				verbose(env, "visit_insn internal bug\n");
12335 				ret = -EFAULT;
12336 			}
12337 			goto err_free;
12338 		}
12339 	}
12340 
12341 	if (env->cfg.cur_stack < 0) {
12342 		verbose(env, "pop stack internal bug\n");
12343 		ret = -EFAULT;
12344 		goto err_free;
12345 	}
12346 
12347 	for (i = 0; i < insn_cnt; i++) {
12348 		if (insn_state[i] != EXPLORED) {
12349 			verbose(env, "unreachable insn %d\n", i);
12350 			ret = -EINVAL;
12351 			goto err_free;
12352 		}
12353 	}
12354 	ret = 0; /* cfg looks good */
12355 
12356 err_free:
12357 	kvfree(insn_state);
12358 	kvfree(insn_stack);
12359 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
12360 	return ret;
12361 }
12362 
12363 static int check_abnormal_return(struct bpf_verifier_env *env)
12364 {
12365 	int i;
12366 
12367 	for (i = 1; i < env->subprog_cnt; i++) {
12368 		if (env->subprog_info[i].has_ld_abs) {
12369 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
12370 			return -EINVAL;
12371 		}
12372 		if (env->subprog_info[i].has_tail_call) {
12373 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
12374 			return -EINVAL;
12375 		}
12376 	}
12377 	return 0;
12378 }
12379 
12380 /* The minimum supported BTF func info size */
12381 #define MIN_BPF_FUNCINFO_SIZE	8
12382 #define MAX_FUNCINFO_REC_SIZE	252
12383 
12384 static int check_btf_func(struct bpf_verifier_env *env,
12385 			  const union bpf_attr *attr,
12386 			  bpfptr_t uattr)
12387 {
12388 	const struct btf_type *type, *func_proto, *ret_type;
12389 	u32 i, nfuncs, urec_size, min_size;
12390 	u32 krec_size = sizeof(struct bpf_func_info);
12391 	struct bpf_func_info *krecord;
12392 	struct bpf_func_info_aux *info_aux = NULL;
12393 	struct bpf_prog *prog;
12394 	const struct btf *btf;
12395 	bpfptr_t urecord;
12396 	u32 prev_offset = 0;
12397 	bool scalar_return;
12398 	int ret = -ENOMEM;
12399 
12400 	nfuncs = attr->func_info_cnt;
12401 	if (!nfuncs) {
12402 		if (check_abnormal_return(env))
12403 			return -EINVAL;
12404 		return 0;
12405 	}
12406 
12407 	if (nfuncs != env->subprog_cnt) {
12408 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
12409 		return -EINVAL;
12410 	}
12411 
12412 	urec_size = attr->func_info_rec_size;
12413 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
12414 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
12415 	    urec_size % sizeof(u32)) {
12416 		verbose(env, "invalid func info rec size %u\n", urec_size);
12417 		return -EINVAL;
12418 	}
12419 
12420 	prog = env->prog;
12421 	btf = prog->aux->btf;
12422 
12423 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
12424 	min_size = min_t(u32, krec_size, urec_size);
12425 
12426 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
12427 	if (!krecord)
12428 		return -ENOMEM;
12429 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
12430 	if (!info_aux)
12431 		goto err_free;
12432 
12433 	for (i = 0; i < nfuncs; i++) {
12434 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
12435 		if (ret) {
12436 			if (ret == -E2BIG) {
12437 				verbose(env, "nonzero tailing record in func info");
12438 				/* set the size kernel expects so loader can zero
12439 				 * out the rest of the record.
12440 				 */
12441 				if (copy_to_bpfptr_offset(uattr,
12442 							  offsetof(union bpf_attr, func_info_rec_size),
12443 							  &min_size, sizeof(min_size)))
12444 					ret = -EFAULT;
12445 			}
12446 			goto err_free;
12447 		}
12448 
12449 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
12450 			ret = -EFAULT;
12451 			goto err_free;
12452 		}
12453 
12454 		/* check insn_off */
12455 		ret = -EINVAL;
12456 		if (i == 0) {
12457 			if (krecord[i].insn_off) {
12458 				verbose(env,
12459 					"nonzero insn_off %u for the first func info record",
12460 					krecord[i].insn_off);
12461 				goto err_free;
12462 			}
12463 		} else if (krecord[i].insn_off <= prev_offset) {
12464 			verbose(env,
12465 				"same or smaller insn offset (%u) than previous func info record (%u)",
12466 				krecord[i].insn_off, prev_offset);
12467 			goto err_free;
12468 		}
12469 
12470 		if (env->subprog_info[i].start != krecord[i].insn_off) {
12471 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
12472 			goto err_free;
12473 		}
12474 
12475 		/* check type_id */
12476 		type = btf_type_by_id(btf, krecord[i].type_id);
12477 		if (!type || !btf_type_is_func(type)) {
12478 			verbose(env, "invalid type id %d in func info",
12479 				krecord[i].type_id);
12480 			goto err_free;
12481 		}
12482 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
12483 
12484 		func_proto = btf_type_by_id(btf, type->type);
12485 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
12486 			/* btf_func_check() already verified it during BTF load */
12487 			goto err_free;
12488 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
12489 		scalar_return =
12490 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
12491 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
12492 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
12493 			goto err_free;
12494 		}
12495 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
12496 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
12497 			goto err_free;
12498 		}
12499 
12500 		prev_offset = krecord[i].insn_off;
12501 		bpfptr_add(&urecord, urec_size);
12502 	}
12503 
12504 	prog->aux->func_info = krecord;
12505 	prog->aux->func_info_cnt = nfuncs;
12506 	prog->aux->func_info_aux = info_aux;
12507 	return 0;
12508 
12509 err_free:
12510 	kvfree(krecord);
12511 	kfree(info_aux);
12512 	return ret;
12513 }
12514 
12515 static void adjust_btf_func(struct bpf_verifier_env *env)
12516 {
12517 	struct bpf_prog_aux *aux = env->prog->aux;
12518 	int i;
12519 
12520 	if (!aux->func_info)
12521 		return;
12522 
12523 	for (i = 0; i < env->subprog_cnt; i++)
12524 		aux->func_info[i].insn_off = env->subprog_info[i].start;
12525 }
12526 
12527 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
12528 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
12529 
12530 static int check_btf_line(struct bpf_verifier_env *env,
12531 			  const union bpf_attr *attr,
12532 			  bpfptr_t uattr)
12533 {
12534 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
12535 	struct bpf_subprog_info *sub;
12536 	struct bpf_line_info *linfo;
12537 	struct bpf_prog *prog;
12538 	const struct btf *btf;
12539 	bpfptr_t ulinfo;
12540 	int err;
12541 
12542 	nr_linfo = attr->line_info_cnt;
12543 	if (!nr_linfo)
12544 		return 0;
12545 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
12546 		return -EINVAL;
12547 
12548 	rec_size = attr->line_info_rec_size;
12549 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
12550 	    rec_size > MAX_LINEINFO_REC_SIZE ||
12551 	    rec_size & (sizeof(u32) - 1))
12552 		return -EINVAL;
12553 
12554 	/* Need to zero it in case the userspace may
12555 	 * pass in a smaller bpf_line_info object.
12556 	 */
12557 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
12558 			 GFP_KERNEL | __GFP_NOWARN);
12559 	if (!linfo)
12560 		return -ENOMEM;
12561 
12562 	prog = env->prog;
12563 	btf = prog->aux->btf;
12564 
12565 	s = 0;
12566 	sub = env->subprog_info;
12567 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
12568 	expected_size = sizeof(struct bpf_line_info);
12569 	ncopy = min_t(u32, expected_size, rec_size);
12570 	for (i = 0; i < nr_linfo; i++) {
12571 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
12572 		if (err) {
12573 			if (err == -E2BIG) {
12574 				verbose(env, "nonzero tailing record in line_info");
12575 				if (copy_to_bpfptr_offset(uattr,
12576 							  offsetof(union bpf_attr, line_info_rec_size),
12577 							  &expected_size, sizeof(expected_size)))
12578 					err = -EFAULT;
12579 			}
12580 			goto err_free;
12581 		}
12582 
12583 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
12584 			err = -EFAULT;
12585 			goto err_free;
12586 		}
12587 
12588 		/*
12589 		 * Check insn_off to ensure
12590 		 * 1) strictly increasing AND
12591 		 * 2) bounded by prog->len
12592 		 *
12593 		 * The linfo[0].insn_off == 0 check logically falls into
12594 		 * the later "missing bpf_line_info for func..." case
12595 		 * because the first linfo[0].insn_off must be the
12596 		 * first sub also and the first sub must have
12597 		 * subprog_info[0].start == 0.
12598 		 */
12599 		if ((i && linfo[i].insn_off <= prev_offset) ||
12600 		    linfo[i].insn_off >= prog->len) {
12601 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
12602 				i, linfo[i].insn_off, prev_offset,
12603 				prog->len);
12604 			err = -EINVAL;
12605 			goto err_free;
12606 		}
12607 
12608 		if (!prog->insnsi[linfo[i].insn_off].code) {
12609 			verbose(env,
12610 				"Invalid insn code at line_info[%u].insn_off\n",
12611 				i);
12612 			err = -EINVAL;
12613 			goto err_free;
12614 		}
12615 
12616 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
12617 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
12618 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
12619 			err = -EINVAL;
12620 			goto err_free;
12621 		}
12622 
12623 		if (s != env->subprog_cnt) {
12624 			if (linfo[i].insn_off == sub[s].start) {
12625 				sub[s].linfo_idx = i;
12626 				s++;
12627 			} else if (sub[s].start < linfo[i].insn_off) {
12628 				verbose(env, "missing bpf_line_info for func#%u\n", s);
12629 				err = -EINVAL;
12630 				goto err_free;
12631 			}
12632 		}
12633 
12634 		prev_offset = linfo[i].insn_off;
12635 		bpfptr_add(&ulinfo, rec_size);
12636 	}
12637 
12638 	if (s != env->subprog_cnt) {
12639 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
12640 			env->subprog_cnt - s, s);
12641 		err = -EINVAL;
12642 		goto err_free;
12643 	}
12644 
12645 	prog->aux->linfo = linfo;
12646 	prog->aux->nr_linfo = nr_linfo;
12647 
12648 	return 0;
12649 
12650 err_free:
12651 	kvfree(linfo);
12652 	return err;
12653 }
12654 
12655 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
12656 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
12657 
12658 static int check_core_relo(struct bpf_verifier_env *env,
12659 			   const union bpf_attr *attr,
12660 			   bpfptr_t uattr)
12661 {
12662 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
12663 	struct bpf_core_relo core_relo = {};
12664 	struct bpf_prog *prog = env->prog;
12665 	const struct btf *btf = prog->aux->btf;
12666 	struct bpf_core_ctx ctx = {
12667 		.log = &env->log,
12668 		.btf = btf,
12669 	};
12670 	bpfptr_t u_core_relo;
12671 	int err;
12672 
12673 	nr_core_relo = attr->core_relo_cnt;
12674 	if (!nr_core_relo)
12675 		return 0;
12676 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
12677 		return -EINVAL;
12678 
12679 	rec_size = attr->core_relo_rec_size;
12680 	if (rec_size < MIN_CORE_RELO_SIZE ||
12681 	    rec_size > MAX_CORE_RELO_SIZE ||
12682 	    rec_size % sizeof(u32))
12683 		return -EINVAL;
12684 
12685 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
12686 	expected_size = sizeof(struct bpf_core_relo);
12687 	ncopy = min_t(u32, expected_size, rec_size);
12688 
12689 	/* Unlike func_info and line_info, copy and apply each CO-RE
12690 	 * relocation record one at a time.
12691 	 */
12692 	for (i = 0; i < nr_core_relo; i++) {
12693 		/* future proofing when sizeof(bpf_core_relo) changes */
12694 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
12695 		if (err) {
12696 			if (err == -E2BIG) {
12697 				verbose(env, "nonzero tailing record in core_relo");
12698 				if (copy_to_bpfptr_offset(uattr,
12699 							  offsetof(union bpf_attr, core_relo_rec_size),
12700 							  &expected_size, sizeof(expected_size)))
12701 					err = -EFAULT;
12702 			}
12703 			break;
12704 		}
12705 
12706 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
12707 			err = -EFAULT;
12708 			break;
12709 		}
12710 
12711 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
12712 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
12713 				i, core_relo.insn_off, prog->len);
12714 			err = -EINVAL;
12715 			break;
12716 		}
12717 
12718 		err = bpf_core_apply(&ctx, &core_relo, i,
12719 				     &prog->insnsi[core_relo.insn_off / 8]);
12720 		if (err)
12721 			break;
12722 		bpfptr_add(&u_core_relo, rec_size);
12723 	}
12724 	return err;
12725 }
12726 
12727 static int check_btf_info(struct bpf_verifier_env *env,
12728 			  const union bpf_attr *attr,
12729 			  bpfptr_t uattr)
12730 {
12731 	struct btf *btf;
12732 	int err;
12733 
12734 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
12735 		if (check_abnormal_return(env))
12736 			return -EINVAL;
12737 		return 0;
12738 	}
12739 
12740 	btf = btf_get_by_fd(attr->prog_btf_fd);
12741 	if (IS_ERR(btf))
12742 		return PTR_ERR(btf);
12743 	if (btf_is_kernel(btf)) {
12744 		btf_put(btf);
12745 		return -EACCES;
12746 	}
12747 	env->prog->aux->btf = btf;
12748 
12749 	err = check_btf_func(env, attr, uattr);
12750 	if (err)
12751 		return err;
12752 
12753 	err = check_btf_line(env, attr, uattr);
12754 	if (err)
12755 		return err;
12756 
12757 	err = check_core_relo(env, attr, uattr);
12758 	if (err)
12759 		return err;
12760 
12761 	return 0;
12762 }
12763 
12764 /* check %cur's range satisfies %old's */
12765 static bool range_within(struct bpf_reg_state *old,
12766 			 struct bpf_reg_state *cur)
12767 {
12768 	return old->umin_value <= cur->umin_value &&
12769 	       old->umax_value >= cur->umax_value &&
12770 	       old->smin_value <= cur->smin_value &&
12771 	       old->smax_value >= cur->smax_value &&
12772 	       old->u32_min_value <= cur->u32_min_value &&
12773 	       old->u32_max_value >= cur->u32_max_value &&
12774 	       old->s32_min_value <= cur->s32_min_value &&
12775 	       old->s32_max_value >= cur->s32_max_value;
12776 }
12777 
12778 /* If in the old state two registers had the same id, then they need to have
12779  * the same id in the new state as well.  But that id could be different from
12780  * the old state, so we need to track the mapping from old to new ids.
12781  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
12782  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
12783  * regs with a different old id could still have new id 9, we don't care about
12784  * that.
12785  * So we look through our idmap to see if this old id has been seen before.  If
12786  * so, we require the new id to match; otherwise, we add the id pair to the map.
12787  */
12788 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
12789 {
12790 	unsigned int i;
12791 
12792 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
12793 		if (!idmap[i].old) {
12794 			/* Reached an empty slot; haven't seen this id before */
12795 			idmap[i].old = old_id;
12796 			idmap[i].cur = cur_id;
12797 			return true;
12798 		}
12799 		if (idmap[i].old == old_id)
12800 			return idmap[i].cur == cur_id;
12801 	}
12802 	/* We ran out of idmap slots, which should be impossible */
12803 	WARN_ON_ONCE(1);
12804 	return false;
12805 }
12806 
12807 static void clean_func_state(struct bpf_verifier_env *env,
12808 			     struct bpf_func_state *st)
12809 {
12810 	enum bpf_reg_liveness live;
12811 	int i, j;
12812 
12813 	for (i = 0; i < BPF_REG_FP; i++) {
12814 		live = st->regs[i].live;
12815 		/* liveness must not touch this register anymore */
12816 		st->regs[i].live |= REG_LIVE_DONE;
12817 		if (!(live & REG_LIVE_READ))
12818 			/* since the register is unused, clear its state
12819 			 * to make further comparison simpler
12820 			 */
12821 			__mark_reg_not_init(env, &st->regs[i]);
12822 	}
12823 
12824 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
12825 		live = st->stack[i].spilled_ptr.live;
12826 		/* liveness must not touch this stack slot anymore */
12827 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
12828 		if (!(live & REG_LIVE_READ)) {
12829 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
12830 			for (j = 0; j < BPF_REG_SIZE; j++)
12831 				st->stack[i].slot_type[j] = STACK_INVALID;
12832 		}
12833 	}
12834 }
12835 
12836 static void clean_verifier_state(struct bpf_verifier_env *env,
12837 				 struct bpf_verifier_state *st)
12838 {
12839 	int i;
12840 
12841 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
12842 		/* all regs in this state in all frames were already marked */
12843 		return;
12844 
12845 	for (i = 0; i <= st->curframe; i++)
12846 		clean_func_state(env, st->frame[i]);
12847 }
12848 
12849 /* the parentage chains form a tree.
12850  * the verifier states are added to state lists at given insn and
12851  * pushed into state stack for future exploration.
12852  * when the verifier reaches bpf_exit insn some of the verifer states
12853  * stored in the state lists have their final liveness state already,
12854  * but a lot of states will get revised from liveness point of view when
12855  * the verifier explores other branches.
12856  * Example:
12857  * 1: r0 = 1
12858  * 2: if r1 == 100 goto pc+1
12859  * 3: r0 = 2
12860  * 4: exit
12861  * when the verifier reaches exit insn the register r0 in the state list of
12862  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
12863  * of insn 2 and goes exploring further. At the insn 4 it will walk the
12864  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
12865  *
12866  * Since the verifier pushes the branch states as it sees them while exploring
12867  * the program the condition of walking the branch instruction for the second
12868  * time means that all states below this branch were already explored and
12869  * their final liveness marks are already propagated.
12870  * Hence when the verifier completes the search of state list in is_state_visited()
12871  * we can call this clean_live_states() function to mark all liveness states
12872  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
12873  * will not be used.
12874  * This function also clears the registers and stack for states that !READ
12875  * to simplify state merging.
12876  *
12877  * Important note here that walking the same branch instruction in the callee
12878  * doesn't meant that the states are DONE. The verifier has to compare
12879  * the callsites
12880  */
12881 static void clean_live_states(struct bpf_verifier_env *env, int insn,
12882 			      struct bpf_verifier_state *cur)
12883 {
12884 	struct bpf_verifier_state_list *sl;
12885 	int i;
12886 
12887 	sl = *explored_state(env, insn);
12888 	while (sl) {
12889 		if (sl->state.branches)
12890 			goto next;
12891 		if (sl->state.insn_idx != insn ||
12892 		    sl->state.curframe != cur->curframe)
12893 			goto next;
12894 		for (i = 0; i <= cur->curframe; i++)
12895 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
12896 				goto next;
12897 		clean_verifier_state(env, &sl->state);
12898 next:
12899 		sl = sl->next;
12900 	}
12901 }
12902 
12903 /* Returns true if (rold safe implies rcur safe) */
12904 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
12905 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
12906 {
12907 	bool equal;
12908 
12909 	if (!(rold->live & REG_LIVE_READ))
12910 		/* explored state didn't use this */
12911 		return true;
12912 
12913 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
12914 
12915 	if (rold->type == PTR_TO_STACK)
12916 		/* two stack pointers are equal only if they're pointing to
12917 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
12918 		 */
12919 		return equal && rold->frameno == rcur->frameno;
12920 
12921 	if (equal)
12922 		return true;
12923 
12924 	if (rold->type == NOT_INIT)
12925 		/* explored state can't have used this */
12926 		return true;
12927 	if (rcur->type == NOT_INIT)
12928 		return false;
12929 	switch (base_type(rold->type)) {
12930 	case SCALAR_VALUE:
12931 		if (env->explore_alu_limits)
12932 			return false;
12933 		if (rcur->type == SCALAR_VALUE) {
12934 			if (!rold->precise)
12935 				return true;
12936 			/* new val must satisfy old val knowledge */
12937 			return range_within(rold, rcur) &&
12938 			       tnum_in(rold->var_off, rcur->var_off);
12939 		} else {
12940 			/* We're trying to use a pointer in place of a scalar.
12941 			 * Even if the scalar was unbounded, this could lead to
12942 			 * pointer leaks because scalars are allowed to leak
12943 			 * while pointers are not. We could make this safe in
12944 			 * special cases if root is calling us, but it's
12945 			 * probably not worth the hassle.
12946 			 */
12947 			return false;
12948 		}
12949 	case PTR_TO_MAP_KEY:
12950 	case PTR_TO_MAP_VALUE:
12951 		/* a PTR_TO_MAP_VALUE could be safe to use as a
12952 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
12953 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
12954 		 * checked, doing so could have affected others with the same
12955 		 * id, and we can't check for that because we lost the id when
12956 		 * we converted to a PTR_TO_MAP_VALUE.
12957 		 */
12958 		if (type_may_be_null(rold->type)) {
12959 			if (!type_may_be_null(rcur->type))
12960 				return false;
12961 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
12962 				return false;
12963 			/* Check our ids match any regs they're supposed to */
12964 			return check_ids(rold->id, rcur->id, idmap);
12965 		}
12966 
12967 		/* If the new min/max/var_off satisfy the old ones and
12968 		 * everything else matches, we are OK.
12969 		 * 'id' is not compared, since it's only used for maps with
12970 		 * bpf_spin_lock inside map element and in such cases if
12971 		 * the rest of the prog is valid for one map element then
12972 		 * it's valid for all map elements regardless of the key
12973 		 * used in bpf_map_lookup()
12974 		 */
12975 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
12976 		       range_within(rold, rcur) &&
12977 		       tnum_in(rold->var_off, rcur->var_off);
12978 	case PTR_TO_PACKET_META:
12979 	case PTR_TO_PACKET:
12980 		if (rcur->type != rold->type)
12981 			return false;
12982 		/* We must have at least as much range as the old ptr
12983 		 * did, so that any accesses which were safe before are
12984 		 * still safe.  This is true even if old range < old off,
12985 		 * since someone could have accessed through (ptr - k), or
12986 		 * even done ptr -= k in a register, to get a safe access.
12987 		 */
12988 		if (rold->range > rcur->range)
12989 			return false;
12990 		/* If the offsets don't match, we can't trust our alignment;
12991 		 * nor can we be sure that we won't fall out of range.
12992 		 */
12993 		if (rold->off != rcur->off)
12994 			return false;
12995 		/* id relations must be preserved */
12996 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
12997 			return false;
12998 		/* new val must satisfy old val knowledge */
12999 		return range_within(rold, rcur) &&
13000 		       tnum_in(rold->var_off, rcur->var_off);
13001 	case PTR_TO_CTX:
13002 	case CONST_PTR_TO_MAP:
13003 	case PTR_TO_PACKET_END:
13004 	case PTR_TO_FLOW_KEYS:
13005 	case PTR_TO_SOCKET:
13006 	case PTR_TO_SOCK_COMMON:
13007 	case PTR_TO_TCP_SOCK:
13008 	case PTR_TO_XDP_SOCK:
13009 		/* Only valid matches are exact, which memcmp() above
13010 		 * would have accepted
13011 		 */
13012 	default:
13013 		/* Don't know what's going on, just say it's not safe */
13014 		return false;
13015 	}
13016 
13017 	/* Shouldn't get here; if we do, say it's not safe */
13018 	WARN_ON_ONCE(1);
13019 	return false;
13020 }
13021 
13022 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
13023 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
13024 {
13025 	int i, spi;
13026 
13027 	/* walk slots of the explored stack and ignore any additional
13028 	 * slots in the current stack, since explored(safe) state
13029 	 * didn't use them
13030 	 */
13031 	for (i = 0; i < old->allocated_stack; i++) {
13032 		spi = i / BPF_REG_SIZE;
13033 
13034 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
13035 			i += BPF_REG_SIZE - 1;
13036 			/* explored state didn't use this */
13037 			continue;
13038 		}
13039 
13040 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
13041 			continue;
13042 
13043 		/* explored stack has more populated slots than current stack
13044 		 * and these slots were used
13045 		 */
13046 		if (i >= cur->allocated_stack)
13047 			return false;
13048 
13049 		/* if old state was safe with misc data in the stack
13050 		 * it will be safe with zero-initialized stack.
13051 		 * The opposite is not true
13052 		 */
13053 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
13054 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
13055 			continue;
13056 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
13057 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
13058 			/* Ex: old explored (safe) state has STACK_SPILL in
13059 			 * this stack slot, but current has STACK_MISC ->
13060 			 * this verifier states are not equivalent,
13061 			 * return false to continue verification of this path
13062 			 */
13063 			return false;
13064 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
13065 			continue;
13066 		if (!is_spilled_reg(&old->stack[spi]))
13067 			continue;
13068 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
13069 			     &cur->stack[spi].spilled_ptr, idmap))
13070 			/* when explored and current stack slot are both storing
13071 			 * spilled registers, check that stored pointers types
13072 			 * are the same as well.
13073 			 * Ex: explored safe path could have stored
13074 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
13075 			 * but current path has stored:
13076 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
13077 			 * such verifier states are not equivalent.
13078 			 * return false to continue verification of this path
13079 			 */
13080 			return false;
13081 	}
13082 	return true;
13083 }
13084 
13085 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
13086 {
13087 	if (old->acquired_refs != cur->acquired_refs)
13088 		return false;
13089 	return !memcmp(old->refs, cur->refs,
13090 		       sizeof(*old->refs) * old->acquired_refs);
13091 }
13092 
13093 /* compare two verifier states
13094  *
13095  * all states stored in state_list are known to be valid, since
13096  * verifier reached 'bpf_exit' instruction through them
13097  *
13098  * this function is called when verifier exploring different branches of
13099  * execution popped from the state stack. If it sees an old state that has
13100  * more strict register state and more strict stack state then this execution
13101  * branch doesn't need to be explored further, since verifier already
13102  * concluded that more strict state leads to valid finish.
13103  *
13104  * Therefore two states are equivalent if register state is more conservative
13105  * and explored stack state is more conservative than the current one.
13106  * Example:
13107  *       explored                   current
13108  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
13109  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
13110  *
13111  * In other words if current stack state (one being explored) has more
13112  * valid slots than old one that already passed validation, it means
13113  * the verifier can stop exploring and conclude that current state is valid too
13114  *
13115  * Similarly with registers. If explored state has register type as invalid
13116  * whereas register type in current state is meaningful, it means that
13117  * the current state will reach 'bpf_exit' instruction safely
13118  */
13119 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
13120 			      struct bpf_func_state *cur)
13121 {
13122 	int i;
13123 
13124 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
13125 	for (i = 0; i < MAX_BPF_REG; i++)
13126 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
13127 			     env->idmap_scratch))
13128 			return false;
13129 
13130 	if (!stacksafe(env, old, cur, env->idmap_scratch))
13131 		return false;
13132 
13133 	if (!refsafe(old, cur))
13134 		return false;
13135 
13136 	return true;
13137 }
13138 
13139 static bool states_equal(struct bpf_verifier_env *env,
13140 			 struct bpf_verifier_state *old,
13141 			 struct bpf_verifier_state *cur)
13142 {
13143 	int i;
13144 
13145 	if (old->curframe != cur->curframe)
13146 		return false;
13147 
13148 	/* Verification state from speculative execution simulation
13149 	 * must never prune a non-speculative execution one.
13150 	 */
13151 	if (old->speculative && !cur->speculative)
13152 		return false;
13153 
13154 	if (old->active_lock.ptr != cur->active_lock.ptr ||
13155 	    old->active_lock.id != cur->active_lock.id)
13156 		return false;
13157 
13158 	if (old->active_rcu_lock != cur->active_rcu_lock)
13159 		return false;
13160 
13161 	/* for states to be equal callsites have to be the same
13162 	 * and all frame states need to be equivalent
13163 	 */
13164 	for (i = 0; i <= old->curframe; i++) {
13165 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
13166 			return false;
13167 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
13168 			return false;
13169 	}
13170 	return true;
13171 }
13172 
13173 /* Return 0 if no propagation happened. Return negative error code if error
13174  * happened. Otherwise, return the propagated bit.
13175  */
13176 static int propagate_liveness_reg(struct bpf_verifier_env *env,
13177 				  struct bpf_reg_state *reg,
13178 				  struct bpf_reg_state *parent_reg)
13179 {
13180 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
13181 	u8 flag = reg->live & REG_LIVE_READ;
13182 	int err;
13183 
13184 	/* When comes here, read flags of PARENT_REG or REG could be any of
13185 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
13186 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
13187 	 */
13188 	if (parent_flag == REG_LIVE_READ64 ||
13189 	    /* Or if there is no read flag from REG. */
13190 	    !flag ||
13191 	    /* Or if the read flag from REG is the same as PARENT_REG. */
13192 	    parent_flag == flag)
13193 		return 0;
13194 
13195 	err = mark_reg_read(env, reg, parent_reg, flag);
13196 	if (err)
13197 		return err;
13198 
13199 	return flag;
13200 }
13201 
13202 /* A write screens off any subsequent reads; but write marks come from the
13203  * straight-line code between a state and its parent.  When we arrive at an
13204  * equivalent state (jump target or such) we didn't arrive by the straight-line
13205  * code, so read marks in the state must propagate to the parent regardless
13206  * of the state's write marks. That's what 'parent == state->parent' comparison
13207  * in mark_reg_read() is for.
13208  */
13209 static int propagate_liveness(struct bpf_verifier_env *env,
13210 			      const struct bpf_verifier_state *vstate,
13211 			      struct bpf_verifier_state *vparent)
13212 {
13213 	struct bpf_reg_state *state_reg, *parent_reg;
13214 	struct bpf_func_state *state, *parent;
13215 	int i, frame, err = 0;
13216 
13217 	if (vparent->curframe != vstate->curframe) {
13218 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
13219 		     vparent->curframe, vstate->curframe);
13220 		return -EFAULT;
13221 	}
13222 	/* Propagate read liveness of registers... */
13223 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
13224 	for (frame = 0; frame <= vstate->curframe; frame++) {
13225 		parent = vparent->frame[frame];
13226 		state = vstate->frame[frame];
13227 		parent_reg = parent->regs;
13228 		state_reg = state->regs;
13229 		/* We don't need to worry about FP liveness, it's read-only */
13230 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
13231 			err = propagate_liveness_reg(env, &state_reg[i],
13232 						     &parent_reg[i]);
13233 			if (err < 0)
13234 				return err;
13235 			if (err == REG_LIVE_READ64)
13236 				mark_insn_zext(env, &parent_reg[i]);
13237 		}
13238 
13239 		/* Propagate stack slots. */
13240 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
13241 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
13242 			parent_reg = &parent->stack[i].spilled_ptr;
13243 			state_reg = &state->stack[i].spilled_ptr;
13244 			err = propagate_liveness_reg(env, state_reg,
13245 						     parent_reg);
13246 			if (err < 0)
13247 				return err;
13248 		}
13249 	}
13250 	return 0;
13251 }
13252 
13253 /* find precise scalars in the previous equivalent state and
13254  * propagate them into the current state
13255  */
13256 static int propagate_precision(struct bpf_verifier_env *env,
13257 			       const struct bpf_verifier_state *old)
13258 {
13259 	struct bpf_reg_state *state_reg;
13260 	struct bpf_func_state *state;
13261 	int i, err = 0, fr;
13262 
13263 	for (fr = old->curframe; fr >= 0; fr--) {
13264 		state = old->frame[fr];
13265 		state_reg = state->regs;
13266 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
13267 			if (state_reg->type != SCALAR_VALUE ||
13268 			    !state_reg->precise)
13269 				continue;
13270 			if (env->log.level & BPF_LOG_LEVEL2)
13271 				verbose(env, "frame %d: propagating r%d\n", i, fr);
13272 			err = mark_chain_precision_frame(env, fr, i);
13273 			if (err < 0)
13274 				return err;
13275 		}
13276 
13277 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
13278 			if (!is_spilled_reg(&state->stack[i]))
13279 				continue;
13280 			state_reg = &state->stack[i].spilled_ptr;
13281 			if (state_reg->type != SCALAR_VALUE ||
13282 			    !state_reg->precise)
13283 				continue;
13284 			if (env->log.level & BPF_LOG_LEVEL2)
13285 				verbose(env, "frame %d: propagating fp%d\n",
13286 					(-i - 1) * BPF_REG_SIZE, fr);
13287 			err = mark_chain_precision_stack_frame(env, fr, i);
13288 			if (err < 0)
13289 				return err;
13290 		}
13291 	}
13292 	return 0;
13293 }
13294 
13295 static bool states_maybe_looping(struct bpf_verifier_state *old,
13296 				 struct bpf_verifier_state *cur)
13297 {
13298 	struct bpf_func_state *fold, *fcur;
13299 	int i, fr = cur->curframe;
13300 
13301 	if (old->curframe != fr)
13302 		return false;
13303 
13304 	fold = old->frame[fr];
13305 	fcur = cur->frame[fr];
13306 	for (i = 0; i < MAX_BPF_REG; i++)
13307 		if (memcmp(&fold->regs[i], &fcur->regs[i],
13308 			   offsetof(struct bpf_reg_state, parent)))
13309 			return false;
13310 	return true;
13311 }
13312 
13313 
13314 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
13315 {
13316 	struct bpf_verifier_state_list *new_sl;
13317 	struct bpf_verifier_state_list *sl, **pprev;
13318 	struct bpf_verifier_state *cur = env->cur_state, *new;
13319 	int i, j, err, states_cnt = 0;
13320 	bool add_new_state = env->test_state_freq ? true : false;
13321 
13322 	cur->last_insn_idx = env->prev_insn_idx;
13323 	if (!env->insn_aux_data[insn_idx].prune_point)
13324 		/* this 'insn_idx' instruction wasn't marked, so we will not
13325 		 * be doing state search here
13326 		 */
13327 		return 0;
13328 
13329 	/* bpf progs typically have pruning point every 4 instructions
13330 	 * http://vger.kernel.org/bpfconf2019.html#session-1
13331 	 * Do not add new state for future pruning if the verifier hasn't seen
13332 	 * at least 2 jumps and at least 8 instructions.
13333 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
13334 	 * In tests that amounts to up to 50% reduction into total verifier
13335 	 * memory consumption and 20% verifier time speedup.
13336 	 */
13337 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
13338 	    env->insn_processed - env->prev_insn_processed >= 8)
13339 		add_new_state = true;
13340 
13341 	pprev = explored_state(env, insn_idx);
13342 	sl = *pprev;
13343 
13344 	clean_live_states(env, insn_idx, cur);
13345 
13346 	while (sl) {
13347 		states_cnt++;
13348 		if (sl->state.insn_idx != insn_idx)
13349 			goto next;
13350 
13351 		if (sl->state.branches) {
13352 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
13353 
13354 			if (frame->in_async_callback_fn &&
13355 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
13356 				/* Different async_entry_cnt means that the verifier is
13357 				 * processing another entry into async callback.
13358 				 * Seeing the same state is not an indication of infinite
13359 				 * loop or infinite recursion.
13360 				 * But finding the same state doesn't mean that it's safe
13361 				 * to stop processing the current state. The previous state
13362 				 * hasn't yet reached bpf_exit, since state.branches > 0.
13363 				 * Checking in_async_callback_fn alone is not enough either.
13364 				 * Since the verifier still needs to catch infinite loops
13365 				 * inside async callbacks.
13366 				 */
13367 			} else if (states_maybe_looping(&sl->state, cur) &&
13368 				   states_equal(env, &sl->state, cur)) {
13369 				verbose_linfo(env, insn_idx, "; ");
13370 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
13371 				return -EINVAL;
13372 			}
13373 			/* if the verifier is processing a loop, avoid adding new state
13374 			 * too often, since different loop iterations have distinct
13375 			 * states and may not help future pruning.
13376 			 * This threshold shouldn't be too low to make sure that
13377 			 * a loop with large bound will be rejected quickly.
13378 			 * The most abusive loop will be:
13379 			 * r1 += 1
13380 			 * if r1 < 1000000 goto pc-2
13381 			 * 1M insn_procssed limit / 100 == 10k peak states.
13382 			 * This threshold shouldn't be too high either, since states
13383 			 * at the end of the loop are likely to be useful in pruning.
13384 			 */
13385 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
13386 			    env->insn_processed - env->prev_insn_processed < 100)
13387 				add_new_state = false;
13388 			goto miss;
13389 		}
13390 		if (states_equal(env, &sl->state, cur)) {
13391 			sl->hit_cnt++;
13392 			/* reached equivalent register/stack state,
13393 			 * prune the search.
13394 			 * Registers read by the continuation are read by us.
13395 			 * If we have any write marks in env->cur_state, they
13396 			 * will prevent corresponding reads in the continuation
13397 			 * from reaching our parent (an explored_state).  Our
13398 			 * own state will get the read marks recorded, but
13399 			 * they'll be immediately forgotten as we're pruning
13400 			 * this state and will pop a new one.
13401 			 */
13402 			err = propagate_liveness(env, &sl->state, cur);
13403 
13404 			/* if previous state reached the exit with precision and
13405 			 * current state is equivalent to it (except precsion marks)
13406 			 * the precision needs to be propagated back in
13407 			 * the current state.
13408 			 */
13409 			err = err ? : push_jmp_history(env, cur);
13410 			err = err ? : propagate_precision(env, &sl->state);
13411 			if (err)
13412 				return err;
13413 			return 1;
13414 		}
13415 miss:
13416 		/* when new state is not going to be added do not increase miss count.
13417 		 * Otherwise several loop iterations will remove the state
13418 		 * recorded earlier. The goal of these heuristics is to have
13419 		 * states from some iterations of the loop (some in the beginning
13420 		 * and some at the end) to help pruning.
13421 		 */
13422 		if (add_new_state)
13423 			sl->miss_cnt++;
13424 		/* heuristic to determine whether this state is beneficial
13425 		 * to keep checking from state equivalence point of view.
13426 		 * Higher numbers increase max_states_per_insn and verification time,
13427 		 * but do not meaningfully decrease insn_processed.
13428 		 */
13429 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
13430 			/* the state is unlikely to be useful. Remove it to
13431 			 * speed up verification
13432 			 */
13433 			*pprev = sl->next;
13434 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
13435 				u32 br = sl->state.branches;
13436 
13437 				WARN_ONCE(br,
13438 					  "BUG live_done but branches_to_explore %d\n",
13439 					  br);
13440 				free_verifier_state(&sl->state, false);
13441 				kfree(sl);
13442 				env->peak_states--;
13443 			} else {
13444 				/* cannot free this state, since parentage chain may
13445 				 * walk it later. Add it for free_list instead to
13446 				 * be freed at the end of verification
13447 				 */
13448 				sl->next = env->free_list;
13449 				env->free_list = sl;
13450 			}
13451 			sl = *pprev;
13452 			continue;
13453 		}
13454 next:
13455 		pprev = &sl->next;
13456 		sl = *pprev;
13457 	}
13458 
13459 	if (env->max_states_per_insn < states_cnt)
13460 		env->max_states_per_insn = states_cnt;
13461 
13462 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
13463 		return push_jmp_history(env, cur);
13464 
13465 	if (!add_new_state)
13466 		return push_jmp_history(env, cur);
13467 
13468 	/* There were no equivalent states, remember the current one.
13469 	 * Technically the current state is not proven to be safe yet,
13470 	 * but it will either reach outer most bpf_exit (which means it's safe)
13471 	 * or it will be rejected. When there are no loops the verifier won't be
13472 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
13473 	 * again on the way to bpf_exit.
13474 	 * When looping the sl->state.branches will be > 0 and this state
13475 	 * will not be considered for equivalence until branches == 0.
13476 	 */
13477 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
13478 	if (!new_sl)
13479 		return -ENOMEM;
13480 	env->total_states++;
13481 	env->peak_states++;
13482 	env->prev_jmps_processed = env->jmps_processed;
13483 	env->prev_insn_processed = env->insn_processed;
13484 
13485 	/* forget precise markings we inherited, see __mark_chain_precision */
13486 	if (env->bpf_capable)
13487 		mark_all_scalars_imprecise(env, cur);
13488 
13489 	/* add new state to the head of linked list */
13490 	new = &new_sl->state;
13491 	err = copy_verifier_state(new, cur);
13492 	if (err) {
13493 		free_verifier_state(new, false);
13494 		kfree(new_sl);
13495 		return err;
13496 	}
13497 	new->insn_idx = insn_idx;
13498 	WARN_ONCE(new->branches != 1,
13499 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
13500 
13501 	cur->parent = new;
13502 	cur->first_insn_idx = insn_idx;
13503 	clear_jmp_history(cur);
13504 	new_sl->next = *explored_state(env, insn_idx);
13505 	*explored_state(env, insn_idx) = new_sl;
13506 	/* connect new state to parentage chain. Current frame needs all
13507 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
13508 	 * to the stack implicitly by JITs) so in callers' frames connect just
13509 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
13510 	 * the state of the call instruction (with WRITTEN set), and r0 comes
13511 	 * from callee with its full parentage chain, anyway.
13512 	 */
13513 	/* clear write marks in current state: the writes we did are not writes
13514 	 * our child did, so they don't screen off its reads from us.
13515 	 * (There are no read marks in current state, because reads always mark
13516 	 * their parent and current state never has children yet.  Only
13517 	 * explored_states can get read marks.)
13518 	 */
13519 	for (j = 0; j <= cur->curframe; j++) {
13520 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
13521 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
13522 		for (i = 0; i < BPF_REG_FP; i++)
13523 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
13524 	}
13525 
13526 	/* all stack frames are accessible from callee, clear them all */
13527 	for (j = 0; j <= cur->curframe; j++) {
13528 		struct bpf_func_state *frame = cur->frame[j];
13529 		struct bpf_func_state *newframe = new->frame[j];
13530 
13531 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
13532 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
13533 			frame->stack[i].spilled_ptr.parent =
13534 						&newframe->stack[i].spilled_ptr;
13535 		}
13536 	}
13537 	return 0;
13538 }
13539 
13540 /* Return true if it's OK to have the same insn return a different type. */
13541 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
13542 {
13543 	switch (base_type(type)) {
13544 	case PTR_TO_CTX:
13545 	case PTR_TO_SOCKET:
13546 	case PTR_TO_SOCK_COMMON:
13547 	case PTR_TO_TCP_SOCK:
13548 	case PTR_TO_XDP_SOCK:
13549 	case PTR_TO_BTF_ID:
13550 		return false;
13551 	default:
13552 		return true;
13553 	}
13554 }
13555 
13556 /* If an instruction was previously used with particular pointer types, then we
13557  * need to be careful to avoid cases such as the below, where it may be ok
13558  * for one branch accessing the pointer, but not ok for the other branch:
13559  *
13560  * R1 = sock_ptr
13561  * goto X;
13562  * ...
13563  * R1 = some_other_valid_ptr;
13564  * goto X;
13565  * ...
13566  * R2 = *(u32 *)(R1 + 0);
13567  */
13568 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
13569 {
13570 	return src != prev && (!reg_type_mismatch_ok(src) ||
13571 			       !reg_type_mismatch_ok(prev));
13572 }
13573 
13574 static int do_check(struct bpf_verifier_env *env)
13575 {
13576 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13577 	struct bpf_verifier_state *state = env->cur_state;
13578 	struct bpf_insn *insns = env->prog->insnsi;
13579 	struct bpf_reg_state *regs;
13580 	int insn_cnt = env->prog->len;
13581 	bool do_print_state = false;
13582 	int prev_insn_idx = -1;
13583 
13584 	for (;;) {
13585 		struct bpf_insn *insn;
13586 		u8 class;
13587 		int err;
13588 
13589 		env->prev_insn_idx = prev_insn_idx;
13590 		if (env->insn_idx >= insn_cnt) {
13591 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
13592 				env->insn_idx, insn_cnt);
13593 			return -EFAULT;
13594 		}
13595 
13596 		insn = &insns[env->insn_idx];
13597 		class = BPF_CLASS(insn->code);
13598 
13599 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
13600 			verbose(env,
13601 				"BPF program is too large. Processed %d insn\n",
13602 				env->insn_processed);
13603 			return -E2BIG;
13604 		}
13605 
13606 		err = is_state_visited(env, env->insn_idx);
13607 		if (err < 0)
13608 			return err;
13609 		if (err == 1) {
13610 			/* found equivalent state, can prune the search */
13611 			if (env->log.level & BPF_LOG_LEVEL) {
13612 				if (do_print_state)
13613 					verbose(env, "\nfrom %d to %d%s: safe\n",
13614 						env->prev_insn_idx, env->insn_idx,
13615 						env->cur_state->speculative ?
13616 						" (speculative execution)" : "");
13617 				else
13618 					verbose(env, "%d: safe\n", env->insn_idx);
13619 			}
13620 			goto process_bpf_exit;
13621 		}
13622 
13623 		if (signal_pending(current))
13624 			return -EAGAIN;
13625 
13626 		if (need_resched())
13627 			cond_resched();
13628 
13629 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
13630 			verbose(env, "\nfrom %d to %d%s:",
13631 				env->prev_insn_idx, env->insn_idx,
13632 				env->cur_state->speculative ?
13633 				" (speculative execution)" : "");
13634 			print_verifier_state(env, state->frame[state->curframe], true);
13635 			do_print_state = false;
13636 		}
13637 
13638 		if (env->log.level & BPF_LOG_LEVEL) {
13639 			const struct bpf_insn_cbs cbs = {
13640 				.cb_call	= disasm_kfunc_name,
13641 				.cb_print	= verbose,
13642 				.private_data	= env,
13643 			};
13644 
13645 			if (verifier_state_scratched(env))
13646 				print_insn_state(env, state->frame[state->curframe]);
13647 
13648 			verbose_linfo(env, env->insn_idx, "; ");
13649 			env->prev_log_len = env->log.len_used;
13650 			verbose(env, "%d: ", env->insn_idx);
13651 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
13652 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
13653 			env->prev_log_len = env->log.len_used;
13654 		}
13655 
13656 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
13657 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
13658 							   env->prev_insn_idx);
13659 			if (err)
13660 				return err;
13661 		}
13662 
13663 		regs = cur_regs(env);
13664 		sanitize_mark_insn_seen(env);
13665 		prev_insn_idx = env->insn_idx;
13666 
13667 		if (class == BPF_ALU || class == BPF_ALU64) {
13668 			err = check_alu_op(env, insn);
13669 			if (err)
13670 				return err;
13671 
13672 		} else if (class == BPF_LDX) {
13673 			enum bpf_reg_type *prev_src_type, src_reg_type;
13674 
13675 			/* check for reserved fields is already done */
13676 
13677 			/* check src operand */
13678 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13679 			if (err)
13680 				return err;
13681 
13682 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13683 			if (err)
13684 				return err;
13685 
13686 			src_reg_type = regs[insn->src_reg].type;
13687 
13688 			/* check that memory (src_reg + off) is readable,
13689 			 * the state of dst_reg will be updated by this func
13690 			 */
13691 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
13692 					       insn->off, BPF_SIZE(insn->code),
13693 					       BPF_READ, insn->dst_reg, false);
13694 			if (err)
13695 				return err;
13696 
13697 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
13698 
13699 			if (*prev_src_type == NOT_INIT) {
13700 				/* saw a valid insn
13701 				 * dst_reg = *(u32 *)(src_reg + off)
13702 				 * save type to validate intersecting paths
13703 				 */
13704 				*prev_src_type = src_reg_type;
13705 
13706 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
13707 				/* ABuser program is trying to use the same insn
13708 				 * dst_reg = *(u32*) (src_reg + off)
13709 				 * with different pointer types:
13710 				 * src_reg == ctx in one branch and
13711 				 * src_reg == stack|map in some other branch.
13712 				 * Reject it.
13713 				 */
13714 				verbose(env, "same insn cannot be used with different pointers\n");
13715 				return -EINVAL;
13716 			}
13717 
13718 		} else if (class == BPF_STX) {
13719 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
13720 
13721 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
13722 				err = check_atomic(env, env->insn_idx, insn);
13723 				if (err)
13724 					return err;
13725 				env->insn_idx++;
13726 				continue;
13727 			}
13728 
13729 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
13730 				verbose(env, "BPF_STX uses reserved fields\n");
13731 				return -EINVAL;
13732 			}
13733 
13734 			/* check src1 operand */
13735 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13736 			if (err)
13737 				return err;
13738 			/* check src2 operand */
13739 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13740 			if (err)
13741 				return err;
13742 
13743 			dst_reg_type = regs[insn->dst_reg].type;
13744 
13745 			/* check that memory (dst_reg + off) is writeable */
13746 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13747 					       insn->off, BPF_SIZE(insn->code),
13748 					       BPF_WRITE, insn->src_reg, false);
13749 			if (err)
13750 				return err;
13751 
13752 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
13753 
13754 			if (*prev_dst_type == NOT_INIT) {
13755 				*prev_dst_type = dst_reg_type;
13756 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
13757 				verbose(env, "same insn cannot be used with different pointers\n");
13758 				return -EINVAL;
13759 			}
13760 
13761 		} else if (class == BPF_ST) {
13762 			if (BPF_MODE(insn->code) != BPF_MEM ||
13763 			    insn->src_reg != BPF_REG_0) {
13764 				verbose(env, "BPF_ST uses reserved fields\n");
13765 				return -EINVAL;
13766 			}
13767 			/* check src operand */
13768 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13769 			if (err)
13770 				return err;
13771 
13772 			if (is_ctx_reg(env, insn->dst_reg)) {
13773 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
13774 					insn->dst_reg,
13775 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
13776 				return -EACCES;
13777 			}
13778 
13779 			/* check that memory (dst_reg + off) is writeable */
13780 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13781 					       insn->off, BPF_SIZE(insn->code),
13782 					       BPF_WRITE, -1, false);
13783 			if (err)
13784 				return err;
13785 
13786 		} else if (class == BPF_JMP || class == BPF_JMP32) {
13787 			u8 opcode = BPF_OP(insn->code);
13788 
13789 			env->jmps_processed++;
13790 			if (opcode == BPF_CALL) {
13791 				if (BPF_SRC(insn->code) != BPF_K ||
13792 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
13793 				     && insn->off != 0) ||
13794 				    (insn->src_reg != BPF_REG_0 &&
13795 				     insn->src_reg != BPF_PSEUDO_CALL &&
13796 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
13797 				    insn->dst_reg != BPF_REG_0 ||
13798 				    class == BPF_JMP32) {
13799 					verbose(env, "BPF_CALL uses reserved fields\n");
13800 					return -EINVAL;
13801 				}
13802 
13803 				if (env->cur_state->active_lock.ptr) {
13804 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
13805 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
13806 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
13807 					     (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) {
13808 						verbose(env, "function calls are not allowed while holding a lock\n");
13809 						return -EINVAL;
13810 					}
13811 				}
13812 				if (insn->src_reg == BPF_PSEUDO_CALL)
13813 					err = check_func_call(env, insn, &env->insn_idx);
13814 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
13815 					err = check_kfunc_call(env, insn, &env->insn_idx);
13816 				else
13817 					err = check_helper_call(env, insn, &env->insn_idx);
13818 				if (err)
13819 					return err;
13820 			} else if (opcode == BPF_JA) {
13821 				if (BPF_SRC(insn->code) != BPF_K ||
13822 				    insn->imm != 0 ||
13823 				    insn->src_reg != BPF_REG_0 ||
13824 				    insn->dst_reg != BPF_REG_0 ||
13825 				    class == BPF_JMP32) {
13826 					verbose(env, "BPF_JA uses reserved fields\n");
13827 					return -EINVAL;
13828 				}
13829 
13830 				env->insn_idx += insn->off + 1;
13831 				continue;
13832 
13833 			} else if (opcode == BPF_EXIT) {
13834 				if (BPF_SRC(insn->code) != BPF_K ||
13835 				    insn->imm != 0 ||
13836 				    insn->src_reg != BPF_REG_0 ||
13837 				    insn->dst_reg != BPF_REG_0 ||
13838 				    class == BPF_JMP32) {
13839 					verbose(env, "BPF_EXIT uses reserved fields\n");
13840 					return -EINVAL;
13841 				}
13842 
13843 				if (env->cur_state->active_lock.ptr) {
13844 					verbose(env, "bpf_spin_unlock is missing\n");
13845 					return -EINVAL;
13846 				}
13847 
13848 				if (env->cur_state->active_rcu_lock) {
13849 					verbose(env, "bpf_rcu_read_unlock is missing\n");
13850 					return -EINVAL;
13851 				}
13852 
13853 				/* We must do check_reference_leak here before
13854 				 * prepare_func_exit to handle the case when
13855 				 * state->curframe > 0, it may be a callback
13856 				 * function, for which reference_state must
13857 				 * match caller reference state when it exits.
13858 				 */
13859 				err = check_reference_leak(env);
13860 				if (err)
13861 					return err;
13862 
13863 				if (state->curframe) {
13864 					/* exit from nested function */
13865 					err = prepare_func_exit(env, &env->insn_idx);
13866 					if (err)
13867 						return err;
13868 					do_print_state = true;
13869 					continue;
13870 				}
13871 
13872 				err = check_return_code(env);
13873 				if (err)
13874 					return err;
13875 process_bpf_exit:
13876 				mark_verifier_state_scratched(env);
13877 				update_branch_counts(env, env->cur_state);
13878 				err = pop_stack(env, &prev_insn_idx,
13879 						&env->insn_idx, pop_log);
13880 				if (err < 0) {
13881 					if (err != -ENOENT)
13882 						return err;
13883 					break;
13884 				} else {
13885 					do_print_state = true;
13886 					continue;
13887 				}
13888 			} else {
13889 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
13890 				if (err)
13891 					return err;
13892 			}
13893 		} else if (class == BPF_LD) {
13894 			u8 mode = BPF_MODE(insn->code);
13895 
13896 			if (mode == BPF_ABS || mode == BPF_IND) {
13897 				err = check_ld_abs(env, insn);
13898 				if (err)
13899 					return err;
13900 
13901 			} else if (mode == BPF_IMM) {
13902 				err = check_ld_imm(env, insn);
13903 				if (err)
13904 					return err;
13905 
13906 				env->insn_idx++;
13907 				sanitize_mark_insn_seen(env);
13908 			} else {
13909 				verbose(env, "invalid BPF_LD mode\n");
13910 				return -EINVAL;
13911 			}
13912 		} else {
13913 			verbose(env, "unknown insn class %d\n", class);
13914 			return -EINVAL;
13915 		}
13916 
13917 		env->insn_idx++;
13918 	}
13919 
13920 	return 0;
13921 }
13922 
13923 static int find_btf_percpu_datasec(struct btf *btf)
13924 {
13925 	const struct btf_type *t;
13926 	const char *tname;
13927 	int i, n;
13928 
13929 	/*
13930 	 * Both vmlinux and module each have their own ".data..percpu"
13931 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
13932 	 * types to look at only module's own BTF types.
13933 	 */
13934 	n = btf_nr_types(btf);
13935 	if (btf_is_module(btf))
13936 		i = btf_nr_types(btf_vmlinux);
13937 	else
13938 		i = 1;
13939 
13940 	for(; i < n; i++) {
13941 		t = btf_type_by_id(btf, i);
13942 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
13943 			continue;
13944 
13945 		tname = btf_name_by_offset(btf, t->name_off);
13946 		if (!strcmp(tname, ".data..percpu"))
13947 			return i;
13948 	}
13949 
13950 	return -ENOENT;
13951 }
13952 
13953 /* replace pseudo btf_id with kernel symbol address */
13954 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
13955 			       struct bpf_insn *insn,
13956 			       struct bpf_insn_aux_data *aux)
13957 {
13958 	const struct btf_var_secinfo *vsi;
13959 	const struct btf_type *datasec;
13960 	struct btf_mod_pair *btf_mod;
13961 	const struct btf_type *t;
13962 	const char *sym_name;
13963 	bool percpu = false;
13964 	u32 type, id = insn->imm;
13965 	struct btf *btf;
13966 	s32 datasec_id;
13967 	u64 addr;
13968 	int i, btf_fd, err;
13969 
13970 	btf_fd = insn[1].imm;
13971 	if (btf_fd) {
13972 		btf = btf_get_by_fd(btf_fd);
13973 		if (IS_ERR(btf)) {
13974 			verbose(env, "invalid module BTF object FD specified.\n");
13975 			return -EINVAL;
13976 		}
13977 	} else {
13978 		if (!btf_vmlinux) {
13979 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
13980 			return -EINVAL;
13981 		}
13982 		btf = btf_vmlinux;
13983 		btf_get(btf);
13984 	}
13985 
13986 	t = btf_type_by_id(btf, id);
13987 	if (!t) {
13988 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
13989 		err = -ENOENT;
13990 		goto err_put;
13991 	}
13992 
13993 	if (!btf_type_is_var(t)) {
13994 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
13995 		err = -EINVAL;
13996 		goto err_put;
13997 	}
13998 
13999 	sym_name = btf_name_by_offset(btf, t->name_off);
14000 	addr = kallsyms_lookup_name(sym_name);
14001 	if (!addr) {
14002 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
14003 			sym_name);
14004 		err = -ENOENT;
14005 		goto err_put;
14006 	}
14007 
14008 	datasec_id = find_btf_percpu_datasec(btf);
14009 	if (datasec_id > 0) {
14010 		datasec = btf_type_by_id(btf, datasec_id);
14011 		for_each_vsi(i, datasec, vsi) {
14012 			if (vsi->type == id) {
14013 				percpu = true;
14014 				break;
14015 			}
14016 		}
14017 	}
14018 
14019 	insn[0].imm = (u32)addr;
14020 	insn[1].imm = addr >> 32;
14021 
14022 	type = t->type;
14023 	t = btf_type_skip_modifiers(btf, type, NULL);
14024 	if (percpu) {
14025 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
14026 		aux->btf_var.btf = btf;
14027 		aux->btf_var.btf_id = type;
14028 	} else if (!btf_type_is_struct(t)) {
14029 		const struct btf_type *ret;
14030 		const char *tname;
14031 		u32 tsize;
14032 
14033 		/* resolve the type size of ksym. */
14034 		ret = btf_resolve_size(btf, t, &tsize);
14035 		if (IS_ERR(ret)) {
14036 			tname = btf_name_by_offset(btf, t->name_off);
14037 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
14038 				tname, PTR_ERR(ret));
14039 			err = -EINVAL;
14040 			goto err_put;
14041 		}
14042 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
14043 		aux->btf_var.mem_size = tsize;
14044 	} else {
14045 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
14046 		aux->btf_var.btf = btf;
14047 		aux->btf_var.btf_id = type;
14048 	}
14049 
14050 	/* check whether we recorded this BTF (and maybe module) already */
14051 	for (i = 0; i < env->used_btf_cnt; i++) {
14052 		if (env->used_btfs[i].btf == btf) {
14053 			btf_put(btf);
14054 			return 0;
14055 		}
14056 	}
14057 
14058 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
14059 		err = -E2BIG;
14060 		goto err_put;
14061 	}
14062 
14063 	btf_mod = &env->used_btfs[env->used_btf_cnt];
14064 	btf_mod->btf = btf;
14065 	btf_mod->module = NULL;
14066 
14067 	/* if we reference variables from kernel module, bump its refcount */
14068 	if (btf_is_module(btf)) {
14069 		btf_mod->module = btf_try_get_module(btf);
14070 		if (!btf_mod->module) {
14071 			err = -ENXIO;
14072 			goto err_put;
14073 		}
14074 	}
14075 
14076 	env->used_btf_cnt++;
14077 
14078 	return 0;
14079 err_put:
14080 	btf_put(btf);
14081 	return err;
14082 }
14083 
14084 static bool is_tracing_prog_type(enum bpf_prog_type type)
14085 {
14086 	switch (type) {
14087 	case BPF_PROG_TYPE_KPROBE:
14088 	case BPF_PROG_TYPE_TRACEPOINT:
14089 	case BPF_PROG_TYPE_PERF_EVENT:
14090 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14091 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
14092 		return true;
14093 	default:
14094 		return false;
14095 	}
14096 }
14097 
14098 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
14099 					struct bpf_map *map,
14100 					struct bpf_prog *prog)
14101 
14102 {
14103 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
14104 
14105 	if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
14106 		if (is_tracing_prog_type(prog_type)) {
14107 			verbose(env, "tracing progs cannot use bpf_list_head yet\n");
14108 			return -EINVAL;
14109 		}
14110 	}
14111 
14112 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
14113 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
14114 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
14115 			return -EINVAL;
14116 		}
14117 
14118 		if (is_tracing_prog_type(prog_type)) {
14119 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
14120 			return -EINVAL;
14121 		}
14122 
14123 		if (prog->aux->sleepable) {
14124 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
14125 			return -EINVAL;
14126 		}
14127 	}
14128 
14129 	if (btf_record_has_field(map->record, BPF_TIMER)) {
14130 		if (is_tracing_prog_type(prog_type)) {
14131 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
14132 			return -EINVAL;
14133 		}
14134 	}
14135 
14136 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
14137 	    !bpf_offload_prog_map_match(prog, map)) {
14138 		verbose(env, "offload device mismatch between prog and map\n");
14139 		return -EINVAL;
14140 	}
14141 
14142 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
14143 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
14144 		return -EINVAL;
14145 	}
14146 
14147 	if (prog->aux->sleepable)
14148 		switch (map->map_type) {
14149 		case BPF_MAP_TYPE_HASH:
14150 		case BPF_MAP_TYPE_LRU_HASH:
14151 		case BPF_MAP_TYPE_ARRAY:
14152 		case BPF_MAP_TYPE_PERCPU_HASH:
14153 		case BPF_MAP_TYPE_PERCPU_ARRAY:
14154 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
14155 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
14156 		case BPF_MAP_TYPE_HASH_OF_MAPS:
14157 		case BPF_MAP_TYPE_RINGBUF:
14158 		case BPF_MAP_TYPE_USER_RINGBUF:
14159 		case BPF_MAP_TYPE_INODE_STORAGE:
14160 		case BPF_MAP_TYPE_SK_STORAGE:
14161 		case BPF_MAP_TYPE_TASK_STORAGE:
14162 		case BPF_MAP_TYPE_CGRP_STORAGE:
14163 			break;
14164 		default:
14165 			verbose(env,
14166 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
14167 			return -EINVAL;
14168 		}
14169 
14170 	return 0;
14171 }
14172 
14173 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
14174 {
14175 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
14176 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
14177 }
14178 
14179 /* find and rewrite pseudo imm in ld_imm64 instructions:
14180  *
14181  * 1. if it accesses map FD, replace it with actual map pointer.
14182  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
14183  *
14184  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
14185  */
14186 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
14187 {
14188 	struct bpf_insn *insn = env->prog->insnsi;
14189 	int insn_cnt = env->prog->len;
14190 	int i, j, err;
14191 
14192 	err = bpf_prog_calc_tag(env->prog);
14193 	if (err)
14194 		return err;
14195 
14196 	for (i = 0; i < insn_cnt; i++, insn++) {
14197 		if (BPF_CLASS(insn->code) == BPF_LDX &&
14198 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
14199 			verbose(env, "BPF_LDX uses reserved fields\n");
14200 			return -EINVAL;
14201 		}
14202 
14203 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
14204 			struct bpf_insn_aux_data *aux;
14205 			struct bpf_map *map;
14206 			struct fd f;
14207 			u64 addr;
14208 			u32 fd;
14209 
14210 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
14211 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
14212 			    insn[1].off != 0) {
14213 				verbose(env, "invalid bpf_ld_imm64 insn\n");
14214 				return -EINVAL;
14215 			}
14216 
14217 			if (insn[0].src_reg == 0)
14218 				/* valid generic load 64-bit imm */
14219 				goto next_insn;
14220 
14221 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
14222 				aux = &env->insn_aux_data[i];
14223 				err = check_pseudo_btf_id(env, insn, aux);
14224 				if (err)
14225 					return err;
14226 				goto next_insn;
14227 			}
14228 
14229 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
14230 				aux = &env->insn_aux_data[i];
14231 				aux->ptr_type = PTR_TO_FUNC;
14232 				goto next_insn;
14233 			}
14234 
14235 			/* In final convert_pseudo_ld_imm64() step, this is
14236 			 * converted into regular 64-bit imm load insn.
14237 			 */
14238 			switch (insn[0].src_reg) {
14239 			case BPF_PSEUDO_MAP_VALUE:
14240 			case BPF_PSEUDO_MAP_IDX_VALUE:
14241 				break;
14242 			case BPF_PSEUDO_MAP_FD:
14243 			case BPF_PSEUDO_MAP_IDX:
14244 				if (insn[1].imm == 0)
14245 					break;
14246 				fallthrough;
14247 			default:
14248 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
14249 				return -EINVAL;
14250 			}
14251 
14252 			switch (insn[0].src_reg) {
14253 			case BPF_PSEUDO_MAP_IDX_VALUE:
14254 			case BPF_PSEUDO_MAP_IDX:
14255 				if (bpfptr_is_null(env->fd_array)) {
14256 					verbose(env, "fd_idx without fd_array is invalid\n");
14257 					return -EPROTO;
14258 				}
14259 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
14260 							    insn[0].imm * sizeof(fd),
14261 							    sizeof(fd)))
14262 					return -EFAULT;
14263 				break;
14264 			default:
14265 				fd = insn[0].imm;
14266 				break;
14267 			}
14268 
14269 			f = fdget(fd);
14270 			map = __bpf_map_get(f);
14271 			if (IS_ERR(map)) {
14272 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
14273 					insn[0].imm);
14274 				return PTR_ERR(map);
14275 			}
14276 
14277 			err = check_map_prog_compatibility(env, map, env->prog);
14278 			if (err) {
14279 				fdput(f);
14280 				return err;
14281 			}
14282 
14283 			aux = &env->insn_aux_data[i];
14284 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
14285 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
14286 				addr = (unsigned long)map;
14287 			} else {
14288 				u32 off = insn[1].imm;
14289 
14290 				if (off >= BPF_MAX_VAR_OFF) {
14291 					verbose(env, "direct value offset of %u is not allowed\n", off);
14292 					fdput(f);
14293 					return -EINVAL;
14294 				}
14295 
14296 				if (!map->ops->map_direct_value_addr) {
14297 					verbose(env, "no direct value access support for this map type\n");
14298 					fdput(f);
14299 					return -EINVAL;
14300 				}
14301 
14302 				err = map->ops->map_direct_value_addr(map, &addr, off);
14303 				if (err) {
14304 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
14305 						map->value_size, off);
14306 					fdput(f);
14307 					return err;
14308 				}
14309 
14310 				aux->map_off = off;
14311 				addr += off;
14312 			}
14313 
14314 			insn[0].imm = (u32)addr;
14315 			insn[1].imm = addr >> 32;
14316 
14317 			/* check whether we recorded this map already */
14318 			for (j = 0; j < env->used_map_cnt; j++) {
14319 				if (env->used_maps[j] == map) {
14320 					aux->map_index = j;
14321 					fdput(f);
14322 					goto next_insn;
14323 				}
14324 			}
14325 
14326 			if (env->used_map_cnt >= MAX_USED_MAPS) {
14327 				fdput(f);
14328 				return -E2BIG;
14329 			}
14330 
14331 			/* hold the map. If the program is rejected by verifier,
14332 			 * the map will be released by release_maps() or it
14333 			 * will be used by the valid program until it's unloaded
14334 			 * and all maps are released in free_used_maps()
14335 			 */
14336 			bpf_map_inc(map);
14337 
14338 			aux->map_index = env->used_map_cnt;
14339 			env->used_maps[env->used_map_cnt++] = map;
14340 
14341 			if (bpf_map_is_cgroup_storage(map) &&
14342 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
14343 				verbose(env, "only one cgroup storage of each type is allowed\n");
14344 				fdput(f);
14345 				return -EBUSY;
14346 			}
14347 
14348 			fdput(f);
14349 next_insn:
14350 			insn++;
14351 			i++;
14352 			continue;
14353 		}
14354 
14355 		/* Basic sanity check before we invest more work here. */
14356 		if (!bpf_opcode_in_insntable(insn->code)) {
14357 			verbose(env, "unknown opcode %02x\n", insn->code);
14358 			return -EINVAL;
14359 		}
14360 	}
14361 
14362 	/* now all pseudo BPF_LD_IMM64 instructions load valid
14363 	 * 'struct bpf_map *' into a register instead of user map_fd.
14364 	 * These pointers will be used later by verifier to validate map access.
14365 	 */
14366 	return 0;
14367 }
14368 
14369 /* drop refcnt of maps used by the rejected program */
14370 static void release_maps(struct bpf_verifier_env *env)
14371 {
14372 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
14373 			     env->used_map_cnt);
14374 }
14375 
14376 /* drop refcnt of maps used by the rejected program */
14377 static void release_btfs(struct bpf_verifier_env *env)
14378 {
14379 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
14380 			     env->used_btf_cnt);
14381 }
14382 
14383 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
14384 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
14385 {
14386 	struct bpf_insn *insn = env->prog->insnsi;
14387 	int insn_cnt = env->prog->len;
14388 	int i;
14389 
14390 	for (i = 0; i < insn_cnt; i++, insn++) {
14391 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
14392 			continue;
14393 		if (insn->src_reg == BPF_PSEUDO_FUNC)
14394 			continue;
14395 		insn->src_reg = 0;
14396 	}
14397 }
14398 
14399 /* single env->prog->insni[off] instruction was replaced with the range
14400  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
14401  * [0, off) and [off, end) to new locations, so the patched range stays zero
14402  */
14403 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
14404 				 struct bpf_insn_aux_data *new_data,
14405 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
14406 {
14407 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
14408 	struct bpf_insn *insn = new_prog->insnsi;
14409 	u32 old_seen = old_data[off].seen;
14410 	u32 prog_len;
14411 	int i;
14412 
14413 	/* aux info at OFF always needs adjustment, no matter fast path
14414 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
14415 	 * original insn at old prog.
14416 	 */
14417 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
14418 
14419 	if (cnt == 1)
14420 		return;
14421 	prog_len = new_prog->len;
14422 
14423 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
14424 	memcpy(new_data + off + cnt - 1, old_data + off,
14425 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
14426 	for (i = off; i < off + cnt - 1; i++) {
14427 		/* Expand insni[off]'s seen count to the patched range. */
14428 		new_data[i].seen = old_seen;
14429 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
14430 	}
14431 	env->insn_aux_data = new_data;
14432 	vfree(old_data);
14433 }
14434 
14435 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
14436 {
14437 	int i;
14438 
14439 	if (len == 1)
14440 		return;
14441 	/* NOTE: fake 'exit' subprog should be updated as well. */
14442 	for (i = 0; i <= env->subprog_cnt; i++) {
14443 		if (env->subprog_info[i].start <= off)
14444 			continue;
14445 		env->subprog_info[i].start += len - 1;
14446 	}
14447 }
14448 
14449 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
14450 {
14451 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
14452 	int i, sz = prog->aux->size_poke_tab;
14453 	struct bpf_jit_poke_descriptor *desc;
14454 
14455 	for (i = 0; i < sz; i++) {
14456 		desc = &tab[i];
14457 		if (desc->insn_idx <= off)
14458 			continue;
14459 		desc->insn_idx += len - 1;
14460 	}
14461 }
14462 
14463 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
14464 					    const struct bpf_insn *patch, u32 len)
14465 {
14466 	struct bpf_prog *new_prog;
14467 	struct bpf_insn_aux_data *new_data = NULL;
14468 
14469 	if (len > 1) {
14470 		new_data = vzalloc(array_size(env->prog->len + len - 1,
14471 					      sizeof(struct bpf_insn_aux_data)));
14472 		if (!new_data)
14473 			return NULL;
14474 	}
14475 
14476 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
14477 	if (IS_ERR(new_prog)) {
14478 		if (PTR_ERR(new_prog) == -ERANGE)
14479 			verbose(env,
14480 				"insn %d cannot be patched due to 16-bit range\n",
14481 				env->insn_aux_data[off].orig_idx);
14482 		vfree(new_data);
14483 		return NULL;
14484 	}
14485 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
14486 	adjust_subprog_starts(env, off, len);
14487 	adjust_poke_descs(new_prog, off, len);
14488 	return new_prog;
14489 }
14490 
14491 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
14492 					      u32 off, u32 cnt)
14493 {
14494 	int i, j;
14495 
14496 	/* find first prog starting at or after off (first to remove) */
14497 	for (i = 0; i < env->subprog_cnt; i++)
14498 		if (env->subprog_info[i].start >= off)
14499 			break;
14500 	/* find first prog starting at or after off + cnt (first to stay) */
14501 	for (j = i; j < env->subprog_cnt; j++)
14502 		if (env->subprog_info[j].start >= off + cnt)
14503 			break;
14504 	/* if j doesn't start exactly at off + cnt, we are just removing
14505 	 * the front of previous prog
14506 	 */
14507 	if (env->subprog_info[j].start != off + cnt)
14508 		j--;
14509 
14510 	if (j > i) {
14511 		struct bpf_prog_aux *aux = env->prog->aux;
14512 		int move;
14513 
14514 		/* move fake 'exit' subprog as well */
14515 		move = env->subprog_cnt + 1 - j;
14516 
14517 		memmove(env->subprog_info + i,
14518 			env->subprog_info + j,
14519 			sizeof(*env->subprog_info) * move);
14520 		env->subprog_cnt -= j - i;
14521 
14522 		/* remove func_info */
14523 		if (aux->func_info) {
14524 			move = aux->func_info_cnt - j;
14525 
14526 			memmove(aux->func_info + i,
14527 				aux->func_info + j,
14528 				sizeof(*aux->func_info) * move);
14529 			aux->func_info_cnt -= j - i;
14530 			/* func_info->insn_off is set after all code rewrites,
14531 			 * in adjust_btf_func() - no need to adjust
14532 			 */
14533 		}
14534 	} else {
14535 		/* convert i from "first prog to remove" to "first to adjust" */
14536 		if (env->subprog_info[i].start == off)
14537 			i++;
14538 	}
14539 
14540 	/* update fake 'exit' subprog as well */
14541 	for (; i <= env->subprog_cnt; i++)
14542 		env->subprog_info[i].start -= cnt;
14543 
14544 	return 0;
14545 }
14546 
14547 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
14548 				      u32 cnt)
14549 {
14550 	struct bpf_prog *prog = env->prog;
14551 	u32 i, l_off, l_cnt, nr_linfo;
14552 	struct bpf_line_info *linfo;
14553 
14554 	nr_linfo = prog->aux->nr_linfo;
14555 	if (!nr_linfo)
14556 		return 0;
14557 
14558 	linfo = prog->aux->linfo;
14559 
14560 	/* find first line info to remove, count lines to be removed */
14561 	for (i = 0; i < nr_linfo; i++)
14562 		if (linfo[i].insn_off >= off)
14563 			break;
14564 
14565 	l_off = i;
14566 	l_cnt = 0;
14567 	for (; i < nr_linfo; i++)
14568 		if (linfo[i].insn_off < off + cnt)
14569 			l_cnt++;
14570 		else
14571 			break;
14572 
14573 	/* First live insn doesn't match first live linfo, it needs to "inherit"
14574 	 * last removed linfo.  prog is already modified, so prog->len == off
14575 	 * means no live instructions after (tail of the program was removed).
14576 	 */
14577 	if (prog->len != off && l_cnt &&
14578 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
14579 		l_cnt--;
14580 		linfo[--i].insn_off = off + cnt;
14581 	}
14582 
14583 	/* remove the line info which refer to the removed instructions */
14584 	if (l_cnt) {
14585 		memmove(linfo + l_off, linfo + i,
14586 			sizeof(*linfo) * (nr_linfo - i));
14587 
14588 		prog->aux->nr_linfo -= l_cnt;
14589 		nr_linfo = prog->aux->nr_linfo;
14590 	}
14591 
14592 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
14593 	for (i = l_off; i < nr_linfo; i++)
14594 		linfo[i].insn_off -= cnt;
14595 
14596 	/* fix up all subprogs (incl. 'exit') which start >= off */
14597 	for (i = 0; i <= env->subprog_cnt; i++)
14598 		if (env->subprog_info[i].linfo_idx > l_off) {
14599 			/* program may have started in the removed region but
14600 			 * may not be fully removed
14601 			 */
14602 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
14603 				env->subprog_info[i].linfo_idx -= l_cnt;
14604 			else
14605 				env->subprog_info[i].linfo_idx = l_off;
14606 		}
14607 
14608 	return 0;
14609 }
14610 
14611 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
14612 {
14613 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14614 	unsigned int orig_prog_len = env->prog->len;
14615 	int err;
14616 
14617 	if (bpf_prog_is_dev_bound(env->prog->aux))
14618 		bpf_prog_offload_remove_insns(env, off, cnt);
14619 
14620 	err = bpf_remove_insns(env->prog, off, cnt);
14621 	if (err)
14622 		return err;
14623 
14624 	err = adjust_subprog_starts_after_remove(env, off, cnt);
14625 	if (err)
14626 		return err;
14627 
14628 	err = bpf_adj_linfo_after_remove(env, off, cnt);
14629 	if (err)
14630 		return err;
14631 
14632 	memmove(aux_data + off,	aux_data + off + cnt,
14633 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
14634 
14635 	return 0;
14636 }
14637 
14638 /* The verifier does more data flow analysis than llvm and will not
14639  * explore branches that are dead at run time. Malicious programs can
14640  * have dead code too. Therefore replace all dead at-run-time code
14641  * with 'ja -1'.
14642  *
14643  * Just nops are not optimal, e.g. if they would sit at the end of the
14644  * program and through another bug we would manage to jump there, then
14645  * we'd execute beyond program memory otherwise. Returning exception
14646  * code also wouldn't work since we can have subprogs where the dead
14647  * code could be located.
14648  */
14649 static void sanitize_dead_code(struct bpf_verifier_env *env)
14650 {
14651 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14652 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
14653 	struct bpf_insn *insn = env->prog->insnsi;
14654 	const int insn_cnt = env->prog->len;
14655 	int i;
14656 
14657 	for (i = 0; i < insn_cnt; i++) {
14658 		if (aux_data[i].seen)
14659 			continue;
14660 		memcpy(insn + i, &trap, sizeof(trap));
14661 		aux_data[i].zext_dst = false;
14662 	}
14663 }
14664 
14665 static bool insn_is_cond_jump(u8 code)
14666 {
14667 	u8 op;
14668 
14669 	if (BPF_CLASS(code) == BPF_JMP32)
14670 		return true;
14671 
14672 	if (BPF_CLASS(code) != BPF_JMP)
14673 		return false;
14674 
14675 	op = BPF_OP(code);
14676 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
14677 }
14678 
14679 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
14680 {
14681 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14682 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14683 	struct bpf_insn *insn = env->prog->insnsi;
14684 	const int insn_cnt = env->prog->len;
14685 	int i;
14686 
14687 	for (i = 0; i < insn_cnt; i++, insn++) {
14688 		if (!insn_is_cond_jump(insn->code))
14689 			continue;
14690 
14691 		if (!aux_data[i + 1].seen)
14692 			ja.off = insn->off;
14693 		else if (!aux_data[i + 1 + insn->off].seen)
14694 			ja.off = 0;
14695 		else
14696 			continue;
14697 
14698 		if (bpf_prog_is_dev_bound(env->prog->aux))
14699 			bpf_prog_offload_replace_insn(env, i, &ja);
14700 
14701 		memcpy(insn, &ja, sizeof(ja));
14702 	}
14703 }
14704 
14705 static int opt_remove_dead_code(struct bpf_verifier_env *env)
14706 {
14707 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14708 	int insn_cnt = env->prog->len;
14709 	int i, err;
14710 
14711 	for (i = 0; i < insn_cnt; i++) {
14712 		int j;
14713 
14714 		j = 0;
14715 		while (i + j < insn_cnt && !aux_data[i + j].seen)
14716 			j++;
14717 		if (!j)
14718 			continue;
14719 
14720 		err = verifier_remove_insns(env, i, j);
14721 		if (err)
14722 			return err;
14723 		insn_cnt = env->prog->len;
14724 	}
14725 
14726 	return 0;
14727 }
14728 
14729 static int opt_remove_nops(struct bpf_verifier_env *env)
14730 {
14731 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14732 	struct bpf_insn *insn = env->prog->insnsi;
14733 	int insn_cnt = env->prog->len;
14734 	int i, err;
14735 
14736 	for (i = 0; i < insn_cnt; i++) {
14737 		if (memcmp(&insn[i], &ja, sizeof(ja)))
14738 			continue;
14739 
14740 		err = verifier_remove_insns(env, i, 1);
14741 		if (err)
14742 			return err;
14743 		insn_cnt--;
14744 		i--;
14745 	}
14746 
14747 	return 0;
14748 }
14749 
14750 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
14751 					 const union bpf_attr *attr)
14752 {
14753 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
14754 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
14755 	int i, patch_len, delta = 0, len = env->prog->len;
14756 	struct bpf_insn *insns = env->prog->insnsi;
14757 	struct bpf_prog *new_prog;
14758 	bool rnd_hi32;
14759 
14760 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
14761 	zext_patch[1] = BPF_ZEXT_REG(0);
14762 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
14763 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
14764 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
14765 	for (i = 0; i < len; i++) {
14766 		int adj_idx = i + delta;
14767 		struct bpf_insn insn;
14768 		int load_reg;
14769 
14770 		insn = insns[adj_idx];
14771 		load_reg = insn_def_regno(&insn);
14772 		if (!aux[adj_idx].zext_dst) {
14773 			u8 code, class;
14774 			u32 imm_rnd;
14775 
14776 			if (!rnd_hi32)
14777 				continue;
14778 
14779 			code = insn.code;
14780 			class = BPF_CLASS(code);
14781 			if (load_reg == -1)
14782 				continue;
14783 
14784 			/* NOTE: arg "reg" (the fourth one) is only used for
14785 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
14786 			 *       here.
14787 			 */
14788 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
14789 				if (class == BPF_LD &&
14790 				    BPF_MODE(code) == BPF_IMM)
14791 					i++;
14792 				continue;
14793 			}
14794 
14795 			/* ctx load could be transformed into wider load. */
14796 			if (class == BPF_LDX &&
14797 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
14798 				continue;
14799 
14800 			imm_rnd = get_random_u32();
14801 			rnd_hi32_patch[0] = insn;
14802 			rnd_hi32_patch[1].imm = imm_rnd;
14803 			rnd_hi32_patch[3].dst_reg = load_reg;
14804 			patch = rnd_hi32_patch;
14805 			patch_len = 4;
14806 			goto apply_patch_buffer;
14807 		}
14808 
14809 		/* Add in an zero-extend instruction if a) the JIT has requested
14810 		 * it or b) it's a CMPXCHG.
14811 		 *
14812 		 * The latter is because: BPF_CMPXCHG always loads a value into
14813 		 * R0, therefore always zero-extends. However some archs'
14814 		 * equivalent instruction only does this load when the
14815 		 * comparison is successful. This detail of CMPXCHG is
14816 		 * orthogonal to the general zero-extension behaviour of the
14817 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
14818 		 */
14819 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
14820 			continue;
14821 
14822 		if (WARN_ON(load_reg == -1)) {
14823 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
14824 			return -EFAULT;
14825 		}
14826 
14827 		zext_patch[0] = insn;
14828 		zext_patch[1].dst_reg = load_reg;
14829 		zext_patch[1].src_reg = load_reg;
14830 		patch = zext_patch;
14831 		patch_len = 2;
14832 apply_patch_buffer:
14833 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
14834 		if (!new_prog)
14835 			return -ENOMEM;
14836 		env->prog = new_prog;
14837 		insns = new_prog->insnsi;
14838 		aux = env->insn_aux_data;
14839 		delta += patch_len - 1;
14840 	}
14841 
14842 	return 0;
14843 }
14844 
14845 /* convert load instructions that access fields of a context type into a
14846  * sequence of instructions that access fields of the underlying structure:
14847  *     struct __sk_buff    -> struct sk_buff
14848  *     struct bpf_sock_ops -> struct sock
14849  */
14850 static int convert_ctx_accesses(struct bpf_verifier_env *env)
14851 {
14852 	const struct bpf_verifier_ops *ops = env->ops;
14853 	int i, cnt, size, ctx_field_size, delta = 0;
14854 	const int insn_cnt = env->prog->len;
14855 	struct bpf_insn insn_buf[16], *insn;
14856 	u32 target_size, size_default, off;
14857 	struct bpf_prog *new_prog;
14858 	enum bpf_access_type type;
14859 	bool is_narrower_load;
14860 
14861 	if (ops->gen_prologue || env->seen_direct_write) {
14862 		if (!ops->gen_prologue) {
14863 			verbose(env, "bpf verifier is misconfigured\n");
14864 			return -EINVAL;
14865 		}
14866 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
14867 					env->prog);
14868 		if (cnt >= ARRAY_SIZE(insn_buf)) {
14869 			verbose(env, "bpf verifier is misconfigured\n");
14870 			return -EINVAL;
14871 		} else if (cnt) {
14872 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
14873 			if (!new_prog)
14874 				return -ENOMEM;
14875 
14876 			env->prog = new_prog;
14877 			delta += cnt - 1;
14878 		}
14879 	}
14880 
14881 	if (bpf_prog_is_dev_bound(env->prog->aux))
14882 		return 0;
14883 
14884 	insn = env->prog->insnsi + delta;
14885 
14886 	for (i = 0; i < insn_cnt; i++, insn++) {
14887 		bpf_convert_ctx_access_t convert_ctx_access;
14888 		bool ctx_access;
14889 
14890 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
14891 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
14892 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
14893 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
14894 			type = BPF_READ;
14895 			ctx_access = true;
14896 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
14897 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
14898 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
14899 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
14900 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
14901 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
14902 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
14903 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
14904 			type = BPF_WRITE;
14905 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
14906 		} else {
14907 			continue;
14908 		}
14909 
14910 		if (type == BPF_WRITE &&
14911 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
14912 			struct bpf_insn patch[] = {
14913 				*insn,
14914 				BPF_ST_NOSPEC(),
14915 			};
14916 
14917 			cnt = ARRAY_SIZE(patch);
14918 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
14919 			if (!new_prog)
14920 				return -ENOMEM;
14921 
14922 			delta    += cnt - 1;
14923 			env->prog = new_prog;
14924 			insn      = new_prog->insnsi + i + delta;
14925 			continue;
14926 		}
14927 
14928 		if (!ctx_access)
14929 			continue;
14930 
14931 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
14932 		case PTR_TO_CTX:
14933 			if (!ops->convert_ctx_access)
14934 				continue;
14935 			convert_ctx_access = ops->convert_ctx_access;
14936 			break;
14937 		case PTR_TO_SOCKET:
14938 		case PTR_TO_SOCK_COMMON:
14939 			convert_ctx_access = bpf_sock_convert_ctx_access;
14940 			break;
14941 		case PTR_TO_TCP_SOCK:
14942 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
14943 			break;
14944 		case PTR_TO_XDP_SOCK:
14945 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
14946 			break;
14947 		case PTR_TO_BTF_ID:
14948 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
14949 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
14950 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
14951 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
14952 		 * any faults for loads into such types. BPF_WRITE is disallowed
14953 		 * for this case.
14954 		 */
14955 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
14956 			if (type == BPF_READ) {
14957 				insn->code = BPF_LDX | BPF_PROBE_MEM |
14958 					BPF_SIZE((insn)->code);
14959 				env->prog->aux->num_exentries++;
14960 			}
14961 			continue;
14962 		default:
14963 			continue;
14964 		}
14965 
14966 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
14967 		size = BPF_LDST_BYTES(insn);
14968 
14969 		/* If the read access is a narrower load of the field,
14970 		 * convert to a 4/8-byte load, to minimum program type specific
14971 		 * convert_ctx_access changes. If conversion is successful,
14972 		 * we will apply proper mask to the result.
14973 		 */
14974 		is_narrower_load = size < ctx_field_size;
14975 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
14976 		off = insn->off;
14977 		if (is_narrower_load) {
14978 			u8 size_code;
14979 
14980 			if (type == BPF_WRITE) {
14981 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
14982 				return -EINVAL;
14983 			}
14984 
14985 			size_code = BPF_H;
14986 			if (ctx_field_size == 4)
14987 				size_code = BPF_W;
14988 			else if (ctx_field_size == 8)
14989 				size_code = BPF_DW;
14990 
14991 			insn->off = off & ~(size_default - 1);
14992 			insn->code = BPF_LDX | BPF_MEM | size_code;
14993 		}
14994 
14995 		target_size = 0;
14996 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
14997 					 &target_size);
14998 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
14999 		    (ctx_field_size && !target_size)) {
15000 			verbose(env, "bpf verifier is misconfigured\n");
15001 			return -EINVAL;
15002 		}
15003 
15004 		if (is_narrower_load && size < target_size) {
15005 			u8 shift = bpf_ctx_narrow_access_offset(
15006 				off, size, size_default) * 8;
15007 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
15008 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
15009 				return -EINVAL;
15010 			}
15011 			if (ctx_field_size <= 4) {
15012 				if (shift)
15013 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
15014 									insn->dst_reg,
15015 									shift);
15016 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
15017 								(1 << size * 8) - 1);
15018 			} else {
15019 				if (shift)
15020 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
15021 									insn->dst_reg,
15022 									shift);
15023 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
15024 								(1ULL << size * 8) - 1);
15025 			}
15026 		}
15027 
15028 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15029 		if (!new_prog)
15030 			return -ENOMEM;
15031 
15032 		delta += cnt - 1;
15033 
15034 		/* keep walking new program and skip insns we just inserted */
15035 		env->prog = new_prog;
15036 		insn      = new_prog->insnsi + i + delta;
15037 	}
15038 
15039 	return 0;
15040 }
15041 
15042 static int jit_subprogs(struct bpf_verifier_env *env)
15043 {
15044 	struct bpf_prog *prog = env->prog, **func, *tmp;
15045 	int i, j, subprog_start, subprog_end = 0, len, subprog;
15046 	struct bpf_map *map_ptr;
15047 	struct bpf_insn *insn;
15048 	void *old_bpf_func;
15049 	int err, num_exentries;
15050 
15051 	if (env->subprog_cnt <= 1)
15052 		return 0;
15053 
15054 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15055 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
15056 			continue;
15057 
15058 		/* Upon error here we cannot fall back to interpreter but
15059 		 * need a hard reject of the program. Thus -EFAULT is
15060 		 * propagated in any case.
15061 		 */
15062 		subprog = find_subprog(env, i + insn->imm + 1);
15063 		if (subprog < 0) {
15064 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
15065 				  i + insn->imm + 1);
15066 			return -EFAULT;
15067 		}
15068 		/* temporarily remember subprog id inside insn instead of
15069 		 * aux_data, since next loop will split up all insns into funcs
15070 		 */
15071 		insn->off = subprog;
15072 		/* remember original imm in case JIT fails and fallback
15073 		 * to interpreter will be needed
15074 		 */
15075 		env->insn_aux_data[i].call_imm = insn->imm;
15076 		/* point imm to __bpf_call_base+1 from JITs point of view */
15077 		insn->imm = 1;
15078 		if (bpf_pseudo_func(insn))
15079 			/* jit (e.g. x86_64) may emit fewer instructions
15080 			 * if it learns a u32 imm is the same as a u64 imm.
15081 			 * Force a non zero here.
15082 			 */
15083 			insn[1].imm = 1;
15084 	}
15085 
15086 	err = bpf_prog_alloc_jited_linfo(prog);
15087 	if (err)
15088 		goto out_undo_insn;
15089 
15090 	err = -ENOMEM;
15091 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
15092 	if (!func)
15093 		goto out_undo_insn;
15094 
15095 	for (i = 0; i < env->subprog_cnt; i++) {
15096 		subprog_start = subprog_end;
15097 		subprog_end = env->subprog_info[i + 1].start;
15098 
15099 		len = subprog_end - subprog_start;
15100 		/* bpf_prog_run() doesn't call subprogs directly,
15101 		 * hence main prog stats include the runtime of subprogs.
15102 		 * subprogs don't have IDs and not reachable via prog_get_next_id
15103 		 * func[i]->stats will never be accessed and stays NULL
15104 		 */
15105 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
15106 		if (!func[i])
15107 			goto out_free;
15108 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
15109 		       len * sizeof(struct bpf_insn));
15110 		func[i]->type = prog->type;
15111 		func[i]->len = len;
15112 		if (bpf_prog_calc_tag(func[i]))
15113 			goto out_free;
15114 		func[i]->is_func = 1;
15115 		func[i]->aux->func_idx = i;
15116 		/* Below members will be freed only at prog->aux */
15117 		func[i]->aux->btf = prog->aux->btf;
15118 		func[i]->aux->func_info = prog->aux->func_info;
15119 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
15120 		func[i]->aux->poke_tab = prog->aux->poke_tab;
15121 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
15122 
15123 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
15124 			struct bpf_jit_poke_descriptor *poke;
15125 
15126 			poke = &prog->aux->poke_tab[j];
15127 			if (poke->insn_idx < subprog_end &&
15128 			    poke->insn_idx >= subprog_start)
15129 				poke->aux = func[i]->aux;
15130 		}
15131 
15132 		func[i]->aux->name[0] = 'F';
15133 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
15134 		func[i]->jit_requested = 1;
15135 		func[i]->blinding_requested = prog->blinding_requested;
15136 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
15137 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
15138 		func[i]->aux->linfo = prog->aux->linfo;
15139 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
15140 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
15141 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
15142 		num_exentries = 0;
15143 		insn = func[i]->insnsi;
15144 		for (j = 0; j < func[i]->len; j++, insn++) {
15145 			if (BPF_CLASS(insn->code) == BPF_LDX &&
15146 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
15147 				num_exentries++;
15148 		}
15149 		func[i]->aux->num_exentries = num_exentries;
15150 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
15151 		func[i] = bpf_int_jit_compile(func[i]);
15152 		if (!func[i]->jited) {
15153 			err = -ENOTSUPP;
15154 			goto out_free;
15155 		}
15156 		cond_resched();
15157 	}
15158 
15159 	/* at this point all bpf functions were successfully JITed
15160 	 * now populate all bpf_calls with correct addresses and
15161 	 * run last pass of JIT
15162 	 */
15163 	for (i = 0; i < env->subprog_cnt; i++) {
15164 		insn = func[i]->insnsi;
15165 		for (j = 0; j < func[i]->len; j++, insn++) {
15166 			if (bpf_pseudo_func(insn)) {
15167 				subprog = insn->off;
15168 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
15169 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
15170 				continue;
15171 			}
15172 			if (!bpf_pseudo_call(insn))
15173 				continue;
15174 			subprog = insn->off;
15175 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
15176 		}
15177 
15178 		/* we use the aux data to keep a list of the start addresses
15179 		 * of the JITed images for each function in the program
15180 		 *
15181 		 * for some architectures, such as powerpc64, the imm field
15182 		 * might not be large enough to hold the offset of the start
15183 		 * address of the callee's JITed image from __bpf_call_base
15184 		 *
15185 		 * in such cases, we can lookup the start address of a callee
15186 		 * by using its subprog id, available from the off field of
15187 		 * the call instruction, as an index for this list
15188 		 */
15189 		func[i]->aux->func = func;
15190 		func[i]->aux->func_cnt = env->subprog_cnt;
15191 	}
15192 	for (i = 0; i < env->subprog_cnt; i++) {
15193 		old_bpf_func = func[i]->bpf_func;
15194 		tmp = bpf_int_jit_compile(func[i]);
15195 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
15196 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
15197 			err = -ENOTSUPP;
15198 			goto out_free;
15199 		}
15200 		cond_resched();
15201 	}
15202 
15203 	/* finally lock prog and jit images for all functions and
15204 	 * populate kallsysm
15205 	 */
15206 	for (i = 0; i < env->subprog_cnt; i++) {
15207 		bpf_prog_lock_ro(func[i]);
15208 		bpf_prog_kallsyms_add(func[i]);
15209 	}
15210 
15211 	/* Last step: make now unused interpreter insns from main
15212 	 * prog consistent for later dump requests, so they can
15213 	 * later look the same as if they were interpreted only.
15214 	 */
15215 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15216 		if (bpf_pseudo_func(insn)) {
15217 			insn[0].imm = env->insn_aux_data[i].call_imm;
15218 			insn[1].imm = insn->off;
15219 			insn->off = 0;
15220 			continue;
15221 		}
15222 		if (!bpf_pseudo_call(insn))
15223 			continue;
15224 		insn->off = env->insn_aux_data[i].call_imm;
15225 		subprog = find_subprog(env, i + insn->off + 1);
15226 		insn->imm = subprog;
15227 	}
15228 
15229 	prog->jited = 1;
15230 	prog->bpf_func = func[0]->bpf_func;
15231 	prog->jited_len = func[0]->jited_len;
15232 	prog->aux->func = func;
15233 	prog->aux->func_cnt = env->subprog_cnt;
15234 	bpf_prog_jit_attempt_done(prog);
15235 	return 0;
15236 out_free:
15237 	/* We failed JIT'ing, so at this point we need to unregister poke
15238 	 * descriptors from subprogs, so that kernel is not attempting to
15239 	 * patch it anymore as we're freeing the subprog JIT memory.
15240 	 */
15241 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
15242 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
15243 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
15244 	}
15245 	/* At this point we're guaranteed that poke descriptors are not
15246 	 * live anymore. We can just unlink its descriptor table as it's
15247 	 * released with the main prog.
15248 	 */
15249 	for (i = 0; i < env->subprog_cnt; i++) {
15250 		if (!func[i])
15251 			continue;
15252 		func[i]->aux->poke_tab = NULL;
15253 		bpf_jit_free(func[i]);
15254 	}
15255 	kfree(func);
15256 out_undo_insn:
15257 	/* cleanup main prog to be interpreted */
15258 	prog->jit_requested = 0;
15259 	prog->blinding_requested = 0;
15260 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15261 		if (!bpf_pseudo_call(insn))
15262 			continue;
15263 		insn->off = 0;
15264 		insn->imm = env->insn_aux_data[i].call_imm;
15265 	}
15266 	bpf_prog_jit_attempt_done(prog);
15267 	return err;
15268 }
15269 
15270 static int fixup_call_args(struct bpf_verifier_env *env)
15271 {
15272 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15273 	struct bpf_prog *prog = env->prog;
15274 	struct bpf_insn *insn = prog->insnsi;
15275 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
15276 	int i, depth;
15277 #endif
15278 	int err = 0;
15279 
15280 	if (env->prog->jit_requested &&
15281 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
15282 		err = jit_subprogs(env);
15283 		if (err == 0)
15284 			return 0;
15285 		if (err == -EFAULT)
15286 			return err;
15287 	}
15288 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15289 	if (has_kfunc_call) {
15290 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
15291 		return -EINVAL;
15292 	}
15293 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
15294 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
15295 		 * have to be rejected, since interpreter doesn't support them yet.
15296 		 */
15297 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
15298 		return -EINVAL;
15299 	}
15300 	for (i = 0; i < prog->len; i++, insn++) {
15301 		if (bpf_pseudo_func(insn)) {
15302 			/* When JIT fails the progs with callback calls
15303 			 * have to be rejected, since interpreter doesn't support them yet.
15304 			 */
15305 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
15306 			return -EINVAL;
15307 		}
15308 
15309 		if (!bpf_pseudo_call(insn))
15310 			continue;
15311 		depth = get_callee_stack_depth(env, insn, i);
15312 		if (depth < 0)
15313 			return depth;
15314 		bpf_patch_call_args(insn, depth);
15315 	}
15316 	err = 0;
15317 #endif
15318 	return err;
15319 }
15320 
15321 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
15322 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
15323 {
15324 	const struct bpf_kfunc_desc *desc;
15325 
15326 	if (!insn->imm) {
15327 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
15328 		return -EINVAL;
15329 	}
15330 
15331 	/* insn->imm has the btf func_id. Replace it with
15332 	 * an address (relative to __bpf_base_call).
15333 	 */
15334 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
15335 	if (!desc) {
15336 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
15337 			insn->imm);
15338 		return -EFAULT;
15339 	}
15340 
15341 	*cnt = 0;
15342 	insn->imm = desc->imm;
15343 	if (insn->off)
15344 		return 0;
15345 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
15346 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15347 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15348 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
15349 
15350 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
15351 		insn_buf[1] = addr[0];
15352 		insn_buf[2] = addr[1];
15353 		insn_buf[3] = *insn;
15354 		*cnt = 4;
15355 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
15356 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15357 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15358 
15359 		insn_buf[0] = addr[0];
15360 		insn_buf[1] = addr[1];
15361 		insn_buf[2] = *insn;
15362 		*cnt = 3;
15363 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
15364 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
15365 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
15366 		*cnt = 1;
15367 	}
15368 	return 0;
15369 }
15370 
15371 /* Do various post-verification rewrites in a single program pass.
15372  * These rewrites simplify JIT and interpreter implementations.
15373  */
15374 static int do_misc_fixups(struct bpf_verifier_env *env)
15375 {
15376 	struct bpf_prog *prog = env->prog;
15377 	enum bpf_attach_type eatype = prog->expected_attach_type;
15378 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
15379 	struct bpf_insn *insn = prog->insnsi;
15380 	const struct bpf_func_proto *fn;
15381 	const int insn_cnt = prog->len;
15382 	const struct bpf_map_ops *ops;
15383 	struct bpf_insn_aux_data *aux;
15384 	struct bpf_insn insn_buf[16];
15385 	struct bpf_prog *new_prog;
15386 	struct bpf_map *map_ptr;
15387 	int i, ret, cnt, delta = 0;
15388 
15389 	for (i = 0; i < insn_cnt; i++, insn++) {
15390 		/* Make divide-by-zero exceptions impossible. */
15391 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
15392 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
15393 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
15394 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
15395 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
15396 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
15397 			struct bpf_insn *patchlet;
15398 			struct bpf_insn chk_and_div[] = {
15399 				/* [R,W]x div 0 -> 0 */
15400 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15401 					     BPF_JNE | BPF_K, insn->src_reg,
15402 					     0, 2, 0),
15403 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
15404 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15405 				*insn,
15406 			};
15407 			struct bpf_insn chk_and_mod[] = {
15408 				/* [R,W]x mod 0 -> [R,W]x */
15409 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15410 					     BPF_JEQ | BPF_K, insn->src_reg,
15411 					     0, 1 + (is64 ? 0 : 1), 0),
15412 				*insn,
15413 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15414 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
15415 			};
15416 
15417 			patchlet = isdiv ? chk_and_div : chk_and_mod;
15418 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
15419 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
15420 
15421 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
15422 			if (!new_prog)
15423 				return -ENOMEM;
15424 
15425 			delta    += cnt - 1;
15426 			env->prog = prog = new_prog;
15427 			insn      = new_prog->insnsi + i + delta;
15428 			continue;
15429 		}
15430 
15431 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
15432 		if (BPF_CLASS(insn->code) == BPF_LD &&
15433 		    (BPF_MODE(insn->code) == BPF_ABS ||
15434 		     BPF_MODE(insn->code) == BPF_IND)) {
15435 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
15436 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15437 				verbose(env, "bpf verifier is misconfigured\n");
15438 				return -EINVAL;
15439 			}
15440 
15441 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15442 			if (!new_prog)
15443 				return -ENOMEM;
15444 
15445 			delta    += cnt - 1;
15446 			env->prog = prog = new_prog;
15447 			insn      = new_prog->insnsi + i + delta;
15448 			continue;
15449 		}
15450 
15451 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
15452 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
15453 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
15454 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
15455 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
15456 			struct bpf_insn *patch = &insn_buf[0];
15457 			bool issrc, isneg, isimm;
15458 			u32 off_reg;
15459 
15460 			aux = &env->insn_aux_data[i + delta];
15461 			if (!aux->alu_state ||
15462 			    aux->alu_state == BPF_ALU_NON_POINTER)
15463 				continue;
15464 
15465 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
15466 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
15467 				BPF_ALU_SANITIZE_SRC;
15468 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
15469 
15470 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
15471 			if (isimm) {
15472 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15473 			} else {
15474 				if (isneg)
15475 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15476 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15477 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
15478 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
15479 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
15480 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
15481 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
15482 			}
15483 			if (!issrc)
15484 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
15485 			insn->src_reg = BPF_REG_AX;
15486 			if (isneg)
15487 				insn->code = insn->code == code_add ?
15488 					     code_sub : code_add;
15489 			*patch++ = *insn;
15490 			if (issrc && isneg && !isimm)
15491 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15492 			cnt = patch - insn_buf;
15493 
15494 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15495 			if (!new_prog)
15496 				return -ENOMEM;
15497 
15498 			delta    += cnt - 1;
15499 			env->prog = prog = new_prog;
15500 			insn      = new_prog->insnsi + i + delta;
15501 			continue;
15502 		}
15503 
15504 		if (insn->code != (BPF_JMP | BPF_CALL))
15505 			continue;
15506 		if (insn->src_reg == BPF_PSEUDO_CALL)
15507 			continue;
15508 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15509 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
15510 			if (ret)
15511 				return ret;
15512 			if (cnt == 0)
15513 				continue;
15514 
15515 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15516 			if (!new_prog)
15517 				return -ENOMEM;
15518 
15519 			delta	 += cnt - 1;
15520 			env->prog = prog = new_prog;
15521 			insn	  = new_prog->insnsi + i + delta;
15522 			continue;
15523 		}
15524 
15525 		if (insn->imm == BPF_FUNC_get_route_realm)
15526 			prog->dst_needed = 1;
15527 		if (insn->imm == BPF_FUNC_get_prandom_u32)
15528 			bpf_user_rnd_init_once();
15529 		if (insn->imm == BPF_FUNC_override_return)
15530 			prog->kprobe_override = 1;
15531 		if (insn->imm == BPF_FUNC_tail_call) {
15532 			/* If we tail call into other programs, we
15533 			 * cannot make any assumptions since they can
15534 			 * be replaced dynamically during runtime in
15535 			 * the program array.
15536 			 */
15537 			prog->cb_access = 1;
15538 			if (!allow_tail_call_in_subprogs(env))
15539 				prog->aux->stack_depth = MAX_BPF_STACK;
15540 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
15541 
15542 			/* mark bpf_tail_call as different opcode to avoid
15543 			 * conditional branch in the interpreter for every normal
15544 			 * call and to prevent accidental JITing by JIT compiler
15545 			 * that doesn't support bpf_tail_call yet
15546 			 */
15547 			insn->imm = 0;
15548 			insn->code = BPF_JMP | BPF_TAIL_CALL;
15549 
15550 			aux = &env->insn_aux_data[i + delta];
15551 			if (env->bpf_capable && !prog->blinding_requested &&
15552 			    prog->jit_requested &&
15553 			    !bpf_map_key_poisoned(aux) &&
15554 			    !bpf_map_ptr_poisoned(aux) &&
15555 			    !bpf_map_ptr_unpriv(aux)) {
15556 				struct bpf_jit_poke_descriptor desc = {
15557 					.reason = BPF_POKE_REASON_TAIL_CALL,
15558 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
15559 					.tail_call.key = bpf_map_key_immediate(aux),
15560 					.insn_idx = i + delta,
15561 				};
15562 
15563 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
15564 				if (ret < 0) {
15565 					verbose(env, "adding tail call poke descriptor failed\n");
15566 					return ret;
15567 				}
15568 
15569 				insn->imm = ret + 1;
15570 				continue;
15571 			}
15572 
15573 			if (!bpf_map_ptr_unpriv(aux))
15574 				continue;
15575 
15576 			/* instead of changing every JIT dealing with tail_call
15577 			 * emit two extra insns:
15578 			 * if (index >= max_entries) goto out;
15579 			 * index &= array->index_mask;
15580 			 * to avoid out-of-bounds cpu speculation
15581 			 */
15582 			if (bpf_map_ptr_poisoned(aux)) {
15583 				verbose(env, "tail_call abusing map_ptr\n");
15584 				return -EINVAL;
15585 			}
15586 
15587 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
15588 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
15589 						  map_ptr->max_entries, 2);
15590 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
15591 						    container_of(map_ptr,
15592 								 struct bpf_array,
15593 								 map)->index_mask);
15594 			insn_buf[2] = *insn;
15595 			cnt = 3;
15596 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15597 			if (!new_prog)
15598 				return -ENOMEM;
15599 
15600 			delta    += cnt - 1;
15601 			env->prog = prog = new_prog;
15602 			insn      = new_prog->insnsi + i + delta;
15603 			continue;
15604 		}
15605 
15606 		if (insn->imm == BPF_FUNC_timer_set_callback) {
15607 			/* The verifier will process callback_fn as many times as necessary
15608 			 * with different maps and the register states prepared by
15609 			 * set_timer_callback_state will be accurate.
15610 			 *
15611 			 * The following use case is valid:
15612 			 *   map1 is shared by prog1, prog2, prog3.
15613 			 *   prog1 calls bpf_timer_init for some map1 elements
15614 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
15615 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
15616 			 *   prog3 calls bpf_timer_start for some map1 elements.
15617 			 *     Those that were not both bpf_timer_init-ed and
15618 			 *     bpf_timer_set_callback-ed will return -EINVAL.
15619 			 */
15620 			struct bpf_insn ld_addrs[2] = {
15621 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
15622 			};
15623 
15624 			insn_buf[0] = ld_addrs[0];
15625 			insn_buf[1] = ld_addrs[1];
15626 			insn_buf[2] = *insn;
15627 			cnt = 3;
15628 
15629 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15630 			if (!new_prog)
15631 				return -ENOMEM;
15632 
15633 			delta    += cnt - 1;
15634 			env->prog = prog = new_prog;
15635 			insn      = new_prog->insnsi + i + delta;
15636 			goto patch_call_imm;
15637 		}
15638 
15639 		if (is_storage_get_function(insn->imm)) {
15640 			if (!env->prog->aux->sleepable ||
15641 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
15642 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
15643 			else
15644 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
15645 			insn_buf[1] = *insn;
15646 			cnt = 2;
15647 
15648 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15649 			if (!new_prog)
15650 				return -ENOMEM;
15651 
15652 			delta += cnt - 1;
15653 			env->prog = prog = new_prog;
15654 			insn = new_prog->insnsi + i + delta;
15655 			goto patch_call_imm;
15656 		}
15657 
15658 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
15659 		 * and other inlining handlers are currently limited to 64 bit
15660 		 * only.
15661 		 */
15662 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
15663 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
15664 		     insn->imm == BPF_FUNC_map_update_elem ||
15665 		     insn->imm == BPF_FUNC_map_delete_elem ||
15666 		     insn->imm == BPF_FUNC_map_push_elem   ||
15667 		     insn->imm == BPF_FUNC_map_pop_elem    ||
15668 		     insn->imm == BPF_FUNC_map_peek_elem   ||
15669 		     insn->imm == BPF_FUNC_redirect_map    ||
15670 		     insn->imm == BPF_FUNC_for_each_map_elem ||
15671 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
15672 			aux = &env->insn_aux_data[i + delta];
15673 			if (bpf_map_ptr_poisoned(aux))
15674 				goto patch_call_imm;
15675 
15676 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
15677 			ops = map_ptr->ops;
15678 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
15679 			    ops->map_gen_lookup) {
15680 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
15681 				if (cnt == -EOPNOTSUPP)
15682 					goto patch_map_ops_generic;
15683 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15684 					verbose(env, "bpf verifier is misconfigured\n");
15685 					return -EINVAL;
15686 				}
15687 
15688 				new_prog = bpf_patch_insn_data(env, i + delta,
15689 							       insn_buf, cnt);
15690 				if (!new_prog)
15691 					return -ENOMEM;
15692 
15693 				delta    += cnt - 1;
15694 				env->prog = prog = new_prog;
15695 				insn      = new_prog->insnsi + i + delta;
15696 				continue;
15697 			}
15698 
15699 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
15700 				     (void *(*)(struct bpf_map *map, void *key))NULL));
15701 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
15702 				     (int (*)(struct bpf_map *map, void *key))NULL));
15703 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
15704 				     (int (*)(struct bpf_map *map, void *key, void *value,
15705 					      u64 flags))NULL));
15706 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
15707 				     (int (*)(struct bpf_map *map, void *value,
15708 					      u64 flags))NULL));
15709 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
15710 				     (int (*)(struct bpf_map *map, void *value))NULL));
15711 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
15712 				     (int (*)(struct bpf_map *map, void *value))NULL));
15713 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
15714 				     (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
15715 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
15716 				     (int (*)(struct bpf_map *map,
15717 					      bpf_callback_t callback_fn,
15718 					      void *callback_ctx,
15719 					      u64 flags))NULL));
15720 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
15721 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
15722 
15723 patch_map_ops_generic:
15724 			switch (insn->imm) {
15725 			case BPF_FUNC_map_lookup_elem:
15726 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
15727 				continue;
15728 			case BPF_FUNC_map_update_elem:
15729 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
15730 				continue;
15731 			case BPF_FUNC_map_delete_elem:
15732 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
15733 				continue;
15734 			case BPF_FUNC_map_push_elem:
15735 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
15736 				continue;
15737 			case BPF_FUNC_map_pop_elem:
15738 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
15739 				continue;
15740 			case BPF_FUNC_map_peek_elem:
15741 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
15742 				continue;
15743 			case BPF_FUNC_redirect_map:
15744 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
15745 				continue;
15746 			case BPF_FUNC_for_each_map_elem:
15747 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
15748 				continue;
15749 			case BPF_FUNC_map_lookup_percpu_elem:
15750 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
15751 				continue;
15752 			}
15753 
15754 			goto patch_call_imm;
15755 		}
15756 
15757 		/* Implement bpf_jiffies64 inline. */
15758 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
15759 		    insn->imm == BPF_FUNC_jiffies64) {
15760 			struct bpf_insn ld_jiffies_addr[2] = {
15761 				BPF_LD_IMM64(BPF_REG_0,
15762 					     (unsigned long)&jiffies),
15763 			};
15764 
15765 			insn_buf[0] = ld_jiffies_addr[0];
15766 			insn_buf[1] = ld_jiffies_addr[1];
15767 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
15768 						  BPF_REG_0, 0);
15769 			cnt = 3;
15770 
15771 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
15772 						       cnt);
15773 			if (!new_prog)
15774 				return -ENOMEM;
15775 
15776 			delta    += cnt - 1;
15777 			env->prog = prog = new_prog;
15778 			insn      = new_prog->insnsi + i + delta;
15779 			continue;
15780 		}
15781 
15782 		/* Implement bpf_get_func_arg inline. */
15783 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15784 		    insn->imm == BPF_FUNC_get_func_arg) {
15785 			/* Load nr_args from ctx - 8 */
15786 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15787 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
15788 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
15789 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
15790 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
15791 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15792 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
15793 			insn_buf[7] = BPF_JMP_A(1);
15794 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
15795 			cnt = 9;
15796 
15797 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15798 			if (!new_prog)
15799 				return -ENOMEM;
15800 
15801 			delta    += cnt - 1;
15802 			env->prog = prog = new_prog;
15803 			insn      = new_prog->insnsi + i + delta;
15804 			continue;
15805 		}
15806 
15807 		/* Implement bpf_get_func_ret inline. */
15808 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15809 		    insn->imm == BPF_FUNC_get_func_ret) {
15810 			if (eatype == BPF_TRACE_FEXIT ||
15811 			    eatype == BPF_MODIFY_RETURN) {
15812 				/* Load nr_args from ctx - 8 */
15813 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15814 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
15815 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
15816 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15817 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
15818 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
15819 				cnt = 6;
15820 			} else {
15821 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
15822 				cnt = 1;
15823 			}
15824 
15825 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15826 			if (!new_prog)
15827 				return -ENOMEM;
15828 
15829 			delta    += cnt - 1;
15830 			env->prog = prog = new_prog;
15831 			insn      = new_prog->insnsi + i + delta;
15832 			continue;
15833 		}
15834 
15835 		/* Implement get_func_arg_cnt inline. */
15836 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15837 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
15838 			/* Load nr_args from ctx - 8 */
15839 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15840 
15841 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15842 			if (!new_prog)
15843 				return -ENOMEM;
15844 
15845 			env->prog = prog = new_prog;
15846 			insn      = new_prog->insnsi + i + delta;
15847 			continue;
15848 		}
15849 
15850 		/* Implement bpf_get_func_ip inline. */
15851 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15852 		    insn->imm == BPF_FUNC_get_func_ip) {
15853 			/* Load IP address from ctx - 16 */
15854 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
15855 
15856 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15857 			if (!new_prog)
15858 				return -ENOMEM;
15859 
15860 			env->prog = prog = new_prog;
15861 			insn      = new_prog->insnsi + i + delta;
15862 			continue;
15863 		}
15864 
15865 patch_call_imm:
15866 		fn = env->ops->get_func_proto(insn->imm, env->prog);
15867 		/* all functions that have prototype and verifier allowed
15868 		 * programs to call them, must be real in-kernel functions
15869 		 */
15870 		if (!fn->func) {
15871 			verbose(env,
15872 				"kernel subsystem misconfigured func %s#%d\n",
15873 				func_id_name(insn->imm), insn->imm);
15874 			return -EFAULT;
15875 		}
15876 		insn->imm = fn->func - __bpf_call_base;
15877 	}
15878 
15879 	/* Since poke tab is now finalized, publish aux to tracker. */
15880 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
15881 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
15882 		if (!map_ptr->ops->map_poke_track ||
15883 		    !map_ptr->ops->map_poke_untrack ||
15884 		    !map_ptr->ops->map_poke_run) {
15885 			verbose(env, "bpf verifier is misconfigured\n");
15886 			return -EINVAL;
15887 		}
15888 
15889 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
15890 		if (ret < 0) {
15891 			verbose(env, "tracking tail call prog failed\n");
15892 			return ret;
15893 		}
15894 	}
15895 
15896 	sort_kfunc_descs_by_imm(env->prog);
15897 
15898 	return 0;
15899 }
15900 
15901 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
15902 					int position,
15903 					s32 stack_base,
15904 					u32 callback_subprogno,
15905 					u32 *cnt)
15906 {
15907 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
15908 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
15909 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
15910 	int reg_loop_max = BPF_REG_6;
15911 	int reg_loop_cnt = BPF_REG_7;
15912 	int reg_loop_ctx = BPF_REG_8;
15913 
15914 	struct bpf_prog *new_prog;
15915 	u32 callback_start;
15916 	u32 call_insn_offset;
15917 	s32 callback_offset;
15918 
15919 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
15920 	 * be careful to modify this code in sync.
15921 	 */
15922 	struct bpf_insn insn_buf[] = {
15923 		/* Return error and jump to the end of the patch if
15924 		 * expected number of iterations is too big.
15925 		 */
15926 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
15927 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
15928 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
15929 		/* spill R6, R7, R8 to use these as loop vars */
15930 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
15931 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
15932 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
15933 		/* initialize loop vars */
15934 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
15935 		BPF_MOV32_IMM(reg_loop_cnt, 0),
15936 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
15937 		/* loop header,
15938 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
15939 		 */
15940 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
15941 		/* callback call,
15942 		 * correct callback offset would be set after patching
15943 		 */
15944 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
15945 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
15946 		BPF_CALL_REL(0),
15947 		/* increment loop counter */
15948 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
15949 		/* jump to loop header if callback returned 0 */
15950 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
15951 		/* return value of bpf_loop,
15952 		 * set R0 to the number of iterations
15953 		 */
15954 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
15955 		/* restore original values of R6, R7, R8 */
15956 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
15957 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
15958 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
15959 	};
15960 
15961 	*cnt = ARRAY_SIZE(insn_buf);
15962 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
15963 	if (!new_prog)
15964 		return new_prog;
15965 
15966 	/* callback start is known only after patching */
15967 	callback_start = env->subprog_info[callback_subprogno].start;
15968 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
15969 	call_insn_offset = position + 12;
15970 	callback_offset = callback_start - call_insn_offset - 1;
15971 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
15972 
15973 	return new_prog;
15974 }
15975 
15976 static bool is_bpf_loop_call(struct bpf_insn *insn)
15977 {
15978 	return insn->code == (BPF_JMP | BPF_CALL) &&
15979 		insn->src_reg == 0 &&
15980 		insn->imm == BPF_FUNC_loop;
15981 }
15982 
15983 /* For all sub-programs in the program (including main) check
15984  * insn_aux_data to see if there are bpf_loop calls that require
15985  * inlining. If such calls are found the calls are replaced with a
15986  * sequence of instructions produced by `inline_bpf_loop` function and
15987  * subprog stack_depth is increased by the size of 3 registers.
15988  * This stack space is used to spill values of the R6, R7, R8.  These
15989  * registers are used to store the loop bound, counter and context
15990  * variables.
15991  */
15992 static int optimize_bpf_loop(struct bpf_verifier_env *env)
15993 {
15994 	struct bpf_subprog_info *subprogs = env->subprog_info;
15995 	int i, cur_subprog = 0, cnt, delta = 0;
15996 	struct bpf_insn *insn = env->prog->insnsi;
15997 	int insn_cnt = env->prog->len;
15998 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
15999 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16000 	u16 stack_depth_extra = 0;
16001 
16002 	for (i = 0; i < insn_cnt; i++, insn++) {
16003 		struct bpf_loop_inline_state *inline_state =
16004 			&env->insn_aux_data[i + delta].loop_inline_state;
16005 
16006 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
16007 			struct bpf_prog *new_prog;
16008 
16009 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
16010 			new_prog = inline_bpf_loop(env,
16011 						   i + delta,
16012 						   -(stack_depth + stack_depth_extra),
16013 						   inline_state->callback_subprogno,
16014 						   &cnt);
16015 			if (!new_prog)
16016 				return -ENOMEM;
16017 
16018 			delta     += cnt - 1;
16019 			env->prog  = new_prog;
16020 			insn       = new_prog->insnsi + i + delta;
16021 		}
16022 
16023 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
16024 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
16025 			cur_subprog++;
16026 			stack_depth = subprogs[cur_subprog].stack_depth;
16027 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16028 			stack_depth_extra = 0;
16029 		}
16030 	}
16031 
16032 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16033 
16034 	return 0;
16035 }
16036 
16037 static void free_states(struct bpf_verifier_env *env)
16038 {
16039 	struct bpf_verifier_state_list *sl, *sln;
16040 	int i;
16041 
16042 	sl = env->free_list;
16043 	while (sl) {
16044 		sln = sl->next;
16045 		free_verifier_state(&sl->state, false);
16046 		kfree(sl);
16047 		sl = sln;
16048 	}
16049 	env->free_list = NULL;
16050 
16051 	if (!env->explored_states)
16052 		return;
16053 
16054 	for (i = 0; i < state_htab_size(env); i++) {
16055 		sl = env->explored_states[i];
16056 
16057 		while (sl) {
16058 			sln = sl->next;
16059 			free_verifier_state(&sl->state, false);
16060 			kfree(sl);
16061 			sl = sln;
16062 		}
16063 		env->explored_states[i] = NULL;
16064 	}
16065 }
16066 
16067 static int do_check_common(struct bpf_verifier_env *env, int subprog)
16068 {
16069 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16070 	struct bpf_verifier_state *state;
16071 	struct bpf_reg_state *regs;
16072 	int ret, i;
16073 
16074 	env->prev_linfo = NULL;
16075 	env->pass_cnt++;
16076 
16077 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
16078 	if (!state)
16079 		return -ENOMEM;
16080 	state->curframe = 0;
16081 	state->speculative = false;
16082 	state->branches = 1;
16083 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
16084 	if (!state->frame[0]) {
16085 		kfree(state);
16086 		return -ENOMEM;
16087 	}
16088 	env->cur_state = state;
16089 	init_func_state(env, state->frame[0],
16090 			BPF_MAIN_FUNC /* callsite */,
16091 			0 /* frameno */,
16092 			subprog);
16093 	state->first_insn_idx = env->subprog_info[subprog].start;
16094 	state->last_insn_idx = -1;
16095 
16096 	regs = state->frame[state->curframe]->regs;
16097 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
16098 		ret = btf_prepare_func_args(env, subprog, regs);
16099 		if (ret)
16100 			goto out;
16101 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
16102 			if (regs[i].type == PTR_TO_CTX)
16103 				mark_reg_known_zero(env, regs, i);
16104 			else if (regs[i].type == SCALAR_VALUE)
16105 				mark_reg_unknown(env, regs, i);
16106 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
16107 				const u32 mem_size = regs[i].mem_size;
16108 
16109 				mark_reg_known_zero(env, regs, i);
16110 				regs[i].mem_size = mem_size;
16111 				regs[i].id = ++env->id_gen;
16112 			}
16113 		}
16114 	} else {
16115 		/* 1st arg to a function */
16116 		regs[BPF_REG_1].type = PTR_TO_CTX;
16117 		mark_reg_known_zero(env, regs, BPF_REG_1);
16118 		ret = btf_check_subprog_arg_match(env, subprog, regs);
16119 		if (ret == -EFAULT)
16120 			/* unlikely verifier bug. abort.
16121 			 * ret == 0 and ret < 0 are sadly acceptable for
16122 			 * main() function due to backward compatibility.
16123 			 * Like socket filter program may be written as:
16124 			 * int bpf_prog(struct pt_regs *ctx)
16125 			 * and never dereference that ctx in the program.
16126 			 * 'struct pt_regs' is a type mismatch for socket
16127 			 * filter that should be using 'struct __sk_buff'.
16128 			 */
16129 			goto out;
16130 	}
16131 
16132 	ret = do_check(env);
16133 out:
16134 	/* check for NULL is necessary, since cur_state can be freed inside
16135 	 * do_check() under memory pressure.
16136 	 */
16137 	if (env->cur_state) {
16138 		free_verifier_state(env->cur_state, true);
16139 		env->cur_state = NULL;
16140 	}
16141 	while (!pop_stack(env, NULL, NULL, false));
16142 	if (!ret && pop_log)
16143 		bpf_vlog_reset(&env->log, 0);
16144 	free_states(env);
16145 	return ret;
16146 }
16147 
16148 /* Verify all global functions in a BPF program one by one based on their BTF.
16149  * All global functions must pass verification. Otherwise the whole program is rejected.
16150  * Consider:
16151  * int bar(int);
16152  * int foo(int f)
16153  * {
16154  *    return bar(f);
16155  * }
16156  * int bar(int b)
16157  * {
16158  *    ...
16159  * }
16160  * foo() will be verified first for R1=any_scalar_value. During verification it
16161  * will be assumed that bar() already verified successfully and call to bar()
16162  * from foo() will be checked for type match only. Later bar() will be verified
16163  * independently to check that it's safe for R1=any_scalar_value.
16164  */
16165 static int do_check_subprogs(struct bpf_verifier_env *env)
16166 {
16167 	struct bpf_prog_aux *aux = env->prog->aux;
16168 	int i, ret;
16169 
16170 	if (!aux->func_info)
16171 		return 0;
16172 
16173 	for (i = 1; i < env->subprog_cnt; i++) {
16174 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
16175 			continue;
16176 		env->insn_idx = env->subprog_info[i].start;
16177 		WARN_ON_ONCE(env->insn_idx == 0);
16178 		ret = do_check_common(env, i);
16179 		if (ret) {
16180 			return ret;
16181 		} else if (env->log.level & BPF_LOG_LEVEL) {
16182 			verbose(env,
16183 				"Func#%d is safe for any args that match its prototype\n",
16184 				i);
16185 		}
16186 	}
16187 	return 0;
16188 }
16189 
16190 static int do_check_main(struct bpf_verifier_env *env)
16191 {
16192 	int ret;
16193 
16194 	env->insn_idx = 0;
16195 	ret = do_check_common(env, 0);
16196 	if (!ret)
16197 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16198 	return ret;
16199 }
16200 
16201 
16202 static void print_verification_stats(struct bpf_verifier_env *env)
16203 {
16204 	int i;
16205 
16206 	if (env->log.level & BPF_LOG_STATS) {
16207 		verbose(env, "verification time %lld usec\n",
16208 			div_u64(env->verification_time, 1000));
16209 		verbose(env, "stack depth ");
16210 		for (i = 0; i < env->subprog_cnt; i++) {
16211 			u32 depth = env->subprog_info[i].stack_depth;
16212 
16213 			verbose(env, "%d", depth);
16214 			if (i + 1 < env->subprog_cnt)
16215 				verbose(env, "+");
16216 		}
16217 		verbose(env, "\n");
16218 	}
16219 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
16220 		"total_states %d peak_states %d mark_read %d\n",
16221 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
16222 		env->max_states_per_insn, env->total_states,
16223 		env->peak_states, env->longest_mark_read_walk);
16224 }
16225 
16226 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
16227 {
16228 	const struct btf_type *t, *func_proto;
16229 	const struct bpf_struct_ops *st_ops;
16230 	const struct btf_member *member;
16231 	struct bpf_prog *prog = env->prog;
16232 	u32 btf_id, member_idx;
16233 	const char *mname;
16234 
16235 	if (!prog->gpl_compatible) {
16236 		verbose(env, "struct ops programs must have a GPL compatible license\n");
16237 		return -EINVAL;
16238 	}
16239 
16240 	btf_id = prog->aux->attach_btf_id;
16241 	st_ops = bpf_struct_ops_find(btf_id);
16242 	if (!st_ops) {
16243 		verbose(env, "attach_btf_id %u is not a supported struct\n",
16244 			btf_id);
16245 		return -ENOTSUPP;
16246 	}
16247 
16248 	t = st_ops->type;
16249 	member_idx = prog->expected_attach_type;
16250 	if (member_idx >= btf_type_vlen(t)) {
16251 		verbose(env, "attach to invalid member idx %u of struct %s\n",
16252 			member_idx, st_ops->name);
16253 		return -EINVAL;
16254 	}
16255 
16256 	member = &btf_type_member(t)[member_idx];
16257 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
16258 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
16259 					       NULL);
16260 	if (!func_proto) {
16261 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
16262 			mname, member_idx, st_ops->name);
16263 		return -EINVAL;
16264 	}
16265 
16266 	if (st_ops->check_member) {
16267 		int err = st_ops->check_member(t, member);
16268 
16269 		if (err) {
16270 			verbose(env, "attach to unsupported member %s of struct %s\n",
16271 				mname, st_ops->name);
16272 			return err;
16273 		}
16274 	}
16275 
16276 	prog->aux->attach_func_proto = func_proto;
16277 	prog->aux->attach_func_name = mname;
16278 	env->ops = st_ops->verifier_ops;
16279 
16280 	return 0;
16281 }
16282 #define SECURITY_PREFIX "security_"
16283 
16284 static int check_attach_modify_return(unsigned long addr, const char *func_name)
16285 {
16286 	if (within_error_injection_list(addr) ||
16287 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
16288 		return 0;
16289 
16290 	return -EINVAL;
16291 }
16292 
16293 /* list of non-sleepable functions that are otherwise on
16294  * ALLOW_ERROR_INJECTION list
16295  */
16296 BTF_SET_START(btf_non_sleepable_error_inject)
16297 /* Three functions below can be called from sleepable and non-sleepable context.
16298  * Assume non-sleepable from bpf safety point of view.
16299  */
16300 BTF_ID(func, __filemap_add_folio)
16301 BTF_ID(func, should_fail_alloc_page)
16302 BTF_ID(func, should_failslab)
16303 BTF_SET_END(btf_non_sleepable_error_inject)
16304 
16305 static int check_non_sleepable_error_inject(u32 btf_id)
16306 {
16307 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
16308 }
16309 
16310 int bpf_check_attach_target(struct bpf_verifier_log *log,
16311 			    const struct bpf_prog *prog,
16312 			    const struct bpf_prog *tgt_prog,
16313 			    u32 btf_id,
16314 			    struct bpf_attach_target_info *tgt_info)
16315 {
16316 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
16317 	const char prefix[] = "btf_trace_";
16318 	int ret = 0, subprog = -1, i;
16319 	const struct btf_type *t;
16320 	bool conservative = true;
16321 	const char *tname;
16322 	struct btf *btf;
16323 	long addr = 0;
16324 
16325 	if (!btf_id) {
16326 		bpf_log(log, "Tracing programs must provide btf_id\n");
16327 		return -EINVAL;
16328 	}
16329 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
16330 	if (!btf) {
16331 		bpf_log(log,
16332 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
16333 		return -EINVAL;
16334 	}
16335 	t = btf_type_by_id(btf, btf_id);
16336 	if (!t) {
16337 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
16338 		return -EINVAL;
16339 	}
16340 	tname = btf_name_by_offset(btf, t->name_off);
16341 	if (!tname) {
16342 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
16343 		return -EINVAL;
16344 	}
16345 	if (tgt_prog) {
16346 		struct bpf_prog_aux *aux = tgt_prog->aux;
16347 
16348 		for (i = 0; i < aux->func_info_cnt; i++)
16349 			if (aux->func_info[i].type_id == btf_id) {
16350 				subprog = i;
16351 				break;
16352 			}
16353 		if (subprog == -1) {
16354 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
16355 			return -EINVAL;
16356 		}
16357 		conservative = aux->func_info_aux[subprog].unreliable;
16358 		if (prog_extension) {
16359 			if (conservative) {
16360 				bpf_log(log,
16361 					"Cannot replace static functions\n");
16362 				return -EINVAL;
16363 			}
16364 			if (!prog->jit_requested) {
16365 				bpf_log(log,
16366 					"Extension programs should be JITed\n");
16367 				return -EINVAL;
16368 			}
16369 		}
16370 		if (!tgt_prog->jited) {
16371 			bpf_log(log, "Can attach to only JITed progs\n");
16372 			return -EINVAL;
16373 		}
16374 		if (tgt_prog->type == prog->type) {
16375 			/* Cannot fentry/fexit another fentry/fexit program.
16376 			 * Cannot attach program extension to another extension.
16377 			 * It's ok to attach fentry/fexit to extension program.
16378 			 */
16379 			bpf_log(log, "Cannot recursively attach\n");
16380 			return -EINVAL;
16381 		}
16382 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
16383 		    prog_extension &&
16384 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
16385 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
16386 			/* Program extensions can extend all program types
16387 			 * except fentry/fexit. The reason is the following.
16388 			 * The fentry/fexit programs are used for performance
16389 			 * analysis, stats and can be attached to any program
16390 			 * type except themselves. When extension program is
16391 			 * replacing XDP function it is necessary to allow
16392 			 * performance analysis of all functions. Both original
16393 			 * XDP program and its program extension. Hence
16394 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
16395 			 * allowed. If extending of fentry/fexit was allowed it
16396 			 * would be possible to create long call chain
16397 			 * fentry->extension->fentry->extension beyond
16398 			 * reasonable stack size. Hence extending fentry is not
16399 			 * allowed.
16400 			 */
16401 			bpf_log(log, "Cannot extend fentry/fexit\n");
16402 			return -EINVAL;
16403 		}
16404 	} else {
16405 		if (prog_extension) {
16406 			bpf_log(log, "Cannot replace kernel functions\n");
16407 			return -EINVAL;
16408 		}
16409 	}
16410 
16411 	switch (prog->expected_attach_type) {
16412 	case BPF_TRACE_RAW_TP:
16413 		if (tgt_prog) {
16414 			bpf_log(log,
16415 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
16416 			return -EINVAL;
16417 		}
16418 		if (!btf_type_is_typedef(t)) {
16419 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
16420 				btf_id);
16421 			return -EINVAL;
16422 		}
16423 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
16424 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
16425 				btf_id, tname);
16426 			return -EINVAL;
16427 		}
16428 		tname += sizeof(prefix) - 1;
16429 		t = btf_type_by_id(btf, t->type);
16430 		if (!btf_type_is_ptr(t))
16431 			/* should never happen in valid vmlinux build */
16432 			return -EINVAL;
16433 		t = btf_type_by_id(btf, t->type);
16434 		if (!btf_type_is_func_proto(t))
16435 			/* should never happen in valid vmlinux build */
16436 			return -EINVAL;
16437 
16438 		break;
16439 	case BPF_TRACE_ITER:
16440 		if (!btf_type_is_func(t)) {
16441 			bpf_log(log, "attach_btf_id %u is not a function\n",
16442 				btf_id);
16443 			return -EINVAL;
16444 		}
16445 		t = btf_type_by_id(btf, t->type);
16446 		if (!btf_type_is_func_proto(t))
16447 			return -EINVAL;
16448 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16449 		if (ret)
16450 			return ret;
16451 		break;
16452 	default:
16453 		if (!prog_extension)
16454 			return -EINVAL;
16455 		fallthrough;
16456 	case BPF_MODIFY_RETURN:
16457 	case BPF_LSM_MAC:
16458 	case BPF_LSM_CGROUP:
16459 	case BPF_TRACE_FENTRY:
16460 	case BPF_TRACE_FEXIT:
16461 		if (!btf_type_is_func(t)) {
16462 			bpf_log(log, "attach_btf_id %u is not a function\n",
16463 				btf_id);
16464 			return -EINVAL;
16465 		}
16466 		if (prog_extension &&
16467 		    btf_check_type_match(log, prog, btf, t))
16468 			return -EINVAL;
16469 		t = btf_type_by_id(btf, t->type);
16470 		if (!btf_type_is_func_proto(t))
16471 			return -EINVAL;
16472 
16473 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
16474 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
16475 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
16476 			return -EINVAL;
16477 
16478 		if (tgt_prog && conservative)
16479 			t = NULL;
16480 
16481 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16482 		if (ret < 0)
16483 			return ret;
16484 
16485 		if (tgt_prog) {
16486 			if (subprog == 0)
16487 				addr = (long) tgt_prog->bpf_func;
16488 			else
16489 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
16490 		} else {
16491 			addr = kallsyms_lookup_name(tname);
16492 			if (!addr) {
16493 				bpf_log(log,
16494 					"The address of function %s cannot be found\n",
16495 					tname);
16496 				return -ENOENT;
16497 			}
16498 		}
16499 
16500 		if (prog->aux->sleepable) {
16501 			ret = -EINVAL;
16502 			switch (prog->type) {
16503 			case BPF_PROG_TYPE_TRACING:
16504 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
16505 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
16506 				 */
16507 				if (!check_non_sleepable_error_inject(btf_id) &&
16508 				    within_error_injection_list(addr))
16509 					ret = 0;
16510 				break;
16511 			case BPF_PROG_TYPE_LSM:
16512 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
16513 				 * Only some of them are sleepable.
16514 				 */
16515 				if (bpf_lsm_is_sleepable_hook(btf_id))
16516 					ret = 0;
16517 				break;
16518 			default:
16519 				break;
16520 			}
16521 			if (ret) {
16522 				bpf_log(log, "%s is not sleepable\n", tname);
16523 				return ret;
16524 			}
16525 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
16526 			if (tgt_prog) {
16527 				bpf_log(log, "can't modify return codes of BPF programs\n");
16528 				return -EINVAL;
16529 			}
16530 			ret = check_attach_modify_return(addr, tname);
16531 			if (ret) {
16532 				bpf_log(log, "%s() is not modifiable\n", tname);
16533 				return ret;
16534 			}
16535 		}
16536 
16537 		break;
16538 	}
16539 	tgt_info->tgt_addr = addr;
16540 	tgt_info->tgt_name = tname;
16541 	tgt_info->tgt_type = t;
16542 	return 0;
16543 }
16544 
16545 BTF_SET_START(btf_id_deny)
16546 BTF_ID_UNUSED
16547 #ifdef CONFIG_SMP
16548 BTF_ID(func, migrate_disable)
16549 BTF_ID(func, migrate_enable)
16550 #endif
16551 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
16552 BTF_ID(func, rcu_read_unlock_strict)
16553 #endif
16554 BTF_SET_END(btf_id_deny)
16555 
16556 static int check_attach_btf_id(struct bpf_verifier_env *env)
16557 {
16558 	struct bpf_prog *prog = env->prog;
16559 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
16560 	struct bpf_attach_target_info tgt_info = {};
16561 	u32 btf_id = prog->aux->attach_btf_id;
16562 	struct bpf_trampoline *tr;
16563 	int ret;
16564 	u64 key;
16565 
16566 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
16567 		if (prog->aux->sleepable)
16568 			/* attach_btf_id checked to be zero already */
16569 			return 0;
16570 		verbose(env, "Syscall programs can only be sleepable\n");
16571 		return -EINVAL;
16572 	}
16573 
16574 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
16575 	    prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
16576 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
16577 		return -EINVAL;
16578 	}
16579 
16580 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
16581 		return check_struct_ops_btf_id(env);
16582 
16583 	if (prog->type != BPF_PROG_TYPE_TRACING &&
16584 	    prog->type != BPF_PROG_TYPE_LSM &&
16585 	    prog->type != BPF_PROG_TYPE_EXT)
16586 		return 0;
16587 
16588 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
16589 	if (ret)
16590 		return ret;
16591 
16592 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
16593 		/* to make freplace equivalent to their targets, they need to
16594 		 * inherit env->ops and expected_attach_type for the rest of the
16595 		 * verification
16596 		 */
16597 		env->ops = bpf_verifier_ops[tgt_prog->type];
16598 		prog->expected_attach_type = tgt_prog->expected_attach_type;
16599 	}
16600 
16601 	/* store info about the attachment target that will be used later */
16602 	prog->aux->attach_func_proto = tgt_info.tgt_type;
16603 	prog->aux->attach_func_name = tgt_info.tgt_name;
16604 
16605 	if (tgt_prog) {
16606 		prog->aux->saved_dst_prog_type = tgt_prog->type;
16607 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
16608 	}
16609 
16610 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
16611 		prog->aux->attach_btf_trace = true;
16612 		return 0;
16613 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
16614 		if (!bpf_iter_prog_supported(prog))
16615 			return -EINVAL;
16616 		return 0;
16617 	}
16618 
16619 	if (prog->type == BPF_PROG_TYPE_LSM) {
16620 		ret = bpf_lsm_verify_prog(&env->log, prog);
16621 		if (ret < 0)
16622 			return ret;
16623 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
16624 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
16625 		return -EINVAL;
16626 	}
16627 
16628 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
16629 	tr = bpf_trampoline_get(key, &tgt_info);
16630 	if (!tr)
16631 		return -ENOMEM;
16632 
16633 	prog->aux->dst_trampoline = tr;
16634 	return 0;
16635 }
16636 
16637 struct btf *bpf_get_btf_vmlinux(void)
16638 {
16639 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
16640 		mutex_lock(&bpf_verifier_lock);
16641 		if (!btf_vmlinux)
16642 			btf_vmlinux = btf_parse_vmlinux();
16643 		mutex_unlock(&bpf_verifier_lock);
16644 	}
16645 	return btf_vmlinux;
16646 }
16647 
16648 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
16649 {
16650 	u64 start_time = ktime_get_ns();
16651 	struct bpf_verifier_env *env;
16652 	struct bpf_verifier_log *log;
16653 	int i, len, ret = -EINVAL;
16654 	bool is_priv;
16655 
16656 	/* no program is valid */
16657 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
16658 		return -EINVAL;
16659 
16660 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
16661 	 * allocate/free it every time bpf_check() is called
16662 	 */
16663 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
16664 	if (!env)
16665 		return -ENOMEM;
16666 	log = &env->log;
16667 
16668 	len = (*prog)->len;
16669 	env->insn_aux_data =
16670 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
16671 	ret = -ENOMEM;
16672 	if (!env->insn_aux_data)
16673 		goto err_free_env;
16674 	for (i = 0; i < len; i++)
16675 		env->insn_aux_data[i].orig_idx = i;
16676 	env->prog = *prog;
16677 	env->ops = bpf_verifier_ops[env->prog->type];
16678 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
16679 	is_priv = bpf_capable();
16680 
16681 	bpf_get_btf_vmlinux();
16682 
16683 	/* grab the mutex to protect few globals used by verifier */
16684 	if (!is_priv)
16685 		mutex_lock(&bpf_verifier_lock);
16686 
16687 	if (attr->log_level || attr->log_buf || attr->log_size) {
16688 		/* user requested verbose verifier output
16689 		 * and supplied buffer to store the verification trace
16690 		 */
16691 		log->level = attr->log_level;
16692 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
16693 		log->len_total = attr->log_size;
16694 
16695 		/* log attributes have to be sane */
16696 		if (!bpf_verifier_log_attr_valid(log)) {
16697 			ret = -EINVAL;
16698 			goto err_unlock;
16699 		}
16700 	}
16701 
16702 	mark_verifier_state_clean(env);
16703 
16704 	if (IS_ERR(btf_vmlinux)) {
16705 		/* Either gcc or pahole or kernel are broken. */
16706 		verbose(env, "in-kernel BTF is malformed\n");
16707 		ret = PTR_ERR(btf_vmlinux);
16708 		goto skip_full_check;
16709 	}
16710 
16711 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
16712 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
16713 		env->strict_alignment = true;
16714 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
16715 		env->strict_alignment = false;
16716 
16717 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
16718 	env->allow_uninit_stack = bpf_allow_uninit_stack();
16719 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
16720 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
16721 	env->bpf_capable = bpf_capable();
16722 	env->rcu_tag_supported = btf_vmlinux &&
16723 		btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0;
16724 
16725 	if (is_priv)
16726 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
16727 
16728 	env->explored_states = kvcalloc(state_htab_size(env),
16729 				       sizeof(struct bpf_verifier_state_list *),
16730 				       GFP_USER);
16731 	ret = -ENOMEM;
16732 	if (!env->explored_states)
16733 		goto skip_full_check;
16734 
16735 	ret = add_subprog_and_kfunc(env);
16736 	if (ret < 0)
16737 		goto skip_full_check;
16738 
16739 	ret = check_subprogs(env);
16740 	if (ret < 0)
16741 		goto skip_full_check;
16742 
16743 	ret = check_btf_info(env, attr, uattr);
16744 	if (ret < 0)
16745 		goto skip_full_check;
16746 
16747 	ret = check_attach_btf_id(env);
16748 	if (ret)
16749 		goto skip_full_check;
16750 
16751 	ret = resolve_pseudo_ldimm64(env);
16752 	if (ret < 0)
16753 		goto skip_full_check;
16754 
16755 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
16756 		ret = bpf_prog_offload_verifier_prep(env->prog);
16757 		if (ret)
16758 			goto skip_full_check;
16759 	}
16760 
16761 	ret = check_cfg(env);
16762 	if (ret < 0)
16763 		goto skip_full_check;
16764 
16765 	ret = do_check_subprogs(env);
16766 	ret = ret ?: do_check_main(env);
16767 
16768 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
16769 		ret = bpf_prog_offload_finalize(env);
16770 
16771 skip_full_check:
16772 	kvfree(env->explored_states);
16773 
16774 	if (ret == 0)
16775 		ret = check_max_stack_depth(env);
16776 
16777 	/* instruction rewrites happen after this point */
16778 	if (ret == 0)
16779 		ret = optimize_bpf_loop(env);
16780 
16781 	if (is_priv) {
16782 		if (ret == 0)
16783 			opt_hard_wire_dead_code_branches(env);
16784 		if (ret == 0)
16785 			ret = opt_remove_dead_code(env);
16786 		if (ret == 0)
16787 			ret = opt_remove_nops(env);
16788 	} else {
16789 		if (ret == 0)
16790 			sanitize_dead_code(env);
16791 	}
16792 
16793 	if (ret == 0)
16794 		/* program is valid, convert *(u32*)(ctx + off) accesses */
16795 		ret = convert_ctx_accesses(env);
16796 
16797 	if (ret == 0)
16798 		ret = do_misc_fixups(env);
16799 
16800 	/* do 32-bit optimization after insn patching has done so those patched
16801 	 * insns could be handled correctly.
16802 	 */
16803 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
16804 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
16805 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
16806 								     : false;
16807 	}
16808 
16809 	if (ret == 0)
16810 		ret = fixup_call_args(env);
16811 
16812 	env->verification_time = ktime_get_ns() - start_time;
16813 	print_verification_stats(env);
16814 	env->prog->aux->verified_insns = env->insn_processed;
16815 
16816 	if (log->level && bpf_verifier_log_full(log))
16817 		ret = -ENOSPC;
16818 	if (log->level && !log->ubuf) {
16819 		ret = -EFAULT;
16820 		goto err_release_maps;
16821 	}
16822 
16823 	if (ret)
16824 		goto err_release_maps;
16825 
16826 	if (env->used_map_cnt) {
16827 		/* if program passed verifier, update used_maps in bpf_prog_info */
16828 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
16829 							  sizeof(env->used_maps[0]),
16830 							  GFP_KERNEL);
16831 
16832 		if (!env->prog->aux->used_maps) {
16833 			ret = -ENOMEM;
16834 			goto err_release_maps;
16835 		}
16836 
16837 		memcpy(env->prog->aux->used_maps, env->used_maps,
16838 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
16839 		env->prog->aux->used_map_cnt = env->used_map_cnt;
16840 	}
16841 	if (env->used_btf_cnt) {
16842 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
16843 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
16844 							  sizeof(env->used_btfs[0]),
16845 							  GFP_KERNEL);
16846 		if (!env->prog->aux->used_btfs) {
16847 			ret = -ENOMEM;
16848 			goto err_release_maps;
16849 		}
16850 
16851 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
16852 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
16853 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
16854 	}
16855 	if (env->used_map_cnt || env->used_btf_cnt) {
16856 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
16857 		 * bpf_ld_imm64 instructions
16858 		 */
16859 		convert_pseudo_ld_imm64(env);
16860 	}
16861 
16862 	adjust_btf_func(env);
16863 
16864 err_release_maps:
16865 	if (!env->prog->aux->used_maps)
16866 		/* if we didn't copy map pointers into bpf_prog_info, release
16867 		 * them now. Otherwise free_used_maps() will release them.
16868 		 */
16869 		release_maps(env);
16870 	if (!env->prog->aux->used_btfs)
16871 		release_btfs(env);
16872 
16873 	/* extension progs temporarily inherit the attach_type of their targets
16874 	   for verification purposes, so set it back to zero before returning
16875 	 */
16876 	if (env->prog->type == BPF_PROG_TYPE_EXT)
16877 		env->prog->expected_attach_type = 0;
16878 
16879 	*prog = env->prog;
16880 err_unlock:
16881 	if (!is_priv)
16882 		mutex_unlock(&bpf_verifier_lock);
16883 	vfree(env->insn_aux_data);
16884 err_free_env:
16885 	kfree(env);
16886 	return ret;
16887 }
16888