1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 29 #include "disasm.h" 30 31 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 32 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 33 [_id] = & _name ## _verifier_ops, 34 #define BPF_MAP_TYPE(_id, _ops) 35 #define BPF_LINK_TYPE(_id, _name) 36 #include <linux/bpf_types.h> 37 #undef BPF_PROG_TYPE 38 #undef BPF_MAP_TYPE 39 #undef BPF_LINK_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all paths through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns either pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 /* length of verifier log at the time this state was pushed on stack */ 178 u32 log_pos; 179 }; 180 181 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 182 #define BPF_COMPLEXITY_LIMIT_STATES 64 183 184 #define BPF_MAP_KEY_POISON (1ULL << 63) 185 #define BPF_MAP_KEY_SEEN (1ULL << 62) 186 187 #define BPF_MAP_PTR_UNPRIV 1UL 188 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 189 POISON_POINTER_DELTA)) 190 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 191 192 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 193 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 195 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 196 static int ref_set_non_owning(struct bpf_verifier_env *env, 197 struct bpf_reg_state *reg); 198 static void specialize_kfunc(struct bpf_verifier_env *env, 199 u32 func_id, u16 offset, unsigned long *addr); 200 201 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 202 { 203 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 204 } 205 206 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 207 { 208 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 209 } 210 211 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 212 const struct bpf_map *map, bool unpriv) 213 { 214 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 215 unpriv |= bpf_map_ptr_unpriv(aux); 216 aux->map_ptr_state = (unsigned long)map | 217 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 218 } 219 220 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 221 { 222 return aux->map_key_state & BPF_MAP_KEY_POISON; 223 } 224 225 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 226 { 227 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 228 } 229 230 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 231 { 232 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 233 } 234 235 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 236 { 237 bool poisoned = bpf_map_key_poisoned(aux); 238 239 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 240 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 241 } 242 243 static bool bpf_helper_call(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_JMP | BPF_CALL) && 246 insn->src_reg == 0; 247 } 248 249 static bool bpf_pseudo_call(const struct bpf_insn *insn) 250 { 251 return insn->code == (BPF_JMP | BPF_CALL) && 252 insn->src_reg == BPF_PSEUDO_CALL; 253 } 254 255 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 256 { 257 return insn->code == (BPF_JMP | BPF_CALL) && 258 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 259 } 260 261 struct bpf_call_arg_meta { 262 struct bpf_map *map_ptr; 263 bool raw_mode; 264 bool pkt_access; 265 u8 release_regno; 266 int regno; 267 int access_size; 268 int mem_size; 269 u64 msize_max_value; 270 int ref_obj_id; 271 int dynptr_id; 272 int map_uid; 273 int func_id; 274 struct btf *btf; 275 u32 btf_id; 276 struct btf *ret_btf; 277 u32 ret_btf_id; 278 u32 subprogno; 279 struct btf_field *kptr_field; 280 }; 281 282 struct bpf_kfunc_call_arg_meta { 283 /* In parameters */ 284 struct btf *btf; 285 u32 func_id; 286 u32 kfunc_flags; 287 const struct btf_type *func_proto; 288 const char *func_name; 289 /* Out parameters */ 290 u32 ref_obj_id; 291 u8 release_regno; 292 bool r0_rdonly; 293 u32 ret_btf_id; 294 u64 r0_size; 295 u32 subprogno; 296 struct { 297 u64 value; 298 bool found; 299 } arg_constant; 300 301 /* arg_btf and arg_btf_id are used by kfunc-specific handling, 302 * generally to pass info about user-defined local kptr types to later 303 * verification logic 304 * bpf_obj_drop 305 * Record the local kptr type to be drop'd 306 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 307 * Record the local kptr type to be refcount_incr'd 308 */ 309 struct btf *arg_btf; 310 u32 arg_btf_id; 311 312 struct { 313 struct btf_field *field; 314 } arg_list_head; 315 struct { 316 struct btf_field *field; 317 } arg_rbtree_root; 318 struct { 319 enum bpf_dynptr_type type; 320 u32 id; 321 u32 ref_obj_id; 322 } initialized_dynptr; 323 struct { 324 u8 spi; 325 u8 frameno; 326 } iter; 327 u64 mem_size; 328 }; 329 330 struct btf *btf_vmlinux; 331 332 static DEFINE_MUTEX(bpf_verifier_lock); 333 334 static const struct bpf_line_info * 335 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 336 { 337 const struct bpf_line_info *linfo; 338 const struct bpf_prog *prog; 339 u32 i, nr_linfo; 340 341 prog = env->prog; 342 nr_linfo = prog->aux->nr_linfo; 343 344 if (!nr_linfo || insn_off >= prog->len) 345 return NULL; 346 347 linfo = prog->aux->linfo; 348 for (i = 1; i < nr_linfo; i++) 349 if (insn_off < linfo[i].insn_off) 350 break; 351 352 return &linfo[i - 1]; 353 } 354 355 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 356 { 357 struct bpf_verifier_env *env = private_data; 358 va_list args; 359 360 if (!bpf_verifier_log_needed(&env->log)) 361 return; 362 363 va_start(args, fmt); 364 bpf_verifier_vlog(&env->log, fmt, args); 365 va_end(args); 366 } 367 368 static const char *ltrim(const char *s) 369 { 370 while (isspace(*s)) 371 s++; 372 373 return s; 374 } 375 376 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 377 u32 insn_off, 378 const char *prefix_fmt, ...) 379 { 380 const struct bpf_line_info *linfo; 381 382 if (!bpf_verifier_log_needed(&env->log)) 383 return; 384 385 linfo = find_linfo(env, insn_off); 386 if (!linfo || linfo == env->prev_linfo) 387 return; 388 389 if (prefix_fmt) { 390 va_list args; 391 392 va_start(args, prefix_fmt); 393 bpf_verifier_vlog(&env->log, prefix_fmt, args); 394 va_end(args); 395 } 396 397 verbose(env, "%s\n", 398 ltrim(btf_name_by_offset(env->prog->aux->btf, 399 linfo->line_off))); 400 401 env->prev_linfo = linfo; 402 } 403 404 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 405 struct bpf_reg_state *reg, 406 struct tnum *range, const char *ctx, 407 const char *reg_name) 408 { 409 char tn_buf[48]; 410 411 verbose(env, "At %s the register %s ", ctx, reg_name); 412 if (!tnum_is_unknown(reg->var_off)) { 413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 414 verbose(env, "has value %s", tn_buf); 415 } else { 416 verbose(env, "has unknown scalar value"); 417 } 418 tnum_strn(tn_buf, sizeof(tn_buf), *range); 419 verbose(env, " should have been in %s\n", tn_buf); 420 } 421 422 static bool type_is_pkt_pointer(enum bpf_reg_type type) 423 { 424 type = base_type(type); 425 return type == PTR_TO_PACKET || 426 type == PTR_TO_PACKET_META; 427 } 428 429 static bool type_is_sk_pointer(enum bpf_reg_type type) 430 { 431 return type == PTR_TO_SOCKET || 432 type == PTR_TO_SOCK_COMMON || 433 type == PTR_TO_TCP_SOCK || 434 type == PTR_TO_XDP_SOCK; 435 } 436 437 static bool type_may_be_null(u32 type) 438 { 439 return type & PTR_MAYBE_NULL; 440 } 441 442 static bool reg_type_not_null(enum bpf_reg_type type) 443 { 444 if (type_may_be_null(type)) 445 return false; 446 447 type = base_type(type); 448 return type == PTR_TO_SOCKET || 449 type == PTR_TO_TCP_SOCK || 450 type == PTR_TO_MAP_VALUE || 451 type == PTR_TO_MAP_KEY || 452 type == PTR_TO_SOCK_COMMON || 453 type == PTR_TO_MEM; 454 } 455 456 static bool type_is_ptr_alloc_obj(u32 type) 457 { 458 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 459 } 460 461 static bool type_is_non_owning_ref(u32 type) 462 { 463 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 464 } 465 466 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 467 { 468 struct btf_record *rec = NULL; 469 struct btf_struct_meta *meta; 470 471 if (reg->type == PTR_TO_MAP_VALUE) { 472 rec = reg->map_ptr->record; 473 } else if (type_is_ptr_alloc_obj(reg->type)) { 474 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 475 if (meta) 476 rec = meta->record; 477 } 478 return rec; 479 } 480 481 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 482 { 483 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 484 485 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 486 } 487 488 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 489 { 490 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 491 } 492 493 static bool type_is_rdonly_mem(u32 type) 494 { 495 return type & MEM_RDONLY; 496 } 497 498 static bool is_acquire_function(enum bpf_func_id func_id, 499 const struct bpf_map *map) 500 { 501 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 502 503 if (func_id == BPF_FUNC_sk_lookup_tcp || 504 func_id == BPF_FUNC_sk_lookup_udp || 505 func_id == BPF_FUNC_skc_lookup_tcp || 506 func_id == BPF_FUNC_ringbuf_reserve || 507 func_id == BPF_FUNC_kptr_xchg) 508 return true; 509 510 if (func_id == BPF_FUNC_map_lookup_elem && 511 (map_type == BPF_MAP_TYPE_SOCKMAP || 512 map_type == BPF_MAP_TYPE_SOCKHASH)) 513 return true; 514 515 return false; 516 } 517 518 static bool is_ptr_cast_function(enum bpf_func_id func_id) 519 { 520 return func_id == BPF_FUNC_tcp_sock || 521 func_id == BPF_FUNC_sk_fullsock || 522 func_id == BPF_FUNC_skc_to_tcp_sock || 523 func_id == BPF_FUNC_skc_to_tcp6_sock || 524 func_id == BPF_FUNC_skc_to_udp6_sock || 525 func_id == BPF_FUNC_skc_to_mptcp_sock || 526 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 527 func_id == BPF_FUNC_skc_to_tcp_request_sock; 528 } 529 530 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 531 { 532 return func_id == BPF_FUNC_dynptr_data; 533 } 534 535 static bool is_callback_calling_kfunc(u32 btf_id); 536 537 static bool is_callback_calling_function(enum bpf_func_id func_id) 538 { 539 return func_id == BPF_FUNC_for_each_map_elem || 540 func_id == BPF_FUNC_timer_set_callback || 541 func_id == BPF_FUNC_find_vma || 542 func_id == BPF_FUNC_loop || 543 func_id == BPF_FUNC_user_ringbuf_drain; 544 } 545 546 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 547 { 548 return func_id == BPF_FUNC_timer_set_callback; 549 } 550 551 static bool is_storage_get_function(enum bpf_func_id func_id) 552 { 553 return func_id == BPF_FUNC_sk_storage_get || 554 func_id == BPF_FUNC_inode_storage_get || 555 func_id == BPF_FUNC_task_storage_get || 556 func_id == BPF_FUNC_cgrp_storage_get; 557 } 558 559 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 560 const struct bpf_map *map) 561 { 562 int ref_obj_uses = 0; 563 564 if (is_ptr_cast_function(func_id)) 565 ref_obj_uses++; 566 if (is_acquire_function(func_id, map)) 567 ref_obj_uses++; 568 if (is_dynptr_ref_function(func_id)) 569 ref_obj_uses++; 570 571 return ref_obj_uses > 1; 572 } 573 574 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 575 { 576 return BPF_CLASS(insn->code) == BPF_STX && 577 BPF_MODE(insn->code) == BPF_ATOMIC && 578 insn->imm == BPF_CMPXCHG; 579 } 580 581 /* string representation of 'enum bpf_reg_type' 582 * 583 * Note that reg_type_str() can not appear more than once in a single verbose() 584 * statement. 585 */ 586 static const char *reg_type_str(struct bpf_verifier_env *env, 587 enum bpf_reg_type type) 588 { 589 char postfix[16] = {0}, prefix[64] = {0}; 590 static const char * const str[] = { 591 [NOT_INIT] = "?", 592 [SCALAR_VALUE] = "scalar", 593 [PTR_TO_CTX] = "ctx", 594 [CONST_PTR_TO_MAP] = "map_ptr", 595 [PTR_TO_MAP_VALUE] = "map_value", 596 [PTR_TO_STACK] = "fp", 597 [PTR_TO_PACKET] = "pkt", 598 [PTR_TO_PACKET_META] = "pkt_meta", 599 [PTR_TO_PACKET_END] = "pkt_end", 600 [PTR_TO_FLOW_KEYS] = "flow_keys", 601 [PTR_TO_SOCKET] = "sock", 602 [PTR_TO_SOCK_COMMON] = "sock_common", 603 [PTR_TO_TCP_SOCK] = "tcp_sock", 604 [PTR_TO_TP_BUFFER] = "tp_buffer", 605 [PTR_TO_XDP_SOCK] = "xdp_sock", 606 [PTR_TO_BTF_ID] = "ptr_", 607 [PTR_TO_MEM] = "mem", 608 [PTR_TO_BUF] = "buf", 609 [PTR_TO_FUNC] = "func", 610 [PTR_TO_MAP_KEY] = "map_key", 611 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 612 }; 613 614 if (type & PTR_MAYBE_NULL) { 615 if (base_type(type) == PTR_TO_BTF_ID) 616 strncpy(postfix, "or_null_", 16); 617 else 618 strncpy(postfix, "_or_null", 16); 619 } 620 621 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 622 type & MEM_RDONLY ? "rdonly_" : "", 623 type & MEM_RINGBUF ? "ringbuf_" : "", 624 type & MEM_USER ? "user_" : "", 625 type & MEM_PERCPU ? "percpu_" : "", 626 type & MEM_RCU ? "rcu_" : "", 627 type & PTR_UNTRUSTED ? "untrusted_" : "", 628 type & PTR_TRUSTED ? "trusted_" : "" 629 ); 630 631 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 632 prefix, str[base_type(type)], postfix); 633 return env->tmp_str_buf; 634 } 635 636 static char slot_type_char[] = { 637 [STACK_INVALID] = '?', 638 [STACK_SPILL] = 'r', 639 [STACK_MISC] = 'm', 640 [STACK_ZERO] = '0', 641 [STACK_DYNPTR] = 'd', 642 [STACK_ITER] = 'i', 643 }; 644 645 static void print_liveness(struct bpf_verifier_env *env, 646 enum bpf_reg_liveness live) 647 { 648 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 649 verbose(env, "_"); 650 if (live & REG_LIVE_READ) 651 verbose(env, "r"); 652 if (live & REG_LIVE_WRITTEN) 653 verbose(env, "w"); 654 if (live & REG_LIVE_DONE) 655 verbose(env, "D"); 656 } 657 658 static int __get_spi(s32 off) 659 { 660 return (-off - 1) / BPF_REG_SIZE; 661 } 662 663 static struct bpf_func_state *func(struct bpf_verifier_env *env, 664 const struct bpf_reg_state *reg) 665 { 666 struct bpf_verifier_state *cur = env->cur_state; 667 668 return cur->frame[reg->frameno]; 669 } 670 671 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 672 { 673 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 674 675 /* We need to check that slots between [spi - nr_slots + 1, spi] are 676 * within [0, allocated_stack). 677 * 678 * Please note that the spi grows downwards. For example, a dynptr 679 * takes the size of two stack slots; the first slot will be at 680 * spi and the second slot will be at spi - 1. 681 */ 682 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 683 } 684 685 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 686 const char *obj_kind, int nr_slots) 687 { 688 int off, spi; 689 690 if (!tnum_is_const(reg->var_off)) { 691 verbose(env, "%s has to be at a constant offset\n", obj_kind); 692 return -EINVAL; 693 } 694 695 off = reg->off + reg->var_off.value; 696 if (off % BPF_REG_SIZE) { 697 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 698 return -EINVAL; 699 } 700 701 spi = __get_spi(off); 702 if (spi + 1 < nr_slots) { 703 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 704 return -EINVAL; 705 } 706 707 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 708 return -ERANGE; 709 return spi; 710 } 711 712 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 713 { 714 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 715 } 716 717 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 718 { 719 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 720 } 721 722 static const char *btf_type_name(const struct btf *btf, u32 id) 723 { 724 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 725 } 726 727 static const char *dynptr_type_str(enum bpf_dynptr_type type) 728 { 729 switch (type) { 730 case BPF_DYNPTR_TYPE_LOCAL: 731 return "local"; 732 case BPF_DYNPTR_TYPE_RINGBUF: 733 return "ringbuf"; 734 case BPF_DYNPTR_TYPE_SKB: 735 return "skb"; 736 case BPF_DYNPTR_TYPE_XDP: 737 return "xdp"; 738 case BPF_DYNPTR_TYPE_INVALID: 739 return "<invalid>"; 740 default: 741 WARN_ONCE(1, "unknown dynptr type %d\n", type); 742 return "<unknown>"; 743 } 744 } 745 746 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 747 { 748 if (!btf || btf_id == 0) 749 return "<invalid>"; 750 751 /* we already validated that type is valid and has conforming name */ 752 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 753 } 754 755 static const char *iter_state_str(enum bpf_iter_state state) 756 { 757 switch (state) { 758 case BPF_ITER_STATE_ACTIVE: 759 return "active"; 760 case BPF_ITER_STATE_DRAINED: 761 return "drained"; 762 case BPF_ITER_STATE_INVALID: 763 return "<invalid>"; 764 default: 765 WARN_ONCE(1, "unknown iter state %d\n", state); 766 return "<unknown>"; 767 } 768 } 769 770 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 771 { 772 env->scratched_regs |= 1U << regno; 773 } 774 775 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 776 { 777 env->scratched_stack_slots |= 1ULL << spi; 778 } 779 780 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 781 { 782 return (env->scratched_regs >> regno) & 1; 783 } 784 785 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 786 { 787 return (env->scratched_stack_slots >> regno) & 1; 788 } 789 790 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 791 { 792 return env->scratched_regs || env->scratched_stack_slots; 793 } 794 795 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 796 { 797 env->scratched_regs = 0U; 798 env->scratched_stack_slots = 0ULL; 799 } 800 801 /* Used for printing the entire verifier state. */ 802 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 803 { 804 env->scratched_regs = ~0U; 805 env->scratched_stack_slots = ~0ULL; 806 } 807 808 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 809 { 810 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 811 case DYNPTR_TYPE_LOCAL: 812 return BPF_DYNPTR_TYPE_LOCAL; 813 case DYNPTR_TYPE_RINGBUF: 814 return BPF_DYNPTR_TYPE_RINGBUF; 815 case DYNPTR_TYPE_SKB: 816 return BPF_DYNPTR_TYPE_SKB; 817 case DYNPTR_TYPE_XDP: 818 return BPF_DYNPTR_TYPE_XDP; 819 default: 820 return BPF_DYNPTR_TYPE_INVALID; 821 } 822 } 823 824 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 825 { 826 switch (type) { 827 case BPF_DYNPTR_TYPE_LOCAL: 828 return DYNPTR_TYPE_LOCAL; 829 case BPF_DYNPTR_TYPE_RINGBUF: 830 return DYNPTR_TYPE_RINGBUF; 831 case BPF_DYNPTR_TYPE_SKB: 832 return DYNPTR_TYPE_SKB; 833 case BPF_DYNPTR_TYPE_XDP: 834 return DYNPTR_TYPE_XDP; 835 default: 836 return 0; 837 } 838 } 839 840 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 841 { 842 return type == BPF_DYNPTR_TYPE_RINGBUF; 843 } 844 845 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 846 enum bpf_dynptr_type type, 847 bool first_slot, int dynptr_id); 848 849 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 850 struct bpf_reg_state *reg); 851 852 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 853 struct bpf_reg_state *sreg1, 854 struct bpf_reg_state *sreg2, 855 enum bpf_dynptr_type type) 856 { 857 int id = ++env->id_gen; 858 859 __mark_dynptr_reg(sreg1, type, true, id); 860 __mark_dynptr_reg(sreg2, type, false, id); 861 } 862 863 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 864 struct bpf_reg_state *reg, 865 enum bpf_dynptr_type type) 866 { 867 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 868 } 869 870 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 871 struct bpf_func_state *state, int spi); 872 873 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 874 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 875 { 876 struct bpf_func_state *state = func(env, reg); 877 enum bpf_dynptr_type type; 878 int spi, i, err; 879 880 spi = dynptr_get_spi(env, reg); 881 if (spi < 0) 882 return spi; 883 884 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 885 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 886 * to ensure that for the following example: 887 * [d1][d1][d2][d2] 888 * spi 3 2 1 0 889 * So marking spi = 2 should lead to destruction of both d1 and d2. In 890 * case they do belong to same dynptr, second call won't see slot_type 891 * as STACK_DYNPTR and will simply skip destruction. 892 */ 893 err = destroy_if_dynptr_stack_slot(env, state, spi); 894 if (err) 895 return err; 896 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 897 if (err) 898 return err; 899 900 for (i = 0; i < BPF_REG_SIZE; i++) { 901 state->stack[spi].slot_type[i] = STACK_DYNPTR; 902 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 903 } 904 905 type = arg_to_dynptr_type(arg_type); 906 if (type == BPF_DYNPTR_TYPE_INVALID) 907 return -EINVAL; 908 909 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 910 &state->stack[spi - 1].spilled_ptr, type); 911 912 if (dynptr_type_refcounted(type)) { 913 /* The id is used to track proper releasing */ 914 int id; 915 916 if (clone_ref_obj_id) 917 id = clone_ref_obj_id; 918 else 919 id = acquire_reference_state(env, insn_idx); 920 921 if (id < 0) 922 return id; 923 924 state->stack[spi].spilled_ptr.ref_obj_id = id; 925 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 926 } 927 928 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 929 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 930 931 return 0; 932 } 933 934 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 935 { 936 int i; 937 938 for (i = 0; i < BPF_REG_SIZE; i++) { 939 state->stack[spi].slot_type[i] = STACK_INVALID; 940 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 941 } 942 943 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 944 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 945 946 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 947 * 948 * While we don't allow reading STACK_INVALID, it is still possible to 949 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 950 * helpers or insns can do partial read of that part without failing, 951 * but check_stack_range_initialized, check_stack_read_var_off, and 952 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 953 * the slot conservatively. Hence we need to prevent those liveness 954 * marking walks. 955 * 956 * This was not a problem before because STACK_INVALID is only set by 957 * default (where the default reg state has its reg->parent as NULL), or 958 * in clean_live_states after REG_LIVE_DONE (at which point 959 * mark_reg_read won't walk reg->parent chain), but not randomly during 960 * verifier state exploration (like we did above). Hence, for our case 961 * parentage chain will still be live (i.e. reg->parent may be 962 * non-NULL), while earlier reg->parent was NULL, so we need 963 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 964 * done later on reads or by mark_dynptr_read as well to unnecessary 965 * mark registers in verifier state. 966 */ 967 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 968 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 969 } 970 971 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 972 { 973 struct bpf_func_state *state = func(env, reg); 974 int spi, ref_obj_id, i; 975 976 spi = dynptr_get_spi(env, reg); 977 if (spi < 0) 978 return spi; 979 980 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 981 invalidate_dynptr(env, state, spi); 982 return 0; 983 } 984 985 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 986 987 /* If the dynptr has a ref_obj_id, then we need to invalidate 988 * two things: 989 * 990 * 1) Any dynptrs with a matching ref_obj_id (clones) 991 * 2) Any slices derived from this dynptr. 992 */ 993 994 /* Invalidate any slices associated with this dynptr */ 995 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 996 997 /* Invalidate any dynptr clones */ 998 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 999 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1000 continue; 1001 1002 /* it should always be the case that if the ref obj id 1003 * matches then the stack slot also belongs to a 1004 * dynptr 1005 */ 1006 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1007 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1008 return -EFAULT; 1009 } 1010 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1011 invalidate_dynptr(env, state, i); 1012 } 1013 1014 return 0; 1015 } 1016 1017 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1018 struct bpf_reg_state *reg); 1019 1020 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1021 { 1022 if (!env->allow_ptr_leaks) 1023 __mark_reg_not_init(env, reg); 1024 else 1025 __mark_reg_unknown(env, reg); 1026 } 1027 1028 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1029 struct bpf_func_state *state, int spi) 1030 { 1031 struct bpf_func_state *fstate; 1032 struct bpf_reg_state *dreg; 1033 int i, dynptr_id; 1034 1035 /* We always ensure that STACK_DYNPTR is never set partially, 1036 * hence just checking for slot_type[0] is enough. This is 1037 * different for STACK_SPILL, where it may be only set for 1038 * 1 byte, so code has to use is_spilled_reg. 1039 */ 1040 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1041 return 0; 1042 1043 /* Reposition spi to first slot */ 1044 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1045 spi = spi + 1; 1046 1047 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1048 verbose(env, "cannot overwrite referenced dynptr\n"); 1049 return -EINVAL; 1050 } 1051 1052 mark_stack_slot_scratched(env, spi); 1053 mark_stack_slot_scratched(env, spi - 1); 1054 1055 /* Writing partially to one dynptr stack slot destroys both. */ 1056 for (i = 0; i < BPF_REG_SIZE; i++) { 1057 state->stack[spi].slot_type[i] = STACK_INVALID; 1058 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1059 } 1060 1061 dynptr_id = state->stack[spi].spilled_ptr.id; 1062 /* Invalidate any slices associated with this dynptr */ 1063 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1064 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1065 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1066 continue; 1067 if (dreg->dynptr_id == dynptr_id) 1068 mark_reg_invalid(env, dreg); 1069 })); 1070 1071 /* Do not release reference state, we are destroying dynptr on stack, 1072 * not using some helper to release it. Just reset register. 1073 */ 1074 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1075 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1076 1077 /* Same reason as unmark_stack_slots_dynptr above */ 1078 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1079 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1080 1081 return 0; 1082 } 1083 1084 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1085 { 1086 int spi; 1087 1088 if (reg->type == CONST_PTR_TO_DYNPTR) 1089 return false; 1090 1091 spi = dynptr_get_spi(env, reg); 1092 1093 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1094 * error because this just means the stack state hasn't been updated yet. 1095 * We will do check_mem_access to check and update stack bounds later. 1096 */ 1097 if (spi < 0 && spi != -ERANGE) 1098 return false; 1099 1100 /* We don't need to check if the stack slots are marked by previous 1101 * dynptr initializations because we allow overwriting existing unreferenced 1102 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1103 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1104 * touching are completely destructed before we reinitialize them for a new 1105 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1106 * instead of delaying it until the end where the user will get "Unreleased 1107 * reference" error. 1108 */ 1109 return true; 1110 } 1111 1112 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1113 { 1114 struct bpf_func_state *state = func(env, reg); 1115 int i, spi; 1116 1117 /* This already represents first slot of initialized bpf_dynptr. 1118 * 1119 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1120 * check_func_arg_reg_off's logic, so we don't need to check its 1121 * offset and alignment. 1122 */ 1123 if (reg->type == CONST_PTR_TO_DYNPTR) 1124 return true; 1125 1126 spi = dynptr_get_spi(env, reg); 1127 if (spi < 0) 1128 return false; 1129 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1130 return false; 1131 1132 for (i = 0; i < BPF_REG_SIZE; i++) { 1133 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1134 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1135 return false; 1136 } 1137 1138 return true; 1139 } 1140 1141 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1142 enum bpf_arg_type arg_type) 1143 { 1144 struct bpf_func_state *state = func(env, reg); 1145 enum bpf_dynptr_type dynptr_type; 1146 int spi; 1147 1148 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1149 if (arg_type == ARG_PTR_TO_DYNPTR) 1150 return true; 1151 1152 dynptr_type = arg_to_dynptr_type(arg_type); 1153 if (reg->type == CONST_PTR_TO_DYNPTR) { 1154 return reg->dynptr.type == dynptr_type; 1155 } else { 1156 spi = dynptr_get_spi(env, reg); 1157 if (spi < 0) 1158 return false; 1159 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1160 } 1161 } 1162 1163 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1164 1165 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1166 struct bpf_reg_state *reg, int insn_idx, 1167 struct btf *btf, u32 btf_id, int nr_slots) 1168 { 1169 struct bpf_func_state *state = func(env, reg); 1170 int spi, i, j, id; 1171 1172 spi = iter_get_spi(env, reg, nr_slots); 1173 if (spi < 0) 1174 return spi; 1175 1176 id = acquire_reference_state(env, insn_idx); 1177 if (id < 0) 1178 return id; 1179 1180 for (i = 0; i < nr_slots; i++) { 1181 struct bpf_stack_state *slot = &state->stack[spi - i]; 1182 struct bpf_reg_state *st = &slot->spilled_ptr; 1183 1184 __mark_reg_known_zero(st); 1185 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1186 st->live |= REG_LIVE_WRITTEN; 1187 st->ref_obj_id = i == 0 ? id : 0; 1188 st->iter.btf = btf; 1189 st->iter.btf_id = btf_id; 1190 st->iter.state = BPF_ITER_STATE_ACTIVE; 1191 st->iter.depth = 0; 1192 1193 for (j = 0; j < BPF_REG_SIZE; j++) 1194 slot->slot_type[j] = STACK_ITER; 1195 1196 mark_stack_slot_scratched(env, spi - i); 1197 } 1198 1199 return 0; 1200 } 1201 1202 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1203 struct bpf_reg_state *reg, int nr_slots) 1204 { 1205 struct bpf_func_state *state = func(env, reg); 1206 int spi, i, j; 1207 1208 spi = iter_get_spi(env, reg, nr_slots); 1209 if (spi < 0) 1210 return spi; 1211 1212 for (i = 0; i < nr_slots; i++) { 1213 struct bpf_stack_state *slot = &state->stack[spi - i]; 1214 struct bpf_reg_state *st = &slot->spilled_ptr; 1215 1216 if (i == 0) 1217 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1218 1219 __mark_reg_not_init(env, st); 1220 1221 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1222 st->live |= REG_LIVE_WRITTEN; 1223 1224 for (j = 0; j < BPF_REG_SIZE; j++) 1225 slot->slot_type[j] = STACK_INVALID; 1226 1227 mark_stack_slot_scratched(env, spi - i); 1228 } 1229 1230 return 0; 1231 } 1232 1233 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1234 struct bpf_reg_state *reg, int nr_slots) 1235 { 1236 struct bpf_func_state *state = func(env, reg); 1237 int spi, i, j; 1238 1239 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1240 * will do check_mem_access to check and update stack bounds later, so 1241 * return true for that case. 1242 */ 1243 spi = iter_get_spi(env, reg, nr_slots); 1244 if (spi == -ERANGE) 1245 return true; 1246 if (spi < 0) 1247 return false; 1248 1249 for (i = 0; i < nr_slots; i++) { 1250 struct bpf_stack_state *slot = &state->stack[spi - i]; 1251 1252 for (j = 0; j < BPF_REG_SIZE; j++) 1253 if (slot->slot_type[j] == STACK_ITER) 1254 return false; 1255 } 1256 1257 return true; 1258 } 1259 1260 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1261 struct btf *btf, u32 btf_id, int nr_slots) 1262 { 1263 struct bpf_func_state *state = func(env, reg); 1264 int spi, i, j; 1265 1266 spi = iter_get_spi(env, reg, nr_slots); 1267 if (spi < 0) 1268 return false; 1269 1270 for (i = 0; i < nr_slots; i++) { 1271 struct bpf_stack_state *slot = &state->stack[spi - i]; 1272 struct bpf_reg_state *st = &slot->spilled_ptr; 1273 1274 /* only main (first) slot has ref_obj_id set */ 1275 if (i == 0 && !st->ref_obj_id) 1276 return false; 1277 if (i != 0 && st->ref_obj_id) 1278 return false; 1279 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1280 return false; 1281 1282 for (j = 0; j < BPF_REG_SIZE; j++) 1283 if (slot->slot_type[j] != STACK_ITER) 1284 return false; 1285 } 1286 1287 return true; 1288 } 1289 1290 /* Check if given stack slot is "special": 1291 * - spilled register state (STACK_SPILL); 1292 * - dynptr state (STACK_DYNPTR); 1293 * - iter state (STACK_ITER). 1294 */ 1295 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1296 { 1297 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1298 1299 switch (type) { 1300 case STACK_SPILL: 1301 case STACK_DYNPTR: 1302 case STACK_ITER: 1303 return true; 1304 case STACK_INVALID: 1305 case STACK_MISC: 1306 case STACK_ZERO: 1307 return false; 1308 default: 1309 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1310 return true; 1311 } 1312 } 1313 1314 /* The reg state of a pointer or a bounded scalar was saved when 1315 * it was spilled to the stack. 1316 */ 1317 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1318 { 1319 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1320 } 1321 1322 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1323 { 1324 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1325 stack->spilled_ptr.type == SCALAR_VALUE; 1326 } 1327 1328 static void scrub_spilled_slot(u8 *stype) 1329 { 1330 if (*stype != STACK_INVALID) 1331 *stype = STACK_MISC; 1332 } 1333 1334 static void print_verifier_state(struct bpf_verifier_env *env, 1335 const struct bpf_func_state *state, 1336 bool print_all) 1337 { 1338 const struct bpf_reg_state *reg; 1339 enum bpf_reg_type t; 1340 int i; 1341 1342 if (state->frameno) 1343 verbose(env, " frame%d:", state->frameno); 1344 for (i = 0; i < MAX_BPF_REG; i++) { 1345 reg = &state->regs[i]; 1346 t = reg->type; 1347 if (t == NOT_INIT) 1348 continue; 1349 if (!print_all && !reg_scratched(env, i)) 1350 continue; 1351 verbose(env, " R%d", i); 1352 print_liveness(env, reg->live); 1353 verbose(env, "="); 1354 if (t == SCALAR_VALUE && reg->precise) 1355 verbose(env, "P"); 1356 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1357 tnum_is_const(reg->var_off)) { 1358 /* reg->off should be 0 for SCALAR_VALUE */ 1359 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1360 verbose(env, "%lld", reg->var_off.value + reg->off); 1361 } else { 1362 const char *sep = ""; 1363 1364 verbose(env, "%s", reg_type_str(env, t)); 1365 if (base_type(t) == PTR_TO_BTF_ID) 1366 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1367 verbose(env, "("); 1368 /* 1369 * _a stands for append, was shortened to avoid multiline statements below. 1370 * This macro is used to output a comma separated list of attributes. 1371 */ 1372 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1373 1374 if (reg->id) 1375 verbose_a("id=%d", reg->id); 1376 if (reg->ref_obj_id) 1377 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1378 if (type_is_non_owning_ref(reg->type)) 1379 verbose_a("%s", "non_own_ref"); 1380 if (t != SCALAR_VALUE) 1381 verbose_a("off=%d", reg->off); 1382 if (type_is_pkt_pointer(t)) 1383 verbose_a("r=%d", reg->range); 1384 else if (base_type(t) == CONST_PTR_TO_MAP || 1385 base_type(t) == PTR_TO_MAP_KEY || 1386 base_type(t) == PTR_TO_MAP_VALUE) 1387 verbose_a("ks=%d,vs=%d", 1388 reg->map_ptr->key_size, 1389 reg->map_ptr->value_size); 1390 if (tnum_is_const(reg->var_off)) { 1391 /* Typically an immediate SCALAR_VALUE, but 1392 * could be a pointer whose offset is too big 1393 * for reg->off 1394 */ 1395 verbose_a("imm=%llx", reg->var_off.value); 1396 } else { 1397 if (reg->smin_value != reg->umin_value && 1398 reg->smin_value != S64_MIN) 1399 verbose_a("smin=%lld", (long long)reg->smin_value); 1400 if (reg->smax_value != reg->umax_value && 1401 reg->smax_value != S64_MAX) 1402 verbose_a("smax=%lld", (long long)reg->smax_value); 1403 if (reg->umin_value != 0) 1404 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1405 if (reg->umax_value != U64_MAX) 1406 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1407 if (!tnum_is_unknown(reg->var_off)) { 1408 char tn_buf[48]; 1409 1410 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1411 verbose_a("var_off=%s", tn_buf); 1412 } 1413 if (reg->s32_min_value != reg->smin_value && 1414 reg->s32_min_value != S32_MIN) 1415 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1416 if (reg->s32_max_value != reg->smax_value && 1417 reg->s32_max_value != S32_MAX) 1418 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1419 if (reg->u32_min_value != reg->umin_value && 1420 reg->u32_min_value != U32_MIN) 1421 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1422 if (reg->u32_max_value != reg->umax_value && 1423 reg->u32_max_value != U32_MAX) 1424 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1425 } 1426 #undef verbose_a 1427 1428 verbose(env, ")"); 1429 } 1430 } 1431 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1432 char types_buf[BPF_REG_SIZE + 1]; 1433 bool valid = false; 1434 int j; 1435 1436 for (j = 0; j < BPF_REG_SIZE; j++) { 1437 if (state->stack[i].slot_type[j] != STACK_INVALID) 1438 valid = true; 1439 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1440 } 1441 types_buf[BPF_REG_SIZE] = 0; 1442 if (!valid) 1443 continue; 1444 if (!print_all && !stack_slot_scratched(env, i)) 1445 continue; 1446 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1447 case STACK_SPILL: 1448 reg = &state->stack[i].spilled_ptr; 1449 t = reg->type; 1450 1451 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1452 print_liveness(env, reg->live); 1453 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1454 if (t == SCALAR_VALUE && reg->precise) 1455 verbose(env, "P"); 1456 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1457 verbose(env, "%lld", reg->var_off.value + reg->off); 1458 break; 1459 case STACK_DYNPTR: 1460 i += BPF_DYNPTR_NR_SLOTS - 1; 1461 reg = &state->stack[i].spilled_ptr; 1462 1463 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1464 print_liveness(env, reg->live); 1465 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1466 if (reg->ref_obj_id) 1467 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1468 break; 1469 case STACK_ITER: 1470 /* only main slot has ref_obj_id set; skip others */ 1471 reg = &state->stack[i].spilled_ptr; 1472 if (!reg->ref_obj_id) 1473 continue; 1474 1475 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1476 print_liveness(env, reg->live); 1477 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1478 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1479 reg->ref_obj_id, iter_state_str(reg->iter.state), 1480 reg->iter.depth); 1481 break; 1482 case STACK_MISC: 1483 case STACK_ZERO: 1484 default: 1485 reg = &state->stack[i].spilled_ptr; 1486 1487 for (j = 0; j < BPF_REG_SIZE; j++) 1488 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1489 types_buf[BPF_REG_SIZE] = 0; 1490 1491 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1492 print_liveness(env, reg->live); 1493 verbose(env, "=%s", types_buf); 1494 break; 1495 } 1496 } 1497 if (state->acquired_refs && state->refs[0].id) { 1498 verbose(env, " refs=%d", state->refs[0].id); 1499 for (i = 1; i < state->acquired_refs; i++) 1500 if (state->refs[i].id) 1501 verbose(env, ",%d", state->refs[i].id); 1502 } 1503 if (state->in_callback_fn) 1504 verbose(env, " cb"); 1505 if (state->in_async_callback_fn) 1506 verbose(env, " async_cb"); 1507 verbose(env, "\n"); 1508 mark_verifier_state_clean(env); 1509 } 1510 1511 static inline u32 vlog_alignment(u32 pos) 1512 { 1513 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1514 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1515 } 1516 1517 static void print_insn_state(struct bpf_verifier_env *env, 1518 const struct bpf_func_state *state) 1519 { 1520 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1521 /* remove new line character */ 1522 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1523 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1524 } else { 1525 verbose(env, "%d:", env->insn_idx); 1526 } 1527 print_verifier_state(env, state, false); 1528 } 1529 1530 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1531 * small to hold src. This is different from krealloc since we don't want to preserve 1532 * the contents of dst. 1533 * 1534 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1535 * not be allocated. 1536 */ 1537 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1538 { 1539 size_t alloc_bytes; 1540 void *orig = dst; 1541 size_t bytes; 1542 1543 if (ZERO_OR_NULL_PTR(src)) 1544 goto out; 1545 1546 if (unlikely(check_mul_overflow(n, size, &bytes))) 1547 return NULL; 1548 1549 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1550 dst = krealloc(orig, alloc_bytes, flags); 1551 if (!dst) { 1552 kfree(orig); 1553 return NULL; 1554 } 1555 1556 memcpy(dst, src, bytes); 1557 out: 1558 return dst ? dst : ZERO_SIZE_PTR; 1559 } 1560 1561 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1562 * small to hold new_n items. new items are zeroed out if the array grows. 1563 * 1564 * Contrary to krealloc_array, does not free arr if new_n is zero. 1565 */ 1566 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1567 { 1568 size_t alloc_size; 1569 void *new_arr; 1570 1571 if (!new_n || old_n == new_n) 1572 goto out; 1573 1574 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1575 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1576 if (!new_arr) { 1577 kfree(arr); 1578 return NULL; 1579 } 1580 arr = new_arr; 1581 1582 if (new_n > old_n) 1583 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1584 1585 out: 1586 return arr ? arr : ZERO_SIZE_PTR; 1587 } 1588 1589 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1590 { 1591 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1592 sizeof(struct bpf_reference_state), GFP_KERNEL); 1593 if (!dst->refs) 1594 return -ENOMEM; 1595 1596 dst->acquired_refs = src->acquired_refs; 1597 return 0; 1598 } 1599 1600 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1601 { 1602 size_t n = src->allocated_stack / BPF_REG_SIZE; 1603 1604 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1605 GFP_KERNEL); 1606 if (!dst->stack) 1607 return -ENOMEM; 1608 1609 dst->allocated_stack = src->allocated_stack; 1610 return 0; 1611 } 1612 1613 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1614 { 1615 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1616 sizeof(struct bpf_reference_state)); 1617 if (!state->refs) 1618 return -ENOMEM; 1619 1620 state->acquired_refs = n; 1621 return 0; 1622 } 1623 1624 static int grow_stack_state(struct bpf_func_state *state, int size) 1625 { 1626 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1627 1628 if (old_n >= n) 1629 return 0; 1630 1631 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1632 if (!state->stack) 1633 return -ENOMEM; 1634 1635 state->allocated_stack = size; 1636 return 0; 1637 } 1638 1639 /* Acquire a pointer id from the env and update the state->refs to include 1640 * this new pointer reference. 1641 * On success, returns a valid pointer id to associate with the register 1642 * On failure, returns a negative errno. 1643 */ 1644 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1645 { 1646 struct bpf_func_state *state = cur_func(env); 1647 int new_ofs = state->acquired_refs; 1648 int id, err; 1649 1650 err = resize_reference_state(state, state->acquired_refs + 1); 1651 if (err) 1652 return err; 1653 id = ++env->id_gen; 1654 state->refs[new_ofs].id = id; 1655 state->refs[new_ofs].insn_idx = insn_idx; 1656 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1657 1658 return id; 1659 } 1660 1661 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1662 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1663 { 1664 int i, last_idx; 1665 1666 last_idx = state->acquired_refs - 1; 1667 for (i = 0; i < state->acquired_refs; i++) { 1668 if (state->refs[i].id == ptr_id) { 1669 /* Cannot release caller references in callbacks */ 1670 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1671 return -EINVAL; 1672 if (last_idx && i != last_idx) 1673 memcpy(&state->refs[i], &state->refs[last_idx], 1674 sizeof(*state->refs)); 1675 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1676 state->acquired_refs--; 1677 return 0; 1678 } 1679 } 1680 return -EINVAL; 1681 } 1682 1683 static void free_func_state(struct bpf_func_state *state) 1684 { 1685 if (!state) 1686 return; 1687 kfree(state->refs); 1688 kfree(state->stack); 1689 kfree(state); 1690 } 1691 1692 static void clear_jmp_history(struct bpf_verifier_state *state) 1693 { 1694 kfree(state->jmp_history); 1695 state->jmp_history = NULL; 1696 state->jmp_history_cnt = 0; 1697 } 1698 1699 static void free_verifier_state(struct bpf_verifier_state *state, 1700 bool free_self) 1701 { 1702 int i; 1703 1704 for (i = 0; i <= state->curframe; i++) { 1705 free_func_state(state->frame[i]); 1706 state->frame[i] = NULL; 1707 } 1708 clear_jmp_history(state); 1709 if (free_self) 1710 kfree(state); 1711 } 1712 1713 /* copy verifier state from src to dst growing dst stack space 1714 * when necessary to accommodate larger src stack 1715 */ 1716 static int copy_func_state(struct bpf_func_state *dst, 1717 const struct bpf_func_state *src) 1718 { 1719 int err; 1720 1721 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1722 err = copy_reference_state(dst, src); 1723 if (err) 1724 return err; 1725 return copy_stack_state(dst, src); 1726 } 1727 1728 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1729 const struct bpf_verifier_state *src) 1730 { 1731 struct bpf_func_state *dst; 1732 int i, err; 1733 1734 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1735 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1736 GFP_USER); 1737 if (!dst_state->jmp_history) 1738 return -ENOMEM; 1739 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1740 1741 /* if dst has more stack frames then src frame, free them */ 1742 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1743 free_func_state(dst_state->frame[i]); 1744 dst_state->frame[i] = NULL; 1745 } 1746 dst_state->speculative = src->speculative; 1747 dst_state->active_rcu_lock = src->active_rcu_lock; 1748 dst_state->curframe = src->curframe; 1749 dst_state->active_lock.ptr = src->active_lock.ptr; 1750 dst_state->active_lock.id = src->active_lock.id; 1751 dst_state->branches = src->branches; 1752 dst_state->parent = src->parent; 1753 dst_state->first_insn_idx = src->first_insn_idx; 1754 dst_state->last_insn_idx = src->last_insn_idx; 1755 for (i = 0; i <= src->curframe; i++) { 1756 dst = dst_state->frame[i]; 1757 if (!dst) { 1758 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1759 if (!dst) 1760 return -ENOMEM; 1761 dst_state->frame[i] = dst; 1762 } 1763 err = copy_func_state(dst, src->frame[i]); 1764 if (err) 1765 return err; 1766 } 1767 return 0; 1768 } 1769 1770 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1771 { 1772 while (st) { 1773 u32 br = --st->branches; 1774 1775 /* WARN_ON(br > 1) technically makes sense here, 1776 * but see comment in push_stack(), hence: 1777 */ 1778 WARN_ONCE((int)br < 0, 1779 "BUG update_branch_counts:branches_to_explore=%d\n", 1780 br); 1781 if (br) 1782 break; 1783 st = st->parent; 1784 } 1785 } 1786 1787 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1788 int *insn_idx, bool pop_log) 1789 { 1790 struct bpf_verifier_state *cur = env->cur_state; 1791 struct bpf_verifier_stack_elem *elem, *head = env->head; 1792 int err; 1793 1794 if (env->head == NULL) 1795 return -ENOENT; 1796 1797 if (cur) { 1798 err = copy_verifier_state(cur, &head->st); 1799 if (err) 1800 return err; 1801 } 1802 if (pop_log) 1803 bpf_vlog_reset(&env->log, head->log_pos); 1804 if (insn_idx) 1805 *insn_idx = head->insn_idx; 1806 if (prev_insn_idx) 1807 *prev_insn_idx = head->prev_insn_idx; 1808 elem = head->next; 1809 free_verifier_state(&head->st, false); 1810 kfree(head); 1811 env->head = elem; 1812 env->stack_size--; 1813 return 0; 1814 } 1815 1816 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1817 int insn_idx, int prev_insn_idx, 1818 bool speculative) 1819 { 1820 struct bpf_verifier_state *cur = env->cur_state; 1821 struct bpf_verifier_stack_elem *elem; 1822 int err; 1823 1824 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1825 if (!elem) 1826 goto err; 1827 1828 elem->insn_idx = insn_idx; 1829 elem->prev_insn_idx = prev_insn_idx; 1830 elem->next = env->head; 1831 elem->log_pos = env->log.end_pos; 1832 env->head = elem; 1833 env->stack_size++; 1834 err = copy_verifier_state(&elem->st, cur); 1835 if (err) 1836 goto err; 1837 elem->st.speculative |= speculative; 1838 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1839 verbose(env, "The sequence of %d jumps is too complex.\n", 1840 env->stack_size); 1841 goto err; 1842 } 1843 if (elem->st.parent) { 1844 ++elem->st.parent->branches; 1845 /* WARN_ON(branches > 2) technically makes sense here, 1846 * but 1847 * 1. speculative states will bump 'branches' for non-branch 1848 * instructions 1849 * 2. is_state_visited() heuristics may decide not to create 1850 * a new state for a sequence of branches and all such current 1851 * and cloned states will be pointing to a single parent state 1852 * which might have large 'branches' count. 1853 */ 1854 } 1855 return &elem->st; 1856 err: 1857 free_verifier_state(env->cur_state, true); 1858 env->cur_state = NULL; 1859 /* pop all elements and return */ 1860 while (!pop_stack(env, NULL, NULL, false)); 1861 return NULL; 1862 } 1863 1864 #define CALLER_SAVED_REGS 6 1865 static const int caller_saved[CALLER_SAVED_REGS] = { 1866 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1867 }; 1868 1869 /* This helper doesn't clear reg->id */ 1870 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1871 { 1872 reg->var_off = tnum_const(imm); 1873 reg->smin_value = (s64)imm; 1874 reg->smax_value = (s64)imm; 1875 reg->umin_value = imm; 1876 reg->umax_value = imm; 1877 1878 reg->s32_min_value = (s32)imm; 1879 reg->s32_max_value = (s32)imm; 1880 reg->u32_min_value = (u32)imm; 1881 reg->u32_max_value = (u32)imm; 1882 } 1883 1884 /* Mark the unknown part of a register (variable offset or scalar value) as 1885 * known to have the value @imm. 1886 */ 1887 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1888 { 1889 /* Clear off and union(map_ptr, range) */ 1890 memset(((u8 *)reg) + sizeof(reg->type), 0, 1891 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1892 reg->id = 0; 1893 reg->ref_obj_id = 0; 1894 ___mark_reg_known(reg, imm); 1895 } 1896 1897 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1898 { 1899 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1900 reg->s32_min_value = (s32)imm; 1901 reg->s32_max_value = (s32)imm; 1902 reg->u32_min_value = (u32)imm; 1903 reg->u32_max_value = (u32)imm; 1904 } 1905 1906 /* Mark the 'variable offset' part of a register as zero. This should be 1907 * used only on registers holding a pointer type. 1908 */ 1909 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1910 { 1911 __mark_reg_known(reg, 0); 1912 } 1913 1914 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1915 { 1916 __mark_reg_known(reg, 0); 1917 reg->type = SCALAR_VALUE; 1918 } 1919 1920 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1921 struct bpf_reg_state *regs, u32 regno) 1922 { 1923 if (WARN_ON(regno >= MAX_BPF_REG)) { 1924 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1925 /* Something bad happened, let's kill all regs */ 1926 for (regno = 0; regno < MAX_BPF_REG; regno++) 1927 __mark_reg_not_init(env, regs + regno); 1928 return; 1929 } 1930 __mark_reg_known_zero(regs + regno); 1931 } 1932 1933 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1934 bool first_slot, int dynptr_id) 1935 { 1936 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1937 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1938 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1939 */ 1940 __mark_reg_known_zero(reg); 1941 reg->type = CONST_PTR_TO_DYNPTR; 1942 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1943 reg->id = dynptr_id; 1944 reg->dynptr.type = type; 1945 reg->dynptr.first_slot = first_slot; 1946 } 1947 1948 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1949 { 1950 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1951 const struct bpf_map *map = reg->map_ptr; 1952 1953 if (map->inner_map_meta) { 1954 reg->type = CONST_PTR_TO_MAP; 1955 reg->map_ptr = map->inner_map_meta; 1956 /* transfer reg's id which is unique for every map_lookup_elem 1957 * as UID of the inner map. 1958 */ 1959 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1960 reg->map_uid = reg->id; 1961 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1962 reg->type = PTR_TO_XDP_SOCK; 1963 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1964 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1965 reg->type = PTR_TO_SOCKET; 1966 } else { 1967 reg->type = PTR_TO_MAP_VALUE; 1968 } 1969 return; 1970 } 1971 1972 reg->type &= ~PTR_MAYBE_NULL; 1973 } 1974 1975 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1976 struct btf_field_graph_root *ds_head) 1977 { 1978 __mark_reg_known_zero(®s[regno]); 1979 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1980 regs[regno].btf = ds_head->btf; 1981 regs[regno].btf_id = ds_head->value_btf_id; 1982 regs[regno].off = ds_head->node_offset; 1983 } 1984 1985 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1986 { 1987 return type_is_pkt_pointer(reg->type); 1988 } 1989 1990 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1991 { 1992 return reg_is_pkt_pointer(reg) || 1993 reg->type == PTR_TO_PACKET_END; 1994 } 1995 1996 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1997 { 1998 return base_type(reg->type) == PTR_TO_MEM && 1999 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2000 } 2001 2002 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2003 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2004 enum bpf_reg_type which) 2005 { 2006 /* The register can already have a range from prior markings. 2007 * This is fine as long as it hasn't been advanced from its 2008 * origin. 2009 */ 2010 return reg->type == which && 2011 reg->id == 0 && 2012 reg->off == 0 && 2013 tnum_equals_const(reg->var_off, 0); 2014 } 2015 2016 /* Reset the min/max bounds of a register */ 2017 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2018 { 2019 reg->smin_value = S64_MIN; 2020 reg->smax_value = S64_MAX; 2021 reg->umin_value = 0; 2022 reg->umax_value = U64_MAX; 2023 2024 reg->s32_min_value = S32_MIN; 2025 reg->s32_max_value = S32_MAX; 2026 reg->u32_min_value = 0; 2027 reg->u32_max_value = U32_MAX; 2028 } 2029 2030 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2031 { 2032 reg->smin_value = S64_MIN; 2033 reg->smax_value = S64_MAX; 2034 reg->umin_value = 0; 2035 reg->umax_value = U64_MAX; 2036 } 2037 2038 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2039 { 2040 reg->s32_min_value = S32_MIN; 2041 reg->s32_max_value = S32_MAX; 2042 reg->u32_min_value = 0; 2043 reg->u32_max_value = U32_MAX; 2044 } 2045 2046 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2047 { 2048 struct tnum var32_off = tnum_subreg(reg->var_off); 2049 2050 /* min signed is max(sign bit) | min(other bits) */ 2051 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2052 var32_off.value | (var32_off.mask & S32_MIN)); 2053 /* max signed is min(sign bit) | max(other bits) */ 2054 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2055 var32_off.value | (var32_off.mask & S32_MAX)); 2056 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2057 reg->u32_max_value = min(reg->u32_max_value, 2058 (u32)(var32_off.value | var32_off.mask)); 2059 } 2060 2061 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2062 { 2063 /* min signed is max(sign bit) | min(other bits) */ 2064 reg->smin_value = max_t(s64, reg->smin_value, 2065 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2066 /* max signed is min(sign bit) | max(other bits) */ 2067 reg->smax_value = min_t(s64, reg->smax_value, 2068 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2069 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2070 reg->umax_value = min(reg->umax_value, 2071 reg->var_off.value | reg->var_off.mask); 2072 } 2073 2074 static void __update_reg_bounds(struct bpf_reg_state *reg) 2075 { 2076 __update_reg32_bounds(reg); 2077 __update_reg64_bounds(reg); 2078 } 2079 2080 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2081 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2082 { 2083 /* Learn sign from signed bounds. 2084 * If we cannot cross the sign boundary, then signed and unsigned bounds 2085 * are the same, so combine. This works even in the negative case, e.g. 2086 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2087 */ 2088 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2089 reg->s32_min_value = reg->u32_min_value = 2090 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2091 reg->s32_max_value = reg->u32_max_value = 2092 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2093 return; 2094 } 2095 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2096 * boundary, so we must be careful. 2097 */ 2098 if ((s32)reg->u32_max_value >= 0) { 2099 /* Positive. We can't learn anything from the smin, but smax 2100 * is positive, hence safe. 2101 */ 2102 reg->s32_min_value = reg->u32_min_value; 2103 reg->s32_max_value = reg->u32_max_value = 2104 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2105 } else if ((s32)reg->u32_min_value < 0) { 2106 /* Negative. We can't learn anything from the smax, but smin 2107 * is negative, hence safe. 2108 */ 2109 reg->s32_min_value = reg->u32_min_value = 2110 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2111 reg->s32_max_value = reg->u32_max_value; 2112 } 2113 } 2114 2115 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2116 { 2117 /* Learn sign from signed bounds. 2118 * If we cannot cross the sign boundary, then signed and unsigned bounds 2119 * are the same, so combine. This works even in the negative case, e.g. 2120 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2121 */ 2122 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2123 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2124 reg->umin_value); 2125 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2126 reg->umax_value); 2127 return; 2128 } 2129 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2130 * boundary, so we must be careful. 2131 */ 2132 if ((s64)reg->umax_value >= 0) { 2133 /* Positive. We can't learn anything from the smin, but smax 2134 * is positive, hence safe. 2135 */ 2136 reg->smin_value = reg->umin_value; 2137 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2138 reg->umax_value); 2139 } else if ((s64)reg->umin_value < 0) { 2140 /* Negative. We can't learn anything from the smax, but smin 2141 * is negative, hence safe. 2142 */ 2143 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2144 reg->umin_value); 2145 reg->smax_value = reg->umax_value; 2146 } 2147 } 2148 2149 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2150 { 2151 __reg32_deduce_bounds(reg); 2152 __reg64_deduce_bounds(reg); 2153 } 2154 2155 /* Attempts to improve var_off based on unsigned min/max information */ 2156 static void __reg_bound_offset(struct bpf_reg_state *reg) 2157 { 2158 struct tnum var64_off = tnum_intersect(reg->var_off, 2159 tnum_range(reg->umin_value, 2160 reg->umax_value)); 2161 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2162 tnum_range(reg->u32_min_value, 2163 reg->u32_max_value)); 2164 2165 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2166 } 2167 2168 static void reg_bounds_sync(struct bpf_reg_state *reg) 2169 { 2170 /* We might have learned new bounds from the var_off. */ 2171 __update_reg_bounds(reg); 2172 /* We might have learned something about the sign bit. */ 2173 __reg_deduce_bounds(reg); 2174 /* We might have learned some bits from the bounds. */ 2175 __reg_bound_offset(reg); 2176 /* Intersecting with the old var_off might have improved our bounds 2177 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2178 * then new var_off is (0; 0x7f...fc) which improves our umax. 2179 */ 2180 __update_reg_bounds(reg); 2181 } 2182 2183 static bool __reg32_bound_s64(s32 a) 2184 { 2185 return a >= 0 && a <= S32_MAX; 2186 } 2187 2188 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2189 { 2190 reg->umin_value = reg->u32_min_value; 2191 reg->umax_value = reg->u32_max_value; 2192 2193 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2194 * be positive otherwise set to worse case bounds and refine later 2195 * from tnum. 2196 */ 2197 if (__reg32_bound_s64(reg->s32_min_value) && 2198 __reg32_bound_s64(reg->s32_max_value)) { 2199 reg->smin_value = reg->s32_min_value; 2200 reg->smax_value = reg->s32_max_value; 2201 } else { 2202 reg->smin_value = 0; 2203 reg->smax_value = U32_MAX; 2204 } 2205 } 2206 2207 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2208 { 2209 /* special case when 64-bit register has upper 32-bit register 2210 * zeroed. Typically happens after zext or <<32, >>32 sequence 2211 * allowing us to use 32-bit bounds directly, 2212 */ 2213 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2214 __reg_assign_32_into_64(reg); 2215 } else { 2216 /* Otherwise the best we can do is push lower 32bit known and 2217 * unknown bits into register (var_off set from jmp logic) 2218 * then learn as much as possible from the 64-bit tnum 2219 * known and unknown bits. The previous smin/smax bounds are 2220 * invalid here because of jmp32 compare so mark them unknown 2221 * so they do not impact tnum bounds calculation. 2222 */ 2223 __mark_reg64_unbounded(reg); 2224 } 2225 reg_bounds_sync(reg); 2226 } 2227 2228 static bool __reg64_bound_s32(s64 a) 2229 { 2230 return a >= S32_MIN && a <= S32_MAX; 2231 } 2232 2233 static bool __reg64_bound_u32(u64 a) 2234 { 2235 return a >= U32_MIN && a <= U32_MAX; 2236 } 2237 2238 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2239 { 2240 __mark_reg32_unbounded(reg); 2241 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2242 reg->s32_min_value = (s32)reg->smin_value; 2243 reg->s32_max_value = (s32)reg->smax_value; 2244 } 2245 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2246 reg->u32_min_value = (u32)reg->umin_value; 2247 reg->u32_max_value = (u32)reg->umax_value; 2248 } 2249 reg_bounds_sync(reg); 2250 } 2251 2252 /* Mark a register as having a completely unknown (scalar) value. */ 2253 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2254 struct bpf_reg_state *reg) 2255 { 2256 /* 2257 * Clear type, off, and union(map_ptr, range) and 2258 * padding between 'type' and union 2259 */ 2260 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2261 reg->type = SCALAR_VALUE; 2262 reg->id = 0; 2263 reg->ref_obj_id = 0; 2264 reg->var_off = tnum_unknown; 2265 reg->frameno = 0; 2266 reg->precise = !env->bpf_capable; 2267 __mark_reg_unbounded(reg); 2268 } 2269 2270 static void mark_reg_unknown(struct bpf_verifier_env *env, 2271 struct bpf_reg_state *regs, u32 regno) 2272 { 2273 if (WARN_ON(regno >= MAX_BPF_REG)) { 2274 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2275 /* Something bad happened, let's kill all regs except FP */ 2276 for (regno = 0; regno < BPF_REG_FP; regno++) 2277 __mark_reg_not_init(env, regs + regno); 2278 return; 2279 } 2280 __mark_reg_unknown(env, regs + regno); 2281 } 2282 2283 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2284 struct bpf_reg_state *reg) 2285 { 2286 __mark_reg_unknown(env, reg); 2287 reg->type = NOT_INIT; 2288 } 2289 2290 static void mark_reg_not_init(struct bpf_verifier_env *env, 2291 struct bpf_reg_state *regs, u32 regno) 2292 { 2293 if (WARN_ON(regno >= MAX_BPF_REG)) { 2294 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2295 /* Something bad happened, let's kill all regs except FP */ 2296 for (regno = 0; regno < BPF_REG_FP; regno++) 2297 __mark_reg_not_init(env, regs + regno); 2298 return; 2299 } 2300 __mark_reg_not_init(env, regs + regno); 2301 } 2302 2303 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2304 struct bpf_reg_state *regs, u32 regno, 2305 enum bpf_reg_type reg_type, 2306 struct btf *btf, u32 btf_id, 2307 enum bpf_type_flag flag) 2308 { 2309 if (reg_type == SCALAR_VALUE) { 2310 mark_reg_unknown(env, regs, regno); 2311 return; 2312 } 2313 mark_reg_known_zero(env, regs, regno); 2314 regs[regno].type = PTR_TO_BTF_ID | flag; 2315 regs[regno].btf = btf; 2316 regs[regno].btf_id = btf_id; 2317 } 2318 2319 #define DEF_NOT_SUBREG (0) 2320 static void init_reg_state(struct bpf_verifier_env *env, 2321 struct bpf_func_state *state) 2322 { 2323 struct bpf_reg_state *regs = state->regs; 2324 int i; 2325 2326 for (i = 0; i < MAX_BPF_REG; i++) { 2327 mark_reg_not_init(env, regs, i); 2328 regs[i].live = REG_LIVE_NONE; 2329 regs[i].parent = NULL; 2330 regs[i].subreg_def = DEF_NOT_SUBREG; 2331 } 2332 2333 /* frame pointer */ 2334 regs[BPF_REG_FP].type = PTR_TO_STACK; 2335 mark_reg_known_zero(env, regs, BPF_REG_FP); 2336 regs[BPF_REG_FP].frameno = state->frameno; 2337 } 2338 2339 #define BPF_MAIN_FUNC (-1) 2340 static void init_func_state(struct bpf_verifier_env *env, 2341 struct bpf_func_state *state, 2342 int callsite, int frameno, int subprogno) 2343 { 2344 state->callsite = callsite; 2345 state->frameno = frameno; 2346 state->subprogno = subprogno; 2347 state->callback_ret_range = tnum_range(0, 0); 2348 init_reg_state(env, state); 2349 mark_verifier_state_scratched(env); 2350 } 2351 2352 /* Similar to push_stack(), but for async callbacks */ 2353 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2354 int insn_idx, int prev_insn_idx, 2355 int subprog) 2356 { 2357 struct bpf_verifier_stack_elem *elem; 2358 struct bpf_func_state *frame; 2359 2360 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2361 if (!elem) 2362 goto err; 2363 2364 elem->insn_idx = insn_idx; 2365 elem->prev_insn_idx = prev_insn_idx; 2366 elem->next = env->head; 2367 elem->log_pos = env->log.end_pos; 2368 env->head = elem; 2369 env->stack_size++; 2370 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2371 verbose(env, 2372 "The sequence of %d jumps is too complex for async cb.\n", 2373 env->stack_size); 2374 goto err; 2375 } 2376 /* Unlike push_stack() do not copy_verifier_state(). 2377 * The caller state doesn't matter. 2378 * This is async callback. It starts in a fresh stack. 2379 * Initialize it similar to do_check_common(). 2380 */ 2381 elem->st.branches = 1; 2382 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2383 if (!frame) 2384 goto err; 2385 init_func_state(env, frame, 2386 BPF_MAIN_FUNC /* callsite */, 2387 0 /* frameno within this callchain */, 2388 subprog /* subprog number within this prog */); 2389 elem->st.frame[0] = frame; 2390 return &elem->st; 2391 err: 2392 free_verifier_state(env->cur_state, true); 2393 env->cur_state = NULL; 2394 /* pop all elements and return */ 2395 while (!pop_stack(env, NULL, NULL, false)); 2396 return NULL; 2397 } 2398 2399 2400 enum reg_arg_type { 2401 SRC_OP, /* register is used as source operand */ 2402 DST_OP, /* register is used as destination operand */ 2403 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2404 }; 2405 2406 static int cmp_subprogs(const void *a, const void *b) 2407 { 2408 return ((struct bpf_subprog_info *)a)->start - 2409 ((struct bpf_subprog_info *)b)->start; 2410 } 2411 2412 static int find_subprog(struct bpf_verifier_env *env, int off) 2413 { 2414 struct bpf_subprog_info *p; 2415 2416 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2417 sizeof(env->subprog_info[0]), cmp_subprogs); 2418 if (!p) 2419 return -ENOENT; 2420 return p - env->subprog_info; 2421 2422 } 2423 2424 static int add_subprog(struct bpf_verifier_env *env, int off) 2425 { 2426 int insn_cnt = env->prog->len; 2427 int ret; 2428 2429 if (off >= insn_cnt || off < 0) { 2430 verbose(env, "call to invalid destination\n"); 2431 return -EINVAL; 2432 } 2433 ret = find_subprog(env, off); 2434 if (ret >= 0) 2435 return ret; 2436 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2437 verbose(env, "too many subprograms\n"); 2438 return -E2BIG; 2439 } 2440 /* determine subprog starts. The end is one before the next starts */ 2441 env->subprog_info[env->subprog_cnt++].start = off; 2442 sort(env->subprog_info, env->subprog_cnt, 2443 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2444 return env->subprog_cnt - 1; 2445 } 2446 2447 #define MAX_KFUNC_DESCS 256 2448 #define MAX_KFUNC_BTFS 256 2449 2450 struct bpf_kfunc_desc { 2451 struct btf_func_model func_model; 2452 u32 func_id; 2453 s32 imm; 2454 u16 offset; 2455 unsigned long addr; 2456 }; 2457 2458 struct bpf_kfunc_btf { 2459 struct btf *btf; 2460 struct module *module; 2461 u16 offset; 2462 }; 2463 2464 struct bpf_kfunc_desc_tab { 2465 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2466 * verification. JITs do lookups by bpf_insn, where func_id may not be 2467 * available, therefore at the end of verification do_misc_fixups() 2468 * sorts this by imm and offset. 2469 */ 2470 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2471 u32 nr_descs; 2472 }; 2473 2474 struct bpf_kfunc_btf_tab { 2475 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2476 u32 nr_descs; 2477 }; 2478 2479 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2480 { 2481 const struct bpf_kfunc_desc *d0 = a; 2482 const struct bpf_kfunc_desc *d1 = b; 2483 2484 /* func_id is not greater than BTF_MAX_TYPE */ 2485 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2486 } 2487 2488 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2489 { 2490 const struct bpf_kfunc_btf *d0 = a; 2491 const struct bpf_kfunc_btf *d1 = b; 2492 2493 return d0->offset - d1->offset; 2494 } 2495 2496 static const struct bpf_kfunc_desc * 2497 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2498 { 2499 struct bpf_kfunc_desc desc = { 2500 .func_id = func_id, 2501 .offset = offset, 2502 }; 2503 struct bpf_kfunc_desc_tab *tab; 2504 2505 tab = prog->aux->kfunc_tab; 2506 return bsearch(&desc, tab->descs, tab->nr_descs, 2507 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2508 } 2509 2510 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2511 u16 btf_fd_idx, u8 **func_addr) 2512 { 2513 const struct bpf_kfunc_desc *desc; 2514 2515 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2516 if (!desc) 2517 return -EFAULT; 2518 2519 *func_addr = (u8 *)desc->addr; 2520 return 0; 2521 } 2522 2523 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2524 s16 offset) 2525 { 2526 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2527 struct bpf_kfunc_btf_tab *tab; 2528 struct bpf_kfunc_btf *b; 2529 struct module *mod; 2530 struct btf *btf; 2531 int btf_fd; 2532 2533 tab = env->prog->aux->kfunc_btf_tab; 2534 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2535 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2536 if (!b) { 2537 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2538 verbose(env, "too many different module BTFs\n"); 2539 return ERR_PTR(-E2BIG); 2540 } 2541 2542 if (bpfptr_is_null(env->fd_array)) { 2543 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2544 return ERR_PTR(-EPROTO); 2545 } 2546 2547 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2548 offset * sizeof(btf_fd), 2549 sizeof(btf_fd))) 2550 return ERR_PTR(-EFAULT); 2551 2552 btf = btf_get_by_fd(btf_fd); 2553 if (IS_ERR(btf)) { 2554 verbose(env, "invalid module BTF fd specified\n"); 2555 return btf; 2556 } 2557 2558 if (!btf_is_module(btf)) { 2559 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2560 btf_put(btf); 2561 return ERR_PTR(-EINVAL); 2562 } 2563 2564 mod = btf_try_get_module(btf); 2565 if (!mod) { 2566 btf_put(btf); 2567 return ERR_PTR(-ENXIO); 2568 } 2569 2570 b = &tab->descs[tab->nr_descs++]; 2571 b->btf = btf; 2572 b->module = mod; 2573 b->offset = offset; 2574 2575 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2576 kfunc_btf_cmp_by_off, NULL); 2577 } 2578 return b->btf; 2579 } 2580 2581 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2582 { 2583 if (!tab) 2584 return; 2585 2586 while (tab->nr_descs--) { 2587 module_put(tab->descs[tab->nr_descs].module); 2588 btf_put(tab->descs[tab->nr_descs].btf); 2589 } 2590 kfree(tab); 2591 } 2592 2593 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2594 { 2595 if (offset) { 2596 if (offset < 0) { 2597 /* In the future, this can be allowed to increase limit 2598 * of fd index into fd_array, interpreted as u16. 2599 */ 2600 verbose(env, "negative offset disallowed for kernel module function call\n"); 2601 return ERR_PTR(-EINVAL); 2602 } 2603 2604 return __find_kfunc_desc_btf(env, offset); 2605 } 2606 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2607 } 2608 2609 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2610 { 2611 const struct btf_type *func, *func_proto; 2612 struct bpf_kfunc_btf_tab *btf_tab; 2613 struct bpf_kfunc_desc_tab *tab; 2614 struct bpf_prog_aux *prog_aux; 2615 struct bpf_kfunc_desc *desc; 2616 const char *func_name; 2617 struct btf *desc_btf; 2618 unsigned long call_imm; 2619 unsigned long addr; 2620 int err; 2621 2622 prog_aux = env->prog->aux; 2623 tab = prog_aux->kfunc_tab; 2624 btf_tab = prog_aux->kfunc_btf_tab; 2625 if (!tab) { 2626 if (!btf_vmlinux) { 2627 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2628 return -ENOTSUPP; 2629 } 2630 2631 if (!env->prog->jit_requested) { 2632 verbose(env, "JIT is required for calling kernel function\n"); 2633 return -ENOTSUPP; 2634 } 2635 2636 if (!bpf_jit_supports_kfunc_call()) { 2637 verbose(env, "JIT does not support calling kernel function\n"); 2638 return -ENOTSUPP; 2639 } 2640 2641 if (!env->prog->gpl_compatible) { 2642 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2643 return -EINVAL; 2644 } 2645 2646 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2647 if (!tab) 2648 return -ENOMEM; 2649 prog_aux->kfunc_tab = tab; 2650 } 2651 2652 /* func_id == 0 is always invalid, but instead of returning an error, be 2653 * conservative and wait until the code elimination pass before returning 2654 * error, so that invalid calls that get pruned out can be in BPF programs 2655 * loaded from userspace. It is also required that offset be untouched 2656 * for such calls. 2657 */ 2658 if (!func_id && !offset) 2659 return 0; 2660 2661 if (!btf_tab && offset) { 2662 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2663 if (!btf_tab) 2664 return -ENOMEM; 2665 prog_aux->kfunc_btf_tab = btf_tab; 2666 } 2667 2668 desc_btf = find_kfunc_desc_btf(env, offset); 2669 if (IS_ERR(desc_btf)) { 2670 verbose(env, "failed to find BTF for kernel function\n"); 2671 return PTR_ERR(desc_btf); 2672 } 2673 2674 if (find_kfunc_desc(env->prog, func_id, offset)) 2675 return 0; 2676 2677 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2678 verbose(env, "too many different kernel function calls\n"); 2679 return -E2BIG; 2680 } 2681 2682 func = btf_type_by_id(desc_btf, func_id); 2683 if (!func || !btf_type_is_func(func)) { 2684 verbose(env, "kernel btf_id %u is not a function\n", 2685 func_id); 2686 return -EINVAL; 2687 } 2688 func_proto = btf_type_by_id(desc_btf, func->type); 2689 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2690 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2691 func_id); 2692 return -EINVAL; 2693 } 2694 2695 func_name = btf_name_by_offset(desc_btf, func->name_off); 2696 addr = kallsyms_lookup_name(func_name); 2697 if (!addr) { 2698 verbose(env, "cannot find address for kernel function %s\n", 2699 func_name); 2700 return -EINVAL; 2701 } 2702 specialize_kfunc(env, func_id, offset, &addr); 2703 2704 if (bpf_jit_supports_far_kfunc_call()) { 2705 call_imm = func_id; 2706 } else { 2707 call_imm = BPF_CALL_IMM(addr); 2708 /* Check whether the relative offset overflows desc->imm */ 2709 if ((unsigned long)(s32)call_imm != call_imm) { 2710 verbose(env, "address of kernel function %s is out of range\n", 2711 func_name); 2712 return -EINVAL; 2713 } 2714 } 2715 2716 if (bpf_dev_bound_kfunc_id(func_id)) { 2717 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2718 if (err) 2719 return err; 2720 } 2721 2722 desc = &tab->descs[tab->nr_descs++]; 2723 desc->func_id = func_id; 2724 desc->imm = call_imm; 2725 desc->offset = offset; 2726 desc->addr = addr; 2727 err = btf_distill_func_proto(&env->log, desc_btf, 2728 func_proto, func_name, 2729 &desc->func_model); 2730 if (!err) 2731 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2732 kfunc_desc_cmp_by_id_off, NULL); 2733 return err; 2734 } 2735 2736 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2737 { 2738 const struct bpf_kfunc_desc *d0 = a; 2739 const struct bpf_kfunc_desc *d1 = b; 2740 2741 if (d0->imm != d1->imm) 2742 return d0->imm < d1->imm ? -1 : 1; 2743 if (d0->offset != d1->offset) 2744 return d0->offset < d1->offset ? -1 : 1; 2745 return 0; 2746 } 2747 2748 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2749 { 2750 struct bpf_kfunc_desc_tab *tab; 2751 2752 tab = prog->aux->kfunc_tab; 2753 if (!tab) 2754 return; 2755 2756 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2757 kfunc_desc_cmp_by_imm_off, NULL); 2758 } 2759 2760 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2761 { 2762 return !!prog->aux->kfunc_tab; 2763 } 2764 2765 const struct btf_func_model * 2766 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2767 const struct bpf_insn *insn) 2768 { 2769 const struct bpf_kfunc_desc desc = { 2770 .imm = insn->imm, 2771 .offset = insn->off, 2772 }; 2773 const struct bpf_kfunc_desc *res; 2774 struct bpf_kfunc_desc_tab *tab; 2775 2776 tab = prog->aux->kfunc_tab; 2777 res = bsearch(&desc, tab->descs, tab->nr_descs, 2778 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2779 2780 return res ? &res->func_model : NULL; 2781 } 2782 2783 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2784 { 2785 struct bpf_subprog_info *subprog = env->subprog_info; 2786 struct bpf_insn *insn = env->prog->insnsi; 2787 int i, ret, insn_cnt = env->prog->len; 2788 2789 /* Add entry function. */ 2790 ret = add_subprog(env, 0); 2791 if (ret) 2792 return ret; 2793 2794 for (i = 0; i < insn_cnt; i++, insn++) { 2795 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2796 !bpf_pseudo_kfunc_call(insn)) 2797 continue; 2798 2799 if (!env->bpf_capable) { 2800 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2801 return -EPERM; 2802 } 2803 2804 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2805 ret = add_subprog(env, i + insn->imm + 1); 2806 else 2807 ret = add_kfunc_call(env, insn->imm, insn->off); 2808 2809 if (ret < 0) 2810 return ret; 2811 } 2812 2813 /* Add a fake 'exit' subprog which could simplify subprog iteration 2814 * logic. 'subprog_cnt' should not be increased. 2815 */ 2816 subprog[env->subprog_cnt].start = insn_cnt; 2817 2818 if (env->log.level & BPF_LOG_LEVEL2) 2819 for (i = 0; i < env->subprog_cnt; i++) 2820 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2821 2822 return 0; 2823 } 2824 2825 static int check_subprogs(struct bpf_verifier_env *env) 2826 { 2827 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2828 struct bpf_subprog_info *subprog = env->subprog_info; 2829 struct bpf_insn *insn = env->prog->insnsi; 2830 int insn_cnt = env->prog->len; 2831 2832 /* now check that all jumps are within the same subprog */ 2833 subprog_start = subprog[cur_subprog].start; 2834 subprog_end = subprog[cur_subprog + 1].start; 2835 for (i = 0; i < insn_cnt; i++) { 2836 u8 code = insn[i].code; 2837 2838 if (code == (BPF_JMP | BPF_CALL) && 2839 insn[i].src_reg == 0 && 2840 insn[i].imm == BPF_FUNC_tail_call) 2841 subprog[cur_subprog].has_tail_call = true; 2842 if (BPF_CLASS(code) == BPF_LD && 2843 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2844 subprog[cur_subprog].has_ld_abs = true; 2845 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2846 goto next; 2847 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2848 goto next; 2849 off = i + insn[i].off + 1; 2850 if (off < subprog_start || off >= subprog_end) { 2851 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2852 return -EINVAL; 2853 } 2854 next: 2855 if (i == subprog_end - 1) { 2856 /* to avoid fall-through from one subprog into another 2857 * the last insn of the subprog should be either exit 2858 * or unconditional jump back 2859 */ 2860 if (code != (BPF_JMP | BPF_EXIT) && 2861 code != (BPF_JMP | BPF_JA)) { 2862 verbose(env, "last insn is not an exit or jmp\n"); 2863 return -EINVAL; 2864 } 2865 subprog_start = subprog_end; 2866 cur_subprog++; 2867 if (cur_subprog < env->subprog_cnt) 2868 subprog_end = subprog[cur_subprog + 1].start; 2869 } 2870 } 2871 return 0; 2872 } 2873 2874 /* Parentage chain of this register (or stack slot) should take care of all 2875 * issues like callee-saved registers, stack slot allocation time, etc. 2876 */ 2877 static int mark_reg_read(struct bpf_verifier_env *env, 2878 const struct bpf_reg_state *state, 2879 struct bpf_reg_state *parent, u8 flag) 2880 { 2881 bool writes = parent == state->parent; /* Observe write marks */ 2882 int cnt = 0; 2883 2884 while (parent) { 2885 /* if read wasn't screened by an earlier write ... */ 2886 if (writes && state->live & REG_LIVE_WRITTEN) 2887 break; 2888 if (parent->live & REG_LIVE_DONE) { 2889 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2890 reg_type_str(env, parent->type), 2891 parent->var_off.value, parent->off); 2892 return -EFAULT; 2893 } 2894 /* The first condition is more likely to be true than the 2895 * second, checked it first. 2896 */ 2897 if ((parent->live & REG_LIVE_READ) == flag || 2898 parent->live & REG_LIVE_READ64) 2899 /* The parentage chain never changes and 2900 * this parent was already marked as LIVE_READ. 2901 * There is no need to keep walking the chain again and 2902 * keep re-marking all parents as LIVE_READ. 2903 * This case happens when the same register is read 2904 * multiple times without writes into it in-between. 2905 * Also, if parent has the stronger REG_LIVE_READ64 set, 2906 * then no need to set the weak REG_LIVE_READ32. 2907 */ 2908 break; 2909 /* ... then we depend on parent's value */ 2910 parent->live |= flag; 2911 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2912 if (flag == REG_LIVE_READ64) 2913 parent->live &= ~REG_LIVE_READ32; 2914 state = parent; 2915 parent = state->parent; 2916 writes = true; 2917 cnt++; 2918 } 2919 2920 if (env->longest_mark_read_walk < cnt) 2921 env->longest_mark_read_walk = cnt; 2922 return 0; 2923 } 2924 2925 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2926 { 2927 struct bpf_func_state *state = func(env, reg); 2928 int spi, ret; 2929 2930 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2931 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2932 * check_kfunc_call. 2933 */ 2934 if (reg->type == CONST_PTR_TO_DYNPTR) 2935 return 0; 2936 spi = dynptr_get_spi(env, reg); 2937 if (spi < 0) 2938 return spi; 2939 /* Caller ensures dynptr is valid and initialized, which means spi is in 2940 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2941 * read. 2942 */ 2943 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2944 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2945 if (ret) 2946 return ret; 2947 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2948 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2949 } 2950 2951 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2952 int spi, int nr_slots) 2953 { 2954 struct bpf_func_state *state = func(env, reg); 2955 int err, i; 2956 2957 for (i = 0; i < nr_slots; i++) { 2958 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2959 2960 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2961 if (err) 2962 return err; 2963 2964 mark_stack_slot_scratched(env, spi - i); 2965 } 2966 2967 return 0; 2968 } 2969 2970 /* This function is supposed to be used by the following 32-bit optimization 2971 * code only. It returns TRUE if the source or destination register operates 2972 * on 64-bit, otherwise return FALSE. 2973 */ 2974 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2975 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2976 { 2977 u8 code, class, op; 2978 2979 code = insn->code; 2980 class = BPF_CLASS(code); 2981 op = BPF_OP(code); 2982 if (class == BPF_JMP) { 2983 /* BPF_EXIT for "main" will reach here. Return TRUE 2984 * conservatively. 2985 */ 2986 if (op == BPF_EXIT) 2987 return true; 2988 if (op == BPF_CALL) { 2989 /* BPF to BPF call will reach here because of marking 2990 * caller saved clobber with DST_OP_NO_MARK for which we 2991 * don't care the register def because they are anyway 2992 * marked as NOT_INIT already. 2993 */ 2994 if (insn->src_reg == BPF_PSEUDO_CALL) 2995 return false; 2996 /* Helper call will reach here because of arg type 2997 * check, conservatively return TRUE. 2998 */ 2999 if (t == SRC_OP) 3000 return true; 3001 3002 return false; 3003 } 3004 } 3005 3006 if (class == BPF_ALU64 || class == BPF_JMP || 3007 /* BPF_END always use BPF_ALU class. */ 3008 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3009 return true; 3010 3011 if (class == BPF_ALU || class == BPF_JMP32) 3012 return false; 3013 3014 if (class == BPF_LDX) { 3015 if (t != SRC_OP) 3016 return BPF_SIZE(code) == BPF_DW; 3017 /* LDX source must be ptr. */ 3018 return true; 3019 } 3020 3021 if (class == BPF_STX) { 3022 /* BPF_STX (including atomic variants) has multiple source 3023 * operands, one of which is a ptr. Check whether the caller is 3024 * asking about it. 3025 */ 3026 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3027 return true; 3028 return BPF_SIZE(code) == BPF_DW; 3029 } 3030 3031 if (class == BPF_LD) { 3032 u8 mode = BPF_MODE(code); 3033 3034 /* LD_IMM64 */ 3035 if (mode == BPF_IMM) 3036 return true; 3037 3038 /* Both LD_IND and LD_ABS return 32-bit data. */ 3039 if (t != SRC_OP) 3040 return false; 3041 3042 /* Implicit ctx ptr. */ 3043 if (regno == BPF_REG_6) 3044 return true; 3045 3046 /* Explicit source could be any width. */ 3047 return true; 3048 } 3049 3050 if (class == BPF_ST) 3051 /* The only source register for BPF_ST is a ptr. */ 3052 return true; 3053 3054 /* Conservatively return true at default. */ 3055 return true; 3056 } 3057 3058 /* Return the regno defined by the insn, or -1. */ 3059 static int insn_def_regno(const struct bpf_insn *insn) 3060 { 3061 switch (BPF_CLASS(insn->code)) { 3062 case BPF_JMP: 3063 case BPF_JMP32: 3064 case BPF_ST: 3065 return -1; 3066 case BPF_STX: 3067 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3068 (insn->imm & BPF_FETCH)) { 3069 if (insn->imm == BPF_CMPXCHG) 3070 return BPF_REG_0; 3071 else 3072 return insn->src_reg; 3073 } else { 3074 return -1; 3075 } 3076 default: 3077 return insn->dst_reg; 3078 } 3079 } 3080 3081 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3082 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3083 { 3084 int dst_reg = insn_def_regno(insn); 3085 3086 if (dst_reg == -1) 3087 return false; 3088 3089 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3090 } 3091 3092 static void mark_insn_zext(struct bpf_verifier_env *env, 3093 struct bpf_reg_state *reg) 3094 { 3095 s32 def_idx = reg->subreg_def; 3096 3097 if (def_idx == DEF_NOT_SUBREG) 3098 return; 3099 3100 env->insn_aux_data[def_idx - 1].zext_dst = true; 3101 /* The dst will be zero extended, so won't be sub-register anymore. */ 3102 reg->subreg_def = DEF_NOT_SUBREG; 3103 } 3104 3105 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3106 enum reg_arg_type t) 3107 { 3108 struct bpf_verifier_state *vstate = env->cur_state; 3109 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3110 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3111 struct bpf_reg_state *reg, *regs = state->regs; 3112 bool rw64; 3113 3114 if (regno >= MAX_BPF_REG) { 3115 verbose(env, "R%d is invalid\n", regno); 3116 return -EINVAL; 3117 } 3118 3119 mark_reg_scratched(env, regno); 3120 3121 reg = ®s[regno]; 3122 rw64 = is_reg64(env, insn, regno, reg, t); 3123 if (t == SRC_OP) { 3124 /* check whether register used as source operand can be read */ 3125 if (reg->type == NOT_INIT) { 3126 verbose(env, "R%d !read_ok\n", regno); 3127 return -EACCES; 3128 } 3129 /* We don't need to worry about FP liveness because it's read-only */ 3130 if (regno == BPF_REG_FP) 3131 return 0; 3132 3133 if (rw64) 3134 mark_insn_zext(env, reg); 3135 3136 return mark_reg_read(env, reg, reg->parent, 3137 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3138 } else { 3139 /* check whether register used as dest operand can be written to */ 3140 if (regno == BPF_REG_FP) { 3141 verbose(env, "frame pointer is read only\n"); 3142 return -EACCES; 3143 } 3144 reg->live |= REG_LIVE_WRITTEN; 3145 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3146 if (t == DST_OP) 3147 mark_reg_unknown(env, regs, regno); 3148 } 3149 return 0; 3150 } 3151 3152 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3153 { 3154 env->insn_aux_data[idx].jmp_point = true; 3155 } 3156 3157 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3158 { 3159 return env->insn_aux_data[insn_idx].jmp_point; 3160 } 3161 3162 /* for any branch, call, exit record the history of jmps in the given state */ 3163 static int push_jmp_history(struct bpf_verifier_env *env, 3164 struct bpf_verifier_state *cur) 3165 { 3166 u32 cnt = cur->jmp_history_cnt; 3167 struct bpf_idx_pair *p; 3168 size_t alloc_size; 3169 3170 if (!is_jmp_point(env, env->insn_idx)) 3171 return 0; 3172 3173 cnt++; 3174 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3175 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3176 if (!p) 3177 return -ENOMEM; 3178 p[cnt - 1].idx = env->insn_idx; 3179 p[cnt - 1].prev_idx = env->prev_insn_idx; 3180 cur->jmp_history = p; 3181 cur->jmp_history_cnt = cnt; 3182 return 0; 3183 } 3184 3185 /* Backtrack one insn at a time. If idx is not at the top of recorded 3186 * history then previous instruction came from straight line execution. 3187 */ 3188 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3189 u32 *history) 3190 { 3191 u32 cnt = *history; 3192 3193 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3194 i = st->jmp_history[cnt - 1].prev_idx; 3195 (*history)--; 3196 } else { 3197 i--; 3198 } 3199 return i; 3200 } 3201 3202 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3203 { 3204 const struct btf_type *func; 3205 struct btf *desc_btf; 3206 3207 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3208 return NULL; 3209 3210 desc_btf = find_kfunc_desc_btf(data, insn->off); 3211 if (IS_ERR(desc_btf)) 3212 return "<error>"; 3213 3214 func = btf_type_by_id(desc_btf, insn->imm); 3215 return btf_name_by_offset(desc_btf, func->name_off); 3216 } 3217 3218 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3219 { 3220 bt->frame = frame; 3221 } 3222 3223 static inline void bt_reset(struct backtrack_state *bt) 3224 { 3225 struct bpf_verifier_env *env = bt->env; 3226 3227 memset(bt, 0, sizeof(*bt)); 3228 bt->env = env; 3229 } 3230 3231 static inline u32 bt_empty(struct backtrack_state *bt) 3232 { 3233 u64 mask = 0; 3234 int i; 3235 3236 for (i = 0; i <= bt->frame; i++) 3237 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3238 3239 return mask == 0; 3240 } 3241 3242 static inline int bt_subprog_enter(struct backtrack_state *bt) 3243 { 3244 if (bt->frame == MAX_CALL_FRAMES - 1) { 3245 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3246 WARN_ONCE(1, "verifier backtracking bug"); 3247 return -EFAULT; 3248 } 3249 bt->frame++; 3250 return 0; 3251 } 3252 3253 static inline int bt_subprog_exit(struct backtrack_state *bt) 3254 { 3255 if (bt->frame == 0) { 3256 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3257 WARN_ONCE(1, "verifier backtracking bug"); 3258 return -EFAULT; 3259 } 3260 bt->frame--; 3261 return 0; 3262 } 3263 3264 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3265 { 3266 bt->reg_masks[frame] |= 1 << reg; 3267 } 3268 3269 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3270 { 3271 bt->reg_masks[frame] &= ~(1 << reg); 3272 } 3273 3274 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3275 { 3276 bt_set_frame_reg(bt, bt->frame, reg); 3277 } 3278 3279 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3280 { 3281 bt_clear_frame_reg(bt, bt->frame, reg); 3282 } 3283 3284 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3285 { 3286 bt->stack_masks[frame] |= 1ull << slot; 3287 } 3288 3289 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3290 { 3291 bt->stack_masks[frame] &= ~(1ull << slot); 3292 } 3293 3294 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3295 { 3296 bt_set_frame_slot(bt, bt->frame, slot); 3297 } 3298 3299 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3300 { 3301 bt_clear_frame_slot(bt, bt->frame, slot); 3302 } 3303 3304 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3305 { 3306 return bt->reg_masks[frame]; 3307 } 3308 3309 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3310 { 3311 return bt->reg_masks[bt->frame]; 3312 } 3313 3314 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3315 { 3316 return bt->stack_masks[frame]; 3317 } 3318 3319 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3320 { 3321 return bt->stack_masks[bt->frame]; 3322 } 3323 3324 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3325 { 3326 return bt->reg_masks[bt->frame] & (1 << reg); 3327 } 3328 3329 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3330 { 3331 return bt->stack_masks[bt->frame] & (1ull << slot); 3332 } 3333 3334 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3335 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3336 { 3337 DECLARE_BITMAP(mask, 64); 3338 bool first = true; 3339 int i, n; 3340 3341 buf[0] = '\0'; 3342 3343 bitmap_from_u64(mask, reg_mask); 3344 for_each_set_bit(i, mask, 32) { 3345 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3346 first = false; 3347 buf += n; 3348 buf_sz -= n; 3349 if (buf_sz < 0) 3350 break; 3351 } 3352 } 3353 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3354 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3355 { 3356 DECLARE_BITMAP(mask, 64); 3357 bool first = true; 3358 int i, n; 3359 3360 buf[0] = '\0'; 3361 3362 bitmap_from_u64(mask, stack_mask); 3363 for_each_set_bit(i, mask, 64) { 3364 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3365 first = false; 3366 buf += n; 3367 buf_sz -= n; 3368 if (buf_sz < 0) 3369 break; 3370 } 3371 } 3372 3373 /* For given verifier state backtrack_insn() is called from the last insn to 3374 * the first insn. Its purpose is to compute a bitmask of registers and 3375 * stack slots that needs precision in the parent verifier state. 3376 * 3377 * @idx is an index of the instruction we are currently processing; 3378 * @subseq_idx is an index of the subsequent instruction that: 3379 * - *would be* executed next, if jump history is viewed in forward order; 3380 * - *was* processed previously during backtracking. 3381 */ 3382 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3383 struct backtrack_state *bt) 3384 { 3385 const struct bpf_insn_cbs cbs = { 3386 .cb_call = disasm_kfunc_name, 3387 .cb_print = verbose, 3388 .private_data = env, 3389 }; 3390 struct bpf_insn *insn = env->prog->insnsi + idx; 3391 u8 class = BPF_CLASS(insn->code); 3392 u8 opcode = BPF_OP(insn->code); 3393 u8 mode = BPF_MODE(insn->code); 3394 u32 dreg = insn->dst_reg; 3395 u32 sreg = insn->src_reg; 3396 u32 spi, i; 3397 3398 if (insn->code == 0) 3399 return 0; 3400 if (env->log.level & BPF_LOG_LEVEL2) { 3401 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3402 verbose(env, "mark_precise: frame%d: regs=%s ", 3403 bt->frame, env->tmp_str_buf); 3404 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3405 verbose(env, "stack=%s before ", env->tmp_str_buf); 3406 verbose(env, "%d: ", idx); 3407 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3408 } 3409 3410 if (class == BPF_ALU || class == BPF_ALU64) { 3411 if (!bt_is_reg_set(bt, dreg)) 3412 return 0; 3413 if (opcode == BPF_MOV) { 3414 if (BPF_SRC(insn->code) == BPF_X) { 3415 /* dreg = sreg 3416 * dreg needs precision after this insn 3417 * sreg needs precision before this insn 3418 */ 3419 bt_clear_reg(bt, dreg); 3420 bt_set_reg(bt, sreg); 3421 } else { 3422 /* dreg = K 3423 * dreg needs precision after this insn. 3424 * Corresponding register is already marked 3425 * as precise=true in this verifier state. 3426 * No further markings in parent are necessary 3427 */ 3428 bt_clear_reg(bt, dreg); 3429 } 3430 } else { 3431 if (BPF_SRC(insn->code) == BPF_X) { 3432 /* dreg += sreg 3433 * both dreg and sreg need precision 3434 * before this insn 3435 */ 3436 bt_set_reg(bt, sreg); 3437 } /* else dreg += K 3438 * dreg still needs precision before this insn 3439 */ 3440 } 3441 } else if (class == BPF_LDX) { 3442 if (!bt_is_reg_set(bt, dreg)) 3443 return 0; 3444 bt_clear_reg(bt, dreg); 3445 3446 /* scalars can only be spilled into stack w/o losing precision. 3447 * Load from any other memory can be zero extended. 3448 * The desire to keep that precision is already indicated 3449 * by 'precise' mark in corresponding register of this state. 3450 * No further tracking necessary. 3451 */ 3452 if (insn->src_reg != BPF_REG_FP) 3453 return 0; 3454 3455 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3456 * that [fp - off] slot contains scalar that needs to be 3457 * tracked with precision 3458 */ 3459 spi = (-insn->off - 1) / BPF_REG_SIZE; 3460 if (spi >= 64) { 3461 verbose(env, "BUG spi %d\n", spi); 3462 WARN_ONCE(1, "verifier backtracking bug"); 3463 return -EFAULT; 3464 } 3465 bt_set_slot(bt, spi); 3466 } else if (class == BPF_STX || class == BPF_ST) { 3467 if (bt_is_reg_set(bt, dreg)) 3468 /* stx & st shouldn't be using _scalar_ dst_reg 3469 * to access memory. It means backtracking 3470 * encountered a case of pointer subtraction. 3471 */ 3472 return -ENOTSUPP; 3473 /* scalars can only be spilled into stack */ 3474 if (insn->dst_reg != BPF_REG_FP) 3475 return 0; 3476 spi = (-insn->off - 1) / BPF_REG_SIZE; 3477 if (spi >= 64) { 3478 verbose(env, "BUG spi %d\n", spi); 3479 WARN_ONCE(1, "verifier backtracking bug"); 3480 return -EFAULT; 3481 } 3482 if (!bt_is_slot_set(bt, spi)) 3483 return 0; 3484 bt_clear_slot(bt, spi); 3485 if (class == BPF_STX) 3486 bt_set_reg(bt, sreg); 3487 } else if (class == BPF_JMP || class == BPF_JMP32) { 3488 if (bpf_pseudo_call(insn)) { 3489 int subprog_insn_idx, subprog; 3490 3491 subprog_insn_idx = idx + insn->imm + 1; 3492 subprog = find_subprog(env, subprog_insn_idx); 3493 if (subprog < 0) 3494 return -EFAULT; 3495 3496 if (subprog_is_global(env, subprog)) { 3497 /* check that jump history doesn't have any 3498 * extra instructions from subprog; the next 3499 * instruction after call to global subprog 3500 * should be literally next instruction in 3501 * caller program 3502 */ 3503 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3504 /* r1-r5 are invalidated after subprog call, 3505 * so for global func call it shouldn't be set 3506 * anymore 3507 */ 3508 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3509 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3510 WARN_ONCE(1, "verifier backtracking bug"); 3511 return -EFAULT; 3512 } 3513 /* global subprog always sets R0 */ 3514 bt_clear_reg(bt, BPF_REG_0); 3515 return 0; 3516 } else { 3517 /* static subprog call instruction, which 3518 * means that we are exiting current subprog, 3519 * so only r1-r5 could be still requested as 3520 * precise, r0 and r6-r10 or any stack slot in 3521 * the current frame should be zero by now 3522 */ 3523 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3524 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3525 WARN_ONCE(1, "verifier backtracking bug"); 3526 return -EFAULT; 3527 } 3528 /* we don't track register spills perfectly, 3529 * so fallback to force-precise instead of failing */ 3530 if (bt_stack_mask(bt) != 0) 3531 return -ENOTSUPP; 3532 /* propagate r1-r5 to the caller */ 3533 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3534 if (bt_is_reg_set(bt, i)) { 3535 bt_clear_reg(bt, i); 3536 bt_set_frame_reg(bt, bt->frame - 1, i); 3537 } 3538 } 3539 if (bt_subprog_exit(bt)) 3540 return -EFAULT; 3541 return 0; 3542 } 3543 } else if ((bpf_helper_call(insn) && 3544 is_callback_calling_function(insn->imm) && 3545 !is_async_callback_calling_function(insn->imm)) || 3546 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3547 /* callback-calling helper or kfunc call, which means 3548 * we are exiting from subprog, but unlike the subprog 3549 * call handling above, we shouldn't propagate 3550 * precision of r1-r5 (if any requested), as they are 3551 * not actually arguments passed directly to callback 3552 * subprogs 3553 */ 3554 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3555 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3556 WARN_ONCE(1, "verifier backtracking bug"); 3557 return -EFAULT; 3558 } 3559 if (bt_stack_mask(bt) != 0) 3560 return -ENOTSUPP; 3561 /* clear r1-r5 in callback subprog's mask */ 3562 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3563 bt_clear_reg(bt, i); 3564 if (bt_subprog_exit(bt)) 3565 return -EFAULT; 3566 return 0; 3567 } else if (opcode == BPF_CALL) { 3568 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3569 * catch this error later. Make backtracking conservative 3570 * with ENOTSUPP. 3571 */ 3572 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3573 return -ENOTSUPP; 3574 /* regular helper call sets R0 */ 3575 bt_clear_reg(bt, BPF_REG_0); 3576 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3577 /* if backtracing was looking for registers R1-R5 3578 * they should have been found already. 3579 */ 3580 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3581 WARN_ONCE(1, "verifier backtracking bug"); 3582 return -EFAULT; 3583 } 3584 } else if (opcode == BPF_EXIT) { 3585 bool r0_precise; 3586 3587 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3588 /* if backtracing was looking for registers R1-R5 3589 * they should have been found already. 3590 */ 3591 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3592 WARN_ONCE(1, "verifier backtracking bug"); 3593 return -EFAULT; 3594 } 3595 3596 /* BPF_EXIT in subprog or callback always returns 3597 * right after the call instruction, so by checking 3598 * whether the instruction at subseq_idx-1 is subprog 3599 * call or not we can distinguish actual exit from 3600 * *subprog* from exit from *callback*. In the former 3601 * case, we need to propagate r0 precision, if 3602 * necessary. In the former we never do that. 3603 */ 3604 r0_precise = subseq_idx - 1 >= 0 && 3605 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3606 bt_is_reg_set(bt, BPF_REG_0); 3607 3608 bt_clear_reg(bt, BPF_REG_0); 3609 if (bt_subprog_enter(bt)) 3610 return -EFAULT; 3611 3612 if (r0_precise) 3613 bt_set_reg(bt, BPF_REG_0); 3614 /* r6-r9 and stack slots will stay set in caller frame 3615 * bitmasks until we return back from callee(s) 3616 */ 3617 return 0; 3618 } else if (BPF_SRC(insn->code) == BPF_X) { 3619 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3620 return 0; 3621 /* dreg <cond> sreg 3622 * Both dreg and sreg need precision before 3623 * this insn. If only sreg was marked precise 3624 * before it would be equally necessary to 3625 * propagate it to dreg. 3626 */ 3627 bt_set_reg(bt, dreg); 3628 bt_set_reg(bt, sreg); 3629 /* else dreg <cond> K 3630 * Only dreg still needs precision before 3631 * this insn, so for the K-based conditional 3632 * there is nothing new to be marked. 3633 */ 3634 } 3635 } else if (class == BPF_LD) { 3636 if (!bt_is_reg_set(bt, dreg)) 3637 return 0; 3638 bt_clear_reg(bt, dreg); 3639 /* It's ld_imm64 or ld_abs or ld_ind. 3640 * For ld_imm64 no further tracking of precision 3641 * into parent is necessary 3642 */ 3643 if (mode == BPF_IND || mode == BPF_ABS) 3644 /* to be analyzed */ 3645 return -ENOTSUPP; 3646 } 3647 return 0; 3648 } 3649 3650 /* the scalar precision tracking algorithm: 3651 * . at the start all registers have precise=false. 3652 * . scalar ranges are tracked as normal through alu and jmp insns. 3653 * . once precise value of the scalar register is used in: 3654 * . ptr + scalar alu 3655 * . if (scalar cond K|scalar) 3656 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3657 * backtrack through the verifier states and mark all registers and 3658 * stack slots with spilled constants that these scalar regisers 3659 * should be precise. 3660 * . during state pruning two registers (or spilled stack slots) 3661 * are equivalent if both are not precise. 3662 * 3663 * Note the verifier cannot simply walk register parentage chain, 3664 * since many different registers and stack slots could have been 3665 * used to compute single precise scalar. 3666 * 3667 * The approach of starting with precise=true for all registers and then 3668 * backtrack to mark a register as not precise when the verifier detects 3669 * that program doesn't care about specific value (e.g., when helper 3670 * takes register as ARG_ANYTHING parameter) is not safe. 3671 * 3672 * It's ok to walk single parentage chain of the verifier states. 3673 * It's possible that this backtracking will go all the way till 1st insn. 3674 * All other branches will be explored for needing precision later. 3675 * 3676 * The backtracking needs to deal with cases like: 3677 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3678 * r9 -= r8 3679 * r5 = r9 3680 * if r5 > 0x79f goto pc+7 3681 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3682 * r5 += 1 3683 * ... 3684 * call bpf_perf_event_output#25 3685 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3686 * 3687 * and this case: 3688 * r6 = 1 3689 * call foo // uses callee's r6 inside to compute r0 3690 * r0 += r6 3691 * if r0 == 0 goto 3692 * 3693 * to track above reg_mask/stack_mask needs to be independent for each frame. 3694 * 3695 * Also if parent's curframe > frame where backtracking started, 3696 * the verifier need to mark registers in both frames, otherwise callees 3697 * may incorrectly prune callers. This is similar to 3698 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3699 * 3700 * For now backtracking falls back into conservative marking. 3701 */ 3702 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3703 struct bpf_verifier_state *st) 3704 { 3705 struct bpf_func_state *func; 3706 struct bpf_reg_state *reg; 3707 int i, j; 3708 3709 if (env->log.level & BPF_LOG_LEVEL2) { 3710 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3711 st->curframe); 3712 } 3713 3714 /* big hammer: mark all scalars precise in this path. 3715 * pop_stack may still get !precise scalars. 3716 * We also skip current state and go straight to first parent state, 3717 * because precision markings in current non-checkpointed state are 3718 * not needed. See why in the comment in __mark_chain_precision below. 3719 */ 3720 for (st = st->parent; st; st = st->parent) { 3721 for (i = 0; i <= st->curframe; i++) { 3722 func = st->frame[i]; 3723 for (j = 0; j < BPF_REG_FP; j++) { 3724 reg = &func->regs[j]; 3725 if (reg->type != SCALAR_VALUE || reg->precise) 3726 continue; 3727 reg->precise = true; 3728 if (env->log.level & BPF_LOG_LEVEL2) { 3729 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3730 i, j); 3731 } 3732 } 3733 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3734 if (!is_spilled_reg(&func->stack[j])) 3735 continue; 3736 reg = &func->stack[j].spilled_ptr; 3737 if (reg->type != SCALAR_VALUE || reg->precise) 3738 continue; 3739 reg->precise = true; 3740 if (env->log.level & BPF_LOG_LEVEL2) { 3741 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3742 i, -(j + 1) * 8); 3743 } 3744 } 3745 } 3746 } 3747 } 3748 3749 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3750 { 3751 struct bpf_func_state *func; 3752 struct bpf_reg_state *reg; 3753 int i, j; 3754 3755 for (i = 0; i <= st->curframe; i++) { 3756 func = st->frame[i]; 3757 for (j = 0; j < BPF_REG_FP; j++) { 3758 reg = &func->regs[j]; 3759 if (reg->type != SCALAR_VALUE) 3760 continue; 3761 reg->precise = false; 3762 } 3763 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3764 if (!is_spilled_reg(&func->stack[j])) 3765 continue; 3766 reg = &func->stack[j].spilled_ptr; 3767 if (reg->type != SCALAR_VALUE) 3768 continue; 3769 reg->precise = false; 3770 } 3771 } 3772 } 3773 3774 /* 3775 * __mark_chain_precision() backtracks BPF program instruction sequence and 3776 * chain of verifier states making sure that register *regno* (if regno >= 0) 3777 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3778 * SCALARS, as well as any other registers and slots that contribute to 3779 * a tracked state of given registers/stack slots, depending on specific BPF 3780 * assembly instructions (see backtrack_insns() for exact instruction handling 3781 * logic). This backtracking relies on recorded jmp_history and is able to 3782 * traverse entire chain of parent states. This process ends only when all the 3783 * necessary registers/slots and their transitive dependencies are marked as 3784 * precise. 3785 * 3786 * One important and subtle aspect is that precise marks *do not matter* in 3787 * the currently verified state (current state). It is important to understand 3788 * why this is the case. 3789 * 3790 * First, note that current state is the state that is not yet "checkpointed", 3791 * i.e., it is not yet put into env->explored_states, and it has no children 3792 * states as well. It's ephemeral, and can end up either a) being discarded if 3793 * compatible explored state is found at some point or BPF_EXIT instruction is 3794 * reached or b) checkpointed and put into env->explored_states, branching out 3795 * into one or more children states. 3796 * 3797 * In the former case, precise markings in current state are completely 3798 * ignored by state comparison code (see regsafe() for details). Only 3799 * checkpointed ("old") state precise markings are important, and if old 3800 * state's register/slot is precise, regsafe() assumes current state's 3801 * register/slot as precise and checks value ranges exactly and precisely. If 3802 * states turn out to be compatible, current state's necessary precise 3803 * markings and any required parent states' precise markings are enforced 3804 * after the fact with propagate_precision() logic, after the fact. But it's 3805 * important to realize that in this case, even after marking current state 3806 * registers/slots as precise, we immediately discard current state. So what 3807 * actually matters is any of the precise markings propagated into current 3808 * state's parent states, which are always checkpointed (due to b) case above). 3809 * As such, for scenario a) it doesn't matter if current state has precise 3810 * markings set or not. 3811 * 3812 * Now, for the scenario b), checkpointing and forking into child(ren) 3813 * state(s). Note that before current state gets to checkpointing step, any 3814 * processed instruction always assumes precise SCALAR register/slot 3815 * knowledge: if precise value or range is useful to prune jump branch, BPF 3816 * verifier takes this opportunity enthusiastically. Similarly, when 3817 * register's value is used to calculate offset or memory address, exact 3818 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3819 * what we mentioned above about state comparison ignoring precise markings 3820 * during state comparison, BPF verifier ignores and also assumes precise 3821 * markings *at will* during instruction verification process. But as verifier 3822 * assumes precision, it also propagates any precision dependencies across 3823 * parent states, which are not yet finalized, so can be further restricted 3824 * based on new knowledge gained from restrictions enforced by their children 3825 * states. This is so that once those parent states are finalized, i.e., when 3826 * they have no more active children state, state comparison logic in 3827 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3828 * required for correctness. 3829 * 3830 * To build a bit more intuition, note also that once a state is checkpointed, 3831 * the path we took to get to that state is not important. This is crucial 3832 * property for state pruning. When state is checkpointed and finalized at 3833 * some instruction index, it can be correctly and safely used to "short 3834 * circuit" any *compatible* state that reaches exactly the same instruction 3835 * index. I.e., if we jumped to that instruction from a completely different 3836 * code path than original finalized state was derived from, it doesn't 3837 * matter, current state can be discarded because from that instruction 3838 * forward having a compatible state will ensure we will safely reach the 3839 * exit. States describe preconditions for further exploration, but completely 3840 * forget the history of how we got here. 3841 * 3842 * This also means that even if we needed precise SCALAR range to get to 3843 * finalized state, but from that point forward *that same* SCALAR register is 3844 * never used in a precise context (i.e., it's precise value is not needed for 3845 * correctness), it's correct and safe to mark such register as "imprecise" 3846 * (i.e., precise marking set to false). This is what we rely on when we do 3847 * not set precise marking in current state. If no child state requires 3848 * precision for any given SCALAR register, it's safe to dictate that it can 3849 * be imprecise. If any child state does require this register to be precise, 3850 * we'll mark it precise later retroactively during precise markings 3851 * propagation from child state to parent states. 3852 * 3853 * Skipping precise marking setting in current state is a mild version of 3854 * relying on the above observation. But we can utilize this property even 3855 * more aggressively by proactively forgetting any precise marking in the 3856 * current state (which we inherited from the parent state), right before we 3857 * checkpoint it and branch off into new child state. This is done by 3858 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3859 * finalized states which help in short circuiting more future states. 3860 */ 3861 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3862 { 3863 struct backtrack_state *bt = &env->bt; 3864 struct bpf_verifier_state *st = env->cur_state; 3865 int first_idx = st->first_insn_idx; 3866 int last_idx = env->insn_idx; 3867 int subseq_idx = -1; 3868 struct bpf_func_state *func; 3869 struct bpf_reg_state *reg; 3870 bool skip_first = true; 3871 int i, fr, err; 3872 3873 if (!env->bpf_capable) 3874 return 0; 3875 3876 /* set frame number from which we are starting to backtrack */ 3877 bt_init(bt, env->cur_state->curframe); 3878 3879 /* Do sanity checks against current state of register and/or stack 3880 * slot, but don't set precise flag in current state, as precision 3881 * tracking in the current state is unnecessary. 3882 */ 3883 func = st->frame[bt->frame]; 3884 if (regno >= 0) { 3885 reg = &func->regs[regno]; 3886 if (reg->type != SCALAR_VALUE) { 3887 WARN_ONCE(1, "backtracing misuse"); 3888 return -EFAULT; 3889 } 3890 bt_set_reg(bt, regno); 3891 } 3892 3893 if (bt_empty(bt)) 3894 return 0; 3895 3896 for (;;) { 3897 DECLARE_BITMAP(mask, 64); 3898 u32 history = st->jmp_history_cnt; 3899 3900 if (env->log.level & BPF_LOG_LEVEL2) { 3901 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 3902 bt->frame, last_idx, first_idx, subseq_idx); 3903 } 3904 3905 if (last_idx < 0) { 3906 /* we are at the entry into subprog, which 3907 * is expected for global funcs, but only if 3908 * requested precise registers are R1-R5 3909 * (which are global func's input arguments) 3910 */ 3911 if (st->curframe == 0 && 3912 st->frame[0]->subprogno > 0 && 3913 st->frame[0]->callsite == BPF_MAIN_FUNC && 3914 bt_stack_mask(bt) == 0 && 3915 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 3916 bitmap_from_u64(mask, bt_reg_mask(bt)); 3917 for_each_set_bit(i, mask, 32) { 3918 reg = &st->frame[0]->regs[i]; 3919 if (reg->type != SCALAR_VALUE) { 3920 bt_clear_reg(bt, i); 3921 continue; 3922 } 3923 reg->precise = true; 3924 } 3925 return 0; 3926 } 3927 3928 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 3929 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 3930 WARN_ONCE(1, "verifier backtracking bug"); 3931 return -EFAULT; 3932 } 3933 3934 for (i = last_idx;;) { 3935 if (skip_first) { 3936 err = 0; 3937 skip_first = false; 3938 } else { 3939 err = backtrack_insn(env, i, subseq_idx, bt); 3940 } 3941 if (err == -ENOTSUPP) { 3942 mark_all_scalars_precise(env, env->cur_state); 3943 bt_reset(bt); 3944 return 0; 3945 } else if (err) { 3946 return err; 3947 } 3948 if (bt_empty(bt)) 3949 /* Found assignment(s) into tracked register in this state. 3950 * Since this state is already marked, just return. 3951 * Nothing to be tracked further in the parent state. 3952 */ 3953 return 0; 3954 if (i == first_idx) 3955 break; 3956 subseq_idx = i; 3957 i = get_prev_insn_idx(st, i, &history); 3958 if (i >= env->prog->len) { 3959 /* This can happen if backtracking reached insn 0 3960 * and there are still reg_mask or stack_mask 3961 * to backtrack. 3962 * It means the backtracking missed the spot where 3963 * particular register was initialized with a constant. 3964 */ 3965 verbose(env, "BUG backtracking idx %d\n", i); 3966 WARN_ONCE(1, "verifier backtracking bug"); 3967 return -EFAULT; 3968 } 3969 } 3970 st = st->parent; 3971 if (!st) 3972 break; 3973 3974 for (fr = bt->frame; fr >= 0; fr--) { 3975 func = st->frame[fr]; 3976 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3977 for_each_set_bit(i, mask, 32) { 3978 reg = &func->regs[i]; 3979 if (reg->type != SCALAR_VALUE) { 3980 bt_clear_frame_reg(bt, fr, i); 3981 continue; 3982 } 3983 if (reg->precise) 3984 bt_clear_frame_reg(bt, fr, i); 3985 else 3986 reg->precise = true; 3987 } 3988 3989 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3990 for_each_set_bit(i, mask, 64) { 3991 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3992 /* the sequence of instructions: 3993 * 2: (bf) r3 = r10 3994 * 3: (7b) *(u64 *)(r3 -8) = r0 3995 * 4: (79) r4 = *(u64 *)(r10 -8) 3996 * doesn't contain jmps. It's backtracked 3997 * as a single block. 3998 * During backtracking insn 3 is not recognized as 3999 * stack access, so at the end of backtracking 4000 * stack slot fp-8 is still marked in stack_mask. 4001 * However the parent state may not have accessed 4002 * fp-8 and it's "unallocated" stack space. 4003 * In such case fallback to conservative. 4004 */ 4005 mark_all_scalars_precise(env, env->cur_state); 4006 bt_reset(bt); 4007 return 0; 4008 } 4009 4010 if (!is_spilled_scalar_reg(&func->stack[i])) { 4011 bt_clear_frame_slot(bt, fr, i); 4012 continue; 4013 } 4014 reg = &func->stack[i].spilled_ptr; 4015 if (reg->precise) 4016 bt_clear_frame_slot(bt, fr, i); 4017 else 4018 reg->precise = true; 4019 } 4020 if (env->log.level & BPF_LOG_LEVEL2) { 4021 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4022 bt_frame_reg_mask(bt, fr)); 4023 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4024 fr, env->tmp_str_buf); 4025 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4026 bt_frame_stack_mask(bt, fr)); 4027 verbose(env, "stack=%s: ", env->tmp_str_buf); 4028 print_verifier_state(env, func, true); 4029 } 4030 } 4031 4032 if (bt_empty(bt)) 4033 return 0; 4034 4035 subseq_idx = first_idx; 4036 last_idx = st->last_insn_idx; 4037 first_idx = st->first_insn_idx; 4038 } 4039 4040 /* if we still have requested precise regs or slots, we missed 4041 * something (e.g., stack access through non-r10 register), so 4042 * fallback to marking all precise 4043 */ 4044 if (!bt_empty(bt)) { 4045 mark_all_scalars_precise(env, env->cur_state); 4046 bt_reset(bt); 4047 } 4048 4049 return 0; 4050 } 4051 4052 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4053 { 4054 return __mark_chain_precision(env, regno); 4055 } 4056 4057 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4058 * desired reg and stack masks across all relevant frames 4059 */ 4060 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4061 { 4062 return __mark_chain_precision(env, -1); 4063 } 4064 4065 static bool is_spillable_regtype(enum bpf_reg_type type) 4066 { 4067 switch (base_type(type)) { 4068 case PTR_TO_MAP_VALUE: 4069 case PTR_TO_STACK: 4070 case PTR_TO_CTX: 4071 case PTR_TO_PACKET: 4072 case PTR_TO_PACKET_META: 4073 case PTR_TO_PACKET_END: 4074 case PTR_TO_FLOW_KEYS: 4075 case CONST_PTR_TO_MAP: 4076 case PTR_TO_SOCKET: 4077 case PTR_TO_SOCK_COMMON: 4078 case PTR_TO_TCP_SOCK: 4079 case PTR_TO_XDP_SOCK: 4080 case PTR_TO_BTF_ID: 4081 case PTR_TO_BUF: 4082 case PTR_TO_MEM: 4083 case PTR_TO_FUNC: 4084 case PTR_TO_MAP_KEY: 4085 return true; 4086 default: 4087 return false; 4088 } 4089 } 4090 4091 /* Does this register contain a constant zero? */ 4092 static bool register_is_null(struct bpf_reg_state *reg) 4093 { 4094 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4095 } 4096 4097 static bool register_is_const(struct bpf_reg_state *reg) 4098 { 4099 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4100 } 4101 4102 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4103 { 4104 return tnum_is_unknown(reg->var_off) && 4105 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4106 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4107 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4108 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4109 } 4110 4111 static bool register_is_bounded(struct bpf_reg_state *reg) 4112 { 4113 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4114 } 4115 4116 static bool __is_pointer_value(bool allow_ptr_leaks, 4117 const struct bpf_reg_state *reg) 4118 { 4119 if (allow_ptr_leaks) 4120 return false; 4121 4122 return reg->type != SCALAR_VALUE; 4123 } 4124 4125 /* Copy src state preserving dst->parent and dst->live fields */ 4126 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4127 { 4128 struct bpf_reg_state *parent = dst->parent; 4129 enum bpf_reg_liveness live = dst->live; 4130 4131 *dst = *src; 4132 dst->parent = parent; 4133 dst->live = live; 4134 } 4135 4136 static void save_register_state(struct bpf_func_state *state, 4137 int spi, struct bpf_reg_state *reg, 4138 int size) 4139 { 4140 int i; 4141 4142 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4143 if (size == BPF_REG_SIZE) 4144 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4145 4146 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4147 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4148 4149 /* size < 8 bytes spill */ 4150 for (; i; i--) 4151 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4152 } 4153 4154 static bool is_bpf_st_mem(struct bpf_insn *insn) 4155 { 4156 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4157 } 4158 4159 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4160 * stack boundary and alignment are checked in check_mem_access() 4161 */ 4162 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4163 /* stack frame we're writing to */ 4164 struct bpf_func_state *state, 4165 int off, int size, int value_regno, 4166 int insn_idx) 4167 { 4168 struct bpf_func_state *cur; /* state of the current function */ 4169 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4170 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4171 struct bpf_reg_state *reg = NULL; 4172 u32 dst_reg = insn->dst_reg; 4173 4174 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4175 if (err) 4176 return err; 4177 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4178 * so it's aligned access and [off, off + size) are within stack limits 4179 */ 4180 if (!env->allow_ptr_leaks && 4181 state->stack[spi].slot_type[0] == STACK_SPILL && 4182 size != BPF_REG_SIZE) { 4183 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4184 return -EACCES; 4185 } 4186 4187 cur = env->cur_state->frame[env->cur_state->curframe]; 4188 if (value_regno >= 0) 4189 reg = &cur->regs[value_regno]; 4190 if (!env->bypass_spec_v4) { 4191 bool sanitize = reg && is_spillable_regtype(reg->type); 4192 4193 for (i = 0; i < size; i++) { 4194 u8 type = state->stack[spi].slot_type[i]; 4195 4196 if (type != STACK_MISC && type != STACK_ZERO) { 4197 sanitize = true; 4198 break; 4199 } 4200 } 4201 4202 if (sanitize) 4203 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4204 } 4205 4206 err = destroy_if_dynptr_stack_slot(env, state, spi); 4207 if (err) 4208 return err; 4209 4210 mark_stack_slot_scratched(env, spi); 4211 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4212 !register_is_null(reg) && env->bpf_capable) { 4213 if (dst_reg != BPF_REG_FP) { 4214 /* The backtracking logic can only recognize explicit 4215 * stack slot address like [fp - 8]. Other spill of 4216 * scalar via different register has to be conservative. 4217 * Backtrack from here and mark all registers as precise 4218 * that contributed into 'reg' being a constant. 4219 */ 4220 err = mark_chain_precision(env, value_regno); 4221 if (err) 4222 return err; 4223 } 4224 save_register_state(state, spi, reg, size); 4225 /* Break the relation on a narrowing spill. */ 4226 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4227 state->stack[spi].spilled_ptr.id = 0; 4228 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4229 insn->imm != 0 && env->bpf_capable) { 4230 struct bpf_reg_state fake_reg = {}; 4231 4232 __mark_reg_known(&fake_reg, (u32)insn->imm); 4233 fake_reg.type = SCALAR_VALUE; 4234 save_register_state(state, spi, &fake_reg, size); 4235 } else if (reg && is_spillable_regtype(reg->type)) { 4236 /* register containing pointer is being spilled into stack */ 4237 if (size != BPF_REG_SIZE) { 4238 verbose_linfo(env, insn_idx, "; "); 4239 verbose(env, "invalid size of register spill\n"); 4240 return -EACCES; 4241 } 4242 if (state != cur && reg->type == PTR_TO_STACK) { 4243 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4244 return -EINVAL; 4245 } 4246 save_register_state(state, spi, reg, size); 4247 } else { 4248 u8 type = STACK_MISC; 4249 4250 /* regular write of data into stack destroys any spilled ptr */ 4251 state->stack[spi].spilled_ptr.type = NOT_INIT; 4252 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4253 if (is_stack_slot_special(&state->stack[spi])) 4254 for (i = 0; i < BPF_REG_SIZE; i++) 4255 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4256 4257 /* only mark the slot as written if all 8 bytes were written 4258 * otherwise read propagation may incorrectly stop too soon 4259 * when stack slots are partially written. 4260 * This heuristic means that read propagation will be 4261 * conservative, since it will add reg_live_read marks 4262 * to stack slots all the way to first state when programs 4263 * writes+reads less than 8 bytes 4264 */ 4265 if (size == BPF_REG_SIZE) 4266 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4267 4268 /* when we zero initialize stack slots mark them as such */ 4269 if ((reg && register_is_null(reg)) || 4270 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4271 /* backtracking doesn't work for STACK_ZERO yet. */ 4272 err = mark_chain_precision(env, value_regno); 4273 if (err) 4274 return err; 4275 type = STACK_ZERO; 4276 } 4277 4278 /* Mark slots affected by this stack write. */ 4279 for (i = 0; i < size; i++) 4280 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4281 type; 4282 } 4283 return 0; 4284 } 4285 4286 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4287 * known to contain a variable offset. 4288 * This function checks whether the write is permitted and conservatively 4289 * tracks the effects of the write, considering that each stack slot in the 4290 * dynamic range is potentially written to. 4291 * 4292 * 'off' includes 'regno->off'. 4293 * 'value_regno' can be -1, meaning that an unknown value is being written to 4294 * the stack. 4295 * 4296 * Spilled pointers in range are not marked as written because we don't know 4297 * what's going to be actually written. This means that read propagation for 4298 * future reads cannot be terminated by this write. 4299 * 4300 * For privileged programs, uninitialized stack slots are considered 4301 * initialized by this write (even though we don't know exactly what offsets 4302 * are going to be written to). The idea is that we don't want the verifier to 4303 * reject future reads that access slots written to through variable offsets. 4304 */ 4305 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4306 /* func where register points to */ 4307 struct bpf_func_state *state, 4308 int ptr_regno, int off, int size, 4309 int value_regno, int insn_idx) 4310 { 4311 struct bpf_func_state *cur; /* state of the current function */ 4312 int min_off, max_off; 4313 int i, err; 4314 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4315 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4316 bool writing_zero = false; 4317 /* set if the fact that we're writing a zero is used to let any 4318 * stack slots remain STACK_ZERO 4319 */ 4320 bool zero_used = false; 4321 4322 cur = env->cur_state->frame[env->cur_state->curframe]; 4323 ptr_reg = &cur->regs[ptr_regno]; 4324 min_off = ptr_reg->smin_value + off; 4325 max_off = ptr_reg->smax_value + off + size; 4326 if (value_regno >= 0) 4327 value_reg = &cur->regs[value_regno]; 4328 if ((value_reg && register_is_null(value_reg)) || 4329 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4330 writing_zero = true; 4331 4332 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4333 if (err) 4334 return err; 4335 4336 for (i = min_off; i < max_off; i++) { 4337 int spi; 4338 4339 spi = __get_spi(i); 4340 err = destroy_if_dynptr_stack_slot(env, state, spi); 4341 if (err) 4342 return err; 4343 } 4344 4345 /* Variable offset writes destroy any spilled pointers in range. */ 4346 for (i = min_off; i < max_off; i++) { 4347 u8 new_type, *stype; 4348 int slot, spi; 4349 4350 slot = -i - 1; 4351 spi = slot / BPF_REG_SIZE; 4352 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4353 mark_stack_slot_scratched(env, spi); 4354 4355 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4356 /* Reject the write if range we may write to has not 4357 * been initialized beforehand. If we didn't reject 4358 * here, the ptr status would be erased below (even 4359 * though not all slots are actually overwritten), 4360 * possibly opening the door to leaks. 4361 * 4362 * We do however catch STACK_INVALID case below, and 4363 * only allow reading possibly uninitialized memory 4364 * later for CAP_PERFMON, as the write may not happen to 4365 * that slot. 4366 */ 4367 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4368 insn_idx, i); 4369 return -EINVAL; 4370 } 4371 4372 /* Erase all spilled pointers. */ 4373 state->stack[spi].spilled_ptr.type = NOT_INIT; 4374 4375 /* Update the slot type. */ 4376 new_type = STACK_MISC; 4377 if (writing_zero && *stype == STACK_ZERO) { 4378 new_type = STACK_ZERO; 4379 zero_used = true; 4380 } 4381 /* If the slot is STACK_INVALID, we check whether it's OK to 4382 * pretend that it will be initialized by this write. The slot 4383 * might not actually be written to, and so if we mark it as 4384 * initialized future reads might leak uninitialized memory. 4385 * For privileged programs, we will accept such reads to slots 4386 * that may or may not be written because, if we're reject 4387 * them, the error would be too confusing. 4388 */ 4389 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4390 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4391 insn_idx, i); 4392 return -EINVAL; 4393 } 4394 *stype = new_type; 4395 } 4396 if (zero_used) { 4397 /* backtracking doesn't work for STACK_ZERO yet. */ 4398 err = mark_chain_precision(env, value_regno); 4399 if (err) 4400 return err; 4401 } 4402 return 0; 4403 } 4404 4405 /* When register 'dst_regno' is assigned some values from stack[min_off, 4406 * max_off), we set the register's type according to the types of the 4407 * respective stack slots. If all the stack values are known to be zeros, then 4408 * so is the destination reg. Otherwise, the register is considered to be 4409 * SCALAR. This function does not deal with register filling; the caller must 4410 * ensure that all spilled registers in the stack range have been marked as 4411 * read. 4412 */ 4413 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4414 /* func where src register points to */ 4415 struct bpf_func_state *ptr_state, 4416 int min_off, int max_off, int dst_regno) 4417 { 4418 struct bpf_verifier_state *vstate = env->cur_state; 4419 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4420 int i, slot, spi; 4421 u8 *stype; 4422 int zeros = 0; 4423 4424 for (i = min_off; i < max_off; i++) { 4425 slot = -i - 1; 4426 spi = slot / BPF_REG_SIZE; 4427 mark_stack_slot_scratched(env, spi); 4428 stype = ptr_state->stack[spi].slot_type; 4429 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4430 break; 4431 zeros++; 4432 } 4433 if (zeros == max_off - min_off) { 4434 /* any access_size read into register is zero extended, 4435 * so the whole register == const_zero 4436 */ 4437 __mark_reg_const_zero(&state->regs[dst_regno]); 4438 /* backtracking doesn't support STACK_ZERO yet, 4439 * so mark it precise here, so that later 4440 * backtracking can stop here. 4441 * Backtracking may not need this if this register 4442 * doesn't participate in pointer adjustment. 4443 * Forward propagation of precise flag is not 4444 * necessary either. This mark is only to stop 4445 * backtracking. Any register that contributed 4446 * to const 0 was marked precise before spill. 4447 */ 4448 state->regs[dst_regno].precise = true; 4449 } else { 4450 /* have read misc data from the stack */ 4451 mark_reg_unknown(env, state->regs, dst_regno); 4452 } 4453 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4454 } 4455 4456 /* Read the stack at 'off' and put the results into the register indicated by 4457 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4458 * spilled reg. 4459 * 4460 * 'dst_regno' can be -1, meaning that the read value is not going to a 4461 * register. 4462 * 4463 * The access is assumed to be within the current stack bounds. 4464 */ 4465 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4466 /* func where src register points to */ 4467 struct bpf_func_state *reg_state, 4468 int off, int size, int dst_regno) 4469 { 4470 struct bpf_verifier_state *vstate = env->cur_state; 4471 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4472 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4473 struct bpf_reg_state *reg; 4474 u8 *stype, type; 4475 4476 stype = reg_state->stack[spi].slot_type; 4477 reg = ®_state->stack[spi].spilled_ptr; 4478 4479 mark_stack_slot_scratched(env, spi); 4480 4481 if (is_spilled_reg(®_state->stack[spi])) { 4482 u8 spill_size = 1; 4483 4484 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4485 spill_size++; 4486 4487 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4488 if (reg->type != SCALAR_VALUE) { 4489 verbose_linfo(env, env->insn_idx, "; "); 4490 verbose(env, "invalid size of register fill\n"); 4491 return -EACCES; 4492 } 4493 4494 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4495 if (dst_regno < 0) 4496 return 0; 4497 4498 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4499 /* The earlier check_reg_arg() has decided the 4500 * subreg_def for this insn. Save it first. 4501 */ 4502 s32 subreg_def = state->regs[dst_regno].subreg_def; 4503 4504 copy_register_state(&state->regs[dst_regno], reg); 4505 state->regs[dst_regno].subreg_def = subreg_def; 4506 } else { 4507 for (i = 0; i < size; i++) { 4508 type = stype[(slot - i) % BPF_REG_SIZE]; 4509 if (type == STACK_SPILL) 4510 continue; 4511 if (type == STACK_MISC) 4512 continue; 4513 if (type == STACK_INVALID && env->allow_uninit_stack) 4514 continue; 4515 verbose(env, "invalid read from stack off %d+%d size %d\n", 4516 off, i, size); 4517 return -EACCES; 4518 } 4519 mark_reg_unknown(env, state->regs, dst_regno); 4520 } 4521 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4522 return 0; 4523 } 4524 4525 if (dst_regno >= 0) { 4526 /* restore register state from stack */ 4527 copy_register_state(&state->regs[dst_regno], reg); 4528 /* mark reg as written since spilled pointer state likely 4529 * has its liveness marks cleared by is_state_visited() 4530 * which resets stack/reg liveness for state transitions 4531 */ 4532 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4533 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4534 /* If dst_regno==-1, the caller is asking us whether 4535 * it is acceptable to use this value as a SCALAR_VALUE 4536 * (e.g. for XADD). 4537 * We must not allow unprivileged callers to do that 4538 * with spilled pointers. 4539 */ 4540 verbose(env, "leaking pointer from stack off %d\n", 4541 off); 4542 return -EACCES; 4543 } 4544 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4545 } else { 4546 for (i = 0; i < size; i++) { 4547 type = stype[(slot - i) % BPF_REG_SIZE]; 4548 if (type == STACK_MISC) 4549 continue; 4550 if (type == STACK_ZERO) 4551 continue; 4552 if (type == STACK_INVALID && env->allow_uninit_stack) 4553 continue; 4554 verbose(env, "invalid read from stack off %d+%d size %d\n", 4555 off, i, size); 4556 return -EACCES; 4557 } 4558 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4559 if (dst_regno >= 0) 4560 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4561 } 4562 return 0; 4563 } 4564 4565 enum bpf_access_src { 4566 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4567 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4568 }; 4569 4570 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4571 int regno, int off, int access_size, 4572 bool zero_size_allowed, 4573 enum bpf_access_src type, 4574 struct bpf_call_arg_meta *meta); 4575 4576 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4577 { 4578 return cur_regs(env) + regno; 4579 } 4580 4581 /* Read the stack at 'ptr_regno + off' and put the result into the register 4582 * 'dst_regno'. 4583 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4584 * but not its variable offset. 4585 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4586 * 4587 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4588 * filling registers (i.e. reads of spilled register cannot be detected when 4589 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4590 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4591 * offset; for a fixed offset check_stack_read_fixed_off should be used 4592 * instead. 4593 */ 4594 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4595 int ptr_regno, int off, int size, int dst_regno) 4596 { 4597 /* The state of the source register. */ 4598 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4599 struct bpf_func_state *ptr_state = func(env, reg); 4600 int err; 4601 int min_off, max_off; 4602 4603 /* Note that we pass a NULL meta, so raw access will not be permitted. 4604 */ 4605 err = check_stack_range_initialized(env, ptr_regno, off, size, 4606 false, ACCESS_DIRECT, NULL); 4607 if (err) 4608 return err; 4609 4610 min_off = reg->smin_value + off; 4611 max_off = reg->smax_value + off; 4612 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4613 return 0; 4614 } 4615 4616 /* check_stack_read dispatches to check_stack_read_fixed_off or 4617 * check_stack_read_var_off. 4618 * 4619 * The caller must ensure that the offset falls within the allocated stack 4620 * bounds. 4621 * 4622 * 'dst_regno' is a register which will receive the value from the stack. It 4623 * can be -1, meaning that the read value is not going to a register. 4624 */ 4625 static int check_stack_read(struct bpf_verifier_env *env, 4626 int ptr_regno, int off, int size, 4627 int dst_regno) 4628 { 4629 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4630 struct bpf_func_state *state = func(env, reg); 4631 int err; 4632 /* Some accesses are only permitted with a static offset. */ 4633 bool var_off = !tnum_is_const(reg->var_off); 4634 4635 /* The offset is required to be static when reads don't go to a 4636 * register, in order to not leak pointers (see 4637 * check_stack_read_fixed_off). 4638 */ 4639 if (dst_regno < 0 && var_off) { 4640 char tn_buf[48]; 4641 4642 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4643 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4644 tn_buf, off, size); 4645 return -EACCES; 4646 } 4647 /* Variable offset is prohibited for unprivileged mode for simplicity 4648 * since it requires corresponding support in Spectre masking for stack 4649 * ALU. See also retrieve_ptr_limit(). The check in 4650 * check_stack_access_for_ptr_arithmetic() called by 4651 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4652 * with variable offsets, therefore no check is required here. Further, 4653 * just checking it here would be insufficient as speculative stack 4654 * writes could still lead to unsafe speculative behaviour. 4655 */ 4656 if (!var_off) { 4657 off += reg->var_off.value; 4658 err = check_stack_read_fixed_off(env, state, off, size, 4659 dst_regno); 4660 } else { 4661 /* Variable offset stack reads need more conservative handling 4662 * than fixed offset ones. Note that dst_regno >= 0 on this 4663 * branch. 4664 */ 4665 err = check_stack_read_var_off(env, ptr_regno, off, size, 4666 dst_regno); 4667 } 4668 return err; 4669 } 4670 4671 4672 /* check_stack_write dispatches to check_stack_write_fixed_off or 4673 * check_stack_write_var_off. 4674 * 4675 * 'ptr_regno' is the register used as a pointer into the stack. 4676 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4677 * 'value_regno' is the register whose value we're writing to the stack. It can 4678 * be -1, meaning that we're not writing from a register. 4679 * 4680 * The caller must ensure that the offset falls within the maximum stack size. 4681 */ 4682 static int check_stack_write(struct bpf_verifier_env *env, 4683 int ptr_regno, int off, int size, 4684 int value_regno, int insn_idx) 4685 { 4686 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4687 struct bpf_func_state *state = func(env, reg); 4688 int err; 4689 4690 if (tnum_is_const(reg->var_off)) { 4691 off += reg->var_off.value; 4692 err = check_stack_write_fixed_off(env, state, off, size, 4693 value_regno, insn_idx); 4694 } else { 4695 /* Variable offset stack reads need more conservative handling 4696 * than fixed offset ones. 4697 */ 4698 err = check_stack_write_var_off(env, state, 4699 ptr_regno, off, size, 4700 value_regno, insn_idx); 4701 } 4702 return err; 4703 } 4704 4705 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4706 int off, int size, enum bpf_access_type type) 4707 { 4708 struct bpf_reg_state *regs = cur_regs(env); 4709 struct bpf_map *map = regs[regno].map_ptr; 4710 u32 cap = bpf_map_flags_to_cap(map); 4711 4712 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4713 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4714 map->value_size, off, size); 4715 return -EACCES; 4716 } 4717 4718 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4719 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4720 map->value_size, off, size); 4721 return -EACCES; 4722 } 4723 4724 return 0; 4725 } 4726 4727 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4728 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4729 int off, int size, u32 mem_size, 4730 bool zero_size_allowed) 4731 { 4732 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4733 struct bpf_reg_state *reg; 4734 4735 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4736 return 0; 4737 4738 reg = &cur_regs(env)[regno]; 4739 switch (reg->type) { 4740 case PTR_TO_MAP_KEY: 4741 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4742 mem_size, off, size); 4743 break; 4744 case PTR_TO_MAP_VALUE: 4745 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4746 mem_size, off, size); 4747 break; 4748 case PTR_TO_PACKET: 4749 case PTR_TO_PACKET_META: 4750 case PTR_TO_PACKET_END: 4751 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4752 off, size, regno, reg->id, off, mem_size); 4753 break; 4754 case PTR_TO_MEM: 4755 default: 4756 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4757 mem_size, off, size); 4758 } 4759 4760 return -EACCES; 4761 } 4762 4763 /* check read/write into a memory region with possible variable offset */ 4764 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4765 int off, int size, u32 mem_size, 4766 bool zero_size_allowed) 4767 { 4768 struct bpf_verifier_state *vstate = env->cur_state; 4769 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4770 struct bpf_reg_state *reg = &state->regs[regno]; 4771 int err; 4772 4773 /* We may have adjusted the register pointing to memory region, so we 4774 * need to try adding each of min_value and max_value to off 4775 * to make sure our theoretical access will be safe. 4776 * 4777 * The minimum value is only important with signed 4778 * comparisons where we can't assume the floor of a 4779 * value is 0. If we are using signed variables for our 4780 * index'es we need to make sure that whatever we use 4781 * will have a set floor within our range. 4782 */ 4783 if (reg->smin_value < 0 && 4784 (reg->smin_value == S64_MIN || 4785 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4786 reg->smin_value + off < 0)) { 4787 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4788 regno); 4789 return -EACCES; 4790 } 4791 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4792 mem_size, zero_size_allowed); 4793 if (err) { 4794 verbose(env, "R%d min value is outside of the allowed memory range\n", 4795 regno); 4796 return err; 4797 } 4798 4799 /* If we haven't set a max value then we need to bail since we can't be 4800 * sure we won't do bad things. 4801 * If reg->umax_value + off could overflow, treat that as unbounded too. 4802 */ 4803 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4804 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4805 regno); 4806 return -EACCES; 4807 } 4808 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4809 mem_size, zero_size_allowed); 4810 if (err) { 4811 verbose(env, "R%d max value is outside of the allowed memory range\n", 4812 regno); 4813 return err; 4814 } 4815 4816 return 0; 4817 } 4818 4819 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4820 const struct bpf_reg_state *reg, int regno, 4821 bool fixed_off_ok) 4822 { 4823 /* Access to this pointer-typed register or passing it to a helper 4824 * is only allowed in its original, unmodified form. 4825 */ 4826 4827 if (reg->off < 0) { 4828 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4829 reg_type_str(env, reg->type), regno, reg->off); 4830 return -EACCES; 4831 } 4832 4833 if (!fixed_off_ok && reg->off) { 4834 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4835 reg_type_str(env, reg->type), regno, reg->off); 4836 return -EACCES; 4837 } 4838 4839 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4840 char tn_buf[48]; 4841 4842 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4843 verbose(env, "variable %s access var_off=%s disallowed\n", 4844 reg_type_str(env, reg->type), tn_buf); 4845 return -EACCES; 4846 } 4847 4848 return 0; 4849 } 4850 4851 int check_ptr_off_reg(struct bpf_verifier_env *env, 4852 const struct bpf_reg_state *reg, int regno) 4853 { 4854 return __check_ptr_off_reg(env, reg, regno, false); 4855 } 4856 4857 static int map_kptr_match_type(struct bpf_verifier_env *env, 4858 struct btf_field *kptr_field, 4859 struct bpf_reg_state *reg, u32 regno) 4860 { 4861 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4862 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4863 const char *reg_name = ""; 4864 4865 /* Only unreferenced case accepts untrusted pointers */ 4866 if (kptr_field->type == BPF_KPTR_UNREF) 4867 perm_flags |= PTR_UNTRUSTED; 4868 4869 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4870 goto bad_type; 4871 4872 if (!btf_is_kernel(reg->btf)) { 4873 verbose(env, "R%d must point to kernel BTF\n", regno); 4874 return -EINVAL; 4875 } 4876 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 4877 reg_name = btf_type_name(reg->btf, reg->btf_id); 4878 4879 /* For ref_ptr case, release function check should ensure we get one 4880 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 4881 * normal store of unreferenced kptr, we must ensure var_off is zero. 4882 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 4883 * reg->off and reg->ref_obj_id are not needed here. 4884 */ 4885 if (__check_ptr_off_reg(env, reg, regno, true)) 4886 return -EACCES; 4887 4888 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 4889 * we also need to take into account the reg->off. 4890 * 4891 * We want to support cases like: 4892 * 4893 * struct foo { 4894 * struct bar br; 4895 * struct baz bz; 4896 * }; 4897 * 4898 * struct foo *v; 4899 * v = func(); // PTR_TO_BTF_ID 4900 * val->foo = v; // reg->off is zero, btf and btf_id match type 4901 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 4902 * // first member type of struct after comparison fails 4903 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 4904 * // to match type 4905 * 4906 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 4907 * is zero. We must also ensure that btf_struct_ids_match does not walk 4908 * the struct to match type against first member of struct, i.e. reject 4909 * second case from above. Hence, when type is BPF_KPTR_REF, we set 4910 * strict mode to true for type match. 4911 */ 4912 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4913 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 4914 kptr_field->type == BPF_KPTR_REF)) 4915 goto bad_type; 4916 return 0; 4917 bad_type: 4918 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 4919 reg_type_str(env, reg->type), reg_name); 4920 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 4921 if (kptr_field->type == BPF_KPTR_UNREF) 4922 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 4923 targ_name); 4924 else 4925 verbose(env, "\n"); 4926 return -EINVAL; 4927 } 4928 4929 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 4930 * can dereference RCU protected pointers and result is PTR_TRUSTED. 4931 */ 4932 static bool in_rcu_cs(struct bpf_verifier_env *env) 4933 { 4934 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable; 4935 } 4936 4937 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 4938 BTF_SET_START(rcu_protected_types) 4939 BTF_ID(struct, prog_test_ref_kfunc) 4940 BTF_ID(struct, cgroup) 4941 BTF_ID(struct, bpf_cpumask) 4942 BTF_ID(struct, task_struct) 4943 BTF_SET_END(rcu_protected_types) 4944 4945 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 4946 { 4947 if (!btf_is_kernel(btf)) 4948 return false; 4949 return btf_id_set_contains(&rcu_protected_types, btf_id); 4950 } 4951 4952 static bool rcu_safe_kptr(const struct btf_field *field) 4953 { 4954 const struct btf_field_kptr *kptr = &field->kptr; 4955 4956 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 4957 } 4958 4959 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 4960 int value_regno, int insn_idx, 4961 struct btf_field *kptr_field) 4962 { 4963 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4964 int class = BPF_CLASS(insn->code); 4965 struct bpf_reg_state *val_reg; 4966 4967 /* Things we already checked for in check_map_access and caller: 4968 * - Reject cases where variable offset may touch kptr 4969 * - size of access (must be BPF_DW) 4970 * - tnum_is_const(reg->var_off) 4971 * - kptr_field->offset == off + reg->var_off.value 4972 */ 4973 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4974 if (BPF_MODE(insn->code) != BPF_MEM) { 4975 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4976 return -EACCES; 4977 } 4978 4979 /* We only allow loading referenced kptr, since it will be marked as 4980 * untrusted, similar to unreferenced kptr. 4981 */ 4982 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4983 verbose(env, "store to referenced kptr disallowed\n"); 4984 return -EACCES; 4985 } 4986 4987 if (class == BPF_LDX) { 4988 val_reg = reg_state(env, value_regno); 4989 /* We can simply mark the value_regno receiving the pointer 4990 * value from map as PTR_TO_BTF_ID, with the correct type. 4991 */ 4992 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4993 kptr_field->kptr.btf_id, 4994 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 4995 PTR_MAYBE_NULL | MEM_RCU : 4996 PTR_MAYBE_NULL | PTR_UNTRUSTED); 4997 /* For mark_ptr_or_null_reg */ 4998 val_reg->id = ++env->id_gen; 4999 } else if (class == BPF_STX) { 5000 val_reg = reg_state(env, value_regno); 5001 if (!register_is_null(val_reg) && 5002 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5003 return -EACCES; 5004 } else if (class == BPF_ST) { 5005 if (insn->imm) { 5006 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5007 kptr_field->offset); 5008 return -EACCES; 5009 } 5010 } else { 5011 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5012 return -EACCES; 5013 } 5014 return 0; 5015 } 5016 5017 /* check read/write into a map element with possible variable offset */ 5018 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5019 int off, int size, bool zero_size_allowed, 5020 enum bpf_access_src src) 5021 { 5022 struct bpf_verifier_state *vstate = env->cur_state; 5023 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5024 struct bpf_reg_state *reg = &state->regs[regno]; 5025 struct bpf_map *map = reg->map_ptr; 5026 struct btf_record *rec; 5027 int err, i; 5028 5029 err = check_mem_region_access(env, regno, off, size, map->value_size, 5030 zero_size_allowed); 5031 if (err) 5032 return err; 5033 5034 if (IS_ERR_OR_NULL(map->record)) 5035 return 0; 5036 rec = map->record; 5037 for (i = 0; i < rec->cnt; i++) { 5038 struct btf_field *field = &rec->fields[i]; 5039 u32 p = field->offset; 5040 5041 /* If any part of a field can be touched by load/store, reject 5042 * this program. To check that [x1, x2) overlaps with [y1, y2), 5043 * it is sufficient to check x1 < y2 && y1 < x2. 5044 */ 5045 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5046 p < reg->umax_value + off + size) { 5047 switch (field->type) { 5048 case BPF_KPTR_UNREF: 5049 case BPF_KPTR_REF: 5050 if (src != ACCESS_DIRECT) { 5051 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5052 return -EACCES; 5053 } 5054 if (!tnum_is_const(reg->var_off)) { 5055 verbose(env, "kptr access cannot have variable offset\n"); 5056 return -EACCES; 5057 } 5058 if (p != off + reg->var_off.value) { 5059 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5060 p, off + reg->var_off.value); 5061 return -EACCES; 5062 } 5063 if (size != bpf_size_to_bytes(BPF_DW)) { 5064 verbose(env, "kptr access size must be BPF_DW\n"); 5065 return -EACCES; 5066 } 5067 break; 5068 default: 5069 verbose(env, "%s cannot be accessed directly by load/store\n", 5070 btf_field_type_name(field->type)); 5071 return -EACCES; 5072 } 5073 } 5074 } 5075 return 0; 5076 } 5077 5078 #define MAX_PACKET_OFF 0xffff 5079 5080 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5081 const struct bpf_call_arg_meta *meta, 5082 enum bpf_access_type t) 5083 { 5084 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5085 5086 switch (prog_type) { 5087 /* Program types only with direct read access go here! */ 5088 case BPF_PROG_TYPE_LWT_IN: 5089 case BPF_PROG_TYPE_LWT_OUT: 5090 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5091 case BPF_PROG_TYPE_SK_REUSEPORT: 5092 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5093 case BPF_PROG_TYPE_CGROUP_SKB: 5094 if (t == BPF_WRITE) 5095 return false; 5096 fallthrough; 5097 5098 /* Program types with direct read + write access go here! */ 5099 case BPF_PROG_TYPE_SCHED_CLS: 5100 case BPF_PROG_TYPE_SCHED_ACT: 5101 case BPF_PROG_TYPE_XDP: 5102 case BPF_PROG_TYPE_LWT_XMIT: 5103 case BPF_PROG_TYPE_SK_SKB: 5104 case BPF_PROG_TYPE_SK_MSG: 5105 if (meta) 5106 return meta->pkt_access; 5107 5108 env->seen_direct_write = true; 5109 return true; 5110 5111 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5112 if (t == BPF_WRITE) 5113 env->seen_direct_write = true; 5114 5115 return true; 5116 5117 default: 5118 return false; 5119 } 5120 } 5121 5122 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5123 int size, bool zero_size_allowed) 5124 { 5125 struct bpf_reg_state *regs = cur_regs(env); 5126 struct bpf_reg_state *reg = ®s[regno]; 5127 int err; 5128 5129 /* We may have added a variable offset to the packet pointer; but any 5130 * reg->range we have comes after that. We are only checking the fixed 5131 * offset. 5132 */ 5133 5134 /* We don't allow negative numbers, because we aren't tracking enough 5135 * detail to prove they're safe. 5136 */ 5137 if (reg->smin_value < 0) { 5138 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5139 regno); 5140 return -EACCES; 5141 } 5142 5143 err = reg->range < 0 ? -EINVAL : 5144 __check_mem_access(env, regno, off, size, reg->range, 5145 zero_size_allowed); 5146 if (err) { 5147 verbose(env, "R%d offset is outside of the packet\n", regno); 5148 return err; 5149 } 5150 5151 /* __check_mem_access has made sure "off + size - 1" is within u16. 5152 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5153 * otherwise find_good_pkt_pointers would have refused to set range info 5154 * that __check_mem_access would have rejected this pkt access. 5155 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5156 */ 5157 env->prog->aux->max_pkt_offset = 5158 max_t(u32, env->prog->aux->max_pkt_offset, 5159 off + reg->umax_value + size - 1); 5160 5161 return err; 5162 } 5163 5164 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5165 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5166 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5167 struct btf **btf, u32 *btf_id) 5168 { 5169 struct bpf_insn_access_aux info = { 5170 .reg_type = *reg_type, 5171 .log = &env->log, 5172 }; 5173 5174 if (env->ops->is_valid_access && 5175 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5176 /* A non zero info.ctx_field_size indicates that this field is a 5177 * candidate for later verifier transformation to load the whole 5178 * field and then apply a mask when accessed with a narrower 5179 * access than actual ctx access size. A zero info.ctx_field_size 5180 * will only allow for whole field access and rejects any other 5181 * type of narrower access. 5182 */ 5183 *reg_type = info.reg_type; 5184 5185 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5186 *btf = info.btf; 5187 *btf_id = info.btf_id; 5188 } else { 5189 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5190 } 5191 /* remember the offset of last byte accessed in ctx */ 5192 if (env->prog->aux->max_ctx_offset < off + size) 5193 env->prog->aux->max_ctx_offset = off + size; 5194 return 0; 5195 } 5196 5197 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5198 return -EACCES; 5199 } 5200 5201 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5202 int size) 5203 { 5204 if (size < 0 || off < 0 || 5205 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5206 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5207 off, size); 5208 return -EACCES; 5209 } 5210 return 0; 5211 } 5212 5213 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5214 u32 regno, int off, int size, 5215 enum bpf_access_type t) 5216 { 5217 struct bpf_reg_state *regs = cur_regs(env); 5218 struct bpf_reg_state *reg = ®s[regno]; 5219 struct bpf_insn_access_aux info = {}; 5220 bool valid; 5221 5222 if (reg->smin_value < 0) { 5223 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5224 regno); 5225 return -EACCES; 5226 } 5227 5228 switch (reg->type) { 5229 case PTR_TO_SOCK_COMMON: 5230 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5231 break; 5232 case PTR_TO_SOCKET: 5233 valid = bpf_sock_is_valid_access(off, size, t, &info); 5234 break; 5235 case PTR_TO_TCP_SOCK: 5236 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5237 break; 5238 case PTR_TO_XDP_SOCK: 5239 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5240 break; 5241 default: 5242 valid = false; 5243 } 5244 5245 5246 if (valid) { 5247 env->insn_aux_data[insn_idx].ctx_field_size = 5248 info.ctx_field_size; 5249 return 0; 5250 } 5251 5252 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5253 regno, reg_type_str(env, reg->type), off, size); 5254 5255 return -EACCES; 5256 } 5257 5258 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5259 { 5260 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5261 } 5262 5263 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5264 { 5265 const struct bpf_reg_state *reg = reg_state(env, regno); 5266 5267 return reg->type == PTR_TO_CTX; 5268 } 5269 5270 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5271 { 5272 const struct bpf_reg_state *reg = reg_state(env, regno); 5273 5274 return type_is_sk_pointer(reg->type); 5275 } 5276 5277 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5278 { 5279 const struct bpf_reg_state *reg = reg_state(env, regno); 5280 5281 return type_is_pkt_pointer(reg->type); 5282 } 5283 5284 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5285 { 5286 const struct bpf_reg_state *reg = reg_state(env, regno); 5287 5288 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5289 return reg->type == PTR_TO_FLOW_KEYS; 5290 } 5291 5292 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5293 { 5294 /* A referenced register is always trusted. */ 5295 if (reg->ref_obj_id) 5296 return true; 5297 5298 /* If a register is not referenced, it is trusted if it has the 5299 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5300 * other type modifiers may be safe, but we elect to take an opt-in 5301 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5302 * not. 5303 * 5304 * Eventually, we should make PTR_TRUSTED the single source of truth 5305 * for whether a register is trusted. 5306 */ 5307 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5308 !bpf_type_has_unsafe_modifiers(reg->type); 5309 } 5310 5311 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5312 { 5313 return reg->type & MEM_RCU; 5314 } 5315 5316 static void clear_trusted_flags(enum bpf_type_flag *flag) 5317 { 5318 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5319 } 5320 5321 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5322 const struct bpf_reg_state *reg, 5323 int off, int size, bool strict) 5324 { 5325 struct tnum reg_off; 5326 int ip_align; 5327 5328 /* Byte size accesses are always allowed. */ 5329 if (!strict || size == 1) 5330 return 0; 5331 5332 /* For platforms that do not have a Kconfig enabling 5333 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5334 * NET_IP_ALIGN is universally set to '2'. And on platforms 5335 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5336 * to this code only in strict mode where we want to emulate 5337 * the NET_IP_ALIGN==2 checking. Therefore use an 5338 * unconditional IP align value of '2'. 5339 */ 5340 ip_align = 2; 5341 5342 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5343 if (!tnum_is_aligned(reg_off, size)) { 5344 char tn_buf[48]; 5345 5346 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5347 verbose(env, 5348 "misaligned packet access off %d+%s+%d+%d size %d\n", 5349 ip_align, tn_buf, reg->off, off, size); 5350 return -EACCES; 5351 } 5352 5353 return 0; 5354 } 5355 5356 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5357 const struct bpf_reg_state *reg, 5358 const char *pointer_desc, 5359 int off, int size, bool strict) 5360 { 5361 struct tnum reg_off; 5362 5363 /* Byte size accesses are always allowed. */ 5364 if (!strict || size == 1) 5365 return 0; 5366 5367 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5368 if (!tnum_is_aligned(reg_off, size)) { 5369 char tn_buf[48]; 5370 5371 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5372 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5373 pointer_desc, tn_buf, reg->off, off, size); 5374 return -EACCES; 5375 } 5376 5377 return 0; 5378 } 5379 5380 static int check_ptr_alignment(struct bpf_verifier_env *env, 5381 const struct bpf_reg_state *reg, int off, 5382 int size, bool strict_alignment_once) 5383 { 5384 bool strict = env->strict_alignment || strict_alignment_once; 5385 const char *pointer_desc = ""; 5386 5387 switch (reg->type) { 5388 case PTR_TO_PACKET: 5389 case PTR_TO_PACKET_META: 5390 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5391 * right in front, treat it the very same way. 5392 */ 5393 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5394 case PTR_TO_FLOW_KEYS: 5395 pointer_desc = "flow keys "; 5396 break; 5397 case PTR_TO_MAP_KEY: 5398 pointer_desc = "key "; 5399 break; 5400 case PTR_TO_MAP_VALUE: 5401 pointer_desc = "value "; 5402 break; 5403 case PTR_TO_CTX: 5404 pointer_desc = "context "; 5405 break; 5406 case PTR_TO_STACK: 5407 pointer_desc = "stack "; 5408 /* The stack spill tracking logic in check_stack_write_fixed_off() 5409 * and check_stack_read_fixed_off() relies on stack accesses being 5410 * aligned. 5411 */ 5412 strict = true; 5413 break; 5414 case PTR_TO_SOCKET: 5415 pointer_desc = "sock "; 5416 break; 5417 case PTR_TO_SOCK_COMMON: 5418 pointer_desc = "sock_common "; 5419 break; 5420 case PTR_TO_TCP_SOCK: 5421 pointer_desc = "tcp_sock "; 5422 break; 5423 case PTR_TO_XDP_SOCK: 5424 pointer_desc = "xdp_sock "; 5425 break; 5426 default: 5427 break; 5428 } 5429 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5430 strict); 5431 } 5432 5433 static int update_stack_depth(struct bpf_verifier_env *env, 5434 const struct bpf_func_state *func, 5435 int off) 5436 { 5437 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5438 5439 if (stack >= -off) 5440 return 0; 5441 5442 /* update known max for given subprogram */ 5443 env->subprog_info[func->subprogno].stack_depth = -off; 5444 return 0; 5445 } 5446 5447 /* starting from main bpf function walk all instructions of the function 5448 * and recursively walk all callees that given function can call. 5449 * Ignore jump and exit insns. 5450 * Since recursion is prevented by check_cfg() this algorithm 5451 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5452 */ 5453 static int check_max_stack_depth(struct bpf_verifier_env *env) 5454 { 5455 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 5456 struct bpf_subprog_info *subprog = env->subprog_info; 5457 struct bpf_insn *insn = env->prog->insnsi; 5458 bool tail_call_reachable = false; 5459 int ret_insn[MAX_CALL_FRAMES]; 5460 int ret_prog[MAX_CALL_FRAMES]; 5461 int j; 5462 5463 process_func: 5464 /* protect against potential stack overflow that might happen when 5465 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5466 * depth for such case down to 256 so that the worst case scenario 5467 * would result in 8k stack size (32 which is tailcall limit * 256 = 5468 * 8k). 5469 * 5470 * To get the idea what might happen, see an example: 5471 * func1 -> sub rsp, 128 5472 * subfunc1 -> sub rsp, 256 5473 * tailcall1 -> add rsp, 256 5474 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5475 * subfunc2 -> sub rsp, 64 5476 * subfunc22 -> sub rsp, 128 5477 * tailcall2 -> add rsp, 128 5478 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5479 * 5480 * tailcall will unwind the current stack frame but it will not get rid 5481 * of caller's stack as shown on the example above. 5482 */ 5483 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5484 verbose(env, 5485 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5486 depth); 5487 return -EACCES; 5488 } 5489 /* round up to 32-bytes, since this is granularity 5490 * of interpreter stack size 5491 */ 5492 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5493 if (depth > MAX_BPF_STACK) { 5494 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5495 frame + 1, depth); 5496 return -EACCES; 5497 } 5498 continue_func: 5499 subprog_end = subprog[idx + 1].start; 5500 for (; i < subprog_end; i++) { 5501 int next_insn; 5502 5503 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5504 continue; 5505 /* remember insn and function to return to */ 5506 ret_insn[frame] = i + 1; 5507 ret_prog[frame] = idx; 5508 5509 /* find the callee */ 5510 next_insn = i + insn[i].imm + 1; 5511 idx = find_subprog(env, next_insn); 5512 if (idx < 0) { 5513 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5514 next_insn); 5515 return -EFAULT; 5516 } 5517 if (subprog[idx].is_async_cb) { 5518 if (subprog[idx].has_tail_call) { 5519 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5520 return -EFAULT; 5521 } 5522 /* async callbacks don't increase bpf prog stack size */ 5523 continue; 5524 } 5525 i = next_insn; 5526 5527 if (subprog[idx].has_tail_call) 5528 tail_call_reachable = true; 5529 5530 frame++; 5531 if (frame >= MAX_CALL_FRAMES) { 5532 verbose(env, "the call stack of %d frames is too deep !\n", 5533 frame); 5534 return -E2BIG; 5535 } 5536 goto process_func; 5537 } 5538 /* if tail call got detected across bpf2bpf calls then mark each of the 5539 * currently present subprog frames as tail call reachable subprogs; 5540 * this info will be utilized by JIT so that we will be preserving the 5541 * tail call counter throughout bpf2bpf calls combined with tailcalls 5542 */ 5543 if (tail_call_reachable) 5544 for (j = 0; j < frame; j++) 5545 subprog[ret_prog[j]].tail_call_reachable = true; 5546 if (subprog[0].tail_call_reachable) 5547 env->prog->aux->tail_call_reachable = true; 5548 5549 /* end of for() loop means the last insn of the 'subprog' 5550 * was reached. Doesn't matter whether it was JA or EXIT 5551 */ 5552 if (frame == 0) 5553 return 0; 5554 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5555 frame--; 5556 i = ret_insn[frame]; 5557 idx = ret_prog[frame]; 5558 goto continue_func; 5559 } 5560 5561 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5562 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5563 const struct bpf_insn *insn, int idx) 5564 { 5565 int start = idx + insn->imm + 1, subprog; 5566 5567 subprog = find_subprog(env, start); 5568 if (subprog < 0) { 5569 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5570 start); 5571 return -EFAULT; 5572 } 5573 return env->subprog_info[subprog].stack_depth; 5574 } 5575 #endif 5576 5577 static int __check_buffer_access(struct bpf_verifier_env *env, 5578 const char *buf_info, 5579 const struct bpf_reg_state *reg, 5580 int regno, int off, int size) 5581 { 5582 if (off < 0) { 5583 verbose(env, 5584 "R%d invalid %s buffer access: off=%d, size=%d\n", 5585 regno, buf_info, off, size); 5586 return -EACCES; 5587 } 5588 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5589 char tn_buf[48]; 5590 5591 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5592 verbose(env, 5593 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5594 regno, off, tn_buf); 5595 return -EACCES; 5596 } 5597 5598 return 0; 5599 } 5600 5601 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5602 const struct bpf_reg_state *reg, 5603 int regno, int off, int size) 5604 { 5605 int err; 5606 5607 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5608 if (err) 5609 return err; 5610 5611 if (off + size > env->prog->aux->max_tp_access) 5612 env->prog->aux->max_tp_access = off + size; 5613 5614 return 0; 5615 } 5616 5617 static int check_buffer_access(struct bpf_verifier_env *env, 5618 const struct bpf_reg_state *reg, 5619 int regno, int off, int size, 5620 bool zero_size_allowed, 5621 u32 *max_access) 5622 { 5623 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5624 int err; 5625 5626 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5627 if (err) 5628 return err; 5629 5630 if (off + size > *max_access) 5631 *max_access = off + size; 5632 5633 return 0; 5634 } 5635 5636 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5637 static void zext_32_to_64(struct bpf_reg_state *reg) 5638 { 5639 reg->var_off = tnum_subreg(reg->var_off); 5640 __reg_assign_32_into_64(reg); 5641 } 5642 5643 /* truncate register to smaller size (in bytes) 5644 * must be called with size < BPF_REG_SIZE 5645 */ 5646 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5647 { 5648 u64 mask; 5649 5650 /* clear high bits in bit representation */ 5651 reg->var_off = tnum_cast(reg->var_off, size); 5652 5653 /* fix arithmetic bounds */ 5654 mask = ((u64)1 << (size * 8)) - 1; 5655 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5656 reg->umin_value &= mask; 5657 reg->umax_value &= mask; 5658 } else { 5659 reg->umin_value = 0; 5660 reg->umax_value = mask; 5661 } 5662 reg->smin_value = reg->umin_value; 5663 reg->smax_value = reg->umax_value; 5664 5665 /* If size is smaller than 32bit register the 32bit register 5666 * values are also truncated so we push 64-bit bounds into 5667 * 32-bit bounds. Above were truncated < 32-bits already. 5668 */ 5669 if (size >= 4) 5670 return; 5671 __reg_combine_64_into_32(reg); 5672 } 5673 5674 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5675 { 5676 /* A map is considered read-only if the following condition are true: 5677 * 5678 * 1) BPF program side cannot change any of the map content. The 5679 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5680 * and was set at map creation time. 5681 * 2) The map value(s) have been initialized from user space by a 5682 * loader and then "frozen", such that no new map update/delete 5683 * operations from syscall side are possible for the rest of 5684 * the map's lifetime from that point onwards. 5685 * 3) Any parallel/pending map update/delete operations from syscall 5686 * side have been completed. Only after that point, it's safe to 5687 * assume that map value(s) are immutable. 5688 */ 5689 return (map->map_flags & BPF_F_RDONLY_PROG) && 5690 READ_ONCE(map->frozen) && 5691 !bpf_map_write_active(map); 5692 } 5693 5694 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 5695 { 5696 void *ptr; 5697 u64 addr; 5698 int err; 5699 5700 err = map->ops->map_direct_value_addr(map, &addr, off); 5701 if (err) 5702 return err; 5703 ptr = (void *)(long)addr + off; 5704 5705 switch (size) { 5706 case sizeof(u8): 5707 *val = (u64)*(u8 *)ptr; 5708 break; 5709 case sizeof(u16): 5710 *val = (u64)*(u16 *)ptr; 5711 break; 5712 case sizeof(u32): 5713 *val = (u64)*(u32 *)ptr; 5714 break; 5715 case sizeof(u64): 5716 *val = *(u64 *)ptr; 5717 break; 5718 default: 5719 return -EINVAL; 5720 } 5721 return 0; 5722 } 5723 5724 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 5725 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 5726 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 5727 5728 /* 5729 * Allow list few fields as RCU trusted or full trusted. 5730 * This logic doesn't allow mix tagging and will be removed once GCC supports 5731 * btf_type_tag. 5732 */ 5733 5734 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 5735 BTF_TYPE_SAFE_RCU(struct task_struct) { 5736 const cpumask_t *cpus_ptr; 5737 struct css_set __rcu *cgroups; 5738 struct task_struct __rcu *real_parent; 5739 struct task_struct *group_leader; 5740 }; 5741 5742 BTF_TYPE_SAFE_RCU(struct cgroup) { 5743 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 5744 struct kernfs_node *kn; 5745 }; 5746 5747 BTF_TYPE_SAFE_RCU(struct css_set) { 5748 struct cgroup *dfl_cgrp; 5749 }; 5750 5751 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 5752 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 5753 struct file __rcu *exe_file; 5754 }; 5755 5756 /* skb->sk, req->sk are not RCU protected, but we mark them as such 5757 * because bpf prog accessible sockets are SOCK_RCU_FREE. 5758 */ 5759 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 5760 struct sock *sk; 5761 }; 5762 5763 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 5764 struct sock *sk; 5765 }; 5766 5767 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 5768 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 5769 struct seq_file *seq; 5770 }; 5771 5772 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 5773 struct bpf_iter_meta *meta; 5774 struct task_struct *task; 5775 }; 5776 5777 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 5778 struct file *file; 5779 }; 5780 5781 BTF_TYPE_SAFE_TRUSTED(struct file) { 5782 struct inode *f_inode; 5783 }; 5784 5785 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 5786 /* no negative dentry-s in places where bpf can see it */ 5787 struct inode *d_inode; 5788 }; 5789 5790 BTF_TYPE_SAFE_TRUSTED(struct socket) { 5791 struct sock *sk; 5792 }; 5793 5794 static bool type_is_rcu(struct bpf_verifier_env *env, 5795 struct bpf_reg_state *reg, 5796 const char *field_name, u32 btf_id) 5797 { 5798 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 5799 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 5800 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 5801 5802 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 5803 } 5804 5805 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 5806 struct bpf_reg_state *reg, 5807 const char *field_name, u32 btf_id) 5808 { 5809 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 5810 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 5811 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 5812 5813 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 5814 } 5815 5816 static bool type_is_trusted(struct bpf_verifier_env *env, 5817 struct bpf_reg_state *reg, 5818 const char *field_name, u32 btf_id) 5819 { 5820 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 5821 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 5822 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 5823 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 5824 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 5825 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 5826 5827 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 5828 } 5829 5830 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5831 struct bpf_reg_state *regs, 5832 int regno, int off, int size, 5833 enum bpf_access_type atype, 5834 int value_regno) 5835 { 5836 struct bpf_reg_state *reg = regs + regno; 5837 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5838 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5839 const char *field_name = NULL; 5840 enum bpf_type_flag flag = 0; 5841 u32 btf_id = 0; 5842 int ret; 5843 5844 if (!env->allow_ptr_leaks) { 5845 verbose(env, 5846 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5847 tname); 5848 return -EPERM; 5849 } 5850 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 5851 verbose(env, 5852 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 5853 tname); 5854 return -EINVAL; 5855 } 5856 if (off < 0) { 5857 verbose(env, 5858 "R%d is ptr_%s invalid negative access: off=%d\n", 5859 regno, tname, off); 5860 return -EACCES; 5861 } 5862 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5863 char tn_buf[48]; 5864 5865 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5866 verbose(env, 5867 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 5868 regno, tname, off, tn_buf); 5869 return -EACCES; 5870 } 5871 5872 if (reg->type & MEM_USER) { 5873 verbose(env, 5874 "R%d is ptr_%s access user memory: off=%d\n", 5875 regno, tname, off); 5876 return -EACCES; 5877 } 5878 5879 if (reg->type & MEM_PERCPU) { 5880 verbose(env, 5881 "R%d is ptr_%s access percpu memory: off=%d\n", 5882 regno, tname, off); 5883 return -EACCES; 5884 } 5885 5886 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 5887 if (!btf_is_kernel(reg->btf)) { 5888 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 5889 return -EFAULT; 5890 } 5891 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 5892 } else { 5893 /* Writes are permitted with default btf_struct_access for 5894 * program allocated objects (which always have ref_obj_id > 0), 5895 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 5896 */ 5897 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 5898 verbose(env, "only read is supported\n"); 5899 return -EACCES; 5900 } 5901 5902 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 5903 !reg->ref_obj_id) { 5904 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 5905 return -EFAULT; 5906 } 5907 5908 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 5909 } 5910 5911 if (ret < 0) 5912 return ret; 5913 5914 if (ret != PTR_TO_BTF_ID) { 5915 /* just mark; */ 5916 5917 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 5918 /* If this is an untrusted pointer, all pointers formed by walking it 5919 * also inherit the untrusted flag. 5920 */ 5921 flag = PTR_UNTRUSTED; 5922 5923 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 5924 /* By default any pointer obtained from walking a trusted pointer is no 5925 * longer trusted, unless the field being accessed has explicitly been 5926 * marked as inheriting its parent's state of trust (either full or RCU). 5927 * For example: 5928 * 'cgroups' pointer is untrusted if task->cgroups dereference 5929 * happened in a sleepable program outside of bpf_rcu_read_lock() 5930 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 5931 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 5932 * 5933 * A regular RCU-protected pointer with __rcu tag can also be deemed 5934 * trusted if we are in an RCU CS. Such pointer can be NULL. 5935 */ 5936 if (type_is_trusted(env, reg, field_name, btf_id)) { 5937 flag |= PTR_TRUSTED; 5938 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 5939 if (type_is_rcu(env, reg, field_name, btf_id)) { 5940 /* ignore __rcu tag and mark it MEM_RCU */ 5941 flag |= MEM_RCU; 5942 } else if (flag & MEM_RCU || 5943 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 5944 /* __rcu tagged pointers can be NULL */ 5945 flag |= MEM_RCU | PTR_MAYBE_NULL; 5946 } else if (flag & (MEM_PERCPU | MEM_USER)) { 5947 /* keep as-is */ 5948 } else { 5949 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 5950 clear_trusted_flags(&flag); 5951 } 5952 } else { 5953 /* 5954 * If not in RCU CS or MEM_RCU pointer can be NULL then 5955 * aggressively mark as untrusted otherwise such 5956 * pointers will be plain PTR_TO_BTF_ID without flags 5957 * and will be allowed to be passed into helpers for 5958 * compat reasons. 5959 */ 5960 flag = PTR_UNTRUSTED; 5961 } 5962 } else { 5963 /* Old compat. Deprecated */ 5964 clear_trusted_flags(&flag); 5965 } 5966 5967 if (atype == BPF_READ && value_regno >= 0) 5968 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 5969 5970 return 0; 5971 } 5972 5973 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 5974 struct bpf_reg_state *regs, 5975 int regno, int off, int size, 5976 enum bpf_access_type atype, 5977 int value_regno) 5978 { 5979 struct bpf_reg_state *reg = regs + regno; 5980 struct bpf_map *map = reg->map_ptr; 5981 struct bpf_reg_state map_reg; 5982 enum bpf_type_flag flag = 0; 5983 const struct btf_type *t; 5984 const char *tname; 5985 u32 btf_id; 5986 int ret; 5987 5988 if (!btf_vmlinux) { 5989 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 5990 return -ENOTSUPP; 5991 } 5992 5993 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 5994 verbose(env, "map_ptr access not supported for map type %d\n", 5995 map->map_type); 5996 return -ENOTSUPP; 5997 } 5998 5999 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6000 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6001 6002 if (!env->allow_ptr_leaks) { 6003 verbose(env, 6004 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6005 tname); 6006 return -EPERM; 6007 } 6008 6009 if (off < 0) { 6010 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6011 regno, tname, off); 6012 return -EACCES; 6013 } 6014 6015 if (atype != BPF_READ) { 6016 verbose(env, "only read from %s is supported\n", tname); 6017 return -EACCES; 6018 } 6019 6020 /* Simulate access to a PTR_TO_BTF_ID */ 6021 memset(&map_reg, 0, sizeof(map_reg)); 6022 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6023 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6024 if (ret < 0) 6025 return ret; 6026 6027 if (value_regno >= 0) 6028 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6029 6030 return 0; 6031 } 6032 6033 /* Check that the stack access at the given offset is within bounds. The 6034 * maximum valid offset is -1. 6035 * 6036 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6037 * -state->allocated_stack for reads. 6038 */ 6039 static int check_stack_slot_within_bounds(int off, 6040 struct bpf_func_state *state, 6041 enum bpf_access_type t) 6042 { 6043 int min_valid_off; 6044 6045 if (t == BPF_WRITE) 6046 min_valid_off = -MAX_BPF_STACK; 6047 else 6048 min_valid_off = -state->allocated_stack; 6049 6050 if (off < min_valid_off || off > -1) 6051 return -EACCES; 6052 return 0; 6053 } 6054 6055 /* Check that the stack access at 'regno + off' falls within the maximum stack 6056 * bounds. 6057 * 6058 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6059 */ 6060 static int check_stack_access_within_bounds( 6061 struct bpf_verifier_env *env, 6062 int regno, int off, int access_size, 6063 enum bpf_access_src src, enum bpf_access_type type) 6064 { 6065 struct bpf_reg_state *regs = cur_regs(env); 6066 struct bpf_reg_state *reg = regs + regno; 6067 struct bpf_func_state *state = func(env, reg); 6068 int min_off, max_off; 6069 int err; 6070 char *err_extra; 6071 6072 if (src == ACCESS_HELPER) 6073 /* We don't know if helpers are reading or writing (or both). */ 6074 err_extra = " indirect access to"; 6075 else if (type == BPF_READ) 6076 err_extra = " read from"; 6077 else 6078 err_extra = " write to"; 6079 6080 if (tnum_is_const(reg->var_off)) { 6081 min_off = reg->var_off.value + off; 6082 if (access_size > 0) 6083 max_off = min_off + access_size - 1; 6084 else 6085 max_off = min_off; 6086 } else { 6087 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6088 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6089 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6090 err_extra, regno); 6091 return -EACCES; 6092 } 6093 min_off = reg->smin_value + off; 6094 if (access_size > 0) 6095 max_off = reg->smax_value + off + access_size - 1; 6096 else 6097 max_off = min_off; 6098 } 6099 6100 err = check_stack_slot_within_bounds(min_off, state, type); 6101 if (!err) 6102 err = check_stack_slot_within_bounds(max_off, state, type); 6103 6104 if (err) { 6105 if (tnum_is_const(reg->var_off)) { 6106 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6107 err_extra, regno, off, access_size); 6108 } else { 6109 char tn_buf[48]; 6110 6111 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6112 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6113 err_extra, regno, tn_buf, access_size); 6114 } 6115 } 6116 return err; 6117 } 6118 6119 /* check whether memory at (regno + off) is accessible for t = (read | write) 6120 * if t==write, value_regno is a register which value is stored into memory 6121 * if t==read, value_regno is a register which will receive the value from memory 6122 * if t==write && value_regno==-1, some unknown value is stored into memory 6123 * if t==read && value_regno==-1, don't care what we read from memory 6124 */ 6125 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6126 int off, int bpf_size, enum bpf_access_type t, 6127 int value_regno, bool strict_alignment_once) 6128 { 6129 struct bpf_reg_state *regs = cur_regs(env); 6130 struct bpf_reg_state *reg = regs + regno; 6131 struct bpf_func_state *state; 6132 int size, err = 0; 6133 6134 size = bpf_size_to_bytes(bpf_size); 6135 if (size < 0) 6136 return size; 6137 6138 /* alignment checks will add in reg->off themselves */ 6139 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6140 if (err) 6141 return err; 6142 6143 /* for access checks, reg->off is just part of off */ 6144 off += reg->off; 6145 6146 if (reg->type == PTR_TO_MAP_KEY) { 6147 if (t == BPF_WRITE) { 6148 verbose(env, "write to change key R%d not allowed\n", regno); 6149 return -EACCES; 6150 } 6151 6152 err = check_mem_region_access(env, regno, off, size, 6153 reg->map_ptr->key_size, false); 6154 if (err) 6155 return err; 6156 if (value_regno >= 0) 6157 mark_reg_unknown(env, regs, value_regno); 6158 } else if (reg->type == PTR_TO_MAP_VALUE) { 6159 struct btf_field *kptr_field = NULL; 6160 6161 if (t == BPF_WRITE && value_regno >= 0 && 6162 is_pointer_value(env, value_regno)) { 6163 verbose(env, "R%d leaks addr into map\n", value_regno); 6164 return -EACCES; 6165 } 6166 err = check_map_access_type(env, regno, off, size, t); 6167 if (err) 6168 return err; 6169 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6170 if (err) 6171 return err; 6172 if (tnum_is_const(reg->var_off)) 6173 kptr_field = btf_record_find(reg->map_ptr->record, 6174 off + reg->var_off.value, BPF_KPTR); 6175 if (kptr_field) { 6176 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6177 } else if (t == BPF_READ && value_regno >= 0) { 6178 struct bpf_map *map = reg->map_ptr; 6179 6180 /* if map is read-only, track its contents as scalars */ 6181 if (tnum_is_const(reg->var_off) && 6182 bpf_map_is_rdonly(map) && 6183 map->ops->map_direct_value_addr) { 6184 int map_off = off + reg->var_off.value; 6185 u64 val = 0; 6186 6187 err = bpf_map_direct_read(map, map_off, size, 6188 &val); 6189 if (err) 6190 return err; 6191 6192 regs[value_regno].type = SCALAR_VALUE; 6193 __mark_reg_known(®s[value_regno], val); 6194 } else { 6195 mark_reg_unknown(env, regs, value_regno); 6196 } 6197 } 6198 } else if (base_type(reg->type) == PTR_TO_MEM) { 6199 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6200 6201 if (type_may_be_null(reg->type)) { 6202 verbose(env, "R%d invalid mem access '%s'\n", regno, 6203 reg_type_str(env, reg->type)); 6204 return -EACCES; 6205 } 6206 6207 if (t == BPF_WRITE && rdonly_mem) { 6208 verbose(env, "R%d cannot write into %s\n", 6209 regno, reg_type_str(env, reg->type)); 6210 return -EACCES; 6211 } 6212 6213 if (t == BPF_WRITE && value_regno >= 0 && 6214 is_pointer_value(env, value_regno)) { 6215 verbose(env, "R%d leaks addr into mem\n", value_regno); 6216 return -EACCES; 6217 } 6218 6219 err = check_mem_region_access(env, regno, off, size, 6220 reg->mem_size, false); 6221 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6222 mark_reg_unknown(env, regs, value_regno); 6223 } else if (reg->type == PTR_TO_CTX) { 6224 enum bpf_reg_type reg_type = SCALAR_VALUE; 6225 struct btf *btf = NULL; 6226 u32 btf_id = 0; 6227 6228 if (t == BPF_WRITE && value_regno >= 0 && 6229 is_pointer_value(env, value_regno)) { 6230 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6231 return -EACCES; 6232 } 6233 6234 err = check_ptr_off_reg(env, reg, regno); 6235 if (err < 0) 6236 return err; 6237 6238 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6239 &btf_id); 6240 if (err) 6241 verbose_linfo(env, insn_idx, "; "); 6242 if (!err && t == BPF_READ && value_regno >= 0) { 6243 /* ctx access returns either a scalar, or a 6244 * PTR_TO_PACKET[_META,_END]. In the latter 6245 * case, we know the offset is zero. 6246 */ 6247 if (reg_type == SCALAR_VALUE) { 6248 mark_reg_unknown(env, regs, value_regno); 6249 } else { 6250 mark_reg_known_zero(env, regs, 6251 value_regno); 6252 if (type_may_be_null(reg_type)) 6253 regs[value_regno].id = ++env->id_gen; 6254 /* A load of ctx field could have different 6255 * actual load size with the one encoded in the 6256 * insn. When the dst is PTR, it is for sure not 6257 * a sub-register. 6258 */ 6259 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6260 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6261 regs[value_regno].btf = btf; 6262 regs[value_regno].btf_id = btf_id; 6263 } 6264 } 6265 regs[value_regno].type = reg_type; 6266 } 6267 6268 } else if (reg->type == PTR_TO_STACK) { 6269 /* Basic bounds checks. */ 6270 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6271 if (err) 6272 return err; 6273 6274 state = func(env, reg); 6275 err = update_stack_depth(env, state, off); 6276 if (err) 6277 return err; 6278 6279 if (t == BPF_READ) 6280 err = check_stack_read(env, regno, off, size, 6281 value_regno); 6282 else 6283 err = check_stack_write(env, regno, off, size, 6284 value_regno, insn_idx); 6285 } else if (reg_is_pkt_pointer(reg)) { 6286 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6287 verbose(env, "cannot write into packet\n"); 6288 return -EACCES; 6289 } 6290 if (t == BPF_WRITE && value_regno >= 0 && 6291 is_pointer_value(env, value_regno)) { 6292 verbose(env, "R%d leaks addr into packet\n", 6293 value_regno); 6294 return -EACCES; 6295 } 6296 err = check_packet_access(env, regno, off, size, false); 6297 if (!err && t == BPF_READ && value_regno >= 0) 6298 mark_reg_unknown(env, regs, value_regno); 6299 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6300 if (t == BPF_WRITE && value_regno >= 0 && 6301 is_pointer_value(env, value_regno)) { 6302 verbose(env, "R%d leaks addr into flow keys\n", 6303 value_regno); 6304 return -EACCES; 6305 } 6306 6307 err = check_flow_keys_access(env, off, size); 6308 if (!err && t == BPF_READ && value_regno >= 0) 6309 mark_reg_unknown(env, regs, value_regno); 6310 } else if (type_is_sk_pointer(reg->type)) { 6311 if (t == BPF_WRITE) { 6312 verbose(env, "R%d cannot write into %s\n", 6313 regno, reg_type_str(env, reg->type)); 6314 return -EACCES; 6315 } 6316 err = check_sock_access(env, insn_idx, regno, off, size, t); 6317 if (!err && value_regno >= 0) 6318 mark_reg_unknown(env, regs, value_regno); 6319 } else if (reg->type == PTR_TO_TP_BUFFER) { 6320 err = check_tp_buffer_access(env, reg, regno, off, size); 6321 if (!err && t == BPF_READ && value_regno >= 0) 6322 mark_reg_unknown(env, regs, value_regno); 6323 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6324 !type_may_be_null(reg->type)) { 6325 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6326 value_regno); 6327 } else if (reg->type == CONST_PTR_TO_MAP) { 6328 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6329 value_regno); 6330 } else if (base_type(reg->type) == PTR_TO_BUF) { 6331 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6332 u32 *max_access; 6333 6334 if (rdonly_mem) { 6335 if (t == BPF_WRITE) { 6336 verbose(env, "R%d cannot write into %s\n", 6337 regno, reg_type_str(env, reg->type)); 6338 return -EACCES; 6339 } 6340 max_access = &env->prog->aux->max_rdonly_access; 6341 } else { 6342 max_access = &env->prog->aux->max_rdwr_access; 6343 } 6344 6345 err = check_buffer_access(env, reg, regno, off, size, false, 6346 max_access); 6347 6348 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6349 mark_reg_unknown(env, regs, value_regno); 6350 } else { 6351 verbose(env, "R%d invalid mem access '%s'\n", regno, 6352 reg_type_str(env, reg->type)); 6353 return -EACCES; 6354 } 6355 6356 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6357 regs[value_regno].type == SCALAR_VALUE) { 6358 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6359 coerce_reg_to_size(®s[value_regno], size); 6360 } 6361 return err; 6362 } 6363 6364 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6365 { 6366 int load_reg; 6367 int err; 6368 6369 switch (insn->imm) { 6370 case BPF_ADD: 6371 case BPF_ADD | BPF_FETCH: 6372 case BPF_AND: 6373 case BPF_AND | BPF_FETCH: 6374 case BPF_OR: 6375 case BPF_OR | BPF_FETCH: 6376 case BPF_XOR: 6377 case BPF_XOR | BPF_FETCH: 6378 case BPF_XCHG: 6379 case BPF_CMPXCHG: 6380 break; 6381 default: 6382 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6383 return -EINVAL; 6384 } 6385 6386 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6387 verbose(env, "invalid atomic operand size\n"); 6388 return -EINVAL; 6389 } 6390 6391 /* check src1 operand */ 6392 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6393 if (err) 6394 return err; 6395 6396 /* check src2 operand */ 6397 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6398 if (err) 6399 return err; 6400 6401 if (insn->imm == BPF_CMPXCHG) { 6402 /* Check comparison of R0 with memory location */ 6403 const u32 aux_reg = BPF_REG_0; 6404 6405 err = check_reg_arg(env, aux_reg, SRC_OP); 6406 if (err) 6407 return err; 6408 6409 if (is_pointer_value(env, aux_reg)) { 6410 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6411 return -EACCES; 6412 } 6413 } 6414 6415 if (is_pointer_value(env, insn->src_reg)) { 6416 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6417 return -EACCES; 6418 } 6419 6420 if (is_ctx_reg(env, insn->dst_reg) || 6421 is_pkt_reg(env, insn->dst_reg) || 6422 is_flow_key_reg(env, insn->dst_reg) || 6423 is_sk_reg(env, insn->dst_reg)) { 6424 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6425 insn->dst_reg, 6426 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6427 return -EACCES; 6428 } 6429 6430 if (insn->imm & BPF_FETCH) { 6431 if (insn->imm == BPF_CMPXCHG) 6432 load_reg = BPF_REG_0; 6433 else 6434 load_reg = insn->src_reg; 6435 6436 /* check and record load of old value */ 6437 err = check_reg_arg(env, load_reg, DST_OP); 6438 if (err) 6439 return err; 6440 } else { 6441 /* This instruction accesses a memory location but doesn't 6442 * actually load it into a register. 6443 */ 6444 load_reg = -1; 6445 } 6446 6447 /* Check whether we can read the memory, with second call for fetch 6448 * case to simulate the register fill. 6449 */ 6450 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6451 BPF_SIZE(insn->code), BPF_READ, -1, true); 6452 if (!err && load_reg >= 0) 6453 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6454 BPF_SIZE(insn->code), BPF_READ, load_reg, 6455 true); 6456 if (err) 6457 return err; 6458 6459 /* Check whether we can write into the same memory. */ 6460 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6461 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 6462 if (err) 6463 return err; 6464 6465 return 0; 6466 } 6467 6468 /* When register 'regno' is used to read the stack (either directly or through 6469 * a helper function) make sure that it's within stack boundary and, depending 6470 * on the access type, that all elements of the stack are initialized. 6471 * 6472 * 'off' includes 'regno->off', but not its dynamic part (if any). 6473 * 6474 * All registers that have been spilled on the stack in the slots within the 6475 * read offsets are marked as read. 6476 */ 6477 static int check_stack_range_initialized( 6478 struct bpf_verifier_env *env, int regno, int off, 6479 int access_size, bool zero_size_allowed, 6480 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6481 { 6482 struct bpf_reg_state *reg = reg_state(env, regno); 6483 struct bpf_func_state *state = func(env, reg); 6484 int err, min_off, max_off, i, j, slot, spi; 6485 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6486 enum bpf_access_type bounds_check_type; 6487 /* Some accesses can write anything into the stack, others are 6488 * read-only. 6489 */ 6490 bool clobber = false; 6491 6492 if (access_size == 0 && !zero_size_allowed) { 6493 verbose(env, "invalid zero-sized read\n"); 6494 return -EACCES; 6495 } 6496 6497 if (type == ACCESS_HELPER) { 6498 /* The bounds checks for writes are more permissive than for 6499 * reads. However, if raw_mode is not set, we'll do extra 6500 * checks below. 6501 */ 6502 bounds_check_type = BPF_WRITE; 6503 clobber = true; 6504 } else { 6505 bounds_check_type = BPF_READ; 6506 } 6507 err = check_stack_access_within_bounds(env, regno, off, access_size, 6508 type, bounds_check_type); 6509 if (err) 6510 return err; 6511 6512 6513 if (tnum_is_const(reg->var_off)) { 6514 min_off = max_off = reg->var_off.value + off; 6515 } else { 6516 /* Variable offset is prohibited for unprivileged mode for 6517 * simplicity since it requires corresponding support in 6518 * Spectre masking for stack ALU. 6519 * See also retrieve_ptr_limit(). 6520 */ 6521 if (!env->bypass_spec_v1) { 6522 char tn_buf[48]; 6523 6524 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6525 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6526 regno, err_extra, tn_buf); 6527 return -EACCES; 6528 } 6529 /* Only initialized buffer on stack is allowed to be accessed 6530 * with variable offset. With uninitialized buffer it's hard to 6531 * guarantee that whole memory is marked as initialized on 6532 * helper return since specific bounds are unknown what may 6533 * cause uninitialized stack leaking. 6534 */ 6535 if (meta && meta->raw_mode) 6536 meta = NULL; 6537 6538 min_off = reg->smin_value + off; 6539 max_off = reg->smax_value + off; 6540 } 6541 6542 if (meta && meta->raw_mode) { 6543 /* Ensure we won't be overwriting dynptrs when simulating byte 6544 * by byte access in check_helper_call using meta.access_size. 6545 * This would be a problem if we have a helper in the future 6546 * which takes: 6547 * 6548 * helper(uninit_mem, len, dynptr) 6549 * 6550 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6551 * may end up writing to dynptr itself when touching memory from 6552 * arg 1. This can be relaxed on a case by case basis for known 6553 * safe cases, but reject due to the possibilitiy of aliasing by 6554 * default. 6555 */ 6556 for (i = min_off; i < max_off + access_size; i++) { 6557 int stack_off = -i - 1; 6558 6559 spi = __get_spi(i); 6560 /* raw_mode may write past allocated_stack */ 6561 if (state->allocated_stack <= stack_off) 6562 continue; 6563 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6564 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6565 return -EACCES; 6566 } 6567 } 6568 meta->access_size = access_size; 6569 meta->regno = regno; 6570 return 0; 6571 } 6572 6573 for (i = min_off; i < max_off + access_size; i++) { 6574 u8 *stype; 6575 6576 slot = -i - 1; 6577 spi = slot / BPF_REG_SIZE; 6578 if (state->allocated_stack <= slot) 6579 goto err; 6580 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6581 if (*stype == STACK_MISC) 6582 goto mark; 6583 if ((*stype == STACK_ZERO) || 6584 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6585 if (clobber) { 6586 /* helper can write anything into the stack */ 6587 *stype = STACK_MISC; 6588 } 6589 goto mark; 6590 } 6591 6592 if (is_spilled_reg(&state->stack[spi]) && 6593 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6594 env->allow_ptr_leaks)) { 6595 if (clobber) { 6596 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6597 for (j = 0; j < BPF_REG_SIZE; j++) 6598 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6599 } 6600 goto mark; 6601 } 6602 6603 err: 6604 if (tnum_is_const(reg->var_off)) { 6605 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6606 err_extra, regno, min_off, i - min_off, access_size); 6607 } else { 6608 char tn_buf[48]; 6609 6610 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6611 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6612 err_extra, regno, tn_buf, i - min_off, access_size); 6613 } 6614 return -EACCES; 6615 mark: 6616 /* reading any byte out of 8-byte 'spill_slot' will cause 6617 * the whole slot to be marked as 'read' 6618 */ 6619 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6620 state->stack[spi].spilled_ptr.parent, 6621 REG_LIVE_READ64); 6622 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6623 * be sure that whether stack slot is written to or not. Hence, 6624 * we must still conservatively propagate reads upwards even if 6625 * helper may write to the entire memory range. 6626 */ 6627 } 6628 return update_stack_depth(env, state, min_off); 6629 } 6630 6631 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6632 int access_size, bool zero_size_allowed, 6633 struct bpf_call_arg_meta *meta) 6634 { 6635 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6636 u32 *max_access; 6637 6638 switch (base_type(reg->type)) { 6639 case PTR_TO_PACKET: 6640 case PTR_TO_PACKET_META: 6641 return check_packet_access(env, regno, reg->off, access_size, 6642 zero_size_allowed); 6643 case PTR_TO_MAP_KEY: 6644 if (meta && meta->raw_mode) { 6645 verbose(env, "R%d cannot write into %s\n", regno, 6646 reg_type_str(env, reg->type)); 6647 return -EACCES; 6648 } 6649 return check_mem_region_access(env, regno, reg->off, access_size, 6650 reg->map_ptr->key_size, false); 6651 case PTR_TO_MAP_VALUE: 6652 if (check_map_access_type(env, regno, reg->off, access_size, 6653 meta && meta->raw_mode ? BPF_WRITE : 6654 BPF_READ)) 6655 return -EACCES; 6656 return check_map_access(env, regno, reg->off, access_size, 6657 zero_size_allowed, ACCESS_HELPER); 6658 case PTR_TO_MEM: 6659 if (type_is_rdonly_mem(reg->type)) { 6660 if (meta && meta->raw_mode) { 6661 verbose(env, "R%d cannot write into %s\n", regno, 6662 reg_type_str(env, reg->type)); 6663 return -EACCES; 6664 } 6665 } 6666 return check_mem_region_access(env, regno, reg->off, 6667 access_size, reg->mem_size, 6668 zero_size_allowed); 6669 case PTR_TO_BUF: 6670 if (type_is_rdonly_mem(reg->type)) { 6671 if (meta && meta->raw_mode) { 6672 verbose(env, "R%d cannot write into %s\n", regno, 6673 reg_type_str(env, reg->type)); 6674 return -EACCES; 6675 } 6676 6677 max_access = &env->prog->aux->max_rdonly_access; 6678 } else { 6679 max_access = &env->prog->aux->max_rdwr_access; 6680 } 6681 return check_buffer_access(env, reg, regno, reg->off, 6682 access_size, zero_size_allowed, 6683 max_access); 6684 case PTR_TO_STACK: 6685 return check_stack_range_initialized( 6686 env, 6687 regno, reg->off, access_size, 6688 zero_size_allowed, ACCESS_HELPER, meta); 6689 case PTR_TO_BTF_ID: 6690 return check_ptr_to_btf_access(env, regs, regno, reg->off, 6691 access_size, BPF_READ, -1); 6692 case PTR_TO_CTX: 6693 /* in case the function doesn't know how to access the context, 6694 * (because we are in a program of type SYSCALL for example), we 6695 * can not statically check its size. 6696 * Dynamically check it now. 6697 */ 6698 if (!env->ops->convert_ctx_access) { 6699 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 6700 int offset = access_size - 1; 6701 6702 /* Allow zero-byte read from PTR_TO_CTX */ 6703 if (access_size == 0) 6704 return zero_size_allowed ? 0 : -EACCES; 6705 6706 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 6707 atype, -1, false); 6708 } 6709 6710 fallthrough; 6711 default: /* scalar_value or invalid ptr */ 6712 /* Allow zero-byte read from NULL, regardless of pointer type */ 6713 if (zero_size_allowed && access_size == 0 && 6714 register_is_null(reg)) 6715 return 0; 6716 6717 verbose(env, "R%d type=%s ", regno, 6718 reg_type_str(env, reg->type)); 6719 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 6720 return -EACCES; 6721 } 6722 } 6723 6724 static int check_mem_size_reg(struct bpf_verifier_env *env, 6725 struct bpf_reg_state *reg, u32 regno, 6726 bool zero_size_allowed, 6727 struct bpf_call_arg_meta *meta) 6728 { 6729 int err; 6730 6731 /* This is used to refine r0 return value bounds for helpers 6732 * that enforce this value as an upper bound on return values. 6733 * See do_refine_retval_range() for helpers that can refine 6734 * the return value. C type of helper is u32 so we pull register 6735 * bound from umax_value however, if negative verifier errors 6736 * out. Only upper bounds can be learned because retval is an 6737 * int type and negative retvals are allowed. 6738 */ 6739 meta->msize_max_value = reg->umax_value; 6740 6741 /* The register is SCALAR_VALUE; the access check 6742 * happens using its boundaries. 6743 */ 6744 if (!tnum_is_const(reg->var_off)) 6745 /* For unprivileged variable accesses, disable raw 6746 * mode so that the program is required to 6747 * initialize all the memory that the helper could 6748 * just partially fill up. 6749 */ 6750 meta = NULL; 6751 6752 if (reg->smin_value < 0) { 6753 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 6754 regno); 6755 return -EACCES; 6756 } 6757 6758 if (reg->umin_value == 0) { 6759 err = check_helper_mem_access(env, regno - 1, 0, 6760 zero_size_allowed, 6761 meta); 6762 if (err) 6763 return err; 6764 } 6765 6766 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 6767 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 6768 regno); 6769 return -EACCES; 6770 } 6771 err = check_helper_mem_access(env, regno - 1, 6772 reg->umax_value, 6773 zero_size_allowed, meta); 6774 if (!err) 6775 err = mark_chain_precision(env, regno); 6776 return err; 6777 } 6778 6779 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6780 u32 regno, u32 mem_size) 6781 { 6782 bool may_be_null = type_may_be_null(reg->type); 6783 struct bpf_reg_state saved_reg; 6784 struct bpf_call_arg_meta meta; 6785 int err; 6786 6787 if (register_is_null(reg)) 6788 return 0; 6789 6790 memset(&meta, 0, sizeof(meta)); 6791 /* Assuming that the register contains a value check if the memory 6792 * access is safe. Temporarily save and restore the register's state as 6793 * the conversion shouldn't be visible to a caller. 6794 */ 6795 if (may_be_null) { 6796 saved_reg = *reg; 6797 mark_ptr_not_null_reg(reg); 6798 } 6799 6800 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 6801 /* Check access for BPF_WRITE */ 6802 meta.raw_mode = true; 6803 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 6804 6805 if (may_be_null) 6806 *reg = saved_reg; 6807 6808 return err; 6809 } 6810 6811 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6812 u32 regno) 6813 { 6814 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 6815 bool may_be_null = type_may_be_null(mem_reg->type); 6816 struct bpf_reg_state saved_reg; 6817 struct bpf_call_arg_meta meta; 6818 int err; 6819 6820 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 6821 6822 memset(&meta, 0, sizeof(meta)); 6823 6824 if (may_be_null) { 6825 saved_reg = *mem_reg; 6826 mark_ptr_not_null_reg(mem_reg); 6827 } 6828 6829 err = check_mem_size_reg(env, reg, regno, true, &meta); 6830 /* Check access for BPF_WRITE */ 6831 meta.raw_mode = true; 6832 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 6833 6834 if (may_be_null) 6835 *mem_reg = saved_reg; 6836 return err; 6837 } 6838 6839 /* Implementation details: 6840 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 6841 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 6842 * Two bpf_map_lookups (even with the same key) will have different reg->id. 6843 * Two separate bpf_obj_new will also have different reg->id. 6844 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 6845 * clears reg->id after value_or_null->value transition, since the verifier only 6846 * cares about the range of access to valid map value pointer and doesn't care 6847 * about actual address of the map element. 6848 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 6849 * reg->id > 0 after value_or_null->value transition. By doing so 6850 * two bpf_map_lookups will be considered two different pointers that 6851 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 6852 * returned from bpf_obj_new. 6853 * The verifier allows taking only one bpf_spin_lock at a time to avoid 6854 * dead-locks. 6855 * Since only one bpf_spin_lock is allowed the checks are simpler than 6856 * reg_is_refcounted() logic. The verifier needs to remember only 6857 * one spin_lock instead of array of acquired_refs. 6858 * cur_state->active_lock remembers which map value element or allocated 6859 * object got locked and clears it after bpf_spin_unlock. 6860 */ 6861 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 6862 bool is_lock) 6863 { 6864 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6865 struct bpf_verifier_state *cur = env->cur_state; 6866 bool is_const = tnum_is_const(reg->var_off); 6867 u64 val = reg->var_off.value; 6868 struct bpf_map *map = NULL; 6869 struct btf *btf = NULL; 6870 struct btf_record *rec; 6871 6872 if (!is_const) { 6873 verbose(env, 6874 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 6875 regno); 6876 return -EINVAL; 6877 } 6878 if (reg->type == PTR_TO_MAP_VALUE) { 6879 map = reg->map_ptr; 6880 if (!map->btf) { 6881 verbose(env, 6882 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 6883 map->name); 6884 return -EINVAL; 6885 } 6886 } else { 6887 btf = reg->btf; 6888 } 6889 6890 rec = reg_btf_record(reg); 6891 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 6892 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 6893 map ? map->name : "kptr"); 6894 return -EINVAL; 6895 } 6896 if (rec->spin_lock_off != val + reg->off) { 6897 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 6898 val + reg->off, rec->spin_lock_off); 6899 return -EINVAL; 6900 } 6901 if (is_lock) { 6902 if (cur->active_lock.ptr) { 6903 verbose(env, 6904 "Locking two bpf_spin_locks are not allowed\n"); 6905 return -EINVAL; 6906 } 6907 if (map) 6908 cur->active_lock.ptr = map; 6909 else 6910 cur->active_lock.ptr = btf; 6911 cur->active_lock.id = reg->id; 6912 } else { 6913 void *ptr; 6914 6915 if (map) 6916 ptr = map; 6917 else 6918 ptr = btf; 6919 6920 if (!cur->active_lock.ptr) { 6921 verbose(env, "bpf_spin_unlock without taking a lock\n"); 6922 return -EINVAL; 6923 } 6924 if (cur->active_lock.ptr != ptr || 6925 cur->active_lock.id != reg->id) { 6926 verbose(env, "bpf_spin_unlock of different lock\n"); 6927 return -EINVAL; 6928 } 6929 6930 invalidate_non_owning_refs(env); 6931 6932 cur->active_lock.ptr = NULL; 6933 cur->active_lock.id = 0; 6934 } 6935 return 0; 6936 } 6937 6938 static int process_timer_func(struct bpf_verifier_env *env, int regno, 6939 struct bpf_call_arg_meta *meta) 6940 { 6941 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6942 bool is_const = tnum_is_const(reg->var_off); 6943 struct bpf_map *map = reg->map_ptr; 6944 u64 val = reg->var_off.value; 6945 6946 if (!is_const) { 6947 verbose(env, 6948 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 6949 regno); 6950 return -EINVAL; 6951 } 6952 if (!map->btf) { 6953 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 6954 map->name); 6955 return -EINVAL; 6956 } 6957 if (!btf_record_has_field(map->record, BPF_TIMER)) { 6958 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 6959 return -EINVAL; 6960 } 6961 if (map->record->timer_off != val + reg->off) { 6962 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 6963 val + reg->off, map->record->timer_off); 6964 return -EINVAL; 6965 } 6966 if (meta->map_ptr) { 6967 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 6968 return -EFAULT; 6969 } 6970 meta->map_uid = reg->map_uid; 6971 meta->map_ptr = map; 6972 return 0; 6973 } 6974 6975 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 6976 struct bpf_call_arg_meta *meta) 6977 { 6978 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6979 struct bpf_map *map_ptr = reg->map_ptr; 6980 struct btf_field *kptr_field; 6981 u32 kptr_off; 6982 6983 if (!tnum_is_const(reg->var_off)) { 6984 verbose(env, 6985 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 6986 regno); 6987 return -EINVAL; 6988 } 6989 if (!map_ptr->btf) { 6990 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 6991 map_ptr->name); 6992 return -EINVAL; 6993 } 6994 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 6995 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 6996 return -EINVAL; 6997 } 6998 6999 meta->map_ptr = map_ptr; 7000 kptr_off = reg->off + reg->var_off.value; 7001 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7002 if (!kptr_field) { 7003 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7004 return -EACCES; 7005 } 7006 if (kptr_field->type != BPF_KPTR_REF) { 7007 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7008 return -EACCES; 7009 } 7010 meta->kptr_field = kptr_field; 7011 return 0; 7012 } 7013 7014 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7015 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7016 * 7017 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7018 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7019 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7020 * 7021 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7022 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7023 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7024 * mutate the view of the dynptr and also possibly destroy it. In the latter 7025 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7026 * memory that dynptr points to. 7027 * 7028 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7029 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7030 * readonly dynptr view yet, hence only the first case is tracked and checked. 7031 * 7032 * This is consistent with how C applies the const modifier to a struct object, 7033 * where the pointer itself inside bpf_dynptr becomes const but not what it 7034 * points to. 7035 * 7036 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7037 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7038 */ 7039 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7040 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7041 { 7042 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7043 int err; 7044 7045 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7046 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7047 */ 7048 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7049 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7050 return -EFAULT; 7051 } 7052 7053 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7054 * constructing a mutable bpf_dynptr object. 7055 * 7056 * Currently, this is only possible with PTR_TO_STACK 7057 * pointing to a region of at least 16 bytes which doesn't 7058 * contain an existing bpf_dynptr. 7059 * 7060 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7061 * mutated or destroyed. However, the memory it points to 7062 * may be mutated. 7063 * 7064 * None - Points to a initialized dynptr that can be mutated and 7065 * destroyed, including mutation of the memory it points 7066 * to. 7067 */ 7068 if (arg_type & MEM_UNINIT) { 7069 int i; 7070 7071 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7072 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7073 return -EINVAL; 7074 } 7075 7076 /* we write BPF_DW bits (8 bytes) at a time */ 7077 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7078 err = check_mem_access(env, insn_idx, regno, 7079 i, BPF_DW, BPF_WRITE, -1, false); 7080 if (err) 7081 return err; 7082 } 7083 7084 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7085 } else /* MEM_RDONLY and None case from above */ { 7086 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7087 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7088 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7089 return -EINVAL; 7090 } 7091 7092 if (!is_dynptr_reg_valid_init(env, reg)) { 7093 verbose(env, 7094 "Expected an initialized dynptr as arg #%d\n", 7095 regno); 7096 return -EINVAL; 7097 } 7098 7099 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7100 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7101 verbose(env, 7102 "Expected a dynptr of type %s as arg #%d\n", 7103 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7104 return -EINVAL; 7105 } 7106 7107 err = mark_dynptr_read(env, reg); 7108 } 7109 return err; 7110 } 7111 7112 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7113 { 7114 struct bpf_func_state *state = func(env, reg); 7115 7116 return state->stack[spi].spilled_ptr.ref_obj_id; 7117 } 7118 7119 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7120 { 7121 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7122 } 7123 7124 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7125 { 7126 return meta->kfunc_flags & KF_ITER_NEW; 7127 } 7128 7129 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7130 { 7131 return meta->kfunc_flags & KF_ITER_NEXT; 7132 } 7133 7134 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7135 { 7136 return meta->kfunc_flags & KF_ITER_DESTROY; 7137 } 7138 7139 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7140 { 7141 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7142 * kfunc is iter state pointer 7143 */ 7144 return arg == 0 && is_iter_kfunc(meta); 7145 } 7146 7147 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7148 struct bpf_kfunc_call_arg_meta *meta) 7149 { 7150 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7151 const struct btf_type *t; 7152 const struct btf_param *arg; 7153 int spi, err, i, nr_slots; 7154 u32 btf_id; 7155 7156 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7157 arg = &btf_params(meta->func_proto)[0]; 7158 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7159 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7160 nr_slots = t->size / BPF_REG_SIZE; 7161 7162 if (is_iter_new_kfunc(meta)) { 7163 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7164 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7165 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7166 iter_type_str(meta->btf, btf_id), regno); 7167 return -EINVAL; 7168 } 7169 7170 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7171 err = check_mem_access(env, insn_idx, regno, 7172 i, BPF_DW, BPF_WRITE, -1, false); 7173 if (err) 7174 return err; 7175 } 7176 7177 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7178 if (err) 7179 return err; 7180 } else { 7181 /* iter_next() or iter_destroy() expect initialized iter state*/ 7182 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7183 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7184 iter_type_str(meta->btf, btf_id), regno); 7185 return -EINVAL; 7186 } 7187 7188 spi = iter_get_spi(env, reg, nr_slots); 7189 if (spi < 0) 7190 return spi; 7191 7192 err = mark_iter_read(env, reg, spi, nr_slots); 7193 if (err) 7194 return err; 7195 7196 /* remember meta->iter info for process_iter_next_call() */ 7197 meta->iter.spi = spi; 7198 meta->iter.frameno = reg->frameno; 7199 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7200 7201 if (is_iter_destroy_kfunc(meta)) { 7202 err = unmark_stack_slots_iter(env, reg, nr_slots); 7203 if (err) 7204 return err; 7205 } 7206 } 7207 7208 return 0; 7209 } 7210 7211 /* process_iter_next_call() is called when verifier gets to iterator's next 7212 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7213 * to it as just "iter_next()" in comments below. 7214 * 7215 * BPF verifier relies on a crucial contract for any iter_next() 7216 * implementation: it should *eventually* return NULL, and once that happens 7217 * it should keep returning NULL. That is, once iterator exhausts elements to 7218 * iterate, it should never reset or spuriously return new elements. 7219 * 7220 * With the assumption of such contract, process_iter_next_call() simulates 7221 * a fork in the verifier state to validate loop logic correctness and safety 7222 * without having to simulate infinite amount of iterations. 7223 * 7224 * In current state, we first assume that iter_next() returned NULL and 7225 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7226 * conditions we should not form an infinite loop and should eventually reach 7227 * exit. 7228 * 7229 * Besides that, we also fork current state and enqueue it for later 7230 * verification. In a forked state we keep iterator state as ACTIVE 7231 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7232 * also bump iteration depth to prevent erroneous infinite loop detection 7233 * later on (see iter_active_depths_differ() comment for details). In this 7234 * state we assume that we'll eventually loop back to another iter_next() 7235 * calls (it could be in exactly same location or in some other instruction, 7236 * it doesn't matter, we don't make any unnecessary assumptions about this, 7237 * everything revolves around iterator state in a stack slot, not which 7238 * instruction is calling iter_next()). When that happens, we either will come 7239 * to iter_next() with equivalent state and can conclude that next iteration 7240 * will proceed in exactly the same way as we just verified, so it's safe to 7241 * assume that loop converges. If not, we'll go on another iteration 7242 * simulation with a different input state, until all possible starting states 7243 * are validated or we reach maximum number of instructions limit. 7244 * 7245 * This way, we will either exhaustively discover all possible input states 7246 * that iterator loop can start with and eventually will converge, or we'll 7247 * effectively regress into bounded loop simulation logic and either reach 7248 * maximum number of instructions if loop is not provably convergent, or there 7249 * is some statically known limit on number of iterations (e.g., if there is 7250 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7251 * 7252 * One very subtle but very important aspect is that we *always* simulate NULL 7253 * condition first (as the current state) before we simulate non-NULL case. 7254 * This has to do with intricacies of scalar precision tracking. By simulating 7255 * "exit condition" of iter_next() returning NULL first, we make sure all the 7256 * relevant precision marks *that will be set **after** we exit iterator loop* 7257 * are propagated backwards to common parent state of NULL and non-NULL 7258 * branches. Thanks to that, state equivalence checks done later in forked 7259 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7260 * precision marks are finalized and won't change. Because simulating another 7261 * ACTIVE iterator iteration won't change them (because given same input 7262 * states we'll end up with exactly same output states which we are currently 7263 * comparing; and verification after the loop already propagated back what 7264 * needs to be **additionally** tracked as precise). It's subtle, grok 7265 * precision tracking for more intuitive understanding. 7266 */ 7267 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7268 struct bpf_kfunc_call_arg_meta *meta) 7269 { 7270 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7271 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7272 struct bpf_reg_state *cur_iter, *queued_iter; 7273 int iter_frameno = meta->iter.frameno; 7274 int iter_spi = meta->iter.spi; 7275 7276 BTF_TYPE_EMIT(struct bpf_iter); 7277 7278 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7279 7280 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7281 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7282 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7283 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7284 return -EFAULT; 7285 } 7286 7287 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7288 /* branch out active iter state */ 7289 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7290 if (!queued_st) 7291 return -ENOMEM; 7292 7293 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7294 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7295 queued_iter->iter.depth++; 7296 7297 queued_fr = queued_st->frame[queued_st->curframe]; 7298 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7299 } 7300 7301 /* switch to DRAINED state, but keep the depth unchanged */ 7302 /* mark current iter state as drained and assume returned NULL */ 7303 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7304 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7305 7306 return 0; 7307 } 7308 7309 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7310 { 7311 return type == ARG_CONST_SIZE || 7312 type == ARG_CONST_SIZE_OR_ZERO; 7313 } 7314 7315 static bool arg_type_is_release(enum bpf_arg_type type) 7316 { 7317 return type & OBJ_RELEASE; 7318 } 7319 7320 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7321 { 7322 return base_type(type) == ARG_PTR_TO_DYNPTR; 7323 } 7324 7325 static int int_ptr_type_to_size(enum bpf_arg_type type) 7326 { 7327 if (type == ARG_PTR_TO_INT) 7328 return sizeof(u32); 7329 else if (type == ARG_PTR_TO_LONG) 7330 return sizeof(u64); 7331 7332 return -EINVAL; 7333 } 7334 7335 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7336 const struct bpf_call_arg_meta *meta, 7337 enum bpf_arg_type *arg_type) 7338 { 7339 if (!meta->map_ptr) { 7340 /* kernel subsystem misconfigured verifier */ 7341 verbose(env, "invalid map_ptr to access map->type\n"); 7342 return -EACCES; 7343 } 7344 7345 switch (meta->map_ptr->map_type) { 7346 case BPF_MAP_TYPE_SOCKMAP: 7347 case BPF_MAP_TYPE_SOCKHASH: 7348 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7349 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7350 } else { 7351 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7352 return -EINVAL; 7353 } 7354 break; 7355 case BPF_MAP_TYPE_BLOOM_FILTER: 7356 if (meta->func_id == BPF_FUNC_map_peek_elem) 7357 *arg_type = ARG_PTR_TO_MAP_VALUE; 7358 break; 7359 default: 7360 break; 7361 } 7362 return 0; 7363 } 7364 7365 struct bpf_reg_types { 7366 const enum bpf_reg_type types[10]; 7367 u32 *btf_id; 7368 }; 7369 7370 static const struct bpf_reg_types sock_types = { 7371 .types = { 7372 PTR_TO_SOCK_COMMON, 7373 PTR_TO_SOCKET, 7374 PTR_TO_TCP_SOCK, 7375 PTR_TO_XDP_SOCK, 7376 }, 7377 }; 7378 7379 #ifdef CONFIG_NET 7380 static const struct bpf_reg_types btf_id_sock_common_types = { 7381 .types = { 7382 PTR_TO_SOCK_COMMON, 7383 PTR_TO_SOCKET, 7384 PTR_TO_TCP_SOCK, 7385 PTR_TO_XDP_SOCK, 7386 PTR_TO_BTF_ID, 7387 PTR_TO_BTF_ID | PTR_TRUSTED, 7388 }, 7389 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7390 }; 7391 #endif 7392 7393 static const struct bpf_reg_types mem_types = { 7394 .types = { 7395 PTR_TO_STACK, 7396 PTR_TO_PACKET, 7397 PTR_TO_PACKET_META, 7398 PTR_TO_MAP_KEY, 7399 PTR_TO_MAP_VALUE, 7400 PTR_TO_MEM, 7401 PTR_TO_MEM | MEM_RINGBUF, 7402 PTR_TO_BUF, 7403 PTR_TO_BTF_ID | PTR_TRUSTED, 7404 }, 7405 }; 7406 7407 static const struct bpf_reg_types int_ptr_types = { 7408 .types = { 7409 PTR_TO_STACK, 7410 PTR_TO_PACKET, 7411 PTR_TO_PACKET_META, 7412 PTR_TO_MAP_KEY, 7413 PTR_TO_MAP_VALUE, 7414 }, 7415 }; 7416 7417 static const struct bpf_reg_types spin_lock_types = { 7418 .types = { 7419 PTR_TO_MAP_VALUE, 7420 PTR_TO_BTF_ID | MEM_ALLOC, 7421 } 7422 }; 7423 7424 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7425 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7426 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7427 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7428 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7429 static const struct bpf_reg_types btf_ptr_types = { 7430 .types = { 7431 PTR_TO_BTF_ID, 7432 PTR_TO_BTF_ID | PTR_TRUSTED, 7433 PTR_TO_BTF_ID | MEM_RCU, 7434 }, 7435 }; 7436 static const struct bpf_reg_types percpu_btf_ptr_types = { 7437 .types = { 7438 PTR_TO_BTF_ID | MEM_PERCPU, 7439 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7440 } 7441 }; 7442 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7443 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7444 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7445 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7446 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7447 static const struct bpf_reg_types dynptr_types = { 7448 .types = { 7449 PTR_TO_STACK, 7450 CONST_PTR_TO_DYNPTR, 7451 } 7452 }; 7453 7454 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7455 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7456 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7457 [ARG_CONST_SIZE] = &scalar_types, 7458 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7459 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7460 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7461 [ARG_PTR_TO_CTX] = &context_types, 7462 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7463 #ifdef CONFIG_NET 7464 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7465 #endif 7466 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7467 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7468 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7469 [ARG_PTR_TO_MEM] = &mem_types, 7470 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7471 [ARG_PTR_TO_INT] = &int_ptr_types, 7472 [ARG_PTR_TO_LONG] = &int_ptr_types, 7473 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7474 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7475 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7476 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7477 [ARG_PTR_TO_TIMER] = &timer_types, 7478 [ARG_PTR_TO_KPTR] = &kptr_types, 7479 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7480 }; 7481 7482 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7483 enum bpf_arg_type arg_type, 7484 const u32 *arg_btf_id, 7485 struct bpf_call_arg_meta *meta) 7486 { 7487 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7488 enum bpf_reg_type expected, type = reg->type; 7489 const struct bpf_reg_types *compatible; 7490 int i, j; 7491 7492 compatible = compatible_reg_types[base_type(arg_type)]; 7493 if (!compatible) { 7494 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7495 return -EFAULT; 7496 } 7497 7498 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7499 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7500 * 7501 * Same for MAYBE_NULL: 7502 * 7503 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7504 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7505 * 7506 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7507 * 7508 * Therefore we fold these flags depending on the arg_type before comparison. 7509 */ 7510 if (arg_type & MEM_RDONLY) 7511 type &= ~MEM_RDONLY; 7512 if (arg_type & PTR_MAYBE_NULL) 7513 type &= ~PTR_MAYBE_NULL; 7514 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7515 type &= ~DYNPTR_TYPE_FLAG_MASK; 7516 7517 if (meta->func_id == BPF_FUNC_kptr_xchg && type & MEM_ALLOC) 7518 type &= ~MEM_ALLOC; 7519 7520 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7521 expected = compatible->types[i]; 7522 if (expected == NOT_INIT) 7523 break; 7524 7525 if (type == expected) 7526 goto found; 7527 } 7528 7529 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7530 for (j = 0; j + 1 < i; j++) 7531 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7532 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7533 return -EACCES; 7534 7535 found: 7536 if (base_type(reg->type) != PTR_TO_BTF_ID) 7537 return 0; 7538 7539 if (compatible == &mem_types) { 7540 if (!(arg_type & MEM_RDONLY)) { 7541 verbose(env, 7542 "%s() may write into memory pointed by R%d type=%s\n", 7543 func_id_name(meta->func_id), 7544 regno, reg_type_str(env, reg->type)); 7545 return -EACCES; 7546 } 7547 return 0; 7548 } 7549 7550 switch ((int)reg->type) { 7551 case PTR_TO_BTF_ID: 7552 case PTR_TO_BTF_ID | PTR_TRUSTED: 7553 case PTR_TO_BTF_ID | MEM_RCU: 7554 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7555 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7556 { 7557 /* For bpf_sk_release, it needs to match against first member 7558 * 'struct sock_common', hence make an exception for it. This 7559 * allows bpf_sk_release to work for multiple socket types. 7560 */ 7561 bool strict_type_match = arg_type_is_release(arg_type) && 7562 meta->func_id != BPF_FUNC_sk_release; 7563 7564 if (type_may_be_null(reg->type) && 7565 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7566 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7567 return -EACCES; 7568 } 7569 7570 if (!arg_btf_id) { 7571 if (!compatible->btf_id) { 7572 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7573 return -EFAULT; 7574 } 7575 arg_btf_id = compatible->btf_id; 7576 } 7577 7578 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7579 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7580 return -EACCES; 7581 } else { 7582 if (arg_btf_id == BPF_PTR_POISON) { 7583 verbose(env, "verifier internal error:"); 7584 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7585 regno); 7586 return -EACCES; 7587 } 7588 7589 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7590 btf_vmlinux, *arg_btf_id, 7591 strict_type_match)) { 7592 verbose(env, "R%d is of type %s but %s is expected\n", 7593 regno, btf_type_name(reg->btf, reg->btf_id), 7594 btf_type_name(btf_vmlinux, *arg_btf_id)); 7595 return -EACCES; 7596 } 7597 } 7598 break; 7599 } 7600 case PTR_TO_BTF_ID | MEM_ALLOC: 7601 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7602 meta->func_id != BPF_FUNC_kptr_xchg) { 7603 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7604 return -EFAULT; 7605 } 7606 /* Handled by helper specific checks */ 7607 break; 7608 case PTR_TO_BTF_ID | MEM_PERCPU: 7609 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7610 /* Handled by helper specific checks */ 7611 break; 7612 default: 7613 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7614 return -EFAULT; 7615 } 7616 return 0; 7617 } 7618 7619 static struct btf_field * 7620 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7621 { 7622 struct btf_field *field; 7623 struct btf_record *rec; 7624 7625 rec = reg_btf_record(reg); 7626 if (!rec) 7627 return NULL; 7628 7629 field = btf_record_find(rec, off, fields); 7630 if (!field) 7631 return NULL; 7632 7633 return field; 7634 } 7635 7636 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7637 const struct bpf_reg_state *reg, int regno, 7638 enum bpf_arg_type arg_type) 7639 { 7640 u32 type = reg->type; 7641 7642 /* When referenced register is passed to release function, its fixed 7643 * offset must be 0. 7644 * 7645 * We will check arg_type_is_release reg has ref_obj_id when storing 7646 * meta->release_regno. 7647 */ 7648 if (arg_type_is_release(arg_type)) { 7649 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7650 * may not directly point to the object being released, but to 7651 * dynptr pointing to such object, which might be at some offset 7652 * on the stack. In that case, we simply to fallback to the 7653 * default handling. 7654 */ 7655 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7656 return 0; 7657 7658 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 7659 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 7660 return __check_ptr_off_reg(env, reg, regno, true); 7661 7662 verbose(env, "R%d must have zero offset when passed to release func\n", 7663 regno); 7664 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 7665 btf_type_name(reg->btf, reg->btf_id), reg->off); 7666 return -EINVAL; 7667 } 7668 7669 /* Doing check_ptr_off_reg check for the offset will catch this 7670 * because fixed_off_ok is false, but checking here allows us 7671 * to give the user a better error message. 7672 */ 7673 if (reg->off) { 7674 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7675 regno); 7676 return -EINVAL; 7677 } 7678 return __check_ptr_off_reg(env, reg, regno, false); 7679 } 7680 7681 switch (type) { 7682 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7683 case PTR_TO_STACK: 7684 case PTR_TO_PACKET: 7685 case PTR_TO_PACKET_META: 7686 case PTR_TO_MAP_KEY: 7687 case PTR_TO_MAP_VALUE: 7688 case PTR_TO_MEM: 7689 case PTR_TO_MEM | MEM_RDONLY: 7690 case PTR_TO_MEM | MEM_RINGBUF: 7691 case PTR_TO_BUF: 7692 case PTR_TO_BUF | MEM_RDONLY: 7693 case SCALAR_VALUE: 7694 return 0; 7695 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 7696 * fixed offset. 7697 */ 7698 case PTR_TO_BTF_ID: 7699 case PTR_TO_BTF_ID | MEM_ALLOC: 7700 case PTR_TO_BTF_ID | PTR_TRUSTED: 7701 case PTR_TO_BTF_ID | MEM_RCU: 7702 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 7703 /* When referenced PTR_TO_BTF_ID is passed to release function, 7704 * its fixed offset must be 0. In the other cases, fixed offset 7705 * can be non-zero. This was already checked above. So pass 7706 * fixed_off_ok as true to allow fixed offset for all other 7707 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 7708 * still need to do checks instead of returning. 7709 */ 7710 return __check_ptr_off_reg(env, reg, regno, true); 7711 default: 7712 return __check_ptr_off_reg(env, reg, regno, false); 7713 } 7714 } 7715 7716 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 7717 const struct bpf_func_proto *fn, 7718 struct bpf_reg_state *regs) 7719 { 7720 struct bpf_reg_state *state = NULL; 7721 int i; 7722 7723 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 7724 if (arg_type_is_dynptr(fn->arg_type[i])) { 7725 if (state) { 7726 verbose(env, "verifier internal error: multiple dynptr args\n"); 7727 return NULL; 7728 } 7729 state = ®s[BPF_REG_1 + i]; 7730 } 7731 7732 if (!state) 7733 verbose(env, "verifier internal error: no dynptr arg found\n"); 7734 7735 return state; 7736 } 7737 7738 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7739 { 7740 struct bpf_func_state *state = func(env, reg); 7741 int spi; 7742 7743 if (reg->type == CONST_PTR_TO_DYNPTR) 7744 return reg->id; 7745 spi = dynptr_get_spi(env, reg); 7746 if (spi < 0) 7747 return spi; 7748 return state->stack[spi].spilled_ptr.id; 7749 } 7750 7751 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7752 { 7753 struct bpf_func_state *state = func(env, reg); 7754 int spi; 7755 7756 if (reg->type == CONST_PTR_TO_DYNPTR) 7757 return reg->ref_obj_id; 7758 spi = dynptr_get_spi(env, reg); 7759 if (spi < 0) 7760 return spi; 7761 return state->stack[spi].spilled_ptr.ref_obj_id; 7762 } 7763 7764 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 7765 struct bpf_reg_state *reg) 7766 { 7767 struct bpf_func_state *state = func(env, reg); 7768 int spi; 7769 7770 if (reg->type == CONST_PTR_TO_DYNPTR) 7771 return reg->dynptr.type; 7772 7773 spi = __get_spi(reg->off); 7774 if (spi < 0) { 7775 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 7776 return BPF_DYNPTR_TYPE_INVALID; 7777 } 7778 7779 return state->stack[spi].spilled_ptr.dynptr.type; 7780 } 7781 7782 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 7783 struct bpf_call_arg_meta *meta, 7784 const struct bpf_func_proto *fn, 7785 int insn_idx) 7786 { 7787 u32 regno = BPF_REG_1 + arg; 7788 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7789 enum bpf_arg_type arg_type = fn->arg_type[arg]; 7790 enum bpf_reg_type type = reg->type; 7791 u32 *arg_btf_id = NULL; 7792 int err = 0; 7793 7794 if (arg_type == ARG_DONTCARE) 7795 return 0; 7796 7797 err = check_reg_arg(env, regno, SRC_OP); 7798 if (err) 7799 return err; 7800 7801 if (arg_type == ARG_ANYTHING) { 7802 if (is_pointer_value(env, regno)) { 7803 verbose(env, "R%d leaks addr into helper function\n", 7804 regno); 7805 return -EACCES; 7806 } 7807 return 0; 7808 } 7809 7810 if (type_is_pkt_pointer(type) && 7811 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 7812 verbose(env, "helper access to the packet is not allowed\n"); 7813 return -EACCES; 7814 } 7815 7816 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 7817 err = resolve_map_arg_type(env, meta, &arg_type); 7818 if (err) 7819 return err; 7820 } 7821 7822 if (register_is_null(reg) && type_may_be_null(arg_type)) 7823 /* A NULL register has a SCALAR_VALUE type, so skip 7824 * type checking. 7825 */ 7826 goto skip_type_check; 7827 7828 /* arg_btf_id and arg_size are in a union. */ 7829 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 7830 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 7831 arg_btf_id = fn->arg_btf_id[arg]; 7832 7833 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 7834 if (err) 7835 return err; 7836 7837 err = check_func_arg_reg_off(env, reg, regno, arg_type); 7838 if (err) 7839 return err; 7840 7841 skip_type_check: 7842 if (arg_type_is_release(arg_type)) { 7843 if (arg_type_is_dynptr(arg_type)) { 7844 struct bpf_func_state *state = func(env, reg); 7845 int spi; 7846 7847 /* Only dynptr created on stack can be released, thus 7848 * the get_spi and stack state checks for spilled_ptr 7849 * should only be done before process_dynptr_func for 7850 * PTR_TO_STACK. 7851 */ 7852 if (reg->type == PTR_TO_STACK) { 7853 spi = dynptr_get_spi(env, reg); 7854 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 7855 verbose(env, "arg %d is an unacquired reference\n", regno); 7856 return -EINVAL; 7857 } 7858 } else { 7859 verbose(env, "cannot release unowned const bpf_dynptr\n"); 7860 return -EINVAL; 7861 } 7862 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 7863 verbose(env, "R%d must be referenced when passed to release function\n", 7864 regno); 7865 return -EINVAL; 7866 } 7867 if (meta->release_regno) { 7868 verbose(env, "verifier internal error: more than one release argument\n"); 7869 return -EFAULT; 7870 } 7871 meta->release_regno = regno; 7872 } 7873 7874 if (reg->ref_obj_id) { 7875 if (meta->ref_obj_id) { 7876 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 7877 regno, reg->ref_obj_id, 7878 meta->ref_obj_id); 7879 return -EFAULT; 7880 } 7881 meta->ref_obj_id = reg->ref_obj_id; 7882 } 7883 7884 switch (base_type(arg_type)) { 7885 case ARG_CONST_MAP_PTR: 7886 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 7887 if (meta->map_ptr) { 7888 /* Use map_uid (which is unique id of inner map) to reject: 7889 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 7890 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 7891 * if (inner_map1 && inner_map2) { 7892 * timer = bpf_map_lookup_elem(inner_map1); 7893 * if (timer) 7894 * // mismatch would have been allowed 7895 * bpf_timer_init(timer, inner_map2); 7896 * } 7897 * 7898 * Comparing map_ptr is enough to distinguish normal and outer maps. 7899 */ 7900 if (meta->map_ptr != reg->map_ptr || 7901 meta->map_uid != reg->map_uid) { 7902 verbose(env, 7903 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 7904 meta->map_uid, reg->map_uid); 7905 return -EINVAL; 7906 } 7907 } 7908 meta->map_ptr = reg->map_ptr; 7909 meta->map_uid = reg->map_uid; 7910 break; 7911 case ARG_PTR_TO_MAP_KEY: 7912 /* bpf_map_xxx(..., map_ptr, ..., key) call: 7913 * check that [key, key + map->key_size) are within 7914 * stack limits and initialized 7915 */ 7916 if (!meta->map_ptr) { 7917 /* in function declaration map_ptr must come before 7918 * map_key, so that it's verified and known before 7919 * we have to check map_key here. Otherwise it means 7920 * that kernel subsystem misconfigured verifier 7921 */ 7922 verbose(env, "invalid map_ptr to access map->key\n"); 7923 return -EACCES; 7924 } 7925 err = check_helper_mem_access(env, regno, 7926 meta->map_ptr->key_size, false, 7927 NULL); 7928 break; 7929 case ARG_PTR_TO_MAP_VALUE: 7930 if (type_may_be_null(arg_type) && register_is_null(reg)) 7931 return 0; 7932 7933 /* bpf_map_xxx(..., map_ptr, ..., value) call: 7934 * check [value, value + map->value_size) validity 7935 */ 7936 if (!meta->map_ptr) { 7937 /* kernel subsystem misconfigured verifier */ 7938 verbose(env, "invalid map_ptr to access map->value\n"); 7939 return -EACCES; 7940 } 7941 meta->raw_mode = arg_type & MEM_UNINIT; 7942 err = check_helper_mem_access(env, regno, 7943 meta->map_ptr->value_size, false, 7944 meta); 7945 break; 7946 case ARG_PTR_TO_PERCPU_BTF_ID: 7947 if (!reg->btf_id) { 7948 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 7949 return -EACCES; 7950 } 7951 meta->ret_btf = reg->btf; 7952 meta->ret_btf_id = reg->btf_id; 7953 break; 7954 case ARG_PTR_TO_SPIN_LOCK: 7955 if (in_rbtree_lock_required_cb(env)) { 7956 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 7957 return -EACCES; 7958 } 7959 if (meta->func_id == BPF_FUNC_spin_lock) { 7960 err = process_spin_lock(env, regno, true); 7961 if (err) 7962 return err; 7963 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 7964 err = process_spin_lock(env, regno, false); 7965 if (err) 7966 return err; 7967 } else { 7968 verbose(env, "verifier internal error\n"); 7969 return -EFAULT; 7970 } 7971 break; 7972 case ARG_PTR_TO_TIMER: 7973 err = process_timer_func(env, regno, meta); 7974 if (err) 7975 return err; 7976 break; 7977 case ARG_PTR_TO_FUNC: 7978 meta->subprogno = reg->subprogno; 7979 break; 7980 case ARG_PTR_TO_MEM: 7981 /* The access to this pointer is only checked when we hit the 7982 * next is_mem_size argument below. 7983 */ 7984 meta->raw_mode = arg_type & MEM_UNINIT; 7985 if (arg_type & MEM_FIXED_SIZE) { 7986 err = check_helper_mem_access(env, regno, 7987 fn->arg_size[arg], false, 7988 meta); 7989 } 7990 break; 7991 case ARG_CONST_SIZE: 7992 err = check_mem_size_reg(env, reg, regno, false, meta); 7993 break; 7994 case ARG_CONST_SIZE_OR_ZERO: 7995 err = check_mem_size_reg(env, reg, regno, true, meta); 7996 break; 7997 case ARG_PTR_TO_DYNPTR: 7998 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 7999 if (err) 8000 return err; 8001 break; 8002 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8003 if (!tnum_is_const(reg->var_off)) { 8004 verbose(env, "R%d is not a known constant'\n", 8005 regno); 8006 return -EACCES; 8007 } 8008 meta->mem_size = reg->var_off.value; 8009 err = mark_chain_precision(env, regno); 8010 if (err) 8011 return err; 8012 break; 8013 case ARG_PTR_TO_INT: 8014 case ARG_PTR_TO_LONG: 8015 { 8016 int size = int_ptr_type_to_size(arg_type); 8017 8018 err = check_helper_mem_access(env, regno, size, false, meta); 8019 if (err) 8020 return err; 8021 err = check_ptr_alignment(env, reg, 0, size, true); 8022 break; 8023 } 8024 case ARG_PTR_TO_CONST_STR: 8025 { 8026 struct bpf_map *map = reg->map_ptr; 8027 int map_off; 8028 u64 map_addr; 8029 char *str_ptr; 8030 8031 if (!bpf_map_is_rdonly(map)) { 8032 verbose(env, "R%d does not point to a readonly map'\n", regno); 8033 return -EACCES; 8034 } 8035 8036 if (!tnum_is_const(reg->var_off)) { 8037 verbose(env, "R%d is not a constant address'\n", regno); 8038 return -EACCES; 8039 } 8040 8041 if (!map->ops->map_direct_value_addr) { 8042 verbose(env, "no direct value access support for this map type\n"); 8043 return -EACCES; 8044 } 8045 8046 err = check_map_access(env, regno, reg->off, 8047 map->value_size - reg->off, false, 8048 ACCESS_HELPER); 8049 if (err) 8050 return err; 8051 8052 map_off = reg->off + reg->var_off.value; 8053 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8054 if (err) { 8055 verbose(env, "direct value access on string failed\n"); 8056 return err; 8057 } 8058 8059 str_ptr = (char *)(long)(map_addr); 8060 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8061 verbose(env, "string is not zero-terminated\n"); 8062 return -EINVAL; 8063 } 8064 break; 8065 } 8066 case ARG_PTR_TO_KPTR: 8067 err = process_kptr_func(env, regno, meta); 8068 if (err) 8069 return err; 8070 break; 8071 } 8072 8073 return err; 8074 } 8075 8076 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8077 { 8078 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8079 enum bpf_prog_type type = resolve_prog_type(env->prog); 8080 8081 if (func_id != BPF_FUNC_map_update_elem) 8082 return false; 8083 8084 /* It's not possible to get access to a locked struct sock in these 8085 * contexts, so updating is safe. 8086 */ 8087 switch (type) { 8088 case BPF_PROG_TYPE_TRACING: 8089 if (eatype == BPF_TRACE_ITER) 8090 return true; 8091 break; 8092 case BPF_PROG_TYPE_SOCKET_FILTER: 8093 case BPF_PROG_TYPE_SCHED_CLS: 8094 case BPF_PROG_TYPE_SCHED_ACT: 8095 case BPF_PROG_TYPE_XDP: 8096 case BPF_PROG_TYPE_SK_REUSEPORT: 8097 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8098 case BPF_PROG_TYPE_SK_LOOKUP: 8099 return true; 8100 default: 8101 break; 8102 } 8103 8104 verbose(env, "cannot update sockmap in this context\n"); 8105 return false; 8106 } 8107 8108 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8109 { 8110 return env->prog->jit_requested && 8111 bpf_jit_supports_subprog_tailcalls(); 8112 } 8113 8114 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8115 struct bpf_map *map, int func_id) 8116 { 8117 if (!map) 8118 return 0; 8119 8120 /* We need a two way check, first is from map perspective ... */ 8121 switch (map->map_type) { 8122 case BPF_MAP_TYPE_PROG_ARRAY: 8123 if (func_id != BPF_FUNC_tail_call) 8124 goto error; 8125 break; 8126 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8127 if (func_id != BPF_FUNC_perf_event_read && 8128 func_id != BPF_FUNC_perf_event_output && 8129 func_id != BPF_FUNC_skb_output && 8130 func_id != BPF_FUNC_perf_event_read_value && 8131 func_id != BPF_FUNC_xdp_output) 8132 goto error; 8133 break; 8134 case BPF_MAP_TYPE_RINGBUF: 8135 if (func_id != BPF_FUNC_ringbuf_output && 8136 func_id != BPF_FUNC_ringbuf_reserve && 8137 func_id != BPF_FUNC_ringbuf_query && 8138 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8139 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8140 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8141 goto error; 8142 break; 8143 case BPF_MAP_TYPE_USER_RINGBUF: 8144 if (func_id != BPF_FUNC_user_ringbuf_drain) 8145 goto error; 8146 break; 8147 case BPF_MAP_TYPE_STACK_TRACE: 8148 if (func_id != BPF_FUNC_get_stackid) 8149 goto error; 8150 break; 8151 case BPF_MAP_TYPE_CGROUP_ARRAY: 8152 if (func_id != BPF_FUNC_skb_under_cgroup && 8153 func_id != BPF_FUNC_current_task_under_cgroup) 8154 goto error; 8155 break; 8156 case BPF_MAP_TYPE_CGROUP_STORAGE: 8157 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8158 if (func_id != BPF_FUNC_get_local_storage) 8159 goto error; 8160 break; 8161 case BPF_MAP_TYPE_DEVMAP: 8162 case BPF_MAP_TYPE_DEVMAP_HASH: 8163 if (func_id != BPF_FUNC_redirect_map && 8164 func_id != BPF_FUNC_map_lookup_elem) 8165 goto error; 8166 break; 8167 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8168 * appear. 8169 */ 8170 case BPF_MAP_TYPE_CPUMAP: 8171 if (func_id != BPF_FUNC_redirect_map) 8172 goto error; 8173 break; 8174 case BPF_MAP_TYPE_XSKMAP: 8175 if (func_id != BPF_FUNC_redirect_map && 8176 func_id != BPF_FUNC_map_lookup_elem) 8177 goto error; 8178 break; 8179 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8180 case BPF_MAP_TYPE_HASH_OF_MAPS: 8181 if (func_id != BPF_FUNC_map_lookup_elem) 8182 goto error; 8183 break; 8184 case BPF_MAP_TYPE_SOCKMAP: 8185 if (func_id != BPF_FUNC_sk_redirect_map && 8186 func_id != BPF_FUNC_sock_map_update && 8187 func_id != BPF_FUNC_map_delete_elem && 8188 func_id != BPF_FUNC_msg_redirect_map && 8189 func_id != BPF_FUNC_sk_select_reuseport && 8190 func_id != BPF_FUNC_map_lookup_elem && 8191 !may_update_sockmap(env, func_id)) 8192 goto error; 8193 break; 8194 case BPF_MAP_TYPE_SOCKHASH: 8195 if (func_id != BPF_FUNC_sk_redirect_hash && 8196 func_id != BPF_FUNC_sock_hash_update && 8197 func_id != BPF_FUNC_map_delete_elem && 8198 func_id != BPF_FUNC_msg_redirect_hash && 8199 func_id != BPF_FUNC_sk_select_reuseport && 8200 func_id != BPF_FUNC_map_lookup_elem && 8201 !may_update_sockmap(env, func_id)) 8202 goto error; 8203 break; 8204 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8205 if (func_id != BPF_FUNC_sk_select_reuseport) 8206 goto error; 8207 break; 8208 case BPF_MAP_TYPE_QUEUE: 8209 case BPF_MAP_TYPE_STACK: 8210 if (func_id != BPF_FUNC_map_peek_elem && 8211 func_id != BPF_FUNC_map_pop_elem && 8212 func_id != BPF_FUNC_map_push_elem) 8213 goto error; 8214 break; 8215 case BPF_MAP_TYPE_SK_STORAGE: 8216 if (func_id != BPF_FUNC_sk_storage_get && 8217 func_id != BPF_FUNC_sk_storage_delete && 8218 func_id != BPF_FUNC_kptr_xchg) 8219 goto error; 8220 break; 8221 case BPF_MAP_TYPE_INODE_STORAGE: 8222 if (func_id != BPF_FUNC_inode_storage_get && 8223 func_id != BPF_FUNC_inode_storage_delete && 8224 func_id != BPF_FUNC_kptr_xchg) 8225 goto error; 8226 break; 8227 case BPF_MAP_TYPE_TASK_STORAGE: 8228 if (func_id != BPF_FUNC_task_storage_get && 8229 func_id != BPF_FUNC_task_storage_delete && 8230 func_id != BPF_FUNC_kptr_xchg) 8231 goto error; 8232 break; 8233 case BPF_MAP_TYPE_CGRP_STORAGE: 8234 if (func_id != BPF_FUNC_cgrp_storage_get && 8235 func_id != BPF_FUNC_cgrp_storage_delete && 8236 func_id != BPF_FUNC_kptr_xchg) 8237 goto error; 8238 break; 8239 case BPF_MAP_TYPE_BLOOM_FILTER: 8240 if (func_id != BPF_FUNC_map_peek_elem && 8241 func_id != BPF_FUNC_map_push_elem) 8242 goto error; 8243 break; 8244 default: 8245 break; 8246 } 8247 8248 /* ... and second from the function itself. */ 8249 switch (func_id) { 8250 case BPF_FUNC_tail_call: 8251 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8252 goto error; 8253 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8254 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8255 return -EINVAL; 8256 } 8257 break; 8258 case BPF_FUNC_perf_event_read: 8259 case BPF_FUNC_perf_event_output: 8260 case BPF_FUNC_perf_event_read_value: 8261 case BPF_FUNC_skb_output: 8262 case BPF_FUNC_xdp_output: 8263 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8264 goto error; 8265 break; 8266 case BPF_FUNC_ringbuf_output: 8267 case BPF_FUNC_ringbuf_reserve: 8268 case BPF_FUNC_ringbuf_query: 8269 case BPF_FUNC_ringbuf_reserve_dynptr: 8270 case BPF_FUNC_ringbuf_submit_dynptr: 8271 case BPF_FUNC_ringbuf_discard_dynptr: 8272 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8273 goto error; 8274 break; 8275 case BPF_FUNC_user_ringbuf_drain: 8276 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8277 goto error; 8278 break; 8279 case BPF_FUNC_get_stackid: 8280 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8281 goto error; 8282 break; 8283 case BPF_FUNC_current_task_under_cgroup: 8284 case BPF_FUNC_skb_under_cgroup: 8285 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8286 goto error; 8287 break; 8288 case BPF_FUNC_redirect_map: 8289 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8290 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8291 map->map_type != BPF_MAP_TYPE_CPUMAP && 8292 map->map_type != BPF_MAP_TYPE_XSKMAP) 8293 goto error; 8294 break; 8295 case BPF_FUNC_sk_redirect_map: 8296 case BPF_FUNC_msg_redirect_map: 8297 case BPF_FUNC_sock_map_update: 8298 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8299 goto error; 8300 break; 8301 case BPF_FUNC_sk_redirect_hash: 8302 case BPF_FUNC_msg_redirect_hash: 8303 case BPF_FUNC_sock_hash_update: 8304 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8305 goto error; 8306 break; 8307 case BPF_FUNC_get_local_storage: 8308 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8309 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8310 goto error; 8311 break; 8312 case BPF_FUNC_sk_select_reuseport: 8313 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8314 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8315 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8316 goto error; 8317 break; 8318 case BPF_FUNC_map_pop_elem: 8319 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8320 map->map_type != BPF_MAP_TYPE_STACK) 8321 goto error; 8322 break; 8323 case BPF_FUNC_map_peek_elem: 8324 case BPF_FUNC_map_push_elem: 8325 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8326 map->map_type != BPF_MAP_TYPE_STACK && 8327 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8328 goto error; 8329 break; 8330 case BPF_FUNC_map_lookup_percpu_elem: 8331 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8332 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8333 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8334 goto error; 8335 break; 8336 case BPF_FUNC_sk_storage_get: 8337 case BPF_FUNC_sk_storage_delete: 8338 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8339 goto error; 8340 break; 8341 case BPF_FUNC_inode_storage_get: 8342 case BPF_FUNC_inode_storage_delete: 8343 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8344 goto error; 8345 break; 8346 case BPF_FUNC_task_storage_get: 8347 case BPF_FUNC_task_storage_delete: 8348 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8349 goto error; 8350 break; 8351 case BPF_FUNC_cgrp_storage_get: 8352 case BPF_FUNC_cgrp_storage_delete: 8353 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8354 goto error; 8355 break; 8356 default: 8357 break; 8358 } 8359 8360 return 0; 8361 error: 8362 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8363 map->map_type, func_id_name(func_id), func_id); 8364 return -EINVAL; 8365 } 8366 8367 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8368 { 8369 int count = 0; 8370 8371 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8372 count++; 8373 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8374 count++; 8375 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8376 count++; 8377 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8378 count++; 8379 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8380 count++; 8381 8382 /* We only support one arg being in raw mode at the moment, 8383 * which is sufficient for the helper functions we have 8384 * right now. 8385 */ 8386 return count <= 1; 8387 } 8388 8389 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8390 { 8391 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8392 bool has_size = fn->arg_size[arg] != 0; 8393 bool is_next_size = false; 8394 8395 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8396 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8397 8398 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8399 return is_next_size; 8400 8401 return has_size == is_next_size || is_next_size == is_fixed; 8402 } 8403 8404 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8405 { 8406 /* bpf_xxx(..., buf, len) call will access 'len' 8407 * bytes from memory 'buf'. Both arg types need 8408 * to be paired, so make sure there's no buggy 8409 * helper function specification. 8410 */ 8411 if (arg_type_is_mem_size(fn->arg1_type) || 8412 check_args_pair_invalid(fn, 0) || 8413 check_args_pair_invalid(fn, 1) || 8414 check_args_pair_invalid(fn, 2) || 8415 check_args_pair_invalid(fn, 3) || 8416 check_args_pair_invalid(fn, 4)) 8417 return false; 8418 8419 return true; 8420 } 8421 8422 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8423 { 8424 int i; 8425 8426 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8427 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8428 return !!fn->arg_btf_id[i]; 8429 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8430 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8431 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8432 /* arg_btf_id and arg_size are in a union. */ 8433 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8434 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8435 return false; 8436 } 8437 8438 return true; 8439 } 8440 8441 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8442 { 8443 return check_raw_mode_ok(fn) && 8444 check_arg_pair_ok(fn) && 8445 check_btf_id_ok(fn) ? 0 : -EINVAL; 8446 } 8447 8448 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8449 * are now invalid, so turn them into unknown SCALAR_VALUE. 8450 * 8451 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8452 * since these slices point to packet data. 8453 */ 8454 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8455 { 8456 struct bpf_func_state *state; 8457 struct bpf_reg_state *reg; 8458 8459 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8460 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8461 mark_reg_invalid(env, reg); 8462 })); 8463 } 8464 8465 enum { 8466 AT_PKT_END = -1, 8467 BEYOND_PKT_END = -2, 8468 }; 8469 8470 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8471 { 8472 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8473 struct bpf_reg_state *reg = &state->regs[regn]; 8474 8475 if (reg->type != PTR_TO_PACKET) 8476 /* PTR_TO_PACKET_META is not supported yet */ 8477 return; 8478 8479 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8480 * How far beyond pkt_end it goes is unknown. 8481 * if (!range_open) it's the case of pkt >= pkt_end 8482 * if (range_open) it's the case of pkt > pkt_end 8483 * hence this pointer is at least 1 byte bigger than pkt_end 8484 */ 8485 if (range_open) 8486 reg->range = BEYOND_PKT_END; 8487 else 8488 reg->range = AT_PKT_END; 8489 } 8490 8491 /* The pointer with the specified id has released its reference to kernel 8492 * resources. Identify all copies of the same pointer and clear the reference. 8493 */ 8494 static int release_reference(struct bpf_verifier_env *env, 8495 int ref_obj_id) 8496 { 8497 struct bpf_func_state *state; 8498 struct bpf_reg_state *reg; 8499 int err; 8500 8501 err = release_reference_state(cur_func(env), ref_obj_id); 8502 if (err) 8503 return err; 8504 8505 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8506 if (reg->ref_obj_id == ref_obj_id) 8507 mark_reg_invalid(env, reg); 8508 })); 8509 8510 return 0; 8511 } 8512 8513 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8514 { 8515 struct bpf_func_state *unused; 8516 struct bpf_reg_state *reg; 8517 8518 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8519 if (type_is_non_owning_ref(reg->type)) 8520 mark_reg_invalid(env, reg); 8521 })); 8522 } 8523 8524 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8525 struct bpf_reg_state *regs) 8526 { 8527 int i; 8528 8529 /* after the call registers r0 - r5 were scratched */ 8530 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8531 mark_reg_not_init(env, regs, caller_saved[i]); 8532 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8533 } 8534 } 8535 8536 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8537 struct bpf_func_state *caller, 8538 struct bpf_func_state *callee, 8539 int insn_idx); 8540 8541 static int set_callee_state(struct bpf_verifier_env *env, 8542 struct bpf_func_state *caller, 8543 struct bpf_func_state *callee, int insn_idx); 8544 8545 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8546 int *insn_idx, int subprog, 8547 set_callee_state_fn set_callee_state_cb) 8548 { 8549 struct bpf_verifier_state *state = env->cur_state; 8550 struct bpf_func_state *caller, *callee; 8551 int err; 8552 8553 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8554 verbose(env, "the call stack of %d frames is too deep\n", 8555 state->curframe + 2); 8556 return -E2BIG; 8557 } 8558 8559 caller = state->frame[state->curframe]; 8560 if (state->frame[state->curframe + 1]) { 8561 verbose(env, "verifier bug. Frame %d already allocated\n", 8562 state->curframe + 1); 8563 return -EFAULT; 8564 } 8565 8566 err = btf_check_subprog_call(env, subprog, caller->regs); 8567 if (err == -EFAULT) 8568 return err; 8569 if (subprog_is_global(env, subprog)) { 8570 if (err) { 8571 verbose(env, "Caller passes invalid args into func#%d\n", 8572 subprog); 8573 return err; 8574 } else { 8575 if (env->log.level & BPF_LOG_LEVEL) 8576 verbose(env, 8577 "Func#%d is global and valid. Skipping.\n", 8578 subprog); 8579 clear_caller_saved_regs(env, caller->regs); 8580 8581 /* All global functions return a 64-bit SCALAR_VALUE */ 8582 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8583 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8584 8585 /* continue with next insn after call */ 8586 return 0; 8587 } 8588 } 8589 8590 /* set_callee_state is used for direct subprog calls, but we are 8591 * interested in validating only BPF helpers that can call subprogs as 8592 * callbacks 8593 */ 8594 if (set_callee_state_cb != set_callee_state) { 8595 if (bpf_pseudo_kfunc_call(insn) && 8596 !is_callback_calling_kfunc(insn->imm)) { 8597 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8598 func_id_name(insn->imm), insn->imm); 8599 return -EFAULT; 8600 } else if (!bpf_pseudo_kfunc_call(insn) && 8601 !is_callback_calling_function(insn->imm)) { /* helper */ 8602 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8603 func_id_name(insn->imm), insn->imm); 8604 return -EFAULT; 8605 } 8606 } 8607 8608 if (insn->code == (BPF_JMP | BPF_CALL) && 8609 insn->src_reg == 0 && 8610 insn->imm == BPF_FUNC_timer_set_callback) { 8611 struct bpf_verifier_state *async_cb; 8612 8613 /* there is no real recursion here. timer callbacks are async */ 8614 env->subprog_info[subprog].is_async_cb = true; 8615 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8616 *insn_idx, subprog); 8617 if (!async_cb) 8618 return -EFAULT; 8619 callee = async_cb->frame[0]; 8620 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8621 8622 /* Convert bpf_timer_set_callback() args into timer callback args */ 8623 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8624 if (err) 8625 return err; 8626 8627 clear_caller_saved_regs(env, caller->regs); 8628 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8629 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8630 /* continue with next insn after call */ 8631 return 0; 8632 } 8633 8634 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8635 if (!callee) 8636 return -ENOMEM; 8637 state->frame[state->curframe + 1] = callee; 8638 8639 /* callee cannot access r0, r6 - r9 for reading and has to write 8640 * into its own stack before reading from it. 8641 * callee can read/write into caller's stack 8642 */ 8643 init_func_state(env, callee, 8644 /* remember the callsite, it will be used by bpf_exit */ 8645 *insn_idx /* callsite */, 8646 state->curframe + 1 /* frameno within this callchain */, 8647 subprog /* subprog number within this prog */); 8648 8649 /* Transfer references to the callee */ 8650 err = copy_reference_state(callee, caller); 8651 if (err) 8652 goto err_out; 8653 8654 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8655 if (err) 8656 goto err_out; 8657 8658 clear_caller_saved_regs(env, caller->regs); 8659 8660 /* only increment it after check_reg_arg() finished */ 8661 state->curframe++; 8662 8663 /* and go analyze first insn of the callee */ 8664 *insn_idx = env->subprog_info[subprog].start - 1; 8665 8666 if (env->log.level & BPF_LOG_LEVEL) { 8667 verbose(env, "caller:\n"); 8668 print_verifier_state(env, caller, true); 8669 verbose(env, "callee:\n"); 8670 print_verifier_state(env, callee, true); 8671 } 8672 return 0; 8673 8674 err_out: 8675 free_func_state(callee); 8676 state->frame[state->curframe + 1] = NULL; 8677 return err; 8678 } 8679 8680 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8681 struct bpf_func_state *caller, 8682 struct bpf_func_state *callee) 8683 { 8684 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8685 * void *callback_ctx, u64 flags); 8686 * callback_fn(struct bpf_map *map, void *key, void *value, 8687 * void *callback_ctx); 8688 */ 8689 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8690 8691 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8692 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8693 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8694 8695 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8696 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8697 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8698 8699 /* pointer to stack or null */ 8700 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 8701 8702 /* unused */ 8703 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8704 return 0; 8705 } 8706 8707 static int set_callee_state(struct bpf_verifier_env *env, 8708 struct bpf_func_state *caller, 8709 struct bpf_func_state *callee, int insn_idx) 8710 { 8711 int i; 8712 8713 /* copy r1 - r5 args that callee can access. The copy includes parent 8714 * pointers, which connects us up to the liveness chain 8715 */ 8716 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 8717 callee->regs[i] = caller->regs[i]; 8718 return 0; 8719 } 8720 8721 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8722 int *insn_idx) 8723 { 8724 int subprog, target_insn; 8725 8726 target_insn = *insn_idx + insn->imm + 1; 8727 subprog = find_subprog(env, target_insn); 8728 if (subprog < 0) { 8729 verbose(env, "verifier bug. No program starts at insn %d\n", 8730 target_insn); 8731 return -EFAULT; 8732 } 8733 8734 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 8735 } 8736 8737 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 8738 struct bpf_func_state *caller, 8739 struct bpf_func_state *callee, 8740 int insn_idx) 8741 { 8742 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 8743 struct bpf_map *map; 8744 int err; 8745 8746 if (bpf_map_ptr_poisoned(insn_aux)) { 8747 verbose(env, "tail_call abusing map_ptr\n"); 8748 return -EINVAL; 8749 } 8750 8751 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 8752 if (!map->ops->map_set_for_each_callback_args || 8753 !map->ops->map_for_each_callback) { 8754 verbose(env, "callback function not allowed for map\n"); 8755 return -ENOTSUPP; 8756 } 8757 8758 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 8759 if (err) 8760 return err; 8761 8762 callee->in_callback_fn = true; 8763 callee->callback_ret_range = tnum_range(0, 1); 8764 return 0; 8765 } 8766 8767 static int set_loop_callback_state(struct bpf_verifier_env *env, 8768 struct bpf_func_state *caller, 8769 struct bpf_func_state *callee, 8770 int insn_idx) 8771 { 8772 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 8773 * u64 flags); 8774 * callback_fn(u32 index, void *callback_ctx); 8775 */ 8776 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 8777 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8778 8779 /* unused */ 8780 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8781 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8782 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8783 8784 callee->in_callback_fn = true; 8785 callee->callback_ret_range = tnum_range(0, 1); 8786 return 0; 8787 } 8788 8789 static int set_timer_callback_state(struct bpf_verifier_env *env, 8790 struct bpf_func_state *caller, 8791 struct bpf_func_state *callee, 8792 int insn_idx) 8793 { 8794 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 8795 8796 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 8797 * callback_fn(struct bpf_map *map, void *key, void *value); 8798 */ 8799 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 8800 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 8801 callee->regs[BPF_REG_1].map_ptr = map_ptr; 8802 8803 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8804 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8805 callee->regs[BPF_REG_2].map_ptr = map_ptr; 8806 8807 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8808 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8809 callee->regs[BPF_REG_3].map_ptr = map_ptr; 8810 8811 /* unused */ 8812 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8813 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8814 callee->in_async_callback_fn = true; 8815 callee->callback_ret_range = tnum_range(0, 1); 8816 return 0; 8817 } 8818 8819 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 8820 struct bpf_func_state *caller, 8821 struct bpf_func_state *callee, 8822 int insn_idx) 8823 { 8824 /* bpf_find_vma(struct task_struct *task, u64 addr, 8825 * void *callback_fn, void *callback_ctx, u64 flags) 8826 * (callback_fn)(struct task_struct *task, 8827 * struct vm_area_struct *vma, void *callback_ctx); 8828 */ 8829 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8830 8831 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 8832 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8833 callee->regs[BPF_REG_2].btf = btf_vmlinux; 8834 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 8835 8836 /* pointer to stack or null */ 8837 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 8838 8839 /* unused */ 8840 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8841 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8842 callee->in_callback_fn = true; 8843 callee->callback_ret_range = tnum_range(0, 1); 8844 return 0; 8845 } 8846 8847 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 8848 struct bpf_func_state *caller, 8849 struct bpf_func_state *callee, 8850 int insn_idx) 8851 { 8852 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 8853 * callback_ctx, u64 flags); 8854 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 8855 */ 8856 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 8857 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 8858 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8859 8860 /* unused */ 8861 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8862 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8863 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8864 8865 callee->in_callback_fn = true; 8866 callee->callback_ret_range = tnum_range(0, 1); 8867 return 0; 8868 } 8869 8870 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 8871 struct bpf_func_state *caller, 8872 struct bpf_func_state *callee, 8873 int insn_idx) 8874 { 8875 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 8876 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 8877 * 8878 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 8879 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 8880 * by this point, so look at 'root' 8881 */ 8882 struct btf_field *field; 8883 8884 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 8885 BPF_RB_ROOT); 8886 if (!field || !field->graph_root.value_btf_id) 8887 return -EFAULT; 8888 8889 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 8890 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 8891 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 8892 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 8893 8894 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8895 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8896 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8897 callee->in_callback_fn = true; 8898 callee->callback_ret_range = tnum_range(0, 1); 8899 return 0; 8900 } 8901 8902 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 8903 8904 /* Are we currently verifying the callback for a rbtree helper that must 8905 * be called with lock held? If so, no need to complain about unreleased 8906 * lock 8907 */ 8908 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 8909 { 8910 struct bpf_verifier_state *state = env->cur_state; 8911 struct bpf_insn *insn = env->prog->insnsi; 8912 struct bpf_func_state *callee; 8913 int kfunc_btf_id; 8914 8915 if (!state->curframe) 8916 return false; 8917 8918 callee = state->frame[state->curframe]; 8919 8920 if (!callee->in_callback_fn) 8921 return false; 8922 8923 kfunc_btf_id = insn[callee->callsite].imm; 8924 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 8925 } 8926 8927 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 8928 { 8929 struct bpf_verifier_state *state = env->cur_state; 8930 struct bpf_func_state *caller, *callee; 8931 struct bpf_reg_state *r0; 8932 int err; 8933 8934 callee = state->frame[state->curframe]; 8935 r0 = &callee->regs[BPF_REG_0]; 8936 if (r0->type == PTR_TO_STACK) { 8937 /* technically it's ok to return caller's stack pointer 8938 * (or caller's caller's pointer) back to the caller, 8939 * since these pointers are valid. Only current stack 8940 * pointer will be invalid as soon as function exits, 8941 * but let's be conservative 8942 */ 8943 verbose(env, "cannot return stack pointer to the caller\n"); 8944 return -EINVAL; 8945 } 8946 8947 caller = state->frame[state->curframe - 1]; 8948 if (callee->in_callback_fn) { 8949 /* enforce R0 return value range [0, 1]. */ 8950 struct tnum range = callee->callback_ret_range; 8951 8952 if (r0->type != SCALAR_VALUE) { 8953 verbose(env, "R0 not a scalar value\n"); 8954 return -EACCES; 8955 } 8956 if (!tnum_in(range, r0->var_off)) { 8957 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 8958 return -EINVAL; 8959 } 8960 } else { 8961 /* return to the caller whatever r0 had in the callee */ 8962 caller->regs[BPF_REG_0] = *r0; 8963 } 8964 8965 /* callback_fn frame should have released its own additions to parent's 8966 * reference state at this point, or check_reference_leak would 8967 * complain, hence it must be the same as the caller. There is no need 8968 * to copy it back. 8969 */ 8970 if (!callee->in_callback_fn) { 8971 /* Transfer references to the caller */ 8972 err = copy_reference_state(caller, callee); 8973 if (err) 8974 return err; 8975 } 8976 8977 *insn_idx = callee->callsite + 1; 8978 if (env->log.level & BPF_LOG_LEVEL) { 8979 verbose(env, "returning from callee:\n"); 8980 print_verifier_state(env, callee, true); 8981 verbose(env, "to caller at %d:\n", *insn_idx); 8982 print_verifier_state(env, caller, true); 8983 } 8984 /* clear everything in the callee */ 8985 free_func_state(callee); 8986 state->frame[state->curframe--] = NULL; 8987 return 0; 8988 } 8989 8990 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 8991 int func_id, 8992 struct bpf_call_arg_meta *meta) 8993 { 8994 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 8995 8996 if (ret_type != RET_INTEGER || 8997 (func_id != BPF_FUNC_get_stack && 8998 func_id != BPF_FUNC_get_task_stack && 8999 func_id != BPF_FUNC_probe_read_str && 9000 func_id != BPF_FUNC_probe_read_kernel_str && 9001 func_id != BPF_FUNC_probe_read_user_str)) 9002 return; 9003 9004 ret_reg->smax_value = meta->msize_max_value; 9005 ret_reg->s32_max_value = meta->msize_max_value; 9006 ret_reg->smin_value = -MAX_ERRNO; 9007 ret_reg->s32_min_value = -MAX_ERRNO; 9008 reg_bounds_sync(ret_reg); 9009 } 9010 9011 static int 9012 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9013 int func_id, int insn_idx) 9014 { 9015 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9016 struct bpf_map *map = meta->map_ptr; 9017 9018 if (func_id != BPF_FUNC_tail_call && 9019 func_id != BPF_FUNC_map_lookup_elem && 9020 func_id != BPF_FUNC_map_update_elem && 9021 func_id != BPF_FUNC_map_delete_elem && 9022 func_id != BPF_FUNC_map_push_elem && 9023 func_id != BPF_FUNC_map_pop_elem && 9024 func_id != BPF_FUNC_map_peek_elem && 9025 func_id != BPF_FUNC_for_each_map_elem && 9026 func_id != BPF_FUNC_redirect_map && 9027 func_id != BPF_FUNC_map_lookup_percpu_elem) 9028 return 0; 9029 9030 if (map == NULL) { 9031 verbose(env, "kernel subsystem misconfigured verifier\n"); 9032 return -EINVAL; 9033 } 9034 9035 /* In case of read-only, some additional restrictions 9036 * need to be applied in order to prevent altering the 9037 * state of the map from program side. 9038 */ 9039 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9040 (func_id == BPF_FUNC_map_delete_elem || 9041 func_id == BPF_FUNC_map_update_elem || 9042 func_id == BPF_FUNC_map_push_elem || 9043 func_id == BPF_FUNC_map_pop_elem)) { 9044 verbose(env, "write into map forbidden\n"); 9045 return -EACCES; 9046 } 9047 9048 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9049 bpf_map_ptr_store(aux, meta->map_ptr, 9050 !meta->map_ptr->bypass_spec_v1); 9051 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9052 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9053 !meta->map_ptr->bypass_spec_v1); 9054 return 0; 9055 } 9056 9057 static int 9058 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9059 int func_id, int insn_idx) 9060 { 9061 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9062 struct bpf_reg_state *regs = cur_regs(env), *reg; 9063 struct bpf_map *map = meta->map_ptr; 9064 u64 val, max; 9065 int err; 9066 9067 if (func_id != BPF_FUNC_tail_call) 9068 return 0; 9069 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9070 verbose(env, "kernel subsystem misconfigured verifier\n"); 9071 return -EINVAL; 9072 } 9073 9074 reg = ®s[BPF_REG_3]; 9075 val = reg->var_off.value; 9076 max = map->max_entries; 9077 9078 if (!(register_is_const(reg) && val < max)) { 9079 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9080 return 0; 9081 } 9082 9083 err = mark_chain_precision(env, BPF_REG_3); 9084 if (err) 9085 return err; 9086 if (bpf_map_key_unseen(aux)) 9087 bpf_map_key_store(aux, val); 9088 else if (!bpf_map_key_poisoned(aux) && 9089 bpf_map_key_immediate(aux) != val) 9090 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9091 return 0; 9092 } 9093 9094 static int check_reference_leak(struct bpf_verifier_env *env) 9095 { 9096 struct bpf_func_state *state = cur_func(env); 9097 bool refs_lingering = false; 9098 int i; 9099 9100 if (state->frameno && !state->in_callback_fn) 9101 return 0; 9102 9103 for (i = 0; i < state->acquired_refs; i++) { 9104 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9105 continue; 9106 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9107 state->refs[i].id, state->refs[i].insn_idx); 9108 refs_lingering = true; 9109 } 9110 return refs_lingering ? -EINVAL : 0; 9111 } 9112 9113 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9114 struct bpf_reg_state *regs) 9115 { 9116 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9117 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9118 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9119 struct bpf_bprintf_data data = {}; 9120 int err, fmt_map_off, num_args; 9121 u64 fmt_addr; 9122 char *fmt; 9123 9124 /* data must be an array of u64 */ 9125 if (data_len_reg->var_off.value % 8) 9126 return -EINVAL; 9127 num_args = data_len_reg->var_off.value / 8; 9128 9129 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9130 * and map_direct_value_addr is set. 9131 */ 9132 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9133 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9134 fmt_map_off); 9135 if (err) { 9136 verbose(env, "verifier bug\n"); 9137 return -EFAULT; 9138 } 9139 fmt = (char *)(long)fmt_addr + fmt_map_off; 9140 9141 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9142 * can focus on validating the format specifiers. 9143 */ 9144 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9145 if (err < 0) 9146 verbose(env, "Invalid format string\n"); 9147 9148 return err; 9149 } 9150 9151 static int check_get_func_ip(struct bpf_verifier_env *env) 9152 { 9153 enum bpf_prog_type type = resolve_prog_type(env->prog); 9154 int func_id = BPF_FUNC_get_func_ip; 9155 9156 if (type == BPF_PROG_TYPE_TRACING) { 9157 if (!bpf_prog_has_trampoline(env->prog)) { 9158 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9159 func_id_name(func_id), func_id); 9160 return -ENOTSUPP; 9161 } 9162 return 0; 9163 } else if (type == BPF_PROG_TYPE_KPROBE) { 9164 return 0; 9165 } 9166 9167 verbose(env, "func %s#%d not supported for program type %d\n", 9168 func_id_name(func_id), func_id, type); 9169 return -ENOTSUPP; 9170 } 9171 9172 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9173 { 9174 return &env->insn_aux_data[env->insn_idx]; 9175 } 9176 9177 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9178 { 9179 struct bpf_reg_state *regs = cur_regs(env); 9180 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9181 bool reg_is_null = register_is_null(reg); 9182 9183 if (reg_is_null) 9184 mark_chain_precision(env, BPF_REG_4); 9185 9186 return reg_is_null; 9187 } 9188 9189 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9190 { 9191 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9192 9193 if (!state->initialized) { 9194 state->initialized = 1; 9195 state->fit_for_inline = loop_flag_is_zero(env); 9196 state->callback_subprogno = subprogno; 9197 return; 9198 } 9199 9200 if (!state->fit_for_inline) 9201 return; 9202 9203 state->fit_for_inline = (loop_flag_is_zero(env) && 9204 state->callback_subprogno == subprogno); 9205 } 9206 9207 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9208 int *insn_idx_p) 9209 { 9210 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9211 const struct bpf_func_proto *fn = NULL; 9212 enum bpf_return_type ret_type; 9213 enum bpf_type_flag ret_flag; 9214 struct bpf_reg_state *regs; 9215 struct bpf_call_arg_meta meta; 9216 int insn_idx = *insn_idx_p; 9217 bool changes_data; 9218 int i, err, func_id; 9219 9220 /* find function prototype */ 9221 func_id = insn->imm; 9222 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9223 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9224 func_id); 9225 return -EINVAL; 9226 } 9227 9228 if (env->ops->get_func_proto) 9229 fn = env->ops->get_func_proto(func_id, env->prog); 9230 if (!fn) { 9231 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9232 func_id); 9233 return -EINVAL; 9234 } 9235 9236 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9237 if (!env->prog->gpl_compatible && fn->gpl_only) { 9238 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9239 return -EINVAL; 9240 } 9241 9242 if (fn->allowed && !fn->allowed(env->prog)) { 9243 verbose(env, "helper call is not allowed in probe\n"); 9244 return -EINVAL; 9245 } 9246 9247 if (!env->prog->aux->sleepable && fn->might_sleep) { 9248 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9249 return -EINVAL; 9250 } 9251 9252 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9253 changes_data = bpf_helper_changes_pkt_data(fn->func); 9254 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9255 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9256 func_id_name(func_id), func_id); 9257 return -EINVAL; 9258 } 9259 9260 memset(&meta, 0, sizeof(meta)); 9261 meta.pkt_access = fn->pkt_access; 9262 9263 err = check_func_proto(fn, func_id); 9264 if (err) { 9265 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9266 func_id_name(func_id), func_id); 9267 return err; 9268 } 9269 9270 if (env->cur_state->active_rcu_lock) { 9271 if (fn->might_sleep) { 9272 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9273 func_id_name(func_id), func_id); 9274 return -EINVAL; 9275 } 9276 9277 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9278 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9279 } 9280 9281 meta.func_id = func_id; 9282 /* check args */ 9283 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9284 err = check_func_arg(env, i, &meta, fn, insn_idx); 9285 if (err) 9286 return err; 9287 } 9288 9289 err = record_func_map(env, &meta, func_id, insn_idx); 9290 if (err) 9291 return err; 9292 9293 err = record_func_key(env, &meta, func_id, insn_idx); 9294 if (err) 9295 return err; 9296 9297 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9298 * is inferred from register state. 9299 */ 9300 for (i = 0; i < meta.access_size; i++) { 9301 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9302 BPF_WRITE, -1, false); 9303 if (err) 9304 return err; 9305 } 9306 9307 regs = cur_regs(env); 9308 9309 if (meta.release_regno) { 9310 err = -EINVAL; 9311 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9312 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9313 * is safe to do directly. 9314 */ 9315 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9316 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9317 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9318 return -EFAULT; 9319 } 9320 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9321 } else if (meta.ref_obj_id) { 9322 err = release_reference(env, meta.ref_obj_id); 9323 } else if (register_is_null(®s[meta.release_regno])) { 9324 /* meta.ref_obj_id can only be 0 if register that is meant to be 9325 * released is NULL, which must be > R0. 9326 */ 9327 err = 0; 9328 } 9329 if (err) { 9330 verbose(env, "func %s#%d reference has not been acquired before\n", 9331 func_id_name(func_id), func_id); 9332 return err; 9333 } 9334 } 9335 9336 switch (func_id) { 9337 case BPF_FUNC_tail_call: 9338 err = check_reference_leak(env); 9339 if (err) { 9340 verbose(env, "tail_call would lead to reference leak\n"); 9341 return err; 9342 } 9343 break; 9344 case BPF_FUNC_get_local_storage: 9345 /* check that flags argument in get_local_storage(map, flags) is 0, 9346 * this is required because get_local_storage() can't return an error. 9347 */ 9348 if (!register_is_null(®s[BPF_REG_2])) { 9349 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9350 return -EINVAL; 9351 } 9352 break; 9353 case BPF_FUNC_for_each_map_elem: 9354 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9355 set_map_elem_callback_state); 9356 break; 9357 case BPF_FUNC_timer_set_callback: 9358 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9359 set_timer_callback_state); 9360 break; 9361 case BPF_FUNC_find_vma: 9362 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9363 set_find_vma_callback_state); 9364 break; 9365 case BPF_FUNC_snprintf: 9366 err = check_bpf_snprintf_call(env, regs); 9367 break; 9368 case BPF_FUNC_loop: 9369 update_loop_inline_state(env, meta.subprogno); 9370 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9371 set_loop_callback_state); 9372 break; 9373 case BPF_FUNC_dynptr_from_mem: 9374 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9375 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9376 reg_type_str(env, regs[BPF_REG_1].type)); 9377 return -EACCES; 9378 } 9379 break; 9380 case BPF_FUNC_set_retval: 9381 if (prog_type == BPF_PROG_TYPE_LSM && 9382 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9383 if (!env->prog->aux->attach_func_proto->type) { 9384 /* Make sure programs that attach to void 9385 * hooks don't try to modify return value. 9386 */ 9387 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9388 return -EINVAL; 9389 } 9390 } 9391 break; 9392 case BPF_FUNC_dynptr_data: 9393 { 9394 struct bpf_reg_state *reg; 9395 int id, ref_obj_id; 9396 9397 reg = get_dynptr_arg_reg(env, fn, regs); 9398 if (!reg) 9399 return -EFAULT; 9400 9401 9402 if (meta.dynptr_id) { 9403 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9404 return -EFAULT; 9405 } 9406 if (meta.ref_obj_id) { 9407 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9408 return -EFAULT; 9409 } 9410 9411 id = dynptr_id(env, reg); 9412 if (id < 0) { 9413 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9414 return id; 9415 } 9416 9417 ref_obj_id = dynptr_ref_obj_id(env, reg); 9418 if (ref_obj_id < 0) { 9419 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9420 return ref_obj_id; 9421 } 9422 9423 meta.dynptr_id = id; 9424 meta.ref_obj_id = ref_obj_id; 9425 9426 break; 9427 } 9428 case BPF_FUNC_dynptr_write: 9429 { 9430 enum bpf_dynptr_type dynptr_type; 9431 struct bpf_reg_state *reg; 9432 9433 reg = get_dynptr_arg_reg(env, fn, regs); 9434 if (!reg) 9435 return -EFAULT; 9436 9437 dynptr_type = dynptr_get_type(env, reg); 9438 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9439 return -EFAULT; 9440 9441 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9442 /* this will trigger clear_all_pkt_pointers(), which will 9443 * invalidate all dynptr slices associated with the skb 9444 */ 9445 changes_data = true; 9446 9447 break; 9448 } 9449 case BPF_FUNC_user_ringbuf_drain: 9450 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9451 set_user_ringbuf_callback_state); 9452 break; 9453 } 9454 9455 if (err) 9456 return err; 9457 9458 /* reset caller saved regs */ 9459 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9460 mark_reg_not_init(env, regs, caller_saved[i]); 9461 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9462 } 9463 9464 /* helper call returns 64-bit value. */ 9465 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9466 9467 /* update return register (already marked as written above) */ 9468 ret_type = fn->ret_type; 9469 ret_flag = type_flag(ret_type); 9470 9471 switch (base_type(ret_type)) { 9472 case RET_INTEGER: 9473 /* sets type to SCALAR_VALUE */ 9474 mark_reg_unknown(env, regs, BPF_REG_0); 9475 break; 9476 case RET_VOID: 9477 regs[BPF_REG_0].type = NOT_INIT; 9478 break; 9479 case RET_PTR_TO_MAP_VALUE: 9480 /* There is no offset yet applied, variable or fixed */ 9481 mark_reg_known_zero(env, regs, BPF_REG_0); 9482 /* remember map_ptr, so that check_map_access() 9483 * can check 'value_size' boundary of memory access 9484 * to map element returned from bpf_map_lookup_elem() 9485 */ 9486 if (meta.map_ptr == NULL) { 9487 verbose(env, 9488 "kernel subsystem misconfigured verifier\n"); 9489 return -EINVAL; 9490 } 9491 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9492 regs[BPF_REG_0].map_uid = meta.map_uid; 9493 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9494 if (!type_may_be_null(ret_type) && 9495 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9496 regs[BPF_REG_0].id = ++env->id_gen; 9497 } 9498 break; 9499 case RET_PTR_TO_SOCKET: 9500 mark_reg_known_zero(env, regs, BPF_REG_0); 9501 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9502 break; 9503 case RET_PTR_TO_SOCK_COMMON: 9504 mark_reg_known_zero(env, regs, BPF_REG_0); 9505 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9506 break; 9507 case RET_PTR_TO_TCP_SOCK: 9508 mark_reg_known_zero(env, regs, BPF_REG_0); 9509 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9510 break; 9511 case RET_PTR_TO_MEM: 9512 mark_reg_known_zero(env, regs, BPF_REG_0); 9513 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9514 regs[BPF_REG_0].mem_size = meta.mem_size; 9515 break; 9516 case RET_PTR_TO_MEM_OR_BTF_ID: 9517 { 9518 const struct btf_type *t; 9519 9520 mark_reg_known_zero(env, regs, BPF_REG_0); 9521 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9522 if (!btf_type_is_struct(t)) { 9523 u32 tsize; 9524 const struct btf_type *ret; 9525 const char *tname; 9526 9527 /* resolve the type size of ksym. */ 9528 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9529 if (IS_ERR(ret)) { 9530 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9531 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9532 tname, PTR_ERR(ret)); 9533 return -EINVAL; 9534 } 9535 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9536 regs[BPF_REG_0].mem_size = tsize; 9537 } else { 9538 /* MEM_RDONLY may be carried from ret_flag, but it 9539 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9540 * it will confuse the check of PTR_TO_BTF_ID in 9541 * check_mem_access(). 9542 */ 9543 ret_flag &= ~MEM_RDONLY; 9544 9545 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9546 regs[BPF_REG_0].btf = meta.ret_btf; 9547 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9548 } 9549 break; 9550 } 9551 case RET_PTR_TO_BTF_ID: 9552 { 9553 struct btf *ret_btf; 9554 int ret_btf_id; 9555 9556 mark_reg_known_zero(env, regs, BPF_REG_0); 9557 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9558 if (func_id == BPF_FUNC_kptr_xchg) { 9559 ret_btf = meta.kptr_field->kptr.btf; 9560 ret_btf_id = meta.kptr_field->kptr.btf_id; 9561 if (!btf_is_kernel(ret_btf)) 9562 regs[BPF_REG_0].type |= MEM_ALLOC; 9563 } else { 9564 if (fn->ret_btf_id == BPF_PTR_POISON) { 9565 verbose(env, "verifier internal error:"); 9566 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9567 func_id_name(func_id)); 9568 return -EINVAL; 9569 } 9570 ret_btf = btf_vmlinux; 9571 ret_btf_id = *fn->ret_btf_id; 9572 } 9573 if (ret_btf_id == 0) { 9574 verbose(env, "invalid return type %u of func %s#%d\n", 9575 base_type(ret_type), func_id_name(func_id), 9576 func_id); 9577 return -EINVAL; 9578 } 9579 regs[BPF_REG_0].btf = ret_btf; 9580 regs[BPF_REG_0].btf_id = ret_btf_id; 9581 break; 9582 } 9583 default: 9584 verbose(env, "unknown return type %u of func %s#%d\n", 9585 base_type(ret_type), func_id_name(func_id), func_id); 9586 return -EINVAL; 9587 } 9588 9589 if (type_may_be_null(regs[BPF_REG_0].type)) 9590 regs[BPF_REG_0].id = ++env->id_gen; 9591 9592 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9593 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9594 func_id_name(func_id), func_id); 9595 return -EFAULT; 9596 } 9597 9598 if (is_dynptr_ref_function(func_id)) 9599 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9600 9601 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9602 /* For release_reference() */ 9603 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9604 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9605 int id = acquire_reference_state(env, insn_idx); 9606 9607 if (id < 0) 9608 return id; 9609 /* For mark_ptr_or_null_reg() */ 9610 regs[BPF_REG_0].id = id; 9611 /* For release_reference() */ 9612 regs[BPF_REG_0].ref_obj_id = id; 9613 } 9614 9615 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9616 9617 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9618 if (err) 9619 return err; 9620 9621 if ((func_id == BPF_FUNC_get_stack || 9622 func_id == BPF_FUNC_get_task_stack) && 9623 !env->prog->has_callchain_buf) { 9624 const char *err_str; 9625 9626 #ifdef CONFIG_PERF_EVENTS 9627 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9628 err_str = "cannot get callchain buffer for func %s#%d\n"; 9629 #else 9630 err = -ENOTSUPP; 9631 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9632 #endif 9633 if (err) { 9634 verbose(env, err_str, func_id_name(func_id), func_id); 9635 return err; 9636 } 9637 9638 env->prog->has_callchain_buf = true; 9639 } 9640 9641 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9642 env->prog->call_get_stack = true; 9643 9644 if (func_id == BPF_FUNC_get_func_ip) { 9645 if (check_get_func_ip(env)) 9646 return -ENOTSUPP; 9647 env->prog->call_get_func_ip = true; 9648 } 9649 9650 if (changes_data) 9651 clear_all_pkt_pointers(env); 9652 return 0; 9653 } 9654 9655 /* mark_btf_func_reg_size() is used when the reg size is determined by 9656 * the BTF func_proto's return value size and argument. 9657 */ 9658 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9659 size_t reg_size) 9660 { 9661 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9662 9663 if (regno == BPF_REG_0) { 9664 /* Function return value */ 9665 reg->live |= REG_LIVE_WRITTEN; 9666 reg->subreg_def = reg_size == sizeof(u64) ? 9667 DEF_NOT_SUBREG : env->insn_idx + 1; 9668 } else { 9669 /* Function argument */ 9670 if (reg_size == sizeof(u64)) { 9671 mark_insn_zext(env, reg); 9672 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 9673 } else { 9674 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 9675 } 9676 } 9677 } 9678 9679 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 9680 { 9681 return meta->kfunc_flags & KF_ACQUIRE; 9682 } 9683 9684 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 9685 { 9686 return meta->kfunc_flags & KF_RET_NULL; 9687 } 9688 9689 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 9690 { 9691 return meta->kfunc_flags & KF_RELEASE; 9692 } 9693 9694 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 9695 { 9696 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 9697 } 9698 9699 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 9700 { 9701 return meta->kfunc_flags & KF_SLEEPABLE; 9702 } 9703 9704 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 9705 { 9706 return meta->kfunc_flags & KF_DESTRUCTIVE; 9707 } 9708 9709 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 9710 { 9711 return meta->kfunc_flags & KF_RCU; 9712 } 9713 9714 static bool __kfunc_param_match_suffix(const struct btf *btf, 9715 const struct btf_param *arg, 9716 const char *suffix) 9717 { 9718 int suffix_len = strlen(suffix), len; 9719 const char *param_name; 9720 9721 /* In the future, this can be ported to use BTF tagging */ 9722 param_name = btf_name_by_offset(btf, arg->name_off); 9723 if (str_is_empty(param_name)) 9724 return false; 9725 len = strlen(param_name); 9726 if (len < suffix_len) 9727 return false; 9728 param_name += len - suffix_len; 9729 return !strncmp(param_name, suffix, suffix_len); 9730 } 9731 9732 static bool is_kfunc_arg_mem_size(const struct btf *btf, 9733 const struct btf_param *arg, 9734 const struct bpf_reg_state *reg) 9735 { 9736 const struct btf_type *t; 9737 9738 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9739 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9740 return false; 9741 9742 return __kfunc_param_match_suffix(btf, arg, "__sz"); 9743 } 9744 9745 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 9746 const struct btf_param *arg, 9747 const struct bpf_reg_state *reg) 9748 { 9749 const struct btf_type *t; 9750 9751 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9752 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9753 return false; 9754 9755 return __kfunc_param_match_suffix(btf, arg, "__szk"); 9756 } 9757 9758 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 9759 { 9760 return __kfunc_param_match_suffix(btf, arg, "__opt"); 9761 } 9762 9763 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 9764 { 9765 return __kfunc_param_match_suffix(btf, arg, "__k"); 9766 } 9767 9768 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 9769 { 9770 return __kfunc_param_match_suffix(btf, arg, "__ign"); 9771 } 9772 9773 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 9774 { 9775 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 9776 } 9777 9778 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 9779 { 9780 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 9781 } 9782 9783 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 9784 { 9785 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 9786 } 9787 9788 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 9789 const struct btf_param *arg, 9790 const char *name) 9791 { 9792 int len, target_len = strlen(name); 9793 const char *param_name; 9794 9795 param_name = btf_name_by_offset(btf, arg->name_off); 9796 if (str_is_empty(param_name)) 9797 return false; 9798 len = strlen(param_name); 9799 if (len != target_len) 9800 return false; 9801 if (strcmp(param_name, name)) 9802 return false; 9803 9804 return true; 9805 } 9806 9807 enum { 9808 KF_ARG_DYNPTR_ID, 9809 KF_ARG_LIST_HEAD_ID, 9810 KF_ARG_LIST_NODE_ID, 9811 KF_ARG_RB_ROOT_ID, 9812 KF_ARG_RB_NODE_ID, 9813 }; 9814 9815 BTF_ID_LIST(kf_arg_btf_ids) 9816 BTF_ID(struct, bpf_dynptr_kern) 9817 BTF_ID(struct, bpf_list_head) 9818 BTF_ID(struct, bpf_list_node) 9819 BTF_ID(struct, bpf_rb_root) 9820 BTF_ID(struct, bpf_rb_node) 9821 9822 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 9823 const struct btf_param *arg, int type) 9824 { 9825 const struct btf_type *t; 9826 u32 res_id; 9827 9828 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9829 if (!t) 9830 return false; 9831 if (!btf_type_is_ptr(t)) 9832 return false; 9833 t = btf_type_skip_modifiers(btf, t->type, &res_id); 9834 if (!t) 9835 return false; 9836 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 9837 } 9838 9839 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 9840 { 9841 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 9842 } 9843 9844 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 9845 { 9846 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 9847 } 9848 9849 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 9850 { 9851 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 9852 } 9853 9854 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 9855 { 9856 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 9857 } 9858 9859 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 9860 { 9861 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 9862 } 9863 9864 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 9865 const struct btf_param *arg) 9866 { 9867 const struct btf_type *t; 9868 9869 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 9870 if (!t) 9871 return false; 9872 9873 return true; 9874 } 9875 9876 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 9877 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 9878 const struct btf *btf, 9879 const struct btf_type *t, int rec) 9880 { 9881 const struct btf_type *member_type; 9882 const struct btf_member *member; 9883 u32 i; 9884 9885 if (!btf_type_is_struct(t)) 9886 return false; 9887 9888 for_each_member(i, t, member) { 9889 const struct btf_array *array; 9890 9891 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 9892 if (btf_type_is_struct(member_type)) { 9893 if (rec >= 3) { 9894 verbose(env, "max struct nesting depth exceeded\n"); 9895 return false; 9896 } 9897 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 9898 return false; 9899 continue; 9900 } 9901 if (btf_type_is_array(member_type)) { 9902 array = btf_array(member_type); 9903 if (!array->nelems) 9904 return false; 9905 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 9906 if (!btf_type_is_scalar(member_type)) 9907 return false; 9908 continue; 9909 } 9910 if (!btf_type_is_scalar(member_type)) 9911 return false; 9912 } 9913 return true; 9914 } 9915 9916 9917 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 9918 #ifdef CONFIG_NET 9919 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 9920 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9921 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 9922 #endif 9923 }; 9924 9925 enum kfunc_ptr_arg_type { 9926 KF_ARG_PTR_TO_CTX, 9927 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 9928 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 9929 KF_ARG_PTR_TO_DYNPTR, 9930 KF_ARG_PTR_TO_ITER, 9931 KF_ARG_PTR_TO_LIST_HEAD, 9932 KF_ARG_PTR_TO_LIST_NODE, 9933 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 9934 KF_ARG_PTR_TO_MEM, 9935 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 9936 KF_ARG_PTR_TO_CALLBACK, 9937 KF_ARG_PTR_TO_RB_ROOT, 9938 KF_ARG_PTR_TO_RB_NODE, 9939 }; 9940 9941 enum special_kfunc_type { 9942 KF_bpf_obj_new_impl, 9943 KF_bpf_obj_drop_impl, 9944 KF_bpf_refcount_acquire_impl, 9945 KF_bpf_list_push_front_impl, 9946 KF_bpf_list_push_back_impl, 9947 KF_bpf_list_pop_front, 9948 KF_bpf_list_pop_back, 9949 KF_bpf_cast_to_kern_ctx, 9950 KF_bpf_rdonly_cast, 9951 KF_bpf_rcu_read_lock, 9952 KF_bpf_rcu_read_unlock, 9953 KF_bpf_rbtree_remove, 9954 KF_bpf_rbtree_add_impl, 9955 KF_bpf_rbtree_first, 9956 KF_bpf_dynptr_from_skb, 9957 KF_bpf_dynptr_from_xdp, 9958 KF_bpf_dynptr_slice, 9959 KF_bpf_dynptr_slice_rdwr, 9960 KF_bpf_dynptr_clone, 9961 }; 9962 9963 BTF_SET_START(special_kfunc_set) 9964 BTF_ID(func, bpf_obj_new_impl) 9965 BTF_ID(func, bpf_obj_drop_impl) 9966 BTF_ID(func, bpf_refcount_acquire_impl) 9967 BTF_ID(func, bpf_list_push_front_impl) 9968 BTF_ID(func, bpf_list_push_back_impl) 9969 BTF_ID(func, bpf_list_pop_front) 9970 BTF_ID(func, bpf_list_pop_back) 9971 BTF_ID(func, bpf_cast_to_kern_ctx) 9972 BTF_ID(func, bpf_rdonly_cast) 9973 BTF_ID(func, bpf_rbtree_remove) 9974 BTF_ID(func, bpf_rbtree_add_impl) 9975 BTF_ID(func, bpf_rbtree_first) 9976 BTF_ID(func, bpf_dynptr_from_skb) 9977 BTF_ID(func, bpf_dynptr_from_xdp) 9978 BTF_ID(func, bpf_dynptr_slice) 9979 BTF_ID(func, bpf_dynptr_slice_rdwr) 9980 BTF_ID(func, bpf_dynptr_clone) 9981 BTF_SET_END(special_kfunc_set) 9982 9983 BTF_ID_LIST(special_kfunc_list) 9984 BTF_ID(func, bpf_obj_new_impl) 9985 BTF_ID(func, bpf_obj_drop_impl) 9986 BTF_ID(func, bpf_refcount_acquire_impl) 9987 BTF_ID(func, bpf_list_push_front_impl) 9988 BTF_ID(func, bpf_list_push_back_impl) 9989 BTF_ID(func, bpf_list_pop_front) 9990 BTF_ID(func, bpf_list_pop_back) 9991 BTF_ID(func, bpf_cast_to_kern_ctx) 9992 BTF_ID(func, bpf_rdonly_cast) 9993 BTF_ID(func, bpf_rcu_read_lock) 9994 BTF_ID(func, bpf_rcu_read_unlock) 9995 BTF_ID(func, bpf_rbtree_remove) 9996 BTF_ID(func, bpf_rbtree_add_impl) 9997 BTF_ID(func, bpf_rbtree_first) 9998 BTF_ID(func, bpf_dynptr_from_skb) 9999 BTF_ID(func, bpf_dynptr_from_xdp) 10000 BTF_ID(func, bpf_dynptr_slice) 10001 BTF_ID(func, bpf_dynptr_slice_rdwr) 10002 BTF_ID(func, bpf_dynptr_clone) 10003 10004 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10005 { 10006 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10007 } 10008 10009 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10010 { 10011 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10012 } 10013 10014 static enum kfunc_ptr_arg_type 10015 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10016 struct bpf_kfunc_call_arg_meta *meta, 10017 const struct btf_type *t, const struct btf_type *ref_t, 10018 const char *ref_tname, const struct btf_param *args, 10019 int argno, int nargs) 10020 { 10021 u32 regno = argno + 1; 10022 struct bpf_reg_state *regs = cur_regs(env); 10023 struct bpf_reg_state *reg = ®s[regno]; 10024 bool arg_mem_size = false; 10025 10026 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10027 return KF_ARG_PTR_TO_CTX; 10028 10029 /* In this function, we verify the kfunc's BTF as per the argument type, 10030 * leaving the rest of the verification with respect to the register 10031 * type to our caller. When a set of conditions hold in the BTF type of 10032 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10033 */ 10034 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10035 return KF_ARG_PTR_TO_CTX; 10036 10037 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10038 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10039 10040 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10041 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10042 10043 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10044 return KF_ARG_PTR_TO_DYNPTR; 10045 10046 if (is_kfunc_arg_iter(meta, argno)) 10047 return KF_ARG_PTR_TO_ITER; 10048 10049 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10050 return KF_ARG_PTR_TO_LIST_HEAD; 10051 10052 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10053 return KF_ARG_PTR_TO_LIST_NODE; 10054 10055 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10056 return KF_ARG_PTR_TO_RB_ROOT; 10057 10058 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10059 return KF_ARG_PTR_TO_RB_NODE; 10060 10061 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10062 if (!btf_type_is_struct(ref_t)) { 10063 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10064 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10065 return -EINVAL; 10066 } 10067 return KF_ARG_PTR_TO_BTF_ID; 10068 } 10069 10070 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10071 return KF_ARG_PTR_TO_CALLBACK; 10072 10073 10074 if (argno + 1 < nargs && 10075 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10076 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10077 arg_mem_size = true; 10078 10079 /* This is the catch all argument type of register types supported by 10080 * check_helper_mem_access. However, we only allow when argument type is 10081 * pointer to scalar, or struct composed (recursively) of scalars. When 10082 * arg_mem_size is true, the pointer can be void *. 10083 */ 10084 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10085 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10086 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10087 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10088 return -EINVAL; 10089 } 10090 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10091 } 10092 10093 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10094 struct bpf_reg_state *reg, 10095 const struct btf_type *ref_t, 10096 const char *ref_tname, u32 ref_id, 10097 struct bpf_kfunc_call_arg_meta *meta, 10098 int argno) 10099 { 10100 const struct btf_type *reg_ref_t; 10101 bool strict_type_match = false; 10102 const struct btf *reg_btf; 10103 const char *reg_ref_tname; 10104 u32 reg_ref_id; 10105 10106 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10107 reg_btf = reg->btf; 10108 reg_ref_id = reg->btf_id; 10109 } else { 10110 reg_btf = btf_vmlinux; 10111 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10112 } 10113 10114 /* Enforce strict type matching for calls to kfuncs that are acquiring 10115 * or releasing a reference, or are no-cast aliases. We do _not_ 10116 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10117 * as we want to enable BPF programs to pass types that are bitwise 10118 * equivalent without forcing them to explicitly cast with something 10119 * like bpf_cast_to_kern_ctx(). 10120 * 10121 * For example, say we had a type like the following: 10122 * 10123 * struct bpf_cpumask { 10124 * cpumask_t cpumask; 10125 * refcount_t usage; 10126 * }; 10127 * 10128 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10129 * to a struct cpumask, so it would be safe to pass a struct 10130 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10131 * 10132 * The philosophy here is similar to how we allow scalars of different 10133 * types to be passed to kfuncs as long as the size is the same. The 10134 * only difference here is that we're simply allowing 10135 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10136 * resolve types. 10137 */ 10138 if (is_kfunc_acquire(meta) || 10139 (is_kfunc_release(meta) && reg->ref_obj_id) || 10140 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10141 strict_type_match = true; 10142 10143 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10144 10145 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10146 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10147 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10148 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10149 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10150 btf_type_str(reg_ref_t), reg_ref_tname); 10151 return -EINVAL; 10152 } 10153 return 0; 10154 } 10155 10156 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10157 { 10158 struct bpf_verifier_state *state = env->cur_state; 10159 10160 if (!state->active_lock.ptr) { 10161 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10162 return -EFAULT; 10163 } 10164 10165 if (type_flag(reg->type) & NON_OWN_REF) { 10166 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10167 return -EFAULT; 10168 } 10169 10170 reg->type |= NON_OWN_REF; 10171 return 0; 10172 } 10173 10174 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10175 { 10176 struct bpf_func_state *state, *unused; 10177 struct bpf_reg_state *reg; 10178 int i; 10179 10180 state = cur_func(env); 10181 10182 if (!ref_obj_id) { 10183 verbose(env, "verifier internal error: ref_obj_id is zero for " 10184 "owning -> non-owning conversion\n"); 10185 return -EFAULT; 10186 } 10187 10188 for (i = 0; i < state->acquired_refs; i++) { 10189 if (state->refs[i].id != ref_obj_id) 10190 continue; 10191 10192 /* Clear ref_obj_id here so release_reference doesn't clobber 10193 * the whole reg 10194 */ 10195 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10196 if (reg->ref_obj_id == ref_obj_id) { 10197 reg->ref_obj_id = 0; 10198 ref_set_non_owning(env, reg); 10199 } 10200 })); 10201 return 0; 10202 } 10203 10204 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10205 return -EFAULT; 10206 } 10207 10208 /* Implementation details: 10209 * 10210 * Each register points to some region of memory, which we define as an 10211 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10212 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10213 * allocation. The lock and the data it protects are colocated in the same 10214 * memory region. 10215 * 10216 * Hence, everytime a register holds a pointer value pointing to such 10217 * allocation, the verifier preserves a unique reg->id for it. 10218 * 10219 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10220 * bpf_spin_lock is called. 10221 * 10222 * To enable this, lock state in the verifier captures two values: 10223 * active_lock.ptr = Register's type specific pointer 10224 * active_lock.id = A unique ID for each register pointer value 10225 * 10226 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10227 * supported register types. 10228 * 10229 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10230 * allocated objects is the reg->btf pointer. 10231 * 10232 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10233 * can establish the provenance of the map value statically for each distinct 10234 * lookup into such maps. They always contain a single map value hence unique 10235 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10236 * 10237 * So, in case of global variables, they use array maps with max_entries = 1, 10238 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10239 * into the same map value as max_entries is 1, as described above). 10240 * 10241 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10242 * outer map pointer (in verifier context), but each lookup into an inner map 10243 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10244 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10245 * will get different reg->id assigned to each lookup, hence different 10246 * active_lock.id. 10247 * 10248 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10249 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10250 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10251 */ 10252 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10253 { 10254 void *ptr; 10255 u32 id; 10256 10257 switch ((int)reg->type) { 10258 case PTR_TO_MAP_VALUE: 10259 ptr = reg->map_ptr; 10260 break; 10261 case PTR_TO_BTF_ID | MEM_ALLOC: 10262 ptr = reg->btf; 10263 break; 10264 default: 10265 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10266 return -EFAULT; 10267 } 10268 id = reg->id; 10269 10270 if (!env->cur_state->active_lock.ptr) 10271 return -EINVAL; 10272 if (env->cur_state->active_lock.ptr != ptr || 10273 env->cur_state->active_lock.id != id) { 10274 verbose(env, "held lock and object are not in the same allocation\n"); 10275 return -EINVAL; 10276 } 10277 return 0; 10278 } 10279 10280 static bool is_bpf_list_api_kfunc(u32 btf_id) 10281 { 10282 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10283 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10284 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10285 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10286 } 10287 10288 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10289 { 10290 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10291 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10292 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10293 } 10294 10295 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10296 { 10297 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10298 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10299 } 10300 10301 static bool is_callback_calling_kfunc(u32 btf_id) 10302 { 10303 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10304 } 10305 10306 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10307 { 10308 return is_bpf_rbtree_api_kfunc(btf_id); 10309 } 10310 10311 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10312 enum btf_field_type head_field_type, 10313 u32 kfunc_btf_id) 10314 { 10315 bool ret; 10316 10317 switch (head_field_type) { 10318 case BPF_LIST_HEAD: 10319 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10320 break; 10321 case BPF_RB_ROOT: 10322 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10323 break; 10324 default: 10325 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10326 btf_field_type_name(head_field_type)); 10327 return false; 10328 } 10329 10330 if (!ret) 10331 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10332 btf_field_type_name(head_field_type)); 10333 return ret; 10334 } 10335 10336 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10337 enum btf_field_type node_field_type, 10338 u32 kfunc_btf_id) 10339 { 10340 bool ret; 10341 10342 switch (node_field_type) { 10343 case BPF_LIST_NODE: 10344 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10345 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10346 break; 10347 case BPF_RB_NODE: 10348 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10349 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10350 break; 10351 default: 10352 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10353 btf_field_type_name(node_field_type)); 10354 return false; 10355 } 10356 10357 if (!ret) 10358 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10359 btf_field_type_name(node_field_type)); 10360 return ret; 10361 } 10362 10363 static int 10364 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10365 struct bpf_reg_state *reg, u32 regno, 10366 struct bpf_kfunc_call_arg_meta *meta, 10367 enum btf_field_type head_field_type, 10368 struct btf_field **head_field) 10369 { 10370 const char *head_type_name; 10371 struct btf_field *field; 10372 struct btf_record *rec; 10373 u32 head_off; 10374 10375 if (meta->btf != btf_vmlinux) { 10376 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10377 return -EFAULT; 10378 } 10379 10380 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10381 return -EFAULT; 10382 10383 head_type_name = btf_field_type_name(head_field_type); 10384 if (!tnum_is_const(reg->var_off)) { 10385 verbose(env, 10386 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10387 regno, head_type_name); 10388 return -EINVAL; 10389 } 10390 10391 rec = reg_btf_record(reg); 10392 head_off = reg->off + reg->var_off.value; 10393 field = btf_record_find(rec, head_off, head_field_type); 10394 if (!field) { 10395 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10396 return -EINVAL; 10397 } 10398 10399 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10400 if (check_reg_allocation_locked(env, reg)) { 10401 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10402 rec->spin_lock_off, head_type_name); 10403 return -EINVAL; 10404 } 10405 10406 if (*head_field) { 10407 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10408 return -EFAULT; 10409 } 10410 *head_field = field; 10411 return 0; 10412 } 10413 10414 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10415 struct bpf_reg_state *reg, u32 regno, 10416 struct bpf_kfunc_call_arg_meta *meta) 10417 { 10418 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10419 &meta->arg_list_head.field); 10420 } 10421 10422 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10423 struct bpf_reg_state *reg, u32 regno, 10424 struct bpf_kfunc_call_arg_meta *meta) 10425 { 10426 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10427 &meta->arg_rbtree_root.field); 10428 } 10429 10430 static int 10431 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10432 struct bpf_reg_state *reg, u32 regno, 10433 struct bpf_kfunc_call_arg_meta *meta, 10434 enum btf_field_type head_field_type, 10435 enum btf_field_type node_field_type, 10436 struct btf_field **node_field) 10437 { 10438 const char *node_type_name; 10439 const struct btf_type *et, *t; 10440 struct btf_field *field; 10441 u32 node_off; 10442 10443 if (meta->btf != btf_vmlinux) { 10444 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10445 return -EFAULT; 10446 } 10447 10448 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10449 return -EFAULT; 10450 10451 node_type_name = btf_field_type_name(node_field_type); 10452 if (!tnum_is_const(reg->var_off)) { 10453 verbose(env, 10454 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10455 regno, node_type_name); 10456 return -EINVAL; 10457 } 10458 10459 node_off = reg->off + reg->var_off.value; 10460 field = reg_find_field_offset(reg, node_off, node_field_type); 10461 if (!field || field->offset != node_off) { 10462 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10463 return -EINVAL; 10464 } 10465 10466 field = *node_field; 10467 10468 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10469 t = btf_type_by_id(reg->btf, reg->btf_id); 10470 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10471 field->graph_root.value_btf_id, true)) { 10472 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10473 "in struct %s, but arg is at offset=%d in struct %s\n", 10474 btf_field_type_name(head_field_type), 10475 btf_field_type_name(node_field_type), 10476 field->graph_root.node_offset, 10477 btf_name_by_offset(field->graph_root.btf, et->name_off), 10478 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10479 return -EINVAL; 10480 } 10481 10482 if (node_off != field->graph_root.node_offset) { 10483 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10484 node_off, btf_field_type_name(node_field_type), 10485 field->graph_root.node_offset, 10486 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10487 return -EINVAL; 10488 } 10489 10490 return 0; 10491 } 10492 10493 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10494 struct bpf_reg_state *reg, u32 regno, 10495 struct bpf_kfunc_call_arg_meta *meta) 10496 { 10497 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10498 BPF_LIST_HEAD, BPF_LIST_NODE, 10499 &meta->arg_list_head.field); 10500 } 10501 10502 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10503 struct bpf_reg_state *reg, u32 regno, 10504 struct bpf_kfunc_call_arg_meta *meta) 10505 { 10506 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10507 BPF_RB_ROOT, BPF_RB_NODE, 10508 &meta->arg_rbtree_root.field); 10509 } 10510 10511 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10512 int insn_idx) 10513 { 10514 const char *func_name = meta->func_name, *ref_tname; 10515 const struct btf *btf = meta->btf; 10516 const struct btf_param *args; 10517 struct btf_record *rec; 10518 u32 i, nargs; 10519 int ret; 10520 10521 args = (const struct btf_param *)(meta->func_proto + 1); 10522 nargs = btf_type_vlen(meta->func_proto); 10523 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10524 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10525 MAX_BPF_FUNC_REG_ARGS); 10526 return -EINVAL; 10527 } 10528 10529 /* Check that BTF function arguments match actual types that the 10530 * verifier sees. 10531 */ 10532 for (i = 0; i < nargs; i++) { 10533 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10534 const struct btf_type *t, *ref_t, *resolve_ret; 10535 enum bpf_arg_type arg_type = ARG_DONTCARE; 10536 u32 regno = i + 1, ref_id, type_size; 10537 bool is_ret_buf_sz = false; 10538 int kf_arg_type; 10539 10540 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10541 10542 if (is_kfunc_arg_ignore(btf, &args[i])) 10543 continue; 10544 10545 if (btf_type_is_scalar(t)) { 10546 if (reg->type != SCALAR_VALUE) { 10547 verbose(env, "R%d is not a scalar\n", regno); 10548 return -EINVAL; 10549 } 10550 10551 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10552 if (meta->arg_constant.found) { 10553 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10554 return -EFAULT; 10555 } 10556 if (!tnum_is_const(reg->var_off)) { 10557 verbose(env, "R%d must be a known constant\n", regno); 10558 return -EINVAL; 10559 } 10560 ret = mark_chain_precision(env, regno); 10561 if (ret < 0) 10562 return ret; 10563 meta->arg_constant.found = true; 10564 meta->arg_constant.value = reg->var_off.value; 10565 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10566 meta->r0_rdonly = true; 10567 is_ret_buf_sz = true; 10568 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10569 is_ret_buf_sz = true; 10570 } 10571 10572 if (is_ret_buf_sz) { 10573 if (meta->r0_size) { 10574 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10575 return -EINVAL; 10576 } 10577 10578 if (!tnum_is_const(reg->var_off)) { 10579 verbose(env, "R%d is not a const\n", regno); 10580 return -EINVAL; 10581 } 10582 10583 meta->r0_size = reg->var_off.value; 10584 ret = mark_chain_precision(env, regno); 10585 if (ret) 10586 return ret; 10587 } 10588 continue; 10589 } 10590 10591 if (!btf_type_is_ptr(t)) { 10592 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10593 return -EINVAL; 10594 } 10595 10596 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10597 (register_is_null(reg) || type_may_be_null(reg->type))) { 10598 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10599 return -EACCES; 10600 } 10601 10602 if (reg->ref_obj_id) { 10603 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10604 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10605 regno, reg->ref_obj_id, 10606 meta->ref_obj_id); 10607 return -EFAULT; 10608 } 10609 meta->ref_obj_id = reg->ref_obj_id; 10610 if (is_kfunc_release(meta)) 10611 meta->release_regno = regno; 10612 } 10613 10614 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10615 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10616 10617 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10618 if (kf_arg_type < 0) 10619 return kf_arg_type; 10620 10621 switch (kf_arg_type) { 10622 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10623 case KF_ARG_PTR_TO_BTF_ID: 10624 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10625 break; 10626 10627 if (!is_trusted_reg(reg)) { 10628 if (!is_kfunc_rcu(meta)) { 10629 verbose(env, "R%d must be referenced or trusted\n", regno); 10630 return -EINVAL; 10631 } 10632 if (!is_rcu_reg(reg)) { 10633 verbose(env, "R%d must be a rcu pointer\n", regno); 10634 return -EINVAL; 10635 } 10636 } 10637 10638 fallthrough; 10639 case KF_ARG_PTR_TO_CTX: 10640 /* Trusted arguments have the same offset checks as release arguments */ 10641 arg_type |= OBJ_RELEASE; 10642 break; 10643 case KF_ARG_PTR_TO_DYNPTR: 10644 case KF_ARG_PTR_TO_ITER: 10645 case KF_ARG_PTR_TO_LIST_HEAD: 10646 case KF_ARG_PTR_TO_LIST_NODE: 10647 case KF_ARG_PTR_TO_RB_ROOT: 10648 case KF_ARG_PTR_TO_RB_NODE: 10649 case KF_ARG_PTR_TO_MEM: 10650 case KF_ARG_PTR_TO_MEM_SIZE: 10651 case KF_ARG_PTR_TO_CALLBACK: 10652 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10653 /* Trusted by default */ 10654 break; 10655 default: 10656 WARN_ON_ONCE(1); 10657 return -EFAULT; 10658 } 10659 10660 if (is_kfunc_release(meta) && reg->ref_obj_id) 10661 arg_type |= OBJ_RELEASE; 10662 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10663 if (ret < 0) 10664 return ret; 10665 10666 switch (kf_arg_type) { 10667 case KF_ARG_PTR_TO_CTX: 10668 if (reg->type != PTR_TO_CTX) { 10669 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10670 return -EINVAL; 10671 } 10672 10673 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10674 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 10675 if (ret < 0) 10676 return -EINVAL; 10677 meta->ret_btf_id = ret; 10678 } 10679 break; 10680 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10681 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10682 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10683 return -EINVAL; 10684 } 10685 if (!reg->ref_obj_id) { 10686 verbose(env, "allocated object must be referenced\n"); 10687 return -EINVAL; 10688 } 10689 if (meta->btf == btf_vmlinux && 10690 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 10691 meta->arg_btf = reg->btf; 10692 meta->arg_btf_id = reg->btf_id; 10693 } 10694 break; 10695 case KF_ARG_PTR_TO_DYNPTR: 10696 { 10697 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 10698 int clone_ref_obj_id = 0; 10699 10700 if (reg->type != PTR_TO_STACK && 10701 reg->type != CONST_PTR_TO_DYNPTR) { 10702 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 10703 return -EINVAL; 10704 } 10705 10706 if (reg->type == CONST_PTR_TO_DYNPTR) 10707 dynptr_arg_type |= MEM_RDONLY; 10708 10709 if (is_kfunc_arg_uninit(btf, &args[i])) 10710 dynptr_arg_type |= MEM_UNINIT; 10711 10712 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 10713 dynptr_arg_type |= DYNPTR_TYPE_SKB; 10714 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 10715 dynptr_arg_type |= DYNPTR_TYPE_XDP; 10716 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 10717 (dynptr_arg_type & MEM_UNINIT)) { 10718 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 10719 10720 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 10721 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 10722 return -EFAULT; 10723 } 10724 10725 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 10726 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 10727 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 10728 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 10729 return -EFAULT; 10730 } 10731 } 10732 10733 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 10734 if (ret < 0) 10735 return ret; 10736 10737 if (!(dynptr_arg_type & MEM_UNINIT)) { 10738 int id = dynptr_id(env, reg); 10739 10740 if (id < 0) { 10741 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10742 return id; 10743 } 10744 meta->initialized_dynptr.id = id; 10745 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 10746 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 10747 } 10748 10749 break; 10750 } 10751 case KF_ARG_PTR_TO_ITER: 10752 ret = process_iter_arg(env, regno, insn_idx, meta); 10753 if (ret < 0) 10754 return ret; 10755 break; 10756 case KF_ARG_PTR_TO_LIST_HEAD: 10757 if (reg->type != PTR_TO_MAP_VALUE && 10758 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10759 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10760 return -EINVAL; 10761 } 10762 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10763 verbose(env, "allocated object must be referenced\n"); 10764 return -EINVAL; 10765 } 10766 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 10767 if (ret < 0) 10768 return ret; 10769 break; 10770 case KF_ARG_PTR_TO_RB_ROOT: 10771 if (reg->type != PTR_TO_MAP_VALUE && 10772 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10773 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10774 return -EINVAL; 10775 } 10776 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10777 verbose(env, "allocated object must be referenced\n"); 10778 return -EINVAL; 10779 } 10780 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 10781 if (ret < 0) 10782 return ret; 10783 break; 10784 case KF_ARG_PTR_TO_LIST_NODE: 10785 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10786 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10787 return -EINVAL; 10788 } 10789 if (!reg->ref_obj_id) { 10790 verbose(env, "allocated object must be referenced\n"); 10791 return -EINVAL; 10792 } 10793 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 10794 if (ret < 0) 10795 return ret; 10796 break; 10797 case KF_ARG_PTR_TO_RB_NODE: 10798 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 10799 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 10800 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 10801 return -EINVAL; 10802 } 10803 if (in_rbtree_lock_required_cb(env)) { 10804 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 10805 return -EINVAL; 10806 } 10807 } else { 10808 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10809 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10810 return -EINVAL; 10811 } 10812 if (!reg->ref_obj_id) { 10813 verbose(env, "allocated object must be referenced\n"); 10814 return -EINVAL; 10815 } 10816 } 10817 10818 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 10819 if (ret < 0) 10820 return ret; 10821 break; 10822 case KF_ARG_PTR_TO_BTF_ID: 10823 /* Only base_type is checked, further checks are done here */ 10824 if ((base_type(reg->type) != PTR_TO_BTF_ID || 10825 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 10826 !reg2btf_ids[base_type(reg->type)]) { 10827 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 10828 verbose(env, "expected %s or socket\n", 10829 reg_type_str(env, base_type(reg->type) | 10830 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 10831 return -EINVAL; 10832 } 10833 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 10834 if (ret < 0) 10835 return ret; 10836 break; 10837 case KF_ARG_PTR_TO_MEM: 10838 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 10839 if (IS_ERR(resolve_ret)) { 10840 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 10841 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 10842 return -EINVAL; 10843 } 10844 ret = check_mem_reg(env, reg, regno, type_size); 10845 if (ret < 0) 10846 return ret; 10847 break; 10848 case KF_ARG_PTR_TO_MEM_SIZE: 10849 { 10850 struct bpf_reg_state *buff_reg = ®s[regno]; 10851 const struct btf_param *buff_arg = &args[i]; 10852 struct bpf_reg_state *size_reg = ®s[regno + 1]; 10853 const struct btf_param *size_arg = &args[i + 1]; 10854 10855 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 10856 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 10857 if (ret < 0) { 10858 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 10859 return ret; 10860 } 10861 } 10862 10863 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 10864 if (meta->arg_constant.found) { 10865 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10866 return -EFAULT; 10867 } 10868 if (!tnum_is_const(size_reg->var_off)) { 10869 verbose(env, "R%d must be a known constant\n", regno + 1); 10870 return -EINVAL; 10871 } 10872 meta->arg_constant.found = true; 10873 meta->arg_constant.value = size_reg->var_off.value; 10874 } 10875 10876 /* Skip next '__sz' or '__szk' argument */ 10877 i++; 10878 break; 10879 } 10880 case KF_ARG_PTR_TO_CALLBACK: 10881 meta->subprogno = reg->subprogno; 10882 break; 10883 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10884 if (!type_is_ptr_alloc_obj(reg->type) && !type_is_non_owning_ref(reg->type)) { 10885 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 10886 return -EINVAL; 10887 } 10888 10889 rec = reg_btf_record(reg); 10890 if (!rec) { 10891 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 10892 return -EFAULT; 10893 } 10894 10895 if (rec->refcount_off < 0) { 10896 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 10897 return -EINVAL; 10898 } 10899 if (rec->refcount_off >= 0) { 10900 verbose(env, "bpf_refcount_acquire calls are disabled for now\n"); 10901 return -EINVAL; 10902 } 10903 meta->arg_btf = reg->btf; 10904 meta->arg_btf_id = reg->btf_id; 10905 break; 10906 } 10907 } 10908 10909 if (is_kfunc_release(meta) && !meta->release_regno) { 10910 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 10911 func_name); 10912 return -EINVAL; 10913 } 10914 10915 return 0; 10916 } 10917 10918 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 10919 struct bpf_insn *insn, 10920 struct bpf_kfunc_call_arg_meta *meta, 10921 const char **kfunc_name) 10922 { 10923 const struct btf_type *func, *func_proto; 10924 u32 func_id, *kfunc_flags; 10925 const char *func_name; 10926 struct btf *desc_btf; 10927 10928 if (kfunc_name) 10929 *kfunc_name = NULL; 10930 10931 if (!insn->imm) 10932 return -EINVAL; 10933 10934 desc_btf = find_kfunc_desc_btf(env, insn->off); 10935 if (IS_ERR(desc_btf)) 10936 return PTR_ERR(desc_btf); 10937 10938 func_id = insn->imm; 10939 func = btf_type_by_id(desc_btf, func_id); 10940 func_name = btf_name_by_offset(desc_btf, func->name_off); 10941 if (kfunc_name) 10942 *kfunc_name = func_name; 10943 func_proto = btf_type_by_id(desc_btf, func->type); 10944 10945 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 10946 if (!kfunc_flags) { 10947 return -EACCES; 10948 } 10949 10950 memset(meta, 0, sizeof(*meta)); 10951 meta->btf = desc_btf; 10952 meta->func_id = func_id; 10953 meta->kfunc_flags = *kfunc_flags; 10954 meta->func_proto = func_proto; 10955 meta->func_name = func_name; 10956 10957 return 0; 10958 } 10959 10960 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10961 int *insn_idx_p) 10962 { 10963 const struct btf_type *t, *ptr_type; 10964 u32 i, nargs, ptr_type_id, release_ref_obj_id; 10965 struct bpf_reg_state *regs = cur_regs(env); 10966 const char *func_name, *ptr_type_name; 10967 bool sleepable, rcu_lock, rcu_unlock; 10968 struct bpf_kfunc_call_arg_meta meta; 10969 struct bpf_insn_aux_data *insn_aux; 10970 int err, insn_idx = *insn_idx_p; 10971 const struct btf_param *args; 10972 const struct btf_type *ret_t; 10973 struct btf *desc_btf; 10974 10975 /* skip for now, but return error when we find this in fixup_kfunc_call */ 10976 if (!insn->imm) 10977 return 0; 10978 10979 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 10980 if (err == -EACCES && func_name) 10981 verbose(env, "calling kernel function %s is not allowed\n", func_name); 10982 if (err) 10983 return err; 10984 desc_btf = meta.btf; 10985 insn_aux = &env->insn_aux_data[insn_idx]; 10986 10987 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 10988 10989 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 10990 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 10991 return -EACCES; 10992 } 10993 10994 sleepable = is_kfunc_sleepable(&meta); 10995 if (sleepable && !env->prog->aux->sleepable) { 10996 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 10997 return -EACCES; 10998 } 10999 11000 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11001 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11002 11003 if (env->cur_state->active_rcu_lock) { 11004 struct bpf_func_state *state; 11005 struct bpf_reg_state *reg; 11006 11007 if (rcu_lock) { 11008 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11009 return -EINVAL; 11010 } else if (rcu_unlock) { 11011 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11012 if (reg->type & MEM_RCU) { 11013 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11014 reg->type |= PTR_UNTRUSTED; 11015 } 11016 })); 11017 env->cur_state->active_rcu_lock = false; 11018 } else if (sleepable) { 11019 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11020 return -EACCES; 11021 } 11022 } else if (rcu_lock) { 11023 env->cur_state->active_rcu_lock = true; 11024 } else if (rcu_unlock) { 11025 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11026 return -EINVAL; 11027 } 11028 11029 /* Check the arguments */ 11030 err = check_kfunc_args(env, &meta, insn_idx); 11031 if (err < 0) 11032 return err; 11033 /* In case of release function, we get register number of refcounted 11034 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11035 */ 11036 if (meta.release_regno) { 11037 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11038 if (err) { 11039 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11040 func_name, meta.func_id); 11041 return err; 11042 } 11043 } 11044 11045 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11046 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11047 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11048 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11049 insn_aux->insert_off = regs[BPF_REG_2].off; 11050 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11051 if (err) { 11052 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11053 func_name, meta.func_id); 11054 return err; 11055 } 11056 11057 err = release_reference(env, release_ref_obj_id); 11058 if (err) { 11059 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11060 func_name, meta.func_id); 11061 return err; 11062 } 11063 } 11064 11065 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11066 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11067 set_rbtree_add_callback_state); 11068 if (err) { 11069 verbose(env, "kfunc %s#%d failed callback verification\n", 11070 func_name, meta.func_id); 11071 return err; 11072 } 11073 } 11074 11075 for (i = 0; i < CALLER_SAVED_REGS; i++) 11076 mark_reg_not_init(env, regs, caller_saved[i]); 11077 11078 /* Check return type */ 11079 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11080 11081 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11082 /* Only exception is bpf_obj_new_impl */ 11083 if (meta.btf != btf_vmlinux || 11084 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11085 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11086 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11087 return -EINVAL; 11088 } 11089 } 11090 11091 if (btf_type_is_scalar(t)) { 11092 mark_reg_unknown(env, regs, BPF_REG_0); 11093 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11094 } else if (btf_type_is_ptr(t)) { 11095 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11096 11097 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11098 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11099 struct btf *ret_btf; 11100 u32 ret_btf_id; 11101 11102 if (unlikely(!bpf_global_ma_set)) 11103 return -ENOMEM; 11104 11105 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11106 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11107 return -EINVAL; 11108 } 11109 11110 ret_btf = env->prog->aux->btf; 11111 ret_btf_id = meta.arg_constant.value; 11112 11113 /* This may be NULL due to user not supplying a BTF */ 11114 if (!ret_btf) { 11115 verbose(env, "bpf_obj_new requires prog BTF\n"); 11116 return -EINVAL; 11117 } 11118 11119 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11120 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11121 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11122 return -EINVAL; 11123 } 11124 11125 mark_reg_known_zero(env, regs, BPF_REG_0); 11126 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11127 regs[BPF_REG_0].btf = ret_btf; 11128 regs[BPF_REG_0].btf_id = ret_btf_id; 11129 11130 insn_aux->obj_new_size = ret_t->size; 11131 insn_aux->kptr_struct_meta = 11132 btf_find_struct_meta(ret_btf, ret_btf_id); 11133 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11134 mark_reg_known_zero(env, regs, BPF_REG_0); 11135 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11136 regs[BPF_REG_0].btf = meta.arg_btf; 11137 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11138 11139 insn_aux->kptr_struct_meta = 11140 btf_find_struct_meta(meta.arg_btf, 11141 meta.arg_btf_id); 11142 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11143 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11144 struct btf_field *field = meta.arg_list_head.field; 11145 11146 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11147 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11148 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11149 struct btf_field *field = meta.arg_rbtree_root.field; 11150 11151 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11152 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11153 mark_reg_known_zero(env, regs, BPF_REG_0); 11154 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11155 regs[BPF_REG_0].btf = desc_btf; 11156 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11157 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11158 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11159 if (!ret_t || !btf_type_is_struct(ret_t)) { 11160 verbose(env, 11161 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11162 return -EINVAL; 11163 } 11164 11165 mark_reg_known_zero(env, regs, BPF_REG_0); 11166 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11167 regs[BPF_REG_0].btf = desc_btf; 11168 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11169 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11170 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11171 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11172 11173 mark_reg_known_zero(env, regs, BPF_REG_0); 11174 11175 if (!meta.arg_constant.found) { 11176 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11177 return -EFAULT; 11178 } 11179 11180 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11181 11182 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11183 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11184 11185 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11186 regs[BPF_REG_0].type |= MEM_RDONLY; 11187 } else { 11188 /* this will set env->seen_direct_write to true */ 11189 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11190 verbose(env, "the prog does not allow writes to packet data\n"); 11191 return -EINVAL; 11192 } 11193 } 11194 11195 if (!meta.initialized_dynptr.id) { 11196 verbose(env, "verifier internal error: no dynptr id\n"); 11197 return -EFAULT; 11198 } 11199 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11200 11201 /* we don't need to set BPF_REG_0's ref obj id 11202 * because packet slices are not refcounted (see 11203 * dynptr_type_refcounted) 11204 */ 11205 } else { 11206 verbose(env, "kernel function %s unhandled dynamic return type\n", 11207 meta.func_name); 11208 return -EFAULT; 11209 } 11210 } else if (!__btf_type_is_struct(ptr_type)) { 11211 if (!meta.r0_size) { 11212 __u32 sz; 11213 11214 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11215 meta.r0_size = sz; 11216 meta.r0_rdonly = true; 11217 } 11218 } 11219 if (!meta.r0_size) { 11220 ptr_type_name = btf_name_by_offset(desc_btf, 11221 ptr_type->name_off); 11222 verbose(env, 11223 "kernel function %s returns pointer type %s %s is not supported\n", 11224 func_name, 11225 btf_type_str(ptr_type), 11226 ptr_type_name); 11227 return -EINVAL; 11228 } 11229 11230 mark_reg_known_zero(env, regs, BPF_REG_0); 11231 regs[BPF_REG_0].type = PTR_TO_MEM; 11232 regs[BPF_REG_0].mem_size = meta.r0_size; 11233 11234 if (meta.r0_rdonly) 11235 regs[BPF_REG_0].type |= MEM_RDONLY; 11236 11237 /* Ensures we don't access the memory after a release_reference() */ 11238 if (meta.ref_obj_id) 11239 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11240 } else { 11241 mark_reg_known_zero(env, regs, BPF_REG_0); 11242 regs[BPF_REG_0].btf = desc_btf; 11243 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11244 regs[BPF_REG_0].btf_id = ptr_type_id; 11245 } 11246 11247 if (is_kfunc_ret_null(&meta)) { 11248 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11249 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11250 regs[BPF_REG_0].id = ++env->id_gen; 11251 } 11252 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11253 if (is_kfunc_acquire(&meta)) { 11254 int id = acquire_reference_state(env, insn_idx); 11255 11256 if (id < 0) 11257 return id; 11258 if (is_kfunc_ret_null(&meta)) 11259 regs[BPF_REG_0].id = id; 11260 regs[BPF_REG_0].ref_obj_id = id; 11261 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11262 ref_set_non_owning(env, ®s[BPF_REG_0]); 11263 } 11264 11265 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11266 regs[BPF_REG_0].id = ++env->id_gen; 11267 } else if (btf_type_is_void(t)) { 11268 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11269 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11270 insn_aux->kptr_struct_meta = 11271 btf_find_struct_meta(meta.arg_btf, 11272 meta.arg_btf_id); 11273 } 11274 } 11275 } 11276 11277 nargs = btf_type_vlen(meta.func_proto); 11278 args = (const struct btf_param *)(meta.func_proto + 1); 11279 for (i = 0; i < nargs; i++) { 11280 u32 regno = i + 1; 11281 11282 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11283 if (btf_type_is_ptr(t)) 11284 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11285 else 11286 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11287 mark_btf_func_reg_size(env, regno, t->size); 11288 } 11289 11290 if (is_iter_next_kfunc(&meta)) { 11291 err = process_iter_next_call(env, insn_idx, &meta); 11292 if (err) 11293 return err; 11294 } 11295 11296 return 0; 11297 } 11298 11299 static bool signed_add_overflows(s64 a, s64 b) 11300 { 11301 /* Do the add in u64, where overflow is well-defined */ 11302 s64 res = (s64)((u64)a + (u64)b); 11303 11304 if (b < 0) 11305 return res > a; 11306 return res < a; 11307 } 11308 11309 static bool signed_add32_overflows(s32 a, s32 b) 11310 { 11311 /* Do the add in u32, where overflow is well-defined */ 11312 s32 res = (s32)((u32)a + (u32)b); 11313 11314 if (b < 0) 11315 return res > a; 11316 return res < a; 11317 } 11318 11319 static bool signed_sub_overflows(s64 a, s64 b) 11320 { 11321 /* Do the sub in u64, where overflow is well-defined */ 11322 s64 res = (s64)((u64)a - (u64)b); 11323 11324 if (b < 0) 11325 return res < a; 11326 return res > a; 11327 } 11328 11329 static bool signed_sub32_overflows(s32 a, s32 b) 11330 { 11331 /* Do the sub in u32, where overflow is well-defined */ 11332 s32 res = (s32)((u32)a - (u32)b); 11333 11334 if (b < 0) 11335 return res < a; 11336 return res > a; 11337 } 11338 11339 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11340 const struct bpf_reg_state *reg, 11341 enum bpf_reg_type type) 11342 { 11343 bool known = tnum_is_const(reg->var_off); 11344 s64 val = reg->var_off.value; 11345 s64 smin = reg->smin_value; 11346 11347 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11348 verbose(env, "math between %s pointer and %lld is not allowed\n", 11349 reg_type_str(env, type), val); 11350 return false; 11351 } 11352 11353 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11354 verbose(env, "%s pointer offset %d is not allowed\n", 11355 reg_type_str(env, type), reg->off); 11356 return false; 11357 } 11358 11359 if (smin == S64_MIN) { 11360 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11361 reg_type_str(env, type)); 11362 return false; 11363 } 11364 11365 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11366 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11367 smin, reg_type_str(env, type)); 11368 return false; 11369 } 11370 11371 return true; 11372 } 11373 11374 enum { 11375 REASON_BOUNDS = -1, 11376 REASON_TYPE = -2, 11377 REASON_PATHS = -3, 11378 REASON_LIMIT = -4, 11379 REASON_STACK = -5, 11380 }; 11381 11382 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11383 u32 *alu_limit, bool mask_to_left) 11384 { 11385 u32 max = 0, ptr_limit = 0; 11386 11387 switch (ptr_reg->type) { 11388 case PTR_TO_STACK: 11389 /* Offset 0 is out-of-bounds, but acceptable start for the 11390 * left direction, see BPF_REG_FP. Also, unknown scalar 11391 * offset where we would need to deal with min/max bounds is 11392 * currently prohibited for unprivileged. 11393 */ 11394 max = MAX_BPF_STACK + mask_to_left; 11395 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11396 break; 11397 case PTR_TO_MAP_VALUE: 11398 max = ptr_reg->map_ptr->value_size; 11399 ptr_limit = (mask_to_left ? 11400 ptr_reg->smin_value : 11401 ptr_reg->umax_value) + ptr_reg->off; 11402 break; 11403 default: 11404 return REASON_TYPE; 11405 } 11406 11407 if (ptr_limit >= max) 11408 return REASON_LIMIT; 11409 *alu_limit = ptr_limit; 11410 return 0; 11411 } 11412 11413 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11414 const struct bpf_insn *insn) 11415 { 11416 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11417 } 11418 11419 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11420 u32 alu_state, u32 alu_limit) 11421 { 11422 /* If we arrived here from different branches with different 11423 * state or limits to sanitize, then this won't work. 11424 */ 11425 if (aux->alu_state && 11426 (aux->alu_state != alu_state || 11427 aux->alu_limit != alu_limit)) 11428 return REASON_PATHS; 11429 11430 /* Corresponding fixup done in do_misc_fixups(). */ 11431 aux->alu_state = alu_state; 11432 aux->alu_limit = alu_limit; 11433 return 0; 11434 } 11435 11436 static int sanitize_val_alu(struct bpf_verifier_env *env, 11437 struct bpf_insn *insn) 11438 { 11439 struct bpf_insn_aux_data *aux = cur_aux(env); 11440 11441 if (can_skip_alu_sanitation(env, insn)) 11442 return 0; 11443 11444 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11445 } 11446 11447 static bool sanitize_needed(u8 opcode) 11448 { 11449 return opcode == BPF_ADD || opcode == BPF_SUB; 11450 } 11451 11452 struct bpf_sanitize_info { 11453 struct bpf_insn_aux_data aux; 11454 bool mask_to_left; 11455 }; 11456 11457 static struct bpf_verifier_state * 11458 sanitize_speculative_path(struct bpf_verifier_env *env, 11459 const struct bpf_insn *insn, 11460 u32 next_idx, u32 curr_idx) 11461 { 11462 struct bpf_verifier_state *branch; 11463 struct bpf_reg_state *regs; 11464 11465 branch = push_stack(env, next_idx, curr_idx, true); 11466 if (branch && insn) { 11467 regs = branch->frame[branch->curframe]->regs; 11468 if (BPF_SRC(insn->code) == BPF_K) { 11469 mark_reg_unknown(env, regs, insn->dst_reg); 11470 } else if (BPF_SRC(insn->code) == BPF_X) { 11471 mark_reg_unknown(env, regs, insn->dst_reg); 11472 mark_reg_unknown(env, regs, insn->src_reg); 11473 } 11474 } 11475 return branch; 11476 } 11477 11478 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11479 struct bpf_insn *insn, 11480 const struct bpf_reg_state *ptr_reg, 11481 const struct bpf_reg_state *off_reg, 11482 struct bpf_reg_state *dst_reg, 11483 struct bpf_sanitize_info *info, 11484 const bool commit_window) 11485 { 11486 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11487 struct bpf_verifier_state *vstate = env->cur_state; 11488 bool off_is_imm = tnum_is_const(off_reg->var_off); 11489 bool off_is_neg = off_reg->smin_value < 0; 11490 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11491 u8 opcode = BPF_OP(insn->code); 11492 u32 alu_state, alu_limit; 11493 struct bpf_reg_state tmp; 11494 bool ret; 11495 int err; 11496 11497 if (can_skip_alu_sanitation(env, insn)) 11498 return 0; 11499 11500 /* We already marked aux for masking from non-speculative 11501 * paths, thus we got here in the first place. We only care 11502 * to explore bad access from here. 11503 */ 11504 if (vstate->speculative) 11505 goto do_sim; 11506 11507 if (!commit_window) { 11508 if (!tnum_is_const(off_reg->var_off) && 11509 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11510 return REASON_BOUNDS; 11511 11512 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11513 (opcode == BPF_SUB && !off_is_neg); 11514 } 11515 11516 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11517 if (err < 0) 11518 return err; 11519 11520 if (commit_window) { 11521 /* In commit phase we narrow the masking window based on 11522 * the observed pointer move after the simulated operation. 11523 */ 11524 alu_state = info->aux.alu_state; 11525 alu_limit = abs(info->aux.alu_limit - alu_limit); 11526 } else { 11527 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11528 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11529 alu_state |= ptr_is_dst_reg ? 11530 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11531 11532 /* Limit pruning on unknown scalars to enable deep search for 11533 * potential masking differences from other program paths. 11534 */ 11535 if (!off_is_imm) 11536 env->explore_alu_limits = true; 11537 } 11538 11539 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11540 if (err < 0) 11541 return err; 11542 do_sim: 11543 /* If we're in commit phase, we're done here given we already 11544 * pushed the truncated dst_reg into the speculative verification 11545 * stack. 11546 * 11547 * Also, when register is a known constant, we rewrite register-based 11548 * operation to immediate-based, and thus do not need masking (and as 11549 * a consequence, do not need to simulate the zero-truncation either). 11550 */ 11551 if (commit_window || off_is_imm) 11552 return 0; 11553 11554 /* Simulate and find potential out-of-bounds access under 11555 * speculative execution from truncation as a result of 11556 * masking when off was not within expected range. If off 11557 * sits in dst, then we temporarily need to move ptr there 11558 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11559 * for cases where we use K-based arithmetic in one direction 11560 * and truncated reg-based in the other in order to explore 11561 * bad access. 11562 */ 11563 if (!ptr_is_dst_reg) { 11564 tmp = *dst_reg; 11565 copy_register_state(dst_reg, ptr_reg); 11566 } 11567 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11568 env->insn_idx); 11569 if (!ptr_is_dst_reg && ret) 11570 *dst_reg = tmp; 11571 return !ret ? REASON_STACK : 0; 11572 } 11573 11574 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11575 { 11576 struct bpf_verifier_state *vstate = env->cur_state; 11577 11578 /* If we simulate paths under speculation, we don't update the 11579 * insn as 'seen' such that when we verify unreachable paths in 11580 * the non-speculative domain, sanitize_dead_code() can still 11581 * rewrite/sanitize them. 11582 */ 11583 if (!vstate->speculative) 11584 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11585 } 11586 11587 static int sanitize_err(struct bpf_verifier_env *env, 11588 const struct bpf_insn *insn, int reason, 11589 const struct bpf_reg_state *off_reg, 11590 const struct bpf_reg_state *dst_reg) 11591 { 11592 static const char *err = "pointer arithmetic with it prohibited for !root"; 11593 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11594 u32 dst = insn->dst_reg, src = insn->src_reg; 11595 11596 switch (reason) { 11597 case REASON_BOUNDS: 11598 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11599 off_reg == dst_reg ? dst : src, err); 11600 break; 11601 case REASON_TYPE: 11602 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11603 off_reg == dst_reg ? src : dst, err); 11604 break; 11605 case REASON_PATHS: 11606 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11607 dst, op, err); 11608 break; 11609 case REASON_LIMIT: 11610 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11611 dst, op, err); 11612 break; 11613 case REASON_STACK: 11614 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11615 dst, err); 11616 break; 11617 default: 11618 verbose(env, "verifier internal error: unknown reason (%d)\n", 11619 reason); 11620 break; 11621 } 11622 11623 return -EACCES; 11624 } 11625 11626 /* check that stack access falls within stack limits and that 'reg' doesn't 11627 * have a variable offset. 11628 * 11629 * Variable offset is prohibited for unprivileged mode for simplicity since it 11630 * requires corresponding support in Spectre masking for stack ALU. See also 11631 * retrieve_ptr_limit(). 11632 * 11633 * 11634 * 'off' includes 'reg->off'. 11635 */ 11636 static int check_stack_access_for_ptr_arithmetic( 11637 struct bpf_verifier_env *env, 11638 int regno, 11639 const struct bpf_reg_state *reg, 11640 int off) 11641 { 11642 if (!tnum_is_const(reg->var_off)) { 11643 char tn_buf[48]; 11644 11645 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11646 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11647 regno, tn_buf, off); 11648 return -EACCES; 11649 } 11650 11651 if (off >= 0 || off < -MAX_BPF_STACK) { 11652 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11653 "prohibited for !root; off=%d\n", regno, off); 11654 return -EACCES; 11655 } 11656 11657 return 0; 11658 } 11659 11660 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11661 const struct bpf_insn *insn, 11662 const struct bpf_reg_state *dst_reg) 11663 { 11664 u32 dst = insn->dst_reg; 11665 11666 /* For unprivileged we require that resulting offset must be in bounds 11667 * in order to be able to sanitize access later on. 11668 */ 11669 if (env->bypass_spec_v1) 11670 return 0; 11671 11672 switch (dst_reg->type) { 11673 case PTR_TO_STACK: 11674 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 11675 dst_reg->off + dst_reg->var_off.value)) 11676 return -EACCES; 11677 break; 11678 case PTR_TO_MAP_VALUE: 11679 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 11680 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 11681 "prohibited for !root\n", dst); 11682 return -EACCES; 11683 } 11684 break; 11685 default: 11686 break; 11687 } 11688 11689 return 0; 11690 } 11691 11692 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 11693 * Caller should also handle BPF_MOV case separately. 11694 * If we return -EACCES, caller may want to try again treating pointer as a 11695 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 11696 */ 11697 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 11698 struct bpf_insn *insn, 11699 const struct bpf_reg_state *ptr_reg, 11700 const struct bpf_reg_state *off_reg) 11701 { 11702 struct bpf_verifier_state *vstate = env->cur_state; 11703 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11704 struct bpf_reg_state *regs = state->regs, *dst_reg; 11705 bool known = tnum_is_const(off_reg->var_off); 11706 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 11707 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 11708 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 11709 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 11710 struct bpf_sanitize_info info = {}; 11711 u8 opcode = BPF_OP(insn->code); 11712 u32 dst = insn->dst_reg; 11713 int ret; 11714 11715 dst_reg = ®s[dst]; 11716 11717 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 11718 smin_val > smax_val || umin_val > umax_val) { 11719 /* Taint dst register if offset had invalid bounds derived from 11720 * e.g. dead branches. 11721 */ 11722 __mark_reg_unknown(env, dst_reg); 11723 return 0; 11724 } 11725 11726 if (BPF_CLASS(insn->code) != BPF_ALU64) { 11727 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 11728 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11729 __mark_reg_unknown(env, dst_reg); 11730 return 0; 11731 } 11732 11733 verbose(env, 11734 "R%d 32-bit pointer arithmetic prohibited\n", 11735 dst); 11736 return -EACCES; 11737 } 11738 11739 if (ptr_reg->type & PTR_MAYBE_NULL) { 11740 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 11741 dst, reg_type_str(env, ptr_reg->type)); 11742 return -EACCES; 11743 } 11744 11745 switch (base_type(ptr_reg->type)) { 11746 case CONST_PTR_TO_MAP: 11747 /* smin_val represents the known value */ 11748 if (known && smin_val == 0 && opcode == BPF_ADD) 11749 break; 11750 fallthrough; 11751 case PTR_TO_PACKET_END: 11752 case PTR_TO_SOCKET: 11753 case PTR_TO_SOCK_COMMON: 11754 case PTR_TO_TCP_SOCK: 11755 case PTR_TO_XDP_SOCK: 11756 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 11757 dst, reg_type_str(env, ptr_reg->type)); 11758 return -EACCES; 11759 default: 11760 break; 11761 } 11762 11763 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 11764 * The id may be overwritten later if we create a new variable offset. 11765 */ 11766 dst_reg->type = ptr_reg->type; 11767 dst_reg->id = ptr_reg->id; 11768 11769 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 11770 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 11771 return -EINVAL; 11772 11773 /* pointer types do not carry 32-bit bounds at the moment. */ 11774 __mark_reg32_unbounded(dst_reg); 11775 11776 if (sanitize_needed(opcode)) { 11777 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 11778 &info, false); 11779 if (ret < 0) 11780 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11781 } 11782 11783 switch (opcode) { 11784 case BPF_ADD: 11785 /* We can take a fixed offset as long as it doesn't overflow 11786 * the s32 'off' field 11787 */ 11788 if (known && (ptr_reg->off + smin_val == 11789 (s64)(s32)(ptr_reg->off + smin_val))) { 11790 /* pointer += K. Accumulate it into fixed offset */ 11791 dst_reg->smin_value = smin_ptr; 11792 dst_reg->smax_value = smax_ptr; 11793 dst_reg->umin_value = umin_ptr; 11794 dst_reg->umax_value = umax_ptr; 11795 dst_reg->var_off = ptr_reg->var_off; 11796 dst_reg->off = ptr_reg->off + smin_val; 11797 dst_reg->raw = ptr_reg->raw; 11798 break; 11799 } 11800 /* A new variable offset is created. Note that off_reg->off 11801 * == 0, since it's a scalar. 11802 * dst_reg gets the pointer type and since some positive 11803 * integer value was added to the pointer, give it a new 'id' 11804 * if it's a PTR_TO_PACKET. 11805 * this creates a new 'base' pointer, off_reg (variable) gets 11806 * added into the variable offset, and we copy the fixed offset 11807 * from ptr_reg. 11808 */ 11809 if (signed_add_overflows(smin_ptr, smin_val) || 11810 signed_add_overflows(smax_ptr, smax_val)) { 11811 dst_reg->smin_value = S64_MIN; 11812 dst_reg->smax_value = S64_MAX; 11813 } else { 11814 dst_reg->smin_value = smin_ptr + smin_val; 11815 dst_reg->smax_value = smax_ptr + smax_val; 11816 } 11817 if (umin_ptr + umin_val < umin_ptr || 11818 umax_ptr + umax_val < umax_ptr) { 11819 dst_reg->umin_value = 0; 11820 dst_reg->umax_value = U64_MAX; 11821 } else { 11822 dst_reg->umin_value = umin_ptr + umin_val; 11823 dst_reg->umax_value = umax_ptr + umax_val; 11824 } 11825 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 11826 dst_reg->off = ptr_reg->off; 11827 dst_reg->raw = ptr_reg->raw; 11828 if (reg_is_pkt_pointer(ptr_reg)) { 11829 dst_reg->id = ++env->id_gen; 11830 /* something was added to pkt_ptr, set range to zero */ 11831 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 11832 } 11833 break; 11834 case BPF_SUB: 11835 if (dst_reg == off_reg) { 11836 /* scalar -= pointer. Creates an unknown scalar */ 11837 verbose(env, "R%d tried to subtract pointer from scalar\n", 11838 dst); 11839 return -EACCES; 11840 } 11841 /* We don't allow subtraction from FP, because (according to 11842 * test_verifier.c test "invalid fp arithmetic", JITs might not 11843 * be able to deal with it. 11844 */ 11845 if (ptr_reg->type == PTR_TO_STACK) { 11846 verbose(env, "R%d subtraction from stack pointer prohibited\n", 11847 dst); 11848 return -EACCES; 11849 } 11850 if (known && (ptr_reg->off - smin_val == 11851 (s64)(s32)(ptr_reg->off - smin_val))) { 11852 /* pointer -= K. Subtract it from fixed offset */ 11853 dst_reg->smin_value = smin_ptr; 11854 dst_reg->smax_value = smax_ptr; 11855 dst_reg->umin_value = umin_ptr; 11856 dst_reg->umax_value = umax_ptr; 11857 dst_reg->var_off = ptr_reg->var_off; 11858 dst_reg->id = ptr_reg->id; 11859 dst_reg->off = ptr_reg->off - smin_val; 11860 dst_reg->raw = ptr_reg->raw; 11861 break; 11862 } 11863 /* A new variable offset is created. If the subtrahend is known 11864 * nonnegative, then any reg->range we had before is still good. 11865 */ 11866 if (signed_sub_overflows(smin_ptr, smax_val) || 11867 signed_sub_overflows(smax_ptr, smin_val)) { 11868 /* Overflow possible, we know nothing */ 11869 dst_reg->smin_value = S64_MIN; 11870 dst_reg->smax_value = S64_MAX; 11871 } else { 11872 dst_reg->smin_value = smin_ptr - smax_val; 11873 dst_reg->smax_value = smax_ptr - smin_val; 11874 } 11875 if (umin_ptr < umax_val) { 11876 /* Overflow possible, we know nothing */ 11877 dst_reg->umin_value = 0; 11878 dst_reg->umax_value = U64_MAX; 11879 } else { 11880 /* Cannot overflow (as long as bounds are consistent) */ 11881 dst_reg->umin_value = umin_ptr - umax_val; 11882 dst_reg->umax_value = umax_ptr - umin_val; 11883 } 11884 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 11885 dst_reg->off = ptr_reg->off; 11886 dst_reg->raw = ptr_reg->raw; 11887 if (reg_is_pkt_pointer(ptr_reg)) { 11888 dst_reg->id = ++env->id_gen; 11889 /* something was added to pkt_ptr, set range to zero */ 11890 if (smin_val < 0) 11891 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 11892 } 11893 break; 11894 case BPF_AND: 11895 case BPF_OR: 11896 case BPF_XOR: 11897 /* bitwise ops on pointers are troublesome, prohibit. */ 11898 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 11899 dst, bpf_alu_string[opcode >> 4]); 11900 return -EACCES; 11901 default: 11902 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 11903 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 11904 dst, bpf_alu_string[opcode >> 4]); 11905 return -EACCES; 11906 } 11907 11908 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 11909 return -EINVAL; 11910 reg_bounds_sync(dst_reg); 11911 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 11912 return -EACCES; 11913 if (sanitize_needed(opcode)) { 11914 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 11915 &info, true); 11916 if (ret < 0) 11917 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11918 } 11919 11920 return 0; 11921 } 11922 11923 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 11924 struct bpf_reg_state *src_reg) 11925 { 11926 s32 smin_val = src_reg->s32_min_value; 11927 s32 smax_val = src_reg->s32_max_value; 11928 u32 umin_val = src_reg->u32_min_value; 11929 u32 umax_val = src_reg->u32_max_value; 11930 11931 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 11932 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 11933 dst_reg->s32_min_value = S32_MIN; 11934 dst_reg->s32_max_value = S32_MAX; 11935 } else { 11936 dst_reg->s32_min_value += smin_val; 11937 dst_reg->s32_max_value += smax_val; 11938 } 11939 if (dst_reg->u32_min_value + umin_val < umin_val || 11940 dst_reg->u32_max_value + umax_val < umax_val) { 11941 dst_reg->u32_min_value = 0; 11942 dst_reg->u32_max_value = U32_MAX; 11943 } else { 11944 dst_reg->u32_min_value += umin_val; 11945 dst_reg->u32_max_value += umax_val; 11946 } 11947 } 11948 11949 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 11950 struct bpf_reg_state *src_reg) 11951 { 11952 s64 smin_val = src_reg->smin_value; 11953 s64 smax_val = src_reg->smax_value; 11954 u64 umin_val = src_reg->umin_value; 11955 u64 umax_val = src_reg->umax_value; 11956 11957 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 11958 signed_add_overflows(dst_reg->smax_value, smax_val)) { 11959 dst_reg->smin_value = S64_MIN; 11960 dst_reg->smax_value = S64_MAX; 11961 } else { 11962 dst_reg->smin_value += smin_val; 11963 dst_reg->smax_value += smax_val; 11964 } 11965 if (dst_reg->umin_value + umin_val < umin_val || 11966 dst_reg->umax_value + umax_val < umax_val) { 11967 dst_reg->umin_value = 0; 11968 dst_reg->umax_value = U64_MAX; 11969 } else { 11970 dst_reg->umin_value += umin_val; 11971 dst_reg->umax_value += umax_val; 11972 } 11973 } 11974 11975 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 11976 struct bpf_reg_state *src_reg) 11977 { 11978 s32 smin_val = src_reg->s32_min_value; 11979 s32 smax_val = src_reg->s32_max_value; 11980 u32 umin_val = src_reg->u32_min_value; 11981 u32 umax_val = src_reg->u32_max_value; 11982 11983 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 11984 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 11985 /* Overflow possible, we know nothing */ 11986 dst_reg->s32_min_value = S32_MIN; 11987 dst_reg->s32_max_value = S32_MAX; 11988 } else { 11989 dst_reg->s32_min_value -= smax_val; 11990 dst_reg->s32_max_value -= smin_val; 11991 } 11992 if (dst_reg->u32_min_value < umax_val) { 11993 /* Overflow possible, we know nothing */ 11994 dst_reg->u32_min_value = 0; 11995 dst_reg->u32_max_value = U32_MAX; 11996 } else { 11997 /* Cannot overflow (as long as bounds are consistent) */ 11998 dst_reg->u32_min_value -= umax_val; 11999 dst_reg->u32_max_value -= umin_val; 12000 } 12001 } 12002 12003 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12004 struct bpf_reg_state *src_reg) 12005 { 12006 s64 smin_val = src_reg->smin_value; 12007 s64 smax_val = src_reg->smax_value; 12008 u64 umin_val = src_reg->umin_value; 12009 u64 umax_val = src_reg->umax_value; 12010 12011 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12012 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12013 /* Overflow possible, we know nothing */ 12014 dst_reg->smin_value = S64_MIN; 12015 dst_reg->smax_value = S64_MAX; 12016 } else { 12017 dst_reg->smin_value -= smax_val; 12018 dst_reg->smax_value -= smin_val; 12019 } 12020 if (dst_reg->umin_value < umax_val) { 12021 /* Overflow possible, we know nothing */ 12022 dst_reg->umin_value = 0; 12023 dst_reg->umax_value = U64_MAX; 12024 } else { 12025 /* Cannot overflow (as long as bounds are consistent) */ 12026 dst_reg->umin_value -= umax_val; 12027 dst_reg->umax_value -= umin_val; 12028 } 12029 } 12030 12031 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12032 struct bpf_reg_state *src_reg) 12033 { 12034 s32 smin_val = src_reg->s32_min_value; 12035 u32 umin_val = src_reg->u32_min_value; 12036 u32 umax_val = src_reg->u32_max_value; 12037 12038 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12039 /* Ain't nobody got time to multiply that sign */ 12040 __mark_reg32_unbounded(dst_reg); 12041 return; 12042 } 12043 /* Both values are positive, so we can work with unsigned and 12044 * copy the result to signed (unless it exceeds S32_MAX). 12045 */ 12046 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12047 /* Potential overflow, we know nothing */ 12048 __mark_reg32_unbounded(dst_reg); 12049 return; 12050 } 12051 dst_reg->u32_min_value *= umin_val; 12052 dst_reg->u32_max_value *= umax_val; 12053 if (dst_reg->u32_max_value > S32_MAX) { 12054 /* Overflow possible, we know nothing */ 12055 dst_reg->s32_min_value = S32_MIN; 12056 dst_reg->s32_max_value = S32_MAX; 12057 } else { 12058 dst_reg->s32_min_value = dst_reg->u32_min_value; 12059 dst_reg->s32_max_value = dst_reg->u32_max_value; 12060 } 12061 } 12062 12063 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12064 struct bpf_reg_state *src_reg) 12065 { 12066 s64 smin_val = src_reg->smin_value; 12067 u64 umin_val = src_reg->umin_value; 12068 u64 umax_val = src_reg->umax_value; 12069 12070 if (smin_val < 0 || dst_reg->smin_value < 0) { 12071 /* Ain't nobody got time to multiply that sign */ 12072 __mark_reg64_unbounded(dst_reg); 12073 return; 12074 } 12075 /* Both values are positive, so we can work with unsigned and 12076 * copy the result to signed (unless it exceeds S64_MAX). 12077 */ 12078 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12079 /* Potential overflow, we know nothing */ 12080 __mark_reg64_unbounded(dst_reg); 12081 return; 12082 } 12083 dst_reg->umin_value *= umin_val; 12084 dst_reg->umax_value *= umax_val; 12085 if (dst_reg->umax_value > S64_MAX) { 12086 /* Overflow possible, we know nothing */ 12087 dst_reg->smin_value = S64_MIN; 12088 dst_reg->smax_value = S64_MAX; 12089 } else { 12090 dst_reg->smin_value = dst_reg->umin_value; 12091 dst_reg->smax_value = dst_reg->umax_value; 12092 } 12093 } 12094 12095 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12096 struct bpf_reg_state *src_reg) 12097 { 12098 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12099 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12100 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12101 s32 smin_val = src_reg->s32_min_value; 12102 u32 umax_val = src_reg->u32_max_value; 12103 12104 if (src_known && dst_known) { 12105 __mark_reg32_known(dst_reg, var32_off.value); 12106 return; 12107 } 12108 12109 /* We get our minimum from the var_off, since that's inherently 12110 * bitwise. Our maximum is the minimum of the operands' maxima. 12111 */ 12112 dst_reg->u32_min_value = var32_off.value; 12113 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12114 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12115 /* Lose signed bounds when ANDing negative numbers, 12116 * ain't nobody got time for that. 12117 */ 12118 dst_reg->s32_min_value = S32_MIN; 12119 dst_reg->s32_max_value = S32_MAX; 12120 } else { 12121 /* ANDing two positives gives a positive, so safe to 12122 * cast result into s64. 12123 */ 12124 dst_reg->s32_min_value = dst_reg->u32_min_value; 12125 dst_reg->s32_max_value = dst_reg->u32_max_value; 12126 } 12127 } 12128 12129 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12130 struct bpf_reg_state *src_reg) 12131 { 12132 bool src_known = tnum_is_const(src_reg->var_off); 12133 bool dst_known = tnum_is_const(dst_reg->var_off); 12134 s64 smin_val = src_reg->smin_value; 12135 u64 umax_val = src_reg->umax_value; 12136 12137 if (src_known && dst_known) { 12138 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12139 return; 12140 } 12141 12142 /* We get our minimum from the var_off, since that's inherently 12143 * bitwise. Our maximum is the minimum of the operands' maxima. 12144 */ 12145 dst_reg->umin_value = dst_reg->var_off.value; 12146 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12147 if (dst_reg->smin_value < 0 || smin_val < 0) { 12148 /* Lose signed bounds when ANDing negative numbers, 12149 * ain't nobody got time for that. 12150 */ 12151 dst_reg->smin_value = S64_MIN; 12152 dst_reg->smax_value = S64_MAX; 12153 } else { 12154 /* ANDing two positives gives a positive, so safe to 12155 * cast result into s64. 12156 */ 12157 dst_reg->smin_value = dst_reg->umin_value; 12158 dst_reg->smax_value = dst_reg->umax_value; 12159 } 12160 /* We may learn something more from the var_off */ 12161 __update_reg_bounds(dst_reg); 12162 } 12163 12164 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12165 struct bpf_reg_state *src_reg) 12166 { 12167 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12168 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12169 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12170 s32 smin_val = src_reg->s32_min_value; 12171 u32 umin_val = src_reg->u32_min_value; 12172 12173 if (src_known && dst_known) { 12174 __mark_reg32_known(dst_reg, var32_off.value); 12175 return; 12176 } 12177 12178 /* We get our maximum from the var_off, and our minimum is the 12179 * maximum of the operands' minima 12180 */ 12181 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12182 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12183 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12184 /* Lose signed bounds when ORing negative numbers, 12185 * ain't nobody got time for that. 12186 */ 12187 dst_reg->s32_min_value = S32_MIN; 12188 dst_reg->s32_max_value = S32_MAX; 12189 } else { 12190 /* ORing two positives gives a positive, so safe to 12191 * cast result into s64. 12192 */ 12193 dst_reg->s32_min_value = dst_reg->u32_min_value; 12194 dst_reg->s32_max_value = dst_reg->u32_max_value; 12195 } 12196 } 12197 12198 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12199 struct bpf_reg_state *src_reg) 12200 { 12201 bool src_known = tnum_is_const(src_reg->var_off); 12202 bool dst_known = tnum_is_const(dst_reg->var_off); 12203 s64 smin_val = src_reg->smin_value; 12204 u64 umin_val = src_reg->umin_value; 12205 12206 if (src_known && dst_known) { 12207 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12208 return; 12209 } 12210 12211 /* We get our maximum from the var_off, and our minimum is the 12212 * maximum of the operands' minima 12213 */ 12214 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12215 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12216 if (dst_reg->smin_value < 0 || smin_val < 0) { 12217 /* Lose signed bounds when ORing negative numbers, 12218 * ain't nobody got time for that. 12219 */ 12220 dst_reg->smin_value = S64_MIN; 12221 dst_reg->smax_value = S64_MAX; 12222 } else { 12223 /* ORing two positives gives a positive, so safe to 12224 * cast result into s64. 12225 */ 12226 dst_reg->smin_value = dst_reg->umin_value; 12227 dst_reg->smax_value = dst_reg->umax_value; 12228 } 12229 /* We may learn something more from the var_off */ 12230 __update_reg_bounds(dst_reg); 12231 } 12232 12233 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12234 struct bpf_reg_state *src_reg) 12235 { 12236 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12237 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12238 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12239 s32 smin_val = src_reg->s32_min_value; 12240 12241 if (src_known && dst_known) { 12242 __mark_reg32_known(dst_reg, var32_off.value); 12243 return; 12244 } 12245 12246 /* We get both minimum and maximum from the var32_off. */ 12247 dst_reg->u32_min_value = var32_off.value; 12248 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12249 12250 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12251 /* XORing two positive sign numbers gives a positive, 12252 * so safe to cast u32 result into s32. 12253 */ 12254 dst_reg->s32_min_value = dst_reg->u32_min_value; 12255 dst_reg->s32_max_value = dst_reg->u32_max_value; 12256 } else { 12257 dst_reg->s32_min_value = S32_MIN; 12258 dst_reg->s32_max_value = S32_MAX; 12259 } 12260 } 12261 12262 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12263 struct bpf_reg_state *src_reg) 12264 { 12265 bool src_known = tnum_is_const(src_reg->var_off); 12266 bool dst_known = tnum_is_const(dst_reg->var_off); 12267 s64 smin_val = src_reg->smin_value; 12268 12269 if (src_known && dst_known) { 12270 /* dst_reg->var_off.value has been updated earlier */ 12271 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12272 return; 12273 } 12274 12275 /* We get both minimum and maximum from the var_off. */ 12276 dst_reg->umin_value = dst_reg->var_off.value; 12277 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12278 12279 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12280 /* XORing two positive sign numbers gives a positive, 12281 * so safe to cast u64 result into s64. 12282 */ 12283 dst_reg->smin_value = dst_reg->umin_value; 12284 dst_reg->smax_value = dst_reg->umax_value; 12285 } else { 12286 dst_reg->smin_value = S64_MIN; 12287 dst_reg->smax_value = S64_MAX; 12288 } 12289 12290 __update_reg_bounds(dst_reg); 12291 } 12292 12293 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12294 u64 umin_val, u64 umax_val) 12295 { 12296 /* We lose all sign bit information (except what we can pick 12297 * up from var_off) 12298 */ 12299 dst_reg->s32_min_value = S32_MIN; 12300 dst_reg->s32_max_value = S32_MAX; 12301 /* If we might shift our top bit out, then we know nothing */ 12302 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12303 dst_reg->u32_min_value = 0; 12304 dst_reg->u32_max_value = U32_MAX; 12305 } else { 12306 dst_reg->u32_min_value <<= umin_val; 12307 dst_reg->u32_max_value <<= umax_val; 12308 } 12309 } 12310 12311 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12312 struct bpf_reg_state *src_reg) 12313 { 12314 u32 umax_val = src_reg->u32_max_value; 12315 u32 umin_val = src_reg->u32_min_value; 12316 /* u32 alu operation will zext upper bits */ 12317 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12318 12319 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12320 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12321 /* Not required but being careful mark reg64 bounds as unknown so 12322 * that we are forced to pick them up from tnum and zext later and 12323 * if some path skips this step we are still safe. 12324 */ 12325 __mark_reg64_unbounded(dst_reg); 12326 __update_reg32_bounds(dst_reg); 12327 } 12328 12329 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12330 u64 umin_val, u64 umax_val) 12331 { 12332 /* Special case <<32 because it is a common compiler pattern to sign 12333 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12334 * positive we know this shift will also be positive so we can track 12335 * bounds correctly. Otherwise we lose all sign bit information except 12336 * what we can pick up from var_off. Perhaps we can generalize this 12337 * later to shifts of any length. 12338 */ 12339 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12340 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12341 else 12342 dst_reg->smax_value = S64_MAX; 12343 12344 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12345 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12346 else 12347 dst_reg->smin_value = S64_MIN; 12348 12349 /* If we might shift our top bit out, then we know nothing */ 12350 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12351 dst_reg->umin_value = 0; 12352 dst_reg->umax_value = U64_MAX; 12353 } else { 12354 dst_reg->umin_value <<= umin_val; 12355 dst_reg->umax_value <<= umax_val; 12356 } 12357 } 12358 12359 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12360 struct bpf_reg_state *src_reg) 12361 { 12362 u64 umax_val = src_reg->umax_value; 12363 u64 umin_val = src_reg->umin_value; 12364 12365 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12366 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12367 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12368 12369 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12370 /* We may learn something more from the var_off */ 12371 __update_reg_bounds(dst_reg); 12372 } 12373 12374 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12375 struct bpf_reg_state *src_reg) 12376 { 12377 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12378 u32 umax_val = src_reg->u32_max_value; 12379 u32 umin_val = src_reg->u32_min_value; 12380 12381 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12382 * be negative, then either: 12383 * 1) src_reg might be zero, so the sign bit of the result is 12384 * unknown, so we lose our signed bounds 12385 * 2) it's known negative, thus the unsigned bounds capture the 12386 * signed bounds 12387 * 3) the signed bounds cross zero, so they tell us nothing 12388 * about the result 12389 * If the value in dst_reg is known nonnegative, then again the 12390 * unsigned bounds capture the signed bounds. 12391 * Thus, in all cases it suffices to blow away our signed bounds 12392 * and rely on inferring new ones from the unsigned bounds and 12393 * var_off of the result. 12394 */ 12395 dst_reg->s32_min_value = S32_MIN; 12396 dst_reg->s32_max_value = S32_MAX; 12397 12398 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12399 dst_reg->u32_min_value >>= umax_val; 12400 dst_reg->u32_max_value >>= umin_val; 12401 12402 __mark_reg64_unbounded(dst_reg); 12403 __update_reg32_bounds(dst_reg); 12404 } 12405 12406 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12407 struct bpf_reg_state *src_reg) 12408 { 12409 u64 umax_val = src_reg->umax_value; 12410 u64 umin_val = src_reg->umin_value; 12411 12412 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12413 * be negative, then either: 12414 * 1) src_reg might be zero, so the sign bit of the result is 12415 * unknown, so we lose our signed bounds 12416 * 2) it's known negative, thus the unsigned bounds capture the 12417 * signed bounds 12418 * 3) the signed bounds cross zero, so they tell us nothing 12419 * about the result 12420 * If the value in dst_reg is known nonnegative, then again the 12421 * unsigned bounds capture the signed bounds. 12422 * Thus, in all cases it suffices to blow away our signed bounds 12423 * and rely on inferring new ones from the unsigned bounds and 12424 * var_off of the result. 12425 */ 12426 dst_reg->smin_value = S64_MIN; 12427 dst_reg->smax_value = S64_MAX; 12428 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12429 dst_reg->umin_value >>= umax_val; 12430 dst_reg->umax_value >>= umin_val; 12431 12432 /* Its not easy to operate on alu32 bounds here because it depends 12433 * on bits being shifted in. Take easy way out and mark unbounded 12434 * so we can recalculate later from tnum. 12435 */ 12436 __mark_reg32_unbounded(dst_reg); 12437 __update_reg_bounds(dst_reg); 12438 } 12439 12440 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12441 struct bpf_reg_state *src_reg) 12442 { 12443 u64 umin_val = src_reg->u32_min_value; 12444 12445 /* Upon reaching here, src_known is true and 12446 * umax_val is equal to umin_val. 12447 */ 12448 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12449 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12450 12451 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12452 12453 /* blow away the dst_reg umin_value/umax_value and rely on 12454 * dst_reg var_off to refine the result. 12455 */ 12456 dst_reg->u32_min_value = 0; 12457 dst_reg->u32_max_value = U32_MAX; 12458 12459 __mark_reg64_unbounded(dst_reg); 12460 __update_reg32_bounds(dst_reg); 12461 } 12462 12463 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12464 struct bpf_reg_state *src_reg) 12465 { 12466 u64 umin_val = src_reg->umin_value; 12467 12468 /* Upon reaching here, src_known is true and umax_val is equal 12469 * to umin_val. 12470 */ 12471 dst_reg->smin_value >>= umin_val; 12472 dst_reg->smax_value >>= umin_val; 12473 12474 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12475 12476 /* blow away the dst_reg umin_value/umax_value and rely on 12477 * dst_reg var_off to refine the result. 12478 */ 12479 dst_reg->umin_value = 0; 12480 dst_reg->umax_value = U64_MAX; 12481 12482 /* Its not easy to operate on alu32 bounds here because it depends 12483 * on bits being shifted in from upper 32-bits. Take easy way out 12484 * and mark unbounded so we can recalculate later from tnum. 12485 */ 12486 __mark_reg32_unbounded(dst_reg); 12487 __update_reg_bounds(dst_reg); 12488 } 12489 12490 /* WARNING: This function does calculations on 64-bit values, but the actual 12491 * execution may occur on 32-bit values. Therefore, things like bitshifts 12492 * need extra checks in the 32-bit case. 12493 */ 12494 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12495 struct bpf_insn *insn, 12496 struct bpf_reg_state *dst_reg, 12497 struct bpf_reg_state src_reg) 12498 { 12499 struct bpf_reg_state *regs = cur_regs(env); 12500 u8 opcode = BPF_OP(insn->code); 12501 bool src_known; 12502 s64 smin_val, smax_val; 12503 u64 umin_val, umax_val; 12504 s32 s32_min_val, s32_max_val; 12505 u32 u32_min_val, u32_max_val; 12506 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12507 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12508 int ret; 12509 12510 smin_val = src_reg.smin_value; 12511 smax_val = src_reg.smax_value; 12512 umin_val = src_reg.umin_value; 12513 umax_val = src_reg.umax_value; 12514 12515 s32_min_val = src_reg.s32_min_value; 12516 s32_max_val = src_reg.s32_max_value; 12517 u32_min_val = src_reg.u32_min_value; 12518 u32_max_val = src_reg.u32_max_value; 12519 12520 if (alu32) { 12521 src_known = tnum_subreg_is_const(src_reg.var_off); 12522 if ((src_known && 12523 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12524 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12525 /* Taint dst register if offset had invalid bounds 12526 * derived from e.g. dead branches. 12527 */ 12528 __mark_reg_unknown(env, dst_reg); 12529 return 0; 12530 } 12531 } else { 12532 src_known = tnum_is_const(src_reg.var_off); 12533 if ((src_known && 12534 (smin_val != smax_val || umin_val != umax_val)) || 12535 smin_val > smax_val || umin_val > umax_val) { 12536 /* Taint dst register if offset had invalid bounds 12537 * derived from e.g. dead branches. 12538 */ 12539 __mark_reg_unknown(env, dst_reg); 12540 return 0; 12541 } 12542 } 12543 12544 if (!src_known && 12545 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12546 __mark_reg_unknown(env, dst_reg); 12547 return 0; 12548 } 12549 12550 if (sanitize_needed(opcode)) { 12551 ret = sanitize_val_alu(env, insn); 12552 if (ret < 0) 12553 return sanitize_err(env, insn, ret, NULL, NULL); 12554 } 12555 12556 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12557 * There are two classes of instructions: The first class we track both 12558 * alu32 and alu64 sign/unsigned bounds independently this provides the 12559 * greatest amount of precision when alu operations are mixed with jmp32 12560 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12561 * and BPF_OR. This is possible because these ops have fairly easy to 12562 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12563 * See alu32 verifier tests for examples. The second class of 12564 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12565 * with regards to tracking sign/unsigned bounds because the bits may 12566 * cross subreg boundaries in the alu64 case. When this happens we mark 12567 * the reg unbounded in the subreg bound space and use the resulting 12568 * tnum to calculate an approximation of the sign/unsigned bounds. 12569 */ 12570 switch (opcode) { 12571 case BPF_ADD: 12572 scalar32_min_max_add(dst_reg, &src_reg); 12573 scalar_min_max_add(dst_reg, &src_reg); 12574 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12575 break; 12576 case BPF_SUB: 12577 scalar32_min_max_sub(dst_reg, &src_reg); 12578 scalar_min_max_sub(dst_reg, &src_reg); 12579 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12580 break; 12581 case BPF_MUL: 12582 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12583 scalar32_min_max_mul(dst_reg, &src_reg); 12584 scalar_min_max_mul(dst_reg, &src_reg); 12585 break; 12586 case BPF_AND: 12587 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12588 scalar32_min_max_and(dst_reg, &src_reg); 12589 scalar_min_max_and(dst_reg, &src_reg); 12590 break; 12591 case BPF_OR: 12592 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12593 scalar32_min_max_or(dst_reg, &src_reg); 12594 scalar_min_max_or(dst_reg, &src_reg); 12595 break; 12596 case BPF_XOR: 12597 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12598 scalar32_min_max_xor(dst_reg, &src_reg); 12599 scalar_min_max_xor(dst_reg, &src_reg); 12600 break; 12601 case BPF_LSH: 12602 if (umax_val >= insn_bitness) { 12603 /* Shifts greater than 31 or 63 are undefined. 12604 * This includes shifts by a negative number. 12605 */ 12606 mark_reg_unknown(env, regs, insn->dst_reg); 12607 break; 12608 } 12609 if (alu32) 12610 scalar32_min_max_lsh(dst_reg, &src_reg); 12611 else 12612 scalar_min_max_lsh(dst_reg, &src_reg); 12613 break; 12614 case BPF_RSH: 12615 if (umax_val >= insn_bitness) { 12616 /* Shifts greater than 31 or 63 are undefined. 12617 * This includes shifts by a negative number. 12618 */ 12619 mark_reg_unknown(env, regs, insn->dst_reg); 12620 break; 12621 } 12622 if (alu32) 12623 scalar32_min_max_rsh(dst_reg, &src_reg); 12624 else 12625 scalar_min_max_rsh(dst_reg, &src_reg); 12626 break; 12627 case BPF_ARSH: 12628 if (umax_val >= insn_bitness) { 12629 /* Shifts greater than 31 or 63 are undefined. 12630 * This includes shifts by a negative number. 12631 */ 12632 mark_reg_unknown(env, regs, insn->dst_reg); 12633 break; 12634 } 12635 if (alu32) 12636 scalar32_min_max_arsh(dst_reg, &src_reg); 12637 else 12638 scalar_min_max_arsh(dst_reg, &src_reg); 12639 break; 12640 default: 12641 mark_reg_unknown(env, regs, insn->dst_reg); 12642 break; 12643 } 12644 12645 /* ALU32 ops are zero extended into 64bit register */ 12646 if (alu32) 12647 zext_32_to_64(dst_reg); 12648 reg_bounds_sync(dst_reg); 12649 return 0; 12650 } 12651 12652 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12653 * and var_off. 12654 */ 12655 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12656 struct bpf_insn *insn) 12657 { 12658 struct bpf_verifier_state *vstate = env->cur_state; 12659 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12660 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12661 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12662 u8 opcode = BPF_OP(insn->code); 12663 int err; 12664 12665 dst_reg = ®s[insn->dst_reg]; 12666 src_reg = NULL; 12667 if (dst_reg->type != SCALAR_VALUE) 12668 ptr_reg = dst_reg; 12669 else 12670 /* Make sure ID is cleared otherwise dst_reg min/max could be 12671 * incorrectly propagated into other registers by find_equal_scalars() 12672 */ 12673 dst_reg->id = 0; 12674 if (BPF_SRC(insn->code) == BPF_X) { 12675 src_reg = ®s[insn->src_reg]; 12676 if (src_reg->type != SCALAR_VALUE) { 12677 if (dst_reg->type != SCALAR_VALUE) { 12678 /* Combining two pointers by any ALU op yields 12679 * an arbitrary scalar. Disallow all math except 12680 * pointer subtraction 12681 */ 12682 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12683 mark_reg_unknown(env, regs, insn->dst_reg); 12684 return 0; 12685 } 12686 verbose(env, "R%d pointer %s pointer prohibited\n", 12687 insn->dst_reg, 12688 bpf_alu_string[opcode >> 4]); 12689 return -EACCES; 12690 } else { 12691 /* scalar += pointer 12692 * This is legal, but we have to reverse our 12693 * src/dest handling in computing the range 12694 */ 12695 err = mark_chain_precision(env, insn->dst_reg); 12696 if (err) 12697 return err; 12698 return adjust_ptr_min_max_vals(env, insn, 12699 src_reg, dst_reg); 12700 } 12701 } else if (ptr_reg) { 12702 /* pointer += scalar */ 12703 err = mark_chain_precision(env, insn->src_reg); 12704 if (err) 12705 return err; 12706 return adjust_ptr_min_max_vals(env, insn, 12707 dst_reg, src_reg); 12708 } else if (dst_reg->precise) { 12709 /* if dst_reg is precise, src_reg should be precise as well */ 12710 err = mark_chain_precision(env, insn->src_reg); 12711 if (err) 12712 return err; 12713 } 12714 } else { 12715 /* Pretend the src is a reg with a known value, since we only 12716 * need to be able to read from this state. 12717 */ 12718 off_reg.type = SCALAR_VALUE; 12719 __mark_reg_known(&off_reg, insn->imm); 12720 src_reg = &off_reg; 12721 if (ptr_reg) /* pointer += K */ 12722 return adjust_ptr_min_max_vals(env, insn, 12723 ptr_reg, src_reg); 12724 } 12725 12726 /* Got here implies adding two SCALAR_VALUEs */ 12727 if (WARN_ON_ONCE(ptr_reg)) { 12728 print_verifier_state(env, state, true); 12729 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 12730 return -EINVAL; 12731 } 12732 if (WARN_ON(!src_reg)) { 12733 print_verifier_state(env, state, true); 12734 verbose(env, "verifier internal error: no src_reg\n"); 12735 return -EINVAL; 12736 } 12737 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 12738 } 12739 12740 /* check validity of 32-bit and 64-bit arithmetic operations */ 12741 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 12742 { 12743 struct bpf_reg_state *regs = cur_regs(env); 12744 u8 opcode = BPF_OP(insn->code); 12745 int err; 12746 12747 if (opcode == BPF_END || opcode == BPF_NEG) { 12748 if (opcode == BPF_NEG) { 12749 if (BPF_SRC(insn->code) != BPF_K || 12750 insn->src_reg != BPF_REG_0 || 12751 insn->off != 0 || insn->imm != 0) { 12752 verbose(env, "BPF_NEG uses reserved fields\n"); 12753 return -EINVAL; 12754 } 12755 } else { 12756 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 12757 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 12758 BPF_CLASS(insn->code) == BPF_ALU64) { 12759 verbose(env, "BPF_END uses reserved fields\n"); 12760 return -EINVAL; 12761 } 12762 } 12763 12764 /* check src operand */ 12765 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12766 if (err) 12767 return err; 12768 12769 if (is_pointer_value(env, insn->dst_reg)) { 12770 verbose(env, "R%d pointer arithmetic prohibited\n", 12771 insn->dst_reg); 12772 return -EACCES; 12773 } 12774 12775 /* check dest operand */ 12776 err = check_reg_arg(env, insn->dst_reg, DST_OP); 12777 if (err) 12778 return err; 12779 12780 } else if (opcode == BPF_MOV) { 12781 12782 if (BPF_SRC(insn->code) == BPF_X) { 12783 if (insn->imm != 0 || insn->off != 0) { 12784 verbose(env, "BPF_MOV uses reserved fields\n"); 12785 return -EINVAL; 12786 } 12787 12788 /* check src operand */ 12789 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12790 if (err) 12791 return err; 12792 } else { 12793 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 12794 verbose(env, "BPF_MOV uses reserved fields\n"); 12795 return -EINVAL; 12796 } 12797 } 12798 12799 /* check dest operand, mark as required later */ 12800 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12801 if (err) 12802 return err; 12803 12804 if (BPF_SRC(insn->code) == BPF_X) { 12805 struct bpf_reg_state *src_reg = regs + insn->src_reg; 12806 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 12807 12808 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12809 /* case: R1 = R2 12810 * copy register state to dest reg 12811 */ 12812 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 12813 /* Assign src and dst registers the same ID 12814 * that will be used by find_equal_scalars() 12815 * to propagate min/max range. 12816 */ 12817 src_reg->id = ++env->id_gen; 12818 copy_register_state(dst_reg, src_reg); 12819 dst_reg->live |= REG_LIVE_WRITTEN; 12820 dst_reg->subreg_def = DEF_NOT_SUBREG; 12821 } else { 12822 /* R1 = (u32) R2 */ 12823 if (is_pointer_value(env, insn->src_reg)) { 12824 verbose(env, 12825 "R%d partial copy of pointer\n", 12826 insn->src_reg); 12827 return -EACCES; 12828 } else if (src_reg->type == SCALAR_VALUE) { 12829 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 12830 12831 if (is_src_reg_u32 && !src_reg->id) 12832 src_reg->id = ++env->id_gen; 12833 copy_register_state(dst_reg, src_reg); 12834 /* Make sure ID is cleared if src_reg is not in u32 range otherwise 12835 * dst_reg min/max could be incorrectly 12836 * propagated into src_reg by find_equal_scalars() 12837 */ 12838 if (!is_src_reg_u32) 12839 dst_reg->id = 0; 12840 dst_reg->live |= REG_LIVE_WRITTEN; 12841 dst_reg->subreg_def = env->insn_idx + 1; 12842 } else { 12843 mark_reg_unknown(env, regs, 12844 insn->dst_reg); 12845 } 12846 zext_32_to_64(dst_reg); 12847 reg_bounds_sync(dst_reg); 12848 } 12849 } else { 12850 /* case: R = imm 12851 * remember the value we stored into this reg 12852 */ 12853 /* clear any state __mark_reg_known doesn't set */ 12854 mark_reg_unknown(env, regs, insn->dst_reg); 12855 regs[insn->dst_reg].type = SCALAR_VALUE; 12856 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12857 __mark_reg_known(regs + insn->dst_reg, 12858 insn->imm); 12859 } else { 12860 __mark_reg_known(regs + insn->dst_reg, 12861 (u32)insn->imm); 12862 } 12863 } 12864 12865 } else if (opcode > BPF_END) { 12866 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 12867 return -EINVAL; 12868 12869 } else { /* all other ALU ops: and, sub, xor, add, ... */ 12870 12871 if (BPF_SRC(insn->code) == BPF_X) { 12872 if (insn->imm != 0 || insn->off != 0) { 12873 verbose(env, "BPF_ALU uses reserved fields\n"); 12874 return -EINVAL; 12875 } 12876 /* check src1 operand */ 12877 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12878 if (err) 12879 return err; 12880 } else { 12881 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 12882 verbose(env, "BPF_ALU uses reserved fields\n"); 12883 return -EINVAL; 12884 } 12885 } 12886 12887 /* check src2 operand */ 12888 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12889 if (err) 12890 return err; 12891 12892 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 12893 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 12894 verbose(env, "div by zero\n"); 12895 return -EINVAL; 12896 } 12897 12898 if ((opcode == BPF_LSH || opcode == BPF_RSH || 12899 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 12900 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 12901 12902 if (insn->imm < 0 || insn->imm >= size) { 12903 verbose(env, "invalid shift %d\n", insn->imm); 12904 return -EINVAL; 12905 } 12906 } 12907 12908 /* check dest operand */ 12909 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12910 if (err) 12911 return err; 12912 12913 return adjust_reg_min_max_vals(env, insn); 12914 } 12915 12916 return 0; 12917 } 12918 12919 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 12920 struct bpf_reg_state *dst_reg, 12921 enum bpf_reg_type type, 12922 bool range_right_open) 12923 { 12924 struct bpf_func_state *state; 12925 struct bpf_reg_state *reg; 12926 int new_range; 12927 12928 if (dst_reg->off < 0 || 12929 (dst_reg->off == 0 && range_right_open)) 12930 /* This doesn't give us any range */ 12931 return; 12932 12933 if (dst_reg->umax_value > MAX_PACKET_OFF || 12934 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 12935 /* Risk of overflow. For instance, ptr + (1<<63) may be less 12936 * than pkt_end, but that's because it's also less than pkt. 12937 */ 12938 return; 12939 12940 new_range = dst_reg->off; 12941 if (range_right_open) 12942 new_range++; 12943 12944 /* Examples for register markings: 12945 * 12946 * pkt_data in dst register: 12947 * 12948 * r2 = r3; 12949 * r2 += 8; 12950 * if (r2 > pkt_end) goto <handle exception> 12951 * <access okay> 12952 * 12953 * r2 = r3; 12954 * r2 += 8; 12955 * if (r2 < pkt_end) goto <access okay> 12956 * <handle exception> 12957 * 12958 * Where: 12959 * r2 == dst_reg, pkt_end == src_reg 12960 * r2=pkt(id=n,off=8,r=0) 12961 * r3=pkt(id=n,off=0,r=0) 12962 * 12963 * pkt_data in src register: 12964 * 12965 * r2 = r3; 12966 * r2 += 8; 12967 * if (pkt_end >= r2) goto <access okay> 12968 * <handle exception> 12969 * 12970 * r2 = r3; 12971 * r2 += 8; 12972 * if (pkt_end <= r2) goto <handle exception> 12973 * <access okay> 12974 * 12975 * Where: 12976 * pkt_end == dst_reg, r2 == src_reg 12977 * r2=pkt(id=n,off=8,r=0) 12978 * r3=pkt(id=n,off=0,r=0) 12979 * 12980 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 12981 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 12982 * and [r3, r3 + 8-1) respectively is safe to access depending on 12983 * the check. 12984 */ 12985 12986 /* If our ids match, then we must have the same max_value. And we 12987 * don't care about the other reg's fixed offset, since if it's too big 12988 * the range won't allow anything. 12989 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 12990 */ 12991 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12992 if (reg->type == type && reg->id == dst_reg->id) 12993 /* keep the maximum range already checked */ 12994 reg->range = max(reg->range, new_range); 12995 })); 12996 } 12997 12998 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 12999 { 13000 struct tnum subreg = tnum_subreg(reg->var_off); 13001 s32 sval = (s32)val; 13002 13003 switch (opcode) { 13004 case BPF_JEQ: 13005 if (tnum_is_const(subreg)) 13006 return !!tnum_equals_const(subreg, val); 13007 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13008 return 0; 13009 break; 13010 case BPF_JNE: 13011 if (tnum_is_const(subreg)) 13012 return !tnum_equals_const(subreg, val); 13013 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13014 return 1; 13015 break; 13016 case BPF_JSET: 13017 if ((~subreg.mask & subreg.value) & val) 13018 return 1; 13019 if (!((subreg.mask | subreg.value) & val)) 13020 return 0; 13021 break; 13022 case BPF_JGT: 13023 if (reg->u32_min_value > val) 13024 return 1; 13025 else if (reg->u32_max_value <= val) 13026 return 0; 13027 break; 13028 case BPF_JSGT: 13029 if (reg->s32_min_value > sval) 13030 return 1; 13031 else if (reg->s32_max_value <= sval) 13032 return 0; 13033 break; 13034 case BPF_JLT: 13035 if (reg->u32_max_value < val) 13036 return 1; 13037 else if (reg->u32_min_value >= val) 13038 return 0; 13039 break; 13040 case BPF_JSLT: 13041 if (reg->s32_max_value < sval) 13042 return 1; 13043 else if (reg->s32_min_value >= sval) 13044 return 0; 13045 break; 13046 case BPF_JGE: 13047 if (reg->u32_min_value >= val) 13048 return 1; 13049 else if (reg->u32_max_value < val) 13050 return 0; 13051 break; 13052 case BPF_JSGE: 13053 if (reg->s32_min_value >= sval) 13054 return 1; 13055 else if (reg->s32_max_value < sval) 13056 return 0; 13057 break; 13058 case BPF_JLE: 13059 if (reg->u32_max_value <= val) 13060 return 1; 13061 else if (reg->u32_min_value > val) 13062 return 0; 13063 break; 13064 case BPF_JSLE: 13065 if (reg->s32_max_value <= sval) 13066 return 1; 13067 else if (reg->s32_min_value > sval) 13068 return 0; 13069 break; 13070 } 13071 13072 return -1; 13073 } 13074 13075 13076 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13077 { 13078 s64 sval = (s64)val; 13079 13080 switch (opcode) { 13081 case BPF_JEQ: 13082 if (tnum_is_const(reg->var_off)) 13083 return !!tnum_equals_const(reg->var_off, val); 13084 else if (val < reg->umin_value || val > reg->umax_value) 13085 return 0; 13086 break; 13087 case BPF_JNE: 13088 if (tnum_is_const(reg->var_off)) 13089 return !tnum_equals_const(reg->var_off, val); 13090 else if (val < reg->umin_value || val > reg->umax_value) 13091 return 1; 13092 break; 13093 case BPF_JSET: 13094 if ((~reg->var_off.mask & reg->var_off.value) & val) 13095 return 1; 13096 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13097 return 0; 13098 break; 13099 case BPF_JGT: 13100 if (reg->umin_value > val) 13101 return 1; 13102 else if (reg->umax_value <= val) 13103 return 0; 13104 break; 13105 case BPF_JSGT: 13106 if (reg->smin_value > sval) 13107 return 1; 13108 else if (reg->smax_value <= sval) 13109 return 0; 13110 break; 13111 case BPF_JLT: 13112 if (reg->umax_value < val) 13113 return 1; 13114 else if (reg->umin_value >= val) 13115 return 0; 13116 break; 13117 case BPF_JSLT: 13118 if (reg->smax_value < sval) 13119 return 1; 13120 else if (reg->smin_value >= sval) 13121 return 0; 13122 break; 13123 case BPF_JGE: 13124 if (reg->umin_value >= val) 13125 return 1; 13126 else if (reg->umax_value < val) 13127 return 0; 13128 break; 13129 case BPF_JSGE: 13130 if (reg->smin_value >= sval) 13131 return 1; 13132 else if (reg->smax_value < sval) 13133 return 0; 13134 break; 13135 case BPF_JLE: 13136 if (reg->umax_value <= val) 13137 return 1; 13138 else if (reg->umin_value > val) 13139 return 0; 13140 break; 13141 case BPF_JSLE: 13142 if (reg->smax_value <= sval) 13143 return 1; 13144 else if (reg->smin_value > sval) 13145 return 0; 13146 break; 13147 } 13148 13149 return -1; 13150 } 13151 13152 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13153 * and return: 13154 * 1 - branch will be taken and "goto target" will be executed 13155 * 0 - branch will not be taken and fall-through to next insn 13156 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13157 * range [0,10] 13158 */ 13159 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13160 bool is_jmp32) 13161 { 13162 if (__is_pointer_value(false, reg)) { 13163 if (!reg_type_not_null(reg->type)) 13164 return -1; 13165 13166 /* If pointer is valid tests against zero will fail so we can 13167 * use this to direct branch taken. 13168 */ 13169 if (val != 0) 13170 return -1; 13171 13172 switch (opcode) { 13173 case BPF_JEQ: 13174 return 0; 13175 case BPF_JNE: 13176 return 1; 13177 default: 13178 return -1; 13179 } 13180 } 13181 13182 if (is_jmp32) 13183 return is_branch32_taken(reg, val, opcode); 13184 return is_branch64_taken(reg, val, opcode); 13185 } 13186 13187 static int flip_opcode(u32 opcode) 13188 { 13189 /* How can we transform "a <op> b" into "b <op> a"? */ 13190 static const u8 opcode_flip[16] = { 13191 /* these stay the same */ 13192 [BPF_JEQ >> 4] = BPF_JEQ, 13193 [BPF_JNE >> 4] = BPF_JNE, 13194 [BPF_JSET >> 4] = BPF_JSET, 13195 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13196 [BPF_JGE >> 4] = BPF_JLE, 13197 [BPF_JGT >> 4] = BPF_JLT, 13198 [BPF_JLE >> 4] = BPF_JGE, 13199 [BPF_JLT >> 4] = BPF_JGT, 13200 [BPF_JSGE >> 4] = BPF_JSLE, 13201 [BPF_JSGT >> 4] = BPF_JSLT, 13202 [BPF_JSLE >> 4] = BPF_JSGE, 13203 [BPF_JSLT >> 4] = BPF_JSGT 13204 }; 13205 return opcode_flip[opcode >> 4]; 13206 } 13207 13208 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13209 struct bpf_reg_state *src_reg, 13210 u8 opcode) 13211 { 13212 struct bpf_reg_state *pkt; 13213 13214 if (src_reg->type == PTR_TO_PACKET_END) { 13215 pkt = dst_reg; 13216 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13217 pkt = src_reg; 13218 opcode = flip_opcode(opcode); 13219 } else { 13220 return -1; 13221 } 13222 13223 if (pkt->range >= 0) 13224 return -1; 13225 13226 switch (opcode) { 13227 case BPF_JLE: 13228 /* pkt <= pkt_end */ 13229 fallthrough; 13230 case BPF_JGT: 13231 /* pkt > pkt_end */ 13232 if (pkt->range == BEYOND_PKT_END) 13233 /* pkt has at last one extra byte beyond pkt_end */ 13234 return opcode == BPF_JGT; 13235 break; 13236 case BPF_JLT: 13237 /* pkt < pkt_end */ 13238 fallthrough; 13239 case BPF_JGE: 13240 /* pkt >= pkt_end */ 13241 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13242 return opcode == BPF_JGE; 13243 break; 13244 } 13245 return -1; 13246 } 13247 13248 /* Adjusts the register min/max values in the case that the dst_reg is the 13249 * variable register that we are working on, and src_reg is a constant or we're 13250 * simply doing a BPF_K check. 13251 * In JEQ/JNE cases we also adjust the var_off values. 13252 */ 13253 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13254 struct bpf_reg_state *false_reg, 13255 u64 val, u32 val32, 13256 u8 opcode, bool is_jmp32) 13257 { 13258 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13259 struct tnum false_64off = false_reg->var_off; 13260 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13261 struct tnum true_64off = true_reg->var_off; 13262 s64 sval = (s64)val; 13263 s32 sval32 = (s32)val32; 13264 13265 /* If the dst_reg is a pointer, we can't learn anything about its 13266 * variable offset from the compare (unless src_reg were a pointer into 13267 * the same object, but we don't bother with that. 13268 * Since false_reg and true_reg have the same type by construction, we 13269 * only need to check one of them for pointerness. 13270 */ 13271 if (__is_pointer_value(false, false_reg)) 13272 return; 13273 13274 switch (opcode) { 13275 /* JEQ/JNE comparison doesn't change the register equivalence. 13276 * 13277 * r1 = r2; 13278 * if (r1 == 42) goto label; 13279 * ... 13280 * label: // here both r1 and r2 are known to be 42. 13281 * 13282 * Hence when marking register as known preserve it's ID. 13283 */ 13284 case BPF_JEQ: 13285 if (is_jmp32) { 13286 __mark_reg32_known(true_reg, val32); 13287 true_32off = tnum_subreg(true_reg->var_off); 13288 } else { 13289 ___mark_reg_known(true_reg, val); 13290 true_64off = true_reg->var_off; 13291 } 13292 break; 13293 case BPF_JNE: 13294 if (is_jmp32) { 13295 __mark_reg32_known(false_reg, val32); 13296 false_32off = tnum_subreg(false_reg->var_off); 13297 } else { 13298 ___mark_reg_known(false_reg, val); 13299 false_64off = false_reg->var_off; 13300 } 13301 break; 13302 case BPF_JSET: 13303 if (is_jmp32) { 13304 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13305 if (is_power_of_2(val32)) 13306 true_32off = tnum_or(true_32off, 13307 tnum_const(val32)); 13308 } else { 13309 false_64off = tnum_and(false_64off, tnum_const(~val)); 13310 if (is_power_of_2(val)) 13311 true_64off = tnum_or(true_64off, 13312 tnum_const(val)); 13313 } 13314 break; 13315 case BPF_JGE: 13316 case BPF_JGT: 13317 { 13318 if (is_jmp32) { 13319 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13320 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13321 13322 false_reg->u32_max_value = min(false_reg->u32_max_value, 13323 false_umax); 13324 true_reg->u32_min_value = max(true_reg->u32_min_value, 13325 true_umin); 13326 } else { 13327 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13328 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13329 13330 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13331 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13332 } 13333 break; 13334 } 13335 case BPF_JSGE: 13336 case BPF_JSGT: 13337 { 13338 if (is_jmp32) { 13339 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13340 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13341 13342 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13343 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13344 } else { 13345 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13346 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13347 13348 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13349 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13350 } 13351 break; 13352 } 13353 case BPF_JLE: 13354 case BPF_JLT: 13355 { 13356 if (is_jmp32) { 13357 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13358 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13359 13360 false_reg->u32_min_value = max(false_reg->u32_min_value, 13361 false_umin); 13362 true_reg->u32_max_value = min(true_reg->u32_max_value, 13363 true_umax); 13364 } else { 13365 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13366 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13367 13368 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13369 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13370 } 13371 break; 13372 } 13373 case BPF_JSLE: 13374 case BPF_JSLT: 13375 { 13376 if (is_jmp32) { 13377 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13378 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13379 13380 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13381 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13382 } else { 13383 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13384 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13385 13386 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13387 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13388 } 13389 break; 13390 } 13391 default: 13392 return; 13393 } 13394 13395 if (is_jmp32) { 13396 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13397 tnum_subreg(false_32off)); 13398 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13399 tnum_subreg(true_32off)); 13400 __reg_combine_32_into_64(false_reg); 13401 __reg_combine_32_into_64(true_reg); 13402 } else { 13403 false_reg->var_off = false_64off; 13404 true_reg->var_off = true_64off; 13405 __reg_combine_64_into_32(false_reg); 13406 __reg_combine_64_into_32(true_reg); 13407 } 13408 } 13409 13410 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13411 * the variable reg. 13412 */ 13413 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13414 struct bpf_reg_state *false_reg, 13415 u64 val, u32 val32, 13416 u8 opcode, bool is_jmp32) 13417 { 13418 opcode = flip_opcode(opcode); 13419 /* This uses zero as "not present in table"; luckily the zero opcode, 13420 * BPF_JA, can't get here. 13421 */ 13422 if (opcode) 13423 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13424 } 13425 13426 /* Regs are known to be equal, so intersect their min/max/var_off */ 13427 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13428 struct bpf_reg_state *dst_reg) 13429 { 13430 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13431 dst_reg->umin_value); 13432 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13433 dst_reg->umax_value); 13434 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13435 dst_reg->smin_value); 13436 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13437 dst_reg->smax_value); 13438 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13439 dst_reg->var_off); 13440 reg_bounds_sync(src_reg); 13441 reg_bounds_sync(dst_reg); 13442 } 13443 13444 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13445 struct bpf_reg_state *true_dst, 13446 struct bpf_reg_state *false_src, 13447 struct bpf_reg_state *false_dst, 13448 u8 opcode) 13449 { 13450 switch (opcode) { 13451 case BPF_JEQ: 13452 __reg_combine_min_max(true_src, true_dst); 13453 break; 13454 case BPF_JNE: 13455 __reg_combine_min_max(false_src, false_dst); 13456 break; 13457 } 13458 } 13459 13460 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13461 struct bpf_reg_state *reg, u32 id, 13462 bool is_null) 13463 { 13464 if (type_may_be_null(reg->type) && reg->id == id && 13465 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13466 /* Old offset (both fixed and variable parts) should have been 13467 * known-zero, because we don't allow pointer arithmetic on 13468 * pointers that might be NULL. If we see this happening, don't 13469 * convert the register. 13470 * 13471 * But in some cases, some helpers that return local kptrs 13472 * advance offset for the returned pointer. In those cases, it 13473 * is fine to expect to see reg->off. 13474 */ 13475 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13476 return; 13477 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13478 WARN_ON_ONCE(reg->off)) 13479 return; 13480 13481 if (is_null) { 13482 reg->type = SCALAR_VALUE; 13483 /* We don't need id and ref_obj_id from this point 13484 * onwards anymore, thus we should better reset it, 13485 * so that state pruning has chances to take effect. 13486 */ 13487 reg->id = 0; 13488 reg->ref_obj_id = 0; 13489 13490 return; 13491 } 13492 13493 mark_ptr_not_null_reg(reg); 13494 13495 if (!reg_may_point_to_spin_lock(reg)) { 13496 /* For not-NULL ptr, reg->ref_obj_id will be reset 13497 * in release_reference(). 13498 * 13499 * reg->id is still used by spin_lock ptr. Other 13500 * than spin_lock ptr type, reg->id can be reset. 13501 */ 13502 reg->id = 0; 13503 } 13504 } 13505 } 13506 13507 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13508 * be folded together at some point. 13509 */ 13510 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13511 bool is_null) 13512 { 13513 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13514 struct bpf_reg_state *regs = state->regs, *reg; 13515 u32 ref_obj_id = regs[regno].ref_obj_id; 13516 u32 id = regs[regno].id; 13517 13518 if (ref_obj_id && ref_obj_id == id && is_null) 13519 /* regs[regno] is in the " == NULL" branch. 13520 * No one could have freed the reference state before 13521 * doing the NULL check. 13522 */ 13523 WARN_ON_ONCE(release_reference_state(state, id)); 13524 13525 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13526 mark_ptr_or_null_reg(state, reg, id, is_null); 13527 })); 13528 } 13529 13530 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13531 struct bpf_reg_state *dst_reg, 13532 struct bpf_reg_state *src_reg, 13533 struct bpf_verifier_state *this_branch, 13534 struct bpf_verifier_state *other_branch) 13535 { 13536 if (BPF_SRC(insn->code) != BPF_X) 13537 return false; 13538 13539 /* Pointers are always 64-bit. */ 13540 if (BPF_CLASS(insn->code) == BPF_JMP32) 13541 return false; 13542 13543 switch (BPF_OP(insn->code)) { 13544 case BPF_JGT: 13545 if ((dst_reg->type == PTR_TO_PACKET && 13546 src_reg->type == PTR_TO_PACKET_END) || 13547 (dst_reg->type == PTR_TO_PACKET_META && 13548 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13549 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13550 find_good_pkt_pointers(this_branch, dst_reg, 13551 dst_reg->type, false); 13552 mark_pkt_end(other_branch, insn->dst_reg, true); 13553 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13554 src_reg->type == PTR_TO_PACKET) || 13555 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13556 src_reg->type == PTR_TO_PACKET_META)) { 13557 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13558 find_good_pkt_pointers(other_branch, src_reg, 13559 src_reg->type, true); 13560 mark_pkt_end(this_branch, insn->src_reg, false); 13561 } else { 13562 return false; 13563 } 13564 break; 13565 case BPF_JLT: 13566 if ((dst_reg->type == PTR_TO_PACKET && 13567 src_reg->type == PTR_TO_PACKET_END) || 13568 (dst_reg->type == PTR_TO_PACKET_META && 13569 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13570 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13571 find_good_pkt_pointers(other_branch, dst_reg, 13572 dst_reg->type, true); 13573 mark_pkt_end(this_branch, insn->dst_reg, false); 13574 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13575 src_reg->type == PTR_TO_PACKET) || 13576 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13577 src_reg->type == PTR_TO_PACKET_META)) { 13578 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13579 find_good_pkt_pointers(this_branch, src_reg, 13580 src_reg->type, false); 13581 mark_pkt_end(other_branch, insn->src_reg, true); 13582 } else { 13583 return false; 13584 } 13585 break; 13586 case BPF_JGE: 13587 if ((dst_reg->type == PTR_TO_PACKET && 13588 src_reg->type == PTR_TO_PACKET_END) || 13589 (dst_reg->type == PTR_TO_PACKET_META && 13590 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13591 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13592 find_good_pkt_pointers(this_branch, dst_reg, 13593 dst_reg->type, true); 13594 mark_pkt_end(other_branch, insn->dst_reg, false); 13595 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13596 src_reg->type == PTR_TO_PACKET) || 13597 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13598 src_reg->type == PTR_TO_PACKET_META)) { 13599 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13600 find_good_pkt_pointers(other_branch, src_reg, 13601 src_reg->type, false); 13602 mark_pkt_end(this_branch, insn->src_reg, true); 13603 } else { 13604 return false; 13605 } 13606 break; 13607 case BPF_JLE: 13608 if ((dst_reg->type == PTR_TO_PACKET && 13609 src_reg->type == PTR_TO_PACKET_END) || 13610 (dst_reg->type == PTR_TO_PACKET_META && 13611 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13612 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 13613 find_good_pkt_pointers(other_branch, dst_reg, 13614 dst_reg->type, false); 13615 mark_pkt_end(this_branch, insn->dst_reg, true); 13616 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13617 src_reg->type == PTR_TO_PACKET) || 13618 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13619 src_reg->type == PTR_TO_PACKET_META)) { 13620 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 13621 find_good_pkt_pointers(this_branch, src_reg, 13622 src_reg->type, true); 13623 mark_pkt_end(other_branch, insn->src_reg, false); 13624 } else { 13625 return false; 13626 } 13627 break; 13628 default: 13629 return false; 13630 } 13631 13632 return true; 13633 } 13634 13635 static void find_equal_scalars(struct bpf_verifier_state *vstate, 13636 struct bpf_reg_state *known_reg) 13637 { 13638 struct bpf_func_state *state; 13639 struct bpf_reg_state *reg; 13640 13641 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13642 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 13643 copy_register_state(reg, known_reg); 13644 })); 13645 } 13646 13647 static int check_cond_jmp_op(struct bpf_verifier_env *env, 13648 struct bpf_insn *insn, int *insn_idx) 13649 { 13650 struct bpf_verifier_state *this_branch = env->cur_state; 13651 struct bpf_verifier_state *other_branch; 13652 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 13653 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 13654 struct bpf_reg_state *eq_branch_regs; 13655 u8 opcode = BPF_OP(insn->code); 13656 bool is_jmp32; 13657 int pred = -1; 13658 int err; 13659 13660 /* Only conditional jumps are expected to reach here. */ 13661 if (opcode == BPF_JA || opcode > BPF_JSLE) { 13662 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 13663 return -EINVAL; 13664 } 13665 13666 if (BPF_SRC(insn->code) == BPF_X) { 13667 if (insn->imm != 0) { 13668 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13669 return -EINVAL; 13670 } 13671 13672 /* check src1 operand */ 13673 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13674 if (err) 13675 return err; 13676 13677 if (is_pointer_value(env, insn->src_reg)) { 13678 verbose(env, "R%d pointer comparison prohibited\n", 13679 insn->src_reg); 13680 return -EACCES; 13681 } 13682 src_reg = ®s[insn->src_reg]; 13683 } else { 13684 if (insn->src_reg != BPF_REG_0) { 13685 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13686 return -EINVAL; 13687 } 13688 } 13689 13690 /* check src2 operand */ 13691 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13692 if (err) 13693 return err; 13694 13695 dst_reg = ®s[insn->dst_reg]; 13696 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 13697 13698 if (BPF_SRC(insn->code) == BPF_K) { 13699 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 13700 } else if (src_reg->type == SCALAR_VALUE && 13701 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 13702 pred = is_branch_taken(dst_reg, 13703 tnum_subreg(src_reg->var_off).value, 13704 opcode, 13705 is_jmp32); 13706 } else if (src_reg->type == SCALAR_VALUE && 13707 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 13708 pred = is_branch_taken(dst_reg, 13709 src_reg->var_off.value, 13710 opcode, 13711 is_jmp32); 13712 } else if (dst_reg->type == SCALAR_VALUE && 13713 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 13714 pred = is_branch_taken(src_reg, 13715 tnum_subreg(dst_reg->var_off).value, 13716 flip_opcode(opcode), 13717 is_jmp32); 13718 } else if (dst_reg->type == SCALAR_VALUE && 13719 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 13720 pred = is_branch_taken(src_reg, 13721 dst_reg->var_off.value, 13722 flip_opcode(opcode), 13723 is_jmp32); 13724 } else if (reg_is_pkt_pointer_any(dst_reg) && 13725 reg_is_pkt_pointer_any(src_reg) && 13726 !is_jmp32) { 13727 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 13728 } 13729 13730 if (pred >= 0) { 13731 /* If we get here with a dst_reg pointer type it is because 13732 * above is_branch_taken() special cased the 0 comparison. 13733 */ 13734 if (!__is_pointer_value(false, dst_reg)) 13735 err = mark_chain_precision(env, insn->dst_reg); 13736 if (BPF_SRC(insn->code) == BPF_X && !err && 13737 !__is_pointer_value(false, src_reg)) 13738 err = mark_chain_precision(env, insn->src_reg); 13739 if (err) 13740 return err; 13741 } 13742 13743 if (pred == 1) { 13744 /* Only follow the goto, ignore fall-through. If needed, push 13745 * the fall-through branch for simulation under speculative 13746 * execution. 13747 */ 13748 if (!env->bypass_spec_v1 && 13749 !sanitize_speculative_path(env, insn, *insn_idx + 1, 13750 *insn_idx)) 13751 return -EFAULT; 13752 *insn_idx += insn->off; 13753 return 0; 13754 } else if (pred == 0) { 13755 /* Only follow the fall-through branch, since that's where the 13756 * program will go. If needed, push the goto branch for 13757 * simulation under speculative execution. 13758 */ 13759 if (!env->bypass_spec_v1 && 13760 !sanitize_speculative_path(env, insn, 13761 *insn_idx + insn->off + 1, 13762 *insn_idx)) 13763 return -EFAULT; 13764 return 0; 13765 } 13766 13767 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 13768 false); 13769 if (!other_branch) 13770 return -EFAULT; 13771 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 13772 13773 /* detect if we are comparing against a constant value so we can adjust 13774 * our min/max values for our dst register. 13775 * this is only legit if both are scalars (or pointers to the same 13776 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 13777 * because otherwise the different base pointers mean the offsets aren't 13778 * comparable. 13779 */ 13780 if (BPF_SRC(insn->code) == BPF_X) { 13781 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 13782 13783 if (dst_reg->type == SCALAR_VALUE && 13784 src_reg->type == SCALAR_VALUE) { 13785 if (tnum_is_const(src_reg->var_off) || 13786 (is_jmp32 && 13787 tnum_is_const(tnum_subreg(src_reg->var_off)))) 13788 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13789 dst_reg, 13790 src_reg->var_off.value, 13791 tnum_subreg(src_reg->var_off).value, 13792 opcode, is_jmp32); 13793 else if (tnum_is_const(dst_reg->var_off) || 13794 (is_jmp32 && 13795 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 13796 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 13797 src_reg, 13798 dst_reg->var_off.value, 13799 tnum_subreg(dst_reg->var_off).value, 13800 opcode, is_jmp32); 13801 else if (!is_jmp32 && 13802 (opcode == BPF_JEQ || opcode == BPF_JNE)) 13803 /* Comparing for equality, we can combine knowledge */ 13804 reg_combine_min_max(&other_branch_regs[insn->src_reg], 13805 &other_branch_regs[insn->dst_reg], 13806 src_reg, dst_reg, opcode); 13807 if (src_reg->id && 13808 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 13809 find_equal_scalars(this_branch, src_reg); 13810 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 13811 } 13812 13813 } 13814 } else if (dst_reg->type == SCALAR_VALUE) { 13815 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13816 dst_reg, insn->imm, (u32)insn->imm, 13817 opcode, is_jmp32); 13818 } 13819 13820 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 13821 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 13822 find_equal_scalars(this_branch, dst_reg); 13823 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 13824 } 13825 13826 /* if one pointer register is compared to another pointer 13827 * register check if PTR_MAYBE_NULL could be lifted. 13828 * E.g. register A - maybe null 13829 * register B - not null 13830 * for JNE A, B, ... - A is not null in the false branch; 13831 * for JEQ A, B, ... - A is not null in the true branch. 13832 * 13833 * Since PTR_TO_BTF_ID points to a kernel struct that does 13834 * not need to be null checked by the BPF program, i.e., 13835 * could be null even without PTR_MAYBE_NULL marking, so 13836 * only propagate nullness when neither reg is that type. 13837 */ 13838 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 13839 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 13840 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 13841 base_type(src_reg->type) != PTR_TO_BTF_ID && 13842 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 13843 eq_branch_regs = NULL; 13844 switch (opcode) { 13845 case BPF_JEQ: 13846 eq_branch_regs = other_branch_regs; 13847 break; 13848 case BPF_JNE: 13849 eq_branch_regs = regs; 13850 break; 13851 default: 13852 /* do nothing */ 13853 break; 13854 } 13855 if (eq_branch_regs) { 13856 if (type_may_be_null(src_reg->type)) 13857 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 13858 else 13859 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 13860 } 13861 } 13862 13863 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 13864 * NOTE: these optimizations below are related with pointer comparison 13865 * which will never be JMP32. 13866 */ 13867 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 13868 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 13869 type_may_be_null(dst_reg->type)) { 13870 /* Mark all identical registers in each branch as either 13871 * safe or unknown depending R == 0 or R != 0 conditional. 13872 */ 13873 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 13874 opcode == BPF_JNE); 13875 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 13876 opcode == BPF_JEQ); 13877 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 13878 this_branch, other_branch) && 13879 is_pointer_value(env, insn->dst_reg)) { 13880 verbose(env, "R%d pointer comparison prohibited\n", 13881 insn->dst_reg); 13882 return -EACCES; 13883 } 13884 if (env->log.level & BPF_LOG_LEVEL) 13885 print_insn_state(env, this_branch->frame[this_branch->curframe]); 13886 return 0; 13887 } 13888 13889 /* verify BPF_LD_IMM64 instruction */ 13890 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 13891 { 13892 struct bpf_insn_aux_data *aux = cur_aux(env); 13893 struct bpf_reg_state *regs = cur_regs(env); 13894 struct bpf_reg_state *dst_reg; 13895 struct bpf_map *map; 13896 int err; 13897 13898 if (BPF_SIZE(insn->code) != BPF_DW) { 13899 verbose(env, "invalid BPF_LD_IMM insn\n"); 13900 return -EINVAL; 13901 } 13902 if (insn->off != 0) { 13903 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 13904 return -EINVAL; 13905 } 13906 13907 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13908 if (err) 13909 return err; 13910 13911 dst_reg = ®s[insn->dst_reg]; 13912 if (insn->src_reg == 0) { 13913 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 13914 13915 dst_reg->type = SCALAR_VALUE; 13916 __mark_reg_known(®s[insn->dst_reg], imm); 13917 return 0; 13918 } 13919 13920 /* All special src_reg cases are listed below. From this point onwards 13921 * we either succeed and assign a corresponding dst_reg->type after 13922 * zeroing the offset, or fail and reject the program. 13923 */ 13924 mark_reg_known_zero(env, regs, insn->dst_reg); 13925 13926 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 13927 dst_reg->type = aux->btf_var.reg_type; 13928 switch (base_type(dst_reg->type)) { 13929 case PTR_TO_MEM: 13930 dst_reg->mem_size = aux->btf_var.mem_size; 13931 break; 13932 case PTR_TO_BTF_ID: 13933 dst_reg->btf = aux->btf_var.btf; 13934 dst_reg->btf_id = aux->btf_var.btf_id; 13935 break; 13936 default: 13937 verbose(env, "bpf verifier is misconfigured\n"); 13938 return -EFAULT; 13939 } 13940 return 0; 13941 } 13942 13943 if (insn->src_reg == BPF_PSEUDO_FUNC) { 13944 struct bpf_prog_aux *aux = env->prog->aux; 13945 u32 subprogno = find_subprog(env, 13946 env->insn_idx + insn->imm + 1); 13947 13948 if (!aux->func_info) { 13949 verbose(env, "missing btf func_info\n"); 13950 return -EINVAL; 13951 } 13952 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 13953 verbose(env, "callback function not static\n"); 13954 return -EINVAL; 13955 } 13956 13957 dst_reg->type = PTR_TO_FUNC; 13958 dst_reg->subprogno = subprogno; 13959 return 0; 13960 } 13961 13962 map = env->used_maps[aux->map_index]; 13963 dst_reg->map_ptr = map; 13964 13965 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 13966 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 13967 dst_reg->type = PTR_TO_MAP_VALUE; 13968 dst_reg->off = aux->map_off; 13969 WARN_ON_ONCE(map->max_entries != 1); 13970 /* We want reg->id to be same (0) as map_value is not distinct */ 13971 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 13972 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 13973 dst_reg->type = CONST_PTR_TO_MAP; 13974 } else { 13975 verbose(env, "bpf verifier is misconfigured\n"); 13976 return -EINVAL; 13977 } 13978 13979 return 0; 13980 } 13981 13982 static bool may_access_skb(enum bpf_prog_type type) 13983 { 13984 switch (type) { 13985 case BPF_PROG_TYPE_SOCKET_FILTER: 13986 case BPF_PROG_TYPE_SCHED_CLS: 13987 case BPF_PROG_TYPE_SCHED_ACT: 13988 return true; 13989 default: 13990 return false; 13991 } 13992 } 13993 13994 /* verify safety of LD_ABS|LD_IND instructions: 13995 * - they can only appear in the programs where ctx == skb 13996 * - since they are wrappers of function calls, they scratch R1-R5 registers, 13997 * preserve R6-R9, and store return value into R0 13998 * 13999 * Implicit input: 14000 * ctx == skb == R6 == CTX 14001 * 14002 * Explicit input: 14003 * SRC == any register 14004 * IMM == 32-bit immediate 14005 * 14006 * Output: 14007 * R0 - 8/16/32-bit skb data converted to cpu endianness 14008 */ 14009 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14010 { 14011 struct bpf_reg_state *regs = cur_regs(env); 14012 static const int ctx_reg = BPF_REG_6; 14013 u8 mode = BPF_MODE(insn->code); 14014 int i, err; 14015 14016 if (!may_access_skb(resolve_prog_type(env->prog))) { 14017 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14018 return -EINVAL; 14019 } 14020 14021 if (!env->ops->gen_ld_abs) { 14022 verbose(env, "bpf verifier is misconfigured\n"); 14023 return -EINVAL; 14024 } 14025 14026 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14027 BPF_SIZE(insn->code) == BPF_DW || 14028 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14029 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14030 return -EINVAL; 14031 } 14032 14033 /* check whether implicit source operand (register R6) is readable */ 14034 err = check_reg_arg(env, ctx_reg, SRC_OP); 14035 if (err) 14036 return err; 14037 14038 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14039 * gen_ld_abs() may terminate the program at runtime, leading to 14040 * reference leak. 14041 */ 14042 err = check_reference_leak(env); 14043 if (err) { 14044 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14045 return err; 14046 } 14047 14048 if (env->cur_state->active_lock.ptr) { 14049 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14050 return -EINVAL; 14051 } 14052 14053 if (env->cur_state->active_rcu_lock) { 14054 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14055 return -EINVAL; 14056 } 14057 14058 if (regs[ctx_reg].type != PTR_TO_CTX) { 14059 verbose(env, 14060 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14061 return -EINVAL; 14062 } 14063 14064 if (mode == BPF_IND) { 14065 /* check explicit source operand */ 14066 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14067 if (err) 14068 return err; 14069 } 14070 14071 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14072 if (err < 0) 14073 return err; 14074 14075 /* reset caller saved regs to unreadable */ 14076 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14077 mark_reg_not_init(env, regs, caller_saved[i]); 14078 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14079 } 14080 14081 /* mark destination R0 register as readable, since it contains 14082 * the value fetched from the packet. 14083 * Already marked as written above. 14084 */ 14085 mark_reg_unknown(env, regs, BPF_REG_0); 14086 /* ld_abs load up to 32-bit skb data. */ 14087 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14088 return 0; 14089 } 14090 14091 static int check_return_code(struct bpf_verifier_env *env) 14092 { 14093 struct tnum enforce_attach_type_range = tnum_unknown; 14094 const struct bpf_prog *prog = env->prog; 14095 struct bpf_reg_state *reg; 14096 struct tnum range = tnum_range(0, 1); 14097 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14098 int err; 14099 struct bpf_func_state *frame = env->cur_state->frame[0]; 14100 const bool is_subprog = frame->subprogno; 14101 14102 /* LSM and struct_ops func-ptr's return type could be "void" */ 14103 if (!is_subprog) { 14104 switch (prog_type) { 14105 case BPF_PROG_TYPE_LSM: 14106 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14107 /* See below, can be 0 or 0-1 depending on hook. */ 14108 break; 14109 fallthrough; 14110 case BPF_PROG_TYPE_STRUCT_OPS: 14111 if (!prog->aux->attach_func_proto->type) 14112 return 0; 14113 break; 14114 default: 14115 break; 14116 } 14117 } 14118 14119 /* eBPF calling convention is such that R0 is used 14120 * to return the value from eBPF program. 14121 * Make sure that it's readable at this time 14122 * of bpf_exit, which means that program wrote 14123 * something into it earlier 14124 */ 14125 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14126 if (err) 14127 return err; 14128 14129 if (is_pointer_value(env, BPF_REG_0)) { 14130 verbose(env, "R0 leaks addr as return value\n"); 14131 return -EACCES; 14132 } 14133 14134 reg = cur_regs(env) + BPF_REG_0; 14135 14136 if (frame->in_async_callback_fn) { 14137 /* enforce return zero from async callbacks like timer */ 14138 if (reg->type != SCALAR_VALUE) { 14139 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14140 reg_type_str(env, reg->type)); 14141 return -EINVAL; 14142 } 14143 14144 if (!tnum_in(tnum_const(0), reg->var_off)) { 14145 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 14146 return -EINVAL; 14147 } 14148 return 0; 14149 } 14150 14151 if (is_subprog) { 14152 if (reg->type != SCALAR_VALUE) { 14153 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14154 reg_type_str(env, reg->type)); 14155 return -EINVAL; 14156 } 14157 return 0; 14158 } 14159 14160 switch (prog_type) { 14161 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14162 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14163 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14164 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14165 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14166 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14167 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14168 range = tnum_range(1, 1); 14169 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14170 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14171 range = tnum_range(0, 3); 14172 break; 14173 case BPF_PROG_TYPE_CGROUP_SKB: 14174 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14175 range = tnum_range(0, 3); 14176 enforce_attach_type_range = tnum_range(2, 3); 14177 } 14178 break; 14179 case BPF_PROG_TYPE_CGROUP_SOCK: 14180 case BPF_PROG_TYPE_SOCK_OPS: 14181 case BPF_PROG_TYPE_CGROUP_DEVICE: 14182 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14183 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14184 break; 14185 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14186 if (!env->prog->aux->attach_btf_id) 14187 return 0; 14188 range = tnum_const(0); 14189 break; 14190 case BPF_PROG_TYPE_TRACING: 14191 switch (env->prog->expected_attach_type) { 14192 case BPF_TRACE_FENTRY: 14193 case BPF_TRACE_FEXIT: 14194 range = tnum_const(0); 14195 break; 14196 case BPF_TRACE_RAW_TP: 14197 case BPF_MODIFY_RETURN: 14198 return 0; 14199 case BPF_TRACE_ITER: 14200 break; 14201 default: 14202 return -ENOTSUPP; 14203 } 14204 break; 14205 case BPF_PROG_TYPE_SK_LOOKUP: 14206 range = tnum_range(SK_DROP, SK_PASS); 14207 break; 14208 14209 case BPF_PROG_TYPE_LSM: 14210 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14211 /* Regular BPF_PROG_TYPE_LSM programs can return 14212 * any value. 14213 */ 14214 return 0; 14215 } 14216 if (!env->prog->aux->attach_func_proto->type) { 14217 /* Make sure programs that attach to void 14218 * hooks don't try to modify return value. 14219 */ 14220 range = tnum_range(1, 1); 14221 } 14222 break; 14223 14224 case BPF_PROG_TYPE_NETFILTER: 14225 range = tnum_range(NF_DROP, NF_ACCEPT); 14226 break; 14227 case BPF_PROG_TYPE_EXT: 14228 /* freplace program can return anything as its return value 14229 * depends on the to-be-replaced kernel func or bpf program. 14230 */ 14231 default: 14232 return 0; 14233 } 14234 14235 if (reg->type != SCALAR_VALUE) { 14236 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14237 reg_type_str(env, reg->type)); 14238 return -EINVAL; 14239 } 14240 14241 if (!tnum_in(range, reg->var_off)) { 14242 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14243 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14244 prog_type == BPF_PROG_TYPE_LSM && 14245 !prog->aux->attach_func_proto->type) 14246 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14247 return -EINVAL; 14248 } 14249 14250 if (!tnum_is_unknown(enforce_attach_type_range) && 14251 tnum_in(enforce_attach_type_range, reg->var_off)) 14252 env->prog->enforce_expected_attach_type = 1; 14253 return 0; 14254 } 14255 14256 /* non-recursive DFS pseudo code 14257 * 1 procedure DFS-iterative(G,v): 14258 * 2 label v as discovered 14259 * 3 let S be a stack 14260 * 4 S.push(v) 14261 * 5 while S is not empty 14262 * 6 t <- S.peek() 14263 * 7 if t is what we're looking for: 14264 * 8 return t 14265 * 9 for all edges e in G.adjacentEdges(t) do 14266 * 10 if edge e is already labelled 14267 * 11 continue with the next edge 14268 * 12 w <- G.adjacentVertex(t,e) 14269 * 13 if vertex w is not discovered and not explored 14270 * 14 label e as tree-edge 14271 * 15 label w as discovered 14272 * 16 S.push(w) 14273 * 17 continue at 5 14274 * 18 else if vertex w is discovered 14275 * 19 label e as back-edge 14276 * 20 else 14277 * 21 // vertex w is explored 14278 * 22 label e as forward- or cross-edge 14279 * 23 label t as explored 14280 * 24 S.pop() 14281 * 14282 * convention: 14283 * 0x10 - discovered 14284 * 0x11 - discovered and fall-through edge labelled 14285 * 0x12 - discovered and fall-through and branch edges labelled 14286 * 0x20 - explored 14287 */ 14288 14289 enum { 14290 DISCOVERED = 0x10, 14291 EXPLORED = 0x20, 14292 FALLTHROUGH = 1, 14293 BRANCH = 2, 14294 }; 14295 14296 static u32 state_htab_size(struct bpf_verifier_env *env) 14297 { 14298 return env->prog->len; 14299 } 14300 14301 static struct bpf_verifier_state_list **explored_state( 14302 struct bpf_verifier_env *env, 14303 int idx) 14304 { 14305 struct bpf_verifier_state *cur = env->cur_state; 14306 struct bpf_func_state *state = cur->frame[cur->curframe]; 14307 14308 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14309 } 14310 14311 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14312 { 14313 env->insn_aux_data[idx].prune_point = true; 14314 } 14315 14316 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14317 { 14318 return env->insn_aux_data[insn_idx].prune_point; 14319 } 14320 14321 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14322 { 14323 env->insn_aux_data[idx].force_checkpoint = true; 14324 } 14325 14326 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14327 { 14328 return env->insn_aux_data[insn_idx].force_checkpoint; 14329 } 14330 14331 14332 enum { 14333 DONE_EXPLORING = 0, 14334 KEEP_EXPLORING = 1, 14335 }; 14336 14337 /* t, w, e - match pseudo-code above: 14338 * t - index of current instruction 14339 * w - next instruction 14340 * e - edge 14341 */ 14342 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14343 bool loop_ok) 14344 { 14345 int *insn_stack = env->cfg.insn_stack; 14346 int *insn_state = env->cfg.insn_state; 14347 14348 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14349 return DONE_EXPLORING; 14350 14351 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14352 return DONE_EXPLORING; 14353 14354 if (w < 0 || w >= env->prog->len) { 14355 verbose_linfo(env, t, "%d: ", t); 14356 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14357 return -EINVAL; 14358 } 14359 14360 if (e == BRANCH) { 14361 /* mark branch target for state pruning */ 14362 mark_prune_point(env, w); 14363 mark_jmp_point(env, w); 14364 } 14365 14366 if (insn_state[w] == 0) { 14367 /* tree-edge */ 14368 insn_state[t] = DISCOVERED | e; 14369 insn_state[w] = DISCOVERED; 14370 if (env->cfg.cur_stack >= env->prog->len) 14371 return -E2BIG; 14372 insn_stack[env->cfg.cur_stack++] = w; 14373 return KEEP_EXPLORING; 14374 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14375 if (loop_ok && env->bpf_capable) 14376 return DONE_EXPLORING; 14377 verbose_linfo(env, t, "%d: ", t); 14378 verbose_linfo(env, w, "%d: ", w); 14379 verbose(env, "back-edge from insn %d to %d\n", t, w); 14380 return -EINVAL; 14381 } else if (insn_state[w] == EXPLORED) { 14382 /* forward- or cross-edge */ 14383 insn_state[t] = DISCOVERED | e; 14384 } else { 14385 verbose(env, "insn state internal bug\n"); 14386 return -EFAULT; 14387 } 14388 return DONE_EXPLORING; 14389 } 14390 14391 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14392 struct bpf_verifier_env *env, 14393 bool visit_callee) 14394 { 14395 int ret; 14396 14397 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14398 if (ret) 14399 return ret; 14400 14401 mark_prune_point(env, t + 1); 14402 /* when we exit from subprog, we need to record non-linear history */ 14403 mark_jmp_point(env, t + 1); 14404 14405 if (visit_callee) { 14406 mark_prune_point(env, t); 14407 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14408 /* It's ok to allow recursion from CFG point of 14409 * view. __check_func_call() will do the actual 14410 * check. 14411 */ 14412 bpf_pseudo_func(insns + t)); 14413 } 14414 return ret; 14415 } 14416 14417 /* Visits the instruction at index t and returns one of the following: 14418 * < 0 - an error occurred 14419 * DONE_EXPLORING - the instruction was fully explored 14420 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14421 */ 14422 static int visit_insn(int t, struct bpf_verifier_env *env) 14423 { 14424 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14425 int ret; 14426 14427 if (bpf_pseudo_func(insn)) 14428 return visit_func_call_insn(t, insns, env, true); 14429 14430 /* All non-branch instructions have a single fall-through edge. */ 14431 if (BPF_CLASS(insn->code) != BPF_JMP && 14432 BPF_CLASS(insn->code) != BPF_JMP32) 14433 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14434 14435 switch (BPF_OP(insn->code)) { 14436 case BPF_EXIT: 14437 return DONE_EXPLORING; 14438 14439 case BPF_CALL: 14440 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14441 /* Mark this call insn as a prune point to trigger 14442 * is_state_visited() check before call itself is 14443 * processed by __check_func_call(). Otherwise new 14444 * async state will be pushed for further exploration. 14445 */ 14446 mark_prune_point(env, t); 14447 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14448 struct bpf_kfunc_call_arg_meta meta; 14449 14450 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14451 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14452 mark_prune_point(env, t); 14453 /* Checking and saving state checkpoints at iter_next() call 14454 * is crucial for fast convergence of open-coded iterator loop 14455 * logic, so we need to force it. If we don't do that, 14456 * is_state_visited() might skip saving a checkpoint, causing 14457 * unnecessarily long sequence of not checkpointed 14458 * instructions and jumps, leading to exhaustion of jump 14459 * history buffer, and potentially other undesired outcomes. 14460 * It is expected that with correct open-coded iterators 14461 * convergence will happen quickly, so we don't run a risk of 14462 * exhausting memory. 14463 */ 14464 mark_force_checkpoint(env, t); 14465 } 14466 } 14467 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14468 14469 case BPF_JA: 14470 if (BPF_SRC(insn->code) != BPF_K) 14471 return -EINVAL; 14472 14473 /* unconditional jump with single edge */ 14474 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env, 14475 true); 14476 if (ret) 14477 return ret; 14478 14479 mark_prune_point(env, t + insn->off + 1); 14480 mark_jmp_point(env, t + insn->off + 1); 14481 14482 return ret; 14483 14484 default: 14485 /* conditional jump with two edges */ 14486 mark_prune_point(env, t); 14487 14488 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14489 if (ret) 14490 return ret; 14491 14492 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14493 } 14494 } 14495 14496 /* non-recursive depth-first-search to detect loops in BPF program 14497 * loop == back-edge in directed graph 14498 */ 14499 static int check_cfg(struct bpf_verifier_env *env) 14500 { 14501 int insn_cnt = env->prog->len; 14502 int *insn_stack, *insn_state; 14503 int ret = 0; 14504 int i; 14505 14506 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14507 if (!insn_state) 14508 return -ENOMEM; 14509 14510 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14511 if (!insn_stack) { 14512 kvfree(insn_state); 14513 return -ENOMEM; 14514 } 14515 14516 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14517 insn_stack[0] = 0; /* 0 is the first instruction */ 14518 env->cfg.cur_stack = 1; 14519 14520 while (env->cfg.cur_stack > 0) { 14521 int t = insn_stack[env->cfg.cur_stack - 1]; 14522 14523 ret = visit_insn(t, env); 14524 switch (ret) { 14525 case DONE_EXPLORING: 14526 insn_state[t] = EXPLORED; 14527 env->cfg.cur_stack--; 14528 break; 14529 case KEEP_EXPLORING: 14530 break; 14531 default: 14532 if (ret > 0) { 14533 verbose(env, "visit_insn internal bug\n"); 14534 ret = -EFAULT; 14535 } 14536 goto err_free; 14537 } 14538 } 14539 14540 if (env->cfg.cur_stack < 0) { 14541 verbose(env, "pop stack internal bug\n"); 14542 ret = -EFAULT; 14543 goto err_free; 14544 } 14545 14546 for (i = 0; i < insn_cnt; i++) { 14547 if (insn_state[i] != EXPLORED) { 14548 verbose(env, "unreachable insn %d\n", i); 14549 ret = -EINVAL; 14550 goto err_free; 14551 } 14552 } 14553 ret = 0; /* cfg looks good */ 14554 14555 err_free: 14556 kvfree(insn_state); 14557 kvfree(insn_stack); 14558 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14559 return ret; 14560 } 14561 14562 static int check_abnormal_return(struct bpf_verifier_env *env) 14563 { 14564 int i; 14565 14566 for (i = 1; i < env->subprog_cnt; i++) { 14567 if (env->subprog_info[i].has_ld_abs) { 14568 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14569 return -EINVAL; 14570 } 14571 if (env->subprog_info[i].has_tail_call) { 14572 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14573 return -EINVAL; 14574 } 14575 } 14576 return 0; 14577 } 14578 14579 /* The minimum supported BTF func info size */ 14580 #define MIN_BPF_FUNCINFO_SIZE 8 14581 #define MAX_FUNCINFO_REC_SIZE 252 14582 14583 static int check_btf_func(struct bpf_verifier_env *env, 14584 const union bpf_attr *attr, 14585 bpfptr_t uattr) 14586 { 14587 const struct btf_type *type, *func_proto, *ret_type; 14588 u32 i, nfuncs, urec_size, min_size; 14589 u32 krec_size = sizeof(struct bpf_func_info); 14590 struct bpf_func_info *krecord; 14591 struct bpf_func_info_aux *info_aux = NULL; 14592 struct bpf_prog *prog; 14593 const struct btf *btf; 14594 bpfptr_t urecord; 14595 u32 prev_offset = 0; 14596 bool scalar_return; 14597 int ret = -ENOMEM; 14598 14599 nfuncs = attr->func_info_cnt; 14600 if (!nfuncs) { 14601 if (check_abnormal_return(env)) 14602 return -EINVAL; 14603 return 0; 14604 } 14605 14606 if (nfuncs != env->subprog_cnt) { 14607 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 14608 return -EINVAL; 14609 } 14610 14611 urec_size = attr->func_info_rec_size; 14612 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 14613 urec_size > MAX_FUNCINFO_REC_SIZE || 14614 urec_size % sizeof(u32)) { 14615 verbose(env, "invalid func info rec size %u\n", urec_size); 14616 return -EINVAL; 14617 } 14618 14619 prog = env->prog; 14620 btf = prog->aux->btf; 14621 14622 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 14623 min_size = min_t(u32, krec_size, urec_size); 14624 14625 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 14626 if (!krecord) 14627 return -ENOMEM; 14628 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 14629 if (!info_aux) 14630 goto err_free; 14631 14632 for (i = 0; i < nfuncs; i++) { 14633 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 14634 if (ret) { 14635 if (ret == -E2BIG) { 14636 verbose(env, "nonzero tailing record in func info"); 14637 /* set the size kernel expects so loader can zero 14638 * out the rest of the record. 14639 */ 14640 if (copy_to_bpfptr_offset(uattr, 14641 offsetof(union bpf_attr, func_info_rec_size), 14642 &min_size, sizeof(min_size))) 14643 ret = -EFAULT; 14644 } 14645 goto err_free; 14646 } 14647 14648 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 14649 ret = -EFAULT; 14650 goto err_free; 14651 } 14652 14653 /* check insn_off */ 14654 ret = -EINVAL; 14655 if (i == 0) { 14656 if (krecord[i].insn_off) { 14657 verbose(env, 14658 "nonzero insn_off %u for the first func info record", 14659 krecord[i].insn_off); 14660 goto err_free; 14661 } 14662 } else if (krecord[i].insn_off <= prev_offset) { 14663 verbose(env, 14664 "same or smaller insn offset (%u) than previous func info record (%u)", 14665 krecord[i].insn_off, prev_offset); 14666 goto err_free; 14667 } 14668 14669 if (env->subprog_info[i].start != krecord[i].insn_off) { 14670 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 14671 goto err_free; 14672 } 14673 14674 /* check type_id */ 14675 type = btf_type_by_id(btf, krecord[i].type_id); 14676 if (!type || !btf_type_is_func(type)) { 14677 verbose(env, "invalid type id %d in func info", 14678 krecord[i].type_id); 14679 goto err_free; 14680 } 14681 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 14682 14683 func_proto = btf_type_by_id(btf, type->type); 14684 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 14685 /* btf_func_check() already verified it during BTF load */ 14686 goto err_free; 14687 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 14688 scalar_return = 14689 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 14690 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 14691 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 14692 goto err_free; 14693 } 14694 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 14695 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 14696 goto err_free; 14697 } 14698 14699 prev_offset = krecord[i].insn_off; 14700 bpfptr_add(&urecord, urec_size); 14701 } 14702 14703 prog->aux->func_info = krecord; 14704 prog->aux->func_info_cnt = nfuncs; 14705 prog->aux->func_info_aux = info_aux; 14706 return 0; 14707 14708 err_free: 14709 kvfree(krecord); 14710 kfree(info_aux); 14711 return ret; 14712 } 14713 14714 static void adjust_btf_func(struct bpf_verifier_env *env) 14715 { 14716 struct bpf_prog_aux *aux = env->prog->aux; 14717 int i; 14718 14719 if (!aux->func_info) 14720 return; 14721 14722 for (i = 0; i < env->subprog_cnt; i++) 14723 aux->func_info[i].insn_off = env->subprog_info[i].start; 14724 } 14725 14726 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 14727 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 14728 14729 static int check_btf_line(struct bpf_verifier_env *env, 14730 const union bpf_attr *attr, 14731 bpfptr_t uattr) 14732 { 14733 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 14734 struct bpf_subprog_info *sub; 14735 struct bpf_line_info *linfo; 14736 struct bpf_prog *prog; 14737 const struct btf *btf; 14738 bpfptr_t ulinfo; 14739 int err; 14740 14741 nr_linfo = attr->line_info_cnt; 14742 if (!nr_linfo) 14743 return 0; 14744 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 14745 return -EINVAL; 14746 14747 rec_size = attr->line_info_rec_size; 14748 if (rec_size < MIN_BPF_LINEINFO_SIZE || 14749 rec_size > MAX_LINEINFO_REC_SIZE || 14750 rec_size & (sizeof(u32) - 1)) 14751 return -EINVAL; 14752 14753 /* Need to zero it in case the userspace may 14754 * pass in a smaller bpf_line_info object. 14755 */ 14756 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 14757 GFP_KERNEL | __GFP_NOWARN); 14758 if (!linfo) 14759 return -ENOMEM; 14760 14761 prog = env->prog; 14762 btf = prog->aux->btf; 14763 14764 s = 0; 14765 sub = env->subprog_info; 14766 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 14767 expected_size = sizeof(struct bpf_line_info); 14768 ncopy = min_t(u32, expected_size, rec_size); 14769 for (i = 0; i < nr_linfo; i++) { 14770 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 14771 if (err) { 14772 if (err == -E2BIG) { 14773 verbose(env, "nonzero tailing record in line_info"); 14774 if (copy_to_bpfptr_offset(uattr, 14775 offsetof(union bpf_attr, line_info_rec_size), 14776 &expected_size, sizeof(expected_size))) 14777 err = -EFAULT; 14778 } 14779 goto err_free; 14780 } 14781 14782 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 14783 err = -EFAULT; 14784 goto err_free; 14785 } 14786 14787 /* 14788 * Check insn_off to ensure 14789 * 1) strictly increasing AND 14790 * 2) bounded by prog->len 14791 * 14792 * The linfo[0].insn_off == 0 check logically falls into 14793 * the later "missing bpf_line_info for func..." case 14794 * because the first linfo[0].insn_off must be the 14795 * first sub also and the first sub must have 14796 * subprog_info[0].start == 0. 14797 */ 14798 if ((i && linfo[i].insn_off <= prev_offset) || 14799 linfo[i].insn_off >= prog->len) { 14800 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 14801 i, linfo[i].insn_off, prev_offset, 14802 prog->len); 14803 err = -EINVAL; 14804 goto err_free; 14805 } 14806 14807 if (!prog->insnsi[linfo[i].insn_off].code) { 14808 verbose(env, 14809 "Invalid insn code at line_info[%u].insn_off\n", 14810 i); 14811 err = -EINVAL; 14812 goto err_free; 14813 } 14814 14815 if (!btf_name_by_offset(btf, linfo[i].line_off) || 14816 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 14817 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 14818 err = -EINVAL; 14819 goto err_free; 14820 } 14821 14822 if (s != env->subprog_cnt) { 14823 if (linfo[i].insn_off == sub[s].start) { 14824 sub[s].linfo_idx = i; 14825 s++; 14826 } else if (sub[s].start < linfo[i].insn_off) { 14827 verbose(env, "missing bpf_line_info for func#%u\n", s); 14828 err = -EINVAL; 14829 goto err_free; 14830 } 14831 } 14832 14833 prev_offset = linfo[i].insn_off; 14834 bpfptr_add(&ulinfo, rec_size); 14835 } 14836 14837 if (s != env->subprog_cnt) { 14838 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 14839 env->subprog_cnt - s, s); 14840 err = -EINVAL; 14841 goto err_free; 14842 } 14843 14844 prog->aux->linfo = linfo; 14845 prog->aux->nr_linfo = nr_linfo; 14846 14847 return 0; 14848 14849 err_free: 14850 kvfree(linfo); 14851 return err; 14852 } 14853 14854 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 14855 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 14856 14857 static int check_core_relo(struct bpf_verifier_env *env, 14858 const union bpf_attr *attr, 14859 bpfptr_t uattr) 14860 { 14861 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 14862 struct bpf_core_relo core_relo = {}; 14863 struct bpf_prog *prog = env->prog; 14864 const struct btf *btf = prog->aux->btf; 14865 struct bpf_core_ctx ctx = { 14866 .log = &env->log, 14867 .btf = btf, 14868 }; 14869 bpfptr_t u_core_relo; 14870 int err; 14871 14872 nr_core_relo = attr->core_relo_cnt; 14873 if (!nr_core_relo) 14874 return 0; 14875 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 14876 return -EINVAL; 14877 14878 rec_size = attr->core_relo_rec_size; 14879 if (rec_size < MIN_CORE_RELO_SIZE || 14880 rec_size > MAX_CORE_RELO_SIZE || 14881 rec_size % sizeof(u32)) 14882 return -EINVAL; 14883 14884 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 14885 expected_size = sizeof(struct bpf_core_relo); 14886 ncopy = min_t(u32, expected_size, rec_size); 14887 14888 /* Unlike func_info and line_info, copy and apply each CO-RE 14889 * relocation record one at a time. 14890 */ 14891 for (i = 0; i < nr_core_relo; i++) { 14892 /* future proofing when sizeof(bpf_core_relo) changes */ 14893 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 14894 if (err) { 14895 if (err == -E2BIG) { 14896 verbose(env, "nonzero tailing record in core_relo"); 14897 if (copy_to_bpfptr_offset(uattr, 14898 offsetof(union bpf_attr, core_relo_rec_size), 14899 &expected_size, sizeof(expected_size))) 14900 err = -EFAULT; 14901 } 14902 break; 14903 } 14904 14905 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 14906 err = -EFAULT; 14907 break; 14908 } 14909 14910 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 14911 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 14912 i, core_relo.insn_off, prog->len); 14913 err = -EINVAL; 14914 break; 14915 } 14916 14917 err = bpf_core_apply(&ctx, &core_relo, i, 14918 &prog->insnsi[core_relo.insn_off / 8]); 14919 if (err) 14920 break; 14921 bpfptr_add(&u_core_relo, rec_size); 14922 } 14923 return err; 14924 } 14925 14926 static int check_btf_info(struct bpf_verifier_env *env, 14927 const union bpf_attr *attr, 14928 bpfptr_t uattr) 14929 { 14930 struct btf *btf; 14931 int err; 14932 14933 if (!attr->func_info_cnt && !attr->line_info_cnt) { 14934 if (check_abnormal_return(env)) 14935 return -EINVAL; 14936 return 0; 14937 } 14938 14939 btf = btf_get_by_fd(attr->prog_btf_fd); 14940 if (IS_ERR(btf)) 14941 return PTR_ERR(btf); 14942 if (btf_is_kernel(btf)) { 14943 btf_put(btf); 14944 return -EACCES; 14945 } 14946 env->prog->aux->btf = btf; 14947 14948 err = check_btf_func(env, attr, uattr); 14949 if (err) 14950 return err; 14951 14952 err = check_btf_line(env, attr, uattr); 14953 if (err) 14954 return err; 14955 14956 err = check_core_relo(env, attr, uattr); 14957 if (err) 14958 return err; 14959 14960 return 0; 14961 } 14962 14963 /* check %cur's range satisfies %old's */ 14964 static bool range_within(struct bpf_reg_state *old, 14965 struct bpf_reg_state *cur) 14966 { 14967 return old->umin_value <= cur->umin_value && 14968 old->umax_value >= cur->umax_value && 14969 old->smin_value <= cur->smin_value && 14970 old->smax_value >= cur->smax_value && 14971 old->u32_min_value <= cur->u32_min_value && 14972 old->u32_max_value >= cur->u32_max_value && 14973 old->s32_min_value <= cur->s32_min_value && 14974 old->s32_max_value >= cur->s32_max_value; 14975 } 14976 14977 /* If in the old state two registers had the same id, then they need to have 14978 * the same id in the new state as well. But that id could be different from 14979 * the old state, so we need to track the mapping from old to new ids. 14980 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 14981 * regs with old id 5 must also have new id 9 for the new state to be safe. But 14982 * regs with a different old id could still have new id 9, we don't care about 14983 * that. 14984 * So we look through our idmap to see if this old id has been seen before. If 14985 * so, we require the new id to match; otherwise, we add the id pair to the map. 14986 */ 14987 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 14988 { 14989 unsigned int i; 14990 14991 /* either both IDs should be set or both should be zero */ 14992 if (!!old_id != !!cur_id) 14993 return false; 14994 14995 if (old_id == 0) /* cur_id == 0 as well */ 14996 return true; 14997 14998 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 14999 if (!idmap[i].old) { 15000 /* Reached an empty slot; haven't seen this id before */ 15001 idmap[i].old = old_id; 15002 idmap[i].cur = cur_id; 15003 return true; 15004 } 15005 if (idmap[i].old == old_id) 15006 return idmap[i].cur == cur_id; 15007 } 15008 /* We ran out of idmap slots, which should be impossible */ 15009 WARN_ON_ONCE(1); 15010 return false; 15011 } 15012 15013 static void clean_func_state(struct bpf_verifier_env *env, 15014 struct bpf_func_state *st) 15015 { 15016 enum bpf_reg_liveness live; 15017 int i, j; 15018 15019 for (i = 0; i < BPF_REG_FP; i++) { 15020 live = st->regs[i].live; 15021 /* liveness must not touch this register anymore */ 15022 st->regs[i].live |= REG_LIVE_DONE; 15023 if (!(live & REG_LIVE_READ)) 15024 /* since the register is unused, clear its state 15025 * to make further comparison simpler 15026 */ 15027 __mark_reg_not_init(env, &st->regs[i]); 15028 } 15029 15030 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15031 live = st->stack[i].spilled_ptr.live; 15032 /* liveness must not touch this stack slot anymore */ 15033 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15034 if (!(live & REG_LIVE_READ)) { 15035 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15036 for (j = 0; j < BPF_REG_SIZE; j++) 15037 st->stack[i].slot_type[j] = STACK_INVALID; 15038 } 15039 } 15040 } 15041 15042 static void clean_verifier_state(struct bpf_verifier_env *env, 15043 struct bpf_verifier_state *st) 15044 { 15045 int i; 15046 15047 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15048 /* all regs in this state in all frames were already marked */ 15049 return; 15050 15051 for (i = 0; i <= st->curframe; i++) 15052 clean_func_state(env, st->frame[i]); 15053 } 15054 15055 /* the parentage chains form a tree. 15056 * the verifier states are added to state lists at given insn and 15057 * pushed into state stack for future exploration. 15058 * when the verifier reaches bpf_exit insn some of the verifer states 15059 * stored in the state lists have their final liveness state already, 15060 * but a lot of states will get revised from liveness point of view when 15061 * the verifier explores other branches. 15062 * Example: 15063 * 1: r0 = 1 15064 * 2: if r1 == 100 goto pc+1 15065 * 3: r0 = 2 15066 * 4: exit 15067 * when the verifier reaches exit insn the register r0 in the state list of 15068 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15069 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15070 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15071 * 15072 * Since the verifier pushes the branch states as it sees them while exploring 15073 * the program the condition of walking the branch instruction for the second 15074 * time means that all states below this branch were already explored and 15075 * their final liveness marks are already propagated. 15076 * Hence when the verifier completes the search of state list in is_state_visited() 15077 * we can call this clean_live_states() function to mark all liveness states 15078 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15079 * will not be used. 15080 * This function also clears the registers and stack for states that !READ 15081 * to simplify state merging. 15082 * 15083 * Important note here that walking the same branch instruction in the callee 15084 * doesn't meant that the states are DONE. The verifier has to compare 15085 * the callsites 15086 */ 15087 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15088 struct bpf_verifier_state *cur) 15089 { 15090 struct bpf_verifier_state_list *sl; 15091 int i; 15092 15093 sl = *explored_state(env, insn); 15094 while (sl) { 15095 if (sl->state.branches) 15096 goto next; 15097 if (sl->state.insn_idx != insn || 15098 sl->state.curframe != cur->curframe) 15099 goto next; 15100 for (i = 0; i <= cur->curframe; i++) 15101 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15102 goto next; 15103 clean_verifier_state(env, &sl->state); 15104 next: 15105 sl = sl->next; 15106 } 15107 } 15108 15109 static bool regs_exact(const struct bpf_reg_state *rold, 15110 const struct bpf_reg_state *rcur, 15111 struct bpf_id_pair *idmap) 15112 { 15113 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15114 check_ids(rold->id, rcur->id, idmap) && 15115 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15116 } 15117 15118 /* Returns true if (rold safe implies rcur safe) */ 15119 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15120 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 15121 { 15122 if (!(rold->live & REG_LIVE_READ)) 15123 /* explored state didn't use this */ 15124 return true; 15125 if (rold->type == NOT_INIT) 15126 /* explored state can't have used this */ 15127 return true; 15128 if (rcur->type == NOT_INIT) 15129 return false; 15130 15131 /* Enforce that register types have to match exactly, including their 15132 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15133 * rule. 15134 * 15135 * One can make a point that using a pointer register as unbounded 15136 * SCALAR would be technically acceptable, but this could lead to 15137 * pointer leaks because scalars are allowed to leak while pointers 15138 * are not. We could make this safe in special cases if root is 15139 * calling us, but it's probably not worth the hassle. 15140 * 15141 * Also, register types that are *not* MAYBE_NULL could technically be 15142 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15143 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15144 * to the same map). 15145 * However, if the old MAYBE_NULL register then got NULL checked, 15146 * doing so could have affected others with the same id, and we can't 15147 * check for that because we lost the id when we converted to 15148 * a non-MAYBE_NULL variant. 15149 * So, as a general rule we don't allow mixing MAYBE_NULL and 15150 * non-MAYBE_NULL registers as well. 15151 */ 15152 if (rold->type != rcur->type) 15153 return false; 15154 15155 switch (base_type(rold->type)) { 15156 case SCALAR_VALUE: 15157 if (regs_exact(rold, rcur, idmap)) 15158 return true; 15159 if (env->explore_alu_limits) 15160 return false; 15161 if (!rold->precise) 15162 return true; 15163 /* new val must satisfy old val knowledge */ 15164 return range_within(rold, rcur) && 15165 tnum_in(rold->var_off, rcur->var_off); 15166 case PTR_TO_MAP_KEY: 15167 case PTR_TO_MAP_VALUE: 15168 case PTR_TO_MEM: 15169 case PTR_TO_BUF: 15170 case PTR_TO_TP_BUFFER: 15171 /* If the new min/max/var_off satisfy the old ones and 15172 * everything else matches, we are OK. 15173 */ 15174 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15175 range_within(rold, rcur) && 15176 tnum_in(rold->var_off, rcur->var_off) && 15177 check_ids(rold->id, rcur->id, idmap) && 15178 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15179 case PTR_TO_PACKET_META: 15180 case PTR_TO_PACKET: 15181 /* We must have at least as much range as the old ptr 15182 * did, so that any accesses which were safe before are 15183 * still safe. This is true even if old range < old off, 15184 * since someone could have accessed through (ptr - k), or 15185 * even done ptr -= k in a register, to get a safe access. 15186 */ 15187 if (rold->range > rcur->range) 15188 return false; 15189 /* If the offsets don't match, we can't trust our alignment; 15190 * nor can we be sure that we won't fall out of range. 15191 */ 15192 if (rold->off != rcur->off) 15193 return false; 15194 /* id relations must be preserved */ 15195 if (!check_ids(rold->id, rcur->id, idmap)) 15196 return false; 15197 /* new val must satisfy old val knowledge */ 15198 return range_within(rold, rcur) && 15199 tnum_in(rold->var_off, rcur->var_off); 15200 case PTR_TO_STACK: 15201 /* two stack pointers are equal only if they're pointing to 15202 * the same stack frame, since fp-8 in foo != fp-8 in bar 15203 */ 15204 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15205 default: 15206 return regs_exact(rold, rcur, idmap); 15207 } 15208 } 15209 15210 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15211 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 15212 { 15213 int i, spi; 15214 15215 /* walk slots of the explored stack and ignore any additional 15216 * slots in the current stack, since explored(safe) state 15217 * didn't use them 15218 */ 15219 for (i = 0; i < old->allocated_stack; i++) { 15220 struct bpf_reg_state *old_reg, *cur_reg; 15221 15222 spi = i / BPF_REG_SIZE; 15223 15224 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15225 i += BPF_REG_SIZE - 1; 15226 /* explored state didn't use this */ 15227 continue; 15228 } 15229 15230 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15231 continue; 15232 15233 if (env->allow_uninit_stack && 15234 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15235 continue; 15236 15237 /* explored stack has more populated slots than current stack 15238 * and these slots were used 15239 */ 15240 if (i >= cur->allocated_stack) 15241 return false; 15242 15243 /* if old state was safe with misc data in the stack 15244 * it will be safe with zero-initialized stack. 15245 * The opposite is not true 15246 */ 15247 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15248 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15249 continue; 15250 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15251 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15252 /* Ex: old explored (safe) state has STACK_SPILL in 15253 * this stack slot, but current has STACK_MISC -> 15254 * this verifier states are not equivalent, 15255 * return false to continue verification of this path 15256 */ 15257 return false; 15258 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15259 continue; 15260 /* Both old and cur are having same slot_type */ 15261 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15262 case STACK_SPILL: 15263 /* when explored and current stack slot are both storing 15264 * spilled registers, check that stored pointers types 15265 * are the same as well. 15266 * Ex: explored safe path could have stored 15267 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15268 * but current path has stored: 15269 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15270 * such verifier states are not equivalent. 15271 * return false to continue verification of this path 15272 */ 15273 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15274 &cur->stack[spi].spilled_ptr, idmap)) 15275 return false; 15276 break; 15277 case STACK_DYNPTR: 15278 old_reg = &old->stack[spi].spilled_ptr; 15279 cur_reg = &cur->stack[spi].spilled_ptr; 15280 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15281 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15282 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15283 return false; 15284 break; 15285 case STACK_ITER: 15286 old_reg = &old->stack[spi].spilled_ptr; 15287 cur_reg = &cur->stack[spi].spilled_ptr; 15288 /* iter.depth is not compared between states as it 15289 * doesn't matter for correctness and would otherwise 15290 * prevent convergence; we maintain it only to prevent 15291 * infinite loop check triggering, see 15292 * iter_active_depths_differ() 15293 */ 15294 if (old_reg->iter.btf != cur_reg->iter.btf || 15295 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15296 old_reg->iter.state != cur_reg->iter.state || 15297 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15298 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15299 return false; 15300 break; 15301 case STACK_MISC: 15302 case STACK_ZERO: 15303 case STACK_INVALID: 15304 continue; 15305 /* Ensure that new unhandled slot types return false by default */ 15306 default: 15307 return false; 15308 } 15309 } 15310 return true; 15311 } 15312 15313 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15314 struct bpf_id_pair *idmap) 15315 { 15316 int i; 15317 15318 if (old->acquired_refs != cur->acquired_refs) 15319 return false; 15320 15321 for (i = 0; i < old->acquired_refs; i++) { 15322 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15323 return false; 15324 } 15325 15326 return true; 15327 } 15328 15329 /* compare two verifier states 15330 * 15331 * all states stored in state_list are known to be valid, since 15332 * verifier reached 'bpf_exit' instruction through them 15333 * 15334 * this function is called when verifier exploring different branches of 15335 * execution popped from the state stack. If it sees an old state that has 15336 * more strict register state and more strict stack state then this execution 15337 * branch doesn't need to be explored further, since verifier already 15338 * concluded that more strict state leads to valid finish. 15339 * 15340 * Therefore two states are equivalent if register state is more conservative 15341 * and explored stack state is more conservative than the current one. 15342 * Example: 15343 * explored current 15344 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15345 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15346 * 15347 * In other words if current stack state (one being explored) has more 15348 * valid slots than old one that already passed validation, it means 15349 * the verifier can stop exploring and conclude that current state is valid too 15350 * 15351 * Similarly with registers. If explored state has register type as invalid 15352 * whereas register type in current state is meaningful, it means that 15353 * the current state will reach 'bpf_exit' instruction safely 15354 */ 15355 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15356 struct bpf_func_state *cur) 15357 { 15358 int i; 15359 15360 for (i = 0; i < MAX_BPF_REG; i++) 15361 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15362 env->idmap_scratch)) 15363 return false; 15364 15365 if (!stacksafe(env, old, cur, env->idmap_scratch)) 15366 return false; 15367 15368 if (!refsafe(old, cur, env->idmap_scratch)) 15369 return false; 15370 15371 return true; 15372 } 15373 15374 static bool states_equal(struct bpf_verifier_env *env, 15375 struct bpf_verifier_state *old, 15376 struct bpf_verifier_state *cur) 15377 { 15378 int i; 15379 15380 if (old->curframe != cur->curframe) 15381 return false; 15382 15383 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 15384 15385 /* Verification state from speculative execution simulation 15386 * must never prune a non-speculative execution one. 15387 */ 15388 if (old->speculative && !cur->speculative) 15389 return false; 15390 15391 if (old->active_lock.ptr != cur->active_lock.ptr) 15392 return false; 15393 15394 /* Old and cur active_lock's have to be either both present 15395 * or both absent. 15396 */ 15397 if (!!old->active_lock.id != !!cur->active_lock.id) 15398 return false; 15399 15400 if (old->active_lock.id && 15401 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 15402 return false; 15403 15404 if (old->active_rcu_lock != cur->active_rcu_lock) 15405 return false; 15406 15407 /* for states to be equal callsites have to be the same 15408 * and all frame states need to be equivalent 15409 */ 15410 for (i = 0; i <= old->curframe; i++) { 15411 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15412 return false; 15413 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15414 return false; 15415 } 15416 return true; 15417 } 15418 15419 /* Return 0 if no propagation happened. Return negative error code if error 15420 * happened. Otherwise, return the propagated bit. 15421 */ 15422 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15423 struct bpf_reg_state *reg, 15424 struct bpf_reg_state *parent_reg) 15425 { 15426 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15427 u8 flag = reg->live & REG_LIVE_READ; 15428 int err; 15429 15430 /* When comes here, read flags of PARENT_REG or REG could be any of 15431 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15432 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15433 */ 15434 if (parent_flag == REG_LIVE_READ64 || 15435 /* Or if there is no read flag from REG. */ 15436 !flag || 15437 /* Or if the read flag from REG is the same as PARENT_REG. */ 15438 parent_flag == flag) 15439 return 0; 15440 15441 err = mark_reg_read(env, reg, parent_reg, flag); 15442 if (err) 15443 return err; 15444 15445 return flag; 15446 } 15447 15448 /* A write screens off any subsequent reads; but write marks come from the 15449 * straight-line code between a state and its parent. When we arrive at an 15450 * equivalent state (jump target or such) we didn't arrive by the straight-line 15451 * code, so read marks in the state must propagate to the parent regardless 15452 * of the state's write marks. That's what 'parent == state->parent' comparison 15453 * in mark_reg_read() is for. 15454 */ 15455 static int propagate_liveness(struct bpf_verifier_env *env, 15456 const struct bpf_verifier_state *vstate, 15457 struct bpf_verifier_state *vparent) 15458 { 15459 struct bpf_reg_state *state_reg, *parent_reg; 15460 struct bpf_func_state *state, *parent; 15461 int i, frame, err = 0; 15462 15463 if (vparent->curframe != vstate->curframe) { 15464 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15465 vparent->curframe, vstate->curframe); 15466 return -EFAULT; 15467 } 15468 /* Propagate read liveness of registers... */ 15469 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15470 for (frame = 0; frame <= vstate->curframe; frame++) { 15471 parent = vparent->frame[frame]; 15472 state = vstate->frame[frame]; 15473 parent_reg = parent->regs; 15474 state_reg = state->regs; 15475 /* We don't need to worry about FP liveness, it's read-only */ 15476 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15477 err = propagate_liveness_reg(env, &state_reg[i], 15478 &parent_reg[i]); 15479 if (err < 0) 15480 return err; 15481 if (err == REG_LIVE_READ64) 15482 mark_insn_zext(env, &parent_reg[i]); 15483 } 15484 15485 /* Propagate stack slots. */ 15486 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15487 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15488 parent_reg = &parent->stack[i].spilled_ptr; 15489 state_reg = &state->stack[i].spilled_ptr; 15490 err = propagate_liveness_reg(env, state_reg, 15491 parent_reg); 15492 if (err < 0) 15493 return err; 15494 } 15495 } 15496 return 0; 15497 } 15498 15499 /* find precise scalars in the previous equivalent state and 15500 * propagate them into the current state 15501 */ 15502 static int propagate_precision(struct bpf_verifier_env *env, 15503 const struct bpf_verifier_state *old) 15504 { 15505 struct bpf_reg_state *state_reg; 15506 struct bpf_func_state *state; 15507 int i, err = 0, fr; 15508 bool first; 15509 15510 for (fr = old->curframe; fr >= 0; fr--) { 15511 state = old->frame[fr]; 15512 state_reg = state->regs; 15513 first = true; 15514 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15515 if (state_reg->type != SCALAR_VALUE || 15516 !state_reg->precise || 15517 !(state_reg->live & REG_LIVE_READ)) 15518 continue; 15519 if (env->log.level & BPF_LOG_LEVEL2) { 15520 if (first) 15521 verbose(env, "frame %d: propagating r%d", fr, i); 15522 else 15523 verbose(env, ",r%d", i); 15524 } 15525 bt_set_frame_reg(&env->bt, fr, i); 15526 first = false; 15527 } 15528 15529 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15530 if (!is_spilled_reg(&state->stack[i])) 15531 continue; 15532 state_reg = &state->stack[i].spilled_ptr; 15533 if (state_reg->type != SCALAR_VALUE || 15534 !state_reg->precise || 15535 !(state_reg->live & REG_LIVE_READ)) 15536 continue; 15537 if (env->log.level & BPF_LOG_LEVEL2) { 15538 if (first) 15539 verbose(env, "frame %d: propagating fp%d", 15540 fr, (-i - 1) * BPF_REG_SIZE); 15541 else 15542 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15543 } 15544 bt_set_frame_slot(&env->bt, fr, i); 15545 first = false; 15546 } 15547 if (!first) 15548 verbose(env, "\n"); 15549 } 15550 15551 err = mark_chain_precision_batch(env); 15552 if (err < 0) 15553 return err; 15554 15555 return 0; 15556 } 15557 15558 static bool states_maybe_looping(struct bpf_verifier_state *old, 15559 struct bpf_verifier_state *cur) 15560 { 15561 struct bpf_func_state *fold, *fcur; 15562 int i, fr = cur->curframe; 15563 15564 if (old->curframe != fr) 15565 return false; 15566 15567 fold = old->frame[fr]; 15568 fcur = cur->frame[fr]; 15569 for (i = 0; i < MAX_BPF_REG; i++) 15570 if (memcmp(&fold->regs[i], &fcur->regs[i], 15571 offsetof(struct bpf_reg_state, parent))) 15572 return false; 15573 return true; 15574 } 15575 15576 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 15577 { 15578 return env->insn_aux_data[insn_idx].is_iter_next; 15579 } 15580 15581 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 15582 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 15583 * states to match, which otherwise would look like an infinite loop. So while 15584 * iter_next() calls are taken care of, we still need to be careful and 15585 * prevent erroneous and too eager declaration of "ininite loop", when 15586 * iterators are involved. 15587 * 15588 * Here's a situation in pseudo-BPF assembly form: 15589 * 15590 * 0: again: ; set up iter_next() call args 15591 * 1: r1 = &it ; <CHECKPOINT HERE> 15592 * 2: call bpf_iter_num_next ; this is iter_next() call 15593 * 3: if r0 == 0 goto done 15594 * 4: ... something useful here ... 15595 * 5: goto again ; another iteration 15596 * 6: done: 15597 * 7: r1 = &it 15598 * 8: call bpf_iter_num_destroy ; clean up iter state 15599 * 9: exit 15600 * 15601 * This is a typical loop. Let's assume that we have a prune point at 1:, 15602 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 15603 * again`, assuming other heuristics don't get in a way). 15604 * 15605 * When we first time come to 1:, let's say we have some state X. We proceed 15606 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 15607 * Now we come back to validate that forked ACTIVE state. We proceed through 15608 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 15609 * are converging. But the problem is that we don't know that yet, as this 15610 * convergence has to happen at iter_next() call site only. So if nothing is 15611 * done, at 1: verifier will use bounded loop logic and declare infinite 15612 * looping (and would be *technically* correct, if not for iterator's 15613 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 15614 * don't want that. So what we do in process_iter_next_call() when we go on 15615 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 15616 * a different iteration. So when we suspect an infinite loop, we additionally 15617 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 15618 * pretend we are not looping and wait for next iter_next() call. 15619 * 15620 * This only applies to ACTIVE state. In DRAINED state we don't expect to 15621 * loop, because that would actually mean infinite loop, as DRAINED state is 15622 * "sticky", and so we'll keep returning into the same instruction with the 15623 * same state (at least in one of possible code paths). 15624 * 15625 * This approach allows to keep infinite loop heuristic even in the face of 15626 * active iterator. E.g., C snippet below is and will be detected as 15627 * inifintely looping: 15628 * 15629 * struct bpf_iter_num it; 15630 * int *p, x; 15631 * 15632 * bpf_iter_num_new(&it, 0, 10); 15633 * while ((p = bpf_iter_num_next(&t))) { 15634 * x = p; 15635 * while (x--) {} // <<-- infinite loop here 15636 * } 15637 * 15638 */ 15639 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 15640 { 15641 struct bpf_reg_state *slot, *cur_slot; 15642 struct bpf_func_state *state; 15643 int i, fr; 15644 15645 for (fr = old->curframe; fr >= 0; fr--) { 15646 state = old->frame[fr]; 15647 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15648 if (state->stack[i].slot_type[0] != STACK_ITER) 15649 continue; 15650 15651 slot = &state->stack[i].spilled_ptr; 15652 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 15653 continue; 15654 15655 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 15656 if (cur_slot->iter.depth != slot->iter.depth) 15657 return true; 15658 } 15659 } 15660 return false; 15661 } 15662 15663 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 15664 { 15665 struct bpf_verifier_state_list *new_sl; 15666 struct bpf_verifier_state_list *sl, **pprev; 15667 struct bpf_verifier_state *cur = env->cur_state, *new; 15668 int i, j, err, states_cnt = 0; 15669 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 15670 bool add_new_state = force_new_state; 15671 15672 /* bpf progs typically have pruning point every 4 instructions 15673 * http://vger.kernel.org/bpfconf2019.html#session-1 15674 * Do not add new state for future pruning if the verifier hasn't seen 15675 * at least 2 jumps and at least 8 instructions. 15676 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 15677 * In tests that amounts to up to 50% reduction into total verifier 15678 * memory consumption and 20% verifier time speedup. 15679 */ 15680 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 15681 env->insn_processed - env->prev_insn_processed >= 8) 15682 add_new_state = true; 15683 15684 pprev = explored_state(env, insn_idx); 15685 sl = *pprev; 15686 15687 clean_live_states(env, insn_idx, cur); 15688 15689 while (sl) { 15690 states_cnt++; 15691 if (sl->state.insn_idx != insn_idx) 15692 goto next; 15693 15694 if (sl->state.branches) { 15695 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 15696 15697 if (frame->in_async_callback_fn && 15698 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 15699 /* Different async_entry_cnt means that the verifier is 15700 * processing another entry into async callback. 15701 * Seeing the same state is not an indication of infinite 15702 * loop or infinite recursion. 15703 * But finding the same state doesn't mean that it's safe 15704 * to stop processing the current state. The previous state 15705 * hasn't yet reached bpf_exit, since state.branches > 0. 15706 * Checking in_async_callback_fn alone is not enough either. 15707 * Since the verifier still needs to catch infinite loops 15708 * inside async callbacks. 15709 */ 15710 goto skip_inf_loop_check; 15711 } 15712 /* BPF open-coded iterators loop detection is special. 15713 * states_maybe_looping() logic is too simplistic in detecting 15714 * states that *might* be equivalent, because it doesn't know 15715 * about ID remapping, so don't even perform it. 15716 * See process_iter_next_call() and iter_active_depths_differ() 15717 * for overview of the logic. When current and one of parent 15718 * states are detected as equivalent, it's a good thing: we prove 15719 * convergence and can stop simulating further iterations. 15720 * It's safe to assume that iterator loop will finish, taking into 15721 * account iter_next() contract of eventually returning 15722 * sticky NULL result. 15723 */ 15724 if (is_iter_next_insn(env, insn_idx)) { 15725 if (states_equal(env, &sl->state, cur)) { 15726 struct bpf_func_state *cur_frame; 15727 struct bpf_reg_state *iter_state, *iter_reg; 15728 int spi; 15729 15730 cur_frame = cur->frame[cur->curframe]; 15731 /* btf_check_iter_kfuncs() enforces that 15732 * iter state pointer is always the first arg 15733 */ 15734 iter_reg = &cur_frame->regs[BPF_REG_1]; 15735 /* current state is valid due to states_equal(), 15736 * so we can assume valid iter and reg state, 15737 * no need for extra (re-)validations 15738 */ 15739 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 15740 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 15741 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 15742 goto hit; 15743 } 15744 goto skip_inf_loop_check; 15745 } 15746 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 15747 if (states_maybe_looping(&sl->state, cur) && 15748 states_equal(env, &sl->state, cur) && 15749 !iter_active_depths_differ(&sl->state, cur)) { 15750 verbose_linfo(env, insn_idx, "; "); 15751 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 15752 return -EINVAL; 15753 } 15754 /* if the verifier is processing a loop, avoid adding new state 15755 * too often, since different loop iterations have distinct 15756 * states and may not help future pruning. 15757 * This threshold shouldn't be too low to make sure that 15758 * a loop with large bound will be rejected quickly. 15759 * The most abusive loop will be: 15760 * r1 += 1 15761 * if r1 < 1000000 goto pc-2 15762 * 1M insn_procssed limit / 100 == 10k peak states. 15763 * This threshold shouldn't be too high either, since states 15764 * at the end of the loop are likely to be useful in pruning. 15765 */ 15766 skip_inf_loop_check: 15767 if (!force_new_state && 15768 env->jmps_processed - env->prev_jmps_processed < 20 && 15769 env->insn_processed - env->prev_insn_processed < 100) 15770 add_new_state = false; 15771 goto miss; 15772 } 15773 if (states_equal(env, &sl->state, cur)) { 15774 hit: 15775 sl->hit_cnt++; 15776 /* reached equivalent register/stack state, 15777 * prune the search. 15778 * Registers read by the continuation are read by us. 15779 * If we have any write marks in env->cur_state, they 15780 * will prevent corresponding reads in the continuation 15781 * from reaching our parent (an explored_state). Our 15782 * own state will get the read marks recorded, but 15783 * they'll be immediately forgotten as we're pruning 15784 * this state and will pop a new one. 15785 */ 15786 err = propagate_liveness(env, &sl->state, cur); 15787 15788 /* if previous state reached the exit with precision and 15789 * current state is equivalent to it (except precsion marks) 15790 * the precision needs to be propagated back in 15791 * the current state. 15792 */ 15793 err = err ? : push_jmp_history(env, cur); 15794 err = err ? : propagate_precision(env, &sl->state); 15795 if (err) 15796 return err; 15797 return 1; 15798 } 15799 miss: 15800 /* when new state is not going to be added do not increase miss count. 15801 * Otherwise several loop iterations will remove the state 15802 * recorded earlier. The goal of these heuristics is to have 15803 * states from some iterations of the loop (some in the beginning 15804 * and some at the end) to help pruning. 15805 */ 15806 if (add_new_state) 15807 sl->miss_cnt++; 15808 /* heuristic to determine whether this state is beneficial 15809 * to keep checking from state equivalence point of view. 15810 * Higher numbers increase max_states_per_insn and verification time, 15811 * but do not meaningfully decrease insn_processed. 15812 */ 15813 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 15814 /* the state is unlikely to be useful. Remove it to 15815 * speed up verification 15816 */ 15817 *pprev = sl->next; 15818 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 15819 u32 br = sl->state.branches; 15820 15821 WARN_ONCE(br, 15822 "BUG live_done but branches_to_explore %d\n", 15823 br); 15824 free_verifier_state(&sl->state, false); 15825 kfree(sl); 15826 env->peak_states--; 15827 } else { 15828 /* cannot free this state, since parentage chain may 15829 * walk it later. Add it for free_list instead to 15830 * be freed at the end of verification 15831 */ 15832 sl->next = env->free_list; 15833 env->free_list = sl; 15834 } 15835 sl = *pprev; 15836 continue; 15837 } 15838 next: 15839 pprev = &sl->next; 15840 sl = *pprev; 15841 } 15842 15843 if (env->max_states_per_insn < states_cnt) 15844 env->max_states_per_insn = states_cnt; 15845 15846 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 15847 return 0; 15848 15849 if (!add_new_state) 15850 return 0; 15851 15852 /* There were no equivalent states, remember the current one. 15853 * Technically the current state is not proven to be safe yet, 15854 * but it will either reach outer most bpf_exit (which means it's safe) 15855 * or it will be rejected. When there are no loops the verifier won't be 15856 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 15857 * again on the way to bpf_exit. 15858 * When looping the sl->state.branches will be > 0 and this state 15859 * will not be considered for equivalence until branches == 0. 15860 */ 15861 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 15862 if (!new_sl) 15863 return -ENOMEM; 15864 env->total_states++; 15865 env->peak_states++; 15866 env->prev_jmps_processed = env->jmps_processed; 15867 env->prev_insn_processed = env->insn_processed; 15868 15869 /* forget precise markings we inherited, see __mark_chain_precision */ 15870 if (env->bpf_capable) 15871 mark_all_scalars_imprecise(env, cur); 15872 15873 /* add new state to the head of linked list */ 15874 new = &new_sl->state; 15875 err = copy_verifier_state(new, cur); 15876 if (err) { 15877 free_verifier_state(new, false); 15878 kfree(new_sl); 15879 return err; 15880 } 15881 new->insn_idx = insn_idx; 15882 WARN_ONCE(new->branches != 1, 15883 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 15884 15885 cur->parent = new; 15886 cur->first_insn_idx = insn_idx; 15887 clear_jmp_history(cur); 15888 new_sl->next = *explored_state(env, insn_idx); 15889 *explored_state(env, insn_idx) = new_sl; 15890 /* connect new state to parentage chain. Current frame needs all 15891 * registers connected. Only r6 - r9 of the callers are alive (pushed 15892 * to the stack implicitly by JITs) so in callers' frames connect just 15893 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 15894 * the state of the call instruction (with WRITTEN set), and r0 comes 15895 * from callee with its full parentage chain, anyway. 15896 */ 15897 /* clear write marks in current state: the writes we did are not writes 15898 * our child did, so they don't screen off its reads from us. 15899 * (There are no read marks in current state, because reads always mark 15900 * their parent and current state never has children yet. Only 15901 * explored_states can get read marks.) 15902 */ 15903 for (j = 0; j <= cur->curframe; j++) { 15904 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 15905 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 15906 for (i = 0; i < BPF_REG_FP; i++) 15907 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 15908 } 15909 15910 /* all stack frames are accessible from callee, clear them all */ 15911 for (j = 0; j <= cur->curframe; j++) { 15912 struct bpf_func_state *frame = cur->frame[j]; 15913 struct bpf_func_state *newframe = new->frame[j]; 15914 15915 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 15916 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 15917 frame->stack[i].spilled_ptr.parent = 15918 &newframe->stack[i].spilled_ptr; 15919 } 15920 } 15921 return 0; 15922 } 15923 15924 /* Return true if it's OK to have the same insn return a different type. */ 15925 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 15926 { 15927 switch (base_type(type)) { 15928 case PTR_TO_CTX: 15929 case PTR_TO_SOCKET: 15930 case PTR_TO_SOCK_COMMON: 15931 case PTR_TO_TCP_SOCK: 15932 case PTR_TO_XDP_SOCK: 15933 case PTR_TO_BTF_ID: 15934 return false; 15935 default: 15936 return true; 15937 } 15938 } 15939 15940 /* If an instruction was previously used with particular pointer types, then we 15941 * need to be careful to avoid cases such as the below, where it may be ok 15942 * for one branch accessing the pointer, but not ok for the other branch: 15943 * 15944 * R1 = sock_ptr 15945 * goto X; 15946 * ... 15947 * R1 = some_other_valid_ptr; 15948 * goto X; 15949 * ... 15950 * R2 = *(u32 *)(R1 + 0); 15951 */ 15952 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 15953 { 15954 return src != prev && (!reg_type_mismatch_ok(src) || 15955 !reg_type_mismatch_ok(prev)); 15956 } 15957 15958 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 15959 bool allow_trust_missmatch) 15960 { 15961 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 15962 15963 if (*prev_type == NOT_INIT) { 15964 /* Saw a valid insn 15965 * dst_reg = *(u32 *)(src_reg + off) 15966 * save type to validate intersecting paths 15967 */ 15968 *prev_type = type; 15969 } else if (reg_type_mismatch(type, *prev_type)) { 15970 /* Abuser program is trying to use the same insn 15971 * dst_reg = *(u32*) (src_reg + off) 15972 * with different pointer types: 15973 * src_reg == ctx in one branch and 15974 * src_reg == stack|map in some other branch. 15975 * Reject it. 15976 */ 15977 if (allow_trust_missmatch && 15978 base_type(type) == PTR_TO_BTF_ID && 15979 base_type(*prev_type) == PTR_TO_BTF_ID) { 15980 /* 15981 * Have to support a use case when one path through 15982 * the program yields TRUSTED pointer while another 15983 * is UNTRUSTED. Fallback to UNTRUSTED to generate 15984 * BPF_PROBE_MEM. 15985 */ 15986 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 15987 } else { 15988 verbose(env, "same insn cannot be used with different pointers\n"); 15989 return -EINVAL; 15990 } 15991 } 15992 15993 return 0; 15994 } 15995 15996 static int do_check(struct bpf_verifier_env *env) 15997 { 15998 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 15999 struct bpf_verifier_state *state = env->cur_state; 16000 struct bpf_insn *insns = env->prog->insnsi; 16001 struct bpf_reg_state *regs; 16002 int insn_cnt = env->prog->len; 16003 bool do_print_state = false; 16004 int prev_insn_idx = -1; 16005 16006 for (;;) { 16007 struct bpf_insn *insn; 16008 u8 class; 16009 int err; 16010 16011 env->prev_insn_idx = prev_insn_idx; 16012 if (env->insn_idx >= insn_cnt) { 16013 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16014 env->insn_idx, insn_cnt); 16015 return -EFAULT; 16016 } 16017 16018 insn = &insns[env->insn_idx]; 16019 class = BPF_CLASS(insn->code); 16020 16021 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16022 verbose(env, 16023 "BPF program is too large. Processed %d insn\n", 16024 env->insn_processed); 16025 return -E2BIG; 16026 } 16027 16028 state->last_insn_idx = env->prev_insn_idx; 16029 16030 if (is_prune_point(env, env->insn_idx)) { 16031 err = is_state_visited(env, env->insn_idx); 16032 if (err < 0) 16033 return err; 16034 if (err == 1) { 16035 /* found equivalent state, can prune the search */ 16036 if (env->log.level & BPF_LOG_LEVEL) { 16037 if (do_print_state) 16038 verbose(env, "\nfrom %d to %d%s: safe\n", 16039 env->prev_insn_idx, env->insn_idx, 16040 env->cur_state->speculative ? 16041 " (speculative execution)" : ""); 16042 else 16043 verbose(env, "%d: safe\n", env->insn_idx); 16044 } 16045 goto process_bpf_exit; 16046 } 16047 } 16048 16049 if (is_jmp_point(env, env->insn_idx)) { 16050 err = push_jmp_history(env, state); 16051 if (err) 16052 return err; 16053 } 16054 16055 if (signal_pending(current)) 16056 return -EAGAIN; 16057 16058 if (need_resched()) 16059 cond_resched(); 16060 16061 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16062 verbose(env, "\nfrom %d to %d%s:", 16063 env->prev_insn_idx, env->insn_idx, 16064 env->cur_state->speculative ? 16065 " (speculative execution)" : ""); 16066 print_verifier_state(env, state->frame[state->curframe], true); 16067 do_print_state = false; 16068 } 16069 16070 if (env->log.level & BPF_LOG_LEVEL) { 16071 const struct bpf_insn_cbs cbs = { 16072 .cb_call = disasm_kfunc_name, 16073 .cb_print = verbose, 16074 .private_data = env, 16075 }; 16076 16077 if (verifier_state_scratched(env)) 16078 print_insn_state(env, state->frame[state->curframe]); 16079 16080 verbose_linfo(env, env->insn_idx, "; "); 16081 env->prev_log_pos = env->log.end_pos; 16082 verbose(env, "%d: ", env->insn_idx); 16083 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16084 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16085 env->prev_log_pos = env->log.end_pos; 16086 } 16087 16088 if (bpf_prog_is_offloaded(env->prog->aux)) { 16089 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16090 env->prev_insn_idx); 16091 if (err) 16092 return err; 16093 } 16094 16095 regs = cur_regs(env); 16096 sanitize_mark_insn_seen(env); 16097 prev_insn_idx = env->insn_idx; 16098 16099 if (class == BPF_ALU || class == BPF_ALU64) { 16100 err = check_alu_op(env, insn); 16101 if (err) 16102 return err; 16103 16104 } else if (class == BPF_LDX) { 16105 enum bpf_reg_type src_reg_type; 16106 16107 /* check for reserved fields is already done */ 16108 16109 /* check src operand */ 16110 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16111 if (err) 16112 return err; 16113 16114 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16115 if (err) 16116 return err; 16117 16118 src_reg_type = regs[insn->src_reg].type; 16119 16120 /* check that memory (src_reg + off) is readable, 16121 * the state of dst_reg will be updated by this func 16122 */ 16123 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16124 insn->off, BPF_SIZE(insn->code), 16125 BPF_READ, insn->dst_reg, false); 16126 if (err) 16127 return err; 16128 16129 err = save_aux_ptr_type(env, src_reg_type, true); 16130 if (err) 16131 return err; 16132 } else if (class == BPF_STX) { 16133 enum bpf_reg_type dst_reg_type; 16134 16135 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16136 err = check_atomic(env, env->insn_idx, insn); 16137 if (err) 16138 return err; 16139 env->insn_idx++; 16140 continue; 16141 } 16142 16143 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16144 verbose(env, "BPF_STX uses reserved fields\n"); 16145 return -EINVAL; 16146 } 16147 16148 /* check src1 operand */ 16149 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16150 if (err) 16151 return err; 16152 /* check src2 operand */ 16153 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16154 if (err) 16155 return err; 16156 16157 dst_reg_type = regs[insn->dst_reg].type; 16158 16159 /* check that memory (dst_reg + off) is writeable */ 16160 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16161 insn->off, BPF_SIZE(insn->code), 16162 BPF_WRITE, insn->src_reg, false); 16163 if (err) 16164 return err; 16165 16166 err = save_aux_ptr_type(env, dst_reg_type, false); 16167 if (err) 16168 return err; 16169 } else if (class == BPF_ST) { 16170 enum bpf_reg_type dst_reg_type; 16171 16172 if (BPF_MODE(insn->code) != BPF_MEM || 16173 insn->src_reg != BPF_REG_0) { 16174 verbose(env, "BPF_ST uses reserved fields\n"); 16175 return -EINVAL; 16176 } 16177 /* check src operand */ 16178 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16179 if (err) 16180 return err; 16181 16182 dst_reg_type = regs[insn->dst_reg].type; 16183 16184 /* check that memory (dst_reg + off) is writeable */ 16185 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16186 insn->off, BPF_SIZE(insn->code), 16187 BPF_WRITE, -1, false); 16188 if (err) 16189 return err; 16190 16191 err = save_aux_ptr_type(env, dst_reg_type, false); 16192 if (err) 16193 return err; 16194 } else if (class == BPF_JMP || class == BPF_JMP32) { 16195 u8 opcode = BPF_OP(insn->code); 16196 16197 env->jmps_processed++; 16198 if (opcode == BPF_CALL) { 16199 if (BPF_SRC(insn->code) != BPF_K || 16200 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16201 && insn->off != 0) || 16202 (insn->src_reg != BPF_REG_0 && 16203 insn->src_reg != BPF_PSEUDO_CALL && 16204 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16205 insn->dst_reg != BPF_REG_0 || 16206 class == BPF_JMP32) { 16207 verbose(env, "BPF_CALL uses reserved fields\n"); 16208 return -EINVAL; 16209 } 16210 16211 if (env->cur_state->active_lock.ptr) { 16212 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16213 (insn->src_reg == BPF_PSEUDO_CALL) || 16214 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16215 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16216 verbose(env, "function calls are not allowed while holding a lock\n"); 16217 return -EINVAL; 16218 } 16219 } 16220 if (insn->src_reg == BPF_PSEUDO_CALL) 16221 err = check_func_call(env, insn, &env->insn_idx); 16222 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16223 err = check_kfunc_call(env, insn, &env->insn_idx); 16224 else 16225 err = check_helper_call(env, insn, &env->insn_idx); 16226 if (err) 16227 return err; 16228 16229 mark_reg_scratched(env, BPF_REG_0); 16230 } else if (opcode == BPF_JA) { 16231 if (BPF_SRC(insn->code) != BPF_K || 16232 insn->imm != 0 || 16233 insn->src_reg != BPF_REG_0 || 16234 insn->dst_reg != BPF_REG_0 || 16235 class == BPF_JMP32) { 16236 verbose(env, "BPF_JA uses reserved fields\n"); 16237 return -EINVAL; 16238 } 16239 16240 env->insn_idx += insn->off + 1; 16241 continue; 16242 16243 } else if (opcode == BPF_EXIT) { 16244 if (BPF_SRC(insn->code) != BPF_K || 16245 insn->imm != 0 || 16246 insn->src_reg != BPF_REG_0 || 16247 insn->dst_reg != BPF_REG_0 || 16248 class == BPF_JMP32) { 16249 verbose(env, "BPF_EXIT uses reserved fields\n"); 16250 return -EINVAL; 16251 } 16252 16253 if (env->cur_state->active_lock.ptr && 16254 !in_rbtree_lock_required_cb(env)) { 16255 verbose(env, "bpf_spin_unlock is missing\n"); 16256 return -EINVAL; 16257 } 16258 16259 if (env->cur_state->active_rcu_lock) { 16260 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16261 return -EINVAL; 16262 } 16263 16264 /* We must do check_reference_leak here before 16265 * prepare_func_exit to handle the case when 16266 * state->curframe > 0, it may be a callback 16267 * function, for which reference_state must 16268 * match caller reference state when it exits. 16269 */ 16270 err = check_reference_leak(env); 16271 if (err) 16272 return err; 16273 16274 if (state->curframe) { 16275 /* exit from nested function */ 16276 err = prepare_func_exit(env, &env->insn_idx); 16277 if (err) 16278 return err; 16279 do_print_state = true; 16280 continue; 16281 } 16282 16283 err = check_return_code(env); 16284 if (err) 16285 return err; 16286 process_bpf_exit: 16287 mark_verifier_state_scratched(env); 16288 update_branch_counts(env, env->cur_state); 16289 err = pop_stack(env, &prev_insn_idx, 16290 &env->insn_idx, pop_log); 16291 if (err < 0) { 16292 if (err != -ENOENT) 16293 return err; 16294 break; 16295 } else { 16296 do_print_state = true; 16297 continue; 16298 } 16299 } else { 16300 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16301 if (err) 16302 return err; 16303 } 16304 } else if (class == BPF_LD) { 16305 u8 mode = BPF_MODE(insn->code); 16306 16307 if (mode == BPF_ABS || mode == BPF_IND) { 16308 err = check_ld_abs(env, insn); 16309 if (err) 16310 return err; 16311 16312 } else if (mode == BPF_IMM) { 16313 err = check_ld_imm(env, insn); 16314 if (err) 16315 return err; 16316 16317 env->insn_idx++; 16318 sanitize_mark_insn_seen(env); 16319 } else { 16320 verbose(env, "invalid BPF_LD mode\n"); 16321 return -EINVAL; 16322 } 16323 } else { 16324 verbose(env, "unknown insn class %d\n", class); 16325 return -EINVAL; 16326 } 16327 16328 env->insn_idx++; 16329 } 16330 16331 return 0; 16332 } 16333 16334 static int find_btf_percpu_datasec(struct btf *btf) 16335 { 16336 const struct btf_type *t; 16337 const char *tname; 16338 int i, n; 16339 16340 /* 16341 * Both vmlinux and module each have their own ".data..percpu" 16342 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16343 * types to look at only module's own BTF types. 16344 */ 16345 n = btf_nr_types(btf); 16346 if (btf_is_module(btf)) 16347 i = btf_nr_types(btf_vmlinux); 16348 else 16349 i = 1; 16350 16351 for(; i < n; i++) { 16352 t = btf_type_by_id(btf, i); 16353 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16354 continue; 16355 16356 tname = btf_name_by_offset(btf, t->name_off); 16357 if (!strcmp(tname, ".data..percpu")) 16358 return i; 16359 } 16360 16361 return -ENOENT; 16362 } 16363 16364 /* replace pseudo btf_id with kernel symbol address */ 16365 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16366 struct bpf_insn *insn, 16367 struct bpf_insn_aux_data *aux) 16368 { 16369 const struct btf_var_secinfo *vsi; 16370 const struct btf_type *datasec; 16371 struct btf_mod_pair *btf_mod; 16372 const struct btf_type *t; 16373 const char *sym_name; 16374 bool percpu = false; 16375 u32 type, id = insn->imm; 16376 struct btf *btf; 16377 s32 datasec_id; 16378 u64 addr; 16379 int i, btf_fd, err; 16380 16381 btf_fd = insn[1].imm; 16382 if (btf_fd) { 16383 btf = btf_get_by_fd(btf_fd); 16384 if (IS_ERR(btf)) { 16385 verbose(env, "invalid module BTF object FD specified.\n"); 16386 return -EINVAL; 16387 } 16388 } else { 16389 if (!btf_vmlinux) { 16390 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16391 return -EINVAL; 16392 } 16393 btf = btf_vmlinux; 16394 btf_get(btf); 16395 } 16396 16397 t = btf_type_by_id(btf, id); 16398 if (!t) { 16399 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16400 err = -ENOENT; 16401 goto err_put; 16402 } 16403 16404 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16405 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16406 err = -EINVAL; 16407 goto err_put; 16408 } 16409 16410 sym_name = btf_name_by_offset(btf, t->name_off); 16411 addr = kallsyms_lookup_name(sym_name); 16412 if (!addr) { 16413 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16414 sym_name); 16415 err = -ENOENT; 16416 goto err_put; 16417 } 16418 insn[0].imm = (u32)addr; 16419 insn[1].imm = addr >> 32; 16420 16421 if (btf_type_is_func(t)) { 16422 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16423 aux->btf_var.mem_size = 0; 16424 goto check_btf; 16425 } 16426 16427 datasec_id = find_btf_percpu_datasec(btf); 16428 if (datasec_id > 0) { 16429 datasec = btf_type_by_id(btf, datasec_id); 16430 for_each_vsi(i, datasec, vsi) { 16431 if (vsi->type == id) { 16432 percpu = true; 16433 break; 16434 } 16435 } 16436 } 16437 16438 type = t->type; 16439 t = btf_type_skip_modifiers(btf, type, NULL); 16440 if (percpu) { 16441 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16442 aux->btf_var.btf = btf; 16443 aux->btf_var.btf_id = type; 16444 } else if (!btf_type_is_struct(t)) { 16445 const struct btf_type *ret; 16446 const char *tname; 16447 u32 tsize; 16448 16449 /* resolve the type size of ksym. */ 16450 ret = btf_resolve_size(btf, t, &tsize); 16451 if (IS_ERR(ret)) { 16452 tname = btf_name_by_offset(btf, t->name_off); 16453 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16454 tname, PTR_ERR(ret)); 16455 err = -EINVAL; 16456 goto err_put; 16457 } 16458 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16459 aux->btf_var.mem_size = tsize; 16460 } else { 16461 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16462 aux->btf_var.btf = btf; 16463 aux->btf_var.btf_id = type; 16464 } 16465 check_btf: 16466 /* check whether we recorded this BTF (and maybe module) already */ 16467 for (i = 0; i < env->used_btf_cnt; i++) { 16468 if (env->used_btfs[i].btf == btf) { 16469 btf_put(btf); 16470 return 0; 16471 } 16472 } 16473 16474 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16475 err = -E2BIG; 16476 goto err_put; 16477 } 16478 16479 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16480 btf_mod->btf = btf; 16481 btf_mod->module = NULL; 16482 16483 /* if we reference variables from kernel module, bump its refcount */ 16484 if (btf_is_module(btf)) { 16485 btf_mod->module = btf_try_get_module(btf); 16486 if (!btf_mod->module) { 16487 err = -ENXIO; 16488 goto err_put; 16489 } 16490 } 16491 16492 env->used_btf_cnt++; 16493 16494 return 0; 16495 err_put: 16496 btf_put(btf); 16497 return err; 16498 } 16499 16500 static bool is_tracing_prog_type(enum bpf_prog_type type) 16501 { 16502 switch (type) { 16503 case BPF_PROG_TYPE_KPROBE: 16504 case BPF_PROG_TYPE_TRACEPOINT: 16505 case BPF_PROG_TYPE_PERF_EVENT: 16506 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16507 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16508 return true; 16509 default: 16510 return false; 16511 } 16512 } 16513 16514 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16515 struct bpf_map *map, 16516 struct bpf_prog *prog) 16517 16518 { 16519 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16520 16521 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16522 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16523 if (is_tracing_prog_type(prog_type)) { 16524 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16525 return -EINVAL; 16526 } 16527 } 16528 16529 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16530 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16531 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16532 return -EINVAL; 16533 } 16534 16535 if (is_tracing_prog_type(prog_type)) { 16536 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16537 return -EINVAL; 16538 } 16539 16540 if (prog->aux->sleepable) { 16541 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 16542 return -EINVAL; 16543 } 16544 } 16545 16546 if (btf_record_has_field(map->record, BPF_TIMER)) { 16547 if (is_tracing_prog_type(prog_type)) { 16548 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16549 return -EINVAL; 16550 } 16551 } 16552 16553 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16554 !bpf_offload_prog_map_match(prog, map)) { 16555 verbose(env, "offload device mismatch between prog and map\n"); 16556 return -EINVAL; 16557 } 16558 16559 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16560 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16561 return -EINVAL; 16562 } 16563 16564 if (prog->aux->sleepable) 16565 switch (map->map_type) { 16566 case BPF_MAP_TYPE_HASH: 16567 case BPF_MAP_TYPE_LRU_HASH: 16568 case BPF_MAP_TYPE_ARRAY: 16569 case BPF_MAP_TYPE_PERCPU_HASH: 16570 case BPF_MAP_TYPE_PERCPU_ARRAY: 16571 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 16572 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 16573 case BPF_MAP_TYPE_HASH_OF_MAPS: 16574 case BPF_MAP_TYPE_RINGBUF: 16575 case BPF_MAP_TYPE_USER_RINGBUF: 16576 case BPF_MAP_TYPE_INODE_STORAGE: 16577 case BPF_MAP_TYPE_SK_STORAGE: 16578 case BPF_MAP_TYPE_TASK_STORAGE: 16579 case BPF_MAP_TYPE_CGRP_STORAGE: 16580 break; 16581 default: 16582 verbose(env, 16583 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 16584 return -EINVAL; 16585 } 16586 16587 return 0; 16588 } 16589 16590 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 16591 { 16592 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 16593 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 16594 } 16595 16596 /* find and rewrite pseudo imm in ld_imm64 instructions: 16597 * 16598 * 1. if it accesses map FD, replace it with actual map pointer. 16599 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 16600 * 16601 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 16602 */ 16603 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 16604 { 16605 struct bpf_insn *insn = env->prog->insnsi; 16606 int insn_cnt = env->prog->len; 16607 int i, j, err; 16608 16609 err = bpf_prog_calc_tag(env->prog); 16610 if (err) 16611 return err; 16612 16613 for (i = 0; i < insn_cnt; i++, insn++) { 16614 if (BPF_CLASS(insn->code) == BPF_LDX && 16615 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 16616 verbose(env, "BPF_LDX uses reserved fields\n"); 16617 return -EINVAL; 16618 } 16619 16620 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 16621 struct bpf_insn_aux_data *aux; 16622 struct bpf_map *map; 16623 struct fd f; 16624 u64 addr; 16625 u32 fd; 16626 16627 if (i == insn_cnt - 1 || insn[1].code != 0 || 16628 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 16629 insn[1].off != 0) { 16630 verbose(env, "invalid bpf_ld_imm64 insn\n"); 16631 return -EINVAL; 16632 } 16633 16634 if (insn[0].src_reg == 0) 16635 /* valid generic load 64-bit imm */ 16636 goto next_insn; 16637 16638 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 16639 aux = &env->insn_aux_data[i]; 16640 err = check_pseudo_btf_id(env, insn, aux); 16641 if (err) 16642 return err; 16643 goto next_insn; 16644 } 16645 16646 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 16647 aux = &env->insn_aux_data[i]; 16648 aux->ptr_type = PTR_TO_FUNC; 16649 goto next_insn; 16650 } 16651 16652 /* In final convert_pseudo_ld_imm64() step, this is 16653 * converted into regular 64-bit imm load insn. 16654 */ 16655 switch (insn[0].src_reg) { 16656 case BPF_PSEUDO_MAP_VALUE: 16657 case BPF_PSEUDO_MAP_IDX_VALUE: 16658 break; 16659 case BPF_PSEUDO_MAP_FD: 16660 case BPF_PSEUDO_MAP_IDX: 16661 if (insn[1].imm == 0) 16662 break; 16663 fallthrough; 16664 default: 16665 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 16666 return -EINVAL; 16667 } 16668 16669 switch (insn[0].src_reg) { 16670 case BPF_PSEUDO_MAP_IDX_VALUE: 16671 case BPF_PSEUDO_MAP_IDX: 16672 if (bpfptr_is_null(env->fd_array)) { 16673 verbose(env, "fd_idx without fd_array is invalid\n"); 16674 return -EPROTO; 16675 } 16676 if (copy_from_bpfptr_offset(&fd, env->fd_array, 16677 insn[0].imm * sizeof(fd), 16678 sizeof(fd))) 16679 return -EFAULT; 16680 break; 16681 default: 16682 fd = insn[0].imm; 16683 break; 16684 } 16685 16686 f = fdget(fd); 16687 map = __bpf_map_get(f); 16688 if (IS_ERR(map)) { 16689 verbose(env, "fd %d is not pointing to valid bpf_map\n", 16690 insn[0].imm); 16691 return PTR_ERR(map); 16692 } 16693 16694 err = check_map_prog_compatibility(env, map, env->prog); 16695 if (err) { 16696 fdput(f); 16697 return err; 16698 } 16699 16700 aux = &env->insn_aux_data[i]; 16701 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 16702 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 16703 addr = (unsigned long)map; 16704 } else { 16705 u32 off = insn[1].imm; 16706 16707 if (off >= BPF_MAX_VAR_OFF) { 16708 verbose(env, "direct value offset of %u is not allowed\n", off); 16709 fdput(f); 16710 return -EINVAL; 16711 } 16712 16713 if (!map->ops->map_direct_value_addr) { 16714 verbose(env, "no direct value access support for this map type\n"); 16715 fdput(f); 16716 return -EINVAL; 16717 } 16718 16719 err = map->ops->map_direct_value_addr(map, &addr, off); 16720 if (err) { 16721 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 16722 map->value_size, off); 16723 fdput(f); 16724 return err; 16725 } 16726 16727 aux->map_off = off; 16728 addr += off; 16729 } 16730 16731 insn[0].imm = (u32)addr; 16732 insn[1].imm = addr >> 32; 16733 16734 /* check whether we recorded this map already */ 16735 for (j = 0; j < env->used_map_cnt; j++) { 16736 if (env->used_maps[j] == map) { 16737 aux->map_index = j; 16738 fdput(f); 16739 goto next_insn; 16740 } 16741 } 16742 16743 if (env->used_map_cnt >= MAX_USED_MAPS) { 16744 fdput(f); 16745 return -E2BIG; 16746 } 16747 16748 /* hold the map. If the program is rejected by verifier, 16749 * the map will be released by release_maps() or it 16750 * will be used by the valid program until it's unloaded 16751 * and all maps are released in free_used_maps() 16752 */ 16753 bpf_map_inc(map); 16754 16755 aux->map_index = env->used_map_cnt; 16756 env->used_maps[env->used_map_cnt++] = map; 16757 16758 if (bpf_map_is_cgroup_storage(map) && 16759 bpf_cgroup_storage_assign(env->prog->aux, map)) { 16760 verbose(env, "only one cgroup storage of each type is allowed\n"); 16761 fdput(f); 16762 return -EBUSY; 16763 } 16764 16765 fdput(f); 16766 next_insn: 16767 insn++; 16768 i++; 16769 continue; 16770 } 16771 16772 /* Basic sanity check before we invest more work here. */ 16773 if (!bpf_opcode_in_insntable(insn->code)) { 16774 verbose(env, "unknown opcode %02x\n", insn->code); 16775 return -EINVAL; 16776 } 16777 } 16778 16779 /* now all pseudo BPF_LD_IMM64 instructions load valid 16780 * 'struct bpf_map *' into a register instead of user map_fd. 16781 * These pointers will be used later by verifier to validate map access. 16782 */ 16783 return 0; 16784 } 16785 16786 /* drop refcnt of maps used by the rejected program */ 16787 static void release_maps(struct bpf_verifier_env *env) 16788 { 16789 __bpf_free_used_maps(env->prog->aux, env->used_maps, 16790 env->used_map_cnt); 16791 } 16792 16793 /* drop refcnt of maps used by the rejected program */ 16794 static void release_btfs(struct bpf_verifier_env *env) 16795 { 16796 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 16797 env->used_btf_cnt); 16798 } 16799 16800 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 16801 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 16802 { 16803 struct bpf_insn *insn = env->prog->insnsi; 16804 int insn_cnt = env->prog->len; 16805 int i; 16806 16807 for (i = 0; i < insn_cnt; i++, insn++) { 16808 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 16809 continue; 16810 if (insn->src_reg == BPF_PSEUDO_FUNC) 16811 continue; 16812 insn->src_reg = 0; 16813 } 16814 } 16815 16816 /* single env->prog->insni[off] instruction was replaced with the range 16817 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 16818 * [0, off) and [off, end) to new locations, so the patched range stays zero 16819 */ 16820 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 16821 struct bpf_insn_aux_data *new_data, 16822 struct bpf_prog *new_prog, u32 off, u32 cnt) 16823 { 16824 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 16825 struct bpf_insn *insn = new_prog->insnsi; 16826 u32 old_seen = old_data[off].seen; 16827 u32 prog_len; 16828 int i; 16829 16830 /* aux info at OFF always needs adjustment, no matter fast path 16831 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 16832 * original insn at old prog. 16833 */ 16834 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 16835 16836 if (cnt == 1) 16837 return; 16838 prog_len = new_prog->len; 16839 16840 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 16841 memcpy(new_data + off + cnt - 1, old_data + off, 16842 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 16843 for (i = off; i < off + cnt - 1; i++) { 16844 /* Expand insni[off]'s seen count to the patched range. */ 16845 new_data[i].seen = old_seen; 16846 new_data[i].zext_dst = insn_has_def32(env, insn + i); 16847 } 16848 env->insn_aux_data = new_data; 16849 vfree(old_data); 16850 } 16851 16852 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 16853 { 16854 int i; 16855 16856 if (len == 1) 16857 return; 16858 /* NOTE: fake 'exit' subprog should be updated as well. */ 16859 for (i = 0; i <= env->subprog_cnt; i++) { 16860 if (env->subprog_info[i].start <= off) 16861 continue; 16862 env->subprog_info[i].start += len - 1; 16863 } 16864 } 16865 16866 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 16867 { 16868 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 16869 int i, sz = prog->aux->size_poke_tab; 16870 struct bpf_jit_poke_descriptor *desc; 16871 16872 for (i = 0; i < sz; i++) { 16873 desc = &tab[i]; 16874 if (desc->insn_idx <= off) 16875 continue; 16876 desc->insn_idx += len - 1; 16877 } 16878 } 16879 16880 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 16881 const struct bpf_insn *patch, u32 len) 16882 { 16883 struct bpf_prog *new_prog; 16884 struct bpf_insn_aux_data *new_data = NULL; 16885 16886 if (len > 1) { 16887 new_data = vzalloc(array_size(env->prog->len + len - 1, 16888 sizeof(struct bpf_insn_aux_data))); 16889 if (!new_data) 16890 return NULL; 16891 } 16892 16893 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 16894 if (IS_ERR(new_prog)) { 16895 if (PTR_ERR(new_prog) == -ERANGE) 16896 verbose(env, 16897 "insn %d cannot be patched due to 16-bit range\n", 16898 env->insn_aux_data[off].orig_idx); 16899 vfree(new_data); 16900 return NULL; 16901 } 16902 adjust_insn_aux_data(env, new_data, new_prog, off, len); 16903 adjust_subprog_starts(env, off, len); 16904 adjust_poke_descs(new_prog, off, len); 16905 return new_prog; 16906 } 16907 16908 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 16909 u32 off, u32 cnt) 16910 { 16911 int i, j; 16912 16913 /* find first prog starting at or after off (first to remove) */ 16914 for (i = 0; i < env->subprog_cnt; i++) 16915 if (env->subprog_info[i].start >= off) 16916 break; 16917 /* find first prog starting at or after off + cnt (first to stay) */ 16918 for (j = i; j < env->subprog_cnt; j++) 16919 if (env->subprog_info[j].start >= off + cnt) 16920 break; 16921 /* if j doesn't start exactly at off + cnt, we are just removing 16922 * the front of previous prog 16923 */ 16924 if (env->subprog_info[j].start != off + cnt) 16925 j--; 16926 16927 if (j > i) { 16928 struct bpf_prog_aux *aux = env->prog->aux; 16929 int move; 16930 16931 /* move fake 'exit' subprog as well */ 16932 move = env->subprog_cnt + 1 - j; 16933 16934 memmove(env->subprog_info + i, 16935 env->subprog_info + j, 16936 sizeof(*env->subprog_info) * move); 16937 env->subprog_cnt -= j - i; 16938 16939 /* remove func_info */ 16940 if (aux->func_info) { 16941 move = aux->func_info_cnt - j; 16942 16943 memmove(aux->func_info + i, 16944 aux->func_info + j, 16945 sizeof(*aux->func_info) * move); 16946 aux->func_info_cnt -= j - i; 16947 /* func_info->insn_off is set after all code rewrites, 16948 * in adjust_btf_func() - no need to adjust 16949 */ 16950 } 16951 } else { 16952 /* convert i from "first prog to remove" to "first to adjust" */ 16953 if (env->subprog_info[i].start == off) 16954 i++; 16955 } 16956 16957 /* update fake 'exit' subprog as well */ 16958 for (; i <= env->subprog_cnt; i++) 16959 env->subprog_info[i].start -= cnt; 16960 16961 return 0; 16962 } 16963 16964 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 16965 u32 cnt) 16966 { 16967 struct bpf_prog *prog = env->prog; 16968 u32 i, l_off, l_cnt, nr_linfo; 16969 struct bpf_line_info *linfo; 16970 16971 nr_linfo = prog->aux->nr_linfo; 16972 if (!nr_linfo) 16973 return 0; 16974 16975 linfo = prog->aux->linfo; 16976 16977 /* find first line info to remove, count lines to be removed */ 16978 for (i = 0; i < nr_linfo; i++) 16979 if (linfo[i].insn_off >= off) 16980 break; 16981 16982 l_off = i; 16983 l_cnt = 0; 16984 for (; i < nr_linfo; i++) 16985 if (linfo[i].insn_off < off + cnt) 16986 l_cnt++; 16987 else 16988 break; 16989 16990 /* First live insn doesn't match first live linfo, it needs to "inherit" 16991 * last removed linfo. prog is already modified, so prog->len == off 16992 * means no live instructions after (tail of the program was removed). 16993 */ 16994 if (prog->len != off && l_cnt && 16995 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 16996 l_cnt--; 16997 linfo[--i].insn_off = off + cnt; 16998 } 16999 17000 /* remove the line info which refer to the removed instructions */ 17001 if (l_cnt) { 17002 memmove(linfo + l_off, linfo + i, 17003 sizeof(*linfo) * (nr_linfo - i)); 17004 17005 prog->aux->nr_linfo -= l_cnt; 17006 nr_linfo = prog->aux->nr_linfo; 17007 } 17008 17009 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17010 for (i = l_off; i < nr_linfo; i++) 17011 linfo[i].insn_off -= cnt; 17012 17013 /* fix up all subprogs (incl. 'exit') which start >= off */ 17014 for (i = 0; i <= env->subprog_cnt; i++) 17015 if (env->subprog_info[i].linfo_idx > l_off) { 17016 /* program may have started in the removed region but 17017 * may not be fully removed 17018 */ 17019 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17020 env->subprog_info[i].linfo_idx -= l_cnt; 17021 else 17022 env->subprog_info[i].linfo_idx = l_off; 17023 } 17024 17025 return 0; 17026 } 17027 17028 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17029 { 17030 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17031 unsigned int orig_prog_len = env->prog->len; 17032 int err; 17033 17034 if (bpf_prog_is_offloaded(env->prog->aux)) 17035 bpf_prog_offload_remove_insns(env, off, cnt); 17036 17037 err = bpf_remove_insns(env->prog, off, cnt); 17038 if (err) 17039 return err; 17040 17041 err = adjust_subprog_starts_after_remove(env, off, cnt); 17042 if (err) 17043 return err; 17044 17045 err = bpf_adj_linfo_after_remove(env, off, cnt); 17046 if (err) 17047 return err; 17048 17049 memmove(aux_data + off, aux_data + off + cnt, 17050 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17051 17052 return 0; 17053 } 17054 17055 /* The verifier does more data flow analysis than llvm and will not 17056 * explore branches that are dead at run time. Malicious programs can 17057 * have dead code too. Therefore replace all dead at-run-time code 17058 * with 'ja -1'. 17059 * 17060 * Just nops are not optimal, e.g. if they would sit at the end of the 17061 * program and through another bug we would manage to jump there, then 17062 * we'd execute beyond program memory otherwise. Returning exception 17063 * code also wouldn't work since we can have subprogs where the dead 17064 * code could be located. 17065 */ 17066 static void sanitize_dead_code(struct bpf_verifier_env *env) 17067 { 17068 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17069 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17070 struct bpf_insn *insn = env->prog->insnsi; 17071 const int insn_cnt = env->prog->len; 17072 int i; 17073 17074 for (i = 0; i < insn_cnt; i++) { 17075 if (aux_data[i].seen) 17076 continue; 17077 memcpy(insn + i, &trap, sizeof(trap)); 17078 aux_data[i].zext_dst = false; 17079 } 17080 } 17081 17082 static bool insn_is_cond_jump(u8 code) 17083 { 17084 u8 op; 17085 17086 if (BPF_CLASS(code) == BPF_JMP32) 17087 return true; 17088 17089 if (BPF_CLASS(code) != BPF_JMP) 17090 return false; 17091 17092 op = BPF_OP(code); 17093 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17094 } 17095 17096 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17097 { 17098 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17099 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17100 struct bpf_insn *insn = env->prog->insnsi; 17101 const int insn_cnt = env->prog->len; 17102 int i; 17103 17104 for (i = 0; i < insn_cnt; i++, insn++) { 17105 if (!insn_is_cond_jump(insn->code)) 17106 continue; 17107 17108 if (!aux_data[i + 1].seen) 17109 ja.off = insn->off; 17110 else if (!aux_data[i + 1 + insn->off].seen) 17111 ja.off = 0; 17112 else 17113 continue; 17114 17115 if (bpf_prog_is_offloaded(env->prog->aux)) 17116 bpf_prog_offload_replace_insn(env, i, &ja); 17117 17118 memcpy(insn, &ja, sizeof(ja)); 17119 } 17120 } 17121 17122 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17123 { 17124 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17125 int insn_cnt = env->prog->len; 17126 int i, err; 17127 17128 for (i = 0; i < insn_cnt; i++) { 17129 int j; 17130 17131 j = 0; 17132 while (i + j < insn_cnt && !aux_data[i + j].seen) 17133 j++; 17134 if (!j) 17135 continue; 17136 17137 err = verifier_remove_insns(env, i, j); 17138 if (err) 17139 return err; 17140 insn_cnt = env->prog->len; 17141 } 17142 17143 return 0; 17144 } 17145 17146 static int opt_remove_nops(struct bpf_verifier_env *env) 17147 { 17148 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17149 struct bpf_insn *insn = env->prog->insnsi; 17150 int insn_cnt = env->prog->len; 17151 int i, err; 17152 17153 for (i = 0; i < insn_cnt; i++) { 17154 if (memcmp(&insn[i], &ja, sizeof(ja))) 17155 continue; 17156 17157 err = verifier_remove_insns(env, i, 1); 17158 if (err) 17159 return err; 17160 insn_cnt--; 17161 i--; 17162 } 17163 17164 return 0; 17165 } 17166 17167 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17168 const union bpf_attr *attr) 17169 { 17170 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17171 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17172 int i, patch_len, delta = 0, len = env->prog->len; 17173 struct bpf_insn *insns = env->prog->insnsi; 17174 struct bpf_prog *new_prog; 17175 bool rnd_hi32; 17176 17177 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17178 zext_patch[1] = BPF_ZEXT_REG(0); 17179 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17180 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17181 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17182 for (i = 0; i < len; i++) { 17183 int adj_idx = i + delta; 17184 struct bpf_insn insn; 17185 int load_reg; 17186 17187 insn = insns[adj_idx]; 17188 load_reg = insn_def_regno(&insn); 17189 if (!aux[adj_idx].zext_dst) { 17190 u8 code, class; 17191 u32 imm_rnd; 17192 17193 if (!rnd_hi32) 17194 continue; 17195 17196 code = insn.code; 17197 class = BPF_CLASS(code); 17198 if (load_reg == -1) 17199 continue; 17200 17201 /* NOTE: arg "reg" (the fourth one) is only used for 17202 * BPF_STX + SRC_OP, so it is safe to pass NULL 17203 * here. 17204 */ 17205 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17206 if (class == BPF_LD && 17207 BPF_MODE(code) == BPF_IMM) 17208 i++; 17209 continue; 17210 } 17211 17212 /* ctx load could be transformed into wider load. */ 17213 if (class == BPF_LDX && 17214 aux[adj_idx].ptr_type == PTR_TO_CTX) 17215 continue; 17216 17217 imm_rnd = get_random_u32(); 17218 rnd_hi32_patch[0] = insn; 17219 rnd_hi32_patch[1].imm = imm_rnd; 17220 rnd_hi32_patch[3].dst_reg = load_reg; 17221 patch = rnd_hi32_patch; 17222 patch_len = 4; 17223 goto apply_patch_buffer; 17224 } 17225 17226 /* Add in an zero-extend instruction if a) the JIT has requested 17227 * it or b) it's a CMPXCHG. 17228 * 17229 * The latter is because: BPF_CMPXCHG always loads a value into 17230 * R0, therefore always zero-extends. However some archs' 17231 * equivalent instruction only does this load when the 17232 * comparison is successful. This detail of CMPXCHG is 17233 * orthogonal to the general zero-extension behaviour of the 17234 * CPU, so it's treated independently of bpf_jit_needs_zext. 17235 */ 17236 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17237 continue; 17238 17239 /* Zero-extension is done by the caller. */ 17240 if (bpf_pseudo_kfunc_call(&insn)) 17241 continue; 17242 17243 if (WARN_ON(load_reg == -1)) { 17244 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17245 return -EFAULT; 17246 } 17247 17248 zext_patch[0] = insn; 17249 zext_patch[1].dst_reg = load_reg; 17250 zext_patch[1].src_reg = load_reg; 17251 patch = zext_patch; 17252 patch_len = 2; 17253 apply_patch_buffer: 17254 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17255 if (!new_prog) 17256 return -ENOMEM; 17257 env->prog = new_prog; 17258 insns = new_prog->insnsi; 17259 aux = env->insn_aux_data; 17260 delta += patch_len - 1; 17261 } 17262 17263 return 0; 17264 } 17265 17266 /* convert load instructions that access fields of a context type into a 17267 * sequence of instructions that access fields of the underlying structure: 17268 * struct __sk_buff -> struct sk_buff 17269 * struct bpf_sock_ops -> struct sock 17270 */ 17271 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17272 { 17273 const struct bpf_verifier_ops *ops = env->ops; 17274 int i, cnt, size, ctx_field_size, delta = 0; 17275 const int insn_cnt = env->prog->len; 17276 struct bpf_insn insn_buf[16], *insn; 17277 u32 target_size, size_default, off; 17278 struct bpf_prog *new_prog; 17279 enum bpf_access_type type; 17280 bool is_narrower_load; 17281 17282 if (ops->gen_prologue || env->seen_direct_write) { 17283 if (!ops->gen_prologue) { 17284 verbose(env, "bpf verifier is misconfigured\n"); 17285 return -EINVAL; 17286 } 17287 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17288 env->prog); 17289 if (cnt >= ARRAY_SIZE(insn_buf)) { 17290 verbose(env, "bpf verifier is misconfigured\n"); 17291 return -EINVAL; 17292 } else if (cnt) { 17293 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17294 if (!new_prog) 17295 return -ENOMEM; 17296 17297 env->prog = new_prog; 17298 delta += cnt - 1; 17299 } 17300 } 17301 17302 if (bpf_prog_is_offloaded(env->prog->aux)) 17303 return 0; 17304 17305 insn = env->prog->insnsi + delta; 17306 17307 for (i = 0; i < insn_cnt; i++, insn++) { 17308 bpf_convert_ctx_access_t convert_ctx_access; 17309 17310 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17311 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17312 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17313 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 17314 type = BPF_READ; 17315 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17316 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17317 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17318 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17319 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17320 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17321 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17322 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17323 type = BPF_WRITE; 17324 } else { 17325 continue; 17326 } 17327 17328 if (type == BPF_WRITE && 17329 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17330 struct bpf_insn patch[] = { 17331 *insn, 17332 BPF_ST_NOSPEC(), 17333 }; 17334 17335 cnt = ARRAY_SIZE(patch); 17336 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17337 if (!new_prog) 17338 return -ENOMEM; 17339 17340 delta += cnt - 1; 17341 env->prog = new_prog; 17342 insn = new_prog->insnsi + i + delta; 17343 continue; 17344 } 17345 17346 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17347 case PTR_TO_CTX: 17348 if (!ops->convert_ctx_access) 17349 continue; 17350 convert_ctx_access = ops->convert_ctx_access; 17351 break; 17352 case PTR_TO_SOCKET: 17353 case PTR_TO_SOCK_COMMON: 17354 convert_ctx_access = bpf_sock_convert_ctx_access; 17355 break; 17356 case PTR_TO_TCP_SOCK: 17357 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17358 break; 17359 case PTR_TO_XDP_SOCK: 17360 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17361 break; 17362 case PTR_TO_BTF_ID: 17363 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17364 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17365 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17366 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17367 * any faults for loads into such types. BPF_WRITE is disallowed 17368 * for this case. 17369 */ 17370 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17371 if (type == BPF_READ) { 17372 insn->code = BPF_LDX | BPF_PROBE_MEM | 17373 BPF_SIZE((insn)->code); 17374 env->prog->aux->num_exentries++; 17375 } 17376 continue; 17377 default: 17378 continue; 17379 } 17380 17381 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17382 size = BPF_LDST_BYTES(insn); 17383 17384 /* If the read access is a narrower load of the field, 17385 * convert to a 4/8-byte load, to minimum program type specific 17386 * convert_ctx_access changes. If conversion is successful, 17387 * we will apply proper mask to the result. 17388 */ 17389 is_narrower_load = size < ctx_field_size; 17390 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17391 off = insn->off; 17392 if (is_narrower_load) { 17393 u8 size_code; 17394 17395 if (type == BPF_WRITE) { 17396 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17397 return -EINVAL; 17398 } 17399 17400 size_code = BPF_H; 17401 if (ctx_field_size == 4) 17402 size_code = BPF_W; 17403 else if (ctx_field_size == 8) 17404 size_code = BPF_DW; 17405 17406 insn->off = off & ~(size_default - 1); 17407 insn->code = BPF_LDX | BPF_MEM | size_code; 17408 } 17409 17410 target_size = 0; 17411 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17412 &target_size); 17413 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17414 (ctx_field_size && !target_size)) { 17415 verbose(env, "bpf verifier is misconfigured\n"); 17416 return -EINVAL; 17417 } 17418 17419 if (is_narrower_load && size < target_size) { 17420 u8 shift = bpf_ctx_narrow_access_offset( 17421 off, size, size_default) * 8; 17422 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17423 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17424 return -EINVAL; 17425 } 17426 if (ctx_field_size <= 4) { 17427 if (shift) 17428 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17429 insn->dst_reg, 17430 shift); 17431 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17432 (1 << size * 8) - 1); 17433 } else { 17434 if (shift) 17435 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17436 insn->dst_reg, 17437 shift); 17438 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17439 (1ULL << size * 8) - 1); 17440 } 17441 } 17442 17443 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17444 if (!new_prog) 17445 return -ENOMEM; 17446 17447 delta += cnt - 1; 17448 17449 /* keep walking new program and skip insns we just inserted */ 17450 env->prog = new_prog; 17451 insn = new_prog->insnsi + i + delta; 17452 } 17453 17454 return 0; 17455 } 17456 17457 static int jit_subprogs(struct bpf_verifier_env *env) 17458 { 17459 struct bpf_prog *prog = env->prog, **func, *tmp; 17460 int i, j, subprog_start, subprog_end = 0, len, subprog; 17461 struct bpf_map *map_ptr; 17462 struct bpf_insn *insn; 17463 void *old_bpf_func; 17464 int err, num_exentries; 17465 17466 if (env->subprog_cnt <= 1) 17467 return 0; 17468 17469 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17470 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17471 continue; 17472 17473 /* Upon error here we cannot fall back to interpreter but 17474 * need a hard reject of the program. Thus -EFAULT is 17475 * propagated in any case. 17476 */ 17477 subprog = find_subprog(env, i + insn->imm + 1); 17478 if (subprog < 0) { 17479 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17480 i + insn->imm + 1); 17481 return -EFAULT; 17482 } 17483 /* temporarily remember subprog id inside insn instead of 17484 * aux_data, since next loop will split up all insns into funcs 17485 */ 17486 insn->off = subprog; 17487 /* remember original imm in case JIT fails and fallback 17488 * to interpreter will be needed 17489 */ 17490 env->insn_aux_data[i].call_imm = insn->imm; 17491 /* point imm to __bpf_call_base+1 from JITs point of view */ 17492 insn->imm = 1; 17493 if (bpf_pseudo_func(insn)) 17494 /* jit (e.g. x86_64) may emit fewer instructions 17495 * if it learns a u32 imm is the same as a u64 imm. 17496 * Force a non zero here. 17497 */ 17498 insn[1].imm = 1; 17499 } 17500 17501 err = bpf_prog_alloc_jited_linfo(prog); 17502 if (err) 17503 goto out_undo_insn; 17504 17505 err = -ENOMEM; 17506 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17507 if (!func) 17508 goto out_undo_insn; 17509 17510 for (i = 0; i < env->subprog_cnt; i++) { 17511 subprog_start = subprog_end; 17512 subprog_end = env->subprog_info[i + 1].start; 17513 17514 len = subprog_end - subprog_start; 17515 /* bpf_prog_run() doesn't call subprogs directly, 17516 * hence main prog stats include the runtime of subprogs. 17517 * subprogs don't have IDs and not reachable via prog_get_next_id 17518 * func[i]->stats will never be accessed and stays NULL 17519 */ 17520 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17521 if (!func[i]) 17522 goto out_free; 17523 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17524 len * sizeof(struct bpf_insn)); 17525 func[i]->type = prog->type; 17526 func[i]->len = len; 17527 if (bpf_prog_calc_tag(func[i])) 17528 goto out_free; 17529 func[i]->is_func = 1; 17530 func[i]->aux->func_idx = i; 17531 /* Below members will be freed only at prog->aux */ 17532 func[i]->aux->btf = prog->aux->btf; 17533 func[i]->aux->func_info = prog->aux->func_info; 17534 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17535 func[i]->aux->poke_tab = prog->aux->poke_tab; 17536 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17537 17538 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17539 struct bpf_jit_poke_descriptor *poke; 17540 17541 poke = &prog->aux->poke_tab[j]; 17542 if (poke->insn_idx < subprog_end && 17543 poke->insn_idx >= subprog_start) 17544 poke->aux = func[i]->aux; 17545 } 17546 17547 func[i]->aux->name[0] = 'F'; 17548 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 17549 func[i]->jit_requested = 1; 17550 func[i]->blinding_requested = prog->blinding_requested; 17551 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 17552 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 17553 func[i]->aux->linfo = prog->aux->linfo; 17554 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 17555 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 17556 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 17557 num_exentries = 0; 17558 insn = func[i]->insnsi; 17559 for (j = 0; j < func[i]->len; j++, insn++) { 17560 if (BPF_CLASS(insn->code) == BPF_LDX && 17561 BPF_MODE(insn->code) == BPF_PROBE_MEM) 17562 num_exentries++; 17563 } 17564 func[i]->aux->num_exentries = num_exentries; 17565 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 17566 func[i] = bpf_int_jit_compile(func[i]); 17567 if (!func[i]->jited) { 17568 err = -ENOTSUPP; 17569 goto out_free; 17570 } 17571 cond_resched(); 17572 } 17573 17574 /* at this point all bpf functions were successfully JITed 17575 * now populate all bpf_calls with correct addresses and 17576 * run last pass of JIT 17577 */ 17578 for (i = 0; i < env->subprog_cnt; i++) { 17579 insn = func[i]->insnsi; 17580 for (j = 0; j < func[i]->len; j++, insn++) { 17581 if (bpf_pseudo_func(insn)) { 17582 subprog = insn->off; 17583 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 17584 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 17585 continue; 17586 } 17587 if (!bpf_pseudo_call(insn)) 17588 continue; 17589 subprog = insn->off; 17590 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 17591 } 17592 17593 /* we use the aux data to keep a list of the start addresses 17594 * of the JITed images for each function in the program 17595 * 17596 * for some architectures, such as powerpc64, the imm field 17597 * might not be large enough to hold the offset of the start 17598 * address of the callee's JITed image from __bpf_call_base 17599 * 17600 * in such cases, we can lookup the start address of a callee 17601 * by using its subprog id, available from the off field of 17602 * the call instruction, as an index for this list 17603 */ 17604 func[i]->aux->func = func; 17605 func[i]->aux->func_cnt = env->subprog_cnt; 17606 } 17607 for (i = 0; i < env->subprog_cnt; i++) { 17608 old_bpf_func = func[i]->bpf_func; 17609 tmp = bpf_int_jit_compile(func[i]); 17610 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 17611 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 17612 err = -ENOTSUPP; 17613 goto out_free; 17614 } 17615 cond_resched(); 17616 } 17617 17618 /* finally lock prog and jit images for all functions and 17619 * populate kallsysm. Begin at the first subprogram, since 17620 * bpf_prog_load will add the kallsyms for the main program. 17621 */ 17622 for (i = 1; i < env->subprog_cnt; i++) { 17623 bpf_prog_lock_ro(func[i]); 17624 bpf_prog_kallsyms_add(func[i]); 17625 } 17626 17627 /* Last step: make now unused interpreter insns from main 17628 * prog consistent for later dump requests, so they can 17629 * later look the same as if they were interpreted only. 17630 */ 17631 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17632 if (bpf_pseudo_func(insn)) { 17633 insn[0].imm = env->insn_aux_data[i].call_imm; 17634 insn[1].imm = insn->off; 17635 insn->off = 0; 17636 continue; 17637 } 17638 if (!bpf_pseudo_call(insn)) 17639 continue; 17640 insn->off = env->insn_aux_data[i].call_imm; 17641 subprog = find_subprog(env, i + insn->off + 1); 17642 insn->imm = subprog; 17643 } 17644 17645 prog->jited = 1; 17646 prog->bpf_func = func[0]->bpf_func; 17647 prog->jited_len = func[0]->jited_len; 17648 prog->aux->extable = func[0]->aux->extable; 17649 prog->aux->num_exentries = func[0]->aux->num_exentries; 17650 prog->aux->func = func; 17651 prog->aux->func_cnt = env->subprog_cnt; 17652 bpf_prog_jit_attempt_done(prog); 17653 return 0; 17654 out_free: 17655 /* We failed JIT'ing, so at this point we need to unregister poke 17656 * descriptors from subprogs, so that kernel is not attempting to 17657 * patch it anymore as we're freeing the subprog JIT memory. 17658 */ 17659 for (i = 0; i < prog->aux->size_poke_tab; i++) { 17660 map_ptr = prog->aux->poke_tab[i].tail_call.map; 17661 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 17662 } 17663 /* At this point we're guaranteed that poke descriptors are not 17664 * live anymore. We can just unlink its descriptor table as it's 17665 * released with the main prog. 17666 */ 17667 for (i = 0; i < env->subprog_cnt; i++) { 17668 if (!func[i]) 17669 continue; 17670 func[i]->aux->poke_tab = NULL; 17671 bpf_jit_free(func[i]); 17672 } 17673 kfree(func); 17674 out_undo_insn: 17675 /* cleanup main prog to be interpreted */ 17676 prog->jit_requested = 0; 17677 prog->blinding_requested = 0; 17678 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17679 if (!bpf_pseudo_call(insn)) 17680 continue; 17681 insn->off = 0; 17682 insn->imm = env->insn_aux_data[i].call_imm; 17683 } 17684 bpf_prog_jit_attempt_done(prog); 17685 return err; 17686 } 17687 17688 static int fixup_call_args(struct bpf_verifier_env *env) 17689 { 17690 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17691 struct bpf_prog *prog = env->prog; 17692 struct bpf_insn *insn = prog->insnsi; 17693 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 17694 int i, depth; 17695 #endif 17696 int err = 0; 17697 17698 if (env->prog->jit_requested && 17699 !bpf_prog_is_offloaded(env->prog->aux)) { 17700 err = jit_subprogs(env); 17701 if (err == 0) 17702 return 0; 17703 if (err == -EFAULT) 17704 return err; 17705 } 17706 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17707 if (has_kfunc_call) { 17708 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 17709 return -EINVAL; 17710 } 17711 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 17712 /* When JIT fails the progs with bpf2bpf calls and tail_calls 17713 * have to be rejected, since interpreter doesn't support them yet. 17714 */ 17715 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 17716 return -EINVAL; 17717 } 17718 for (i = 0; i < prog->len; i++, insn++) { 17719 if (bpf_pseudo_func(insn)) { 17720 /* When JIT fails the progs with callback calls 17721 * have to be rejected, since interpreter doesn't support them yet. 17722 */ 17723 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 17724 return -EINVAL; 17725 } 17726 17727 if (!bpf_pseudo_call(insn)) 17728 continue; 17729 depth = get_callee_stack_depth(env, insn, i); 17730 if (depth < 0) 17731 return depth; 17732 bpf_patch_call_args(insn, depth); 17733 } 17734 err = 0; 17735 #endif 17736 return err; 17737 } 17738 17739 /* replace a generic kfunc with a specialized version if necessary */ 17740 static void specialize_kfunc(struct bpf_verifier_env *env, 17741 u32 func_id, u16 offset, unsigned long *addr) 17742 { 17743 struct bpf_prog *prog = env->prog; 17744 bool seen_direct_write; 17745 void *xdp_kfunc; 17746 bool is_rdonly; 17747 17748 if (bpf_dev_bound_kfunc_id(func_id)) { 17749 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 17750 if (xdp_kfunc) { 17751 *addr = (unsigned long)xdp_kfunc; 17752 return; 17753 } 17754 /* fallback to default kfunc when not supported by netdev */ 17755 } 17756 17757 if (offset) 17758 return; 17759 17760 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 17761 seen_direct_write = env->seen_direct_write; 17762 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 17763 17764 if (is_rdonly) 17765 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 17766 17767 /* restore env->seen_direct_write to its original value, since 17768 * may_access_direct_pkt_data mutates it 17769 */ 17770 env->seen_direct_write = seen_direct_write; 17771 } 17772 } 17773 17774 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 17775 u16 struct_meta_reg, 17776 u16 node_offset_reg, 17777 struct bpf_insn *insn, 17778 struct bpf_insn *insn_buf, 17779 int *cnt) 17780 { 17781 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 17782 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 17783 17784 insn_buf[0] = addr[0]; 17785 insn_buf[1] = addr[1]; 17786 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 17787 insn_buf[3] = *insn; 17788 *cnt = 4; 17789 } 17790 17791 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 17792 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 17793 { 17794 const struct bpf_kfunc_desc *desc; 17795 17796 if (!insn->imm) { 17797 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 17798 return -EINVAL; 17799 } 17800 17801 *cnt = 0; 17802 17803 /* insn->imm has the btf func_id. Replace it with an offset relative to 17804 * __bpf_call_base, unless the JIT needs to call functions that are 17805 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 17806 */ 17807 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 17808 if (!desc) { 17809 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 17810 insn->imm); 17811 return -EFAULT; 17812 } 17813 17814 if (!bpf_jit_supports_far_kfunc_call()) 17815 insn->imm = BPF_CALL_IMM(desc->addr); 17816 if (insn->off) 17817 return 0; 17818 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 17819 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 17820 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 17821 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 17822 17823 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 17824 insn_buf[1] = addr[0]; 17825 insn_buf[2] = addr[1]; 17826 insn_buf[3] = *insn; 17827 *cnt = 4; 17828 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 17829 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 17830 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 17831 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 17832 17833 insn_buf[0] = addr[0]; 17834 insn_buf[1] = addr[1]; 17835 insn_buf[2] = *insn; 17836 *cnt = 3; 17837 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 17838 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 17839 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 17840 int struct_meta_reg = BPF_REG_3; 17841 int node_offset_reg = BPF_REG_4; 17842 17843 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 17844 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 17845 struct_meta_reg = BPF_REG_4; 17846 node_offset_reg = BPF_REG_5; 17847 } 17848 17849 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 17850 node_offset_reg, insn, insn_buf, cnt); 17851 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 17852 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 17853 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 17854 *cnt = 1; 17855 } 17856 return 0; 17857 } 17858 17859 /* Do various post-verification rewrites in a single program pass. 17860 * These rewrites simplify JIT and interpreter implementations. 17861 */ 17862 static int do_misc_fixups(struct bpf_verifier_env *env) 17863 { 17864 struct bpf_prog *prog = env->prog; 17865 enum bpf_attach_type eatype = prog->expected_attach_type; 17866 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17867 struct bpf_insn *insn = prog->insnsi; 17868 const struct bpf_func_proto *fn; 17869 const int insn_cnt = prog->len; 17870 const struct bpf_map_ops *ops; 17871 struct bpf_insn_aux_data *aux; 17872 struct bpf_insn insn_buf[16]; 17873 struct bpf_prog *new_prog; 17874 struct bpf_map *map_ptr; 17875 int i, ret, cnt, delta = 0; 17876 17877 for (i = 0; i < insn_cnt; i++, insn++) { 17878 /* Make divide-by-zero exceptions impossible. */ 17879 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 17880 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 17881 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 17882 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 17883 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 17884 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 17885 struct bpf_insn *patchlet; 17886 struct bpf_insn chk_and_div[] = { 17887 /* [R,W]x div 0 -> 0 */ 17888 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 17889 BPF_JNE | BPF_K, insn->src_reg, 17890 0, 2, 0), 17891 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 17892 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 17893 *insn, 17894 }; 17895 struct bpf_insn chk_and_mod[] = { 17896 /* [R,W]x mod 0 -> [R,W]x */ 17897 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 17898 BPF_JEQ | BPF_K, insn->src_reg, 17899 0, 1 + (is64 ? 0 : 1), 0), 17900 *insn, 17901 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 17902 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 17903 }; 17904 17905 patchlet = isdiv ? chk_and_div : chk_and_mod; 17906 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 17907 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 17908 17909 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 17910 if (!new_prog) 17911 return -ENOMEM; 17912 17913 delta += cnt - 1; 17914 env->prog = prog = new_prog; 17915 insn = new_prog->insnsi + i + delta; 17916 continue; 17917 } 17918 17919 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 17920 if (BPF_CLASS(insn->code) == BPF_LD && 17921 (BPF_MODE(insn->code) == BPF_ABS || 17922 BPF_MODE(insn->code) == BPF_IND)) { 17923 cnt = env->ops->gen_ld_abs(insn, insn_buf); 17924 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 17925 verbose(env, "bpf verifier is misconfigured\n"); 17926 return -EINVAL; 17927 } 17928 17929 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17930 if (!new_prog) 17931 return -ENOMEM; 17932 17933 delta += cnt - 1; 17934 env->prog = prog = new_prog; 17935 insn = new_prog->insnsi + i + delta; 17936 continue; 17937 } 17938 17939 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 17940 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 17941 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 17942 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 17943 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 17944 struct bpf_insn *patch = &insn_buf[0]; 17945 bool issrc, isneg, isimm; 17946 u32 off_reg; 17947 17948 aux = &env->insn_aux_data[i + delta]; 17949 if (!aux->alu_state || 17950 aux->alu_state == BPF_ALU_NON_POINTER) 17951 continue; 17952 17953 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 17954 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 17955 BPF_ALU_SANITIZE_SRC; 17956 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 17957 17958 off_reg = issrc ? insn->src_reg : insn->dst_reg; 17959 if (isimm) { 17960 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 17961 } else { 17962 if (isneg) 17963 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 17964 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 17965 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 17966 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 17967 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 17968 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 17969 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 17970 } 17971 if (!issrc) 17972 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 17973 insn->src_reg = BPF_REG_AX; 17974 if (isneg) 17975 insn->code = insn->code == code_add ? 17976 code_sub : code_add; 17977 *patch++ = *insn; 17978 if (issrc && isneg && !isimm) 17979 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 17980 cnt = patch - insn_buf; 17981 17982 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17983 if (!new_prog) 17984 return -ENOMEM; 17985 17986 delta += cnt - 1; 17987 env->prog = prog = new_prog; 17988 insn = new_prog->insnsi + i + delta; 17989 continue; 17990 } 17991 17992 if (insn->code != (BPF_JMP | BPF_CALL)) 17993 continue; 17994 if (insn->src_reg == BPF_PSEUDO_CALL) 17995 continue; 17996 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17997 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 17998 if (ret) 17999 return ret; 18000 if (cnt == 0) 18001 continue; 18002 18003 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18004 if (!new_prog) 18005 return -ENOMEM; 18006 18007 delta += cnt - 1; 18008 env->prog = prog = new_prog; 18009 insn = new_prog->insnsi + i + delta; 18010 continue; 18011 } 18012 18013 if (insn->imm == BPF_FUNC_get_route_realm) 18014 prog->dst_needed = 1; 18015 if (insn->imm == BPF_FUNC_get_prandom_u32) 18016 bpf_user_rnd_init_once(); 18017 if (insn->imm == BPF_FUNC_override_return) 18018 prog->kprobe_override = 1; 18019 if (insn->imm == BPF_FUNC_tail_call) { 18020 /* If we tail call into other programs, we 18021 * cannot make any assumptions since they can 18022 * be replaced dynamically during runtime in 18023 * the program array. 18024 */ 18025 prog->cb_access = 1; 18026 if (!allow_tail_call_in_subprogs(env)) 18027 prog->aux->stack_depth = MAX_BPF_STACK; 18028 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18029 18030 /* mark bpf_tail_call as different opcode to avoid 18031 * conditional branch in the interpreter for every normal 18032 * call and to prevent accidental JITing by JIT compiler 18033 * that doesn't support bpf_tail_call yet 18034 */ 18035 insn->imm = 0; 18036 insn->code = BPF_JMP | BPF_TAIL_CALL; 18037 18038 aux = &env->insn_aux_data[i + delta]; 18039 if (env->bpf_capable && !prog->blinding_requested && 18040 prog->jit_requested && 18041 !bpf_map_key_poisoned(aux) && 18042 !bpf_map_ptr_poisoned(aux) && 18043 !bpf_map_ptr_unpriv(aux)) { 18044 struct bpf_jit_poke_descriptor desc = { 18045 .reason = BPF_POKE_REASON_TAIL_CALL, 18046 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18047 .tail_call.key = bpf_map_key_immediate(aux), 18048 .insn_idx = i + delta, 18049 }; 18050 18051 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18052 if (ret < 0) { 18053 verbose(env, "adding tail call poke descriptor failed\n"); 18054 return ret; 18055 } 18056 18057 insn->imm = ret + 1; 18058 continue; 18059 } 18060 18061 if (!bpf_map_ptr_unpriv(aux)) 18062 continue; 18063 18064 /* instead of changing every JIT dealing with tail_call 18065 * emit two extra insns: 18066 * if (index >= max_entries) goto out; 18067 * index &= array->index_mask; 18068 * to avoid out-of-bounds cpu speculation 18069 */ 18070 if (bpf_map_ptr_poisoned(aux)) { 18071 verbose(env, "tail_call abusing map_ptr\n"); 18072 return -EINVAL; 18073 } 18074 18075 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18076 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18077 map_ptr->max_entries, 2); 18078 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18079 container_of(map_ptr, 18080 struct bpf_array, 18081 map)->index_mask); 18082 insn_buf[2] = *insn; 18083 cnt = 3; 18084 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18085 if (!new_prog) 18086 return -ENOMEM; 18087 18088 delta += cnt - 1; 18089 env->prog = prog = new_prog; 18090 insn = new_prog->insnsi + i + delta; 18091 continue; 18092 } 18093 18094 if (insn->imm == BPF_FUNC_timer_set_callback) { 18095 /* The verifier will process callback_fn as many times as necessary 18096 * with different maps and the register states prepared by 18097 * set_timer_callback_state will be accurate. 18098 * 18099 * The following use case is valid: 18100 * map1 is shared by prog1, prog2, prog3. 18101 * prog1 calls bpf_timer_init for some map1 elements 18102 * prog2 calls bpf_timer_set_callback for some map1 elements. 18103 * Those that were not bpf_timer_init-ed will return -EINVAL. 18104 * prog3 calls bpf_timer_start for some map1 elements. 18105 * Those that were not both bpf_timer_init-ed and 18106 * bpf_timer_set_callback-ed will return -EINVAL. 18107 */ 18108 struct bpf_insn ld_addrs[2] = { 18109 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18110 }; 18111 18112 insn_buf[0] = ld_addrs[0]; 18113 insn_buf[1] = ld_addrs[1]; 18114 insn_buf[2] = *insn; 18115 cnt = 3; 18116 18117 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18118 if (!new_prog) 18119 return -ENOMEM; 18120 18121 delta += cnt - 1; 18122 env->prog = prog = new_prog; 18123 insn = new_prog->insnsi + i + delta; 18124 goto patch_call_imm; 18125 } 18126 18127 if (is_storage_get_function(insn->imm)) { 18128 if (!env->prog->aux->sleepable || 18129 env->insn_aux_data[i + delta].storage_get_func_atomic) 18130 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18131 else 18132 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18133 insn_buf[1] = *insn; 18134 cnt = 2; 18135 18136 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18137 if (!new_prog) 18138 return -ENOMEM; 18139 18140 delta += cnt - 1; 18141 env->prog = prog = new_prog; 18142 insn = new_prog->insnsi + i + delta; 18143 goto patch_call_imm; 18144 } 18145 18146 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18147 * and other inlining handlers are currently limited to 64 bit 18148 * only. 18149 */ 18150 if (prog->jit_requested && BITS_PER_LONG == 64 && 18151 (insn->imm == BPF_FUNC_map_lookup_elem || 18152 insn->imm == BPF_FUNC_map_update_elem || 18153 insn->imm == BPF_FUNC_map_delete_elem || 18154 insn->imm == BPF_FUNC_map_push_elem || 18155 insn->imm == BPF_FUNC_map_pop_elem || 18156 insn->imm == BPF_FUNC_map_peek_elem || 18157 insn->imm == BPF_FUNC_redirect_map || 18158 insn->imm == BPF_FUNC_for_each_map_elem || 18159 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18160 aux = &env->insn_aux_data[i + delta]; 18161 if (bpf_map_ptr_poisoned(aux)) 18162 goto patch_call_imm; 18163 18164 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18165 ops = map_ptr->ops; 18166 if (insn->imm == BPF_FUNC_map_lookup_elem && 18167 ops->map_gen_lookup) { 18168 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18169 if (cnt == -EOPNOTSUPP) 18170 goto patch_map_ops_generic; 18171 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18172 verbose(env, "bpf verifier is misconfigured\n"); 18173 return -EINVAL; 18174 } 18175 18176 new_prog = bpf_patch_insn_data(env, i + delta, 18177 insn_buf, cnt); 18178 if (!new_prog) 18179 return -ENOMEM; 18180 18181 delta += cnt - 1; 18182 env->prog = prog = new_prog; 18183 insn = new_prog->insnsi + i + delta; 18184 continue; 18185 } 18186 18187 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18188 (void *(*)(struct bpf_map *map, void *key))NULL)); 18189 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18190 (long (*)(struct bpf_map *map, void *key))NULL)); 18191 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18192 (long (*)(struct bpf_map *map, void *key, void *value, 18193 u64 flags))NULL)); 18194 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18195 (long (*)(struct bpf_map *map, void *value, 18196 u64 flags))NULL)); 18197 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18198 (long (*)(struct bpf_map *map, void *value))NULL)); 18199 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18200 (long (*)(struct bpf_map *map, void *value))NULL)); 18201 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18202 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18203 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18204 (long (*)(struct bpf_map *map, 18205 bpf_callback_t callback_fn, 18206 void *callback_ctx, 18207 u64 flags))NULL)); 18208 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18209 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18210 18211 patch_map_ops_generic: 18212 switch (insn->imm) { 18213 case BPF_FUNC_map_lookup_elem: 18214 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18215 continue; 18216 case BPF_FUNC_map_update_elem: 18217 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18218 continue; 18219 case BPF_FUNC_map_delete_elem: 18220 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18221 continue; 18222 case BPF_FUNC_map_push_elem: 18223 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18224 continue; 18225 case BPF_FUNC_map_pop_elem: 18226 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18227 continue; 18228 case BPF_FUNC_map_peek_elem: 18229 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18230 continue; 18231 case BPF_FUNC_redirect_map: 18232 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18233 continue; 18234 case BPF_FUNC_for_each_map_elem: 18235 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18236 continue; 18237 case BPF_FUNC_map_lookup_percpu_elem: 18238 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18239 continue; 18240 } 18241 18242 goto patch_call_imm; 18243 } 18244 18245 /* Implement bpf_jiffies64 inline. */ 18246 if (prog->jit_requested && BITS_PER_LONG == 64 && 18247 insn->imm == BPF_FUNC_jiffies64) { 18248 struct bpf_insn ld_jiffies_addr[2] = { 18249 BPF_LD_IMM64(BPF_REG_0, 18250 (unsigned long)&jiffies), 18251 }; 18252 18253 insn_buf[0] = ld_jiffies_addr[0]; 18254 insn_buf[1] = ld_jiffies_addr[1]; 18255 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18256 BPF_REG_0, 0); 18257 cnt = 3; 18258 18259 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18260 cnt); 18261 if (!new_prog) 18262 return -ENOMEM; 18263 18264 delta += cnt - 1; 18265 env->prog = prog = new_prog; 18266 insn = new_prog->insnsi + i + delta; 18267 continue; 18268 } 18269 18270 /* Implement bpf_get_func_arg inline. */ 18271 if (prog_type == BPF_PROG_TYPE_TRACING && 18272 insn->imm == BPF_FUNC_get_func_arg) { 18273 /* Load nr_args from ctx - 8 */ 18274 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18275 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18276 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18277 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18278 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18279 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18280 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18281 insn_buf[7] = BPF_JMP_A(1); 18282 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18283 cnt = 9; 18284 18285 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18286 if (!new_prog) 18287 return -ENOMEM; 18288 18289 delta += cnt - 1; 18290 env->prog = prog = new_prog; 18291 insn = new_prog->insnsi + i + delta; 18292 continue; 18293 } 18294 18295 /* Implement bpf_get_func_ret inline. */ 18296 if (prog_type == BPF_PROG_TYPE_TRACING && 18297 insn->imm == BPF_FUNC_get_func_ret) { 18298 if (eatype == BPF_TRACE_FEXIT || 18299 eatype == BPF_MODIFY_RETURN) { 18300 /* Load nr_args from ctx - 8 */ 18301 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18302 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18303 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18304 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18305 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18306 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18307 cnt = 6; 18308 } else { 18309 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18310 cnt = 1; 18311 } 18312 18313 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18314 if (!new_prog) 18315 return -ENOMEM; 18316 18317 delta += cnt - 1; 18318 env->prog = prog = new_prog; 18319 insn = new_prog->insnsi + i + delta; 18320 continue; 18321 } 18322 18323 /* Implement get_func_arg_cnt inline. */ 18324 if (prog_type == BPF_PROG_TYPE_TRACING && 18325 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18326 /* Load nr_args from ctx - 8 */ 18327 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18328 18329 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18330 if (!new_prog) 18331 return -ENOMEM; 18332 18333 env->prog = prog = new_prog; 18334 insn = new_prog->insnsi + i + delta; 18335 continue; 18336 } 18337 18338 /* Implement bpf_get_func_ip inline. */ 18339 if (prog_type == BPF_PROG_TYPE_TRACING && 18340 insn->imm == BPF_FUNC_get_func_ip) { 18341 /* Load IP address from ctx - 16 */ 18342 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18343 18344 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18345 if (!new_prog) 18346 return -ENOMEM; 18347 18348 env->prog = prog = new_prog; 18349 insn = new_prog->insnsi + i + delta; 18350 continue; 18351 } 18352 18353 patch_call_imm: 18354 fn = env->ops->get_func_proto(insn->imm, env->prog); 18355 /* all functions that have prototype and verifier allowed 18356 * programs to call them, must be real in-kernel functions 18357 */ 18358 if (!fn->func) { 18359 verbose(env, 18360 "kernel subsystem misconfigured func %s#%d\n", 18361 func_id_name(insn->imm), insn->imm); 18362 return -EFAULT; 18363 } 18364 insn->imm = fn->func - __bpf_call_base; 18365 } 18366 18367 /* Since poke tab is now finalized, publish aux to tracker. */ 18368 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18369 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18370 if (!map_ptr->ops->map_poke_track || 18371 !map_ptr->ops->map_poke_untrack || 18372 !map_ptr->ops->map_poke_run) { 18373 verbose(env, "bpf verifier is misconfigured\n"); 18374 return -EINVAL; 18375 } 18376 18377 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18378 if (ret < 0) { 18379 verbose(env, "tracking tail call prog failed\n"); 18380 return ret; 18381 } 18382 } 18383 18384 sort_kfunc_descs_by_imm_off(env->prog); 18385 18386 return 0; 18387 } 18388 18389 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18390 int position, 18391 s32 stack_base, 18392 u32 callback_subprogno, 18393 u32 *cnt) 18394 { 18395 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18396 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18397 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18398 int reg_loop_max = BPF_REG_6; 18399 int reg_loop_cnt = BPF_REG_7; 18400 int reg_loop_ctx = BPF_REG_8; 18401 18402 struct bpf_prog *new_prog; 18403 u32 callback_start; 18404 u32 call_insn_offset; 18405 s32 callback_offset; 18406 18407 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18408 * be careful to modify this code in sync. 18409 */ 18410 struct bpf_insn insn_buf[] = { 18411 /* Return error and jump to the end of the patch if 18412 * expected number of iterations is too big. 18413 */ 18414 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18415 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18416 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18417 /* spill R6, R7, R8 to use these as loop vars */ 18418 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18419 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18420 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18421 /* initialize loop vars */ 18422 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18423 BPF_MOV32_IMM(reg_loop_cnt, 0), 18424 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18425 /* loop header, 18426 * if reg_loop_cnt >= reg_loop_max skip the loop body 18427 */ 18428 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18429 /* callback call, 18430 * correct callback offset would be set after patching 18431 */ 18432 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18433 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18434 BPF_CALL_REL(0), 18435 /* increment loop counter */ 18436 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18437 /* jump to loop header if callback returned 0 */ 18438 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18439 /* return value of bpf_loop, 18440 * set R0 to the number of iterations 18441 */ 18442 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18443 /* restore original values of R6, R7, R8 */ 18444 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18445 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18446 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18447 }; 18448 18449 *cnt = ARRAY_SIZE(insn_buf); 18450 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18451 if (!new_prog) 18452 return new_prog; 18453 18454 /* callback start is known only after patching */ 18455 callback_start = env->subprog_info[callback_subprogno].start; 18456 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18457 call_insn_offset = position + 12; 18458 callback_offset = callback_start - call_insn_offset - 1; 18459 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18460 18461 return new_prog; 18462 } 18463 18464 static bool is_bpf_loop_call(struct bpf_insn *insn) 18465 { 18466 return insn->code == (BPF_JMP | BPF_CALL) && 18467 insn->src_reg == 0 && 18468 insn->imm == BPF_FUNC_loop; 18469 } 18470 18471 /* For all sub-programs in the program (including main) check 18472 * insn_aux_data to see if there are bpf_loop calls that require 18473 * inlining. If such calls are found the calls are replaced with a 18474 * sequence of instructions produced by `inline_bpf_loop` function and 18475 * subprog stack_depth is increased by the size of 3 registers. 18476 * This stack space is used to spill values of the R6, R7, R8. These 18477 * registers are used to store the loop bound, counter and context 18478 * variables. 18479 */ 18480 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18481 { 18482 struct bpf_subprog_info *subprogs = env->subprog_info; 18483 int i, cur_subprog = 0, cnt, delta = 0; 18484 struct bpf_insn *insn = env->prog->insnsi; 18485 int insn_cnt = env->prog->len; 18486 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18487 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18488 u16 stack_depth_extra = 0; 18489 18490 for (i = 0; i < insn_cnt; i++, insn++) { 18491 struct bpf_loop_inline_state *inline_state = 18492 &env->insn_aux_data[i + delta].loop_inline_state; 18493 18494 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18495 struct bpf_prog *new_prog; 18496 18497 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18498 new_prog = inline_bpf_loop(env, 18499 i + delta, 18500 -(stack_depth + stack_depth_extra), 18501 inline_state->callback_subprogno, 18502 &cnt); 18503 if (!new_prog) 18504 return -ENOMEM; 18505 18506 delta += cnt - 1; 18507 env->prog = new_prog; 18508 insn = new_prog->insnsi + i + delta; 18509 } 18510 18511 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18512 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18513 cur_subprog++; 18514 stack_depth = subprogs[cur_subprog].stack_depth; 18515 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18516 stack_depth_extra = 0; 18517 } 18518 } 18519 18520 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18521 18522 return 0; 18523 } 18524 18525 static void free_states(struct bpf_verifier_env *env) 18526 { 18527 struct bpf_verifier_state_list *sl, *sln; 18528 int i; 18529 18530 sl = env->free_list; 18531 while (sl) { 18532 sln = sl->next; 18533 free_verifier_state(&sl->state, false); 18534 kfree(sl); 18535 sl = sln; 18536 } 18537 env->free_list = NULL; 18538 18539 if (!env->explored_states) 18540 return; 18541 18542 for (i = 0; i < state_htab_size(env); i++) { 18543 sl = env->explored_states[i]; 18544 18545 while (sl) { 18546 sln = sl->next; 18547 free_verifier_state(&sl->state, false); 18548 kfree(sl); 18549 sl = sln; 18550 } 18551 env->explored_states[i] = NULL; 18552 } 18553 } 18554 18555 static int do_check_common(struct bpf_verifier_env *env, int subprog) 18556 { 18557 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18558 struct bpf_verifier_state *state; 18559 struct bpf_reg_state *regs; 18560 int ret, i; 18561 18562 env->prev_linfo = NULL; 18563 env->pass_cnt++; 18564 18565 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 18566 if (!state) 18567 return -ENOMEM; 18568 state->curframe = 0; 18569 state->speculative = false; 18570 state->branches = 1; 18571 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 18572 if (!state->frame[0]) { 18573 kfree(state); 18574 return -ENOMEM; 18575 } 18576 env->cur_state = state; 18577 init_func_state(env, state->frame[0], 18578 BPF_MAIN_FUNC /* callsite */, 18579 0 /* frameno */, 18580 subprog); 18581 state->first_insn_idx = env->subprog_info[subprog].start; 18582 state->last_insn_idx = -1; 18583 18584 regs = state->frame[state->curframe]->regs; 18585 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 18586 ret = btf_prepare_func_args(env, subprog, regs); 18587 if (ret) 18588 goto out; 18589 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 18590 if (regs[i].type == PTR_TO_CTX) 18591 mark_reg_known_zero(env, regs, i); 18592 else if (regs[i].type == SCALAR_VALUE) 18593 mark_reg_unknown(env, regs, i); 18594 else if (base_type(regs[i].type) == PTR_TO_MEM) { 18595 const u32 mem_size = regs[i].mem_size; 18596 18597 mark_reg_known_zero(env, regs, i); 18598 regs[i].mem_size = mem_size; 18599 regs[i].id = ++env->id_gen; 18600 } 18601 } 18602 } else { 18603 /* 1st arg to a function */ 18604 regs[BPF_REG_1].type = PTR_TO_CTX; 18605 mark_reg_known_zero(env, regs, BPF_REG_1); 18606 ret = btf_check_subprog_arg_match(env, subprog, regs); 18607 if (ret == -EFAULT) 18608 /* unlikely verifier bug. abort. 18609 * ret == 0 and ret < 0 are sadly acceptable for 18610 * main() function due to backward compatibility. 18611 * Like socket filter program may be written as: 18612 * int bpf_prog(struct pt_regs *ctx) 18613 * and never dereference that ctx in the program. 18614 * 'struct pt_regs' is a type mismatch for socket 18615 * filter that should be using 'struct __sk_buff'. 18616 */ 18617 goto out; 18618 } 18619 18620 ret = do_check(env); 18621 out: 18622 /* check for NULL is necessary, since cur_state can be freed inside 18623 * do_check() under memory pressure. 18624 */ 18625 if (env->cur_state) { 18626 free_verifier_state(env->cur_state, true); 18627 env->cur_state = NULL; 18628 } 18629 while (!pop_stack(env, NULL, NULL, false)); 18630 if (!ret && pop_log) 18631 bpf_vlog_reset(&env->log, 0); 18632 free_states(env); 18633 return ret; 18634 } 18635 18636 /* Verify all global functions in a BPF program one by one based on their BTF. 18637 * All global functions must pass verification. Otherwise the whole program is rejected. 18638 * Consider: 18639 * int bar(int); 18640 * int foo(int f) 18641 * { 18642 * return bar(f); 18643 * } 18644 * int bar(int b) 18645 * { 18646 * ... 18647 * } 18648 * foo() will be verified first for R1=any_scalar_value. During verification it 18649 * will be assumed that bar() already verified successfully and call to bar() 18650 * from foo() will be checked for type match only. Later bar() will be verified 18651 * independently to check that it's safe for R1=any_scalar_value. 18652 */ 18653 static int do_check_subprogs(struct bpf_verifier_env *env) 18654 { 18655 struct bpf_prog_aux *aux = env->prog->aux; 18656 int i, ret; 18657 18658 if (!aux->func_info) 18659 return 0; 18660 18661 for (i = 1; i < env->subprog_cnt; i++) { 18662 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 18663 continue; 18664 env->insn_idx = env->subprog_info[i].start; 18665 WARN_ON_ONCE(env->insn_idx == 0); 18666 ret = do_check_common(env, i); 18667 if (ret) { 18668 return ret; 18669 } else if (env->log.level & BPF_LOG_LEVEL) { 18670 verbose(env, 18671 "Func#%d is safe for any args that match its prototype\n", 18672 i); 18673 } 18674 } 18675 return 0; 18676 } 18677 18678 static int do_check_main(struct bpf_verifier_env *env) 18679 { 18680 int ret; 18681 18682 env->insn_idx = 0; 18683 ret = do_check_common(env, 0); 18684 if (!ret) 18685 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18686 return ret; 18687 } 18688 18689 18690 static void print_verification_stats(struct bpf_verifier_env *env) 18691 { 18692 int i; 18693 18694 if (env->log.level & BPF_LOG_STATS) { 18695 verbose(env, "verification time %lld usec\n", 18696 div_u64(env->verification_time, 1000)); 18697 verbose(env, "stack depth "); 18698 for (i = 0; i < env->subprog_cnt; i++) { 18699 u32 depth = env->subprog_info[i].stack_depth; 18700 18701 verbose(env, "%d", depth); 18702 if (i + 1 < env->subprog_cnt) 18703 verbose(env, "+"); 18704 } 18705 verbose(env, "\n"); 18706 } 18707 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 18708 "total_states %d peak_states %d mark_read %d\n", 18709 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 18710 env->max_states_per_insn, env->total_states, 18711 env->peak_states, env->longest_mark_read_walk); 18712 } 18713 18714 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 18715 { 18716 const struct btf_type *t, *func_proto; 18717 const struct bpf_struct_ops *st_ops; 18718 const struct btf_member *member; 18719 struct bpf_prog *prog = env->prog; 18720 u32 btf_id, member_idx; 18721 const char *mname; 18722 18723 if (!prog->gpl_compatible) { 18724 verbose(env, "struct ops programs must have a GPL compatible license\n"); 18725 return -EINVAL; 18726 } 18727 18728 btf_id = prog->aux->attach_btf_id; 18729 st_ops = bpf_struct_ops_find(btf_id); 18730 if (!st_ops) { 18731 verbose(env, "attach_btf_id %u is not a supported struct\n", 18732 btf_id); 18733 return -ENOTSUPP; 18734 } 18735 18736 t = st_ops->type; 18737 member_idx = prog->expected_attach_type; 18738 if (member_idx >= btf_type_vlen(t)) { 18739 verbose(env, "attach to invalid member idx %u of struct %s\n", 18740 member_idx, st_ops->name); 18741 return -EINVAL; 18742 } 18743 18744 member = &btf_type_member(t)[member_idx]; 18745 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 18746 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 18747 NULL); 18748 if (!func_proto) { 18749 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 18750 mname, member_idx, st_ops->name); 18751 return -EINVAL; 18752 } 18753 18754 if (st_ops->check_member) { 18755 int err = st_ops->check_member(t, member, prog); 18756 18757 if (err) { 18758 verbose(env, "attach to unsupported member %s of struct %s\n", 18759 mname, st_ops->name); 18760 return err; 18761 } 18762 } 18763 18764 prog->aux->attach_func_proto = func_proto; 18765 prog->aux->attach_func_name = mname; 18766 env->ops = st_ops->verifier_ops; 18767 18768 return 0; 18769 } 18770 #define SECURITY_PREFIX "security_" 18771 18772 static int check_attach_modify_return(unsigned long addr, const char *func_name) 18773 { 18774 if (within_error_injection_list(addr) || 18775 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 18776 return 0; 18777 18778 return -EINVAL; 18779 } 18780 18781 /* list of non-sleepable functions that are otherwise on 18782 * ALLOW_ERROR_INJECTION list 18783 */ 18784 BTF_SET_START(btf_non_sleepable_error_inject) 18785 /* Three functions below can be called from sleepable and non-sleepable context. 18786 * Assume non-sleepable from bpf safety point of view. 18787 */ 18788 BTF_ID(func, __filemap_add_folio) 18789 BTF_ID(func, should_fail_alloc_page) 18790 BTF_ID(func, should_failslab) 18791 BTF_SET_END(btf_non_sleepable_error_inject) 18792 18793 static int check_non_sleepable_error_inject(u32 btf_id) 18794 { 18795 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 18796 } 18797 18798 int bpf_check_attach_target(struct bpf_verifier_log *log, 18799 const struct bpf_prog *prog, 18800 const struct bpf_prog *tgt_prog, 18801 u32 btf_id, 18802 struct bpf_attach_target_info *tgt_info) 18803 { 18804 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 18805 const char prefix[] = "btf_trace_"; 18806 int ret = 0, subprog = -1, i; 18807 const struct btf_type *t; 18808 bool conservative = true; 18809 const char *tname; 18810 struct btf *btf; 18811 long addr = 0; 18812 struct module *mod = NULL; 18813 18814 if (!btf_id) { 18815 bpf_log(log, "Tracing programs must provide btf_id\n"); 18816 return -EINVAL; 18817 } 18818 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 18819 if (!btf) { 18820 bpf_log(log, 18821 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 18822 return -EINVAL; 18823 } 18824 t = btf_type_by_id(btf, btf_id); 18825 if (!t) { 18826 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 18827 return -EINVAL; 18828 } 18829 tname = btf_name_by_offset(btf, t->name_off); 18830 if (!tname) { 18831 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 18832 return -EINVAL; 18833 } 18834 if (tgt_prog) { 18835 struct bpf_prog_aux *aux = tgt_prog->aux; 18836 18837 if (bpf_prog_is_dev_bound(prog->aux) && 18838 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 18839 bpf_log(log, "Target program bound device mismatch"); 18840 return -EINVAL; 18841 } 18842 18843 for (i = 0; i < aux->func_info_cnt; i++) 18844 if (aux->func_info[i].type_id == btf_id) { 18845 subprog = i; 18846 break; 18847 } 18848 if (subprog == -1) { 18849 bpf_log(log, "Subprog %s doesn't exist\n", tname); 18850 return -EINVAL; 18851 } 18852 conservative = aux->func_info_aux[subprog].unreliable; 18853 if (prog_extension) { 18854 if (conservative) { 18855 bpf_log(log, 18856 "Cannot replace static functions\n"); 18857 return -EINVAL; 18858 } 18859 if (!prog->jit_requested) { 18860 bpf_log(log, 18861 "Extension programs should be JITed\n"); 18862 return -EINVAL; 18863 } 18864 } 18865 if (!tgt_prog->jited) { 18866 bpf_log(log, "Can attach to only JITed progs\n"); 18867 return -EINVAL; 18868 } 18869 if (tgt_prog->type == prog->type) { 18870 /* Cannot fentry/fexit another fentry/fexit program. 18871 * Cannot attach program extension to another extension. 18872 * It's ok to attach fentry/fexit to extension program. 18873 */ 18874 bpf_log(log, "Cannot recursively attach\n"); 18875 return -EINVAL; 18876 } 18877 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 18878 prog_extension && 18879 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 18880 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 18881 /* Program extensions can extend all program types 18882 * except fentry/fexit. The reason is the following. 18883 * The fentry/fexit programs are used for performance 18884 * analysis, stats and can be attached to any program 18885 * type except themselves. When extension program is 18886 * replacing XDP function it is necessary to allow 18887 * performance analysis of all functions. Both original 18888 * XDP program and its program extension. Hence 18889 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 18890 * allowed. If extending of fentry/fexit was allowed it 18891 * would be possible to create long call chain 18892 * fentry->extension->fentry->extension beyond 18893 * reasonable stack size. Hence extending fentry is not 18894 * allowed. 18895 */ 18896 bpf_log(log, "Cannot extend fentry/fexit\n"); 18897 return -EINVAL; 18898 } 18899 } else { 18900 if (prog_extension) { 18901 bpf_log(log, "Cannot replace kernel functions\n"); 18902 return -EINVAL; 18903 } 18904 } 18905 18906 switch (prog->expected_attach_type) { 18907 case BPF_TRACE_RAW_TP: 18908 if (tgt_prog) { 18909 bpf_log(log, 18910 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 18911 return -EINVAL; 18912 } 18913 if (!btf_type_is_typedef(t)) { 18914 bpf_log(log, "attach_btf_id %u is not a typedef\n", 18915 btf_id); 18916 return -EINVAL; 18917 } 18918 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 18919 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 18920 btf_id, tname); 18921 return -EINVAL; 18922 } 18923 tname += sizeof(prefix) - 1; 18924 t = btf_type_by_id(btf, t->type); 18925 if (!btf_type_is_ptr(t)) 18926 /* should never happen in valid vmlinux build */ 18927 return -EINVAL; 18928 t = btf_type_by_id(btf, t->type); 18929 if (!btf_type_is_func_proto(t)) 18930 /* should never happen in valid vmlinux build */ 18931 return -EINVAL; 18932 18933 break; 18934 case BPF_TRACE_ITER: 18935 if (!btf_type_is_func(t)) { 18936 bpf_log(log, "attach_btf_id %u is not a function\n", 18937 btf_id); 18938 return -EINVAL; 18939 } 18940 t = btf_type_by_id(btf, t->type); 18941 if (!btf_type_is_func_proto(t)) 18942 return -EINVAL; 18943 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 18944 if (ret) 18945 return ret; 18946 break; 18947 default: 18948 if (!prog_extension) 18949 return -EINVAL; 18950 fallthrough; 18951 case BPF_MODIFY_RETURN: 18952 case BPF_LSM_MAC: 18953 case BPF_LSM_CGROUP: 18954 case BPF_TRACE_FENTRY: 18955 case BPF_TRACE_FEXIT: 18956 if (!btf_type_is_func(t)) { 18957 bpf_log(log, "attach_btf_id %u is not a function\n", 18958 btf_id); 18959 return -EINVAL; 18960 } 18961 if (prog_extension && 18962 btf_check_type_match(log, prog, btf, t)) 18963 return -EINVAL; 18964 t = btf_type_by_id(btf, t->type); 18965 if (!btf_type_is_func_proto(t)) 18966 return -EINVAL; 18967 18968 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 18969 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 18970 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 18971 return -EINVAL; 18972 18973 if (tgt_prog && conservative) 18974 t = NULL; 18975 18976 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 18977 if (ret < 0) 18978 return ret; 18979 18980 if (tgt_prog) { 18981 if (subprog == 0) 18982 addr = (long) tgt_prog->bpf_func; 18983 else 18984 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 18985 } else { 18986 if (btf_is_module(btf)) { 18987 mod = btf_try_get_module(btf); 18988 if (mod) 18989 addr = find_kallsyms_symbol_value(mod, tname); 18990 else 18991 addr = 0; 18992 } else { 18993 addr = kallsyms_lookup_name(tname); 18994 } 18995 if (!addr) { 18996 module_put(mod); 18997 bpf_log(log, 18998 "The address of function %s cannot be found\n", 18999 tname); 19000 return -ENOENT; 19001 } 19002 } 19003 19004 if (prog->aux->sleepable) { 19005 ret = -EINVAL; 19006 switch (prog->type) { 19007 case BPF_PROG_TYPE_TRACING: 19008 19009 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19010 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19011 */ 19012 if (!check_non_sleepable_error_inject(btf_id) && 19013 within_error_injection_list(addr)) 19014 ret = 0; 19015 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19016 * in the fmodret id set with the KF_SLEEPABLE flag. 19017 */ 19018 else { 19019 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19020 prog); 19021 19022 if (flags && (*flags & KF_SLEEPABLE)) 19023 ret = 0; 19024 } 19025 break; 19026 case BPF_PROG_TYPE_LSM: 19027 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19028 * Only some of them are sleepable. 19029 */ 19030 if (bpf_lsm_is_sleepable_hook(btf_id)) 19031 ret = 0; 19032 break; 19033 default: 19034 break; 19035 } 19036 if (ret) { 19037 module_put(mod); 19038 bpf_log(log, "%s is not sleepable\n", tname); 19039 return ret; 19040 } 19041 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19042 if (tgt_prog) { 19043 module_put(mod); 19044 bpf_log(log, "can't modify return codes of BPF programs\n"); 19045 return -EINVAL; 19046 } 19047 ret = -EINVAL; 19048 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19049 !check_attach_modify_return(addr, tname)) 19050 ret = 0; 19051 if (ret) { 19052 module_put(mod); 19053 bpf_log(log, "%s() is not modifiable\n", tname); 19054 return ret; 19055 } 19056 } 19057 19058 break; 19059 } 19060 tgt_info->tgt_addr = addr; 19061 tgt_info->tgt_name = tname; 19062 tgt_info->tgt_type = t; 19063 tgt_info->tgt_mod = mod; 19064 return 0; 19065 } 19066 19067 BTF_SET_START(btf_id_deny) 19068 BTF_ID_UNUSED 19069 #ifdef CONFIG_SMP 19070 BTF_ID(func, migrate_disable) 19071 BTF_ID(func, migrate_enable) 19072 #endif 19073 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19074 BTF_ID(func, rcu_read_unlock_strict) 19075 #endif 19076 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19077 BTF_ID(func, preempt_count_add) 19078 BTF_ID(func, preempt_count_sub) 19079 #endif 19080 #ifdef CONFIG_PREEMPT_RCU 19081 BTF_ID(func, __rcu_read_lock) 19082 BTF_ID(func, __rcu_read_unlock) 19083 #endif 19084 BTF_SET_END(btf_id_deny) 19085 19086 static bool can_be_sleepable(struct bpf_prog *prog) 19087 { 19088 if (prog->type == BPF_PROG_TYPE_TRACING) { 19089 switch (prog->expected_attach_type) { 19090 case BPF_TRACE_FENTRY: 19091 case BPF_TRACE_FEXIT: 19092 case BPF_MODIFY_RETURN: 19093 case BPF_TRACE_ITER: 19094 return true; 19095 default: 19096 return false; 19097 } 19098 } 19099 return prog->type == BPF_PROG_TYPE_LSM || 19100 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19101 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19102 } 19103 19104 static int check_attach_btf_id(struct bpf_verifier_env *env) 19105 { 19106 struct bpf_prog *prog = env->prog; 19107 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19108 struct bpf_attach_target_info tgt_info = {}; 19109 u32 btf_id = prog->aux->attach_btf_id; 19110 struct bpf_trampoline *tr; 19111 int ret; 19112 u64 key; 19113 19114 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19115 if (prog->aux->sleepable) 19116 /* attach_btf_id checked to be zero already */ 19117 return 0; 19118 verbose(env, "Syscall programs can only be sleepable\n"); 19119 return -EINVAL; 19120 } 19121 19122 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19123 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19124 return -EINVAL; 19125 } 19126 19127 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19128 return check_struct_ops_btf_id(env); 19129 19130 if (prog->type != BPF_PROG_TYPE_TRACING && 19131 prog->type != BPF_PROG_TYPE_LSM && 19132 prog->type != BPF_PROG_TYPE_EXT) 19133 return 0; 19134 19135 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19136 if (ret) 19137 return ret; 19138 19139 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19140 /* to make freplace equivalent to their targets, they need to 19141 * inherit env->ops and expected_attach_type for the rest of the 19142 * verification 19143 */ 19144 env->ops = bpf_verifier_ops[tgt_prog->type]; 19145 prog->expected_attach_type = tgt_prog->expected_attach_type; 19146 } 19147 19148 /* store info about the attachment target that will be used later */ 19149 prog->aux->attach_func_proto = tgt_info.tgt_type; 19150 prog->aux->attach_func_name = tgt_info.tgt_name; 19151 prog->aux->mod = tgt_info.tgt_mod; 19152 19153 if (tgt_prog) { 19154 prog->aux->saved_dst_prog_type = tgt_prog->type; 19155 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19156 } 19157 19158 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19159 prog->aux->attach_btf_trace = true; 19160 return 0; 19161 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19162 if (!bpf_iter_prog_supported(prog)) 19163 return -EINVAL; 19164 return 0; 19165 } 19166 19167 if (prog->type == BPF_PROG_TYPE_LSM) { 19168 ret = bpf_lsm_verify_prog(&env->log, prog); 19169 if (ret < 0) 19170 return ret; 19171 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19172 btf_id_set_contains(&btf_id_deny, btf_id)) { 19173 return -EINVAL; 19174 } 19175 19176 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19177 tr = bpf_trampoline_get(key, &tgt_info); 19178 if (!tr) 19179 return -ENOMEM; 19180 19181 prog->aux->dst_trampoline = tr; 19182 return 0; 19183 } 19184 19185 struct btf *bpf_get_btf_vmlinux(void) 19186 { 19187 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19188 mutex_lock(&bpf_verifier_lock); 19189 if (!btf_vmlinux) 19190 btf_vmlinux = btf_parse_vmlinux(); 19191 mutex_unlock(&bpf_verifier_lock); 19192 } 19193 return btf_vmlinux; 19194 } 19195 19196 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19197 { 19198 u64 start_time = ktime_get_ns(); 19199 struct bpf_verifier_env *env; 19200 int i, len, ret = -EINVAL, err; 19201 u32 log_true_size; 19202 bool is_priv; 19203 19204 /* no program is valid */ 19205 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19206 return -EINVAL; 19207 19208 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19209 * allocate/free it every time bpf_check() is called 19210 */ 19211 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19212 if (!env) 19213 return -ENOMEM; 19214 19215 env->bt.env = env; 19216 19217 len = (*prog)->len; 19218 env->insn_aux_data = 19219 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19220 ret = -ENOMEM; 19221 if (!env->insn_aux_data) 19222 goto err_free_env; 19223 for (i = 0; i < len; i++) 19224 env->insn_aux_data[i].orig_idx = i; 19225 env->prog = *prog; 19226 env->ops = bpf_verifier_ops[env->prog->type]; 19227 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19228 is_priv = bpf_capable(); 19229 19230 bpf_get_btf_vmlinux(); 19231 19232 /* grab the mutex to protect few globals used by verifier */ 19233 if (!is_priv) 19234 mutex_lock(&bpf_verifier_lock); 19235 19236 /* user could have requested verbose verifier output 19237 * and supplied buffer to store the verification trace 19238 */ 19239 ret = bpf_vlog_init(&env->log, attr->log_level, 19240 (char __user *) (unsigned long) attr->log_buf, 19241 attr->log_size); 19242 if (ret) 19243 goto err_unlock; 19244 19245 mark_verifier_state_clean(env); 19246 19247 if (IS_ERR(btf_vmlinux)) { 19248 /* Either gcc or pahole or kernel are broken. */ 19249 verbose(env, "in-kernel BTF is malformed\n"); 19250 ret = PTR_ERR(btf_vmlinux); 19251 goto skip_full_check; 19252 } 19253 19254 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19255 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19256 env->strict_alignment = true; 19257 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19258 env->strict_alignment = false; 19259 19260 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19261 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19262 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19263 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19264 env->bpf_capable = bpf_capable(); 19265 19266 if (is_priv) 19267 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19268 19269 env->explored_states = kvcalloc(state_htab_size(env), 19270 sizeof(struct bpf_verifier_state_list *), 19271 GFP_USER); 19272 ret = -ENOMEM; 19273 if (!env->explored_states) 19274 goto skip_full_check; 19275 19276 ret = add_subprog_and_kfunc(env); 19277 if (ret < 0) 19278 goto skip_full_check; 19279 19280 ret = check_subprogs(env); 19281 if (ret < 0) 19282 goto skip_full_check; 19283 19284 ret = check_btf_info(env, attr, uattr); 19285 if (ret < 0) 19286 goto skip_full_check; 19287 19288 ret = check_attach_btf_id(env); 19289 if (ret) 19290 goto skip_full_check; 19291 19292 ret = resolve_pseudo_ldimm64(env); 19293 if (ret < 0) 19294 goto skip_full_check; 19295 19296 if (bpf_prog_is_offloaded(env->prog->aux)) { 19297 ret = bpf_prog_offload_verifier_prep(env->prog); 19298 if (ret) 19299 goto skip_full_check; 19300 } 19301 19302 ret = check_cfg(env); 19303 if (ret < 0) 19304 goto skip_full_check; 19305 19306 ret = do_check_subprogs(env); 19307 ret = ret ?: do_check_main(env); 19308 19309 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19310 ret = bpf_prog_offload_finalize(env); 19311 19312 skip_full_check: 19313 kvfree(env->explored_states); 19314 19315 if (ret == 0) 19316 ret = check_max_stack_depth(env); 19317 19318 /* instruction rewrites happen after this point */ 19319 if (ret == 0) 19320 ret = optimize_bpf_loop(env); 19321 19322 if (is_priv) { 19323 if (ret == 0) 19324 opt_hard_wire_dead_code_branches(env); 19325 if (ret == 0) 19326 ret = opt_remove_dead_code(env); 19327 if (ret == 0) 19328 ret = opt_remove_nops(env); 19329 } else { 19330 if (ret == 0) 19331 sanitize_dead_code(env); 19332 } 19333 19334 if (ret == 0) 19335 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19336 ret = convert_ctx_accesses(env); 19337 19338 if (ret == 0) 19339 ret = do_misc_fixups(env); 19340 19341 /* do 32-bit optimization after insn patching has done so those patched 19342 * insns could be handled correctly. 19343 */ 19344 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19345 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19346 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19347 : false; 19348 } 19349 19350 if (ret == 0) 19351 ret = fixup_call_args(env); 19352 19353 env->verification_time = ktime_get_ns() - start_time; 19354 print_verification_stats(env); 19355 env->prog->aux->verified_insns = env->insn_processed; 19356 19357 /* preserve original error even if log finalization is successful */ 19358 err = bpf_vlog_finalize(&env->log, &log_true_size); 19359 if (err) 19360 ret = err; 19361 19362 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19363 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19364 &log_true_size, sizeof(log_true_size))) { 19365 ret = -EFAULT; 19366 goto err_release_maps; 19367 } 19368 19369 if (ret) 19370 goto err_release_maps; 19371 19372 if (env->used_map_cnt) { 19373 /* if program passed verifier, update used_maps in bpf_prog_info */ 19374 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19375 sizeof(env->used_maps[0]), 19376 GFP_KERNEL); 19377 19378 if (!env->prog->aux->used_maps) { 19379 ret = -ENOMEM; 19380 goto err_release_maps; 19381 } 19382 19383 memcpy(env->prog->aux->used_maps, env->used_maps, 19384 sizeof(env->used_maps[0]) * env->used_map_cnt); 19385 env->prog->aux->used_map_cnt = env->used_map_cnt; 19386 } 19387 if (env->used_btf_cnt) { 19388 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19389 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19390 sizeof(env->used_btfs[0]), 19391 GFP_KERNEL); 19392 if (!env->prog->aux->used_btfs) { 19393 ret = -ENOMEM; 19394 goto err_release_maps; 19395 } 19396 19397 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19398 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19399 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19400 } 19401 if (env->used_map_cnt || env->used_btf_cnt) { 19402 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19403 * bpf_ld_imm64 instructions 19404 */ 19405 convert_pseudo_ld_imm64(env); 19406 } 19407 19408 adjust_btf_func(env); 19409 19410 err_release_maps: 19411 if (!env->prog->aux->used_maps) 19412 /* if we didn't copy map pointers into bpf_prog_info, release 19413 * them now. Otherwise free_used_maps() will release them. 19414 */ 19415 release_maps(env); 19416 if (!env->prog->aux->used_btfs) 19417 release_btfs(env); 19418 19419 /* extension progs temporarily inherit the attach_type of their targets 19420 for verification purposes, so set it back to zero before returning 19421 */ 19422 if (env->prog->type == BPF_PROG_TYPE_EXT) 19423 env->prog->expected_attach_type = 0; 19424 19425 *prog = env->prog; 19426 err_unlock: 19427 if (!is_priv) 19428 mutex_unlock(&bpf_verifier_lock); 19429 vfree(env->insn_aux_data); 19430 err_free_env: 19431 kfree(env); 19432 return ret; 19433 } 19434